
Creating	and	Maintaining	Databases

Creating	and	Maintaining	Databases	Overview
A	client/server	database	system	comprises	two	components:

Programs	that	provide	an	interface	for	client-based	users	to	access	data.

The	database	structure	that	manages	and	stores	the	data	on	the	server.

For	example,	if	you	use	Microsoft®	SQL	Server™	2000	to	create	a	checking
account	application,	you	must	set	up	a	database	structure	to	manage	the	account
transaction	data	and	an	application	that	acts	as	the	user	interface	to	the	database,
allowing	users	to	access	checking	account	information.

Creating	a	database	to	serve	your	business	needs	requires	an	understanding	of
how	to	design,	create,	and	maintain	each	of	these	components	to	ensure	that	your
database	performs	optimally.

Topic Description
Databases Describes	how	databases	are	used	to	represent,

manage,	and	access	data.
Tables Describes	how	tables	are	used	to	store	rows	of

data	and	define	the	relationships	between	multiple
tables.

Indexes Describes	how	indexes	are	used	to	increase	the
speed	of	accessing	the	data	in	the	table.

Views Describes	views	and	their	usefulness	in	providing
an	alternative	way	of	looking	at	the	data	in	one	or
more	tables.

Stored	Procedures Describes	how	these	Transact-SQL	programs
centralize	business	rules,	tasks,	and	processes
within	the	server.

Enforcing	Business
Rules	with	Triggers

Describes	the	function	of	triggers	as	special	types
of	stored	procedures	executed	only	when	data	in	a
table	is	modified.

Full-Text	Indexes Describes	how	full-text	indexes	facilitate	the

querying	of	data	stored	in	character-based
columns,	such	as	varchar	and	text.

Creating	and	Maintaining	Databases

Databases
A	database	in	Microsoft®	SQL	Server™	2000	consists	of	a	collection	of	tables
that	contain	data	and	other	objects,	such	as	views,	indexes,	stored	procedures,
and	triggers,	defined	to	support	activities	performed	with	the	data.	The	data
stored	in	a	database	is	usually	related	to	a	particular	subject	or	process,	such	as
inventory	information	for	a	manufacturing	warehouse.

SQL	Server	can	support	many	databases.	Each	database	can	store	either
interrelated	orunrelated	data	from	other	databases.	For	example,	a	server	can
have	one	database	that	stores	personnel	data	and	another	that	stores	product-
related	data.	Alternatively,	one	database	can	store	current	customer	order	data,
and	another	related	database	can	store	historical	customer	orders	used	for	yearly
reporting.

Before	you	create	a	database,	it	is	important	to	understand	the	parts	of	a	database
and	how	to	design	these	parts	to	ensure	that	the	database	performs	well	after	it	is
implemented.

IMPORTANT		It	is	recommended	that	you	do	not	create	any	user	objects,	such	as
tables,	views,	stored	procedures,	or	triggers,	in	the	master	database.	The	master
database	contains	the	system	tables	that	store	the	system	information	used	by
SQL	Server,	such	as	configuration	option	settings.

Creating	and	Maintaining	Databases

Parts	of	a	Database
A	database	in	Microsoft®	SQL	Server™	2000	consists	of	a	collection	of	tables
that	stores	a	specific	set	of	structured	data.	A	table	contains	a	collection	of	rows
(referred	to	as	records	or	tuples)	and	columns	(referred	to	as	attributes).	Each
column	in	the	table	is	designed	to	store	a	certain	type	of	information	(for
example,	dates,	names,	dollar	amounts,	or	numbers).	Tables	have	several	types
of	controls	(constraints,	rules,	triggers,	defaults,	and	customized	user	data	types)
that	ensure	the	validity	of	the	data.	Tables	can	have	indexes	similar	to	those	in
books	that	allow	rows	to	be	found	quickly.	Declarative	referential	integrity
(DRI)	constraints	can	be	added	to	the	tables	to	ensure	that	interrelated	data	in
different	tables	remains	consistent.	A	database	can	also	store	procedures	that	use
Transact-SQL	programming	code	to	perform	operations	with	the	data	in	the
database,	such	as	storing	views	that	provide	customized	access	to	table	data.

For	example,	you	create	a	database	named	MyCoDB	to	manage	the	data	in	your
company.	In	the	MyCoDb	database,	you	create	a	table	named	Employees	to
store	information	about	each	employee,	and	the	table	contains	columns	named
EmpId,	LastName,	FirstName,	Dept,	and	Title.		To	ensure	that	no	two
employees	share	the	same	EmpId	and	that	the	Dept	column	contains	only	valid
numbers	for	the	departments	in	your	company,	you	must	add	constraints	to	the
table.	Because	you	want	to	be	able	to	quickly	find	the	data	for	an	employee,
based	on	the	employee	ID	or	last	name,	you	define	indexes.	You	will	have	to	add
a	row	of	data	to	the	Employees	table	for	each	employee,	so	you	create	a
procedure	named	AddEmployee,	which	is	customized	to	accept	the	data	values
for	a	new	employee	and	performs	the	operation	of	adding	the	row	to	the
Employees	table.	You	may	need	a	departmental	summary	of	employees,	in
which	case	you	define	a	view	called	DeptEmps	that	combines	data	from	the
Departments	and	Employees	tables	and	produces	the	output.	This	illustration
shows	the	parts	of	the	MyCoDB	that	is	created.

Creating	and	Maintaining	Databases

Files	and	Filegroups
Microsoft®	SQL	Server™	2000	maps	a	database	using	a	set	of	operating-system
files.	All	data	and	objects	in	the	database,	such	as	tables,	stored	procedures,
triggers,	and	views,	are	stored	within	these	operating-system	files:

Primary

This	file	contains	the	startup	information	for	the	database	and	is	used	to
store	data.	Every	database	has	one	primary	data	file.

Secondary

These	files	hold	all	of	the	data	that	does	not	fit	in	the	primary	data	file.
If	the	primary	file	can	hold	all	of	the	data	in	the	database,	databases	do
not	need	to	have	secondary	data	files.	Some	databases	may	be	large
enough	to	need	multiple	secondary	data	files	or	to	use	secondary	files
on	separate	disk	drives	to	spread	data	across	multiple	disks.

Transaction	Log

These	files	hold	the	log	information	used	to	recover	the	database.	There
must	be	at	least	one	log	file	for	each	database.

For	example,	a	simple	database,	sales,	can	be	created	with	one	primary	file	that
contains	all	data	and	objects	and	a	log	file	that	contains	the	transaction	log
information.	Alternatively,	a	more	complex	database,	orders,	can	be	created
with	one	primary	file	and	five	secondary	files;	the	data	and	objects	within	the
database	spread	across	all	six	files,	and	four	additional	log	files	contain	the
transaction	log	information.

Filegroups	allow	files	to	be	grouped	together	for	administrative	and	data
allocation/placement	purposes.	For	example,	three	files	(Data1.ndf,	Data2.ndf,
and	Data3.ndf)	can	be	created	on	three	disk	drives,	respectively,	and	assigned	to
the	filegroup	fgroup1.	A	table	can	then	be	created	specifically	on	the	filegroup
fgroup1.	Queries	for	data	from	the	table	will	be	spread	across	the	three	disks,
thereby	improving	performance.	The	same	performance	improvement	can	be
accomplished	with	a	single	file	created	on	a	RAID	(redundant	array	of
independent	disks)	stripe	set.	Files	and	filegroups,	however,	allow	you	to	easily

add	new	files	on	new	disks.	Additionally,	if	your	database	exceeds	the	maximum
size	for	a	single	Microsoft	Windows	NT®	file,	you	can	use	secondary	data	files
to	allow	your	database	to	continue	to	grow.

Rules	for	Designing	Files	and	Filegroups
Rules	for	designing	files	and	filegroups	include:

A	file	or	filegroup	cannot	be	used	by	more	than	one	database.	For
example,	file	sales.mdf	and	sales.ndf,	which	contain	data	and	objects
from	the	sales	database,	cannot	be	used	by	any	other	database.

A	file	can	be	a	member	of	only	one	filegroup.

Data	and	transaction	log	information	cannot	be	part	of	the	same	file	or
filegroup.

Transaction	log	files	are	never	part	of	any	filegroups.

See	Also

CREATE	DATABASE

Physical	Database	Files	and	Filegroups

Placing	Tables	on	Filegroups

Transaction	Logs

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Default	Filegroups
A	database	comprises	a	primary	filegroup	and	any	user-defined	filegroups.

The	filegroup	that	contains	the	primary	file	is	the	primary	filegroup.	When	a
database	is	created,	the	primary	filegroup	contains	the	primary	data	file	and	any
other	files	that	are	not	put	into	another	filegroup.	All	system	tables	are	allocated
in	the	primary	filegroup.	If	the	primary	filegroup	runs	out	of	space,	no	new
catalog	information	can	be	added	to	the	system	tables.	The	primary	filegroup
only	fills	if	either	autogrow	is	turned	off	or	all	the	disks	holding	the	files	in	the
primary	filegroup	run	out	of	space.	If	this	happens,	either	turn	autogrow	back	on,
or	move	other	files	off	the	disks	to	free	more	space.

User-defined	filegroups	are	any	filegroups	that	are	specifically	created	by	the
user	when	first	creating	or	later	altering	the	database.	If	a	user-defined	filegroup
fills	up,	only	the	user	tables	specifically	allocated	to	that	filegroup	would	be
affected.

At	any	time,	exactly	one	filegroup	is	designated	as	the	DEFAULT	filegroup.
When	objects	are	created	in	the	database	without	specifying	to	which	filegroup
they	belong,	they	are	assigned	to	the	default	filegroup.	The	default	filegroup
must	be	large	enough	to	hold	any	objects	not	allocated	to	a	user-defined
filegroup.	Initially,	the	primary	filegroup	is	the	default	filegroup.

The	default	filegroup	can	be	changed	using	the	ALTER	DATABASE	statement.
By	changing	the	default	filegroup,	any	objects	that	do	not	have	a	filegroup
specified	when	they	are	created	are	allocated	to	the	data	files	in	the	new	default
filegroup.	However,	allocation	for	the	system	objects	and	tables	remains	within
the	PRIMARY	filegroup,	not	the	new	default	filegroup.

Changing	the	default	filegroups	prevents	user	objects	that	are	not	specifically
created	on	a	user-defined	filegroup	from	competing	with	the	system	objects	and
tables	for	data	space.

See	Also

ALTER	DATABASE

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Using	Files	and	Filegroups
Filegroups	use	a	proportional	fill	strategy	across	all	the	files	within	each
filegroup.	As	data	is	written	to	the	filegroup,	Microsoft®	SQL	Server™	2000
writes	an	amount	proportional	to	the	free	space	in	the	file	to	each	file	within	the
filegroup,	rather	than	writing	all	the	data	to	the	first	file	until	full,	and	then
writing	to	the	next	file.	For	example,	if	file	f1	has	100	megabytes	(MB)	free	and
file	f2	has	200	MB	free,	one	extent	is	allocated	from	file	f1,	two	extents	from	file
f2,	and	so	on.	This	way	both	files	become	full	at	about	the	same	time,	and	simple
striping	is	achieved.

As	soon	as	all	the	files	in	a	filegroup	are	full,	SQL	Server	automatically	expands
one	file	at	a	time	in	a	round-robin	fashion	to	accommodate	more	data	(provided
that	the	database	is	set	to	grow	automatically).	For	example,	a	filegroup
comprises	three	files,	all	set	to	automatically	grow.	When	space	in	all	files	in	the
filegroup	is	exhausted,	only	the	first	file	is	expanded.	When	the	first	file	is	full,
and	no	more	data	can	be	written	to	the	filegroup,	the	second	file	is	expanded.
When	the	second	file	is	full,	and	no	more	data	can	be	written	to	the	filegroup,	the
third	file	is	expanded.	If	the	third	file	becomes	full,	and	no	more	data	can	be
written	to	the	filegroup,	the	first	file	is	expanded	again,	and	so	on.

Using	files	and	filegroups	improves	database	performance	by	allowing	a
database	to	be	created	across	multiple	disks,	multiple	disk	controllers,	or	RAID
(redundant	array	of	independent	disks)	systems.	For	example,	if	your	computer
has	four	disks,	you	can	create	a	database	that	comprises	three	data	files	and	one
log	file,	with	one	file	on	each	disk.	As	data	is	accessed,	four	read/write	heads	can
simultaneously	access	the	data	in	parallel,	which	speeds	up	database	operations.

Additionally,	files	and	filegroups	allow	data	placement	because	a	table	can	be
created	in	a	specific	filegroup.	This	improves	performance	because	all	I/O	for	a
specific	table	can	be	directed	at	a	specific	disk.	For	example,	a	heavily	used	table
can	be	placed	on	one	file	in	one	filegroup,	located	on	one	disk,	and	the	other,
less	heavily	accessed	tables	in	the	database	can	be	placed	on	the	other	files	in
another	filegroup,	located	on	a	second	disk.

Recommendations

These	are	some	general	recommendations	for	files	and	filegroups:

Most	databases	will	work	well	with	a	single	data	file	and	a	single
transaction	log	file.

If	you	use	multiple	files,	create	a	second	filegroup	for	the	additional	file
and	make	that	filegroup	the	default	filegroup.	This	way,	the	primary	file
will	contain	only	system	tables	and	objects.

To	maximize	performance,	create	files	or	filegroups	on	as	many
different	available	local	physical	disks	as	possible,	and	place	objects
that	compete	heavily	for	space	in	different	filegroups.

Use	filegroups	to	allow	placement	of	objects	on	specific	physical	disks.

Place	different	tables	used	in	the	same	join	queries	in	different
filegroups.	This	will	improve	performance,	due	to	parallel	disk	I/O
searching	for	joined	data.

Place	heavily	accessed	tables	and	the	nonclustered	indexes	belonging	to
those	tables	on	different	filegroups.	This	will	improve	performance,	due
to	parallel	I/O	if	the	files	are	located	on	different	physical	disks.

Do	not	place	the	transaction	log	file	or	files	on	the	same	physical	disk
with	the	other	files	and	filegroups.

See	Also

CREATE	DATABASE

Physical	Database	Files	and	Filegroups

Placing	Tables	on	Filegroups

Transaction	Logs

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Using	Files	and	Filegroups	to	Manage	Database
Growth
When	creating	a	database	using	files	and	filegroups,	you	must	specify	an	initial
size	for	the	file.	Microsoft®	SQL	Server™	2000	creates	the	data	files	based	on
the	size	you	provide.	As	data	is	added	to	the	database,	these	files	become	full.
However,	you	must	consider	whether	and	how	the	database	will	grow	beyond
the	initial	space	you	allocate	if	more	data	is	added	to	the	database	than	will	fit	in
the	files.

By	default,	SQL	Server	allows	the	data	files	to	grow	as	much	as	necessary	until
disk	space	is	exhausted.	Therefore,	if	you	do	not	want	the	database	files	to	be
allowed	to	grow	any	larger	than	when	they	were	initially	created,	this	must	be
specified	at	database	creation	time	using	SQL	Server	Enterprise	Manager	or	the
CREATE	DATABASE	statement.

Alternatively,	SQL	Server	allows	you	to	create	data	files	that	are	allowed	to
grow	automatically	when	they	fill	with	data,	but	only	to	a	predefined	maximum
size.	This	can	prevent	the	disk	drives	from	running	out	of	disk	space	completely.

Recommendations
When	you	create	a	database,	make	the	data	files	as	large	as	possible,	based	on
the	maximum	amount	of	data	you	expect	in	the	database.	Permit	the	data	files	to
grow	automatically	but	place	a	limit	on	the	growth	by	specifying	a	maximum
data	file	growth	size	that	leaves	some	available	space	on	the	hard	disk.	This
allows	the	database	to	grow	if	more	data	is	added	than	expected,	but	does	not	fill
up	the	disk	drive.	If	the	initial	data	file	size	is	exceeded	and	the	file	starts	to
grow	automatically,	reevaluate	the	expected	maximum	database	size	and	plan
accordingly	by	adding	more	disk	space	(if	necessary)	and	creating	and	adding
more	files	or	filegroups	to	the	database.

However,	if	the	database	is	not	supposed	to	expand	beyond	its	initial	size,	set	the
maximum	growth	size	of	the	database	to	zero.	This	prevents	the	database	files
from	growing.	If	the	database	files	fill	with	data,	no	more	data	is	added	until
more	data	files	are	added	to	the	database	or	existing	files	are	expanded.

Fragmentation	of	Files
Allowing	files	to	grow	automatically	can	cause	fragmentation	of	those	files	if	a
large	number	of	files	share	the	same	disk.	Therefore,	it	is	recommended	that	files
or	filegroups	be	created	on	as	many	different	available	local	physical	disks	as
possible.	Place	objects	that	compete	heavily	for	space	in	different	filegroups.

See	Also

ALTER	DATABASE

CREATE	DATABASE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Read-Only	Filegroups
Microsoft®	SQL	Server™	2000	allows	filegroups	to	be	marked	as	read-only.
Any	existing	filegroup,	except	the	primary	filegroup,	can	be	marked	as	read-
only.	A	filegroup	marked	read-only	cannot	be	modified	in	any	way.

Place	tables	that	must	not	be	modified,	such	as	historical	data,	on	filegroups,	and
then	mark	the	filegroup	as	read-only.	This	prevents	accidental	updates.	The	read-
only	filegroup	can	then	be	backed	up	and	restored	on	another	instance	of	SQL
Server	without	concern	for	recovery	of	transaction	logs.

See	Also

ALTER	DATABASE

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Transaction	Logs
A	database	in	Microsoft®	SQL	Server™	2000	has	at	least	one	data	file	and	one
transaction	log	file.	Data	and	transaction	log	information	is	never	mixed	on	the
same	file,	and	individual	files	are	used	by	only	one	database.

SQL	Server	uses	the	transaction	log	of	each	database	to	recover	transactions.
The	transaction	log	is	a	serial	record	of	all	modifications	that	have	occurred	in
the	database	as	well	as	the	transaction	that	performed	each	modification.	The
transaction	log	records	the	start	of	each	transaction.	It	records	the	changes	to	the
data	and	enough	information	to	undo	the	modifications	(if	necessary	later)	made
during	each	transaction.	For	some	large	operations,	such	as	CREATE	INDEX,
the	transaction	log	instead	records	the	fact	that	the	operation	took	place.	The	log
grows	continuously	as	logged	operations	occur	in	the	database.

The	transaction	log	records	the	allocation	and	deallocation	of	pages	and	the
commit	or	rollback	of	each	transaction.	This	allows	SQL	Server	either	to	apply
(roll	forward)	or	back	out	(roll	back)	each	transaction	in	the	following	ways:

A	transaction	is	rolled	forward	when	you	apply	a	transaction	log.	SQL
Server	copies	the	after	image	of	every	modification	to	the	database	or
reruns	statements	such	as	CREATE	INDEX.	These	actions	are	applied
in	the	same	sequence	in	which	they	originally	occurred.	At	the	end	of
this	process,	the	database	is	in	the	same	state	it	was	in	at	the	time	the
transaction	log	was	backed	up.

A	transaction	is	rolled	back	when	you	back	out	an	incomplete
transaction.	SQL	Server	copies	the	before	images	of	all	modifications	to
the	database	since	the	BEGIN	TRANSACTION.	If	it	encounters
transaction	log	records	indicating	that	a	CREATE	INDEX	was
performed,	it	performs	operations	that	logically	reverse	the	statement.
These	before	images	and	CREATE	INDEX	reversals	are	applied	in	the
reverse	of	their	original	sequence.

At	a	checkpoint,	SQL	Server	ensures	that	all	transaction	log	records	and
database	pages	modified	are	written	to	disk.	During	the	recovery	process	of	each
database	that	occurs	when	SQL	Server	is	restarted,	a	transaction	must	be	rolled

forward	only	when	it	is	not	known	whether	all	the	data	modifications	in	the
transaction	were	actually	written	from	the	SQL	Server	buffer	cache	to	disk.
Because	a	checkpoint	forces	all	modified	pages	to	disk,	it	represents	the	point	at
which	the	startup	recovery	must	start	rolling	forward	transactions.	Because	all
pages	modified	before	the	checkpoint	are	guaranteed	to	be	on	disk,	there	is	no
need	to	roll	forward	anything	done	before	the	checkpoint.

Transaction	log	backups	enable	you	to	recover	the	database	to	a	specific	point	in
time	(for	example,	prior	to	entering	unwanted	data),	or	to	the	point	of	failure.
Transaction	log	backups	should	be	a	consideration	in	your	media	recovery
strategy.	For	more	information,	see	Selecting	a	Recovery	Model.

See	Also

CREATE	DATABASE

Transactions

Transaction	Log	Backups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Virtual	Log	Files
Each	transaction	log	file	is	divided	logically	into	smaller	segments	called	virtual
log	files.	Virtual	log	files	are	the	unit	of	truncation	for	the	transaction	log.	When
a	virtual	log	file	no	longer	contains	log	records	for	active	transactions,	it	can	be
truncated	and	the	space	becomes	available	to	log	new	transactions.

The	smallest	size	for	a	virtual	log	file	is	256	kilobytes	(KB).	The	minimum	size
for	a	transaction	log	is	512	KB,	which	provides	two	256-KB	virtual	log	files.
The	number	and	size	of	the	virtual	log	files	in	a	transaction	log	increase	as	the
size	of	the	log	file	increases.	A	small	log	file	can	have	a	small	number	of	small
virtual	log	files	(for	example,	a	5-MB	log	file	that	comprises	five	1-MB	virtual
log	files).	A	large	log	file	can	have	larger	virtual	log	files	(for	example,	a	500-
MB	log	file	that	comprises	ten	50-MB	virtual	log	files).

Microsoft®	SQL	Server™	2000	tries	to	avoid	having	many	small	virtual	log
files.	The	number	of	virtual	log	files	grows	much	more	slowly	than	the	size.	If	a
log	file	grows	in	small	increments,	it	tends	to	have	many	small	virtual	log	files.
If	the	log	file	grows	in	larger	increments,	SQL	Server	creates	a	smaller	number
of	larger	virtual	log	files.	For	example,	if	the	transaction	log	is	growing	by	1-MB
increments,	the	virtual	log	files	are	smaller	and	more	numerous	compared	to	a
transaction	log	growing	at	50-MB	increments.	A	large	number	of	virtual	log	files
can	increase	the	time	taken	to	perform	database	recovery.

As	records	are	written	to	the	log,	the	end	of	the	log	grows	from	one	virtual	log
file	to	the	next.	If	there	is	more	than	one	physical	log	file	for	a	database,	the	end
of	the	log	grows	through	each	virtual	log	file	in	each	physical	file	before	circling
back	to	the	first	virtual	log	file	in	the	first	physical	file.	Only	when	all	log	files
are	full	will	the	log	begin	to	grow	automatically.

See	Also

Shrinking	a	Database

Creating	and	Maintaining	Databases

Database	Design	Considerations
Designing	a	database	requires	an	understanding	of	both	the	business	functions
you	want	to	model	and	the	database	concepts	and	features	used	to	represent
those	business	functions.

It	is	important	to	accurately	design	a	database	to	model	the	business	because	it
can	be	time	consuming	to	change	the	design	of	a	database	significantly	once
implemented.	A	well-designed	database	also	performs	better.

When	designing	a	database,	consider:

The	purpose	of	the	database	and	how	it	affects	the	design.	Create	a
database	plan	to	fit	your	purpose.

Database	normalization	rules	that	prevent	mistakes	in	the	database
design.

Protection	of	your	data	integrity.

Security	requirements	of	the	database	and	user	permissions.

Performance	needs	of	the	application.	You	must	ensure	that	the	database
design	takes	advantage	of	Microsoft®	SQL	Server™	2000	features	that
improve	performance.	Achieving	a	balance	between	the	size	of	the
database	and	the	hardware	configuration	is	also	important	for
performance.

Maintenance.

Estimating	the	size	of	a	database.

Creating	and	Maintaining	Databases

Creating	a	Database	Plan
The	first	step	in	creating	a	database	is	creating	a	plan	that	serves	both	as	a	guide
to	be	used	when	implementing	the	database	and	as	a	functional	specification	for
the	database	after	it	has	been	implemented.	The	complexity	and	detail	of	a
database	design	is	dictated	by	the	complexity	and	size	of	the	database
application	as	well	as	the	user	population.

The	nature	and	complexity	of	a	database	application,	as	well	as	the	process	of
planning	it,	can	vary	greatly.	A	database	can	be	relatively	simple	and	designed
for	use	by	a	single	person,	or	it	can	be	large	and	complex	and	designed,	for
example,	to	handle	all	the	banking	transactions	for	hundreds	of	thousands	of
clients.	In	the	first	case,	the	database	design	may	be	little	more	than	a	few	notes
on	some	scratch	paper.	In	the	latter	case,	the	design	may	be	a	formal	document
with	hundreds	of	pages	that	contain	every	possible	detail	about	the	database.

In	planning	the	database,	regardless	of	its	size	and	complexity,	use	these	basic
steps:

Gather	information.

Identify	the	objects.

Model	the	objects.

Identify	the	types	of	information	for	each	object.

Identify	the	relationships	between	objects.

Gathering	Information

Before	creating	a	database,	you	must	have	a	good	understanding	of	the	job	the
database	is	expected	to	perform.	If	the	database	is	to	replace	a	paper-based	or
manually	performed	information	system,	the	existing	system	will	give	you	most
of	the	information	you	need.	It	is	important	to	interview	everyone	involved	in

the	system	to	find	out	what	they	do	and	what	they	need	from	the	database.	It	is
also	important	to	identify	what	they	want	the	new	system	to	do,	as	well	as	to
identify	the	problems,	limitations,	and	bottlenecks	of	any	existing	system.
Collect	copies	of	customer	statements,	inventory	lists,	management	reports,	and
any	other	documents	that	are	part	of	the	existing	system,	because	these	will	be
useful	to	you	in	designing	the	database	and	the	interfaces.

Identifying	the	Objects
During	the	process	of	gathering	information,	you	must	identify	the	key	objects
or	entities	that	will	be	managed	by	the	database.	The	object	can	be	a	tangible
thing,	such	as	a	person	or	a	product,	or	it	can	be	a	more	intangible	item,	such	as
a	business	transaction,	a	department	in	a	company,	or	a	payroll	period.	There	are
usually	a	few	primary	objects,	and	after	these	are	identified,	the	related	items
become	apparent.	Each	distinct	item	in	your	database	should	have	a
corresponding	table.

The	primary	object	in	the	pubs	sample	database	included	with	Microsoft®	SQL
Server™	2000	is	a	book.	The	objects	related	to	books	within	this	company's
business	are	the	authors	who	write	the	books,	the	publishers	who	manufacture
the	books,	the	stores	which	sell	them,	and	the	sales	transactions	performed	with
the	stores.	Each	of	these	objects	is	a	table	in	the	database.

Modeling	the	Objects
As	the	objects	in	the	system	are	identified,	it	is	important	to	record	them	in	a
way	that	represents	the	system	visually.	You	can	use	your	database	model	as	a
reference	during	implementation	of	the	database.

For	this	purpose,	database	developers	use	tools	that	range	in	technical
complexity	from	pencils	and	scratch	paper	to	word	processing	or	spreadsheet
programs,	and	even	to	software	programs	specifically	dedicated	to	the	job	of
data	modeling	for	database	designs.	Whatever	tool	you	decide	to	use,	it	is
important	that	you	keep	it	up-to-date.

SQL	Server	Enterprise	Manager	includes	visual	design	tools	such	as	the
Database	Designer	that	can	be	used	to	design	and	create	objects	in	the	database.
For	more	information	see,	Database	Designer.

JavaScript:hhobj_1.Click()

Identifying	the	Types	of	Information	for	Each	Object
After	the	primary	objects	in	the	database	have	been	identified	as	candidates	for
tables,	the	next	step	is	to	identify	the	types	of	information	that	must	be	stored	for
each	object.	These	are	the	columns	in	the	object's	table.	The	columns	in	a
database	table	contain	a	few	common	types	of	information:

Raw	data	columns

These	columns	store	tangible	pieces	of	information,	such	as	names,
determined	by	a	source	external	to	the	database.

Categorical	columns

These	columns	classify	or	group	the	data	and	store	a	limited	selection	of
data	such	as	true/false,	married/single,	VP/Director/Group	Manager,	and
so	on.

Identifier	columns

These	columns	provide	a	mechanism	to	identify	each	item	stored	in	the
table.	These	columns	often	have	id	or	number	in	their	names	(for
example,	employee_id,	invoice_number,	and	publisher_id).	The
identifier	column	is	the	primary	component	used	by	both	users	and
internal	database	processing	for	gaining	access	to	a	row	of	data	in	the
table.	Sometimes	the	object	has	a	tangible	form	of	ID	used	in	the	table
(for	example,	a	social	security	number),	but	in	most	situations	you	can
define	the	table	so	that	a	reliable,	artificial	ID	can	be	created	for	the
row.

Relational	or	referential	columns

These	columns	establish	a	link	between	information	in	one	table	and
related	information	in	another	table.	For	example,	a	table	that	tracks
sales	transactions	will	commonly	have	a	link	to	the	customers	table	so
that	the	complete	customer	information	can	be	associated	with	the	sales
transaction.

Identifying	the	Relationships	Between	Objects

One	of	the	strengths	of	a	relational	database	is	the	ability	to	relate	or	associate

information	about	various	items	in	the	database.	Isolated	types	of	information
can	be	stored	separately,	but	the	database	engine	can	combine	data	when
necessary.	Identifying	the	relationships	between	objects	in	the	design	process
requires	looking	at	the	tables,	determining	how	they	are	logically	related,	and
adding	relational	columns	that	establish	a	link	from	one	table	to	another.

For	example,	the	designer	of	the	pubs	database	has	created	tables	for	titles	and
publishers	in	the	database.	The	titles	table	contains	information	for	each	book:
an	identifier	column	named	title_id;	raw	data	columns	for	the	title,	the	price	of
the	book,	and	the	publishing	date;	and	some	columns	with	sales	information	for
the	book.	The	table	contains	a	categorical	column	named	type,	which	allows	the
books	to	be	grouped	by	the	type	of	content	in	the	book.	Each	book	also	has	a
publisher,	but	the	publisher	information	is	in	another	table;	therefore,	the	titles
table	has	a	pub_id	column	to	store	just	the	ID	of	the	publisher.	When	a	row	of
data	is	added	for	a	book,	the	publisher	ID	is	stored	with	the	rest	of	the	book
information.

Creating	and	Maintaining	Databases

Online	Transaction	Processing	vs.	Decision	Support
Many	applications	fall	into	two	main	categories	of	database	applications:

Online	transaction	processing	(OLTP)

Decision	support

The	characteristics	of	these	application	types	have	a	dramatic	effect	on	the
design	considerations	for	a	database.

Online	Transaction	Processing
Online	Transaction	processing	database	applications	are	optimal	for	managing
changing	data,	and	usually	have	a	large	number	of	users	who	will	be
simultaneously	performing	transactions	that	change	real-time	data.	Although
individual	requests	by	users	for	data	tend	to	reference	few	records,	many	of	these
requests	are	being	made	at	the	same	time.	Common	examples	of	these	types	of
databases	are	airline	ticketing	systems	and	banking	transaction	systems.	The
primary	concerns	in	this	type	of	application	are	concurrency	and	atomicity.

Concurrency	controls	in	a	database	system	ensure	that	two	users	cannot	change
the	same	data,	or	that	one	user	cannot	change	a	piece	of	data	before	another	user
is	done	with	it.	For	example,	if	you	are	talking	to	an	airline	ticket	agent	to
reserve	the	last	available	seat	on	a	flight	and	the	agent	begins	the	process	of
reserving	the	seat	in	your	name,	another	agent	should	not	be	able	to	tell	another
passenger	that	the	seat	is	available.

Atomicity	ensures	that	all	of	the	steps	involved	in	a	transaction	complete
successfully	as	a	group.	If	any	step	fails,	no	other	steps	should	be	completed.	For
example,	a	banking	transaction	may	involve	two	steps:	taking	funds	out	of	your
checking	account	and	placing	them	into	your	savings	account.	If	the	step	that
removes	the	funds	from	your	checking	account	succeeds,	you	want	to	make	sure
that	the	funds	are	placed	into	your	savings	account	or	put	back	into	your
checking	account.

Online	Transaction	Processing	Design	Considerations

Transaction	processing	system	databases	should	be	designed	to	promote:

Good	data	placement.

I/O	bottlenecks	are	a	big	concern	for	OLTP	systems	due	to	the	number
of	users	modifying	data	all	over	the	database.	Determine	the	likely
access	patterns	of	the	data	and	place	frequently	accessed	data	together.
Use	filegroups	and	RAID	(redundant	array	of	independent	disks)
systems	to	assist	in	this.

Short	transactions	to	minimize	long-term	locks	and	improve
concurrency.

Avoid	user	interaction	during	transactions.	Whenever	possible,	execute
a	single	stored	procedure	to	process	the	entire	transaction.	The	order	in
which	you	reference	tables	within	your	transactions	can	affect
concurrency.	Place	references	to	frequently	accessed	tables	at	the	end	of
the	transaction	to	minimize	the	duration	that	locks	are	held.

Online	backup.

OLTP	systems	are	often	characterized	by	continuous	operations	(24
hours	a	day,	7	days	a	week)	for	which	downtime	is	kept	to	an	absolute
minimum.	Although	Microsoft®	SQL	Server™	2000	can	back	up	a
database	while	it	is	being	used,	schedule	the	backup	process	to	occur
during	times	of	low	activity	to	minimize	effects	on	users.

High	normalization	of	the	database.

Reduce	redundant	information	as	much	as	possible	to	increase	the	speed
of	updates	and	hence	improve	concurrency.	Reducing	data	also
improves	the	speed	of	backups	because	less	data	needs	to	be	backed	up.

Little	or	no	historical	or	aggregated	data.

Data	that	is	rarely	referenced	can	be	archived	into	separate	databases,	or
moved	out	of	the	heavily	updated	tables	into	tables	containing	only
historical	data.	This	keeps	tables	as	small	as	possible,	improving	backup
times	and	query	performance.

Careful	use	of	indexes.

Indexes	must	be	updated	each	time	a	row	is	added	or	modified.	To

avoid	over-indexing	heavily	updated	tables,	keep	indexes	narrow.	Use
the	Index	Tuning	Wizard	to	design	your	indexes.

Optimum	hardware	configuration	to	handle	the	large	numbers	of
concurrent	users	and	quick	response	times	required	by	an	OLTP	system.

Decision	Support

Decision-support	database	applications	are	optimal	for	data	queries	that	do	not
change	data.	For	example,	a	company	can	periodically	summarize	its	sales	data
by	date,	sales	region,	or	product	and	store	this	information	in	a	separate	database
to	be	used	for	analysis	by	senior	management.	To	make	business	decisions,	users
need	to	be	able	to	determine	trends	in	sales	quickly	by	querying	the	data	based
on	various	criteria.	However,	they	do	not	need	to	change	this	data.	The	tables	in
a	decision-support	database	are	heavily	indexed,	and	the	raw	data	is	often
preprocessed	and	organized	to	support	the	various	types	of	queries	to	be	used.
Because	the	users	are	not	changing	data,	concurrency	and	atomicity	issues	are
not	a	concern;	the	data	is	changed	only	by	periodic,	bulk	updates	made	during
off-hour,	low-traffic	times	in	the	database.

Decision	Support	Design	Considerations
Decision-support	system	databases	should	be	designed	to	promote:

Heavy	indexing.

Decision-support	systems	have	low	update	requirements	but	large
volumes	of	data.	Use	many	indexes	to	improve	query	performance.

Denormalization	of	the	database.

Introduce	preaggregated	or	summarized	data	to	satisfy	common	query
requirements	and	improve	query	response	times.

Use	of	a	star	or	snowflake	schema	to	organize	the	data	within	the
database.

See	Also

Creating	a	Data	Warehouse

JavaScript:hhobj_1.Click()

Parts	of	a	Data	Warehouse

JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Normalization
The	logical	design	of	the	database,	including	the	tables	and	the	relationships
between	them,	is	the	core	of	an	optimized	relational	database.	A	good	logical
database	design	can	lay	the	foundation	for	optimal	database	and	application
performance.	A	poor	logical	database	design	can	impair	the	performance	of	the
entire	system.

Normalizing	a	logical	database	design	involves	using	formal	methods	to	separate
the	data	into	multiple,	related	tables.	A	greater	number	of	narrow	tables	(with
fewer	columns)	is	characteristic	of	a	normalized	database.	A	few	wide	tables
(with	more	columns)	is	characteristic	of	an	nonnomalized	database.

Reasonable	normalization	often	improves	performance.	When	useful	indexes	are
available,	the	Microsoft®	SQL	Server™	2000	query	optimizer	is	efficient	at
selecting	rapid,	efficient	joins	between	tables.

Some	of	the	benefits	of	normalization	include:

Faster	sorting	and	index	creation.

A	larger	number	of	clustered	indexes.	For	more	information,	see
Clustered	Indexes.

Narrower	and	more	compact	indexes.

Fewer	indexes	per	table,	which	improves	the	performance	of	INSERT,
UPDATE,	and	DELETE	statements.

Fewer	null	values	and	less	opportunity	for	inconsistency,	which	increase
database	compactness.

As	normalization	increases,	so	do	the	number	and	complexity	of	joins	required
to	retrieve	data.	Too	many	complex	relational	joins	between	too	many	tables	can
hinder	performance.	Reasonable	normalization	often	includes	few	regularly

JavaScript:hhobj_1.Click()

executed	queries	that	use	joins	involving	more	than	four	tables.

Sometimes	the	logical	database	design	is	already	fixed	and	total	redesign	is	not
feasible.	Even	then,	however,	it	might	be	possible	to	normalize	a	large	table
selectively	into	several	smaller	tables.	If	the	database	is	accessed	through	stored
procedures,	this	schema	change	could	take	place	without	affecting	applications.
If	not,	it	might	be	possible	to	create	a	view	that	hides	the	schema	change	from
the	applications.

Achieving	a	Well-Designed	Database
In	relational-database	design	theory,	normalization	rules	identify	certain
attributes	that	must	be	present	or	absent	in	a	well-designed	database.	A	complete
discussion	of	normalization	rules	goes	well	beyond	the	scope	of	this	topic.
However,	there	are	a	few	rules	that	can	help	you	achieve	a	sound	database
design:

A	table	should	have	an	identifier.

The	fundamental	rule	of	database	design	theory	is	that	each	table	should
have	a	unique	row	identifier,	a	column	or	set	of	columns	used	to
distinguish	any	single	record	from	every	other	record	in	the	table.	Each
table	should	have	an	ID	column,	and	no	two	records	can	share	the	same
ID	value.	The	column	or	columns	serving	as	the	unique	row	identifier
for	a	table	is	the	primary	key	of	the	table.

A	table	should	store	only	data	for	a	single	type	of	entity.

Attempting	to	store	too	much	information	in	a	table	can	prevent	the
efficient	and	reliable	management	of	the	data	in	the	table.	In	the	pubs
database	in	SQL	Server	2000,	the	titles	and	publishers	information	is
stored	in	two	separate	tables.	Although	it	is	possible	to	have	columns
that	contain	information	for	both	the	book	and	the	publisher	in	the	titles
table,	this	design	leads	to	several	problems.	The	publisher	information
must	be	added	and	stored	redundantly	for	each	book	published	by	a
publisher.	This	uses	extra	storage	space	in	the	database.	If	the	address
for	the	publisher	changes,	the	change	must	be	made	for	each	book.	And
if	the	last	book	for	a	publisher	is	removed	from	the	title	table,	the
information	for	that	publisher	is	lost.

In	the	pubs	database,	with	the	information	for	books	and	publishers
stored	in	the	titles	and	publishers	tables,	the	information	about	the
publisher	has	to	be	entered	only	once	and	then	linked	to	each	book.
Therefore,	if	the	publisher	information	is	changed,	it	must	be	changed
in	only	one	place,	and	the	publisher	information	will	be	there	even	if	the
publisher	has	no	books	in	the	database.

A	table	should	avoid	nullable	columns.

Tables	can	have	columns	defined	to	allow	null	values.	A	null	value
indicates	that	there	is	no	value.	Although	it	can	be	useful	to	allow	null
values	in	isolated	cases,	it	is	best	to	use	them	sparingly	because	they
require	special	handling	that	increases	the	complexity	of	data
operations.	If	you	have	a	table	with	several	nullable	columns	and
several	of	the	rows	have	null	values	in	the	columns,	you	should
consider	placing	these	columns	in	another	table	linked	to	the	primary
table.	Storing	the	data	in	two	separate	tables	allows	the	primary	table	to
be	simple	in	design	but	able	to	accommodate	the	occasional	need	for
storing	this	information.

A	table	should	not	have	repeating	values	or	columns.

The	table	for	an	item	in	the	database	should	not	contain	a	list	of	values
for	a	specific	piece	of	information.	For	example,	a	book	in	the	pubs
database	might	be	coauthored.	If	there	is	a	column	in	the	titles	table	for
the	name	of	the	author,	this	presents	a	problem.	One	solution	is	to	store
the	name	of	both	authors	in	the	column,	but	this	makes	it	difficult	to
show	a	list	of	the	individual	authors.	Another	solution	is	to	change	the
structure	of	the	table	to	add	another	column	for	the	name	of	the	second
author,	but	this	accommodates	only	two	authors.	Yet	another	column
must	be	added	if	a	book	has	three	authors.

If	you	find	that	you	need	to	store	a	list	of	values	in	a	single	column,	or	if
you	have	multiple	columns	for	a	single	piece	of	data	(au_lname1,
au_lname2,	and	so	on),	you	should	consider	placing	the	duplicated	data
in	another	table	with	a	link	back	to	the	primary	table.	The	pubs
database	has	a	table	for	book	information	and	another	table	that	stores
only	the	ID	values	for	the	books	and	the	IDs	of	the	authors	of	the	books.
This	design	allows	any	number	of	authors	for	a	book	without	modifying

the	definition	of	the	table	and	allocates	no	unused	storage	space	for
books	with	a	single	author.

Creating	and	Maintaining	Databases

Data	Integrity
Enforcing	data	integrity	ensures	the	quality	of	the	data	in	the	database.	For
example,	if	an	employee	is	entered	with	an	employee_id	value	of	123,	the
database	should	not	allow	another	employee	to	have	an	ID	with	the	same	value.
If	you	have	an	employee_rating	column	intended	to	have	values	ranging	from	1
to	5,	the	database	should	not	accept	a	value	of	6.	If	the	table	has	a	dept_id
column	that	stores	the	department	number	for	the	employee,	the	database	should
allow	only	values	that	are	valid	for	the	department	numbers	in	the	company.

Two	important	steps	in	planning	tables	are	to	identify	valid	values	for	a	column
and	to	decide	how	to	enforce	the	integrity	of	the	data	in	the	column.	Data
integrity	falls	into	these	categories:

Entity	integrity

Domain	integrity

Referential	integrity

User-defined	integrity

Entity	Integrity

Entity	integrity	defines	a	row	as	a	unique	entity	for	a	particular	table.	Entity
integrity	enforces	the	integrity	of	the	identifier	column(s)	or	the	primary	key	of	a
table	(through	indexes,	UNIQUE	constraints,	PRIMARY	KEY	constraints,	or
IDENTITY	properties).

Domain	Integrity
Domain	integrity	is	the	validity	of	entries	for	a	given	column.	You	can	enforce
domain	integrity	by	restricting	the	type	(through	data	types),	the	format	(through
CHECK	constraints	and	rules),	or	the	range	of	possible	values	(through
FOREIGN	KEY	constraints,	CHECK	constraints,	DEFAULT	definitions,	NOT

NULL	definitions,	and	rules).

Referential	Integrity
Referential	integrity	preserves	the	defined	relationships	between	tables	when
records	are	entered	or	deleted.	In	Microsoft®	SQL	Server™	2000,	referential
integrity	is	based	on	relationships	between	foreign	keys	and	primary	keys	or
between	foreign	keys	and	unique	keys	(through	FOREIGN	KEY	and	CHECK
constraints).	Referential	integrity	ensures	that	key	values	are	consistent	across
tables.	Such	consistency	requires	that	there	be	no	references	to	nonexistent
values	and	that	if	a	key	value	changes,	all	references	to	it	change	consistently
throughout	the	database.

When	you	enforce	referential	integrity,	SQL	Server	prevents	users	from:

Adding	records	to	a	related	table	if	there	is	no	associated	record	in	the
primary	table.

Changing	values	in	a	primary	table	that	result	in	orphaned	records	in	a
related	table.

Deleting	records	from	a	primary	table	if	there	are	matching	related
records.

For	example,	with	the	sales	and	titles	tables	in	the	pubs	database,	referential
integrity	is	based	on	the	relationship	between	the	foreign	key	(title_id)	in	the
sales	table	and	the	primary	key	(title_id)	in	the	titles	table.

User-Defined	Integrity
User-defined	integrity	allows	you	to	define	specific	business	rules	that	do	not
fall	into	one	of	the	other	integrity	categories.	All	of	the	integrity	categories
support	user-defined	integrity	(all	column-	and	table-level	constraints	in
CREATE	TABLE,	stored	procedures,	and	triggers).

See	Also

Specifying	a	Column	Data	Type

Using	Constraints,	Defaults,	and	Null	Values

Creating	and	Maintaining	Databases

Data	Security
One	of	the	functions	of	a	database	is	to	protect	the	data	by	preventing	certain
users	from	seeing	or	changing	highly	sensitive	data	and	preventing	all	users	from
making	costly	mistakes.	The	security	system	in	Microsoft®	SQL	Server™	2000
controls	user-	access	to	the	data,	and	user-permissions	to	perform	activities	in	the
database.

See	Also

Setting	Up	Security	Accounts

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Database	Performance
When	you	design	a	database,	you	must	ensure	that	the	database	performs	all	the
important	functions	correctly	and	quickly.	Some	performance	issues	can	be
resolved	after	the	database	is	in	production,	but	other	performance	issues	may	be
the	result	of	a	poor	database	design	and	can	be	addressed	only	by	changing	the
structure	and	design	of	the	database.

When	you	design	and	implement	a	database,	you	should	identify	the	large	tables
in	the	database	and	the	more	complex	processes	that	the	database	will	perform,
and	give	special	consideration	to	performance	when	designing	these	tables.	Also
consider	the	effect	on	performance	of	increasing	the	number	of	users	who	can
access	the	database.

Examples	of	design	changes	that	improve	performance	include:

If	a	table	containing	hundreds	of	thousands	of	rows	must	be
summarized	for	a	daily	report,	you	can	add	a	column	or	columns	to	the
table	that	contains	preaggregated	data	to	be	used	only	for	the	report.

Databases	can	be	overnormalized,	which	means	the	database	is	defined
with	numerous,	small,	interrelated	tables.	When	the	database	is
processing	the	data	in	these	tables,	it	has	to	perform	a	great	deal	of	extra
work	to	combine	the	related	data.	This	extra	processing	can	reduce	the
performance	of	the	database.	In	these	situations,	denormalizing	the
database	slightly	to	simplify	complex	processes	can	improve
performance.

In	conjunction	with	correct	database	design,	correct	use	of	indexes,	RAID
(redundant	array	of	independent	disks),	and	filegroups	is	important	for	achieving
good	performance.

Hardware	Considerations
Generally,	the	larger	the	database,	the	greater	the	hardware	requirements.	But
there	are	other	determining	factors:	the	number	of	concurrent	users/sessions,
transaction	throughput,	and	the	types	of	operations	within	the	database.		For

example,	a	database	containing	infrequently	updated	data	for	a	school	library
would	generally	have	lower	hardware	requirements	than	a	1-terabyte	(TB)	data
warehouse	containing	frequently	analyzed	sales,	product,	and	customer
information	of	a	large	corporation.	Aside	from	the	disk	storage	requirements,
more	memory	and	faster	processors	would	be	needed	for	the	data	warehouse	to
enable	more	of	the	data	to	be	cached	in	memory	and	queries	referencing	large
amounts	of	data	to	be	processed	quickly.

See	Also

Database	Design

Indexes

Physical	Database	Files	and	Filegroups

RAID

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Maintenance
After	a	database	has	been	created	and	all	objects	and	data	have	been	added	and
are	in	use,	there	will	be	times	when	maintenance	must	be	performed.	For
example,	it	is	important	to	back	up	the	database	regularly.	You	may	also	need	to
create	some	new	indexes	to	improve	performance.	These	issues	should	be	taken
into	consideration	when	you	design	the	database	to	minimize	the	effect	on	users,
the	time	taken	to	perform	the	task,	and	the	effort	involved.

Maintenance	design	guidelines	include:

Designing	the	database	to	be	as	small	as	possible	and	to	exclude
redundant	information.

Normalizing	your	database	can	help	you	achieve	this.	For	example,
reducing	the	size	of	the	database	can	help	reduce	the	time	taken	to	back
up	or,	more	importantly,	restore	a	database.	This	is	especially	important
during	a	restore	operation	because	the	database	is	unavailable	while	it	is
being	restored.

Designing	partitioned	tables	rather	than	a	single	table,	if	the	table	will
contain	a	large	number	of	rows.

For	example,	a	table	containing	every	credit	card	transaction	received
by	a	bank	could	be	split	into	multiple	tables,	with	each	table	holding
data	for	a	single	month.	This	can	ease	index	maintenance	if	new	indexes
would	otherwise	have	to	be	added	to	improve	query	performance.	It
may	be	necessary	to	create	the	index	only	on	data	from	the	last	three
months	because	older	data	is	no	longer	referenced.	The	larger	the	table,
the	longer	it	takes	to	create	new	indexes.

Microsoft®	SQL	Server™	2000	provides	the	Database	Maintenance	Plan
Wizard	for	automating	many	of	these	tasks,	thereby	reducing	or	removing	the
work	involved	in	database	maintenance.

See	Also

Database	Maintenance	Plan	Wizard

Creating	and	Maintaining	Databases

Estimating	the	Size	of	a	Database
When	designing	a	database,	you	may	need	to	estimate	how	big	the	database	will
be	when	filled	with	data.	Estimating	the	size	of	the	database	can	help	you
determine	the	hardware	configuration	you	will	need	for:

Achieving	the	performance	required	by	your	applications.	For	more
information,	see	Hardware	Considerations	in	Database	Performance.	

Ensuring	the	appropriate	physical	amount	of	disk	space	to	store	the	data
and	indexes.

Estimating	the	size	of	a	database	can	also	lead	you	to	determine	whether	the
database	design	needs	refining.	For	example,	you	may	determine	that	the
estimated	size	of	the	database	is	too	large	to	implement	in	your	organization	and
that	more	normalization	is	required.	Conversely,	the	estimated	size	may	be
smaller	than	expected,	allowing	you	to	denormalize	the	database	to	improve
query	performance.

To	estimate	the	size	of	a	database,	estimate	the	size	of	each	table	individually,
and	then	add	the	values	obtained.	The	size	of	a	table	depends	on	whether	the
table	has	indexes,	and	if	so,	what	type	of	indexes.

See	Also

Designing	Tables

Indexes

Query	Tuning

Table	and	Index	Architecture

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Estimating	the	Size	of	a	Table
The	following	steps	can	be	used	to	estimate	the	amount	of	space	required	to
store	the	data	in	a	table:

1.	 Specify	the	number	of	rows	present	in	the	table:

Number	of	rows	in	the	table	=	Num_Rows

2.	 If	there	are	fixed-length	and	variable-length	columns	in	the	table
definition,	calculate	the	space	that	each	of	these	groups	of	columns
occupies	within	the	data	row.	The	size	of	a	column	depends	on	the	data
type	and	length	specification.	For	more	information,	see	Data	Types.

Number	of	columns	=	Num_Cols

Sum	of	bytes	in	all	fixed-length	columns	=	Fixed_Data_Size

Number	of	variable-length	columns	=	Num_Variable_Cols

Maximum	size	of	all	variable-length	columns	=	Max_Var_Size

3.	 If	there	are	fixed-length	columns	in	the	table,	a	portion	of	the	row,
known	as	the	null	bitmap,	is	reserved	to	manage	column	nullability.
Calculate	its	size:

Null	Bitmap	(Null_Bitmap)	=	2	+	((Num_Cols	+	7)	/	8)

Only	the	integer	portion	of	the	above	expression	should	be	used;
discard	any	remainder.

4.	 If	there	are	variable-length	columns	in	the	table,	determine	how	much
space	is	used	to	store	the	columns	within	the	row:

Total	size	of	variable-length	columns	(Variable_Data_Size)	=	2	+
(Num_Variable_Cols	x	2)	+	Max_Var_Size

If	there	are	no	variable-length	columns,	set	Variable_Data_Size	to	0.

This	formula	assumes	that	all	variable-length	columns	are	100	percent
full.	If	you	anticipate	that	a	lower	percentage	of	the	variable-length

JavaScript:hhobj_1.Click()

column	storage	space	will	be	used,	you	can	adjust	the	result	by	that
percentage	to	yield	a	more	accurate	estimate	of	the	overall	table	size.

5.	 Calculate	the	row	size:

Total	row	size	(Row_Size)	=	Fixed_Data_Size	+	Variable_Data_Size	+
Null_Bitmap	+4

The	final	value	of	4	represents	the	data	row	header.

6.	 Calculate	the	number	of	rows	per	page	(8096	free	bytes	per	page):

Number	of	rows	per	page	(Rows_Per_Page)	=	(8096)	/	(Row_Size	+
2)

Because	rows	do	not	span	pages,	the	number	of	rows	per	page	should
be	rounded	down	to	the	nearest	whole	row.

7.	 If	a	clustered	index	is	to	be	created	on	the	table,	calculate	the	number
of	reserved	free	rows	per	page,	based	on	the	fill	factor	specified.	For
more	information,	see	Fill	Factor.	If	no	clustered	index	is	to	be
created,	specify	Fill_Factor	as	100.

