
Creating	and	Using	Data	Warehouses



Creating	and	Using	Data	Warehouses	Overview
Organizations	collect	data	in	the	normal	course	of	business	operations.	The
purpose	of	a	data	warehouse	is	to	consolidate	and	organize	this	data	so	it	can	be
analyzed	and	used	to	support	business	decisions.	In	many	cases	a	data
warehouse	contains	the	living	history	of	the	organization.

Data	warehouses	usually	contain	historical	data,	often	collected	from	a	variety	of
disparate	sources	such	as	online	transaction	processing	(OLTP)	systems,	legacy
systems,	text	files,	or	spreadsheets.	A	data	warehouse	combines	this	data,
cleanses	it	for	accuracy	and	consistency,	and	organizes	it	for	ease	and	efficiency
of	querying.

Some	definitions	of	a	data	warehouse	include	several	elements	such	as	a	data
preparation	area,	the	cleansing	process,	the	database	that	holds	the	data
warehouse	data,	and	the	tools	that	organize	and	present	the	data	to	client
applications.	Other	definitions	restrict	the	data	warehouse	to	the	database	that
contains	the	data	warehouse	data.	In	large	data	warehousing	applications,	data	is
often	segmented	into	specialized	components,	called	data	marts,	that	address
individual	components	of	the	organization.	Some	definitions	consider	data	marts
to	be	part	of	the	data	warehouse;	other	definitions	consider	them	to	be	separate
entities.	The	intended	meaning	of	the	term	data	warehouse	is	usually	clear	from
the	context	in	which	it	is	used.	The	topics	in	this	section	generally	use	the
broadest	definition	and	address	individual	elements	as	components	within	the
context	of	the	data	warehouse.

Data	warehousing	is	an	advanced	and	complex	technology.	A	complete	treatment
of	data	warehousing	is	not	possible	in	this	document,	but	many	excellent	books
and	training	courses	are	available	to	enhance	your	understanding.	The	topics	in
this	section	discuss	the	elements	and	processes	of	data	warehousing	and	identify
the	many	powerful	tools	provided	by	Microsoft®	SQL	Server™	2000	to	help
you	in	the	task	of	creating,	using,	and	maintaining	a	data	warehouse.

Topic Description
SQL	Server	2000	Tools	for
Data	Warehouses

Describes	tools	provided	by	SQL	Server	2000
that	are	commonly	used	in	data	warehouse
applications.



Parts	of	a	Data	Warehouse Describes	the	elements	that	make	up	a	data
warehouse.

Creating	a	Data	Warehouse Describes	the	steps	in	creating	a	data
warehouse.

Using	a	Data	Warehouse Describes	the	tools	and	methods	used	to
prepare	data	for	presentation	and	to	provide
client	access	to	the	information.

Maintaining	a	Data
Warehouse

Describes	the	processes	involved	in	updating
data	in	the	data	warehouse	and	modifying	the
presentation	of	information	to	users.



Creating	and	Using	Data	Warehouses



SQL	Server	2000	Tools	for	Data	Warehouses
Microsoft®	SQL	Server™	2000	provides	many	tools	that	support	database
applications.	Some	of	these	tools	are	used	more	often	than	others	in	data
warehouse	applications,	and	some	are	specifically	designed	to	address	special
needs	of	data	warehouses.	The	tools	listed	here	are	commonly	used	in	data
warehouse	applications,	although	most	are	also	applicable	to	other	database
applications.	Many	other	tools	not	mentioned	here	can	often	be	used	to	solve
specific	problems	in	data	warehouse	applications.

General	descriptions	of	the	tools	commonly	used	in	data	warehouse	applications
are	provided	here	with	links	to	more	detailed	information	about	the	tools
themselves.	The	uses	of	these	tools	in	data	warehouse	applications	are
specifically	discussed	in	other	topics	in	this	section.

Relational	Database
Data	warehouses	use	relational	database	technology	as	the	foundation	for	their
design,	construction,	and	maintenance.	The	core	component	of	SQL	Server	2000
is	a	powerful	and	full-featured	relational	database	engine.	SQL	Server	2000
provides	many	tools	for	design	and	manipulation	of	relational	databases,
regardless	of	the	applications	for	which	the	databases	are	used.	Information
about	the	many	relational	database	management	tools	is	provided	throughout	the
SQL	Server	2000	documentation.	For	more	information,	see	SQL	Server	2000
Features.

Data	Transformation	Services
Data	warehouse	applications	require	the	transformation	of	data	from	many
sources	into	a	cohesive,	consistent	set	of	data	configured	appropriately	for	use	in
data	warehouse	operations.	SQL	Server	2000	provides	a	powerful	tool	for	such
tasks,	Data	Transformation	Services	(DTS).	DTS	can	access	data	from	a	wide
variety	of	sources	and	transform	it	using	built-in	and	custom	transformation
specifications.	For	more	information,	see	DTS	Overview.

Replication

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Database	replication	is	a	powerful	tool	with	many	uses.	Often	used	to	distribute
data	and	coordinate	updates	of	distributed	data	in	online	transaction	processing
systems	(OLTP),	replication	can	also	be	used	in	data	warehouses.	Some	potential
data	warehouse	applications	of	replication	are	the	distribution	of	data	from	a
central	data	warehouse	to	data	marts,	and	the	updating	of	data	warehouse	data
from	the	data	preparation	area.	For	more	information,	see	Replication	Overview.

Analysis	Services
Data	warehouses	collect	and	organize	enterprise	data	to	support	organizational
decision-making	through	analysis.	SQL	Server	2000	Analysis	Services	provides
online	analytical	processing	(OLAP)	technology	to	organize	massive	amounts	of
data	warehouse	data	for	rapid	analysis	by	client	tools,	and	sophisticated	data
mining	technology	to	analyze	and	discover	information	within	the	data
warehouse	data.	For	more	information,	see	Analysis	Services	Overview.

English	Query
English	Query	provides	access	to	data	warehouse	data	using	English	language
queries	such	as	"Show	me	the	sales	for	stores	in	California	for	1996	through
1998."	English	Query	is	a	development	tool	for	creating	client	applications	that
transform	English	language	into	the	syntax	of	SQL	to	query	relational	databases
or	the	syntax	of	Multidimensional	Expressions	(MDX)	to	query	OLAP	cubes.
You	can	develop	English	Query	models	specific	to	your	data	warehouse	to
reduce	sophisticated	and	complex	SQL	or	MDX	queries	to	simple	English
questions.	For	more	information,	see	English	Query	Overview.

Meta	Data	Services
Many	of	the	various	tools	in	SQL	Server	2000	store	meta	data	in	a	centralized
repository	in	the	msdb	system	database.	SQL	Server	2000	Meta	Data	Services
provides	a	browser	for	viewing	this	meta	data	and	application	interfaces	for	use
in	developing	custom	meta	data	applications.	For	more	information,	see	Meta
Data	Services	Overview.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


Creating	and	Using	Data	Warehouses



Parts	of	a	Data	Warehouse
There	are	several	physical	and	functional	elements	that	make	up	a	data
warehouse.	The	topics	in	this	section	discuss	these	elements.

Topic Description
Data	Marts Describes	data	marts,	which	contain	portions	of

data	warehouse	data	for	specialized	purposes.
Relational	Databases Describes	the	roles	and	uses	of	relational

databases	in	data	warehouses.
Data	Sources Describes	various	sources	of	organizational	data

typically	used	in	data	warehouses.
Data	Preparation	Area Describes	the	area	where	data	extracted	from	data

sources	is	prepared	for	use	in	a	data	warehouse.
Presentation	Services Describes	the	services	that	organize	and	analyze

data	warehouse	information	and	make	it	available
to	client	applications.

End-User	Analysis Describes	the	use	of	client	applications	to	access
and	analyze	information	in	a	data	warehouse.



Creating	and	Using	Data	Warehouses



Data	Marts
In	some	data	warehouse	implementations,	a	data	mart	is	a	miniature	data
warehouse;	in	others,	it	is	just	one	segment	of	the	data	warehouse.	Data	marts
are	often	used	to	provide	information	to	functional	segments	of	the	organization.
Typical	examples	are	data	marts	for	the	sales	department,	the	inventory	and
shipping	department,	the	finance	department,	upper	level	management,	and	so
on.	Data	marts	can	also	be	used	to	segment	data	warehouse	data	to	reflect	a
geographically	compartmentalized	business	in	which	each	region	is	relatively
autonomous.	For	example,	a	large	service	organization	may	treat	regional
operating	centers	as	individual	business	units,	each	with	its	own	data	mart	that
contributes	to	the	master	data	warehouse.

Data	marts	are	sometimes	designed	as	complete	individual	data	warehouses	and
contribute	to	the	overall	organization	as	a	member	of	a	distributed	data
warehouse.	In	other	designs,	data	marts	receive	data	from	a	master	data
warehouse	through	periodic	updates,	in	which	case	the	data	mart	functionality	is
often	limited	to	presentation	services	for	clients.

Regardless	of	the	functionality	provided	by	data	marts,	they	must	be	designed	as
components	of	the	master	data	warehouse	so	that	data	organization,	format,	and
schemas	are	consistent	throughout	the	data	warehouse.	Inconsistent	table
designs,	update	mechanisms,	or	dimension	hierarchies	can	prevent	data	from
being	reused	throughout	the	data	warehouse,	and	they	can	result	in	inconsistent
reports	from	the	same	data.	For	example,	it	is	unlikely	that	summary	reports
produced	from	a	finance	department	data	mart	that	organizes	the	sales	force	by
management	reporting	structure	will	agree	with	summary	reports	produced	from
a	sales	department	data	mart	that	organizes	the	same	sales	force	by	geographical
region.	It	is	not	necessary	to	impose	one	view	of	data	on	all	data	marts	to
achieve	consistency;	it	is	usually	possible	to	design	consistent	schemas	and	data
formats	that	permit	rich	varieties	of	data	views	without	sacrificing
interoperability.	For	example,	the	use	of	a	standard	format	and	organization	for
time,	customer,	and	product	data	does	not	preclude	data	marts	from	presenting
information	in	the	diverse	perspectives	of	inventory,	sales,	or	financial	analysis.

Data	marts	should	be	designed	from	the	perspective	that	they	are	components	of
the	data	warehouse	regardless	of	their	individual	functionality	or	construction.



This	provides	consistency	and	usability	of	information	throughout	the
organization.

Microsoft®	SQL	Server™	2000	tools	used	for	a	data	mart	may	include	any	of
the	tools	used	for	data	warehouses	depending	on	how	the	data	mart	is	designed.
If	the	data	mart	is	created	and	maintained	locally	and	participates	in	the
organization's	data	warehouse	as	an	independent	contributor,	its	creation	and
maintenance	will	involve	all	the	operations	of	a	data	warehouse.	If	the	data	mart
is	a	local	access	point	for	data	distributed	from	a	central	data	warehouse,	only	a
subset	of	the	tools	may	be	involved.

Distributing	Data	Warehouse	Data	to	Data	Marts
If	data	warehouse	data	is	maintained	in	a	central	data	warehouse,	the	data	is
prepared	and	loaded	into	the	data	warehouse	at	the	central	site	and	then
distributed	to	local	data	marts.

SQL	Server	Agent	and	Data	Transformation	Services	(DTS)	can	be	used	to
schedule	and	perform	data	transfers,	including	filtering	data	appropriate	to	the
data	mart	and	updating	the	appropriate	tables	in	the	data	mart.	DTS	packages	can
also	be	created	and	scheduled	to	update	OLAP	cubes	in	the	data	mart	after	new
data	is	received	from	the	central	data	warehouse.

Some	data	warehouse	distribution	scenarios	may	also	use	replication	to
coordinate	and	maintain	data	mart	data.

