
	
Microsoft	DirectX	8.1

Common	Framework

This	source	code	is	furnished	to	help	you	get	up	and	running	with	DirectX	more
quickly.	It	is	intended	to	illustrate	how	Direct3D	works,	and	reduce	the	time	it
takes	to	build	simple	applications	that	allow	you	to	experiment.	It	is	used	by	the
samples	in	the	SDK.	All	of	this	source	code	lives	in	the
Samples\Multimedia\Common\Src	directory	which	can	be	installed	during	the
SDK	install.

This	code	is	not	intended	to	be	cut	and	paste	into	a	production	application.	This
is	not	because	it	is	poorly	written,	but	rather	that	it	is	not	designed	for
production.	No	attempt	has	been	made	to	optimize	it	for	performance.	Very	little
error	checking	has	been	added	as	it	obscures	the	functionality.	Use	to	code	to
experiment	with	Direct3D	to	understand	how	it	works.

Classes Names
CD3DApplication
CD3DArcBall
CD3DCamera
CD3DFrame
CD3DFile
CD3DFont
CD3DMesh
CD3DScreenSaver

Functions Names
D3DUtil_CreateTexture
D3DUtil_CreateVertexShader
D3DUtil_GetCubeMapVertex
D3DUtil_GetRotationFromCursor
D3DUtil_InitMaterial
D3DUtil_InitLight
D3DUtil_SetColorKey

D3DUtil_SetDeviceCursor

Structures Names
D3DModeInfo
D3DWindowedModeInfo
D3DDeviceInfo
D3DAdapterInfo
MonitorInfo
RenderUnit

Macros Names

Error	Codes Names

	
Microsoft	DirectX	8.1	(C++)

Direct3DX	Shader	Assemblers
Reference
This	section	contains	reference	information	for	the	vertex	and	pixel	shader
assemblers	provided	by	the	Direct3DX	utility	library.

Vertex	Shader	Assembler	Reference
Pixel	Shader	Assembler	Reference

All	of	the	example	syntax	used	in	this	documentation	is	intended	to	demonstrate
how	to	write	shaders	when	using	the	Direct3DX	vertex	and	pixel	shader
assemblers.

	
Microsoft	DirectX	8.1	(C++)

Introducing	DirectX	8.1
Microsoft®	DirectX®	is	a	set	of	low-level	application	programming	interfaces
(APIs)	for	creating	games	and	other	high-performance	multimedia	applications.
It	includes	support	for	two-dimensional	(2-D)	and	three-dimensional	(3-D)
graphics,	sound	effects,	music,	input	devices,	and	networked	applications	such
as	multiplayer	games.

This	document	provides	introductory	information	about	DirectX	8.1.
Information	is	divided	into	the	following	sections.

What's	New	in	DirectX	8.1
DirectX	8.1	Components
Using	the	DirectX	8.1	Documentation
DirectX	Tools
Programming	DirectX	with	C/C++
Further	Information

	
Microsoft	DirectX	8.1	(C++)

What's	New	in	DirectX	8.1
Microsoft®	DirectX®	8.1	is	a	major	release	primarily	for	graphics.	It	includes
several	new	features	for	graphics,	and	bug	fixes	for	Microsoft	DirectInput®	and
Microsoft	DirectPlay®.

New	Tools	in	DirectX

AppWizard.	This	tool	provides	an	application	wizard	for	creating	a	DirectX
application	with	any	combination	of	DirectX	components.	This	tool	is
installed	during	the	software	development	kit	(SDK)	install	and	can	be
accessed	within	Microsoft	Visual	Studio®	when	creating	a	new	application.
For	more	information	see	AppWizard.
Error	Lookup	Tool.	Use	this	tool	to	take	the	hexadecimal	error	codes	and
look	up	a	text-based	error	message.	This	tool	is	installed	as	part	of	the	SDK
install	and	can	be	accessed	from	Start,	Programs,	Microsoft	DirectX	8.1
SDK,	DirectX	Utilities,	DirectX	Error	Lookup.

New	Features	in	DirectX	Graphics

Expanded	pixel	shader	functionality	with	new	version	1.2,	1.3,	and	1.4.
Expanded	the	functionality	of	the	Direct3DX	(D3DX)	utility	library	for
meshes,	textures,	bump	mapping,	textures,	and	quaternions.
MeshView.	This	tool	provides	an	easy	way	to	load,	view,	and	modify
meshes,	and	generally	exercise	D3DX	functionality	on	progressive	meshes.
For	more	information	about	the	tool,	see	Mesh	View	Help.
A	new	screen	saver	sample	is	included	that	is	built	on	the	screen	saver
sample	framework.	The	new	framework	includes	support	for	multiple
monitors.
Added	new	samples.
Reorganized	the	documentation	into	reference	and	programming	guides.
Expanded	shaders	and	effects	sections.

For	more	information	see	What's	New	in	Graphics,	or	see	each	of	the
components.

New	Features	in	DirectInput

Version	8.1	primarily	includes	performance	improvements	for	DirectInput.

For	more	information,	see	What's	New	in	DirectInput.

New	Features	in	DirectPlay

Version	8.1	primarily	includes	performance	improvements	for	DirectPlay.

For	more	information,	see	What's	New	in	DirectPlay.

New	Features	in	DirectX	8.0

Complete	integration	of	DirectDraw	and	Direct3D
Microsoft	DirectDraw®	and	Microsoft	Direct3D®	are	merged	into	a	single
DirectX	Graphics	component.	The	application	programming	interface	(API)
has	been	extensively	updated	to	make	it	even	easier	to	use	and	to	support
the	latest	graphics	hardware.

DirectMusic	and	DirectSound	more	integrated
Microsoft	DirectMusic®	and	Microsoft	DirectSound®	are	more	tightly
integrated	than	with	DirectX	7.0.	Wave	files	or	resources	can	now	be
loaded	by	the	DirectMusic	loader	and	played	through	the	DirectMusic
performance,	synchronized	with	MIDI	notes.

DirectPlay	updated
The	DirectPlay	component	has	been	extensively	updated	to	increase	its
capabilities	and	improve	its	ease-of-use.	In	particular,	DirectPlay	now
supports	voice	communication	between	players.

DirectInput	updated
DirectInput	introduces	one	major	new	feature:	action	mapping.	Action
mapping	enables	you	to	establish	a	connection	between	input	actions	and
input	devices,	which	does	not	depend	on	the	existence	of	particular	device
objects.	It	simplifies	the	input	loop	and	reduces	the	need	for	custom	game
drivers,	custom	device	profilers,	and	custom	configuration	of	user
interfaces	in	games.

DirectShow	included	in	DirectX
Microsoft®	DirectShow®	is	now	part	of	DirectX	and	has	been	updated	for
this	release.

Debug	build	available
You	can	use	the	DirectX	Control	Panel	Application	to	switch	between	the
debug	and	retail	builds	of	DirectInput,	Direct3D,	and	DirectMusic.	To
enable	this	feature,	select	Debug	when	you	install	the	software	development
kit	(SDK).	This	option	installs	both	debug	and	retail	dynamic-link	libraries
(DLLs)	on	your	system.	The	Retail	option	installs	only	the	retail	DLLs.

	
Microsoft	DirectX	8.1	(C++)

DirectX	8.1	Components
Microsoft®	DirectX®	8.1	is	made	up	of	the	following	components.

DirectX	Graphics	combines	the	Microsoft	DirectDraw®	and	Microsoft
Direct3D®	components	of	previous	DirectX	versions	into	a	single
application	programming	interface	(API)	that	you	can	use	for	all	graphics
programming.	The	component	includes	the	Direct3DX	utility	library	that
simplifies	many	graphics	programming	tasks.
DirectX	Audio	combines	the	Microsoft	DirectSound®	and	Microsoft
DirectMusic®	components	of	previous	DirectX	versions	into	a	single	API
that	you	can	use	for	all	audio	programming.
Microsoft	DirectInput®	provides	support	for	a	variety	of	input	devices,
including	full	support	for	force-feedback	technology.
Microsoft	DirectPlay®	provides	support	for	multiplayer	networked	games.
Microsoft	DirectShow®	provides	for	high-quality	capture	and	playback	of
multimedia	streams.
Microsoft	DirectSetup	is	a	simple	API	that	provides	one-call	installation	of
the	DirectX	components.

	
Microsoft	DirectX	8.1	(C++)

Using	the	DirectX	8.1	Documentation

The	following	conventions	are	used	in
the	syntax	of	methods,	functions,	and
other	API	elements,	as	well	as	in
explanatory	material	and	sample
code.

Convention Meaning

Italic	text

Denotes	a	placeholder	or	variable.	You	must	provide
the	actual	value.	For	example,	the	statement
SetCursorPos(X,	Y)	requires	you	to	substitute	values
for	the	X	and	Y	parameters.

Bold	text
Denotes	a	function,	procedure,	structure,	macro,
interface,	method,	data	type,	or	other	keyword	in	the
programming	interface	or	language.

[] Encloses	optional	parameters.
... Specifies	that	the	preceding	item	may	be	repeated.
FULL	BOLD
CAPITALS Used	for	most	type	and	structure	names.

FULL	CAPITALS Used	for	enumeration	values,	flags,	and	constants.
monospace Used	for	code	examples	and	syntax	spacing.
.

.

.

Represents	an	omitted	portion	of	a	sample
application.

	
Microsoft	DirectX	8.1	(C++)

Further	Information
You	can	find	further	explanations	of	the	graphics	and	multimedia	concepts	and
terms	discussed	throughout	the	Microsoft®	DirectX®	documentation,	as	well	as
information	on	Microsoft®	Windows®	programming	in	general,	in	the
following	sources:

Bargen,	Bradley	and	Peter	Donnelly,	Inside	DirectX,	Microsoft®	Press®,
1998.
Begault,	Durand	R.,	3-D	Sound	for	Virtual	Reality	and	Multimedia,
Academic	Press,	1994.
Blinn,	James,	Jim	Blinn's	Corner:	A	Trip	Down	the	Graphics	Pipeline,
Morgan	Kaufmann,	1996.
Dodge,	Charles	and	Thomas	A.	Jerse,	Computer	Music:	Synthesis,
Composition,	and	Performance,	Schirmer	Books,	1997	(2nd	edition).
Foley,	James	D.,	Computer	Graphics:	Principles	and	Practice,	Addison-
Wesley,	1991	(2nd	edition).
Hearn,	Donald	and	M.	Pauline	Baker,	Computer	Graphics,	Prentice-Hall,
1986.
Kientzle,	Tim,	A	Programmer's	Guide	to	Sound,	Addison-Wesley
Developers	Press,	1998.
Kovach,	Peter	J.,	Inside	Direct3D,	Microsoft	Press,	2000.
Petzold,	Charles,	Programming	Windows	98,	Microsoft	Press,	1998	(5th
edition).
Thompson,	Nigel,	3D	Graphics	Programming	for	Windows,	Microsoft
Press,	1996.
Watt,	Alan	H.,	and	Mark	Watt,	Advanced	Animation	and	Rendering
Techniques,	Addison-Wesley,	1992.

	

Additional	sources	for	the	concepts	and	terms	associated	with	COM	can	be
found	in	the	following	sources:

Brockschmidt,	Kraig,	Inside	OLE	2,	Microsoft	Press,	1995	(2nd	edition).
Rogerson,	Dale	E.,	Inside	COM,	Microsoft	Press,	1997.

	
Microsoft	DirectX	8.1	(C++)

Mesh	View	Help
Menu	Descriptions

File

Open	Mesh	File

Opens	a	dialog	to	select	a	file	in	the	.x	or	.m	file	format	to	be	loaded	and
viewed.

Open	PMesh	File

Opens	a	dialog	to	select	a	file	in	the	progressive	mesh	format	to	be	loaded
and	viewed.

Create	Shape

Opens	a	sub-dialog	to	create	some	basic	shapes	that	are	defined
programmatically	(text,	polygon,	box,	cylinder,	torus,	teapot,	sphere,	cone).

Save	Mesh	As

Opens	a	dialog	to	save	the	selected	mesh	to	a	file.	The	file	can	be	written	as
a	text	or	binary	file.

Close	Selected

Closes	and	deletes	the	currently	selected	mesh.

Close	Non	Selected

Closes	and	deletes	the	meshes	that	are	not	currently	selected.

View

Wireframe

View	all	content	in	wireframe	mode.

Edges

View	all	content	in	solid-shaded	mode	with	the	edges	drawn	in	black.

Creases

Highlight	the	creases	on	the	visible	meshes.	A	crease	is	an	edge	with	a
vertex	that	has	a	different	piece	of	data	on	it	for	multiple	faces	that	refer	to
it,	that	is,	a	different	normal	for	the	vertex	per	face.

Strips

Show	the	strips	that	are	generated	by	this	mesh	in	blue.	The	blue	line	goes
from	the	center	of	each	triangle	to	the	next	triangle	in	the	triangle	strip.

Adjacency

Show	the	adjacency	of	the	polygons	in	a	mesh	by	drawing	a	line	from	the
center	of	a	polygon	to	the	center	of	the	adjacent	polygon.

Bounding	Box

Draw	the	bounding	boxes	for	the	visible	meshes.

Normals

Draw	the	normals	of	the	vertices	on	the	visible	meshes	in	yellow.

Texture	Coords

Show	the	texture	coordinates	for	the	viewed	geometry	as	rays	projecting
from	the	vertices.	Because	a	vertex	in	Microsoft®	Direct3D®	can	have	up
to	eight	texture	coordinates,	users	must	specify	which	sets	they	would	like
to	view.	This	viewing	mode	is	especially	useful	when	the	texture
coordinates	are	filled	with	tangents	for	use	in	pixel	shaders	for	example.

Textures

Display	the	textures	on	the	visible	geometry.

Lighting

Show	the	geometry	in	the	scene	with	lighting	calculations	still	on.

Culling

Perform	back	face	culling	on	the	visible	geometry	when	disabled	polygons
facing	away	from	the	camera	are	not	drawn.

Hierarchy

Display	the	frame	hierarchy	of	the	meshes	that	are	currently	loaded.	This	is
displayed	in	a	separate	floating	window.	To	make	the	window	disappear,	on
the	View	menu,	clear	the	Hierarchy	command.

Play	Animation

Play	the	current	animation	for	the	currently	loaded	geometry	if	one	exists.

Pause	Animation

Stop	the	animation	at	the	current	frame	when	playing.

Normal	Speed

Interpret	the	time	value	in	the	animation	from	an	X	file	as	4800	units	per
second.	Otherwise,	the	interpreted	value	is	30	units	per	second.

MeshOps

Optimize

Optimizes	the	currently	selected	mesh	with	the	selected	optimization
method.	See	the	Microsoft®	Direct3DX	reference	pages	to	see	the
differences	in	methods.

Weld	Vertices

Removes	duplicate	vertices	and	makes	polygons	that	use	these	vertices	use
the	nondeleted	vertex.

Split	Mesh

Splits	the	selected	mesh	into	multiple	meshes	that	are	less	than	specified
size	in	vertices	and	faces.

Collapse	Meshes

Collapses	the	currently	selected	meshes	into	a	single	mesh.

Reset	Matrices

Resets	the	matrices	for	the	frames	that	are	loaded	to	their	initial	position.

Mesh	Properties

Shows	the	selected	mesh's	FVF	render	states	and	whether	or	not	it	is	a	32
bit	mesh.

Skinning	Method

Allows	the	user	to	select	the	skinning	method	while	animating	a	skinned
mesh.	The	choices	are	nonindexed,	indexed,	and	software	skinning.

Face	Selection

Enters	a	mode	for	the	user	to	select	an	individual	face	on	the	current	mesh.

Vertex	Selection

Enters	a	mode	for	the	user	to	select	an	individual	vertex	on	the	current
mesh.

PMeshes

Convert	Selected	to	PM

Convert	the	selected	mesh	to	a	progressive	mesh.	The	conversion	uses	the
error	parameters	that	are	entered	in	a	dialog	box.	For	more	information	on
these	parameters	refer	to	the	Direct3DX	documentation	of	progressive
meshes.

Snapshot	to	Mesh

Convert	the	current	progressive	mesh	object	to	a	static	mesh	object	using
the	current	settings	of	the	progressive	mesh.

Set	number	of	Faces

Set	the	current	number	of	faces	in	the	progressive	mesh	to	a	specific
number.

Set	number	of	Vertices

Set	the	current	number	of	vertices	in	the	progressive	mesh	to	a	specific
number.

Trim

Set	the	minimum	and	maximum	number	of	faces	for	a	progressive	mesh.
Once	the	user	has	set	the	trim	values	to	the	desired	minimum	and
maximum,	the	progressive	mesh	can	be	trimmed	to	the	selected	values,
thereby	reducing	the	dynamic	range	of	the	progressive	mesh.

N-Patches

N-Patch	Selected

Draw	the	current	object	as	an	N-Patches	object.	The	scroll	bar	in	this	mode
selects	the	amount	of	N-Patch	iterations	for	the	current	object.

SnapShot	to	mesh

Convert	the	selected	object	to	a	static	mesh	based	on	the	current	N-Patch
settings	to	create	a	high-resolution	static	mesh.

Icons	and	Usage

Icons

Selection	Modes

The	first	three	icons	are	easy	ways	for	the	user	to	select	the	selection	mode.
They	are	Mesh	Selection	Mode	(Arrow),	Face	Selection	Mode	(yellow
outlined	triangle),	and	Vertex	Selection	Mode	(Red	point	highlighted
triangle).	These	are	the	same	modes	that	are	available	from	the	menus	in
MeshOps.

Display	Modes

The	next	icons	are	easy	ways	to	select	the	most	common	display	modes	for
geometry.	They	are	Shaded	mode	(nonoutlined	tri-color	cube),	Wire	frame
mode	(wire	frame	cube),	and	Edge	mode	(outlined	tri-color	cube).	These
are	the	same	modes	that	are	available	from	the	menus	in	View.

Topology	Display	modes

The	next	icons	display	specific	topological	information	about	the	geometry
displayed.	They	are	adjacency	(A),	Strips	(S),	Creases	(C),	and	Normals
(N).	These	are	the	same	modes	that	are	available	from	the	menus	in	View.

Info

The	next	icon	is	the	info	button	that	will	display	information	about	the
currently	selected	element.

Animation	Controls

The	last	two	icons	are	animation	controls	for	playing	and	pausing	the
animation	for	the	currently	visible	mesh.

Status	Bar

The	status	bar	in	MView	displays	the	current	status	of	the	visible	geometry.	The

order	from	left	to	right	of	the	displayed	information	is	currently	selected	element
(face	or	vertex	only),	Mesh	mode	(polygon,	Pmesh,	or	pMesh),	display	frames
per	second,	display	triangles	per	second,	number	of	displayed	triangles,	and
number	of	displayed	vertices.

Scroll	Bar

The	scroll	bar	will	appear	in	two	of	the	three	mesh	modes,	pMesh	and	nPatch
mode.	In	pMesh	mode,	the	scroll	bar	indicates	the	range	of	displayed	triangles
for	the	progressive	mesh.	You	can	slide	the	scroll	bar	up	or	down	to	change	the
number	of	triangles	displayed.	In	nPatch	mode,	the	scroll	bar	indicates	how
many	nPatch	levels	are	being	used.	As	the	scroll	bar	is	moved	up	or	down,	the
number	of	nPatch	interactions	performed	are	adjusted	accordingly.

More	Information

For	more	information	on	any	of	the	functions	used	by	MView,	refer	to	the
Direct3DX	documentation	included	in	the	Microsoft®	DirectX®	software
development	kit	(SDK).

	
Microsoft	DirectX	8.1	(C++)

Moire	Sample

Description

The	moire	sample	shows	how	to	use	the	Microsoft®	DirectX®	software
development	kit	(SDK)	screen	saver	framework	to	write	a	screen	saver	that	uses
Microsoft®	Direct3D®.	The	screen	saver	framework	is	similar	to	the	sample
application	framework,	using	many	methods	and	variables	with	the	same	names.
After	writing	a	program	with	the	screen	saver	framework,	you	end	up	with	a
fully-functional	Microsoft®	Windows®	screen	saver,	rather	than	with	a	regular
Windows	application.

The	moire	screen	saver	appears	as	a	mesmerizing	sequence	of	spinning	lines	and
colors.	It	uses	texture	transformation	and	alpha	blending	to	create	a	highly
animated	scene,	even	though	the	polygons	that	make	up	the	scene	do	not	move
at	all.

Path

Source:	(SDK	root)\Samples\Multimedia\Direct3D\ScreenSavers\Moire

Executable:	(SDK	root)\Samples\Multimedia\Direct3D\Bin

User's	Guide

Moire.scr	can	be	started	in	five	modes:	configuration,	preview,	full,	test,	and
password-change.	You	can	choose	some	modes	by	clicking	the	right	mouse
button	(right-click)	on	the	moire.scr	file	and	choosing	Configure	or	Preview.	Or
you	can	start	moire.scr	from	the	command	line	with	the	following	command-line
parameters:
-c Configuration	mode
-t Test	mode
-p Preview	mode
-a Password-change	mode
-s Full	mode

When	the	screen	saver	is	running	in	full	mode,	press	any	key	or	move	the	mouse
to	exit.

Programming	Notes

Programs	that	use	the	screen	saver	framework	are	very	similar	to	programs	that
use	the	Direct3D	sample	application	framework.	Each	screen	saver	needs	to
create	a	class	derived	from	the	main	application	class,	CD3DScreensaver.	To
provide	functionality	specific	to	each	screen	saver,	the	screen	saver	implements
its	own	versions	of	the	virtual	functions	FrameMove,	Render,
InitDeviceObjects,	and	so	forth.

Screen	savers	can	be	written	to	be	multimonitor-compatible,	without	much	extra
effort.	If	you	do	not	want	your	screen	saver	to	run	on	multiple	monitors,	you	can
just	set	the	m_bOneScreenOnly	variable	to	TRUE.	This	value	is	set	to	FALSE	by
default.	The	function	SetDevice	will	be	called	each	time	the	device	changes.	The
way	that	moire	deals	with	this	is	to	create	a	structure	called	DeviceObjects,
which	contains	all	device-specific	pointers	and	values.	CMoireScreensaver	holds
an	array	of	DeviceObjects	structures,	called	m_DeviceObjectsArray.	When
SetDevice	is	called,	m_pDeviceObjects	is	changed	to	point	to	the	DeviceObjects
structure	for	the	specified	device.	When	rendering,	m_rcRenderTotal	refers	to
the	rendering	area	that	spans	all	monitors,	and	m_rcRenderCurDevice	refers	to
the	rendering	area	for	the	current	device's	monitor.	The	function
SetProjectionMatrix	shows	one	way	to	set	up	a	projection	matrix	that	makes
proper	use	of	these	variables	to	either	render	a	scene	that	spans	all	the	monitors,
or	display	a	copy	of	the	scene	on	each	monitor.	The	projection	matrix	used
depends	on	the	value	of	m_bAllScreensSame,	which	you	can	enable	the	user	to
control	in	the	configuration	dialog.

The	ReadSettings	function	is	called	by	the	screen	saver	framework	at	program
startup	time,	to	read	various	screen	saver	settings	from	the	registry.	DoConfig	is
called	when	the	user	wants	to	configure	the	screen	saver	settings.	The	program
should	respond	to	this	by	creating	a	dialog	box	with	controls	for	the	various
screen	saver	settings.	This	dialog	box	should	also	have	a	button	called	Display
Settings	which,	when	pressed,	should	call	DoScreenSettingsDialog.	This
common	dialog	box	allows	the	user	to	configure	what	renderer	and	display	mode
should	be	used	on	each	monitor.	You	should	set	the	member	variable
m_strRegPath	to	a	registry	path	that	will	hold	the	screen	saver's	settings.	You
can	use	this	variable	in	your	registry	read/write	functions.	The	screen	saver

framework	will	also	use	this	variable	to	store	information	about	the	default
display	mode	in	some	cases.

This	sample	uses	common	DirectX	code	that	consists	of	programming	elements
such	as	helper	functions.	This	code	is	shared	with	other	samples	in	the	DirectX
SDK.	You	can	find	the	common	headers	and	source	code	in	(SDK
root)\Samples\Multimedia\Common.

	
Microsoft	DirectX	8.1	(C++)

What's	New	in	DirectX	Graphics
This	section	describes	Microsoft®	DirectX®	graphics	features	that	are	new	in
DirectX	8.x.

To	see	what's	new	in	all	of	DirectX,	see	What's	new	in	DirectX	8.1.

New	Features	in	DirectX	8.1

Pixel	Shaders

Added	pixel	shader	versions	1.2,	1.3,	and	1.4.	These	new	versions	expand
existing	functionality	through	a	more	powerful	set	of	instructions,	registers,
and	modifiers	for	programming	pixel	shaders.

New	D3DX	Functionality

Mesh	API

Added	mesh	functionality	to	improve	performance	using
D3DXConvertMeshSubsetToStrips	and
D3DXConvertMeshSubsetToSingleStrip.	Use	the	OptimizedMesh	sample
to	understand	improving	mesh	performance.
Improved	support	for	progressive	meshes	with	OptimizeBaseLOD,
TrimByVertices	and	TrimByFaces.
Added	D3DXSplitMesh	to	help	split	meshes	into	smaller	meshes.

Bump	Mapping

Added	D3DXComputeTangent	to	create	a	per-vertex	coordinate	system
based	on	texture	coordinate	gradients.
D3DXComputeNormalMap	converts	a	height	field	to	a	normal	map.

MeshView	Tool

This	tool	provides	an	easy	way	to	load,	view,	and	modify	meshes,	and
generally	exercise	Direct3DX	(D3DX)	functionality	on	progressive	meshes.
This	tool	is	installed	as	part	of	the	software	development	kit	(SDK)	install
and	can	be	accessed	from	Start/Programs/Microsoft	DirectX	8.1
SDK/DirectX	Utilities/DirectX	MeshView.	For	more	information	about	the
tool,	see	Mesh	View	Help.

Effect	Framework

Effects.	Added	string	support,	added	comments,	and	removed	FourCC

constraints.
Effect	framework	API.	Support	for	state	saving	and	restoring,	support	for
handling	OnLost	and	OnReset,	support	Set*()	after	Begin().	All	of	the
ID3DXTechnique	functionality	has	been	moved	into	the	ID3DXEffect
interface	to	simplify	the	effect	interface.

Texture	Library

Implemented	a	higher	quality	DXTn	encoding	algorithm.
Use	D3DXGetImageInfoFrom	to	get	image	information	before	loading	it.
Includes	support	for	dynamic	textures.
D3DXSaveSurfaceToFile	supports	8-bit	paletted	.bmp	files	and	24-bit	RGB
.dds	files	in	all	formats:	mipmaps,	cube	maps,	volumes.
D3DPOOL_SCRATCH	allows	creation	of	resources	that	are	not	limited	by
device	capabilities.	They	can	be	created	and	destroyed,	locked	and
unlocked.	These	resources	can	be	set	to	a	device	and	used	in	rendering.	Use
with	D3DX	to	convert	to	something	useable	such	as	loading	a	high-
precision	height	field	and	converting	to	a	normal	map.
Texture	fill	functions,	D3DXFillTexture,	D3DXFillCubeTexture,	and
D3DXFillVolumeTexture.

Math	Library

New	math	functions:	Additional	support	for	spherical	quadratic	quaternion
interpolation	using	D3DXQuaternionSquadSetup.	Use	it	with
D3DXQuaternionSquad.	D3DXMatrixMultiplyTranspose	for	matrices	in
vertex	shaders	and	D3DXFresnelTerm.
Math	library.	Added	CPU	specific	optimizations	for	most	important
functions	for	3DNow,	SSE,	and	SSE2.
Support	for	16-byte	aligned	matrices	using	D3DXMATRIXA16.

Samples

Several	new	samples	have	been	included	to	demonstrate	culling,	lighting,
volume	fog,	and	self-shadowing	using	a	shadow	volume.
A	new	screen	saver	sample	is	included	that	is	built	on	the	screen	saver
sample	framework.	The	new	framework	includes	support	for	multiple
monitors.

Documentation	Upgrades

DXGraphics	SDK	Docs.	The	graphics	SDK	documentation	has	been
reorganized	into	two	sections:	a	Reference	section	and	a	Programmers
Guide.
New	sections	for	creating	programmable	vertex	shaders,	pixel	shaders,	and
effects	have	been	added	to	the	Programmers	Guide.
The	global	illumination	equations	and	the	Mathematics	of	Lighting	section
have	been	rewritten	and	examples	included.

New	Features	in	DirectX	8.0

This	version	maintains	backward	compatibility	by	exposing	and	supporting
objects	and	interfaces	offered	by	previous	releases	of	DirectX.	However,	many
new	features	and	performance	enhancements	have	also	been	added	to	the
Microsoft	Direct3D®	API	interfaces.

Pixel	and	Vertex	Shaders

The	two	programmable	sections	of	the	Direct3D	architecture	are	vertex
shaders	and	pixel	shaders.	Vertex	shaders	are	invoked	prior	to	vertex
assembly	and	operate	on	vertices.	Pixel	shaders	are	invoked	after	any
DrawPrimitive	or	DrawIndexedPrimitive	calls	and	generate	the	pixels	that
are	written	to	the	render	target.	The	addition	of	programmable	shaders	for
vertex	and	pixel	operations	provides	the	framework	for	real-time
programmable	effects	that	rival	movie	quality.	The	innovative	freedom	that
this	programmability	gives	back	to	game	developers—by	allowing	them	to
implement	whatever	effect	they	see	fit	with	the	programmable	pipeline—
has	the	potential	to	unlock	a	new	round	of	incredible	games.	Pixel	and
vertex	shaders	can	be	written	using	ASCII	files,	thus	the	shader	files	can	be
updated	at	runtime	without	recompiling	the	source	application.

Effects

Allows	you	to	change	how	an	object	is	rendered,	based	on	the	hardware
capabilities	of	the	machine	your	application	is	running	on.	Effects	are
written	using	ASCII	files,	thus	the	effect	file	can	be	updated	at	runtime
without	recompiling	the	source	application.

Complete	Integration	of	DirectDraw	and	Direct3D

Simplifies	application	initialization	and	improves	data	allocation	and
management	performance,	which	reduces	the	memory	footprint.	Also,	the
integration	of	the	graphics	APIs	enable	parallel	vertex	input	streams	for
more	flexible	rendering.

Multisampling	Rendering	Support

Enables	full-scene	antialiasing	and	multisampling	effects,	such	as	motion
blur	and	depth-of-field.

Point	Sprites

Enables	high-performance	rendering	of	particle	systems	for	sparks,
explosions,	rain,	snow,	and	so	on.

3-D	Volumetric	Textures

Enables	range-attenuation	in	per-pixel	lighting	and	volumetric	atmospheric
effects,	and	can	be	applied	to	more	intricate	geometry.

Higher-Order	Primitive	Support

Enhances	the	appearance	of	three-dimensional	(3-D)	content	and	facilitates
the	mapping	of	content	from	major	3-D	authoring	tools.

Higher-Level	Technologies

Includes	3-D	content-creation	tool	plug-ins	(for	export	to	Direct3D)	for
skinned	meshes	that	use	a	variety	of	Direct3D	techniques,	multiresolution
level-of-detail	(LOD)	geometry,	and	higher-order	surface	data.

Indexed	Vertex	Blending

Extends	geometry	blending	support	to	allow	the	matrices	used	for	vertex
blending	to	be	referred	to	using	a	matrix	index.

Expansion	of	the	Direct3DX	Utility	Library

Contains	a	wealth	of	new	functionality.	The	Direct3DX	utility	library	is	a
helper	layer	that	sits	on	top	of	Direct3D	to	simplify	common	tasks
encountered	by	3-D	graphics	developers.	Includes	a	skinning	library,
support	for	working	with	meshes,	and	functions	to	assemble	vertex	and
pixel	shaders.	About	20	new	functions	have	been	added	for	DirectX	8.1.
Note	that	the	functionality	supplied	by	D3D_OVERLOADS,	first
introduced	with	DirectX	5.0,	has	been	moved	to	the	Direct3DX	utility
library.

	
Microsoft	DirectX	8.1	(C++)

What's	New	in	DirectInput
New	Features	for	DirectInput	8.1

Microsoft®	DirectX®	8.1	is	a	major	release	primarily	for	DirectX	graphics.	The
improvements	for	Microsoft	DirectInput®	are	primarily	performance
enhancements.

To	find	out	more	about	the	new	features	in	DirectX,	see	What's	New	in	DirectX
8.1.

New	Features	for	DirectInput	8.0

The	following	are	some	of	the	new	features	in	DirectInput.

Action	mapping
DirectInput	for	DirectX	8.0	introduces	a	major	new	feature:	action
mapping.	Action	mapping	enables	you	to	establish	a	connection	between
input	actions	and	input	devices	that	does	not	depend	on	the	existence	of
particular	device	objects	(such	as	specific	buttons	or	axes).	Action	mapping
simplifies	the	input	loop	and	reduces	the	need	for	custom	game	drivers,
custom	device	profilers,	and	custom	configuration	user	interfaces	in	games.

For	more	information,	see	Action	Mapping.

New	DirectInput	object	features
The	DirectInput	object	is	now	represented	by	the	IDirectInput8	interface.
A	new	helper	function,	DirectInput8Create,	creates	the	object	and
retrieves	this	interface.	IDirectInput8	has	a	new	CLSID	and	cannot	be
obtained	by	calling	QueryInterface	on	an	interface	to	objects	of	the	class
CLSID_DirectInput	used	in	earlier	DirectX	versions.

New	keyboard	properties
Two	keyboard	properties	have	been	added:	DIPROP_KEYNAME,	which
retrieves	a	localized	key	name,	and	DIPROP_SCANCODE,	which	retrieves
the	scan	code.

Joystick	slider	data	in	rglSlider	array
Joystick	slider	data	that	was	assigned	to	the	z-axis	of	a	DIJOYSTATE	or
DIJOYSTATE2	structure	under	earlier	DirectX	versions	will	now	be	found
in	the	rglSlider	array	of	those	same	structures.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

Instructions

Pixel	shaders	contain	the	following	types	of	instructions.

A	Version	instruction	defines	the	shader	version.	There	is	only	one	version
instruction	in	a	shader	and	it	is	the	first	instruction	in	a	shader.
Constant	instructions	define	constants.	These	instructions	must	be	after	the
version	instruction	and	before	any	arithmetic	or	texture	address	instructions.
A	Phase	instruction	splits	a	shader	into	two	sections:	phase	1	and	phase	2.
Each	phase	has	separate	arithmetic	and	texture	address	instruction	limits.
Version	1.4	is	the	only	version	that	supports	the	phase	instruction.
Arithmetic	instructions	include	common	mathematical	operations	such	as
add	and	subtract,	multiply,	and	taking	a	dot	product.
Texture	Address	instructions	manipulate	texture	coordinate	data	that	is
associated	with	texture	stages.

The	instructions	are	listed	below.

Version	instructions Version
1.0 1.1 1.2 1.3 1.4

ps x x x x x

Constant	instructions Version
1.0 1.1 1.2 1.3 1.4

def x x x x x

Phase	instructions Version
1.0 1.1 1.2 1.3 1.4

phase x

Arithmetic	instructions Version
1.0 1.1 1.2 1.3 1.4

add x x x x x
bem x
cmp x x x
cnd x x x x x
dp3 x x x x x
dp4 x x x

lrp x x x x x
mad x x x x x
mov x x x x x
mul x x x x x
nop x x x x x
sub x x x x x

Texture	address	instructions Version
1.0 1.1 1.2 1.3 1.4

tex x x x x
texbem x x x x
texbeml x x x x
texcoord x x x x
texcrd x
texdepth x
texdp3 x x
texdp3tex x x
texkill x x x x x
texld x
texm3x2depth x
texm3x2pad x x x x
texm3x2tex x x x x
texm3x3 x x
texm3x3pad x x x x
texm3x3tex x x x x
texm3x3spec x x x x
texm3x3vspec x x x x
texreg2ar x x x x
texreg2gb x x x x
texreg2rgb x x

	
Microsoft	Directx	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

Registers

Registers	hold	data	for	use	by	the	pixel	shader.	Registers	are	fully	described	in
the	following	sections.

Register	Types.	Describes	the	four	types	of	registers	available	and	their
purposes.
Read	Port	Count.	Details	the	restrictions	on	using	multiple	registers	in	a
single	instruction.
Read-only,	Read/Write.	Describes	which	registers	can	be	used	for	reading,
writing,	or	both.
Range.	Details	the	range	of	the	component	data.

Register	Types

Registers	transfer	data	to	the	shader	ALU	and	store	temporary	results.	The	table
below	identifies	the	four	types	of	registers	and	the	number	available	in	each
shader	version.

Register	name Type Versions
1.0 1.1 1.2 1.3 1.4

cn Constant	register 8 8 8 8 8
rn Temporary	register 2 2 2 2 6
tn Texture	register 4 4 4 4 6
vn Color	register 2 2 2 2 2	in	phase	2

Constant	registers	contain	constant	data	organized	in	four	fixed-point
values.	Data	can	be	loaded	into	a	constant	register	using
SetPixelShaderConstant	or	it	can	be	defined	using	the	def	shader
instruction.	Constant	registers	are	not	usable	by	texture	address	instructions.
The	only	exception	is	the	texm3x3spec	instruction,	which	uses	a	constant
register	to	supply	an	eye-ray	vector.

Temporary	registers	are	used	to	store	intermediate	results,	as	four	fixed-
point	values.	r0	additionally	serves	as	the	pixel	shader	output.	The	value	in
r0	at	the	end	of	the	shader	is	the	pixel	color	for	the	shader.

Shader	pre-processing	will	fail	CreatePixelShader	on	any	shader	that
attempts	to	read	from	a	temporary	register	that	has	not	been	written	by	a
previous	instruction.	D3DXAssembleShader	will	fail	similarly,	assuming
validation	is	enabled	(do	not	use	D3DXASM_SKIPVALIDATION).

Texture	registers
Pixel	shader	version	1.1	to	1.3

For	pixel	shader	version	1.1	to	1.3,	texture	registers	contain	texture
data,	organized	in	four	fixed-point	values.	Texture	data	is	loaded	into	a
texture	register	when	a	texture	is	sampled.	Texture	sampling	uses
texture	coordinates	to	look	up,	or	sample,	a	color	value	at	the	specified
(u,v,w,q)	coordinates	while	taking	into	account	the	texture	stage	state
attributes.	The	texture	coordinate	data	is	interpolated	from	the	vertex
texture	coordinate	data	and	is	associated	with	a	specific	texture	stage.
There	is	a	default	one-to-one	association	between	texture	stage	number
and	texture	coordinate	declaration	order.	By	default,	the	first	set	of
texture	coordinates	defined	in	the	vertex	format	is	associated	with
texture	stage	0.

For	these	pixel	shader	versions,	texture	registers	behave	just	like
temporary	registers	when	used	by	arithmetic	instructions.	For	pixel
shader	version	1.0,	texture	registers	are	read-only	to	arithmetic
instructions.

Pixel	shader	version	1.4

For	pixel	shader	version	1.4,	texture	registers	(t#)	contain	read-only
texture	coordinate	data.	This	means	that	the	texture	coordinate	set	and
the	texture	stage	number	are	independent	from	each	other.	The	texture
stage	number	(from	which	to	sample	a	texture)	is	determined	by	the
destination	register	number	(r0	to	r5).	For	the	texld	instruction,	the
texture	coordinate	set	is	determined	by	the	source	register	(t0	to	t5),	so
the	texture	coordinate	set	can	be	mapped	to	any	texture	stage.	In
addition,	the	source	register	(specifying	texture	coordinates)	for	texld
can	also	be	a	temporary	register	(r#),	in	which	case	the	contents	of	the
temporary	register	are	used	as	texture	coordinates.

For	this	pixel	shader	version,	texture	registers	contain	texture

coordinate	data	and	are	also	available	to	texture	addressing
instructions	as	source	parameters.

Color	registers	contain	per-pixel	color	values.	The	values	are	obtained	by
per-pixel	iteration	of	the	diffuse	and	specular	color	values	in	the	vertex
data.	Color	registers	store	data	in	four	fixed-point	values.	For	pixel	shader
version	1.4	shaders,	color	registers	are	available	only	during	the	second
phase.

If	the	shade	mode	is	set	to	D3DSHADE_FLAT,	the	application	iteration	of
both	vertex	colors	(diffuse	and	specular)	is	disabled.	Regardless	of	the
shade	mode,	fog	will	still	be	iterated	by	the	pipeline	if	pixel	fog	is	enabled.
Keep	in	mind	that	fog	is	applied	later	in	the	pipeline	than	the	pixelshader.

It	is	common	to	load	the	v0	register	with	the	vertex	diffuse	color	data.	It	is
also	common	to	load	the	v1	register	with	the	vertex	specular	color	data.

Input	color	data	values	are	clamped	(saturated)	to	the	range	0	through	1
because	this	is	the	valid	input	range	for	color	registers	in	the	pixel	shader.

Pixel	shaders	have	read	only	access	to	color	registers.	The	contents	of	these
registers	are	iterated	values,	but	iteration	is	performed	at	much	lower
precision	than	texture	coordinates.

Read	Port	Limit

The	read	port	limit	specifies	the	number	of	different	registers	of	each	register
type	that	can	be	used	as	a	source	register	in	a	single	instruction.

Register	name Type Versions
1.0 1.1 1.2 1.3 1.4

cn Constant	register 2 2 2 2 2
rn Temporary	register 2 2 2 2 3
tn Texture	register 1 2 3 3 1
vn Color	register 1 2 2 2 2

For	example,	the	color	registers	for	almost	all	versions	have	a	read	port	limit	of

two.	This	means	that	a	single	instruction	can	use	a	maximum	of	two	different
color	registers	(v0	and	v1	for	instance)	as	source	registers.	This	example	shows
two	color	registers	being	used	in	the	same	instruction.	As	shown	in	the	table,	two
color	registers	can	be	used	in	every	version	except	1.0.

mad	r0,	v0,	v1,	v1		//	This	is	valid	for	versions	1.1,	1.2,	1.3,	1.4.

Any	valid	destination	register	can	be	used	in	the	same	instruction	because	read
port	count	restrictions	do	not	affect	destination	registers.

Destination	registers	are	independent	of	the	read	port	count	restrictions.

For	co-issued	instructions,	the	maximum	number	of	different	registers	(of	the
same	type)	that	can	be	used	across	two	co-issued	instructions	is	three.	This	is
true	for	all	shader	versions.

Read-only,	Read/Write

The	register	types	are	identified	according	to	read-only	(RO)	capability	or
read/write	(RW)	capability	in	the	following	table.	Read-only	registers	can	be
used	only	as	source	registers	in	an	instruction;	they	can	never	be	used	as	a
destination	register.

Register	name Type Versions
1.0 1.1 1.2 1.3 1.4

cn Constant	register RO RO RO RO RO
rn Temporary	register RW RW RW RW RW
tn Texture	register See	following	note RW RW RW RO
vn Color	register RO RO RO RO RO

Registers	that	are	RW	capable	can	be	used	to	store	intermediate	results.	This
includes	the	temporary	registers	and	texture	registers	for	some	of	the	shader
versions.

Note		

For	pixel	shader	version	1.0,	texture	registers	are	RW	for	texture	addressing

instructions,	but	RO	for	arithmetic	instructions.
For	pixel	shader	version	1.4,	texture	registers	are	RO	for	texture	addressing
instructions,	and	texture	registers	can	be	neither	read	from	nor	written	to	by
arithmetic	instructions.	Also,	because	texture	registers	have	become	texture
coordinate	registers,	having	RO	access	is	not	a	regression	of	previous
functionality.

Range

The	range	is	the	maximum	and	minimum	register	data	value.	The	ranges	vary
based	on	the	type	of	register.	The	ranges	for	some	of	the	registers	can	be	queried
from	the	device	caps	using	GetDeviceCaps.

Register
name Type Range Versions

cn
Constant
register -1	to	+1 All

versions

rn
Temporary
register

-	MaxPixelShaderValue	to	+
MaxPixelShaderValue

All
versions

tn
Texture
register

-	MaxPixelShaderValue	to	+
MaxPixelShaderValue 1.0	to	1.3

-	MaxTextureRepeat	to	+
MaxTextureRepeat 1.4

vn Color	register 0	to	+1 All
versions

Early	pixel	shader	hardware	represents	data	in	registers	using	a	fixed-point
number.	This	limits	precision	to	a	maximum	of	approximately	eight	bits	for	the
fractional	part	of	a	number.	Keep	this	in	mind	when	designing	a	shader.

For	pixel	shader	version	1.0	to	1.3,	MaxTextureRepeat	must	be	a	minimum	of
one.
For	1.4,	MaxTextureRepeat	must	be	a	minimum	of	eight.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

Modifiers

Modifiers	are	used	to	modify	instructions,	source	registers,	and	destination
registers.

Instruction	modifiers
Source	register	modifiers
Source	register	selectors
Destination	register	write	masks

Texture	Register	Modifiers

Pixel	shader	version	1.4	includes	two	new	instructions,	texld	and	texcrd,	which
contain	custom	register	modifier	functionality.	These	instructions	support
different	register	modifiers,	register	selectors,	and	register	write	masks.	For	more
information,	see	Texture	Register	Modifiers.

	
Microsoft	DirectX	8.1	(C++)

D3DXConvertMeshSubsetToStrips
Convert	the	specified	mesh	subset	into	a	series	of	strips.

HRESULT	D3DXConvertMeshSubsetToStrips(

		LPD3DXBASEMESH										MeshIn,

		DWORD																		 AttribId,

		DWORD																		 IBOptions,

		LPDIRECT3DINDEXBUFFER8* ppIndexBuffer,

		DWORD*																	 pNumIndices,

		LPD3DXBUFFER*										 ppStripLengths,

		DWORD*																	 pNumStrips,

);

Parameters

MeshIn
[in]	Pointer	to	a	ID3DXBaseMesh	interface,	representing	the	mesh	to
convert	to	strips.

AttribId
[in]	Attirbute	ID	of	the	mesh	subset	to	convert	to	strips.

IBOptions
[in]	A	combination	of	one	or	more	flags	from	the	D3DXMESH
enumeration,	specifying	options	for	the	create	index	buffer.

ppIndexBuffer
[out]	Pointer	to	an	ID3DXBuffer	object,	representing	the	index	buffer
containing	the	strips.

pNumIndices
[out]	Number	of	indices	in	the	buffer	returned	in	the	ppIndexBuffer
parameter.

ppStripLengths
[out]	Buffer	containing	an	array	of	one	DWORD	per	strip,	in	the	index
buffer	that	specifies	the	length	of	that	strip.

pNumStrips
[out]	Number	of	individual	strips	in	the	index	buffer	and	corresponding
strip	length	array.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	one	of	the	following	values.

D3DERR_INVALIDCALL
E_OUTOFMEMORY

Requirements

		Header:	Declared	in	D3dx8mesh.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

D3DXConvertMeshSubsetToSingleStrip
Converts	the	specified	mesh	subset	into	a	single	triangle	strip.

HRESULT	D3DXConvertMeshSubsetToSingleStrip(

		LPD3DXBASEMESH										MeshIn,

		DWORD																		 AttribId,

		DWORD																		 IBOptions,

		LPDIRECT3DINDEXBUFFER8* ppIndexBuffer,

		DWORD*																	 pNumIndices

);

Parameters

MeshIn
[in]	Pointer	to	a	ID3DXBaseMesh	interface,	representing	the	mesh	to
convert	to	a	strip.

AttribId
[in]	Attirbute	ID	of	the	mesh	subset	to	convert	to	strips.

IBOptions
[in]	A	combination	of	one	or	more	flags	from	the	D3DXMESH
enumeration,	specifying	options	for	the	create	index	buffer.

ppIndexBuffer
[out]	Pointer	to	an	ID3DXBuffer	object,	representing	the	index	buffer
containing	the	strip.

pNumIndices
[out]	Number	of	indices	in	the	buffer	returned	in	the	ppIndexBuffer
parameter.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	one	of	the	following	values.

D3DERR_INVALIDCALL
E_OUTOFMEMORY

Requirements

		Header:	Declared	in	D3dx8mesh.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

OptimizedMesh	Sample

Description

The	OptimizedMesh	sample	illustrates	how	to	load	and	optimize	a	file-based
mesh	using	the	Microsoft®	Direct3DX	mesh	utility	functions.

For	more	information	on	Direct3DX,	refer	to	the	Microsoft®	DirectX®	SDK
documentation.

Path

Source:	(SDK	root)\Samples\Multimedia\Direct3D\OptimizedMesh

Executable:	(SDK	root)\Samples\Multimedia\Direct3D\Bin

User's	Guide

The	following	table	lists	the	keys	that	are	implemented.	You	can	use	menu
commands	for	the	same	controls.

Key Action
ENTER Starts	and	stops	the	scene.
SPACEBAR Advances	the	scene	by	a	small	increment.

F2 Prompts	the	user	to	select	a	new	rendering	device	or	display
mode.

ALT+ENTER Toggles	between	full-screen	and	windowed	modes.
ESC Exits	the	application.
CTRL-O Opens	mesh	file.
CTRL-M Toggles	optimized	mesh.

Programming	Notes

Many	Microsoft	Direct3D®	samples	in	the	DirectX	SDK	use	file-based	meshes.
However,	the	OptimizedMesh	sample	is	a	good	example	of	the	basic	code

necessary	for	loading	a	mesh.	The	D3DX	mesh	loading	functionality	collapses
the	frame	hierarchy	of	an	.x	file	into	one	mesh.

For	other	samples,	the	bare	bones	D3DX	mesh	functionality	is	wrapped	in	a
common	class	CD3DMesh.	If	you	want	to	keep	the	frame	hierarchy,	you	can	use
the	common	class	CD3DFile.

This	sample	uses	common	DirectX	code	that	consists	programming	elements
such	as	helper	functions.	This	code	is	shared	with	other	samples	in	the	DirectX
SDK.	You	can	find	the	common	headers	and	source	code	in	(SDK
root)\Samples\Multimedia\Common.

	
Microsoft	DirectX	8.1	(C++)

D3DXSplitMesh
Splits	a	mesh	into	meshes	smaller	than	the	specified	size.

HRESULT	D3DXSplitMesh(

		CONST	LPD3DXMESH pMeshIn,

		CONST	DWORD*				 pAdjacencyIn,

		CONST	DWORD					 MaxSize,

		CONST	DWORD					 Options,

		DWORD*										 pMeshesOut,

		LPD3DXBUFFER*			 ppMeshArrayOut,

		LPD3DXBUFFER*			 ppAdjacencyArrayOut,

		LPD3DXBUFFER*			 ppFaceRemapArrayOut,

		LPD3DXBUFFER*			 ppVertRemapArrayOut,

);

Parameters

pMeshIn
[in]	Pointer	to	an	ID3DXMesh	interface,	representing	the	source	mesh.

pAdjacencyIn
[in]	Pointer	to	an	array	of	three	DWORDs	per	face	that	specify	the	three
neighbors	for	each	face	in	the	mesh	to	be	simplified.

MaxSize
[in]	Maximum	number	of	vertices	or	faces	in	the	new	mesh.

Options
[in]	Option	flags	for	the	new	meshes.

pMeshesOut
[out,	retval]	Number	of	meshes	returned.

ppMeshArrayOut
[out,	retval]	Buffer	containing	an	array	of	ID3DXMesh	interfaces	for	the
new	meshes.

ppAdjacencyArrayOut
[out,	retval]	Buffer	containing	an	array	of	adjacency	arrays	for	the	new
meshes.	This	parameter	is	optional.	Set	it	to	NULL	if	it	is	unused.

ppFaceRemapArrayOut
[out,	retval]	Buffer	containing	an	array	of	face	remap	arrays	for	the	new
meshes.	This	parameter	is	optional.	Set	it	to	NULL	if	it	is	unused.

ppVertRemapArrayOut
[out,	retval]	Buffer	containing	an	array	of	vertex	remap	arrays	for	the	new
meshes.	This	parameter	is	optional.	Set	it	to	NULL	if	it	is	unused.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	one	of	the	following	values.

D3DERR_INVALIDCALL
D3DXERR_INVALIDDATA
E_OUTOFMEMORY

Requirements

		Header:	Declared	in	D3dx8mesh.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

D3DXComputeTangent
Computes	a	per	vertex	coordinate	system	based	on	texture	coordinate	gradients.

HRESULT	D3DXComputeTangent(

		LPD3DXMESH InMesh,

		DWORD					 TexStage,

		LPD3DXMESH OutMesh,

		DWORD					 TexStageUVec,

		DWORD					 TexStageVVec,

		DWORD					 Wrap,

		DWORD*				 pAdjacency

);

Parameters

InMesh
[in]	Pointer	to	an	ID3DXMesh	interface,	representing	the	input	mesh.

TexStage
[in]	Texture	coordinate	set	in	input	mesh	to	use	for	gradients.

OutMesh
[out]	Pointer	to	an	ID3DXMesh	interface,	representing	the	returned	mesh.

TexStageUVec
[in]	Texture	coordinate	set	in	output	mesh	to	receive	U	tangent	vector.	Set
this	value	to	D3DX_COMP_TANGENT_NONE	if	you	do	not	want	to
generate	a	U	tangent	vector.

TexStageVVec
[in]	Texture	coordinate	set	in	output	mesh	to	receive	V	tangent	vector.	Set
this	value	to	D3DX_COMP_TANGENT_NONE	if	you	do	not	want	to
generate	a	V	tangent	vector.

Wrap
[in]	Set	this	value	to	0	for	no	wrapping	or	1	to	wrap	in	the	U	and	V
directions.

pAdjacency
[out]	Pointer	to	an	array	of	three	DWORDs	per	face	that	specify	the	three
neighbors	for	each	face	in	the	created	mesh.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	one	of	the	following	values.

D3DERR_INVALIDCALL
E_OUTOFMEMORY

Remarks

Setting	both	TexStageVVec	and	TexStageWVec	to
D3DX_COMP_TANGENT_NONE	will	cause	this	method	to	fail,	since	it	has
nothing	to	do.

Requirements

		Header:	Declared	in	D3dx8mesh.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

D3DXComputeNormalMap
Converts	a	height	map	into	a	normal	map.	The	(x,y,z)	components	of	each
normal	are	mapped	to	the	(r,g,b)	channels	of	the	output	texture.

HRESULT	D3DXComputeNormalMap(

		LPDIRECT3DTEXTURE8		 pTexture,

		LPDIRECT3DTEXTURE8		 pSrcTexture,

		CONST	PALETTEENTRY*	 pSrcPalette,

		DWORD															 Flags,

		DWORD															 Channel,

		FLOAT															 Amplitude

);

Parameters

pTexture
[out,	retval]	Pointer	to	an	IDirect3DTexture8	interface,	representing	the
destination	texture.

pSrcTexture
[in,	retval]	Pointer	to	an	IDirect3DTexture8	interface,	representing	the
source	height-map	texture.

pSrcPalette
[in]	Pointer	to	a	PALETTEENTRY	type	that	contains	the	source	palette	of
256	colors	or	NULL.

Flags
[in]	One	or	more	D3DX_NORMALMAP	flags	that	control	generation	of
normal	maps.

Channel
[in,	out]	One	D3DX_CHANNEL	flag	specifying	the	source	of	height
information.

Amplitude
[in]	Constant	value	by	which	the	height	information	is	multiplied.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	the	following	value.

D3DERR_INVALIDCALL

Remarks

This	method	computes	the	normal	by	using	the	central	difference	with	a	kernel
size	of	3×3.	RGB	channels	in	the	destination	contain	biased	(x,y,z)	components
of	the	normal.

Requirements

		Header:	Declared	in	D3dx8tex.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

ID3DXEffect
The	methods	from	the	ID3DXTechnique	interface	have	been	moved	into	the
ID3DXEffect	interface	for	Microsoft®	DirectX®	8.1.

The	ID3DXEffect	interface	is	used	to	set	and	query	effects,	and	to	choose
techniques.	An	effect	object	can	contain	multiple	techniques	to	render	the	same
effect.

The	ID3DXEffect	interface	is	obtained	by	calling	D3DXCreateEffect	or
D3DXCreateEffectFromFile.	The	methods	of	the	ID3DXEffect	interface	can
be	organized	into	the	following	groups.

Copying CloneEffect
GetCompiledEffect

Effect	Parameters

SetDword
SetFloat
SetMatrix
SetPixelShader
SetString
SetTexture
SetVector
SetVertexShader

Effect	Parameter	Information

GetDword
GetFloat
GetMatrix
GetParameterDesc
GetPixelShader
GetString
GetTexture
GetVector
GetVertexShader
GetDesc

Information GetDevice
GetPassDesc

Techniques

FindNextValidTechnique
GetTechnique
GetTechniqueDesc
SetTechnique
Validate

Technique	Application
Begin
End
Pass

Miscellaneous OnLostDevice
OnResetDevice

The	ID3DXEffect	interface,	like	all	COM	interfaces,	inherits	from	the
IUnknown	Interface.

The	LPD3DXEFFECT	type	is	defined	as	a	pointer	to	the	ID3DXEffect
interface.

typedef	struct	ID3DXEffect	*LPD3DXEFFECT;

Requirements

		Header:	Declared	in	D3dx8effect.h.
		Import	Library:	Use	D3dx8.lib.

See	Also

D3DXCreateEffect,	D3DXCreateEffectFromFile,
D3DXCreateEffectFromResource

Microsoft	DirectX	8.1	(C++)

D3DXSaveSurfaceToFile
Saves	a	surface	to	a	file.

HRESULT	D3DXSaveSurfaceToFile(

		LPCTSTR													 pDestFile,

		D3DXIMAGE_FILEFORMAT DestFormat,

		LPDIRECT3DSURFACE8		 pSrcSurface,

		CONST	PALETTEENTRY*	 pSrcPalette,

		CONST	RECT*									 pSrcRect

);

Parameters

pDestFile
[in]	File	name	to	save	the	surface	to.

DestFormat
[in]	D3DXIMAGE_FILEFORMAT	specifying	file	format	to	use	when
saving.

pSrcSurface
[in]	Pointer	to	IDirect3DSurface8	interface,	containing	the	image	to	be
saved.

pSrcPalette
[in]	Pointer	to	a	PALETTEENTRY	structure	containing	a	palette	of	256
colors.	This	parameter	can	be	NULL.

pSrcRect
[in]	Pointer	to	a	RECT	structure.	Specifies	the	source	rectangle.	Set	this
parameter	to	NULL	to	specify	the	entire	image.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	the	following.

D3DERR_INVALIDCALL

Remarks

This	function	supports	the	following	file	formats:	.bmp	and	.dds.

This	function	handles	conversion	to	and	from	compressed	texture	formats.

This	function	supports	both	Unicode	and	ANSI	strings.

Requirements

Header:	Declared	in	D3dx8tex.h.
Import	Library:	Use	D3dx8.lib.

See	Also

D3DXSaveTextureToFile,	D3DXSaveVolumeToFile

	
Microsoft	DirectX	8.1	(C++)

D3DXFillTexture
Uses	a	user-provided	function	to	fill	each	texel	of	each	mip	level	of	a	given
texture.

HRESULT	D3DXFillTexture(

		LPDIRECT3DTEXTURE8 pTexture,

		LPD3DXFILL2D						 pFunction,

		LPVOID												 pData

);

Parameters

pTexture
[out,	retval]	Pointer	to	an	IDirect3DTexture8	interface,	representing	the
filled	texture.

pFunction
[in]	Pointer	to	a	LPD3DXFILL2D	user-provided	evaluator	function,	which
will	be	used	to	compute	the	value	of	each	texel.

pData
[in]	Pointer	to	an	arbitrary	block	of	user-defined	data.	This	pointer	will	be
passed	to	the	function	provided	in	pFunction.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	the	following	values.

D3DERR_INVALIDCALL

Requirements

		Header:	Declared	in	D3dx8tex.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

D3DXFillCubeTexture
Uses	a	user-provided	function	to	fill	each	texel	of	each	mip	level	of	a	given	cube
texture.

HRESULT	D3DXFillCubeTexture(

		LPDIRECT3DCUBETEXTURE8 pTexture,

		LPD3DXFILL3D										 pFunction,

		LPVOID																 pData

);

Parameters

pTexture
[out,	retval]	Pointer	to	an	IDirect3DCubeTexture8	interface,	representing
the	filled	texture.

pFunction
[in]	Pointer	to	a	LPD3DXFILL3D	user-provided	evaluator	function,	which
will	be	used	to	compute	the	value	of	each	texel.

pData
[in]	Pointer	to	an	arbitrary	block	of	user-defined	data.	This	pointer	will	be
passed	to	the	function	provided	in	pFunction.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	one	of	the	following	values.

D3DERR_INVALIDCALL

Requirements

		Header:	Declared	in	D3dx8tex.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

D3DXFillVolumeTexture
Uses	a	user-provided	function	to	fill	each	texel	of	each	mip	level	of	a	given
texture.

HRESULT	D3DXFillVolumeTexture(

		LPDIRECT3DVOLUMETEXTURE8 pVolumeTexture,

		LPD3DXFILL3D												 pFunction,

		LPVOID																		 pData

);

Parameters

pVolumeTexture
[out,	retval]	Pointer	to	an	IDirect3DVolumeTexture8	interface,
representing	the	filled	texture.

pFunction
[in]	Pointer	to	an	LPD3DXFILL3D	user-provided	evaluator	function,
which	will	be	used	to	compute	the	value	of	each	texel.

pData
[in]	Pointer	to	an	arbitrary	block	of	user-defined	data.	This	pointer	will	be
passed	to	the	function	provided	in	pFunction.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	the	following	value.

D3DERR_INVALIDCALL

Remarks

If	the	volume	is	nondynamic	(because	of	a	usage	parameter	set	to	0	at	the
creation)	and	located	in	video	memory	(the	memory	pool	set	to
D3DPOOL_DEFAULT),	D3DXFillVolumeTexture	will	fail	because	Direct3DX

cannot	lock	nondynamic	volumes	located	in	video	memory.

Requirements

		Header:	Declared	in	D3dx8tex.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

D3DXQuaternionSquadSetup
Setup	control	points	for	spherical	quadrangle	interpolation.

void	D3DXQuaternionSquadSetup(

		D3DXQUATERNION*							pAOut,

		D3DXQUATERNION*							pBOut,

		D3DXQUATERNION*							pCOut,

		CONST	D3DXQUATERNION*	pQ0,

		CONST	D3DXQUATERNION*	pQ1,

		CONST	D3DXQUATERNION*	pQ2,

		CONST	D3DXQUATERNION*	pQ3	

);	

Parameters

pAOut
[out]	Pointer	to	AOut.

pBOut
[out]	Pointer	to	BOut.

pCOut
[out]	Pointer	to	COut.

pQ0
[in]	Pointer	to	the	input	control	point,	Q0.

pQ1
[in]	Pointer	to	the	input	control	point,	Q1.

pQ2
[in]	Pointer	to	the	input	control	point,	Q2.

pQ3
[in]	Pointer	to	the	input	control	point,	Q3.