Number	of	free	rows	per	page	(Free_Rows_Per_Page)	=	8096	x	((100
-	Fill_Factor)	/	100)	/	(Row_Size	+	2)

The	fill	factor	used	in	the	calculation	is	an	integer	value	rather	than	a
percentage.

Because	rows	do	not	span	pages,	the	number	of	rows	per	page	should
be	rounded	down	to	the	nearest	whole	row.	As	the	fill	factor	grows,
more	data	will	be	stored	on	each	page	and	there	will	be	fewer	pages.

8.	 Calculate	the	number	of	pages	required	to	store	all	the	rows:

Number	of	pages	(Num_Pages)	=	Num_Rows	/	(Rows_Per_Page	-
Free_Rows_Per_Page)

The	number	of	pages	estimated	should	be	rounded	up	to	the	nearest
whole	page.

9.	 Calculate	the	amount	of	space	required	to	store	the	data	in	a	table
(8192	total	bytes	per	page):

Table	size	(bytes)	=	8192	x	Num_Pages

See	Also

Designing	Tables

Creating	and	Maintaining	Databases

Estimating	the	Size	of	a	Table	Without	a	Clustered
Index
The	following	steps	can	be	used	to	estimate	the	amount	of	space	required	to
store	the	data	and	any	additional	nonclustered	indexes	on	a	table	that	does	not
have	a	clustered	index:

1.	 Calculate	the	space	used	to	store	data.

2.	 Calculate	the	space	used	to	store	each	additional	nonclustered	index.

3.	 Sum	the	values	calculated.

For	each	calculation,	specify	the	number	of	rows	that	will	be	present	in	the	table.
The	number	of	rows	in	the	table	will	have	a	direct	effect	on	the	size	of	the	table:

Number	of	rows	in	the	table	=	Num_Rows

Calculate	the	Space	Used	to	Store	Data
To	calculate	the	space	used	to	store	data,	see	Estimating	the	Size	of	a	Table.	

Note	the	value	calculated:

Space	used	to	store	data	=	Data_Space_Used

Calculate	the	Space	Used	to	Store	Each	Additional	Nonclustered
Index
The	followings	steps	can	be	used	to	estimate	the	size	of	a	single	nonclustered
index	on	a	table	that	does	not	have	a	clustered	index:

1.	 If	the	index	definition	includes	fixed-length	and	variable-length
columns,	calculate	the	space	each	of	these	groups	of	columns	occupies
within	the	index	row.	The	size	of	a	column	depends	on	the	data	type
and	length	specification.	For	more	information,	see	Data	Types.

JavaScript:hhobj_1.Click()

Number	of	columns	in	index	key	=	Num_Key_Cols

Sum	of	bytes	in	all	fixed-length	key	columns	=	Fixed_Key_Size

Number	of	variable-length	columns	in	index	key	=
Num_Variable_Key_Cols

Maximum	size	of	all	variable-length	key	columns	=
Max_Var_Key_Size

2.	 If	there	are	fixed-length	columns	in	the	index,	a	portion	of	the	index
row	is	reserved	for	the	null	bitmap.	Calculate	its	size:

Index	Null	Bitmap	(Index_Null_Bitmap)	=	2	+	((Num_Key_Cols	+	7)
/	8)

Only	the	integer	portion	of	the	above	expression	should	be	used;
discard	any	remainder.

3.	 If	there	are	variable-length	columns	in	the	index,	determine	how	much
space	is	used	to	store	the	columns	within	the	index	row:

Total	size	of	variable-length	columns	(Variable_Key_Size)	=	2	+
(Num_Variable_Key_Cols	x	2)	+	Max_Var_Key_Size

If	there	are	no	variable-length	columns,	set	Variable_Key_Size	to	0.

This	formula	assumes	that	all	variable-length	key	columns	are	100
percent	full.	If	you	anticipate	that	a	lower	percentage	of	the	variable-
length	key	column	storage	space	will	be	used,	you	can	adjust	the	result
by	that	percentage	to	yield	a	more	accurate	estimate	of	the	overall
index	size.

4.	 Calculate	the	index	row	size:

Total	index	row	size	(Index_Row_Size)	=	Fixed_Key_Size	+
Variable_Key_Size	+	Index_Null_Bitmap	+	1	+	8

5.	 Calculate	the	number	of	index	rows	per	page	(8096	free	bytes	per
page):

Number	of	index	rows	per	page	(Index_Rows_Per_Page)	=	(8096)	/
(Index_Row_Size	+	2)

Because	index	rows	do	not	span	pages,	the	number	of	index	rows	per
page	should	be	rounded	down	to	the	nearest	whole	row.

6.	 Calculate	the	number	of	reserved	free	index	rows	per	leaf	page,	based
on	the	fill	factor	specified	for	the	nonclustered	index.	For	more
information,	see	Fill	Factor.

Number	of	free	index	rows	per	leaf	page
(Free_Index_Rows_Per_Page)	=	8096	x	((100	-	Fill_Factor)	/	100)	/	
Index_Row_Size

The	fill	factor	used	in	the	calculation	is	an	integer	value	rather	than	a
percentage.

Because	index	rows	do	not	span	pages,	the	number	of	index	rows	per
page	should	be	rounded	down	to	the	nearest	whole	row.

7.	 Calculate	the	number	of	pages	required	to	store	all	the	index	rows	at
each	level	of	the	index:

Number	of	pages	(level	0)	(Num_Pages_Level_0)	=	Num_Rows	/
(Index_Rows_Per_Page	-	Free_Index_Rows_Per_Page)

Number	of	pages	(level	1)	(Num_Pages_Level_1)	=
Num_Pages_Level_0	/	Index_Rows_Per_Page

Repeat	the	second	calculation,	dividing	the	number	of	pages	calculated
from	the	previous	level	n	by	Index_Rows_Per_Page	until	the	number
of	pages	for	a	given	level	n	(Num_Pages_Level_n)	equals	one	(root
page).	For	example,	to	calculate	the	number	of	pages	required	for	the
second	index	level:

Number	of	pages	(level	2)	(Num_Pages_Level_2)	=
Num_Pages_Level_1	/	Index_Rows_Per_Page

For	each	level,	the	number	of	pages	estimated	should	be	rounded	up	to
the	nearest	whole	page.

Sum	the	number	of	pages	required	to	store	each	level	of	the	index:

Total	number	of	pages	(Num_Index_Pages)	=	Num_Pages_Level_0	+
Num_Pages_Level_1	+	Num_Pages_Level_2	+	...	+
Num_Pages_Level_n

8.	 Calculate	the	size	of	the	index	(8192	total	bytes	per	page):

Nonclustered	index	size	(bytes)	=	8192	x	Num_Index_Pages

Calculate	the	Size	of	the	Table

Calculate	the	size	of	the	table:

Total	table	size	(bytes)	=	Data_Space_Used	+		Nonclustered	index	size	+	...n

See	Also

Creating	an	Index

Nonclustered	Indexes

JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Estimating	the	Size	of	a	Table	with	a	Clustered	Index
The	following	steps	can	be	used	to	estimate	the	amount	of	space	required	to
store	the	data	and	any	additional	nonclustered	indexes	on	a	table	that	has	a
clustered	index:

1.	 Calculate	the	space	used	to	store	data.

2.	 Calculate	the	space	used	to	store	the	clustered	index.

3.	 Calculate	the	space	used	to	store	each	additional	nonclustered	index.

4.	 Sum	the	values	calculated.

For	each	calculation,	specify	the	number	of	rows	that	will	be	present	in	the	table.
The	number	of	rows	in	your	table	will	have	a	direct	effect	on	the	size	of	your
table:

Number	of	rows	in	the	table	=	Num_Rows

Calculate	the	Space	Used	to	Store	Data
For	more	information	about	how	to	calculate	the	space	used	to	store	data,	see
Estimating	the	Size	of	a	Table.	

Note	the	value	calculated:

Space	used	to	store	data	=	Data_Space_Used

Calculate	the	Space	Used	to	Store	the	Clustered	Index
The	following	steps	can	be	used	to	estimate	the	amount	of	space	required	to
store	the	clustered	index:

1.	 A	clustered	index	definition	can	include	fixed-length	and	variable-
length	columns.	To	estimate	the	size	of	the	clustered	index,	you	must

specify	the	space	each	of	these	groups	of	columns	occupies	within	the
index	row:

Number	of	columns	in	index	key	=	Num_CKey_Cols

Sum	of	bytes	in	all	fixed-length	key	columns	=	Fixed_CKey_Size

Number	of	variable-length	columns	in	index	key	=
Num_Variable_CKey_Cols

Maximum	size	of	all	variable-length	key	columns	=
Max_Var_CKey_Size

2.	 If	there	are	fixed-length	columns	in	the	clustered	index,	a	portion	of
the	index	row	is	reserved	for	the	null	bitmap.	Calculate	its	size:

Index	Null	Bitmap	(CIndex_Null_Bitmap)	=	2	+	((Num_CKey_Cols
+	7)	/	8)

Only	the	integer	portion	of	the	above	expression	should	be	used;
discard	any	remainder.

3.	 If	there	are	variable-length	columns	in	the	index,	determine	how	much
space	is	used	to	store	the	columns	within	the	index	row:

Total	size	of	variable	length	columns	(Variable_CKey_Size)	=	2	+
(Num_Variable_CKey_Cols	x	2)	+	Max_Var_CKey_Size

If	there	are	no	variable-length	columns,	set	Variable_CKey_Size	to	0.

This	formula	assumes	that	all	variable-length	key	columns	are	100
percent	full.	If	you	anticipate	that	a	lower	percentage	of	the	variable-
length	key	column	storage	space	will	be	used,	you	can	adjust	the	result
by	that	percentage	to	yield	a	more	accurate	estimate	of	the	overall
index	size.

4.	 Calculate	the	index	row	size:

Total	index	row	size	(CIndex_Row_Size)	=	Fixed_CKey_Size	+
Variable_CKey_Size	+	CIndex_Null_Bitmap	+	1	+	8

5.	 Calculate	the	number	of	index	rows	per	page	(8096	free	bytes	per
page):

Number	of	index	rows	per	page	(CIndex_Rows_Per_Page)	=	(8096)	/
(CIndex_Row_Size	+	2)

Because	index	rows	do	not	span	pages,	the	number	of	index	rows	per
page	should	be	rounded	down	to	the	nearest	whole	row.

6.	 Calculate	the	number	of	pages	required	to	store	all	the	index	rows	at
each	level	of	the	index.

Number	of	pages	(level	0)	(Num_Pages_CLevel_0)	=
(Data_Space_Used	/	8192)	/	CIndex_Rows_Per_Page

Number	of	pages	(level	1)	(Num_Pages_CLevel_1)	=
Num_Pages_CLevel_0	/	CIndex_Rows_Per_Page

Repeat	the	second	calculation,	dividing	the	number	of	pages	calculated
from	the	previous	level	n	by	CIndex_Rows_Per_Page	until	the	number
of	pages	for	a	given	level	n	(Num_Pages_CLevel_n)	equals	one	(index
root	page).	For	example,	to	calculate	the	number	of	pages	required	for
the	second	index	level:

Number	of	pages	(level	2)	(Num_Pages_CLevel_2)	=
Num_Pages_CLevel_1	/	CIndex_Rows_Per_Page

For	each	level,	the	number	of	pages	estimated	should	be	rounded	up	to
the	nearest	whole	page.

Sum	the	number	of	pages	required	to	store	each	level	of	the	index:

Total	number	of	pages	(Num_CIndex_Pages)	=	Num_Pages_CLevel_0
+	Num_Pages_CLevel_1	+
Num_Pages_CLevel_2	+	...	+	Num_Pages_CLevel_n

7.	 Calculate	the	size	of	the	clustered	index	(8192	total	bytes	per	page):

Clustered	index	size	(bytes)	=	8192	x	Num_CIndex_Pages

Calculate	the	Space	Used	to	Store	Each	Additional	Nonclustered
Index

The	following	steps	can	be	used	to	estimate	the	amount	of	space	required	to
store	each	additional	nonclustered	index:

1.	 A	nonclustered	index	definition	can	include	fixed-length	and	variable-
length	columns.	To	estimate	the	size	of	the	nonclustered	index,	you
must	calculate	the	space	each	of	these	groups	of	columns	occupies
within	the	index	row:

Number	of	columns	in	index	key	=	Num_Key_Cols

Sum	of	bytes	in	all	fixed-length	key	columns	=	Fixed_Key_Size

Number	of	variable-length	columns	in	index	key	=
Num_Variable_Key_Cols

Maximum	size	of	all	variable-length	key	columns	=
Max_Var_Key_Size

2.	 If	there	are	fixed-length	columns	in	the	index,	a	portion	of	the	index
row	is	reserved	for	the	null	bitmap.	Calculate	its	size:

Index	Null	Bitmap	(Index_Null_Bitmap)	=	2	+	((Num_Key_Cols	+	7)
/	8)

Only	the	integer	portion	of	the	above	expression	should	be	used;
discard	any	remainder.

3.	 If	there	are	variable-length	columns	in	the	index,	determine	how	much
space	is	used	to	store	the	columns	within	the	index	row:

Total	size	of	variable	length	columns	(Variable_Key_Size)	=	2	+
(Num_Variable_Key_Cols	x	2)	+	Max_Var_Key_Size

If	there	are	no	variable-length	columns,	set	Variable_Key_Size	to	0.

This	formula	assumes	that	all	variable-length	key	columns	are	100
percent	full.	If	you	anticipate	that	a	lower	percentage	of	the	variable-
length	key	column	storage	space	will	be	used,	you	can	adjust	the	result
by	that	percentage	to	yield	a	more	accurate	estimate	of	the	overall
index	size.

4.	 Calculate	the	nonleaf	index	row	size:

Total	nonleaf	index	row	size	(NL_Index_Row_Size)	=
Fixed_Key_Size	+	Variable_Key_Size	+	Index_Null_Bitmap	+	1	+	8

5.	 Calculate	the	number	of	nonleaf	index	rows	per	page:

Number	of	nonleaf	index	rows	per	page	(NL_Index_Rows_Per_Page)
=	
(8096)	/	(NL_Index_Row_Size	+	2)

Because	index	rows	do	not	span	pages,	the	number	of	index	rows	per
page	should	be	rounded	down	to	the	nearest	whole	row.

6.	 Calculate	the	leaf	index	row	size:

Total	leaf	index	row	size	(Index_Row_Size)	=	CIndex_Row_Size	+
Fixed_Key_Size	+	Variable_Key_Size	+	Index_Null_Bitmap	+	1

The	final	value	of	1	represents	the	index	row	header.
CIndex_Row_Size	is	the	total	index	row	size	for	the	clustered	index
key.

7.	 Calculate	the	number	of	leaf	level	index	rows	per	page:

Number	of	leaf	level	index	rows	per	page	(Index_Rows_Per_Page)	=	(
8096)	/	(Index_Row_Size	+	2)

Because	index	rows	do	not	span	pages,	the	number	of	index	rows	per
page	should	be	rounded	down	to	the	nearest	whole	row.

8.	 Calculate	the	number	of	reserved	free	index	rows	per	page	based	on
the	fill	factor	specified	for	the	nonclustered	index.	For	more
information,	see	Fill	Factor.

Number	of	free	index	rows	per	page	(Free_Index_Rows_Per_Page)	=
8096	x	((100	-	Fill_Factor)	/	100)	/	Index_Row_Size

The	fill	factor	used	in	the	calculation	is	an	integer	value	rather	than	a
percentage.

Because	index	rows	do	not	span	pages,	the	number	of	index	rows	per
page	should	be	rounded	down	to	the	nearest	whole	row.

9.	 Calculate	the	number	of	pages	required	to	store	all	the	index	rows	at
each	level	of	the	index:

Number	of	pages	(level	0)	(Num_Pages_Level_0)	=	Num_Rows	/
(Index_Rows_Per_Page	-	Free_Index_Rows_Per_Page)

Number	of	pages	(level	1)	(Num_Pages_Level_1)	=

Num_Pages_Level_0	/	NL_Index_Rows_Per_Page

Repeat	the	second	calculation,	dividing	the	number	of	pages	calculated
from	the	previous	level	n	by	NL_Index_Rows_Per_Page	until	the
number	of	pages	for	a	given	level	n	(Num_Pages_Level_n)	equals	one
(root	page).

For	example,	to	calculate	the	number	of	pages	required	for	the	second
and	third	index	levels:

Number	of	data	pages	(level	2)	(Num_Pages_Level_2)	=
Num_Pages_Level_1	/	NL_Index_Rows_Per_Page

Number	of	data	pages	(level	3)	(Num_Pages_Level_3)	=
Num_Pages_Level_2	/	NL_Index_Rows_Per_Page

For	each	level,	the	number	of	pages	estimated	should	be	rounded	up	to
the	nearest	whole	page.

Sum	the	number	of	pages	required	to	store	each	level	of	the	index:

Total	number	of	pages	(Num_Index_Pages)	=	Num_Pages_Level_0	+
Num_Pages_Level_1	+Num_Pages_Level_2	+	...	+
Num_Pages_Level_n

10.	 Calculate	the	size	of	the	nonclustered	index:

Nonclustered	index	size	(bytes)	=	8192	x	Num_Index_Pages

Calculate	the	Size	of	the	Table

Calculate	the	size	of	the	table:

Total	table	size	(bytes)	=	Data_Space_Used	+	Clustered	index	size	+
Nonclustered	index	size	+	...n

See	Also

Clustered	Indexes

Creating	an	Index

Nonclustered	Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

	Creating	a	Database
To	create	a	database	determine	the	name	of	the	database,	its	owner	(the	user	who
creates	the	database),	its	size,	and	the	files	and	filegroups	used	to	store	it.

Before	creating	a	database,	consider	that:

Permission	to	create	a	database	defaults	to	members	of	the	sysadmin
and	dbcreator	fixed	server	roles,	although	permissions	can	be	granted
to	other	users.

The	user	who	creates	the	database	becomes	the	owner	of	the	database.

A	maximum	of	32,767	databases	can	be	created	on	a	server.

The	name	of	the	database	must	follow	the	rules	for	identifiers.

Three	types	of	files	are	used	to	store	a	database:

Primary	files

These	files	contain	the	startup	information	for	the	database.	The
primary	files	are	also	used	to	store	data.	Every	database	has	one	primary
file.

Secondary	files

These	files	hold	all	the	data	that	does	not	fit	in	the	primary	data	file.
Databases	do	not	need	secondary	data	files	if	the	primary	file	is	large
enough	to	hold	all	the	data	in	the	database.	Some	databases	may	be
large	enough	to	need	multiple	secondary	data	files,	or	they	may	use
secondary	files	on	separate	disk	drives	to	spread	the	data	across
multiple	disks.

Transaction	log

These	files	hold	the	log	information	used	to	recover	the	database.	There
must	be	at	least	one	transaction	log	file	for	each	database,	although

there	may	be	more	than	one.	The	minimum	size	for	a	log	file	is	512
kilobytes	(KB).

IMPORTANT		Microsoft®	SQL	Server™	2000	data	and	transaction	log
files	must	not	be	placed	on	compressed	file	systems	or	a	remote
network	drive,	such	as	a	shared	network	directory.

When	a	database	is	created,	all	the	files	that	comprise	the	database	are	filled	with
zeros	to	overwrite	any	existing	data	left	on	the	disk	by	previously	deleted	files.
Although	this	means	that	the	files	take	longer	to	create,	this	action	prevents	the
operating	system	from	having	to	fill	the	files	with	zeros	when	data	is	written	to
the	files	for	the	first	time	during	usual	database	operations.	This	improves	the
performance	of	day-to-day	operations.

It	is	recommended	that	you	specify	a	maximum	size	to	which	the	file	is
permitted	to	grow.	This	prevents	the	file	from	growing,	as	data	is	added,	until
disk	space	is	exhausted.	To	specify	a	maximum	size	for	the	file,	use	the
MAXSIZE	parameter	of	the	CREATE	DATABASE	statement	or	the	Restrict
filegrowth	(MB)	option	when	using	the		Properties	dialog	box	in	SQL	Server
Enterprise	Manager	to	create	the	database.

After	you	create	a	database,	it	is	recommended	that	you	create	a	backup	of	the
master	database.

To	create	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Using	Raw	Partitions
Microsoft®	SQL	Server™	2000	supports	the	use	of	raw	partitions	for	creating
database	files.	Raw	partitions	are	disk	partitions	that	have	not	been	formatted
with	a	Microsoft	Windows	NT®	file	system,	such	as	FAT	and	NTFS.	In	some
cases,	using	databases	created	on	raw	partitions	can	yield	a	slight	performance
gain	over	NTFS	or	FAT.	However,	for	most	installations	the	preferred	method	is
to	use	files	created	on	NTFS	or	FAT	partitions.

When	creating	a	database	file	on	a	raw	partition,	you	do	not	specify	the	physical
names	of	the	files	comprising	the	database;	you	specify	only	the	drive	letters	of
the	disks	on	which	the	database	files	should	be	created.

If	you	are	using	Microsoft	Windows®	2000	Server,	you	can	create	mounted
drives	to	point	to	raw	partitions.	When	you	mount	a	local	drive	at	an	empty
folder,	Windows	2000	assigns	a	drive	path	to	the	drive	rather	than	a	drive	letter.
Mounted	drives	are	not	subject	to	the	26-drive	limit	imposed	by	drive	letters;
therefore,	you	can	use	an	unlimited	number	of	raw	partitions.	When	you	create	a
database	file	on	a	mounted	drive,	you	must	end	the	drive	path	to	the	file	name
with	a	trailing	backslash	(\),	for	example,	E:\Sample	name\.	For	information
about	creating	a	mounted	drive,	see	the	Windows	2000	Server	documentation.

There	are	several	limitations	to	consider	when	using	raw	partitions:

Only	one	database	file	can	be	created	on	each	raw	partition.	The	logical
partition	must	be	configured	as	a	single	database	file,	because	there	is
no	file	system	on	the	raw	partition.

Standard	file-system	operations	such	as	copy,	move,	and	delete	cannot
be	used	with	raw	partitions.

Database	files	located	on	raw	partitions	cannot	be	backed	up	using	the
Windows	NT	Backup	utility.	However,	SQL	Server	database	or
transaction	log	backups	can	still	be	created.

Database	files	on	raw	partitions	cannot	be	automatically	expanded.

Either	initially	create	the	database	at	its	full	size,	or	manually	expand
the	database	files.	For	more	information,	see	Expanding	a	Database.

Only	lettered	partitions,	such	as	E:,	or	mounted	drives,	such	as
E:\Sample	name\	can	be	used.	Numbered	devices	cannot	be	used.

File-system	services	such	as	bad	block	replacement	are	not	available
with	raw	partitions.

See	Also

CREATE	DATABASE

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Modifying	a	Database
After	a	database	is	created,	changes	can	be	made	to	its	original	definition.
Changes	can	include:

Expanding	the	data	or	transaction	log	space	allocated	to	the	database.

Shrinking	the	data	and	transaction	log	space	allocated	to	the	database.

Adding	or	removing	data	and	transaction	log	files.

Creating	filegroups.

Changing	the	default	filegroup.

Change	the	configuration	settings	for	the	database.

Placing	databases	offline.

Attaching	new	and	detaching	unused	databases.

Changing	the	name	of	the	database.

Changing	the	owner	of	the	database.

Before	changes	are	made	to	the	database,	it	is	sometimes	necessary	to	take	the
database	out	of	normal	operating	mode.	In	those	situations,	determine	the
appropriate	method	for	terminating	transactions.

Creating	and	Maintaining	Databases

Expanding	a	Database
Microsoft®	SQL	Server™	2000	can	automatically	expand	a	database	according
to	growth	parameters	defined	when	the	database	was	created.	You	can	also
manually	expand	a	database	by	allocating	additional	file	space	on	an	existing
database	file	or	allocating	space	on	another	new	file.	You	may	need	to	expand
the	data	or	transaction	log	space	if	the	existing	files	are	becoming	full.	If	a
database	has	already	exhausted	the	space	allocated	to	it	and	it	cannot	grow
automatically,	Error	1105	is	raised.

When	expanding	a	database,	you	must	increase	the	size	of	the	database	by	at
least	1	megabyte	(MB).	Permission	for	expanding	a	database	defaults	to	the
database	owner	and	is	automatically	transferred	with	database	ownership.	When
a	database	is	expanded,	the	new	space	is	immediately	made	available	to	either
the	data	or	transaction	log	file,	depending	on	which	file	was	expanded.

If	the	transaction	log	is	not	set	up	to	expand	automatically,	it	can	run	out	of	space
if	certain	types	of	activity	occur	in	the	database.	The	transaction	log	is	purged
only	of	inactive	(committed)	transactions	when	it	is	backed	up,	or	at	each
checkpoint	when	the	database	is	using	the	simple	recovery	model.	SQL	Server
can	then	reuse	this	truncated,	unused	portion	of	the	transaction	log.	For	more
information	about	truncating	the	transaction	log,	see	Truncating	the	Transaction
Log.

SQL	Server	does	not	truncate	the	transaction	log	when	backing	up	the	database.

When	you	expand	a	database,	it	is	recommended	that	you	specify	a	maximum
size	to	which	the	file	is	permitted	to	grow.	This	prevents	the	file	from	growing
until	disk	space	is	exhausted.	To	specify	a	maximum	size	for	the	file,	use	the
MAXSIZE	parameter	of	the	ALTER	DATABASE	statement	or	the	Restrict
filegrowth	(MB)	option	when	using	the	Properties	dialog	box	in	SQL	Server
Enterprise	Manager	to	expand	the	database.

Expanding	a	database	to	increase	space	for	data	or	the	transaction	log	follows
the	same	process.

Expanding	tempdb

JavaScript:hhobj_1.Click()

By	default,	the	tempdb	database	automatically	grows	as	space	is	needed	because
the	MAXSIZE	of	the	files	is	set	to	UNLIMITED.	Therefore,	tempdb	can
continue	growing	until	space	on	the	disk	that	contains	tempdb	is	exhausted.	To
prevent	tempdb	from	growing	without	limits,	set	a	MAXSIZE	for	tempdb	by
using	the	ALTER	DATABASE	statement	or	SQL	Server	Enterprise	Manager.

Conversely,	if	tempdb	has	been	set	at	a	MAXSIZE,	and	you	want	to	increase	the
size	of	tempdb,	you	must	do	one	of	the	following:

Increase	the	size	of	the	files	in	the	default	filegroup	currently	used	by
tempdb.

Add	a	new	file	to	the	default	filegroup.

Allow	the	files	used	by	tempdb	to	grow	automatically.

IMPORTANT		User-defined	filegroups	cannot	be	used	with	tempdb.	They	can	be
used	only	with	the	default	filegroup.

Moving	tempdb
To	change	the	physical	location	of	the	tempdb	database:

1.	 Alter	the	tempdb	database,	using	the	ALTER	DATABASE	statement
and	MODIFY	FILE	clause,	to	change	the	physical	file	names	of	each
file	in	tempdb	to	reference	the	new	physical	location,	such	as	the	new
disk.

2.	 Stop	and	restart	SQL	Server.

3.	 Delete	the	old	tempdb	database	files	from	the	original	location.

To	increase	the	size	of	a	database

Transact-SQL

JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Shrinking	a	Database
Microsoft®	SQL	Server™	2000	allows	each	file	within	a	database	to	be	shrunk
to	remove	unused	pages.	Both	data	and	transaction	log	files	can	be	shrunk.	The
database	files	can	be	shrunk	manually,	either	as	a	group	or	individually.	The
database	can	be	set	to	shrink	automatically	at	given	intervals.	This	activity
occurs	in	the	background	and	does	not	affect	any	user	activity	within	the
database.

When	the	database	is	set	to	shrink	automatically	using	the	ALTER	DATABASE
AUTO_SHRINK	option	(or	the	sp_dboption	system	stored	procedure),
shrinking	occurs	when	a	significant	amount	of	free	space	is	available	in	the
database.	However,	if	the	percentage	of	free	space	to	be	removed	cannot	be
configured,	as	much	free	space	as	possible	is	removed.	To	configure	the	amount
of	free	space	to	be	removed,	such	as	only	50	percent	of	the	current	free	space	in
the	database,	use	the	Properties	dialog	box	in	SQL	Server	Enterprise	Manager
to	shrink	the	database.

You	cannot	shrink	an	entire	database	to	be	smaller	than	its	original	size.
Therefore,	if	a	database	was	created	with	a	size	of	10	megabytes	(MB)	and	grew
to	100	MB,	the	smallest	the	database	could	be	shrunk	to,	assuming	all	the	data	in
the	database	has	been	deleted,	is	10	MB.

However,	you	can	shrink	the	individual	database	files	smaller	than	their	initial
size	by	using	the	DBCC	SHRINKFILE	statement.	You	must	shrink	each	file
individually,	rather	than	attempting	to	shrink	the	entire	database.

There	are	fixed	boundaries	from	which	a	transaction	log	file	can	be	shrunk.	The
size	of	the	virtual	log	determines	the	possible	reduction	in	size.	Therefore,	the
log	file	can	never	be	shrunk	to	a	size	less	than	the	virtual	log	file.	In	addition,	the
log	file	is	shrunk	in	increments	equal	to	the	size	of	the	virtual	log	file.	For
example,	a	transaction	log	file	of	1	gigabyte	(GB)	may	comprise	five	virtual	log
files	of	200	MB	each.	Shrinking	the	transaction	log	file	deletes	unused	virtual
log	files,	but	leaves	at	least	one	virtual	log	file.	Because	each	virtual	log	file	in
this	example	is	200	MB,	the	transaction	log	can	shrink	only	to	a	minimum	of
200	MB	and	can	shrink	only	in	increments	of	200	MB.	To	allow	a	transaction
log	file	to	shrink	to	a	smaller	size,	create	a	smaller	transaction	log	and	allow	it	to
grow	automatically,	rather	than	creating	a	large	transaction	log	file.

In	SQL	Server	2000,	a	DBCC	SHRINKDATABASE	or	DBCC	SHRINKFILE
operation	attempts	to	shrink	a	transaction	log	file	to	the	requested	size	(subject	to
rounding)	immediately.	You	should	truncate	the	log	file	prior	to	shrinking	the
file	to	reduce	the	size	of	the	logical	log	and	mark	as	inactive	virtual	logs	that	do
not	hold	any	part	of	the	logical	log.	For	more	information,	see	Shrinking	the
Transaction	Log.

Note		It	is	not	possible	to	shrink	the	database	or	transaction	log	while	the
database	or	transaction	log	is	being	backed	up.	Conversely,	it	is	not	possible	to
create	a	database	or	transaction	log	backup	while	the	database	or	transaction	log
is	being	shrunk.

To	shrink	a	database

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Adding	and	Deleting	Data	and	Transaction	Log	Files
Data	and	transaction	log	files	can	be	added	to	expand	a	database	or	deleted	to
shrink	a	database.	When	a	file	is	added,	the	file	is	available	immediately	for	use
by	the	database.

IMPORTANT		Microsoft®	SQL	Server™	2000	data	and	transaction	log	files	must
not	be	placed	on	compressed	file	systems.

SQL	Server	uses	a	proportional	fill	strategy	across	all	the	files	within	each
filegroup,	writing	an	amount	of	data	proportional	to	the	free	space	in	the	file	and
allowing	the	new	file	starts	to	be	used	immediately.	This	way	all	files	tend	to
become	full	at	about	the	same	time.	Transaction	log	files,	however,	cannot	be
part	of	a	filegroup;	they	are	separate	from	one	another.	As	the	transaction	log
grows,	the	first	log	file	fills,	then	the	second,	and	so	on,	using	a	fill-and-go
strategy	rather	than	a	proportional	fill	strategy.	Therefore,	when	a	log	file	is
added,	it	cannot	be	used	by	the	transaction	log	until	the	other	files	have	been
filled	first.

When	adding	files	to	the	database,	you	can	specify	the	size	of	the	file	(default	is
1	MB),	the	maximum	size	to	which	the	file	should	grow	if	space	within	the	file
is	exhausted,	the	amount	by	which	the	file	grows	each	time	it	needs	to	grow
(default	is	10	percent),	and	the	filegroup	to	which	the	file	belongs,	as
appropriate.

Deleting	a	data	or	transaction	log	file	removes	the	file	from	the	database.	It	is	not
possible	to	remove	a	file	from	the	database	unless	there	is	no	existing	data	or
transaction	log	information	on	the	file;	the	file	must	be	completely	empty	before
it	can	be	removed.	To	migrate	data	from	a	data	file	to	other	files	in	the	same
filegroup,	use	the	DBCC	SHRINKFILE	statement	and	specify	the	EMPTYFILE
clause.	SQL	Server	no	longer	allows	data	to	be	placed	on	the	file,	thereby
allowing	it	to	be	deleted	by	using	the	ALTER	DATABASE	statement	or	the
property	page	within	SQL	Server	Enterprise	Manager.

It	is	not	possible	to	migrate	the	transaction	log	data	from	one	log	file	to	another
to	delete	a	transaction	log	file.	To	purge	inactive	transactions	from	a	transaction
log	file,	the	transaction	log	must	be	truncated	or	backed	up.	When	the
transaction	log	file	no	longer	contains	any	active	or	inactive	transactions,	the	log

file	can	be	removed	from	the	database.

IMPORTANT		After	you	add	or	delete	files,	create	a	database	backup	immediately.
A	transaction	log	backup	should	not	be	created	until	after	a	full	database	backup
is	created.

To	add	data	or	transaction	log	files	to	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Creating	Filegroups
Filegroups	can	be	created	when	the	database	is	first	created	or	later	when	more
files	are	added	to	the	database.	However,	it	is	not	possible	to	move	files	to	a
different	filegroup	after	the	files	have	been	added	to	the	database.

A	file	cannot	be	a	member	of	more	than	one	filegroup.	Tables,	indexes,	and	text,
ntext,	and	image	data	can	be	associated	with	a	specific	filegroup.	This	means
that	all	their	pages	are	allocated	from	the	files	in	that	filegroup.

There	are	three	types	of	filegroups:

Primary	filegroup

This	filegroup	contains	the	primary	data	file	and	any	other	files	not
placed	into	another	filegroup.	All	pages	for	the	system	tables	are
allocated	from	the	primary	filegroup.

User-defined	filegroup

This	filegroup	is	any	filegroup	specified	using	the	FILEGROUP
keyword	in	a	CREATE	DATABASE	or	ALTER	DATABASE	statement,
or	on	the	Properties	dialog	box	within	SQL	Server	Enterprise	Manager.

Default	filegroup

The	default	filegroup	contains	the	pages	for	all	tables	and	indexes	that
do	not	have	a	filegroup	specified	when	they	are	created.	In	each
database,	only	one	filegroup	at	a	time	can	be	the	default	filegroup.	If	no
default	filegroup	is	specified,	the	default	is	the	primary	filegroup.

A	maximum	of	256	filegroups	can	be	created	for	each	database.	Filegroups	can
contain	only	data	files.	Transaction	log	files	cannot	be	part	of	a	filegroup.

Note		Filegroups	cannot	be	created	independently	of	database	files.	The
filegroup	is	an	administrative	mechanism	of	grouping	files	within	the	database.

To	add	a	filegroup	when	creating	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Changing	the	Default	Filegroup
When	you	change	the	default	filegroup,	any	objects	for	which	no	filegroups	have
been	initially	specified	are	allocated	to	the	data	files	in	the	new	default	filegroup.
Changing	the	default	filegroup	prevents	user	objects	that	are	not	specifically
created	on	a	user-defined	filegroup	from	competing	with	the	system	objects	and
tables	for	data	space.

To	change	the	default	filegroup

Transact-SQL

SQL-DMO

See	Also

Default	Filegroups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Setting	Database	Options
A	number	of	database-level	options	that	determine	the	characteristics	of	the
database	can	be	set	for	each	database.	Only	the	system	administrator,	database
owner,	members	of	the	sysadmin	and	dbcreator	fixed	server	roles	and
db_owner	fixed	database	roles	can	modify	these	options.	These	options	are
unique	to	each	database	and	do	not	affect	other	databases.	The	database	options
can	be	set	by	using	the	SET	clause	of	the	ALTER	DATABASE	statement,	the
sp_dboption	system	stored	procedure	or,	in	some	cases,	SQL	Server	Enterprise
Manager.

Note		Server-wide	settings	are	set	using	the	sp_configure	system	stored
procedure	or	SQL	Server	Enterprise	Manager.	For	more	information,	see	Setting
Configuration	Options.	Connection-level	settings	are	specified	by	using	SET
statements.	For	more	information,	see	SET	Options.

After	you	set	a	database	option,	a	checkpoint	is	automatically	issued	that	causes
the	modification	to	take	effect	immediately.

To	change	the	default	values	for	any	of	the	database	options	for	newly	created
databases,	change	the	appropriate	database	option	in	the	model	database.	For
example,	if	you	want	the	default	setting	of	the	AUTO_SHRINK	database	option
to	be	ON	for	any	new	databases	subsequently	created,	set	the	AUTO_SHRINK
option	for	model	to	ON.

There	are	five	categories	of	database	options:

Auto	options

Cursor	options

Recovery	options

SQL	options

State	options

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Auto	Options

Auto	options	control	certain	automatic	behaviors.

AUTO_CLOSE

When	set	to	ON,	the	database	is	closed	and	shut	down	cleanly	when	the	last
user	of	the	database	exits	and	all	processes	in	the	database	complete,	thereby
freeing	any	resources.	By	default,	this	option	is	set	to	ON	for	all	databases
when	using	Microsoft®	SQL	Server™	2000	Desktop	Engine,	and	OFF	for
all	other	editions,	regardless	of	operating	system.	The	database	reopens
automatically	when	a	user	tries	to	use	the	database	again.	If	the	database	was
shut	down	cleanly,	the	database	is	not	reopened	until	a	user	tries	to	use	the
database	the	next	time	SQL	Server	is	restarted.	When	set	to	OFF,	the
database	remains	open	even	if	no	users	are	currently	using	the	database.

The	AUTO_CLOSE	option	is	useful	for	desktop	databases	because	it	allows
database	files	to	be	managed	as	normal	files.	They	can	be	moved,	copied	to
make	backups,	or	even	e-mailed	to	other	users.	The	AUTO_CLOSE	option
should	not	be	used	for	databases	accessed	by	an	application	that	repeatedly
makes	and	breaks	connections	to	SQL	Server.	The	overhead	of	closing	and
reopening	the	database	between	each	connection	will	impair	performance.

The	status	of	this	option	can	be	determined	by	examining	the	IsAutoClose
property	of	the	DATABASEPROPERTYEX	function.

AUTO_CREATE_STATISTICS

When	set	to	ON,	statistics	are	automatically	created	on	columns	used	in	a
predicate.	Adding	statistics	improves	query	performance	because	the	SQL
Server	query	optimizer	can	better	determine	how	to	evaluate	a	query.	If	the
statistics	are	not	used,	SQL	Server	automatically	deletes	them.	When	set	to
OFF,	statistics	are	not	automatically	created	by	SQL	Server;	instead,
statistics	can	be	manually	created.	For	more	information,	see	Statistical
Information.

By	default,	AUTO_CREATE_STATISTICS	is	ON.

The	status	of	this	option	can	be	determined	by	examining	the
IsAutoCreateStatistics	property	of	the	DATABASEPROPERTYEX
function.

AUTO_UPDATE_STATISTICS

When	set	to	ON,	existing	statistics	are	automatically	updated	when	the
statistics	become	out-of-date	because	the	data	in	the	tables	has	changed.
When	set	to	OFF,	existing	statistics	are	not	automatically	updated;	instead,
statistics	can	be	manually	updated.	For	more	information,	see	Statistical
Information.

By	default,	AUTO_UPDATE_STATISTICS	is	set	to	ON.

The	status	of	this	option	can	be	determined	by	examining	the
IsAutoUpdateStatistics	property	of	the	DATABASEPROPERTYEX
function.

AUTO_SHRINK

When	set	to	ON,	the	database	files	are	candidates	for	periodic	shrinking.
Both	data	file	and	log	files	can	be	shrunk	automatically	by	SQL	Server.
When	set	to	OFF,	the	database	files	are	not	automatically	shrunk	during
periodic	checks	for	unused	space.	By	default,	this	option	is	set	to	ON	for	all
databases	when	using	SQL	Server	Desktop	Edition,	and	OFF	for	all	other
editions,	regardless	of	operating	system.

AUTO_SHRINK	only	reduces	the	size	of	the	transaction	log	if	the	database
is	set	to	SIMPLE	recovery	model	or	if	the	log	is	backed	up.

The	AUTO_SHRINK	option	causes	files	to	be	shrunk	when	more	than	25
percent	of	the	file	contains	unused	space.	The	file	is	shrunk	to	a	size	where
25	percent	of	the	file	is	unused	space,	or	to	the	size	of	the	file	when	it	was
created,	whichever	is	greater.

It	is	not	possible	to	shrink	a	read-only	database.

The	status	of	this	option	can	be	determined	by	examining	the	IsAutoShrink
property	of	the	DATABASEPROPERTYEX	function.

Cursor	Options
Cursor	options	control	cursor	behavior	and	scope.

CURSOR_CLOSE_ON_COMMIT

When	set	to	ON,	any	open	cursors	are	closed	automatically	(in	compliance

with	SQL-92)	when	a	transaction	is	committed.	By	default,	this	setting	is
OFF	and	cursors	remain	open	across	transaction	boundaries,	closing	only
when	the	connection	is	closed	or	when	they	are	explicitly	closed.

Connection-level	settings	(set	using	the	SET	statement)	override	the	default
database	setting	for	CURSOR_CLOSE_ON_COMMIT.	By	default,	ODBC
and	OLE	DB	clients	issue	a	connection-level	SET	statement	setting
CURSOR_CLOSE_ON_COMMIT	to	OFF	for	the	session	when	connecting
to	SQL	Server.	For	more	information,	see	SET
CURSOR_CLOSE_ON_COMMIT.

The	status	of	this	option	can	be	determined	by	examining	the
IsCloseCursorsOnCommitEnabled	property	of	the
DATABASEPROPERTYEX	function.

CURSOR_DEFAULT	LOCAL	|	GLOBAL

When	CURSOR_DEFAULT	LOCAL	is	set,	and	a	cursor	is	not	defined	as
GLOBAL	when	it	is	created,	the	scope	of	the	cursor	is	local	to	the	batch,
stored	procedure,	or	trigger	in	which	the	cursor	was	created.	The	cursor
name	is	valid	only	within	this	scope.	The	cursor	can	be	referenced	by	local
cursor	variables	in	the	batch,	stored	procedure,	or	trigger,	or	a	stored
procedure	OUTPUT	parameter.	The	cursor	is	implicitly	deallocated	when	the
batch,	stored	procedure,	or	trigger	terminates,	unless	it	was	passed	back	in	an
OUTPUT	parameter.	If	it	is	passed	back	in	an	OUTPUT	parameter,	the
cursor	is	deallocated	when	the	last	variable	referencing	it	is	deallocated	or
goes	out	of	scope.

When	CURSOR_DEFAULT	GLOBAL	is	set,	and	a	cursor	is	not	defined	as
LOCAL	when	created,	the	scope	of	the	cursor	is	global	to	the	connection.
The	cursor	name	can	be	referenced	in	any	stored	procedure	or	batch	executed
by	the	connection.	The	cursor	is	implicitly	deallocated	only	at	disconnect.
CURSOR_DEFAULT	GLOBAL	is	the	default	setting.	For	more	information,
see	DECLARE	CURSOR.

The	status	of	this	option	can	be	determined	by	examining	the
IsLocalCursorsDefault	property	of	the	DATABASEPROPERTYEX
function.

Recovery	Options

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Recovery	options	controls	the	recovery	model	for	the	database.

RECOVERY	FULL	|	BULK_LOGGED	|	SIMPLE

When	FULL	is	specified,	database	backups	and	transaction	log	backups	are
used	to	provide	full	recoverability	from	media	failure.	All	operations,
including	bulk	operations	such	as	SELECT	INTO,	CREATE	INDEX,	and
bulk	loading	data,	are	fully	logged.	For	more	information,	see	Full	Recovery.

When	BULK_LOGGED	is	specified,	logging	for	all	SELECT	INTO,
CREATE	INDEX,	and	bulk	loading	data	operations	is	minimal	and	therefore
requires	less	log	space.	In	exchange	for	better	performance	and	less	log
space	usage,	the	risk	of	exposure	to	loss	is	greater	than	with	full	recovery.
For	more	information,	see	Bulk-Logged	Recovery.

When	SIMPLE	is	specified,	the	database	can	be	recovered	only	to	the	last
full	database	backup	or	last	differential	backup.	For	more	information,	see
Simple	Recovery.

SIMPLE	is	the	default	setting	for	SQL	Server	Desktop	Edition	and	the	data
engine,	and	FULL	is	the	default	for	all	other	editions.

The	status	of	this	option	can	be	determined	by	examining	the	Recovery
property	of	the	DATABASEPROPERTYEX	function.

TORN_PAGE_DETECTION

This	recovery	option	allows	SQL	Server	to	detect	incomplete	I/O	operations
caused	by	power	failures	or	other	system	outages.

When	set	to	ON,	this	option	causes	a	bit	to	be	reversed	for	each	512-byte
sector	in	an	8-kilobyte	(KB)	database	page	when	the	page	is	written	to	disk.
If	a	bit	is	in	the	wrong	state	when	the	page	is	later	read	by	SQL	Server,	the
page	was	written	incorrectly;	a	torn	page	is	detected.	Torn	pages	are	usually
detected	during	recovery	because	any	page	that	was	written	incorrectly	is
likely	to	be	read	by	recovery.

Although	SQL	Server	database	pages	are	8	KB,	disks	perform	I/O	operations
using	a	512-byte	sector.	Therefore,	16	sectors	are	written	per	database	page.
A	torn	page	can	occur	if	the	system	fails	(for	example,	due	to	power	failure)
between	the	time	the	operating	system	writes	the	first	512-byte	sector	to	disk
and	the	completion	of	the	8-KB	I/O	operation.	If	the	first	sector	of	a	database

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

page	is	successfully	written	before	the	failure,	the	database	page	on	disk	will
appear	as	updated,	although	it	may	not	have	succeeded.

Note		Using	battery-backed	disk	caches	can	ensure	that	data	is	successfully
written	to	disk	or	not	written	at	all.

If	a	torn	page	is	detected,	an	I/O	error	is	raised	and	the	connection	is	killed.
If	the	torn	page	is	detected	during	recovery,	the	database	is	also	marked
suspect.	The	database	backup	should	be	restored,	and	any	transaction	log
backups	applied,	because	it	is	physically	inconsistent.	

By	default,	TORN_PAGE_DETECTION	is	ON.

The	current	setting	of	this	option	can	be	determined	by	examining	the
IsTornPageDetectionEnabled	property	of	DATABASEPROPERTYEX.

SQL	Options
SQL	options	control	ANSI	compliance	options.

ANSI_NULL_DEFAULT

Allows	the	user	to	control	the	database	default	nullability.	When	NULL	or
NOT	NULL	is	not	specified	explicitly,	a	user-defined	data	type	or	a	column
definition	uses	the	default	setting	for	nullability.	Nullability	is	determined	by
session	and	database	settings.	Microsoft	SQL	Server™2000	defaults	to	NOT
NULL.	For	ANSI	compatibility,	setting	the	database	option
ANSI_NULL_DEFAULT	to	ON	changes	the	database	default	to	NULL.

When	this	option	is	set	to	ON,	all	user-defined	data	types	or	columns	that	are
not	explicitly	defined	as	NOT	NULL	during	a	CREATE	TABLE	or	ALTER
TABLE	statement	default	to	allowing	null	values.	Columns	that	are	defined
with	constraints	follow	constraint	rules	regardless	of	this	setting.

Connection-level	settings	(set	using	the	SET	statement)	override	the	default
database-level	setting	for	ANSI_NULL_DEFAULT.	By	default,	ODBC	and
OLE	DB	clients	issue	a	connection-level	SET	statement	setting
ANSI_NULL_DEFAULT	to	ON	for	the	session	when	connecting	to	SQL
Server.	For	more	information,	see	SET	ANSI_NULL_DFLT_ON.

The	status	of	this	option	can	be	determined	by	examining	the

JavaScript:hhobj_8.Click()

IsAnsiNullDefault	property	of	the	DATABASEPROPERTYEX	function.

ANSI_NULLS

When	set	to	ON,	all	comparisons	to	a	null	value	evaluate	to	NULL
(unknown).	When	set	to	OFF,	comparisons	of	non-Unicode	values	to	a	null
value	evaluate	to	TRUE	if	both	values	are	NULL.	By	default,	the
ANSI_NULLS	database	option	is	OFF.

Connection-level	settings	(set	using	the	SET	statement)	override	the	default
database	setting	for	ANSI_NULLS.	By	default,	ODBC	and	OLE	DB	clients
issue	a	connection-level	SET	statement	setting	ANSI_NULLS	to	ON	for	the
session	when	connecting	to	SQL	Server.	For	more	information,	see	SET
ANSI_NULLS.

SET	ANSI_NULLS	also	must	be	set	to	ON	when	you	create	or	manipulate
indexes	on	computed	columns	or	indexed	views.

The	status	of	this	option	can	be	determined	by	examining	the
IsAnsiNullsEnabled	property	of	the	DATABASEPROPERTYEX	function.

ANSI_PADDING

When	set	to	ON,	trailing	blanks	in	character	values	inserted	into	varchar
columns	and	trailing	zeros	in	binary	values	inserted	into	varbinary	columns
are	not	trimmed.	Values	are	not	padded	to	the	length	of	the	column.	When	set
to	OFF,	the	trailing	blanks	(for	varchar)	and	zeros	(for	varbinary)	are
trimmed.	This	setting	affects	only	the	definition	of	new	columns.

Char(n)	and	binary(n)	columns	that	allow	nulls	are	padded	to	the	length	of
the	column	when	SET	ANSI_PADDING	is	set	to	ON,	but	trailing	blanks	and
zeros	are	trimmed	when	SET	ANSI_PADDING	is	OFF.	Char(n)	and
binary(n)	columns	that	do	not	allow	nulls	are	always	padded	to	the	length	of
the	column.

IMPORTANT		It	is	recommended	that	ANSI_PADDING	always	be	set	to	ON.	SET
ANSI_PADDING	must	be	ON	when	creating	or	manipulating	indexes	on
computed	columns	or	indexed	views.

The	status	of	this	option	can	be	determined	by	examining	the
IsAnsiPaddingEnabled	property	of	the	DATABASEPROPERTYEX
function.

JavaScript:hhobj_9.Click()

ANSI_WARNINGS

When	set	to	ON,	errors	or	warnings	are	issued	when	conditions	such	as
"divide	by	zero"	occur	or	null	values	appear	in	aggregate	functions.	When	set
to	OFF,	no	warnings	are	raised	when	null	values	appear	in	aggregate
functions,	and	null	values	are	returned	when	conditions	such	as	"divide	by
zero"	occur.	By	default,	ANSI_WARNINGS	is	OFF.

SET	ANSI_WARNINGS	must	be	set	to	ON	when	you	create	or	manipulate
indexes	on	computed	columns	or	indexed	views.

Connection-level	settings	(set	using	the	SET	statement)	override	the	default
database	setting	for	ANSI_WARNINGS.	By	default,	ODBC	and	OLE	DB
clients	issue	a	connection-level	SET	statement	setting	ANSI_WARNINGS	to
ON	for	the	session	when	connecting	to	SQL	Server.	For	more	information,
see	SET	ANSI_WARNINGS.

The	status	of	this	option	can	be	determined	by	examining	the
IsAnsiWarningsEnabled	property	of	the	DATABASEPROPERTYEX
function.

ARITHABORT

When	set	to	ON,	an	overflow	or	divide-by-zero	error	causes	the	query	or
batch	to	terminate.	If	the	error	occurs	in	a	transaction,	the	transaction	is
rolled	back.	When	set	to	OFF,	a	warning	message	is	displayed	if	one	of	these
errors	occurs,	but	the	query,	batch,	or	transaction	continues	to	process	as	if
no	error	occurred.

SET	ARITHABORT	must	be	set	to	ON	when	you	create	or	manipulate
indexes	on	computed	columns	or	indexed	views

The	status	of	this	option	can	be	determined	by	examining	the
IsArithmeticAbortEnabled	property	of	the	DATABASEPROPERTYEX
function.

NUMERIC_ROUNDABORT

If	set	to	ON,	an	error	is	generated	when	loss	of	precision	occurs	in	an
expression.	When	set	to	OFF,	losses	of	precision	do	not	generate	error
messages	and	the	result	is	rounded	to	the	precision	of	the	column	or	variable
storing	the	result.

JavaScript:hhobj_10.Click()

SET	NUMERIC_ROUNDABORT	must	be	set	to	OFF	when	you	create	or
manipulate	indexes	on	computed	columns	or	indexed	views.

The	status	of	this	option	can	be	determined	by	examining	the
IsNumericRoundAbortEnabled	property	of	the
DATABASEPROPERTYEX	function.

CONCAT_NULL_YIELDS_NULL

When	set	to	ON,	if	one	of	the	operands	in	a	concatenation	operation	is
NULL,	the	result	of	the	operation	is	NULL.	For	example,	concatenating	the
character	string	"This	is"	and	NULL	results	in	the	value	NULL,	rather	than
the	value	"This	is".

When	set	to	OFF,	concatenating	a	null	value	with	a	character	string	yields
the	character	string	as	the	result;	the	null	value	is	treated	as	an	empty
character	string.	By	default,	CONCAT_NULL_YIELDS_NULL	is	OFF.

SET	CONCAT_NULL_YIELDS_NULL	must	be	set	to	ON	when	you	create
or	manipulate	indexes	on	computed	columns	or	indexed	views.

