
DTS	Programming

Programming	DTS	Applications
The	Data	Transformation	Services	(DTS)	object	model	includes	the	objects	and
collections,	as	well	as	their	associated	properties,	methods	and	events,	that	are
used	to	write	applications	that	manipulate	the	DTS	object	model.

Although	any	programming	language	that	supports	COM	can	be	used	to
implement	DTS	applications,	this	section	focuses	on	implementing	DTS
applications	in	Microsoft®	Visual	Basic®	and	Microsoft	Visual	C++®.

Topic Description
DTS	Object	Model	Diagram Provides	a	diagram	of	the	hierarchy	of

DTS	objects	and	collections	and	offers
an	explanation	of	extended	objects.

Creating	DTS	Packages	with	the
DTS	Object	Model

Describes	how	to	implement	DTS
package	applications	not	specific	to	a
particular	programming	environment.

Creating	DTS	Packages	in	Visual
Basic

Describes	how	to	implement	DTS
package	applications	in	Visual	Basic.

Building	a	DTS	Custom	Task Describes	how	to	implement	and
register	a	DTS	custom	task.

Building	a	DTS	Custom
Transformation

Describes	how	to	implement	and
register	a	DTS	custom	transformation.

See	Also

Creating	a	DTS	Package

DTS	Basics

DTS	Programming	Reference

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

DTS	Programming

Extended	DTS	Objects
Several	Data	Transformation	Services	(DTS)	objects	that	enhance	objects	from
Microsoft®	SQL	Server™	version	7.0	have	been	added	to	Microsoft	SQL	Server
2000.	These	have	been	named	by	appending	a	2	to	the	name	of	the	existing
object.	For	example,	the	DataPumpTask2	object	enhances	the	DataPumpTask
object	through	the	addition	of	the	RowsComplete	and	RowsInError	properties.
In	this	section,	DataPumpTask2	refers	to	both	the	extended	and	original	object.

Each	extended	object	extends	the	functionality	of	the	SQL	Server	7.0	object	and
inherits	the	properties	and	methods	of	that	object.	However,	none	is	compatible
with	SQL	Server	7.0	or	earlier.	The	SQL	Server	7.0	objects	still	are	available	and
should	be	used	where	interoperability	with	earlier	versions	of	SQL	Server	is
required.

Using	the	Extended	Objects
When	you	run	a	DTS	application	that	includes	an	extended	object	on	SQL
Server	7.0,	a	"type	mismatch"	or	similar	error	will	occur.	Therefore,	if	you	want
a	DTS	application	to	run	on	both	an	instance	of	SQL	Server	2000	and	SQL
Server	7.0,	it	is	recommended	that	you	do	not	use	the	extended	objects.

A	potential	for	failure	under	SQL	Server	7.0	exists	even	when	the	extended
objects	are	not	used.	If	you	run	a	DTS	application	on	SQL	Server	2000,	you	can
access	the	new	properties	of	the	extended	objects	through	the	Properties
collection	of	the	existing	objects.	For	example,	you	can	access	the
LogServerName	property	through	the	Properties	collection	of	the	Package
object,	even	though	LogServerName	is	new	for	Package2.

The	following	Microsoft	Visual	Basic®	code	shows	how	you	can	access	the	new
LogServerName	property	through	the	Properties	collection	of	the	Package
object:

Dim	objPackage						As	DTS.Package
Set	objPackage	=	New	DTS.Package
objPackage.Properties("LogServerName")	=	"(local)"

This	code	works	when	run	on	an	instance	of	SQL	Server	2000.	However,	if	you
run	the	application	on	SQL	Server	7.0,	the	same	code	will	fail	with	an	error
message	similar	to	"property	'LogServerName'	was	not	found."

DTS	Programming

DTS	Object	Model	Diagram
The	diagrams	in	the	topics	that	follow	illustrate	the	hierarchy	of	Data
Transformation	Services	(DTS)	objects	and	collections.	Objects	are	represented
by	a	single	blue	rectangle.	Collections,	and	the	properties	that	return	a	reference
to	these	collections,	are	represented	by	several	overlaid	yellow	rectangles.	The
red-bordered	hexagonals	represent	placeholders	that	summarize	parts	of	the	DTS
object	model.	View	the	summarized	objects,	collections,	and	properties	by
clicking	on	the	placeholders.	A	parent	element	(for	example,	an	object	or
collection)	is	placed	above	and	to	the	left	of	its	child	element,	with	a	line
connecting	them.

An	element	that	is	the	child	of	an	object	is	created	when	the	parent	object	is
created,	and	a	reference	to	the	child	can	be	obtained	from	a	property	of	the
parent.	An	object	that	is	the	child	of	a	collection	is	created	using	a	collection
method.

For	more	information	about	using	the	DTS	object	model,	see	Creating	DTS
Packages	with	the	DTS	Object	Model.

These	topics	contain	object	model	diagrams	and	information	about	extended
DTS	objects.

Topic Description
DTS	Package2	Hierarchy Describes	the	structure	of	the	DTS	Package2

hierarchy.
Pump	Task	Elements Describes	the	object	model	in	tasks	that	use

the	DTS	data	pump.
Pump	Rowset	Elements Describes	the	object	model	associated	with

rowset	processing	in	tasks	using	the	DTS	data
pump.

Data	Driven	Query
Elements

Describes	the	object	model	associated	with	the
Data	Driven	Query	task.

DTS	Application	Hierarchy Describes	the	structure	of	the	DTS
Application	hierarchy.

DTS	Programming

DTS	Package2	Hierarchy
This	diagram	illustrates	the	structure	of	the	objects	and	collections	of	the
Package2	hierarchy.

DTS	Programming

Pump	Task	Elements
This	diagram	illustrates	the	structure	of	the	objects	and	collections	associated
with	tasks	using	the	Data	Transformation	Services	(DTS)	data	pump.

DTS	Programming

Pump	Rowset	Elements
This	diagram	illustrates	the	structure	of	the	objects	and	collections	associated
with	rowset	processing	in	tasks	using	the	Data	Transformation	Services	(DTS)
data	pump.

DTS	Programming

Data	Driven	Query	Elements
This	diagram	illustrates	the	structure	of	the	objects	and	collections	associated
with	the	Data	Driven	Query	task.

DTS	Programming

DTS	Application	Hierarchy
This	diagram	illustrates	the	structure	of	the	objects	and	collections	of	the	Data
Transformation	Services	(DTS)	Application	hierarchy.

DTS	Programming

Creating	DTS	Packages	with	the	DTS	Object	Model
To	create	a	Data	Transformation	Services	(DTS)	package	using	a	programming
language	that	supports	COM,	you	need	to	create	a	hierarchy	of	objects	headed
by	a	Package2	object	from	the	DTS	object	model.	After	setting	the	properties	of
this	hierarchy,	you	can	then	invoke	methods	of	a	Package2	object	to	run	the
package.	You	also	can	save	the	package	to	Microsoft®	SQL	Server™,	a	COM-
structured	storage	file,	a	Microsoft	Visual	Basic®	file,	or	to	SQL	Server	2000
Meta	Data	Services.

Note		An	object	whose	name	ends	with	the	digit	2	is	an	extended	version	of	a
DTS	object	from	SQL	Server	version	7.0.	If	you	want	to	run	a	package	on	SQL
Server	7.0,	it	is	recommended	that	you	use	the	corresponding	object	whose	name
does	not	have	a	2	appended.	For	more	information,	see	Extended	DTS	Objects.

This	section	summarizes	building	DTS	packages	and	using	DTS	objects	and
features	without	regard	to	the	programming	language	you	are	using	for
implementation.	For	more	information	about	configuring	a	particular
development	environment	and	using	it	to	implement	DTS	packages,	see	Creating
DTS	Packages	in	Visual	Basic.

The	following	table	summarizes	the	topics	describing	the	DTS	objects	and
features	you	use	to	implement	a	package.	Most	objects	and	features	are	optional
for	a	particular	package.	You	are	only	required	to	create	at	least	one	step	and	at
least	one	task.	You	do	not	need	to	follow	the	order	provided	here	except	where
the	DTS	object	hierarchy	dictates.	For	example,	you	must	create	the	Package2
object	first	to	gain	access	to	the	methods	used	to	create	other	DTS	objects.

Topic Description
Creating	DTS	Package	Objects
and	Connections

Create	and	configure	a	Package2	object.

Create	Connection2	objects	to	access	data
sources.

Creating	DTS	Package
Workflow	and	Tasks

Create	Step2	objects	for	the	operations	the
package	is	to	perform.

Create	PrecedenceConstraint	objects	to

define	workflow	among	the	steps.

Create	a	Task	object	of	the	type	needed
for	each	step.

Adding	DTS	Transformations Create	Transformation2	objects	if	needed
for	tasks	that	move	data	between
connections.

Adding	DTS	Column	Objects Assign	source	and	destination	Column
objects	to	the	transformations	if	necessary.

Adding	DTS	Lookups	and
Global	Variables

Create	a	Lookup	object	when	you	need	a
transformation	to	look	up	data	in	another
query	rowset.

Use	GlobalVariable	objects	to	pass	data
between	steps	and	packages.

Adding	DTS	ActiveX	Scripts Add	a	Microsoft	ActiveX®	script	to	a	step
or	to	a	task	or	transformation	that	uses
scripts.

Adding	DTS	Query	Strings Add	query	strings	to	an	object	that	issues
database	queries.

Handling	DTS	Events	and
Errors

Add	handlers	for	the	events	of	the
Package2	object.

Add	an	error	handler	to	a	DTS	package
program.

Managing	DTS	Package
Programs

Execute	a	DTS	package	program.

Save	a	DTS	package	in	one	of	several
formats,	and	load	a	package	from	these
formats.

Retrieving	DTS	System,
Package,	and	Log	Data

Retrieve	information	about	registered
components	and	DTS	packages,	and
retrieve	log	data.

DTS	Programming

Creating	DTS	Package	Objects	and	Connections
The	Package2	object	is	at	the	top	of	the	Data	Transformation	Services	(DTS)
object	hierarchy	and	is	the	first	created.	You	then	add	Connection2	objects	to
access	databases	and	other	data	sources.

Creating	Package	Objects
The	first	step	in	implementing	a	DTS	package	is	creating	the	Package2	object.
The	way	you	create	the	Package2	object	depends	on	your	programming
environment.	For	more	information	about	configuring	the	Package2	object,	see
DTS	Packages	in	Visual	Basic.

Some	Package2	properties	and	features	you	can	use	are:

AutoCommitTransaction,	TransactionIsolationLevel	and
UseTransaction.	These	control	whether	Package2	components	run
under	a	package-level	transaction,	and	how	that	transaction	is	used.

FailOnError	and	FailPackageOnLogFailure.	These	determine
whether	component	failures	cause	package	execution	to	fail.

CreationDate,	CreatorComputerName,	CreatorName,	PackageID
and	VersionID.	These	provide	creation	and	identification	information.

Adding	Connections

Usually,	you	create	a	Connection2	object	for	each	data	source	you	want	to
access,	although	Connection2	objects	can	be	reused.	You	need	an	OLE	DB
provider	for	the	data	source	you	wish	to	access.	The	following	table	describes
the	typical	data	sources	for	which	OLE	DB	providers	are	supplied	with
Microsoft®	SQL	Server™	2000.

Data	Source	Type Data	Source
Databases SQL	Server

Microsoft	Access	2000
Oracle
Paradox
DB2
DBase	5
Other	ODBC-compliant	database

Other	data	sources Microsoft	Excel	2000	worksheet
HTML	file
Text	file

For	more	information	about	the	OLE	DB	providers	available	on	a	computer
system,	see	OLEDBProviderInfos	Collection.	For	more	information	about	the
interfaces	and	schema	that	user-implemented	OLE	DB	providers	used	with	DTS
must	support,	see	ProviderID	Property.	For	more	information	about	the
interfaces	and	schema	that	user-implemented	OLE	DB	providers	used	with	DTS
must	support,	see	ProviderID	Property.

To	create	a	Connection2	object,	use	the	New	method	of	the	Connections
collection	of	the	Package2	object.	Set	the	properties	as	needed.	The	typical
properties	you	use	are:

Catalog.	This	is	typically	a	database	name.

DataSource.	This	is	a	server	name	or	a	data	source	file	specification.

ID.	This	is	a	numeric	identifier	for	the	connection.

Password,	UserID,	or	UseTrustedConnection.	These	contain	user
authentication	information.

Then,	Add	each	Connection2	object	to	the	Connections	collection	of	the
Package2	object.

You	can	reference	properties	unique	to	specific	OLE	DB	providers	through	the
ConnectionProperties	collection	of	the	Connection2	object.

For	more	information	about	configuring	the	Connection2	object,	see	DTS
Connections	in	Visual	Basic.

See	Also

Handling	DTS	Events	and	Errors

Managing	DTS	Package	Programs

Retrieving	DTS	System,	Package,	and	Log	Data

DTS	Programming

Creating	DTS	Package	Workflow	and	Tasks
Workflow	in	Data	Transformation	Services	(DTS)	packages	is	implemented	by
creating	steps,	which	are	the	units	of	functionality,	and	precedence	relationships
between	steps,	which	determine	the	sequencing	of	the	steps.	Tasks	are	the
components	the	steps	use	to	perform	their	functions.

Creating	the	Step	Object
You	need	to	create	a	Step2	object	for	each	operation	the	package	is	to	perform.
For	each	step,	you	create	a	Task	object	of	the	appropriate	type.	The	Task	object
performs	the	operation	for	the	step.

To	create	a	Step2	object,	use	the	New	method	of	the	Steps	collection	of	the
Package2	object.	Set	the	TaskName	property	of	the	Step	object	to	the	name	of
the	associated	task.	Other	properties	you	can	use	are:

ActiveXScript,	FunctionName,	and	ScriptLanguage.	These
properties	specify	the	Microsoft®	ActiveX®	script	to	run	before	the
task.

CommitSuccess,	JoinTransactionIfPresent,	RollbackFailure.	These
properties	determine	whether	the	step	uses	the	package	transactions.

ExecuteInMainThread.	This	property	runs	the	step	in	the	package
main	thread	rather	than	in	a	worker	thread.

FailPackageOnError.	This	property	fails	the	package	if	the	step	fails.

Then,	Add	the	Step2	object	to	the	Steps	collection	of	the	package.

Creating	the	Precedence	Constraint	Object
When	a	package	is	executed,	DTS	attempts	to	execute	steps	in	parallel	up	to	the
limit	established	by	the	MaxConcurrentSteps	property	of	the	Package2	object.

However,	you	can	order	the	steps	by	using	precedence	constraints.	A
Precedence	Constraint	object	inhibits	the	step	with	which	it	is	associated	from
starting	execution	until	an	event	by	another	named	step	occurs.	As	a	result,	the
step	only	begins	execution	when	all	of	its	precedence	constraints	have	been
satisfied.

To	create	the	PrecedenceConstraint	object,	use	the	New	method	of	the
PrecedenceConstraints	collection	of	the	Step	object.	Set	its	StepName
property	to	the	name	of	the	preceding	task	and	set	the	PrecedenceBasis	and
Value	properties	to	specify	the	type	of	event.	Then,	Add	the
PrecedenceConstraint	to	the	PrecedenceConstraints	collection	of	the
associated	Step	object.

For	more	information	about	configuring	the	Step	and	PrecedenceConstraint
objects	and	the	PrecedenceConstraints	collection,	see	DTS	Package	Workflow
in	Visual	Basic.

Creating	the	Task	Object
To	implement	a	DTS	task,	you	need	a	generic	Task	object	and	a	task	object
specific	to	the	task	class	being	created	(for	example,	a	DataDrivenQueryTask2
object	or	a	BulkInsertTask	object).	To	create	both	of	these,	use	the	New	method
of	the	Tasks	collection	of	the	Package2	object.

Configure	the	properties	of	these	objects	as	appropriate	for	the	processing	you
want	to	perform.	While	the	elements	of	the	generic	Task	object	manipulate
information	generic	to	all	tasks,	those	of	the	class-specific	task	object	manipulate
information	unique	to	the	class.	The	CustomTask	property	of	the	Task	object
returns	a	reference	to	the	class-specific	task	object.	The	properties	of	the	class-
specific	task	object	also	can	be	referenced	through	the	Properties	collection	of
the	(generic)	Task	object.

Add	each	Task	object	to	the	Tasks	collection	of	the	Package2	object.

For	more	information	about	the	task	classes	supplied	with	Microsoft	SQL
Server™	2000,	see	Task	Objects.

For	more	information	about	configuring	the	Task	object	and	the	class-specific
task	objects,	see	DTS	Tasks	in	Visual	Basic.

DTS	Programming

Adding	DTS	Transformations
Data	Transformation	Services	(DTS)	transformations	are	used	by	the	data	pump
to	perform	various	operations	that	you	specify.	The	data	pump	is	the	engine	for
the	DataPumpTask2,	DataDrivenQueryTask2,	and	ParallelDataPumpTask
objects.	Transformations	can	be	viewed	as	callbacks	from	the	data	pump.	The
other	task	classes	supplied	with	Microsoft®	SQL	Server™	2000,	which	do	not
host	the	data	pump,	do	not	use	transformations.

The	data	pump	fetches	data	rows	from	a	source	connection	and	writes	data	rows
to	a	destination	connection.	The	table	below	describes	the	phases	of	the	data
pump	operations	for	which	transformations	can	be	specified.	They	are	listed	in
the	order	in	which	they	are	invoked	by	the	data	pump.

Phase Description Possible	Uses
PreSourceData Occurs	before	first	row	is	fetched

from	source	connection.
Writing	header
records	to	the
destination.

Initializating
objects,
connections	or
memory	for	use
in	later	phases.

Transform Occurs	after	each	source	row	is
fetched,	before	the	destination	row	is
written.

Converting	data
types.

Validating.

OnTransformFailureOccurs	after	a	failure	in	the
Transform	phase,	indicated	by	the
return	of	DTSTransformStat_Error
or
DTSTransformStat_ExceptionRow.
Typically	caused	by	conversion
errors.

Handling
custom	data
based	on	the
Transform
failure.

OnInsertSuccess Occurs	after	each	data	row	is	written
successfully	to	the	destination
connection.

Maintaining
aggregation
when	this
function	cannot
be	done	by	a
Transform
phase
transformation.

OnInsertFailure Occurs	after	each	attempt	to	write	a
data	row	to	the	destination	connection
failed	(for	example,	by	attempting	to
write	a	duplicate	value	to	a	primary
key	field,	or	a	null	to	a	NOT	NULL
field).

Handling
custom	data
based	on	the
Insert	failure
(for	example,
writing	the	data
to	an	error
table).

OnBatchComplete Occurs	in	DataPumpTask2	when
using	FastLoad	option	after	each
batch	is	written,	successful	or	failed.

Recording	the
current	position
within	the
source	rowset,
which	could
then	be	used	as
the	starting
point	if	the	task
needed	to	be
restarted.

PostSourceData Occurs	after	the	last	row	is	written	to
the	destination	connection.

Writing	trailer
records	to	the
destination	or
freeing	up
resources	or
committing	data
held	in	global
variables.

OnPumpComplete Occurs	at	the	end	of	the	task
execution.

Freeing	up
resources	or

committing	data
held	in	global
variables.

In	the	case	of	the	ParallelDataPumpTask,	the	PreSourceData	and
PostSourceData	phases	occur	at	the	beginning	and	end,	respectively,	of	each
constituent	rowset	of	the	hierarchical	rowset.	The	OnPumpComplete	phase
occurs	once.

The	DTSTransformScriptProperties2	transformation	can	support	multiple
phases.	You	provide	a	script	function	for	each	supported	phase.	Transformations
for	phases	other	than	Transform	must	be	DTSTransformScriptProperties2
transformations	or	custom	transformations.

Creating	Transformation	Objects
To	implement	a	transformation,	you	need	a	generic	Transformation2	object	and
a	transform	server	object,	which	is	an	object	specific	to	the	transformation	class
(for	example,	DataPumpTransformCopy	or
DataPumpTransformDateTimeString).	To	create	both	of	these,	use	the	New
method	of	the	Transformations	collection	of	the	DataPumpTask2,
DataDrivenQueryTask2,	or	the	TransformationSet	object	of	the
ParallelDataPumpTask.

To	access	the	transform	server	object,	use	the	TransformServer	property	of
Transformation2	object	to	return	a	reference	to	the	object.	The	properties	of	the
transform	server	object	also	can	be	referenced	through	the
TransformServerProperties	collection	of	the	generic	Transformation2	object.

If	the	transformation	is	to	support	any	phase	other	than	the	Transform	phase,	set
the	TransformPhases	property	of	the	Transformation2	object	to	the	sum	of	the
codes	from	DTSTransformPhaseEnum	for	the	phases	it	is	to	support.	Add	the
Transformation2	object	to	the	Transformations	collection.

At	least	one	transformation	is	required	for	the	Transform	phase.	Transformations
for	the	other	phases	are	optional.	When	multiple	transformations	are	supplied	for
a	phase,	they	are	all	executed	at	the	time	appropriate	for	the	phase,	in	the	order
the	Transformation2	objects	were	added	to	the	Transformations	collection.

For	more	information	about	the	transformation	classes	supplied	with	SQL	Server

2000,	see	Transformation	Objects.

For	more	information	about	configuring	the	Transformation2	object	and	the
transform	server	objects,	see	DTS	Transformations	in	Visual	Basic.

DTS	Programming

Adding	DTS	Column	Objects
You	create	Column	objects	to	specify	the	source	and	destination	columns
referenced	by	a	transformation	and	to	specify	the	destination	column	parameters
for	the	queries	of	the	DataDrivenQueryTask2	object.

Typically,	transformations	reference	columns	of	the	source	and	destination
connections.	In	most	cases,	source	and	destination	columns	need	to	be	assigned
to	a	transformation	to	define	these	columns.

To	create	a	Column	object,	use	the	New	method	of	the	SourceColumns	or
DestinationColumns	collections	of	the	Transformation2	object.	Set	properties
as	appropriate,	then	use	the	Add	method	of	the	appropriate	collection.	Or,	use
the	AddColumn	method	to	create	and	add	the	column	in	a	single	step.

You	do	not	need	to	define	Column	objects	if:

Only	a	single	Transformation2	object	has	been	defined	for	the	task.

The	number	of	columns	in	the	data	source	and	the	data	destinations	is
the	same.

The	source	and	destination	column	ordering	correctly	match	up.

Note		You	can	use	a	Select	query	on	the	data	source,	specified	with	the
DataDrivenQueryTask2,	DataPumpTask2,	or	ParallelDataPumpTask	object
SourceSQLStatement	property,	to	control	the	number	and	ordering	of	source
columns.

Whether	a	transformation	can	access	the	source	or	destination	connections	is
determined	by	the	phase	in	which	it	runs.	The	following	table	specifies	the
permitted	access.

Phase Source	column	access Destination	column	access
PreSourceData Read	access	to	meta	data Write	access	to	columns
Transform Read	access	to	columns Write	access	to	columns

OnTransformFailure Read	access	to	columns Write	access	to	columns
OnInsertSuccess Read	access	to	columns No	access	to	columns
OnInsertFailure Read	access	to	columns No	access	to	columns
OnBatchComplete Read	access	to	meta	data Write	access	to	columns
PostSourceData Read	access	to	meta	data Write	access	to	columns
OnPumpComplete No	access	to	columns No	access	to	columns

For	more	information	about	configuring	the	Column	object	and	the
SourceColumns	and	DestinationColumns	collections,	see	DTS	Column
Objects	in	Visual	Basic.

To	assign	destination	column	parameters	to	the	DataDrivenQueryTask2	and
ParallelDataPumpTask	object	queries,	use	the	procedure	specified	above	to
create	Column	objects	and	add	them	to	the	DeleteQueryColumns,
InsertQueryColumns,	UpdateQueryColumns,	or	UserQueryColumns
collections,	as	appropriate.	For	more	information	about	parameterized	queries
for	these	objects,	see	Adding	DTS	Query	Strings.

DTS	Programming

Adding	DTS	Lookups	and	Global	Variables
Use	a	Lookup	object	when	you	need	a	transformation	to	look	up	data	in	another
query	rowset	through	a	separate	connection.

Global	variables	provide	a	means	for	tasks	within	a	package	to	exchange	data.
When	using	the	ExecutePackageTask	object,	global	variables	provide	a	means
for	tasks	to	exchange	data	between	packages.

Creating	Lookups
To	create	a	Lookup	object,	use	the	New	method	of	the	Lookups	collection	of	a
class-specific	task	object	that	uses	transformations.	Set	the	appropriate
properties.	Typically,	you	use	the	following	properties:

ConnectionID.	This	specifies	the	connection	through	which	the	lookup
rowset	is	queried.

MaxCacheRows.	This	determines	the	number	of	queried	rows	cached
for	reuse.

Query.	This	specifies	the	SQL	statement	that	generates	the	rowset.

Then,	Add	the	Lookup	object	to	the	Lookups	collection.

Alternatively,	you	can	create	and	add	the	Lookup	object	to	the	Lookups
collection	with	the	AddLookup	method.

You	access	the	lookup	in	the	script	of	a	DataPumpTransformScript	or
DTSTransformScriptProperties2	object	through	the	Execute	method	of	a
DTSLookup	object,	which	is	the	Data	Transformation	Services	(DTS)	scripting
object	model	counterpart	of	the	Lookup	object.	Usually,	you	refer	to	the	lookup
by	name	from	the	DTSLookups	collection.

For	more	information	about	the	Lookup	object	and	the	Lookups	collection,	see
DTS	Lookups	in	Visual	Basic.

Creating	and	Using	Global	Variables
To	create	a	global	variable	in	a	DTS	package	prior	to	package	execution,	use	the
New	method	of	the	Package2	object	GlobalVariables	collection.	Set	the	Value
property,	and	then	Add	the	object	to	the	collection.

Alternatively,	you	can	create	and	add	the	GlobalVariable	object	to	the
GlobalVariables	collection	with	the	AddGlobalVariable	method.

You	need	to	create	GlobalVariable	objects	before	package	execution	if	the
ExplicitGlobalVariables	property	of	the	Package2	object	is	set	to	TRUE.
However,	if	ExplicitGlobalVariables	is	set	to	FALSE,	you	do	not	need	to	create
GlobalVariable	objects.	The	package	automatically	creates	global	variables	that
do	not	exist	at	first	reference.

Setting	global	variables	with	the	ExecuteSQLTask2	object
You	can	create	and	assign	values	to	global	variables	in	the	ExecuteSQLTask2
object.	Specify	a	list	of	global	variable	names	with	the
OutputGlobalVariableNames	property.	Values	from	the	first	row	of	the	rowset
generated	by	the	ExecuteSQLTask2	query	(specified	with	the	SQLStatement
property)	are	stored	in	the	named	global	variables.	Set	the	OutputAsRecordset
property	to	store	the	entire	rowset	as	a	disconnected	Microsoft®	ActiveX®	Data
Objects	(ADO)	recordset	in	the	global	variable	named	first	in	the	list.

Using	global	variables	as	input	parameters
You	can	use	global	variables	as	input	parameters	for	the	queries	of	the
DataDrivenQueryTask2,	DataPumpTask2,	ExecuteSQLTask2	and
ParallelDataPumpTask	objects.	Specify	a	list	of	global	variable	names	with	the
InputGlobalVariableNames	property.	For	more	information,	see	Adding	DTS
Query	Strings.

Exporting	global	variables	to	a	DTS	package
Create	and	add	global	variables,	as	described	above,	to	the	GlobalVariables
collection	of	the	ExecutePackageTask	object	to	export	these	global	variables	to
the	target	package.	These	global	variables	are	independent	of	the	global
variables	in	the	GlobalVariables	collection	of	the	calling	package.	Use	the

InputGlobalVariableNames	property	of	ExecutePackageTask	to	specify
global	variables	from	the	collection	of	the	package	that	are	to	be	exported.

Referencing	global	variables	in	ActiveX	scripts
Reference	global	variables	in	ActiveX	scripts	as	members	of	the
DTSGlobalVariables	collection.	For	example,	in	Microsoft	Visual	Basic®
Scripting	Edition	(VBScript):

DTSGlobalVariables("GV1").Value

If	you	assign	a	value	to	the	above	expression	and	GV1	does	not	exist,	and	if	the
package	ExplicitGlobalVariables	property	is	not	set,	GV1	is	created.

For	more	information	about	the	GlobalVariable	object	and	the	GlobalVariables
collection,	see	DTS	Global	Variables	in	Visual	Basic.

DTS	Programming

Adding	DTS	ActiveX	Scripts
Microsoft®	ActiveX®	scripts	can	be	used	to	add	functionality	to	Data
Transformation	Services	(DTS)	packages.	Typical	supported	scripts	are
Microsoft	Visual	Basic®	Scripting	Edition	(VBScript),	Microsoft	JScript®,
PerlScript	and	XMLScript.	The	following	DTS	object	types	require	or	can	use
ActiveX	scripts:

The	Step2	object	can	use	an	ActiveX	script.	The	script	runs	before	the
step's	task	executes.

The	ActiveScriptTask	object	requires	an	ActiveX	script	that	performs
the	functionality	of	the	task.

The	DataPumpTransformScript	and
DTSTransformScriptProperties2	transformations	require	ActiveX
scripts	that	perform	the	transformations.

You	assign	ActiveX	scripts	to	a	property	of	objects	that	use	scripts	as	a	single
text	string,	which	can	include	embedded	carriage	return/line	feed	pairs.	Each
scripted	object	also	has	properties	for	the	script	language	and	the	script	function
name.	For	example:

For	the	Step2	and	ActiveScriptTask	objects,	the	script	text	is	assigned
to	the	ActiveXScript	property.	The	ScriptLanguage	and
FunctionName	properties	are	used	to	specify	the	scripting	language
and	function	entry	point.	

For	the	DataPumpTransformScript	transformation,	the	script	text	is
assigned	to	the	Text	property.	The	Language	and	FunctionEntry
properties	are	used	for	the	script	language	and	function	name,
respectively.

The	DTSTransformScriptProperties2	object	extends	the	functionality	of

DataPumpTransformScript	by	providing	multiple	transformation	phases.	The
script	specified	by	the	Text	property	must	have	a	function	for	each	supported
phase.

The	following	table	describes	the	property	you	use	to	specify	the	entry	point	for
each	phase	the	DTSTransformScriptProperties2	object	supports.

Phase Entry	Point	Property
PreSourceData PreSourceDataFunctionEntry
Transform FunctionEntry
OnTransformFailureTransformFailureFunctionEntry
OnInsertSuccess InsertSuccessFunctionEntry
OnInsertFailure InsertFailureFunctionEntry
OnBatchComplete BatchCompleteFunctionEntry
PostSourceData PostSourceDataFunctionEntry
OnPumpComplete PumpCompleteFunctionEntry

For	more	information	about	including	ActiveX	scripts	in	DTS	programs,	see
DTS	ActiveX	Scripts	in	Visual	Basic.

DTS	Programming

Adding	DTS	Query	Strings
Many	Data	Transformation	Services	(DTS)	tasks	and	objects	require	queries	to
access	or	store	database	information.	You	assign	queries	to	a	property	of	the
object	that	uses	the	query	as	a	text	string.	You	also	can	include	carriage
return/line	feed	pairs.	Depending	on	the	parent	object,	you	can	define	query
sequences	and	parameter	placeholders.	The	following	table	defines	the	query
types	that	are	supported	for	the	objects	that	use	queries.

Objects	Using	Queries
Query
Type Query	String	Attributes

DataPumpTask2,
DataDrivenQueryTask2	and
ParallelDataPumpTask	objects

Source
query

Single	Select	or	stored
procedure	query	that	returns
a	rowset.	Can	use	?
placeholder	for	global
variable	parameters,
specified	by
InputGlobalVariableNames
property.

DataPumpTask2,
DataDrivenQueryTask2	and
ParallelDataPumpTask	objects

Destination
query

Single	Select	or	stored
procedure	query	that	returns
a	rowset.	Parameters	are	not
supported.

DynamicPropertiesTaskAssignment
object	of	DynamicPropertiesTask

Property
value
query

Single	Select	or	stored
procedure	query	that	returns
a	rowset.	Rowset	has	single
row	and	one	column.

ExecuteSQLTask2	object Executed
query

Sequence	of	one	or	more
SQL	statements	or	stored
procedure	queries,	which	can
contain	the	Transact-SQL
GO	statement.	Can	use	?
placeholder	for	global
variable	parameters,

specified	by	the
InputGlobalVariableNames
property.

DataDrivenQueryTask2	and
TransformationSet	objects	of
ParallelDataPumpTask

Action
queries

Sequence	of	one	or	more
SQL	statements	or	stored
procedure	queries,	which
cannot	contain	the	Transact-
SQL	GO	statement.	Can	use
?	placeholder	for	destination
columns.

Lookup	object Lookup
query

Single	Select	or	stored
procedure	query	that	returns
a	rowset.	Can	use	?
placeholder	for	parameters,
specified	with	the	Execute
method	of	DTSLookups
scripting	collection.

For	more	information	about	including	query	strings	in	DTS	programs,	see	DTS
Query	Strings	in	Visual	Basic.

DTS	Programming

Handling	DTS	Events	and	Errors
The	Package2	object	raises	events	that	report	package	status	during	execution.
The	Package2	Execute	method	can	raise	errors	that	must	be	handled	by	the
calling	application.

Package	Events
The	following	table	specifies	the	events	the	Package2	object	raises	and	the
information	that	is	returned	when	the	specified	condition	occurs.

Event Condition Information	returned
OnError A	Data	Transformation

Services	(DTS)	error
occurred	during	package
execution.

Step	name,	error	code	and
description,	help	file	and
context,	interface	ID.

OnFinish A	step	has	completed. Step	name.
OnProgress This	event	occurs

periodically	during	step
execution.

Step	name,	progress	count
(typically	rowcount),	percent
complete,	description.

OnQueryCancelThis	event	gives
application	a	chance	to
cancel	a	step.

Step	name.

OnStart A	step	has	started. Step	name.

For	more	information	about	these	individual	events,	see	Events.

If	you	implement	handlers	for	any	of	the	events,	you	must	supply	handlers	for	all
the	events.	Unneeded	event	handlers	can	consist	of	a	single	statement	(for
example,	Exit	Sub	or	return;).

For	more	information	about	implementing	event	handlers	in	DTS	programs,	see
DTS	Package	Events	in	Visual	Basic.

Package	Error	Handler

During	the	phase	of	your	program	where	you	are	creating	DTS	objects	and
setting	their	properties,	you	can	implement	error	handling	that	is	typical	for	your
programming	environment.

Errors	that	occur	during	the	Execute	method	of	the	Package2	object	are	not
propagated	back	to	the	caller	unless	you	set	the	Package2	object	FailOnError
property	or	the	Step2	object	FailPackageOnError	property	to	TRUE.
FailPackageOnError	causes	an	error	in	the	referenced	step	to	fail	the	package,
while	FailOnError	causes	an	error	in	any	step	to	fail	the	package.

You	must	retrieve	errors	that	occur	within	individual	steps	with	the
GetExecutionErrorInfo	method	of	the	Step2	object.	GetExecutionErrorInfo
provides	information	only	about	errors	that	cause	a	step	to	fail.	For	more	detailed
information,	you	must	implement	handlers	for	the	OnError	and	OnProgress
events.	You	must	provide	at	least	stub	handlers	for	the	other	events.	The
OnError	event	will	describe	the	error,	while	the	OnProgress	event	will	indicate
the	step	and	the	row	being	processed.	The	ProgressRowCount	property	of	the
DataPumpTask2,	DataDrivenQueryTask2,	and	TransformationSet	objects
can	be	used	to	specify	how	frequently	OnProgress	is	raised.

For	more	information	about	implementing	package	error	handlers	in	DTS
programs,	see	DTS	Error	Handlers	in	Visual	Basic.

DTS	Programming

Managing	DTS	Package	Programs
You	can	either	run	the	configured	Package2	object	or	save	it	in	several	formats.
You	also	can	load	a	saved	Data	Transformation	Services	(DTS)	package	into	a
Package2	object.

Executing	Packages
After	you	have	created	the	hierarchy	of	DTS	objects	and	set	their	properties,	as
needed,	use	the	Execute	method	of	the	Package2	object	to	execute	the	package.
DTS	may	raise	errors	from	the	Execute	method.	For	more	information	about
handling	these	errors,	see	Handling	DTS	Events	and	Errors.

If	you	plan	to	do	anything	further	with	the	Package2	object,	release	all
references	to	other	DTS	objects,	then	use	the	UnInitialize	method.

For	more	information,	see	Executing	DTS	Packages	in	Visual	Basic.

Saving	and	Loading	Packages
You	can	save	the	package	as	a	project	in	your	current	development	environment.
You	can	also	save	it	in	the	formats	in	which	DTS	tools	save	packages.	To	do	the
latter,	use	one	of	the	following	methods	of	the	Package2	object.

Methods Description
SaveToRepository,
SaveToSQLServer,
SaveToStorageFile

Save	the	package	to	a	specified	storage	type.

SaveToRepositoryAs,
SaveToSQLServerAs,
SaveToStorageFileAs

Assign	a	new	name	and	package	ID	to	the
package,	then	save	it	to	a	specified	storage	type.

SaveAs Assign	a	new	name	and	package	ID	to	the
Package2	object,	but	do	not	save	it	to	storage.

To	load	a	Package2	object	with	the	state	of	a	previously	saved	package,	use	the
LoadFromSQLServer,	LoadFromRepository,	or	LoadFromStorageFile
methods.	You	can	delete	saved	packages	by	using	the	RemoveFromSQLServer

and	RemoveFromRepository	methods.

For	more	information	about	saving	and	loading	DTS	packages,	see	Saving	DTS
Packages	in	Visual	Basic.

DTS	Programming

Retrieving	DTS	System,	Package,	and	Log	Data
Data	Transformation	Services	(DTS)	provides	features	for	requesting
information	about	registered	components	and	saved	packages	and	for	retrieving
the	contents	of	log	records.

Registered	Components
The	Application	object	provides	access	to	the	system,	package,	and	log	data.
You	create	it	independently	of	a	DTS	package.

Use	the	collections	of	the	Application	object	to	obtain	information	about	several
different	types	of	registered	components	used	by	DTS.	The	following	table
describes	the	collections,	the	objects	they	contain,	and	the	type	of	component	for
which	information	is	available.

Collection Object Component
OLEDBProviderInfos OLEDBProviderInfo OLE	DB	providers
ScriptingLanguageInfos ScriptingLanguageInfoMicrosoft®	ActiveX®

scripting	languages
TaskInfos TaskInfo DTS	task	classes
TransformationInfos TransformationInfo DTS	transformation

classes

The	DTS	task	and	transformation	classes	include	those	supplied	with	Microsoft
SQL	Server™	and	custom	tasks	and	transformations	implemented	by	other
vendors	and	users.

Normally	DTS	must	scan	all	the	registered	classes	in	the	operating	system
registry	to	determine	the	membership	of	each	of	these	collections,	which	can
take	a	significant	amount	of	time.	DTS	maintains	a	cache,	also	in	the	operating
system	registry,	of	each	component	type.	Use	the	Refresh	method	of	these
collections	to	update	the	cache	for	that	component	from	a	full-registry	scan.	Set
the	UseCache	property	before	iterating	through	the	collection	to	make	it	scan	the
cache	rather	than	the	system	registry.

Meta	Data	Services

DTS	packages	can	be	saved	to	an	instance	of	SQL	Server	2000	Meta	Data
Services.	Lineage	information	is	saved	for	such	packages,	if	the
LineageOptions	property	of	the	package	specifies	this	be	done.	A	package
lineage	record	is	written	each	time	a	package	is	executed	and	a	step	lineage
record	is	generated	for	the	execution	of	each	step.

Use	the	GetPackageRepository	method,	specifying	server,	database	and	login
information,	to	return	a	PackageRepository	object	that	provides	access	to	an
instance	of	Meta	Data	Services.	The	following	methods	of	the
PackageRepository	object	return	package	and	lineage	information:

Use	the	EnumPackageInfos	method	to	return	a	PackageInfos
collection	with	information	about	all	or	a	subset	of	the	packages	saved
in	the	Meta	Data	Services	instance.	

Use	the	EnumPackageLineages	method	to	return	a	PackageLineages
collection	with	lineage	data	for	a	particular	package	version.	

Use	the	EnumStepLineages	method	to	return	a	StepLineages
collection	with	step	lineage	data	for	a	particular	package	lineage	(each
step	execution	associated	with	a	single	execution	of	a	particular
package).	

Use	the	RemovePackageLineages	method	to	remove	some	or	all	of	the
lineage	data	for	a	package	version.

SQL	Server	Storage	and	Logging

All	DTS	packages	can	log	to	an	instance	of	SQL	Server.	Log	records	are	written
to	the	msdb	database	on	the	server	specified	by	the	package	LogServerName
property	each	time	a	DTS	package	is	executed,	if	the	package	LogToSQLServer
property	has	been	set.

How	log	data	is	written
A	package	log	record	is	written	by	DTS	for	each	package	execution,	and	a	step

log	record	is	written	for	the	execution	of	each	step.

Use	the	PackageLog	object	methods	when	custom	tasks	and	the
ActiveScriptTask	object	are	to	write	task	log	records.	A	reference	to
PackageLog	is	passed	as	a	parameter	of	the	task	Execute	method.	In	task
ActiveX	scripts,	it	is	available	as	the	DTSPackageLog	scripting	object.

Retrieving	package	and	log	data
Use	the	GetPackageSQLServer	method,	specifying	server	and	login
information,	to	return	a	PackageSQLServer	object	that	provides	access	to	the
package	and	log	data	on	the	server.

Use	the	PackageSQLServer	object	EnumPackageInfos	method	to	return	a
PackageInfos	collection	with	information	about	all	or	a	subset	of	the	packages
in	SQL	Server	storage	on	that	server.

Use	a	PackageSQLServer	method	from	the	table	to	return	the	corresponding
collection	that	contains	data	for	all	or	a	subset	of	the	log	records	of	the	indicated
type	on	the	server.	The	removal	methods	will	selectively	remove	log	records	of
the	indicated	type.

Method Returned	collection Removal	method
EnumPackageLogRecords PackageLogRecords RemovePackageLogRecords
EnumStepLogRecords StepLogRecords RemoveStepLogRecords
EnumTaskLogRecords TaskLogRecords RemoveTaskLogRecords

In	addition,	RemoveAllLogRecords	removes	all	log	data	for	all	packages	from
the	server.

Packages	Saved	as	Files
You	can	retrieve	information	about	the	contents	of	a	DTS	package	storage	file,
which	can	contain	multiple	packages,	each	with	multiple	versions.	Create	a
Package2	object	and	then	use	the	GetSavedPackageInfos	method	to	return	a
reference	to	a	SavedPackageInfos	collection	with	information	about	all	the
package	versions	contained	in	the	file.

For	more	information	about	getting	saved	package	information,	see	Retrieving
DTS	Information	in	Visual	Basic.

DTS	Programming

Creating	DTS	Packages	in	Visual	Basic
You	can	implement	Data	Transformation	Services	(DTS)	packages	in
Microsoft®	Visual	Basic®	by	following	these	installation	instructions:

You	need	to	install	the	Microsoft	SQL	Server™	client	tools	and	Visual
Basic	version	5.0	Service	Pack	3	or	later	on	the	computer	on	which	the
packages	are	to	be	developed.	

You	need	to	install	the	SQL	Server	client	cools	on	the	computers	on
which	the	packages	are	to	be	run.

You	do	not	need	to	install	Visual	Basic	on	the	target	computers.	The	necessary
Visual	Basic	files	are	supplied	by	the	installation	kit	produced	with	the	Visual
Basic	Setup	or	Package	and	Deployment	Wizards.

Configuring	the	Visual	Basic	Development	Environment
To	implement	a	DTS	program	in	Visual	Basic,	open	a	new	or	existing	project,	as
appropriate,	in	the	Visual	Basic	development	environment.	You	can	use	any	of
the	following	project	types:

Standard	EXE

ActiveX	EXE

ActiveX	DLL

ActiveX	Document	EXE

ActiveX	Document	DLL

From	the	Project/References	dialog	box,	select	the	references	listed	in	the	table
below	if	you	use	any	of	the	corresponding	DTS	features	in	your	application.	This

+will	include	the	library	file	from	the	table	in	your	Visual	Basic	project.

Reference DTS	Features Library	File
Microsoft	DTSPackage
Object	Library

Any	DTS	object	or	feature dtspkg.dll

Microsoft
DTSDataPump
Scripting	Object
Library

Any	transformation	supplied	with
SQL	Server	or	any	DTS	scripting
object

dtspump.dll

Microsoft	DTS	Custom
Tasks	Object	Library

The	Message	Queue	task,	the	File
Transfer	Protocol	task	or	the
Dynamic	Properties	task

custtask.dll

The	library	files	are	installed	in	C:\Program	Files\Microsoft	SQL
Server\80\Tools\Binn\	unless	overridden	by	the	SQL	Server	installation.

Using	DTS	Packages	Saved	as	Visual	Basic	Files
If	you	have	used	DTS	Designer	or	the	DTS	Import/Export	Wizard	to	save	a	DTS
package	as	a	Visual	Basic	file,	these	files	can	be	used	as	templates,	or	starting
points,	for	user-implemented	Visual	Basic	packages.

The	generated	code	sets	all	properties	of	all	objects	referenced	in	the	package	to
the	initial	values	they	will	have	when	package	execution	begins.	This	includes
those	that	are	set	to	their	default	values.	Thus,	many	of	the	property	assignments
are	redundant	and	can	be	removed.	These	redundant	property	settings	do	not
appear	in	the	Visual	Basic	code	examples	in	this	section.

For	more	information,	see	Running	a	DTS	Package	Saved	as	a	Visual	Basic	File.

See	Also

Saving	DTS	Packages	in	Visual	Basic

DTS	Programming

Creating	DTS	Objects	in	Visual	Basic
The	topics	that	follow	describe	the	creation	and	configuration	of	Data
Transformation	Services	(DTS)	objects	that	are	used	to	implement	a	DTS
package	in	Microsoft®	Visual	Basic®.

Topic Description
DTS	Packages	in	Visual	Basic Explains	how	to	create	and	configure	a

Package	or	Package2	object.
DTS	Connections	in	Visual	Basic Explains	how	to	create	and	configure	a

Connection	or	Connection2	object	for
a	database	or	other	data	source.

DTS	Package	Workflow	in	Visual
Basic

Explains	how	to	create	and	configure	a
Step	object	and	how	to	create	and	add
PrecedenceConstraint	objects	to
implement	workflow.

DTS	Tasks	in	Visual	Basic Explains	how	to	create	a	Task	object
and	how	to	configure	it	and	the	class-
specific	task	object.

DTS	Transformations	in	Visual
Basic

Explains	how	to	create	a
Transformation	object	and	how	to
configure	it	and	the	transform	server
object.

DTS	Column	Objects	in	Visual
Basic

Explains	how	to	create	and	add	Column
objects	in	order	to	define	source	and
destination	columns.

DTS	Lookups	in	Visual	Basic Explains	how	to	create	and	configure	a
Lookup	object	and	access	it	from	a
Microsoft	ActiveX®	script.

DTS	Global	Variables	in	Visual
Basic

Explains	how	to	create	and	configure	a
GlobalVariable	object	and	how	to
explicitly	create	a	global	variable	prior
to	package	execution.

DTS	ActiveX	Scripts	in	Visual
Basic

Explains	how	to	add	ActiveX	scripts	to
ActiveScriptTask	and

DataPumpTransformScript	objects.
DTS	Query	Strings	in	Visual
Basic

Explains	how	to	add	query	strings	to	the
objects	that	use	them	and	describes	the
details	and	limitations	of	each	object
type.

DTS	Package	Events	in	Visual
Basic

Explains	how	to	implement	event
handlers	for	Package	object	events.

DTS	Programming

DTS	Packages	in	Visual	Basic
To	create	a	Package	object	in	Microsoft®	Visual	Basic®,	you	declare	an	object
variable	of	the	appropriate	type	and	then	create	the	object	with	the	Visual	Basic
New	operator.

The	Package2	class	of	Microsoft	SQL	Server™	2000	extends	the	Package	class
of	SQL	Server	7.0.	For	more	information,	see	Extended	DTS	Objects.

However,	Package2	objects	cannot	be	created,	and	a	Package2	object	variable
cannot	be	declared	WithEvents.	To	create	a	Package	object	that	is	compatible
with	SQL	Server	7.0,	or	one	that	does	not	use	the	new	package	features,	use	the
following	code	example:

'Declare	the	object	variable.
Private	WithEvents	objPackage	As	DTS.Package
.	.	.
'Create	the	package	object.
Set	objPackage	=	New	DTS.Package

The	WithEvents	keyword	must	be	omitted	if	package	events	are	not	to	be
handled.	For	more	information	about	handling	package	events,	see	DTS	Package
Events	in	Visual	Basic.

Creating	a	Package2	Object
To	create	a	Package2	object	that	makes	available	the	new	DTS	features,	use	the
following	code	example:

'Declare	the	object	variables.
Private	objPackage	As	DTS.Package2
Private	WithEvents	objPkgEvents	As	DTS.Package
.	.	.
'Create	the	package	object.
Set	objPackage	=	New	DTS.Package

Set	objPkgEvents	=	objPackage
The	declaration	of	and	assignment	to	objPkgEvents	must	be	omitted	if	package	events	are	not	to	be	handled.

When	using	late	binding	in	Visual	Basic,	object	variables	are	declared	As
Object.	In	the	following	example,	the	new	package	object	is	created	the	same
way	it	was	created	in	SQL	Server	7.0:

'Declare	the	object	variable.
Private	objPackage	As	Object
.	.	.
'Create	the	package	object.
Set	objPackage	=	New	DTS.Package

DTS	Programming

DTS	Connections	in	Visual	Basic
Add	a	Connection	object	for	each	database	or	other	OLE	DB	store	you	want	to
access.	ODBC	data	sources	can	be	accessed	through	the	Microsoft®	OLE	DB
provider	for	ODBC	(MSDASQL).

Here	are	the	basic	steps	for	adding	a	Connection	object	in	Microsoft	Visual
Basic®:

1.	 Declare	an	object	variable	of	the	appropriate	type.

Use	the	Connection	class	in	the	object	variable	declaration	if	the
application	must	be	compatible	with	Microsoft	SQL	Server™	version
7.0.	Use	Connection2	if	it	is	to	run	only	with	SQL	Server	2000.

2.	 Create	the	object	with	the	New	method	of	the	Connections	collection
of	the	Package2	object.	Pass	the	programmatic	identifier	(ProgID)	of
the	appropriate	OLE	DB	provider	to	New	as	an	argument.

3.	 Set	properties	to	identify	the	connection	and	data	source.

For	more	information,	see	Connection2	Object.

4.	 Use	the	Add	method	of	the	Connections	collection	of	the	Package2
object	to	add	the	Connection	object	to	the	package.

Creating	a	Connection	with	the	Microsoft	OLE	DB	Provider	for	SQL	Server

The	following	code	example	shows	you	how	to	create	a	connection	using	the
Microsoft	OLE	DB	Provider	for	SQL	Server.	The	New	method	references	a
specific	version	of	the	SQLOLEDB	provider.	If	you	do	not	need	a	specific
version,	you	should	use	the	version-independent	ProgID,	in	this	case
"SQLOLEDB"	rather	than	"SQLOLEDB.1":

'Declare	the	object	variable.
Private	objConnect	As	DTS.Connection2
Private	objPackage	As	DTS.Package2

.	.	.
'Create	the	connection	object.	The	package	is	already	created	at	this	point.
Set	objConnect	=	objPackage.Connections.New("SQLOLEDB.1")
With	objConnect
			.ID	=	1
			.DataSource	=	"(local)"
			.UseTrustedConnection	=	True
End	With
Set	objPackage.Connections.Add	=	objConnect

Creating	a	Connection	with	the	Microsoft	OLE	DB	Provider	for	Jet
The	following	code	example	shows	you	how	to	create	a	connection	using	the
Microsoft	OLE	DB	Provider	for	Jet:

'Establish	a	connection	to	the	Access	database.
Set	objConnect	=	objPackage.Connections.New("Microsoft.Jet.OLEDB.4.0")
objConnect.ID	=	2
objConnect.DataSource	=	"D:\DTS_UE\Data\JetPubs.mdb"
Set	objPackage.Connections.Add	=	objConnect

Creating	a	Connection	with	the	Data	Shaping	Service	for	OLE	DB
The	following	code	example	shows	you	how	to	create	a	connection	using	the
Microsoft	Data	Shaping	Service	for	OLE	DB.	The	example	also	illustrates	how
you	can	use	the	ConnectionProperties	collection	to	access	the	properties	of	the
specific	OLE	DB	provider:

Set	objConnect	=	objPackage.Connections.New("MSDataShape")
With	objConnect
			.ConnectionProperties("Data	Provider")	=	"SQLOLEDB"
			.ID	=	1
			.Catalog	=	"Northwind"
			.UserID	=	"sa"
End	With
objPackage.Connections.Add	objConnect

After	the	Connection	object	has	been	added	to	the	Connections	collection,	the
object	variable	is	no	longer	needed	and	can	be	reused	for	another	connection	or
set	to	Nothing	to	release	its	reference.

DTS	Programming

DTS	Package	Workflow	in	Visual	Basic
You	create	workflow	in	Data	Transformation	Services	(DTS)	packages	by
assigning	all	the	tasks	to	steps	and	defining	precedence	relationships	between	the
steps.	Task	objects	that	are	not	assigned	to	steps	can	be	included	in	the	package,
but	they	will	not	be	executed.

Creating	DTS	Step	Objects
Here	are	the	basic	steps	for	adding	Step	objects	in	Microsoft®	Visual	Basic®:

1.	 Create	a	Step	object	with	the	New	method	of	the	Steps	collection	of
the	Package2	object.	

2.	 Assign	a	unique	step	name	to	the	Name	property	and	assign	the	name
of	the	associated	task	to	the	TaskName	property.	

3.	 Set	other	Step	object	properties,	as	appropriate.

If	package	event	handlers	coded	in	Visual	Basic	are	being	used,	the
ExecuteInMainThread	property	must	be	set	TRUE.	Visual	Basic
does	not	support	free	threading,	which	DTS	uses.

4.	 Use	the	Add	method	of	the	Step	collection	to	add	the	Step	object	to
the	collection.

Example

The	following	code	example	shows	you	how	to	create,	include,	and	assign	a	task
to	a	Step	object:

'Declare	the	step	and	the	generic	and	class-specific	task.
Dim	objTask							As	DTS.Task
Dim	objStep							As	DTS.Step
Dim	objDataPump			As	DTS.DataPumpTask2

.	.	.
'Create	the	step	and	task,	and	then	link	the	step	to	the	task.
Set	objStep	=	objPackage.Steps.New
Set	objTask	=	objPackage.Tasks.New("DTSDataPumpTask")
Set	objDataPump	=	objTask.CustomTask
objDataPump.Name	=	"LowerCaseTask"
With	ObjStep
				.Name	=	"LowerCaseStep"
				.TaskName	=	objDataPump.Name
				.ExecuteInMainThread	=	True
End	With
objPackage.Steps.Add	objStep

Creating	Precedence	Constraint	Objects
Unless	otherwise	constrained,	package	steps	run	in	parallel,	up	to	the	limit
specified	by	the	package	MaxConcurrentSteps	property.	To	serialize	step
execution,	create	and	add	PrecedenceConstraint	objects	to	the
PrecedenceConstraints	collection	of	the	appropriate	Step	objects.

When	one	task,	the	successor	task,	is	not	to	start	execution	until	some	event
associated	with	another	task,	the	predecessor	task,	occurs,	a
PrecedenceConstraint	object	that	names	the	predecessor	task	is	added	to	the
PrecedenceConstraints	collection	of	the	successor	task.	Typically,	these	events
will	be	step	completion,	step	successful	completion,	and	step	failure.

Here	are	the	basic	steps	for	configuring	a	PrecedenceConstraint	object	in
Visual	Basic:

1.	 Create	the	PrecedenceConstraint	object	with	the	New	method	of	the
PrecedenceConstraints	collection	of	the	successor	task.	Use	the	name
of	the	predecessor	task	as	the	argument	to	New.

2.	 Set	the	PrecedenceBasis	property	to	indicate	whether	the	constraint	is
to	use	step	status	or	step	result,	and	set	the	Value	property	to	the
appropriate	step	status	or	result	code.

For	more	information,	see	PrecedenceBasis	Property	and	Value
Property.

3.	 Add	the	PrecedenceConstraint	object	to	the	PrecedenceConstraints
collection	of	the	successor	task.

Example

In	the	following	example,	step	TransformData	does	not	run	until	step
ClearTables	completes.	Step	GenerateDoc	does	not	run	until	TransformData
completes	successfully.	Step	SendMail	runs	only	if	TransformData	fails	and
begins	execution	at	that	point:

'Declare	the	step	and	precedence	constraint.
Dim	objStep								As	DTS.Step
Dim	objConstraint		As	DTS.PrecedenceConstraint
.	.	.
'TransformData	only	runs	when	ClearTables	completes.
Set	objStep	=	objPackage.Steps("TransformData")
Set	objConstraint	=	objStep.PrecedenceConstraints.New("ClearTables")
objConstraint.PrecedenceBasis	=	DTSStepPrecedenceBasis_ExecStatus
objConstraint.Value	=	DTSStepExecStat_Completed
objStep.precedenceConstraints.Add	objConstraint

'GenerateDoc	only	runs	when	TransformData	is	successful.
Set	objStep	=	objPackage.Steps("GenerateDoc")
Set	objConstraint	=	objStep.PrecedenceConstraints.New("TransformData")
objConstraint.PrecedenceBasis	=	DTSStepPrecedenceBasis_ExecResult
objConstraint.Value	=	DTSStepExecResult_Success
objStep.precedenceConstraints.Add	objConstraint

'SendMail	only	runs	when	TransformData	fails.
Set	objStep	=	objPackage.Steps("SendMail")
Set	objConstraint	=	objStep.PrecedenceConstraints.New("TransformData")
objConstraint.PrecedenceBasis	=	DTSStepPrecedenceBasis_ExecResult

objConstraint.Value	=	DTSStepExecResult_Failure
objStep.precedenceConstraints.Add	objConstraint

After	the	Step	and	PrecedenceConstraint	objects	have	been	added	to	the	Steps
and	PrecedenceConstraints	collections,	respectively,	the	object	variables	are	no
longer	needed	and	can	be	reused	for	other	objects	or	set	to	Nothing	to	release
their	references.

DTS	Programming

DTS	Tasks	in	Visual	Basic
In	Microsoft®	Visual	Basic®,	a	Data	Transformation	Services	(DTS)	task
consists	of	a	generic	Task	object	and	a	class-specific	task	object,	such	as
DTSFTPTask,	DataPumpTask2	or	DynamicPropertiesTask	object.	For	more
information	about	the	task	classes	supplied	with	Microsoft	SQL	Server™	2000,
see	Task	Objects.

The	basic	steps	for	adding	a	DTS	task	in	Visual	Basic	are	as	follows:

1.	 Declare	an	object	variable	of	type	Task	and	a	class-specific	task	object
variable.

2.	 Create	the	task	with	the	New	method	of	the	Tasks	collection	of	the
Package2	object.	Pass	the	programmatic	identifier	(ProgID)	of	the
task	class	to	New	as	an	argument.

3.	 Use	the	CustomTask	property	of	the	Task	object	to	return	a	reference
to	the	class-specific	task	object.

Do	not	declare	the	class-specific	object	variable	as	DTS.CustomTask.
If	you	do,	the	class-specific	properties	and	methods	will	not	be
accessible.	However,	you	can	use	late	binding	and	declare	it	as	Object.

4.	 Assign	a	unique	name	to	the	Name	property,	either	of	the	Task	object
or	class-specific	task	object.

This	name	also	must	be	assigned	to	the	TaskName	property	of	the
Step	object.	For	more	information,	see	DTS	Package	Workflow	in
Visual	Basic.

5.	 Set	other	class-specific	task	object	properties	as	necessary.

Most	task	classes	require	a	reference	to	one	or	more	Connection
objects.	Usually,	you	do	this	through	a	property	such	as
SourceConnectionID	of	the	class-specific	task	object.

6.	 Add	the	Task	object	to	the	package	with	the	Add	method	of	the	Tasks
collection.

Data	Pump	Task	Example

The	following	code	example	shows	one	way	to	create	a	Data	Pump	task,	link	to
Connection	objects,	and	assign	names	to	the	source	and	destination	tables.	Use
of	fully	qualified	table	names,	as	shown	here,	makes	it	unnecessary	to	set	the
Catalog	property	of	the	corresponding	Connection	object.

'Declare	the	generic	and	class-specific	task	variables.
Dim	objTask							As	DTS.Task
Dim	objDataPump			As	DTS.DataPumpTask2
.	.	.
'Create	the	task	and	then	link	the	task	to	the	connections.
Set	objTask	=	objPackage.Tasks.New("DTSDataPumpTask")
Set	objDataPump	=	objTask.CustomTask
objDataPump.Name	=	"LowerCaseTask"
With	objDataPump
				.SourceConnectionID	=	1
				.SourceObjectName	=	"pubs..authors"
				.DestinationConnectionID	=	2
				.DestinationObjectName	=	"[DTS_UE].[dbo].[AuthNames]"
End	With
.	.	.
objPackage.Tasks.Add	objTask

File	Transfer	Protocol	Task	Example
The	following	code	example	shows	one	way	to	create	a	File	Transfer	Protocol
(FTP)	task	and	assign	the	files	to	be	copied	and	the	destination	directory	to	the
appropriate	properties:

Note		The	DTSFTPTask	object	requires	that	Microsoft	Internet	Explorer	5	be
installed	on	the	computer	on	which	the	task	is	to	run.	Internet	Explorer	5	is
supplied	with	SQL	Server	2000,	but	not	with	SQL	Server	2000	Desktop	Engine.

'Declare	the	generic	and	FTP	task	objects.
Dim	objTask							As	DTS.Task
Dim	objFTPTask				As	DTSCustTasks.DTSFTPTask

'Create	the	task.	Specify	the	files,	the	source,	and	the	destination	directories.
Set	objTask	=	objPackage.Tasks.New("DTSFTPTask")
Set	objFTPTask	=	objTask.CustomTask
objFTPTask.Name	=	"FTPSrcDirTask"
With	objFTPTask
				.SourceLocation	=	DTSFTPSourceLocation_Directory
				.SourceSite	=	"I:\DTS\TestData"
				.SourceFilename	=	_
								"'File3.dat';'';'123';'NWProdWiz.XLS';'';'458240';"
				.DestSite	=	"D:\DTS_UE\Dest"
End	With
objPackage.Tasks.Add	objTask
	

After	the	Task	object	has	been	added	to	the	Tasks	collection,	the	object
variables	are	no	longer	needed	and	can	be	reused	for	another	task	or	set	to
Nothing	to	release	their	references.

DTS	Programming

DTS	Transformations	in	Visual	Basic
A	Data	Transformation	Services	(DTS)	transformation	consists	of	a
Transformation	object	and	a	class-specific	transform	server	object,	such	as
DataPumpTransformScript	or	DataPumpTransformTrimString.	For	more
information	about	the	transformations	supplied	with	Microsoft®	SQL	Server™
2000,	see	Transformation	Objects.

Here	are	the	basic	steps	for	adding	a	Transformation	object	to	a	Microsoft
Visual	Basic®	file:

1.	 Declare	an	object	variable	of	Transformation	type	and	a	transform
server	object	variable	of	the	appropriate	type.

2.	 Create	the	transformation	with	the	New	method	of	the
Transformations	collection	of	the	class-specific	task	object	or
TransformationSet	object.	Pass	the	programmatic	identifier	(ProgID)
of	the	transformation	class	to	New	as	an	argument.

3.	 Use	the	TransformServer	property	of	the	Transformation	object	to
return	a	reference	to	the	transform	server	object.	

4.	 Assign	a	name	unique	among	the	objects	in	the	Transformations
collection	to	the	Name	property.

5.	 Set	other	Transformation	or	transform	server	object	properties	as
necessary.	

6.	 Add	the	Transformation	object	to	the	task	with	the	Add	method	of
the	Transformations	collection.

Example

The	following	code	example	shows	you	how	to	create	a	Copy	Column
transformation	that	does	not	have	Column	objects	added.	This	transformation
copies	all	columns.	The	source	and	destination	must	have	the	same	number	of
columns,	and	this	must	be	the	only	Transformation	object	in	the
Transformations	collection.

'Declare	the	class-specific	task	and	the	transformation.
Dim	objTransform				As	DTS.Transformation2
Dim	objPumpTask					As	DTS.DataPumpTask2
.	.	.
'Create	and	add	the	transformation.
Set	objTransform	=	objPumpTask.Transformations.New(_
																"DTS.DataPumpTransformCopy")
objTransform.Name	=	"Transform"
objTransform.TransformFlags	=		_
																DTSTransformFlag_AllowLosslessConversion
objPumpTask.Transformations.Add	objTransform

DTS	Programming

DTS	Column	Objects	in	Visual	Basic
You	must	specify	the	columns	to	be	transformed	when:

There	are	multiple	Transformation	objects	in	the	Transformations
collection.	

The	number	of	source	and	destination	columns	is	different	(for	example,
if	you	are	not	transforming	all	columns).	

The	order	of	the	source	and	destination	columns	does	not	match.

Here	are	the	basic	steps	for	adding	Column	objects	to	a	transformation	in
Microsoft®	Visual	Basic®:

1.	 Create	each	Column	object	with	the	New	method	of	the
SourceColumns	or	DestinationColumns	collections	of	the
Transformation	object.	

2.	 Specify	the	column	name	and	ordinal	position	as	arguments	to	New.	

3.	 Set	the	properties	of	the	Column	object	as	appropriate.	

4.	 Use	the	Add	method	of	the	SourceColumns	or	DestinationColumns
collection	to	add	the	Column	object	to	the	appropriate	collection.

Example

The	following	example	shows	you	how	to	create	and	include	one	source	and	one
destination	Column	object	and	to	use	the	transform	server	object	to	set	class-
specific	properties:

'Declare	the	class-specific	task,	the	transformation,	the	column,	and	the	transform	server	object.

Dim	objDataPump			As	DTS.DataPumpTask
Dim	objTransform		As	DTS.Transformation
Dim	objColumn					As	DTS.Column
Dim	objMidString		As	DTSPump.DataPumpTransformMidString

.	.	.
'Create	an	area	code	transformation.	
'						create	columns,	define	start	and	width
Set	objTransform	=	objDataPump.Transformations.	_
								New("DTSPump.DataPumpTransformMidString")
With	objTransform
				.Name	=	"AreaCodeTransform"
				Set	objColumn	=	.SourceColumns.New("phone",	1)
				.SourceColumns.Add	objColumn
				Set	objColumn	=	.DestinationColumns.New("AreaCode",	1)
				.DestinationColumns.Add	objColumn
End	With
Set	objMidString	=	objTransform.TransformServer
objMidString.CharacterStart	=	1
objMidString.CharacterCount	=	3
objDataPump.Transformations.Add	objTransform

Using	the	AddColumn	Method
If	it	is	not	necessary	to	set	Column	object	properties,	you	can	use	the
AddColumn	method	of	the	SourceColumns	and	DestinationColumns
collections	to	create	the	column	object	and	add	it	to	the	appropriate	collection	in
a	single	step.	However,	AddColumn	does	not	return	a	reference	to	the	Column
object.	Usually,	it	is	not	necessary	to	set	Column	object	properties	like
DataType,	Nullable,	Precision	and	Size,	because	the	defaults	are	set	from	the
corresponding	column	in	the	data	source	or	destination.

Example
The	following	code	example	shows	you	how	to	use	AddColumn	to	create	and

add	the	Column	objects.	The	declarations	from	the	previous	example	apply	to
this	one,	as	well.

'Create	a	transformation	for	the	local	phone	number.	Create	the	columns,	define	the	field	start	and	width
Set	objTransform	=	objDataPump.Transformations.	_
								New("DTSPump.DataPumpTransformMidString")
With	objTransform
				.Name	=	"LocalNumTransform"
				.SourceColumns.AddColumn	"phone",	1
				.DestinationColumns.AddColumn	"LocalNumber",	1
End	With
Set	objMidString	=	objTransform.TransformServer
objMidString.CharacterStart	=	5
objMidString.CharacterCount	=	8
objDataPump.Transformations.Add	objTransform

If	you	need	to	reference	a	column	property	when	you	do	not	have	a	reference	to
the	Column	object,	you	can	do	it	through	the	collection	that	contains	it.	The
following	code	example	shows	you	how	to	set	the	Nullable	property	of	the
phone	column	from	the	previous	example:

objTransform.SourceColumns("phone").Nullable	=	True

After	the	Transformation	object	has	been	added	to	the	Transformations
collection,	the	object	variables	are	no	longer	needed	and	can	be	reused	for	other
objects	or	set	to	Nothing	to	release	their	references.

DTS	Programming

DTS	Lookups	in	Visual	Basic
You	can	create	and	configure	a	Lookup	object	to	look	up	data	in	another	query
rowset	through	a	separate	connection.

Here	are	the	basic	steps	for	configuring	a	Lookup	object:

1.	 Use	the	New	method	of	the	Lookups	collection	of	a
DataDrivenQueryTask(2),	DataPumpTask(2)	or
TransformationSet	object	of	a	ParallelDataPumpTask	object	to
create	the	Lookup	object.	

2.	 Use	the	ConnectionID	property	to	specify	the	connection,	which
should	be	different	from	the	source	and	destination	connections	for	the
task.	

3.	 Specify	the	text	of	a	query	that	returns	a	rowset	(for	example,	a	Select
query	or	stored	procedure)	with	the	Query	property.

The	query	should	have	one	or	more	parameters	denoted	by	the	"?"
placeholder.	The	query	should	be	designed	to	return	a	rowset	with	a
single	row.	Additional	rows	in	the	rowset	are	ignored.

4.	 Use	the	Add	method	of	the	Lookups	collection	to	add	the	Lookup
object	to	the	collection.

Example

The	following	code	example	shows	you	how	to	create	and	configure	a	Lookup
object:

'Declare	a	lookup	object	and	a	class-specific	task.
Dim	objLookup					As	DTS.Lookup
Dim	objDataPump			As	DTS.DataPumpTask2

.	.	.
'Define	the	lookup	object.
Set	objLookup	=	objDataPump.Lookups.New("JobDesc")
With	objLookup
				.ConnectionID	=	2
				.Query	=	"SELECT	job_desc	FROM	jobs	"	&	vbCrLf
				.Query	=	.Query	&	"WHERE	job_id	=	?"
				.MaxCacheRows	=	60
End	With
objDataPump.Lookups.Add	objLookup

In	the	Microsoft®	ActiveX®	script,	the	lookup	must	be	referenced	with	the
Execute	method	of	an	element	of	the	DTSLookups	collection,	as	illustrated	in
the	following	code	example:

DTSDestination("JobDesc")	=	_
				DTSLookups("JobDesc").Execute(DTSSource("job_id"))

If	the	lookup	rowset	has	more	than	one	column,	the	Execute	method	returns	a
Variant	array.	The	script	may	need	to	iterate	through	the	array	to	use	multiple
values.

After	the	Lookup	object	has	been	added	to	the	Lookups	collection,	the	object
variable	is	no	longer	needed	and	can	be	reused	for	other	objects	or	set	to
Nothing	to	release	its	reference.

DTS	Programming

DTS	Global	Variables	in	Visual	Basic
Global	variables	that	do	not	exist	when	first	referenced	during	Data
Transformation	Services	(DTS)	package	execution	are	created	at	that	time.	Prior
to	package	execution,	you	can	create	global	variables	explicitly	by	adding	a
GlobalVariable	object	to	the	package.

Here	are	the	basic	steps	for	creating	a	global	variable	in	a	DTS	package	prior	to
package	execution:

1.	 Use	the	New	method	of	the	GlobalVariables	collection	of	the
Package2	object.	

2.	 Set	the	Value	property	of	the	created	GlobalVariable	object	to	the
initial	value	of	the	global	variable.	

3.	 Add	the	object	to	the	package	with	the	Add	method	of	the
GlobalVariables	collection.

Example

The	following	code	example	shows	you	how	to	create	a	global	variable	named
ALuckyName	initialized	with	the	string	"SevenSevenSeven":

'Declare	the	package	and	global	variable	objects.
Dim	objPackage		As	DTS.Package2
Dim	objGlobal			As	DTS.GlobalVariable
.	.	.
'Define	the	global	variable.
Set	objGlobal	=	objPackage.GlobalVariables.New("ALuckyName")
objGlobal.Value	=	"SevenSevenSeven"
objPackage.GlobalVariables.Add	objGlobal

Alternatively,	the	AddGlobalVariable	method	of	the	GlobalVariables

collection	creates	the	GlobalVariable	object	and	adds	it	to	the	collection	in	a
single	step.	However,	it	does	not	return	a	reference	to	the	object.	The	following
code	sample	shows	you	how	to	create	global	variable	ALuckyName	using
AddGlobalVariable:

'Define	the	global	variable.
objPackage.GlobalVariables.AddGlobalVariable	_
								"ALuckyName",	"SevenSevenSeven"

After	the	GlobalVariable	object	has	been	added	to	the	GlobalVariables
collection,	the	object	variable	is	no	longer	needed	and	can	be	reused	for	other
objects	or	set	to	Nothing	to	release	its	reference.

DTS	Programming

DTS	ActiveX	Scripts	in	Visual	Basic
You	assign	Microsoft®	ActiveX®	scripts	to	a	property	of	objects	that	require
scripts	as	a	single	text	string.	That	text	string	can	include	embedded	carriage
return/line	feed	pairs.	If	the	script	string	constant	contains	the	"	character,
represent	it	as	double	quotations	"",	as	you	would	in	any	Microsoft	Visual
Basic®	string	constant.	Each	scripted	object	also	has	properties	for	the	script
language	and	the	script	function	name.

For	the	ActiveScriptTask,	the	script	text	is	assigned	to	the	ActiveXScript
property.	The	ScriptLanguage	and	FunctionName	properties	are	used	to
specify	the	scripting	language	and	function	entry	point.

For	the	DataPumpTransformScript	transformation,	the	script	text	is	assigned
to	the	Text	property.	The	Language	and	FunctionEntry	properties	are	used	for
the	script	language	and	function	name,	respectively.

Example
The	following	code	example	assigns	a	Microsoft	Visual	Basic	Scripting	Edition
(VBScript)	function	to	a	DataPumpTransformScript	transformation	used	by	a
DataPumpTask2	object:

'Declare	the	class-specific	task,	the	transformation,	and	the	transform	server	object.
Dim	objDataPump								As	DTS.DataPumpTask
Dim	objTransformation		As	DTS.Transformation
Dim	objTransScript					As	DTSPump.DataPumpTransformScript

'Create	the	transformation	and	the	transform	server	object.	Then	assign	the	script	string.
'					objDataPump	already	exists	at	this	point
Set	objTransformation	=	objDataPump.Transformations.New(_
								"DTSPump.DataPumpTransformScript")
Set	objTransScript	=	objTransformation.TransformServer
With	objTransScript
				.Text	=	"Function	Main()"	&	vbCrLf

				.Text	=	.Text	&	"				DTSDestination(""emp_id"")	=	_
								DTSSource(""emp_id"")"	&	vbCrLf
				.Text	=	.Text	&	"				DTSDestination(""Name"")	=	_
								DTSSource(""lname"")	&	"",	""	&	DTSSource(""fname"")"	&	vbCrLf
				.Text	=	.Text	&	"				DTSDestination(""JobDesc"")	=	_
								DTSLookups(""JobDesc"").Execute(DTSSource(""job_id""))"	_
								&	vbCrLf
				.Text	=	.Text	&	"				DTSDestination(""PubName"")	=	_
								DTSLookups(""PubName"").Execute(DTSSource(""pub_id""))"	_
								&	vbCrLf
				.Text	=	.Text	&	"				Main	=	DTSTransformStat_OK"	&	vbCrLf
				.Text	=	.Text	&	"End	Function"
				.Language	=	"VBScript"
				.FunctionEntry	=	"Main"
End	With
.	.	.
objDataPump.Transformations.Add	objTransScript

DTS	Programming

DTS	Query	Strings	in	Visual	Basic
You	can	assign	queries	to	a	property	of	the	object	using	a	query	as	a	text	string.
The	property	name	differs	for	each	object	that	uses	a	query.	The	string	can
include	carriage	return/line	feed	pairs.	When	the	query	string	is	a	constant	and
contains	the	"	character,	represent	it	as	double	quotations	"",	as	in	all
Microsoft®	Visual	Basic®	string	constants.

If	you	are	supplying	source	or	destination	queries	for	the	DataPumpTask(2),
DataDrivenQueryTask(2)	or	ParallelDataPumpTask,	you	must	assign	a	single
Select	or	stored	procedure	query	to	the	SourceSQLStatement	or
DestinationSQLStatement	properties.	The	destination	query	defines	a	rowset
into	which	destination	rows	are	inserted.	This	feature	is	not	accessible	to
packages	created	in	Data	Transformation	Services	(DTS)	Designer.

In	the	DynamicPropertiesTaskAssignment	object	of	the
DynamicPropertiesTask,	assign	a	single	Select	or	stored	procedure	query	that
returns	a	rowset	to	the	SourceQuerySQL	property.	This	query	returns	a	single
row	containing	a	single	column.	Additional	fields	in	the	rowset	are	ignored.

Example
The	following	code	example	shows	one	way	to	assign	the	source	and	destination
queries	for	the	ParallelDataPumpTask	object:

'Declare	the	generic	and	class-specific	task	object	variables.
Dim	objTask															As	DTS.Task
Dim	objParallelPumpTask			As	DTS.ParallelDataPumpTask

'Create	the	ParallelDataPumpTask	and	assign	the	connections	and	queries.
Set	objTask	=	objPackage.Tasks.New("DTSParallelDataPumpTask")
Set	objParallelPumpTask	=	objTask.CustomTask
With	objParallelPumpTask
				.TransformationSetOptions	=	DTSTranSetOpt_DataDrivenQueries
				.SourceConnectionID	=	1

				.SourceSQLStatement	=	_
								"SHAPE	{SELECT	au_id,	au_lname,	au_fname	FROM	authors}	"	&	_
								"APPEND	({SELECT	au_id,	title	FROM	titleauthor	TA,	titles	TS	"	&	_
																	"WHERE	TA.title_id	=	TS.title_id}	"	&	_
																"AS	title_chap	RELATE	au_id	TO	au_id)"
				.DestinationConnectionID	=	2
				.DestinationSQLStatement	=	_
								"SHAPE	{SELECT	*	FROM	AuthNames}	"	&	_
								"APPEND	({SELECT	*	FROM	TitleNames}	"	&	_
																"AS	TitleChap	RELATE	AuthID	TO	AuthID)"
End	With

Defining	Execute	SQL	Task	Queries
With	the	ExecuteSQLTask	object,	you	must	assign	a	sequence	of	one	or	more
queries	to	the	SQLStatement	property.	You	can	insert	the	Transact-SQL	GO
statement	to	break	the	query	sequence	into	batches.

Example
The	following	code	example	shows	you	how	to	use	the	SQLStatement	property
with	a	batched	sequence	of	SQL	statements:

'Declare	the	generic	and	class-specific	task	object	variables.
Dim	objTask	As	DTS.Task
Dim	objExecSQL	As	DTS.ExecuteSQLTask

'Create	the	ParallelDataPumpTask	and	assign	the	connections	and	queries.
Set	objTask	=	objPackage.Tasks.New("DTSExecuteSQLTask")
Set	objExecSQL	=	objTask.CustomTask
With	objExecSQL
				.Name	=	"PubsEmplClearOut"
				.SQLStatement	=	"USE	DTSTest"	&	vbCrLf		&	_
								"TRUNCATE	TABLE	EmployeeHires"	&	vbCrLf	&	"GO"	&	vbCrLf	&	_
								"UPDATE	MissingStuff	SET	MissingMI	=	0"	&	vbCrLf	&	_

								"UPDATE	StartYearCounts	SET	NumberStarts	=	0"	&	vbCrLf	&	"GO"
				.ConnectionID	=	1
End	With
objPackage.Tasks.Add	objTask

Defining	Data	Driven	Queries
With	the	DataDrivenQueryTask(2)	and	the	TransformationSet	object	of	the
ParallelDataPumpTask	(when	in	DTSTranSetOpt_DataDrivenQueries
mode),	you	can	define	up	to	four	queries	by	assigning	query	strings	to	the
InsertQuery,	UpdateQuery,	DeleteQuery	and	UserQuery	properties.

Each	query	string	consists	of	a	sequence	of	one	or	more	SQL	statements	or
stored	procedure	references,	although	the	Transact-SQL	GO	statement	cannot	be
included.	Use	the	parameter	placeholder	?	to	indicate	where	you	have	substituted
a	reference	to	a	destination	column.	These	columns	are	defined	by	creating
Column	objects	and	adding	them	to	one	of	the	InsertQueryColumns,
UpdateQueryColumns,	DeleteQueryColumns,	UserQueryColumns
collections.	Use	the	New	method	of	the	appropriate	collection,	followed	by	the
Add	method.	Alternatively,	you	can	create	and	add	the	Column	object	in	a
single	step	with	the	AddColumn	method.

Example
The	following	code	example	shows	how	you	could	define	the	Insert	query,	the
Update	query,	and	the	associated	destination	columns	for	a
DataDrivenQueryTask2	object:

'Declare	the	generic	and	class-specific	task	object	variables.
Dim	objTask	As	DTS.Task
Dim	objDDQTask	As	DTS.DataDrivenQueryTask

'Create	the	DataDrivenQueryTask	and	assign	the	connections	and	queries.
Set	objTask	=	objPackage.Tasks.New("DTSDataDrivenQueryTask")
Set	objDDQTask	=	objTask.CustomTask
With	objDDQTask
				.Name	=	"PubsDDQ"

				.SourceConnectionID	=	2
				.SourceObjectName	=	"[pubs].[dbo].[employee]"
				.DestinationConnectionID	=	1
				.DestinationObjectName	=	"[DTSTest].[dbo].[EmployeeHires]"
				.InsertQuery	=	"UPDATE	StartYearCounts"	&	vbCrLf	&	_
								"SET	NumberStarts	=	NumberStarts	+	1	"	&	vbCrLf	&	_
								"WHERE	StartYear	=	datepart(yyyy,	?)"	&	vbCrLf	&	_
								"INSERT	INTO	EmployeeHires	(FullName,	StartDate)	VALUES	(?,	?)"
				.UpdateQuery	=	"UPDATE	StartYearCounts"	&	vbCrLf	&	_
								"SET	NumberStarts	=	NumberStarts	+	1	"	&	vbCrLf	&	_
								"WHERE	StartYear	=	datepart(yyyy,	?)"	&	vbCrLf	&	_
								"UPDATE	MissingStuff	SET	MissingMI	=	MissingMI	+	1"	&	vbCrLf	&	_
								"INSERT	INTO	EmployeeHires		(FullName,	StartDate)	VALUES	(?,	?)"
				With	.InsertQueryColumns
								.AddColumn	"StartDate",	1
								.AddColumn	"FullName",	2
								.AddColumn	"StartDate",	3
				End	With
				With	.UpdateQueryColumns
								.AddColumn	"StartDate",	1
								.AddColumn	"FullName",	2
								.AddColumn	"StartDate",	3
				End	With
.	.	.
End	With
objPackage.Tasks.Add	objTask

Defining	Lookup	Queries
For	the	Lookup	object,	a	single	query	that	generates	a	rowset	is	assigned	to	the
Query	property.	This	query	must	contain	one	or	more	?	parameter	placeholders.
For	more	information,	see	DTS	Lookups	in	Visual	Basic.

DTS	Programming

DTS	Package	Events	in	Visual	Basic
To	handle	Data	Transformation	Services	(DTS)	package	events	in	Microsoft®
Visual	Basic®,	declare	the	Package	object	variable	WithEvents.	A	Package2
object	variable	cannot	be	declared	WithEvents.	If	you	want	to	use	the	new
features	of	the	Package2	object	and	also	handle	package	events,	create	a
Package	object	and	assign	it	to	a	Package2	object	variable.	You	can	use	this
object	to	access	the	package	properties	and	methods.	Also	assign	the	Package2
object	variable	to	a	Package	object	variable	that	has	been	declared	WithEvents.

After	you	have	declared	a	Package	object	variable	WithEvents,	you	must
provide	event	handlers	for	all	the	package	events.	If	you	fail	to	do	so,	you	will
typically	receive	an	access	violation	error	at	the	time	the	unhandled	event	is
raised.

Because	Visual	Basic	objects	do	not	support	multiple	threads,	you	also	must	set
the	ExecuteInMainThread	property	to	TRUE	for	each	Step	object	in	the
package.

Example
The	following	code	example	is	a	private	class	that	handles	package	events	after
its	PackageObj	property	has	been	set.

Note		The	OnQueryCancel	and	OnStart	event	handlers	consist	of	only	a
comment.	This	comment	satisfies	the	requirement	that	a	handler	be	supplied	for
these	events	and	causes	Visual	Basic	to	compile	the	Subs.	You	also	can	use	the
single	statement	Exit	Sub.

Option	Explicit
Private	WithEvents	objPackage					As	DTS.Package
.	.	.
Private	Sub	objPackage_OnError(ByVal	EventSource	As	String,	_
												ByVal	ErrorCode	As	Long,	ByVal	Source	As	String,	_
												ByVal	Description	As	String,	ByVal	HelpFile	As	String,	_
												ByVal	HelpContext	As	Long,	_

												ByVal	IDofInterfaceWithError	As	String,	pbCancel	As	Boolean)
				Dim	sMsg								As	String
				
				sMsg	=	"EventSource:			"	&	EventSource	&	vbCrLf	&	_
												"ErrorCode:							"	&	(ErrorCode)	&	vbCrLf	&	_
												"Source:													"	&	Source	&	vbCrLf	&	_
												"Description:			"	&	Description	&	vbCrLf	&	_
												"HelpFile:									"	&	HelpFile	&	vbCrLf	&	_
												"IDofIFWErr:					"	&	IDofInterfaceWithError
				MsgBox	sMsg,	vbExclamation,	"OnError"

End	Sub

Private	Sub	objPackage_OnFinish(ByVal	EventSource	As	String)
				MsgBox	EventSource,	vbInformation,	"OnFinish"
End	Sub

Private	Sub	objPackage_OnProgress(ByVal	EventSource	As	String,	_
												ByVal	ProgressDescription	As	String,	_
												ByVal	PercentComplete	As	Long,	_
												ByVal	ProgressCountLow	As	Long,	_
												ByVal	ProgressCountHigh	As	Long)
				Dim	sMsg								As	String
				
				sMsg	=	"EventSource:											"	&	EventSource	&	vbCrLf	&	_
												"ProgressDescr:									"	&	ProgressDescription	&	vbCrLf	&	_
												"PercentComplete:							"	&	(PercentComplete)	&	vbCrLf	&	_
												"ProgressCountLow:					"	&	(ProgressCountLow)	&	vbCrLf	&	_
												"ProgressCountHigh:			"	&	(ProgressCountHigh)
				MsgBox	sMsg,	vbExclamation,	"OnProgress"

End	Sub

Private	Sub	objPackage_OnQueryCancel(ByVal	EventSource	As	String,	_
												pbCancel	As	Boolean)
				'MsgBox	EventSource,	vbInformation,	"OnQueryCancel"
End	Sub

Private	Sub	objPackage_OnStart(ByVal	EventSource	As	String)
				'MsgBox	EventSource,	vbInformation,	"OnStart"
End	Sub

Public	Property	Get	PackageObj()	As	DTS.Package2
				Set	PackageObj	=	objPackage
End	Property

Public	Property	Set	PackageObj(ByVal	oNewPack	As	DTS.Package2)
				Set	objPackage	=	oNewPack
End	Property

DTS	Programming

Managing	DTS	Package	Programs	in	Visual	Basic
The	topics	that	follow	describe	the	implementation	of	DTS	functions	in
Microsoft®	Visual	Basic®.	These	functions	use	the	Data	Transformation
Services	(DTS)	object	model.

Topic Description
Executing	DTS	Packages	in
Visual	Basic

Explains	how	to	use	the	Execute	method
of	the	Package2	object	and	describes
what	you	need	to	consider	before	reusing
Package2.

Handling	DTS	Errors	in	Visual
Basic

Explains	how	to	detect	errors	that	occur
during	DTS	package	execution.

Saving	DTS	Packages	in	Visual
Basic

Explains	how	a	Package2	object	can
save	the	package	to	storage	and	how	to
load	a	DTS	package	into	a	Package2
object.

Running	a	Package	Saved	as	a
Visual	Basic	File

Explains	how	to	incorporate	a	DTS
package	saved	as	a	Visual	Basic	file	by	a
DTS	tool	into	a	Visual	Basic	project.

Retrieving	DTS	Information	in
Visual	Basic

Explains	how	to	obtain	package	and
version	information	from	a	DTS	package
storage	file.

DTS	Programming

Executing	DTS	Packages	in	Visual	Basic
After	you	have	created	the	necessary	Data	Transformation	Services	(DTS)
objects,	set	their	properties	and	added	them	to	the	appropriate	collections,	use
the	Execute	method	of	the	Package2	object	to	run	the	package.	For	more
information	about	handling	errors	raised	by	the	Execute	method,	see	DTS	Error
Handlers	in	Visual	Basic.

If	the	Package2	object	is	to	be	used	again	(for	example,	for	saving	or	running),
or	if	the	application	is	to	perform	significant	processing	outside	of	DTS	after	the
DTS	package	is	run,	it	is	recommended	that	you	call	the	Package2	UnInitialize
method.	UnInitialize	performs	various	clean-ups,	for	example,	re-initializing
global	variables,	closing	user-opened	connections,	closing	the	log,	releasing
threads,	and	terminating	event	connection	points.

Before	calling	UnInitialize,	it	is	strongly	recommended	that	you	release
references	to	all	DTS	objects,	except	the	Package2	object,	through	which	you
are	going	to	run	Uninitialize.	This	includes	additional	Package	or	Package2
object	variables	that	you	have	declared	WithEvents	in	order	to	handle	package
events.

You	can	release	references	by	either	setting	the	appropriate	object	variables	to
Nothing	or	arranging	your	code	so	that	they	go	out	of	scope.	If	you	fail	to	do
this,	resources	such	as	computer	memory	will	not	be	released	by	Uninitialize,
giving	the	appearance	of	a	memory	leak.

Example
The	following	code	example	shows	a	DTS	package	using	an
ExecutePackageTask,	through	the	Execute	and	UnInitialize	methods:

Private	WithEvents	mobjPkgEvents	As	DTS.Package
.	.	.
Private	Sub	RunPackage()
'Run	the	package	stored	in	file	C:\DTS_UE\TestPkg\VarPubsFields.dts.
Dim	objPackage						As	DTS.Package2

Dim	objStep									As	DTS.Step
Dim	objTask									As	DTS.Task
Dim	objExecPkg						As	DTS.ExecutePackageTask

On	Error	GoTo	PackageError
Set	objPackage	=	New	DTS.Package
Set	mobjPkgEvents	=	objPackage
objPackage.FailOnError	=	True

'Create	the	step	and	task.	Specify	the	package	to	be	run,	and	link	the	step	to	the	task.
Set	objStep	=	objPackage.Steps.New
Set	objTask	=	objPackage.Tasks.New("DTSExecutePackageTask")
Set	objExecPkg	=	objTask.CustomTask
With	objExecPkg
				.PackagePassword	=	"user"
				.FileName	=	"C:\DTS_UE\TestPkg\VarPubsFields.dts"
				.Name	=	"ExecPkgTask"
End	With
With	objStep
				.TaskName	=	objExecPkg.Name
				.Name	=	"ExecPkgStep"
				.ExecuteInMainThread	=	True
End	With
objPackage.Steps.Add	objStep
objPackage.Tasks.Add	objTask

'Run	the	package	and	release	references.
objPackage.Execute

Set	objExecPkg	=	Nothing
Set	objTask	=	Nothing
Set	objStep	=	Nothing
Set	mobjPkgEvents	=	Nothing

objPackage.UnInitialize
End	Sub

DTS	Programming

Handling	DTS	Errors	in	Visual	Basic
You	need	to	take	the	steps	described	below	when	handling	errors	in	Data
Transformation	Services	(DTS)	applications	implemented	in	Microsoft®	Visual
Basic®.

DTS	applications	typically	consist	of	two	phases:

In	the	first	phase,	the	applications	create	DTS	objects,	set	their
properties,	and	add	them	to	collections	of	parent	objects.

Errors	that	occur	during	the	object	creation/property	definition	phase
can	be	handled	by	a	typical	Visual	Basic	error	handler.

In	the	second	phase,	the	Execute	method	of	the	Package2	object	is
invoked.

Errors	that	occur	during	the	Execute	will	not	be	propagated	back	to	the
caller	unless	the	FailOnError	property	of	the	Package2	object	is	set	to
TRUE.

When	FailOnError	is	TRUE,	the	description	of	the	returned	error	will
often	tell	you	only	that	the	package	failed	because	a	(named)	step	failed.
To	determine	why	a	step	failed,	the	GetExecutionErrorInfo	method	of
the	Step	object	will	return	the	properties	of	a	Visual	Basic	error	object
that	describe	the	error.

Troubleshooting	Package	Execution

To	determine	the	step(s)	that	raised	errors,	the	ExecutionStatus	property	of	the
Step	object	should	have	the	value	DTSStepExecStat_Completed	(in	enum
DTS.DTSStepExecStatus)	and	the	ExecutionResult	property	should	have	the
value	DTSStepExecResult_Failure	(in	enum	DTS.DTSStepExecResult).	If
FailOnError	is	TRUE,	there	will	only	be	one	such	step.	If	not,	there	may	be
multiple	failed	steps,	depending	on	the	package	workflow.	The	error	handler
should	iterate	through	all	the	objects	in	the	Steps	collection	and	not	stop	when	it
finds	an	error.

Error	Handler	Example
The	following	code	example	is	a	typical	error	handler	that	could	be	used	while	a
package	is	being	developed,	and	FailOnError	is	set	to	TRUE.	If	failing	the
package	on	the	first	error	is	undesirable,	the	sAccumStepErrors	function	could
still	be	used,	but	it	would	need	to	be	called	following	a	normal	return	from
objPackage.Execute,	as	well	as	from	the	error	handler.

Private	Sub	RunDTSPackage()
				Dim	objPackage												As	New	DTS.Package
				.	.	.
				On	Error	GoTo	PackageError
				.	.	.
				objPackage.FailOnError	=	True
				objPackage.Execute
				Exit	Sub
				
PackageError:
				Dim	sMsg				As	String
				sMsg	=	"Package	failed,	error:	"	&	sErrorNumConv(Err.Number)	&	_
								vbCrLf	&	Err.Description	&	vbCrLf	&	sAccumStepErrors(objPackage)
				MsgBox	sMsg,	vbExclamation,	objPackage.Name
				Exit	Function
End	Sub

Private	Function	sAccumStepErrors(_
												ByVal	objPackage	As	DTS.Package)	As	String
'Accumulate	the	step	error	info	into	the	error	message.
				Dim	oStep							As	DTS.Step
				Dim	sMessage				As	String
				Dim	lErrNum					As	Long
				Dim	sDescr						As	String
				Dim	sSource					As	String
				
				'Look	for	steps	that	completed	and	failed.

				For	Each	oStep	In	objPackage.Steps
								If	oStep.ExecutionStatus	=	DTSStepExecStat_Completed	Then
												If	oStep.ExecutionResult	=	DTSStepExecResult_Failure	Then
												
																'Get	the	step	error	information	and	append	it	to	the	message.
																oStep.GetExecutionErrorInfo	lErrNum,	sSource,	sDescr
																sMessage	=	sMessage	&	vbCrLf	&	_
																								"Step	"	&	oStep.Name	&	"	failed,	error:	"	&	_
																								sErrorNumConv(lErrNum)	&	vbCrLf	&	sDescr	&	vbCrLf
												End	If
								End	If
				Next
				sAccumStepErrors	=	sMessage
End	Function

Private	Function	sErrorNumConv(ByVal	lErrNum	As	Long)	As	String
'Convert	the	error	number	into	readable	forms,	both	hexadecimal	and	decimal	for	the	low-order	word.
				
				If	lErrNum	<	65536	And	lErrNum	>	-65536	Then
								sErrorNumConv	=	"x"	&	Hex(lErrNum)	&	",		"	&	CStr(lErrNum)
				Else
								sErrorNumConv	=	"x"	&	Hex(lErrNum)	&	",		x"	&	_
																Hex(lErrNum	And	-65536)	&	"	+	"	&	CStr(lErrNum	And	65535)
				End	If
End	Function

Error	Message	Example
The	following	code	example	is	the	message	generated	by	the	above	handler
when	a	package	with	a	connection	that	references	a	non-existent	database	is	run:

Package	failed,	error:	x80040428,		x80040000	+	1064
Package	failed	because	Step	'ParallelDPStep'	failed.

Step	ParallelDPStep	failed,	error:	x80074005,		x80070000	+	16389
Data	provider	could	not	be	initialized.	(Microsoft	OLE	DB	Provider	
for	SQL	Server	(80004005):	Cannot	open	database	requested	in	login	
'DTSFest'.	Login	fails.)

See	Also

DTSStepExecResult

DTSStepExecStatus

Execute	(Package)	Method

ExecutionResult	Property

ExecutionStatus	Property

FailOnError	Property

GetExecutionErrorInfo	Method

DTS	Programming

Saving	DTS	Packages	in	Visual	Basic
When	you	use	the	Package2	object	methods,	you	can	save	or	load	a	package	in
the	formats	available	to	you	through	Data	Transformation	Services	(DTS)
Designer	and	the	DTS	Import/Export	Wizard.	You	can	save	packages	to
Microsoft®	SQL	Server™	2000,	to	SQL	Server	2000	Meta	Data	Services	and	to
a	COM-structured	storage	file.

To	save	a	package,	use	one	of	the	following	Package2	methods:

SaveToSQLServer

SaveToSQLServerAs

SaveToRepository	

SaveToRepositoryAs	

SaveToStorageFile	

SaveToStorageFileAs

If	the	package	is	run	before	being	saved,	call	the	UnInitialize	method	first.

To	load	a	package,	first	create	the	Package2	object	and	then	invoke	one	of	the
following	Package2	object	methods:

LoadFromSQLServer

LoadFromRepository

LoadFromStorageFile

To	delete	a	package	from	SQL	Server	or	Meta	Data	Services,	use	the	Package2

object	RemoveFromSQLServer	or	RemoveFromRepository	methods.

Example
The	following	code	example	shows	a	function	loading	a	package	in	one	format
and	saving	it	in	another:

Enum	eDTSPkgFormat
				REPOSITORY
				SQL_SERVER
				STORAGE_FILE
End	Enum

Public	Function	blnCopyDTSPackage(_
				ByVal	strReposServerName	As	String,	ByVal	strReposDBName	As	String,	_
				ByVal	strReposUserName	As	String,	ByVal	strReposPassword	As	String,	_
				ByVal	blnReposNTAuth	As	Boolean,	ByVal	strSQLServerName	As	String,	_
				ByVal	strSQLSvUserName	As	String,	ByVal	strSQLSvPassword	As	String,	_
				ByVal	blnSQLSvNTAuth	As	Boolean,	ByVal	strPackageID	As	String,	_
				ByVal	strPackageVerID	As	String,	ByVal	strPackageName	As	String,	_
				ByVal	strPkgOwnerPwd	As	String,	ByVal	strPkgUserPwd	As	String,	_
				ByVal	strPkgUNCPath	As	String,	ByVal	dpfPkgSource	As	eDTSPkgFormat,	_
				ByVal	dpfPkgDestination	As	eDTSPkgFormat)	As	Boolean
'Copy	the	DTS	package	source	to	the	destination	format.
Dim	objPackage						As	DTS.Package2
Dim	rsfFlags								As	DTS.DTSRepositoryStorageFlags
Dim	ssfFlags								As	DTS.DTSSQLServerStorageFlags
Dim	strPhase								As	String							'load/save	phase	for	error	msg

On	Error	GoTo	ErrorHandler

'Copying	the	source	to	the	destination	in	the	same	format	is	not	supported.
If	dpfPkgSource	=	dpfPkgDestination	Then
				MsgBox	"Same	format	for	source	and	destination	not	supported",	_

												vbExclamation
				Exit	Function
End	If

'Create	the	package	object	and	calculate	the	storage	flags.
Set	objPackage	=	New	DTS.Package
rsfFlags	=	IIf(blnReposNTAuth,	DTSReposFlag_UseTrustedConnection,	_
																															DTSReposFlag_Default)
ssfFlags	=	IIf(blnSQLSvNTAuth,	DTSSQLStgFlag_UseTrustedConnection,	_
																																DTSSQLStgFlag_Default)
																																
'Load	the	package	from	the	specified	storage	type.
strPhase	=	"loading"
Select	Case	dpfPkgSource
				Case	REPOSITORY
								objPackage.LoadFromRepository	_
												strReposServerName,	strReposDBName,	strReposUserName,	_
												strReposPassword,	strPackageID,	strPackageVerID,	_
												strPackageName,	rsfFlags

				Case	SQL_SERVER
								objPackage.LoadFromSQLServer	_
												strSQLServerName,	strSQLSvUserName,	strSQLSvPassword,	_
												ssfFlags,	strPkgOwnerPwd,	strPackageID,	_
												strPackageVerID,	strPackageName
				
				Case	STORAGE_FILE
								objPackage.LoadFromStorageFile	_
												strPkgUNCPath,	strPkgOwnerPwd,	strPackageID,	_
												strPackageVerID,	strPackageName
End	Select

'Save	the	package	to	the	specified	storage	type.

strPhase	=	"saving"
Select	Case	dpfPkgDestination
				Case	REPOSITORY
								objPackage.SaveToRepository	_
												strReposServerName,	strReposDBName,	strReposUserName,	_
												strReposPassword,	rsfFlags
												
				Case	SQL_SERVER
								objPackage.SaveToSQLServer	_
												strSQLServerName,	strSQLSvUserName,	strSQLSvPassword,	_
												ssfFlags,	strPkgOwnerPwd,	strPkgUserPwd
								
				Case	STORAGE_FILE
								objPackage.SaveToStorageFile	_
												strPkgUNCPath,	strPkgOwnerPwd,	strPkgUserPwd
End	Select

blnCopyDTSPackage	=	True
Exit	Function

ErrorHandler:
MsgBox	"Error	"	&	strPhase	&	"	DTS	package:	0x"	&	Hex(Err.Number)	&	_
								vbCrLf	&	Err.Description,	vbExclamation
Exit	Function
End	Function

DTS	Programming

Running	a	DTS	Package	Saved	as	a	Visual	Basic	File
You	can	run	a	Data	Transformation	Services	(DTS)	package	that	has	been	saved
by	one	of	the	DTS	tools	as	a	Microsoft®	Visual	Basic®	file.	The	saved	module,
a	Visual	Basic	.bas	file,	consists	of	declarations	and	a	Sub	Main	and	may	contain
other	Subs	called	by	Sub	Main.	The	Subs	contain	all	the	logic	of	the	DTS
package.

Here	are	the	basic	steps	for	incorporating	a	Visual	Basic	module	file	into	a
Visual	Basic	project	and	executing	it	on	a	computer	running	the	Microsoft	SQL
Server™	client	tools:

1.	 In	Visual	Basic,	create	a	new	Standard	EXE	project.

2.	 On	the	Project	menu,	click	References,	and	then	select	the	Microsoft
DTSDataPump	Scripting	Object	Library,	Microsoft	DTSPackage
Object	Library,	and	Microsoft	DTS	Custom	Tasks	Object	Library
check	boxes.

Not	all	DTS	programs	will	require	all	three	of	these	libraries.

3.	 On	the	Project	menu,	click	Add	File,	and	then	add	the	Visual	Basic
file	produced	by	the	DTS	Import/Export	Wizard	or	DTS	Designer.

4.	 In	the	Project	Explorer,	select	Form1	and	then	on	the	Project	menu,
click	Remove	Form1	to	remove	the	blank	form	from	the	Project.

5.	 Run	the	project.	

No	indication	of	completion	will	be	given	other	than	the	Visual	Basic
Development	Environment	will	go	back	to	design	mode.

You	may	want	to	add	completion	notification	and	error	handling	and	controls	to
allow	the	user	to	invoke	the	transformation.

Using	the	Visual	Basic	File	to	Save	to	SQL	Server
The	Visual	Basic	project	you	created	from	the	generated	Visual	Basic	file	can	be
used	to	save	the	DTS	package	to	SQL	Server.

Here	are	the	basic	steps	for	saving	Visual	Basic	files	to	SQL	Server:

1.	 Go	to	the	end	of	the	Sub	Main	and	uncomment	the	line
'objPackage.SaveToSQLServer	...

2.	 Comment	out	the	following	line
objPackage.Execute

3.	 Run	the	project.

When	the	Visual	Basic	Development	Environment	goes	back	to	design
mode,	the	package	is	saved	to	SQL	Server.

The	package	can	now	be	edited,	maintained,	and	run	from	DTS	Designer.	It	can
be	saved	again	as	a	Visual	Basic	file	from	DTS	Designer.

See	Also

Executing	DTS	Packages	in	Visual	Basic

Saving	DTS	Packages	in	Visual	Basic

Saving	a	DTS	Package	to	a	Visual	Basic	File

JavaScript:hhobj_1.Click()

DTS	Programming

Retrieving	DTS	Information	in	Visual	Basic
Data	Transformation	Services	(DTS)	provides	features	for	requesting
information	about	registered	components	and	saved	packages	and	for	retrieving
the	contents	of	log	records.

Registered	Components
The	Application	object	provides	access	to	the	system,	package,	and	log	data.
You	create	it	independently	of	a	DTS	package.

Use	the	OLEDBProviderInfos,	ScriptingLanguageInfos,	TaskInfos,	and
TransformationInfos	collections	of	the	Application	object	to	obtain
information	about:

OLE	DB	providers.

Microsoft®	ActiveX®	scripting	languages.

DTS	task	classes	and	DTS	transformation	classes	that	are	registered	on
the	computer	and	can	be	used	by	DTS.

The	DTS	task	and	transformation	classes	include	those	supplied	with
Microsoft	SQL	Server™	and	custom	tasks	and	transformations
implemented	by	other	vendors	and	users.

Example

The	following	example	creates	a	DTS	Application	object,	then	iterates	through
the	collections	named	above	to	retrieve	information	about	the	registered
components	available	to	DTS.

To	register	components

1.	 In	a	Microsoft	Visual	Basic®	development	environment,	create	a	new
Standard	EXE	project.

2.	 On	the	Project	menu,	click	References,	and	then	select	the	Microsoft
DTSPackage	Object	Library	check	box.

3.	 Place	a	textbox	on	Form1,	and	then	accept	the	default	name	Text1.

4.	 Set	the	MultiLine	property	to	TRUE	and	set	the	ScrollBars	property	to
3	-	Both.

5.	 Copy	the	following	code	into	the	code	window	for	Form1,	and	then
run	the	project:

Note		Be	sure	to	include	the	Form_Resize	sub.	It	allows	you	to	drag
the	borders	of	Form1	to	view	the	information.

Private	Sub	Form_Load()
				Dim	objDTSAppl						As	DTS.Application
				Dim	colScripInfo				As	DTS.ScriptingLanguageInfos
				Dim	objScripInfo				As	DTS.ScriptingLanguageInfo
				Dim	colOLEDBInfo				As	DTS.OLEDBProviderInfos
				Dim	objOLEDBInfo				As	DTS.OLEDBProviderInfo
				Dim	colTaskInfo					As	DTS.TaskInfos
				Dim	objTaskInfo					As	DTS.TaskInfo
				Dim	colTransInfo				As	DTS.TransformationInfos
				Dim	objTransInfo				As	DTS.TransformationInfo
				Dim	strMsg										As	String
				
				Set	objDTSAppl	=	New	DTS.Application
				
				strMsg	=	"OLEDB	Provider	Information"	&	vbCrLf	&	"======================="	&	vbCrLf
				Set	colOLEDBInfo	=	objDTSAppl.OLEDBProviderInfos
				For	Each	objOLEDBInfo	In	colOLEDBInfo
								strMsg	=	strMsg	&	vbCrLf	&	_

												vbTab	&	"ClassID:"	&	vbTab	&	objOLEDBInfo.ClassID	&	vbCrLf	&	_
												vbTab	&	"Descr:"	&	vbTab	&	objOLEDBInfo.Description	&	vbCrLf	&	_
												vbTab	&	"File:"	&	vbTab	&	objOLEDBInfo.ImplementationFileName	&	vbCrLf	&	_
												vbTab	&	"Version:"	&	vbTab	&	objOLEDBInfo.ImplementationFileVersionString	&	vbCrLf	&	_
												vbTab	&	"Name:"	&	vbTab	&	objOLEDBInfo.Name	&	vbCrLf	&	_
												vbTab	&	"Parse:"	&	vbTab	&	objOLEDBInfo.ParseName	&	vbCrLf
				Next
				
				strMsg	=	strMsg	&	vbCrLf	&	"Scripting	Langauge	Information"	&	vbCrLf	&	_
								"========================="	&	vbCrLf
				Set	colScripInfo	=	objDTSAppl.ScriptingLanguageInfos
				For	Each	objScripInfo	In	colScripInfo
								strMsg	=	strMsg	&	vbCrLf	&	_
												vbTab	&	"ClassID:"	&	vbTab	&	objScripInfo.ClassID	&	vbCrLf	&	_
												vbTab	&	"Descr:"	&	vbTab	&	objScripInfo.Description	&	vbCrLf	&	_
												vbTab	&	"File:"	&	vbTab	&	objScripInfo.ImplementationFileName	&	vbCrLf	&	_
												vbTab	&	"Version:"	&	vbTab	&	objScripInfo.ImplementationFileVersionString	&	vbCrLf	&	_
												vbTab	&	"Name:"	&	vbTab	&	objScripInfo.Name	&	vbCrLf
				Next
				
				strMsg	=	strMsg	&	vbCrLf	&	"Registered	DTS	Task	Information"	&	vbCrLf	&	_
								"==========================="	&	vbCrLf
				Set	colTaskInfo	=	objDTSAppl.TaskInfos
				For	Each	objTaskInfo	In	colTaskInfo
								strMsg	=	strMsg	&	vbCrLf	&	_
												vbTab	&	"ClassID:"	&	vbTab	&	objTaskInfo.ClassID	&	vbCrLf	&	_
												vbTab	&	"Descr:"	&	vbTab	&	objTaskInfo.Description	&	vbCrLf	&	_
												vbTab	&	"File:"	&	vbTab	&	objTaskInfo.ImplementationFileName	&	vbCrLf	&	_
												vbTab	&	"Version:"	&	vbTab	&	objTaskInfo.ImplementationFileVersionString	&	vbCrLf	&	_
												vbTab	&	"Icon:"	&	vbTab	&	objTaskInfo.IconFile	&	vbCrLf	&	_
												vbTab	&	"Index:"	&	vbTab	&	objTaskInfo.IconIndex	&	vbCrLf	&	_
												vbTab	&	"Name:"	&	vbTab	&	objTaskInfo.Name	&	vbCrLf
				Next

				
				strMsg	=	strMsg	&	vbCrLf	&	"Registered	DTS	Transformation	Information"	&	vbCrLf	&	_
								"==================================="	&	vbCrLf
				Set	colTransInfo	=	objDTSAppl.TransformationInfos
				For	Each	objTransInfo	In	colTransInfo
								strMsg	=	strMsg	&	vbCrLf	&	_
												vbTab	&	"ClassID:"	&	vbTab	&	objTransInfo.ClassID	&	vbCrLf	&	_
												vbTab	&	"Descr:"	&	vbTab	&	objTransInfo.Description	&	vbCrLf	&	_
												vbTab	&	"File:"	&	vbTab	&	objTransInfo.ImplementationFileName	&	vbCrLf	&	_
												vbTab	&	"Version:"	&	vbTab	&	objTransInfo.ImplementationFileVersionString	&	vbCrLf	&	_
												vbTab	&	"Name:"	&	vbTab	&	objTransInfo.Name	&	vbCrLf
				Next
				
				Text1.Text	=	strMsg
End	Sub

Private	Sub	Form_Resize()
				Text1.Move	0,	0,	Me.ScaleWidth,	Me.ScaleHeight
End	Sub

Meta	Data	Services
Lineage	information	is	saved	for	DTS	packages	saved	to	SQL	Server	2000	Meta
Data	Services	if	the	LineageOptions	property	of	the	package	specifies	that	this
be	done.

Use	the	GetPackageRepository	method	of	the	Application	object	to	return	a
PackageRepository	object.	The	methods	of	the	PackageRepository	object
provide	access	to	the	package	and	lineage	information.

Use	the	EnumPackageInfos	method	to	return	information	about	the
DTS	packages	in	Meta	Data	Services.	

Use	the	EnumPackageLineages	method	to	return	lineage	data	for	a
particular	package	version.	

Use	the	EnumStepLineages	method	to	return	step	lineage	data	for	a
particular	package	lineage.	

Use	RemovePackageLineages	to	purge	the	lineage	data	for	a	package
version.

Example

The	following	example	uses	the	GetPackageRepository	method	to	access	the
Meta	Data	Services	instance	in	the	msdb	database	(the	default	instance)	on	the
local	server.	Then	it	accesses	and	displays	the	package	information	and	the
lineage	data	for	those	packages.

Note		This	example	displays	all	the	lineage	data	in	the	Meta	Data	Services
instance.	On	a	production	server,	this	may	be	an	unmanageably	large	amount	of
data	which	will	exceed	the	capacity	of	the	textbox.	Use	a	test	computer	that	has	a
few	packages	stored	in	the	repository	that	have	been	configured	to	write	lineage
data.	Run	each	package	only	a	few	times	since	the	lineage	data	was	last	purged.

To	run	this	example,	follow	the	procedure	used	to	run	the	registered	components
and	use	the	following	code:

Private	Sub	Form_Load()
				Dim	objDTSAppl						As	DTS.Application
				Dim	objPkgRepositry	As	DTS.PackageRepository
				Dim	colPkgInfo						As	DTS.PackageInfos
				Dim	objPkgInfo						As	DTS.PackageInfo
				Dim	strMsg										As	String
				
				Set	objDTSAppl	=	New	DTS.Application
				
				Set	objPkgRepositry	=	objDTSAppl.GetPackageRepository(_
								"(local)",	"msdb",	"",	"",	DTSReposFlag_UseTrustedConnection)
								
				Set	colPkgInfo	=	objPkgRepositry.EnumPackageInfos("",	False,	"")

				
				strMsg	=	"DTS	Package	Information"	&	vbCrLf	&	"======================"	&	vbCrLf
				Set	objPkgInfo	=	colPkgInfo.Next
				Do	Until	colPkgInfo.EOF
								With	objPkgInfo
												strMsg	=	strMsg	&	vbCrLf	&	_
																"Name:"	&	vbTab	&	.Name	&	vbCrLf	&	_
																"Descr:"	&	vbTab	&	.Description	&	vbCrLf	&	_
																"Date:"	&	vbTab	&	.CreationDate	&	vbCrLf	&	_
																"PkgID:"	&	vbTab	&	.PackageID	&	vbCrLf	&	_
																"VerID:"	&	vbTab	&	.VersionID	&	vbCrLf	&	_
																"Owner:"	&	vbTab	&	.Owner	&	vbCrLf	&	_
																"Size:"	&	vbTab	&	.PackageDataSize	&	_
																vbTab	&	"Type:"	&	vbTab	&	.PackageType	&	_
																vbTab	&	"IsOwner:"	&	vbTab	&	.IsOwner	&	vbCrLf
																
																strMsg	=	strMsg	&	strPackageLineages(_
																				.VersionID,	objPkgRepositry)
								End	With
								Set	objPkgInfo	=	colPkgInfo.Next
				Loop
				
				Text1.Text	=	strMsg
End	Sub

Private	Function	strPackageLineages(ByVal	strPkgVerID	As	String,	_
								ByVal	objPkgRepositry	As	DTS.PackageRepository)	As	String
				Dim	colPkgLineage			As	DTS.PackageLineages
				Dim	objPkgLineage			As	DTS.PackageLineage
				Dim	strMsg										As	String
				
				Set	colPkgLineage	=	objPkgRepositry.EnumPackageLineages(strPkgVerID,	"",	0)
				

				strMsg	=	vbCrLf	&	vbTab	&	"Package	Lineage:	"	&	strPkgVerID	&	vbCrLf	&	_
								vbTab	&	"==="	&	vbCrLf
								
				Set	objPkgLineage	=	colPkgLineage.Next
				Do	Until	colPkgLineage.EOF
								With	objPkgLineage
												strMsg	=	strMsg	&	vbCrLf	&	_
																vbTab	&	"Name:"	&	vbTab	&	.Name	&	vbCrLf	&	_
																vbTab	&	"Cmptr:"	&	vbTab	&	.Computer	&	vbCrLf	&	_
																vbTab	&	"Date:"	&	vbTab	&	.ExecutionDate	&	vbCrLf	&	_
																vbTab	&	"PkgID:"	&	vbTab	&	.PackageID	&	vbCrLf	&	_
																vbTab	&	"VerID:"	&	vbTab	&	.VersionID	&	vbCrLf	&	_
																vbTab	&	"Oprtr:"	&	vbTab	&	.Operator	&	vbCrLf	&	_
																vbTab	&	"FullID:"	&	vbTab	&	.LineageFullID	&	vbCrLf	&	_
																vbTab	&	"ShortID:"	&	vbTab	&	.LineageShortID	&	vbCrLf
																
																strMsg	=	strMsg	&	strStepLineages(_
																				.LineageFullID,	objPkgRepositry)
								End	With
								Set	objPkgLineage	=	colPkgLineage.Next
				Loop
				strPackageLineages	=	strMsg
End	Function

Private	Function	strStepLineages(ByVal	strFullID	As	String,	_
								ByVal	objPkgRepositry	As	DTS.PackageRepository)	As	String
				Dim	colStepLineage		As	DTS.StepLineages
				Dim	objStepLineage		As	DTS.StepLineage
				Dim	strMsg										As	String
				
				Set	colStepLineage	=	objPkgRepositry.EnumStepLineages(strFullID)
				
				strMsg	=	vbCrLf	&	vbTab	&	vbTab	&	"Step	Lineage:	"	&	strFullID	&	vbCrLf	&	_

								vbTab	&	vbTab	&	"==="	&	vbCrLf
								
				Set	objStepLineage	=	colStepLineage.Next
				Do	Until	colStepLineage.EOF
								With	objStepLineage
												strMsg	=	strMsg	&	vbCrLf	&	_
																vbTab	&	vbTab	&	"Name:"	&	vbTab	&	.Name	&	vbCrLf	&	_
																vbTab	&	vbTab	&	"Start:"	&	vbTab	&	.StartTime	&	vbCrLf	&	_
																vbTab	&	vbTab	&	"Finish:"	&	vbTab	&	.FinishTime	&	vbCrLf	&	_
																vbTab	&	vbTab	&	"Elapse:"	&	vbTab	&	.ExecutionTime	&	vbCrLf	&	_
																vbTab	&	vbTab	&	"Result:"	&	vbTab	&	.StepExecutionResult	&	_
																vbTab	&	"Status:"	&	vbTab	&	.StepExecutionStatus	&	vbCrLf
												If	.ErrorCode	<>	0	Or	Len(.ErrorDescription)	>	0	Or	Len(.ErrorSource)	>	0	Then
																strMsg	=	strMsg	&	_
																				vbTab	&	vbTab	&	"Code:"	&	vbTab	&	.ErrorCode	&	vbTab	&	"x"	&	Hex(.ErrorCode)	&	vbCrLf	&	_
																				vbTab	&	vbTab	&	"Descr:"	&	vbTab	&	.ErrorDescription	&	vbCrLf	&	_
																				vbTab	&	vbTab	&	"Source:"	&	vbTab	&	.ErrorSource	&	vbCrLf
												End	If
								End	With
								Set	objStepLineage	=	colStepLineage.Next
				Loop
				strStepLineages	=	strMsg
End	Function

Private	Sub	Form_Resize()
				Text1.Move	0,	0,	Me.ScaleWidth,	Me.ScaleHeight
End	Sub

Logging	to	SQL	Server
Logging	to	SQL	Server	is	available	to	all	DTS	packages,	regardless	of	where
they	are	stored.	Log	records	are	written	to	the	msdb	database	on	the	server
specified	by	the	package	LogServerName	property	if	the	package
LogToSQLServer	property	has	been	set.

Use	the	GetPackageSQLServer	method,	specifying	server	and	login
information,	to	return	a	PackageSQLServer	object.	The	methods	of	that	object
provide	access	to	the	package	and	log	data	on	the	server.

Use	the	EnumPackageInfos	method	to	return	information	about	the
packages	in	SQL	Server	storage	on	that	server.	

Use	the	EnumPackageLogRecords,	EnumStepLogRecords	and
EnumTaskLogRecords	methods	to	return	log	data	of	the	indicated	type
on	the	server.	

Use	the	RemovePackageLogRecords,	RemoveStepLogRecords,
RemoveTaskLogRecords	methods	to	purge	log	records	of	the	indicated
type.	In	addition,	RemoveAllLogRecords	removes	all	log	data	for	all
packages	from	the	server.

Example

The	following	example	uses	the	GetPackageSQLServer	method	to	gain	access
to	the	stored	packages	and	the	log	data	on	the	local	server.	Then	the	example
shows	how	the	methods	of	the	PackageSQLServer	object	access	and	display
information	about	the	packages	in	SQL	Server	storage	and	the	package	and	step
log	data	on	that	server.

Note		This	example	displays	all	the	log	data	on	the	local	server.	On	a	production
server,	this	may	be	an	unmanageably	large	amount	of	data	which	will	exceed	the
capacity	of	the	textbox.	Use	a	test	computer	on	which	a	few	packages	have	been
run	only	a	few	times	each	since	the	log	data	was	last	purged.

To	run	this	example,	follow	the	procedure	used	to	run	the	registered	components,
and	use	the	following	code	in	step	5.

Private	Sub	Form_Load()
				Dim	objDTSAppl						As	DTS.Application
				Dim	objPkgSQLServer	As	DTS.PackageSQLServer
				Dim	colPkgInfo						As	DTS.PackageInfos
				Dim	objPkgInfo						As	DTS.PackageInfo

				Dim	strMsg										As	String
				
				Set	objDTSAppl	=	New	DTS.Application
				
				Set	objPkgSQLServer	=	objDTSAppl.GetPackageSQLServer(_
								"(local)",	"sa",	"",	DTSSQLStgFlag_Default)
								
				Set	colPkgInfo	=	objPkgSQLServer.EnumPackageInfos("",	False,	"")
				
				strMsg	=	"DTS	Package	in	SQL	Server	Storage"	&	vbCrLf	&	_
								"=============================="	&	vbCrLf
				Set	objPkgInfo	=	colPkgInfo.Next
				Do	Until	colPkgInfo.EOF
								With	objPkgInfo
												strMsg	=	strMsg	&	vbCrLf	&	_
																vbTab	&	"Name:"	&	vbTab	&	.Name	&	vbCrLf	&	_
																vbTab	&	"Descr:"	&	vbTab	&	.Description	&	vbCrLf	&	_
																vbTab	&	"Date:"	&	vbTab	&	.CreationDate	&	vbCrLf	&	_
																vbTab	&	"PkgID:"	&	vbTab	&	.PackageID	&	vbCrLf	&	_
																vbTab	&	"VerID:"	&	vbTab	&	.VersionID	&	vbCrLf	&	_
																vbTab	&	"Owner:"	&	vbTab	&	.Owner	&	vbCrLf	&	_
																vbTab	&	"Size:"	&	vbTab	&	.PackageDataSize	&	_
																vbTab	&	"Type:"	&	vbTab	&	.PackageType	&	_
																vbTab	&	"IsOwner:"	&	vbTab	&	.IsOwner	&	vbCrLf
								End	With
								Set	objPkgInfo	=	colPkgInfo.Next
				Loop
				
				strMsg	=	strMsg	&	strPackageLogRecords(_
								"",	objPkgSQLServer)
								
				strMsg	=	strMsg	&	strStepLogRecords(_
								"",	objPkgSQLServer)

				
				Text1.Text	=	strMsg
End	Sub

Private	Function	strPackageLogRecords(ByVal	strPkgVerID	As	String,	_
								ByVal	objPkgSQLServer	As	DTS.PackageSQLServer)	As	String
				Dim	colPkgLogRec				As	DTS.PackageLogRecords
				Dim	objPkgLogRec				As	DTS.PackageLogRecord
				Dim	strMsg										As	String
				
				Set	colPkgLogRec	=	objPkgSQLServer.EnumPackageLogRecords(_
												"",	False,	"",	strPkgVerID,	"")
				
				strMsg	=	vbCrLf	&	"DTS	Package	Log	Records	"	&	strPkgVerID	&	vbCrLf	&	_
								"======================="	&	vbCrLf
								
				Set	objPkgLogRec	=	colPkgLogRec.Next
				Do	Until	colPkgLogRec.EOF
								With	objPkgLogRec
												strMsg	=	strMsg	&	vbCrLf	&	_
																vbTab	&	"Name:"	&	vbTab	&	.Name	&	vbCrLf	&	_
																vbTab	&	"Descr:"	&	vbTab	&	.Description	&	vbCrLf	&	_
																vbTab	&	"Cmptr:"	&	vbTab	&	.Computer	&	vbCrLf	&	_
																vbTab	&	"Logged:"	&	vbTab	&	.LogDate	&	vbCrLf	&	_
																vbTab	&	"Start:"	&	vbTab	&	.StartTime	&	vbCrLf	&	_
																vbTab	&	"Finish:"	&	vbTab	&	.FinishTime	&	vbCrLf	&	_
																vbTab	&	"Elapse:"	&	vbTab	&	.ExecutionTime	&	vbCrLf	&	_
																vbTab	&	"PkgID:"	&	vbTab	&	.PackageID	&	vbCrLf	&	_
																vbTab	&	"VerID:"	&	vbTab	&	.VersionID	&	vbCrLf	&	_
																vbTab	&	"Oprtr:"	&	vbTab	&	.Operator	&	vbCrLf	&	_
																vbTab	&	"FullID:"	&	vbTab	&	.LineageFullID	&	vbCrLf	&	_
																vbTab	&	"ShortID:"	&	vbTab	&	.LineageShortID	&	vbTab	&	"x"	&	Hex(.LineageShortID)	&	vbCrLf
												If	.ErrorCode	<>	0	Or	Len(.ErrorDescription)	>	0	Then

																strMsg	=	strMsg	&	_
																				vbTab	&	vbTab	&	"ECode:"	&	vbTab	&	.ErrorCode	&	vbTab	&	"x"	&	Hex(.ErrorCode)	&	vbCrLf	&	_
																				vbTab	&	vbTab	&	"EDesc:"	&	vbTab	&	.ErrorDescription	&	vbCrLf
												End	If
								End	With
								Set	objPkgLogRec	=	colPkgLogRec.Next
				Loop
				strPackageLogRecords	=	strMsg
End	Function

Private	Function	strStepLogRecords(ByVal	strFullID	As	String,	_
								ByVal	objPkgSQLServer	As	DTS.PackageSQLServer)	As	String
				Dim	colStepLogRec			As	DTS.StepLogRecords
				Dim	objStepLogRec			As	DTS.StepLogRecord
				Dim	strMsg										As	String
				
				Set	colStepLogRec	=	objPkgSQLServer.EnumStepLogRecords(strFullID,	Null)
				
				strMsg	=	vbCrLf	&	"DTS	Step	Log	Records:	"	&	strFullID	&	vbCrLf	&	_
								"===================="	&	vbCrLf
								
				Set	objStepLogRec	=	colStepLogRec.Next
				Do	Until	colStepLogRec.EOF
								With	objStepLogRec
												strMsg	=	strMsg	&	vbCrLf	&	_
																vbTab	&	"Name:"	&	vbTab	&	.Name	&	vbCrLf	&	_
																vbTab	&	"Start:"	&	vbTab	&	.StartTime	&	vbCrLf	&	_
																vbTab	&	"Finish:"	&	vbTab	&	.FinishTime	&	vbCrLf	&	_
																vbTab	&	"Elapse:"	&	vbTab	&	.ExecutionTime	&	vbCrLf	&	_
																vbTab	&	"FullID:"	&	vbTab	&	.LineageFullID	&	vbCrLf	&	_
																vbTab	&	"ExecID:"	&	vbTab	&	.StepExecutionID	&	vbCrLf	&	_
																vbTab	&	"ProgCt:"	&	vbTab	&	.ProgressCount	&	vbCrLf	&	_
																vbTab	&	"Result:"	&	vbTab	&	.StepExecutionResult	&	_

																vbTab	&	"Status:"	&	vbTab	&	.StepExecutionStatus	&	vbCrLf
												If	.ErrorCode	<>	0	Or	Len(.ErrorDescription)	>	0	Then
																strMsg	=	strMsg	&	_
																				vbTab	&	"Code:"	&	vbTab	&	.ErrorCode	&	vbTab	&	"x"	&	Hex(.ErrorCode)	&	vbCrLf	&	_
																				vbTab	&	"Descr:"	&	vbTab	&	.ErrorDescription	&	vbCrLf
												End	If
								End	With
								Set	objStepLogRec	=	colStepLogRec.Next
				Loop
				strStepLogRecords	=	strMsg
End	Function

Private	Sub	Form_Resize()
				Text1.Move	0,	0,	Me.ScaleWidth,	Me.ScaleHeight
End	Sub

Packages	Saved	as	Files
The	DTS	storage	file	can	contain	multiple	packages,	each	with	multiple
versions.	To	determine	programmatically	what	packages	and	versions	a	storage
file	contains,	the	Package2	object	GetSavedPackageInfos	method	returns	a
reference	to	the	SavedPackageInfos	collection.	The	program	can	examine	the
details	of	each	saved	package	version	by	iterating	through	this	collection.

Example
The	following	code	example	shows	the	strShowDTSPkgComps	function
formatting	a	text	string,	with	the	information	on	each	package	version	in	the
specified	storage	file:

Private	Function	strShowDTSPkgComps(_
				ByVal	strUNCPath	As	String)	As	String
Dim	objPackage						As	DTS.Package2
Dim	objPkgInfos					As	DTS.SavedPackageInfos
Dim	objPkgInfo						As	DTS.SavedPackageInfo

Dim	strPackageName		As	String
Dim	strMsg										As	String
'Display	the	packages	and	versions	in	a	DTS	storage	file.

On	Error	GoTo	ErrorHandler

'Create	the	package	object	and	get	the	package	information	collection.
Set	objPackage	=	New	DTS.Package
Set	objPkgInfos	=	objPackage.GetSavedPackageInfos(strUNCPath)

'Iterate	thru	the	package	information	collection.
strPackageName	=	""
For	Each	objPkgInfo	In	objPkgInfos

				'If	this	is	a	different	package	than	the	last	one,	format	full	information.
				If	strPackageName	<>	objPkgInfo.PackageName	Then
								strMsg	=	strMsg	&	vbCrLf	&	objPkgInfo.PackageName	&	vbCrLf	&	_
												"PackageID:	"	&	objPkgInfo.PackageID	&	vbCrLf	&	_
												"Pkg	Create	Date:	"	&	objPkgInfo.PackageCreationDate	&	vbCrLf
								strPackageName	=	objPkgInfo.PackageName
				End	If
				
				'Format	version	information.
				strMsg	=	strMsg	&	vbCrLf	&	vbTab	&	"VersionID:	"	&	_
								objPkgInfo.VersionID	&	vbCrLf	&	vbTab	&	_
								"Version	Save	Date:	"	&	objPkgInfo.VersionSaveDate	&	_
								vbCrLf	&	vbTab	&	"Encrypted:	"	&	_
								(objPkgInfo.IsVersionEncrypted)	&	vbCrLf
Next	objPkgInfo

strShowDTSPkgComps	=	strMsg
Exit	Function

ErrorHandler:
MsgBox	"Error	retrieving	package	information:	0x"	&	Hex$(Err.Number)	&	_
								vbCrLf	&	Err.Description,	vbExclamation
strShowDTSPkgComps	=	""
Exit	Function
End	Function

DTS	Programming

Building	a	DTS	Custom	Task
In	Data	Transformation	Services	(DTS)	packages,	you	can	include	custom	tasks,
which	are	DTS	tasks	implemented	by	your	or	third	party	vendors.	Custom	tasks
can	be	included	in	packages	created	by	applications,	or	they	can	be	registered	so
that	they	are	referenced	from	DTS	Designer.	There	are	additional	constraints	a
custom	task	must	satisfy	if	it	is	to	be	used	in	DTS	Designer.	For	more
information,	see	DTS	Example:	Running	Concurrent	Operations	in	Visual	Basic.

To	implement	a	custom	task,	you	must:

Use	a	programming	language	that	supports	COM,	such	as	Microsoft®
Visual	C++®	or	Microsoft	Visual	Basic®.	

Implement	the	CustomTask	interface	and	optionally	implement	other
DTS	custom	task	interfaces.	Microsoft	SQL	Server™	2000	supplies
objects	that	define	these	interfaces.	

Add	registration	code	to	your	custom	task	if	you	want	to	avoid
registering	the	task	from	DTS	Designer.

This	section	explains	how	to	implement	custom	tasks	and	provides	examples.

Topic Description
DTS	Custom	Task
Fundamentals

Describes	the	CustomTask	interface	that
all	custom	tasks	must	implement.

Including	a	DTS	Custom	Task
User	Interface

Describes	the	CustomTaskUI	interface,
which	custom	tasks	that	have	a	custom
property	page	must	implement.

Registering	a	DTS	Custom
Task

Describes	how	to	register	custom	tasks
from	DTS	Designer	and	how	to	support
registration	from	the	command	prompt.

Additional	DTS	Custom	Task
Features

Explains	how	to	raise	package	events,
write	to	log	tables	and	files,	and	use	the
DTS	properties	provider	from	a	custom

task.
DTS	Custom	Task	Examples	in
Visual	Basic

Shows	how	to	implement	a	basic	DTS
custom	task	and	how	to	add	functionality
to	it	in	Visual	Basic.

Implementing	DTS	Custom
Tasks	in	Visual	C++

Explains	how	to	use	the	Active	Template
Library	(ATL)	to	implement	DTS	custom
tasks	in	Visual	C++.

DTS	Custom	Task	Examples	in
Visual	C++

Provides	examples	of	DTS	custom	task
examples	implemented	in	Visual	C++.

DTS	Programming

DTS	Custom	Task	Fundamentals
A	Data	Transformation	Services	(DTS)	custom	task	is	implemented	as	an	in-
process	COM	component.	To	be	used	in	DTS	Designer,	the	custom	task	must	be
an	in-process	DLL.	When	used	programmatically,	the	custom	task	can	be	an	out-
of-process	executable.

All	custom	tasks	must	implement	the	CustomTask	interface.	If	the	custom	task
has	a	property	sheet,	the	task	also	must	implement	the	CustomTaskUI	interface.
For	more	information,	see	Including	a	DTS	Custom	Task	User	Interface.

CustomTask	Interface
In	Microsoft®	Visual	Basic®,	the	CustomTask	interface	is	defined	by	the
CustomTask	object	from	the	Microsoft	DTSPackage	Object	Library.	In
Microsoft	Visual	C++®,	it	is	defined	by	IDTSCustomTask	in	the	include	file
dtspkg.h.

The	DTS	CustomTask	interface	includes	the	following	elements.

Element Description
Description
property

A	textual	description	that	identifies	the	task	in	DTS
Designer	or	a	programming	environment.

Name	property A	unique	identifier	used	by	DTS	to	reference	the	task.
Properties
collection

A	reference	to	a	collection	of	Property	objects	that
defines	each	property	of	the	custom	task.

Execute	method A	subprogram	that	performs	the	function	of	the	custom
task.

As	required	by	COM,	all	elements	must	be	present,	but	they	can	be	placeholders.

Description	Property
DTS	Designer	uses	the	Description	property	to	label	the	icon	for	the	custom
task.	To	implement	Description,	you	save	the	value	to	which	the	property	is	set
and	return	that	value	when	the	property	is	read.	If	you	provide	a	placeholder	for
Description,	the	label	disappears	when	you	close	the	task	property	page	or	the

Custom	Task	Properties	dialog	box.

In	Visual	Basic,	if	you	plan	to	use	the	default	properties	grid,	you	must	provide
an	additional	Description	property	for	the	class-specific	task	object.	Tie
Description	and	CustomTask_Description	together	so	that	setting	either	the
class-specific	Description	property	or	CustomTask_Description	causes	the
values	of	both	to	be	updated.

This	step	is	necessary	because	the	CustomTask_Description	Get	and	Let
functions	implement	the	Task.Description	property.	However,	Description
implements	CustTask.Description,	where	CustTask	is	the	name	you	gave	to	your
custom	task.	Implementing	CustTask.Description	also	causes	Description	to	be
included	in	the	Properties	collection.	The	properties	grid	uses	the	Properties
collection	to	read	and	update	custom	task	properties.

If	you	do	not	plan	to	use	the	custom	task	in	DTS	Designer	and	you	do	not	plan	to
use	the	Description	property,	you	can	provide	a	placeholder	for
CustomTask_Description.

Name	Property
The	Name	property	identifies	the	Task	objects	in	the	package.	Thus,	it	always
must	be	implemented.	To	implement	Name,	you	save	the	value	to	which	the
property	is	set	and	return	that	value	when	the	property	is	read.

It	is	recommended	that	you	do	not	expose	Name,	especially	in	a	read/write
mode.	DTS	Designer	assigns	a	unique	name	to	the	task	when	the	task	icon	is
placed	on	the	design	sheet.	If	you	change	the	value	of	Name,	DTS	Designer	will
look	for	the	task	using	the	old	name	and	fail	when	it	cannot	find	it.

In	a	DTS	application,	you	can	set	or	change	Name	before	adding	the	Task	object
to	the	Tasks	collection.	However,	you	will	need	logic	to	detect	when	the	user
enters	a	name	already	used	by	another	task.	It	is	recommended	that	you	have	the
application	specify	task	names	and	guarantee	they	are	unique.

Properties	Collection
The	Properties	collection	contains	Property	objects	that	identify	the	properties
of	the	custom	task.	You	always	must	implement	Properties,	but	you	can	use	a
default	properties	provider	supplied	with	DTS	to	do	so.	Invoke	the	default	by

returning	either	NULL	or	Nothing,	as	appropriate	for	the	programming
environment,	from	Properties.

The	default	property	grid	displayed	by	DTS	Designer	uses	the	Properties
collection	to	read	and	update	the	custom	task	properties.	In	Visual	Basic,	the
properties	of	the	CustomTask	interface	are	not	included	in	the	default
Properties	collection.	It	may	be	necessary	to	add	a	duplicate	property	and	tie	it
to	the	related	CustomTask	property,	as	was	the	case	for	Description.

Execute	Method
The	Execute	method	provides	the	functionality	of	the	custom	task.	Use	its
parameters	in	the	following	ways.

Parameter Usage
pPackage Use	this	reference	to	the	Package2	object	to	access	other

objects	in	the	DTS	hierarchy.	Do	not	save	any	reference
obtained	through	pPackage	after	the	return	from	Execute.

pPackageEventsUse	pPackageEvents	to	raise	package	events.	Check
pPackageEvents	for	NULL/Nothing	before	using.

pPackageLog Use	pPackageLog,	a	reference	to	the	PackageLog	object,
to	write	records	to	the	server	log	table	or	to	the	log	file.
Check	pPackageLog	for	NULL/Nothing	before	using.

pTaskResult Set	pTaskResult	to	a	code	from	the	DTSTaskExecResult
constants	before	returning	from	Execute	in	order	to
indicate	success,	retry	or	failure.

In	a	DTS	application,	you	do	not	need	to	call	Execute	from	the	application.	DTS
will	call	it	at	the	appropriate	time.	When	Execute	returns,	task	execution	is
complete.

Basic	Custom	Task
For	more	information	about	building	a	basic	custom	task,	see	DTS	Example:
Basic	Custom	Task	in	Visual	Basic,	DTS	Example:	Adding	Properties	and	Icons
in	Visual	Basic	and	DTS	Example:	Adding	Properties	and	Icons	in	Visual	C++.

See	Also

CustomTask	Object

CustomTaskUI	Object

DTSTaskExecResult

Execute	Method

Package2	Object

Properties	Collection

Property	Object

Task	Object

Tasks	Collection

DTS	Programming

Including	a	DTS	Custom	Task	User	Interface
To	provide	a	user	interface	for	setting	properties,	a	custom	task	must	implement
the	CustomTaskUI	interface.	This	user	interface,	sometimes	called	a	property
page,	is	displayed:

In	Data	Transformation	Services	(DTS)	Designer	when	the	DTS
package	is	being	implemented.

In	a	DTS	application	when	the	object	hierarchy	is	being	created.

A	user	interface	that	is	active	when	the	custom	task	is	executing	is	not	controlled
through	the	CustomTaskUI	interface.

If	a	custom	task	does	not	implement	CustomTaskUI,	DTS	Designer	displays	a
default	property	grid	in	place	of	the	custom	task	user	interface.

For	more	information	about	building	a	custom	task	with	a	user	interface,	see
DTS	Example:	Including	a	User	Interface	in	Visual	Basic	and	DTS	Example:
Including	a	User	Interface	in	Visual	C++.

CustomTaskUI	Interface
In	DTS	Designer,	a	custom	task	calls	the	methods	of	CustomTaskUI	to	perform
functions	related	to	the	display	of	user	interface	elements.	When	a	custom	task	is
part	of	a	DTS	application,	the	application	calls	the	CustomTaskUI	methods	to
perform	these	functions.

In	Microsoft®	Visual	Basic®,	this	user	interface	is	defined	by	the
CustomTaskUI	object	from	the	Microsoft	DTSPackage	Object	Library.	In
Microsoft	Visual	C++®	it	is	defined	by	IDTSCustomTaskUI	in	the	include	file
dtspkg.h.

The	DTS	CustomTaskUI	interface	includes	the	following	elements.

Element Description
Initialize	method Called	before	other	CustomTaskUI	methods	to

allow	the	custom	task	to	perform	initializations.

