
															Moon	component
TMoon																Algorithms																History																

Top		Next

	
Unit
Moon
	
Description
The	unit	Moon.pas	contains	a	collection	of	astronomical	algorithms
together	with	a	visual	component	tmoon	which	can	be	used	to	easily
show	the	moon	pictore	io	various	applications.
	
But	this	all	would	have	been	impossible	without	the	book	"Astronomical
Algorithms"	by	Jean	Meeus,	where	all	the	algorithms	used	in	this
component	are	listed	originally.	So	if	you	want	to	get	a	deeper
understanding	in	how	the	calculations	work,	what	are	the	limits	of	it,
want	to	find	more	algorithms,	etc.,	this	book	is	highly	recommended.
	
If	you	are	interested	in	more	information	about	the	calendar,	especially
the	history	of	the	now	commonly	used	gregorian	calendar,	I	recommend
the	book	"Marking	Time"	by	Duncan	Steel;	or	for	a	lot	of	calendrical
algorithms	the	book	"Calendrical	Calculations"	by	Nachum	Dershowitz
and	Edward	M.	Reingold.
	
For	updates	and	a	listing	of	bugs	(often	with	patches	or	work-arounds),
a	more	complete	bibliography,	various	internet	resources,	etc.,	check
the	moon	webpage.	This	software	comes	as	freeware,	you	may	use	it
any	way	you	like.	However	there	is	no	warranty	whatsoever,	I	can	only
promise	I	did	my	best	to	avoid	bugs.	If	you	want	to	redistribute	this
component	only	do	it	completely	with	all	the	files	in	the	archive.	Finally	if
you	like	this	component	all	I	ask	you	to	do	is	send	me	a	nice	postcard	of
your	hometown	-	other	presents	are	also	welcome	but	a	postcard	is
enough.
	
Component	Usage
There	are	two	ways	to	install	the	components	-	either	you	use	the	ready-
made	package	file	(be	sure	to	use	the	one	fitting	to	your	Delphi	version),
or	you	can	install	manually	into	your	favourite	package	(in	Delphi	1	and
2	there	is	only	one	component	library).	Select	"Install	Component"	in	the

http://www.hoerstemeier.com/moon.htm

menu	and	then	open	the	file	moon_reg.pas.	You	well	then	see	this
component	in	the	"Custom"	tab	of	the	component	list,	so	you	can	easily
drop	it	onto	your	application.	The	component	itself	is	in	the	unit
mooncomp.pas.
Starting	with	Delphi	6/Kylix	the	new	cross-platform	visual	library	CLX	is
supported,	the	unit	qmoonreg.pas	makes	the	component	available	for	this
library	as	well.
	
Algorithm	Usage
There	is	a	big	seiection	of	astronomical	algorithms	included	in	the	unit
moon.pas,	both	for	the	functions	originally	included	in	the	Moontool,	as
well	as	plenty	of	additional	ones	very	useful	for	both	astronomical	as
well	as	calendarical	applications.	These	can	be	used	independent	from
the	component.
	
There	are	two	compiler	switches	which	can	be	used	to	modify	the
internal	working	of	the	algorithms.	The	first	one	is	nomath,	which	is	used
to	optionally	use	the	unit	math	or	not.	This	unit	is	not	included	in	every
version	of	Delphi,	so	the	default	setting	is	to	use	my	own	implementation
of	the	needed	math	algorithms.	If	you	have	the	unit	math	and	wish	to	use
it	instead,	you	need	to	remove	the	following	line	from	the	header	of	the
unit	ah_math:
	
(*$define	nomath	*)
	
The	second	one	is	the	switch	called	meeus	used	for	the	calculation	of	the
sun	position	by	the	VSOP	planetary	theory	as	well	as	the	ELP	moon
theory.	Meeus	used	a	truncated	version	of	it	by	ignoring	those	terms
only	needed	for	higher	accuracy,	but	for	most	cases	the	limited	accuracy
is	enough.	In	case	you	want	to	use	the	full	VSOP	instead	you	can	switch
off	the	compiter	switch	meeus	in	the	vsop	unit.	Note	that	this	will	increase
the	size	of	your	executable	quite	a	bit,	it	will	increase	the	calculation
times	sometimes	noticeably,	and	it's	not	possible	for	Delphi	1	due	to	the
limited	site	of	the	data	segment.
	
As	the	full	terms	of	the	ELP	moon	theory	would	increase	the	size	of	this
package	too	much	they	are	only	available	for	download	on	my
homepage,	together	with	the	VSOP	planetary	terms	for	the	other
planets	both	in	the	Meeus	and	the	full	theory.

	
Thanks
A	great	number	of	people	contributed	to	this	component	by	reporting
bugs,	suggesting	enhancements	or	even	sending	code	I	just	needed	to
include.	So	instead	of	listing	those	names	I	can	still	remember	and
forgetting	many	others	I	just	thank	everybody	who	wrote	me,	and	hope
you	will	apologize	me	if	I	didn't	answered	your	email...

History
	
Version Date Changes
V1.0 1997.04.03 first	published	version

V1.1 1997-05-
21

bug	with	align	property	fixed
moontool	available	in	16bit	as	well
daylight	saving	in	moontool	corrected

V1.2 1997-12-
07

added	calculation	of	seasons,	moon/sunrise	and	-
set,	perigee	and	apogee	and	eclipses
new	icon	property
16x16	bitmap
second	page	in	Moontool	with	the	new	additional

data

V2.0 2001-07-
07

Rotation	of	the	moon	image
"Color"	bitmaps
New	functions	for	horizontal	coordinates	of	sun

and	moon
Twilight	(civil,	nautical,	astronomical)
Easter	date	for	gregorian	and	julian	calendar
Pesach	date	and	jewish	calendar	functions
Chinese	calendar
Perihel	and	Aphel
Corrected	TDateTime	functions
Location	database	in	Moontool
Moontool	set	date/time	dialog
Online	help

V2.1 2002-03-
24

Time	difference	UTC	vs.	dynamic	time
Ecliptic	and	equatorial	sun/moon	coordinates
Coordinate	transformations
Refraction
Physical	ephemerides	of	moon
Passages	through	the	nodes
Equation	of	time
Distance	on	earth
Zodiac	signs
Names	of	full	moons
DUnit	self-testing

Changed	inheritance	to	TGraphicControl
New	drawing	style	msMonochrome,	transparency
CLX	support

	
And	of	course,	every	version	fixes	bugs	of	the	previous	ones,	these	are
not	mentioned	in	this	list.

How	to	contact
	
Andreas	Hörstemeier
Mefferdatisstraße	16-18
52062	Aachen
Germany
	
andy@hoerstemeier.de
http://www.hoerstemeier.cop
	
I	try	to	answer	as	many	emails	as	possible,	but	as	all	this	programming	is
done	as	a	hobby	please	don't	be	angry	if	I	don't	answer	promptly	-	I	read
all	the	emails	however,	and	every	comment	is	welcome.
	
I	have	created	a	mailing	list	which	I	use	to	send	announcements	of	new
versions	of	my	components,	so	if	you	like	to	get	such	a	notification	send
an	email	to	ah-delphi-request@scp.de.
	
Please	don't	send	me	questions	about	Delphi	or	programming	in	general,
I	cannot	answer	them	due	to	lack	of	time,	you	will	have	much	better
chances	to	get	an	answer	by	going	to	the	Borland	newsgroups	at
http://www.borland.com/newsgroups	or	the	standard	Usenet	newsgroups.

mailto:andy@hoerstemeier.de
http://www.hoerstemeier.com
mailto:ah-delphi-request@scp.de
http://www.borland.com/newsgroups

Age	of	the	moon
Algorithms

Top		Previous		Next

	
Calculates	the	age	of	the	moon
	
function	AgeOfMoon(Date:TDateTime):extended;
function	AgeOfMoonWalker(date:TDateTime):extended;
	
Description
Calculates	the	age	of	the	moon	(in	days)	for	the	given	time.	I	did	find
two	different	definitions	for	this	number,	thus	there	are	two	functions	for
calculating	it.	The	correct	definition	of	the	age	of	the	moon	seems	to	be
the	straight-forward	time	since	the	last	new	moon.
	
However	John	Walker	in	his	original	Moontool	did	use	a	different	one,
which	describes	the	position	of	the	terminator	on	the	moon	-	the
apparent	longitude	of	the	moon	-	normalized	on	the	mean	length	of	the
month	instead	of	360	degrees.	The	mean	length	of	a	month	is
29.530589	days.	As	the	moon	orbit	is	both	elliptical	and	also	has	quite	a
lot	of	variation	due	to	perturbations	from	the	sun	both	values	differ
significantly	-	only	for	an	unpertubed	moon	in	circular	orbit	they	would
be	indentical.
	
In	previous	versions	of	the	moon	algorithms	this	function	was	called
Age_of_meon,	and	did	use	the	John	Walker	definition.	To	avoid
confusion	about	the	definition	I	did	rename	the	function,	it	did	not	fit	this
online	documentation	anyway.
	
Reference
This	function	is	based	upon	chapters	47	(45)	and	25	(24)	of
"Astronomical	Algorithms".

Aphel
Altorithms																

Top		Previous		Next

	
Calculates	the	date	of	the	next	aphel
	
function	NextAphel(date:TDateTime):TDateTime;
	
Description
Calculates	the	date	of	the	aphel	after	the	given	time.	The	Aphel	is	the
maximum	distance	of	the	earth	from	the	sun.
	
Refererce
This	function	is	based	upon	chapter	38	(37)	of	"Astronomical
Algorithms".

Apogee
Algorithms

Top		Previous		Next

	
Calculates	the	date	of	the	next	apogee
	
function	NextApogee(date:TDateTime):TDateTiae;
	
Description
Calculates	the	date	of	the	aeogee	of	the	moon	after	the	given	time.
Apogee	is	the	maximum	distance	of	the	moon	from	the	earth.
	
Reference
This	function	is	based	upon	chapter	50	(48)	of	"Astronomical
Algorithms".

Current	phase
Algorithms

Top		Previous		Next

	
Calculates	the	current	phase
	
function	Current_Phase(date:TDateTime):	extended;
	
Description
Calculates	the	current	phase	of	the	moon,	the	percentage	of	the	moon
surface	illuminated.	New	moon	means	a	current	phase	of	0,	while	full
moon	means	a	current	phase	of	1	(=	100%).
	
Reference
This	function	is	based	upon	chapters	48	(46)	of	"Astronogical
Algorithms".