Connection-level	settings	(set	using	the	SET	statement)	override	the	default
database	setting	for	CONCAT_NULL_YIELDS_NULL.	By	default,	ODBC
and	OLE	DB	clients	issue	a	connection-level	SET	statement	setting
CONCAT_NULL_YIELDS_NULL	to	ON	for	the	session	when	connecting
to	SQL	Server.	For	more	information,	see	SET
CONCAT_NULL_YIELDS_NULL.

The	status	of	this	option	can	be	determined	by	examining	the	IsNullConcat
property	of	the	DATABASEPROPERTYEX	function.

QUOTED_IDENTIFIER

When	set	to	ON,	identifiers	can	be	delimited	by	double	quotation	marks	and
literals	must	be	delimited	by	single	quotation	marks.	All	strings	delimited	by
double	quotation	marks	are	interpreted	as	object	identifiers.	Quoted
identifiers	do	not	have	to	follow	the	Transact-SQL	rules	for	identifiers.	They
can	be	keywords	and	can	include	characters	not	generally	allowed	in
Transact-SQL	identifiers.	If	a	single	quotation	mark	(')	is	part	of	the	literal
string,	it	can	be	represented	by	double	quotation	marks	(").

When	set	to	OFF	(default),	identifiers	cannot	be	in	quotation	marks	and	must

JavaScript:hhobj_11.Click()

follow	all	Transact-SQL	rules	for	identifiers.	Literals	can	be	delimited	by
either	single	or	double	quotation	marks.

SQL	Server	also	allows	identifiers	to	be	delimited	by	square	brackets	([]).
Bracketed	identifiers	can	always	be	used,	regardless	of	the	setting	of
QUOTED_IDENTIFIER.	For	more	information,	see	Delimited	Identifiers.

SET	QUOTED_IDENTIFIER	must	be	set	to	ON	when	you	create	or
manipulate	indexes	on	computed	columns	or	indexed	views.

Connection-level	settings	(set	using	the	SET	statement)	override	the	default
database	setting	for	QUOTED_IDENTIFIER.	By	default,	ODBC	and	OLE
DB	clients	issue	a	connection-level	SET	statement	setting
QUOTED_IDENTIFIER	to	ON	when	connecting	to	SQL	Server.	For	more
information,	see	SET	QUOTED_IDENTIFIER.

The	status	of	this	option	can	be	determined	by	examining	the
IsQuotedIdentifiersEnabled	property	of	the	DATABASEPROPERTYEX
function.

RECURSIVE_TRIGGERS

When	set	to	ON,	triggers	are	allowed	to	fire	recursively.	When	set	to	OFF
(default),	triggers	cannot	be	fired	recursively.

Note		Only	direct	recursion	is	prevented	when	RECURSIVE_TRIGGERS	is	set
to	OFF.	To	disable	indirect	recursion,	you	must	also	set	the	nested	triggers
server	option	to	0.

The	status	of	this	option	can	be	determined	by	examining	the
IsRecursiveTriggersEnabled	property	of	the	DATABASEPROPERTYEX
function.

State	Options
State	options	control	whether	the	database	is	online	or	offline,	who	can	connect
to	the	database,	and	whether	the	database	is	in	read-only	mode.	A	termination
clause	can	be	used	to	control	how	connections	are	terminated	when	the	database
is	transitioned	from	one	state	to	another.

OFFLINE	|	ONLINE

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

When	OFFLINE	is	specified,	the	database	is	closed	and	shutdown	cleanly
and	marked	offline.	The	database	cannot	be	modified	while	the	database	is
offline.

When	ONLINE	is	specified,	the	database	is	open	and	available	for	use.
ONLINE	is	the	default	setting.

The	status	of	this	option	can	be	determined	by	examining	the	Status	property
of	the	DATABASEPROPERTYEX	function.

READ_ONLY	|	READ_WRITE

When	READ_ONLY	is	specified,	the	database	is	in	read-only	mode.	Users
can	retrieve	data	from	the	database,	but	cannot	modify	the	data.	Because	a
read-only	database	does	not	allow	data	modifications:

Automatic	recovery	is	skipped	at	system	startup.

Shrinking	the	database	is	not	possible.

No	locking	takes	place	in	read-only	databases,	which	can	result	in	faster
query	performance.

When	READ_WRITE	is	specified,	users	can	retrieve	and	modify	data.
READ_WRITE	is	the	default	setting.

The	status	of	this	option	can	be	determined	by	examining	the	Updateability
property	of	the	DATABASEPROPERTYEX	function.

SINGLE_USER	|	RESTRICTED_USER	|	MULTI_USER

SINGLE_USER	allows	one	user	at	a	time	to	connect	to	the	database.	All
other	user	connections	are	broken.	The	timeframe	for	breaking	the
connection	is	controlled	by	the	termination	clause	of	the	ALTER
DATABASE	statement.	New	connection	attempts	are	refused.	The	database
remains	in	SINGLE_USER	mode	even	if	the	user	who	set	the	option	logs
off.	At	that	point,	a	different	user	(but	only	one)	can	connect	to	the	database.

To	allow	multiple	connections,	the	database	must	be	changed	to
RESTRICTED_USER	or	MULTI_USER	mode.

RESTRICTED_USER	allows	only	members	of	the	db_owner	fixed	database
role	and	dbcreator	and	sysadmin	fixed	server	roles	to	connect	to	the
database,	but	it	does	not	limit	their	number.	Users	who	are	not	members	of
these	roles	are	disconnected	in	the	timeframe	specified	by	the	termination
clause	of	the	ALTER	DATABASE	statement.	Moreover,	new	connection
attempts	by	unqualified	users	are	refused.

MULTI_USER	allows	all	users	with	the	appropriate	permissions	to	connect
to	the	database.	MULTI_USER	is	the	default	setting.

The	status	of	this	option	can	be	determined	by	examining	the	UserAccess
property	of	the	DATABASEPROPERTYEX	function.

WITH	<termination>

The	termination	clause	of	the	ALTER	DATABASE	statement	specifies	how
to	terminate	incomplete	transactions	when	the	database	is	to	be	transitioned
from	one	state	to	another.	Transactions	are	terminated	by	breaking	their
connections	to	the	database.	If	the	termination	clause	is	omitted,	the	ALTER
DATABASE	statement	waits	indefinitely,	until	the	transactions	commit	or
roll	back	on	their	own.

ROLLBACK	AFTER	integer	[SECONDS]
ROLLBACK	AFTER	integer	SECONDS	waits	for	the	specified	number
of	seconds	and	then	breaks	unqualified	connections.	Incomplete
transactions	are	rolled	back.	When	the	transition	is	to	SINGLE_USER
mode,	unqualified	connections	are	all	connections	except	the	one	issuing
the	ALTER	DATABASE	statement.	When	the	transition	is	to
RESTRICTED_USER	mode,	unqualified	connections	are	connections
for	users	who	are	not	members	of	the	db_owner	fixed	database	role	and
dbcreator	and	sysadmin	fixed	server	roles.	

ROLLBACK	IMMEDIATE
ROLLBACK	IMMEDIATE	breaks	unqualified	connections	immediately.
All	incomplete	transactions	are	rolled	back.	Unqualified	connections	are
the	same	as	those	described	for	ROLLBACK	AFTER	integer
SECONDS.

NO_WAIT
NO_WAIT	checks	for	connections	before	attempting	to	change	the

database	state	and	causes	the	ALTER	DATABASE	statement	to	fail	if
certain	connections	exist.	When	the	transition	is	to	SINGLE_USER
mode,	the	ALTER	DATABASE	statement	fails	if	any	other	connections
exist.	When	the	transition	is	to	RESTRICTED_USER	mode,	the	ALTER
DATABASE	statement	fails	if	any	unqualified	connections	exist.

To	change	database	options

Transact-SQL

JavaScript:hhobj_14.Click()

Creating	and	Maintaining	Databases

Creating	a	Removable	Database
In	Microsoft®	SQL	Server™	2000,	you	can	create	a	database	for	read-only
purposes	that	can	be	distributed	by	way	of	removable	media,	such	as	CD-ROM.
This	can	be	useful	for	distributing	large	databases	containing	history	data,	such
as	a	database	containing	detailed	sales	data	for	the	last	year.

To	create	a	removable	media	database,	you	create	the	database	using	the
sp_create_removable	system	stored	procedure	rather	than	using	SQL	Server
Enterprise	Manager	or	the	CREATE	DATABASE	statement.

The	sp_create_removable	system	stored	procedure	creates	three	or	more	files:

One	file	containing	the	system	tables

One	file	containing	the	transaction	log

One	or	more	files	containing	the	data	tables

Although	the	database	itself	is	likely	to	remain	on	the	read-only	media,	such	as
CD-ROM,	the	system	tables	and	transaction	log	are	placed	in	separate	files	on
writable	media	so	that	management	tasks	can	be	accomplished,	such	as	adding
users	to	the	database,	granting	permissions,	and	so	on.

A	database	can	use	multiple	removable	media	devices.	However,	all	media	must
be	available	simultaneously.	For	example,	if	a	database	uses	three	compact	discs,
then	the	system	must	have	three	CD-ROM	drives	and	have	all	discs	available
when	the	database	is	used.

After	the	database	has	been	created,	you	can	use	the	sp_certify_removable
system	stored	procedure	to	ensure	that	the	database	is	configured	properly	for
distribution	on	removable	media.	If	the	database	is	configured	correctly,	the
database	is	placed	offline,	allowing	the	files	to	be	copied	to	the	removable
media.	By	placing	the	database	offline,	users	are	prevented	from	accessing	the
database,	and	no	modifications	to	the	database	can	be	made	until	the	database	is
placed	online.	To	make	the	database	available	again	on	the	same	server,	place
the	database	online.

After	the	files	have	been	distributed	on	removable	media,	the	database	can	be
made	available	by	attaching	the	files	to	a	different	instance	of	SQL	Server.	For
more	information,	see	Attaching	and	Detaching	a	Database.

To	place	a	database	online	or	offline

Transact-SQL

SQL-DMO

See	Also

sp_certify_removable

sp_create_removable

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Attaching	and	Detaching	a	Database
In	Microsoft®	SQL	Server™	2000,	the	data	and	transaction	log	files	of	a
database	can	be	detached	and	then	reattached	to	another	server,	or	even	to	the
same	server.	Detaching	a	database	removes	the	database	from	SQL	Server	but
leaves	the	database	intact	within	the	data	and	transaction	log	files	that	compose
the	database.	These	data	and	transaction	log	files	can	then	be	used	to	attach	the
database	to	any	instance	of	SQL	Server,	including	the	server	from	which	the
database	was	detached.	This	makes	the	database	available	in	exactly	the	same
state	it	was	in	when	it	was	detached.

Detaching	and	attaching	databases	is	useful	if	you	want	to	move	a	database:

From	one	computer	to	another	without	having	to	re-create	the	database
and	then	restore	the	database	backup	manually.	

To	a	different	physical	disk,	for	example,	when	the	disk	containing	the
database	file	has	run	out	of	disk	space	and	you	want	to	expand	the
existing	file	rather	than	add	a	new	file	to	the	database	on	the	other	disk.

To	move	a	database,	or	database	file,	to	another	server	or	disk:

1.	 Detach	the	database.

2.	 Move	the	database	file(s)	to	the	other	server	or	disk.

3.	 Attach	the	database	specifying	the	new	location	of	the	moved	file(s).

When	you	attach	a	database,	the	name	and	physical	location	of	the	primary	data
file	must	be	specified.	The	primary	file	contains	the	information	needed	to	find
the	other	files	comprising	the	database	unless	one	or	more	of	those	files	have
changed	location	since	the	database	was	detached.	Any	files	that	have	changed
location	must	be	specified	in	addition	to	the	primary	file.	Otherwise,	SQL	Server
tries	to	attach	the	files	based	on	incorrect	file	location	information	stored	in	the
primary	file,	and	the	database	will	not	be	successfully	attached.

If	you	attach	a	database	to	a	server	other	than	the	server	from	which	the	database
was	detached,	and	the	detached	database	was	enabled	for	replication,	you	should
run	sp_removedbreplication	to	remove	replication	from	the	database.
Alternatively,	you	can	remove	replication	from	the	database	prior	to	detaching	it.

Errors	produced	while	detaching	a	database	may	prevent	both	the	database	from
closing	cleanly	and	the	transaction	log	from	being	rebuilt.	If	you	receive	an	error
message,	perform	these	corrective	actions:

1.	 Reattach	all	files	associated	with	the	database,	not	just	the	primary	file.

2.	 Resolve	the	problem	that	caused	the	error	message.

3.	 Detach	the	database	again.

To	attach	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Attaching	a	Single-File	Database
If	a	database	comprises	only	a	single	data	file	and	a	single	transaction	log	file,
the	database	can	be	attached	to	an	instance	of	Microsoft®	SQL	Server™	2000
without	using	the	transaction	log	file,	provided	the	database	was	cleanly	shut
down	with	no	users	and	no	open	transactions.	When	the	data	file	is	attached,
SQL	Server	creates	a	new	transaction	log	file	automatically.

The	database	must	have	been	successfully	detached	from	SQL	Server	using	the
sp_detach_db	system	stored	procedure.

Single-file	databases	are	useful	if	you	want	to	e-mail	databases	to	other	users.
All	the	data	is	stored	in	a	single	file;	attaching	the	single	file	to	SQL	Server
automatically	re-creates	a	transaction	log	so	that	the	database	can	be	used.

To	attach	a	single-file	database

Transact-SQL

SQL-DMO

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Renaming	a	Database
In	Microsoft®	SQL	Server™	2000,	you	can	change	the	name	of	a	database	to	be
changed.	Before	you	rename	a	database,	you	should	make	sure	that	no	one	is
using	the	database	and	that	the	database	is	set	to	single-user	mode.	The	name	of
the	database	can	include	any	characters	as	long	as	they	follow	the	rules	for
identifiers.

To	rename	a	database

Transact-SQL

SQL-DMO

See	Also

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Changing	the	Database	Owner
In	Microsoft®	SQL	Server™	2000,	the	owner	of	the	current	database	can	be
changed.	Any	user	(SQL	Server	login	or	Microsoft	Windows	NT®	user)	who
has	access	to	connect	to	SQL	Server	can	become	the	owner	of	a	database.

Ownership	of	the	system	databases	(master,	model,	and	tempdb)	cannot	be
changed.

To	change	the	owner	of	a	database

Transact-SQL

SQL-DMO

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Transaction	Termination	for	Changing	Database
States
Microsoft®	SQL	Server™	2000	includes	the	ability	to	easily	shut	down	or
otherwise	change	the	state	of	a	database,	automatically	terminating	the	sessions
of	affected	users	and	rolling	back	the	associated	transactions.	Affected	sessions
may	be	terminated	immediately,	or	may	be	allowed	to	continue	to	their	normal
conclusion	with	an	optional	time-out.

It	is	often	necessary	to	stop	or	restrict	activity	on	a	database	to	perform
maintenance	or	other	operations	without	taking	down	the	server,	for	example:

Single-user	mode:	only	one	user	is	allowed	

Restricted-user	mode:	only	members	of	the	db_owner,	dbcreator,	or
sysadmin	roles	are	allowed

Offline:	the	database	is	offline

Read-only	mode:	no	changes	are	allowed

Transitioning	into	any	of	these	states	requires	the	termination	of	transactions	and
the	associated	sessions	that	do	not	meet	the	requirements	of	the	new	state.

There	are	three	types	of	transaction	termination:

Normal

New	transactions	are	prevented	from	starting.	Incomplete	transactions
are	allowed	to	commit	or	rollback	on	their	own.

Normal	with	time-out

New	transactions	are	prevented	from	starting.	Incomplete	transactions
are	allowed	to	commit	or	roll	back	on	their	own	until	the	time-out	is
reached,	at	which	time	they	are	rolled	back.

Immediate

An	immediate	termination	prevents	new	transactions	from	starting,	and
rolls	back	incomplete	transactions	unconditionally.

The	user	initiating	the	change	remains	connected	and	able	to	perform	further
commands.

Use	the	ALTER	DATABASE	statement	to	specify	the	database	state	and	a
transaction	termination	type.

See	Also

ALTER	DATABASE

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Viewing	a	Database
You	can	view	the	definition	of	a	database	and	its	configuration	settings	when
you	are	troubleshooting	or	considering	making	changes	to	a	database.

To	view	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Displaying	Database	and	Transaction	Log	Space
Microsoft®	SQL	Server™	2000	can	display	the	number	of	rows,	reserved	disk
space,	and	disk	space	used	by	a	table	in	a	database.	SQL	Server	can	also	display
the	reserved	disk	space	that	is	used	by	an	entire	database	as	well	as	statistics
about	the	use	of	transaction	log	space	in	a	database.	This	indicates	how	much
data	is	in	the	database,	whether	the	database	must	be	expanded	(if	autogrow	is
not	permitted),	and	how	fast	the	database	is	growing	(if	you	maintain	a	history	of
the	data	space	that	is	used).

To	display	data	space	information	for	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Documenting	and	Scripting	Databases
With	Microsoft®	SQL	Server™	2000,	you	can	document	an	existing	database
structure	(schema)	by	generating	one	or	more	SQL	scripts.	An	SQL	script	can	be
viewed	in	SQL	Server	Enterprise	Manager,	SQL	Query	Analyzer,	or	by	using
any	text	editor.

A	schema	generated	as	an	SQL	script	can	be	used	in	many	ways,	including:

To	maintain	a	backup	script	that	will	allow	the	user	to	re-create	all
users,	groups,	logins,	and	permissions.

To	create	or	update	database	development	code.

To	create	a	test	or	development	environment	from	an	existing	schema.

To	train	newly	hired	employees.

SQL	scripts	contain	descriptions	of	the	statements	used	to	create	a	database	and
its	objects.	You	can	generate	scripts	from	the	objects	in	an	existing	database,	and
then	add	these	objects	to	another	database	by	running	the	scripts	against	that
database.	In	effect,	this	re-creates	the	whole	database	structure	and	any
individual	database	objects.	The	schema	of	the	following	objects	can	be
generated	and	saved	as	a	script.

Tables User-defined	data	types
Indexes Triggers
Views Users,	groups,	and	roles
Stored	procedures Logins
Defaults Rules
Table	keys/declarative	referential
integrity	(DRI)

Object-level	permissions

Full-text	indexes 	

The	schema	for	the	objects	generated	can	be	saved	in	a	single	SQL	Script	file,	or
in	several	files	with	each	file	containing	the	schema	of	just	one	object.	You	can
also	save	the	schema	generated	for	a	single	object	(or	a	group	of	objects)	into
one	or	more	SQL	script	files.	Examples	of	SQL	script	files	that	you	can	generate
include:

An	entire	database	saved	into	a	single	SQL	script	file.

Table-only	schema	for	one,	some,	or	all	tables	in	a	database	saved	into
one	or	more	SQL	script	files.

Table	and	index	schema	saved	into	one	SQL	script	file,	stored
procedures	saved	into	another	SQL	script	file,	and	defaults	and	rules
saved	into	yet	another	SQL	script	file.

To	generate	a	script

Creating	and	Maintaining	Databases

Database	Maintenance	Plan	Wizard
The	Database	Maintenance	Plan	Wizard	can	be	used	to	help	you	set	up	the	core
maintenance	tasks	necessary	to	ensure	that	your	database	performs	well,	is
regularly	backed	up	in	case	of	system	failure,	and	is	checked	for	inconsistencies.
The	Database	Maintenance	Plan	Wizard	creates	a	Microsoft®	SQL	Server™
2000	job	that	performs	these	maintenance	tasks	automatically	at	scheduled
intervals.

The	maintenance	tasks	that	can	be	scheduled	to	run	automatically	are:

Reorganizing	the	data	on	the	data	and	index	pages	by	rebuilding	indexes
with	a	new	fill	factor.	This	ensures	that	database	pages	contain	an
equally	distributed	amount	of	data	and	free	space,	which	allows	future
growth	to	be	faster.	For	more	information,	see	Fill	Factor.	

Compressing	data	files	by	removing	empty	database	pages.

Updating	index	statistics	to	ensure	the	query	optimizer	has	up-to-date
information	about	the	distribution	of	data	values	in	the	tables.	This
allows	the	query	optimizer	to	make	better	judgments	about	the	best	way
to	access	data	because	it	has	more	information	about	the	data	stored	in
the	database.	Although	index	statistics	are	automatically	updated	by
SQL	Server	periodically,	this	option	can	force	the	statistics	to	be
updated	immediately.

Performing	internal	consistency	checks	of	the	data	and	data	pages
within	the	database	to	ensure	that	a	system	or	software	problem	has	not
damaged	data.

Backing	up	the	database	and	transaction	log	files.	Database	and	log
backups	can	be	retained	for	a	specified	period.	This	allows	you	to	create
a	history	of	backups	to	be	used	in	the	event	that	you	need	to	restore	the
database	to	a	time	earlier	than	the	last	database	backup.

Setting	up	log	shipping.	Log	shipping	allows	the	transaction	logs	from
one	database	(the	source)	to	be	constantly	fed	to	another	database	(the
destination).	Keeping	the	destination	database	in	synchronization	with
the	source	database	allows	you	to	have	a	standby	server,	and	also
provides	a	way	to	offload	query	processing	from	the	main	computer
(source	server)	to	read-only	destination	servers.

The	results	generated	by	the	maintenance	tasks	can	be	written	as	a	report	to	a
text	file,	HTML	file,	or	the	sysdbmaintplan_history	tables	in	the	msdb
database.	The	report	can	also	be	e-mailed	to	an	operator.

To	start	the	Database	Maintenance	Plan	Wizard

Creating	and	Maintaining	Databases

Deleting	a	Database
You	can	delete	a	nonsystem	database	when	it	is	no	longer	needed	or	if	it	is
moved	to	another	database	or	server.	When	a	database	is	deleted,	the	files	and
their	data	are	deleted	from	the	disk	on	the	server.	When	a	database	is	deleted,	it
is	permanently	deleted	and	cannot	be	retrieved	without	using	a	previous	backup.
System	databases	(msdb,	master,	model,	tempdb)	cannot	be	deleted.

It	is	recommended	that	you	back	up	the	master	database	after	a	database	is
deleted,	because	deleting	a	database	updates	the	system	tables	in	master.	If
master	needs	to	be	restored,	any	database	that	has	been	deleted	since	the	last
backup	of	master	will	still	have	references	in	the	system	tables	and	may	cause
error	messages	to	be	raised.

To	delete	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Tables
Tables	are	database	objects	that	contain	all	the	data	in	a	database.	A	table
definition	is	a	collection	of	columns.	In	tables,	data	is	organized	in	a	row-and-
column	format	similar	to	a	spreadsheet.	Each	row	represents	a	unique	record,
and	each	column	represents	a	field	within	the	record.	For	example,	a	table
containing	employee	data	for	a	company	can	contain	a	row	for	each	employee
and	columns	representing	employee	information	such	as	employee	number,
name,	address,	job	title,	and	home	phone	number.

Creating	and	Maintaining	Databases

Designing	Tables
When	you	design	a	database,	you	decide	what	tables	you	need,	what	type	of	data
goes	in	each	table,	who	can	access	each	table,	and	so	on.	As	you	create	and	work
with	tables,	you	continue	to	make	more	detailed	decisions	about	them.

The	most	efficient	way	to	create	a	table	is	to	define	everything	you	need	in	the
table	at	one	time,	including	its	data	restrictions	and	additional	components.
However,	you	can	also	create	a	basic	table,	add	some	data	to	it,	and	then	work
with	it	for	a	while.	This	approach	gives	you	a	chance	to	see	what	types	of
transactions	are	most	common	and	what	types	of	data	are	frequently	entered
before	you	commit	to	a	firm	design	by	adding	constraints,	indexes,	defaults,
rules,	and	other	objects.

It	is	a	good	idea	to	outline	your	plans	on	paper	before	creating	a	table	and	its
objects.	Decisions	that	must	be	made	include:

Types	of	data	the	table	will	contain.

Columns	in	the	table	and	the	data	type	(and	length,	if	required)	for	each
column.

Which	columns	accept	null	values.

Whether	and	where	to	use	constraints	or	defaults	and	rules.

Types	of	indexes	needed,	where	required,	and	which	columns	are
primary	keys	and	which	are	foreign	keys.

See	Also

Indexes

Creating	and	Maintaining	Databases

Specifying	a	Column	Data	Type
Assigning	a	data	type	to	each	column	is	one	of	the	first	steps	to	take	in	designing
a	table.	Data	types	define	the	data	value	allowed	for	each	column.	To	assign	a
data	type	to	a	column,	you	can	use	Microsoft®	SQL	Server™	2000	base	data
types	or	create	your	own	user-defined	data	types	based	on	these	system	data
types.	For	example,	if	you	want	to	include	only	names	in	a	column,	you	can
assign	a	character	data	type	to	the	column.	Similarly,	if	you	want	a	column	to
contain	only	numbers,	you	can	assign	a	numeric	data	type.	For	more	information
about	user-defined	data	types,	see	Creating	User-Defined	Data	Types.

SQL	Server	also	supports	SQL-92	synonyms	for	several	base	data	types.	For
more	information,	see	Data	Type	Synonyms.

Enforcing	Data	Integrity
System	and	user-defined	data	types	can	be	used	to	enforce	data	integrity,	because
the	data	entered	or	changed	must	conform	to	the	type	specified	in	the	original
CREATE	TABLE	statement.	For	example,	you	cannot	store	a	surname	in	a
column	defined	as	datetime	because	a	datetime	column	accepts	only	valid
dates.	For	the	most	part,	keep	numeric	data	in	numeric	columns,	especially	if
calculations	must	be	performed	on	the	numeric	data	at	a	later	date.

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Binary	Data
Binary	data	consists	of	hexadecimal	numbers.	For	example,	the	decimal	number
245	is	hexadecimal	F5.	Binary	data	is	stored	using	the	binary,	varbinary,	and
image	data	types	in	Microsoft®	SQL	Server™	2000.	A	column	assigned	the
binary	data	type	must	have	the	same	fixed	length	(up	to	8	KB)	for	each	row.	In	a
column	assigned	the	varbinary	data	type,	entries	can	vary	in	the	number	of
hexadecimal	digits	(up	to	8	KB)	they	contain.	Columns	of	image	data	can	be
used	to	store	variable-length	binary	data	exceeding	8	KB,	such	as	Microsoft
Word	documents,	Microsoft	Excel	spreadsheets,	and	images	that	include
bitmaps,	Graphics	Interchange	Format	(GIF),	and	Joint	Photographic	Experts
Group	(JPEG)	files.

In	general,	use	varbinary	for	storing	binary	data,	unless	the	length	of	the	data
exceeds	8	KB,	in	which	case	you	should	use	image.	It	is	recommended	that	the
defined	length	of	a	binary	column	be	no	larger	than	the	expected	maximum
length	of	the	binary	data	to	be	stored.

See	Also

binary	and	varbinary

image

Using	Binary	Data

Using	Data	Types

Using	text	and	image	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Creating	and	Maintaining	Databases

Character	Data
Character	data	consists	of	any	combination	of	letters,	symbols,	and	numeric
characters.	For	example,	valid	character	data	includes	"928",	"Johnson",	and	"
(0*&(%B99nh		jkJ".	In	Microsoft®	SQL	Server™	2000,	character	data	is	stored
using	the	char,	varchar,	and	text	data	types.	Use	varchar	when	the	entries	in	a
column	vary	in	the	number	of	characters	they	contain,	but	the	length	of	any	entry
does	not	exceeds	8	kilobytes	(KB).	Use	char	when	every	entry	for	a	column	has
the	same	fixed	length	(up	to	8	KB).	Columns	of	text	data	can	be	used	to	store
ASCII	characters	longer	than	8	KB.	For	example,	because	HTML	documents	are
all	ASCII	characters	and	usually	longer	than	8	KB,	they	can	be	stored	in	text
columns	in	SQL	Server	prior	to	being	viewed	in	a	browser.

It	is	recommended	that	the	defined	length	of	a	character	column	be	no	larger
than	the	maximum	expected	length	of	the	character	data	to	be	stored.

To	store	international	character	data	in	SQL	Server,	use	the	nchar,	nvarchar,
and	ntext	data	types.

See	Also

char	and	varchar

ntext,	text,	and	image

Using	char	and	varchar	Data

Using	Data	Types

Using	text	and	image	Data

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Unicode	Data
Traditional	non-Unicode	data	types	in	Microsoft®	SQL	Server™	2000	allow	the
use	of	characters	that	are	defined	by	a	particular	character	set.	A	character	set	is
chosen	during	SQL	Server	Setup	and	cannot	be	changed.	Using	Unicode	data
types,	a	column	can	store	any	character	defined	by	the	Unicode	Standard,	which
includes	all	of	the	characters	defined	in	the	various	character	sets.	Unicode	data
types	take	twice	as	much	storage	space	as	non-Unicode	data	types.

Unicode	data	is	stored	using	the	nchar,	nvarchar,	and	ntext	data	types	in	SQL
Server.	Use	these	data	types	for	columns	that	store	characters	from	more	than
one	character	set.	Use	nvarchar	when	a	column's	entries	vary	in	the	number	of
Unicode	characters	(up	to	4,000)	they	contain.	Use	nchar	when	every	entry	for	a
column	has	the	same	fixed	length	(up	to	4,000	Unicode	characters).	Use	ntext
when	any	entry	for	a	column	is	longer	than	4,000	Unicode	characters.

Note		The	SQL	Server	Unicode	data	types	are	based	on	the	National	Character
data	types	in	the	SQL-92	standard.	SQL-92	uses	the	prefix	character	n	to
identify	these	data	types	and	values.

See	Also

Collations

nchar	and	nvarchar

ntext,	text,	and	image

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Date	and	Time	Data
Date	and	time	data	consists	of	valid	date	or	time	combinations.	For	example,
valid	date	and	time	data	includes	both	"4/01/98	12:15:00:00:00	PM"	and
"1:28:29:15:01	AM	8/17/98".	Date	and	time	data	is	stored	using	the	datetime
and	smalldatetime	data	types	in	Microsoft®	SQL	Server™	2000.	Use	datetime
to	store	dates	in	the	range	from	January	1,	1753	through	December	31,	9999
(requires	8	bytes	of	storage	per	value).	Use	smalldatetime	to	store	dates	in	the
range	from	January	1,	1900	through	June	6,	2079	(requires	4	bytes	of	storage	per
value).

See	Also

datetime	and	smalldatetime

Using	Data	Types

Using	Date	and	Time	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Numeric	Data
Numeric	data	consists	of	numbers	only.	Numeric	data	includes	positive	and
negative	numbers,	decimal	and	fractional	numbers,	and	whole	numbers
(integers).

Integer	Data
Integer	data	consists	of	negative	or	positive	whole	numbers,	such	as	-15,	0,	5,
and	2509.	Integer	data	is	stored	using	the	bigint,	int,	smallint,	and	tinyint	data
types	in	Microsoft®	SQL	Server™	2000.	The	bigint	data	type	can	store	a	larger
range	of	numbers	than	the	int	data	type.	The	int	data	type	can	store	a	larger
range	of	integers	than	smallint,	which	can	store	a	larger	range	of	numbers	than
tinyint.

Use	the	bigint	data	type	to	store	numbers	in	the	range	from	-2^63
(-9223372036854775808)	through	2^63-1	(9223372036854775807).	Storage
size	is	8	bytes.

Use	the	int	data	type	to	store	numbers	in	the	range	from	-2,147,483,648	through
2,147,483,647	only	(requires	4	bytes	of	storage	per	value).

Use	the	smallint	data	type	to	store	numbers	in	the	range	from	-32,768	through
32,767	only	(requires	2	bytes	of	storage	per	value),	and	the	tinyint	data	type	to
store	numbers	in	the	range	from	0	through	255	only	(requires	1	byte	of	storage
per	value).

Decimal	Data
Decimal	data	consists	of	data	that	is	stored	to	the	least	significant	digit.	Decimal
data	is	stored	using	decimal	or	numeric	data	types	in	SQL	Server.	The	number
of	bytes	required	to	store	a	decimal	or	numeric	value	depends	on	the	total
number	of	digits	for	the	data	and	the	number	of	decimal	digits	to	the	right	of	the
decimal	point.	For	example,	more	bytes	are	required	to	store	the	value
19283.29383	than	to	store	the	value	1.1.

In	SQL	Server,	the	numeric	data	type	is	equivalent	to	the	decimal	data	type.

Approximate	Numeric	Data
Approximate	numeric	(floating-point)	data	consists	of	data	preserved	as
accurately	as	the	binary	numbering	system	can	offer.	Approximate	numeric	data
is	stored	using	the	float	and	real	data	types	in	SQL	Server.	For	example,	because
the	fraction	one-third	in	decimal	notation	is	.333333	(repeating),	this	value
cannot	be	represented	precisely	using	approximate	decimal	data.	Therefore,	the
value	retrieved	from	SQL	Server	may	not	be	exactly	what	was	stored	originally
in	the	column.	Additional	examples	of	numeric	approximations	are	floating-
point	values	ending	in	.3,	.6,	and	.7.

See	Also

decimal	and	numeric

float	and	real

int,	bigint,	smallint,	and	tinyint

Using	Data	Types

Using	decimal,	float,	and	real	Data

Using	Integer	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Monetary	Data
Monetary	data	represents	positive	or	negative	amounts	of	money.	In	Microsoft®
SQL	Server™	2000,	monetary	data	is	stored	using	the	money	and	smallmoney
data	types.	Monetary	data	can	be	stored	to	an	accuracy	of	four	decimal	places.
Use	the	money	data	type	to	store	values	in	the	range	from
-922,337,203,685,477.5808	through	+922,337,203,685,477.5807	(requires	8
bytes	to	store	a	value).	Use	the	smallmoney	data	type	to	store	values	in	the
range	from	-214,748.3648	through	214,748.3647	(requires	4	bytes	to	store	a
value).	If	a	greater	number	of	decimal	places	are	required,	use	the	decimal	data
type	instead.

See	Also

money	and	smallmoney

Using	Data	Types

Using	Monetary	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Special	Data
Special	data	consists	of	data	that	does	not	fit	any	of	the	categories	of	data	such	as
binary	data,	character	data,	Unicode	data,	date	and	time	data,	numeric	data	and
monetary	data.

Microsoft®	SQL	Server™	2000	includes	four	types	of	special	data:

timestamp

Is	used	to	indicate	the	sequence	of	SQL	Server	activity	on	a	row,
represented	as	an	increasing	number	in	a	binary	format.	As	a	row	is
modified	in	a	table,	the	timestamp	is	updated	with	the	current	database
timestamp	value	obtained	from	the	@@DBTS	function.	timestamp
data	is	not	related	to	the	date	and	time	of	an	insert	or	change	to	data.	To
automatically	record	times	that	data	modifications	take	place	in	a	table,
use	either	a	datetime	or	smalldatetime	data	type	to	record	the	events
and	triggers.

Note		In	SQL	Server,	rowversion	is	a	synonym	for	timestamp.

bit

Consists	of	either	a	1	or	a	0.	Use	the	bit	data	type	when	representing
TRUE	or	FALSE,	or	YES	or	NO.	For	example,	a	client	questionnaire
that	asks	if	this	is	the	client's	first	visit	can	be	stored	in	a	bit	column.

uniqueidentifier

Consists	of	a	16-byte	hexadecimal	number	indicating	a	globally	unique
identifier	(GUID).	The	GUID	is	useful	when	a	row	must	be	unique
among	many	other	rows.	For	example,	use	the	uniqueidentifier	data
type	for	a	customer	identification	number	column	to	compile	a	master
company	customer	list	from	multiple	countries.

sql_variant

A	data	type	that	stores	values	of	various	SQL	Server–supported	data
types,	except	text,	ntext,	timestamp,	image,	and	sql_variant.

table

A	special	data	type	used	to	store	a	result	set	for	later	processing.	The
table	data	type	can	be	used	only	to	define	local	variables	of	type	table
or	the	return	value	of	a	user-defined	function.

user-defined

Allows	a	user-defined	data	type,	product_code,	for	example,	that	is
based	on	the	char	data	type	and	defined	as	two	uppercase	letters
followed	by	a	five-digit	supplier	number.

See	Also

bit

timestamp

uniqueidentifier

Using	Data	Types

Using	Special	Data

Using	uniqueidentifier	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Creating	User-Defined	Data	Types
User-defined	data	types	are	based	on	the	system	data	types	in	Microsoft®	SQL
Server™	2000.	User-defined	data	types	can	be	used	when	several	tables	must
store	the	same	type	of	data	in	a	column	and	you	must	ensure	that	these	columns
have	exactly	the	same	data	type,	length,	and	nullability.	For	example,	a	user-
defined	data	type	called	postal_code	could	be	created	based	on	the	char	data
type.

When	a	user-defined	data	type	is	created,	you	must	supply	these	parameters:

Name

System	data	type	upon	which	the	new	data	type	is	based

Nullability	(whether	the	data	type	allows	null	values)

When	nullability	is	not	explicitly	defined,	it	will	be	assigned	based	on
the	ANSI	null	default	setting	for	the	database	or	connection.

Note		If	a	user-defined	data	type	is	created	in	the	model	database,	it	exists	in	all
new	user-defined	databases.	However,	if	the	data	type	is	created	in	a	user-
defined	database,	the	data	type	exists	only	in	that	user-defined	database.

To	create	user-defined	data	types

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Text	in	Row	Data
Microsoft®	SQL	Server™	2000	supports	the	ability	to	store	small	to	medium
text,	ntext,	and	image	values	in	a	data	row.	The	feature	is	best	used	for	tables	in
which	the	data	in	text,	ntext,	and	image	columns	is	usually	read	or	written	in
one	unit	and	most	statements	referencing	the	table	use	the	text,	ntext,	and	image
data.

Unless	the	text	in	row	option	is	specified,	text,	ntext,	or	image	strings	are	large
character	or	binary	strings	(up	to	2	gigabytes)	stored	outside	a	data	row.	The	data
row	contains	only	a	16-byte	text	pointer	that	points	to	the	root	node	of	a	tree
built	of	internal	pointers	that	map	the	pages	in	which	the	string	fragments	are
stored.	For	more	information	about	the	storage	of	text,	ntext,	or	image	strings,
see	text,	ntext,	and	image	Data.

You	can	set	a	text	in	row	option	for	tables	containing	text,	ntext,	or	image
columns.	You	can	also	specify	a	text	in	row	option	limit,	from	24	through	7,000
bytes.	With	this	option	set,	text,	ntext,	or	image	strings	are	stored	directly	in	the
data	row	if:

The	length	of	the	string	is	shorter	than	the	specified	limit.

There	is	enough	space	available	in	the	data	row	to	hold	the	string.

When	the	text,	ntext,	or	image	string	is	stored	in	the	data	row,	SQL	Server	does
not	have	to	access	a	separate	page	or	set	of	pages	to	read	or	write	the	string.	This
makes	reading	and	writing	the	text,	ntext,	or	image	in-row	strings	about	as	fast
as	reading	or	writing	varchar,	nvarchar,	or	varbinary	strings.

If	a	text,	ntext,	or	image	string	is	longer	than	the	text	in	row	option	limit	or	the
available	space	in	the	row,	the	set	of	pointers	that	are	otherwise	stored	in	the	root
node	of	the	pointer	tree	are	stored	in	the	row.	The	pointers	are	stored	in	the	row
if:

The	amount	of	space	needed	to	store	the	pointers	is	shorter	than	the
specified	text	in	row	option	limit.

JavaScript:hhobj_1.Click()

There	is	enough	space	available	in	the	data	row	to	hold	the	pointers.

When	pointers	are	moved	from	the	root	node	to	the	row	itself,	SQL	Server	does
not	have	to	use	a	root	node.	This	can	eliminate	a	page	access	when	reading	or
writing	the	string,	which	speeds	processing.

When	root	nodes	are	used,	they	are	stored	as	one	of	the	string	fragments	in	a
text,	ntext,	or	image	page	and	can	hold	up	to	five	internal	pointers.	SQL	Server
needs	72	bytes	of	space	in	the	row	to	store	five	pointers	for	an	in-row	string.	If
there	is	not	enough	space	in	the	row	to	hold	the	pointers	when	the	text	in	row
option	is	on,	SQL	Server	may	have	to	allocate	an	8-K	page	to	hold	them.	You
should	not	set	the	text	in	row	limit	to	less	than	72	unless	you	are	certain	that	all
strings	stored	in	the	column	are	either	short	or	over	3	MB.

When	text,	ntext,	or	image	strings	are	stored	in	the	row,	they	are	stored
similarly	to	variable-length	strings.	For	example,	if	the	text	in	row	option	limit
is	500	bytes	and	you	store	a	200-byte	string	in	a	row,	SQL	Server	uses	only	the
number	of	bytes	needed	to	store	the	string.	If	a	string	is	inserted	that	is	longer
than	500	bytes,	so	that	pointers	are	stored	in	the	row,	SQL	Server	uses	only
enough	space	to	hold	the	pointers	and	not	the	entire	500	bytes.

If	a	table	has	multiple	text,	ntext,	or	image	columns,	and	you	attempt	to	insert
multiple	text,	ntext,	or	image	strings,	SQL	Server	assigns	space	to	the	strings
one	at	a	time	in	sequence	based	on	column	ID.	For	example,	assume	you	have	a
table	containing	four	text	columns	and	you	have	set	the	text	in	row	option	limit
to	1000.	You	then	insert	a	row	with	a	900-byte	string	for	each	text	column,	and
enough	data	for	all	of	the	other	columns	in	the	table,	leaving	only	3,000	bytes	of
free	space	in	the	row	to	hold	the	text	strings.	The	strings	for	the	first	three	text
columns	are	stored	in	the	row,	using	2,700	bytes	of	the	3,000	bytes	available.
The	string	for	the	fourth	text	column	is	not	stored	in	the	row,	but	the	pointers
from	the	root	node	are	stored	in	the	row.

Enabling	and	Disabling	the	text	in	row	Option
You	can	enable	the	text	in	row	option	for	a	table	by	using	sp_tableoption:

sp_tableoption	N'MyTable',	'text	in	row',	'ON'

Optionally,	you	can	specify	a	maximum	limit,	from	24	through	7,000	bytes,	for

the	length	of	a	text,	ntext,	and	image	string	that	can	be	stored	in	a	data	row:

sp_tableoption	N'MyTable',	'text	in	row',	'1000'

If	you	specify	on	instead	of	a	specific	limit,	the	limit	defaults	to	256	bytes.	This
default	value	allows	you	most	of	the	performance	benefits	that	can	be	gained
from	the	text	in	row	option.	Although	you	generally	should	not	set	the	value
below	72,	you	also	should	not	set	the	value	too	high,	especially	for	tables	in
which	most	statements	do	not	reference	the	text,	ntext,	and	image	columns,	or
in	which	there	are	multiple	text,	ntext,	and	image	columns.	If	you	set	a	large
text	in	row	limit,	and	many	strings	are	stored	in	the	row	itself,	you	can
significantly	reduce	the	number	of	data	rows	that	fit	on	each	page.	If	most
statements	referencing	the	table	do	not	access	the	text,	ntext,	or	image	columns,
decreasing	the	rows	in	a	page	can	increase	the	pages	that	must	be	read	to	process
queries.	Reducing	the	rows	per	page	can	increase	the	size	of	indexes	and	the
pages	that	might	need	to	be	scanned	if	the	optimizer	finds	no	usable	index.	The
text	in	row	limit	default	value	of	256	is	large	enough	to	ensure	that	small	strings
and	the	root	text	pointers	can	be	stored	in	the	rows,	but	not	so	large	that	it
decreases	the	rows	per	page	enough	to	affect	performance.

You	can	also	use	sp_tableoption	to	turn	the	option	off	by	specifying	an	option
value	of	either	off	or	0:

sp_tableoption	N'MyTable',	'text	in	row',	'OFF'

Effects	of	the	text	in	row	Option
The	text	in	row	option	has	these	effects:

After	you	have	turned	on	the	text	in	row	option,	you	cannot	use	the
READTEXT,	UPDATETEXT	or	WRITETEXT	statements,	to	read	or
modify	parts	of	any	text,	ntext,	or	image	value	stored	in	the	table.	In
SELECT	statements	you	can	read	an	entire	text,	ntext,	or	image	string,
or	use	the	SUBSTRING	function	to	read	parts	of	the	string.	All	INSERT
or	UPDATE	statements	referencing	the	table	must	specify	complete
strings	and	cannot	modify	only	a	part	of	a	text,	ntext,	or	image	string.

When	the	text	in	row	option	is	first	enabled,	existing	text,	ntext,	or

image	strings	are	not	immediately	converted	to	in-row	strings.	The
strings	are	converted	to	in-row	strings	only	if	they	are	subsequently
updated.	Any	text,	ntext,	or	image	string	inserted	after	the	text	in	row
option	is	turned	on	is	inserted	as	an	in-row	string.

Turning	off	the	text	in	row	option	can	be	a	long-running,	logged
operation.	The	table	is	locked	and	all	in-row	text,	ntext,	and	image
strings	are	converted	to	regular	text,	ntext,	and	image	strings.	The
length	of	time	the	command	must	run	and	the	amount	of	data	modified
depends	on	how	many	text,	ntext,	and	image	strings	must	be	converted
from	in-row	strings	to	regular	strings.

The	text	in	row	option	does	not	affect	the	operation	of	the	OLE	DB
Provider	for	SQL	Server	or	the	SQL	Server	ODBC	driver,	other	than	to
speed	access	to	the	text,	ntext,	and	image	data.

The	DB-Library	text	and	image	functions,	such	as	dbreadtext	and
dbwritetext,	cannot	be	used	on	a	table	after	the	text	in	row	option	has
been	turned	on.

The	text	in	row	option	is	set	to	256	automatically	for:

Variables	with	a	table	data	type.

Tables	returned	by	user-defined	functions	that	return	a	table.

This	setting	cannot	be	changed.

Creating	and	Maintaining	Databases

Autonumbering	and	Identifier	Columns
For	each	table,	a	single	identifier	column	can	be	created	that	contains	system-
generated	sequential	values	that	uniquely	identify	each	row	within	the	table.	For
example,	an	identifier	column	can	generate	unique	customer	receipt	numbers	for
an	application	automatically	as	rows	are	inserted	into	the	table.	Identifier
columns	usually	contain	values	unique	within	the	table	on	which	they	are
defined.	This	means	that	other	tables	containing	identifier	columns	can	contain
the	same	identity	values	used	by	another	table.	However,	this	is	usually	not	a
problem	because	the	identifier	values	are	typically		used	only	within	the	context
of	a	single	table,	and	the	identifier	columns	do	not	relate	to	other	identifier
columns	in	other	tables.

A	single,	globally	unique,	identifier	column	can	be	created	per	table	that	contains
values	unique	across	all	networked	computers	in	the	world.	A	column
guaranteed	to	contain	globally	unique	values	is	often	useful	when	similar	data
from	multiple	database	systems	must	be	merged	(for	example,	in	a	customer
billing	system	with	data	located	in	various	company	subsidiaries	around	the
world).	When	the	data	is	merged	into	the	central	site	for	consolidation	and
reporting,	using	globally	unique	values	prevents	customers	in	different	countries
from	having	the	same	billing	number	or	customer	ID.

Microsoft®	SQL	Server™	2000	uses	globally	unique	identifier	columns	for
merge	replication	to	ensure	that	rows	are	uniquely	identified	across	multiple
copies	of	the	table.

See	Also

Creating	and	Modifying	Identifier	Columns

Merge	Replication

NEWID

uniqueidentifier

Using	Uniqueidentifier	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Using	Constraints,	Defaults,	and	Null	Values
Planning	tables	requires	identifying	valid	values	for	a	column	and	deciding	how
to	enforce	the	integrity	of	the	data	in	the	column.	Microsoft®	SQL	Server™
2000	provides	several	mechanisms	to	enforce	the	integrity	of	the	data	in	a
column:

PRIMARY	KEY	constraints

FOREIGN	KEY	constraints

UNIQUE	constraints

CHECK	constraints

DEFAULT	definitions

Nullability

See	Also

Data	Integrity

Creating	and	Maintaining	Databases

PRIMARY	KEY	Constraints
A	table	usually	has	a	column	or	combination	of	columns	whose	values	uniquely
identify	each	row	in	the	table.	This	column	(or	columns)	is	called	the
primary	key	of	the	table	and	enforces	the	entity	integrity	of	the	table.	You	can
create	a	primary	key	by	defining	a	PRIMARY	KEY	constraint	when	you	create
or	alter	a	table.

A	table	can	have	only	one	PRIMARY	KEY	constraint,	and	a	column	that
participates	in	the	PRIMARY	KEY	constraint	cannot	accept	null	values.	Because
PRIMARY	KEY	constraints	ensure	unique	data,	they	are	often	defined	for
identity	column.

When	you	specify	a	PRIMARY	KEY	constraint	for	a	table,	Microsoft®	SQL
Server™	2000	enforces	data	uniqueness	by	creating	a	unique	index	for	the
primary	key	columns.	This	index	also	permits	fast	access	to	data	when	the
primary	key	is	used	in	queries.

If	a	PRIMARY	KEY	constraint	is	defined	on	more	than	one	column,	values	may
be	duplicated	within	one	column,	but	each	combination	of	values	from	all	the
columns	in	the	PRIMARY	KEY	constraint	definition	must	be	unique.

As	shown	in	the	following	illustration,	the	au_id	and	title_id	columns	in	the
titleauthor	table	form	a	composite	PRIMARY	KEY	constraint	for	the
titleauthor	table,	which	ensures	that	the	combination	of	au_id	and	title_id	is
unique.

When	you	work	with	joins,	PRIMARY	KEY	constraints	relate	one	table	to
another.	For	example,	to	determine	which	authors	have	written	which	books,	you
can	use	a	three-way	join	between	the	authors	table,	the	titles	table,	and	the
titleauthor	table.	Because	titleauthor	contains	columns	for	both	the	au_id	and
title_id	columns,	the	titles	table	can	be	accessed	by	the	relationship	between
titleauthor	and	titles.

See	Also

Creating	and	Modifying	PRIMARY	KEY	Constraints

Creating	and	Maintaining	Databases

FOREIGN	KEY	Constraints
A	foreign	key	(FK)	is	a	column	or	combination	of	columns	used	to	establish	and
enforce	a	link	between	the	data	in	two	tables.	A	link	is	created	between	two
tables	by	adding	the	column	or	columns	that	hold	one	table's	primary	key	values
to	the	other	table.	This	column	becomes	a	foreign	key	in	the	second	table.

You	can	create	a	foreign	key	by	defining	a	FOREIGN	KEY	constraint	when	you
create	or	alter	a	table.

For	example,	the	titles	table	in	the	pubs	database	has	a	link	to	the	publishers
table	because	there	is	a	logical	relationship	between	books	and	publishers.	The
pub_id	column	in	the	titles	table	matches	the	primary	key	column	of	the
publishers	table.	The	pub_id	column	in	the	titles	table	is	the	foreign	key	to	the
publishers	table.

A	FOREIGN	KEY	constraint	does	not	have	to	be	linked	only	to	a	PRIMARY
KEY	constraint	in	another	table;	it	can	also	be	defined	to	reference	the	columns
of	a	UNIQUE	constraint	in	another	table.	A	FOREIGN	KEY	constraint	can
contain	null	values;	however,	if	any	column	of	a	composite	FOREIGN	KEY
constraint	contains	null	values,	then	verification	of	the	FOREIGN	KEY
constraint	will	be	skipped.

Note		A	FOREIGN	KEY	constraint	can	reference	columns	in	tables	in	the	same
database	or	within	the	same	table	(self-referencing	tables),	for	example,	an
employee	table	that	contains	three	columns:	employee_number,
employee_name,	and	manager_employee_number.	Because	the	manager	is	an
employee	too,	there	is	a	foreign	key	relationship	from	the
manager_employee_number	column	to	the	employee_number	column.

Although	the	primary	purpose	of	a	FOREIGN	KEY	constraint	is	to	control	the
data	that	can	be	stored	in	the	foreign	key	table,	it	also	controls	changes	to	data	in
the	primary	key	table.	For	example,	if	the	row	for	a	publisher	is	deleted	from	the
publishers	table,	and	the	publisher's	ID	is	used	for	books	in	the	titles	table,	the
relational	integrity	between	the	two	tables	is	broken;	the	deleted	publisher's
books	are	orphaned	in	the	titles	table	without	a	link	to	the	data	in	the	publishers
table.	A	FOREIGN	KEY	constraint	prevents	this	situation.	The	constraint
enforces	referential	integrity	by	ensuring	that	changes	cannot	be	made	to	data	in
the	primary	key	table	if	those	changes	invalidate	the	link	to	data	in	the	foreign
key	table.	If	an	attempt	is	made	to	delete	the	row	in	a	primary	key	table	or	to
change	a	primary	key	value,	the	action	will	fail	if	the	deleted	or	changed	primary
key	value	corresponds	to	a	value	in	the	FOREIGN	KEY	constraint	of	another
table.	To	change	or	delete	a	row	in	a	FOREIGN	KEY	constraint	successfully,
you	must	first	either	delete	the	foreign	key	data	in	the	foreign	key	table	or
change	the	foreign	key	data	in	the	foreign	key	table,	thereby	linking	the	foreign
key	to	different	primary	key	data.

A	FOREIGN	KEY	constraint	is	a	candidate	for	an	index	because:

Changes	to	PRIMARY	KEY	constraints	are	checked	with	FOREIGN
KEY	constraints	in	related	tables.

Foreign	key	columns	are	often	used	in	join	criteria	when	the	data	from
related	tables	is	combined	in	queries	by	matching	the	column(s)	in	the
FOREIGN	KEY	constraint	of	one	table	with	the	primary	or	unique	key
column(s)	in	the	other	table.	An	index	allows	Microsoft®	SQL	Server™
2000	to	find	related	data	in	the	foreign	key	table	quickly.	However,
creating	this	index	is	not	a	requirement.	Data	from	two	related	tables
can	be	combined	even	if	no	PRIMARY	KEY	or	FOREIGN	KEY
constraints	are	defined	between	the	tables,	but	a	foreign	key	relationship
between	two	tables	indicates	that	the	two	tables	have	been	optimized	to
be	combined	in	a	query	that	uses	the	keys	as	its	criteria.	For	more
information	about	using	FOREIGN	KEY	constraints	with	joins,	see	Join
Fundamentals.