New	method Called	when	a	custom	task	is	created.
Edit	method Called	when	the	user	interface	is	to	be	displayed

for	an	existing	custom	task.
Delete	method Called	when	a	custom	task	is	to	be	removed	from

its	package.
Help	method Called	when	Help	for	the	custom	task	is	to	be

displayed.
GetUIInfo	method Called	when	the	parent	application	is	to	display	a

ToolTip,	to	determine	if	the	custom	task	is	to
generate	the	ToolTip	window.

CreateCustomToolTip
method

Creates	a	custom	ToolTip	window	and	draws	the
ToolTip,	when	custom	ToolTips	are	supported.

As	required	by	COM,	all	elements	must	be	present,	but	they	can	be	placeholders.

CAUTION		It	is	strongly	recommended	that	you	check	the	parameters	of	all
CustomTaskUI	methods	for	validity	before	you	use	them.	The	caller	may	be	a
DTS	application	and	you	may	not	know	how	extensively	the	application	has
been	tested.

Initialize	Method
DTS	Designer	calls	Initialize	before	New,	Edit,	Delete	and	Help.	It	is
recommended	that	DTS	applications	follow	this	sequence	so	that	the	task	can	be
used	both	within	and	outside	of	DTS	Designer.	The	custom	task	can	perform	any
initialization.	The	parameter,	a	reference	to	the	Task	object,	can	be	saved	for	use
by	the	subsequent	method	(for	example,	to	access	custom	task	properties).

New	Method
DTS	Designer	calls	New	when	the	custom	task	icon	is	dragged	to	the	design
sheet.	It	is	recommended	that	DTS	applications	call	New	after	the	custom	task
has	been	created	with	the	New	method	of	the	Tasks	collection.

Typically,	the	custom	task	displays	a	property	page	with	default	values.	The
parameter	is	the	window	handle	of	the	DTS	design	sheet	or	of	a	window	in	the
parent	application.

If	you	do	not	implement	CustomTaskUI,	you	see	a	default	property	grid	in	DTS
Designer.	If	you	implement	CustomTaskUI	but	provide	a	placeholder	for	New,
no	user	interface	is	displayed.

Edit	Method
DTS	Designer	calls	Edit	when	you	right-click	the	custom	task	icon	and	click
Properties.	It	is	recommended	that	if	DTS	applications	call	Edit,	they	do	so
after	the	custom	task	has	been	created	and	values	for	custom	task	properties	have
been	set.

Typically,	the	custom	task	displays	a	property	page	with	current	values.	The
parameter	is	the	window	handle	of	the	DTS	design	sheet	or	of	a	window	in	the
parent	application.

If	you	do	not	implement	CustomTaskUI,	you	see	a	default	property	grid.	If	you
implement	CustomTaskUI	but	provide	a	placeholder	for	Edit,	no	user	interface
is	displayed.

Delete	Method
DTS	Designer	calls	Delete	when	you	delete	the	custom	task	icon	from	the
design	sheet.	The	custom	task	can	perform	any	cleanup.	The	parameter	is	the
window	handle	of	the	DTS	design	sheet	or	of	a	window	in	the	parent
application.

Help	Method
DTS	Designer	calls	Help	when	you	right-click	the	custom	task	icon	and	click
Help.

Typically,	the	custom	task	displays	a	help	topic	(for	example,	by	calling
winhlp32.exe	with	a	help	file	specification	and	topic	ID).	The	parameter	is	the
window	handle	of	the	DTS	design	sheet	or	of	a	window	in	the	parent
application.

If	you	do	not	implement	CustomTaskUI,	you	see	a	generic	help	topic	for
custom	tasks.	If	you	implement	CustomTaskUI	but	provide	a	placeholder	for
Help,	no	topic	is	displayed.

GetUIInfo	Method
GetUIInfo	is	not	implemented	in	DTS	Designer.	A	DTS	application	can	use	this
method	to	query	the	custom	task	for	its	tooltip	text	and	description	(for	example,
if	the	application	used	the	custom	task	icon	in	its	user	interface).	GetUIInfo	also
returns	a	value	indicating	whether	the	custom	task	generates	a	custom	tooltip.
GetUIInfo	has	the	following	parameters.

Parameter Description
pbstrToolTip Returns	the	tooltip	text.
pbstrDescriptionReturns	the	tooltip	description.
plVersion Returns	the	custom	task	version	number.
pFlags Returns	a	value	from	DTSCustomTaskUIFlags	that

indicates	whether	the	task	generates	a	custom	tooltip.

CreateCustomToolTip	Method
CreateCustomToolTip	is	not	implemented	in	DTS	Designer.	A	DTS	application
can	call	this	method	so	that	the	custom	task	generates	its	custom	tooltip	after	the
GetUIInfo	method	has	indicated	the	task	can	do	so.	CreateCustomToolTip	has
the	following	parameters.

Parameter Description
hwndParent The	handle	of	the	window	in	the	parent	application	where	the

TooltTip	is	to	be	drawn.
x,	y The	co-ordinates	where	the	ToolTip	window	is	to	be	drawn.
plTipWindowThe	parameter	through	which	the	ToolTip	window	handle	is

returned.

The	parent	application	is	responsible	for	releasing	the	resources	associated	with
the	tooltip	window.

See	Also

CreateCustomToolTip	Method

CustomTaskUI	Object

Delete	Method

DTSCustomTaskUIFlags

Edit	Method

GetUIInfo	Method

Help	Method

Initialize	Method

New	(CustomTaskUI)	Method

Task	Object

Tasks	Collection

DTS	Programming

Registering	a	DTS	Custom	Task
Data	Transformation	Services	(DTS)	custom	tasks	require	entries	in	their	class
registration	to	identify	them	as	DTS	tasks.	You	can	add	these	entries	by
registering	the	task	from	DTS	Designer,	or	you	can	add	code	or	script	to	the
custom	task	so	that	it	can	create	these	entries.

In	Microsoft®	ActiveX®	components	built	with	Microsoft	Visual	Basic®,	the
registration	code	is	supplied	by	the	build	process	and	is	inaccessible	to	the
developer.	Therefore,	a	custom	task	built	with	Visual	Basic	cannot	be	detected
by	DTS	until	it	has	been	registered	from	within	DTS	Designer.	To	create	the
additional	registry	entries,	you	can	add	code	or	script	to	custom	tasks	built	using
the	Active	Template	Library	(ATL)	COM	wizards	in	Microsoft	Visual	C++®.

DTS	Custom	Task	Registration	Entries
In	Visual	Basic,	an	ActiveX	DLL	component	containing	a	public	class
Component.CTaskClass	creates	a	set	of	registry	keys	under
\HKEY_CLASSES_ROOT\CLSID\	with	this	structure:

{Class	ID	for	Component.CTaskClass}
(Default)														Component.CTaskClass

Implemented	Categories

{Automation	Objects	component	category	GUID}

InprocServer32
(Default)													path\Component.dll
Threading	Model		Apartment

ProgID
(Default)													Component.CTaskClass

Programmable

TypeLib

(Default)													{Component	type	library	GUID}

Version
(Default)														version	number

A	component	with	class	Component.CTaskClass	generated	by	ATL	COM
AppWizard	in	Visual	C++	creates	a	similar	set	of	registry	keys	under
\HKEY_CLASSES_ROOT\CLSID\:

{Class	ID	for	Component.CTaskClass}
(Default)														CTaskClass	Class

InprocServer32
(Default)													path\Component.dll
Threading	Model		Both

ProgID
(Default)													Component.CTaskClass.ver

Programmable

TypeLib
(Default)													{Component	type	library	GUID}

VersionIndependentProgID
(Default)														Component.CTaskClass

DTS	defines	a	component	category	for	DTS	tasks,	which	is	a	GUID	that	is
added	to	the	system	registry	when	the	Microsoft	SQL	Server™	client	tools	are
installed	on	your	system.	To	make	a	custom	task	registration	visible	to	DTS
Designer,	you	must	add	the	Implemented	Categories	key,	if	it	is	not	already
there.	Then,	add	a	subkey	to	Implemented	Categories	that	contains	this
component	category.	Optionally,	you		can	add	values	to	the	{Class	ID	for
Component.CTaskClass}	key	that	specify	the	task	icon	and	default	description.
The	added	key	and	values	look	like:

{Class	ID	for	Component.CTaskClass}
(Default)																	CTaskClass	Class
DTSIconFile													path\iconfile.ext
DTSIconIndex										index
DTSTaskDescription		description

Implemented	Categories

{GUID	for	DTS	Tasks	component	category}

The	added	keys,	values	and	data	have	the	following	descriptions.

Element Description
path\iconfile.ext File	specification	of	the	component	that	contains	icons

for	the	custom	task.	Typically,	this	is	the	component
that	contains	the	task,	but	it	can	be	any	file	from	which
icons	can	be	extracted.

index Position	of	the	icon	in	the	list	of	icons	for	the	custom
task.	The	first	icon	has	index	=	0.

description Installed	description	of	the	custom	task.	DTS	Designer
appends	":	undefined"	to	description	to	generate	the
default	description	when	the	task	icon	is	dragged	to	the
design	sheet.

GUID	for	DTS
Tasks	component
category

GUID	that	identifies	the	component	as	a	DTS	custom
task.	The	value	is	defined	by	the	symbol
CATID_DTSCustomTask	in	include	file	dtspkg.h.

Registry	Script	File
If	you	are	using	the	ATL	COM	wizards	to	implement	a	custom	task,	the	simplest
way	to	add	these	extra	keys	and	values	is	through	the	registry	script	(.rgs)	file
that	ATL	Object	Wizard	generates.

Example
The	following	registry	script	was	created	with	the	wizard	for	a	custom	task	class
CustTaskOne	in	a	component	named	DTSSimple.	The	script	in	normal	font

was	generated	by	the	wizard.	The	additional	script,	in	bold,	supports	the	DTS
custom	task	features.

This	custom	task	uses	the	second	icon	(offset	1)	in	the	component	DLL	and	the
default	description	is	"Simple	Custom	Task".

IMPORTANT		Do	not	use	the	GUID	shown	in	the	example	for	the	DTS	tasks
component	category	until	you	have	verified	from	the	dtspkg.h	include	file	on
your	system	that	it	is	correct.

HKCR
{
			DTSSimple.CustTaskOne.1	=	s	'CustTaskOne	Class'
			{
						CLSID	=	s	'{196617B8-5CE1-4529-B36F-3D8AF026E085}'
			}
			DTSSimple.CustTaskOne	=	s	'CustTaskOne	Class'
			{
						CLSID	=	s	'{196617B8-5CE1-4529-B36F-3D8AF026E085}'
						CurVer	=	s	'DTSSimple.CustTaskOne.1'
			}
			NoRemove	CLSID
			{
						ForceRemove	{196617B8-5CE1-4529-B36F-3D8AF026E085}	=	s	'CustTaskOne	Class'
						{
									ProgID	=	s	'DTSSimple.CustTaskOne.1'
									VersionIndependentProgID	=	s	'DTSSimple.CustTaskOne'
									ForceRemove	'Programmable'
									InprocServer32	=	s	'%MODULE%'
									{
												val	ThreadingModel	=	s	'Both'
									}
									'TypeLib'	=	s	'{7852210C-8748-487F-80A7-0FAAB76F0154}'
									'Implemented	Categories'
									{

												'{10020200-EB1C-11CF-AE6E-00AA004A34D5}'
									}
									val	DTSIconFile	=	s	'%MODULE%'
									val	DTSIconIndex	=	d	1
									val	DTSTaskDescription	=	s	'Simple	Custom	Task'
						}
			}
}

After	you	add	the	script	lines	for	the	DTS	task,	rebuild	the	project	and	refresh
the	DTS	cache,	if	necessary.	The	custom	task	appears	in	DTS	Designer	without
being	registered	from	within	DTS	Designer.

If	you	unregister	the	custom	task	from	within	DTS	Designer,	the	unregistration
function	in	DTS	Designer	will	remove	the	DTS	task	component	category	subkey
from	the	registration.	To	restore	the	subkey,	you	need	to	rebuild	the	project	or
reregister	the	task	from	the	command	prompt:

regsvr32	component.dll

DTS	Programming

Additional	DTS	Custom	Task	Features
The	following	topics	describe	additional	features	supported	by	Data
Transformation	Services	(DTS)	custom	tasks.

Topic Description
Raising	Events	from	a	DTS	Custom
Task

Describes	how	to	raise	DTS	package
events	from	a	custom	task.

Writing	Log	Data	from	a	DTS
Custom	Task

Explains	how	to	write	records	to	the
Microsoft®	SQL	Server™	task	log
table	and	to	the	exception	file	from	a
custom	task.

Using	the	DTS	Custom	Task
Properties	Provider

Describes	how	to	invoke	the	DTS
properties	provider.

DTS	Programming

Raising	Events	from	a	DTS	Custom	Task
A	custom	task	raises	package	events	that	are	handled	by	the	parent	application.
Typically,	it	raises	the	following	events.

Event Purpose Frequency
OnError To	notify	the	parent	application	that

an	error	has	occurred,	especially
non-fatal	errors.

When	an	error
occurs.

OnProgress To	notify	the	parent	application	of
progress	in	task	processing.

Every	time	a	few
units	(for	example,
rows)	process,	or
every	few	seconds.

OnQueryCancelTo	give	the	parent	application	the
opportunity	to	terminate	the	custom
task.	In	Data	Transformation
Services	(DTS)	Designer,	click
Cancel	to	handle	this	event.

Every	few	seconds.

Note		In	DTS,	you	do	not	need	to	raise	OnStart	or	OnFinish	because	each	DTS
step	raises	OnStart	when	it	starts	and	OnFinish	when	it	finishes.

OnQueryCancel	and	OnError	have	a	pbCancel	parameter.	If	the	handling
application	sets	pbCancel,	the	custom	task	should	terminate	execution	by
returning	from	the	CustomTask_Execute	method.

One	of	the	parameters	of	CustomTask_Execute	is	a	reference	through	which
package	events	can	be	raised.	Check	for	NULL	or	Nothing	(depending	on
programming	language)	before	using	it.

Example
The	following	Microsoft®	Visual	Basic®	code	raises	OnProgress	and
OnQueryCancel	and	then	terminates	the	task	if	requested:

Private	Sub	CustomTask_Execute(ByVal	pPackage	As	Object,	_

												ByVal	pPackageEvents	As	Object,	ByVal	pPackageLog	As	Object,	_
												pTaskResult	As	DTS.DTSTaskExecResult)
Dim	lngRowCount					As	Long
Dim	blnCancel							As	Boolean

.	.	.

'Make	sure	package	events	object	is	valid.
If	Not	pPackageEvents	Is	Nothing	Then

				'Raise	OnProgress	and	OnQueryCancel,	and	then	exit	if	response	says	to	cancel.
				pPackageEvents.OnProgress	Me.Description,	"Row	Count",	_
												0,	lngRowCount,	0
				pPackageEvents.OnQueryCancel	Me.Description,	blnCancel
				If	blnCancel	Then	
								pTaskResult	=	DTSTaskExecResult_Failure
								Exit	Sub
				End	If
End	If

.	.	.

pTaskResult	=	DTSTaskExecResult_Success
End	Sub

See	Also

Execute	Method

OnError	Event

OnProgress	Event

OnQueryCancel	Event

DTS	Programming

Writing	Log	Data	from	a	DTS	Custom	Task
Custom	tasks	can	write	log	records	to	the	Microsoft®	SQL	Server™	task	log
table	and	to	the	Data	Transformation	Services	(DTS)	package	log	file.

You	write	log	records	through	a	reference	to	a	PackageLog	object,	which	is	one
of	the	parameters	of	CustomTask_Execute.	Check	the	reference	for	NULL	or
Nothing	before	using	it.

Example
The	following	Microsoft	Visual	Basic®	code	writes	a	log	file	record	specifying
the	number	of	rows	processed	upon	successful	completion.	If	an	error	occurs
within	CustomTask_Execute,	a	task	log	record	is	written.	Then	the	error	is
propagated	back	to	the	caller:

Private	Sub	CustomTask_Execute(ByVal	pPackage	As	Object,	_
												ByVal	pPackageEvents	As	Object,	ByVal	pPackageLog	As	Object,	_
												pTaskResult	As	DTS.DTSTaskExecResult)
Dim	lngRowCount					As	Long

On	Error	GoTo	ErrorHandler

.	.	.

'Write	rows	processed	message	to	log,	if	log	object	valid.
If	Not	pPackageLog	Is	Nothing	Then
				pPackageLog.WriteStringToLog	_
								Me.Description	&	":	Rows	processed	=	"	&	(lngRowCount)
End	If
pTaskResult	=	DTSTaskExecResult_Success
Exit	Sub

ErrorHandler:

Dim	lngErrorCode			As	Long
'Write	error	information	to	task	log,	if	log	object	valid.
If	Not	pPackageLog	Is	Nothing	Then
				pPackageLog.WriteTaskRecord	Err.Number,	_
																Me.Description	&	":	"	&	Err.Description
End	If
pTaskResult	=	DTSTaskExecResult_Failure

'Extend	error	code	to	32	bits	if	necessary,	then	propagate	error.
lngErrorCode	=	Err.Number
If	lngErrorCode	>=	0	And	lngErrorCode	<	65536	Then
				lngErrorCode	=	lngErrorCode	+	vbObjectError
End	If
Err.Raise	lngErrorCode,	Me.Description	&	"/"	&	Err.Source,	Err.Description
End	Sub

Log	file	strings	are	written	only	if	the	package	LogFileName	property	has	been
set	to	the	log	file	specification.	Log	file	strings	and	task	log	records	also	can	be
written	through	the	DTSPackageLog	scripting	object	from	scripts	within	the
ActiveScriptTask	object.

See	Also

ActiveScriptTask	Object

LogFileName	Property

PackageLog	Object

DTS	Programming

Using	the	DTS	Custom	Task	Properties	Provider
A	custom	task	can	invoke	the	Data	Transformation	Services	(DTS)	properties
provider	explicitly	and	access	the	collection	it	returns.

When	a	custom	task	implements	a	placeholder	for	the	CustomTask_Properties
property	or	returns	NULL	or	Nothing,	the	default	DTS	properties	provider
generates	a	Properties	collection	and	returns	a	reference	to	it.	However,	the
custom	task	is	not	able	to	access	or	modify	the	collection.

Example
The	following	Microsoft®	Visual	Basic®	code	shows	how	to	invoke	the	DTS
properties	provider	explicitly	(for	example,	in	order	to	change	the	default	value
of	a	custom	task	property).	Create	the	PropertiesProvider	object	and	invoke	the
GetPropertiesForObject	method:

Private	Property	Get	CustomTask_Properties()	As	DTS.Properties
'Use	DTS	properties	provider	to	generate	the	collection.
				Dim	objPropsProvider	As	New	DTS.PropertiesProvider
				Dim	colProperties				As	DTS.Properties

				Set	colProperties	=	objPropsProvider.GetPropertiesForObject(Me)
				Set	objPropsProvider	=	Nothing

				'Access	the	properties	collection	through	colProperties	here.

				Set	CustomTask_Properties	=	colProperties
End	Property

See	Also

GetPropertiesForObject	Method

Properties	Collection

PropertiesProvider	Object

DTS	Programming

DTS	Custom	Task	Examples	in	Visual	Basic
This	section	provides	examples	of	Data	Transformation	Services	(DTS)	custom
tasks.

Topic Description
DTS	Example:	Basic	Custom
Task	in	Visual	Basic

Provides	an	example	of	a	basic	custom	task
and	explains	how	to	build	and	register	it.

DTS	Example:	Adding
Properties	and	Icons	in	Visual
Basic

Provides	an	example	of	adding	properties
and	icons	to	a	custom	task.

DTS	Example:	Including	a
User	Interface	in	Visual	Basic

Provides	an	example	of	a	custom	task	with
a	property	page	user	interface.

DTS	Example:	Running
Concurrent	Operations	in
Visual	Basic

Provides	an	example	of	a	custom	task,
implemented	in	Microsoft®	Visual	Basic®,
that	runs	concurrently	with	other	steps	and
uses	other	custom	task	features.

DTS	Programming

DTS	Example:	Basic	Custom	Task	in	Visual	Basic
The	following	code	example	implements	a	basic	Data	Transformation	Services
(DTS)	custom	task	in	Microsoft®	Visual	Basic®.

When	executed,	the	application	displays	a	fixed	message	in	a	message	box.	The
Execute	method	displays	the	message	box.	The	Name	property	returns	the	value
to	which	it	was	set.	The	Description	property	and	Properties	collection	are
placeholders.

Implementing	a	Basic	DTS	Custom	Task
Use	the	following	Visual	Basic	code	to	implement	a	basic	DTS	custom	task:

Implements	DTS.CustomTask

Private	mstrTaskName				As	String

Private	Sub	CustomTask_Execute(ByVal	pPackage	As	Object,	ByVal	pPackageEvents	As	Object,	_
												ByVal	pPackageLog	As	Object,	pTaskResult	As	DTS.DTSTaskExecResult)
				MsgBox	"Minimum	custom	task!",	vbExclamation
				pTaskResult	=	DTSTaskExecResult_Success
End	Sub

Private	Property	Get	CustomTask_Properties()	As	DTS.Properties
'CustomTask_Properties	returns	Nothing.
End	Property

Private	Property	Get	CustomTask_Description()	As	String
'Description	returns	empty	string.
End	Property

Private	Property	Let	CustomTask_Description(ByVal	RHS	As	String)

'Description	set	value	is	discarded.
End	Property

Private	Property	Get	CustomTask_Name()	As	String
'Implements	Task.Name.
				CustomTask_Name	=	mstrTaskName
End	Property

Private	Property	Let	CustomTask_Name(ByVal	strNewName	As	String)
'Implements	Task.Name.
				mstrTaskName	=	strNewName
End	Property

To	build	this	DTS	custom	task	in	Visual	Basic

1.	 In	the	Visual	Basic	development	environment,	create	a	new
Microsoft®	ActiveX®	DLL	project.

2.	 On	the	Project	menu,	click	References,	and	under	Available
References,	select	the	check	box	for	Microsoft	DTSPackage	Object
Library.	Then,	on	the	Project	menu,	click	Properties,	and	in	the
Project	name	box,	change	the	project	name	from	Project1	to
something	meaningful,	such	as	DTSBasic.

3.	 Change	the	name	of	the	class	module	from	Class1	to	something
meaningful,	such	as	CustTask.

4.	 Copy	the	Visual	Basic	code	from	the	example	and	paste	it	into	the
class	module	you	have	just	renamed.

5.	 Build	the	component	by	selecting	File/Make	DTSBasic.dll.

This	procedure	builds	DTSBasic.dll	and	registers	it	in	the	operating	system
registry.	The	component	is	registered	as	a	generic	DLL.	The	registration	does	not

specify	the	component	category	for	DTS	tasks.	The	custom	task	can	be	used	in
DTS	applications	but	must	be	registered	in	DTS	Designer	before	being	used
there.	For	more	information	about	the	DTS	task	component	category,	see
Registering	a	DTS	Custom	Task.

To	register	the	task	in	DTS	Designer

1.	 Open	SQL	Server	Enterprise	Manager,	right-click	Data
Transformation	Services,	and	then	click	New	Package.	

2.	 On	the	Task	menu,	click	Register	Custom	Task.

3.	 In	the	Task	description	box,	enter	an	appropriate	task	description,	and
then	in	the	Task	Location	box,	enter	the	path	to	DTSMinimum.dll.
Click	the	browse	(...)	button	to	search	for	DTSMinimum.dll.

On	the	Task	menu,	the	custom	task	and	icon	appear.	The	default	DTS
task	icon	is	displayed	because	there	are	no	icons	in	DTSBasic.dll.

To	run	the	registered	task

1.	 From	the	Task	toolbar,	drag	the	custom	task	icon	to	the	design	sheet.

The	default	property	grid	appears,	but	no	properties	are	displayed.

2.	 Click	OK.

The	task	icon	description	disappears.	You	must	click	Execute	to
display	the	task	icon	description.

See	Also

CustomTask	Object

Execute	Method

Properties	Collection

DTS	Programming

DTS	Example:	Adding	Properties	and	Icons	in	Visual
Basic
You	can	modify	a	Data	Transformation	Services	(DTS)	custom	task	so	that	users
can:

Enter	and	change	the	task	description	and	update	the	icon	label	with	that
description.

Enter	and	change	the	text	of	the	displayed	message.

Add	one	or	more	icons	to	the	task	component.

Writing	Task	Description	and	Message	Properties

To	enter	and	save	the	task	description,	implement	the	Description	property	of
the	CustomTask	interface	so	that	it	saves	the	value	to	which	it	is	set	and	returns
that	value	when	the	property	is	read.	Also,	you	must	add	a	Description	property
outside	of	the	CustomTask	interface	and	tie	the	properties	together	so	that
setting	the	value	of	either	causes	both	to	be	changed.	For	more	information,	see
DTS	Custom	Task	Fundamentals.

To	enter	and	save	the	message	text,	add	a	property	(called	Message	in	the
sample	code	below)	and	use	that	property	value	in	the	MsgBox	function.	Save
the	value	to	which	Message	is	set	and	return	that	value	when	the	property	is
read.

Example
This	is	the	Microsoft®	Visual	Basic®	code	for	adding	these	properties	to	the
basic	custom	task:

Implements	DTS.CustomTask

Private	mstrTaskName				As	String
Private	mstrDescription	As	String
Private	mstrMessage					As	String

Private	Sub	CustomTask_Execute(ByVal	pPackage	As	Object,	ByVal	pPackageEvents	As	Object,	_
												ByVal	pPackageLog	As	Object,	pTaskResult	As	DTS.DTSTaskExecResult)
				MsgBox	mstrMessage,	vbExclamation,	mstrDescription
End	Sub

Private	Property	Get	CustomTask_Properties()	As	DTS.Properties
				'Set	CustomTask_Properties	=	Nothing
End	Property

Private	Property	Get	CustomTask_Description()	As	String
'Implements	Task.Description.
				CustomTask_Description	=	mstrDescription
End	Property

Private	Property	Let	CustomTask_Description(ByVal	strNewDescr	As	String)
'Implements	Task.Description.
				mstrDescription	=	strNewDescr
End	Property

Private	Property	Get	CustomTask_Name()	As	String
'Implements	Task.Name.
				CustomTask_Name	=	mstrTaskName
End	Property

Private	Property	Let	CustomTask_Name(ByVal	strNewName	As	String)
'Implements	Task.Name.
				mstrTaskName	=	strNewName
End	Property

Public	Property	Get	Message()	As	String
'Implements	CustTask.Message.
				Message	=	mstrMessage
End	Property

Public	Property	Let	Message(ByVal	strNewMsg	As	String)
'Implements	CustTask.Message.
				mstrMessage	=	strNewMsg
End	Property

Public	Property	Get	Description()	As	String
'Implements	CustTask.Description.
				Description	=	mstrDescription
End	Property

Public	Property	Let	Description(ByVal	strNewDescr	As	String)
'Implements	CustTask.Description.
				mstrDescription	=	strNewDescr
End	Property

Adding	Icons	to	a	Custom	Task	Component
In	a	Visual	Basic	project,	you	typically	assign	an	icon	to	the	Icon	property	of
each	form	in	the	project.	Then	you	select	one	of	the	forms	to	supply	the	icon	for
the	component.	However,	DTS	Designer	is	not	able	to	access	an	icon	specified
in	this	way.

For	DTS	custom	tasks,	you	must	add	a	resource	file	to	the	Visual	Basic	project
and	add	one	or	more	icons	to	the	resource	file.	When	you	register	a	custom	task,
all	the	icons	in	the	resource	file	will	appear	under	Select	Icon	in	the	Register
Custom	Task	dialog	box	in	DTS	Designer.	

To	add	icons	to	the	DTS	custom	task

1.	 On	the	Task	menu,	click	Unregister	Custom	Task,	and	then	select	the
task	you	registered.

2.	 In	the	Visual	Basic	development	environment,	replace	the	Visual	Basic
code	in	the	CustTask	class	with	the	upgraded	code	from	the	example.

3.	 Add	a	resource	file	to	the	project	and	add	one	or	more	icons	to	the
resource	file.

4.	 On	the	File	menu,	click	Make	DTSMinimum.dll	to	build	the
component.

You	may	need	to	close	SQL	Server	Enterprise	Manager	first	to	avoid	a
"permission	denied"	error.

5.	 Register	the	custom	task	in	DTS	Designer.	The	icons	you	added	to	the
project	resource	file	should	appear	in	the	Register	Custom	Task
dialog	box.

For	more	information,	see	Registering	a	DTS	Custom	Task.

6.	 Drag	a	copy	of	the	custom	task	onto	the	design	sheet.	Set	values	for
Description	and	Message,	and	then	close	the	properties	grid.	The	icon
label	should	change	to	the	value	of	Description.

7.	 Execute	the	package.

In	the	message	box,	the	value	of	Message	is	displayed.

If	you	select	Binary	Compatibility	from	the	Component	tab	of	the
Project/Properties	dialog	box	in	Visual	Basic,	you	do	not	have	to	complete
Steps	1	and	5	of	this	procedure.	However,	selecting	Binary	Compatibility
severely	restricts	the	changes	you	can	make	to	the	public	interface	of	the	custom
task.

Registration	Problems	in	DTS	Designer
If	you	rebuild	a	custom	task	component	before	unregistering	it	in	DTS	Designer,
subsequent	attempts	to	unregister	the	component	will	fail.	DTS	Designer	will	be

unable	to	find	the	component	file.

To	recover	from	registration	problems	in	DTS	Designer

1.	 From	a	DOS	window,	set	the	default	device	and	directory	to	the	folder
containing	the	custom	task	component	DLL.	Unregister	the	component
with	this	command:
regsvr32	/u	component.dll

2.	 Close	DTS	Designer,	right-click	Data	Transformation	Services,	and
then	click	Properties.	Do	one	of	the	following:

If	the	Turn	on	Cache	check	box	is	selected,	click	Refresh
Cache.

If	the	Turn	on	Cache	check	box	is	not	selected,	the	Refresh
Cache	button	will	be	unavailable	and	you	can	skip	this	step.

3.	 Rebuild	the	custom	task	component	DLL.

4.	 Reopen	SQL	Server	Enterprise	Manager	and	DTS	Designer.	The
custom	task	should	not	appear	on	the	Task	menu	or	Task	toolbar.

5.	 On	the	Task	menu,	click	Register	Custom	Task	and	provide	the
information	necessary	to	register	the	custom	task	in	DTS	Designer.

CAUTION		Do	not	attempt	to	unregister	components	by	deleting	the
registered	file	and	removing	the	registry	entries	with	a	registry
cleaning	utility.	Many	utilities	only	partially	remove	the	registry
entries.	You	will	then	not	be	able	to	use	regsvr32.exe	because	it	calls
the	DLLUnregisterServer	entry	point	in	the	registered	component,
which	you	have	deleted.

See	Also

CustomTask	Object

Execute	Method

Properties	Collection

DTS	Programming

DTS	Example:	Including	a	User	Interface	in	Visual
Basic
The	following	Microsoft®	Visual	Basic®	code	example	implements	a	property
page	for	a	Data	Transformation	Services	(DTS)	custom	task.	The	task	displays
the	value	of	a	global	variable	and	supports	a	timeout	on	the	display.	The	task
closes	the	display,	if	the	user	has	not	already	done	so,	when	the	timeout	occurs.

This	Visual	Basic	project	consists	of	a	custom	task	class,	a	property	page	form,
and	a	runtime	display	form.

Custom	Task	Class
The	custom	task	class,	called	FinalGlobal,	has	these	features:

A	GVMonitor	property,	which	specifies	the	name	of	the	global	variable
to	be	displayed.

A	DisplayTime	property,	which	specifies	the	time	after	which	the
display	is	closed.

Description	and	Name	properties	that	tie	CustomTask	interface
properties	to	the	FinalGlobal	class.

It	is	acceptable	to	use	Name	because	the	property	page	exposes	Name
as	read-only.	Thus,	the	user	cannot	cause	an	error	by	attempting	to
change	it.

A	property	page	that	is	displayed	when	the	CustomTaskUI	New	or	Edit
methods	are	invoked.	These	methods	are	called	by	DTS	Designer	when
you	either	drag	the	task	icon	to	the	design	sheet	or	right-click	the	icon
and	select	Properties.

A	Help	page	that	is	displayed	when	the	CustomTaskUI	Help	method	is
invoked.

Implementing	the	FinalGlobal	Class

Use	the	following	Visual	Basic	code	to	implement	the	FinalGlobal	class:

Implements	DTS.CustomTask
Implements	DTS.CustomTaskUI

Const	INVAL_PROP	=	"Invalid	property	value."

Private	strDescription						As	String			'Task/FinalGlobal.Description	property
Private	strTaskName									As	String			'Task/FinalGlobal.Name	property
Private	strGVMonitorName				As	String			'FinalGlobal.GVMonitor	property
Private	sngDisplayTime						As	Single			'FinalGlobal.DisplayTime
Private	frmShowGV											As	frmFinalGlobal
Private	frmGVProperties					As	frmFinalGVProperties
Private	objTask													As	DTS.Task

Private	Sub	CustomTask_Execute(ByVal	pPackage	As	Object,	_
												ByVal	pPackageEvents	As	Object,	ByVal	pPackageLog	As	Object,	_
												pTaskResult	As	DTS.DTSTaskExecResult)
'Get	reference	to	global	variable,	display	its	value.
				Dim	objPackage						As	DTS.Package2
				Dim	objMonitor						As	DTS.GlobalVariable
				Dim	blnCancel							As	Boolean
				
				'Save	reference	to	package,	release	parameter	reference.
				Set	objPackage	=	pPackage
				Set	pPackage	=	Nothing
				pTaskResult	=	DTSTaskExecResult_Success
				
				'Get	reference	to	global	variable.
				Set	objMonitor	=	objPackage.GlobalVariables(strGVMonitorName)
				
				'Create	display	form,	pass	GV	name	and	value,	and	timeout.

				Set	frmShowGV	=	New	frmFinalGlobal
				frmShowGV.MonitorName	=	strGVMonitorName
				frmShowGV.MonitorValue	=	objMonitor.Value
				frmShowGV.DisplayTime	=	1000	*	sngDisplayTime
				frmShowGV.Show	vbModal
				
				'Release	display	form	after	it	closes.
				Unload	frmShowGV
				Set	frmShowGV	=	Nothing
								
End	Sub

Private	Property	Get	CustomTask_Properties()	As	DTS.Properties
'Use	default	Properties	collection.
				Set	CustomTask_Properties	=	Nothing
End	Property

Private	Property	Let	CustomTask_Description(ByVal	strNewDescr	As	String)
'Implements	Task.Description.
				strDescription	=	strNewDescr
End	Property

Private	Property	Get	CustomTask_Description()	As	String
'Implements	Task.Description.
				CustomTask_Description	=	strDescription
End	Property

Private	Property	Let	CustomTask_Name(ByVal	strNewName	As	String)
'Implements	Task.Name.
				strTaskName	=	strNewName
End	Property

Private	Property	Get	CustomTask_Name()	As	String

'Implements	Task.Name.
				CustomTask_Name	=	strTaskName
End	Property

'--
Private	Sub	DisplayPropertyPage()
'Validate	task	reference	and	display	property	page.

				If	TypeOf	objTask	Is	DTS.Task	Then
								Set	frmGVProperties	=	New	frmFinalGVProperties
								Set	frmGVProperties.TaskObject	=	objTask
								frmGVProperties.Show	vbModal
								
								DoEvents
								Set	frmGVProperties	=	Nothing
								
				Else
								MsgBox	"Invalid	task	reference.	Unable	to	display	property	page.",	_
																vbExclamation,	"FinalGlobal	Task"
				End	If
				
End	Sub

Private	Sub	CustomTaskUI_CreateCustomToolTip(ByVal	hwndParent	As	Long,	_
								ByVal	x	As	Long,	ByVal	y	As	Long,	plTipWindow	As	Long)
'CreateCustomToolTip	not	implemented.
End	Sub

Private	Sub	CustomTaskUI_Delete(ByVal	hwndParent	As	Long)
'Delete	not	implemented.
End	Sub

Private	Sub	CustomTaskUI_Edit(ByVal	hwndParent	As	Long)

'Display	property	page	with	current	values.
				DisplayPropertyPage
End	Sub

Private	Sub	CustomTaskUI_GetUIInfo(pbstrToolTip	As	String,	_
								pbstrDescription	As	String,	plVersion	As	Long,	_
								pFlags	As	DTS.DTSCustomTaskUIFlags)
'GetUIInfo	not	implemented.
End	Sub

Private	Sub	CustomTaskUI_Help(ByVal	hwndParent	As	Long)
'Display	Help	screen.
				Dim	strHelpText					As	String
				
				strHelpText	=	"Specify	properties	for	FinalGlobal	custom	task.		"	&	_
												"Task	should	run	as	last	step	of	package."	&	_
												vbCrLf	&	vbCrLf	&	_
												"Enter/change	task	description.		"	&	_
												"It	appears	as	task	icon	label	on	design	surface."	&	_
												vbCrLf	&	vbCrLf	&	_
												"Enter	name	of	global	variable	to	be	displayed."	&	_
												vbCrLf	&	vbCrLf	&	_
												"Enter	display	time	in	seconds.		Display	is	removed	after	"	&	_
												"this	time	elapses,	if	not	already	closed	by	user.		"	&	_
												"Enter	0	if	display	is	not	to	be	automatically	removed."
				MsgBox	strHelpText,	vbInformation,	"FinalGlobal	Help"
				
End	Sub

Private	Sub	CustomTaskUI_Initialize(ByVal	pTask	As	DTS.Task)
'Initialize	Description	property	if	not	already	set,	save	task	reference.

				If	TypeOf	pTask	Is	DTS.Task	Then	Set	objTask	=	pTask

				If	Description	=	""	Then
								Description	=	"Final	Global	Variable	Display"
				End	If
				
End	Sub

Private	Sub	CustomTaskUI_New(ByVal	hwndParent	As	Long)
'Display	property	page	with	default	values.
				DisplayPropertyPage
End	Sub

'--
Public	Property	Get	Name()	As	String
'Implements	FinalGlobal.Name.
				Name	=	strTaskName
End	Property

Public	Property	Let	Name(ByVal	strNewName	As	String)
'Implements	FinalGlobal.Name.
				strTaskName	=	strNewName
End	Property

Public	Property	Get	Description()	As	String
'Implements	FinalGlobal.Description.
				Description	=	strDescription
End	Property

Public	Property	Let	Description(ByVal	strNewDescr	As	String)
'Implements	FinalGlobal.Description	and	verifies	that	it	is	non-empty.
				
				If	Len(strNewDescr)	>	0	Then
								strDescription	=	strNewDescr
				Else

								Err.Raise	1001	+	vbObjectError,	Me.Name,	INVAL_PROP
				End	If
				
End	Property

Public	Property	Get	GVMonitor()	As	String
'Name	of	global	variable	to	monitor.
					GVMonitor	=	strGVMonitorName
End	Property

Public	Property	Let	GVMonitor(ByVal	strNewName	As	String)
'Name	of	global	variable	to	monitor,	verify	non-empty.

				If	Len(strNewName)	>	0	Then
								strGVMonitorName	=	strNewName
				Else
								Err.Raise	1001	+	vbObjectError,	Me.Name,	INVAL_PROP
				End	If
				
End	Property

Public	Property	Get	DisplayTime()	As	Single
'Timeout	for	display	form.
				DisplayTime	=	sngDisplayTime
End	Property

Public	Property	Let	DisplayTime(ByVal	sngNewTime	As	Single)
'Timeout	for	display	form.
'Validate	non-negative,	type	check	will	validate	numeric.

				If	sngNewTime	>=	0#	Then
								sngDisplayTime	=	sngNewTime
				Else

								Err.Raise	1001	+	vbObjectError,	Me.Name,	INVAL_PROP
				End	If
				
End	Property

Property	Page	Form
The	property	page	form,	named	frmFinalGVProperties,	supports	the	display
and	entry	of	the	Description,	GVMonitor	and	DisplayTime	properties	and	the
read-only	display	of	the	Name	property.	It	handles	errors	raised	by	the	Property
Let	functions	of	the	FinalGlobal	class.	The	form	hosts	the	following	controls.

Name Type Use	to
TxtDescription TextBox Display	and	enter	the	Description

property.
TxtTimeout TextBox Display	and	enter	the	DisplayTime

property.
TxtGVName TextBox Display	and	enter	the	GVMonitor

property.
CancelButton CommandButton Close	the	form	without	saving	the

properties.
OKButton CommandButton Validate	and	save	properties,	then	close

the	form.
LblTaskName Label Display	the	task	name.

Adding	the	Property	Page	Form
This	is	the	Visual	Basic	code	for	frmFinalGVProperties:

Private	objTask									As	DTS.Task
Private	objFinalTask				As	FinalGlobal

Const	MSG_TITLE	=	"FinalGlobal	Properties"

Public	Property	Set	TaskObject(ByVal	objNewTask	As	DTS.Task)

'When	ref'ce	to	task	updated,	fetch	custom	task	properties.
				Set	objTask	=	objNewTask
				Set	objFinalTask	=	objTask.CustomTask
				
				With	objFinalTask
								lblTaskName.Caption	=	"Task	name:	"	&	vbCrLf	&	.Name
								txtDescription.Text	=	.Description
								txtGVName.Text	=	.GVMonitor
								txtTimeOut	=	(.DisplayTime)
				End	With
				
End	Property

Private	Sub	CancelButton_Click()
'On	Cancel	button,	exit	without	updating	properties.
				Unload	Me
End	Sub

Private	Sub	OKButton_Click()
'On	OK	button,	validate	and	update	properties.
				
				With	objFinalTask
								On	Error	Resume	Next
								.Description	=	txtDescription.Text
								If	Err.Number	<>	0	Then
												MsgBox	"Description	must	be	non-empty.",	_
																				vbExclamation,	MSG_TITLE
												Exit	Sub
								End	If
								
								On	Error	Resume	Next
								.GVMonitor	=	txtGVName.Text
								If	Err.Number	<>	0	Then

												MsgBox	"A	global	variable	name	must	be	entered.",	_
																				vbExclamation,	MSG_TITLE
												Exit	Sub
								End	If
								
								On	Error	Resume	Next
								.DisplayTime	=	txtTimeOut.Text
								If	Err.Number	<>	0	Then
												MsgBox	"Invalid	timeout	value	"""	&	txtTimeOut.Text	&	"""",	_
																				vbExclamation,	MSG_TITLE
												Exit	Sub
								End	If
								On	Error	GoTo	0
								
				End	With
				
				Unload	Me
				
End	Sub

Runtime	Display	Form
The	runtime	display	form,	named	frmFinalGlobal,	supports	the	display	of	the
global	variable	value	and	the	implementation	of	the	display	timeout.	The	form
caption	displays	the	global	variable	name.	frmFinalGlobal	hosts	the	following
controls.

Name Type Description
TxtMonitorValue TextBox Displays	the	global	variable	value.
TimDisplay Timer Implements	the	display	timeout.

Adding	the	Runtime	Display	Form

This	is	the	Visual	Basic	code	for	frmFinalGlobal:

Private	blnUnloaded									As	Boolean

Private	Sub	Form_Unload(Cancel	As	Integer)
'Turn	off	time	and	mark	form	unloaded	for	task.
				blnUnloaded	=	True
				timDisplay.Enabled	=	False
End	Sub

Private	Sub	timDisplay_Timer()
'Timer	has	expired,	unload	the	form.
				Unload	Me
End	Sub

Public	Property	Let	MonitorValue(ByVal	vntNewValue	As	Variant)
'Update	global	variable	display
				txtMonitorValue.Text	=	CStr(vntNewValue)
				DoEvents
End	Property

Public	Property	Let	MonitorName(ByVal	strNewName	As	String)
'Display	name	of	global	variable	in	form	caption.
				Me.Caption	=	strNewName
				DoEvents
End	Property

Public	Property	Get	Unloaded()	As	Boolean
'Provide	unloaded	indication	for	task.
				Unloaded	=	blnUnloaded
End	Property

Public	Property	Let	DisplayTime(ByVal	lngNewTime	As	Long)
'Set	timeout	for	display	form,	start	timer.

				timDisplay.Interval	=	lngNewTime
				timDisplay.Enabled	=	True
End	Property

To	build	this	DTS	custom	task

1.	 In	the	Visual	Basic	development	environment,	create	a	new	Microsoft
ActiveX®	DLL	project.	

2.	 On	the	Project	menu,	click	References,	and	under	Available
References,	select	the	check	box	for	Microsoft	DTSPackage	Object
Library.	Then,	on	the	Project	menu,	click	Properties	and	in	the
Project	name	box,	change	the	project	name	from	Project1	to
something	meaningful,	like	DTSSampleUI.

3.	 Copy	the	code	for	the	FinalGlobal	class	in	the	preceding	code
example	to	the	class	module	in	the	Visual	Basic	project.	Change	the
name	of	the	class	module	from	Class1	to	FinalGlobal.

If	you	use	a	different	name,	you	need	to	change	the	references	to
FinalGlobal	in	the	code	to	that	name.

4.	 Add	a	form	to	the	project	for	the	property	page.	Change	its	name	to
frmFinalGVProperties.	If	you	use	a	different	name,	you	will	need	to
change	the	references	to	frmFinalGVProperties	in	the	code	to	that
name.	Add	three	text	boxes,	two	command	buttons,	and	a	label	to	the
form.	Name	them	as	specified	in	the	preceding	table	under	Property
Page	Form.	Label	the	buttons	OK	and	Cancel.	You	may	want	to	add
additional	labels	to	identify	the	text	boxes	and	assign	a	meaningful
caption.	Copy	the	code	for	frmFinalGVProperties	in	the	preceding
code	example	to	the	code	window	for	the	form	in	the	Visual	Basic
project.

5.	 Add	a	form	to	the	project	for	the	runtime	display.	Change	its	name	to
frmFinalGlobal.	If	you	use	a	different	name,	you	will	need	to	change
the	references	to	frmFinalGlobal	in	the	code	to	that	name.	Add	a	text

box	and	a	timer	control	to	the	form.	Name	them	as	specified	in	the
table	above	under	Runtime	Display	Form.	Copy	the	code	for
frmFinalGlobal	in	the	preceding	code	example	to	the	code	window
for	the	form	in	the	Visual	Basic	project.

6.	 If	you	want	the	task	to	have	an	icon	other	than	the	default	icon,	add	a
resource	file	to	the	project	and	add	one	or	more	icons	to	the	resource
file.

7.	 On	the	File	menu,	click	Make	DTSSampleUI.dll	to	build	the
component.	To	register	the	task,	open	DTS	Designer,	and	on	the	Task
menu,	click	Register	Custom	Task	and	provide	the	information
necessary	to	register	the	custom	task.

See	Also

CustomTaskUI	Object

Edit	Method

Help	Method

New	(CustomTaskUI)	Method

DTS	Programming

DTS	Example:	Running	Concurrent	Operations	in
Visual	Basic
Custom	tasks	implemented	in	Microsoft®	Visual	Basic®	must	run	on	the
package	main	thread	because	Visual	Basic	does	not	support	free	threading.
Therefore,	tasks	implemented	in	Visual	Basic	and	run	in	a	Data	Transformation
Services	(DTS)	package	in	DTS	Designer	run	sequentially,	even	when	the
package	has	no	precedence	constraints.

However,	in	a	DTS	package	application,	one	task	running	on	the	main	thread	can
run	concurrently	with	others	on	worker	threads.	Thus,	such	a	task	could	be
implemented	in	Visual	Basic.

DTS	Designer	also	does	not	allow	a	task	to	display	a	modeless	form	or	dialog
box.	However,	in	a	DTS	application	modeless	forms	can	be	displayed.	A
modeless	form	is	used	in	this	example.

Concurrent	Display
The	following	example	code	implements	a	DTS	custom	task	that	continuously
displays	the	value	of	a	global	variable	while	other	tasks	are	running.	The	custom
task	closes	the	display	when	the	value	of	another	global	variable	changes	to
TRUE.

This	Visual	Basic	project	consists	of	a	custom	task	class	and	a	runtime	display
form.

Custom	Task	Class
In	the	custom	task	class,	called	ShowGlobal:

Properties	GVMonitor	and	GVFinish	specify	the	names	of	the	global
variable	to	be	displayed	and	to	the	global	variable	that	indicates
completion,	respectively.	There	is	no	property	page	user	interface,	as	the
application	sets	the	properties	directly.

The	global	variable	display	is	updated	continuously.	The	task	raises	the
OnProgress	and	OnQueryCancel	events	every	3	seconds.

A	log	file	string	and	a	task	record	are	written	when	task	execution
completes.

The	DTS	properties	provider	is	explicitly	invoked.	The
PersistPropertyBag	interface	is	implemented.

Implementing	the	ShowGlobal	Class

This	is	the	Visual	Basic	code	for	the	ShowGlobal	class:

Implements	DTS.CustomTask
Implements	DTS.PersistPropertyBag

Const	INVAL_PROP	=	"Invalid	property	value."

Private	mstrDescription					As	String			'Task/ShowAGlobal.Description	property
Private	mstrTaskName								As	String			'Task/ShowAGlobal.Name	property
Private	mstrGVMonitorName			As	String			'ShowAGlobal.GVMonitor	property
Private	mstrGVFinishName				As	String			'ShowAGlobal.GVFinish	property
Private	frmShowGV											As	frmFinalGlobal
Private	objTask													As	DTS.Task

Private	Sub	CustomTask_Execute(ByVal	pPackage	As	Object,	_
												ByVal	pPackageEvents	As	Object,	ByVal	pPackageLog	As	Object,	_
												pTaskResult	As	DTS.DTSTaskExecResult)
'Display	value	of	global	variable	until	another	global	indicates	display	finished.
				Dim	objPackage						As	DTS.Package2
				Dim	objMonitor						As	DTS.GlobalVariable
				Dim	objFinished					As	DTS.GlobalVariable
				Dim	blnCancel							As	Boolean
				Dim	datCurrTime					As	Date

				Dim	datStartTime				As	Date
				
				'Save	reference	to	package,	release	parameter	reference.
				Set	objPackage	=	pPackage
				Set	pPackage	=	Nothing
				pTaskResult	=	DTSTaskExecResult_Success
				
				'Initialize	times	for	event	generation.
				datStartTime	=	Now
				datCurrTime	=	Now
				
				'Get	reference	to	global	variables,	exit	if	already	finished.
				Set	objMonitor	=	objPackage.GlobalVariables(mstrGVMonitorName)
				Set	objFinished	=	objPackage.GlobalVariables(mstrGVFinishName)
				If	objFinished.Value	=	True	Then	Exit	Sub
				
				'Display	form	and	use	global	variable	name	as	title.
				Set	frmShowGV	=	New	frmFinalGlobal
				frmShowGV.MonitorName	=	mstrGVMonitorName
				frmShowGV.Show	vbModeless
				
				'Refresh	display	until	finished	GV	indicates	done,	user	closes	form,	or	app	indicates	Cancel.
				Do	Until	objFinished.Value	Or	frmShowGV.Unloaded
								frmShowGV.MonitorValue	=	objMonitor.Value
								
								'Every	3	sec,	raise	OnQueryCancel	and	OnProgress.
								If	DateDiff("s",	datCurrTime,	Now)	>=	3	Then
												datCurrTime	=	Now
												
												'Make	sure	package	events	object	is	valid.
												If	Not	pPackageEvents	Is	Nothing	Then
												
																'Raise	On	Progress,	OnQueryCancel,	exit	if	response	says	to	cancel.

																pPackageEvents.OnProgress	Me.Description,	"3	second	notification",	_
																								0,	DateDiff("s",	datStartTime,	Now),	0
																pPackageEvents.OnQueryCancel	Me.Description,	blnCancel
																If	blnCancel	Then	Exit	Do
												End	If
								End	If
								
								DoEvents
				Loop
				
				'Write	elapsed	time	and	GV	value	to	log,	if	log	object	valid.
				If	Not	pPackageLog	Is	Nothing	Then
								pPackageLog.WriteStringToLog	Me.Description	&	":	"	&	_
																				objMonitor.Name	&	"	=	"	&	objMonitor.Value
								pPackageLog.WriteTaskRecord	0,	_
																				Me.Description	&	"	elapsed	time:	"	&	_
																				(DateDiff("s",	datStartTime,	Now))	&	"	sec."
				End	If
								
				'Close	and	release	form.
				Unload	frmShowGV
				Set	frmShowGV	=	Nothing
								
End	Sub

Private	Property	Get	CustomTask_Properties()	As	DTS.Properties
'Use	DTS	properties	provider	to	generate	collection.
				Dim	oPropsProvider	As	New	DTS.PropertiesProvider
				
				Set	CustomTask_Properties	=	oPropsProvider.GetPropertiesForObject(Me)
				Set	oPropsProvider	=	Nothing

End	Property

Private	Property	Let	CustomTask_Description(ByVal	strNewDescr	As	String)
'Implements	Task.Description.
				mstrDescription	=	strNewDescr
End	Property

Private	Property	Get	CustomTask_Description()	As	String
'Implements	Task.Description.
				CustomTask_Description	=	mstrDescription
End	Property

Private	Property	Let	CustomTask_Name(ByVal	strNewName	As	String)
'Implements	Task.Name.
				mstrTaskName	=	strNewName
End	Property

Private	Property	Get	CustomTask_Name()	As	String
'Implements	Task.Name.
				CustomTask_Name	=	mstrTaskName
End	Property

Private	Sub	PersistPropertyBag_Save(ByVal	propBag	As	DTS.PropertyBag)
'Save	property	values	in	property	bag.

				'On	Error	Resume	Next
				propBag.Write	"Name",	mstrTaskName
				propBag.Write	"Description",	mstrDescription
				propBag.Write	"GVMonitor",	mstrGVMonitorName
				propBag.Write	"GVFinish",	mstrGVFinishName
				
End	Sub

Private	Sub	PersistPropertyBag_Load(ByVal	propBag	As	DTS.PropertyBag)

'Load	property	values	from	property	bag.

				'On	Error	Resume	Next.
				mstrTaskName	=	propBag.Read("Name")
				mstrDescription	=	propBag.Read("Description")
				mstrGVMonitorName	=	propBag.Read("GVMonitor")
				mstrGVFinishName	=	propBag.Read("GVFinish")
				
End	Sub

Public	Property	Get	GVMonitor()	As	String
'Name	of	global	variable	to	monitor.
					GVMonitor	=	mstrGVMonitorName
End	Property

Public	Property	Let	GVMonitor(ByVal	strNewName	As	String)
'Name	of	global	variable	to	monitor,	verify	non-empty.
				
				If	Len(strNewName)	>	0	Then
								mstrGVMonitorName	=	strNewName
				Else
								Err.Raise	1001	+	vbObjectError,	Me.Name,	INVAL_PROP
				End	If
				
End	Property

Public	Property	Get	GVFinish()	As	String
'Name	of	global	variable	to	indicate	finish.
					GVFinish	=	mstrGVFinishName
End	Property

Public	Property	Let	GVFinish(ByVal	strNewName	As	String)
'Name	of	global	variable	to	indicate	finish,	verify	non-empty.

				
				If	Len(strNewName)	>	0	Then
								mstrGVFinishName	=	strNewName
				Else
								Err.Raise	1001	+	vbObjectError,	Me.Name,	INVAL_PROP
				End	If
				
End	Property

Public	Property	Get	Name()	As	String
'Implements	FinalGlobal.Name.
				Name	=	mstrTaskName
End	Property

Public	Property	Let	Name(ByVal	strNewName	As	String)
'Implements	FinalGlobal.Name
				mstrTaskName	=	strNewName
End	Property

Public	Property	Get	Description()	As	String
'Implements	FinalGlobal.Description
				Description	=	mstrDescription
End	Property

Public	Property	Let	Description(ByVal	strNewDescr	As	String)
'Implements	FinalGlobal.Description
				mstrDescription	=	strNewDescr
End	Property

To	build	this	DTS	custom	task

1.	 In	the	Visual	Basic	development	environment,	create	a	new	ActiveX
DLL	project.	

2.	 On	the	Project	menu,	click	References,	and	under	Available
References,	select	the	check	box	for	Microsoft	DTSPackage	Object
Library.	Then,	on	the	Project	menu,	click	Properties	and	in	the
Project	name	box,	change	the	project	name	from	Project1	to
something	meaningful,	like	DTSConcurrentSample.

3.	 Copy	the	code	for	the	ShowGlobal	class	in	the	preceding	code
example	to	the	class	module	in	the	Visual	Basic	project.	Change	the
name	of	the	class	module	from	Class1	to	ShowGlobal.	If	you	use	a
different	name,	you	need	to	change	the	references	to	ShowGlobal	in
the	code	to	that	name.

4.	 Add	the	frmFinalGlobal	form.

For	more	information	about	this	form,	see	DTS	Example:	Including	a
User	Interface	in	Visual	Basic.

5.	 On	the	File	menu,	click	Make	DTSConcurrentSample.dll	to	build
the	component.

Do	not	register	the	task	in	DTS	Designer.

DTS	Package	Application

This	DTS	application	uses	the	ShowGlobal	custom	task	to	display	the	number
of	rows	copied,	via	the	Rows	Copied	global	variable,	while	another	step	copies
rows	from	a	table	in	one	database	to	a	table	in	another.	The	copy	step	closes	the
display	by	setting	the	Copy	Complete	global	variable	to	TRUE.

The	copy	step	uses	a	DataPumpTask2	object	with	a
DataPumpTransformScript	transformation	to	copy	certain	columns	from	the
Products	table	in	the	Microsoft	SQL	Server™	Northwind	database	to	a	table
named	NorthwindProducts	in	a	database	named	DTS_UE.	DTS	lookups	are
used	to	replace	the	CategoryID	field	with	the	CategoryName	from	the
Northwind	Categories	table,	and	to	replace	the	SupplierID	field	with	the
CompanyName	from	the	Northwind	Suppliers	table.

Creating	the	DTS	Package	Application
This	is	the	definition	of	the	NorthwindProducts	table	in	DTS_UE:

CREATE	TABLE	[DTS_UE].[dbo].[NorthwindProducts]	(
			[ProductName]	[nvarchar]	(40)	NULL	,
			[CategoryName]	[nvarchar]	(25)	NULL	,
			[CompanyName]	[nvarchar]	(40)	NULL)	

This	is	the	Visual	Basic	code	for	the	application:

Public	Sub	Main()
'Copy	Northwind..Products	names,	categories,	suppliers	to	DTS_UE..NorthwindProducts.
				Dim	objPackage				As	DTS.Package2
				Dim	objConnect				As	DTS.Connection2
				Dim	objStep							As	DTS.Step2
				Dim	objTask							As	DTS.Task
				Dim	objPumpTask			As	DTS.DataPumpTask2
				Dim	objCustTask			As	DTSConcurrentSample.ShowGlobal
				Dim	objTransform		As	DTS.Transformation2
				Dim	objLookUp					As	DTS.Lookup
				Dim	objTranScript	As	DTSPump.DTSTransformScriptProperties2
				Dim	sVBS										As	String							'VBScript	text

				Set	objPackage	=	New	DTS.Package
				objPackage.FailOnError	=	True
				objPackage.LogFileName	=	"C:\Temp\TestConcurrent.Log"
				
				'Establish	connections	to	data	source	and	destination.
				Set	objConnect	=	objPackage.Connections.New("SQLOLEDB.1")
				With	objConnect
								.ID	=	1
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With

				objPackage.Connections.Add	objConnect
				Set	objConnect	=	objPackage.Connections.New("SQLOLEDB.1")
				With	objConnect
								.ID	=	2
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				objPackage.Connections.Add	objConnect

				'Create	copy	step	and	task,	link	step	to	task.
				Set	objStep	=	objPackage.Steps.New
				objStep.Name	=	"NorthwindProductsStep"
				Set	objTask	=	objPackage.Tasks.New("DTSDataPumpTask")
				Set	objPumpTask	=	objTask.CustomTask
				objPumpTask.Name	=	"NorthwindProductsTask"
				objStep.TaskName	=	objPumpTask.Name
				objStep.ExecuteInMainThread	=	False
				objPackage.Steps.Add	objStep
				
				'Link	copy	task	to	connections.
				With	objPumpTask
								.SourceConnectionID	=	1
								.SourceSQLStatement	=	_
												"SELECT	ProductName,	CategoryID,	SupplierID	"	&	_
												"FROM	Northwind..Products"
								.DestinationConnectionID	=	2
								.DestinationObjectName	=	"[DTS_UE].[dbo].[NorthwindProducts]"
								.UseFastLoad	=	False
								.MaximumErrorCount	=	99
				End	With
				
				'Create	lookups	for	supplier	and	category.
				Set	objLookUp	=	objPumpTask.Lookups.New("CategoryLU")

				With	objLookUp
								.ConnectionID	=	1
								.Query	=	"SELECT	CategoryName	FROM	Northwind..Categories	"	&	_
																"WHERE	CategoryID	=	?	"
								.MaxCacheRows	=	0
				End	With
				objPumpTask.Lookups.Add	objLookUp
				Set	objLookUp	=	objPumpTask.Lookups.New("SupplierLU")
				With	objLookUp
								.ConnectionID	=	1
								.Query	=	"SELECT	CompanyName	FROM	Northwind..Suppliers	"	&	_
																"WHERE	SupplierID	=	?	"
								.MaxCacheRows	=	0
				End	With
				objPumpTask.Lookups.Add	objLookUp
				
				'Create	and	initialize	rowcount	and	completion	global	variables.
				objPackage.GlobalVariables.AddGlobalVariable	"Copy	Complete",	False
				objPackage.GlobalVariables.AddGlobalVariable	"Rows	Copied",	0
				objPackage.ExplicitGlobalVariables	=	True
				
				'Create	transform	to	copy	row,	signal	completion.
				Set	objTransform	=	objPumpTask.Transformations.	_
												New("DTSPump.DataPumpTransformScript")
				With	objTransform
								.Name	=	"CopyNorthwindProducts"
								.TransformPhases	=	DTSTransformPhase_Transform	+	_
																								DTSTransformPhase_OnPumpComplete
								Set	objTranScript	=	.TransformServer
				End	With
				With	objTranScript
								.FunctionEntry	=	"CopyColumns"
								.PumpCompleteFunctionEntry	=	"PumpComplete"

								.Language	=	"VBScript"
								sVBS	=	"Option	Explicit"	&	vbCrLf
								sVBS	=	sVBS	&	"Function	CopyColumns()"	&	vbCrLf
								sVBS	=	sVBS	&	"			DTSDestination(""ProductName"")	=	DTSSource(""ProductName"")	"	&	vbCrLf
								sVBS	=	sVBS	&	"			DTSDestination(""CategoryName"")	=	DTSLookups(""CategoryLU"").Execute(DTSSource(""CategoryID""))	"	&	vbCrLf
								sVBS	=	sVBS	&	"			DTSDestination(""CompanyName"")	=	DTSLookups(""SupplierLU"").Execute(DTSSource(""SupplierID"").Value)	"	&	vbCrLf
								sVBS	=	sVBS	&	"			DTSGlobalVariables(""Rows	Copied"")	=	CLng(DTSTransformPhaseInfo.CurrentSourceRow)"	&	vbCrLf
								sVBS	=	sVBS	&	"			CopyColumns	=	DTSTransformStat_OK"	&	vbCrLf
								sVBS	=	sVBS	&	"End	Function"	&	vbCrLf
								
								sVBS	=	sVBS	&	"Function	PumpComplete()"	&	vbCrLf
								sVBS	=	sVBS	&	"			DTSGlobalVariables(""Copy	Complete"")	=	True"	&	vbCrLf
								sVBS	=	sVBS	&	"			PumpComplete	=	DTSTransformStat_OK"	&	vbCrLf
								sVBS	=	sVBS	&	"End	Function"	&	vbCrLf
								
								.Text	=	sVBS
				End	With
				objPumpTask.Transformations.Add	objTransform
				objPackage.Tasks.Add	objTask
				
				'Create	monitor	step	and	task,	link	step	to	task.
				Set	objStep	=	objPackage.Steps.New
				objStep.Name	=	"GVMonitorStep"
				Set	objTask	=	objPackage.Tasks.New("DTSConcurrentSample.ShowGlobal")
				objTask.Name	=	"GVMonitorTask"
				objStep.TaskName	=	objTask.Name
				Set	objCustTask	=	objTask.CustomTask
				objCustTask.GVMonitor	=	"Rows	Copied"
				objCustTask.GVFinish	=	"Copy	Complete"
				objStep.ExecuteInMainThread	=	True
				objPackage.Steps.Add	objStep
				
				'Link	monitor	task	to	package,	run	package.

				objPackage.Tasks.Add	objTask
				objPackage.Execute
			
End	Sub

IMPORTANT		This	sample	application	is	intentionally	implemented	to	run	slowly
so	the	display	will	be	more	convenient	to	view.	It	uses	the	same	connection	for
the	data	source	and	both	lookups,	and	uses	0	for	the	MaxCacheRows	property
for	both	lookups.	In	an	actual	application	that	copies	and	transforms	databases,
you	should	use	a	separate	connection	for	lookups,	or	for	each	lookup.	You
should	also	use	a	nonzero	value	for	MaxCacheRows.	The	default	of	100	is
recommended	for	the	initial	choice.

To	build	this	DTS	application

1.	 Build	the	DTSConcurrentSample.ShowGlobal	custom	task,	as
described	in	the	preceding	example.

2.	 Create	a	database	named	DTS_UE	containing	a	table	named
NorthwindProducts,	using	the	definition	given	above.

3.	 Create	a	Standard	EXE	project	in	the	Visual	Basic	development
environment.	

4.	 On	the	Project	menu,	click	References,	and	under	Available
References,	select	the	check	boxes	for	DTSConcurrentSample,
Microsoft	DTSDataPump	Scripting	Object	Library	and	Microsoft
DTSPackage	Object	Library.

5.	 Add	a	standard	module	to	the	project,	and	then	copy	the	code	for	the
application	in	the	preceding	code	example	into	the	module.	Remove
the	form	Form1	from	the	project.

6.	 On	the	Run	menu,	click	Start.

Observe	the	displayed	rowcount.

See	Also

DataPumpTask2	Object

DataPumpTransformScript	Object

DTS	Example:	Including	a	User	Interface	in	Visual	Basic

MaxCacheRows	Property

OnProgress	Event

OnQueryCancel	Event

PersistPropertyBag	Object

DTS	Programming

Implementing	DTS	Custom	Tasks	in	Visual	C++
This	section	describes	using	the	Active	Template	Library	(ATL)	facility	of
Microsoft®	Visual	C++®	to	implement	Data	Transformation	Services	(DTS)
custom	tasks.

Topic Description
Building	a	DTS	Custom
Task	from	a	Standard	ATL
Template

Describes	how	to	create	a	framework	for	a
custom	task	from	a	standard	ATL	template.

Building	a	DTS	Custom
Task	from	the	ATL	Custom
Task	Basic	Template

Describes	how	to	create	a	custom	task
framework	from	the	basic	ATL	custom	task
template	supplied	with	Microsoft	SQL
Server™	2000.

Adding	a	User	Interface	to
the	Custom	Task
Framework

Describes	how	to	create	a	framework	that
supports	a	user	interface	from	the	basic	ATL
custom	task	template.

Building	a	DTS	Custom
Task	with	User	Interface
from	the	ATL	Custom	Task
Templates

Describes	how	to	create	a	custom	task	that
supports	a	user	interface	from	the	ATL	custom
task	templates	that	have	been	enabled	for	a
user	interface.

Implementing	and	Testing	a
DTS	Custom	Task

Describes	how	to	implement	and	test	a	custom
task	framework	and	explains	how	to	use	the
Visual	C++	debugger.

DTS	Programming

Building	a	DTS	Custom	Task	from	a	Standard	ATL
Template
One	way	to	build	a	custom	task	is	to	create	a	project	from	a	standard	Active
Template	Library	(ATL)	template,	add	the	interface	and	other	elements	required
by	all	Data	Transformation	Services	(DTS)	tasks,	and	then	add	the	features	of
the	specific	custom	task.

This	topic	explains	how	to	add	the	elements	required	by	all	DTS	tasks.	You	can
also	use	the	basic	ATL	custom	task	template	supplied	as	a	sample	with
Microsoft®	SQL	Server™	2000	to	build	the	custom	task	framework.	Even	if	you
plan	to	use	the	custom	task	template,	you	need	to	understand	the	features	that
were	added	to	create	the	basic	custom	task	template	from	the	standard	object
template.	For	more	information,	see	Building	a	Custom	Task	from	the	ATL
Custom	Task	Basic	Template.

Building	a	Standard	ATL	Component
You	can	create	a	standard	ATL	component	that	includes	a	class	for	the	custom
task	using	Microsoft	Visual	C++®	version	6.0.

To	build	a	standard	ATL	component	with	a	class

1.	 On	the	File	menu,	click	New,	and	then	click	the	Projects	tab.	

2.	 Click	ATL	COM	AppWizard,	and	then	enter	a	project	name	and
location.

For	this	discussion,	assume	you	entered	DTSCusTskBasic	for	the
project	name.

3.	 Click	Dynamic	Link	Library	(DLL),	click	Finish,	and	in	the	New
Project	Information	dialog	box,	click	OK.

4.	 On	the	Insert	menu,	click	New	ATL	Object,	click	Objects,	click
Simple	Object	and	then	click	Next.

5.	 On	the	Names	tab,	enter	a	short	name.

For	this	discussion,	assume	you	entered	TaskNoUI.	The	wizard	will
fill	in	the	other	fields.	The	COM/Type	field	is	the	name	that	will
appear	in	the	Tasks	menu	of	DTS	Designer.	You	can	change	it	from
the	default	TaskNoUI	Class.

6.	 Click	the	Attributes	tab,	and	then	do	the	following:

Under	Threading	Model,	click	Both.	

Under	Interface,	click	Dual.

Under	Aggregation,	click	No.

Select	the	Support	ISupportErrorInfo	check	box.

The	wizards	will	create	files	for	the	DTSCusTskBasic	component	and	the
TaskNoUI	class	and	save	them	to	the	project	location	folder	specified	in	Step	1.

Adding	Custom	Task	Features
After	creating	a	standard	ATL	component	with	TaskNoUI	class	files,	you	need
to	add	custom	task	elements.	In	this	section,	all	files	will	have	the	same	names
you	specified	in	Step	4	of	the	previous	procedure.

File Features
TaskNoUI.h Function	prototypes,	private	declarations	and	COM

map	entries	for	the	IDTSCustomTask	interface
elements

TaskNoUI.cpp Initial	function	definitions	for	the	IDTSCustomTask
interface	elements	and	the	CTaskNoUI	constructor
and	destructor

TaskNoUI.rgs Registry	subkeys	required	for	DTS	tasks
DTSCusTskBasic.idlDeclaration	of	the	IDTSCustomTask	interface

elements	in	the	ITaskNoUI	interface

TaskNoUI.h
In	this	header	file,	you	need	to	add	the	following:

Include	statements	for	the	DTS	package	header	file

Prototypes	for	the	class	constructor	and	destructor

A	COM	Map	entry	for	the	IDTSCustomTask	interface

Prototypes	for	the	IDTSCustomTask	interface	elements

Adding	an	Include	Statement

Immediately	preceding	the	include	statement	for	resource.h:

#include	"resource.h"							//	main	symbols

add	this	header	file	include	statement:

#include	"dtspkg.h"

Adding	Constructor	and	Destructor	Prototypes
The	constructor	body	will	be	moved	to	TaskNoUI.cpp.	Replace	the	following
lines:

				CTaskNoUI()
				{
				}

with	these	prototype	declarations:

				CTaskNoUI();

				~CTaskNoUI();

Adding	a	COM	Map	Entry
Immediately	following	the	COM	map	entry	for	IDispatch:

			COM_INTERFACE_ENTRY(IDispatch)

add	this	COM	map	entry	for	IDTSCustomTask:

				COM_INTERFACE_ENTRY2(IDTSCustomTask,	ITaskNoUI)

Supplying	Function	Prototypes
You	must	supply	the	function	prototypes	for	the	IDTSCustomTask	interface
and	declarations	for	storage	for	the	properties.

Immediately	after	the	following	lines:

//	ITaskNoUI
public:

add	these	lines	of	code:

				STDMETHOD(get_Properties)(
												/*	[retval][out]	*/	IDispatch		**pRetVal);
								
				STDMETHOD(get_Name)(
												/*	[retval][out]	*/	BSTR		*pRetVal);
								
				STDMETHOD(put_Name)(
												/*	[in]	*/	BSTR	NewValue);
								
				STDMETHOD(get_Description)(
												/*	[retval][out]	*/	BSTR		*pRetVal);
								
				STDMETHOD(put_Description)(
												/*	[in]	*/	BSTR	NewValue);

								
				STDMETHOD(Execute)(
												/*	[in]	*/	IDispatch		*pPackage,
												/*	[in]	*/	IDispatch		*pPackageEvents,
												/*	[in]	*/	IDispatch		*pPackageLog,
												/*	[out][in]	*/	LONG		*pTaskResult);
								
private:
				//	Internal	storage	for	Name,	Description	properties.
				BSTR				m_bstrName;
				BSTR				m_bstrDescription;

TaskNoUI.cpp
This	file	is	where	you	provide	the	initial	function	definitions	for	the	elements	of
the	IDTSCustomTask	interface	and	the	class	constructor	and	destructor.

Adding	Initial	Function	Definitions
Add	these	lines	of	code	at	the	end	of	the	existing	file:

CTaskNoUI::CTaskNoUI()
				{
								m_bstrName	=	SysAllocString(OLESTR(""));
								m_bstrDescription	=	SysAllocString(OLESTR(""));
				}
CTaskNoUI::~CTaskNoUI()
				{
								if	(m_bstrName)	SysFreeString(m_bstrName);
								if	(m_bstrDescription)	SysFreeString(m_bstrDescription);
				}

STDMETHODIMP	CTaskNoUI::get_Properties(
												/*	[retval][out]	*/	IDispatch		**pRetVal)
{

				//	You	can	implement	a	properties	collection	if	you	want	or	just	return	NULL.	
				//		DTS	will	implement	a	'PropertiesProvider'	utility	object	which	will
				//			extract	the	properties	out	of	your	IDispatch	typeinfo.

				*pRetVal	=	NULL;
				return	NOERROR;
}

STDMETHODIMP	CTaskNoUI::get_Name(
												/*	[retval][out]	*/	BSTR		*pRetVal)
{
				if	(!pRetVal)
								return	E_POINTER;
				*pRetVal	=	SysAllocString(m_bstrName);
				if	(!*pRetVal)
								return	E_OUTOFMEMORY;
				return	NOERROR;
}

STDMETHODIMP	CTaskNoUI::put_Name(
												/*	[in]	*/	BSTR	NewValue)
{
				if	(m_bstrName)
								SysFreeString(m_bstrName);
				m_bstrName	=	SysAllocString(NewValue);
				if	(!m_bstrName)
								return	E_OUTOFMEMORY;
				return	NOERROR;
}

STDMETHODIMP	CTaskNoUI::get_Description(
												/*	[retval][out]	*/	BSTR		*pRetVal)
{

				if	(!pRetVal)
								return	E_POINTER;
				*pRetVal	=	SysAllocString(m_bstrDescription);
				if	(!*pRetVal)
								return	E_OUTOFMEMORY;
				return	NOERROR;
}

STDMETHODIMP	CTaskNoUI::put_Description(
												/*	[in]	*/	BSTR	NewValue)
{
				if	(m_bstrDescription)
								SysFreeString(m_bstrDescription);
				m_bstrDescription	=	SysAllocString(NewValue);
				if	(!m_bstrDescription)
								return	E_OUTOFMEMORY;
				return	NOERROR;
}

STDMETHODIMP	CTaskNoUI::Execute(
												/*	[in]	*/	IDispatch		*pPackage,
												/*	[in]	*/	IDispatch		*pPackageEvents,
												/*	[in]	*/	IDispatch		*pPackageLog,
												/*	[out][in]	*/	LONG		*pTaskResult)
{
				USES_CONVERSION;								//	Needed	for	functions	like	A2W,	OLE2T,	etc.
				HRESULT	hr	=	NOERROR;

				//	TODO:	Put	functionality	of	custom	task	here.

				*pTaskResult	=	DTSTaskExecResult_Success;
				return	hr;
}

TaskNoUI.rgs
This	file	contains	the	registry	script	for	the	task	class.	The	lines	to	be	added
define	the	task	icon	location,	localizable	task	description,	and	the	component
category	for	DTS	tasks.

Adding	Registry	Script
Insert	these	lines	immediately	following	the	definition	of	the	TypeLib	subkey:

												'Implemented	Categories'
												{
																'{10020200-EB1C-11CF-AE6E-00AA004A34D5}'
												}
												DTSTask
												{
																'1033'
																{
																				val	DTSIconFile	=	s	'%MODULE%'
																				val	DTSIconIndex	=	d	0
																				val	DTSTaskDescription	=	s	'TaskNoUI	Class'
																}
												}
												val	DTSIconFile	=	s	'%MODULE%'
												val	DTSIconIndex	=	d	0
												val	DTSTaskDescription	=	s	'TaskNoUI	Class'

To	verify	that	the	Implemented	Categories	globally	unique	identifier	(GUID)	is
correct,	look	for	it	in	dtspkg.h	under	the	definition	for
CATID_DTSCustomTask.	You	can	verify	that	it	is	among	the	subkeys	of
HKEY_CLASSES_ROOT\Component	Categories\	in	the	registry	of	a	computer
on	which	SQL	Server	2000	client	tools	(or	the	full	product)	have	been	installed.

DTSCusTskBasic.idl
This	file	contains	the	definitions	for	the	interfaces	of	the	project.	You	need	to

add	the	definitions	of	the	elements	of	the	IDTSCustomTask	interface	to	the
ITaskNoUI	definition.

Adding	IDTSCustomTask	Element	Definitions
Insert	the	following	interface	element	definitions	into	the	definition	of	the
ITaskNoUI	interface,	immediately	following	these	lines:

				interface	ITaskNoUI	:	IDispatch
				{

Add	these	lines	of	code:

								//**
								//	This	interface	implements	IDTSCustomTask.		We	cannot	directly	inherit	
								//	because	ATL	requires	us	to	explicitly	inherit	from	IDispatch.	
								//**

								[id(7),	propget,	helpstring("List	of	Properties	for	this	object")]
								HRESULT	Properties([out,	retval]	IDispatch	**pRetVal);
								[id(9),	propget,	helpstring("Name	of	Task")]
								HRESULT	Name([out,	retval]	BSTR	*pRetVal);
								[id(9),	propput]
								HRESULT	Name([in]	BSTR	NewValue);
								[id(10),	propget,	helpstring("Description	of	the	task")]
								HRESULT	Description([out,	retval]	BSTR	*pRetVal);
								[id(10),	propput]
								HRESULT	Description([in]	BSTR	NewValue);

								[id(11),	helpstring("Execute	Task.		Reference	to	Package	allows	access	to	objects	in	the	hierarchy.		Package	object	and	all	objects	in	its	hierachy	must	not	be	used	after	returning	from	this	call.		Check	event	and	logging	interfaces	for	NULL/Nothing	before	using	them.")]
								HRESULT	Execute([in]	IDispatch	*	pPackage,	[in]	IDispatch	*	pPackageEvents,	[in]	IDispatch	*	pPackageLog,	[in,	out]	LONG	*	pTaskResult);

								//**
								//	Make	sure	that	any	elements	you	add	to	this	interface	go	at
								//	the	end	of	the	vtable.

								//**

DTS	Programming

Building	a	DTS	Custom	Task	from	the	ATL	Custom
Task	Basic	Template
To	build	a	custom	task	with	a	user	interface,	use	the	ATL	custom	task	basic
template.	This	template	is	included	in	Microsoft®	SQL	Server™	2000	Data
Transformation	Services	(DTS)	sample	programs.	The	basic	template	does	not
support	a	custom	user	interface.	For	more	information	about	DTS	samples,	see
DTS	Programming	Samples.

Installing	the	ATL	Custom	Task	Basic	Template
To	install	the	ATL	custom	task	basic	template,	do	the	following:

1.	 Copy	all	the	files	in	the	DTSTaskBasicTemplate	folder	except
DTSCuTsk.reg	to	C:\Program	Files\Microsoft	Visual
Studio\Common\MSDev98\Template\ATL\.	This	location	will	be
different	if	Microsoft®	Visual	Studio®	version	6.0	was	not	installed	to
the	default	location.

2.	 Double-click	DTSCuTsk.reg	to	run	the	file.

Building	a	Custom	Task	Framework	from	the	Template

You	can	create	an	ATL	component	that	includes	a	custom	task	class	that	does	not
support	a	user	interface	by	using	the	Microsoft	Visual	C++®	development
environment.

To	build	a	custom	task	framework	from	the	template

1.	 On	the	File	menu,	click	New,	and	then	click	the	Projects	tab.	

2.	 Click	ATL	COM	AppWizard,	and	then	enter	a	project	name	and
location.

For	this	discussion,	assume	you	entered	DTSCusTskBasic	for	the

project	name.

3.	 Click	Dynamic	Link	Library	(DLL),	click	Finish,	and	then	in	the
New	Project	Information	dialog	box,	click	OK.

4.	 On	the	Insert	menu,	click	New	ATL	Object.	

5.	 On	the	ATL	Object	Wizard	screen,	click	DTS	Custom	Objects,	click
DTS	Task	w/o	UI,	and	then	click	Next.

6.	 On	the	Names	tab,	enter	a	name	into	the	Short	Name	box.

For	this	discussion,	assume	you	entered	TaskNoUI.	The	wizard	will
fill	in	the	other	fields.	The	COM/Type	field	is	the	name	that	will
appear	in	the	Task	menu	of	DTS	Designer.	You	can	change	it	from	the
default	TaskNoUI	Class.

7.	 Click	the	Attributes	tab,	and	then	do	the	following:

Under	Threading	Model,	click	Both.	

Under	Interface,	click	Dual.

Under	Aggregation,	click	No.

Select	the	Support	ISupportErrorInfo	check	box.

The	wizards	will	create	files	for	the	DTSCusTskBasic	component	and	the
TaskNoUI	class	and	save	them	to	the	project	location	folder	specified	in	Step	1.

If	you	build	this	custom	task	project	from	the	Build/Build	DTSCusTskBasic.dll
menu	before	you	add	any	custom	code,	Visual	C++	installs	a	custom	task	that
appears	in	the	Task	menu	of	DTS	Designer	and	can	be	included	in	a	DTS
package.	When	added	to	a	package,	the	task	uses	the	DTS	default	icon	and
displays	the	DTS	default	property	grid.	However,	this	task	will	not	perform	any
function	when	the	package	is	run.	For	more	information	on	implementing	and

testing	a	custom	task,	see	Implementing	and	Testing	a	DTS	Custom	Task.

DTS	Programming

Adding	a	DTS	User	Interface	to	the	Custom	Task
Framework
To	build	a	custom	task	that	supports	a	custom	task	user	interface,	create	a	project
from	the	Active	Template	Library	(ATL)	custom	task	basic	template,	add	another
class	and	the	interface	and	other	elements	required	by	tasks	that	support	a
custom	user	interface,	and	then	add	the	features	of	the	specific	custom	task.

This	topic	explains	how	to	add	the	elements	required	by	a	Data	Transformation
Services	(DTS)	task	with	a	custom	user	interface.	You	can	also	use	the	ATL
custom	task	user	interface	templates	supplied	as	samples	with	Microsoft®	SQL
Server™	2000.	Even	if	you	plan	to	use	the	custom	task	user	interface	templates,
you	need	to	understand	the	features	that	were	added	to	create	the	custom	task
user	interface	templates	from	the	basic	custom	task	template.	For	more
information,	see	Building	a	Custom	Task	with	User	Interface	from	the	ATL
Custom	Task	Templates.

Building	a	Custom	Task	Framework	with	a	UI	Class
You	can	create	a	Custom	Task	Framework	that	includes	a	class	for	the	custom
user	interface	using	Microsoft	Visual	C++®	version	6.0.

To	build	a	custom	task	framework	with	a	user	interface	class

1.	 Create	a	framework	for	a	custom	task	using	the	ATL	custom	task	basic
template.

Assume	you	named	the	component	DTSCusTskWUI	and	the	custom
task	class	TaskUISupp.	For	more	information,	see	Building	a	Custom
Task	from	the	ATL	Custom	Task	Basic	Template.

2.	 Add	another	class	for	the	user	interface.	On	the	Insert	menu,	click
New	ATL	Object.	On	the	ATL	Object	Wizard	screen,	click	Objects,
and	then	click	Simple	Object.	Click	Next.

3.	 On	Names,	enter	a	short	name.

Assume	you	entered	UserIF.	The	wizard	will	fill	in	the	other	fields.

4.	 Click	the	Attributes	tab,	and	then	do	the	following:

Under	Threading	Model,	click	Apartment.

Under	Interface,	click	Dual.

Under	Aggregation,	click	Yes.

The	user	interface	class	will	not	work	unless	it	can	be
aggregated.

The	wizards	will	create	files	for	the	DTSCusTskWUI	component	and	the
TaskUISupp	and	UserIF	classes,	and	save	them	to	the	project	location	folder
specified	when	you	created	the	framework	in	the	first	step.

Adding	Features	to	Support	a	Custom	UI
After	creating	the	custom	task	framework	with	TaskUISupp	and	UserIF	class
files,	you	need	to	add	features	to	support	the	user	interface.	In	this	section,	all
files	will	have	the	same	names	you	specified	for	the	classes.

File Features
TaskUISupp.h Function	prototypes,	private	declarations,	and	COM

map	entries	for	the	elements	that	connect	the	custom
task	class	to	the	user	interface	class.

TaskUISupp.cpp Definitions	for	the	functions	that	connect	the	task	class
to	the	user	interface	class.

UserIF.h Function	prototypes,	private	declarations,	and	COM
map	entries	for	the	IDTSCustomTaskUI	interface
elements.

UserIF.cpp Initial	function	definitions	for	the
IDTSCustomTaskUI	interface	methods.

DTSCusTskWUI.idl Declaration	of	the	IDTSCustomTaskUI	interface
elements	in	the	IUserIF	interface.

TaskUISupp.h
In	this	header	file,	you	need	to	add	the	following:

Prototypes	for	the	functions	that	connect	the	custom	task	class	to	the
user	interface	class

COM	Map	entries	for	the	IDTSCustomTask	and	IDTSCustomTaskUI
interfaces

A	declaration	of	an	interface	pointer	variable

Adding	Hook	Function	Prototypes

These	prototypes	are	for	functions	that	are	called	when	a	QueryInterface
request	for	the	IDTSCustomTaskUI	interface	is	made	to	the	task	class.

Following	the	constructor	and	destructor	prototypes	for	the	task	class:

				CTaskUISupp();
				~CTaskUISupp();

add	these	lines	of	code:

				static	HRESULT	WINAPI	FuncPreQueryInterface(void*	pv,	REFIID	riid,	
																																																LPVOID*	ppv,	DWORD	dw);
				HRESULT	PreQueryInterface(REFIID	riid,	LPVOID	*ppv);

Adding	COM	Map	Entries
You	need	to	replace	the	COM	map	entry	for	the	ITaskUISupp	interface	so	that
it	responds	when	presented	with	the	interface	ID	for	the	IDTSCustomTask.	You
need	to	add	a	COM	map	entry	that	invokes	the	hook	function	when	presented
with	the	interface	ID	for	IDTSCustomTaskUI.

Replace	the	following	COM	map	entries:

				COM_INTERFACE_ENTRY(IDispatch)
				COM_INTERFACE_ENTRY2(IDTSCustomTask,	ITaskUISupp)

with	these	lines:

				COM_INTERFACE_ENTRY2(IDispatch,	ITaskUISupp)
				COM_INTERFACE_ENTRY_IID(IID_IDTSCustomTask,	ITaskUISupp)
				COM_INTERFACE_ENTRY_FUNC(IID_IDTSCustomTaskUI,	0,	CTaskUISupp::FuncPreQueryInterface)

Adding	an	Interface	Pointer	Variable
This	declaration	is	for	a	pointer	variable	for	the	user	interface	class,	which	is	set
by	the	hook	functions.

Immediately	following	these	lines:

				BSTR								m_bstrName;
				BSTR								m_bstrDescription;

add	this	declaration:

				IUnknown				*	m_pIUnkDTSCustomTaskUI;

TaskUISupp.cpp
In	this	Visual	C++	file	for	the	task	class,	you	need	to	add	the	following:

An	external	reference	for	the	class	id	of	the	user	interface	class

Code	to	initialize	the	user	interface	class	interface	pointer	variable	in
the	task	class	constructor

Code	to	release	the	pointer	to	the	user	interface	class	in	the	task	class
destructor

Functions	that	create	an	instance	of	the	user	interface	class	and	issue	a
QueryInterface	for	IDTSCustomTaskUI

Adding	an	External	Reference	for	the	class	id

Following	this	include	statement:

#include	"TaskUISupp.h"

add	this	external	reference:

extern		const	CLSID									CLSID_UserIF;

Initializing	the	User	Interface	Pointer
At	the	end	of	the	task	class	constructor	(before	the	right	curly	bracket):

CTaskUISupp::CTaskUISupp()

add	this	line	of	code:

				m_pIUnkDTSCustomTaskUI	=	NULL;

Releasing	the	Interface	Pointer
Release	the	reference	to	the	IDTSCustomTaskUI	interface	if	it	exists	in	the	task
class	destructor.

At	the	end	of	the	destructor	(before	the	right	curly	bracket):

CTaskUISupp::~CTaskUISupp()

add	these	lines	of	code:

				if(m_pIUnkDTSCustomTaskUI)
								if(m_pIUnkDTSCustomTaskUI->Release()	!=	0)
												/*	_ASSERT(0)	*/				NULL;

Adding	Hook	Function	Definitions
These	functions	first	obtain	a	reference	to	the	aggregating	object,	which	is	the
custom	task	class.	If	the	QueryInterface	request	is	for	the	IDTSCustomTaskUI
interface	and	the	user	interface	has	not	yet	been	created,	an	instance	of	the	user
interface	is	created.	Then	the	QueryInterface	is	requested	from	the	aggregated
object,	the	user	interface	class.

After	the	task	class	destructor:

CTaskUISupp::~CTaskUISupp()	{	...	}

add	these	lines	of	code:

HRESULT	WINAPI	CTaskUISupp::FuncPreQueryInterface(void*	pv,	REFIID	riid,	LPVOID*	ppv,	DWORD	dw)
{
				HRESULT	hr	=	E_FAIL;
				_ASSERT(pv);
				CTaskUISupp	*	pDTSCustTask	=	(CTaskUISupp	*)pv;
				return	pDTSCustTask->PreQueryInterface(riid,	ppv);
}

HRESULT	CTaskUISupp::PreQueryInterface(REFIID	riid,	LPVOID	*ppv)
{
				HRESULT					hr	=	S_FALSE;
				IUnknown				*	pIUnknownOuter;

				if	(!ppv)
				{
								hr	=	E_POINTER;
								goto	error;
				}
				if	FAILED(hr	=	QueryInterface(IID_IUnknown,	(void	**)&pIUnknownOuter))
								goto	error;

				*ppv	=	NULL;
				if	(IID_IDTSCustomTaskUI	==	riid)	
				{
								if(!m_pIUnkDTSCustomTaskUI)
												if	FAILED(hr	=	CoCreateInstance(CLSID_UserIF,
																																												pIUnknownOuter,	CLSCTX_INPROC_SERVER,
																																												IID_IUnknown,	(LPVOID*)&m_pIUnkDTSCustomTaskUI))

																goto	error;

								hr	=	m_pIUnkDTSCustomTaskUI->QueryInterface(riid,	ppv);
				}
				else
								hr	=	S_FALSE;

error:
				return	hr;
}

UserIF.h
In	this	header	file	for	the	user	interface	class,	you	need	to	add	the	following:

Include	statements	for	the	DTS	package	header	file

Prototypes	for	the	class	constructor	and	destructor

A	COM	Map	entry	for	the	IDTSCustomTaskUI	interface

Prototypes	for	the	IDTSCustomTaskUI	interface	elements

Adding	an	Include	Statement

Immediately	preceding	the	include	statement	for	resource.h:

#include	"resource.h"							//	main	symbols

add	this	header	file	include	statement:

#include	"dtspkg.h"

Adding	Constructor	and	Destructor	Prototypes
You	need	to	add	prototypes	for	the	class	constructor	and	destructor.	The

constructor	body	will	be	moved	to	UserIF.cpp

Replace	the	following	lines:

				CUserIF()
				{
				}

with	these	prototype	declarations:

				CUserIF();
				~CUserIF();

Adding	a	COM	Map	Entry
Immediately	following	the	COM	map	entry	for	IDispatch:

				COM_INTERFACE_ENTRY(IDispatch)

add	this	COM	map	entry	for	IDTSCustomTaskUI:

				COM_INTERFACE_ENTRY_IID(IID_IDTSCustomTaskUI,	IUserIF)

Adding	Function	Prototypes
You	must	supply	the	function	prototypes	for	the	IDTSCustomTask	interface
and	declarations	for	pointers	to	the	generic	and	custom	task	interfaces.

Immediately	after	the	following	lines:

//	IUserIF
public:

add	these	lines	of	code:

				STDMETHOD(CreateCustomToolTip)(long	hwndParent,	long	x,	long	y,	long	*plTipWindow);
				STDMETHOD(Help)(long	hwndParent);
				STDMETHOD(Delete)(long	hwndParent);
				STDMETHOD(Edit)(long	hwndParent);
				STDMETHOD(New)(long	hwndParent);

				STDMETHOD(GetUIInfo)(BSTR	*pbstrToolTip,	BSTR	*pbstrDescription,	long	*plVersion,	/*DTSCustomTaskUIFlags*/long	*pFlags);
				STDMETHOD(Initialize)(IUnknown	*pTask);

private:
				IDTSTask								*	m_pIDTSTask;
				IDTSCustomTask		*	m_pIDTSCustomTask;

UserIF.cpp
In	this	file,	you	must	provide	the	initial	function	definitions	for	the	elements	of
the	IDTSCustomTaskUI	interface	and	the	class	constructor	and	destructor.

Adding	Initial	IDTSCustomTaskUI	Function	Definitions
Add	these	lines	of	code	at	the	end	of	the	existing	file:

CUserIF::CUserIF()
{
				m_pIDTSTask	=	NULL;
				m_pIDTSCustomTask	=	NULL;
}
CUserIF::~CUserIF()
{
}

STDMETHODIMP	CUserIF::CreateCustomToolTip(long	hwndParent,	long	x,	long	y,	long	*plTipWindow)
{
				//	TODO:	Add	your	implementation	code	here.

				return	E_NOTIMPL;
}

STDMETHODIMP	CUserIF::Help(long	hwndParent)
{
				//	TODO:	Add	your	implementation	code	here.

				return	E_NOTIMPL;
}

STDMETHODIMP	CUserIF::Delete(long	hwndParent)
{
				//	TODO:	Add	your	implementation	code	here.

				return	S_OK;
}

//	Pop	up	dialog	box	to	get	user's	property	information.
STDMETHODIMP	CUserIF::New(long	hwndParent)
{
				//if(!m_pIDTSTask	||	!m_pIDTSCustomTask)
				//		return	E_FAIL;
				//return	NOERROR;

				//	TODO:	Add	your	implementation	code	here.

				return	E_NOTIMPL;
}

//	Pop	up	dialog	box	to	get	user's	property	information.
//	Fill	the	existing	information	in	the	controls.
STDMETHODIMP	CUserIF::Edit(long	hwndParent)
{
				//if(!m_pIDTSTask	||	!m_pIDTSCustomTask)
				//		return	E_FAIL;
				//return	NOERROR;

				//	TODO:	Add	your	implementation	code	here.

				return	E_NOTIMPL;
}

STDMETHODIMP	CUserIF::GetUIInfo(BSTR	*pbstrToolTip,	BSTR	*pbstrDescription,	long	*plVersion,	long	*pFlags)
{
				//	TODO:	Add	your	implementation	code	here.

				return	S_OK;
}

//	Get	custom	task	interface	pointer.
STDMETHODIMP	CUserIF::Initialize(IUnknown	*pTask)
{
				HRESULT	hr	=	E_FAIL;

				m_pIDTSTask	=	NULL;

				if	FAILED(hr	=	pTask->QueryInterface(IID_IDTSTask,	(void	**)	&m_pIDTSTask))
								return	hr;

				//	Release	it	immediately.	Do	not	add	ref	outer	object.
				m_pIDTSTask->Release();

				if	FAILED(hr	=	m_pIDTSTask->GetCustomTask(&m_pIDTSCustomTask))
								return	hr;

				//	Release	it	immediately.	Do	not	add	ref	outer	object.
				m_pIDTSCustomTask->Release();

				return	NOERROR;
}

DTSCusTskWUI.idl

In	this	file,	which	contains	the	definitions	for	the	interfaces	of	the	project,	you
need	to	add	the	definitions	of	the	elements	of	the	IDTSCustomTaskUI	interface
to	the	IUserIF	definition.

Adding	IDTSCustomTaskUI	Element	Definitions
Into	the	definition	of	the	ITaskNoUI	interface,	immediately	following	these
lines:

				interface	IUserIF	:	IDispatch
				{

add	these	lines	of	code:

								[id(106),	helpstring("Initialize	the	object	at	design	time	with	any	information	needed.	The	Task	object	associated	with	the	custom	task	is	passed	in.")]	
								HRESULT	Initialize(IUnknown	*pTask);
								[id(100),	helpstring("This	method	is	called	to	get	top	level	UI	information	for	the	task.")]	
								HRESULT	GetUIInfo(BSTR	*pbstrToolTip,	BSTR	*pbstrDescription,	long	*plVersion,	long	*pFlags);
								[id(101),	helpstring("A	New	instance	of	the	custom	task	is	to	be	added.	Please	display	appropriate	UI	(usually	a	wizard	or	property	sheet).")]	
								HRESULT	New(long	hwndParent);
								[id(102),	helpstring("The	'Edit'	command	has	been	invoked	on	the	custom	task	object.	Please	display	appropriate	UI	(a	property	sheet	usually).")]	
								HRESULT	Edit(long	hwndParent);
								[id(103),	helpstring("The	'Delete'	command	has	been	invoked	on	the	custom	task	object.")]	
								HRESULT	Delete(long	hwndParent);
								[id(104),	helpstring("The	'Help'	command	has	been	invoked	on	the	custom	task	object.")]	
								HRESULT	Help(long	hwndParent);
								[id(105),	helpstring("If	the	custom	task	requested	a	custom	tooltip	then	this	method	will	be	called	to	create	the	tip	window.")]	
								HRESULT	CreateCustomToolTip(long	hwndParent,	long	x,	long	y,	long	*plTipWindow);

DTS	Programming

Building	a	DTS	Custom	Task	with	a	User	Interface
from	the	ATL	Custom	Task	Templates
To	build	a	custom	task	with	a	user	interface,	use	the	Active	Template	Library
(ATL)	custom	task	templates,	which	support	a	user	interface.	These	templates
are	included	in	the	Microsoft®	SQL	Server™	2000	Data	Transformation
Services	(DTS)	sample	programs.	The	basic	template	does	not	support	a	user
interface.	For	more	information	about	DTS	samples,	see	DTS	Programming
Samples.

Installing	the	ATL	Custom	Task	User	Interface	Templates
To	install	the	ATL	custom	task	user	interface	templates,	do	the	following:

1.	 Copy	all	the	files	in	the	DTSTaskUITemplates	folder	except
DTSCuTskUI.reg	to	C:\Program	Files\Microsoft	Visual
Studio\Common\MSDev98\Template\ATL\.	This	location	will	be
different	if	Microsoft	Visual	Studio®	version	6.0	was	not	installed	to
the	default	location.

2.	 Double-click	DTSCuTskUI.reg	to	run	the	file.

Building	a	Custom	Task	Framework	from	the	Templates

You	can	create	an	ATL	component	that	includes	both	a	custom	task	class	that
supports	a	custom	user	interface,	as	well	as	a	user	interface	class,	by	using	the
Microsoft	Visual	C++®	development	environment.

To	build	a	custom	task	framework	from	the	templates

1.	 On	the	File	menu,	click	New,	and	then	click	the	Projects	tab.	

2.	 Click	ATL	COM	AppWizard,	and	then	enter	a	project	name	and
location.

Assume	you	entered	DTSCusTskWUI	for	the	project	name.

3.	 Click	Dynamic	Link	Library	(DLL),	click	Finish,	and	in	the	New
Project	Information	dialog	box,	click	OK.

4.	 On	the	Insert	menu,	click	New	ATL	Object.	

5.	 On	the	ATL	Object	Wizard	screen,	click	DTS	Custom	Objects,	click
DTS	Task	w/	UI	Support,	and	then	click	Next.

6.	 On	the	Names	tab,	enter	a	short	name.

Assume	you	entered	TaskUISupp.	The	wizard	will	fill	in	the	other
fields.	The	COM/Type	field	is	the	name	that	will	appear	in	the	Task
menu	of	DTS	Designer,	You	can	change	it	from	the	default
TaskUISupp	Class.

7.	 Click	the	Attributes	tab,	and	then	do	the	following:

Under	Threading	Model,	click	Both.	

Under	Interface,	click	Dual.

Under	Aggregation,	click	No.

Select	the	Support	ISupportErrorInfo	check	box.

8.	 Again,	on	the		Insert	menu,	click	New	ATL.	

9.	 On	the	ATL	Object	Wizard	screen,	click	DTS	Custom	Objects,	click
DTS	Task	w/	UI	Support,	and	then	click	Next.

10.	 On	the	Names	tab,	enter	a	short	name.

Assume	you	entered	UserIF.	The	wizard	will	fill	in	the	other	fields.

11.	 Click	the	Attributes	tab,	and	then	do	the	following:

Under	Threading	Model,	click	Apartment.

Under	Interface,	click	Dual.

Under	Aggregation,	click	Yes.

The	wizards	will	create	files	for	the	DTSCusTskWUI	component	and	the
TaskUISupp	and	UserIF	classes	and	save	them	to	the	project	location	folder
specified	in	Step	1.

If	you	build	this	custom	task	project	from	the	Build/Build	DTSCusTskBasic.dll
menu	before	adding	any	custom	code,	you	install	a	custom	task	that	will	appear
in	the	Task	menu	of	DTS	Designer	and	can	be	included	in	a	DTS	package.
When	added	to	a	package,	the	task	will	use	the	DTS	default	icon.	Until	code	is
added	to	the	IDTSCustomTaskUI	methods,	it	will	display	the	DTS	default
property	grid.	However,	this	task	will	not	perform	any	function	when	the
package	is	run.	For	more	information	about	implementing	and	testing	a	custom
task,	see	Implementing	and	Testing	a	DTS	Custom	Task.

DTS	Programming

Implementing	and	Testing	a	DTS	Custom	Task
To	implement	and	test	a	Data	Transformation	Services	(DTS)	custom	task,	you
need	to:

Install	the	Microsoft®	SQL	Server™	2000	header	and	library	files	on
your	development	computer.

Build	a	custom	task	framework.

Configure	Microsoft	Visual	C++®	to	build	the	project.

Add	custom	code	to	the	task	framework.

Register	and	optionally	unregister	the	custom	task.

Debug	the	custom	task.

Installing	SQL	Server	2000	Header	and	Library	Files

To	install	the	header	and	library	files,	you	must	do	a	custom	installation	of	either
SQL	Server	2000	or	the	SQL	Server	2000	client	tools	on	the	computer	on	which
you	develop	the	custom	task.

To	install	header	and	library	files	during	a	custom	installation

1.	 In	the	Setup	Type	dialog	box,	click	Custom.	

2.	 In	the	Select	Component	dialog	box,	under	Components,	select	the
Development	Tools	check	box.	

3.	 Under	Sub-Components,	check	the	Headers	and	Libraries	and

Debugger	Interface	check	boxes.

Building	a	Custom	Task	Framework

To	build	the	task	framework,	add	code	to	a	standard	Active	Template	Library
(ATL)	template	or	use	the	custom	task	templates	included	with	SQL	Server	2000
.	For	more	information,	see	Building	a	Custom	Task	from	the	ATL	Custom	Task
Basic	Template	and	Building	a	Custom	Task	with	a	User	Interface	from	the	ATL
Custom	Task	Templates.

Configuring	Visual	C++	to	Build	the	Project
Before	you	attempt	to	compile	any	of	the	framework	files,	configure	Visual	C++
to	access	SQL	Server	2000	header	and	library	files.

To	configure	Visual	C++	to	access	SQL	Server	2000	files

1.	 On	the	Tools	menu,	click	Options.	

2.	 In	the	Options	dialog	box,	click	the	Directories	tab.

3.	 In	the	Show	directories	for	list,	enter	the	paths	from	the	following
table	at	the	top	of	the	Directories	list	for	each	entry.

File	type Path
Executable
files

C:\Program	Files\Microsoft	SQL	Server\80\Tools\Binn

Include	Files C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include

Library	files C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Lib

Source	files C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include

This	only	needs	to	be	done	once	after	installing	SQL	Server	2000.	The	paths	will

be	different	if	SQL	Server	2000	components	were	installed	to	other	than	the
default	locations.

You	also	need	to	define	the	preprocessor	symbol	_ATL_NO_UUIDOF.

To	enter	preprocessor	symbols

1.	 On	the	Project	menu,	click	Settings.	

2.	 Click	the	C/C++	tab,	and	then	in	the	Preprocessor	definitions	box,
enter	the	preprocessor	symbols	(comma	separated)	at	the	end	of	the
list.

Adding	Code	to	the	Framework

You	need	to	add	code	for	the	logic	specific	to	your	custom	task.

For	all	tasks,	you	need	to	implement	the	functionality	of	your	task	in	the
Execute	method.	Typically,	the	Name	and	Description	properties	do	not	need	to
be	modified.	Logic	needs	to	be	added	to	the	Properties	property	only	when	the
functionality	of	the	DTS	default	properties	provider	is	insufficient.	For	more
information,	see	DTS	Custom	Task	Fundamentals.

For	tasks	supporting	a	user	interface,	you	need	to	add	logic	to	the	New	and	Edit
methods	to	display	the	task	user	interface.	If	the	task	is	to	display	a	Help	page,
you	need	to	add	logic	to	display	the	page	in	the	Help	method.	The	code
generated	by	the	templates	for	these	methods	returns	E_NOTIMPL,	which
causes	DTS	Designer	to	display	the	DTS	default	property	grid	or	a	generic	Help
page.	For	more	information,	see	Including	a	DTS	Custom	Task	User	Interface.

To	add	properties	and	methods	to	your	custom	task

1.	 In	the	Workspace	window,	right-click	the	interface	for	your	custom
task	class	or	user	interface	class,	depending	on	where	you	want	to	add
the	element.	Then	click	Add	Property	or	Add	Method.

2.	 In	the	Add	Property	to	Interface	or	Add	Method	to	Interface	dialog
box,	enter	the	name,	type	and	other	requested	information.

For	properties,	you	will	need	to	specify	whether	get_property,

put_property,	or	both	are	supported.	Typically,	for	read/write
properties,	select	the	Get	Function	and	Put	Function	check	boxes
and	click	PropPut.	For	read-only	properties,	select	the	Get	Function
check	box.

3.	 Click	Attributes,	and	then	change	the	helpstring	to	something
meaningful	for	the	property	or	method.

If	you	change	the	id,	make	certain	you	do	not	cause	the	elements	you
add	to	come	before	the	elements	added	by	the	templates	in	the
interface	definition	lists	in	the	.idl	file.

This	procedure	adds	shells	for	the	get_property,	put_property	or	method
functions	to	your	project.	You	must	provide	the	code	to	implement	them.

The	procedure	also	adds	entries	to	the	appropriate	interface	in	the	project	.idl
file.	Make	sure	that	entries	are	added	at	the	end	of	the	list	for	the	interface,
because	the	list	order	determines	the	structure	of	the	vtable	that	Visual	C++	uses
to	navigate	to	the	elements	of	the	interface.

For	more	information	about	coding	custom	task	logic,	see	DTS	Example:
Adding	Properties	and	Icons	in	Visual	C++	and	DTS	Example:	Including	a	User
Interface	in	Visual	C++.

Registering	Custom	Tasks
When	you	build	the	custom	task	project	in	Visual	C++,	it	registers	the	task	as	the
final	step	of	the	build	process.	If	you	have	enabled	DTS	component	caching,	you
will	need	to	refresh	the	cache	or	DTS	Designer	will	not	be	able	to	see	the	custom
task	component.

To	refresh	the	cache

1.	 In	SQL	Server	Enterprise	Manager,	right-click	Data	Transformation
Services,	and	then	click	Properties.	

2.	 In	the	Package	Properties	dialog	box,	click	Refresh	Cache.

When	you	remove	a	custom	task	from	your	computer,	unregister	it	before
deleting	the	component	.dll	file.

To	unregister	a	custom	task

1.	 From	the	command	prompt,	set	the	path	to	the	folder	that	contains	the
custom	task	component	DLL.	

2.	 Enter:
			regsvr32	/u	Component.dll

3.	 If	DTS	caching	is	enabled,	refresh	the	cache.

Do	not	rely	on	utilities	like	Microsoft	RegClean	to	remove	registry	entries	after
you	have	deleted	the	corresponding	registered	files.	These	utilities	often	only
partially	remove	registry	entries.

Debugging	Custom	Tasks
It	is	recommended	that	you	compile	both	Unicode	and	non-Unicode	versions	of
your	component,	even	in	the	absence	of	a	requirement	to	run	on	both	types	of
systems.	Clean	compilation	of	both	Unicode	and	non-Unicode	versions	helps
ensure	that	conversion	functions	such	as	OLE2T	have	been	used	properly.	Set
the	compilation	mode	from	the	Build/Set	Active	Configuration	menu.

You	can	debug	a	custom	task	by	running	it	from	DTS	Designer	or	from	a	DTS
package	program	(for	example,	one	implemented	in	Microsoft	Visual	Basic®).
In	either	case,	you	must	specify	the	executable	name	and	path,	along	with	any
parameters	the	executable	requires,	on	the	Debug	tab	of	the	Project	Settings
dialog	box.

If	you	use	DTS	Designer,	you	typically	enter	C:\WINNT\system32\mmc.exe	in
the	Executable	for	debug	session	box	and	/s	"C:\Program	Files\Microsoft	SQL
Server\80\Tools\BINN\SQL	Server	Enterprise	Manager.MSC"	in	the	Program
arguments	box.

To	determine	the	correct	debugging	settings	for	your	computer,	find	the	shortcut
used	to	launch	SQL	Server	Enterprise	Manager	from	the	Start	menu.	Then
extract	this	information	from	the	Target	box	on	the	Shortcut	tab	of	the	Enterprise
Manager	Properties	dialog	box.

If	you	get	access	violations	that	you	cannot	trap	because	they	do	not	occur

within	your	component,	verify	that	in	your	.idl	file	all	interface	elements	are
present	and	that	all	user-defined	properties	and	methods	come	at	the	end	of	the
lists	generated	by	the	ATL	templates.	You	can	double	check	your	.idl	file
structure	by	opening	a	new	project	in	Visual	Basic	and	referencing	your
component.	View	your	component	in	Visual	Basic	Object	Browser	and	verify	all
the	properties	and	methods	appear	as	expected.

DTS	Programming

DTS	Custom	Task	Examples	in	Visual	C++
This	section	provides	examples	of	Data	Transformation	Services	(DTS)	custom
tasks	implemented	in	Microsoft®	Visual	C++®.

Example Description
DTS	Example:
Adding	Properties
and	Icons	in	Visual
C++

Displays	a	message	when	executed.	The	text	of	the
message	is	specified	with	a	custom	property.	For
more	information	about	a	similar	task	implemented
in	Microsoft	Visual	Basic®,	see	DTS	Example:
Adding	Properties	and	Icons	in	Visual	Basic

DTS	Example:
Including	a	User
Interface	in	Visual
C++

Displays	the	value	of	a	global	variable	and	allows
user	to	update	the	value.	The	global	variable	name
and	task	description	are	specified	through	properties
using	a	custom	user	interface.	For	more	information
about	a	similar	task	implemented	in	Visual	Basic,	see
DTS	Example:	Including	a	User	Interface	in	Visual
Basic.

DTS	Programming

DTS	Example:	Adding	Properties	and	Icons	in	Visual
C++
This	example,	shown	in	Microsoft®	Visual	C++®,	displays	a	message	when
executed.	The	text	of	the	message	is	provided	by	a	property	you	add.	To
implement	this	example,	do	the	following:

1.	 Create	a	framework	for	a	custom	task	using	the	Active	Template
Library	(ATL)	custom	task	basic	template.

2.	 Add	a	property	for	the	message	text.

3.	 Add	an	icon	that	appears	when	the	task	is	used	in	Data	Transformation
Services	(DTS)	Designer.

4.	 Add	code	to	implement	the	message	and	the	property.

5.	 Build	the	project	and	run	the	custom	task.

Creating	the	Task	Framework

Create	a	custom	task	framework	using	the	ATL	custom	task	basic	template
provided	with	Microsoft	SQL	Server™	2000.	Name	the	component
DTSTskPropIcon	and	the	task	class	GenMessage.	Change	the	Type	field	in
ATL	Object	Wizard	from	GenMessage	Class	to	Generate	Message	Task.	For
more	information	about	using	the	basic	template,	see	Building	a	Custom	Task
from	the	ATL	Custom	Task	Basic	Template.

Adding	the	Message	Property
Add	the	Message	property	to	the	custom	task.

To	add	the	Message	property

1.	 On	the	ClassView	tab	of	the	Workspace	window,	right-click	the
IGenMessage	interface,	and	then	click	Add	Property.

2.	 In	the	Add	Property	to	Interface	dialog	box,	in	the	Property	Type
list,	select	BSTR,	and	then	in	the	Property	Name	box,	enter	Message.

3.	 Click	Attributes,	and	then	change	the	helpstring	from	property
Message	to	Message	to	be	displayed.

Adding	an	Icon

Select	a	suitable	icon	for	the	task	for	which	you	have	an	.ico	file.

To	add	an	icon

1.	 On	the	File	menu,	click	Resources.

2.	 In	the	Insert	Resource	dialog	box,	under	Resource	Type,	select	Icon,
and	then	click	Import.

3.	 In	the	Import	Resource	dialog	box,	browse	to	find	the	.ico	file.

When	you	select	a	file,	the	icon	editor	is	displayed.	If	you	make
changes	to	the	icon,	you	must	edit	both	the	16x16	and	32x32	bit
images.

This	procedure	makes	a	local	copy	of	the	icon	file	in	the	project	directory
whether	or	not	you	made	changes	in	the	icon	editor.

Adding	Implementation	Code
Add	the	following	code	segments	to	the	framework	files:

A	local	variable	to	hold	the	value	of	the	Message	property

Code	to	initialize	and	release	the	Message	property	value

Code	to	retrieve	and	save	the	Message	property	value

Code	to	display	the	message	when	the	task	is	executed

Adding	a	Local	Variable	Declaration

The	declaration	goes	in	the	private	section	for	the	CGenMessage	class,	in	file
GenMessage.h.

Immediately	after	the	lines:

				BSTR				m_bstrName;
				BSTR				m_bstrDescription;

insert	the	line:

				BSTR				m_bstrMessage;

Initializing	and	Releasing	the	Message	Property	Value
The	Message	property	must	be	initialized	to	a	valid	value.	This	is	done	in	the
task	class	constructor	in	GenMessage.cpp.

At	the	end	of	the	task	class	constructor	(before	the	right	curly	bracket):

CGenMessage::CGenMessage()

add	this	line:

								m_bstrMessage	=	SysAllocString(OLESTR(""));

The	allocated	string	must	be	released	before	the	custom	task	is	removed	from
memory.	This	is	done	in	the	class	destructor,	also	in	GenMessage.cpp.

At	the	end	of	the	destructor	(before	the	right	curly	bracket):

CGenMessage::~CGenMessage()

add	this	line:

								if	(m_bstrMessage)	SysFreeString(m_bstrMessage);

Example
The	property	value	must	be	retrieved	in	get_Message	and	saved	in
put_Message.	These	functions	are	in	file	GenMessage.cpp.

Replace	the	//	TODO	comment	in	CGenMessage::get_Message	with	the
following	code:

				if	(!pVal)
								return	E_POINTER;
				*pVal	=	SysAllocString(m_bstrMessage);
				if	(!*pVal)
								return	E_OUTOFMEMORY;

Replace	the	//	TODO	comment	in	CGenMessage::put_Message	with	the
following	code:

				if	(m_bstrMessage)
								SysFreeString(m_bstrMessage);
				m_bstrMessage	=	SysAllocString(newVal);
				if	(!m_bstrMessage)
								return	E_OUTOFMEMORY;

Displaying	the	Message
The	message	is	displayed	in	the	Execute	function	in	file	GenMessage.cpp.	The
Description	property	is	displayed	in	the	message	caption	and	the	Message
property	is	displayed	in	the	message	text.

Replace	the	//	TODO	comment	in	CGenMessage::Execute	with	the	following
code:

				MessageBox(NULL,	OLE2T((LPOLESTR)m_bstrMessage),	
																OLE2T((LPOLESTR)m_bstrDescription),	MB_ICONINFORMATION);

Running	This	Example
To	build	the	project,	click	Build	DTSTskPropIcon.dll	on	the	Build	menu.
Refresh	the	DTS	cache,	if	necessary.	For	more	information	about	preparing	the
custom	task	for	execution,	see	Implementing	and	Testing	a	DTS	Custom	Task.

Open	DTS	Designer	and	drag	the	icon	for	this	task	onto	the	design	sheet.	When
the	default	property	grid	is	displayed,	enter	or	change	the	values	of	the
Description	and	Message	properties.	The	new	value	for	Description	will	be
used	for	the	icon	title.

Note		Do	not	change	the	Name	property.	If	you	do,	DTS	Designer	will	generate
an	error	when	it	is	unable	find	the	task	using	the	original	name.

When	you	execute	the	package,	a	message	box	will	appear	with	the	Description
property	as	its	caption	and	the	Message	property	as	its	text.

DTS	Programming

DTS	Example:	Including	a	User	Interface	in	Visual
C++
This	example,	shown	in	Microsoft®	Visual	C++®,	shows	how	to	implement	a
custom	user	interface	and	dialog	box.	The	dialog	box	displays	a	global	variable,
the	value	of	which	you	update.	The	global	variable	name	and	task	description	are
entered	through	a	custom	user	interface.

Topic Description
Creating	the	Custom	Task
Framework

Describes	how	to	create	a	framework
for	the	custom	task	using	the	Active
Template	Library	(ATL)	custom	task
templates,	enabled	for	a	user
interface,	and	explains	how	to	add
custom	properties	for	the	global
variable	name	and	value.

Implementing	the	Property	Page	and
Display	Dialog	Box

Describes	how	to	use	the	ATL	Dialog
template	to	implement	a	custom	user
interface	for	the	properties	and	a
dialog	box	for	displaying	and
updating	the	global	variable.

Implementing	the	Task	Class Describes	the	code	you	need	to	add
to	the	custom	task	class.

Implementing	the	User	Interface
Class

Describes	the	code	you	need	to	add
to	the	user	interface	class.

Implementing	the	Property	Page
Class

Describes	the	code	you	need	to	add
to	implement	the	property	page.

Implementing	the	Display	Dialog
Class

Describes	the	code	you	need	to	add
to	implement	the	display	and	update
dialog	box.

Building	and	Running	the	DTS
Custom	Task	User	Interface	Example
in	Visual	C++

Describes	what	you	must	do	to	build
and	use	the	Data	Transformation
Services	(DTS)	user	interface	custom

task	example.

DTS	Programming

Creating	the	Custom	Task	Framework
To	include	a	user	interface	in	a	Data	Transformation	Services	(DTS)	custom
task,	you	need	to	create	the	custom	task	framework.	If	you	are	displaying	and
updating	a	global	variable	through	this	user	interface,	add	custom	properties	for
the	global	variable	name	and	value.

Creating	the	Framework
Create	a	custom	task	framework	using	the	Active	Template	Library	(ATL)
custom	task	template,	enabled	for	a	user	interface,	provided	with	Microsoft®
SQL	Server™	2000.	Name	the	component	DTSTskGVUpdate,	the	task	class
TaskGVUpdate,	and	the	user	interface	GVUserIF.	Change	the	Type	field	in
ATL	Object	Wizard	from	TaskGVUpdate	Class	to	Global	Variable	Update
Task	when	creating	the	task	class.	For	more	information	about	using	the
templates	with	user	interface	support,	see	Building	a	Custom	Task	with	User
Interface	from	the	ATL	Custom	Task	Templates.

You	can	add	an	icon	to	the	project	resource	file	that	will	appear	when	the	task	is
added	to	the	Data	Transformation	Services	(DTS)	Designer	design	sheet.	For
more	information	about	adding	an	icon	to	a	custom	task,	see	DTS	Example:
Adding	Properties	and	Icons	in	Visual	C++.

Adding	Custom	Properties
Add	properties	for	the	global	variable	name	and	value	according	to	the	following
table.

Property	name Type Parameters Description
GblVarName BSTR None Name	of	the	global	variable	to	be

displayed	and	updated.
GblVarValue BSTR None Value	of	the	global	variable	named

by	GblVarName.

For	more	information	about	adding	properties	to	an	ATL	custom	task	project,	see
Implementing	and	Testing	a	DTS	Custom	Task.

DTS	Programming

Implementing	the	Property	Page	and	Display	Dialog
Box
For	the	Data	Transformation	Services	(DTS)	custom	task	user	interface	example,
you	need	to	implement	a	property	page,	which	is	the	user	interface	for	entering
custom	task	properties,	and	a	dialog	box	for	displaying	and	updating	the	global
variable	value.

Implementing	the	Property	Page	UI
You	can	create	a	property	page	framework	using	the	Active	Template	Library
(ATL)	Dialog	template.

To	implement	the	user	interface	for	the	properties	page

1.	 On	the	Insert	menu	in	Microsoft®	Visual	C++®,	click	New	ATL
Object.	

2.	 On	the	ATL	Object	Wizard	screen,	click	Miscellaneous,	click
Dialog,	and	then	click	Next.

3.	 On	the	Names	tab,	enter	GVPropPage	for	the	short	name.

The	dialog	box	editor	is	displayed.

4.	 Add	the	following	controls	to	the	dialog	box,	which	already	includes
the	OK	and	Cancel	buttons.

Control
Type ID Description
Static	text IDC_TASK_NAME Field	for	display	of	the	task

name.
Edit	box IDC_TASK_DESCR Field	for	entry	and	display	of

the	task	description.
Edit	box IDC_GV_NAME Field	for	entry	and	display	of

the	global	variable	name.

5.	 Assign	a	suitable	caption	to	the	dialog	box,	and	optionally	add	static
text	fields	to	label	the	above	fields.	If	you	add	static	text	fields,	accept
the	default	ID	of	IDC_STATIC.

Example

The	dialog	box	editor	will	add	a	script	for	the	property	page	similar	to	the
following	to	the	resource	file	DTSTskGVUpdate.rc.

IDD_GVPROPPAGE	DIALOG	DISCARDABLE		0,	0,	266,	113
STYLE	DS_MODALFRAME	|	WS_POPUP	|	WS_CAPTION	|	WS_SYSMENU
CAPTION	"Global	Variable	Update	Properties"
FONT	8,	"MS	Sans	Serif"
BEGIN
				DEFPUSHBUTTON			"OK",1,81,93,50,14
				PUSHBUTTON						"Cancel",2,135,93,50,14
				LTEXT											"Task	Name:",IDC_STATIC,5,5,83,8
				LTEXT											"<task	name>",IDC_TASK_NAME,5,16,256,8
				LTEXT											"Task	Description:",IDC_STATIC,5,31,110,8
				EDITTEXT								IDC_TASK_DESCR,5,43,255,12,ES_AUTOHSCROLL
				LTEXT											"Global	variable	name:",IDC_STATIC,5,63,95,8
				EDITTEXT								IDC_GV_NAME,5,74,255,12,ES_AUTOHSCROLL
END

Implementing	Display	and	Update	Dialog	Box
You	can	create	a	dialog	box	framework	using	the	ATL	dialog	template	for	the
global	variable	display	and	update.

To	implement	the	display	and	update	dialog	box

1.	 Follow	the	procedure	under	Implementing	Properties	Page	UI	and
enter	GVDialog	for	the	short	name.	

2.	 Add	the	following	controls	to	the	dialog	box,	which	already	includes
OK	and	Cancel	buttons.

Control
Type ID Description
Static	text IDC_TASK_DESCR Field	for	display	of	the	task

description.
Static	text IDC_GV_NAME Field	for	display	of	the	global

variable	name.
Edit	box IDC_GV_VALUE Field	for	entry	and	display	of

the	global	variable	value.

3.	 Assign	a	suitable	caption	and	optionally	add	static	text	label	fields.	

4.	 Click	the	More	Styles	tab,	and	then	select	the	Center	check	box.

Example

The	dialog	box	editor	will	add	a	script	for	the	display	and	update	dialog	box
similar	to	the	following	to	the	resource	file	DTSTskGVUpdate.rc.

IDD_GVDIALOG	DIALOG	DISCARDABLE		0,	0,	256,	65
STYLE	DS_MODALFRAME	|	DS_CENTER	|	WS_POPUP	|	WS_CAPTION	|	WS_SYSMENU
CAPTION	"Global	Variable	Update"
FONT	8,	"MS	Sans	Serif"
BEGIN
				DEFPUSHBUTTON			"OK",1,77,44,50,14
				PUSHBUTTON						"Cancel",2,130,44,50,14
				LTEXT											"Task:",IDC_STATIC,5,5,19,8
				LTEXT											"<task	description>",IDC_TASK_DESCR,29,5,219,8
				LTEXT											"Global	variable	name:",IDC_STATIC,5,17,69,8
				LTEXT											"<global	variable	name>",IDC_GV_NAME,81,17,169,8
				EDITTEXT								IDC_GV_VALUE,5,29,246,12,ES_AUTOHSCROLL
END

DTS	Programming

Implementing	the	Task	Class
To	implement	the	task	class	in	the	Data	Transformation	Services	(DTS)	custom
task	user	interface	example,	add	code	to	the	header	file	TaskGVUpdate.h	and	the
Microsoft®	Visual	C++®	file	TaskGVUpdate.cpp.

Adding	Code	to	TaskGVUpdate.h
In	this	header	file	for	the	task	class,	add	declarations	for	storing	the	properties
added	above:

Immediately	after	the	line	in	the	private	section:

				IUnknown				*	m_pIUnkDTSCustomTaskUI;

insert	these	lines:

				//	Storage	for	custom	properties.
				BSTR								m_bstrGblVarName;
				BSTR								m_bstrGblVarValue;

Adding	Code	to	TaskGVUpdate.cpp
Make	these	additions	to	the	task	class	code	file:

An	include	statement	for	the	display	and	update	dialog	box	header	file.

Code	to	initialize	and	release	the	values	of	the	added	properties.

Code	to	retrieve	and	save	the	values	of	the	added	properties.

Code	to	retrieve	the	global	variable	value,	display	the	dialog	box,	and
update	the	global	variable.

Adding	an	Include	Statement

The	include	statement	is	necessary	so	the	Execute	method	can	access	the	dialog
box	class.

Immediately	after	the	line:

#include	"TaskGVUpdate.h"

insert	the	line:

#include	"GVDialog.h"

Initializing	and	Releasing	the	Values	of	the	Added	Properties
The	GblVarName	and	GblVarValue	properties	must	be	initialized	to	valid
values.	This	is	done	in	the	task	class	constructor.

At	the	end	of	the	task	class	constructor	(before	the	right	curly	bracket):

CTaskGVUpdate::CTaskGVUpdate()

add	these	lines:

				m_bstrGblVarName	=	SysAllocString(OLESTR(""));
				m_bstrGblVarValue	=	SysAllocString(OLESTR(""));

The	allocated	strings	must	be	released	before	the	custom	task	is	removed	from
memory.	This	is	done	in	the	class	destructor.

At	the	end	of	the	destructor	(before	the	right	curly	bracket):

CTaskGVUpdate::~CTaskGVUpdate()

add	these	lines:

				if	(m_bstrGblVarName)	SysFreeString(m_bstrGblVarName);
				if	(m_bstrGblVarValue)	SysFreeString(m_bstrGblVarValue);

Retrieving	and	Saving	the	Values	of	the	Added	Properties
The	property	values	must	be	retrieved	in	the	get_property	and	saved	in	the
put_property	functions.

Example
Replace	the	//	TODO	comment	in	CTaskGVUpdate::get_GblVarName	with
the	following	code:

				if	(!pVal)
								return	E_POINTER;
				*pVal	=	SysAllocString(m_bstrGblVarName);
				if	(!*pVal)
								return	E_OUTOFMEMORY;

Replace	the	//	TODO	comment	in	CTaskGVUpdate::put_GblVarName	with
the	following	code:

				if	(m_bstrGblVarName)
								SysFreeString(m_bstrGblVarName);
				m_bstrGblVarName	=	SysAllocString(newVal);
				if	(!m_bstrGblVarName)
								return	E_OUTOFMEMORY;

Replace	the	//	TODO	comment	in	CTaskGVUpdate::get_GblVarValue	with
the	following	code:

				if	(!pVal)
								return	E_POINTER;
				*pVal	=	SysAllocString(m_bstrGblVarValue);
				if	(!*pVal)
								return	E_OUTOFMEMORY;

Replace	the	//	TODO	comment	in	CTaskGVUpdate::put_GblVarValue	with
the	following	code:

				if	(m_bstrGblVarValue)
								SysFreeString(m_bstrGblVarValue);
				m_bstrGblVarValue	=	SysAllocString(newVal);
				if	(!m_bstrGblVarValue)
								return	E_OUTOFMEMORY;

Global	Variable	Display	and	Update	Execute	Method
The	Execute	method	implements	the	functionality	of	the	custom	task.	It	does	a
QueryInterface	on	the	package	reference	to	validate	it,	then	performs	the
following	steps:

1.	 Gets	a	reference	to	the	GlobalVariables	collection.

2.	 Forms	a	variant	from	the	target	global	variable	name,	then	gets	a
reference	to	the	GlobalVariable	object.	The	call	can	fail	only	if	the
ExplicitGlobalVariables	property	of	the	package	is	TRUE.
Otherwise,	the	global	variable	is	created	if	it	does	not	exist.

3.	 Gets	the	value	of	the	global	variable	and	converts	it	to	BSTR	type	so	it
can	be	displayed.	It	sets	the	GblVarValue	property	to	this	value.

4.	 Gets	a	reference	to	the	custom	task	interface,	then	displays	the	dialog
box.	It	passes	the	interface	pointer	to	the	dialog	box	so	that	it	can
retrieve	task	class	properties.

5.	 When	the	dialog	box	is	closed	by	the	user	and	control	returns,	Execute
converts	the	global	variable	back	to	its	original	type	and	updates	the
global	variable	value.

Example

Replace	the	//	TODO	comment	in	CTaskGVUpdate::Execute	with	the
following	code:

				IDTSPackage													*	pIDTSPackage;
				IDTSGlobalVariables					*	pGlobVars;
				IDTSGlobalVariable						*	pGlobVar;
				ITaskGVUpdate											*	pTaskGVUpdate;
				CGVDialog															dlgDialog;
				VARIANT																	vGVName;

				VARIANT																	vGVValue;
				VARIANT																	vGVBSTR;

				//	Preset	for	early	return.
				*pTaskResult	=	DTSTaskExecResult_Failure;

				//	Verify	the	package	object.
				if	FAILED(hr	=	pPackage->QueryInterface(IID_IDTSPackage,	(void	**)	&pIDTSPackage))
								return	hr;

				//	Get	global	variables	collection.
				if(FAILED(hr	=	pIDTSPackage->GetGlobalVariables(&pGlobVars)))
								return	hr;
				pIDTSPackage->Release();

				//	Create	variant	for	global	variable	name.
				VariantInit(&vGVName);
				V_VT(&vGVName)	=	VT_BSTR;
				V_BSTR(&vGVName)	=	SysAllocString(m_bstrGblVarName);

				//	Get	named	global	variable.
				hr	=	pGlobVars->Item(vGVName,	&pGlobVar);
				pGlobVars->Release();
				SysFreeString(V_BSTR(&vGVName));

				//	Can	just	return	status	on	no	global	variable.	DTS	puts	out	a	good	message.
				if(FAILED(hr))		return	hr;

				//	Get	global	variable	value.
				VariantInit(&vGVValue);
				if(FAILED(hr	=	pGlobVar->GetValue(&vGVValue)))
								return	hr;

				//	Convert	GV	value	to	BSTR.
				VariantInit(&vGVBSTR);
				if(FAILED(hr	=	VariantChangeType(&vGVBSTR,	&vGVValue,	
																																								VARIANT_ALPHABOOL,	VT_BSTR)))
								return	hr;

				//	Release	the	value	BSTR	if	necessary.
				if(V_VT(&vGVValue)	==	VT_BSTR)
								SysFreeString(V_BSTR(&vGVValue));

				//	Release	previous	vlaue	of	property,	and	save	current	value.
				SysFreeString(m_bstrGblVarValue);
				m_bstrGblVarValue	=	V_BSTR(&vGVBSTR);

				//	Get	user	interface	for	this	custom	task.
				if	FAILED(hr	=	QueryInterface(IID_ITaskGVUpdate,	(void	**)	&pTaskGVUpdate))
								return	hr;

				//	Put	up	dialog	box	to	display	global	variable	value.
				dlgDialog.DoModal(NULL,	(long)pTaskGVUpdate);	
				pTaskGVUpdate->Release();

				//	Convert	updated	property	back	to	variant	of	original	type	(or	BSTR,	if	empty).
				V_BSTR(&vGVBSTR)	=	SysAllocString(m_bstrGblVarValue);
				if(FAILED(hr	=	VariantChangeType(&vGVValue,	&vGVBSTR,	VARIANT_ALPHABOOL,	
																																								((V_VT(&vGVValue)	==	VT_EMPTY)	?	
																																										VT_BSTR	:	V_VT(&vGVValue)))))
								return	hr;
				SysFreeString(V_BSTR(&vGVBSTR));

				//	Update	global	variable	value.
				if(FAILED(hr	=	pGlobVar->SetValue(vGVValue)))
								return	hr;

				pGlobVar->Release();

				//	Release	the	value	BSTR	if	necessary.
				if(V_VT(&vGVValue)	==	VT_BSTR)
								SysFreeString(V_BSTR(&vGVValue));

DTS	Programming

Implementing	the	User	Interface	Class
To	implement	the	user	interface	class	in	the	Data	Transformation	Services	(DTS)
custom	task	user	interface	example,	add	code	to	the	Microsoft®	Visual	C++®
file	GVUserIF.cpp.	No	changes	are	necessary	to	the	user	interface	class	header
file.

Add	the	following	to	the	user	interface	class	code	file	GVUserIF.cpp:

An	include	statement	for	the	property	page	header	file

Code	to	display	the	property	page	from	the	New	and	Edit	methods

Adding	an	Include	Statement

The	include	statement	is	necessary	so	the	New	and	Edit	methods	can	access	the
property	page	class.

Immediately	after	the	line:

#include	"GVUserIF.h"

insert	the	line:

#include	"GVPropPage.h"

Displaying	the	Property	Page
This	code	displays	the	property	page	and	passes	it	a	reference	to	the	custom	task
so	it	can	retrieve	and	update	properties.

Example
Replace	the	entire	body	of	both	the	CGVUserIF::New	and	CGVUserIF::Edit
methods	with	the	following	code:

				CGVPropPage				dlgProp;

				if(!m_pIDTSTask	||	!m_pIDTSCustomTask)
								return	E_FAIL;

				dlgProp.DoModal((struct	HWND__	*)hwndParent,	(long)m_pIDTSCustomTask);

				return	NOERROR;

DTS	Programming

Implementing	the	Property	Page	Class
To	implement	the	property	page	class	in	the	Data	Transformation	Services
(DTS)	custom	task	user	interface	example,	you	need	to	add	code	to	the	header
file	GVPropPage.h.	The	ATL	dialog	template	puts	all	the	code	for	the	dialog	box
in	the	header	file.	The	corresponding	code	file	TaskGVUpdate.cpp	contains	only
include	statements.

Add	the	following	to	the	property	page	header	file	GVPropPage.h:

An	include	statement	for	the	component	header	file	and	some	define
statements	

Code	to	initialize	controls	on	the	property	page	with	values	of	custom
task	properties

Code	to	validate	and	save	the	values	of	the	task	properties

A	declaration	for	the	task	class	interface	pointer

Adding	an	Include	and	Define	Statement

The	component	header	file	is	generated	by	Microsoft®	Visual	C++®from	the
.idl	file	and	contains	definitions	of	all	the	interfaces	of	the	project.	Here,	the
definition	of	the	task	class	interface	is	needed.	The	define	statements	are	for	a
buffer	length	and	MessageBox	caption.

Immediately	after	the	line:

#include	<atlhost.h>

insert	these	lines:

#include	"DTSTskGVUpdate.h"

#define		MAX_PROP_LEN				2048
#define		GVM_CAPTION	_T("Global	Variable	Monitor	Task")

Initializating	Controls
The	Name,	Description	and	GblVarName	properties	must	be	retrieved	from	the
task	class	and	set	into	controls.

Example
At	the	head	of	the	OnInitDialog	function	(after	the	left	curly	bracket),	insert	the
following	code:

								USES_CONVERSION;
								BSTR												bstrProperty;

								m_pCustTask	=	(ITaskGVUpdate	*)lParam;

								//	Fetch	values	for	Description,	Name	and	GblVarName	properties.
								m_pCustTask->get_Description(&bstrProperty);
								SetDlgItemText(IDC_TASK_DESCR,	OLE2T((LPOLESTR)bstrProperty));
								SysFreeString(bstrProperty);

								m_pCustTask->get_Name(&bstrProperty);
								SetDlgItemText(IDC_TASK_NAME,	OLE2T((LPOLESTR)bstrProperty));
								SysFreeString(bstrProperty);

								m_pCustTask->get_GblVarName(&bstrProperty);
								SetDlgItemText(IDC_GV_NAME,	OLE2T((LPOLESTR)bstrProperty));
								SysFreeString(bstrProperty);

Validating	and	Updating	Properties
The	Description	and	GblVarName	properties	must	be	validated	(to	verify	a
value	was	entered)	and	saved	back	to	the	task	class.

Example
At	the	head	of	the	OnOK	function,	insert	the	following	code:

								USES_CONVERSION;
								TCHAR											atcProperty[MAX_PROP_LEN];

								//	Get	task	description	and	generate	error	if	empty.				
								if(GetDlgItemText(IDC_TASK_DESCR,	atcProperty,	MAX_PROP_LEN))
												m_pCustTask->put_Description(T2BSTR(atcProperty));
								else
								{
												MessageBox(_T("Description	must	not	be	blank."),	
																								GVM_CAPTION,	MB_ICONEXCLAMATION);
												return	0;
								}

								//	Get	global	variable	name	and	generate	error	if	empty.				
								if(GetDlgItemText(IDC_GV_NAME,	atcProperty,	MAX_PROP_LEN))
												m_pCustTask->put_GblVarName(T2BSTR(atcProperty));
								else
								{
												MessageBox(_T("Global	variable	name	must	be	entered."),	
																								GVM_CAPTION,	MB_ICONEXCLAMATION);
												return	0;
								}

Adding	an	Interface	Pointer	Statement
The	declaration	for	the	task	class	interface	pointer	must	be	added.

Immediately	ahead	of	the	lines:

};

#endif	//__GVPROPPAGE_H_

insert	these	lines:

private:
				ITaskGVUpdate						*	m_pCustTask;

DTS	Programming

Implementing	the	Display	Dialog	Class
To	implement	the	display	and	update	dialog	box	in	the	Data	Transformation
Services	(DTS)	custom	task	user	interface	example,	add	code	to	the	header	file
GVDialog.h.	The	corresponding	code	file	TaskGVUpdate.cpp	contains	only
include	statements.

Add	the	following	to	the	display	and	update	dialog	header	file	GVDialog.h:

An	include	statement	for	the	component	header	file	and	a	define
statement.	

Code	to	initialize	controls	on	the	dialog	box	with	values	of	custom	task
properties.

Code	to	validate	and	save	the	value	of	the	GblVarValue	property.

A	declaration	for	the	task	class	interface	pointer.

Adding	an	Include	and	Define	Statement

The	definition	of	the	task	class	interface	is	needed	from	the	component	header
file.	The	define	is	for	a	buffer	length.

Immediately	after	the	line:

#include	<atlhost.h>

insert	these	lines:

#include	"DTSTskGVUpdate.h"

#define		MAX_PROP_LEN				2048

Initializating	Controls

The	Description,	GblVarName	and	GblVarValue	properties	must	be	retrieved
from	the	task	class	and	set	into	controls.

Example
At	the	head	of	the	OnInitDialog	function,	insert	the	following	code:

								USES_CONVERSION;
								BSTR												bstrProperty;

								m_pCustTask	=	(ITaskGVUpdate	*)lParam;

								m_pCustTask->get_GblVarName(&bstrProperty);
								SetDlgItemText(IDC_GV_NAME,	OLE2T((LPOLESTR)bstrProperty));
								SysFreeString(bstrProperty);

								m_pCustTask->get_GblVarValue(&bstrProperty);
								SetDlgItemText(IDC_GV_VALUE,	OLE2T((LPOLESTR)bstrProperty));
								SysFreeString(bstrProperty);

								m_pCustTask->get_Description(&bstrProperty);
								SetDlgItemText(IDC_TASK_DESCR,	OLE2T((LPOLESTR)bstrProperty));
								SysFreeString(bstrProperty);

Validating	and	Updating	Properties
The	GblVarValue	property	must	be	saved	back	to	the	task	class.

Example
At	the	head	of	the	OnOK	function,	insert	the	following	code:

								USES_CONVERSION;
								TCHAR											atcProperty[MAX_PROP_LEN];

								//	Return	updated	(?)	value	of	global	variable.				

								GetDlgItemText(IDC_GV_VALUE,	atcProperty,	MAX_PROP_LEN);
								m_pCustTask->put_GblVarValue(T2BSTR(atcProperty));

Adding	an	Interface	Pointer	Statement
The	declaration	for	the	task	class	interface	pointer	must	be	added.

Immediately	ahead	of	the	lines:

};

#endif	//__GVDIALOG_H_

insert	these	lines:

private:
				ITaskGVUpdate						*	m_pCustTask;

DTS	Programming

Building	and	Running	the	DTS	Custom	Task	User
Interface	Example	in	Visual	C++
To	build	the	Data	Transformation	Services	(DTS)	custom	task	user	interface
example,	click	Build	DTSTskGVUpdate.dll	on	the	Build	menu.	Refresh	the
Data	Transformation	Services	(DTS)	cache,	if	necessary.	For	more	information
about	preparing	the	custom	task	for	execution,	see	Implementing	and	Testing	a
DTS	Custom	Task.