Remarks

This	function	operates	as	shown	below.	It	takes	four	control	points	(Q0,	Q1,	Q2,
Q3),	which	are	supplied	to	the	inputs	pQ0,	pQ1,	pQ2,	and	pQ3.	The	function
then	alters	these	values	to	find	a	curve	that	flows	along	the	shortest	path.	The
values	of	q0,	q2,	and	q3	are	calculated	as	shown	below.

q0	=	|Q0	+	Q1|	<	|Q0	-	Q1|	?	-Q0	:	Q0

q2	=	|Q1	+	Q2|	<	|Q1	-	Q2|	?	-Q2	:	Q2

q3	=	|Q2	+	Q3|	<	|Q2	-	Q3|	?	-Q3	:	Q3

Having	calculated	the	new	Q	values,	the	values	for	AOut,	BOut,	and	COut	are
calculated	as	shown	below.

AOut	=	q1	*	e[-0.25	*(Ln[Exp(q1)*q2]	+	Ln[Exp(q1)*q0])]

BOut	=	q2	*	e[-0.25	*(Ln[Exp(q2)*q3]	+	Ln[Exp(q2)*q1])]

COut	=	q2

Note:

Ln	is	the	API	method	D3DXQuaternionLn

Exp	is	the	API	method	D3DXQuaternionExp

Example

The	following	example	shows	how	to	use	a	set	of	quaternion	keys	(Q0,	Q1,	Q2,
Q3)	to	compute	the	inner	quadrangle	points	(A,	B,	C).	This	ensures	that	the
tangents	are	continuous	across	adjacent	segments.

								A					B

		Q0				Q1				Q2				Q3

This	is	how	you	can	interpolate	between	Q1	and	Q2.

//	rotation	about	the	z	axis

D3DXQUATERNION	Q0	=	D3DXQUATERNION(0,		0,	0.707f,	-.707f);

D3DXQUATERNION	Q1	=	D3DXQUATERNION(0,		0,	0.000f,	1.000f);

D3DXQUATERNION	Q2	=	D3DXQUATERNION(0,		0,	0.707f,	0.707f);

D3DXQUATERNION	Q3	=	D3DXQUATERNION(0,		0,	1.000f,	0.000f);

D3DXQUATERNION	A,	B,	C,	Qt;

FLOAT	time	=	0.5f;

D3DXQuaternionSquadSetup(&A;,	&B;,	&C;,	&Q0;,	&Q1;,	&Q2;,	&Q3;);

D3DXQuaternionSquad(&Qt;,	&Q1;,	&A;,	&B;,	&C;,	time);

Note:

C	is	+/-	Q2	depending	on	the	result	of	the	function

Qt	is	the	result	of	the	function

The	result	is	a	rotation	of	45	degrees	around	the	z	axis	for	time	=	0.5.

Requirements

Header:	Declared	in	D3dx8math.h.
Import	Library:	Use	D3dx8.lib.

See	Also

D3DXQuaternionSquad

	
Microsoft	DirectX	8.1	(C++)

D3DXQuaternionSquad
Interpolates	between	quaternions,	using	spherical	quadrangle	interpolation.

D3DXQUATERNION*	D3DXQuaternionSquad(

		D3DXQUATERNION*	pOut,

		CONST	D3DXQUATERNION*	pQ1,

		CONST	D3DXQUATERNION*	pA,

		CONST	D3DXQUATERNION*	pB,

		CONST	D3DXQUATERNION*	pC,

		FLOAT	t

);	

Parameters

pOut
[in,	out]	Pointer	to	the	D3DXQUATERNION	structure	that	is	the	result	of
the	operation.

pQ1
[in]	Pointer	to	a	source	D3DXQUATERNION	structure.

pA
[in]	Pointer	to	a	source	D3DXQUATERNION	structure.

pB
[in]	Pointer	to	a	source	D3DXQUATERNION	structure.

pC
[in]	Pointer	to	a	source	D3DXQUATERNION	structure.

t
[in]	Parameter	that	indicates	how	far	to	interpolate	between	the	quaternions.

Return	Values

Pointer	to	a	D3DXQUATERNION	structure	that	is	the	result	of	the	spherical
quadrangle	interpolation.

Remarks

This	function	uses	the	following	sequence	of	spherical	linear	interpolation

operations:	Slerp(Slerp(pQ1,	pC,	t),	Slerp(pA,	pB,	t),	2t(1	-	t))

The	return	value	for	this	function	is	the	same	value	returned	in	the	pOut
parameter.	In	this	way,	the	D3DXQuaternionSquad	function	can	be	used	as	a
parameter	for	another	function.

Requirements

		Header:	Declared	in	D3dx8math.h.
		Import	Library:	Use	D3dx8.lib.

See	Also

D3DXQuaternionExp,	D3DXQuaternionLn,	D3DXQuaternionSquadSetup

	
Microsoft	DirectX	8.1	(C++)

D3DXMatrixMultiplyTranspose
Determines	the	product	of	two	matrices,	followed	by	a	transpose.

D3DXMATRIX*	D3DXMatrixMultiplyTranspose(

		D3DXMATRIX*	pOut,

		CONST	D3DXMATRIX*	pM1,

		CONST	D3DXMATRIX*	pM2

);	

Parameters

pOut
[in,	out]	Pointer	to	the	D3DXMATRIX	structure	that	is	the	result	of	the
operation.

pM1
[in]	Pointer	to	a	source	D3DXMATRIX	structure.

pM2
[in]	Pointer	to	a	source	D3DXMATRIX	structure.

Return	Values

Pointer	to	a	D3DXMATRIX	structure	that	is	the	product	of	two	matrices.

Remarks

The	result	represents	the	transformation	M2,	followed	by	the	transformation	M1,
tranposed	by	T	(Out	=	T(M1	*	M2)).

The	return	value	for	this	function	is	the	same	value	returned	in	the	pOut
parameter.	In	this	way,	the	D3DXMatrixMultiplyTranspose	function	can	be
used	as	a	parameter	for	another	function.

This	function	is	useful	to	set	matrices	as	constants	for	vertex	and	pixel	shaders.

Requirements

Header:	Declared	in	D3dx8math.h.
Import	Library:	Use	D3dx8.lib.

See	Also

D3DXMatrixMultiply,	D3DXQuaternionMultiply

	
Microsoft	DirectX	8.1	(C++)

D3DXFresnelTerm
Calculate	the	Fresnel	term.

FLOAT	D3DXFresnelTerm(

		FLOAT CosTheta,

		FLOAT RefractionIndex,

);	

Parameters

CosTheta
[in]	The	value	must	be	between	0	and	1.

RefractionIndex
[in]	the	refraction	index	of	a	material.	The	value	must	be	greater	than	1.

Return	Values

This	function	returns	the	Fresnel	term	for	unpolarized	light.	CosTheta	is	the
cosine	of	the	incident	angle.

Requirements

		Header:	Declared	in	D3dx8math.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

Samples
DirectX	Graphics	C/C++	Samples

The	following	samples	are	built	on	a	base	class	that	includes	Microsoft®
Windows®	and	Microsoft®	Direct3D®	functionality.	This	base	class	provides
many	of	the	basic	features	in	a	Windows	application,	such	as	creating	windows
and	handling	messages.	The	samples	include	a	derived	class	that	overrides	the
methods	necessary	to	add	Direct3D	features,	such	as	bump	maps,	vertex
blending,	and	volume	textures.	For	more	information	about	the	sample
architecture,	see	Sample	Framework.

Billboard	Sample
BumpEarth	Sample
BumpLens	Sample
BumpUnderwater	Sample
BumpWaves	Sample
Bump	Self-Shadow	Sample
ClipMirror	Sample
CubeMap	Sample
Cull	Sample
DolphinVS	Sample
DotProduct3	Sample
DXTex	Tool
Emboss	Sample
EnhancedMesh	Sample
FishEye	Sample
Lighting	Sample
MFCFog	Sample
MFCPixelShader	Sample
MFCTex	Sample
Moire	Sample
OptimizedMesh	Sample
Pick	Sample
PointSprites	Sample
ProgressiveMesh	Sample

RTPatch	Sample
ShadowVolume	Sample
SkinnedMesh	Sample
SphereMap	Sample
StencilDepth	Sample
StencilMirror	Sample
Text3D	Sample
VertexBlend	Sample
VertexShader	Sample
VolumeFog	Sample
VolumeTexture	Sample
Water	Sample

The	Application	Wizard	is	available	to	help	generate	Microsoft®	DirectX®
applications.

Although	DirectX	samples	include	Microsoft®	Visual	C++®	project	workspace
files,	you	might	need	to	verify	other	settings	in	your	development	environment
to	ensure	that	the	samples	compile	properly.	For	more	information,	see
Compiling	DirectX	Samples	and	Other	DirectX	Applications.

See	Also

DirectX	Graphics	C/C++	Tutorials

	
Microsoft	DirectX	8.1	(C++)

DirectX	Graphics
This	section	provides	information	about	using	the	Microsoft®	DirectX®
Graphics	application	programming	interfaces	(APIs).

As	with	other	components	of	DirectX,	DirectX	Graphics	can	be	used	with	C,
C++,	and	Microsoft®	Visual	Basic®.

Roadmap
Discover	the	features	of	Microsoft®	DirectX	8.1®	in	three	ways.

What's	New	in	DirectX	Graphics

This	section	highlights	new	features	and	functionality	of	this	component	in
DirectX	8.1.	If	you	have	used	Microsoft®	Direct3D®	or	Microsoft®
DirectDraw®	before,	read	this	section	first	because	much	has	changed	since
DirectX	7.0.

Programmers	Guide

This	section	contains	architecture	descriptions,	functional	block	diagrams,
descriptions	of	the	building	blocks	in	the	pipeline,	code	snippets,	and
sample	applications.

Reference

This	section	contains	the	reference	pages	for	the	Direct3D	application
programming	interface	(API).	This	includes	the	syntax	for	the	API
methods,	functions,	instructions,	and	data	structures.	It	includes	an
explanation	of	how	the	API	method	works,	and	often	includes	code
snippets.

	
Microsoft	DirectX	8.1	(C++)

Reference
This	section	contains	the	reference	pages	for	the	Microsoft®	Direct3D®
application	programming	interface	(API).	Information	is	contained	in	the
following	sections.

Direct3D	C/C++	Reference

Direct3DX	C/C++	Reference

Vertex	Shader	Reference

Pixel	Shader	Reference

Effect	File	Reference
X	File	C/C++	Reference

	
Microsoft	DirectX	8.1	(C++)

Programmers	Guide
This	guide	contains	a	description	of	the	graphics	pipeline	implemented	by
Microsoft®	Direct3D®.	It	is	a	guide	for	developers	who	are	implementing	three-
dimensional	(3-D)	graphics	functionality	into	their	applications.	The	guide
contains	architecture	descriptions,	functional	block	diagrams,	and	descriptions	of
the	building	blocks	in	the	pipeline,	as	well	as	code	snippets	and	sample
applications.	The	information	is	divided	into	the	following	sections:

Getting	Started	with	Direct3D

This	section	contains	both	an	overview	of	the	pipeline	and	tutorials	that	can
help	you	get	a	simple	graphics	application	running	in	a	few	minutes.

Using	Direct3D

This	section	explains	how	to	use	the	fixed	function	pipeline.	Included	here
are	the	basic	functional	steps	in	the	graphics	pipeline:	converting	geometry,
adding	lighting,	and	rendering	output.

Programmable	Pipeline

This	section	covers	the	new	programmable	extensions	to	the	pipeline.
Included	here	are	details	about	using	vertex	shaders	for	manipulating	object
geometry,	pixel	shaders	for	controlling	pixel	shading,	and	effects	and	effect
files	for	building	applications	that	can	run	on	a	variety	of	hardware
platforms.

Advanced	Topics

This	section	contains	examples	of	different	types	of	special	effects	you	can
implement.	Topics	such	as	environment	and	bump	mapping,	antialiasing,
vertex	blending,	and	tweening	show	how	to	apply	leading-edge	special
effects	to	your	application.

Samples

This	section	contains	sample	applications.

Direct3D	Appendix

This	section	contains	details	on	additional	topics,	such	as	X	Files	and
graphics	state.

For	more	information	about	specific	API	methods,	see	the	Reference	pages.

	
Microsoft	DirectX	8.1	(shader	versions	1.0,	1.1)

Vertex	Shaders

Previous	to	Microsoft®	DirectX®	8.n,	Microsoft®	Direct3D®	operated	a	fixed
function	pipeline	for	converting	three-dimensional	(3-D)	geometry	to	rendered
screen	pixels.	The	user	sets	attributes	of	the	pipeline	that	control	how	Direct3D
transforms,	lights,	and	renders	pixels.	The	fixed	function	vertex	format	is
declared	at	compile	time	and	determines	the	input	vertex	format.	Once	defined,
the	user	has	little	control	over	pipeline	changes	during	runtime.

Programmable	shaders	add	a	new	dimension	to	the	graphics	pipeline	by	allowing
the	transform,	lighting,	and	rendering	functionality	to	be	modified	at	runtime.	A
shader	is	declared	at	runtime	but,	once	done,	the	user	is	free	to	change	which
shader	is	active	as	well	as	to	control	the	shader	data	dynamically	using	streaming
data.	This	gives	the	user	a	new	level	of	dynamic	flexibility	over	the	way	that
pixels	are	rendered.

A	vertex	shader	file	contains	vertex	shader	instructions.	Vertex	shaders	can
control	vertex	color	and	how	textures	are	applied	to	vertices.	Lighting	can	be
added	through	the	use	of	vertex	shader	instructions.	The	shader	instruction	file
contains	ASCII	text	so	it	is	readable	and	in	some	ways	looks	similar	to	assembly
language.	A	vertex	shader	is	invoked	after	any	DrawPrimitive	or
DrawIndexedPrimitive	call.	Shaders	can	be	dynamically	switched	using
SetVertexShader	to	specify	a	new	shader	file,	or	by	changing	the	instructions	in
the	ASCII	text	shader	file	using	the	streaming	data	inputs.	The	Vertex	Shader
Assembler	Reference	has	a	complete	listing	of	shader	instructions.

For	additional	information,	see	the	following	sections.

Create	a	Vertex	Shader

This	section	contains	a	code	sample	that	uses	a	vertex	shader	to	apply	a
constant	color	to	object	vertices.	This	example	contains	a	detailed
explanation	of	the	methods	used.

Shader2	-	Apply	vertex	colors

Additional	examples	shows	more	code	samples	that	add	textures	and	blend
vertex	colors	and	textures.

Shader3	-	Apply	a	texture	map

Additional	examples	shows	more	code	samples	that	add	textures	and	blend
vertex	colors	and	textures.

Shader4	-	Apply	a	texture	map	with	lighting

Additional	examples	shows	more	code	samples	that	add	textures	and	blend
vertex	colors	and	textures.

Debugging

	
Microsoft	DirectX	8.1	(C++)

Pixel	Shaders

Before	Microsoft®	DirectX®	8.x,	Microsoft®	Direct3D®	used	a	fixed	function
pipeline	for	converting	three-dimensional	(3-D)	geometry	to	rendered	screen
pixels.	The	user	sets	attributes	of	the	pipeline	that	control	how	Direct3D
transforms,	lights,	and	renders	pixels.	The	fixed	function	vertex	format	is
declared	at	compile	time	and	determines	the	input	vertex	format.	Once	defined,
the	user	has	little	control	over	pipeline	changes	during	run	time.

Shaders	add	a	new	dimension	to	the	graphics	pipeline	by	allowing	the	vertex
transform,	lighting,	and	individual	pixel	coloring	functionality	to	be
programmed.	Pixel	shaders	are	short	programs	that	execute	for	each	pixel	when
triangles	are	rasterized.	This	gives	the	user	a	new	level	of	dynamic	flexibility
over	the	way	that	pixels	are	rendered.

A	pixel	shader	contains	pixel	shader	instructions	made	up	of	ASCII	text.
Arithmetic	instructions	can	be	used	to	apply	diffuse	and/or	specular	color.
Texture	addressing	instructions	provide	a	variety	of	operations	for	reading	and
applying	texture	data.	Functionality	is	available	for	masking	and	swapping	color
components.	The	shader	ASCII	text	looks	similar	to	assembly	language	and	is
assembled	using	Direct3DX	assembler	functions	from	either	a	text	string	or	a
file.	The	assembler	output	is	a	series	of	opcodes	that	an	application	may	provide
to	Direct3D	by	means	of	IDirect3DDevice8::CreatePixelShader.	The	Pixel
Shader	Reference	has	a	complete	listing	of	shader	instructions.

To	understand	more	about	pixel	shaders,	see	the	following	sections.

Create	a	Pixel	Shader	contains	a	code	sample	that	uses	a	pixel	shader	to
apply	Gouraud	interpolated	diffuse	colors	to	an	object.	This	example
contains	a	detailed	explanation	of	the	methods	used.
Texture	Considerations	details	the	texture	stage	states	that	are	ignored
during	pixel	shaders.
Confirming	Pixel	Shader	Support	gives	a	more	detailed	explanation	of	the
structures	for	enumerating	pixel	shader	support.
Pixel	Shader	Examples	shows	more	code	samples	that	add	textures	and
blend	vertex	colors	and	textures.
Converting	Texture	Operations	gives	examples	of	converting	texture
operations	to	pixel	shader	instructions.

Debugging	provides	debugging	information.

	
Microsoft	DirectX	8.1	(C++)

Effects
Microsoft®	Direct3D®	provides	a	rich	feature	set	for	creating	complex	and
visually	realistic	three-dimensional	(3-D)	scenes.	Effect	files	help	you	write	an
application	that	uses	all	the	rendering	capabilities	for	the	hardware	on	which	it
runs.	Effects	are	a	collection	of	different	rendering	techniques	that	can	fit	onto	a
variety	of	hardware	devices.

For	example,	to	create	a	realistic	rippled	pond	of	water	that	reflects	light	as
shown	in	the	following	image,	you	begin	with	the	first	technique	that	renders	the
water,	adds	specular	highlights,	adds	caustic	textures,	and	applies	light	to	the
water	in	a	single	pass.	If	your	hardware	cannot	render	this	technique	in	a	single
pass,	a	second	technique	might	render	the	water,	add	specular	highlights	or
caustic	textures,	but	not	apply	light	to	the	water.

Before	you	use	a	technique,	you	can	validate	it	using	Direct3D	to	see	if	it	is
supported	by	the	current	hardware	configuration.

Effects	are	defined	in	an	effect	file.	An	effect	file	consists	of	one	or	more
techniques.	Each	technique	consists	of	one	or	more	passes.	These	files	are	text
based	and	can	be	changed	without	recompiling	the	source	application.	This
enables	you	to	program	games	that	make	optimum	use	of	video	card
functionality.	Effect	files	also	make	it	easy	to	upgrade	an	existing	game	to	run	on
newer	video	cards	as	additional	features	are	developed.

The	following	topics	discuss	effects	and	how	you	can	use	them	in	your
application.

Create	an	Effect
Multiple	Techniques

Exercises*

*From	the	DirectX	Meltdown	2001	conference,	Programmable	Shader
workshop.

Exercise	1	-	Fixed	Function	Diffuse	Lighting	and	Vertex	Shader	Diffuse
Lighting.
Exercise	2	-	Vertex	Shader	Diffuse	Lighting.	Light	the	model,	taking	both
diffuse	material	and	a	diffuse	light	source	into	consideration.
Exercise	3	-	Transforms.	Transform	the	vertex	normal	into	world	space	to
take	light	source	movement	into	consideration.
Exercise	4	-	Texturing.	Set	up	texture	to	pass	onto	FF	PS	Modulate	between
the	texture	and	diffuse	color	arguments.
Exercise	5	-	Vertex	Shader	Specular	Lighting.
Exercise	6	-	Standard	Texture	Effect.
Exercise	7	-	Multi-Texturing	with	Shaders.
Exercise	8	-	Texturing	with	Lights.
Exercise	9	-	Dot	3	Bump	Mapping,	Dot	3	Specular	Bump	Mapping,	and
Table	Lookup	Specular	Bump	Mapping.
Exercise	10	-	Anisotropic	Bump	Mapping.
Exercise	11	-	Area	Lighting,	Area	and	Diffuse	Lighting.

For	more	information	about	effect	files,	see	Effect	File	Format.

Microsoft	DirectX	8.1	(C++)

Mathematics	of	Lighting

The	Microsoft®	Direct3D®	Light	Model	covers	ambient,	diffuse,	specular,	and
emissive	lighting.	This	is	enough	flexibility	to	solve	a	wide	range	of	lighting
situations.	You	refer	to	the	total	amount	of	light	in	a	scene	as	the	global
illumination	and	compute	it	using	the	following	equation.

Global	Illumination	=	Ambient	Light	+	Diffuse	Light	+	Specular	Light	+	Emissive	Light	

Ambient	lighting	is	constant	lighting.	It	is	constant	in	all	directions	and	it	colors
all	pixels	of	an	object	the	same.	It	is	fast	to	calculate	but	leaves	objects	looking
flat	and	unrealistic.	To	see	how	ambient	lighting	is	calculated	by	Direct3D,	see
Ambient	Lighting.

Diffuse	lighting	depends	on	both	the	light	direction	and	the	object	surface
normal.	It	varies	across	the	surface	of	an	object	as	a	result	of	the	changing	light
direction	and	the	changing	surface	numeral	vector.	It	takes	longer	to	calculate
diffuse	lighting	because	it	changes	for	each	object	vertex,	however	the	benefit	of
using	it	is	that	it	shades	objects	and	gives	them	three-dimensional	(3-D)	depth.
To	see	how	diffuse	lighting	is	calculated	in	Direct3D,	see	Diffuse	Lighting.

Specular	lighting	identifies	the	bright	specular	highlights	that	occur	when	light
hits	an	object	surface	and	reflects	back	toward	the	camera.	It	is	more	intense
than	diffuse	light	and	falls	off	more	rapidly	across	the	object	surface.	It	takes
longer	to	calculate	specular	lighting	than	diffuse	lighting,	however	the	benefit	of
using	it	is	that	it	adds	significant	detail	to	a	surface.	To	see	how	specular	lighting
is	calculated	in	Direct3D,	see	Specular	Lighting.

Emissive	lighting	is	light	that	is	emitted	by	an	object,	for	example,	a	glow.	To
see	how	emissive	lighting	is	calculated	in	Direct3D,	see	Emissive	Lighting.

Realistic	lighting	can	be	accomplished	by	applying	each	of	these	types	of
lighting	to	a	3-D	scene.	To	achieve	a	more	realistic	lighting	effect,	you	add	more
lights;	however,	the	scene	takes	longer	to	render.	To	achieve	all	the	effects	a
designer	wants,	some	games	use	more	CPU	power	than	is	commonly	available.
In	this	case,	it	is	typical	to	reduce	the	number	of	lighting	calculations	to	a
minimum	by	using	lighting	maps	and	environment	maps	to	add	lighting	to	a
scene	while	using	texture	maps.

All	lighting	computations	are	made	in	model	space	by	transforming	the	light
source's	position	and	direction,	along	with	the	camera	position,	to	model	space
using	the	inverse	of	the	world	matrix.	As	a	result,	if	the	world	or	view	matrices
introduce	non-uniform	scaling,	the	resultant	lighting	might	be	inaccurate.	To	see
how	lighting	transformations	are	calculated,	see	Camera	Space	Transformations.

Diffuse	and	specular	light	values	can	be	affected	by	a	given	light's	attenuation
and	spotlight	characteristics.	Terms	for	both	of	these	are	included	in	the	diffuse
and	specular	equations.	For	more	information,	see	Attenuation	and	Spotlight
Terms.

	
Microsoft	DirectX	8.1	(C++)

Action	Mapping

Traditionally,	applications	have	done	their	own	mapping	of	events	to	particular
buttons	and	axes.	A	car-racing	game,	for	example,	might	assume	that	the	x-axis
on	the	user's	joystick	or	mouse	was	the	most	suitable	control	for	steering	the	car.
The	only	way	to	accommodate	new	or	unusual	devices	was	to	provide
configuration	options	so	that	the	user	could	specify	some	other	axis,	such	as	a
rotational	axis,	to	use	for	steering.	Moreover,	the	application	had	no	way	of
knowing	which	installed	device	was	the	best	fit	for	the	game,	so	the	user
typically	had	to	choose	a	device	from	a	menu	or	make	sure	only	the	preferred
device	was	attached.

Using	action	mapping,	you	no	longer	need	to	make	assumptions	about	the	best
use	of	devices	and	device	objects.	Instead,	your	application	binds	actions	to
virtual	controls	wherever	possible.	Rather	than	getting	data	from	the	x-axis	and
steering	the	car	to	the	left	or	the	right	accordingly,	the	application	might	get	data
from	a	virtual	control	called	DIAXIS_DRIVINGR_STEER.	Microsoft®
DirectInput®	assigns	the	virtual	control	to	a	physical	control—that	is,	a	device
object.	It	does	so	by	taking	into	account	the	application	genre,	user	preferences,
information	from	the	device	manufacturer,	and	the	user's	configuration	of	the
device.

Action	mapping	also	simplifies	the	input	loop	by	returning	data	for	all	devices	in
a	form	independent	of	the	particular	device.	A	single	action	can	be	mapped	to
more	than	one	device,	and	the	input	loop	can	respond	to	the	action	the	same	way
regardless	of	which	device	is	being	read.

The	following	topics	contain	more	information	on	the	steps	required	to
implement	action	mapping.

Preparing	the	Action	Map
Finding	Matching	Devices
Configuring	the	Action	Map
User	Configuration	of	the	Device
Retrieving	Action	Data
Maintaining	Files	During	Development

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8
Applications	use	the	methods	of	the	IDirectInput8	interface	to	enumerate,
create,	and	retrieve	the	status	of	Microsoft®	DirectInput®	devices,	initialize	the
DirectInput	object,	and	invoke	an	instance	of	the	Microsoft	Windows®	Control
Panel.

IDirectInput8	supersedes	the	IDirectInput,	IDirectInput2,	and	IDirectInput7
interfaces	used	in	earlier	versions	of	Microsoft	DirectX®.

IDirectInput8	is	an	interface	to	a	new	class	of	object,	represented	by	the	class
identifier	CLSID_DirectInput8,	and	cannot	be	obtained	by	calling
QueryInterface	on	an	interface	to	objects	of	class	CLSID_DirectInput.	Instead,
obtain	the	IDirectInput8	interface	by	using	the	DirectInput8Create	function.

The	methods	of	the	IDirectInput8	interface	can	be	organized	into	the	following
groups.

Device	Management ConfigureDevices
	 CreateDevice
	 EnumDevices
	 EnumDevicesBySemantics
	 FindDevice
	 GetDeviceStatus
Miscellaneous Initialize
	 RunControlPanel

The	IDirectInput	interface,	like	all	COM	interfaces,	inherits	the	IUnknown
interface	methods.	The	IUnknown	interface	supports	the	following	three
methods:

IUnknown AddRef
	 QueryInterface
	 Release

The	LPDIRECTINPUT8	type	is	defined	as	a	pointer	to	the	IDirectInput8
interface:

typedef	struct	IDirectInput8				*LPDIRECTINPUT8;

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

	
Microsoft	DirectX	8.1	(C++)

DirectInput8Create
Creates	a	DirectInput®	object	and	returns	an	IDirectInput8	or	later	interface.

HRESULT	WINAPI	DirectInput8Create(

		HINSTANCE hinst,	

		DWORD dwVersion,	

		REFIID	riidltf,

		LPVOID* ppvOut,		

		LPUNKNOWN punkOuter

);

Parameters

hinst
Instance	handle	to	the	application	or	DLL	that	is	creating	the	DirectInput
object.	DirectInput	uses	this	value	to	determine	whether	the	application	or
DLL	has	been	certified	and	to	establish	any	special	behaviors	that	might	be
necessary	for	backward	compatibility.

It	is	an	error	for	a	DLL	to	pass	the	handle	to	the	parent	application.	For
example,	an	ActiveX®	control	embedded	in	a	Web	page	that	uses
DirectInput	must	pass	its	own	instance	handle,	and	not	the	handle	to	the
Web	browser.	This	ensures	that	DirectInput	recognizes	the	control	and	can
enable	any	special	behaviors	that	might	be	necessary.

dwVersion
Version	number	of	DirectInput	for	which	the	application	is	designed.	This
value	is	normally	DIRECTINPUT_VERSION.	If	the	application	defines
DIRECTINPUT_VERSION	before	including	Dinput.h,	the	value	must	be
greater	than	0x0700.	For	earlier	versions,	use	DirectInputCreateEx,	which
is	in	Dinput.lib.

riidltf
Unique	identifier	of	the	desired	interface.	For	DirectX	8.0,	this	value	is
IID_IDirectInput8A	or	IID_IDirectInput8W.	Passing	the	IID_IDirectInput8
define	selects	the	ANSI	or	Unicode	version	of	the	interface,	depending	on
whether	UNICODE	is	defined	during	compilation.

ppvOut

Address	of	a	pointer	to	a	variable	to	receive	the	interface	pointer	if	the	call
succeeds.

punkOuter
Pointer	to	the	address	of	the	controlling	object's	IUnknown	interface	for
COM	aggregation,	or	NULL	if	the	interface	is	not	aggregated.	Most	callers
pass	NULL.	If	aggregation	is	requested,	the	object	returned	in	*ppvOut	is	a
pointer	to	IUnknown,	as	required	by	COM	aggregation.

Return	Values

If	the	function	succeeds,	the	return	value	is	DI_OK.

If	the	function	fails,	the	return	value	can	be	one	of	the	following	error	values:

DIERR_BETADIRECTINPUTVERSION
DIERR_INVALIDPARAM
DIERR_OLDDIRECTINPUTVERSION
DIERR_OUTOFMEMORY

Remarks

The	DirectInput	object	created	by	this	function	is	implemented	in	Dinput8d.dll.
Versions	of	interfaces	earlier	than	DirectX	8.0	cannot	be	obtained	in	this
implementation.	To	use	earlier	versions,	create	the	DirectInput	object	by	using
DirectInputCreate	or	DirectInputCreateEx,	which	are	in	Dinput.lib.

Calling	the	function	with	punkOuter	=	NULL	is	equivalent	to	creating	the	object
through	CoCreateInstance(&CLSID_DirectInput8,	punkOuter,
CLSCTX_INPROC_SERVER,	&IID_IDirectInput8W,	lplpDirectInput),	then
initializing	it	with	IDirectInput8::Initialize.

Calling	the	function	with	punkOuter	!=	NULL	is	equivalent	to	creating	the
object	through	CoCreateInstance(&CLSID_DirectInput8,	punkOuter,
CLSCTX_INPROC_SERVER,	&IID_IUnknown,	lplpDirectInput).	The
aggregated	object	must	be	initialized	manually.

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	dinput.h.
		Import	Library:	Use	dinput8.lib.

	
Microsoft	DirectX	8.1	(C++)

DIJOYSTATE
Describes	the	state	of	a	joystick	device.	This	structure	is	used	with	the
IDirectInputDevice8::GetDeviceState	method.

typedef	struct	DIJOYSTATE	{	

				LONG				lX;	

				LONG				lY;	

				LONG				lZ;	

				LONG				lRx;	

				LONG				lRy;	

				LONG				lRz;	

				LONG				rglSlider[2];

				DWORD			rgdwPOV[4];

				BYTE				rgbButtons[32];

}	DIJOYSTATE,	*LPDIJOYSTATE;	

Members

lX
X-axis,	usually	the	left-right	movement	of	a	stick.

lY
Y-axis,	usually	the	forward-backward	movement	of	a	stick.

lZ
Z-axis,	often	the	throttle	control.	If	the	joystick	does	not	have	this	axis,	the
value	is	0.

lRx
X-axis	rotation.	If	the	joystick	does	not	have	this	axis,	the	value	is	0.

lRy
Y-axis	rotation.	If	the	joystick	does	not	have	this	axis,	the	value	is	0.

lRz
Z-axis	rotation	(often	called	the	rudder).	If	the	joystick	does	not	have	this
axis,	the	value	is	0.

rglSlider[2]
Two	additional	axes,	formerly	called	the	u-axis	and	v-axis,	whose	semantics
depend	on	the	joystick.	Use	the	IDirectInputDevice8::GetObjectInfo
method	to	obtain	semantic	information	about	these	values.

rgdwPOV[4]

Direction	controllers,	such	as	point-of-view	hats.	The	position	is	indicated
in	hundredths	of	a	degree	clockwise	from	north	(away	from	the	user).	The
center	position	is	normally	reported	as	–1;	but	see	Remarks.	For	indicators
that	have	only	five	positions,	the	value	for	a	controller	is	–1,	0,	9,000,
18,000,	or	27,000.

rgbButtons[32]
Array	of	buttons.	The	high-order	bit	of	the	byte	is	set	if	the	corresponding
button	is	down,	and	clear	if	the	button	is	up	or	does	not	exist.

Remarks

You	must	prepare	the	device	for	joystick-style	access	by	calling	the
IDirectInputDevice8::SetDataFormat	method,	passing	the	c_dfDIJoystick
global	data	format	variable.

If	an	axis	is	in	relative	mode,	the	appropriate	member	contains	the	change	in
position.	If	it	is	in	absolute	mode,	the	member	contains	the	absolute	axis
position.

Some	drivers	report	the	centered	position	of	the	POV	indicator	as	65,535.
Determine	whether	the	indicator	is	centered	as	follows:

BOOL	POVCentered	=	(LOWORD(dwPOV)	==	0xFFFF);

Note		Under	Microsoft®	DirectX®	7,	sliders	on	some	joysticks	could	be
assigned	to	the	Z	axis,	with	subsequent	code	retrieving	data	from	that	member.
Using	DirectX	8,	those	same	sliders	will	be	assigned	to	the	rglSlider	array.	This
should	be	taken	into	account	when	porting	applications	to	DirectX	8.	Make	any
necessary	alterations	to	ensure	that	slider	data	is	retrieved	from	the	rglSlider
array.

Requirements

		Windows	NT/2000/XP:	Requires	Windows	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

See	Also

DIJOYSTATE2

	
Microsoft	DirectX	8.1	(C++)

DIJOYSTATE2
Describes	the	state	of	a	joystick	device	with	extended	capabilities.	This	structure
is	used	with	the	IDirectInputDevice8::GetDeviceState	method.

typedef	struct	DIJOYSTATE2	{

				LONG				lX;

				LONG				lY;

				LONG				lZ;

				LONG				lRx;

				LONG				lRy;

				LONG				lRz;

				LONG				rglSlider[2];

				DWORD			rgdwPOV[4];

				BYTE				rgbButtons[128];

				LONG				lVX;

				LONG				lVY;

				LONG				lVZ;

				LONG				lVRx;

				LONG				lVRy;

				LONG				lVRz;

				LONG				rglVSlider[2];

				LONG				lAX;

				LONG				lAY;

				LONG				lAZ;

				LONG				lARx;

				LONG				lARy;

				LONG				lARz;

				LONG				rglASlider[2];

				LONG				lFX;

				LONG				lFY;

				LONG				lFZ;

				LONG				lFRx;

				LONG				lFRy;

				LONG				lFRz;

				LONG				rglFSlider[2];

}	DIJOYSTATE2,	*LPDIJOYSTATE2;

Members

lX
X-axis,	usually	the	left-right	movement	of	a	stick.

lY

Y-axis,	usually	the	forward-backward	movement	of	a	stick.
lZ

Z-axis,	often	the	throttle	control.	If	the	joystick	does	not	have	this	axis,	the
value	is	0.

lRx
X-axis	rotation.	If	the	joystick	does	not	have	this	axis,	the	value	is	0.

lRy
Y-axis	rotation.	If	the	joystick	does	not	have	this	axis,	the	value	is	0.

lRz
Z-axis	rotation	(often	called	the	rudder).	If	the	joystick	does	not	have	this
axis,	the	value	is	0.

rglSlider[2]
Two	additional	axis	values	(formerly	called	the	u-axis	and	v-axis)	whose
semantics	depend	on	the	joystick.	Use	the
IDirectInputDevice8::GetObjectInfo	method	to	obtain	semantic
information	about	these	values.

rgdwPOV[4]
Direction	controllers,	such	as	point-of-view	hats.	The	position	is	indicated
in	hundredths	of	a	degree	clockwise	from	north	(away	from	the	user).	The
center	position	is	normally	reported	as	–1;	but	see	Remarks.	For	indicators
that	have	only	five	positions,	the	value	for	a	controller	is	–1,	0,	9,000,
18,000,	or	27,000.

rgbButtons[128]
Array	of	buttons.	The	high-order	bit	of	the	byte	is	set	if	the	corresponding
button	is	down,	and	clear	if	the	button	is	up	or	does	not	exist.

lVX
X-axis	velocity.

lVY
Y-axis	velocity.

lVZ
Z-axis	velocity.

lVRx
X-axis	angular	velocity.

lVRy
Y-axis	angular	velocity.

lVRz
Z-axis	angular	velocity.

rglVSlider[2]
Extra	axis	velocities.

lAX
X-axis	acceleration.

lAY
Y-axis	acceleration.

lAZ
Z-axis	acceleration.

lARx
X-axis	angular	acceleration.

lARy
Y-axis	angular	acceleration.

lARz
Z-axis	angular	acceleration.

rglASlider[2]
Extra	axis	accelerations.

lFX
X-axis	force.

lFY
Y-axis	force.

lFZ
Z-axis	force.

lFRx
X-axis	torque.

lFRy
Y-axis	torque.

lFRz
Z-axis	torque.

rglFSlider[2]
Extra	axis	forces.

Remarks

You	must	prepare	the	device	for	access	to	a	joystick	with	extended	capabilities
by	calling	the	IDirectInputDevice8::SetDataFormat	method,	passing	the
c_dfDIJoystick2	global	data	format	variable.

If	an	axis	is	in	relative	mode,	the	appropriate	member	contains	the	change	in
position.	If	it	is	in	absolute	mode,	the	member	contains	the	absolute	axis
position.

Some	drivers	report	the	centered	position	of	the	POV	indicator	as	65,535.
Determine	whether	the	indicator	is	centered	as	follows:

BOOL	POVCentered	=	(LOWORD(dwPOV)	==	0xFFFF);

Note		Under	Microsoft®	DirectX®	7,	sliders	on	some	joysticks	could	be
assigned	to	the	Z	axis,	with	subsequent	code	retrieving	data	from	that	member.
Using	DirectX	8,	those	same	sliders	will	be	assigned	to	the	rglSlider	array.	This
should	be	taken	into	account	when	porting	applications	to	DirectX	8.	Make	any
necessary	alterations	to	ensure	that	slider	data	is	retrieved	from	the	rglSlider
array.

Requirements

		Windows	NT/2000/XP:	Requires	Windows	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

See	Also

DIJOYSTATE

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

ps

Provides	the	method	to	specify	the	version	of	the	shader	code.

ps.mainVer.subVer

Registers

Argument Description Values
mainVer main	version	number 1
subVer sub	version	number 0,	1,	2,	3,	4

Remarks

This	instruction	must	be	the	first	instruction	in	a	shader.

Example

//	This	example	declares	a	version	1.0	shader.

ps.1.0	

//	This	example	declares	a	version	1.4	shader.

ps.1.4

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

def
Provides	a	method	to	define	constants	to	be	used	within	the	pixel	shader.

def	dest,	fVal0,	fVal1,	fVal2,	fVal3

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register x 1.0,	1.1,	1.2,
1.3,	1.4

fVal0,	fVal1,	fVal2,
fVal3

Source	floating	point
value N/A N/A N/A N/A 1.0,	1.1,	1.2,

1.3,	1.4

N/A		Not	applicable.	The	float	values	do	not	use	registers.

Each	of	the	float	values	in	fVal0,	fVal1,	fVal2,	fVal3	is	between	-1.0	and	1.0.
This	is	not	necessarily	the	number	specified	in	MAXPIXELSHADERVALUE.

To	learn	more	about	registers,	see	Registers.

Remarks

def	instructions	must	be	placed	after	the	version	instruction	and	before	any
arithmetic	or	texture	address	instructions.

The	def	instruction	is	an	alternative	to	setting	pixel	shader	constants	by	calling
SetPixelShaderConstant.	When	SetPixelShader	is	called,	the	def	instruction	is
effectively	translated	into	a	SetPixelShaderConstant	call.	Constant	registers	that
are	initialized	by	the	def	instruction	during	SetPixelShader	can	be	overwritten
by	calling	SetPixelShaderConstant	manually.

This	instruction	does	not	count	against	the	instruction	limit.	It	is	stripped	from
the	instruction	stream	prior	to	being	sent	to	the	driver.

For	more	information	about	MAXPIXELSHADERVALUE,	see	D3DCAPS8.

Example

//	This	example	outputs	a	constant	color.

//	The	shader	is	shown	below.

ps.1.0																														//	version	instruction

def	c0,	1.0f,	0.0f,	0.0f,	1.0f						//	set	c0	register

mov	r0,	c0																										//	output	constant	color

	
Microsoft	DirectX	8.1	(pixel	shader	version	1.4)

phase

The	phase	instruction	marks	the	transition	between	phase	1	and	phase	2.	If	no
phase	instruction	is	present,	the	entire	shader	if	executed	as	if	it	is	a	phase	2
shader.

phase

Remarks

This	instruction	applies	to	version	1.4	only.

Shader	instructions	that	occur	before	the	phase	instruction	are	phase	1
instructions.	All	other	instructions	are	phase	2	instructions.	By	having	two
phases	for	instructions,	the	maximum	number	of	instructions	per	shader	is
increased.

The	unfortunate	side-effect	of	the	phase	transition	is	that	the	alpha	component	of
temporary	registers	are	unset	or	uninitialized	during	the	transition.

Example

This	example	shows	how	to	group	instructions	as	phase	1	or	phase	2	instructions
within	a	shader.

The	phase	instruction	is	also	commonly	called	the	phase	marker	because	it
marks	the	transition	between	phase	1	and	2	instructions.	In	a	version	1.4	pixel
shader,	if	the	phase	marker	is	not	present,	the	shader	is	executed	as	if	it	is
running	in	phase	2.	This	is	important	because	there	are	differences	between
phase	1	and	2	instructions	and	register	availability.	The	differences	are	noted
throughout	the	reference	section.

ps.1.4

		//	Add	phase	1	instructions	here.

phase

		//	Add	phase	2	instructions	here.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

add
Performs	a	component-wise	add	of	two	registers.

add	dest,	src0,	src1

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.0

x x 1.1,	1.2,	1.3
x 1.4

src0,	src1 Source	register
x x x x 1.0,	1.1,	1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	performs	a	component-wise	addition	of	two	registers	as	shown
below.

dest.r	=	src0.r	+	src1.r

dest.g	=	src0.g	+	src1.g

dest.b	=	src0.b	+	src1.b

dest.a	=	src0.a	+	src1.a

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

//	This	example	adds	the	vertex	color	to	the	texture	color.

//	The	shader	is	shown	below.

ps.1.0										//	Version	instruction.

tex	t0										//	Declare	texture.	This	example	requires	the	DX	Logo	texture	

																//	to	be	set	on	stage	0.

add	r0,	t0,	t0		//	r0	=	t0	+	t0.	This	doubles	each	color	component.

																//	The	effect	is	to	increase	image	brightness.

//	The	input	texture	is	shown	on	the	left.	The	rendered	output	from	the	

//	pixel	shader	is	shown	on	the	right.	In	this	example,	it	is	brighter	

//	because	the	texture	color	values	have	been	doubled.	

	

//	Additional	code	loads	the	texture	in	texture	stage	0.

LPDIRECT3DDEVICE8			m_pd3dDevice;			//	Init	this	device	pointer	in	the	application.

LPDIRECT3DTEXTURE8		m_pTexture0;				//	Use	this	variable	to	hold	a	pointer	to	the	texture.

TCHAR															strPath[512]	=	"textureFile.jpg";

//	Use	a	helper	function	from	the	SDK	to	load	the	texture.

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

	
Microsoft	DirectX	8.1	(pixel	shader	version	1.4)

bem
Apply	a	fake	bump	environment-map	transform.

bem	dest.rg,	src0,	src1

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.4	phase	1
src0

Source	register
x x 1.4	phase	1

src1 x 1.4	phase	1

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	performs	the	following	calculation.

(Given	n	==	dest	register	#)

dest.r	=	src0.r	+	D3DTSS_BUMPENVMAT00(stage	n)	*	src1.r	

																+	D3DTSS_BUMPENVMAT10(stage	n)	*	src1.g

dest.g	=	src0.g	+	D3DTSS_BUMPENVMAT01(stage	n)	*	src1.r

																+	D3DTSS_BUMPENVMAT11(stage	n)	*	src1.g

Rules	for	using	bem:

1.	 bem	must	appear	in	the	first	phase	of	a	shader	(that	is,	before	a	phase
marker).

2.	 bem	consumes	two	arithmetic	instruction	slots.
3.	 Only	one	use	of	this	instruction	is	allowed	per	shader.
4.	 Destination	writemask	must	be	.rg	/.xy.
5.	 This	instruction	cannot	be	co-issued.

6.	 Aside	from	the	restriction	that	destination	write	mask	be	.rg,	modifiers	on
source	src0,	src1,	and	instruction	modifiers	are	unconstrained.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.2,	1.3,	1.4)

cmp
Conditionally	chooses	between	src1	and	src2,	based	on	the	comparison	src0	>=
0.

cmp	dest,	src0,	src1,	src2

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x x 1.2,	1.3
x 1.4

src0,	src1,	src2 Source	register
x x x x 1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Remarks

The	comparison	is	done	per	channel.

For	pixel	shader	version	1.2	and	1.3,	cmp	counts	as	two	arithmetic	instructions.
Unfortunately,	this	was	discovered	too	late	in	the	development	cycle,	and
therefore	is	not	validated	properly	when	calling	CreatePixelShader.	It	is
incorrectly	being	counted	as	consuming	only	one	arithmetic	instruction.	Be	sure
to	manually	count	this	instruction	as	two	arithmetic	instructions	toward	the
maximum	instruction	count.	For	more	information	about	instruction	counts,	see
Counting	Instructions.

In	addition,	for	pixel	shader	version	1.2	and	1.3,	the	destination	register	for	cmp
cannot	be	the	same	as	any	of	the	source	registers.	Validation	does	not	catch	this,
so	be	sure	to	keep	this	in	mind.

Example

This	example	does	a	four-channel	comparison.

//	Compares	all	four	components.

ps.1.4

def	c0,	-0.6,	0.6,	0,	0.6

def	c1		0,0,0,0

def	c2		1,1,1,1

cmp	r0,	c0,	c1,	c2			//	r0	is	assigned	1,0,0,0	based	on	the	following:

//	r0.x	=	c2.x	because	c0.x	<		0

//	r0.y	=	c1.y	because	c0.y	>=	0

//	r0.z	=	c1.z	because	c0.z	>=	0

//	r0.w	=	c1.w	because	c0.w	>=	0

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

cnd
Conditionally	chooses	between	src1	and	src2,	based	on	the	comparison	src0	>
0.5.

cnd	dest,	src0,	src1,	src2

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.0

x x 1.1,	1.2,	1.3
x 1.4

src0

Source	register

r0.a 1.0,	1.1,	1.2,	1.3
src1,	src2 x x x x 1.0,	1.1,	1.2,	1.3

src0,	src1,	src2
x x 1.4	phase	1

x x x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Remarks

For	versions	1.0	to	1.3,	src0	must	be	r0.a.	Version	1.4	has	no	such	restriction.

//	Version	1.1	to	1.3

if	(r0.a	>	0.5)

		dest	=	src1

else

		dest	=	src2

//	Version	1.4	compares	each	channel	separately.

for	each	component	in	src0

{

			if	(src0.component	>	0.5)

					dest.component	=	src1.component

			else

					dest.component	=	src2.component

}

Example

These	examples	show	a	four-channel	comparison	done	in	a	version	1.4	shader,	as
well	as	a	single-channel	comparison	possible	in	a	version	1.1	shader.

//	Version	1.4	compares	all	four	components.

ps.1.4

def	c0,	-0.5,	0.5,	0,	0.6

def	c1		0,0,0,0

def	c2		1,1,1,1

cnd	r1,	c0,	c1,	c2			//	r0	contains	1,1,1,0	because,

//	r1.x	=	c2.x	because	c0.x	≤	0.5

//	r1.y	=	c2.y	because	c0.y	≤	0.5

//	r1.z	=	c2.z	because	c0.z	≤	0.5

//	r1.w	=	c1.w	because	c0.w	>	0.5

//	Version	1.1	to	1.3	compares	against	the	replicated	alpha	channel	

//	of	r0	only.

ps.1.1

def	c0,	-0.5,	0.5,	0,	0.6

def	c1		0,0,0,0

def	c2		1,1,1,1

mov	r0,	c0

cnd	r1,	r0.a,	c1,	c2			//	r1	gets	assigned	0,0,0,0	because	

//	r0.a	>	0.5,	therefore	r1.xyzw	=	c1.xyzw

//	This	example	compares	two	values,	A	and	B,	to	each	other.	

//	This	example	assumes	A	is	loaded	into	v0	and	B	is	loaded	into	v1.

//	Both	A	and	B	must	be	in	the	range	of	-1	to	+1,	and	since	the

//	color	registers	(vn)	are	defined	to	be	between	0	and	1,

//	the	restriction	happens	to	be	satisfied	in	this	example.

//	The	shader	is	shown	below.

ps.1.0																//	version	instruction

sub	r0,	v0,	v1_bias			//	r0	=	A	-	(B	-	0.5)

cnd	r0,	r0.a,	c0,	c1		//	r0	=	(A	>	B	?	c0	:	c1)

//	The	result	in	r0	is	c0	if	A	>	B.	Otherwise,	the	result	in	r0	is	c1.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

dp3
Calculates	a	three-component	dot	product.	The	scalar	result	is	replicated	to	all
four	channels.

dp3	dest,	src0,	src1

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.0

x x 1.1,	1.2,	1.3
x 1.4

src0,	src1 Source	register
x x x x 1.0,	1.1,	1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

dp3	does	not	automatically	clamp	the	output	result	between	zero	and	one.	If
clamping	is	necessary,	use	the	saturate	modifiers.

dp3	can	be	co-issued	as	long	as	dp3	is	writing	the	color	channels	and	the	other
instruction	is	writing	the	alpha	channel.

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	executes	in	the	vector	pipeline,	always	writing	out	to	the	color
channels.	For	version	1.4,	this	instruction	still	uses	the	vector	pipeline	but	may
write	to	any	channel.

dp3	r0.rgb,	t0,	v0												//	Copy	scalar	result	to	RGB	components.

An	instruction	with	a	destination	register	RGB	write	mask	may	be	co-issued

with	dp3	as	shown	below.

dp3	r0.rgb,	t0,	v0												//	Copy	scalar	result	to	color	components.

+mov	r2.a,	t0																	//	Copy	alpha	component	from	t0	in	parallel.	

The	dp3	instruction	can	be	modified	using	the	Signed	Scaling	input	argument
modifier	(_bx2)	applied	to	its	input	arguments	if	they	are	not	already	expanded
to	signed	dynamic	range.	For	a	lighting	shader,	the	saturate	instruction	modifier
(_sat)	is	often	used	to	clamp	the	negative	values	to	black,	as	shown	in	the
following	example.

dp3_sat	r0,	t0_bx2,	v0_bx2				//	Here	t0	is	a	bump	map,	v0	contains	the	light	direction.

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

This	example	uses	a	dot	product	to	square	the	vertex	diffuse	color	components.

//	The	shader	is	shown	below.

ps.1.0										//	Version	instruction.

tex	t0										//	Declare	texture.

dp3	r0,	v0,	v0		//	Dot	product	squares	the	vertex	color	values,	

																//	color(v0)	*	color(v0).

																//	Bright	colors	max	out	at	white.

																//	Dimmer	colors	yield	gray.

The	results	of	this	example	are	shown	below.	The	input	vertex	colors	are	shown
on	the	left.	The	rendered	output	from	the	pixel	shader	is	shown	on	the	right.	The
left,	bottom,	and	right	edges	are	white	because	the	input	color	components	reach
the	maximum	color	value	when	squared.	The	center	color	is	gray	because	the
squared	color	values	are	lower	where	the	input	colors	blend	together.

	

Additional	code	loads	a	texture	in	texture	stage	0

LPDIRECT3DDEVICE8			m_pd3dDevice;					//	Initialize	the	pointer	before	using.

LPDIRECT3DTEXTURE8		m_pTexture0;						//	Use	this	variable	to	hold	a	pointer	to	the	texture.

TCHAR															strPath[512]	=	"textureFile.jpg";

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.2,	1.3,	1.4)

dp4
Calculates	a	four-component	dot	product.	The	scalar	result	is	replicated	to	all
channels.

dp4	dest,	src0,	src1

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.2,	1.3
x 1.4

src0,	src1 Source	register
x x x x 1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

This	instruction	cannot	be	co-issued.

This	instruction	does	not	automatically	clamp	the	output	result	between	zero	and
one.	If	clamping	is	necessary,	use	the	saturate	modifier.

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	executes	in	both	the	vector	and	alpha	pipeline.

dp4	r0,	t0,	v0						//	Copy	scalar	result	to	RGBA	components.

For	pixel	shader	version	1.2	and	1.3,	dp4	counts	as	two	arithmetic	instructions.
Unfortunately,	this	was	discovered	too	late	in	the	development	cycle	and
therefore	is	not	validated	properly	when	calling	CreatePixelShader.	It	is	being
incorrectly	counted	as	consuming	only	one	arithmetic	instruction.	Be	sure	to
manually	count	this	instruction	as	two	arithmetic	instructions	toward	the

maximum	instruction	count.	For	more	information	about	instruction	counts,	see
Counting	Instructions.

In	addition,	for	pixel	shader	version	1.2	and	1.3,	the	destination	register	for	dp4
cannot	be	the	same	as	any	of	the	source	registers.	Validation	does	not	catch	this,
so	be	sure	to	keep	this	in	mind.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

lrp
Interpolates	linearly	between	the	second	and	third	source	registers	by	a
proportion	specified	in	the	first	source	register.

lrp	dest,	src0,	src1,	src2

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.0

x x 1.1,	1.2,	1.3
x 1.4

src0,	src1,	src2 Source	register
x x x x 1.0,	1.1,	1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	performs	the	linear	interpolation	based	on	the	following
formula.

dest	=	src0	*	src1	+	(1-src0)	*	src2

//	which	is	the	same	as

dest	=	src2	+	src0	*	(src1	-	src2)

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

//	This	example	combines	a	texture	color	with	a	diffuse	color	value.

//	The	shader	is	shown	below.

ps.1.0														//	Version	instruction.

tex	t0														//	Declare	texture.

lrp	r0,	t0,	v0,	t0		//	Blend	from	v0	to	t0	by	t0	amount.

//	The	input	colors	and	the	output	colors	are	shown	below.	The	first	image

//	(src0)	determines	the	amount	of	the	second	image	(src1)	and	the	third	image

//	(src2)	that	are	blended	to	make	the	final	image	(dest).	Where	the	first	image

//	is	white,	the	second	image	appears	in	the	output.	Where	the	first	image	is	

//	black,	the	third	images	appears	in	the	output.	Where	the	first	is	gray,	the	

//	final	image	contains	color	values	from	the	second	and	third	image.

		 		 		

//	Additional	code	loads	the	texture	in	texture	stage	0.

LPDIRECT3DDEVICE8			m_pd3dDevice;			//	initialize	the	pointer

LPDIRECT3DTEXTURE8		m_pTexture0;				//	a	pointer	to	the	texture.

TCHAR															strPath[512]	=	"textureFile.jpg";

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

mad
Multiply	and	add	instruction.	Sets	the	destination	register	to	(src0	*	src1)	+	src2.

mad	dest,	src0,	src1,	src2

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.0

x x 1.1,	1.2,	1.3
x 1.4

src0,	src1,	src2 Source	register
x x x x 1.0,	1.1,	1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	performs	a	multiply	accumulate	operation	based	on	the
following	formula.

dest	=	src0	*	src1	+	src2

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

//	This	example	blends	a	diffuse	color,	a	texture	color	and	a	constant	color.

//	The	shader	is	shown	below.

ps.1.0														//	Version	instruction.

tex	t0														//	Declare	texture.

mad	r0,	v0,	t0,	v0		//	Mix	diffuse	color	and	texture	color.

//	The	following	four	images	show	the	contents	of	the	three	source	registers

//	and	the	resulting	output	register.	The	output	register	shows	the	result	of	

//	the	gradient	in	the	center	of	the	destination	image,	where	the	mid	tones	

//	appear.	This	is	a	result	of	adding	the	pixels	from	the	center	of	src2	with	

//	the	pixel	color	created	from	the	center	of	the	product	of	src0*src1.

	 	 	

//	Additional	code	loads	a	texture	in	texture	stage	0.

LPDIRECT3DDEVICE8			m_pd3dDevice;			//	initialize	this	pointer

LPDIRECT3DTEXTURE8		m_pTexture0;				//	a	pointer	to	the	texture.

TCHAR															strPath[512]	=	"textureFile.jpg";

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

mov
Copies	the	contents	of	the	source	to	the	destination.

mov	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.0

x x 1.1,	1.2,	1.3
x 1.4

src Source	register
x x x x 1.0,	1.1,	1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

//	This	example	copies	the	texture	color	to	the	output.

//	The	shader	is	shown	below.

ps.1.0										//	Version	instruction

tex	t0										//	Declare	texture.

mov	r0,	t0						//	Move	texture	to	output.

//	The	following	images	show	the	contents	of	the	source	register	and	

//	the	resulting	destination	register.	The	images	are	identical	because	

//	the	mov	instruction	was	used.

	

//	Additional	code	loads	the	texture	in	texture	stage	0.

LPDIRECT3DDEVICE8			m_pd3dDevice;			//	Init	this	device	pointer	in	the	application.

LPDIRECT3DTEXTURE8		m_pTexture0;				//	Use	this	variable	to	hold	a	pointer	to	the	texture.

TCHAR															strPath[512]	=	"textureFile.jpg";

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

mul
Multiplies	the	components	of	two	source	registers.	The	result	is	dest	=	src0	*
src1.

mul	dest,	src0,	src1

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.0

x x 1.1,	1.2,	1.3
x 1.4

src0,	src1 Source	register
x x x x 1.0,	1.1,	1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

//	This	example	combines	the	texture	color	and	the	diffuse	color.

//	The	shader	is	shown	below.

ps.1.0														//	Version	instruction

tex	t0														//	Declare	texture.

mul	r0,	v0,	t0						//	Multiply	diffuse	color	with	gradient	texture.

//	The	following	images	show	the	contents	of	the	source	registers	the	

//	resulting	output	register.	

//	Where	src1	is	white,	the	destination	pixel	color	is	the	same	as	the	

//	source	pixel	color	since	dest	=	src	*	1.0.	

//	Where	src1	is	black,	the	destination	is	also	black.	

//	The	pixel	colors	in	the	middle	of	the	destination	image	are	a	blend	

//	of	src0	and	src1.

	 	

//	Additional	code	loads	a	texture	in	texture	stage	0.

LPDIRECT3DDEVICE8			m_pd3dDevice;			//	Init	this	device	pointer	in	the	application.

LPDIRECT3DTEXTURE8		m_pTexture0;				//	Use	this	variable	to	hold	a	pointer	to	the	texture.

TCHAR															strPath[512]	=	"textureFile.jpg";

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

nop
No	operation	is	performed.

nop

Registers

None

Remarks

This	instruction	performs	a	no-op,	or	no	operation.	The	syntax	for	calling	it	is	as
follows:

nop				

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

sub
Performs	subtraction.	Subtracts	the	second	source	register	from	the	first	source
register.

sub	dest,	src0,	src1

Registers

Argument Description
Registers

Versionvn cn tn rn

dest Destination	register
x 1.0

x x 1.1,	1.2,	1.3
x 1.4

src0,	src1 Source	register
x x x x 1.0,	1.1,	1.2,	1.3

x x 1.4	phase	1
x x x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	performs	the	subtraction	based	on	the	following	formula.

dest	=	src0	-	src1

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

//	This	example	subtracts	texture	color	from	the	diffuse	color.

//	The	shader	is	shown	below.

ps.1.0														//	Version	instruction

tex	t0														//	Declare	texture.

sub	r0,	v0,	t0						//	Subtract	texture	color	from	diffuse	color.

//	The	following	images	show	the	contents	of	the	source	registers	and	

//	the	resulting	destination	register.	The	colors	in	the	second	image	(src1)	

//	are	subtracted	from	the	color	in	the	first	image	(src0)	to	make	the	

//	resulting	image	(dest).

	 	

//	Additional	code	loads	the	texture	in	texture	stage	0.

LPDIRECT3DDEVICE8			m_pd3dDevice;			//	Init	this	device	pointer	in	the	application.

LPDIRECT3DTEXTURE8		m_pTexture0;				//	Use	this	variable	to	hold	a	pointer	to	the	texture.

TCHAR				 	 strPath[512]	=	"textureFile.jpg";

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

tex
Loads	the	destination	register	with	color	data	(RGBA)	sampled	from	a	texture.

The	texture	must	be	bound	to	a	particular	texture	stage	(n)	using	SetTexture.
Texture	sampling	is	controlled	by	the	texture	stage	state	attributes,	set	with
SetTextureStageState.

tex	dest

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

The	destination	register	number	specifies	the	texture	stage	number.

Texture	sampling	uses	texture	coordinates	to	look	up,	or	sample,	a	color	value	at
the	specified	(u,v,w,q)	coordinates	while	taking	into	account	the	texture	stage
state	attributes.

The	texture	coordinate	data	is	interpolated	from	the	vertex	texture	coordinate
data	and	is	associated	with	a	specific	texture	stage.	The	default	association	is	a
one-to-one	mapping	between	texture	stage	number	and	texture	coordinate
declaration	order.	This	means	that	the	first	set	of	texture	coordinates	defined	in
the	vertex	format	are	by	default	associated	with	texture	stage	0.

Texture	coordinates	may	be	associated	with	any	stage	using	two	techniques.
When	using	a	fixed	function	vertex	shader	or	the	fixed	function	pipeline,	the
texture	stage	state	flag	TSS_TEXCOORDINDEX	can	be	used	in
SetTextureStageState	to	associate	coordinates	to	a	stage.	Otherwise,	the	texture

coordinates	are	output	by	the	vertex	shader	oTn	registers	when	using	a
programmable	vertex	shader.

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

//	This	example	applies	a	texture	to	a	quad.

//	The	shader	is	shown	below.

ps.1.0								//	version	instruction

tex	t0								//	samples	the	texture	at	stage	0	using	texture	coordinates	from	stage	0

mov	r0,	t0				//	copies	the	color	in	t0	to	output	register	r0

//	The	rendered	output	from	the	pixel	shader	is	shown	below.	It	is	

//	simply	a	texture	map	applied	to	a	quad	object.

//	Additional	code	is	required	to	use	this	shader	and	an	example	

//	scenario	is	shown	below.