See	Also

DTS	Overview

SQLServerAgent	Service

Replication	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Creating	and	Using	Data	Warehouses



Relational	Databases
Relational	databases	are	the	underlying	engines	that	provide	power	to	data
warehouses.	Many	of	the	characteristics	and	features	that	have	been	developed
and	enhanced	to	make	relational	databases	the	workhorses	of	online
transactional	processing	(OLTP)	systems	are	directly	applicable	to	data
warehouses.

Relational	databases	are	used	in	data	warehouse	systems	to	stage,	cleanse,	and
transform	incoming	data	in	the	data	preparation	database,	contain	and	manage
the	massive	quantities	of	data	in	the	data	warehouse	database,	and	support	data
marts.

Data	warehouses	store,	manage,	and	manipulate	huge	quantities	of	data,	often	on
the	order	of	hundreds	of	millions	of	rows	of	historical	information.	The
relational	database	must	provide	rapid	data	transfer	and	update,	flexible	and
efficient	indexing,	and	sophisticated	and	effective	query	capabilities	to	organize
and	retrieve	data	warehouse	data.	Sophisticated	locking	mechanisms	and	high
multi-table	transaction	throughput	may	be	more	important	in	OLTP	systems	than
in	data	warehouses,	but	such	features	are	often	based	on	extremely	efficient
relational	engine	design,	which	is	very	important	in	data	warehouse	operations.

Microsoft®	SQL	Server™	2000	provides	an	extremely	powerful	relational
database	for	OLTP	systems	and	data	warehouse	data	storage.	It	also	includes
many	powerful	features	critical	to	data	warehouses,	such	as	Data	Transformation
Services	(DTS),	replication	management,	SQL	Server	2000	Analysis	Services
with	its	multidimensional	online	analytical	processing	(OLAP)	and	data	mining
server	and	management	support,	SQL	Server	2000	Meta	Data	Services,	and
English	Query	for	natural	language	querying	of	both	relational	and
multidimensional	data.

See	Also

Creating	and	Maintaining	Databases	Overview

Optimizing	Database	Performance	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Creating	and	Using	Data	Warehouses



Data	Sources
Data	warehouses	are	intended	to	provide	information	to	decision	makers.	To	do
so,	data	warehouses	must	gather	and	consolidate	data	from	many	sources	in	the
organization	into	a	consistent	set	of	data	that	accurately	reflects	the
organization's	business	operation	and	history.

Organizations	often	have	multiple	online	transaction	processing	(OLTP)	systems
to	capture	daily	business	operations.	These	OLTP	systems	are	seldom	designed
at	the	same	time	as	data	warehouses.	They	may	even	be	designed	by	different
organizations,	which	is	often	the	case	when	organizations	grow	through
acquisitions	and	mergers.	Database	schemas	and	data	element	identification	keys
often	vary	from	database	to	database.	For	example,	the	customer	table	in	the
OLTP	of	an	acquired	company	may	contain	many	of	the	same	customers	and
products	as	the	acquiring	company	but	use	a	different	identification	system.	Data
extracted	from	these	OLTP	systems	must	be	transformed	into	a	common
representation.

Legacy	systems	that	have	been	in	use	for	many	years	often	contain	denormalized
data	as	well	as	unusual	data	identification	designs	and	limited	query	flexibility.

Data	critical	for	business	analysis	may	even	reside	on	individual	desktop
computers	in	personal	databases	and	spreadsheets,	especially	in	organizations
that	developed	and	grew	without	a	central	information	technology	group.	Such
data	must	also	be	captured	into	the	data	warehouse.

Sources	of	data	to	be	used	in	the	data	warehouse	must	be	identified	and
techniques	developed	for	extracting	the	data	from	them.	Data	Transformation
Services	(DTS)	provides	powerful	tools	for	extracting	and	transforming	data
from	diverse	data	sources.	For	more	information,	see	DTS	Overview	and	DTS
Basics.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Creating	and	Using	Data	Warehouses



Data	Preparation	Area
Data	to	be	used	in	the	data	warehouse	must	be	extracted	from	the	data	sources,
cleansed	and	formatted	for	consistency,	and	transformed	into	the	data	warehouse
schema.	The	data	preparation	area,	sometimes	called	the	data	staging	area,	is	a
relational	database	into	which	data	is	extracted	from	the	data	sources,
transformed	into	common	formats,	checked	for	consistency	and	referential
integrity,	and	made	ready	for	loading	into	the	data	warehouse	database.	The	data
preparation	area	and	the	data	warehouse	database	can	be	combined	in	some	data
warehouse	implementations	as	long	as	the	cleansing	and	transformation
operations	do	not	interfere	with	the	performance	or	operation	of	serving	the	end
users	of	the	data	warehouse	data.	Performing	the	preparation	operations	in
source	databases	is	rarely	an	option	because	of	the	diversity	of	data	sources	and
the	processing	load	that	data	preparation	can	impose	on	online	transaction
processing	systems.	The	relational	database	used	for	data	preparation,	regardless
of	where	it	is	performed,	must	have	powerful	data	manipulation	and
transformation	capabilities	such	as	those	provided	by	Microsoft®	SQL	Server™
2000.

After	the	initial	load	of	a	data	warehouse,	the	data	preparation	area	is	used	in	an
ongoing	basis	to	prepare	new	data	for	updating	the	data	warehouse.	In	most	data
warehouse	systems,	these	ongoing	operations	are	performed	on	a	periodic	basis,
often	scheduled	to	minimize	performance	impact	on	the	operational	data	source
systems.

The	use	of	a	data	preparation	area	that	is	separated	from	the	data	sources	and	the
data	warehouse	promotes	effective	data	warehouse	management.	Attempting	to
transform	data	in	the	data	source	systems	can	interfere	with	online	transaction
processing	(OLTP)	performance,	and	many	legacy	systems	do	not	have	effective
or	easily	implemented	transformation	capabilities.	Reconciliation	of
inconsistencies	in	data	extracted	from	various	sources	can	rarely	be
accomplished	until	the	data	is	collected	in	a	common	database,	at	which	time
data	integrity	errors	can	more	easily	be	identified	and	rectified.

The	data	preparation	area	should	isolate	raw	data	from	the	data	warehouse	data
to	preserve	the	integrity	of	the	data	warehouse	and	permit	it	to	perform	its
primary	function	of	preparing	information	for	presentation	and	supporting	access



by	clients.	If	the	data	warehouse	database	is	used	for	data	preparation,	care
should	be	taken	to	avoid	introducing	errors	into	the	data	warehouse	data	and	to
minimize	the	effect	of	data	preparation	processing	on	the	performance	of	the
data	warehouse.	Many	data	warehouse	database	operations	require	sophisticated
queries	and	the	processing	of	large	amounts	of	data;	data	cleansing	can	interfere
with	these	operations.

The	data	preparation	area	is	a	relational	database	that	serves	as	a	general	work
area	for	the	data	preparation	operations.	It	will	contain	tables	that	relate	source
data	keys	to	surrogate	keys	used	in	the	data	warehouse,	tables	of	transformation
data,	and	many	temporary	tables.	It	will	also	contain	the	processes	and
procedures,	such	as	Data	Transformation	Services	(DTS)	packages,	that	extract
data	from	source	data	systems.

See	Also

Creating	and	Maintaining	Databases	Overview

Accessing	and	Changing	Relational	Data	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Creating	and	Using	Data	Warehouses



Presentation	Services
The	purpose	of	a	data	warehouse	is	to	expose	business	information	for	use	by
decision	makers	in	the	organization.	A	data	warehouse	containing	hundreds	of
millions	of	pieces	of	data	is	of	no	use	to	a	decision	maker	without	tools	to	assist
in	the	analysis	and	evaluation	process.	These	analysis	tools	can	vary	from	simple
reports	to	sophisticated	data	mining	algorithms.	Application	programming
interfaces	(APIs)	must	also	be	available	to	support	the	development	of	custom
applications	that	use	data	warehouse	information.

Predefined	Reports
Simple	predefined	summary	reports	can	provide	managers	with	periodic	or	on-
demand	snapshots	of	the	state	of	the	business	at	a	point	in	time.	More
sophisticated	reports	can	display	trends	of	predetermined	business	variables.
Such	reports	are	useful	and	have	historically	been	produced	from	online
transaction	(OLTP)	systems.	To	capture	up-to-the-minute	status,	snapshot	detail
and	summary	reports	must	continue	to	be	produced	from	the	data	source
systems.	Periodic	reports	that	are	coordinated	with	data	warehouse	updates	can
be	shifted	to	the	data	warehouse	to	reduce	loads	on	operational	systems.	Reports
that	use	historical	data	to	evaluate	trends	should	be	accomplished	in	the	data
warehouse,	which	contains	readily	available	historical	data	in	appropriate
formats,	and	which	is	designed	to	process	large	quantities	of	data	for
summarization.

You	can	prepare	predefined	reports	in	your	Microsoft®	SQL	Server™	2000	data
warehouse	by	developing	client	applications	that	access	either	the	relational
database	or	multidimensional	data	cubes	prepared	by	SQL	Server	2000	Analysis
Services.	For	more	information,	see	Building	SQL	Server	Applications
Overview.

Online	Analytical	Processing
Predefined	reports	serve	their	specific	purposes	well	but	are	not	suited	to
explorative	analysis.	Analysts	want	to	discover	trends	and	anomalies	in	the	data
and	explore	various	areas	of	the	data	to	find	the	sources	of	these	trends	and
anomalies.	Online	analytical	processing	(OLAP)	is	a	tool	designed	to	facilitate

JavaScript:hhobj_1.Click()


this	kind	of	analysis	of	massive	amounts	of	data	warehouse	data.

This	example	illustrates	explorative	analysis	and	OLAP.	A	manager	notices	a
larger	than	normal	sales	amount	in	a	predefined	summary	report	and	wants	to
find	the	cause.	The	cause	may	be	external	to	the	business,	such	as	an	unusual
weather	condition	that	drove	the	sales	of	related	merchandise,	or	internal,	such
as	a	sales	promotion.	The	increased	sales	may	be	spread	across	a	geographic
region	or	isolated	to	a	single	store,	and	they	may	have	occurred	over	a	short	or
relatively	long	period	of	time.

To	explore	data	in	the	data	warehouse,	the	manager	asks	questions	of	the	data
and	then	asks	related	or	different	questions	based	on	the	answers.	The	manager
may	first	ask	for	the	sales	data	summarized	by	week	for	the	quarter	in	question,
then	drill	down	to	the	days	of	the	week	to	find	that	the	unusual	sales	amount	is	a
one-time	event.	Having	discovered	the	time	of	the	event,	the	manager	then
explores	the	sales	by	product	and	finds	that	a	large	sale	of	a	specific	product	was
made	on	that	day.	Based	on	these	answers,	the	manager	then	asks	for	the	sales	by
region	and	drills	down	to	find	that	a	particular	store	filled	a	large	order	of	a
specific	product	on	a	specific	day.

OLAP	technology	has	been	developed	to	facilitate	this	kind	of	explorative
analysis.	Analysis	Services	includes	an	Analysis	server	that	uses	OLAP
technology	to	prepare	large	quantities	of	data	warehouse	data	for	exploration	in
real	time.	Multidimensional	data	structures	called	cubes	are	predefined	and
created	to	organize	and	summarize	data	warehouse	data	in	such	a	way	that
typical	explorative	analysis	questions	can	be	answered	with	little	or	no	querying
of	the	relational	database.	In	a	typical	Analysis	Services	implementation	in	a
data	warehouse,	the	manager	in	the	example	could	find	the	answer	in	less	than	a
minute	because	the	Analysis	server	can	answer	each	of	the	example	questions	in
a	second	or	two,	even	if	there	were	millions	of	items	in	the	data	being	explored.
For	more	information,	see	Analysis	Services	Overview.