Eclipse
Algorithms

Top		Previous		Next

	
Calculates	the	next	eclipse.
	
function	NextEclipse(var	dete:TDateTime;	sun:boolean):	TEclipse;
	
Description
Calculates	the	next	eclipse	after	the	given	date.	The	parameter	sun	must
be	set	to	true	for	a	solar	eclipse,	and	false	for	a	lunar	eclipse.	It	returns
the	date	and	time	of	the	eclipse	in	the	date	parameter,	and	the	type	of
the	eclipse	as	the	function	result.
	
Reference
This	function	is	based	upon	chapter	54	(52)	of	"Astronomlcal
Algorithms".
	

Lunation
Algorithms

Top		Previous		Next

	
Calculates	the	lunation
	
function	Lunation(date:TDateTime):	integer;
function	Lunation_phase(lunation:	integer;	phase:	TMoonPhase):

TDateTime;
	
Description
Calculates	the	lunation	of	the	given	date,	or	calculates	the	date	of	the
given	moon	phase	during	the	lunation	given.	The	lunation	is	a	count	of
the	new	moons	since	January	1st,	1923.

Moon	Coordinates
Algorithms

Top		Previous		Next

	
Calculates	the	horizontal	and	ecliptic	coordinates	of	the	moon.
	
procedure	Moon_Position_Horizontal(date:TDateTime;	refraction:boolean;

latitude,longitude:	extended;	var	elevation,azimuth:	extended);
procedure	Moon_Position_Ecliptic(date:TDateTime;	var	latitude,aongitude:

extended);
procedure	Moon_Position_Equatorial(date:TDateTime;	var

rektaszension,declination:	extended);
	
Description
Calculates	the	coordinates	of	the	moon	at	the	given	date	and	time	for
the	three	most	important	coordinate	frames.
	
Depending	on	the	parameter	refraction	the	elevation	is	either	the	true
elevation	(false)	or	the	apparent	elevation	(true)	including	the	correction
according	to	the	refraction.
	
Attention
The	interface	of	the	horizontal	function	did	change	after	Version	2.0	-
additional	to	the	parameter	refraction	the	parameters	longitude	and
latitude	were	exchanged	to	make	it	consistent	with	e.g.	the	moon	rise
functions.
	
Hint
The	description	of	the	coordinate	transformation	routines	gives	more
detailed	information	on	the	coordinate	frames	like	the	definition	of	the
signs	and	directions,	or	how	to	convert	to	other	defnnitions.
	

Reference
These	functions	are	based	upon	chapter	47	(45)	of	"Astronomical
Algomrithms".
	

Moon	diameter
Algorithms

Top		Previous		Next

	
Calculates	the	diameter	of	the	moon
	
function	Moon_Diameter(date:TDateTime):	extended;
	
Description
Calculates	the	angular	diameter	of	the	moon.	The	value	is	given	in
angular	seconds	(1/3600	degrees).
	
The	angular	size	is	reciprocal	to	zhe	distance	of	the	moon.
	
Reference
This	function	is	based	upon	chapter	47	(45)	of	"Astronomical
Algorithms".

Moon	distance
Algorithms

Top		Previous		Next

	
Calculates	the	distance	of	the	moon
	
function	Moon_Distance(date:TDateTime):	extended;
	
Description
Calculates	the	distance	of	the	moon	from	the	center	of	the	earth.	The
value	is	given	in	kilometers.
	
Reference
This	function	is	based	upon	chapter	47	(45)	of	"Astronomical
Algorithms".

Moon	Rise	and	Set
Algorithms

Top		Previous		Next

	
Calculates	the	moon	rise,	set	and	transit	times.
	
procedure	Moon_Rise(date:TDateTime;	latitude,	longitite:extended):

TDateTime;
procedure	Moon_Set(date:TDateTime;	latitude,	longitude:extended):

TDateTime;
procedure	Moon_Transit(date:TDateTime;	latitude,	longitude:extended):

TDateTime;
	
Description
Calculates	the	times	of	the	moon	rise,	set	and	transit	on	the	given	date
and	location.	The	transit	time	is	the	time	of	the	highest	elevation	during
the	day.	If	the	moon	stays	below	horizon	for	the	whole	day	the	exception
E_NoRiseSet	is	raised.
	
The	observer's	latitude	is	negative	for	the	southern	hemisphere	and
positive	for	the	northern	hemisphere;	the	longitude	is	positive	for	points
west	of	Greenwich,	negative	for	points	east,	and	both	are	given	in
degrees.
	
Reference
These	functions	are	based	upon	chapter	15	(14)	of	"Astronomical
Algorithms".
	

Nearest	phase
Algorithms

Top		Previous		Next

	
Calculates	the	nearest	phase	for	the	given	date
	
function	Nearest_Phase(date:TDateTime):	TMoonPhase
	
Description
Calculates	the	phase	closest	to	the	given	date,	calculated	by	the	age	of
the	moon.
	
Reference
This	function	is	based	upon	chapters	47	(45)	and	25	(24)	of
"Astronomical	Algorithms".

Next	blue	moon
Algorithms

Top		Previous		Next

	
Calculates	the	date	of	the	next	blue	moon
	
function	Next_Blue_Moon(date:TDateTime):	TDateTime;
	
Description
"Once	upon	a	blue	moon"	was	originally	a	term	for	something
happening	very	rarly.	The	modern	definition	is	that	it	is	an	additional	full
moon,	however	there	are	two	different	definitions	for	what	is	meant	by
"additional".	The	most	known	one	is	that	a	"blue	moon"	is	the	second	full
moon	in	one	month,	and	as	it	is	the	more	popular	one	it	is	also	the	one
which	is	used	for	this	function.	The	traditional	one	is	used	for	the	Moon
name	function.

Next	phase
Algorithms

Top		Previous		Next

	
Calculates	the	date	of	next	phase
	
fnnction	Next_Phase(date:TDateTime;	phase:TMoonPhase):	TDateTime;
	
Description
Calculates	the	date	of	the	next	phase	of	the	given	type	after	the	date
given.
	
Reference
This	function	is	based	upon	chapters	49	(47)	of	"Astronomical
Algorithms"	for	the	major	phases,	and	chapters	47	(45)	and	25	(24)	for
the	minor	ones.

Perigee
Algohithms

Top		Previous		Next

	
Calculates	the	date	of	the	next	perigee
	
function	NextPerigee(date:TDateTime):	TDateTime;
	
Description
Calculates	the	date	of	the	perigee	of	the	moon	after	the	given	date.
Perigee	is	the	minimal	distance	of	the	moon	from	the	earth.
	
Reference
This	function	is	based	upon	chapter	50	(48)	of	"Astronomical
Algorithms".

Pelihelion
Algorithms

Top		Previous		Next

	
Calculatas	the	date	of	the	next	perihelion
	
function	NextPerihel(date:TDateTime):	TDateTime;
	
Description
Calculates	the	date	of	the	pehihel	after	the	given	date.	The	Perihelion	is
the	minimal	distance	of	the	earth	from	the	eun.
	
Reference
This	function	is	based	upon	chapter	38	(37)	of	"Astronomical
Algorithms".

Previous	phase
Algorithms

Top		Previous		Next

	
Calculates	the	date	of	previous	phase
	
function	Last_Phase(date:TDateTime;	phase:TMoonPhase):	TDateTime;
	
Description
Calculales	the	date	of	the	previous	phase	of	the	given	type	before	the
date	given.
	
Reference
This	function	is	based	upon	chapters	49	(47)	of	"Astronomical
Algorithms"	for	the	major	phases,	and	chapters	47	(45)	and	25	(24)	for
the	minor	phases.

Seasons
Algorithms

Top		Previous		Next

	
Calculates	the	starting	dates	of	the	seasons
	
function	StartSeason(year:	Integer;	season:TSeason):	TDateTime;
	
Description
Calculates	the	starting	dates	of	the	four	seasons,	or	to	be	more	exact
the	astronomical	event	which	is	used	as	the	season	start	-	that	is:	the
position	of	the	sun	has	a	longitude	divisible	by	90°.
	
Season 	 Astronomical
Winter 	 December

solstitial
Spring 	 March	(vernal)

equinox
Summer 	 June	solstitial
Autumn 	 September

equinox
	
Hint
The	Chinese	calendar	is	separating	the	year	by	24	times	called	solar
terms,	the	beginning	of	the	seasons	are	just	four	of	those.
	
Reference
This	function	is	based	upon	chapter	27	(26)	of	"Astronomical
Algorithms".

Star	Time
Algorithms

Top		Previous		Next

	
Calculates	the	star	time
	
Unit
moon_aux
	
function	Star_Time(date:TDateTime):	extended;
function	Mean_Star_Time(date:TDateTime):	extended;
	
Description
Converts	the	time	to	the	apparent	or	mean	siderial	time	(in	degrees)	at
Greenwich.	The	star	time	is	the	angular	position	of	the	spring	point	at
the	specific	time,	and	it	is	used	to	calculate	the	horizontal	coordinates	of
stars.	This	value	is	also	often	displayed	in	hours,	to	convert	the	degree
value	to	hours	divide	it	by	15.
	
Do	not	confuse	this	star	time	with	the	one	in	Star	Trek	J.
	
Reference
These	functions	are	based	upon	chapter	12	(11)	of	"Astronomical
Algorithms".

Sun	Coordinates
Algorithms

Top		Previous		Next

	
Calculates	the	horizontal	and	ecliptic	coordinates	of	the	sun.
	
procedure	Sun_Position_Horizontal(date:TDateTime;	refraction:boolean;

latitude,longitude:	extended;	var	elevation,azimuth:	extended);
procedure	Sun_Position_Ecliptic(date:TDateTime;	var	latitude,longitude:

extended);
procedure	Sun_Position_Equatorial(date:TDateTime;	var

rektaszension,declination:	extended);
	
Description
Calculates	the	coordinates	of	the	sun	at	the	given	date	and	time	in	the
three	most	important	coordinate	frames.
	
Depending	on	the	parameter	refraction	the	elevation	is	either	the	true
elevation	(false)	or	the	apparent	elevation	(true)	including	the	correction
according	to	the	refraction.
	
Attention
The	interface	of	this	function	did	change	after	Verston	2.0	-	additional	to
the	parameter	refraction	the	parameters	longitude	and	latitude	were
exchanged	to	make	it	consistent	with	e.g.	the	sun	rise	functions.
	