//	Load	the	texture	in	texture	stage	0.

LPDIRECT3DDEVICE8			m_pd3dDevice;	 //	Initialize	the	pointer	before	using

LPDIRECT3DTEXTURE8		m_pTexture0;	 //	a	pointer	for	the	texture

TCHAR															strPath[512]	=	"DX5_Logo.bmp";

//	Helper	function	from	the	SDK

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

//	This	code	creates	the	shader	from	a	file.	The	contents	of	the	shader	

//	file	can	also	be	supplied	as	a	text	string.

TCHAR															strPShaderPath[512];

LPD3DXBUFFER								pCode;

//	Helper	function	from	the	SDK

DXUtil_FindMediaFile(strPShaderPath,	_T("shaderFile.txt"));

//	Assemble	the	vertex	shader	from	the	file.

D3DXAssembleShaderFromFile(strPShaderPath,	0,	NULL,	&pCode;,	NULL);

m_pd3dDevice->CreatePixelShader((DWORD*)pCode->GetBufferPointer(),

																			&m;_hPixelShader);

pCode->Release();

//	Define	the	object	vertex	data.

struct	CUSTOMVERTEX

{

				FLOAT	x,	y,	z;

				FLOAT	tu1,	tv1;

};

#define	D3DFVF_CUSTOMVERTEX	(D3DFVF_XYZ|D3DFVF_TEX1|TEXCOORD2(0))

static	CUSTOMVERTEX	g_Vertices[]=

{

				//		x						y					z					u1				v1			

				{	-1.0f,	-1.0f,	0.0f,	0.0f,	1.0f,	},

				{	+1.0f,	-1.0f,	0.0f,	1.0f,	1.0f,	},

				{	+1.0f,	+1.0f,	0.0f,	1.0f,	0.0f,	},

				{	-1.0f,	+1.0f,	0.0f,	0.0f,	0.0f,	},

				//	v1	is	flipped	to	meet	the	top	down	convention	in	Windows

				//	the	upper	left	texture	coordinate	is	(0,0)

				//	the	lower	right	texture	coordinate	is	(1,1).	

};

//	Create	and	fill	the	quad	vertex	buffer.

m_pd3dDevice->CreateVertexBuffer(4*sizeof(CUSTOMVERTEX),

	 	 D3DUSAGE_WRITEONLY,	D3DFVF_CUSTOMVERTEX,

	 	 D3DPOOL_MANAGED,	&m;_pQuadVB);

CUSTOMVERTEX*	pVertices	=	NULL;

m_pQuadVB->Lock(0,	4*sizeof(CUSTOMVERTEX),	(BYTE**)&pVertices;,	0);

for(DWORD	i=0;	i<4;	i++)

				pVertices[i]	=	g_Vertices[i];

m_pQuadVB->Unlock();

//	Check	to	see	if	the	hardware	supports	pixel	shaders.

if(D3DSHADER_VERSION_MAJOR(pCaps->PixelShaderVersion)	<	1)

	 return	E_FAIL;

//	Set	up	the	transforms.

D3DXVECTOR3	from(0,	0,	-5.0f);

D3DXVECTOR3	at(0.0f,	0.0f,	0.0f);

D3DXVECTOR3	up(0.0f,	1.0f,	0.0f);

D3DXMATRIX	matWorld;

D3DXMatrixIdentity(&matWorld;);

m_pd3dDevice->SetTransform(D3DTS_WORLD,	&matWorld;);

D3DXMATRIX	matView;

D3DXMatrixLookAtLH(&matView;,	&from;,	&at;,	&up;);

m_pd3dDevice->SetTransform(D3DTS_VIEW,	&matView;);

D3DXMATRIX	matProj;

D3DXMatrixPerspectiveFovLH(&matProj;,	D3DX_PI/4,	1.0f,	0.5f,	1000.0f);

m_pd3dDevice->SetTransform(D3DTS_PROJECTION,	&matProj;);

//	Render	the	output.

//	Clear	the	back	buffer	to	black.

m_pd3dDevice->Clear(0L,	NULL,	D3DCLEAR_TARGET,	0x00000000,	1.0f,	0L);

//	Set	device	state.

m_pd3dDevice->SetRenderState(D3DRS_CULLMODE,	D3DCULL_NONE);

m_pd3dDevice->SetRenderState(D3DRS_CLIPPING,	FALSE);

m_pd3dDevice->SetRenderState(D3DRS_LIGHTING,	FALSE);

m_pd3dDevice->SetRenderState(D3DRS_ZENABLE,		FALSE);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

m_pd3dDevice->SetStreamSource(0,	m_pQuadVB,	sizeof(CUSTOMVERTEX));

m_pd3dDevice->SetVertexShader(D3DFVF_CUSTOMVERTEX);

m_pd3dDevice->SetPixelShader(m_hPixelShader);

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	2);

m_pd3dDevice->SetTexture(0,	NULL);

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texbem
Apply	a	fake	bump	environment-map	transform.	This	is	accomplished	by
modifying	the	texture	address	data	of	the	destination	register,	using	address
perturbation	data	(du,dv),	and	a	two-dimensional	(2-D)	bump	environment
matrix.

texbem	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

The	red	and	green	color	data	in	the	src	register	is	interpreted	as	the	perturbation
data	(du,dv).

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	transforms	red	and	green	components	in	the	source	register
using	the	2-D	bump	environment-mapping	matrix.	The	result	is	added	to	the
texture	coordinate	set	corresponding	to	the	destination	register	number,	and	is
used	to	sample	the	current	texture	stage.

This	operation	always	interprets	du	and	dv	as	signed	quantities.	For	versions	1.0
and	1.1,	the	Signed	Scaling	input	modifier	(_bx2)	is	not	permitted	on	the	input
argument.

This	instruction	produces	defined	results	when	input	textures	contain	signed
format	data.	Mixed	format	data	works	only	if	the	first	two	channels	contain
signed	data.	For	more	information	about	surface	formats,	see	D3DFORMAT.

This	can	be	used	for	a	variety	of	techniques	based	on	address	perturbation,
including	fake	per-pixel	environment	mapping	and	diffuse	lighting	(bump
mapping).

//	When	using	this	instruction,	texture	registers	must	follow	the	following	sequence.

//	The	texture	assigned	to	stage	t(n)	contains	the	(du,dv)	data.

//	The	texture	assigned	to	stage	t(m)	is	sampled.

tex					t(n)	 	 	 	 	

texbem		t(m),		t(n)						where	m	>	n

//	The	calculations	done	within	the	instruction	are	shown	below.

//	1.	New	values	for	texture	addresses	(u',v')	are	calculated.

//	2.	Sample	the	texture	using	(u',v')

u'	=	TextureCoordinates(stage	m)u	+	D3DTSS_BUMPENVMAT00(stage	m)*t(n)

	 		D3DTSS_BUMPENVMAT10(stage	m)*t(n)G

	 		

v'	=	TextureCoordinates(stage	m)v	+	D3DTSS_BUMPENVMAT01(stage	m)*t(n)

	 		D3DTSS_BUMPENVMAT11(stage	m)*t(n)G

t(m)RGBA	=	TextureSample(stage	m)	using	(u
',v')	as	coordinates.

Note		When	using	texbem	or	texbeml,	do	not	re-read	the	source	register	later	in
the	shader	because	the	data	within	the	register	might	be	corrupted.	The	shader
validation	allows	this	even	though	the	result	will	be	undefined.

Example

//	Here	is	an	example	shader	with	the	texture	maps	identified	and

//	the	texture	stages	identified.

ps.1.0

tex	t0														;	define	t0	to	get	a	2-tuple	DuDv

texbem	t1,	t0							;	compute	(u',v')

																				;	sample	t1	using	(u',v')

mov	r0,	t1										;	output	result

//	texbem	requires	the	following	textures	in	the	following	texture	stages.

//

//	Stage	0	is	assigned	a	bump	map	with	(du,	dv)	perturbation	data.

//

//	Stage	1	uses	a	texture	map	with	color	data.

//

//	This	instruction	sets	the	matrix	data	on	the	texture	stage	that	is	sampled.

//	This	is	different	from	the	functionality	of	the	fixed	function	pipeline	where	

//	the	perturbation	data	and	the	matrices	occupy	the	same	texture	stage.

	 	 	 	 	 		

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texbeml
Apply	a	fake	bump	environment-map	transform	with	luminance	correction.	This
is	accomplished	by	modifying	the	texture	address	data	of	the	destination	register,
using	address	perturbation	data	(du,dv),	a	two-dimensional	(2-D)	bump
environment	matrix,	and	luminance.

texbeml	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

The	red	and	green	color	data	in	the	src	register	is	interpreted	as	the	perturbation
data	(du,dv).

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	transforms	the	red	and	green	components	in	the	source	register
using	the	2-D	bump	environment	mapping	matrix.	The	result	is	added	to	the
texture	coordinate	set	corresponding	to	the	destination	register	number.	A
luminance	correction	is	applied	using	the	luminance	value	and	the	bias	texture
stage	values.	The	result	is	used	to	sample	the	current	texture	stage.

This	can	be	used	for	a	variety	of	techniques	based	on	address	perturbation	such
as	fake	per-pixel	environment	mapping.

This	operation	always	interprets	du	and	dv	as	signed	quantities.	For	versions	1.0
and	1.1,	the	Signed	Scaling	input	modifier	(_bx2)	is	not	permitted	on	the	input
argument.

This	instruction	produces	defined	results	when	input	textures	contain	mixed
format	data.	For	more	information	about	surface	formats,	see	D3DFORMAT.

//	When	using	this	instruction,	texture	registers	must	follow	the	following	sequence.

//	The	texture	assigned	to	stage	tn	contains	the	(du,dv)	data.

//	The	texture	assigned	to	stage	t(m)	is	sampled.

tex					t(n)	 	 	 	 	

texbeml	t(m),		t(n)						where	m	>	n

//	This	example	shows	the	calculations	done	within	the	instruction.

//	1.	New	values	for	texture	addresses	(u',v')	are	calculated.

//	2.	Sample	the	texture	using	(u',v')

//	3.	Luminance	correction	is	applied.

u'	=	TextureCoordinates(stage	m)u	+	D3DTSS_BUMPENVMAT00(stage	m)*t(n)

	 		D3DTSS_BUMPENVMAT10(stage	m)*t(n)G

	 		

v'	=	TextureCoordinates(stage	m)v	+	D3DTSS_BUMPENVMAT01(stage	m)*t(n)

	 		D3DTSS_BUMPENVMAT11(stage	m)*t(n)G

t(m)RGBA	=	TextureSample(stage	m)	using	(u
',v')	as	coordinates.

t(m)RGBA	=	t(m)RGBA*[t(n)B*(D3DTSS_BUMPENVLSCALE(stage	m)	+	D3DTSS_BUMPENVLOFFSET(stage	m))]

Note		When	using	texbem	or	texbeml,	do	not	re-read	the	source	register	later	in
the	shader	because	the	data	within	the	register	might	be	corrupted.	The	shader
validation	allows	this	even	though	the	result	will	be	undefined.

Example

//	Here	is	an	example	shader	with	the	texture	maps	identified	and

//	the	texture	stages	identified.

ps.1.0

tex	t0														;	define	t0	to	get	a	2-tuple	DuDv

texbeml	t1,	t0						;	compute	(u',v')

																				;	apply	luminance	correction																				

																				;	sample	t1	using	(u',v')

mov	r0,	t1										;	output	result

//	This	example	requires	the	following	textures	in	the	following	texture	stages.

//

//	Stage	0	is	assigned	a	bump	map	with	(du,	dv)	perturbation	data.

//

//	Stage	1	is	assigned	a	texture	map	with	color	data.

//

//	texbeml	sets	the	matrix	data	on	the	texture	stage	that	is	sampled.

//	This	is	different	from	the	functionality	of	the	fixed	function	pipeline	where	

//	the	perturbation	data	and	the	matrices	occupy	the	same	texture	stage.

	 		

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texcoord
Interprets	texture	coordinate	data	(UVW1)	as	color	data	(RGBA).

texcoord	dest

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	interprets	the	texture	coordinate	set	(UVW1)	corresponding	to
the	destination	register	number	as	color	data	(RGBA).	If	the	texture	coordinate
set	contains	fewer	than	three	components,	the	missing	components	are	set	to	0.
The	fourth	component	is	always	set	to	1.	All	values	are	clamped	between	0	and
1.

The	advantage	of	texcoord	is	that	it	provides	a	way	to	pass	vertex	data
interpolated	at	high	precision	directly	into	the	pixel	shader.	However,	once	the
data	is	written	into	the	destination	register,	some	precision	will	be	lost,
depending	on	the	number	of	bits	used	by	the	hardware	for	registers.

No	texture	is	sampled	by	this	instruction.	Only	texture	coordinates	set	on	this
texture	stage	are	relevant.

Any	texture	data	(such	as	position,	normal,	and	light	source	direction)	can	be
mapped	by	a	vertex	shader	into	a	texture	coordinate.	This	is	done	by	associating
a	texture	with	a	texture	register	using	SetTexture	and	by	specifying	how	the
texture	sampling	is	done	using	SetTextureStageState.	If	the	fixed	function
pipeline	is	used,	be	sure	to	supply	the	TSS_TEXCOORDINDEX	flag.

//	This	instruction	is	used	as	follows:

texcoord	tn

//	A	texture	register	(tn)	contains	four	color	values	(RGBA).	The	data	can	also	be	

//	thought	of	as	vector	data	(xyzw).	Texcoord	will	retrieve	3	of	these	values	(xyz)	from		

//	texture	coordinate	set	x,	and	the	fourth	component	(w)	is	set	to	1.

//	The	texture	address	is	copied	from	the	texture	coordinate	set	n.

//	The	result	is	clamped	between	0	and	1.

Example

This	example	is	for	illustration	only.	The	C	code	accompanying	the	shader	has
not	been	optimized	for	performance.	It	can	use	helper	functions	from	the	Sample
Framework.	The	sample	framework	is	the	foundation	on	which	many	of	the
samples	are	built.

//	Here	is	an	example	shader	using	texcoord.

ps.1.0								;	version	instruction

texcoord	t0			;	declare	t0	hold	texture	coordinates,	

														;	which	represent	rgba	values	in	this	example

mov	r0,	t0				;	move	the	color	in	t0	to	output	register	r0

The	rendered	output	from	the	pixel	shader	is	shown	below.	The	(u,v,w,1)
coordinate	values	map	to	the	(rgb)	channels.	The	alpha	channel	is	set	to	1.	At	the
corners	of	the	image,	coordinate	(0,0,0,1)	is	interpreted	as	black,	(1,0,0,1)	is	red,
(0,1,0,1)	is	green,	and	(1,1,0,1)	contains	green	and	red,	producing	yellow.

//	Additional	code	is	required	to	use	this	shader	and	an	example	

//	scenario	is	shown	below.

//	This	code	creates	the	shader	from	a	file.	The	contents	of	the	shader	

//	file	can	also	be	supplied	as	a	text	string.

TCHAR															strPShaderPath[512];

LPD3DXBUFFER								pCode;

DXUtil_FindMediaFile(strPShaderPath,	_T("shaderFile.txt"));

//	Assemble	the	vertex	shader	from	the	file.

D3DXAssembleShaderFromFile(strPShaderPath,	0,	NULL,	&pCode;,	NULL);

m_pd3dDevice->CreatePixelShader((DWORD*)pCode->GetBufferPointer(),

																			&m;_hPixelShader);

pCode->Release();

//	This	code	defines	the	object	vertex	data.

struct	CUSTOMVERTEX

{

				FLOAT	x,	y,	z;

				FLOAT	tu1,	tv1;

};

#define	D3DFVF_CUSTOMVERTEX	(D3DFVF_XYZ|D3DFVF_TEX1|TEXCOORD2(0))

static	CUSTOMVERTEX	g_Vertices[]=

{

				//		x						y					z					u1				v1			

				{	-1.0f,	-1.0f,	0.0f,	0.0f,	0.0f,	},

				{	+1.0f,	-1.0f,	0.0f,	1.0f,	0.0f,	},

				{	+1.0f,	+1.0f,	0.0f,	1.0f,	1.0f,	},

				{	-1.0f,	+1.0f,	0.0f,	0.0f,	1.0f,	},

};

	
Microsoft	DirectX	8.1	(pixel	shader	version	1.4)

texcrd
Copies	texture	coordinate	data	from	the	source	texture	coordinate	iterator
register	as	color	data	in	the	destination	register.

texcrd	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.4

src Source	register
x 1.4	phase	1
x 1.4	phase	2

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	interprets	coordinate	data	as	color	data	(RGBA).

No	texture	is	sampled	by	this	instruction.	Only	texture	coordinates	set	on	this
texture	stage	are	relevant.

When	using	texcrd,	keep	in	mind	the	following	detail	about	how	data	is	copied
from	the	source	register	to	the	destination	register.	The	source	texture	coordinate
register	(t#)	holds	data	in	the	range	[-D3DCAPS8.MaxTextureRepeat,
D3DCAPS8.MaxTextureRepeat],	while	the	destination	register	(r#)	can	hold
data	only	in	the	(likely	smaller)	range	[-D3DCAPS8.MaxPixelShaderValue,
D3DCAPS8.MaxPixelShaderValue].	Note	that	for	pixel	shader	version	1.4,
D3DCAPS8.MaxPixelShaderValue	must	be	a	minimum	of	eight.	The	texcrd
instruction,	in	the	process	of	clamping	source	data	that	is	out	of	range	of	the
destination	register,	is	likely	to	behave	differently	on	different	hardware.	The
first	pixel	shader	version	1.4	hardware	on	the	market	will	perform	a	special
clamp	for	values	outside	of	range.	This	clamp	is	designed	to	produce	a	number

that	can	fit	into	the	destination	register,	but	also	to	preserve	texture	addressing
behavior	for	out-of-range	data	(see	D3DTEXTUREADDRESS)	if	the	data	were
to	be	subsequently	used	for	texture	sampling.	However,	new	hardware	from
different	manufacturers	might	not	exhibit	this	behavior	and	might	simply	chop
data	to	fit	the	destination	register	range.	Therefore,	the	safest	course	of	action
when	using	pixel	shader	version	1.4	texcrd	is	to	supply	texture	coordinate	data
only	into	the	pixel	shader	that	is	already	within	the	range	[-8,8]	so	that	you	do
not	rely	on	the	way	hardware	clamps.

Unlike	texcoord,	texcrd	does	not	clamp	values	between	0	and	1.

Rules	for	using	texcrd:

1.	 The	same	.xyz	or	.xyw	modifier	must	be	applied	to	every	read	of	an
individual	t(n)	register	within	a	texcrd	or	texld	instruction.

2.	 The	fourth	channel	result	of	texcrd	is	unset/undefined	in	all	cases.
3.	 The	third	channel	is	unset/undefined	for	the	xyw_dw	case.

Example

The	complete	set	of	allowed	syntax	for	texcrd,	taking	into	account	all	valid
source	modifier/selector	and	destination	write	mask	combinations,	is	shown
below.	Note	that	the	.rgba	and	.xyzw	notation	can	be	used	interchangeably.

texcrd		r(m).rgb,	t(n).xyz		

//	Copies	first	three	channels	of	texture	coordinate	iterator	register,	

//	t(n),	into	r(m).	The	fourth	channel	of	

//	r(m)	is	uninitialized.

texcrd		r(m).rgb,	t(n)

//	Produces	the	same	result	as	the	previous	instruction.

texcrd		r(m).rgb,	t(n).xyw

//	Puts	first,	second,	and	fourth	components	of	t(n)	into	first	three	channels	

//	of	r(m).	The	fourth	channel	of	r(m)	is	uninitialized.

//	Here	is	a	projective	divide	example	using	the	_dw	modifier.

texcrd		r(m).rg,		t(n)_dw.xyw		

//	This	example	copies	x/w	and	y/w	from	t(n)	into	the	

//	first	two	channels	of	r(m).	The	third	and	fourth	

//	channels	of	r(m)	are	uninitialized.	Any	data	previously	

//	written	to	the	third	channel	of	r(m)	will	be	lost.	Data	

//	in	the	fourth	channel	of	r(m)	is	lost	due	to	the	phase	

//	marker.	For	version	1.4,	the	D3DTTFF_PROJECTED	flag	is	ignored.

	
Microsoft	DirectX	8.1	(pixel	shader	version	1.4)

texdepth
Calculate	depth	values	to	be	used	in	the	depth	buffer	comparison	test	for	this
pixel.

texdepth	dest

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register r5 1.4	phase	2	only

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	uses	r5.r	/	r5.g	in	the	depth	buffer	comparison	test	for	this	pixel.
The	data	in	the	blue	and	alpha	channels	is	ignored.	If	r5.g	=	0,	the	result	of	r5.r	/
r5.g	=	1.0.

Temporary	register	r5	is	the	only	register	that	this	instruction	can	use.

After	executing	this	instruction,	temporary	register	r5	is	unavailable	for
additional	use	in	the	shader.

When	multisampling,	using	this	instruction	eliminates	most	of	the	benefit	of	the
higher	resolution	depth	buffer.	Because	the	pixel	shader	executes	once	per	pixel,
the	single	depth	value	output	by	texm3x2depth	or	texdepth	will	be	used	for	each
of	the	sub-pixel	depth	comparison	tests.

Example

Here	is	an	example	using	texdepth.

ps.1.4														

texld		r0,	t0								//	Sample	texture	from	texture	stage	0	(dest	

																					//	register	number)	into	r0.

																					//	Use	texture	coordinate	data	from	t0.

texcrd	r1.rgb,	t1				//	Load	a	second	set	of	texture	coordinate	data	into	r1.

add				r5.rg,	r0,	r1	//	Add	the	two	sets	of	texture	coordinate	data.

phase																//	Phase	marker,	required	when	using	texdepth	instruction.

texdepth		r5									//	Calculate	pixel	depth	as	r5.r	/	r5.g.

																					//	Do	other	color	calculations	with	shader	output	r0.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.2	and	1.3)

texdp3
Performs	a	three-component	dot	product	between	data	in	the	texture	register
number	and	the	texture	coordinate	set	corresponding	to	the	destination	register
number.

texdp3	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.2,	1.3
src Source	register x 1.2,	1.3

Remarks

Texture	registers	must	use	the	following	sequence.

tex				t(n)								//	Define	tn	as	a	standard	3-vector	(tn	must	be	

																			//	defined	in	some	way	before	texdp3	uses	it).

texdp3	t(m),	t(n)		//	where	m	>	n

																			//	Perform	a	three-component	dot	product	between	tn	and	

																			//	the	texture	coordinate	set	m.	The	scalar	result	is

																			//	replicated	to	all	components	of	t(m).

Here	is	more	detail	about	how	the	dot	product	is	accomplished.

//	The	texdp3	instruction	performs	a	three-component	dot	product	and

//	replicates	it	to	all	four	color	channels.	

t(m)RGBA	=	TextureCoordinates(stage	m)UVW	•	t(n)RGB		

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.2	and	1.3)

texdp3tex
Performs	a	three-component	dot	product	and	uses	the	result	to	do	a	1-D	texture
lookup.

texdp3tex	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.2,	1.3
src Source	register x 1.2,	1.3

Remarks

Texture	registers	must	use	the	following	sequence.

tex							t(n)								//	Define	tn	as	a	standard	3-vector	(tn	must	be	

																						//	defined	in	some	way	before	texdp3tex	uses	it).

texdp3tex	t(m),	t(n)		//	where	m	>	n.																		

																						//	Perform	a	three-component	dot	product	between	t(n)	and	

																						//	the	texture	coordinate	set	m.	Use	the	scalar	result	to

																						//	do	a	1-D	texture	lookup	at	texturestage	m	and	place

																						//	the	result	in	t(m).

Here	is	more	detail	about	how	the	dot	product	and	texture	lookup	are	done.

//	The	texdp3tex	instruction	performs	a	three-component	dot	product.

u'	=	TextureCoordinates(stage	m)UVW	•	t(n)RGB			

//	The	result	is	used	to	sample	the	texture	at	texture	stage	m	by	performing

//	a	1-D	lookup.

t(m)RGBA	=	TextureSample(stage	m)RGBA	using	(u
',0,0)	as	coordinates.	

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

texkill
texkill	src

Cancels	rendering	of	the	current	pixel	if	any	of	the	first	three	components
(UVW)	of	the	texture	coordinates	is	less	than	zero.

Registers

Argument Description
Registers

Versionvn cn tn rn

src Source	register
x 1.0,	1.1,	1.2,	1.3
x x 1.4	phase	2	only

To	learn	more	about	registers,	see	Registers.

Remarks

texkill	does	not	sample	any	texture.	It	operates	on	the	first	three	components	of
the	texture	coordinates	given	by	the	source	register	number.	For	ps	1.4,	texkill
operates	on	the	data	in	the	first	three	components	of	the	source	register.

You	can	use	this	instruction	to	implement	arbitrary	clip	planes	in	the	rasterizer.

When	using	vertex	shaders,	the	application	is	responsible	for	applying	the
perspective	transform.	This	can	cause	problems	for	the	arbitrary	clipping	planes
because	if	it	contains	anisomorphic	scale	factors,	the	clip	planes	need	to	be
transformed	as	well.	Therefore,	it	is	best	to	provide	an	unprojected	vertex
position	to	use	in	the	arbitrary	clipper,	which	is	the	texture	coordinate	set
identified	by	the	texkill	operator.

//	This	instruction	is	used	as	follows:

texkill	tn

//	The	pixel	masking	is	accomplished	as	follows:

if	(any	of	the	first	3	components	of	TextureCoordinates(stage	n)UVWQ

		cancel	pixel	render

For	ps	1.0,	1.1,	1.2,	and	1.3,	texkill	operates	on	the	texture	coordinate	set	given
by	the	source	register	number.	In	version	1.4,	however,	texkill	operates	on	the
data	contained	in	the	texture	coordinate	iterator	register	(tn)	or	in	the	temporary
register	(rn)	that	has	been	specified	as	the	source.

When	multisampling	is	enabled,	any	antialiasing	effect	achieved	on	polygon
edges	due	to	multisampling	will	not	be	achieved	along	any	edge	that	has	been
generated	by	texkill.	The	pixel	shader	runs	once	per	pixel.

Example

This	example	is	for	illustration	only.

//	This	example	masks	out	pixels	that	have	negative	texture	coordinates.	The	pixel	

//	colors	are	interpolated	from	vertex	colors	provided	in	the	vertex	data.

//	The	shader	is	shown	below.

ps.1.0							//	version	instruction

texkill	t0			//	Mask	out	pixel	using	texture	coordinates	from	stage	0.

mov	r0,	v0			//	Move	the	diffuse	color	in	v0	to	r0.

//	The	rendered	output	from	the	pixel	shader	is	shown	below.	It	shows	

//	vertex	color	data	applied	to	a	plane.	The	texture	coordinate	data

//	is	declared	in	the	vertex	data	declaration	in	this	example.

struct	CUSTOMVERTEX

{

				FLOAT	x,	y,	z;

				DWORD	color;

				FLOAT	tu1,	tv1;

};

#define	D3DFVF_CUSTOMVERTEX	(D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1|D3DTEXCOORD2(0))

static	CUSTOMVERTEX	g_Vertices[]=

{

				//		x						y					z				color									u1,				v1		

				{	-1.0f,	-1.0f,	0.0f,	0xffff0000,	-0.5f,		1.0f,	},

				{		1.0f,	-1.0f,	0.0f,	0xff00ff00,		0.5f,		1.0f,	},

				{		1.0f,		1.0f,	0.0f,	0xff0000ff,		0.5f,		0.0f,	},

				{	-1.0f,		1.0f,	0.0f,	0xffffffff,	-0.5f,		0.0f,	},

};

//	The	texture	coordinates	range	from	-0.5	to	0.5	in	u,	and	0.0	to	1.0	in	v.

//	This	instruction	causes	the	negative	u	values	get	masked	out.

//	The	first	image	shows	the	vertex	colored	applied	to	the	quad	without	the

//	texkill	instruction	applied.

//	The	second	image	shows	the	result	of	the	texkill	instruction.	The	pixel	colors

//	from	the	texture	coordinates	below	0	(where	x	goes	from	-0.5	to	0.0)	are	masked

//	out.	The	background	color	(white)	is	used	where	the	pixel	color	is	masked.

	

	
Microsoft	Directx	8.1	(pixel	shader	version	1.4)

texld
Loads	the	destination	register	with	color	data	(RGBA)	sampled	using	the
contents	of	the	source	register	as	texture	coordinates.	The	sampled	texture	is	the
texture	associated	with	the	destination	register	number.

texld	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.4

src Source	register
x 1.4	phase	1
x x 1.4	phase	2

When	using	r(n)	as	a	source	register,	the	first	three	components	(XYZ)	must
have	been	initialized	in	the	previous	phase	of	the	shader.

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	samples	the	texture	in	the	texture	stage	associated	with	the
destination	register	number.	The	texture	is	sampled	using	texture	coordinate	data
from	the	source	register.

The	syntax	for	the	texld	and	texcrd	instructions	expose	support	for	a	projective
divide	with	a	Texture	Register	Modifier.	For	pixel	shader	version	1.4,	the
D3DTTFF_PROJECTED	texture	transform	flags	is	always	ignored.

Rules	for	using	texld:

1.	 The	same	.xyz	or	.xyw	modifier	must	be	applied	to	every	read	of	an
individual	t(n)	register	within	both	texcrd	or	texld	instructions.	If	.xyw	is

being	used	on	t(n)	register	read(s),	this	can	be	mixed	with	other	read(s)	of
the	same	t(n)	register	using	.xyw_dw.

2.	 The	_dz	source	modifier	is	only	valid	on	texld	with	r(n)	source	register
(thus	phase	2	only).

3.	 The	_dz	source	modifier	may	be	used	no	more	than	two	times	per	shader.

Examples

The	texld	instruction	offers	some	control	over	which	components	of	the	source
texture	coordinate	data	are	used.	The	complete	set	of	allowed	syntax	for	texld
follows,	and	includes	all	valid	source	register	modifiers,	selectors,	and	write
mask	combinations.

texld		r(m),	t(n).xyz

//	Uses	xyz	from	t(n)	to	sample	1-D,	2-D,	or	3-D	texture.

texld		r(m),	t(n)

//	Same	as	previous.

texld		r(m),	t(n).xyw

//	Uses	xyw	(skipping	z)	from	t(n)	to	sample	1-D,	2-D	or	3-D	texture.

	

texld		r(m),	t(n)_dw.xyw		

//	Samples	1-D	or	2-D	texture	at	x/w,	y/w	from	t(n).	The	result

//	is	undefined	for	a	cube-map	lookup.

texld		r(m),	r(n).xyz

//	Samples	1-D,	2-D,	or	3-D	texture	at	xyz	from	r(m).	

//	This	is	possible	in	the	second	phase	of	the	shader.

texld		r(m),	r(n)

//	Same	as	previous.

texld		r(m),	r(n)_dz.xyz

//	Samples	1-D	or	2-D	texture	at	x/z,	y/z	from	r(m).	

//	Possible	only	in	second	phase.

//	The	result	is	undefined	for	a	cube-map	lookup.

texld		r(n),	r(n)_dz

//	Same	as	previous.

	
Microsoft	DirectX	8.1	(pixel	shader	version	1.3)

texm3x2depth
Calculate	the	depth	value	to	be	used	in	depth	testing	for	this	pixel.

texm3x2depth	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.3
src Source	register x 1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	must	be	used	with	the	texm3x2pad	instruction.

When	using	these	two	instructions,	texture	registers	must	use	the	following
sequence.

tex	t(n)																					//	Define	tn	as	a	standard	3-vector.(tn	must	be	

																													//	defined	in	some	way	before	it	is	used.

texm3x2pad			t(m),			t(n)				//	Where	m	>	n

																													//	Calculate	z	value.

texm3x2depth	t(m+1),	t(n)				//	Calculate	w	value;	use	both	z	and	w	to

																													//	find	depth.

The	depth	calculation	is	done	after	using	a	dot	product	operation	to	find	z	and	w.
Here	is	more	detail	about	how	the	depth	calculation	is	accomplished.

//	The	texm3x2pad	instruction	calculates	z.	

z	=	TextureCoordinates(stage	m)UVW	•	t(n)RGB				

//	The	texm3x2depth	instruction	calculates	w.

w	=	TextureCoordinates(stage	m+1)UVW	•	t(n)RGB				

//	Calculate	depth	and	store	the	result	in	t(m+1).

if	(w	==	0)

		t(m+1)	=	1.0

else

		t(m+1)	=	z/w

The	calculated	depth	is	tagged	to	be	used	in	the	depth	test	for	the	pixel,	replacing
the	existing	depth	test	value	for	the	pixel.

Be	sure	to	clamp	z/w	to	be	in	the	range	of	(0-1).	If	z/w	is	outside	this	range,	the
result	stored	in	the	depth	buffer	will	be	undefined.

After	executing	tex3x2depth,	register	t(m+1)	is	no	longer	available	for	use	in	the
shader.

When	multisampling,	using	this	instruction	eliminates	most	of	the	benefit	of	the
higher	resolution	depth	buffer.	Because	the	pixel	shader	executes	once	per	pixel,
the	single	depth	value	output	by	texm3x2depth/texdepth	will	be	used	for	each	of
the	sub-pixel	depth	comparison	tests.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texm3x2pad
Performs	the	first	row	multiplication	of	a	two-row	matrix	multiply.	This
instruction	must	be	combined	with	either	texm3x2tex	or	texm3x2depth.	Refer
to	either	of	these	instructions	for	details	on	using	texm3x2pad.

texm3x2pad	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	cannot	be	used	by	itself.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texm3x2tex
Performs	the	final	row	of	a	3×2	matrix	multiply	and	uses	the	result	to	do	a
texture	lookup.	texm3x2tex	must	be	used	in	conjunction	with	the	texm3x2pad
instruction.

texm3x2tex	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

The	instruction	is	used	as	one	of	two	instructions	representing	a	3×2	matrix
multiply	operation.	This	instruction	must	be	used	with	the	texm3x2pad.

When	using	these	two	instructions,	texture	registers	must	use	the	following
sequence.

tex	t(n)																						//	Define	tn	as	a	standard	3-vector	(tn	must	

																														//	be	defined	in	some	way	before	it	is	used).

texm3x2pad		t(m),			t(n)						//	where	m	>	n

																														//	Perform	first	row	of	matrix	multiply.

texm3x2tex		t(m+1),	t(n)						//	Perform	second	row	of	matrix	multiply	

																														//	to	get	(u,v)	to	sample	texture	

																														//	associated	with	stage	m+1.

Here	is	more	detail	about	how	the	3×2	multiply	is	accomplished.

//	The	texm3x2pad	instruction	performs	the	first	row	of	the	multiply	to	find	u

u'	=	t(n)RGB	•	TextureCoordinates(stage	m)UVW			

//	The	texm3x2tex	instruction	performs	the	second	row	of	the	multiply	to	find	v

v'	=	t(n)RGB	•	TextureCoordinates(stage	m+1)UVW			

//	The	texm3x2tex	instruction	samples	the	texture	on	stage	(m+1)	with	(u

//	stores	the	result	in	t(m+1).

t(m+1)RGB	=	TextureSample(stage	m+1)RGB	using	(u
',	v')	as	coordinates.

Example

//	Here	is	an	example	shader	with	the	texture	maps	and

//	the	texture	stages	identified.

ps.1.0

tex	t0																//	Bind	texture	in	stage	0	to	register	t0.

texm3x2pad		t1,		t0			//	First	row	of	matrix	multiply.

texm3x2tex		t2,		t0			//	Second	row	of	matrix	multiply	to	get	(u,v)

																						//	with	which	to	sample	texture	in	stage	2.

mov	r0,	t2												//	Output	result.

//	This	example	requires	the	following	textures	in	the	following	texture	stages.

//

//	Stage	0	takes	a	map	with	(x,y,z)	perturbation	data.

//

//	Stage	1	holds	texture	coordinates.	No	texture	is	required	in	the	texture	stage.

//

//	Stage	2	holds	both	texture	coordinates	as	well	as	a	2-D	texture	set	at	

//	that	texture	stage.	

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.2	and	1.3)

texm3x3
Performs	a	3×3	matrix	multiply	when	used	in	conjunction	with	two	texm3x3pad
instructions.

texm3x3	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.2,	1.3
src Source	register x 1.2,	1.3

Remarks

This	instruction	is	the	same	as	the	texm3x3tex	instruction,	without	the	texture
lookup.

This	instruction	is	used	as	the	final	of	three	instructions	representing	a	3×3
matrix	multiply	operation.	The	3×3	matrix	is	comprised	of	the	texture
coordinates	of	the	third	texture	stage,	and	by	the	two	preceding	texture	stages.
Any	texture	assigned	to	any	of	the	three	texture	stages	is	ignored.

This	instruction	must	be	used	with	two	texm3x3pad	instructions.	Texture
registers	must	follow	the	following	sequence.

tex	t(n)																	//	Define	tn	as	a	standard	3-vector	(tn	must

																									//	be	defined	in	some	way	before	it	is	used).

texm3x3pad	t(m),			t(n)		//	where	m	>	n

																									//	Perform	first	row	of	matrix	multiply.

texm3x3pad	t(m+1),	t(n)		//	Perform	second	row	of	matrix	multiply.

texm3x3				t(m+2),	t(n)		//	Perform	third	row	of	matrix	multiply	to	get	a

																									//	3-vector	result.

Here	is	more	detail	about	how	the	3×3	multiply	is	accomplished.

//	The	first	texm3x3pad	instruction	performs	the	first	row	of	the	multiply	

//	to	find	u'.

u'	=	TextureCoordinates(stage	m)UVW	•	t(n)RGB			

//	The	second	texm3x3pad	instruction	performs	the	second	row	of	the	multiply	

//	to	find	v'.

v'	=	TextureCoordinates(stage	m+1)UVW	•	t(n)RGB			

//	The	texm3x3tex	instruction	performs	the	third	row	of	the	multiply

//	to	find	w'.

w'	=	TextureCoordinates(stage	m+2)UVW	•	t(n)RGB	

//	Place	the	result	of	the	matrix	multiply	in	the	destination	register.

t(m+2)RGBA	=	(u
',	v',	w',	1)

	

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texm3x3pad
Performs	the	first	or	second	row	multiply	of	a	three-row	matrix	multiply.	This
instruction	must	be	used	in	combination	with	texm3x3,	texm3x3spec,
texm3x3vspec,	or	texm3x3tex.

texm3x3pad	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	cannot	be	used	by	itself.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texm3x3tex
Performs	a	3×3	matrix	multiply	and	uses	the	result	to	do	a	texture	lookup.
texm3x3tex	must	be	used	with	two	texm3x3pad	instructions.

texm3x3tex	dest,	src

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	is	used	as	the	final	of	three	instructions	representing	a	3×3
matrix	multiply	operation,	followed	by	a	texture	lookup.	The	3×3	matrix	is
comprised	of	the	texture	coordinates	of	the	third	texture	stage	and	the	two
preceding	texture	stages.	The	resulting	three-component	vector	(u,v,w)	is	used	to
sample	the	texture	in	stage	3.	Any	texture	assigned	to	the	preceding	two	texture
stages	is	ignored.	The	3×3	matrix	multiply	is	typically	useful	for	orienting	a
normal	vector	to	the	correct	tangent	space	for	the	surface	being	rendered.

This	instruction	must	be	used	with	two	texm3x3pad	instructions.	Texture
registers	must	use	the	following	sequence.

tex	t(n)																	//	Define	tn	as	a	standard	3-vector	(tn	must

																									//	be	defined	in	some	way	before	it	is	used).

texm3x3pad	t(m),			t(n)		//	where	m	>	n

																									//	Perform	first	row	of	matrix	multiply.

texm3x3pad	t(m+1),	t(n)		//	Perform	second	row	of	matrix	multiply.

texm3x3tex	t(m+2),	t(n)		//	Perform	third	row	of	matrix	multiply	to	get	a

																									//	3-vector	with	which	to	sample	texture

																									//	associated	with	texture	stage	m+2.

Here	is	more	detail	about	how	the	3×3	multiply	is	accomplished.

//	The	first	texm3x3pad	instruction	performs	the	first	row	of	the	multiply	

//	to	find	u'.

u'	=	TextureCoordinates(stage	m)UVW	•	t(n)RGB			

//	The	second	texm3x3pad	instruction	performs	the	second	row	of	the	multiply	

//	to	find	v'.

v'	=	TextureCoordinates(stage	m+1)UVW	•	t(n)RGB			

//	The	texm3x3spec	instruction	performs	the	third	row	of	the	multiply

//	to	find	w'.

w'	=	TextureCoordinates(stage	m+2)UVW	•	t(n)RGB		

//	Lastly,	the	texm3x3tex	instruction	samples	t(m+2)	with	(u',v',w')

//	and	stores	the	result	in	t(m+2).

t(m+2)RGBA	=	TextureSample(stage	m+2)RGBA	using	(u
',	v',	w')	as	coordinates.

Example

//	Here	is	an	example	shader	with	the	texture	maps	identified	and

//	the	texture	stages	identified.

ps.1.0

tex	t0																//	Bind	texture	in	stage	0	to	register	t0.

texm3x3pad		t1,		t0			//	First	row	of	matrix	multiply.

texm3x3pad		t2,		t0			//	Second	row	of	matrix	multiply.

texm3x3tex		t3,		t0			//	Third	row	of	matrix	multiply	to	get	a

																						//	3-vector	with	which	to	sample	texture	at	stage	3

mov	r0,	t3												//	output	result.

//	This	example	requires	the	following	texture	stage	setup.

//

//	Stage	0	is	assigned	a	texture	map	with	normal	data.	This	is	often	

//	referred	to	as	a	bump	map.	The	data	is	(XYZ)	normals	for	

//	each	texel.	Texture	coordinate	set	0	defines	how	to	sample	this	

//	normal	map.

//

//	Texture	coordinate	set	1	is	assigned	to	row	1	of	the	3×3	matrix.	

//	Any	texture	assigned	to	stage	1	is	ignored.

//

//	Texture	coordinate	set	2	is	assigned	to	row	2	of	the	3×3	matrix.	

//	Any	texture	assigned	to	stage	2	is	ignored.

//

//	Texture	coordinate	set	3	is	assigned	to	row	3	of	the	3×3	matrix.	

//	A	volume	or	cube	texture	should	be	set	to	stage	3		for	lookup	by	the	

//	transformed	3-D	vector.

//

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texm3x3spec
Performs	a	3×3	matrix	multiply	and	uses	the	result	to	perform	a	texture	lookup.
This	can	be	used	for	specular	reflection	and	environment	mapping.	texm3x3spec
must	be	used	in	conjunction	with	two	texm3x3pad	instructions.

texm3x3spec	dest,	src0,	src1,	src2

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src0,	src1

Source	register
x 1.0,	1.1,	1.2,	1.3

src2 x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	performs	the	final	row	of	a	3×3	matrix	multiply,	uses	the
resulting	vector	as	a	normal	vector	to	reflect	an	eye-ray	vector,	and	then	uses	the
reflected	vector	to	perform	a	texture	lookup.	The	shader	reads	the	eye-ray	vector
from	a	constant	register.	The	3×3	matrix	multiply	is	typically	useful	for	orienting
a	normal	vector	to	the	correct	tangent	space	for	the	surface	being	rendered.

The	3×3	matrix	is	comprised	of	the	texture	coordinates	of	the	third	texture	stage
and	the	two	preceding	texture	stages.	The	resulting	post	reflection	vector	(u,v,w)
is	used	to	sample	the	texture	on	the	final	texture	stage.	Any	texture	assigned	to
the	preceding	two	texture	stages	is	ignored.

This	instruction	must	be	used	with	two	texm3x3pad	instructions.	Texture
registers	must	use	the	following	sequence.

tex	t(n)																						//	Define	tn	as	a	standard	3-vector	(tn	must

																														//	be	defined	in	some	way	before	it	is	used).

texm3x3pad	t(m),			t(n)							//	where	m	>	n

																														//	Perform	first	row	of	matrix	multiply.

texm3x3pad		t(m+1),	t(n)						//	Perform	second	row	of	matrix	multiply.

texm3x3spec	t(m+2),	t(n),	c0		//	Perform	third	row	of	matrix	multiply.

																														//	Then	do	a	texture	lookup	on	the	texture

																														//	associated	with	texture	stage	m+2.

//	The	first	texm3x3pad	instruction	performs	the	first	row	of	the	multiply	

//	to	find	u'.

u'	=	TextureCoordinates(stage	m)UVW	•	t(n)RGB

//	The	second	texm3x3pad	instruction	performs	the	second	row	of	the	multiply	

//	to	find	v'.

v'	=	TextureCoordinates(stage	m+1)UVW	•	t(n)RGB			

//	The	texm3x3spec	instruction	performs	the	third	row	of	the	multiply

//	to	find	w'.

w'	=	TextureCoordinates(stage	m+2)UVW	•	t(n)RGB		

//	The	texm3x3spec	instruction	then	does	a	reflection	calculation.

(u'',	v'',	w'')	=	2*[(N•E)/(N•N)]*N	-	E

//	where	the	normal	N	is	given	by	

//	N	=	(u',	v',	w')

//	and	the	eye-ray	vector	E	is	given	by	the	constant	register

//	E	=	c#	(Any	constant	register--c0,	c1,	c2,	etc.--can	be	used.)

//	Lastly,	the	texm3x3spec	instruction	samples	t(m+2)	with	(u'',v'',w

//	and	stores	the	result	in	t(m+2).

t(m+2)RGBA	=	TextureSample(stage	m+2)RGBA	using	(u
'',	v'',	w'')	as	coordinates.

Example

//	Here	is	an	example	shader	with	the	texture	maps	and

//	the	texture	stages	identified.

ps.1.0

tex	t0																				//	Bind	texture	in	stage	0	to	register	t0	(tn	must

																										//	be	defined	in	some	way	before	it	is	used).

texm3x3pad		t1,		t0							//	First	row	of	matrix	multiply.

texm3x3pad		t2,		t0							//	Second	row	of	matrix	multiply.

texm3x3spec	t3,		t0,		c#		//	Third	row	of	matrix	multiply	to	get	a	3-vector.

																										//	Reflect	3-vector	by	the	eye-ray	vector	in	c#.		

																										//	Use	reflected	vector	to	lookup	texture	in

																										//	stage	3

mov	r0,	t3																//	output	result

//	This	example	requires	the	following	texture	stage	setup.

//

//	Stage	0	is	assigned	a	texture	map	with	normal	data.	This	is	often	

//	referred	to	as	a	bump	map.	The	data	is	(XYZ)	normals	for	

//	each	texel.	Texture	coordinates	at	stage	n	defines	where	to	sample	this	

//	normal	map.

//

//	Texture	coordinate	set	m	is	assigned	to	row	1	of	the	3×3	matrix.	

//	Any	texture	assigned	to	stage	m	is	ignored.

//

//	Texture	coordinate	set	m+1	is	assigned	to	row	2	of	the	3×3	matrix.	

//	Any	texture	assigned	to	stage	m+1	is	ignored.

//

//	Texture	coordinate	set	m+2	is	assigned	to	row	3	of	the	3×3	matrix.	

//	Stage	m+2	is	assigned	a	volume	or	cube	texture	map.	The	texture	provides	

//	color	data	(RGBA).	

//

//	The	eye-ray	vector	E	is	given	by	a	

//	constant	register	E	=	c#.

	 	 	 	 	 		

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texm3x3vspec
Performs	a	3×3	matrix	multiply	and	uses	the	result	to	perform	a	texture	lookup.
This	can	be	used	for	specular	reflection	and	environment	mapping	where	the
eye-ray	vector	is	not	constant.	texm3x3vspec	must	be	used	in	conjunction	with
two	texm3x3pad	instructions.

If	the	eye-ray	vector	is	constant,	the	texm3x3spec	instruction	will	perform	the
same	matrix	multiply	and	texture	lookup.

texm3x3vspec	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	performs	the	final	row	of	a	3×3	matrix	multiply	operation,
interprets	the	resulting	vector	as	a	normal	vector	to	reflect	an	eye-ray	vector,	and
then	uses	the	reflected	vector	as	a	texture	address	for	a	texture	lookup.	It	works
just	like	texm3x3spec,	except	that	the	eye-ray	vector	is	taken	from	the	fourth
component	of	the	texture	coordinates.	The	3×3	matrix	multiply	is	typically
useful	for	orienting	a	normal	vector	to	the	correct	tangent	space	for	the	surface
being	rendered.

The	3×3	matrix	is	comprised	of	the	texture	coordinates	of	the	third	texture	stage
and	the	two	preceding	texture	stages.	The	resulting	post-reflection	vector
(UVW)	is	used	to	sample	the	texture	in	stage	3.	Any	texture	assigned	to	the
preceding	two	texture	stages	is	ignored.

This	instruction	must	be	used	with	the	texm3x3pad	instruction.	Texture	registers
must	use	the	following	sequence.

tex	t(n)																				//	Define	tn	as	a	standard	3-vector	(tn	must

																												//	be	defined	in	some	way	before	it	is	used).

texm3x3pad			t(m),			t(n)			//	where	m	>	n

																												//	Perform	first	row	of	matrix	multiply.

texm3x3pad			t(m+1),	t(n)			//	Perform	second	row	of	matrix	multiply.

texm3x3vspec	t(m+2),	t(n)			//	Perform	third	row	of	matrix	multiply.

																												//	Then	do	a	texture	lookup	on	the	texture

																												//	associated	with	texture	stage	m+2.

//	The	first	texm3x3pad	instruction	performs	the	first	row	of	the	multiply	

//	to	find	u'.

u'	=	TextureCoordinates(stage	m)UVW	•	t(n)RGB

//	The	second	texm3x3pad	instruction	performs	the	second	row	of	the	multiply	

//	to	find	v'.

v'	=	TextureCoordinates(stage	m+1)UVW	•	t(n)RGB			

//	The	texm3x3spec	instruction	performs	the	third	row	of	the	multiply

//	to	find	w'.

w'	=	TextureCoordinates(stage	m+2)UVW	•	t(n)RGB		

//	The	texm3x3vspec	instruction	also	does	a	reflection	calculation.

(u'',	v'',	w'')	=	2*[(N•E)/(N•N)]*N	-	E

//	where	the	normal	N	is	given	by	

//	N	=	(u',	v',	w')

//	and	the	eye-ray	vector	E	is	given	by

//	E	=	(TextureCoordinates(stage	m)Q,	TextureCoordinates(stage	m+1)Q,	TextureCoordinates(stage	m+2)

//	Lastly,	the	texm3x3vspec	instruction	samples	t(m+2)	with	(u'',v'',w

//	and	stores	the	result	in	t(m+2).

t(m+2)RGBA	=	TextureSample(stage	m+2)RGBA	using	(u
'',	v'',	w'')	as	coordinates.

Example

//	Here	is	an	example	shader	with	the	texture	maps	identified	and

//	the	texture	stages	identified.

ps.1.0

tex	t0																//	Bind	texture	in	stage	0	to	register	t0.

texm3x3pad			t1,		t0		//	First	row	of	matrix	multiply.

texm3x3pad			t2,		t0		//	Second	row	of	matrix	multiply.

texm3x3vspec	t3,		t0		//	Third	row	of	matrix	multiply	to	get	a	3-vector.

																						//	Reflect	3-vector	by	the	eye-ray	vector.

																						//	Use	reflected	vector	to	do	a	texture	lookup

																						//	at	stage	3.

mov	r0,	t3												//	Output	result.

//	This	example	requires	the	following	texture	stage	setup.

//

//	Stage	0	is	assigned	a	texture	map	with	normal	data.	This	is	often	

//	referred	to	as	a	bump	map.	The	data	is	(XYZ)	normals	for	

//	each	texel.	Texture	coordinates	at	stage	n	defines	how	to	sample	this	

//	normal	map.

//

//	Texture	coordinate	set	m	is	assigned	to	row	1	of	the	3×3	matrix.	

//	Any	texture	assigned	to	stage	m	is	ignored.

//

//	Texture	coordinate	set	m+1	is	assigned	to	row	2	of	the	3×3	matrix.	

//	Any	texture	assigned	to	stage	m+1	is	ignored.

//

//	Texture	coordinate	set	m+2	is	assigned	to	row	3	of	the	3×3	matrix.	

//	Stage	m+2	is	assigned	a	volume	or	cube	texture	map.	The	texture	provides	

//	color	data	(RGBA).	

//

//	The	eye-ray	vector	E	is	passed	into	the	instruction	in	the	fourth	

//	component	(q)	of	the	texture	coordinate	data	at	stages	m,	m+1,	and	m+2.

	 	 	 	 	 		

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texreg2ar
Interprets	the	alpha	and	red	color	components	of	the	source	register	as	texture
address	data	(u,v)	to	sample	the	texture	at	the	stage	corresponding	to	the
destination	register	number.	The	result	is	stored	in	the	destination	register.

texreg2ar	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	is	useful	for	color-space	remapping	operations.

//	Here	is	an	example	of	the	sequence	the	instruction	follows.

tex	t(n)

texreg2ar	t(m),	t(n)					where	m	>	n

//	Here	is	more	detail	about	how	the	remapping	is	accomplished.

//	The	first	instruction	loads	the	texture	color	(RGBA)	into	register	tn.

tex	tn	

//	The	second	instruction	remaps	the	color.

t(m)RGBA	=	TextureSample(stage	m)RGBA	using	t(n)AR	as	coordinates.

For	this	instruction,	the	source	register	must	use	unsigned	data.	Use	of	signed	or
mixed	data	in	the	source	register	will	produce	undefined	results.	For	more
information,	see	D3DFORMAT.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3)

texreg2gb
Interprets	the	green	and	blue	color	components	of	the	source	register	as	texture
address	data	to	sample	the	texture	at	the	stage	corresponding	to	the	destination
register	number.

texreg2gb	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.0,	1.1,	1.2,	1.3
src Source	register x 1.0,	1.1,	1.2,	1.3

To	learn	more	about	registers,	see	Registers.

Remarks

This	instruction	is	useful	for	color-space	remapping	operations.

//	Here	is	an	example	of	the	sequence	the	instruction	follows.

tex	t(n)

texreg2gb	t(m),	t(n)					where	m	>	n

//	Here	is	more	detail	about	how	the	remapping	is	accomplished.

//	The	first	instruction	loads	the	texture	color	(RGBA)	into	register	tn.

tex	tn	

//	The	second	instruction	remaps	the	color.

t(m)RGBA	=	TextureSample(stage	m)RGBA	using	t(n)GB	as	coordinates.

For	this	instruction,	the	source	register	must	use	unsigned	data.	Use	of	signed	or
mixed	data	in	the	source	register	will	produce	undefined	results.	For	more
information,	see	D3DFORMAT.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.2	and	1.3)

texreg2rgb
Interprets	the	red,	green,	and	blue	(RGB)	color	components	of	the	source	register
as	texture	address	data	in	order	to	sample	the	texture	at	the	stage	corresponding
to	the	destination	register	number.	The	result	is	stored	in	the	destination	register.

texreg2rgb	dest,	src

Registers

Argument Description
Registers

Versionvn cn tn rn
dest Destination	register x 1.2,	1.3
src Source	register x 1.2,	1.3

Remarks

This	instruction	is	useful	for	color-space	remapping	operations.	It	supports	two-
dimensional	(2-D)	and	three-dimensional	(3-D)	coordinates.	It	can	be	used	just
like	the	texreg2ar	or	texreg2gb	to	remap	2-D	data.	However,	this	instruction
also	supports	3-D	data	so	it	can	be	used	with	cube	maps	and	3-D	volume
textures.

//	Here	is	an	example	of	the	sequence	the	instruction	follows.

tex	t(n)

texreg2rgb	t(m),	t(n)					where	m	>	n

Here	is	more	detail	about	how	the	remapping	is	accomplished.

//	The	first	instruction	loads	the	texture	color	(RGBA)	into	register	tn.

tex	tn	

//	The	second	instruction	remaps	the	color.

t(m)RGB	=	TextureSample(stage	m)RGB	using	t(n)RGB	as	coordinates.

	
Microsoft	DirectX	8.1	(C++)

IDirect3DDevice8::SetPixelShaderConstant
Sets	the	values	in	the	pixel	constant	array.

HRESULT	SetPixelShaderConstant(

		DWORD Register,

		CONST	void*	pConstantData,

		DWORD ConstantCount

);

Parameters

Register
[in]	Register	address	at	which	to	start	loading	data	into	the	pixel	constant
array.

pConstantData
[in]	Pointer	to	the	data	block	holding	the	values	to	load	into	the	pixel
constant	array.	The	size	of	the	data	block	is	(ConstantCount	*	4	*
sizeof(float)).

ConstantCount
[in]	Number	of	constants	to	load	into	the	pixel	constant	array.	Each	constant
is	comprised	of	four	floating-point	values.

Return	Values

If	the	method	succeeds,	the	return	value	is	D3D_OK.

If	the	method	fails,	the	return	value	can	be	D3DERR_INVALIDCALL.

Remarks

This	is	the	method	used	to	load	the	constant	registers	of	the	pixel	shader
assembler.

Requirements

		Header:	Declared	in	D3d8.h.
		Import	Library:	Use	D3d8.lib.

See	Also

IDirect3DDevice8::GetPixelShaderConstant

	
Microsoft	DirectX	8.1	(C++)

IDirect3DDevice8::CreatePixelShader
Creates	a	pixel	shader.

HRESULT	CreatePixelShader(

		CONST	DWORD*	pFunction,

		DWORD*	pHandle

);

Parameters

pFunction
[in]	Pointer	to	the	pixel	shader	function	token	array,	specifying	the	blending
operations.	This	value	cannot	be	NULL.

pHandle
[out,	retval]	Pointer	to	the	returned	pixel	shader	handle.

Return	Values

If	the	method	succeeds,	the	return	value	is	D3D_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	values.

D3DERR_INVALIDCALL
D3DERR_OUTOFVIDEOMEMORY
E_OUTOFMEMORY

Requirements

		Header:	Declared	in	D3d8.h.
		Import	Library:	Use	D3d8.lib.

See	Also

IDirect3DDevice8::DeletePixelShader,	D3DXAssembleShader,
D3DXAssembleShaderFromFile

	
Microsoft	DirectX	8.1	(C++)

D3DXAssembleShader
Assembles	an	ASCII	description	of	a	shader	into	binary	form,	where	the	shader
source	is	in	memory.

HRESULT	D3DXAssembleShader(

		LPCVOID	pSrcData,

		UINT SrcDataLen,

		DWORD	Flags,

		LPD3DXBUFFER*	ppConstants,

		LPD3DXBUFFER* ppCompiledShader,

		LPD3DXBUFFER* ppCompilationErrors

);

Parameters

pSrcData
[in]	Pointer	to	the	source	code.

SrcDataLen
[in]	Size	of	the	source	code,	in	bytes.

Flags
[in]	A	combination	of	the	D3DXASM	flags,	specifying	assembly	options.

ppConstants
[out]	Returns	a	pointer	to	an	ID3DXBuffer	interface,	representing	the
returned	constant	declarations.	These	constants	are	returned	as	a	vertex
shader	declaration	fragment.	It	is	up	to	the	application	to	insert	the	contents
of	this	buffer	into	their	declaration.	For	pixel	shaders	this	parameter	is
meaningless	because	constant	declarations	are	included	in	the	assembled
shader.	This	parameter	is	ignored	if	it	is	NULL.

ppCompiledShader
[out]	Returns	a	pointer	to	an	ID3DXBuffer	interface,	representing	the
returned	compiled	object	code.	This	parameter	is	ignored	if	it	is	NULL.

ppCompilationErrors
[out]	Returns	a	pointer	to	an	ID3DXBuffer	interface,	representing	the
returned	ASCII	error	messages.	This	parameter	is	ignored	if	it	is	NULL.

Return	Values

If	the	function	succeeds,	the	return	value	is	D3D_OK.

If	the	function	fails,	the	return	value	can	be	one	of	the	following	values.

D3DERR_INVALIDCALL
D3DXERR_INVALIDDATA
E_OUTOFMEMORY

Requirements

		Header:	Declared	in	D3dx8core.h.
		Import	Library:	Use	D3dx8.lib.

	
Microsoft	DirectX	8.1	(C++)

D3DCAPS8
Represents	the	capabilities	of	the	hardware	exposed	through	the	Microsoft®
Direct3D®	object.

typedef	struct	_D3DCAPS8	{

				D3DDEVTYPE										DeviceType;

				UINT																AdapterOrdinal;

				DWORD															Caps;

				DWORD															Caps2;

				DWORD															Caps3;

				DWORD															PresentationIntervals;

				DWORD															CursorCaps;

				DWORD															DevCaps;

				DWORD															PrimitiveMiscCaps;

				DWORD															RasterCaps;

				DWORD															ZCmpCaps;

				DWORD															SrcBlendCaps;

				DWORD															DestBlendCaps;

				DWORD															AlphaCmpCaps;

				DWORD															ShadeCaps;

				DWORD															TextureCaps;

				DWORD															TextureFilterCaps;

				DWORD															CubeTextureFilterCaps;

				DWORD															VolumeTextureFilterCaps;

				DWORD															TextureAddressCaps;

				DWORD															VolumeTextureAddressCaps;

				DWORD															LineCaps;

				DWORD															MaxTextureWidth,	MaxTextureHeight;

				DWORD															MaxVolumeExtent;

				DWORD															MaxTextureRepeat;

				DWORD															MaxTextureAspectRatio;

				DWORD															MaxAnisotropy;

				float															MaxVertexW;

				float															GuardBandLeft;

				float															GuardBandTop;

				float															GuardBandRight;

				float															GuardBandBottom;

				float															ExtentsAdjust;

				DWORD															StencilCaps;

				DWORD															FVFCaps;

				DWORD															TextureOpCaps;

				DWORD															MaxTextureBlendStages;

				DWORD															MaxSimultaneousTextures;

				DWORD															VertexProcessingCaps;

				DWORD															MaxActiveLights;

				DWORD															MaxUserClipPlanes;

				DWORD															MaxVertexBlendMatrices;

				DWORD															MaxVertexBlendMatrixIndex;

				float															MaxPointSize;

				DWORD															MaxPrimitiveCount;

				DWORD															MaxVertexIndex;

				DWORD															MaxStreams;

				DWORD															MaxStreamStride;

				DWORD															VertexShaderVersion;

				DWORD															MaxVertexShaderConst;

				DWORD															PixelShaderVersion;

				float															MaxPixelShaderValue;

}	D3DCAPS8;

Members

DeviceType
Member	of	the	D3DDEVTYPE	enumerated	type,	which	identifies	what
type	of	resources	are	used	for	processing	vertices.

AdapterOrdinal
Adapter	on	which	this	Direct3DDevice	object	was	created.	This	ordinal	is
valid	only	to	pass	to	methods	of	the	IDirect3D8	interface	that	created	this
Direct3DDevice	object.	The	IDirect3D8	interface	can	always	be	retrieved
by	calling	IDirect3DDevice8::GetDirect3D.