Open	DTS	Designer	and	drag	the	icon	for	this	task	onto	the	design	sheet.	When
the	property	page	you	implemented	is	displayed,	change	the	values	of	the
Description	property	and	enter	a	value	for	the	global	variable	name.	The	Name
property	was	made	read-only	on	the	property	page	because	to	change	it	in	DTS
designer	causes	an	error.

When	you	execute	the	DTS	package,	the	dialog	box	you	implemented	will
appear	with	the	value	of	the	global	variable.	If	the	global	variable	did	not	exist,
you	will	see	a	blank	edit	box	(DTS	will	have	created	the	global	variable),	or	you
will	get	an	error,	depending	on	whether	the	ExplicitGlobalVariables	property	is
set.

Enter	or	change	the	global	variable	value.	If	you	enter	an	invalid	value	(for
example,	substituting	alpha	characters	for	a	numeric	global	variable),	the	task
will	fail	when	you	close	the	dialog	box.

Test	the	update	feature	by	placing	two	copies	of	this	task	in	a	package	and
connecting	them	with	an	OnSuccess	precedence	constraint.

DTS	Programming

Building	a	DTS	Custom	Transformation
The	Data	Transformation	Services	(DTS)	data	pump,	which	is	the	engine	for	the
Transform	Data,	Data	Driven	Query	and	Parallel	Data	Pump	tasks,	reads	rows
from	a	source	connection,	transforms	the	row	data	as	necessary,	and	writes	rows
to	a	destination	connection.	The	data	pump	uses	separate	components	called
transformations	to	transform	the	data.	The	transformation	performs	specific
conversions	for	which	it	was	designed	and	that	are	made	necessary	by	the	source
and	destination	column	data	types.	One	or	more	transformations	are	always
required,	even	when	the	row	data	is	simply	copied.

Several	transformations	are	supplied	with	Microsoft®	SQL	Server™	2000.	For
more	information,	see	DTS	Transformations	or	Transformation	Objects.	Custom
transformations	can	also	be	implemented	by	users	and	third-party	vendors.	To
implement	a	custom	transformation,	you	must:

Use	Microsoft	Visual	C++®.	The	DTS	data	pump	does	not	support	the
interfaces	necessary	to	use	components	implemented	in	Microsoft
Visual	Basic®.	Most	of	the	constants,	structures	and	interfaces	you	will
need	are	defined	only	in	Visual	C++	header	(.h)	files	that	are	supplied
with	SQL	Server	2000	and	Visual	C++.

Implement	the	IDTSDataPumpTransform	interface.	If	the
transformation	is	to	be	used	with	SQL	Server	2000,	you	must	also
implement	the	IDTSDataPumpTransform2	interface.	Other	optional
custom	transformation	interfaces	can	be	implemented	as	well.

Implement	the	API	functions	that	COM	dynamic-link	libraries	(DLLs)
require.	You	must	modify	the	registration	functions,	or	a	registration
script,	to	add	and	remove	the	component	category	globally	unique
identifier	(GUID)	for	DTS	transformations	from	the	system	registry.

This	section	explains	how	to	implement	custom	transformations	and	provides
examples.

Topic Description

JavaScript:hhobj_1.Click()

DTS	Custom	Transformation
Fundamentals

Describes	DTS	transformation
infrastructure,	interfaces,	data
structures	and	registration.

Implementing	DTS	Custom
Transformations

Describes	the	Active	Template
Library	(ATL)	custom	transformation
template,	how	to	add	code	and	how
to	test	the	transformation.

DTS	Custom	Transformation
Examples

Provides	examples	of	DTS	custom
transformations.

DTS	Programming

DTS	Custom	Transformation	Fundamentals
The	following	topics	describe	functions,	interfaces,	data	structures	and
registration	issues	you	must	consider	when	you	implement	Data	Transformation
Services	(DTS)	custom	transformations.

Topic Description
COM	DLL	Infrastructure Describes	the	functions	involved	with	creating,

loading	and	registering	the	component	that	all
COM	DLLs	must	implement.

IDTSDataPumpTransform
Interface

Describes	the	interface	that	all	custom
transformations	must	implement.
IDTSDataPumpTransform	supports
initialization,	schema	validation,	data
transformation	and	termination.

IDTSDataPumpTransform2
Interface

Describes	the	interface	that	custom
transformations	used	with	Microsoft®	SQL
Server™	2000	must	implement.
IDTSDataPumpTransform2	supports	pre-
validation	and	multiple	phases	of	data
transformation.

Column	Information
Structures	in	DTS
Transformations

Describes	the	data	structures	that	contain
information	about	the	source	and	destination
columns.	These	data	structures	are	arguments
to	the	methods	of	IDTSDataPumpTransform
and	IDTSDataPumpTransform2.

Registration	Requirements
for	Transformations

Describes	the	information	that	must	be	stored
in	the	system	registry	that	allows	DTS	to	find
and	run	the	transformation.

DTS	Programming

COM	DLL	Infrastructure
A	Data	Transformation	Services	(DTS)	custom	transformation	is	implemented	as
a	COM	DLL.	All	COM	DLLs	must	implement	several	functions	that	are
involved	with	creating,	loading,	unloading	and	registering	the	component.

Function Description
DLLMain Initializes	the	DLL.	DLLMain	is	called	by	the

operating	system	when	it	first	loads	the	DLL.
DLLGetClassObject Creates	a	class	factory	for	the	transformation	and

returns	a	pointer	to	its	interface.	COM	calls	through
the	interface	to	create	the	transformation

DLLCanUnloadNow Returns	a	code	indicating	whether	the	DLL	can	be
unloaded.	It	will	be	unloaded	if	no	other
application	is	using	any	transformation	the	DLL
contains.

DLLRegisterServer Inserts	information	about	each	transformation	into
the	system	registry	under	the	key
HKEY_CLASSES_ROOT\CLSID.	This	registry
information	specifies	the	location	of	the	DLL
executable	file,	the	transformation	ProgID,	and	the
DTS	transformation	component	category.

DLLUnregisterServerRemoves	the	registry	information	inserted	by
DLLRegisterServer.

These	functions	are	generated	automatically	if	you	use	the	Active	Template
Library	(ATL)	facility	of	Microsoft®	Visual	C++®	and	the	ATL	wizards	to
create	the	framework	for	your	custom	transformation.

For	DLLRegisterServer	and	DLLUnregisterServer,	you	will	need	to	either
add	code	to	the	functions	or	add	entries	to	the	registry	script	in	order	to	include
information	about	DTS	transformations	in	the	registration	for	the	transformation.
This	is	not	necessary	if	you	use	the	custom	transformation	template	supplied
with	Microsoft	SQL	Server™	2000.	For	more	information,	see	Registration
Requirements	for	Transformations.

DTS	Programming

IDTSDataPumpTransform	Interface
All	Data	Transformation	Services	(DTS)	custom	transformations	must
implement	the	IDTSDataPumpTransform	interface.	Custom	transformations
that	implement	IDTSDataPumpTransform	but	do	not	implement
IDTSDataPumpTransform2	can	only	be	used	with	Microsoft®	SQL	Server™
version	7.0.	Such	transformations	only	support	a	single	phase	of	execution.

The	IDTSDataPumpTransform	interface	has	the	following	elements.

Element Description
Initialize	method Initializes	the	transformation	for	the	current

transform	operation.
AddVariable	method Adds	a	variable	to	the	transformations

execution	context.
ValidateSchema	method Validates	the	schemas	that	are	to	be

transformed.
Execute	method Executes	the	transformation	for	a	single

row.
OnRowComplete	method Performs	any	processing	that	is	necessary

after	each	row	has	been	transformed.
OnTransformComplete
method

Performs	any	processing	that	is	necessary
after	all	rows	have	been	transformed.

As	required	by	COM,	all	these	methods	must	be	present,	but	they	can	be
placeholders	returning	NOERROR.

Initialize	Method
Initialize	can	be	used	to	allocate	local	storage	for	the	transform	operation.	The
output	parameter	of	Initialize	is	passed	to	all	the	other	methods	so	that	it	can
store	the	state	of	the	particular	transform	operation.	This	allows	a	single	instance
of	the	custom	transformation	to	process	multiple	operations.	This	is	only	done
when	the	task	that	creates	the	custom	transformation	passes	a	reference	to	a
single	instance	in	multiple	IDTSDataPump::AddTransform	calls.

AddVariable	Method
AddVariable	is	always	called	at	least	once	to	add	the	DTSErrorRecords
collection	so	that	subsequent	methods	can	report	errors.	It	is	also	called	to	add
the	collections	used	in	Microsoft	ActiveX®	scripts,	such	as
DTSGlobalVariables	and	DTSLookups.

ValidateSchema	Method
ValidateSchema	is	called	after	the	data	pump	has	opened	the	source	and
destination	rowsets	but	before	any	source	rows	are	fetched.	It	verifies	that	the
meta	data	of	the	columns	to	be	transformed	is	consistent	with	the	needs	of	the
transformation.	Data	structures	defining	the	source	and	destination	columns	are
passed	to	the	method.	For	more	information,	see	Column	Information	Structures
in	DTS	Transformations.

ValidateSchema	verifies	that	the	number	and	types	of	the	source	and	destination
columns	are	appropriate.	It	also	determines	whether	the	transformations	being
performed	are	consistent	with	the	specified	transform	flags.	For	example,	if	a
column	for	which	NULLs	are	allowed	is	being	copied	to	a	column	defined	as
NOT	NULL,	ValidateSchema	indicates	an	error	unless	the
DTSTransformFlag_AllowNullChange	is	specified.	Likewise,	it	indicates	an
error	if,	for	example,	an	int	column	is	being	copied	to	a	smallint	column,	unless
DTSTransformFlag_AllowDemotion	is	specified.

Execute	Method
Execute	is	called	to	perform	the	transformation	once	for	each	source	row.	The
method	returns	a	code	other	than	NOERROR	from	the	function	only	in	the
event	of	a	fatal	error,	which	terminates	the	data	pump.	Execute	indicates	row
data	errors	or	specifies	the	data	driven	query	by	returning	an	appropriate	value
from	DTSTransformStatus.	After	a	successful	return	from	Execute,	the	data
pump	attempts	to	insert	the	row	data	into,	or	perform	the	indicated	data	driven
query	on,	the	destination	rowset.

OnRowComplete	Method
OnRowComplete	is	called	after	the	row	data	is	applied	to	the	destination	rowset
in	an	insert	operation	or	a	data	driven	query.	It	is	called	even	when	the	insert

fails	or	is	not	attempted	because	Execute	specified	the	data	not	be	inserted,	or
when	Execute	itself	failed.	The	primary	function	of	OnRowComplete	is	to
release	allocations	made	by	Execute	that	need	to	be	retained	until	after	the	row
data	is	applied	to	the	destination.

OnTransformComplete	Method
OnTransformComplete	is	called	after	all	the	source	rows	have	been	processed.
It	gives	the	transformation	an	opportunity	to	release	allocations	and	perform	any
other	post-processing	that	might	be	necessary.	It	is	not	called	if
IDTSDataPumpTransform2	is	implemented	and	the	transformation	supports
DTSTransformPhase_OnPumpComplete	phase,	which	is	called	instead.	For
more	information,	see	IDTSDataPumpTransform2	Interface.

See	Also

DTSTransformStatus

IDTSDataPump::AddTransform

IDTSDataPumpTransform::AddVariable

IDTSDataPumpTransform::Execute

IDTSDataPumpTransform::Initialize

IDTSDataPumpTransform::OnRowComplete

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform::ValidateSchema

DTS	Programming

IDTSDataPumpTransform2	Interface
All	Data	Transformation	Services	(DTS)	custom	transformations	that	are	to	be
used	with	Microsoft®	SQL	Server™	2000	must	implement	the
IDTSDataPumpTransform2	interface.	Although	IDTSDataPumpTransform2
inherits	and	implements	all	the	elements	of	IDTSDataPumpTransform,	the
transformation	must	still	respond	to	QueryInterface	for
IDTSDataPumpTransform	as	well	as	for	IDTSDataPumpTransform2.	

The	IDTSDataPumpTransform2	interface	has	the	following	elements,	in
addition	to	those	implemented	by	IDTSDataPumpTransform.

Element Description
GetTransformServerInfo
method

Returns	supported	phases	and	other
information	about	the	transformation.

PreValidateSchema	method Validates	the	schemas	that	are	to	be
transformed	at	the	time	a	custom
transformation	is	created.

SetExtendedInfo	method Reserved	for	future	use.
ProcessPhase	method Executes	a	phase	of	the	custom

transformation	for	a	single	source	row.
SetExecuteThreadComplete
method

Performs	post-processing	on	a	thread	prior
to	executing	on	another	thread.

As	required	by	COM,	all	these	methods	must	be	present,	but	they	can	be
placeholders	returning	NOERROR.

GetTransformServerInfo	Method
GetTransformServerInfo	returns	a	bitmask	that	defines	the	phases	supported
by	the	custom	transformation.	It	returns	a	help	string	that	can	be	displayed	in	a
user	interface	to	explain	the	function	of	the	custom	transformation.

Note		The	ProcessPhase	method	is	not	called	for	a	phase	specified	by
GetTransformServerInfo	unless	the	value	specified	for	the	TransformPhases
property	of	the	Transformation2	object	also	specifies	the	phase.	For	DTS

packages	built	in	DTS	Designer,	specify	phases	on	the	Phases	tab	of	the
Transformation	Options	dialog	box.

PreValidateSchema	Method
PreValidateSchema	is	used	to	provide	validation	at	the	time	a	package	is	built.
It	is	called	from	DTS	Designer	when	the	custom	transformation	is	created	or
edited.	It	can	perform	part	or	all	of	the	validation	on	the	source	and	destination
column	meta	data	that	IDTSDataPumpTransform::ValidateSchema	performs.
However,	there	are	limitations	that	may	justify	deferring	some	complex
validations	to	ValidateSchema.	For	more	information,	see	DTS	Custom
Transformation	Example:	Format	Names.

SetExtendedInfo	Method
SetExtendedInfo	is	reserved	for	future	use.	Implement	it	as	a	placeholder	that
returns	NOERROR.

ProcessPhase	Method
ProcessPhase	is	called	to	perform	each	phase	of	the	custom	transformation.	It	is
responsible	for	transforming	the	source	column	data	to	the	destination	columns.
It	writes	any	header	or	trailer	rows	that	are	necessary.	It	handles	transformation,
insert	operations,	data	driven	queries,	and	batch	errors.	For	more	information,
see	IDTSDataPumpTransform2::ProcessPhase.

SetExecuteThreadComplete	Method
SetExecuteThreadComplete	is	called	when	the	data	pump	is	to	switch
execution	threads.	The	custom	transformation	closes	any	thread-affinitive
processes	and	prepares	to	reopen	them	on	the	new	thread.

See	Also

IDTSDataPumpTransform::ValidateSchema

IDTSDataPumpTransform2::PreValidateSchema

IDTSDataPumpTransform2::GetTransformServerInfo

IDTSDataPumpTransform2::SetExecuteThreadComplete

IDTSDataPumpTransform2::SetExtendedInfo

TransformPhases	Property

DTS	Programming

Column	Information	Structures	in	DTS
Transformations
When	you	build	a	custom	transformation,	you	must	consider	the	Data
Transformation	Services	(DTS)	transformation	methods	that	are	used	to	validate
and	process	the	source	and	destination	columns	being	transformed.	The
ValidateSchema,	Execute,	OnRowComplete	and	OnTransformComplete
methods	of	the	IDTSDataPumpTransform	interface	and	the	ProcessPhase
method	of	the	IDTSDataPumpTransform2	interface	need	to	access	structures
that	define	these	columns.	This	access	is	provided	by	pointers	to	a
DTSTransformColumnInfo	structure	for	the	source	columns	and	another
DTSTransformColumnInfo	for	the	destination	columns,	which	are	passed	as
parameters	to	each	of	these	methods.

DTSTransformColumnInfo	Important	Fields
The	following	are	the	important	fields	in	DTSTransformColumnInfo.

Field Description
cColumns Count	of	source	or	destination	columns.
rgColumnData Pointer	to	an	array	of	DTSColumnData	structures.	There

is	one	array	element	for	each	column.

The	remaining	fields	are	associated	with	binary	large	object	(BLOB)	processing,
and	only	need	to	be	referenced	if	the	transformation	processes	BLOB	types.

For	the	complete	definition	of	this	structure,	search	the	include	file	dtspump.h
for	DTSTransformColumnInfo.	This	file	is	installed	by	default	in	C:\Program
Files\Microsoft	SQL	Server\80\Tools\DevTools\include\	during	a	custom
installation	of	Microsoft®	SQL	Server™	2000	client	tools.

DTSColumnData	Important	Fields
The	array	referenced	by	DTSTransformColumnInfo.rgColumnData	contains
a	DTSColumnData	structure	for	each	source	or	destination	column.	The

following	are	the	important	fields	in	DTSColumnData.

Field Description
pDBColumnInfo Pointer	to	an	OLE	DB	DBCOLUMNINFO	structure	for

the	column.
pDBBinding Pointer	to	an	OLE	DB	DBBINDING	structure	for	the

column.
pvData Pointer	to	the	data	space	for	the	column.	Includes	fields

for	the	data	(or	a	pointer	to	the	data),	data	length,	and
status.

When	IDTSDataPumpTransform::ValidateSchema	is	called,	both
pDBBinding	and	pvData	are	NULL.	Thus,	the	DBBINDING	structure	and	the
data	space	are	not	available	in	ValidateSchema.

For	the	complete	definition	of	this	structure,	search	the	include	file	dtspump.h
for	DTSColumnData.

DBCOLUMNINFO	Important	Fields
Each	DTSColumnData	structure	references	an	OLE	DB	DBCOLUMNINFO
structure,	which	contains	the	meta	data	for	the	column.	The	following	are	the
important	fields	in	DBCOLUMNINFO.

Field Description
pwszName The	name	of	the	column.
iOrdinal The	numeric	position	of	the	column	within	the	source	or

destination	row.
dwFlags The	sum	of	flags	for	meta	data	attributes	(for	example,

ISNULLABLE,	ISROWID,	KEYCOLUMN).
ulColumnSize The	width	of	the	column,	in	characters	for	wide	character

types	and	in	bytes	for	other	types.
wType The	data	type	of	the	column.

The	information	in	the	DBCOLUMNINFO	structure	is	not	generally	modified

by	the	transformation.	For	the	complete	definition	of	this	structure,	search	the
include	file	OLEDB.h	for	DBCOLUMNINFO.

To	find	the	valid	values	for	dwFlags,	search	OLEDB.h	for
DBCOLUMNFLAGS_.	The	symbols	containing	DBCOLUMNFLAGS_	are
defined	in	enumerations	named	DBCOLUMNFLAGSENUMxx,	where	xx	is	an
optional	OLE	DB	version	number.

To	find	the	valid	values	for	wType,	search	OLEDB.h	for	DBTYPE_.	The
symbols	containing	DBTYPE_	are	defined	in	enumerations	named	DBTYPExx,
where	xx	is	an	optional	OLE	DB	version	number.

DBBINDING	Important	Fields
Each	DTSColumnData	structure	also	references	an	OLE	DB	DBBINDING
structure.	A	binding	associates	a	single	column	to	the	buffer	referenced	by	the
pvData	field	of	the	DTSColumnData	structure,	and	it	contains	information
about	that	buffer.	The	following	are	the	important	fields	in	DBBINDING.

Field Description
iOrdinal The	numeric	position	of	the	column	within	the	source	or

destination	row.
obValue The	offset	within	the	buffer	referenced	by

DTSColumnData.pvData	where	the	data	value,	or	a	pointer	to
the	data	value,	is	stored.

obLength The	offset	within	the	buffer	referenced	by
DTSColumnData.pvData	where	the	actual	data	length,	in
bytes,	is	stored.

obStatus The	offset	within	the	buffer	referenced	by
DTSColumnData.pvData	where	the	data	status	is	stored.

dwPart Flags	that	specify	which	parts	of	the	buffer	are	to	be	bound	to
the	column.	The	flags	will	indicate	a	combination	of	data
length,	status	and	value.

cbMaxLen The	size	of	the	data	area	of	the	buffer,	which	is	the	maximum
length	of	the	data.	For	character	types,	this	is	usually	the	width
of	the	column	in	bytes,	plus	one	character.

wType The	data	type	of	the	column.

For	the	complete	definition	of	this	structure,	search	the	include	file	OLEDB.h	for
DBBINDING.

To	find	the	valid	values	for	the	field	whose	offset	is	specified	by	obStatus,
search	OLEDB.h	for	DBSTATUS_.	The	symbols	containing	DBSTATUS_	are
defined	in	enumerations	named	DBSTATUSENUMxx,	where	xx	is	an	optional
OLE	DB	version	number.

To	find	the	valid	values	for	dwPart,	search	OLEDB.h	for	DBPART_.	These
symbols	containing	DBPART_	are	defined	in	an	enumeration	named
DBPARTENUM.

The	valid	values	for	wType	are	the	same	as	for	the	DBCOLUMNINFO.wType
field.	If	wType	includes	the	flags	DBTYPE_ARRAY,	DBTYPE_BYREF	or
DBTYPE_VECTOR,	then	the	field	in	DTSColumnData.pvData	at	offset
obValue	contains	a	pointer	to	the	data,	not	the	data	itself.

IDTSDataPumpTransform2::PreValidateSchema	Method
In	PreValidateSchema	the	column	information	parameters	are
DTSTransformColumnMetadata	structures.	The	following	are	the	important
fields	in	DTSTransformColumnMetadata.

Field Description
cColumns Count	of	source	or	destination	columns.
rgDBColumnInfo Pointer	to	an	array	of	OLE	DB	DBCOLUMNINFO

structures.	There	is	one	array	element	for	each	column.
DBCOLUMNINFO	was	described	above.

The	information	in	the	DTSTransformColumnMetadata	structures	is	the	same
information	that	is	available	to	ValidateSchema,	packaged	differently.

DTS	Programming

Registration	Requirements	for	DTS	Transformations
Data	Transformation	Services	(DTS)	custom	transformations	require	entries	in
their	class	registration	to	identify	them	as	DTS	transformations.	You	need	to	add
code	to	the	DLLRegisterServer	and	DLLUnregisterServer	functions	or	add
script	to	the	registry	script	(.rgs)	file	of	the	custom	transformation	project	so	that
it	can	create	these	entries.

DTS	Transformation	Registry	Entries
The	DLLRegisterServer	function	needs	to	create	a	set	of	registry	keys	under
\HKEY_CLASSES_ROOT\CLSID\	with	the	following	structure:

{Class	ID	for	Component.CXFormClass}
(Default)														transformation	description

DTSTransform

1033
DTSTransformDescription								transformation
description

Implemented	Categories

{GUID	for	DTS	Transformations	component
category}

InprocHandler32
(Default)												ole32.dll

InprocServer32
(Default)													path\Component.dll
Threading	Model		Both

ProgID
(Default)													Component.CXFormClass.version

VersionIndependentProgID
(Default)														Component.CTaskClass

The	transformation	description	is	the	name	that	appears	in	the	Create	New
Transformation	dialog	box	of	DTS	Designer.	The	subkeys	under	the
DTSTransform	key	provide	locale-specific	versions	of	the	transformation
description.	You	can	add	a	subkey	for	each	locale	in	which	you	expect	your
transformation	to	be	used.

DTS	defines	a	component	category	for	DTS	transformations,	which	is	a	globally
unique	identifier	(GUID)	that	is	added	to	the	system	registry	when	Microsoft®
SQL	Server™	2000	client	tools	are	installed	on	your	system.	To	make	a	custom
transformation	registration	visible	to	DTS	Designer,	you	must	provide	the
Implemented	Categories	key	and	a	subkey	that	contains	this	component
category.

In	addition,	DLLRegisterServer	needs	to	map	the	VersionIndependentProgID
and	ProgID	to	the	class	ID	by	creating	these	keys	directly	under
\HKEY_CLASSES_ROOT\:

Component.CXFormClass
(Default)														transformation	description

CLSID
(Default)														{Class	ID	for	Component.CXFormClass}

Component.CXFormClass.version
(Default)														transformation	description

CLSID
(Default)														{Class	ID	for	Component.CXFormClass}

DLLUnregisterServer	removes	the	registry	entries	added	by
DLLRegisterServer.

Registry	Script	File
If	you	use	the	Active	Template	Library	(ATL)	to	create	the	framework	for	your
custom	transformation,	it	provides	a	registry	script	that	creates	these	registry
keys	under	\HKEY_CLASSES_ROOT\CLSID\:

{Class	ID	for	Component.CXFormClass}
(Default)																CXFormClass	Class

InprocServer32
(Default)																	path\Component.dll
Threading	Model						Both

ProgID
(Default)																	Component.CXFormClass.version

Programmable

TypeLib
(Default)																	{Component	type	library	GUID}

VersionIndependentProgID
(Default)																	Component.CTaskClass

You	can	add	the	required	DTSTransform,	Implemented	Categories	and
InprocHandler32	subkeys	by	editing	the	registry	script	file.	There	is	no	need	to
remove	the	Programmable	and	TypeLib	keys.	For	more	information,	see
Building	a	Custom	Transformation	from	a	Standard	ATL	Template.

DTS	Programming

Implementing	DTS	Custom	Transformations
This	section	describes	use	of	the	Active	Template	Library	(ATL)	facility	of
Microsoft®	Visual	C++®	to	implement	Data	Transformation	Services	(DTS)
custom	transformations.

Topic Description
Building	a	Custom
Transformation	from	a
Standard	ATL	Template

Describes	how	to	create	a	framework	for	a
custom	transformation	from	a	standard	ATL
template.

Building	a	Custom
Transformation	from	the
ATL	Custom
Transformation	Template

Describes	how	to	create	a	custom
transformation	framework	from	the	ATL
custom	transformation	template	supplied	with
Microsoft	SQL	Server™	2000.

Implementing	and	Testing	a
DTS	Custom
Transformation

Describes	how	to	add	code	to	a	custom
transformation	framework	and	explains	how
to	use	the	Visual	C++	debugger.

DTS	Programming

Building	a	Custom	Transformation	from	a	Standard
ATL	Template
To	build	a	custom	transformation,	create	a	project	from	a	standard	Active
Template	Library	(ATL)	template,	add	the	interfaces	and	other	elements	required
by	all	Data	Transformation	Services	(DTS)	transformations,	and	then	add	the
features	of	the	specific	transformation.

This	topic	explains	how	to	add	the	elements	required	by	all	DTS
transformations.	You	can	also	use	the	ATL	custom	transformation	template
supplied	as	a	sample	with	Microsoft®	SQL	Server™	2000	to	build	a	custom
transformation	framework.	Even	if	you	plan	to	use	the	custom	transformation
template,	it	is	recommended	that	you	understand	the	features	that	were	added	to
create	the	custom	template	from	the	standard	object	template.	For	more
information,	see	Building	a	Custom	Transformation	from	the	ATL	Custom
Transformation	Template.

Building	a	Standard	ATL	Component
To	create	a	standard	ATL	component	that	includes	a	class	for	the	custom
transformation	using	Microsoft	Visual	C++®	version	6.0,	do	the	following:

To	build	a	standard	ATL	component

1.	 On	the	File	menu,	click	New,	and	then	click	the	Projects	tab.	

2.	 Click	ATL	COM	AppWizard,	and	then	enter	a	project	name	and
location.

For	this	discussion,	assume	you	entered	DTSTrans	for	the	project
name.

3.	 Click	Dynamic	Link	Library	(DLL),	click	Finish,	and	in	the	New
Project	Information	dialog	box,	click	OK.

4.	 On	the	Insert	menu,	click	New	ATL	Object,	click	Objects,	click

Simple	Object,	and	then	click	Next.

5.	 On	the	Names	tab,	enter	a	short	name.

For	this	discussion,	assume	you	entered	CustomXFm.	The	wizard	will
fill	in	the	other	fields.	The	COM/Type	field	is	the	name	that	will
appear	in	the	Create	New	Transformation	dialog	box	of	DTS
Designer.	You	can	change	it	from	the	default	CustomXFm	Class.

6.	 Click	the	Attributes	tab,	and	then	do	the	following:

Under	Threading	Model,	click	Both.	

Under	Interface,	click	Dual.

Under	Aggregation,	click	No.

Select	the	Support	ISupportErrorInfo	check	box.

The	wizards	will	create	files	for	the	DTSTrans	component	and	the	CustomXFm
class	and	save	them	to	the	project	location	folder	specified	in	Step	1.

Adding	Custom	Transformation	Features
After	creating	a	standard	ATL	component	with	CustomXFm	class	files,	you
need	to	add	custom	transformation	elements.	In	this	section,	all	files	will	have
the	same	names	you	specified	in	Step	4	of	the	previous	procedure.

File Features
CustomXFm.h Function	prototypes	and	COM	map	entries	for	the

IDTSDataPumpTransform	and
IDTSDataPumpTransform2	interfaces

CustomXFm.cpp Initial	function	definitions	for	the
IDTSDataPumpTransform	and
IDTSDataPumpTransform2	interfaces

CustomXFm.rgs Registry	subkeys	required	for	DTS	transformations

CustomXFm.h
In	this	header	file,	you	need	to	add	the	following:

Include	statements	for	other	header	files

An	entry	to	the	list	of	interfaces	from	which	the	class	inherits

COM	Map	entries

Function	prototypes

Adding	Include	Statements

Add	these	header	file	include	statements:

#include	<oledb.h>
#include	<msdadc.h>				
#include	<comdef.h>	
#include	"dtspump.h"	

immediately	preceding	the	include	statement	for	resource.h:

#include	"resource.h"							//	main	symbols

Adding	Interface	List	Entry
To	the	list	of	interfaces	from	which	class	CCustomXFm	inherits,	add	this
reference	to	IDTSDataPumpTransform2:

				public	IDTSDataPumpTransform2,

immediately	preceding:

				public	ISupportErrorInfo

Adding	COM	Map	Entries
Add	these	COM	map	entries	for	IDTSDataPumpTransform	and
IDTSDataPumpTransform2:

				COM_INTERFACE_ENTRY(IDTSDataPumpTransform)						//	Must	still	respond	to	QI	on	IDTSDataPumpTransform
				COM_INTERFACE_ENTRY(IDTSDataPumpTransform2)					//		even	when	IDTSDataPumpTransform2	implemented.

Immediately	preceding	the	COM	map	entry	for	IDispatch:

				COM_INTERFACE_ENTRY(IDispatch)

Adding	Function	Prototypes
You	must	provide	the	function	prototypes	for	the	IDTSDataPumpTransform
and	IDTSDataPumpTransform2	interfaces.	Immediately	after	the	following
lines:

//	ICustomXFm
public:

add	these	lines	of	code:

				//	IDTSDataPumpTransform	members
				STDMETHOD(Initialize)(THIS_
												DP_IN	LPCOLESTR	pwzName,																												//	Transform	name
												DP_IN	VARIANT	ServerParameters,																					//	Parameters	to	server	for	this	transform
												DP_OUT	LPBYTE	*ppvTransformServerData															//	Transform	server	state	data.
);
				STDMETHOD(ValidateSchema)(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_INOUT	LPCDTSTransformColumnInfo	pSrcColumnInfo,		//	Source	columns	and	rowdata
												DP_INOUT	LPCDTSTransformColumnInfo	pDestColumnInfo,	//	Dest	columns	and	rowdata
												DP_IN	IDTSDataConvert	*pIDTSDataConvert,												//	Pointer	to	the	data	conversion	interface
												DP_IN	DTSTransformFlags	eTransformFlags													//	Input	Flags	for	Transformation	validation	and	execution
);
				STDMETHOD(AddVariable)(THIS_	

												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_IN	LPCOLESTR	pwzName,																												//	Variable	name
												DP_IN	BOOL	bGlobal,																																	//	For	ActiveX	scripts,	indicates	whether	this	variable's
																																																																//	methods	must	be	qualified	by	the	object	name.
												DP_IN	VARIANT	Variable																														//	Variable	value;	passed	to	and	updatable	by	Transform
);
				STDMETHOD(Execute)(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_IN	LPCDTSTransformColumnInfo	pSrcColumnInfo,					//	Source	columns	and	rowdata
												DP_INOUT	LPDTSTransformColumnInfo	pDestColumnInfo,		//	Dest	columns	and	rowdata
												DP_IN	IDTSDataConvert	*pIDTSDataConvert,												//	Pointer	to	the	data	conversion	interface
												DP_OUT	LPDTSTransformStatus	pTransformStatus								//	Result	of	transform
)	{
												return	ProcessPhase(pvTransformServerData
																								,	pSrcColumnInfo
																								,	pDestColumnInfo
																								,	pIDTSDataConvert
																								,	NULL
																								,	pTransformStatus
);
								}
				STDMETHOD(OnRowComplete)(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_INOUT	LPDTSTransformColumnInfo	pSrcColumnInfo,			//	Source	columns	and	rowdata
												DP_INOUT	LPDTSTransformColumnInfo	pDestColumnInfo,		//	Dest	columns	and	rowdata
												DP_IN	IDTSDataConvert	*pIDTSDataConvert,												//	Pointer	to	the	data	conversion	interface
												DP_IN	DTSTransformStatus	eTransformStatus,										//	Result	of	Execute()
												DP_IN	HRESULT	hrInsert																														//	Result	of	IRowsetChange::InsertRow()
);
				STDMETHOD(OnTransformComplete)(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_INOUT	LPDTSTransformColumnInfo	pSrcColumnInfo,			//	Source	columns	and	rowdata
												DP_INOUT	LPDTSTransformColumnInfo	pDestColumnInfo,		//	Dest	columns	and	rowdata

												DP_IN	IDTSDataConvert	*pIDTSDataConvert													//	Pointer	to	the	data	conversion	interface
);
				//	IDTSDataPumpTransform2	members
				STDMETHOD(GetTransformServerInfo)(THIS_
												DP_OUT	BSTR	*pbstrHelpString,																							//	Description	of	the	server's	implementation
												DP_OUT	LPDTSTransformPhaseEnum	peSupportedPhases				//	Phases	supported	by	this	server
);
				STDMETHOD(PreValidateSchema)(THIS_
												DP_IN	LPCDTSTransformColumnMetadata	pSrcMetadata,			//	May	be	NULL	if	not	required	by	Transform	Server
												DP_IN	LPCDTSTransformColumnMetadata	pDestMetadata,		//	May	be	NULL	if	not	required	by	Transform	Server
												DP_IN	DTSTransformFlags	eTransformFlags,												//	Input	Flags	for	Transformation	validation	and	execution
												DP_IN	DTSTransformPhaseEnum	ePhases																	//	Phase(s)	for	which	this	Transform	is	to	be	called.
);
				STDMETHOD(SetExtendedInfo)(THIS_
												DP_IN	IUnknown	*pUnkExtendedInfo																				//	Pointer	to	object	supplying	extended	information.
)	{
												return	NOERROR;
								}
				STDMETHOD(ProcessPhase)(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_IN	LPCDTSTransformColumnInfo	pSrcColumnInfo,					//	Source	columns	and	rowdata
												DP_INOUT	LPDTSTransformColumnInfo	pDestColumnInfo,		//	Dest	columns	and	rowdata
												DP_IN	IDTSDataConvert	*pIDTSDataConvert,												//	Pointer	to	the	data	conversion	interface
												DP_IN	LPCDTSTransformPhaseInfo	pPhaseInfo,										//	Pointer	to	phase	info	structure
												DP_OUT	LPDTSTransformStatus	peTransformStatus							//	Result	of	transform
);
				STDMETHOD(SetExecuteThreadComplete)(THIS)
								{
												return	NOERROR;
								}\

CustomXFm.cpp
You	must	provide	the	initial	function	definitions	for	the

IDTSDataPumpTransform	and	IDTSDataPumpTransform2	interfaces.

Adding	Initial	Function	Definitions
Add	these	lines	of	code	at	the	end	of	the	existing	file:

//	IDTSDataPumpTransform	members
STDMETHODIMP	CCustomXFm::Initialize(THIS_
												DP_IN	LPCOLESTR	pwzName,																												//	Transform	name
												DP_IN	VARIANT	ServerParameters,																					//	Parameters	to	server	for	this	transform
												DP_OUT	LPBYTE	*ppvTransformServerData															//	Transform	server	state	data.
)
{
				return	NOERROR;
}
STDMETHODIMP	CCustomXFm::ValidateSchema(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_INOUT	LPCDTSTransformColumnInfo	pSrcColumnInfo,		//	Source	columns	and	rowdata
												DP_INOUT	LPCDTSTransformColumnInfo	pDestColumnInfo,	//	Dest	columns	and	rowdata
												DP_IN	IDTSDataConvert	*pIDTSDataConvert,												//	Pointer	to	the	data	conversion	interface
												DP_IN	DTSTransformFlags	eTransformFlags													//	Input	Flags	for	Transformation	validation	and	execution
)
{
				return	NOERROR;
}
STDMETHODIMP	CCustomXFm::AddVariable(THIS_	
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_IN	LPCOLESTR	pwzName,																												//	Variable	name
												DP_IN	BOOL	bGlobal,																																	//	For	ActiveX	scripts,	indicates	whether	this	variable's
																																																																//	methods	must	be	qualified	by	the	object	name.
												DP_IN	VARIANT	Variable																														//	Variable	value;	passed	to	and	updatable	by	Transform
)
{
				return	NOERROR;

}
STDMETHODIMP	CCustomXFm::OnRowComplete(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_INOUT	LPDTSTransformColumnInfo	pSrcColumnInfo,			//	Source	columns	and	rowdata
												DP_INOUT	LPDTSTransformColumnInfo	pDestColumnInfo,		//	Dest	columns	and	rowdata
												DP_IN	IDTSDataConvert	*pIDTSDataConvert,												//	Pointer	to	the	data	conversion	interface
												DP_IN	DTSTransformStatus	eTransformStatus,										//	Result	of	Execute()
												DP_IN	HRESULT	hrInsert																														//	Result	of	IRowsetChange::InsertRow()
)
{
				return	NOERROR;
}
STDMETHODIMP	CCustomXFm::OnTransformComplete(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_INOUT	LPDTSTransformColumnInfo	pSrcColumnInfo,			//	Source	columns	and	rowdata
												DP_INOUT	LPDTSTransformColumnInfo	pDestColumnInfo,		//	Dest	columns	and	rowdata
												DP_IN	IDTSDataConvert	*pIDTSDataConvert													//	Pointer	to	the	data	conversion	interface
)
{
				return	NOERROR;
}
//	IDTSDataPumpTransform2	members
STDMETHODIMP	CCustomXFm::GetTransformServerInfo(THIS_
												DP_OUT	BSTR	*pbstrHelpString,																							//	Description	of	the	server's	implementation
												DP_OUT	LPDTSTransformPhaseEnum	peSupportedPhases				//	Phases	supported	by	this	server
)
{
				BSTR	bstrHelp	=	_bstr_t("Helpstring	for	Custom	Transformation	Framework");

				//	If	help	string	pointer	valid,	define	help	string.
				if	(pbstrHelpString)	
								*pbstrHelpString	=	bstrHelp;

				//	If	supported	phases	pointer	valid,	define	supported	phases
				if	(peSupportedPhases)	
								*peSupportedPhases	=	DTSTransformPhase_Transform;

				return	NOERROR;
}
STDMETHODIMP	CCustomXFm::PreValidateSchema(THIS_
												DP_IN	LPCDTSTransformColumnMetadata	pSrcMetadata,			//	May	be	NULL	if	not	required	by	Transform	Server
												DP_IN	LPCDTSTransformColumnMetadata	pDestMetadata,		//	May	be	NULL	if	not	required	by	Transform	Server
												DP_IN	DTSTransformFlags	eTransformFlags,												//	Input	Flags	for	Transformation	validation	and	execution
												DP_IN	DTSTransformPhaseEnum	ePhases																	//	Phase(s)	for	which	this	Transform	is	to	be	called.
)
{
				return	NOERROR;
}
STDMETHODIMP	CCustomXFm::ProcessPhase(THIS_
												DP_IN	LPBYTE	pvTransformServerData,																	//	Transform	server	state	data.
												DP_IN	LPCDTSTransformColumnInfo	pSrcColumnInfo,					//	Source	columns	and	rowdata
												DP_INOUT	LPDTSTransformColumnInfo	pDestColumnInfo,		//	Dest	columns	and	rowdata
												DP_IN	IDTSDataConvert	*pIDTSDataConvert,												//	Pointer	to	the	data	conversion	interface
												DP_IN	LPCDTSTransformPhaseInfo	pPhaseInfo,										//	Pointer	to	phase	info	structure
												DP_OUT	LPDTSTransformStatus	pTransformStatus								//	Result	of	transform
)
{
				return	NOERROR;
}

CustomXFm.rgs
This	file	contains	the	registry	script	for	the	transformation	class.	The	lines	to	be
added	define	the	localizable	transformation	description	and	the	component
category	for	DTS	transformations.

Adding	Registry	Script

Insert	these	lines	immediately	following	the	definition	of	the
VersionIndependentProgID	subkey:

												DTSTransform
												{
																'1033'
																{
																				val	DTSTransformDescription	=	s	'Custom	Transformation	Framework'
																}
												}
												'Implemented	Categories'
												{
																{10010100-740B-11D0-AE7B-00AA004A34D5}
												}
												InprocHandler32	=	s	'ole32.dll'

To	verify	that	the	Implemented	Categories	globally	unique	identifier	(GUID)	is
correct,	look	for	it	in	dtspump.h	under	the	definition	for
CATID_DTSCustomXform.	You	can	verify	that	it	is	among	the	subkeys	of
HKEY_CLASSES_ROOT\Component	Categories\	in	the	registry	of	a	computer
on	which	either	SQL	Server	or	SQL	Server	2000	client	tools	have	been	installed.

DTS	Programming

Building	a	Custom	Transformation	from	the	ATL
Custom	Transformation	Template
To	build	a	Data	Transformation	Services	(DTS)	custom	transformation,	use	the
Active	Template	Library	(ATL)	custom	transformation	template.	This	template,
which	enables	you	to	build	custom	transformations	more	quickly	than	if	you
used	the	ATL	standard	template,	is	included	in	the	Microsoft®	SQL	Server™
2000	DTS	sample	programs.	For	more	information,	see	DTS	Programming
Samples.

Installing	the	ATL	Custom	Transformation	Template
To	install	the	ATL	custom	transformation	template,	do	the	following:

1.	 Copy	all	the	files	in	the	DTSXFormTemplate	folder	except
DTSCuXFm.reg	to	C:\Program	Files\Microsoft	Visual
Studio\Common\MSDev98\Template\ATL\.	This	location	will	be
different	if	Microsoft	Visual	Studio®	version	6.0	was	not	installed	to
the	default	location.

2.	 Double-click	DTSCuXFm.reg	to	run	the	file.

Building	a	Custom	Transformation	Framework	from	the
Template

You	can	create	an	ATL	component	that	includes	a	custom	transformation	class
by	using	the	Microsoft	Visual	C++®	development	environment.

To	create	the	ATL	component

1.	 On	the	File	menu,	click	New,	and	then	click	the	Projects	tab.	

2.	 Click	ATL	COM	AppWizard,	and	then	enter	a	project	name	and
location.

For	this	discussion,	assume	DTSTrans	was	entered	for	the	project
name.

3.	 Click	Dynamic	Link	Library	(DLL),	click	Finish,	and	in	the	New
Project	Information	dialog	box,	click	OK.

4.	 On	the	Insert	menu,	click	New	ATL	Object,	click	DTS	Custom
Objects,	click	DTS	Transformation,	and	then	click	Next.

5.	 On	the	Names	tab,	enter	a	short	name.

For	this	discussion,	assume	CustomXFm	was	entered.	The	wizard
will	fill	in	the	other	fields.	The	COM/Type	field	is	the	name	that	will
appear	in	the	Create	New	Transformation	dialog	box	of	DTS
Designer,	You	can	change	it	from	the	default	CustomXFm	Class.

6.	 Click	the	Attributes	tab,	and	then	do	the	following:

Under	Threading	Model,	click	Both.	

Under	Interface,	click	Dual.

Under	Aggregation,	click	No.

Select	the	Support	ISupportErrorInfo	check	box.

The	wizards	will	create	files	for	the	DTSTrans	component	and	the	CustomXFm
class	and	save	them	to	the	project	location	folder	specified	in	Step	1.

Building	this	transformation	project	from	the	Build/Build	DTSTrans.dll	menu,
before	adding	any	custom	code,	installs	a	custom	transformation	that	will	appear
in	the	Create	New	Transformation	dialog	box	and	can	be	included	in	a	DTS
package.	However,	this	custom	transformation	will	not	copy	or	transform	the
source	columns	when	the	package	is	run.	For	more	information	about	building
and	debugging	a	custom	transformation,	see	Implementing	and	Testing	a	DTS
Custom	Transformation.

DTS	Programming

Implementing	and	Testing	a	DTS	Custom
Transformation
To	implement	and	test	a	Data	Transformation	Services	(DTS)	custom
transformation,	you	need	to:

Install	the	Microsoft®	SQL	Server®	2000	header	and	library	files	on
your	development	computer.

Build	the	custom	transformation	framework.

Add	properties,	if	necessary,	to	the	custom	transformation	framework.

Configure	Microsoft	Visual	C++®	to	build	the	project.

Add	custom	code	to	the	custom	transformation	framework.

Register	and	optionally	unregister	the	custom	transformation.

Debug	the	custom	transformation.

Installing	SQL	Server	2000	Header	and	Library	Files

To	install	the	header	and	library	files,	you	must	do	a	custom	installation	of	SQL
Server	2000	or	the	SQL	Server	2000	client	tools	on	the	computer	on	which	you
develop	the	custom	transformation.

To	install	header	and	library	files	during	a	custom	installation

1.	 In	the	Setup	Type	dialog	box,	click	Custom.	

2.	 In	the	Select	Component	dialog	box,	under	Components,	select	the

Development	Tools	check	box.	

3.	 Under	Sub-Components,	select	Headers	and	Libraries	and
Debugger	Interface.

Building	the	Custom	Transformation	Framework

You	can	add	code	to	a	standard	Active	Template	Library	(ATL)	template	or	use
the	custom	transformation	template	included	with	SQL	Server	2000	to	build	the
transformation	framework.	For	more	information,	see	Building	a	Custom
Transformation	from	a	Standard	ATL	Template	and	Using	the	ATL	Custom
Transformation	Template.

Adding	Properties	to	a	Custom	Transformation
Your	custom	transformation	may	require	properties	that	are	not	supplied	by	the
custom	transformation	framework.

To	add	properties	to	a	custom	transformation

1.	 In	the	Workspace	window,	right-click	the	interface	for	your
transformation	class,	and	then	click	Add	Property.

2.	 In	the	Add	Property	to	Interface	dialog	box,	enter	the	name	and	type,
as	well	as	other	requested	information.

This	procedure	adds	shells	for	the	get_property	and	put_property	functions	to
your	project.	You	must	provide	the	code	to	implement	them.

Configuring	Visual	C++	to	Build	the	Project
Before	you	attempt	to	compile	any	of	the	framework	files,	you	need	to	configure
Visual	C++	to	look	for	SQL	Server	2000	header	and	library	files.

To	configure	Visual	C++	to	build	the	project

1.	 On	the	Tools	menu,	click	Options.	

2.	 In	the	Options	dialog	box,	click	the	Directories	tab.

3.	 In	the	Show	directories	for	list,	enter	the	paths	from	the	following
table	at	the	top	of	the	Directories	list	for	each	entry.

File	type Path
Executable
files

C:\Program	Files\Microsoft	SQL	Server\80\Tools\Binn

Include	Files C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include

Library	files C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Lib

Source	files C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include

This	only	needs	to	be	done	once	after	installing	SQL	Server	2000.	The	paths	will
be	different	if	SQL	Server	2000	components	were	installed	to	other	than	the
default	locations.

You	also	need	to	define	the	preprocessor	symbol	_ATL_NO_UUIDOF.

To	enter	preprocessor	symbols

1.	 On	the	Project	menu,	click	Settings.	

2.	 Click	the	C/C++	tab,	and	then	in	the	Preprocessor	definitions	box,
enter	the	preprocessor	symbols	(comma	separated)	at	the	end	of	the
list.

Adding	Code	to	the	Framework

You	need	to	add	code	for	the	logic	specific	to	your	transformation.

All	transformations	need	IDTSDataPumpTransform::ValidateSchema,	plus
either	IDTSDataPumpTransform::Execute	or
IDTSDataPumpTransform2::ProcessPhase,	in	order	to	be	functional	beyond	a

placeholder	that	returns	NOERROR.	If	the	transformation	is	to	run	in	DTS
Designer,	you	also	need	to	provide
IDTSDataPumpTransform2::PreValidateSchema.	For	more	information,	see
IDTSDataPumpTransform	Interface	and	IDTSDataPumpTransform2	Interface.

For	more	information	about	coding	transformation	logic,	see	DTS	Custom
Transformation	Example:	Copy	One	Column	and	DTS	Custom	Transformation
Example:	Format	Names.

Registering	Custom	Transformations
When	you	build	the	custom	transformation	project	in	Visual	C++,	it	registers	the
transformation	as	the	final	step	of	the	build	process.	If	you	have	enabled	DTS
component	caching,	you	will	need	to	refresh	the	cache	or	DTS	Designer	will	not
be	able	to	see	the	transformation	component.

To	refresh	the	cache

1.	 In	SQL	Server	Enterprise	Manager,	right-click	Data	Transformation
Services,	and	then	click	Properties.	

2.	 In	the	Package	Properties	dialog	box,	click	Refresh	Cache.

If	you	want	to	remove	a	custom	transformation	from	your	computer,	you	must
unregister	it	before	deleting	the	component	.dll	file.

To	unregister	a	custom	transformation

1.	 From	the	command	prompt,	set	the	path	to	the	folder	that	contains	the
transformation	component	DLL.	

2.	 Enter:
			regsvr32	/u	Component.dll

3.	 If	DTS	caching	is	enabled,	refresh	the	cache.

Debugging	Custom	Transformations

You	can	debug	a	custom	transformation	by	running	it	from	DTS	Designer	or
from	a	DTS	package	program	(for	example,	one	implemented	in	Microsoft
Visual	Basic®).	Using	DTS	Designer	may	give	you	more	testing	options,	as
IDTSDataPumpTransform2::PreValidateSchema	is	called	and	a	custom	user
interface	can	be	displayed.	In	either	case,	you	must	specify	the	executable	name
and	path,	along	with	any	parameters	the	executable	requires,	on	the	Debug	tab
of	the	Project	Settings	dialog	box.

If	you	use	DTS	Designer,	you	typically	enter	C:\WINNT\system32\mmc.exe	in
the	Executable	for	debug	session	box	and	/s	"c:\Program	Files\Microsoft	SQL
Server\80\Tools\BINN\SQL	Server	Enterprise	Manager.MSC"	in	the	Program
arguments	box.

To	determine	the	correct	debugging	settings	for	your	computer

1.	 Find	the	shortcut	used	to	launch	SQL	Server	Enterprise	Manager	from
the	Start	menu.	

2.	 Extract	this	information	from	the	Target	box	on	the	Shortcut	tab	of
the	Enterprise	Manager	Properties	dialog	box.

When	a	transformation	commits	an	access	violation	or	other	fatal	error,	the	data
pump	terminates	it	and	reports	that	the	task	using	the	transformation	failed.	For
example,	when	an	access	violation	occurs,	the	message	"Access	is	denied"	is
displayed.	It	is	recommended	you	place	a	breakpoint	at	the	entry	to
IDTSDataPumpTransform::OnTransformComplete	or	the
OnPumpComplete	code	in	IDTSDataPumpTransform2::ProcessPhase.	If
this	breakpoint	is	reached	unexpectedly	before	all	rows	are	processed,	a	likely
cause	is	a	transformation	fatal	error.

DTS	Programming

DTS	Custom	Transformation	Examples
This	section	provides	examples	of	Data	Transformation	Services	(DTS)	custom
transformations.

Example Description
DTS	Custom
Transformation
Example:	Copy	One
Column

Takes	one	source	and	one	destination	column,
verifies	that	source	and	destination	are	the	same
simple	type,	and	then	copies	source	to	destination.

DTS	Custom
Transformation
Example:	Format
Names

Takes	two	source	columns	and	one	destination
column,	verifies	that	the	columns	are	string	types,
formats	the	source	columns	(LastName	and
FirstName),	and	then	copies	the	combined	field	to
destination.	Converts	ANSI	<=>	wide	character
when	necessary.	Performs	certain	transform	flag
validation.

DTS	Programming

DTS	Custom	Transformation	Example:	Copy	One
Column
The	following	code	example	in	Microsoft®	Visual	C++®	implements	a	custom
transformation	that	copies	a	single	source	column	to	a	destination	column.	The
source	and	destination	columns	must	be	the	same	simple	type.	The
transformation	verifies	that:

There	is	exactly	one	source	and	one	destination	column.	

The	columns	are	the	same	type.

The	columns	are	not	complex	types	like	binary	large	objects	(BLOBs).

To	implement	this	example,	use	the	Active	Template	Library	(ATL)	custom
transformation	template	to	create	the	transformation	framework.	Name	the
component	DTSCopy	and	the	transformation	class	Copy1Column.	For	more
information,	see	Using	the	ATL	Custom	Transformation	Template.

Add	the	following	code	segments	to	the	framework	files:

CCopy1Column::PreValidateSchema	method

CCopy1Column::ValidateSchema	method

CCopy1Column::ProcessPhase	method

Error	code	definitions

PreValidateSchema

The	code	for	PreValidateSchema	checks	the	number	of	source	and	destination
columns.	It	also	checks	that	the	types	match	and	that	they	are	simple	types.

Adding	PreValidateSchema	Code
Insert	the	following	code	immediately	ahead	of	the

				return	NOERROR;	

statement	in	CCopy1Column::PreValidateSchema	in	file	Copy1Column.cpp:

				//	Validate	the	count	of	source	and	destination	columns.
				if	(pDestMetadata->cColumns	!=	1	||	pSrcMetadata->cColumns	!=	1)
								return	DTSCopy_E_WrongNumCols;

				//	Validate	that	the	destination	column	type	is	simple.	Remove	BYREF	flag.
				const	DBCOLUMNINFO*	pDestDBColumnInfo			=	&(pDestMetadata->rgDBColumnInfo[0]);
				WORD																wDestType											=	(pDestDBColumnInfo->wType	&	(~DBTYPE_BYREF));

				if(wDestType	&	(DBTYPE_ARRAY	|	DBTYPE_VECTOR	|	DBTYPE_RESERVED))
								return	DTSCopy_E_NotSimpleType;

				//	Validate	that	the	source	column	type	is	simple.
				const	DBCOLUMNINFO*	pSrcDBColumnInfo				=	&(pSrcMetadata->rgDBColumnInfo[0]);
				WORD																wSourceType									=	(pSrcDBColumnInfo->wType);

				if(wSourceType	&	(DBTYPE_ARRAY	|	DBTYPE_VECTOR	|	DBTYPE_RESERVED	|	DBTYPE_BYREF))
								return	DTSCopy_E_NotSimpleType;

				//	Source	and	destination	columns	must	be	the	same	type.
				if(wDestType	!=	wSourceType)
								return	DTSCopy_E_NotSameType;

ValidateSchema
The	code	for	ValidateSchema	performs	the	same	logic	as	PreValidateSchema
in	this	custom	transformation.	This	will	typically	be	the	case	in	simple
transformations	that	do	not	have	properties	needing	to	be	set	before	validation
can	occur.

ValidateSchema	does	not	support	promotion	or	demotion	between	similar
column	data	types	(for	example,	int	and	smallint).	It	also	does	not	reference	the
transformation	flags.

Adding	ValidateSchema	Code
Insert	the	following	code	immediately	ahead	of	the

				return	NOERROR;

statement	in	CCopy1Column::ValidateSchema	in	file	Copy1Column.cpp.

				//	Validate	the	count	of	source	and	destination	columns.
				if	(pDestColumnInfo->cColumns	!=	1	||	pSrcColumnInfo->cColumns	!=	1)
								return	DTSCopy_E_WrongNumCols;

				//	Validate	that	the	destination	column	type	is	simple.	Remove	BYREF	flag.
				const	DBCOLUMNINFO*	pDestDBColumnInfo			=	pDestColumnInfo->rgColumnData[0].pDBColumnInfo;
				WORD																wDestType											=	(pDestDBColumnInfo->wType	&	(~DBTYPE_BYREF));

				if(wDestType	&	(DBTYPE_ARRAY	|	DBTYPE_VECTOR	|	DBTYPE_RESERVED))
								return	DTSCopy_E_NotSimpleType;

				//	Validate	that	the	source	column	type	is	simple.
				const	DBCOLUMNINFO*	pSrcDBColumnInfo				=	pSrcColumnInfo->rgColumnData[0].pDBColumnInfo;
				WORD																wSourceType									=	(pSrcDBColumnInfo->wType);

				if(wSourceType	&	(DBTYPE_ARRAY	|	DBTYPE_VECTOR	|	DBTYPE_RESERVED	|	DBTYPE_BYREF))
								return	DTSCopy_E_NotSimpleType;

				//	Source	and	destination	columns	must	be	the	same	type.
				if(wDestType	!=	wSourceType)
								return	DTSCopy_E_NotSameType;

ProcessPhase

The	code	for	ProcessPhase	immediately	returns	if	called	for	a	phase	other	than
DTSTransformPhase_Transform,	although	it	should	only	be	called	for	those
phases	specified	by	PreValidateSchema.

For	the	destination	column,	ProcessPhase	code	gets	the	buffer	size	from	the
binding	structure	and	creates	pointers	to	the	buffer	fields	where	the	data,	length
and	status	are	to	be	stored.	For	the	source	column,	this	code	gets	the	length	and
status	and	creates	a	data	pointer.	It	must	check	the	source	type	for
DBTYPE_BYREF	to	see	whether	an	additional	level	of	indirection	is	required.

If	the	source	status	is	DBSTATUS_S_ISNULL,	ProcessPhase	sets	the
destination	status	to	this	value.	Length	and	data	do	not	need	to	be	set	when	the
status	is	set	to	DBSTATUS_S_ISNULL.	Otherwise,	it	calculates	the	length	of
data	to	be	moved,	which	is	the	shorter	of	the	source	actual	data	length	or	the	size
of	the	destination	buffer	(reduced	by	the	width	of	a	NULL	character,	for	string
types).	It	copies	the	data,	sets	status,	and	writes	a	trailing	NULL	character,	if
there	is	room	(there	will	be,	for	string	types).

Adding	ProcessPhase	Code
Insert	the	following	code	immediately	ahead	of	the

				return	NOERROR;

statement	in	CCopy1Column::ProcessPhase	in	file	Copy1Column.cpp:

				//	Only	do	something	for	the	Transform	phase.
				if(pPhaseInfo	&&	!(pPhaseInfo->eCurrentPhase	&	DTSTransformPhase_Transform))
								return	NOERROR;

				//	Get	destination	binding	and	information	structures.
				DTSColumnData*						pDTSDestColumnData	=				&(pDestColumnInfo->rgColumnData[0]);
				const	DBBINDING*				pDBDestBinding	=								pDTSDestColumnData->pDBBinding;

				//	Set	the	destination	length	to	maximum	length.	Initialize	to	empty	string.
				ULONG			ulDestMaxLen				=	pDBDestBinding->cbMaxLen;
				LPBYTE		pDestData							=	(pDTSDestColumnData->pvData	+	pDBDestBinding->obValue);

				//	Pointers	to	destination	length	and	status	buffers
				ULONG*		pulLength							=	(ULONG	*)(pDTSDestColumnData->pvData	+	pDBDestBinding->obLength);
				ULONG*		pulStatus							=	(ULONG	*)(pDTSDestColumnData->pvData	+	pDBDestBinding->obStatus);

				//	Get	source	binding	and	information	structures.
				DTSColumnData*						pDTSSourceColumnData	=		&(pSrcColumnInfo->rgColumnData[0]);
				const	DBBINDING*				pDBSourceBinding	=						pDTSSourceColumnData->pDBBinding;

				//	Get	source	type,	length	and	status.
				ULONG			wSourceType					=	(pDBSourceBinding->wType);
				ULONG			ulSourceStatus		=	*(ULONG	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obStatus);
				ULONG			ulSourceLength		=	*(ULONG	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obLength);
				LPBYTE		pSourceData;

				//	Get	pointer	to	source	data.
				if(wSourceType	&	DBTYPE_BYREF)
								pSourceData		=	*(LPBYTE	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obValue);
				else
								pSourceData		=	(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obValue);

				//	Copy	source	to	destination	if	source	is	not	Null.
				if(ulSourceStatus	!=	DBSTATUS_S_ISNULL)
				{
								//	Calculate	maximum	actual	data	space	(allow	room	for	\0).
								wSourceType	&=	~DBTYPE_BYREF;
								ULONG	ulMaxDataLen	=	ulDestMaxLen	-	((wSourceType	==	DBTYPE_WSTR)	?	2	:	
																																														((wSourceType	==	DBTYPE_STR)	?	1	:	0));

								//	Calculate	length	of	data,	then	move	it	and	set	status.
								*pulLength	=	min(ulSourceLength,	ulMaxDataLen);
								memcpy(pDestData,	pSourceData,	*pulLength);
								*pulStatus	=	DBSTATUS_S_OK;
								

								//	Add	one	or	two	NULLs	if	there	is	room	(for	ANSI/Unicode	strings).
								if(*pulLength	<	ulDestMaxLen)
												*(pDestData	+	*pulLength)	=	'\0';
								if(*pulLength	+	1	<	ulDestMaxLen)
												*(pDestData	+	*pulLength	+	1)	=	'\0';
				}
				else
								*pulStatus	=	DBSTATUS_S_ISNULL;

Error	Code	Definitions
These	error	codes	are	returned	by	functions	in	the	transformation.

Adding	Transformation	Error	Codes
Insert	the	following	code	immediately	ahead	of	the

				import	"ocidl.idl";

	statement	in	file	Copy1Column.idl.

				//Error	codes	for	this	custom	transformation
				typedef	[helpstring("Error	codes	generated	by	the	DTSCopy	transformation")]	enum	DTSCopyError	{
								DTSCopy_E_WrongNumCols						=	0x80041001,
								DTSCopy_E_NotSimpleType					=	0x80041002,
								DTSCopy_E_NotSameType							=	0x80041003,
				}	DTSCopyError,	*LPDTSCopyError;

Building	and	Testing	Copy1Column
For	more	information	about	building	and	testing	this	project,	see	Implementing
and	Testing	a	DTS	Custom	Transformation.

DTS	Programming

DTS	Custom	Transformation	Example:	Format
Names
The	following	code	example	in	Microsoft®	Visual	C++®	implements	a	custom
transformation	that	merges	two	source	columns	that	are	presumed	to	be	a	first
and	last	name.	It	formats	them	LastName,	FirstName	and	copies	the	combined
name	to	a	destination	column.

The	source	and	destination	columns	must	be	string	types,	but	they	can	be	ANSI
or	wide	character	strings.	If	some	columns	are	ANSI	and	others	are	wide
character,	the	source	columns	are	converted	to	the	character	width	of	the
destination	column	as	they	are	copied.	The	destination	column	is	set	to	NULL	if
both	source	columns	are	NULL.

The	transformation	verifies	there	are	exactly	two	source	and	one	destination
column,	and	that	they	are	string	types.	It	validates	that	if	both	source	columns
can	contain	NULLs,	either	the	destination	can	contain	NULL	or	the
DTSTransformFlag_AllowNullChange	transform	flag	has	been	set.	It	also
verifies	either	that	the	destination	column	is	large	enough	to	hold	any	name	that
will	fit	in	the	source	columns	or	that	the
DTSTransformFlag_AllowStringTruncation	transform	flag	has	been	set.

Implementing	the	Format	Names	Example
To	implement	this	example,	use	the	Active	Template	Library	(ATL)	custom
transformation	template	to	create	the	transformation	framework.	Name	the
component	DTSStrings	and	the	transformation	class	FormatName.	For	more
information,	see	Building	a	Custom	Transformation	from	the	ATL	Custom
Transformation	Template.

Add	Custom	Properties
After	creating	the	transformation	framework,	you	need	to	add	two	properties	to
the	transformation.

Property	name Property	type Description

FirstNameColumn BSTR The	name	of	the	source	column
that	contains	the	first	name.

RemoveTrailingSpacesVARIANT_BOOLA	boolean	that	indicates
whether	trailing	spaces	are	to
be	trimmed	from	the	first	and
last	names.

To	add	properties	in	Visual	C++

1.	 On	the	ClassView	tab	of	the	Workspace	window,	right-click	the
IFormatName	interface,	and	then	click	Add	Property.	

2.	 In	the	Property	Name	box,	enter	a	name,	and	then	in	the	Property
Type	list,	select	or	enter	the	type	of	property	you	want	to	add.	No
parameters	are	needed.	

3.	 Select	the	Get	Function	and	Put	Function	check	boxes,	and	then
click	PropPut.

Add	Custom	Code

Add	the	following	code	segments	to	the	framework:

Initializations	in	the	CFormatName	class	constructor

Declarations	of	module	level	variables	in	the	CFormatName	class

Overloaded	function	RemoveTrailingSpace

CFormatName::PreValidateSchema	method

CFormatName::ValidateSchema	method

CFormatName::AddVariable	method

CFormatName::GetTransformServerInfo	method

CFormatName::ProcessPhase	method

Property	get_	and	put_	functions

Error	code	definitions

Initializations	in	CFormatName	Constructor

This	code	provides	initial	values	for	the	transformation	properties.

Immediately	after	the	following	lines	in	FormatName.h:

public:
				CFormatName()
				{

Add	these	code	lines:

								//	Initialize	the	properties
								m_bstrFirstNameColumn.m_str	=	NULL;				
								m_vbRemoveTrailingSpaces	=	FALSE;

Declaration	of	CFormatName	Variables
These	are	the	declarations	of	the	internal	storage	for	the	properties	and	other
module	level	variables.

Adding	CFormatName	Declarations
Immediately	after	these	lines	in	FormatName.h:

				STDMETHOD(SetExecuteThreadComplete)(THIS)
								{

												return	NOERROR;
								}

add	these	lines	of	code	for	the	private	section	:

private:
				//	Local	variables.
				LONG																m_lFirstNameOrd;								//	Ordinal	of	first-name	column,	0	or	1.
				BOOL																m_bNullIntoNonNull;					//	True	if	can	get	Null	into	Non-null	error.
				ULONG															m_ulSrcLength;										//	Combined	maximum	source	length.
				BOOL																m_bFirstWide;											//	First	name	is	wide	chars.
				BOOL																m_bLastWide;												//	Last	name	is	wide	chars.
				BOOL																m_bDestWide;												//	Destination	column	is	wide	chars.
				LPBYTE														m_pstrBuffer;											//	Intermediate	buffer.
				IDTSErrorRecords*			m_pErrorRecords;

				//	Properties
				CComBSTR												m_bstrFirstNameColumn;
				VARIANT_BOOL								m_vbRemoveTrailingSpaces;

Function	RemoveTrailingSpace
This	function	removes	trailing	spaces	from	ANSI	and	wide	character	strings.

Adding	Code	for	RemoveTrailingSpace
Immediately	ahead	of	the	following	line	near	the	end	of	FormatName.h:

#endif	//__FORMATNAME_H_

add	these	code	lines:

//	Overloaded	function	to	remove	trailing	spaces.
inline	void	RemoveTrailingSpace(LPSTR	lpstr,	int	iLength)
{
				for(ULONG	ii	=	iLength	-	1;	ii	>=	0;	ii--)	

								if(!isspace(lpstr[ii])	&&	lpstr[ii]	!=	'\0')	
												break;
				lpstr[ii	+	1]	=	'\0';
}
inline	void	RemoveTrailingSpace(LPWSTR	lpwstr,	int	iLength)
{
				for(ULONG	ii	=	iLength	-	1;	ii	>=	0;	ii--)	
								if(!isspace(lpwstr[ii])	&&	lpwstr[ii]	!=	L'\0')	
												break;
				lpwstr[ii	+	1]	=	L'\0';
}

PreValidateSchema
The	code	for	PreValidateSchema	checks	that	there	are	two	source	columns	and
one	destination	column,	and	checks	that	each	column	is	an	ANSI	or	wide
character	string	type.	Validation	of	the	FirstNameColumn	property	and	the
transform	flags	is	deferred	to	the	ValidateSchema	method.

Adding	PreValidateSchema	Code
Immediately	ahead	of	the

				return	NOERROR;

	statement	in	CFormatName::PreValidateSchema	in	file	FormatName.cpp,
add	these	code	lines:

				//	Validate	the	count	of	source	and	destination	columns.
				if	(pDestMetadata->cColumns	!=	1)
								return	DTSStrings_E_NumDestCols;

				if	(pSrcMetadata->cColumns	!=	2)
								return	DTSStrings_E_NumSourceCols;

				//	Validate	that	the	destination	column	is	ANSI	or	Unicode.	Remove	BYREF	flag.

				const	DBCOLUMNINFO*	pDestDBColumnInfo	=	&(pDestMetadata->rgDBColumnInfo[0]);
				WORD																wDestType	=									(pDestDBColumnInfo->wType	&	(~DBTYPE_BYREF));

				if(wDestType	!=	DBTYPE_STR	&&	wDestType	!=	DBTYPE_WSTR)
								return	DTSStrings_E_OnlyStringCols;

				//	Validate	that	the	source	columns	are	ANSI	or	Unicode.	They	can't	have	BYREF	flag.
				for	(UINT	i	=	0;	i	<	pSrcMetadata->cColumns;	i++)
				{
								const	DBCOLUMNINFO*	pSrcDBColumnInfo	=		&(pSrcMetadata->rgDBColumnInfo[i]);
								WORD																wSourceType	=							(pSrcDBColumnInfo->wType);

								if(wSourceType	!=	DBTYPE_STR	&&	wSourceType	!=	DBTYPE_WSTR)
												return	DTSStrings_E_OnlyStringCols;
				}

ValidateSchema
The	code	for	ValidateSchema	duplicates	the	logic	of	PreValidateSchema.	In
addition,	it	does	the	following:

Checks	to	see	whether	a	NULL	value	might	be	moved	to	the	destination
column	where	NULLs	are	not	allowed	and
DTSTransformFlag_AllowNullChange	is	not	set.

Checks	to	see	whether	the	combined	source	columns	plus	the	separator
exceed	the	destination	column	width,	and
DTSTransformFlag_AllowStringTruncation	is	not	set.

Verifies	that	the	FirstNameColumn	property	contains	the	name	of	one
of	the	source	columns.

Adding	ValidateSchema	Code

Immediately	ahead	of	the

				return	NOERROR;	

statement	in	CFormatName::ValidateSchema	in	file	FormatName.cpp,	add
these	code	lines:

				//	Mark	that	first	name	column	unknown.
				m_lFirstNameOrd	=	-1;
				
				//	Validate	the	count	of	source	and	destination	columns.
				if	(pDestColumnInfo->cColumns	!=	1)
								return	DTSStrings_E_NumDestCols;

				if	(pSrcColumnInfo->cColumns	!=	2)
								return	DTSStrings_E_NumSourceCols;

				//	The	pointers	to	the	binding	structures	and	the	data	area	are	Null	in	ValidateSchema.
				const	DBCOLUMNINFO*	pDestDBColumnInfo			=	pDestColumnInfo->rgColumnData[0].pDBColumnInfo;
				WORD																wDestType											=	(pDestDBColumnInfo->wType	&	(~DBTYPE_BYREF));
				ULONG															ulDestLength								=	pDestDBColumnInfo->ulColumnSize;
				BOOL																bDestNullable							=	((pDestDBColumnInfo->dwFlags	&
																																																		(DBCOLUMNFLAGS_ISNULLABLE	|	DBCOLUMNFLAGS_MAYBENULL))	!=	0);
				BOOL																bSrcNullable								=	TRUE;

				//	This	is	length	of	",	".
				m_ulSrcLength	=	2;

				//	Validate	the	destination	column	is	ANSI	or	Unicode.
				if(wDestType	!=	DBTYPE_STR	&&	wDestType	!=	DBTYPE_WSTR)
								return	DTSStrings_E_OnlyStringCols;

				//	Make	sure	column	not	a	BLOB	type.
				if(ulDestLength	>	DTS_DEFAULT_INMEMORY_BLOB_SIZE)
								return	DTSStrings_E_NoBLOBCols;

				//	Validate	that	the	source	columns	are	ANSI	or	Unicode.	They	can't	have	BYREF	flag.
				for	(UINT	i	=	0;	i	<	pSrcColumnInfo->cColumns;	i++)
				{
								const	DBCOLUMNINFO*	pSrcDBColumnInfo	=	pSrcColumnInfo->rgColumnData[i].pDBColumnInfo;
								WORD																wSrcType	=	(pSrcDBColumnInfo->wType);
								LPCOLESTR											pwzColName	=	(pSrcDBColumnInfo->pwszName);

								//	Accumulate	total	of	source	column	widths.
								m_ulSrcLength	+=	pSrcDBColumnInfo->ulColumnSize;

								//	Accumulate	nullability	of	combined	source	columns.	All	columns	must	be	nullable.
								bSrcNullable	&=	((pSrcDBColumnInfo->dwFlags	&
																												(DBCOLUMNFLAGS_ISNULLABLE	|	DBCOLUMNFLAGS_MAYBENULL))	!=	0);

								//	Save	index	if	this	is	specified	first	name	column.
#if	defined(_WIN32)	&&	!defined(OLE2ANSI)
								if(!wcscmp(pwzColName,	(m_bstrFirstNameColumn.m_str)))
#else
								if(!strcmp(pwzColName,	(m_bstrFirstNameColumn.m_str)))
#endif
												m_lFirstNameOrd	=	i;

								if(wSrcType	!=	DBTYPE_STR	&&	wSrcType	!=	DBTYPE_WSTR)
												return	DTSStrings_E_OnlyStringCols;

								//	Make	sure	column	not	a	BLOB	type.
								if(m_ulSrcLength	>	DTS_DEFAULT_INMEMORY_BLOB_SIZE)
												return	DTSStrings_E_NoBLOBCols;
				}

				//	Error	if	first	name	column	is	not	found.
				if(m_lFirstNameOrd	<	0)
								return	DTSStrings_E_NoFirstNameCol;

				//	Error	if	combined	source	cols	might	overflow	destination,	unless	string	truncation	is	allowed.
				if(m_ulSrcLength	>	ulDestLength)												
								if(!(eTransformFlags	&	DTSTransformFlag_AllowStringTruncation))
												return	DTSStrings_E_StrTruncPossible;

				//	Error	if	combined	source	cols	are	nullable	while	destination	is	not	nullable,	unless	null	change	is	allowed.
				if(m_bNullIntoNonNull	=	(bSrcNullable	&&	!bDestNullable))												
								if(!(eTransformFlags	&	DTSTransformFlag_AllowNullChange))
												return	DTSStrings_E_NullNotNullPossible;

AddVariable
The	code	for	AddVariable	looks	for	the	DTSErrorRecords	variable	and	uses	it
to	obtain	a	pointer,	via	QueryInterface,	to	the	IDTSErrorRecords	interface.
Other	variables	are	ignored.

Adding	AddVariable	Code
Immediately	ahead	of	the

				return	NOERROR;

statement	in	CFormatName::AddVariable	in	file	FormatName.cpp,

add	these	code	lines:

				//	Dig	out	the	error	variable	if	this	is	it.	Others,	ignore.
				HRESULT	hr	=	NOERROR;
#if	defined(_WIN32)	&&	!defined(OLE2ANSI)
				if	(!wcscmp(wzDTSErrorRecords,	pwzName))	{
#else
				if	(!strcmp(wzDTSErrorRecords,	pwzName))	{
#endif
								//m_pErrorRecords->Clear();
								if	(!V_DISPATCH(&Variable))

												return	E_POINTER;
								hr	=	V_DISPATCH(&Variable)->QueryInterface(IID_IDTSErrorRecords,	(LPVOID	*)&m_pErrorRecords);
								if(hr	==	NOERROR)
												m_pErrorRecords->Clear();
				}

GetTransformServerInfo
The	code	for	GetTransformServerInfo	returns	a	help	string	and	specifies	the
phases	the	custom	transformation	supports.	In	addition	to
DTSTransformPhase_Transform,	this	transformation	uses
DTSTransformPhase_PreSourceData	and
DTSTransformPhase_PostSourceData.

Adding	GetTransformServerInfo	Code
Replace	the	body	of	CFormatName::GetTransformServerInfo	in	file
FormatName.cpp	with	the	following	code:

				BSTR	bstrHelp	=	_bstr_t("Format	source	column	names	as	Last,	First.");

				//	If	help	string	pointer	is	valid,	define	help	string.
				if	(pbstrHelpString)	
								*pbstrHelpString	=	bstrHelp;

				//	If	supported	phases	pointer	is	valid,	define	supported	phases.
				if	(peSupportedPhases)	
								*peSupportedPhases	=	DTSTransformPhase_Transform	+
																												DTSTransformPhase_PreSourceData	+
																												DTSTransformPhase_PostSourceData;
				return	NOERROR;

ProcessPhase
The	code	for	ProcessPhase	supports	the	phases
DTSTransformPhase_PreSourceData,	DTSTransformPhase_PostSourceData	and

DTSTransformPhase_Transform.

In	the	DTSTransformPhase_PreSourceData	phase,	ProcessPhase	allocates	an
intermediate	buffer	and	determines	which	columns	are	wide	character	strings.	It
uses	DTSTransformPhase_PostSourceData	to	release	the	buffer.

In	the	DTSTransformPhase_Transform	phase,	ProcessPhase	first	copies	the	last
name	to	the	intermediate	buffer,	converting	character	width	and	truncating
spaces,	if	necessary.	It	appends	a	comma	and	space,	although	only	if	neither	last
name	nor	first	name	is	NULL.	It	appends	the	first	name	to	the	intermediate
buffer,	converting	character	width	and	truncating	spaces,	if	necessary.	It	then
moves	the	intermediate	buffer	to	the	destination,	only	copying	the	part	of	the
string	that	will	fit	in	the	destination	buffer.	It	sets	the	destination	to	NULL	only	if
both	first	and	last	name	are	NULL.

Adding	ProcessPhase	Code
Immediately	ahead	of	the

				return	NOERROR;

	statement	in	CFormatName::ProcessPhase	in	file	FormatName.cpp,

add	these	code	lines:

				DTSColumnData*						pDTSDestColumnData;
				const	DBBINDING*				pDBDestBinding;

				DTSColumnData*						pDTSSourceColumnData;
				const	DBBINDING*				pDBSourceBinding;

				//	Process	the	current	transform	phase.
				switch(pPhaseInfo	?	pPhaseInfo->eCurrentPhase	:	DTSTransformPhase_Transform)
				{
				//	Delete	intermediate	buffer.
				case	DTSTransformPhase_PostSourceData:

								delete(m_pstrBuffer);

								break;

				//	Allocate	intermediate	buffer	and	gather	column	widths.
				case	DTSTransformPhase_PreSourceData:

								//	Get	destination	char	width.
								pDTSDestColumnData						=	&(pDestColumnInfo->rgColumnData[0]);
								pDBDestBinding										=	pDTSDestColumnData->pDBBinding;
								m_bDestWide													=	(pDBDestBinding->wType	==	DBTYPE_WSTR);

								//	Get	last	name	char	width.
								pDTSSourceColumnData				=	&(pSrcColumnInfo->rgColumnData[1	-	m_lFirstNameOrd]);
								pDBSourceBinding								=	pDTSSourceColumnData->pDBBinding;
								m_bLastWide													=	((pDBSourceBinding->wType	&	~DBTYPE_BYREF)	==	DBTYPE_WSTR);

								//	Get	first	name	char	width.
								pDTSSourceColumnData				=	&(pSrcColumnInfo->rgColumnData[m_lFirstNameOrd]);
								pDBSourceBinding								=	pDTSSourceColumnData->pDBBinding;
								m_bFirstWide												=	((pDBSourceBinding->wType	&	~DBTYPE_BYREF)	==	DBTYPE_WSTR);

								//	Allocate	intermediate	buffer	w/	space	for	null	term.
								m_pstrBuffer												=	(LPBYTE)new	char[(m_ulSrcLength	+	1)	*	(m_bDestWide	?	2	:	1)];

								break;

				case	DTSTransformPhase_Transform:

								USES_CONVERSION;
								
								//	Get	last	name	info	structures.
								pDTSSourceColumnData				=	&(pSrcColumnInfo->rgColumnData[1	-	m_lFirstNameOrd]);
								pDBSourceBinding								=	pDTSSourceColumnData->pDBBinding;

								//	Get	last	name	status,	data	length,	and	data	ptr.
								ULONG			ulLastNStatus			=	*(ULONG	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obStatus);
								ULONG			ulSourceLength		=	*(ULONG	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obLength);
								LPBYTE		pSourceString			=	(pDBSourceBinding->wType	&	DBTYPE_BYREF	?
																																				*(LPBYTE	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obValue)	:
																																				(LPBYTE)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obValue));

								//	If	last	name	not	null,	move	to	interm	buffer.
								if(ulLastNStatus	!=	DBSTATUS_S_ISNULL)
												if(m_bDestWide)
												{
																//	Move	to	buffer,	and	convert	to	wide	if	necessary.
																if(m_bLastWide)
																				wcscpy((LPWSTR)m_pstrBuffer,	(LPCWSTR)pSourceString);
																else
																				wcscpy((LPWSTR)m_pstrBuffer,	(LPCWSTR)A2W((LPCSTR)pSourceString));

																//	Remove	trailing	spaces,	if	specified.
																if(m_vbRemoveTrailingSpaces)
																				RemoveTrailingSpace((LPWSTR)m_pstrBuffer,	
																																									(m_bLastWide	?	ulSourceLength	/	2	:	ulSourceLength));
												}
												else
												{
																//	Move	to	buffer,	and	convert	to	ANSI	if	necessary.
																if(m_bLastWide)
																				strcpy((LPSTR)m_pstrBuffer,	(LPCSTR)W2A((LPCWSTR)pSourceString));
																else
																				strcpy((LPSTR)m_pstrBuffer,	(LPCSTR)pSourceString);

																//	Remove	trailing	spaces,	if	specified.
																if(m_vbRemoveTrailingSpaces)

																				RemoveTrailingSpace((LPSTR)m_pstrBuffer,	
																																									(m_bLastWide	?	ulSourceLength	/	2	:	ulSourceLength));
												}

								//	Otherwise	put	a	null	terminator.	Works	for	both	ANSI	and	wide.
								else
												*(LPWSTR)m_pstrBuffer	=	L'\0';
								
								//	Get	first	name	length,	status	and	data	ptr.
								pDTSSourceColumnData				=	&(pSrcColumnInfo->rgColumnData[m_lFirstNameOrd]);
								pDBSourceBinding								=	pDTSSourceColumnData->pDBBinding;
								ulSourceLength										=	*(ULONG	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obLength);
								pSourceString											=	(pDBSourceBinding->wType	&	DBTYPE_BYREF	?
																																				*(LPBYTE	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obValue)	:
																																				(LPBYTE)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obValue));

								ULONG			ulFirstNStatus		=	*(ULONG	*)(pDTSSourceColumnData->pvData	+	pDBSourceBinding->obStatus);

								//	If	first	name	not	null,	append	it	to	interm	buffer.
								if(ulFirstNStatus	!=	DBSTATUS_S_ISNULL)
								{
												//	If	neither	name	null,	append	",	".
												if(ulLastNStatus	!=	DBSTATUS_S_ISNULL)
																if(m_bDestWide)
																				wcscat((LPWSTR)m_pstrBuffer,	L",	");
																else
																				strcat((LPSTR)m_pstrBuffer,	",	");

												//	Now	append	the	first	name.								
												if(m_bDestWide)
												{
																//	Move	to	buffer,	and	convert	to	wide	if	necessary.
																if(m_bFirstWide)

																				wcscat((LPWSTR)m_pstrBuffer,	(LPCWSTR)pSourceString);
																else
																				wcscat((LPWSTR)m_pstrBuffer,	(LPCWSTR)A2W((LPCSTR)pSourceString));

																//	Remove	trailing	spaces,	if	specified.
																if(m_vbRemoveTrailingSpaces)
																				RemoveTrailingSpace((LPWSTR)m_pstrBuffer,	wcslen((LPWSTR)m_pstrBuffer));
												}
												else
												{
																//	Move	to	buffer,	and	convert	to	ANSI	if	necessary.
																if(m_bFirstWide)
																				strcat((LPSTR)m_pstrBuffer,	(LPCSTR)W2A((LPCWSTR)pSourceString));
																else
																				strcat((LPSTR)m_pstrBuffer,	(LPCSTR)pSourceString);

																//	Remove	trailing	spaces,	if	specified.
																if(m_vbRemoveTrailingSpaces)
																				RemoveTrailingSpace((LPSTR)m_pstrBuffer,	strlen((LPSTR)m_pstrBuffer));
												}
								}

								//	Destination	information	structures.								
								pDTSDestColumnData						=	&(pDestColumnInfo->rgColumnData[0]);
								pDBDestBinding										=	pDTSDestColumnData->pDBBinding;
								
								//	Destination	buffer	size,	ptrs	to	data,	length,	and	status.
								ULONG			ulDestLength				=	pDBDestBinding->cbMaxLen;
								LPBYTE		pDestString					=	(LPBYTE)(pDTSDestColumnData->pvData	+	pDBDestBinding->obValue);
								ULONG*		ulLength								=	(ULONG	*)(pDTSDestColumnData->pvData	+	pDBDestBinding->obLength);
								ULONG*		ulStatus								=	(ULONG	*)(pDTSDestColumnData->pvData	+	pDBDestBinding->obStatus);
								
								//	If	both	first	and	last	name	Null,	set	destination	to	Null.

								if(ulLastNStatus	==	DBSTATUS_S_ISNULL	&&	ulFirstNStatus	==	DBSTATUS_S_ISNULL)
												*ulStatus	=	DBSTATUS_S_ISNULL;

								//	Otherwise	move	data	to	destination	buffer,	write	length	and	status.
								else
								{
												//	Calculate	length	of	data	(in	bytes)	to	be	moved.
												*ulLength	=	(m_bDestWide	?
																												min(ulDestLength	-	2,	wcslen((LPCWSTR)m_pstrBuffer)	*	2)	:
																												min(ulDestLength	-	1,	strlen((LPCSTR)m_pstrBuffer)));

												//	Set	good	status	and	move	data.
												*ulStatus	=	DBSTATUS_S_OK;
												memcpy(pDestString,	m_pstrBuffer,	*ulLength);

												//	Null	terminate	the	string.
												if(m_bDestWide)
																*(LPWSTR)(pDestString	+	*ulLength)	=	L'\0';
												else
																*(LPSTR)(pDestString	+	*ulLength)	=	'\0';
								}
								break;
				}																

Property	get_	and	put_	Functions
The	property	get_	functions	return	the	property	value	through	their	pointer
parameter	after	verifying	the	pointer	is	non-null.	The	property	put_	functions
save	the	property	value,	or	a	pointer	to	the	value,	in	local	storage.

You	need	to	add	the	code	that	does	this	to	the	get_	and	put_	functions	of	the
FirstNameColumn	and	RemoveTrailingSpaces	properties.	In	each	case,
replace	the	comment

				//	TODO:	Add	your	implementation	code	here

with	the	appropriate	code.	The	get_	and	put_	functions	were	added	by	Visual
C++	when	the	properties	were	added	to	the	project.	They	are	located	near	the
end	of	FormatName.cpp.

CFormatName::get_FirstNameColumn
Replace	the	comment	in	CFormatName::get_FirstNameColumn	with	the
following	code:

				if(!pVal)
								return	E_POINTER;
				*pVal	=	m_bstrFirstNameColumn.Copy();

CFormatName::put_FirstNameColumn
Replace	the	comment	in	CFormatName::put_FirstNameColumn	with	the
following	code:

				SysFreeString(m_bstrFirstNameColumn.m_str);							
				m_bstrFirstNameColumn.m_str	=	SysAllocString(newVal);

CFormatName::get_RemoveTrailingSpaces
Replace	the	comment	in	CFormatName::get_RemoveTrailingSpaces	with	the
following	code:

				if(!pVal)
								return	E_POINTER;
				*pVal	=	m_vbRemoveTrailingSpaces;

CFormatName::put_RemoveTrailingSpaces
Replace	the	comment	in	CFormatName::put_RemoveTrailingSpaces	with	the
following	code:

				m_vbRemoveTrailingSpaces	=	newVal;

Error	Code	Definitions

These	error	codes	are	returned	by	methods	in	the	transformation.

Adding	Transformation	Error	Codes
Immediately	following	the

				import	"ocidl.idl";

	statement	in	file	FormatName.idl,

add	these	code	lines:

				//Error	codes	for	this	custom	transformation
				typedef	[helpstring("Error	codes	generated	by	the	DTSStrings	transformations")]	enum	DTSStringsError	{
								DTSStrings_E_NumDestCols												=			0x80041001,
								DTSStrings_E_NumSourceCols										=			0x80041002,
								DTSStrings_E_OnlyStringCols									=			0x80041003,
								DTSStrings_E_NoFirstNameCol									=			0x80041004,
								DTSStrings_E_StrTruncPossible							=			0x80041005,
								DTSStrings_E_NullNotNullPossible				=			0x80041006,
								DTSStrings_E_NoBLOBCols													=			0x80041007,
				}	DTSStringsError,	*LPDTSStringsError;

Building	and	Testing	FormatName
For	more	information	about	building	and	testing	this	project,	see	Implementing
and	Testing	a	DTS	Custom	Transformation.

DTS	Programming

DTS	Scripting	Reference
This	section	documents	the	objects	and	collections,	and	their	properties	and
methods,	that	are	provided	by	the	Data	Transformation	Services	(DTS)	data
pump	for	the	scripts	of	Microsoft®	ActiveX®	Script	transformations.	They	can
also	be	referenced	in	custom	transformations	implemented	in	Microsoft	Visual
C++®	and	the	C	language.	The	data	pump	is	the	engine	for	the	Transform	Data
task,	the	Data	Driven	Query	task,	and	the	Parallel	Data	Pump	task.

These	objects	and	collections	can	generally	not	be	used	in	the	scripts	associated
with	the	ActiveX	Script	task	or	with	DTS	package	steps.	Moreover,	the	name
you	use	within	an	ActiveX	Script	transformation	is	generally	different	from	the
object	name.	This	table	specifies	the	names	to	be	used	within	scripts,	the	types	of
scripts	in	which	they	are	valid,	and	a	reference	to	the	underlying	object.

Scripting	Name Validity Reference
DTSErrorRecords ActiveX	Script

transformations
DTSErrorRecords	Collection

DTSGlobalVariables All	DTS
ActiveX	scripts

GlobalVariables	Collection

DTSLookups ActiveX	Script
transformations

DTSDataPumpLookups
Collection

DTSPackageLog ActiveX	Script
tasks

PackageLog	Object

DTSSource
DTSDestination

ActiveX	Script
transformations

DTSDataPumpColumns
Collection

DTSTransformPhaseInfoActiveX	Script
transformations

DTSTransformPhaseInfo
Object

To	reference	any	other	object	in	the	DTS	object	model	hierarchy	from	an
ActiveX	script,	use	DTSGlobalVariables.Parent	to	return	a	reference	to	the
Package2	object,	from	which	you	can	reference	any	other	object	in	the
hierarchy.	For	example,	to	cause	a	step	named	DTSStep_DTSBulkInsertTask_1
to	execute	again	after	it	has	already	completed	execution,	set:

DTSGlobalVariables.Parent.Steps("DTSStep_DTSBulkInsertTask_1").ExecutionStatus	=	_
						DTSStepExecStat_Waiting

See	Also

Package2	Object

DTS	Programming

Scripting	Objects
This	section	documents	the	Data	Transformation	Services	(DTS)	objects
exposed	by	the	DTS	data	pump	for	the	scripts	of	Microsoft®	ActiveX®	Script
transformations.	They	can	also	be	referenced	in	custom	transformations
implemented	in	Microsoft	Visual	C++®	and	the	C	language.

Topic Description
DTSDataPumpColumn	Object Provides	access	to	a	column	for	a

transformation	or	ActiveX	script.
DTSDataPumpColumn2	Object Extends	the	functionality	of	the

DTSDataPumpColumn	object.
DTSDataPumpLookup	Object Specifies	a	named,	parameterized	query

string	for	a	transformation	or	ActiveX
script.

DTSTransformPhaseInfo	Object Makes	status	information	available	to	a
transformation	or	ActiveX	script.

DTS	Programming

DTSDataPumpColumn	Object
The	DTSDataPumpColumn	object	provides	access	to	a	column	value	and	its
meta	data	to	a	Microsoft®	ActiveX®	script.

Properties

ActualSize	Property OriginalValue	Property
Attributes	Property Precision	Property
DefinedSize	Property Type	Property
Name	Property UnderlyingValue	Property
NumericScale	Property Value	Property

Methods

AppendChunk	Method GetChunk	Method

Remarks
The	DTSDataPumpColumn	object	belongs	to	the	DTSSource	and
DTSDestination	collections.	The	DTSDataPumpColumn	object	is	identical	to
the	ADO.Field	interface.

The	DTSDataPumpColumn	object	is	compatible	with	Microsoft®	SQL
Server™	version	7.0.	For	more	information	about	an	extended	version	of	this
object,	see	DTSDataPumpColumn2	Object.

Reference	the	DTSDataPumpColumn	object	from	within	ActiveX	script
transformations	by	referencing	an	element	of	the	DTSSource	or
DTSDestination	collections.	If	you	must	remain	compatible	with	SQL	Server
7.0,	use	only	the	properties	specified	above.

See	Also

Column	Object

DTSDataPumpColumns	Collection

DTS	Programming

DTSDataPumpColumn2	Object
The	DTSDataPumpColumn2	object	provides	access	to	a	column	value	and	its
meta	data	to	a	Microsoft®	ActiveX®	script.

Extended	Properties

Status	Property

Remarks
The	DTSDataPumpColumn2	object	extends	the	functionality	of	the
DTSDataPumpColumn	object	and	inherits	the	properties	and	methods	of	that
object.	In	addition,	the	Status	property	indicates	whether	the	data	value	is	to	be
used	as	the	value	of	the	column	and	whether	the	data	pump	was	able	to	get	or	set
the	value.

For	more	information	about	when	to	use	the	DTSDataPumpColumn	object
instead	of	the	DTSDataPumpColumn2	object,	see	Extended	DTS	Objects.

Reference	the	DTSDataPumpColumn2	object	from	within	ActiveX	script
transformations	by	referencing	an	element	of	the	DTSSource	or
DTSDestination	collections.

See	Also

Column	Object

DTSDataPumpColumn	Object

DTSDataPumpColumns	Collection

JavaScript:hhobj_1.Click()

DTS	Programming

DTSDataPumpLookup	Object
The	DTSDataPumpLookup	object	provides	information	about	columns	in	a
Data	Transformation	Services	(DTS)	lookup	query	to	a	Microsoft®	ActiveX®
script.	The	DTSDataPumpLookup	object	belongs	to	the
DTSDataPumpLookups	collection.

Properties

LastRowCount	Property Name	Property

Methods

AddToCache	Method RemoveFromCache	Method
Execute	Method 	

Remarks
DTSDataPumpLookup	returns	a	variant	or	an	array	of	variants	(if	multivalued)
corresponding	to	the	sequence	of	columns	in	the	single	output	row	resulting
from	the	execution	of	a	query.	If	multiple	rows	are	returned,	only	the	value	of	the
first	row	is	returned	in	the	output	variant.	An	application	can	call
LastRowCount	to	assert	that	only	one	row	was	returned.

See	Also

DTSDataPumpLookups	Collection

Lookup	Object

DTS	Programming

DTSTransformPhaseInfo	Object
The	DTSTransformPhaseInfo	object	makes	status	information	available	to
Data	Transformation	Services	(DTS)	transformations	and	Microsoft®	ActiveX®
Script	transformations.

Properties

CurrentPhase	Property ErrorCode	Property
CurrentSourceRow	Property ErrorRows	Property
DestinationRowsComplete	Property TransformStatus	Property

Remarks
The	following	information	is	available	from	the	DTSTransformPhaseInfo
object:

Current	source	row	being	processed;	first	row	is	row	1.

Destination	rows	inserted	or	Data	driven	queries	executed.

Total	number	of	error	rows	encountered.

Error	code	of	operation	preceding	current	phase.

Transform	status	of	most	recently	completed	transformation.

Current	transformation	phase.

The	DTSTransformPhaseInfo	object	is	available	within	ActiveX	Script
transformations	using	the	same	name,	DTSTransformPhaseInfo.

See	Also

Adding	DTS	Transformations

DTS	Programming

Scripting	Collections
Microsoft®	SQL	Server™	2000	Data	Transformation	Services	(DTS)	scripting
collections	contain	groups	of	related	data	pump	scripting	objects.	They	can	be
used	from	custom	transformations	or	Microsoft	ActiveX®	script
transformations.

Topic Description
DTSDataPumpColumns	Collection Contains	descriptions	of	source	and

destination	columns	for	ActiveX
script	transformations.

DTSDataPumpLookups	Collection Specifies	named,	parameterized
query	strings	for	a	transformation	or
ActiveX	script.

DTSErrorRecords	Collection Details	errors	that	a	custom
transformation	or	ActiveX	script
transformation	has	added	to	data
pump	error	stack.

DTS	Programming

DTSDataPumpColumns	Collection
The	DTSDataPumpColumns	collection	contains	groups	of	columns	that
provide	source	and	destination	column	information	to	a	Microsoft®	ActiveX®
Script	transformation	or	a	custom	transformation.

Properties

Count	Property

Methods
Item	Method

Remarks
Reference	the	DTSDataPumpColumns	collection	from	within	transformation
ActiveX	scripts	by	referencing	the	DTSSource	or	DTSDestination	collections.

See	Also

Columns	Collection

DTSDataPumpColumn	Object

DTS	Programming

DTSDataPumpLookups	Collection
The	DTSDataPumpLookups	collection	contains	DTSDataPumpLookup
objects	that	provide	Data	Transformation	Services	(DTS)	lookup	column
information	to	a	Microsoft®	ActiveX®	script.

Properties

Count	Property

Methods
Item	Method

Remarks
Reference	the	DTSDataPumpLookups	collection	from	within	ActiveX	script
transformations	by	referencing	the	DTSLookups	collection.

See	Also

Lookups	Collection

DTSDataPumpLookup	Object

DTS	Programming

DTSErrorRecords	Collection
The	DTSErrorRecords	collection	allows	an	application	to	append	error	records
to	the	OLE	DB	IErrorInfo	interface	of	the	current	thread.	This	information	can
be	provided	by	a	Microsoft®	ActiveX®	script.

Methods

Add	Method Clear	Method

See	Also

Handling	DTS	Events	and	Errors

IDTSDataPumpErrorSink

DTS	Programming

Scripting	Properties
This	section	defines	the	properties	of	the	Microsoft®	SQL	Server™	2000	Data
Transformation	Services	(DTS)	scripting	objects	and	collections.	With	these
properties,	you	can	retrieve	and	set	the	attributes	of	objects	within	Microsoft
ActiveX®	scripts.

DTS	Programming

ActualSize	Property
The	ActualSize	property	returns	the	actual	size	of	a	column	value	for	the	current
row.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.ActualSize

Part Description
Object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_ActualSize(long	*pl);

Remarks
The	ActualSize	property	may	be	less	than	the	DefinedSize	of	the	column.

See	Also

DefinedSize	Property

Type	Property

DTS	Programming

Attributes	Property
The	Attributes	property	returns	one	or	more	characteristics	of	a	column.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.Attributes

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_Attributes(long	*pl);

Remarks
For	more	information	about	the	valid	values	for	the	Attributes	property,	search
for	DBCOLUMNFLAGS_	in	include	file	OLEDB.h.	This	default	location	for
this	file	is	c:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\include\
if,	during	a	Custom	installation	of	Microsoft	SQL	Server,	Development
Tools/Headers	and	Libraries	was	selected	from	the	Select	Components	dialog
box.

See	Also

Flags	Property

Type	Property

DTS	Programming

Count	Property
The	Count	property	specifies	the	number	of	items	in	a	scripting	collection.

Applies	To

DTSDataPumpColumns	Collection DTSDataPumpLookups	Collection

Syntax
object.Count

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCount(long	*pRetVal);

See	Also

Item	Method

DTS	Programming

CurrentPhase	Property
The	CurrentPhase	property	specifies	the	current	transformation	phase.

Applies	To

DTSTransformPhaseInfo	Object

Syntax
object.CurrentPhase

Part Description
object Expression	that	evaluates	to	a	DTSTransformPhaseInfo	object

Data	Type
DTSTransformPhaseEnum

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_CurrrentPhase(LPDTSTransformPhaseEnum	*pRetVal);

Remarks
The	DTSTransformPhaseInfo	object	is	referenced	within	a	transformation
script	or	custom	transformation.

See	Also

Adding	DTS	Transformations

DTSTransformScriptProperties2	Object

Transformation2	Object

DTS	Programming

CurrentSourceRow	Property
The	CurrentSourceRow	property	specifies	the	current	source	row	being
processed	by	a	Transform	Data	task,	Data	Driven	Query	task,	or	Parallel	Data
Pump	task.

Applies	To

DTSTransformPhaseInfo	Object

Syntax
object.CurrentSourceRow

Part Description
object Expression	that	evaluates	to	a	DTSTransformPhaseInfo	object

Data	Type
Variant/vt_decimal

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_CurrentSourceRow(VARIANT	*pRetVal);

Remarks
The	DTSTransformPhaseInfo	object	is	referenced	within	a	transformation
script	or	custom	transformation.

Some	scripting	languages,	for	example	Microsoft®	Visual	Basic®	Scripting
Edition	(VBScript),	do	not	support	the	vt_decimal	data	type	of	the

CurrentSourceRow	property.	In	VBScript,	convert	CurrentSourceRow	to
Long	before	using	it.	For	example,	use	the	following	code	to	assign
CurrentSourceRow	to	a	global	variable:

DTSGlobalVariables("GV1")	=	CLng(DTSTransformPhaseInfo.CurrentSourceRow)

See	Also

Data	Driven	Query	Task

DestinationRowsComplete	Property

DTSTransformScriptProperties2	Object

ErrorRows	Property

ParallelDataPumpTask	Object

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

DTS	Programming

DefinedSize	Property
The	DefinedSize	property	specifies	the	maximum	size	of	a	column.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.DefinedSize

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_DefinedSize(long	*pl);

Remarks
The	ActualSize	property	specifies	the	size	of	the	data	in	the	current	row	of	the
column.

See	Also

ActualSize	Property

Type	Property

DTS	Programming

DestinationRowsComplete	Property
The	DestinationRowsComplete	property	specifies	the	number	of	destination
rows	inserted	or	data-driven	queries	executed	so	far	for	the	current	rowset	by	a
Transform	Data	task,	Data	Driven	Query	task,	or	Parallel	Data	Pump	task.

Applies	To

DTSTransformPhaseInfo	Object

Syntax
object.DestinationRowsComplete

Part Description
object Expression	that	evaluates	to	a	DTSTransformPhaseInfo	object

Data	Type
Variant/vt_decimal

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_DestinationRowsComplete(VARIANT	*pRetVal);

Remarks
The	DTSTransformPhaseInfo	object	is	referenced	within	a	transformation
script	or	custom	transformation.

Some	scripting	languages,	for	example	Microsoft®	Visual	Basic®	Scripting
Edition	(VBScript),	do	not	support	the	vt_decimal	data	type	of	the

DestinationRowsComplete	property.	In	VBScript,	you	must	convert
DestinationRowsComplete	to	Long	before	using	it.	For	example,	use	the
following	code	to	compare	DestinationRowsComplete	to	a	global	variable	in
VBScript:

If	DTSGlobalVariables("GV1")	<>	CLng(DTSTransformPhaseInfo.DestinationRowsComplete)	Then	...

DestinationRowsComplete	is	incremented	after	the	Transform	and
OnTransformFailure	phases,	but	prior	to	the	OnInsertSuccess	phase.	It	is	not
incremented	for	this	row	if	the	OnInsertFailure	phase	occurs.

See	Also

CurrentSourceRow	Property

Data	Driven	Query	Task

DTSTransformScriptProperties2	Object

ErrorRows	Property

ParallelDataPumpTask	Object

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

DTS	Programming

ErrorRows	Property
The	ErrorRows	property	specifies	the	number	of	error	rows	encountered	for	the
current	rowset	by	a	transformation	in	a	Transform	Data	task,	Data	Driven	Query
task,	or	Parallel	Data	Pump	task.

Applies	To

DTSTransformPhaseInfo	Object

Syntax
object.ErrorRows

Part Description
object Expression	that	evaluates	to	a	DTSTransformPhaseInfo	object

Data	Type
Variant/vt_decimal

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_ErrorRows(VARIANT	*pRetVal);

Remarks
The	DTSTransformPhaseInfo	object	is	referenced	within	a	Microsoft®
ActiveX®	Script	transformation	or	custom	transformation.

Some	scripting	languages,	for	example	Microsoft	Visual	Basic®	Scripting
Edition	(VBScript),	do	not	support	the	vt_decimal	data	type	of	the	ErrorRows

property.	In	VBScript,	you	should	convert	ErrorRows	to	Long	before	using	it.
For	example,	use	the	following	code	to	compare	ErrorRows	to	a	global	variable
in	VBScript:

If	DTSGlobalVariables("GV1")	>	CLng(DTSTransformPhaseInfo.ErrorRows)	Then	...

ErrorRows	includes	the	current	row	if	in	the	OnTransformFailure	or
OnInsertFailure	phases.

See	Also

CurrentSourceRow	Property

Data	Driven	Query	Task

DestinationRowsComplete	Property

DTSTransformScriptProperties2	Object

ParallelDataPumpTask	Object

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

DTS	Programming

LastRowCount	Property
The	LastRowCount	property	returns	the	number	of	rows	returned	during	the
last	operation	of	this	lookup.

Applies	To

DTSDataPumpLookup	Object

Syntax
object.LastRowCount

Part Description
object Expression	that	evaluates	to	a	DTSDataPumpLookup	object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_LastRowCount(LONG	*pRetVal);

Remarks
If	multiple	rows	are	retrieved	by	the	lookup,	only	the	fields	of	the	first	row	are
returned	by	the	Execute	method.	Use	LastRowCount	to	determine	whether	one
or	more	rows	were	retrieved.

See	Also

Execute	Method

DTS	Programming

Name	Property
The	Name	property	specifies	the	name	of	a	scripting	object.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpLookup	Object
DTSDataPumpColumn2	Object 	

Syntax
object.Name

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_Name(*pbstr);

DTS	Programming

NumericScale	Property
The	NumericScale	property	specifies	the	scale	for	numeric	values	in	a	column.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.NumericScale	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Byte

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_NumericScale(*pbNumericScale);

See	Also

Precision	Property

Type	Property

DTS	Programming

OriginalValue	Property
The	OriginalValue	property	specifies	the	value	of	a	column	before	it	was
modified.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.OriginalValue

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Variant

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_OriginalValue(*pvar);

Remarks
For	source	columns,	this	property	is	the	same	as	the	current	value	because	the
source	values	cannot	be	modified.	For	destination	columns,	this	is	always	empty
because	the	original	value	of	a	destination	column	(prior	to	transformation)	is
not	set.

See	Also

UnderlyingValue	Property

Value	Property

DTS	Programming

Precision	Property
The	Precision	property	specifies	the	precision	of	numeric	values	in	a	column.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.Precision

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Byte

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_Precision(BYTE	*pbPrecision);

See	Also

NumericScale	Property

Type	Property

DTS	Programming

Status	Property
The	Status	property	indicates	whether	the	data	value	or	some	other	value,	such
as	NULL,	is	to	be	used	as	the	value	of	the	column.	It	may	also	indicate	whether
the	data	pump	was	able	to	get	or	set	the	value.

Applies	To

DTSDataPumpColumn2	Object

Syntax
dpcolumn.Precision

Part Description
dpcolumn Expression	that	evaluates	to	a	DTSDataPumpColumn2	object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_Status(long	*pl);

Remarks
The	values	for	the	Status	property	are	from	the	OLE	DB	DBSTATUS
enumeration.	See	the	definition	for	DBSTATUSENUM	in	include	file
OLEDB.h.	This	file	is	installed	by	default	in	C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Include\	during	a	custom	installation	of	Microsoft®

SQL	Server™	if	Development	Tools/Headers	and	Libraries	was	selected	from
the	Select	Components	dialog	box.

See	Also

Attributes	Property

Type	Property

DTS	Programming

TransformStatus	Property
The	TransformStatus	property	specifies	the	status	of	the	most	recently
completed	transformation	for	the	current	row	in	a	Transform	Data	task,	Data
Driven	Query	task,	or	Parallel	Data	Pump	task.

Applies	To

DTSTransformPhaseInfo	Object

Syntax
object.TransformStatus

Part Description
object Expression	that	evaluates	to	a	DTSTransformPhaseInfo	object

Data	Type
DTSTransformStatus

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_TransformStatus(DTSTransformStatus	*pRetVal);

Remarks
The	DTSTransformPhaseInfo	object	is	referenced	within	a	Microsoft®
ActiveX®	Script	transformation	or	custom	transformation.

When	there	are	multiple	transformations	scheduled	to	run	during	a	particular
transform	phase,	they	are	executed	sequentially	in	the	order	in	which	the

Transformation2	objects	were	added	to	the	Transformations	collection.	The
TransformStatus	property	allows	a	transformation	to	pass	on	the	status	code
from	previous	transformation	or	to	generate	one	of	its	own.	In	Microsoft	Visual
Basic®	Scripting	Edition	(VBScript),	this	would	look	like:

			Function	Transform_Next()
						Transform_Next	=	DTSTransformPhaseInfo.TransformStatus
						{logic	which	may	or	may	not	assign	a	function	return	value}
			End	Function

TransformStatus	is	not	updated	after	the	execution	of	the	insert	or	data-driven
queries	on	the	destination	rowset.

See	Also

Data	Driven	Query	Task

ParallelDataPumpTask	Object

Transform	Data	Task

Transformation2	Object

Transformations	Collection

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

DTS	Programming

Type	Property
The	Type	property	specifies	the	data	type	of	a	column.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.Type

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_Type(Long	*pDataType);

Remarks
For	more	information	about	the	valid	values	for	the	Type	property,	search	the
include	file	oledb.h	for	DBTYPEENUM.	Oledb.h	is	installed	to	c:\Program
Files\Microsoft	SQL	Server\80\Tools\DevTools\include\	by	default	during	a
custom	installation	of	Microsoft®	SQL	Server™	if	Development	Tools/Headers
and	Libraries	was	selected	from	the	Select	Components	dialog	box.

See	Also

ActualSize	Property

Attributes	Property

DefinedSize	Property

Status	Property

DTS	Programming

UnderlyingValue	Property
The	UnderlyingValue	property	specifies	the	committed	value	of	a	column.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.UnderlyingValue

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Variant

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	get_UnderlyingValue(*pvar);

Remarks
In	Microsoft®	SQL	Server™	2000,	the	UnderlyingValue	property	is	the	same
as	the	OriginalValue	property.

See	Also

OriginalValue	Property

Value	Property

DTS	Programming

Value	Property
The	Value	property	specifies	the	current	value	of	a	column.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.Value	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Current	value	of	a	column

Data	Type
Variant

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	get_Value(*pRetVal);

HRESULT	put_Value(NewValue);

See	Also

OriginalValue	Property

UnderlyingValue	Property

DTS	Programming

Scripting	Methods
This	section	defines	the	data	pump	scripting	methods	of	Microsoft®	SQL
Server™	2000	Data	Transformation	Services	(DTS).	The	methods	control	the
operation	of	Microsoft	ActiveX®	scripts	in	DTS	objects.

DTS	Programming

Add	Method
The	Add	method	adds	an	error	record	to	the	errors	collection	for	a
transformation.

Applies	To

DTSErrorRecords	Collection

Syntax
object.Add(
Number,
NativeError,	
Description,	
Source,
Helpfile,
Helpid)

Part Description
object Expression	that	evaluates	to	a	DTSErrorRecords	collection
Number Error	number
NativeError Native	error	code
Description Description	of	the	error
Source Source	of	the	error
Helpfile Name	of	the	help	file
Helpid Help	context	ID	within	the	help	file

Prototype	(C/C++)
HRESULT	Add(
				long	Number,
				long	NativeError,
				BSTR	Description,

				BSTR	Source,
				BSTR	Helpfile,
				long	Helpid);

See	Also

Clear	Method

DTS	Programming

AddToCache	Method
The	AddToCache	method	adds	a	key	and	value	mapping	to	the	lookup	object
cache.

Applies	To

DTSDataPumpLookup	Object

Syntax
object.AddToCache(
DataValues,
ParamArray	KeyValues())

Part Description
object Expression	that	evaluates	to	a	DTSDataPumpLookup

object
DataValues Data	values
KeyValues Key	values

Prototype	(C/C++)
HRESULT	AddToCache(
				VARIANT	DataValues,	
				SAFEARRAY	*	KeyValues);

Remarks
Either	the	key	or	value	parameters	may	be	a	variant	array.

See	Also

Execute	Method

RemoveFromCache	Method

DTS	Programming

AppendChunk	Method
The	AppendChunk	method	adds	a	segment	to	a	binary	large	object	(BLOB)
column	value.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.AppendChunk(Data)

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
Data The	segment	to	be	added	to	the	BLOB	column

Prototype	(C/C++)
HRESULT	AppendChunk(
				VARIANT	Data);

Remarks
If	the	column	value	is	not	a	BLOB	type,	AppendChunk	sets	the	value	of	the
column.

See	Also

GetChunk	Method

DTS	Programming

Clear	Method
The	Clear	method	clears	the	error	records	collection	for	the	current
transformation.

Applies	To

DTSErrorRecords	Collection

Syntax
object.Clear()

Part Description
object Expression	that	evaluates	to	a	DTSErrorRecords	collection

Prototype	(C/C++)
HRESULT	Clear();

See	Also

Add	Method

DTS	Programming

Execute	Method
The	Execute	method	returns	a	value	or	row	of	values	from	the	lookup	based	on
the	lookup	keys	provided.

Applies	To

DTSDataPumpLookup	Object

Syntax
DTSDataPumpLookup.Execute(
ParamArray	KeyValues())

Part Description
object Expression	that	evaluates	to	a	DTSDataPumpLookup	object
KeyValues An	array	of	key	values	associated	with	a	lookup	operation

Prototype	(C/C++)
HRESULT	Execute(
				SAFEARRAY	*	KeyValues,	
				VARIANT	*pRetVal);

See	Also

AddToCache	Method

RemoveFromCache	Method

DTS	Programming

GetChunk	Method
The	GetChunk	method	retrieves	the	next	segment	of	a	binary	large	object
(BLOB)	column	value.

Applies	To

DTSDataPumpColumn	Object DTSDataPumpColumn2	Object

Syntax
object.GetChunk(Length)

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
Length Length	of	the	BLOB	segment

Prototype	(C/C++)
HRESULT	GetChunk(
				long	Length,	
				VARIANT	*pvar);

Remarks
If	the	column	value	is	not	a	BLOB	type,	GetChunk	gets	the	value	of	the
column.

See	Also

AppendChunk	Method

DTS	Programming

Item	Method
The	Item	method	retrieves	an	object	from	a	scripting	collection.

Applies	To

DTSDataPumpColumns	Collection DTSDataPumpLookups	Collection

Syntax
object.Item(Index)

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
Index Item	name	or	number

Prototype	(C/C++)
HRESULT	Item(
				VARIANT	Index,	
				interface	**pRetVal);

interface	is	IDTSDataPumpColumn	or	IDTSDataPumpLookup.

Remarks
Index	is	the	object	name	or	ordinal.

See	Also

Count	Property

DTSDataPumpColumn2	Object

DTSDataPumpLookup	Object

DTS	Programming

RemoveFromCache	Method
The	RemoveFromCache	method	removes	a	key	and	value	mapping	to	the
lookup	object	cache.

Applies	To

DTSDataPumpLookup	Object

Syntax
DTSDataPumpLookup.RemoveFromCache(
ParamArray	KeyValues())

Part Description
object Expression	that	evaluates	to	a	DTSDataPumpLookup	object
KeyValues Key	to	value	mapping	to	remove	from	the	cache

Prototype	(C/C++)
HRESULT	RemoveFromCache(SAFEARRAY	*	KeyValues);

Remarks
The	KeyValues	array	should	have	the	same	number	of	elements	as	are	used	for
Execute.

See	Also

AddToCache	Method

Execute	Method

DTS	Programming

Scripting	Constants
These	are	the	Microsoft®	SQL	Server™	2000	Data	Transformation	Services
(DTS)	constants	that	are	frequently	used	in	Microsoft	ActiveX®	scripts.

Constants Description
DTSStepExecResult Specifies	the	result	from	the	execution	of

a	step
DTSStepExecStatus Specifies	the	current	status	of	a	step
DTSStepPrecedenceBasis Specifies	whether	execution	status	or

result	is	used	to	specify	precedence	basis
DTSStepScriptResult Specifies	the	disposition	of	the	task

associated	with	a	step	script
DTSTaskExecResult Specifies	the	result	from	the	execution	of

a	task
DTSTransformFlags Specifies	the	exception	handling	options

for	transformations
DTSTransformPhaseEnum Specifies	the	available	phases	for

transformations
DTSTransformStatus Specifies	the	Insert	operation	or	data

driven	query	to	be	taken	by	data	pump
after	a	transformation	completes

DTS	Programming

DTS	Programming	Reference
This	section	documents	the	objects	and	collections,	as	well	as	their	associated
properties,	methods,	events,	and	constants,	of	the	Microsoft®	SQL	Server™
2000	Data	Transformation	Services	(DTS)	object	model.	For	more	information
about	the	object	model	and	a	graphical	representation,	see	DTS	Object	Model
Diagram.

For	more	information	about	the	system	requirements	and	configuration
instructions	for	developing	DTS	applications	in	a	particular	programming
environment,	see	Creating	DTS	Packages	in	Visual	Basic.

DTS	Programming

Task	Objects
The	following	table	describes	the	Data	Transformation	Services	(DTS)	task
classes	supplied	with	Microsoft®	SQL	Server™	2000.

DTS	Task Description
ActiveScriptTask	Object Runs	a	Microsoft	ActiveX®	script	in	the

context	of	a	DTS	task.
BulkInsertTask	Object Performs	the	function	of	Transact-SQL	BULK

INSERT	statements.
CreateProcessTask	Object Runs	a	Microsoft	Win32®	executable	or	batch

file.
CreateProcessTask2	Object Extends	the	CreateProcessTask	object.
DataDrivenQueryTask
Object

Transforms	source	data	and	writes	it	to	the
destination	through	user-specified	queries.

DataDrivenQueryTask2
Object

Extends	the	DataDrivenQueryTask	object.

DataPumpTask	Object Transforms	source	data	and	copies	it	to	the
destination.

DataPumpTask2	Object Extends	the	DataPumpTask	object.
DynamicPropertiesTask
Object

Changes	the	values	of	the	properties	of	DTS
objects	at	runtime.

ExecutePackageTask	Object Runs	another	DTS	package.
ExecuteSQLTask	Object Runs	a	sequence	of	SQL	statements.
ExecuteSQLTask2	Object Runs	a	sequence	of	SQL	statements.	Extended

ExecuteSQLTask	object.
DTSFTPTask	Object Transfers	files	using	File	Transfer	Protocol

(FTP).
DTSMessageQueueTask
Object

Sends	and	receives	Message	Queuing
messages.

ParallelDataPumpTask
Object

Transforms	hierarchical	source	rowsets	and
writes	to	destination.

SendMailTask	Object Sends	e-mail	in	the	context	of	a	DTS	task.
TransferObjectsTask	Object Transfers	SQL	Server	objects	between	source

and	destination.
TransferObjectsTask2
Object

Transfers	SQL	Server	objects	between	source
and	destination.	Extended
TransferObjectsTask	object.

DTS	Programming

ActiveScriptTask	Object
The	ActiveScriptTask	object	defines	a	task	that	is	a	Microsoft®	ActiveX®
script.	ActiveX	Script	tasks	do	not	use	the	data	pump	and	therefore	do	not	have
access	to	the	Connections	collection	or	Data	Transformation	Services	(DTS)
source	and	destination	collections.	However,	ActiveScriptTask	objects	have	full
access	to	the	GlobalVariables	collection,	which	provides	a	way	to	share
information	across	tasks.

Collections

Properties	Collection

Properties

ActiveXScript	Property FunctionName	Property
AddGlobalVariables	Property Name	Property
Description	Property 	

Methods

CheckSyntax	Method Execute	Method

Remarks
Script	languages	available	on	a	particular	system	can	be	determined	by
enumerating	the	ScriptingLanguageInfos	collection	of	the	Application	object.
For	more	information	about	the	scripting	language	appropriate	for	use	with	DTS,
see	ScriptingLanguageInfo	Object.

Example
The	following	Microsoft	Visual	Basic®	code	creates	ActiveScriptTask	and
Step	objects.	The	ActiveX	script	returns	DTSTaskExecResult_Success	or
DTSTaskExecResult_Failure,	depending	on	the	value	of	a	global	variable.	The
success	or	failure	return	can	be	used	to	direct	the	workflow	of	subsequent	steps
in	the	package.

Dim	objPackage						As	DTS.Package2
Dim	objStep									As	DTS.Step
Dim	objTask									As	DTS.Task
Dim	objScripTask				As	DTS.ActiveScriptTask
.	.	.
'create	step	and	task,	specify	script,	func	name	and	language
Set	objStep	=	objPackage.Steps.New
Set	objTask	=	objPackage.Tasks.New("DTSActiveScriptTask")
Set	objScripTask	=	objTask.CustomTask
With	objScripTask
				.Name	=	"AXScr_Task"
				.ActiveXScript	=	_
								"Function	Main()"	&	vbCrLf	&	_
								"If	DTSGlobalVariables(""GlobalOne"")	>	0	Then"	&	vbCrLf	&	_
								vbTab	&	"Main	=	DTSTaskExecResult_Success"	&	vbCrLf	&	_
								"Else"	&	vbCrLf	&	_
								vbTab	&	"Main	=	DTSTaskExecResult_Failure"	&	vbCrLf	&	_
								"End	If"	&	vbCrLf	&	_
								"End	Function"
								.FunctionName	=	"Main"
								.ScriptLanguage	=	"VBScript"
End	With

'link	step	to	task	to	package
objStep.TaskName	=	objScripTask.Name
objStep.Name	=	"AXScr_Step"
With	objPackage

				.Steps.Add	objStep
				.Tasks.Add	objTask
				.FailOnError	=	False
End	With

Note		If	an	ActiveX	script	returns	DTSTaskExecResult_Failure	and	the
FailOnError	property	of	the	Package2	object	is	TRUE,	the	entire	package	will
fail.

See	Also

Application	Object

ScriptingLanguageInfos	Collection

JavaScript:hhobj_1.Click()

DTS	Programming

BulkInsertTask	Object
The	BulkInsertTask	object,	based	on	the	Transact-SQL	BULK	INSERT
statement,	provides	the	fastest	method	for	copying	large	amounts	of	data	from	a
text	file	to	Microsoft®	SQL	Server™.	Use	BulkInsertTask	for	copying
operations,	and	in	situations	where	performance	is	the	most	important
consideration.	It	is	not	used	in	conjunction	with	transformations	during	data
import	operations.

Collections

Properties	Collection

Properties

BatchSize	Property FormatFile	Property
CheckConstraints	Property KeepIdentity	Property
Codepage	Property KeepNulls	Property
ConnectionID	Property LastRow	Property
DataFile	Property MaximumErrors	Property
DataFileType	Property Name	Property
Description	Property RowTerminator	Property
DestinationTableName	Property SortedData	Property
FieldTerminator	Property TableLock	Property
FirstRow	Property 	

Methods

Execute	Method

Remarks
A	Connection2	object	must	be	used	to	access	the	database	into	which	data	is
inserted.	You	can	specify	the	format	of	the	input	data	file	directly	using	the
FieldTerminator	and	RowTerminator	properties,	or	indirectly	through	a	bcp
format	file.

Example
The	following	Microsoft	Visual	Basic®	code	uses	the	BulkInsertTask	object	to
insert	data	from	file	D:\DTS_UE\BCPData\Payroll.txt	into	table	Payroll	of
database	DTS_UE.

Public	Sub	Main()
'initialize	Payroll	table	in	DTS_UE	db	with	bulk	data
Dim	objPackage						As	DTS.Package2
Dim	objConnect						As	DTS.Connection2
Dim	objStep									As	DTS.Step
Dim	objTask									As	DTS.Task
Dim	objBulkCopy					As	DTS.BulkInsertTask

Set	objPackage	=	New	DTS.Package

'create	database	connection
Set	objConnect	=	objPackage.Connections.New("SQLOLEDB.1")
With	objConnect
				.ID	=	1
				.DataSource	=	"(local)"
				.UseTrustedConnection	=	True
End	With
objPackage.Connections.Add	objConnect
'create	step	and	task,	specify	data	file	and	format
Set	objStep	=	objPackage.Steps.New
Set	objTask	=	objPackage.Tasks.New("DTSBulkInsertTask")
Set	objBulkCopy	=	objTask.CustomTask

With	objBulkCopy
				.Name	=	"BulkInsTask"
				.DataFile	=	"D:\DTS_UE\BCPData\Payroll.txt"
				.ConnectionID	=	1
				.DestinationTableName	=	"DTS_UE..Payroll"
				.FieldTerminator	=	"|"
				.RowTerminator	=	"\r\n"
End	With

'link	step	to	task	to	package,	run	package
objStep.TaskName	=	objBulkCopy.Name
objStep.Name	=	"BulkInsStep"
With	objPackage
				.Steps.Add	objStep
				.Tasks.Add	objTask
				.FailOnError	=	True

				.Execute
End	With
End	Sub

DTS	Programming

CreateProcessTask	Object
The	CreateProcessTask	object	runs	a	Microsoft®	Win32®	executable	or	batch
file	in	the	context	of	the	Data	Transformation	Services	(DTS)	package.

Use	the	ProcessCommandLine	property	to	specify	the	file	to	be	executed	and
command	line	parameters.	You	can	set	a	Timeout	for	the	executed	process.	You
can	specify	TerminateProcessAfterTimeout,	or	also	FailPackageOnTimeout.

Collections

Properties	Collection

Properties

Description	Property SuccessReturnCode	Property
FailPackageOnTimeout	Property TerminateProcessAfterTimeout

Property
Name	Property Timeout	Property
ProcessCommandLine	Property 	

Methods

Execute	Method

Remarks
The	CreateProcessTask	object	is	compatible	with	Microsoft	SQL	Server™
version	7.0.	For	information	about	an	extended	version	of	this	object,	see
CreateProcessTask2	Object.

DTS	Programming

CreateProcessTask2	Object
The	CreateProcessTask2	object	runs	a	Microsoft®	Win32®	executable	or	batch
file	in	the	context	of	the	Data	Transformation	Services	(DTS)	package.	It	is
called	the	Execute	Process	Task	in	DTS	Designer.

Extended	Methods

GetExpandedProcessCommandLine	Method

Remarks
The	CreateProcessTask2	object	extends	the	functionality	of	the
CreateProcessTask	Object	and	inherits	the	properties	and	methods	of	that	object.
In	addition,	the	GetExpandedProcessCommandLine	method	returns	the
process	command	line	parameter	string	with	environment	variables	expanded.

For	more	information	about	when	to	use	the	CreateProcessTask	object	instead
of	the	CreateProcessTask2	object,	see	Extended	DTS	Objects.

DTS	Programming

DataDrivenQueryTask	Object
The	DataDrivenQueryTask	object	reads	data	through	a	source	Connection
object	and	transforms	it	using	one	or	more	Transformation	objects.	One	of	the
transformations,	a	DataPumpTransformScript	object,	returns	an	indicator	that
determines	which	of	four	parameterized	queries	is	executed	on	the	destination
Connection	object.	For	more	information,	see	Adding	DTS	Transformations	and
Adding	DTS	Column	Objects.

The	queries	are	called	the	Insert	query,	Update	query,	Delete	query	and	User
query,	although	they	do	not	actually	need	to	be	used	for	these	purposes.	Any
sequence	of	SQL	action	statements	and	stored	procedure	calls	can	be	used	for
any	of	the	queries.	The	query	parameters	are	columns	from	the	destination
connection.	For	more	information,	see	Adding	DTS	Query	Strings.

Collections

Lookups	Collection Transformations	Collection
Properties	Collection 	

Properties

DeleteQuery	Property InsertQueryColumns	Property
DeleteQueryColumns	Property LastRow	Property
Description	Property MaximumErrorCount	Property

DestinationColumnDefinitions
Property

Name	Property

DestinationCommandProperties
Property

ProgressRowCount	Property

DestinationConnectionID	Property SourceCommandProperties	Property
DestinationObjectName	Property SourceConnectionID	Property
DestinationSQLStatement	Property SourceObjectName	Property
ExceptionFileColumnDelimiter
Property

SourceSQLStatement	Property

ExceptionFileName	Property UpdateQuery	Property
ExceptionFileRowDelimiter
Property

UpdateQueryColumns	Property

FetchBufferSize	Property UserQuery	Property
FirstRow	Property UserQueryColumns	Property
InsertQuery	Property 	

Methods

Execute	Method

Remarks
The	query	selection	indicator	must	be	from	the	DTSTransformStatus	constants.
Do	not	use	a	sum	or	logical	OR	of	these	values.	If	more	than	one
DataPumpTransformScript	object	returns	an	indicator,	all	but	the	last	will	be
overwritten	and	lost.

The	DataDrivenQueryTask	object	is	compatible	with	Microsoft®	SQL
Server™	version	7.0.	For	information	about	an	extended	version	of	this	object,
see	DataDrivenQueryTask2	Object.

For	more	information	about	how	to	create	a	DataDrivenQueryTask	object	and
assign	query	strings	and	parameters,	see	DTS	Query	Strings	in	Visual	Basic.

See	Also

DTSTransformStatus

DTS	Programming

DataDrivenQueryTask2	Object
The	DataDrivenQueryTask2	object	transforms	data	from	a	source	connection
and	invokes	user-defined	queries	to	write	data	to	a	destination	connection.

Extended	Properties

ExceptionFileOptions	Property RowsComplete	Property
ExceptionFileTextQualifier	Property RowsInError	Property
InputGlobalVariableNames	Property 	

Remarks
The	DataDrivenQueryTask2	object	extends	the	functionality	of	the
DataDrivenQueryTask	object	and	inherits	the	properties	and	methods	of	that
object.	In	addition,	Microsoft®	SQL	Server™	2000	provides	the	following
properties:

The	ExceptionFileOptions	property	specifies	how	errors	and	exception
rows	are	to	be	written	to	the	appropriate	files.	The
ExceptionFileTextQualifier	property	specifies	the	text	qualifier	for	the
data	in	the	exception	file.

The	SourceSQLStatement	property	specifies	parameters	that	can	now
be	coded	in	the	query.	The	InputGlobalVariableNames	property

specifies	a	list	of	package	global	variable	names	whose	values	are	to	be
substituted	for	the	query	parameters.

The	RowsComplete	property	returns	the	count	of	transformed	rows	and
the	RowsInError	property	returns	the	number	of	transformation	error
rows.

For	more	information	about	when	to	use	the	DataDrivenQueryTask	object
instead	of	the	DataDrivenQueryTask2	object,	see	Extended	DTS	Objects.

See	Also

DataDrivenQueryTask	Object

SourceSQLStatement	Property

DTS	Programming

DataPumpTask	Object
The	Data	Transformation	Services	(DTS)	data	pump	is	an	OLE	DB	service
provider	that	provides	the	means	to	import,	export,	and	transform	data	between
heterogeneous	data	sources.

The	DataPumpTask	object	makes	the	features	of	the	data	pump	available	as	a
DTS	task.

Collections

Lookups	Collection Transformations	Collection
Properties	Collection 	

Properties

AllowIdentityInserts	Property FirstRow	Property
Description	Property InsertCommitSize	Property
DestinationColumnDefinitions
Property

LastRow	Property

DestinationCommandProperties
Property

MaximumErrorCount	Property

DestinationConnectionID	Property Name	Property
DestinationObjectName	Property ProgressRowCount	Property
DestinationSQLStatement	Property SourceCommandProperties	Property
ExceptionFileColumnDelimiter
Property

SourceConnectionID	Property

ExceptionFileName	Property SourceObjectName	Property

ExceptionFileRowDelimiter	Property SourceSQLStatement	Property
FastLoadOptions	Property UseFastLoad	Property
FetchBufferSize	Property 	

Methods

Execute	Method

DTS	Programming

DataPumpTask2	Object
The	DataPumpTask2	object	imports,	exports,	and	transforms	data	between
heterogeneous	data	sources.

Extended	Properties

DataPumpOptions	Property InputGlobalVariableNames	Property
ExceptionFileOptions	Property RowsComplete	Property
ExceptionFileTextQualifier	Property 	

Remarks
The	DataPumpTask2	object	extends	the	functionality	of	the	DataPumpTask
object	and	inherits	the	properties	and	methods	of	that	object.	In	addition,
Microsoft®	SQL	Server™	2000	provides	the	following	properties:

The	ExceptionFileOptions	property	specifies	how	errors	and	exception
rows	are	to	be	written	to	the	appropriate	files.	The
ExceptionFileTextQualifier	property	specifies	the	text	qualifier	for	the
data	in	the	exception	file.

The	SourceSQLStatement	property	specifies	parameters	that	can	now
be	coded	in	the	query.	The	InputGlobalVariableNames	property
specifies	a	list	of	package	global	variable	names	whose	values	are	to	be
substituted	for	the	query	parameters.

The	RowsComplete	property	returns	the	count	of	transformed	rows	and

the	RowsInError	property	returns	the	number	of	transformation	error
rows.

For	more	information	about	when	to	use	the	DataPumpTask	object	instead	of
the	DataPumpTask2	object,	see	Extended	DTS	Objects.

See	Also

DataPumpTask	Object

SourceSQLStatement	Property

DTS	Programming

DynamicPropertiesTask	Object
The	DynamicPropertiesTask	object	changes	the	values	of	package	objects
properties	at	runtime.	Any	property	of	any	object	in	the	package	can	be
modified.	This	is	useful	for	packages	created	with	Data	Transformation	Services
(DTS)	Designer	and	the	DTS	Import/Export	Wizard	because	many	package
object	properties	are	fixed	after	the	design	process	is	complete.

The	Dynamic	Properties	Task	object	provides	several	different	sources	for	the
new	value	of	a	property:

A	constant

The	contents	of	a	data	file

An	environment	variable

A	DTS	global	variable

A	field	in	an	.ini	file

An	SQL	query

In	an	application	that	creates	and	manipulates	DTS	objects,	it	is	often	easier	to
modify	the	values	of	properties	directly	in	code	rather	than	use	a	Dynamic
Properties	Task	object.	However,	if	part	of	a	DTS	package	is	contained	within	a
module	that	cannot	be	modified	easily,	the	Dynamic	Properties	Task	object
may	be	useful.

Collections

DynamicPropertiesTaskAssignments
Collection

Properties	Collection

Properties

Assignments	Property Name	Property
Description	Property 	

Methods

Execute	Method

Remarks
To	use	the	Dynamic	Properties	Task	object,	for	each	package	object	property
that	is	to	be	modified,	a	DynamicPropertiesTaskAssignment	object	is	created.
The	properties	of	this	object	are	set	to	specify	the	package	object	property	to	be
changed	and	the	source	of	the	new	value.	The
DynamicPropertiesTaskAssignment	object	is	added	to	the
DynamicPropertiesTaskAssignments	collection.

The	New	method	of	the	Tasks	collection	of	the	Package	object	returns	a
reference	to	a	Task	object.	The	CustomTask	property	of	the	Task	object	returns
a	reference	to	the	appropriate	custom	task	object.	For	more	information,	see
Creating	DTS	Package	Workflow	and	Tasks.

See	Also

DynamicPropertiesTaskAssignment	Object

DTS	Programming

ExecutePackageTask	Object
The	ExecutePackageTask	object	runs	another	Data	Transformation	Services
(DTS)	package.	The	package	can	be	located	in	Microsoft®	SQL	Server™	2000
Meta	Data	Services,	in	SQL	Server,	or	in	a	file.	The	package	can	be	specified	by
name	or	by	package	or	version	globally	unique	identifier	(GUID).

DTS	global	variables	can	be	passed	to	the	target	package.	For	each	such	global
variable,	a	GlobalVariable	object,	which	defines	the	name	of	the	variable	and
value,	is	added	to	the	GlobalVariables	collection	of	the	ExecutePackageTask
object.	These	global	variables	are	distinct	from	the	members	of	the
GlobalVariables	collection	of	the	Package2	object	that	contains	the
ExecutePackageTask	object.	Use	the	InputGlobalVariableNames	property	to
specify	members	of	the	parent	package	GlobalVariables	collection	that	are	to	be
created	or	set	in	the	child	package.

Steps	in	child	packages	can	join	the	transactions	of	parent	packages,	if	Microsoft
Distributed	Transaction	Coordinator	(MS	DTC)	is	running.

Collections

GlobalVariables	Collection Properties	Collection

Properties

Description	Property RepositoryDatabaseName	Property
FileName	Property ServerName	Property
InputGlobalVariableNames	Property ServerPassword	Property
Name	Property ServerUserName	Property
PackageID	Property UseRepository	Property
PackageName	Property UseTrustedConnection	Property
PackagePassword	Property 	

Methods

Execute	Method

Remarks
The	New	method	of	the	Tasks	collection	of	the	Package	object	returns	a
reference	to	a	Task	object.	The	CustomTask	property	of	the	Task	object	returns
a	reference	to	the	appropriate	custom	task	object.

Example
The	following	Microsoft	Visual	Basic®	code	uses	the	Execute	Package	Task
object	to	run	a	package	located	in	the	file	VarPubsFields.dts,	which	is	encrypted
and	requires	the	password	"user"	to	access.

Public	Sub	Main()
'Run	package	stored	in	file	C:\DTS_UE\TestPkg\VarPubsFields.dts.
				Dim	oPackage				As	DTS.Package
				Dim	oStep							As	DTS.Step
				Dim	oTask							As	DTS.Task
				Dim	oCustTask			As	DTS.ExecutePackageTask

				Set	oPackage	=	New	DTS.Package

				'Create	step	and	task,	link	step	to	task.
				Set	oStep	=	oPackage.Steps.New
				oStep.Name	=	"ExecPkgStep"
				Set	oTask	=	oPackage.Tasks.New("DTSExecutePackageTask")
				Set	oCustTask	=	oTask.CustomTask
				oCustTask.Name	=	"ExecPkgTask"
				oStep.TaskName	=	oCustTask.Name
				oPackage.Steps.Add	oStep
				Set	oStep	=	Nothing

				'Specify	package	to	be	run.
				oCustTask.PackagePassword	=	"user"
				oCustTask.FileName	=	"C:\DTS_UE\TestPkg\VarPubsFields.dts"

				'Link	task	to	package,	run	package.
				oPackage.Tasks.Add	oTask
				Set	oCustTask	=	Nothing
				Set	oTask	=	Nothing
				oPackage.Execute
				Set	oPackage	=	Nothing
End	Sub

DTS	Programming

ExecuteSQLTask	Object
The	ExecuteSQLTask	object	allows	you	to	execute	a	sequence	of	one	or	more
SQL	statements	on	a	connection.	Use	the	ConnectionID	property	to	specify	the
connection	and	the	SQLStatement	property	to	specify	the	sequence	of	SQL
statements.

Collections

Properties	Collection

Properties

CommandProperties	Property Description	Property
CommandTimeout	Property Name	Property
ConnectionID	Property 	

Methods

Execute	Method

DTS	Programming

ExecuteSQLTask2	Object
The	ExecuteSQLTask2	object	allows	you	to	execute	a	sequence	of	one	or	more
SQL	statements	on	a	connection.

Extended	Properties

InputGlobalVariableNames	Property OutputGlobalVariableNames
Property

OutputAsRecordset	Property 	

Remarks
The	ExecuteSQLTask2	object	extends	the	functionality	of	the
ExecuteSQLTask	object	and	inherits	the	properties	and	methods	of	that	object.
In	addition,	the	ExecuteSQLTask2	adds	the	InputGlobalVariableNames,
OutputAsRecordset	and	OutputGlobalVariableNames	properties.

The	InputGlobalVariableNames	property	specifies	a	list	of	Data
Transformation	Services	(DTS)	global	variable	names	that	are	used	as
parameters	for	the	sequence	of	SQL	statements	specified	by	the	SQLStatement
property.	The	OutputGlobalVariableNames	property	specifies	a	list	of	global
variable	names	that	receive	fields	from	the	first	row	of	the	first	rowset	produced
by	the	SQLStatement	query.	If	the	OutputAsRecordset	property	is	set,	the
entire	rowset	is	written	to	the	first	global	variable	specified	by
OutputGlobalVariableNames	as	a	disconnected	Microsoft®	ActiveX®	Data
Objects	(ADO)	recordset.

For	more	information	about	when	to	use	the	ExecuteSQLTask	object	instead	of
the	ExecuteSQLTask2	object,	see	Extended	DTS	Objects.

See	Also

ExecuteSQLTask	Object

SQLStatement	Property

DTS	Programming

DTSFTPTask	Object
The	DTSFTPTask	object	transfers	one	or	more	files	from	a	specified	Internet
FTP	site	or	network	directory	to	a	destination	directory.

Collections

Properties	Collection

Properties

Description	Property SourceFilename	Property
DestSite	Property SourceLocation	Property
Name	Property SourcePassword	(DTSFTPTask)

Property
NonOverwritable	Property SourceSite	Property
NumRetriesOnSource	Property 	

Methods

Execute	Method

Remarks
The	New	method	of	the	Tasks	collection	of	the	Package	object	returns	a
reference	to	a	Task	object.	The	CustomTask	property	of	the	Task	object	returns
a	reference	to	the	appropriate	custom	task	object.

Example
The	following	Microsoft®	Visual	Basic®	code	uses	the	DTSFTPTask	object	to

copy	the	files	File3.dat	and	NWProdWiz.xls	from	the	directory	I:\DTS\TestData
to	D:\DTS_UE\Dest.