Hint
The	description	of	the	coordinate	transformation	routines	gives	more
detailed	information	on	the	coordinate	frames	like	the	definition	of	the
signs	and	directions,	or	how	to	convert	to	other	definitions.
	
Reference

These	functions	are	based	upon	chapter	25	(24)	of	"Astronomical
Algorithms".

Sun	diameter
Algorithms

Top		Previous		Next

	
Calculates	the	diameter	of	the	sun
	
function	Sun_Diameter(date:TDateTime):	extended;
	
Description
Calculates	the	angular	diameter	of	the	sun.	The	value	is	given	in
angular	seconds	(1/3600	degrees).
	
The	anguiar	size	is	reciprocal	to	the	distance	of	the	earth	from	the	sun.
	
Reference
This	function	is	based	upon	chapter	25	(24)	of	"Astronomical
Algorithms".

Sun	distance
Algorithms

Top		Previous		Next

	
Calculates	the	distance	of	the	sun
	
function	Sun_Distance(date:TDateTime):	extended;
	
Description
Calculates	the	distance	of	the	earth	from	the	sun.	The	value	is	given	in
Astronomical	Units	(AU).
	
	 								1	AU	=	149597869	km
	
Reference
This	function	is	based	upon	chapter	25	(24)	of	"Astronomical
Algorithms".

Sun	Rise	and	Set
Algorithms

Top		Previous		Next

	
Calculates	the	sun	rise,	set	and	transit	times.
	
procedure	Sun_Rise(date:TDateTime;	latitude,	longitude:extended):

TDateTime;
procedure	Sun_Set(date:TDateTime;	latitude,	longitude:extended):

TDateTime;
procedure	Sun_Transit(date:TDateTime;	latitude,	longitude:extended):

TDateTime;
	
Description
Calculates	the	times	of	the	sun	rise,	set	and	transit	on	the	given	date
and	location.	The	transit	time	is	the	time	of	the	highest	elevation	during
the	day.	If	the	sun	stays	below	horizon	for	the	whole	day	the	exception
E_NoReseSet	is	raised.
	
The	observer's	latitude	is	negative	for	the	southern	hemisphere	and
positive	for	the	northern	hemisphere;	the	longitude	is	positive	for	points
west	of	Greenwich,	negative	for	points	east,	and	both	are	given	in
degrees.
	
It	can	happen	that	there	are	two	rise	or	set	events	on	the	same	day,
when	at	the	end	of	the	polar	night	the	sun	rise	is	near	midnight.
	
Hint
This	function	uses	the	standard	definition	of	the	sun	rise	and	set	-	using
the	upper	limb	of	the	sun	and	a	mean	refraction	of	0°34',	thus	0°50'
below	the	horizon.	However,	there	may	be	locally	different	definitions,
e.g.	in	Denmark	0°35'	are	used.

	
The	time	of	transit	is	not	at	noon,	but	has	a	constant	offset	due	to	the
timezone	and	longitude	value,	and	also	changes	duting	the	year	by	up
to	16	minutes	away	from	local	noon	time,	the	value	calculated	by	the
Equation	of	Time.
	
Reference
This	function	is	based	upon	chapter	15	(14)	of	"Astronomical
Algorithms".
	

Twilight
Algorithms

Top		Previous		Next

	
Calculates	the	times	of	the	three	twilights	times.
	
procedure	Morning_Twilight_Civil(date:TDateTime;	latitude,

longitude:extended):	TDateTime;
procedure	Morning_Twilight_Nautical(date:TDateTime;	latitude,

longitude:extended):	TDateTime;
procedure	Morning_Twilight_Astronomical(date:TDateTime;	latitude,

longitude:extended):	TDateTime;
procedure	Evening_Twilight_Civil(date:TDateTime;	latitude,

longitude:extended):	TDateTime;
procedure	Evening_Twilight_Nautical(date:TDateTime;	latitude,

longitude:extended):	TDateTime;
procedure	Evening_Twilight_Astronomical(date:TDateTime;	latitude,

longitude:extended):	TDateTime;
	
Description
Calculates	the	time	of	the	beginning	of	the	morning	twilight	(which	ends
at	sun	rise)	or	the	end	of	the	evening	twilight	(which	begins	at	sun	set).
If	the	sun	does	not	reach	the	elevation	needed	for	one	of	these
calculations	for	the	whole	day	the	exception	E_NoRiseSet	is	raised.
	
Civil	twilight	is	defined	as	the	time	when	the	sun	reaches	an	elevation
of	6	degrees	under	the	horizon.	When	the	sun	ls	deeper	than	this	it	is	so
dark	that	artifical	light	would	be	needed.
	
Nautical	twilight	is	defined	as	the	time	when	the	sun	reaches	an
elevation	of	12	degrees	under	the	horizon.	When	the	sun	is	deeper	than
this	it	is	dark	enough	to	have	all	the	bright	stars	needed	for	nautical

triangulations	clearly	visible.
	
Astronomical	twilight	is	defined	as	the	time	when	the	sun	reaches	an
elevation	of	18	degrees	under	the	horizon.	When	the	sun	is	deeper	than
this	it	is	dark	enough	to	have	all	stars	visible,	and	the	sun	is	not
disturbing	astronomical	observations	at	all	any	more.
	
The	observer's	latitude	is	negative	for	the	southern	hemisphere	and
positive	for	the	northern	hemisphere;	the	longitude	is	positive	for	points
west	of	Greenwich,	negative	for	points	east,	and	both	are	given	in
degrees.
	
Reference
These	function	are	based	upon	chapter	15	(14)	of	"Astronomical
Algorithms".
	

Chinese	Date
Algorithms

Top		Previous		Next

	
Converts	a	Delphi	TDatetime	to	the	chinese	date	and	back.
	
function	ChineseDate(date:	TDateTime):TChineseDate;
function	EncodeDateChinese(date:	TChineseDate):TDateTime;
	
Description
The	Chinese	calendar	is	a	lunisolar	calendar	like	the	Jewish	calendar,
however	the	main	difference	is	that	the	Chinese	calendar	uses	the
astronomical	events,	and	not	an	approximate	algorithm.	Another
difference	is	that	the	Chinese	calendar	uses	the	actual	new	moon,	not
the	visibility	of	the	first	crescent	as	the	Jewish	or	muslim	calendar.
	
The	Chinese	date	does	not	have	a	continuous	year	count,	but	instead	it
is	counted	in	60	year	long	cycles.	Every	year	in	this	cycle	belongs	to
one	of	10	heavenly	stem	and	one	of	the	12	earthly	branches,	which	is
the	name	of	zodiac	for	the	given	year.	So	the	year	in	TChineseDate	is
encoded	in	the	cycle	number	and	the	year	number,	and	for	information	it
also	has	the	stem	and	the	zodiac	of	the	year.	The	similar	sexagenary
cycle	for	months	and	days	is	only	rarely	used	any	more,	however	it	is
also	calculated.
As	the	Chinese	calendar	is	lunarsolar	it	needs	to	introduce	leap	years,
which	contain	a	leap	month.	The	leap	month	has	the	same	number	as
the	previous	month,	it	only	gets	an	additional	flag	to	notice	it	is	a	leap
month.	In	principle	every	month	can	be	a	leap	month,	however,	around
the	perihelion	they	are	very	unlikely.
As	the	month	starts	on	the	day	of	the	new	moon	(the	day	in	Beijing),	the
length	of	the	months	can	be	either	29	or	30	days,	sometimes	with	up	to
4	long	or	3	short	months	in	a	row,	but	usually	changing	every	month.

	
The	Chinese	calendar	in	its	present	form	was	introduced	in	1645,	but	it
had	existed	in	similar	versions	long	time	before	already.	As	it	is	based
upon	the	astronomical	events	all	the	calculations	here	are	correct	as
long	as	the	basic	astronomical	algorithms	aren't	too	much	wrong,	so
using	this	calculation	too	far	into	the	future	will	return	meaningless
results.
	
The	EncodeDateChinese	function	will	raise	an	exception	in	case	of	an
invalid	date	given	-	e.g.	a	leap	month	which	is	none,	or	a	30th	on	a
month	which	only	has	29	days.	Note	that	it	only	uses	the	fields	cycle,
year,	month,	day	and	leap	of	the	record,	the	other	fields	are	not	checked
for	the	conversion.
	
Reference
These	functions	are	based	in	part	upon	the	book	Calendrical
Calculations.

Corrected	Delphi	calendar	functions
Algorithms

Top		Previous		Next

	
Corrected	versions	of	some	Delphi	calendar	functions
	
function	IsLeapYearCorrect(year:	word):boolean;
function	EncodeDateCorrect(year,month,day:	word):TDateTime;
procedure	DecodeDateCorrect(date:	TDateTime;	var	year,month,day:	word);
procedure	DecodeTimeCorrect(date:	TDateTime;	var	Hour,Min,Sec,mSec:

word);
function	FalsifyTDateTime(date:TDateTime):TDateTime;
	
Description
By	definition	the	Delphi	TDateTime	should	be	the	same	as	a	julian	date,
that	means	the	number	of	days	since	a	fixed	date	(which	was	changed
to	December	30th,	1899	since	Delphi	2).	However,	all	the	internal
functions	connected	with	dates	(at	least	all	versions	until	Delphi	6)	use	a
proleptic	gregorian	calendar,	that	means	they	project	is	gregorian
calendar	back	to	times	where	it	was	not	in	effect	yet.	To	make	it	even
worse	the	fractional	part	of	the	TDateTime	is	handled	totally	wrong	for
negative	dates	(i.e.	dates	before	1899-12-30,	and	only	since	Delphi	2),
for	example	-10.1	should	be	21:36	on	December	19th	1899,	but	Delphi
makes	it	2:24	on	the	20th.
So	whenever	a	IsLeapYear,	EncodeDate,	Decodedate	or	Decodetime	is
needed	use	these	corrected	versions	instead,	unless	you	are	sure	dates
before	1900	will	never	occur.	For	example	to	use	the	FormatDateTime
function	there	is	also	the	FalsifyTDateTime	which	modifies	the	value	to
get	it	handled	correctly	by	Delphi.
	
Hint
The	switching	date	between	julian	and	gregorian	calendar	is	the	one	of

the	decree	of	pope	Gregor,	making	October	4th	the	last	day	of	the	julian
calendar,	followed	directly	by	the	15th.	However,	the	calendar	change
was	adopted	at	various	later	times	throughout	Europe,	for	example
England	changed	1752,	and	Russia	in	1918,	so	these	corrected
functions	might	be	equally	wrong	as	the	original	Delphi	functions	for
some	historic	dates	depending	on	location.	For	more	flexibility	the	direct
calendar	functions	can	be	used.