Caps
The	following	driver-specific	capability.
D3DCAPS_READ_SCANLINE

Display	hardware	is	capable	of	returning	the	current	scan	line.
Caps2

The	following	driver-specific	capabilities.
D3DCAPS2_CANCALIBRATEGAMMA

The	system	has	a	calibrator	installed	that	can	automatically	adjust	the
gamma	ramp	so	that	the	result	is	identical	on	all	systems	that	have	a
calibrator.	To	invoke	the	calibrator	when	setting	new	gamma	levels,
use	the	D3DSGR_CALIBRATE	flag	when	calling	the
IDirect3DDevice8::SetGammaRamp	method.	Calibrating	gamma
ramps	incurs	some	processing	overhead	and	should	not	be	used
frequently.

D3DCAPS2_CANRENDERWINDOWED
The	driver	is	capable	of	rendering	in	windowed	mode.

D3DCAPS2_CANMANAGERESOURCE
The	driver	is	capable	of	managing	resources.	On	such	drivers,
D3DPOOL_MANAGED	resources	will	be	managed	by	the	driver.	To
have	Direct3D	override	the	driver	so	that	Direct3D	manages	resources,
use	the	D3DCREATE_DISABLE_DRIVER_MANAGEMENT	flag
when	calling	IDirect3D8::CreateDevice

D3DCAPS2_DYNAMICTEXTURES
The	driver	supports	dynamic	textures.

D3DCAPS2_FULLSCREENGAMMA
The	driver	supports	dynamic	gamma	ramp	adjustment	in	full-screen
mode.

D3DCAPS2_NO2DDURING3DSCENE
When	the	D3DCAPS2_NO2DDURING3DSCENE	capability	is	set	by
the	driver,	it	means	that	2-D	operations	cannot	be	performed	between
calls	to	IDirect3DDevice8::BeginScene	and
IDirect3DDevice8::EndScene.

Typically,	this	capability	is	set	by	hardware	that	partitions	the	scene
and	then	renders	each	partition	in	sequence.	The	partitioning	is
performed	in	the	driver,	and	the	hardware	contains	a	small	color	and
depth	buffer	that	corresponds	to	the	size	of	the	image	partition.
Typically,	on	this	type	of	rendering	hardware,	once	each	part	of	the
image	is	rendered,	the	data	in	the	color	buffers	are	written	to	video
memory	and	the	contents	of	the	depth	buffer	are	discarded.	Also,	note
that	3-D	rendering	does	not	start	until	EndScene	is	encountered.	Next,
the	scene	is	processed	in	regions.	Therefore,	the	processing	order
cannot	be	guaranteed.	For	example,	the	first	region	that	is	processed,
typically	the	upper	left	corner	of	the	window,	might	include	the	last

triangle	in	the	frame.	This	differs	from	more	traditional	graphics
systems	in	which	each	command	is	processed	sequentially	in	the	order
that	it	was	sent.	The	2-D	operations	are	implied	to	occur	at	some	fixed
point	in	the	processing.	In	the	systems	that	set
D3DCAPS2_NO2DDURING3DSCENE,	the	processing	order	is	not
guaranteed.	Therefore,	the	display	adapter	might	discard	2-D
operations	that	are	encountered	during	3-D	rendering.

In	general,	it	is	recommended	that	2-D	operations	be	performed
outside	of	a	BeginScene	and	EndScene	pair.	If	2-D	operations	are	to
be	performed	between	a	BeginScene	and	EndScene	pair,	then	it	is
necessary	to	check	the	D3DCAPS2_NO2DDURING3DSCENE
capability.	If	it	is	set,	the	application	must	expect	that	any	2-D
operation	that	occurs	between	BeginScene	and	EndScene	will	be
discarded.	For	more	information	on	writing	applications	for	systems
that	set	D3DCAPS2_NO2DDURING3DSCENE,	see	Remarks.

D3DCAPS2_RESERVED
Reserved;	not	used.

Caps3
The	following	driver-specific	capabilities.
D3DCAPS3_ALPHA_FULLSCREEN_FLIP_OR_DISCARD

The	device	will	work	as	expected	with	the
D3DRS_ALPHABLENDENABLE	render	state	when	a	full-screen
application	uses	D3DSWAPEFFECT_FLIP	or
D3DRS_SWAPEFFECT_DISCARD.
D3DRS_ALPHABLENDENABLE	works	as	expected	when	using
D3DSWAPEFFECT_COPY	and	D3DSWAPEFFECT_COPYSYNC.

D3DCAPS3_RESERVED
Reserved;	not	used.

PresentationIntervals
Bit	mask	of	values	representing	what	presentation	swap	intervals	are
available.
D3DPRESENT_INTERVAL_IMMEDIATE

The	driver	supports	an	immediate	presentation	swap	interval.
D3DPRESENT_INTERVAL_ONE

The	driver	supports	a	presentation	swap	interval	of	every	screen
refresh.

D3DPRESENT_INTERVAL_TWO

The	driver	supports	a	presentation	swap	interval	of	every	second
screen	refresh.

D3DPRESENT_INTERVAL_THREE
The	driver	supports	a	presentation	swap	interval	of	every	third	screen
refresh.

D3DPRESENT_INTERVAL_FOUR
The	driver	supports	a	presentation	swap	interval	of	every	fourth	screen
refresh.

CursorCaps
Bit	mask	indicating	what	hardware	support	is	available	for	cursors.
D3DCURSORCAPS_COLOR

A	full-color	cursor	is	supported	in	hardware.	Specifically,	this	flag
indicates	that	the	driver	supports	at	least	a	hardware	color	cursor	in
high-resolution	modes	(with	scan	lines	greater	than	or	equal	to	400).

D3DCURSORCAPS_LOWRES
A	full-color	cursor	is	supported	in	hardware.	Specifically,	this	flag
indicates	that	the	driver	supports	a	hardware	color	cursor	in	both	high-
resolution	and	low-resolution	modes	(with	scan	lines	less	than	400).

Direct3D	does	not	define	alpha-blending	cursor	capabilities.

DevCaps
Flags	identifying	the	capabilities	of	the	device.
D3DDEVCAPS_CANBLTSYSTONONLOCAL

Device	supports	blits	from	system-memory	textures	to	nonlocal	video-
memory	textures.

D3DDEVCAPS_CANRENDERAFTERFLIP
Device	can	queue	rendering	commands	after	a	page	flip.	Applications
do	not	change	their	behavior	if	this	flag	is	set;	this	capability	simply
means	that	the	device	is	relatively	fast.

D3DDEVCAPS_DRAWPRIMTLVERTEX
Device	exports	a	DrawPrimitive-aware	hardware	abstraction	layer
(HAL).

D3DDEVCAPS_EXECUTESYSTEMMEMORY
Device	can	use	execute	buffers	from	system	memory.

D3DDEVCAPS_EXECUTEVIDEOMEMORY
Device	can	use	execute	buffers	from	video	memory.

D3DDEVCAPS_HWRASTERIZATION
Device	has	hardware	acceleration	for	scene	rasterization.

D3DDEVCAPS_HWTRANSFORMANDLIGHT
Device	can	support	transformation	and	lighting	in	hardware.

D3DDEVCAPS_NPATCHES
Device	supports	N-patches.

D3DDEVCAPS_PUREDEVICE
Device	can	support	rasterization,	transform,	lighting,	and	shading	in
hardware.

D3DDEVCAPS_QUINTICRTPATCHES
Device	supports	quintic	Bézier	curves	and	B-splines.

D3DDEVCAPS_RTPATCHES
Device	supports	rectangular	and	triangular	patches.

D3DDEVCAPS_RTPATCHHANDLEZERO
When	this	device	capability	is	set,	the	hardware	architecture	does	not
require	caching	of	any	information,	and	uncached	patches	(handle
zero)	will	be	drawn	as	efficiently	as	cached	ones.	Note	that	setting
D3DDEVCAPS_RTPATCHHANDLEZERO	does	not	mean	that	a
patch	with	handle	zero	can	be	drawn.	A	handle-zero	patch	can	always
be	drawn	whether	this	cap	is	set	or	not.

D3DDEVCAPS_SEPARATETEXTUREMEMORIES
Device	is	texturing	from	separate	memory	pools.

D3DDEVCAPS_TEXTURENONLOCALVIDMEM
Device	can	retrieve	textures	from	non-local	video	memory.

D3DDEVCAPS_TEXTURESYSTEMMEMORY
Device	can	retrieve	textures	from	system	memory.

D3DDEVCAPS_TEXTUREVIDEOMEMORY
Device	can	retrieve	textures	from	device	memory.

D3DDEVCAPS_TLVERTEXSYSTEMMEMORY
Device	can	use	buffers	from	system	memory	for	transformed	and	lit
vertices.

D3DDEVCAPS_TLVERTEXVIDEOMEMORY
Device	can	use	buffers	from	video	memory	for	transformed	and	lit
vertices.

PrimitiveMiscCaps
General	capabilities	for	this	primitive.	This	member	can	be	one	or	more	of
the	following	flags.
D3DPMISCCAPS_BLENDOP

Device	supports	the	alpha-blending	operations	defined	in	the
D3DBLENDOP	enumerated	type.

D3DPMISCCAPS_CLIPPLANESCALEDPOINTS

Device	correctly	clips	scaled	points	of	size	greater	than	1.0	to	user-
defined	clipping	planes.

D3DPMISCCAPS_CLIPTLVERTS
Device	clips	post-transformed	vertex	primitives.

D3DPMISCCAPS_COLORWRITEENABLE
Device	supports	per-channel	writes	for	the	render	target	color	buffer
through	the	D3DRS_COLORWRITEENABLE	state.

D3DPMISCCAPS_CULLCCW
The	driver	supports	counterclockwise	culling	through	the
D3DRS_CULLMODE	state.	(This	applies	only	to	triangle	primitives.)
This	flag	corresponds	to	the	D3DCULL_CCW	member	of	the
D3DCULL	enumerated	type.

D3DPMISCCAPS_CULLCW
The	driver	supports	clockwise	triangle	culling	through	the
D3DRS_CULLMODE	state.	(This	applies	only	to	triangle	primitives.)
This	flag	corresponds	to	the	D3DCULL_CW	member	of	the
D3DCULL	enumerated	type.

D3DPMISCCAPS_CULLNONE
The	driver	does	not	perform	triangle	culling.	This	corresponds	to	the
D3DCULL_NONE	member	of	the	D3DCULL	enumerated	type.

D3DPMISCCAPS_LINEPATTERNREP
The	driver	can	handle	values	other	than	1	in	the	wRepeatFactor
member	of	the	D3DLINEPATTERN	structure.	(This	applies	only	to
line-drawing	primitives.)

D3DPMISCCAPS_MASKZ
Device	can	enable	and	disable	modification	of	the	depth	buffer	on
pixel	operations.

D3DPMISCCAPS_TSSARGTEMP
Device	supports	D3DTA_TEMP	for	temporary	register.

RasterCaps
Information	on	raster-drawing	capabilities.	This	member	can	be	one	or
more	of	the	following	flags.
D3DPRASTERCAPS_ANISOTROPY

Device	supports	anisotropic	filtering.
D3DPRASTERCAPS_ANTIALIASEDGES

Device	can	antialias	lines	forming	the	convex	outline	of	objects.	For
more	information,	see	D3DRS_EDGEANTIALIAS.

D3DPRASTERCAPS_COLORPERSPECTIVE
Device	iterates	colors	perspective	correct.

D3DPRASTERCAPS_DITHER
Device	can	dither	to	improve	color	resolution.

D3DPRASTERCAPS_FOGRANGE
Device	supports	range-based	fog.	In	range-based	fog,	the	distance	of
an	object	from	the	viewer	is	used	to	compute	fog	effects,	not	the	depth
of	the	object	(that	is,	the	z-coordinate)	in	the	scene.

D3DPRASTERCAPS_FOGTABLE
Device	calculates	the	fog	value	by	referring	to	a	lookup	table
containing	fog	values	that	are	indexed	to	the	depth	of	a	given	pixel.

D3DPRASTERCAPS_FOGVERTEX
Device	calculates	the	fog	value	during	the	lighting	operation,	and
interpolates	the	fog	value	during	rasterization.

D3DPRASTERCAPS_MIPMAPLODBIAS
Device	supports	level-of-detail	(LOD)	bias	adjustments.	These	bias
adjustments	enable	an	application	to	make	a	mipmap	appear	crisper	or
less	sharp	than	it	normally	would.	For	more	information	about	LOD
bias	in	mipmaps,	see	D3DTSS_MIPMAPLODBIAS.

D3DPRASTERCAPS_PAT
The	driver	can	perform	patterned	drawing	lines	or	fills	with
D3DRS_LINEPATTERN	for	the	primitive	being	queried.

D3DPRASTERCAPS_STRETCHBLTMULTISAMPLE
Device	provides	limited	multisample	support	through	a	stretch-blt
implementation.	When	this	capability	is	set,
D3DRS_MULTISAMPLEANTIALIAS	cannot	be	turned	on	and	off	in
the	middle	of	a	scene.	Multisample	masking	cannot	be	performed	if
this	flag	is	set.

D3DPRASTERCAPS_WBUFFER
Device	supports	depth	buffering	using	w.

D3DPRASTERCAPS_WFOG
Device	supports	w-based	fog.	W-based	fog	is	used	when	a	perspective
projection	matrix	is	specified,	but	affine	projections	still	use	z-based
fog.	The	system	considers	a	projection	matrix	that	contains	a	nonzero
value	in	the	[3][4]	element	to	be	a	perspective	projection	matrix.

D3DPRASTERCAPS_ZBIAS
Device	supports	z-bias	values.	These	are	integer	values	assigned	to
polygons	that	allow	physically	coplanar	polygons	to	appear	separate.
For	more	information,	see	D3DRS_ZBIAS.

D3DPRASTERCAPS_ZBUFFERLESSHSR
Device	can	perform	hidden-surface	removal	(HSR)	without	requiring

the	application	to	sort	polygons	and	without	requiring	the	allocation	of
a	depth	buffer.	This	leaves	more	video	memory	for	textures.	The
method	used	to	perform	HSR	is	hardware-dependent	and	is	transparent
to	the	application.

Z-bufferless	HSR	is	performed	if	no	depth-buffer	surface	is	associated
with	the	rendering-target	surface	and	the	depth-buffer	comparison	test
is	enabled	(that	is,	when	the	state	value	associated	with	the
D3DRS_ZENABLE	enumeration	constant	is	set	to	TRUE).

D3DPRASTERCAPS_ZFOG
Device	supports	z-based	fog.

D3DPRASTERCAPS_ZTEST
Device	can	perform	z-test	operations.	This	effectively	renders	a
primitive	and	indicates	whether	any	z	pixels	have	been	rendered.

ZCmpCaps
Z-buffer	comparison	capabilities.	This	member	can	be	one	or	more	of	the
following	flags.
D3DPCMPCAPS_ALWAYS

Always	pass	the	z	test.
D3DPCMPCAPS_EQUAL

Pass	the	z	test	if	the	new	z	equals	the	current	z.
D3DPCMPCAPS_GREATER

Pass	the	z	test	if	the	new	z	is	greater	than	the	current	z.
D3DPCMPCAPS_GREATEREQUAL

Pass	the	z	test	if	the	new	z	is	greater	than	or	equal	to	the	current	z.
D3DPCMPCAPS_LESS

Pass	the	z	test	if	the	new	z	is	less	than	the	current	z.
D3DPCMPCAPS_LESSEQUAL

Pass	the	z	test	if	the	new	z	is	less	than	or	equal	to	the	current	z.
D3DPCMPCAPS_NEVER

Always	fail	the	z	test.
D3DPCMPCAPS_NOTEQUAL

Pass	the	z	test	if	the	new	z	does	not	equal	the	current	z.
SrcBlendCaps

Source-blending	capabilities.	This	member	can	be	one	or	more	of	the
following	flags.	(The	RGBA	values	of	the	source	and	destination	are
indicated	by	the	subscripts	s	and	d.)
D3DPBLENDCAPS_BOTHINVSRCALPHA

Source	blend	factor	is	(1–As,	1–As,	1–As,	1–As),	and	destination	blend
factor	is	(As,	As,	As,	As);	the	destination	blend	selection	is	overridden.

D3DPBLENDCAPS_BOTHSRCALPHA
The	driver	supports	the	D3DBLEND_BOTHSRCALPHA	blend	mode.
(This	blend	mode	is	obsolete.	For	more	information,	see
D3DBLEND.)

D3DPBLENDCAPS_DESTALPHA
Blend	factor	is	(Ad,	Ad,	Ad,	Ad).

D3DPBLENDCAPS_DESTCOLOR
Blend	factor	is	(Rd,	Gd,	Bd,	Ad).

D3DPBLENDCAPS_INVDESTALPHA
Blend	factor	is	(1–Ad,	1–Ad,	1–Ad,	1–Ad).

D3DPBLENDCAPS_INVDESTCOLOR
Blend	factor	is	(1–Rd,	1–Gd,	1–Bd,	1–Ad).

D3DPBLENDCAPS_INVSRCALPHA
Blend	factor	is	(1–As,	1–As,	1–As,	1–As).

D3DPBLENDCAPS_INVSRCCOLOR
Blend	factor	is	(1–Rd,	1–Gd,	1–Bd,	1–Ad).

D3DPBLENDCAPS_ONE
Blend	factor	is	(1,	1,	1,	1).

D3DPBLENDCAPS_SRCALPHA
Blend	factor	is	(As,	As,	As,	As).

D3DPBLENDCAPS_SRCALPHASAT
Blend	factor	is	(f,	f,	f,	1);	f	=	min(As,	1-Ad).

D3DPBLENDCAPS_SRCCOLOR
Blend	factor	is	(Rs,	Gs,	Bs,	As).

D3DPBLENDCAPS_ZERO
Blend	factor	is	(0,	0,	0,	0).

DestBlendCaps
Destination-blending	capabilities.	This	member	can	be	the	same	capabilities
that	are	defined	for	the	SrcBlendCaps	member.

AlphaCmpCaps
Alpha-test	comparison	capabilities.	This	member	can	include	the	same
capability	flags	defined	for	the	ZCmpCaps	member.	If	this	member
contains	only	the	D3DPCMPCAPS_ALWAYS	capability	or	only	the
D3DPCMPCAPS_NEVER	capability,	the	driver	does	not	support	alpha
tests.	Otherwise,	the	flags	identify	the	individual	comparisons	that	are

supported	for	alpha	testing.
ShadeCaps

Shading	operations	capabilities.	It	is	assumed,	in	general,	that	if	a	device
supports	a	given	command	at	all,	it	supports	the	D3DSHADE_FLAT	mode
(as	specified	in	the	D3DSHADEMODE	enumerated	type).	This	flag
specifies	whether	the	driver	can	also	support	Gouraud	shading	and	whether
alpha	color	components	are	supported.	When	alpha	components	are	not
supported,	the	alpha	value	of	colors	generated	is	implicitly	255.	This	is	the
maximum	possible	alpha	(that	is,	the	alpha	component	is	at	full	intensity).

The	color,	specular	highlights,	fog,	and	alpha	interpolants	of	a	triangle	each
have	capability	flags	that	an	application	can	use	to	find	out	how	they	are
implemented	by	the	device	driver.

This	member	can	be	one	or	more	of	the	following	flags.

D3DPSHADECAPS_ALPHAGOURAUDBLEND
Device	can	support	an	alpha	component	for	Gouraud-blended
transparency	(the	D3DSHADE_GOURAUD	state	for	the
D3DSHADEMODE	enumerated	type).	In	this	mode,	the	alpha	color
component	of	a	primitive	is	provided	at	vertices	and	interpolated
across	a	face,	along	with	the	other	color	components.

D3DPSHADECAPS_COLORGOURAUDRGB
Device	supports	Gouraud	shading.	In	this	mode,	the	red,	green,	and
blue	components	for	a	primitive	are	provided	at	vertices	and
interpolated	across	a	face.

D3DPSHADECAPS_FOGGOURAUD
Device	supports	Gouraud	shading	of	fog.

D3DPSHADECAPS_SPECULARGOURAUDRGB
Device	supports	Gouraud	shading	of	specular	highlights.

TextureCaps
Miscellaneous	texture-mapping	capabilities.	This	member	can	be	one	or
more	of	the	following	flags.
D3DPTEXTURECAPS_ALPHA

Alpha	in	texture	pixels	is	supported.
D3DPTEXTURECAPS_ALPHAPALETTE

Device	can	draw	alpha	from	texture	palettes.
D3DPTEXTURECAPS_CUBEMAP

Supports	cube	textures
D3DPTEXTURECAPS_CUBEMAP_POW2

Device	requires	that	cube	texture	maps	have	dimensions	specified	as
powers	of	2.

D3DPTEXTURECAPS_MIPCUBEMAP
Device	supports	mipmapped	cube	textures.

D3DPTEXTURECAPS_MIPMAP
Device	supports	mipmapped	textures.

D3DPTEXTURECAPS_MIPVOLUMEMAP
Device	supports	mipmapped	volume	textures.

D3DPTEXTURECAPS_NONPOW2CONDITIONAL
Conditionally	supports	the	use	of	textures	with	dimensions	that	are	not
powers	of	2.	A	device	that	exposes	this	capability	can	use	such	a
texture	if	all	of	the	following	requirements	are	met.
The	texture	addressing	mode	for	the	texture	stage	is	set	to
D3DTADDRESS_CLAMP.
Texture	wrapping	for	the	texture	stage	is	disabled	(D3DRS_WRAPn
set	to	0).
Mipmapping	is	not	in	use	(use	magnification	filter	only).
Texture	formats	must	not	be	DXT1-5

A	texture	that	is	not	a	power	of	two	cannot	be	set	at	a	stage	that	will	be	read
based	on	a	shader	computation	(such	as	the	bem,	beml,	or	texm3x3
instructions	in	pixel	shaders	versions	1.0	to	1.3).	For	example,	these
textures	can	be	used	to	store	bumps	that	will	be	fed	into	texture	reads,	but
not	the	environment	maps	that	are	used	in	texbem,	texbeml,	or
texm3x3spec.	This	means	that	a	texture	with	dimensions	that	are	not
powers	of	two	cannot	be	addressed	or	sampled	using	texture	coordinates
computed	within	the	shader.	This	type	of	operation	is	known	as	a	dependent
read	and	cannot	be	performed	on	these	kinds	of	textures.

D3DPTEXTURECAPS_PERSPECTIVE
Perspective	correction	texturing	is	supported.

D3DPTEXTURECAPS_POW2
All	textures	must	have	widths	and	heights	specified	as	powers	of	2.
This	requirement	does	not	apply	to	either	cube	textures	or	volume
textures.

D3DPTEXTURECAPS_PROJECTED
Supports	the	D3DTTFF_PROJECTED	texture	transformation	flag.

When	applied,	the	device	divides	transformed	texture	coordinates	by
the	last	texture	coordinate.	If	this	capability	is	present,	then	the
projective	divide	occurs	per	pixel.	If	this	capability	is	not	present,	but
the	projective	divide	needs	to	occur	anyway,	then	it	is	performed	on	a
per-vertex	basis	by	the	Direct3D	runtime.

D3DPTEXTURECAPS_SQUAREONLY
All	textures	must	be	square.

D3DPTEXTURECAPS_TEXREPEATNOTSCALEDBYSIZE
Texture	indices	are	not	scaled	by	the	texture	size	prior	to	interpolation.

D3DPTEXTURECAPS_VOLUMEMAP
Device	supports	volume	textures.

D3DPTEXTURECAPS_VOLUMEMAP_POW2
Device	requires	that	volume	texture	maps	have	dimensions	specified
as	powers	of	2.

TextureFilterCaps
Texture-filtering	capabilities	for	a	Direct3DTexture	object.	Per-stage
filtering	capabilities	reflect	which	filtering	modes	are	supported	for	texture
stages	when	performing	multiple-texture	blending	with	the
IDirect3DDevice8	interface.	This	member	can	be	any	combination	of	the
following	per-stage	texture-filtering	flags.
D3DPTFILTERCAPS_MAGFAFLATCUBIC

Device	supports	per-stage	flat	cubic	filtering	for	magnifying	textures.
The	flat	cubic	magnification	filter	is	represented	by	the
D3DTEXF_FLATCUBIC	member	of	the
D3DTEXTUREFILTERTYPE	enumerated	type.

D3DPTFILTERCAPS_MAGFANISOTROPIC
Device	supports	per-stage	anisotropic	filtering	for	magnifying	textures.
The	anisotropic	magnification	filter	is	represented	by	the
D3DTEXF_ANISOTROPIC	member	of	the
D3DTEXTUREFILTERTYPE	enumerated	type.

D3DPTFILTERCAPS_MAGFGAUSSIANCUBIC
Device	supports	the	per-stage	Gaussian	cubic	filtering	for	magnifying
textures.	The	Gaussian	cubic	magnification	filter	is	represented	by	the
D3DTEXF_GAUSSIANCUBIC	member	of	the
D3DTEXTUREFILTERTYPE	enumerated	type.

D3DPTFILTERCAPS_MAGFLINEAR
Device	supports	per-stage	bilinear	interpolation	filtering	for
magnifying	textures.	The	bilinear	interpolation	magnification	filter	is
represented	by	the	D3DTEXF_LINEAR	member	of	the

D3DTEXTUREFILTERTYPE	enumerated	type.
D3DPTFILTERCAPS_MAGFPOINT

Device	supports	per-stage	point-sample	filtering	for	magnifying
textures.	The	point-sample	magnification	filter	is	represented	by	the
D3DTEXF_POINT	member	of	the	D3DTEXTUREFILTERTYPE
enumerated	type.

D3DPTFILTERCAPS_MINFANISOTROPIC
Device	supports	per-stage	anisotropic	filtering	for	minifying	textures.
The	anisotropic	minification	filter	is	represented	by	the
D3DTEXF_ANISOTROPIC	member	of	the
D3DTEXTUREFILTERTYPE	enumerated	type.

D3DPTFILTERCAPS_MINFLINEAR
Device	supports	per-stage	bilinear	interpolation	filtering	for	minifying
textures.	The	bilinear	minification	filter	is	represented	by	the
D3DTEXF_LINEAR	member	of	the	D3DTEXTUREFILTERTYPE
enumerated	type.

D3DPTFILTERCAPS_MINFPOINT
Device	supports	per-stage	point-sample	filtering	for	minifying
textures.	The	point-sample	minification	filter	is	represented	by	the
D3DTEXF_POINT	member	of	the	D3DTEXTUREFILTERTYPE
enumerated	type.

D3DPTFILTERCAPS_MIPFLINEAR
Device	supports	per-stage	trilinear	interpolation	filtering	for	mipmaps.
The	trilinear	interpolation	mipmapping	filter	is	represented	by	the
D3DTEXF_LINEAR	member	of	the	D3DTEXTUREFILTERTYPE
enumerated	type.

D3DPTFILTERCAPS_MIPFPOINT
Device	supports	per-stage	point-sample	filtering	for	mipmaps.	The
point-sample	mipmapping	filter	is	represented	by	the
D3DTEXF_POINT	member	of	the	D3DTEXTUREFILTERTYPE
enumerated	type.

CubeTextureFilterCaps
Texture-filtering	capabilities	for	a	Direct3DCubeTexture	object.	Per-stage
filtering	capabilities	reflect	which	filtering	modes	are	supported	for	texture
stages	when	performing	multiple-texture	blending	with	the
IDirect3DDevice8	interface.	This	member	can	be	any	combination	of	the
per-stage	texture-filtering	flags	defined	for	the	TextureFilterCaps	member.

VolumeTextureFilterCaps
Texture-filtering	capabilities	for	a	Direct3DVolumeTexture	object.	Per-stage

filtering	capabilities	reflect	which	filtering	modes	are	supported	for	texture
stages	when	performing	multiple-texture	blending	with	the
IDirect3DDevice8	interface.	This	member	can	be	any	combination	of	the
per-stage	texture-filtering	flags	defined	for	the	TextureFilterCaps	member.

TextureAddressCaps
Texture-addressing	capabilities	for	Direct3DTexture	objects.	This	member
can	be	one	or	more	of	the	following	flags.
D3DPTADDRESSCAPS_BORDER

Device	supports	setting	coordinates	outside	the	range	[0.0,	1.0]	to	the
border	color,	as	specified	by	the	D3DTSS_BORDERCOLOR	texture-
stage	state.

D3DPTADDRESSCAPS_CLAMP
Device	can	clamp	textures	to	addresses.

D3DPTADDRESSCAPS_INDEPENDENTUV
Device	can	separate	the	texture-addressing	modes	of	the	u	and	v
coordinates	of	the	texture.	This	ability	corresponds	to	the
D3DTSS_ADDRESSU	and	D3DTSS_ADDRESSV	render-state
values.

D3DPTADDRESSCAPS_MIRROR
Device	can	mirror	textures	to	addresses.

D3DPTADDRESSCAPS_MIRRORONCE
Device	can	take	the	absolute	value	of	the	texture	coordinate	(thus,
mirroring	around	0),	and	then	clamp	to	the	maximum	value.

D3DPTADDRESSCAPS_WRAP
Device	can	wrap	textures	to	addresses.

VolumeTextureAddressCaps
Texture-addressing	capabilities	for	Direct3DVolumeTexture	objects.	This
member	can	be	one	or	more	of	the	flags	defined	for	the
TextureAddressCaps	member.

LineCaps
Defines	the	capabilities	for	line-drawing	primitives.
D3DLINECAPS_ALPHACMP

Supports	alpha-test	comparisons.
D3DLINECAPS_BLEND

Supports	source-blending.
D3DLINECAPS_FOG

Supports	fog.
D3DLINECAPS_TEXTURE

Supports	texture-mapping.

D3DLINECAPS_ZTEST
Supports	z-buffer	comparisons.

MaxTextureWidth	and	MaxTextureHeight
Maximum	texture	width	and	height	for	this	device.

MaxVolumeExtent
Maximum	volume	extent.

MaxTextureRepeat
This	number	represents	the	maximum	range	of	the	integer	bits	of	the	post-
normalized	texture	coordinates.	A	texture	coordinate	is	stored	as	a	32-bit
signed	integer	using	27	bits	to	store	the	integer	part	and	5	bits	for	the
floating	point	fraction.	The	maximum	integer	index,	227,	is	used	to
determine	the	maximum	texture	coordinate,	depending	on	how	the
hardware	does	texture-coordinate	scaling.

Some	hardware	reports	the	cap
D3DPTEXTURECAPS_TEXREPEATNOTSCALEDBYSIZE.	For	this	case,
the	device	defers	scaling	texture	coordinates	by	the	texture	size	until	after
interpolation	and	application	of	the	texture	address	mode,	so	the	number	of	times
a	texture	can	be	wrapped	is	given	by	the	integer	value	in	MaxTextureRepeat.

Less	desirably,	on	some	hardware
D3DPTEXTURECAPS_TEXREPEATNOTSCALEDBYSIZE	is	not	set	and
the	device	scales	the	texture	coordinates	by	the	texture	size	(using	the	highest
level	of	detail)	prior	to	interpolation.	This	limits	the	number	of	times	a	texture
can	be	wrapped	to	MaxTextureRepeat	/	textureSize.

Example:

Given	MaxTextureRepeat	=	32k	and	texture	size	=	4	KB:

if	the	hardware	sets	D3DPTEXTURECAPS_TEXREPEATNOTSCALEDBYSIZE

						#	of	times	a	texture	can	be	wrapped	=	MaxTextureRepeat

						//	which	is	32k	in	this	example

else

						#	of	times	a	texture	can	be	wrapped	=	MaxTextureRepeat	/	textureSize

						//	which	is	227/4k

MaxTextureAspectRatio
Maximum	texture	aspect	ratio	supported	by	the	hardware,	typically	a	power
of	2.

MaxAnisotropy
Maximum	valid	value	for	the	D3DTSS_MAXANISOTROPY	texture-stage
state.

MaxVertexW
Maximum	W-based	depth	value	that	the	device	supports.

GuardBandLeft,	GuardBandTop,	GuardBandRight,	and
GuardBandBottom

Screen	space	coordinates	of	the	guard-band	clipping	region.	Coordinates
inside	this	rectangle	but	outside	the	viewport	rectangle	are	automatically
clipped.

ExtentsAdjust
Number	of	pixels	to	adjust	the	extents	rectangle	outward	to	accommodate
antialiasing	kernels.

StencilCaps
Flags	specifying	supported	stencil-buffer	operations.	Stencil	operations	are
assumed	to	be	valid	for	all	three	stencil-buffer	operation	render	states
(D3DRS_STENCILFAIL,	D3DRS_STENCILPASS,	and
D3DRS_STENCILFAILZFAIL).
D3DSTENCILCAPS_DECR

The	D3DSTENCILOP_DECR	operation	is	supported.
D3DSTENCILCAPS_DECRSAT

The	D3DSTENCILOP_DECRSAT	operation	is	supported.
D3DSTENCILCAPS_INCR

The	D3DSTENCILOP_INCR	operation	is	supported.
D3DSTENCILCAPS_INCRSAT

The	D3DSTENCILOP_INCRSAT	operation	is	supported.
D3DSTENCILCAPS_INVERT

The	D3DSTENCILOP_INVERT	operation	is	supported.
D3DSTENCILCAPS_KEEP

The	D3DSTENCILOP_KEEP	operation	is	supported.
D3DSTENCILCAPS_REPLACE

The	D3DSTENCILOP_REPLACE	operation	is	supported.
D3DSTENCILCAPS_ZERO

The	D3DSTENCILOP_ZERO	operation	is	supported.

For	more	information,	see	the	D3DSTENCILOP	enumerated	type.

FVFCaps
Flexible	vertex	format	capabilities.
D3DFVFCAPS_DONOTSTRIPELEMENTS

It	is	preferable	that	vertex	elements	not	be	stripped.	That	is,	if	the
vertex	format	contains	elements	that	are	not	used	with	the	current

render	states,	there	is	no	need	to	regenerate	the	vertices.	If	this
capability	flag	is	not	present,	stripping	extraneous	elements	from	the
vertex	format	provides	better	performance.

D3DFVFCAPS_PSIZE
Point	size	is	determined	by	either	the	render	state	or	the	vertex	data.

If	D3DFVFCAPS_PSIZE	is	set,	point	size	can	come	from
D3DFVF_PSIZE	data	in	the	FVF	vertex	declaration.
Otherwise,	point	size	is	determined	by	the	render	state
D3DRS_POINTSIZE.

If	the	application	provides	point	size	in	both	(the	render	state	and	the
FVF	data),	the	vertex	data	overrides	the	render-state	data.

D3DFVFCAPS_TEXCOORDCOUNTMASK
Masks	the	low	WORD	of	FVFCaps.	These	bits,	cast	to	the	WORD
data	type,	describe	the	total	number	of	texture	coordinate	sets	that	the
device	can	simultaneously	use	for	multiple	texture	blending.	(You	can
use	up	to	eight	texture	coordinate	sets	for	any	vertex,	but	the	device
can	blend	using	only	the	specified	number	of	texture	coordinate	sets.)

TextureOpCaps
Combination	of	flags	describing	the	texture	operations	supported	by	this
device.	The	following	flags	are	defined.
D3DTEXOPCAPS_ADD

The	D3DTOP_ADD	texture-blending	operation	is	supported.
D3DTEXOPCAPS_ADDSIGNED

The	D3DTOP_ADDSIGNED	texture-blending	operation	is
supported.

D3DTEXOPCAPS_ADDSIGNED2X
The	D3DTOP_ADDSIGNED2X	texture-blending	operation	is
supported.

D3DTEXOPCAPS_ADDSMOOTH
The	D3DTOP_ADDSMOOTH	texture-blending	operation	is
supported.

D3DTEXOPCAPS_BLENDCURRENTALPHA
The	D3DTOP_BLENDCURRENTALPHA	texture-blending
operation	is	supported.

D3DTEXOPCAPS_BLENDDIFFUSEALPHA
The	D3DTOP_BLENDDIFFUSEALPHA	texture-blending	operation
is	supported.

D3DTEXOPCAPS_BLENDFACTORALPHA
The	D3DTOP_BLENDFACTORALPHA	texture-blending	operation
is	supported.

D3DTEXOPCAPS_BLENDTEXTUREALPHA
The	D3DTOP_BLENDTEXTUREALPHA	texture-blending
operation	is	supported.

D3DTEXOPCAPS_BLENDTEXTUREALPHAPM
The	D3DTOP_BLENDTEXTUREALPHAPM	texture-blending
operation	is	supported.

D3DTEXOPCAPS_BUMPENVMAP
The	D3DTOP_BUMPENVMAP	texture-blending	operation	is
supported.

D3DTEXOPCAPS_BUMPENVMAPLUMINANCE
The	D3DTOP_BUMPENVMAPLUMINANCE	texture-blending
operation	is	supported.

D3DTEXOPCAPS_DISABLE
The	D3DTOP_DISABLE	texture-blending	operation	is	supported.

D3DTEXOPCAPS_DOTPRODUCT3
The	D3DTOP_DOTPRODUCT3	texture-blending	operation	is
supported.

D3DTEXOPCAPS_LERP
The	D3DTOP_LERP	texture-blending	operation	is	supported.

D3DTEXOPCAPS_MODULATE
The	D3DTOP_MODULATE	texture-blending	operation	is	supported.

D3DTEXOPCAPS_MODULATE2X
The	D3DTOP_MODULATE2X	texture-blending	operation	is
supported.

D3DTEXOPCAPS_MODULATE4X
The	D3DTOP_MODULATE4X	texture-blending	operation	is
supported.

D3DTEXOPCAPS_MODULATEALPHA_ADDCOLOR
The	D3DTOP_MODULATEALPHA_ADDCOLOR	texture-
blending	operation	is	supported.

D3DTEXOPCAPS_MODULATECOLOR_ADDALPHA
The	D3DTOP_MODULATECOLOR_ADDALPHA	texture-
blending	operation	is	supported.

D3DTEXOPCAPS_MODULATEINVALPHA_ADDCOLOR
The	D3DTOP_MODULATEINVALPHA_ADDCOLOR	texture-
blending	operation	is	supported.

D3DTEXOPCAPS_MODULATEINVCOLOR_ADDALPHA
The	D3DTOP_MODULATEINVCOLOR_ADDALPHA	texture-
blending	operation	is	supported.

D3DTEXOPCAPS_MULTIPLYADD
The	D3DTOP_MULTIPLYADD	texture-blending	operation	is
supported.

D3DTEXOPCAPS_PREMODULATE
The	D3DTOP_PREMODULATE	texture-blending	operation	is
supported.

D3DTEXOPCAPS_SELECTARG1
The	D3DTOP_SELECTARG1	texture-blending	operation	is
supported.

D3DTEXOPCAPS_SELECTARG2
The	D3DTOP_SELECTARG2	texture-blending	operation	is
supported.

D3DTEXOPCAPS_SUBTRACT
The	D3DTOP_SUBTRACT	texture-blending	operation	is	supported.

MaxTextureBlendStages
Maximum	number	of	texture-blending	stages	supported.	This	value	is	the
number	of	blenders	available.	In	the	DirectX	8.x	programmable	pipeline,
this	corresponds	to	the	number	of	instructions	supported	by	pixel	shaders
on	this	particular	implementation.

MaxSimultaneousTextures
Maximum	number	of	textures	that	can	be	simultaneously	bound	to	the
texture	blending	stages.	This	value	is	the	number	of	textures	that	can	be
used	in	a	single	pass.	If	the	same	texture	is	used	in	two	blending	stages,	it
counts	as	two	when	compared	against	the	MaxSimultaneousTextures	value.
In	the	programmable	pipeline,	this	indicates	the	number	of	texture	registers
supported	by	pixel	shaders	on	this	particular	piece	of	hardware,	and	the
number	of	texture	declaration	instructions	that	can	be	present.

VertexProcessingCaps
Vertex	processing	capabilities.	For	a	given	physical	device,	this	capability
might	vary	across	Direct3DDevice	objects	depending	on	the	parameters
supplied	to	IDirect3D8::CreateDevice.
D3DVTXPCAPS_DIRECTIONALLIGHTS

Device	supports	directional	lights.
D3DVTXPCAPS_LOCALVIEWER

Device	supports	local	viewer.
D3DVTXPCAPS_MATERIALSOURCE7

Device	supports	selectable	vertex	color	sources.
D3DVTXPCAPS_POSITIONALLIGHTS

Device	supports	positional	lights	(including	point	lights	and
spotlights).

D3DVTXPCAPS_TEXGEN
Device	can	generate	texture	coordinates.

D3DVTXPCAPS_TWEENING
Device	supports	vertex	tweening.

D3DVTXPCAPS_NO_VSDT_UBYTE4
Device	does	not	support	the	D3DVSDT_UBYTE4	vertex	declaration
type.

MaxActiveLights
Maximum	number	of	lights	that	can	be	active	simultaneously.	For	a	given
physical	device,	this	capability	might	vary	across	Direct3DDevice	objects
depending	on	the	parameters	supplied	to	IDirect3D8::CreateDevice.

MaxUserClipPlanes
Maximum	number	of	user-defined	clipping	planes	supported.	This	member
can	range	from	0	through	D3DMAXUSERCLIPPLANES.	For	a	given
physical	device,	this	capability	may	vary	across	Direct3DDevice	objects
depending	on	the	parameters	supplied	to	IDirect3D8::CreateDevice.

MaxVertexBlendMatrices
Maximum	number	of	matrices	that	this	device	can	apply	when	performing
multimatrix	vertex	blending.	For	a	given	physical	device,	this	capability
may	vary	across	Direct3DDevice	objects	depending	on	the	parameters
supplied	to	IDirect3D8::CreateDevice.

MaxVertexBlendMatrixIndex
DWORD	value	that	specifies	the	maximum	matrix	index	that	can	be
indexed	into	using	the	per-vertex	indices.	The	number	of	matrices	is
MaxVertexBlendMatrixIndex	+	1,	which	is	the	size	of	the	matrix	palette.
If	normals	are	present	in	the	vertex	data	that	needs	to	be	blended	for
lighting,	then	the	number	of	matrices	is	half	the	number	specified	by	this
capability	flag.	If	MaxVertexBlendMatrixIndex	is	set	to	zero,	the	driver
does	not	support	indexed	vertex	blending.	If	this	value	is	not	zero	then	the
valid	range	of	indices	is	zero	through	MaxVertexBlendMatrixIndex.

A	zero	value	for	MaxVertexBlendMatrixIndex	indicates	that	the	driver
does	not	support	indexed	matrices.

When	software	vertex	processing	is	used,	256	matrices	could	be	used	for

indexed	vertex	blending,	with	or	without	normal	blending.

For	a	given	physical	device,	this	capability	may	vary	across
Direct3DDevice	objects	depending	on	the	parameters	supplied	to
IDirect3D8::CreateDevice.

MaxPointSize
Maximum	size	of	a	point	primitive.	If	set	to	1.0f	then	device	does	not
support	point	size	control.	The	range	is	greater	than	or	equal	to	1.0f.

MaxPrimitiveCount
Maximum	number	of	primitives,	or	vertices	for	each	DrawPrimitive	call.
Note	that	when	Direct3D	is	working	with	a	DirectX	6.0	or	DirectX	7.0
driver,	this	field	is	set	to	0xFFFF.	This	means	that	not	only	the	number	of
primitives	but	also	the	number	of	vertices	is	limited	by	this	value.

MaxVertexIndex
Maximum	size	of	indices	supported	for	hardware	vertex	processing.	It	is
possible	to	create	32-bit	index	buffers	by	specifying	D3DFMT_INDEX32;
however,	you	will	not	be	able	to	render	with	the	index	buffer	unless	this
value	is	greater	than	0x0000FFFF.

MaxStreams
Maximum	number	of	concurrent	data	streams	for
IDirect3DDevice8::SetStreamSource.	The	valid	range	is	1–16.	Note	that
if	this	value	is	0,	the	driver	is	not	a	DirectX	8	driver.

MaxStreamStride
Maximum	stride	for	IDirect3DDevice8::SetStreamSource.

VertexShaderVersion
Vertex	shader	version,	indicating	the	level	of	vertex	shader	supported	by	the
device.	Only	vertex	shaders	with	version	numbers	equal	to	or	less	than	this
will	succeed	in	calls	to	IDirect3DDevice8::CreateVertexShader.	The
level	of	shader	is	specified	to	CreateVertexShader	as	the	first	token	in	the
vertex	shader	token	stream.

DirectX	7.0	functionality	is	0
DirectX	8.x	functionality	is	01

The	main	version	number	is	encoded	in	the	second	byte.	The	low	byte
contains	a	sub-version	number.

MaxVertexShaderConst
The	number	of	vertex	shader	input	registers	that	are	reserved	for	constants.

PixelShaderVersion
Two	numbers	that	represent	the	pixel	shader	main	and	sub	versions.	For
more	information	about	the	versions	supported	in	DirectX	8.x,	see	the	pixel
shader	version	instruction.

MaxPixelShaderValue
Maximum	value	of	pixel	shader	arithmetic	component.	This	value	indicates
the	internal	range	of	values	supported	for	pixel	color	blending	operations.
Within	the	range	that	they	report	to,	implementations	must	allow	data	to
pass	through	pixel	processing	unmodified	(unclamped).	Normally,	the	value
of	this	member	is	an	absolute	value.	For	example,	a	1.0	indicates	that	the
range	is	–1.0	to	1,	and	an	8.0	indicates	that	the	range	is	–8.0	to	8.0.	The
value	must	be	>=	1.0	for	any	hardware	that	supports	pixel	shaders.

Remarks

The	MaxTextureBlendStages	and	MaxSimultaneousTextures	members	might
seem	very	similar,	but	they	contain	different	information.	The
MaxTextureBlendStages	member	contains	the	total	number	of	texture-blending
stages	supported	by	the	current	device,	and	the	MaxSimultaneousTextures
member	describes	how	many	of	those	stages	can	have	textures	bound	to	them	by
using	the	IDirect3DDevice8::SetTexture	method.

When	the	driver	fills	this	structure,	it	can	set	values	for	execute-buffer
capabilities,	even	when	the	interface	being	used	to	retrieve	the	capabilities	(such
as	IDirect3DDevice8)	does	not	support	execute	buffers.

For	systems	that	set	the	D3DCAPS2_NO2DDURING3DSCENE	capability	flag,
performance	problems	may	occur	if	you	use	a	texture	and	then	modify	it	during
a	scene.	This	is	true	on	all	hardware,	but	it	is	more	severe	on	hardware	that
exposes	the	D3DCAPS2_NO2DDURING3DSCENE	capability.	If
D3DCAPS2_NO2DDURING3DSCENE	is	present	on	the	hardware,	application-
based	texture	management	should	ensure	that	no	texture	used	in	the	current
BeginScene	and	EndScene	block	is	evicted	unless	absolutely	necessary.	In	the
case	of	extremely	high	texture	usage	within	a	scene,	the	results	are	undefined.
This	occurs	when	you	modify	a	texture	that	you	have	used	in	the	scene	and	there
is	no	spare	texture	memory	available.	For	such	systems,	the	contents	of	the	z
buffer	become	invalid	at	EndScene.	Applications	should	not	call
IDirect3DDevice8::CopyRects	to	or	from	the	back	buffer	on	this	type	of
hardware	inside	a	BeginScene	and	EndScene	pair.	In	addition,	applications

should	not	try	to	access	the	z	buffer	if	the
D3DPRASTERCAPS_ZBUFFERLESSHSR	capability	flag	is	set.	Finally,
applications	should	not	lock	the	back	buffer	or	the	z	buffer	inside	a	BeginScene
and	EndScene	pair.

The	following	flags	concerning	mipmapped	textures	are	not	supported	in
DirectX	8.x.

D3DPTFILTERCAPS_NEAREST
D3DPTFILTERCAPS_LINEAR
D3DPTFILTERCAPS_MIPNEAREST
D3DPTFILTERCAPS_MIPLINEAR
D3DPTFILTERCAPS_LINEARMIPNEAREST
D3DPTFILTERCAPS_LINEARMIPLINEAR

Requirements

		Header:	Declared	in	D3d8caps.h.

See	Also

IDirect3D8::GetDeviceCaps,	IDirect3DDevice8::GetDeviceCaps

	
Microsoft	DirectX	8.1	(C++)

IDirect3DDevice8::GetDeviceCaps
Retrieves	the	capabilities	of	the	rendering	device.

HRESULT	GetDeviceCaps(

		D3DCAPS8* pCaps

);

Parameters

pCaps
[out]	Pointer	to	a	D3DCAPS8	structure,	describing	the	returned	device.

Return	Values

If	the	method	succeeds,	the	return	value	is	D3D_OK.

If	the	method	fails,	the	return	value	can	be	D3DERR_INVALIDCALL.

Remarks

GetDeviceCaps	retrieves	the	software	vertex	pipeline	capabilities	when	the
device	is	being	used	in	software	vertex	processing	mode.	Software	vertex
processing	mode	is	selected	when	a	device	has	been	created	with
D3DCREATE_SOFTWAREVERTEXPROCESSING,	or	when	a	device	has
been	created	with	D3DCREATE_MIXEDVERTEXPROCESSING	and
D3DRS_SOFTWAREVERTEXPROCESSING	is	set	to	TRUE.

Requirements

		Header:	Declared	in	D3d8.h.
		Import	Library:	Use	D3d8.lib.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

Instruction	Modifiers

Use	instruction	modifiers	to	change	the	output	of	an	instruction.	For	instance,
use	them	to	multiply	or	divide	the	result	by	a	factor	of	two,	or	to	clamp	the	result
between	zero	and	one.	Instruction	modifiers	are	applied	after	the	instruction
executes	but	before	writing	the	result	to	the	destination	register.

A	list	of	the	modifiers	is	shown	below.

Modifier Description Syntax Version
1.0 1.1 1.2 1.3 1.4

_x2 Multiply	by	2 register_x2 X X X X X
_x4 Multiply	by	4 register_x4 X X X X X
_x8 Multiply	by	8 register_x8 X
_d2 Divide	by	2 register_d2 X X X X X
_d4 Divide	by	4 register_d4 X
_d8 Divide	by	8 register_d8 X
_sat Saturate	(clamp	from	0	and	1) register_sat X X X X X

The	multiply	modifier	multiplies	the	register	data	by	a	power	of	two	after	it
is	read.	This	is	the	same	as	a	shift	left.
The	divide	modifier	divides	the	register	data	by	a	power	of	two	after	it	is
read.	This	is	the	same	as	a	shift	right.
The	saturate	modifier	clamps	the	range	of	register	values	from	zero	to	one.

Instruction	modifiers	can	be	used	on	arithmetic	instructions.	They	may	not	be
used	on	texture	address	instructions.

Examples

Multiply	modifier

This	example	loads	the	destination	register	(dest)	with	the	sum	of	the	two	colors
in	the	source	operands	(src0	and	src1)	and	multiplies	the	result	by	two.

add_x2	dest,	src0,	src1

This	example	combines	two	instruction	modifiers.	First,	two	colors	in	the	source
operands	(src0	and	src1)	are	added.	The	result	is	then	multiplied	by	two,	and
clamped	between	0.0	to	1.0	for	each	component.	The	result	is	saved	in	the
destination	register.

add_x2_sat	dest,	src0,	src1

Divide	modifier

This	example	loads	the	destination	register	(dest)	with	the	sum	of	the	two	colors
in	the	source	operands	(src0	and	src1)	and	divides	the	result	by	two.

add_d2	dest,	src0,	src1

Saturate	modifier

For	arithmetic	instructions,	the	saturation	modifier	clamps	the	result	of	this
instruction	into	the	range	0.0	to	1.0	for	each	component.	The	following	example
shows	how	to	use	this	instruction	modifier.

dp3_sat	r0,	t0_bx2,	v0_bx2				;	t0	is	bump,	v0	is	light	direction

This	operation	occurs	after	any	multiply	or	divide	instruction	modifier.	_sat	is
most	often	used	to	clamp	dot	product	results.	However,	it	also	enables	consistent
emulation	of	multipass	methods	where	the	frame	buffer	is	always	in	the	range	0
to	1,	and	of	Microsoft®	DirectX®	6.0	and	7.0	multitexture	syntax,	in	which
saturation	is	defined	to	occur	at	every	stage.

This	example	loads	the	destination	register	(dest)	with	the	sum	of	the	two	colors
in	the	source	operands	(src0	and	src1),	and	clamps	the	result	into	the	range	0.0	to
1.0	for	each	component.

add_sat	dest,	src0,	src1

This	example	combines	two	instruction	modifiers.	First,	two	colors	in	the	source
operands	(src0	and	src1)	are	added.	The	result	is	multiplied	by	two	and	clamped
between	0.0	to	1.0	for	each	component.	The	result	is	saved	in	the	destination
register.

add_x2_sat	dest,	src0,	src1

	
Microsoft	Directx	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

Source	Register	Modifiers
Use	source	register	modifiers	to	change	the	value	read	from	a	register	before	an
instruction	executes.	The	contents	of	a	source	register	are	left	unchanged.
Modifiers	are	useful	for	adjusting	the	range	of	register	data	in	preparation	for	the
instruction.	A	set	of	modifiers	called	selectors	copies	or	replicates	the	data	from
a	single	channel	(r,g,b,a)	into	the	other	channels.

Version	1.4	shaders	have	modifier	functionality	specific	to	shader	instructions
texld	and	texcrd.	These	modifiers	affect	version	1.4	texture	registers	and	are
detailed	in	Texture	Register	Modifiers.

Source	register	modifiers Syntax Version
1.0 1.1 1.2 1.3 1.4

Bias register_bias X X X X X
Invert 1	-	register X X X X X
Negate -	register X X X X X
Scale×2 register_x2 X
Signed	Scaling register_bx2 X X X X X

Source	register	modifiers	can	be	used	only	on	arithmetic	instructions.	They
cannot	be	used	on	texture	address	instructions.	The	exception	to	this	is	the
signed	scale	modifier	(_bx2).	For	version	1.0	and	1.1,	signed	scale	can	be	used
on	the	source	argument	of	any	texm*	instruction.	For	version	1.2	or	1.3,	signed
scale	can	be	used	on	the	source	argument	of	any	texture	address	instruction.

Some	modifier	specific	restrictions:

Negate	can	be	combined	with	either	the	bias,	signed	scaling,	or	scale×2
modifier.	When	combined,	negate	is	executed	last.
Invert	cannot	be	combined	with	any	other	modifier.
Invert,	negate,	bias,	signed	scaling,	and	scale×2	can	be	combined	with	any
of	the	selectors.
Source	register	modifiers	should	not	be	used	on	constant	registers	because
they	will	cause	undefined	results.	For	version	1.4,	modifiers	on	constants
are	not	allowed	and	will	fail	validation.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.1,	1.2,	1.3,	1.4)

Source	Register	Selectors
This	modifier	replicates	a	single	channel	of	a	source-register	argument	to	all
channels.

source	register.channel

Source	register	selectors Syntax Version
1.0 1.1 1.2 1.3 1.4

Red	replicate source	register.r X
Green	replicate source	register.g X
Blue	replicate source	register.b X X X X
Alpha	replicate source	register.a X X X X X

Red	replicate.	Replicates	the	red	channel	to	all	channels.
Green	replicate.	Replicates	the	green	channel	to	all	channels.
Blue	replicate.	Replicates	the	blue	channel	to	all	channels.
Alpha	replicate.	Replicates	the	alpha	channel	to	to	all	channels.

Register

Source	register.	For	more	about	register	types,	see	Registers.

In	version	1.1,	1.2,	and	1.3,	blue	replicate	is	available	only	on	the	source	register
of	arithmetic	instruction,	which	uses	an	alpha	destination	register	write	mask.

Remarks

Source	register	selectors	are	applied	before	any	source	register	modifiers	and
before	the	instruction	executes.

Copying	the	contents	of	a	channel	into	one	or	more	other	channels	is	commonly
referred	to	as	"swizzling."

These	selectors	are	valid	on	source	registers	for	arithmetic	instructions.	The	four
selectors	operate	on	different	channels.

An	alternate	syntax	for	the	r,g,b,a	channels	is	x,y,z,w.

Source	selectors	and	source	modifiers	may	be	combined	freely.	In	this	example,
register	r0	uses	the	invert,	bias,	and	signed	scaling	modifier,	as	well	as	the	green
selector.	The	contents	of	the	source	register	are	unaffected;	the	modifier	modifies
only	the	data	read.

-r0_bx2.g

To	understand	the	order	of	the	execution	of	these	modifiers	and	selectors,	see
Order	of	Operations.

This	operator	can	be	used	in	conjunction	with	the	Invert	or	Negate	operators.

Alpha	replicate	functionality	is	analogous	to	the	D3DTA_ALPHAREPLICATE
flag	in	the	Microsoft®	DirectX®	6.0	and	7.0	multitexture	syntax.

Example

The	examples	below	illustrate	each	of	the	four	selectors.

//	Replicate	the	red	color	channel	to	the	all	channels	before

//	doing	the	multiply.

mul	r0,	r0,	r1.r				//	the	result	is	r1.rgba	=	r1.r

	 	 	 	 	

//	Replicate	the	green	color	channel	to	the	all	channels	before

//	doing	the	multiply.

mul	r0,	r0,	r1.g				//	the	result	is	r1.rgba	=	r1.g

//	Replicate	the	blue	color	channel	to	the	all	channels	before

//	doing	the	multiply.

mul	r0,	r0,	r1.b				//	the	result	is	r1.rgba	=	r1.b

	 	 	 	 	

//	For	ps	1.1,	1.2,	1.3,	the	blue	replicate	example	

//	would	require	a	destination	write	mask.	 	 	 	 	

mul	r0.a,	r0,	r1.b	 	 	 	 	

//	alpha	replicate

mul	r0,	r0,	r1.a				;	Replicate	the	alpha	color	channel	to	all	channels.

	
Microsoft	DirectX	8.1	(pixel	shader	versions	1.0,	1.1,	1.2,	1.3,	1.4)

Destination	Register	Write	Masks
destination	register.writemask

Write	masks	control	which	channels	(red,	green,	blue,	alpha)	are	updated	in	the
destination	register.

Register

Destination	register.	For	more	about	register	types,	see	Registers.

Remarks

The	following	destination	write	masks	are	available.

Write	Mask Syntax Version
1.0 1.1 1.2 1.3 1.4

red,	green,	blue,	alpha destination	register.rgba X X X X X
none destination	register X X X X X
color	(red,	green,	blue) destination	register.rgb X X X X X
alpha destination	register.a X X X X X
red destination	register.r X
green destination	register.g X
blue destination	register.b X
arbitrary destination	register.rgba See	note	below.

Note		The	arbitrary	mask	allows	any	set	of	channels	to	be	combined	to	produce	a
mask.	The	channels	must	be	listed	in	the	order	r,	g,	b,	a—for	example,
register.rba,	which	updates	the	red,	blue,	and	alpha	channels	of	the	destination.
The	arbitrary	mask	is	available	only	in	version	1.4.

If	no	destination	write	mask	is	specified,	the	destination	write	mask	defaults	to
the	rgba	case.	In	other	words,	all	channels	in	the	destination	register	are	updated.

An	alternate	syntax	for	the	r,g,b,a	channels	is	x,y,z,w.

For	versions	1.0	to	1.3,	the	dp3	arithmetic	instruction	can	use	only	the	.rgb	or
.rgba	output	write	masks.

Destination	register	write	masks	are	supported	for	arithmetic	operations	only.
They	cannot	be	used	on	texture	addressing	instructions,	with	the	exception	of	the
version	1.4	instructions,	texcrd	and	texld.

Examples

default

The	default	is	to	write	all	four	color	channels.

//	All	four	color	channels	can	be	written	by	explicitly	listing	them.

mul	r0.rgba,	t0,	v0

//	Or,	the	default	mask	can	be	used	to	write	all	four	channels.

mul	r0,	t0,	v0

alpha	write	mask

The	alpha	write	mask	is	used	to	control	writing	to	the	alpha	channel.

//	The	alpha	write	mask	is	also	referred	to	as	the	scalar	write	mask,	

//	because	it	uses	the	scalar	pipeline.

add	r0.a,	t1,	v1

So	this	instruction	effectively	puts	the	sum	of	the	alpha	component	of	t1	and	the
alpha	component	of	v1	into	r0.a.

color	write	mask

The	color	write	mask	is	used	to	control	writing	to	the	color	channels.

//	The	color	write	mask	is	also	referred	to	as	the	vector	write	mask,	

//	because	it	uses	the	vector	pipeline.

mul	r0.rgb,	t0,	v0

arbitrary	write	mask

For	version	1.4,	destination	write	masks	can	be	used	in	any	combination	as	long
as	the	masks	are	ordered	r,g,b,a.

//	This	example	updates	the	red,	blue,	and	alpha	channels.

mov	r0.rba,	r1

co-issued	instructions

A	co-issued	instruction	allows	two	potentially	different	instructions	to	be	issued
simultaneously.	This	is	accomplished	by	executing	the	instructions	in	the	alpha
pipeline	and	the	RGB	pipeline.

//	For	example,	the	default	example	shown	above:

mul	r0,	t0,	v0

//	is	also	equivalent	to	the	following	co-issued	instruction

		mul	r0.rgb,	t0,	v0

+	mul	r0.a,			t0,	v0

The	advantage	of	pairing	instructions	this	way	is	that	it	allows	different
operations	to	be	performed	in	the	vector	and	scalar	pipeline	in	parallel.

	
Microsoft	Directx	8.1	(pixel	shader	version	1.4)

Texture	Register	Modifiers	for	texld	and	texcrd

Two	pixel	shader	version	1.4	texture	address	instructions,	texld	and	texcrd,	have
custom	syntax.	These	instructions	support	their	own	set	of	source	register
modifiers,	source	register	selectors,	and	destination-register	write	masks,	as
shown	below.

Source	Register	Modifiers	for	texld	and	texcrd

These	modifiers	provide	projective	divide	functionality	by	dividing	the	x	and	y
values	by	either	the	z	or	w	values.

Source	register
modifiers Description Syntax Version

_dz
Divide	x,y	components	by
z

source
register_dz 1.4

_db source
register_db 1.4

_dw
Divide	x,y	components	by
w

source
register_dw 1.4

_da source
register_da 1.4

Register

Source	register.	For	more	about	register	types,	see	Registers.

Remarks

The	_dz	or	_db	modifier	does	the	following:

x'	=	x/z	(x'	=	1.0	if	z	==	0)

y'	=	y/z	(y'	=	1.0	if	z	==	0)

z'	is	undefined

w'	is	undefined

The	_dw	or	_da	modifier	does	the	following:

x'	=	x/w	(x'	=	1.0	if	w	==	0)

y'	=	y/w	(y'	=	1.0	if	w	==	0)

z'	is	undefined

w'	is	undefined

Note		For	pixel	shader	version	1.4,	the	D3DTTFF_PROJECTED	flag	under
D3DTSS_TEXTURETRANSFORMFLAGS	is	ignored	because	a	projective
divide	is	accomplished	by	the	source	register	modifiers	listed	previously.