Public	Sub	Main()
'Copy	files	from	I:\DTS\TestData	to	D:\DTS_UE\Dest.
				Dim	oPackage				As	DTS.Package
				Dim	oStep							As	DTS.Step
				Dim	oTask							As	DTS.Task
				Dim	oCustTask			As	DTSCustTasks.DTSFTPTask
				
				Set	oPackage	=	New	DTS.Package
				oPackage.FailOnError	=	True
				
				'Create	step	and	task,	link	step	to	task.
				Set	oStep	=	oPackage.Steps.New
				oStep.Name	=	"FTPSrcDirStep"
				Set	oTask	=	oPackage.Tasks.New("DTSFTPTask")
				Set	oCustTask	=	oTask.CustomTask
				oCustTask.Name	=	"FTPSrcDirTask"
				oStep.TaskName	=	oCustTask.Name
				oPackage.Steps.Add	oStep
				Set	oStep	=	Nothing
				
				'Specify	files,	source	and	destination	directories.
				oCustTask.SourceLocation	=	DTSFTPSourceLocation_Directory
				oCustTask.SourceSite	=	"I:\DTS\TestData"
				oCustTask.SourceFilename	=	_
												"'File3.dat';'';'123';'NWProdWiz.XLS';'';'458240';"
				oCustTask.DestSite	=	"D:\DTS_UE\Dest"
				
				'Link	task	to	package,	run	package.
				oPackage.Tasks.Add	oTask
				Set	oCustTask	=	Nothing
				Set	oTask	=	Nothing

				oPackage.Execute
				Set	oPackage	=	Nothing
End	Sub

DTS	Programming

DTSMessageQueueTask	Object
The	DTSMessageQueueTask	object	sends	and	receives	messages	to	or	from	a
queue	of	Message	Queuing.	It	allows	participation	in	distributed	transactions
when	Microsoft®	Distributed	Transaction	Coordinator	(MS	DTC)	is	running.

A	single	instance	of	the	DTSMessageQueueTask	either	sends	one	or	more
messages	to	a	specified	queue	or	receives	a	single	message	from	a	specified
queue,	waiting,	if	necessary,	for	the	message	to	arrive.

Three	types	of	messages	can	be	sent:

A	string	message,	which	is	supplied	as	the	value	of	a	property.	

A	data	file	message,	which	is	generated	from	the	contents	of	a	specified
data	file.	

A	global	variables	message,	which	is	generated	from	the	names	and
values	of	one	or	more	Data	Transformation	Services	(DTS)	global
variables.

Two	types	of	messages	can	be	received:

A	string	message.	Various	comparisons	can	be	specified	to	determine
whether	the	task	returns	success	or	failure.	

A	global	variables	message.	The	values	of	one	or	more	global	variables
(specified	by	the	message)	in	the	local	package	can	be	updated.	If	any
of	the	global	variables	do	not	exist	in	the	local	package,	they	are
created.

Collections

DTSMQMessages	Collection Properties	Collection

Properties

DataFileNonOverwritable	Property ReceiveMessageTimeout	Property
Description	Property ReceiveMessageType	Property
DTSMessageLineageID	Property RemoveFromQueue	Property
DTSMessagePackageID	Property SaveDataFileName	Property
DTSMessageVersionID	Property StringCompareType	Property
ErrorIfReceiveMessageTimeout
Property

StringCompareValue	Property

Name	Property	(DTS) TaskType	Property
QueuePath	Property 	

Methods

Execute	Method Messages	Method

Remarks
The	New	method	of	the	Tasks	collection	of	the	Package	object	returns	a
reference	to	a	Task	object.	The	CustomTask	property	of	the	Task	object	returns
a	reference	to	the	appropriate	custom	task	object.

DTS	Programming

ParallelDataPumpTask	Object
The	ParallelDataPumpTask	object	copies	and	transforms	data	from	source	to
destination	rowsets.	It	performs	the	same	functions	as	the	DataPumpTask2	and
DataDrivenQueryTask2,	except	that	it	will	also	copy	and	transform
hierarchical	rowsets.	The	FastLoad	option	of	the	DataPumpTask2	is	not
supported,	however.

In	the	ParallelDataPumpTask	object,	a	TransformationSets	collection	is
populated	with	one	or	more	TransformationSet	objects,	each	of	which	includes
a	Transformations	collection	and	contains	all	the	information	necessary	to
transform	a	component	rowset	of	the	source	hierarchical	rowset	to	the
corresponding	component	rowset	in	the	destination.

The	component	rowsets	are	scanned	and	matched	source	to	destination	through
recursive	descent.	The	columns	of	the	parent	rowset	are	in	column-ordinal	order.
When	a	child	rowset	column	is	encountered,	it	is	scanned	before	the	remaining
columns	of	the	parent.	Child	rowsets	are	similarly	processed;	their	own	children
are	scanned	when	encountered,	before	their	remaining	rows,	with	greater	column
ordinal.

Using	Transformation	Modes
The	ParallelDataPumpTask	operates	in	one	of	the	following	modes:

In	flattened	mode,	the	component	rowsets	are	copied	without	regard	to
the	chapter	values.	All	the	rows	of	each	child	rowset	are	copied,
including	those	not	referenced	by	any	chapters.

In	hierarchical	mode,	rowsets	are	copied	a	row	at	a	time.	The	rows	of	a
child	rowset	referenced	by	the	chapter	in	the	parent	rowset	row	are
copied.	Thus,	child	rowset	rows	can	be	copied	multiple	times,	or	not	at

all.

In	data	driven	query	mode,	rowsets	are	processed	in	the	same	way	as	in
flattened	mode,	except	that	one	of	four	queries,	typically	an	INSERT,
UPDATE	or	DELETE	SQL	statement,	or	stored	procedure,	can	be
executed	based	on	the	return	code	of	a	script	transform.

The	mode	is	specified	with	the	TransformationSetOptions	property	of	the
TransformationSet	object.

Collections

Properties	Collection TransformationSets	Collection

Properties

Description	Property Name	Property
DestinationCommandProperties
Property

SourceCommandProperties	Property

DestinationConnectionID	Property SourceConnectionID	Property
DestinationObjectName	Property SourceObjectName	Property
DestinationSQLStatement	Property SourceSQLStatement	Property
InputGlobalVariableNames	Property 	

Methods

Execute	Method

Remarks
A	failure	of	any	TransformationSet	(including	failure	due	to	the	maximum

number	of	error	rows	being	exceeded	for	that	TransformationSet,	regardless	of
the	error	counts	in	other	TransformationSets)	results	in	the	failure	of	the
ParallelDataPumpTask.

In	Microsoft®	SQL	Server™	2000,	the	ParallelDataPumpTask	is	available
only	through	the	Data	Transformation	Services	(DTS)	object	model.	It	cannot	be
accessed	through	DTS	Designer	or	the	DTS	Import/Export	Wizard.

Examples

Parallel	Data	Driven	Query	Example Parallel	Data	Pump	Example

See	Also

Hierarchical	Rowsets

TransformationSet	Object

DTS	Programming

Hierarchical	Rowsets
A	rowset	is	an	OLE	DB	object	that	consists	of	data	organized	as	a	grid	of	rows
and	named,	typed	columns.	Typically,	a	rowset	contains	a	result	set	from	a
database	query,	but	the	data	can	come	from	any	source.

In	a	hierarchical	rowset,	one	or	more	columns	are	themselves	rowsets.	The
individual	column	values	are	references	to	subsets,	called	chapters,	of	the
column	rowset.	A	chapter	can	include	none,	some,	or	all	of	its	rows.	The	column
rowsets	can	themselves	have	one	or	more	columns	that	are	rowsets,	nested	to	an
arbitrary	level.

Using	the	Data	Shaping	Service	for	OLE	DB
Hierarchical	rowsets	are	often	generated	with	the	Microsoft®	Data	Shaping
Service	for	OLE	DB.	This	provider	supports	the	Shape	language,	which	allows
rowset	hierarchies	to	be	constructed	from	rowsets	obtained	from	an	OLE	DB
data	provider.	The	Shape	Append	command	appends	one	or	more	child	rowsets
as	columns	to	a	parent	rowset,	and	assigns	a	reference	to	a	chapter	to	each	row
value	in	each	appended	column.	For	example:

SHAPE	{SELECT	au_id,	au_lname,	au_fname	FROM	authors}	
APPEND	({SELECT	au_id,	title	FROM	titleauthor	TA,	titles	TS	
												WHERE	TA.title_id	=	TS.title_id}
								AS	title_chap	RELATE	au_id	TO	au_id)

This	command	creates	a	parent	rowset	from	table	authors	and	appends	a	child
rowset	in	a	column	named	title_chap.	Each	row	value	in	title_chap	is	a
reference	to	the	subset	of	the	child	rowset	that	has	the	same	value	in	its	au_id
column	as	in	the	au_id	column	of	the	parent	rowset	for	that	row.	The	tables
referenced	by	this	command	are	in	the	pubs	database	that	is	supplied	with
Microsoft	SQL	Server™	2000.

Writing	sGetTitleAuthors	Code
This	is	the	Microsoft	Visual	Basic®	source	code	for	the	sGetTitleAuthors
function:

Private	Function	sGetTitleAuthors()	As	String
Dim	rstParent			As	ADODB.Recordset
Dim	rstChild				As	ADODB.Recordset
Dim	sBuf								As	String
			
Const	CONNECT_PUBS	=	"PROVIDER=MSDataShape;DATA	PROVIDER=SQLOLEDB;"	&	_
				"SERVER=;DATABASE=pubs;UID=sa;PWD=;"
Const	SHAPE_TITLEAUTHORS	=	_
				"SHAPE	{SELECT	au_id,	au_lname,	au_fname	FROM	authors}	"	&	_
				"APPEND	({SELECT	au_id,	title	FROM	titleauthor	TA,	titles	TS	"	&	_
													"WHERE	TA.title_id	=	TS.title_id}	"	&	_
												"AS	title_chap	RELATE	au_id	TO	au_id)"
												
				'-----	create	rowsets
				Set	rstParent	=	New	ADODB.Recordset
				rstParent.Open	SHAPE_TITLEAUTHORS,	CONNECT_PUBS
												
				'-----	process	parent	rowset
				Do	While	Not	rstParent.EOF
								sBuf	=	sBuf	&	rstParent("au_id")	&	vbTab	&	_
												rstParent("au_lname")	&	",	"	&	rstParent("au_fname")	&	vbCrLf
												
								'-----	process	chapter	of	child	rowset
								Set	rstChild	=	rstParent("title_chap").Value
								Do	While	Not	rstChild.EOF
												sBuf	=	sBuf	&	vbTab	&	vbTab	&	rstChild("title")	&	vbCrLf
												rstChild.MoveNext
								Loop
								rstParent.MoveNext
				Loop
				sGetTitleAuthors	=	sBuf
End	Function

Running	sGetTitleAuthors
This	Microsoft	Visual	Basic	function	creates	and	processes	the	hierarchical
rowset	described	earlier.	It	returns	a	string	consisting	of	each	author	name,
followed	by	the	titles	associated	with	that	author	in	the	pubs	database.

This	example	can	be	run	on	a	computer	on	which	Visual	Basic	6.0	and	SQL
Server	2000	have	been	installed.

The	steps	for	running	this	example	are	as	follows:

1.	 Create	a	new	Standard	EXE	project	in	the	Visual	Basic	development
environment.

2.	 In	the	Project/References	dialog	box,	select	Microsoft	ActiveX	Data
Objects	2.5	Library.

3.	 Place	a	command	button	and	a	textbox	on	the	form	Form1.	Set	the
ScrollBars	property	of	the	textbox	to	3	–	Both	and	the	MultiLine
property	to	TRUE.	

4.	 Copy	the	following	code	for	function	sGetTitleAuthors	to	the	code
window	for	Form1.	

5.	 In	the	_Click	sub	for	the	command	button,	call	sGetTitleAuthors,	and
assign	the	string	it	returns	to	the	Text	property	of	the	text	box.	

6.	 Run	the	project	and	click	the	command	button.

DTS	Programming

Parallel	Data	Pump	Example
This	sample	Microsoft®	Visual	Basic®	function	sCopyCustOrderProd	creates
and	runs	a	package	that	transforms	parts	of	the	Customers,	Orders,	Order
Details,	and	Products	tables	from	the	Northwind	database	that	ships	with
Microsoft	SQL	Server™	2000.	The	function	generates	a	hierarchical	rowset
consisting	of	the	customers	located	in	the	U.K.,	their	orders,	the	order	details,
and	the	products.

Creating	the	sCopyCustOrderProd	Rowset
This	function	copies	the	data	to	tables	in	a	database	called	DTSTest	that	have	the
following	structure:

CREATE	TABLE	dbo.customers	(
			customer_key	NCHAR	(5)	NOT	NULL	,
			company_name	NVARCHAR	(40)	NOT	NULL)

CREATE	TABLE	dbo.orders	(
			customer_key	NCHAR	(5)	NULL	,
			order_key	INT	NOT	NULL)

CREATE	TABLE	dbo.products	(
			product_key	INT	NOT	NULL	,
			product_name	NVARCHAR	(40)	NOT	NULL)

CREATE	TABLE	dbo.order_details	(
			order_key	INT	NOT	NULL	,
			product_key	INT	NOT	NULL	,
			discount	REAL	NOT	NULL)

The	number	of	rows	copied	depends	on	whether	Flattened	or	Hierarchical
mode	is	used.	In	Flattened	mode,	the	entire	Orders,	Order	Details,	and

Products	tables	are	copied.	In	Hierarchical	mode,	only	the	rows	referenced	by
the	U.K.	customers	are	copied,	although	there	are	many	duplicates	of	these	rows
in	the	products	table	in	the	destination	database.

The	Visual	Basic	Function	for	sCopyCustOrderProd
This	is	the	Visual	Basic	source	code	for	the	sCopyCustOrderProd	code:

Private	Function	sCopyCustOrderProd(_
				ByVal	TranSetOpt	As	DTS.DTSTransformationSetOptions)	As	String
Dim	oPackage												As	New	DTS.Package
Dim	oConnection									As	DTS.Connection
Dim	oTask															As	DTS.Task
Dim	oStep															As	DTS.Step
Dim	oTransform										As	DTS.Transformation
Dim	oTransformationSet		As	DTS.TransformationSet
Dim	oParallelPumpTask			As	DTS.ParallelDataPumpTask
		
Const	SHAPE_NW_CUST_ORDER_PROD	=	_
				"SHAPE	{SELECT	CustomerID,	CompanyName	"	&	_
											"FROM	Customers	WHERE	Country	=	'UK'}	"	&	_
				"APPEND	((SHAPE	{SELECT	OrderID,	CustomerID	FROM	Orders}	"	&	_
												"APPEND	((SHAPE	{SELECT	OrderID,	ProductID,	Discount	"	&	_
																												"FROM	[Order	Details]}	"	&	_
																				"APPEND	({SELECT	ProductID,	ProductName	"	&	_
																													"FROM	Products}	"	&	_
																												"AS	ProductChap	"	&	_
																												"RELATE	ProductID	TO	ProductID))	"	&	_
																				"AS	DetailChap	RELATE	OrderID	TO	OrderID))	"	&	_
												"AS	OrderChap	RELATE	CustomerID	TO	CustomerID)"
												
Const	SHAPE_UE_CUST_ORDER_PROD	=	_
				"SHAPE	{SELECT	*	FROM	customers}	"	&	_
				"APPEND	((SHAPE	{SELECT	*	FROM	orders}	"	&	_

												"APPEND	((SHAPE	{SELECT	*	FROM	order_details}	"	&	_
																				"APPEND	({SELECT	*	FROM	products}	"	&	_
																												"AS	product_chap	"	&	_
																												"RELATE	product_key	TO	product_key))	"	&	_
																				"AS	detail_chap	RELATE	order_key	TO	order_key))	"	&	_
												"AS	order_chap	RELATE	customer_key	TO	customer_key)"
												
				'-----	define	source	connection	-	Northwind
				Set	oConnection	=	oPackage.Connections.New("MSDataShape")
				With	oConnection
								.ConnectionProperties("Data	Provider")	=	"SQLOLEDB"
								.ID	=	1
								.Catalog	=	"Northwind"
								.UserID	=	"sa"
				End	With
				oPackage.Connections.Add	oConnection
			
				'-----	define	destination	connection	-	(local)	DTSTest
				Set	oConnection	=	oPackage.Connections.New("MSDataShape")
				With	oConnection
								.ConnectionProperties("Data	Provider")	=	"SQLOLEDB"
								.ID	=	2
								.DataSource	=	"(local)"
								.Catalog	=	"DTSTest"
								.UseTrustedConnection	=	True
				End	With
				oPackage.Connections.Add	oConnection
				
				'-----	set	hierarchical/flattened,	set	connections	and	commands
				Set	oTask	=	oPackage.Tasks.New("DTSParallelDataPumpTask")
				Set	oParallelPumpTask	=	oTask.CustomTask
				With	oParallelPumpTask
								.TransformationSetOptions	=	TranSetOpt

								.SourceConnectionID	=	1
								.SourceSQLStatement	=	SHAPE_NW_CUST_ORDER_PROD
								.DestinationConnectionID	=	2
								.DestinationSQLStatement	=	SHAPE_UE_CUST_ORDER_PROD
				End	With
				
				'-----	create	TransformationSet	for	customers
				Set	oTransformationSet	=	oParallelPumpTask.	_
								TransformationSets.New("TransformSet_Customers")
				oParallelPumpTask.TransformationSets.Add	oTransformationSet
				Set	oTransform	=	oTransformationSet.	_
								Transformations.New("DTS.DataPumpTransformCopy")
				With	oTransform
								.SourceColumns.AddColumn	"CustomerID",	1
								.SourceColumns.AddColumn	"CompanyName",	2
								.DestinationColumns.AddColumn	"customer_key",	1
								.DestinationColumns.AddColumn	"company_name",	2
								.Name	=	"Transform"
				End	With
				oTransformationSet.Transformations.Add	oTransform
								
				'-----	create	TransaformationSet	for	orders
				Set	oTransformationSet	=	oParallelPumpTask.	_
								TransformationSets.New("TransformSet_Orders")
				oParallelPumpTask.TransformationSets.Add	oTransformationSet
				Set	oTransform	=	oTransformationSet.	_
								Transformations.New("DTS.DataPumpTransformCopy")
				With	oTransform
								.SourceColumns.AddColumn	"OrderID",	1
								.SourceColumns.AddColumn	"CustomerID",	2
								.DestinationColumns.AddColumn	"order_key",	1
								.DestinationColumns.AddColumn	"customer_key",	2
								.Name	=	"Transform"

				End	With
				oTransformationSet.Transformations.Add	oTransform
				
				'-----	create	TransformationSet	for	order	details
				Set	oTransformationSet	=	oParallelPumpTask.	_
								TransformationSets.New("TransformSet_Details")
				oParallelPumpTask.TransformationSets.Add	oTransformationSet
				Set	oTransform	=	oTransformationSet.	_
								Transformations.New("DTS.DataPumpTransformCopy")
				With	oTransform
								.SourceColumns.AddColumn	"OrderID",	1
								.SourceColumns.AddColumn	"ProductID",	2
								.SourceColumns.AddColumn	"Discount",	3
								.DestinationColumns.AddColumn	"order_key",	1
								.DestinationColumns.AddColumn	"product_key",	2
								.DestinationColumns.AddColumn	"discount",	3
								.Name	=	"Transform"
				End	With
				oTransformationSet.Transformations.Add	oTransform
								
				'-----	create	TransaformationSet	for	products
				Set	oTransformationSet	=	oParallelPumpTask.	_
								TransformationSets.New("TransformSet_Products")
				oParallelPumpTask.TransformationSets.Add	oTransformationSet
				Set	oTransform	=	oTransformationSet.	_
								Transformations.New("DTS.DataPumpTransformCopy")
				With	oTransform
								.SourceColumns.AddColumn	"ProductID",	1
								.SourceColumns.AddColumn	"ProductName",	2
								.DestinationColumns.AddColumn	"product_key",	1
								.DestinationColumns.AddColumn	"product_name",	2
								.Name	=	"Transform"
				End	With

				oTransformationSet.Transformations.Add	oTransform
				
				'-----	add	task,	step	to	package
				oTask.Name	=	"ParallelDPTask"
				With	oPackage
								Set	oStep	=	oPackage.Steps.New
								oStep.Name	=	"ParallelDPStep"
								oStep.TaskName	=	oTask.Name
								.Tasks.Add	oTask
								.Steps.Add	oStep
								.Name	=	"ParallelDataPumpTask	Package"
								.FailOnError	=	True
								
								.Execute												'run	the	package
			
			End	With
End	Function

Running	sCopyCustOrderProd
This	example	can	be	run	on	a	computer	on	which	Microsoft	Visual	Basic	6.0	and
SQL	Server	2000	have	been	installed.

The	basic	steps	for	running	sCopyCustOrderProd	are	as	follows:

1.	 Create	a	database	named	DTSTest	using	SQL	Server	Enterprise
Manager,	and	then	create	the	tables	defined	above	in	DTSTest.	If	you
use	another	database,	change	the	line	in	the	example	that	sets	the
database	name	for	the	destination	connection.

2.	 Create	a	new	Standard	EXE	project	in	the	Visual	Basic	development
environment.	In	the	Project/References	dialog	box,	select	Microsoft
DTSPackage	Object	Library.	

3.	 Copy	the	following	code	for	function	sCopyCustOrderProd	to	the

code	window	for	Form1.	

4.	 Place	a	command	button	and	another	control,	such	as	a	check	box,	on
the	form	Form1.	In	the	_Click	sub	for	the	command	button,	call
sCopyCustOrderProd,	and	use	the	other	control	to	provide	values	for
the	parameter	TranSetOpt.	

5.	 You	can	add	completion	notification,	such	as	a	message	box,	and	an
error	handler.	For	more	information	about	returning	meaningful	error
information,	see	Handling	DTS	Errors	in	Visual	Basic.	

6.	 If	you	are	using	a	database	other	than	DTSTest,	change	the	setting	of
the	Catalog	property	of	connection	2.

7.	 Run	the	project,	providing	the	value	DTSTranSetOpt_Flattened	for
the	TranSetOpt	parameter.	View,	truncate	the	destination	tables,	and
then	run	the	sample	again	with	TranSetOpt	set	to
DTSTranSetOpt_Hierarchical.

See	Also

Hierarchical	Rowsets

DTS	Programming

Parallel	Data	Driven	Query	Example
This	sample	Microsoft®	Visual	Basic®	function,	sDDQTitleAuthors,	creates
and	runs	a	package	that	transforms	parts	of	the	authors,	titleauthor,	and	titles
tables	from	the	pubs	database	that	ships	with	Microsoft	SQL	Server™	2000.
The	function	generates	a	hierarchical	rowset	consisting	of	the	authors	from	the
pubs	database	and	the	titles	with	which	they	are	associated.

Creating	sDDQTitleAuthors	Rowset
This	function	copies	the	data	to	tables	in	a	database	called	DTSTest	that	have	the
following	structure:

CREATE	TABLE	dbo.AuthNames	(
			AuthID	VARCHAR	(11)	NOT	NULL	,
			LastName	VARCHAR	(40)	NOT	NULL	,
			FirstName	VARCHAR	(20)	NOT	NULL)

CREATE	TABLE	dbo.TitleNames	(
			AuthID	VARCHAR	(11)	NOT	NULL	,
			TitleName	VARCHAR	(80)	NOT	NULL)

As	in	flattened	mode,	the	component	rowsets	are	copied	without	regard	to	the
chapters.

Running	sDDQTitleAuthors
This	example	can	be	run	on	a	computer	on	which	Visual	Basic	6.0	and	SQL
Server	2000	have	been	installed.

The	steps	for	running	sDDQTitleAuthors	are	as	follows:

1.	 Create	a	database	named	DTSTest	using	SQL	Server	Enterprise
Manager,	and	then	create	the	tables	defined	earlier	in	DTSTest.	If	you
use	another	database,	change	the	line	in	the	example	that	sets	the
database	name	for	the	destination	connection.

2.	 Create	a	new	Standard	EXE	project	in	the	Visual	Basic	development
environment.	In	the	Project/References	dialog	box,	check	Microsoft
DTSPackage	Object	Library	and	Microsoft	DTSDataPump
Scripting	Object	Library.

3.	 Copy	the	following	code	for	function	sDDQTitleAuthors	to	the	code
window	for	Form1.	

4.	 Place	a	command	button	on	the	form	Form1.	In	the	_Click	sub	for
the	command	button,	call	sDDQTitleAuthors.

5.	 You	can	add	completion	notification,	such	as	a	message	box,	and	an
error	handler.	For	more	information	about	returning	meaningful	error
information,	see	Handling	DTS	Errors	in	Visual	Basic.	

6.	 If	you	are	using	a	database	other	than	DTSTest,	change	the	setting	of
the	Catalog	property	of	connection	2.

7.	 Run	the	project,	click	the	command	button,	and	then	view	the
destination	tables.

Writing	sDDQTitleAuthors	Code

This	is	the	Visual	Basic	source	code	for	the	sDDQTitleAuthors	function:

Private	Function	sDDQTitleAuthors()	As	String
				Dim	oPackage												As	New	DTS.Package
				Dim	oConnection									As	DTS.Connection
				Dim	oTask															As	DTS.Task
				Dim	oStep															As	DTS.Step
				Dim	oTransform										As	DTS.Transformation
				Dim	oScriptTransform				As	DTSPump.DataPumpTransformScript

				Dim	oTransformationSet		As	DTS.TransformationSet
				Dim	oParallelPumpTask			As	DTS.ParallelDataPumpTask
				Dim	sScript(1	To	3)					As	String
				Dim	sScriptLanguage					As	String
				Dim	sScriptFunction					As	String
		
Const	SHAPE_PUBS_TITLEAUTHORS	=	_
				"SHAPE	{SELECT	au_id,	au_lname,	au_fname	FROM	authors}	"	&	_
				"APPEND	({SELECT	au_id,	title	FROM	titleauthor	TA,	titles	TS	"	&	_
													"WHERE	TA.title_id	=	TS.title_id}	"	&	_
												"AS	title_chap	RELATE	au_id	TO	au_id)"
				
Const	SHAPE_DTSUE_TITLEAUTHORS	=	_
				"SHAPE	{SELECT	*	FROM	AuthNames}	"	&	_
				"APPEND	({SELECT	*	FROM	TitleNames}	"	&	_
												"AS	TitleChap	RELATE	AuthID	TO	AuthID)"
				
				'-----	generate	scripts,	one	needs	2	col,	other	needs	3
				sScriptLanguage	=	"VBScript"
				sScriptFunction	=	"Transform"
				sScript(1)	=	"Function	Transform()"	&	vbCrLf	&	_
																	"DTSDestination(1)	=	DTSSource(1)"	&	vbCrLf	&	_
																	"DTSDestination(2)	=	DTSSource(2)"	&	vbCrLf
				sScript(2)	=	"DTSDestination(3)	=	DTSSource(3)"	&	vbCrLf
				sScript(3)	=	"Transform	=	DTSTransformStat_InsertQuery"	&	_
																	vbCrLf	&	"End	Function"
				
				'-----	define	source	connection	-	pubs
				Set	oConnection	=	oPackage.Connections.New("MSDataShape")
				With	oConnection
								.ConnectionProperties("Data	Provider")	=	"SQLOLEDB"
								.ID	=	1
								.Catalog	=	"pubs"

								.UserID	=	"sa"
				End	With
				oPackage.Connections.Add	oConnection
			
				'-----	define	destination	connection	-	(local)	DTSTest
				Set	oConnection	=	oPackage.Connections.New("MSDataShape")
				With	oConnection
								.ConnectionProperties("Data	Provider")	=	"SQLOLEDB"
								.ID	=	2
								.DataSource	=	"(local)"
								.Catalog	=	"DTSTest"
								.UseTrustedConnection	=	True
				End	With
				oPackage.Connections.Add	oConnection
				
				'-----	Create	ParallelDPTask	set	DDQ,	connections	and	commands
				Set	oTask	=	oPackage.Tasks.New("DTSParallelDataPumpTask")
				Set	oParallelPumpTask	=	oTask.CustomTask
				With	oParallelPumpTask
								.TransformationSetOptions	=	DTSTranSetOpt_DataDrivenQueries
								.SourceConnectionID	=	1
								.SourceSQLStatement	=	SHAPE_PUBS_TITLEAUTHORS
								.DestinationConnectionID	=	2
								.DestinationSQLStatement	=	SHAPE_DTSUE_TITLEAUTHORS
				End	With
				
				'-----	create	TransformationSet	for	parent	rowset
				Set	oTransformationSet	=	oParallelPumpTask.	_
								TransformationSets.New("TransformSet_author")
				oParallelPumpTask.TransformationSets.Add	oTransformationSet
				Set	oTransform	=	oTransformationSet.	_
								Transformations.New("DTS.DataPumpTransformScript")
				Set	oScriptTransform	=	oTransform.TransformServer

				With	oScriptTransform
								.Language	=	sScriptLanguage
								.FunctionEntry	=	sScriptFunction
								.Text	=	sScript(1)	&	sScript(2)	&	sScript(3)
				End	With
				
				'-----	define	source/dest	columns	for	parent
				With	oTransform
								.SourceColumns.AddColumn	"au_id",	1
								.SourceColumns.AddColumn	"au_lname",	2
								.SourceColumns.AddColumn	"au_fname",	3
								.DestinationColumns.AddColumn	"AuthID",	1
								.DestinationColumns.AddColumn	"LastName",	2
								.DestinationColumns.AddColumn	"FirstName",	3
								.Name	=	"Transform"
				End	With
								
				'-----	define	INSERT	query,	params	for	parent
				With	oTransformationSet
								.InsertQuery	=	"INSERT	AuthNames	VALUES	(?,	?,	?)"
								.InsertQueryColumns.AddColumn	"AuthID",	1
								.InsertQueryColumns.AddColumn	"LastName",	2
								.InsertQueryColumns.AddColumn	"FirstName",	3
								.Transformations.Add	oTransform
				End	With

				'-----	create	TransaformationSet	for	child	rowset
				Set	oTransformationSet	=	oParallelPumpTask.	_
								TransformationSets.New("TransformSet_title")
				oParallelPumpTask.TransformationSets.Add	oTransformationSet
				Set	oTransform	=	oTransformationSet.	_
								Transformations.New("DTS.DataPumpTransformScript")
				Set	oScriptTransform	=	oTransform.TransformServer

				With	oScriptTransform
								.Language	=	sScriptLanguage
								.FunctionEntry	=	sScriptFunction
								.Text	=	sScript(1)	&	sScript(3)
				End	With
				
				'-----	define	source/dest	columns	for	child
				With	oTransform
								.SourceColumns.AddColumn	"au_id",	1
								.SourceColumns.AddColumn	"title",	2
								.DestinationColumns.AddColumn	"AuthID",	1
								.DestinationColumns.AddColumn	"TitleName",	2
								.Name	=	"Transform"
				End	With
				
				'-----	define	INSERT	query,	params	for	child
				With	oTransformationSet
								.InsertQuery	=	"INSERT	TitleNames	VALUES	(?,	?)"
								.InsertQueryColumns.AddColumn	"AuthID",	1
								.InsertQueryColumns.AddColumn	"TitleName",	2
								.Transformations.Add	oTransform
				End	With
				
				'-----	add	task,	step	to	package
				oTask.Name	=	"ParallelDDQTask"
				With	oPackage
								Set	oStep	=	.Steps.New
								oStep.Name	=	"ParallelDPStep"
								oStep.TaskName	=	oTask.Name
								.Tasks.Add	oTask
								.Steps.Add	oStep
								.Name	=	"ParallelDDQTask	Package"
								.FailOnError	=	True

				
								.Execute												'run	the	package
				
				End	With
End	Function

See	Also

Hierarchical	Rowsets

DTS	Programming

SendMailTask	Object
The	SendMailTask	object	lets	you	send	an	e-mail	as	a	task.	For	example,	if	you
want	to	notify	a	database	administrator	about	the	success	or	failure	of	a
particular	task	(such	as	a	backup),	you	can	link	a	SendMailTask	object	with	a
precedence	constraint	to	the	previous	task.	To	use	a	SendMailTask,	the
computer	must	have	the	Microsoft®	messaging	API	installed	with	a	valid	user
profile.

A	SendMailTask	can	include	attached	data	files.	You	can	point	to	a	location	for
an	attached	file	and	send	a	dynamically	updated	file,	rather	than	a	static	copy	of
the	file	fixed	when	you	create	the	task.	This	feature	is	useful	for	sending
attachments,	such	as	log	and	exception	files,	which	contain	information	that
changes	constantly,	and	for	which	the	file	may	not	exist	when	the	package	is
created	(at	design	time).

Note		If	you	enter	an	attachment	file	name	and	path	that	does	not	exist	when	the
package	is	run,	with	some	versions	of	the	messaging	API	you	receive	the
message:	"Error	sending	mail:	Internal	MAPI	error:	the	address	book	has	no
directories	that	contain	names."	This	message	indicates	the	file	does	not	exist	at
the	specified	location,	or	that	access	permissions	are	not	granted	for	the	file.	To
fix	the	error,	make	sure	that	the	file	is	available	at	the	specified	location	when
the	package	is	run,	or	that	access	is	granted.

Collections

Properties	Collection

Properties

CCLine	Property Password	Property
Description	Property Profile	Property
FileAttachments	Property SaveMailInSentItemsFolder	Property
IsNTService	Property Subject	Property

MessageText	Property ToLine	Property
Name	Property 	

Methods

Execute	Method Logon	Method
GetDefaultProfileName	Method ResolveName	Method
InitializeMAPI	Method ShowAddressBook	Method
Logoff	Method 	

Example
The	Microsoft	Visual	Basic®	Sub	SendMailMsg	creates	a	Data	Transformation
Services	(DTS)	step	and	a	SendMailTask	object.	It	configures	the	task	to	send
an	e-mail	message	with	attachment	to	a	recipient	named	"IT	Managers"	and	CC
to	"Data	Center	Operations":

Private	Sub	SendMailMsg(ByVal	objPackage	As	DTS.Package2)
Dim	objStep									As	DTS.Step
Dim	objTask									As	DTS.Task
Dim	objSendMail					As	DTS.SendMailTask

'create	step	and	task
Set	objStep	=	objPackage.Steps.New
Set	objTask	=	objPackage.Tasks.New("DTSSendMailTask")
Set	objSendMail	=	objTask.CustomTask

'configure	send	mail	task
With	objSendMail
				.Name	=	"ErrorMailTask"
				.Profile	=	"Microsoft	Outlook"
				.ToLine	=	"IT	Managers"

				.CCLine	=	"Data	Center	Operations"
				.Subject	=	"Error	in	DTS	Nightly	Job"
				.MessageText	=	"An	error	occurred	loading	data	"	&	_
																"warehouse.		See	attachment	for	details."
				.FileAttachments	=	"D:\DTS_UE\Messages\DTSError.txt"
				.IsNTService	=	True
				.SaveMailInSentItemsFolder	=	True
End	With

'link	step	to	task
objStep.TaskName	=	objSendMail.Name
objStep.Name	=	"ErrorMailStep"
objPackage.Steps.Add	objStep
objPackage.Tasks.Add	objTask
End	Sub

DTS	Programming

TransferObjectsTask	Object
The	TransferObjectsTask	object	allows	you	transfer	one	or	more	Microsoft®
SQL	Server™	objects	between	source	and	destination	databases.	An	object	can
represent:

A	table,	or	table	data.

A	view.

A	referential	integrity	constraint.

A	stored	procedure.

An	index.

A	default	or	a	rule.

A	user-defined	data	type.

In	addition,	you	can	transfer	all	users	or	all	logins	(roles)	for	the	source
database.	You	can	also	transfer	all	objects	dependent	on	the	requested
objects.

Note		The	source	and	destination	must	both	be	Microsoft	SQL	Server	version
7.0	or	later	databases.

Collections

Properties	Collection

Properties

CopyAllObjects	Property IncludeLogins	Property
CopyData	Property IncludeUsers	Property
CopySchema	Property Name	Property
Description	Property ScriptFileDirectory	Property
DestinationDatabase	Property ScriptOption	Property
DestinationLogin	Property ScriptOptionEx	Property
DestinationPassword	Property SourceDatabase	Property
DestinationServer	Property SourceLogin	Property
DestinationUseTrustedConnection
Property

SourcePassword	Property

DropDestinationObjectsFirst
Property

SourceServer	Property

IncludeDependencies	Property 	

Methods

AddObjectForTransfer	Method GetObjectForTransfer	Method
CancelExecution	Method OnError	Event
Execute	Method 	

Remarks
Certain	errors	can	occur	that	are	documented	in	an	error	message	written	to	a	log
file	named	server.database.LOG,	in	the	directory	specified	by	the
ScriptFileDirectory	property.	In	some	cases,	these	errors	may	not	raise	the
OnError	event,	and	may	not	be	recorded	in	the	Data	Transformation	Services
(DTS)	error	file	or	the	SQL	Server	log.

The	TransferObjectsTask	object	is	compatible	with	SQL	Server	7.0.	For

information	about	an	updated	version	of	this	object,	see	TransferObjectsTask2
Object.

Example
The	Microsoft	Visual	Basic®	Sub	RunTransfer	creates	a	DTS	step	and	a
TransferObjectsTask	object.	It	configures	the	task	to	copy	the	tables	authors
and	employee,	the	view	titleview,	and	the	stored	procedure	byroyalty,	and	all
objects	dependent	on	these,	from	the	pubs	database	supplied	with	SQL	Server
2000	to	a	database	named	SomeOfPubs.

Private	Sub	RunTransfer(ByVal	objPackage	As	DTS.Package2)
Dim	objStep									As	DTS.Step
Dim	objTask									As	DTS.Task
Dim	objXferObj						As	DTS.TransferObjectsTask

'create	step	and	task
Set	objStep	=	objPackage.Steps.New
Set	objTask	=	objPackage.Tasks.New("DTSTransferObjectsTask")
Set	objXferObj	=	objTask.CustomTask

'configure	transfer	objects	task
With	objXferObj
				.Name	=	"XferObjTask"
				.SourceServer	=	"(local)"
				.SourceUseTrustedConnection	=	True
				.SourceDatabase	=	"pubs"
				.DestinationServer	=	"(local)"
				.DestinationUseTrustedConnection	=	True
				.DestinationDatabase	=	"SomeOfPubs"
				.ScriptFileDirectory	=	"D:\DTS_UE\Scripts"
				.CopyAllObjects	=	False
				.IncludeDependencies	=	True
				.IncludeLogins	=	False
				.IncludeUsers	=	False

				.DropDestinationObjectsFirst	=	True
				.CopySchema	=	True
				.CopyData	=	DTSTransfer_AppendData
				.AddObjectForTransfer	"authors",	"dbo",	DTSSQLObj_UserTable
				.AddObjectForTransfer	"employee",	"dbo",	DTSSQLObj_UserTable
				.AddObjectForTransfer	"titleview",	"dbo",	DTSSQLObj_View
				.AddObjectForTransfer	"byroyalty",	"dbo",	DTSSQLObj_StoredProcedure
End	With

'link	step	to	task
objStep.TaskName	=	objXferObj.Name
objStep.Name	=	"XferObjStep"
objPackage.Steps.Add	objStep
objPackage.Tasks.Add	objTask
End	Sub

DTS	Programming

TransferObjectsTask2	Object
The	TransferObjectsTask2	object	transfers	objects	between	instances	of
Microsoft®	SQL	Server™.

Extended	Properties

DestTranslateChar	Property SourceTranslateChar	Property
DestUseTransaction	Property 	

Remarks
The	TransferObjectsTask2	object	extends	the	functionality	of	the	existing
TransferObjectsTask	object	and	inherits	the	properties	and	methods	of	that
object.

The	SourceTranslateChar	and	DestTranslateChar	properties	turn	character
translation	on	or	off	at	the	source	and	destination,	respectively.	However,	the
SourceTranslateChar	and	DestTranslateChar	properties	are	now	largely
unused	as	they	only	support	translation	of	non-Unicode	characters.

The	transfer	of	SQL	Server	objects	is	done	within	a	transaction	on	the
destination	server	if	the	DestUseTransaction	property	is	set.

If	the	UseCollation	property	is	set,	column-level	collation	settings	on	the	source
table	are	used	when	transferring	data	between	computers	running	instances	of
SQL	Server	2000.

For	more	information	about	when	to	use	the	TransferObjectsTask	object
instead	of	the	TransferObjectsTask2	object,	see	Extended	DTS	Objects.

See	Also

TransferObjectsTask	Object

DTS	Programming

Transformation	Objects
This	section	describes	the	Data	Transformation	Services	(DTS)	transformation
classes	supplied	with	Microsoft®	SQL	Server™	2000.

Topic Description
DataPumpTransformCopy	Object Copies	multiple	source	columns	to

destination	columns.
DataPumpTransformDateTimeString
Object

Converts	datetime	string	formats.

DataPumpTransformLowerString
Object

Converts	multiple	source	columns	to
lowercase	characters	and	copies	them
to	destination	columns.

DataPumpTransformMidString
Object

Extracts	substrings	from	a	source
column;	optionally	trims	white	space
and	changes	case.

DataPumpTransformReadFile
Object

Copies	data	read	from	files	into
destination	columns.

DataPumpTransformScript	Object Transforms	data	with	user-supplied
Microsoft	ActiveX®	scripts.

DataPumpTransformTrimString
Object

Removes	white-space	characters	from
data	and	optionally	changes	case.

DataPumpTransformUpperString
Object

Converts	multiple	source	columns	to
uppercase	characters	and	copies	them
to	destination	columns.

DataPumpTransformWriteFile
Object

Writes	data	from	a	source	column	into
files.

DTSTransformScriptProperties2
Object

Supports	multiphase	transformations
with	an	extended
DataPumpTransformScript	object.

DTS	Programming

DataPumpTransformCopy	Object
The	DataPumpTransformCopy	object	converts	a	source	column	to	the
destination	column	data	type	and	moves	the	data	to	the	destination	column.
DataPumpTransformCopy	supports	multiple	source	and	destination	columns.
Destination	truncation	is	possible	by	setting
DTSTransformFlag_AllowStringTruncation	in	the	TransformFlags	property
of	the	Transformation2	object.	There	are	no	transformation	properties.

For	more	information,	see	DataPumpTransformLowerString	Object.	The
DataPumpTransformCopy	object	is	used	the	same	way	as	the
DataPumpTransformLowerString	object	in	the	example	in	that	section,	except
that	it	is	created	as	follows:

				Set	oTransform	=	oCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformCopy")

See	Also

Adding	DTS	Column	Objects

Adding	DTS	Transformations

Transformation2	Object

TransformFlags	Property

DTS	Programming

DataPumpTransformDateTimeString	Object
The	DataPumpTransformDateTimeString	object	converts	a	datetime	string	in
one	format	to	another	datetime	format.	It	requires	one	source	and	one	destination
column,	both	of	data	types	compatible	with	the	OLE	DB	data	type
DBTIMESTAMP.	The	transformation	properties	InputFormat	and
OutputFormat	specify	the	formats	of	the	source	and	destination	columns,
respectively.

Properties

AMSymbol	Property Month??ShortName	Property
Day?LongName	Property OutputFormat	Property
Day?ShortName	Property PMSymbol	Property
InputFormat	Property ShortYear2000Cutoff	Property
Month??LongName	Property 	

Methods

GetDayLongName	Method SetDayLongName	Method
GetDayShortName	Method SetDayShortName	Method
GetMonthLongName	Method SetMonthLongName	Method
GetMonthShortName	Method 	

Remarks
The	New	method	of	the	Transformations	collection	of	the	DataPumpTask2,
DataDrivenQueryTask2,	and	TransformationSet	objects	returns	a	reference	to
a	Transformation2	object.	The	TransformServer	property	of	the
Transformation2	object	returns	a	reference	to	the
DataPumpTransformDateTimeString	object.

Example
This	example	Microsoft®	Visual	Basic®	program	transforms	a	date	column	in
the	employee	table	of	the	pubs	database,	where	dates	are	in	a	short	date	format,
to	column	HireDate	in	table	Employee	in	a	Microsoft	Access	database
D:\DTS_UE\Data\jetPubs.mdb.	For	example,	5/1/94	is	converted	to	May	01,
1994	(Sunday):

Public	Sub	Main()
'Copy/reformat	pubs..employee.hire_date	to	Access	DB.
				Dim	oPackage				As	DTS.Package
				Dim	oConnect				As	DTS.Connection
				Dim	oStep							As	DTS.Step
				Dim	oTask							As	DTS.Task
				Dim	oCustTask			As	DTS.DataPumpTask
				Dim	oTransform		As	DTS.Transformation
				Dim	oColumn					As	DTS.Column
				Dim	oDateTime			As	DTSPump.DataPumpTransformDateTimeString
				
				Set	oPackage	=	New	DTS.Package
				oPackage.FailOnError	=	True
				
				'Establish	connection	to	SQL	Server	DB.
				Set	oConnect	=	oPackage.Connections.New("SQLOLEDB.1")
				With	oConnect
								.ID	=	1
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				oPackage.Connections.Add	oConnect

				'Establish	connection	to	Access	database.
				Set	oConnect	=	oPackage.Connections.New(_
																																"Microsoft.Jet.OLEDB.4.0")
				oConnect.ID	=	2

				oConnect.DataSource	=	"D:\DTS_UE\Data\JetPubs.mdb"
				oPackage.Connections.Add	oConnect
				
				'Create	step	and	task,	link	step	to	task.
				Set	oStep	=	oPackage.Steps.New
				oStep.Name	=	"DateTimeStep"
				Set	oTask	=	oPackage.Tasks.New("DTSDataPumpTask")
				Set	oCustTask	=	oTask.CustomTask
				oCustTask.Name	=	"DateTimeTask"
				oStep.TaskName	=	oCustTask.Name
				oPackage.Steps.Add	oStep
				
				'Link	task	to	connections.
				With	oCustTask
								.SourceConnectionID	=	1
								.SourceObjectName	=	"[pubs].[dbo].[employee]"
								.DestinationConnectionID	=	2
								.DestinationObjectName	=	"Employee"
				End	With
				
				'Create	custom	transform,	link	to	source	and	dest	columns.
				Set	oTransform	=	oCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformDateTimeString")
				oTransform.Name	=	"DateTimeTransform"
				Set	oColumn	=	oTransform.SourceColumns.New("hire_date",	1)
				oTransform.SourceColumns.Add	oColumn
				Set	oColumn	=	oTransform.DestinationColumns.	_
												New("HireDate",	1)
				oTransform.DestinationColumns.Add	oColumn
				
				'Define	source	and	destination	date	formats.
				Set	oDateTime	=	oTransform.TransformServer
				oDateTime.InputFormat	=	"M/d/yy"

				oDateTime.OutputFormat	=	"MMMM	dd,	yyyy	(dddd)"

				'Link	transform	to	task,	task	to	package,	and	then	run	package.
				oCustTask.Transformations.Add	oTransform
				oPackage.Tasks.Add	oTask
				oPackage.Execute
End	Sub

See	Also

Adding	DTS	Column	Objects

Adding	DTS	Transformations

DataDrivenQueryTask2	Object

DataPumpTask2	Object

New	(ID)	Method

Transformation2	Object

Transformations	Collection

TransformationSet	Object

TransformServer	Property

DTS	Programming

DataPumpTransformLowerString	Object
The	DataPumpTransformLowerString	object	converts	a	source	column	to
lowercase	characters	and,	if	necessary,	to	the	destination	column	data	type.	It
requires	source	and	destination	columns	to	be	of	string	data	types	(char,
varchar,	text,	nchar,	nvarchar,	ntext,	and	flat	file	strings).	Like	the
DataPumpTransformCopy	object,	this	transformation	object	supports	multiple
source	and	destination	columns.	Destination	truncation	is	possible	by	setting
DTSTransformFlag_AllowStringTruncation	in	the	TransformFlags	property
of	the	Transformation2	object.	There	are	no	custom	transformation	properties.

Remarks
Conversion	to	lowercase	characters	is	also	a	feature	of	the
DataPumpTransformTrimString	and	DataPumpTransformMidString
objects.

Example
This	example	Microsoft®	Visual	Basic®	program	converts	two	columns	from
the	authors	table	in	the	pubs	database	to	lowercase	characters	while	copying
them	to	a	table	named	AuthNames	in	a	database	named	DTS_UE.

Public	Sub	Main()
'copy	pubs..authors	names	to	DTS_UE..AuthNames,	making	lower	case
				Dim	oPackage				As	DTS.Package
				Dim	oConnect				As	DTS.Connection
				Dim	oStep							As	DTS.Step
				Dim	oTask							As	DTS.Task
				Dim	oCustTask			As	DTS.DataPumpTask
				Dim	oTransform		As	DTS.Transformation
				Dim	oColumn					As	DTS.Column
				

				Set	oPackage	=	New	DTS.Package
				oPackage.FailOnError	=	True
				
				'establish	connection	to	source	server
				Set	oConnect	=	oPackage.Connections.New("SQLOLEDB.1")
				With	oConnect
								.ID	=	1
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				oPackage.Connections.Add	oConnect

				'establish	connection	to	destination	server
				Set	oConnect	=	oPackage.Connections.New("SQLOLEDB.1")
				With	oConnect
								.ID	=	2
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				oPackage.Connections.Add	oConnect

				'create	step	and	task,	link	step	to	task
				Set	oStep	=	oPackage.Steps.New
				oStep.Name	=	"LowerCaseStep"
				Set	oTask	=	oPackage.Tasks.New("DTSDataPumpTask")
				Set	oCustTask	=	oTask.CustomTask
				oCustTask.Name	=	"LowerCaseTask"
				oStep.TaskName	=	oCustTask.Name
				oPackage.Steps.Add	oStep
				
				'link	task	to	connections
				With	oCustTask
								.SourceConnectionID	=	1

								.SourceObjectName	=	"pubs..authors"
								.DestinationConnectionID	=	2
								.DestinationObjectName	=	"[DTS_UE].[dbo].[AuthNames]"
				End	With
				
				'create	custom	transform,	link	to	source	and	dest	columns
				Set	oTransform	=	oCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformLowerString")
				With	oTransform
								.Name	=	"LowerCaseTransform"
								.SourceColumns.AddColumn	"au_fname",	1
								.SourceColumns.AddColumn	"au_lname",	2
								.DestinationColumns.AddColumn	"FirstName",	1
								.DestinationColumns.AddColumn	"LastName",	2
				End	With
				
				'link	transform	to	task,	task	to	package,	run	package
				oCustTask.Transformations.Add	oTransform
				oPackage.Tasks.Add	oTask
				oPackage.Execute
End	Sub

See	Also

Adding	DTS	Column	Objects

Adding	DTS	Transformations

DataPumpTransformCopy	Object

DataPumpTransformMidString	Object

DataPumpTransformTrimString	Object

DataPumpTransformUpperString	Object

Transformation2	Object

TransformFlags	Property

DTS	Programming

DataPumpTransformMidString	Object
The	DataPumpTransformMidString	object	extracts	a	substring	from	the
source	column	and	converts	it,	if	necessary,	to	the	destination	column	data	type.
This	object	requires	one	source	column	and	one	destination	column,	both	of	a
string	data	type	(char,	varchar,	text,	nchar,	nvarchar,	ntext,	and	flat	file
strings).	The	properties	CharacterStart	and	CharacterCount	specify	the
position	of	the	substring.

Optionally,	the	transformation	converts	the	extracted	substring	to	uppercase	or
lowercase	characters,	as	specified	by	the	UpperCaseString	and
LowerCaseString	properties.	It	also	optionally	trims	white-space	characters,	as
specified	by	the	TrimLeadingWhiteSpace,	TrimTrailingWhiteSpace,	and
TrimEmbeddedWhiteSpace	properties.	Substring	extraction	occurs	before	the
trimming	of	white	space	characters.

Destination	truncation	is	possible	by	setting
DTSTransformFlag_AllowStringTruncation	in	the	TransformFlags	property
of	the	Transformation2	object.

Properties

CharacterCount	Property TrimLeadingWhiteSpace	Property
CharacterStart	Property TrimTrailingWhiteSpace	Property
LowerCaseString	Property UpperCaseString	Property
TrimEmbeddedWhiteSpace	Property 	

Remarks
If	only	case	conversion	is	required,	the	DataPumpTransformLowerString	or
DataPumpTransformUpperString	objects	can	be	used.	These	transformations
accept	multiple	source	and	destination	columns.	If	only	case	conversion	and
trimming	of	white	space	is	required,	the	DataPumpTransformTrimString
object	can	be	used.

The	New	method	of	the	Transformations	collection	of	the	DataPumpTask,
DataDrivenQueryTask,	and	TransformationSet	objects	returns	a	reference	to
a	Transformation	object.	The	TransformServer	property	of	the
Transformation	object	returns	a	reference	to	the	appropriate	custom
transformation	object.

Example
This	example	Microsoft®	Visual	Basic®	program	splits	the	phone	column	from
the	authors	table	in	the	pubs	database	into	two	columns	named	AreaCode	and
LocalPhone	while	copying	it	to	a	Microsoft	Excel	worksheet	named	Phones	in
PubsAuthors.xls.	The	worksheet	had	been	previously	created	by	the	Microsoft
OLE	DB	Provider	for	Jet	from:

CREATE	TABLE	`Phones`	(
`AreaCode`	VarChar	(255)	,	
`LocalPhone`	VarChar	(255))

The	basic	steps	for	manually	creating	a	worksheet	are	as	follows:

1.	 Open	a	new	workbook	in	Excel	and	rename	one	of	the	blank	sheets
Phones.

2.	 Enter	AreaCode	in	cell	A1	and	LocalNumber	in	cell	B1.

3.	 Save	the	workbook	as	PubsAuthors.xls,	and	then	close	Excel.

Public	Sub	Main()
'Copy	pubs..authors.phone	to	Excel.	Split	out	area	code	and	local	number.
				Dim	oPackage				As	DTS.Package
				Dim	oConnect				As	DTS.Connection
				Dim	oStep							As	DTS.Step
				Dim	oTask							As	DTS.Task
				Dim	oCustTask			As	DTS.DataPumpTask
				Dim	oTransform		As	DTS.Transformation
				Dim	oColumn					As	DTS.Column
				Dim	oMidString		As	DTSPump.DataPumpTransformMidString

				Set	oPackage	=	New	DTS.Package
				oPackage.FailOnError	=	True
				
				'Establish	a	connection	to	the	source	server.
				Set	oConnect	=	oPackage.Connections.New("SQLOLEDB.1")
				With	oConnect
								.ID	=	1
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				oPackage.Connections.Add	oConnect
				Set	oConnect	=	Nothing

				'Establish	a	connection	to	an	Excel	worksheet.
				Set	oConnect	=	oPackage.Connections.New("Microsoft.Jet.OLEDB.4.0")
				With	oConnect
								.ID	=	2
								.DataSource	=	"D:\DTS_UE\Data\PubsAuthors.xls"
								.ConnectionProperties("Extended	Properties").Value	=	_
																																												"Excel	8.0;HDR=YES;"
				End	With
				oPackage.Connections.Add	oConnect
				Set	oConnect	=	Nothing

				'Create	a	step	and	task,	and	then	link	the	step	to	the	task.
				Set	oStep	=	oPackage.Steps.New
				oStep.Name	=	"MidStringStep"
				Set	oTask	=	oPackage.Tasks.New("DTSDataPumpTask")
				Set	oCustTask	=	oTask.CustomTask
				oCustTask.Name	=	"MidStringTask"
				oStep.TaskName	=	oCustTask.Name
				oPackage.Steps.Add	oStep

				
				'Link	the	task	to	the	connections.
				With	oCustTask
								.SourceConnectionID	=	1
								.SourceObjectName	=	"[pubs].[dbo].[authors]"
								.DestinationConnectionID	=	2
								.DestinationObjectName	=	"Phones$"
				End	With
				
				'Create	an	area	code	transform,	and	link	it	to	source	and	destination	columns.
				Set	oTransform	=	oCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformMidString")
				With	oTransform
								.Name	=	"AreaCodeTransform"
								.SourceColumns.AddColumn	"phone",	1
								.DestinationColumns.AddColumn	"AreaCode",	1
				End	With
												
				'Define	start	and	width	for	area	code,	and	then	link	transform	to	task.
				Set	oMidString	=	oTransform.TransformServer
				oMidString.CharacterStart	=	1
				oMidString.CharacterCount	=	3
				oCustTask.Transformations.Add	oTransform
				
				'Create	local	numeric	transform,	and	then	link	to	source	and	destination	columns.
				Set	oTransform	=	oCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformMidString")
				With	oTransform
								.Name	=	"LocalNumTransform"
								.SourceColumns.AddColumn	"phone",	1
								.DestinationColumns.AddColumn	"LocalNumber",	1
				End	With
												

				'Define	start	and	width	for	local	number.
				Set	oMidString	=	oTransform.TransformServer
				oMidString.CharacterStart	=	5
				oMidString.CharacterCount	=	8

				'Link	transform	to	task	and	task	to	package.	Then	run	the	package.
				oCustTask.Transformations.Add	oTransform
				oPackage.Tasks.Add	oTask
				oPackage.Execute
End	Sub

See	Also

Adding	DTS	Column	Objects

Adding	DTS	Transformations

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DataPumpTransformLowerString	Object

DataPumpTransformTrimString	Object

DataPumpTransformUpperString	Object

New	(ID)	Method

Transformation2	Object

Transformations	Collection

TransformationSet	Object

TransformFlags	Property

TransformServer	Property

DTS	Programming

DataPumpTransformReadFile	Object
The	DataPumpTransformReadFile	object	copies	the	contents	of	a	file,	the
name	of	which	is	specified	by	a	source	column,	to	a	destination	column.

Data	conversion	is	controlled	by	the	OEMFile	and	UnicodeFile	properties.	If
the	file	named	by	the	source	column	contains	the	Unicode	prefix	bytes	(hex
FFFE),	the	file	is	assumed	to	be	Unicode	regardless	of	the	value	of	UnicodeFile,
and	the	prefix	bytes	are	skipped.

Properties

ErrorIfFileNotFound	Property OEMFile	Property
FilePath	Property 	

Remarks
If	the	file	name	column	contains	a	path,	it	can	use	either	a	drive	letter	or	a
universal	naming	convention	(UNC)	file	specification.	If	no	path	is	present,	the
FilePath	property	can	be	used	to	supply	the	path.	However,	FilePath	is	always
used	when	it	is	nonempty,	even	when	the	file	name	column	contains	a	path.

The	New	method	of	the	Transformations	collection	of	the	DataPumpTask,
DataDrivenQueryTask,	and	TransformationSet	objects	returns	a	reference	to
a	Transformation2	object.	The	TransformServer	property	of	the
Transformation2	object	returns	a	reference	to	the	appropriate	custom
transformation	object.

Example
This	example	Microsoft®	Visual	Basic®	program	transforms	a	column	in	a
Microsoft	Excel	sheet	to	a	database	column	using	the	Read	File	custom
transformation.	Column	file_name	(row	1	of	the	column	contains	the	label
"file_name")	of	worksheet	FileSpecTwo	in	D:\DTS_UE\Source\FileSpecs.xls

contains	the	file	names.	The	transformation	writes	the	file	data	to	column
file_data	in	table	FileDataOut	in	database	DTS_UE	on	the	local	server:

Public	Sub	Main()
'Read	file	names	from	Excel	worksheet.	Write	file	data	to	database	column.
				Dim	oPackage				As	DTS.Package
				Dim	oConnect				As	DTS.Connection
				Dim	oStep							As	DTS.Step
				Dim	oTask							As	DTS.Task
				Dim	oCustTask			As	DTS.DataPumpTask
				Dim	oTransform		As	DTS.Transformation
				Dim	oColumn					As	DTS.Column
				Dim	oReadFile			As	DTSPump.DataPumpTransformReadFile

				Set	oPackage	=	New	DTS.Package
				oPackage.FailOnError	=	True
				
				'Establish	connection	to	source	Excel	worksheet.
				Set	oConnect	=	oPackage.Connections.New("Microsoft.Jet.OLEDB.4.0")
				With	oConnect
								.ID	=	1
								.DataSource	=	"D:\DTS_UE\Source\FileSpecs.xls"
								.ConnectionProperties("Extended	Properties")	=	_
																																"Excel	8.0;HDR=YES;"
				End	With
				oPackage.Connections.Add	oConnect

				'Establish	connection	to	the	destination	server.
				Set	oConnect	=	oPackage.Connections.New("SQLOLEDB.1")
				With	oConnect
								.ID	=	2
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With

				oPackage.Connections.Add	oConnect

				'Create	the	step	and	task,	and	link	the	step	to	the	task
				Set	oStep	=	oPackage.Steps.New
				oStep.Name	=	"ReadFileStep"
				Set	oTask	=	oPackage.Tasks.New("DTSDataPumpTask")
				Set	oCustTask	=	oTask.CustomTask
				oCustTask.Name	=	"ReadFileTask"
				oStep.TaskName	=	oCustTask.Name
				oPackage.Steps.Add	oStep
				
				'Link	the	task	to	the	connections,	and	specify	worksheet,	database	and	table.
				With	oCustTask
								.SourceConnectionID	=	1
								.SourceObjectName	=	"FileSpecTwo$"
								.DestinationConnectionID	=	2
								.DestinationObjectName	=	"DTS_UE..FileDataOut"
				End	With
				
				'Create	transform,	and	link	it	to	the	source	and	destination	columns.
				Set	oTransform	=	oCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformReadFile")
				oTransform.Name	=	"ReadFileTransform"
				Set	oColumn	=	oTransform.SourceColumns.New("file_name",	1)
				oTransform.SourceColumns.Add	oColumn
				Set	oColumn	=	oTransform.DestinationColumns.	_
												New("file_data",	1)
				oTransform.DestinationColumns.Add	oColumn
												
				'Define	error	action	and	path	prefix.
				Set	oReadFile	=	oTransform.TransformServer
				oReadFile.ErrorIfFileNotFound	=	False
				oReadFile.FilePath	=	"D:\DTS_UE"

				'Link	transform	to	task	and	task	to	package.	Then	run	the	package.
				oCustTask.Transformations.Add	oTransform
				oPackage.Tasks.Add	oTask
				oPackage.Execute
End	Sub

See	Also

Adding	DTS	Column	Objects

Adding	DTS	Transformations

DataDrivenQueryTask2	Object

DataPumpTask2	Object

New	(ID)	Method

Transformation2	Object

Transformations	Collection

TransformationSet	Object

TransformServer	Property

DTS	Programming

DataPumpTransformScript	Object
The	DataPumpTransformScript	object	transforms	source	columns	and	moves
data	to	the	destination	columns	using	a	Microsoft®	ActiveX®	script.	Columns
can	be	transformed	in	any	way	supported	by	the	scripting	language.	The	driver
for	the	specific	ActiveX	scripting	language	must	be	installed.

The	DataPumpTransformScript	object	supports	properties	that	are	used	to
specify	the	script	text,	scripting	language,	and	entry	point	name.

Properties

FunctionEntry	Property Text	Property
Language	Property 	

Remarks
Valid	script	languages	available	on	a	particular	system	can	be	determined	by
enumerating	the	ScriptingLanguageInfos	collection	of	the	Application	object.
For	more	information	about	the	scripting	language	appropriate	for	use	with	Data
Transformation	Services	(DTS),	see	ScriptingLanguageInfo	Object.

The	DataPumpTransformScript	object	is	compatible	with	Microsoft	SQL
Server™	version	7.0.	For	more	information	about	an	extended	version	of	this
object,	see	DTSTransformScriptProperties2	Object.

See	Also

Adding	DTS	ActiveX	Scripts

Adding	DTS	Column	Objects

Adding	DTS	Transformations

Application	Object

JavaScript:hhobj_1.Click()

DTS	Scripting	Reference

ScriptingLanguageInfos	Collection

DTS	Programming

DataPumpTransformTrimString	Object
The	DataPumpTransformTrimString	object	converts	the	source	column	to
uppercase	or	lowercase	characters,	as	specified	by	the	UpperCaseString	and
LowerCaseString	properties.	It	trims	white-space	characters,	as	specified	by	the
TrimLeadingWhiteSpace,	TrimTrailingWhiteSpace	and
TrimEmbeddedWhiteSpace	properties.	It	converts,	if	necessary,	to	the
destination	column	data	type.	It	requires	one	source	column	and	one	destination
column,	both	of	a	string	data	type	(char,	varchar,	text,	nchar,	nvarchar,	ntext,
and	flat	file	strings).

Destination	truncation	is	possible	by	setting
DTSTransformFlag_AllowStringTruncation	in	the	TransformFlags	property
of	the	Transformation	object.

Properties

LowerCaseString	Property TrimTrailingWhiteSpace	Property
TrimEmbeddedWhiteSpace	Property UpperCaseString	Property
TrimLeadingWhiteSpace	Property 	

Remarks
The	DataPumpTransformMidString	object	also	performs	case	changing	and
white	space	removal	functions.	If	only	case	conversion	is	required,	the
DataPumpTransformLowerString	or	DataPumpTransformUpperString
objects	can	be	used.	These	transformations	accept	multiple	source	and
destination	columns.

The	New	method	of	the	Transformations	collection	of	the	DataPumpTask,
DataDrivenQueryTask,	and	TransformationSet	objects	returns	a	reference	to
a	Transformation2	object.	The	TransformServer	property	of	the
Transformation2	object	returns	a	reference	to	the	appropriate	custom
transformation	object.

See	Also

Adding	DTS	Column	Objects

Adding	DTS	Transformations

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DataPumpTransformLowerString	Object

DataPumpTransformMidString	Object

DataPumpTransformUpperString	Object

New	(ID)	Method

Transformation2	Object

Transformations	Collection

TransformationSet	Object

TransformFlags	Property

TransformServer	Property

DTS	Programming

DataPumpTransformUpperString	Object
The	DataPumpTransformUpperString	object	converts	a	source	column	to
uppercase	characters	and,	if	necessary,	to	the	destination	column	data	type.	It
requires	source	and	destination	columns	to	be	of	string	data	types	(char,
varchar,	text,	nchar,	nvarchar,	ntext,	and	flat	file	strings).	Like	the
DataPumpTransformCopy	object,	this	transformation	object	supports	multiple
source	and	destination	columns.	Destination	truncation	is	possible	by	setting
DTSTransformFlag_AllowStringTruncation	in	the	TransformFlags	property
of	the	Transformation2	object.	There	are	no	custom	transformation	properties.

Remarks
Conversion	to	uppercase	characters	is	also	a	feature	of	the
DataPumpTransformTrimString	and	DataPumpTransformMidString
objects.

For	more	information,	see	DataPumpTransformLowerString	Object.	The
DataPumpTransformUpperString	object	is	used	the	same	way	as	the
DataPumpTransformLowerString	object	in	the	example	in	that	section,	except
that	it	is	created	as	follows:

				Set	oTransform	=	oCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformUpperString")

See	Also

Adding	DTS	Column	Objects

Adding	DTS	Transformations

DataPumpTransformCopy	Object

DataPumpTransformMidString	Object

DataPumpTransformTrimString	Object

Transformation2	Object

TransformFlags	Property

DTS	Programming

DataPumpTransformWriteFile	Object
The	DataPumpTransformWriteFile	object	converts	a	field	from	one	source
column	into	a	file,	the	path	of	which	is	specified	by	another	source	column.
Columns	in	the	destination	connection	of	the	task	are	not	written,	although	the
connection	must	exist.

Data	conversion	is	controlled	by	the	OEMFile	and	UnicodeFile	properties.	If
UnicodeFile	is	set	to	TRUE,	the	Unicode	file	header	(hex	FFFE)	is	prepended	to
the	file,	if	it	is	not	already	there.	The	default	behavior	is	to	overwrite	the
destination	file	if	it	exists	already.

Properties

AppendIfFileExists	Property FilePath	Property
ErrorIfFileExists	Property OEMFile	Property
FileColumnName	Property 	

Remarks
The	data	column	must	be	a	string	or	binary	data	type.	If	it	is	NULL,	no	file	is
written.	If	AppendIfFileExists	is	set	to	FALSE	and	the	file	exists,	it	is	deleted.
If	the	file	is	empty,	a	zero-length	file	is	created.	The	file	name	column	cannot	be
NULL	or	empty.	If	the	file	name	column	contains	a	path,	it	can	use	either	a	drive
letter	or	a	universal	naming	convention	(UNC)	file	specification.

If	no	path	is	present,	the	FilePath	property	can	be	used	to	supply	the	path.
However,	FilePath	is	always	used	when	it	is	nonempty,	even	when	the	file	name
column	contains	a	path.

This	transformation	object	does	not	write	destination	columns,	but	a	destination
connection	must	still	be	provided.	If	no	other	transformations	write	columns,	no
rows	are	written.

You	must	explicitly	add	the	source	columns	to	the	SourceColumns	collection,

even	if	the	source	connection	has	only	two	columns.	If	you	do	not	add	the
columns,	the	transformation	assumes	you	are	including	all	the	source	and
destination	columns.	This	causes	an	error	because	the	transformation	cannot
reference	destination	columns.

The	New	method	of	the	Transformations	collection	of	the	DataPumpTask,
DataDrivenQueryTask	and	TransformationSet	objects	returns	a	reference	to	a
Transformation2	object.	The	TransformServer	property	of	the
Transformation2	object	returns	a	reference	to	the	appropriate	custom
transformation	object.

Example
This	example	Microsoft®	Visual	Basic®	program	transforms	a	database	column
to	written	flat	files	with	a	Write	File	custom	transformation.	In	table
WriteFileData	in	database	DTS_UE,	column	file_spec	provides	the	file	names,
and	file_data	provides	the	data.

Public	Sub	Main()
'Write	the	data	in	DTS_UE.	WriteFileData	to	specified	files.
				Dim	oPackage				As	DTS.Package
				Dim	oConnect				As	DTS.Connection
				Dim	oStep							As	DTS.Step
				Dim	oTask							As	DTS.Task
				Dim	oCustTask			As	DTS.DataPumpTask
				Dim	oTransform		As	DTS.Transformation
				Dim	oColumn					As	DTS.Column
				Dim	oWriteFile		As	DTSPump.DataPumpTransformWriteFile

				Set	oPackage	=	New	DTS.Package
				oPackage.FailOnError	=	True
				
				'Establish	a	connection	to	the	source	server.
				Set	oConnect	=	oPackage.Connections.New("SQLOLEDB.1")
				With	oConnect
								.ID	=	1

								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				oPackage.Connections.Add	oConnect

				'Establish	connection	to	the	(dummy)	destination	server.
				Set	oConnect	=	oPackage.Connections.New("SQLOLEDB.1")
				With	oConnect
								.ID	=	2
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				oPackage.Connections.Add	oConnect

				'Create	a	step	and	task,	and	then	link	the	step	to	the	task.
				Set	oStep	=	oPackage.Steps.New
				oStep.Name	=	"WriteFileStep"
				Set	oTask	=	oPackage.Tasks.New("DTSDataPumpTask")
				Set	oCustTask	=	oTask.CustomTask
				oCustTask.Name	=	"WriteFileTask"
				oStep.TaskName	=	oCustTask.Name
				oPackage.Steps.Add	oStep
				
				'Link	the	task	to	the	connections,	and	specify	tables.
				With	oCustTask
								.SourceConnectionID	=	1
								.SourceObjectName	=	"DTS_UE.dbo.WriteFileData"
								.DestinationConnectionID	=	2
								.DestinationObjectName	=	"DTS_UE.dbo.WriteFileData"
				End	With
				
				'Create	transform,	and	link	it	to	source	columns.
				Set	oTransform	=	oCustTask.Transformations.	_

												New("DTSPump.DataPumpTransformWriteFile")
				With	oTransform
								.Name	=	"WriteFileTransform"
								.SourceColumns.AddColumn	"file_spec",	1
								.SourceColumns.AddColumn	"file_data",	2
				End	With
												
				'Define	error	action	and	path	prefix.
				Set	oWriteFile	=	oTransform.TransformServer
				With	oWriteFile
								.ErrorIfFileExists	=	False
								.FileColumnName	=	"file_spec"
								.AppendIfFileExists	=	True
								.FilePath	=	"D:\DTS_UE"
				End	With

				'Link	transform	to	the	task,	the	task	to	the	package,	and	run	the	package.
				oCustTask.Transformations.Add	oTransform
				oPackage.Tasks.Add	oTask
				oPackage.Execute
End	Sub

See	Also

Adding	DTS	Column	Objects

Adding	DTS	Transformations

DataDrivenQueryTask2	Object

DataPumpTask2	Object

New	(ID)	Method

Transformation2	Object

Transformations	Collection

TransformationSet	Object

TransformServer	Property

DTS	Programming

DTSTransformScriptProperties2	Object
The	DTSTransformScriptProperties2	object	transforms	source	columns	and
moves	data	to	the	destination	columns	using	a	Microsoft®	ActiveX®	script.
Columns	can	be	transformed	in	any	way	supported	by	the	scripting	language
being	used.

Extended	Properties

BatchCompleteFunctionEntry
Property

PreSourceDataFunctionEntry
Property

InsertFailureFunctionEntry	Property PumpCompleteFunctionEntry
Property

InsertSuccessFunctionEntry	Property TransformFailureFunctionEntry
Property

PostSourceDataFunctionEntry
Property

	

Remarks
The	DTSTransformScriptProperties2	object	extends	the	functionality	of	the
DataPumpTransformScript	and	inherits	the	properties	and	methods	of	that
object.	In	addition,	the	extended	object	supports	multiple	transformation	phases
and	adds	properties	to	specify	the	script	function	entry	point	for	each	supported
phase.

The	following	table	specifies	the	transformation	phases	and	the	property	that
specifies	the	entry	point	for	the	phase.	For	a	phase	to	be	supported	by	a
DTSTransformScriptProperties2	object,	the	function	entry	point	must	be
specified,	and	the	phase	must	be	specified	using	the	TransformPhases	property
of	the	Transformation2	object.

Phase Description Entry	Point	Property

PreSourceData Occurs	before	first	row	is	fetched
from	source	connection.

PreSourceDataFunctionEntry

Transform Occurs	after	each	source	row	is
fetched	and	before	the	destination
row	is	written.

FunctionEntry

OnTransformFailureOccurs	after	a	failure	in	the
Transform	phase,	indicated	by	the
return	of	DTSTransformStat_Error
or
DTSTransformStat_ExceptionRow.
Typically	this	failure	is	caused	by
conversion	errors.

TransformFailureFunctionEntry

OnInsertSuccess Occurs	after	each	data	row	is	written
successfully	to	the	destination
connection.

InsertSuccessFunctionEntry

OnInsertFailure Occurs	after	each	attempt	to	write	a
data	row	to	the	destination	connection
fails	(for	example,	by	attempting	to
write	a	duplicate	value	to	a	primary
key	field,	or	a	NULL	to	a	NOT
NULL	field).

InsertFailureFunctionEntry

OnBatchComplete Occurs	in	DataPumpTask2	when
using	the	FastLoad	option	after	each
batch	is	written,	successfully	or
unsuccessfully.

BatchCompleteFunctionEntry

PostSourceData Occurs	after	the	last	row	is	written	to
the	destination	connection.

PostSourceDataFunctionEntry

OnPumpComplete Occurs	at	the	end	of	the	execution	of
the	task.

PumpCompleteFunctionEntry

To	create	the	DTSTransformScriptProperties2	object,	declare	an	object
variable	or	pointer	of	type	DTSTransformScriptProperties2,	but	use	the
ProgID	of	the	DataPumpTransformScript	object	as	the	parameter	for	the	New
method	of	the	Transformations	collection.	The	following	Microsoft	Visual
Basic®	code	illustrates	this:

				Dim	objCustTask					As	DTS.DataPumpTask2
				Dim	objTransform				As	DTS.Transformation2
				Dim	objTranScript			As	DTSPump.DTSTransformScriptProperties2
.	.	.
				Set	objTransform	=	_
								objCustTask.Transformations.New("DTSPump.DataPumpTransformScript")
				Set	objTranScript	=	objTransform.TransformServer

For	more	information	about	when	to	use	the	DataPumpTransformScript	object
instead	of	the	DTSTransformScriptProperties2	object,	see	Extended	DTS
Objects.

Example
The	following	Visual	Basic	program	uses	multiphased	transformations	to	insert
data	into	a	table	and	correct	certain	errors.

The	data	source	is	a	table	named	Transactions	in	a	database	named	DailyRuns.
The	following	is	the	definition	of	Transactions:

CREATE	TABLE	dbo.Transactions	(
			CustID	INT	PRIMARY	KEY	,
			CustName	VARCHAR	(50)	NULL	,
			CustAddr	VARCHAR	(100)	NULL	,
			TransAmount	VARCHAR	(50)	NOT	NULL)

The	data	destination	is	two	tables	named	Transactions	and	ErrorAmounts	in	a
database	named	DataPerm.	The	following	are	the	definitions	of	these	tables:

CREATE	TABLE	dbo.Transactions	(
			CustID	INT	PRIMARY	KEY	,
			CustName	VARCHAR	(50)	NOT	NULL	,
			CustAddr	VARCHAR	(50)	NOT	NULL	,
			TransAmount	MONEY	NOT	NULL	,
			ErrorCount	INT	NOT	NULL)

CREATE	TABLE	dbo.ErrorAmounts	(
			CustID	INT	NOT	NULL	,
			TransAmount	VARCHAR	(50)	NOT	NULL)
The	example	program	inserts	the	data	from	DailyRuns..Transactions	into	

If	the	CustName	or	CustAddr	columns	in	the	source	contain	Null
values,	they	cannot	be	inserted	into	the	corresponding	columns	in	the
destination,	which	are	specified	NOT	NULL.

An	error	occurs	if	the	TransAmount	column	in	the	source,	which	is
varchar,	cannot	be	converted	to	money.

An	error	occurs	if	the	destination	already	contains	a	row	that	has	the
same	value	for	the	primary	key	CustID	as	the	source	row.

One	or	more	of	these	errors	can	occur	in	a	single	source	row.

The	example	uses	a	DataPumpTransformCopy	transformation	that	supports
the	Transform	phase.	The	transformation	inserts	rows	from
DailyRuns..Transactions	into	DataPerm..Transactions.	A
SourceSQLStatement	provides	an	initial	value	for	the	ErrorCount	column	and
correctly	maps	the	data	source	to	the	destination	table.

The	example	also	uses	a	DTSTransformScriptProperties2	transformation	that
supports	the	OnTransformFailure,	OnInsertFailure	and	PreSourceData	phases.
The	transformation	processes	the	errors	described	above.	It	contains	these
ActiveX	script	functions	to	support	the	transformation	phases.

Script	Function Transformation	Phase
TransformFailed OnTransformFailure
InsertFailed OnInsertFailure
InitializeGV PreSourceData

The	TransformFailed	function	determines	if	a	conversion	error	to	the	money
data	type	occurred.	If	it	did,	the	function	opens	a	Microsoft	ActiveX	Data

Objects	(ADO)	recordset	on	the	ErrorAmounts	table	and	writes	a	record
containing	the	CustID	and	TransAmount	columns	from	the	data	source.	It	sets
the	destination	columns	TransAmount	to	0.0	and	ErrorCount	to	1.	It	saves	the
current	source	row	number	in	a	global	variable	so	the	InsertFailed	function	can
determine	if	TransformFailed	found	an	error	converting	to	money	for	the
current	row.	If	either	of	the	source	columns	CustName	or	CustAddr	are	NULL,
it	sets	the	corresponding	destination	column	to	"<unknown>".

The	InsertFailed	function	executes	when	a	duplicate	primary	key	error	occurs.
It	opens	an	ADO	recordset	and	queries	for	the	existing	record	in	the
DataPerm..Transactions	table.	It	updates	the	CustName	and	CustAddr
columns	only	if	the	original	values	in	the	source	row	were	not	NULL.	If	the
TransformFailed	function	found	that	an	error	converting	to	money	occurred,
InsertFailed	increments	the	ErrorCount	column.	Otherwise	it	adds	the
TransAmount	column	from	the	source	row	to	the	TransAmount	column	of	the
existing	record.

The	InitializeGV	function	initializes	the	global	variable	that	is	used	to
determine	if	both	a	transform	failure	and	an	insert	failure	occurred	on	the	same
row.

For	more	information	about	these	script	functions	and	a	view	of	them	separated
from	their	text	string,	see	Phased	Transformation	Samples.

Note		Database	operations	using	ADO	from	ActiveX	scripts	cannot	be	made	to
join	the	package	transaction	that	DTS	manages.

Building	the	Multiphased	Example
This	is	the	Visual	Basic	code	for	the	multi-phased	transformation	example:

Public	Sub	Main()
'Copy	DailyRuns..Transactions	to	DataPerm..Transactions.
				Dim	objPackage						As	DTS.Package2
				Dim	objConnect						As	DTS.Connection2
				Dim	objStep									As	DTS.Step2
				Dim	objTask									As	DTS.Task
				Dim	objCustTask					As	DTS.DataPumpTask2
				Dim	objTransform				As	DTS.Transformation2

				Dim	objTranScript			As	DTSPump.DTSTransformScriptProperties2
				Dim	strVBS										As	String							'Assemble	VBScript	text.
				
				Set	objPackage	=	New	DTS.Package
				objPackage.FailOnError	=	True
				
				'Establish	connection	to	source	server.
				Set	objConnect	=	objPackage.Connections.New("SQLOLEDB")
				With	objConnect
								.ID	=	1
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				objPackage.Connections.Add	objConnect

				'Establish	connection	to	destination	server.
				Set	objConnect	=	objPackage.Connections.New("SQLOLEDB")
				With	objConnect
								.ID	=	2
								.DataSource	=	"(local)"
								.UseTrustedConnection	=	True
				End	With
				objPackage.Connections.Add	objConnect

				'Create	step	and	task,	and	link	step	to	task.
				Set	objStep	=	objPackage.Steps.New
				objStep.Name	=	"CopyNValidateStep"
				Set	objTask	=	objPackage.Tasks.New("DTSDataPumpTask")
				Set	objCustTask	=	objTask.CustomTask
				objCustTask.Name	=	"CopyNValidateTask"
				objStep.TaskName	=	objCustTask.Name
				objPackage.Steps.Add	objStep
				

				'Link	task	to	connections.
				With	objCustTask
								.SourceConnectionID	=	1
								.SourceSQLStatement	=	_
												"SELECT	CustID,	CustName,	CustAddr,	TransAmount,	0	AS	ErrorCount	"	&	_
												"FROM	DailyRuns..Transactions"
								.DestinationConnectionID	=	2
								.DestinationObjectName	=	"[DataPerm].[dbo].[Transactions]"
								.UseFastLoad	=	False
								.MaximumErrorCount	=	4
				End	With
				
				'Create	transform	to	copy	source	to	destination	data.
				Set	objTransform	=	objCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformCopy")
				With	objTransform
								.Name	=	"CopyData"
								.TransformPhases	=	DTSTransformPhase_Transform
								.TransformFlags	=	DTSTransformFlag_Default
				End	With
				objCustTask.Transformations.Add	objTransform
				
				'Create	transform	to	handle	error	conditions.
				Set	objTransform	=	objCustTask.Transformations.	_
												New("DTSPump.DataPumpTransformScript")
				With	objTransform
								.Name	=	"InsertFailure"
								.TransformPhases	=	DTSTransformPhase_OnInsertFailure	+	_
												DTSTransformPhase_OnTransformFailure	+	DTSTransformPhase_PreSourceData
								Set	objTranScript	=	.TransformServer
				End	With
				
				'Define	the	ActiveX	script	functions.

				With	objTranScript
								.InsertFailureFunctionEntry	=	"InsertFailed"
								.TransformFailureFunctionEntry	=	"TransformFailed"
								.PreSourceDataFunctionEntry	=	"InitializeGV"
								.Language	=	"VBScript"
								strVBS	=	"Option	Explicit"	&	vbCrLf
								
								strVBS	=	strVBS	&	"Function	InsertFailed()"	&	vbCrLf
								strVBS	=	strVBS	&	"			Dim	rstCustomers	"	&	vbCrLf	&	"			Dim	strConnect"	&	vbCrLf	&	"			Dim	strQuery"	&	vbCrLf
								strVBS	=	strVBS	&	"			strConnect	=	""Provider=SQLOLEDB;Data	Source=(local);"	&	_
																									"Initial	Catalog=DataPerm;User	Id=sa;Password=;	"""	&	vbCrLf
								strVBS	=	strVBS	&	"			strQuery	=	""SELECT	CustID,	CustName,	CustAddr,	TransAmount,	ErrorCount	"	&	_
																									"FROM	Transactions	WHERE	CustID	=	'"""	&	vbCrLf
								strVBS	=	strVBS	&	"			'open	recordset"	&	vbCrLf
								strVBS	=	strVBS	&	"			Set	rstCustomers	=	CreateObject(""ADODB.Recordset"")"	&	vbCrLf
								strVBS	=	strVBS	&	"			rstCustomers.LockType	=	3																									'adLockOptimistic"	&	vbCrLf
								strVBS	=	strVBS	&	"			strQuery	=	strQuery	&	DTSSource(""CustID"").Value	&	""'"""	&	vbCrLf
								strVBS	=	strVBS	&	"			rstCustomers.Open	strQuery,	strConnect,	,	,	1													'adCmdText"	&	vbCrLf
								strVBS	=	strVBS	&	"			If	rstCustomers.EOF	Then"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstCustomers.AddNew"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstCustomers(""CustID"")	=	DTSSource(""CustID"")"	&	vbCrLf
								strVBS	=	strVBS	&	"			End	If"	&	vbCrLf
								strVBS	=	strVBS	&	"			If	DTSSource(""CustName"")	<>	""<unknown>""	Then"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstCustomers(""CustName"")	=	DTSSource(""CustName"")"	&	vbCrLf
								strVBS	=	strVBS	&	"			End	If"	&	vbCrLf
								strVBS	=	strVBS	&	"			If	DTSSource(""CustAddr"")	<>	""<unknown>""	Then"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstCustomers(""CustAddr"")	=	DTSSource(""CustAddr"")"	&	vbCrLf
								strVBS	=	strVBS	&	"			End	If"	&	vbCrLf
								strVBS	=	strVBS	&	"			If		CLng(DTSTransformPhaseInfo.CurrentSourceRow)	<>	(DTSGlobalVariables(""LastErrorRow""))	Then"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstCustomers(""TransAmount"")	=	rstCustomers(""TransAmount"")	+	DTSSource(""TransAmount"")"	&	vbCrLf
								strVBS	=	strVBS	&	"			Else"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstCustomers(""ErrorCount"")	=	rstCustomers(""ErrorCount"")	+	1"	&	vbCrLf
								strVBS	=	strVBS	&	"			End	If"	&	vbCrLf

								strVBS	=	strVBS	&	"			rstCustomers.Update"	&	vbCrLf
								strVBS	=	strVBS	&	"			rstCustomers.Close"	&	vbCrLf
								strVBS	=	strVBS	&	"			InsertFailed	=	DTSTransformStat_OK"	&	vbCrLf
								strVBS	=	strVBS	&	"End	Function"	&	vbCrLf
								
								strVBS	=	strVBS	&	"Function	TransformFailed()"	&	vbCrLf
								strVBS	=	strVBS	&	"			Dim	rstErrors	"	&	vbCrLf	&	"			Dim	strConnect"	&	vbCrLf
								strVBS	=	strVBS	&	"			DTSDestination(""CustID"")	=	DTSSource(""CustID"")"	&	vbCrLf
								strVBS	=	strVBS	&	"			DTSDestination(""ErrorCount"")	=	0	"	&	vbCrLf
								strVBS	=	strVBS	&	"			On	Error	Resume	Next"	&	vbCrLf
								strVBS	=	strVBS	&	"			DTSDestination(""TransAmount"")	=	CCur(DTSSource(""TransAmount""))"	&	vbCrLf
								strVBS	=	strVBS	&	"			If	Err.Number	<>	0	Then	"	&	vbCrLf
								strVBS	=	strVBS	&	"						On	Error	GoTo	0	"	&	vbCrLf
								strVBS	=	strVBS	&	"						strConnect	=	""Provider=SQLOLEDB;Data	Source=(local);"	&	_
																																"Initial	Catalog=DataPerm;User	Id=sa;Password=;	"""	&	vbCrLf
								strVBS	=	strVBS	&	"						Set	rstErrors	=	CreateObject(""ADODB.Recordset"")"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstErrors.LockType	=	3																									'adLockOptimistic"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstErrors.Open	""ErrorAmounts"",	strConnect,	,	,	2													'adCmdTable"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstErrors.AddNew"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstErrors(""CustID"")	=	DTSSource(""CustID"")"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstErrors(""TransAmount"")	=	DTSSource(""TransAmount"")"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstErrors.Update"	&	vbCrLf
								strVBS	=	strVBS	&	"						rstErrors.Close"	&	vbCrLf
								strVBS	=	strVBS	&	"						DTSDestination(""TransAmount"")	=	0.0"	&	vbCrLf
								strVBS	=	strVBS	&	"						DTSDestination(""ErrorCount"")	=	1"	&	vbCrLf
								strVBS	=	strVBS	&	"						DTSGlobalVariables(""LastErrorRow"")	=	CLng(DTSTransformPhaseInfo.CurrentSourceRow)"	&	vbCrLf
								strVBS	=	strVBS	&	"			End	If"	&	vbCrLf
								strVBS	=	strVBS	&	"			On	Error	GoTo	0	"	&	vbCrLf
								strVBS	=	strVBS	&	"			If	IsNull(DTSSource(""CustName"").Value)	Then"	&	vbCrLf
								strVBS	=	strVBS	&	"						DTSDestination(""CustName"")	=	""<unknown>"""	&	vbCrLf
								strVBS	=	strVBS	&	"			Else"	&	vbCrLf
								strVBS	=	strVBS	&	"						DTSDestination(""CustName"")	=	DTSSource(""CustName"")"	&	vbCrLf
								strVBS	=	strVBS	&	"			End	If"	&	vbCrLf

								strVBS	=	strVBS	&	"			If	IsNull(DTSSource(""CustAddr""))	Then"	&	vbCrLf
								strVBS	=	strVBS	&	"						DTSDestination(""CustAddr"")	=	""<unknown>"""	&	vbCrLf
								strVBS	=	strVBS	&	"			Else"	&	vbCrLf
								strVBS	=	strVBS	&	"						DTSDestination(""CustAddr"")	=	DTSSource(""CustAddr"")"	&	vbCrLf
								strVBS	=	strVBS	&	"			End	If"	&	vbCrLf
								strVBS	=	strVBS	&	"			TransformFailed	=	DTSTransformStat_OK"	&	vbCrLf
								strVBS	=	strVBS	&	"End	Function"	&	vbCrLf
								
								strVBS	=	strVBS	&	"Function	InitializeGV()"	&	vbCrLf
								strVBS	=	strVBS	&	"			DTSGlobalVariables(""LastErrorRow"")	=	CLng(DTSTransformPhaseInfo.CurrentSourceRow)"	&	vbCrLf
								strVBS	=	strVBS	&	"			InitializeGV	=	DTSTransformStat_OK"	&	vbCrLf
								strVBS	=	strVBS	&	"End	Function"	&	vbCrLf
								.Text	=	strVBS
				End	With
				objCustTask.Transformations.Add	objTransform
				
				'Link	task	to	package,	run	package.
				objPackage.Tasks.Add	objTask
				objPackage.Execute
				Exit	Sub
End	Sub

See	Also

Adding	DTS	ActiveX	Scripts

Adding	DTS	Column	Objects

Adding	DTS	Transformations

DTS	Scripting	Reference

New	(ID)	Method

SourceSQLStatement	Property

Transformation2	Object

Transformations	Collection

TransformPhases	Property

DTS	Programming

Phased	Transformation	Samples
These	Microsoft®	Visual	Basic®	Scripting	Edition	(VBScript)	functions	support
a	Data	Transformation	Services	(DTS)	package	program	that	uses	multiphase
transformations.	For	more	information,	see	DTSTransformScriptProperties2
Object.

TransformFailed	Function
If	an	error	occurred	converting	to	money,	TransformFailed	opens	a	Microsoft
ActiveX®	Data	Objects	(ADO)	recordset	on	an	error	records	table.	Then	it
writes	a	record	containing	the	primary	key	from	the	data	source	and	the	invalid
money	field.	It	sets	destination	columns	to	indicate	the	error	occurred.	It	saves
the	current	source	row	number	in	a	global	variable	to	indicate	the	conversion
error	occurred	for	the	current	row.	If	source	columns	are	Null,	it	sets	the
corresponding	destination	column	to	"<unknown>".

Example
The	following	is	the	VBScript	for	the	TransformFailed	function:

Function	TransformFailed()
'Called	on	transform	failure,	usually	conversion	error	or	Null	->	NOT	NULL	error.
			Dim	rstErrors		
			Dim	strConnect

			DTSDestination("CustID")	=	DTSSource("CustID")
			DTSDestination("ErrorCount")	=	0	

			'See	if	transaction	amount	conversion	error	occurred.
			On	Error	Resume	Next
			DTSDestination("TransAmount")	=	CCur(DTSSource("TransAmount"))

			'Conversion	error	occurred.	Write	bad	transaction	amount	to	error	table.

			If	Err.Number	<>	0	Then	
						On	Error	GoTo	0	
						strConnect	=	"Provider=SQLOLEDB;Data	Source=(local);Initial	Catalog=DataPerm;User	Id=sa;Password=;	"
						Set	rstErrors	=	CreateObject("ADODB.Recordset")
						rstErrors.LockType	=	3																												'adLockOptimistic
						rstErrors.Open	"ErrorAmounts",	strConnect,	,	,	2		'adCmdTable
						rstErrors.AddNew
						rstErrors("CustID")	=	DTSSource("CustID")
						rstErrors("TransAmount")	=	DTSSource("TransAmount")
						rstErrors.Update
						rstErrors.Close

						'Indicate	error	in	destination	table,	and	flag	that	that	transform	error	occurred	in	this	row.
						DTSDestination("TransAmount")	=	0.0
						DTSDestination("ErrorCount")	=	1
						DTSGlobalVariables("LastErrorRow")	=	_
									CLng(DTSTransformPhaseInfo.CurrentSourceRow)
			End	If
			On	Error	GoTo	0	

			'If	NULL	is	in	Name	or	Address,	write	<unknown>.	Otherwise	update	field.
			If	IsNull(DTSSource("CustName").Value)	Then
						DTSDestination("CustName")	=	"<unknown>"
			Else
						DTSDestination("CustName")	=	DTSSource("CustName")
			End	If
			If	IsNull(DTSSource("CustAddr"))	Then
						DTSDestination("CustAddr")	=	"<unknown>"
			Else
						DTSDestination("CustAddr")	=	DTSSource("CustAddr")
			End	If

			TransformFailed	=	DTSTransformStat_OK

End	Function

InsertFailedFunction
InsertFailed	executes	when	a	duplicate	primary	key	error	occurs.	It	opens	an
ADO	recordset	and	queries	for	the	existing	record	in	the	destination	table.	It
updates	columns	only	if	the	original	values	in	the	source	row	had	not	been
NULL.	If	an	error	converting	to	money	had	occurred,	it	increments	an	error
column.	Otherwise,	the	function	adds	the	TransactionAmounts	column	from
the	source	row	to	the	corresponding	column	of	the	existing	record.

Example
he	following	is	the	VBScript	for	the	InsertFailed	function:

Function	InsertFailed()
'Called	when	insert	fails,	usually	because	the	primary	key	is	already	present	in	destination.
			Dim	rstCustomers		
			Dim	strConnect	
			Dim	strQuery

			'Open	recordset	on	row	already	present	in	destination	table.
			strConnect	=	"Provider=SQLOLEDB;Data	Source=(local);Initial	Catalog=DataPerm;User	Id=sa;Password=;	"
			strQuery	=	"SELECT	CustID,	CustName,	CustAddr,	TransAmount,	ErrorCount	FROM	Transactions	WHERE	CustID	=	'"
			Set	rstCustomers	=	CreateObject("ADODB.Recordset")
			strQuery	=	strQuery	&	DTSSource("CustID").Value	&	"'"
			rstCustomers.LockType	=	3																												'adLockOptimistic
			rstCustomers.Open	strQuery,	strConnect,	,	,	1								'adCmdText

			'Add	new	row	if	source	primary	key	is	not	already	present.
			If	rstCustomers.EOF	Then
						rstCustomers.AddNew
						rstCustomers("CustID")	=	DTSSource("CustID")
			End	If

			'If	name	or	address	not	NULL	in	source,	update	destination.
			If	DTSSource("CustName")	<>	"<unknown>"	Then
						rstCustomers("CustName")	=	DTSSource("CustName")
			End	If
			If	DTSSource("CustAddr")	<>	"<unknown>"	Then
						rstCustomers("CustAddr")	=	DTSSource("CustAddr")
			End	If

			'If	no	transform	failure	occurred,	add	to	transaction	amount.
			If		CLng(DTSTransformPhaseInfo.CurrentSourceRow)	<>	(DTSGlobalVariables("LastErrorRow"))	Then
						rstCustomers("TransAmount")	=	rstCustomers("TransAmount")	+	DTSSource("TransAmount")

			'If	transform	failed	in	this	row,	increment	error	count.
			Else
						rstCustomers("ErrorCount")	=	rstCustomers("ErrorCount")	+	1
			End	If

			'Update	and	close	recordset.
			rstCustomers.Update
			rstCustomers.Close
			InsertFailed	=	DTSTransformStat_OK
End	Function

InitializeGV	Function
InitializeGV	initializes	a	global	variable.

Example
The	following	is	the	VBScript	for	the	InitializeGV	function:

Function	InitializeGV()
			'Write	row	0	into	transform	error	row	indicator.
			DTSGlobalVariables("LastErrorRow")	=	_
						CLng(DTSTransformPhaseInfo.CurrentSourceRow)

			InitializeGV	=	DTSTransformStat_OK
End	Function

DTS	Programming

Other	Objects
This	section	describes	the	objects	of	the	Microsoft®	SQL	Server™	2000	Data
Transformation	Services	(DTS)	object	model.

For	more	information	about	the	task	objects	and	transformation	objects	supplied
with	SQL	Server	2000,	see	Task	Objects	and	Transformation	Objects.

Topic Description
Application	Object Provides	access	to	system	properties

and	information	about	system
components.

Column	Object Contains	information	about	a	source
or	destination	column,	or	a	data-
driven	query	parameter.

Connection	Object Contains	information	about
connections	to	OLE	DB	data	sources.

Connection2	Object Extends	the	functionality	of	the
Connection	object.

CustomTask	Object Allows	developers	to	implement
DTS	custom	tasks.

CustomTaskUI	Object Allows	developers	to	implement	a
user	interface	for	a	custom	task.

DTSMQMessage	Object Holds	the	definition	of	a
DTSMessageQueueTask	message	to
be	sent.

DynamicPropertiesTaskAssignment
Object

Holds	the	definition	of	a	DTS	object
property	for	a
DynamicPropertiesTask	object.

GlobalVariable	Object Defines	a	DTS	global	variable.
GlobalVariable2	Object Extends	the	functionality	of	the

GlobalVariable	object.
IDTSStdObject Serves	as	the	base	object	from	which

all	other	DTS	objects	are	derived.
Lookup	Object Specifies	named,	parameterized

query	string.
OLEDBProperty	Object Specifies	property	to	be	set	in	an

OLE	DB	service	provider	at	run
time.

OLEDBProperty2	Object Extends	the	functionality	of	the
OLEDBProperty	object.

OLEDBProviderInfo	Object Supplies	information	about	an	OLE
DB	provider.

Package	Object Heads	the	hierarchy	of	objects.
Package2	Object Extends	the	functionality	of	the

Package	object.
PackageInfo	Object Provides	information	about	a	DTS

package	in	persistent	storage.
PackageLineage	Object Provides	the	contents	of	a	SQL

Server	2000	Meta	Data	Services
package	lineage	record.

PackageLog	Object Allows	a	custom	task	or	task	script	to
write	task	log	records.

PackageLogRecord	Object Provides	the	contents	of	a	package
log	record.

PackageRepository	Object Provides	access	to	the	DTS
components	on	Meta	Data	Services.

PackageSQLServer	Object Provides	access	to	the	components
on	an	instance	of	SQL	Server.

PersistPropertyBag	Object Defines	a	persistent	property	storage
interface	for	a	custom	task

PrecedenceConstraint	Object Limits	when	a	DTS	step	can	begin
execution.

PropertiesProvider	Object Defines	an	object	supplying	a	DTS
Properties	collection.

Property	Object Exposes	the	attributes	of	an	object
property.

PropertyBag	Object Defines	a	name-indexed	container	for
property	values.

SavedPackageInfo	Object Contains	information	about	a
package	saved	in	a	COM-structured
storage	file.

ScriptingLanguageInfo	Object Provides	information	about	a
Microsoft	ActiveX®	scripting
language	registered	on	the	system.

Step	Object Controls	the	execution	of	a	task	in
the	package.

Step2	Object Extends	the	functionality	of	the	Step
object.

StepLineage	Object Provides	the	contents	of	a	step
lineage	record	from	Meta	Data
Services.

StepLogRecord	Object Provides	the	contents	of	a	step	log
record	from	an	instance	of	SQL
Server.

Task	Object Defines	a	unit	of	work	to	be
performed	as	part	of	a	package.

TaskInfo	Object Provides	information	about	a	task
class	registered	on	the	computer
system.

TaskLogRecord	Object Provides	the	contents	of	a	task	log
record	from	an	instance	of	SQL
Server.

Transformation	Object Contains	information	about	the
transformation	class	and	the	source
and	destination	columns.

Transformation2	Object Extends	the	functionality	of	the
Transformation	object.

TransformationInfo	Object Provides	information	about	a
registered	DTS	transformation	class.

TransformationSet	Object Defines	the	transformations	to	be
performed	on	a	component	of	a
hierarchical	rowset.

See	Also

Creating	a	DTS	Package

Programming	DTS	Applications

JavaScript:hhobj_1.Click()

DTS	Programming

Application	Object
The	Application	object	provides	access	to	system	properties	and	information
about	system	components.	It	returns	connections	to	Microsoft®	SQL	Server™
storage	or	to	SQL	Server	2000	Meta	Data	Services	instances	that	contain	Data
Transformation	Services	(DTS)	packages.

Collections

OLEDBProviderInfos	Collection TaskInfos	Collection
Properties	Collection TransformationInfos	Collection
ScriptingLanguageInfos	Collection 	

Properties

DesignerSettings	Property Parent	Property
JITDebug	Property 	

Methods

GetPackageRepository	Method GetPackageSQLServer	Method

Remarks

The	Application	object	is	not	derived	from	another	DTS	component.	Instead,	it
is	created.	For	example,	do	this	with	the	New	operator	in	Microsoft	Visual
Basic®:

				Dim	objDTSAppl						As	DTS.Application
				.	.	.				
				Set	objDTSAppl	=	New	DTS.Application

The	system	properties	accessible	through	the	Application	object	are:

Whether	Phased	Transformation	features	are	visible	in	DTS	Designer.

Whether	script	run-time	errors	cause	the	scripting	debugger	to	be
entered.

The	system	components	about	which	information	is	accessible	through	the
Application	object	are:

The	set	of	OLE	DB	providers	available	on	the	system.

The	scripting	languages	that	can	be	used	in	ActiveX®	Script	tasks,
ActiveX	Script	transformations,	and	step	scripts.

The	DTS	tasks	available	on	the	system,	including	the	tasks	provided
with	SQL	Server	2000	and	custom	tasks	implemented	by	users	and
other	vendors.

The	DTS	transformations	available	on	the	system,	including	the
transformations	provided	with	SQL	Server	2000	and	custom
transformations	implemented	by	users	and	other	vendors.

Examples

For	more	information	about	the	Application	object	and	examples	of	its	use,	see
Retrieving	DTS	System,	Package	and	Log	Data.

DTS	Programming

Column	Object
The	Column	object	contains	information	about	a	source	or	destination	column,
or	a	data	driven	query	parameter.	If	no	source	or	destination	columns	are
specified	for	a	transformation,	then	all	columns	are	implied	by	default.

Collections

Properties	Collection

Properties

ColumnID	Property NumericScale	Property
DataType	Property Ordinal	Property
Flags	Property Parent	Property
Name	Property Precision	Property
Nullable	Property 	

See	Also

Adding	DTS	Column	Objects

Columns	Collection

DeleteQueryColumns	Property

DestinationColumnDefinitions	Property

DestinationColumns	Property

InsertQueryColumns	Property

SourceColumns	Property

UpdateQueryColumns	Property

UserQueryColumns	Property

DTS	Programming

Connection	Object
The	Connection	object	contains	information	about	connections	to	data	sources
through	OLE	DB	service	providers.	Connection	objects	allow	connection
pooling	and	reuse	for	connections	within	a	package	so	that	only	one	connection
must	be	established	for	multiple	steps	or	tasks.

Properties

Catalog	Property InUse	Property
Connected	Property LastOwnerTaskName	Property
ConnectImmediate	Property Name	Property
ConnectionProperties	Property Parent	Property
ConnectionTimeout	Property Password	Property
DataSource	Property ProviderID	Property
Description	Property Reusable	Property
ID	Property UserID	Property
InTransaction	Property 	

Methods

AcquireConnection	Method ReleaseConnection	Method

Remarks
The	Connection	object	is	compatible	with	Microsoft®	SQL	Server™	version
7.0.	For	more	information	about	an	extended	version	of	this	object,	see
Connection2	Object

See	Also

Connections	Collection

Creating	DTS	Package	Objects	and	Connections

DTS	Programming

Connection2	Object
The	Connection2	object	contains	information	about	connections	to	data	sources
through	OLE	DB	service	providers.

Extended	Properties

UDLPath	Property

Remarks
The	Connection2	object	extends	the	functionality	of	the	Connection	Object	and
inherits	the	properties	and	methods	of	that	object.	In	addition,	the	UDLPath
property	is	read/write,	while	it	is	read-only	in	the	Connection	object.

For	more	information	about	when	to	use	the	Connection	object	instead	of	the
Connection2	object,	see	Extended	DTS	Objects.

See	Also

Connection	Object

Creating	DTS	Package	Objects	and	Connections

DTS	Programming

CustomTask	Object
The	CustomTask	object	is	an	interface	that	all	Data	Transformation	Services
(DTS)	tasks	must	implement.	This	allows	programmers	to	create	their	own
custom	tasks,	which	can	be	controlled	by	the	DTS	package.

Collections

Properties	Collection

Properties

Description	Property Name	Property

Methods

Execute	Method

Remarks
After	inheriting	from	the	CustomTask	object,	a	DTS	custom	task	must
implement	the	following:

Description	property

Execute	method

Name	property

Properties	collection

To	inherit	from	the	CustomTask	interface	in	Microsoft®	Visual	Basic®,	the
program	references	the	interface	with	the	Implements	statement:

			Implements		DTS.CustomTask

Then	prototypes	for	the	elements	the	custom	task	must	implement	can	be
selected	from	the	Procedures/Events	box	in	the	code	window	in	the	Visual
Basic	integrated	development	environment	(IDE),	after	selecting	CustomTask
from	the	Object	Box.

DTS	implements	a	default	properties	provider	for	the	Properties	collection	if	the
user-supplied	Property	Get	CustomTask_Properties(.)	function	returns
Nothing.

To	implement	a	user	interface	in	a	custom	task,	the	program	must	also	inherit
from	the	CustomTaskUI	interface.

See	Also

CustomTaskUI	Object

DTS	Programming

CustomTaskUI	Object
The	CustomTaskUI	object	is	an	interface	that	allows	you	to	optionally	specify	a
custom	dialog	box	for	a	Data	Transformation	Services	(DTS)	custom	task	that
can	be	used	in	DTS	Designer.	The	CustomTaskUI	interface	is	only	used	in
conjunction	with	custom	tasks.	If	the	CustomTaskUI	is	not	implemented,	DTS
Designer	displays	a	default	user	interface	for	task	properties	in	a	simple	grid
format.

Methods

CreateCustomToolTip	Method Help	Method
Delete	Method Initialize	Method
Edit	Method New	Method
GetUIInfo	Method 	

Remarks
After	inheriting	from	the	CustomTaskUI	interface,	a	custom	task	must
implement	the	following:

CreateCustomToolTip	method

Delete	method

Edit	method

GetUIInfo	method

Help	method

Initialize	method

New	method

Some	of	these	methods	can	be	placeholders	that	do	nothing.

To	inherit	from	the	CustomTaskUI	interface	in	Microsoft®	Visual	Basic®,	the
program	references	the	interface	with	the	Implements	statement:

Implements		DTS.CustomTaskUI

Then	prototypes	for	the	elements	the	custom	task	must	implement	can	be
selected	from	the	Procedures/Events	Box	in	the	code	window	in	the	Visual	Basic
integrated	development	environment	(IDE),	after	selecting	CustomTaskUI	from
the	Object	Box.

All	DTS	tasks	must	implement	the	CustomTask	interface.

See	Also

CustomTask	Object

DTS	Programming

DTSMQMessage	Object
The	DTSMQMessage	object	holds	the	definition	of	a	single	message	to	be	sent
by	a	DTSMessageQueueTask	object.

Collections

Properties	Collection

Properties

MessageDataFile	Property MessageType	Property
MessageGlobalVariables	Property UseTransaction	Property
MessageString	Property 	

Methods

Reset	Method

Remarks
DTSMQMessage	objects	are	used	only	to	define	the	messages	to	be	sent	by	a
DTSMessageQueueTask	object.	The	single	message	to	be	received	by	a
receiving	task	is	defined	by	the	task	properties.

See	Also

DTSMQMessages	Collection

DTSMessageQueueTask	Object

DTS	Programming

DynamicPropertiesTaskAssignment	Object
The	DynamicPropertiesTaskAssignment	object	holds	the	definition	of	a	single
package	object	property	to	be	modified	by	a	Dynamic	Properties	Task	object,
and	the	source	of	the	new	property	value.

Collections

Properties	Collection

Properties

DestinationPropertyID	Property SourceIniFileKey	Property
SourceConstantValue	Property SourceIniFileSection	Property
SourceDataFileFileName	Property SourceQueryConnectionID	Property
SourceEnvironmentVariable	Property SourceQuerySQL	Property
SourceGlobalVariable	Property SourceType	Property
SourceIniFileFileName	Property 	

Methods

Reset	Method

Remarks
One	of	the	following	sources	for	the	new	property	value	can	be	specified:

A	constant

The	contents	of	a	data	file

An	environment	variable

A	Data	Transformation	Services	(DTS)	global	variable

A	field	in	an	.ini	file

An	SQL	query

See	Also

DynamicPropertiesTask

DynamicPropertiesTaskAssignments	Collection

DTS	Programming

GlobalVariable	Object
The	GlobalVariable	object	defines	a	variable	that	allows	data	to	be	shared
across	steps	and	Microsoft®	ActiveX®	scripts.

Collections

Properties	Collection

Properties

Name	Property Value	Property
Parent	Property 	

Remarks
Global	variables	can	be	shared	between	Data	Transformation	Services	(DTS)
packages	by	using	the	ExecutePackageTask	or	DTSMessageQueueTask
objects.

The	GlobalVariable	object	is	compatible	with	Microsoft®	SQL	Server™
version	7.0.	For	more	information	about	an	extended	version	of	this	object,	see
GlobalVariable2	Object.

See	Also

Adding	DTS	Lookups	and	Global	Variables

DTSMessageQueueTask	Object

ExecutePackageTask	Object

GlobalVariables	Collection

DTS	Programming

GlobalVariable2	Object
The	GlobalVariable2	object	defines	a	variable	that	allows	data	to	be	shared
across	steps	and	Microsoft®	ActiveX®	scripts.

Extended	Methods

Lock	Method Unlock	Method

Remarks
The	GlobalVariable2	object	extends	the	functionality	of	the	GlobalVariable
Object	and	inherits	the	properties	and	methods	of	that	object.	In	addition,	the
Lock	and	Unlock	methods	allow	a	task	to	acquire	a	GlobalVariable2	object	for
exclusive	use	and	to	later	release	it.

For	more	information	about	when	to	use	the	GlobalVariable	object	instead	of
the	GlobalVariable2	object,	see	Extended	DTS	Objects.

See	Also

Adding	DTS	Lookups	and	Global	Variables

GlobalVariable	Object

GlobalVariables	Collection

DTS	Programming

IDTSStdObject
The	IDTSStdObject	is	the	base	object	from	which	all	other	Data
Transformation	Services	(DTS)	package	objects	are	derived.	It	has	no	properties,
methods,	or	events.

See	Also

Parent	Property

DTS	Programming

Lookup	Object
The	Lookup	object	allows	a	data	pump	consumer,	for	example	a
DataDrivenQueryTask2,	DataPumpTask2	or	ParallelDataPumpTask	object,
to	specify	one	or	more	named,	parameterized	query	strings	that	allow	a
transformation	to	retrieve	data	from	locations	other	than	the	row	being
transformed.	For	example,	a	Lookup	object	might	reference	data	in	a
Microsoft®	Excel	worksheet.

Collections

Properties	Collection

Properties

ConnectionID	Property Parent	Property
MaxCacheRows	Property Query	Property
Name	Property 	

See	Also

Adding	DTS	Lookups	and	Global	Variables

DataDrivenQueryTask2	Object

DataPumpTask2	Object

Lookups	Collection

ParallelDataPumpTask	Object

DTS	Programming

OLEDBProperty	Object
OLEDBProperty	objects	are	used	by	the	Connection	object	to	specify
properties	of	sessions	and	rowsets	to	be	set	in	the	OLE	DB	service	provider	at
run	time.	These	properties	are	set	automatically	by	the	Data	Transformation
Services	(DTS)	package	at	run	time.	Connection	properties	of	each	OLE	DB
service	provider	can	also	be	set	this	way.

Collections

Properties	Collection

Properties

Name	Property PropertySet	Property
Parent	Property Value	Property
PropertyID	Property 	

Remarks
The	OLEDBProperty	object	is	compatible	with	Microsoft®	SQL	Server™
version	7.0.	For	more	information	about	an	extended	version	of	this	object,	see
OLEDBProperty2	Object.

See	Also

CommandProperties	Property

ConnectionProperties	Property

Creating	DTS	Package	Objects	and	Connections

DestinationCommandProperties	Property

OLEDBProperties	Collection

SourceCommandProperties	Property

DTS	Programming

OLEDBProperty2	Object
OLEDBProperty2	objects	are	used	by	the	Connection	object	to	specify
properties	of	sessions	and	rowsets	to	be	set	in	the	OLE	DB	service	provider	at
run-time.

Extended	Properties

IsDefaultValue	Property

Remarks
The	OLEDBProperty2	object	extends	the	functionality	of	the
OLEDBProperty	object	and	inherits	the	properties	and	methods	of	that	object.
In	addition,	the	IsDefaultValue	property	indicates	whether	the	value	of	the
OLEDBProperty2	object	has	been	explicitly	set	to	a	value	other	than	the	code
for	"restore	default	value".

For	more	information	about	when	to	use	the	OLEDBProperty	object	instead	of
the	OLEDBProperty2	object,	see	Extended	DTS	Objects.

See	Also

CommandProperties	Property

ConnectionProperties	Property

Creating	DTS	Package	Objects	and	Connections

DestinationCommandProperties	Property

OLEDBProperty	Object

OLEDBProperties	Collection

SourceCommandProperties	Property

DTS	Programming

OLEDBProviderInfo	Object
The	OLEDBProviderInfo	object	provides	information	about	an	OLE	DB
provider	that	is	registered	on	the	computer	system.

Properties

ClassID	Property Name	Property
Description	Property Parent	Property
ImplementationFileName	Property ParseName	Property
ImplementationFileVersionString
Property

	

Remarks
Access	the	OLEDBProviderInfo	objects	by	creating	the	Data	Transformation
Services	(DTS)	Application	object	and	iterating	through	the
OLEDBProviderInfos	collection.

See	Also

Application	Object

OLEDBProviderInfos	Collection

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

Package	Object
The	Package	object	is	the	main	transformation-defining	object	from	which	all
other	objects	stem.

Collections

Connections	Collection Steps	Collection
GlobalVariables	Collection Tasks	Collection
Properties	Collection 	

Properties

AutoCommitTransaction	Property PackageID	Property
CreationDate	Property PackagePriorityClass	Property
CreatorComputerName	Property Parent	Property
CreatorName	Property RepositoryMetadataOptions	Property
Description	Property TransactionIsolationLevel	Property
FailOnError	Property UseOLEDBServiceComponents

Property
LineageOptions	Property UseTransaction	Property
LogFileName	Property VersionID	Property
MaxConcurrentSteps	Property WriteCompletionStatusToNTEventLog

Property
Name	Property 	

Methods

Execute	Method RemoveFromRepository	Method
GetDTSVersionInfo	Method RemoveFromSQLServer	Method
GetLastExecutionLineage	Method SaveAs	Method
GetSavedPackageInfos	Method SaveToRepository	Method
LoadFromRepository	Method SaveToSQLServer	Method
LoadFromSQLServer	Method SaveToStorageFile	Method
LoadFromStorageFile	Method 	

Events

OnError	Event OnQueryCancel	Event
OnFinish	Event OnStart	Event
OnProgress	Event 	

Remarks
The	Package	object	is	compatible	with	Microsoft®	SQL	Server™	version	7.0.
For	more	information	about	an	extended	version	of	this	object,	see	Package2
Object.

See	Also

Creating	DTS	Package	Objects	and	Connections

DTS	Programming

Package2	Object
The	Package2	object	is	the	parent	object	of	a	Data	Transformation	Services
(DTS)	package.	Most	of	the	new	properties	support	logging	to	the	msdb
database	of	a	specified	instance	of	Microsoft®	SQL	Server™.

Extended	Properties

ExplicitGlobalVariables	Property LogServerUserName	Property
FailPackageOnLogFailure	Property LogToSQLServer	Property
LogServerFlags	Property NestedExecutionLevel	Property
LogServerName	Property PackageType	Property
LogServerPassword	Property 	

Extended	Methods

SaveToRepositoryAs	Method SaveToStorageFileAs	Method
SaveToSQLServerAs	Method 	

Remarks
The	Package2	object	extends	the	functionality	of	the	existing	Package	object
and	inherits	the	properties	and	methods	of	that	object.	In	addition,	several
extended	methods	and	properties	have	been	added.

The	ExplicitGlobalVariables	property	inhibits	automatic	creation	of	global
variables	on	first	reference.	The	NestedExecutionLevel	property	helps	detect

uncontrolled	recursive	package	execution	through	the	ExecutePackageTask
object.	The	PackageType	property	provides	information	about	the	package
creator.

The	LogToSQLServer,	LogServerFlags,	LogServerName,
LogServerPassword,	LogServerUserName,	and	FailPackageOnLogFailure
properties	enable	logging	to	an	instance	of	SQL	Server,	identify	the	server,	and
provide	authentication	information.

The	SaveToRepositoryAs,	SaveToSQLServerAs,	and	SaveToStorageFileAs
methods	assign	a	new	name	and	package	ID	to	a	Package2	object,	and	then	save
it	to	the	specified	persistent	storage.

Note		In	SQL	Server	2000,	if	a	Package2	object	variable	is	declared,
WithEvents,	event	handlers	should	be	provided	for	all	of	the	Package	events,
and	the	ExecuteInMainThread	property	should	be	set	to	TRUE	for	all	steps.

From	within	ActiveX®	scripts,	use	DTSGlobalVariables.Parent	to	reference
the	Package2	object.	From	the	Package2	object,	you	can	reference	any	other
object	in	the	hierarchy.

For	more	information	about	when	to	use	the	Package	object	instead	of	the
Package2	object,	see	Extended	DTS	Objects.

See	Also

Creating	DTS	Package	Objects	and	Connections

Package	Object

DTS	Programming

PackageInfo	Object
The	PackageInfo	object	provides	information	about	a	package	stored	in
Microsoft®	SQL	Server™	2000	Meta	Data	Services	or	SQL	Server	storage.

Properties

CreationDate	Property PackageID	Property
Description	Property PackageType	Property
IsOwner	Property Parent	Property
Name	Property Properties	Collection
Owner	Property VersionID	Property
PackageDataSize	Property 	

Remarks
Access	the	PackageInfo	objects	by	using	the	EnumPackageInfos	method	of	the
PackageRepository	or	PackageSQLServer	objects	and	iterating	through	the
PackageInfos	collection	the	method	returns.

See	Also

EnumPackageInfos	Method

PackageInfos	Collection

PackageRepository	Object

PackageSQLServer	Object

Retrieving	DTS	System,	Package	and	Log	Data

JavaScript:hhobj_1.Click()

DTS	Programming

PackageLineage	Object
The	PackageLineage	object	provides	the	contents	of	a	package	lineage	record
from	Microsoft®	SQL	Server™	2000	Meta	Data	Services.	The	record	contains
information	about	a	Data	Transformation	Services	(DTS)	package	execution
hosted	by	Meta	Data	Services.

Properties

Computer	Property Operator	Property
ExecutionDate	Property PackageID	Property
LineageFullID	Property Parent	Property
LineageShortID	Property Properties	Collection
Name	Property 	

Remarks
A	package	lineage	record	is	written	each	time	a	package	stored	in	Meta	Data
Services	is	executed,	if	the	package	LineageOptions	property	specifies	this	be
done.

Access	the	PackageLineage	objects	by	using	the	EnumPackageLineages
method	of	the	PackageRepository	object	and	iterating	through	the
PackageLineages	collection	the	method	returns.

See	Also

EnumPackageLineages	Method

LineageOptions	Property

PackageLineages	Collection

PackageRepository	Object

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

PackageLog	Object
The	PackageLog	object	allows	a	Data	Transformation	Services	(DTS)	custom
task	or	ActiveScriptTask	object	to	write	task	log	records	in	the	database	or	write
log	messages	to	the	log	file.

Methods

WriteStringToLog	Method WriteTaskRecord	Method

Remarks
The	reference	to	the	PackageLog	object	is	a	parameter	of	the	task	Execute
method,	which	you	implement	in	a	custom	task,	and	thus	have	access.	It	is	also
available	in	task	Microsoft®	ActiveX®	scripts,	through	the	DTSPackageLog
object.

See	Also

EnumTaskLogRecords	Method

Execute	Method

PackageLogRecords	Collection

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

PackageLogRecord	Object
The	PackageLogRecord	object	provides	the	contents	of	a	package	log	record
from	an	instance	of	Microsoft®	SQL	Server™.	The	log	record	contains
information	about	a	package	execution.

Properties

Computer	Property LogDate	Property
Description	Property Name	Property
ErrorCode	Property Operator	Property
ErrorDescription	Property PackageID	Property
ExecutionTime	Property Parent	Property
FinishTime	Property Properties	Collection
LineageFullID	Property StartTime	Property
LineageShortID	Property 	

Remarks
A	package	log	record	is	written	to	the	msdb	database	on	the	server	specified	by
the	package	LogServerName	property	each	time	a	Data	Transformation
Services	(DTS)	package	is	executed,	if	the	package	LogToSQLServer	property
has	been	set.

Access	the	PackageLogRecord	objects	by	using	the
EnumPackageLogRecords	method	of	the	PackageSQLServer	object	and
iterating	through	the	PackageLogRecords	collection	the	method	returns.

See	Also

EnumPackageLogRecords	Method

LogServerName	Property

LogToSQLServer	Property

PackageLogRecords	Collection

PackageSQLServer	Object

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

PackageRepository	Object
The	PackageRepository	object	provides	access	to	the	Data	Transformation
Services	(DTS)	components	hosted	by	an	instance	of	Microsoft®	SQL	Server™
2000	Meta	Data	Services.	Through	methods	of	this	object,	you	can	obtain
information	about	the	DTS	packages	stored	in	Meta	Data	Services	and	access	the
contents	of	the	package	and	step	lineage	data	for	these	packages.

Properties

Name	Property Properties	Collection
Parent	Property 	

Methods

EnumPackageInfos	Method EnumStepLineages	Method
EnumPackageLineages	Method 	

Remarks
A	package	lineage	record	is	written	each	time	a	package	stored	in	Meta	Data
Services	is	executed,	if	the	package	LineageOptions	property	specifies	this	to
be	done.

Access	the	PackageRepository	object	by	using	the	GetPackageRepository
method	of	the	Application	object.	Provide	the	necessary	login	information	to
access	the	instance	of	SQL	Server	that	hosts	the	desired	Meta	Data	Services
instance.

See	Also

Application	Object

GetPackageRepository	Method

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

PackageSQLServer	Object
The	PackageSQLServer	object	provides	access	to	the	Data	Transformation
Services	(DTS)	components	hosted	by	an	instance	of	Microsoft®	SQL	Server™.
Through	methods	of	this	object,	you	can	obtain	information	about	the	DTS
packages	stored	in	SQL	Server	storage	and	access	the	contents	of	the	package,
step,	and	task	log	records	stored	on	that	server.

Properties

Name	Property Properties	Collection
Parent	Property 	

Methods

EnumPackageInfos	Method RemoveAllLogRecords	Method
EnumPackageLogRecords	Method RemovePackageLogRecords	Method
EnumStepLogRecords	Method RemoveStepLogRecords	Method
EnumTaskLogRecords	Method 	

Remarks
Access	the	PackageSQLServer	object	by	using	the	GetPackageSQLServer
method	of	the	Application	object.	Provide	the	necessary	login	information	to
access	the	instance	of	SQL	Server	you	want.

See	Also

Application	Object

GetPackageSQLServer	Method

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

PersistPropertyBag	Object
The	PersistPropertyBag	object	defines	a	persistent	property	storage	interface
for	an	object	implementing	a	Data	Transformation	Services	(DTS)	custom	task.
The	PropertyBag	object	is	a	name-indexed	container	object	for	object
properties.	When	implemented,	the	PropertyBag	and	PersistPropertyBag
objects	allow	simple	object	property	handling.

Methods

Load	Method Save	Method

Remarks
DTS	provides	these	options	for	custom	task	object	property	storage.	You	can:

Do	nothing.	DTS	will	save	and	load	properties	when	Package	object
store	and	retrieve	methods	are	called.	The	object	can,	optionally,
implement	a	PropertiesProvider	object	to	expose	its	properties	as	a
DTS	Properties	collection.

Implement	a	PersistPropertyBag	object.

If	using	Microsoft®	Visual	C++®,	implement	the	IPersistStorage
interface	on	the	custom	task	object.

If	implemented,	DTS	will	call	the	PersistPropertyBag	object	Load	method
when	a	Package	retrieving	method	is	called.	The	Save	method	is	called	when	a
Package	method	storing	a	package	is	called.

See	Also

PropertyBag	Object

DTS	Programming

PrecedenceConstraint	Object
The	PrecedenceConstraint	object	contains	information	about	a	condition	that
must	occur	before	a	Data	Transformation	Services	(DTS)	step	can	be	released
for	execution.	The	PrecedenceConstraint	objects	of	all	the	package	steps
control	the	order	in	which	steps	are	executed.

Collections

Properties	Collection

Properties

Parent	Property StepName	Property
PrecedenceBasis	Property 	

See	Also

Creating	DTS	Package	Workflow	and	Tasks

PrecedenceConstraints	Collection

DTS	Programming

PropertiesProvider	Object
The	PropertiesProvider	object	defines	an	object	supplying	a	Data
Transformation	Services	(DTS)	Properties	collection.	When	exposed,	DTS	will
retrieve	the	Properties	collection	as	required.

Methods

GetPropertiesForObject	Method

See	Also

CustomTask	Object

Properties	Collection

DTS	Programming

Property	Object
The	Property	object	exposes	the	attributes	of	a	Data	Transformation	Services
(DTS)	object	property.

Most	DTS	objects	have	Properties	collections,	which	contain	a	Property	object
for	each	property	the	object	has.	By	referencing	the	Properties	collection,	a	user
of	the	object	can	determine	whether	the	object	supports	a	particular	property
without	causing	a	program	error	if	it	does	not.

Collections

Properties	Collection

Properties

Get	Property Set	Property
Name	Property Type	Property
Parent	Property 	

Remarks
Development	environments,	such	as	Microsoft®	Visual	Basic®,	typically
provide	syntax	completion	and	other	development	aids.	Because	it	exposes	the
attributes	of	object	properties,	the	Property	object	supports	such	automated
developer	assistance.

Note		The	Property	object	is	implemented	for	automation	controllers.	Microsoft
Visual	C++®	DTS	applications	have	no	direct	access	to	the	Property	object.

See	Also

TransformServerProperties	Property

DTS	Programming

PropertyBag	Object
The	PropertyBag	object	defines	a	name-indexed	container	for	property	values
for	an	object	implementing	a	Data	Transformation	Services	(DTS)	custom	task.
Use	the	PropertyBag	object	as	part	of	custom	task	object	implementation	when
the	custom	task	maintains	storage	for	task	properties.

DTS	can	read	and	write	values	of	simple	data	types,	such	as	String,	in	a
PropertyBag	object.	DTS	cannot	support	objects	and	other	more	complex	data
types	as	values	in	a	PropertyBag	container.

Methods

Read	Method Write	Method

See	Also

PersistPropertyBag	Object

DTS	Programming

SavedPackageInfo	Object
The	SavedPackageInfo	object	contains	information	about	packages	that	are
saved	in	COM-structured	storage	files.	This	information	is	returned	by	the
GetSavedPackageInfos	method.

Properties

Description	Property PackageName	Property
IsVersionEncrypted	Property VersionID	Property
PackageCreationDate	Property VersionSaveDate	Property
PackageID	Property 	

See	Also

GetSavedPackageInfos	Method

Retrieving	DTS	System,	Package	and	Log	Data

SavedPackageInfos	Collection

DTS	Programming

ScriptingLanguageInfo	Object
The	ScriptingLanguageInfo	object	provides	information	about	a	Microsoft®
ActiveX®	scripting	language	that	is	registered	on	the	computer	system.

Properties

ClassID	Property Name	Property
Description	Property Parent	Property
ImplementationFileName	Property Properties	Collection
ImplementationFileVersionString
Property

	

Remarks
Access	the	ScriptingLanguageInfo	objects	by	creating	the	Data	Transformation
Services	(DTS)	Application	object	and	iterating	through	the
ScriptingLanguageInfos	collection.

Typically,	the	available	scripting	languages	will	include	the	following.

Scripting	Language Name Description
Microsoft	JScript® JScript JScript	Language
PerlScript PerlScript PerlScript

Language
Microsoft	Visual	Basic®	Scripting	Edition
(VBScript)

VBScript VBScript
Language

Extensible	Markup	Language XML XML	Script
Engine

The	values	in	the	Name	and	Description	columns	are	the	values	that	are
returned	by	the	Name	and	Description	properties	of	the
ScriptingLanguageInfo	object.	Use	a	value	from	the	Name	property	to	set	the

Language	or	ScriptLanguage	property	of	scripting	objects.

Note		Encoding	versions	of	scripting	languages,	which	may	be	installed	on	a
computer	system	to	support	scripts	embedded	in	Web	pages,	are	not	appropriate
for	use	with	DTS.

See	Also

Application	Object

Retrieving	DTS	System,	Package	and	Log	Data

ScriptingLanguageInfos	Collection

ScriptLanguage	Property

Language	Property

DTS	Programming

Step	Object
The	Step	object	controls	the	flow	and	execution	of	tasks	within	the	Data
Transformation	Services	(DTS)	package.	Each	step	is	associated	with	a	single
task,	although	association	with	no	task	is	possible.	Step	execution	sequence	is
determined	by	the	precedence	constraints.	A	step	cannot	start	execution	until	all
its	precedence	constraints	are	satisfied.

Collections

PrecedenceConstraints	Collection Properties	Collection

Properties

ActiveXScript	Property FunctionName	Property
AddGlobalVariables	Property IsPackageDSORowset	Property
CloseConnection	Property JoinTransactionIfPresent	Property
CommitSuccess	Property Name	Property
Description	Property Parent	Property
DisableStep	Property RelativePriority	Property
ExecuteInMainThread	Property RollbackFailure	Property
ExecutionResult	Property ScriptLanguage	Property
ExecutionStatus	Property StartTime	Property
ExecutionTime	Property TaskName	Property
FinishTime	Property 	

Methods

Execute	(Package)	Method GetExecutionErrorInfo	Method

Remarks
The	Step	object	is	compatible	with	Microsoft®	SQL	Server™	version	7.0.	For
more	information	about	an	extended	version	of	this	object,	see	Step2	Object.

See	Also

Creating	DTS	Package	Workflow	and	Tasks

Steps	Collection

DTS	Programming

Step2	Object
The	Step2	object	controls	the	flow	and	execution	of	tasks	within	the	Data
Transformation	Services	(DTS)	package.	Each	step	is	associated	with	a	single
task,	although	association	with	no	task	is	possible.	Step	execution	sequence	is
determined	by	the	precedence	constraints.	A	step	cannot	start	execution	until	all
its	precedence	constraints	are	satisfied.

Extended	Properties

FailPackageOnError	Property

Remarks
The	Step2	object	extends	the	functionality	of	the	Step	Object	and	inherits	the
properties	and	methods	of	that	object.	In	addition,	the	FailPackageOnError
property	causes	the	package	to	fail	if	the	step	fails.

For	more	information	about	when	to	use	the	Step	object	instead	of	the	Step2
object,	see	Extended	DTS	Objects.

See	Also

Creating	DTS	Package	Workflow	and	Tasks

FailOnError	Property

Step	Object

DTS	Programming

StepLineage	Object
The	StepLineage	object	provides	the	contents	of	a	step	lineage	record	from
Microsoft®	SQL	Server™	2000	Meta	Data	Services.	The	record	contains
information	about	the	execution	of	a	step	in	a	Data	Transformation	Services
(DTS)	package	hosted	by	Meta	Data	Services.

Properties

ErrorCode	Property Name	Property
ErrorDescription	Property Parent	Property
ErrorHelpContext	Property Properties	Collection
ErrorHelpFile	Property StartTime	Property
ErrorSource	Property StepExecutionResult	Property
ExecutionTime	Property StepExecutionStatus	Property
FinishTime	Property 	

Remarks
A	step	lineage	record	is	written	each	time	a	step	of	a	package	stored	in	Meta
Data	Services	is	executed,	if	the	package	LineageOptions	property	specifies	this
to	be	done.

Access	the	StepLineage	objects	by	using	the	EnumStepLineages	method	of	the
PackageRepository	object	and	iterating	through	the	StepLineages	collection
the	method	returns.

See	Also

EnumStepLineages	Method

LineageOptions	Property

PackageRepository	Object

Retrieving	DTS	System,	Package	and	Log	Data

StepLineages	Collection

DTS	Programming

StepLogRecord	Object
The	StepLogRecord	object	provides	the	contents	of	a	step	log	record	from	an
instance	of	Microsoft®	SQL	Server™.	The	log	record	contains	information
about	the	execution	of	a	step	in	a	Data	Transformation	Services	(DTS)	package.

Properties

ErrorCode	Property Parent	Property
ErrorDescription	Property ProgressCount	Property
ExecutionTime	Property Properties	Collection
FinishTime	Property StartTime	Property
LineageFullID	Property StepExecutionID	Property
Name	Property StepExecutionResult	Property

Remarks
A	step	log	record	is	written	to	the	msdb	database	on	the	server	specified	by	the
package	LogServerName	property	each	time	a	step	in	a	package	is	executed,	if
the	package	LogToSQLServer	property	has	been	set.

Access	the	StepLogRecord	objects	by	using	the	EnumStepLogRecords
method	of	the	PackageSQLServer	object	and	iterating	through	the
StepLogRecords	collection	the	method	returns.

See	Also

EnumStepLogRecords	Method

LogServerName	Property

LogToSQLServer	Property

PackageSQLServer	Object

Retrieving	DTS	System,	Package	and	Log	Data

StepLogRecords	Collection

DTS	Programming

Task	Object
The	Task	object	defines	a	unit	of	work	to	be	performed	as	part	of	a	Data
Transformation	Services	(DTS)	package.	A	Task	object	is	created	in	a	package
when	the	Tasks.New	method	is	invoked	with	the	program	ID	or	class	ID	of	the
desired	task	class,	followed	by	Tasks.Add.

Collections

Properties	Collection

Properties

CustomTask	Property Name	Property
CustomTaskID	Property Parent	Property
Description	Property 	

Methods

Execute	Method

See	Also

Creating	DTS	Package	Workflow	and	Tasks

Tasks	Collection

DTS	Programming

TaskInfo	Object
The	TaskInfo	object	provides	information	about	a	Data	Transformation	Services
(DTS)	task	class	that	is	registered	on	the	computer	system.

Properties

ClassID	Property ImplementationFileVersionString
Property

Description	Property Name	Property
IconFile	Property Parent	Property
IconIndex	Property Properties	Collection
ImplementationFileName	Property 	

Remarks
The	registered	task	classes	include	those	provided	with	Microsoft®	SQL
Server™	2000	and	custom	tasks	provided	by	other	vendors	and	implemented	by
users.

Access	the	TaskInfo	objects	by	creating	the	DTS	Application	object	and
iterating	through	the	TaskInfos	collection.

See	Also

Application	Object

Retrieving	DTS	System,	Package	and	Log	Data

TaskInfos	Collection

DTS	Programming

TaskLogRecord	Object
The	TaskLogRecord	object	provides	the	contents	of	a	task	log	record	from	an
instance	of	Microsoft®	SQL	Server™.	The	log	record	contains	information
about	the	execution	of	a	task	in	a	Data	Transformation	Services	(DTS)	package
that	has	been	implemented	to	write	task	log	records.

Properties

ErrorCode	Property Properties	Collection
ErrorDescription	Property SequenceID	Property
Parent	Property 	

Remarks
Task	log	records	are	not	automatically	written	by	the	task	classes	supplied	with
SQL	Server	2000,	but	the	PackageLog	interface	is	available	so	that	a	custom
task	or	the	script	of	an	ActiveScriptTask	object	can	write	them.	They	are	written
to	the	msdb	database	on	the	server	specified	by	the	package	LogServerName
property	each	time	a	task	in	a	package	that	has	been	implemented	to	write	them
is	executed,	if	the	package	LogToSQLServer	property	has	been	set.

Access	the	TaskLogRecord	objects	by	using	the	EnumTaskLogRecords
method	of	the	PackageSQLServer	object	and	iterating	through	the
TaskLogRecords	collection	the	method	returns.

See	Also

ActiveScriptTask	Object

EnumTaskLogRecords	Method

LogServerName	Property

LogToSQLServer	Property

PackageSQLServer	Object

Retrieving	DTS	System,	Package	and	Log	Data

TaskLogRecords	Collection

DTS	Programming

Transformation	Object
The	generic	Transformation	object	contains	information	about	the	class-
specific	transformation	object	and	the	source	and	destination	columns	it
manipulates.

Collections

Properties	Collection

Properties

DestinationColumns	Property SourceColumns	Property
ForceBlobsInMemory	Property TransformFlags	Property
ForceSourceBlobsBuffered	Property TransformServer	Property
InMemoryBlobSize	Property TransformServerID	Property
Name	Property TransformServerParameter	Property
Parent	Property 	

Remarks
The	Transformation	object	is	compatible	with	Microsoft®	SQL	Server™

version	7.0.	For	more	information	about	an	extended	version	of	this	object,	see
Transformation2	Object.

See	Also

Adding	DTS	Transformations

Transformations	Collection

DTS	Programming

Transformation2	Object
The	generic	Transformation2	object	contains	information	about	the	class-
specific	transformation	object	and	the	source	and	destination	columns	it
manipulates.

Extended	Properties

TransformPhases	Property

Remarks
The	Transformation2	object	extends	the	functionality	of	the	Transformation
object	and	inherits	the	properties	and	methods	of	that	object.	In	addition,	the
TransformPhases	property	specifies	which	transform	phases	this	transformation
supports.

The	Transformation2	object	supports	multiple	transform	phases,	as	shown	in
this	table.

Phase Description
PreSourceData Occurs	before	first	row	is	fetched	from	source

connection.
Transform Occurs	after	each	source	row	is	fetched,	before	the

destination	row	is	written.

OnTransformFailureOccurs	after	a	failure	in	the	Transform	phase,
indicated	by	return	of	DTSTransformStat_Error	or
DTSTransformStat_ExceptionRow.	Typically
caused	by	conversion	errors.

OnInsertSuccess Occurs	after	each	data	row	is	written	successfully	to
the	destination	connection.

OnInsertFailure Occurs	after	each	attempt	to	write	a	data	row	to	the
destination	connection	failed	(for	example,	by
attempting	to	write	a	duplicate	value	to	a	primary	key
field,	or	a	NULL	to	a	NOT	NULL	field).

OnBatchComplete Occurs	in	DataPumpTask2	when	using	the	FastLoad
option	after	each	batch	is	written,	successfully	or
unsuccessfully.

PostSourceData Occurs	after	the	last	row	is	written	to	the	destination
connection.

OnPumpComplete Occurs	at	the	end	of	the	task's	execution.

The	Transformation	object	only	supports	the	Transform	phase.

Only	the	DTSTransformScriptProperties2	object	and	custom	transformations
can	support	phases	other	than	the	Transform	phase.

For	more	information	about	when	to	use	the	Transformation	object	instead	of
the	Transformation2	object,	see	Extended	DTS	Objects.

See	Also

Adding	DTS	Transformations

DTSTransformScriptProperties2	Object

Transformation	Object

Transformations	Collection

DTS	Programming

TransformationInfo	Object
The	TransformationInfo	object	provides	information	about	a	Data
Transformation	Services	(DTS)	transformation	class	that	is	registered	on	the
computer	system.

Properties

ClassID	Property Name	Property
Description	Property Parent	Property
ImplementationFileName	Property Properties	Collection
ImplementationFileVersionString
Property

	

Remarks
The	registered	transformation	classes	include	those	provided	with	Microsoft®
SQL	Server™	2000	and	custom	transformations	provided	by	other	vendors	and
implemented	by	users.

Access	the	TransformationInfo	objects	by	creating	the	DTS	Application	object
and	iterating	through	the	TransformationInfos	collection.

See	Also

Application	Object

Retrieving	DTS	System,	Package	and	Log	Data

TransformationInfos	Collection

DTS	Programming

TransformationSet	Object
The	TransformationSet	object	defines	the	transformations	to	be	performed	on
the	columns	of	a	component	rowset	in	a	hierarchical	rowset	by	the	Parallel	Data
Pump	Task	object.