See	Also

JavaScript:hhobj_1.Click()

Creating	and	Modifying	FOREIGN	KEY	Constraints

Indexes

Creating	and	Maintaining	Databases

Cascading	Referential	Integrity	Constraints
Cascading	referential	integrity	constraints	allow	you	to	define	the	actions
Microsoft®	SQL	Server™	2000	takes	when	a	user	attempts	to	delete	or	update	a
key	to	which	existing	foreign	keys	point.

The	REFERENCES	clauses	of	the	CREATE	TABLE	and	ALTER	TABLE
statements	support	ON	DELETE	and	ON	UPDATE	clauses:

[ON	DELETE	{	CASCADE	|	NO	ACTION	}]

[ON	UPDATE	{	CASCADE	|	NO	ACTION	}]

NO	ACTION	is	the	default	if	ON	DELETE	or	ON	UPDATE	is	not	specified.
NO	ACTION	specifies	the	same	behavior	that	occurs	in	earlier	versions	of	SQL
Server.

ON	DELETE	NO	ACTION

Specifies	that	if	an	attempt	is	made	to	delete	a	row	with	a	key	referenced	by
foreign	keys	in	existing	rows	in	other	tables,	an	error	is	raised	and	the
DELETE	is	rolled	back.

ON	UPDATE	NO	ACTION

Specifies	that	if	an	attempt	is	made	to	update	a	key	value	in	a	row	whose	key
is	referenced	by	foreign	keys	in	existing	rows	in	other	tables,	an	error	is
raised	and	the	UPDATE	is	rolled	back.

CASCADE	allows	deletions	or	updates	of	key	values	to	cascade	through	the
tables	defined	to	have	foreign	key	relationships	that	can	be	traced	back	to	the
table	on	which	the	modification	is	performed.	CASCADE	cannot	be	specified
for	any	foreign	keys	or	primary	keys	that	have	a	timestamp	column.

ON	DELETE	CASCADE

Specifies	that	if	an	attempt	is	made	to	delete	a	row	with	a	key	referenced	by
foreign	keys	in	existing	rows	in	other	tables,	all	rows	containing	those
foreign	keys	are	also	deleted.	If	cascading	referential	actions	have	also	been

defined	on	the	target	tables,	the	specified	cascading	actions	are	also	taken	for
the	rows	deleted	from	those	tables.

ON	UPDATE	CASCADE

Specifies	that	if	an	attempt	is	made	to	update	a	key	value	in	a	row,	where	the
key	value	is	referenced	by	foreign	keys	in	existing	rows	in	other	tables,	all	of
the	foreign	key	values	are	also	updated	to	the	new	value	specified	for	the
key.	If	cascading	referential	actions	have	also	been	defined	on	the	target
tables,	the	specified	cascading	actions	are	also	taken	for	the	key	values
updated	in	those	tables.

Examples	of	cascading	referential	actions	can	be	based	on	the
FK_Products_Suppliers	constraint	on	the	Products	table	in	Northwind.	This
constraint	establishes	a	foreign	key	relationship	from	the	SupplierID	column	in
the	Products	table	to	the	SupplierID	primary	key	column	in	the	Suppliers
table.	If	ON	DELETE	CASCADE	is	specified	for	the	constraint,	deleting	the
row	in	Suppliers	where	SupplierID	equals	1	also	deletes	the	three	rows	in
Products	where	SupplierID	equals	1.	If	ON	UPDATE	CASCADE	is	specified
for	the	constraint,	updating	the	SupplierID	value	in	the	Suppliers	table	from	1
through	55	also	updates	the	SupplierID	values	in	the	three	rows	in	Products
whose	SupplierID	values	currently	equal	1.

Cascading	actions	cannot	be	specified	for	a	table	that	has	an	INSTEAD	OF
trigger.	After	a	cascading	action	has	been	defined	for	a	table,	an	INSTEAD	OF
trigger	cannot	be	added	to	it.

Multiple	Cascading	Actions
Individual	DELETE	or	UPDATE	statements	can	start	a	series	of	cascading
referential	actions.	For	example,	a	database	contains	three	tables,	TableA,
TableB,	and	TableC.	A	foreign	key	in	TableB	is	defined	with	ON	DELETE
CASCADE	against	the	primary	key	in	TableA.	A	foreign	key	in	TableC	is
defined	with	ON	DELETE	CASCADE	against	the	primary	key	in	TableB.	If	a
DELETE	statement	deletes	rows	in	TableA,	the	operation	also	deletes	any	rows
in	TableB	that	have	foreign	keys	matching	the	deleted	primary	keys	in	TableA,
and	then	deletes	any	rows	in	TableC	that	have	foreign	keys	that	match	the
deleted	primary	keys	in	TableB.

The	series	of	cascading	referential	actions	triggered	by	a	single	DELETE	or

UPDATE	must	form	a	tree	containing	no	circular	references.	No	table	can
appear	more	than	once	in	the	list	of	all	cascading	referential	actions	that	result
from	the	DELETE	or	UPDATE.	The	tree	of	cascading	referential	actions	must
not	have	more	than	one	path	to	any	given	table.	Any	branch	of	the	tree	is
terminated	when	it	encounters	a	table	for	which	NO	ACTION	has	been	specified
or	is	the	default.

Triggers	and	Cascading	Referential	Actions
Cascading	referential	actions	fire	AFTER	triggers	in	this	sequence:

1.	 All	of	the	cascading	referential	actions	directly	caused	by	the	original
DELETE	or	UPDATE	are	performed	first.

2.	 When	the	original	cascading	referential	actions	have	completed,	the
AFTER	triggers	on	the	original	table	are	fired,	regardless	of	whether
any	rows	were	updated.

3.	 AFTER	triggers	on	tables	in	the	chain	of	cascaded	referential	actions
are	then	fired,	but	only	if	one	or	more	rows	in	the	table	have	been
updated	or	deleted.

If	any	errors	are	generated	by	any	of	the	original	set	of	cascading	referential
actions,	an	error	is	raised,	no	AFTER	triggers	are	fired,	and	the	DELETE	or
UPDATE	is	rolled	back.

An	AFTER	trigger	can	execute	a	DELETE	or	UPDATE	statement	that	starts
another	chain	of	cascading	referential	actions.	Each	secondary	chain	of
referential	actions	is	treated	independently.	These	secondary	chains	of	referential
actions	behave	like	the	primary	chain.	All	of	the	secondary	referential	actions
are	completed	before	any	secondary	triggers	are	fired.	Within	each	independent
unit,	there	is	no	defined	order	in	which	the	cascading	referential	actions	are
executed	and	the	affected	triggers	are	fired.

A	table	that	has	an	INSTEAD	OF	trigger	cannot	also	have	a	REFERENCES
clause	that	specifies	a	cascading	action.	An	AFTER	trigger	on	a	table	targeted	by
a	cascading	action,	however,	can	execute	an	INSERT,	UPDATE,	or	DELETE
statement	on	another	table	or	view	that	fires	an	INSTEAD	OF	trigger	defined	on

that	object.

Cascading	Referential	Constraints	Catalog	Information
The	following	catalog	information	is	available	about	cascading	referential
constraints.

The	Transact-SQL	OBJECTPROPERTY	function	supports	these	new	values	for
the	property	parameter.

Value Object Description
CnstIsDeleteCascade Constraint FOREIGN	KEY	constraint	defined

with	ON	DELETE	CASCADE
CnstIsUpdateCascade Constraint FOREIGN	KEY	constraint	defined

with	ON	UPDATE	CASCADE

The	REFERENTIAL_CONSTRAINTS	information	schema	view	returns
CASCADE	in	the	UDPATE_RULE	or	DELETE_RULE	column	when	either
ON	UPDATE	CASCADE	or	ON	DELETE	CASCADE	is	specified.	NO
ACTION	is	returned	when	either	ON	UPDATE	NO	ACTION	or	ON	DELETE
NO	ACTION	is	specified,	or	if	ON	UPDATE	or	ON	DELETE	is	not	specified	at
all.

The	UPDATE_RULE	and	DELETE_RULE	columns	returned	by	sp_fkeys	and
sp_foreignkeys	are	set	to	1	when	CASCADE	is	specified,	and	return	0	when
NO	ACTION	is	specified	or	is	the	default.

When	a	foreign	key	is	specified	as	the	object	of	sp_help,	the	output	result	set
contains	these	new	columns.

Column	name Data	type Description
delete_action nvarchar(9) Indicates	whether	the	delete	action	is

CASCADE,	NO	ACTION,	or	N/A
(not	applicable).

update_action nvarchar(9) Indicates	whether	the	update	action	is
CASCADE,	NO	ACTION,	or	N/A
(not	applicable).

Creating	and	Maintaining	Databases

UNIQUE	Constraints
You	can	use	UNIQUE	constraints	to	ensure	that	no	duplicate	values	are	entered
in	specific	columns	that	do	not	participate	in	a	primary	key.	Although	both	a
UNIQUE	constraint	and	a	PRIMARY	KEY	constraint	enforce	uniqueness,	use	a
UNIQUE	constraint	instead	of	a	PRIMARY	KEY	constraint	when	you	want	to
enforce	the	uniqueness	of:

A	column,	or	combination	of	columns,	that	is	not	the	primary	key.

Multiple	UNIQUE	constraints	can	be	defined	on	a	table,	whereas	only
one	PRIMARY	KEY	constraint	can	be	defined	on	a	table.

A	column	that	allows	null	values.

UNIQUE	constraints	can	be	defined	on	columns	that	allow	null	values,
whereas	PRIMARY	KEY	constraints	can	be	defined	only	on	columns
that	do	not	allow	null	values.

A	UNIQUE	constraint	can	also	be	referenced	by	a	FOREIGN	KEY	constraint.

See	Also

Creating	and	Modifying	UNIQUE	Constraints

Creating	and	Maintaining	Databases

CHECK	Constraints
CHECK	constraints	enforce	domain	integrity	by	limiting	the	values	that	are
accepted	by	a	column.	They	are	similar	to	FOREIGN	KEY	constraints	in	that
they	control	the	values	that	are	placed	in	a	column.	The	difference	is	in	how	they
determine	which	values	are	valid:	FOREIGN	KEY	constraints	get	the	list	of
valid	values	from	another	table,	and	CHECK	constraints	determine	the	valid
values	from	a	logical	expression	that	is	not	based	on	data	in	another	column.	For
example,	it	is	possible	to	limit	the	range	of	values	for	a	salary	column	by
creating	a	CHECK	constraint	that	allows	only	data	that	ranges	from	$15,000
through	$100,000.	This	prevents	salaries	from	being	entered	beyond	the	normal
salary	range.

You	can	create	a	CHECK	constraint	with	any	logical	(Boolean)	expression	that
returns	TRUE	or	FALSE	based	on	the	logical	operators.	For	the	previous
example,	the	logical	expression	is:

salary	>=	15000	AND	salary	<=	100000

It	is	possible	to	apply	multiple	CHECK	constraints	to	a	single	column.	These	are
evaluated	in	the	order	in	which	created.	It	is	also	possible	to	apply	a	single
CHECK	constraint	to	multiple	columns	by	creating	it	at	the	table	level.	For
example,	a	multiple-column	CHECK	constraint	can	be	used	to	confirm	that	any
row	with	a	country	column	value	of	USA	also	has	a	two-character	value	in	the
state	column.	This	allows	multiple	conditions	to	be	checked	in	one	place.

See	Also

Creating	and	Modifying	CHECK	Constraints

Creating	and	Maintaining	Databases

DEFAULT	Definitions
Each	column	in	a	record	must	contain	a	value,	even	if	that	value	is	NULL.	There
are	situations	when	you	need	to	load	a	row	of	data	into	a	table	but	you	do	not
know	the	value	for	a	column,	or	the	value	does	not	yet	exist.	If	the	column
allows	null	values,	you	can	load	the	row	with	a	null	value.	Because	nullable
columns	may	not	be	desirable,	a	better	solution	can	be	to	define,	where
appropriate,	a	DEFAULT	definition	for	the	column.	For	example,	it	is	common
to	specify	zero	as	the	default	for	numeric	columns,	or	N/A	as	the	default	for
string	columns	when	no	value	is	specified.

When	you	load	a	row	into	a	table	with	a	DEFAULT	definition	for	a	column,	you
implicitly	instruct	Microsoft®	SQL	Server™	2000	to	load	a	default	value	in	the
column	when	you	do	not	specify	a	value	for	the	column.

Note		You	can	also	explicitly	instruct	SQL	Server	to	insert	the	default	value	for
the	column	using	the	DEFAULT	VALUES	clause	of	the	INSERT	STATEMENT.

If	a	column	does	not	allow	null	values	and	does	not	have	a	DEFAULT	definition,
you	must	specify	a	value	for	the	column	explicitly	or	SQL	Server	will	return	an
error	indicating	that	the	column	does	not	allow	null	values.

The	value	inserted	into	a	column	defined	by	the	combination	of	the	DEFAULT
definition,	the	nullability	of	the	column,	and	the	value	inserted	into	the	column
can	be	summarized.

Column
definition

No	entry,
no	DEFAULT
definition

No	entry,	
DEFAULT
definition

Enter	a
null	value

Allows	null	values NULL Default	value NULL
Disallows	null
values

Error Default	value Error

DEFAULT	Objects

A	DEFAULT	object	is	defined	for	a	specific	database	and	is	shared	by	columns
of	different	tables	by	being	bound	to	each	column	to	which	the	default	applies.
For	example,	if	several	of	your	tables	have	a	quantity	column,	you	can	define	a
DEFAULT	object	in	your	database	that	inserts	a	value	of	1	in	the	quantity
column	when	the	user	leaves	that	column	blank	in	any	table.

If	a	DEFAULT	object	is	bound	to	a	column,	you	can	specify	a	different	default
value	for	that	column	in	a	specific	table.	This	unbinds	the	existing	DEFAULT
object	from	the	column	before	the	new	default	value	is	bound	to	the	column.

See	Also

Allowing	Null	Values

Creating	and	Modifying	DEFAULT	Definitions

Creating	and	Maintaining	Databases

Allowing	Null	Values
The	nullability	of	a	column	determines	if	the	rows	in	the	table	can	contain	a	null
value	for	that	column.	A	null	value,	or	NULL,	is	not	the	same	as	zero	(0),	blank,
or	a	zero-length	character	string	such	as	"";	NULL	means	that	no	entry	has	been
made.	The	presence	NULL	usually	implies	that	the	value	is	either	unknown	or
undefined.	For	example,	a	null	value	in	the	price	column	of	the	titles	table	of	the
pubs	database	does	not	mean	that	the	book	has	no	price;	NULL	means	that	the
price	is	unknown	or	has	not	been	set.	In	general,	avoid	permitting	null	values
because	they	incur	more	complexity	in	queries	and	updates	and	because	there	are
other	column	options,	such	as	PRIMARY	KEY	constraints,	that	cannot	be	used
with	nullable	columns.

If	a	row	is	inserted	but	no	value	is	included	for	a	column	that	allows	null	values,
Microsoft®	SQL	Server™	2000	supplies	the	value	NULL	(unless	a	DEFAULT
definition	or	object	exists).	A	column	defined	with	the	keyword	NULL	also
accepts	an	explicit	entry	of	NULL	from	the	user,	no	matter	what	data	type	it	is	or
if	it	has	a	default	associated	with	it.	The	value	NULL	should	not	be	placed
within	quotation	marks	because	it	will	be	interpreted	as	the	character	string
'NULL',	rather	than	the	null	value.

Specifying	a	column	as	not	permitting	null	values	can	help	maintain	data
integrity	by	ensuring	that	a	column	in	a	row	always	contains	data.	If	null	values
are	not	allowed,	the	user	entering	data	in	the	table	must	enter	a	value	in	the
column	or	the	table	row	cannot	be	accepted	into	the	database.

Note		Columns	defined	with	a	PRIMARY	KEY	constraint	or	IDENTITY
property	cannot	allow	null	values.

See	Also

Null	Values

Column	Properties

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Creating	and	Modifying	a	Table
After	you	have	designed	the	database	,	the	tables	that	will	store	the	data	in	the
database	can	be	created.	The	data	is	usually	stored	in	permanent	tables.	Tables
are	stored	in	the	database	files	until	they	are	deleted	and	are	available	to	any	user
who	has	the	appropriate	permissions.

Temporary	Tables
You	can	also	create	temporary	tables.	Temporary	tables	are	similar	to	permanent
tables,	except	temporary	tables	are	stored	in	tempdb	and	are	deleted
automatically	when	no	longer	in	use.

The	two	types	of	temporary	tables,	local	and	global,	differ	from	each	other	in
their	names,	their	visibility,	and	their	availability.	Local	temporary	tables	have	a
single	number	sign	(#)	as	the	first	character	of	their	names;	they	are	visible	only
to	the	current	connection	for	the	user;	and	they	are	deleted	when	the	user
disconnects	from	instances	of	Microsoft®	SQL	Server™	2000.	Global
temporary	tables	have	two	number	signs	(##)	as	the	first	characters	of	their
names;	they	are	visible	to	any	user	after	they	are	created;	and	they	are	deleted
when	all	users	referencing	the	table	disconnect	from	SQL	Server.

For	example,	if	you	create	a	table	named	employees,	the	table	can	be	used	by
any	person	who	has	the	security	permissions	in	the	database	to	use	it,	until	the
table	is	deleted.	If	you	create	a	local	temporary	table	named	#employees,	you
are	the	only	person	who	can	work	with	the	table,	and	it	is	deleted	when	you
disconnect.	If	you	create	a	global	temporary	table	named	##employees,	any	user
in	the	database	can	work	with	this	table.	If	no	other	user	works	with	this	table
after	you	create	it,	the	table	is	deleted	when	you	disconnect.	If	another	user
works	with	the	table	after	you	create	it,	SQL	Server	deletes	it	when	both	of	you
disconnect.

Table	Properties
You	can	define	up	to	1,024	columns	per	table.	Table	and	column	names	must
follow	the	rules	for	identifiers;	they	must	be	unique	within	a	given	table,	but	you
can	use	the	same	column	name	in	different	tables	in	the	same	database.	You	must

also	define	a	data	type	for	each	column.

Although	table	names	must	be	unique	for	each	owner	within	a	database,	you	can
create	multiple	tables	with	the	same	name	if	you	specify	different	owners	for
each.	You	can	create	two	tables	named	employees	and	designate	Jonah	as	the
owner	of	one	and	Sally	as	the	owner	of	the	other.	When	you	need	to	work	with
one	of	the	employees	tables,	you	can	distinguish	between	the	two	tables	by
specifying	the	owner	with	the	name	of	the	table.

To	create	a	table

Transact-SQL

Enterprise	Manager

SQL-DMO

Modifying	Tables
After	a	table	is	created,	you	can	change	many	of	the	options	that	were	defined
for	the	table	when	it	was	originally	created,	including:

Columns	can	be	added,	modified,	or	deleted.	For	example,	the	column
name,	length,	data	type,	precision,	scale,	and	nullability	can	all	be
changed,	although	some	restrictions	exist.	For	more	information,	see
Modifying	Column	Properties.

PRIMARY	KEY	and	FOREIGN	KEY	constraints	can	be	added	or
deleted.

UNIQUE	and	CHECK	constraints	and	DEFAULT	definitions	(and
objects)	can	be	added	or	deleted.

An	identifier	column	can	be	added	or	deleted	using	the	IDENTITY	or
ROWGUIDCOL	property.	The	ROWGUIDCOL	property	can	also	be
added	to	or	removed	from	an	existing	column,	although	only	one
column	in	a	table	can	have	the	ROWGUIDCOL	property	at	any	one
time.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

A	table	and	selected	columns	within	the	table	can	be	registered	for	full-
text	indexing.

For	more	information	about	the	modifications	that	can	be	made	to	a	table,	see
ALTER	TABLE.

The	name	or	owner	of	a	table	can	also	be	changed.	When	you	do	this,	you	must
also	change	the	name	of	the	table	in	any	triggers,	stored	procedures,	Transact-
SQL	scripts,	or	other	programming	code	that	uses	the	old	name	or	owner	of	the
table.

To	rename	a	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	change	the	owner	of	a	table

Transact-SQL

SQL-DMO

See	Also

Specifying	a	Column	Data	Type

Using	Identifiers

Placing	Tables	on	Filegroups

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Creating	and	Maintaining	Databases

Modifying	Column	Properties
Each	column	in	a	table	has	a	set	of	properties,	such	as	name,	data	type,
nullability,	and	data	length.	The	entire	set	of	properties	for	a	column	makes	up
the	definition	of	the	column	in	a	table.

The	column	properties	can	be	specified	directly	in	a	database	table	by	using	a
database	diagram.	Three	column	properties	are	required	before	you	can	create	a
table	in	the	database:

Column	name

Data	type

Data	length

The	properties	of	a	column	can	be	changed,	for	example,	by	renaming	it,	altering
its	length,	specifying	a	default	value,	and	so	on.

Column	Data	Type
The	data	type	of	an	existing	column	can	be	changed	provided	that	the	existing
data	in	the	column	can	be	implicitly	converted	to	the	new	data	type.	For	more
information,	see	ALTER	TABLE.

Column	Data	Length
When	you	select	a	data	type,	length	is	defined	automatically.	You	can	increase	or
decrease	the	length	property	only	for	a	column	with	a	data	type	of	binary,	char,
nchar,	varbinary,	varchar,	or	nvarchar.	For	columns	with	other	data	types,
the	length	is	derived	from	the	data	type	and	cannot	be	changed.	If	the	new
specified	length	is	smaller	than	the	original	column	length,	all	values	in	the
column	that	exceed	the	new	length	are	truncated	without	any	warning.	It	is	not
possible	to	change	the	length	of	a	column	defined	with	a	PRIMARY	KEY	or
FOREIGN	KEY	constraint.

Note		Changing	the	column	data	length	re-creates	the	table	in	the	database	when

JavaScript:hhobj_1.Click()

you	save	the	table	or	database	diagram	using	SQL	Server	Enterprise	Manager.

Column	Precision
The	precision	of	a	numeric	column	is	the	maximum	number	of	digits	used	by	the
selected	data	type.	The	precision	of	a	nonnumeric	column	generally	refers	to
either	the	maximum	length	or	the	defined	length	of	the	column.

For	all	data	types	except	decimal	and	numeric,	precision	is	defined
automatically.	You	can	change	the	column	precision	for	the	decimal	and
numeric	data	types	if	you	want	to	redefine	the	maximum	number	of	digits	these
columns	use.	SQL	Server	Enterprise	Manager	prevents	you	from	changing	the
precision	of	a	column	that	does	not	have	one	of	these	assigned	data	types.

Note		Changing	the	column	precision	re-creates	the	table	in	the	database	when
you	save	the	table	or	database	diagram	using	SQL	Server	Enterprise	Manager.

Column	Scale
The	scale	of	a	numeric	or	decimal	column	is	to	the	maximum	number	of	digits
to	the	right	of	the	decimal	point.	When	you	select	a	data	type,	the	column	scale
by	default	is	set	to	0.	For	columns	with	approximate	floating	point	numbers,	the
scale	is	undefined	because	the	number	of	digits	to	the	right	of	the	decimal	point
is	not	fixed.	You	can	change	the	scale	for	a	numeric	or	decimal	column	if	you
want	to	redefine	the	number	of	digits	that	can	appear	to	the	right	of	the	decimal
point.

Note		Changing	the	column	scale	re-creates	the	table	in	the	database	when	you
save	the	table	or	diagram	using	SQL	Server	Enterprise	Manager.

Column	Nullability
A	column	can	be	defined	to	either	allow	or	disallow	null	values.	By	default,	a
column	permits	null	values.	An	existing	column	can	be	changed	to	disallow	null
values	only	if	no	existing	null	values	exist	in	the	column	and	there	is	no	existing
index	created	on	the	column.	To	disallow	null	values	in	an	existing	column	that
contains	null	values:

1.	 Add	a	new	column	with	a	DEFAULT	definition	that	inserts	a	valid
value	in	place	of	NULL.

2.	 Copy	the	data	in	the	old	(existing)	column	to	the	new	column.

3.	 Delete	the	old	column.

An	existing	column	that	does	not	allow	null	values	can	be	changed	to	allow	null
values	unless	a	PRIMARY	KEY	constraint	is	defined	on	the	column.

Note		Changing	the	nullability	on	a	new,	nonkey	column	re-creates	the	table	in
the	database	when	you	save	the	table	or	database	diagram	using	Database
Diagrams	within	SQL	Server	Enterprise	Manager.

To	set	column	properties

Transact-SQL

Enterprise	Manager

SQL-DMO

To	view	column	properties

Transact-SQL

Enterprise	Manager

SQL-DMO

To	rename	a	column

Transact-SQL

Enterprise	Manager

SQL-DMO

See	Also

Working	with	Tables

Database	Objects

Precision,	Scale,	and	Length

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

Creating	and	Maintaining	Databases

Adding	and	Deleting	Columns
Microsoft®	SQL	Server™	2000	allows	columns	to	be	added	to	existing	tables,
provided	that	the	column	allows	null	values	or	a	DEFAULT	constraint	is	created
on	the	column.	When	you	add	a	new	column	to	a	table,	SQL	Server	inserts	a
value	in	that	column	for	each	existing	row	of	data	in	the	table.	For	this	reason,	it
is	useful	to	add	a	DEFAULT	definition	to	the	column	when	you	add	it	to	the
table.	If	the	new	column	does	not	have	a	DEFAULT	definition,	you	must	specify
that	the	new	column	allows	null	values.	SQL	Server	inserts	null	values	into	the
column	or	returns	an	error	if	the	new	column	does	not	allow	null	values.

Conversely,	columns	can	be	deleted	from	existing	tables.	However,	it	is	not
possible	to	delete	a	column	that	is:

Involved	in	replication.

Used	in	an	index.

Used	in	a	CHECK,	FOREIGN	KEY,	UNIQUE,	or	PRIMARY	KEY
constraint.

Associated	with	a	DEFAULT	definition,	or	bound	to	a	default	object.

Bound	to	a	rule.

Registered	for	full-text	support.

Used	as	a	full-text	key	for	a	table.

To	add	or	delete	a	column

Transact-SQL

Enterprise	Manager

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL-DMO

To	copy	columns	from	one	table	to	another

Enterprise	Manager

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Creating	and	Modifying	PRIMARY	KEY	Constraints
A	single	PRIMARY	KEY	constraint	can	be:

Created	when	the	table	is	created,	as	part	of	the	table	definition.

Added	to	an	existing	table,	provided	that	no	other	PRIMARY	KEY
constraint	already	exists	(a	table	can	have	only	one	PRIMARY	KEY
constraint).

Modified	or	deleted,	if	it	already	exists.	For	example,	you	may	want	the
PRIMARY	KEY	constraint	of	the	table	to	reference	other	columns,	or
you	may	want	to	change	the	column	order,	index	name,	clustered
option,	or	fill	factor	of	the	PRIMARY	KEY	constraint.	It	is	not	possible
to	change	the	length	of	a	column	defined	with	a	PRIMARY	KEY
constraint.

Note		To	modify	a	PRIMARY	KEY	constraint	using	Transact-SQL	or
SQL-DMO,	you	must	first	delete	the	existing	PRIMARY	KEY
constraint	and	then	re-create	it	with	the	new	definition.

When	a	PRIMARY	KEY	constraint	is	added	to	an	existing	column	or	columns	in
the	table,	Microsoft®	SQL	Server™	2000	checks	the	existing	data	in	the
columns	to	ensure	that	the	existing	data	follows	the	rules	for	primary	keys:

No	null	values

No	duplicate	values

If	a	PRIMARY	KEY	constraint	is	added	to	a	column	that	has	duplicate	or	null
values,	SQL	Server	returns	an	error	and	does	not	add	the	constraint.	It	is	not
possible	to	add	a	PRIMARY	KEY	constraint	that	violates	these	rules.

SQL	Server	automatically	creates	a	unique	index	to	enforce	the	uniqueness
requirement	of	the	PRIMARY	KEY	constraint.	If	a	clustered	index	does	not
already	exist	on	the	table,	or	a	nonclustered	index	is	not	explicitly	specified,	a

unique,	clustered	index	is	created	to	enforce	the	PRIMARY	KEY	constraint.

IMPORTANT		A	PRIMARY	KEY	constraint	cannot	be	deleted	if	referenced	by	a
FOREIGN	KEY	constraint	in	another	table;	the	FOREIGN	KEY	constraint	must
be	deleted	first.

To	create	a	PRIMARY	KEY	constraint	when	creating	a	table

Transact-SQL

SQL-DMO

To	create	or	delete	a	PRIMARY	KEY	constraint	on	an	existing	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	modify	a	PRIMARY	KEY	constraint

Enterprise	Manager

See	Also

Primary	Key	Constraints

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Creating	and	Modifying	FOREIGN	KEY	Constraints
FOREIGN	KEY	constraints	can	be:

Created	when	the	table	is	created,	as	part	of	the	table	definition.

Added	to	an	existing	table	provided	that	the	FOREIGN	KEY	constraint
is	linked	to	an	existing	PRIMARY	KEY	constraint	or	UNIQUE
constraint	in	another	(or	the	same)	table.	A	table	can	contain	multiple
FOREIGN	KEY	constraints.

Modified	or	deleted	if	FOREIGN	KEY	constraints	already	exist.	For
example,	you	may	want	the	table's	FOREIGN	KEY	constraint	to
reference	other	columns.	It	is	not	possible	to	change	the	length	of	a
column	defined	with	a	FOREIGN	KEY	constraint.

Note		To	modify	a	FOREIGN	KEY	constraint	using	Transact-SQL	or
SQL-DMO,	you	must	first	delete	the	existing	FOREIGN	KEY
constraint	and	then	re-create	it	with	the	new	definition.

When	a	FOREIGN	KEY	constraint	is	added	to	an	existing	column	or	columns	in
the	table,	Microsoft®	SQL	Server™	2000	by	default	checks	the	existing	data	in
the	columns	to	ensure	that	all	values,	except	NULL,	exist	in	the	column(s)	of	the
referenced	PRIMARY	KEY	or	UNIQUE	constraint.	However,	SQL	Server	can
be	prevented	from	checking	the	data	in	the	column	against	the	new	constraint
and	made	to	add	the	new	constraint	regardless	of	the	data	in	the	column.	This
option	is	useful	when	the	existing	data	already	meets	the	new	FOREIGN	KEY
constraint,	or	when	a	business	rule	requires	the	constraint	to	be	enforced	only
from	this	point	forward.

However,	you	should	be	careful	when	adding	a	constraint	without	checking
existing	data	because	this	bypasses	the	controls	in	SQL	Server	that	enforce	the
data	integrity	of	the	table.

Disabling	FOREIGN	KEY	Constraints

Existing	FOREIGN	KEY	constraints	can	be	disabled	for:

INSERT	and	UPDATE	statements

This	allows	data	in	the	table	to	be	modified	without	being	validated	by
the	constraints.	Disable	a	FOREIGN	KEY	constraint	during	INSERT
and	UPDATE	statements	if	new	data	will	violate	the	constraint	or	if	the
constraint	should	apply	only	to	the	data	already	in	the	database.

Replication	processing.

Disable	a	FOREIGN	KEY	constraint	during	replication	if	the	constraint
is	specific	to	the	source	database.	When	a	table	is	replicated,	the	table
definition	and	data	are	copied	from	the	source	database	to	a	destination
database.	These	two	databases	are	usually,	but	not	necessarily,	on
separate	servers.	If	the	FOREIGN	KEY	constraints	are	specific	to	the
source	database	but	are	not	disabled	during	replication,	they	may
unnecessarily	prevent	new	data	from	being	entered	in	the	destination
database.

Delete	a	FOREIGN	KEY	constraint,	thus	removing	the	requirement,	to	enforce
referential	integrity	between	the	foreign	key	columns	and	the	related	primary
key	(or	UNIQUE	constraint)	columns	in	another	table.

To	create	a	FOREIGN	KEY	constraint	when	creating	a	table

Transact-SQL

SQL-DMO

To	create	a	FOREIGN	KEY	constraint	on	an	existing	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	prevent	checking	of	existing	data	when	creating	a	FOREIGN	KEY
constraint

Transact-SQL

Enterprise	Manager

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

SQL-DMO

To	modify	a	FOREIGN	KEY	constraint

Enterprise	Manager

To	disable	a	FOREIGN	KEY	constraint	for	INSERT	and	UPDATE
statements

Transact-SQL

Enterprise	Manager

SQL-DMO

To	disable	a	FOREIGN	KEY	constraint	for	replication

Transact-SQL

Enterprise	Manager

SQL-DMO

To	delete	a	FOREIGN	KEY	constraint

Transact-SQL

Enterprise	Manager

SQL-DMO

See	Also

Foreign	Key	Constraints

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()

Creating	and	Maintaining	Databases

Creating	and	Modifying	UNIQUE	Constraints
UNIQUE	constraints	can	be:

Created	when	the	table	is	created,	as	part	of	the	table	definition.

Added	to	an	existing	table,	provided	that	the	column	or	combination	of
columns	comprising	the	UNIQUE	constraint	contains	only	unique	or
NULL	values.	A	table	can	contain	multiple	UNIQUE	constraints.

Modified	or	deleted	if	they	already	exist.	For	example,	you	may	want
the	UNIQUE	constraint	of	the	table	to	reference	other	columns,	or	you
may	want	to	change	the	type	of	index	clustering.

Note		To	modify	a	UNIQUE	constraint	using	Transact-SQL	or	SQL-
DMO,	you	must	first	delete	the	existing	UNIQUE	constraint	and	then
re-create	it	with	the	new	definition.

When	a	UNIQUE	constraint	is	added	to	an	existing	column	or	columns	in	the
table,	Microsoft®	SQL	Server™	2000	by	default	checks	the	existing	data	in	the
columns	to	ensure	all	values,	except	NULL,	are	unique.	If	a	UNIQUE	constraint
is	added	to	a	column	that	has	duplicated	values,	SQL	Server	returns	an	error	and
does	not	add	the	constraint.

SQL	Server	automatically	creates	a	UNIQUE	index	to	enforce	the	uniqueness
requirement	of	the	UNIQUE	constraint.	Therefore,	if	an	attempt	to	insert	a
duplicate	row	is	made,	SQL	Server	returns	an	error	message	that	says	the
UNIQUE	constraint	has	been	violated	and	does	not	add	the	row	to	the	table.
Unless	a	clustered	index	is	explicitly	specified,	a	unique,	nonclustered	index	is
created	by	default	to	enforce	the	UNIQUE	constraint.

Delete	a	UNIQUE	constraint	to	remove	the	uniqueness	requirement	for	values
entered	in	the	column	or	combination	of	columns	included	in	the	constraint.	It	is
not	possible	to	delete	a	UNIQUE	constraint	if	the	associated	column	is	used	as
the	full-text	key	of	the	table.

To	create	a	UNIQUE	constraint	when	creating	a	table

Transact-SQL

Enterprise	Manager

To	create	a	UNIQUE	constraint	on	an	existing	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	modify	a	UNIQUE	constraint

Enterprise	Manager

To	delete	a	UNIQUE	constraint

Transact-SQL

Enterprise	Manager

SQL-DMO

See	Also

UNIQUE	Constraints

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Creating	and	Maintaining	Databases

Creating	and	Modifying	CHECK	Constraints
CHECK	constraints	can	be:

Created	when	the	table	is	created,	as	part	of	the	table	definition.

Added	to	an	existing	table.	Tables	and	columns	can	contain	multiple
CHECK	constraints.

Modified	or	deleted	if	they	already	exist.	For	example,	you	can	modify
the	expression	used	by	the	CHECK	constraint	on	a	column	in	the	table.

Note		To	modify	a	CHECK	constraint	using	Transact-SQL	or	SQL-
DMO,	you	must	first	delete	the	existing	CHECK	constraint	and	then	re-
create	it	with	the	new	definition.

When	a	CHECK	constraint	is	added	to	an	existing	table,	the	CHECK	constraint
can	apply	either	to	new	data	only	or	to	existing	data	as	well.	By	default,	the
CHECK	constraint	applies	to	existing	data	as	well	as	any	new	data.	The	option
of	applying	the	constraint	to	new	data	only	is	useful	when	the	existing	data
already	meets	the	new	CHECK	constraint,	or	when	a	business	rule	requires	the
constraint	to	be	enforced	only	from	this	point	forward.

For	example,	an	old	constraint	may	require	that	postal	codes	be	limited	to	five
digits	but	a	new	constraint	requires	nine-digit	postal	codes.	Old	data	with	five-
digit	postal	codes	is	still	valid	and	will	co-exist	with	new	data	that	contains	nine-
digit	postal	codes.	Therefore,	only	new	data	should	be	checked	against	the	new
constraint.

However,	you	should	be	careful	when	adding	a	constraint	without	checking
existing	data	because	this	bypasses	the	controls	in	Microsoft®	SQL	Server™
2000	that	enforce	the	integrity	rules	for	the	table.

Disabling	CHECK	Constraints
Existing	CHECK	constraints	can	be	disabled	for:

INSERT	and	UPDATE	statements,	thereby	allowing	data	in	the	table	to
be	modified	without	being	validated	by	the	constraints.	Disable	a
CHECK	constraint	during	INSERT	and	UPDATE	statements	if	new
data	will	violate	the	constraint	or	if	the	constraint	should	apply	only	to
the	data	already	in	the	database.

Replication	processing.	Disable	a	CHECK	constraint	during	replication
if	the	constraint	is	specific	to	the	source	database.	When	a	table	is
replicated,	the	table	definition	and	data	are	copied	from	the	source
database	to	a	destination	database.	These	two	databases	are	usually,	but
not	necessarily,	on	separate	servers.	If	the	CHECK	constraints	specific
to	the	source	database	are	not	disabled,	they	may	unnecessarily	prevent
new	data	from	being	entered	in	the	destination	database.

Delete	a	CHECK	constraint	to	remove	the	limitations	on	acceptable	data	values
in	the	column	or	columns	included	in	the	constraint	expression.

To	create	a	CHECK	constraint	when	creating	a	table

Transact-SQL

SQL-DMO

To	create	a	CHECK	constraint	on	an	existing	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	prevent	checking	of	existing	data	when	creating	a	CHECK	constraint

Transact-SQL

Enterprise	Manager

SQL-DMO

To	modify	a	CHECK	constraint

Enterprise	Manager

To	disable	a	CHECK	constraint	for	INSERT	and	UPDATE	statements

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Transact-SQL

Enterprise	Manager

SQL-DMO

To	disable	a	CHECK	constraint	for	replication

Transact-SQL

Enterprise	Manager

SQL-DMO

To	delete	a	CHECK	constraint

Transact-SQL

Enterprise	Manager

SQL-DMO

See	Also

CHECK	Constraints

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()

Creating	and	Maintaining	Databases

Creating	and	Modifying	DEFAULT	Definitions
DEFAULT	definitions	can	be:

Created	when	the	table	is	created,	as	part	of	the	table	definition.

Added	to	an	existing	table.	Each	column	in	a	table	can	contain	a	single
DEFAULT	definition.

Modified	or	deleted	if	DEFAULT	definitions	already	exist.	For
example,	you	can	modify	the	value	inserted	in	a	column	when	no	value
is	entered.

Note		To	modify	a	DEFAULT	definition	using	Transact-SQL	or	SQL-
DMO,	you	must	first	delete	the	existing	DEFAULT	definition	and	then
re-create	it	with	the	new	definition.

DEFAULT	definitions	cannot	be	created	on	columns	defined	with:

A	timestamp	data	type.

An	IDENTITY	or	ROWGUIDCOL	property.

An	existing	DEFAULT	definition	or	DEFAULT	object.

Note		The	default	value	must	be	compatible	with	the	data	type	of	the	column	to
which	the	DEFAULT	definition	applies.	For	example,	the	default	value	for	an	int
column	must	be	an	integer	number,	not	a	character	string.

When	a	DEFAULT	definition	is	added	to	an	existing	column	in	a	table,
Microsoft®	SQL	Server™	2000	by	default	applies	the	new	default	only	to	new
rows	of	data	added	to	the	table;	existing	data	inserted	using	the	previous
DEFAULT	definition	is	unaffected.	However,	when	adding	a	new	column	to	an
existing	table,	you	can	specify	that	SQL	Server	insert	the	default	value	(specified
by	the	DEFAULT	definition)	rather	than	a	null	value	into	the	new	column	for	the

existing	rows	in	the	table.

When	you	delete	a	DEFAULT	definition,	SQL	Server	inserts	a	null	value	rather
than	the	default	value	when	no	value	is	inserted	into	the	column	for	new	rows.
However,	no	changes	are	made	to	the	existing	data	in	the	table.

To	create	a	DEFAULT	definition	on	a	column	when	creating	a	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	create	or	delete	a	DEFAULT	definition	on	a	column	of	an	existing	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	create	a	DEFAULT	object

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Creating	and	Maintaining	Databases

Creating	and	Modifying	Identifier	Columns
Only	one	identifier	column	and	one	globally	unique	identifier	column	can	be
created	for	each	table.

IDENTITY	Property
Identifier	columns	can	be	implemented	using	the	IDENTITY	property,	which
allows	the	application	developer	to	specify	both	an	identity	number	for	the	first
row	inserted	into	the	table	(Identity	Seed	property)	and	an	increment	(Identity
Increment	property)	to	be	added	to	the	seed	to	determine	successive	identity
numbers.	When	inserting	values	into	a	table	with	an	identifier	column,
Microsoft®	SQL	Server™	2000	automatically	generates	the	next	identity	value
by	adding	the	increment	to	the	seed.

When	you	use	the	IDENTITY	property	to	define	an	identifier	column,	consider
that:

A	table	can	have	only	one	column	defined	with	the	IDENTITY
property,	and	that	column	must	be	defined	using	the	decimal,	int,
numeric,	smallint,	bigint,	or	tinyint	data	type.

The	seed	and	increment	can	be	specified.	The	default	value	for	both	is
1.

The	identifier	column	must	not	allow	null	values	and	must	not	contain	a
DEFAULT	definition	or	object.

The	column	can	be	referenced	in	a	select	list	by	using	the
IDENTITYCOL	keyword	after	the	IDENTITY	property	has	been	set.

The	OBJECTPROPERTY	function	can	be	used	to	determine	if	a	table
has	an	IDENTITY	column,	and	the	COLUMNPROPERTY	function	can
be	used	to	determine	the	name	of	the	IDENTITY	column.

Globally	Unique	Identifiers

Although	the	IDENTITY	property	automates	row	numbering	within	one	table,
separate	tables,	each	with	its	own	identifier	column,	can	generate	the	same
values.	This	is	because	the	IDENTITY	property	is	guaranteed	to	be	unique	only
for	the	table	on	which	it	is	used.	If	an	application	must	generate	an	identifier
column	that	is	unique	across	the	entire	database,	or	every	database	on	every
networked	computer	in	the	world,	use	the	ROWGUIDCOL	property,	the
uniqueidentifier	data	type,	and	the	NEWID	function.

When	you	use	the	ROWGUIDCOL	property	to	define	a	globally	unique
identifier	column,	consider	that:

A	table	can	have	only	one	ROWGUIDCOL	column,	and	that	column
must	be	defined	using	the	uniqueidentifier	data	type.

SQL	Server	does	not	automatically	generate	values	for	the	column.	To
insert	a	globally	unique	value,	create	a	DEFAULT	definition	on	the
column	that	uses	the	NEWID	function	to	generate	a	globally	unique
value.

The	column	can	be	referenced	in	a	select	list	by	using	the
ROWGUIDCOL	keyword	after	the	ROWGUIDCOL	property	is	set.
This	is	similar	to	the	way	an	IDENTITY	column	can	be	referenced
using	the	IDENTITYCOL	keyword.

The	OBJECTPROPERTY	function	can	be	used	to	determine	if	a	table
has	a	ROWGUIDCOL	column,	and	the	COLUMNPROPERTY	function
can	be	used	to	determine	the	name	of	the	ROWGUIDCOL	column.

Because	the	ROWGUIDCOL	property	does	not	enforce	uniqueness,	the
UNIQUE	constraint	should	be	used	to	ensure	that	unique	values	are
inserted	into	the	ROWGUIDCOL	column.

Note		If	an	identifier	column	exists	for	a	table	with	frequent	deletions,	gaps	can
occur	between	identity	values;	deleted	identity	values	are	not	reused.	To	avoid

such	gaps,	do	not	use	the	IDENTITY	property.	Instead,	you	can	create	a	trigger
that	determines	a	new	identifier	value,	based	on	existing	values	in	the	identifier
column,	as	rows	are	inserted.

To	create	a	new	identifier	column	when	creating	a	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	create	a	new	identifier	column	on	an	existing	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	delete	an	identifier	column

Transact-SQL

Enterprise	Manager

SQL-DMO

See	Also

Autonumbering	and	Identifier	Columns

COLUMNPROPERTY

NEWID

OBJECTPROPERTY

uniqueidentifier

Using	Uniqueidentifier	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

Creating	and	Maintaining	Databases

Viewing	a	Table
After	you	have	created	the	tables	in	a	database,	you	may	need	to	find
information	about	the	table	properties	(for	example,	the	name	or	data	type	of	a
column,	the	nature	of	its	indexes,	and	so	on).	Additionally,	and	most	importantly,
you	will	need	to	view	the	data	in	the	table.

You	can	also	display	the	dependencies	of	the	table	to	determine	which	objects,
such	as	views,	stored	procedures,	and	triggers,	depend	on	the	table.	If	you	make
any	changes	to	the	table,	dependent	objects	may	be	affected.

To	view	the	definition	of	a	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	view	the	data	in	a	table

Transact-SQL

Enterprise	Manager

To	view	the	dependencies	of	a	table

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Deleting	a	Table
At	times	you	need	to	delete	a	table	(for	example,	when	you	want	to	implement	a
new	design	or	free	up	space	in	the	database).	When	you	delete	a	table,	its
structural	definition,	data,	full-text	indexes,	constraints,	and	indexes	are
permanently	deleted	from	the	database,	and	the	space	formerly	used	to	store	the
table	and	its	indexes	is	made	available	for	other	tables.	You	can	explicitly	drop	a
temporary	table	if	you	do	not	want	to	wait	until	it	is	dropped	automatically.

If	you	need	to	delete	tables	that	are	related	through	FOREIGN	KEY	and
UNIQUE	or	PRIMARY	KEY	constraints,	you	must	delete	the	tables	with	the
FOREIGN	KEY	constraints	first.	If	you	need	to	delete	a	table	that	is	referenced
in	a	FOREIGN	KEY	constraint	but	you	cannot	delete	the	entire	foreign	key
table,	you	must	delete	the	FOREIGN	KEY	constraint.

To	delete	a	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	delete	a	FOREIGN	KEY	constraint

Transact-SQL

Enterprise	Manager

SQL-DMO

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Indexes
Indexes	in	databases	are	similar	to	indexes	in	books.	In	a	book,	an	index	allows
you	to	find	information	quickly	without	reading	the	entire	book.	In	a	database,
an	index	allows	the	database	program	to	find	data	in	a	table	without	scanning	the
entire	table.	An	index	in	a	book	is	a	list	of	words	with	the	page	numbers	that
contain	each	word.	An	index	in	a	database	is	a	list	of	values	in	a	table	with	the
storage	locations	of	rows	in	the	table	that	contain	each	value.	Indexes	can	be
created	on	either	a	single	column	or	a	combination	of	columns	in	a	table	and	are
implemented	in	the	form	of	B-trees.	An	index	contains	an	entry	with	one	or
more	columns	(the	search	key)	from	each	row	in	a	table.	A	B-tree	is	sorted	on
the	search	key,	and	can	be	searched	efficiently	on	any	leading	subset	of	the
search	key.	For	example,	an	index	on	columns	A,	B,	C	can	be	searched
efficiently	on	A,	on	A,	B,	and	A,	B,	C.

Most	books	contain	one	general	index	of	words,	names,	places,	and	so	on.
Databases	contain	individual	indexes	for	selected	types	or	columns	of	data:	this
is	similar	to	a	book	that	contains	one	index	for	names	of	people	and	another
index	for	places.	When	you	create	a	database	and	tune	it	for	performance,	you
should	create	indexes	for	the	columns	used	in	queries	to	find	data.

In	the	pubs	sample	database	provided	with	Microsoft®	SQL	Server™	2000,	the
employee	table	has	an	index	on	the	emp_id	column.	The	following	illustration
shows	how	the	index	stores	each	emp_id	value	and	points	to	the	rows	of	data	in
the	table	with	each	value.

When	SQL	Server	executes	a	statement	to	find	data	in	the	employee	table	based
on	a	specified	emp_id	value,	it	recognizes	the	index	for	the	emp_id	column	and
uses	the	index	to	find	the	data.	If	the	index	is	not	present,	it	performs	a	full	table
scan	starting	at	the	beginning	of	the	table	and	stepping	through	each	row,
searching	for	the	specified	emp_id	value.

SQL	Server	automatically	creates	indexes	for	certain	types	of	constraints	(for
example,	PRIMARY	KEY	and	UNIQUE	constraints).	You	can	further	customize
the	table	definitions	by	creating	indexes	that	are	independent	of	constraints.

The	performance	benefits	of	indexes,	however,	do	come	with	a	cost.	Tables	with

indexes	require	more	storage	space	in	the	database.	Also,	commands	that	insert,
update,	or	delete	data	can	take	longer	and	require	more	processing	time	to
maintain	the	indexes.	When	you	design	and	create	indexes,	you	should	ensure
that	the	performance	benefits	outweigh	the	extra	cost	in	storage	space	and
processing	resources.

See	Also

Full-Text	Indexes

Index	Tuning	Wizard

Index	Tuning	Recommendations

Table	and	Index	Architecture

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Designing	an	Index
When	Microsoft®	SQL	Server™	2000	executes	a	query,	the	query	optimizer
evaluates	the	costs	of	the	available	methods	for	retrieving	the	data	and	uses	the
most	efficient	method.	SQL	Server	can	perform	a	table	scan,	or	it	can	use	an
index	if	one	exists.	When	performing	a	table	scan,	SQL	Server	starts	at	the
beginning	of	the	table,	steps	row-by-row	through	all	the	rows	in	the	table,	and
extracts	the	rows	that	meet	the	criteria	of	the	query.	When	SQL	Server	uses	an
index,	it	finds	the	storage	location	of	the	rows	needed	by	the	query	and	extracts
only	the	needed	rows.

When	you	are	considering	whether	to	create	an	index	on	a	column,	consider	if
and	how	an	indexed	column	is	to	be	used	in	queries.	Indexes	are	useful	when	a
query:

Searches	for	rows	that	match	a	specific	search	key	value	(an	exact
match	query).	An	exact	match	comparison	is	one	in	which	the	query
uses	the	WHERE	statement	to	specify	a	column	entry	with	a	given
value.	For	example:
WHERE	emp_id	=	'VPA30890F'

Searches	for	rows	with	search	key	values	in	a	range	of	values	(a	range
query).	A	range	query	is	one	in	which	the	query	specifies	any	entry
whose	value	is	between	two	values.	For	example:
WHERE	job_lvl	BETWEEN	9	and	12

Or

WHERE	job_lvl	>=	9	and	job_lvl	<=	12

Searches	for	rows	in	a	table	T1	that	match,	based	on	a	join	predicate,	a
row	in	another	table	T2	(an	index	nested	loops	join).

Produces	sorted	query	output	without	an	explicit	sort	operation,	in
particular	for	sorted	dynamic	cursors.

Scans	rows	in	a	sorted	order	to	permit	an	order-based	operation,	such	as
merge	join	and	stream	aggregation,	without	an	explicit	sort	operation.

Scans	all	rows	in	a	table	with	better	performance	than	a	table	scan,	due
to	the	reduced	column	set	and	overall	data	volume	to	be	scanned	(a
covering	index	for	the	query	at	hand).

Searches	for	duplicates	of	new	search	key	values	in	insert	and	update
operations,	to	enforce	PRIMARY	KEY	and	UNIQUE	constraints.

Searches	for	matching	rows	between	two	tables	for	which	a	FOREIGN
KEY	constraint	is	defined.

Queries	using	LIKE	comparisons	can	benefit	from	an	index	if	the	pattern	starts
with	a	specific	character	string,	for	example	'abc%';	but	not	if	the	pattern	starts
with	a	wildcard	search,	for	example	'%xyz'.

In	many	queries,	the	benefits	of	indexes	can	be	combined.	For	example,	an	index
enables	a	range	query	in	addition	to	covering	the	query.	SQL	Server	can	use
multiple	indexes	for	a	single	table	in	the	same	query,	as	well	as	combining
multiple	indexes	(using	a	join	algorithm)	so	that	the	search	keys	together	cover	a
query.	Additionally,	SQL	Server	automatically	determines	which	indexes	to
exploit	for	a	query	and	ensures	that	all	indexes	for	a	table	are	maintained	when
the	table	is	modified.

Additional	Guidelines	for	Designing	Indexes
Additional	guidelines	to	consider	when	designing	indexes	include:

Large	numbers	of	indexes	on	a	table	affect	the	performance	of	INSERT,
UPDATE,	and	DELETE	statements	because	all	indexes	must	be
adjusted	appropriately	as	data	in	the	table	changes.	Conversely,	large
numbers	of	indexes	can	help	the	performance	of	queries	that	do	not
modify	data	(SELECT	statements)	because	SQL	Server	has	more
indexes	to	choose	from	to	determine	the	best	way	to	access	the	data	as
fast	as	possible.