Data	Mining
In	contrast	to	OLAP,	which	organizes	data	into	predefined	multidimensional
structures	to	facilitate	exploration,	data	mining	performs	the	explorative	analysis
and	identifies	interesting	nuggets	of	information	such	as	groupings	of	data	for
the	analyst	or	manager	to	examine.	Data	mining	can	also	create	decision	trees
that	can	be	used	to	predict	future	data	based	on	attributes	of	existing	data

JavaScript:hhobj_2.Click()


elements.

Analysis	Services	incorporates	sophisticated	data	mining	algorithms	that	can	be
used	to	analyze	data	in	the	relational	database	or	in	OLAP	cubes.	The	results	of
the	data	mining	analysis	can	also	be	used	with	OLAP	cubes	to	enhance
explorative	analysis.	For	example,	you	can	let	data	mining	find	groupings	of
customers	according	to	their	attributes	and	then	use	these	groupings	to	create	an
additional	dimensional	view	of	OLAP	data	cubes	and	explore	the	data	from	the
perspective	of	these	groupings.	For	more	information,	see	Analysis	Services
Overview.

Application	Programming	Interfaces
SQL	Server	2000	provides	a	number	of	APIs	that	can	be	used	to	develop	client
applications	tailored	to	your	data	warehouse	needs.	Some	APIs	provide	access	to
database	and	tool	object	models	so	that	custom	administrative	applications	can
be	developed.	Other	APIs	provide	access	to	data	through	standard	interfaces
such	as	OLE	DB	for	use	by	custom	end-user	applications.	For	more	information,
see	Building	SQL	Server	Applications	Overview.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Creating	and	Using	Data	Warehouses



End-User	Analysis
Microsoft®	SQL	Server™	2000	and	its	components	provide	an	open
environment	for	access	to	data	warehouse	data.	This	offers	opportunities	for
independent	software	vendors	to	develop	sophisticated	data	analysis	and
presentation	applications	for	end	users.	Many	third-party	client	applications	that
work	with	SQL	Server	2000	and	its	components	are	available.

SQL	Server	2000	also	integrates	well	with	Microsoft	Office	2000	to	provide	end
users	with	easy	to	use	tools	for	analyzing	data	warehouse	data.	Using
components	of	Microsoft	Office	2000	you	can	query	SQL	Server	2000	databases
to	incorporate	data	warehouse	data	into	Microsoft	Excel	spreadsheets,	Microsoft
Access	databases,	or	other	documents.	Excel	2000	PivotTables®	can	connect
directly	to	SQL	Server	2000	Analysis	Services	cubes	to	explore	data,	and	users
can	create	local	cubes	to	take	with	them	when	offline	from	the	data	warehouse.



Creating	and	Using	Data	Warehouses



Creating	a	Data	Warehouse
Creating	a	data	warehouse	is	a	significant	project	with	a	number	of	steps.	The
topics	in	this	section	address	these	steps.

Topic Description
Designing	a	Data
Warehouse

Describes	considerations	specific	to	designing
data	warehouses	and	the	use	of	dimensional
modeling.

Creating	the	Data
Preparation	Area

Describes	the	creation	of	the	relational
database	used	to	prepare	data	for	the	data
warehouse.

Creating	the	Data
Warehouse	Database

Describes	the	creation	of	the	relational
database	that	holds	the	data	warehouse	data.

Extracting	Data	from
Operational	Systems

Describes	the	process	of	extracting	data	from
operational	systems	into	the	data	preparation
area.

Cleansing	and
Transforming	Data

Describes	the	process	of	cleansing	and
transforming	data	in	the	data	preparation	area
before	loading	the	data	into	the	data
warehouse.

Loading	Data	into	the	Data
Warehouse	Database

Describes	the	process	of	loading	data	into	the
data	warehouse	database	from	the	data
preparation	area.

Preparing	Presentation
Information

Describes	the	process	of	preparing	data	in	the
data	warehouse	for	presentation	to	users.

Distributing	Data	to	Data
Marts

Describes	the	process	of	distributing	data	from
the	data	warehouse	to	data	marts.



Creating	and	Using	Data	Warehouses



Designing	a	Data	Warehouse
Designing	a	data	warehouse	is	very	different	from	designing	an	online
transaction	processing	(OLTP)	system.	In	contrast	to	an	OLTP	system	in	which
the	purpose	is	to	capture	high	rates	of	data	changes	and	additions,	the	purpose	of
a	data	warehouse	is	to	organize	large	amounts	of	stable	data	for	ease	of	analysis
and	retrieval.	Because	of	these	differing	purposes,	there	are	many	considerations
in	data	warehouse	design	that	differ	from	OLTP	database	design.

Data	warehouse	data	must	be	organized	to	meet	the	purpose	of	the	data
warehouse,	which	is	rapid	access	to	information	for	analysis	and	reporting.
Dimensional	modeling	is	used	in	the	design	of	data	warehouse	databases	to
organize	the	data	for	efficiency	of	queries	that	are	intended	to	analyze	and
summarize	large	volumes	of	data.	The	data	warehouse	schema	is	almost	always
very	different	and	much	simpler	than	the	schema	of	an	OLTP	system	designed
using	entity-relation	modeling.

Verification	tables	used	in	OLTP	systems	to	validate	data	entry	transactions	are
not	necessary	in	the	data	warehouse	database.	This	is	because	the	data
warehouse	data	has	been	cleansed	and	verified	before	it	is	posted	to	the	data
warehouse	database,	and	historical	data	is	not	expected	to	change	frequently
once	it	is	in	the	data	warehouse.

Transaction	locking	considerations,	and	transactions	themselves,	play	very	small
roles	in	data	warehouse	databases.	OLTP	systems	specialize	in	large	volumes	of
data	update	transactions.	In	contrast,	data	warehouses	specialize	in	rapid
retrieval	of	information	from	stable	data,	and	data	updates	consist	primarily	of
periodic	additions	of	new	data.

Backup	and	restore	strategies	also	differ	in	a	data	warehouse	from	those
necessary	for	an	OLTP	system.	Much	of	the	data	in	a	data	warehouse	is
unchanging	history	and	does	not	need	repetitive	backup.	Backup	of	new	data	can
be	accomplished	at	the	time	of	update,	and	in	some	situations	it	is	feasible	to	do
these	backups	from	the	data	preparation	database	to	minimize	performance
impact	on	the	data	warehouse	database.	Restore	policies	for	a	data	warehouse
might	also	differ	from	those	for	an	OLTP,	depending	on	how	critical	it	is	for	an
organization	to	have	uninterrupted	access	to	data	warehouse	data.



There	are	some	considerations	to	take	into	account	when	designing	the	data
warehouse	if	you	are	planning	to	use	Microsoft®	SQL	Server™	2000	Analysis
Services	for	OLAP	and	data	mining.	For	more	information,	see	Analysis
Services	Overview	and	OLAP	and	Data	Warehouses.

Data	Mart	Design
There	are	two	approaches	to	creating	a	data	warehouse	system	for	an
organization.	A	central	data	warehouse	can	be	developed	and	implemented	first
with	data	marts	created	later,	or	data	marts	can	be	implemented	such	that	they
make	up	the	data	warehouse	when	their	information	is	joined.	In	either	approach,
design	must	be	centralized	so	that	all	of	the	organization's	data	warehouse
information	is	consistent	and	usable.	Data	marts	that	adhere	to	central	design
specifications	produce	reports	that	are	consistent	even	though	the	data	resides	in
different	places.	For	example,	a	sales	data	mart	must	use	the	same	product	table
arranged	in	the	same	way	as	the	inventory	data	mart	or	summary	information
will	be	inconsistent	between	the	two.

See	Also

Using	Dimensional	Modeling

Fact	Tables

Aggregation	Tables

Dimension	Tables

Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Creating	and	Using	Data	Warehouses



Using	Dimensional	Modeling
Entity-relation	modeling	is	often	used	to	create	a	single	complex	model	of	all	of
the	organization's	processes.	This	approach	has	proven	effective	in	creating
efficient	online	transaction	processing	(OLTP)	systems.	In	contrast,	dimensional
modeling	creates	individual	models	to	address	discrete	business	processes.	For
example,	sales	information	may	go	to	one	model,	inventory	to	another,	and
customer	accounts	to	yet	another.	Each	model	captures	facts	in	a	fact	table	and
attributes	of	those	facts	in	dimension	tables	linked	to	the	fact	table.	The	schemas
produced	by	these	arrangements	are	called	star	or	snowflake	schemas,	and	have
been	proven	effective	in	data	warehouse	design.

Dimensional	modeling	organizes	information	into	structures	that	often
correspond	to	the	way	analysts	want	to	query	data	warehouse	data.	For	example,
the	question,	"What	were	the	sales	of	food	items	in	the	northwest	region	in	the
third	quarter	of	1999?"	represents	the	use	of	three	dimensions	(product,
geography,	time)	to	specify	the	information	to	be	summarized.

A	Data	Warehouse	Model
A	simple	dimensional	model	of	sales	information	might	include	a	fact	table
named	Sales_Fact	that	contains	one	record	for	each	line	item	of	each	sale,
capturing	the	quantity	sold,	the	unit	cost,	and	the	sale	value.	Varieties	of
information	about	a	sales	record	might	include	the	customer,	the	store	where	the
sale	occurred,	the	time	and	date	of	the	sale,	and	the	product	sold.	Each	of	these
categories	of	information	is	organized	into	its	own	dimension	table.	Customer
information	is	placed	in	a	Customer	dimension	table,	store	information	in	a
Store	dimension	table,	time	and	date	information	in	a	Time	dimension	table,	and
product	information	in	a	Product	dimension	table.

In	a	star	schema,	each	dimension	table	has	a	single-part	primary	key	that	links	to
one	part	of	the	multipart	primary	key	in	the	fact	table.	In	a	snowflake	schema,
one	or	more	dimension	tables	are	decomposed	into	multiple	tables	with	the
subordinate	dimension	tables	joined	to	a	primary	dimension	table	instead	of	to
the	fact	table.	In	most	designs,	star	schemas	are	preferable	to	snowflake	schemas
because	they	involve	fewer	joins	for	information	retrieval	and	are	easier	to
manage.



Creating	and	Using	Data	Warehouses



Fact	Tables
Each	data	warehouse	or	data	mart	includes	one	or	more	fact	tables.	Central	to	a
star	or	snowflake	schema,	a	fact	table	captures	the	data	that	measures	the
organization's	business	operations.	A	fact	table	might	contain	business	sales
events	such	as	cash	register	transactions	or	the	contributions	and	expenditures	of
a	nonprofit	organization.	Fact	tables	usually	contain	large	numbers	of	rows,
sometimes	in	the	hundreds	of	millions	of	records	when	they	contain	one	or	more
years	of	history	for	a	large	organization.

A	key	characteristic	of	a	fact	table	is	that	it	contains	numerical	data	(facts)	that
can	be	summarized	to	provide	information	about	the	history	of	the	operation	of
the	organization.	Each	fact	table	also	includes	a	multipart	index	that	contains	as
foreign	keys	the	primary	keys	of	related	dimension	tables,	which	contain	the
attributes	of	the	fact	records.	Fact	tables	should	not	contain	descriptive
information	or	any	data	other	than	the	numerical	measurement	fields	and	the
index	fields	that	relate	the	facts	to	corresponding	entries	in	the	dimension	tables.

In	the	FoodMart	2000	sample	database	provided	with	Microsoft®	SQL
Server™	2000	Analysis	Services,	one	fact	table,	sales_fact_1998,	contains	the
following	columns.

Column Description
product_id Foreign	key	for	dimension	table	product.
time_id Foreign	key	for	dimension	table	time_by_day.
customer_id Foreign	key	for	dimension	table	customer.
promotion_id Foreign	key	for	dimension	table	promotion.
store_id Foreign	key	for	dimension	table	store.
store_sales Currency	column	containing	the	value	of	the	sale.
store_cost Currency	column	containing	the	cost	to	the	store	of	the

sale.
unit_sales Numeric	column	containing	the	quantity	sold.