Source	Register	Selectors	for	texld	and	texcrd

Selectors	replicate	the	contents	of	one	channel	into	other	channels.	Replicating
the	contents	of	a	channel	to	one	or	more	other	channels	is	commonly	referred	to
as	"swizzling."

Source	register
selectors Description Syntax Version

xyz
Maps	x,y,z	data	to	channels
x,y,z,z

source
register.xyz 1.4

rgb source
register.rgb 1.4

xyw
Maps	x,y,w	data	to	channels
x,y,w,w

source
register.xyw 1.4

rga source
register.rga 1.4

Register

Source	register.	For	more	about	register	types,	see	Registers.

Remarks

The	texld	and	texcrd	instructions	never	read	more	than	the	first	three
components.	So,	these	selectors	provide	the	option	of	taking	the	third	component
from	either	the	third	or	the	fourth	component	of	the	source	register.

Destination	Register	Write	Masks	for	texld	and	texcrd

Write	masks	control	which	channels	(red,	green,	blue,	alpha)	are	updated	in	the
destination	register.

Destination	register
write	masks Description Syntax Used

by Version

xyzw

Updates	the	x,y,z,w
channels

destination
register.xyzw

texld
only 1.4

rgba destination
register.rgba

texld
only 1.4

none destination
register

texld
only 1.4

xyz
Updates	the	x,y,z
channels

destination
register.xyz

texcrd
only 1.4

rgb destination
register.rgb

texcrd
only 1.4

xy
Updates	the	x,y
channels

destination
register.xy

texcrd
only 1.4

rg destination
register.rg

texcrd
only 1.4

Register

Destination	register.	For	more	about	register	types,	see	Registers.

	
Microsoft	DirectX	8.1	(C++)

D3DXMESH
Flags	used	to	specify	creation	options	for	a	mesh.

enum	_D3DXMESH	{

				D3DXMESH_32BIT																		=	0x001,

				D3DXMESH_DONOTCLIP														=	0x002,

				D3DXMESH_POINTS																	=	0x004,

				D3DXMESH_RTPATCHES														=	0x008,

				D3DXMESH_NPATCHES															=	0x4000,

				D3DXMESH_VB_SYSTEMMEM											=	0x010,

				D3DXMESH_VB_MANAGED													=	0x020,

				D3DXMESH_VB_WRITEONLY											=	0x040,

				D3DXMESH_VB_DYNAMIC													=	0x080,

				D3DXMESH_VB_SOFTWAREPROCESSING		=	0x8000,

				D3DXMESH_IB_SYSTEMMEM											=	0x100,

				D3DXMESH_IB_MANAGED													=	0x200,

				D3DXMESH_IB_WRITEONLY											=	0x400,

				D3DXMESH_IB_DYNAMIC													=	0x800,

				D3DXMESH_IB_SOFTWAREPROCESSING		=	0x10000,

				D3DXMESH_VB_SHARE															=	0x1000,

				D3DXMESH_USEHWONLY														=	0x2000,

				D3DXMESH_SYSTEMMEM														=	0x110,

				D3DXMESH_MANAGED																=	0x220,

				D3DXMESH_WRITEONLY														=	0x440,

				D3DXMESH_DYNAMIC																=	0x880,

				D3DXMESH_SOFTWAREPROCESSING					=	0x18000

};

Constants

D3DXMESH_32BIT
The	mesh	has	32-bit	indices	instead	of	16-bit	indices.	A	32-bit	mesh	can
support	up	to	(2^32)-1	faces	and	vertices.

D3DXMESH_DONOTCLIP
Use	the	D3DUSAGE_DONOTCLIP	usage	flag	for	vertex	and	index
buffers.

D3DXMESH_POINTS
Use	the	D3DUSAGE_POINTS	usage	flag	for	vertex	and	index	buffers.

D3DXMESH_RTPATCHES

Use	the	D3DUSAGE_RTPATCHES	usage	flag	for	vertex	and	index	buffers.
D3DXMESH_NPATCHES

Specifying	this	flag	causes	the	vertex	and	index	buffer	of	the	mesh	to	be
created	with	D3DUSAGE_NPATCHES	flag.	This	is	required	if	the	mesh
object	is	to	be	rendered	using	N-patch	enhancement	using	Microsoft®
Direct3D®.

D3DXMESH_VB_SYSTEMMEM
Use	the	D3DPOOL_SYSTEMMEM	memory	class	for	vertex	buffers.

D3DXMESH_VB_MANAGED
Use	the	D3DPOOL_MANAGED	memory	class	for	vertex	buffers.

D3DXMESH_VB_WRITEONLY
Use	the	D3DUSAGE_WRITEONLY	usage	flag	for	vertex	buffers.

D3DXMESH_VB_DYNAMIC
Use	the	D3DUSAGE_DYNAMIC	usage	flag	for	vertex	buffers.

D3DXMESH_VB_SOFTWAREPROCESSING
Use	the	D3DUSAGE_SOFTWAREPROCESSING	for	flag	for	vertex
buffers.

D3DXMESH_IB_SYSTEMMEM
Use	the	D3DPOOL_SYSTEMMEM	memory	class	for	index	buffers.

D3DXMESH_IB_MANAGED
Use	the	D3DPOOL_MANAGED	memory	class	for	index	buffers.

D3DXMESH_IB_WRITEONLY
Use	the	D3DUSAGE_WRITEONLY	usage	flag	for	index	buffers.

D3DXMESH_IB_DYNAMIC
Use	the	D3DUSAGE_DYNAMIC	usage	flag	for	index	buffers.

D3DXMESH_IB_SOFTWAREPROCESSING
Use	the	D3DUSAGE_SOFTWAREPROCESSING	usage	flag	for	index
buffers.

D3DXMESH_VB_SHARE
Forces	the	cloned	meshes	to	share	vertex	buffers.

D3DXMESH_USEHWONLY
Use	hardware	processing	only.	This	flag	should	be	specified	only	for	a
hardware	processing	device.	On	a	mixed-mode	device,	this	flag	will	cause
the	system	to	either	use	hardware	only,	or	if	the	hardware	is	not	capable,	it
will	approximate	using	the	software	capabilities.

D3DXMESH_SYSTEMMEM
Equivalent	to	specifying	both	D3DXMESH_VB_SYSTEMMEM	and
D3DXMESH_IB_SYSTEMMEM.

D3DXMESH_MANAGED

Equivalent	to	specifying	both	D3DXMESH_VB_MANAGED	and
D3DXMESH_IB_MANAGED.

D3DXMESH_WRITEONLY
Equivalent	to	specifying	both	D3DXMESH_VB_WRITEONLY	and
D3DXMESH_IB_WRITEONLY.

D3DXMESH_DYNAMIC
Equivalent	to	specifying	both	D3DXMESH_VB_DYNAMIC	and
D3DXMESH_IB_DYNAMIC.

D3DXMESH_SOFTWAREPROCESSING
Equivalent	to	specifying	both
D3DXMESH_VB_SOFTWAREPROCESSING	and
D3DXMESH_IB_SOFTWAREPROCESSING

Requirements

		Header:	Declared	in	D3dx8mesh.h.

	
Microsoft	DirectX	8.1	(C++)

ID3DXMesh
Applications	use	the	methods	of	the	ID3DXMesh	interface	to	manipulate	mesh
objects.

To	obtain	the	ID3DXMesh	interface,	call	either	the	D3DXCreateMesh	or
D3DXCreateMeshFVF	function.	The	methods	of	the	ID3DXMesh	interface
can	be	organized	into	the	following	groups.

Locking LockAttributeBuffer
UnlockAttributeBuffer

Optimization Optimize
OptimizeInplace

Remarks

This	interface	inherits	additional	functionality	from	the	ID3DXBaseMesh
interface.

This	interface,	like	all	COM	interfaces,	inherits	additional	functionality	from	the
IUnknown	Interface.

The	LPD3DXMESH	type	is	defined	as	a	pointer	to	the	ID3DXMesh	interface,
as	shown	below.

typedef	struct	ID3DXMesh	*LPD3DXMESH;

Requirements

		Header:	Declared	in	D3dx8mesh.h.
		Import	Library:	Use	D3dx8.lib.

See	Also

Mesh	Functions

	
Microsoft	DirectX	8.1	(C++)

PALETTEENTRY
Specifies	the	color	and	usage	of	an	entry	in	a	logical	palette.

typedef	struct	tagPALETTEENTRY	{

		BYTE	peRed;	

		BYTE	peGreen;	

		BYTE	peBlue;	

		BYTE	peFlags;	

}	PALETTEENTRY;

Members

peRed
The	red	intensity	value	for	the	palette	entry.

peGreen
The	green	intensity	value	for	the	palette	entry.

peBlue
The	blue	intensity	value	for	the	palette	entry.

peFlags
The	alpha	intensity	value	for	the	palette	entry.	Note	that	as	of	Microsoft®
DirectX®	8.0,	this	member	is	treated	differently	than	documented	in	the
Microsoft®	Platform	Software	Development	Kit	(SDK).

Requirements

		Header:	Declared	in	Wingdi.h;	include	Windows.h.

	
Microsoft	DirectX	8.1	(C++)

D3DX_NORMALMAP	Flags
Control	the	generation	of	normal	maps.

#define	D3DX_NORMALMAP_MIRROR_U					(1	<<	16)

#define	D3DX_NORMALMAP_MIRROR_V					(2	<<	16)

#define	D3DX_NORMALMAP_MIRROR							(3	<<	16)

#define	D3DX_NORMALMAP_INVERTSIGN			(8	<<	16)

#define	D3DX_NORMALMAP_COMPUTE_OCCLUSION	(16	<<	16)

Constants

D3DX_NORMALMAP_MIRROR_U
Indicates	that	pixels	off	the	edge	of	the	texture	on	the	U-axis	should	be
mirrored,	not	wrapped.

D3DX_NORMALMAP_MIRROR_V
Indicates	that	pixels	off	the	edge	of	the	texture	on	the	V-axis	should	be
mirrored,	not	wrapped.

D3DX_NORMALMAP_MIRROR
Same	as	specifying	D3DX_NORMALMAP_MIRROR_U	|
D3DX_NORMALMAP_MIRROR_V.

D3DX_NORMALMAP_INVERTSIGN
Inverts	the	direction	of	each	normal.

D3DX_NORMALMAP_COMPUTE_OCCLUSION
Computes	the	per-pixel	occlusion	term	and	encodes	it	into	the	alpha.	An
alpha	of	1	means	that	the	pixel	is	not	obscured	in	any	way,	and	an	alpha	of
0	means	that	the	pixel	is	completely	obscured.

Requirements

		Header:	Declared	in	D3d8tex.h.

See	Also

D3DXComputeNormalMap

	
Microsoft	DirectX	8.1	(C++)

D3DX_CHANNEL	Flags
The	following	flags	are	used	to	specify	which	channels	in	a	texture	to	operate
on.

#define	D3DX_CHANNEL_RED												1

#define	D3DX_CHANNEL_BLUE											2

#define	D3DX_CHANNEL_GREEN										4

#define	D3DX_CHANNEL_ALPHA										8

#define	D3DX_CHANNEL_LUMINANCE					16

Constants

D3DX_CHANNEL_RED
Indicates	the	red	channel	should	be	used.

D3DX_CHANNEL_BLUE
Indicates	the	blue	channel	should	be	used.

D3DX_CHANNEL_GREEN
Indicates	the	green	channel	should	be	used.

D3DX_CHANNEL_ALPHA
Indicates	the	alpha	channel	should	be	used.

D3DX_CHANNEL_LUMINANCE
Indicates	the	luminances	of	the	red,	green,	and	blue	channels	should	be
used.

Requirements

		Header:	Declared	in	D3d8tex.h.

	
Microsoft	DirectX	8.1	(C++)

IUnknown	Interface

All	COM	objects	support	an	interface	called	IUnknown.	This	interface	provides
Microsoft®	DirectX®	with	control	of	the	object's	lifetime	and	the	ability	to
retrieve	other	interfaces	implemented	by	the	object.	IUnknown	has	three
methods.

AddRef	increments	the	object's	reference	count	by	1	when	an	interface	or
another	application	binds	itself	to	the	object.
QueryInterface	queries	the	object	about	the	features	that	it	supports	by
requesting	pointers	to	a	specific	interface.
Release	decrements	the	object's	reference	count	by	1.	When	the	count
reaches	0,	the	object	is	deallocated.

The	AddRef	and	Release	methods	maintain	an	object's	reference	count.	For
example,	if	you	create	a	Microsoft	Direct3D®	object,	the	object's	reference
count	is	set	to	1.	Every	time	a	function	returns	a	pointer	to	an	interface	for	that
object,	the	function	must	call	AddRef	through	that	pointer	to	increment	the
reference	count.	Match	each	AddRef	call	with	a	call	to	Release.	Before	the
pointer	can	be	destroyed,	you	must	call	Release	through	that	pointer.	After	an
object's	reference	count	reaches	0,	the	object	is	destroyed,	and	all	interfaces	to	it
become	invalid.

The	QueryInterface	method	determines	whether	an	object	supports	a	specific
interface.	If	an	object	supports	an	interface,	QueryInterface	returns	a	pointer	to
that	interface.	You	then	can	use	the	methods	of	that	interface	to	communicate
with	the	object.	If	QueryInterface	successfully	returns	a	pointer	to	an	interface,
it	implicitly	calls	AddRef	to	increment	the	reference	count,	so	your	application
must	call	Release	to	decrement	the	reference	count	before	destroying	the	pointer
to	the	interface.

Requirements

		Windows	NT/2000/XP:	Requires	Windows	NT	3.1	or	later.
		Windows	98/Me:	Requires	Windows	98	or	later.

		Header:	Declared	in	Unknwn.h.

	
Microsoft	DirectX	8.1	(C++)

D3DXIMAGE_FILEFORMAT
Describes	the	supported	image	file	formats.

typedef	enum	_D3DXIMAGE_FILEFORMAT

{

				D3DXIFF_BMP									=	0,

				D3DXIFF_JPG									=	1,

				D3DXIFF_TGA									=	2,

				D3DXIFF_PNG									=	3,

				D3DXIFF_DDS									=	4,

				D3DXIFF_PPM									=	5,

				D3DXIFF_DIB									=	6,

				D3DXIFF_FORCE_DWORD	=	0x7fffffff

}	D3DXIMAGE_FILEFORMAT;

Constants

D3DXIFF_BMP
Microsoft®	Windows®	bitmap	file	format.

D3DXIFF_JPG
Joint	Photographic	Experts	Group	compressed	file.

D3DXIFF_TGA
Truevision	Targa	image	file.

D3DXIFF_PNG
Portable	Network	Graphics	file	format.

D3DXIFF_DDS
Microsoft	DirectDraw®	surface	file	format.

D3DXIFF_PPM
Portable	pixmap	file	format.

D3DXIFF_DIB
Windows	bitmap	file	format.

D3DXIFF_FORCE_DWORD
Forces	this	enumeration	to	compile	to	32	bits	in	size.	This	value	is	not	used.

Requirements

		Header:	Declared	in	D3dx8tex.h.

	
Microsoft	DirectX	8.1	(C++)

LPD3DXFILL2D
Function	type	used	by	the	texture	fill	functions.

VOID	(*LPD3DXFILL2D)(

		D3DXVECTOR4*	pOut,

		D3DXVECTOR2*	pTexCoord,

		D3DXVECTOR2*	pTexelSize,

		LPVOID							pData

);

Parameters

pOut
[out]	Pointer	to	a	vector,	which	the	function	uses	to	return	its	result.	X,	Y,	Z,
and	W	will	be	mapped	to	R,	G,	B,	and	A	respectively.

pTexCoord
[in]	Pointer	to	a	vector	containing	the	coordinates	of	the	texel	currently
being	evaluated.	Texture	coordinate	components	for	texture	and	volume
textures	range	from	0	to	1.	Texture	coordinate	components	for	cube	textures
range	from	-1	to	1.

pTexelSize
[in]	Pointer	to	a	vector	containing	the	dimensions	of	the	current	texel.

pData
[in]	Pointer	to	user	data.

Requirements

		Header:	Declared	in	D3dx8tex.h.

See	Also

D3DXFillTexture

	
Microsoft	DirectX	8.1	(C++)

LPD3DXFILL3D
Function	type	used	by	the	texture	fill	functions.

VOID	(*LPD3DXFILL3D)(

		D3DXVECTOR4*	pOut,

		D3DXVECTOR3*	pTexCoord,

		D3DXVECTOR3*	pTexelSize,

		LPVOID							pData

);

Parameters

pOut
[out]	Pointer	to	a	vector,	which	the	function	uses	to	return	its	result.	X,	Y,	Z,
and	W	will	be	mapped	to	R,	G,	B,	and	A	respectively.

pTexCoord
[in]	Pointer	to	a	vector	containing	the	coordinates	of	the	texel	currently
being	evaluated.	Texture	coordinate	components	for	texture	and	volume
textures	range	from	0	to	1.	Texture	coordinate	components	for	cube	textures
range	from	-1	to	1.

pTexelSize
[in]	Pointer	to	a	vector	containing	the	dimensions	of	the	current	texel.

pData
[in]	Pointer	to	user	data.

Requirements

		Header:	Declared	in	D3dx8tex.h.

See	Also

D3DXFillCubeTexture,	D3DXFillVolumeTexture

	
Microsoft	DirectX	8.1	(C++)

Sample	Framework

The	Microsoft®	DirectX®	8.1	and	Microsoft®	Direct3D®	Software
Development	Kit	(SDK)	graphics	sample	framework	is	an	evolution	from	the
DirectX	7.0	graphics	sample	framework.	The	SDK	samples	are	installed	by
default	in	\Dxsdk\Samples\Multimedia.	The	folders	of	interest	are	Common	and
Direct3D.	The	sample	framework	is	contained	in	the	Common	folder	and	the
Direct3D	samples	based	on	the	graphics	framework	are	contained	in	the
Direct3D	folder.

The	graphics	framework	consists	of	five	source	modules.

d3dapp.cpp	exposes	the	application	interface	used	for	samples.	Of
particular	interest	is	class	CD3DApplication.
d3dfile.cpp	furnishes	.x	file	support,	to	enable	samples	to	load	.x	files.	Of
particular	interest	are	classes	CD3Dmesh	and	CD3DFrame.
d3dfont.cpp	furnishes	basic	font	output	support,	to	enable	things	like
statistics	views.	Of	particular	interest	is	class	CD3DFont.
d3dutil.cpp	provides	generally	useful	3	dimensional	functions,	such	as
material,	light,	and	texture	helper	functions.
dxutil.cpp	provides	generally	useful	DirectX	functions,	such	as	media,
registry,	and	timer	helper	functions.

Corresponding	header	files	are	located	in	the	Common\Include	folder.

Each	sample	implements	a	subclass	of	CD3DApplication,	which	is	typically
named	CMyD3DApplication,	and	set	of	overridables	that	are	shown	below.

//	Overridable	functions	for	the	3	dimensional	scene	created	by	the	application

virtual	HRESULT	ConfirmDevice(D3DCAPS8*,DWORD,D3DFORMAT)			{	return	S_OK;	}

virtual	HRESULT	OneTimeSceneInit()																									{	return	S_OK;	}

virtual	HRESULT	InitDeviceObjects()																								{	return	S_OK;	}

virtual	HRESULT	RestoreDeviceObjects()																					{	return	S_OK;	}

virtual	HRESULT	FrameMove()																																{	return	S_OK;	}

virtual	HRESULT	Render()																																			{	return	S_OK;	}

virtual	HRESULT	InvalidateDeviceObjects()																		{	return	S_OK;	}

virtual	HRESULT	DeleteDeviceObjects()																						{	return	S_OK;	}

virtual	HRESULT	FinalCleanup()																													{	return	S_OK;	}

The	prototypes	for	these	methods	are	contained	in	d3dapp.h	in	the

	CD3Dapplication	class.	The	samples	create	a	new	Direct3D	application	and	override

	those	methods	that	are	needed	by	the	application.	

Derived	Class	Example

This	example	uses	a	subset	of	the	overrideable	methods.	The	class
CMyD3DApplication	contains	the	following	methods.	Each	of	these	methods	is
explained	below.

class	CMyD3DApplication	:	public	CD3DApplication

{

public:

				CMyD3DApplication();

protected:

				HRESULT	ConfirmDevice(D3DCAPS8*,	DWORD,	D3DFORMAT);

				HRESULT	DeleteRestoreDeviceObjects();

				HRESULT	RestoreDeviceObjects();

				HRESULT	FrameMove();

				HRESULT	Render();

private:

				LPDIRECT3DVERTEXBUFFER8	m_pVB;		 	 //	Vertex	buffer	to	hold	vertices

};

Constructor

The	constructor	initializes	the	window	title,	enables	depth	buffering	and
initializes	the	vertex	buffer.

CMyD3DApplication::CMyD3DApplication()

{

				m_strWindowTitle				=	_T("D3D	Example");				//	title	bar	string

				m_bUseDepthBuffer			=	TRUE;																	//	enable	depth	buffer

				m_pVB																=	NULL;																//	initialize		

}

The	window	title	is	a	wide	character	string	that	is	visible	in	the	title	bar	or	the
window	class	when	the	application	is	invoked.	It	is	optional.

The	base	class	contains	a	member	variable	for	enabling	depth	buffering.	The
default	value	for	this	boolean	variable	is	FALSE,	which	disables	depth	buffering.

The	window	title	is	a	wide	character	string	that	is	visible	in	the	title	bar	or	the
window	class	when	the	application	is	invoked.	It	is	optional.

ConfirmDeviceObjects

DeleteDeviceObjects

DeleteDeviceObjects	is	called	when	the	application	is	exiting,	or	if	the	device	is
being	changed.	You	use	this	method	to	delete	device	dependent	objects,	such	as
the	vertex	buffer.

HRESULT	CVShader1::DeleteDeviceObjects()

{

				m_pQuadVB->Release();

				m_pQuadVB	=	NULL;

				return	S_OK;

}

RestoreDeviceObjects

This	method	is	called	when	the	application	needs	to	restore	device	memory
objects	and	device	states.	This	is	required	after	a	DirectX	device	is	created	or
resized.	This	method	does	most	of	the	work	of	creating	objects	and	initializing
render	states.

HRESULT	CMyD3DApplication::RestoreDeviceObjects()

{

				//	Create	the	vertex	buffer.	Allocate	enough	memory	(from	the	default	pool)	

	 //	to	hold	the	custom	vertices.	Specify	the	flexible	vertex	format	(FVF),	so	the	vertex	buffer	knows	what

	 //	 data	it	contains.

				if(FAILED(m_pd3dDevice->CreateVertexBuffer(NUM_VERTS*sizeof(CUSTOMVERTEX),

																										0,	D3DFVF_CUSTOMVERTEX,	D3DPOOL_DEFAULT,	&m;_pVB)))

				{

								return	E_FAIL;

				}

				//	Fill	the	vertex	buffer.	First,	lock	the	vertex	buffer	to	get	access	to	the

	 //	vertices.	This	mechanism	is	required	because	vertex	buffers	may	be	in	device

	 //	memory.	Then	use	memcpy	to	do	a	fast	data	copy.

				VOID*	pVertices;

				if(FAILED(m_pVB->Lock(0,	sizeof(g_Vertices),	

					(BYTE**)&pVertices;,	0)))

								return	E_FAIL;

				memcpy(pVertices,	g_Vertices,	sizeof(g_Vertices));

				m_pVB->Unlock();

				//	Set	the	projection	matrix.	The	size	of	the	back	buffer	comes	from	the	base	

	 //	class

				D3DXMATRIX	matProj;

				FLOAT	fAspect	=	m_d3dsdBackBuffer.Width	/	

																				(FLOAT)m_d3dsdBackBuffer.Height;

				D3DXMatrixPerspectiveFovLH(&matProj;,	D3DX_PI/4,	fAspect,	

																																	1.0f,	100.0f);

				m_pd3dDevice->SetTransform(D3DTS_PROJECTION,	&matProj;);

				//	Set	up	the	view	matrix.	A	view	matrix	can	be	defined	from	an	eye	

				//	point,	a	look	at	point	and	an	up	direction	vector.	In	this	example,	

				//	the	eye	position	is	(0,1,-4)	the	look	at	point	is	(0,0,0)	and	the	

				//	up	vector	is	(0,1,0.

				D3DXMATRIX	matView;

				D3DXMatrixLookAtLH(&matView;,	&D3DXVECTOR3;(0.0f,	1.0f,-4.0f),

																																		&D3DXVECTOR3;(0.0f,	0.0f,	0.0f),

																																		&D3DXVECTOR3;(0.0f,	1.0f,	0.0f));

				m_pd3dDevice->SetTransform(D3DTS_VIEW,	&matView;);

				//	Set	up	default	texture	states

				//	Set	up	render	states	(this	is	only	one	example	renderstate)

				m_pd3dDevice->SetRenderState(D3DRS_CULLMODE,					D3DCULL_NONE);

				return	S_OK;

}

This	method	creates	the	vertex	buffer	and	copies	the	vertex	data	into	it.	It	creates
the	view	and	projection	matrices,	which	define	the	camera	orientation	to	the
object	in	the	vertex	buffer.	Texture	stage	states	can	be	set	in	this	method
although	none	are	present	in	this	example.	Render	states	that	are	not	likely	to
change	are	set.	These	determine	how	the	scene	renders.

FrameMove

This	method	contains	actions	that	happen	every	frame	such	as	animation.	In	this
example,	it	adds	a	y	axis	rotation	to	the	world	transform.

HRESULT	CMyD3DApplication::FrameMove()

{

				//	For	our	world	matrix,	just	rotate	the	object	about	the	y-axis.

				D3DXMATRIX	matWorld;

				D3DXMatrixRotationY(&matWorld;,	::TimeGetTime()/150.0f);

				m_pd3dDevice->SetTransform(D3DTS_WORLD,	&matWorld;);

				return	S_OK;

}

The	Windows	method	::TimeGetTime()	is	used	to	return	the	current	time.	Once
it	is	divided	by	150,	this	generates	a	incremental	angle	to	rotate	the	object.

Render

This	method	is	called	when	it	is	time	to	render	the	output.	This	function	clears
the	view	port	and	render	the	scene.	It	also	renders	state	changes.

HRESULT	CMyD3DApplication::Render()

{

				//	Clear	the	viewport

				m_pd3dDevice->Clear(0L,	NULL,	D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,	

	 	 D3DCOLOR_XRGB(0,0,0),	1.0f,	0L);

				//	Begin	the	scene

				if(SUCCEEDED(m_pd3dDevice->BeginScene()))

				{

								m_pd3dDevice->SetStreamSource(0,	m_pVB,	sizeof(CUSTOMVERTEX));

	 				m_pd3dDevice->SetVertexShader(D3DFVF_CUSTOMVERTEX);

								m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	NUM_TRIS);

								m_pd3dDevice->EndScene();

				}

				return	S_OK;

}

The	Render	method	first	clears	the	viewport	using	Clear.	Then,	within	the
BeginScne/EndScene	pair	it	uses	SetStreamSource	to	inform	the	runtime	that	it
uses	vertex	buffer	m_pVB	with	a	stride	of	the	size	of	the	custom	vertex	type.
Then,	it	informs	the	runtime	that	it	uses	a	flexible	vertex	format	(FVF)	shader,
the	simplest	type.	Finally	it	invokes	DrawPrimitive	to	render	the	quad.

Other	functions

DeleteDeviceObjects	is	called	when	the	application	exits,	or	if	the	device
changes.	You	use	this	method	to	delete	device	dependent	objects.

ConfirmDevice	checks	the	device	for	some	minimum	set	of	capabilities.	It	is
called	during	the	device	initialization.

InvalidateDeviceObjects	is	called	when	the	device	dependent	objects	might	be

removed.	Device	dependent	objects	such	as	vertex	buffers	are	usually	added	to
this	method.

OneTimeSceneInit	is	provided	for	code	that	needs	to	run	during	the	initial
application	startup.

DirectXDev	for	graphics,	networking,	and	input	at
http://DISCUSS.MICROSOFT.COM/archives/DIRECTXDEV.html.

	
Microsoft	DirectX	8.1	(C++)

Application	Wizard
The	Microsoft®	DirectX®	AppWizard	creates	a	small	C++	template	application
that	can	integrate	the	common	DirectX	components—Microsoft	Direct3D®,
Microsoft	DirectInput®,	Microsoft	DirectMusic®,	Microsoft	DirectSound®,	and
Microsoft	DirectPlay®.	It	provides	basic,	easy-to-build-upon	functionally	and
demonstrates	the	use	of	each	component.

Along	with	the	template,	AppWizard	includes	the	same	C++	classes	found	in	the
DirectX	software	development	kit	(SDK)	common	directory.	These	C++	classes
perform	minimal	wrapping	of	DirectX	to	get	you	up	and	running	quickly.	All	the
DirectX	SDK	samples	make	use	of	these	classes.	For	example,	the	Direct3D
samples	use	D3dapp.*,	the	DirectMusic	samples	use	Dmutil.*,	the	DirectSound
samples	use	Dsutil.*,	and	the	DirectPlay	samples	use	Netconnect.*.

The	AppWizard	target	audience	is	amateur	C++	game	developers,	3-D
hobbyists,	and	audio	hobbyists	(who	do	not	need	3-D).

Running	AppWizard

AppWizard	is	launched	from	Microsoft	Visual	Studio®	6.0	when	you	create	a
new	project.	It	is	one	of	the	project	types	available	when	you	choose	File,	New,
then	the	Projects	tab,	as	shown	in	the	following	example.

When	you	enter	a	project	name	and	click	OK,	the	wizard	presents	a	series	of
dialog	boxes	to	allow	you	to	configure	the	DirectX	services	that	the	application
will	need.	The	number	of	dialog	boxes	generated	by	the	wizard	depend	on	which
DirectX	technologies	you	select	(Direct3D,	DirectInput,	and	DirectPlay	each
generate	their	own	dialog	boxes).	The	files	included	in	the	project	depend	on	the
DirectX	technologies	selected,	as	well	as	the	Microsoft	Windows®	technologies
selected—Microsoft	Win32®,	Microsoft	Foundation	Classes	(MFC),	and
Graphics	Device	Interface	(GDI).	You	select	these	technologies	on	the	first	page
of	the	wizard,	which	is	shown	in	the	following	example.

The	wizard	has	three	steps:	Step	1	is	the	opening	page,	step	2	is	the	Direct3D
page,	and	step	3	is	the	DirectInput	page.	The	DirectMusic	and	DirectSound
options	do	not	generate	additional	pages	but	the	DirectPlay	Peer-to-Peer	option
will	generate	an	additional	page.

The	wizard	uses	one	of	four	base	templates,	based	on	the	options	you	select.

1.	 For	an	application	that	is	not	MFC-based	and	uses	Direct3D,	choose	Single
document	window	and	Direct3D.	This	is	the	standard	case	and	is	similar
to	the	application	used	in	the	dolphin	sample.

2.	 For	an	application	that	is	MFC-based	and	uses	Direct3D,	choose	MFC
dialog	based	and	Direct3D.	The	application	will	be	similar	to	the	MFC	fog
sample.

3.	 For	a	Windows	application	that	uses	GDI	but	not	MFC,	choose	Single
document	window.	This	application	can	use	CreateWindow	and	basic
GameLoop	during	idle	time.

4.	 For	an	application	that	uses	GDI	and	is	MFC-based,	choose	MFC	dialog
based.	The	application	will	be	similar	to	the	MFC	AppWizard	dialog
template.

The	Direct3D,	DirectInput,	and	DirectPlay	check	boxes	each	add	another	page
to	the	wizard.	These	pages	are	described	in	the	following	sections.

Direct3D	Page

The	following	Direct3D	page	is	shown	immediately	after	the	first	page	if	you
selected	the	Direct3D	check	box	in	step	1.

The	Direct3D	page	is	step	2	because	step	1	was	the	first	page	of	the	wizard.

The	Direct3D	exclusive	options	are:

1.	 Blank.	No	Direct3D	object	is	created.
2.	 Triangle.	Creates	a	simple	object	with	two	back-to-back	triangles.
3.	 Teapot.	Creates	a	complex	object	using	D3DXCreateTeapot.

If	Direct3D	fonts	is	checked,	the	project	includes	D3dfont.cpp	and	D3dfont.h.
Otherwise,	the	project	uses	D3DXFont	to	display	3-D	fonts.

If	3D	meshes	is	checked,	the	project	includes	D3dfile.cpp	and	D3dfile.h.

DirectInput	Page

The	following	DirectInput	page	is	shown	immediately	after	the	Direct3D	page
if	you	selected	the	DirectInput	check	box	in	step	1.

The	DirectInput	page	is	step	3.	The	options	on	this	page	are:

DirectInput	action	mapping.	Uses	Action	Mapping	to	gather	input	data.
DirectInput	keyboard	device.	Uses	a	simple	keyboard	device	to	gather
input	data.

If	you	checked	DirectInput	in	step	1,	the	project	will	include	Diutil.cpp	and
Diutil.cpp	files.	The	DirectX	SDK	sample,	Root\Samples\bin\Donut3D.exe,	uses
these	class	files.

The	application	will	use	either	Action	Mapper	or	a	keyboard	device	object	to
record	key	state.	If	neither	is	checked,	DirectInput	will	use	WM_KEYDOWN
messages	to	record	key	state.

DirectMusic	and	DirectSound	Check	Boxes

These	check	boxes	appear	on	page	1	of	the	wizard.	They	do	no	add	pages	to	the
wizard.

If	DirectMusic	is	checked,	the	project	will	include	Dmutil.cpp	and	Dmutil.h.
The	DirectMusic	samples	use	these	files.

If	DirectSound	is	checked,	the	project	will	include	Dsutil.cpp	and	Dsutil.h.	The
DirectSound	samples	use	these	files	to	load	and	play	sounds.

If	both	DirectMusic	and	DirectSound	are	checked,	DirectMusic	is	used	to	load
and	play	the	sounds,	but	Dsutil.*	is	still	included	in	the	project.

If	either	DirectMusic	or	DirectSound	is	checked,	Bounce.wav	is	included	in	the
project.	Pressing	the	A	key	will	play	the	sound.

If	neither	DirectMusic	nor	DirectSound	is	checked,	bounce.wav	is	not	included
and	the	A	key	is	not	recorded,	nor	is	the	Help	string	displayed.

DirectPlay	Page

The	following	DirectPlay	page	is	shown	immediately	after	the	DirectInput	page
if	you	selected	the	DirectPlay	Peer-to-Peer	check	box	in	step	1.

The	DirectPlay	page	is	step	4,	assuming	that	step	1	was	the	first	page	of	the
wizard,	step	2	was	the	Direct3D	page,	and	step	3	was	the	DirectInput	page.

If	DirectVoice	is	checked,	the	project	will	include	Netvoice.cpp	and	Netvoice.h.
The	DirectPlay	Voice	samples	use	these	files.

The	project	will	integrate	the	NetConnect	DirectPlay	connection	dialog	boxes
into	the	application.	When	the	NetConnect	dialog	boxes	finish,	an	active
DirectPlay	connection	or	failure	results.	If	successful,	the	arrow	key	state	is
passed	between	all	players	using	DirectPlay.

If	DirectInput	Action	Mapper	is	used,	DirectPlay	sends	the	axis	data	across	the
network;	otherwise	it	sends	the	state	of	the	four	arrow	keys.

	
Microsoft	DirectX	8.1	(C++)

DirectX	Graphics	C/C++	Tutorials
The	tutorials	in	this	section	show	how	to	use	Microsoft®	Direct3D®	and
Direct3DX	in	a	C/C++	application	for	common	tasks.	The	tasks	are	divided	into
required	steps.	In	some	cases,	steps	are	organized	into	substeps	for	clarity.

The	following	tutorials	are	provided.

Tutorial	1:	Creating	a	Device
Tutorial	2:	Rendering	Vertices
Tutorial	3:	Using	Matrices
Tutorial	4:	Creating	and	Using	Lights
Tutorial	5:	Using	Texture	Maps
Tutorial	6:	Using	Meshes

Note		The	sample	code	in	these	tutorials	is	from	source	projects	whose	location
is	provided	in	each	tutorial.

The	sample	files	in	these	tutorials	are	written	in	C++.	If	you	are	using	a	C
compiler,	you	must	make	the	appropriate	changes	to	the	files	for	them	to
successfully	compile.	At	the	very	least,	you	need	to	add	the	vtable	and	this
pointers	to	the	interface	methods.

Some	comments	in	the	included	sample	code	might	differ	from	the	source	files
in	the	Microsoft	Platform	Software	Development	Kit	(SDK).	Changes	are	made
for	brevity	only	and	are	limited	to	comments	to	avoid	changing	the	behavior	of
the	sample	code.

See	Also

DirectX	Graphics	C/C++	Samples

	
Microsoft	DirectX	8.1	(C++)

Direct3D	C/C++	Reference
This	section	contains	reference	information	for	the	API	elements	provided	by
Microsoft®	Direct3D®.	Reference	material	is	divided	into	the	following
categories.

Interfaces
Functions
Macros
Vertex	Shader	Declarator	Macros
Structures
Enumerated	Types
Other	Types
Texture	Argument	Flags
Flexible	Vertex	Format	Flags
Return	Values

	
Microsoft	DirectX	8.1	(C++)

Direct3DX	C/C++	Reference
This	section	contains	reference	information	for	the	API	elements	provided	by	the
Direct3DX	utility	library.	Reference	material	is	divided	into	the	following
categories.

Interfaces
Functions
Macros
Structures
Enumerated	Types	and	Flags
C++	Specific	Features
Return	Values

	
Microsoft	DirectX	8.1	(C++)

X	File	C/C++	Reference
This	section	contains	reference	information	for	the	application	programming
interface	(API)	elements	you	use	to	work	with	Microsoft®	DirectX®	.x	files.

Interfaces
Functions
Structures
Return	Values
X	File	Format	Reference

	
Microsoft	DirectX	8.1	(C++)

Getting	Started	with	Direct3D
This	section	provides	a	brief	introduction	to	the	three-dimensional	(3-D)
graphics	functionality	in	the	Microsoft®	Direct3D®	application	programmer
interface	(API).	Here	you	will	find	an	overview	of	the	graphics	pipeline	and
tutorials	to	help	you	get	basic	Direct3D	functionality	up	and	running	quickly.

Direct3D	Architecture
DirectX	Graphics	C/C++	Tutorials

	
Microsoft	DirectX	8.1	(C++)

Using	Direct3D
This	section	explains	the	operation	of	the	Microsoft®	Direct3D®	fixed	function
pipeline.	The	pipeline	consists	of	several	building	blocks.	These	blocks	are
detailed	in	the	following	sections.

Vertex	Data

Transforms

Viewports	and	Clipping

Lights	and	Materials

Textures

Rendering

About	Devices

	
Microsoft	DirectX	8.1	(C++)

Programmable	Pipeline
Using	shaders	and	effects,	developers	can	now	program	the	pipeline.	These
topics	are	covered	in	the	following	sections.

Vertex	Shaders
Pixel	Shaders
Effects

Microsoft	DirectX	8.1	(C++)

Advanced	Topics

Microsoft®	Direct3D®	provides	a	powerful	set	of	tools	that	you	can	use	to
increase	the	realistic	appearance	of	a	3-D	scene.	This	section	presents
information	on	common	special	effects	that	can	be	produced	with	Direct3D,	but
the	range	of	possible	effects	is	not	limited	to	those	presented	here.	The
discussion	in	this	section	is	organized	into	the	following	topics.

Antialiasing
Bump	Mapping
Environment	Mapping
Geometry	Blending
Indexed	Vertex	Blending
Matrix	Stacks
Stencil	Buffer	Techniques
Vertex	Tweening
Object	Geometry

	
Microsoft	DirectX	8.1	(C++)

Direct3D	Appendix
This	section	contains	additional	material	that	covers	topics	such	as	file	formats
and	tips	for	performance	improvements.

DDS	File	Format

This	section	explains	the	DDS	file	format	in	detail.

Device	States

This	section	explains	device	states,	which	are	used	to	set	rendering	and
texturing	attributes.

Programming	Tips

These	tips	are	derived	from	lessons	learned	from	programming	topics	such
as	troubleshooting	a	program,	implementing	multithreading,	or	optimizing
code	for	performance.

X	Files

This	section	explains	X	files	in	depth,	including	their	architecture,	the	file
format,	and	some	samples	of	file	loading	and	saving.

Mesh	View	Help

This	section	outlines	the	functionality	that	is	available	in	the	mesh	view
executable.	This	handy	executable	can	be	used	to	experiment	with	meshes
by	applying	different	mesh	utility	operations.	This	application	is	part	of	the
SDK	install.

	
Microsoft	DirectX	8.1	(version	1.0,	1.1)

Create	a	Vertex	Shader

This	example	creates	a	vertex	shader	that	applies	a	constant	color	to	an	object.
The	example	will	show	the	contents	of	the	shader	file	as	well	as	the	code
required	in	the	application	to	set	up	the	Microsoft®	Direct3D®	pipeline	for	the
shader	data.

To	create	a	vertex	shader

Step	1:	Declare	the	vertex	data
Step	2:	Design	the	shader	functionality
Step	3:	Check	for	vertex	shader	support
Step	4:	Declare	the	shader	registers
Step	5:	Create	the	shader
Step	6:	Render	the	output	pixels

If	you	already	know	how	to	build	and	run	Direct3D	samples,	you	can	cut	and
paste	code	from	this	example	into	your	existing	application.

Step	1:	Declare	the	vertex	data

This	example	uses	a	quadrilateral	that	is	made	up	of	two	triangles.	The	vertex
data	will	contain	(x,y,z)	position	and	a	diffuse	color.	The
D3DFVF_CUSTOMVERTEX	macro	is	defined	to	match	the	vertex	data.	The
vertex	data	is	declared	in	a	global	array	of	vertices	(g_Vertices).	The	four
vertices	are	centered	about	the	origin,	and	each	vertex	is	given	a	different	diffuse
color.

//	Declare	vertex	data	structure.	

struct	CUSTOMVERTEX

{

				FLOAT	x,	y,	z;

				DWORD	diffuseColor;

};

//	Declare	custom	FVF	macro.

#define	D3DFVF_CUSTOMVERTEX	(D3DFVF_XYZ|D3DFVF_DIFFUSE)

//	Declare	the	vertex	position	and	diffuse	color	data.

CUSTOMVERTEX	g_Vertices[]=

{

				//		x								y						z					diffuse	color

				{	-1.0f,	-1.0f,	0.0f,	0xffff0000	},			//	red			-	bottom	right

				{	+1.0f,	-1.0f,	0.0f,	0xff00ff00	},			//	green	-	bottom	left

				{	+1.0f,	+1.0f,	0.0f,	0xff0000ff	},			//	blue		-	top	left

				{	-1.0f,	+1.0f,	0.0f,	0xffffff00	},			//	red	and	green	=	yellow	-	top	right

};

Step	2:	Design	the	shader	functionality

This	shader	applies	a	constant	color	to	each	vertex.	The	shader	file
VertexShader.vsh	follows:

vs.1.0														//	version	instruction

m4x4	oPos,	v0,	c0			//	transform	vertices	by	view/projection	matrix

mov	oD0,	c4									//	load	constant	color

This	file	contains	three	instructions.

The	first	instruction	in	a	shader	file	must	be	the	shader	version	declaration.	This
instruction	(vs)	declares	the	vertex	shader	version,	which	is	1.0	in	this	case.

The	second	instruction	(m4x4)	transforms	the	object	vertices	using	the
view/projection	matrix.	The	matrix	is	loaded	into	four	constant	registers	c0,	c1,
c2,	c3	(as	shown	below).

The	third	instruction	(mov)	copies	the	constant	color	in	register	c4	to	the	output
diffuse	color	register	oD0.	This	results	in	coloring	the	output	vertices.

Step	3:	Check	for	vertex	shader	support

The	device	capability	can	be	queried	for	vertex	shader	support	before	using	a
vertex	shader.

D3DCAPS8	caps;

m_pd3dDevice->GetDeviceCaps(∩);							//	initialize	m_pd3dDevice	before	using
if(D3DSHADER_VERSION_MAJOR(caps.VertexShaderVersion)	<	1)

	 return	E_FAIL;

The	caps	structure	returns	the	functional	capabilities	of	the	hardware	after
GetDeviceCaps	is	called.	Use	the	D3DSHADER_VERSION_MAJOR	macro
to	test	the	supported	version	number.	If	the	version	number	is	less	than	1.0,	this
call	will	fail.	The	result	of	this	method	should	be	used	to	control	whether	or	not

vertex	shaders	are	invoked	by	an	application.

Step	4:	Declare	the	shader	registers

The	shader	is	created	by	declaring	the	shader	registers	and	compiling	the	shader
file.	Once	created,	Direct3D	returns	a	shader	handle,	which	is	an	integer	number
that	is	used	to	identify	the	shader.

//	Create	the	shader	declaration.

DWORD	dwDecl[]	=

{

				D3DVSD_STREAM(0),

				D3DVSD_REG(D3DVSDE_POSITION,		D3DVSDT_FLOAT3),

				D3DVSD_REG(D3DVSDE_DIFFUSE,	D3DVSDT_D3DCOLOR),

				D3DVSD_END()

};

The	vertex	declaration	declares	the	mapping	between	input	data	streams	and
vertex	buffers.	Multiple	streams	can	be	declared	in	the	shader	declaration,	up	to
the	number	specified	in	the	MaxStreams	cap.	Vertex	buffers	are	associated	with
input	streams	using	SetStreamSource	as	illustrated	in	step	5.

Step	5:	Create	the	shader

The	shader	is	assembled	and	created	next.

//	Create	the	vertex	shader.

TCHAR								strPath[512];																						//	location	of	the	shader	file

LPD3DXBUFFER	pCode;																													//	assembled	shader	code

DXUtil_FindMediaFile(strPath,	_T("VertexShader.vsh"));

D3DXAssembleShaderFromFile(strPath,	0,	NULL,	&pCode;,	NULL);		//	assemble	shader	code

m_pd3dDevice->CreateVertexShader(dwDecl,	(DWORD*)pCode->GetBufferPointer(),	&m;_hVertexShader,	0)))

pCode->Release();

Once	the	shader	file	is	located,	D3DXAssembleShaderFromFile	reads	and
validates	the	shader	instructions.	CreateVertexShader	takes	the	shader
declaration	and	the	assembled	instructions	and	creates	the	shader.	It	returns	the
shader	handle,	which	is	used	to	render	the	output.

CreateVertexShader	can	be	used	to	create	programmable	or	fixed	function
shaders.	Programmable	shaders	are	generated	if	a	pointer	to	a	shader	declaration
is	passed	as	the	second	parameter.	Otherwise,	a	fixed	function	vertex	shader	is

generated	if	NULL	is	passed	as	the	second	parameter.

Step	6:	Render	the	output	pixels

Here	is	an	example	of	the	code	that	could	be	used	in	the	render	loop	to	render
the	object,	using	the	vertex	shader.	The	render	loop	updates	the	vertex	shader
constants	as	a	result	of	changes	in	the	3-D	scene	and	draws	the	output	vertices
with	a	call	to	DrawPrimitive.

//	Turn	lighting	off.	This	is	included	for	clarity	but	is	not	required.

m_pd3dDevice->SetRenderState(D3DRS_LIGHTING,	FALSE);

//	Update	vertex	shader	constants	from	view	projection	matrix	data.

D3DXMATRIX	mat,	matView,	matProj;

D3DXMatrixMultiply(&mat;,	&matView;,	&matProj;);

D3DXMatrixTranspose(&mat;,	&mat;);

m_pd3dDevice->SetVertexShaderConstant(0,	&mat;,	4);

//	Declare	and	define	the	constant	vertex	color.

float	color[4]	=	{0,1,0,0};

m_pd3dDevice->SetVertexShaderConstant(4,	&color;,	1);

//	Render	the	output.

m_pd3dDevice->SetStreamSource(0,	m_pQuadVB,	sizeof(CUSTOMVERTEX));

m_pd3dDevice->SetVertexShader(m_hVertexShader);

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	2);

Lighting	is	turned	off	just	to	make	it	clear	that	the	vertex	color	is	from	the	shader
only.	This	statement	is	optional	in	this	example.

The	view	and	projection	matrixes	contain	camera	position	and	orientation	data.
Getting	updated	data	and	updating	the	shader	constant	registers	is	included	in	the
render	loop	because	the	scene	might	change	between	rendered	frames.

As	usual,	DrawPrimitive	renders	the	output	data	using	the	vertex	data	provided
from	SetStreamSource.	SetVertexShader	is	called	to	tell	Direct3D	to	use	the
vertex	shader.	The	result	of	the	vertex	shader	is	shown	in	the	following	image.	It
shows	the	constant	color	on	the	plane	object.

	
Microsoft	DirectX	8.1	(shader	versions	1.0,	1.1)

Shader2	-	Apply	vertex	colors

This	example	applies	the	vertex	color	from	the	vertex	data	to	the	object.	The
vertex	data	contains	position	data	as	well	as	diffuse	color	data.	This	is	reflected
in	the	vertex	declaration	and	the	fixed	vertex	function	macro.	These	are	shown
below.

struct	CUSTOMVERTEX_POS_COLOR

{

				float							x,	y,	z;

				DWORD							diffuseColor;

};

#define	D3DFVF_CUSTOMVERTEX_POS_COLOR	(D3DFVF_XYZ|D3DFVF_DIFFUSE)

//	Create	vertex	data	with	position	and	texture	coordinates.

CUSTOMVERTEX_POS_COLOR	g_Vertices[]=

{

				//		x						y					z					diffuse			

				{	-1.0f,	0.25f,	0.0f,	0xffff0000,		},	 //		-	bottom	right	-	red

				{		0.0f,	0.25f,	0.0f,	0xff00ff00,		},	 //		-	bottom	left	-	green

				{		0.0f,	1.25f,	0.0f,	0xff0000ff,		},	 //		-	top	left	-	blue

				{	-1.0f,	1.25f,	0.0f,	0xffffffff,		},	 //		-	top	right	-	white

};

The	vertex	shader	declaration	needs	to	reflect	the	position	and	color	data	also.

DWORD	dwDecl2[]	=

{

				D3DVSD_STREAM(0),

				D3DVSD_REG(0,	D3DVSDT_FLOAT3),						//	Register	0	will	contain	the	position	data.

				D3DVSD_REG(1,	D3DVSDT_D3DCOLOR),			//	Register	1	will	contain	the	color	data.

				D3DVSD_END()

};

One	way	for	the	shader	to	get	the	transformation	matrix	is	from	a	constant
register.	This	is	done	by	calling	SetVertexShaderConstant.

				D3DXMATRIX	mat;

	 D3DXMatrixMultiply(&mat;,	&m;_matView,	&m;_matProj);

				D3DXMatrixTranspose(&mat;,	&mat;);

				hr	=	m_pd3dDevice->SetVertexShaderConstant(1,	&mat;,	4);

	 if(FAILED(hr))	return	hr;

This	declaration	declares	one	stream	of	data,	which	contains	the	position	and	the

color	data.	The	color	data	is	assigned	to	vertex	register	7.

Lastly,	here	is	the	shader	file.

vs.1.0														;	version	instruction

m4x4	oPos,	v0,	c0			;	transform	vertices	by	view/projection	matrix

mov	oD0,	v1									;	load	color	from	register	7	to	diffuse	color

It	contains	three	instructions.	The	first	is	always	the	version	instruction.	The
second	instruction	transforms	the	vertices.	The	third	instruction	moves	the	color
in	the	vertex	register	to	the	output	diffuse	color	register.	The	result	is	output
vertices	using	the	vertex	color	data.

The	resulting	output	looks	like	the	following:

//	Here	is	an	example	of	the	class	used	to	produce	this	vertex	shader.

//	This	example	is	for	illustration	only.	It	has	not	been	optimized	for	performance.

//	CVShader.h

//	Use	vertex	color	to	color	the	object.

CUSTOMVERTEX_POS_COLOR	g_VerticesVS[]=

{

				//		x						y					z					diffuse			

				{	-1.0f,	0.25f,	0.0f,	0xffff0000,		},	 //		-	bottom	right	-	red

				{		0.0f,	0.25f,	0.0f,	0xff00ff00,		},	 //		-	bottom	left	-	green

				{		0.0f,	1.25f,	0.0f,	0xff0000ff,		},	 //		-	top	left	-	blue

				{	-1.0f,	1.25f,	0.0f,	0xffffffff,		},	 //		-	top	right	-	red

};

class	CVShader

{

public:

				CVShader();

				HRESULT	ConfirmDevice(D3DCAPS8*	pCaps,	DWORD	dwBehavior,	D3DFORMAT	Format);

				HRESULT	DeleteDeviceObjects();

				HRESULT	Render();

				HRESULT	RestoreDeviceObjects(LPDIRECT3DDEVICE8	l_pd3dDevice);

				HRESULT	InitMatrices();

				HRESULT	UpdateVertexShaderConstants();

private:

				LPDIRECT3DVERTEXBUFFER8	 m_pQuadVB;

				LPDIRECT3DDEVICE8	 	 m_pd3dDevice;

				DWORD	 	 	 	 	 m_hVertexShader;

				D3DXMATRIX	 	 	 	 m_matView;

				D3DXMATRIX	 	 	 	 m_matProj;

};

CVShader::CVShader()

{

				m_pQuadVB	 	 	 =	NULL;

				m_pd3dDevice	 	 =	NULL;

				m_hVertexShader	 	 =	0;

}

HRESULT	CVShader::ConfirmDevice(D3DCAPS8*	pCaps,	DWORD	dwBehavior,

																																										D3DFORMAT	Format)

{

				if(D3DSHADER_VERSION_MAJOR(pCaps->VertexShaderVersion)	<	1)

								return	E_FAIL;

				return	S_OK;

}

HRESULT	CVShader::DeleteDeviceObjects()

{

				SAFE_RELEASE(m_pQuadVB);

				HRESULT	hr;

				if(m_hVertexShader	>	0)

				{

								hr	=	m_pd3dDevice->DeleteVertexShader(m_hVertexShader);

								if(FAILED(hr))

								{

												::MessageBox(NULL,"","DeleteVertexShader	failed",MB_OK);

												return	E_FAIL;

								}

								m_hVertexShader	=	0;

				}

				//	local	to	this	class

				m_pd3dDevice	=	NULL;

				return	S_OK;

}

HRESULT	CVShader::InitMatrices()

{

				HRESULT	hr;

				D3DXVECTOR3	from(0.0f,	0.0f,	3.0f);

				D3DXVECTOR3	at(0.0f,	0.0f,	0.0f);

				D3DXVECTOR3	up(0.0f,	1.0f,	0.0f);

				D3DXMATRIX	matWorld;

				D3DXMatrixIdentity(&matWorld;);

				hr	=	m_pd3dDevice->SetTransform(D3DTS_WORLD,	&matWorld;);

				D3DXMatrixIdentity(&m;_matView);

				D3DXMatrixLookAtLH(&m;_matView,	&from;,	&at;,	&up;);

				m_pd3dDevice->SetTransform(D3DTS_VIEW,	&m;_matView);

				D3DXMatrixIdentity(&m;_matProj);

				D3DXMatrixPerspectiveFovLH(&m;_matProj,	D3DX_PI/4,	1.0f,	0.5f,	1000.0f);

				m_pd3dDevice->SetTransform(D3DTS_PROJECTION,	&m;_matProj);

				return	S_OK;

}

HRESULT	CVShader::Render()

{

				if(m_pQuadVB)

				{

								HRESULT	hr;

								hr	=	m_pd3dDevice->SetRenderState(D3DRS_LIGHTING,	FALSE);

								UpdateVertexShaderConstants();

								hr	=	m_pd3dDevice->SetStreamSource(0,	m_pQuadVB,

	 	 				sizeof(CUSTOMVERTEX_POS_COLOR));

								hr	=	m_pd3dDevice->SetVertexShader(m_hVertexShader);

								hr	=	m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	2);

	 }

				return	S_OK;

}

HRESULT	CVShader::RestoreDeviceObjects(LPDIRECT3DDEVICE8	l_pd3dDevice)

{

				HRESULT	hr;

				if(l_pd3dDevice	==	NULL)

				{

								::MessageBox(NULL,"","Invalid	D3D8	Device	ptr",MB_OK);

								return	E_FAIL;

				}

				else

								m_pd3dDevice	=	l_pd3dDevice;

				InitMatrices();

				//	Create	quad	Vertex	Buffer.

				hr	=	m_pd3dDevice->CreateVertexBuffer(4*sizeof(CUSTOMVERTEX_POS_COLOR),

	 	 	 	 	 D3DUSAGE_WRITEONLY,	

	 	 	 	 	 D3DFVF_CUSTOMVERTEX_POS_COLOR,

	 	 	 	 	 D3DPOOL_DEFAULT,	

	 	 	 	 	 &m;_pQuadVB);

				if(FAILED(hr))	return	hr;

				//	Fill	the	quad	VB.

				CUSTOMVERTEX_POS_COLOR1*	pVertices	=	NULL;

				hr	=	m_pQuadVB->Lock(0,	4*sizeof(CUSTOMVERTEX_POS_COLOR),	(BYTE**)&pVertices;,	0);

				if(FAILED(hr))	return	hr;

				for(DWORD	i=0;	i<4;	i++)

								pVertices[i]	=	g_VerticesVS2[i];

				m_pQuadVB->Unlock();

				//	Create	the	vertex	shader.

				TCHAR								strVertexShaderPath[512];

				LPD3DXBUFFER	pCode;

				DWORD	dwDecl2[]	=

				{

								D3DVSD_STREAM(0),

								D3DVSD_REG(0,	D3DVSDT_FLOAT3),

	 				D3DVSD_REG(1,	D3DVSDT_D3DCOLOR),

								D3DVSD_END()

				};

				//	Find	the	vertex	shader	file.

				DXUtil_FindMediaFile(strVertexShaderPath,	_T("VShader.vsh"));

				//	Assemble	the	vertex	shader	from	the	file.

				if(FAILED(hr	=	D3DXAssembleShaderFromFile(strVertexShaderPath,	

																																																	0,	NULL,	&pCode;,	NULL)))

								return	hr;

				//	Create	the	vertex	shader.

				if(SUCCEEDED(hr	=	m_pd3dDevice->CreateVertexShader(dwDecl2,	

	 	 	 	 	 (DWORD*)pCode->GetBufferPointer(),	&m;_hVertexShader,	0)))

								pCode->Release();

				return	hr;

}

HRESULT	CVShader::UpdateVertexShaderConstants()

{

				HRESULT	hr;

				D3DXMATRIX	mat;

				D3DXMatrixMultiply(&mat;,	&m;_matView,	&m;_matProj);

				D3DXMatrixTranspose(&mat;,	&mat;);

				hr	=	m_pd3dDevice->SetVertexShaderConstant(1,	&mat;,	4);

				return	hr;

}

	
Microsoft	DirectX	8.1	(version	1.0,	1.1)

Shader3	-	Apply	a	texture	map

This	example	applies	a	texture	map	to	the	object.

The	vertex	data	contains	object	position	data	as	well	as	texture	position	or	uv
data.	This	causes	changes	to	the	vertex	declaration	structure	and	the	fixed	vertex
function	macro.	The	vertex	data	is	also	shown	below.

struct	CUSTOMVERTEX_POS_TEX1

{

				float							x,	y,	z;	 	 //	object	position	data

				float							tu1,	tv1;	 	 //	texture	position	data

};

#define	D3DFVF_CUSTOMVERTEX_POS_TEX1	(D3DFVF_XYZ|D3DFVF_TEX1)

CUSTOMVERTEX_POS_TEX1	g_Vertices[]=

{

				//		x						y					z						u1				v1			

				{	-0.75f,	-0.5f,	0.0f,	0.0f,	0.0f	},	 //		-	bottom	right

				{		0.25f,	-0.5f,	0.0f,	1.0f,	0.0f	},	 //		-	bottom	left

				{		0.25f,		0.5f,	0.0f,	1.0f,	-1.0f	},	 //		-	top	left

				{	-0.75f,		0.5f,	0.0f,	0.0f,	-1.0f	},	 //		-	top	right

};

D3DUtil_CreateTexture(m_pd3dDevice,	_T("earth.bmp"),	&m;_pTexture0,	D3DFMT_R5G6B5);

The	texture	image	must	be	loaded.	In	this	case,	the	file	"earth.bmp"	contains	a	2-
D	texture	map	of	the	earth	and	will	be	used	to	color	the	object.

The	vertex	shader	declaration	needs	to	reflect	the	object	position	and	texture
position	data.

DWORD	dwDecl2[]	=

{

				D3DVSD_STREAM(0),

				D3DVSD_REG(D3DVSDE_POSITION,		D3DVSDT_FLOAT3),

	 D3DVSD_REG(8,	D3DVSDT_FLOAT2),

				D3DVSD_END()

};

This	declaration	declares	one	stream	of	data	that	contains	the	object	position	and
the	texture	position	data.	The	texture	position	data	is	assigned	to	vertex	register
8.

The	rendering	code	tells	Microsoft®	Direct3D®	where	to	find	the	data	stream
and	the	shader,	and	sets	up	texture	stages	because	a	texture	map	is	being	applied.

m_pd3dDevice->SetStreamSource(0,	m_pQuadVB,	sizeof(CUSTOMVERTEX_POS_TEX1));

m_pd3dDevice->SetVertexShader(m_hVertexShader);

m_pd3dDevice->SetTextureStageState(0,	D3DTSS_COLOROP,			D3DTOP_MODULATE);

m_pd3dDevice->SetTextureStageState(0,	D3DTSS_COLORARG1,	D3DTA_TEXTURE);

m_pd3dDevice->SetTextureStageState(0,	D3DTSS_COLORARG2,	D3DTA_DIFFUSE);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	2);

m_pd3dDevice->SetTexture(0,	NULL);

Because	there	is	a	single	texture,	the	texture	stage	states	need	to	be	set	for
texture	state	0.	These	methods	tell	Direct3D	that	the	texel	values	will	be	used	to
provide	diffuse	color	for	the	object	vertices.	In	other	words,	a	2-D	texture	map
will	be	applied	like	a	decal.

Here	is	the	shader	file.

vs.1.0	 	 	 	 ;	version	instruction

m4x4	oPos,	v0,	c0	 ;	transform	vertices	by	view/projection	matrix

mov	oT0,	v8	 	 	 ;	move	texture	color	to	output	texture	register

The	shader	file	contains	three	instructions.	The	first	is	always	the	version
instruction.	The	second	instruction	transforms	the	vertices.	The	third	instruction
moves	the	texture	colors	from	register	v8	to	the	output	diffuse	color	register.
That	results	in	a	texture	mapped	object,	which	is	shown	below.

	
Microsoft	DirectX	8.1	(version	1.0,	1.1)

Shader4	-	Apply	a	texture	map	with	lighting

This	example	uses	a	vertex	shader	to	apply	a	texture	map	and	add	lighting	to	the
scene.	The	object	used	is	a	sphere.	The	sample	code	applies	a	texture	map	of	the
earth	to	the	sphere	and	applies	diffuse	lighting	to	simulate	night	and	day.