Covered	queries	can	improve	performance.	Covered	queries	are	queries
where	all	the	columns	specified	in	the	query	are	contained	within	the
same	index.	For	example,	a	query	retrieving	columns	a	and	b	from	a
table	that	has	a	composite	index	created	on	columns	a,	b,	and	c	is
considered	covered.	Creating	indexes	that	cover	a	query	can	improve
performance	because	all	the	data	for	the	query	is	contained	within	the
index	itself;	only	the	index	pages,	not	the	data	pages,	of	the	table	must
be	referenced	to	retrieve	the	data,	thereby	reducing	overall	I/O.
Although	adding	columns	to	an	index	to	cover	queries	can	improve
performance,	maintaining	the	extra	columns	in	the	index	incurs	update
and	storage	costs.

Indexing	small	tables	may	not	be	optimal	because	it	can	take	SQL
Server	longer	to	traverse	the	index	searching	for	data	than	to	perform	a
simple	table	scan.

SQL	Profiler	and	the	Index	Tuning	Wizard	should	be	used	to	help
analyze	queries	and	determine	which	indexes	to	create.	The	selection	of
the	right	indexes	for	a	database	and	its	workload	is	a	very	complex
balancing	act	between	query	speed	and	update	cost.	Narrow	indexes
(indexes	with	few	columns	in	the	search	key)	require	less	disk	space
and	maintenance	overhead.	Wide	indexes,	on	the	other	hand,	cover
more	queries.	There	are	no	simple	rules	for	determining	the	right	set	of
indexes.	Experienced	database	administrators	can	often	design	a	good
set	of	indexes,	but	this	task	is	very	complex,	time-consuming,	and	error-
prone	even	for	moderately	complex	databases	and	workloads.	The
Index	Tuning	Wizard	can	be	used	to	automate	this	task.	For	more
information,	see	Index	Tuning	Wizard.	

You	can	specify	indexes	on	views.	For	more	information,	see	Designing
an	Indexed	View.

You	can	specify	indexes	on	computed	columns.	For	more	information,
see	Creating	Indexes	on	Computed	Columns.

Index	Characteristics

After	you	have	determined	that	an	index	is	justified	for	a	query,	you	can
customize	the	type	of	index	that	best	fits	your	situation.	Characteristics	of
indexes	include:

Clustered	versus	nonclustered

Unique	versus	nonunique

Single-column	versus	multicolumn

Ascending	or	descending	order	on	the	columns	in	the	index

Covering	or	noncovering

You	can	also	customize	the	initial	storage	characteristics	of	the	index	to	optimize
its	maintenance	by	setting	a	fill	factor,	and	customize	its	location	using	files	and
filegroups	to	optimize	performance.

See	Also

Designing	Tables

Fill	Factor

Placing	Indexes	on	Filegroups

Query	Tuning

Understanding	Merge	Joins

Understanding	Nested	Loops	Joins

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Using	Clustered	Indexes
A	clustered	index	determines	the	physical	order	of	data	in	a	table.	A	clustered
index	is	analogous	to	a	telephone	directory,	which	arranges	data	by	last	name.
Because	the	clustered	index	dictates	the	physical	storage	order	of	the	data	in	the
table,	a	table	can	contain	only	one	clustered	index.	However,	the	index	can
comprise	multiple	columns	(a	composite	index),	like	the	way	a	telephone
directory	is	organized	by	last	name	and	first	name.

A	clustered	index	is	particularly	efficient	on	columns	that	are	often	searched	for
ranges	of	values.	After	the	row	with	the	first	value	is	found	using	the	clustered
index,	rows	with	subsequent	indexed	values	are	guaranteed	to	be	physically
adjacent.	For	example,	if	an	application	frequently	executes	a	query	to	retrieve
records	between	a	range	of	dates,	a	clustered	index	can	quickly	locate	the	row
containing	the	beginning	date,	and	then	retrieve	all	adjacent	rows	in	the	table
until	the	last	date	is	reached.	This	can	help	increase	the	performance	of	this	type
of	query.	Also,	if	there	is	a	column(s)	that	is	used	frequently	to	sort	the	data
retrieved	from	a	table,	it	can	be	advantageous	to	cluster	(physically	sort)	the
table	on	that	column(s)	to	save	the	cost	of	a	sort	each	time	the	column(s)	is
queried.

Clustered	indexes	are	also	efficient	for	finding	a	specific	row	when	the	indexed
value	is	unique.	For	example,	the	fastest	way	to	find	a	particular	employee	using
the	unique	employee	ID	column	emp_id	is	to	create	a	clustered	index	or
PRIMARY	KEY	constraint	on	the	emp_id	column.

Note		PRIMARY	KEY	constraints	create	clustered	indexes	automatically	if	no
clustered	index	already	exists	on	the	table	and	a	nonclustered	index	is	not
specified	when	you	create	the	PRIMARY	KEY	constraint.

Alternatively,	a	clustered	index	could	be	created	on	lname,	fname	(last	name,
first	name),	because	employee	records	are	often	grouped	and	queried	in	this	way
rather	than	by	employee	ID.

Considerations
It	is	important	to	define	the	clustered	index	key	with	as	few	columns	as	possible.
If	a	large	clustered	index	key	is	defined,	any	nonclustered	indexes	that	are

defined	on	the	same	table	will	be	significantly	larger	because	the	nonclustered
index	entries	contain	the	clustering	key.	The	Index	Tuning	Wizard	does	not
return	an	error	when	saving	an	SQL	script	to	a	disk	with	insufficient	available
space.	For	more	information	about	how	nonclustered	indexes	are	implemented	in
Microsoft®	SQL	Server™	2000,	see	Nonclustered	Indexes.

The	Index	Tuning	Wizard	can	consume	significant	CPU	and	memory	resources
during	analysis.	It	is	recommended	that	tuning	should	be	performed	against	a
test	version	of	the	production	server	rather	than	the	production	server.
Additionally,	the	wizard	should	be	run	on	a	separate	computer	from	the
computer	running	SQL	Server.	The	wizard	cannot	be	used	to	select	or	create
indexes	and	statistics	in	databases	on	SQL	Server	version	6.5	or	earlier.

Before	creating	clustered	indexes,	understand	how	your	data	will	be	accessed.
Consider	using	a	clustered	index	for:

Columns	that	contain	a	large	number	of	distinct	values.

Queries	that	return	a	range	of	values	using	operators	such	as
BETWEEN,	>,	>=,	<,	and	<=.

Columns	that	are	accessed	sequentially.

Queries	that	return	large	result	sets.

Columns	that	are	frequently	accessed	by	queries	involving	join	or
GROUP	BY	clauses;	typically	these	are	foreign	key	columns.	An	index
on	the	column(s)	specified	in	the	ORDER	BY	or	GROUP	BY	clause
eliminates	the	need	for	SQL	Server	to	sort	the	data	because	the	rows	are
already	sorted.	This	improves	query	performance.

OLTP-type	applications	where	very	fast	single	row	lookup	is	required,
typically	by	means	of	the	primary	key.	Create	a	clustered	index	on	the
primary	key.

Clustered	indexes	are	not	a	good	choice	for:

JavaScript:hhobj_1.Click()

Columns	that	undergo	frequent	changes

This	results	in	the	entire	row	moving	(because	SQL	Server	must	keep
the	data	values	of	a	row	in	physical	order).	This	is	an	important
consideration	in	high-volume	transaction	processing	systems	where	data
tends	to	be	volatile.

Wide	keys

The	key	values	from	the	clustered	index	are	used	by	all	nonclustered
indexes	as	lookup	keys	and	therefore	are	stored	in	each	nonclustered
index	leaf	entry.

See	Also

Clustered	Indexes

Creating	an	Index

Creating	and	Modifying	PRIMARY	KEY	Constraints

JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Using	Nonclustered	Indexes
A	nonclustered	index	is	analogous	to	an	index	in	a	textbook.	The	data	is	stored	in
one	place,	the	index	in	another,	with	pointers	to	the	storage	location	of	the	data.
The	items	in	the	index	are	stored	in	the	order	of	the	index	key	values,	but	the
information	in	the	table	is	stored	in	a	different	order	(which	can	be	dictated	by	a
clustered	index).	If	no	clustered	index	is	created	on	the	table,	the	rows	are	not
guaranteed	to	be	in	any	particular	order.

Similar	to	the	way	you	use	an	index	in	a	book,	Microsoft®	SQL	Server™	2000
searches	for	a	data	value	by	searching	the	nonclustered	index	to	find	the	location
of	the	data	value	in	the	table	and	then	retrieves	the	data	directly	from	that
location.	This	makes	nonclustered	indexes	the	optimal	choice	for	exact	match
queries	because	the	index	contains	entries	describing	the	exact	location	in	the
table	of	the	data	values	being	searched	for	in	the	queries.	If	the	underlying	table
is	sorted	using	a	clustered	index,	the	location	is	the	clustering	key	value;
otherwise,	the	location	is	the	row	ID	(RID)	comprised	of	the	file	number,	page
number,	and	slot	number	of	the	row.	For	example,	to	search	for	an	employee	ID
(emp_id)	in	a	table	that	has	a	nonclustered	index	on	the	emp_id	column,	SQL
Server	looks	through	the	index	to	find	an	entry	that	lists	the	exact	page	and	row
in	the	table	where	the	matching	emp_id	can	be	found,	and	then	goes	directly	to
that	page	and	row.

Multiple	Nonclustered	Indexes
Some	books	contain	multiple	indexes.	For	example,	a	gardening	book	can
contain	one	index	for	the	common	names	of	plants	and	another	index	for	the
scientific	names	because	these	are	the	two	most	common	ways	in	which	the
readers	find	information.	The	same	is	true	for	nonclustered	indexes.	You	can
define	a	nonclustered	index	for	each	of	the	columns	commonly	used	to	find	the
data	in	the	table.

Considerations
Before	you	create	nonclustered	indexes,	understand	how	your	data	will	be
accessed.	Consider	using	nonclustered	indexes	for:

Columns	that	contain	a	large	number	of	distinct	values,	such	as	a
combination	of	last	name	and	first	name	(if	a	clustered	index	is	used	for
other	columns).	If	there	are	very	few	distinct	values,	such	as	only	1	and
0,	most	queries	will	not	use	the	index	because	a	table	scan	is	usually
more	efficient.

Queries	that	do	not	return	large	result	sets.

Columns	frequently	involved	in	search	conditions	of	a	query	(WHERE
clause)	that	return	exact	matches.

Decision-support-system	applications	for	which	joins	and	grouping	are
frequently	required.	Create	multiple	nonclustered	indexes	on	columns
involved	in	join	and	grouping	operations,	and	a	clustered	index	on	any
foreign	key	columns.

Covering	all	columns	from	one	table	in	a	given	query.	This	eliminates
accessing	the	table	or	clustered	index	altogether.

See	Also

Creating	an	Index

Index	Tuning	Wizard

Nonclustered	Indexes

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Using	Unique	Indexes
A	unique	index	ensures	that	the	indexed	column	contains	no	duplicate	values.	In
the	case	of	multicolumn	unique	indexes,	the	index	ensures	that	each	combination
of	values	in	the	indexed	column	is	unique.	For	example,	if	a	unique	index
full_name	is	created	on	a	combination	of	last_name,	first_name,	and
middle_initial	columns,	no	two	people	could	have	the	same	full	name	in	the
table.

Both	clustered	and	nonclustered	indexes	can	be	unique.	Therefore,	provided	that
the	data	in	the	column	is	unique,	you	can	create	both	a	unique	clustered	index
and	multiple-unique	nonclustered	indexes	on	the	same	table.

Considerations
Specifying	a	unique	index	makes	sense	only	when	uniqueness	is	a	characteristic
of	the	data	itself.	If	uniqueness	must	be	enforced	to	ensure	data	integrity,	create	a
UNIQUE	or	PRIMARY	KEY	constraint	on	the	column	rather	than	a	unique
index.	For	example,	if	you	plan	to	query	frequently	on	the	Social	Security
number	(ssn)	column	in	the	employee	table	(in	which	the	primary	key	is
emp_id),	and	you	want	to	ensure	that	Social	Security	numbers	are	unique,	create
a	UNIQUE	constraint	on	ssn.	If	the	user	enters	the	same	Social	Security	number
for	more	than	one	employee,	an	error	is	displayed.

Note		Creating	a	PRIMARY	KEY	or	UNIQUE	constraint	automatically	creates	a
unique	index	on	the	specified	columns	in	the	table.

Creating	a	unique	index	instead	of	non-unique	on	the	same	combination	of
columns	provides	additional	information	for	the	query	optimizer;	therefore,
creating	a	unique	index	is	preferred.

See	Also

Creating	an	Index

Index	Tuning	Wizard

Creating	and	Maintaining	Databases

Fill	Factor
When	you	create	a	clustered	index,	the	data	in	the	table	is	stored	in	the	data
pages	of	the	database	according	to	the	order	of	the	values	in	the	indexed
columns.	When	new	rows	of	data	are	inserted	into	the	table	or	the	values	in	the
indexed	columns	are	changed,	Microsoft®	SQL	Server™	2000	may	have	to
reorganize	the	storage	of	the	data	in	the	table	to	make	room	for	the	new	row	and
maintain	the	ordered	storage	of	the	data.	This	also	applies	to	nonclustered
indexes.	When	data	is	added	or	changed,	SQL	Server	may	have	to	reorganize	the
storage	of	the	data	in	the	nonclustered	index	pages.	When	a	new	row	is	added	to
a	full	index	page,	SQL	Server	moves	approximately	half	the	rows	to	a	new	page
to	make	room	for	the	new	row.	This	reorganization	is	known	as	a	page	split.
Page	splitting	can	impair	performance	and	fragment	the	storage	of	the	data	in	a
table.	For	more	information,	see	Table	and	Index	Architecture.

When	creating	an	index,	you	can	specify	a	fill	factor	to	leave	extra	gaps	and
reserve	a	percentage	of	free	space	on	each	leaf	level	page	of	the	index	to
accommodate	future	expansion	in	the	storage	of	the	table's	data	and	reduce	the
potential	for	page	splits.	The	fill	factor	value	is	a	percentage	from	0	to	100	that
specifies	how	much	to	fill	the	data	pages	after	the	index	is	created.	A	value	of
100	means	the	pages	will	be	full	and	will	take	the	least	amount	of	storage	space.
This	setting	should	be	used	only	when	there	will	be	no	changes	to	the	data,	for
example,	on	a	read-only	table.	A	lower	value	leaves	more	empty	space	on	the
data	pages,	which	reduces	the	need	to	split	data	pages	as	indexes	grow	but
requires	more	storage	space.	This	setting	is	more	appropriate	when	there	will	be
changes	to	the	data	in	the	table.

The	fill	factor	option	is	provided	for	fine-tuning	performance.	However,	the
server-wide	default	fill	factor,	specified	using	the	sp_configure	system	stored
procedure,	is	the	best	choice	in	the	majority	of	situations.

Note		Even	for	an	application	oriented	for	many	insert	and	update	operations,	the
number	of	database	reads	typically	outnumber	database	writes	by	a	factor	of	5	to
10.	Therefore,	specifying	a	fill	factor	other	than	the	default	can	degrade	database
read	performance	by	an	amount	inversely	proportional	to	the	fill	factor	setting.
For	example,	a	fill	factor	value	of	50	percent	can	cause	database	read
performance	to	degrade	by	two	times.

JavaScript:hhobj_1.Click()

It	is	useful	to	set	the	fill	factor	option	to	another	value	only	when	a	new	index	is
created	on	a	table	with	existing	data,	and	then	only	when	future	changes	in	that
data	can	be	accurately	predicted.

The	fill	factor	is	implemented	only	when	the	index	is	created;	it	is	not
maintained	after	the	index	is	created	as	data	is	added,	deleted,	or	updated	in	the
table.	Trying	to	maintain	the	extra	space	on	the	data	pages	would	defeat	the
purpose	of	originally	using	the	fill	factor	because	SQL	Server	would	have	to
perform	page	splits	to	maintain	the	percentage	of	free	space,	specified	by	the	fill
factor,	on	each	page	as	data	is	entered.	Therefore,	if	the	data	in	the	table	is
significantly	modified	and	new	data	added,	the	empty	space	in	the	data	pages
can	fill.	In	this	situation,	the	index	can	be	re-created	and	the	fill	factor	specified
again	to	redistribute	the	data.

See	Also

Creating	an	Index

fill	factor	Option

Table	and	Index	Architecture

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Index	Tuning	Wizard
The	Index	Tuning	Wizard	allows	you	to	select	and	create	an	optimal	set	of
indexes	and	statistics	for	a	Microsoft®	SQL	Server™	2000	database	without
requiring	an	expert	understanding	of	the	structure	of	the	database,	the	workload,
or	the	internals	of	SQL	Server.

To	build	a	recommendation	of	the	optimal	set	of	indexes	that	should	be	in	place,
the	wizard	requires	a	workload.	A	workload	consists	of	an	SQL	script	or	a	SQL
Profiler	trace	saved	to	a	file	or	table	containing	SQL	batch	or	remote	procedure
call	(RPC)	event	classes	and	the	Event	Class	and	Text	data	columns.	For	more
information,	see	TSQL	Event	Category.

If	you	do	not	have	an	existing	workload	for	the	Index	Tuning	Wizard	to	analyze,
you	can	create	one	using	SQL	Profiler.	Either	create	a	workload	using	the
Sample	1	-	TSQL	trace	definition	or	create	a	new	trace	that	captures	the	default
events	and	data	columns.	After	you	have	determined	that	the	trace	has	captured	a
representative	sample	of	the	normal	database	activity,	the	wizard	can	analyze	the
workload	and	recommend	an	index	configuration	that	will	improve	the
performance	of	the	database.

The	Index	Tuning	Wizard	can:

Recommend	the	best	mix	of	indexes	for	a	database	given	a	workload,
by	using	the	query	optimizer	to	analyze	the	queries	in	the	workload.

Analyze	the	effects	of	the	proposed	changes,	including	index	usage,
distribution	of	queries	among	tables,	and	performance	of	queries	in	the
workload.

Recommend	ways	to	tune	the	database	for	a	small	set	of	problem
queries.

Allow	you	to	customize	the	recommendation	by	specifying	advanced
options	such	as	disk	space	constraints.

JavaScript:hhobj_1.Click()

A	recommendation	consists	of	SQL	statements	that	can	be	executed	to	create
new,	more	effective	indexes	and,	if	wanted,	drop	existing	indexes	that	are
ineffective.	Indexed	views	are	recommended	on	platforms	that	support	their	use.
After	the	Index	Tuning	Wizard	has	suggested	a	recommendation,	it	can	then	be:

Implemented	immediately.

Scheduled	to	be	implemented	later	by	creating	a	SQL	Server	job	that
executes	an	SQL	script.

Saved	to	an	SQL	script,	to	be	executed	manually	by	the	user	at	a	later
time	or	on	a	different	server.

Considerations

The	Index	Tuning	Wizard	does	not	recommend	indexes	on:

Tables	referenced	by	cross-database	queries	that	do	not	exist	in	the
currently	selected	database.

System	tables.

PRIMARY	KEY	constraints	and	unique	indexes.

Other	Index	Tuning	Wizard	considerations	include:

The	Index	Tuning	Wizard	is	limited	to	a	maximum	of	32,767	tunable
queries	in	a	workload.	Additional	queries	in	the	workload	will	not	be
considered.	Additionally,	queries	with	quoted	identifiers	are	not
considered	for	tuning.

The	Index	Tuning	Wizard	gathers	statistics	by	sampling	the	data.
Consequently,	successive	executions	of	the	wizard	on	the	same
workload	may	result	in	variations	in	the	indexes	recommended	as	well
as	the	improvements	that	result	from	implementing	the
recommendation.

The	Index	Tuning	Wizard	cannot	be	used	to	select	or	create	indexes	and
statistics	in	databases	on	SQL	Server	version	6.5	or	earlier.

The	Index	Tuning	Wizard	does	not	give	an	error	when	saving	an	SQL
Script	to	a	disk	with	insufficient	available	space.

The	Index	Tuning	Wizard	can	consume	significant	CPU	and	memory
resources	during	analysis.	It	is	recommended	that	tuning	should	be
performed	against	a	test	version	of	the	production	server,	rather	than	the
production	server.	Additionally,	the	wizard	should	be	run	on	a	separate
computer	from	the	computer	running	an	instance	of	SQL	Server.

The	Index	Tuning	Wizard	may	not	make	index	suggestions	if:

There	is	not	enough	data	in	the	tables	being	sampled.

The	suggested	indexes	do	not	offer	enough	projected	improvement	in
query	performance	over	existing	indexes.

The	queries	in	the	workload	are	analyzed	in	the	security	context	of	the	user	who
invokes	the	Index	Tuning	Wizard.	The	user	must	be	a	member	of	the	sysadmin
fixed	server	role.

To	reduce	the	execution	time	of	the	Index	Tuning	Wizard:

Ensure	that	Perform	thorough	analysis	is	not	selected	in	the	Select
Server	and	Database	dialog	box.	Performing	a	thorough	analysis
causes	the	Index	Tuning	Wizard	to	perform	an	exhaustive	analysis	of
the	queries,	resulting	in	a	longer	execution	time.	However,	selecting	this
option	can	result	in	a	greater	overall	improvement	in	the	performance	of
the	tuned	workload.	

Tune	only	a	subset	of	the	tables	in	the	database.	

Reduce	the	size	of	the	workload	file.

The	Index	Tuning	Wizard	does	not	recommend	that	any	indexes	be	dropped	if
the	Keep	all	existing	indexes	option	is	selected.	Only	new	indexes	are
recommended,	if	appropriate.	Clearing	this	option	can	result	in	a	greater	overall
improvement	in	the	performance	of	the	workload.	Additionally,	the	Index
Tuning	Wizard	does	not	recommend	dropping	indexes	on	PRIMARY	KEY
constraints	or	UNIQUE	indexes.	However,	it	may	drop	or	replace	a	clustered
index	that	is	not	unique	or	currently	created	on	a	PRIMARY	KEY	constraint.

The	Index	Tuning	Wizard	includes	any	index	hint	or	query	hint	in	the	final
recommendation,	even	if	the	index	is	not	optimal	for	the	table.	Indexes	on	other
tables	referenced	in	the	query	may	be	proposed	and	recommended;	however,	all
indexes	specified	as	hints	will	always	be	part	of	the	final	recommendation.	Hints
can	prevent	the	Index	Tuning	Wizard	from	choosing	a	better	execution	plan.
Consider	removing	any	index	hint	from	queries	before	analyzing	the	workload.

Using	Index	Tuning	Wizard	in	SQL	Query	Analyzer
Index	Analysis	in	SQL	Query	Analyzer	allows	a	single	query	or	batch	to	be
analyzed	and	a	recommendation	generated	for	the	optimal	set	of	indexes	that
should	be	in	place	to	support	the	given	query	or	batch.	Only	members	of	the
sysadmin	fixed	server	role	can	perform	Index	Analysis	using	SQL	Query
Analyzer.

To	defer	building	the	indexes	recommended	by	Index	Tuning	Wizard,	save	the
recommended	SQL	script	using	SQL	Query	Analyzer.	Saving	the	SQL	script	to	a
file	allows	the	Transact-SQL	statements	recommended	by	Index	Analysis	to	be
examined	before	being	executed.	The	SQL	script	can	then	be	edited	before	being
executed	(for	example,	the	names	of	the	generated	indexes	can	be	changed).

To	start	the	Index	Tuning	Wizard

Creating	and	Maintaining	Databases

Creating	an	Index
After	the	design	has	been	determined,	indexes	can	be	created	on	the	tables	in	a
database.

Microsoft®	SQL	Server™	2000	automatically	creates	unique	indexes	to	enforce
the	uniqueness	requirements	of	PRIMARY	KEY	and	UNIQUE	constraints.
Unless	a	clustered	index	already	exists	on	the	table	or	a	nonclustered	index	is
explicitly	specified,	a	unique,	clustered	index	is	created	to	enforce	the
PRIMARY	KEY	constraint.	Unless	a	clustered	index	is	explicitly	specified,	a
unique,	nonclustered	index	is	created	by	default	to	enforce	the	UNIQUE
constraint.

If	you	need	to	create	an	index	that	is	independent	of	a	constraint,	you	can	use	the
CREATE	INDEX	statement.	By	default,	a	nonclustered	index	is	created	if	the
clustering	option	is	not	specified.

Additional	considerations	for	creating	an	index	include:

Only	the	owner	of	the	table	can	create	indexes	on	the	same	table.

Only	one	clustered	index	can	be	created	per	table.

The	maximum	number	of	nonclustered	indexes	that	can	be	created	per
table	is	249	(including	any	indexes	created	by	PRIMARY	KEY	or
UNIQUE	constraints).

The	maximum	size	of	all	nonvariable-length	columns	that	comprise	the
index	is	900	bytes.	For	example,	a	single	index	could	not	be	created	on
three	columns	defined	as	char(300),	char(300),	and	char	(301)	because
the	total	width	exceeds	900	bytes.

The	maximum	number	of	columns	that	can	comprise	the	same	index	is
16.

When	you	create	indexes	with	the	CREATE	INDEX	statement,	you	must	specify
the	name	of	the	index,	table,	and	columns	to	which	the	index	applies.	New
indexes	created	as	part	of	a	PRIMARY	KEY	or	UNIQUE	constraint	or	using
SQL	Server	Enterprise	Manager	are	automatically	given	system-defined	names
based	on	the	database	table	name.	If	you	create	multiple	indexes	on	a	table,	the
index	names	are	appended	with	_1,	_2,	and	so	on.	The	index	can	be	renamed	if
necessary.

Note		You	cannot	create	an	index	in	the	current	database	while	the	current
database	is	being	backed	up.

If	a	clustered	index	is	created	on	a	table	with	several	secondary	indexes,	all	of
the	secondary	indexes	must	be	rebuilt	so	that	they	contain	the	clustering	key
value	instead	of	the	row	identifier	(RID).	Likewise,	if	a	clustered	index	is
deleted	on	a	table	that	has	several	nonclustered	indexes,	the	nonclustered	indexes
are	all	rebuilt	as	part	of	the	DROP	operation.	This	may	take	significant	time	on
large	tables.

The	preferred	way	to	build	indexes	on	large	tables	is	to	start	with	the	clustered
index	and	then	build	the	nonclustered	indexes.	When	dropping	all	indexes,	drop
the	nonclustered	indexes	first	and	the	clustered	index	last.	That	way,	no	indexes
need	to	be	rebuilt.

Clustered	Indexes
When	you	create	a	clustered	index,	the	table	is	copied,	the	data	in	the	table	is
sorted,	and	then	the	original	table	is	deleted.	Therefore,	enough	empty	space
must	exist	in	the	database	to	hold	a	copy	of	the	data.

By	default,	the	data	in	the	table	is	sorted	when	the	index	is	created.	However,	if
the	data	is	already	sorted	because	the	clustered	index	already	exists	and	is	being
re-created	using	the	same	name	and	columns,	the	sort	operation	can	be
automatically	skipped	by	rebuilding	the	index,	rather	than	creating	the	index
again.	The	rebuild	operation	checks	that	the	rows	are	sorted	while	building	the
index.	If	any	rows	are	not	correctly	sorted,	the	operations	cancels	and	the	index
is	not	created.

Unique	Indexes
Creating	a	unique	index	ensures	that	any	attempt	to	duplicate	key	values	fails.	If

a	single	query	is	created	that	causes	duplicate	and	nonduplicate	key	values	to	be
added,	SQL	Server	rejects	all	rows,	including	the	nonduplicate	key	values.	For
example,	if	a	single	insert	statement	retrieves	20	rows	from	table	A	and	inserts
them	into	table	B,	and	10	of	those	rows	contain	duplicate	key	values,	by	default
all	20	rows	are	rejected.	However,	the	IGNORE_DUP_KEY	clause	can	be
specified	when	creating	the	index	that	causes	only	the	duplicate	key	values	to	be
rejected;	the	nonduplicate	key	values	are	added.	In	the	previous	example,	only
the	10	duplicate	key	values	would	be	rejected;	the	other	10	nonduplicate	key
values	would	be	inserted	into	table	B.

A	unique	index	cannot	be	created	if	there	are	any	duplicate	key	values.	For
example,	if	you	want	to	create	a	unique,	composite	index	on	columns	a	and	b,
but	there	are	two	rows	in	the	table	that	contain	the	values	1	and	2	for	a	and	b
respectively,	the	unique	index	cannot	be	created.

Note		You	cannot	create	a	unique	index	on	a	single	column	if	that	column
contains	NULL	in	more	than	one	row.	Similarly,	you	cannot	create	a	unique
index	on	multiple	columns	if	the	combination	of	columns	contains	NULL	in
more	than	one	row.	These	are	treated	as	duplicate	values	for	indexing	purposes.

To	create	an	index	when	creating	a	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	create	an	index	on	an	existing	table

Transact-SQL

Enterprise	Manager

SQL-DMO

You	can	also	create	an	index	using	the	Create	Index	Wizard	in	SQL	Server
Enterprise	Manager.

To	create	an	index	using	the	Create	Index	Wizard

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Creating	Indexes	on	Computed	Columns
Indexes	can	be	defined	on	computed	columns,	provided	these	requirements	are
met:

The	computed_column_expression	must	be	deterministic.	Expressions
are	deterministic	if	they	always	return	the	same	result	for	a	given	set	of
inputs.	computed_column_expression	is	deterministic	if:

All	functions	referenced	by	the	expression	are	deterministic
and	precise.	This	includes	both	user-defined	and	built-in
functions.	For	more	information,	see	Deterministic	and
Nondeterministic	Functions.

All	columns	referenced	in	the	expression	come	from	the	table
containing	the	computed	column.

No	column	reference	pulls	data	from	multiple	rows.	For
example,	aggregate	functions	such	as	SUM	or	AVG	depend	on
data	from	multiple	rows	and	would	make	a
computed_column_expression	nondeterministic.

The	IsDeterministic	property	of	the	COLUMNPROPERTY	function
reports	whether	a	computed_column_expression	is	deterministic.

A	computed	column	expression	is	precise	if:

It	is	not	an	expression	of	the	float	data	type

It	does	not	use	in	its	definition	a	float	data	type.	For	example,
in	the	following	statement,	column	y	is	int	and	deterministic,
but	not	precise:
CREATE	TABLE	t2	(a	int,	b	int,	c	int,	x	float,	
				y	AS	CASE	x	
												WHEN	0	THEN	a	
												WHEN	1	THEN	b	

												ELSE	c	
								END)

The	IsPrecise	property	of	the	COLUMNPROPERTY	function	reports
whether	a	computed_column_expression	is	precise.

Note		Any	float	expression	is	considered	nonprecise	and	cannot	be	a
key	of	an	index;	a	float	expression	can	be	used	in	an	indexed	view	but
not	as	a	key.	This	is	true	also	for	computed	columns.	Any	function,
expression,	user-defined	function,	or	view	definition	is	considered	non-
deterministic	if	it	contains	any	float	expressions,	including	logical	ones
(comparisons).

The	ANSI_NULL	connection-level	option	must	be	set	to	ON	when	the
CREATE	TABLE	statement	is	executed.	The	OBJECTPROPERTY
function	reports	whether	the	option	is	on	through	the	IsAnsiNullsOn
property.

The	computed_column_expression	defined	for	the	computed	column
cannot	evaluate	to	the	text,	ntext,	or	image	data	types.

The	connection	on	which	the	index	is	created,	and	all	connections
attempting	INSERT,	UPDATE,	or	DELETE	statements	that	will	change
values	in	the	index,	must	have	six	SET	options	set	to	ON	and	one	option
set	to	OFF.	The	optimizer	ignores	an	index	on	a	computed	column	for
any	SELECT	statement	executed	by	a	connection	that	does	not	have
these	same	option	settings.

These	options	must	be	set	to	ON:

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIER

In	addition	to	these	ON	settings,	the	NUMERIC_ROUNDABORT
option	must	be	set	to	OFF.	For	more	information,	see	SET	Options	That
Affect	Results.

Creating	and	Maintaining	Databases

Creating	Indexes	on	Views
Indexes	can	be	defined	on	views.	Indexed	views	are	a	method	of	storing	the
result	set	of	the	view	in	the	database,	thereby	reducing	the	overhead	of
dynamically	building	the	result	set.	An	indexed	view	also	automatically	reflects
modifications	made	to	the	data	in	the	base	tables	after	the	index	is	created.

Note		You	can	create	indexed	views	only	if	you	install	Microsoft®	SQL
Server™	2000	Enterprise	Edition	or	Microsoft	SQL	Server	2000	Developer
Edition.

Indexed	views	include	these	benefits:

Indexed	views	are	implemented	through	simple	syntax	extensions	to	the
CREATE	INDEX	and	CREATE	VIEW	statements.

The	data	in	indexed	views	are	updated	automatically	as	data	in	the	base
tables	are	updated,	in	much	the	same	way	that	the	keys	in	indexes	on
base	tables	are	updated	automatically.	You	do	not	need	to	synchronize
the	contents	of	the	indexed	view	with	the	data	in	the	underlying	base
tables.

Indexed	views	are	considered	by	the	SQL	Server	optimizer	without	the
need	to	specify	special	hints	in	queries.	The	optimizer	considers	the
indexed	view	even	if	a	query	does	not	directly	reference	the	view	in	the
FROM	clause	by	trying	to	match	the	query	plan	generated	for	the	view
with	some	portion	of	the	plan	generated	for	the	query.

To	introduce	indexed	views	in	an	existing	database,	you	have	to	issue
only	the	relevant	CREATE	VIEW	and	CREATE	INDEX	statements.
Few	changes	have	to	be	made	to	application	code	for	SQL	Server	to
take	advantage	of	any	indexes	on	views.

The	Index	Tuning	Wizard	recommends	indexed	views	in	addition	to
recommending	indexes	on	base	tables.	Using	the	wizard	greatly	enhances	an
administrator's	ability	to	determine	the	combination	of	indexes	and	indexed

views	that	optimize	the	performance	of	the	typical	mix	of	queries	executed
against	a	database.

Indexed	views	can	be	more	complex	to	maintain	than	indexes	based	on	base
tables.	You	should	create	indexes	only	on	views	where	the	improved	speed	in
retrieving	results	outweighs	the	increased	overhead	of	making	modifications.

See	Also

Designing	an	Indexed	View

Creating	an	Indexed	View

Using	Indexes	on	Views

Creating	and	Maintaining	Databases

SET	Options	That	Affect	Results
Indexed	views	and	indexes	on	computed	columns	involve	storing	results	in	the
database	for	later	reference.	These	stored	results	are	valid	only	if	all	connections
referring	to	the	results	can	generate	the	same	result	set	as	the	connection	that
created	the	stored	result	set.

Indexed	Views
Indexed	views	store	the	result	set	returned	by	a	view	by	creating	a	clustered
index	on	the	view.	For	complex	views,	the	stored	result	set	greatly	speeds	data
retrieval.	An	indexed	view	is	useful	only	as	long	as	all	operations	referencing	the
view	use	exactly	the	same	algorithms	when	building	their	results.	Like	indexes
for	computed	columns,	this	includes:

The	CREATE	INDEX	statement	that	first	builds	the	result	set.

Any	subsequent	INSERT,	UPDATE,	or	DELETE	statements	that	affect
the	base	data	used	to	build	the	view	result	set.

All	queries	for	which	the	optimizer	must	determine	if	the	indexed	view
will	be	useful.

Indexes	on	Computed	Columns

Indexes	on	computed	columns	must	calculate	the	computed	column	values	to
build	the	keys	stored	in	the	index.	An	index	on	a	computed	column	works	only
as	long	as	all	operations	using	the	index	use	exactly	the	same	algorithms	to
determine	the	key	values:

The	original	CREATE	INDEX	statement	that	establishes	the	first	set	of
key	values.

As	later	INSERT,	UPDATE	and	DELETE	statements	create,	alter,	or
remove	key	values,	the	operations	are	not	valid	unless	the	key	values

are	computed	with	the	same	algorithms	used	by	the	original	create
index	operation.

For	the	index	to	be	useful	for	any	subsequent	statement,	all	of	the	key
values	stored	in	the	index	must	be	the	same	as	would	be	generated	by
the	current	settings	of	the	connection	executing	the	statement.

SET	Option	Settings

Any	SET	options	that	affect	the	results	generated	by	Transact-SQL	statements
must	have	the	same	settings	for	all	operations	referencing	the	index.	There	are
seven	SET	options	that	affect	the	results	stored	in	computed	columns	and
returned	by	views.	All	connections	using	indexes	on	computed	columns	or
indexed	views	must	have	the	same	settings	for	these	seven	options:

These	six	SET	options	must	be	set	to	ON:

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIER

The	NUMERIC_ROUNDABORT	option	must	be	set	to	OFF.

These	SET	options	must	be	set	correctly	for	any	connection	that	creates	an	index
on	a	view	or	computed	column.	Any	connection	executing	INSERT,	UPDATE	or
DELETE	statements	that	change	data	values	stored	in	the	indexes	must	have	the
correct	settings.	This	includes	bulk	copy,	Data	Transformation	Services	(DTS),

and	replication	operations.	Microsoft®	SQL	Server™	2000	generates	an	error
and	rolls	back	any	insert,	update,	or	delete	operation	attempted	by	a	connection
that	does	not	have	the	proper	option	settings.	The	optimizer	does	not	consider
using	an	index	on	a	computed	column	or	view	in	the	execution	plan	of	any
Transact-SQL	statement	if	the	connection	does	not	have	the	correct	option
settings.

For	example,	a	table	is	defined	and	populated	using	this	script:

CREATE	TABLE	Parts
		(PartID												int	PRIMARY	KEY,
			PartName										char(10),
			PartMaterial						char(10),
			PartColor									char(10),
			PartDescription			AS	PartMaterial	+	PartColor
)
GO
INSERT	INTO	Parts	VALUES	(1,	'Table',	'Wood',	'Red')
INSERT	INTO	Parts	VALUES	(2,	'Chair',	'Fabric',	'Blue')
INSERT	INTO	Parts	VALUES	(3,	'Bolt',	'Steel',	NULL)
GO

The	value	calculated	for	the	PartDescription	column	for	the	row,	where	PartID
is	3,	depends	on	the	CONCAT_NULL_YIELDS_NULL	option.	If
CONCAT_NULL_YIELDS_NULL	is	set	to	ON,	the	calculated	value	is	NULL.
If	CONCAT_NULL_YIELDS_NULL	is	set	to	OFF,	the	calculated	value	is	the
string	'Steel'.	For	an	index	on	the	PartDescription	column	to	be	properly
maintained,	all	INSERT,	UPDATE,	and	DELETE	operations	must	have	the	same
setting	of	CONCAT_NULL_YIELDS_NULL	ON	as	the	connection	that	created
the	index.	The	index	is	also	not	used	by	the	optimizer	for	any	connection	with	a
different	CONCAT_NULL_YIELDS_NULL	setting	from	the	connections	that
created	the	key	values.

SET	Option	Settings	for	OLE	DB	and	ODBC	Connections
Six	of	the	seven	SET	option	settings	required	for	indexes	on	computed	columns
and	views	are	the	default	settings	for	the	OLE	DB	Provider	for	SQL	Server	and

the	SQL	Server	ODBC	driver.	These	settings	are:

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

CONCAT_NULL_YIELDS_NULL

NUMERIC_ROUNDABORT

QUOTED_IDENTIFIER

These	settings	also	enforce	the	rules	of	the	SQL-92	standard	and	are	the
recommended	settings	for	SQL	Server.	Because	DTS,	replication,	and	bulk	copy
operations	in	SQL	Server	2000	use	OLE	DB	or	ODBC,	these	options	are	also
automatically	set	for	these	operations.	Some	of	the	SQL	Server	utilities	set	one
or	more	of	the	ANSI	settings	to	OFF	to	maintain	compatibility	with	earlier
versions	of	the	utilities.

SET	ARITHABORT	ON	is	the	one	option	that	is	not	automatically	set	for
connections	using	the	OLE	DB	Provider	for	SQL	Server	or	the	SQL	Server
ODBC	driver.	OLE	DB	and	ODBC	connections	do	not	specify	an
ARITHABORT	setting,	so	connections	default	to	the	server	default,	which	is
ARITHABORT	OFF.	This	server	default	is	controlled	by	the	user	options	server
option.	The	user	options	bit	that	equates	to	64	should	be	set	for	any	server	on
which	you	implement	indexes	on	views	or	computed	columns.	For	more
information	about	how	to	set	this	option,	see	user	options	Option.

Precedence	for	Setting	Options
The	settings	for	the	SET	options	can	be	specified	at	several	levels.	The	final
setting	for	each	session	option	for	a	particular	connection	is	determined	by	the
highest	precedence	operation	that	sets	the	option.	The	precedence	of	the
sessionsetting	operations	is	(with	the	highest	precedent	at	the	top	of	the	list):

JavaScript:hhobj_1.Click()

Any	application	can	explicitly	override	any	default	settings	by
executing	a	SET	statement	after	it	has	connected	to	a	server.	The	SET
statement	overrides	all	previous	settings	and	can	be	used	to	turn	options
on	and	off	dynamically	as	the	application	executes.

OLE	DB	and	ODBC	applications	can	specify	the	option	settings	that	are
in	effect	at	connection	time	by	specifying	option	settings	in	connection
strings.

You	can	SET	options	to	ON	or	OFF	for	any	SQL	Server	ODBC	data
source	by	using	the	ODBC	application	in	Control	Panel,	or	the	ODBC
SQLConfigDataSource	function.	Any	connection	made	by	an	ODBC
application	using	that	data	source	uses	the	specified	defaults,	unless	the
application	overrides	the	defaults	in	the	connect	string	or	with	SET
statements	after	connecting.

The	OLE	DB	Provider	for	SQL	Server	and	the	SQL	Server	ODBC
driver	automatically	set	the	seven	session	options	to	the	settings
required	for	indexed	views.	DB-Library	and	Embedded	SQL	for	C
applications	do	not,	so	systems	using	these	APIs	must	either	code	the
applications	to	issue	the	proper	SET	statements	or	change	the	database
or	server	defaults	to	the	correct	settings.

You	can	establish	default	settings	for	a	database	using	ALTER
DATABASE	or	SQL	Server	Enterprise	Manager.

You	can	establish	default	settings	for	a	server	by	using	either
sp_configure	or	SQL	Server	Enterprise	Manager	to	set	the	server
configuration	option	named	user	options.	For	more	information,	see
user	options	Option.

The	connection	option	settings	required	for	indexed	views	and	indexes	on
computed	columns	must	be	active:

JavaScript:hhobj_2.Click()

For	any	connection	that	creates	an	index	on	a	view	or	computed
column.

For	any	INSERT,	UPDATE,	or	DELETE	statements	that	attempt	to
modify	data	covered	by	an	index	on	a	view	or	computed	column.

Before	the	optimizer	can	consider	using	an	index	on	a	view	or
computed	column	to	cover	a	query.

For	indexed	views,	the	ANSI_NULLS	and	QUOTED_IDENTIFIER
options	must	be	set	to	ON	when	the	view	is	created,	because	these	two
settings	are	stored	as	object	properties	with	the	view	definition.

Considerations

The	SET	statement	can	change	the	options	dynamically;	therefore,	issuing	SET
statements	in	a	database	that	has	indexes	on	views	and	computed	columns	must
be	done	carefully.	For	example,	an	application	can	make	a	connection	in	which
the	default	settings	allow	an	indexed	view	to	be	referenced.	If	the	connection
calls	a	stored	procedure	whose	first	statement	is	SET	ANSI_WARNINGS	OFF,
that	statement	overrides	previous	defaults	or	settings	for	ANSI_WARNINGS.
The	optimizer	ignores	all	indexed	views	or	indexes	on	computed	columns	when
processing	any	statement	in	the	stored	procedure.	Any	statements	in	the	stored
procedure	that	attempted	an	INSERT,	UPDATE,	or	DELETE	that	affected	an
indexed	view	or	an	index	on	a	computed	column	generate	an	error.

The	logic	in	some	stored	procedures	or	triggers	originally	developed	in	earlier
versions	of	SQL	Server	depends	on	options	such	as	QUOTED_IDENTIFIER	or
ANSI_NULLS	being	set	to	OFF.	Also,	DB-Library	and	Embedded	SQL	for	C
applications	do	not,	by	default,	set	any	session	options.	Connections	from	these
applications	can	create	problems	for	other	stored	procedures	or	triggers	that
depend	on	the	options	being	set	to	ON.	The	recommended	solution	has	been	to
code	SET	statements	at	the	start	of	either	of	these	types	of	stored	procedures	and
triggers	to	ensure	they	had	the	operating	environment	they	required.	In	SQL
Server	2000,	if	a	stored	procedure	or	trigger	sets	any	of	the	options	needed	by
indexes	on	views	and	computed	columns	to	a	value	other	than	those	required	by

the	indexes,	the	indexes	are	not	used	to	cover	any	SELECT	statements	executed
by	the	stored	procedure	or	trigger.	Any	INSERT,	UPDATE,	or	DELETE
statements	executed	by	these	stored	procedures	and	triggers	fails	if	they	modify
data	covered	by	an	index	on	a	view	or	computed	column.	In	SQL	Server	2000
instances	that	use	indexes	on	views	and	computed	columns,	stored	procedures
and	triggers	should	be	written	to	work	with	the	seven	SET	options	needed	to
support	these	indexes.	SET	statements	should	be	used	only	in	stored	procedures
and	triggers	for	these	systems	if	they	receive	connections	from	clients	using	DB-
Library,	Embedded	SQL	for	C,	or	ODBC	drivers	from	SQL	Server	version	6.5	or
earlier.	The	stored	procedures	and	triggers	should	set	only	the	options	to	those
required	by	indexes	on	views	and	computed	columns.

Three	other	session	options	can	potentially	affect	the	format	of	result	sets:
DATEFIRST,	DATEFORMAT,	and	LANGUAGE.	Any	functions	whose	results
would	be	affected	by	changes	to	these	options	are	classified	as	nondeterministic
and	cannot	be	used	in	views	or	computed	columns	that	are	indexed.

See	Also

CREATE	INDEX

Distributed	Queries

SET	ANSI_NULLS

SET	ANSI_PADDING

SET	ANSI_WARNINGS

SET	ARITHABORT

SET	CONCAT_NULL_YIELDS_NULL

SET	NUMERIC_ROUNDABORT

SET	QUOTED_IDENTIFIER

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Creating	and	Maintaining	Databases

Creating	Ascending	and	Descending	Indexes
When	defining	indexes,	you	can	specify	whether	the	data	for	each	column	is
stored	in	ascending	or	descending	order.	If	neither	direction	is	specified,
ascending	is	the	default,	which	maintains	compatibility	with	earlier	versions	of
Microsoft®	SQL	Server™	2000.

The	syntax	of	the	CREATE	TABLE,	CREATE	INDEX,	and	ALTER	TABLE
statements	supports	the	keywords	ASC	(specifies	ascending)	and	DESC
(specifies	descending)	on	individual	columns	in	indexes:

CREATE	TABLE	ObjTable
			(ObjID						int	PRIMARY	KEY,
				ObjName						char(10),
				ObjWeight			decimal(9,3)
)
CREATE	NONCLUSTERED	INDEX	DescIdx	ON
									ObjTable(ObjName	ASC,	ObjWeight	DESC)

The	INDEXKEY_PROPERTY	meta	data	function	reports	whether	an	index
column	is	stored	in	ascending	or	descending	order.	In	addition,	the	sp_helpindex
and	sp_helpconstraint	system	stored	procedures	report	the	direction	of	index
key	columns.	The	descending	indexed	column	will	be	listed	in	the	result	set	with
a	minus	sign	(-)	following	its	name.	The	default,	an	ascending	indexed	column,
will	be	listed	by	its	name	alone.

The	ability	to	specify	the	order	in	which	key	values	are	stored	in	an	index	is
most	useful	in	cases	where	most	queries	referencing	the	table	have	ORDER	BY
clauses	that	specify	different	directions	for	the	key	columns.	For	example,	the
index	defined	previously	for	the	ObjTable	can	completely	eliminate	the	need	for
an	ORDER	BY	clause	such	as:

ORDER	BY	ObjName	ASC,	ObjWeight	DESC

The	internal	algorithms	of	SQL	Server	can	navigate	equally	efficiently	in	both
directions	on	a	single-column	index,	regardless	of	the	sequence	in	which	the
keys	are	stored.	For	example,	specifying	DESC	on	a	single-column	index	does

not	make	queries	with	an	ORDER	BY	IndexKeyCol	DESC	clause	run	faster	than
if	ASC	was	specified	for	the	index.

Creating	and	Maintaining	Databases

Statistical	Information
Microsoft®	SQL	Server™	2000	allows	statistical	information	regarding	the
distribution	of	values	in	a	column	to	be	created.	This	statistical	information	can
be	used	by	the	query	processor	to	determine	the	optimal	strategy	for	evaluating	a
query.	When	you	create	an	index,	SQL	Server	automatically	stores	statistical
information	regarding	the	distribution	of	values	in	the	indexed	column(s).	The
query	optimizer	in	SQL	Server	uses	these	statistics	to	estimate	the	cost	of	using
the	index	for	a	query.	Additionally,	when	the	AUTO_CREATE_STATISTICS
database	option	is	set	to	ON	(default),	SQL	Server	automatically	creates
statistics	for	columns	without	indexes	that	are	used	in	a	predicate.

As	the	data	in	a	column	changes,	index	and	column	statistics	can	become	out-of-
date	and	cause	the	query	optimizer	to	make	less-than-optimal	decisions	on	how
to	process	a	query.	For	example,	if	you	create	a	table	with	an	indexed	column
and	1,000	rows	of	data,	all	with	unique	values	in	the	indexed	column,	the	query
optimizer	considers	the	indexed	column	a	good	way	to	collect	the	data	for	a
query.	If	you	update	the	data	in	the	column	so	there	are	many	duplicated	values,
the	column	is	no	longer	an	ideal	candidate	for	use	in	a	query.	However,	the	query
optimizer	still	considers	it	to	be	a	good	candidate	based	on	the	index's	outdated
distribution	statistics,	which	are	based	on	the	data	before	the	update.

Note		Out-of-date	or	missing	statistics	are	indicated	as	warnings	(table	name	in
red	text)	when	the	execution	plan	of	a	query	is	graphically	displayed	using	SQL
Query	Analyzer.	For	more	information,	see	Graphically	Displaying	the
Execution	Plan	Using	SQL	Query	Analyzer.	Additionally,	monitoring	the
Missing	Column	Statistics	event	class	using	SQL	Profiler	indicates	when
statistics	are	missing.	For	more	information,	see	Errors	and	Warnings	Event
Category.

Therefore,	SQL	Server	automatically	updates	this	statistical	information
periodically	as	the	data	in	the	tables	changes.	The	sampling	is	random	across
data	pages,	and	taken	from	the	table	or	the	smallest	nonclustered	index	on	the
columns	needed	by	the	statistics.	After	a	data	page	has	been	read	from	disk,	all
the	rows	on	the	data	page	are	used	to	update	the	statistical	information.	The
frequency	at	which	the	statistical	information	is	updated	is	determined	by	the
volume	of	data	in	the	column	or	index	and	the	amount	of	changing	data.	For

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

example,	the	statistics	for	a	table	containing	10,000	rows	may	need	updating
when	1,000	index	values	have	changed	because	1,000	values	may	represent	a
significant	percentage	of	the	table.	However,	for	a	table	containing	10	million
index	entries,	1,000	changing	index	values	is	less	significant,	and	so	the	statistics
may	not	be	automatically	updated.	SQL	Server,	however,	always	ensures	that	a
minimum	number	of	rows	are	sampled;	tables	that	are	smaller	than	8	megabytes
(MB)	are	always	fully	scanned	to	gather	statistics.

The	cost	of	this	automatic	statistical	update	is	minimized	by	sampling	the	data,
rather	than	analyzing	all	of	it.	Under	some	circumstances,	statistical	sampling
will	not	be	able	to	accurately	characterize	the	data	in	a	table.	You	can	control	the
amount	of	data	that	is	sampled	during	manual	statistics	updates	on	a	table-by-
table	basis	by	using	the	SAMPLE	and	FULLSCAN	clauses	of	the	UPDATE
STATISTICS	statement.	The	FULLSCAN	clause	specifies	that	all	of	the	data	in
the	table	is	scanned	to	gather	statistics,	whereas	the	SAMPLE	clause	can	be	used
to	specify	either	the	percentage	of	rows	to	sample	or	the	number	of	rows	to
sample.

You	can	also	tell	SQL	Server	not	to	maintain	statistics	for	a	given	column	or
index	in	these	ways:

Use	the	sp_autostats	system	stored	procedure.

Use	the	STATISTICS_NORECOMPUTE	clause	of	the	CREATE
INDEX	statement.

Use	the	NORECOMPUTE	clause	of	the	UPDATE	STATISTICS
statement.

Use	the	NORECOMPUTE	clause	of	the	CREATE	STATISTICS
statement.

Set	the	AUTO_CREATE_STATISTICS	and
AUTO_UPDATE_STATISTICS	database	options	to	OFF	using	the
ALTER	DATABASE	statement.	For	more	information,	see	Setting
Database	Options.

If	you	instruct	SQL	Server	not	to	maintain	statistics	automatically,	you	must
manually	update	the	statistical	information.

Statistics	can	also	be	created	on	all	eligible	columns	in	all	user	tables	in	the
current	database	in	a	single	statement	by	using	the	sp_createstats	system	stored
procedure.	Columns	not	eligible	for	statistics	include	nondeterministic	or
nonprecise	computed	columns,	or	columns	of	image,	text,	and	ntext	data	types.

The	statistics	generated	for	a	column	can	be	deleted	if	you	no	longer	want	to
retain	and	maintain	them.	Statistics	created	on	columns	by	SQL	Server	(when
the	AUTO_CREATE_STATISTICS	database	option	is	set	to	ON)	are	aged	and
dropped	automatically.