In	this	fact	table,	each	entry	represents	the	sale	of	a	specific	product	on	a	specific
day	to	a	specific	customer	in	accordance	with	a	specific	promotion	at	a	specific
store.	The	business	measurements	captured	are	the	value	of	the	sale,	the	cost	to



the	store,	and	the	quantity	sold.

The	most	useful	measures	to	include	in	a	fact	table	are	numbers	that	are	additive.
Additive	measures	allow	summary	information	to	be	obtained	by	adding	various
quantities	of	the	measure,	such	as	the	sales	of	a	specific	item	at	a	group	of	stores
for	a	particular	time	period.	Nonadditive	measures	such	as	inventory	quantity-
on-hand	values	can	also	be	used	in	fact	tables,	but	different	summarization
techniques	must	then	be	used.

Aggregation	in	Fact	Tables
Aggregation	is	the	process	of	calculating	summary	data	from	detail	records.	It	is
often	tempting	to	reduce	the	size	of	fact	tables	by	aggregating	data	into	summary
records	when	the	fact	table	is	created.	However,	when	data	is	summarized	in	the
fact	table,	detailed	information	is	no	longer	directly	available	to	the	analyst.	If
detailed	information	is	needed,	the	detail	rows	that	were	summarized	will	have
to	be	identified	and	located,	possibly	in	the	source	system	that	provided	the	data.
Fact	table	data	should	be	maintained	at	the	finest	granularity	possible.
Aggregating	data	in	the	fact	table	should	only	be	done	after	considering	the
consequences.

Mixing	aggregated	and	detailed	data	in	the	fact	table	can	cause	issues	and
complications	when	using	the	data	warehouse.	For	example,	a	sales	order	often
contains	several	line	items	and	may	contain	a	discount,	tax,	or	shipping	cost	that
is	applied	to	the	order	total	instead	of	individual	line	items,	yet	the	quantities	and
item	identification	are	recorded	at	the	line	item	level.	Summarization	queries
become	more	complex	in	this	situation,	and	tools	such	as	Analysis	Services
often	require	the	creation	of	special	filters	to	deal	with	the	mixture	of	granularity.

There	are	two	approaches	that	can	be	used	in	this	situation.	One	approach	is	to
allocate	the	order	level	values	to	line	items	based	on	value,	quantity,	or	shipping
weight.	Another	approach	is	to	create	two	fact	tables,	one	containing	data	at	the
line	item	level,	the	other	containing	the	order	level	information.	The	order
identification	key	should	be	carried	in	the	detail	fact	table	so	the	two	tables	can
be	related.	The	order	table	can	then	be	used	as	a	dimension	table	to	the	detail
table,	with	the	order-level	values	considered	as	attributes	of	the	order	level	in	the
dimension	hierarchy.



Creating	and	Using	Data	Warehouses



Aggregation	Tables
Aggregation	tables	are	tables	that	contain	summaries	of	fact	table	information.
These	tables	are	used	to	improve	query	performance	when	SQL	is	used	as	the
query	mechanism.	OLAP	technology,	such	as	that	provided	by	Microsoft®	SQL
Server™	2000	Analysis	Services,	eliminates	the	need	for	such	tables.	Analysis
Services	creates	OLAP	cubes	that	contain	preaggregated	summaries	so	that
queries	can	be	answered	quickly,	regardless	of	the	level	of	summarization
required	to	answer	the	query.	It	is	not	necessary	to	create	aggregation	tables	in
the	data	warehouse	when	Analysis	Services	is	used	to	provide	presentation
services.	Analysis	Services	creates	aggregations	as	necessary	and	stores	them	in
tables	in	the	data	warehouse	database	or	in	internal	multidimensional	structures.
For	more	information,	see	Analysis	Services	Overview.

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



Dimension	Tables
Dimension	tables	contain	attributes	that	describe	fact	records	in	the	fact	table.
Some	of	these	attributes	provide	descriptive	information;	others	are	used	to
specify	how	fact	table	data	should	be	summarized	to	provide	useful	information
to	the	analyst.	Dimension	tables	contain	hierarchies	of	attributes	that	aid	in
summarization.	For	example,	a	dimension	containing	product	information	would
often	contain	a	hierarchy	that	separates	products	into	categories	such	as	food,
drink,	and	nonconsumable	items,	with	each	of	these	categories	further
subdivided	a	number	of	times	until	the	individual	product	SKU	is	reached	at	the
lowest	level.

Dimensional	modeling	produces	dimension	tables	in	which	each	table	contains
fact	attributes	that	are	independent	of	those	in	other	dimensions.	For	example,	a
customer	dimension	table	contains	data	about	customers,	a	product	dimension
table	contains	information	about	products,	and	a	store	dimension	table	contains
information	about	stores.	Queries	use	attributes	in	dimensions	to	specify	a	view
into	the	fact	information.	For	example,	a	query	might	use	the	product,	store,	and
time	dimensions	to	ask	the	question	"What	was	the	cost	of	nonconsumable
goods	sold	in	the	northeast	region	in	1999?"	Subsequent	queries	might	drill
down	along	one	or	more	dimensions	to	examine	more	detailed	data,	such	as
"What	was	the	cost	of	kitchen	products	in	New	York	City	in	the	third	quarter	of
1999?"	In	these	examples,	the	dimension	tables	are	used	to	specify	how	a
measure	(cost)	in	the	fact	table	is	to	be	summarized.

Columns	in	a	dimension	table	can	be	used	to	categorize	the	information	into
hierarchical	levels.	For	example,	a	dimension	table	for	stores	in	the	FoodMart
2000	sample	database	includes	the	following	columns	that	specify	the	hierarchy
levels.

Column Description
store_country Specifies	the	country	in	which	the	store	is	located.	This

is	the	country	level	of	the	hierarchy.
store_state Specifies	the	state	in	which	the	store	is	located.	This	is

the	state	level	of	the	hierarchy.
store_city Specifies	the	city	in	which	the	store	is	located.	This	is



the	city	level	of	the	hierarchy.
store_id Specifies	the	individual	store.	This	is	the	lowest	level	of

the	hierarchy.	This	field	contains	the	primary	key	of	the
store	dimension	table	and	is	used	to	join	the	dimension
table	to	the	fact	table.

store_name Specifies	the	name	of	the	store.	The	values	in	this
column	are	used	to	identify	the	store	to	users	in	a
readable	form.

Other	columns	not	shown	provide	additional	attribute	information.	For
information	about	how	dimension	tables	are	used	in	OLAP	cubes	built	using
Microsoft®	SQL	Server™	2000	Analysis	Services,	see	Dimensions.

Varieties	of	Dimension	Tables
The	preceding	example	illustrates	a	dimension	table	that	contains	a	balanced
hierarchy	that	is	separated	into	regular	levels.	Other	types	of	dimension	tables
contain	less	balanced	information,	such	as	part-breakdown	structures	or
organization	charts	in	which	the	hierarchy	is	represented	by	parent-child
relationships	instead	of	an	array	of	levels.

Surrogate	Keys
It	is	important	that	primary	keys	of	dimension	tables	remain	stable.	It	is	strongly
recommended	that	surrogate	keys	be	created	and	used	for	primary	keys	for	all
dimension	tables.	Surrogate	keys	are	keys	that	are	maintained	within	the	data
warehouse	instead	of	keys	taken	from	source	data	systems.	There	are	several
reasons	for	the	use	of	surrogate	keys:

Data	tables	in	various	source	systems	may	use	different	keys	for	the
same	entity.

Legacy	systems	that	provide	historical	data	might	have	used	a	different
numbering	system	than	a	current	online	transaction	processing	system.
A	surrogate	key	uniquely	identifies	each	entity	in	the	dimension	table
regardless	of	its	source	key.	A	separate	field	can	be	used	to	contain	the
key	used	in	the	source	system.

Systems	developed	independently	in	company	divisions	may	not	use	the

JavaScript:hhobj_1.Click()


same	keys,	or	they	may	use	keys	that	conflict	with	data	in	the	systems
of	other	divisions.	This	situation	may	not	cause	problems	when	each
division	independently	reports	summary	data,	but	it	cannot	be	permitted
in	the	data	warehouse	where	data	is	consolidated.

Keys	may	change	or	be	reused	in	the	source	data	systems.

This	situation	is	usually	less	likely	than	others,	but	some	systems	have
been	known	to	reuse	keys	belonging	to	obsolete	data.	However,	the	key
may	still	be	in	use	in	historical	data	in	the	data	warehouse,	and	the	same
key	cannot	be	used	to	identify	different	entities.

Changes	in	organizational	structures	may	move	keys	in	the	hierarchy.

This	can	be	a	common	situation.	For	example,	if	a	salesperson	is
transferred	from	one	region	to	another,	the	company	may	prefer	to	track
two	things:	sales	data	for	the	salesperson	with	the	person's	original
region	for	data	prior	to	the	transfer	date,	and	sales	data	for	the
salesperson	in	the	person's	new	region	after	the	transfer	date.	To
represent	this	organization	of	data,	the	salesperson's	record	must	exist	in
two	places	in	the	sales	force	dimension	table,	which	is	not	possible	if
the	salesperson's	company	employee	identification	number	is	used	as
the	primary	key	for	the	dimension	table.	A	surrogate	key	allows	the
same	salesperson	to	participate	in	different	locations	in	the	dimension
hierarchy.

In	this	case,	the	salesperson	will	be	represented	twice	in	the	dimension
table	with	two	different	surrogate	keys.	These	surrogate	keys	are	used	to
join	the	salesperson's	records	to	the	sets	of	facts	appropriate	to	the
various	locations	in	the	hierarchy	occupied	by	the	salesperson.

The	employee's	identification	number	should	be	carried	in	a	separate
column	in	the	table	so	information	about	the	employee	can	be	reviewed
or	summarized	regardless	of	the	number	of	times	the	employee's	record
appears	in	the	dimension	table.

Dimensions	that	exhibit	this	type	of	change	are	called	slowly	changing
dimensions.

Another	example	of	a	situation	that	causes	this	type	of	change	is	the
creation	of	a	new	version	of	a	product,	such	as	a	reduced-fat	version	of



a	food	item.	The	item	will	receive	a	new	SKU	or	Uniform	Product	Code
(UPC),	but	may	retain	most	of	the	same	attributes	of	the	original	item,
which	is	still	manufactured	and	sold.	The	appropriate	use	of	surrogate
keys	can	allow	the	two	versions	of	the	item	to	be	summarized	together
or	separately.

The	implementation	and	management	of	surrogate	keys	is	the	responsibility	of
the	data	warehouse.	OLTP	systems	are	rarely	affected	by	these	situations,	and	the
purpose	of	these	keys	is	to	accurately	track	history	in	the	data	warehouse.
Surrogate	keys	are	maintained	in	the	data	preparation	area	during	the	data
transformation	process.

Referential	Integrity
Referential	integrity	must	be	maintained	between	all	dimension	tables	and	the
fact	table.	Each	fact	record	contains	foreign	keys	that	relate	to	primary	keys	in
the	dimension	tables.	Every	fact	record	must	have	a	related	record	in	every
dimension	table	used	with	that	fact	table.	Missing	records	in	a	dimension	table
can	cause	facts	to	be	ignored	when	the	dimension	table	is	joined	to	the	fact	table
to	respond	to	queries	or	for	the	population	of	OLAP	cubes.	Queries	can	return
inconsistent	results	if	records	are	missing	in	one	or	more	dimension	tables.
Queries	that	join	a	defective	dimension	table	to	the	fact	table	will	exclude	facts
whereas	queries	that	do	not	join	the	defective	dimension	table	will	include	those
facts.

Shared	Dimensions
A	data	warehouse	must	provide	consistent	information	for	similar	queries.	One
method	to	maintain	consistency	is	to	create	dimension	tables	that	are	shared	and
used	by	all	components	and	data	marts	in	the	data	warehouse.	Candidates	for
shared	dimensions	include	customers,	time,	products,	and	geographical
dimensions	such	as	the	store	dimension	in	the	example	earlier	in	this	topic.	For
example,	requiring	that	all	OLAP	cubes	and	data	marts	use	the	same	shared	time
dimension	enforces	consistency	of	results	summarized	by	time.