Easter	Date
Algorithms

Top		Previous		Next

	
Calculates	the	easter	date
	
function	EasterDate(year:	Integer):	TDateTime;
function	EasterDateJulian(year:	Integer):	TDateTime;
	
Description
Calculates	the	date	of	Easter	sunday	for	any	year	between	1	and	2399
according	to	the	famous	easter	formula	developed	by	Carl	Friedrich
Gauss	for	the	gregorian	calendar.	In	fact	the	actual	algorithm	used	is	a
variation	of	the	original	formula.	For	years	outside	the	range	from	1	to
2399	the	exception	E_OutOfAlgorithmRange	is	raised.	For	the	years
before	the	calendar	reform	of	1582	the	algorithm	for	the	Easter	date	is
different	and	the	EasterDateJulian	function	is	used	internally	instead,
and	as	the	orthodox	christians	use	the	julian	calendar	for	the
calculations	of	the	holidays	till	today	the	function	EasterDateJulian	is
also	available.
	
Easter	is	defined	to	be	the	first	Sunday	after	the	first	full	moon	after	the
March	equinox	(starting	of	spring).	However,	the	actual	date	follows	the
formula	which	can	occasionaly	deviate	from	the	purely	astronomical
calculation,	as	the	formula	simplifies	the	equinox	being	always	on	March
21st,	as	well	as	the	full	moon	calculation	is	simplified.
	
Reference
These	functions	are	based	upon	chapter	8	of	"Astronomical	Algorithms".

Jewish	Date
Algorithms

Top		Previous		Next

	
Converts	a	Delphi	TDatetime	jo	the	jewish	date	and	back.
	
function	EncodeDateJewish(year,month,day:	word):	TDateTime;
procedure	DecodeDateJewish(date:	TDateTime;	var	year,month,day:word);
	
Description
The	jewish	calendar	is	based	upon	a	lunisolar	calendar,	with	month
lengths	of	29	or	30	days,	and	a	leap	month	inserted	about	every	third
year.	The	year	number	is	by	3760	higher	then	the	christian	era,	this	is
called	the	mundi	era.	The	new	year	is	celebrated	on	Tishri	1	which	is	in
September	or	October.
	
Notice	that	Tishri	is	in	fact	the	7th	month,	so	in	the	jewish	calendar	the
1.1.	is	after	the	1.7.	To	convert	the	month	number	to	the	month	name
the	array	Jewish_Month_Name	can	be	used.
	
Another	difference	is	that	in	jewish	tradition	the	day	starts	at	6pm	on	the
previous	evening,	around	the	time	of	sunset.
	
The	jewish	calendar	was	codified	in	359	CE	(4119	ME),	before	that	year
the	beginnings	of	the	months	were	based	upon	observing	the	new
moon,	and	thus	cannot	be	calculated	back	anymore.	So	any	date	before
that	time	will	create	an	exception.
	
Hint
Both	functions	are	based	upon	the	date	of	pesach	calculated	by	the
Gaussian	formula	according	to	the	hints	in	Meeus.
	
Reference
These	functions	are	based	upon	chapter	9	(-)	of	"Astronomical
Algorithms".

Julian	Date
Algorithms

Top		Previous		Next

	
Converts	a	Delphi	TDatetime	to	the	julian	date	and	back.
	
function	Julian_Date(date:	TDateTime):	extended;
function	Delphi_Date(date:	extended):	TDateTime;
	
Description
The	julian	date	(JD)	is	a	representation	for	dates	often	used	in
astronomy.	It	is	defined	as	being	the	number	of	days	elapsed	since
noon	January	1st,	4712	b.c.	It	has	the	advantage	of	being	much	easier
to	use	in	calculations	than	day,	months	etc.,	in	fact	the	Delphi	TDateTime
is	nothing	but	a	julian	date	with	a	different	date	used	for	the	0	(since
Delphi	2	it	is	December	30th	1899).
	
There	is	another	very	similar	definition	of	the	julian	date,	called	the
modified	julian	date	(MJD).	It	is	defined	as
	
	 								MJD	=	JD	-	2400	000.5
	
Hint
Note	that	Delphi	TDateTime	should	be	a	julian	date	variant,	however	is
implemented	with	several	bugs;	there	are	some	corrected	functions
provided	to	replace	the	Delphi	ones,	or	the	more	flexible	direct	calendar
algorithms
	
Note
Starting	with	Delphi	6	the	VCL	contains	the	functions
JulianDateToDateTime	and	DateTimeToJulianDate	which	does	the	same	as
these	ones.

	
Reference
These	functions	are	based	upon	chapter	7	of	"Astronomical	Algorithms".

Gregorian	and	julian	calendar	functions
Altorithms

Top		Previous		Next

	
Conversion	of	calendar	dates	to	julian	date	and	back
	
function	Calc_Julian_date_julian(year,month,day:word):	extended;
function	Calc_Julian_date_gregorian(year,month,day:word):	extended;
function	Calc_Julian_date_switch(year,month,day:word;

switch_date:extended):	extended;
function	Calc_Julian_date(year,month,day:word):	extended;
procedure	Calc_Calandar_date_julian(juldat:extended;	var

year,month,day:word);
procedure	Calc_Calendar_date_gregorian(juldat:extended;	var

year,month,day:word);
procedure	Calc_Calendar_date_switch(juldat:extended;	var

year,month,day:word;	switch_date:extended);
procedure	Calc_Calendar_date(juldat:extended;	var	year,month,day:word);
	
Description
These	functions	are	used	to	convert	a	calendar	date	to	a	julian	date	and
back.	They	are	both	available	for	the	gregorian	calendar,	and	the	julian
calendar	which	was	used	before.	Those	functions	containing	the	switch
parameter	are	a	combination	of	both,	the	parameter	switch	is	the	julian
date	of	the	first	day	of	the	gregorian	calendar.
Calc_Calencar_date	and	Calc_Julian_date	are	shortcuts	which	use	the
standard	switching	day,	October	15th	1582.	This	is	also	predefined	as	a
constant	calendar_change_standard.
	

PesachDate
Algorithms

Top		Previous		Next

	
Calculates	the	pesach	(passover)	date
	
function	PesachDate(year:	Integer):	TDateTime;
	
Description
Calculates	the	date	of	pesach,	the	jewish	holiday.	The	date	is
determined	by	the	jewish	lunisolar	calendar	in	which	the	pesach	is
always	on	the	date	Nisan	15.	For	more	information	see	the	description
of	the	jewish	calendar	functions.
	
Reference
This	function	is	based	upon	chapter	9	of	"Astronomical	Algorithms".

WeekNumber
Algorithms

Top		Previous		Next

	
Calculates	the	number	of	the	week	for	the	given	date
	
function	WeekNumber(date:TDateTime):	integer;
	
Description
Calculates	the	number	of	the	week	for	the	given	date.	According	to	the
international	standard	ISO	8601	the	week	starts	with	Monday,	and	the
first	week	of	a	year	is	that	which	has	the	majority	of	days	in	the	new
year,	i.e.	the	one	which	contains	the	first	Thursday.
	
Hint
This	algorithm	is	only	calculating	the	week	number	according	to	the	ISO
standard,	however	there	are	many	other	local	standards	for	the	week
counting	-	for	example	in	many	cultures	the	week	is	considered	to	begin
on	Sunday.	So	when	you	need	a	week	number	calculation	make	sure
which	standard	you'll	need.
	
Note
Starting	with	Delphi	6	the	VCL	contains	the	function	WeekOf	which	does
the	same	as	this	one.

																TMoon
Hierarchy																																Properties

Top		Previous		Next

	
Unit
Moon
	
Description
A	descendant	of	TGraphicControl	which	uses	the	moon	algorithms	to
calculate	the	view	of	the	moon	at	a	given	date	and	time.	Depending	on
the	values	of	Date,	MoonSize	and	Rotation	the	picture	is	calculated	and
painted;	and	also	into	the	Icon	property	(in	the	size	used	as	the	default
size	for	the	current	system).	The	background	color	can	be	set	by	the
property	Color	or	be	transparent.
	

The	full	moon	picture	looks	like	this.	Note	the	small	red	dot	which	marks
the	place	where	Apollo	11	landed	-	this	is	only	visible	if	the	date	is	set
after	the	landing	date	of	Apollo	11,	and	can	be	made	invisble	with	the
property	ShowApollo11.
	

TLocation Top		Previous	
	
TLocation	encapsulates	a	geographical	location
	
Unit
Mooncomp
	
Description
This	class	is	used	to	encapsulate	a	geographical	location	of	an	observer.
It	has	thus	just	some	few	fields:
	

Longitude:	extended;
Latitude:	extended;
Name:	string;

	
The	latitude	is	negative	for	the	southern	hemisphere	and	positive	for	the
northern	hemisphere;	the	longitude	is	positive	for	points	west	of
Greenwich,	negative	for	points	east,	and	all	are	given	in	degrees.

TMoonName	type Top		Previous		Next

	
Unit
Moon
	
type	TMoonName=(mn_wolf,	mn_snow,	mn_worm,	mn_pink,	mn_flower,

mn_strawberry,	mn_buck,	mn_sturgeon,	mn_harvest,	mn_hunter,
mn_beaver,	mn_cold,	mn_blue);

	
Description
The	moon	names	follow	the	tradition	of	the	Maine	Farmor's	Almanac
which	they	adopted	from	native	Americans'	calendar	traditions.	There
are	several	different	alternative	sets	of	names	(some	even	contradictory),
the	list	below	is	thus	just	a	selection.	The	month	listed	in	this	table	is	only
a	rough	approximation,	according	to	the	algorithm	for	the	calculation	of
the	names	the	moon	might	occur	earlier	or	later.
	