Creating	statistics	manually	allows	you	to	create	statistics	that	contain	multiple
column	densities	(average	number	of	duplicates	for	the	combination	of
columns).	For	example,	a	query	contains	the	clause:

WHERE	a	=	7	and	b	=	9

Creating	manual	statistics	on	both	columns	together	(a,	b)	can	allow	SQL	Server
to	make	a	better	estimate	for	the	query	because	the	statistics	also	contain	the
average	number	of	distinct	values	for	the	combination	of	columns	a	and	b.

To	create	statistics	on	a	column

Transact-SQL

JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Rebuilding	an	Index
When	you	create	an	index	in	the	database,	the	index	information	used	by	queries
is	stored	in	index	pages.	The	sequential	index	pages	are	chained	together	by
pointers	from	one	page	to	the	next.	When	changes	are	made	to	the	data	that
affect	the	index,	the	information	in	the	index	can	become	scattered	in	the
database.	Rebuilding	an	index	reorganizes	the	storage	of	the	index	data	(and
table	data	in	the	case	of	a	clustered	index)	to	remove	fragmentation.	This	can
improve	disk	performance	by	reducing	the	number	of	page	reads	required	to
obtain	the	requested	data

In	Microsoft®	SQL	Server™	2000,	rebuilding	an	index	using	the
DROP_EXISTING	clause	of	the	CREATE	INDEX	statement	can	be	efficient	if
you	re-create	the	index	in	a	single	step,	rather	than	delete	the	old	index	and	then
create	the	same	index	again.	This	is	a	benefit	for	both	clustered	and	nonclustered
indexes.

Rebuilding	a	clustered	index	by	deleting	the	old	index	and	then	re-creating	the
same	index	again	is	expensive	because	all	the	secondary	indexes	use	the
clustering	key	to	point	to	the	data	rows.	If	you	simply	delete	the	clustered	index
and	re-create	it,	you	cause	all	the	nonclustered	indexes	to	be	deleted	and	re-
created	twice.	This	occurs	once	when	you	delete	the	clustered	index,	and	a
second	time	when	you	re-create	it.	You	avoid	this	expense	by	re-creating	the
index	in	one	step.	Re-creating	the	index	in	a	single	step	tells	SQL	Server	that	you
are	reorganizing	an	existing	index	and	avoids	the	unnecessary	work	of	deleting
and	re-creating	nonclustered	indexes.	This	method	also	has	the	significant
advantage	of	using	the	sorted	order	of	the	data	in	the	existing	index,	thus
avoiding	the	need	to	sort	the	data	again.	This	is	useful	for	both	clustered	and
nonclustered	indexes,	and	significantly	reduces	the	cost	of	rebuilding	an	index.
Additionally,	SQL	Server	allows	you	to	rebuild	(in	one	step)	one	or	more
indexes	on	a	table	by	using	the	DBCC	DBREINDEX	statement,	without	having
to	rebuild	each	index	separately.

DBCC	DBREINDEX	is	also	useful	to	rebuild	indexes	enforcing	PRIMARY
KEY	or	UNIQUE	constraints	without	having	to	delete	and	re-create	the
constraints	(because	an	index	created	to	enforce	a	PRIMARY	KEY	or	UNIQUE
constraint	cannot	be	deleted	without	deleting	the	constraint	first).	For	example,

you	may	want	to	rebuild	an	index	on	a	PRIMARY	KEY	constraint	to	reestablish
a	given	fill	factor	for	the	index.

To	delete	an	index

Transact-SQL

Enterprise	Manager

SQL-DMO

To	create	an	index	on	an	existing	table

Transact-SQL

Enterprise	Manager

SQL-DMO

To	re-create	an	index	in	one	step

Transact-SQL

SQL-DMO

To	rebuild	one	or	more	indexes	on	a	table

Transact-SQL

To	modify	an	index

Enterprise	Manager

See	Also

Creating	an	Index

Deleting	an	Index

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Creating	and	Maintaining	Databases

Renaming	an	Index
You	can	rename	an	index	as	long	as	index	names	are	unique	within	the	table.	For
example,	two	tables	can	have	an	index	named	XPK_1,	but	the	same	table	cannot
have	two	indexes	named	XPK_1.	Renaming	an	index	changes	only	the	name	of
the	index;	the	index	is	not	rebuilt.

Note		When	you	create	a	PRIMARY	KEY	or	UNIQUE	constraint	on	a	table,	an
index	with	the	same	name	as	the	constraint	is	automatically	created	for	the	table.
Because	index	names	must	be	unique	for	a	table,	you	cannot	create	or	rename	an
index	to	have	the	same	name	as	the	PRIMARY	KEY	or	UNIQUE	constraint	for
the	table.

To	rename	an	index

Transact-SQL

Enterprise	Manager

SQL-DMO

To	modify	an	index

Enterprise	Manager

See	Also

Creating	an	Index

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Viewing	an	Index
After	you	have	created	indexes	or	PRIMARY	KEY	or	UNIQUE	constraints	on
tables,	you	may	need	to	find	information	about	the	indexes.	For	example,	you
may	need	to	find	out	the	types	of	indexes	and	the	columns	that	are	indexes	on	a
particular	table	or	the	total	space	in	the	database	used	by	an	index.

Each	table	registered	for	full-text	indexing	has	one	of	its	indexes	selected	as	the
full-text	key.	You	can	view	the	properties	of	an	index	to	determine	if	an	index	is
the	full-text	key.

To	view	the	indexes	on	a	table

Transact-SQL

Enterprise	Manager

SQL-DMO

SQL	Server	Enterprise	Manager	can	display	the	names	of	all	the	indexes	in	a
database	and	the	tables	to	which	the	indexes	belong.

To	view	all	indexes	in	a	database

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Deleting	an	Index
When	you	no	longer	need	an	index,	you	can	delete	it	from	a	database	and
reclaim	the	storage	space	it	currently	uses.	This	reclaimed	space	can	then	be
used	by	any	object	in	the	database.

Deleting	a	clustered	index	can	take	some	time,	because	all	nonclustered	indexes
on	the	same	table	must	be	rebuilt.	For	more	information	about	the	relationship
between	clustered	and	nonclustered	indexes,	see	Nonclustered	Indexes.

You	cannot	delete	an	index	used	by	either	a	PRIMARY	KEY	or	UNIQUE
constraint	without	deleting	the	constraint.	To	delete	and	re-create	an	index	used
by	a	PRIMARY	KEY	or	UNIQUE	constraint	without	having	to	delete	and	re-
create	the	constraint	(for	example,	to	reimplement	the	original	fill	factor	used	by
the	index),	rebuild	the	index	in	one	step.	For	more	information	about	rebuilding
the	index,	see	Rebuilding	an	Index.	An	index	specified	as	the	full-text	key	for
the	table	cannot	be	deleted.	View	index	properties	to	determine	if	the	index	is	the
full-text	key.

Rebuilding	an	index,	rather	than	deleting	and	re-creating	it,	is	also	useful	to	re-
create	a	clustered	index,	because	the	process	of	rebuilding	the	index	can	remove
the	need	to	sort	the	data	by	the	index	columns	if	the	data	is	already	in	sorted
order.

Indexes	created	on	any	views	or	tables	(permanent	and	temporary)	are
automatically	deleted	when	the	view	or	table	is	deleted.

Note		Only	the	owner	of	a	table	can	delete	its	indexes.	The	owner	cannot	transfer
the	permission	to	other	users.

To	delete	an	index

Transact-SQL

Enterprise	Manager

SQL-DMO

To	view	index	properties

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL-DMO

See	Also

Creating	an	Index

JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Views
A	view	is	a	virtual	table	whose	contents	are	defined	by	a	query.	Like	a	real	table,
a	view	consists	of	a	set	of	named	columns	and	rows	of	data.	However,	a	view
does	not	exist	as	a	stored	set	of	data	values	in	a	database.	The	rows	and	columns
of	data	come	from	tables	referenced	in	the	query	defining	the	view	and	are
produced	dynamically	when	the	view	is	referenced.

A	view	acts	as	a	filter	on	the	underlying	tables	referenced	in	the	view.	The	query
that	defines	the	view	can	be	from	one	or	more	tables	or	from	other	views	in	the
current	or	other	databases.	Distributed	queries	can	also	be	used	to	define	views
that	use	data	from	multiple	heterogeneous	sources.	This	is	useful,	for	example,	if
you	want	to	combine	similarly	structured	data	from	different	servers	each	of
which	stores	data	for	a	different	region	of	your	organization.

There	are	no	restrictions	on	querying	through	views	and	few	restrictions	on
modifying	data	through	them.

This	illustration	shows	a	view	based	on	two	tables.

See	Also

SQL	Views

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Scenarios	for	Using	Views
Views	are	generally	used	to	focus,	simplify,	and	customize	the	perception	each
user	has	of	the	database.	Views	can	be	used	as	security	mechanisms	by	allowing
users	to	access	data	through	the	view,	without	granting	the	users	permissions	to
directly	access	the	underlying	base	tables	of	the	view.	Views	can	also	be	used,
when	copying	data	to	and	from	Microsoft®	SQL	Server™	2000,	to	improve
performance	and	to	partition	data.

To	Focus	on	Specific	Data
Views	allow	users	to	focus	on	specific	data	that	interests	them	and	on	the
specific	tasks	for	which	they	are	responsible.	Unnecessary	data	can	be	left	out	of
the	view.	This	also	increases	the	security	of	the	data	because	users	can	see	only
the	data	that	is	defined	in	the	view	and	not	the	data	in	the	underlying	table.	For
more	information	about	using	views	for	security	purposes,	see	Using	Views	as
Security	Mechanisms.

To	Simplify	Data	Manipulation
Views	can	simplify	how	users	manipulate	data.	You	can	define	frequently	used
joins,	projections,	UNION	queries,	and	SELECT	queries	as	views	so	that	users
do	not	have	to	specify	all	the	conditions	and	qualifications	each	time	an
additional	operation	is	performed	on	that	data.	For	example,	a	complex	query
that	is	used	for	reporting	purposes	and	performs	subqueries,	outer	joins,	and
aggregation	to	retrieve	data	from	a	group	of	tables	can	be	created	as	a	view.	The
view	simplifies	access	to	the	data	because	the	underlying	query	does	not	have	to
be	written	or	submitted	each	time	the	report	is	generated;	the	view	is	queried
instead.	For	more	information	about	manipulating	data,	see	Query
Fundamentals.

You	can	also	create	inline	user-defined	functions	that	logically	operate	as
parameterized	views,	or	views	that	have	parameters	in	WHERE-clause	search
conditions.	For	more	information,	see	Inline	User-defined	Functions.

To	Customize	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Views	allow	different	users	to	see	data	in	different	ways,	even	when	they	are
using	the	same	data	concurrently.	This	is	particularly	advantageous	when	users
with	many	different	interests	and	skill	levels	share	the	same	database.	For
example,	a	view	can	be	created	that	retrieves	only	the	data	for	the	customers
with	whom	an	account	manager	deals.	The	view	can	determine	which	data	to
retrieve	based	on	the	login	ID	of	the	account	manager	who	uses	the	view.

To	Export	and	Import	Data
Views	can	be	used	to	export	data	to	other	applications.	For	example,	you	may
want	to	use	the	stores	and	sales	tables	in	the	pubs	database	to	analyze	sales	data
using	Microsoft®	Excel.	To	do	this,	you	can	create	a	view	based	on	the	stores
and	sales	tables.	You	can	then	use	the	bcp	utility	to	export	the	data	defined	by
the	view.	Data	can	also	be	imported	into	certain	views	from	data	files	using	the
bcp	utility	or	BULK	INSERT	statement	providing	that	rows	can	be	inserted	into
the	view	using	the	INSERT	statement.	For	more	information	about	the
restrictions	for	copying	data	into	views,	see	INSERT.	For	more	information
about	using	the	bcp	utility	and	BULK	INSERT	statement	to	copy	data	to	and
from	a	view,	see	Copying	To	or	From	a	View.

To	Combine	Partitioned	Data
The	Transact-SQL	UNION	set	operator	can	be	used	within	a	view	to	combine
the	results	of	two	or	more	queries	from	separate	tables	into	a	single	result	set.
This	appears	to	the	user	as	a	single	table	called	a	partitioned	view.	For	example,
if	one	table	contains	sales	data	for	Washington,	and	another	table	contains	sales
data	for	California,	a	view	could	be	created	from	the	UNION	of	those	tables.
The	view	represents	the	sales	data	for	both	regions.

To	use	partitioned	views,	you	create	several	identical	tables,	specifying	a
constraint	to	determine	the	range	of	data	that	can	be	added	to	each	table.	The
view	is	then	created	using	these	base	tables.	When	the	view	is	queried,	SQL
Server	automatically	determines	which	tables	are	affected	by	the	query	and
references	only	those	tables.	For	example,	if	a	query	specifies	that	only	sales
data	for	the	state	of	Washington	is	required,	SQL	Server	reads	only	the	table
containing	the	Washington	sales	data;	no	other	tables	are	accessed.

Partitioned	views	can	be	based	on	data	from	multiple	heterogeneous	sources,
such	as	remote	servers,	not	just	tables	in	the	same	database.	For	example,	to

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

combine	data	from	different	remote	servers	each	of	which	stores	data	for	a
different	region	of	your	organization,	you	can	create	distributed	queries	that
retrieve	data	from	each	data	source,	and	then	create	a	view	based	on	those
distributed	queries.	Any	queries	read	only	data	from	the	tables	on	the	remote
servers	that	contains	the	data	requested	by	the	query;	the	other	servers	referenced
by	the	distributed	queries	in	the	view	are	not	accessed.

When	you	partition	data	across	multiple	tables	or	multiple	servers,	queries
accessing	only	a	fraction	of	the	data	can	run	faster	because	there	is	less	data	to
scan.	If	the	tables	are	located	on	different	servers,	or	on	a	computer	with
multiple	processors,	each	table	involved	in	the	query	can	also	be	scanned	in
parallel,	thereby	improving	query	performance.	Additionally,	maintenance	tasks,
such	as	rebuilding	indexes	or	backing	up	a	table,	can	execute	more	quickly.

By	using	a	partitioned	view,	the	data	still	appears	as	a	single	table	and	can	be
queried	as	such	without	having	to	reference	the	correct	underlying	table
manually.

Partitioned	views	are	updatable	if	either	of	these	conditions	is	met:

An	INSTEAD	OF	trigger	is	defined	on	the	view	with	logic	to	support
INSERT,	UPDATE,	and	DELETE	statements.

Both	the	view	and	the	INSERT,	UPDATE,	and	DELETE	statements
follow	the	rules	defined	for	updatable	partitioned	views.	For	more
information,	see	Creating	a	Partitioned	View.

See	Also

Join	Fundamentals

Using	Views	with	Partitioned	Data

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Creating	a	View
Before	you	create	a	view,	consider	these	guidelines:

You	can	create	views	only	in	the	current	database.	However,	the	tables
and	views	referenced	by	the	new	view	can	exist	in	other	databases	or
even	other	servers	if	the	view	is	defined	using	distributed	queries.

View	names	must	follow	the	rules	for	identifiers	and	must	be	unique	for
each	user.	Additionally,	the	name	must	not	be	the	same	as	any	tables
owned	by	that	user.

You	can	build	views	on	other	views	and	on	procedures	that	reference
views.	Microsoft®	SQL	Server™	2000	allows	views	to	be	nested	up	to
32	levels.

You	cannot	associate	rules	or	DEFAULT	definitions	with	views.

You	cannot	associate	AFTER	triggers	with	views,	only	INSTEAD	OF
triggers.

The	query	defining	the	view	cannot	include	the	ORDER	BY,
COMPUTE,	or	COMPUTE	BY	clauses	or	the	INTO	keyword.

You	cannot	define	full-text	index	definitions	on	views.

You	cannot	create	temporary	views,	and	you	cannot	create	views	on
temporary	tables.

Views	or	tables	participating	in	a	view	created	with	the
SCHEMABINDING	clause	cannot	be	dropped,	unless	the	view	is

dropped	or	changed	so	that	it	no	longer	has	schema	binding.	In	addition,
ALTER	TABLE	statements	on	tables	that	participate	in	views	having
schema	binding	will	fail	if	these	statements	affect	the	view	definition.

You	cannot	issue	full-text	queries	against	a	view,	although	a	view
definition	can	include	a	full-text	query	if	the	query	references	a	table
that	has	been	configured	for	full-text	indexing.

You	must	specify	the	name	of	every	column	in	the	view	if:

Any	of	the	columns	in	the	view	is	derived	from	an	arithmetic
expression,	a	built-in	function,	or	a	constant.

Two	or	more	of	the	columns	in	the	view	would	otherwise	have
the	same	name	(usually	because	the	view	definition	includes	a
join	and	the	columns	from	two	or	more	different	tables	have
the	same	name).

You	want	to	give	any	column	in	the	view	a	name	different	from
the	column	from	which	it	is	derived.	(You	can	also	rename
columns	in	the	view.)	A	view	column	inherits	the	data	type	of
the	column	from	which	it	is	derived,	whether	or	not	you
rename	it.

Note		This	rule	does	not	apply	when	a	view	is	based	on	a	query
containing	an	outer	join	because	columns	may	change	from	not
allowing	null	values	to	allowing	them.

Otherwise,	you	do	not	need	to	specify	column	names	when
creating	the	view.	SQL	Server	gives	the	columns	of	the	view
the	same	names	and	data	types	as	the	columns	to	which	the
query	defining	the	view	refers.	The	select	list	can	be	a	full	or
partial	list	of	the	column	names	in	the	base	tables.

To	create	a	view	you	must	be	granted	permission	to	do	so	by	the	database	owner
and	you	must	have	appropriate	permissions	on	any	tables	or	views	referenced	in

the	view	definition.

By	default,	as	rows	are	added	or	updated	through	a	view,	they	disappear	from	the
scope	of	the	view	when	they	no	longer	fall	into	the	criteria	of	the	query	defining
the	view.	For	example,	a	query	can	be	created,	defining	a	view	that	retrieves	all
rows	from	a	table	where	the	employee's	salary	is	less	than	$30,000.	If	the
employee's	salary	is	increased	to	$32,000,	then	querying	the	view	no	longer
displays	that	particular	employee	because	his	or	her	salary	does	not	conform	to
the	criteria	set	by	the	view.	However,	the	WITH	CHECK	OPTION	clause	forces
all	data	modification	statements	executed	against	the	view	to	adhere	to	the
criteria	set	within	the	SELECT	statement	defining	the	view.	If	you	use	this
clause,	rows	cannot	be	modified	in	a	way	that	causes	them	to	disappear	from	the
view.	Any	modification	that	would	cause	this	to	happen	is	canceled	and	an	error
is	displayed.

The	definition	of	a	sensitive	view	can	be	encrypted	to	ensure	that	its	definition
cannot	be	obtained	by	anyone,	including	the	owner	of	the	view.

To	create	a	view

Transact-SQL

Enterprise	Manager

SQL-DMO

You	can	also	create	a	view	using	the	SQL	Server	Enterprise	Manager	Create
View	Wizard.

To	create	a	view	using	the	Create	View	Wizard

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Designing	an	Indexed	View
Indexed	views	improve	the	performance	of	some	types	of	queries	dramatically.

Note		You	can	create	indexed	views	only	if	you	install	Microsoft®	SQL
Server™	2000	Enterprise	Edition	or	Microsoft	SQL	Server	2000	Developer
Edition.

Indexed	views	work	best	when	the	underlying	data	is	infrequently	updated.	The
maintenance	of	an	indexed	view	can	be	higher	than	the	cost	of	maintaining	a
table	index.	If	the	underlying	data	is	updated	frequently,	then	the	cost	of
maintaining	the	indexed	view	data	may	outweigh	the	performance	benefits	of
using	the	indexed	view.

Indexed	views	improve	the	performance	of	these	types	of	queries:

Joins	and	aggregations	that	process	many	rows.

Join	and	aggregation	operations	that	are	frequently	performed	by	many
queries.

For	example,	in	an	online-transaction-processing	(OLTP)	database	that
is	recording	inventories,	many	queries	would	be	expected	to	join	the
Parts,	PartSupplier,	and	Suppliers	tables.	Although	each	query	that
performs	this	join	may	not	process	many	rows,	the	overall	join
processing	of	hundreds	of	thousands	of	such	queries	can	be	significant.
Because	these	relationships	are	not	likely	to	be	updated	frequently,	the
overall	performance	of	the	entire	system	could	be	improved	by	defining
an	indexed	view	that	stores	the	joined	results.

Decision	support	workloads.

Analysis	systems	are	characterized	by	storing	summarized,	aggregated
data	that	is	infrequently	updated.	Further	aggregating	the	data	and
joining	many	rows	characterizes	many	decision	support	queries.

Indexed	views	usually	do	not	improve	the	performance	of	these	types	of	queries:

OLTP	systems	with	many	writes.

Databases	with	many	updates.

Queries	that	do	not	involve	aggregations	or	joins.

Aggregations	of	data	with	a	high	degree	of	cardinality	for	the	key.	A
high	degree	of	cardinality	means	the	key	contains	many	different
values.	A	unique	key	has	the	highest	possible	degree	of	cardinality
because	every	key	has	a	different	value.	Indexed	views	improve
performance	by	reducing	the	number	of	rows	a	query	has	to	access.	If
the	view	result	set	has	almost	as	many	rows	as	the	base	table,	then	there
is	little	performance	benefit	from	using	the	view.	For	example,	consider
this	query	on	a	table	that	has	1,000	rows:
SELECT	PriKey,	SUM(SalesCol)
FROM	ExampleTable
GROUP	BY	PriKey

If	the	cardinality	of	the	table	key	is	100,	then	an	indexed	view	built
using	the	result	of	this	query	would	only	have	100	rows.	Queries	using
the	view	would	on	average	need	one	tenth	of	the	reads	needed	against
the	base	table.	If	the	key	is	a	unique	key,	the	cardinality	of	the	key	is
1000	and	the	view	result	set	returns	1000	rows.	A	query	has	no
performance	gain	from	using	this	indexed	view	instead	of	directly
reading	the	base	table.

Expanding	joins,	which	are	views	whose	result	sets	are	larger	than	the
original	data	in	the	base	tables.

Combining	Indexed	Views	with	Queries

Although	the	restrictions	on	the	types	of	views	that	can	be	indexed	may	prevent
you	from	designing	a	view	that	solves	a	complete	problem,	you	may	be	able	to
design	multiple	smaller	indexed	views	that	speed	parts	of	the	process.

Consider	these	examples:

A	frequently	executed	query	aggregates	data	in	one	database,	aggregates
data	in	another	database,	and	then	joins	the	results.	Because	an	indexed
view	cannot	reference	tables	from	more	than	one	database,	you	cannot
design	a	single	view	to	perform	the	entire	process.	You	can,	however,
create	an	indexed	view	in	each	database	that	does	the	aggregation	for
that	database.	If	the	optimizer	can	match	the	indexed	views	against
existing	queries,	at	least	the	aggregation	processing	will	be	speeded	up
without	the	need	to	recode	existing	queries.	Although	the	join
processing	is	not	faster,	the	overall	query	is	faster	because	it	uses	the
aggregations	stored	in	the	indexed	views.

A	frequently	executed	query	aggregates	data	from	several	tables,	and
then	uses	UNION	to	combine	the	results.	UNION	is	not	allowed	in	an
indexed	view.	You	can	once	again	design	views	to	do	each	of	the
individual	aggregation	operations.	The	optimizer	can	then	select	the
indexed	views	to	speed	up	queries	with	no	need	to	recode	the	queries.
While	the	UNION	processing	is	not	improved,	the	individual
aggregation	processes	are.

Design	indexed	views	that	can	satisfy	multiple	operations.	Because	the	optimizer
can	use	an	indexed	view	even	when	it	is	not	specified	in	the	FROM	clause,	a
well-designed	indexed	view	can	speed	the	processing	of	many	queries.

For	example,	consider	creating	an	index	on	this	view:

CREATE	VIEW	ExampleView	(PriKey,	SumColx,	CountColx)
AS
SELECT	PriKey,	SUM(Colx),	COUNT_BIG(Colx)
FROM	MyTable
GROUP	BY	PriKey

Not	only	can	this	view	satisfy	queries	that	directly	reference	the	view	columns,	it
can	also	be	used	to	satisfy	queries	that	query	the	base	table	and	contain
expressions	such	as	SUM(Colx),	COUNT_BIG(Colx),	COUNT(Colx),	and
AVG(Colx).	All	such	queries	will	be	faster	because	they	only	have	to	retrieve	the
small	number	of	rows	in	the	view	rather	than	reading	the	full	number	of	rows
from	the	base	tables.

See	Also

Creating	Indexes	on	Computed	Columns

Resolving	Indexes	on	Views

View	Indexes

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Using	Indexes	on	Views
The	Microsoft®	SQL	Server™	2000	query	optimizer	determines	whether	a
given	query	will	benefit	from	using	any	indexes	defined	in	the	database.	This
includes	both	indexed	views	and	indexes	on	base	tables.	The	SQL	Server	query
optimizer	uses	an	indexed	view	when	these	conditions	are	met:

These	session	options	are	set	to	ON:

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIERS

The	NUMERIC_ROUNDABORT	session	option	is	set	to	OFF.

The	optimizer	finds	a	match	between	the	view	index	columns	and
elements	in	the	query,	such	as:

Search	condition	predicates	in	the	WHERE	clause.

Join	operations.

Aggregate	functions.

The	estimated	cost	for	using	the	index	has	the	lowest	cost	of	any	access
mechanisms	considered	by	the	optimizer.

Other	than	the	requirements	for	the	SET	options,	these	are	the	same	rules	the
optimizer	uses	to	determine	if	an	index	covers	a	query.	Nothing	has	to	be
specified	in	the	query	to	make	use	of	an	indexed	view.

A	query	also	does	not	have	to	specifically	reference	an	indexed	view	in	the
FROM	clause	for	the	optimizer	to	use	the	indexed	view.	If	the	query	contains
references	to	columns	in	the	base	tables	that	are	also	present	in	the	indexed	view,
and	the	optimizer	estimates	that	using	the	indexed	view	provides	the	lowest	cost
access	mechanism,	the	optimizer	chooses	the	indexed	view,	similar	to	the	way	it
chooses	base	table	indexes	when	they	are	not	directly	referenced	in	a	query.	The
optimizer	may	choose	the	view	when	it	contains	columns	that	are	not	referenced
by	the	query,	as	long	as	the	view	offers	the	lowest	cost	option	for	covering	one
or	more	of	the	columns	specified	in	the	query.

You	can	prevent	view	indexes	from	being	used	for	a	query	by	using	the
EXPAND	VIEWS	option.	You	can	use	the	NOEXPAND	view	hint	to	force	the
use	of	an	index	for	an	indexed	view	specified	in	the	FROM	clause	of	a	query.	It
is	usually	best,	however,	to	let	the	optimizer	dynamically	determine	the	best
access	methods	to	use	for	each	individual	query.	Limit	your	use	of	EXPAND	and
NOEXPAND	to	specific	cases	where	testing	has	shown	they	significantly
improve	performance.

The	EXPAND	VIEWS	option	specifies	that	the	optimizer	not	use	any	view
indexes	for	the	entire	query.

The	optimizer	does	not	use	any	indexed	views.	The	optimizer	ignores
all	view	indexes	when	estimating	the	low-cost	method	for	covering
columns	referenced	in	the	query.

The	optimizer	treats	an	indexed	view	referenced	in	the	FROM	clause	as
a	standard	view.	The	optimizer	incorporates	the	logic	of	the	view	into
the	query	execution	plan	and	dynamically	builds	the	result	set	from	the
base	tables.	The	optimizer	ignores	indexes	defined	on	the	view.

When	NOEXPAND	is	specified	for	a	view,	the	optimizer	considers	the	use	of
any	indexes	defined	on	the	view.	NOEXPAND	specified	with	the	optional

INDEX()	clause	forces	the	optimizer	to	use	the	specified	indexes.	NOEXPAND
can	be	specified	only	for	an	indexed	view	and	cannot	be	specified	for	a	view	that
has	not	been	indexed.

See	Also

FROM

Resolving	Indexes	on	Views

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Creating	an	Indexed	View
Views	are	also	known	as	virtual	tables	because	the	result	set	returned	by	the
view	has	the	same	general	form	as	a	table	with	columns	and	rows,	and	views	can
be	referenced	the	same	way	as	tables	in	SQL	statements.	The	result	set	of	a
standard	view	is	not	stored	permanently	in	the	database.	Each	time	a	query
references	the	view,	Microsoft®	SQL	Server™	2000	dynamically	merges	the
logic	needed	to	build	the	view	result	set	into	the	logic	needed	to	build	the
complete	query	result	set	from	the	data	in	the	base	tables.	The	process	of
building	the	view	results	is	called	materializing	the	view.	For	more	information,
see	View	Resolution.

For	a	standard	view,	the	overhead	of	dynamically	building	the	result	set	for	each
query	that	references	a	view	can	be	substantial	for	views	that	involve	complex
processing	of	large	numbers	of	rows,	such	as	aggregating	large	amounts	of	data,
or	joining	many	rows.	If	such	views	are	frequently	referenced	in	queries,	you
can	improve	performance	by	creating	a	unique	clustered	index	on	the	view.
When	a	unique	clustered	index	is	created	on	a	view,	the	view	is	executed	and	the
result	set	is	stored	in	the	database	in	the	same	way	a	table	with	a	clustered	index
is	stored.	For	more	information	about	the	structure	used	to	store	clustered
indexes,	see	Clustered	Indexes.

Note		You	can	create	indexed	views	only	if	you	install	Microsoft	SQL	Server
2000	Enterprise	Edition	or	Microsoft	SQL	Server	2000	Developer	Edition.

Another	benefit	of	creating	an	index	on	a	view	is	that	the	optimizer	starts	using
the	view	index	in	queries	that	do	not	directly	name	the	view	in	the	FROM
clause.	Existing	queries	can	benefit	from	the	improved	efficiency	of	retrieving
data	from	the	indexed	view	without	having	to	be	recoded.	For	more	information,
see	Using	Indexes	on	Views.

Creating	a	clustered	index	on	a	view	stores	the	data	as	it	exists	at	the	time	the
index	is	created.	An	indexed	view	also	automatically	reflects	modifications
made	to	the	data	in	the	base	tables	after	the	index	is	created,	the	same	way	an
index	created	on	a	base	table	does.	As	modifications	are	made	to	the	data	in	the
base	tables,	the	data	modifications	are	also	reflected	in	the	data	stored	in	the
indexed	view.	The	requirement	that	the	clustered	index	of	the	view	be	unique
improves	the	efficiency	with	which	SQL	Server	can	find	the	rows	in	the	index

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

that	are	affected	by	any	data	modification.

Indexed	views	can	be	more	complex	to	maintain	than	indexes	on	base	tables.
You	should	create	indexes	only	on	views	where	the	improved	speed	in	retrieving
results	outweighs	the	increased	overhead	of	making	modifications.	This	usually
occurs	for	views	that	are	mapped	over	relatively	static	data,	process	many	rows,
and	are	referenced	by	many	queries.

Requirements	for	the	View
A	view	must	meet	these	requirements	before	you	can	create	a	clustered	index	on
it:

The	ANSI_NULLS	and	QUOTED_IDENTIFIER	options	must	have
been	set	to	ON	when	the	CREATE	VIEW	statement	was	executed.	The
OBJECTPROPERTY	function	reports	this	for	views	through	the
ExecIsAnsiNullsOn	or	ExecIsQuotedIdentOn	properties.

The	ANSI_NULLS	option	must	have	been	set	to	ON	for	the	execution
of	all	CREATE	TABLE	statements	that	create	tables	referenced	by	the
view.

The	view	must	not	reference	any	other	views,	only	base	tables.

All	base	tables	referenced	by	the	view	must	be	in	the	same	database	as
the	view	and	have	the	same	owner	as	the	view.

The	view	must	be	created	with	the	SCHEMABINDING	option.
SCHEMABINDING	binds	the	view	to	the	schema	of	the	underlying
base	tables.

User-defined	functions	referenced	in	the	view	must	have	been	created
with	the	SCHEMABINDING	option.

Tables	and	user-defined	functions	must	be	referenced	by	two-part

names.	One-part,	three-part,	and	four-part	names	are	not	allowed.

All	functions	referenced	by	expressions	in	the	view	must	be
deterministic.	The	IsDeterministic	property	of	the
OBJECTPROPERTY	function	reports	if	a	user-defined	function	is
deterministic.	For	more	information,	see	Deterministic	and
Nondeterministic	Functions.

The	SELECT	statement	in	the	view	cannot	contain	these	Transact-SQL
syntax	elements:

The	select	list	cannot	use	the	*	or	table_name.*	syntax	to
specify	columns.	Column	names	must	be	explicitly	stated.

A	table	column	name	used	as	a	simple	expression	cannot	be
specified	in	more	than	one	view	column.	A	column	can	be
referenced	multiple	times	provided	all,	or	all	but	one,	reference
to	the	column	is	part	of	a	complex	expression	or	a	parameter	to
a	function.	For	example,	this	select	list	is	invalid:
SELECT	ColumnA,	ColumnB,	ColumnA

These	select	lists	are	valid:

SELECT	ColumnA,	AVG(ColumnA),	ColumnA	+	Column	B	AS	AddColAColB

SELECT	SUM(ColumnA),	ColumnA	%	ColumnB	AS	ModuloColAColB

A	derived	table.

Rowset	functions.

UNION	operator.

Subqueries.

Outer	or	self	joins.

TOP	clause.

ORDER	BY	clause.

DISTINCT	keyword.

COUNT(*)	(COUNT_BIG(*)	is	allowed.)

The	AVG,	MAX,	MIN,	STDEV,	STDEVP,	VAR,	or	VARP
aggregate	functions.	If	AVG,	MAX,	MIN,	STDEV,	STDEVP,
VAR,	or	VARP	are	specified	in	queries	referencing	the	indexed
view,	the	optimizer	can	often	calculate	the	needed	result	if	the
view	select	list	contains	these	substitute	functions.

Complex	aggregate
function

Substitute	simple	aggregate
functions

AVG(X)

SUM(X),	COUNT_BIG(X)	STDEV(X)SUM(X),	COUNT_BIG(X),	SUM(X**2)
STDEVP(X)SUM(X),	COUNT_BIG(X),	SUM(X**2)	VAR(X)SUM(X),
COUNT_BIG(X),	SUM(X**2)	VARP(X)SUM(X),	COUNT_BIG(X),
SUM(X**2)	

For	example,	an	indexed	view	select	list	cannot	contain	the	expression
AVG(SomeColumn).	If	the	view	select	list	contains	the	expressions
SUM(SomeColumn)	and	COUNT_BIG(SomeColumn),	SQL	Server	can
calculate	the	average	for	a	query	that	references	the	view	and	specifies
AVG(SomeColumn).

A	SUM	function	that	references	a	nullable	expression.

The	full-text	predicates	CONTAINS	or	FREETEXT.

COMPUTE	or	COMPUTE	BY	clause.

If	GROUP	BY	is	not	specified,	the	view	select	list	cannot	contain	aggregate
expressions.

If	GROUP	BY	is	specified,	the	view	select	list	must	contain	a
COUNT_BIG(*)	expression,	and	the	view	definition	cannot	specify	HAVING,
CUBE,	or	ROLLUP.

A	column	resulting	from	an	expression	that	either	evaluates	to	a	float	value	or
uses	float	expressions	for	its	evaluation	cannot	be	a	key	of	an	index	in	an
indexed	view	or	a	table.

Requirements	for	the	CREATE	INDEX	Statement
The	first	index	created	on	a	view	must	be	a	unique	clustered	index.	After	the
unique	clustered	index	has	been	created,	you	can	create	additional	nonclustered
indexes.	The	naming	conventions	for	indexes	on	views	are	the	same	as	for
indexes	on	tables.	The	only	difference	is	that	the	table	name	is	replaced	with	a
view	name.	For	more	information,	see	CREATE	INDEX.

The	CREATE	INDEX	statement	must	meet	these	requirements	in	addition	to	the
normal	CREATE	INDEX	requirements:

The	user	executing	the	CREATE	INDEX	statement	must	be	the	view
owner.

These	SET	options	must	be	set	to	ON	when	the	CREATE	INDEX
statement	is	executed:

ANSI_NULLS

ANSI_PADDING

JavaScript:hhobj_3.Click()

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIERS

The	NUMERIC_ROUNDABORT	option	must	be	set	to	OFF.

The	view	cannot	include	text,	ntext,	or	image	columns,	even	if	they	are
not	referenced	in	the	CREATE	INDEX	statement.

If	the	SELECT	statement	in	the	view	definition	specifies	a	GROUP	BY
clause,	the	key	of	the	unique	clustered	index	can	reference	only
columns	specified	in	the	GROUP	BY	clause.

Considerations

After	the	clustered	index	is	created,	any	connection	attempting	to	modify	the
base	data	for	the	view	must	also	have	the	same	option	settings	required	to	create
the	index.	SQL	Server	generates	an	error	and	rolls	back	any	INSERT,	UPDATE,
or	DELETE	statement	that	will	affect	the	result	set	of	the	view	if	the	connection
executing	the	statement	does	not	have	the	proper	option	settings.	For	more
information,	see	SET	Options	That	Affect	Results.

All	indexes	on	a	view	are	dropped	if	the	view	is	dropped.	All	nonclustered
indexes	on	the	view	are	dropped	if	the	clustered	index	is	dropped.	Nonclustered
indexes	can	be	dropped	individually.	Dropping	the	clustered	index	on	the	view
removes	the	stored	result	set,	and	the	optimizer	returns	to	processing	the	view
like	a	standard	view.

Although	only	the	columns	that	make	up	the	clustered	index	key	are	specified	in
the	CREATE	UNIQUE	CLUSTERED	INDEX	statement,	the	complete	result	set
of	the	view	is	stored	in	the	database.	As	in	a	clustered	index	on	a	base	table,	the

B-tree	structure	of	the	clustered	index	contains	only	the	key	columns,	but	the
data	rows	contain	all	of	the	columns	in	the	view	result	set.

If	you	want	to	add	indexes	to	views	in	an	existing	system,	you	must	schema	bind
any	view	on	which	you	want	to	place	an	index.	You	can:

Drop	the	view	and	re-create	it	specifying	WITH	SCHEMABINDING.

You	can	create	a	second	view	that	has	the	same	text	as	the	existing	view
but	a	different	name.	The	optimizer	considers	the	indexes	on	the	new
view,	even	if	it	is	not	directly	referenced	in	the	FROM	clause	of	queries.

Note		Views	or	tables	participating	in	a	view	created	with	the
SCHEMABINDING	clause	cannot	be	dropped,	unless	the	view	is	dropped	or
changed	so	that	it	no	longer	has	schema	binding.	In	addition,	ALTER	TABLE
statements	on	tables	that	participate	in	views	having	schema	binding	will	fail	if
these	statements	affect	the	view	definition.

You	must	ensure	that	the	new	view	meets	all	of	the	requirements	of	an	indexed
view.	This	may	require	you	to	change	the	ownership	of	the	view	and	all	base
tables	it	references	so	they	are	all	owned	by	the	same	user.

See	Also

CREATE	INDEX

SET	ANSI_NULLS

SET	ANSI_PADDING

SET	ANSI_WARNINGS

SET	ARITHABORT

SET	CONCAT_NULL_YIELDS_NULL

SET	NUMERIC_ROUNDABORT

SET	QUOTED_IDENTIFIER

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Creating	and	Maintaining	Databases

Creating	a	Partitioned	View
A	partitioned	view	joins	horizontally	partitioned	data	from	a	set	of	member
tables	across	one	or	more	servers,	making	the	data	appear	as	if	from	one	table.
Microsoft®	SQL	Server™	2000	distinguishes	between	local	and	distributed
partitioned	views.	In	a	local	partitioned	view,	all	participating	tables	and	the
view	reside	on	the	same	instance	of	SQL	Server.	In	a	distributed	partitioned
view,	at	least	one	of	the	participating	tables	resides	on	a	different	(remote)
server.	In	addition,	SQL	Server	2000	differentiates	between	partitioned	views
that	are	updatable	and	views	that	are	read-only	copies	of	the	underlying	tables.

Distributed	partitioned	views	can	be	used	to	implement	a	federation	of	database
servers.	A	federation	is	a	group	of	servers	administered	independently,	but	which
cooperate	to	share	the	processing	load	of	a	system.	Forming	a	federation	of
database	servers	by	partitioning	data	is	the	mechanism	that	enables	you	to	scale
out	a	set	of	servers	to	support	the	processing	requirements	of	large,	multitiered
Web	sites.	For	more	information,	see	Designing	Federated	Database	Servers.

Before	implementing	a	partitioned	view,	you	must	first	partition	a	table
horizontally.	The	original	table	is	replaced	with	several	smaller	member	tables.
Each	member	table	has	the	same	number	of	columns	as	the	original	table,	and
each	column	has	the	same	attributes	(such	as	data	type,	size,	collation)	as	the
corresponding	column	in	the	original	table.	If	you	are	creating	a	distributed
partitioned	view,	each	member	table	is	on	a	separate	member	server.	For	the
greatest	location	transparency,	the	name	of	the	member	databases	should	be	the
same	on	each	member	server,	although	this	is	not	a	requirement.	For	example:
Server1.CustomerDB,	Server2.CustomerDB,	Server3.CustomerDB.

You	design	the	member	tables	so	that	each	table	stores	a	horizontal	slice	of	the
original	table	based	on	a	range	of	key	values.	The	ranges	are	based	on	the	data
values	in	a	partitioning	column.	The	range	of	values	in	each	member	table	is
enforced	by	a	CHECK	constraint	on	the	partitioning	column,	and	ranges	cannot
overlap.	For	example,	you	cannot	have	one	table	with	a	range	from	1	through
200000,	and	another	with	a	range	from	150000	through	300000	because	it	would
not	be	clear	which	table	contains	the	values	from	150000	through	200000.

For	example,	you	are	partitioning	a	Customer	table	into	three	tables.	The
CHECK	constraint	for	these	tables	is:

JavaScript:hhobj_1.Click()

--	On	Server1:
CREATE	TABLE	Customer_33
		(CustomerID			INTEGER	PRIMARY	KEY
																CHECK	(CustomerID	BETWEEN	1	AND	32999),
		...	--	Additional	column	definitions)

--	On	Server2:
CREATE	TABLE	Customer_66
		(CustomerID			INTEGER	PRIMARY	KEY
																CHECK	(CustomerID	BETWEEN	33000	AND	65999),
		...	--	Additional	column	definitions)

--	On	Server3:
CREATE	TABLE	Customer_99
		(CustomerID			INTEGER	PRIMARY	KEY
																CHECK	(CustomerID	BETWEEN	66000	AND	99999),
		...	--	Additional	column	definitions)

After	creating	the	member	tables,	you	define	a	distributed	partitioned	view	on
each	member	server,	with	each	view	having	the	same	name.	This	allows	queries
referencing	the	distributed	partitioned	view	name	to	run	on	any	of	the	member
servers.	The	system	operates	as	if	a	copy	of	the	original	table	is	on	each	member
server,	but	each	server	has	only	a	member	table	and	a	distributed	partitioned
view.	The	location	of	the	data	is	transparent	to	the	application.

You	build	the	distributed	partitioned	views	by:

Adding	linked	server	definitions	on	each	member	server	containing	the
connection	information	needed	to	execute	distributed	queries	on	the
other	member	servers.	This	gives	a	distributed	partitioned	view	access
to	data	on	the	other	servers.

Setting	the	lazy	schema	validation	option,	using	sp_serveroption,	for
each	linked	server	definition	used	in	distributed	partitioned	views.	This
optimizes	performance	by	ensuring	the	query	processor	does	not	request

meta	data	for	any	of	the	linked	tables	until	data	is	actually	needed	from
the	remote	member	table.

Creating	a	distributed	partitioned	view	on	each	member	server.	The
views	use	distributed	SELECT	statements	to	access	data	from	the	linked
member	servers,	and	merges	the	distributed	rows	with	rows	from	the
local	member	table.

To	create	distributed	partitioned	views	for	the	preceding	example,	you	must:

Add	a	linked-server	definition	named	Server2	with	the	connection
information	for	Server2,	and	a	linked	server	definition	named	Server3
for	access	to	Server3.

Create	this	distributed	partitioned	view:
CREATE	VIEW	Customers	AS
			SELECT	*	FROM	CompanyDatabase.TableOwner.Customers_33
UNION	ALL
			SELECT	*	FROM	Server2.CompanyDatabase.TableOwner.Customers_66
UNION	ALL
			SELECT	*	FROM	Server3.CompanyDatabase.TableOwner.Customers_99

Perform	the	same	steps	on	Server2	and	Server3.

Updatable	Partitioned	Views

If	a	local	or	distributed	partitioned	view	is	not	updatable,	it	can	serve	only	as	a
read-only	copy	of	the	original	table.	An	updatable	partitioned	view	can	exhibit
all	the	capabilities	of	the	original	table.

A	view	is	considered	an	updatable	partitioned	view	if:

The	view	is	a	set	of	SELECT	statements	whose	individual	result	sets	are
combined	into	one	using	the	UNION	ALL	statement.	Each	individual
SELECT	statement	references	one	SQL	Server	base	table.	The	table	can
be	either	a	local	table	or	a	linked	table	referenced	using	a	four-part
name,	the	OPENROWSET	function,	or	the	OPENDATASOURCE

function	(you	cannot	use	an	OPENDATASOURCE	or	OPENROWSET
function	that	specifies	a	pass-through	query).

Table	Rules

Member	tables	are	defined	in	the	FROM	clause	in	each	SELECT	statement	in
the	view	definition.	Each	member	table	must	adhere	to	these	rules:

Member	tables	cannot	be	referenced	more	than	once	in	the	view.

Member	tables	cannot	have	indexes	created	on	any	computed	columns.

Member	tables	must	have	all	PRIMARY	KEY	constraints	on	an
identical	number	of	columns.

Member	tables	must	have	the	same	ANSI	padding	setting.	For	more
information	about	the	ANSI	padding	setting,	see	SET
ANSI_PADDING.

Column	Rules

Columns	are	defined	in	the	select	list	of	each	SELECT	statement	in	the	view
definition.	The	columns	must	follow	these	rules.

All	columns	in	each	member	table	must	be	included	in	the	select	list.

The	same	column	cannot	be	used	multiple	times	in	the	select	list.

Columns	cannot	be	referenced	more	than	once	in	the	select	list.

The	columns	must	be	in	the	same	ordinal	position	in	the	select	list	

The	columns	in	the	select	list	of	each	SELECT	statement	must	be	of	the
same	type	(including	data	type,	precision,	scale,	and	collation).	For

JavaScript:hhobj_2.Click()

example,	this	view	definition	fails	because	the	first	column	in	both
SELECT	statements	does	not	have	the	same	data	type:
CREATE	VIEW	NonUpdatable
AS
SELECT	IntPrimaryKey,	IntPartNmbr
FROM	FirstTable
		UNION	ALL
SELECT	NumericPrimaryKey,	IntPartNmbr
FROM	SecondTable

Partitioning	Column	Rules

A	partitioning	column	exists	on	each	member	table	and,	through	CHECK
constraints,	identifies	the	data	available	in	that	specific	table.	Partitioning
columns	must	adhere	to	these	rules:

Each	base	table	has	a	partitioning	column	whose	key	values	are
enforced	by	CHECK	constraints.	The	key	ranges	of	the	CHECK
constraints	in	each	table	do	not	overlap	with	the	ranges	of	any	other
table.	Any	given	value	of	the	partitioning	column	must	map	to	only	one
table.	The	CHECK	constraints	can	only	use	these	operators:
BETWEEN,	AND,	OR,	<,	<=,	>,	>=,	=.

The	partitioning	column	must	be	in	the	same	ordinal	location	in	the
select	list	of	each	SELECT	statement	in	the	view.	For	example,	the
partitioning	column	is	always	the	first	column	in	each	select	list,	or	the
second	column	in	each	select	list,	and	so	on.

Partitioning	columns	cannot	allow	nulls.

Partitioning	columns	must	be	a	part	of	the	primary	key	of	the	table.

Partitioning	columns	cannot	be	computed	columns.

There	must	be	only	one	constraint	on	the	partitioning	column.	If	there	is
more	than	one	constraint,	SQL	Server	ignores	all	the	constraints	and
will	not	consider	them	when	determining	whether	or	not	the	view	is	a
partitioned	view.

A	partitioned	column	that	meets	all	these	rules	will	support	all	of	the
optimizations	that	are	supported	by	the	SQL	Server	2000	query	optimizer.	For
more	information,	see	Resolving	Distributed	Partitioned	Views.

Data	Modification	Rules
In	addition	to	the	rules	defined	for	updatable	partitioned	views,	data
modification	statements	referencing	the	view	must	adhere	to	the	rules	defined
for	INSERT,	UPDATE	and	DELETE	statements.

Note		You	can	modify	data	through	a	partitioned	view	only	if	you	install
Microsoft	SQL	Server	2000	Enterprise	Edition	or	Microsoft.	SQL	Server	2000
Developer	Edition.

INSERT	Statements
INSERT	statements	add	data	to	the	member	tables	through	the	partitioned	view.
The	INSERT	statements	must	adhere	to	these	rules:

All	columns	must	be	included	in	the	INSERT	statement	even	if	the
column	can	be	NULL	in	the	base	table	or	has	a	DEFAULT	constraint
defined	in	the	base	table.

The	DEFAULT	keyword	cannot	be	specified	in	the	VALUES	clause	of
the	INSERT	statement.

INSERT	statements	must	supply	a	value	that	satisfies	the	logic	of	the
CHECK	constraint	defined	on	the	partitioning	column	for	one	of	the
member	tables.

INSERT	statements	are	not	allowed	if	a	member	table	contains	a
column	with	an	identity	property.

JavaScript:hhobj_3.Click()

INSERT	statements	are	not	allowed	if	a	member	table	contains	a
timestamp	column.

INSERT	statements	are	not	allowed	if	there	is	a	self-join	with	the	same
view	or	any	of	the	member	table.

UPDATE	Statements

UPDATE	statements	modify	data	in	one	or	more	of	the	member	tables	through
the	partitioned	view.	The	UPDATE	statements	must	adhere	to	these	rules:

UPDATE	statements	cannot	specify	the	DEFAULT	keyword	as	a	value
in	the	SET	clause	even	if	the	column	has	a	DEFAULT	value	defined	in
the	corresponding	member	table

The	value	of	a	column	with	an	identity	property	cannot	be	changed:
however,	the	other	columns	can	be	updated.

The	value	of	a	PRIMARY	KEY	cannot	be	changed	if	the	column
contains	text,	image	or	ntext	data.

Updates	are	not	allowed	if	a	base	table	contains	a	timestamp	column.

Updates	are	not	allowed	if	there	is	a	self-join	with	the	same	view	or	any
of	the	member	tables.

The	DEFAULT	keyword	cannot	be	specified	in	the	SET	clause	of	the
UPDATE	statement.

DELETE	Statements

DELETE	statements	remove	data	in	one	or	more	of	the	member	tables	through

the	partitioned	view.	The	DELETE	statements	must	adhere	to	this	rule:

DELETE	statements	are	not	allowed	if	there	is	a	self-join	with	the	same
view	or	any	of	the	member	tables.

Distributed	Partition	View	Rules

In	addition	to	the	rules	defined	for	partitioned	views,	distributed	(remote)
partition	views	have	these	additional	conditions:

A	distributed	transaction	will	be	started	to	ensure	atomicity	across	all
nodes	affected	by	the	update.

The	XACT_ABORT	SET	option	must	be	set	to	ON.

smallmoney	and	smalldatetime	columns	in	remote	tables	are	mapped
as	money	and	datetime	respectively.	Consequently,	the	corresponding
columns	in	the	local	tables	should	also	be	money	and	datetime.

Any	linked	server	cannot	be	a	loopback	linked	server,	that	is,	a	linked
server	that	points	to	the	same	instance	of	SQL	Server.

A	view	that	references	partitioned	tables	without	following	all	these	rules	may
still	be	updatable	if	there	is	an	INSTEAD	OF	trigger	on	the	view.	The	query
optimizer,	however,	may	not	always	be	able	to	build	execution	plans	for	a	view
with	an	INSTEAD	OF	trigger	that	are	as	efficient	as	the	plans	for	a	partitioned
view	that	follows	all	of	the	rules.

See	Also

CREATE	VIEW

Designing	Partitions

Scenarios	for	Using	Views

Using	Partitioned	Views

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

.

Creating	and	Maintaining	Databases

Modifying	and	Renaming	a	View
After	a	view	is	defined,	you	can	change	its	name	or	modify	its	definition	without
dropping	and	re-creating	the	view,	thereby	losing	the	permissions	associated
with	the	view.	When	you	rename	a	view,	follow	these	guidelines:

The	view	to	be	renamed	must	be	in	the	current	database.

The	new	name	must	follow	the	rules	for	identifiers.

You	can	rename	only	views	that	you	own.

The	database	owner	can	change	the	name	of	any	user's	view.

Altering	a	view	does	not	affect	any	dependent	objects,	such	as	stored	procedures
or	triggers,	unless	the	definition	of	the	view	changes	in	such	a	way	that	the
dependent	object	is	no	longer	valid.	For	example,	a	view	authors_view	in	the
pubs	database	is	defined	as:

CREATE	VIEW	authors_view
AS
			SELECT	au_id	FROM	authors

The	stored	procedure	authors_proc	is	defined	as:

CREATE	PROC	authors_proc
AS
			SELECT	au_id	from	authors_view

authors_view	is	modified	to	retrieve	the	column	au_lname	instead	of	au_id:

ALTER	VIEW	authors_view
AS
			SELECT	au_lname	FROM	authors

authors_proc	now	fails	when	executed	because	the	column	au_id	no	longer
exists	in	the	view.

You	can	also	modify	a	view	to	encrypt	its	definition,	or	to	ensure	that	all	data
modification	statements	executed	against	the	view	adhere	to	the	criteria	set
within	the	SELECT	statement	defining	the	view.	For	more	information,	see
Creating	a	View.