The	code	sample	adds	to	the	Shader3	example	by	adding	lighting	to	a	texture
mapped	object.	Refer	to	Shader3	for	information	about	loading	the	texture	map
and	setting	up	the	texture	stage	states.

There	is	a	detailed	explanation	of	the	sample	code	framework	at	Sample
Framework.	You	can	cut	and	paste	the	sample	code	into	the	sample	framework
to	quickly	get	a	working	sample.

Create	Vertex	Shader

The	vertex	data	has	been	modified	from	the	Shader3	sample	to	include	vertex
normals.	For	lighting	to	appear,	the	object	must	have	vertex	normals.	The	data
structure	for	the	vertex	data	and	the	flexible	vertex	format	(FVF)	macro	used	to
declare	the	data	type	are	shown	below.

struct	CUSTOMVERTEX_POS_NORM_COLOR1_TEX1

{

				float							x,	y,	z;								//	position

				float							nx,	ny,	nz;					//	normal

				DWORD							color1;									//	diffuse	color

				float							tu1,	tv1;							//	texture	coordinates

};

#define	D3DFVF_CUSTOMVERTEX_POS_NORM_COLOR1_TEX1	(D3DFVF_XYZ|D3DFVF_NORMAL|D3DFVF_DIFFUSE|D3DFVF_TEX1)

A	shader	declaration	defines	the	input	vertex	registers	and	the	data	associated
with	them.	This	matches	the	FVF	macro	used	to	create	the	vertex	buffer	data
later.

DWORD	dwDecl[]	=

{

				D3DVSD_STREAM(0),

				D3DVSD_REG(0,		D3DVSDT_FLOAT3),						//	position

				D3DVSD_REG(4,		D3DVSDT_FLOAT3),						//	normal

				D3DVSD_REG(7,		D3DVSDT_D3DCOLOR),				//	diffuse	color

				D3DVSD_REG(8,		D3DVSDT_FLOAT2),						//	texture	coordinate

				D3DVSD_END()

};

This	declares	one	stream	of	data,	which	contains	the	vertex	position,	normal,
diffuse	color,	and	texture	coordinates.	The	integer	in	each	line	is	the	register
number	that	will	contain	the	data.	So,	the	texture	coordinate	data	will	be	in
register	v8,	for	instance.

Next,	create	the	shader	file.	You	can	create	a	shader	from	an	ASCII	text	string	or
load	it	from	a	shader	file	that	contains	the	same	instructions.	This	example	uses	a
shader	file.

//	Shader	file

//	v7		vertex	diffuse	color	used	for	the	light	color

//	v8		texture	

//	c4		view	projection	matrix

//	c12	light	direction

vs.1.0																							//	version	instruction

m4x4	oPos,				v0,				c4						//	transform	vertices	using	view	projection	transform

dp3		r0					,	v4			,	c12					//	perform	lighting	N	dot	L	calculation	in	world	space								

mul		oD0				,	r0.x	,	v7						//	calculate	final	pixel	color	from	light	intensity	and

																													//	interpolated	diffuse	vertex	color	

mov		oT0.xy	,	v8													//	copy	texture	coordinates	to	output			

You	always	enter	the	version	instruction	first.	The	last	instruction	moves	the
texture	data	to	the	output	register	oT0.	After	you	write	the	shader	instructions,
you	can	use	them	to	create	the	shader.

//	Now	that	the	file	exists,	use	it	to	create	a	shader.

TCHAR								strVertexShaderPath[512];

LPD3DXBUFFER	pCode;

DXUtil_FindMediaFile(strVertexShaderPath,	_T("VShader3.vsh"));

D3DXAssembleShaderFromFile(strVertexShaderPath,	0,	NULL,	&pCode,	NULL);

m_pd3dDevice->CreateVertexShader(dwDecl,	(DWORD*)pCode->GetBufferPointer(),	&m_hVertexShader,	0);

pCode->Release();

After	the	file	is	located,	Direct3D	creates	the	vertex	shader	and	returns	a	shader
handle	and	the	assembled	shader	code.	This	sample	uses	a	shader	file,	which	is
one	method	for	creating	a	shader.	The	other	method	is	to	create	an	ASCII	text
string	with	the	shader	instructions	in	it.	For	an	example,	see	Programmable
Shaders	for	DirectX	8.0.

Vertex	Shader	Constants

You	can	define	vertex	shader	constants	outside	of	the	shader	file	as	shown	in	the
following	example.	Here,	you	use	constants	to	provide	the	shader	with	a
view/projection	matrix,	a	diffuse	light	color,	RGBA,	and	the	light	direction
vector.

float	constants[4]	=	{0,	0.5f,	1.0f,	2.0f};

m_pd3dDevice->SetVertexShaderConstant(0,	&constants;,	1);

D3DXMATRIX	mat;

D3DXMatrixMultiply(&mat;,	&m;_matView,	&m;_matProj);

D3DXMatrixTranspose(&mat;,	&mat;);

m_pd3dDevice->SetVertexShaderConstant(4,	&mat;,	4);

float	color[4]	=	{1,1,1,1};

m_pd3dDevice->SetVertexShaderConstant(8,	&color;,	1);

float	lightDir[4]	=	{-1,0,1,0};	//	fatter	slice

m_pd3dDevice->SetVertexShaderConstant(12,	&lightDir;,	1);

You	can	also	define	constants	inside	a	shader	using	the	def	instruction

Render

After	you	write	the	shader	instructions,	connect	the	vertex	data	to	the	correct
vertex	registers	and	initialize	the	constants,	you	should	render	the	output.
Rendering	code	tells	Direct3D	where	to	find	the	vertex	buffer	data	stream	and
provides	Direct3D	with	the	shader	handle.	Because	you	use	a	texture,	you	must
set	texture	stages	to	tell	Direct3D	how	to	use	the	texture	data.

//	Identify	the	vertex	buffer	data	source.

m_pd3dDevice->SetStreamSource(0,	m_pVB,	sizeof(CUSTOMVERTEX_POS_NORM_COLOR1_TEX1));

//	Identify	the	shader.

m_pd3dDevice->SetVertexShader(m_hVertexShader);

//	Define	the	texture	stage(s)	and	set	the	texture(s)	used

m_pd3dDevice->SetTextureStageState(0,	D3DTSS_COLOROP,			D3DTOP_MODULATE);

m_pd3dDevice->SetTextureStageState(0,	D3DTSS_COLORARG1,	D3DTA_TEXTURE);

m_pd3dDevice->SetTextureStageState(0,	D3DTSS_COLORARG2,	D3DTA_DIFFUSE);

m_pd3dDevice->SetTexture(0,	m_pTexture0);

//	Draw	the	object.

DWORD	dwNumSphereVerts	=	2	*	m_dwNumSphereRings*(m_dwNumSphereSegments	+	1);

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP,	0,	dwNumSphereVerts	-	2);

//	Set	the	texture	stage	to	NULL	after	the	render	commands.	Leaving	this

//	out	will	cause	a	memory	leak.

m_pd3dDevice->SetTexture(0,	NULL);

The	output	image	follows:

With	the	texture	map	applied,	the	sphere	looks	like	the	planet	Earth.	The	lighting
creates	a	bright	to	dark	gradient	on	the	face	of	the	globe.

Additional	Code

There	is	additional	code	required	to	support	this	example.	Shown	below	are	a
few	of	the	other	methods	for	creating	the	sphere	object,	loading	the	texture,	and
checking	for	the	correct	version	of	pixel	shader	support.

//	Confirm	that	the	hardware	supports	version	1	shader	instructions.

if(D3DSHADER_VERSION_MAJOR(pCaps->VertexShaderVersion)	<	1)

				return	E_FAIL;

//	Load	texture	map	for	the	sphere	object.

LPDIRECT3DTEXTURE8	m_pTexture0;

D3DUtil_CreateTexture(m_pd3dDevice,	_T("earth.bmp"),	&m;_pTexture0,	D3DFMT_R5G6B5);

//	Create	the	sphere	object.

DWORD	dwNumSphereVerts	=	2*m_dwNumSphereRings*(m_dwNumSphereSegments+1);

//	once	for	the	top,	once	for	the	bottom	vertices

//	Get	the	World-View(WV)	matrix	set.

D3DXMATRIX	matWorld,	matView,	matWorldView;

m_pd3dDevice->GetTransform(D3DTS_WORLD,	&matWorld;);

m_pd3dDevice->GetTransform(D3DTS_VIEW,		&matView;);

D3DXMatrixMultiply(&matWorldView;,	&matWorld;,	&matView;);

m_pd3dDevice->CreateVertexBuffer(

				dwNumSphereVerts*sizeof(CUSTOMVERTEX_POS_NORM_COLOR1_TEX1),

				D3DUSAGE_WRITEONLY,	

				D3DFVF_CUSTOMVERTEX_POS_NORM_COLOR1_TEX1,

				D3DPOOL_DEFAULT,	

				&m;_pVB));

CUSTOMVERTEX_POS_NORM_COLOR1_TEX1*	pVertices;

HRESULT	hr;

hr	=	m_pVB->Lock(0,	dwNumSphereVerts*sizeof(pVertices),	

	 	 	 	 	 (BYTE**)&pVertices;,	0);

if(SUCCEEDED(hr))

{

				FLOAT	fDeltaRingAngle	=	(D3DX_PI	/	m_dwNumSphereRings);

				FLOAT	fDeltaSegAngle		=	(2.0f	*	D3DX_PI	/	m_dwNumSphereSegments);

				//	Generate	the	group	of	rings	for	the	sphere.

				for(DWORD	ring	=	0;	ring	<	m_dwNumSphereRings;	ring++)

				{

								FLOAT	r0	=	sinf((ring+0)	*	fDeltaRingAngle);

								FLOAT	r1	=	sinf((ring+1)	*	fDeltaRingAngle);

								FLOAT	y0	=	cosf((ring+0)	*	fDeltaRingAngle);

								FLOAT	y1	=	cosf((ring+1)	*	fDeltaRingAngle);

								//	Generate	the	group	of	segments	for	the	current	ring.

								for(DWORD	seg	=	0;	seg	<	(m_dwNumSphereSegments+1);	seg++)

								{

												FLOAT	x0	=		r0	*	sinf(seg	*	fDeltaSegAngle);

												FLOAT	z0	=		r0	*	cosf(seg	*	fDeltaSegAngle);

												FLOAT	x1	=		r1	*	sinf(seg	*	fDeltaSegAngle);

												FLOAT	z1	=		r1	*	cosf(seg	*	fDeltaSegAngle);

												//	Add	two	vertices	to	the	strip,	which	makes	up	the	sphere

												//	(using	the	transformed	normal	to	generate	texture	coords).

												pVertices->x	=	x0;

												pVertices->y	=	y0;

												pVertices->z	=	z0;

												pVertices->nx	=	x0;

												pVertices->ny	=	y0;

												pVertices->nz	=	z0;

												pVertices->color	=	HIGH_WHITE_COLOR;

												pVertices->tu	=	-((FLOAT)seg)/m_dwNumSphereSegments;

												pVertices->tv	=	(ring+0)/(FLOAT)m_dwNumSphereRings;

												pVertices++;

												pVertices->x	=	x1;

												pVertices->y	=	y1;

												pVertices->z	=	z1;

												pVertices->nx	=	x1;

												pVertices->ny	=	y1;

												pVertices->nz	=	z1;

												pVertices->color	=	HIGH_WHITE_COLOR;

												pVertices->tu	=	-((FLOAT)seg)/m_dwNumSphereSegments;

												pVertices->tv	=	(ring+1)/(FLOAT)m_dwNumSphereRings;

												pVertices++;

								}

								hr	=	m_pVB->Unlock();

				}

}

	
Microsoft	DirectX	8.1	(C++)

Create	a	Pixel	Shader

This	example	uses	a	pixel	shader	to	apply	a	Gouraud	interpolated	diffuse	color	to
a	geometric	plane.	The	example	will	show	the	contents	of	the	shader	file	as	well
as	the	code	required	in	the	application	to	set	up	the	Microsoft®	Direct3D®
pipeline	for	the	shader	data.

To	create	a	pixel	shader

1.	 Check	for	pixel	shader	support.
2.	 Declare	the	vertex	data.
3.	 Design	the	pixel	shader.
4.	 Create	the	pixel	shader.
5.	 Render	the	output	pixels.

If	you	already	know	how	to	build	and	run	Direct3D	samples,	you	should	be	able
to	cut	and	paste	code	from	this	example	into	your	existing	application.

Step	1:	Check	for	pixel	shader	support

To	check	for	pixel	shader	support,	use	the	following	code.	This	example	checks
for	pixel	shader	version	1.1.

D3DCAPS8	caps;

m_pd3dDevice->GetDeviceCaps(∩);								//	init	m_pd3dDevice	before	using
if(D3DPS_VERSION(1,1)	!=	caps.PixelShaderVersion)

	 return	E_FAIL;

The	caps	structure	returns	the	functional	capabilities	of	the	pipeline.	Use	the
D3DPS_VERSION	macro	to	test	for	the	supported	shader	version	number.	If	the
version	number	is	less	than	1.1,	this	call	will	fail.	If	the	hardware	does	not
support	the	shader	version	that	is	tested,	the	application	will	have	to	fall	back	to
another	rendering	approach	(perhaps	a	lower	shader	version	is	available).

Step	2:	Declare	the	vertex	data

This	example	uses	a	plane,	which	is	made	up	of	two	triangles.	The	data	structure
for	each	vertex	will	contain	position	and	diffuse	color	data.	The

D3DFVF_CUSTOMVERTEX	macro	defines	a	data	structure	to	match	the	vertex
data.	The	actual	vertex	data	is	declared	in	a	global	array	of	vertices	called
g_Vertices[].	The	four	vertices	are	centered	about	the	origin,	and	each	vertex	is
given	a	different	diffuse	color.

//	Declare	vertex	data	structure.	

struct	CUSTOMVERTEX

{

				FLOAT	x,	y,	z;

				DWORD	diffuseColor;

};

//	Declare	custom	FVF	macro.

#define	D3DFVF_CUSTOMVERTEX	(D3DFVF_XYZ|D3DFVF_DIFFUSE)

//	Declare	the	vertex	position	and	diffuse	color	data.

CUSTOMVERTEX	g_Vertices[]=

{

//						x						y						z			diffuse	color

				{	-1.0f,	-1.0f,	0.0f,	0xffff0000	},		//	red			-	bottom	left

				{	+1.0f,	-1.0f,	0.0f,	0xff00ff00	},		//	green	-	bottom	right

				{	+1.0f,	+1.0f,	0.0f,	0xff0000ff	},		//	blue		-	top	right

				{	-1.0f,	+1.0f,	0.0f,	0xffffffff	},		//	white	-	top	left

};

Step	3:	Design	the	pixel	shader

This	shader	moves	the	Gouraud	interpolated	diffuse	color	data	to	the	output
pixels.	The	shader	file	PixelShader.txt	follows:

ps.1.0								//	version	instruction

mov	r0,v0					//	Move	the	diffuse	vertex	color	to	the	output	register.

The	first	instruction	in	a	pixel	shader	file	declares	the	pixel	shader	version,
which	is	1.0.

The	second	instruction	moves	the	contents	of	the	color	register	(v0)	into	the
output	register	(r0).	The	color	register	contains	the	vertex	diffuse	color	because
the	vertex	data	is	declared	to	contain	the	interpolated	diffuse	color	in	step	1.	The
output	register	determines	the	pixel	color	used	by	the	render	target	(because
there	is	no	additional	processing,	such	as	fog,	in	this	case).

Step	4:	Create	the	pixel	shader

The	pixel	shader	is	created	from	the	pixel	shader	instructions.	In	this	example,
the	instructions	are	contained	in	a	separate	file.	The	instructions	could	also	be
used	in	a	text	string.

TCHAR								strPath[512];											//	used	to	locate	the	shader	file

LPD3DXBUFFER	pCode;																		//	points	to	the	assembled	shader	code

DXUtil_FindMediaFile(strPath,	_T("PixelShader.txt"));

This	function	is	a	helper	function	used	by	the	Sample	Framework.	The	sample
framework	is	the	foundation	on	which	many	of	the	samples	are	built.

D3DXAssembleShaderFromFile(strPath,	0,	NULL,	&pCode;,	NULL);				//	assemble	shader	code

m_pd3dDevice->CreatePixelShader((DWORD*)pCode->GetBufferPointer(),	&m;_hPixelShader);

Once	the	shader	is	created,	the	handle	m_hPixelShader	is	used	to	refer	to	it.

Step	5:	Render	the	output	pixels

Rendering	the	output	pixels	is	very	similar	to	using	the	fixed	function	pipeline
sequence	of	calls	except	that	the	pixel	shader	handle	is	now	used	to	set	the
shader.

//	Turn	lighting	off	for	this	example.	It	will	not	contribute	to	the	final	pixel	color.

//	The	pixel	color	will	be	determined	solely	by	interpolating	the	vertex	colors.

m_pd3dDevice->SetRenderState(D3DRS_LIGHTING,	FALSE);

m_pd3dDevice->SetStreamSource(0,	m_pQuadVB,	sizeof(CUSTOMVERTEX));

m_pd3dDevice->SetVertexShader(D3DFVF_CUSTOMVERTEX);

m_pd3dDevice->SetPixelShader(m_hPixelShader);

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	2);

The	source	of	the	vertex	data	is	set	with	SetStreamSource.	In	this	example,
SetVertexShader	uses	the	same	Flexible	Vertex	Format	(FVF)	macro	used	during
vertex	data	declaration	to	tell	Direct3D	to	do	fixed	function	vertex	processing.
Vertex	shaders	and	pixel	shaders	may	be	used	together	or	separately.	The	fixed
function	pipeline	can	also	be	used	instead	of	either	pixel	or	vertex	shaders.
SetPixelShader	tells	Direct3D	which	pixel	shader	to	use,	DrawPrimitive	tells
Direct3D	how	to	draw	the	plane.

The	gouraud	shaded	pixels	are	shown	in	the	following	image.

Pixel	Shader	Examples	contains	examples	that	show	how	to	apply	texture	maps
and	blend	between	textures	and	vertex	colors.

	
Microsoft	DirectX	8.1	(C++)

Texture	Considerations
The	pixel	shader	completely	replaces	the	pixel-blending	functionality	specified
by	the	Microsoft®	DirectX®	6.0	and	7.0	multi-texturing	application
programming	interfaces	(APIs),	specifically	those	operations	defined	by	the
D3DTSS_COLOROP,	D3DTSS_COLORARG1,	D3DTSS_COLORARG2,
D3DTSS_ALPHAOP,	D3DTSS_ALPHAARG1,	and	D3DTSS_ALPHAARG2
texture	stage	states,	and	associated	arguments	and	modifiers.	When	a	procedural
pixel	shader	is	set,	these	states	are	ignored.

Pixel	Shaders	and	Texture	Stage	States

When	pixel	shaders	are	in	operation,	the	following	texture	stage	states	are	still
observed.

D3DTSS_ADDRESSU
D3DTSS_ADDRESSV
D3DTSS_ADDRESSW
D3DTSS_BUMPENVMAT00
D3DTSS_BUMPENVMAT01
D3DTSS_BUMPENVMAT10
D3DTSS_BUMPENVMAT11
D3DTSS_BORDERCOLOR
D3DTSS_MAGFILTER
D3DTSS_MINFILTER
D3DTSS_MIPFILTER
D3DTSS_MIPMAPLODBIAS
D3DTSS_MAXMIPLEVEL
D3DTSS_MAXANISOTROPY
D3DTSS_BUMPENVLSCALE
D3DTSS_BUMPENVLOFFSET
D3DTSS_TEXCOORDINDEX
D3DTSS_TEXTURETRANSFORMFLAGS

Because	these	texture	stage	states	are	not	part	of	the	pixel	shader,	they	are	not
available	at	shader	compile	time	so	the	driver	can	make	no	assumptions	about
them.	For	example,	the	driver	cannot	differentiate	between	bilinear	and	trilinear
filtering	at	that	time.	The	application	is	free	to	change	these	states	without
requiring	the	regeneration	of	the	currently	bound	shader.

Pixel	Shaders	and	Texture	Sampling

Texture	sampling	and	filtering	operations	are	controlled	by	the	standard	texture
stage	states	for	minification,	magnification,	mip	filtering,	and	the	wrap
addressing	modes.	For	more	information,	see	Texture	Stage	States.	This
information	is	not	available	to	the	driver	at	shader	compile	time,	so	shaders	must
be	able	to	continue	operation	when	this	state	changes.	The	application	is
responsible	for	setting	textures	of	the	correct	type	(image	map,	cube	map,
volume	map,	etc.)	needed	by	the	pixel	shader.	Setting	a	texture	of	the	incorrect
type	will	produce	unexpected	results.

Post-Shader	Pixel	Processing

Other	pixel	operations—such	as	fog	blending,	stencil	operations,	and	render
target	blending—occur	after	execution	of	the	shader.	Render	target	blending
syntax	is	updated	to	support	new	features	as	described	in	this	topic.

Pixel	Shader	Inputs

Diffuse	and	specular	colors	are	saturated	(clamped)	to	the	range	0	through	1
before	use	by	the	shader	because	this	is	the	range	of	valid	inputs	to	the	shader.

Color	values	input	to	the	pixel	shader	are	assumed	to	be	perspective	correct,	but
this	is	not	guaranteed	in	all	hardware.	Colors	generated	from	texture	coordinates
by	the	address	shader	are	always	iterated	in	a	perspective	correct	manner.
However,	they	are	also	clamped	to	the	range	0	to	1	during	iteration.

Pixel	Shader	Outputs

The	result	emitted	by	the	pixel	shader	is	the	contents	of	register	r0.	Whatever	it
contains	when	the	shader	completes	processing	is	sent	to	the	fog	stage	and
render	target	blender.

	
Microsoft	DirectX	8.1	(C++)

Confirming	Pixel	Shader	Support
You	can	query	members	of	D3DCAPS8	to	determine	the	level	of	support	for
operations	involving	pixel	shaders.	The	following	table	lists	the	device
capabilities	related	to	programmable	pixel	processing	in	Microsoft®	DirectX®
8.1.

Device	capability Description

MaxPixelShaderValue

Range	of	values	that	may	be	stored	in
registers	is	
[-MaxPixelShaderValue,
MaxPixelShaderValue].

MaxSimultaneousTextures Number	of	texture	stages	that	can	be
used	in	the	programmable	pixel	shader.

PixelShaderVersion Level	of	support	for	pixel	shaders.

The	PixelShaderVersion	capability	indicates	the	level	of	pixel	shader	supported.
Only	pixel	shaders	with	version	numbers	equal	to	or	less	than	this	value	will	be
successfully	created.	The	major	version	number	is	encoded	in	the	second	byte	of
PixelShaderVersion.	The	low	byte	contains	a	minor	version	number.	The	pixel
shader	version	is	indicated	by	the	first	token	in	each	shader.

Each	implementation	sets	the	PixelShaderVersion	member	to	indicate	the
maximum	pixel	shader	version	that	it	can	fully	support.	This	implies	that
implementations	should	never	fail	the	creation	of	a	valid	shader	of	the	version
less	than	or	equal	to	the	version	reported	by	PixelShaderVersion.

Setting	Pixel	Shader	Texture	Inputs

The	texture	coordinate	data	is	interpolated	from	the	vertex	texture	coordinate
data	and	is	associated	with	a	specific	texture	stage.	The	default	association	is	a
one-to-one	mapping	between	texture	stage	number	and	texture	coordinate
declaration	order.	This	means	that	the	first	set	of	texture	coordinates	defined	in
the	vertex	format	are,	by	default,	associated	with	texture	stage	0.

Texture	coordinates	can	be	associated	with	any	stage,	using	either	of	the
following	two	techniques.	When	using	a	fixed	function	vertex	shader,	the	texture
stage	state	flag	TSS_TEXCOORDINDEX	can	be	used	in
IDirect3DDevice8::SetTextureStageState	to	associate	coordinates	with	a	stage.
Otherwise,	the	texture	coordinates	are	output	by	the	vertex	shader	oTn	registers
when	using	a	programmable	vertex	shader.

Setting	the	Pixel	Shader	Constant	Registers

You	can	use	the	following	methods	to	set	and	retrieve	the	values	in	the	pixel
shader	constant	registers.

IDirect3DDevice8::GetPixelShaderConstant
IDirect3DDevice8::SetPixelShaderConstant

In	addition,	you	can	use	the	def	instruction	to	set	the	constant	registers	of	a	pixel
shader,	inside	a	pixel	shader.	This	instruction	must	come	before	all	other
instructions	except	the	version	instruction.

Compiling	and	Creating	a	Pixel	Shader

The	Direct3DX	utility	library	provides	a	set	of	functions	to	compile	pixel
shaders.	The	following	functions	are	provided.

D3DXAssembleShader
D3DXAssembleShaderFromFile

The	IDirect3DDevice8::CreatePixelShader	create	a	pixel	shader	in	DirectX
8.1	from	a	compiled	shader	declaration.	The	compiled	shader	declaration	is
obtained	from	D3DXAssembleShader.

A	given	shader	might	fail	creation	because	of	the	restraints	of	the	DirectX	8.1
hardware	model.

	
Microsoft	DirectX	8.1	(C++)

Pixel	Shader	Examples
The	topic	Create	a	Pixel	Shader	provides	an	example	of	how	to	use	a	pixel
shader	to	apply	a	single	diffuse	color.	The	following	are	examples	of	other	pixel
shader	functions.	Each	example	builds	on	the	previous	example	by	adding	a
piece	of	additional	pixel	shader	functionality.

Apply	a	Texture	Map
Blend	a	Diffuse	Vertex	Color	with	a	Texture
Blend	Two	Textures	Using	a	Constant	Color

Apply	a	Texture	Map

This	example	applies	a	texture	map	to	a	plane.	The	differences	between	this
example	and	the	previous	example	are	as	follows:

The	vertex	data	structure	and	the	Flexible	Vertex	Format	(FVF)	macro
include	texture	coordinates.	The	vertex	data	includes	u,v	data.	The
vertex	data	no	longer	needs	diffuse	color	because	the	pixel	colors	will
come	from	the	texture	map.
The	texture	is	linked	to	texture	stage	0	with	SetTexture.	Because	the
previous	example	did	not	use	a	texture,	there	was	no	SetTexture
method	used.
The	shader	uses	the	t0	texture	register	instead	of	the	v0	diffuse	color
register.

	

The	sample	code	follows:

//	Define	vertex	data	structure.

struct	CUSTOMVERTEX

{

				FLOAT	x,	y,	z;

				FLOAT	u1,	v1;

};

//	Define	corresponding	FVF	macro.

#define	D3DFVF_CUSTOMVERTEX	(D3DFVF_XYZ|D3DFVF_TEX|D3DFVF_TEXCOORDSIZE2(0))

//	Create	vertex	data	with	position	and	texture	coordinates.

static	CUSTOMVERTEX	g_Vertices[]=

{

				//		x						y					z					u1				v1

				{	-1.0f,	-1.0f,	0.0f,		0,	1,	},	

				{		1.0f,	-1.0f,	0.0f,		1,	1,	},	

				{		1.0f,		1.0f,	0.0f,		1,	0,	},	

				{	-1.0f,		1.0f,	0.0f,		0,	0,	},	

				//	v1	is	flipped	to	meet	the	top	down	convention	in	Windows

				//	the	upper	left	texture	coordinate	is	(0,0)

				//	the	lower	right	texture	coordinate	is	(1,1).	

};

//	Create	a	texture.	This	file	is	in	the	DirectX	8.1	media	from	the	SDK	download.

TCHAR		strPath[512];

DXUtil_FindMediaFile(strPath,	_T("DX5_Logo.bmp"));

LPDIRECT3DTEXTURE8						m_pTexture0;

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

//	Create	the	pixel	shader.

DXUtil_FindMediaFile(strPShaderPath,	_T("PixelShader2.txt"));

This	function	is	a	helper	function	used	by	the	Sample	Framework.	The
sample	framework	is	the	foundation	on	which	many	of	the	samples	are
built.

D3DXAssembleShaderFromFile(strPShaderPath,	0,	NULL,	&pCode;,	NULL);

m_pd3dDevice->CreatePixelShader((DWORD*)pCode->GetBufferPointer(),&m;_hPixelShader);

//	Load	the	texture	and	render	the	output	pixels.

m_pd3dDevice->SetTexture(0,	m_pTexture0);	 	 //	load	TSS0	from	the	texture

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	2);

Contents	of	the	file	"PixelShader2.txt"

//	Applies	a	texture	map	to	object	vertices.

ps.1.0																	//	Version	instruction	must	be	first	in	the	file.

tex	t0																	//	Declare	texture	register	t0,	which	will	be	loaded	from	Texture	Stage	0.	

mov	r0,	t0													//	Move	the	contents	of	the	texture	register	(t0)	to	the	output	register	(r0).

The	resulting	image	is	shown	in	the	following	example.

	

Blend	a	Diffuse	Vertex	Color	with	a	Texture

This	example	blends	or	modulates	the	colors	in	a	texture	map	with	the
vertex	colors.	The	differences	between	this	example	and	the	previous
example	are	as	follows:

The	vertex	data	structure,	the	FVF	macro,	and	the	vertex	data	include
diffuse	color.
The	shader	file	uses	the	multiply	instruction	(mul)	to	blend	or
modulate	the	texture	colors	with	the	vertex	diffuse	color.

The	texture	create	and	load	code	is	the	same.	It	is	included	here	for
completeness.

struct	CUSTOMVERTEX

{

				FLOAT	x,	y,	z;

				DWORD	color1;

				FLOAT	tu1,	tv1;

};

#define	D3DFVF_CUSTOMVERTEX	(D3DFVF_XYZ|D3DFVF_DIFFUSE|D3DFVF_TEX1|D3DFVF_TEXCOORDSIZE2(0))

static	CUSTOMVERTEX	g_Vertices[]=

{

				//		x						y					z					diffuse					u1				v1

				{	-1.0f,	-1.0f,	0.0f,	0xffff0000,	0,	1,	},	//	red

				{		1.0f,	-1.0f,	0.0f,	0xff00ff00,	1,	1,	},	//	green

				{		1.0f,		1.0f,	0.0f,	0xff0000ff,	1,	0,	},	//	blue

				{	-1.0f,		1.0f,	0.0f,	0xffffffff,	0,	0,	},	//	white

				//	v1	is	flipped	to	meet	the	top	down	convention	in	Windows

				//	the	upper	left	texture	coordinate	is	(0,0)

				//	the	lower	right	texture	coordinate	is	(1,1).	

};

//	Create	a	texture.	This	file	is	in	the	DirectX	8.1	media	from	the	SDK	download.

TCHAR		strPath[512];

DXUtil_FindMediaFile(strPath,	_T("DX5_Logo.bmp"));

LPDIRECT3DTEXTURE8						m_pTexture0;

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

//	Create	the	pixel	shader.

DXUtil_FindMediaFile(strPShaderPath,	_T("PixelShader3.txt"));

D3DXAssembleShaderFromFile(strPShaderPath,	0,	NULL,	&pCode;,	NULL);

m_pd3dDevice->CreatePixelShader((DWORD*)pCode->GetBufferPointer(),&m;_hPixelShader);

//	Load	the	texture	and	render	the	output	pixels.

m_pd3dDevice->SetTexture(0,	m_pTexture0);	 	 //	load	TSS0	from	the	texture

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	2);

Contents	of	the	file	"PixelShader3.txt"

ps.1.0										//	version	instruction

tex	t0										//	declare	texture	register	t0	which	will	be	loaded	from	Texture	Stage	0	

mul	r0,	v0,	t0		//	v0*t0,	then	move	to	r0

The	inputs	to	the	shader	are	shown	in	the	following	example.	The	first
image	shows	the	vertex	colors.	The	second	image	shows	the	texture	map.

The	resulting	image	is	shown	in	the	following	example.	It	shows	the	output,
which	is	a	blend	of	the	vertex	color	and	the	texture	image.

	

Blend	Two	Textures	Using	a	Constant	Color

This	example	blends	two	texture	maps,	using	the	vertex	color,	to	determine
how	much	of	each	texture	map	color	to	use.	The	differences	between	this
example	and	the	previous	example	are	as	follows:

The	vertex	data	structure,	the	FVF	macro,	and	the	vertex	data	include	a
second	set	of	texture	coordinates	because	there	is	a	second	texture.
SetTexture	is	also	called	twice,	using	two	texture	stage	states.
The	shader	file	declares	two	texture	registers	and	uses	the	linear
interpolate	(lrp)	instruction	to	blend	the	two	textures.	The	values	of	the
diffuse	colors	determine	the	ratio	of	texture0	to	texture1	in	the	output
color.

Here	is	the	sample	code.

struct	CUSTOMVERTEX

{

				FLOAT	x,	y,	z;

	 DWORD	color;

				FLOAT	tu1,	tv1;

				FLOAT	tu2,	tv2;													//	a	second	set	of	texture	coordinates

};

#define	D3DFVF_CUSTOMVERTEX	(D3DFVF_XYZ|D3D_FVF_DIFFUSE|D3DFVF_TEX2|D3DFVF_TEXCOORDSIZE4(0))

static	CUSTOMVERTEX	g_Vertices[]=

{

				//		x						y					z					color							u1				v1				u2				v2

				{	-1.0f,	-1.0f,	0.0f,	0xff0000ff,	1.0f,	1.0f,	1.0f,	1.0f	},

				{	+1.0f,	-1.0f,	0.0f,	0xffff0000,	0.0f,	1.0f,	0.0f,	1.0f	},

				{	+1.0f,	+1.0f,	0.0f,	0xffffff00,	0.0f,	0.0f,	0.0f,	0.0f	},

				{	-1.0f,	+1.0f,	0.0f,	0xffffffff,	1.0f,	0.0f,	1.0f,	0.0f	},

};

//	Create	a	texture.	This	file	is	in	the	DirectX	8.1	media	from	the	SDK	download.

TCHAR		strPath[512];

LPDIRECT3DTEXTURE8						m_pTexture0,	m_pTexture1;

DXUtil_FindMediaFile(strPath,	_T("DX5_Logo.bmp"));

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture0,	D3DFMT_R5G6B5);

DXUtil_FindMediaFile(strPath,	_T("snow2.jpg"));

D3DUtil_CreateTexture(m_pd3dDevice,	strPath,	&m;_pTexture1,	D3DFMT_R5G6B5);

//	Load	the	textures	stages.

m_pd3dDevice->SetTexture(0,	m_pTexture0);

m_pd3dDevice->SetTexture(1,	m_pTexture1);								//	Use	a	second	texture	stage.

m_pd3dDevice->SetStreamSource(0,	m_pQuadVB,	sizeof(CUSTOMVERTEX));

m_pd3dDevice->SetVertexShader(D3DFVF_CUSTOMVERTEX);

m_pd3dDevice->SetPixelShader(m_hPixelShader);

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN,	0,	2);

Contents	of	the	file	"PixelShader5.txt"

ps.1.0														//	pixel	shader	version

tex	t0														//	texture	register	t0	is	loaded	from	texture	stage	0

tex	t1														//	texture	register	t1	is	loaded	from	texture	stage	1

mov	r1,	t1										//	move	texture	register1	into	output	register	r1

lrp	r0,	v0,	t0,	r1		//	linearly	interpolate	between	t0	and	r1	by	a	proportion	

																				//	specified	in	v0	

The	resulting	output	is	as	follows:

	 	

	
Microsoft	DirectX	8.1	(C++)

Converting	Texture	Operations

Pixel	shaders	extend	and	generalize	the	multi-texture	capabilities	of	Microsoft®
DirectX®	6.0	and	7.0	in	the	following	ways.

A	set	of	general	read/write	registers	is	added	to	enable	more	flexible
expression.	The	serial	cascade	using	D3DTA_CURRENT	requires	the
specification	of	a	separate	result	register	argument	for	each	stage.
The	D3DTOP_MODULATE2X	and	D3DTOP_MODULATE4X	texture
operations	are	broken	into	separate	modifiers	applicable	to	any	instruction
orthogonally.	This	eliminates	the	need	for	separate	D3DTOP_MODULATE
and	D3DTOP_MODULATE2X	operations.
The	bias	and	unbias	texture	operation	modifiers	are	orthogonal.	This
eliminates	the	need	for	separate	add	and	add	bias	operations.
An	optional	third	argument	is	added	to	modulate	add,	so	the	procedural
pixel	shader	can	do	arg1×arg2	+	arg0.	This	eliminates	the
D3DTOP_MODULATEALPHA_ADDCOLOR	and
D3DTOP_MODULATECOLOR_ADDALPHA	texture	operations.
An	optional	third	argument	is	added	to	the	blend	operation,	so	the
procedural	pixel	shader	can	use	arg0	as	the	blend	proportion	between	arg1
and	arg2.	This	eliminates	the	D3DTOP_BLENDDIFFUSEALPHA,
D3DTOP_BLENDTEXTUREALPHA,
D3DTOP_BLENDFACTORALPHA,
D3DTOP_BLENDTEXTUREALPHAPM,	and
D3DTOP_BLENDCURRENTALPHA	texture	operations.
Texture	address	modifying	operations,	such	as	D3DTOP_BUMPENVMAP,
are	broken	out	from	the	color	and	alpha	operations	and	defined	as	a	third
operation	type,	specifically	for	operating	on	texture	addresses.

To	support	this	increased	flexibility	efficiently,	the	application	programming
interface	(API)	syntax	is	changed	from	DWORD	pairs	to	an	ASCII	assemble
code	syntax.	This	exposes	the	functionality	offered	by	procedural	pixel	shaders.

Note		When	you	use	pixel	shaders,	specular	add	is	not	specifically	controlled	by
a	render	state,	and	it	is	up	to	the	pixel	shader	to	implement	if	needed.	However,
fog	blending	is	still	applied	by	the	fixed	function	pipeline.

	
Microsoft	DirectX	8.1	(C++)

Debugging

MFC	Pixel	Shader	Sample	Application

You	can	use	the	MFCPixelShader	Sample	application	to	learn	pixel	shader
instructions	interactively.	Programmed	into	this	application	are	diffuse	vertex
colors	and	two	texture	images.	The	application	has	five	working	pixel	shaders
that	you	can	select	by	pushing	the	buttons	in	the	Shaders	box.	It	includes	a	view
window	on	the	left	to	show	the	rendered	result,	an	instruction	window	on	the
right	to	allow	users	to	enter	instructions	for	validation,	and	a	third	window	to
view	debug	output.

As	an	example,	run	the	application	and	type	the	following	instructions	in	the
instruction	window.

ps.1.0

tex	t0

mov	r0,	t0

This	results	in	the	Microsoft®	DirectX®	5	logo	image	in	the	rendered	view
window.

This	shader	applies	a	texture	map.	Notice	that	the	compilation	result	text
window	says	Success,	which	indicates	that	all	the	instructions	are	valid.

Next,	remove	the	second	instruction,	which	is	the	texture	declaration.	Once	this
is	deleted,	the	compilation	result	says:

		(Statement	2)	(Validation	Error)	Read	of	uninitialized	components(*)	in	t0:
*R/X/0	*G/Y/1	*B/Z/2	*A/W/3

This	error	identifies	the	statement	that	fails,	Statement	2,	and	why	it	fails
Uninitialized	component	in	t0.	You	can	fix	this	problem	by	adding	Statement	2
again.	When	you	do	this,	the	shader	works	again.

This	is	a	simple	example	but	it	illustrates	the	usefulness	of	the	tool.	By	trying
different	instructions,	registers,	and	instruction	sequences,	you	can	better

understand	pixel	shaders	and	vertex	shaders.	The	sample	application	also	has	an
Open	button,	which	supports	loading	of	a	shader	file	so	that	you	can	load	any
shader	files	you	have	already	created.

Shader	Debuggers

Some	graphics	chip	companies	provide	a	shader	debugging	tool	on	their	Web
sites.	Find	these	tools	by	searching	the	Web	or	by	reading	the	article	listed
below.	You	can	attach	a	debugger	to	a	program	while	it	is	running	and	use	the
debugger	to	step	through	a	shader.	By	setting	breakpoints,	you	can	step	through
the	shader	code	one	line	at	a	time	and	watch	register	state	changes.	For	more
information	about	vertex	shaders	and	debugging	tips,	see	Using	Vertex	Shaders:
Part	1.

Texture	Blending	Debugging

Another	sample	application	that	is	part	of	the	software	development	kit	(SDK)
installation	is	MFCTex.	This	Microsoft	Foundation	Classes	(MFC)	application	is
a	good	way	to	learn	how	to	perform	multi-texture	blending	operations	in	the
fixed	function	pipeline.

Diagnostic	Support

Another	option	for	help	with	debugging	DirectX	problems	is	to	use	the	DirectX
Diagnostic	Viewer	(DXDiag.exe)	to	create	a	dump	of	your	machine.	This	is	done
by	running	DxDiag.exe	after	your	machine	has	crashed	and	sending	the	dump	to
Microsoft,	using	either	the	Report	button	on	the	More	Help	tab	or	by	sending	it
to	directx@microsoft.com.	The	dump	can	be	used	to	track	down	and	reproduce
the	problem.

Additional	debug	information	can	be	found	at	http://msdn.microsoft.com/directx

	
Microsoft	DirectX	8.1	(C++)

Create	an	Effect
This	example	uses	an	effect	file	to	apply	a	texture	map	to	an	object.	The	example
shows	the	contents	of	the	effect	file,	as	well	as	the	code	required	in	the
application	to	load	and	run	the	file.

To	create	an	effect:

Step	1:	Create	the	Effect	File
Step	2:	Load	the	Effect	File
Step	3:	Render	the	Effect

Step	1:	Create	the	effect	file

/*

	*	Step	1:	Create	the	effect	file

	*	This	effect	file	maps	a	3-D	texture	map	onto	the	object.

	*	This	code	needs	to	be	in	a	file	named	Effects.fx

	*/

Texture	DiffuseTexture;

	

Technique	T0

{

				Pass	P0

				{								

								Texture[0]			=	NULL;

								PixelShader		=	NULL;

								VertexShader	=	XYZ	|	Normal	|	Diffuse	|	Tex1;

	

								Lighting					=	False;

								CullMode					=	None;

	

								Texture[0]			=	<DiffuseTexture>;

								ColorOp[0]			=	SelectArg1;

								ColorArg1[0]	=	Texture;

								ColorOp[1]			=	Disable;

				}

}

Step	2:	Load	the	Effect	File

{

				HRESULT	hr;

				D3DXTECHNIQUE_DESC	technique;

				ID3DXEffect	m_pEffect;

	

				//	Assumes	that	m_pd3dDevice	has	been	initialized

				if(FAILED(hr	=	D3DXCreateEffectFromFile(m_pd3dDevice,	"effect.fx",	&m;_pEffect,	NULL)))

								return	hr;

	

				if(FAILED(hr	=	FindNextValidTechnique(NULL,	&technique;)))

								return	hr;

	

				m_pEffect->SetTechnique(technique.Index);

				m_pEffect->SetTexture("DiffuseTexture",	m_pTexture0);

}

Once	the	effect	file	is	created,	ID3DXEffect::FindNextValidTechnique	returns
a	technique	that	has	been	validated	on	the	hardware.

Step	3:	Render	the	Effect

{

				HRESULT	hr;

				UINT	uPasses;

	

				if(FAILED(hr	=	m_pd3dDevice->SetStreamSource(0,	m_pVB,

	 																					sizeof(CUSTOMVERTEX_POS_NORM_COLOR1_TEX1))))

								return	hr;

	

				m_pEffect->Begin(&uPasses;,	0);

	 //	The	0	specifies	that	ID3DXEffect::Begin	and	ID3DXEffect::End	will	

	 //	save	and	restore	all	state	modified	by	the	effect.

	

				for(UINT	uPass	=	0;	uPass	<	uPasses;	uPass++)

				{

								//	Set	the	state	for	a	particular	pass	in	a	technique

								m_pEffect->Pass(uPass);

								m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP,	0,	dwNumSphereVerts	-	2);

				}

	

				m_pEffect->End();

	

}

	
Microsoft	DirectX	8.1	(C++)

Multiple	Techniques
An	effect	file	defines	the	techniques	used.	The	basic	layout	of	an	effect	file	starts
with	one	or	more	declarations	and	then	defines	each	technique	for	that	effect.
This	sample	shows	a	basic	effect	file	that	contains	two	textures	and	two
techniques.	This	effect	file	allows	a	device	that	doesn't	support	single-pass
rendering	for	two	textures	to	use	multiple	passes	to	render	the	textures.

//	Declare	two	textures.

texture	tex0;								//	First	texture

texture	tex1;								//	Second	texture

//	Technique	't0'	will	render	the	scene	in	one	pass.		The	color	

//	for	each	pixel	is	calculated	to	be	tex0	+	tex1.		Because	it	uses	

//	two	textures	at	once,	it	will	work	only	on	cards	that	support	

//	multitexture.

technique	t0

{

				pass	p0

				{

								Texture[0]	=	<tex0>;

								ColorOp[0]	=	SelectArg1;

								ColorArg1[0]	=	Texture;

	

								Texture[1]	=	<tex1>;

								ColorOp[1]	=	Add;

								ColorArg1[1]	=	Texture;

								ColorArg2[1]	=	Current;

	 	 								

								ColorOp[2]	=	Disable;

				}

}

//	Technique	't1'	renders	the	scene	in	two	passes.		The	first	pass	sets	

//	each	pixel	to	the	color	of	tex0.		The	second	pass	adds	in	the	color	

//	of	tex1.		The	result	should	look	identical	to	the	first	

//	technique.		However,	this	technique	can	be	used	on	cards	that	do	not	

//	support	multitexture.

	

technique	t1

{

				pass	p0

				{

								AlphaBlendEnable	=	False;

	

								Texture[0]	=	<tex0>;

								

								ColorOp[0]	=	SelectArg1;

								ColorArg1[0]	=	Texture;

								ColorOp[1]	=	Disable;

				}

	

				pass	p1

				{

								AlphaBlendEnable	=	True;

								SrcBlend	=	One;

								DestBlend	=	One;

	

								Texture[0]	=	<tex1>;

	

								ColorOp[0]	=	SelectArg1;

	 	

								ColorArg[0]	=	Texture;

								ColorOp[1]	=	Disable;

				}

}

This	example	shows	the	basic	syntax	and	layout	of	a	typical	effect	file.

//

//	Sample	Effect

//	This	effect	adds	two	textures,	using	single	pass	or	multipass	technique.

//

texture	tex0;

texture	tex1;

//	Single	pass

technique	t0

{

				pass	p0

				{

								Texture[0]	=	<tex0>;

								Texture[1]	=	<tex1>;

								

								ColorOp[0]	=	SelectArg1;

								ColorArg1[0]	=	Texture;

								

								ColorOp[1]	=	Add;

								ColorArg1[1]	=	Texture;

								ColorArg2[1]	=	Current;

								

								ColorOp[2]	=	Disable;

				}

}

//	Multipass

technique	t1

{

				pass	p0

				{

								Texture[0]	=	<tex0>;

								

								ColorOp[0]	=	SelectArg1;

								ColorArg1[0]	=	Texture;

								ColorOp[1]	=	Disable;		

				}

				

				pass	p1

				{

								AlphaBlendEnable	=	True;								

								SrcBlend	=	One;

								DestBlend	=	One;

	

								Texture[0]	=	<tex1>;

															

								ColorOp[0]	=	SelectArg1;

								ColorArg1[0]	=	Texture;

								ColorOp[1]	=	Disable;		

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	1:	Diffuse	Lighting
//

//	Effect	File	Workshop	Solution	for	Exercise	1

//	Copyright	(c)	2001	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;	 //	Direction	of	light

vector	matD;		 //	Object	diffuse	material	color

matrix	mWld;	 //	World

matrix	mTot;	 //	Total

//	Load	model

string	XFile	=	"sphere.x";

//	Background	color

DWORD		BCLR	=	0xff333333;

//	No	pixel	shader

pixelshader	pNIL;	

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	1a:	Fixed	Function	Diffuse	Lighting";

string	tec1	=	"Exercise	1b:	Vertex	Shader	Diffuse	Lighting";

///

///////								Exercise	1a:	Fixed	Function	Diffuse	Lighting								//////////

///////					Change	diffuse	material	color	to	color	from	model,					//////////

///////					rather	than	the	current	white	material	constant.							//////////

///

//	Given:		The	app	has	already	set	the	matrices	before	calling	this	technique.

technique	tec0

{

				pass	P0

				{

								//	Diffuse,	specular,	and	ambient	material	colors	of	object

								MaterialDiffuse		=	;																			//	Diffuse	from	object	material	diffuse

								MaterialDiffuse		=	(0.0f,0.0f,1.0f,1.0f);				//	Diffuse	from	constant	color

								MaterialSpecular	=	(0.0f,0.0f,0.0f,0.0f);

								MaterialAmbient		=	(0.0f,0.0f,0.0f,0.0f);

								

								//	Light	Properties.	lhtR,	the	light	direction,	is	input	from	the	shader	app

								LightType[0]						=	DIRECTIONAL;

								LightDiffuse[0]			=	(1.0f,1.0f,1.0f,1.0f);

								LightSpecular[0]		=	(0.0f,0.0f,0.0f,0.0f);	

								LightAmbient[0]			=	(0.0f,0.0f,0.0f,0.0f);

								LightDirection[0]	=	;

								LightRange[0]					=	100000.0f;

								

								//	Turn	lighting	on	and	use	light	zero

								LightEnable[0]				=	TRUE;

								Lighting	=	TRUE;

								

								//	Assign	diffuse	color	to	be	used

								ColorOp[0]			=	SelectArg1;

								ColorArg1[0]	=	Diffuse;

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								//	Only	one	color	being	used

								ColorOp[1]			=	Disable;

								AlphaOp[1]			=	Disable;

								

								//	Z-buffering	to	be	used

								ZEnable						=	true;

								ZWriteEnable	=	true;

				}

}

///

///////								Exercise	1b:	Vertex	Shader	Diffuse	Lighting									//////////

///////					Change	diffuse	material	color	to	color	from	model,					//////////

///////					rather	than	the	current	white	material	constant.							//////////

///

technique	tec1

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	;																			//	World	Matrix

								VertexShaderConstant[4]	=	;																			//	World*View*Proj	Matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	(1.0f,1.0f,1.0f,1.0f);			//	Diffuse	from	constant	color

								VertexShaderConstant[9]		=	;																		//	Diffuse	from	object	material	diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular	from	constant	color

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient	from	constant	color

								

								//	Light	Properties.	lhtR,	the	light	direction,	is	input	from	the	shader	app

								VertexShaderConstant[13]	=	(1.0f,1.0f,1.0f,1.0f);			//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient

								VertexShaderConstant[16]	=	;																		//	Light	direction

								

								//	Assign	diffuse	color	to	be	used

								ColorOp[0]			=	SelectArg1;

								ColorArg1[0]	=	Diffuse;

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								//	Only	one	color	being	used

								ColorOp[1]			=	Disable;

								AlphaOp[1]			=	Disable;

								//	Definition	of	the	vertex	shader,	declarations	then	assembly

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];							//	Position

												float	v3[3];							//	Normal

												float	v7[3];							//	Texture	Coord1

												float	v8[3];							//	Texture	coord2

								}			

								asm

								{

												vs.1.1													//	Version	number

												m4x4	oPos,	v0,	c4		//	Transform	point	to	projection	space.

												

												m3x3	r0,v3,c0						//	Transform	normal	to	world	Space,	put	result	into	r0.

												

												dp3		r0,r0,-c16				//	Dot	product	against	light,	r0	now	has	lighting

																															//			constant	in	x,	y,	and	z	components	(r,g,b).

												

												mul		r0,r0,c13					//	Modulate	against	diffuse	light	color.

	 												

												mov	oD0,r0									//	Put	into	diffuse	color	output.

								};					

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	2:	Vertex	Shader	Diffuse
Lighting
//

//	Effect	File	Workshop	Solution	for	Exercise	2

//	Copyright	(c)	2001	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;	 //	Light	direction	from	app

vector	matD;		 //	Object	diffuse	material	color

matrix	mWld;	 //	World

matrix	mTot;	 //	Total

//	Load	model

string	XFile	=	"f40.x";

//	Background	color

DWORD		BCLR	=	0xff000000;

//	No	pixel	shader

pixelshader	pNIL;	

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Solution	2:	Vertex	Shader	Diffuse	Lighting";

///

///////								Exercise	2:	Vertex	Shader	Diffuse	Lighting										//////////

///////					Light	the	model	taking	both	diffuse	material	and							//////////

///////					diffuse	light	source	into	consideration.															//////////

///

technique	tec0

{	

				pass	p0

				{

								//Load	matrices

								VertexShaderConstant[0]	=	;		 																//	World	Matrix

								VertexShaderConstant[4]	=	;	 													 //	World*View*Proj	Matrix

								

								//Material	properties	of	object

								VertexShaderConstant[9]		=	;																		//	Diffuse	from	object	material	diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular	from	constant	color

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient	from	constant	color

								

								//	Light	Properties.	lhtR	is	input	from	the	shader	app

								VertexShaderConstant[13]	=	(1.0f,0.9f,0.9f,1.0f);			//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient

								VertexShaderConstant[16]	=	;	 																//	Light	direction

								

								//	Assign	diffuse	color	to	be	used

								ColorOp[0]			=	SelectArg1;

								ColorArg1[0]	=	Diffuse;

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								//	Only	one	color	being	used

								ColorOp[1]			=	Disable;

								AlphaOp[1]			=	Disable;

								//	Definition	of	the	vertex	shader,	declarations	then	assembly

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];								//	Position

												float	v3[3];								//	Normal

												float	v7[3];								//	Texture	Coord1

												float	v8[3];								//	Texture	coord2

								}			

								asm

								{

												vs.1.1														//	Version	number

												m4x4	oPos,	v0,	c4			//	Transform	point	to	projection	space

												

												dp3		r0,v3,-c16					//	Dot	product	against	untransformed	light

																								

												mul		r0,r0,c13						//	Modulate	against	diffuse	light	color

												mul		r0,r0,c9							//	Modulate	against	diffuse	material

												

												mov	oD0,r0										//	Put	into	Diffuse	Color	output

								};					

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	3:	Transforms
//	

//	Effect	File	Workshop	Solution	for	Exercise	3

//	Copyright	(c)	2001	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;	 //	Light	direction	from	app

vector	matD;		 //	Object	diffuse	material	color

matrix	mWld;	 //	World

matrix	mTot;	 //	Total

//	Load	model

string	XFile	=	"f40.x";

//	Background	Color

DWORD		BCLR	=	0xff000000;

//	No	pixel	shader

pixelshader	pNIL;	

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Solution	3:	Transforms";

///

///////								Exercise	3:	Transforms																														//////////

///////					Transform	the	vertex	normal	into	world	space	to	take			//////////

///////					light	source	movement	into	consideration.														//////////

///

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	;																			//	World	Matrix

								VertexShaderConstant[4]	=	;																			//	World*View*Proj	Matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	;																		//	Diffuse	from	object	material	diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular	from	constant	color

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient	from	constant	color

								

								//	Light	Properties.	lhtR	is	input	from	the	shader	app

								VertexShaderConstant[13]	=	(1.0f,0.9f,0.9f,1.0f);			//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient

								VertexShaderConstant[16]	=	;	 																//	Light	direction

								

								//	Assign	diffuse	color	to	be	used

								ColorOp[0]			=	SelectArg1;

								ColorArg1[0]	=	Diffuse;

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								//	Only	one	color	being	used

								ColorOp[1]			=	Disable;

								AlphaOp[1]			=	Disable;

								//	Definition	of	the	vertex	shader,	declarations	then	assembly

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];								//	Position

												float	v3[3];								//	Normal

												float	v7[3];								//	Texture	coord1

												float	v8[3];								//	Texture	coord2

								}			

								asm

								{

												vs.1.1														//	Version	number

												m4x4	oPos,	v0,	c4			//	Transform	point	to	projection	space.

												

												mov		r0,v3										//	Copy	untransformed	normal	into	r0.

												m3x3	r0,v3,c0							//	Transform	normal	to	world	space,	put	result

																																//			into	r0	so	preceding	mov	not	necessary.

					 				dp3		r0,r0,-c16					//	Dot	product	against	light,	r0	now	has	lighting	constant

																																//	in	x,y	and	z	components	(r,g,b).

												mul		r0,r0,c13						//	Modulate	against	diffuse	light	color.

												mul		r0,r0,c9							//	Modulate	against	diffuse	material.

												

												mov	oD0,r0										//	Put	into	diffuse	color	output.

								};					

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	4:	Texturing
//

//	Effect	File	Workshop	Solution	for	Exercise	4

//	Copyright	(c)	2001	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;				//	Light	direction	from	app

vector	matD;				//	Object	diffuse	material	color

matrix	mWld;				//	World

matrix	mTot;				//	Total

texture	tDif;			//	Diffuse	texture	of	object

//	Load	model

string	XFile	=	"bust.x";

//	Background	color

DWORD		BCLR	=	0xff000000;

//	No	pixel	shader

pixelshader	pNIL;	

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	4:	Texturing";

///

///////								Exercise	4:	Texturing																															//////////

///////					Set	up	texture	to	pass	onto	FF	PS																						//////////

///////					Modulate	between	the	texture	and	diffuse	color	args.			//////////

///

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	;																			//	World	Matrix

								VertexShaderConstant[4]	=	;																			//	World*View*Proj	Matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	;																		//	Diffuse	from	object	material	diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular	from	constant	color

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient	from	constant	color

								

								//	Light	Properties.	lhtR	is	input	from	the	shader	app

								VertexShaderConstant[13]	=	(0.8f,0.8f,0.8f,0.8f);			//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular

								VertexShaderConstant[15]	=	(0.3f,0.3f,0.3f,1.0f);			//	Ambient

								VertexShaderConstant[16]	=	;	 																//	Light	Direction

								

								//	Useful	constant(s)

								VertexShaderConstant[20]	=	(-1.0f,	-1.0f,	0.5f,	1.0f);

								//	Assign	diffuse	texture

								Texture[0]			=	;

								//	Set	up	texture	wrapping	mode

								wrap0								=	U	|	V;

								AddressU[0]		=	Wrap;	

								AddressV[0]		=	Wrap;

								//	Assign	texture	color	to	be	used

								ColorArg1[0]	=	Texture;

								ColorOp[0]			=	Modulate;						//	Modulate	between	args

								ColorArg2[0]	=	Diffuse;							//	Add	diffuse	component	as	arg

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								//	Ensure	remaining	stages	are	disabled

								ColorOp[1]			=	Disable;

								AlphaOp[1]			=	Disable;

								//	Definition	of	the	vertex	shader,	declarations	then	assembly

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];								//	Position

												float	v3[3];								//	Normal

												float	v7[3];								//	Texture	Coord1

												float	v8[3];								//	Texture	coord2

								}			

								asm

								{

												vs.1.1														//	Version	number

												m4x4	oPos,	v0,	c4			//	Transform	point	to	projection	space

												m3x3	r0,v3,c0							//	Transform	Normal	to	World	Space,	put	result	into	r0

												dp3		r0,r0,-c16					//	Dot	product	against	light,	r0	now	has	lighting

																																//			constant	in	x,y	and	z	components	(r,g,b)

												mul		r0,r0,c13						//	Modulate	against	diffuse	light	color

												mul		r0,r0,c9							//	Modulate	against	diffuse	material

												mov	oD0,r0										//	Output	diffuse	color

												//mov	oT0,v7								//	output	texture	coordinates	

																																//	OR

												mov	oT0.xy,v7.xy				//	output	only	the	xand	y	channels	for	better	efficiency

								};

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	5:	Vertex	Shader	Specular
Lighting
//

//	Effect	File	Workshop	Exercise	5

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;				//	Light	direction

matrix	mWld;				//	World

matrix	mTot;				//	Total

vector	matD;				//	Material	diffuse

vector	matS;				//	Material	specular

vector	vCPS;				//	Camera	position

//	Background	color

DWORD		BCLR	=	0xFF000000;

pixelshader	pNIL;

string	XFile	=	"f40.x";

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	5:	Vertex	Shader	Specular	Lighting";

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	;																	//	World	Matrix

								VertexShaderConstant[4]	=	;																	//	World*View*Proj	Matrix

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	;																//	Diffuse

								VertexShaderConstant[10]	=	;																//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

	

								//	Properties	of	light

								VertexShaderConstant[13]	=	(1.0f,0.0f,0.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;																//	Light	direction

								//	Blending	Constants

								VertexShaderConstant[20]	=	(0.7f,0.7f,0.7f,0.7f);

								VertexShaderConstant[21]	=	(0.3f,0.3f,0.3f,0.3f);

	

								//	Camera	Information.