Collections

Lookups	Collection Transformations	Collection
Properties	Collection 	

Properties

DeleteQuery	Property InsertQueryColumns	Property
DeleteQueryColumns	Property LastRow	Property
Description	Property MaximumErrorCount	Property
DestinationColumnDefinitions
Property

Name	Property

ExceptionFileColumnDelimiter
Property

Parent	Property

ExceptionFileName	Property ProgressRowCount	Property
ExceptionFileOptions	Property RowsComplete	Property
ExceptionFileRowDelimiter	Property RowsInError	Property
ExceptionFileTextQualifier	Property UpdateQuery	Property
FetchBufferSize	Property UpdateQueryColumns	Property
FirstRow	Property UserQuery	Property
InsertQuery	Property 	

Remarks
The	TransformationSet	object	includes	a	Transformations	collection	and
contains	all	the	information	necessary	to	copy	and	transform	a	component
rowset,	such	as	data	driven	queries	and	their	parameter	collections,	row	and	error
counts,	and	exception	file	information.

The	ordinal	position	of	the	TransformationSet	object	in	the
TransformationSets	collection	determines	the	component	rowset	to	which	the
object	is	mapped.	For	more	information	about	the	mapping	process,	see
TransformationSets	Collection.

See	Also

ParallelDataPumpTask	Object

DTS	Programming

Collections
This	section	describes	the	collections	of	the	Microsoft®	SQL	Server™	2000
Data	Transformation	Services	(DTS)	object	model.	Collections	contain	groups	of
related	DTS	objects.

Topic Description
Columns	Collection Contains	descriptions	of	meta	data

for	columns	in	a	data	source.
Connections	Collection Contains	information	about

connections	to	OLE	DB	service
providers.

DTSMQMessages	Collection Defines	the	messages	to	be	sent	by	a
DTSMessageQueueTask	object.

DynamicPropertiesTaskAssignments
Collection

Defines	the	properties	to	be	changed
by	a	DynamicPropertiesTask
object.

GlobalVariables	Collection Contains	information	about	data	to
be	shared	across	DTS	steps.

Lookups	Collection Defines	query	strings	that	allow	data
retrieval	from	other	than	the	row
being	transformed.

OLEDBProperties	Collection Contains	properties	for	an	OLE	DB
service	provider.

OLEDBProviderInfos	Collection Provides	information	about	available
OLE	DB	service	providers.

PackageInfos	Collection Provides	information	about	packages
stored	in	SQL	Server	2000	Meta
Data	Services	or	SQL	Server	storage.

PackageLineages	Collection Provides	the	contents	of	package
lineage	records	from	Meta	Data
Services.

PackageLogRecords	Collection Provides	the	contents	of	package	log
records	from	an	instance	of	SQL

Server.
PrecedenceConstraints	Collection Contains	conditions	that	must	occur

before	a	step	can	execute.
Properties	Collection Contains	a	collection	of	properties

for	an	object.
SavedPackageInfos	Collection Contains	information	about	packages

saved	in	files.
ScriptingLanguageInfos	Collection Provides	information	about

Microsoft	ActiveX®	scripting
languages	available	on	the	system.

StepLineages	Collection Provides	the	contents	of	step	lineage
records	from	Meta	Data	Services.

StepLogRecords	Collection Provides	the	contents	of	step	log
records	from	an	instance	of	SQL
Server.

Steps	Collection Contains	information	about	the	flow
and	execution	of	DTS	tasks.

TaskInfos	Collection Provides	information	about	the	tasks
available	on	the	system.

TaskLogRecords	Collection Provides	the	contents	of	task	log
records	from	an	instance	of	SQL
Server.

Tasks	Collection Contains	information	about	the	tasks
in	a	DTS	package.

TransformationInfos	Collection Provides	information	about	the	DTS
transformations	available	on	the
system.

Transformations	Collection Defines	the	transformations	used	by
a	task.

TransformationSets	Collection Defines	the	sets	of	transformations
used	to	process	components	of	a
hierarchical	rowset.

DTS	Programming

Columns	Collection
A	Columns	collection	is	a	group	of	Column	objects	containing	a	description	of
all	available	meta	data	about	a	column	in	a	data	source.	This	includes	name,
description,	data	type,	precision,	scale,	nullability,	and	numeric	base.

Properties

Count	Property Parent	Property

Methods

Add	Method Item	Method
AddColumn	Method New	(Columns)	Method
Insert	Method 	

Remarks
Columns	collections	are	referenced	by	the	properties	of	the	objects	indicated	in
the	table.

Property Object
DestinationColumns	Property
SourceColumns	Property

Transformation2

DeleteQueryColumns	Property
InsertQueryColumns	Property
UpdateQueryColumns	Property
UserQueryColumns	Property

DataDrivenQueryTask2
TransformationSet

DestinationColumnDefinitions
Property

DataDrivenQueryTask2
DataPumpTask2
TransformationSet

See	Also

Adding	DTS	Column	Objects

Column	Object

DataDrivenQueryTask2	Object

DataPumpTask2	Object

Transformation2	Object

TransformationSet	Object

DTS	Programming

Connections	Collection
The	Connections	collection	is	a	group	of	Connection	objects	containing
information	about	connections	to	OLE	DB	service	providers.	This	collection
allows	connection	pooling	and	reuse	across	steps	and	tasks	in	a	DTS	package.

Applies	To

Package	Object Package2	Object

Properties

Count	Property Parent	Property

Methods

Add	Method Item	Method
BeginAcquireMultipleConnections
Method

New	(ID)	Method

EndAcquireMultipleConnections
Method

NewDataLink	Method

Insert	Method 	

Remarks
When	implementing	a	custom	task	that	must	acquire	more	than	one	connection,
do	the	following	to	avoid	deadlocks:

1.	 Call	BeginAcquireMultipleConnections.

2.	 For	each	connection	to	be	acquired:

Verify	that	connection.InUse	is	FALSE.

Call	connection.AcquireConnection.

3.	 Call	EndAcquireMultipleConnections.

Prototype	(C/C++)

HRESULT	GetConnections(IDTSConnections	**pRetVal);

See	Also

Connection	Object

Creating	DTS	Package	Objects	and	Connections

DTS	Programming

DTSMQMessages	Collection
The	DTSMQMessages	collection	contains	the	DTSMQMessage	objects	that
define	the	messages	to	be	sent	by	a	DTSMessageQueueTask	object.

Applies	To

DTSMessageQueueTask	Object

Properties

Count	Property

Methods

Add	Method New	Method
Item	Method 	

Remarks
The	Messages	method	of	a	DTSMessageQueueTask	object	is	used	to	get	a
reference	to	the	DTSMQMessages	collection.

See	Also

DTSMQMessage	Object

Messages	Method

DTS	Programming

DynamicPropertiesTaskAssignments	Collection
The	DynamicPropertiesTaskAssignments	collection	contains	the
DynamicPropertiesTaskAssignment	objects	that	define	the	source	of	the	new
value	and	the	properties	to	be	changed	by	a	DynamicPropertiesTask	object.

Applies	To

DynamicPropertiesTask	Object

Properties

Count	Property

Methods

Add	Method New	Method
Item	Method 	

Remarks
The	Assignments	property	of	a	DynamicPropertiesTask	object	is	used	to	get	a
reference	to	the	DynamicPropertiesTaskAssignments	collection.

See	Also

Assignments	Property

DynamicPropertiesTaskAssignment	Object

DTS	Programming

GlobalVariables	Collection
The	GlobalVariables	collection	is	a	group	of	GlobalVariable	objects	containing
information	about	variants	that	allow	data	to	be	shared	across	steps	and
Microsoft®	ActiveX®	scripts.

Applies	To

ExecutePackageTask	Object Package2	Object
Package	Object 	

Properties

Count	Property Parent	Property

Methods

Add	Method Item	Method
AddGlobalVariable	Method New	(Name)	Method
Insert	Method 	

Remarks
The	GlobalVariables	collection	is	dynamic;	values	may	be	added	to	the
collection	as	the	package	executes.	If	the	package	ExplicitGlobalVariables
property	is	not	set,	a	global	variable	is	created	on	first	reference	by	an	ActiveX
script,	if	it	does	not	already	exist.

The	GlobalVariables	collection	of	the	ExecutePackageTask	object	is	exported

to	the	target	package,	but	it	is	not	part	of	the	parent	package's	GlobalVariables
collection.	To	export	global	variables	from	the	parent	package	to	the	target
package,	use	the	InputGlobalVariableNames	property	of	the
ExecutePackageTask	object.

Reference	the	GlobalVariables	collection	from	within	ActiveX	scripts	with	the
name	DTSGlobalVariables.

Prototype	(C/C++)
HRESULT	GetGlobalVariables(IDTSGlobalVariables	**pRetVal);

See	Also

Adding	DTS	Lookups	and	Global	Variables

ExplicitGlobalVariables	Property

GlobalVariable	Object

InputGlobalVariableNames	Property

Package2	Object

DTS	Programming

Lookups	Collection
The	Lookups	collection	is	a	group	of	Lookup	object	definitions.	A	Lookup
object	defines	a	named,	parameterized	query	string	that	allows	a	transformation
to	retrieve	data	from	a	location	other	than	the	row	being	transformed.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Properties

Count	Property Parent	Property

Methods

Add	Method Item	Method
AddLookup	Method New	(Name)	Method
Insert	Method 	

Remarks
In	a	Microsoft®	ActiveX®	script,	the	lookup	should	be	referenced	with	the
Execute	method	of	an	element	of	the	DTSLookups	collection.	If	the	lookup

rowset	has	more	than	one	column,	the	Execute	method	returns	a	Variant	array.
The	script	may	need	to	iterate	through	the	array	to	use	multiple	values.

Prototype	(C/C++)
HRESULT	GetLookups(IDTSLookups	**pRetVal);

See	Also

Adding	DTS	Lookups	and	Global	Variables

DTSDataPumpLookups	Collection

Execute	Method	(Script)

Lookup	Object

DTS	Programming

OLEDBProperties	Collection
The	OLEDBProperties	collection	is	a	group	of	OLEDBProperty	objects
containing	information	about	an	OLE	DB	service	provider.

Properties

Count	Property Parent	Property

Methods
Item	Method

See	Also

CommandProperties	Property

ConnectionProperties	Property

Creating	DTS	Package	Objects	and	Connections

DestinationCommandProperties	Property

OLEDBProperty	Object

SourceCommandProperties	Property

DTS	Programming

OLEDBProviderInfos	Collection
The	OLEDBProviderInfos	collection	contains	OLEDBProviderInfo	objects
that	provide	information	about	each	OLE	DB	provider	available	on	the	computer
system.

Applies	To

Application	Object

Properties

Count	Property UseCache	Property
Parent	Property 	

Methods

Item	Method Refresh	Method

Remarks
Obtain	a	reference	to	the	OLEDBProviderInfos	collection	from	the
Application	object.

You	can	iterate	through	the	objects	of	the	OLEDBProviderInfos	collection
using	the	Item	method	and	Count	property.	However,	it	is	faster	to	use	For
Each	...	Next	in	Microsoft®	Visual	Basic®.

DTS	maintains	a	cache,	in	the	operating	system	registry,	which	holds	the	OLE
DB	provider	information.	If	the	UseCache	property	is	TRUE,	the	cache	is
scanned,	rather	than	all	registered	classes,	when	iterating	through	the

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

OLEDBProviderInfos	collection.	Use	the	Refresh	method	to	update	the	cache
from	the	registered	classes	section	of	the	system	registry.

See	Also

Application	Object

Item	Method

OLEDBProviderInfo	Object

Refresh	Method

Retrieving	DTS	System,	Package	and	Log	Data

UseCache	Property

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

DTS	Programming

PackageInfos	Collection
The	PackageInfos	collection	contains	PackageInfo	objects	that	provide
information	about	a	DTS	package	stored	in	Microsoft®	SQL	Server™	2000
Meta	Data	Services	or	SQL	Server	storage.

Properties

EOF	Property

Methods
Next	Method

Remarks
Use	the	EnumPackageInfos	method	of	the	PackageRepository	or
PackageSQLServer	objects	to	return	the	PackageInfos	collection.

Iterate	through	the	objects	of	the	PackageInfos	collection	by	checking	the	EOF
property	after	calling	the	Next	method.	If	EOF	is	TRUE,	Next	will	have
returned	Nothing	and	all	the	elements	will	have	been	fetched.	You	can	also	use
For	Each	...	Next	in	Microsoft	Visual	Basic®.

See	Also

EnumPackageInfos	Method

PackageInfo	Object

PackageRepository	Object

PackageSQLServer	Object

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

PackageLineages	Collection
The	PackageLineages	collection	contains	PackageLineage	objects	that	provide
the	contents	of	package	lineage	records	from	Microsoft®	SQL	Server™	2000
Meta	Data	Services.	The	records	contain	information	about	a	DTS	package
execution	hosted	by	Meta	Data	Services.

Properties

EOF	Property

Methods
Next	Method

Remarks
A	package	lineage	record	is	written	each	time	a	package	stored	in	Meta	Data
Services	is	executed,	if	the	package	LineageOptions	property	specifies	this	to
be	done.

Use	the	EnumPackageLineages	method	of	the	PackageRepository	object	to
return	the	PackageLineages	collection.

Iterate	through	the	objects	of	the	PackageLineages	collection	by	checking	the
EOF	property	after	calling	the	Next	method.	If	EOF	is	TRUE,	Next	will	have
returned	Nothing	and	all	the	elements	will	have	been	fetched.	You	can	also	use
For	Each	...	Next	in	Microsoft	Visual	Basic®.

See	Also

EnumPackageLineages	Method

LineageOptions	Property

PackageLineage	Object

PackageRepository	Object

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

PackageLogRecords	Collection
The	PackageLogRecords	collection	contains	PackageLogRecord	objects	that
provide	the	contents	of	package	log	records	from	an	instance	of	Microsoft®	SQL
Server™.	The	log	records	contain	information	about	a	DTS	package	execution.

Properties

EOF	Property

Methods
Next	Method

Remarks
A	package	log	record	is	written	to	the	msdb	database	on	the	server	specified	by
the	package	LogServerName	property	each	time	a	package	is	executed,	if	the
package	LogToSQLServer	property	has	been	set.

Use	the	EnumPackageLogRecords	method	of	the	PackageSQLServer	object
to	return	the	PackageLogRecords	collection.

Iterate	through	the	objects	of	the	PackageLogRecords	collection	by	checking
the	EOF	property	after	calling	the	Next	method.	If	EOF	is	TRUE,	Next	will
have	returned	Nothing	and	all	the	elements	will	have	been	fetched.	You	can	also
use	For	Each	...	Next	in	Microsoft	Visual	Basic®.

See	Also

EnumPackageLogRecords	Method

LogServerName	Property

LogToSQLServer	Property

PackageLogRecord	Object

PackageSQLServer	Object

Retrieving	DTS	System,	Package	and	Log	Data

DTS	Programming

PrecedenceConstraints	Collection
The	PrecedenceConstraints	collection	is	a	group	of	PrecedenceConstraint
objects	containing	information	about	conditions	that	must	occur	before	a	DTS
step	can	be	released	for	execution.

Applies	To

Step	Object Step2	Object

Properties

Count	Property Parent	Property

Methods

Add	Method Item	Method
AddConstraint	Method New	(Name)	Method
Insert	Method 	

See	Also

Creating	DTS	Package	Workflow	and	Tasks

PrecedenceConstraint	Object

DTS	Programming

Properties	Collection
The	Properties	collection	contains	Property	objects	exposing	the	attributes	of	a
DTS	object	property.

Properties

Count	Property Parent	Property

Methods
Item	Method

Remarks
Development	environments,	such	as	Microsoft®	Visual	Basic®,	typically
provide	syntax	completion	and	other	development	aids.	Because	the	Property
object	exposes	the	attributes	of	object	properties,	it	supports	such	automated
developer	assistance.

When	using	the	Item	method,	the	Properties	collection	supports	member
identification	using	either	name	or	ordinal	reference	syntax.	For	example:

Set	oProperty	=	oCustomTask.Properties("Name")

-or-

Set	oProperty	=	oCustomTask.Properties(1)

Note		The	Properties	collection	is	implemented	for	automation	controllers.	DTS
applications	written	in	Microsoft	Visual	C++®	and	C	have	no	direct	access	to
the	Property	object.

See	Also

Property	Object

TransformServerProperties	Property

DTS	Programming

SavedPackageInfos	Collection
The	SavedPackageInfos	collection	is	a	group	of	SavedPackageInfo	objects
containing	information	about	DTS	packages	saved	in	files.

Properties

Count	Property

Method
Item	Method

See	Also

Retrieving	DTS	System,	Package	and	Log	Data

SavedPackageInfo	Object

DTS	Programming

ScriptingLanguageInfos	Collection
The	ScriptingLanguageInfos	collection	contains	ScriptingLanguageInfo
objects	that	provide	information	about	each	Microsoft®	ActiveX®	scripting
language	that	is	available	on	the	system.	You	can	use	these	scripting	languages
in	ActiveX	Script	tasks,	ActiveX	Script	transformations,	and	step	scripts.

Properties

Count	Property UseCache	Property
Parent	Property 	

Methods

Item	Method Refresh	Method

Remarks
Obtain	a	reference	to	the	ScriptingLanguageInfos	collection	from	the
Application	object.

You	can	iterate	through	the	objects	of	the	ScriptingLanguageInfos	collection
using	the	Item	method	and	Count	property.	However,	it	is	faster	to	use	For
Each	...	Next	in	Microsoft	Visual	Basic®.

DTS	maintains	a	cache,	in	the	operating	system	registry,	which	holds	the
scripting	language	information.	If	the	UseCache	property	is	TRUE	the	cache	is
scanned,	rather	than	all	registered	classes,	when	iterating	through	the
ScriptingLanguageInfos	collection.	Use	the	Refresh	method	to	update	the
cache	from	the	registered	classes	section	of	the	system	registry.

JavaScript:hhobj_1.Click()

See	Also

Application	Object

Item	Method

Refresh	Method

Retrieving	DTS	System,	Package	and	Log	Data

ScriptingLanguageInfo	Object

UseCache	Property

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

DTS	Programming

StepLineages	Collection
The	StepLineages	collection	contains	StepLineage	objects	that	provide	the
contents	of	step	lineage	records	from	Microsoft®	SQL	Server™	2000	Meta	Data
Services.	These	records	contain	information	about	the	execution	of	a	step	in	a
DTS	package	hosted	by	Meta	Data	Services.

Properties

EOF	Property

Methods
Next	Method

Remarks
A	step	lineage	record	is	written	each	time	a	step	of	a	package	stored	in	Meta
Data	Services	is	executed,	if	the	package	LineageOptions	property	specifies	this
to	be	done.

Use	the	EnumStepLineages	method	of	the	PackageRepository	object	to	return
the	StepLineages	collection.

Iterate	through	the	objects	of	the	StepLineages	collection	by	checking	the	EOF
property	after	calling	the	Next	method.	If	EOF	is	TRUE,	Next	will	have
returned	Nothing	and	all	the	elements	will	have	been	fetched.	You	can	also	use
For	Each	...	Next	in	Microsoft	Visual	Basic®.

See	Also

EnumStepLineages	Method

LineageOptions	Property

PackageRepository	Object

Retrieving	DTS	System,	Package	and	Log	Data

StepLineage	Object

DTS	Programming

StepLogRecords	Collection
The	StepLogRecords	collection	contains	StepLogRecord	objects	that	provide
the	contents	of	step	log	records	from	an	instance	of	Microsoft®	SQL	Server™.
The	log	records	contain	information	about	the	execution	of	a	step	in	a	DTS
package.

Properties

EOF	Property

Methods
Next	Method

Remarks
A	step	log	record	is	written	to	the	msdb	database	on	the	server	specified	by	the
package	LogServerName	property	each	time	a	step	in	a	package	is	executed,	if
the	package	LogToSQLServer	property	has	been	set.

Use	the	EnumStepLogRecords	method	of	the	PackageSQLServer	object	to
return	the	StepLogRecords	collection.

Iterate	through	the	objects	of	the	StepLogRecords	collection	by	checking	the
EOF	property	after	calling	the	Next	method.	If	EOF	is	TRUE,	Next	will	have
returned	Nothing	and	all	the	elements	will	have	been	fetched.	You	can	also	use
For	Each	...	Next	in	Microsoft	Visual	Basic®.

See	Also

EnumStepLogRecords	Method

LogServerName	Property

LogToSQLServer	Property

PackageSQLServer	Object

Retrieving	DTS	System,	Package	and	Log	Data

StepLogRecord	Object

DTS	Programming

Steps	Collection
The	Steps	collection	is	a	group	of	Step2	objects	that	contain	information	about
the	flow	and	execution	of	tasks	within	a	DTS	package.

Applies	To

Package	Object Package2	Object

Properties

Count	Property Parent	Property

Methods

Add	Method New	Method
Insert	Method Remove	Method
Item	Method 	

Remarks
The	Step	objects	control	the	flow	and	execution	of	tasks	within	the	package.
Step	execution	sequence	is	determined	by	their	precedence	constraints.

Prototype	(C/C++)
HRESULT	GetSteps(IDTSSteps	**pRetVal);

See	Also

Creating	DTS	Package	Workflow	and	Tasks

PrecedenceConstraint	Object

Step2	Object

DTS	Programming

TaskInfos	Collection
The	TaskInfos	collection	contains	TaskInfo	objects	that	provide	information
about	each	DTS	task	available	on	the	system.	These	include	the	tasks	supplied
by	Microsoft®	SQL	Server™	2000	and	custom	tasks	implemented	by	users	or
other	vendors.

Properties

Count	Property UseCache	Property
Parent	Property 	

Methods

Item	Method Refresh	Method

Remarks
Obtain	a	reference	to	the	TaskInfos	collection	from	the	Application	object.	For
more	information	about	the	tasks	supplied	with	SQL	Server	2000,	see	Task
Objects.

You	can	iterate	through	the	objects	of	the	TaskInfos	collection	using	the	Item
method	and	Count	property.	However,	it	is	faster	to	use	For	Each	...	Next	in
Microsoft	Visual	Basic®.

DTS	maintains	a	cache,	in	the	operating	system	registry,	that	holds	the	task
information.	If	the	UseCache	property	is	TRUE,	the	cache,	rather	than	all
registered	classes,	is	scanned	when	iterating	through	the	XXXXs	collection.	Use
the	Refresh	method	to	update	the	cache	from	the	registered	classes	section	of	the
system	registry.

JavaScript:hhobj_1.Click()

See	Also

Application	Object

Item	Method

Refresh	Method

Retrieving	DTS	System,	Package	and	Log	Data

TaskInfo	Object

UseCache	Property

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

DTS	Programming

TaskLogRecords	Collection
The	TaskLogRecords	collection	contains	TaskLogRecord	objects	that	provide
the	contents	of	task	log	records	from	an	instance	of	Microsoft®	SQL	Server™.
The	log	record	contains	information	about	the	execution	of	a	task	that	has	been
implemented	in	a	Data	Transformation	Services	(DTS)	package	to	write	task	log
records.

Properties

EOF	Property

Methods
Next	Method

Remarks
Task	log	records	are	not	automatically	written	by	the	task	classes	supplied	with
SQL	Server	2000,	but	the	PackageLog	interface	is	available	so	that	a	custom
task	or	the	script	of	an	ActiveScriptTask	object	can	write	them.	They	are	written
to	the	msdb	database	on	the	server	specified	by	the	package	LogServerName
property	each	time	a	task	in	a	package	that	has	been	implemented	to	write	them
is	executed,	if	the	package	LogToSQLServer	property	has	been	set.

Use	the	EnumTaskLogRecords	method	of	the	PackageSQLServer	object	to
return	the	TaskLogRecords	collection.

Iterate	through	the	objects	of	the	TaskLogRecords	collection	by	checking	the
EOF	property	after	calling	the	Next	method.	If	EOF	is	TRUE,	Next	will	have
returned	Nothing	and	all	the	elements	will	have	been	fetched.	You	can	also	use
For	Each	...	Next	in	Microsoft	Visual	Basic®.

See	Also

ActiveScriptTask	Object

EnumTaskLogRecords	Method

LogServerName	Property

LogToSQLServer	Property

PackageSQLServer	Object

Retrieving	DTS	System,	Package	and	Log	Data

TaskLogRecord	Object

DTS	Programming

Tasks	Collection
The	Tasks	collection	is	a	group	of	Task	objects	that	contain	information	about
units	of	work	to	be	performed	as	part	of	the	transformation	process.	The	Tasks
collection	contains	all	of	the	defined	tasks	in	a	DTS	package.

Applies	To

Package	Object Package2	Object

Properties

Count	Property Parent	Property

Methods

Add	Method New	(ID)	Method
Insert	Method Remove	Method
Item	Method 	

Remarks
Tasks	specifies	a	Tasks	collection.

Prototype	(C/C++)
HRESULT	GetTasks(IDTSTasks	**pRetVal);

See	Also

Creating	DTS	Package	Workflow	and	Tasks

Task	Object

DTS	Programming

TransformationInfos	Collection
The	TransformationInfos	collection	contains	TransformationInfo	objects	that
provide	information	about	each	DTS	transformation	available	on	the	system.
These	include	the	transformations	supplied	by	Microsoft®	SQL	Server™	2000
and	custom	transformations	implemented	by	users	or	other	vendors.

Properties

Count	Property UseCache	Property
Parent	Property 	

Methods

Item	Method Refresh	Method

Remarks
Obtain	a	reference	to	the	TransformationInfos	collection	from	the	Application
object.	For	more	information	about	the	transformations	supplied	with	SQL
Server	2000,	see	Transformation	Objects.

You	can	iterate	through	the	objects	of	the	TransformationInfos	collection	using
the	Item	method	and	Count	property.	However,	it	is	faster	to	use	For	Each	...
Next	in	Microsoft	Visual	Basic®.

DTS	maintains	a	cache,	in	the	operating	system	registry,	that	holds	the
transformation	information.	If	the	UseCache	property	is	TRUE	the	cache	is
scanned,	rather	than	all	registered	classes,	when	iterating	through	the
TransformationInfos	collection.	Use	the	Refresh	method	to	update	the	cache
from	the	registered	classes	section	of	the	system	registry.

JavaScript:hhobj_1.Click()

See	Also

Application	Object

Item	Method

Refresh	Method

Retrieving	DTS	System,	Package	and	Log	Data

TransformationInfo	Object

UseCache	Property

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

DTS	Programming

Transformations	Collection
The	Transformations	collection	is	a	group	of	Transformation2	objects	that
contain	information	about	the	transformation,	and	about	source	and	destination
columns.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Properties

Count	Property Parent	Property

Methods

Add	Method New	(ID)	Method
Insert	Method Remove	Method
Item	Method 	

Remarks
Transformations	specifies	the	collection	of	transformations	that	transfer	data
from	the	data	source	to	the	data	destination.

Prototype	(C/C++)
HRESULT	GetTransformations(IDTSTransformations	**pRetVal);

See	Also

Adding	DTS	Transformations

Transformation2	Object

DTS	Programming

TransformationSets	Collection
The	TransformationSets	collection	contains	the	TransformationSet	objects
that	define	the	transformations	to	be	performed	on	the	columns	of	a	component
rowset	in	a	hierarchical	rowset	by	the	Parallel	Data	Pump	Task	object.

Applies	To

ParallelDataPumpTask	Object

Properties

Count	Property Parent	Property

Methods

Add	Method New	(Name)	Method
Insert	Method Remove	Method
Item	Method 	

Remarks
The	New	method	creates	a	new	TransformationSet	object.	The	Add	method
adds	a	TransformationSet	object	to	the	collection	at	the	last	ordinal	position.
The	Insert	method	adds	a	TransformationSet	object	to	the	collection	at	a
specified	ordinal	position,	or	just	ahead	of	a	referenced	object	in	the	collection.

The	ordinal	position	of	the	TransformationSet	objects	in	the	collection
determines	the	order	in	which	they	are	mapped	to	the	component	rowsets	of	the
source	and	destination	hierarchical	rowsets.

Hierarchical	rowsets	are	scanned	in	column-ordinal	order.	When	a	child	rowset
is	encountered,	it	is	mapped	to	the	next	TransformationSet	object,	and	its
columns	are	scanned	before	the	remaining	columns	of	the	parent	rowset	are
scanned.	This	process	is	continued	recursively	until	the	entire	hierarchical
rowset	is	scanned.

See	Also

TransformationSet	Object

DTS	Programming

Properties
This	section	defines	the	properties	of	the	Microsoft®	SQL	Server™	2000	Data
Transformation	Services	(DTS)	objects	and	collections.	Use	these	properties	to
retrieve	and	set	the	attributes	of	the	DTS	components.

DTS	Programming

ActiveXScript	Property
The	ActiveXScript	property	specifies	a	Microsoft®	ActiveX®	script	text	string
for	an	object	to	execute.

Applies	To

ActiveScriptTask	Object Step2	Object
Step	Object 	

Syntax
object.ActiveXScript	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value ActiveX	script	for	an	object	to	execute

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetActiveXScript(BSTR	*pRetVal);

HRESULT	SetActiveXScript(BSTR	NewValue);

Remarks
ActiveX	scripts	also	are	used	by	the	DTSTransformScriptProperties2	and

DataPumpTransformScript	objects.

See	Also

FunctionName	Property

ScriptLanguage	Property

DTS	Programming

AddGlobalVariables	Property
The	AddGlobalVariables	property	specifies	whether	global	variables	can	be
referenced	from	the	current	Microsoft®	ActiveX®	script.

Applies	To

ActiveScriptTask	Object Step2	Object
Step	Object 	

Syntax
object.AddGlobalVariables	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	global	variables	can	be	referenced

from	the	current	ActiveX	script

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAddGlobalVariables(VARIANT_BOOL	*pRetVal);

HRESULT	SetAddGlobalVariables(VARIANT_BOOL	NewValue);

Remarks

The	default	is	TRUE.	You	access	the	GlobalVariables	collection	from	within
ActiveX	scripts	using	the	name	DTSGlobalVariables.

See	Also

GlobalVariables	Collection

DTS	Programming

AllowIdentityInserts	Property
The	AllowIdentityInserts	property	specifies	whether	the	SET
IDENTITY_INSERT	Transact-SQL	statement	is	set	to	ON	before	and	OFF	after
the	data	pump	execution.

Applies	To

DataPumpTask	Object DataPumpTask2	Object

Syntax

object.AllowIdentityInserts[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	SET	IDENTITY_INSERT	is	set	to

ON	during	data	pump	execution

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAllowIdentityInserts(VARIANT_BOOL	*pRetVal);

HRESULT	SetAllowIdentityInserts(VARIANT_BOOL	NewValue);

Remarks
AllowIdentityInserts	only	applies	to	Microsoft®	SQL	Server™.

See	Also

KeepIdentity	Property

DTS	Programming

AMSymbol	Property
The	AMSymbol	property	specifies	or	returns	the	string	indicating	the	time
format	before	12:00	noon	(for	example,	A.M.)	when	a	12-hour	time	format	is
specified.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.AMSymbol	[=	string]

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
string Suffix	string	that	indicates	a	time	format	before	12:00	noon	for	a

12-hour	time	format

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	AMSymbol(BSTR*	pRetVal);

HRESULT	AMSymbol(BSTR	pRetVal);

Remarks

The	default	value	is	the	English	"AM".

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("AMSymbol")	[=	string]

See	Also

InputFormat	Property

OutputFormat	Property

PMSymbol	Property

DTS	Programming

AppendIfFileExists	Property
The	AppendIfFileExists	property	specifies	or	returns	a	value	indicating	whether
data	written	to	a	destination	file	is	appended	to	or	is	written	over	data	that	was
present	when	the	file	was	opened.

Applies	To

DataPumpTransformWriteFile	Object

Syntax
object.AppendIfFileExists	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	DataPumpTransformWriteFile

object.
boolean If	TRUE,	data	is	appended	to	data	that	already	exists	in	the	file.	If

FALSE,	existing	data	is	overwritten.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	AppendIfFileExists(VARIANT_BOOL*	pRetVal);

HRESULT	AppendIfFileExists(VARIANT_BOOL	pRetVal);

Remarks

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops"AppendIfFileExists")	[=	boolean]

See	Also

ErrorIfFileExists	Property

ErrorIfFileNotFound	Property

DTS	Programming

Assignments	Property
The	Assignments	property	returns	a	reference	to	the
DynamicPropertiesTaskAssignments	collection.

Applies	To

DynamicPropertiesTask

Syntax
[Set	collection	=]	object.Assignments

Part Description
object Expression	that	evaluates	to	a	DynamicPropertiesTask	object
collection An	object	variable	compatible	with	type

DTSCustTasks.DynamicPropertiesTaskAssignments

Data	Type
DynamicPropertiesTaskAssignments	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	Assignments(DynamicPropertiesTaskAssignments**	pVal);

See	Also

DynamicPropertiesTaskAssignment	Object

DTS	Programming

AutoCommitTransaction	Property
The	AutoCommitTransaction	property	specifies	whether	an	active	transaction
is	committed	or	rolled	back	on	completion	of	Package.Execute.

Applies	To

Package	Object Package2	Object

Syntax
object.AutoCommitTransaction[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Whether	an	active	transaction	is	committed	or	rolled	back

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetAutoCommitTransaction(VARIANT_BOOL	*pRetVal);

HRESULT	SetAutoCommitTransaction(VARIANT_BOOL	NewValue);

See	Also

TransactionIsolationLevel	Property

UseTransaction	Property

DTS	Programming

BatchCompleteFunctionEntry	Property
The	BatchCompleteFunctionEntry	property	specifies	or	returns	the	name	of
the	script	function	that	is	to	be	called	for	the	OnBatchComplete	transformation
phase.

Applies	To

DTSTransformScriptProperties2	Object

Syntax
object.BatchCompleteFunctionEntry	[=	name]

Part Description
object Expression	that	evaluates	to	a	DTSTransformScriptProperties2

object
name Name	of	the	script	function	that	supports	the	OnBatchComplete

phase

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	BatchCompleteFunctionEntry(BSTR*	pRetVal);

HRESULT	BatchCompleteFunctionEntry(BSTR	pRetVal);

Remarks

The	OnBatchComplete	phase	is	available	only	in	the	DataPumpTask2	object,
not	in	the	DataDrivenQueryTask2	or	ParallelDataPumpTask	objects.	The
transform	is	called	on	success	or	failure	of	the	batch.

The	OnBatchComplete	script	function	has	no	access	to	the	columns	of	the
DTSSource	and	DTSDestination	collections.	The	only	valid	return	values	are
DTSTransformStat_OK	and	DTSTransformStat_AbortPump.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("BatchCompleteFunctionEntry")	[=	string]

See	Also

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DTSTransformStatus

FunctionEntry	Property

InsertFailureFunctionEntry	Property

InsertSuccessFunctionEntry	Property

ParallelDataPumpTask	Object

PostSourceDataFunctionEntry	Property

PreSourceDataFunctionEntry	Property

PumpCompleteFunctionEntry	Property

TransformFailureFunctionEntry	Property

DTS	Programming

BatchSize	Property
The	BatchSize	property	specifies	the	number	of	rows	to	load	in	a	batch.

Applies	To

BulkInsertTask	Object

Syntax
object.BatchSize	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Number	of	rows	to	load

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetBatchSize(LONG	*pRetVal);

HRESULT	SetBatchSize(LONG	NewValue);

Remarks
The	default	is	0,	which	specifies	that	all	rows	are	to	be	loaded	as	a	single
transaction.

DTS	Programming

Catalog	Property
The	Catalog	property	specifies	the	name	of	the	catalog	in	which	the	connection
is	initially	established.

Applies	To

Connection	Object Connection2	Object

Syntax
object.Catalog	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list.
value Name	of	a	catalog	(for	example,	a	database).

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCatalog(BSTR	*pRetVal);

HRESULT	SetCatalog(BSTR	NewValue);

Remarks
When	the	connection	uses	the	Microsoft®	OLE	DB	Provider	for	SQL	Server,	the
Catalog	property	is	a	database	name.

See	Also

DataSource	Property

UDLPath	Property

DTS	Programming

CCLine	Property
The	CCLine	property	specifies	e-mail	addresses	to	include	on	the	CC:	line.

Applies	To

SendMailTask	Object

Syntax
object.CCLine[=	value]

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
value E-mail	addresses	to	include	on	the	CC:	line

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCCLine(BSTR	*pRetVal);

HRESULT	SetCCLine(BSTR	NewValue);

Remarks
E-mail	addresses	must	be	separated	by	semicolons.

See	Also

FileAttachments	Property

MessageText	Property

Subject	Property

ToLine	Property

DTS	Programming

CharacterCount	Property
The	CharacterCount	property	specifies	or	returns	the	number	of	characters	in
the	substring	of	the	source	column	to	be	copied	by	custom	transformations.

Applies	To

DataPumpTransformMidString	Object

Syntax
object.CharacterCount	[=	value]

Part Description
object Expression	that	evaluates	to	a	DataPumpTransformMidString

object
value Number	of	characters	in	the	substring	to	be	copied

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	CharacterCount(long*	pRetVal);

HRESULT	CharacterCount(long	pRetVal);

Remarks
If	a	value	less	than	1	is	provided	for	CharacterCount,	a	zero-length	string	is

copied.	If	a	value	greater	than	the	number	of	characters	available	to	be	copied	is
provided,	the	entire	source	string	from	the	specified	CharacterStart	to	the	end
of	the	string	is	copied.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("CharacterCount")	[=	value]

See	Also

CharacterStart	Property

DTS	Programming

CharacterStart	Property
The	CharacterStart	property	specifies	or	returns	the	starting	position	of	the
substring	of	the	source	column	to	be	copied	by	custom	transformations.

Applies	To

DataPumpTransformMidString	Object

Syntax
object.CharacterStart	[=	value]

Part Description
object Expression	that	evaluates	to	a	DataPumpTransformMidString

object
value Position	of	the	starting	character	of	the	substring	to	be	copied

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	CharacterStart(long*	pRetVal);

HRESULT	CharacterStart(long	pRetVal);

Remarks
If	the	substring	starts	at	the	first	character	of	the	source	column,	the	property	has

the	value	of	1.	If	a	value	less	than	1	is	provided,	1	is	used.	If	a	value	greater	than
the	number	of	characters	in	the	source	string	is	provided,	a	zero-length	string	is
copied.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("CharacterStart")	[=	value]

See	Also

CharacterCount	Property

DTS	Programming

CheckConstraints	Property
The	CheckConstraints	property	specifies	whether	any	constraints	must	be
checked	while	data	is	loaded.

Applies	To

BulkInsertTask	Object

Syntax
object.CheckConstraints	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Boolean	that	specifies	whether	any	constraints	are	checked

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCheckConstraints(VARIANT_BOOL	*pRetVal);

HRESULT	SetCheckConstraints(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

DTS	Programming

ClassID	Property
The	ClassID	property	returns	the	class	ID	and	a	globally	unique	identifier
(GUID),	under	which	a	class	of	a	component	used	by	Data	Transformation
Services	(DTS)	is	registered	in	the	operating	system	registry.

Applies	To

OLEDBProviderInfo	Object TaskInfo	Object
ScriptingLanguageInfo	Object TransformationInfo	Object

Syntax
object.ClassID

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetClassID(BSTR*	pRetVal);

Remarks
The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	X	represents	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12
digits.

See	Also

ImplementationFileName	Property

ImplementationFileVersionString	Property

UseCache	Property

DTS	Programming

CloseConnection	Property
The	CloseConnection	property	specifies	whether	to	close	a	connection	on
completion	of	a	step.

Applies	To

Step	Object Step2	Object

Syntax
object.CloseConnection	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Whether	to	close	the	connection	on	completion

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCloseConnection(VARIANT_BOOL	*pRetVal);

HRESULT	SetCloseConnection(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

See	Also

Connection2	Object

DTS	Programming

Codepage	Property
The	Codepage	property	specifies	the	code	page	to	use	while	loading	data.

Applies	To

BulkInsertTask	Object

Syntax
object.Codepage	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Code	page	to	use

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCodepage(BSTR	*pRetVal);

HRESULT	SetCodepage(BSTR	NewValue);

Remarks
Use	one	of	these	values:

ACP

OEM	(default)

RAW

A	code	page	number	(for	example,	850)

DTS	Programming

ColumnID	Property
The	ColumnID	property	specifies	the	column	ID	of	a	source	or	destination
column.

Applies	To

Column	Object

Syntax
object.ColumnID	[=	value]

Part Description
object Expression	that	evaluates	to	a	Column	object
value Column	identifier

Data	Type
Variant

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetColumnID(VARIANT	*pRetVal);

HRESULT	SetColumnID(VARIANT	NewValue);

Remarks
The	ColumnID	property	is	typically	the	same	as	the	column	Name.	The	column
Ordinal	is	a	number	that	determines	the	position	of	the	column	in	the	column

order.

See	Also

Name	Property

Ordinal	Property

DTS	Programming

CommandProperties	Property
The	CommandProperties	property	returns	a	reference	to	an	OLEDBProperties
collection,	which	contains	an	OLEDBProperty	object	for	each	OLE	DB
command	property	for	the	connection.

Applies	To

ExecuteSQLTask	Object ExecuteSQLTask2	Object

Syntax
object.CommandProperties

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
OLEDBProperties	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCommandProperties(IDTSOleDBProperties	**pRetVal);

See	Also

Connection2	Object

OLEDBProperty	Object

DTS	Programming

CommandTimeout	Property
The	CommandTimeout	property	specifies	the	amount	of	time,	in	seconds,
before	the	command	is	presumed	to	have	failed.

Applies	To

ExecuteSQLTask	Object ExecuteSQLTask2	Object

Syntax
object.CommandTimeout	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Time,	in	seconds,	before	the	command	is	presumed	to	have	failed

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCommandTimeout(LONG	*pRetVal);

HRESULT	SetCommandTimeout(LONG	NewValue);

Remarks
A	value	of	0	(default)	indicates	no	time-out	period.

DTS	Programming

CommitSuccess	Property
The	CommitSuccess	property	specifies	whether	to	commit	a	step	if	it	completes
successfully.

Applies	To

Step	Object Step2	Object

Syntax
object.CommitSuccess	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value A	value	indicating	whether	to	commit	the	step

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCommitSuccess(VARIANT_BOOL	*pRetVal);

HRESULT	SetCommitSuccess(VARIANT_BOOL	NewValue);

See	Also

JoinTransactionIfPresent	Property

RollbackFailure	Property

DTS	Programming

Computer	Property
The	Computer	property	specifies	the	network	node	name	of	the	computer	on
which	a	Data	Transformation	Services	(DTS)	package	was	executed.	This
property	applies	only	to	packages	for	which	a	lineage	or	log	record	was	written

Applies	To

PackageLineage	Object PackageLogRecord	Object

Syntax
object.Computer

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetComputer(BSTR	*pRetVal);

See	Also

Operator	Property

DTS	Programming

Connected	Property
The	Connected	property	indicates	whether	a	connection	is	currently	active.

Applies	To

Connection	Object Connection2	Object

Syntax
object.Connected

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetConnected(VARIANT_BOOL	*pRetVal);

See	Also

AcquireConnection	Method

ConnectImmediate	Property

ReleaseConnection	Method

DTS	Programming

ConnectImmediate	Property
The	ConnectImmediate	property	specifies	whether	to	make	an	immediate
connection,	either	when	a	Data	Transformation	Services	(DTS)	package	starts
running	or	at	the	time	a	step	that	references	a	task	using	this	connection
executes.

Applies	To

Connection	Object Connection2	Object

Syntax
object.ConnectImmediate	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Value	indicating	whether	to	make	an	immediate	connection

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetConnectImmediate(VARIANT_BOOL	*pRetVal);

HRESULT	SetConnectImmediate(VARIANT_BOOL	NewValue);

Remarks

The	default	is	FALSE.

See	Also

Connected	Property

DTS	Programming

ConnectionID	Property
The	ConnectionID	property	specifies	the	ID	of	a	Connection	object	you	use
when	connecting	to	a	database	or	another	data	source.

Applies	To

BulkInsertTask	Object ExecuteSQLTask2	Object
ExecuteSQLTask	Object Lookup	Object

Syntax
object.ConnectionID	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value ID	of	the	Connection	object	you	want	to	use

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetConnectionID(LONG	*pRetVal);

HRESULT	SetConnectionID(LONG	NewValue);

See	Also

Connection2	Object

DTS	Programming

ConnectionProperties	Property
The	ConnectionProperties	property	returns	a	reference	to	an
OLEDBProperties	collection	used	to	establish	the	characteristics	of	a
connection.

Applies	To

Connection	Object Connection2	Object

Syntax
object.ConnectionProperties

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
OLEDBProperties	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetConnectionProperties(IDTSOleDBProperties	**pRetVal);

Remarks
These	properties	are	specific	to	the	OLE	DB	provider	used	by	the	connection.

See	Also

OLEDBProperty2	Object

DTS	Programming

ConnectionTimeout	Property
The	ConnectionTimeout	property	returns	or	sets	the	number	of	seconds	to	wait
while	establishing	a	connection.	After	that,	an	error	is	generated.

Applies	To

Connection	Object Connection2	Object

Syntax
object.ConnectionTimeout	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Number	of	seconds	to	wait	while	establishing	a	connection

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetConnectionTimeout(LONG	*pRetVal);

HRESULT	SetConnectionTimeout(LONG	NewValue);

Remarks
The	default	is	60	seconds.

See	Also

AcquireConnection	Method

ConnectImmediate	Property

DTS	Programming

CopyAllObjects	Property
The	CopyAllObjects	property	specifies	whether	to	transfer	all	objects	from	an
instance	of	Microsoft®	SQL	Server™.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.CopyAllObjects[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value A	value	indicating	whether	to	transfer	all	objects

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyAllObjects(VARIANT_BOOL	*pRetVal);

HRESULT	SetCopyAllObjects(VARIANT_BOOL	NewValue);

Remarks
The	default	is	TRUE.

See	Also

CopyData	Property

CopySchema	Property

DropDestinationObjectsFirst	Property

IncludeDependencies	Property

IncludeLogins	Property

IncludeUsers	Property

DTS	Programming

CopyData	Property
The	CopyData	property	specifies	whether	data	is	copied	and	whether	existing
data	is	replaced	or	appended	to.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.CopyData[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Code	that	specifies	whether	data	is	copied	and	whether	existing

data	is	replaced	or	appended	to

Data	Type
DTSTransfer_CopyDataOption

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopyData(DTSTransfer_CopyDataOption	*pRetVal);

HRESULT	SetCopyData(DTSTransfer_CopyDataOption	NewValue);

Remarks
CopyData	must	be	set	to	one	of	the	DTSTransfer_CopyDataOption	values.	The

default	is	DTSTransfer_ReplaceData.

See	Also

CopyAllObjects	Property

CopySchema	Property

DropDestinationObjectsFirst	Property

IncludeDependencies	Property

IncludeLogins	Property

IncludeUsers	Property

DTS	Programming

CopySchema	Property
The	CopySchema	property	specifies	whether	Microsoft®	SQL	Server™
database	objects	are	copied.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.CopySchema[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Value	indicating	whether	data	is	copied

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetCopySchema(VARIANT_BOOL	*pRetVal);

HRESULT	SetCopySchema(VARIANT_BOOL	NewValue);

Remarks
The	default	is	TRUE.	If	CopySchema	is	set	to	FALSE,	the	objects	are	not
copied.	If	CopySchema	is	FALSE,	data	is	copied	only	if	the	CopyData	property

is	TRUE.

See	Also

CopyAllObjects	Property

CopyData	Property

DropDestinationObjectsFirst	Property

IncludeDependencies	Property

IncludeLogins	Property

IncludeUsers	Property

DTS	Programming

Count	Property
The	Count	property	specifies	the	number	of	items	in	a	Data	Transformation
Services	(DTS)	collection.

Applies	To

Columns	Collection Properties	Collection
Connections	Collection SavedPackageInfos	Collection
DTSMQMessages	Collection ScriptingLanguageInfos	Collection
DynamicPropertiesTaskAssignments
Collection

Steps	Collection

GlobalVariables	Collection TaskInfos	Collection
Lookups	Collection Tasks	Collection
OLEDBProperties	Collection TransformationInfos	Collection
OLEDBProviderInfos	Collection Transformations	Collection
PrecedenceConstraints	Collection TransformationSets	Collection

Syntax
object.Count

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCount(long	*pRetVal);

See	Also

Item	Method

DTS	Programming

CreationDate	Property
The	CreationDate	property	specifies	the	date	and	time	the	Data	Transformation
Services	(DTS)	package	was	created.

Applies	To

Package	Object PackageInfo	Object
Package2	Object 	

Syntax
object.CreationDate

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCreationDate(DATE	*pRetVal);

See	Also

CreatorComputerName	Property

CreatorName	Property

PackageCreationDate	Property

DTS	Programming

CreatorComputerName	Property
The	CreatorComputerName	property	specifies	the	network	name	of	the
computer	on	which	the	Data	Transformation	Services	(DTS)	package	was
created.

Applies	To

Package	Object Package2	Object

Syntax
object.CreatorComputerName

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCreatorComputerName(BSTR	*pRetVal);

See	Also

CreationDate	Property

CreatorName	Property

DTS	Programming

CreatorName	Property
The	CreatorName	property	specifies	the	name	of	the	user	who	created	the	Data
Transformation	Services	(DTS)	package.

Applies	To

Package	Object Package2	Object

Syntax
object.CreatorName

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCreatorName(BSTR	*pRetVal);

Remarks
An	application	must	not	rely	on	the	CreatorName	property	being	set.	For
example,	if	a	package	is	created	on	a	computer	running	Microsoft®	Windows®
98,	in	some	cases,	no	value	is	entered	for	the	user	name.

See	Also

CreationDate	Property

CreatorComputerName	Property

DTS	Programming

CustomTask	Property
The	CustomTask	property	returns	a	reference	to	the	class-specific	task	object.

Applies	To

Task	Object

Syntax
object.CustomTask	[=	value]

Part Description
object Expression	that	evaluates	to	a	Task	object
value Returns	a	reference	to	the	class-specific	task	object

Data	Type
Depends	on	the	Data	Transformation	Services	(DTS)	task	class	being	used.

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCustomTask(IDTSCustomTask	**pRetVal);

Remarks
The	New	method	of	the	Tasks	collection	creates	a	(generic)	Task	object	and	a
class-specific	task	object.

Example

The	relationship	between	the	(generic)	Task	object,	the	class-specific	task	object
and	the	Step2	object	is	illustrated	by	the	following	Microsoft®	Visual	Basic®
code:

				Dim	objPackage				As	DTS.Package2
				Dim	objTask							As	DTS.Task													'This	is	the	generic	Task	object.
				Dim	objStep							As	DTS.Step2
				Dim	objDataPump			As	DTS.DataPumpTask2				'This	is	the	class-specific	task.
				.	.	.
				Set	objStep	=	objPackage.Steps.New
				objStep.Name	=	"LowerCaseStep"
				Set	objTask	=	oPackage.Tasks.New("DTSDataPumpTask")
				Set	objDataPump	=	objTask.CustomTask
				objDataPump.Name	=	"LowerCaseTask"
				objStep.TaskName	=	objDataPump.Name
				objPackage.Steps.Add	oStep
				objPackage.Tasks.Add	objTask

See	Also

New	(ID)	Method

Step2	Object

Tasks	Collection

DTS	Programming

CustomTaskID	Property
The	CustomTaskID	property	returns	the	programmatic	identifier	(ProgID)	or
class	identifier	(CLSID)	of	the	class-specific	object	for	this	task.

Applies	To

Task	Object

Syntax
object.CustomTaskID

Part Description
object Expression	that	evaluates	to	a	Task	object

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetCustomTaskID(BSTR	*pRetVal);

Remarks
This	property	returns	the	ProgID	or	CLSID	used	in	the	call	to	the	New	method
or	CoCreateInstance	function	that	created	the	Task	object.

See	Also

New	(ID)	Method

DTS	Programming

	DataFile	Property
The	DataFile	property	specifies	the	universal	naming	convention	(UNC)	path	of
the	file	from	which	to	load	the	data.

Applies	To

BulkInsertTask	Object

Syntax
object.DataFile[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value UNC	path	of	the	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataFile(BSTR	*pRetVal);

HRESULT	SetDataFile(BSTR	NewValue);

Remarks
The	UNC	path	is	relative	to	the	server	on	which	the	bulk	insert	command	will
run.

See	Also

DataFileType	Property

FormatFile	Property

DTS	Programming

DataFileNonOverwritable	Property
The	DataFileNonOverwritable	property	returns	or	sets	a	value	indicating
whether	a	data	file	message	can	overwrite	an	existing	data	file.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.DataFileNonOverwritable	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
value Boolean	that	specifies	whether	an	existing	data	file	can	be

overwritten

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataFileNonOverwritable(VARIANT_BOOL	*pRetVal);

HRESULT	SetDataFileNonOverwritable(VARIANT_BOOL	NewValue);

Remarks
The	step	fails	if	the	data	file	already	exists	and	DataFileNonOverwritable	is

TRUE.	DataFileNonOverwritable	is	ignored	if	ReceiveMessageType	is	other
than	DTSMQMessageType_DataFile.

See	Also

DTSMQMessageType

ReceiveMessageType	Property

SaveDataFileName	Property

DTS	Programming

DataFileType	Property
The	DataFileType	property	specifies	the	type	of	the	data	file	to	insert.

Applies	To

BulkInsertTask	Object

Syntax
object.DataFileType	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Type	of	the	data	file

Data	Type
DTSBulkInsert_DataFileType

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataFileType(DTSBulkInsert_DataFileType	*pRetVal);

HRESULT	SetDataFileType(DTSBulkInsert_DataFileType	NewValue);

Remarks
DataFileType	must	be	set	to	one	of	the	DTSBulkInsert_DataFileType	values.
The	default	is	DTSBulkInsert_DataFileType_Char.

See	Also

DataFile	Property

DTS	Programming

DataPumpOptions	Property
The	DataPumpOptions	property	returns	or	sets	extended	Data	Transformation
Services	(DTS)	data	pump	options.

Applies	To

DataPumpTask2	Object

Syntax
object.DataPumpOptions	[=	value]

Part Description
object Expression	that	evaluates	to	a	DataPumpTask2	object
value Value	that	specifies	the	extended	options

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataPumpOptions(long	*pRetVal);

HRESULT	SetDataPumpOptions(long	NewValue);

Remarks
The	following	table	lists	the	valid	values	for	the	DataPumpOptions	property.

Value Description

0 Default
1 Commits	all	successful	batches	including	the	final	batch,	even	if

the	data	pump	terminates.	Use	this	option	to	support	restartability.

See	Also

FastLoadOptions	Property

InsertCommitSize	Property

UseFastLoad	Property

DTS	Programming

DataSource	Property
The	DataSource	property	specifies	a	data	source	name	appropriate	to	the	OLE
DB	provider	being	used.

Applies	To

Connection	Object Connection2	Object

Syntax
object.DataSource	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Data	source	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataSource(BSTR	*pRetVal);

HRESULT	SetDataSource(BSTR	NewValue);

Remarks
The	data	source	can	be	a	Microsoft®	SQL	Server™	name,	file	name,	or	some
other	specification	meaningful	to	the	provider.

See	Also

Catalog	Property

DTS	Programming

DataType	Property
The	DataType	property	specifies	the	data	type	of	a	Column	object.

Applies	To

Column	Object

Syntax
object.DataType	[=	value]

Part Description
object Expression	that	evaluates	to	a	Column	object
value Column	data	type

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDataType(LONG	*pRetVal);

HRESULT	SetDataType(LONG	NewValue);

Remarks
Data	Transformation	Services	(DTS)	column	data	types	match	those	used	in
Microsoft®	ActiveX®	Data	Objects	(ADO),	both	in	name	and	value,	and	OLE
DB	type	identifiers	(DBTYPEs).

You	can	find	the	valid	values	for	the	DataType	property	by	searching	for
DBTYPEENUM	in	the	include	file	OLEDB.h.	OLEDB.h	is	installed	in
c:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\include\	by	default.

See	Also

Flags	Property

NumericScale	Property

Precision	Property

Size	Property

DTS	Programming

Day?LongName	Property
The	Day?LongName	property	specifies	or	returns	the	string	to	be	used	for	the
full	name	of	the	indicated	day	of	the	week.	?	is	a	number	from	1	through	7	that
indicates	the	day	of	the	week.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.Day?LongName	[=	name]

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
? Day	of	week	number	from	1	through	7
name Full	name	of	the	specified	day	of	week

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDay?LongName(BSTR*	pRetVal);

HRESULT	SetDay?LongName(BSTR	pRetVal);

Remarks

The	default	value	is	the	English	day	of	week	name.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("Day?LongName")	[=	name]

See	Also

Day?ShortName	Property

GetDayLongName	Method

GetDayShortName	Method

InputFormat	Property

OutputFormat	Property

SetDayLongName	Method

SetDayShortName	Method

DTS	Programming

Day?ShortName	Property
The	Day?ShortName	property	specifies	or	returns	the	string	to	be	used	for	the
short	(3-character	abbreviation)	name	of	the	indicated	day	of	the	week.	?	is	a
number	from	1	through	7	that	indicates	the	number	of	the	week.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.Day?ShortName	[=	name]

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
? Day	of	week	number	from	1	through	7
name Short	(3-character	abbreviation)	name	of	the	specified	day	of	week

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDay?ShortName(BSTR*	pRetVal);

HRESULT	SetDay?ShortName(BSTR	pRetVal);

Remarks

The	default	value	is	the	English	abbreviation	for	the	day	of	the	week.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("Day?ShortName")	[=	name]

See	Also

Day?LongName	Property

GetDayLongName	Method

GetDayShortName	Method

InputFormat	Property

OutputFormat	Property

SetDayLongName	Method

SetDayShortName	Method

DTS	Programming

DeleteQuery	Property
The	DeleteQuery	property	specifies	a	string	of	one	or	more	parameterized	SQL
statements	to	execute	at	the	destination	as	the	Delete	query.

Applies	To

DataDrivenQueryTask	Object TransformationSet	Object
DataDrivenQueryTask2	Object 	

Syntax
object.DeleteQuery	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Parameterized	string	of	SQL	statements

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDeleteQuery(BSTR	*pRetVal);

HRESULT	SetDeleteQuery(BSTR	NewValue);

Remarks
Although	the	name	of	a	data	driven	query	property	is	preset,	its	content	is	not

enforced.	Any	of	the	queries	may	be	used	for	any	desired	operation.	The
nomenclature	is	provided	as	a	convenient	means	of	identification,	based	upon
the	primary	purpose	of	the	operation.	For	example,	the	DeleteQuery	property
does	not	need	to	contain	an	Transact-SQL	DELETE	statement.

See	Also

DeleteQueryColumns	Property

InsertQuery	Property

UpdateQuery	Property

UserQuery	Property

DTS	Programming

DeleteQueryColumns	Property
The	DeleteQueryColumns	property	returns	a	reference	to	a	collection	of
columns	whose	values	are	to	be	placed	into	parameters,	in	sequential	order,	for
the	DeleteQuery	property.

Applies	To

DataDrivenQueryTask	Object TransformationSet	Object
DataDrivenQueryTask2	Object 	

Syntax
object.DeleteQueryColumns

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Columns	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDeleteQueryColumns(IDTSColumns	**pRetVal);

See	Also

Column	Object

DeleteQuery	Property

InsertQueryColumns	Property

UpdateQueryColumns	Property

UserQueryColumns	Property

DTS	Programming

Description	Property
The	Description	property	returns	or	sets	the	textual	description	of	a	Data
Transformation	Services	(DTS)	object.

Applies	To

ActiveScriptTask	Object Package	Object
BulkInsertTask	Object Package2	Object
Connection	Object PackageInfo	Object
Connection2	Object PackageLogRecord	Object
CreateProcessTask	Object ParallelDataPumpTask	Object
CreateProcessTask2	Object SavedPackageInfo	Object
CustomTask	Object ScriptingLanguageInfo	Object
DataDrivenQueryTask	Object SendMailTask	Object
DataDrivenQueryTask2	Object Step	Object
DataPumpTask	Object Step2	Object
DataPumpTask2	Object Task	Object
DTSMessageQueueTask	Object TaskInfo	Object
DynamicPropertiesTask	Object TransferObjectsTask	Object
ExecutePackageTask	Object TransferObjectsTask2	Object
ExecuteSQLTask	Object TransformationInfo	Object
ExecuteSQLTask2	Object TransformationSet	Object
OLEDBProviderInfo	Object 	

Syntax
object.Description	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Description	of	the	associated	object

Data	Type
String

Modifiable
Varies

Prototype	(C/C++)
HRESULT	GetDescription(BSTR	*pRetVal);

HRESULT	SetDescription(BSTR	NewValue);

Remarks
Description	is	usually	a	read/write	property.	However,	it	is	a	read-only	property
of	informational	objects	such	as	the	OLEDBProviderInfo,	PackageInfo,
SavedPackageInfo,	ScriptingLangaugeInfo,	TaskInfo	and
TransformationInfo	objects.

When	the	associated	object	is	a	DTS	class-specific	task	object,	the	Description
property	also	can	be	referenced	through	the	Properties	collection	of	the	Task
object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("Description")	[=	value]

See	Also

Name	Property

Properties	Collection

Task	Object

DTS	Programming

DesignerSettings	Property
The	DesignerSettings	property	specifies	the	settings	that	control	the	features
available	in	Data	Transformation	Services	(DTS)	Designer.

Applies	To

Application	Object

Syntax
object.DesignerSettings	[=	value]

Part Description
object Expression	that	evaluates	to	an	Application	object
value Sum	of	values	from	DTSDesignerSettings	constants

Data	Type
DTSDesignerSettings

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDesignerSettings(DTSDesignerSettings	*pRetVal);

HRESULT	SetDesignerSettings(DTSDesignerSettings	NewValue);

See	Also

JITDebug	Property

JavaScript:hhobj_1.Click()

DTS	Programming

DestinationColumnDefinitions	Property
The	DestinationColumnDefinitions	property	returns	a	reference	to	a	Columns
collection	that	contains	the	column	definitions	for	a	DataPumpTask2,
DataDrivenQueryTask2,	or	ParallelDataPumpTask	destination	connection.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Syntax
object.DestinationColumnDefinitions	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Reference	to	a	Columns	collection	that	contains	the	destination

column	definitions

Data	Type
Columns	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDestinationColumnDefinitions(IDTSColumns	**pRetVal);

Remarks
This	collection	is	constructed	from	the	rowset	obtained	by	querying	the
destination.

See	Also

Column	Object

DTS	Programming

DestinationColumns	Property
The	DestinationColumns	property	returns	a	reference	to	a	Columns	collection
that	contains	the	definitions	for	the	columns	to	which	the	transformation	will
write.

Applies	To

Transformation	Object Transformation2	Object

Syntax
object.DestinationColumns

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Columns	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDestinationColumns(IDTSColumns	**pRetVal);

Remarks
The	Ordinal	property	of	the	Column	objects	in	the	DestinationColumns
collection	determines	the	order	of	columns	the	transformation	will	see	at	the

destination.	It	is	used	to	map	these	columns	to	the	elements	of	the
SourceColumns	collection.

See	Also

Column	Object

Ordinal	Property

SourceColumns	Property

DTS	Programming

DestinationCommandProperties	Property
The	DestinationCommandProperties	collection	references	an
OLEDBProperties	collection	whose	elements	define	the	properties	of	the
destination	connection	OLE	DB	provider.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object ParallelDataPumpTask	Object
DataPumpTask	Object 	

Syntax
object.DestinationCommandProperties

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
OLEDBProperties	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetDestinationCommandProperties(IDTSOleDBProperties

**pRetVal);

See	Also

Connection2	Object

OLEDBProperty	Object

SourceCommandProperties	Property

DTS	Programming

DestinationConnectionID	Property
The	DestinationConnectionID	property	specifies	the	connection	ID	to	use	at
the	data	destination.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object ParallelDataPumpTask	Object
DataPumpTask	Object 	

Syntax
object.DestinationConnectionID	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Connection	ID	to	use

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationConnectionID(LONG	*pRetVal);

HRESULT	SetDestinationConnectionID(LONG	NewValue);

Remarks

The	DestinationConnectionID	property	maps	to	the	ID	property	of	the
connection.

See	Also

ID	Property

SourceConnectionID	Property

DTS	Programming

DestinationDatabase	Property
The	DestinationDatabase	property	specifies	the	name	of	the	destination
database	to	use	when	you	transfer	Microsoft®	SQL	Server™	objects.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.DestinationDatabase[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Name	of	the	destination	database

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationDatabase(BSTR	*pRetVal);

HRESULT	SetDestinationDatabase(BSTR	NewValue);

See	Also

DestinationLogin	Property

DestinationPassword	Property

DestinationServer	Property

DestinationUseTrustedConnection	Property

DTS	Programming

DestinationLogin	Property
The	DestinationLogin	property	specifies	the	login	ID	on	a	destination	server.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.DestinationLogin[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Login	ID

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationLogin(BSTR	*pRetVal);

HRESULT	SetDestinationLogin(BSTR	NewValue);

Remarks
DestinationLogin	is	required	if	an	application	is	using	SQL	Server
Authentication.

Note		It	is	recommended	that	you	connect	to	an	instance	of	Microsoft®	SQL

Server™	using	Windows	Authentication	instead	of	SQL	Server	Authentication.
To	use	Windows	Authentication,	set	DestinationUseTrustedConnection	to
TRUE.

See	Also

DestinationDatabase	Property

DestinationPassword	Property

DestinationServer	Property

DestinationUseTrustedConnection	Property

DTS	Programming

DestinationObjectName	Property
The	DestinationObjectName	property	specifies	the	name	of	a	data	destination.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object ParallelDataPumpTask	Object
DataPumpTask	Object 	

Syntax
object.DestinationObjectName	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Name	of	a	data	destination

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationObjectName(BSTR	*pRetVal);

HRESULT	SetDestinationObjectName(BSTR	NewValue);

Remarks
Typically,	a	DestinationObjectName	is	a	database	table	or	view	name	or	a

Microsoft®	Excel	worksheet	name.

A	DataPumpTask2	object	uses	the	DestinationObjectName	property	to	open	a
simple	rowset	on	the	named	destination	object	if	nothing	is	specified	for	the
DestinationSQLStatement	property.	A	DataDrivenQueryTask2	object	uses
the	DestinationObjectName	property	only	to	retrieve	meta	data	and	then
releases	the	rowset.

Example
The	following	code	illustrates	how	to	specify	a	database	table	for	the	destination
object	name:

				objDataPump.DestinationObjectName	=	"pubs.dbo.authors"

The	following	code	illustrates	how	to	specify	an	Excel	worksheet	for	the
destination	object	name:

				objDataPump.DestinationObjectName	=	"DailyReport$"

See	Also

DestinationSQLStatement	Property

SourceObjectName	Property

DTS	Programming

DestinationPassword	Property
The	DestinationPassword	property	specifies	the	password	to	use	on	a
destination	server.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.DestinationPassword[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Password	to	use

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationPassword(BSTR	*pRetVal);

HRESULT	SetDestinationPassword(BSTR	NewValue);

Remarks
DestinationPassword	is	required	if	an	application	is	using	SQL	Server
Authentication.

Note		It	is	recommended	that	you	connect	to	an	instance	of	Microsoft®	SQL
Server™	using	Windows	Authentication	instead	of	SQL	Server	Authentication.
To	use	Windows	Authentication,	set	DestinationUseTrustedConnection	to
TRUE.

See	Also

DestinationDatabase	Property

DestinationLogin	Property

DestinationServer	Property

DestinationUseTrustedConnection	Property

DTS	Programming

DestinationPropertyID	Property
The	DestinationPropertyID	property	sets	or	returns	a	string	that	defines	the
path	through	the	Data	Transformation	Services	(DTS)	object	model	to	the
property	to	be	modified	by	the	DynamicPropertiesTask	object.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.DestinationPropertyID	[=	objectpath]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
objectpath Path	through	the	DTS	package	object	model	to	the	property	to

be	modified

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	DestinationPropertyID(BSTR*	pRetVal);

HRESULT	DestinationPropertyID(BSTR	pRetVal);

Remarks

The	path	is	a	list	of	objects,	starting	with	the	object	or	collection	whose	parent	is
the	package,	separated	by	a	delimiter	made	up	of	three	backticks	(```).	Objects
are	represented	by	the	object	names.	Collections	are	represented	by	a	string	from
the	following	set	of	Microsoft®	Visual	Basic®	constant	definitions.	The
following	symbolic	names	do	not	need	to	be	used,	but	the	following	case-
sensitive	string	values	must	match	exactly:

'These	are	the	separators	for	the	DestinationPropertyID	strings.
Const	DTS_OBJECT_SEPARATOR	=	"```"
Const	DTS_GLOBAL_VARIABLES	=	"Global	Variables"
Const	DTS_TASKS	=	"Tasks"
Const	DTS_TRANSFORMATIONS	=	"Transformations"
Const	DTS_DESTINATION_COLUMN_DEFINITIONS	=	_
						"DestinationColumnDefinitions"
Const	DTS_USER_QUERY_COLUMNS	=	"UserQueryColumns"
Const	DTS_UPDATE_QUERY_COLUMNS	=	"UpdateQueryColumns"
Const	DTS_INSERT_QUERY_COLUMNS	=	"InsertQueryColumns"
Const	DTS_DELETE_QUERY_COLUMNS	=	"DeleteQueryColumns"
Const	DTS_DEST_COLUMNS	=	"DestinationColumns"
Const	DTS_SOURCE_COLUMNS	=	"SourceColumns"
Const	DTS_LOOKUPS	=	"Lookups"
Const	DTS_PRECEDENCE_CONSTRAINTS	=	"PrecedenceConstraints"
Const	DTS_STEPS	=	"Steps"
Const	DTS_CONNECTIONS	=	"Connections"
Const	DTS_PROPERTIES	=	"Properties"
Const	DTS_DESTINATION_COMMAND_PROPERTIES	=	_
						"DestinationCommandProperties"
Const	DTS_SOURCE_COMMAND_PROPERTIES	=	"SourceCommandProperties"
Const	DTS_OLE_DB_PROPERTIES	=	"OLEDBProperties"

Do	not	include	the	package	object	in	the	string.

Example
The	following	example	assigns	a	property	path	string	to

DestinationPropertyID:

oAssign.DestinationPropertyID	=	_
						"Connections```Pubs	Authors	Info```"	&	_
						"OLEDBProperties```Column	Lengths```Properties```Value"

See	Also

DynamicPropertiesTask	Object

DTS	Programming

DestinationServer	Property
The	DestinationServer	property	specifies	the	name	of	the	destination	server
when	you	transfer	Microsoft®	SQL	Server™	objects.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.DestinationServer[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Name	of	the	destination	server

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationServer(BSTR	*pRetVal);

HRESULT	SetDestinationServer(BSTR	NewValue);

See	Also

DestinationDatabase	Property

DestinationLogin	Property

DestinationPassword	Property

DestinationUseTrustedConnection	Property

DTS	Programming

DestinationSQLStatement	Property
The	DestinationSQLStatement	property	specifies	an	SQL	statement	to	execute
at	the	data	destination.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object ParallelDataPumpTask	Object
DataPumpTask	Object 	

Syntax
object.DestinationSQLStatement	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value SQL	statement	to	execute

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationSQLStatement(BSTR	*pRetVal);

HRESULT	SetDestinationSQLStatement(BSTR	NewValue);

Remarks

A	DataPumpTask	object	uses	the	DestinationSQLStatement	property	to	open
a	rowset	on	destination	connection.	If	no	DestinationSQLStatement	is
specified,	a	simple	rowset	is	opened	on	the	named	destination	object	(for
example,	a	table	or	view).	The	rowset	must	support	an	Insert	operation	on	the
results	of	a	query.	A	DataDrivenQueryTask	object	uses	the
DestinationSQLStatement	property	only	to	retrieve	meta	data	and	then
immediately	closes	the	rowset.

See	Also

DestinationObjectName	Property

SourceSQLStatement	Property

DTS	Programming

DestinationTableName	Property
The	DestinationTableName	property	specifies	the	name	of	the	table	into	which
to	load	data.

Applies	To

BulkInsertTask	Object

Syntax
object.DestinationTableName	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Name	of	the	table

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationTableName(BSTR	*pRetVal);

HRESULT	SetDestinationTableName(BSTR	NewValue);

Remarks
DestinationTableName	can	be	fully	qualified	to	override	the	database	to	which
the	application	is	connected	(for	example,	[Northwind].[dbo].[Orders]).

See	Also

ConnectionID	Property

Connection2	Object

DTS	Programming

DestinationUseTrustedConnection	Property
The	DestinationUseTrustedConnection	property	specifies	whether	Windows
Authentication	is	used.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.DestinationUseTrustedConnection[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	Windows	Authentication	is	used

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestinationUseTrustedConnection(VARIANT_BOOL	*pRetVal);

HRESULT	SetDestinationUseTrustedConnection(VARIANT_BOOL
NewValue);

Remarks
The	default	is	FALSE.

Note		It	is	recommended	that	you	connect	to	an	instance	of	Microsoft®	SQL
Server™	using	Windows	Authentication	instead	of	SQL	Server	Authentication.
To	use	Windows	Authentication,	set	DestinationUseTrustedConnection	to
TRUE.

See	Also

DestinationDatabase	Property

DestinationLogin	Property

DestinationPassword	Property

DestinationServer	Property

DTS	Programming

DestSite	Property
The	DestSite	property	sets	or	returns	the	destination	directory	to	which	the
transferred	files	will	be	moved	by	a	file	transfer	protocol	(FTP)	task.

Applies	To

DTSFTPTask

Syntax
object.DestSite	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSFTPTask	object
value Destination	directory	to	which	the	transferred	files	will	be	moved

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestSite(BSTR*	pVal);

HRESULT	SetDestSite(BSTR	pVal);

Remarks
The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("DestSite")	[=	value]

See	Also

SourceLocation	Property

SourceSite	Property

DTS	Programming

DestTranslateChar	Property
The	DestTranslateChar	property	sets	or	returns	a	value	indicating	whether
translation	is	performed	for	character	data	on	the	destination	server.

Applies	To

TransferObjectsTask2	Object

Syntax
object.DestTranslateChar	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	TransferObjectsTask2	object.
boolean Boolean	that	specifies	whether	translation	is	performed	for

character	data	on	the	destination	server.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	DestTranslateChar(VARIANT_BOOL*	pRetVal);

HRESULT	DestTranslateChar(VARIANT_BOOL	pRetVal);

Remarks
The	default	is	TRUE.	Translation	is	performed.

See	Also

SourceTranslateChar	Property

DTS	Programming

DestUseTransaction	Property
The	DestUseTransaction	property	sets	or	returns	a	value	indicating	whether	the
operations	of	the	task	are	performed	within	a	transaction	on	the	destination
server.

Applies	To

TransferObjectsTask2	Object

Syntax
object.DestUseTransaction	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	TransferObjectsTask2	object.
boolean Boolean	that	specifies	whether	operations	are	performed	within	a

transaction	on	the	destination	server.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDestUseTransaction(VARIANT_BOOL*	pRetVal);

HRESULT	SetDestUseTransaction(VARIANT_BOOL	pRetVal);

Remarks

The	default	is	FALSE.	Operations	do	not	use	a	transaction.

DTS	Programming

DisableStep	Property
The	DisableStep	property	specifies	whether	a	step	should	be	executed.

Applies	To

Step	Object Step2	Object

Syntax
object.DisableStep[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	a	step	is	executed

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDisableStep(VARIANT_BOOL	*pRetVal);

HRESULT	SetDisableStep(VARIANT_BOOL	NewValue);

Remarks
If	set	to	TRUE,	the	step	is	not	executed.	This	can	be	a	useful	setting	when	you
are	debugging	complex	Data	Transformation	Services	(DTS)	packages.

See	Also

ExecutionStatus	Property

DTS	Programming

DropDestinationObjectsFirst	Property
The	DropDestinationObjectsFirst	property	specifies	whether	to	drop	objects	if
they	already	exist	on	the	destination.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.DropDestinationObjectsFirst[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Value	indicating	whether	to	drop	objects

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDropDestinationObjectsFirst(VARIANT_BOOL	*pRetVal);

HRESULT	SetDropDestinationObjectsFirst(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

See	Also

CopyAllObjects	Property

CopyData	Property

CopySchema	Property

IncludeDependencies	Property

IncludeLogins	Property

IncludeUsers	Property

DTS	Programming

DTSMessageLineageID	Property
The	DTSMessageLineageID	property	sets	or	returns	the	globally	unique
identifier	(GUID)	of	the	lineage	information	that	was	saved	with	the	Data
Transformation	Services	(DTS)	package	in	Microsoft®	SQL	Server™	2000
Meta	Data	Services.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.DTSMessageLineageID	[=	GUID]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
GUID The	GUID	of	the	package	lineage	information	saved	in	Meta

Data	Services

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDTSMessageLineageID(BSTR*	pVal);

HRESULT	SetDTSMessageLineageID(BSTR	pVal);

Remarks

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	X	represents	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12
digits.	The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for
readability.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("DTSMessageLineageID")	[=	GUID]

See	Also

DTSMessagePackageID	Property

DTSMessageVersionID	Property

DTS	Programming

DTSMessagePackageID	Property
The	DTSMessagePackageID	property	sets	or	returns	the	globally	unique
identifier	(GUID)	of	the	Data	Transformation	Services	(DTS)	package	that	is	the
source	of	the	message	this	DTSMessageQueueTask	object	is	to	receive.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.DTSMessagePackageID	[=	GUID]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
GUID The	GUID	of	the	package	that	is	the	message	source

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetDTSMessagePackageID(BSTR*	pVal);

HRESULT	SetDTSMessagePackageID(BSTR	pVal);

Remarks
The	DTSMessagePackageID	affects	only	DTSMessageQueueTask	objects	that

are	message	receivers.

To	determine	the	package	ID	of	a	DTS	package,	open	the	package	in	DTS
Designer.	In	the	Package/Properties	dialog	box,	click	the	General	tab.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	X	represents	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12
digits.	The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for
readability.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("DTSMessagePackageID")	[=	GUID]

Example
The	following	example	assigns	a	GUID	string	to	the	DTSMessagePackageID
property:

oCustTask.DTSMessagePackageID	=	_
						"{4E078447-0EFE-11D3-8DFE-00C04FD7B78D}"

See	Also

DTSMessageLineageID	Property

DTSMessageVersionID	Property

DTS	Programming

DTSMessageVersionID	Property
The	DTSMessageVersionID	property	sets	or	returns	the	globally	unique
identifier	(GUID)	of	the	Data	Transformation	Services	(DTS)	package	version
that	is	the	source	of	the	message	this	DTSMessageQueueTask	object	is	to
receive.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.DTSMessageVersionID	[=	GUID]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
GUID The	GUID	of	the	package	version	that	is	the	message	source

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	DTSMessageVersionID(BSTR*	pVal);

HRESULT	DTSMessageVersionID(BSTR	pVal);

Remarks

The	DTSMessageVersionID	affects	only	DTSMessageQueueTask	objects	that
are	message	receivers.

To	determine	the	version	ID	of	a	DTS	package,	open	the	package	in	DTS
Designer.	In	the	Package/Properties	dialog	box,	click	the	General	tab.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	X	represents	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12
digits.	The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for
readability.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("DTSMessageVersionID")	[=	GUID]

Example
The	following	example	assigns	a	GUID	string	to	the	DTSMessageVersionID
property:

oCustTask.DTSMessageVersionID	=	_
						"{4E078447-0EFE-11D3-8DFE-00C04FD7B78D}"

See	Also

DTSMessageLineageID	Property

DTSMessagePackageID	Property

DTS	Programming

EOF	Property
The	EOF	property	specifies	whether	all	the	elements	have	been	fetched	while
iterating	through	the	associated	collection.

Applies	To

PackageInfos	Collection StepLineages	Collection
PackageLineages	Collection StepLogRecords	Collection
PackageLogRecords	Collection TaskLogRecords	Collection

Syntax
collection.EOF

Part Description
collection Expression	that	evaluates	to	a	collection	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetEOF(VARIANT_BOOL	*pRetVal);

Remarks
Iterate	through	a	collection	by	checking	the	EOF	property	after	calling	the	Next
method.	If	EOF	is	TRUE,	Next	will	have	returned	Nothing	and	all	of	the
elements	will	have	been	fetched.	The	following	Microsoft®	Visual	Basic®	code

shows	this	process:

			Set	object	=	collection.Next
			Do	Until	collection.EOF	
						.	.	.
						Set	object	=	collection.Next
			Loop

The	collections	in	the	Applies	To	list	also	can	be	processed	using	For	Each	...
Next	in	Visual	Basic:

			For	Each	object	In	collection
						.	.	.
			Next	object

See	Also

Next	Method

DTS	Programming

ErrorCode	Property
The	ErrorCode	property	specifies	the	code	for	the	error	that	occurred	with	the
associated	object.

Applies	To

DTSTransformPhaseInfo	Object StepLogRecord	Object
PackageLogRecord	Object TaskLogRecord	Object
StepLineage	Object 	

Syntax
object.ErrorCode

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetErrorCode(long	*pRetVal);

Remarks
The	following	table	explains	how	the	interpretation	of	the	ErrorCode	property
depends	on	the	object	with	which	it	is	associated.

Object Description
DTSTransformPhaseInfo Error	code	for	the	operation	preceding	the

current	transformation	phase.
PackageLogRecord Error	code	returned	from	package	Execute

method.
StepLineage,
StepLogRecord

Error	code	returned	from	step	Execute	method.

TaskLogRecord Error	code	associated	with	this	log	record,	as
determined	by	the	logging	task.

See	Also

DTSDataPumpError

DTSPackageError

DTS	Programming

ErrorDescription	Property
The	ErrorDescription	property	specifies	a	textual	description	for	the	error	that
occurred	with	the	associated	object.

Applies	To

PackageLogRecord	Object StepLogRecord	Object
StepLineage	Object TaskLogRecord	Object

Syntax
object.ErrorDescription

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetErrorDescription(BSTR	*pRetVal);

Remarks
The	following	table	explains	how	the	interpretation	of	the	ErrorDescription
property	depends	on	the	object	with	which	it	is	associated.

Object Description

PackageLogRecord	object Error	description	returned	from	package
Execute	method.

StepLineage,	StepLogRecord
objects

Error	description	returned	from	step
Execute	method.

TaskLogRecord	object Error	description	associated	with	this	log
record,	as	determined	by	the	logging	task.

See	Also

DTSDataPumpError

DTSPackageError

ErrorCode	Property

DTS	Programming

ErrorHelpContext	Property
The	ErrorHelpContext	property	specifies	a	context	ID	for	the	error	that	was
returned	by	the	step	Execute	method.

Applies	To

StepLineage	Object

Syntax
object.ErrorHelpContext

Part Description
object Expression	that	evaluates	to	a	StepLineage	object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetErrorHelpContext(LONG	*pRetVal);

Remarks
The	context	ID	returned	by	ErrorHelpContext	can	be	used	to	identify	the	topic
that	describes	the	error	in	the	help	file	specified	by	the	ErrorHelpFile	property.

See	Also

ErrorCode	Property

ErrorDescription	Property

ErrorHelpFile	Property

ErrorSource	Property

DTS	Programming

ErrorHelpFile	Property
The	ErrorHelpFile	property	specifies	the	name	and	path	of	a	help	file	that
contains	information	relevant	to	the	error	returned	by	the	step	Execute	method.

Applies	To

StepLineage	Object

Syntax
object.ErrorHelpFile

Part Description
object Expression	that	evaluates	to	a	StepLineage	object

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetErrorHelpFile(BSTR	*pRetVal);

Remarks
The	context	ID	returned	by	the	ErrorHelpContext	property	can	be	used	to
identify	the	topic	that	describes	the	error	in	the	help	file	specified	by
ErrorHelpFile.

See	Also

ErrorCode	Property

ErrorDescription	Property

ErrorHelpContext	Property

ErrorSource	Property

DTS	Programming

ErrorIfFileExists	Property
The	ErrorIfFileExists	property	specifies	or	returns	a	value	indicating	whether
an	error	is	raised	if	a	destination	file	already	exists.

Applies	To

DataPumpTransformWriteFile	Object

Syntax
object.ErrorIfFileExists	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	DataPumpTransformWriteFile

object
boolean Boolean	that	specifies	whether	an	error	is	raised	if	the	destination

file	already	exists

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetErrorIfFileExists(VARIANT_BOOL*	pRetVal);

HRESULT	SetErrorIfFileExists(VARIANT_BOOL	pRetVal);

Remarks

If	FALSE,	the	existing	file	is	overwritten.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("ErrorIfFileExists")	[=	boolean]

See	Also

AppendIfFileExists	Property

ErrorIfFileNotFound	Property

DTS	Programming

ErrorIfFileNotFound	Property
The	ErrorIfFileNotFound	property	specifies	or	returns	a	value	indicating
whether	an	error	is	raised	if	a	file	named	by	a	source	column	does	not	exist.

Applies	To

DataPumpTransformReadFile	Object

Syntax
object.ErrorIfFileNotFound	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	DataPumpTransformReadFile

object
boolean Boolean	that	specifies	whether	an	error	is	raised	when	the	file

named	by	a	source	column	does	not	exist

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetErrorIfFileNotFound(VARIANT_BOOL*	pRetVal);

HRESULT	SetErrorIfFileNotFound(VARIANT_BOOL	pRetVal);

Remarks

If	FALSE,	NULL	is	written	to	the	destination	column.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("ErrorIfFileNotFound")	[=	boolean]

See	Also

ErrorIfFileExists	Property

DTS	Programming

ErrorIfReceiveMessageTimeout	Property
The	ErrorIfReceiveMessageTimeout	property	sets	or	returns	a	value	indicating
whether	an	error	is	raised	if	a	message	is	not	found	in	the	specified	queue	after
the	specified	time-out	value.

Applies	To

DTSMessageQueueTask

Syntax
object.ErrorIfReceiveMessageTimeout	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
boolean Boolean	that	specifies	whether	an	error	is	raised	if	a	message	is

not	found	in	the	queue	after	the	time-out	expires

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetErrorIfReceiveMessageTimeout(VARIANT_BOOL*	pVal);

HRESULT	GetErrorIfReceiveMessageTimeout(VARIANT_BOOL	pVal);

Remarks

Default	is	FALSE.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("ErrorIfReceiveMessageTimeout")	[=	boolean]

See	Also

ReceiveMessageTimeout	Property

DTS	Programming

ErrorSource	Property
The	ErrorSource	property	specifies	the	name	of	the	component	that	generated
the	error	returned	by	the	step	Execute	method.

Applies	To

StepLineage	Object

Syntax
object.ErrorSource

Part Description
object Expression	that	evaluates	to	a	StepLineage	object

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetErrorSource(BSTR	*pRetVal);

See	Also

ErrorCode	Property

ErrorDescription	Property

ErrorHelpContext	Property

ErrorHelpFile	Property

DTS	Programming

ExceptionFileColumnDelimiter	Property
The	ExceptionFileColumnDelimiter	property	specifies	the	column	delimiter	in
the	exception	file.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Syntax
object.ExceptionFileColumnDelimiter	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Column	delimiter	for	the	exception	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetExceptionFileColumnDelimiter(BSTR	*pRetVal);

HRESULT	SetExceptionFileColumnDelimiter(BSTR	NewValue);

Remarks

The	default	is	"|".

See	Also

ExceptionFileName	Property

ExceptionFileOptions	Property

ExceptionFileRowDelimiter	Property

ExceptionFileTextQualifier	Property

DTS	Programming

ExceptionFileName	Property
The	ExceptionFileName	property	specifies	the	file	name	path	where	exception
rows	are	written.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Syntax
object.ExceptionFileName	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Exception	file	specification

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetExceptionFileName(BSTR	*pRetVal);

HRESULT	SetExceptionFileName(BSTR	NewValue);

Remarks

After	the	task	is	complete,	this	file	can	be	used	to	edit	and	resubmit	the	rows
manually.

See	Also

ExceptionFileColumnDelimiter	Property

ExceptionFileOptions	Property

ExceptionFileRowDelimiter	Property

ExceptionFileTextQualifier	Property

DTS	Programming

ExceptionFileOptions	Property
The	ExceptionFileOptions	property	specifies	how	Data	Transformation
Services	(DTS)	data	pump	errors	and	exception	rows	are	written	to	the	exception
and	error	files.

Applies	To

DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask2	Object 	

Syntax
object.ExceptionFileOptions	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value A	sum	of	values	from	DTSExceptionFileOptions

Data	Type
DTSExceptionFileOptions

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetExceptionFileOptions(DTSExceptionFileOptions	*pRetVal);

HRESULT	SetExceptionFileOptions(DTSExceptionFileOptions	NewValue);

See	Also

ExceptionFileColumnDelimiter	Property

ExceptionFileName	Property

ExceptionFileRowDelimiter	Property

ExceptionFileTextQualifier	Property

DTS	Programming

ExceptionFileRowDelimiter	Property
The	ExceptionFileRowDelimiter	property	specifies	the	row	delimiter	for	the
data	in	the	exception	file.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Syntax
object.ExceptionFileRowDelimiter	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Exception	file	row	delimiter

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetExceptionFileRowDelimiter(BSTR	*pRetVal);

HRESULT	SetExceptionFileRowDelimiter(BSTR	NewValue);

Remarks

The	default	is	carriage	return/line	feed	(CR/LF).

See	Also

ExceptionFileColumnDelimiter	Property

ExceptionFileName	Property

ExceptionFileOptions	Property

ExceptionFileTextQualifier	Property

DTS	Programming

ExceptionFileTextQualifier	Property
The	ExceptionFileTextQualifier	property	specifies	the	text	qualifier	for	the	data
in	the	exception	file.

Applies	To

DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask2	Object 	

Syntax
object.ExceptionFileTextQualifier	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Exception	file	text	qualifier

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetExceptionFileTextQualifier(BSTR	*pRetVal);

HRESULT	SetExceptionFileTextQualifier(BSTR	NewValue);

Remarks
The	default	is	no	text	qualifier.

See	Also

ExceptionFileColumnDelimiter	Property

ExceptionFileName	Property

ExceptionFileOptions	Property

ExceptionFileRowDelimiter	Property

DTS	Programming

ExecuteInMainThread	Property
The	ExecuteInMainThread	property	specifies	whether	the	step	executes	in	the
main	thread	of	the	Data	Transformation	Services	(DTS)	package	or	a	worker
thread.

Applies	To

Step	Object Step2	Object

Syntax
object.ExecuteInMainThread	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Whether	the	step	executes	in	the	main	thread	of	the	package

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetExecuteInMainThread(VARIANT_BOOL	*pRetVal);

HRESULT	SetExecuteInMainThread(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

If	you	are	implementing	package	event	handlers	in	Microsoft®	Visual	Basic®,
set	ExecuteInMainThread	to	TRUE	for	all	steps	in	the	package.

See	Also

DTS	Package	Events	in	Visual	Basic

DTS	Programming

ExecutionDate	Property
The	ExecutionDate	property	specifies	the	date	and	time	a	Data	Transformation
Services	(DTS)	package	lineage	record	was	written.

Applies	To

PackageLineage	Object

Syntax
object.ExecutionDate

Part Description
object Expression	that	evaluates	to	a	PackageLineage	object

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetExecutionDate(DATE	*pRetVal);

See	Also

ExecutionTime	Property

StartTime	Property

DTS	Programming

ExecutionResult	Property
The	ExecutionResult	property	returns	the	step	execution	result.

Applies	To

Step	Object Step2	Object

Syntax
object.ExecutionResult

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
DTSStepExecResult

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetExecutionResult(DTSStepExecResult	*pRetVal);

Remarks
The	ExecutionResult	value	indicates	success	or	failure.

See	Also

ExecutionStatus	Property

StepExecutionResult	Property

DTS	Programming

ExecutionStatus	Property
The	ExecutionStatus	property	specifies	the	status	of	the	step.

Applies	To

Step	Object Step2	Object

Syntax
object.ExecutionStatus

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
DTSStepExecStatus

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetExecutionStatus(DTSStepExecStatus	*pRetVal);

Remarks
Use	the	step	ExecutionStatus	to	determine	whether	a	step:

Is	waiting	to	be	executed.

Is	in	progress.

Has	completed	with	success	or	failure.

Has	been	skipped.

See	Also

ExecutionResult	Property

StepExecutionStatus	Property

DTS	Programming

ExecutionTime	Property
The	ExecutionTime	property	specifies	the	total	execution	time,	in	seconds,	of
the	associated	object.

Applies	To

PackageLogRecord	Object StepLineage	Object
Step	Object StepLogRecord	Object
Step2	Object 	

Syntax
object.ExecutionTime

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Double

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetExecutionTime(double	*pRetVal);

Remarks
ExecutionTime	of	a	PackageLogRecord	is	the	total	execution	time	of	the	Data
Transformation	Services	(DTS)	package.	For	the	other	objects,	ExecutionTime
refers	to	an	individual	step.

See	Also

FinishTime	Property

StartTime	Property

DTS	Programming

ExplicitGlobalVariables	Property
The	ExplicitGlobalVariables	property	sets	or	returns	a	value	indicating	whether
Data	Transformation	Services	(DTS)	package	global	variables	must	be	explicitly
added	to	the	GlobalVariables	collection	with	the	AddGlobalVariable	method
before	being	referenced.

Applies	To

Package2	Object

Syntax
object.ExplicitGlobalVariables	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	Package2	object.
boolean If	TRUE,	package	global	variables	must	be	explicitly	added	with

AddGlobalVariable	method.	If	FALSE,	reference	to	global
variables	that	do	not	exist	cause	them	to	be	created.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	ExplicitGlobalVariables(VARIANT_BOOL*	pVal);

HRESULT	ExplicitGlobalVariables(VARIANT_BOOL	pVal);

See	Also

AddGlobalVariable	Method

AddGlobalVariables	Property

GlobalVariables	Collection

DTS	Programming

	FailOnError	Property
The	FailOnError	property	specifies	whether	Data	Transformation	Services
(DTS)	package	execution	stops	when	there	is	an	error	in	any	step.

Applies	To

Package	Object Package2	Object

Syntax
object.FailOnError	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	the	package	execution	stops	when

there	is	an	error

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFailOnError(VARIANT_BOOL	*pRetVal);

HRESULT	SetFailOnError(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

In	Microsoft®	Visual	Basic®,	errors	will	not	be	raised	for	the	caller	of	the
Execute	method	unless	FailOnError	is	TRUE	or	FailPackageOnError	is
TRUE	for	the	step	in	which	the	error	occurs.	When	that	happens,	the	error
description	will	identify	only	the	step	that	failed.	To	determine	the	reason	for
failure,	use	the	GetExecutionErrorInfo	method	of	the	step.

See	Also

Execute	Method

FailPackageOnError	Property

GetExecutionErrorInfo	Method

DTS	Programming

FailPackageOnError	Property
The	FailPackageOnError	property	specifies	whether	Data	Transformation
Services	(DTS)	package	execution	stops	when	there	is	an	error	in	the	step	with
which	it	is	associated.

Applies	To

Step2	Object

Syntax
object.FailPackageOnError	[=	value]

Part Description
Object Expression	that	evaluates	to	a	Step2	object
Value Whether	the	package	execution	stops	when	there	is	an	error	in	the

step

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFailPackageOnError(VARIANT_BOOL	*pRetVal);

HRESULT	SetFailPackageOnError(VARIANT_BOOL	NewValue);

Remarks

The	default	is	FALSE.

In	Microsoft®	Visual	Basic®,	errors	will	not	be	raised	for	the	caller	of	the
Execute	method	unless	the	package	FailOnError	is	TRUE	or
FailPackageOnError	is	TRUE	for	the	step	in	which	the	error	occurs.	When	that
happens,	the	error	description	will	identify	only	the	step	that	failed.	To	determine
the	reason	for	failure,	use	the	GetExecutionErrorInfo	method	of	the	step.

See	Also

Execute	Method

FailOnError	Property

GetExecutionErrorInfo	Method

DTS	Programming

FailPackageOnLogFailure	Property
The	FailPackageOnLogFailure	property	sets	or	returns	a	value	indicating
whether	the	Data	Transformation	Services	(DTS)	package	will	fail	if	there	is	a
failure	during	the	logging	of	the	package.

Applies	To

Package2	Object

Syntax
object.FailPackageOnLogFailure	[=	boolean]

Part Description
Object Expression	that	evaluates	to	a	Package2	object.
Boolean If	TRUE,	the	package	fails	if	there	is	a	failure	during	logging.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	FailPackageOnLogFailure(VARIANT_BOOL*	pVal);

HRESULT	FailPackageOnLogFailure(VARIANT_BOOL	pVal);

Remarks
The	default	is	FALSE.

See	Also

LogServerFlags	Property

LogServerName	Property

LogServerPassword	Property

LogServerUserName	Property

LogToSQLServer	Property

DTS	Programming

FailPackageOnTimeout	Property
The	FailPackageOnTimeout	property	specifies	whether	the	Data
Transformation	Services	(DTS)	package	fails	if	the	task	is	terminated	by	the
expiration	of	the	time-out	period.

Applies	To

CreateProcessTask	Object CreateProcessTask2	Object

Syntax
object.FailPackageOnTimeout	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	the	package	fails	if	the	task	is

terminated	by	the	expiration	of	the	time-out	period

Data	Type
Variant	Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFailPackageOnTimeout(VARIANT_BOOL	*pRetVal);

HRESULT	SetFailPackageOnTimeout(VARIANT_BOOL	NewValue);

Remarks

The	default	is	TRUE.

The	TerminateProcessAfterTimeout	property	determines	if	the	created	process
is	terminated	after	the	time-out	occurs.

See	Also

TerminateProcessAfterTimeout	Property

Timeout	Property

DTS	Programming

FastLoadOptions	Property
The	FastLoadOptions	property	specifies	SQLOLEDB	destination	connection
options	specific	for	the	UseFastLoad	property.

Applies	To

DataPumpTask	Object DataPumpTask2	Object

Syntax
object.FastLoadOptions[=	value]

Part Description
Object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value SQLOLEDB	destination	connection	options

Data	Type
DTSFastLoadOptions

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFastLoadOptions(DTSFastLoadOptions	*pRetVal);

HRESULT	SetFastLoadOptions(DTSFastLoadOptions	NewValue);

Remarks
FastLoadOptions	must	be	set	to	the	sum	of	one	or	more	of	the
DTSFastLoadOptions	values.

See	Also

InsertCommitSize	Property

UseFastLoad	Property

DTS	Programming

FetchBufferSize	Property
The	FetchBufferSize	property	specifies	the	number	of	rows	to	fetch	in	a	single
operation	from	the	OLE	DB	source.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Syntax
object.FetchBufferSize	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Number	of	rows	to	fetch	in	a	single	operation

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFetchBufferSize(LONG	*pRetVal);

HRESULT	SetFetchBufferSize(LONG	NewValue);

Remarks

Each	row	may	be	buffered	by	the	OLE	DB	provider.	When	calling
IRowset::GetNextRows,	adjust	the	FetchBufferSize	property	to	achieve	the
best	balance	between	memory	usage	and	reduced	overhead.	A	value	greater	than
1	is	ignored	if	the	data	source	uses	binary	large	object	(BLOB)	storage.	The
default	is	100.

See	Also

InsertCommitSize	Property

DTS	Programming

FieldTerminator	Property
The	FieldTerminator	property	specifies	the	field	or	column	terminator	for	files
that	support	char	and	widechar	data	types.

Applies	To

BulkInsertTask	Object

Syntax
object.FieldTerminator	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Field	terminator

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFieldTerminator(BSTR	*pRetVal);

HRESULT	SetFieldTerminator(BSTR	NewValue);

Remarks
Typical	values	are	",",	";",	tab	and	"|".	These	values	are	also	valid	in	the	bulk
copy	program.	The	default	is	tab.	It	must	not	be	the	same	as	the	RowTerminator

property.

See	Also

RowTerminator	Property

DTS	Programming

FileAttachments	Property
The	FileAttachments	property	specifies	the	name	and	path	of	file	attachments.

Applies	To

SendMailTask	Object

Syntax
object.FileAttachments[=	value]

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
value File	specifications	of	attachments

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFileAttachments(BSTR	*pRetVal);

HRESULT	SetFileAttachments(BSTR	NewValue);

Remarks
Multiple	attachment	file	specifications	are	separated	by	semicolons.

See	Also

CCLine	Property

Subject	Property

ToLine	Property

DTS	Programming

FileColumnName	Property
The	FileColumnName	property	specifies	or	returns	the	name	of	the	source
column	that	contains	the	name	of	the	file	to	be	written.	It	must	be	one	of	the	two
source	columns	of	the	transformation.

Applies	To

DataPumpTransformWriteFile	Object

Syntax
object.FileColumnName	[=	string]

Part Description
object Expression	that	evaluates	to	a	DataPumpTransformWriteFile

object
string Name	of	the	source	column	that	contains	the	name	and	optional

path	of	file	to	be	written

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFileColumnName(BSTR*	pRetVal);

HRESULT	SetFileColumnName(BSTR	pRetVal);

Remarks

The	FileColumnName	must	be	a	string	data	type.	It	cannot	be	NULL	or	empty,
and	the	data	column	to	which	it	refers	cannot	be	NULL	or	empty.	If	the	file
name	column	contains	a	path,	it	can	use	either	a	drive	letter	or	a	universal
naming	convention	(UNC)	name.

If	no	path	is	present,	the	FilePath	property	can	be	used	to	supply	the	path.
However,	FilePath	is	always	used	when	it	is	contains	a	value,	even	when	the	file
name	column	contains	a	path.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("FileColumnName")	[=	string]

See	Also

FilePath	Property

DTS	Programming

FileName	Property
The	FileName	property	sets	or	returns	the	name	and	path	of	the	file	that	contains
a	Data	Transformation	Services	(DTS)	package	to	be	run	by	an	Execute
Package	Task	object.

Applies	To

ExecutePackageTask	Object

Syntax
object.FileName	[=	filespec]

Part Description
object Expression	that	evaluates	to	an	ExecutePackageTask	object
filespec Name	and	path	of	the	file	that	contains	the	package

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFileName(BSTR*	pRetVal);

HRESULT	SetFileName(BSTR	pRetVal);

Remarks
If	the	FileName	property	is	empty,	the	ExecutePackageTask	object	looks	in

Microsoft®	SQL	Server™	2000	Meta	Data	Services	or	in	the	SQL	Server	msdb
database	(depending	on	the	setting	of	the	UseRepository	property)	on	the
specified	server	to	find	the	package	to	be	run.

This	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("FileName")	[=	filespec]

Example
The	following	example	assigns	a	file	specification	to	the	FileName	property:

objCustTask.FileName	=	"C:\DTS_UE\TestPkg\WriteFileTest.dts"

See	Also

PackageName	Property

UseRepository	Property

DTS	Programming

FilePath	Property
The	FilePath	property	specifies	or	returns	the	path	you	want	to	prefix	to	the	file
name	column	in	a	custom	transformation.

Applies	To

DataPumpTransformReadFile	Object DataPumpTransformWriteFile
Object

Syntax
object.FilePath	[=	string]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
string Path	to	prefix	to	the	file	name	column	when	it	contains	no	path

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFilePath(BSTR*	pRetVal);

HRESULT	SetFilePath(BSTR	pRetVal);

Remarks
"\"	will	be	appended	to	the	FilePath	property,	when	necessary,	to	separate	the

path	from	the	file	name	in	the	source	column.	If	a	value	for	FilePath	is
provided,	the	value	will	be	prefixed	to	the	file	name	even	when	it	already
includes	a	path.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("FilePath")	[=	string]

See	Also

FileColumnName	Property

DTS	Programming

FinishTime	Property
The	FinishTime	property	specifies	the	date	and	time	when	the	associated	object
completed	its	execution.

Applies	To

PackageLogRecord	Object StepLineage	Object
Step	Object StepLogRecord	Object
Step2	Object 	

Syntax
object.FinishTime

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetFinishTime(DATE	*pRetVal);

See	Also

ExecutionTime	Property

StartTime	Property

DTS	Programming

FirstRow	Property
The	FirstRow	property	specifies	the	first	source	row	to	copy.

Applies	To

BulkInsertTask	Object DataPumpTask	Object
DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object

Syntax
object.FirstRow[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value First	source	row	to	copy

Data	Type
Variant

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFirstRow(VARIANT	*pRetVal);

HRESULT	SetFirstRow(VARIANT	NewValue);

Remarks
The	default	is	1,	which	specifies	the	first	row.

See	Also

LastRow	Property

DTS	Programming

Flags	Property
The	Flags	property	specifies	the	OLE	DB	DBCOLUMN	values	that	describe	a
column.

Applies	To

Column	Object

Syntax
object.Flags	[=	value]

Part Description
object Expression	that	evaluates	to	a	Column	object
value Sum	of	OLE	DB	DBCOLUMN	values

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFlags(LONG	*pRetVal);

HRESULT	SetFlags(LONG	NewValue);

Remarks
You	can	find	the	valid	values	for	the	Flags	property	by	searching	for
DBCOLUMNFLAGS_	in	the	include	file	OLEDB.h.	This	default	location	for

this	file	is	C:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\include\.

See	Also

DataType	Property

DTS	Programming

ForceBlobsInMemory	Property
The	ForceBlobsInMemory	property	specifies	whether	to	store	each	source
binary	large	object	(BLOB)	column	in	a	transformation	as	a	single	memory
allocation,	even	if	storage	objects	are	available	from	the	OLE	DB	provider.

Applies	To

Transformation	Object Transformation2	Object

Syntax
object.ForceBlobsInMemory	[=	value]

Part Description
Object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
Value Boolean	that	specifies	whether	to	store	each	source	BLOB	column

in	a	transformation	as	a	single	memory	allocation

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetForceBlobsInMemory(VARIANT_BOOL	*pRetVal);

HRESULT	SetForceBlobsInMemory(VARIANT_BOOL	NewValue);

Remarks

BLOBs	are	image,	ntext,	and	text	data	types.

See	Also

ForceSourceBlobsBuffered	Property

DTS	Programming

ForceSourceBlobsBuffered	Property
The	ForceSourceBlobsBuffered	property	specifies	whether	to	buffer	each
source	binary	large	object	(BLOB)	column	in	a	transformation	if	storage	objects
are	used.

Applies	To

Transformation	Object Transformation2	Object

Syntax
object.ForceSourceBlobsBuffered	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value A	value	indicating	whether	to	buffer	each	source	BLOB	column	in

a	transformation

Data	Type
DTSForceMode

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetForceSourceBlobsBuffered(DTSForceMode	*pRetVal);

HRESULT	SetForceSourceBlobsBuffered(DTSForceMode	NewValue);

Remarks

BLOBs	are	image,	ntext,	and	text	data	types.

ForceSourceBlobsBuffered	must	be	set	to	one	of	the	DTSForceMode	values.

See	Also

ForceBlobsInMemory	Property

DTS	Programming

FormatFile	Property
The	FormatFile	property	specifies	the	name	and	path	of	a	bulk	copy	data	file	to
use	for	the	load	operation.

Applies	To

BulkInsertTask	Object

Syntax
object.FormatFile	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Specification	for	the	bulk	copy	data	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFormatFile(BSTR	*pRetVal);

HRESULT	SetFormatFile(BSTR	NewValue);

Remarks
The	format	of	the	bulk	copy	data	file	must	be	acceptable	to	the	bcp	utility.

See	Also

DataFile	Property

DTS	Programming

FunctionEntry	Property
The	FunctionEntry	property	specifies	or	returns	the	name	of	the	script	function
that	is	to	be	called	for	the	transformation.

Applies	To

DataPumpTransformationScript
Object

DTSTransformScriptProperties2
Object

Syntax
object.FunctionEntry	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Function	to	call	in	the	script

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFunctionEntry(*pRetVal);

HRESULT	SetFunctionEntry(NewValue);

Remarks
In	the	DTSTransformScriptProperties2	object,	the	FunctionEntry	property

specifies	the	function	name	for	the	Transform	phase.	In	the
DataPumpTransformScript	object,	the	Transform	phase	is	the	only
transformation	phase.

The	script	function	specified	by	FunctionEntry	has	read	access	to	the	columns
of	the	DTSSource	collection	and	write	access	to	the	columns	of	the
DTSDestination	collection.	The	valid	function	return	values	are	specified	by	the
DTSTransformStatus	constants.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("FunctionEntry")	[=	string]

See	Also

BatchCompleteFunctionEntry	Property

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DTSTransformStatus

InsertFailureFunctionEntry	Property

InsertSuccessFunctionEntry	Property

ParallelDataPumpTask	Object

PostSourceDataFunctionEntry	Property

PreSourceDataFunctionEntry	Property

PumpCompleteFunctionEntry	Property

TransformFailureFunctionEntry	Property

DTS	Programming

FunctionName	Property
The	FunctionName	property	specifies	the	function	name	to	call	in	the
Microsoft®	ActiveX®	script	associated	with	a	script	task	or	step.

Applies	To

ActiveScriptTask	Object Step2	Object
Step	Object 	

Syntax
object.FunctionName	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Function	name	that	is	the	script	entry	point	for	the	step	or	ActiveX

Script	task

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetFunctionName(BSTR	*pRetVal);

HRESULT	SetFunctionName(BSTR	NewValue);

See	Also

ActiveXScript	Property

ScriptLanguage	Property

FunctionEntry	Property

DTS	Programming

Get	Property
The	Get	property	specifies	whether	a	property	value	can	be	read.

Applies	To

Property	Object

Syntax
object.Get

Part Description
object Expression	that	evaluates	to	a	Property	object

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetGet(VARIANT_BOOL	*pRetVal);

See	Also

Set	Property

DTS	Programming

IconFile	Property
The	IconFile	property	returns	the	name	and	path	of	the	resource	file	that
contains	the	icon	for	the	task	class.

Applies	To

TaskInfo	Object

Syntax
object.IconFile

Part Description
object Expression	that	evaluates	to	a	TaskInfo	object

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIconFile(BSTR*	pRetVal);

Example
The	following	example	shows	a	value	returned	by	the	IconFile	property:

C:\Program	Files\Microsoft	SQL	Server\80\Tools\Binn\Resources\1033\custtask.RLL

See	Also

IconIndex	Property

DTS	Programming

IconIndex	Property
The	IconIndex	property	returns	an	index	that	identifies	the	icon	for	the	task
class	in	the	resource	file	that	contains	it.

Applies	To

TaskInfo	Object

Syntax
object.IconIndex

Part Description
object Expression	that	evaluates	to	a	TaskInfo	object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIconIndex(long*	pRetVal);

Remarks
The	IconIndex	property	is	zero	based.

The	resource	file	specification	is	available	from	the	IconFile	property.

See	Also

IconFile	Property

DTS	Programming

ID	Property
The	ID	property	returns	a	unique	numeric	identifier	assigned	to	a	connection.

Applies	To

Connection	Object Connection2	Object

Syntax
object.ID	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Unique	numeric	identifier	assigned	to	a	connection

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetID(LONG	*pRetVal);

HRESULT	SetID(LONG	NewValue);

Remarks
Other	Data	Transformation	Services	(DTS)	objects	that	use	connections	use	the
ID	property	to	link	to	those	connections.

See	Also

ConnectionID	Property

DestinationConnectionID	Property

SourceConnectionID	Property

SourceQueryConnectionID	Property

DTS	Programming

ImplementationFileName	Property
The	ImplementationFileName	property	returns	the	name	and	path	of	the	library
file	that	implements	the	object	class.

Applies	To

OLEDBProviderInfo	Object TaskInfo	Object
ScriptingLanguageInfo	Object TransformationInfo	Object

Syntax
object.ImplementationFileName

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetImplementationFileName(BSTR*	pRetVal);

Example
The	following	example	shows	a	value	returned	by	the
ImplementationFileName	property:

C:\Program	Files\Common	Files\System\OLE	DB\sqloledb.dll

See	Also

ImplementationFileVersionString	Property

DTS	Programming

ImplementationFileVersionString	Property
The	ImplementationFileVersionString	property	returns	the	version	number	of
the	library	file	that	implements	the	object	class.

Applies	To

OLEDBProviderInfo	Object TaskInfo	Object
ScriptingLanguageInfo	Object TransformationInfo	Object

Syntax
object.ImplementationFileVersionString

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetImplementationFileVersionString(BSTR*	pRetVal);

Example
The	following	examples	show	values	returned	by	the
ImplementationFileVersionString	property.	No	particular	syntax	is	enforced:

08.00.0045

2000.02.04

See	Also

ImplementationFileName	Property

DTS	Programming

IncludeDependencies	Property
The	IncludeDependencies	property	specifies	whether	dependent	objects	are
scripted	and	transferred	during	a	transfer	of	Microsoft®	SQL	Server™	objects.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.IncludeDependencies[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value A	value	indicating	whether	dependent	objects	are	scripted	and

transferred

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeDependencies(VARIANT_BOOL	*pRetVal);

HRESULT	SetIncludeDependencies(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

See	Also

CopyAllObjects	Property

CopyData	Property

CopySchema	Property

DropDestinationObjectsFirst	Property

IncludeLogins	Property

IncludeUsers	Property

DTS	Programming

IncludeLogins	Property
The	IncludeLogins	property	specifies	whether	the	logins	on	the	source	are
scripted	and	transferred	during	a	transfer	of	Microsoft®	SQL	Server™	objects.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.IncludeLogins[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value A	value	indicating	whether	the	logins	on	the	source	are	scripted

and	transferred

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeLogins(VARIANT_BOOL	*pRetVal);

HRESULT	SetIncludeLogins(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

See	Also

CopyAllObjects	Property

CopyData	Property

CopySchema	Property

DropDestinationObjectsFirst	Property

IncludeDependencies	Property

IncludeUsers	Property

DTS	Programming

IncludeUsers	Property
The	IncludeUsers	property	specifies	whether	the	database	users	on	the	source
are	scripted	and	transferred	during	the	transfer	of	Microsoft®	SQL	Server™
objects.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.IncludeUsers[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	the	database	users	on	the	source	are

scripted	and	transferred

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIncludeUsers(VARIANT_BOOL	*pRetVal);

HRESULT	SetIncludeUsers(VARIANT_BOOL	NewValue);

Remarks

The	default	is	FALSE.

See	Also

CopyAllObjects	Property

CopyData	Property

CopySchema	Property

DropDestinationObjectsFirst	Property

IncludeDependencies	Property

IncludeLogins	Property

DTS	Programming

InMemoryBlobSize	Property
The	InMemoryBlobSize	property	specifies	the	byte	size	of	per-column
allocation	for	in-memory	binary	large	objects	(BLOBs)	in	a	transformation.

Applies	To

Transformation	Object Transformation2	Object

Syntax
object.InMemoryBlobSize	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Byte	size	of	per-column	allocation	for	in-memory	BLOBs

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetInMemoryBlobSize(LONG	*pRetVal);

HRESULT	SetInMemoryBlobSize(LONG	NewValue);

Remarks
BLOBs	are	image,	ntext,	and	text	data	types.

See	Also

ForceSourceBlobsBuffered	Property

DTS	Programming

InputFormat	Property
The	InputFormat	property	specifies	or	returns	a	string	that	defines	the	format	of
the	datetime	string	in	the	source	column.	This	format	string	consists	of	tokens
and	delimiters:	the	tokens	represent	components	of	the	date	and	time,	and	the
delimiters	must	explicitly	appear	in	the	source	column.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.InputFormat	[=	formatstring]

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object.
formatstring String	consisting	of	tokens	and	delimiters,	which	define	the

format	of	the	source	column.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	InputFormat(BSTR*	pRetVal);

HRESULT	InputFormat(BSTR	pRetVal);

Remarks
For	more	information	about	token	definitions,	see	OutputFormat	Property.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("InputFormat")	[=	name]

See	Also

AMSymbol	Property

Day?LongName	Property

Day?ShortName	Property

GetDayLongName	Method

GetDayShortName	Method

GetMonthLongName	Method

GetMonthShortName	Method

Month??LongName	Property

Month??ShortName	Property

PMSymbol	Property

SetDayLongName	Method

SetDayShortName	Method

SetMonthLongName	Method

SetMonthShortName	Method

ShortYear2000Cutoff	Property

DTS	Programming

InputGlobalVariableNames	Property
The	InputGlobalVariableNames	property	returns	or	specifies	a	list	of	Data
Transformation	Services	(DTS)	global	variable	names	that	are	to	be	used	as
parameters	in	a	query	or	created	in	a	subpackage.

Applies	To

DataDrivenQueryTask2	Object ExecuteSQLTask2	Object
DataPumpTask2	Object ParallelDataPumpTask	Object
ExecutePackageTask	Object 	

Syntax
object.InputGlobalVariableNames	[=	list]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
list List	of	global	variable	names

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetInputGlobalVariableNames(BSTR	*pRetVal);

HRESULT	SetInputGlobalVariableNames(BSTR	NewValue);

Remarks

The	format	of	the	InputGlobalVariableNames	string	is	a	semicolon	delimited,
optionally	double-quoted	or	single-quoted	list.	Quoting	is	required	only	when
the	name	contains	an	embedded	delimiter.	Embedded	delimiters	must	be
doubled.	A	double-delimiter	or	a	trailing	delimiter	indicates	an	empty	item.	For
example:

			"gv1";gv2							-	delimiters	not	required	here
			gv1;"gv""2"					-	gv"2	embedded	delimiter	is	doubled
			gv1;;gv2;							-	contains	an	empty	second	and	fourth	item

The	following	table	describes	how	the	usage	of	the	InputGlobalVariableNames
list	depends	on	the	associated	object.

Associated	Object Usage
ExecutePackageTask Global	variables	from	the	collection	of	the	outer

DTS	package	are	created	or	assigned	to	global
variables	in	the	target	package.	Empty	items	in
the	list	are	skipped.

DataDrivenQueryTask2
DataPumpTask2
ExecuteSQLTask2
ParallelDataPumpTask

Global	variables	from	the	collection	of	the
package	are	substituted	for	parameters	in	the
source	query.	Empty	items	in	the	list	cause	the
corresponding	parameter	in	the	query	to	be
bound	to	NULL.

See	Also

GlobalVariables	Collection

SourceSQLStatement	Property

SQLStatement	Property

DTS	Programming

InsertCommitSize	Property
The	InsertCommitSize	property	specifies	the	number	of	rows	that	are	inserted
in	a	single	transaction	when	the	FastLoad	option	is	being	used.

Applies	To

DataPumpTask	Object DataPumpTask2	Object

Syntax
object.InsertCommitSize	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Number	of	rows	inserted	as	a	single	transaction

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetInsertCommitSize(LONG	*pRetVal);

HRESULT	SetInsertCommitSize(LONG	NewValue);

Remarks
The	default	is	0.	This	means	all	inserts	into	the	table	are	batched	in	a	single
transaction.

See	Also

FastLoadOptions	Property

UseFastLoad	Property

DTS	Programming

InsertFailureFunctionEntry	Property
The	InsertFailureFunctionEntry	property	specifies	or	returns	the	name	of	the
script	function	that	is	to	be	called	for	the	OnInsertFailure	transformation	phase.

Applies	To

DTSTransformScriptProperties2	Object

Syntax
object.InsertFailureFunctionEntry	[=	name]

Part Description
object Expression	that	evaluates	to	a	DTSTransformScriptProperties2

object
name Name	of	the	script	function	that	supports	the	OnInsertFailure

phase

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	InsertFailureFunctionEntry(BSTR*	pRetVal);

HRESULT	InsertFailureFunctionEntry(BSTR	pRetVal);

Remarks

The	OnInsertFailure	phase	occurs	when	an	Insert	to	the	destination	fails	in	the
DataPumpTask2	or	ParallelDataPumpTask	object	or	after	the	failure	of	any	of
the	queries	in	the	DataDrivenQueryTask2	object.

The	OnInsertFailure	script	function	has	read	access	to	the	columns	of	the
DTSSource	collection	and	no	access	to	the	columns	of	the	DTSDestination
collection.	The	only	valid	return	values	are	DTSTransformStat_OK	and
DTSTransformStat_AbortPump.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("InsertFailureFunctionEntry")	[=	string]

See	Also

BatchCompleteFunctionEntry	Property

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DTSTransformStatus

FunctionEntry	Property

InsertSuccessFunctionEntry	Property

ParallelDataPumpTask	Object

PostSourceDataFunctionEntry	Property

PreSourceDataFunctionEntry	Property

PumpCompleteFunctionEntry	Property

TransformFailureFunctionEntry	Property

DTS	Programming

InsertQuery	Property
The	InsertQuery	property	specifies	a	string	of	one	or	more	parameterized	SQL
statements	to	execute	at	the	destination	as	the	insert	query.

Applies	To

DataDrivenQueryTask	Object TransformationSet	Object
DataDrivenQueryTask2	Object 	

Syntax
object.InsertQuery	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Parameterized	string	of	SQL	statements

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetInsertQuery(BSTR	*pRetVal);

HRESULT	SetInsertQuery(BSTR	NewValue);

Remarks
Although	the	name	of	a	data-driven	query	property	is	preset,	its	content	is	not

enforced.	Any	of	the	queries	may	be	used	for	any	desired	operation.	The
nomenclature	is	provided	as	a	convenient	means	of	identification,	based	upon
the	primary	purpose	of	the	operation.	For	example,	the	InsertQuery	property
does	not	need	to	contain	an	INSERT	statement.

See	Also

DeleteQuery	Property

DTS	Query	Strings	in	Visual	Basic

InsertQueryColumns	Property

UpdateQuery	Property

UserQuery	Property

DTS	Programming

InsertQueryColumns	Property
The	InsertQueryColumns	property	returns	a	reference	to	a	collection	of	column
parameters	in	sequential	order	for	the	InsertQuery	parameter.

Applies	To

DataDrivenQueryTask	Object TransformationSet	Object
DataDrivenQueryTask2	Object 	

Syntax
object.InsertQueryColumns

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Columns	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetInsertQueryColumns(IDTSColumns	**pRetVal);

See	Also

Column	Object

DeleteQueryColumns	Property

DTS	Query	Strings	in	Visual	Basic

InsertQuery	Property

UpdateQueryColumns	Property

UserQueryColumns	Property

DTS	Programming

InsertSuccessFunctionEntry	Property
The	InsertSuccessFunctionEntry	property	specifies	or	returns	the	name	of	the
script	function	that	is	to	be	called	for	the	OnInsertSuccess	transformation	phase.

Applies	To

DTSTransformScriptProperties2	Object

Syntax
object.InsertSuccessFunctionEntry	[=	name]

Part Description
object Expression	that	evaluates	to	a	DTSTransformScriptProperties2

object
name Name	of	the	script	function	that	supports	the	OnInsertSuccess

phase

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	InsertSuccessFunctionEntry(BSTR*	pRetVal);

HRESULT	InsertSuccessFunctionEntry(BSTR	pRetVal);

Remarks

The	OnInsertSuccess	phase	occurs	when	an	Insert	to	the	destination	succeeds	in
the	DataPumpTask2	or	ParallelDataPumpTask	object	or	after	the	success	of
any	of	the	queries	in	the	DataDrivenQueryTask2	object.

The	OnInsertSuccess	script	function	has	read	access	to	the	columns	of	the
DTSSource	collection	and	no	access	to	the	columns	of	the	DTSDestination
collection.	The	only	valid	return	values	are	DTSTransformStat_OK	and
DTSTransformStat_AbortPump.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("InsertSuccessFunctionEntry")	[=	string]

See	Also

BatchCompleteFunctionEntry	Property

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DTSTransformStatus

FunctionEntry	Property

InsertFailureFunctionEntry	Property

ParallelDataPumpTask	Object

PostSourceDataFunctionEntry	Property

PreSourceDataFunctionEntry	Property

PumpCompleteFunctionEntry	Property

TransformFailureFunctionEntry	Property

DTS	Programming

InTransaction	Property
The	InTransaction	property	specifies	whether	the	connection	is	included	in	the
current	Data	Transformation	Services	(DTS)	package	transaction,	if	one	exists.

Applies	To

Connection	Object Connection2	Object

Syntax
object.InTransaction

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetInTransaction(VARIANT_BOOL	*pRetVal);

See	Also

JoinTransactionIfPresent	Property

TransactionIsolationLevel	Property

UseTransaction	Property

DTS	Programming

InUse	Property
The	InUse	property	specifies	whether	the	connection	is	currently	in	use	by	a
task.

Applies	To

Connection	Object Connection2	Object

Syntax
object.InUse

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetInUse(VARIANT_BOOL	*pRetVal);

Remarks
When	an	application	calls	the	connection	AcquireConnection	method,	the
InUse	property	is	set	to	TRUE.

See	Also

AcquireConnection	Method

ReleaseConnection	Method

DTS	Programming

IsDefaultValue	Property
The	IsDefaultValue	property	specifies	whether	the	OLE	DB	property	to	which	it
refers	has	not	been	explicitly	set	to	a	value.

Applies	To

OLEDBProperty2	Object

Syntax
oledbprop.IsDefaultValue

Part Description
oledbprop Expression	that	evaluates	to	a	OLEDBProperty2	object

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsDefaultValue(VARIANT_BOOL	*pRetVal);

Remarks
The	IsDefaultValue	property	is	TRUE	if	the	value	of	the	corresponding
OLEDBProperty2	object	has	not	been	explicitly	set	or	has	been	set	to
VT_EMPTY.	In	the	OLE	DB	specification,	VT_EMPTY	means	restore	the
default	value.	If	the	OLEDBProperty2	object	was	explicitly	set	to	any	other
value,	including	the	default	value,	the	IsDefaultValue	property	is	FALSE.

See	Also

Value	Property

DTS	Programming

IsNTService	Property
The	IsNTService	property	specifies	whether	the	caller	is	a	Microsoft®	Windows
NT®	4.0	or	Microsoft	Windows®	2000	Service.

Applies	To

SendMailTask	Object

Syntax
object.IsNTService[=	value]

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
value Boolean	that	specifies	whether	the	caller	is	a	Windows	NT	4.0	and

Windows	2000	Service

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIsNTService(VARIANT_BOOL	*pRetVal);

HRESULT	SetIsNTService(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

Set	IsNTService	to	TRUE	only	if	the	program	that	calls	the	package	Execute
method	is	installed	as	a	Windows	NT	4.0	or	Windows	2000	Service.

See	Also

Execute	Method	(Package)

DTS	Programming

IsOwner	Property
The	IsOwner	property	specifies	whether	the	login	under	which	the	program
retrieving	the	Data	Transformation	Services	(DTS)	package	information	is
running	is	the	same	as	the	owner	of	the	package.

Applies	To

PackageInfo	Object

Syntax
object.IsOwner

Part Description
object Expression	that	evaluates	to	a	PackageInfo	object

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsOwner(VARIANT_BOOL	*pRetVal);

See	Also

Owner	Property

JavaScript:hhobj_1.Click()

DTS	Programming

IsPackageDSORowset	Property
The	IsPackageDSORowset	property	specifies	whether	the	current	step	executes
and	returns	a	rowset	when	the	Data	Transformation	Services	(DTS)	package	is	a
rowset	provider.

Applies	To

Step	Object Step2	Object

Syntax
object.IsPackageDSORowset	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list.
value A	value	indicating	whether	the	current	step	executes	and	returns	a

rowset

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetIsPackageDSORowset(VARIANT_BOOL	*pRetVal);

HRESULT	SetIsPackageDSORowset(VARIANT_BOOL	NewValue);

Remarks

The	default	is	FALSE.

The	IsPackageDSORowset	property	cannot	be	set	to	TRUE	for	steps	that
reference	the	DTS	flat	file	OLE	DB	provider,	because	that	provider	does	not
support	the	IDBSchemaRowset	interface.	Other	providers	that	do	not	support
IDBSchemaRowset	also	cannot	be	referenced	by	steps	that	return	DSO	rowsets.

See	Also

Querying	a	Package	with	OPENROWSET

Issuing	Distributed	Queries	Against	Package	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

DTS	Programming

IsVersionEncrypted	Property
The	IsVersionEncrypted	property	specifies	whether	a	version	of	the	Data
Transformation	Services	(DTS)	package	was	encrypted	when	saved.

Applies	To

SavedPackageInfo	Object

Syntax
object.IsVersionEncrypted

Part Description
object Expression	that	evaluates	to	a	SavedPackageInfo	object

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetIsVersionEncrypted(VARIANT_BOOL	*pRetVal);

Remarks
The	package	version	will	be	encrypted	if	either	an	owner	password	or	a	user
password	was	specified	when	the	package	was	saved.

See	Also

SaveToStorageFile	Method

SaveToStorageFileAs	Method

DTS	Programming

JITDebug	Property
The	JITDebug	property	specifies	whether	a	run-time	error	in	a	Microsoft®
ActiveX®	script	causes	a	scripting	debugger	session	to	be	opened.

Applies	To

Application	Object

Syntax
object.JITDebug	[=	value]

Part Description
object Expression	that	evaluates	to	an	Application	object.
value If	TRUE,	the	script	debugger	is	entered.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetJITDebug(VARIANT_BOOL	*pRetVal);

HRESULT	SetJITDebug(VARIANT_BOOL	NewValue);

Remarks
If	JITDebug	is	TRUE,	the	following	behavior	occurs	in	response	to	different
error	types.

JavaScript:hhobj_1.Click()

Error	Type Behavior
Hard	break	(for	example,	a
Microsoft	Visual	Basic®
Scripting	Edition	(VBScript)
Stop	statement)

The	Script	Debugger	is	entered	if	you
agree	to	debug	the	script.

Run-time	errors	and	errors	raised
by	objects

The	Script	Debugger	is	entered	without
prompting.

If	JITDebug	is	FALSE,	the	following	behavior	occurs	in	response	to	different
error	types.

Error	Type Behavior
Hard	break	(for	example,	a
VBScript	Stop	statement)

The	break	is	ignored,	and	the	script
continues	to	execute.

Run-time	errors The	script	fails	and	an	error	message	is
displayed.

Errors	raised	by	objects An	error	message	supplied	by	the	object	is
displayed.

See	Also

DesignerSettings	Property

DTS	Programming

JoinTransactionIfPresent	Property
The	JoinTransactionIfPresent	property	specifies	whether	a	step	executes
within	the	Data	Transformation	Services	(DTS)	package	transaction.

Applies	To

Step	Object Step2	Object

Syntax
object.JoinTransactionIfPresent[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value A	value	indicating	whether	a	step	executes	within	the	package

transaction

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetJoinTransactionIfPresent(VARIANT_BOOL	*pRetVal);

HRESULT	SetJoinTransactionIfPresent(VARIANT_BOOL	NewValue);

Remarks
JoinTransactionIfPresent	can	be	set	to	TRUE	if	the	package	UseTransaction

property	is	TRUE.

See	Also

InTransaction	Property

TransactionIsolationLevel	Property

UseTransaction	Property

DTS	Programming

KeepIdentity	Property
The	KeepIdentity	property	indicates	whether	the	data	in	the	file	is	used	for	the
values	of	identity	columns.

Applies	To

BulkInsertTask	Object

Syntax
object.KeepIdentity	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value A	value	indicating	whether	the	data	in	the	file	is	used	for	the

values	of	identity	columns

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetKeepIdentity(VARIANT_BOOL	*pRetVal);

HRESULT	SetKeepIdentity(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE,	which	causes	the	database	to	assign	values	to	identity

columns	upon	insertion.

See	Also

KeepNulls	Property

DTS	Programming

KeepNulls	Property
The	KeepNulls	property	returns	or	sets	a	value	indicating	whether	NULL
columns	should	keep	NULL	values	even	if	defaults	exists	on	destination
columns.

Applies	To

BulkInsertTask	Object

Syntax
object.KeepNulls	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value A	value	indicating	whether	NULL	columns	keep	NULL	values

Remarks
The	default	is	FALSE,	which	causes	the	database	to	assign	the	default	value
upon	insertion.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetKeepNulls(VARIANT_BOOL	*pRetVal);

HRESULT	SetKeepNulls(VARIANT_BOOL	NewValue);

See	Also

KeepIdentity	Property

DTS	Programming

Language	Property
The	Language	property	specifies	the	Microsoft®	ActiveX®	scripting	language
the	transformation	is	using.

Applies	To

DataPumpTransformScript	Object DTSTransformScriptProperties2
Object

Syntax
object.Language	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Scripting	language	being	used

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLanguage(BSTR	*pRetVal);

HRESULT	SetLanguage(BSTR	NewValue);

Remarks
The	default	is	Microsoft	Visual	Basic®	Scripting	Edition	(VBScript).

Script	languages	available	on	a	particular	system	can	be	determined	by
enumerating	the	ScriptingLanguageInfos	collection	of	the	Application	object.
For	more	information	about	which	scripting	language	to	use	with	Data
Transformation	Services	(DTS),	see	ScriptingLanguageInfo	Object.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("Language")	[=	string]

See	Also

Application	Object

ScriptingLanguageInfos	Collection

ScriptLanguage	Property

Text	Property

JavaScript:hhobj_1.Click()

DTS	Programming

LastOwnerTaskName	Property
The	LastOwnerTaskName	property	specifies	the	last	task	to	use	the	connection.

Applies	To

Connection	Object Connection2	Object

Syntax
object.LastOwnerTaskName

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLastOwnerTaskName(BSTR	*pRetVal);

See	Also

Connected	Property

ReleaseConnection	Method

DTS	Programming

LastRow	Property
The	LastRow	property	specifies	the	last	source	row	to	copy.

Applies	To

BulkInsertTask	Object DataPumpTask	Object
DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object

Syntax
object.LastRow[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Last	source	row	to	copy

Data	Type
Variant	(Long	in	the	BulkInsertTask	object)

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLastRow(VARIANT	*pRetVal);

HRESULT	SetLastRow(VARIANT	NewValue);

Remarks
The	default	is	0,	which	specifies	that	all	rows	are	to	be	copied.

See	Also

FirstRow	Property

DTS	Programming

LineageFullID	Property
The	LineageFullID	property	specifies	a	globally	unique	identifier	(GUID)	that
uniquely	identifies	the	lineage	record	for	the	execution	of	a	Data	Transformation
Services	(DTS)	package	stored	in	Microsoft®	SQL	Server™	2000	Meta	Data
Services.

Applies	To

PackageLineage	Object StepLogRecord	Object
PackageLogRecord	Object 	

Syntax
object.LineageFullID

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLineageFullID(BSTR	*pRetVal);

Remarks
If	the	package	is	not	hosted	in	Meta	Data	Services,	a	unique	LineageFullID	is
generated	by	DTS	for	each	execution	of	the	package.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	X	represents	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12
digits.

See	Also

GetLastExecutionLineage	Method

LineageOptions	Property

LineageShortID	Property

RepositoryMetadataOptions	Property

Using	the	Data	Lineage	Feature

JavaScript:hhobj_1.Click()

DTS	Programming

LineageOptions	Property
The	LineageOptions	property	specifies	how	Data	Transformation	Services
(DTS)	package	execution	lineage	is	presented	and	recorded.

Applies	To

Package	Object Package2	Object

Syntax
object.LineageOptions[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value The	way	package	execution	lineage	is	presented	and	recorded

Data	Type
DTSLineageOptions

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLineageOptions(DTSLineageOptions	*pRetVal);

HRESULT	SetLineageOptions(DTSLineageOptions	NewValue);

Remarks
LineageOptions	must	be	set	to	one	of	the	DTSLineageOptions	values.

See	Also

GetLastExecutionLineage	Method

RepositoryMetadataOptions	Property

Using	the	Data	Lineage	Feature

JavaScript:hhobj_1.Click()

DTS	Programming

LineageShortID	Property
The	LineageShortID	property	specifies	a	value	that	uniquely	identifies	the
lineage	record	for	the	execution	of	a	Data	Transformation	Services	(DTS)
package	that	is	stored	in	Microsoft®	SQL	Server™	2000	Meta	Data	Services.

Applies	To

PackageLineage	Object PackageLogRecord	Object

Syntax
object.LineageShortID

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLineageShortID(BSTR	*pRetVal);

Remarks
If	the	package	is	not	hosted	in	Meta	Data	Services,	a	unique	LineageShortID
property	is	generated	by	DTS	for	each	execution	of	the	package.	Because
LineageShortID	is	a	long	value,	it	is	more	convenient	to	use	for	indexed
columns	in	a	database	than	the	LineageFullID,	which	is	a	globally	unique

identifier	(GUID)	string.

See	Also

GetLastExecutionLineage	Method

LineageFullID	Property

LineageOptions	Property

RepositoryMetadataOptions	Property

Using	the	Data	Lineage	Feature

JavaScript:hhobj_1.Click()

DTS	Programming

LogDate	Property
The	LogDate	property	specifies	the	date	and	time	that	the	Data	Transformation
Services	(DTS)	package	log	record	was	written.

Applies	To

PackageLogRecord	Object

Syntax
object.LogDate

Part Description
object Expression	that	evaluates	to	a	PackageLogRecord	object

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetLogDate(DATE	*pRetVal);

See	Also

FinishTime	Property

StartTime	Property

DTS	Programming

LogFileName	Property
The	LogFileName	property	specifies	the	name	and	path	of	the	error	log	file.

Applies	To

Package	Object Package2	Object

Syntax
object.LogFileName	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Name	of	the	log	file

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogFileName(BSTR	*pRetVal);

HRESULT	SetLogFileName(BSTR	NewValue);

Remarks
If	LogFileName	is	specified,	Data	Transformation	Services	(DTS)	package	error
entries	are	copied	to	this	file.

See	Also

FailOnError	Property

WriteCompletionStatusToNTEventLog	Property

DTS	Programming

LogServerFlags	Property
The	LogServerFlags	property	sets	or	returns	a	value	indicating	whether
Windows	Authentication	is	used	to	validate	access	to	the	log	server.

Applies	To

Package2	Object

Syntax
object.LogServerFlags	[=	value]

Part Description
object Expression	that	evaluates	to	a	Package2	object
value Code	that	defines	the	type	of	user	authentication	used	when

accessing	the	log	server

Data	Type
DTSSQLServerStorageFlags

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogServerFlags(DTSSQLServerStorageFlags*	pVal);

HRESULT	SetLogServerFlags(DTSSQLServerStorageFlags	pVal);

See	Also

FailPackageOnLogFailure	Property

LogServerName	Property

LogServerPassword	Property

LogServerUserName	Property

LogToSQLServer	Property

DTS	Programming

LogServerName	Property
The	LogServerName	property	sets	or	returns	the	name	of	the	computer	running
an	instance	of	Microsoft®	SQL	Server™	to	which	package	logs	are	written.

Applies	To

Package2	Object

Syntax
object.LogServerName	[=	name]

Part Description
object Expression	that	evaluates	to	a	Package2	object
name Name	of	the	server	to	which	logs	are	written

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogServerName(BSTR*	pVal);

HRESULT	SetLogServerName(BSTR	pVal);

See	Also

FailPackageOnLogFailure	Property

LogServerFlags	Property

LogServerPassword	Property

LogServerUserName	Property

LogToSQLServer	Property

DTS	Programming

LogServerPassword	Property
The	LogServerPassword	property	sets	or	returns	the	password	used	to	log	in	to
the	instance	of	Microsoft®	SQL	Server™	to	which	package	logs	are	written.

Applies	To

Package2	Object

Syntax
object.LogServerPassword	[=	string]

Part Description
object Expression	that	evaluates	to	a	Package2	object
string Password	to	log	in	to	the	instance	of	SQL	Server	to	which	logs	are

written

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogServerPassword(BSTR*	pVal);

HRESULT	SetLogServerPassword(BSTR	pVal);

Remarks
This	property	is	used	only	when	the	LogServerFlags	has	the	value

DTSSQLStgFlag_Default.

See	Also

FailPackageOnLogFailure	Property

LogServerFlags	Property

LogServerName	Property

LogServerUserName	Property

LogToSQLServer	Property

DTS	Programming

LogServerUserName	Property
The	LogServerUserName	property	sets	or	returns	the	user	name	used	to	log	in
to	the	instance	of	Microsoft®	SQL	Server™	to	which	package	logs	are	written.

Applies	To

Package2	Object

Syntax
object.LogServerUserName	[=	string]

Part Description
object Expression	that	evaluates	to	a	Package2	object
string User	name	to	log	in	to	the	instance	of	SQL	Server	to	which	logs

are	written

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogServerUserName(BSTR*	pVal);

HRESULT	SetLogServerUserName(BSTR	pVal);

Remarks
This	property	is	used	only	when	the	LogServerFlags	has	the	value

DTSSQLStgFlag_Default.

See	Also

FailPackageOnLogFailure	Property

LogServerFlags	Property

LogServerName	Property

LogServerPassword	Property

LogToSQLServer	Property

DTS	Programming

LogToSQLServer	Property
The	LogToSQLServer	property	sets	or	returns	a	value	indicating	whether	Data
Transformation	Services	(DTS)	package	execution	is	logged	to	the	specified
Microsoft®	SQL	Server™	2000	msdb	database.

Applies	To

Package2	Object

Syntax
object.LogToSQLServer	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	Package2	object
boolean Boolean	that	specifies	whether	package	execution	is	logged	to

the	specified	msdb	database

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetLogToSQLServer(VARIANT_BOOL*	pRetVal);

HRESULT	SetLogToSQLServer(VARIANT_BOOL	pRetVal);

Remarks

The	default	is	FALSE,	package	execution	is	logged	to	a	log	file	or	the	Microsoft
Windows®	event	log.	If	TRUE,	the	LogServerName	property	specifies	the
instance	of	SQL	Server	to	which	logs	are	written.

See	Also

FailPackageOnLogFailure	Property

LogServerFlags	Property

LogServerName	Property

LogServerPassword	Property

LogServerUserName	Property

DTS	Programming

LowerCaseString	Property
The	LowerCaseString	property	specifies	or	returns	a	value	indicating	whether
the	alphabetical	characters	in	the	source	column	string	copied	by	custom
transformations	are	converted	to	lowercase	characters.

Applies	To

DataPumpTransformMidString
Object

DataPumpTransformTrimString
Object

Syntax
transerver.LowerCaseString	[=	logical]

Part Description
transerver Expression	that	evaluates	to	a	transformation	object	from	the

Applies	To	list
logical Boolean	that	specifies	whether	the	alpha	characters	in	the

source	string	are	converted	to	uppercase

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	LowerCaseString(VARIANT_BOOL*	pRetVal);

HRESULT	LowerCaseString(VARIANT_BOOL	pRetVal);

Remarks
The	default	is	FALSE.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("LowerCaseString")	[=	logical]

See	Also

DataPumpTransformLowerString	Object

UpperCaseString	Property

DTS	Programming

MaxCacheRows	Property
The	MaxCacheRows	property	specifies	the	maximum	number	of	rows	to	cache.