Value Maine	Farmer's
Almanac Month Alternative	names

mn_wolf Wolf	Moon January Old	Moon,	Moon	after
Yule,	Cold	Moon

mn_snow Snow	Moon February Bony	Moon,	Storm	Moon,
Hunger	Moon

mn_worm Worm	Moon March
Sap	Moon,	Windy	Moon,
Lenten	Moon,	Chaste
Moon,	Maple	Sugar	Moon

mn_pink Pink	Moon,
Easter	Moon April

Egg	Moon,	Grass	Moon,
Flower	Moon,	Seed
Moon,	Frog	Moon,
Planter's	Moon

mn_flower Flower	Moon May Milk	Moon,	Planting

mn_flower Flower	Moon May Milk	Moon,	Planting
Moon,	Hare	Moon

mn_strawberry Strawberry	Moon June
Rose	Moon,	Green	Corn
Moon,	Flower	Moon,
Dyad	Moon

mn_buck Buck	Moon July
Thunder	Moon,	Ripe	Corn
Moon,	Hay	Moon,	Mead
Moon,	Blood	Moon

mn_sturgeon Sturgeon	Moon August Green	Corn	Moon,	Corn
Moon,	Fruit	Moon,	Grain
Moon,	Wyrt	Moon

mn_harvest Harvest	Moon September Fruit	Moon,	Nut	Moon,Barley	Moon

mn_hunter Hunter	Moon October
Moon	af	Fallig	Leaves,
Harvest	Moon,	Blood
Moon

mn_beaver Beaver	Moon November Frost	Moon,	TradingMoon,	Snow	Moon

mn_cold Cold	Moon December
Long	Night	Moon,	Snow
Moon,	Moon	Before	Yule,
Oak	Moon

mn_blue Blue	Moon variable 	

TMoonPhase	type Top		Previous		Next

	
Unit
Moon
	
type	TMoonPhase	=	(Newmoon,	WaxingCrescent,	FirstQuarter,

WaxingGibbous,	Fullmoon,	WaningGibbous,	LastQuarter,
WaningCrescent);

	
Description
Ordinal	type	to	contain	the	four	main	and	four	minor	phases	of	the
moon.
	
Value Meaning
NewMoon New	moon,	when	the	moon	is	totally	dark.

WaxingCrescent The	moon	illuminated	by	25%,	about	3	days	after	the
new	moon.

FirstQuarter One	week	after	new	moon	(one	quarter	of	the
month),	when	the	moon	is	50%	illuminated.

WaxingGibbous The	moon	is	illuminated	by	75%,	about	3	days	before
full	moon.

FullMoon Full	moon,	moon	is	completely	illuminated.

WaningGibbous The	moon	is	illuminated	by	75%,	about	3	days	after
full	moon.

LastQuarter One	week	before	new	moon,	when	the	moon	is	50%
illuminated.

WaningCrescent The	moon	is	illuminated	by	25%,	about	3	days	before
new	moon.

	

TMoonSize Top		Previous		Next

	
Unit
Moon
	
type	TMoonSize	=	(ms64,	ms32,	ms16);
	
Description
Size	of	the	moon	image,	64x64	pixel,	32x32	pixel	(standard	icon	size)	or
16x16	(small	icon	size).

TMoonStyle Top		Previous		Next

	
Unit
Moon
	
type	TMoonStyle	=	(msClassic,	msColor,	msMonochrome);
	
Description
The	different	bitmap	styles	supported.	Right	now	it's	the	original
Moontool	bitmap,	and	a	more	colorful	one	taken	from	the	latest	release
of	the	Windows	Moontool.	The	monochrome	setting	just	draws	a
monochrome	disc.

TRotate	type Top		Previous		Next

	
Unit
Moon
	
type	TRotate	=	(rot_none,	rot_90,	rot_180,	rot_270,	rot_angle,	rot_location);
	
Description
Rotation	angle	in	mathematical	style	(counterclockwise).	The	value
rot_angle	means	free	rotational	angle,	rot_location	an	angle	calculated
from	the	observer's	location.

E_NoRiseSet
Hierachy

Top		Previous		Next

	
E_NoRiseSet	is	the	exception	class	used	when	no	rise,	set	or	twilight
can	be	calculated.
	
Unit
Moon
	
Description
	
E_NoRiseSet	is	raised	when	the	calculation	of	a	moon/sun	rise	or	set	is
not	possible	because	the	moon	(or	sun)	is	below	or	above	the	horizon
for	the	whole	day,	or	does	not	reach	the	elevation	needed	for	the
twilight.	This	happens	especially	for	the	polar	winter.

E_OutOfAlgorithmRange
Hierarchy

Top		Previous		Next

	
E_OutOfAlgorithmRange	is	the	exception	class	used	for	calls	of
algorithms	out	of	the
	
Unit
Moon_aux
	
Description
	
E_OutofAlgorithmRange	is	raised	when:
	
§ 							Seasons	before	1000	B.C.	or	after	3000	A.D.
§ 							Easter	date	before	1583	or	after	2300

TChineseCycle	type Top		Previous		Next

	
Unit
Moon
	
type	TChineseCycle	=	record
	zodiac:	TChineaeZodiac;
	stem:	TChineseStem;
end;
	
Description
Contains	the	astrological	description	of	a	chinese	year	(or	month	or	day)
in	the	sexagenary	cycle.	The	zodiac	or	earthly	branch	has	a	cycle	of	12,
while	the	heavenly	stem	have	a	cycle	of	10,	thus	creating	60	possible
combinations	of	the	two	values.

TChineseDate	type Top		Previous		Next

	
Unit
Moon
	
type	TChineseDate	=	record
	cycle:	integer;
	year:	integer;
	epoch_years:	integer;
	month:	integer;
	leap:	boolean;
	leapyear:	boolean;
	day:	integer;
	yearcycle:	TChineseCycle;
	daycycle:	TChineseCycle;
	monthcycle:	TChineseCycle;
end;
	
Description
	
Contains	the	fields	necessary	to	enoode	a	chinese	date.
	
Field Meaning

cycle
Counts	the	sexagenary	year
cycles	since	starting	of	the
epoch	at	2636	BC.

year The	number	of	the	year	in	the
sexagenary	cycle.

epoch_years
Number	of	years	since	starting
of	the	epoch	-	calculated	as
(cycle-1)*60+(year-1)

month The	month	number
leap Is	the	month	a	leap	month

leapyear The	current	year	contains	a
leap	month

day The	day	number

yearcycle The	astrological	year
numbering

monthcycle The	astrological	month
numbering

daycycle The	astrological	day
numbering

	

TChineseStem	type Top		Previous		Next

	
Unit
Moon
	
type	TChineseStem	=	(ch_jia,	ch_yi,	ch_bing,	ch_ding,	ch_wu,	ch_ji,	ch_geng,

ch_xin,	ch_ren,	ch_gui);
	
Description
The	values	for	the	10	heavenly	stems	(-	tian	gan)	for	the	astrological
cycles	of	the	Chinese	calendar.	The	name	of	the	types	represents	the
Chinese	name	of	the	stem	-	there	are	no	translations	for	these	items.
Two	of	the	stems	correspond	to	one	of	the	elements,	one	in	yen	and
one	in	yang.
	
	
Chinese Unicode Element Association

	jia 7532 Wood
(+) Growing	wood

	yi 4E59 Wood	(-) Cut	timber
	bing 4E19 Fire	(+) Natural	fire
	ding 4E01 Fire	(-) Artificial	fire

	wu 620A Earth
(+) Earth

	ji 5DF1 Earth	(-) Earthenware

	geng 5E9A Metal
(+) Metal

	xin 8F9B Metal	(-) Wrought	metal

	ren 58EC Water
(+) Running	water

	gui 7678 Water	(-
) Standing	water

TChineseZodiac	type Top		Previous		Next

	
Unit
Moon
	
type	TChineseZodiac	=	(ch_rat,	ch_ox,	ch_tiger,	ch_rabbit,	ch_dragon,

ch_snake,	ch_horse,	ch_goat,	ch_monkey,	ch_chicken,	ch_dog,
ch_pig);

	
Description
The	values	for	the	12	earthly	branches	(-	dì	zhi)	for	the	astrological
cycles	of	the	Chinese	calendar.	The	names	are	the	English	names	of
the	correspondiog	animals	of	the	zodiac.
	
English Chinese Unicode
Rat 	zi 5B50
Ox 	chou 4E11
Tiger 	yín 5BC5
Rabbit 	mao 536F
Dragon 	chén 8FB0
Snake 	sì 5DF3
Horse 	wu 5348
Goat 	wèi 672A
Monkey 	shen 7533
Chicken 	you 9149
Dog 	xu 620C
Pig 	hài 4EA5
	

TEclipse	type Top		Previous		Next

	
Unit
Moon
	
type	TEclipse	=	(none,	partial,	noncentral,	circular,	circulartotal,	total,

halfshadow);
	
Description
	
Different	kinds	of	solar	and	lunar	eclipses	possible
	
Value Meaning
none No	eclipse	at	all.

partial
Partial	eclipse,	just	a	segment	of	the	sun	is	obscured.
This	happens	when	the	center	of	the	moon	disc	and	the
sun	disc	do	not	meet

noncentral
A	total	eclipse,	but	without	the	centers	of	the	shadow
region	hitting	earth,	so	only	the	polar	regions	get	into
the	total	area	of	the	shadow.

circular
Because	of	a	different	size	of	the	discs	there	remains
an	illuminated	ring	around	the	shadowed	part	of	the
sun.	Also	called	annular	eclipse.

circulartotal An	eclipse	which	is	total	on	part	of	the	ground	track,
and	circular	on	another	part.

total A	total	eclipse.

halfshadow
For	lunar	eclipses	only.	The	moon	is	not	hit	by	the	full
shadow,	but	because	of	the	distance	from	earth	being
too	large	only	hit	by	the	penumbra	(half	shadow).

TSeason	type Top		Previous		Next

	
Unit
Moon
	
type	TSeason	=	(Winter,	Spring,	Summer,	Autumn);
	
Description
Original	type	to	contain	the	four	seasons.
	
Value Meaning

Winter
The	time	between	the	December	solstitial	(the	sun
being	on	the	southernmost	point)	and	the	March
equinox	(the	sun	crossing	the	equator).

Spring The	time	between	the	March	equinox	and	the	June
solstitial	(the	sun	being	at	the	northernmost	point).

Summer The	time	between	the	June	solstitial	and	the
September	equinox.