								VertexShaderConstant[24]	=	;	

								ColorOp[0]			=	SelectArg1;

								ColorArg1[0]	=	Diffuse;

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								ColorOp[1]			=	Disable;	

								AlphaOp[1]			=	Disable;

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	coord1

												float	v8[3];	//	Texture	coord2

								}			

								asm

								{

												vs.1.1													//	Version	number

												m4x4	oPos,	v0,	c4		//	Transform	point	to	projection	space

												m4x4	r0,v0,c0						//	Transform	point	to	world	space

					 				

												add	r0,-r0,c24					//	Get	a	vector	toward	the	camera	position

	 																											//	This	is	the	negative	of	the	camera	direction	

												//	Normalize

												dp3	r11.x,r0.xyz,r0.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r0.xyz,r0.xyz,r11.xyz	//	Multiply,	r0	=	-(camera	vector)

												add	r2.xyz,r0.xyz,-c16				//	Get	half	angle

	

												//	Normalize

												dp3	r11.x,r2.xyz,r2.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r2.xyz,r2.xyz,r11.xyz	//	Multiply,	r2	=	HalfAngle

												m3x3	r1,v3,c0													//	Transform	normal	to	world	space,	put	in	r1

								

												//	r2	=	half	angle,	r1	=	normal,	r3	(output)	=	intensity

												dp3		r3.xyzw,r1,r2

												//	Now	raise	it	several	times

												mul	r3,r3,r3	//		2nd

												mul	r3,r3,r3	//		4th

												mul	r3,r3,r3	//		8th

												mul	r3,r3,r3	//	16th

	 				

												//	Compute	diffuse	term

												dp3	r4,r1,-c16

		 	

												//	Blend	it	in

												mul	r3,c20,r3			//	Kd

												mul	r4,r4,c21			//	Ks

												mul	r4,r4,c10			//	Specular

												mad	r4,r3,c9,r4	//	Diffuse	 	

	 	

												mov	oD0,r4						//	Put	into	Diffuse	Color

							};					

				}

}

Exercise	5B
//

//	Effect	File	Workshop	Exercise	5B

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;	 //	Light	Direction

matrix	mWld;	 //	World

matrix	mTot;	 //	Total

vector	vCPS;				//	Camera	position

texture	tEnv;			//	Environment	texture

texture	tDif;			

vector	matD;				//	Object	Diffuse	Material	Color

vector	matS;				//	Object	Specular	Material	Color

//	Background	color

DWORD		BCLR	=	0xFF000000;

pixelshader	pNIL;

//string	XFile	=	"f40.x";

string	XFile	=	"viper.x";

string	BIMG		=	"lobbyzneg.bmp";

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	5b:	Vertex	Shader	Specular	Envmap";

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	;		 //	World	Matrix

								VertexShaderConstant[4]	=	;	 //	World*View*Proj	Matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	;																//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								

								//	Properties	of	light	

								VertexShaderConstant[13]	=	(1.0f,0.0f,0.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;	 														//	Light	Direction

																

								//	Blending	constants

								VertexShaderConstant[20]	=	(-2.0f,-2.0f,-2.0f,-2.0f);

								VertexShaderConstant[21]	=	(0.25f,	0.25f,	0.25f,	0.05f);

								VertexShaderConstant[22]	=	(0.75f,	0.75f,	0.75f,	0.95f);

								VertexShaderConstant[23]	=	(1.00f,	1.00f,	1.00f,	1.00f);

								

								//	Camera	information

								VertexShaderConstant[24]	=	;	

								

								ColorOp[0]			=	Modulate;

								ColorArg2[0]	=	Diffuse;

								ColorArg1[0]	=	Texture;

								

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								ColorOp[1]			=	Disable;	

								AlphaOp[1]			=	Disable;

								

								Texture[0]			=	;

								PixelShader		=	;	

								

								AlphaBlendEnable	=	True;

								SrcBlend		=	One;

								DestBlend	=	InvSrcAlpha;

								

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	coord1

												float	v8[3];	//	Texture	coord2

								}			

								asm

								{

												vs.1.1													//	Version	number

												m4x4	oPos,	v0,	c4		//	Transform	point	to	projection	space

												m4x4	r0,v0,c0						//	Transform	point	to	world	space

												

												add	r0,r0,-c24					//	Get	a	vector	toward	the	camera	position

																															//	This	is	the	camera	direction	

												//	Normalize

												dp3	r11.x,r0.xyz,r0.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r0.xyz,r0.xyz,r11.xyz	//	Multiply,	r0	=	(camera	vector)

												

												m3x3	r1,v3,c0													//	Transform	normal	to	world	space,	put	in	r1

												

												dp3	r3,r0,r1														//	Dot	product	Cam*Normal

												mul	r2,c20,r3

												mad	oT0.xyz,r2,r1,r0						//	Compute	reflection	vector

												

												//	(1-cos)^4	=	approx	fresnel

												add	r0,c23,r3	 	 						//	Complement	color

												mul	r1,r0,r0														//	Square

												mul	r0,r1,r1														//	4th

												mul	r0,r0,c22

//										mov	r1,c9

//										mul	r1,r1,c21													//	Blend	in	scaled	diffuse	material	color

												add	oD0,r0,r1	 	 						//	Put	into	Diffuse	Color

								};					

				}

}

technique	tec1

{	

				pass	p0

				{								

								//	Load	matrices

								VertexShaderConstant[0]	=	;		 //	World	Matrix

								VertexShaderConstant[4]	=	;	 //	World*View*Proj	Matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	;																//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								

								//	Properties	of	light	

								VertexShaderConstant[13]	=	(1.0f,0.0f,0.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;	 														//	Light	direction

								

								//	Blending	Constants

								VertexShaderConstant[20]	=	(-2.0f,-2.0f,-2.0f,-2.0f);

								VertexShaderConstant[21]	=	(0.25f,	0.25f,	0.25f,	0.05f);

								VertexShaderConstant[22]	=	(0.75f,	0.75f,	0.75f,	0.95f);

								VertexShaderConstant[23]	=	(1.00f,	1.00f,	1.00f,	1.00f);

								VertexShaderConstant[24]	=	(1.0f,	1.0f,	1.0f,	1.0f);

								

								//	Camera	Information

								VertexShaderConstant[25]	=	;	

								

								ColorOp[0]			=	Modulate;

								ColorArg1[0]	=	Texture;

								ColorArg2[0]	=	Diffuse;

								

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								ColorOp[1]			=	Add;	

								ColorArg1[1]	=	Current;

								ColorArg2[1]	=	Specular;

								ColorOp[2]			=	Disable;

								AlphaOp[2]			=	Disable;

								

								Texture[0]			=	;

								PixelShader		=	;	

								

//						AlphaBlendEnable	=	True;

//						SrcBlend		=	One;	//SrcAlpha;

//						DestBlend	=	InvSrcAlpha;

								

//						CullMode	=	None;

	

					 SpecularEnable	=	True;							

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	coord1

												float	v8[3];	//	Texture	coord2

								}			

								asm

								{

												vs.1.1													//	Version	number

												m4x4	oPos,	v0,	c4		//	Transform	point	to	projection	space

												m4x4	r0,v0,c0						//	Transform	point	to	World	Space

												

												add	r0,r0,-c25					//	Get	a	vector	toward	the	camera	position,

																															//			this	is	the	camera	direction

												//	Normalize

												dp3	r11.x,r0.xyz,r0.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r0.xyz,r0.xyz,r11.xyz	//	Multiply,	r0	=	(camera	vector)

												

												m3x3	r1,v3,c0													//	Transform	normal	to	world	space,	put	in	r1

												

												dp3	r3,r0,r1														//	Dot	product	Cam*Normal

												mul	r2,c20,r3

												mad	oT0.xyz,r2,r1,r0						//	Compute	reflection	vector

												//	(1-cos)^4	=	approx	fresnel

												add	r0,c23,r3													//	Complement	color

												mul	r1,r0,r0														//	Square

												add	oD0,r1,c21	 	 	

												mov	r1,c9

												mul	oD1,r1,c21												//	Blend	in	scaled	diffuse	material	color

								};

				}

}

technique	tec2

{	

				pass	p0

				{								

								//	Load	matrices

								VertexShaderConstant[0]	=	;		 //	World	Matrix

								VertexShaderConstant[4]	=	;	 //	World*View*Proj	Matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	;																//	Diffuse

								VertexShaderConstant[10]	=	;																//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								

								//	Properties	of	light	

								VertexShaderConstant[13]	=	(1.0f,0.0f,0.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;	 														//	Light	direction

								

								//	Blending	constants

								VertexShaderConstant[20]	=	(-2.0f,-2.0f,-2.0f,-2.0f);

								VertexShaderConstant[21]	=	(0.25f,	0.25f,	0.25f,	0.05f);

								VertexShaderConstant[22]	=	(0.75f,	0.75f,	0.75f,	0.95f);

								VertexShaderConstant[23]	=	(1.00f,	1.00f,	1.00f,	1.00f);

								VertexShaderConstant[24]	=	(1.0f,	1.0f,	1.0f,	1.0f);

								

								//	Camera	information

								VertexShaderConstant[25]	=	;	

								

								ColorOp[0]			=	Modulate;

								ColorArg1[0]	=	Texture;

								ColorArg2[0]	=	Diffuse;

								

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								ColorOp[1]			=	Add;	

								ColorArg1[1]	=	Current;

								ColorArg2[1]	=	Specular;

								ColorOp[2]			=	Disable;

								AlphaOp[2]			=	Disable;

								

								Texture[0]			=	;

								PixelShader		=	;	

//						FillMode	=	Wireframe;

	 				SpecularEnable	=	True;							

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	coord1

												float	v8[3];	//	Texture	coord2

								}			

								asm

								{

												vs.1.1													//	Version	number

												m4x4	oPos,	v0,	c4		//	Transform	point	to	projection	space

												m4x4	r0,v0,c0						//	Transform	point	to	world	Space

												

												add	r0,r0,-c25					//	Get	a	vector	toward	the	camera	position,

																															//			this	is	the	camera	direction

												//Normalize

												dp3	r11.x,r0.xyz,r0.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r0.xyz,r0.xyz,r11.xyz	//	Multiply,	r0	=	(camera	vector)

												

												m3x3	r1,v3,c0													//	Transform	normal	to	world	space,	put	in	r1

												

												dp3	r3,r0,r1														//	Dot	product	Cam*Normal

												mul	r2,c20,r3

												mad	oT0.xyz,r2,r1,r0						//	Compute	reflection	vector

												//(1-cos)^4	=	approx	fresnel

												add	r0,c23,r3	 	 	 		//	Complement	color

												mul	r1,r0,r0	 	 	 		//	Square

//										add	r1,	r1,	c21

//										mul	oD0,	r1,	c10

												mad	oD0,	r1,	c10,	c10

												mov	r1,c9

												mul	oD1,r1,c21												//	blend	in	scaled	diffuse	mat	color

								};					

				}

}

technique	tec4

{	

				pass	p0

				{								

								//	Load	matrices

								VertexShaderConstant[0]	=	;		 //	World	Matrix

								VertexShaderConstant[4]	=	;	 //	World*View*Proj	Matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	;																//	Diffuse

								VertexShaderConstant[10]	=	;																//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								

								//	Properties	of	light	

								VertexShaderConstant[13]	=	(1.0f,0.0f,0.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;	 														//	Light	direction

								

								//	Blending	Constants

								VertexShaderConstant[20]	=	(-2.0f,-2.0f,-2.0f,-2.0f);

								

								VertexShaderConstant[21]	=	(1.0f,	1.0f,	1.0f,	1.0f);

								VertexShaderConstant[22]	=	(0.75f,	0.75f,	0.75f,	0.95f);

								VertexShaderConstant[23]	=	(1.00f,	1.00f,	1.00f,	1.00f);

								

								//	Camera	Information

								VertexShaderConstant[24]	=	;	

								

//						FillMode	=	Wireframe;

								ColorOp[0]			=	Modulate;

								ColorArg2[0]	=	Diffuse;

								ColorArg1[0]	=	Texture;

								

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								ColorOp[1]			=	Disable;	

								AlphaOp[1]			=	Disable;

								

								Texture[0]			=	;

								PixelShader		=	;	

								

								AlphaBlendEnable	=	True;

								SrcBlend		=	One;

								DestBlend	=	InvSrcAlpha;

								

//						CullMode	=	None;

								

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	coord1

												float	v8[3];	//	Texture	coord2

								}			

								asm

								{

												vs.1.1													//	Version	number

												m4x4	oPos,	v0,	c4		//	Transform	point	to	projection	space

												m4x4	r0,v0,c0						//	Transform	point	to	World	Space

												

												add	r0,r0,-c24					//	Get	a	vector	toward	the	camera	position,

																															//			this	is	the	camera	direction	

												//	Normalize

												dp3	r11.x,r0.xyz,r0.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r0.xyz,r0.xyz,r11.xyz	//	Multiply,	r0	=	(camera	vector)

												

												m3x3	r1,v3,c0													//	Transform	normal	to	world	space,	put	in	r1

												

												dp3	r3,r0,r1														//	Dot	product	Cam*Normal

												mul	r2,c20,r3

												mad	oT0.xyz,r2,r1,r0						//	Compute	reflection	vector

												

												//	(1-cos)^4	=	approx	fresnel

												add	r0,c23,r3	 	 	 	 //	Complement	color

												mul	r1,r0,r0	 	 	 	 //	Square

												mul	r0,r1,r1	 	 	 	 //	4th

												mul	r0,r0,c22

												mov	r1,c9	 	 	 	 	

//										add	r0,	r0,	c10													//	Add	in	specular

												add	oD0,r0,r1															//	Put	into	Diffuse	Color

								};					

				}

}

Exercise	5C

//

//	Effect	File	Workshop	Exercise	5C

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;	 //	Light	direction

matrix	mWld;	 //	World

matrix	mTot;	 //	Total

vector	vCPS;	 //	Camera	position

texture	tEnv;			//	Environment	texture

texture	tDif;			

vector	matD;		 //	Object	diffuse	material	color

//	Background	color

DWORD		BCLR	=	0xFF000000;

pixelshader	pNIL;

//	string	XFile	=	"sphere.x";

//	string	XFile	=	"f40.x";

string	XFile	=	"viper.x";

string	BIMG		=	"lobbyzneg.bmp";

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	5b:	Vertex	Shader	Specular	Envmap";

technique	tec0

{	

				pass	p0

				{								

								//	Load	matrices

								VertexShaderConstant[0]	=	;		 //	World	Matrix

								VertexShaderConstant[4]	=	;	 //	World*View*Proj	Matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	;																//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								

								//	Properties	of	light

								VertexShaderConstant[13]	=	(1.0f,0.0f,0.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;	 														//	Light	direction

								

								//	Blending	Constants

								VertexShaderConstant[20]	=	(-2.0f,-2.0f,-2.0f,-2.0f);

								

								VertexShaderConstant[25]	=	(1.0f,	1.0f,	1.0f,	1.0f);

								VertexShaderConstant[21]	=	(0.25f,	0.25f,	0.25f,	0.05f);

								VertexShaderConstant[22]	=	(0.75f,	0.75f,	0.75f,	0.95f);

								VertexShaderConstant[23]	=	(1.00f,	1.00f,	1.00f,	1.00f);

								

								//	Camera	information

								VertexShaderConstant[24]	=	;	

								

								ColorOp[0]			=	Modulate;

								ColorArg1[0]	=	Texture;

								ColorArg2[0]	=	Diffuse;

								

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								

								ColorOp[1]			=	Add;	

								ColorArg1[1]	=	Current;

								ColorArg2[1]	=	Specular;

								AlphaOp[1]			=	Disable;

								

								Texture[0]			=	;

								PixelShader		=	;	

								

//						AlphaBlendEnable	=	True;

//						SrcBlend		=	One;//SrcAlpha;

//						DestBlend	=	InvSrcAlpha;

								

//						CullMode	=	None;

	

					 SpecularEnable	=	True;							

								VertexShader	=

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	coord1

												float	v8[3];	//	Texture	coord2

								}			

								asm

								{

												vs.1.1													//	Version	number

												m4x4	oPos,	v0,	c4		//	Transform	point	to	projection	space

												m4x4	r0,v0,c0						//	Transform	point	to	World	Space

												

												add	r0,r0,-c24					//	Get	a	vector	toward	the	camera	position,

																															//			this	is	the	camera	direction	

												//	Normalize

												dp3	r11.x,r0.xyz,r0.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r0.xyz,r0.xyz,r11.xyz	//	Multiply,	r0	=	(camera	vector)

												

												m3x3	r1,v3,c0													//	Transform	normal	to	world	space,	put	in	r1

												

												dp3	r3,r0,r1														//	Dot	product	Cam*Normal

												mul	r2,c20,r3

												mad	oT0.xyz,r2,r1,r0						//	Compute	reflection	vector

												//	(1-cos)^4	=	approx	fresnel

												add	r0,c23,r3	 	 	 		//	Complement	color

												mul	r1,r0,r0	 	 	 		//	Square

//										mul	r0,r1,r1	 	 	 		//	4th

//										mul	r0,r1,r1

	 								add	oD0,r1,c21	 	 	

												mul	r0,r0,c22

												mov	r1,c9	 	 	 	 	

												mul	oD1,r1,c25												//	Blend	in	scaled	diffuse	mat	color

//										add	oD0,r0,r1													//	Put	into	Diffuse	Color

//										add	oD0,r0,r1													//	Put	into	Diffuse	Color

								};					

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	6:	Standard	Texture	Effect
//

//	Standard	Texture	Effect

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	matD;				//	Material	diffuse

vector	matS;				//	Material	specular

vector	matA;				//	Material	ambient

DWORD		lhtT;				//	Light	type

vector	lhtD;				//	Light	diffuse

vector	lhtS;				//	Light	specular

vector	lhtA;				//	Light	ambient

vector	lhtR;				//	Light	direction

vector	lhtP;				//	Light	position	

vector	vOff;				//	Emboss	offset

vector	vVwD;				//	View	direction

vector	vCPS;				//	Camera	position

matrix	mEnv;				//	Environment	map	transform

matrix	mWld;				//	World

matrix	mTot;				//	Total

matrix	mWl0;				//	Blending	matrices

matrix	mWl1;

matrix	mWl2;

matrix	mWl3;

matrix	mWl4;

matrix	mWl5;

matrix	mWl6;

matrix	mWl7;

matrix	mIdt	=	

[

				1.0,0.0,0.0,0.0,

				0.0,1.0,0.0,0.0,

				0.0,0.0,1.0,0.0,

				0.0,0.0,0.0,1.0

];

DWORD		BCLR	=	0x0000000;

texture	tDif;			//	Diffuse	texture

texture	tEnv;			//	Environment	texture

texture	tEvC;			//	Circulary	integratex	cube	texture

texture	tEvL;

texture	tDf2;			//	Second	texture

texture	tDf3;		

texture	tDf4;

texture	tSt1;			//	Procedural	satin	texture

texture	tSt2;			//	Procedural	stain	texture2	

texture	tMt1;			//	Brushed	metal	texture

texture	tFrn;			//	Fresnel	Shader

texture	tGlw;			//	Glow	Shader	

texture	tL10;			//	Light	lookup	texture	for	spec

texture	tL80;

texture	tL64;

texture	tL32;

texture	tL16;

texture	tfg1;

texture	tfg2;

texture	tNSE;

texture	tNSN;

pixelshader	pNIL;

string	XFile	=	"tiny.x";

string	Skinned	=	"true";

//	Skinned	version,	lots	of	transforms	have	to	happen	here

vertexshader	sDif	=

decl

{

				stream	0;

				float	v0[3];				//	Blend	weights

				float	v1[3];				//	Indices

				ubyte	v2[4];

//	OR

//		d3dcolor	v2[1];	//	if	hardware	doesn't	support	ubyte,	use	d3dcolor	instead

				float	v3[3];

				float	v7[3];	

				float	v8[3];	

}

asm

{

				vs.1.1

				//	The	indices	are	put	into	an	color

				//	If	ubyte	is	supported,	this	the	right	way	to	do	it

				mul	r1,v2.xyzw,c41.zzzz

				//	OR

				//	If	ubyte	is	not	supported,	decode	from	a	32	bit	d3dcolor	value

				//mul	r1,v2.zyxw,c41.wwww

				//	First	compute	the	last	blending	weight

				mov	r0.xyz,v1.xyz;

				dp3	r0.w,v1.xyz,c40.xxx;	

				

				add	r0.w,-r0.w,c40.x

				//	Now	do	a	bunch	of	matrix	multiples,

				//				r5	=	Position

				//				r6	=	Normal

				mov	a0.x,r1.x

				mov	r5,v0

				m4x3	r5,v0,c[a0.x];	//World	matrices	start	at	0

				m3x3	r6,v3,c[a0.x];

				//	Blend	them

				mul	r5,r5,r0.xxxx

				mul	r6,r6,r0.xxxx

				//	Set	2

				mov	a0.x,r1.y

				m4x3	r2,v0,c[a0.x];

				m3x3	r3,v3,c[a0.x];

				//	Add	them	in

				mad	r5,r2,r0.yyyy,r5;

				mad	r6,r3,r0.yyyy,r6;

				

				//	Set	3

				mov	a0.x,r1.z

				m4x3	r2,v0,c[a0.x];

				m3x3	r3,v3,c[a0.x];

				//	Add	them	in

				mad	r5,r2,r0.zzzz,r5;

				mad	r6,r3,r0.zzzz,r6;								

				//	Set	4

				mov	a0.x,r1.w

				m4x3	r2,v0,c[a0.x];

				m3x3	r3,v3,c[a0.x];

								

				//	Add	them	in

				mad	r5,r2,r0.wwww,r5;

				mad	r6,r3,r0.wwww,r6;

				//	Compute	position

				mov	r5.w,c40.x

				m4x4	oPos,r5,c50;

				

				dp3	r11.x,r6.xyz,r6.xyz			//	Load	the	square	into	r1

				rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

				mul	r6.xyz,r6.xyz,r11.xyz	//	Multiply

				dp3	r4.xyz,r6,-c48	

				mov	oD0.xyz,r4.xyz

				mov	oT0.xy,v7.xy

};

//Skinned	Diffuse	1

string	tec0	=	"Exercise	6:	Skinned	Diffuse";

technique	tec0

{

				pass	P0

				{

								ColorOp[0]			=	Modulate;

								ColorArg1[0]	=	Texture;

								ColorArg2[0]	=	Diffuse;

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Current;

								

								ColorOp[1]			=	Disable;

								AlphaOp[1]			=	Disable;

				

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MipFilter[0]	=	Linear;

								VertexShaderConstant[0]		=	<mWl0>;

								VertexShaderConstant[4]		=	<mWl1>;

								VertexShaderConstant[8]		=	<mWl2>;

								VertexShaderConstant[12]	=	<mWl3>;

								VertexShaderConstant[16]	=	<mWl4>;

								VertexShaderConstant[20]	=	<mWl5>;

								VertexShaderConstant[24]	=	<mWl6>;

								VertexShaderConstant[28]	=	<mWl7>;

								VertexShaderConstant[32]	=	<mIdt>;

								VertexShaderConstant[50]	=	<mTot>;																					//	mTot	is	just	view*proj

								VertexShaderConstant[48]	=	<lhtR>;

								VertexShaderConstant[40]	=	(1.0f,-1.0f,0.0f,.0f);

								VertexShaderConstant[41]	=	(0.00390625f,	256.0f,	4.0f,1020.01f);

								VertexShaderConstant[43]	=	(0.0,0.0,1.0,0.0f);

								VertexShaderConstant[44]	=	(0.0,0.0,0.0,0.0);

								VertexShaderConstant[60]	=	(0.5,0.5,0.5,0.5);

								VertexShaderConstant[60]	=	(1.0f,1.0f,1.0f,1.0f);

								VertexShaderConstant[61]	=	(.50f,0.43f,0.38f,1.0f);				//	Sky	color

								VertexShaderConstant[62]	=	(0.18f,.10f,0.15f,1.0f);				//	Ground	color

								VertexShaderConstant[63]	=	<matD>;																					//	Object	color

								VerteXShaderConstant[64]	=	(0.0f,1.0f,0.0f,1.0f);						//	Sky	direction

								Texture[0]			=	<tDif>;

								vertexshader	=	<sDif>;

				

								wrap0								=	U	|	V;

								wrap1								=	U	|	V;

								AddressU[0]		=	Wrap;

								AddressV[0]		=	Wrap;

								AlphaBlendEnable	=	False;

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	7:	Multi-Texturing	with
Shaders
//

//	Effect	File	Workshop	Exercise	7

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;				//	Light	direction

matrix	mWld;				//	World

matrix	mTot;				//	Total

texture	tDif;			//	Diffuse	texture	of	object

texture	tNSE;			//	Noise	texture

//	Background	color

DWORD		BCLR	=	0xFF0000FF;

pixelshader	pNIL;

string	XFile	=	"sphere.x";

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	7:	Multi-Texturing	with	shaders";

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	<mWld>;					//	World	Matrix

								VertexShaderConstant[4]	=	<mTot>;				//	World*View*Proj	Matrix

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

				

								//	Properties	of	light				

								VertexShaderConstant[13]	=	(1.0f,0.0f,0.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	<lhtR>;																//	Light	direction

								//	Useful	constant(s)

								VertexShaderConstant[20]	=	(-1.0f,-1.0f,-1.0f,-1.0f);

								Texture[0]			=	<tDif>;

								Texture[1]			=	<tNSE>;

								wrap0								=	U	|	V;

								wrap1								=	U	|	V;

				

								AddressU[0]	=	wrap;

								AddressV[0]	=	wrap;

								AddressU[1]	=	wrap;

								AddressV[1]	=	wrap;

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MinFilter[1]	=	Linear;

								MagFilter[1]	=	Linear;

								VertexShader	=	

								decl

								{

												stream	0;

												float	v0[3];							//	Position

												float	v3[3];							//	Normal

												float	v7[3];							//	Texture	coord1

												float	v8[3];							//	Texture	coord2

								}			

								asm

								{

												vs.1.1													//	Version	number

												m4x4	oPos,	v0,	c4		//	Transform	point	to	projection	space

												m3x3	r0,v3,c0						//	Transform	normal	to	world	space,	put

																															//			result	into	r0

												

												dp3		r0,r0,-c16				//	Dot	product	against	light,	r0

																															//	now	has	lighting	constant	in	x,y	and	z

																															//	components	(r,g,b)

								

												mov	r0.xy,v7.xy				//	Copy	texture	coordinates	to	r0

												//mul	r0.y,r0.y,c20		//	Invert	texture	coordinates

												mov	oT0.xy,r0.xy			//	Copy	texture	coordinates	to	oT0

												mov	oT1.xy,r0.xy			//	Copy	texture	coordinates	to	oT1

												mov	oD0,r0									//	Copy	diffuse	to	output

								};				

				

								PixelShader	=	

								asm

								{

											ps.1.1

											tex	t0														//	Get	texture	sample	from	stage	0

											tex	t1														//	Get	texture	sample	from	stage	1

											mul_x2	r0,t1,t0;				//	Blend	them	together	in	an	interesting	way

								};									

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	8:	Texturing	with	Lights
//

//	Effect	File	Workshop	Exercise	8

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;				//	Light	direction

matrix	mWld;				//	World

matrix	mTot;				//	Total

texture	tDif;			//	Diffuse	texture	of	object

texture	tNSE;			//	Noise	Texture

vector	vCPS;				//	Camera	position

//	Background	color

DWORD		BCLR	=	0xFF0000FF;

pixelshader	pNIL;

string	XFile	=	"sphere.x";

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	8:	Texturing	with	lights";

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	<mWld>;																	//	World	Matrix

								VertexShaderConstant[4]	=	<mTot>;																	//	World*View*Proj	Matrix

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

				

								//	Properties	of	light				

								VertexShaderConstant[13]	=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	<lhtR>;																//Light	Direction

								//	Useful	constants

								VertexShaderConstant[20]	=	(1.0f,1.0f,1.0f,1.0f);

								VertexShaderConstant[21]	=	(1.0f,1.0f,1.0f,0.0f);

								//	Camera	Information

								VertexShaderConstant[24]	=	<vCPS>;				

								Texture[0]			=	<tDif>;

								Texture[1]			=	<tNSE>;

								wrap0								=	U	|	V;

								wrap1								=	U	|	V;

				

								AddressU[0]	=	wrap;

								AddressV[0]	=	wrap;

								AddressU[1]	=	wrap;

								AddressV[1]	=	wrap;

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MinFilter[1]	=	Linear;

								MagFilter[1]	=	Linear;

								VertexShader	=	

								decl

								{

												stream	0;

												float	v0[3];														//	Position

												float	v3[3];														//	Normal

												float	v7[3];														//	Texture	coord1

												float	v8[3];														//	Texture	coord2

								}			

								asm

								{

												vs.1.1																				//	Version	number

												m4x4	oPos,	v0,	c4									//	Transform	point	to	projection	space

												m4x4	r0,v0,c0													//	Transform	point	to	world	space

								

												add	r0,-r0,c24												//	Get	a	vector	toward	the	camera	position,

																																						//			this	is	the	negative	of	the	camera	direction	

												//	Normalize

												dp3	r11.x,r0.xyz,r0.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r0.xyz,r0.xyz,r11.xyz	//	Multiply,	r0	=	-(camera	vector)

												add	r2.xyz,r0.xyz,-c16				//	Get	half	angle

												//	Normalize

												dp3	r11.x,r2.xyz,r2.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r2.xyz,r2.xyz,r11.xyz	//	Multiply,	r2	=	HalfAngle

												m3x3	r1,v3,c0													//	Transform	normal	to	world	space,	put	in	r1

												//	r2	=	half	angle,	r1	=	normal,	r3	(output)	=	intensity

												dp3		r3.xyzw,r2,r1

												//	Now	raise	it	several	times

												mul	r3,r3,r3														//	2nd

												mul	r3,r3,r3														//	4th

												mul	r3,r3,r3														//	8th

												mul	r3,r3,r3														//	16th

												mul	r3,r3,c20

												//	Compute	diffuse	term

												dp3	r4,r1,-c16

												mul	r4,r4,c21

												mov	oD0,r4

												mov	oD1,r3

												mov	oT0.xy,v7.xy										//	Copy	texture	coordinates	to	oT0

												mov	oT1.xy,v7.xy										//	Copy	texture	coordinates	to	oT1

								};

								PixelShader	=	

								asm

								{

											ps.1.1

											tex	t0																					//	Sample	texture	0

											tex	t1																					//	Sample	texture	1

											mul_x2	r1,t1,t0;											//	Blend	them	together	

											mov				r0,r1

											mul				r0,r1,v0;											//	Modulate	diffuse	

											mul				r1,r1,v1;											//	Modulate	specular

											add				r0,r0,v1;											//	Blend	them	together

								};

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	9:	Bump	Mapping
//

//	Effect	File	Workshop	Exercise	9

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;				//	Light	direction

matrix	mWld;				//	World

matrix	mTot;				//	Total

texture	tDif;			//	Diffuse	texture	of	object

texture	tDf3;			//	Normal	map	for	earth

texture	tL10;			//	Light	lookup	texture	for	spec

texture	tL80;

texture	tL64;

texture	tL32;

texture	tL16;

vector	vCPS;				//	Camera	Position

//	Background	color

DWORD		BCLR	=	0xFF0000FF;

pixelshader	pNIL;

string	XFile	=	"sphere.x";

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	9a:	Dot	3	Bump	Mapping";

string	tec1	=	"Exercise	9b:	Dot	3	Specular	Bump	Mapping";

string	tec2	=	"Exercise	9c:	Table	Lookup	Specular	Bump	Mapping";

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	;		 //	World	Matrix

								VertexShaderConstant[4]	=	;	 //	World*View*Proj	Matrix

	

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	(0.8f,0.8f,0.8f,0.8f);	//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

	

								//	Properties	of	light	

								VertexShaderConstant[13]	=	(0.7f,0.7f,0.7f,0.7f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;	 //Light	Direction

								vertexShaderConstant[20]	=	(.5f,.5f,.5f,.5f);

	

								//	Camera	information

								VertexShaderConstant[24]	=	;	

								Texture[0]			=	;

								Texture[1]			=	;

								wrap0								=	U	|	V;

								wrap1								=	U	|	V;

	

								AddressU[0]	=	wrap;

								AddressV[0]	=	wrap;

								AddressU[1]	=	wrap;

								AddressV[1]	=	wrap;

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MinFilter[1]	=	Linear;

								MagFilter[1]	=	Linear;

								VertexShader	=	

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	Coord1

												float	v8[3];	//	Tangent

								}			

								asm	

								{

												vs.1.1

												//	Transform	position

												m4x4	oPos,v0,c4

												

												//	Transform	normal	and	tangent

												m3x3	r7,v8,c0

												m3x3	r8,v3,c0

												

												//	Cross	product

												mul	r0,-r7.zxyw,r8.yzxw;

												mad	r5,-r7.yzxw,r8.zxyw,-r0;

												

												//	Transform	the	light	vector

												dp3	r6.x,r7,-c16

												dp3	r6.y,r5,-c16

												dp3	r6.z,r8,-c16

												

												//	Multiply	by	a	half	to	bias,	then	add	half

												mad	r6.xyz,r6.xyz,c20,c20

												

												mov	oT0.xy,v7.xy

												mov	oT1.xy,v7.xy

												mov	oD0.xyz,r6.xyz

								};				

	

								PixelShader	=	

								asm

								{

												ps.1.1

												tex	t0	 	//	Sample	texture

												tex	t1	 	//	Sample	normal

												mov	r0,t1

												dp3	r0,t1_bx2,v0_bx2;	//	Dot(light,normal)	

												mul	r0,t0,r0										//	Modulate	against	base	color

								};		

				}

}

technique	tec1

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	;		 //	World	matrix

								VertexShaderConstant[4]	=	;	 //	World*View*Proj	matrix

								

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								

								//	Properties	of	light	

								VertexShaderConstant[13]	=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;																//	Light	direction

								

								

								VertexShaderConstant[20]	=	(.5f,.5f,.5f,.5f);

								

								

								//	Camera	information

								VertexShaderConstant[24]	=	;	

								

								Texture[0]			=	;

								Texture[1]			=	;

								wrap0								=	U	|	V;

								wrap1								=	U	|	V;

								

								AddressU[0]	=	wrap;

								AddressV[0]	=	wrap;

								AddressU[1]	=	wrap;

								AddressV[1]	=	wrap;

								

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MinFilter[1]	=	Linear;

								MagFilter[1]	=	Linear;

								VertexShader	=	

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	Coord1

												float	v8[3];	//	Tangent

								}

								asm	

								{

												vs.1.1

												//	Transform	position

												m4x4	oPos,v0,c4

												

												//	Transform	normal	and	tangent

												m3x3	r7,v8,c0

												m3x3	r8,v3,c0

												

												//	Cross	product

												mul	r0,-r7.zxyw,r8.yzxw;

												mad	r5,-r7.yzxw,r8.zxyw,-r0;

												

												//	Transform	position

												m4x4	r2,v0,c0

												

												//	Get	a	vector	toward	the	camera

												add	r2,-r2,c24

												

												dp3	r11.x,r2.xyz,r2.xyz			//	Load	the	square	into	r11

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r2.xyz,r2.xyz,r11.xyz	//	Multiply,	r0	=	-(camera	vector)

												

												add	r2.xyz,r2.xyz,-c16				//	Get	half	angle

												

												//	Normalize

												dp3	r11.x,r2.xyz,r2.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r2.xyz,r2.xyz,r11.xyz	//	Multiply,	r2	=	HalfAngle

												

												

												//	Transform	the	half	angle	vector

												dp3	r6.x,r7,r2

												dp3	r6.y,r5,r2

												dp3	r6.z,r8,r2

												

												//	Multiply	by	a	half	to	bias,	then	add	half

												mad	r6.xyz,r6.xyz,c20,c20

												

												mov	oT0.xy,v7.xy

												mov	oT1.xy,v7.xy

												mov	oD0.xyz,r6.xyz

								};				

	

								PixelShader	=	

								asm

								{

												ps.1.1

												tex	t0																//	Sample	base	map

												tex	t1																//	Sample	normal

												dp3	r0,t1_bx2,v0_bx2;	//	Dot(normal,half)

												

												mul	r1,r0,r0;									//	Raise	it	to	32nd	power

												mul	r0,r1,r1;	

												mul	r1,r0,r0;

												mul	r0,r1,r1;

												mul	r0,t0,r0

								};		

				}

}

technique	tec2

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	;		 //	World	Matrix

								VertexShaderConstant[4]	=	;	 //	World*View*Proj	Matrix

	

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

	

								//	Properties	of	light	

								VertexShaderConstant[13]	=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;																//Light	Direction

								vertexShaderConstant[20]	=	(.5f,.5f,.5f,.5f);

	

								//	Camera	Information

								VertexShaderConstant[24]	=	;	

								Texture[0]			=	;

								Texture[2]			=	;

								Texture[3]			=	;

								wrap0								=	U	|	V;

								wrap1								=	0;

								wrap2								=	0;

								wrap3								=	U	|	V;

	

								AddressU[0]	=	wrap;

								AddressV[0]	=	wrap;

								AddressU[1]	=	clamp;

								AddressV[1]	=	clamp;

								AddressU[2]	=	clamp;

								AddressV[2]	=	clamp;

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MinFilter[1]	=	Linear;

								MagFilter[1]	=	Linear;

								VertexShader	=	

								decl

								{

												stream	0;

												float	v0[3];	//	Position

												float	v3[3];	//	Normal

												float	v7[3];	//	Texture	Coord1

												float	v8[3];	//	Tangent

								}			

								asm	

								{

												vs.1.1

												//	Transform	position

												m4x4	oPos,v0,c4

												

												//	Transform	normal	and	tangent

												m3x3	r7,v8,c0

												m3x3	r8,v3,c0

												

												//	Cross	product

												mul	r0,-r7.zxyw,r8.yzxw;

												mad	r5,-r7.yzxw,r8.zxyw,-r0;

												

												//	Transform	position

												m4x4	r2,v0,c0

												

												//	Get	a	vector	toward	the	camera

												add	r2,-r2,c24

												

												dp3	r11.x,r2.xyz,r2.xyz			//	Load	the	square	into	r11

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r2.xyz,r2.xyz,r11.xyz	//	Multiply,	r0	=	-(camera	vector)

												

												add	r2.xyz,r2.xyz,-c16				//	Get	half	angle

												

												//	Normalize

												dp3	r11.x,r2.xyz,r2.xyz			//	Load	the	square	into	r1

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r2.xyz,r2.xyz,r11.xyz	//	Multiply,	r2	=	HalfAngle

												

												//	Transform	the	half	angle	vector

												dp3	r6.x,r7,r2

												dp3	r6.y,r5,r2

												dp3	r6.z,r8,r2

												

												mov	oT0.xy,v7.xy									//	Coordinate	to	samp	normal	from

												mov	oT1.xyz,r6											//	Not	a	tex	coordinate,	but	half

												mov	oT2.xyz,r6											//	Angle

												mov	oT3.xy,v7.xy

								};				

	

								PixelShader	=	

								asm

								{

												ps.1.1

												tex	t0	 																//	Sample	normal

												texm3x2pad	t1,	t0_bx2			//	Look	it	up	in	a	table

												texm3x2tex	t2,	t0_bx2			

												tex	t3																		//	Sample	base	color

												

												mov	r0,t2

												mul	r0,r0,t3												//	Blend	terms

								};		

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	10:	Anisotropic	Bump
Mapping
//

//	Effect	File	Workshop	Exercise	10

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;				//	Light	direction

matrix	mWld;				//	World

matrix	mTot;				//	Total

texture	tDif;			//	Diffuse	texture	of	object

texture	tDf4;			//	Normal	map	for	earth

texture	tSt2;			//	Anisotropic	lighting	table

vector	vCPS;				//	Camera	position

//	Background	color

DWORD		BCLR	=	0xFF0000FF;

pixelshader	pNIL;

string	XFile	=	"bust.x";

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	10:	Anisotropic	Bump	Mapping";

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	<mWld>;																	//	World	Matrix

								VertexShaderConstant[4]	=	<mTot>;																	//	World*View*Proj	Matrix

	

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								//	Properties	of	light

								VertexShaderConstant[13]	=	(1.0f,1.0f,1.0f,1.0f);	//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);	//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);	//	Ambient

								VertexShaderConstant[16]	=	;																						//	Light	direction

								vertexShaderConstant[20]	=	(.5f,.5f,.5f,.5f);

								vertexShaderConstant[40]	=	(1.0f,1.0f,1.0f,1.0f);

								//	Camera	information

								VertexShaderConstant[24]	=	<vCPS>;

								PixelShaderConstant[0]			=	(0.5f,	0.2f,	0.2f,	0.2f);

								Texture[0]		=	<tDf4>;

								Texture[3]		=	<tSt2>;

								wrap0								=	U	|	V;

								wrap1								=	0;

								wrap2								=	0;

								wrap3								=	0;

								AddressU[0]		=	wrap;

								AddressV[0]		=	wrap;

								AddressU[1]		=	wrap;

								AddressV[1]		=	wrap;

								AddressU[3]		=	wrap;

								AddressV[3]		=	wrap;

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MinFilter[1]	=	Linear;

								MagFilter[1]	=	Linear;

								VertexShader	=	

								decl

								{

												stream	0;

												float	v0[3];														//	Position

												float	v3[3];														//	Normal

												float	v7[3];														//	Texture	Coord1

												float	v8[3];														//	Tangent

								}			

								asm	

								{

												vs.1.1

												//	Transform	position

												m4x4	oPos,v0,c4

												//	Transform	normal	and	tangent

												m3x3	r7,v8,c0

												m3x3	r8,v3,c0

												//	Cross	product

												mul	r0,-r7.zxyw,r8.yzxw;

												mad	r5,-r7.yzxw,r8.zxyw,-r0;

						

												//	Transform	position

												m4x4	r2,v0,c0

												//	Get	a	vector	toward	the	camera

												add	r2,-r2,c24

												dp3	r11.x,r2.xyz,r2.xyz			//	Load	the	square	into	r11

												rsq	r11.xyz,r11.x									//	Get	the	inverse	of	the	square

												mul	r2.xyz,r2.xyz,r11.xyz	//	Multiply,	r0	=	-(camera	vector)

													//	Transform	the	view	angle	vector

												dp3	r6.x,r7,r2

												dp3	r6.y,r5,r2

												dp3	r6.z,r8,r2

	

												//	Transform	the	light	vector

												dp3	r2.x,r7,-c16

												dp3	r2.y,r5,-c16

												dp3	r2.z,r8,-c16

												

												mov	oT0.xy,v7.xy										//	Coordinates	to	samp	normal	from

												mov	oT1.xyz,r2												//	Light	

												mov	oT2.xyz,r6												//	View	angle

												mov	oT3.xyz,c40											//	Garbage	in	this	register

								};					

								PixelShader	=	

								asm

								{

											ps.1.1

											tex	t0

											texm3x3pad	t1,	t0_bx2						//	3x3	transform

											texm3x3pad	t2,	t0_bx2						//	These	generate	a	texcoord	which	is

											texm3x3tex	t3,	t0_bx2						//	u	=	dot(light,normal)

																																						//	v	=	dot(view,	normal)

																																						//	w	=	some	positive	number

											mov	r0,t3;

											mad	r0,c0,t3.a,r0;									//	Alpha	has	the	diffuse,	so	add	it	

																																						//	to	specular	for	final	result

											};

				}

}

	
Microsoft	DirectX	8.1	(C++)

Exercise	11:	Area	Lighting
//

//	Effect	File	Workshop	Exercise	11

//	Copyright	(c)	2000	Microsoft	Corporation.	All	rights	reserved.

//

vector	lhtR;				//	Light	Direction

vector	matD;				//	Material	Diffuse

matrix	mWld;				//	World

matrix	mTot;				//	Total

texture	tDif;			//	Diffuse	texture	of	object

//	Background	color

DWORD		BCLR	=	0xFF000000;

pixelshader	pNIL;

string	XFile	=	"skullhiv.x";

//	Technique	names	for	display	in	viewer	window

string	tec0	=	"Exercise	11a:	Area	Lighting";

string	tec1	=	"Exercise	11b:	Area	and	Diffuse	Lighting";

technique	tec0

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	<mWld>;																			//	World	Matrix

								VertexShaderConstant[4]	=	<mTot>;																			//	World*View*Proj	Matrix

								//	Material	properties	of	object

								VertexShaderConstant[9]		=	<matD>;																		//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient

								//	Properties	of	light

								VertexShaderConstant[13]	=	(1.0f,1.0f,1.0f,1.0f);			//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);			//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);			//	Ambient

								VertexShaderConstant[16]	=	<lhtR>;																		//	Light	direction

								VertexShaderConstant[20]	=	(.5f,.5f,.5f,.5f);	

								VertexShaderConstant[40]	=	(1.0f,1.0f,1.0f,1.0f);

								VertexShaderConstant[41]	=	(1.00f,0.86f,0.75f,1.0f);	//	sky	color

								VertexShaderConstant[42]	=	(0.25f,.25f,0.15f,1.0f);		//	ground	color

								VertexShaderConstant[43]	=	<matD>;																			//	object	color

								VerteXShaderConstant[44]	=	(0.0f,-1.0f,0.0f,1.0f);			//	sky	direction

											Texture[0]			=	<tDif>;

								wrap0								=	U	|	V;

								wrap1								=	0;

								wrap2								=	0;

								AddressU[0]	=	wrap;

								AddressV[0]	=	wrap;

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MinFilter[1]	=	Linear;

								MagFilter[1]	=	Linear;

								ColorOp[0]			=	Modulate;

								ColorArg1[0]	=	Diffuse;

								ColorArg2[0]	=	Texture;

								AlphaOp[0]			=	SelectArg1;

								AlphaArg1[0]	=	Diffuse;

								VertexShader	=	

								decl

								{

												stream	0;

												float	v0[3];									//	Position

												float	v3[3];									//	Normal

												float	v7[3];									//	Texture	Coord1

												float	v8[3];									//	Tangent

								}			

								asm	

								{

												vs.1.1

												m4x4	oPos,v0,c4						//	Transform	position	

												m3x3			r0,v3,c0						//	Transform	normal	to	world	space

												dp3	r0,r0,-c44							//	Dot	product	against	sky	vector

												//	The	dot	product	was	between	-1	to	1.	We	want

												//			to	re-range	this	to	0	to	1

												mad	r0,r0,c20,c20

												//	Now	lerp	between	the	two	sky	colors.

												mov	r1,c42

												sub	r1,c41,r1								//	To	save	a	clock,	this	delta	should	be

																																	//	saved	in	a	register

												mad	r0,r1,r0,c42					//	Now	lerp

												sub	r1,c40,v7.zzz				//	This	modulates	against	a	darkening	term

																																	//			or	occlusion	term,	embedded	in	the	z	tex

																																	//			coordinate,	we	want	1-z	though

												mul	r0,r0,r1									//	Darken	sky	term

												mul	oD0,r0,c9								//	Now	modulate	against	object's	color

												mov	oT0.xy,v7.xy

								};

				}

}

technique	tec1

{	

				pass	p0

				{

								//	Load	matrices

								VertexShaderConstant[0]	=	<mWld>;																				//	World	Matrix

								VertexShaderConstant[4]	=	<mTot>;																				//	World*View*Proj	Matrix

								//Material	properties	of	object

								VertexShaderConstant[9]		=	<matD>;																			//	Diffuse

								VertexShaderConstant[10]	=	(0.0f,0.0f,0.0f,0.0f);				//	Specular

								VertexShaderConstant[11]	=	(0.0f,0.0f,0.0f,0.0f);				//	Ambient

								//properties	of	light				

								VertexShaderConstant[13]	=	(.6f,.6f,.6f,1.0f);							//	Diffuse

								VertexShaderConstant[14]	=	(0.0f,0.0f,0.0f,0.0f);				//	Specular

								VertexShaderConstant[15]	=	(0.0f,0.0f,0.0f,0.0f);				//	Ambient

								VertexShaderConstant[16]	=	<lhtR>;																			//	Light	direction

								VertexShaderConstant[20]	=	(.5f,.5f,.5f,.5f);	

								VertexShaderConstant[40]	=	(1.0f,1.0f,1.0f,1.0f);

								VertexShaderConstant[41]	=	(.80f,0.76f,0.65f,1.0f);		//	Sky	color

								VertexShaderConstant[42]	=	(0.25f,.25f,0.15f,1.0f);		//	Ground	color

								VertexShaderConstant[43]	=	<matD>;																			//	Object	color

								VerteXShaderConstant[44]	=	(0.0f,-1.0f,0.0f,1.0f);			//	Sky	direction

								FillMode	=	Wireframe;

								Texture[0]			=	<tDif>;

								wrap0								=	U	|	V;

								wrap1								=	0;

								wrap2								=	0;

								AddressU[0]	=	wrap;

								AddressV[0]	=	wrap;

								MinFilter[0]	=	Linear;

								MagFilter[0]	=	Linear;

								MinFilter[1]	=	Linear;

								MagFilter[1]	=	Linear;

								ColorOp[0]			=	Modulate;	

								ColorArg1[0]	=	Diffuse;

								ColorArg2[0]	=	Texture;

								AlphaOp[0]			=	SelectArg1;	

								AlphaArg1[0]	=	Diffuse;

								VertexShader	=	

								decl

								{

												stream	0;

												float	v0[3];								//	Position

												float	v3[3];								//	Normal

												float	v7[3];								//	Texture	Coord1

												float	v8[3];								//	Tangent

								}			

								asm	

								{

												vs.1.1

												m4x4	oPos,v0,c4					//	Transform	position

												m3x3			r9,v3,c0					//	Transform	normal	to	world	space

								

												dp3	r0,r9,-c44						//	Dot	product	against	sky	vector

										

												//	The	dot	product	was	between	-1	to	1.	We	want

												//			to	re-range	this	to	0	to	1

												mad	r0,r0,c20,c20

												//now	lerp	between	the	two	sky	colors

												mov	r1,c42

													sub	r1,c41,r1						//	To	save	a	clock,	this	delta	should

																																//			be	saved	in	a	register

												mad	r0,r1,r0,c42				//	Now	lerp

												sub	r1,c40,v7.zzz			//	This	modulates	against	a	darkening	term

																																//			or	occlusion	term,	embedded	in	the	z	tex

																																//			coordinate,	we	want	1-z	though

												mul	r2,r0,r1								//	Darken	sky	term

												dp3	r1,r9,-c16						//	Dot	against	light	vector

												max	r1,	c15,	r1

												//	Complement,	square,	complement

												sub	r1,	c40,	r1

												mul	r1,	r1,	r1

												mul	r1,	r1,	r1

												sub	r1,	c40,	r1

												mad	r0,r1,c13,r2				//	Combine	with	light	diffuse	

												mul	oD0,r0,c9							//	Now	modulate	against	object's	color

												mov	oT0.xy,v7.xy

								};

				}

}

	
Microsoft	DirectX	8.1	(C++)

Ambient	Lighting

Ambient	lighting	provides	constant	lighting	for	a	scene.	It	lights	all	object
vertices	the	same	because	it	is	not	dependent	on	any	other	lighting	factors	such
as	vertex	normals,	light	direction,	light	position,	range,	or	attenuation.	It	is	the
fastest	type	of	lighting	but	it	produces	the	least	realistic	results.	Microsoft®
Direct3D®	contains	a	single	global	ambient	light	property	that	you	can	use
without	creating	any	light.	Alternatively,	you	can	set	any	light	object	to	provide
ambient	lighting.	The	ambient	lighting	for	a	scene	is	described	by	the	following
equation.

Ambient	Lighting	=	Mc*[Ga	+	sum(Lai)]	

The	parameters	are	defined	in	the	following	table.

Parameter Default	value Type Description
Mc (0,0,0,0) D3DCOLORVALUE Material	ambient	color.
Ga (0,0,0,0) D3DCOLORVALUE Global	ambient	color.

Lai (0,0,0,0) D3DVECTOR Light	ambient	color,	of
the	ith	light.

sum N/A N/A
Summation	of	the
ambient	light	from	the
light	objects.

The	value	for	Mc	is	one	of	three	values:	one	of	the	two	possible	vertex	colors	in
a	vertex	declaration,	or	the	material	ambient	color.	The	value	is:

vertex	color1,	if	AMBIENTMATERIALSOURCE	=	D3DMCS_COLOR1,
and	the	first	vertex	color	is	supplied	in	the	vertex	declaration.
vertex	color2,	if	AMBIENTMATERIALSOURCE	=	D3DMCS_COLOR2,
and	the	second	vertex	color	is	supplied	in	vertex	declaration.
material	ambient	color

Note		If	either	AMBIENTMATERIALSOURCE	option	is	used,	and	the	vertex
color	is	not	provided,	then	the	material	ambient	color	is	used.

To	use	the	material	ambient	color,	use	SetMaterial	as	shown	in	the	example	code

below.

Ga	is	the	global	ambient	color.	It	is	set	using
SetRenderState(D3DRENDERSTATE_AMBIENT).	There	is	one	global	ambient
color	in	a	Direct3D	scene.	This	parameter	is	not	associated	with	a	Direct3D	light
object.

Lai	is	the	ambient	color	of	the	ith	light	in	the	scene.	Each	Direct3D	light	has	a	set
of	properties,	one	of	which	is	the	ambient	color.	The	term,	sum(Lai)	is	a	sum	of
all	the	ambient	colors	in	the	scene.

Example

In	this	example,	the	object	is	colored	using	the	scene	ambient	light	and	a
material	ambient	color.	The	code	is	shown	below.

#define	GRAY_COLOR	 	 	 0x00bfbfbf

//	create	material

D3DMATERIAL8	mtrl;

ZeroMemory(&mtrl;,	sizeof(D3DMATERIAL8));

mtrl.Ambient.r	=	0.75f;

mtrl.Ambient.g	=	0.0f;

mtrl.Ambient.b	=	0.0f;

mtrl.Ambient.a	=	0.0f;

m_pd3dDevice->SetMaterial(&mtrl;);

m_pd3dDevice->SetRenderState(D3DRS_AMBIENT,	GRAY_COLOR);

According	to	the	equation,	the	resulting	color	for	the	object	vertices	is	a
combination	of	the	material	color	and	the	light	color.

These	two	images	show	the	material	color,	which	is	gray,	and	the	light	color,
which	is	bright	red.

	

The	resulting	scene	is	shown	below.	The	only	object	in	the	scene	is	a	sphere.
Ambient	light	lights	all	object	vertices	with	the	same	color.	It	is	not	dependent
on	the	vertex	normal	or	the	light	direction.	As	a	result,	the	sphere	looks	like	a	2-
D	circle	because	there	is	no	difference	in	shading	around	the	surface	of	the
object.

To	give	objects	a	more	realistic	look,	apply	diffuse	or	specular	lighting	in
addition	to	ambient	lighting.

	
Microsoft	DirectX	8.1	(C++)

Diffuse	Lighting

After	adjusting	the	light	intensity	for	any	attenuation	effects,	Microsoft®
Direct3D®	computes	how	much	of	the	remaining	light	reflects	from	a	vertex,
given	the	angle	of	the	vertex	normal	and	the	direction	of	the	incident	light.
Direct3D	skips	to	this	step	for	directional	lights	because	they	do	not	attenuate
over	distance.	The	system	considers	two	reflection	types,	diffuse	and	specular,
and	uses	a	different	formula	to	determine	how	much	light	is	reflected	for	each.
After	calculating	the	amounts	of	light	reflected,	Direct3D	applies	these	new
values	to	the	diffuse	and	specular	reflectance	properties	of	the	current	material.
The	resulting	color	values	are	the	diffuse	and	specular	components	that	the
rasterizer	uses	to	produce	Gouraud	shading	and	specular	highlighting.

Diffuse	lighting	is	described	by	the	following	equation.

Diffuse	Lighting	=	sum[Vd*Ld*(N
.Ldir)*Atten*Spot]	

The	parameters	are	defined	in	the	following	table.
Parameter Default	value Type Description

sum N/A N/A
Summation	of	each
light's	diffuse
component.

Vd (0,0,0,0) D3DCOLORVALUE Vertex	diffuse	color.
Ld (0,0,0,0) D3DCOLORVALUE Light	diffuse	color.
N N/A D3DVECTOR Vertex	normal.

Ldir (0,0,0,0) D3DCOLORVALUE Direction	vector	from
object	vertex	to	the	light.

Atten (0,0,0,0) D3DCOLORVALUE Light	attenuation.

Spot (0,0,0,0) D3DVECTOR Characteristics	of	the
spotlight	cone.

The	value	for	Vd	is	one	of	three	values:	one	of	the	two	possible	vertex	colors	in	a
vertex	declaration,	or	the	material	diffuse	color.	The	value	is:

vertex	color1,	if	DIFFUSEMATERIALSOURCE	=	D3DMCS_COLOR1,
and	the	first	vertex	color	is	supplied	in	the	vertex	declaration.

vertex	color2,	if	DIFFUSEMATERIALSOURCE	=	D3DMCS_COLOR2,
and	the	second	vertex	color	is	supplied	in	the	vertex	declaration.
material	diffuse	color

Note:	If	either	DIFFUSEMATERIALSOURCE	option	is	used,	and	the	vertex
color	is	not	provided,	the	material	diffuse	color	is	used.

To	calculate	the	attenuation	(Atten)	or	the	spotlight	characteristics	(Spot),	see
Attenuation	and	Spotlight	Terms

Diffuse	components	are	clamped	to	be	from	0	to	255,	after	all	lights	are
processed	and	interpolated	separately.	The	resulting	diffuse	lighting	value	is	a
combination	of	the	ambient,	diffuse	and	emissive	light	values.

Example

In	this	example,	the	object	is	colored	using	the	light	diffuse	color	and	a	material
diffuse	color.	The	code	is	shown	below.

D3DMATERIAL8	mtrl;

ZeroMemory(&mtrl;,	sizeof(D3DMATERIAL8));

D3DLIGHT8	light;

ZeroMemory(&light;,	sizeof(D3DLIGHT8));

light.Type	=	D3DLIGHT_DIRECTIONAL;

D3DXVECTOR3	vecDir;

vecDir	=	D3DXVECTOR3(0.5f,	0.0f,	-0.5f);

D3DXVec3Normalize((D3DXVECTOR3*)&light.Direction;,	&vecDir;);

//	set	directional	light	diffuse	color

light.Diffuse.r	=	1.0f;

light.Diffuse.g	=	1.0f;

light.Diffuse.b	=	1.0f;

light.Diffuse.a	=	1.0f;

m_pd3dDevice->SetLight(0,	&light;);

m_pd3dDevice->LightEnable(0,	TRUE);

//	if	a	material	is	used,	SetRenderState	must	be	used

//	vertex	color	=	light	diffuse	color	*	material	diffuse	color

mtrl.Diffuse.r	=	0.75f;

mtrl.Diffuse.g	=	0.0f;

mtrl.Diffuse.b	=	0.0f;

mtrl.Diffuse.a	=	0.0f;

m_pd3dDevice->SetMaterial(&mtrl;);

m_pd3dDevice->SetRenderState(D3DRS_DIFFUSEMATERIALSOURCE,	D3DMCS_MATERIAL);

According	to	the	equation,	the	resulting	color	for	the	object	vertices	is	a
combination	of	the	material	color	and	the	light	color.

These	two	images	show	the	material	color,	which	is	gray,	and	the	light	color,
which	is	bright	red.

	

The	resulting	scene	is	shown	below.	The	only	object	in	the	scene	is	a	sphere.	The
diffuse	lighting	calculation	takes	the	material	and	light	diffuse	color	and
modifies	it	by	the	angle	between	the	light	direction	and	the	vertex	normal	using
the	dot	product.	As	a	result,	the	backside	of	the	sphere	gets	darker	as	the	surface
of	the	sphere	curves	away	from	the	light.

Combining	the	diffuse	lighting	with	the	ambient	lighting	from	the	previous
example	shades	the	entire	surface	of	the	object.	The	ambient	light	shades	the
entire	surface	and	the	diffuse	light	helps	reveal	the	object's	three-dimensional	(3-
D)	shape.

Diffuse	lighting	is	more	intensive	to	calculate	than	ambient	lighting.	Because	it
depends	on	the	vertex	normals	and	light	direction,	you	can	see	the	objects
geometry	in	3-D	space,	which	produces	a	more	realistic	lighting	than	ambient
lighting.	You	can	use	specular	highlights	to	achieve	a	more	realistic	look.

	
Microsoft	DirectX	8.1	(C++)

Specular	Lighting

Modeling	specular	reflection	requires	that	the	system	not	only	know	the
direction	that	light	is	traveling,	but	also	the	direction	to	the	viewer's	eye.	The
system	uses	a	simplified	version	of	the	Phong	specular-reflection	model,	which
employs	a	halfway	vector	to	approximate	the	intensity	of	specular	reflection.

The	default	lighting	state	does	not	calculate	specular	highlights.	To	enable
specular	lighting,	be	sure	to	set	the	D3DRS_SPECULARENABLE	to	TRUE.

Specular	Lighting	is	described	by	the	following	equation.

Specular	Lighting	=	Vs*sum[Ls*(N
.H)P*Atten*Spot]	

The	parameters	are	defined	in	the	following	table.

Parameter Defaultvalue Type Description

Vs (0,0,0,0) D3DCOLORVALUE
Vertex
specular
color.

sum N/A N/A

Summation
of	each
light's
specular
component.

The	value	for	Vc	is	one	of	three	values:	one	of	the	two	possible	vertex	colors	in	a
vertex	declaration,	or	the	material	specular	color.	The	value	is:

vertex	color1,	if	SPECULARMATERIALSOURCE	=
D3DMCS_COLOR1,	and	the	first	vertex	color	is	supplied	in	the	vertex
declaration.
vertex	color2,	if	SPECULARMATERIALSOURCE	=
D3DMCS_COLOR2,	and	the	second	vertex	color	is	supplied	in	the	vertex
declaration.
material	specular	color

Note:	If	either	SPECULARMATERIALSOURCE	option	is	used,	and	the	vertex
color	is	not	provided,	then	the	material	specular	color	is	used.

To	calculate	the	attenuation	(Atten)	or	the	spotlight	characteristics	(Spot),	see
Attenuation	and	Spotlight	Terms

The	halfway	vector	(H)	exists	midway	between	the	vector	from	an	object	vertex
to	the	light	source	and	the	vector	from	an	object	vertex	and	the	camera	position.
Microsoft®	Direct3D®	provides	two	ways	to	compute	the	halfway	vector.	When
D3DRS_LOCALVIEWER	is	set	to	TRUE,	the	system	calculates	the	halfway
vector	using	the	position	of	the	camera	and	the	position	of	the	vertex,	along	with
the	light's	direction	vector.	The	following	formula	illustrates	this.

H	=	norm(norm(Cp	-	Vp)	+	Ldir)	where	the	parameters	are	defined	in	the
following	table:

Parameter Defaultvalue Type Description

Cp (0,0,0,0) D3DVECTOR Camera
position.

Vp (0,0,0,0) D3DVECTOR
Vertex
position.

When	D3DRS_LOCALVIEWER	is	set	to	TRUE,	Direct3D	determines	the
halfway	vector	by	the	following	formula.

H	=	norm(norm(-	Vp)	+	Ldir)

Determining	the	halfway	vector	in	this	manner	can	be	computationally	intensive.
As	an	alternative,	setting	D3DRS_LOCALVIEWER	to	FALSE	instructs	the
system	to	act	as	though	the	viewpoint	is	infinitely	distant	on	the	z-axis.	This
setting	is	less	computationally	intensive,	but	much	less	accurate,	so	it	is	best
used	by	applications	that	use	orthogonal	projection.

Specular	components	are	clamped	to	be	from	0	to	255,	after	all	lights	are
processed	and	interpolated	separately.

Example

In	this	example,	the	object	is	colored	using	the	scene	specular	light	color	and	a
material	specular	color.	The	code	is	shown	below.

D3DMATERIAL8	mtrl;

ZeroMemory(&mtrl;,	sizeof(D3DMATERIAL8));

D3DLIGHT8	light;

ZeroMemory(&light;,	sizeof(D3DLIGHT8));

light.Type	=	D3DLIGHT_DIRECTIONAL;

D3DXVECTOR3	vecDir;

vecDir	=	D3DXVECTOR3(0.5f,	0.0f,	-0.5f);

D3DXVec3Normalize((D3DXVECTOR3*)&light.Direction;,	&vecDir;);

light.Specular.r	=	1.0f;

light.Specular.g	=	1.0f;

light.Specular.b	=	1.0f;

light.Specular.a	=	1.0f;

light.Range	=	1000;

light.Falloff	=	0;

light.Attenuation0	=	1;

light.Attenuation1	=	0;

light.Attenuation2	=	0;

m_pd3dDevice->SetLight(0,	&light;);

m_pd3dDevice->LightEnable(0,	TRUE);

m_pd3dDevice->SetRenderState(D3DRS_SPECULARENABLE,	TRUE);

mtrl.Specular.r	=	1.0f;

mtrl.Specular.g	=	1.0f;

mtrl.Specular.b	=	1.0f;

mtrl.Specular.a	=	1.0f;

mtrl.Power	=	20;

m_pd3dDevice->SetMaterial(&mtrl;);

m_pd3dDevice->SetRenderState(D3DRS_SPECULARMATERIALSOURCE,	D3DMCS_MATERIAL);

According	to	the	equation,	the	resulting	color	for	the	object	vertices	is	a
combination	of	the	material	color	and	the	light	color.