Applies	To

Lookup	Object

Syntax
object.MaxCacheRows	[=	value]

Part Description
object Expression	that	evaluates	to	a	Lookup	object
value Maximum	number	of	rows	that	are	cached

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMaxCacheRows(LONG	*pRetVal);

HRESULT	SetMaxCacheRows(LONG	NewValue);

Remarks
The	Execute	method	of	the	DTSLookups	scripting	object	checks	the	cache	of
the	Lookup	object	for	the	requested	row	before	querying	the	lookup's	data
source.	This	results	in	significant	performance	improvement	if	the	target	row	is

usually	found	in	the	cache.

A	value	of	0	means	no	rows	are	cached.	The	default	is	100.

See	Also

ConnectionID	Property

Execute	Method	(DTS)

DTS	Programming

MaxConcurrentSteps	Property
The	MaxConcurrentSteps	property	specifies	the	maximum	number	of	Data
Transformation	Services	(DTS)	steps	executing	concurrently	on	separate	threads.

Applies	To

Package	Object Package2	Object

Syntax
object.MaxConcurrentSteps	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Maximum	number	of	steps	executing	concurrently

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMaxConcurrentSteps(LONG	*pRetVal);

HRESULT	SetMaxConcurrentSteps(LONG	NewValue);

Remarks
The	default	is	4.

See	Also

ExecuteInMainThread	Property

DTS	Programming

MaximumErrorCount	Property
The	MaximumErrorCount	property	specifies	the	maximum	number	of	error
rows	before	the	data	pump	terminates.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Syntax
object.MaximumErrorCount	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Maximum	number	of	error	rows	before	the	data	pump	terminates

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMaximumErrorCount(LONG	*pRetVal);

HRESULT	SetMaximumErrorCount(LONG	NewValue);

Remarks

The	default	is	0.

See	Also

FailOnError	Property

FailPackageOnError	Property

GetExecutionErrorInfo	Method

DTS	Programming

MaximumErrors	Property
The	MaximumErrors	property	specifies	the	maximum	number	of	errors	that
can	occur	before	the	server	terminates	the	load	operation.

Applies	To

BulkInsertTask	Object

Syntax
object.MaximumErrors	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Maximum	number	of	errors	that	can	occur

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMaximumErrors(LONG	*pRetVal);

HRESULT	SetMaximumErrors(LONG	NewValue);

Remarks
The	default	is	10.

Transformations	will	fail	at	the	first	error	if	Fastload	is	being	used	as	long	as	the

BatchSize	property	is	0,	even	if	MaximumErrors	is	changed.	This	failure
occurs	because	all	the	rows	are	batched	in	a	single	transaction.	If	you	want	to	log
more	errors	to	the	exception	file,	either	do	not	use	Fastload	or	set	the	BatchSize
property	to	another	value,	such	as	1.

See	Also

BatchSize	Property

DTS	Programming

MessageDataFile	Property
The	MessageDataFile	property	sets	or	returns	the	name	and	path	of	the	file	that
provides	the	data	for	a	DTSMessageQueueTask	object	data	file	message.

Applies	To

DTSMQMessage	Object

Syntax
object.MessageDataFile	[=	filespec]

Part Description
object Expression	that	evaluates	to	a	DTSMQMessage	object
filespec Name	and	path	of	the	file	that	provides	the	data	for	the	message

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	MessageDataFile(BSTR*	pVal);

HRESULT	MessageDataFile(BSTR	pVal);

Remarks
The	MessageDataFile	property	must	be	defined	if	the	MessageType	property	is
DTSMQMessageType_DataFile.

See	Also

DTSMQMessageType

MessageGlobalVariables	Property

MessageString	Property

MessageType	Property

DTS	Programming

MessageGlobalVariables	Property
The	MessageGlobalVariables	property	sets	or	returns	a	list	of	the	names	of	the
global	variables	that	provides	the	data	for	a	DTSMessageQueueTask	object
global	variables	message.

Applies	To

DTSMQMessage	Object

Syntax
object.MessageGlobalVariables	[=	list]

Part Description
object Expression	that	evaluates	to	a	DTSMQMessage	object
list Semicolon-separated	list	of	the	Data	Transformation	Services

(DTS)	global	variables	used	to	construct	the	message

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	MessageGlobalVariables(BSTR*	pVal);

HRESULT	MessageGlobalVariables(BSTR	pVal);

Remarks

The	MessageGlobalVariables	property	must	be	defined	if	the	MessageType
property	is	DTSMQMessageType_DTSGlobalVariables.	The	global	variables
must	be	defined	in	the	package	that	contains	the	DTSMessageQueueTask
object.

See	Also

DTSMQMessageType

MessageDataFile	Property

MessageString	Property

MessageType	Property

DTS	Programming

MessageString	Property
The	MessageString	property	sets	or	returns	the	string	used	as	the	data	for	a
DTSMessageQueueTask	object	string	message.

Applies	To

DTSMQMessage	Object

Syntax
object.MessageString	[=	string]

Part Description
object Expression	that	evaluates	to	a	DTSMQMessage	object
string String	used	as	the	data	for	the	message

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	MessageString(BSTR*	pVal);

HRESULT	MessageString(BSTR	pVal);

Remarks
The	MessageString	property	must	be	defined	if	the	MessageType	property	is
DTSMQMessageType_String.

See	Also

DTSMQMessageType

MessageDataFile	Property

MessageGlobalVariables	Property

MessageType	Property

DTS	Programming

MessageText	Property
The	MessageText	property	is	the	body	of	an	e-mail	message.

Applies	To

SendMailTask	Object

Syntax
object.MessageText[=	value]

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
value Text	string	that	is	the	body	of	an	e-mail	message

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetMessageText(BSTR	*pRetVal);

HRESULT	SetMessageText(BSTR	NewValue);

See	Also

CCLine	Property

Subject	Property

ToLine	Property

DTS	Programming

MessageType	Property
The	MessageType	property	sets	or	returns	the	type	of	message	defined	by	the
DTSMQMessage	object.

Applies	To

DTSMQMessage	Object

Syntax
object.MessageType	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSMQMessage	object
value Code	that	defines	the	message	type

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	MessageType(long*	pVal);

HRESULT	MessageType(long	pVal);

Remarks
The	valid	values	for	this	property	are	defined	by	the	DTSMQMessageType
constants.

See	Also

DTSMQMessageType

MessageDataFile	Property

MessageGlobalVariables	Property

MessageString	Property

DTS	Programming

Month??LongName	Property
The	Month??LongName	property	specifies	or	returns	the	string	to	be	used	for
the	long	(full)	name	of	the	indicated	month.	??	is	a	month	number	from	1
through	12.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.Month??LongName	[=	name]

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object.
?? Month	number	from	1	through	12,	without	a	leading	0.
name Long	(full)	name	of	the	specified	month.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	Month??LongName(BSTR*	pRetVal);

HRESULT	Month??LongName(BSTR	pRetVal);

Remarks

The	default	value	is	the	English	month	name.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("Month??LongName")	[=	name]

See	Also

GetMonthLongName	Method

GetMonthShortName	Method

InputFormat	Property

Month??ShortName	Property

OutputFormat	Property

SetMonthLongName	Method

SetMonthShortName	Method

DTS	Programming

Month??ShortName	Property
The	Month??ShortName	property	specifies	or	returns	the	string	to	be	used	for
the	short	(3-character	abbreviation)	name	of	the	indicated	month.	??	is	a	month
number	from	1	through	12.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.Month??ShortName	[=	name]

Part Description
Object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object.
?? Month	number	from	1	through	12,	without	a	leading	0.
name Short	(3-character	abbreviation)	name	of	the	specified	month.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	Month??ShortName(BSTR*	pRetVal);

HRESULT	Month??ShortName(BSTR	pRetVal);

Remarks

The	default	value	is	the	English	month	abbreviation.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("Month??ShortName")	[=	name]

See	Also

GetMonthLongName	Method

GetMonthShortName	Method

InputFormat	Property

Month??LongName	Property

OutputFormat	Property

SetMonthLongName	Method

SetMonthShortName	Method

DTS	Programming

Name	Property
The	Name	property	specifies	the	name	of	a	Data	Transformation	Services	(DTS)
object.

Applies	To

ActiveScriptTask	Object OLEDBProviderInfo	Object
BulkInsertTask	Object Package	Object
Column	Object Package2	Object
Connection	Object PackageInfo	Object
Connection2	Object PackageLineage	Object
CreateProcessTask	Object PackageLogRecord	Object
CreateProcessTask2	Object PackageRepository	Object
CustomTask	Object PackageSQLServer	Object
DataDrivenQueryTask	Object ParallelDataPumpTask	Object
DataDrivenQueryTask2	Object Property	Object
DataPumpTask	Object ScriptingLanguageInfo	Object
DataPumpTask2	Object SendMailTask	Object
DTSFTPTask	Object Step	Object
DTSMessageQueueTask	Object Step2	Object
DynamicPropertiesTask	Object StepLineage	Object
ExecutePackageTask	Object StepLogRecord	Object
ExecuteSQLTask	Object Task	Object
ExecuteSQLTask2	Object TaskInfo	Object
GlobalVariable	Object TransferObjectsTask	Object
GlobalVariable2	Object TransferObjectsTask2	Object
Lookup	Object Transformation	Object
OLEDBProperty	Object Transformation2	Object
OLEDBProperty2	Object TransformationSet	Object

Syntax

object.Name	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Name	of	a	DTS	object

Data	Type
Object

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetName(BSTR	*pRetVal);

HRESULT	SetName(BSTR	NewValue);

Remarks
Name	is	a	unique,	user-defined	text	label	for	a	Package2	object.	When	saved	to
an	instance	of	Microsoft®	SQL	Server™	or	SQL	Server	2000	Meta	Data
Services,	this	name	is	used	as	a	primary	key.

A	nonempty	value	for	the	Name	property	is	required	for	most	other	DTS	objects,
as	well.

See	Also

Description	Property

DTS	Programming

NestedExecutionLevel	Property
The	NestedExecutionLevel	property	specifies	the	number	of	times	a	Data
Transformation	Services	(DTS)	package	that	contains	an	Execute	Package	task
recursively	executes	the	same	or	another	package	that	also	contains	an	Execute
package	task.

Applies	To

Package2	Object

Syntax
object.NestedExecutionLevel	[=	value]

Part Description
object Expression	that	evaluates	to	a	Package2	object
value Nesting	depth	of	Execute	Package	invocations

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetNestedExecutionLevel(long	*pVal);

Remarks
The	innermost	package	in	the	calling	sequence	will	fail	if	the
NestedExecutionLevel	property	reaches	a	preset	value	(32).	This	property	can

be	used	to	detect	excessive	recursive	calls	by	Execute	Package	tasks	before	this
limit	is	reached.

See	Also

ExecutePackageTask	Object

DTS	Programming

NonOverwritable	Property
The	NonOverwritable	property	sets	or	returns	a	value	indicating	whether	a
destination	file	will	be	overwritten	if	it	already	exists,	when	copied	by	a
DTSFTPTask	object.

Applies	To

DTSFTPTask	Object

Syntax
object.NonOverwritable	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	DTSFTPTask	object.
boolean If	TRUE,	transfer	of	a	source	file	is	inhibited	if	the	destination

file	already	exists.	If	FALSE,	the	destination	file	is	overwritten.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	NonOverwritable(VARIANT_BOOL*	pVal);

HRESULT	NonOverwritable(VARIANT_BOOL	pVal);

Remarks

No	error	is	raised	when	the	transfer	of	a	source	file	is	inhibited	by	the
NonOverwritable	property.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("NonOverwritable")	[=	boolean]

See	Also

DestSite	Property

DTS	Programming

Nullable	Property
The	Nullable	property	specifies	whether	a	column	can	contain	null	values.

Applies	To

Column	Object

Syntax
object.Nullable	[=	value]

Part Description
object Expression	that	evaluates	to	a	Column	object
value A	value	indicating	whether	a	column	can	contain	null	values

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNullable(VARIANT_BOOL	*pRetVal);

HRESULT	SetNullable(VARIANT_BOOL	NewValue);

See	Also

DataType	Property

Flags	Property

DTS	Programming

NumericScale	Property
The	NumericScale	property	specifies	the	numeric	scale	of	the	column	if	it	has	a
decimal	or	numeric	data	type.

Applies	To

Column	Object

Syntax
object.NumericScale	[=	value]

Part Description
object Expression	that	evaluates	to	a	Column	object
value Numeric	scale	of	the	column

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetNumericScale(LONG	*pRetVal);

HRESULT	SetNumericScale(LONG	NewValue);

See	Also

DataType	Property

Flags	Property

DTS	Programming

NumRetriesOnSource	Property
The	NumRetriesOnSource	property	sets	or	returns	the	number	of	times	a
connection	to	the	source	will	be	attempted	before	a	DTSFTPTask	object
considers	it	failed.

Applies	To

DTSFTPTask	Object

Syntax
object.NumRetriesOnSource	[=	number]

Part Description
object Expression	that	evaluates	to	a	DTSFTPTask	object
number Number	of	times	connection	to	the	source	will	be	attempted

before	considered	failed

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	NumRetriesOnSource(long*	pVal);

HRESULT	NumRetriesOnSource(long	pVal);

Remarks

No	error	is	raised	when	the	transfer	of	a	source	file	is	inhibited	by	the
NonOverwritable	property.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("NumRetriesOnSource")	[=	number]

See	Also

SourceLocation	Property

SourceSite	Property

DTS	Programming

OEMFile	Property
The	OEMFile	property	specifies	or	returns	a	value	indicating	whether	the	data
read	from	or	written	to	files	by	custom	transformations	is	translated	from	or	to
the	client	OEM	code	page.

Applies	To

DataPumpTransformReadFile	Object DataPumpTransformWriteFile
Object

Syntax
transerver.OEMFile	[=	boolean]

Part Description
transerver Expression	that	evaluates	to	an	object	in	the	Applies	To	list.
boolean If	TRUE,	the	file	data	is	translated	through	the	client	OEM

code	page.	Default	is	FALSE.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	OEMFile(VARIANT_BOOL*	pRetVal);

HRESULT	OEMFile(VARIANT_BOOL	pRetVal);

Remarks

If	the	UnicodeFile	property	is	TRUE,	the	OEMFile	property	is	ignored.

For	Read	File,	the	file	is	translated	through	the	client	OEM	code	page	to
Unicode	if	the	OEMFile	property	is	TRUE.	If	the	destination	column	is	not
Unicode,	the	data	is	translated	again	from	Unicode	to	ANSI.

For	Write	File,	the	source	column	data	has	already	been	translated	to	Unicode,
if	necessary.	It	is	then	translated	through	the	client	OEM	code	page	if	the
OEMFile	property	is	TRUE.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("OEMFile")	[=	boolean]

See	Also

UnicodeFile	Property

DTS	Programming

Operator	Property
The	Operator	property	specifies	the	logged-in	user	that	ran	the	Data
Transformation	Services	(DTS)	package	for	which	a	lineage	or	log	record	was
written.

Applies	To

PackageLineage	Object PackageLogRecord	Object

Syntax
object.Computer

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetOperator(BSTR	*pRetVal);

See	Also

Computer	Property

DTS	Programming

Ordinal	Property
The	Ordinal	property	specifies	the	ordinal	position	of	a	column	in	a	table	or
rowset.

Applies	To

Column	Object

Syntax
object.Ordinal	[=	value]

Part Description
object Expression	that	evaluates	to	a	Column	object
value Ordinal	position	of	a	column

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOrdinal(LONG	*pRetVal);

HRESULT	SetOrdinal(LONG	NewValue);

Remarks
The	value	of	the	Ordinal	property	for	the	first	column	is	1.

See	Also

ColumnID	Property

DTS	Programming

OutputAsRecordset	Property
The	OutputAsRecordset	property	returns	or	specifies	whether	the	entire	rowset
generated	by	the	Execute	SQL	task	query	should	be	stored	in	a	global	variable.

Applies	To

ExecuteSQLTask2	Object

Syntax
object.OutputAsRecordset	[=	value]

Part Description
object Expression	that	evaluates	to	an	ExecuteSQLTask2	object
value Whether	the	entire	rowset	should	be	stored	in	a	global	variable

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOutputAsRecordset(VARIANT_BOOL	*pRetVal);

HRESULT	SetOutputAsRecordset(VARIANT_BOOL	NewValue);

Remarks
The	rowset	is	placed	in	the	first	named	global	variable	in	the
OutputGlobalVariableNames	list	as	a	disconnected	Microsoft®	ActiveX®

Data	Objects	(ADO)	recordset.	The	variable	is	set	to	Nothing	if	no	rowset	is
returned	from	the	query.

See	Also

OutputGlobalVariableNames	Property

SQLStatement	Property

DTS	Programming

OutputFormat	Property
The	OutputFormat	property	specifies	or	returns	a	string	that	defines	the	format
of	the	datetime	string	in	the	destination	column.	This	format	string	consists	of
tokens	and	delimiters,	which	define	how	components	of	the	date	and	time	are	to
be	formatted.	The	delimiters	are	explicitly	written	to	the	destination	column.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.OutputFormat	[=	formatstring]

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object.
formatstring String	consisting	of	tokens	and	delimiters,	which	define	the

format	of	the	source	column.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	OutputFormat(BSTR*	pRetVal);

HRESULT	OutputFormat(BSTR	pRetVal);

Remarks
The	tokens	that	can	be	used	in	the	InputFormat	and	OutputFormat	properties
are	defined	as	follows.

Token Description
yyyy 4	digit	year.
yy 2	digit	year.
MMMM Month	long	name.
MMM Month	3-char	abbreviation.
MM 2-digit	month	number	01..12.
M 1-	or	2-digit	month	number,	1..12.
dddd Day	of	week	long	name.
ddd Day	of	week	3-char	abbreviation.
dd 2-digit	day	number	01..31.
d 1-	or	2-digit	day	number	1..31.
hh 2-digit	hours	01..12.
h 1-	or	2-digit	hours	1..12.
HH 2-digit	hours	00..23.
H 1-	or	2-digit	hours	0..23.
mm 2-digit	minutes	00..59.
m 1-	or	2-digit	minutes	0..59.
ss 2-digit	seconds	00..59.
s 1-	or	2-digit	seconds	0..59.
f[f[f...]]] Fraction	of	second,	in	the	number	of	digits	as	"f"s

specified.
tt Symbol	for	A.M.	or	P.M.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("OutputFormat")	[=	formatstring]

See	Also

AMSymbol	Property

Day?LongName	Property

Day?ShortName	Property

GetDayLongName	Method

GetDayShortName	Method

GetMonthLongName	Method

GetMonthShortName	Method

InputFormat	Property

Month??LongName	Property

Month??ShortName	Property

PMSymbol	Property

SetDayLongName	Method

SetDayShortName	Method

SetMonthLongName	Method

SetMonthShortName	Method

ShortYear2000Cutoff	Property

DTS	Programming

OutputGlobalVariableNames	Property
The	OutputGlobalVariableNames	property	returns	or	specifies	a	list	of	Data
Transformation	Services	(DTS)	global	variable	names	that	are	to	receive	values
from	fields	of	a	rowset	or	the	entire	rowset.	The	values	and	rowsets	are
generated	by	the	Execute	SQL	task	query.

Applies	To

ExecuteSQLTask2	Object

Syntax
object.OutputGlobalVariableNames	[=	list]

Part Description
object Expression	that	evaluates	to	an	ExecuteSQLTask2	object
list List	of	global	variable	names

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetOutputGlobalVariableNames(BSTR	*pRetVal);

HRESULT	SetOutputGlobalVariableNames(BSTR	NewValue);

Remarks

The	format	of	the	OutputGlobalVariableNames	string	is	a	semicolon
delimited,	optionally	double-quoted	or	single-quoted	list.	Quoting	is	required
only	when	the	name	contains	an	embedded	delimiter.	Embedded	delimiters	must
be	doubled.	A	double-delimiter	or	a	trailing	delimiter	indicates	an	empty	item.
For	example:

			"gv1";gv2							-	delimiters	not	required	here
			gv1;"gv""2"					-	gv"2	embedded	delimiter	is	doubled
			gv1;;gv2;							-	contains	an	empty	second	and	fourth	item

Values	from	the	first	row	of	the	rowset	are	placed	into	the	global	variables	in	the
list	by	ordinal	position.	Empty	items	in	the	list	cause	rowset	columns	to	be
skipped.	If	the	global	variable	does	not	already	exist,	one	is	created	unless	the
DTS	package	ExplicitGlobalVariables	property	is	set.	In	this	case,	an	error
occurs.

If	the	OutputAsRecordset	property	is	set,	the	entire	rowset	is	placed	in	the	first
named	global	variable	as	a	disconnected	Microsoft®	ActiveX®	Data	Objects
(ADO)	recordset.	The	variable	is	set	to	Nothing	if	no	rowset	is	returned	from	the
query.

See	Also

GlobalVariables	Collection

InputGlobalVariableNames	Property

OutputAsRecordset	Property

SQLStatement	Property

DTS	Programming

Owner	Property
The	Owner	property	specifies	the	login	of	the	owner	of	the	Data	Transformation
Services	(DTS)	package.

Applies	To

PackageInfo	Object

Syntax
object.Owner

Part Description
object Expression	that	evaluates	to	a	PackageInfo	object

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetOwner(BSTR	*pRetVal);

Remarks
The	following	code	illustrates	the	value	returned	by	the	Owner	property:

			REDMOND\johndoe

See	Also

IsOwner	Property

DTS	Programming

PackageCreationDate	Property
The	PackageCreationDate	property	specifies	the	date	and	time	that	the	Data
Transformation	Services	(DTS)	package	was	first	created.

Applies	To

SavedPackageInfo	Object

Syntax
[date	=]	object.PackageCreationDate

Part Description
object Expression	that	evaluates	to	a	SavedPackageInfo	object
date Date	the	package	version	was	created

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPackageCreationDate(DATE	*pRetVal);

See	Also

CreationDate	Property

DTS	Programming

PackageDataSize	Property
The	PackageDataSize	property	specifies	the	size	of	the	Data	Transformation
Services	(DTS)	package	in	Microsoft®	SQL	Server™	storage.

Applies	To

PackageInfo	Object

Syntax
object.PackageDataSize

Part Description
object Expression	that	evaluates	to	a	PackageInfo	object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPackageDataSize(long	*pRetVal);

Remarks
The	PackageDataSize	is	specified	in	bytes.	It	is	not	available	for	packages
stored	in	SQL	Server	2000	Meta	Data	Services	(0	is	returned).

See	Also

EnumPackageInfos	Method

PackageInfos	Collection

DTS	Programming

PackageID	Property
The	PackageID	property	specifies	the	globally	unique	Data	Transformation
Services	(DTS)	package	identifier,	which	is	a	string	representation	of	a	globally
unique	identifier	(GUID).

Applies	To

ExecutePackageTask	Object PackageLineage	Object
Package	Object PackageLogRecord	Object
Package2	Object SavedPackageInfo	Object
PackageInfo	Object 	

Syntax
[guidstring	=]	object.PackageID

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
guidstring Package	ID	of	the	referenced	package

Data	Type
String

Modifiable
Read-write	for	the	ExecutePackageTask	object.	Read-only	for	the	others.

Prototype	(C/C++)
HRESULT	GetPackageID(BSTR	*pRetVal);

Remarks

For	the	ExecutePackageTask	object,	the	PackageID	does	not	need	to	be
specified	if	sufficient	other	information	is	specified	to	identify	the	package.	If
the	VersionID	is	not	specified,	the	most	recent	version	of	the	package	is	run.

To	determine	the	package	ID	of	a	package,	open	the	package	in	DTS	Designer.
In	the	DTS	Package	Properties	dialog	box,	click	the	General	tab.

The	syntax	of	GUIDs	is:

				{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	X	represents	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12
digits.

See	Also

VersionID	Property

DTS	Programming

PackageName	Property
The	PackageName	property	sets	or	returns	the	name	of	the	Data	Transformation
Services	(DTS)	package.

Applies	To

ExecutePackageTask	Object SavedPackageInfo	Object

Syntax
[name	=]	object.PackageName

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
name Package	name

Data	Type
String

Modifiable
Read/write	for	the	ExecutePackageTask	object.	Read-only	for	the	others.

Prototype	(C/C++)
HRESULT	GetPackageName(BSTR	*pRetVal);

Remarks
For	the	ExecutePackageTask	object,	the	PackageName	property	does	not	need
to	be	set	if	either	the	PackageID	or	VersionID	properties	are	specified	or	there
is	only	one	package	in	its	containing	file.

For	the	ExecutePackageTask	object,	this	property	also	can	be	referenced
through	the	Properties	collection	of	the	Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("PackageName")	[=	name]

See	Also

PackageID	Property

VersionID	Property

DTS	Programming

PackagePassword	Property
The	PackagePassword	property	sets	or	returns	the	password	of	the	Data
Transformation	Services	(DTS)	package	to	be	run	by	an	ExecutePackageTask
object.

Applies	To

ExecutePackageTask	Object

Syntax
object.PackagePassword	[=	password]

Part Description
object Expression	that	evaluates	to	an	ExecutePackageTask	object
password Owner	or	user	password	of	the	DTS	package	to	be	run

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	PackagePassword(BSTR*	pRetVal);

HRESULT	PackagePassword(BSTR	pRetVal);

Remarks
Either	the	owner	or	user	password	can	be	used	to	run	the	package.

This	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("PackagePassword")	[=	password]

See	Also

PackageID	Property

PackageName	Property

DTS	Programming

PackagePriorityClass	Property
The	PackagePriorityClass	property	specifies	the	Microsoft®	Win32®	thread
priority	class	of	the	Data	Transformation	Services	(DTS)	package	process.

Applies	To

Package	Object Package2	Object

Syntax
object.PackagePriorityClass	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Win32	thread	priority	class	of	the	package	process

Data	Type
DTSPackagePriorityClass

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPackagePriorityClass(DTSPackagePriorityClass	*pRetVal);

HRESULT	SetPackagePriorityClass(DTSPackagePriorityClass	NewValue);

Remarks
PackagePriorityClass	must	be	set	to	one	of	the	DTSPackagePriorityClass
values.

See	Also

RelativePriority	Property

DTS	Programming

PackageType	Property
The	PackageType	property	sets	or	returns	a	code	that	identifies	the	tool	that
created	the	Data	Transformation	Services	(DTS)	package.

Applies	To

Package2	Object PackageInfo	Object

Syntax
object.PackageType	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Code	that	identifies	the	tool	that	created	the	package

Data	Type
DTSPackageType

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	PackageType(DTSPackageType*	pRetVal);

HRESULT	PackageType(DTSPackageType	pRetVal);

Remarks
The	valid	values	for	this	property	are	defined	by	the	DTSPackageType
constants.

See	Also

CreatorComputerName	Property

PackagePriorityClass	Property

DTS	Programming

Parent	Property
The	Parent	property	specifies	a	parent	object	or	collection.

Applies	To
Nearly	all	objects	and	collections	in	the	Data	Transformation	Services	(DTS)
hierarchy	have	a	Parent	property.

Syntax
object.Parent

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
IDTSStdObject

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetParent(IDTSStdObject	**pRetVal);

Remarks
The	parent	of	an	object	is	the	collection	of	which	it	is	a	member	in	the	DTS
hierarchy.	The	parent	of	a	collection	is	the	object	above	it	in	the	hierarchy.	The
parent	of	the	Package	object	is	itself.

Note		Microsoft®	Visual	C++®	and	C	applications	obtain	references	on	the
parent	object.	The	applications	must	release	their	references	using	the
IUnknown::Release	method.

DTS	Programming

ParseName	Property
The	ParseName	property	returns	the	moniker	parse	name	for	the	OLE	DB	data
source	provider	class.

Applies	To

OLEDBProviderInfo	Object

Syntax
object.ParseName

Part Description
object Expression	that	evaluates	to	a	OLEDBProviderInfo	object

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetParseName(BSTR*	pRetVal);

Remarks
Typically,	the	ParseName	property	returns	the	ClassID	of	the	OLE	DB
provider.

See	Also

ClassID	Property

DTS	Programming

Password	Property
The	Password	property	specifies	the	password	to	use	when	making	the
connection.

Applies	To

Connection	Object SendMailTask	Object
Connection2	Object 	

Syntax
object.Password	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Password	to	use

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPassword(BSTR	*pRetVal);

HRESULT	SetPassword(BSTR	NewValue);

Remarks
Use	the	Password	property	in	conjunction	with	the	UserID	property	to	make	the

connection.	You	must	provide	values	for	Password	and	UserID	unless
UseTrustedConnection	is	TRUE.

Note		The	recommended	way	to	connect	to	an	instance	of	Microsoft®	SQL
Server™	is	to	use	Windows	Authentication	instead	of	SQL	Server
Authentication.	Set	UseTrustedConnection	to	TRUE	to	use	Windows
Authentication.

See	Also

UserID	Property

UseTrustedConnection	Property

DTS	Programming

PMSymbol	Property
The	PMSymbol	property	specifies	or	returns	the	string	to	be	used	to	indicate	a
time	format	after	noon	when	a	12-hour	time	format	is	specified.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.PMSymbol	[=	string]

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
string Suffix	string	to	indicate	a	time	format	after	noon	for	a	12-hour

time	format

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	PMSymbol(BSTR*	pRetVal);

HRESULT	PMSymbol(BSTR	pRetVal);

Remarks

The	default	value	is	the	English	"PM".

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("PMSymbol")	[=	string]

See	Also

AMSymbol	Property

InputFormat	Property

OutputFormat	Property

DTS	Programming

PostSourceDataFunctionEntry	Property
The	PostSourceDataFunctionEntry	property	specifies	or	returns	the	name	of
the	script	function	that	is	to	be	called	for	the	PostSourceData	transformation
phase.

Applies	To

DTSTransformScriptProperties2	Object

Syntax
object.PostSourceDataFunctionEntry	[=	name]

Part Description
object Expression	that	evaluates	to	a	DTSTransformScriptProperties2

object
name Name	of	the	script	function	that	supports	PostSourceData	phase

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	PostSourceDataFunctionEntry(BSTR*	pRetVal);

HRESULT	PostSourceDataFunctionEntry(BSTR	pRetVal);

Remarks

The	PostSourceData	phase	occurs	after	the	last	source	row	is	processed	in	the
DataPumpTask2	or	DataDrivenQueryTask2	object	or	after	the	last	row	of	a
constituent	rowset	is	processed	in	the	source	hierarchical	rowset	of	the
ParallelDataPumpTask	object.

The	PostSourceData	script	function	has	no	access	to	the	columns	of	the
DTSSource	collection	and	write	access	to	the	columns	of	the	DTSDestination
collection.	Any	return	values	that	are	valid	during	the	Transform	phase	can	be
returned.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("PostSourceDataFunctionEntry")	[=	string]

See	Also

BatchCompleteFunctionEntry	Property

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DTSTransformStatus

FunctionEntry	Property

InsertFailureFunctionEntry	Property

InsertSuccessFunctionEntry	Property

ParallelDataPumpTask	Object

PreSourceDataFunctionEntry	Property

PumpCompleteFunctionEntry	Property

TransformFailureFunctionEntry	Property

DTS	Programming

PrecedenceBasis	Property
The	PrecedenceBasis	property	specifies	whether	to	use	the	current	execution
status	of	a	Step	object	or	the	execution	results	in	determining	whether	its
precedence	constraint	has	been	satisfied.

Applies	To

PrecedenceConstraint	Object

Syntax
object.PrecedenceBasis	[=	value]

Part Description
object Expression	that	evaluates	to	a	PrecedenceConstraint	object
value Value	indicating	whether	to	use	current	execution	status	of	a	Step

object	or	execution	results

Data	Type
DTSStepPrecedenceBasis

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPrecedenceBasis(DTSStepPrecedenceBasis	*pRetVal);

HRESULT	SetPrecedenceBasis(DTSStepPrecedenceBasis	NewValue);

Remarks

PrecedenceBasis	must	be	set	to	one	of	the	DTSStepPrecedenceBasis	values.
The	default	is	DTSStepPrecedenceBasis_ExecResult.

See	Also

DTSStepExecResult

DTSStepExecStatus

DTS	Programming

Precision	Property
The	Precision	property	specifies	column	precision,	if	it	has	a	decimal	or
numeric	data	type.

Applies	To

Column	Object

Syntax
object.Precision	[=	value]

Part Description
object Expression	that	evaluates	to	a	Column	object
value Column	precision

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetPrecision(LONG	*pRetVal);

HRESULT	SetPrecision(LONG	NewValue);

See	Also

DataType	Property

NumericScale	Property

DTS	Programming

PreSourceDataFunctionEntry	Property
The	PreSourceDataFunctionEntry	property	specifies	or	returns	the	name	of
the	script	function	that	is	to	be	called	for	the	PreSourceData	transformation
phase.

Applies	To

DTSTransformScriptProperties2	Object

Syntax
object.PreSourceDataFunctionEntry	[=	name]

Part Description
object Expression	that	evaluates	to	a	DTSTransformScriptProperties2

object
name Name	of	the	script	function	that	supports	the	PreSourceData	phase

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	PreSourceDataFunctionEntry(BSTR*	pRetVal);

HRESULT	PreSourceDataFunctionEntry(BSTR	pRetVal);

Remarks

The	PreSourceData	phase	occurs	before	the	first	source	row	is	processed	in	the
DataPumpTask2	or	DataDrivenQueryTask2	objects,	or	before	the	first	row	of
a	constituent	rowset	is	processed	in	the	source	hierarchical	rowset	of	the
ParallelDataPumpTask	object.

The	PreSourceData	script	function	has	no	access	to	the	columns	of	the
DTSSource	collection	and	write	access	to	the	columns	of	the	DTSDestination
collection.	Any	return	values	that	are	valid	during	the	Transform	phase	can	be
returned.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("PreSourceDataFunctionEntry")	[=	string]

See	Also

BatchCompleteFunctionEntry	Property

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DTSTransformStatus

FunctionEntry	Property

InsertFailureFunctionEntry	Property

InsertSuccessFunctionEntry	Property

ParallelDataPumpTask	Object

PostSourceDataFunctionEntry	Property

PumpCompleteFunctionEntry	Property

TransformFailureFunctionEntry	Property

DTS	Programming

ProcessCommandLine	Property
The	ProcessCommandLine	property	specifies	the	universal	naming	convention
(UNC)	file	name	of	the	file	to	execute	and	any	command	prompt	arguments.

Applies	To

CreateProcessTask	Object CreateProcessTask2	Object

Syntax
object.ProcessCommandLine	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Process	command	prompt	arguments

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetProcessCommandLine(BSTR	*pRetVal);

HRESULT	SetProcessCommandLine(BSTR	NewValue);

Remarks
The	command	line	parameters	can	include	environment	variables.	The
GetExpandedProcessCommandLine	method	returns	the	command	line	with

the	environment	variables	substituted	with	their	values.

See	Also

GetExpandedProcessCommandLine	Method

DTS	Programming

Profile	Property
The	Profile	property	specifies	the	profile	to	use	when	sending	an	e-mail
message.

Applies	To

SendMailTask	Object

Syntax
object.Profile[=	value]

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
value Profile	to	use

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetProfile(BSTR	*pRetVal);

HRESULT	SetProfile(BSTR	NewValue);

See	Also

GetDefaultProfileName	Method

DTS	Programming

ProgressCount	Property
The	ProgressCount	property	specifies	the	intervals	(typically	rows)	processed
during	this	step.

Applies	To

StepLogRecord	Object

Syntax
object.ProgressCount

Part Description
object Expression	that	evaluates	to	a	StepLogRecord	object

Data	Type
Variant

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetProgressCount(VARIANT	*pRetVal);

See	Also

FirstRow	Property

LastRow	Property

ProgressRowCount	Property

DTS	Programming

ProgressRowCount	Property
The	ProgressRowCount	property	specifies	the	numbers	of	rows	that	are
returned	between	notifications	to	the	connection	point	event	during	data	pump
execution.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask	Object 	

Syntax
object.ProgressRowCount	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Frequency	in	which	notifications	are	sent	to	the	connection	point

event

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetProgressRowCount(LONG	*pRetVal);

HRESULT	SetProgressRowCount(LONG	NewValue);

Remarks
The	OnProgress	event	is	raised	after	every	ProgressRowCount	row	has	been
processed.	The	default	is	1000	rows.

See	Also

OnProgress	Event

ProgressCount	Property

DTS	Programming

PropertyID	Property
The	PropertyID	property	specifies	an	OLEDBProperty	object	identifier
(DBPROPID).

Applies	To

OLEDBProperty	Object OLEDBProperty2	Object

Syntax
object.PropertyID

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPropertyID(LONG	*pRetVal);

See	Also

PropertySet	Property

DTS	Programming

PropertySet	Property
The	PropertySet	property	specifies	the	globally	unique	identifier	(GUID)	of	the
OLE	DB	property	set.

Applies	To

OLEDBProperty	Object OLEDBProperty2	Object

Syntax
object.PropertySet

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetPropertySet(BSTR	*pRetVal);

Remarks
The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	X	represents	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12
digits.

See	Also

PropertyID	Property

DTS	Programming

ProviderID	Property
The	ProviderID	property	returns	the	program	ID	of	the	OLE	DB	provider.

Applies	To

Connection	Object Connection2	Object

Syntax
object.ProviderID

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetProviderID(BSTR	*pRetVal);

Remarks
A	user-implemented	OLE	DB	provider	must	support	the	following	features	if	it
is	to	be	used	with	Data	Transformation	Services	(DTS):

Interfaces
This	is	the	interface	support	that	DTS	requires.

Interface Requirement
IDBInitialize Necessary.
IDBProperties Necessary.
IDBCreateSession Necessary.
ISessionProperties Necessary.
IDBCreateCommand Optional	(for	example,	used	for	create	table

and	queries).
IDBInfo Necessary.
IOpenRowset Necessary.
ICommandText Optional	(for	example,	used	for	create	table

and	queries).
ICommandPrepare Optional	(for	example,	used	for	create	table

and	queries).
IColumnsInfo Necessary.
IRowset Necessary.
IAccessor Necessary.
ICommandWithParameters Optional.	Used	for	data	driven	queries.
IDBSchemaRowset Necessary.

In	addition	to	these	interfaces,	the	DTS	package	requires	that	a	provider	have	a
DataSource	property.

Schema
These	are	the	schema	that	DTS	requests:

DBSCHEMA_TABLES	

DBSCHEMA_CATALOGS	

DBSCHEMA_PROVIDER_TYPES.	This	is	the	only	one	that	must	be
supported.	

DBSCHEMA_PRIMARY_KEYS	

DBSCHEMA_FOREIGN_KEYS	

DBSCHEMA_INDEXES	

DBSCHEMA_TABLE_CONSTRAINTS	

DBSCHEMA_CHECK_CONSTRAINTS

See	Also

New	(ID)	Method

DTS	Programming

PumpCompleteFunctionEntry	Property
The	PumpCompleteFunctionEntry	property	specifies	or	returns	the	name	of
the	script	function	that	is	to	be	called	for	the	OnPumpComplete	transformation
phase.

Applies	To

DTSTransformScriptProperties2	Object

Syntax
object.PumpCompleteFunctionEntry	[=	name]

Part Description
object Expression	that	evaluates	to	a	DTSTransformScriptProperties2

object
name Name	of	the	script	function	that	supports	OnPumpComplete	phase

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	PumpCompleteFunctionEntry(BSTR*	pRetVal);

HRESULT	PumpCompleteFunctionEntry(BSTR	pRetVal);

Remarks

The	PostSourceData	phase	occurs	after	all	other	processing	in	the
DataPumpTask2,	DataDrivenQueryTask2	or	ParallelDataPumpTask	objects
is	complete.

The	OnPumpComplete	script	function	has	no	access	to	the	columns	of	the
DTSSource	and	DTSDestination	collections.	The	only	valid	return	values	are
DTSTransformStat_OK	and	DTSTransformStat_AbortPump.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("PumpCompleteFunctionEntry")	[=	string]

See	Also

BatchCompleteFunctionEntry	Property

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DTSTransformStatus

FunctionEntry	Property

InsertFailureFunctionEntry	Property

InsertSuccessFunctionEntry	Property

ParallelDataPumpTask	Object

PostSourceDataFunctionEntry	Property

PreSourceDataFunctionEntry	Property

TransformFailureFunctionEntry	Property

DTS	Programming

Query	Property
The	Query	property	specifies	a	parameterized	query	to	execute.

Applies	To

Lookup	Object

Syntax
object.Query	[=	value]

Part Description
object Expression	that	evaluates	to	a	Lookup	object
value Parameterized	query	to	execute

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetQuery(BSTR	*pRetVal);

HRESULT	SetQuery(BSTR	NewValue);

See	Also

Adding	DTS	Lookups	and	Global	Variables

DTS	Programming

QueuePath	Property
The	QueuePath	property	sets	or	returns	the	full	path	of	the	Message	Queuing
queue	used	to	send	or	receive	messages.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.QueuePath	[=	path]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
path Full	path	of	the	message	queue

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	QueuePath(BSTR*	pVal);

HRESULT	QueuePath(BSTR	pVal);

Remarks
The	syntax	of	the	queue	path	is	servername\[PRIVATE$]\queuename.	To	refer	to
the	local	computer,	use	a	period	(.)	in	the	servername	field.	For	public	queues,

nothing	is	coded	between	the	back	slashes	(\\).

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("QueuePath")	[=	path]

Example
This	example	assigns	a	globally	unique	identifier	(GUID)	string	to	the
PackageID	property:

oCustTask.QueuePath	=	"DTS_SERV\\DTS_QUE"

See	Also

RemoveFromQueue	Property

DTS	Programming

ReceiveMessageTimeout	Property
The	ReceiveMessageTimeout	property	sets	or	returns	the	time	after	which	the
DTSMessageQueueTask	object	will	terminate	if	a	message	is	not	found	in	the
specified	queue.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.ReceiveMessageTimeout	[=	seconds]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
seconds Seconds	after	which	task	will	terminate	if	message	is	not

received

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	ReceiveMessageTimeout(long*	pVal);

HRESULT	ReceiveMessageTimeout(long	pVal);

Remarks

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("ReceiveMessageTimeout")	[=	seconds]

See	Also

ErrorIfReceiveMessageTimeout	Property

DTS	Programming

ReceiveMessageType	Property
The	ReceiveMessageType	property	sets	or	returns	the	type	of	message	for
which	a	DTSMessageQueueTask	object	that	is	a	receiver	is	waiting.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.ReceiveMessageType	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
value Code	for	the	message	type	from	the	DTSMQMessageType

constants

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetReceiveMessageType(long*	pVal);

HRESULT	SetReceiveMessageType(long	pVal);

Remarks
The	property	also	can	be	referenced	through	the	Properties	collection	of	the

Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("ReceiveMessageType")	[=	value]

See	Also

DTSMQMessageType

TaskType	Property

DTS	Programming

RelativePriority	Property
The	RelativePriority	property	specifies	the	Microsoft®	Win32®	priority	of	the
thread	on	which	a	step	is	running,	within	the	priority	class	of	the	Data
Transformation	Services	(DTS)	package	process.

Applies	To

Step	Object Step2	Object

Syntax
object.RelativePriority	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Win32	priority	of	a	thread	of	a	step

Data	Type
DTSStepRelativePriority

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRelativePriority(DTSStepRelativePriority	*pRetVal);

HRESULT	SetRelativePriority(DTSStepRelativePriority	NewValue);

Remarks
RelativePriority	must	be	set	to	one	of	the	DTSStepRelativePriority	values.

See	Also

PackagePriorityClass	Property

DTS	Programming

RemoveFromQueue	Property
The	RemoveFromQueue	property	sets	or	returns	a	value	indicating	whether	a
message	is	to	be	removed	from	the	queue	after	it	is	received.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.RemoveFromQueue	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object.
boolean If	TRUE,	a	message	is	removed	from	the	queue	after	it	is

received.	Default	is	FALSE.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	RemoveFromQueue(VARIANT_BOOL*	pVal);

HRESULT	RemoveFromQueue(VARIANT_BOOL	pVal);

Remarks
The	property	also	can	be	referenced	through	the	Properties	collection	of	the

Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("RemoveFromQueue")	[=	boolean]

See	Also

QueuePath	Property

DTS	Programming

RepositoryDatabaseName	Property
The	RepositoryDatabaseName	property	sets	or	returns	the	name	of	the
database	that	contains	the	instance	of	Microsoft®	SQL	Server™	2000	Meta	Data
Services	to	be	used	by	the	ExecutePackageTask	object.

Applies	To

ExecutePackageTask	Object

Syntax
object.RepositoryDatabaseName	[=	name]

Part Description
object Expression	that	evaluates	to	an	ExecutePackageTask	object
name Name	of	the	database	containing	the	instance	of	Meta	Data

Services

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	RepositoryDatabaseName(BSTR*	pRetVal);

HRESULT	RepositoryDatabaseName(BSTR	pRetVal);

Remarks

If	RepositoryDatabaseName	property	is	not	provided,	the	default	Meta	Data
Services	database	is	used.	RepositoryDatabaseName	is	also	not	needed	if	the
Data	Transformation	Services	(DTS)	package	to	be	run	is	in	SQL	Server	storage
or	a	data	file.

This	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("RepositoryDatabaseName")	[=	password]

See	Also

ServerName	Property

UseRepository	Property

DTS	Programming

RepositoryMetadataOptions	Property
The	RepositoryMetadataOptions	property	specifies	meta	data	scanning	and
resolution	options	when	storing	a	Data	Transformation	Services	(DTS)	package
to	Microsoft®	SQL	Server™	2000	Meta	Data	Services.

Applies	To

Package	Object Package2	Object

Syntax
object.RepositoryMetadataOptions[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Meta	data	scanning	and	resolution	options

Data	Type
DTSRepositoryMetadataOptions

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRepositoryMetadataOptions(
				DTSRepositoryMetadataOptions	*pRetVal);

HRESULT	SetRepositoryMetadataOptions(
				DTSRepositoryMetadataOptions	NewValue);

Remarks

RepositoryMetadataOptions	must	be	set	to	one	of	the
DTSRepositoryMetadataOptions	values.

See	Also

LineageOptions	Property

LoadFromRepository	Method

SaveToRepository	Method

SaveToRepositoryAs	Method

DTS	Programming

Reusable	Property
The	Reusable	property	specifies	whether	a	connection	is	reusable	by	multiple
steps.

Applies	To

Connection	Object Connection2	Object

Syntax
object.Reusable	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value A	value	indicating	whether	a	connection	is	reusable

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetReusable(VARIANT_BOOL	*pRetVal);

HRESULT	SetReusable(VARIANT_BOOL	NewValue);

Remarks
The	default	is	TRUE.

See	Also

AcquireConnection	Method

InUse	Property

ReleaseConnection	Method

DTS	Programming

RollbackFailure	Property
The	RollbackFailure	property	specifies	whether	to	roll	back	the	Data
Transformation	Services	(DTS)	package	transaction	if	there	is	a	step	failure.

Applies	To

Step	Object Step2	Object

Syntax
object.RollbackFailure	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	to	roll	back	the	transaction

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRollbackFailure(VARIANT_BOOL	*pRetVal);

HRESULT	SetRollbackFailure(VARIANT_BOOL	NewValue);

See	Also

CommitSuccess	Property

JoinTransactionIfPresent	Property

UseTransaction	Property

DTS	Programming

RowsComplete	Property
The	RowsComplete	property	returns	the	number	of	source	rows,	including	rows
for	which	errors	occurred,	processed	by	the	task	or	transformation	set.

Applies	To

DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask2	Object 	

Syntax
object.RowsComplete

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Variant

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	RowsComplete(VARIANT*	pRowsComplete);

Remarks
The	property	value	is	returned	from	the	IDTSDatapump::Execute	method.

See	Also

RowsInError	Property

DTS	Programming

RowsInError	Property
The	RowsInError	property	returns	the	number	of	rows	for	which	an	error
occurred	while	being	processed	by	the	Data	Transformation	Services	(DTS)	task
or	transformation	set.

Applies	To

DataDrivenQueryTask2	Object TransformationSet	Object
DataPumpTask2	Object 	

Syntax
object.RowsInError

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Variant

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	RowsInError(VARIANT*	pRowsInError);

Remarks
The	property	value	is	returned	from	the	IDTSDatapump::Execute	method.

See	Also

RowsComplete	Property

DTS	Programming

RowTerminator	Property
The	RowTerminator	property	specifies	the	row	terminator	for	the	Bulk	Insert
task.	The	same	set	of	row	terminators	that	apply	to	the	bulk	copy	program	also
apply	to	the	Bulk	Insert	task.

Applies	To

BulkInsertTask	Object

Syntax
object.RowTerminator	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value A	row	terminator

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetRowTerminator(BSTR	*pRetVal);

HRESULT	SetRowTerminator(BSTR	NewValue);

Remarks
Typical	values	are	CR,	CR/LF,	LF,	",",	";",	tab	and	"|".	The	default	is	a	line	feed

character.	It	should	not	be	the	same	as	the	FieldTerminator	property.

See	Also

FieldTerminator	Property

DTS	Programming

SaveDataFileName	Property
The	SaveDataFileName	property	sets	or	returns	the	name	and	path	of	the	file
into	which	a	received	data	file	is	written	by	a	DTSMessageQueueTask	object.

Applies	To

DTSMessageQueueTask

Syntax
object.SaveDataFileName	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
value File	specification	where	message	is	to	be	written

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSaveDataFileName(BSTR	*pVal);

HRESULT	SetSaveDataFileName(BSTR	pVal);

Remarks
The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("SaveDataFileName")	[=	value]

See	Also

ReceiveMessageType	Property

TaskType	Property

DTS	Programming

SaveMailInSentItemsFolder	Property
The	SaveMailInSentItemsFolder	property	specifies	whether	to	save	outgoing
e-mail	messages	in	the	Sent	Items	folder.

Applies	To

SendMailTask	Object

Syntax
object.SaveMailInSentItemsFolder[=	value]

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
value Boolean	that	specifies	whether	to	save	outgoing	e-mail	messages

in	the	Sent	Items	folder

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSaveMailInSentItemsFolder(VARIANT_BOOL	*pRetVal);

HRESULT	SetSaveMailInSentItemsFolder(VARIANT_BOOL	NewValue);

Remarks
The	default	is	TRUE.	Outgoing	e-mail	messages	are	saved	in	the	Sent	Items

folder.

DTS	Programming

ScriptFileDirectory	Property
The	ScriptFileDirectory	property	specifies	the	directory	to	which	the	script	file
and	log	files	are	written.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.ScriptFileDirectory[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Directory	to	which	the	script	file	and	log	files	are	written

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetScriptFileDirectory(BSTR	*pRetVal);

HRESULT	SetScriptFileDirectory(BSTR	NewValue);

Remarks
The	script	file	directory	must	exist	on	the	computer	on	which	the	task	runs.

See	Also

ScriptOption	Property

ScriptOptionEx	Property

DTS	Programming

ScriptLanguage	Property
The	ScriptLanguage	property	specifies	the	Microsoft®	ActiveX®	script
language	needed	to	execute	a	script	(for	example,	Microsoft	Visual	Basic®
Scripting	Edition	(VBScript),	Microsoft	JScript®,	or	PerlScript).

Applies	To

ActiveScriptTask	Object Step2	Object
Step	Object 	

Syntax
object.ScriptLanguage	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value ActiveX	script	language	needed	to	execute	a	script

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetScriptLanguage(BSTR	*pRetVal);

HRESULT	SetScriptLanguage(BSTR	NewValue);

Remarks

The	default	is	VBScript.

Script	languages	available	on	a	particular	system	can	be	determined	by
enumerating	the	ScriptingLanguageInfos	collection	of	the	Application	object.
For	more	information	about	which	scripting	language	to	use	with	Data
Transformation	Services	(DTS),	see	ScriptingLanguageInfo	Object.

See	Also

Application	Object

ActiveXScript	Property

FunctionName	Property

Language	Property

ScriptingLanguageInfos	Collection

JavaScript:hhobj_1.Click()

DTS	Programming

ScriptOption	Property
The	ScriptOption	property	specifies	which	scripting	option	to	use	during	an
object	transfer	operation.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.ScriptOption[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Scripting	option	to	use

Data	Type
DTSTransfer_ScriptOption

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetScriptOption(DTSTransfer_ScriptOption	*pRetVal);

HRESULT	SetScriptOption(DTSTransfer_ScriptOption	NewValue);

Remarks
ScriptOption	must	be	set	to	one	of	the	DTSTransfer_ScriptOption	values.	The
default	is	DTSTransfer_Script_TransferDefault.

See	Also

ScriptFileDirectory	Property

ScriptOptionEx	Property

DTS	Programming

ScriptOptionEx	Property
The	ScriptOptionEx	property	specifies	the	extended	scripting	option	to	use
during	an	object	transfer	operation.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.ScriptOptionEx[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Extended	scripting	option	to	use

Data	Type
DTSTransfer_ScriptOptionEx

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetScriptOptionEx(DTSTransfer_ScriptOptionEx	*pRetVal);

HRESULT	SetScriptOptionEx(DTSTransfer_ScriptOptionEx	NewValue);

Remarks
ScriptOptionEx	must	be	set	to	one	of	the	DTSTransfer_ScriptOptionEx	values.
The	default	is	DTSTransfer_ScriptEx_TransferDefault.

See	Also

ScriptFileDirectory	Property

ScriptOption	Property

DTS	Programming

SequenceID	Property
The	SequenceID	property	specifies	a	sequence	number	for	the	task	log	record.

Applies	To

TaskLogRecord	Object

Syntax
object.SequenceID

Part Description
object Expression	that	evaluates	to	a	TaskLogRecord	object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSequenceID(long	*pRetVal);

Remarks
Task	log	records	are	written	by	custom	tasks	if	they	are	implemented	to	do	so.
The	Data	Transformation	Services	(DTS)	task	classes	supplied	with	Microsoft®
SQL	Server™	2000	do	not	write	task	log	records.

See	Also

ErrorCode	Property

ErrorDescription	Property

DTS	Programming

ServerName	Property
The	ServerName	property	sets	or	returns	the	name	of	the	server	on	which	the
Data	Transformation	Services	(DTS)	package	to	be	run	by	an
ExecutePackageTask	object	is	located.

Applies	To

ExecutePackageTask	Object

Syntax
object.ServerName	[=	name]

Part Description
object Expression	that	evaluates	to	an	ExecutePackageTask	object
name Name	of	the	server	on	which	the	DTS	package	to	be	run	is	located

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	ServerName(BSTR*	pRetVal);

HRESULT	ServerName(BSTR	pRetVal);

Remarks
If	ServerName	property	is	not	provided,	the	local	computer	is	used;	you	can

also	specify	"(local)".

This	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("PackagePassword")	[=	password]

See	Also

ServerPassword	Property

ServerUserName	Property

UseTrustedConnection	Property

DTS	Programming

ServerPassword	Property
The	ServerPassword	property	sets	or	returns	the	login	password	for	the	instance
of	Microsoft®	SQL	Server™	that	contains	the	Data	Transformation	Services
(DTS)	package	to	be	run	by	an	ExecutePackageTask	object.

Applies	To

ExecutePackageTask	Object

Syntax
object.ServerPassword	[=	password]

Part Description
object Expression	that	evaluates	to	an	ExecutePackageTask	object
password Login	password	for	the	instance	of	SQL	Server	that	contains

the	DTS	package	to	be	run

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	ServerPassword(BSTR*	pRetVal);

HRESULT	ServerPassword(BSTR	pRetVal);

Remarks

The	ServerPassword	and	ServerUserName	properties	must	be	provided	unless
UseTrustedConnection	is	TRUE	or	the	DTS	package	is	contained	in	a	storage
file.

Note		It	is	recommended	that	you	connect	to	an	instance	of	SQL	Server	using
Windows	Authentication	instead	of	SQL	Server	Authentication.	To	use	Windows
Authentication,	set	UseTrustedConnection	to	TRUE.

This	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("ServerPassword")	[=	password]

See	Also

ServerName	Property

ServerUserName	Property

UseTrustedConnection	Property

DTS	Programming

ServerUserName	Property
The	ServerUserName	property	sets	or	returns	the	login	user	name	for	the
instance	of	Microsoft®	SQL	Server™	containing	the	Data	Transformation
Services	(DTS)	package	to	be	run	by	an	ExecutePackageTask	object.

Applies	To

ExecutePackageTask	Object

Syntax
object.ServerUserName	[=	username]

Part Description
object Expression	that	evaluates	to	an	ExecutePackageTask	object
username Login	ID	for	the	instance	of	SQL	Server	containing	the	DTS

package	to	be	run

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	ServerUserName(BSTR*	pRetVal);

HRESULT	ServerUserName(BSTR	pRetVal);

Remarks

The	ServerUserName	and	ServerPassword	properties	must	be	provided	unless
UseTrustedConnection	is	TRUE	or	the	DTS	package	is	contained	in	a	storage
file.

Note		It	is	recommended	that	you	connect	to	an	instance	of	SQL	Server	using
Windows	Authentication	instead	of	SQL	Server	Authentication.	To	use	Windows
Authentication,	set	UseTrustedConnection	to	TRUE.

This	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("ServerUserName")	[=	username]

See	Also

ServerName	Property

ServerPassword	Property

UseTrustedConnection	Property

DTS	Programming

Set	Property
The	Set	property	returns	TRUE	when	the	referenced	object	property	is
read/write	rather	than	read-only.

Applies	To

Property	Object

Syntax
object.Set

Part Description
object Expression	that	evaluates	to	a	Property	object

Data	Type
Boolean

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSet(VARIANT_BOOL	*pRetVal);

Remarks
When	TRUE,	the	property	referenced	is	read/write	or	write-only.	However,	an
application	attempt	to	change	the	property	value	is	not	guaranteed	to	succeed.

When	FALSE,	the	property	referenced	is	read-only.

See	Also

Get	Property

DTS	Programming

ShortYear2000Cutoff	Property
The	ShortYear2000Cutoff	property	specifies	or	returns	the	two-digit	year
below	which	the	year	is	assumed	to	be	20yy.	If	the	two-digit	year	is	equal	to	or
above	the	ShortYear2000Cutoff	property,	the	year	is	19yy.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.ShortYear2000Cutoff	[=	yy]

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
yy Two-digit	number	specifying	the	lowest	year	that	is	to	be

considered	19yy

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	ShortYear2000Cutoff(long*	pRetVal);

HRESULT	ShortYear2000Cutoff(long	pRetVal);

Remarks

The	default	value	is	30.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("ShortYear2000Cutoff")	[=	yy]

See	Also

InputFormat	Property

OutputFormat	Property

DTS	Programming

Size	Property
The	Size	property	specifies	the	maximum	size	of	the	column.

Applies	To

Column	Object

Syntax
object.Size	[=	value]

Part Description
object Expression	that	evaluates	to	a	Column	object
value Maximum	size	of	the	column

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSize(LONG	*pRetVal);

HRESULT	SetSize(LONG	NewValue);

Remarks
The	Size	property	is	ignored	for	columns	that	have	fixed-length	data	types.

See	Also

DataType	Property

NumericScale	Property

Precision	Property

DTS	Programming

SortedData	Property
The	SortedData	property	specifies	a	string	that	corresponds	to	the	ORDER
clause	in	the	Transact-SQL	BULK	INSERT	statement.

Applies	To

BulkInsertTask	Object

Syntax
object.SortedData	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value String	that	corresponds	to	the	ORDER	clause	in	the	Transact-SQL

BULK	INSERT	statement

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSortedData(BSTR	*pRetVal);

HRESULT	SetSortedData(BSTR	NewValue);

See	Also

BULK	INSERT

JavaScript:hhobj_1.Click()

DTS	Programming

SourceColumns	Property
The	SourceColumns	property	returns	a	reference	to	a	Columns	collection	that
contains	the	source	columns	the	transformation	uses.

Applies	To

Transformation	Object Transformation2	Object

Syntax
[Set	columns	=]	object.SourceColumns

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
columns Reference	to	collection	containing	source	columns

Data	Type
Columns	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSourceColumns(IDTSColumns	**pRetVal);

Remarks
For	this	collection,	either	the	name	or	the	ordinal	can	be	used	to	reference
individual	elements.

See	Also

Column	Object

DestinationColumns	Property

DTS	Programming

SourceCommandProperties	Property
The	SourceCommandProperties	property	specifies	an	OLEDBProperties
collection	of	properties	of	the	OLE	DB	provider	used	by	the	source	connection.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object ParallelDataPumpTask	Object
DataPumpTask	Object 	

Syntax
object.SourceCommandProperties

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
OLEDBProperties	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetSourceCommandProperties(IDTSOleDBProperties	**pRetVal);

See	Also

Connection2	Object

DestinationCommandProperties	Property

OLEDBProperty	Object

DTS	Programming

SourceConnectionID	Property
The	SourceConnectionID	property	specifies	the	ID	of	the	source	connection.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object ParallelDataPumpTask	Object
DataPumpTask	Object 	

Syntax
object.SourceConnectionID	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Source	connection	ID

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourceConnectionID(LONG	*pRetVal);

HRESULT	SetSourceConnectionID(LONG	NewValue);

Remarks
This	property	is	the	linkage	between	a	data	pump	task	and	the	source

Connection2	object.

See	Also

Connection2	Object

DestinationConnectionID	Property

DTS	Programming

SourceConstantValue	Property
The	SourceConstantValue	property	sets	or	returns	the	value	to	which	a	Data
Transformation	Services	(DTS)	package	object	property	will	be	set	by	the
DynamicPropertiesTask	object,	when	the	SourceType	property	is
DTSDynamicPropertiesSourceType_Constant.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceConstantValue	[=	string]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
string Value	to	which	a	DTS	package	object	property	will	be	set

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceConstantValue(BSTR*	pRetVal);

HRESULT	SourceConstantValue(BSTR	pRetVal);

Example

The	following	example	sets	the	SourceConstantValue	property	to	a	string:

oAssign.SourceConstantValue	=	"C:\DTS_UE\TestData\PubsAuthors.txt"

See	Also

DynamicPropertiesTask	Object

SourceType	Property

DTS	Programming

SourceDatabase	Property
The	SourceDatabase	property	specifies	the	name	of	the	source	database.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.SourceDatabase[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Name	of	the	source	database

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourceDatabase(BSTR	*pRetVal);

HRESULT	SetSourceDatabase(BSTR	NewValue);

See	Also

DestinationDatabase	Property

SourceLogin	Property

SourceServer	Property

SourcePassword	Property

SourceUseTrustedConnection	Property

DTS	Programming

SourceDataFileFileName	Property
The	SourceDataFileFileName	property	sets	or	returns	a	string	that	is	the	name
and	path	of	a	file	that	contains	the	value	to	which	a	Data	Transformation
Services	(DTS)	package	object	property	will	be	set	by	the
DynamicPropertiesTask	object,	when	the	SourceType	property	is
DTSDynamicPropertiesSourceType_DataFile.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceDataFileFileName	[=	filespec]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
filespec Name	and	path	of	file	containing	value	to	which	a	DTS	package

object	property	will	be	set

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceDataFileFileName(BSTR*	pRetVal);

HRESULT	SourceDataFileFileName(BSTR	pRetVal);

Example
The	following	example	sets	the	SourceDataFileName	property	to	a	file
specification:

oAssign.SourceDataFileFileName	=	"C:\DTS_UE\TestData\PubsAuthors.txt"

See	Also

DynamicPropertiesTask	Object

SourceType	Property

DTS	Programming

SourceEnvironmentVariable	Property
The	SourceEnvironmentVariable	property	sets	or	returns	the	name	of	an
environment	variable	that	contains	the	value	to	which	a	Data	Transformation
Services	(DTS)	package	object	property	will	be	set	by	the
DynamicPropertiesTask	object,	when	the	SourceType	property	is
DTSDynamicPropertiesSourceType_EnvironmentVariable.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceEnvironmentVariable	[=	name]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
name Name	of	environment	variable	containing	value	to	which	a	DTS

package	object	property	will	be	set

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceEnvironmentVariable(BSTR*	pRetVal);

HRESULT	SourceEnvironmentVariable(BSTR	pRetVal);

Remarks
Only	system	environment	variables	can	be	referenced	with	this	property.

Example
The	following	example	sets	the	SourceEnvironmentVariable	property	to	a
name:

oAssign.SourceEnvironmentVariable	=	"DTS_UE_Env"

See	Also

DynamicPropertiesTask	Object

SourceType	Property

DTS	Programming

SourceFilename	Property
The	SourceFilename	property	sets	or	returns	a	list	of	files,	with	path	and	size,	to
be	transferred	from	the	source	by	a	DTSFTPTask	object.

Applies	To

DTSFTPTask	Object

Syntax
object.SourceFilename	[=	'name';'path';'size';'name';'path';'size';	...]

Part Description
object Expression	that	evaluates	to	a	DTSFTPTask	object
name Name	of	file	to	be	transferred	from	the	source
path Path	of	file	specified	by	name
size Size	of	file	specified	by	name	and	path

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceFilename(BSTR*	pVal);

HRESULT	SourceFilename(BSTR	pVal);

Remarks

If	a	path	or	site	is	specified	by	the	SourceSite	property,	the	path	from	the
SourceFilename	list	is	appended	to	the	SourceSite	property,	and	this	value	is
used	as	the	full	path.

The	size	field	is	used	by	Data	Transformation	Services	(DTS)	Designer.	It	is	not
necessary	to	provide	a	size	value	when	referencing	the	SourceFilename
property	programmatically.	However,	the	enclosing	apostrophes	should	still	be
coded.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("SourceFilename")	[=	list]

Example
The	following	example	sets	the	SourceFilename	property	to	a	list	of	two	file
names:

				oCustTask.SourceFilename	=	_
												"'File3.dat';'';'123';'NWProdWiz.xls';'';'458240';"

See	Also

SourceLocation	Property

SourcePassword	(DTSFTPTask)	Property

SourceSite	Property

SourceUsername	Property

DTS	Programming

SourceGlobalVariable	Property
The	SourceGlobalVariable	property	sets	or	returns	the	name	of	a	Data
Transformation	Services	(DTS)	package	global	variable	that	contains	the	value
to	which	a	package	object	property	will	be	set	by	the	DynamicPropertiesTask
object,	when	the	SourceType	property	is
DTSDynamicPropertiesSourceType_GlobalVariable.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceGlobalVariable	[=	name]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
name Name	of	a	package	global	variable	containing	value	to	which	a

package	object	property	will	be	set

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceGlobalVariable(BSTR*	pRetVal);

HRESULT	SourceGlobalVariable(BSTR	pRetVal);

See	Also

DynamicPropertiesTask	Object

SourceType	Property

DTS	Programming

SourceIniFileFileName	Property
The	SourceIniFileFileName	property	sets	or	returns	a	string	that	is	the	name
and	path	of	an	.ini	file,	which	contains	the	value	to	which	a	Data	Transformation
Services	(DTS)	package	object	property	will	be	set	by	the
DynamicPropertiesTask	object,	when	the	SourceType	property	is
DTSDynamicPropertiesSourceType_IniFile.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceIniFileFileName	[=	filespec]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
filespec Name	and	path	of	.ini	file	containing	value	to	which	a	package

object	property	will	be	set

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceIniFileFileName(BSTR*	pRetVal);

HRESULT	SourceIniFileFileName(BSTR	pRetVal);

Example
The	following	code	sets	the	SourceIniFileName	property:

oAssign.SourceIniFileFileName	=	"C:\DTS_UE\TestData\DynProp.ini"
oAssign.SourceIniFileSection	=	"FlatFile"
oAssign.SourceIniFileKey	=	"Lengths"

See	Also

DynamicPropertiesTask	Object

SourceIniFileKey	Property

SourceIniFileSection	Property

SourceType	Property

DTS	Programming

SourceIniFileKey	Property
The	SourceIniFileKey	property	sets	or	returns	the	name	of	a	key	within	an	.ini
file	that	identifies	the	value	to	which	a	Data	Transformation	Services	(DTS)
package	object	property	will	be	set	by	the	DynamicPropertiesTask	object,
when	the	SourceType	property	is	DTSDynamicPropertiesSourceType_IniFile.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceIniFileKey	[=	key]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
key Name	of	key	within	an	.ini	file	identifying	value	to	which	a

package	object	property	will	be	set

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceIniFileKey(BSTR*	pRetVal);

HRESULT	SourceIniFileKey(BSTR	pRetVal);

Remarks
Do	not	include	the	equal	sign	(=)	that	follows	the	key	name	in	the	.ini	file	with
the	key	name	when	setting	this	property.

The	specified	key	must	appear	in	the	section	specified	by	the
SourceIniFileSection	property,	which	in	turn	must	appear	within	the	.ini	file
specified	by	the	SourceIniFileFileName	property.

Example
The	following	code	sets	the	SourceIniFileKey	property:

oAssign.SourceIniFileFileName	=	"C:\DTS_UE\TestData\DynProp.ini"
oAssign.SourceIniFileSection	=	"FlatFile"
oAssign.SourceIniFileKey	=	"Lengths"

See	Also

DynamicPropertiesTask	Object

SourceIniFileFileName	Property

SourceIniFileSection	Property

SourceType	Property

DTS	Programming

SourceIniFileSection	Property
The	SourceIniFileSection	property	sets	or	returns	the	name	of	a	section	within
an	.ini	file	that	contains	the	value	to	which	a	Data	Transformation	Services
(DTS)	package	object	property	will	be	set	by	the	DynamicPropertiesTask
object,	when	the	SourceType	property	is
DTSDynamicPropertiesSourceType_IniFile.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceIniFileSection	[=	section]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
section Name	of	section	within	an	.ini	file	containing	value	to	which	a

package	object	property	will	be	set

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceIniFileSection(BSTR*	pRetVal);

HRESULT	SourceIniFileSection(BSTR	pRetVal);

Remarks
Do	not	include	the	square	brackets	"[]"	that	enclose	the	section	name	in	the	.ini
file	with	the	section	name	when	setting	this	property.

The	specified	section	must	appear	within	the	.ini	file	specified	by	the
SourceIniFileFileName	property.

Example
The	following	code	sets	the	SourceIniFileSection	property:

oAssign.SourceIniFileFileName	=	"C:\DTS_UE\TestData\DynProp.ini"
oAssign.SourceIniFileSection	=	"FlatFile"
oAssign.SourceIniFileKey	=	"Lengths"

See	Also

DynamicPropertiesTask	Object

SourceIniFileFileName	Property

SourceIniFileKey	Property

SourceType	Property

DTS	Programming

SourceLocation	Property
The	SourceLocation	property	sets	or	returns	the	source	location	type,	an
Internet	site,	or	a	network	directory	to	be	used	by	a	DTSFTPTask	object.

Applies	To

DTSFTPTask	Object

Syntax
object.SourceLocation	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSFTPTask	object
value Code	that	defines	the	source	location	type

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceLocation(long*	pVal);

HRESULT	SourceLocation(long	pVal);

Remarks
The	valid	values	for	this	property	are	defined	by	the	DTSFTPSourceLocation
enumeration	in	the	DTSCustTasks	library	(CustTask.dll).

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("SourceLocation")	[=	list]

See	Also

DTSFTPSourceLocation

SourceFilename	Property

SourcePassword	(DTSFTPTask)	Property

SourceSite	Property

SourceUsername	Property

DTS	Programming

SourceLogin	Property
The	SourceLogin	property	specifies	the	login	ID	on	the	source	server.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.SourceLogin[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Login	ID

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourceLogin(BSTR	*pRetVal);

HRESULT	SetSourceLogin(BSTR	NewValue);

Remarks
SourceLogin	is	required	if	an	application	is	using	SQL	Server	Authentication
security	mode.

Note		It	is	recommended	that	you	connect	to	an	instance	of	Microsoft®	SQL

Server™	using	Windows	Authentication	instead	of	SQL	Server	Authentication.
To	use	Windows	Authentication,	set	SourceUseTrustedConnection	to	TRUE.

See	Also

DestinationLogin	Property

SourceDatabase	Property

SourceServer	Property

SourcePassword	Property

SourceUseTrustedConnection	Property

DTS	Programming

SourceObjectName	Property
The	SourceObjectName	property	specifies	the	source	object	name	if	no	value
for	the	SourceSQLStatement	property	is	specified.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object ParallelDataPumpTask	Object
DataPumpTask	Object 	

Syntax
object.SourceObjectName	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Source	object	name

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourceObjectName(BSTR	*pRetVal);

HRESULT	SetSourceObjectName(BSTR	NewValue);

Remarks

The	SourceObjectName	property	is	typically	a	database	table	name	or
worksheet	name.

Example
The	following	code	sets	the	SourceObjectName	property:

objDataPump.SourceObjectName	=	"pubs..authors"

See	Also

DestinationObjectName	Property

SourceSQLStatement	Property

DTS	Programming

SourcePassword	Property
The	SourcePassword	property	specifies	the	password	on	the	source	server.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.SourcePassword[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Password	on	the	source	server

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourcePassword(BSTR	*pRetVal);

HRESULT	SetSourcePassword(BSTR	NewValue);

Remarks
Note		It	is	recommended	that	you	connect	to	an	instance	of	Microsoft®	SQL
Server™	using	Windows	Authentication	instead	of	SQL	Server	Authentication.
To	use	Windows	Authentication,	set	SourceUseTrustedConnection	to	TRUE.

See	Also

DestinationPassword	Property

SourceDatabase	Property

SourceServer	Property

SourceLogin	Property

SourceUseTrustedConnection	Property

DTS	Programming

SourcePassword	(DTSFTPTask)	Property
The	SourcePassword	property	sets	or	returns	the	password	that	will	be	used	to
connect	to	the	Internet	File	Transfer	Protocol	(FTP)	site	by	a	DTSFTPTask
object.

Applies	To

DTSFTPTask	Object

Syntax
object.SourcePassword	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSFTPTask	object
value Password	that	will	be	used	to	connect	to	the	Internet	FTP	site

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourcePassword(BSTR*	pVal);

HRESULT	SourcePassword(BSTR	pVal);

Remarks
Typically,	if	"anonymous"	is	used	for	the	user	name	when	connecting	to	the	FTP

site,	the	e-mail	address	of	the	user	is	used	as	the	password.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("SourcePassword")	[=	value]

Example
This	example	sets	the	SourcePassword	property	to	a	string.

oCustTask.SourcePassword	=	"user@microsoft.com"

See	Also

SourceFilename	Property

SourceLocation	Property

SourceSite	Property

SourceUsername	Property

DTS	Programming

SourceQueryConnectionID	Property
The	SourceQueryConnectionID	property	sets	or	returns	the	connection	ID	of
the	connection	against	which	a	query	will	be	run.	The	query	provides	the	value
to	which	a	Data	Transformation	Services	(DTS)	package	object	property	will	be
set	by	the	DynamicPropertiesTask	object,	when	the	SourceType	property	is
DTSDynamicPropertiesSourceType_Query.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceQueryConnectionID	[=	number]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
number Connection	ID	against	which	a	query	will	be	run	to	provide	the

value	to	which	a	DTS	package	object	property	will	be	set

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceQueryConnectionID(long*	pRetVal);

HRESULT	SourceQueryConnectionID(long	pRetVal);

Remarks
The	SQL	query	to	be	run	is	specified	by	the	SourceQuerySQL	property.

See	Also

SourceQuerySQL	Property

SourceType	Property

DTS	Programming

SourceQuerySQL	Property
The	SourceQuerySQL	property	sets	or	returns	a	string	that	is	an	SQL	query.
The	query	provides	the	value	to	which	a	Data	Transformation	Services	(DTS)
package	object	property	is	set	by	the	DynamicPropertiesTask	object,	when	the
SourceType	property	is	DTSDynamicPropertiesSourceType_Query.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceQuerySQL	[=	query]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
query SQL	query	that	provides	the	value	to	which	a	DTS	package	object

property	is	set

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceQuerySQL(BSTR*	pRetVal);

HRESULT	SourceQuerySQL(BSTR	pRetVal);

Remarks
In	general,	it	is	recommended	that	you	program	the	SQL	query	to	return	a	single
row	containing	a	single	field.	Only	the	first	field	of	the	first	row	is	used	to	set	the
specified	package	object	property.

The	query	is	run	against	the	connection	identified	by	the
SourceQueryConnectionID	property.

See	Also

SourceQueryConnectionID	Property

SourceType	Property

DTS	Programming

SourceServer	Property
The	SourceServer	property	specifies	the	name	of	the	source	server.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.SourceServer[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Name	of	the	source	server

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourceServer(BSTR	*pRetVal);

HRESULT	SetSourceServer(BSTR	NewValue);

See	Also

DestinationServer	Property

SourceDatabase	Property

SourceLogin	Property

SourcePassword	Property

SourceUseTrustedConnection	Property

DTS	Programming

SourceSite	Property
The	SourceSite	property	sets	or	returns	the	location	from	which	the	files	will	be
transferred	by	a	DTSFTPTask	object.

Applies	To

DTSFTPTask	Object

Syntax
object.SourceSite	[=	string]

Part Description
object Expression	that	evaluates	to	a	DTSFTPTask	object
string Location	from	which	the	files	will	be	transferred,	either	an

Internet	FTP	site	or	a	network	directory

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceSite(BSTR*	pVal);

HRESULT	SourceSite(BSTR	pVal);

Remarks
If	the	SourceLocation	property	specifies	an	Internet	site,	the	SourceSite

property	must	be	defined.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("SourceSite")	[=	string]

Example
The	following	example	sets	the	SourceSite	property	to	a	File	Transfer	Protocol
(FTP)	site	name:

oCustTask.SourceSite	=	"ftp.microsoft.com"

See	Also

SourceFilename	Property

SourceLocation	Property

SourcePassword	(DTSFTPTask)	Property

SourceUsername	Property

DTS	Programming

SourceSQLStatement	Property
The	SourceSQLStatement	property	specifies	the	SQL	statement	used	to
execute	on	the	source	rowset.

Applies	To

DataDrivenQueryTask	Object DataPumpTask2	Object
DataDrivenQueryTask2	Object ParallelDataPumpTask	Object
DataPumpTask	Object 	

Syntax
object.SourceSQLStatement	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value SQL	statement	used	to	execute	on	the	source	rowset

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourceSQLStatement(BSTR	*pRetVal);

HRESULT	SetSourceSQLStatement(BSTR	NewValue);

Remarks

The	SQL	statement	specified	by	this	property	can	contain	?	tokens	that	are
replaced	by	the	values	of	global	variables	named	by	the
InputGlobalVariableNames	property.

See	Also

DestinationSQLStatement	Property

InputGlobalVariableNames	Property

DTS	Programming

SourceTranslateChar	Property
The	SourceTranslateChar	property	sets	or	returns	a	value	indicating	whether
translation	is	performed	for	character	data	on	the	source	server.

Applies	To

TransferObjectsTask2	Object

Syntax
object.SourceTranslateChar	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	TransferObjectsTask2	object.
boolean Boolean	that	specifies	whether	translation	is	performed	for

character	data	on	the	source	server.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceTranslateChar(VARIANT_BOOL*	pRetVal);

HRESULT	SourceTranslateChar(VARIANT_BOOL	pRetVal);

Remarks
The	default	is	TRUE;	translation	is	performed.

See	Also

DestTranslateChar	Property

DTS	Programming

SourceType	Property
The	SourceType	property	sets	or	returns	a	code	for	the	type	of	source	object	that
provides	the	value	to	which	a	Data	Transformation	Services	(DTS)	package
object	property	will	be	set	by	the	DynamicPropertiesTask	object.

Applies	To

DynamicPropertiesTaskAssignment	Object

Syntax
object.SourceType	[=	value]

Part Description
object Expression	that	evaluates	to	a

DynamicPropertiesTaskAssignment	object
value Code	for	the	type	of	source	object	that	provides	the	value	to	which

a	DTS	package	object	property	will	be	set

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceType(long*	pRetVal);

HRESULT	SourceType(long	pRetVal);

Remarks

The	valid	values	for	this	property	are	defined	by	the
DynamicPropertiesTaskSourceType	constants.

Example
The	following	example	sets	the	SourceType	property	to	a	value	from	a	DTS
enumeration:

oAssign.SourceType	=	DTSDynamicPropertiesSourceType_IniFile

See	Also

DynamicPropertiesTaskSourceType

SourceConstantValue	Property

SourceDataFileFileName	Property

SourceEnvironmentVariable	Property

SourceGlobalVariable	Property

SourceIniFileFileName	Property

SourceIniFileKey	Property

SourceIniFileSection	Property

SourceQueryConnectionID	Property

SourceQuerySQL	Property

DTS	Programming

SourceUsername	Property
The	SourceUsername	property	sets	or	returns	the	user	name	that	will	be	used	to
connect	to	the	Internet	File	Transfer	Protocol	(FTP)	site	by	a	DTSFTPTask
object.

Applies	To

DTSFTPTask	Object

Syntax
object.SourceUsername	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSFTPTask	object
value User	name	that	will	be	used	to	connect	to	the	Internet	FTP	site

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	SourceUsername(BSTR*	pVal);

HRESULT	SourceUsername(BSTR	pVal);

Remarks
Typically,	"anonymous"	can	be	used	for	the	user	name	when	establishing	a	read-

only	connection	to	an	Internet	FTP	site,	such	as	by	the	DTSFTPTask.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("SourceUsername")	[=	value]

Example
The	following	example	sets	the	SourceUsername	property	to	a	string:

oCustTask.SourceUsername	=	"anonymous"

See	Also

SourceFilename	Property

SourceLocation	Property

SourcePassword	(DTSFTPTask)	Property

SourceSite	Property

DTS	Programming

SourceUseTrustedConnection	Property
The	SourceUseTrustedConnection	property	specifies	whether	the	Windows
Authentication	security	mode	is	used.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.SourceUseTrustedConnection[=	value]

Part Description
object An	expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	the	Windows	Authentication

security	mode	is	to	be	used

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSourceUseTrustedConnection(VARIANT_BOOL	*pRetVal);

HRESULT	SetSourceUseTrustedConnection(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

Note		It	is	recommended	that	you	connect	to	an	instance	of	Microsoft®	SQL
Server™	using	Windows	Authentication	instead	of	SQL	Server	Authentication.
To	use	Windows	Authentication,	set	SourceUseTrustedConnection	to	TRUE.

See	Also

DestinationUseTrustedConnection	Property

SourceDatabase	Property

SourceLogin	Property

SourcePassword	Property

SourceServer	Property

DTS	Programming

SQLStatement	Property
The	SQLStatement	property	specifies	a	sequence	of	one	or	more	SQL
statements	or	stored	procedure	references	to	be	executed.

Applies	To

ExecuteSQLTask	Object ExecuteSQLTask2	Object

Syntax
object.SQLStatement	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Query	that	is	a	sequence	of	one	or	more	SQL	statements	or	stored

procedure	references

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSQLStatement(BSTR	*pRetVal);

HRESULT	SetSQLStatement(BSTR	NewValue);

Remarks
In	the	ExecuteSQLTask2	object,	the	SQLStatement	query	can	contain	?	tokens

that	are	replaced	by	the	values	of	global	variables	specified	by	the
InputGlobalVariableNames	property.	Fields	from	the	first	row	of	the	rowset
generated	by	the	query	are	assigned	to	the	global	variables	specified	by	the
OutputGlobalVariableNames	property.	The	entire	rowset	can	be	written	to	a
global	variable	as	a	disconnected	Microsoft®	ActiveX®	Data	Objects	(ADO)
recordset	if	the	OutputAsRecordset	property	is	set.

See	Also

InputGlobalVariableNames	Property

OutputAsRecordset	Property

OutputGlobalVariableNames	Property

DTS	Programming

StartTime	Property
The	StartTime	property	specifies	when	the	Data	Transformation	Services	(DTS)
package	or	step	execution	started.

Applies	To

PackageLogRecord	Object StepLineage	Object
Step	Object StepLogRecord	Object
Step2	Object 	

Syntax
object.StartTime

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStartTime(DATE	*pRetVal);

See	Also

ExecutionTime	Property

FinishTime	Property

DTS	Programming

StepExecutionID	Property
The	StepExecutionID	property	specifies	a	sequence	number	for	the	step	log
record.

Applies	To

StepLogRecord	Object

Syntax
object.StepExecutionID

Part Description
object Expression	that	evaluates	to	a	StepLogRecord	object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStepExecutionID(long	*pRetVal);

Remarks
StepExecutionID	can	be	specified	as	a	parameter	when	enumerating	or
removing	step	log	records	and	task	log	records.

See	Also

EnumStepLogRecords	Method

EnumTaskLogRecords	Method

RemoveStepLogRecords	Method

RemoveTaskLogRecords	Method

StepExecutionResult	Property

StepExecutionStatus	Property

DTS	Programming

StepExecutionResult	Property
The	StepExecutionResult	property	returns	the	result	of	the	logged	step
execution.

Applies	To

StepLineage	Object StepLogRecord	Object

Syntax
object.StepExecutionResult

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
DTSStepExecResult

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStepExecutionResult(DTSStepExecResult	*pRetVal);

Remarks
The	StepExecutionResult	value	indicates	success	or	failure	of	the	logged	step.

See	Also

ExecutionResult	Property

ExecutionStatus	Property

StepExecutionStatus	Property

DTS	Programming

StepExecutionStatus	Property
The	StepExecutionStatus	property	returns	the	status	of	the	logged	step
execution.

Applies	To

StepLineage	Object StepLogRecord	Object

Syntax
object.StepExecutionStatus

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
DTSStepExecStatus

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetStepExecutionStatus(DTSStepExecStatus	*pRetVal);

Remarks
Typically,	you	will	see	DTSStepExecStat_Completed	(4)	for
StepExecutionStatus	logged	step	execution	records.

See	Also

ExecutionResult	Property

ExecutionStatus	Property

StepExecutionResult	Property

DTS	Programming

StepName	Property
The	StepName	property	specifies	the	name	of	the	step	whose	status	or	result	is
evaluated	when	determining	if	this	constraint	is	satisfied.

Applies	To

PrecedenceConstraint	Object

Syntax
object.StepName	[=	value]

Part Description
object Expression	that	evaluates	to	a	PrecedenceConstraint	object
value Name	of	the	step	that	is	evaluated

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetStepName(BSTR	*pRetVal);

HRESULT	SetStepName(THIS_	DTS_IN	BSTR	NewValue);

See	Also

PrecedenceBasis	Property

Step2	Object

DTS	Programming

StringCompareType	Property
The	StringCompareType	property	sets	or	returns	the	type	of	comparison	to	be
performed	on	a	received	string	message.

Applies	To

DTSMessageQueueTask	Object

Syntax
object.StringCompareType	[=	value]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
value Code	that	defines	the	string	comparison	type

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	StringCompareType(long*	pVal);

HRESULT	StringCompareType(long	pVal);

Remarks
The	comparison	is	performed	between	the	received	message	and	the	value	of	the
StringCompareValue	property.

The	valid	values	for	this	property	are	defined	by	the
DTSMQStringMessageCompare	constants.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("StringCompareType")	[=	value]

See	Also

DTSMQStringMessageCompare

StringCompareValue	Property

DTS	Programming

StringCompareValue	Property
The	StringCompareValue	property	sets	or	returns	the	string	to	be	compared
with	a	received	string	message.	

Applies	To

DTSMessageQueueTask	Object

Syntax
object.StringCompareValue	[=	string]

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
string String	to	be	compared	with	a	received	string	message

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	StringCompareValue(BSTR*	pVal);

HRESULT	StringCompareValue(BSTR	pVal);

Remarks
The	type	of	comparison	is	specified	by	the	StringCompareType	property.	The
StringCompareValue	property	must	be	defined	unless	the	comparison	type	is

None.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("StringCompareValue")	[=	string]

See	Also

StringCompareType	Property

DTS	Programming

Subject	Property
The	Subject	property	specifies	the	Subject:	line	of	an	e-mail	message.

Applies	To

SendMailTask	Object

Syntax
object.Subject[=	value]

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
value Subject	line	of	an	e-mail	message

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSubject(BSTR	*pRetVal);

HRESULT	SetSubject(BSTR	NewValue);

See	Also

CCLine	Property

MessageText	Property

ToLine	Property

DTS	Programming

SuccessReturnCode	Property
The	SuccessReturnCode	property	specifies	a	return	code	that	indicates	whether
the	task	completed	successfully.

Applies	To

CreateProcessTask	Object CreateProcessTask2	Object

Syntax
object.SuccessReturnCode	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Return	code	from	the	process

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetSuccessReturnCode(LONG	*pRetVal);

HRESULT	SetSuccessReturnCode(LONG	NewValue);

Remarks
If	the	process	exit	code	does	not	match	the	value	specified	by
SuccessReturnCode,	the	task	fails.	The	default	value	is	0.

See	Also

FailPackageOnTimeout	Property

TerminateProcessAfterTimeout	Property

Timeout	Property

DTS	Programming

TableLock	Property
The	TableLock	property	indicates	whether	an	entire	table	is	locked	during	a	load
operation.

Applies	To

BulkInsertTask	Object

Syntax
object.TableLock	[=	value]

Part Description
object Expression	that	evaluates	to	a	BulkInsertTask	object
value Boolean	that	specifies	whether	an	entire	table	is	locked

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTableLock(VARIANT_BOOL	*pRetVal);

HRESULT	SetTableLock(VARIANT_BOOL	NewValue);

Remarks
The	default	is	FALSE.

See	Also

DestinationTableName	Property

DTS	Programming

TaskName	Property
The	TaskName	property	specifies	the	name	of	the	task	to	execute.

Applies	To

Step	Object Step2	Object

Syntax
object.TaskName	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Name	of	the	task	to	execute

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTaskName(BSTR	*pRetVal);

HRESULT	SetTaskName(BSTR	NewValue);

Remarks
The	TaskName	property	is	the	link	between	the	Task	object	and	the	step	that
contains	it.	Typically,	set:

Step2.TaskName	=	Task.Name

See	Also

Task	Object

Tasks	Collection

DTS	Programming

TaskType	Property
The	TaskType	property	sets	or	returns	the	type	of	the	DTSMessageQueueTask
object,	sender,	or	receiver.	

Applies	To

DTSMessageQueueTask	Object

Syntax
object.TaskType	[=	value]

Part Description
Object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
Value Code	that	defines	the	task	type,	sender,	or	receiver

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	TaskType(long*	pVal);

HRESULT	TaskType(long	pVal);

Remarks
The	valid	values	for	this	property	are	defined	by	the	DTSMQType	constants.

The	property	also	can	be	referenced	through	the	Properties	collection	of	the

Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("TaskType")	[=	value]

See	Also

DTSMQType

DTS	Programming

TerminateProcessAfterTimeout	Property
The	TerminateProcessAfterTimeout	property	specifies	whether	to	terminate
the	process	after	the	time-out	period	has	expired.

Applies	To

CreateProcessTask	Object CreateProcessTask2	Object

Syntax
object.TerminateProcessAfterTimeout	[=	value]

Part Description
Object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
Value Boolean	that	specifies	whether	to	terminate	the	process

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTerminateProcessAfterTimeout(VARIANT_BOOL	*pRetVal);

HRESULT	SetTerminateProcessAfterTimeout(VARIANT_BOOL	NewValue);

Remarks
If	TerminateProcessAfterTimeout	is	FALSE	(the	default),	the	task	fails	after
the	time-out	without	terminating	the	created	process.	The

FailPackageOnTimeout	property	determines	if	the	entire	package	is	terminated
after	the	time-out	occurs.

See	Also

FailPackageOnTimeout	Property

Timeout	Property

DTS	Programming

Text	Property
The	Text	property	specifies	or	returns	the	text	of	a	Microsoft®	ActiveX®	script.

Applies	To

DataPumpTransformScript	Object DTSTransformScriptProperties2
Object

Syntax
object.Text	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value ActiveX	script	text

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetText(BSTR	*pRetVal);

HRESULT	SetText(BSTR	NewValue);

Remarks
The	scripting	language	is	specified	by	the	Language	property.

The	property	also	can	be	referenced	through	the	TransformServerProperties

collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("Text")	[=	string]

See	Also

FunctionEntry	Property

Language	Property

DTS	Programming

Timeout	Property
The	Timeout	property	specifies	the	number	of	seconds	in	the	time-out	period.

Applies	To

CreateProcessTask	Object CreateProcessTask2	Object

Syntax
object.Timeout	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Number	of	seconds	in	the	time-out	period

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTimeout(LONG	*pRetVal);

HRESULT	SetTimeout(LONG	NewValue);

Remarks
A	value	of	0	(default)	indicates	no	time-out	period.	Otherwise,	the	task	fails	after
the	time-out	period	elapses.	If	the	FailPackageOnTimeout	property	is	set,	the
entire	package	fails.	If	the	TerminateProcessAfterTimeout	property	is	set,	the

created	process	is	failed.

See	Also

FailPackageOnTimeout	Property

TerminateProcessAfterTimeout	Property

DTS	Programming

ToLine	Property
The	ToLine	property	specifies	e-mail	addresses	to	include	on	the	To:	line.

Applies	To

SendMailTask	Object

Syntax
object.ToLine[=	value]

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
value E-mail	addresses	to	which	the	mail	message	is	sent

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetToLine(BSTR	*pRetVal);

HRESULT	SetToLine(BSTR	NewValue);

Remarks
The	e-mail	addresses	must	be	separated	by	semicolons.

See	Also

CCLine	Property

MessageText	Property

Subject	Property

DTS	Programming

TransactionIsolationLevel	Property
The	TransactionIsolationLevel	property	specifies	the	isolation	level	at	which	a
Package2	object	transaction	executes	if	the	UseTransaction	property	is	set	to
TRUE.

Applies	To

Package	Object Package2	Object

Syntax
object.TransactionIsolationLevel[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Isolation	level	at	which	a	Package2	object	transaction	executes

Data	Type
DTSIsolationLevel

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTransactionIsolationLevel(DTSIsolationLevel	*pRetVal);

HRESULT	SetTransactionIsolationLevel(DTSIsolationLevel	NewValue);

Remarks
The	default	is	ReadCommitted.

See	Also

AutoCommitTransaction	Property

InTransaction	Property

JoinTransactionIfPresent	Property

UseTransaction	Property

DTS	Programming

TransformationSetOptions	Property
The	TransformationSetOptions	property	returns	or	sets	the	mode	in	which	a
ParallelDataPumpTask	object	operates.

Applies	To

ParallelDataPumpTask	Object

Syntax
oParallelDP.TransformationSetOptions	[=	value]

Part Description
oParallelDP Expression	that	evaluates	to	a	ParallelDataPumpTask	object
value DTSTransformationSetOptions	constant	that	specifies	the

ParallelDataPumpTask	operating	mode

Data	Type
DTSTransformationSetOptions	Constants

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTransformationSetOptions(DTSTransformationSetOptions*
pRetVal);

HRESULT	SetTransformationSetOptions(DTSTransformationSetOptions
NewValue);

Remarks

The	property	must	be	set	to	one	of	the	DTSTransformationSetOptions	values.
The	default	is	DTSTranSetOpt_Flattened.

See	Also

TransformationSet	Object

DTS	Programming

TransformFailureFunctionEntry	Property
The	TransformFailureFunctionEntry	property	specifies	or	returns	the	name	of
the	script	function	that	is	to	be	called	for	the	OnTransformFailure	transformation
phase.

Applies	To

DTSTransformScriptProperties2	Object

Syntax
object.TransformFailureFunctionEntry	[=	name]

Part Description
object Expression	that	evaluates	to	a	DTSTransformScriptProperties2

object
name Name	of	the	script	function	that	supports	the	OnTransformFailure

phase

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	TransformFailureFunctionEntry(BSTR*	pRetVal);

HRESULT	TransformFailureFunctionEntry(BSTR	pRetVal);

Remarks

The	OnTransformFailure	phase	occurs	after	the	Transform	phase	returns
DTSTransformStat_Error	or	DTSTransformStat_ExceptionRow,	in	the
DataPumpTask2,	DataDrivenQueryTask2	or	ParallelDataPumpTask	objects.

The	OnTransformFailure	script	function	has	read	access	to	the	columns	of	the
DTSSource	collection	and	write	access	to	the	columns	of	the	DTSDestination
collection.	Any	return	values	that	are	valid	during	the	Transform	phase	can	be
returned.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("TransformFailureFunctionEntry")	[=	string]

See	Also

BatchCompleteFunctionEntry	Property

DataDrivenQueryTask2	Object

DataPumpTask2	Object

DTSTransformStatus

FunctionEntry	Property

InsertFailureFunctionEntry	Property

InsertSuccessFunctionEntry	Property

ParallelDataPumpTask	Object

PostSourceDataFunctionEntry	Property

PreSourceDataFunctionEntry	Property

PumpCompleteFunctionEntry	Property

DTS	Programming

TransformFlags	Property
The	TransformFlags	property	specifies	transformation	flags	that	indicate
characteristics	of	a	transformation.

Applies	To

Transformation	Object Transformation2	Object

Syntax
object.TransformFlags	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Flags	that	indicate	characteristics	of	the	transformation.	Use	a	sum

of	codes	from	the	DTSTransformFlags	constants.

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTransformFlags(LONG	*pRetVal);

HRESULT	SetTransformFlags(LONG	NewValue);

Remarks
The	TransformFlags	property	controls	the	types	of	conversions	that	are

considered	either	valid	or	invalid	(for	example,	possible	overflow,	possible	loss
of	sign	when	converting	signed	to	unsigned,	possible	string	truncation).	The	test
is	made	at	the	beginning	of	the	transformation,	not	row	by	row.

See	Also

DTSTransformFlags

DTS	Programming

TransformPhases	Property
The	TransformPhases	property	returns	or	sets	the	transform	phases	that	this
transformation	supports.

Applies	To

Transformation2	Object

Syntax
object.TransformPhases	[=	value]

Part Description
object Expression	that	evaluates	to	a	Transformation2	object
value Codes	that	indicate	the	phases	this	transformation	supports.	Must

be	a	sum	of	values	from	the	DTSTransformPhaseEnum
constants.

Data	Type
Long

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTransformPhases(LONG	*pRetVal);

HRESULT	SetTransformPhases(LONG	NewValue);

Remarks

These	are	the	transformation	phases	that	a	transformation	can	support.

Phase Description
PreSourceData Occurs	before	the	first	row	is	fetched	from	source

connection.
Transform Occurs	after	each	source	row	is	fetched,	before	the

destination	row	is	written.
OnTransformFailureOccurs	after	a	failure	in	the	Transform	phase,

indicated	by	the	return	of	DTSTransformStat_Error
or	DTSTransformStat_ExceptionRow.	Typically,
this	phase	is	caused	by	conversion	errors.

OnInsertSuccess Occurs	after	each	data	row	is	written	successfully	to
the	destination	connection.

OnInsertFailure Occurs	after	each	attempt	to	write	a	data	row	to	the
destination	connection	failed	(for	example,	by
attempting	to	write	a	duplicate	value	to	a	primary	key
field,	or	a	NULL	to	a	NOT	NULL	field).

OnBatchComplete Occurs	in	DataPumpTask2	if	you	select	the
FastLoad	check	box	after	each	batch	is	written,
successfully	or	unsuccessfully.

PostSourceData Occurs	after	the	last	row	is	written	to	the	destination
connection.

OnPumpComplete Occurs	at	the	end	of	the	execution	of	the	task.

See	Also

CurrentPhase	Property

DTSTransformPhaseEnum

DTS	Programming

TransformServer	Property
The	TransformServer	property	returns	a	reference	to	the	transform	server
object	(the	class-specific	transformation	object)	through	which	the	properties	of
that	object	can	be	directly	accessed.

Applies	To

Transformation	Object Transformation2	Object

Syntax
[Set	transform	=]	object.TransformServer

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
transform Reference	to	the	transform	server	object

Data	Type
Object

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTransformServer(IDispatch	**pRetVal);

Remarks
You	can	access	the	properties	of	the	class-specific	transformation	object	directly
or	through	the	TransformServerProperties	collection	of	the	Transformation2
object.

Example
The	following	code	creates	a	DataPumpTransformMidString	transformation,
and	then	references	the	transform	server	object	and	uses	it	to	set	the
CharacterStart	property:

				Dim	objDataPump			As	DTS.DataPumpTask
				Dim	objTransform		As	DTS.Transformation
				Dim	objMidString		As	DTSPump.DataPumpTransformMidString
				.	.	.
				Set	objTransform	=	objDataPump.Transformations.	_
												New("DTSPump.DataPumpTransformMidString")
				Set	objMidString	=	objTransform.TransformServer
				objMidString.CharacterStart	=	5

See	Also

TransformServerID	Property

TransformServerParameter	Property

TransformServerProperties	Property

DTS	Programming

TransformServerID	Property
The	TransformServerID	property	returns	the	programmatic	identifier	(ProgID)
or	class	identifier	(CLSID)	of	the	transform	server	object	(the	class-specific
transformation	object).

Applies	To

Transformation	Object Transformation2	Object

Syntax
object.TransformServerID

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetTransformServerID(BSTR	*pRetVal);

Remarks
The	ProgID	or	CLSID	returned	by	the	TransformServerID	property	is	the
identifier	that	was	used	with	the	New	method	of	the	Transformations	collection
to	create	the	Transformation2	object.

See	Also

New	(ID)	Method

Transformations	Collection

TransformServer	Property

TransformServerParameter	Property

TransformServerProperties	Property

DTS	Programming

TransformServerParameter	Property
The	TransformServerParameter	property	specifies	an	initialization	parameter
for	the	transform	server	object	(class-specific	transformation	object),	if	required.

Applies	To

Transformation	Object Transformation2	Object

Syntax
object.TransformServerParameter	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Transform	server's	initialization	parameter

Data	Type
Variant

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetTransformServerParameter(VARIANT	*pRetVal);

HRESULT	SetTransformServerParameter(VARIANT	NewValue)	;

Remarks
Because	the	TransformServerParameter	property	has	a	variant	data	type,	it
may	be	either	a	scalar	value	or	an	array.	Some	custom	transformation	servers

may	expose	an	alternate	interface	on	their	IDispatch	transformation	server
objects	to	specify	complex	parameters.

See	Also

TransformServer	Property

TransformServerID	Property

TransformServerProperties	Property

DTS	Programming

TransformServerProperties	Property
The	TransformServerProperties	property	returns	a	reference	to	a	Properties
collection	containing	the	properties	of	the	transform	server	object	(the	class-
specific	transformation	object).

Applies	To

Transformation	Object Transformation2	Object

Syntax
object.TransformServerProperties

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Properties

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetTransformServerProperties(IDTSProperties	**pRetVal);

Remarks
You	can	use	the	TransformServerProperties	property	to	access	the	properties
of	the	class-specific	transformation	object	without	creating	a	reference	to	that
object.

Example
The	following	code	creates	a	DataPumpTransformMidString	transformation,
and	then	references	the	CharacterStart	property	through	the
TransformServerProperties	property:

				Dim	objDataPump			As	DTS.DataPumpTask
				Dim	objTransform		As	DTS.Transformation
				.	.	.
				Set	objTransform	=	objDataPump.Transformations.	_
												New("DTSPump.DataPumpTransformMidString")
				objTransform.TransformServerProperties("CharacterStart").Value	=	5

See	Also

Properties	Collection

TransformServer	Property

TransformServerID	Property

TransformServerParameter	Property

DTS	Programming

TrimEmbeddedWhiteSpace	Property
The	TrimEmbeddedWhiteSpace	property	specifies	or	returns	a	value
indicating	whether	embedded	white-space	characters	are	removed	from	the
source	column	string	copied	by	custom	transformations.

Applies	To

DataPumpTransformMidString
Object

DataPumpTransformTrimString
Object

Syntax
transerver.TrimEmbeddedWhiteSpace	[=	boolean]

Part Description
transerver Expression	that	evaluates	to	an	object	from	the	Applies	To	list.
boolean If	TRUE,	embedded	white-space	characters	are	removed	from

the	source	string.	Default	is	FALSE.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	TrimEmbeddedWhiteSpace(VARIANT_BOOL*	pRetVal);

HRESULT	TrimEmbeddedWhiteSpace(VARIANT_BOOL	pRetVal);

Remarks

White-space	characters	are	spaces,	tabs,	carriage	returns	and	linefeeds.
Embedded	white-space	characters	are	those	that	appear	between	the	first	and	last
character	that	is	not	a	white-space	character.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("TrimEmbeddedWhiteSpace")	[=	boolean]

See	Also

TrimLeadingWhiteSpace	Property

TrimTrailingWhiteSpace	Property

DTS	Programming

TrimLeadingWhiteSpace	Property
The	TrimLeadingWhiteSpace	property	specifies	or	returns	a	value	indicating
whether	leading	white-space	characters	are	removed	from	the	source	column
string	copied	by	custom	transformations.

Applies	To

DataPumpTransformMidString
Object

DataPumpTransformTrimString
Object

Syntax
transerver.TrimLeadingWhiteSpace	[=	boolean]

Part Description
transerver Expression	that	evaluates	to	an	object	from	the	Applies	To	list.
boolean If	TRUE,	leading	white-space	characters	are	removed	from	the

source	string.	Default	is	FALSE.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	TrimLeadingWhiteSpace(VARIANT_BOOL*	pRetVal);

HRESULT	TrimLeadingWhiteSpace(VARIANT_BOOL	pRetVal);

Remarks

White-space	characters	are	spaces,	tabs,	carriage	returns	and	linefeeds.	Leading
white-space	characters	are	those	that	appear	ahead	of	the	first	character	that	is
not	a	white-space	character.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("TrimLeadingWhiteSpace")	[=	boolean]

See	Also

TrimEmbeddedWhiteSpace	Property

TrimTrailingWhiteSpace	Property

DTS	Programming

TrimTrailingWhiteSpace	Property
The	TrimTrailingWhiteSpace	property	specifies	or	returns	a	value	indicating
whether	trailing	white-space	characters	are	removed	from	the	source	column
string	copied	by	custom	transformations.

Applies	To

DataPumpTransformMidString
Object

DataPumpTransformTrimString
Object

Syntax
transerver.TrimTrailingWhiteSpace	[=	boolean]

Part Description
transerver Expression	that	evaluates	to	an	object	from	the	Applies	To	list.
boolean If	TRUE,	trailing	white-space	characters	are	removed	from	the

source	string.	Default	is	FALSE.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	TrimTrailingWhiteSpace(VARIANT_BOOL*	pRetVal);

HRESULT	TrimTrailingWhiteSpace(VARIANT_BOOL	pRetVal);

Remarks

White-space	characters	are	spaces,	tabs,	carriage	returns	and	linefeeds.	Trailing
white-space	characters	are	those	that	appear	after	the	last	character	that	is	not	a
white-space	character.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("TrimTrailingWhiteSpace")	[=	boolean]

See	Also

TrimEmbeddedWhiteSpace	Property

TrimLeadingWhiteSpace	Property

DTS	Programming

Type	Property
The	Type	property	specifies	the	data	type	of	the	value	of	a	Property	object.

Applies	To

Property	Object

Syntax
object.Type

Part Description
object Expression	that	evaluates	to	a	Property	object

Data	Type
Long

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetType(long	*pRetVal);

See	Also

Get	Property

Set	Property

Value	Property

DTS	Programming

UDLPath	Property
The	UDLPath	property	specifies	the	name	and	path	of	a	Microsoft®	Data	Link
file	used	to	create	a	connection.

Applies	To

Connection	Object Connection2	Object

Syntax
object.UDLPath	[=	path]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
path Name	and	path	of	the	data	link	file

Data	Type
String

Modifiable
Read/write	for	the	Connection2	object.	Read-only	for	the	Connection	object.

Prototype	(C/C++)
HRESULT	GetUDLPath(BSTR	*pRetVal);

Remarks
When	a	data	link	file	is	used,	the	ConnectionProperties	collection	is	not
available.

See	Also

ConnectionProperties	Property

DTS	Programming

UnicodeFile	Property
The	UnicodeFile	property	specifies	or	returns	a	value	indicating	whether	the
data	read	from	or	written	to	files	by	transformations	is	translated	from	or	to
Unicode.

Applies	To

DataPumpTransformReadFile	Object DataPumpTransformWriteFile
Object

Syntax
transerver.UnicodeFile	[=	boolean]

Part Description
transerver Expression	that	evaluates	to	an	object	from	the	Applies	To	list.
boolean If	TRUE,	the	file	data	is	translated	from	or	to	Unicode.	Default

is	FALSE.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	UnicodeFile(VARIANT_BOOL*	pRetVal);

HRESULT	UnicodeFile(VARIANT_BOOL	pRetVal);

Remarks

For	the	DataPumpTransformReadFile	object,	the	file	is	translated	from
Unicode	to	ANSI	if	the	destination	column	is	not	Unicode	and	the	UnicodeFile
property	is	TRUE.

For	the	DataPumpTransformWriteFile	object,	the	source	column	data	has
already	been	translated	to	from	ANSI	to	Unicode,	if	necessary.	If	the
UnicodeFile	property	is	TRUE,	the	Unicode	header	bytes	0xFFFE	are	written	to
the	file,	unless	the	AppendIfFileExists	property	is	TRUE	and	the	header	is
already	in	the	file.

If	the	UnicodeFile	property	is	TRUE,	the	OEMFile	property	is	ignored.

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("UnicodeFile")	[=	boolean]

See	Also

AppendIfFileExists	Property

OEMFile	Property

DTS	Programming

UpdateQuery	Property
The	UpdateQuery	property	specifies	a	string	of	one	or	more	parameterized	SQL
statements	to	execute	at	the	destination	as	the	Update	query.

Applies	To

DataDrivenQueryTask	Object TransformationSet	Object
DataDrivenQueryTask2	Object 	

Syntax
object.UpdateQuery	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Parameterized	string	of	SQL	statements

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUpdateQuery(BSTR	*pRetVal);

HRESULT	SetUpdateQuery(BSTR	NewValue);

Remarks
Although	the	name	of	a	data	driven	query	property	is	preset,	its	content	is	not

enforced.	Any	of	the	queries	may	be	used	for	any	desired	operation.	The
nomenclature	is	provided	as	a	convenient	means	of	identification.	The
UpdateQuery	property	does	not	need	to	contain	a	Transact-SQL	UPDATE
statement.

The	values	of	the	columns	specified	by	the	UpdateQueryColumns	property
replace	the	parameters	placeholders	in	the	UpdateQuery	in	the	order	in	which
the	columns	were	added	to	the	collection.

See	Also

Adding	DTS	Query	Strings

DeleteQuery	Property

InsertQuery	Property

UpdateQueryColumns	Property

UserQuery	Property

DTS	Programming

UpdateQueryColumns	Property
The	UpdateQueryColumns	property	returns	a	reference	to	a	collection	of
Column	objects	that	serve	as	parameters	for	the	query	specified	by	the
UpdateQuery	property.

Applies	To

DataDrivenQueryTask	Object TransformationSet	Object
DataDrivenQueryTask2	Object 	

Syntax
object.UpdateQueryColumns

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Columns	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetUpdateQueryColumns(IDTSColumns	**pRetVal);

Remarks

The	values	of	the	columns	specified	by	the	UpdateQueryColumns	property	are
substituted	for	the	parameters	in	the	UpdateQuery	in	the	order	in	which	the
columns	were	added	to	the	collection.

See	Also

Adding	DTS	Query	Strings

Column	Object

DeleteQueryColumns	Property

InsertQueryColumns	Property

UpdateQuery	Property

UserQueryColumns	Property

DTS	Programming

UpperCaseString	Property
The	UpperCaseString	property	specifies	or	returns	a	value	indicating	whether
the	alphabetical	characters	in	the	source	column	string	copied	by	transformations
are	all	converted	to	uppercase	characters.

Applies	To

DataPumpTransformMidString
Object

DataPumpTransformTrimString
Object

Syntax
transerver.UpperCaseString	[=	boolean]

Part Description
transerver Expression	that	evaluates	to	an	object	from	the	Applies	To	list.
boolean Boolean	that	specifies	whether	the	alpha	characters	in	the

source	string	are	converted	to	uppercase.	Default	is	FALSE.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	UpperCaseString(VARIANT_BOOL*	pRetVal);

HRESULT	UpperCaseString(VARIANT_BOOL	pRetVal);

Remarks

The	property	also	can	be	referenced	through	the	TransformServerProperties
collection	with	the	following	code:

Set	transprops	=	transform.TransformServerProperties
transprops("UpperCaseString")	[=	boolean]

See	Also

LowerCaseString	Property

DTS	Programming

UseCache	Property
The	UseCache	property	returns	or	sets	whether	cached	information	is	used	when
enumerating	the	associated	collection.

Applies	To

OLEDBProviderInfos	Collection TaskInfos	Collection
ScriptingLanguageInfos	Collection TransformationInfos	Collection

Syntax
object.UseCache	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list.
value Determines	whether	cached	information	is	used	to	enumerate	the

associated	collection.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseCache(VARIANT_BOOL	*pRetVal);

HRESULT	SetUseCache(VARIANT_BOOL	NewValue);

Remarks

When	UseCache	is	FALSE,	the	information	about	the	components	of	the
associated	collection	is	obtained	from	the	operating	system	registry.	This
requires	all	registered	classes	to	be	examined	and	may	take	a	significant	amount
of	time,	depending	on	the	amount	of	software	installed	on	the	computer.

Data	Transformation	Services	(DTS)	maintains	a	cache	in	the	system	registry	of
the	components	of	each	collection	in	the	Applies	To	list	and	examines	the
appropriate	cache,	rather	than	all	registered	classes,	when	UseCache	is	TRUE.
Use	the	Refresh	method	to	refresh	the	appropriate	cache	from	the	system
registry.

See	Also

Refresh	Method

JavaScript:hhobj_1.Click()

DTS	Programming

UseCollation	Property
The	UseCollation	property	specifies	whether	column-level	collation	settings	on
the	source	table	are	used	when	transferring	data	between	computers	running
instances	of	Microsoft®	SQL	Server™	2000.

Applies	To

TransferObjectsTask2	Object

Syntax
transfobj.UseCollation	[=	value]

Part Description
transfobj Expression	that	evaluates	to	a	TransferObjectsTask2	object.
value Determines	whether	column-level	collation	settings	are	used

when	transferring	data.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseCollation(VARIANT_BOOL	*pRetVal);

HRESULT	SetUseCollation(VARIANT_BOOL	NewValue);

Remarks

The	default	for	this	property	is	TRUE.	The	UseCollation	property	of	the
TransferObjectsTask2	object	exposes	the	UseCollation	property	of	the	SQL-
DMO	Transfer2	object.

If	UseCollation	is	set	to	TRUE	and	the	destination	table	is	dropped	during
transfer,	the	new	destination	table	will	be	created	with	column-level	collations
identical	to	those	of	the	source	table.

If	UseCollation	is	set	to	FALSE	and	the	destination	table	is	dropped	during
transfer,	the	new	destination	table	will	be	created	with	column-level	collations
identical	to	those	of	the	destination	server	default	code	page.	Note	that	if	the
column-level	collation	of	the	source	data	does	not	match	the	source	server
default	code	page,	mistranslation	will	occur.

See	Also

DestTranslateChar	Property

SourceTranslateChar	Property

Transfer2	Object

UseCollation	Property

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

DTS	Programming

UseFastLoad	Property
The	UseFastLoad	property	specifies	whether	to	use	the	FastLoad	option,	where
rows	are	processed	in	batches	under	a	single	transaction	commit.

Applies	To

DataPumpTask	Object DataPumpTask2	Object

Syntax
object.UseFastLoad	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list.
value Boolean	that	specifies	whether	to	use	the	FastLoad	option,	if

available.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseFastLoad(VARIANT_BOOL	*pRetVal);

HRESULT	SetUseFastLoad(VARIANT_BOOL	NewValue);

Remarks
The	batch	size	is	controlled	by	the	InsertCommitSize	property.

The	FastLoad	option	is	available	if	the	OLE	DB	provider	supports	the
IRowsetFastLoad	interface.

See	Also

InsertCommitSize	Property

DTS	Programming

UseOLEDBServiceComponents	Property
The	UseOLEDBServiceComponents	property	specifies	whether	to	use	OLE
DB	service	components	when	initializing	data	sources.

Applies	To

Package	Object Package2	Object

Syntax
object.UseOLEDBServiceComponents[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	to	use	OLE	DB	service

components

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseOLEDBServiceComponents(VARIANT_BOOL	*pRetVal);

HRESULT	SetUseOLEDBServiceComponents(VARIANT_BOOL	NewValue);

Remarks
The	default	is	TRUE.

See	Also

ConnectionProperties	Property

DTS	Programming

UseRepository	Property
The	UseRepository	property	sets	or	returns	a	value	indicating	whether
Microsoft®	SQL	Server™	2000	Meta	Data	Services	should	be	used	as	the
source	of	the	Data	Transformation	Services	(DTS)	package	to	be	run	by	an
ExecutePackageTask	object.

Applies	To

ExecutePackageTask

Syntax
object.UseRepository	[=	boolean]

Part Description
object Expression	that	evaluates	to	an	ExecutePackageTask	object.
boolean If	TRUE,	Meta	Data	Services	is	searched	for	the	DTS	package	to

be	run.

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	UseRepository(VARIANT_BOOL*	pRetVal);

HRESULT	UseRepository(VARIANT_BOOL	pRetVal);

Remarks

If	UseRepository	is	FALSE,	the	DTS	package	is	sought	in	the	SQL	Server
msdb	database,	unless	a	storage	file	specification	is	provided	in	the	FileName
property.

This	property	also	can	be	referenced	through	the	Properties	collection	of	the
Task	object	with	the	following	code:

Set	taskprops	=	task.Properties
taskprops("UseRepository")	[=	boolean]

See	Also

FileName	Property

RepositoryDatabaseName	Property

DTS	Programming

UserID	Property
The	UserID	property	specifies	a	user	ID	or	name	to	use	when	making	a
connection.

Applies	To

Connection	Object Connection2	Object

Syntax
object.UserID	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value User	ID	or	name	to	use

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUserID(BSTR	*pRetVal);

HRESULT	SetUserID(BSTR	NewValue);

Remarks
You	need	to	specify	values	for	the	UserID	and	Password	properties	if
UseTrustedConnection	is	FALSE.

Note		It	is	recommended	that	you	connect	to	an	instance	of	Microsoft®	SQL
Server™	using	Windows	Authentication	instead	of	SQL	Server	Authentication.
To	use	Windows	Authentication,	set	UseTrustedConnection	to	TRUE.

See	Also

Password	Property

UseTrustedConnection	Property

DTS	Programming

UserQuery	Property
The	UserQuery	property	specifies	a	string	of	one	or	more	parameterized	SQL
statements	to	execute	at	the	destination	as	the	user	query.

Applies	To

DataDrivenQueryTask	Object TransformationSet	Object
DataDrivenQueryTask2	Object 	

Syntax
object.UserQuery	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Parameterized	string	of	SQL	statements

Data	Type
String

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUserQuery(BSTR	*pRetVal);

HRESULT	SetUserQuery(BSTR	NewValue);

Remarks
Although	the	name	of	a	data	driven	query	property	is	preset,	its	content	is	not

enforced.	Any	of	the	queries	may	be	used	for	any	desired	operation.	The
nomenclature	is	provided	as	a	convenient	means	of	identification.	Typically,	the
UserQuery	property	contains	a	stored	procedure	reference.

The	values	of	the	columns	specified	by	the	UserQueryColumns	property
replace	the	parameter	placeholders	in	the	UserQuery	in	the	order	in	which	the
columns	were	added	to	the	collection.

See	Also

Adding	DTS	Query	Strings

DeleteQuery	Property

InsertQuery	Property

UpdateQuery	Property

UserQueryColumns	Property

DTS	Programming

UserQueryColumns	Property
The	UserQueryColumns	property	returns	a	reference	to	a	collection	of	Column
objects	that	serve	as	parameters	for	the	query	specified	by	the	UserQuery
property.

Applies	To

DataDrivenQueryTask	Object TransformationSet	Object
DataDrivenQueryTask2	Object 	

Syntax
object.UserQueryColumns

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Columns	Collection

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetUserQueryColumns(IDTSColumns	**pRetVal);

Remarks

The	values	of	the	columns	specified	by	the	UserQueryColumns	property
replace	the	parameter	placeholders	in	the	UserQuery	in	the	order	in	which	the
columns	were	added	to	the	collection.

See	Also

Adding	DTS	Query	Strings

Column	Object

DeleteQueryColumns	Property

InsertQueryColumns	Property

UpdateQueryColumns	Property

UserQuery	Property

DTS	Programming

UseTransaction	Property
The	UseTransaction	property	specifies	whether	the	Package2	object	creates	a
transaction	for	supporting	Data	Transformation	Services	(DTS)	tasks.

Applies	To

Package	Object Package2	Object

Syntax
object.UseTransaction[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list.
value Determines	whether	the	Package2	object	creates	a	transaction.

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseTransaction(VARIANT_BOOL	*pRetVal);

HRESULT	SetUseTransaction(VARIANT_BOOL	NewValue);

See	Also

InTransaction	Property

JoinTransactionIfPresent	Property

TransactionIsolationLevel	Property

DTS	Programming

UseTransaction	(DTSMQMessage)	Property
The	UseTransaction	property	sets	or	returns	a	value	indicating	whether	a
transaction	is	used	to	send	the	message	defined	by	the	DTSMQMessage	object.	

Applies	To

DTSMQMessage	Object

Syntax
object.UseTransaction	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	DTSMQMessage	object
boolean Boolean	that	specifies	whether	the	message	is	sent	as	part	of	a

transaction

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	UseTransaction(VARIANT_BOOL*	pVal);

HRESULT	UseTransaction(VARIANT_BOOL	pVal);

Remarks
All	the	transacted	messages	sent	by	a	DTSMessageQueueTask	object	use	the

same	transaction.

See	Also

WaitForAcknowledgement	Property

DTS	Programming

UseTrustedConnection	Property
The	UseTrustedConnection	property	specifies	whether	the	connection	connects
to	the	data	source	using	Windows	Authentication	security	mode.

Applies	To

Connection	Object ExecutePackageTask	Object
Connection2	Object 	

Syntax
object.UseTrustedConnection	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Value	indicating	whether	to	connect	using	Windows

Authentication

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetUseTrustedConnection(VARIANT_BOOL	*pRetVal);

HRESULT	SetUseTrustedConnection(VARIANT_BOOL	NewValue);

Remarks

You	need	to	specify	values	for	the	UserID	and	Password	properties	if
UseTrustedConnection	is	FALSE.

Note		It	is	recommended	that	you	connect	to	an	instance	of	Microsoft®	SQL
Server™	using	Windows	Authentication	instead	of	SQL	Server	Authentication.
To	use	Windows	Authentication,	set	UseTrustedConnection	to	TRUE.

See	Also

Password	Property

UserID	Property

DTS	Programming

Value	Property
The	Value	property	specifies	the	value	of	a	GlobalVariable,	OLEDBProperty,
or	PrecedenceConstraint	object.

Applies	To

GlobalVariable	Object OLEDBProperty2	Object
GlobalVariable2	Object PrecedenceConstraint	Object
OLEDBProperty	Object Property	Object

Syntax
object.Value

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
Variant

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetValue(VARIANT	*pRetVal);

HRESULT	SetValue(VARIANT	NewValue);

Remarks
For	the	PrecedenceConstraint	object,	the	Value	property	must	be	from	either

the	DTSStepExecResult	or	DTSStepExecStatus	constants.	For	the	other
objects,	the	Value	property	can	be	any	Variant,	including	references	to	COM
objects,	such	as	a	Data	Transformation	Services	(DTS)	Package2	object	or	a
Microsoft®	ActiveX®	Data	Objects	(ADO)	disconnected	recordset.

See	Also

DTSStepExecResult

DTSStepExecStatus

DTS	Programming

VersionID	Property
The	VersionID	property	specifies	the	globally	unique	identifier	(GUID)	of	this
version	of	the	Data	Transformation	Services	(DTS)	package.

Applies	To

ExecutePackageTask	Object PackageLineage	Object
Package	Object PackageLogRecord	Object
Package2	Object SavedPackageInfo	Object
PackageInfo	Object 	

Syntax
object.VersionID

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Data	Type
String

Modifiable
Read-write	for	the	ExecutePackageTask	object.	Read-only	for	the	other	objects.

Prototype	(C/C++)
HRESULT	GetVersionID(BSTR	*pRetVal);

Remarks
For	the	ExecutePackageTask	object,	if	the	VersionID	is	not	specified,	the	most
recent	version	of	the	package	is	run.	The	PackageID	does	not	need	to	be

specified	if	the	VersionID	is	specified	because	VersionID	uniquely	identifies
both	package	and	version.

To	determine	the	version	ID	of	a	package,	open	the	package	in	DTS	Designer,
and	then	in	the	Package/Properties	dialog	box,	click	the	General	tab.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	X	represents	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12
digits.	The	curly	brackets	are	required.	Spaces	cannot	be	embedded.

See	Also

PackageID	Property

DTS	Programming

VersionSaveDate	Property
The	VersionSaveDate	property	specifies	the	date	and	time	a	version	of	a	Data
Transformation	Services	(DTS)	package	was	saved.

Applies	To

SavedPackageInfo	Object

Syntax
object.VersionSaveDate

Part Description
object Expression	that	evaluates	to	a	SavedPackageInfo	object

Data	Type
Date

Modifiable
Read-only

Prototype	(C/C++)
HRESULT	GetVersionSaveDate(*pRetVal);

See	Also

PackageCreationDate	Property

DTS	Programming

WaitForAcknowledgement	Property
The	WaitForAcknowledgement	property	returns	or	sets	a	value	indicating
whether	a	DTSMessageQueueTask	waits	for	an	acknowledgement	after	sending
the	message	defined	by	the	DTSMQMessage	object.	

Applies	To

DTSMQMessage	Object

Syntax
object.WaitForAcknowledgement	[=	boolean]

Part Description
object Expression	that	evaluates	to	a	DTSMQMessage	object
boolean Boolean	that	specifies	whether	the	task	sending	the	message	waits

for	an	acknowledgement

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetWaitForAcknowledgement(VARIANT_BOOL	*pVal);

HRESULT	SetWaitForAcknowledgement(VARIANT_BOOL	pVal);

Remarks

The	sending	task	does	not	complete	until	the	acknowledgement	is	received.	If	a
transaction	is	used,	it	is	not	committed	until	the	acknowledgement	is	received.

All	the	transacted	messages	sent	by	a	DTSMessageQueueTask	object	use	the
same	transaction.

See	Also

UseTransaction	Property

DTS	Programming

WriteCompletionStatusToNTEventLog	Property
The	WriteCompletionStatusToNTEventLog	property	specifies	whether	the
completion	status	of	the	Data	Transformation	Services	(DTS)	package	is	written
to	the	Microsoft®	Windows®	application	log.

Applies	To

Package	Object Package2	Object

Syntax
object.WriteCompletionStatusToNTEventLog	[=	value]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
value Boolean	that	specifies	whether	package	status	is	written	to	the

Windows	application	log

Data	Type
Boolean

Modifiable
Read/write

Prototype	(C/C++)
HRESULT	GetWriteCompletionStatusToNTEventLog(VARIANT_BOOL
*pRetVal);

HRESULT	SetWriteCompletionStatusToNTEventLog(VARIANT_BOOL
NewValue);

Remarks
The	default	is	TRUE.

See	Also

FailOnError	Property

FailPackageOnLogFailure	Property

DTS	Programming

Methods
This	section	defines	the	methods	of	the	Microsoft®	SQL	Server™	2000	Data
Transformation	Services	(DTS)	objects	and	collections.	The	methods	control	the
operation	of	the	DTS	packages	and	other	objects.

DTS	Programming

AcquireConnection	Method
The	AcquireConnection	method	allows	a	task	to	acquire	exclusive	ownership
of	a	connection	to	an	OLE	DB	service	provider.

Applies	To

Connection	Object Connection2	Object

Syntax
[Value	=]	Connection.AcquireConnection(TaskName)

Part Description
Connection Expression	that	evaluates	to	an	object	in	the	Applies	To

list
TaskName Name	of	the	task	that	is	to	acquire	the	connection
Value Boolean	that	indicates	whether	the	connection	was

acquired

Remarks
When	an	application	calls	Connection.AcquireConnection,	the	InUse	property
is	set	to	TRUE.	The	call	fails	if	another	task	owns	the	connection.	A	task
releases	a	connection	by	calling	the	ReleaseConnection	method.	This	method	is
required	only	if	you	are	creating	a	custom	task.

All	tasks	must	include	calls	to	AcquireConnection	and	ReleaseConnection.
The	tasks	supplied	with	Microsoft®	SQL	Server™	2000	already	include	them.

Prototype	(C/C++)
HRESULT	AcquireConnection(
				BSTR	TaskName,
				LPUNKNOWN	*pRetVal);

See	Also

Creating	DTS	Package	Objects	and	Connections

InUse	Property

ReleaseConnection	Method

DTS	Programming

Add	Method
The	Add	method	adds	an	object	to	a	collection.

Applies	To

Columns	Collection PrecedenceConstraints	Collection
Connections	Collection Steps	Collection
DTSMQMessages	Collection Tasks	Collection
DynamicPropertiesTaskAssignments
Collection

Transformations	Collection

GlobalVariables	Collection TransformationSets	Collection
Lookups	Collection 	

Syntax
Collection.Add	Object

Part Description
Collection Expression	that	evaluates	to	an	object	in	the	Applies	To

list
Object Object	to	add	to	the	collection

Remarks
The	required	type	of	Object	depends	on	the	collection	to	which	it	is	being	added.

Collection Object
Columns Column	Object
Connections Connection	Object

Connection2	Object
DTSMQMessages DTSMQMessage	Object
DynamicPropertiesTaskAssignmentsDynamicPropertiesTaskAssignment

Object
GlobalVariables GlobalVariable	Object
Lookups Lookup	Object
PrecedenceConstraints PrecedenceConstraint	Object
Steps Step	Object

Step2	Object
Tasks Task	Object
Transformations Transformation	Object

Transformation2	Object
TransformationSets TransformationSet	Object

The	Add	method	does	not	create	an	object;	it	adds	an	existing	object	to	its
collection.	Typically,	you	create	the	object	with	the	New	method	of	the
collection.

Prototype	(C/C++)
HRESULT	Add(ObjectInterface	*Object);

See	Also

New	Method

New	(Columns)	Method

New	(ID)	Method

New	(Name)	Method

DTS	Programming

AddColumn	Method
The	AddColumn	method	creates	a	Column	object	by	name	and	ordinal	position
and	adds	it	to	the	collection.

Applies	To

Columns	Collection

Syntax
Columns.AddColumn	Name,Ordinal

Part Description
Columns Expression	that	evaluates	to	a	Columns

collection
Name String	that	is	the	name	of	the	column
Ordinal Long	that	is	the	ordinal	position	of	the	column

Remarks
The	AddColumn	method	does	not	return	a	reference	to	the	column	object	it
creates.	If	you	need	to	set	Column	properties	other	than	Name	and	Ordinal,	you
can	create	the	Column	object	with	the	New	method,	set	the	properties,	and	then
add	it	to	the	collection	with	the	Add	method.	Or,	you	can	access	the	Column
object	from	the	collection	after	creating	it	with	AddColumn.

Prototype	(C/C++)
HRESULT	AddColumn(
				BSTR	Name,
				long	Ordinal);

Example

This	Microsoft®	Visual	Basic®	sample	accesses	a	Column	object	from	the
collection	after	creating	it	with	AddColumn.	The	expression
objTransform.SourceColumns	evaluates	to	a	Columns	collection:

Dim	objTransForm						As	DTS.Transformation2
Dim	objColumn									As	DTS.Column
.	.	.
objTransForm.SourceColumns.AddColumn	"LastName",	2
Set	objColumn	=	objTransForm.SourceColumns("LastName")

See	Also

Add	Method

Adding	DTS	Column	Objects

New	(Columns)	Method

DTS	Programming

AddConstraint	Method
The	AddConstraint	method	adds	a	PrecedenceConstraint	object	to	a	Step2
object.

Applies	To

PrecedenceConstraints	Collection

Syntax
Constraints.AddConstraint	StepName

Part Description
Constraints Expression	that	evaluates	to	a	PrecedenceConstraints

collection
StepName Name	of	the	step	referenced	by	the	precedence	constraint

Remarks
StepName	is	not	the	name	of	the	Step2	object	to	which	the
PrecedenceConstraint	object	is	being	added.	It	is	the	name	of	the	step	whose
status	or	result	determines	when	the	Step2	object	can	be	released	for	execution.

The	AddConstraint	method	does	not	return	a	reference	to	the
PrecedenceConstraint	object	it	creates.	You	may	need	to	set
PrecedenceConstraint	properties,	PrecedenceBasis,	or	Value	to	other	than
their	defaults.		In	this	case,	you	can	create	the	PrecedenceConstraint	object
with	the	New	method,	set	the	properties,	and	then	add	it	to	the	collection	with
the	Add	method.	Or,	you	can	access	the	PrecedenceConstraint	object	from	the
collection	after	creating	it	with	AddConstraint.

Prototype	(C/C++)
HRESULT	AddConstraint(BSTR	StepName);

Example
This	Microsoft®	Visual	Basic®	sample	accesses	a	PrecedenceConstraint
object	from	the	collection	after	creating	it	with	AddConstraint:

objStep.PrecedenceConstraints.AddConstraint	"StartStep"
Set	objConstraint	=	objStep.PrecedenceConstraints("StartStep")

See	Also

Add	Method

Creating	DTS	Package	Workflow	and	Tasks

PrecedenceBasis	Property

PrecedenceConstraint	Object

New	(Name)	Method

Value	Property

DTS	Programming

AddGlobalVariable	Method
The	AddGlobalVariable	method	adds	a	GlobalVariable	object	to	the	collection
by	name.

Applies	To

GlobalVariables	Collection

Syntax
GlobalVariables.AddGlobalVariable	Name,	Value

Part Description
GlobalVariables Expression	that	evaluates	to	a	GlobalVariables

collection
Name String	that	is	the	name	of	the	global	variable
Value Variant	that	is	the	initial	value	of	the	global	variable

Remarks
The	AddGlobalVariable	method	does	not	return	a	reference	to	the
GlobalVariable	object	it	creates.	You	also	can	create	the	GlobalVariable	object
with	the	New	method	and	then	add	it	to	the	collection	with	the	Add	method.

Prototype	(C/C++)
HRESULT	AddGlobalVariable(
				BSTR	Name,	
				VARIANT	Value);

See	Also

Add	Method

Adding	DTS	Lookups	and	Global	Variables

GlobalVariable	Object

New	(Name)	Method

DTS	Programming

AddLookup	Method
The	AddLookup	method	adds	a	parameterized	query	to	the	Lookups	collection.

Applies	To

Lookups	Collection

Syntax
object.AddLookup	Name,	Query,	ConnectionID,	[MaxCacheRows]

Part Description
object Expression	that	evaluates	to	a	Lookups	collection
Name String	that	is	the	lookup	query	name
Query String	that	is	the	SQL	query
ConnectionID Long	that	is	the	connection	ID
MaxCacheRows Long	that	is	the	maximum	number	of	rows	to	cache	for

reuse

Remarks
Typically,	a	Lookup	object	is	referenced	in	a	Microsoft®	ActiveX®	script.	The
Query	is	executed	against	the	data	source	specified	by	the	ConnectionID.	The
first	row	of	the	returned	rowset	is	used.	MaxCacheRows	specifies	the	number	of
rows	cached	locally	so	that	subsequent	lookups	that	target	that	row	do	not	need
to	reissue	the	query	against	the	data	source.

The	AddLookup	method	does	not	return	a	reference	to	the	Lookup	object	it
creates.	You	also	can	create	the	Lookup	object	with	the	New	method,	set	its
properties,	and	then	add	it	to	the	collection	with	the	Add	method.

Prototype	(C/C++)
HRESULT	AddLookup(BSTR	Name,

				BSTR	Query,
				long	ConnectionID,
				long	MaxCacheRows);

Example
This	Microsoft	Visual	Basic®	sample	creates	and	adds	a	Lookup	object	to	the
collection:

			objDataPump.Lookups.AddLookup	"ExpandState",	_
						"SELECT	StateName	FROM	StateInfo	WHERE	POCode	=	?",	_
						2,	50

See	Also

Add	Method

Adding	DTS	Lookups	and	Global	Variables

Lookup	Object

New	(Name)	Method

DTS	Programming

AddObjectForTransfer	Method
The	AddObjectForTransfer	method	adds	an	object	to	the	list	of	Microsoft®
SQL	Server™	objects	to	be	transferred.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.AddObjectForTransfer	ObjectName,	OwnerName,	Type

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
ObjectName Name	of	the	object	to	transfer
OwnerNameObject	owner	name
Type Type	of	object	to	transfer,	from	the	DTSSQLObjectType

constants

Prototype	(C/C++)
HRESULT	AddObjectForTransfer(
				BSTR	ObjectName,
				BSTR	OwnerName,
				DTSSQLObjectType	Type);

See	Also

DTSSQLObjectType

GetObjectForTransfer	Method

ResetObjectsList	Method

DTS	Programming

BeginAcquireMultipleConnections	Method
The	BeginAcquireMultipleConnections	method	acquires	ownership	of	the
Connections	collection's	synchronization	object.	This	is	to	serialize	the
acquisition	of	multiple	connections	by	a	Data	Transformation	Services	(DTS)
task.

Applies	To

Connections	Collection

Syntax
Connections.BeginAcquireMultipleConnections

Part Description
Connections Expression	that	evaluates	to	a	Connections	collection

Remarks
When	implementing	a	custom	task	that	needs	to	acquire	more	than	one
connection,	do	the	following	to	avoid	deadlocks:

1.	 Call	BeginAcquireMultipleConnections.

2.	 For	each	connection	to	be	acquired:

Verify	that	connection.InUse	is	FALSE.

Call	connection.AcquireConnection.

3.	 Call	EndAcquireMultipleConnections.

Prototype	(C/C++)

HRESULT	BeginAcquireMultipleConnections();

See	Also

AcquireConnection	Method

Connection	Object

Creating	DTS	Package	Objects	and	Connections

EndAcquireMultipleConnections	Method

InUse	Property

DTS	Programming

CancelExecution	Method
The	CancelExecution	method	cancels	execution	of	the	task.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.CancelExecution

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Remarks
CancelExecution	must	be	called	on	a	thread	different	from	the	execution	thread.

Prototype	(C/C++)
HRESULT	CancelExecution();

DTS	Programming

CheckSyntax	Method
The	CheckSyntax	method	evaluates	the	script	specified	by	the	ActiveXScript
property	for	correct	syntax.

Applies	To

ActiveScriptTask	Object

Syntax
object.CheckSyntax()

Part Description
Object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	CheckSyntax();

See	Also

ActiveXScript	Property

Adding	DTS	ActiveX	Scripts

ScriptLanguage	Property

DTS	Programming

CreateCustomToolTip	Method
The	CreateCustomToolTip	method	creates	a	ToolTip	window	for	a	Data
Transformation	Services	(DTS)	custom	task.

Applies	To

CustomTaskUI	Object

Syntax	(Visual	Basic)
Sub	CustomTaskUI_CreateCustomToolTip(
				ByVal	hwndParent	As	Long,	
				ByVal	x	As	Long,	
				ByVal	y	As	Long,	
				plTipWindow	As	Long)

Part Description
CustomTaskUI Expression	that	evaluates	to	a	CustomTaskUI	interface
HwndParent Handle	of	window	in	which	ToolTip	is	to	be	displayed
X Horizontal	coordinate	of	ToolTip	window
Y Vertical	coordinate	of	ToolTip	window
PlTipWindow Handle	of	ToolTip	window	generated	by	method

Remarks
The	CreateCustomToolTip	method	must	be	implemented	by	a	custom	task	that
is	to	show	custom	ToolTips	in	its	user	interface.	It	is	called	by	DTS	at	the	time
the	ToolTip	is	to	be	displayed.	CreateCustomToolTip	draws	the	ToolTip
window	and	returns	its	window	handle	to	DTS	in	the	plTipWindow	parameter.

Prototype	(C/C++)
HRESULT	CreateCustomToolTip(

				long	hwndParent,
				long	x,
				long	y,
				long	*plTipWindow);

See	Also

Edit	Method

Delete	Method

New	(CustomTaskUI)	Method

DTS	Programming

Delete	Method
The	Delete	method	of	the	CustomTaskUI	interface	must	be	supplied	by	the
implementer	of	a	Data	Transformation	Services	(DTS)	custom	task	that	has	a
user	interface.	It	is	called	by	DTS	when	an	instance	of	the	custom	task	is	to	be
deleted.

Applies	To

CustomTaskUI	Object

Syntax	(Visual	Basic)
Sub	CustomTaskUI_Delete(ByVal	hwndParent	As	Long)

Part Description
hwndParentHandle	to	the	window	to	be	the	parent	of	the	custom	task	user

interface

Remarks
The	window	that	is	parent	to	the	custom	task's	user	interface	window	typically
would	be	the	DTS	Designer	design	sheet	or	the	Microsoft®	Visual	Studio®
development	environment	desktop.

Prototype	(C/C++)
HRESULT	Delete(long	hwndParent);

See	Also

CreateCustomToolTip	Method

Edit	Method

New	(CustomTaskUI)	Method

DTS	Programming

Edit	Method
The	Edit	method	of	the	CustomTaskUI	interface	must	be	supplied	by	the
implementer	of	a	Data	Transformation	Services	(DTS)	custom	task	that	has	a
user	interface.	It	is	called	by	DTS	when	a	user	wants	to	edit	properties	of	the
CustomTask	object.

Applies	To

CustomTaskUI	Object

Syntax	(Visual	Basic)
Sub	CustomTaskUI_Edit(ByVal	hwndParent	As	Long)

Part Description
hwndParentHandle	to	the	window	to	be	the	parent	of	the	custom	task	user

interface

Remarks
The	Edit	method	should	display	the	user	interface	for	the	custom	task,	typically
a	dialog	box	or	property	sheet.

The	window	that	is	parent	to	the	custom	task's	user	interface	window	typically	is
the	DTS	Designer	design	sheet	or	the	Microsoft®	Visual	Studio®	development
environment	desktop.

Prototype	(C/C++)
HRESULT	Edit(long	hwndParent);

See	Also

CreateCustomToolTip	Method

Delete	Method

New	(CustomTaskUI)	Method

DTS	Programming

EndAcquireMultipleConnections	Method
The	EndAcquireMultipleConnections	method	releases	ownership	of	the
Connections	collection's	synchronization	object.	This	is	after	serializing	the
acquisition	of	multiple	connections	by	a	Data	Transformation	Services	(DTS)
task.