Creating	and	Using	Data	Warehouses



Indexes
Indexes	play	an	important	role	in	data	warehouse	performance,	as	they	do	in	any
relational	database.	Every	dimension	table	must	be	indexed	on	its	primary	key.
Indexes	on	other	columns	such	as	those	that	identify	levels	in	the	hierarchical
structure	can	also	be	useful	in	the	performance	of	some	specialized	queries.

The	fact	table	must	be	indexed	on	the	composite	primary	key	made	up	of	the
foreign	keys	of	the	dimension	tables.

These	are	the	primary	indexes	needed	for	most	data	warehouse	applications
because	of	the	simplicity	of	star	and	snowflake	schemas.	Special	query	and
reporting	requirements	may	indicate	the	need	for	additional	indexes.

See	Also

Creating	and	Maintaining	Databases	Overview

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



Creating	the	Data	Preparation	Area
You	will	need	to	create	tables	and	other	database	objects	to	support	the	data
extraction,	cleansing,	and	transformation	operations	required	to	prepare	the	data
for	loading	into	the	data	warehouse.	You	can	create	a	separate	database	for	the
data	preparation	area,	or	you	can	create	these	items	in	the	data	warehouse
database.

The	data	preparation	area	should	include	tables	to	contain	the	incoming	data,
tables	to	aid	in	implementing	surrogate	keys,	and	tables	to	hold	transformed
data.	Other	tables	may	be	required	for	reconciling	data	from	diverse	data
sources;	such	tables	may	contain	cross-reference	information	to	identify
common	entities	such	as	customer	records	from	systems	that	use	different	keys.
A	variety	of	temporary	tables	may	also	be	needed	for	intermediate
transformations.

The	specific	design	of	the	data	preparation	area	will	depend	on	the	diversity	of
data	sources,	the	degree	of	transformation	necessary	to	organize	the	data	for	data
warehouse	loading,	and	the	consistency	of	the	incoming	data.

Data	that	is	ready	to	load	into	the	data	warehouse	should	be	in	tables	that	have
schemas	identical	to	the	target	tables	in	the	data	warehouse.	If	not,	the	data
should	be	ready	to	load	into	the	data	warehouse	tables	through	a	transformation
that	can	be	accomplished	in	a	single	step	as	it	is	loaded.

The	data	preparation	area	should	also	contain	the	processes	that	are	used	to
extract	the	data	from	the	data	sources,	the	processes	that	transform	and	cleanse
the	data,	and	the	processes	that	load	the	data	to	the	data	warehouse.	These
processes	may	be	in	the	form	of	SQL	queries,	stored	procedures,	Data
Transformation	Services	(DTS)	packages,	or	documents	of	manual	instructions.
As	in	the	development	of	any	database	system,	the	objective	is	to	automate	as
much	of	the	process	as	possible	and	to	manage	and	maintain	the	automated	tools
developed.	Storing	and	maintaining	the	transformation	processes	in	the	data
preparation	area	permits	the	use	of	standard	database	backup	and	restore
mechanisms	to	preserve	them.

Regardless	of	whether	a	separate	database	is	used,	creating	the	data	preparation
area	involves	creating	tables,	views,	indexes,	DTS	packages,	and	other	elements



common	to	relational	databases.

See	Also

Data	Preparation	Area

Creating	and	Maintaining	Databases	Overview

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



Creating	the	Data	Warehouse	Database
You	can	create	the	data	warehouse	database	after	the	data	warehouse	schema	has
been	designed.	You	will	need	to	create	tables	for	facts	and	dimensions,	and
establish	indexes	on	key	fields	in	all	tables.

The	data	warehouse	database	schema	is	often	quite	simple	compared	to	those	of
OLTP	databases	or	the	data	preparation	area.	A	star	schema	consists	of	a	single
fact	table	and	a	number	of	dimension	tables.	A	snowflake	schema	adds
secondary	dimension	tables.	More	complex	data	warehouses	may	contain
multiple	fact	tables	and	a	number	of	dimension	tables,	some	of	which	are
common	to	all	fact	tables	and	others	that	are	specific	to	a	single	fact	table.

For	example,	a	data	warehouse	may	contain	both	sales	information	and
inventory	information.	Because	sales	data	and	inventory	data	are	different	in
nature,	they	should	be	stored	in	different	fact	tables.	Some	dimension	tables,
such	as	a	product	dimension	table,	might	be	common	to	both	sales	and
inventory,	whereas	others,	such	as	sales	force	or	warehouse	location,	might	be
specific	to	individual	fact	tables.

The	FoodMart	2000	sample	database	provided	with	Microsoft®	SQL	Server™
2000	Analysis	Services	illustrates	a	data	warehouse	that	contains	both	inventory
and	sales	data.	For	more	information,	see	Analysis	Services	Overview.

See	Also

Designing	a	Data	Warehouse

Creating	and	Maintaining	Databases	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Creating	and	Using	Data	Warehouses



Extracting	Data	from	Operational	Systems
Data	that	will	be	used	in	a	data	warehouse	must	be	extracted	from	the
operational	systems	that	contain	the	source	data.	Data	is	initially	extracted
during	the	data	warehouse	creation,	and	ongoing	periodic	extractions	occur
during	updates	of	the	data	warehouse.	Data	extraction	can	be	a	simple	operation,
if	the	source	data	resides	in	a	single	relational	database,	or	a	very	complex
operation,	if	the	source	data	resides	in	multiple	heterogeneous	operational
systems.	The	goal	of	the	data	extraction	process	is	to	bring	all	source	data	into	a
common,	consistent	format	so	it	can	be	made	ready	for	loading	into	the	data
warehouse.

It	is	better	if	data	in	the	source	operational	systems	does	not	contain	validation
errors.	For	example,	purchase	records	for	which	there	are	no	corresponding
customer	records	to	identify	the	purchasers	are	clearly	errors	in	the	source	data,
and	you	should	correct	them	in	the	source	operational	system	before	the	data	is
extracted	for	loading	into	the	data	warehouse.	You	may	be	able	to	implement
error	checking	in	the	source	operational	system	so	such	errors	can	be	detected
before	extracting	data	for	the	data	warehouse.	If	such	errors	are	frequent,	you
may	need	to	have	the	operational	system	examined	and	modified	to	reduce	such
errors	because	such	errors	may	affect	the	organization's	business	as	well	as	its
data	warehouse.

You	may	not	be	able	to	identify	validation	errors	until	the	data	has	been
extracted	from	the	operational	systems.	This	situation	can	occur	when	data	is
extracted	from	multiple	data	sources.	For	example,	reconciling	data	extracted
from	separate	sales	tracking,	shipping,	and	billing	systems	may	uncover
discrepancies	that	must	be	addressed	in	one	or	more	of	the	source	systems.

You	may	also	identify	inconsistencies	other	than	errors	in	data	after	it	has	been
extracted.	For	example,	different	data	sources	may	use	different	coding	systems
for	the	same	kind	of	data.	You	can	often	use	translation	tables	to	reconcile	these
differences	during	the	extraction	operation	or	later	during	transformation
operations.	For	example,	a	legacy	system	may	code	state	or	province	names
using	a	three-character	code,	whereas	another	system	may	use	a	two-character
code.	The	data	from	one	or	both	of	these	systems	must	be	translated	into	a	single
set	of	codes	before	loading	the	data	into	the	data	warehouse.



In	other	cases,	you	may	discover	inconsistencies	if	source	systems	permit	free-
form	entry	of	text	information.	Such	data	is	often	internally	inconsistent	because
different	data-entry	personnel	may	enter	the	same	data	in	different	ways.
Inconsistent	representations	of	the	same	data	must	be	reconciled	if	such	data	is
to	be	used	for	analysis.	For	example,	in	a	data	source	that	permits	free-form	text
entry	for	the	state	or	province	portion	of	an	address,	the	state	of	Florida	may	be
entered	as	FL,	Fla,	Florida,	or	even	Flor.	It	may	be	difficult	to	modify	legacy
source	systems	to	implement	a	standard	coding	validation.	Manual
transformation	adjustments	may	be	necessary	to	reconcile	such	differences	if	the
contributing	source	systems	cannot	be	modified.

You	can	use	the	powerful	transformation	capabilities	of	Data	Transformation
Services	(DTS)	in	Microsoft®	SQL	Server™	2000	during	the	extraction	process
to	reconcile	many	formatting,	data	encoding,	and	other	inconsistencies.	Other
transformations	must	be	accomplished	after	the	data	has	been	extracted	from	the
source	systems.

Some	of	the	tools	available	in	SQL	Server	2000	for	extracting	data	are:

Transact-SQL

Distributed	queries

DTS

Command	line	applications

bcp	utility

BULK	INSERT	statement	for	loading	from	text	files

ActiveX	scripts

In	some	data	warehouse	implementations,	you	may	also	find	that	you	can	use
Replication	to	copy	data	from	source	systems	to	the	data	preparation	area.



See	Also

Accessing	and	Changing	Relational	Data	Overview

Importing	and	Exporting	Data

DTS	Overview

Replication	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Creating	and	Using	Data	Warehouses



Cleansing	and	Transforming	Data
You	can	accomplish	many	data	transformations	during	the	process	of	extracting
data	from	the	source	systems.	However,	there	are	often	additional	tasks	to
complete	before	you	can	load	data	into	the	data	warehouse.	For	example,	you
must	reconcile	inconsistent	data	from	heterogeneous	data	sources	after
extraction	and	complete	other	formatting	and	cleansing	tasks.	You	should	also
wait	until	after	the	extraction	process	to	incorporate	surrogate	keys.	Some
transformations	that	you	might	technically	accomplish	during	the	extraction
process	may	interfere	with	the	performance	or	operation	of	the	online	source
system;	you	should	defer	these	tasks	until	after	extraction	is	complete.

After	extraction	from	the	source	systems,	the	data	should	reside	in	a	data
preparation	area	where	the	cleansing	and	transformations	can	be	completed
before	the	data	is	loaded	into	the	data	warehouse.	The	data	preparation	area	can
be	a	separate	database	or	separate	tables	in	the	data	warehouse	database.	During
the	cleansing	and	transformation	phase,	you	can	execute	procedures	to	validate
and	verify	data	consistency,	transform	data	into	common	formats,	and
incorporate	surrogate	keys.

You	may	need	to	perform	manual	operations	to	reconcile	data	inconsistencies	or
to	resolve	ambiguous	text	field	entries.	Each	time	a	manual	operation	is	required,
you	should	try	to	identify	a	way	to	eliminate	the	manual	step	in	future	data
transformation	operations.	In	some	cases,	you	may	be	able	to	modify	the	source
data	systems	to	eliminate	the	cause	at	the	source.	In	other	cases,	you	may	be	able
to	establish	an	automated	process	that	will	set	aside	unresolved	data	for	later
manual	exception	processing	so	the	bulk	of	the	data	can	be	loaded	into	the	data
warehouse	without	delay	for	manual	intervention.

Some	typical	data	transformations	include:

Combining	multiple	name	fields	into	one	field.

Breaking	down	date	fields	into	separate	year,	month,	and	day	fields.

Mapping	data	from	one	representation	to	another,	such	as	TRUE	to	1



and	FALSE	to	0	or	postal	codes	from	numeric	to	text.

Mapping	data	from	multiple	representations	to	a	single	representation,
such	as	a	common	format	for	telephone	numbers,	or	different	credit
rating	codes	to	a	common	"Good,	Average,	Poor"	representation.

Creating	and	applying	surrogate	keys	for	dimension	table	records.