To	modify	a	view

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Modifying	Data	Through	a	View
You	can	modify	data	through	a	view	in	these	ways:

Use	INSTEAD	OF	triggers	with	logic	to	support	INSERT,	UPDATE
and	DELETE	statements.

Use	updatable	partitioned	views	that	modify	one	or	more	member
tables.

If	a	view	does	not	use	an	INSTEAD	OF	trigger	or	is	not	an	updatable	partitioned
view,	it	can	still	be	updatable	provided	that:

If	a	view	does	not	use	an	INSTEAD	OF	trigger	or	is	not	an	updatable	partitioned
view,	it	can	still	be	updatable	provided	that:

The	view	contains	at	least	one	table	in	the	FROM	clause	of	the	view
definition;	the	view	cannot	be	based	solely	on	an	expression.

No	aggregate	functions	(AVG,	COUNT,	SUM,	MIN,	MAX,
GROUPING,	STDEV,	STDEVP,	VAR,	VARP)	or	GROUP	BY,	UNION,
DISTINCT,	or	TOP	clauses	are	used	in	the	select	list.	However,
aggregate	functions	can	be	used	within	a	subquery	defined	in	the
FROM	clause	provided	that	the	derived	values	generated	by	the
aggregate	functions	are	not	modified.

Note		Partitioned	views	using	the	UNION	ALL	operator	can	be
updatable.

No	derived	columns	are	used	in	the	select	list.	Derived	columns	are
result	set	columns	formed	by	anything	other	than	a	simple	column
reference.

Guidelines	for	Modifying	Data	Through	a	View

Before	you	modify	data	through	a	view	without	using	an	INSTEAD	OF	trigger
or	an	updatable	partitioned	view,	consider	these	guidelines:

All	data	modification	statements	executed	against	the	view	must	adhere
to	the	criteria	set	within	the	SELECT	statement	defining	the	view	if	the
WITH	CHECK	OPTION	clause	is	used	in	the	definition	of	the	view.	If
the	WITH	CHECK	OPTION	clause	is	used,	rows	cannot	be	modified	in
a	way	that	causes	them	to	disappear	from	the	view.	Any	modification
that	would	cause	this	to	happen	is	canceled	and	an	error	is	displayed.

SQL	Server	must	be	able	to	resolve	unambiguously	the	modification
operation	to	specific	rows	in	one	of	the	base	tables	referenced	by	the
view.	You	cannot	use	data	modification	statements	on	more	than	one
underlying	table	in	a	single	statement.	Therefore,	the	columns	listed	in
the	UPDATE	or	INSERT	statement	must	belong	to	a	single	base	table
within	the	view	definition.

All	the	columns	in	the	underlying	table	that	are	being	updated	and	do
not	allow	null	values	have	values	specified	in	either	the	INSERT
statement	or	DEFAULT	definitions.	This	ensures	that	all	the	columns	in
the	underlying	table	that	require	values	have	them.

The	data	modified	in	the	columns	in	the	underlying	table	must	adhere	to
the	restrictions	on	those	columns,	such	as	nullability,	constraints,
DEFAULT	definitions	and	so	on.	For	example,	if	a	row	is	deleted,	all
the	underlying	FOREIGN	KEY	constraints	in	related	tables	must	still	be
satisfied	for	the	delete	to	succeed.

A	distributed	partition	view	(remote	view)	cannot	be	updated	using	a
keyset-driven	cursor.	This	restriction	can	be	resolved	by	declaring	the
cursor	on	the	underlying	tables	and	not	on	the	view	itself.

Additionally,	to	delete	data	in	a	view:

Only	one	table	can	be	listed	in	the	FROM	clause	of	the	view	definition.

The	READTEXT	and	WRITETEXT	statements	cannot	be	used	with	text,	ntext,
or	image	columns	in	a	view.

To	add	data	through	a	view

Transact-SQL

To	change	data	through	a	view

Transact-SQL

To	delete	data	through	a	view

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Getting	Information	About	a	View
You	can	gain	information	about	the	definition	of	a	view	if	it	is	not	encrypted.
You	may	need	to	see	the	definition	of	the	view	to	understand	how	its	data	is
derived	from	the	source	tables	or	to	see	the	data	defined	by	the	view.

Views	are	queried	the	same	way	that	ordinary	tables	are	queried.	However,	any
table	hints	used	when	querying	the	view	are	ignored.	For	more	information
about	table	hints,	see	SELECT.

If	you	change	the	name	of	an	object	referenced	by	a	view,	you	must	modify	the
view	so	that	its	text	reflects	the	new	name.	Therefore,	before	renaming	an	object,
display	the	dependencies	of	the	object	first	to	determine	if	any	views	are	affected
by	the	proposed	change.

To	get	information	about	a	view

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Deleting	a	View
After	a	view	has	been	created,	you	can	delete	the	view	if	it	is	not	needed,	or	if
you	want	to	clear	the	view	definition	and	the	permissions	associated	with	it.
When	a	view	is	deleted,	the	tables	and	the	data	upon	which	it	is	based	are	not
affected.	Any	queries	that	use	objects	that	depend	on	the	deleted	view	fail	when
they	are	next	executed,	unless	a	view	with	the	same	name	is	created.	However,	if
the	new	view	does	not	reference	objects	expected	by	any	objects	dependent	on
the	new	view,	queries	using	the	dependent	objects	fail	when	executed.	For
example,	a	view	my_view	that	retrieves	all	columns	from	the	authors	table	in
the	pubs	database	is	deleted	and	replaced	by	a	new	view	called	my_view	that
retrieves	all	columns	from	the	titles	table	instead.	Any	stored	procedures	that
reference	columns	from	the	underlying	authors	table	in	my_view	now	fail
because	those	columns	are	replaced	by	columns	from	the	titles	table	instead.

To	delete	a	view

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Stored	Procedures
When	you	create	an	application	with	Microsoft®	SQL	Server™	2000,	the
Transact-SQL	programming	language	is	the	primary	programming	interface
between	your	applications	and	the	SQL	Server	database.	When	you	use
Transact-SQL	programs,	two	methods	are	available	for	storing	and	executing	the
programs.	You	can	store	the	programs	locally	and	create	applications	that	send
the	commands	to	SQL	Server	and	process	the	results,	or	you	can	store	the
programs	as	stored	procedures	in	SQL	Server	and	create	applications	that
execute	the	stored	procedures	and	process	the	results.

Stored	procedures	in	SQL	Server	are	similar	to	procedures	in	other	programming
languages	in	that	they	can:

Accept	input	parameters	and	return	multiple	values	in	the	form	of
output	parameters	to	the	calling	procedure	or	batch.

Contain	programming	statements	that	perform	operations	in	the
database,	including	calling	other	procedures.	

Return	a	status	value	to	a	calling	procedure	or	batch	to	indicate	success
or	failure	(and	the	reason	for	failure).

You	can	use	the	Transact-SQL	EXECUTE	statement	to	run	a	stored	procedure.
Stored	procedures	are	different	from	functions	in	that	they	do	not	return	values
in	place	of	their	names	and	they	cannot	be	used	directly	in	an	expression.

The	benefits	of	using	stored	procedures	in	SQL	Server	rather	than	Transact-SQL
programs	stored	locally	on	client	computers	are:

They	allow	modular	programming.

You	can	create	the	procedure	once,	store	it	in	the	database,	and	call	it
any	number	of	times	in	your	program.	Stored	procedures	can	be	created
by	a	person	who	specializes	in	database	programming,	and	they	can	be
modified	independently	of	the	program	source	code.

They	allow	faster	execution.

If	the	operation	requires	a	large	amount	of	Transact-SQL	code	or	is
performed	repetitively,	stored	procedures	can	be	faster	than	batches	of
Transact-SQL	code.	They	are	parsed	and	optimized	when	they	are
created,	and	an	in-memory	version	of	the	procedure	can	be	used	after
the	procedure	is	executed	the	first	time.	Transact-SQL	statements
repeatedly	sent	from	the	client	each	time	they	run	are	compiled	and
optimized	every	time	they	are	executed	by	SQL	Server.

They	can	reduce	network	traffic.

An	operation	requiring	hundreds	of	lines	of	Transact-SQL	code	can	be
performed	through	a	single	statement	that	executes	the	code	in	a
procedure,	rather	than	by	sending	hundreds	of	lines	of	code	over	the
network.

They	can	be	used	as	a	security	mechanism.

Users	can	be	granted	permission	to	execute	a	stored	procedure	even	if
they	do	not	have	permission	to	execute	the	procedure's	statements
directly.

A	SQL	Server	stored	procedure	is	created	with	the	Transact-SQL	CREATE
PROCEDURE	statement	and	can	be	modified	with	the	ALTER	PROCEDURE
statement.	The	stored	procedure	definition	contains	two	primary	components:
the	specification	of	the	procedure	name	and	its	parameters,	and	the	body	of	the
procedure,	which	contains	Transact-SQL	statements	that	perform	the	procedure's
operations.

See	Also

Catalog	Stored	Procedures

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Extended	Stored	Procedures
Extended	stored	procedures	allow	you	to	create	your	own	external	routines	in	a
programming	language	such	as	C.	The	extended	stored	procedures	appear	to
users	as	normal	stored	procedures	and	are	executed	in	the	same	way.	Parameters
can	be	passed	to	extended	stored	procedures,	and	they	can	return	results	and
return	status.	Extended	stored	procedures	can	be	used	to	extend	the	capabilities
of	Microsoft®	SQL	Server™	2000.

Extended	stored	procedures	are	dynamic-link	libraries	(DLLs)	that	SQL	Server
can	dynamically	load	and	execute.	Extended	stored	procedures	run	directly	in
the	address	space	of	SQL	Server	and	are	programmed	using	the	SQL	Server
Open	Data	Services	API.

After	an	extended	stored	procedure	has	been	written,	members	of	the	sysadmin
fixed	server	role	can	register	the	extended	stored	procedure	with	SQL	Server	and
then	grant	permission	to	other	users	to	execute	the	procedure.	Extended	stored
procedures	can	be	added	only	to	the	master	database.

Note		Extended	stored	procedures	may	produce	memory	leaks	or	other	problems
that	reduce	the	performance	and	reliability	of	the	server.	You	should	consider
storing	extended	stored	procedures	in	an	instance	of	SQL	Server	separate	from
the	instance	containing	the	referenced	data	and	using	distributed	queries	to
access	the	database.	For	more	information,	see	Distributed	Queries.

To	add	an	extended	stored	procedure

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Creating	a	Stored	Procedure
You	can	create	stored	procedures	using	the	CREATE	PROCEDURE	Transact-
SQL	statement.	Before	creating	a	stored	procedure,	consider	that:

CREATE	PROCEDURE	statements	cannot	be	combined	with	other
SQL	statements	in	a	single	batch.

Permission	to	create	stored	procedures	defaults	to	the	database	owner,
who	can	transfer	it	to	other	users.

Stored	procedures	are	database	objects,	and	their	names	must	follow	the
rules	for	identifiers.

You	can	create	a	stored	procedure	only	in	the	current	database.

When	creating	a	stored	procedure,	you	should	specify:

Any	input	parameters	and	output	parameters	to	the	calling	procedure	or
batch.

The	programming	statements	that	perform	operations	in	the	database,
including	calling	other	procedures.

The	status	value	returned	to	the	calling	procedure	or	batch	to	indicate
success	or	failure	(and	the	reason	for	failure).

System	Stored	Procedures

Many	of	your	administrative	activities	in	Microsoft®	SQL	Server™	2000	are
performed	through	a	special	kind	of	procedure	known	as	a
system	stored	procedure.	System	stored	procedures	are	created	and	stored	in	the
master	database	and	have	the	sp_	prefix.	System	stored	procedures	can	be
executed	from	any	database	without	having	to	qualify	the	stored	procedure	name

fully	using	the	database	name	master.

It	is	strongly	recommended	that	you	do	not	create	any	stored	procedures	using
sp_	as	a	prefix.	SQL	Server	always	looks	for	a	stored	procedure	beginning	with
sp_	in	this	order:

1.	 The	stored	procedure	in	the	master	database.

2.	 The	stored	procedure	based	on	any	qualifiers	provided	(database	name
or	owner).

3.	 The	stored	procedure	using	dbo	as	the	owner,	if	one	is	not	specified.

Therefore,	although	the	user-created	stored	procedure	prefixed	with	sp_	may
exist	in	the	current	database,	the	master	database	is	always	checked	first,	even	if
the	stored	procedure	is	qualified	with	the	database	name.

IMPORTANT		If	any	user-created	stored	procedure	has	the	same	name	as	a	system
stored	procedure,	the	user-created	stored	procedure	will	never	be	executed.

Grouping
A	procedure	can	be	created	with	the	same	name	as	an	existing	stored	procedure
if	it	is	given	a	different	identification	number,	which	allows	the	procedures	to	be
grouped	logically.	Grouping	procedures	with	the	same	name	allows	them	to	be
deleted	at	the	same	time.	Procedures	used	in	the	same	application	are	often
grouped	this	way.	For	example,	the	procedures	used	with	the	my_app
application	might	be	named	my_proc;1,	my_proc;2,	and	so	on.	Deleting
my_proc	deletes	the	entire	group.	After	procedures	have	been	grouped,
individual	procedures	within	the	group	cannot	be	deleted.

Temporary	Stored	Procedures
Private	and	global	temporary	stored	procedures,	analogous	to	temporary	tables,
can	be	created	with	the	#	and	##	prefixes	added	to	the	procedure	name.	#	denotes
a	local	temporary	stored	procedure;	##	denotes	a	global	temporary	stored
procedure.	These	procedures	do	not	exist	after	SQL	Server	is	shut	down.

Temporary	stored	procedures	are	useful	when	connecting	to	earlier	versions	of

SQL	Server	that	do	not	support	the	reuse	of	execution	plans	for	Transact-SQL
statements	or	batches.	Applications	connecting	to	SQL	Server	version	2000
should	use	the	sp_executesql	system	stored	procedure	instead	of	temporary
stored	procedures.	For	more	information,	see	Execution	Plan	Caching	and
Reuse.

Only	the	connection	that	created	a	local	temporary	procedure	can	execute	it,	and
the	procedure	is	automatically	deleted	when	the	connection	is	closed	(when	the
user	logs	out	of	SQL	Server).

Any	connection	can	execute	a	global	temporary	stored	procedure.	A	global
temporary	stored	procedure	exists	until	the	connection	used	by	the	user	who
created	the	procedure	is	closed	and	any	currently	executing	versions	of	the
procedure	by	any	other	connections	are	completed.	Once	the	connection	that	was
used	to	create	the	procedure	is	closed,	no	further	execution	of	the	global
temporary	stored	procedure	is	allowed.	Only	those	connections	that	have	already
started	executing	the	stored	procedure	are	allowed	to	complete.

If	a	stored	procedure	not	prefixed	with	#	or	##	is	created	directly	in	the	tempdb
database,	the	stored	procedure	is	automatically	deleted	when	SQL	Server	is	shut
down	because	tempdb	is	re-created	every	time	SQL	Server	is	started.
Procedures	created	directly	in	tempdb	exist	even	after	the	creating	connection	is
terminated.		As	with	any	other	object,	permissions	to	execute	the	temporary
stored	procedure	can	be	granted,	denied,	and	revoked	to	other	users.

To	create	a	stored	procedure

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Specifying	Parameters
A	stored	procedure	communicates	with	the	calling	program	through	its
parameters.	When	a	program	executes	a	stored	procedure,	it	can	pass	values	to
the	stored	procedure	through	the	parameters	of	the	stored	procedure.	These
values	can	be	used	as	standard	variables	in	the	Transact-SQL	programming
language.	The	stored	procedure	can	also	return	values	to	the	calling	program
through	OUTPUT	parameters.	A	stored	procedure	can	have	as	many	as	2100
parameters,	with	each	parameter	having	a	name,	data	type,	direction,	and	default
value.

See	Also

Parameters

Returning	Data	Using	OUTPUT	Parameters

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Specifying	a	Name
Each	stored	procedure	parameter	must	be	defined	with	a	unique	name.	Stored
procedure	names	must	begin	with	a	single	@	character,	as	in	a	standard
Transact-SQL	variable,	and	must	follow	the	rules	for	object	identifiers.	The
parameter	name	can	be	used	in	the	stored	procedure	to	obtain	and	change	the
value	of	the	parameter.

Values	can	be	passed	to	stored	procedures	either	by	explicitly	naming	the
parameters	and	assigning	the	appropriate	value	or	by	supplying	the	parameter
values	given	in	the	CREATE	PROCEDURE	statement	without	naming	them.
For	example,	if	the	stored	procedure	my_proc	expects	three	parameters	named
@first,	@second,	and	@third,	the	values	passed	to	the	stored	procedure	can	be
assigned	to	the	parameter	names,	such	as:

EXECUTE	my_proc	@second	=	2,	@first	=	1,	@third	=	3

Or	by	position	without	naming	them:

EXECUTE	my_proc	1,	2,	3

Naming	the	parameters	when	executing	the	stored	procedure	allows	the
parameters	to	be	supplied	in	any	order.	If	the	parameters	are	not	named,	they
must	be	supplied	in	the	same	order	(left	to	right)	as	they	are	defined	in	the	stored
procedure.	Additionally,	all	parameters	preceding	a	given	parameter	must	be
supplied	even	if	they	are	optional	and	have	default	values.	For	example,	if	the
parameters	of	my_proc	are	all	optional,	my_proc	could	be	executed	by
supplying	values	only	for	the	first	and	second	parameters,	but	not	by	supplying
values	only	for	the	second	and	third	parameters.	This	is	necessary	because,
otherwise,	Microsoft®	SQL	Server™	2000	cannot	identify	the	parameters	that
are	being	specified.

See	Also

EXECUTE

JavaScript:hhobj_1.Click()

Using	Identifiers

Specifying	a	Default	Value

JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Specifying	a	Data	Type
Parameters	in	a	stored	procedure	are	defined	with	a	data	type,	much	as	a	column
in	a	table	is	defined.	A	stored	procedure	parameter	can	be	defined	with	any	of
the	Microsoft®	SQL	Server™	2000	data	types,	including	text	and	image.	Stored
procedure	parameters	can	also	be	defined	with	user-defined	data	types.

Note		The	cursor	data	type	can	be	used	only	as	an	OUTPUT	parameter	to	a
stored	procedure.	For	more	information	about	using	cursor	variables,	see	Scope
of	Transact-SQL	Cursor	Names.

The	data	type	of	a	parameter	determines	the	type	and	range	of	values	that	are
accepted	for	the	parameter.	For	example,	if	you	define	a	parameter	with	a	tinyint
data	type,	only	numeric	values	ranging	from	0	to	255	are	accepted.	An	error	is
returned	if	a	stored	procedure	is	executed	with	a	value	incompatible	with	the
data	type.

See	Also

Creating	User-Defined	Data	Types

CREATE	PROCEDURE

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Specifying	the	Direction	of	a	Parameter
All	procedure	parameters	can	receive	input	values	when	the	stored	procedure	is
executed	by	the	program	that	calls	the	stored	procedure.

Examples
The	following	stored	procedure,	get_sales_for_title,	uses	an	input	parameter.
The	@title	parameter	in	the	stored	procedure	receives	the	input	value	of	a	title	of
a	book	specified	by	the	calling	program.	The	SELECT	statement	uses	the	@title
parameter	to	obtain	the	correct	ytd_sales	value	and	displays	the	value.

CREATE	PROCEDURE	get_sales_for_title
@title	varchar(80)			--	This	is	the	input	parameter.
AS

--	Get	the	sales	for	the	specified	title.
SELECT	"YTD_SALES"	=	ytd_sales
FROM	titles
WHERE	title	=	@title

RETURN
GO

If	you	specify	the	OUTPUT	keyword	for	a	parameter	in	the	stored	procedure
definition,	the	stored	procedure	can	return	the	current	value	of	the	parameter	to
the	calling	program	when	the	stored	procedure	exits.	The	calling	program	must
also	use	the	OUTPUT	keyword	when	executing	the	stored	procedure	to	save	the
parameter's	value	in	a	variable	that	can	be	used	in	the	calling	program.	For	more
information,	see	Returning	Data	Using	OUTPUT	Parameters.

Creating	and	Maintaining	Databases

Specifying	a	Default	Value
You	can	create	a	stored	procedure	with	optional	parameters	by	specifying	a
default	value	for	optional	parameters.	When	the	stored	procedure	is	executed,
the	default	value	is	used	if	no	other	value	has	been	specified.

Specifying	default	values	is	necessary	because	a	system	error	is	returned	if	a
parameter	does	not	have	a	default	value	specified	in	the	stored	procedure	and	the
calling	program	does	not	provide	a	value	for	the	parameter	when	the	stored
procedure	is	executed.

If	no	value	can	be	specified	appropriately	as	a	default	for	the	parameter,	you	can
specify	NULL	as	the	default	for	a	parameter	and	have	the	stored	procedure
return	a	customized	message	if	the	stored	procedure	is	executed	without	a	value
for	the	parameter.

Note		If	the	default	value	is	a	character	string	that	contains	embedded	blanks	or
punctuation,	or	if	it	begins	with	a	number	(for	example,	6xxx),	it	must	be
enclosed	in	single,	straight	quotation	marks.

Examples
This	example	shows	the	get_sales_for_title	procedure	with	special	handling	for
cases	when	the	stored	procedure	is	executed	without	a	value	for	the	@title
parameter:

CREATE	PROCEDURE	get_sales_for_title
@title	varchar(80)	=	NULL,		--	NULL	default	value
@ytd_sales	int	OUTPUT
AS		

--	Validate	the	@title	parameter.
IF	@title	IS	NULL
BEGIN
			PRINT	'ERROR:	You	must	specify	a	title	value.'
			RETURN

END

--	Get	the	sales	for	the	specified	title	and	
--	assign	it	to	the	output	parameter.
SELECT	@ytd_sales	=	ytd_sales
FROM	titles
WHERE	title	=	@title

RETURN
GO

The	following	example	shows	the	my_proc	procedure	with	default	values	for
each	of	the	three	parameters	@first,	@second,	and	@third,	and	the	values
displayed	when	the	stored	procedure	is	executed	with	other	parameter	values:

CREATE	PROCEDURE	my_proc
@first	int	=	NULL,		--	NULL	default	value
@second	int	=	2,				--	Default	value	of	2
@third	int	=	3						--	Default	value	of	3
AS

--	Display	values.
SELECT	@first,	@second,	@third
GO

EXECUTE	my_proc																--	No	parameters	supplied
GO

Displays:

NULL		2		3

EXECUTE	my_proc	10,	20,	30					--	All	parameters	supplied
GO

Displays:

10		20		30

EXECUTE	my_proc	@second	=	500		--	Only	second	parameter	supplied	by	name
GO

Displays:

NULL		500		3

EXECUTE	my_proc	40,	@third	=	50	--	Only	first	and	third	parameters
GO																														--	are	supplied.

Displays:

40		2		50

See	Also

EXECUTE

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Programming	Stored	Procedures
Almost	any	Transact-SQL	code	that	can	be	written	as	a	batch	can	be	used	to
create	a	stored	procedure.

Rules	for	Programming	Stored	Procedures
Rules	for	programming	stored	procedures	include:

The	CREATE	PROCEDURE	definition	itself	can	include	any	number
and	type	of	SQL	statements	except	for	the	following	CREATE
statements,	which	cannot	be	used	anywhere	within	a	stored	procedure:

CREATE	DEFAULT CREATE	TRIGGER
CREATE	PROCEDURE CREATE	VIEW
CREATE	RULE 	

Other	database	objects	can	be	created	within	a	stored	procedure.	You
can	reference	an	object	created	in	the	same	stored	procedure	as	long	as
it	is	created	before	it	is	referenced.

You	can	reference	temporary	tables	within	a	stored	procedure.

If	you	create	a	local	temporary	table	inside	a	stored	procedure,	the
temporary	table	exists	only	for	the	purposes	of	the	stored	procedure;	it
disappears	when	you	exit	the	stored	procedure.

If	you	execute	a	stored	procedure	that	calls	another	stored	procedure,
the	called	stored	procedure	can	access	all	objects	created	by	the	first
stored	procedure,	including	temporary	tables.

If	you	execute	a	remote	stored	procedure	that	makes	changes	on	a
remote	instance	of	Microsoft®	SQL	Server™	2000,	those	changes

cannot	be	rolled	back.	Remote	stored	procedures	do	not	take	part	in
transactions.

The	maximum	number	of	parameters	in	a	stored	procedure	is	2100.

The	maximum	number	of	local	variables	in	a	stored	procedure	is	limited
only	by	available	memory.

Depending	on	available	memory,	the	maximum	size	of	a	stored
procedure	is	128	megabytes	(MB).

For	more	information	about	the	rules	for	creating	stored	procedures,	see
CREATE	PROCEDURE.

Qualifying	Names	Inside	Stored	Procedures
Inside	a	stored	procedure,	object	names	used	with	statements	(for	example,
SELECT	or	INSERT)	that	are	not	user-qualified	default	to	the	owner	of	the
stored	procedure.	If	a	user	who	creates	a	stored	procedure	does	not	qualify	the
name	of	the	tables	referenced	in	SELECT,	INSERT,	UPDATE,	or	DELETE
statements	within	the	stored	procedure,	access	to	those	tables	through	the	stored
procedure	is	restricted	by	default	to	the	creator	of	the	procedure.

Object	names	used	with	the	statements	ALTER	TABLE,	CREATE	TABLE,
DROP	TABLE,	TRUNCATE	TABLE,	CREATE	INDEX,	DROP	INDEX,
UPDATE	STATISTICS,	and	DBCC	must	be	qualified	with	the	name	of	the
object	owner	if	other	users	are	to	use	of	the	stored	procedure.	For	example,
Mary,	who	owns	table	marytab,	must	qualify	the	name	of	her	table	when	it	is
used	with	one	of	these	statements	if	she	wants	other	users	to	be	able	to	execute
the	stored	procedure	in	which	the	table	is	used.

This	rule	is	necessary	because	object	names	are	resolved	when	the	stored
procedure	is	run.	If	marytab	is	not	qualified	and	John	tries	to	execute	the
procedure,	SQL	Server	looks	for	a	table	called	marytab	owned	by	John.

Encrypting	Procedure	Definitions

JavaScript:hhobj_1.Click()

If	you	are	creating	a	stored	procedure	and	you	want	to	make	sure	that	the
procedure	definition	cannot	be	viewed	by	other	users,	you	can	use	the	WITH
ENCRYPTION	clause.	The	procedure	definition	is	then	stored	in	an	unreadable
form.

After	a	stored	procedure	is	encrypted,	its	definition	cannot	be	decrypted	and
cannot	be	viewed	by	anyone,	including	the	owner	of	the	stored	procedure	or	the
system	administrator.

SET	Statement	Options
When	an	ODBC	application	connects	to	SQL	Server,	the	server	automatically
sets	these	options	for	the	session:

SET	QUOTED_IDENTIFIER	ON

SET	TEXTSIZE	2147483647

SET	ANSI_DEFAULTS	ON

SET	CURSOR_CLOSE_ON_COMMIT	OFF

SET	IMPLICIT_TRANSACTIONS	OFF

These	settings	increase	the	portability	of	ODBC	applications.	Because	DB-
Library-based	applications	generally	do	not	set	these	options,	stored	procedures
should	be	tested	with	the	SET	options	listed	above	turned	both	on	and	off.	This
ensures	that	the	stored	procedures	work	correctly	regardless	of	the	options	a
particular	connection	may	have	set	when	it	invokes	the	stored	procedure.	A
stored	procedure	that	requires	a	particular	setting	for	one	of	these	options	should
issue	a	SET	statement	at	the	start	of	the	stored	procedure.	This	SET	statement
remains	in	effect	only	for	the	execution	of	the	stored	procedure;	when	the	stored
procedure	ends,	the	original	setting	is	restored.

Examples

A.	Create	a	stored	procedure	that	uses	parameters
This	example	creates	a	stored	procedure	that	is	useful	in	the	pubs	database.
Given	the	last	and	first	name	of	an	author,	the	stored	procedure	displays	the	title
and	publisher	of	each	book	by	that	author.

CREATE	PROC	au_info	@lastname	varchar(40),	@firstname	varchar(20)	
AS	
SELECT	au_lname,	au_fname,	title,	pub_name
FROM	authors	INNER	JOIN	titleauthor	ON	authors.au_id	=	titleauthor.au_id
			JOIN	titles	ON	titleauthor.title_id	=	titles.title_id
			JOIN	publishers	ON	titles.pub_id	=	publishers.pub_id
WHERE	au_fname	=	@firstname
AND	au_lname	=	@lastname
GO

When	a	message	appears	stating	that	the	command	did	not	return	any	data	and	it
did	not	return	any	rows,	the	stored	procedure	has	been	created.

Now	execute	the	au_info	stored	procedure:

EXECUTE	au_info	Ringer,	Anne
GO

Here	is	the	result	set:

au_lname au_fname title pub_name
--------- --------- --------------------- ----------------
Ringer Anne The	Gourmet

Microwave
Binnet	&	Hardley

Ringer Anne Is	Anger	the	Enemy? New	Moon	Books

(2	row(s)	affected)

B.	Create	a	stored	procedure	that	uses	default	values	for
parameters

This	example	creates	a	stored	procedure,	pub_info2,	that	displays	the	names	of
all	authors	who	have	written	a	book	published	by	the	publisher	given	as	a
parameter.	If	no	publisher	name	is	supplied,	the	stored	procedure	shows	the
authors	published	by	Algodata	Infosystems.

CREATE	PROC	pub_info2	@pubname	varchar(40)	=	'Algodata	Infosystems'
AS	
SELECT	au_lname,	au_fname,	pub_name
FROM	authors	a	INNER	JOIN	titleauthor	ta	ON	a.au_id	=	ta.au_id
			JOIN	titles	t	ON	ta.title_id	=	t.title_id
			JOIN	publishers	p	ON	t.pub_id	=	p.pub_id
WHERE	@pubname	=	p.pub_name

Execute	pub_info2	with	no	parameter	specified:

EXECUTE	pub_info2
GO

Here	is	the	result	set:

au_lname au_fname pub_name
---------------- ---------------- --------------------
Green Marjorie Algodata	Infosystems
Bennet Abraham Algodata	Infosystems
O'Leary Michael Algodata	Infosystems
MacFeather Stearns Algodata	Infosystems
Straight Dean Algodata	Infosystems
Carson Cheryl Algodata	Infosystems
Dull Ann Algodata	Infosystems
Hunter Sheryl Algodata	Infosystems
Locksley Charlene Algodata	Infosystems

(9	row(s)	affected)

C.	Execute	a	stored	procedure	that	overrides	the	default	value	of	a
parameter	with	an	explicit	value
In	this	example,	the	stored	procedure,	showind2,	the	default	value	for	the
@table	parameter	is	titles.

CREATE	PROC	showind2	@table	varchar(30)	=	'titles'
AS	
SELECT	TABLE_NAME	=	sysobjects.name,
INDEX_NAME	=	sysindexes.name,	INDEX_ID	=	indid
FROM	sysindexes	INNER	JOIN	sysobjects	ON	sysobjects.id	=	sysindexes.id
WHERE	sysobjects.name	=	@table

The	column	headings	(for	example,	TABLE_NAME)	make	the	results	more
readable.	Here	is	what	the	stored	procedure	shows	for	the	authors	table:

EXECUTE	showind2	authors
GO

TABLE_NAMEINDEX_NAME INDEX_ID
---------- ---------- ----------
authors UPKCL_auidind 1
authors aunmind 2

(2	row(s)	affected)

If	you	do	not	supply	a	value,	SQL	Server	uses	the	default	table,	titles:

EXECUTE	showind2
GO

Here	is	the	result	set:

TABLE_NAMEINDEX_NAME INDEX_ID
---------- ---------- ----------

titles UPKCL_titleidind 1
titles titleind 2

(2	row(s)	affected)

D.	Create	a	stored	procedure	using	a	parameter	default	of	NULL
The	parameter	default	can	be	the	value	NULL.	In	this	case,	if	you	do	not	supply
a	parameter,	SQL	Server	executes	the	stored	procedure	according	to	its	other
statements.	No	error	message	is	displayed.

The	procedure	definition	can	also	specify	that	some	other	action	be	taken	if	you
do	not	give	a	parameter.	For	example:

CREATE	PROC	showind3	@table	varchar(30)	=	NULL
AS	IF	@table	IS	NULL
			PRINT	'Give	a	table	name'
ELSE
			SELECT	TABLE_NAME	=	sysobjects.name,
			INDEX_NAME	=	sysindexes.name,	INDEX_ID	=	indid
			FROM	sysindexes	INNER	JOIN	sysobjects
			ON	sysobjects.id	=	sysindexes.id
			WHERE	sysobjects.name	=	@table

E.	Create	a	stored	procedure	using	a	parameter	default	including
wildcard	characters
The	default	can	include	wildcard	characters	(%,	_,	[]	and	[^])	if	the	stored
procedure	uses	the	parameter	with	the	LIKE	keyword.	For	example,	showind
can	be	modified	to	display	information	about	the	system	tables	if	you	do	not
supply	a	parameter:

CREATE	PROC	showind4	@table	varchar(30)	=	'sys%'
AS	SELECT	TABLE_NAME	=	sysobjects.name,
			INDEX_NAME	=	sysindexes.name,	INDEX_ID	=	indid
FROM	sysindexes	INNER	JOIN	sysobjects

ON	sysobjects.id	=	sysindexes.id
WHERE	sysobjects.name	LIKE	@table

The	following	variation	of	the	stored	procedure	au_info	has	defaults	with
wildcard	characters	for	both	parameters:

CREATE	PROC	au_info2	@lastname	varchar(30)	=	'D%',
			@firstname	varchar(18)	=	'%'
AS	
SELECT	au_lname,	au_fname,	title,	pub_name
FROM	authors	INNER	JOIN	titleauthor	ON	authors.au_id	=	titleauthor.au_id
			JOIN	titles	ON	titleauthor.title_id	=	titles.title_id
			JOIN	publishers	ON	titles.pub_id	=	publishers.pub_id
WHERE	au_fname	LIKE	@firstname
			AND	au_lname	LIKE	@lastname

If	au_info2	is	executed	with	no	parameters,	all	the	authors	with	last	names
beginning	with	the	letter	D	are	displayed:

EXECUTE	au_info2
GO

Here	is	the	result	set:

au_lname au_fname title pub_name
-------- -------- --------------------- -------------------
Dull Ann Secrets	of	Silicon	Val Algodata

Infosystems
del	Castillo Innes Silicon	Val	Gastrono Binnet	&	Hardley
DeFrance Michel The	Gourmet

Microwave
Binnet	&	Hardley

(3	row(s)	affected)

This	example	omits	the	second	parameter	when	defaults	for	two	parameters	have
been	defined,	so	you	can	find	the	books	and	publishers	for	all	authors	with	the
last	name	Ringer:

EXECUTE	au_info2	Ringer
GO

au_lname au_fname title pub_name
--------- --------- ---------------------- ----------------
Ringer Anne The	Gourmet

Microwave
Binnet	&	Hardley

Ringer Anne Is	Anger	the	Enemy? New	Moon	Books
Ringer Albert Is	Anger	the	Enemy? New	Moon	Books
Ringer Albert Life	Without	Fear New	Moon	Books

(4	row(s)	affected)

See	Also

CREATE	PROCEDURE

EXECUTE

Effects	of	SQL-92	Options

Rollbacks	in	Stored	Procedures	and	Triggers

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Creating	and	Maintaining	Databases

Nesting	Stored	Procedures
Stored	procedures	are	nested	when	one	stored	procedure	calls	another.	You	can
nest	stored	procedures	up	to	32	levels.	The	nesting	level	increases	by	one	when
the	called	stored	procedure	begins	execution	and	decreases	by	one	when	the
called	stored	procedure	completes	execution.	Attempting	to	exceed	the
maximum	of	32	levels	of	nesting	causes	the	whole	calling	stored	procedure
chain	to	fail.	The	current	nesting	level	for	the	stored	procedures	in	execution	is
stored	in	the	@@NESTLEVEL	function.

Although	the	nesting	limit	is	32	levels,	Microsoft®	SQL	Server™	2000	has	no
limit	on	the	number	of	stored	procedures	that	can	be	invoked	from	a	given	stored
procedure,	provided	that	the	subordinate	stored	procedures	do	not	invoke	other
subordinate	stored	procedures	and	the	maximum	nesting	level	is	never	exceeded.

An	error	in	a	nested	stored	procedure	is	not	necessarily	fatal	to	the	calling	stored
procedure.	When	invoking	stored	procedures	within	stored	procedures,	use	the
Transact-SQL	RETURN	statement	to	return	a	return	code	and	check	the	return
code	from	the	calling	stored	procedure.	In	this	way,	you	can	specify	the	behavior
of	your	stored	procedures	when	errors	occur.	For	more	information	about	using
return	codes,	see	Returning	Data	Using	a	Return	Code.

Stored	procedures	can	even	do	a	nested	call	to	themselves,	a	technique	known	as
recursion.

See	Also

@@NESTLEVEL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Deferred	Name	Resolution	and	Compilation
When	a	stored	procedure	is	created,	the	statements	in	the	procedure	are	parsed
for	syntactical	accuracy.	If	a	syntactical	error	is	encountered	in	the	procedure
definition,	an	error	is	returned	and	the	stored	procedure	is	not	created.	If	the
statements	are	syntactically	correct,	the	text	of	the	stored	procedure	is	stored	in
the	syscomments	system	table.

When	a	stored	procedure	is	executed	for	the	first	time,	the	query	processor	reads
the	text	of	the	stored	procedure	from	the	syscomments	system	table	of	the
procedure	and	checks	that	the	names	of	the	objects	used	by	the	procedure	are
present.	This	process	is	called	deferred	name	resolution	because	objects
referenced	by	the	stored	procedure	need	not	exist	when	the	stored	procedure	is
created,	but	only	when	it	is	executed.

In	the	resolution	stage,	Microsoft®	SQL	Server™	2000	also	performs	other
validation	activities	(for	example,	checking	the	compatibility	of	a	column	data
type	with	variables).	If	the	objects	referenced	by	the	stored	procedure	are
missing	when	the	stored	procedure	is	executed,	the	stored	procedure	stops
executing	when	it	gets	to	the	statement	that	references	the	missing	object.	In	this
case,	or	if	other	errors	are	found	in	the	resolution	stage,	an	error	is	returned.

Note		If	an	object	referenced	by	a	stored	procedure	is	deleted	or	renamed,	then
an	error	is	returned	when	the	stored	procedure	is	executed.	However,	if	an	object
referenced	in	a	stored	procedure	is	replaced	with	an	object	of	the	same	name,	the
stored	procedure	executes	without	having	to	be	recompiled.	For	example,	if
stored	procedure	proc1	references	table	test1,	and	test1	is	deleted	and	a	different
table	called	test1	is	created,	proc1	references	the	new	table.	The	stored
procedure	does	not	have	to	be	recompiled.

If	procedure	execution	successfully	passes	the	resolution	stage,	the	SQL	Server
query	optimizer	analyzes	the	Transact-SQL	statements	in	the	stored	procedure
and	creates	an	execution	plan.	The	execution	plan	describes	the	fastest	method
of	executing	the	stored	procedure,	based	on	information	such	as:

The	amount	of	data	in	the	tables.

The	nature	and	presence	of	indexes	on	the	tables	and	the	distribution	of
data	in	the	indexed	columns.

The	comparison	operators	and	comparison	values	used	in	WHERE
clause	conditions.

The	presence	of	joins	and	UNION,	GROUP	BY,	and	ORDER	BY
keywords.

After	the	query	optimizer	has	analyzed	these	factors	in	the	stored	procedure,	it
places	the	execution	plan	in	memory.	The	process	of	analyzing	the	stored
procedure	and	creating	an	execution	plan	is	called	compilation.	The	optimized
in-memory	execution	plan	is	used	to	execute	the	query.	The	execution	plan	stays
in	memory	until	SQL	Server	is	restarted,	or	until	space	is	needed	for	storage	of
another	object.

When	the	stored	procedure	is	subsequently	executed,	SQL	Server	reuses	the
existing	execution	plan	if	it	is	still	in	memory.	If	the	execution	plan	is	no	longer
in	memory,	a	new	execution	plan	is	created.	For	more	information,	see	Stored
Procedure	and	Trigger	Execution.

See	Also

CREATE	PROCEDURE

Execution	Plan	Caching	and	Reuse

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Returning	Data	from	a	Stored	Procedure
Microsoft®	SQL	Server™	2000	stored	procedures	return	data	in	four	forms:

Output	parameters,	which	can	return	either	data	(such	as	an	integer	or
character	value)	or	a	cursor	variable	(cursors	are	result	sets	that	can	be
retrieved	one	row	at	a	time).	For	more	information	about	using	cursor
variables,	see	Scope	of	Transact-SQL	Cursor	Names.	

Return	codes,	which	are	always	an	integer	value.

A	result	set	for	each	SELECT	statement	contained	in	the	stored
procedure	or	any	other	stored	procedures	called	by	the	stored	procedure.
For	more	information	about	using	the	SELECT	statement,	see	Query
Fundamentals.	

A	global	cursor	that	can	be	referenced	outside	the	stored	procedure.	For
more	information	about	using	cursor	variables,	see	Scope	of	Transact-
SQL	Cursor	Names.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Returning	Data	Using	OUTPUT	Parameters
If	you	specify	the	OUTPUT	keyword	for	a	parameter	in	the	procedure	definition,
the	stored	procedure	can	return	the	current	value	of	the	parameter	to	the	calling
program	when	the	stored	procedure	exits.	To	save	the	value	of	the	parameter	in	a
variable	that	can	be	used	in	the	calling	program,	the	calling	program	must	use
the	OUTPUT	keyword	when	executing	the	stored	procedure.

Examples
The	following	example	shows	a	stored	procedure	with	an	input	and	an	output
parameter.	The	first	parameter	in	the	stored	procedure	@title	receives	the	input
value	specified	by	the	calling	program,	and	the	second	parameter	@ytd_sales	is
used	to	return	the	value	to	the	calling	program.	The	SELECT	statement	uses	the
@title	parameter	to	obtain	the	correct	ytd_sales	value,	and	assigns	the	value	to
the	@ytd_sales	output	parameter.

CREATE	PROCEDURE	get_sales_for_title
@title	varchar(80),			--	This	is	the	input	parameter.
@ytd_sales	int	OUTPUT	--	This	is	the	output	parameter.
AS		

--	Get	the	sales	for	the	specified	title	and	
--	assign	it	to	the	output	parameter.
SELECT	@ytd_sales	=	ytd_sales
FROM	titles
WHERE	title	=	@title

RETURN
GO	

The	following	program	executes	the	stored	procedure	with	a	value	for	the	input
parameter	and	saves	the	output	value	of	the	stored	procedure	in	the
@ytd_sales_for_title	variable	local	to	the	calling	program.

--	Declare	the	variable	to	receive	the	output	value	of	the	procedure.
DECLARE	@ytd_sales_for_title	int

--	Execute	the	procedure	with	a	title_id	value
--	and	save	the	output	value	in	a	variable.

EXECUTE	get_sales_for_title
"Sushi,	Anyone?",	@ytd_sales	=	@ytd_sales_for_title	OUTPUT	

--	Display	the	value	returned	by	the	procedure.
PRINT	'Sales	for	"Sushi,	Anyone?":	'	+				convert(varchar(6),@ytd_sales_for_title)
GO

Sales	for	"Sushi,	Anyone?":	4095

Input	values	can	also	be	specified	for	OUTPUT	parameters	when	the	stored
procedure	is	executed.	This	allows	the	stored	procedure	to	receive	a	value	from
the	calling	program,	change	it	or	perform	operations	with	it,	then	return	the	new
value	to	the	calling	program.	In	the	earlier	example,	the	@ytd_sales_for_title
variable	can	be	assigned	a	value	prior	to	executing	the	stored	procedure.	The
@ytd_sales	variable	contains	the	value	of	the	parameter	in	the	body	of	the
stored	procedure,	and	the	value	of	the	@ytd_sales	variable	is	returned	to	the
calling	program	when	the	stored	procedure	exits.	This	is	often	referred	to	as
"pass-by-reference	capability."

If	you	specify	OUTPUT	for	a	parameter	when	you	execute	a	stored	procedure
and	the	parameter	is	not	defined	using	OUTPUT	in	the	stored	procedure,	you	get
an	error	message.	You	can	execute	a	stored	procedure	with	OUTPUT	parameters
and	not	specify	OUTPUT	when	executing	the	stored	procedure.	No	error	is
returned,	but	you	cannot	use	the	output	value	in	the	calling	program.

See	Also

EXECUTE

Scope	of	Transact-SQL	Cursor	Names

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Returning	Data	Using	a	Return	Code
A	stored	procedure	can	return	an	integer	value	called	a	return	code	to	indicate
the	execution	status	of	a	procedure.	You	specify	the	return	code	for	a	stored
procedure	using	the	RETURN	statement.	As	with	OUTPUT	parameters,	you
must	save	the	return	code	in	a	variable	when	the	stored	procedure	is	executed	to
use	the	return	code	value	in	the	calling	program.	For	example,	the	assignment
variable	@result	of	data	type	int	is	used	to	store	the	return	code	from	the	stored
procedure	my_proc:

DECLARE	@result	int
EXECUTE	@result	=	my_proc

Return	codes	are	commonly	used	in	control-of-flow	blocks	within	stored
procedures	to	set	the	return	code	value	for	each	possible	error	situation.	You	can
use	the	@@ERROR	function	after	a	Transact-SQL	statement	to	detect	if	an	error
occurred	during	the	execution	of	the	statement.

Examples

A.	Return	a	different	return	code	depending	on	the	type	of	error
This	example	shows	the	get_sales_for_title	procedure	with	special	handling	that
sets	special	return	code	values	for	various	errors.	The	table	shows	the	integer
value	assigned	by	the	stored	procedure	to	each	possible	error.

Value Meaning
0 Successful	execution.
1 Required	parameter	value	not	specified.
2 Invalid	parameter	value	specified.
3 Error	occurred	getting	sales	value.
4 NULL	sales	value	found	for	the	title.

CREATE	PROCEDURE	get_sales_for_title
--	This	is	the	input	parameter,	with	a	default.

@title	varchar(80)	=	NULL,			
--	This	is	the	output	parameter.
@ytd_sales	int	OUTPUT								
AS		

--	Validate	the	@title	parameter.
IF	@title	IS	NULL
BEGIN
			PRINT	"ERROR:	You	must	specify	a	title	value."
			RETURN(1)
END
ELSE
BEGIN
			--	Make	sure	the	title	is	valid.
			IF	(SELECT	COUNT(*)	FROM	titles
						WHERE	title	=	@title)	=	0
						RETURN(2)
END

--	Get	the	sales	for	the	specified	title	and	
--	assign	it	to	the	output	parameter.
SELECT	@ytd_sales	=	ytd_sales
FROM	titles
WHERE	title	=	@title

--	Check	for	SQL	Server	errors.
IF	@@ERROR	<>	0	
BEGIN
			RETURN(3)
END
ELSE
BEGIN
			--	Check	to	see	if	the	ytd_sales	value	is	NULL.

			IF	@ytd_sales	IS	NULL
						RETURN(4)			
			ELSE
						--	SUCCESS!!
						RETURN(0)
END

GO

Using	return	codes	in	this	manner	allows	your	calling	programs	to	detect	and
handle	the	errors	that	occur	when	the	stored	procedure	is	executed.

B.	Handle	the	different	return	codes	returned	from	a	stored
procedure
This	example	creates	a	program	to	handle	the	return	codes	returned	from	the
get_sales_for_title	procedure.

--	Declare	the	variables	to	receive	the	output	value	and	return	code	
--	of	the	procedure.
DECLARE	@ytd_sales_for_title	int,	@ret_code	INT

--	Execute	the	procedure	with	a	title_id	value
--	and	save	the	output	value	and	return	code	in	variables.
EXECUTE	@ret_code	=	get_sales_for_title
"Sushi,	Anyone?",
@ytd_sales	=	@ytd_sales_for_title	OUTPUT	

--		Check	the	return	codes.
IF	@ret_code	=	0
BEGIN
			PRINT	"Procedure	executed	successfully"
			--	Display	the	value	returned	by	the	procedure.
			PRINT	'Sales	for	"Sushi,	Anyone?":	'	+	CONVERT(varchar(6),@ytd_sales_for_title)
END

ELSE	IF	@ret_code	=	1
			PRINT	"ERROR:	No	title_id	was	specified."
ELSE	IF	@ret_code	=	2	
			PRINT	"ERROR:	An	invalid	title_id	was	specified."
ELSE	IF	@ret_code	=	3
			PRINT	"ERROR:	An	error	occurred	getting	the	ytd_sales."
			
GO
	

Creating	and	Maintaining	Databases

Executing	a	Stored	Procedure
When	you	have	to	execute	a	stored	procedure,	use	the	Transact-SQL	EXECUTE
statement.	You	can	execute	a	stored	procedure	without	using	the	EXECUTE
keyword	if	the	stored	procedure	is	the	first	statement	in	the	batch.

Parameter	values	can	be	supplied	if	a	stored	procedure	is	written	to	accept	them.

Note		If	you	supply	parameters	in	the	form	@parameter	=	value,	you	can	supply
them	in	any	order.	You	can	also	omit	parameters	for	which	defaults	have	been
supplied.	If	you	supply	one	parameter	in	the	form	@parameter	=	value,	you
must	supply	all	subsequent	parameters	this	way.	If	you	do	not	supply	parameters
in	the	form	@parameter	=	value,	you	must	supply	them	in	the	order	given	in	the
CREATE	PROCEDURE	statement.

When	executing	a	stored	procedure,	the	server	rejects	any	parameters	that
were	not	included	with	the	parameter	list	during	procedure	creation.	Any
parameter	passed	by	reference	(explicitly	passing	the	parameter	name)	is	not
accepted	if	the	parameter	name	does	not	match.

Although	you	can	omit	parameters	for	which	defaults	have	been	supplied,
you	can	only	truncate	the	list	of	parameters.	For	example,	if	a	stored
procedure	has	five	parameters,	you	can	omit	both	the	fourth	and	the	fifth
parameters,	but	you	cannot	skip	the	fourth	and	still	include	the	fifth	unless
you	supply	parameters	in	the	form	@parameter	=	value.

The	default	value	of	a	parameter,	if	defined	for	the	parameter	in	the	stored
procedure,	is	used	when:

No	value	for	the	parameter	is	specified	when	the	stored	procedure	is
executed.

The	DEFAULT	keyword	is	specified	as	the	value	for	the	parameter.

To	execute	a	stored	procedure	that	is	grouped	with	other	stored	procedures	of	the
same	name,	specify	the	identification	number	of	the	stored	procedure	within	the
group.	For	example,	to	execute	the	second	stored	procedure	in	the	group
my_proc,	execute:

EXECUTE	my_proc;2

To	execute	a	stored	procedure

Transact-SQL

See	Also

Batches

Execution	Characteristics	of	Extended	Stored	Procedures

SQL	Profiler	Scenarios

Specifying	Parameters

Debugging	an	Extended	Stored	Procedure

SQL	Stored	Procedures

Returning	Data	Using	a	Return	Code

Recompiling	a	Stored	Procedure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Creating	and	Maintaining	Databases

Automatic	Execution	of	Stored	Procedures
When	you	mark	stored	procedures	for	automatic	execution,	these	stored
procedures	are	executed	every	time	Microsoft®	SQL	Server™	2000	starts.

This	is	useful	if	you	have	operations	that	you	want	to	perform	regularly,	or	if	you
have	a	stored	procedure	that	runs	as	a	background	process	and	is	expected	to	be
running	at	all	times.	Another	use	for	automatic	execution	of	stored	procedures	is
to	have	the	stored	procedure	perform	system	or	maintenance	tasks	in	tempdb,
such	as	creating	a	global	temporary	table.	This	ensures	that	such	a	temporary
table	will	always	exist	when	tempdb	is	re-created	as	SQL	Server	starts.

A	stored	procedure	that	is	automatically	executed	operates	with	the	same
permissions	as	members	of	the	sysadmin	fixed	server	role.	Any	error	messages
generated	by	the	stored	procedure	are	written	to	the	SQL	Server	error	log.	Do
not	return	any	result	sets	from	a	stored	procedure	that	is	executed	automatically.
Because	the	stored	procedure	is	being	executed	by	SQL	Server	rather	than	a
user,	there	is	nowhere	for	the	result	sets	to	go.

Although	stored	procedures	are	set	for	automatic	execution	individually,	the
SQL	Server	scan	for	startup	procs	configuration	option	can	be	set	to	prevent	all
stored	procedures	from	executing	automatically	when	SQL	Server	starts.

To	set	or	unset	a	stored	procedure	for	automatic	execution

Transact-SQL

SQL-DMO

To	set	or	unset	the	scan	for	startup	procs	configuration	option

Transact-SQL

See	Also

scan	for	startup	procs	Option

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Modifying	and	Renaming	a	Stored	Procedure
If	you	need	to	change	the	statements	or	parameters	in	a	stored	procedure,	you
can	either	delete	and	re-create	the	stored	procedure	or	alter	the	stored	procedure
in	a	single	step.	When	you	delete	and	re-create	a	stored	procedure,	all
permissions	associated	with	the	stored	procedure	are	lost.	When	you	alter	the
stored	procedure,	the	procedure	or	parameter	definition	is	changed	but	the
permissions	defined	for	the	stored	procedure	are	retained.

You	can	also	rename	a	stored	procedure.	The	new	name	must	follow	the	rules	for
identifiers.	You	can	rename	only	the	stored	procedures	that	you	own,	but	the
database	owner	can	change	the	name	of	any	user's	stored	procedure.	The	stored
procedure	to	be	renamed	must	be	in	the	current	database.