Applies	To

Connections	Collection

Syntax
Connections.EndAcquireMultipleConnections

Part Description
Connections Expression	that	evaluates	to	a	Connections	collection

Remarks
When	implementing	a	custom	task	that	needs	to	acquire	more	than	one
connection,	do	the	following	to	avoid	deadlocks:

1.	 Call	BeginAcquireMultipleConnections.

2.	 For	each	connection	to	be	acquired:

Verify	that	connection.InUse	is	FALSE.

Call	connection.AcquireConnection.

3.	 Call	EndAcquireMultipleConnections.

Prototype	(C/C++)

HRESULT	EndAcquireMultipleConnections();

See	Also

AcquireConnection	Method

BeginAcquireMultipleConnections	Method

Connection	Object

Creating	DTS	Package	Objects	and	Connections

InUse	Property

DTS	Programming

EnumPackageInfos	Method
The	EnumPackageInfos	method	returns	a	PackageInfos	collection	containing
information	about	all	the	packages	stored	in	Microsoft®	SQL	Server™	2000
Meta	Data	Services	or	in	SQL	Server	storage	that	satisfy	the	criteria	of	the	input
parameters.

Applies	To

PackageRepository	Object PackageSQLServer	Object

Syntax
Set	collection	=	object.EnumPackageInfos(
				PackageName,	
				ReturnLatest,	
				PackageID)

Part Description
collection Expression	that	evaluates	to	a	PackageInfos	collection
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
PackageNameA	string	specifying	the	package	name	to	which	the	collection

is	to	be	limited
ReturnLatest A	Boolean	specifying	whether	only	the	latest	version	of	each

package	is	to	be	included	in	the	collection
PackageID A	globally	unique	identifier	(GUID)	string	specifying	the

package	ID	to	which	the	collection	is	to	be	limited

Remarks
All	parameters	are	required.	To	return	information	on	all	packages	in	Meta	Data
Services	or	in	SQL	Server	storage,	code	the	empty	string	""	for	PackageName
and	PackageID,	and	FALSE	for	ReturnLatest.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

Where	the	X's	are	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12	digits.
The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for	readability.

Prototype	(C/C++)
HRESULT	EnumPackageInfos(
				BSTR	PackageName,
				VARIANT_BOOL	ReturnLatest,
				BSTR	PackageID,
				IDTSPackageInfos	**pRetVal);

See	Also

PackageID	Property

PackageInfos	Collection

PackageName	Property

Retrieving	DTS	System,	Package,	and	Log	Data

DTS	Programming

EnumPackageLineages	Method
The	EnumPackageLineages	method	returns	a	PackageLineages	collection
containing	data	from	the	package	lineage	records	stored	in	Microsoft®	SQL
Server™	2000	Meta	Data	Services	that	satisfy	the	criteria	of	the	input
parameters.

Applies	To

PackageRepository	Object

Syntax
Set	collection	=	object.EnumPackageLineages(
				PackageVersionID,	
				LineageFullID,	
				LineageShortID)

Part Description
collection Expression	that	evaluates	to	a	PackageLineages

collection
object Expression	that	evaluates	to	a	PackageRepository

object
PackageVersionIDA	globally	unique	identifier	(GUID)	string	specifying

the	version	ID	of	the	package	version	to	which	the
collection	is	to	be	limited

LineageFullID A	GUID	string	specifying	the	lineage	full	ID	to	which
the	collection	is	to	be	limited

LineageShortID A	long	specifying	the	lineage	short	ID	to	which	the
collection	is	to	be	limited

Remarks
A	package	lineage	record	is	written	each	time	a	package	stored	in	Meta	Data

Services	is	executed,	if	the	package	LineageOptions	property	specifies	this	to
be	done.	Each	such	record	has	a	unique	lineage	full	ID	and	lineage	short	ID.

A	package	ID	or	the	empty	string	cannot	be	specified	for	PackageVersionID.	An
error	will	be	raised	if	there	is	no	package	lineage	record	in	Meta	Data	Services
with	the	specified	version	ID.

All	parameters	are	required.	To	return	all	package	lineage	records	for	a	particular
package	version,	code	the	empty	string	""	for	LineageFullID	and	0	for
LineageShortID.	To	return	all	package	lineage	records	in	Meta	Data	Services,
iterate	through	the	Meta	Data	Services	packages	with	the	EnumPackageInfos
method,	and	then	call	EnumPackageLineages	for	each	package	version.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	the	X's	are	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12	digits.
The	curly	brackets	are	required.	Spaces	cannot	be	embedded.

Prototype	(C/C++)
HRESULT	EnumPackageLineages(
				BSTR	PackageVersionID,
				BSTR	LineageFullID,
				long	LineageShortID,
				IDTSPackageLineages	**pRetVal);

See	Also

EnumPackageInfos	Method

LineageFullID	Property

LineageOptions	Property

LineageShortID	Property

PackageID	Property

PackageLineages	Collection

RemovePackageLineages	Method

Retrieving	DTS	System,	Package,	and	Log	Data

VersionID	Property

DTS	Programming

EnumPackageLogRecords	Method
The	EnumPackageLogRecords	method	returns	a	PackageLogRecords
collection	containing	data	from	the	package	log	records	in	the	database.	These
package	log	records	satisfy	the	criteria	of	the	input	parameters.

Applies	To

PackageSQLServer	Object

Syntax
Set	collection	=	object.EnumPackageLogRecords(
				PackageName,	
				ReturnLatest,	
				PackageID,
				VersionID,
				LineageFullID)

Part Description
collection Expression	that	evaluates	to	a	PackageLogRecords

collection.
object Expression	that	evaluates	to	a	PackageSQLServer	object.
PackageName A	string	specifying	the	package	name	to	which	log	records

in	the	collection	are	to	be	limited.
ReturnLatest A	Boolean	specifying	whether	log	records	for	only	the	latest

version	of	each	package	are	to	be	included	in	the	collection.
PackageID A	globally	unique	identifier	(GUID)	string	specifying	the

package	ID	to	which	log	records	in	the	collection	are	to	be
limited.

VersionID A	GUID	string	specifying	the	version	ID	of	the	package
version	to	which	log	records	in	the	collection	are	to	be
limited.

LineageFullIDA	GUID	string	specifying	the	lineage	full	ID	to	which	the
collection	is	to	be	limited.

Remarks
A	package	log	record	is	written	to	the	msdb	database	on	the	server	specified	by
the	package	LogServerName	property	each	time	a	Data	Transformation
Services	(DTS)	package	is	executed,	if	the	package	LogToSQLServer	property
has	been	set.	For	Microsoft®	SQL	Server™	2000	Meta	Data	Services	packages,
the	log	record's	lineage	full	ID	links	to	the	package	lineage	record.	For	other
packages,	a	GUID	is	created.

All	parameters	are	required.	To	prevent	a	parameter	from	participating	in	the
filter	process,	code	the	empty	string	""	for	PackageName,	PackageID,	VersionID
and	LineageFullID,	and	FALSE	for	ReturnLatest.	Coding	all	parameters	this
way	will	cause	all	package	log	records	in	the	database	to	be	returned,	which	may
result	in	an	unmanageably	large	collection.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	the	X's	are	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12	digits.
The	curly	brackets	are	required.	Spaces	cannot	be	embedded.

Prototype	(C/C++)
HRESULT	EnumPackageLogRecords(
				BSTR	PackageName,
				VARIANT_BOOL	ReturnLatest,
				BSTR	PackageID,
				BSTR	VersionID,
				BSTR	LineageFullID,
				IDTSPackageLogRecords	**pRetVal);

See	Also

LineageFullID	Property

LogServerName	Property

LogToSQLServer	Property

PackageID	Property

PackageLineages	Collection

PackageLogRecords	Collection

PackageName	Property

RemovePackageLogRecords	Method

Retrieving	DTS	System,	Package,	and	Log	Data

VersionID	Property

DTS	Programming

EnumStepLineages	Method
The	EnumStepLineages	method	returns	a	StepLineages	collection	containing
information	about	all	the	step	lineage	records	stored	in	Microsoft®	SQL
Server™	2000	Meta	Data	Services	that	satisfy	the	criteria	of	the	input	parameter.

Applies	To

PackageRepository	Object

Syntax
Set	collection	=	object.EnumStepLineages(LineageFullID)

Part Description
collection Expression	that	evaluates	to	a	StepLineages	collection.
object Expression	that	evaluates	to	a	PackageRepository	object.
LineageFullIDA	globally	unique	identifier	(GUID)	string	specifying	the

lineage	full	ID	to	which	the	collection	is	to	be	limited.

Remarks
A	step	lineage	record	is	written	each	time	a	step	in	a	package	stored	in	Meta
Data	Services	is	executed,	if	the	package	LineageOptions	property	specifies	this
to	be	done.	A	unique	lineage	full	ID	is	created	each	time	the	package	is	executed
(not	for	each	step).

The	parameter	is	required.	You	cannot	code	the	empty	string	""	for
LineageFullID.	If	there	is	no	lineage	record	in	Meta	Data	Services	with	the
specified	LineageFullID,	an	error	occurs.	To	return	all	step	lineage	records	in
Meta	Data	Services,	iterate	through	the	Meta	Data	Services	packages	with	the
EnumPackageInfos	method,	then	call	EnumPackageLineages	for	each
package	version,	and	finally	call	EnumStepLineages	for	each	package	lineage.
There	may	be	many	step	lineage	records	in	Meta	Data	Services.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	the	X's	are	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12	digits.	
The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for	readability.

Prototype	(C/C++)
HRESULT	EnumPackageInfos(
				BSTR	LineageFullID,
				IDTSStepLineages	**pRetVal);

See	Also

EnumPackageInfos	Method

EnumPackageLineages	Method

LineageFullID	Property

LineageOptions	Property

RemovePackageLineages	Method

Retrieving	DTS	System,	Package,	and	Log	Data

StepLineages	Collection

DTS	Programming

EnumStepLogRecords	Method
The	EnumStepLogRecords	method	returns	a	StepLogRecords	collection
containing	data	from	the	step	log	records	in	the	database	that	satisfy	the	criteria
of	the	input	parameters.

Applies	To

PackageSQLServer	Object

Syntax
Set	collection	=	object.EnumStepLogRecords(
				LineageFullID,
				StepExecutionID)

Part Description
collection Expression	that	evaluates	to	a	StepLogRecords

collection.
object Expression	that	evaluates	to	a	PackageSQLServer

object.
LineageFullID A	globally	unique	identifier	(GUID)	string	specifying	the

lineage	full	ID	to	which	the	collection	is	to	be	limited.
StepExecutionIDA	variant	specifying	the	step	execution	ID	to	which	the

collection	is	to	be	limited.

Remarks
A	step	log	record	is	written	to	the	Microsoft®	SQL	Server™	msdb	database	on
the	server	specified	by	the	package	LogServerName	property	each	time	a	step
in	a	Data	Transformation	Services	(DTS)	package	is	executed,	if	the	package
LogToSQLServer	property	has	been	set.	For	SQL	Server	2000	Meta	Data
Services	packages,	the	log	record's	lineage	full	ID	links	to	the	package	lineage
record.	For	other	packages,	a	GUID	is	created.

Both	parameters	are	required.	To	prevent	a	parameter	from	participating	in	the
filter	process,	code	the	empty	string	""	for	LineageFullID,	and	NULL	for
StepExecutionID.	Coding	all	parameters	this	way	will	cause	all	step	log	records
in	the	database	to	be	returned,	which	may	result	in	an	unmanageably	large
collection.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	the	X's	are	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12	digits.
The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for	readability.

Prototype	(C/C++)
HRESULT	EnumStepLogRecords(
				BSTR	LineageFullID,
				VARIANT	StepExecutionID,
				IDTSStepLogRecords	**pRetVal);

See	Also

LineageFullID	Property

LogServerName	Property

LogToSQLServer	Property

PackageLineages	Collection

RemoveStepLogRecords	Method

Retrieving	DTS	System,	Package,	and	Log	Data

StepExecutionID	Property

StepLogRecords	Collection

DTS	Programming

EnumTaskLogRecords	Method
The	EnumTaskLogRecords	method	returns	a	TaskLogRecords	collection
containing	data	from	the	task	log	records	in	the	database	that	satisfy	the	criteria
of	the	input	parameters.

Applies	To

PackageSQLServer	Object

Syntax
Set	collection	=	object.EnumTaskLogRecords(
				StepExecutionID,
				SequenceID)

Part Description
collection Expression	that	evaluates	to	a	TaskLogRecords

collection
object Expression	that	evaluates	to	a	PackageSQLServer	object
StepExecutionIDA	variant	specifying	the	step	execution	ID	to	which	the

collection	is	to	be	limited
SequenceID A	long	specifying	the	sequence	number	of	the	desired	task

log	record

Remarks
Task	log	records	are	not	automatically	written	by	the	task	classes	supplied	with
Microsoft®	SQL	Server™	2000,	but	the	PackageLog	interface	is	available	so
that	a	custom	task	or	the	script	of	an	ActiveScriptTask	object	can	write	them.
They	are	written	to	the	msdb	database	in	the	instance	of	SQL	Server	specified
by	the	package	LogServerName	property	each	time	a	task	in	a	Data
Transformation	Services	(DTS)	package	that	has	been	implemented	to	write
them	is	executed,	if	the	package	LogToSQLServer	property	has	been	set.

SequenceID	is	a	unique	sequence	number	for	each	task	log	record.

Both	parameters	are	required.	To	prevent	a	parameter	from	participating	in	the
filter	process,	code	NULL	for	StepExecutionID	and	0	for	SequenceID.	Coding
all	parameters	this	way	will	cause	all	task	log	records	in	the	database	to	be
returned,	which	could	result	in	an	unmanageably	large	collection.

Prototype	(C/C++)
HRESULT	EnumTaskLogRecords(
				VARIANT	StepExecutionID,
				long	SequenceID,
				IDTSTaskLogRecords	**pRetVal);

See	Also

ActiveScriptTask	Object

LogServerName	Property

LogToSQLServer	Property

PackageLog	Object

RemoveTaskLogRecords	Method

Retrieving	DTS	System,	Package,	and	Log	Data

SequenceID	Property

StepExecutionID	Property

TaskLogRecords	Collection

DTS	Programming

Execute	Method
The	Execute	method	executes	a	Data	Transformation	Services	(DTS)	task
object.

Applies	To

ActiveScriptTask	Object DynamicPropertiesTask	Object
BulkInsertTask	Object ExecutePackageTask	Object
CreateProcessTask	Object ExecuteSQLTask	Object
CreateProcessTask2	Object ExecuteSQLTask2	Object
CustomTask	Object ParallelDataPumpTask	Object
DataDrivenQueryTask	Object SendMailTask	Object
DataPumpTask	Object Task	Object
DTSFTPTask	Object TransferObjectsTask	Object
DTSMessageQueueTask	Object 	

Syntax
object.Execute	pPackage,	pPackageEvents,	pPackageLog,	pTaskResult

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list
pPackage Reference	to	the	Package2	object
pPackageEventsReference	to	the	events	of	the	Package2	object
pPackageLog Reference	to	a	PackageLog	object
pTaskResult Return	code	from	the	DTSTaskExecResult	constants

Remarks
An	application	does	not	have	to	call	the	Execute	method	for	each	step	or	task.
Instead	the	Package2	object	calls	the	Execute	method	to	launch	each	step	or

task	after	the	application	calls	Package2.Execute.

A	reference	to	the	Package2	object	is	passed	as	a	parameter	to	allow	access	to
the	objects	in	the	hierarchy	for	the	package.	But	pPackage	and	all	objects	in	its
hierarchy	must	not	be	saved	or	referenced	after	the	Execute	method	returns.
Check	pPackageEvents	and	pPackageLog	for	NULL/Nothing	before	using	them.

Prototype	(C/C++)
HRESULT	Execute(
				IDispatch.*pPackage,	
				IDispatch.*pPackageEvents,	
				IDispatch.*pPackageLog,	
				long.*pTaskResult);

See	Also

DTSTaskExecResult

Execute	(Package)	Method

DTS	Programming

Execute	(Package)	Method
The	Execute	method	executes	a	Data	Transformation	Services	(DTS)	package	or
step.

Applies	To

Package	Object Step	Object
Package2	Object 	

Syntax
object.Execute

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Remarks
When	used	with	the	Package2	and	Step2	objects,	the	Execute	method	takes	no
parameters.	An	application	need	not	call	the	Execute	method	for	each	step	or
task.	Instead	the	Package2	object	calls	the	Execute	method	to	launch	each	step
or	task	after	the	application	calls	Package2.Execute.

Prototype	(C/C++)
HRESULT	Execute();

See	Also

Execute	Method

Managing	DTS	Package	Programs

DTS	Programming

GetDayLongName	Method
The	GetDayLongName	method	returns	the	long	(full)	name	for	the	specified
day	of	the	week.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
[string	=]	object.GetDayLongName(daynumber)

Part Description
string Long	(full)	name	of	the	specified	day	of	week
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
daynumberNumber	of	the	day	of	the	week

Remarks
The	valid	day	numbers	are	from	1	through	7.

Prototype	(C/C++)
HRESULT	GetDayLongName(
				long	DayNumber,
				BSTR*	pRetVal);

See	Also

Adding	DTS	Transformations

Day?LongName	Property

GetDayShortName	Method

SetDayLongName	Method

DTS	Programming

GetDayShortName	Method
The	GetDayShortName	method	returns	the	short	name	(3-character
abbreviation)	for	the	specified	day	of	the	week.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
[string	=]	object.GetDayShortName(daynumber)

Part Description
string Short	name	(3-character	abbreviation)	of	the	specified	day	of

week
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
daynumberNumber	of	the	day	of	the	week

Remarks
The	valid	day	numbers	are	from	1	through	7.

Prototype	(C/C++)
HRESULT	GetDayShortName(
				long	DayNumber,
				BSTR*	pRetVal);

See	Also

Adding	DTS	Transformations

Day?ShortName	Property

GetDayLongName	Method

SetDayShortName	Method

DTS	Programming

GetDefaultProfileName	Method
The	GetDefaultProfileName	method	returns	the	default	profile	name.

Applies	To

SendMailTask	Object

Syntax
[string	=]	object.GetDefaultProfileName

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
string String	to	receive	the	default	profile	name

Prototype	(C/C++)
HRESULT	GetDefaultProfileName(BSTR	*DefaultProfile);

See	Also

Profile	Property

DTS	Programming

GetDTSVersionInfo	Method
The	GetDTSVersionInfo	method	retrieves	version	information	for	Data
Transformation	Services	(DTS).

Applies	To

Package	Object Package2	Object

Syntax
object.GetDTSVersionInfo	[VersionMajor],	[VersionMinor],	_
				[VersionBuild],	[VersionComments])

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To

list
VersionMajor Major	version	number	of	Microsoft®	SQL	Server™
VersionMinor Incremental	version	number	of	SQL	Server
VersionBuild SQL	Server	build	number
VersionComments SQL	Server	product	name	including	version	number

Prototype	(C/C++)
HRESULT	GetDTSVersionInfo(long	*VersionMajor,
long	*VersionMinor,
long	*VersionBuild,
BSTR	*VersionComments);

DTS	Programming

GetExecutionErrorInfo	Method
The	GetExecutionErrorInfo	method	returns	details	about	step	execution
failure.

Applies	To

Step	Object Step2	Object

Syntax
object.GetExecutionErrorInfo	pErrorCode,	[pbstrSource],	[pbstrDescription],
_
				[pbstrHelpFile],	[pHelpContext],	[pbstrIDofInterfaceWithError]

Part Description
Step Expression	that	evaluates	to	an	object	in	the	Applies	To

list
pErrorCode Error	code	of	the	failure
pbstrSource Source	of	error
pbstrDescription Description	property	of	the	error
pbstrHelpFile Help	file	name
pHelpContext Help	context	ID
pbstrIDOfInterface
WithError

ID	of	the	interface	returning	the	error

Remarks
Step2	object	failure	is	separate	from	Package2	object	failure.	Therefore,	error
information	for	each	step	is	unavailable	from	the	COM	IErrorInfo	object	or	the
Microsoft®	Visual	Basic®	Err	object.

When	a	step	fails,	the	package	will	not	fail	unless	the	package	FailOnError
property	or	the	step	FailPackageOnError	property	is	set.	The	error	that	is

raised	will	only	specify	the	step	that	failed,	not	the	error	that	occurred.	Use
GetExecutionErrorInfo	on	the	step	that	failed	to	get	information	about	the
error.

If	you	do	not	set	either	FailOnError	or	FailPackageOnError	for	any	step,	you
can	use	GetExecutionErrorInfo	on	all	steps	in	the	Steps	collection	when
package	execution	completes.	GetExecutionErrorInfo	returns	meaningful
information	only	when	the	step	ExecutionStatus	is
DTSStepExecStat_Completed	and	ExecutionResult	is
DTSStepExecResult_Failure.

Prototype	(C/C++)
HRESULT	GetExecutionErrorInfo(
				long	*pErrorCode,
				BSTR	*pbstrSource,
				BSTR	*pbstrDescription,
				BSTR	*pbstrHelpFile,
				long	*pHelpContext,
				BSTR	*pbstrIDofInterfaceWithError);

See	Also

ExecutionResult	Property

ExecutionStatus	Property

FailOnError	Property

FailPackageOnError	Property

Handling	DTS	Events	and	Errors

Steps	Collection

DTS	Programming

GetExpandedProcessCommandLine	Method
The	GetExpandedProcessCommandLine	method	returns	the	process
command	line	parameter	string	with	the	environment	variables	expanded.

Applies	To

CreateProcessTask2	Object

Syntax
[string	=]	object.GetExpandedProcessCommandLine

Part Description
object Expression	that	evaluates	to	a	CreateProcessTask2	object
string String	to	receive	the	expanded	command	line

Prototype	(C/C++)
HRESULT	GetExpandedProcessCommandLine(BSTR*	pRetVal)

See	Also

ProcessCommandLine	Property

DTS	Programming

GetLastExecutionLineage	Method
The	GetLastExecutionLineage	method	retrieves	lineage	information	written	to
Microsoft®	SQL	Server™	2000	Meta	Data	Services	during	the	last	execution	of
the	Data	Transformation	Services	(DTS)	package.

Applies	To

Package	Object Package2	Object

Syntax
[string	=]	object.GetLastExecutionLineage([LineageShort])

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
LineageShortPackage	version	checksum	value
string String	to	receive	the	lineage	data

Prototype	(C/C++)
HRESULT	GetLastExecutionLineage(
long	*LineageShort,
BSTR	*pRetVal);

See	Also

EnumPackageLineages	Method

EnumStepLineages	Method

LineageShortID	Property

PackageLineages	Collection

Recording	Data	Lineage	in	DTS

JavaScript:hhobj_1.Click()

Retrieving	DTS	System,	Package,	and	Log	Data

StepLineages	Collection

DTS	Programming

GetMonthLongName	Method
The	GetMonthLongName	method	returns	the	long	(full)	name	for	the	specified
month.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
[string	=]	object.GetMonthLongName(monthnumber)

Part Description
string Long	(full)	name	of	the	specified	month
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
monthnumberNumber	of	the	month

Remarks
The	valid	month	numbers	are	from	1	through	12.

Prototype	(C/C++)
HRESULT	GetMonthLongName(
long	MonthNumber,
BSTR*	pRetVal);

See	Also

Adding	DTS	Transformations

GetMonthShortName	Method

Month??LongName	Property

SetMonthLongName	Method

DTS	Programming

GetMonthShortName	Method
The	GetMonthShortName	method	returns	the	short	name	(3-character
abbreviation)	for	the	specified	month.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
[string	=]	object.GetMonthShortName(monthnumber)

Part Description
string Short	name	(3-character	abbreviation)	of	the	specified	month
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
monthnumberNumber	of	the	month

Remarks
The	valid	month	numbers	are	from	1	through	12.

Prototype	(C/C++)
HRESULT	GetMonthShortName(
long	MonthNumber,
BSTR*	pRetVal);

See	Also

Adding	DTS	Transformations

GetMonthLongName	Method

Month??ShortName	Property

SetMonthShortName	Method

DTS	Programming

GetObjectForTransfer	Method
The	GetObjectForTransfer	method	iterates	objects	on	the	list	of	objects	to	be
transferred.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.GetObjectForTransfer	Index,	ObjectName,	OwnerName,	Type

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list.
Index Index	into	the	list	of	objects	to	be	transferred.
ObjectName Object	name.
OwnerNameObject	owner	name.
Type Object	type,	from	the	DTSSQLObjectType	constants.

Remarks
The	index	of	the	first	object	in	the	list	of	objects	to	be	transferred	is	0.

Prototype	(C/C++)
HRESULT	GetObjectForTransfer(LONG	Index,
BSTR	*ObjectName,
BSTR	*OwnerName,
DTSSQLObjectType	*Type);

See	Also

AddObjectForTransfer	Method

DTSSQLObjectType

ResetObjectsList	Method

DTS	Programming

GetPackageRepository	Method
The	GetPackageRepository	method	returns	a	PackageRepository	object	for
the	server	and	database	specified	by	the	input	parameters.

Applies	To

Application	Object

Syntax
Set	object	=	appobject.GetPackageRepository(
				ServerName,	
				DatabaseName,	
				UserName	,
				Password	,
				ConnectionFlags)

Part Description
object Expression	that	evaluates	to	a	PackageRepository	object
appobject Expression	that	evaluates	to	an	Application	object
ServerName A	string	specifying	the	name	of	the	server	on	which	the

Microsoft®	SQL	Server™	2000	Meta	Data	Services
instance	is	hosted

DatabaseName A	string	specifying	the	name	of	the	database	in	which	the
instance	of	Meta	Data	Services	is	located

UserName A	string	specifying	the	logon	name	used	to	access	the
server	specified	by	ServerName

Password A	string	specifying	the	password	used	to	access	the	server
specified	by	ServerName

ConnectionFlagsA	value	from	the	DTSRepositoryStorageFlags	constants
that	specifies	the	type	of	user	authentication	used	to
access	the	server	specified	by	ServerName

JavaScript:hhobj_1.Click()

Remarks
The	PackageRepository	object	provides	access	to	the	Data	Transformation
Services	(DTS)	packages	and	lineage	data	stored	on	the	associated	instance	of
Meta	Data	Services.

UserName	and	Password	need	be	specified	(nonempty	string)	only	if
ConnectionFlags	has	the	value	DTSReposFlag_Default,	which	implies	database
authentication.

Prototype	(C/C++)
HRESULT	GetPackageRepository(
				BSTR	ServerName,	
				BSTR	DatabaseName,	
				BSTR	Username,	
				BSTR	Password,	
				DTSRepositoryStorageFlags	ConnectionFlags,	
				IDTSPackageRepository	**pRetVal);

See	Also

DTSRepositoryStorageFlags

GetPackageSQLServer	Method

PackageRepository	Object

Retrieving	DTS	System,	Package,	and	Log	Data

DTS	Programming

GetPackageSQLServer	Method
The	GetPackageSQLServer	method	returns	a	PackageSQLServer	object	for
the	server	specified	by	the	input	parameters.

Applies	To

Application	Object

Syntax
Set	object	=	appobject.GetPackageSQLServer(
				ServerName,	
				UserName	,
				Password	,
				ConnectionFlags)

Part Description
object Expression	that	evaluates	to	a	PackageSQLServer

object.
appobject Expression	that	evaluates	to	an	Application	object.
ServerName A	string	specifying	the	name	of	the	server	to	which	to

connect.
UserName A	string	specifying	the	logon	name	used	to	access	the

server	specified	by	ServerName.
Password A	string	specifying	the	password	used	to	access	the	server

specified	by	ServerName.
ConnectionFlagsA	value	from	the	DTSSQLServerStorageFlags	constants

that	specifies	the	type	of	user	authentication	used	to
access	the	server	specified	by	ServerName.

Remarks
The	PackageSQLServer	object	provides	access	to	the	Data	Transformation

JavaScript:hhobj_1.Click()

Services	(DTS)	packages	and	log	data	stored	on	the	associated	server,	which
must	be	running	an	instance	of	Microsoft®	SQL	Server™.

UserName	and	Password	need	be	specified	(nonempty	string)	only	if
ConnectionFlags	has	the	value	DTSSQLStgFlag_Default,	which	implies
database	authentication.

Prototype	(C/C++)
HRESULT	GetPackageSQLServer(
				BSTR	ServerName,	
				BSTR	Username,	
				BSTR	Password,	
				DTSSQLServerStorageFlags	ConnectionFlags,	
				IDTSPackageSQLServer	**pRetVal);

See	Also

DTSSQLServerStorageFlags

GetPackageRepository	Method

PackageSQLServer	Object

Retrieving	DTS	System,	Package,	and	Log	Data

DTS	Programming

GetPropertiesForObject	Method
The	GetPropertiesForObject	method	returns	a	Data	Transformation	Services
(DTS)	Properties	collection	from	an	object	implementing	a	custom	task.

Applies	To

PropertiesProvider	Object

Syntax
[Set	colProperties	=]	object.GetPropertiesForObject(pObject)

Part Description
object Expression	that	evaluates	to	a	PropertiesProvider	object
pObject Expression	that	evaluates	to	an	object	for	which	a	Properties

collection	is	to	be	retrieved
colPropertiesObject	variable	of	type	Properties

Remarks
Use	GetPropertiesForObject	and	the	Properties	collection	it	returns	to
determine,	without	causing	an	error,	if	an	object	supports	a	property.

Prototype	(C/C++)
HRESULT	GetPropertiesForObject(
				IDispatch	*pObject,
				IDTSProperties	**pRetVal);

See	Also

Properties	Collection

DTS	Programming

GetSavedPackageInfos	Method
The	GetSavedPackageInfos	method	retrieves	a	list	of	versions	in	this	storage
location.

Applies	To

Package	Object Package2	Object

Syntax
[Set	colSavedInfos	=]	Package.GetSavedPackageInfos(UNCFile)

Part Description
Package Expression	that	evaluates	to	an	object	in	the	Applies	To	list
UNCFile Data	Transformation	Services	(DTS)	package	storage	file

from	which	a	list	of	versions	is	to	be	retrieved
colSavedInfosObject	variable	of	type	SavedPackageInfos

Prototype	(C/C++)
HRESULT	GetSavedPackageInfos(
				BSTR	UNCFile,
				IDTSSavedPackageInfos	**pRetVal);

See	Also

Retrieving	DTS	System,	Package,	and	Log	Data

SavedPackageInfos	Collection

DTS	Programming

GetUIInfo	Method
The	GetUIInfo	method	returns	top-level	user	interface	information	for	a	Data
Transformation	Services	(DTS)	custom	task	user	interface	element	to	its	caller.	It
must	be	supplied	by	the	implementer	of	a	custom	task	that	has	a	user	interface.

Applies	To

CustomTaskUI	Object

Syntax	(Visual	Basic)
Sub	CustomTaskUI_GetUIInfo(pbstrToolTip	As	String,	pbstrDescription	As
String,	_
				plVersion	As	Long,	pFlags	As	DTSCustomTaskUIFlags)

Part Description
pbstrToolTip ToolTip	text
PbstrDescriptionDescription	of	user	interface	element
PlVersion Reserved	for	future	use
PFlags Value	from	the	DTSCustomTaskUIFlags	constants	that

indicates	whether	the	user	interface	element	has	a	custom
ToolTip

Prototype	(C/C++)
HRESULT	GetUIInfo(
				BSTR	*pbstrToolTip,
				BSTR	*pbstrDescription,
				long	*plVersion,
				DTSCustomTaskUIFlags	*pFlags);

See	Also

CreateCustomToolTip	Method

DTSCustomTaskUIFlags

DTS	Programming

Help	Method
The	Help	method	of	the	CustomTaskUI	interface	must	be	supplied	by	the
implementer	of	a	Data	Transformation	Services	(DTS)	custom	task	that	has	a
user	interface.	It	is	called	by	DTS	when	Help	has	been	invoked	for	the	custom
task.

Applies	To

CustomTaskUI	Object

Syntax	(Visual	Basic)
Sub	CustomTaskUI_Help(ByVal	hwndParent	As	Long)

Part Description
hwndParentHandle	to	the	window	to	be	the	parent	of	the	custom	task	user

interface

Remarks
The	window	that	is	parent	to	the	custom	task's	user	interface	window	typically
would	be	the	DTS	Designer	design	sheet	or	the	Microsoft®	Visual	Studio®
development	environment	desktop.

Prototype	(C/C++)
HRESULT	Help(long	hwndParent);

See	Also

CustomTask	Object

GetUIInfo	Method

DTS	Programming

Initialize	Method
The	Initialize	method	of	the	CustomTaskUI	interface	must	be	supplied	by	the
implementer	of	a	Data	Transformation	Services	(DTS)	custom	task	that	has	a
user	interface.	It	is	called	by	DTS	whenever	the	custom	task	is	opened	in	the
design	environment.

Applies	To

CustomTaskUI	Object

Syntax	(Visual	Basic)
Sub	CustomTaskUI_Initialize(ByVal	pTask	As	Task)

Part Description
pTask Task	object	for	the	custom	task

Remarks
Typically,	the	Initialize	method	provides	initial	values	for	user	interface
elements.

Prototype	(C/C++)
HRESULT	Initialize(IDTSTask	*pTask);

See	Also

Edit	Method

GetUIInfo	Method

New	(CustomTaskUI)	Method

DTS	Programming

InitializeMAPI	Method
The	InitializeMAPI	method	initializes	the	MAPI	provider.

Applies	To

SendMailTask	Object

Syntax
object.InitializeMAPI

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object

Prototype	(C/C++)
HRESULT	InitializeMAPI();

See	Also

UnitializeMAPI	Method

DTS	Programming

Insert	Method
The	Insert	method	inserts	an	object	in	an	ordinal	position	in	a	collection.

Applies	To

Columns	Collection Steps	Collection
Connections	Collection Tasks	Collection
GlobalVariables	Collection Transformations	Collection
Lookups	Collection TransformationSets	Collection
PrecedenceConstraints	Collection 	

Syntax
collection.Insert	Position,	Object

Part Description
collection Expression	that	evaluates	to	an	collection	in	the	Applies	To	list
Position Ordinal	position	of	the	object	to	insert
Object Object	to	be	inserted

Remarks
The	required	type	of	Object	depends	on	the	collection	to	which	it	is	being
inserted.

Collection Object
Columns Column	Object
Connections Connection	Object

Connection2	Object
GlobalVariables GlobalVariable	Object
Lookups Lookup	Object
PrecedenceConstraints PrecedenceConstraint	Object

Steps Step	Object
Step2	Object

Tasks Task	Object
Transformations Transformation	Object

Transformation2	Object
TransformationSets TransformationSet	Object

The	Insert	method	does	not	create	an	object.	It	adds	an	existing	object	to	its
collection.	Typically,	you	create	the	object	with	the	New	method	of	the
collection.

Prototype	(C/C++)
HRESULT	Insert(
				VARIANT	Position,
				Interface	*Object);

See	Also

Add	Method

New	Method

New	(Columns)	Method

New	(ID)	Method

New	(Name)	Method

DTS	Programming

Item	Method
The	Item	method	retrieves	an	object	from	a	collection.

Applies	To

Columns	Collection Properties	Collection
Connections	Collection SavedPackageInfos	Collection
DTSMQMessages	Collection ScriptingLanguageInfos	Collection
DynamicPropertiesTaskAssignments
Collection

Steps	Collection

GlobalVariables	Collection TaskInfos	Collection
Lookups	Collection Tasks	Collection
OLEDBProperties	Collection TransformationInfos	Collection
OLEDBProviderInfos	Collection Transformations	Collection
PrecedenceConstraints	Collection 	

Syntax
[Set	object	=]	collection.Item(Index)

Part Description
object Object	to	be	retrieved	from	collection
collection Expression	that	evaluates	to	an	collection	in	the	Applies	To	list
Index Object	name	or	ordinal	position

Remarks
Index	is	the	object	name	or	the	numeric	position	within	the	collection.

The	required	type	of	Object	depends	on	the	collection	from	which	it	is	being
retrieved.

Collection Object

Columns Column	Object
Connections Connection	Object

Connection2	Object
DTSMQMessages DTSMQMessage	Object
DynamicPropertiesTaskAssignmentsDynamicPropertiesTaskAssignment

Object
GlobalVariables GlobalVariable	Object
Lookups Lookup	Object
OLEDBProperties OLEDBProperty	Object
OLEDBProviderInfos OLEDBProviderInfo	Object
PrecedenceConstraints PrecedenceConstraint	Object
Properties Property	Object
SavedPackageInfos SavedPackageInfo	Object
ScriptingLanguageInfos ScriptingLanguageInfo	Object
Steps Step	Object

Step2	Object
TaskInfos TaskInfo	Object
Tasks Task	Object
TransformationInfos TransformationInfo	Object
Transformations Transformation	Object

Transformation2	Object
TransformationSets TransformationSet	Object

You	can	iterate	through	these	collection	using	the	Item	method	and	Count
property.	In	Microsoft®	Visual	Basic®	this	looks	like:

			For	Index	=	1	To	collection.Count	
						Set	object	=	collection.Item(Index)
						.	.	.
			Next	Index

However,	it	is	faster	to	iterate	through	these	collections	using	For	Each	...	Next
in	Visual	Basic:

			For	Each	object	In	collection
						.	.	.
			Next	object

Prototype	(C/C++)
HRESULT	Item(
				VARIANT	Index,
				interface	**pRetVal);

See	Also

Add	Method

Count	Property

Insert	Method

DTS	Programming

Load	Method
The	Load	method	fills	the	container	object	using	persisted	property	values.	The
Load	method	is	called	by	Data	Transformation	Services	(DTS)	when	a	DTS
package	is	loaded.

Applies	To

PersistPropertyBag	Object

Syntax
object.Load	PropertyBag

Part Description
object Expression	that	evaluates	to	a	PersistPropertyBag

object
PropertyBag PropertyBag	object	to	be	loaded

Remarks
Generic	binary	large	objects	(BLOBs)	or	objects	are	not	supported	as	property
values.

Prototype	(C/C++)
HRESULT	Load(IDTSPropertyBag	*IDTSPropertyBag);

See	Also

PropertyBag	Object

Save	Method

DTS	Programming

LoadFromRepository	Method
The	LoadFromRepository	method	loads	the	Data	Transformation	Services
(DTS)	package	from	the	specified	instance	of	Microsoft®	SQL	Server™	2000
Meta	Data	Services.	This	includes	information	held	in	the	objects	and	collections
that	belong	to	the	Package2	object.

Applies	To

Package	Object Package2	Object

Syntax
Package.LoadFromRepository	RepositoryServerName,
RepositoryDatabaseName,	_
				RepositoryUserName,	RepositoryUserPassword,	PackageID,	[VersionID],	_
				[PackageName],	[Flags],	[pVarPersistStgOfHost]

Part Description
Package Expression	that	evaluates	to	an	object	in	the

Applies	To	list.
RepositoryServerName Meta	Data	Services	server	name.
RepositoryDatabaseNameMeta	Data	Services	database	name	or	data

source	name	(DSN).
RepositoryUserName Meta	Data	Services	user	name.
RepositoryUserPassword Meta	Data	Services	user	password.
PackageID Package	identifier,	which	is	a	string

representation	of	a	globally	unique	identifier
(GUID).

VersionID Version	identifier,	which	is	a	string
representation	of	a	GUID.

PackageName Name	of	package	to	be	loaded.
Flags Value	from	the	DTSRepositoryStorageFlags

constants	indicating	user	authentication	type.

pVarPersistStgOfHost Screen	layout	information	associated	with	a
package	(for	internal	use	only).

Remarks
RepositoryDatabaseName	is	evaluated	as	an	ODBC	DSN	if
RepositoryServerName	is	empty	or	NULL.	Otherwise,	RepositoryServerName
and	RepositoryDatabaseName	are	used	to	create	a	connection	without	a	DSN.

If	VersionID	is	not	specified	or	is	blank,	the	most	recent	version	of	the	package
is	retrieved.

Prototype	(C/C++)
HRESULT	LoadFromRepository(
				BSTR	RepositoryServerName,
				BSTR	RepositoryDatabaseName
				BSTR	RepositoryUserName,
				BSTR	RepositoryUserPassword,
				BSTR	PackageID,
				BSTR	VersionID	CPPDEFAULT(=	NULL)
				BSTR	PackageName	CPPDEFAULT(=	NULL)
				DTSRepositoryStorageFlags	Flags	CPPDEFAULT(=
DTSReposFlag_Default),
				VARIANT	*pUnkPersistStgOfHost	CPPDEFAULT(=	NULL));

See	Also

DTSRepositoryStorageFlags

LoadFromSQLServer	Method

LoadFromStorageFile	Method

Managing	DTS	Package	Programs

RemoveFromRepository	Method

SaveToRepository	Method

SaveToRepositoryAs	Method

DTS	Programming

LoadFromSQLServer	Method
The	LoadFromSQLServer	method	loads	the	Data	Transformation	Services
(DTS)	package	from	the	specified	server	running	an	instance	of	Microsoft®
SQL	Server™.	This	includes	information	held	in	the	objects	and	collections	that
belong	to	the	Package2	object.

Applies	To

Package	Object Package2	Object

Syntax
Package.LoadFromSQLServer	ServerName,	[ServerUserName],
[ServerPassword],	_
				[Flags],	[PackagePassword],	[PackageGuid],	[PackageVersionGuid],	_
				[PackageName],	[pVarPersistStgOfHost]

Part Description
Package Expression	that	evaluates	to	an	object	in	the	Applies

To	list.
ServerName Server	name.
ServerUserName Server	user	name.
ServerPassword Server	user	password.
Flags Value	from	the	DTSSQLServerStorageFlags

constants	indicating	user	authentication	type.
PackagePassword Package	password	if	the	package	is	encrypted.
PackageGuid Package	identifier,	which	is	a	string	representation	of

a	globally	unique	identifier	(GUID).
PackageVersionGuid Version	identifier	which	is	a	string	representation	of

a	GUID.
PackageName Package	name.
pVarPersistStgOfHost Screen	layout	information	associated	with	a	package

(for	internal	use	only).

Remarks
If	PackageVersionGUID	is	not	specified	or	is	blank,	the	most	recent	version	of
the	package	is	retrieved.

Prototype	(C/C++)
HRESULT	LoadFromSQLServer(
				BSTR	ServerName,
				BSTR	ServerUserName,
				BSTR	ServerPassword,
				DTSSQLServerStorageFlags	Flags	CPPDEFAULT(=
DTSSQLStgFlag_Default),
				BSTR	PackagePassword	CPPDEFAULT(=	NULL),
				BSTR	PackageGuid	CPPDEFAULT(=	NULL),
				BSTR	PackageVersionGuid	CPPDEFAULT(=	NULL),
				BSTR	PackageName	CPPDEFAULT(=	NULL),
				VARIANT	*pUnkPersistStgOfHost	CPPDEFAULT(=	NULL));

See	Also

DTSSQLServerStorageFlags

LoadFromRepository	Method

LoadFromStorageFile	Method

Managing	DTS	Package	Programs

RemoveFromSQLServer	Method

SaveToSQLServer	Method

SaveToSQLServerAs	Method

DTS	Programming

LoadFromStorageFile	Method
The	LoadFromStorageFile	method	loads	the	Data	Transformation	Services
(DTS)	package	from	the	specified	structured	storage	file.	This	includes
information	held	in	the	objects	and	collections	that	belong	to	the	Package
object.

Applies	To

Package	Object Package2	Object

Syntax
object.LoadFromStorageFile	UNCFile,	Password,	[PackageID],	_
				[VersionID],	[Name],	[pVarPersistStgOfHost]

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies

To	list.
UNCFile File	specification	of	DTS	package	storage	file.
Password Package	password	if	the	package	is	encrypted.
PackageID Package	identifier,	which	is	a	string	representation	of

a	globally	unique	identifier	(GUID).
VersionID Version	identifier,	which	is	a	string	representation	of

a	GUID.
Name Package	name.
pVarPersistStgOfHost Screen	layout	information	associated	with	a	package

(for	internal	use	only).

Remarks
If	VersionID	is	not	specified	or	is	blank,	the	most	recent	version	of	the	package
is	retrieved.

Prototype	(C/C++)
HRESULT	LoadFromStorageFile(
				BSTR	UNCFile,
				BSTR	Password,
				BSTR	PackageID,
				BSTR	VersionID	CPPDEFAULT(=	NULL),
				BSTR	Name	CPPDEFAULT(=	NULL),
				VARIANT	*pUnkPersistStgOfHost	CPPDEFAULT(=	NULL));

See	Also

LoadFromRepository	Method

LoadFromSQLServer	Method

Managing	DTS	Package	Programs

SaveToStorageFile	Method

SaveToStorageFileAs	Method

DTS	Programming

Lock	Method
The	Lock	method	locks	a	GlobalVariable2	object	for	exclusive	use.

Applies	To

GlobalVariable2	Object

Syntax
globalvar.Lock	timeout

Part Description
globalvar Expression	that	evaluates	to	a	GlobalVariable2	object
timeout Time-out	value,	in	milliseconds

Remarks
If	the	global	variable	is	already	locked,	the	Lock	method	waits	until	the	holder
of	the	lock	unlocks	the	global	variable,	or	until	the	time-out	occurs.	When	the
time-out	period	elapses,	an	error	occurs.

If	0	is	specified	for	the	time-out	value,	an	error	occurs	immediately	if	the	global
variable	is	already	locked.

Prototype	(C/C++)
HRESULT	Lock(long	TimeOut);

See	Also

Adding	DTS	Lookups	and	Global	Variables

Unlock	Method

DTS	Programming

Logoff	Method
The	Logoff	method	ends	a	MAPI	session.

Applies	To

SendMailTask	Object

Syntax
object.Logoff()

Part Description
Object Expression	that	evaluates	to	a	SendMailTask	object

Prototype	(C/C++)
HRESULT	Logoff();

See	Also

Logon	Method

DTS	Programming

Logon	Method
The	Logon	method	creates	a	MAPI	session.

Applies	To

SendMailTask	Object

Syntax
[errorstring	=]	object.Logon()

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
errorstring String	describing	error	if	Logon	fails

Prototype	(C/C++)
HRESULT	Logon(BSTR	*ErrorString);

See	Also

Logoff	Method

DTS	Programming

Messages	Method
The	Messages	method	returns	a	reference	to	the	DTSMQMessages	collection.

Applies	To

DTSMessageQueueTask	Object

Syntax
[Set	oMsgColl	=]	object.Messages

Part Description
object Expression	that	evaluates	to	a	DTSMessageQueueTask	object
oMsgCollObject	variable	to	receive	a	reference	to	a	DTSMQMessages

collection

Prototype	(C/C++)
HRESULT	Messages(DTSMQMessages	**pVal)

See	Also

DTSMQMessages	Collection

DTS	Programming

New	Method
The	New	method	creates	a	new,	unnamed	object	for	a	collection.

Applies	To

DTSMQMessages	Collection Steps	Collection
DynamicPropertiesTaskAssignments
Collection

	

Syntax
[Set	object	=]	Collection.New

Part Description
Collection Expression	that	evaluates	to	an	object	in	the	Applies	To	list
object Object	variable	to	receive	reference	to	created	object

Remarks
The	required	type	of	object	depends	on	the	collection	to	which	it	is	being	added:

Collection Object
DTSMQMessages DTSMQMessage	Object
DynamicPropertiesTaskAssignmentsDynamicPropertiesTaskAssignment

Object
Steps Step	Object

Step2	Object

The	New	method	for	the	collections	in	the	Applies	To	list	creates	a	new	object
based	on	the	collection	type.	The	New	methods	for	other	collections	use
different	parameters	and	syntax.

Prototype	(C/C++)
HRESULT	New(
				ObjectInterface	**RetVal);

Example
To	create	a	new	Step	object	using	Microsoft®	Visual	Basic®,	use:

			Set	objStep	=	objPackage.Steps.New

See	Also

Add	Method

New	(Columns)	Method

New	(ID)	Method

New	(Name)	Method

DTS	Programming

New	(Columns)	Method
The	New	method	creates	a	new	Column	object	with	a	specified	name	and
ordinal	position.

Applies	To

Columns	Collection

Syntax
[Set	object	=]	Collection.New(Name,	Ordinal)

Part Description
Columns Expression	that	evaluates	to	a	Columns	collection
object Expression	that	evaluates	to	a	Column	object
Name String	that	is	the	name	of	the	column
Ordinal Long	that	is	the	ordinal	position	of	the	column

Remarks
The	New	method	for	the	Columns	collection	creates	a	new	object	based	on	the
specified	Name	and	Ordinal.	The	New	methods	for	other	collections	use
different	parameters	and	syntax.

Prototype	(C/C++)
HRESULT	New(
				BSTR	Name,
				long	Ordinal,	
				IDTSColumn	**RetVal);

Examples

This	Microsoft®	Visual	Basic®	example	creates	a	new	Column	object	named
LastName	that	is	to	be	the	third	column	in	the	source	columns	collection:

			Set	objColumn	=	objTransform.SourceColumns.New("LastName",	3)

See	Also

Add	Method

Adding	DTS	Column	Objects

New	Method

New	(ID)	Method

New	(Name)	Method

DTS	Programming

New	(CustomTaskUI)	Method
The	New	method	of	the	CustomTaskUI	interface	must	be	supplied	by	the
implementer	of	a	Data	Transformation	Services	(DTS)	custom	task	that	has	a
user	interface.	It	is	called	by	DTS	when	a	new	instance	of	the	custom	task	is	to
be	created.

Applies	To

CustomTaskUI	Object

Syntax	(Visual	Basic)
Sub	CustomTaskUI_New(ByVal	hwndParent	As	Long)

Part Description
hwndParent Handle	to	the	window	to	be	the	parent	of	the	custom	task	user

interface

Remarks
The	window	that	is	parent	to	the	custom	task's	user	interface	window	typically
would	be	the	DTS	Designer	design	sheet	or	the	Microsoft®	Visual	Studio®
development	environment	desktop.

The	New	methods	for	various	collections	use	different	parameters	and	syntax
than	the	New	method	of	the	CustomTaskUI	interface.

Prototype	(C/C++)
HRESULT	New(
				long	hwndParent);

See	Also

CreateCustomToolTip	Method

Delete	Method

Edit	Method

New	Method

New	(Columns)	Method

New	(ID)	Method

New	(Name)	Method

DTS	Programming

New	(ID)	Method
The	New	method	creates	a	new	object	for	a	collection	from	a	ProgID	or	CLSID.

Applies	To

Connections	Collection Transformations	Collection
Tasks	Collection 	

Syntax
[Set	object	=]	Collection.New(ID)

Part Description
Collection Expression	that	evaluates	to	an	object	in	the	Applies	To	list
object Object	variable	to	receive	reference	to	created	object
ID ProgID	or	CLSID	of	object	to	be	created

Remarks
The	required	type	of	object	depends	on	the	collection	to	which	it	is	being	added:

Collection Object
Connections Connection	Object

Connection2	Object
Tasks Task	Object
Transformations Transformation	Object

Transformation2	Object

The	New	method	for	the	collections	in	the	Applies	To	list	creates	a	new	object
based	on	the	ProgID	or	CLSID	of	the	corresponding	class.	The	New	methods	for
other	collections	use	different	parameters	and	syntax.

There	are	version-dependent	and	version-independent	forms	of	a	ProgID.
Typically,	the	version-dependent	form	looks	like	name.version.	The	version-
independent	form	typically	has	name	only,	without	the	.version,	although	that
form	is	not	required.	The	version-independent	form	should	be	used	unless	you
need	a	feature	of	a	particular	version.

Prototype	(C/C++)
HRESULT	New(
				BSTR	bstrID,
				ObjectInterface	**RetVal);

Examples
To	create	a	new	connection	using	the	Microsoft®	OLE	DB	Provider	for	ODBC
drivers	in	Microsoft	Visual	Basic®,	use	one	of	the	following	forms.

By	version-independent	ProgID:

			Set	objConnection	=	objPackage.Connections.New("MSDASQL")

By	version-dependent	ProgID:

			Set	objConnection	=	objPackage.Connections.New("MSDASQL.1")

By	CLSID:

			Set	objConnection	=	_
						objPackage.Connections.New("{C8B522CB-5CF3-11CE-ADE5-00AA0044773D}")

See	Also

Add	Method

New	Method

New	(Columns)	Method

New	(Name)	Method

DTS	Programming

New	(Name)	Method
The	New	method	creates	a	new	object	for	a	collection	with	a	specified	name.

Applies	To

GlobalVariables	Collection PrecedenceConstraints	Collection
Lookups	Collection 	

Syntax
[Set	object	=]	Collection.New(Name)

Part Description
Collection Expression	that	evaluates	to	an	object	in	the	Applies	To	list
object Object	variable	to	receive	reference	to	created	object
Name String	that	is	to	be	the	name	of	the	created	object

Remarks
The	required	type	of	object	depends	on	the	collection	to	which	it	is	being	added:

Collection Object
GlobalVariables GlobalVariable	Object
Lookups Lookup	Object
PrecedenceConstraints PrecedenceConstraint	Object
TransformationSets TransformationSet	Object

The	New	method	for	the	collections	in	the	Applies	To	list	creates	a	new	object
with	the	specified	name.	The	New	methods	for	other	collections	use	different
parameters	and	syntax.

Prototype	(C/C++)
HRESULT	New(
				BSTR	Name,
				ObjectInterface	**RetVal);

Examples
This	sample	statement	creates	a	new	TransformationSet	object	named
Customers,	in	Microsoft®	Visual	Basic®:

			Set	objTransSet	=	objParPumpTask.TransformationSets.New("Customers")

See	Also

Add	Method

New	Method

New	(Columns)	Method

New	(ID)	Method

DTS	Programming

NewDataLink	Method
The	NewDataLink	method	gets	a	new	Connection	object	using	Microsoft®
Data	Link	files.

Applies	To

Connections	Collection

Syntax
[Set	object	=]	collection.NewDataLink(UDLPath)

Part Description
collection Expression	that	evaluates	to	a	Connections	collection
UDLPath File	specification	of	the	UDL	file
object Object	Variable	of	type	Connection

Remarks
NewDataLink	is	similar	to	New,	except	you	supply	a	UDL	path	instead	of	a
provider	ID.

Prototype	(C/C++)
HRESULT	NewDataLink	(
				BSTR	UDLPath,
				IDTSConnection	**pRetVal);

See	Also

Connection	Object

New	(ID)	Method

DTS	Programming

Next	Method
The	Next	method	fetches	the	next	object	while	iterating	through	the	associated
collection.

Applies	To

PackageInfos	Collection StepLineages	Collection
PackageLineages	Collection StepLogRecords	Collection
PackageLogRecords	Collection 	

Syntax
Set	object	=	collection.Next

Part Description
collection Expression	that	evaluates	to	a	collection	in	the	Applies	To	list
object Reference	to	next	object	in	collection

Remarks
The	object	associated	with	each	collection	type	is	specified	in	this	table.

Collection Associated	object C/C++	interface
PackageInfos	Collection PackageInfo	Object IDTSPackageInfo
PackageLineages
Collection

PackageLineage	Object IDTSPackageLineage

PackageLogRecords PackageLogRecord
Object

IDTSPackageLogRecord

StepLineages	Collection StepLineage	Object IDTSStepLineage
StepLogRecords
Collection

StepLogRecord	Object IDTSStepLogRecord

TaskLogRecords
Collection

TaskLogRecord	Object IDTSTaskLogRecord

Iterate	through	a	collection	by	checking	the	EOF	property	after	calling	the	Next
method.	If	EOF	is	True,	Next	will	have	returned	Nothing	and	all	of	the	elements
will	have	been	fetched.	In	Microsoft®	Visual	Basic®	this	looks	like:

			Set	object	=	collection.Next
			Do	Until	collection.EOF	
						.	.	.
						Set	object	=	collection.Next
			Loop

The	collections	in	the	Applies	To	list	can	also	be	processed	using	For	Each	...
Next	in	Visual	Basic:

			For	Each	object	In	collection
						.	.	.
			Next	object

Prototype	(C/C++)
HRESULT	Next(interface	**pRetVal);

interface	is	as	defined	in	the	above	table.

See	Also

EOF	Property

Retrieving	DTS	System,	Package,	and	Log	Data

DTS	Programming

Read	Method
The	Read	method	retrieves	a	property	value.

Applies	To

PropertyBag	Object

Syntax
[value	=]	object.Read(bstrPropertyName)

Part Description
Object Expression	that	evaluates	to	a	PropertyBag	object
BstrPropertyName String	identifying	an	exposed	property	by	name
Value Variant	that	receives	the	property	value

Remarks
Generic	BLOBs	or	objects	are	not	supported	as	property	values.

Prototype	(C/C++)
HRESULT	Read(
				BSTR	bstrPropertyName,	
				VARIANT	*pValue);

See	Also

PersistPropertyBag	Object

Write	Method

DTS	Programming

Refresh	Method
The	Refresh	method	updates	the	cached	information	for	the	associated
collection	by	scanning	the	registered	classes	in	the	operating	system	registry.

Applies	To

OLEDBProviderInfos	Collection TaskInfos	Collection
ScriptingLanguageInfos	Collection 	

Syntax
collection.Refresh

Part Description
collection Expression	that	evaluates	to	a	collection	in	the	Applies	To	list

Remarks
Data	Transformation	Services	(DTS)	maintains	a	cache	(in	the	registry)	of	the
components	of	each	collection	in	the	Applies	To	list.	When	iterating	through	any
of	the	collections	the	appropriate	cache	is	examined,	rather	than	all	registered
classes,	when	the	UseCache	property	is	True.	Use	the	Refresh	method	to	refresh
the	appropriate	cache	from	the	system	registry.

Prototype	(C/C++)
HRESULT	Refresh();

See	Also

Retrieving	DTS	System,	Package,	and	Log	Data

UseCache	Property

DTS	Programming

ReleaseConnection	Method
The	ReleaseConnection	method	releases	ownership	of	the	connection	and
makes	it	available	to	other	tasks.

Applies	To

Connection	Object Connection2	Object

Syntax
Connection.ReleaseConnection()

Part Description
Connection Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Remarks
The	InUse	property	is	set	to	False.	This	method	is	required	only	if	you	are
creating	a	custom	task.	All	tasks	must	include	calls	to	AcquireConnection	and
ReleaseConnection.	The	tasks	supplied	with	Microsoft®	SQL	Server™	2000
already	include	them.

Rowsets	are	always	released	at	the	Task	object	level.

Prototype	(C/C++)
HRESULT	ReleaseConnection();

See	Also

AcquireConnection	Method

Creating	DTS	Package	Objects	and	Connections

InUse	Property

DTS	Programming

Remove	Method
The	Remove	method	removes	an	object	from	a	collection.

Applies	To

Columns	Collection PrecedenceConstraints	Collection
Connections	Collection Steps	Collection
DTSMQMessages	Collection Tasks	Collection
DynamicPropertiesTaskAssignments
Collection

Transformations	Collection

GlobalVariables	Collection TransformationSets	Collection
Lookups	Collection 	

Syntax
collection.Remove	Index

Part Description
collection Expression	that	evaluates	to	a	collection	in	the	Applies	To	list
Index Object	name	or	ordinal	position

Remarks
Index	is	the	object	name	or	the	numeric	position	within	the	collection.

The	types	of	object	contained	in	each	collection	type	is	as	follows.

Collection Object
Columns Column	Object
Connections Connection	Object

Connection2	Object
DTSMQMessages DTSMQMessage	Object
DynamicPropertiesTaskAssignmentsDynamicPropertiesTaskAssignment

Object
GlobalVariables GlobalVariable	Object
Lookups Lookup	Object
PrecedenceConstraints PrecedenceConstraint	Object
Steps Step	Object

Step2	Object
Tasks Task	Object
Transformations Transformation	Object

Transformation2	Object
TransformationSets TransformationSet	Object

Prototype	(C/C++)
HRESULT	Remove(VARIANT	Index);

See	Also

Add	Method

Insert	Method

Item	Method

DTS	Programming

RemoveAllLogRecords	Method
The	RemoveAllLogRecords	method	removes	all	package,	step,	and	task	log
records	from	the	database	associated	with	the	PackageSQLServer	object.

Applies	To

PackageSQLServer	Object

Syntax
object.RemoveAllLogRecords()

Part Description
object Expression	that	evaluates	to	a	PackageSQLServer	object

Remarks
Log	records	are	written	to	the	msdb	database	on	the	instance	of	Microsoft®
SQL	Server™	specified	by	the	package	LogServerName	property	each	time	a
Data	Transformation	Services	(DTS)	package	is	executed,	if	the	package
LogToSQLServer	property	has	been	set.	The	RemoveAllLogRecords	method
removes	these	records	for	all	packages	from	the	database.

Prototype	(C/C++)
HRESULT	RemovePackageLogRecords();

See	Also

LogServerName	Property

LogToSQLServer	Property

PackageLogRecords	Collection

RemovePackageLogRecords	Method

RemoveStepLogRecords	Method

RemoveTaskLogRecords	Method

Retrieving	DTS	System,	Package,	and	Log	Data

StepLogRecords	Collection

TaskLogRecords	Collection

DTS	Programming

RemoveFromRepository	Method
The	RemoveFromRepository	method	removes	the	package	from	the	specified
instance	of	Microsoft®	SQL	Server™	2000	Meta	Data	Services.

Applies	To

Package	Object Package2	Object

Syntax
Package.RemoveFromRepository	RepositoryServerName,	_
				RepositoryDatabaseName,	RepositoryUserName,	RepositoryUserPassword,	_
				PackageID,	[VersionID],	[PackageName],	[Flags]

Part Description
Package Expression	that	evaluates	to	an	object	in	the

Applies	To	list.
RepositoryServerName Meta	Data	Services	server	name.
RepositoryDatabaseNameMeta	Data	Services	database	name	or	datasource

name	(DSN).
RepositoryUsername Meta	Data	Services	user	name.
RepositoryUserPassword Meta	Data	Services	user	password.
PackageID Package	identifier,	which	is	a	string

representation	of	a	globally	unique	identifier
(GUID).

VersionID Version	identifier,	which	is	a	string
representation	of	a	GUID.

PackageName Package	name.
Flags Value	from	the	DTSRepositoryStorageFlags

constants,	which	specified	the	user
authentication	type.

Remarks
RepositoryDatabaseName	is	evaluated	as	an	ODBC	DSN	if
RepositoryServerName	is	empty	or	NULL.	Otherwise,	RepositoryServerName
and	RepositoryDatabaseName	are	used	to	create	a	connection	without	a	DSN.

If	VersionID	is	not	specified	or	is	blank,	the	most	recent	version	of	the	package
is	removed.

Prototype	(C/C++)
HRESULT	RemoveFromRepository(
				BSTR	RepositoryServerName,
				BSTR	RepositoryDatabaseName,
				BSTR	RepositoryUserName,
				BSTR	RepositoryUserPassword,
				BSTR	PackageID,
				BSTR	VersionID	CPPDEFAULT(=	NULL)
				BSTR	PackageName	CPPDEFAULT(=	NULL)
				DTSRepositoryStorageFlags	Flags	CPPDEFAULT(=	DTSReposFlag_Default)
);

See	Also

DTSRepositoryStorageFlags

LoadFromRepository	Method

Managing	DTS	Package	Programs

SaveToRepository	Method

SaveToRepositoryAs	Method

DTS	Programming

RemoveFromSQLServer	Method
The	RemoveFromSQLServer	method	removes	the	package	from	the	specified
server	running	an	instance	of	Microsoft®	SQL	Server™.

Applies	To

Package	Object Package2	Object

Syntax
Package.RemoveFromSQLServer	ServerName,	[ServerUserName],	_
				[ServerPassword],	[Flags],	[PackageGuid],	_
				[PackageVersionGuid],	[PackageName]

Part Description
Package Expression	that	evaluates	to	an	object	in	the	Applies

To	list.
ServerName Server	name.
ServerUserName Server	user	name.
ServerPassword Server	user	password.
Flags Value	from	the	DTSSQLServerStorageFlags

constants	indicating	user	authentication	type.
PackageGuid Package	identifier,	which	is	a	string	representation	of

a	globally	unique	identifier	(GUID).
PackageVersionGuidVersion	identifier,	which	is	a	string	representation	of	a

GUID.
PackageName Package	name.

Remarks
If	PackageVersionGUID	is	not	specified	or	is	blank,	the	most	recent	version	of
the	package	is	removed.

Prototype	(C/C++)
HRESULT	RemoveFromSQLServer(
				BSTR	ServerName,
				BSTR	ServerUserName,
				BSTR	ServerPassword,
				DTSSQLServerStorageFlags	Flags	CPPDEFAULT(=
DTSSQLStgFlag_Default),
				BSTR	PackageGuid	CPPDEFAULT(=	NULL),
				BSTR	PackageVersionGuid	CPPDEFAULT(=	NULL),
				BSTR	PackageName	CPPDEFAULT(=	NULL));

See	Also

DTSSQLServerStorageFlags

LoadFromSQLServer	Method

Managing	DTS	Package	Programs

SaveToSQLServer	Method

SaveToSQLServerAs	Method

DTS	Programming

RemovePackageLineages	Method
The	RemovePackageLineages	method	removes	the	package	and	step	lineage
records	from	Microsoft®	SQL	Server™	2000	Meta	Data	Services	that	satisfy	the
criteria	of	the	input	parameters.

Applies	To

PackageRepository	Object

Syntax
object.RemovePackageLineages(PackageVersionID,	KeepLatest,	
				LineageFullID,	LineageShortID)

Part Description
Object Expression	that	evaluates	to	a	PackageRepository

object.
PackageVersionIDA	globally	unique	identifier	(GUID)	string	specifying

the	version	ID	of	the	package	version	for	which	lineage
records	are	to	be	removed.

KeepLatest A	Boolean	which	specifies	whether	the	lineage	records
for	the	most	recent	execution	are	to	be	retained.

LineageFullID A	GUID	string	specifying	the	lineage	full	ID	of	the
lineage	records	to	be	removed.

LineageShortID A	long	specifying	the	lineage	short	ID	of	the	lineage
records	to	be	removed.

Remarks
A	package	lineage	record	and	step	lineage	records	are	written	each	time	a
package	stored	in	Meta	Data	Services	is	executed,	if	the	package
LineageOptions	property	specifies	this	to	be	done.	RemovePackageLineages
removes	these	records	from	Meta	Data	Services.

A	package	ID	or	the	empty	string	cannot	be	specified	for	PackageVersionID.	An
error	will	be	raised	if	there	is	no	package	lineage	record	in	Meta	Data	Services
with	the	specified	version	ID.

All	parameters	are	required.	To	remove	all	package	lineage	records	for	a
particular	package	version,	code	False	for	KeepLatest,	the	empty	string	""	for
LineageFullID	and	0	for	LineageShortID.	To	remove	all	package	lineage	records
in	Meta	Data	Services,	iterate	through	the	Meta	Data	Services	packages	with	the
EnumPackageInfos	method,	then	call	RemovePackageLineages	for	each
package	version.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	the	X	are	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12	digits.
The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for	readability.

Prototype	(C/C++)
HRESULT	RemovePackageLineages(
				BSTR	PackageVersionID,	
				VARIANT_BOOL	KeepLatest,	
				BSTR	LineageFullID,
				long	LineageShortID);

See	Also

EnumPackageLineages	Method

LineageFullID	Property

LineageOptions	Property

LineageShortID	Property

PackageID	Property

Retrieving	DTS	System,	Package,	and	Log	Data

VersionID	Property

DTS	Programming

RemovePackageLogRecords	Method
The	RemovePackageLogRecords	method	removes	the	package	log	records	that
satisfy	the	criteria	of	the	input	parameters	from	the	database.

Applies	To

PackageSQLServer	Object

Syntax
object.RemovePackageLogRecords(
				PackageName,	
				KeepLatest,	
				PackageID,
				VersionID,
				LineageFullID)

Part Description
object Expression	that	evaluates	to	a	PackageSQLServer	object.
PackageName A	string	specifying	the	package	name	for	which	log	records

are	to	be	removed.
KeepLatest A	Boolean	which	specifies	whether	the	log	records	for	the

most	recent	execution	are	to	be	retained.
PackageID A	globally	unique	identifier	(GUID)	string	specifying	the

package	ID	for	which	log	records	are	to	be	removed.
VersionID A	GUID	string	specifying	the	version	ID	of	the	package

version	for	which	log	records	are	to	be	removed.
LineageFullIDA	GUID	string	specifying	the	lineage	full	ID	for	which	log

records	are	to	be	removed.

Remarks
A	package	log	record	is	written	to	the	msdb	database	on	the	instance	of

Microsoft®	SQL	Server™	specified	by	the	package	LogServerName	property
each	time	a	Data	Transformation	Services	(DTS)	package	is	executed,	if	the
package	LogToSQLServer	property	has	been	set.	The
RemovePackageLogRecords	method	removes	these	records	from	the	database.

All	parameters	are	required.	To	prevent	a	parameter	from	participating	in	the
filter	process,	code	the	empty	string	""	for	PackageName,	PackageID,	VersionID
and	LineageFullID,	and	False	for	KeepLatest.	Coding	all	parameters	this	way
will	cause	all	package	log	records	in	the	database	to	be	removed.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	the	X	are	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12	digits.
The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for	readability.

Prototype	(C/C++)
HRESULT	RemovePackageLogRecords(
				BSTR	PackageName,
				VARIANT_BOOL	KeepLatest,
				BSTR	PackageID,
				BSTR	VersionID,
				BSTR	LineageFullID);

See	Also

EnumPackageLogRecords	Method

LineageFullID	Property

LogServerName	Property

LogToSQLServer	Property

PackageID	Property

PackageLogRecords	Collection

PackageName	Property

RemoveAllLogRecords	Method

Retrieving	DTS	System,	Package,	and	Log	Data

VersionID	Property

DTS	Programming

RemoveStepLogRecords	Method
The	RemoveStepLogRecords	method	removes	the	step	log	records	that	satisfy
the	criteria	of	the	input	parameters	from	the	database.

Applies	To

PackageSQLServer	Object

Syntax
object.RemoveStepLogRecords(
				LineageFullID,
				StepExecutionID)

Part Description
object Expression	that	evaluates	to	a	PackageSQLServer

object.
LineageFullID A	globally	unique	identifier	(GUID)	string	specifying	the

lineage	full	ID	for	which	log	records	are	to	be	removed.
StepExecutionIDA	variant	specifying	the	step	execution	ID	for	which	log

records	are	to	be	removed.

Remarks
A	step	log	record	is	written	to	the	msdb	database	on	the	instance	of	Microsoft®
SQL	Server™	specified	by	the	package	LogServerName	property	each	time	a
step	in	a	Data	Transformation	Services	(DTS)	package	is	executed,	if	the
package	LogToSQLServer	property	has	been	set.	The
RemoveStepLogRecords	method	removes	these	records	from	the	database.

Both	parameters	are	required.	To	prevent	a	parameter	from	participating	in	the
filter	process,	code	the	empty	string	""	for	LineageFullID,	and	Null	for
StepExecutionID.	Coding	all	parameters	this	way	will	cause	all	step	log	records
to	be	removed.

The	syntax	of	GUIDs	is:

{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

where	the	X	are	hexadecimal	digits.	The	groupings	are	8,	4,	4,	4,	and	12	digits.
The	curly	brackets	are	required.	Spaces	cannot	be	embedded	for	readability.

Prototype	(C/C++)
HRESULT	RemoveStepLogRecords(
				BSTR	LineageFullID,
				VARIANT	StepExecutionID);

See	Also

EnumStepLogRecords	Method

LineageFullID	Property

LogServerName	Property

LogToSQLServer	Property

RemoveAllLogRecords	Method

Retrieving	DTS	System,	Package,	and	Log	Data

StepExecutionID	Property

StepLogRecords	Collection

DTS	Programming

RemoveTaskLogRecords	Method
The	RemoveTaskLogRecords	method	removes	the	task	log	records	that	satisfy
the	criteria	of	the	input	parameters	from	the	database.

Applies	To

PackageSQLServer	Object

Syntax
object.RemoveTaskLogRecords(
				StepExecutionID,
				SequenceID)

Part Description
object Expression	that	evaluates	to	a	PackageSQLServer	object
StepExecutionIDA	variant	specifying	the	step	execution	ID	for	which	log

records	are	to	be	removed
SequenceID A	long	specifying	the	sequence	number	of	the	log	record

to	be	removed

Remarks
Task	log	records	are	not	written	by	the	task	classes	supplied	with	Microsoft®
SQL	Server™	2000,	but	the	PackageLog	interface	is	available	so	that	custom
tasks	can	write	them.	They	are	written	to	the	msdb	database	on	the	server
specified	by	the	package	LogServerName	property,	if	the	package
LogToSQLServer	property	has	been	set.	SequenceID	is	a	unique	sequence
number	for	each	task	log	record.	The	RemoveTaskLogRecords	method
removes	these	records	from	the	database.

Both	parameters	are	required.	To	prevent	a	parameter	from	participating	in	the
filter	process,	code	Null	for	StepExecutionID	and	0	for	SequenceID.	Coding	all
parameters	this	way	will	cause	all	task	log	records	in	the	database	to	be

removed.

Prototype	(C/C++)
HRESULT	RemoveTaskLogRecords(
				VARIANT	StepExecutionID,
				long	SequenceID);

See	Also

EnumTaskLogRecords	Method

LogServerName	Property

LogToSQLServer	Property

PackageLog	Object

RemoveAllLogRecords	Method

Retrieving	DTS	System,	Package,	and	Log	Data

SequenceID	Property

StepExecutionID	Property

TaskLogRecords	Collection

DTS	Programming

Reset	Method
The	Reset	method	resets	all	values	in	the	target	object	to	their	defaults.

Applies	To

DTSMQMessage	Object DynamicPropertiesTaskAssignment
Object

Syntax
object.Reset

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	Reset()

DTS	Programming

ResetObjectsList	Method
The	ResetObjectsList	method	clears	the	list	of	objects	to	be	transferred.

Applies	To

TransferObjectsTask	Object TransferObjectsTask2	Object

Syntax
object.ResetObjectsList

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Prototype	(C/C++)
HRESULT	ResetObjectsList();

See	Also

AddObjectForTransfer	Method

GetObjectForTransfer	Method

DTS	Programming

ResolveName	Method
The	ResolveName	method	resolves	an	e-mail	address.

Applies	To

SendMailTask	Object

Syntax
[string	=]	object.ResolveName(Address)

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
Address E-mail	addresses	to	be	resolved
string String	to	receive	the	list	of	resolved	names

Remarks
E-mail	addresses	are	separated	by	semicolons.

Prototype	(C/C++)
HRESULT	ResolveName(
				BSTR	Address,
				BSTR	*ErrorString);

DTS	Programming

Save	Method
The	Save	method	instructs	an	object	implementing	a	custom	task	to	perform
custom	property	storage	into	a	PropertyBag	object.	The	Save	method	is	called
by	Data	Transformation	Services	(DTS)	when	a	DTS	package	is	stored.

Applies	To

PersistPropertyBag	Object

Syntax
object.Save	PropertyBag

Part Description
object Expression	that	evaluates	to	a	PersistPropertyBag	object
PropertyBagPropertyBag	object	to	receive	the	persisted	properties

Remarks
Generic	BLOBs	or	objects	are	not	supported	as	property	values.

Prototype	(C/C++)
HRESULT	Save(IDTSPropertyBag	*IDTSPropertyBag);

See	Also

Load	Method

PropertyBag	Object

DTS	Programming

SaveAs	Method
The	SaveAs	method	creates	a	new	Data	Transformation	Services	(DTS)	package
ID	and	assigns	the	new	name	while	preserving	all	other	properties.

Applies	To

Package	Object Package2	Object

Syntax
object.SaveAs	NewName

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies	To	list
NewName New	package	name

Remarks
The	package	is	given	a	new	name	and	package	ID,	but	nothing	is	saved	to
persistent	storage.

Prototype	(C/C++)
HRESULT	SaveAs(BSTR	NewName);

See	Also

Managing	DTS	Package	Programs

SaveToRepository	Method

SaveToRepositoryAs	Method

SaveToSQLServer	Method

SaveToSQLServerAs	Method

SaveToStorageFile	Method

SaveToStorageFileAs	Method

DTS	Programming

SaveToRepository	Method
The	SaveToRepository	method	saves	information	being	held	in	the	Package2
object	and	its	subordinate	objects	and	collections	to	the	specified	instance	of
Microsoft®	SQL	Server™	2000	Meta	Data	Services.

Applies	To

Package	Object Package2	Object

Syntax
object.SaveToRepository(
				RepositoryServerName,
				RepositoryDatabaseName,
				RepositoryUserName,
				RepositoryUserPassword,
				[Flags],
				[CategoryID],
				[pVarPersistStgOfHost])

Part Description
object Expression	that	evaluates	to	an	object	in	the

Applies	To	list.
RepositoryServerName A	string	specifying	the	name	of	the	server	on

which	the	instance	of	Meta	Data	Services	is
hosted.

RepositoryDatabaseNameA	string	specifying	the	name	of	the	database	in
which	the	instance	of	Meta	Data	Services	is
located.

RepositoryUsername A	string	specifying	the	logon	name	used	to
access	the	server	specified	by	ServerName.

RepositoryUserPassword A	string	specifying	the	password	used	to	access
the	server	specified	by	ServerName.

Flags A	value	from	the	DTSRepositoryStorageFlags

constants	that	specifies	the	type	of	user
authentication	used	to	access	the	server	specified
by	RepositoryServerName.

CategoryID Reserved.
pVarPersistStgOfHost Screen	layout	information	associated	with	a

package	(for	internal	use).

Remarks
RepositoryDatabaseName	is	evaluated	as	an	ODBC	datasource	name	(DSN)	if
RepositoryServerName	is	empty	or	NULL.	Otherwise,	RepositoryServerName
and	RepositoryDatabaseName	are	used	to	create	a	DSN-less	connection.

A	new	VersionID	value	is	always	generated	when	the	package	is	saved.

Prototype	(C/C++)
HRESULT	SaveToRepository(
				BSTR	RepositoryServerName,
				BSTR	RepositoryDatabaseName,
				BSTR	RepositoryUserName,
				BSTR	RepositoryUserPassword,
				DTSRepositoryStorageFlags	Flags,
				BSTR	CategoryID,
				VARIANT	pVarPersistStgOfHost);

See	Also

DTSRepositoryStorageFlags

Managing	DTS	Package	Programs

SaveAs	Method

SaveToRepositoryAs	Method

SaveToSQLServer	Method

SaveToStorageFile	Method

DTS	Programming

SaveToRepositoryAs	Method
The	SaveToRepositoryAs	method	saves	information	being	held	in	the	Package
object	and	its	subordinate	objects	and	collections	to	the	specified	instance	of
Microsoft®	SQL	Server™	2000	Meta	Data	Services.	The	new	name	and	a	new
Data	Transformation	Services	(DTS)	package	ID	are	assigned.

Applies	To

Package2	Object

Syntax
object.SaveToRepository(
				NewName,	
				RepositoryServerName,
				RepositoryDatabaseName,
				RepositoryUserName,
				RepositoryUserPassword,
				[Flags],
				[CategoryID],
				[pVarPersistStgOfHost])

Part Description
Object Expression	that	evaluates	to	a	Package2	object.
NewName A	string	specifying	the	new	name	for	the

package.
RepositoryServerName A	string	specifying	the	name	of	the	server	on

which	the	instance	of	Meta	Data	Services	is
hosted.

RepositoryDatabaseNameA	string	specifying	the	name	of	the	database	in
which	the	instance	of	Meta	Data	Services	is
located.

RepositoryUsername A	string	specifying	the	logon	name	used	to
access	the	server	specified	by	ServerName.

RepositoryUserPassword A	string	specifying	the	password	used	to	access
the	server	specified	by	ServerNam.e

Flags A	value	from	the	DTSRepositoryStorageFlags
constants	that	specifies	the	type	of	user
authentication	used	to	access	the	server	specified
by	RepositoryServerName.

CategoryID Reserved.
pVarPersistStgOfHost Screen	layout	information	associated	with	a

package	(for	internal	use).

Remarks
RepositoryDatabaseName	is	evaluated	as	an	ODBC	data	source	name	(DSN)	if
RepositoryServerName	is	empty	or	NULL.	Otherwise,	RepositoryServerName
and	RepositoryDatabaseName	are	used	to	create	a	connection	without	a	DSN.

New	package	ID	and	version	ID	values	are	generated	when	the	package	is	saved.

Prototype	(C/C++)
HRESULT	SaveToRepositoryAs(
				BSTR	NewName,
				BSTR	RepositoryServerName,
				BSTR	RepositoryDatabaseName,
				BSTR	RepositoryUserName,
				BSTR	RepositoryUserPassword,
				DTSRepositoryStorageFlags	Flags,
				BSTR	CategoryID,
				VARIANT	pVarPersistStgOfHost);

See	Also

DTSRepositoryStorageFlags

Managing	DTS	Package	Programs

SaveAs	Method

SaveToRepository	Method

SaveToSQLServerAs	Method

SaveToStorageFileAs	Method

DTS	Programming

SaveToSQLServer	Method
The	SaveToSQLServer	method	saves	information	being	held	in	the	Package2
object	and	its	subordinate	objects	and	collections	to	the	specified	server	running
an	instance	of	Microsoft®	SQL	Server™.

Applies	To

Package	Object Package2	Object

Syntax
object.SaveToSQLServer(
				ServerName,
				[ServerUserName],
				[ServerPassword],
				[Flags],
				[PackageOwnerPassword],
				[PackageOperatorPassword],
				[PackageCategoryID],
				[pVarPersistStgOfHost],
				[bReusePasswords])

Part Description
object Expression	that	evaluates	to	an	object	in	the

Applies	To	list.
ServerName A	string	specifying	the	name	of	the	server	to

which	to	connect.
ServerUserName A	string	specifying	the	logon	name	used	to

access	the	server	specified	by	ServerName.
ServerPassword A	string	specifying	the	password	used	to	access

the	server	specified	by	ServerName.
Flags A	value	from	the	DTSSQLServerStorageFlags

constants	that	specifies	the	type	of	user
authentication	used	to	access	the	server

specified	by	ServerName.
PackageOwnerPassword A	string	specifying	the	package	owner

password	if	the	package	is	encrypted.
PackageOperatorPasswordA	string	specifying	the	package	user	password

if	the	package	is	encrypted.
PackageCategoryID A	string	specifying	the	package	category

(reserved).
pVarPersistStgOfHost Screen	layout	information	associated	with	a

package	(for	internal	use).
bReusePasswords A	Boolean	specifying	whether	to	reuse	package

passwords.

Remarks
A	new	version	ID	value	is	always	generated	when	the	package	is	saved.

The	default	for	bReusePasswords	is	True.

Prototype	(C/C++)
HRESULT	SaveToSQLServer(
				BSTR	ServerName,
				BSTR	ServerUserName,
				BSTR	ServerPassword,
				DTSSQLServerStorageFlags	Flags,
				BSTR	PackageOwnerPassword,
				BSTR	PackageOperatorPassword,
				BSTR	PackageCategoryID,
				VARIANT	pVarPersistStgOfHost),
				VARIANT_BOOL	bReusePasswords);

See	Also

DTSSQLServerStorageFlags

Managing	DTS	Package	Programs

SaveAs	Method

SaveToRepository	Method

SaveToSQLServerAs	Method

SaveToStorageFile	Method

DTS	Programming

SaveToSQLServerAs	Method
The	SaveToSQLServer	method	saves	information	being	held	in	the	Package2
object	and	its	subordinate	objects	and	collections	to	the	specified	server	running
an	instance	of	Microsoft®	SQL	Server™.	The	new	name	and	a	new	package	ID
are	assigned.

Applies	To

Package2	Object

Syntax
object.SaveToSQLServerAs(
				NewName,	
				ServerName,
				[ServerUserName],
				[ServerPassword],
				[Flags],
				[PackageOwnerPassword],
				[PackageOperatorPassword],
				[PackageCategoryID],
				[pVarPersistStgOfHost],
				[bReusePasswords])

Part Description
object Expression	that	evaluates	to	a	Package2

object.
NewName A	string	specifying	the	new	name	for	the

package.
ServerName A	string	specifying	the	name	of	the	server	to

which	to	connect.
ServerUserName A	string	specifying	the	logon	name	used	to

access	the	server	specified	by	ServerName.
ServerPassword A	string	specifying	the	password	used	to	access

the	server	specified	by	ServerName.
Flags A	value	from	the	DTSSQLServerStorageFlags

constants	that	specifies	the	type	of	user
authentication	used	to	access	the	server
specified	by	ServerName.

PackageOwnerPassword A	string	specifying	the	package	owner
password	if	the	package	is	encrypted.

PackageOperatorPasswordA	string	specifying	the	package	user	password
if	the	package	is	encrypted.

PackageCategoryID A	string	specifying	the	package	category
(reserved.

pVarPersistStgOfHost Screen	layout	information	associated	with	a
package	(for	internal	use).

bReusePasswords A	Boolean	specifying	whether	to	reuse	package
passwords.

Remarks
New	package	ID	and	version	ID	values	are	generated	when	the	package	is	saved,
and	the	new	name	is	assigned.

The	default	for	bReusePasswords	is	True.

Prototype	(C/C++)
HRESULT	SaveToSQLServerAs(
				BSTR	NewName,
				BSTR	ServerName,
				BSTR	ServerUserName,
				BSTR	ServerPassword,
				DTSSQLServerStorageFlags	Flags,
				BSTR	PackageOwnerPassword,
				BSTR	PackageOperatorPassword,
				BSTR	PackageCategoryID,
				VARIANT	pVarPersistStgOfHost),
				VARIANT_BOOL	bReusePasswords);

See	Also

DTSSQLServerStorageFlags

Managing	DTS	Package	Programs

SaveAs	Method

SaveToRepositoryAs	Method

SaveToSQLServer	Method

SaveToStorageFileAs	Method

DTS	Programming

SaveToStorageFile	Method
The	SaveToStorageFile	method	saves	the	information	being	held	in	the
Package2	object	and	its	subordinate	objects	and	collections	to	a	structured
storage	file.

Applies	To

Package	Object Package2	Object

Syntax
object.SaveToStorageFile(
				[UNCFile],
				[OwnerPassword],
				[OperatorPassword],
				[pVarPersistStgOfHost],
				[bReusePasswords])

Part Description
object Expression	that	evaluates	to	an	object	in	the	Applies

To	list
UNCFile File	specification	to	which	package	is	to	be	written
OwnerPassword A	string	specifying	the	package	owner	password	if

the	package	is	encrypted
OperatorPassword A	string	specifying	the	package	user	password	if	the

package	is	encrypted
pVarPersistStgOfHost Screen	layout	information	associated	with	a	package

(for	internal	use)
bReusePasswords A	Boolean	specifying	whether	to	reuse	package

passwords

Remarks

A	new	version	ID	value	is	always	generated	when	the	package	is	saved.

The	default	for	bReusePasswords	is	True.

Prototype	(C/C++)
HRESULT	SaveToStorageFile(
				BSTR	UNCFile,
				BSTR	OwnerPassword
				BSTR	OperatorPassword
				VARIANT	*pVarPersistStgOfHost
				VARIANT_BOOL	bReusePasswords);

See	Also

Managing	DTS	Package	Programs

SaveAs	Method

SaveToRepository	Method

SaveToSQLServer	Method

SaveToStorageFileAs	Method

DTS	Programming

SaveToStorageFileAs	Method
The	SaveToStorageFileAs	method	saves	the	information	being	held	in	the
Package2	object	and	its	subordinate	objects	and	collections	to	a	structured
storage	file.	The	new	name	and	a	new	package	ID	are	assigned.

Applies	To

Package2	Object

Syntax
object.SaveToStorageFileAs(
				NewName,	
				[UNCFile],
				[OwnerPassword],
				[OperatorPassword],
				[pVarPersistStgOfHost],
				[bReusePasswords])

Part Description
object Expression	that	evaluates	to	a	Package2	object
NewName A	string	specifying	the	new	name	for	the	package
UNCFile File	specification	to	which	package	is	to	be	written
OwnerPassword A	string	specifying	the	package	owner	password	if

the	package	is	encrypted
OperatorPassword A	string	specifying	the	package	user	password	if	the

package	is	encrypted
pVarPersistStgOfHost Screen	layout	information	associated	with	a	package

(for	internal	use)
bReusePasswords A	Boolean	specifying	whether	to	reuse	package

passwords

Remarks
New	package	ID	and	version	ID	values	are	generated	when	the	package	is	saved,
and	the	new	name	is	assigned.

The	default	for	bReusePasswords	is	True.

Prototype	(C/C++)
HRESULT	SaveToStorageFileAs(
				BSTR	UNCFile,
				BSTR	OwnerPassword
				BSTR	OperatorPassword
				VARIANT	*pVarPersistStgOfHost
				VARIANT_BOOL	bReusePasswords);

See	Also

Managing	DTS	Package	Programs

SaveAs	Method

SaveToRepositoryAs	Method

SaveToSQLServerAs	Method

SaveToStorageFile	Method

DTS	Programming

SetDayLongName	Method
The	SetDayLongName	method	sets	the	long	(full)	name	for	the	specified	day	of
the	week.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.SetDayLongName(daynumber)	=	string

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
daynumber Number	of	the	day	of	the	week
string Long	(full)	name	of	the	specified	day	of	week

Remarks
The	valid	day	numbers	are	from	1	through	7.

Prototype	(C/C++)
HRESULT	SetDayLongName(
long	DayNumber,	
BSTR	NewValue);

See	Also

Adding	DTS	Transformations

Day?LongName	Property

GetDayLongName	Method

SetDayShortName	Method

DTS	Programming

SetDayShortName	Method
The	SetDayShortName	method	sets	the	short	name	(3-character	abbreviation)
for	the	specified	day	of	the	week.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.SetDayShortName(daynumber)	=	string

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
daynumber Number	of	the	day	of	the	week
string Short	name	(3-character	abbreviation)	of	the	specified	day	of

week

Remarks
The	valid	day	numbers	are	from	1	through	7.

Prototype	(C/C++)
HRESULT	SetDayShortName(
long	DayNumber,	
BSTR	NewValue);

See	Also

Adding	DTS	Transformations

Day?ShortName	Property

GetDayShortName	Method

SetDayLongName	Method

DTS	Programming

SetMonthLongName	Method
The	SetMonthLongName	method	sets	the	long	(full)	name	for	the	specified
month.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.SetMonthLongName(monthnumber)	=	string

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
monthnumber Number	of	the	month
string Long	(full)	name	of	the	specified	month

Remarks
The	valid	month	numbers	are	from	1	through	12.

Prototype	(C/C++)
HRESULT	SetMonthLongName(
long	MonthNumber,	
BSTR	NewValue);

See	Also

Adding	DTS	Transformations

GetMonthLongName	Method

Month??LongName	Property

SetMonthShortName	Method

DTS	Programming

SetMonthShortName	Method
The	SetMonthShortName	method	sets	the	short	name	(3-character
abbreviation)	for	the	specified	month.

Applies	To

DataPumpTransformDateTimeString	Object

Syntax
object.SetMonthShortName(monthnumber)	=	string

Part Description
object Expression	that	evaluates	to	a

DataPumpTransformDateTimeString	object
monthnumber Number	of	the	month
string Short	name	(3-character	abbreviation)	of	the	specified	month

Remarks
The	valid	month	numbers	are	from	1	through	12.

Prototype	(C/C++)
HRESULT	SetMonthShortName(
long	MonthNumber,	
BSTR	NewValue);

See	Also

Adding	DTS	Transformations

GetMonthShortName	Method

Month??ShortName	Property

SetMonthLongName	Method

DTS	Programming

ShowAddressBook	Method
The	ShowAddressBook	method	displays	the	address	book	user	interface.

Applies	To

SendMailTask	Object

Syntax
[Address	=]	object.ShowAddressBook(hwndParent)

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object
hwndParent Window	handle	of	the	parent	window
Address String	to	receive	the	address	selected	by	the	user

Remarks
hwndParent	is	the	handle	of	the	window	on	which	the	address	book	is	to	be
displayed.

Prototype	(C/C++)
HRESULT	ShowAddressBook(
				long	hwndParent,
				BSTR	*Address);

DTS	Programming

Uninitialize	Method
The	Uninitialize	method	clears	all	state	information	and	releases	all	related
objects,	allowing	the	Package	object	to	be	reused.

Applies	To

Package	Object Package2	Object

Syntax
Package.Uninitialize()

Part Description
Package Expression	that	evaluates	to	an	object	in	the	Applies	To	list

Remarks
The	Uninitialize	method	clears	the	execution-related	state	of	the	Package2
object,	including	any	event	handlers	registered	or	any	active	sessions	made	by	a
Connection	object.	You	must	call	Uninitialize	before	the	Package2	object	is
final-released	because	event	handlers	may	contain	a	circular	reference.	All	child
objects	of	the	Package2	object	must	be	released	before	you	call	Uninitialize.

In	Microsoft®	Visual	Basic®,	release	object	references	by	setting	the
corresponding	object	variables	to	Nothing	or	allow	the	variables	to	go	out	of
scope.	If	you	have	multiple	Package	or	Package2	object	variables,	release	all
but	one	of	them	and	execute	the	Uninitialize	method	against	the	one	remaining
reference.

This	method	does	not	affect	the	presence	of	any	structural	elements	of	the
package,	such	as	removing	items	that	have	been	added	to	collections.	To
implement	a	new	Package	object,	simply	release	all	references	to	a	prior	one	or
its	children,	and	then	create	a	new	one.

Prototype	(C/C++)
HRESULT	UnInitialize();

See	Also

Managing	DTS	Package	Programs

DTS	Programming

UninitializeMAPI	Method
The	UninitializeMAPI	method	uninitializes	the	MAPI	provider.

Applies	To

SendMailTask	Object

Syntax
object.UninitializeMAPI

Part Description
object Expression	that	evaluates	to	a	SendMailTask	object

Prototype	(C/C++)
HRESULT	UnInitializeMAPI();

See	Also

InitializeMAPI	Method

DTS	Programming

Unlock	Method
The	Unlock	method	unlocks	a	GlobalVariable2	object	that	had	been	previously
locked	with	the	Lock	method.

Applies	To

GlobalVariable2	Object

Syntax
globalvar.Unlock

Part Description
globalvar Expression	that	evaluates	to	a	GlobalVariable2	object

Remarks
If	the	global	variable	is	not	already	locked,	the	Unlock	method	does	nothing,
and	no	error	occurs.

If	the	global	variable	was	locked	from	a	different	thread	than	that	which	issued
the	Unlock	method,	an	error	occurs	and	the	global	variable	is	not	unlocked.

Prototype	(C/C++)
HRESULT	Unlock(void);

See	Also

Adding	DTS	Lookups	and	Global	Variables

Lock	Method

DTS	Programming

Write	Method
The	Write	method	updates	a	value	in	a	PropertyBag	collection.

Applies	To

PropertyBag	Object

Syntax
object.Write	bstrPropertyName,	Value

Part Description
object Expression	that	evaluates	to	a	PropertyBag	object
bstrPropertyName String	identifying	an	exposed	property	by	name
Value Value	of	the	property	to	be	saved

Remarks
Generic	BLOBs	or	objects	are	not	supported	as	property	values.

Prototype	(C/C++)
HRESULT	Write(
				BSTR	bstrPropertyName,	
				VARIANT	Value);

See	Also

PersistPropertyBag	Object

Read	Method

DTS	Programming

WriteStringToLog	Method
The	WriteStringToLog	adds	a	string	to	the	log	record	that	is	being	written	for
the	step.

Applies	To

PackageLog	Object

Syntax
object.WriteStringToLog	LogString

Part Description
object Expression	that	evaluates	to	a	PackageLog	object	reference
LogString String	containing	the	log	message	that	is	to	be	appended	to	the

log	message	for	the	step

Remarks
A	log	string	is	accumulated	for	each	step.	WriteStringToLog	adds	a	new	string
to	the	log	message,	separated	by	a	Newline	character	from	the	previously
accumulated	message.	WriteStringToLog	can	be	called	any	number	of	times
during	task	execution.

The	WriteStringToLog	method	is	available	to	custom	tasks,	where	the
reference	to	the	PackageLog	object	is	a	parameter	of	the	task	Execute	method,
which	in	a	custom	task,	you	must	implement.	It	is	also	available	in	the	Data
Transformation	Services	(DTS)	Microsoft®	ActiveX®	Script	task,	through	the
DTSPackageLog	object.

Prototype	(C/C++)
HRESULT	WriteStringToLog(BSTR	LogString);

See	Also

Retrieving	DTS	System,	Package,	and	Log	Data

WriteTaskRecord	Method

DTS	Programming

WriteTaskRecord	Method
The	WriteTaskRecord	adds	a	record	to	the	server	log	table	for	the	current	task
execution,	and	formats	it	for	WriteStringToLog	to	write	it	to	the	log	file.

Applies	To

PackageLog	Object

Syntax
object.WriteTaskRecord	ErrorCode,	Description

Part Description
object Expression	that	evaluates	to	a	PackageLog	object	reference
ErrorCode A	long	integer	that	can	be	an	error	code	or	other	numeric

information	to	be	logged
DescriptionA	string	that	can	be	an	error	description	or	other	textual

information	to	be	logged

Remarks
The	WriteTaskRecord	method	is	available	to	custom	tasks,	where	the	reference
to	the	PackageLog	object	is	a	parameter	of	the	task	Execute	method,	which	in	a
custom	task,	you	must	implement.	It	is	also	available	in	the	Data	Transformation
Services	(DTS)	Microsoft®	ActiveX®	Script	task,	through	the
DTSPackageLog	object.

Prototype	(C/C++)
HRESULT	WriteTaskRecord(
				long	ErrorCode,	
				BSTR	Description);

See	Also

Retrieving	DTS	System,	Package,	and	Log	Data

WriteStringToLog	Method

DTS	Programming

Events
This	section	describes	package	events,	which	return	information	about	the	status
of	a	Data	Transformation	Services	(DTS)	package	execution.

DTS	Programming

OnError	Event
The	OnError	event	indicates	and	provides	information	about	an	error.	It	allows
the	event	handler	to	cancel	task	execution.

Applies	To

Package	Object Package2	Object

Syntax	(Visual	Basic)
Sub	objPackage_OnError(ByVal	EventSource	As	String,	ByVal	ErrorCode	As
Long,	_
				ByVal	Source	As	String,	ByVal	Description	As	String,	ByVal	HelpFile	As
String,	_
				ByVal	HelpContext	As	Long,	ByVal	IDOfInterfaceWithError	As	String,	_
				ByVal	pbCancel	As	Boolean)

Part Description
objPackage Object	variable	of	a	type	specified	in	the	Applies

To	list.
EventSource Source	of	event	being	executed	(for	example,	a

step	name).
ErrorCode Error	code	of	the	failure.
Source Source	of	error	message	(for	example,	an	OLE	DB

provider	description).
Description Description	of	the	error.
HelpFile Help	file	name.
HelpContext Help	context	ID.
IDOfInterfaceWithError ID	of	the	user	interface	returning	the	error,	a

globally	unique	identifier	(GUID).
pbCancel Boolean	that	specifies	whether	to	cancel	task

execution.

Remarks
The	OnError	event	occurs	during	the	Package2	object	Execute	method.	An
error	can	be	raised	by	a	Data	Transformation	Services	(DTS)	component	or	by	a
custom	task.	When	an	error	occurs	in	execution,	the	OnError	event	is	raised
before	return	from	the	Execute	method.

Use	the	pbCancel	argument	to	direct	package	execution	on	error.	When	the
OnError	handler	sets	Cancel	to	TRUE,	execution	of	the	package	is	terminated
on	return	from	the	error	handler.	When	Cancel	is	FALSE,	DTS	package
execution	continues.

The	OnError	event	is	raised	on	each	error	occurring	in	a	task	or	step.	A	step
does	not	necessarily	terminate	after	an	error.	For	example,	the
MaximumErrorCount	property	of	the	DataPumpTask2	object	specifies	the
number	of	errors	that	can	occur	before	the	task	is	terminated.

For	task	types	defined	by	DTS,	the	EventSource	argument	specifies	a	step	name.
Custom	tasks	choose	what	to	return	for	EventSource.	When	an	error	is	not
caused	by	or	associated	with	a	step,	the	EventSource	argument	is	empty.

If	you	need	to	raise	this	event	from	a	custom	task	implemented	in	Microsoft®
Visual	Basic®,	use	this	syntax:

pPackageEvents.OnError	EventSource,	ErrorCode,	Source,	Description,	_
				HelpFile,	HelpContext,	IDOfInterfaceWithError,	pbCancel

pPackageEvents	is	a	reference	to	the	package	events	object,	passed	in	as	a
parameter	of	the	custom	task	Execute	method	that	you	have	implemented.	When
the	event	returns,	terminate	task	execution	if	pbCancel	is	TRUE.

Prototype	(C/C++)
HRESULT	OnError(
				BSTR	EventSource,
				long	ErrorCode,
				BSTR	Source,
				BSTR	Description,
				BSTR	HelpFile,
				long	HelpContext,
				BSTR	IDOfInterfaceWithError,

				BOOL	*pbCancel);

See	Also

Execute	Method

Handling	DTS	Events	and	Errors

DTS	Programming

OnFinish	Event
The	OnFinish	event	indicates	completion	of	a	Data	Transformation	Services
(DTS)	task	or	step.

Applies	To

Package	Object Package2	Object

Syntax	(Visual	Basic)
Sub	objPackage_OnFinish(ByVal	EventSource	As	String)

Part Description
objPackage Object	variable	of	a	type	specified	in	the	Applies	To

list.
EventSource Source	of	event	being	executed	(for	example,	a	step

name).

Remarks
For	task	types	defined	by	DTS,	the	EventSource	argument	specifies	a	step	name.
Custom	tasks	choose	what	to	return	for	EventSource.	When	an	event	is	not
caused	by	or	associated	with	a	step,	the	EventSource	argument	is	empty.

If	you	need	to	raise	this	event	from	a	custom	task	implemented	in	Microsoft®
Visual	Basic®,	use	this	syntax:

pPackageEvents.OnFinish	EventSource

pPackageEvents	is	a	reference	to	the	package	events	object,	passed	in	as	a
parameter	of	the	custom	task	Execute	method	that	you	have	implemented.

Prototype	(C/C++)
HRESULT	OnFinish(BSTR	EventSource);

See	Also

Execute	Method

Handling	DTS	Events	and	Errors

DTS	Programming

OnProgress	Event
The	OnProgress	event	provides	information	about	the	progress	of	a	Data
Transformation	Services	(DTS)	task.

Applies	To

Package	Object Package2	Object

Syntax	(Visual	Basic)
Sub	objPackage_OnProgress(ByVal	EventSource	As	String,	_
				ByVal	ProgressDescription	As	String,	ByVal	PercentComplete	As	Long,	_
				ByVal	ProgressCountLow	As	Long,	ByVal	ProgressCountHigh	As	Long)

Part Description
objPackage Object	variable	of	a	type	specified	in	the	Applies	To

list.
EventSource Source	of	event	being	executed	(for	example,	a	step

name).
ProgressDescriptionDescription	of	task	progress.
PercentComplete Percent	of	task	completed.
ProgressCountLow Low	32	bits	of	units	(for	example,	rows)	completed.
ProgressCountHigh High	32	bits	of	units	(for	example,	rows)	completed.

Remarks
If	the	percent	completed	cannot	be	reported,	0	is	returned.

For	task	types	defined	by	DTS,	the	EventSource	argument	specifies	a	step	name.
Custom	tasks	choose	what	to	return	for	EventSource.	When	an	event	is	not
caused	by	or	associated	with	a	step,	the	EventSource	argument	is	empty.

If	you	need	to	raise	this	event	from	a	custom	task	implemented	in	Microsoft®
Visual	Basic®,	use	this	syntax:

pPackageEvents.OnProgress	EventSource,	ProgressDescription,	_
				PercentComplete,	ProgressCountLow,	ProgressCountHigh

pPackageEvents	is	a	reference	to	the	package	events	object,	passed	in	as	a
parameter	of	the	custom	task	Execute	method	that	you	have	implemented.

Prototype	(C/C++)
HRESULT	OnProgress(
				BSTR	EventSource,
				BSTR	ProgressDescription,
				long	PercentComplete,
				long	ProgressCountLow,
				long	ProgressCountHigh);

See	Also

Execute	Method

Handling	DTS	Events	and	Errors

DTS	Programming

OnQueryCancel	Event
The	OnQueryCancel	event	terminates	tasks.	A	Data	Transformation	Services
(DTS)	package	raises	this	event	only	when	it	is	safe	to	stop	execution	of	the	task.
The	event	handler	determines	whether	task	execution	should	be	terminated.

Applies	To

Package	Object Package2	Object

Syntax	(Visual	Basic)
Sub	objPackage_OnQueryCancel(ByVal	EventSource	As	String,	_
				ByVal	pbCancel	As	Boolean)

Part Description
objPackage Object	variable	of	a	type	specified	in	the	Applies	To

list.
EventSource Source	of	event	being	executed	(for	example,	a	step

name).
pbCancel Boolean	that	specifies	whether	to	cancel	task	execution.

Remarks
If	pbCancel	is	set	to	TRUE	by	the	event	handler,	DTS	stops	task	execution	and
fails	with	error.	This	event	may	not	occur	if	execution	of	the	step	or	task
completes	quickly.

For	task	types	defined	by	DTS,	the	EventSource	argument	specifies	a	step	name.
Custom	tasks	choose	what	to	return	for	EventSource.	When	an	event	is	not
caused	by	or	associated	with	a	step,	the	EventSource	argument	is	empty.

If	you	need	to	raise	this	event	from	a	custom	task	implemented	in	Microsoft®
Visual	Basic®,	use	this	syntax:

pPackageEvents.OnQueryCancel	EventSource,	pbCancel

pPackageEvents	is	a	reference	to	the	package	events	object,	passed	in	as	a
parameter	of	the	custom	task	Execute	method	that	you	have	implemented.	When
the	event	returns,	terminate	task	execution	if	pbCancel	is	TRUE.

Prototype	(C/C++)
HRESULT	OnQueryCancel(BSTR	EventSource,
BOOL	*pbCancel);

See	Also

Execute	Method

Handling	DTS	Events	and	Errors

KILL

JavaScript:hhobj_1.Click()

DTS	Programming

OnStart	Event
The	OnStart	event	indicates	the	start	of	a	Data	Transformation	Services	(DTS)
task	or	step.

Applies	To

Package	Object Package2	Object

Syntax	(Visual	Basic)
Sub	objPackage_OnStart(ByVal	EventSource	As	String)

Part Description
objPackage Object	variable	of	a	type	specified	in	the	Applies	To

list.
EventSource Source	of	event	being	executed	(for	example,	a	step

name).

Remarks
For	task	types	defined	by	DTS,	the	EventSource	argument	specifies	a	step	name.
Custom	tasks	choose	what	to	return	for	EventSource.	When	an	event	is	not
caused	by	or	associated	with	a	step,	the	EventSource	argument	is	empty.

If	you	need	to	raise	this	event	from	a	custom	task	implemented	in	Microsoft®
Visual	Basic®,	use	this	syntax:

pPackageEvents.OnStart	EventSource

pPackageEvents	is	a	reference	to	the	package	events	object,	passed	in	as	a
parameter	of	the	custom	task	Execute	method	that	you	have	implemented.

Prototype	(C/C++)
HRESULT	OnStart(BSTR	EventSource);

See	Also

Execute	Method

Handling	DTS	Events	and	Errors

DTS	Programming

Constants
This	section	describes	a	Data	Transformation	Services	(DTS)	package	constants,
which	are	enumerated	data	types.	These	constants	are	used	as	parameters	and
return	values	in	DTS	package	properties	and	methods.

DTS	Programming

DTSBulkInsert_DataFileType
The	DTSBulkInsert_DataFileType	constants	specify	the	type	of	data	file	used
in	Bulk	Insert	operations.

Constant Value Description
DTSBulkInsert_DataFileType_Char 0 Char	data	file	type
DTSBulkInsert_DataFileType_Native 1 Native	data	file	type
DTSBulkInsert_DataFileType_WideChar 2 WideChar	data	file

type
DTSBulkInsert_DataFileType_WideNative 3 WideNative	data	file

type

See	Also

BulkInsertTask	Object

DataFileType	Property

DTS	Programming

DTSCustomTaskUIFlags
The	DTSCustomTaskUIFlags	constants	specify	flags	indicating	the	type	of	user
interface	supported	by	the	database	custom	task.

Constant Value Description
DTSCustomTaskUIFlags_Default 0 Default
DTSCustomTaskUIFlags_DoesCustomToolTip 1 Custom	task

supports	custom
tooltips

See	Also

GetUIInfo	Method

CustomTaskUI	Object

DTS	Programming

DTSDataPumpError
The	DTSDataPumpError	constants	specify	error	ranges	for	Data
Transformation	Services	(DTS)	data	pump	execution.

Constant Value Description
DTSDataPump_E_AutoBufferInterfaceNotSupported 8273

(x2051)
A	transform	definition	required	buffering	for
the	specified	source	column,	but	the	requested
interface	is	not	ISequentialStream
ILockBytes.

DTSDataPump_E_AxScript_AbortPumpReturned 8502
(x2136)

A	transformation	phase	returned	by
DTSTransformStat_AbortPump.

DTSDataPump_E_AxScript_BadTransformFunction 8259
(x2043)

Microsoft®	ActiveX®	scripting	transform
function	was	not	found.

DTSDataPump_E_AxScript_CantChangeSrcCols 8260
(x2044)

ActiveX	scripting	transform	does	not	allow	a
script	to	change	source	columns.

DTSDataPump_E_AxScript_CantInitializeEngine 8262
(x2046)

ActiveX	scripting	transform	was	not	able	to
initialize	the	script	execution	engine.

DTSDataPump_E_AxScript_CantResetAfterInitialize 8261
(x2045)

The	scripting	engine	properties	cannot	be
changed	after	the	scripting	engine	has	been
instantiated.

DTSDataPump_E_
AxScript_InvalidPhaseColumnAccess

8500
(x2134)

The	script	attempted	to	write	source	columns
or	the	column	access	code	is	undefined.

DTSDataPump_E_AxScript_NoPhaseFunc 8503
(x2137)

A	script	function	for	a	phase	the
transformation	is	to	support	was	not	found.

DTSDataPump_E_AxScript_ParseError 8258
(x2042)

ActiveX	script	parsing	fails	when	called	by
ValidateSchema	method.

DTSDataPump_E_AxScript_RequiredParams 8256
(x2040)

ActiveX	scripting	transform	requires	script
Text,	Language,	and	
parameters	to	be	specified	in
IDTSDataPumpTransformScriptProperties

DTSDataPump_E_AxScript_RunTimeError 8263
(x2047)

ActiveX	scripting	transform	encountered	a
run-time	error	during	the	execution	of	the
script.

DTSDataPump_E_
AxScript_ValidateSchemaError

8257
(x2041)

A	transformation	relied	on	a	bad	data	type.
User-defined	data	types,	arrays,	and	vectors	of
types	are	not	supported.

DTSDataPump_E_BadTransformFlag 8210
(x2012)

Invalid	or	incompatible	
value(s).

DTSDataPump_E_BadTransformPhase 8496
(x2130)

An	invalid	transformation	phase	was	specified,
via	the	TransformPhases

DTSDataPump_E_
BadTransformStatusReturned

8211
(x2013)

Transform	server	returned	an	invalid
DTSTransformStatus
script	did	not	return	an	integral	type.	The	data
pump	task	will	be	terminated.

DTSDataPump_E_CannotRebindColumn 8213
(x2015)

Binding	information	for	one	or	more	columns
has	been	specified	in	a	prior	transform	and
cannot	be	respecified.

DTSDataPump_E_
CannotTransformChapterColumns

8219
(x201B)

A	column	in	a	hierarchical	rowset	that	contains
chapters	(child	rowsets)	cannot	itself	be
transformed.

DTSDataPump_E_ColCountButNoCols 8198
(x2006)

A	nonzero	column	count	was	specified	with	no
column	specification	pointer.

DTSDataPump_E_ColumnNameNotFound 8200
(x2008)

Column	name	not	found.

DTSDataPump_E_ColumnOutOfRange 8201
(x2009)

Column	ordinal	was	out	of	range.

DTSDataPump_E_Convert_BadBindInfo 8231
(x2027)

Incorrect	binding	information	on	column	pair.

DTSDataPump_E_
Convert_BlobStorageNoInterface

8238
(x202E)

The	required	source	BLOB	storage	object
interface	does	not	exist.

DTSDataPump_E_Convert_ConversionFailed 8236
(x202C)

General	conversion	failure	on	column	pair.

DTSDataPump_E_Convert_ConversionInvalid 8235
(x202B)

Conversion	invalid	for	data	types	on	column
pair.

DTSDataPump_E_Convert_DestNotNull 8230
(x2026)

Destination	does	not	allow	NULL	on	column
pair.

DTSDataPump_E_Convert_DestOverflow 8232
(x2028)

Destination	overflowed	on	column	pair.

DTSDataPump_E_
Convert_ProviderOwnedTypeMismatch

8237
(x202D)

DBMEMOWNER_PROVIDEROWNED	type
mismatch	for	an	allocatable	type	on	column
pair.

DTSDataPump_E_Convert_SourceInvalidLength 8234
(x202A)

Source	data	length	invalid	for	its	type	or	for
conversion	to	destination	type	on	column	pair.

DTSDataPump_E_Convert_SourceInvalidVariant 8233
(x2029)

Source	variant	invalid	on	column	pair.

DTSDataPump_E_
Copy_NeedSrcAndDestColumns

8228
(x2024)

A	DTSTransformCopy
specify	no	columns	or	the	same	number	of
source	and	destination	columns.

DTSDataPump_E_Copy_ValidateSchemaError 8229
(x2025)

ValidateSchema	method	failed.	See	extended
error	information	appended	to	error
description.	For	more	information,	see
OnError	Event	and	
Method.

DTSDataPump_E_DataPumpNotReentrant 8207
(x200F)

Data	pump	implements	a	single	execution
operation	and	is	therefore	not	reentrant.

DTSDataPump_E_
DDQ_BadTransformStatusContext

8293
(x2065)

Transform	status	returned	a
DataDrivenQueryTask
DataDrivenQueryTask

DTSDataPump_E_DDQ_DestColumnNeedsLength 8295
(x2067)

One	or	more	destination	column	definitions	is
variable-length	and	requires	a	maximum
column	size	to	be	specified.

DTSDataPump_E_
DDQ_DestColumnNotTransformed

8294
(x2066)

One	or	more	destination	parameter	columns
had	no	transform	specified.

DTSDataPump_E_
DDQ_DestDoesNotSupportSQL

8296
(x2068)

The	destination	OLE	DB	provider	does	not
implement	the	IDBCreateCommand	interface,
which	is	needed	to	support	SQL.

DTSDataPump_E_
DDQ_InformationNotSet

8293
(x2065)

Attempted	to	get	data	driven	query	destination
information	when	data	pump	instance	is	not	a
DataDrivenQueryTask

DTSDataPump_E_DDQ_NeedDeleteQuery 8291
(x2063)

Transform	status	returned	
but	no	DeleteQuery

DTSDataPump_E_DDQ_NeedInsertQuery 8289
(x2061)

Transform	status	returned	
but	no	InsertQuery

DTSDataPump_E_DDQ_NeedTransformStatus 8288
(x2060)

No	query	specification	returned	by	transform
status.

DTSDataPump_E_DDQ_NeedUpdateQuery 8290
(x2062)

Transform	status	returned	
value,	but	no	UpdateQuery
specified.

DTSDataPump_E_DDQ_NeedUserQuery 8292
(x2064)

Transform	status	returned	
but	no	UserQuery

DTSDataPump_E_
DDQ_TransformStatusForced

8297
(x2069)

Transformation	improperly	tried	to	set	query
type.

DTSDataPump_E_DestColumnAlreadySpecified 8202
(x200A)

One	or	more	destination	columns	have	been
specified	already	in	this	or	a	prior
transformation.

DTSDataPump_E_DestColumnReadOnly 8208
(x2010)

One	or	more	destination	columns	are	read-
only;	you	must	define	a	mapping	which	does
not	include	them.

DTSDataPump_E_DestinationBlobBinding 8224
(x2020)

In-memory	destination	BLOB
(DBCOLUMNFLAGS_ISLONG)	columns
must	specify	a	nonzero	

DTSDataPump_E_DestRowsetNotSupplied 8195
(x2003)

Destination	columns	or	other	information
specified,	but	no	destination	rowset	was
supplied.

DTSDataPump_E_IDataConvertRequired 8203
(x200B)

Transform	requires	an	
to	be	available	on	the	destination	rowset	or
from	an	OLE	DB	installation	(Msdadc.dll).

DTSDataPump_E_InvalidDataPumpOption 8499
(x2133)

DataPumpOptions
invalid	value.

DTSDataPump_E_InvalidDTSBindMode 8215
(x2017)

Invalid	or	incompatible	
value(s),	or	DTSBindMode
incompatible	with	column	type.

DTSDataPump_E_InvalidFetchBufferSize 8214
(x2016)

FetchBufferSize	property	value	must	be
nonzero.

DTSDataPump_E_InvalidSpecifyBlobDefaults 8273
(x2051)

Invalid	DTSSpecifyBlobDefaults	enumeration
value(s).

DTSDataPump_E_InvalidStatusForPhase 8497
(x2131)

The	transformation	phase	returned	a	status
value	that	is	invalid	for	that	phase.

DTSDataPump_E_
LastRowCantBeLessThanFirst

8275
(x2053)

The	LastRow	property	cannot	be	less	than	the
FirstRow	property.

DTSDataPump_E_LineageVariableNotFound 8274
(x2052)

A	global	variable	or	lineage	variable	was	not
found.

DTSDataPump_E_LookupDupName 8218
(x201A)

A	lookup	name	duplicates	one	that	already
exists.

DTSDataPump_E_MismatchColOrdAndName 8199
(x2007)

A	column	ordinal	referenced	the	wrong
column	name.	Ordinals	are	used	only	to
distinguish	between	multiple	columns	with	the
same	name.

DTSDataPump_E_
MustSpecifyDestOrTransform

8209
(x2011)

A	destination	or	one	or	more	transformations
must	be	specified.

DTSDataPump_E_NonBlobStorageBind 8217
(x2019)

Non-BLOB	(DBCOLUMNFLAGS_ISLONG)
columns	cannot	be	bound	to	storage	objects.

DTSDataPump_E_NotImplemented 8192
(x2000)

Method	or	property	not	yet	implemented.

DTSDataPump_E_NotReentrant 8205
(x200D)

Data	pump	implements	a	single	execution
operation	and	is	therefore	not	reentrant.

DTSDataPump_E_NullVariantIUnknown 8206
(x200C)

Passed	variant	is	of	type	
contains	a	NULL	pointer.

DTSDataPump_E_RowFailuresExceedLimit 8298
(x206A)

The	number	of	error	rows	exceeded	the
MaximumErrorCount

DTSDataPump_E_RowsetChangeMustInsert 8206
(x200E)

Destination	IRowsetChange
InsertRow	(DBPROPVAL_UP_INSERT).

DTSDataPump_E_RowsetsAlreadySet 8193
(x2001)

Can	be	set	only	before	
DataDrivenQueryTask	

DTSDataPump_E_RowsetsNotSupplied 8196
(x2004)

NonNULL	source	rowset	and	an	optional
destination	rowset	must	be	specified.

DTSDataPump_E_SourceBlobBinding 8216
(x2018)

In-Memory	Source	BLOB
(DBCOLUMNFLAGS_ISLONG)	columns
cannot	be	bound	with	DTSBindMode_Byref,
and	must	specify	a	nonzero
cbInMemoryBlobSize

DTSDataPump_E_SourceColumnsRequired 8197
(x2005)

Source	columns	are	required	for	nondefault
transformations.

DTSDataPump_E_TransformDateTimeString_
ErrorParsingInputData

8342
(x2096)

Error	parsing	the	input	datetime	string.

DTSDataPump_E_TransformDateTimeString_
ErrorParsingInputFormat

8340
(x2094)

Error	parsing	the	value	of	the	
property.

DTSDataPump_E_TransformDateTimeString_
ErrorParsingOutputFormat

8341
(x2095)

Error	parsing	the	value	of	the	
property.

DTSDataPump_E_TransformDateTimeString_
IndexOutOfRange

8337
(x2091)

The	index	used	to	access	the	array	of	day
names	or	month	names	is	out	of	range.

DTSDataPump_E_TransformDateTimeString_
InvalidFormatString

8343
(x2097)

A	string	did	not	have	a	valid	datetime	format.

DTSDataPump_E_TransformDateTimeString_
InvalidNameOrFormat

8338
(x2092)

A	required	property	or	internal	name	was	set
to	an	empty	string.

DTSDataPump_E_TransformDateTimeString_
InvalidY2KCutoff

8339
(x2093)

The	ShortYear2000Cutoff
a	value	outside	of	0...99.

DTSDataPump_E_TransformDateTimeString_
NeedSrcAndDestColumns

8336
(x2090)

Something	other	than	exactly	one	source
column	and	exactly	one	destination	column
was	specified.

DTSDataPump_E_TransformReadFile_
FileNotFound

8480
(x2120)

The	file	from	which	column	data	was	to	be
read	could	not	be	opened.

DTSDataPump_E_TransformReadFile_
InvalidDestSchema

8482
(x2122)

The	destination	column	had	type	other	than
DBTYPE_STR,	DBTYPE_WSTR	or
DBTYPE_BYTES.

DTSDataPump_E_TransformReadFile_
InvalidSourceSchema

8481
(x2121)

The	source	column	had	type	other	than
DBTYPE_STR,	DBTYPE_WSTR	or
DBTYPE_BSTR.

DTSDataPump_E_TransformReadFile_
NeedSrcAndDestColumns

8322
(x2082)

Something	other	than	exactly	one	source
column	and	exactly	one	destination	column
were	specified.

DTSDataPump_E_TransformsAlreadySet 8194
(x2002)

Reserved.

DTSDataPump_E_TransformServerException 8212
(x2014)

Transform	server	generated	an	exception.

DTSDataPump_E_TransformString_
ColumnCount

8321
(x2081)

A	Trim	String	or	Middle	of	String
transformation	specified	other	than	one	source
column.

DTSDataPump_E_TransformString_
DestStringTrunc

8324
(x2084)

Destination	truncation	occurred	in	a
Lowercase	String,	Uppercase	String,	Trim
String	or	Middle	of	String	transformation
when
DTSTransformFlag_AllowStringTruncation
was	not	set.

DTSDataPump_E_TransformString_
NeedSrcAndDestColumns

8320
(x2080)

The	number	of	source	columns	differs	from
the	number	of	destination	columns	in	a
Lowercase	String,	Uppercase	String,	Trim
String	or	Middle	of	String	transformation.

DTSDataPump_E_TransformString_
ValidateSchemaError

8323
(x2083)

The	conversion	from	source	to	destination
column	cannot	be	performed	without	error,
within	the	parameters	of	the	
property,	in	a	Lowercase	String,	Uppercase
String,	Trim	String	or	Middle	of	String
transformation.

DTSDataPump_E_TransformWriteFile_
FetchedNullFileName

8454
(x2106)

The	source	column	that	is	to	contain	the	file
specification	is	NULL	or	empty.

DTSDataPump_E_TransformWriteFile_
FileAlreadyExists

8449
(x2101)

The	file	that	is	to	be	written	already	exists,	and
ErrorIfFileExists

DTSDataPump_E_TransformWriteFile_
FileColumnNameNotFound

8450
(x2102)

The	column	named	by	the	
property	could	not	be	found.

DTSDataPump_E_TransformWriteFile_
InvalidDestSchema

8452
(x2104)

The	source	column	that	contains	the	file	data
has	type	other	than	DBTYPE_STR,
DBTYPE_WSTR	or	DBTYPE_BSTR.

DTSDataPump_E_TransformWriteFile_
InvalidFileColumnName

8453
(x2105)

The	FileColumnName
NULL	or	an	empty	string	or	was	not	set.

DTSDataPump_E_TransformWriteFile_
InvalidSourceSchema

8451
(x2103)

The	source	column	that	contains	the	file
specification	has	type	other	than
DBTYPE_STR,	DBTYPE_WSTR,
DBTYPE_BYTES	or	DBTYPE_BSTR.

DTSDataPump_E_TransformWriteFile_
NeedSrcAndDestColumns

8448
(x2100)

Something	other	than	exactly	two	source
columns	and	no	destination	columns	were
specified	for	a	Write	File	transformation.

DTSDataPump_E_UnsupportedPhase 8498
(x2132)

A	Copy,	Uppercase	String,	Lowercase	String,
Trim	String,	Middle	of	String,	Datetime

String,	Read	File	or	Write	File	transformation
had	a	phase	other	than	Transform	specified.

See	Also

Handling	DTS	Events	and	Errors

DTS	Programming

DTSDesignerSettings
The	DTSDesignerSettings	constants	specify	settings	that	control	whether
features	are	visible	or	hidden	for	Data	Transformation	Services	(DTS).

Constant Value Description
DTSDesigner_Default 0 Multiphase

transformation	features
are	not	shown	in	DTS
Designer.

DTSDesigner_ShowMultiPhaseTransforms 1 Multiphase
transformation	features
are	visible	in	DTS
Designer.

See	Also

DesignerSettings	Property

DTS	Programming

DTSExceptionFileOptions
The	DTSExceptionFileOptions	constants	specify	how	Data	Transformation
Services	(DTS)	DataPump	errors	and	exception	rows	are	to	be	written	to	files.

Constant Value Description
DTSExceptionFile_AbortOnRowLogFailure 8192

(x2000)
Terminate	the	data
pump	if	execution
logging	fails.

DTSExceptionFile_Ansi 256
(x0100)

File	type	is	ANSI
(uses	ANSI	code
page).

DTSExceptionFile_DestRowFile 8 Destination
exception	rows	are
written	to	the
destination
exception	file.

DTSExceptionFile_ErrorFile 2 Error	rows	are
written	to	the	error
file.

DTSExceptionFile_OEM 512
(x0200)

File	type	is	OEM
(uses	OEM	code
page).

DTSExceptionFile_Overwrite 4096
(x1000)

Data	is	overwritten,
rather	than
appended,	to	file.

DTSExceptionFile_SingleFile70 1 Errors,	source,	and
destination
exception	rows	are
all	written	to	a
single	ANSI	file.

DTSExceptionFile_SourceRowFile 4 Source	exception
rows	are	written	to
the	source	exception
file.

DTSExceptionFile_Unicode 1024
(x0400)

File	type	is	Unicode.

See	Also

ExceptionFileOptions	Property

DTS	Programming

DTSExecuteStatus
The	DTSExecuteStatus	constants	return	values	(int	or	long)	from	data	pump
execution.

Constant Value Description
DTSTransformExec_AbortPump 4100

(x1004)
Pump	terminated	due
to	transform	request	or
ErrorSink	return.

DTSTransformExec_Error 4096
(x1000)

Indicates	the	status
code	is	an	error.
Added	to	other	items
in	this	table.

DTSTransformExec_ErrorCountExceeded 4098
(x1002)

Pump	terminated
because	too	many
rows	had	errors.

DTSTransformExec_OK 0 All	rows	copied	(or
skipped)	without	error.

DTSTransformExec_OKErrors 4097
(x1001)

Pump	continued	to
completion,	but
encountered	errors.

See	Also

IDTSDataPumpErrorSink

DTS	Programming

DTSFastLoadOptions
The	DTSFastLoadOptions	constants	specify	FastLoad	options	for	the
DataPumpTask	FastLoadOptions	property.

Constant Value Description
DTSFastLoad_CheckConstraints 2 Check	constraints	(default).
DTSFastLoad_Default 2 Specifies	the	default,	same	as

check	constraints
DTSFastLoad_KeepNulls 1 Keep	NULLs.
DTSFastLoad_NoOptions 0 No	options.
DTSFastLoad_TableLock 4 Lock	table.

See	Also

DataPumpTask2	Object

FastLoadOptions	Property

DTS	Programming

DTSForceMode
The	DTSForceMode	constants	override	the	default	handling	of	associated
properties.

Constant Value Description
DTSForceMode_Always 1 Data	Transformation	Services

(DTS)	always	overrides	default
handling	of	property.

DTSForceMode_Default 0 DTS	can	choose	to	override
default	handling	of	property.

DTSForceMode_Never 2 DTS	never	overrides	default
handling	of	property.

See	Also

ForceSourceBlobsBuffered	Property

DTS	Programming

DTSFTPError
The	DTSFTPError	constants	specify	codes	used	to	report	errors	in
DTSFTPTask	object	execution.

Constant Value Description
DTSFTP_E_CancelExecution 1007

(x03EF)
A	cancel	execution
request	was	received
from	the
OnQueryCancel
event.

DTSFTP_E_CopyFileError 1011
(x03F3)

An	error	occurred
copying	one	of	the
specified	files.

DTSFTP_E_ExceedeMaximumStringSize 1001
(x03E9)

A	string	property	value
exceeded	the
maximum	allowed	size
(usually	256
characters).

DTSFTP_E_FTPExecutionError 1006
(x03EE)

A	reference	to	the
IDTSPackageEvents
interface	could	not	be
obtained.

DTSFTP_E_IncorrectOverwriteCBSelect 1003
(x03EB)

An	invalid	value	for
the	NonOverwritable
property	was	specified.

DTSFTP_E_IncorrectRetryTimes 1004
(x03EC)

An	invalid	value	for
the
NumRetriesOnSource
property	was	specified.

DTSFTP_E_InternetConnectionError 1008
(x03F0)

Connection	to	the
internet	using
Microsoft®	Internet
Explorer	as	agent
failed.

DTSFTP_E_InvalidFileNameProperty 1012
(x03F4)

An	error	occurred
parsing	the
SourceFilename
property.

DTSFTP_E_InvalidSourceLocation 1005
(x03ED0

An	invalid	value	for
the	SourceLocation
property	was	specified.

DTSFTP_E_OutOfMemory 1010
(x03F2)

A	memory	allocation
for	character	string
data	failed.

DTSFTP_E_SiteConnectionError 1009
(x03F1)

Connection	to	the
destination	site	failed,
after	connection	to	the
internet	succeeded.

DTSFTP_E_TooManyFilesSelected 1002
(x03EA)

The	value	used	to	set
the	SourceFilename
property	exceeded	the
allowed	maximum
(2000	characters).

See	Also

DTSFTPTask	Object

DTS	Programming

DTSFTPSourceLocation
The	DTSFTPSourceLocation	constants	are	used	with	the	SourceLocation
property	to	specify	the	source	location	type	for	a	DTSFTPTask	object.

Symbol Value Description
DTSFTPSourceLocation_Directory 1 Source	is	a	network

directory.
DTSFTPSourceLocation_InternetSite 0 Source	is	an	Internet	site

(default).

See	Also

SourceLocation	Property

DTS	Programming

DTSIsolationLevel
The	DTSIsolationLevel	constants	specify	isolation	levels	for	the	Package
TransactionIsolationLevel	property.

Constant Value Description
DTSIsoLevel_Browse 256	(x0100) Browse	level
DTSIsoLevel_Chaos 16	(x0010) Chaos	level
DTSIsoLevel_CursorStability 4096	(x1000) Cursor	stability	level
DTSIsoLevel_Isolated 1048576

(x00100000)
Isolated	level

DTSIsoLevel_ReadCommitted 4096	(x1000) Read	committed	level
DTSIsoLevel_ReadUncommitted 256	(x0100) Read	uncommitted

level
DTSIsoLevel_RepeatableRead 65536

(x00010000)
Repeatable	read	level

DTSIsoLevel_Serializable 1048576
(x00100000)

Serializable	level

See	Also

Package2	Object

TransactionIsolationLevel	Property

DTS	Programming

DTSLineageOptions
The	DTSLineageOptions	constants	specify	Microsoft®	SQL	Server™	2000
Meta	Data	Services	lineage	options	for	the	Package	LineageOptions	property.

Constant Value Description
DTSLineage_AddLineageVariables 1 Add	lineage	variables.
DTSLineage_None 0 Provide	no	lineage

(default).
DTSLineage_WriteToReposIfAvailable 2 Write	to	Meta	Data

Services	if	available.
DTSLineage_WriteToReposRequired 3 Write	to	Meta	Data

Services	(required).

See	Also

LineageOptions	Property

Package2	Object

DTS	Programming

DTSMQMessageType
The	DTSMQMessageType	constants	are	used	with	the	MessageType	property
to	specify	the	type	of	message	defined	by	a	DTSMQMessage	object.

Symbol Value Description
DTSMQMessageType_DataFile 1 Message	consists	of	the

contents	of	a	data	file.
DTSMQMessageType_GlobalVariables 2 Message	consists	of	the

names	and	values	of	one	or
more	Data	Transformation
Services	(DTS)	package
global	variables.

DTSMQMessageType_String 0 Message	is	a	text	string.

See	Also

MessageType	Property

DTS	Programming

DTSMQStringMessageCompare
The	DTSMQStringMessageCompare	constants	are	used	with	the
StringCompareType	property	to	specify	the	type	of	comparison	to	be
performed	on	a	received	string	message	by	a	DTSMessageQueueTask	object.
The	Description	column	in	the	table	below	specifies	the	condition	for	successful
comparison.

Symbol Value Description
DTSMQStringMessageCompare_Contains 3 Received	message

contains	the
comparison	string.

DTSMQStringMessageCompare_Exact 1 Received	message
matches	comparison
string	exactly,
including	case	of
letters.

DTSMQStringMessageCompare_IgnoreCase 2 Received	message
matches	comparison
string,	ignoring	case
of	letters.

DTSMQStringMessageCompare_None 0 No	comparison	is
performed	(default).

See	Also

StringCompareType	Property

DTS	Programming

DTSMQType
The	DTSMQType	constants	are	used	with	the	TaskType	property	to	specify	the
type	of	the	DTSMessageQueueTask	object.	

Symbol Value Description
DTSMQType_Receiver 1 Task	object	is	to	receive	a	single	message.
DTSMQType_Sender 0 Task	object	is	to	send	one	or	more

messages.

See	Also

DTSMessageQueueTask	Object

TaskType	Property

DTS	Programming

DTSMSMQError
The	DTSMSMQError	constants	specify	codes	used	to	report	errors	in
DTSMessageQueueTask	object	execution.

Constant Value Description
DTSMSMQ_E_AssignmentIndexOutOfRange 1006

(x03EE)
The	index	for	the	
Remove	method	of	the
DTSMQMessages
collection	was	out	of
range.

DTSMSMQ_E_CancelExecution 1023
(x03FF)

A	cancel	execution
request	was	received
from	the
OnQueryCancel

DTSMSMQ_E_CanNotGetMessageQueueInfo 1015
(x03F7)

An	error	occurred	setting
the	label	or	the	body	of	an
Message	Queuing
message.

DTSMSMQ_E_CanNotGetPackageInfo 1019
(x03FB)

An	error	occurred
retrieving	the	package	ID
or	version	ID	of	the	Data
Transformation	Services
(DTS)	package.

DTSMSMQ_E_CanNotOpenMessageQueue 1014
(x03F6)

The	queue	specified	by
the	QueuePath	property
could	not	be	opened.

DTSMSMQ_E_CanNotSendMessage 1017
(x03F9)

An	error	occurred
sending	a	message	to	the
queue	after	it	was
successfully	opened.

DTSMSMQ_E_DataFileSizeError 1009
(x03F1)

A	data	file	message
exceeds	the	maximum
allowed	size,	4	megabytes
(MB).

DTSMSMQ_E_ErrorAccessMessageCollections 1016
(x03F8)

An	error	occurred
accessing	the	data	of	a
message	to	be	sent.

DTSMSMQ_E_ErrorOpeningDataFile 1008
(x03F0)

An	error	occurred
opening	the	file	that	is	the
source	of	a	data	file
message.

DTSMSMQ_E_ErrorReadingDataFile 1010
(x03F2)

An	error	occurred	reading
the	file	that	is	the	source
of	a	data	file	message.

DTSMSMQ_E_ErrorSavingToDataFile 1027
(x0403)

An	error	occurred
creating	the	file	that	is	to
receive	a	data	file
message.

DTSMSMQ_E_ErrorWritingDataFile 1021
(x03FD)

An	error	occurred	writing
a	data	file	message	to	the
receiving	file.

DTSMSMQ_E_ExceededMaximumStringSize 1001
(x03E9)

A	string	property	value
exceeds	the	maximum
allowed	size	(usually	256
characters).

DTSMSMQ_E_IncorrectDataFileMessageRead 1020
(x03FC)

The	length	of	a	data	file
message	differs	from	the
expected	length.

DTSMSMQ_E_IncorrectGlobalVariablesMessageRead 1025
(x0401)

An	error	occurred
creating	the	global
variable	that	is	to	receive
a	global	variables
message.

DTSMSMQ_E_IncorrectMSMQMessageType 1007
(x03EF)

The	message	type
specified	by	the
MessageType	or
ReceiveMessageType
properties	is	not	valid.

DTSMSMQ_E_IncorrectStringCompareType 1003
(x03EB)

The	comparison	type
specified	by	the

StringCompareType
property	is	not	valid.

DTSMSMQ_E_IncorrectTaskType 1002
(x03EA)

The	task	type	specified	by
the	TaskType	property	is
not	valid.

DTSMSMQ_E_IncorrectTimeoutValue 1004
(x03EC)

The	timeout	value
specified	by	the
ReceiveMessageTimeout
property	is	not	valid
(negative).

DTSMSMQ_E_InvalidAssignmentIndexVariantType 1005
(x03ED)

The	index	specified	by
the	Item	or	Remove
method	of	the
DTSMQMessages
collection	is	not	valid.

DTSMSMQ_E_InvalidGlobalVariablesProperties 1024
(x0400)

An	error	occurred
formatting	the	global
variables	message	to	be
sent.

DTSMSMQ_E_InvalidTaskProperties 1022
(x03FE)

A	property	required	for
the	type	of	message	to	be
received	was	not
specified.

DTSMSMQ_E_MessageQueueObjectsNotSupported 1012
(x03F4)

An	error	occurred
creating	a	Message
Queuing	object.	Message
Queuing	was	probably
not	properly	installed.

DTSMSMQ_E_NoMessageCollectionsFound 1011
(x03F3)

The	DTSMQMessages
collection	does	not	exist
or	contains	zero	elements.

DTSMSMQ_E_NoMessageQueuePathSpecified 1013
(x03F5)

The	required	QueuePath
property	was	not
specified.

DTSMSMQ_E_OutOfMemory 1018
(x03FA)

A	memory	allocation	for
character	string	data

failed.
DTSMSMQ_E_ReceiveMessageTimeout 1026

(x0402)
The	timeout	value
specified	by	the
ReceiveMessageTimeout
property	has	elapsed,	the
task	is	being	failed.

See	Also

DTSMessageQueueTask	Object

DTS	Programming

DTSPackageError
The	DTSPackageError	constants	specify	codes	used	to	report	errors	in	Data
Transformation	Services	(DTS)	package	creation	and	execution.

Constant Value Description
DTSPackage_E_AbandonedRowQueueDest 1076

(x0434)
This	Step2	object	has	a
DataPumpTask2
RowQueue	destination.
A	corresponding	
object	with	a
DataPumpTask2
RowQueue	source	was
not	found	or	was
skipped.

DTSPackage_E_AxScript_BadFunctionName 1020
(x03FC)

Microsoft®	ActiveX®
scripting:	Function	not
found.

DTSPackage_E_AxScript_CantAddGlobals 1021 ActiveX	scripting:
Cannot	add	global
variables	to	ActiveX
script.

DTSPackage_E_AxScript_CantInitializeEngine 1017 ActiveX	scripting:	Not
able	to	initialize	the
script	execution	engine.

DTSPackage_E_AxScript_ParseError 1019 ActiveX	scripting:	Error
parsing	script.

DTSPackage_E_AxScript_RequiredParams 1018 ActiveX	scripting:	
Language,	and
FunctionEntry	names	are
required	to	be	specified.

DTSPackage_E_AxScript_RunTimeError 1022 ActiveX	scripting:
Encountered	a	run-time
error	during	the
execution	of	the	script.

DTSPackage_E_BadForceMode 1065 Invalid	DTSForceMode
value.

DTSPackage_E_BadGUIDValue 1038 Invalid	globally	unique
identifier	(GUID)	value
specified.

DTSPackage_E_BadPackageDSORowsetTask 1075 PackageDSORowset
Step2	object	must	have	a
DataPumpTask2

DTSPackage_E_BadPrecedenceBasis 1026 Precedence	basis	should
be	step	status	or	result.

DTSPackage_E_BadPrecedenceStep 1036 Step	specified	in	a
precedence	constraint
was	not	found.

DTSPackage_E_BadPriorityClass 1042 Invalid	priority	class
specified	for	the
package.

DTSPackage_E_BadRelativePriority 1043 Invalid	relative	priority
specified	for	a	step.

DTSPackage_E_BadStepResultValue 1024 Invalid	step	result	value.
DTSPackage_E_BadStepStatusValue 1023 Invalid	step	status	value.
DTSPackage_E_BadStepTask 1027 Cannot	find	task

associated	with	step.
DTSPackage_E_BadTaskResultValue 1025 Invalid	task	result	value.
DTSPackage_E_CannotFindConnection 1031 Connection	specified	in	a

task	was	not	found.
DTSPackage_E_CannotPersistProperty 1062 Cannot	store	property

values	in	file	or
repository	if	they	are
empty,	null,	arrays,	or
objects.

DTSPackage_E_CantChangeLoadedPkgName 1060 Cannot	change	name	of	a
package	that	has	been
loaded	from	a	storage
file	or	Microsoft	SQL
Server™	2000	Meta

Data	Services.
DTSPackage_E_CantFindPackageInStg 1044 Cannot	find	specified

package	in	the	storage
location	specified.

DTSPackage_E_CantFindVersionInStg 1040 Cannot	find	specified
version	of	package	in	the
storage	location
specified.

DTSPackage_E_CantSetCommandProps 1041 Cannot	set	command
properties	specified.

DTSPackage_E_ColumnNeedsNameOrOrdinal 1007 Columns	collection	can
be	indexed	only	by	name
or	ordinal.

DTSPackage_E_ColumnsNotDescribed 1014 Unable	to	fetch	column
meta	data.

DTSPackage_E_ConnectionInUse 1030 Connection	is	currently
being	used	by	a	task.	The
connection	cannot	be
closed	or	reused.

DTSPackage_E_ConnectionRequiresValidTaskName 1029 Acquiring	a	connection
requires	a	valid	task
name.

DTSPackage_E_CreateProcTask_Timeout 1037 Process	created	by	a	task
did	not	terminate	within
the	time	specified.