Some	of	the	tools	available	in	Microsoft®	SQL	Server™	2000	for	transforming
data	are:

Transact-SQL	queries

DTS	packages

Command	line	applications

ActiveX	scripts

See	Also

Accessing	and	Changing	Relational	Data	Overview

DTS	Overview

Automating	Administrative	Tasks

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Creating	and	Using	Data	Warehouses



Loading	Data	into	the	Data	Warehouse	Database
After	the	data	has	been	cleansed	and	transformed	into	a	structure	consistent	with
the	data	warehouse	requirements,	data	is	ready	for	loading	into	the	data
warehouse.	You	may	make	some	final	transformation	during	the	loading
operation,	although	you	should	complete	any	transformations	that	could	identify
inconsistencies	before	the	final	loading	operation.

The	initial	load	of	the	data	warehouse	consists	of	populating	the	tables	in	the
data	warehouse	schema	and	then	verifying	that	the	data	is	ready	for	use.	You	can
use	various	methods	to	load	the	data	warehouse	tables,	such	as:

Transact-SQL

DTS

bcp	utility

When	you	load	data	into	the	data	warehouse,	you	are	populating	the	tables	that
will	be	used	by	the	presentation	applications	that	make	the	data	available	to
users.	Loading	data	often	involves	the	transfer	of	large	amounts	of	data	from
source	operational	systems,	a	data	preparation	area	database,	or	preparation	area
tables	in	the	data	warehouse	database.	Such	operations	can	impose	significant
processing	loads	on	the	databases	involved	and	should	be	accomplished	during	a
period	of	relatively	low	system	use.

After	the	data	has	been	loaded	into	the	data	warehouse	database,	verify	the
referential	integrity	between	dimension	and	fact	tables	to	ensure	that	all	records
relate	to	appropriate	records	in	other	tables.	You	should	verify	that	every	record
in	a	fact	table	relates	to	a	record	in	each	dimension	table	that	will	be	used	with
that	fact	table.	For	example,	if	a	fact	table	of	product	sales	is	to	be	used	with
dimension	tables	for	customers,	products,	time,	and	stores,	then	for	each	sale
record	in	the	fact	table	there	must	be	a	record	in	each	dimension	table	that	relates
to	the	sale	record	through	correspondence	of	primary	keys.	This	verification
ensures	that	for	every	sale,	the	customer	who	made	the	purchase,	the	product
sold,	and	the	time	and	location	of	the	sale	are	identified.



Data	integrity	in	the	reverse	order	is	not	necessary.	That	is,	it	is	not	necessary	for
every	record	in	a	dimension	table	to	relate	to	a	record	in	the	fact	table.	For
example,	dimensions	in	a	sales	data	warehouse	typically	are	shared	dimensions,
which	contain	the	full	sets	of	customers,	products,	stores,	and	so	on.	A	fact	table
may	contain	sales	records	for	a	specific	time	period	during	which	some
customers	did	not	make	any	purchases	and	some	products	were	not	sold.

Most	queries	that	retrieve	data	from	the	data	warehouse	use	inner	joins	between
the	fact	and	dimension	tables.	Such	queries	will	ignore	facts	for	which	at	least
one	of	the	joined	dimension	tables	does	not	contain	a	matching	record,	causing
retrieved	data	to	be	inaccurate	and	possibly	inconsistent	among	different	queries.
For	example,	if	a	customer	record	is	missing	for	a	particular	sales	fact	record,
any	query	that	includes	the	customer	dimension	table	will	ignore	the	sales	fact
record,	but	any	query	that	does	not	include	the	customer	dimension	table	will
contain	the	sales	fact	record.	A	query	that	computes	the	sum	of	sale	amounts	by
customer	will	yield	a	different	grand	total	than	a	query	that	computes	the	sum	of
sale	amounts	by	product,	because	the	first	query	ignores	the	sale	for	which	there
is	no	customer	and	the	second	query	includes	it.

If	you	use	a	dimension	table	containing	data	that	does	not	apply	to	all	facts,	you
must	include	a	record	in	the	dimension	table	that	can	be	used	to	relate	to	the
remaining	facts.	For	example,	in	a	table	of	sales	promotion	records,	you	can
include	a	generic	record	that	you	can	use	to	relate	to	any	sales	fact	for	which
there	is	no	applicable	sales	promotion.	Without	this	generic	promotion	record
any	query	that	joins	the	promotion	table	to	the	sales	fact	table	will	not	include
sales	for	which	there	is	no	corresponding	promotion.

To	verify	referential	integrity	in	a	star	schema	you	can	use	a	simple	SQL	query
that	counts	the	rows	returned	when	all	appropriate	dimension	tables	are	joined	to
the	fact	table	using	inner	joins.	The	number	of	rows	returned	by	this	query
should	match	the	number	of	rows	in	the	fact	table.	If	you	are	using	a	snowflake
schema,	you	should	also	verify	referential	integrity	between	dimension	tables
and	the	subordinate	tables	to	which	they	are	linked	to	verify	that	no	records	in
any	table	are	eliminated	by	inner	joins	to	subordinate	tables.	You	should	perform
this	verification	by	starting	with	the	tables	at	the	lowest	level	of	the	snowflake
dimension	and	joining	them	to	the	tables	at	the	next	higher	level,	continuing
until	the	primary	dimension	table	has	been	verified.	This	is	an	important	step
because	there	can	be	situations	in	which	the	dimension	may	verify	correctly
against	the	current	fact	table,	even	though	some	dimension	records	are	missing;



these	records	will	be	needed	when	new	facts	are	added.

See	Also

Accessing	and	Changing	Relational	Data	Overview

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



Preparing	Presentation	Information
Because	access	to	data	warehouse	data	is	often	provided	through	client
applications,	there	are	often	tasks	that	must	be	performed	in	the	data	warehouse
to	prepare	the	information	for	presentation	to	end	users.	Part	of	the	data
warehouse	design	effort	is	to	identify	any	special	data	configuration
requirements	necessary	for	these	applications	and	often	to	configure	the
applications	themselves	as	described	in	the	application	documentation.	For	more
information,	see	Using	a	Data	Warehouse.



Creating	and	Using	Data	Warehouses



Distributing	Data	to	Data	Marts
Your	data	warehouse	design	may	include	data	marts	for	specific	business	areas
such	as	sales,	warehouse,	and	financial	departments.	Each	such	data	mart
contains	a	subset	of	the	data	warehouse	data,	but	it	should	use	common	shared
dimensions	to	prevent	inconsistencies	in	analysis	and	reporting.	For	example,	a
Products	dimension	table	may	be	used	in	all	data	marts,	but	a	financial	business
planning	dimension	table	may	only	be	appropriate	for	financial	data	marts.	Other
data	marts	may	contain	region-specific	data	to	augment	region-specific
operational	database	systems.

The	initial	load	of	a	data	mart	from	the	data	warehouse	copies	all	applicable
shared	dimension	tables	and	the	fact	data	appropriate	to	the	data	mart.	Special
dimension	tables	unique	to	a	data	mart	may	be	created	locally	if	they	are	to	be
used	only	within	the	department	or	group	served	by	the	data	mart;	dimensions
that	are	used	to	create	reports	for	comparison	to	reports	from	other	data	marts
should	be	shared	dimensions	that	are	administered	centrally	at	the	data
warehouse	and	loaded	from	data	warehouse	tables.	You	can	use	many	or	all	of
the	same	tools	to	load	data	marts	that	you	use	to	load	the	data	warehouse
database.

See	Also

Updating	Data	Marts



Creating	and	Using	Data	Warehouses



Using	a	Data	Warehouse
The	traditional	role	of	a	data	warehouse	is	to	collect	and	organize	historical
business	data	so	it	can	be	analyzed	to	assist	management	in	making	business
decisions.	Until	recently,	access	to	data	warehouses	was	limited	to	database
experts	who	could	create	the	sophisticated	queries	necessary	to	retrieve,
summarize,	and	format	information	for	use	by	analysts	and	executive	decision
makers.	As	data	warehouses	become	more	common	and	businesses	involve
lower	levels	of	management	in	the	decision-making	process,	the	need	has
become	greater	for	direct	end-user	access	to	data	warehouse	data	by	people	with
minimal	database	expertise.

The	data	warehouse	must	accommodate	the	requirements	of	a	continually
increasing	variety	of	applications	that	access	data	warehouse	data.	Most
applications	must	be	set	up	and	initially	configured	before	they	can	work
effectively	with	a	data	warehouse,	and	this	work	is	often	performed	or	managed
by	the	data	warehouse	administrator.	In	some	cases	the	data	warehouse	must
incorporate	modifications	in	order	to	meet	the	requirements	of	a	new	application.

In	addition	to	end-user	applications	for	data	access,	other	applications	continue
to	be	developed	that	execute	within	the	data	warehouse	environment	to
configure	and	analyze	data	in	new	and	powerful	ways.	Such	applications	require
administration	and	maintenance	by	the	data	warehouse	administrator.

New	uses	for	data	warehouse	technology	are	continually	being	developed.	Some
organizations	now	collect,	analyze,	and	package	data	for	sale	to	customers.	Real-
time	data	warehouses,	once	a	term	with	no	meaning,	are	now	emerging	for	use	in
online	commerce.

The	topics	in	this	section	describe	various	technologies	that	can	be	used	with
data	warehouses.

Topic Description
SQL	Queries Describes	the	uses	of	SQL	queries	in	a	data

warehouse.
OLAP	and	Data	Mining Describes	online	analytical	processing	(OLAP)

and	data	mining	technologies	used	with	data



warehouses.
English	Query Describes	the	component	of	Microsoft®	SQL

Server™	2000	that	enables	querying	a	data
warehouse	using	English	words	and	phrases.

Microsoft	Office	2000 Describes	how	Microsoft	Office	2000
components	can	use	data	in	a	data	warehouse.

Web	Access	and
Reporting

Describes	access	to	data	warehouse	data	and
reports	over	the	Web.

Offline	OLAP	Cubes Describes	the	use	of	offline	cube	for	data	analysis
when	users	are	not	connected	to	SQL	Server
2000	Analysis	Services.

Third-Party	Applications Describes	the	use	of	third-party	applications	with
data	warehouses.

Custom	Applications Describes	the	availability	of	application
programming	interfaces	(APIs)	that	can	be	used
to	create	custom	applications	that	administer	or
use	data	warehouses.



Creating	and	Using	Data	Warehouses



SQL	Queries
End	users	seldom	access	data	warehouse	data	directly	using	Structured	Query
Language	(SQL)	queries.	Analytical	SQL	queries	can	be	quite	complex,
requiring	database	expertise	to	create	correctly.	The	volume	of	data	in	a	data
warehouse	is	often	so	large	that	sophisticated	SQL	techniques	are	needed	to
achieve	useful	performance.	A	SQL	query	that	joins	three	or	four	dimension
tables	to	a	fact	table	containing	millions	of	rows	and	uses	aggregate	functions
such	as	SUM	to	summarize	and	group	the	results	can	impose	a	significant	load
on	any	relational	database	and	often	yields	performance	that	is	not	acceptable	for
online	analysis.

SQL	queries	are	often	created	by	database	experts	for	use	with	predefined
reports	that	are	executed	on	a	regular	basis	during	periods	of	low	activity.
Auxiliary	summarization	tables	can	be	created	and	used	to	optimize	the
performance	of	these	queries;	such	tables	must	be	initially	designed	and
populated	when	the	data	warehouse	is	loaded,	and	then	updated	every	time	the
data	warehouse	is	updated.

The	use	of	SQL	queries	is	one	of	the	oldest	methods	of	accessing	data	warehouse
data.	There	are	many	books	and	training	courses	available	that	offer	very
sophisticated	techniques	for	configuring	data	warehouse	information	and
designing	effective	SQL	queries	that	address	complex	analytical	tasks.

Microsoft®	SQL	Server™	2000	provides	sophisticated	query	processing	and
optimization	techniques	and	a	powerful	language,	Transact-SQL,	to	address	the
needs	of	the	data	warehouse	implementation.	For	more	information,	see
Accessing	and	Changing	Relational	Data	Overview.