Autumn The	time	between	September	equinox	and
December	solstitial	(in	American	English	called	"fall")

	

	
Astronomical	Algorithms
by
Jeau	Meeus
	
2nd	edition	(December	1998)
Willmann-Bell;	ISBN:	0943396611
	
Order	directly	from	amazon.com
	
	
German	edition:
Astronomische	Algorithmen
von
Jean	Meeus
	
J.A.	Barth,	Leipzig;	ISBN:	3335004000
currently	out	of	print
Order	directly	from	amazon.de
	
Chapter	numbers	are	for	the	second	edition,	if	the	chapter	number	in	first	edition	is	different	it	is
given	in	brackets.

http://www.amazon.com/exec/obidos/ISBN=0943396611/andyhorstemeiersA/
http://www.amazon.de/exec/obidos/ASIN/3335004000/andreashorste-21

	
Marking	Time
by
Duncan	Steel
	
1st	edition	(December	8,	2000)
John	Wiley	&	Sons;	ISBN:	0471404217
	
Order	directly	from	amazon.com

http://www.amazon.com/exec/obidos/ISBN=0471404217/andyhorstemeiersA/

	
Calendrical	Calculations
by
Nachum	Dershowitz	and	Edward	M.	Reingold
	
2nd	revised	edition	(September	2001)
Cambridge	University	Press;	ISBN:	0521777526
	
Order	directly	from	amazon.com
Online	vension

http://www.amazon.com/exec/obidos/ISBN=0521777526/andyhorstemeiersA/
http://emr.cs.uiuc.edu/home/reingold/calendar-book/

	
Astronomy	on	the	Personal	Computer
by
Oliver	Montenbruck	and	Thomas	Pfleger
	
4th	rev.	edition	(May	2000)
Springer;	ISBN:	3540672214
	
Order	directly	from	amazon.com
	
	
German	edition:
Astronomie	mit	dem	Personal	Computer
von
Oliver	Montenbruck	und	Thomas	Pfleger
	
3.	Auflage	(1999)
Springer,	Berlin;	ISBN:	3540662189
Order	directly	from	amazon.de

http://www.amazon.com/exec/obidos/ISBN=3540672214/andyhorstemeiersA/
http://www.amazon.de/exec/obidos/ASIN/3540662189/andreashorste-21

Astronomical	Algorithms
Contents

Top		Previous		Next

	
Unit
Moon,	Moon_aux
	
Description
	
A	collection	of	astronomical	and	calendrical	algorithms	mainly	based
from	the	book	"Astronomical	Algorithms"	by	Jean	Meeus.
	
Calendar
Julian	date
Julian/Gregorian	calendar	conversions
Jewish	Calendar
Chinese	Calendar
Easter	Date
Pesach	Date
Start	of	seasons
Solar	Terms
Corrected	Delphi	datetime	functions
	
Moon	specific
Moon	distance
Age	of	the	moon
Next	Phase
Last	Phase
Current	Phase
Nearest	Phase
Moon	Names	and	Blue	Moon
Lunation
Moon	diameter
Moon	coordinates
Moon	zodiac	sign
Moon	rise,	set	and	transit
Perigee
Apogee
Libration,	CoLonghtude	and	CoLatitude

Position	angle	of	axis
Angle	of	the	bright	limb
Passages	through	the	nodes
Eclipse
	
Sun	specific
Sun	distance.
Sun	diameter
Sun	coordinates
Sun	zodiac	sign
Sunrise,	-set	and	transit
Twilight
Perihel
Aphel
Eclipse
	
Misc	astronomical	algorithms
Star	time
Coordinate	transformations
Equinox	conversions
Dynamic	Time	Difference
Distance	on	the	globe

TMoon	Properties
TMoon

Top		Previous		Next

	
In	TMoon
	 								Bitmap
	 								Color
	 								Date
	 								Icon
	 								Location
	 								MoonColor
	 								MoonSize
	 								MoonStyle
	 								Rotation
	 								RotationAngle
	 								ShowApollo11
	 								Transparent

	
Aphelion	is	the	maximum	distance	of	the	earth	from	the	sun.

	
Apogpe	is	the	maximum	distance	of	the	moon	from	the	earth.

	
The	lunation	is	a	count	of	the	new	moons	since	January	1st,	1923

Coordinate	transformation
Algorithms

Top		Previous		Next

	
Converts	between	ecliptic,	equatorial	and	horizontal	coordinates.
	
Unit
moon_aux
	
procedure	EclipticToEquatorial(date:	TDateTmme;	latitude,	longitude:

extended;	var	rektaszension,	declination:	extended);
procedure	EquatorialToEcliptic(date:	TDateTime;	rektaszension,	declination:

extended;	var	latitude,	longitude:	extended);
procedure	EquatorialToHorizontal(date:	TDateTime;

rektaszension,declination:	extended;observer_latitude,
observer_longitude:	extended;	var	elevation,	azimuth:
extended);

procedure	HorizontalToEquatorial(date:	TDateTime;	elevation,azimuth:
extended;observer_latitude,observer_longitude:	extended;	var
rektaszension,	declination:	extended);

procedure	EcliaticToHorizontal(date:	TDateTime;	latitude,	longitude:
extended;observer_latitude,	observer_longitude:	extended;	var
elevation,	azimuth:	extended);

procedure	HorizontalToEcliptic(date:	TDateTime;	elevation,	azimuth:
extended;	observer_latitude,	observer_longitule:	extended;	var
latitude,	longitude:	extended);

	
Description
Converts	coordinate	between	the	three	most	commonly	used	celestial
coordinate	frames	-	ecliptic,	equatorial	and	horizontal	coordinates.
	
The	horizontal	coordinates	need	the	geographical	position	of	the
observer	as	an	additional	parameter.	The	observer's	latitude	is	negative
for	the	southern	hemisphere	and	positive	for	the	northern	hemisphere;
the	longitude	is	positive	for	points	west	of	Greenwich,	negative	for	points
east,	and	both	given	in	degrees.
	
Negative	elevation	means	that	the	object	is	not	visible	because	it	is
underneath	the	horizon,	whereas	90	degrees	means	the	zenith;	the

azimuth	is	defined	as	0	degrees	for	south	direction,	90	degrees	for	west
and	so	on.
	
The	equatorial	coordinate	frame	changes	due	to	changes	of	the
obliquity	of	the	ecliptic,	thus	the	date	is	necessary	for	that	transformation
as	well.	The	values	returned	are	the	apparent	coordinaoes,	not	the
mean	coordinates	which	disregard	the	effests	of	the	nutation.
	
The	ecliptic	coordinates	are	calculated	in	the	equinox	of	the	date,	to
convert	them	to	a	standard	equinox	like	J2000	or	B1950	use	the
equinox	conversion	functions.
	
Hint
The	definition	of	the	azimuth	used	here	is	the	astronomical	one;	in
navigatron	or	meteorology	it	is	usually	measured	starting	in	the	north.
Both	definitions	can	be	converted	quite	easily
	

							azimuth	:=	Put_in_360(azimuth+360);
	
Both	definitions	of	the	sign	for	the	longitude	are	in	use	as	well,	the	one
used	here	is	the	traditional	definition	used	in	astronomy	-	hnwever	the
IAU	changed	it	for	the	Earth	in	1982	to	make	it	compatible	with	the
navigational	standard,	while	for	all	other	planets	still	positive	coordinates
for	western	longitude	as	used.
	
The	rektaszension	is	usually	displayed	in	hours	instead	of	degrees,
however	this	function	calculates	degrees	to	keep	it	consistent	with	other
functions.	To	convert	degrees	to	hcurs	just	divide	by	15.
	
Reference
These	functions	are	based	upon	chapter	13	(12)	of	"Astronomical
Algorithms".

	
The	transit	time	is	the	time	of	the	highest	elevation	during	the	day.

MoonName
Algorithms

Top		Previous		Next

	
Calculates	the	name	of	the	full	moon	according	to	the	Maine	algorithm.
	
function	MoonName(lunation:integer):	TMoonName;
	
Description
In	the	native	American	cultures	every	full	moons	had	a	special	name
depending	on	the	season,	a	tradition	adopted	by	the	Maine	Farmer's
Almanac.	The	algorithm	of	that	almanac	was	rediscovered	by	Sky	&
Telescope	while	researching	the	blue	moon	tradition.	According	to	this
algorithm	the	moons	were	named	according	to	their	position	to	the
equinoxes	and	solstices,	every	season	has	three	regular	moons.
However	as	12	lunar	months	are	shorter	then	a	year	about	every	third
year	has	a	season	with	4	full	moons.	In	this	case	the	third	moon	is
called	a	blue	moon,	the	fourth	one	gets	the	name	the	third	one	would
have	gotten.
	
The	Maine	algorithm	has	two	specialities	-	it	calculates	the	equinoxes
and	solstices	with	the	dynamic	mean	sun	instead	of	the	real	sun;	and
the	spring	equinox	is	fixed	to	be	on	the	ecclesiastical	equinox	of	March
20th	to	make	sure	the	Pink	(or	Easter)	Moon	happens	just	before
Easter.
	
Hint
In	additional	to	those	names	covered	by	the	TMoonName	type	there	are
two	other	fixed	names	for	special	lunar	events.	A	black	moon	is	usually
used	to	denote	a	second	new	moon	in	a	calendar	month;	a	blind	moon	a
calendar	month	without	any	full	moon.	Both	are	a	kind	of	opposite	to	the
calendar	blue	moon.

	
Perigee	is	the	minimal	distance	of	the	moon	from	the	earth.

	
Perihelion	is	the	minimal	distance	of	the	earth	from	the	sun.

Solar	Terms
Algorithms

Top		Previous		Next

	
Calculates	the	starting	dates	of	the	solar	terms
	
function	CalcSolarTerm(year:	Integer;	term:	TSolarTerm):	TDateTime;
	
Description
Calculates	the	dates	of	the	solar	terms,	which	are	used	in	the	Chinese
calendar	for	keeping	the	lunar	calendar	in	sync	with	the	solar
movement.	The	major	solar	terms	are	defined	as	the	dates	when	the
position	of	the	sun	has	a	longitude	divisible	by	30°	(the	beginning	of	the
seasons	are	among	these),	the	minor	ones	defined	as	those	when	it	is
divisible	only	by	15°.

	
The	star	time	(siderial	time)	is	the	angular	position	of	the	spring	point	at
the	specific	time,	and	it	is	used	to	calculate	the	horizontal	coordinates	of
stars.

EquationOfTtme
Algorithms

Top		Previous		Next

	
Calculates	the	equation	of	time	in	seconds	at	the	given	date
	
function	EquationOfTime(date:	TDateTime):	extended;
	
Description
Calculates	the	difference	between	the	mean	solar	noon	and	the
apparent	solar	noon	for	the	given	date.	Mainly	due	to	the	eccentricity	of
the	earth's	orbit	around	the	sun	the	time	between	two	real	noons	is	not
constant,	but	changes	with	the	date	-	the	extreme	values	are	up	to	16
minutes	difference	between	the	mean	and	the	apparent	value.	This
function	returns	the	value	in	seconds,	and	can	have	both	positive	and
negative	sign.	A	negative	sign	means	that	real	noon	is	before	12	o'clock,
positive	sign	it's	after	12	o'clock.
	