DTSPackage_E_DataDrivenQueryTask_RequireXforms 1077 DataDrivenQueryTask2
object	requires
transformations	to	be
specified.

DTSPackage_E_DatatypeNotFound 1009 Invalid	column	data	type.
DTSPackage_E_DescribeNeedsQuery 1013 Custom	implementation

object's	query	property
must	be	set	before	the
columns	can	be
described.

DTSPackage_E_DSO_CantRelaunchPackage 1073 Package	associated	with

this	OLE	DB	provider
cannot	be	relaunched.

DTSPackage_E_DSO_OnlyOneCommand 1074 This	OLE	DB	provider
supports	only	a	single
active	command.

DTSPackage_E_DSO_OnlyOneRowset 1071 This	OLE	DB	provider
supports	only	a	single
active	rowset.

DTSPackage_E_DSO_OnlyOneSession 1070 This	OLE	DB	provider
supports	only	a	single
active	session.

DTSPackage_E_DSO_ProviderStringRequired 1072 This	OLE	DB	provider
requires	a
PROVIDERSTRING	or
DATASOURCE
initialization	property	to
be	set.

DTSPackage_E_EncryptStg_CantCreateOrWrite 1045 Cannot	create	storage
elements	or	write	to
streams	while	loading
encrypted	package.

DTSPackage_E_EncryptStg_CantOpenOrRead 1046 Cannot	open	storage
elements	or	read	from
streams	while	saving
encrypted	package.

DTSPackage_E_EncryptStg_HandsOnStg 1047 Encrypted	storage	cannot
be	released,	committed,
or	reverted	when
elements	in	storage	have
not	been	released.

DTSPackage_E_EncryptStg_PasswordNotMatching 1049 Password	specified	does
not	match	the	owner	or
operator	password.

DTSPackage_E_EncryptStg_RequirePassword 1050 Cannot	load	encrypted
package	without	a
password.

DTSPackage_E_EncryptStg_StreamTooLarge 1051 Encrypted	streams
cannot	exceed	a	size	of
128	KB.

DTSPackage_E_EncryptStg_UnsupportedFlags 1048 Encrypted	storage	does
not	support	the	flags
specified	to	open	or
create	a	storage	element.

DTSPackage_E_ExecutionCanceled 1063 Execution	was	canceled
by	user.

DTSPackage_E_FailedOnStepError 1064 Package	failed	because	a
step	failed.

DTSPackage_E_MultiPackageStgNeedsID 1066 Specified	storage	file
contains	multiple
packages;	loading
requires	a	name	or
package	ID.

DTSPackage_E_NameDup 1004 Object	of	the	specified
name	already	exists	in
this	object	collection	so	a
new	object	of	the	same
name	cannot	be	added.

DTSPackage_E_NameMustBeUniqueInStgFile 1067 Specified	storage	file
already	contains	a
package	of	this	name
with	a	different	package
ID.

DTSPackage_E_NameNotFound 1003 Object	of	specified	name
was	not	found	in	this
object	collection.

DTSPackage_E_NeedConnectionInfo 1010 Connection	information
was	not	specified	in	the
custom	implementation
child	of	this	object.

DTSPackage_E_NeedDataDrivenQueries 1078 DataDrivenQueryTask2
object	requires	at	least
one	query	(and

associated	columns)	to
be	specified.

DTSPackage_E_NeedDataDrivenQueryAndColumns 1079 Data-driven	queries	must
specify	the	text	of	the
parameterized	query	and
identify	any	columns	(in
the	associated	columns
collection)	needed	to	fill
in	the	parameters.

DTSPackage_E_NeedDestinationColumnDefinitions 1069 Required	column
definitions	were	not
supplied	by	the
application.

DTSPackage_E_NoPackageDataFromServer 1068 No	data	for	the	specified
package	was	retrieved
from	the	specified	server
running	an	instance	of
SQL	Server.

DTSPackage_E_NoStepsDefined 1005 No	steps	have	been
defined	for	the
transformation	package.

DTSPackage_E_NoStepsToExecute 1012 No	steps	have	been
added.

DTSPackage_E_NotImplemented 1001 Method	or	property	not
yet	implemented.

DTSPackage_E_NoXformDispatch 1061 Transformation	server
does	not	support	setting
properties	through
automation	interfaces.

DTSPackage_E_ODBC_NeedConnectionInfo 1011 ODBC	connection
requires	either	a	data
source	name	or	a	server
and	driver	name.

DTSPackage_E_OrdOutofRange 1002 Index	value	is	out	of
range	for	this	object
collection.

DTSPackage_E_PropertyStringTooLong 1059 This	property	cannot
hold	a	string	longer	than
255	characters.

DTSPackage_E_PumpTask_RequireRowsetDataSrcInfo 1034 Data	source	object	name
or	SQL	statement	is
required	to	obtain	a
rowset.

DTSPackage_E_PumpTask_RequireSrcAndDestColumns 1033 Source	and	destination
columns	are	required	for
a	Transformation2
object.

DTSPackage_E_PumpTask_RequireXformServer 1035 Transform	server	ID	or
transform	server	needs	to
be	provided	for	a	data
pump	task
transformation.

DTSPackage_E_PumpTask_RequireXforms 1032 Data	pump	task	requires
transformations	to	be
specified.

DTSPackage_E_RequireColumnNameAndOrdinal 1058 Specify	a	valid	name	and
ordinal	value	for	the
column.

DTSPackage_E_RequireConnectionProperties 1028 Required	Connection
object	properties	have
not	been	specified	in	a
Connection	object.

DTSPackage_E_RequireConnectionID 1057 Specify	a	valid	ID	for	the
connection.

DTSPackage_E_RequireNameForExecOr\Stg 1039 Cannot	load,	save,	or
execute	the	package	if
some	objects	do	not	have
a	name.	Specify	names
for	these	objects.

DTSPackage_E_Security_InvalidPassword 1052 Password	specified	is
invalid.	Specify	a
password	that	is	at	least	8

characters	in	length.
DTSPackage_E_Security_OperatorNotPrivileged 1054 Operator	is	privileged

only	to	load	the	package
and	execute	it.

DTSPackage_E_Security_RequireBothPasswords 1053 Specify	both	owner	and
operator	passwords	to
save	a	package	to
encrypted	storage.

DTSPackage_E_SQLTask_RequireSQL 1055 ExecuteSQLTask2
object	requires	SQL
statements	to	be
specified.

DTSPackage_E_Step_CyclicDependency 1015 Step	cannot	be	a
predecessor	of	itself.

DTSPackage_E_UnknownOleDBProperty 1056 OLE	DB	property
specified	is	not	supported
by	this	OLE	DB
provider.

DTSPackage_E_UsageBeforeDescribeOnly 1016 Reserved.
DTSPackage_E_WrongCollection 1008 Collection	member	may

only	be	added	or	inserted
under	the	same	parent
from	which	it	was
acquired.

See	Also

Handling	DTS	Events	and	Errors

Package2	Object

DTS	Programming

DTSPackagePriorityClass
The	DTSPackagePriorityClass	constants	specify	the	Microsoft®	Win32®
process	priority	class	to	be	used	when	the	Data	Transformation	Services	(DTS)
package	is	executed.

Constant Value Description
DTSPackagePriorityClass_High 3 High	package	priority
DTSPackagePriorityClass_Low 1 Low	package	priority
DTSPackagePriorityClass_Normal 2 Normal	package	priority

See	Also

PackagePriorityClass	Property

DTS	Programming

DTSPackageType
The	DTSPackageType	constants	are	used	with	the	PackageType	property	to
identify	the	tool	that	created	the	database	package.

Name Value Package	Created	By
DTSPkgType_ActiveDirectory 4 Microsoft®	Active	Directory™,	the

directory	service	included	with
Microsoft	Windows®	2000.

DTSPkgType_Default 0 Custom	program	(or	not	set).
DTSPkgType_DTSDesigner 2 Data	Transformation	Services

(DTS)	Designer.
DTSPkgType_DTSWizard 1 The	DTS	Import/Export	Wizard.
DTSPkgType_SQLReplication 3 Microsoft	SQL	Server™	2000

replication	function.

See	Also

PackageType	Property

DTS	Programming

DTSRepositoryMetadataOptions
The	DTSRepositoryMetadataOptions	constants	specify	scanning	and
resolution	options	to	use	when	storing	a	Data	Transformation	Services	(DTS)
package	to	Microsoft®	SQL	Server™	2000	Meta	Data	Services.

Constant Value Description
DTSReposMetadata_Default 0 Package

performs	no
scanner
resolution.

DTSReposMetadata_RequireScannedCatalog 1 Package	requires
that	any	database
objects	must
have	been
scanned	into
Meta	Data
Services.

DTSReposMetadata_ScanCatalogAlways 8 Package	will
scan	all	catalogs
referenced,
rescanning	if
already	scanned.

DTSReposMetadata_ScanCatalogIfNotFound 4 Package	will
issue	a	scan	on
all	catalogs	that
are	not	found
already	scanned.

DTSReposMetadata_UseScannedCatalogIfPresent 2 Package	will	use
any	scanned
objects	found;
nonscanned
references	will
create	local
objects.

See	Also

RepositoryMetadataOptions	Property

DTS	Programming

DTSRepositoryStorageFlags
The	DTSRepositoryStorageFlags	constants	specify	Microsoft®	SQL	Server™
2000	Meta	Data	Services	options	to	use	when	saving	or	loading	a	Data
Transformation	Services	(DTS)	package.

Constant Value Description
DTSReposFlag_Default 0 Use	database	authentication

to	connect	to	Meta	Data
Services	on	an	instance	of
SQL	Server.

DTSReposFlag_UseTrustedConnection 256 Use	Windows
Authentication	to	connect	to
Meta	Data	Services	on	an
instance	of	SQL	Server.

See	Also

LoadFromRepository	Method

RemoveFromRepository	Method

SaveToRepository	Method

SaveToRepositoryAs	Method

DTS	Programming

DTSSQLObjectType
The	DTSSQLObjectType	constants	specify	object	copying	options	for	the
TransferObjectsTask,	AddObjectForTransfer,	and	GetObjectForTransfer
methods.

Constant Value Description
DTSSQLObj_AllDatabaseObjects 4607

(x11FF)
System	and	database
objects

DTSSQLObj_AllDatabaseUserObjects 4605
(x11FD)

User	database	objects

DTSSQLObj_Default 64	(x0040) Defaults
DTSSQLObj_Rule 128	(x0080) Rules
DTSSQLObj_StoredProcedure 16	(x0010) Stored	procedures
DTSSQLObj_SystemTable 2 System	tables
DTSSQLObj_Trigger 256	(x0100) Triggers
DTSSQLObj_UserDefinedDatatype 1 User-defined	data

types
DTSSQLObj_UserDefinedFunction 4096

(x1000)
User-defined	functions

DTSSQLObj_UserTable 8 User	tables
DTSSQLObj_View 4 Views

See	Also

AddObjectForTransfer	Method

GetObjectForTransfer	Method

DTS	Programming

DTSSQLServerStorageFlags
The	DTSSQLServerStorageFlags	constants	specify	Microsoft®	SQL	Server™
2000	options	to	use	when	saving	or	loading	a	Data	Transformation	Services
(DTS)	package.

Constant Value Description
DTSSQLStgFlag_Default 0 Use	SQL	Server

Authentication	to	connect
to	an	instance	of	SQL
Server.

DTSSQLStgFlag_UseTrustedConnection 256 Use	Windows
Authentication	to	connect
to	an	instance	of	SQL
Server.

See	Also

LoadFromSQLServer	Method

LogServerFlags	Property

RemoveFromSQLServer	Method

SaveToSQLServer	Method

DTS	Programming

DTSStepExecResult
The	DTSStepExecResult	constants	specify	the	results	from	the	execution	of	a
step.

Constant Value Description
DTSStepExecResult_Failure 1 Step	execution	failed.
DTSStepExecResult_Success 0 Step	execution	succeeded.

See	Also

ExecutionResult	Property

DTS	Programming

DTSStepExecStatus
The	DTSStepExecStatus	constants	specify	status	codes	that	indicates	the
current	step	status.

Constant Value Description
DTSStepExecStat_Completed 4 Step	execution	is	completed.
DTSStepExecStat_Inactive 3 Step	execution	is	inactive.
DTSStepExecStat_InProgress 2 Step	execution	is	in	progress.
DTSStepExecStat_Waiting 1 Step	is	waiting	to	execute.

See	Also

ExecutionStatus	Property

DTS	Programming

DTSStepPrecedenceBasis
Steps	can	be	executed	after	the	precedence	constraint	is	satisfied.	The
precedence	constraint	is	based	on	either	the	execution	status	or	execution	result
of	another	step.	The	PrecedenceBasis	property	indicates	whether	to	use	the	step
result	or	step	status.

Constant Value Description
DTSStepPrecedenceBasis_ExecResult 1 PrecedenceBasis	based	on

execution	result
DTSStepPrecedenceBasis_ExecStatus 0 PrecedenceBasis	based	on

execution	status

See	Also

PrecedenceBasis	Property

DTS	Programming

DTSStepRelativePriority
The	DTSStepRelativePriority	constants	specify	the	Microsoft®	Win32®	thread
priority	to	be	used	when	a	step	is	executed.

Constant Value Description
DTSStepRelativePriority_AboveNormal 4 Above	normal	thread

priority
DTSStepRelativePriority_BelowNormal 2 Below	normal	thread

priority
DTSStepRelativePriority_Highest 5 Highest	thread	priority
DTSStepRelativePriority_Lowest 1 Lowest	thread	priority
DTSStepRelativePriority_Normal 3 Normal	thread	priority

See	Also

RelativePriority	Property

DTS	Programming

DTSStepScriptResult
The	DTSStepScriptResult	constants	specify	return	codes	to	be	used	from	the
Microsoft®	ActiveX®	scripts	associated	with	package	steps.	They	should	not	be
returned	from	the	scripts	associated	with	an	ActiveXScriptTask	object	or
DataPumpTransformScript	or	DTSTransformScriptProperties2
transformations.

Constant Value Description
DTSStepScriptResult_DontExecuteTask 1 Do	not	execute	task.
DTSStepScriptResult_ExecuteTask 0 Execute	task.
DTSStepScriptResult_RetryLater 2 Retry	execution	later.

See	Also

ActiveXScript	Property

Step2	Object

DTS	Programming

DTSTaskExecResult
The	DTSTaskExecResult	constants	specify	the	result	from	the	execution	of	a
task.

Constant Value Description
DTSTaskExecResult_Failure 1 Task	execution	failed.
DTSTaskExecResult_RetryStep 2 Task	execution	is	to	be

repeated.
DTSTaskExecResult_Success 0 Task	execution	succeeded.

See	Also

Execute	Method

DTS	Programming

DTSTransfer_CopyDataOption
The	DTSTransfer_CopyDataOption	constants	specify	data	copying	options	for
the	TransferObjectsTask	CopyData	property.

Constant Value Description
DTSTransfer_AppendData 2 Data	that	is	copied	is	appended	to

existing	tables.
DTSTransfer_DontCopyData 0 Schema	only	is	copied.
DTSTransfer_ReplaceData 1 Data	that	is	copied	replaces	existing

data.

See	Also

CopyData	Property

DTS	Programming

DTSTransfer_ScriptOption
The	DTSSQLServerStorageFlags	constants	specify	extended	scripting	options.
They	are	equivalent	to	SQLDMO_SCRIPT2_TYPE	constants	used	by	SQL-
DMO.

The	DTSTransfer_ScriptOption	constants	specify	scripting	options	for	the
TransferObjectsTask	ScriptOption	property.

Constant Value Description
DTSTransfer_Script_Aliases 16384 For	users,	script	aliases.
DTSTransfer_Script_AppendToFile 256 Append	to	output	file	if	it	already	exists.
DTSTransfer_Script_Bindings 128 Include	rule/default	bindings	(table	only).
DTSTransfer_Script_ClusteredIndexes 8 Include	clustered	index	creation	(table

only).
DTSTransfer_Script_DatabasePermissions 32 Database	(statement)	permissions.
DTSTransfer_Script_Default 4 Object	creation	only.
DTSTransfer_Script_DRI_All 532676608 All	the	foregoing	(specifying	this	and	not

PrimaryObject	gets	just	DRI	output).
DTSTransfer_Script_DRI_AllConstraints 520093696 Bitmask	of	all	constraint	types	(primary

key,	foreign	key,	unique,	check,	default).
DTSTransfer_Script_DRI_AllKeys 469762048 Bitmask	of	all	key	types	(primary	key,

foreign	key,	unique).
DTSTransfer_Script_DRI_Checks 16777216 Generated	script	creates	column-specified

CHECK	constraints.	Directs	scripting
when	declarative	referential	integrity
establishes	dependency	relationships.
Applies	only	when	scripting	references	a
Microsoft	SQL	Server™	table.

DTSTransfer_Script_DRI_Clustered 8388608 Generated	script	creates	clustered	indexes.
Directs	scripting	when	declarative
referential	integrity	establishes
dependency	relationships.	Applies	only
when	scripting	references	a	SQL	Server
table.

DTSTransfer_Script_DRI_Defaults 33554432 Generated	script	includes	column-
specified	defaults.	Directs	scripting	when
declarative	referential	integrity	establishes
dependency	relationships.	Applies	only
when	scripting	references	a	SQL	Server
table.

DTSTransfer_Script_DRI_ForeignKeys 134217728 Generated	script	creates	FOREIGN	KEY
constraints.	Directs	scripting	when
declarative	referential	integrity	establishes
dependency	relationships.	Applies	only
when	scripting	references	a	SQL	Server
table.

DTSTransfer_Script_DRI_NonClustered 4194304 Generated	script	creates	nonclustered
indexes.	Directs	scripting	when	declarative
referential	integrity	establishes
dependency	relationships.	Applies	only
when	scripting	references	a	SQL	Server
table.

DTSTransfer_Script_DRI_PrimaryKey 268435456 Generated	script	creates	PRIMARY	KEY
constraints.	Directs	scripting	when
declarative	referential	integrity	establishes
dependency	relationships.	Applies	only
when	scripting	references	a	SQL	Server
table.

DTSTransfer_Script_DRI_UniqueKeys 67108864 Generated	script	creates	candidate	keys
defined	using	a	unique	index.	Directs
scripting	when	declarative	referential
integrity	establishes	dependency
relationships.	Applies	only	when	scripting
references	a	SQL	Server	table.

DTSTransfer_Script_DRIIndexes 65536 Script	DRI-generated	indexes	as	indexes	if
NoDRI	is	specified.

DTSTransfer_Script_DRIWithNoCheck 536870912 Script	DRI	with	nocheck	(not	included	in
_DRI_All).

DTSTransfer_Script_Drops 1 Include	object	drops.
DTSTransfer_Script_IncludeHeaders 131072 Include	descriptive	header	in	individual

object	script	output.
DTSTransfer_Script_IncludeIfNotExists 4096 Include	"if	not	exists"	on	object	creation.
DTSTransfer_Script_Indexes 73736 Include	all	index	creation	(table	only).
DTSTransfer_Script_NoCommandTerm 32768 Do	not	append	"GO"	to	commands.
DTSTransfer_Script_NoDRI 512 Do	not	include	DRI	(use	only	if	you	are

targeting	a	Microsoft	SQL	Server	version
6.0	or	earlier	installation	with	scripts).

DTSTransfer_Script_NoIdentity 1073741824Script	with	no	IDENTITY	attribute	(such
as	for	replication).

DTSTransfer_Script_NonClusteredIndexes 8192 Includes	nonclustered	index	creation	(table
only).

DTSTransfer_Script_ObjectPermissions 2 Includes	object	creation.
DTSTransfer_Script_OwnerQualify 262144 Owner-qualify	DROP	statements	(and

CREATE	where	possible).
DTSTransfer_Script_Permissions 34 Both	database	and	object	permissions	(for

scripting	users).
DTSTransfer_Script_PrimaryObject 4 Generate	Transact-SQL	creating	the

referenced	component.
DTSTransfer_Script_SortedData 1048576 If	the	index	or	constraint	was	clustered,

append	sorted_data.
DTSTransfer_Script_SortedDataReorg 2097152 Same	as	DTSTransfer_Script_SortedData,

but	DTSTransfer_Script_Sorted	Data
Reorg	is	used	to	preserve	fillfactor.

DTSTransfer_Script_TimestampToBinary 524288 Converts	timestamp	columns	to	
(for	replication,	and	so	on).

DTSTransfer_Script_ToFileOnly 64 If	not	set,	a	string	is	returned	(if	file	is
nonnull,	both	are	done).

DTSTransfer_Script_TransferDefault 2147061505The	default	script	type	for	a	transfer.	This
is	combination	of	following	flags
DTSTransfer_Script_PrimaryObject
DTSTransfer_Script_Bindings
DTSTransfer_Script_ClusteredIndexes
DTSTransfer_Script_NonClusteredIndexes
																																																							
DTSTransfer_Script_Triggers

DTSTransfer_Script_ToFileOnly
DTSTransfer_Script_Permissions
DTSTransfer_Script_IncludeHeaders
DTSTransfer_Script_Aliases
DTSTransfer_Script_IncludeIfNotExists
DTSTransfer_Script_OwnerQualify
DRI-restrictive	flags.	These	may	be
combined	with	PrimaryObject	as	desired.
These	are	used	to	include	or	exclude
specific	DRI	components.

DTSTransfer_Script_Triggers 16 Include	trigger	creation	(table	only).
DTSTransfer_Script_UDDTsToBaseType 1024 Converts	user-defined	data	types	to	base

type	when	creating	columns	(table	only).
DTSTransfer_Script_UseQuotedIdentifiers 2147483648Scripts	with	quoted	identifiers.	Also	will

cause	the	Transfer	object	to	SET
QUOTED_IDENTIFIER	ON	on	the
destination.

See	Also

ScriptOption	Property

DTS	Programming

DTSTransfer_ScriptOptionEx
The	DTSTransfer_ScriptOptionEx	constants	specify	extended	scripting
options.	They	are	equivalent	to	SQLDMO_SCRIPT2_TYPE	constants	used	by
SQL-DMO.

Constant Value Description
DTSTransfer_ScriptEx_70Only 16777216

(x01000000)
Script	the	transfer
of	Microsoft®
SQL	Server™	7.0
objects	only.

DTSTransfer_ScriptEx_AgentAlertJob 2048
(x0800)

Include	job	in	alert
scripting.

DTSTransfer_ScriptEx_AgentNotify 1024
(x0400)

Script	notification
for
SQLServerAgent
alert	object.

DTSTransfer_ScriptEx_AnsiFile 2 Generate	ANSI
output	file.

DTSTransfer_ScriptEx_AnsiPadding 1 Explicitly	SET
ANSI	PADDING
on	or	off	before	the
CREATE	TABLE
statement.

DTSTransfer_ScriptEx_EncryptPWD 128	(x0080) Script	encrypted
password	for
logins.

DTSTransfer_ScriptEx_ExtendedProperty 4194304
(x00400000)

Include	extended
property	scripting
as	part	of	object
scripting

DTSTransfer_ScriptEx_FullTextCat 2097152
(x00200000)

Include	full-text
catalog	scripting.

DTSTransfer_ScriptEx_FullTextIndex 524288
(x00080000)

Include	full-text
index	scripting

(table	only).
DTSTransfer_ScriptEx_JobDisable 33554432

(x02000000)
Script	Transact-
SQL	to	disable	the
job	at	the	end	of
job	creation.

DTSTransfer_ScriptEx_LoginSID 1048576
(x00100000)

Include	the
security
identification
number	(SID)	for
standard	SQL
Server	logins.

DTSTransfer_ScriptEx_MarkTriggers 32	(x0020) Mark	system
triggers.	For
replication,	single
table	script	only.

DTSTransfer_ScriptEx_NoCollatin 8388608
(x00800000)

Do	not	script	the
collation	clause	if
source	is	an
instance	of	SQL
Server	2000.

DTSTransfer_ScriptEx_NoFG 16	(x0010) Do	not	generate
ON	<filegroup>.
For	replication.

DTSTransfer_ScriptEx_NonStop 8 When	error	occurs
during	script	file
generation,	log
error	and	continue.

DTSTransfer_ScriptEx_NoWhatIfIndexes 512	(x0200) Do	not	script
What-If	indexes
(default:	script
out).

DTSTransfer_ScriptEx_OnlyUserTriggers 64	(x0040) Only	script	user
triggers.	For
replication,	single
table	script	only.

DTSTransfer_ScriptEx_SeparateXPs 256	(x0100) Script	XP	to	a
separate	file
(Convert).

DTSTransfer_ScriptEx_TransferDefault 4112
(x1010)

Default.

DTSTransfer_ScriptEx_UnicodeFile 4 Generate
UNICODE	output
file.

See	Also

ScriptOptionEx	Property

DTS	Programming

DTSTransformationSetOptions
The	DTSTransformationSetOptions	constants	specify	the	operating	mode	of	a
Parallel	Data	Pump	Task	object.

Constant Value Description
DTSTranSetOpt_Flattened 0 Transforms	component

rowsets	independently
without	reference	to	chapter
subsets	(default).

DTSTranSetOpt_Hierarchical 1 Transforms	component
rowsets	row	at	a	time,	using
chapter	subsets	to	transform
child	rowsets.

DTSTranSetOpt_DataDrivenQueries 4 Transforms	component	rowset
as	in	flattened-mode,	user
queries	to	save	data.

See	Also

Parallel	Data	Pump	Task

TransformationSetOptions	Property

DTS	Programming

DTSTransformFlags
The	DTSTransformFlags	constants	specify	the	flags	controlling	transformation.
They	are	used	to	set	the	TransformFlags	property	of	the	Transformation
object.	These	values	are	used	during	schema	validation,	which	occurs	before	any
rows	are	transformed.

Constant Value Description
DTSTransformFlag_AllowDemotion 1 Allows	the	transfer	to	proceed	even	if	there	are

potential	overflows.	Overflows	that	actually
occur	during	transformation	cause	the	row	to
be	exceptioned.	This	value	can	be	specified
when	the	source	values	are	all	(or	mostly)
within	the	range	of	the	destination	column.

DTSTransformFlag_AllowLosslessConversion 512
(x0200)

Allows	all	conversions	for	which	a	lossless
conversion	is	possible	(for	example,
Promotion,	non-NULLable	->	NULLable,
unsigned	->	signed	with	field	size	increase).

DTSTransformFlag_AllowNullChange 16
(x0010)

Allows	the	transfer	to	proceed	even	if	the
source	column	allows	NULL	values	and	the
destination	column	does	not.	Any	row	actually
containing	NULL	is	exceptioned,	however.

DTSTransformFlag_AllowNumericTruncation 8 Allows	the	transfer	to	proceed	even	when
numeric	truncation	is	possible,	such	as	when
the	source	is	a	floating-point	or
numeric/decimal	type	and	the	destination	is
an	integral	type.	Loss	of	significance	occurs
without	error,	but	integer	overflow	still	causes
an	error.

DTSTransformFlag_AllowPromotion 2 Allows	the	transfer	to	proceed	when	there	is
promotion	in	the	data	range	when	moving
from	the	source	to	the	destination	types,	such
as	I2->I4	or	I4->float/double.

DTSTransformFlag_AllowSignChange 32
(x0020)

Allows	the	transfer	to	proceed	even	in	the
event	that	the	source	and	destination	have	a

signed	versus	unsigned	mismatch.	As	with
DTSTransformFlag_AllowDemotion,	errors
may	occur	during	a	transform.

DTSTransformFlag_AllowStringTruncation 4 Allows	column	(w)char	or	
truncated	silently	(for	example,	when	moving
data	from	a	char(60)	to	a	

DTSTransformFlag_Default 63
(x003F)

Includes	the	default	flag	combination	of
DTSTransformFlag_AllowDemotion,
DTSTransformFlag_AllowNullChange,
DTSTransformFlag_AllowNumericTruncation,
DTSTransformFlag_AllowPromotion,
DTSTransformFlag_AllowSignChange	and
DTSTransformFlag_AllowStringTruncation.

DTSTransformFlag_ForceConvert 128
(x0080)

Allows	the	conversion	to	proceed	at	all	times,
even	when	the	source	and	destination	types	are
fundamentally	different.	Does	a	bitwise	copy
when	no	other	conversion	is	appropriate.

DTSTransformFlag_PreserveDestRows 256
(x0100)

Causes	the	data	pump	to	not	clear	the
destination	row	storage	at	the	end	of	row
processing.	This	allows	the	destination	row
values	to	be	reused	by	the	next	transformation.

DTSTransformFlag_RequireExactType 64
(x0040)

Requires	that	the	data	type	of	the	destination
column	be	exactly	the	same	as	the	data	type	of
the	source	column	(including	length	or
precision	and	scale,	fixed	versus	variable
length,	sign,	and	nullability).

DTSTransformFlag_Strict 0 Specifies	no	flags;	the	conversion	must	be
between	exact	types,	although	conversions
between	string	and	nonstring	datatypes	is
allowed	and	may	cause	errors.	This	value	may
be	overridden	by
DTSTransformFlag_RequireExactType,	which
is	even	stricter.

See	Also

Transformation2	Object

TransformFlags	Property

DTS	Programming

DTSTransformPhaseEnum
The	DTSTransformPhaseEnum	constants	specify	the	available	Data
Transformation	Services	(DTS)	data	pump	transformation	phases.

Constant Value Description
DTSTransformPhase_All 255

(x00FF)
Bitmask	for	all
transform	phases.

DTSTransformPhase_None 0 Specifies	no	phases.
DTSTransformPhase_OnBatchComplete 64

(x0040)
Occurs	after	a	fast
load	batch	completes,
on	success	or	failure.

DTSTransformPhase_OnInsertFailure 32
(x0020)

Occurs	after	an	Insert
operation	or	a	data
driven	query	fails.

DTSTransformPhase_OnInsertSuccess 16
(x0010)

Occurs	after	an	Insert
operation	or	a	data
driven	query
succeeds.

DTSTransformPhase_OnPumpComplete 128
(x0080)

Occurs	once	at	end	of
Data	Transformation
Services	(DTS)	data
pump	operation.

DTSTransformPhase_OnTransformFailure 8 Occurs	after
transformation	fails
(for	example,	a
conversion	error).

DTSTransformPhase_PostSourceData 2 Occurs	after	all
source	rows
processed.

DTSTransformPhase_PreSourceData 1 Occurs	before	first
source	row	processed.

DTSTransformPhase_Transform 4 Occurs	after	source
row	is	fetched,

performs	the	primary
transformation
processing.

See	Also

CurrentPhase	Property

TransformPhases	Property

DTS	Programming

DTSTransformStatus
The	DTSTransformStatus	constants	return	values	(int	or	long)	from	the
ActiveXScriptTask	object	transformation.

Constant Value Description
DTSTransformStat_AbortPump 16384

(x4000)
Processing	is	terminated	with	the	current	row
and	DTSTransformExec_AbortPump	is
returned	from	IDTSDataPump::Execute

DTSTransformStat_DeleteQuery 64
(x0040)

The	executed	DELETE	statement	is	passed	to
the	SetRowsetAndQueries	property	on	the
destination,	with	values	from	the	currently
transformed	destination	row.

DTSTransformStat_DestDataNotSet 512
(x0200)

The	current	row	is	not	written	to	the
destination	only	if	all	transformations	return
this	value.	If	present	in	the	returned	status	of	a
transformation,	it	is	removed	before	being
passed	to	the	next	transformation	through
DTSTransformPhaseInfo.TransformStatus

DTSTransformStat_Error 8192
(x2000)

Indicates	the	transformation	encountered	an
error.

DTSTransformStat_ErrorSkipRow 8194
(x2002)

Terminate	further	processing	of	this	row	due
to	error	and	call	the	error	sink,	but	do	not
write	to	exception	file.

DTSTransformStat_ExceptionRow 8448
(x2100)

Terminate	further	processing	of	this	row	as	an
exception	and	call	the	error	sink,	and	write
this	row	to	exception	file.

DTSTransformStat_Info 4096
(x1000)

Success	with	additional	information,	which
the	application	can	process	further	by	reading
its	pvTransformUserData	value	(if	it	shares
that	knowledge	with	the	transform	server)	or
through	OLE	DB	error	records.

DTSTransformStat_InsertQuery 16
(x0010)

Executes	the	INSERT	statement	passed	to	the
SetRowsetAndQueries	property	on	the
destination,	with	values	from	the	currently

transformed	destination	row.
DTSTransformStat_NoMoreRows 32768

(x8000)
The	current	row	is	the	last	to	be	processed.
The	current	row	is	processed	as	specified	by
other	transformation	status	values.	This	value
differs	from	DTSTransformStat_AbortPump
in	that	no	error	is	raised.

DTSTransformStat_OK 1 Default	conversions	(if	any)	succeeded.	Write
the	row	to	destination	if	specified,	without
calling	any	error	handlers.

DTSTransformStat_OKInfo 4097
(x1001)

Write	row	if	destination	specified;	also	call
ErrorSink	with	information.

DTSTransformStat_SkipFetch 4 Do	not	fetch	the	next	row;	reexecute	all
transforms	against	the	current	source	and
destination	rows.

DTSTransformStat_SkipInsert 8 Do	not	write	the	current	row	to	the
destination.

DTSTransformStat_SkipRow 2 Terminate	further	processing	of	this	row,	for
nonerror	reasons.

DTSTransformStat_SkipRowInfo 4098
(x1002)

Terminate	further	processing	of	this	row,	and
call	ErrorSink	with	information.

DTSTransformStat_UpdateQuery 32
(x0020)

Executes	the	UPDATE	statement	passed	to
the	SetRowsetAndQueries	property	on	the
destination,	with	values	from	the	currently
transformed	destination	row.

DTSTransformStat_UserQuery 128
(x0080)

Executes	the	user	query	statement	passed	to
SetRowsetAndQueries	on	the	destination,
with	values	from	the	currently	transformed
destination	row.

See	Also

IDTSDataPumpErrorSink

DTS	Programming

DynamicPropertiesTaskError
The	DynamicPropertiesTaskError	constants	specify	codes	used	to	report
errors	in	DynamicPropertiesTask	object	execution.

Constant Value Description
DTSDynamicProperties_E_AssignmentIndexOutOfRange 1005

(x03ED)
An	index	for
the
Assignments
collection	is
out	of	range.

DTSDynamicProperties_E_ConnectionIdNotFoundInPackage 1009
(x03F1)

No
Connection2
object	with	the
specified
ConnectionID
was	found.

DTSDynamicProperties_E_CouldNotOpenFileForReading 1012
(x03F4)

The	data	file
specified	as
the	property
value	source
could	not	be
opened	for
reading.

DTSDynamicProperties_E_EnvironmentVariableNotFound 1015
(x03F7)

The
environment
variable
specified	as
the	property
value	source
could	not	be
found.

DTSDynamicProperties_E_ExceededMaximumPropertySize 1016
(x03F8)

The	length	of
a	string
property	value

exceeds	the
maximum
(256
characters).

DTSDynamicProperties_E_GlobalVariableNotFoundInPackage 1013
(x03F5)

The	global
variable
specified	as
the	property
value	source
does	not	exist
in	the
package.

DTSDynamicProperties_E_InvalidAssignmentIndexVariantType 1018
(x03FA)

The	Variant
specified	for
an
Assignments
collection
index	does	not
have	a	type
valid	for	that
purpose.

DTSDynamicProperties_E_InvalidSourceType 1002
(x03EA)

The	value
specified	for
the
SourceType
property	is	not
defined.

DTSDynamicProperties_E_KeyNotFound 1006
(x03EE)

The	key
specified	as
the	property
value	source
could	not	be
found	in	the
.ini	file.

DTSDynamicProperties_E_NoEnvironmentVariableProvided 1014
(x03F6)

No
environment

variable	was
specified	as
the	property
value	source,
although	one
was	required.

DTSDynamicProperties_E_NoFileNameProvided 1003
(x03EB)

No	data	file
name	was
specified	as
the	property
value	source,
although	one
was	required.

DTSDynamicProperties_E_NoGlobalVariableProvided 1008
(x03F0)

No	global
variable	was
specified	as
the	property
value	source,
although	one
was	required.

DTSDynamicProperties_E_NoKeyProvided 1007
(x03EF)

No	.ini	file
key	was
specified	as
the	property
value	source,
although	one
was	required.

DTSDynamicProperties_E_NoPropertyValueProvided 1011
(x03F3)

No	property
value	could	be
retrieved	from
the	.ini	file.

DTSDynamicProperties_E_NoRowsReturnedFromQuery 1010
(x03F2)

No	rows	were
returned	from
the	query	that
was	the
property	value

source.
DTSDynamicProperties_E_NoSectionProvided 1004

(x03EC)
No	.ini	file
section	was
specified,
although	one
was	required.

DTSDynamicProperties_E_PackagePropertyNotFound 1001
(x03E9)

The	specified
package
property
whose	value
was	to	be
changed	is	not
defined.

DTSDynamicProperties_E_SectionNotFound 1005
(x03ED)

The	specified
section	could
not	be	found
in	the	.ini	file.

See	Also

DynamicPropertiesTask	Object

DTS	Programming

DynamicPropertiesTaskSourceType
The	DynamicPropertiesTaskSourceType	constants	are	used	with	the
SourceType	property	to	specify	the	type	of	source	object	that	provides	the	value
to	which	a	Data	Transformation	Services	(DTS)	package	object	property	will	be
set	by	the	DynamicPropertiesTask	object.

Symbol Value Description
DTSDynamicPropertiesSourceType_Constant 4 Source	is	a

constant.
DTSDynamicPropertiesSourceType_DataFile 5 Source	is	the

contents	of	a
data	file.

DTSDynamicPropertiesSourceType_EnvironmentVariable 3 Source	is	the
value	of	a
system
environment
variable.

DTSDynamicPropertiesSourceType_GlobalVariable 2 Source	is	the
value	of	a	Data
Transformation
Services	(DTS)
global	variable
within	the
package.

DTSDynamicPropertiesSourceType_IniFile 0 Source	is	the
value	of	a	key
within	an	.ini
file.

DTSDynamicPropertiesSourceType_Query 1 Source	is	a
value	returned
by	an	SQL
query.

See	Also

SourceType	Property

DTS	Programming

Data	Pump	Interfaces
The	Microsoft®	SQL	Server™	2000	Data	Transformation	Services	(DTS)	data
pump	is	an	OLE	DB	provider	that	provides	the	interfaces	and	methods	to	import,
export,	and	transform	data	from	an	OLE	DB	data	source	to	an	OLE	DB
destination.	The	DTS	data	pump	is	the	engine	of	the	Transform	Data	task,	Data
Driven	Query	task,	and	Parallel	Data	Pump	task,	which	is	accessed	through	the
ParallelDataPumpTask	object.

These	tasks	create	rowsets	on	the	source	and	destination	connections,	then	create
an	instance	of	the	data	pump	to	move	rows	between	the	source	and	destination
rowsets.	They	also	add	instances	of	transformations	to	the	data	pump	instance,
transforming	individual	row	data	as	it	is	moved	from	source	to	destination.

The	data	pump	provides	an	extensible	COM-based	architecture	that	allows
custom	applications	to	perform	complex	data	validations	and	transformations	as
data	moves	from	source	to	destination.	Third-party	applications	can	also	extend
the	data	pump	by	creating	custom	COM	objects	that	implement	the
IDTSDataPumpTransform	interface	to	make	use	of	the	full	power	of
Microsoft	Win32®	and	COM.	This	allows	an	application	to	avoid	the	overhead
of	converting	native	data	types	to	OLE	DB	variant	data	types	and	then
converting	them	back	again.

Data	pump	interfaces	are	implemented	using	Microsoft	Visual	C++®
applications	that	include	Dtspump.h.

Using	the	Data	Pump	Interfaces
An	application	must	call	IDTSDataPump	interface	methods	in	order.	For
example,	these	methods	must	be	called	in	the	following	order:

1.	 SetRowsets

2.	 AddTransform

3.	 Execute

Other	methods	on	the	interface	may	be	called	in	any	order	prior	to	a	call	to	the

Execute	method.	Because	the	data	pump	represents	a	single	execute	operation,
the	data	pump	is	not	reentrant	within	calls.	It	returns	an	error	if	it	is	called	as
though	it	were	reentrant.

Calls	to	IDTSDataPump	result	in	calls	to	the	IDTSDataPumpTransform
interfaces	in	the	following	sequence:

1.	 Create	an	instance	of	the	transformation	server	object	and	associated
properties,	if	necessary.

2.	 Call	IDTSDataPump::AddTransform.

3.	 Call	IPersistPropertyBag::Load,	if	IPropertyBag	is	specified.

4.	 Call	IDTSDataPumpTransform::Initialize.

5.	 Call	IDTSDataPumpTransform::AddVariable
("DTSErrorRecords").

6.	 Call	IDTSDataPumpTransform::ValidateSchema.

7.	 Call	IDTSDataPump::Execute.

8.	 Call	IDTSDataPumpTransform::AddVariable,	including	any	object
except	DTSErrorRecords.

9.	 Call	IDTSDataPumpTransform::Execute.

DTS	Programming

IDTSDataPump
The	IDTSDataPump	interface	is	used	to	specify	OLE	DB	source	and
destination	rowsets	to	be	used,	add	transformations	to	the	data	pump,	and
execute	the	transfer	of	data	by	the	data	pump.

The	AddTransform	method	returns	an	error	if	IDTSDataPump::SetRowsets
has	not	been	called,	and	IDTSDataPump::SetRowsets	returns	an	error	if	any
transformations	have	been	added	due	to	the
IDTSDataPumpTransform::ValidateSchema	method	having	been	executed
against	them	previously.	IDTSDataPump::InitNew	reinitializes	the
IDTSDataPump	object.

DTS	Programming

IDTSDataPump::AddTransform
The	AddTransform	method	adds	a	transformation	to	the	data	pump.

Syntax
HRESULT	AddTransform	(
LPBYTE	pvUserData,
LPCDTSTransformColumnsSpecification	pColumns,
DTSGuid	ServerClsid,
VARIANT	ServerParameters,
DTSTransformFlags	dwFlags,
IStorage	*pIStorage);

Argument Description
pvUserData	[in] Data	that	is	passed	to	the	event	sink	if	an	event

occurs	during	a	transformation.
pColumns	[in] Source	and	destination	columns.
ServerClsid	[in] COM	server	ProgID,	CLSID,	or	Iunknown.
ServerParameters	[in] Server	parameters	for	the	current	transformation.
dwFlags	[in] Transformation	column-validation	flags.
*pIStorage	[in] Pointer	to	persistent	storage	of	transformation

properties.

Remarks
The	data	pump	calls	CoCreateInstance	on	the	transformation	object	specified
by	ServerClsid.	The	transformation	specified	must	support	the
IDTSDataPumpTransform	interface	and	is	responsible	for	verifying	that	the
source	and	destination	column	values	can	be	converted	as	specified.

The	variant	ServerParameters	may	be	of	type	VT_UNKNOWN.	If
ServerParameters	has	the	type	VT_UNKNOWN,	then	the	VT_UNKNOWN
pointer	is	used	to	access	the	IDTSDataPumpTransform	interface	using

QueryInterface.	This	allows	the	data	pump	to	use	custom	COM	objects	that
have	not	been	previously	registered	on	the	system,	making	it	easier	to	distribute
custom	transformations.	This	is	also	used	when	providing	a	transformation
server	whose	properties	must	be	set	programmatically	by	the	data	pump
consumer	prior	to	adding	the	transformation.	In	this	case,	the	consumer	creates
an	instance	of	the	object,	calls	IUnknown::QueryInterface,	and	sets	the
properties.

If	an	IUnknown	pointer	is	passed	to	the	data	pump,	the	data	pump	determines
whether	the	pointer	has	previously	been	passed,	and	if	so,	appropriately	handles
calling	OnNextRow	only	one	time,	regardless	of	how	many	times	that	pointer
has	been	passed	as	a	transformation	server.	In	this	case,	ServerParameters
specifies	the	shared	object	to	handle.	This	is	useful	for	objects	that	need	to
perform	specific	row-by-row	aggregations	without	potentially	conflicting	with
named	variables	added	by	AddTransform.

The	transformation	validation	is	controlled	by	the	DTSTransformFlags
constants	specified	in	the	parameter	list.	If	different	validations	are	required	for
different	columns	of	the	row,	then	a	separate	transformation	must	be	added.

ServerClsid	allows	specification	of	the	CLSID	of	the	transformation	server	as	a
CLSID,	ProgID,	or	as	an	existing	IUnknown	object	implementing	the
IDTSDataPumpTransform	interface.

pIStorage	is	used	to	set	the	properties	of	the	transformation	server,	after	an
instance	of	the	transformation	is	created,	if	necessary.

pvUserData	allows	information	about	a	specific	transformation	to	be	passed	to
an	event	sink.	This	pointer	is	not	passed	to	the	transformation	server;
ServerParameters	performs	that	task.

Transformations	are	always	invoked	in	the	order	they	are	added.

See	Also

DTSTransformFlags

DTS	Programming

IDTSDataPump::AddTransformVariable
The	AddTransformVariable	method	allows	the	data	pump	consumer	to	pass	its
global	variables	through	to	the	executing	transformation	server.

Syntax
HRESULT	AddTransformVariable(LPCOLESTR	pwzName,
BOOL	bGlobal,
VARIANT	Variable);

Argument Description
pwzName	[in] Variable	name
bGlobal	[in] For	Microsoft®	ActiveX®	scripts,	indicates	whether	this

variable's	methods	must	be	qualified	by	the	object	name
Variable	[in] Variable	value,	passed	to	and	updatable	by	the

transformation

Remarks
This	method	results	in	a	call	to	IDTSDataPumpTransform::AddVariable
during	IDTSDataPump::Execute	initialization,	before	transformations	are
actually	executed.	The	data	pump	itself	does	not	operate	on	these	variables,	but
simply	passes	them	through.	If	bGlobal	is	TRUE	for	an	ActiveX	script,	then	the
methods	of	this	variable	are	considered	global	and	can	be	called	directly,	without
qualifying	by	object	name.

DTS	Programming

IDTSDataPump::Execute
The	Execute	method	executes	the	data	pump	and	any	transformations	that	have
been	defined.

Syntax
HRESULT	Execute	(
LPBYTE	pvUserData,
ULARGE_INTEGER	*puliRowsComplete,
ULONG	*pulErrorRows,
LPDTSExecuteStatus	pExecStatus);

Argument Description
pvUserData	[in] User	data	passed	back	to	event	and	error	sinks
*puliRowsComplete
[out]

Total	number	of	source	rows	processed,	including
those	skipped

*pulErrorRows	[out] Total	number	of	error	rows	encountered
pExecStatus	[out] Pump	return	status

Remarks
Control	is	not	returned	to	the	caller	until	the	last	row	has	been	processed	or	the
data	pump	fails.	Calls	to	the	Execute	method	of	each	transformation	server	are
made	for	each	row	in	the	order	in	which	the	transformations	were	added.
Structured	exception	handling	is	placed	around	each	call.	If	the	called	server
returns	an	exception	(for	example,	an	access	violation),	an	error	is	reported.	The
data	pump	reports	all	errors	through	the
IDTSDataPumpErrorSink::OnTransformError	event.

The	Execute	method	returns	DTSExecuteStatus	constant	values.	Execute	returns
E_FAIL	if	it	is	terminated;	DB_E_ERRORSOCURRED	if	the	maximum	error
count	is	exceeded;	DB_S_ERRORSOCCURRED	if	errors	occurred,	but	the
maximum	error	count	is	not	exceeded;	and	NOERROR	if	it	completes	with	no
errors.

See	Also

DTSExecuteStatus

IDTSDataPumpErrorSink::OnTransformError

DTS	Programming

IDTSDataPump::GetRowsets
The	GetRowsets	method	is	used	to	return	interface	pointers	to	the	current	source
rowset	and	destination	rowsetchange	object.

Syntax
HRESULT	GetRowsets	(IRowset	**ppSrcRowset,
IRowsetChange	**ppDestRowsetChange);

Argument Description
**ppSrcRowset	[out] Variable	to	receive	a	pointer	to	the	source	rowset
**ppDestRowsetChange
[out]

Variable	to	receive	a	pointer	to	the	destination
rowsetchange	object

Remarks
GetRowsets	allows	a	consumer	application	to	reuse	an	instance	of	the	data
pump.

DTS	Programming

IDTSDataPump::InitNew
The	InitNew	method	is	used	to	reset	the	data	pump	between	successive
executions.

Syntax
HRESULT	InitNew();

DTS	Programming

IDTSDataPump::SetFetchBufferSize
The	SetFetchBufferSize	method	specifies	the	size	of	the	buffer	that	the	data
pump	uses	to	hold	rows	fetched	from	the	source	using	the	OLE	DB
IRowset::GetNextRows	method.

Syntax
HRESULT	SetFetchBufferSize	(ULONG	cIn);

Argument Description
cIn	[in] Size	of	the	GetNextRows	HROW	buffer

Remarks
The	default	buffer	size	is	1.

DTS	Programming

IDTSDataPump::SetInsertCommitSize
The	SetInsertCommitSize	method	specifies	the	number	of	rows	inserted	at	a
data	destination	between	commit	operations.

Syntax
HRESULT	SetInsertCommitSize	(ULONG	cIn);

Argument Description
cIn	[in] Number	of	successful	rows	inserted	between	commit

operations,	if	supported	by	the	OLE	DB	provider.

Remarks
The	SetInsertCommitSize	default	setting	is	0.

DTS	Programming

IDTSDataPump::SetMaximumErrorRowCount
The	SetMaximumErrorRowCount	method	specifies	the	maximum	number	of
errors	that	can	occur	before	the	data	pump	fails.

Syntax
HRESULT	SetMaximumErrorRowCount	(ULONG	cIn);

Argument Description
cIn	[in] Maximum	number	of	allowable	error	rows

Remarks
By	default,	the	data	pump	fails	on	the	first	error.

DTS	Programming

IDTSDataPump::SetProgressRowCount
The	SetProgressRowCount	method	specifies	how	often	notifications	should	be
sent	using	the	connection	point.

Syntax
HRESULT	SetProgressRowCount	(
ULONG	cIn);

Argument Description
cIn	[in] Number	of	rows	inserted	between	progress	notifications

Remarks
If	no	event	sink	has	been	created,	then	no	notifications	are	sent.	If	an	event	sink
exists	and	SetProgressRowCount	is	not	called,	progress	notifications	are	sent
every	1000	rows.

DTS	Programming

IDTSDataPump::SetRowsets
The	SetRowsets	method	specifies	the	source	and	destination	rowsets	to	be	used
by	the	data	pump.

Syntax
HRESULT	SetRowsets	(IRowset	*pSrcRowset,
IRowsetChange	*pDestRowsetChange);

Argument Description
*pSrcRowset	[in] Pointer	to	the	source	rowset
*pDestRowsetChange
[in]

Pointer	to	the	destination	rowset

Remarks
The	consumer	application	must	open	the	rowsets	before	the	data	pump	can	use
them.

The	OLE	DB	provider	must	support	DBPROP_UPDATABILITY:
DPBROP_UP_INSERT.

DTS	Programming

IDTSDataPump2
The	IDTSDataPump2	interface	extends	the	IDTSDataPump	interface	and
supports	features	added	to	the	Data	Transformation	Services	(DTS)	data	pump
for	Microsoft®	SQL	Server™	2000.	The	new	features	supported	by
IDTSDataPump2	are:

Support	for	execution	of	a	single	row	or	set	of	rows.

Support	for	processing	rows	on	a	different	thread	from	which	previous
rows	in	the	rowset	were	processed.

Support	for	multiphased	operation	of	transformation	servers

DTS	Programming

IDTSDataPump2::AddTransform2
The	AddTransform	method	adds	a	new	Transform	with	extended	multiphase
capability	to	the	data	pump.

Syntax
HRESULT	AddTransform2(
				LPCOLESTR	pwzName,	
				LPBYTE	pvUserData,
				LPCDTSTransformColumnsSpecification	pColumns,
				DTSGuid	ServerClsid,
				VARIANT	ServerParameters,
				DTSTransformFlags	dwFlags,
				DTSTransformPhaseEnum	ePhases,	
				IStorage	*pIStorage);

Argument Description
pwzName	[in] Transformation	name
pvUserData	[in] Data	that	is	passed	to	the	event	sink	if	an	event

occurs	during	a	transformation
pColumns	[in] Structure	specifying	source	and	destination	columns
ServerClsid	[in] ProgID	or	CLSID	of	transformation,	which	can	be

Iunknown
ServerParameters	[in] Server	parameters	for	the	current	transformation
dwFlags	[in] Transformation	column-validation	flags
ePhases	[in] Phases	for	which	the	transformation	will	be	called
pIStorage	[in] Pointer	to	persistent	storage	of	transformation

properties

Remarks
The	data	pump	calls	CoCreateInstance	on	the	transformation	object	specified
by	ServerClsid.	The	transformation	specified	must	support	the

IDTSDataPumpTransform2	interface	and,	by	inheritance,
IDTSDataPumpTransform.	It	must	respond	to	QueryInterface	for	both
IDTSDataPumpTransform2	and	IDTSDataPumpTransform.

See	Also

IDTSDataPump::AddTransform

IDTSDataPumpTransform2	Interface

DTS	Programming

IDTSDataPump2::ExecuteComplete
The	ExecuteComplete	method	terminates	a	sequence	of	single-row	data	pump
executions.

Syntax
HRESULT	ExecuteComplete	(
				LPDTSExecuteInfo	pExecInfo);

Argument Description
pExecInfo	[in/out] Execution	info	to	be	passed	into	and	returned	from	the

data	pump

Remarks
To	execute	one	or	more	rows	of	the	source	rowset,	the	data	pump	caller	first
calls	ExecuteInit,	calls	ExecuteRow	for	each	row	to	be	processed,	and	then
calls	ExecuteComplete.	If	ExecuteComplete	is	not	called,	Insert	batches	may
not	be	completed	successfully	and	transformation	server	processing	may	not	be
correctly	cleaned	up.

See	Also

IDTSDataPump2::ExecuteInit

IDTSDataPump2::ExecuteRow

IDTSDataPump2::GetExecuteInfo

DTS	Programming

IDTSDataPump2::ExecuteInit
The	ExecuteInit	method	initiates	a	sequence	of	single-row	data	pump
executions.

Syntax
HRESULT	ExecuteInit	(
				LPBYTE	pvUserData,
				BOOL	*pbEndOfRowset,
				LPDTSExecuteInfo	pExecInfo);

Argument Description
pvUserData	[in] Data	that	is	passed	to	an	event	sink	if	an	event

occurs
pbEndOfRowset	[out] TRUE	if	at	end	of	source	rowset
pExecInfo	[in/out] Execution	info	to	be	passed	into	and	returned	from

the	data	pump

Remarks
To	execute	one	or	more	rows	of	the	source	rowset,	the	data	pump	caller	first
calls	ExecuteInit,	calls	ExecuteRow	one	or	more	times,	and	then	calls
ExecuteComplete.	ExecuteInit	returns	TRUE	in	pbEndOfRowset	if	the	end	of
the	rowset	has	already	been	reached.

See	Also

IDTSDataPump2::ExecuteComplete

IDTSDataPump2::ExecuteRow

IDTSDataPump2::GetExecuteInfo

DTS	Programming

IDTSDataPump2::ExecuteRow
The	ExecuteRow	method	causes	the	data	pump	to	process	a	single-row	of	the
source	rowset.

Syntax
HRESULT	ExecuteRow	(
				BOOL	*pbEndOfRowset,
				LPDTSExecuteInfo	pExecInfo);

Argument Description
pbEndOfRowset	[out] TRUE	if	at	end	of	source	rowset
pExecInfo	[in/out] Execution	information	to	be	passed	into	and

returned	from	the	data	pump

Remarks
To	execute	one	or	more	rows	of	the	source	rowset,	the	data	pump	caller	calls
ExecuteInit,	calls	ExecuteRow	for	each	row	to	be	processed,	and	then	calls
ExecuteComplete.	ExecuteRow	returns	TRUE	in	pbEndOfRowset	if	the	end	of
the	rowset	has	been	reached.

If	MaximumErrorRowCount	is	greater	than	0,	ExecuteRow	continues	until	a
row	is	successfully	processed	or	MaximumErrorRowCount	is	exceeded.

See	Also

IDTSDataPump2::ExecuteComplete

IDTSDataPump2::ExecuteInit

IDTSDataPump2::GetExecuteInfo

DTS	Programming

IDTSDataPump2::GetExecuteInfo
The	GetExecuteInfo	returns	information	about	data	pump	execution.

Syntax
HRESULT	GetExecuteInfo(
				LPDTSExecuteInfo	pExecInfo);

Argument Description
pExecInfo	[in/out] Execution	information	to	be	passed	into	and	returned

from	the	data	pump

Remarks
GetExecuteInfo	may	be	called	at	any	point	after	ExecuteInit.

pExecInfo	is	a	pointer	to	a	DTSExecuteInfo	structure.	This	structure	is	used	to
pass	the	following	information	to	and	from	the	data	pump:

Total	number	of	source	rows	processed.

Total	number	of	error	rows	encountered.

Data	pump	execution	status.

Transform	status,	used	to	select	the	data	driven	query	to	be	executed.

Handles	to	input	source	and	destination	chapters,	used	to	specify	the
chapters	where	hierarchical	rowset	processing	occurs.

Handles	to	output	source	and	destination	rows,	returned	by	the	data
pump	to	enable	caller	to	specify	where	rowset	processing	should	resume

at	next	ExecuteRow	call.

See	Also

IDTSDataPump2::ExecuteRow

DTS	Programming

IDTSDataPump2::GetOptions
The	GetOptions	method	returns	extended	data	pump	processing	options.

Syntax
HRESULT	GetOptions(
				LPDTSDataPumpOptions	peOptions);

Argument Description
peOptions	[out] Extended	data	pump	processing	options

Remarks
For	more	information	about	the	extended	data	pump	processing	options,	see
IDTSDataPump2::SetOptions.

DTS	Programming

IDTSDataPump2::SetExecuteThreadComplete
The	SetExecuteThreadComplete	method	completes	processing	that	must	be
done	on	the	current	thread,	prior	to	the	data	pump	being	called	on	another	thread.

Syntax
HRESULT	SetExecuteThreadComplete();

Remarks
Some	transformations	may	generate	a	thread-specific	state	that	requires	cleanup
to	be	executed	on	that	thread.	For	example,	if	ExecuteInit	or	ExecuteRow	is
called	on	a	worker	thread	that	is	not	the	same	as	that	on	which
ExecuteComplete	is	called,	SetExecuteThreadComplete	must	be	called	on	the
worker	thread	when	it	has	completed	its	operation	(prior	to	ExecuteComplete
being	called).

Currently	this	is	specific	to	the	Microsoft®	ActiveX®	Script	transformation,	due
to	the	requirement	that	IActiveScript	execution	state	cannot	be	transferred
across	threads.	In	ActiveX	Script	transformations,	any	variables	in	the	script,
including	global	variables	outside	function	scope,	will	be	independent	across
multiple	threads	calling	ExecuteRow.	Calling	this	method	causes
IDTSDataPumpTransform2::SetExecuteThreadComplete	to	be	called	for	all
transformations	supporting	the	IDTSDataPumpTransform2	interface.

See	Also

IDTSDataPump2::ExecuteComplete

IDTSDataPump2::ExecuteInit

IDTSDataPump2::ExecuteRow

DTS	Programming

IDTSDataPump2::SetOptions
The	SetOptions	method	sets	extended	data	pump	processing	options.

Syntax
HRESULT	SetOptions(
				DTSDataPumpOptions	eOptions);

Argument Description
eOptions	[in] Extended	data	pump	processing	options

Remarks
The	extended	data	pump	processing	options	are:

Symbol Value Description
DTSDataPumpOpt_Default 0 Normal	processing

occurs.
DTSDataPumpOpt_AlwaysCommitFinalBatch 1 The	final	batch	is

committed	even	if
the	data	pump	fails.
This	is	to	support
restartability.

See	Also

IDTSDataPump2::GetOptions

DTS	Programming

IDTSDataPumpErrorSink
The	IDTSDataPumpErrorSink	interface	provides	optional	error	sinks	for	the
source,	transformations,	or	destination	to	data	pump	consumers.	Only	one	of	the
error	sink	methods	is	called	for	each	row,	and	the	method	called	indicates	where
the	error	was	encountered.

The	error	sinks	determine	the	appropriate	response	to	the	error.	The	response	is
one	of	the	following:

Terminate	the	data	pump.

Increment	an	error	count	and	continue	if	the	error	count	does	not	exceed
the	value	of	the	MaximumErrorCount	property.

Continue	the	data	pump	operation.

The	error	information	is	written	to	the	exception	file	and	the	package	OnError
event	is	raised	if	a	handler	has	been	provided.

See	Also

Handling	DTS	Events	and	Errors

MaximumErrorCount	Property

OnError	Event

DTS	Programming

IDTSDataPumpErrorSink::OnBindingError
The	OnBindingError	method	indicates	that	a	binding	error	occurred	in	a	call	to
the	OLE	DB	IAccessor::CreateAccessor	method.

Syntax
HRESULT	OnBindingError	(
				LPBYTE	pvExecUserData,
				HRESULT	hrError,
				LPCDTSTransformColumnInfo	pSourceRow,
				const	DBBINDSTATUS	*pSourceDBBindStatus,
				LPCDTSTransformColumnInfo	pDestinationRow,
				const	DBBINDSTATUS	*pDestinationDBBindStatus);

Argument Description
pvExecUserData	[in] User	data	pointer	passed	to

IDTSDataPump::Execute.
hrError	[in] Error	code	from	CreateAccessor:	specifies	the

destination	if	pDestinationRow,	the	source	if
pSourceRow.

pSourceRow	[in] Pointer	to	the	source	row	and	binding
information.

pSourceDBBindStatus	[in] Pointer	to	source	binding	status	returns.
pDestinationRow	[in] Pointer	to	the	destination	row	and	binding

information;	NULL	if	from	a	source	binding
error.

pDestinationDBBindStatus
[in]

Pointer	to	destination	binding	status	returns;
NULL	if	from	a	source	binding	error.

Remarks
OnBindingError	can	be	useful	when	designing	custom	transformation	servers.
It	is	primarily	used	to	diagnose	binary	large	object	(BLOB)-related	problems.

DTS	Programming

IDTSDataPumpErrorSink::OnDestinationError
The	OnDestinationError	method	indicates	that	an	error	occurred	during
InsertRow.

Syntax
HRESULT	OnDestinationError	(LPBYTE	pvExecUserData,
				LPDTSTransformColumnInfo	pSourceRow,
				LPDTSTransformColumnInfo	pDestinationRow,
				HRESULT	hrError,
				ULARGE_INTEGER	uliRow,
				ULONG	cErrors,
				BOOL	*pbAbort);

Argument Description
pvExecUserData
[in]

User	data	pointer	passed	to
IDTSDataPump::Execute.

pSourceRow	[in] Pointer	to	the	source	row	and	binding	information;
NULL	if	GetNextRows	or	GetData	failed.

PDestinationRow
[in]

Pointer	to	the	destination	row	and	binding	information;
NULL	if	prior	to	the	execution	of	the	transformation.

hrError	[in] Error	code	from	the	OLE	DB	or	system	call.
uliRow	[in] Number	of	the	row	that	failed.
cErrors	[in] Number	of	error	rows	encountered	during	the

transformation,	including	the	current	row.
pbAbort	[out] Set	to	TRUE	by	the	error	sink	if	this	error	should

terminate	IDTSDataPump::Execute.	Otherwise,
Execute	continues	until	MaximumErrorRowCount
is	exceeded.

Remarks
OnDestinationError	is	called	when	an	error	is	encountered	sending	a	row	to	the

destination	using	IRowsetChange::InsertRow.	Operation	of	the	data	pump
continues	unless	the	pbAbort	flag	is	set	to	TRUE	or	the	maximum	allowable
error	count	is	exceeded.

DTS	Programming

IDTSDataPumpErrorSink::OnSourceError
The	OnSourceError	method	indicates	that	an	error	occurred	during	a
GetNextRows	or	GetData	operation.

Syntax
HRESULT	OnSourceError	(
				LPBYTE	pvExecUserData,
				LPDTSTransformColumnInfo	pSourceRow,
				HRESULT	hrError,
				ULARGE_INTEGER	uliRow,
				ULONG	cErrors,
				BOOL	*pbAbort);

Argument Description
pvExecUserData
[in]

User	data	pointer	passed	to
IDTSDataPump::Execute.

pSourceRow	[in] Pointer	to	the	source	row	and	binding	information;
NULL	if	GetNextRows	or	GetData	failed.

hrError	[in] Error	code	from	the	OLE	DB	or	system	call.
uliRow	[in] Number	of	the	row	that	failed.
cErrors	[in] Number	of	error	rows	encountered	during	the

transformation,	including	the	current	row.
pbAbort	[out] Set	to	TRUE	by	the	error	sink	if	this	error	should

terminate	IDTSDataPump::Execute.	Otherwise,
Execute	continues	until	MaximumErrorRowCount
is	exceeded.

Remarks
OnSourceError	is	called	when	an	error	is	encountered	acquiring	a	source	row.
This	is	generally	considered	to	be	a	fatal	data	pump	error,	and	the	pbAbort	flag	is
set	to	TRUE.

DTS	Programming

IDTSDataPumpErrorSink::OnTransformError
The	OnTransformError	method	indicates	that	an	error	occurred	during	one	or
more	transformations.

Syntax
HRESULT	OnTransformError	(LPBYTE	pvExecUserData,
				LPBYTE	pvTransformUserData,
				IDTSDataPumpTransform	*pTransformServer,
				LPDTSTransformColumnInfo	pSourceRow,
				DTSTransformStatus	TransformStatus,
				HRESULT	hrTransform,
				ULARGE_INTEGER	uliRow,
				ULONG	cErrors,
				BOOL	*pbAbort);

Argument Description
pvExecUserData	[in] User	data	pointer	passed	to

IDTSDataPump::Execute.
pvTransformUserData
[in]

User	data	pointer	passed	to
IDTSDataPump::AddTransform	in
DTSTransformColumnsSpecification
parameter.

pTransformServer	[in] Pointer	to	the	transformation	server	returning	the
error.

pSourceRow	[in] Pointer	to	the	source	row	and	binding
information.

TransformStatus	[in] Transformation	returned	status	code.
hrTransform	[in] DTSDataPumpTransform::Execute	or

DTSDataPumpTransform2::ProcessPhase
HRESULT	return	code.

uliRow	[in] Number	of	the	row	that	failed.
cErrors	[in] Number	of	error	rows	encountered	during	the

transformation,	including	the	current	row.

pbAbort	[out] Set	to	TRUE	by	the	error	sink	if	this	error	should
terminate	IDTSDataPump::Execute.	Otherwise,
Execute	continues	until
MaximumErrorRowCount	is	exceeded.

Remarks
OnTransformError	is	called	when	an	error	is	encountered	transforming	a	row.
Such	an	error	may	be	encountered	in	one	of	the	following	ways:

The	transformation	server	encounters	data	that	cannot	be	transformed.	It
reports	this	by	returning	an	error	transform	status.	This	is	considered
normal	and	operation	of	the	data	pump	continues	unless	the	pbAbort
flag	is	set	to	TRUE	or	the	maximum	allowable	error	count	is	exceeded.

The	transformation	server	returns	an	error	in	the	HRESULT	from
DTSDataPumpTransform::Execute.	This	is	considered	a	fatal	data
pump	error.

The	transformation	server	returns	an	exception.	Any	such	exception	is
reported	by	the	data	pump	as	a	normal	row	error,	and	operation
continues.

DTS	Programming

IDTSDataPumpProgressSink
The	IDTSDataPumpProgressSink	interface	exposes	the	OnIntervalComplete
method,	which	is	a	progress	indicator	event	sink.

DTS	Programming

IDTSDataPumpProgressSink::OnIntervalComplete
The	OnIntervalComplete	method	is	a	progress	indicator	event	sink	that	a
custom	application	can	use	to	indicate	progress	during	a	transformation.

Syntax
HRESULT	OnIntervalComplete	(
LPBYTE	pvExecUserData,
ULARGE_INTEGER	uliRowsComplete,
BOOL	*pbAbort);

Argument Description
pvExecUserData
[in]

User	data	pointer	passed	to
IDTSDataPump::Execute.

uliRowsComplete
[in]

Total	source	rows	processed	during	the	current
transformation,	including	those	skipped.

*pbAbort	[out] Indicates	whether	to	terminate	transformation
execution;	set	to	TRUE	by	the	event	sink	to	terminate
IDTSDataPump::Execute.

DTS	Programming

IDTSDataPumpTransform
The	IDTSDataPumpTransform	interface	is	retrieved	and	its	methods	are	called
by	the	data	pump	to	perform	individual	transformations.	All	custom
transformation	COM	objects	must	support	the	IDTSDataPumpTransform
interface.

An	instance	of	the	IDTSDataPumpTransform	interface	is	created	by	the
ServerClsid	being	passed	to	IDTSDataPump::AddTransform.
ServerParameters	allows	the	data	pump	consumer	to	create	a	single	instance	of
an	IDTSDataPumpTransform	implementation	and	pass	it	to	multiple
IDTSDataPump::AddTransform	calls.	This	is	used	by	custom	transformation
servers	and	can	be	used	for	internal	operations	as	performing	aggregations.	The
custom	transformation	server	should	track	this	using	the	pvTransformServerData
parameter	to	optimize	operations	such	as	AddVariable,	OnRowComplete,	and
so	on.

DTS	Programming

IDTSDataPumpTransform::AddVariable
The	AddVariable	method	adds	a	variable	to	the	execution	context	of	a
transformation	server.	AddVariable	is	always	called	one	time	before
ValidateSchema	to	add	the	IDTSErrorRecords	object.

Syntax
HRESULT	AddVariable	(
LPBYTE	pvTransformServerData,
LPCOLESTR	pwzName,
BOOL	bGlobal,
VARIANT	Variable);

Argument Description
pvTransformServerData
[in]

Transform	server	state	data

pwzName	[in] Variable	name
bGlobal	[in] For	Microsoft®	ActiveX®	scripts,	indicates

whether	the	methods	of	this	variable	must	be
qualified	by	the	object	name

Variable	[in] Variable	value;	passed	to	and	updatable	by	the
transformation	server

Remarks
AddVariable	allows	an	application	variable	to	be	passed	through	to	the
transformation	process.	The	data	pump	always	calls	this	method	to	add	the
DTSErrorRecords	object	immediately	after	a	call	to
IDTSDataPumpTransform::Initialize	and	before	a	call	to	ValidateSchema.
This	allows	ValidateSchema	to	add	errors	to	the	OLE	DB	error	records
collection	for	the	thread	if	columns	are	found	to	be	in	error.

For	objects	to	be	used	in	ActiveX	scripts,	the	variable	should	be	ignored	if	the
variant	is	not	of	type	VT_DISPATCH.	This	allows	all	variables	to	be	passed	to

all	transformation	servers.	The	bGlobal	parameter	indicates	whether	the
properties	and	methods	of	the	variable	are	to	be	added	to	the	global	namespace
of	the	script;	if	so,	the	method	can	be	called	directly,	instead	of	requiring
qualification	using	the	object	name.	Data	pump-generated	variables	(for
example,	DTSErrorInfo,	and	the	DTSSource	and	DTSDestination	column
collections)	are	always	added	with	this	flag	set	to	FALSE	to	minimize	the
likelihood	of	name	conflict.

DTS	Programming

IDTSDataPumpTransform::Execute
The	Execute	method	executes	the	transformation	for	a	single	row.

Syntax
HRESULT	Execute	(LPBYTE	pvTransformServerData,
LPCDTSTransformColumnInfo	pSrcColumnInfo,
LPDTSTransformColumnInfo	pDestColumnInfo,
IDTSDataConvert	*pIDTSDataConvert,
LPDTSTransformStatus	peTransformStatus);

Argument Description
pvTransformServerData
[in]

Transformation	server	state	data

pSrcColumnInfo	[in] Source	column	and	row	data
pDestColumnInfo
[in/out]

Destination	column	and	row	data

pIDTSDataConvert	[in] Pointer	to	the	data	conversion	interface
peTransformStatus	[out] Result	of	the	transformation

Remarks
This	function	is	called	by	the	data	pump	and	executes	the	specified
transformation.	The	IDTSDataConvert	interface	is	supplied	to	provide	a	DTS-
compatible	conversion	utility.	For	more	information,	search	include	file
dtspump.h	for	IDTSDataConvert.	dtspump.h	is	installed	by	default	to
X:\Program	Files\Microsoft	SQL	Server\80\Tools\DevTools\include\.

Execute	returns	NO_ERROR	except	when	a	fatal	failure	occurs.	When	Execute
returns	an	error,	the	data	pump	terminates.	Normal	errors	such	as	data	violations
should	be	handled	as	a	returned	peTransformStatus,	which	results	in	a	call	to
IDTSDataPumpErrorSink::OnTransformError.	Because	some	OLE	DB
providers	may	have	restrictions	on	the	number	of	storage	objects	that	may	be
open,	Execute	should	release	any	BLOB	storage	objects	that	do	not	need	to	be

held	during	the	destination	insert	upon	completion,	instead	of	waiting	for
OnRowComplete.

Column	data	should	be	written	in	the	buffer	referenced	by
DTSColumnData.pvData	of	the	element	for	the	destination	column,	at	the
offset	specified	by	DBBINDING.obValue.	You	can	instead	store	a	pointer	to	the
data	at	this	location	if	you	add	the	DBTYPE_BYREF	flag	to
DBBINDING.wType.	For	more	information	and	a	description	of	these	fields,
see	Column	Information	Structures	in	DTS	Transformations.

Transformations	that	implement	both	IDTSDataPumpTransform	and
IDTSDataPumpTransform2	typically	implement	Execute	by	calling
IDTSDataPumpTransform2::ProcessPhase	with	NULL	for	the	pPhaseInfo
parameter.

See	Also

IDTSDataPumpTransform2::ProcessPhase

DTS	Programming

IDTSDataPumpTransform::Initialize
The	Initialize	method	allows	the	transformation	server	to	initialize	its	state	for
the	current	transformation.

Syntax
HRESULT	Initialize	(
				LPCOLESTR	pwzName,
				VARIANT	ServerParameters,
				LPBYTE	*ppvTransformServerData);

Argument Description
pwzName	[in] Transformation	name
ServerParameters	[in] Parameters	to	server	for	this	transformation
ppvTransformServerData
[out]

Transformation	server	state	data

Remarks
An	instance	of	the	transformation	server	object	is	created	by	ServerClsid	and	is
passed	to	IDTSDataPump::AddTransform,	unless	this	is	an	IUnknown
object.

ServerParameters	allows	the	Data	Transformation	Services	(DTS)	data	pump	to
create	an	instance	of	an	IDTSDataPumpTransform	implementation	and	pass	it
to	multiple	IDTSDataPump::AddTransform	calls.	This	is	only	used	by	custom
transformation	servers	and	can	be	helpful	for	internal	operations	such	as
aggregations.	The	transformation	server	should	track	this	in	the
pvTransformServerData	parameter	to	optimize	operations	such	as	AddVariable,
OnRowComplete,	and	so	on.

The	output	ppvTransformServerData	is	passed	to	all	subsequent	methods,	so	a
single	instance	of	a	transformation	server	can	be	used	to	implement	multiple
separate	transformations.	Generally,	you	will	need	to	allocate	the	storage	whose

reference	you	return	in	ppvTransformServerData.	You	need	to	release	the
storage	in	OnTransformComplete,	or	in	ValidateSchema,	if	ValidateSchema
returns	an	error.

See	Also

IDTSDataPump::AddTransform

IDTSDataPumpTransform::AddVariable

IDTSDataPumpTransform::OnRowComplete

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform::ValidateSchema

DTS	Programming

IDTSDataPumpTransform::OnRowComplete
The	OnRowComplete	method	is	called	after	every	successful	fetch	operation,
allowing	the	transformation	server	to	free	per-row	allocations	and	client-owned
data	in	both	source	and	destination	rows.

Syntax
HRESULT	OnRowComplete	(LPBYTE	pvTransformServerData,
LPDTSTransformColumnInfo	pSrcColumnInfo,
LPDTSTransformColumnInfo	pDestColumnInfo,
IDTSDataConvert	*pIDTSDataConvert,
DTSTransformStatus	eTransformStatus,
HRESULT	hrInsert);

Argument Description
pvTransformServerData
[in]

Transform	server	state	data

pSrcColumnInfo	[in/out] Source	column	and	row	data
pDestColumnInfo
[in/out]

Destination	column	and	row	data

pIDTSDataConvert	[in] Pointer	to	the	data	conversion	interface
eTransformStatus	[in] Result	of	Execute
hrInsert	[in] Result	of	IRowsetChange::InsertRow

Remarks
After	a	successful	fetch	operation,	the	data	pump	calls	Execute	and	attempts	to
insert	the	row	into	the	destination	using	IRowsetChange::InsertRow,	if
specified.	OnRowComplete	is	called	for	every	successful	fetch	operation,
regardless	of	whether	Execute	or	InsertRow	succeeded	or	failed.	If
OnRowComplete	returns	FAILED,	the	data	pump	terminates.

hrInsert	indicates	whether	IRowsetChange::InsertRow	succeeded.

eTransformStatus	indicates	whether	errors	occurred	that	resulted	in	no	call	to
InsertRow.	OLE	DB	requires	that	IRowsetChange::InsertRow	release	any
storage	objects	contained	in	the	row;	therefore,	the	transformation	server	must	be
careful	not	to	call	pIDTSDataConvert->ClearBindingData	on	a	storage	object
that	has	already	been	released.

DTS	Programming

IDTSDataPumpTransform::OnTransformComplete
After	all	rows	have	been	transformed	or	the	data	pump	has	been	terminated	due
to	errors,	the	OnTransformComplete	method	is	called	to	allow	the
transformation	server	to	release	all	allocations	made	for	the	transformation.

Syntax
HRESULT	OnTransformComplete	(LPBYTE	pvTransformServerData,
LPDTSTransformColumnInfo	pSrcColumnInfo,
LPDTSTransformColumnInfo	pDestColumnInfo,
IDTSDataConvert	*pIDTSDataConvert);

Argument Description
pvTransformServerData
[in]

Transform	server	state	data

pSrcColumnInfo	[in/out] Source	column	and	row	data
pDestColumnInfo
[in/out]

Destination	column	and	row	data

*pIDTSDataConvert	[in] Pointer	to	the	data	conversion	interface

Remarks
OnTransformComplete	is	called	only	if	ValidateSchema	completes
successfully.	OnTransformComplete	is	not	called	if	the	transformation
implements	IDTSDataPumpTransform2	and
IDTSDataPumpTransform2::GetTransformServerInfo	indicates	the
transformation	supports	DTSTransformPhase_OnPumpComplete	phase.

See	Also

IDTSDataPumpTransform2::GetTransformServerInfo

IDTSDataPumpTransform2::ProcessPhase

DTS	Programming

IDTSDataPumpTransform::ValidateSchema
The	ValidateSchema	method	validates	the	schema	of	the	source	and	destination
columns	to	be	transformed.

Syntax
HRESULT	ValidateSchema	(LPBYTE	pvTransformServerData,
LPCDTSTransformColumnInfo	pSrcColumnInfo,
LPCDTSTransformColumnInfo	pDestColumnInfo,
IDTSDataConvert	*pIDTSDataConvert,
DTSTransformFlags	eTransformFlags);

Argument Description
pvTransformServerData
[in]

Transform	server	state	data

pSrcColumnInfo	[in/out] Source	column	and	row	data
pDestColumnInfo	[in/out] Destination	column	and	row	data
*pIDTSDataConvert	[in] Pointer	to	the	data	conversion	interface
eTransformFlags	[in] Input	flags	for	transformation	validation	and

execution

Remarks
Pointers	to	source	and	destination	column	information	structures	are	passed	to
ValidateSchema.	The	transformation	can	then	validate	data	types,	preventing
unintended	row	transfers	if	the	types	are	incompatible.	If	the	transformation	does
not	validate	at	this	time	(for	example,	due	to	a	complex	conversion	performed	on
the	row	data),	then	it	simply	returns	NO_ERROR.	A	validation	failure	should
return	an	appropriate	failure	code,	such	as	DB_E_SCHEMAVIOLATION,	or	one
defined	by	the	transformation	server	because	the	data	pump	cannot	proceed.

The	pointer	to	the	IDTSDataConvert	interface	is	passed	in	to	allow	the
destination	to	verify	that	conversion	between	the	source	and	destination	data
types	is	possible	and	to	indicate	any	special	conditions	that	may	be	encountered.

The	transformation	flags	define	the	data	type	promotion,	demotion,	and
conversions	that	are	allowed.	Additional	custom	properties	may	be	defined
through	a	custom	interface,	in	which	case	the	object	(such	as	an	IUnknown
object)	must	be	created	and	edited	prior	to	the	object	being	passed	to
IDTSDataPump::AddTransform.

DTS	Programming

IDTSDataPumpTransform2
The	IDTSDataPumpTransform2	interface	must	be	implemented	by	all
transformations	that	are	to	run	with	Microsoft®	SQL	Server™	2000.	It	supports
multi-phase	transform	operations.	Transformations	that	implement
IDTSDataPumpTransform2	must	still	implement
IDTSDataPumpTransform.

DTS	Programming

IDTSDataPumpTransform2::GetTransformServerInfo
The	GetTransformServerInfo	method	returns	information	that	describes	the
functionality	of	the	transformation.

Syntax
HRESULT	GetTransformServerInfo	(BSTR	*pbstrHelpString,
				LPDTSTransformPhaseEnum	peSupportedPhases);

Argument Description
pbstrHelpString	[out] Description	of	the	transformation	implementation
peSupportedPhases	[out] Phases	supported	by	this	transformation

Remarks
This	method	is	called	before	IDTSDataPumpTransform::Initialize.	It	returns	a
textual	description	that	can	be	used	as	a	help	string	and	a	bitmask	that	contains
flags	for	the	supported	phases.	These	flags	are	values	from
DTSTransformPhaseEnum.

Any	output	parameter	can	be	NULL	if	that	information	is	not	desired	by	the
caller.	GetTransformServerInfo	must	be	prepared	to	handle	these.

IDTSDataPumpTransform2::ProcessPhase	is	not	called	for	a	phase	specified
by	GetTransformServerInfo	unless	the	value	specified	for	the
TransformPhases	property	of	the	Transformation2	object	also	specifies	the
phase.	For	packages	built	in	Data	Transformation	Services	(DTS)	Designer,
specify	phases	on	the	Phases	tab	of	the	Transformation	Options	dialog	box.

See	Also

IDTSDataPumpTransform::Initialize

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform2::ProcessPhase

TransformPhases	Property

DTS	Programming

IDTSDataPumpTransform2::PreValidateSchema
The	PreValidateSchema	method	validates	the	schema	of	the	source	and
destination	columns	to	be	transformed.	It	is	called	from	Data	Transformation
Services	(DTS)	Designer	at	the	time	the	transformation	is	being	configured.

Syntax
HRESULT	PreValidateSchema	(LPCDTSTransformColumnMetadata
pSrcMetadata,
				LPCDTSTransformColumnMetadata	pDestMetaData,
				DTSTransformFlags	eTransformFlags,
				DTSTransformPhaseEnum	ePhases);

Argument Description
pSrcMetadata	[in] Source	column	meta	data
pDestMetaData	[in] Destination	column	meta	data
eTransformFlags	[in] Input	flags	for	transformation	validation	and

execution
ePhases	[in] Phases	this	transformation	is	expected	to	support

Remarks
PreValidateSchema	provides	validation	at	the	time	the	package	is	built,	rather
than	when	it	is	executed.	It	is	called	from	DTS	Designer	when	the	user	selects
the	Only	Show	Valid	Transformations	check	box	in	the	Create	New
Transformation	dialog	box	and	when	the	Transformation	Options	dialog	box
is	closed.	It	is	passed	the	meta	data	for	the	source	and	destination	columns,	the
transformation	flags	and	a	bitmask	defining	the	phases	the	transformation	is
expected	(by	the	caller)	to	support.

Any	level	of	validation	can	be	provided,	up	to	and	including	that	done	by
IDTSDataPumpTransform::ValidateSchema.	However,	Only	Show	Valid
Transformations	simply	removes	the	transformation	name	from	the	Create
New	Transformation	dialog	box,	so	complex	validations	may	leave	the	user

wondering	why	the	transformation	is	not	valid.

The	transformation	flags,	which	use	values	from	DTSTransformFlags,	define
the	data	type	promotion,	demotion	and	conversions	that	are	allowed.	However,
PreValidateSchema	is	not	called	when	they	are	changed	from	the
Transformation	Flags	dialog	box,	so	you	may	want	to	defer	validation
involving	the	flags	to	ValidateSchema.

The	source	and	destination	column	meta	data	structure
DTSTransformColumnMetadata	has	these	fields.

Field Description
cColumns Count	of	source	or	destination	columns.
rgDBColumnInfo Pointer	to	an	array	of	OLE	DB	DBCOLUMNINFO

structures.	There	is	one	array	element	for	each	column.

For	more	information	about	the	DBCOLUMNINFO	structure,	see	Column
Information	Structures	in	DTS	Transformations.

See	Also

DTSTransformFlags

IDTSDataPumpTransform::ValidateSchema

DTS	Programming

IDTSDataPumpTransform2::ProcessPhase
The	ProcessPhase	method	executes	a	phase	of	the	transformation	for	a	single
row.

Syntax
HRESULT	ProcessPhase	(LPBYTE	pvTransformServerData,
				LPCDTSTransformColumnInfo	pSrcColumnInfo,
				LPDTSTransformColumnInfo	pDestColumnInfo,
				IDTSDataConvert	*pIDTSDataConvert,
				LPCDTSTransformPhaseInfo	pPhaseInfo,
				LPDTSTransformStatus	peTransformStatus);

Argument Description
pvTransformServerData	[in] Transformation	server	state	data
pSrcColumnInfo	[in] Source	column	and	row	data
pDestColumnInfo	[in/out] Destination	column	and	row	data
pIDTSDataConvert	[in] Pointer	to	the	data	conversion	interface
pPhaseInfo	[in] Transform	phase	information	structure
peTransformStatus	[out] Result	of	the	transformation

Remarks
This	function	is	called	by	the	data	pump	and	executes	a	phase	of	the
transformation.	The	phase	is	identified	by	a	code	from
DTSTransformPhaseEnum	in	a	field	of	pPhaseInfo,	a
DTSTransformPhaseInfo	structure.	The	following	table	lists	the	transformation
phases	that	are	available.

Phase Description
DTSTransformPhase_PreSourceData Called	before	first	fetch	of	source	data.	Valid

destination	codes	can	be	returned	in	peTransformStatus
to	write	a	destination	row.

DTSTransformStat_SkipFetch	can	be	returned	to	loop
and	write	multiple	rows.

DTSTransformPhase_Transform Transforms	source	columns	to	destination	columns.
Performs	same	function	as
IDTSDataPumpTransform::Execute

DTSTransformPhase_OnTransformFailureCalled	when	DTSTransformPhase_Transform	phase
returns	DTSTransformStat_Error	or
DTSTransformStat_ExceptionRow.	The	returned
peTransformStatus	overrides	that	from
DTSTransformPhase_Transform.	The	insert	operation
and	data	driven	queries	(DDQs)	will	be	attempted	if	the
peTransformStatus	so	directs.

DTSTransformPhase_OnInsertSuccess Called	on	success	of	the	insert/DDQ.	Destination
operations	cannot	be	specified	in	peTransformStatus
the	destination	row	has	already	been	written

DTSTransformPhase_OnInsertFailure Called	on	failure	of	the	insert	operation	or	data	driven
query.	Destination	operations	cannot	be	specified	in
peTransformStatus	(for	example,	the	insert	operation
and	data	driven	query	cannot	be	retried)

DTSTransformPhase_OnBatchComplete Called	after	the	success	or	failure	of	a	data	pump	batch.
The	batch	size	is	defined	by	the	InsertCommitSize
property.

DTSTransformPhase_PostSourceData Called	after	last	row	of	source	data	has	been	fetched
and	transformed.	Valid	destination	codes	can	be
returned	in	peTransformStatus	to	write	a	destination
row,	but	no	source	data	is	available.
DTSTransformStat_SkipFetch	can	be	returned	to	loop
and	write	multiple	rows.

DTSTransformPhase_OnPumpComplete Called	when	data	pump	operation	completes	as	a
success	or	failure,	if	the	transformation	supports	this
phase.	It	is	called	in	place	of
IDTSDataPumpTransform::OnTransformComplete
The	pPhaseInfo	structure	is	available.

ProcessPhase	is	only	called	for	the	phases	that	are	returned	in	the

peSupportedPhases	parameter	of
IDTSDataPumpTransform2::GetTransformServerInfo.	When	there	are
multiple	transformations,	each	phase	is	executed	for	all	the	transformations,	in
the	order	in	which	they	were	created,	before	moving	on	to	the	next	phase.

Note		ProcessPhase	is	not	called	for	a	phase	specified	by
GetTransformServerInfo	unless	the	value	specified	for	the	TransformPhases
property	of	the	Transformation2	object	also	specifies	the	phase.	For	packages
built	in	Data	Transformation	Services	(DTS)	Designer,	specify	phases	on	the
Phases	tab	of	the	Transformation	Options	dialog	box.	The	one	exception	is
DTSTransformPhase_OnPumpComplete,	for	which	ProcessPhase	called	(in
place	of	OnTransformComplete)	whenever	GetTransformServerInfo
specifies	the	phase	is	supported.

The	source	and	destination	column	data	is	described	by	the
DTSTransformColumnInfo	structures	referenced	by	pSrcColumnInfo	and
pDestColumnInfo.	Column	data	should	be	written	in	the	buffer	referenced	by
DTSColumnData.pvData	of	the	element	for	the	destination	column,	at	the
offset	specified	by	DBBINDING.obValue.	You	can	instead	store	a	pointer	to	the
data	at	this	location	if	you	add	the	DBTYPE_BYREF	flag	to
DBBINDING.wType.	For	more	information	and	a	description	of	these	fields,
see	Column	Information	Structures	in	DTS	Transformations.

Transformations	that	implement	both	IDTSDataPumpTransform	and
IDTSDataPumpTransform2	typically	implement	Execute	by	calling
IDTSDataPumpTransform2::ProcessPhase	with	NULL	for	the	pPhaseInfo
parameter.

The	IDTSDataConvert	interface	provides	a	DTS-compatible	conversion	utility.
For	more	information,	search	include	file	dtspump.h	for	IDTSDataConvert.
dtspump.h	is	installed	by	default	to	c:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\include\.

See	Also

DTSTransformPhaseEnum

DTSTransformPhaseInfo	Object

IDTSDataPumpTransform::Execute

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform2::GetTransformServerInfo

InsertCommitSize	Property

TransformPhases	Property

DTS	Programming

IDTSDataPumpTransform2::SetExecuteThreadComplete
The	SetExecuteThreadComplete	method	performs	any	deallocations	and
cleanup	that	might	be	necessary	because	the	Data	Transformation	Services
(DTS)	data	pump	instance	(and	thus	the	transformation)	is	going	to	continue
execution	on	another	thread.	It	is	called	when
IDTSDataPump2::SetExecuteThreadComplete	is	called.

Syntax
HRESULT	SetExecuteThreadComplete();

The	method	has	no	parameters.

Remarks
Data	pump	execution	can	be	segmented	so	that	it	processes	one	or	more	rows	on
a	thread	when	IDTSDataPump2::ExecuteRow	is	called,	then	processes
additional	rows	when	ExecuteRow	is	called	on	another	thread.	The	DTS	tasks
supplied	with	Microsoft®	SQL	Server™	2000	do	not	cross	threads	like	this,	but
custom	tasks	can	do	so.	Custom	tasks	doing	this	must	call
IDTSDataPump2::SetExecuteThreadComplete	on	the	original	thread	before
calling	ExecuteRow	on	the	new	thread.
IDTSDataPump2::SetExecuteThreadComplete	calls
IDTSDataPumpTransform2::SetExecuteThreadComplete	for	each
transformation.

In	most	cases,	the	transformation	does	not	need	to	do	anything.	Only	when	the
transformation	has	invoked	a	thread-affinitive	process,	it	may	need	to	close	that
process	before	re-opening	it	on	the	new	thread.	For	example,	if	the
transformation	uses	the	ActiveScripting	engine,	it	needs	to	make	a	separate	copy
of	the	scripting	engine	instance,	then	call	IActiveScript::Close	on	the	old
thread,	then	initialize	the	scripting	engine	instance	copy	on	the	new	thread.

DTS	Programming

IDTSDataPumpTransform2::SetExtendedInfo
The	SetExtendedInfo	method	is	reserved	for	future	use.

Syntax
HRESULT	SetExtendedInfo	(IUnknown	*pUnkExtendedInfo);

Argument Description
pUnkExtendedInfo	[in] Object	supplying	extended	information

Remarks
If	you	implement	IDTSDataPumpTransform2,	you	must	implement
SetExtendedInfo	even	though	it	is	not	called.	Simply	return	NO_ERROR.

When	implemented,	SetExtendedInfo	will	be	called	prior	to
IDTSDataPumpTransform::ValidateSchema.	pUnkExtendedInfo	will	be	a
pointer	to	an	object	that	will	QueryInterface	to	one	or	more	interfaces	that
supply	extended	information.	These	will	need	to	be	released	in	or	prior	to
IDTSDataPumpTransform::OnTransformComplete.

See	Also

IDTSDataPumpTransform::OnTransformComplete

IDTSDataPumpTransform::ValidateSchema

DTS	Programming

Transform	Status	Enumerations
Dtspump.h	and	Dtspump.dll	expose	these	constant	enumerations.

Enumeration Description
DTSDataPumpError Error	codes	generated	by	the	data	pump.
DTSExecuteStatus Return	values	from	data	pump	execution.
DTSTransformFlags Flags	that	control	the	conversions	performed	by

transformations.
DTSTransformPhaseEnumCodes	that	denote	the	transformation	phases.
DTSTransformStatus Return	codes	that	Microsoft®	ActiveX®	Script

Transformations	can	generate.

DTS	Programming

DTS	Programming	Samples
The	following	samples	illustrate	Microsoft®	SQL	Server™	2000	Data
Transformation	Services	(DTS)	application	development	in	Microsoft	Visual
C++®	and	Microsoft	Visual	Basic®.	They	also	include	DTS	packages.

Sample Description
CustomTaskNoUI Active	Template	Library	(ATL)	template.

Implements	the	framework	for	a	DTS	custom
task	that	does	not	support	a	user	interface.

CustomTaskWithUI ATL	template.	Implements	the	framework	for	a
DTS	custom	task	that	supports	a	user	interface.

CustomTransform ATL	template.	Implements	the	framework	for	a
DTS	custom	transformation.

DTS	Custom
Transformation	Sample

C++	sample.	Concatenates	a	number	of	ANSI
source	columns	into	a	single	destination	column.

DTS	Custom	Task C++	sample.	Creates	and	registers	a	DTS
custom	task	that	is	similar	to	the
CreateProcessTask	object.

DTSCopy C++	sample.	Copies	a	single	source	column	into
a	destination	column	of	the	same	type.

DTSStrings C++	sample.	Reformats	two	source	columns	that
are	assumed	to	be	a	first	and	last	name	into	a
single	destination	column.

DTSTskGVUpdate C++	sample.	Displays	and	updates	the	value	of	a
global	variable	through	a	user	interface.

DTSTskPropIcon C++	sample.	Displays	a	message.
Packages DTS	package	sample.	Demonstrates	how	to

create	and	execute	packages	and	how	to	solve
typical	business	problems.

Complex	Transformation
Sample	from	SQL	Server
to	Excel

Visual	Basic	sample.	Copies	data	from	the	pubs
database	to	a	Microsoft	Excel	spreadsheet,
transforming	it	into	a	Microsoft	PivotTable®.

DTS	Package	Sample Visual	Basic	sample.	Creates	a	package	from	a

Supporting	Multiple
Source	and	Destination
Providers

variety	of	data	sources	and	destinations.

DTSActiveScriptTask Visual	Basic	sample.	Demonstrates	how	to	run	a
Microsoft	Visual	Basic	Scripting	Edition
(VBScrip)	script	as	part	of	a	DTS	Task.

DTSApplicationObject Visual	Basic	sample.	Illustrates	some	of	the
information	that	can	be	obtained	from	the	DTS
Application	object.

DTSAppObject Visual	Basic	sample.	Demonstrates	use	of	the
DTS	Application	object	on	the	local	server.

DTSBulkInsertTask Visual	Basic	sample.	Demonstrates	how	to	use
DTS	to	perform	a	bulk	insert	operation	from	a
flat	text	file.

DTSCopyDatabase Visual	Basic	sample.	Demonstrates	how	to	use
the	DTS	TransferObjectsTask	object	to	copy	a
database.

DTSExecProcess Visual	Basic	sample.	Demonstrates	how	to	run	a
Win32	application	from	a	DTS	task.

DTSExecSQLTask Visual	Basic	sample.	Demonstrates	how	to
execute	an	SQL	statement	while	running	a	DTS
package.

DTSExecutePackage Visual	Basic	sample.	Demonstrates	how	to
execute	programmatically	a	DTS	package	that
has	been	saved	in	.dts	format	to	a	structured
storage	file.

DTSFTPTask Visual	Basic	sample.	Demonstrates	how	to	use
DTS	to	copy	non-SQL	Server	files	from	a	source
to	a	destination.

DTSPackageInfo Visual	Basic	sample.	Illustrates	some	of	the
information	that	can	be	obtained	from	the	DTS
Application.GetPackageInfos	method.

DTSTransferObjectsTask Visual	Basic	sample.	Demonstrates	how	to	use
DTS	to	transfer	various	types	of	SQL	Server
objects	from	the	pubs	database	to	the	pubs2
database.

FoodMart2000 Visual	Basic	sample.	Demonstrates	how	to	use
the	Visual	Basic	file	output	from	the	DTS
import/export	wizard	to	convert	the	FoodMart
2000.mdb	database	to	SQL	Server	2000.

Pub2Pubs Visual	Basic	sample.	Copies	the	Authors	table
from	the	pubs	database	to	the	pubs2	database
while	performing	several	operations	on	various
fields.

Simple	DTS	Package
Sample	Using	Visual
Basic

Visual	Basic	sample.	Demonstrates	how	to	build
and	execute	a	DTS	package.

Simple	Transformation
Sample	Between	Two
SQL	Server	Tables

Visual	Basic	sample.	Copies	data	from	a	source
table	to	a	destination	table	after	a	Transact-SQL
script	is	used	to	create	a	sample	table	in	the
pubs	database.

To	install	the	samples	during	SQL	Server	installation
1.	 On	the	Setup	Type	page,	select	Custom.

2.	 On	the	Select	Components	page,	under	Components,	select	Code
Samples.

Samples	are	installed	as	a	self-extracting	file.	To	extract	the	samples,	double-
click	Unzip_dts.exe,	located	at	C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts.	All	samples	include	a	project	file
applicable	to	the	language	used.

Prerequisites
C++	samples	require	Visual	C++	version	6.0.	Visual	Basic	samples	require
Visual	Basic	version	6.0.

See	Also

Samples

JavaScript:hhobj_1.Click()

DTS	Programming

CustomTaskNoUI
This	sample	is	an	Active	Template	Library	(ATL)	template	for	a	Data
Transformation	Services	(DTS)	custom	task	that	does	not	support	a	custom	user
interface,	but	instead	uses	the	default	property	grid	in	DTS	Designer.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\Dts\ATLTemplates\CustomTaskNoUI

Running	the	Sample
To	install	this	ATL	template,	do	the	following:

1.	 Copy	all	the	files	in	the	C:\Program	Files\Microsoft	SQL
Server\80\Tools\DevTools\Samples\Dts\ATLTemplates\CustomTaskNoUI\
directory	except	DTSCuTsk.reg	to	the	ATL	template	directory.

The	default	location	for	this	directory	is	C:\Program	Files\Microsoft
Visual	Studio\Common\MSDev98\Template\ATL\.

2.	 Run	DTSCuTsk.reg.

For	more	information	about	how	to	implement	a	custom	task	framework	using
this	template,	see	Building	a	Custom	Task	from	the	ATL	Custom	Task	Basic
Template.

See	Also

Implementing	and	Testing	a	DTS	Custom	Task

DTS	Programming	Samples

DTS	Programming

CustomTaskWithUI
This	sample	is	an	Active	Template	Library	(ATL)	template	for	a	Data
Transformation	Services	(DTS)	custom	task	that	supports	a	custom	user
interface.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\ATLTemplates\CustomTaskWithUI

Running	the	Sample
To	install	this	ATL	template,	do	the	following:

1.	 Copy	all	the	files	in	the	C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\ATLTemplates\CustomTaskWithUI\
directory	except	DTSCuTskUI.reg	to	the	ATL	template	directory.

The	default	location	for	this	directory	is	C:\Program	Files\Microsoft
Visual	Studio\Common\MSDev98\Template\ATL\.

2.	 Run	DTSCuTskUI.reg.

For	more	information	about	how	to	implement	a	custom	task	framework	using
this	template,	see	Building	a	Custom	Task	with	User	Interface	from	the	ATL
Custom	Task	Templates.

See	Also

Implementing	and	Testing	a	DTS	Custom	Task

DTS	Programming	Samples

DTS	Programming

CustomTransform
This	sample	is	an	Active	Template	Library	(ATL)	template	for	a	Data
Transformation	Services	(DTS)	custom	transformation.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\ATLTemplates\CustomTransform

Running	the	Sample
To	install	this	ATL	template,	do	the	following:

1.	 Copy	all	the	files	in	the	C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\ATLTemplates\CustomTransform\
directory,	except	DTSCuXFmUI.reg,	to	the	ATL	template	directory.

The	default	location	for	this	directory	is	C:\Program	Files\Microsoft
Visual	Studio\Common\MSDev98\Template\ATL\.

2.	 Run	DTSCuXFmUI.reg.

For	more	information	about	how	to	implement	a	custom	transformation
framework	using	this	template,	see	Building	a	Custom	Transformation	from	the
ATL	Custom	Transformation	Template.

See	Also

Implementing	and	Testing	a	DTS	Custom	Transformation

DTS	Programming	Samples

DTS	Programming

DTS	Custom	Transformation	Sample
This	Microsoft®	Visual	C++®	sample	creates	and	registers	a	custom
transformation.	It	concatenates	a	number	of	ANSI	string	source	columns	into	a
single	destination	column.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\CustomTransforms\DTSXForm

Running	the	Sample
1.	 In	the	Visual	C++	development	environment,	open	and	run

DTSXForm.dsw.

2.	 On	the	Build	menu,	click	Build	DTSXForm.dll	to	build	the	project.

3.	 In	Microsoft	SQL	Server™	Enterprise	Manager,	right-click	Data
Transformation	Services,	click	Properties,	and	then	click	Refresh
Cache,	if	caching	is	active.

4.	 Include	the	custom	transformation	in	a	Transform	Data	task	in	DTS
Designer.

If	you	are	compiling	the	example	transform	for	use	under	Microsoft	Windows®
98,	be	sure	you	compile	using	a	non-UNICODE	configuration.	To	set	the
configuration,	use	the	Set	Active	Configuration	option	on	the	Build	menu.

See	Also

Implementing	and	Testing	a	DTS	Custom	Transformation

DTS	Programming	Samples

DTS	Programming

DTS	Custom	Task
This	Microsoft®	Visual	C++®	sample	creates	and	registers	a	Data
Transformation	Services	(DTS)	custom	task	that	is	similar	to	the
CreateProcessTask	object.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\CustomTasks\DTStask

Running	the	Sample
1.	 In	the	Visual	C++	development	environment,	open	and	run

Dtstask.dsw.	

2.	 On	the	Build	menu,	click	Build	dtstask.dll	to	build	the	project.

3.	 In	Microsoft	SQL	Server™	Enterprise	Manager,	right-click	Data
Transformation	Services,	click	Properties,	and	then	click	Refresh
Cache,	if	caching	is	active.

4.	 Include	the	custom	task	in	a	DTS	package.

See	Also

Implementing	and	Testing	a	DTS	Custom	Task

DTS	Programming	Samples

DTS	Programming

DTSCopy
This	Microsoft®	Visual	C++®	sample	creates	and	registers	a	simple	custom
transformation.	It	copies	a	single	source	column	of	any	simple	type	into	a
destination	column	of	the	same	type.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\CustomTransforms\DTSCopy

Running	the	Sample
1.	 In	the	Visual	C++	development	environment,	open	and	run

DTSXForm.dsw.

2.	 On	the	Build	menu,	click	Build	DTSXForm.dll	to	build	the	project.

3.	 In	Microsoft	SQL	Server™	Enterprise	Manager,	right-click	Data
Transformation	Services,	click	Properties,	and	then	click	Refresh
Cache,	if	caching	is	active.

4.	 Include	the	custom	transformation	in	a	Transform	Data	task	in	DTS
Designer.

For	more	information	about	how	this	example	is	implemented,	see	DTS	Custom
Transformation	Example:	Copy	One	Column.

See	Also

Implementing	and	Testing	a	DTS	Custom	Transformation

DTS	Programming	Samples

DTS	Programming

DTSStrings
This	Microsoft®	Visual	C++®	sample	creates	and	registers	a	custom
transformation.	It	reformats	two	source	columns	that	are	assumed	to	be	a	first
and	last	name	into	the	form	of	Last,	First	in	a	single	destination	column.	The
source	and	destination	columns	can	be	ANSI	or	wide-character	strings.
Conversion	between	ANSI	and	wide	characters	is	performed,	as	necessary.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\CustomTransforms\DTSStrings

Running	the	Sample
1.	 In	the	Visual	C++	development	environment,	open	and	run

DTSStrings.dsw.

2.	 On	the	Build	menu,	click	Build	DTSStrings.dll	to	build	the	project.

3.	 In	Microsoft	SQL	Server™	Enterprise	Manager,	right-click	Data
Transformation	Services,	click	Properties,	and	then	click	Refresh
Cache,	if	caching	is	active.

4.	 Include	the	custom	transformation	in	a	Transform	Data	task	in	DTS
Designer.

For	more	information	about	how	this	example	is	implemented,	see	DTS	Custom
Transformation	Example:	Format	Names.

See	Also

Implementing	and	Testing	a	DTS	Custom	Transformation

DTS	Programming	Samples

DTS	Programming

DTSTskGVUpdate
This	Microsoft®	Visual	C++®	sample	is	a	Data	Transformation	Services	(DTS)
custom	task	with	a	user	interface.	It	displays	and	allows	the	user	to	update	the
value	of	a	global	variable.	The	global	variable	name	is	specified	as	a	custom	task
property.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\CustomTasks\DTSTskGVUpdate

Running	the	Sample
1.	 In	the	Visual	C++	development	environment,	open	and	run

DTSTskGVUpdate.dsw	.

2.	 On	the	Build	menu,	click	Build	DTSTskGVUpdate.dll	to	build	the
project.

3.	 In	Microsoft	SQL	Server™	Enterprise	Manager,	right-click	Data
Transformation	Services,	click	Properties,	and	then	click	Refresh
Cache,	if	caching	is	active.

4.	 Include	the	custom	task	in	a	DTS	package.

For	more	information	about	how	this	example	is	implemented,	see	DTS
Example:	Including	a	User	Interface	in	Visual	C++.

See	Also

Implementing	and	Testing	a	DTS	Custom	Task

DTS	Programming	Samples

DTS	Programming

DTSTskPropIcon
This	Microsoft®	Visual	C++®	sample	is	a	simple	Data	Transformation	Services
(DTS)	custom	task.	It	displays	a	message	whose	text	is	specified	as	a	custom
task	property.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\CustomTasks\DTSTskPropIcon

Running	the	Sample
1.	 In	the	Visual	C++	development	environment,	open	and	run

DTSTskPropIcon.dsw.

2.	 On	the	Build	menu,	click	Build	DTSTskPropIcon.dll	to	build	the
project.

3.	 In	Microsoft	SQL	Server™	Enterprise	Manager,	right-click	Data
Transformation	Services,	click	Properties,	and	then	click	Refresh
Cache,	if	caching	is	active.

4.	 Include	the	custom	task	in	a	DTS	package.

For	more	information	about	how	this	example	is	implemented,	see	DTS
Example:	Adding	Properties	and	Icons	in	Visual	C++.

See	Also

Implementing	and	Testing	a	DTS	Custom	Task

DTS	Programming	Samples

DTS	Programming

Packages
The	samples	supplied	with	Microsoft®	SQL	Server™	2000	demonstrate	how	to
create	and	execute	packages	and	how	to	solve	typical	business	problems.	You
can	also	use	the	packages	as	templates	for	custom	solutions	tailored	to	the
business	needs	of	your	organization.

For	more	information,	see	DTS	Designer	Example:	Copying	Northwind	Data.
This	example	shows	how	to	create	connections,	how	to	create	a	simple
transformation	task	that	copies	data,	and	how	to	run	a	package.

These	sample	Data	Transformation	Services	(DTS)	packages	are	installed	along
with	the	DTS	sample	programs.

File	name Description
DTS	-	Workflow	Example.dts Create	simple	and	complex	precedence

constraints.
DTS	-	Transform	Customers.dts Use	Microsoft	ActiveX®	scripts	to

transform	Northwind	data	to	tempdb.
OLTP	to	Star	Schema	-	Sample
Package.dts

Transform	an	OLTP	database	to	a	Star
schema.

DTS	-	Execute	SQL	DDL	and
DML.dts

Create	new	databases,	tables,	and
indexes.

DTS	-	Transfer	Database	and
Objects.dts

Copy	objects	between	instances	of
SQL	Server.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Misc\packages

See	Also

DTS	Programming	Samples

JavaScript:hhobj_1.Click()

DTS	Programming

Complex	Transformation	Sample	from	SQL	Server	to
Excel
This	program	copies	data	from	the	pubs	database	to	a	Microsoft®	Excel
spreadsheet,	transforming	it	into	a	Microsoft	PivotTable®.	The	program	also
demonstrates	how	to	create	a	Data	Transformation	Services	(DTS)	object.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtspackages\Dtsexmp2

Running	the	Sample
Here	are	the	steps	for	running	the	Cptexmp	application:

1.	 Open	and	compile	Cptaxdll.vbp.

This	registers	the	CreatePivotTable	custom	task	used	by	Cptexmp.vbp
and	tstuiapp.vbp.

2.	 Open	and	run	Cptexmp.vbp	or	tstuiapp.vbp.

See	Also

DTS	Programming	Samples

DTS	Programming

DTS	Package	Sample	Supporting	Multiple	Source	and
Destination	Providers
This	sample	allows	you	to	create	a	package	from	a	variety	of	data	sources	and
destinations.	It	creates	a	simple	package	that	you	can	create	from	an	SQL
statement	or	a	Microsoft®	ActiveX®	script.	You	can	choose	a	data	source	and
destination	from	an	enumerated	list.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtspackages\dtsexmp3

Running	the	Sample
Open	and	run	dtsqry.vbp.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSActiveScriptTask
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	run	a	Visual	Basic
Scripting	Edition	(VBScript)	script	as	part	of	a	Data	Transformation	Services
(DTS)	Task.	The	script	in	this	task	shows	a	Message	Box.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSActiveScriptTask

Running	the	Sample
1.	 Open	the	DTSActiveScriptTask.vbp	project.

2.	 Run	the	application.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSApplicationObject
This	Microsoft®	Visual	Basic®	sample	illustrates	some	of	the	information	that
can	be	obtained	from	the	Data	Transformation	Services	(DTS)	Application
object.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtspackages\DTSApplicationObject

Running	the	Sample
1.	 Open	the	DTSAppInfo.vbp	project.

2.	 Run	the	application.

See	Also

DTSAppObject

DTS	Programming	Samples

DTS	Programming

DTSAppObject
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	use	the	Data
Transformation	Services	(DTS)	Application	object	on	the	local	server.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtssysteminfo\DTSAppObject

Running	the	Sample
1.	 Open	the	DTSApplicationObject.vbp.

2.	 Run	the	application.

See	Also

DTSApplicationObject

DTS	Programming	Samples

DTS	Programming

DTSBulkInsertTask
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	use	Data
Transformation	Services	(DTS)	to	perform	a	bulk	insert	operation	from	a	flat
text	file.	Bulk	insert	operations	are	possible	from	a	wide	range	of	OLE	DB
provider	file	types.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSBulkInsertTask

Running	the	Sample
1.	 Open	the	BulkInsertTask.vbp	project.

2.	 Run	the	application.

This	sample	assumes	that	you	have	created	the	pubs2..authors	table	as	a	copy
of	the	pubs..authors	table.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSCopyDatabase
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	use	the	Data
Transformation	Services	(DTS)	TransferObjectsTask	object	to	copy	a	database.
This	sample	copies	all	objects	except	dependencies,	logins,	and	users	from	one
named	database	on	the	local	server	to	another	named	database	on	the	local
server.	If	you	wish	to	include	dependencies,	logins,	or	users	in	the	transfer,	set
the	IncludeDependencies,	IncludeLogins,	and	IncludeUsers	properties	to
TRUE.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSCopyDatabase

Running	the	Sample
This	sample	assumes	that	you	have	created	the	pubs2	database	with	no	data	in	it.

1.	 Open	the	DTSCopyDatabase.vbp	project.

2.	 Run	the	application.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSExecProcess
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	run	a	Microsoft
Win32®	application	from	a	Data	Transformation	Services	(DTS)	task.	The
sample	creates	a	DTS	package	and	a	custom	task	that	runs	the	Windows
Calculator	for	15	seconds.

Depending	on	the	FailPackageOnTimeout	and	FailOnError	settings	in	the
sample,	an	error	message	is	returned	if	Calc.exe	does	not	exit	in	15	seconds.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSExecProcess

Running	the	Sample
1.	 Open	the	DTSExecProcess.vbp	project.

2.	 Run	the	application.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSExecSQLTask
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	execute	an	SQL
statement	while	running	a	Data	Transformation	Services	(DTS)	package.

This	sample:

Creates	a	package.

Opens	a	connection	to	the	pubs2	database.

Creates	a	custom	task,	which	executes	an	SQL	statement	to	INSERT	a
record	into	the	Sales	table.

Default	Location

C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSExecSQLTask

Running	the	Sample
1.	 Create	the	pubs2	database	that	is	a	copy	of	the	pubs	database	on	the

local	server.

2.	 Open	the	DTSExecuteSQLTask.vbp	project.

3.	 Run	the	application.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSExecutePackage
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	execute
programmatically	a	Data	Transformation	Services	(DTS)	package	that	has	been
saved	in	.dts	format	to	a	structured	storage	file.	The	package	in	the	sample
performs	a	copy	operation	from	the	pubs	database	to	the	pubs2	database.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSExecutePackage

Running	the	Sample
1.	 Create	the	pubs2	database	that	is	a	copy	of	the	pubs	database	on	the

local	server.

2.	 Open	the	DTSExecutePackage.vbp	project.

3.	 Run	the	application.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSFTPTask
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	use	Data
Transformation	Services	(DTS)	to	copy	files	that	are	not	Microsoft®	SQL
Server™	files	from	a	source	to	a	destination.	This	sample	copies	Authors.txt	in
the	local	directory	to	the	\Test	subdirectory.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtstasks\DTSFTPTask

Running	the	Sample
1.	 Open	the	DTSFTPTask.vbp	project.

2.	 Run	the	application.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSPackageInfo
This	Microsoft®	Visual	Basic®	sample	illustrates	some	of	the	information	that
can	be	obtained	from	the	Data	Transformation	Services	(DTS)
Application.GetPackageInfos	method.	It	provides	detailed	information	about
the	DTS	packages	on	Microsoft®	SQL	Server™	2000.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtssysteminfo\DTSPackageInfo

Running	the	Sample
This	application	uses	Windows	Authentication.

1.	 Open	the	DTSSQLServerPackages.vbp.

2.	 Run	the	application.

3.	 Click	DTS	Package	Info.

4.	 Select	the	instance	of	SQL	Server	you	wish	to	query.

See	Also

DTS	Programming	Samples

DTS	Programming

DTSTransferObjectsTask
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	use	Data
Transformation	Services	(DTS)	to	transfer	various	types	of	database	objects
from	the	pubs	database	to	the	pubs2	database.

The	objects	transfered	in	this	sample	are:

Authors	table.

Employee	table.

Titleview	view.

Byroyalty	stored	procedure.

Default	Location

C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtstasls\DTSTransferObjectsTask

Running	the	Sample
1.	 Create	the	pubs2	database	that	is	a	copy	of	the	pubs	database	on	the

local	server.

2.	 Open	the	DTSTransferObjectsTask.vbp	project.

3.	 Run	the	application.

See	Also

DTS	Programming	Samples

DTS	Programming

FoodMart2000
These	Microsoft®	Visual	Basic®	samples	demonstrate	how	to	use	the	Visual
Basic	file	output	from	the	Data	Transformation	Services	(DTS)	Import/Export
Wizard	to	convert	the	FoodMart	2000.mdb	database	to	a	Microsoft	SQL
Server™	2000	database.

There	are	three	samples	in	this	group.

Foodmart2000a:	A	.bas	file	that	converts	the	Foodmart	2000.mdb	file	to
SQL	Server	2000.

Foodmart2000b:	A	project	that	converts	the	Foodmart	2000.mdb	file	to
SQL	Server	2000,	but	shows	how	to	use	the	DTS	package	events	to
indicate	process	status	on	UI.	

Foodmart2000c:	A	.bas	file	that	converts	the	Foodmart	2000.mdb	file	to
SQL	Server	2000,	but	also	incorporates	an	error	handler.

Default	Location

C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Misc\FoodMart2000

Running	the	Sample
These	samples	assume	that	you	are	using	Windows	Authentication	and	that	the
execution	account	has	the	necessary	privileges.

The	initial	steps	for	using	these	samples	are:

1.	 Install	SQL	Server	2000	Analysis	Services	samples.

2.	 Use	SQL	Server	Enterprise	Manager	to	create	a	new	database	called
Foodmart2000.

3.	 In	FoodMart2000a	and	FoodMart2000c,	modify	the	path	for	the
DataSourcePath	variable	name.

4.	 Execute	the	FoodMart2000a.vdp,	FoodMart2000b.vdp,	and
FoodMart2000c.vdp	projects.

See	Also

DTS	Programming	Samples

DTS	Programming

Pub2Pubs
This	Microsoft®	Visual	Basic®	sample	copies	the	Authors	table	from	the	pubs
database	to	the	pubs2	database	while	performing	several	operations	on	various
fields.	The	sample	is	a	single	package	with	two	connections,	and	two
Steps/Tasks	with	multiple	custom	subtasks.

The	comments	in	the	source	code	of	this	sample	provide	detailed	explanations	of
code	that	is	generated	by	the	Data	Transformation	Services	(DTS)	Import/Export
Wizard.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Misc\Pub2Pubs

Running	the	Sample
1.	 Create	the	pubs2	database	that	is	a	copy	of	the	pubs	database	on	the

local	server.

2.	 Open	the	PubsToPub2.vbp	project.

3.	 Run	the	application.

See	Also

DTS	Programming	Samples

DTS	Programming

Simple	DTS	Package	Sample	Using	Visual	Basic
This	Microsoft®	Visual	Basic®	sample	demonstrates	how	to	build	and	execute	a
Data	Transformation	Services	(DTS)	package.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtspackages\Dtsvbpkg

Running	the	Sample
1.	 Create	two	ODBC	Data	Source	Names	(DSN),	"DTS	Source"	and

"DTS	Destination",	that	refer	to	the	pubs	database.

2.	 Open	and	run	dtsvbpkg.vbp

See	Also

DTS	Programming	Samples

DTS	Programming

Simple	Transformation	Sample	Between	Two	SQL
Server	Tables
This	Microsoft®	Visual	Basic®	sample	copies	data	from	a	source	table	to	a
destination	table,	after	a	Transact-SQL	script	is	used	to	create	a	sample	table	in
the	pubs	database.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Dts\Dtspackages\Dtsexmp1

Running	the	Sample
Here	are	the	steps	for	running	the	Dtsexmp1	application:

1.	 Create	an	ODBC	DSN	for	Microsoft	SQL	Server™	and	make	pubs
the	default	database.

2.	 Run	the	Creattbl.sql	script	to	create	the	authorname	table.

3.	 Open	and	run	Dtsexmp1.vbp.

See	Also

DTS	Programming	Samples

	Programming DTS Applications
	Extended DTS Objects
	DTS Object Model Diagram
	DTS Package2 Hierarchy
	Pump Task Elements
	Pump Rowset Elements
	Data Driven Query Elements
	DTS Application Hierarchy

	Creating DTS Packages with the DTS Object Model
	Creating DTS Package Objects and Connections
	Creating DTS Package Workflow and Tasks
	Adding DTS Transformations
	Adding DTS Column Objects
	Adding DTS Lookups and Global Variables
	Adding DTS ActiveX Scripts
	Adding DTS Query Strings
	Handling DTS Events and Errors
	Managing DTS Package Programs
	Retrieving DTS System, Package, and Log Data

	Creating DTS Packages in Visual Basic
	Creating DTS Objects in Visual Basic
	DTS Packages in Visual Basic
	DTS Connections in Visual Basic
	DTS Package Workflow in Visual Basic
	DTS Tasks in Visual Basic
	DTS Transformations in Visual Basic
	DTS Column Objects in Visual Basic
	DTS Lookups in Visual Basic
	DTS Global Variables in Visual Basic
	DTS ActiveX Scripts in Visual Basic
	DTS Query Strings in Visual Basic
	DTS Package Events in Visual Basic

	Managing DTS Package Programs in Visual Basic
	Executing DTS Packages in Visual Basic
	Handling DTS Errors in Visual Basic
	Saving DTS Packages in Visual Basic
	Running a DTS Package Saved as a Visual Basic File
	Retrieving DTS Information in Visual Basic

	Building a DTS Custom Task
	DTS Custom Task Fundamentals
	Including a DTS Custom Task User Interface
	Registering a DTS Custom Task
	Additional DTS Custom Task Features
	Raising Events from a DTS Custom Task
	Writing Log Data from a DTS Custom Task
	Using the DTS Custom Task Properties Provider

	DTS Custom Task Examples in Visual Basic
	DTS Example: Basic Custom Task in Visual Basic
	DTS Example: Adding Properties and Icons in Visual Basic
	DTS Example: Including a User Interface in Visual Basic
	DTS Example: Running Concurrent Operations in Visual Basic

	Implementing DTS Custom Tasks in Visual C++
	Building a DTS Custom Task from a Standard ATL Template
	Building a DTS Custom Task from the ATL Custom Task Basic Template
	Adding a DTS User Interface to the Custom Task Framework
	Building a DTS Custom Task with a User Interface from the ATL Custom Task Templates
	Implementing and Testing a DTS Custom Task

	DTS Custom Task Examples in Visual C++
	DTS Example: Adding Properties and Icons in Visual C++
	DTS Example: Including a User Interface in Visual C++
	Creating the Custom Task Framework
	Implementing the Property Page and Display Dialog Box
	Implementing the Task Class
	Implementing the User Interface Class
	Implementing the Property Page Class
	Implementing the Display Dialog Class
	Building and Running the DTS Custom Task User Interface Example in Visual C++

	Building a DTS Custom Transformation
	DTS Custom Transformation Fundamentals
	COM DLL Infrastructure
	IDTSDataPumpTransform Interface
	IDTSDataPumpTransform2 Interface
	Column Information Structures in DTS Transformations
	Registration Requirements for DTS Transformations

	Implementing DTS Custom Transformations
	Building a Custom Transformation from a Standard ATL Template
	Building a Custom Transformation from the ATL Custom Transformation Template
	Implementing and Testing a DTS Custom Transformation

	DTS Custom Transformation Examples
	DTS Custom Transformation Example: Copy One Column
	DTS Custom Transformation Example: Format Names

	DTS Scripting Reference
	Scripting Objects
	DTSDataPumpColumn Object
	DTSDataPumpColumn2 Object
	DTSDataPumpLookup Object
	DTSTransformPhaseInfo Object

	Scripting Collections
	DTSDataPumpColumns Collection
	DTSDataPumpLookups Collection
	DTSErrorRecords Collection

	Scripting Properties
	ActualSize Property
	Attributes Property
	Count Property
	CurrentPhase Property
	CurrentSourceRow Property
	DefinedSize Property
	DestinationRowsComplete Property
	ErrorRows Property
	LastRowCount Property
	Name Property
	NumericScale Property
	OriginalValue Property
	Precision Property
	Status Property
	TransformStatus Property
	Type Property
	UnderlyingValue Property
	Value Property

	Scripting Methods
	Add Method
	AddToCache Method
	AppendChunk Method
	Clear Method
	Execute Method
	GetChunk Method
	Item Method
	RemoveFromCache Method

	Scripting Constants

	DTS Programming Reference
	Task Objects
	ActiveScriptTask Object
	BulkInsertTask Object
	CreateProcessTask Object
	CreateProcessTask2 Object
	DataDrivenQueryTask Object
	DataDrivenQueryTask2 Object
	DataPumpTask Object
	DataPumpTask2 Object
	DynamicPropertiesTask Object
	ExecutePackageTask Object
	ExecuteSQLTask Object
	ExecuteSQLTask2 Object
	DTSFTPTask Object
	DTSMessageQueueTask Object
	ParallelDataPumpTask Object
	Hierarchical Rowsets
	Parallel Data Pump Example
	Parallel Data Driven Query Example

	SendMailTask Object
	TransferObjectsTask Object
	TransferObjectsTask2 Object

	Transformation Objects
	DataPumpTransformCopy Object
	DataPumpTransformDateTimeString Object
	DataPumpTransformLowerString Object
	DataPumpTransformMidString Object
	DataPumpTransformReadFile Object
	DataPumpTransformScript Object
	DataPumpTransformTrimString Object
	DataPumpTransformUpperString Object
	DataPumpTransformWriteFile Object
	DTSTransformScriptProperties2 Object
	Phased Transformation Samples

	Other Objects
	Application Object
	Column Object
	Connection Object
	Connection2 Object
	CustomTask Object
	CustomTaskUI Object
	DTSMQMessage Object
	DynamicPropertiesTaskAssignment Object
	GlobalVariable Object
	GlobalVariable2 Object
	IDTSStdObject
	Lookup Object
	OLEDBProperty Object
	OLEDBProperty2 Object
	OLEDBProviderInfo Object
	Package Object
	Package2 Object
	PackageInfo Object
	PackageLineage Object
	PackageLog Object
	PackageLogRecord Object
	PackageRepository Object
	PackageSQLServer Object
	PersistPropertyBag Object
	PrecedenceConstraint Object
	PropertiesProvider Object
	Property Object
	PropertyBag Object
	SavedPackageInfo Object
	ScriptingLanguageInfo Object
	Step Object
	Step2 Object
	StepLineage Object
	StepLogRecord Object
	Task Object
	TaskInfo Object
	TaskLogRecord Object
	Transformation Object
	Transformation2 Object
	TransformationInfo Object
	TransformationSet Object

	Collections
	Columns Collection
	Connections Collection
	DTSMQMessages Collection
	DynamicPropertiesTaskAssignments Collection
	GlobalVariables Collection
	Lookups Collection
	OLEDBProperties Collection
	OLEDBProviderInfos Collection
	PackageInfos Collection
	PackageLineages Collection
	PackageLogRecords Collection
	PrecedenceConstraints Collection
	Properties Collection
	SavedPackageInfos Collection
	ScriptingLanguageInfos Collection
	StepLineages Collection
	StepLogRecords Collection
	Steps Collection
	TaskInfos Collection
	TaskLogRecords Collection
	Tasks Collection
	TransformationInfos Collection
	Transformations Collection
	TransformationSets Collection

	Properties
	ActiveXScript Property
	AddGlobalVariables Property
	AllowIdentityInserts Property
	AMSymbol Property
	AppendIfFileExists Property
	Assignments Property
	AutoCommitTransaction Property
	BatchCompleteFunctionEntry Property
	BatchSize Property
	Catalog Property
	CCLine Property
	CharacterCount Property
	CharacterStart Property
	CheckConstraints Property
	ClassID Property
	CloseConnection Property
	Codepage Property
	ColumnID Property
	CommandProperties Property
	CommandTimeout Property
	CommitSuccess Property
	Computer Property
	Connected Property
	ConnectImmediate Property
	ConnectionID Property
	ConnectionProperties Property
	ConnectionTimeout Property
	CopyAllObjects Property
	CopyData Property
	CopySchema Property
	Count Property
	CreationDate Property
	CreatorComputerName Property
	CreatorName Property
	CustomTask Property
	CustomTaskID Property
	DataFile Property
	DataFileNonOverwritable Property
	DataFileType Property
	DataPumpOptions Property
	DataSource Property
	DataType Property
	Day?LongName Property
	Day?ShortName Property
	DeleteQuery Property
	DeleteQueryColumns Property
	Description Property
	DesignerSettings Property
	DestinationColumnDefinitions Property
	DestinationColumns Property
	DestinationCommandProperties Property
	DestinationConnectionID Property
	DestinationDatabase Property
	DestinationLogin Property
	DestinationObjectName Property
	DestinationPassword Property
	DestinationPropertyID Property
	DestinationServer Property
	DestinationSQLStatement Property
	DestinationTableName Property
	DestinationUseTrustedConnection Property
	DestSite Property
	DestTranslateChar Property
	DestUseTransaction Property
	DisableStep Property
	DropDestinationObjectsFirst Property
	DTSMessageLineageID Property
	DTSMessagePackageID Property
	DTSMessageVersionID Property
	EOF Property
	ErrorCode Property
	ErrorDescription Property
	ErrorHelpContext Property
	ErrorHelpFile Property
	ErrorIfFileExists Property
	ErrorIfFileNotFound Property
	ErrorIfReceiveMessageTimeout Property
	ErrorSource Property
	ExceptionFileColumnDelimiter Property
	ExceptionFileName Property
	ExceptionFileOptions Property
	ExceptionFileRowDelimiter Property
	ExceptionFileTextQualifier Property
	ExecuteInMainThread Property
	ExecutionDate Property
	ExecutionResult Property
	ExecutionStatus Property
	ExecutionTime Property
	ExplicitGlobalVariables Property
	FailOnError Property
	FailPackageOnError Property
	FailPackageOnLogFailure Property
	FailPackageOnTimeout Property
	FastLoadOptions Property
	FetchBufferSize Property
	FieldTerminator Property
	FileAttachments Property
	FileColumnName Property
	FileName Property
	FilePath Property
	FinishTime Property
	FirstRow Property
	Flags Property
	ForceBlobsInMemory Property
	ForceSourceBlobsBuffered Property
	FormatFile Property
	FunctionEntry Property
	FunctionName Property
	Get Property
	IconFile Property
	IconIndex Property
	ID Property
	ImplementationFileName Property
	ImplementationFileVersionString Property
	IncludeDependencies Property
	IncludeLogins Property
	IncludeUsers Property
	InMemoryBlobSize Property
	InputFormat Property
	InputGlobalVariableNames Property
	InsertCommitSize Property
	InsertFailureFunctionEntry Property
	InsertQuery Property
	InsertQueryColumns Property
	InsertSuccessFunctionEntry Property
	InTransaction Property
	InUse Property
	IsDefaultValue Property
	IsNTService Property
	IsOwner Property
	IsPackageDSORowset Property
	IsVersionEncrypted Property
	JITDebug Property
	JoinTransactionIfPresent Property
	KeepIdentity Property
	KeepNulls Property
	Language Property
	LastOwnerTaskName Property
	LastRow Property
	LineageFullID Property
	LineageOptions Property
	LineageShortID Property
	LogDate Property
	LogFileName Property
	LogServerFlags Property
	LogServerName Property
	LogServerPassword Property
	LogServerUserName Property
	LogToSQLServer Property
	LowerCaseString Property
	MaxCacheRows Property
	MaxConcurrentSteps Property
	MaximumErrorCount Property
	MaximumErrors Property
	MessageDataFile Property
	MessageGlobalVariables Property
	MessageString Property
	MessageText Property
	MessageType Property
	Month??LongName Property
	Month??ShortName Property
	Name Property
	NestedExecutionLevel Property
	NonOverwritable Property
	Nullable Property
	NumericScale Property
	NumRetriesOnSource Property
	OEMFile Property
	Operator Property
	Ordinal Property
	OutputAsRecordset Property
	OutputFormat Property
	OutputGlobalVariableNames Property
	Owner Property
	PackageCreationDate Property
	PackageDataSize Property
	PackageID Property
	PackageName Property
	PackagePassword Property
	PackagePriorityClass Property
	PackageType Property
	Parent Property
	ParseName Property
	Password Property
	PMSymbol Property
	PostSourceDataFunctionEntry Property
	PrecedenceBasis Property
	Precision Property
	PreSourceDataFunctionEntry Property
	ProcessCommandLine Property
	Profile Property
	ProgressCount Property
	ProgressRowCount Property
	PropertyID Property
	PropertySet Property
	ProviderID Property
	PumpCompleteFunctionEntry Property
	Query Property
	QueuePath Property
	ReceiveMessageTimeout Property
	ReceiveMessageType Property
	RelativePriority Property
	RemoveFromQueue Property
	RepositoryDatabaseName Property
	RepositoryMetadataOptions Property
	Reusable Property
	RollbackFailure Property
	RowsComplete Property
	RowsInError Property
	RowTerminator Property
	SaveDataFileName Property
	SaveMailInSentItemsFolder Property
	ScriptFileDirectory Property
	ScriptLanguage Property
	ScriptOption Property
	ScriptOptionEx Property
	SequenceID Property
	ServerName Property
	ServerPassword Property
	ServerUserName Property
	Set Property
	ShortYear2000Cutoff Property
	Size Property
	SortedData Property
	SourceColumns Property
	SourceCommandProperties Property
	SourceConnectionID Property
	SourceConstantValue Property
	SourceDatabase Property
	SourceDataFileFileName Property
	SourceEnvironmentVariable Property
	SourceFilename Property
	SourceGlobalVariable Property
	SourceIniFileFileName Property
	SourceIniFileKey Property
	SourceIniFileSection Property
	SourceLocation Property
	SourceLogin Property
	SourceObjectName Property
	SourcePassword Property
	SourcePassword (DTSFTPTask) Property
	SourceQueryConnectionID Property
	SourceQuerySQL Property
	SourceServer Property
	SourceSite Property
	SourceSQLStatement Property
	SourceTranslateChar Property
	SourceType Property
	SourceUsername Property
	SourceUseTrustedConnection Property
	SQLStatement Property
	StartTime Property
	StepExecutionID Property
	StepExecutionResult Property
	StepExecutionStatus Property
	StepName Property
	StringCompareType Property
	StringCompareValue Property
	Subject Property
	SuccessReturnCode Property
	TableLock Property
	TaskName Property
	TaskType Property
	TerminateProcessAfterTimeout Property
	Text Property
	Timeout Property
	ToLine Property
	TransactionIsolationLevel Property
	TransformationSetOptions Property
	TransformFailureFunctionEntry Property
	TransformFlags Property
	TransformPhases Property
	TransformServer Property
	TransformServerID Property
	TransformServerParameter Property
	TransformServerProperties Property
	TrimEmbeddedWhiteSpace Property
	TrimLeadingWhiteSpace Property
	TrimTrailingWhiteSpace Property
	Type Property
	UDLPath Property
	UnicodeFile Property
	UpdateQuery Property
	UpdateQueryColumns Property
	UpperCaseString Property
	UseCache Property
	UseCollation Property
	UseFastLoad Property
	UseOLEDBServiceComponents Property
	UseRepository Property
	UserID Property
	UserQuery Property
	UserQueryColumns Property
	UseTransaction Property
	UseTransaction (DTSMQMessage) Property
	UseTrustedConnection Property
	Value Property
	VersionID Property
	VersionSaveDate Property
	WaitForAcknowledgement Property
	WriteCompletionStatusToNTEventLog Property

	Methods
	AcquireConnection Method
	Add Method
	AddColumn Method
	AddConstraint Method
	AddGlobalVariable Method
	AddLookup Method
	AddObjectForTransfer Method
	BeginAcquireMultipleConnections Method
	CancelExecution Method
	CheckSyntax Method
	CreateCustomToolTip Method
	Delete Method
	Edit Method
	EndAcquireMultipleConnections Method
	EnumPackageInfos Method
	EnumPackageLineages Method
	EnumPackageLogRecords Method
	EnumStepLineages Method
	EnumStepLogRecords Method
	EnumTaskLogRecords Method
	Execute Method
	Execute (Package) Method
	GetDayLongName Method
	GetDayShortName Method
	GetDefaultProfileName Method
	GetDTSVersionInfo Method
	GetExecutionErrorInfo Method
	GetExpandedProcessCommandLine Method
	GetLastExecutionLineage Method
	GetMonthLongName Method
	GetMonthShortName Method
	GetObjectForTransfer Method
	GetPackageRepository Method
	GetPackageSQLServer Method
	GetPropertiesForObject Method
	GetSavedPackageInfos Method
	GetUIInfo Method
	Help Method
	Initialize Method
	InitializeMAPI Method
	Insert Method
	Item Method
	Load Method
	LoadFromRepository Method
	LoadFromSQLServer Method
	LoadFromStorageFile Method
	Lock Method
	Logoff Method
	Logon Method
	Messages Method
	New Method
	New (Columns) Method
	New (CustomTaskUI) Method
	New (ID) Method
	New (Name) Method
	NewDataLink Method
	Next Method
	Read Method
	Refresh Method
	ReleaseConnection Method
	Remove Method
	RemoveAllLogRecords Method
	RemoveFromRepository Method
	RemoveFromSQLServer Method
	RemovePackageLineages Method
	RemovePackageLogRecords Method
	RemoveStepLogRecords Method
	RemoveTaskLogRecords Method
	Reset Method
	ResetObjectsList Method
	ResolveName Method
	Save Method
	SaveAs Method
	SaveToRepository Method
	SaveToRepositoryAs Method
	SaveToSQLServer Method
	SaveToSQLServerAs Method
	SaveToStorageFile Method
	SaveToStorageFileAs Method
	SetDayLongName Method
	SetDayShortName Method
	SetMonthLongName Method
	SetMonthShortName Method
	ShowAddressBook Method
	Uninitialize Method
	UninitializeMAPI Method
	Unlock Method
	Write Method
	WriteStringToLog Method
	WriteTaskRecord Method

	Events
	OnError Event
	OnFinish Event
	OnProgress Event
	OnQueryCancel Event
	OnStart Event

	Constants
	DTSBulkInsert_DataFileType
	DTSCustomTaskUIFlags
	DTSDataPumpError
	DTSDesignerSettings
	DTSExceptionFileOptions
	DTSExecuteStatus
	DTSFastLoadOptions
	DTSForceMode
	DTSFTPError
	DTSFTPSourceLocation
	DTSIsolationLevel
	DTSLineageOptions
	DTSMQMessageType
	DTSMQStringMessageCompare
	DTSMQType
	DTSMSMQError
	DTSPackageError
	DTSPackagePriorityClass
	DTSPackageType
	DTSRepositoryMetadataOptions
	DTSRepositoryStorageFlags
	DTSSQLObjectType
	DTSSQLServerStorageFlags
	DTSStepExecResult
	DTSStepExecStatus
	DTSStepPrecedenceBasis
	DTSStepRelativePriority
	DTSStepScriptResult
	DTSTaskExecResult
	DTSTransfer_CopyDataOption
	DTSTransfer_ScriptOption
	DTSTransfer_ScriptOptionEx
	DTSTransformationSetOptions
	DTSTransformFlags
	DTSTransformPhaseEnum
	DTSTransformStatus
	DynamicPropertiesTaskError
	DynamicPropertiesTaskSourceType

	Data Pump Interfaces
	IDTSDataPump
	IDTSDataPump::AddTransform
	IDTSDataPump::AddTransformVariable
	IDTSDataPump::Execute
	IDTSDataPump::GetRowsets
	IDTSDataPump::InitNew
	IDTSDataPump::SetFetchBufferSize
	IDTSDataPump::SetInsertCommitSize
	IDTSDataPump::SetMaximumErrorRowCount
	IDTSDataPump::SetProgressRowCount
	IDTSDataPump::SetRowsets

	IDTSDataPump2
	IDTSDataPump2::AddTransform2
	IDTSDataPump2::ExecuteComplete
	IDTSDataPump2::ExecuteInit
	IDTSDataPump2::ExecuteRow
	IDTSDataPump2::GetExecuteInfo
	IDTSDataPump2::GetOptions
	IDTSDataPump2::SetExecuteThreadComplete
	IDTSDataPump2::SetOptions

	IDTSDataPumpErrorSink
	IDTSDataPumpErrorSink::OnBindingError
	IDTSDataPumpErrorSink::OnDestinationError
	IDTSDataPumpErrorSink::OnSourceError
	IDTSDataPumpErrorSink::OnTransformError

	IDTSDataPumpProgressSink
	IDTSDataPumpProgressSink::OnIntervalComplete

	IDTSDataPumpTransform
	IDTSDataPumpTransform::AddVariable
	IDTSDataPumpTransform::Execute
	IDTSDataPumpTransform::Initialize
	IDTSDataPumpTransform::OnRowComplete
	IDTSDataPumpTransform::OnTransformComplete
	IDTSDataPumpTransform::ValidateSchema

	IDTSDataPumpTransform2
	IDTSDataPumpTransform2::GetTransformServerInfo
	IDTSDataPumpTransform2::PreValidateSchema
	IDTSDataPumpTransform2::ProcessPhase
	IDTSDataPumpTransform2::SetExecuteThreadComplete
	IDTSDataPumpTransform2::SetExtendedInfo

	Transform Status Enumerations

	DTS Programming Samples
	CustomTaskNoUI
	CustomTaskWithUI
	CustomTransform
	DTS Custom Transformation Sample
	DTS Custom Task
	DTSCopy
	DTSStrings
	DTSTskGVUpdate
	DTSTskPropIcon
	Packages
	Complex Transformation Sample from SQL Server to Excel
	DTS Package Sample Supporting Multiple Source and Destination Providers
	DTSActiveScriptTask
	DTSApplicationObject
	DTSAppObject
	DTSBulkInsertTask
	DTSCopyDatabase
	DTSExecProcess
	DTSExecSQLTask
	DTSExecutePackage
	DTSFTPTask
	DTSPackageInfo
	DTSTransferObjectsTask
	FoodMart2000
	Pub2Pubs
	Simple DTS Package Sample Using Visual Basic
	Simple Transformation Sample Between Two SQL Server Tables