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



OLAP	and	Data	Mining
Online	analytical	processing	(OLAP)	is	a	technology	that	uses	multidimensional
data	representations,	called	cubes,	to	provide	rapid	access	to	data	warehouse
data.	Cubes	model	data	in	the	dimension	and	fact	tables	in	the	data	warehouse
and	provide	sophisticated	query	and	analysis	capabilities	to	client	applications.

Data	mining	uses	sophisticated	algorithms	to	analyze	data	and	create	models	that
represent	information	about	the	data.	Data	mining	models	can	be	used	to	predict
characteristics	of	new	data	or	to	identify	groups	of	data	entities	that	have	similar
characteristics.

Microsoft®	SQL	Server™	2000	Analysis	Services	provides	a	powerful	server
and	administrative	tools	to	create	and	manage	OLAP	data	and	serve	online	client
applications.	Analysis	Services	also	incorporates	data	mining	algorithms	that	can
analyze	relational	data	in	the	data	warehouse	database	and	multidimensional	data
in	cubes.

Cubes	and	data	mining	models	must	be	designed,	configured,	and	processed
before	they	can	be	used	by	client	applications,	and	they	usually	require	updating
when	the	data	warehouse	data	is	updated.	For	more	information,	see	Analysis
Services	Overview.

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



English	Query
English	Query	provides	a	system	for	developing	client	applications	that	enable
end	users	to	access	data	using	English	words	and	phrases.	English	Query	can	be
used	to	access	data	in	the	data	warehouse	database	or	in	cubes	created	by
Microsoft®	SQL	Server™	2000	Analysis	Services.

To	develop	an	English	Query	application,	a	model	must	first	be	created	that
relates	database	tables,	fields,	cubes,	and	data	to	English	words	and	phrases.	An
English	Query	application	can	then	be	generated	and	incorporated	into	custom
Web	or	client	applications	and	made	available	to	end	users.	For	more
information,	see	English	Query	Overview.

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



Microsoft	Office	2000
Data	warehouse	data	in	a	Microsoft®	SQL	Server™	2000	database	can	be
accessed	by	Microsoft	Office	components	such	as	Microsoft	Excel	or	Microsoft
Access.	However,	the	volume	of	data	in	most	data	warehouses	often	dictates	that
special	queries	or	data	tables	be	created	and	maintained	to	support	the	use	of
these	components	by	end	users.	Such	special	queries	and	tables	must	be	created
and	maintained	as	part	of	the	data	warehouse.

One	exception	is	the	integration	of	Excel	PivotTables®	with	SQL	Server	2000
Analysis	Services.	When	Analysis	Services	is	used	to	create	and	manage	OLAP
data,	end	users	can	easily	connect	to	cubes	through	an	Analysis	server	and
analyze	data	online	or	create	cubes	on	their	local	computer	for	offline	use.	For
more	information,	see	the	Microsoft	Office	2000	documentation.



Creating	and	Using	Data	Warehouses



Web	Access	and	Reporting
Web	applications	that	provide	end-user	access	to	data	warehouse	data	are
popular	because	the	client	can	use	a	standard	Web	browser	instead	of	an
application	that	must	be	installed,	configured,	and	maintained.	Initially	limited	to
simple	viewing	of	data	presented	on	static	Web	pages,	current	technology	now
enables	the	creation	of	sophisticated	interactive	applications	that	allow	users	to
query	and	update	data	in	data	warehouses	and	cubes.

Microsoft®	SQL	Server™	2000	and	its	components,	such	as	Analysis	Services
and	English	Query,	offer	a	number	of	ways	to	query	and	update	data	over	the
Web	when	used	with	Microsoft	Internet	Information	Services	(IIS).	SQL	Server
2000	introduces	support	for	XML	functionality	for	storing,	retrieving,	and
updating	information	using	XML,	XML-Data	Reduced	(XDR)	schemas,	and
XPath	queries	over	HTTP	connections.	The	PivotTable®	Service	component	of
Analysis	Services	can	be	used	with	IIS	to	provide	Web	access	to	cubes	using
Multidimensional	Expressions	(MDX)	syntax	for	querying.	English	Query
applications	can	be	embedded	into	Active	Server	Pages	(ASP)	or	COM-based
applications	to	support	Web	queries	in	English.

Web	data	access	applications	are	developed	using	APIs	provided	by	SQL	Server
2000	and	its	components.	Web	applications	can	be	as	simple	as	displaying	a
predefined	report	or	executing	predefined	queries	against	the	data	warehouse
database	or	OLAP	cubes,	or	they	can	be	as	complex	as	any	directly	connected
client-server	application.	The	impact	of	a	Web	application	on	data	warehouse
design	or	maintenance	is	determined	by	the	application.

See	Also

XML	and	Internet	Support	Overview

PivotTable	Service

Developing	and	Deploying	English	Query	Applications

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Creating	and	Using	Data	Warehouses



Offline	OLAP	Cubes
Cubes	used	in	online	analytical	processing	(OLAP)	provide	a	multidimensional
view	of	data	warehouse	data	that	end	users	find	easy	to	use	and	explore	as	they
search	for	answers	to	business	questions.	Microsoft®	SQL	Server™	2000
Analysis	Services	provides	the	capability	through	its	PivotTable®	Service
component	for	client	applications	to	create	subsets	of	data	warehouse	cubes	and
save	them	locally	for	offline	analysis.	End-user	applications	can	also	use
PivotTable	Service	in	an	offline	mode	to	create	offline	cubes	directly	from
relational	databases.

Third-party	applications	and	custom	applications	can	use	PivotTable	Service	to
create	and	manage	offline	cubes.	One	end-user	application	that	provides	offline
cube	support	is	Microsoft	Excel	2000.	For	more	information,	see	the	Excel
documentation.

Offline	cubes	are	created	and	managed	by	end-user	applications	and	generally
have	little	impact	on	data	warehouse	or	cube	design.	Maintenance	of	offline	cube
data	is	the	responsibility	of	the	end	user,	who	can	refresh	data	from	online	cubes
or	update	offline	cubes	created	from	local	databases	as	necessary.	Offline	cubes
do	not	interfere	with	normal	data	warehouse	and	cube	management	and
maintenance.

See	Also

PivotTable	Service

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



Third-Party	Applications
Many	applications	have	been	commercially	developed	for	use	with	data
warehouses	and	OLAP	cubes.	Each	application	has	unique	requirements	that
may	or	may	not	require	design	changes	to	a	data	warehouse	for	effective
operation	of	the	application.	Some	applications	operate	on	the	data	warehouse	to
provide	additional	analysis,	management,	or	maintenance	capabilities.	Others	are
client	applications	that	provide	analysis	capabilities	for	end	users.	Commercial
applications	usually	require	setup	and	configuration	before	they	can	use	data
warehouse	data	effectively.	Applications	may	also	need	configuration
adjustments	in	order	to	accommodate	changes	in	the	data	warehouse	and	updates
to	data.



Creating	and	Using	Data	Warehouses



Custom	Applications
Microsoft®	SQL	Server™	2000	and	its	components	provide	a	rich	set	of
application	programming	interfaces	(APIs)	that	can	be	used	to	develop	custom
applications	to	enhance	and	automate	data	warehouse	administration,	or	to	create
client	applications	tailored	to	your	business	needs.	For	more	information,	see
Building	SQL	Server	Applications	Overview.

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



Maintaining	a	Data	Warehouse
Data	warehouses	collect	and	organize	historical	business	data	so	it	can	be
analyzed	to	assist	management	in	making	business	decisions.	To	achieve	this
purpose,	the	data	warehouse	is	created	and	initially	loaded	with	the	existing
historical	business	data.	It	is	then	periodically	updated	with	new	data	from
operational	data	systems.	Much	of	the	effort	in	data	warehouse	maintenance	is
involved	with	updating	the	data	in	the	data	warehouse,	adjusting	data
presentation	applications	to	incorporate	new	data,	and	updating	data	marts.

Topics	in	this	section	describe	common	tasks	performed	to	maintain	data
warehouses.

Topic Description
Updating	Data	Warehouse	Data Describes	the	process	and	tasks

involved	in	updating	a	data	warehouse.
Administering	a	Data	Warehouse Describes	common	data	warehouse

administration	tasks.
Tuning	Data	Warehouse
Performance

Describes	ways	to	improve	data
warehouse	performance.



Creating	and	Using	Data	Warehouses



Updating	Data	Warehouse	Data
Updating	data	warehouse	data	includes	periodically	extracting	data	from
operational	systems,	cleansing	and	transforming	the	data,	and	loading	the	new
data	into	the	data	warehouse.	Each	data	update	also	includes	tasks	that	must	be
accomplished	to	synchronize	cubes	if	Microsoft®	SQL	Server™	2000	Analysis
Services	is	used	for	online	analytical	processing	(OLAP),	and	to	update	any	data
marts	that	are	part	of	the	data	warehouse.

The	process	of	extracting,	cleansing,	and	transforming	data	for	a	periodic	update
is	essentially	the	same	as	the	process	used	in	the	initial	loading	of	the	data
warehouse,	although	the	update	process	is	often	much	less	complex	and	more
automated	than	the	initial	load	process.	Procedures	and	automated	tasks
developed	during	the	initial	load	process	can	reduce	the	amount	of	manual	effort
required	during	updates.	Corrections	to	source	operational	systems	identified	and
implemented	during	the	initial	load	also	reduce	the	number	of	inconsistencies
and	errors	that	must	be	addressed	during	updates.	However,	it	is	often	the	case
that	manual	intervention	is	required	during	updates	to	ensure	the	data	is	ready
for	loading	into	the	data	warehouse.

One	difference	between	the	initial	data	load	and	data	updates	is	that	verifying	the
referential	integrity	should	be	performed	incrementally	on	update	data	before	it
is	loaded	into	the	data	warehouse	and	made	available	to	users.	Updates	often
include	additions	and	changes	to	dimension	tables	as	well	as	the	addition	of	rows
to	the	fact	tables.	The	new	and	changed	data	should	be	checked	for	internal
consistency	as	well	as	verified	against	existing	data	in	the	data	warehouse	before
it	is	loaded	into	the	data	warehouse.

After	the	update	data	has	been	made	ready	for	loading	into	the	data	warehouse,
you	can	use	Transact-SQL,	Data	Transformation	Services	(DTS),	or	the	bcp
utility	to	update	the	data	warehouse	tables.	Depending	on	the	design	and
implementation	of	the	presentation	applications	that	provide	access	to	data
warehouse	data	for	end	users,	you	may	need	to	take	the	data	warehouse	offline
during	the	update	to	prevent	inconsistencies	in	query	results.

See	Also



Extracting	Data	from	Operational	Systems

Cleansing	and	Transforming	Data

Loading	Data	into	the	Data	Warehouse	Database

Scheduling	Data	Updates

Synchronizing	OLAP	Cubes

Updating	Data	Marts



Creating	and	Using	Data	Warehouses



Scheduling	Data	Updates
Data	warehouses	used	for	the	analysis	of	historical	business	data	are	better
served	by	periodic	updates	than	they	are	by	online	data	updates.	Constantly
changing	data	can	interfere	with	the	analysis	process,	which	requires	time	and
iterative	querying	to	refine	and	verify	results.	The	frequency	of	data	warehouse
updates	depends	on	the	needs	of	the	organization	and	the	uses	of	the	data
warehouse.	Typical	update	periods	may	be	monthly,	weekly,	or	daily.	There	are
several	items	to	consider	when	scheduling	data	warehouse	updates.