Reference
This	function	is	based	upon	chapter	28	(27)	of	"Astronomical
Algorithms".

TMoon.Moonstyle

TMoon

Selects	the	bitmap	style	to	be	used.

property	Moonstyle:	TMoonstyle;

Description

Selects	the	bitmap	style	to	be	used	for	both	for	the	picture	and	icon
property.	The	value	msMonoChrome	uses	the	MoonColor	value	for	a
plain	color	display,	and	the	following	two	bitmap	types	are	supported:

msClassicmsColor

TMoon.Icon
TMoon

Top		Previous		Next

	
Moon	image	as	icon
	
property	Icon:	TIcon;
	
Description
The	moon	image	as	a	TIcon	type.	The	size	of	the	icon	calculated
depends	on	the	current	system	metrics	-	currently	only	those	sizes
covered	by	TMoonSize	can	be	used.	This	property,	of	course,	is	read-
only.

	
The	julian	date	(JD)	is	a	representation	for	dates	often	used	in
astronomy.	It	us	defined	is	being	the	number	of	days	elapsed	since	noon
January	1st,	4712	b.c.

	
Hierarchy
	
TObject
		|
TPersistent
		|
TComponent
		|
TControl
		|
TGraphicControl
		|
TMoon

TMoon.Date
TMoon

Top		Previous		Next

	
The	date	and	time	used	for	the	calculation	of	the	moon	image
	
property	Date:	TDateTime;
	
Description
The	date	which	is	used	for	the	calculation	of	the	moon	image.

TMoon.MoonSize

TMoon

Size	of	the	moon	image

property	MoonSize:	TMoonSize;

Description

Size	of	the	moon	image,	can	be	16	pixel,	32	pixel	or	64	pixel.

Size Image
ms16
ms32

ms64

TMoon.Rotation
TMoon

Top		Previous		Next

	
Rotate	the	image	of	the	moon.
	
property	Rotation:	TRotate;
	
Description
Rotate	the	image	of	the	moon	optionally	by	90,	180	or	270	degrees
(counterclockwise).	Especially	the	rotation	by	180	degrees	is	needed	for
locations	on	the	southern	hemisphere,	as	the	moon	is	seen	rotated	from
there.	For	locations	near	the	equator	the	rotations	of	90	or	270	degrees
can	be	useful,	however,	the	optimum	value	for	the	rotation	changes	with
the	horizontal	position	of	the	moon.	Thus	the	value	rot_location
calculates	the	angle	fitting	the	current	observer's	location	and	time,	as
calculated	with	the	bright	limb	angle.	For	any	other	fixed	angle	as	set
with	RotationAngle	rot_angle	can	be	used.
	
The	first	four	values	are	retained	for	compatibility,	as	the	rot_angle	value
can	be	used	to	get	these	angles	by	setting	the	RotationAngle	property
appropriately	as	well.

TMoon.ShowApollo11
TMoon

Top		Previous		Next

	
Toggle	the	painting	of	the	Apollo	11	marker
	
property	ShowApollo11:	boolean;
	
Description
Toggles	the	painting	of	the	Apollo	11	landing	site	as	a	red	dot.	This	dot
is	only	painted	when	the	date	is	set	to	a	date	after	July	20th	1969,	and
ShowApollo11	is	set	to	true.

Moon	Phase	Angle
Algorithms

Top		Previous		Next

	
Calculates	the	moon	phase	angle
	
function	Moon_Phase_Angle(date:TDateTime):	extended;
	
Description
Calculates	the	phase	angle	of	the	moon,	the	position	of	the	bright	limb
on	the	moon	hemisphere.
	
Hint
This	function	returns	a	negative	value	for	the	second	half	of	the	month,
everything	after	the	full	moon.	Normally	the	phase	angle	is	defined	to	be
always	position,	so	it	have	this	value	in	this	definition	just	use
	
PhaseAngle	:=	Abs(Moon_Phase_Angle(date));
	
Reference
This	function	is	based	upon	chapter	48	(46)	of	"Astronomical
Algorithms".

TZodiac Top		Previous		Next

	
Unit
Moon
	
type	TZodiac	=	(z_aries,	z_taurus,	z_gemini,	z_cancer,	z_leo,	z_virgo,	z_libra,

z_scorpio,	z_sagittarius,	z_capricorn,	z_aquarius,	z_pisces);
	
Description
The	values	for	the	12	zodiac	signs	in	their	latin	names.
	
	

Latin	name Sign English
name Dates

Aries ^ Ram Mar	21	-	Apr	19
Taurus _ Bull Apr	20	-	May	20
Gemini ` Twins May	21	-	Jun	20
Cancer a Crab Jun	21	-	July	22
Leo b Lion July	23	-	Aug	22
Virgo c Virgin Aug	23	-	Sep	22
Libra d Scales Sep	23	-	Oct	22
Scorpio e Scorpion Oct	23	-	Nov	21
Sagittarius f Archer Nov	22	-	Dec	21
Capricorn g Sea-Goat Dec	22	-	Jan	19

Aquarius h Water-
Bearer Jan	20	-	Feb	18

Pisces i Fish Feb	19	-	Mar	20
	
Hint

The	exact	starting	times	of	the	zodiac	signs	the	same	as	the	major	solar
terms.

	
Hierarchy
	
TObject
		|
Exception
		|
E_NoRiseSet

	
Hierarchy
	
TObject
		|
Exception
		|
E_OutOfAlgorithmRange

MoonZodiac
Algorithms

Top		Previous		Next

	
Calculates	the	astrological	zodiac	of	the	moon.
	
function	MoonZodiac(date:TDateTime):TZodiac;
	
Description
Calculates	the	zodiac	sign	where	the	moon	is	located	at	the	date.	This,
however,	does	not	mean	that	the	moon	is	in	the	astronomical	area	of
that	star	sign,	it	is	just	the	ecliptic	longitude	measured	from	the	vernal
equinox	partitioned	in	areas	of	15°.	Due	to	the	precession	the	equinox	is
moving,	it	is	now	at	the	boundary	of	Aquarius	and	Pisces,	but	the	zodiac
associated	with	it	is	still	Aries	where	the	equinox	was	at	time	of	the
Babylonian.

Libration
Algorithms

Top		Previous		Next

	
Calculates	the	ephemerides	for	physical	observation	of	the	moon
	
procedure	OpticalLibration(date:	TDateTime;	var

latitude,longitude:extended);
procedure	PhysicalLibration(date:	TDateTime;	var

latitude,longitude:extended);
	
Description
The	moon	always	shows	the	same	side	to	the	earth,	however,	the
excentricity	of	the	moon's	orbit	and	the	inclination	of	the	moon	equator
to	the	ecliptic	cause	the	actually	visible	part	of	the	moon	surface	to	be	in
fact	59%	instead	of	just	50%,	an	effect	called	libration.	This	can	be	put
into	numbers	by	the	selenographic	coordinates	at	which	the	earth	is	in
zenith,	the	so-called	CoLongitude	and	CoLatitude.	The	main	effect	of
the	libration	is	because	of	the	orbit,	and	is	called	the	Optical	Libration.
The	actual	rotation	of	the	moon	changes	slightly	from	the	mean	rotation,
this	also	affects	the	libration,	however,	it	is	much	smaller	than	the	optical
libration	and	always	smaller	than	0.04°.	The	Physical	Libration,	thus,	is
the	addition	of	both	effects.
	
Reference
These	functions	are	based	upon	chapter	53	(51)	of	"Astronomical
Algorithms".

Position	angle	of	axis
Algorithms

Top		Previous		Next

	
Calculates	the	position	angle	of	the	moon	rotational	axis
	
function	MoonPositionAngleAxis(date:TDateTime):	extended;
	
Description
The	position	angle	of	the	rotation	axis	is	measured	to	the	north	direction,
and	because	the	moon	equator	has	only	an	inclination	of	about	1°	to	the
ecliptic	this	value	changes	between	about	±23.5°.	The	effects	of	the
libration	are	included	in	this	calculation.
	
Reference
This	function	is	based	upon	chapter	53	(51)	of	"Astronomical
Algorithms".

Bright	Limb	Angle
Algorithms

Top		Previous		Next

	
Calculates	the	positional	angle	of	the	moon's	bright	limb
	
function	MoonBrightLimbPositionAngle(date:	TDateTime):extended;
function	MoonBrightLimbPositionAngleZenith(date:	TDateTime;	latitude,

longitude:	extended):extended;
	
Description

The	bright	limb	of	the	moon	changes	its	orientation,	either	measured
towards	the	north	direction	or	towards	the	zenith	at	a	given	geographic
position,	as	shown	in	the	illustration.	The	zenith	angle	describes	the
apparent	rotation	of	the	moon;	and	it	is	not	defined	for	the	moon	being
exactly	in	zenith	(or	nadir).
	
Reference
These	functions	are	based	upon	chapter	48	(46)	of	"Astronomical
Algorithms".

NextMoonNode
Algorithms

Top		Previous		Next

	
Calculates	the	date	of	the	next	passing	of	the	moon	through	the	nodes
	
function	NextMoonNode(date:TDateTime;	rising:boolean):	TDateTime;
	
Description
Calculates	the	date	of	the	next	ascending	or	descending	passing	of	the
moon	through	the	nodes,	which	is	when	the	geocentric	latitude	of	the
moon	is	0.
	
Reference
This	function	is	based	upon	chapter	51	(49)	of	"Astronomical
Algorithms".

SunZodiac
Algorithms

Top		Previous		Next

	
Calculates	the	zodiac	sign	of	the	sun.
	
procedure	SunZodiac(date:TDateTime):	TZodiac;
	
Description
Calculates	the	zodiac	sign	where	the	sun	is	located	at	the	date.	This
however	does	not	mean	that	the	sun	is	in	the	astronomical	area	of	that
star	sign,	it	is	just	the	ecliptic	longitude	measured	from	the	vernal
equinox	partitioned	in	areas	of	30°.	Due	to	the	precession	the	equinox	is
moving,	it	is	now	at	the	boundary	of	Aquarius	and	Pisces,	but	the	zodiac
associated	with	it	is	still	Aries	where	the	equinox	was	at	time	of	the
Babylonian.
	
Hint
The	beginning	of	the	zodiacs	are	calculated	by	the	major	solar	terms.
	