These	two	images	show	the	material	color,	which	is	gray,	and	the	light	color,
which	is	white.

	

The	resulting	specular	highlight	is	shown	below.

Combining	the	specular	highlight	with	the	ambient	and	diffuse	lighting	produces
the	following	image.	With	all	three	types	of	lighting	applied,	this	more	clearly
resembles	a	realistic	object.

Specular	lighting	is	more	intensive	to	calculate	than	diffuse	lighting.	It	is
typically	used	to	provide	visual	clues	about	the	surface	material.	The	specular
highlight	varies	in	size	and	color	with	the	material	of	the	surface.

	
Microsoft	DirectX	8.1	(C++)

Emissive	Lighting

Emissive	lighting	is	described	by	a	single	term.

Emissive	Lighting	=	Me

The	parameter	is	defined	in	the	following	table.

Parameter Default	value Type Description

Me (0,0,0,0) D3DCOLORVALUE Material	emissive
color.

The	value	for	Me	is	one	of	three	values:	one	of	the	two	possible	vertex	colors	in
a	vertex	declaration,	or	the	material	emissive	color.	The	value	is:

vertex	color1,	if	EMISSIVEMATERIALSOURCE	=	D3DMCS_COLOR1,
and	the	first	vertex	color	is	supplied	in	the	vertex	declaration.
vertex	color2,	if	EMISSIVEMATERIALSOURCE	=	D3DMCS_COLOR2,
and	the	second	vertex	color	is	supplied	in	the	vertex	declaration.
material	emissive	color

Note		If	either	EMISSIVEMATERIALSOURCE	option	is	used,	and	the	vertex
color	is	not	provided,	the	material	emissive	color	is	used.

Example

In	this	example,	the	object	is	colored	using	the	scene	ambient	light	and	a
material	ambient	color.	The	code	is	shown	below.

//	create	material

D3DMATERIAL8	mtrl;

ZeroMemory(&mtrl;,	sizeof(D3DMATERIAL8));

mtrl.Emissive.r	=	0.0f;

mtrl.Emissive.g	=	0.75f;

mtrl.Emissive.b	=	0.0f;

mtrl.Emissive.a	=	0.0f;

m_pd3dDevice->SetMaterial(&mtrl;);

m_pd3dDevice->SetRenderState(D3DRS_EMISSIVEMATERIALSOURCE,	D3DMCS_MATERIAL);

According	to	the	equation,	the	resulting	color	for	the	object	vertices	is	the
material	color.

The	image	below	shows	the	material	color,	which	is	green.	Emissive	light	lights
all	object	vertices	with	the	same	color.	It	is	not	dependent	on	the	vertex	normal
or	the	light	direction.	As	a	result,	the	sphere	looks	like	a	2-D	circle	because	there
is	no	difference	in	shading	around	the	surface	of	the	object.

This	image	shows	how	the	emissive	light	blends	with	the	other	three	types	of
lights,	from	the	previous	examples.	On	the	right	side	of	the	sphere,	there	is	a
blend	of	the	green	emissive	and	the	red	ambient	light.	On	the	left	side	of	the
sphere,	the	green	emissive	light	blends	with	red	ambient	and	diffuse	light
producing	a	red	gradient.	The	specular	highlight	is	white	in	the	center	and
creates	a	yellow	ring	as	the	specular	light	value	falls	off	sharply	leaving	the
ambient,	diffuse	and	emissive	light	values	which	blend	together	to	make	yellow.

	
Microsoft	DirectX	8.1	(C++)

Camera	Space	Transformations

Vertices	in	the	camera	space	are	computed	by	transforming	the	object	vertices
with	the	world	view	matrix.

V	=	V	*	wvMatrix

Vertex	normals,	in	camera	space,	are	computed	by	transforming	the	object
normals	with	the	inverse	transpose	of	the	world	view	matrix.	The	world	view
matrix	may	or	may	not	be	symmetrical.

N	=	N	*	(wvMatrix-1)T

The	matrix	inversion	and	matrix	transpose	operate	on	a	4×4	matrix.	The	multiply
combines	the	normal	with	the	3×3	portion	of	the	resulting	4×4	matrix.

If	the	render	state,	D3DRENDERSTATE_NORMALIZENORMALS	is	set	to
TRUE,	vertex	normal	vectors	are	normalized	after	transformation	to	camera
space	as	follows:

N	=	norm(N)

Light	position	in	camera	space	is	computed	by	transforming	the	light	source
position	with	the	view	matrix.

Lp	=	Lp	*	vMatrix

The	direction	to	the	light	in	camera	space	for	a	directional	light	is	computed	by
multiplying	the	light	source	direction	by	the	view	matrix,	normalizing,	and
negating	the	result.

Ldir	=	-norm(Ldir	*	vMatrix)

For	the	D3DLIGHT_POINT	and	D3DLIGHT_SPOT	the	direction	to	light	is
computed	as	follows:

Ldir	=	norm(Ldir),	where	the	parameters	are	defined	in	the	following	table.

Parameter Default	value Type Description

Ldir (0,0,0,0) D3DCOLORVALUE Direction	vector	from
object	vertex	to	the	light

V (0,0,0,0) D3DVECTOR Vertex	position

wvMatrix Identity D3DMATRIX
Composite	matrix
containing	the	world	and
view	transforms

N (0,0,0,0) D3DVECTOR Vertex	normal
Lp (0,0,0,0) D3DVECTOR Light	position

vMatrix Identity D3DMATRIX Matrix	containing	the
view	transform

	
Microsoft	DirectX	8.1	(C++)

Attenuation	and	Spotlight	Terms

The	diffuse	and	specular	lighting	components	of	the	global	illumination	equation
contain	terms	that	describe	light	attenuation	and	the	spotlight	cone.	These	terms
are	described	below.

Attenuation	Term

The	attenuation	of	a	light	depends	on	the	type	of	light	and	the	distance	between
the	light	and	the	vertex	position.	To	calculate	attenuation,	use	one	of	the
following	three	equations.

Atten	=	1,	if	the	light	is	a	directional	light.
Atten	=	0,	if	the	distance	between	the	light	and	the	vertex	exceeds	the	light's
range.
Atten	=	1/(att0i	+	att1i*d	+	att2i*di2).

Parameter Default	value Type Description
att0i (0,0,0,0) FLOAT Linear	attenuation	factor
att1i (0,0,0,0) FLOAT Squared	attenuation	factor
att2i (0,0,0,0) FLOAT Exponential	attenuation	factor

di (0,0,0,0) FLOAT Distance	from	vertex	position	to
light	position

The	att0,	att1,	att2	values	are	specified	by	the	Attenuation0,	Attenuation1,	and
Attenuation2	members	of	the	D3DLIGHT8	structure.

The	distance	between	the	light	and	the	vertex	position	is	always	positive.

di	=	||Ldir||

where:

Parameter Default	value Type Description

Ldir 0.0 D3DVECTOR
Direction	vector	from
vertex	position	to	the

light	position

If	di	is	greater	than	the	light's	range,	that	is,	the	Range	member	of	a
D3DLIGHT8	structure,	Direct3D	makes	no	further	attenuation	calculations	and
applies	no	effects	from	the	light	to	the	vertex.	The	dvAttenuation0,
dvAttenuation1,	and	dvAttenuation2	values	are	the	light's	attenuation	constants
as	specified	by	the	members	of	a	light	object's	D3DLIGHT8	structure.	The
corresponding	structure	members	are	Attenuation0,	Attenuation1,	and
Attenuation2.

The	attenuation	constants	act	as	coefficients	in	the	formula—you	can	produce	a
variety	of	attenuation	curves	by	making	simple	adjustments	to	them.	You	can	set
Attenuation0	to	1.0	to	create	a	light	that	doesn't	attenuate	but	is	still	limited	by
range,	or	you	can	experiment	with	different	values	to	achieve	various	attenuation
effects.

The	attenuation	at	the	maximum	range	of	the	light	is	not	0.0.	To	prevent	lights
from	suddenly	appearing	when	they	are	at	the	light	range,	an	application	can
increase	the	light	range.	Or,	the	application	can	set	up	attenuation	constants	so
that	the	attenuation	factor	is	close	to	0.0	at	the	light	range.	The	attenuation	value
is	multiplied	by	the	red,	green,	and	blue	components	of	the	light's	color	to	scale
the	light's	intensity	as	a	factor	of	the	distance	light	travels	to	a	vertex.

Spotlight	Term

	

Parameter Default	value Type Description
rho 0.0 N/A Angle

phi 0.0 FLOAT
Penumbra	angle	of
spotlight	in	radians.
Range:	[thetaI,	p)

theta 0.0 FLOAT Umbra	angle	of	spotlight
in	radians.	Range:	[0,	p)

falloff 0.0 FLOAT
Falloff	factor.	Range:	(-
infinity,	+infinity)

where:

rho	=	norm(Ldcs)
.norm(Ldir)

Parameter Default	value Type Description

Ldcs 0.0 D3DVECTOR
Direction	vector	from
origin	to	the	light
position	in	camera	space

Ldir 0.0 D3DVECTOR
Direction	vector	from
vertex	position	to	the
light	position

After	computing	the	light	attenuation,	Direct3D	also	considers:	spotlight	effects
if	applicable,	the	angle	that	the	light	reflects	from	a	surface,	and	the	reflectance
of	the	current	material	to	calculate	the	diffuse	and	specular	components	for	that
vertex.	For	more	information,	see	Spotlight	Model.

	
Microsoft	DirectX	8.1	(C++)

Preparing	the	Action	Map

The	action	map	is	a	DIACTIONFORMAT	structure	containing	information
about	application	actions	and	their	mapping	to	virtual	controls	or	device	objects.
The	structure	is	passed	back	and	forth	between	the	application	and	Microsoft®
DirectInput®	to	establish	the	final	mapping.	This	section	explains	how	to
initialize	the	map.

1.	Define	Application	Actions

The	first	step	in	implementing	DirectInput	action	mapping	is	to	determine	what
input-driven	actions	in	your	application	need	to	be	mapped	to	device	objects.	For
actions	that	can	be	performed	either	by	an	axis	or	by	a	button,	you	must	define
separate	actions	for	both	input	types.	It	is	recommended	that	you	define	button
actions	for	all	important	functions,	in	case	the	device	does	not	have	the
appropriate	axes.

The	following	sample	enumeration	of	action	values	might	be	defined	by	a	car-
racing	game.	Axis	actions	begin	with	"eA"	and	button	actions	with	"eB".

enum	eGameActions	

{

				eA_STEER,							//	Steering	

				eB_STEER_LEFT,		//	Steer	left	

				eB_STEER_RIGHT,	//	Steer	right

				eA_ACCELERATE,		//	Change	speed

				eB_ACCELERATE,		//	Speed	up

				eB_DECELERATE,		//	Slow	down

				eA_BRAKE,							//	Brake	

				eB_BRAKE,							//	Brake	

				eB_UPSHIFT,					//	Shift	to	higher	gear

				eB_DOWNSHIFT,			//	Shift	to	lower	gear

				eB_CYCLEVIEW,			//	Cycle	to	next	view

				eB_COURSEVIEW,		//	Toggle	course	view	

				eB_DRIVERVIEW,		//	View	from	driver's	seat	

				eB_BRAKEBIAS,			//	Brake	bias	

				eA_VOLUME,						//	Sound	volume

				eB_MUTE									//	Toggle	sound

};

	

#define	NUM_MY_ACTIONS	16

In	the	example,	actions	are	defined	as	enumerated	values.	However,	they	could
be	other	32-bit	data	types,	such	as	pointers	to	functions.	When	you	retrieve
device	data,	you	get	whatever	action	value	you	have	defined,	and	you	can	handle
it	in	any	way	you	like.

2.	Define	the	Genre

The	next	step	is	to	decide	what	genre	your	application	belongs	to.	A	genre
defines	a	set	of	virtual	controls.	By	selecting	the	proper	genre,	you	can	obtain	the
best	possible	fit	of	virtual	controls	to	application	actions.	Manufacturers	who
choose	to	supply	default	mappings	for	their	devices	must	support	one	or	more	of
the	genres	defined	by	DirectInput.	See	Action	Mapping	Constants	for	a	list	of
these	genres.

For	the	game	in	the	example,	the	obvious	choice	is	the
DIVIRTUAL_DRIVING_RACE	genre,	which	contains	the	following	virtual
controls.

Priority	1	Controls

DIAXIS_DRIVINGR_STEER
DIAXIS_DRIVINGR_ACCELERATE
DIAXIS_DRIVINGR_BRAKE
DIBUTTON_DRIVINGR_SHIFTUP
DIBUTTON_DRIVINGR_SHIFTDOWN
DIBUTTON_DRIVINGR_VIEW
DIBUTTON_DRIVINGR_MENU

Priority	2	Controls

DIAXIS_DRIVINGR_ACCEL_AND_BRAKE
DIHATSWITCH_DRIVINGR_GLANCE
DIBUTTON_DRIVINGR_ACCELERATE_LINK
DIBUTTON_DRIVINGR_AIDS
DIBUTTON_DRIVINGR_BOOST
DIBUTTON_DRIVINGR_BRAKE
DIBUTTON_DRIVINGR_DASHBOARD

DIBUTTON_DRIVINGR_DEVICE
DIBUTTON_DRIVINGR_GLANCE_LEFT_LINK
DIBUTTON_DRIVINGR_GLANCE_RIGHT_LINK
DIBUTTON_DRIVINGR_MAP
DIBUTTON_DRIVINGR_PAUSE
DIBUTTON_DRIVINGR_PIT
DIBUTTON_DRIVINGR_STEER_LEFT_LINK
DIBUTTON_DRIVINGR_STEER_RIGHT_LINK

There	is	no	difference	in	functionality	between	Priority	1	and	Priority	2	controls.
Priority	1	controls	are	those	most	likely	to	be	supported	by	device	manufacturers
in	their	default	mappings.	However,	there	is	no	guarantee	that	any	virtual	control
will	be	supported	by	a	device.

3.	Assign	Actions	to	Controls	or	Device	Objects

The	next	step	in	creating	the	action	map	is	to	associate	each	application	action
with	one	or	more	of	the	virtual	controls	defined	for	the	genre.	You	do	this	by
declaring	and	initializing	an	array	of	DIACTION	structures.	Each	structure	in
the	array	specifies	the	action	value,	the	virtual	control	to	associate	with	it,	and	a
friendly	name	that	describes	the	action.	Leave	other	members	as	zero;	they	will
be	filled	in	later	by	DirectInput.

You	can	also	use	elements	of	the	DIACTION	array	to	map	actions	to	particular
keys	or	buttons	on	the	keyboard	or	mouse	or	to	channels	on	a	Microsoft
DirectPlay®	voice	device.	By	doing	so,	you	can	take	advantage	of	the	simplified
input	loop	for	all	input,	not	just	that	from	virtual	controls.	For	example,	suppose
you	map	the	application-defined	action	eB_UPSHIFT	to	both	the
DIBUTTON_DRIVINGR_SHIFTUP	virtual	control	and	to	the	Page	Up	key.
When	retrieving	data,	you	get	back	eB_UPSHIFT	whether	the	input	came	from	a
joystick	button	or	the	keyboard.

The	following	example	declares	an	action	map	for	the	car-racing	game.

DIACTION	rgActions[]=

{

//Genre-defined	virtual	axes

	

		{eA_STEER,							DIAXIS_DRIVINGR_STEER,								0,	"Steer",						},

		{eA_ACCELERATE,		DIAXIS_DRIVINGR_ACCELERATE,			0,	"Accelerate",	},

		{eA_BRAKE,							DIAXIS_DRIVINGR_BRAKE,								0,	"Brake",						},

//Genre-defined	virtual	buttons	

	

		{eB_UPSHIFT,					DIBUTTON_DRIVINGR_SHIFTUP,				0,	"Upshift",				},

		{eB_DOWNSHIFT,			DIBUTTON_DRIVINGR_SHIFTDOWN,		0,	"DownShift",		},

		{eB_CYCLEVIEW,			DIBUTTON_DRIVINGR_VIEW,							0,	"Change	View",},

	

//	Actions	not	defined	in	the	genre	that	can	be	assigned	to	any

//	button	or	axis

	

		{eA_VOLUME,						DIAXIS_ANY_1,																	0,	"Volume",						},

		{eB_MUTE,								DIBUTTON_ANY(0),														0,	"Toggle	Sound",},

	

//	Actions	not	defined	in	the	genre	that	must	be	assigned	to	

//	particular	keys

	

		{eB_DRIVERVIEW,		DIKEYBOARD_1,																	0,	"Driver	View",},

		{eB_COURSEVIEW,		DIKEYBOARD_C,																	0,	"Course	View",},

		{eB_BRAKEBIAS,			DIKEYBOARD_B,																	0,	"Brake	Bias",	},

	

//	Actions	mapped	to	keys	as	well	as	to	virtual	controls

	

		{eB_UPSHIFT,					DIKEYBOARD_PRIOR,														0,	"Upshift",				},

		{eB_DOWNSHIFT,			DIKEYBOARD_NEXT,															0,	"Downshift",		},

		{eB_STEER_LEFT,		DIKEYBOARD_LEFT,															0,	"Steer	Left",	},

		{eB_STEER_RIGHT,	DIKEYBOARD_RIGHT,														0,	"Steer	Right",},

		{eB_ACCELERATE,		DIKEYBOARD_UP,																	0,	"Accelerate",	},

		{eB_DECELERATE,		DIKEYBOARD_DOWN,															0,	"Decelerate",	},

		{eB_BRAKE,							DIKEYBOARD_END,																0,	"Brake",						},

	

//	Actions	mapped	to	buttons	as	well	as	to	virtual	controls	and	keys

	

		{eB_UPSHIFT,					DIMOUSE_BUTTON0,														0,	"Upshift",			},

		{eB_DOWNSHIFT,			DIMOUSE_BUTTON1,														0,	"Downshift",	},

};

In	the	example,	some	actions	are	mapped	to	actual	keys	by	using	Keyboard
Mapping	Constants.	Similar	mappings	to	the	mouse	buttons	and	axes	can	be
made	by	using	Mouse	Mapping	Constants.

The	DIACTION	array	is	contained	within	a	DIACTIONFORMAT	structure
that	also	contains	information	about	the	genre,	the	application,	and	the	desired
scaling	of	axis	data.	Use	the	same	instance	of	this	structure	throughout	the	action
mapping	process.	Some	members	will	not	be	used	immediately,	but	you	can	fill
in	the	entire	structure	before	the	next	step,	Finding	Matching	Devices.

	
Microsoft	DirectX	8.1	(C++)

Finding	Matching	Devices

After	you	define	the	application	actions	and	the	virtual	controls	or	device	objects
to	which	these	actions	are	to	be	mapped,	the	next	step	is	to	enumerate	devices	on
the	system	to	find	those	that	best	support	the	desired	virtual	controls.

To	do	so,	pass	the	DIACTIONFORMAT	structure	to
IDirectInput8::EnumDevicesBySemantics.	This	method	works	in	much	the
same	way	as	IDirectInput8::EnumDevices	and	takes	a	similar	callback
function.

Devices	that	have	been	configured	by	the	user	to	match	certain	controls	are
always	enumerated	first.	For	example,	if	a	user	has	configured	a	wheel	as	the
primary	steering	device	for	driving	games,	then	the	wheel	is	enumerated	first
whenever	devices	that	support	DIAXIS_DRIVINGR_STEER	are	requested,
taking	precedence	over	other	capable	devices	such	as	joysticks	that	have	not
been	configured	by	the	user.	Otherwise,	the	order	in	which	available	devices	are
enumerated	is	determined	by	the	degree	to	which	they	match	the	requested
controls.	However,	the	order	in	which	devices	are	enumerated	by	Microsoft®
DirectInput®	is	not	guaranteed.

In	the	enumeration	callback,	you	can	retrieve	the	default	action	mapping	for
each	device,	change	any	mappings	you	don't	like,	give	the	user	an	opportunity	to
reconfigure	the	device,	and	apply	the	action	map.	These	steps	are	covered	in
Configuring	the	Action	Map.	Flags	returned	in	the
DIEnumDevicesBySemanticsCallback	will	provide	information	about	why	a
particular	device	was	enumerated.	These	flags	will	indicate	whether	a	device	has
been	used	recently,	is	newly	installed,	or	will	accept	mappings	of	priority	1	or
priority	2	controls.

	
Microsoft	DirectX	8.1	(C++)

Configuring	the	Action	Map

As	each	device	is	enumerated,	you	can	obtain	a	pointer	to	it,	retrieve	the	default
action	map,	make	changes	in	the	default	map,	and	apply	the	final	mappings.

1.	Obtaining	the	Device

Obtain	the	IDirectInputDevice8	interface	pointer	for	each	enumerated	device
from	the	lpdid	parameter	of	the	enumeration	callback.	See
DIEnumDevicesBySemanticsCallback.	If	you	want	to	save	the	device
interface	for	use	in	your	application,	call	AddRef	on	the	pointer	and	assign	it	to
a	global	variable.

2.	Obtaining	the	Default	Action	Map

To	obtain	the	default	action	map	for	the	device,	call
IDirectInputDevice8::BuildActionMap.	Microsoft®	DirectInput®	takes	the
list	of	virtual	controls	specified	in	your	DIACTIONFORMAT	structure	and
attempts	to	map	these	to	physical	device	objects,	returning	the	results	in	the
same	structure.	You	should	examine	the	dwHow	member	of	each	DIACTION
element	to	determine	whether	the	control	was	successfully	mapped.	If	it	was,
you	can	also	ascertain	what	criterion	was	used	in	choosing	the	object—for
example,	configuration	by	the	user	or	by	the	device	manufacturer.

3.	Making	Changes	to	the	Action	Map

You	now	have	the	option	of	changing	the	default	mappings,	although	it	is	not
recommended	that	you	do	so.	After	examining	the	dwSemantic	member	of	the
DIACTION	structure	to	determine	which	device	object	was	mapped	to	an
action,	you	can	change	that	value.	For	example,	if	an	action	is	mapped	to
DIJOFS_BUTTON9,	but	you	want	that	action	to	be	mapped	to	the	trigger	button
instead,	change	the	value	to	DIJOFS_BUTTON0	before	applying	the	action
map.

4.	Applying	the	Action	Map

When	you	are	satisfied	that	the	DIACTIONFORMAT	structure	contains
suitable	mappings	for	the	device,	call	IDirectInputDevice8::SetActionMap.
The	value	you	assigned	to	the	uAppData	member	of	each	DIACTION	structure
now	becomes	bound	to	the	control	specified	in	the	dwSemantic	member,	which
in	turn	is	bound	to	a	particular	device	object.

5.	Mapping	More	than	One	Device

Repeat	steps	1	though	4	for	each	device	you	want	to	use	in	your	application.
Suppose	you	want	to	map	actions	to	both	a	joystick	and	the	keyboard.	In	the
racing-game	example,	the	action	defined	in	the	game	as	eB_DRIVERVIEW	was
mapped	to	a	keyboard	key	in	the	following	element	of	the	DIACTION	array.

{eB_DRIVERVIEW,	DIKEYBOARD_1,	"Driver	View",	},

In	that	example,	when	BuildActionMap	is	called	on	any	device	that	is	not	a
keyboard,	the	lHow	member	of	the	DIACTION	structure	for	that	element	is	set
to	DIAH_UNMAPPED.	Continue	examining	the	lHow	member	as	each	device
in	turn	is	enumerated,	until	a	value	other	than	DIAH_UNMAPPED	is	returned.
This	indicates	that	the	device	being	currently	mapped	is	a	keyboard	and	the
action	has	been	successfully	mapped	to	the	requested	key.

Even	actions	that	have	been	successfully	mapped	can	be	mapped	to	another
device.	In	the	example,	eB_UPSHIFT	is	given	two	DIACTION	structures,	as
follows:

{eB_UPSHIFT,	DIBUTTON_DRIVINGR_SHIFTUP,	0,	"Upshift",	},

...

{eB_UPSHIFT,	DIKEYBOARD_PRIOR,										0,	"Upshift",	},

As	devices	are	successively	enumerated,	the	eB_UPSHIFT	action	is	mapped	to	a
suitable	button	on	one	or	more	joysticks	or	other	game	controllers,	and	then
again	to	the	keyboard.

6.	Displaying	the	Configuration

To	show	the	user	how	actions	have	been	mapped	to	devices,	pass	the

DICD_DEFAULT	flag	to	IDirectInput8::ConfigureDevices.	The	property
sheet	for	the	device,	containing	a	graphical	representation	of	mappings,	is
displayed	in	view-only	mode	as	in	the	following	diagram.	For	more	information
on	the	mechanics	of	displaying	the	image,	refer	to	the	Using	Action	Mapping
tutorial.

If	the	device	manufacturer	has	not	provided	a	device	image,	the	mapping	will	be
presented	in	text	mode	as	in	the	following	diagram.

Note		Even	if	the	cooperative	level	for	the	application	is	disabling	the
Microsoft®	Windows®	logo	key	passively	through	an	exclusive	cooperative
level	or	actively	through	use	of	the	DISCL_NOWINKEY	flag,	that	key	will	be
active	while	the	default	action	mapping	UI	is	displayed.

For	more	information	about	this	property	sheet,	see	User	Configuration	of	the
Device.

	
Microsoft	DirectX	8.1	(C++)

User	Configuration	of	the	Device

Microsoft®	DirectInput®	provides	a	property	sheet	that	can	be	called	from	an
application,	enabling	the	user	to	configure	devices	for	the	application	and	view
the	current	configuration.	This	property	sheet	can	display	various	views	of	the
device	as	provided	by	the	manufacturer.

To	enable	user	configuration,	pass	a	DICONFIGUREDEVICESPARAMS
structure	containing	a	pointer	to	the	DIACTIONFORMAT	structure	describing
the	desired	mapping,	along	with	the	DICD_EDIT	flag,	to	the
IDirectInput8::ConfigureDevices	method.	Normally	you	would	do	this	after
calling	IDirectInputDevice8::BuildActionMap	on	all	devices	that	will	be	used
in	the	application.

The	following	illustration	shows	a	typical	property	sheet	in	edit	mode.

If	the	device	manufacturer	has	not	provided	a	device	image,	the	mapping	will	be
presented	in	text	mode	as	in	the	following	diagram.

Note		Even	if	the	cooperative	level	for	the	application	is	disabling	the
Microsoft®	Windows®	logo	key	passively	through	an	exclusive	cooperative
level	or	actively	through	use	of	the	DISCL_NOWINKEY	flag,	that	key	will	be
active	while	the	default	action	mapping	UI	is	displayed.

The	property	page	for	a	device	lists	the	friendly	names	that	were	provided	by
you	in	the	lptszActionName	member	of	each	DIACTION	structure.	If	you	have
already	called	BuildActionMap	for	a	device,	the	page	also	shows	these	names
as	callouts	on	the	image	of	the	device,	with	lines	pointing	to	the	device	objects	to
which	the	actions	have	been	mapped.

The	user	now	has	the	opportunity	to	reassign	game	actions	by	first	choosing	a
control	then	choosing	an	action	from	the	menu.	When	the	user	closes	the

property	sheet,	the	method	returns	and	the	modifications	are	stored	in	the
DIACTIONFORMAT	structure	that	you	passed	in.	You	can	now	pass	the	same
structure	to	IDirectInputDevice8::SetActionMap	in	order	to	implement	the
new	mapping	scheme.

	
Microsoft	DirectX	8.1	(C++)

Retrieving	Action	Data

You	retrieve	buffered	data	from	action-mapped	devices	just	as	you	would	from
unmapped	devices:	by	calling	IDirectInputDevice8::GetDeviceData.	However,
instead	of	identifying	device	objects	by	examining	the	dwOfs	member	of	the
DIDEVICEOBJECTDATA	structure,	you	obtain	the	action	associated	with	the
object	from	the	uAppData	member.	This	is	the	same	value	you	passed	to	the
device	in	the	DIACTION	structure.	It	can	be	a	simple	identifier	or	a	pointer	to	a
function	designed	to	handle	the	action.

Remember	that	an	action	can	be	associated	with	more	than	one	device.	You	still
have	to	obtain	data	from	both	devices	independently,	but	you	can	use	the	same
routine	to	handle	the	data	regardless	of	where	it	comes	from.

The	following	sample	code,	which	might	be	part	of	the	game	loop	in	a	driving
simulation,	retrieves	data	from	all	devices	in	the	g_lpIdiDevices	array.	This	array
contains	g_nDevices	elements.

for	(int	iDevice	=	0x0;	iDevice	<	g_nDevices;	iDevice++)

{

				DIDEVICEOBJECTDATA	didod;

				DWORD	dwObjCount	=	1;

	

				//	Poll	the	device	for	data.	

				g_lpDiDevices[iDevice]->Poll();	

				

				//	Retrieve	the	data.

				g_lpDiDevices[iDevice]->GetDeviceData(sizeof(didod),

																																											&didod,

																																											&dwObjCount,	0);

	

				//	Handle	the	actions	regardless	of	what	device	returned	them.

				switch(didod.uAppData)

				{

								case	eA_STEER:

												SteerCar(didod.dwData);

												break;

								case	eB_UPSHIFT

												if	(didod.dwData	&	0x80)	ShiftGears(UPSHIFT);

												break;

								.

								.

								.

	

								default:

												break;

				}

}

Note		Axis	constants	for	specific	genres,	such	as	DIAXIS_DRIVINGR_STEER
or	DIAXIS_SPACESIM_LATERAL,	are	used	for	absolute	joystick	data.	The
action	mapper	attempts	to	map	this	virtual	control	to	a	device	object	that	returns
absolute	data.	The	data	returned	from	that	device	should	be	processed
accordingly	in	the	application.	Device	constants	such	as	DIMOUSE_XAXIS,
however,	are	expected	to	return	relative	data.

When	retrieving	data,	each	potential	source	of	data	should	be	processed
separately	to	keep	one	device	object	from	possibly	overwriting	the	data	from
another.	For	instance,	the	following	DIACTION	structures	are	used	in	an	action
map	to	control	direction.

{INPUT_LEFTRIGHT_ABS_AXIS,	DIAXIS_SPACESIM_LATERAL,	0,			_T("Turn"),},

{INPUT_LEFTRIGHT_REL_AXIS,	DIMOUSE_XAXIS,											0,			_T("Turn"),},

{INPUT_TURNLEFT,											DIKEYBOARD_LEFT,					0,		_T("Turn	left"),},

{INPUT_TURNRIGHT,										DIKEYBOARD_RIGHT,				0,	_T("Turn	right"),},

The	application's	input	loop	processes	data	from	these	actions	in	the	following
case	statement.

switch	(adod[j].uAppData)

{

				case	INPUT_LEFTRIGHT_ABS_AXIS:

								g_dwAbsLR	=	adod[j].dwData

								break;

				case	INPUT_LEFTRIGHT_REL_AXIS:

								g_dwRelLR	=	adod[j].dwData;

								break;

				case	INPUT_TURNLEFT:

								g_bLeft	=	(adod[j].dwData	!=	0);

								break;

				case	INPUT_TURNRIGHT:

								g_bRight	=	(adod[j].dwData	!=	0)

								break;

}

Note	that	each	data	source	is	assigned	to	a	separate	variable	rather	than	all	data
sources	being	assigned	a	generic	"turn"	variable.	If	they	were	to	share	a	generic
variable,	holding	down	the	LEFT	ARROW	key	and	then	moving	the	joystick
would	cause	the	keyboard	information	to	be	lost.	This	is	because	the	joystick
data	would	overwrite	the	variable.

In	addition	to	individual	variables,	there	are	many	ways	to	process	the	data.
Whatever	method	is	used,	care	should	be	taken	in	the	processing	of	data	to	avoid
unexpectedly	lost	information.

	
Microsoft	DirectX	8.1	(C++)

Maintaining	Files	During	Development

During	a	development	cycle,	unused	and	out	of	date	.ini	files	may	accumulate
due	to	frequent	action	map	changes,	Microsoft®	DirectX®	reinstallations,
multiple	users,	and	other	normal	development	situations.	These	files	could
possibly	cause	unexpected	mappings	or	reports	of	"recent"
(DIEDBS_RECENTDEVICE)	for	devices	that	would	not	be	expected	to	return
that	value.	For	this	reason,	it	is	good	practice	to	occasionally	delete	any	unused
.ini	files.	These	files	can	be	found	in	C:\Program	Files\Common
Files\DirectX\DirectInput\User	Maps.

Note		The	procedure	suggested	above	is	meant	to	be	performed	only	manually
during	a	development	cycle	to	ensure	that	the	development	environment	is	in	a
cleaner	state.	A	shipping	application	should	never	delete	user	maps	as	this	could
result	in	the	loss	of	a	user's	preferred	settings.

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8::ConfigureDevices
Displays	property	pages	for	connected	input	devices	and	enables	the	user	to	map
actions	to	device	controls.

HRESULT	IDirectInput8::ConfigureDevices(

			LPDICONFIGUREDEVICESCALLBACK	lpdiCallback,

			LPDICONFIGUREDEVICESPARAMS			lpdiCDParams,

			DWORD		dwFlags,

			LPVOID	pvRefData

);

Parameters

lpdiCallback
Address	of	a	callback	function	to	be	called	each	time	the	contents	of	the
surface	change.	See	DIConfigureDevicesCallback.	Pass	NULL	if	the
application	does	not	handle	the	display	of	the	property	sheet.	In	this	case,
Microsoft®	DirectInput®	displays	the	property	sheet	and	returns	control	to
the	application	when	the	user	closes	the	property	sheet.	If	you	supply	a
callback	pointer,	you	must	also	supply	a	valid	surface	pointer	in	the
lpUnkDDSTarget	member	of	the	DICONFIGUREDEVICESPARAMS
structure.

lpdiCDParams
Address	of	a	DICONFIGUREDEVICESPARAMS	structure	that	contains
information	about	users	and	genres	for	the	game,	as	well	as	information
about	how	the	user	interface	is	displayed.

dwFlags
DWORD	value	that	specifies	the	mode	in	which	the	control	panel	should
be	invoked.	DwFlags	must	be	one	of	the	following	values.
DICD_DEFAULT

Open	the	property	sheet	in	view-only	mode.
DICD_EDIT

Open	the	property	sheet	in	edit	mode.	This	mode	enables	the	user	to
change	action-to-control	mappings.	After	the	call	returns,	the
application	should	assume	current	devices	are	no	longer	valid,	release
all	device	interfaces,	and	reinitialize	them	by	calling

IDirectInput8::EnumDevicesBySemantics.
pvRefData

Application-defined	value	to	pass	to	the	callback	function.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following.

DIERR_INVALIDPARAM
DIERR_OUTOFMEMORY

Remarks

Hardware	vendors	provide	bitmaps	and	other	display	information	for	their
device.

Before	calling	the	method,	an	application	can	modify	the	text	labels	associated
with	each	action	by	changing	the	value	in	the	lptszActionName	member	of	the
DIACTION	structure.

Configuration	is	stored	for	each	user	of	each	device	for	each	game.	The
information	can	be	retrieved	by	the	IDirectInputDevice8::BuildActionMap
method.

By	default,	acceleration	is	supported	for	these	pixel	formats:

A1R5G5B5
16-bit	pixel	format	with	5	bits	reserved	for	each	color	and	1	bit	reserved	for
alpha	(transparent	texel).

A8R8G8B8
32-bit	ARGB	pixel	format	with	alpha.

R9G8B8
24-bit	RGB	pixel	format.

X1R5G5B5
16-bit	pixel	format	with	5	bits	reserved	for	each	color.

X8R8G8B8

32-bit	RGB	pixel	format	with	8	bits	reserved	for	each	color.

Other	formats	will	result	in	color	conversion	and	dramatically	slow	the	frame
rate.

Note		Even	if	the	cooperative	level	for	the	application	is	disabling	the	Microsoft
Windows®	logo	key	passively	through	an	exclusive	cooperative	level	or	actively
through	use	of	the	DISCL_NOWINKEY	flag,	that	key	will	be	active	while	the
default	action	mapping	UI	is	displayed.

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8::CreateDevice
Creates	and	initializes	an	instance	of	a	device	based	on	a	given	GUID,	and
obtains	an	IDirectInputDevice8	interface.

HRESULT	CreateDevice(

		REFGUID rguid,																															

		LPDIRECTINPUTDEVICE *lplpDirectInputDevice,		

		LPUNKNOWN pUnkOuter

);

Parameters

rguid
Reference	to	(C++)	or	address	of	(C)	the	instance	GUID	for	the	desired
input	device	(see	Remarks).	The	GUID	is	retrieved	through	the
IDirectInput8::EnumDevices	method,	or	it	can	be	one	of	the	following
predefined	GUIDs:
GUID_SysKeyboard

The	default	system	keyboard.
GUID_SysMouse

The	default	system	mouse.

For	the	preceding	GUID	values	to	be	valid,	your	application	must	define
INITGUID	before	all	other	preprocessor	directives	at	the	beginning	of	the
source	file,	or	link	to	Dxguid.lib.

lplpDirectInputDevice
Address	of	a	variable	to	receive	the	IDirectInputDevice8	interface	pointer
if	successful.

pUnkOuter
Address	of	the	controlling	object's	IUnknown	interface	for	COM
aggregation,	or	NULL	if	the	interface	is	not	aggregated.	Most	callers	pass
NULL.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following:

DIERR_DEVICENOTREG
DIERR_INVALIDPARAM
DIERR_NOINTERFACE
DIERR_NOTINITIALIZED
DIERR_OUTOFMEMORY

Remarks

Calling	this	method	with	pUnkOuter	=	NULL	is	equivalent	to	creating	the	object
by	CoCreateInstance(&CLSID_DirectInputDevice,	NULL,
CLSCTX_INPROC_SERVER,	riid,	lplpDirectInputDevice)	and	then	initializing	it
with	Initialize.

Calling	this	method	with	pUnkOuter	!=	NULL	is	equivalent	to	creating	the
object	by	CoCreateInstance(&CLSID_DirectInputDevice,	punkOuter,
CLSCTX_INPROC_SERVER,	&IID_IUnknown,	lplpDirectInputDevice).	The
aggregated	object	must	be	initialized	manually.

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8::EnumDevices
Enumerates	available	devices.

HRESULT	EnumDevices(

		DWORD dwDevType,														

		LPDIENUMDEVICESCALLBACK lpCallback,		

		LPVOID pvRef,																	

		DWORD dwFlags

);

Parameters

dwDevType
Device	type	filter.

To	restrict	the	enumeration	to	a	particular	type	of	device,	set	this	parameter
to	a	DI8DEVTYPE_*	value.	See	DIDEVICEINSTANCE.

To	enumerate	a	class	of	devices,	use	one	of	the	following	values.

DI8DEVCLASS_ALL
All	devices.

DI8DEVCLASS_DEVICE
All	devices	that	do	not	fall	into	another	class.

DI8DEVCLASS_GAMECTRL
All	game	controllers.

DI8DEVCLASS_KEYBOARD
All	keyboards.	Equivalent	to	DI8DEVTYPE_KEYBOARD.

DI8DEVCLASS_POINTER
All	devices	of	type	DI8DEVTYPE_MOUSE	and
DI8DEVTYPE_SCREENPOINTER.

lpCallback
Address	of	a	callback	function	to	be	called	once	for	each	device
enumerated.	See	DIEnumDevicesCallback.

pvRef
Application-defined	32-bit	value	to	be	passed	to	the	enumeration	callback

each	time	it	is	called.
dwFlags

Flag	value	that	specifies	the	scope	of	the	enumeration.	This	parameter	can
be	one	or	more	of	the	following	values:
DIEDFL_ALLDEVICES

All	installed	devices	are	enumerated.	This	is	the	default	behavior.
DIEDFL_ATTACHEDONLY

Only	attached	and	installed	devices.
DIEDFL_FORCEFEEDBACK

Only	devices	that	support	force	feedback.
DIEDFL_INCLUDEALIASES

Include	devices	that	are	aliases	for	other	devices.
DIEDFL_INCLUDEHIDDEN

Include	hidden	devices.	For	more	information	about	hidden	devices,
see	DIDEVCAPS.

DIEDFL_INCLUDEPHANTOMS
Include	phantom	(placeholder)	devices.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	error	values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks

All	installed	devices	can	be	enumerated,	even	if	they	are	not	present.	For
example,	a	flight	stick	might	be	installed	on	the	system	but	not	currently	plugged
into	the	computer.	Set	the	dwFlags	parameter	to	indicate	whether	only	attached
or	all	installed	devices	should	be	enumerated.	If	the
DIEDFL_ATTACHEDONLY	flag	is	not	present,	all	installed	devices	are
enumerated.

A	preferred	device	type	can	be	passed	as	a	dwDevType	filter	so	that	only	the
devices	of	that	type	are	enumerated.

Note		The	order	in	which	devices	are	enumerated	by	DirectInput	is	not
guaranteed.

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

See	Also

IDirectInput8::EnumDevicesBySemantics

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8::EnumDevicesBySemantics
Enumerates	devices	that	most	closely	match	the	application-specified	action
map.

HRESULT	EnumDevicesBySemantics(

		LPCTSTR	ptszUserName,

		LPDIACTIONFORMAT	lpdiActionFormat,

		LPDIENUMDEVICESBYSEMANTICSCB	lpCallback,

		LPVOID	pvRef,	

		DWORD	dwFlags

);

Parameters

ptszUserName
String	identifying	the	current	user,	or	NULL	to	specify	the	user	logged	onto
the	system.	The	user	name	is	taken	into	account	when	enumerating	devices.
A	device	with	user	mappings	is	preferred	to	a	device	without	any	user
mappings.	By	default,	devices	in	use	by	other	users	are	not	enumerated	for
this	user.

lpdiActionFormat
Address	of	a	DIACTIONFORMAT	structure	that	specifies	the	action	map
for	which	suitable	devices	are	enumerated.

lpCallback
Address	of	a	callback	function	to	be	called	once	for	each	device
enumerated.	See	DIEnumDevicesBySemanticsCallback.

pvRef
Application-defined	32-bit	value	to	pass	to	the	enumeration	callback	each
time	it	is	called.

dwFlags
Flag	value	that	specifies	the	scope	of	the	enumeration.	This	parameter	can
be	one	or	more	of	the	following	values.
DIEDBSFL_ATTACHEDONLY

Only	attached	and	installed	devices	are	enumerated.
DIEDBSFL_AVAILABLEDEVICES

Only	unowned,	installed	devices	are	enumerated.
DIEDBSFL_FORCEFEEDBACK

Only	devices	that	support	force	feedback	are	enumerated.
DIEDBSFL_MULTIMICEKEYBOARDS

Only	secondary	(non-system)	keyboard	and	mouse	devices.
DIEDBSFL_NONGAMINGDEVICES

Only	HID-compliant	devices	whose	primary	purpose	is	not	as	a
gaming	device.	Devices	such	as	USB	speakers	and	multimedia	buttons
on	some	keyboards	would	fall	within	this	value.

DIEDBSFL_THISUSER
All	installed	devices	for	the	user	identified	by	ptszUserName,	and	all
unowned	devices,	are	enumerated.

DIEDBSFL_VALID	is	also	defined	in	Dinput.h,	but	is	not	used	by
applications.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	error	values.

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks

The	keyboard	and	mouse	are	enumerated	last.

Note		The	order	in	which	devices	are	enumerated	by	DirectInput	is	not
guaranteed.

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

See	Also

IDirectInput8::EnumDevices,	Action	Mapping.

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8::FindDevice
Retrieves	the	instance	GUID	of	a	device	that	has	been	newly	attached	to	the
system.	It	is	called	in	response	to	a	Microsoft®	Win32®	device	management
notification.

HRESULT	FindDevice(

		REFGUID rguidClass,	

		LPCTSTR	ptszName,	

		LPGUID	pguidInstance

);

Parameters

rguidClass
Unique	identifier	of	the	device	class	for	the	device	that	the	application	is	to
locate.	The	application	obtains	the	class	GUID	from	the	device	arrival
notification.	For	more	information,	see	the	documentation	on	the
DBT_DEVICEARRIVAL	event	in	the	Microsoft	Platform	Software
Development	Kit	(SDK).

ptszName
Name	of	the	device.	The	application	obtains	the	name	from	the	device
arrival	notification.

pguidInstance
Address	of	a	variable	to	receive	the	instance	GUID	for	the	device,	if	the
device	is	found.	This	value	can	be	passed	to	IDirectInput8::CreateDevice.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	DIERR_DEVICENOTREG.	Failure
results	if	the	GUID	and	name	do	not	correspond	to	a	device	class	that	is
registered	with	Microsoft®	DirectInput®.	For	example,	they	might	refer	to	a
storage	device,	rather	than	an	input	device.

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8::GetDeviceStatus
Retrieves	the	status	of	a	specified	device.

HRESULT	GetDeviceStatus(

		REFGUID rguidInstance

);

Parameters

rguidInstance
Reference	to	(C++)	or	address	of	(C)	the	GUID	identifying	the	instance	of
the	device	whose	status	is	being	checked.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK	if	the	device	is	attached	to	the
system,	or	DI_NOTATTACHED	otherwise.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	error	values:

DIERR_GENERIC
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8::Initialize
Initializes	a	Microsoft®	DirectInput®	object.	Applications	normally	do	not	need
to	call	this	method.	The	DirectInput8Create	function	automatically	initializes
the	DirectInput	object	after	creating	it.

HRESULT	Initialize(

		HINSTANCE hinst,	

		DWORD dwVersion

);

Parameters

hinst
Instance	handle	to	the	application	or	dynamic-link	library	(DLL)	that	is
creating	the	DirectInput	object.	DirectInput	uses	this	value	to	determine
whether	the	application	or	DLL	has	been	certified	and	to	establish	any
special	behaviors	that	might	be	necessary	for	backwards	compatibility.

It	is	an	error	for	a	DLL	to	pass	the	handle	of	the	parent	application.	For
example,	a	Microsoft	ActiveX®	control	embedded	in	a	Web	page	that	uses
DirectInput	must	pass	its	own	instance	handle,	and	not	the	handle	of	the
Web	browser.	This	ensures	that	DirectInput	recognizes	the	control	and	can
enable	any	special	behaviors	that	might	be	necessary.

dwVersion
Version	number	of	DirectInput	for	which	the	application	is	designed.	This
value	is	normally	DIRECTINPUT_VERSION.	Passing	the	version	number
of	a	previous	version	causes	DirectInput	to	emulate	that	version.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	error	values:

DIERR_BETADIRECTINPUTVERSION

DIERR_OLDDIRECTINPUTVERSION

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

	
Microsoft	DirectX	8.1	(C++)

IDirectInput8::RunControlPanel
Runs	Control	Panel	to	enable	the	user	to	install	a	new	input	device	or	modify
configurations.

HRESULT	RunControlPanel(

		HWND hwndOwner,		

		DWORD dwFlags

);

Parameters

hwndOwner
Handle	of	the	window	to	be	used	as	the	parent	window	for	the	subsequent
user	interface.	If	this	parameter	is	NULL,	no	parent	window	is	used.

dwFlags
Currently	not	used	and	must	be	set	to	0.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	error	values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

See	Also

IDirectInputDevice8::RunControlPanel

	
Microsoft	DirectX	8.1	(C++)

IUnknown::AddRef
Increases	the	reference	count	of	the	object	by	1.

ULONG	AddRef();

Parameters

There	are	no	parameters.

Return	Values

Returns	the	new	reference	count.	This	value	is	for	diagnostic	and	testing
purposes	only.

Remarks

When	the	object	is	created,	its	reference	count	is	set	to	1.	Every	time	an
application	obtains	an	interface	to	the	object	or	calls	the	AddRef	method,	the
object's	reference	count	is	increased	by	1.	Use	the	Release	method	to	decrease
the	object's	reference	count	by	1.

Requirements

		Windows	NT/2000/XP:	Requires	Windows	NT	3.1	or	later.
		Windows	98/Me:	Requires	Windows	98	or	later.
		Header:	Declared	in	Unknwn.h.

	
Microsoft	DirectX	8.1	(C++)

IUnknown::QueryInterface
Determines	whether	the	object	supports	a	particular	COM	interface.	If	it	does,
the	system	increases	the	object's	reference	count,	and	the	application	can	use	that
interface	immediately.

HRESULT	QueryInterface(

		REFIID riid,	

		LPVOID* ppvObj

);

Parameters

riid
Reference	identifier	of	the	interface	being	requested.

ppvObj
Address	of	a	pointer	to	fill	with	the	interface	pointer	if	the	query	succeeds.

Return	Values

If	the	method	succeeds,	the	return	value	is	S_OK.

If	the	method	fails,	the	return	value	may	be	E_NOINTERFACE	or	E_POINTER.
Some	components	also	have	their	own	definitions	of	these	error	values	in	their
header	files.	In	Microsoft®	DirectInput®,	for	example,
DIERR_NOINTERFACE	is	equivalent	to	E_NOINTERFACE.

Remarks

If	the	application	does	not	need	to	use	the	interface	retrieved	by	a	call	to	this
method,	it	must	call	the	Release	method	for	that	interface	to	free	it.	The
QueryInterface	method	enables	Microsoft	and	third	parties	to	extend	objects
without	interfering	with	existing	or	evolving	functionality.

Requirements

		Windows	NT/2000/XP:	Requires	Windows	NT	3.1	or	later.
		Windows	98/Me:	Requires	Windows	98	or	later.
		Header:	Declared	in	Unknwn.h.

	
Microsoft	DirectX	8.1	(C++)

IUnknown::Release
Decreases	the	reference	count	of	the	object	by	1.

ULONG	Release();

Parameters

There	are	no	parameters.

Return	Values

Returns	the	new	reference	count.	This	value	is	for	diagnostic	and	testing
purposes	only.

Remarks

The	object	deallocates	itself	when	its	reference	count	reaches	0.	Use	the	AddRef
method	to	increase	the	object's	reference	count	by	1.

Applications	must	call	this	method	to	release	only	interfaces	that	the	method
explicitly	created	in	a	previous	call	to	IUnknown::AddRef,
IUnknown::QueryInterface,	or	a	creation	function	such	as	Direct3DCreate8.

Requirements

		Windows	NT/2000/XP:	Requires	Windows	NT	3.1	or	later.
		Windows	98/Me:	Requires	Windows	98	or	later.
		Header:	Declared	in	Unknwn.h.

	
Microsoft	DirectX	8.1	(C++)

Return	Values

The	list	below	contains	the	HRESULT	values	that	can	be	returned	by
Microsoft®	DirectInput®	methods	and	functions.	Errors	are	represented	by
negative	values	and	cannot	be	combined.

For	a	list	of	the	error	values	each	method	or	function	can	return,	see	the
individual	descriptions.	Lists	of	error	codes	in	the	documentation	are	necessarily
incomplete.	For	example,	any	DirectInput	method	can	return
DIERR_OUTOFMEMORY	even	though	the	error	code	is	not	explicitly	listed	as
a	possible	return	value	in	the	documentation	for	that	method.

DI_BUFFEROVERFLOW
The	device	buffer	overflowed	and	some	input	was	lost.	This	value	is	equal
to	the	S_FALSE	standard	COM	return	value.

DI_DOWNLOADSKIPPED
The	parameters	of	the	effect	were	successfully	updated,	but	the	effect	could
not	be	downloaded	because	the	associated	device	was	not	acquired	in
exclusive	mode.

DI_EFFECTRESTARTED
The	effect	was	stopped,	the	parameters	were	updated,	and	the	effect	was
restarted.

DI_NOEFFECT
The	operation	had	no	effect.	This	value	is	equal	to	the	S_FALSE	standard
COM	return	value.

DI_NOTATTACHED
The	device	exists	but	is	not	currently	attached.	This	value	is	equal	to	the
S_FALSE	standard	COM	return	value.

DI_OK
The	operation	completed	successfully.	This	value	is	equal	to	the	S_OK
standard	COM	return	value.

DI_POLLEDDEVICE
The	device	is	a	polled	device.	As	a	result,	device	buffering	does	not	collect
any	data	and	event	notifications	is	not	signaled	until	the
IDirectInputDevice8::Poll	method	is	called.

DI_PROPNOEFFECT
The	change	in	device	properties	had	no	effect.	This	value	is	equal	to	the
S_FALSE	standard	COM	return	value.

DI_SETTINGSNOTSAVED
The	action	map	was	applied	to	the	device,	but	the	settings	could	not	be
saved.

DI_TRUNCATED
The	parameters	of	the	effect	were	successfully	updated,	but	some	of	them
were	beyond	the	capabilities	of	the	device	and	were	truncated	to	the	nearest
supported	value.

DI_TRUNCATEDANDRESTARTED
Equal	to	DI_EFFECTRESTARTED	|	DI_TRUNCATED.

DI_WRITEPROTECT
A	SUCCESS	code	indicating	that	settings	cannot	be	modified.

DIERR_ACQUIRED
The	operation	cannot	be	performed	while	the	device	is	acquired.

DIERR_ALREADYINITIALIZED
This	object	is	already	initialized

DIERR_BADDRIVERVER
The	object	could	not	be	created	due	to	an	incompatible	driver	version	or
mismatched	or	incomplete	driver	components.

DIERR_BETADIRECTINPUTVERSION
The	application	was	written	for	an	unsupported	prerelease	version	of
DirectInput.

DIERR_DEVICEFULL
The	device	is	full.

DIERR_DEVICENOTREG
The	device	or	device	instance	is	not	registered	with	DirectInput.	This	value
is	equal	to	the	REGDB_E_CLASSNOTREG	standard	COM	return	value.

DIERR_EFFECTPLAYING
The	parameters	were	updated	in	memory	but	were	not	downloaded	to	the
device	because	the	device	does	not	support	updating	an	effect	while	it	is
still	playing.

DIERR_GENERIC
An	undetermined	error	occurred	inside	the	DirectInput	subsystem.	This
value	is	equal	to	the	E_FAIL	standard	COM	return	value.

DIERR_HANDLEEXISTS
The	device	already	has	an	event	notification	associated	with	it.	This	value	is
equal	to	the	E_ACCESSDENIED	standard	COM	return	value.

DIERR_HASEFFECTS
The	device	cannot	be	reinitialized	because	effects	are	attached	to	it.

DIERR_INCOMPLETEEFFECT
The	effect	could	not	be	downloaded	because	essential	information	is
missing.	For	example,	no	axes	have	been	associated	with	the	effect,	or	no
type-specific	information	has	been	supplied.

DIERR_INPUTLOST
Access	to	the	input	device	has	been	lost.	It	must	be	reacquired.

DIERR_INVALIDPARAM
An	invalid	parameter	was	passed	to	the	returning	function,	or	the	object
was	not	in	a	state	that	permitted	the	function	to	be	called.	This	value	is
equal	to	the	E_INVALIDARG	standard	COM	return	value.

DIERR_MAPFILEFAIL
An	error	has	occurred	either	reading	the	vendor-supplied	action-mapping
file	for	the	device	or	reading	or	writing	the	user	configuration	mapping	file
for	the	device.

DIERR_MOREDATA
Not	all	the	requested	information	fit	into	the	buffer.

DIERR_NOAGGREGATION
This	object	does	not	support	aggregation.

DIERR_NOINTERFACE
The	object	does	not	support	the	specified	interface.	This	value	is	equal	to
the	E_NOINTERFACE	standard	COM	return	value.

DIERR_NOTACQUIRED
The	operation	cannot	be	performed	unless	the	device	is	acquired.

DIERR_NOTBUFFERED
The	device	is	not	buffered.	Set	the	DIPROP_BUFFERSIZE	property	to
enable	buffering.

DIERR_NOTDOWNLOADED
The	effect	is	not	downloaded.

DIERR_NOTEXCLUSIVEACQUIRED
The	operation	cannot	be	performed	unless	the	device	is	acquired	in
DISCL_EXCLUSIVE	mode.

DIERR_NOTFOUND
The	requested	object	does	not	exist.

DIERR_NOTINITIALIZED
This	object	has	not	been	initialized.

DIERR_OBJECTNOTFOUND
The	requested	object	does	not	exist.

DIERR_OLDDIRECTINPUTVERSION
The	application	requires	a	newer	version	of	DirectInput.

DIERR_OTHERAPPHASPRIO
Another	application	has	a	higher	priority	level,	preventing	this	call	from
succeeding.	This	value	is	equal	to	the	E_ACCESSDENIED	standard	COM
return	value.	This	error	can	be	returned	when	an	application	has	only
foreground	access	to	a	device	but	is	attempting	to	acquire	the	device	while
in	the	background.

DIERR_OUTOFMEMORY
The	DirectInput	subsystem	could	not	allocate	sufficient	memory	to
complete	the	call.	This	value	is	equal	to	the	E_OUTOFMEMORY	standard
COM	return	value.

DIERR_READONLY
The	specified	property	cannot	be	changed.	This	value	is	equal	to	the
E_ACCESSDENIED	standard	COM	return	value.

DIERR_REPORTFULL
More	information	was	requested	to	be	sent	than	can	be	sent	to	the	device.

DIERR_UNPLUGGED
The	operation	could	not	be	completed	because	the	device	is	not	plugged	in.

DIERR_UNSUPPORTED
The	function	called	is	not	supported	at	this	time.	This	value	is	equal	to	the
E_NOTIMPL	standard	COM	return	value.

E_HANDLE
The	HWND	parameter	is	not	a	valid	top-level	window	that	belongs	to	the
process.

E_PENDING
Data	is	not	yet	available.

E_POINTER
An	invalid	pointer,	usually	NULL,	was	passed	as	a	parameter.

	
Microsoft	DirectX	8.1	(C++)

IDirectInputDevice8::GetDeviceState
Retrieves	immediate	data	from	the	device.

HRESULT	GetDeviceState(

		DWORD cbData,		

		LPVOID lpvData

);

Parameters

cbData
Size	of	the	buffer	in	the	lpvData	parameter,	in	bytes.

lpvData
Address	of	a	structure	that	receives	the	current	state	of	the	device.	The
format	of	the	data	is	established	by	a	prior	call	to	the
IDirectInputDevice8::SetDataFormat	method.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	error	values:

DIERR_INPUTLOST
DIERR_INVALIDPARAM
DIERR_NOTACQUIRED
DIERR_NOTINITIALIZED
E_PENDING

Remarks

Before	device	data	can	be	obtained,	set	the	cooperative	level	by	using	the
IDirectInputDevice8::SetCooperativeLevel	method,	then	set	the	data	format
by	using	IDirectInputDevice8::SetDataFormat,	and	acquire	the	device	by
using	the	IDirectInputDevice8::Acquire	method.

The	five	predefined	data	formats	require	corresponding	device	state	structures
according	to	the	following	table:

Data	format State	structure
c_dfDIMouse DIMOUSESTATE
c_dfDIMouse2 DIMOUSESTATE2
c_dfDIKeyboard array	of	256	bytes
c_dfDIJoystick DIJOYSTATE
c_dfDIJoystick2 DIJOYSTATE2

For	example,	if	you	passed	the	c_dfDIMouse	format	to	the
IDirectInputDevice8::SetDataFormat	method,	you	must	pass	a
DIMOUSESTATE	structure	to	the	IDirectInputDevice8::GetDeviceState
method.

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

See	Also

IDirectInputDevice8::Poll,	Polling	and	Event	Notification,	Buffered	and
Immediate	Data

	
Microsoft	DirectX	8.1	(C++)

IDirectInputDevice8::GetObjectInfo
Retrieves	information	about	a	device	object,	such	as	a	button	or	axis.

HRESULT	GetObjectInfo(

		LPDIDEVICEOBJECTINSTANCE pdidoi,		

		DWORD dwObj,																						

		DWORD dwHow

);

Parameters

pdidoi
Address	of	a	DIDEVICEOBJECTINSTANCE	structure	to	be	filled	with
information	about	the	object.	The	structure's	dwSize	member	must	be
initialized	before	this	method	is	called.

dwObj
Value	that	identifies	the	object	whose	information	is	to	be	retrieved.	The
value	set	for	this	parameter	depends	on	the	value	specified	in	the	dwHow
parameter.

dwHow
Value	that	specifies	how	the	dwObj	parameter	should	be	interpreted.	This
value	can	be	one	of	the	following:
Value Meaning

DIPH_BYOFFSET
The	dwObj	parameter	is	the	offset	into	the
current	data	format	of	the	object	whose
information	is	being	accessed.

DIPH_BYID

The	dwObj	parameter	is	the	object	type/instance
identifier.	This	identifier	is	returned	in	the
dwType	member	of	the
DIDEVICEOBJECTINSTANCE	structure
returned	from	a	previous	call	to	the
IDirectInputDevice8::EnumObjects	method.

DIPH_BYUSAGE
The	dwObj	parameter	contains	the	HID	Usage
Page	and	Usage	values	of	the	object,	combined
by	the	DIMAKEUSAGEDWORD	macro.

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	error	values:

DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED
DIERR_OBJECTNOTFOUND
E_POINTER

Remarks

For	compatibility	with	Microsoft®	DirectX®	3,	it	is	also	valid	to	pass	a
DIDEVICEOBJECTINSTANCE_DX3	structure	with	the	dwSize	member
initialized	to	sizeof(DIDEVICEOBJECTINSTANCE_DX3).

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

	
Microsoft	DirectX	8.1	(C++)

IDirectInputDevice8::SetDataFormat
Sets	the	data	format	for	the	Microsoft®	DirectInput®	device.

HRESULT	SetDataFormat(

		LPCDIDATAFORMAT lpdf

);

Parameters

lpdf
Address	of	a	structure	that	describes	the	format	of	the	data	that	the
DirectInputDevice	should	return.	An	application	can	define	its	own
DIDATAFORMAT	structure	or	use	one	of	the	following	predefined	global
variables:

c_dfDIKeyboard
c_dfDIMouse
c_dfDIMouse2
c_dfDIJoystick
c_dfDIJoystick2

Return	Values

If	the	method	succeeds,	the	return	value	is	DI_OK.

If	the	method	fails,	the	return	value	can	be	one	of	the	following	error	values:

DIERR_ACQUIRED
DIERR_INVALIDPARAM
DIERR_NOTINITIALIZED

Remarks

The	data	format	must	be	set	before	the	device	can	be	acquired	by	using	the
IDirectInputDevice8::Acquire	method.	It	is	necessary	to	set	the	data	format
only	once.	The	data	format	cannot	be	changed	while	the	device	is	acquired.

If	the	application	is	using	action	mapping,	the	data	format	is	set	instead	by	the
call	to	IDirectInputDevice8::SetActionMap.

Requirements

		Windows	NT/2000/XP:	Requires	Windows®	2000.
		Windows	98/Me:	Requires	Windows	98	or	later.	Available	as	a	redistributable
for	Windows	98.
		Header:	Declared	in	Dinput.h.

See	Also

IDirectInputDevice8::GetDeviceState

	Common Framework
	Direct3DX Shader Assemblers Reference
	DirectX 8.1, Introducing