Although	the	amount	of	data	involved	in	a	data	warehouse	update	is	usually
much	less	than	the	amount	of	data	initially	loaded,	the	process	of	extracting,
cleansing	and	transforming,	and	loading	the	data	can	still	adversely	affect	the
operational	systems	involved.	When	you	load	data	into	the	data	warehouse,	you
are	populating	the	tables	that	will	be	used	by	the	presentation	applications	that
make	the	data	available	to	users.	Loading	data	often	involves	the	transfer	of
large	amounts	of	data	from	source	operational	systems,	a	data	preparation	area
database,	or	preparation	area	tables	in	the	data	warehouse	database.	Such
operations	can	impose	significant	processing	loads	on	the	databases	involved
and	should	be	accomplished	during	periods	of	relatively	low	system	use.

You	must	also	coordinate	data	warehouse	update	operations	with	the	operation
of	the	presentation	services	that	make	the	data	available	to	users.	If	you	are
loading	large	amounts	of	data,	you	may	want	to	perform	bulk	loads	without
using	transactions	or	logging.	In	this	case,	you	may	need	to	take	the	data
warehouse	offline	during	the	loading	operation	to	prevent	users	from	accessing
data	that	could	be	inconsistent	while	it	is	being	loaded	to	various	tables.

Presentation	applications	that	provide	access	to	the	data	warehouse	by	end	users
may	require	adjustment	to	accommodate	new	data.	For	example,	Microsoft®
SQL	Server™	2000	Analysis	Services	cubes	often	require	updating	or
reprocessing	to	incorporate	new	data	in	the	data	warehouse.	For	more
information,	see	Synchronizing	OLAP	Cubes.



Creating	and	Using	Data	Warehouses



Synchronizing	OLAP	Cubes
If	you	are	using	Microsoft®	SQL	Server™	2000	Analysis	Services	with	your
data	warehouse	to	analyze	and	prepare	OLAP	data	for	presentation	to	users,	you
must	be	familiar	with	the	effects	of	data	changes	on	Analysis	Services	cubes
before	updating	data	in	the	data	warehouse.	In	some	situations,	users	can	receive
inconsistent	results	after	data	warehouse	data	changes	until	summary
information	is	updated	to	incorporate	new	detail	data.

The	effects	of	changes	in	underlying	data	on	cubes	vary	with	the	types	of	cubes
in	use.	For	example,	multidimensional	OLAP	(MOLAP)	cubes	are	unaffected	by
changes	in	underlying	data	until	the	cubes	are	reprocessed.	Depending	on	how
they	are	defined,	relational	OLAP	(ROLAP)	cubes	and	hybrid	OLAP	(HOLAP)
cubes	may	be	immediately	affected	and	require	updating	or	reprocessing	to
regain	consistency.	Real-time	cubes	are	designed	to	incorporate	new	data
warehouse	data	immediately.	For	more	information,	see	Analysis	Services
Overview	and	Maintaining	OLAP	Data.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Creating	and	Using	Data	Warehouses



Updating	Data	Marts
In	some	data	warehouse	implementations,	data	marts	receive	their	data	from	the
master	data	warehouse.	In	other	implementations	the	data	marts	are	updated
locally	and	contribute	data	to	the	data	warehouse	database.	Moving	updated	data
to	or	from	data	marts	can	be	straightforward	if	the	data	marts	are	designed	to	be
consistent	with	the	master	data	warehouse.	The	use	of	standardized	schemas,
shared	dimensions,	and	common	fact	table	formats	greatly	contribute	to	the	ease
of	data	mart	maintenance.

If	the	data	marts	receive	data	updates	from	a	master	data	warehouse,	you	should
be	able	to	design	automated	tasks	that	filter	the	data	warehouse	update	data	and
post	the	appropriate	data	subset	to	each	data	mart	during	the	update	of	the	data
warehouse	database.	Presentation	applications	used	by	the	data	mart	may	need	to
be	adjusted	to	accommodate	the	new	data.

If	a	data	mart	collects	data	locally	and	contributes	data	to	the	master	data
warehouse,	you	may	need	to	treat	the	data	mart	as	if	it	were	an	operational	data
source	and	bring	the	data	into	a	preparation	area	for	cleansing	and	verification
against	the	data	warehouse	before	posting	it	to	the	data	warehouse.	If	the	data
mart	is	designed	and	managed	as	an	integral	part	of	the	data	warehouse,	the
verification	process	may	not	be	necessary	and	the	data	can	be	loaded	directly
from	the	data	mart	into	the	data	warehouse	database.	In	either	case,	you	may
need	to	adjust	presentation	applications	to	accommodate	the	new	data.

You	can	use	Transact-SQL,	Data	Transformation	Services	(DTS),	the	bcp	utility,
or	custom	applications	to	update	the	data	mart	or	data	warehouse	tables.	You
may	also	be	able	to	use	replication	to	perform	data	mart	updates.	For	more
information,	see	Replication	Overview.

JavaScript:hhobj_1.Click()


Creating	and	Using	Data	Warehouses



Administering	a	Data	Warehouse
Administering	a	data	warehouse	is	both	similar	to	and	different	from
administering	an	online	transaction	processing	(OLTP)	system.	It	is	similar	in
that	data	warehouse	data	is	stored	and	maintained	in	a	relational	database,	so	the
tools	used	to	administer	relational	databases	can	be	used	with	data	warehouses.
It	is	different	in	that	OLTP	systems	are	generally	characterized	by	high-volume
transaction	updates	to	volatile	data,	whereas	data	warehouses	are	generally
characterized	by	massive	amounts	of	stable	historical	data.	These	differences	call
for	different	approaches	to	data	warehouse	administrative	tasks	such	as	backing
up	data	and	automating	recurring	tasks.

See	Also

Administering	SQL	Server	Overview

Administering	Analysis	Services

Backing	Up	Data	Warehouse	Data

Automating	Data	Warehouse	Tasks

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Creating	and	Using	Data	Warehouses



Backing	Up	Data	Warehouse	Data
An	online	transaction	processing	(OLTP)	system	captures	incoming	data	and
updates	a	database.	To	ensure	against	loss	of	data,	the	system	logs	transactions	as
they	are	performed,	and	administrators	develop	backup	strategies	that	include
periodic	full	and	incremental	backups	of	database.	These	strategies	are	designed
to	prevent	loss	of	data,	to	minimize	interference	with	operational	transaction
processing,	and	to	provide	for	rapid	recovery	from	system	malfunctions.

In	contrast,	a	data	warehouse	stores	massive	amounts	of	stable	historical	data
that	is	updated	on	a	managed	periodic	schedule.	For	data	warehouses,	you
should	design	backup	strategies	to	minimize	full	backups	and	to	use	incremental
backups	for	data	updates.

Recovery	time	constraints	are	often	more	flexible	and	less	restrictive	for	data
warehouse	malfunctions	than	for	OLTP	malfunctions.	More	permissive	recovery
time	constraints	usually	permit	full	data	warehouse	backups	to	be	made	much
less	frequently	than	are	required	for	OLTP	systems.	For	example,	a	table	of	sales
facts	may	contain	hundreds	of	millions	of	rows	that	reflect	sales	for	ten	years	of
history.	It	is	quite	unlikely	that	changes	will	be	made	to	sales	data	after	the
business	has	performed	a	year-end	closing	process.

Repeated	backups	of	data	that	has	not	changed	are	unnecessary,	and	backup
strategies	should	take	this	into	account.	Depending	on	recovery	time	constraints
and	data	volume,	a	strategy	may	be	created	that	backs	up	data	added	during	data
warehouse	updates	using	incremental	backups,	and	then	creates	a	backup	of	only
the	data	added	during	the	current	year	after	year-end	closing.	To	recover	from	a
complete	failure	of	the	data	warehouse	database	would	require	loading	multiple
backups,	one	for	each	year	prior	to	the	current	year,	then	incremental	backups
for	the	current	year	updates.

Microsoft®	SQL	Server™	2000	Analysis	Services	maintains	OLAP	data	in
special-purpose	Analysis	server	databases,	which	can	be	archived	and	restored
separately	from	data	warehouse	database	backups.

See	Also

Backing	Up	and	Restoring	Databases

JavaScript:hhobj_1.Click()


Archiving	and	Restoring	Databases

JavaScript:hhobj_2.Click()


Creating	and	Using	Data	Warehouses



Automating	Data	Warehouse	Tasks
There	are	numerous	tasks	involved	in	administering	and	maintaining	a	data
warehouse.	Many	of	these	tasks	can	be	automated	using	a	variety	of	tools
available	in	Microsoft®	SQL	Server™	2000.	Appropriate	tasks	can	be	scheduled
for	periodic	accomplishment.

A	data	warehouse	must	be	updated	on	a	periodic	basis	to	incorporate	new	data
from	ongoing	business	operations.	You	can	combine	various	SQL	Server	2000
processing	features	and	methods	to	define	jobs	that	perform	the	data	extractions.
You	can	schedule	the	periodic	execution	of	such	jobs	and	provide	automatic
notification	of	job	completion	and	status.

In	addition	to	the	built-in	tools,	SQL	Server	2000	provides	a	number	of
programming	object	models	and	interfaces	that	can	be	used	to	create	custom
applications	that	perform	administrative	tasks.	You	can	use	programming
languages	such	as	C/C++,	Microsoft	Visual	Basic®,	or	scripting	to	create	these
applications.	For	more	information,	see	Building	SQL	Server	Applications
Overview	and	other	topics	in	the	Building	SQL	Server	Applications	section	of
Books	Online.

See	Also

Automating	Administrative	Tasks

Overview	of	the	SQL	Server	Tools

Updating	Data	Warehouse	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Creating	and	Using	Data	Warehouses



Tuning	Data	Warehouse	Performance
A	data	warehouse	must	provide	rapid	evaluation	of	queries	that	analyze	and
summarize	huge	numbers	of	rows	of	data	from	multiple	joined	tables.
Microsoft®	SQL	Server™	2000	provides	information	you	can	use	to	optimize
the	performance	of	the	relational	database	that	contains	the	data	warehouse	data.
Database	performance	can	be	affected	by	many	choices	you	make	in	the	logical
design	of	the	database,	its	physical	implementation,	index	tuning,	query	tuning,
and	so	on.	For	more	information,	see	Optimizing	Database	Performance
Overview.

Although	the	performance	of	SQL	Server	2000	Analysis	Services	depends	to	a
large	extent	on	the	performance	of	the	data	warehouse	database,	its	performance
is	also	influenced	by	the	design	of	the	data	warehouse	database	and	the	Analysis
Services	cubes.	You	can	also	tune	the	performance	of	Analysis	Services	by	using
tools	that	analyze	usage	patterns	by	adjusting	the	amount	of	aggregations	that	are
precalculated	when	cubes	are	processed,	optimizing	cube	schemas	to	avoid
unnecessary	joins,	and	so	on.	Computer	hardware	configurations	also	affect	the
performance	of	Analysis	servers.	For	more	information,	see	Analyzing	and
Optimizing	Performance.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

	Creating and Using Data Warehouses Overview
	SQL Server 2000 Tools for Data Warehouses
	Parts of a Data Warehouse
	Data Marts
	Relational Databases
	Data Sources
	Data Preparation Area
	Presentation Services
	End-User Analysis

	Creating a Data Warehouse
	Designing a Data Warehouse
	Using Dimensional Modeling
	Fact Tables
	Aggregation Tables
	Dimension Tables
	Indexes

	Creating the Data Preparation Area
	Creating the Data Warehouse Database
	Extracting Data from Operational Systems
	Cleansing and Transforming Data
	Loading Data into the Data Warehouse Database
	Preparing Presentation Information
	Distributing Data to Data Marts

	Using a Data Warehouse
	SQL Queries
	OLAP and Data Mining
	English Query
	Microsoft Office 2000
	Web Access and Reporting
	Offline OLAP Cubes
	Third-Party Applications
	Custom Applications

	Maintaining a Data Warehouse
	Updating Data Warehouse Data
	Scheduling Data Updates
	Synchronizing OLAP Cubes
	Updating Data Marts

	Administering a Data Warehouse
	Backing Up Data Warehouse Data
	Automating Data Warehouse Tasks

	Tuning Data Warehouse Performance