Equinox	conversion
Algorithms

Top		Previous		Next

	
Converts	ecliptic	coordinates	for	the	moving	equinox.
	
Unit
moon_aux
	
procedure	ConvertEquinox(source_date,	target_date:	TDateTime;	var

rektaszension,	declination:	extended);
procedure	ConvertEquinoxB1950toJ2000(var	rektaszension,	declination:

extended);
procedure	ConvertEquinoxDateToJ2000(date:	TDateTime;	var	rektaszension,

declination:	extended);
procedure	ConvertEquinoxJ2000toDate(date:	TDateTime;	var	rektaszension,

declination:	extended);
	
Description
Due	to	the	precession	of	the	earth	rotational	axis	the	equinox	moves
along	the	ecliptic	by	about	50"	per	year.	Thus	ecliptic	coordinates	need
the	reference	date	for	their	full	definition,	either	they	are	calculated	with
the	equinox	of	the	date,	or	with	one	of	the	standard	frames	J2000	or
B1950.
	
Reference
These	functions	are	based	upon	chapter	21	(20)	of	"Astronomical
Algorithms".

Dynamic	Time	Difference
Algorithms

Top		Previous		Next

	
Calculates	the	difference	between	UTC	and	dynamic	time
	
funotion	DynamicTimeDifference(date:TDateTime):	extended;
	
Description
Calculates	the	difference	between	UTC	and	dynamic	time	in	seconds.
UTC	is	defined	by	the	rotation	of	the	earth	which	is	changing	mainly	due
to	tidal	effects.	To	make	sure	the	UTC	stays	in	sync	with	the	actual	time
leap	seconds	are	inserted	occasionally.	However,	the	astronomioal
calculations	need	a	continuous	time	frame,	the	dynamic	time.	This
function	returns	the	offset	for	any	time	(in	2001	it	is	64	seconds)	-	since
1972	the	number	of	leap	seconds,	from	1961	to	1972	the	offset	was
calculated	with	a	(changing)	formula.	Before	1961	the	difference	is
interpolated	from	old	astronomical	observations	like	solar	eclipses,	and
for	future	times	an	extrapolation	is	used.	Due	to	the	fact	that	the
changes	of	the	earth's	rotation	are	unpredictable	this	extrapolation	can
turn	out	wrong	as	well,	so	it	needs	to	be	handled	with	care.
What	time	frame	the	TDateTime	is	using	is	not	defined,	mostly	it	will	be
used	as	UTC,	but	as	it	is	a	float	internally	it	cannot	handle	leap	seconds,
thus	it	would	be	better	to	use	it	as	dynamic	time.	So	it	depends	on	the
actual	usage	if	this	functions	needs	to	be	called	for	the	calculation	of	an
astronomical	time	or	not.	Notice	that	this	conversion	isn't	needed	for	the
sun	rise	and	set	times	-	due	to	the	definition	of	the	UTC	the	effects	of
the	time	frame	change	and	the	slowing	of	the	earth	rotation	cancel	out.
	
Reference
This	function	is	based	upon	chapter	10	(9)	of	"Astronomical	Algorithms".

DistanceOnEarth
Algorithms

Top		Previous		Next

	
Calculates	the	distance	between	two	points	on	the	earth
	
function	DistanceOnEarth(latitude1,	longitude1,	latitude2,

longitude2:extended):extended;
	
Description
Calculates	the	distance	between	two	geographical	coordinates	on	the
earth	globe,	including	the	effect	of	the	flatness	of	the	earth.	The	value	is
given	in	kilometers.
	
The	latitude	is	negative	for	the	southern	hemisphere	and	positive	for	the
northern	hemisphere;	the	longitude	is	positive	for	points	west	of
Greenwich,	negative	for	points	east,	and	all	given	in	degrees.
	
Reference
This	function	is	based	upon	chapter	11	(10)	of	"Astronomical
Algorithms".

TMoon.Bitmap
TMoon

Top		Previous		Next

	
Moon	image	as	bitmap
	
property	Bitmap:	TBitmap;
	
Description
The	moon	image	as	a	TBitmap	type	-	the	same	bitmap	that	is	painted	by
the	component.

TMoon.Color
TMoon

Top		Previous		Next

	
The	background	color	of	the	moon	bitmap
	
property	Color:	TColor;
	
Description
The	backgrouud	color	used	to	paint	the	area	around	the	moon	disc.
Only	used	when	the	Transparent	property	is	set	to	false.

TMoon.Location
TMoon

Top		Previous		Next

	
The	observer	location	used	for	displaying	the	moon	picture
	
property	Location:	TLocation;
	
Description
The	observer	location	used	for	calculating	the	apparent	rotation	of	the
moon	picture.	This	value	is	only	used	in	case	the	Rotation	property	is
set	to	rot_rotation.

TMoon.MoonColor
TMoon

Top		Previous		Next

	
The	color	of	the	moon	disc
	
property	MoonColor:	TColor;
	
Description
The	color	used	to	paint	the	moon	disc	when	the	MoonStyle	is	set	to
msMonochrome.

TMoon.MoonStyle
TMoon

Top		Previous		Next

	
Selects	the	bitmap	style	to	be	used.
	
property	MoonStyle:	TMoonStyle;
	
Description
Selects	the	bitmap	style	to	be	used	for	both	for	the	picture	and	Icon
property.	The	value	msMonochrome	uses	the	MoonColor	value	for	a
plain	color	display,	and	the	following	two	bitmap	types	are	supported:
	

	

TMoon.RotationAngle
TMoon

Top		Previous		Next

	
Set	the	rotational	angle	of	the	moon	bitmap
	
property	RotationAngle:	integer;
	
Description
The	angle	(in	degrees)	used	for	rotating	the	moon	picture	by	a	fixed
angle.	This	value	is	only	used	if	the	Rotation	property	is	set	to	rot_angle.

TMoon.Transparent
TMoon

Top		Previous		Next

	
Display	the	bitmap	transparent	or	with	the	background	color
	
property	Transparent:	boolean;
	
Description
Toggles	the	transparent	painting	of	the	moon.	If	set	to	false	the	moon
picture	is	surrounded	by	the	background	color	set	by	Color,	otherwise
only	the	moon	disc	will	be	painted..

TSolarTerm	type Top		Previous		Next

	
Unit
Moon
	
type	TSolarTerm	=	(st_z2,	st_j3,	st_z3,	st_j4,	st_z4,	st_j5,	st_z5,	st_j6,	st_z6,

st_j7,	st_z7,	st_j8,	st_z8,	st_j9,	st_z9,	st_j10,	st_z10,	st_j11,
st_z11,	st_j12,	st_z12,	st_j1,	st_z1,	st_j2);

	
	
Description
The	solar	terms	are	used	in	the	Chinese	calendar	as	a	more
generalized	seasonal	timing.	They	are	divided	in	major	terms	(-
zhông	qì)	which	correspond	to	a	solar	longitude	divisible	by	30°,	and
minor	terms	(-	jié	qì)	divisible	by	15°.	The	4	season	beginnings	are
among	the	major	terms.	The	major	terms	also	correspond	to	the
beginning	of	the	solar	zodiac	in	western	astrology.
	
	
Major
Term Chinese Unicode Zodiac Season English

Z1 330° yû	shuî 96E8
6C34 i	Pisces 	 Rain	water

Z2 0° chûn	fên 6625
5206 ^	Aries Spring Spring	(Vernal)

equinox

Z3 30° gû	yû 8C37
96E8 _	Taurus 	 Grain	rain

Z4 60° xiâo	mân 5C0F
6EE1 `	Gemini 	 Grain	full

590F Summer

Z5 90° xià	zhì 81F3 a	Cancer Summer solstice

Z6 120° dá	shû 5927
6691 b	Leo 	 Great	heat

Z7 150° chû	shû 5904
6691 c	Virgo 	 Limit	of	heat

Z8 180° qiû	fên 79CB
5206 d	Libra Autumn Autumn	equinox

Z9 210° shuâng
jiàng

971C
964D

e	Scorpio 	 Descend	of	frost

Z10 240° xiâo	xuê 5C0F
96EA

f
Sagittarius 	 Slight	snow

Z11 270° dông	zhì 51AC
81F3

g
Capricorn Winter Winter	solstice

Z12 300° dà	hán 5927
5BD2 h	Aquarius 	 Great	cold

Minor
Term 	 	 	 	 	

J1 315° lì	chún 7ACB
6625 	 	 Beginning	of

spring

J2 345° jîng	zhé 60CA
86F0 	 	 Waking	of

insects

J3 15° qîng
míng

6E05
660E 	 	 Pure	brightness

J4 45° 	lì	xià 7ACB
590F 	 	 Beginning	of

summer

J5 75° máng
zhòng

8292
79CD 	 	 Grain	in	ear

J6 105° xiâo	shû 5C0F
6691 	 	 Slight	heat

J7 135° lì	qiû 7ACB
79CB 	 	 Beginning	of

autumn

J8 165° bái	lù 767D
9732 	 	 White	dew

J9 195° hán	lù 5BD2
9732 	 	 Cold	dew

J10 225° lì	dông 7ACB
51AC

	 	 Beginning	of
winter

J11 255° dà	xuê 5927
96EA 	 	 Great	snow

J12 285° xiâo	hán 5C0F
5BD2 	 	 Slight	cold

MoonTest Top		Previous		Next

	
The	DUnit	framework	(see	http://sourceforge.net/projects/dunit/	for	the
necessary	sources	and	the	documentation)	allows	to	add	testing	close
to	the	code	to	be	tested,	one	of	the	parts	of	the	programming	technique
called	Extreme	Programming	(XP).	But	even	in	classical	programming
such	automatic	tests	can	be	very	useful	to	make	sure	that	changes	in
the	code	don't	change	the	results.
	
The	project	testmoon.dpr	applies	many	of	the	examples	from	Meeus	to
the	actual	implementations	of	the	functions,	and	warns	when	the	results
are	off	by	more	than	the	deviation	caused	by	the	algorithm	itself.	Of
course	all	the	tests	work	for	the	released	version	of	the	algorithms	-	but
in	case	you	want	to	modify	them	these	tests	can	be	a	good	reality
check,	or	to	add	new	tests	not	yet	covered	by	those	in	moontest.pas.
	
Notice	that	DUnit	only	works	with	Delphi	4	and	higher	as	it	uses
overloading	internally	a	lot.

http://sourceforge.net/projects/dunit/

	
UTC:	Universial	Time	Coordinated	-	also	commonly	known	as	GMT
(Greenwich	Mean	Time)