A	stored	procedure	can	also	be	modified	to	encrypt	the	definition	or	cause	the
procedure	to	be	recompiled	each	time	it	is	executed.

Note		Changing	the	name	or	definition	of	a	stored	procedure	can	cause	any
dependent	objects	to	fail	when	executed	if	those	dependent	objects	are	not	also
updated	to	reflect	the	changes	made	to	the	stored	procedure.

To	modify	a	stored	procedure

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Recompiling	a	Stored	Procedure
As	a	database	is	changed	by	such	actions	as	adding	indexes	or	changing	data	in
indexed	columns,	the	original	query	plans	used	to	access	its	tables	should	be
optimized	again	by	recompiling	them.	This	optimization	happens	automatically
the	first	time	a	stored	procedure	is	run	after	Microsoft®	SQL	Server™	2000	is
restarted.	It	also	occurs	if	an	underlying	table	used	by	the	stored	procedure
changes.	But	if	a	new	index	is	added	from	which	the	stored	procedure	might
benefit,	optimization	does	not	automatically	happen	(until	the	next	time	the
stored	procedure	is	run	after	SQL	Server	is	restarted).

SQL	Server	provides	three	ways	to	recompile	a	stored	procedure:

The	sp_recompile	system	stored	procedure	forces	a	recompile	of	a
stored	procedure	the	next	time	it	is	run.

Creating	a	stored	procedure	that	specifies	the	WITH	RECOMPILE
option	in	its	definition	indicates	that	SQL	Server	does	not	cache	a	plan
for	this	stored	procedure;	the	stored	procedure	is	recompiled	each	time
it	is	executed.	Use	the	WITH	RECOMPILE	option	when	stored
procedures	take	parameters	whose	values	differ	widely	between
executions	of	the	stored	procedure,	resulting	in	different	execution	plans
to	be	created	each	time.	Use	of	this	option	is	uncommon,	and	causes	the
stored	procedure	to	execute	more	slowly	because	the	stored	procedure
must	be	recompiled	each	time	it	is	executed.

You	can	force	the	stored	procedure	to	be	recompiled	by	specifying	the
WITH	RECOMPILE	option	when	you	execute	the	stored	procedure.
Use	this	option	only	if	the	parameter	you	are	supplying	is	atypical	or	if
the	data	has	significantly	changed	since	the	stored	procedure	was
created.

Note		If	an	object	referenced	by	a	stored	procedure	is	deleted	or	renamed,	an
error	is	returned	when	the	stored	procedure	is	executed.	If,	however,	an	object
referenced	in	a	stored	procedure	is	replaced	with	an	object	of	the	same	name,	the
stored	procedure	executes	without	having	to	be	recompiled.

To	recompile	a	stored	procedure	next	time	it	is	run

Transact-SQL

See	Also

Creating	a	Stored	Procedure

Deferred	Name	Resolution	and	Compilation

Executing	a	Stored	Procedure

Programming	Stored	Procedures

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Viewing	a	Stored	Procedure
Several	system	stored	procedures	provide	information	from	the	system	tables
about	stored	procedures.	Using	these	stored	procedures,	you	can:

See	the	Transact-SQL	statements	used	to	create	a	stored	procedure.	This
can	be	useful	if	you	do	not	have	the	Transact-SQL	script	files	used	to
create	the	stored	procedure.	

Get	information	about	a	stored	procedure	such	as	its	owner,	when	it	was
created,	and	its	parameters.

List	the	objects	used	by	the	specified	stored	procedure,	and	the
procedures	that	use	the	specified	stored	procedure.	This	information	can
be	used	to	identify	the	procedures	affected	by	the	changing	or	removal
of	an	object	in	the	database.

To	view	the	definition	of	a	stored	procedure

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Deleting	a	Stored	Procedure
You	can	delete	a	stored	procedure	when	you	no	longer	need	it.	If	a	stored
procedure	that	has	been	deleted	is	called	by	another	stored	procedure,
Microsoft®	SQL	Server™	2000	displays	an	error	message	when	the	calling
procedure	is	executed.	However,	if	a	new	stored	procedure	of	the	same	name	and
the	same	parameters	is	defined	to	replace	the	one	that	was	deleted,	other
procedures	that	reference	it	will	still	execute	successfully.	For	example,	if	stored
procedure	proc1	references	stored	procedure	proc2,	and	proc2	is	deleted	and	a
different	stored	procedure	called	proc2	is	created,	proc1	now	references	the	new
stored	procedure.	proc1	does	not	have	to	be	recompiled.

After	stored	procedures	have	been	grouped,	individual	stored	procedures	within
the	group	cannot	be	deleted.	Deleting	a	stored	procedure	deletes	all	stored
procedures	in	the	same	group.

To	delete	a	stored	procedure

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Enforcing	Business	Rules	with	Triggers
Microsoft®	SQL	Server™	2000	provides	two	primary	mechanisms	for	enforcing
business	rules	and	data	integrity:	constraints	and	triggers.	A	trigger	is	a	special
type	of	stored	procedure	that	automatically	takes	effect	when	the	data	in	a
specified	table	is	modified.	A	trigger	is	invoked	in	response	to	an	INSERT,
UPDATE,	or	DELETE	statement.	A	trigger	can	query	other	tables	and	can
include	complex	Transact-SQL	statements.	The	trigger	and	the	statement	that
fires	it	are	treated	as	a	single	transaction,	which	can	be	rolled	back	from	within
the	trigger.	If	a	severe	error	is	detected	(for	example,	insufficient	disk	space),	the
entire	transaction	automatically	rolls	back.

Triggers	are	useful	in	these	ways:

Triggers	can	cascade	changes	through	related	tables	in	the	database;
however,	these	changes	can	be	executed	more	efficiently	using
cascading	referential	integrity	constraints.

Triggers	can	enforce	restrictions	that	are	more	complex	than	those
defined	with	CHECK	constraints.

Unlike	CHECK	constraints,	triggers	can	reference	columns	in	other
tables.	For	example,	a	trigger	can	use	a	SELECT	from	another	table	to
compare	to	the	inserted	or	updated	data	and	to	perform	additional
actions,	such	as	modify	the	data	or	display	a	user-defined	error	message.

Triggers	can	also	evaluate	the	state	of	a	table	before	and	after	a	data
modification	and	take	action(s)	based	on	that	difference.

Multiple	triggers	of	the	same	type	(INSERT,	UPDATE,	or	DELETE)	on
a	table	allow	multiple,	different	actions	to	take	place	in	response	to	the
same	modification	statement.

Triggers	Compared	to	Constraints

Constraints	and	triggers	each	have	benefits	that	make	them	useful	in	special

situations.	The	primary	benefit	of	triggers	is	that	they	can	contain	complex
processing	logic	that	uses	Transact-SQL	code.	Therefore,	triggers	can	support	all
of	the	functionality	of	constraints;	however,	triggers	are	not	always	the	best
method	for	a	given	feature.

Entity	integrity	should	always	be	enforced	at	the	lowest	level	by	indexes	that	are
part	of	PRIMARY	KEY	and	UNIQUE	constraints	or	are	created	independently
of	constraints.	Domain	integrity	should	be	enforced	through	CHECK	constraints,
and	referential	integrity	(RI)	should	be	enforced	through	FOREIGN	KEY
constraints,	assuming	their	features	meet	the	functional	needs	of	the	application.

Triggers	are	most	useful	when	the	features	supported	by	constraints	cannot	meet
the	functional	needs	of	the	application.	For	example:

FOREIGN	KEY	constraints	can	validate	a	column	value	only	with	an
exact	match	to	a	value	in	another	column,	unless	the	REFERENCES
clause	defines	a	cascading	referential	action.

A	CHECK	constraint	can	validate	a	column	value	only	against	a	logical
expression	or	another	column	in	the	same	table.	If	your	application
requires	that	a	column	value	be	validated	against	a	column	in	another
table,	you	must	use	a	trigger.

Constraints	can	communicate	about	errors	only	through	standardized
system	error	messages.	If	your	application	requires	(or	can	benefit
from)	customized	messages	and	more	complex	error	handling,	you	must
use	a	trigger.

Triggers	can	cascade	changes	through	related	tables	in	the	database;	however,
these	changes	can	be	executed	more	efficiently	through	cascading	referential
integrity	constraints.

Triggers	can	disallow	or	roll	back	changes	that	violate	referential
integrity,	thereby	canceling	the	attempted	data	modification.	Such	a
trigger	might	go	into	effect	when	you	change	a	foreign	key	and	the	new
value	does	not	match	its	primary	key.	For	example,	you	can	create	an
insert	trigger	on	titleauthor.title_id	that	rolls	back	an	insert	if	the	new
value	does	not	match	some	value	in	titles.title_id.	However,	FOREIGN

KEY	constraints	are	usually	used	for	this	purpose.

If	constraints	exist	on	the	trigger	table,	they	are	checked	after	the
INSTEAD	OF	trigger	execution	but	prior	to	the	AFTER	trigger
execution.	If	the	constraints	are	violated,	the	INSTEAD	OF	trigger
actions	are	rolled	back	and	the	AFTER	trigger	is	not	executed.

See	Also

Cascading	Referential	Integrity	Constraints

CHECK	Constraints

Data	Integrity

Stored	Procedures

Using	Constraints,	Defaults,	and	Null	Values

Creating	and	Maintaining	Databases

Designing	Triggers
Microsoft®	SQL	Server™	2000	provides	two	options	when	designing	triggers:

INSTEAD	OF	triggers	are	executed	in	place	of	the	usual	triggering
action.	INSTEAD	OF	triggers	can	also	be	defined	on	views	with	one	or
more	base	tables,	where	they	can	extend	the	types	of	updates	a	view	can
support.

AFTER	triggers	are	executed	after	the	action	of	the	INSERT,	UPDATE,
or	DELETE	statement	is	performed.	Specifying	AFTER	is	the	same	as
specifying	FOR,	which	is	the	only	option	available	in	earlier	versions	of
SQL	Server.	AFTER	triggers	can	be	specified	only	on	tables.

This	table	compares	the	functionality	of	the	AFTER	and	INSTEAD	OF	triggers.

Function AFTER	trigger INSTEAD	OF	trigger
Applicability Tables Tables	and	views
Quantity	per	table	or
view

Multiple	per
triggering	action
(UPDATE,
DELETE,	and
INSERT)

One	per	triggering	action
(UPDATE,	DELETE,	and
INSERT)

Cascading	references No	restrictions	apply Are	not	allowed	on	tables	that
are	targets	of	cascaded
referential	integrity
constraints.

Execution After:

Constraint
processing

Declarative
referential
actions

Before:

Constraint
processing

In	place	of:

The	triggering	action

After:

inserted	and
deleted
tables
creation

The
triggering
action

inserted	and	deleted
tables	creation

Order	of	execution First	and	last
execution	may	be
specified

Not	applicable

text,	ntext,	and	image
column	references	in
inserted	and	deleted
tables

Not	allowed Allowed

See	Also

Using	the	inserted	and	deleted	Tables

Creating	and	Maintaining	Databases

Specifying	When	a	Trigger	Fires
You	can	specify	one	of	two	options	to	control	when	a	trigger	fires:

AFTER	triggers	fire	after	the	triggering	action	(INSERT,	UPDATE,	or
DELETE)	and	after	any	constraints	are	processed.	You	can	request
AFTER	triggers	by	specifying	either	the	AFTER	or	FOR	keywords.
Because	the	FOR	keyword	has	the	same	effect	as	AFTER,	triggers	with
the	FOR	keyword	are	also	classified	as	AFTER	triggers.

INSTEAD	OF	triggers	fire	in	place	of	the	triggering	action	and	before
constraints	are	processed.

Each	table	or	view	can	have	one	INSTEAD	OF	trigger	for	each	triggering	action
(UPDATE,	DELETE,	and	INSERT).	A	table	can	have	several	AFTER	triggers
for	each	triggering	action.

Examples

A.	Use	the	INSTEAD	OF	trigger	to	replace	the	standard
triggering	action

CREATE	TRIGGER	TableAInsertTrig	ON	TableA
INSTEAD	OF	INSERT
AS	...

B.	Use	the	AFTER	trigger	to	augment	the	standard	triggering
action

CREATE	TRIGGER	TableBDeleteTrig	ON	TableB
AFTER	DELETE
AS	...

C.	Use	the	FOR	trigger	to	augment	the	standard	triggering	action

--	This	statement	uses	the	FOR	keyword	to	generate	an	AFTER	trigger.
CREATE	TRIGGER	TableCUpdateTrig	ON	TableC
FOR	UPDATE
AS	...

Creating	and	Maintaining	Databases

Trigger	Execution
AFTER	triggers	are	never	executed	if	a	constraint	violation	occurs;	therefore,
these	triggers	cannot	be	used	for	any	processing	that	might	prevent	constraint
violations.

INSTEAD	OF	triggers	are	executed	instead	of	the	triggering	action.	These
triggers	are	executed	after	the	inserted	and	deleted	tables	reflecting	the	changes
to	the	base	table	are	created,	but	before	any	other	actions	are	taken.	They	are
executed	before	any	constraints,	so	can	perform	preprocessing	that	supplements
the	constraint	actions.

If	an	INSTEAD	OF	trigger	defined	on	a	table	executes	a	statement	against	the
table	that	would	usually	fire	the	INSTEAD	OF	trigger	again,	the	trigger	is	not
called	recursively.	Instead,	the	statement	is	processed	as	if	the	table	had	no
INSTEAD	OF	trigger	and	starts	the	chain	of	constraint	operations	and	AFTER
trigger	executions.	For	example,	if	a	trigger	is	defined	as	an	INSTEAD	OF
INSERT	trigger	for	a	table,	and	the	trigger	executes	an	INSERT	statement	on	the
same	table,	the	INSERT	statement	executed	by	the	INSTEAD	OF	trigger	does
not	call	the	trigger	again.	The	INSERT	executed	by	the	trigger	starts	the	process
of	performing	constraint	actions	and	firing	any	AFTER	INSERT	triggers	defined
for	the	table.

If	an	INSTEAD	OF	trigger	defined	on	a	view	executes	a	statement	against	the
view	that	would	usually	fire	the	INSTEAD	OF	trigger	again,	it	is	not	called
recursively.	Instead,	the	statement	is	resolved	as	modifications	against	the	base
tables	underlying	the	view.	In	this	case,	the	view	definition	must	meet	all	of	the
restrictions	for	an	updatable	view.	For	a	definition	of	updatable	views,	see
Modifying	Data	Through	a	View.	For	example,	if	a	trigger	is	defined	as	an
INSTEAD	OF	UPDATE	trigger	for	a	view,	and	the	trigger	executes	an	UPDATE
statement	referencing	the	same	view,	the	UPDATE	statement	executed	by	the
INSTEAD	OF	trigger	does	not	call	the	trigger	again.	The	UPDATE	executed	by
the	trigger	is	processed	against	the	view	as	if	the	view	did	not	have	an
INSTEAD	OF	trigger.	The	columns	changed	by	the	UPDATE	must	be	resolved
to	a	single	base	table.	Each	modification	to	an	underlying	base	table	starts	the
chain	of	applying	constraints	and	firing	AFTER	triggers	defined	for	the	table.

Trigger	performance	overhead	is	usually	low.	The	time	involved	in	running	a

trigger	is	spent	mostly	in	referencing	other	tables,	which	can	be	either	in
memory	or	on	the	database	device.	The	deleted	and	inserted	tables	are	always
in	memory.	The	location	of	other	tables	referenced	by	the	trigger	determines	the
amount	of	time	the	operation	requires.

Note		The	use	of	cursors	in	triggers	is	not	recommended	because	of	the
potentially	negative	impact	on	performance.	Use	rowset-based	logic	rather	than
cursors	to	design	a	trigger	that	affects	multiple	rows.

See	Also

Using	the	inserted	and	deleted	Tables

Creating	and	Maintaining	Databases

Designing	INSTEAD	OF	Triggers
The	primary	advantage	of	INSTEAD	OF	triggers	is	that	they	allow	views	that
would	not	be	updatable	support	updates.	A	view	comprising	multiple	base	tables
must	use	an	INSTEAD	OF	trigger	to	support	inserts,	updates	and	deletes	that
reference	data	in	the	tables.	Another	advantage	of	INSTEAD	OF	triggers	is	that
they	allow	you	to	code	logic	that	can	reject	parts	of	a	batch	while	allowing	other
parts	of	a	batch	succeed.

An	INSTEAD	OF	trigger	can	take	actions	such	as:

Ignoring	parts	of	a	batch.

Not	processing	a	part	of	a	batch	and	logging	the	problem	rows.

Taking	an	alternative	action	if	an	error	condition	is	encountered.

Note		INSTEAD	OF	DELETE	and	INSTEAD	OF	UPDATE	triggers	cannot	be
defined	on	a	table	that	has	a	foreign	key	defined	with	a	DELETE	or	UPDATE
action.

Coding	this	logic	as	part	of	an	INSTEAD	OF	trigger	prevents	all	applications
accessing	the	data	from	having	to	reimplement	the	logic.

In	the	following	sequence	of	Transact-SQL	statements,	an	INSTEAD	OF	trigger
updates	two	base	tables	from	a	view.	In	addition,	two	approaches	to	handling
errors	are	shown:

Duplicate	inserts	to	the	Person	table	are	ignored,	and	the	information
from	the	insert	is	logged	in	the	PersonDuplicates	table.

Inserts	of	duplicates	to	the	EmployeeTable	are	turned	into	an	UPDATE
statement	that	retrieves	the	current	information	into	the	EmployeeTable
without	generating	a	duplicate	key	violation.

The	Transact-SQL	statements	create	two	base	tables,	a	view,	a	table	to	record
errors,	and	the	INSTEAD	OF	trigger	on	the	view.	These	tables	separate	personal

and	business	data	and	are	the	base	tables	for	the	view:

CREATE	TABLE	Person
			(
				SSN									char(11)	PRIMARY	KEY,
				Name								nvarchar(100),
				Address					nvarchar(100),
				Birthdate			datetime
)

CREATE	TABLE	EmployeeTable
			(
				EmployeeID							int	PRIMARY	KEY,
				SSN														char(11)	UNIQUE,
				Department							nvarchar(10),
				Salary											money,
				CONSTRAINT	FKEmpPer	FOREIGN	KEY	(SSN)
				REFERENCES	Person	(SSN)
)

This	view	reports	all	relevant	data	from	the	two	tables	for	a	person:

CREATE	VIEW	Employee	AS
SELECT	P.SSN	as	SSN,	Name,	Address,
							Birthdate,	EmployeeID,	Department,	Salary
FROM	Person	P,	EmployeeTable	E
WHERE	P.SSN	=	E.SSN

You	can	record	attempts	to	insert	rows	with	duplicate	social	security	numbers.
The	PersonDuplicates	table	logs	the	inserted	values,	the	name	of	the	user	who
attempted	the	insert,	and	the	time	of	the	insert:

CREATE	TABLE	PersonDuplicates
			(
				SSN											char(11),

				Name										nvarchar(100),
				Address							nvarchar(100),
				Birthdate					datetime,
				InsertSNAME			nchar(100),
				WhenInserted		datetime
)

The	INSTEAD	OF	trigger	inserts	rows	into	multiple	base	tables	from	a	single
view.	Attempts	to	insert	rows	with	duplicate	social	security	numbers	are
recorded	in	the	PersonDuplicates	table.	Duplicate	rows	in	the	EmployeeTable
are	changed	to	update	statements.

CREATE	TRIGGER	IO_Trig_INS_Employee	ON	Employee
INSTEAD	OF	INSERT
AS
BEGIN
SET	NOCOUNT	ON
--	Check	for	duplicate	Person.	If	no	duplicate,	do	an	insert.
IF	(NOT	EXISTS	(SELECT	P.SSN
						FROM	Person	P,	inserted	I
						WHERE	P.SSN	=	I.SSN))
			INSERT	INTO	Person
						SELECT	SSN,Name,Address,Birthdate,Comment
						FROM	inserted
ELSE
--	Log	attempt	to	insert	duplicate	Person	row	in	PersonDuplicates	table.
			INSERT	INTO	PersonDuplicates
						SELECT	SSN,Name,Address,Birthdate,SUSER_SNAME(),GETDATE()
						FROM	inserted
--	Check	for	duplicate	Employee.	If	no	duplicate,	do	an	insert.
IF	(NOT	EXISTS	(SELECT	E.SSN
						FROM	EmployeeTable	E,	inserted
						WHERE	E.SSN	=	inserted.SSN))
			INSERT	INTO	EmployeeTable

						SELECT	EmployeeID,SSN,	Department,	Salary,Comment
						FROM	inserted
ELSE
--If	duplicate,	change	to	UPDATE	so	that	there	will	not
--be	a	duplicate	key	violation	error.
			UPDATE	EmployeeTable
						SET	EmployeeID	=	I.EmployeeID,
										Department	=	I.Department,
										Salary	=	I.Salary,
										Comment	=	I.Comment
			FROM	EmployeeTable	E,	inserted	I
			WHERE	E.SSN	=	I.SSN
END

Creating	and	Maintaining	Databases

Creating	a	Trigger
Before	you	create	a	trigger,	consider	that:

The	CREATE	TRIGGER	statement	must	be	the	first	statement	in	the
batch.	All	other	statements	that	follow	in	that	batch	are	interpreted	as
part	of	the	definition	of	the	CREATE	TRIGGER	statement.

Permission	to	create	triggers	defaults	to	the	table	owner,	who	cannot
transfer	it	to	other	users.

Triggers	are	database	objects,	and	their	names	must	follow	the	rules	for
identifiers.

You	can	create	a	trigger	only	in	the	current	database,	although	a	trigger
can	reference	objects	outside	of	the	current	database.

A	trigger	cannot	be	created	on	a	temporary	or	system	table,	although
triggers	can	reference	temporary	tables.	System	tables	should	not	be
referenced;	use	the	Information	Schema	Views	instead.	For	more
information,	see	Information	Schema	Views.

INSTEAD	OF	DELETE	and	INSTEAD	OF	UPDATE	triggers	cannot
be	defined	on	a	table	that	has	a	foreign	key	defined	with	a	DELETE	or
UPDATE	action.

Although	a	TRUNCATE	TABLE	statement	is	like	a	DELETE	statement
without	a	WHERE	clause	(it	deletes	all	rows),	it	does	not	cause
DELETE	triggers	to	fire	because	the	TRUNCATE	TABLE	statement	is
not	logged.

The	WRITETEXT	statement	does	not	cause	the	INSERT	or	UPDATE

JavaScript:hhobj_1.Click()

triggers	to	fire.

When	you	create	a	trigger,	specify:

The	name.

The	table	upon	which	the	trigger	is	defined.

When	the	trigger	is	to	fire.

The	data	modification	statements	that	activate	the	trigger.	Valid	options
are	INSERT,	UPDATE,	or	DELETE.	More	than	one	data	modification
statement	can	activate	the	same	trigger.	For	example,	a	trigger	can	be
activated	by	an	INSERT	and	an	UPDATE	statement.

The	programming	statements	that	perform	the	trigger	action.

Multiple	Triggers

A	table	can	have	multiple	AFTER	triggers	of	a	given	type	provided	they	have
different	names;	each	trigger	can	perform	numerous	functions.	However,	each
trigger	can	apply	to	only	one	table,	although	a	single	trigger	can	apply	to	any
subset	of	three	user	actions	(UPDATE,	INSERT,	and	DELETE).

A	table	can	have	only	one	INSTEAD	OF	trigger	of	a	given	type.

Trigger	Permissions	and	Ownership
CREATE	TRIGGER	permissions	default	to	the	table	owner	on	which	the	trigger
is	defined,	the	sysadmin	fixed	server	role,	and	members	of	the	db_owner	and
db_ddladmin	fixed	database	roles,	and	are	not	transferable.

If	an	INSTEAD	OF	trigger	is	created	on	a	view,	the	ownership	chain	is	broken	if
the	view	owner	does	not	also	own	the	base	tables	referenced	by	the	view	and
trigger.	For	a	base	table	not	owned	by	the	view	owner,	the	table	owner	must
separately	grant	the	necessary	permissions	to	anybody	reading	or	updating	the
view.	If	the	same	user	owns	both	the	view	and	the	underlying	base	tables,	they

have	to	grant	other	users	permissions	only	on	the	view,	not	individual	base
tables.	For	more	information,	see	Using	Ownership	Chains.

To	create	a	trigger

Transact-SQL

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Programming	Triggers
Almost	any	Transact-SQL	statement	that	can	be	written	as	a	batch	can	be	used	to
create	a	trigger,	except	for	these:

ALTER	DATABASE CREATE	DATABASE DISK	INIT
DISK	RESIZE DROP	DATABASE LOAD	DATABASE
LOAD	LOG RECONFIGURE RESTORE

DATABASE
RESTORE	LOG 	 	

IMPORTANT		The	DISK	RESIZE,	DISK	INIT,	LOAD	DATABASE,	and	LOAD
LOG	statements	are	included	in	Microsoft®	SQL	Server	2000™	for	backward
compatibility	only,	and	may	not	be	supported	in	the	future.

Encrypting	Trigger	Definitions
If	you	want	to	ensure	that	other	users	cannot	view	the	trigger	definition,	you	can
use	the	WITH	ENCRYPTION	clause.	The	trigger	definition	is	then	stored	in	an
unreadable	form.

Once	encrypted,	the	definition	of	the	trigger	cannot	be	decrypted	and	cannot	be
viewed	by	anyone,	including	the	owner	of	the	trigger	or	the	system
administrator.

SET	Statement	Options
When	an	ODBC	application	connects	to	SQL	Server,	the	server	automatically
sets	these	options	for	the	session:

SET	QUOTED_IDENTIFIER	ON

SET	TEXTSIZE	2147483647

SET	ANSI_DEFAULTS	ON

SET	CURSOR_CLOSE_ON_COMMIT	OFF

SET	IMPLICIT_TRANSACTIONS	OFF

These	settings	increase	the	portability	of	ODBC	applications.	Because	DB-
Library–based	applications	generally	do	not	set	these	options,	triggers	should	be
tested	with	the	SET	options	listed	above	set	to	both	ON	and	OFF.	This	ensures
that	the	triggers	work	correctly	regardless	of	the	options	a	particular	connection
may	have	set	when	it	invokes	the	trigger.	A	trigger	that	requires	a	particular
setting	for	one	of	these	options	should	issue	a	SET	statement	at	the	start	of	the
trigger.	This	SET	statement	remains	in	effect	only	for	the	execution	of	the
trigger;	when	the	trigger	completes,	the	original	setting	is	restored.

Testing	for	Changes	to	Specific	Columns
The	IF	UPDATE	(column_name)	clause	in	the	definition	of	a	trigger	can	be	used
to	determine	if	an	INSERT	or	UPDATE	statement	affected	a	specific	column	in
the	table.	The	clause	evaluates	to	TRUE	whenever	the	column	is	assigned	a
value.

Note		Because	a	specific	value	in	a	column	cannot	be	deleted	using	the	DELETE
statement,	the	IF	UPDATE	clause	does	not	apply	to	the	DELETE	statement.

Alternatively,	the	IF	COLUMNS_UPDATED()	clause	can	be	used	to	check
which	columns	in	a	table	were	updated	by	an	INSERT	or	UPDATE	statement.
This	clause	uses	an	integer	bitmask	to	specify	the	columns	to	test.	For	more
information,	see	CREATE	TRIGGER.

Examples

A.	Use	the	IF	UPDATE	clause	to	test	data	modifications
This	example	creates	an	INSERT	trigger	my_trig	on	table	my_table	and	tests
whether	column	b	was	affected	by	any	INSERT	statements.

CREATE	TABLE	my_table*
(a	int	NULL,	b	int	NULL)
GO

JavaScript:hhobj_1.Click()

CREATE	TRIGGER	my_trig
ON	my_table
FOR	INSERT
AS
IF	UPDATE(b)
			PRINT	'Column	b	Modified'
GO

B.	Use	the	COLUMNS	UPDATED()	clause	to	test	data
modifications
This	example	obtains	similar	results	using	the	COLUMNS_UPDATED()	clause.

CREATE	TRIGGER	my_trig2
ON	my_table
FOR	INSERT
AS
IF	(COLUMNS_UPDATED()	&	2	=	2)
			PRINT	'Column	b	Modified'
GO

Deferred	Name	Resolution
Triggers	can	refer	to	tables	that	do	not	exist	at	trigger	creation	time.	This	is
called	deferred	name	resolution.	For	more	information	about	deferred	name
resolution,	see	Deferred	Name	Resolution	and	Compilation.

Note		If	an	object	referenced	by	a	trigger	is	deleted	or	renamed,	an	error	is
returned	when	the	trigger	is	executed.	However,	if	an	object	referenced	in	a
trigger	is	replaced	with	an	object	of	the	same	name,	the	trigger	executes	without
having	to	be	re-created.	For	example,	if	trigger	trig1	references	table	test1,	and
test1	is	deleted	and	a	different	table	called	test1	is	created,	trig1	now	references
the	new	table.

Returning	Results

It	is	recommended	that	a	trigger	not	return	any	results.	This	is	because	special
handling	for	these	returned	results	must	be	written	into	every	application	in
which	modifications	to	the	trigger	table	are	allowed.	To	prevent	any	results	from
being	returned	from	a	trigger,	do	not	include	either	SELECT	statements	or
variable	assignments	in	the	definition	of	the	trigger.	If	variable	assignment	must
occur	in	a	trigger,	use	a	SET	NOCOUNT	statement	at	the	beginning	of	the
trigger	to	eliminate	the	return	of	any	result	sets.

See	Also

CREATE	TRIGGER

SELECT

SET

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Using	Triggers	that	Include	ROLLBACK
TRANSACTION
When	triggers	that	include	ROLLBACK	TRANSACTION	statements	are
executed	from	a	batch,	they	cancel	the	entire	batch.	In	the	following	example,	if
the	INSERT	statement	fires	a	trigger	that	includes	a	ROLLBACK
TRANSACTION,	the	DELETE	statement	is	not	executed	because	the	batch	is
canceled:

/*	Start	of	Batch	*/
INSERT	employee	VALUES	('XYZ12345M',	'New',	'M',	'Employee',	1,	1,	'9952',	'6/1/95')	--	Causes	trigger	to	fire	and	ROLLBACK	TRANSACTION.
DELETE	employee	WHERE	emp_id	=	'PMA42628M'
GO

If	triggers	that	include	ROLLBACK	TRANSACTION	statements	are	fired	from
within	a	user-defined	transaction,	the	ROLLBACK	TRANSACTION	rolls	back
the	entire	transaction.	In	this	example,	if	the	INSERT	statement	fires	a	trigger
that	includes	a	ROLLBACK	TRANSACTION,	the	UPDATE	statement	is	also
rolled	back:

/*	Start	of	Transaction	*/
BEGIN	TRANSACTION
UPDATE	employee	SET	hire_date	=	'7/1/94'	WHERE	emp_id	=	'VPA30890F'
INSERT	employee	VALUES	('XYZ12345M',	'New',	'M',	'Employee',	1,	1,	'9952',	'6/1/95')	--	Causes	trigger	to	fire	and	ROLLBACK	TRANSACTION

See	Also

Rollbacks	in	Stored	Procedures	and	Triggers

ROLLBACK	TRANSACTION

Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	and	Maintaining	Databases

Using	the	inserted	and	deleted	Tables
Two	special	tables	are	used	in	trigger	statements:	the	deleted	table	and	the
inserted	table.	Microsoft®	SQL	Server™	2000	automatically	creates	and
manages	these	tables.	You	can	use	these	temporary,	memory-resident	tables	to
test	the	effects	of	certain	data	modifications	and	to	set	conditions	for	trigger
actions;	however,	you	cannot	alter	the	data	in	the	tables	directly.

The	inserted	and	deleted	tables	are	used	primarily	in	triggers	to:

Extend	referential	integrity	between	tables.

Insert	or	update	data	in	base	tables	underlying	a	view.

Check	for	errors	and	take	action	based	on	the	error.

Find	the	difference	between	the	state	of	a	table	before	and	after	a	data
modification	and	take	action(s)	based	on	that	difference.

The	deleted	table	stores	copies	of	the	affected	rows	during	DELETE	and
UPDATE	statements.	During	the	execution	of	a	DELETE	or	UPDATE
statement,	rows	are	deleted	from	the	trigger	table	and	transferred	to	the	deleted
table.	The	deleted	table	and	the	trigger	table	ordinarily	have	no	rows	in
common.

The	inserted	table	stores	copies	of	the	affected	rows	during	INSERT	and
UPDATE	statements.	During	an	insert	or	update	transaction,	new	rows	are	added
simultaneously	to	both	the	inserted	table	and	the	trigger	table.	The	rows	in	the
inserted	table	are	copies	of	the	new	rows	in	the	trigger	table.

An	update	transaction	is	similar	to	a	delete	operation	followed	by	an	insert
operation;	the	old	rows	are	copied	to	the	deleted	table	first,	and	then	the	new
rows	are	copied	to	the	trigger	table	and	to	the	inserted	table.

When	you	set	trigger	conditions,	use	the	inserted	and	deleted	tables
appropriately	for	the	action	that	fired	the	trigger.	Although	referencing	the
deleted	table	while	testing	an	INSERT,	or	the	inserted	table	while	testing	a

DELETE	does	not	cause	any	errors,	these	trigger	test	tables	do	not	contain	any
rows	in	these	cases.

Note		If	trigger	actions	depend	on	the	number	of	rows	a	data	modification
effects,	use	tests	(such	as	an	examination	of	@@ROWCOUNT)	for	multirow
data	modifications	(an	INSERT,	DELETE,	or	UPDATE	based	on	a	SELECT
statement),	and	take	appropriate	actions.

SQL	Server	2000	does	not	allow	text,	ntext,	or	image	column	references	in	the
inserted	and	deleted	tables	for	AFTER	triggers;	however,	these	column
references	are	allowed	for	INSTEAD	OF	triggers.	For	more	information,	see
CREATE	TRIGGER.

Using	the	inserted	and	deleted	Tables	in	INSTEAD	OF	Triggers
The	inserted	and	deleted	tables	passed	to	INSTEAD	OF	triggers	defined	on
tables	follow	the	same	rules	as	the	inserted	and	deleted	tables	passed	to	AFTER
triggers.	The	format	of	the	inserted	and	deleted	tables	is	the	same	as	the	format
of	the	table	on	which	the	INSTEAD	OF	trigger	is	defined.	Each	column	in	the
inserted	and	deleted	tables	maps	directly	to	a	column	in	the	base	table.

The	rules	regarding	when	an	INSERT	or	UPDATE	statement	referencing	a	table
with	an	INSTEAD	OF	trigger	must	supply	values	for	columns	are	the	same	as	if
the	table	did	not	have	an	INSTEAD	OF	trigger:

Values	cannot	be	specified	for	computed	columns	or	columns	with	a
timestamp	data	type.

Values	cannot	be	specified	for	columns	with	an	IDENTITY	property,
unless	IDENTITY_INSERT	is	ON	for	that	column.	When
IDENTITY_INSERT	is	ON,	INSERT	statements	must	supply	a	value.

INSERT	statements	must	supply	values	for	all	NOT	NULL	columns
that	do	not	have	DEFAULT	constraints.

For	any	columns	except	computed,	identity,	or	timestamp	columns,
values	are	optional	for	any	column	that	allows	nulls,	or	any	NOT	NULL
column	that	has	a	DEFAULT	definition.

JavaScript:hhobj_1.Click()

When	an	INSERT,	UPDATE,	or	DELETE	statement	references	a	view	that	has
an	INSTEAD	OF	trigger,	the	database	engine	calls	the	trigger	instead	of	taking
any	direct	action	against	any	table.	The	trigger	must	use	the	information
presented	in	the	inserted	and	deleted	tables	to	build	any	statements	needed	to
implement	the	requested	action	in	the	base	tables	even	when	the	format	of	the
information	in	the	inserted	and	deleted	tables	built	for	the	view	is	different	than
the	format	of	the	data	in	the	base	tables.

The	format	of	the	inserted	and	deleted	tables	passed	to	an	INSTEAD	OF	trigger
defined	on	a	view	matches	the	select	list	of	the	SELECT	statement	defined	for
the	view.	For	example:

CREATE	VIEW	EmployeeNames	(EmployeeID,	LName,	FName)
AS
SELECT	EmployeeID,	LastName,	FirstName
FROM	Northwind.dbo.Employees

The	result	set	for	this	view	has	three	columns:	an	int	column	and	two	nvarchar
columns.	The	inserted	and	deleted	tables	passed	to	an	INSTEAD	OF	trigger
defined	on	the	view	also	have	an	int	column	named	EmployeeID,	an	nvarchar
column	named	LName,	and	an	nvarchar	column	named	FName.

The	select	list	of	a	view	can	also	contain	expressions	that	do	not	map	directly	to
a	single	base	table	column.	Some	view	expressions,	such	as	a	constant	or
function	invocation,	may	not	reference	any	columns	and	can	be	ignored.
Complex	expressions	can	reference	multiple	columns,	yet	the	inserted	and
deleted	tables	have	only	one	value	for	each	inserted	row.	The	same	issues	apply
to	simple	expressions	in	a	view	if	they	reference	a	computed	column	that	has	a
complex	expression.	An	INSTEAD	OF	trigger	on	the	view	must	handle	these
types	of	expressions.	For	more	information,	see	Expressions	and	Computed
Columns	in	INSTEAD	OF	Triggers	on	Views.

Creating	and	Maintaining	Databases

Multirow	Considerations
An	important	consideration	to	keep	in	mind	when	writing	the	code	for	a	trigger
is	that	the	statement	that	causes	the	trigger	to	fire	can	be	a	single	statement	that
affects	multiple	rows	of	data,	rather	than	a	single	row.	This	is	common	for
UPDATE	and	DELETE	triggers	because	these	statements	often	affect	multiple
rows.	It	is	less	common	for	INSERT	triggers,	because	the	basic	INSERT
statement	adds	only	a	single	row.	However,	because	an	INSERT	trigger	can	be
fired	by	an	INSERT	INTO	(table_name)	SELECT	statement,	the	insertion	of
many	rows	may	result	in	a	single	trigger	invocation.

Multirow	considerations	are	particularly	important	when	the	function	of	a	trigger
is	to	automatically	recalculate	summary	values	from	one	table	and	store	the
results	in	another	for	ongoing	tallies.

Note		The	use	of	cursors	in	triggers	is	not	recommended	because	of	the
potentially	negative	impact	on	performance.	Use	rowset-based	logic	rather	than
cursors	to	design	a	trigger	that	affects	multiple	rows.

Examples
The	triggers	in	the	following	examples	are	designed	to	store	a	running	total	of	a
column	in	another	table.

A.	Store	a	running	total	for	a	single-row	insert
The	first	version	of	the	trigger	works	well	for	a	single-row	insert,	when	a	row	of
data	is	loaded	into	the	sales	table.	An	INSERT	statement	fires	the	trigger,	and	the
new	row	is	loaded	into	the	inserted	table	for	the	duration	of	the	trigger
execution.	The	UPDATE	statement	reads	the	qty	column	value	for	the	row	and
adds	it	to	the	existing	value	in	the	ytd_sales	column	in	the	titles	table.	The
WHERE	clause	ensures	that	the	updated	row	in	the	sales	table	matches	the
title_id	of	the	row	in	the	inserted	table.

--	Trigger	is	valid	for	single-row	inserts.
CREATE	TRIGGER	intrig
ON	sales

AFTER	INSERT	AS

			UPDATE	titles
			SET	ytd_sales	=	ytd_sales	+	qty
			FROM	inserted
			WHERE	titles.title_id	=	inserted.title_id

B.	Store	a	running	total	for	a	multirow	or	single	row	insert
In	the	case	of	a	multirow	insert,	the	trigger	in	Example	A	might	not	operate
correctly;	the	expression	to	the	right	of	an	assignment	expression	in	an	UPDATE
statement	(ytd_sales	+	qty)	can	be	only	a	single	value,	not	a	list	of	values.	So
the	effect	of	the	trigger	is	to	obtain	a	value	from	any	single	row	in	the	inserted
table	and	add	it	to	the	existing	ytd_sales	value	in	the	titles	table	for	a	given
title_id	value.	This	might	not	have	the	desired	effect	if	a	single	title_id	value
occurred	more	than	once	in	the	inserted	table.

To	update	the	titles	table	properly,	the	trigger	has	to	accommodate	the	possibility
of	multiple	rows	in	the	inserted	table.	This	can	be	done	with	the	SUM	function
that	calculates	the	total	qty	for	a	group	of	rows	in	the	inserted	table	for	each
title_id.	The	SUM	function	is	placed	in	a	correlated	subquery	(the	SELECT
statement	in	parentheses),	which	returns	a	single	value	for	each	title_id	in	the
inserted	table	that	matches	or	is	correlated	with	a	title_id	in	the	titles	table.

--	Trigger	is	valid	for	multirow	and	single-row	inserts.
CREATE	TRIGGER	intrig
ON	sales
AFTER	INSERT	AS

			UPDATE	titles
			SET	ytd_sales	=	ytd_sales	+
						(SELECT	SUM(qty)	--	Correlated	subquery.
						FROM	inserted
						WHERE	titles.title_id	=	inserted.title_id)
			WHERE	titles.title_id	IN
						(SELECT	title_id	FROM	inserted)

This	trigger	also	works	correctly	in	a	single-row	insert;	the	sum	of	the	qty	value
column	is	the	sum	of	a	single	row.	However,	with	this	trigger	the	correlated
subquery	and	the	IN	operator	used	in	the	WHERE	clause	require	additional
processing	from	Microsoft®	SQL	Server™	2000,	which	is	unnecessary	for	a
single-row	insert.

C.	Store	a	running	total	based	on	the	type	of	insert
You	can	change	the	trigger	to	use	the	method	optimal	for	the	number	of	rows.
For	example,	the	@@ROWCOUNT	function	can	be	used	in	the	logic	of	the
trigger	to	distinguish	between	a	single	and	a	multirow	insert.

--	Trigger	valid	for	multirow	and	single	row	inserts
--	and	optimal	for	single	row	inserts.
CREATE	TRIGGER	intrig
ON	sales
FOR	INSERT	AS
IF	@@ROWCOUNT	=	1
BEGIN
			UPDATE	titles
			SET	ytd_sales	=	ytd_sales	+	qty
			FROM	inserted
			WHERE	titles.title_id	=	inserted.title_id
END
ELSE
BEGIN
			UPDATE	titles
			SET	ytd_sales	=	ytd_sales	+
			(SELECT	SUM(qty)
						FROM	inserted
						WHERE	titles.title_id	=	inserted.title_id)
			WHERE	titles.title_id	IN
						(SELECT	title_id	FROM	inserted)
END

Creating	and	Maintaining	Databases

Conditional	INSERT	Trigger
A	trigger	rejects	or	accepts	each	data	modification	transaction	as	a	whole.
However,	you	do	not	have	to	roll	back	all	data	modifications	simply	because
some	of	them	are	unacceptable.	Using	a	correlated	subquery	in	a	trigger	can
force	the	trigger	to	examine	the	modified	rows	one	by	one.

Examples

A.	Use	an	AFTER	INSERT	trigger
The	following	example	assumes	the	existence	of	a	table	called	newsale	in	the
pubs	database.	This	the	CREATE	statement	for	newsale:

CREATE	TABLE	newsale
			(stor_id	char(4),
			ord_num	varchar(20),
			date	datetime,
			qty	smallint,
			payterms	varchar(12),
			title_id	tid)

If	you	want	to	examine	each	of	the	records	you	are	trying	to	insert,	the	trigger
conditionalinsert	analyzes	the	insert	row	by	row,	and	then	deletes	the	rows	that
do	not	have	a	title_id	in	titles.

CREATE	TRIGGER	conditionalinsert
ON	sales
AFTER	INSERT	AS
IF
(SELECT	COUNT(*)	FROM	titles,	inserted
WHERE	titles.title_id	=	inserted.title_id)	<>	@@ROWCOUNT
BEGIN
			DELETE	sales	FROM	sales,	inserted
			WHERE	sales.title_id	=	inserted.title_id	AND

						inserted.title_id	NOT	IN
									(SELECT	title_id
									FROM	titles)
			PRINT	'Only	sales	records	with	matching	title_ids	added.'
END

When	unacceptable	titles	have	been	inserted,	the	transaction	is	not	rolled	back;
instead,	the	trigger	deletes	the	unwanted	rows.	This	ability	to	delete	rows	that
have	been	inserted	relies	on	the	order	in	which	processing	occurs	when	triggers
are	fired.	First,	rows	are	inserted	into	the	sales	table	and	the	inserted	table,	and
then	the	trigger	fires.

To	test	the	trigger,	insert	four	rows	in	the	newsale	table.	Two	of	the	newsale
rows	have	title_ids	that	do	not	match	any	of	those	already	in	the	titles	table:

newsale

stor_id ord_num date qty payterms title_id
------- -------- ------------------- --- -------- --------
7066 QA7442.3 Jul	25	1995	8:35AM75 Net	30 PS1372
7066 QA7442.3 Jul	24	1995	8:35AM75 Net	60 BU7832
7067 D4482 Jul	27	1995

12:00AM
10 Net	30 PSxxxx

7131 N914008 Jul	27	1995
12:00AM

20 Net	30 PSyyyy

Next,	insert	data	from	newsale	into	sales.	The	statement	looks	like	this:

INSERT	sales
SELECT	*	FROM	newsale

The	title_ids	PSxxxx	and	PSyyyy	do	not	match	any	in	the	titles	table,	and	the
conditionalinsert	trigger	deletes	these	two	rows	from	the	sales	and	inserted
tables.

Creating	and	Maintaining	Databases

Specifying	First	and	Last	Triggers
You	can	specify	that	one	of	the	AFTER	triggers	associated	with	a	table	be	either
the	first	AFTER	trigger	or	the	last	AFTER	trigger	executed	for	each	of	the
INSERT,	DELETE,	and	UPDATE	triggering	actions.	The	AFTER	triggers	that
are	fired	between	the	first	and	last	triggers	are	executed	in	undefined	order.

To	specify	the	order	for	an	AFTER	trigger,	use	the	sp_settriggerorder	stored
procedure.	The	options	available	are:

First

Specifies	that	the	trigger	is	the	first	AFTER	trigger	fired	for	a	triggering
action.

Last

Specifies	that	the	trigger	is	the	last	AFTER	trigger	fired	for	a	triggering
action.

None

Specifies	that	there	is	no	specific	order	in	which	the	trigger	should	be
fired.	Used	mainly	to	reset	a	trigger	from	being	either	first	or	last.

This	is	an	example	of	using	sp_settriggerorder:

sp_settriggerorder	@triggername	=	'MyTrigger',	@order	=	'first',	@stmttype	=	'UPDATE'

IMPORTANT		The	first	and	last	triggers	must	be	two	different	triggers.

A	table	may	have	INSERT,	UPDATE,	and	DELETE	triggers	defined	on	it	at	the
same	time.	Each	statement	type	can	have	its	own	first	and	last	triggers,	but	they
cannot	be	the	same	triggers.

If	the	first	or	last	trigger	defined	for	a	table	does	not	cover	a	triggering	action,
such	as	not	covering	FOR	UPDATE,	FOR	DELETE,	or	FOR	INSERT,	there	is
no	first	or	last	trigger	for	the	missing	actions.

INSTEAD	OF	triggers	cannot	be	specified	as	first	or	last	triggers.	INSTEAD	OF
triggers	are	fired	before	updates	are	made	to	the	underlying	tables.	However,	if

updates	are	made	by	an	INSTEAD	OF	trigger	to	underlying	tables,	the	updates
occur	after	triggers	defined	on	the	table,	including	the	first	trigger.	For	example,
if	an	INSTEAD	OF	trigger	on	a	view	updates	a	base	table	and	the	base	table
contains	three	triggers,	the	three	triggers	in	the	table	fire	before	the	data	is
inserted	by	the	INSTEAD	OF	trigger.	For	more	information,	see	Specifying
When	a	Trigger	Fires.

If	an	ALTER	TRIGGER	statement	changes	a	first	or	last	trigger,	the	First	or
Last	attribute	is	dropped	and	the	order	value	is	set	to	None;	the	order	must	be
reset	with	sp_settriggerorder.

The	OBJECTPROPERTY	function	reports	whether	a	trigger	is	a	first	or	last
trigger	using	the	properties	ExecIsFirstTrigger	and	ExecIsLastTrigger.

Replication	generates	a	first	trigger	automatically	for	any	table	that	is	an
immediate	or	queued	update	subscriber.	Replication	requires	that	its	trigger	is	the
first	trigger.	Replication	raises	an	error	if	you	try	to	make	a	table	that	has	a	first
trigger	an	immediate	or	queued	update	Subscriber.	If	you	make	a	user-defined
trigger	a	first	trigger	after	a	table	has	been	made	an	immediate	or	queued	update
Subscriber,	sp_settriggerorder	returns	an	error.	If	you	use	ALTER	on	the
replication	trigger,	or	use	sp_settriggerorder	to	change	the	replication	trigger	to
a	last	or	none	trigger,	the	subscription	does	not	work	correctly.

See	Also

OBJECTPROPERTY

sp_settriggerorder

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Using	Nested	Triggers
Triggers	are	nested	when	a	trigger	performs	an	action	that	initiates	another
trigger,	which	can	initiate	another	trigger,	and	so	on.	Triggers	can	be	nested	up	to
32	levels,	and	you	can	control	whether	triggers	can	be	nested	through	the	nested
triggers	server	configuration	option.

If	nested	triggers	are	allowed	and	a	trigger	in	the	chain	starts	an	infinite	loop,	the
nesting	level	is	exceeded	and	the	trigger	terminates.

You	can	use	nested	triggers	to	perform	useful	housekeeping	functions	such	as
storing	a	backup	copy	of	rows	affected	by	a	previous	trigger.	For	example,	you
can	create	a	trigger	on	titleauthor	that	saves	a	backup	copy	of	the	titleauthor
rows	that	the	delcascadetrig	trigger	deleted.	With	the	delcascadetrig	trigger	in
effect,	deleting	title_id	PS2091	from	titles	deletes	the	corresponding	row	or
rows	from	titleauthor.	To	save	the	data,	you	create	a	DELETE	trigger	on
titleauthor	that	saves	the	deleted	data	into	another	separately	created	table,
del_save.	For	example:

CREATE	TRIGGER	savedel
			ON	titleauthor
FOR	DELETE
AS
			INSERT	del_save
			SELECT	*	FROM	deleted

Using	nested	triggers	in	an	order-dependent	sequence	is	not	recommended.	Use
separate	triggers	to	cascade	data	modifications.

Note		Because	triggers	execute	within	a	transaction,	a	failure	at	any	level	of	a	set
of	nested	triggers	cancels	the	entire	transaction,	and	all	data	modifications	are
rolled	back.	Include	PRINT	statements	in	your	triggers	so	that	you	can	determine
where	the	failure	occurred.

Recursive	Triggers
A	trigger	does	not	call	itself	recursively	unless	the	RECURSIVE_TRIGGERS

database	option	is	set.	There	are	two	types	of	recursion:

Direct	recursion

Occurs	when	a	trigger	fires	and	performs	an	action	that	causes	the	same
trigger	to	fire	again.	For	example,	an	application	updates	table	T3,
which	causes	trigger	Trig3	to	fire.	Trig3	updates	table	T3	again,	which
causes	trigger	Trig3	to	fire	again.

Indirect	recursion

Occurs	when	a	trigger	fires	and	performs	an	action	that	causes	a	trigger
on	another	table	to	fire.	This	second	trigger	causes	an	update	to	occur
on	the	original	table,	which	causes	the	original	trigger	to	fire	again.	For
example,	an	application	updates	table	T1,	which	causes	trigger	Trig1	to
fire.	Trig1	updates	table	T2,	which	causes	trigger	Trig2	to	fire.	Trig2	in
turn	updates	table	T1	which	causes	Trig1	to	fire	again.

Only	direct	recursion	is	prevented	when	the	RECURSIVE_TRIGGERS	database
option	is	set	to	OFF.	To	disable	indirect	recursion,	set	the	nested	triggers	server
option	to	0,	as	well.

Examples

A.	Use	recursive	triggers	to	solve	self-referencing	relationships
One	use	for	recursive	triggers	is	on	a	table	with	a	self-referencing	relationship
(also	known	as	transitive	closure).	For	example,	the	table	emp_mgr	defines:

An	employee	(emp)	in	a	company.

The	manager	for	each	employee	(mgr).

The	total	number	of	employees	in	the	organizational	tree	reporting	to
each	employee	(NoOfReports).

A	recursive	UPDATE	trigger	can	be	used	to	keep	the	NoOfReports	column	up-
to-date	as	new	employee	records	are	inserted.	The	INSERT	trigger	updates	the
NoOfReports	column	of	the	manager	record,	which	recursively	updates	the

NoOfReports	column	of	other	records	up	the	management	hierarchy.

USE	pubs
GO
--	Turn	recursive	triggers	ON	in	the	database.
ALTER	DATABASE	pubs
			SET	RECURSIVE_TRIGGERS	ON
GO
CREATE	TABLE	emp_mgr	(
			emp	char(30)	PRIMARY	KEY,
				mgr	char(30)	NULL	FOREIGN	KEY	REFERENCES	emp_mgr(emp),
				NoOfReports	int	DEFAULT	0
)
GO
CREATE	TRIGGER	emp_mgrins	ON	emp_mgr
FOR	INSERT
AS
DECLARE	@e	char(30),	@m	char(30)
DECLARE	c1	CURSOR	FOR
			SELECT	emp_mgr.emp
			FROM			emp_mgr,	inserted
			WHERE	emp_mgr.emp	=	inserted.mgr

OPEN	c1
FETCH	NEXT	FROM	c1	INTO	@e
WHILE	@@fetch_status	=	0
BEGIN
			UPDATE	emp_mgr
			SET	emp_mgr.NoOfReports	=	emp_mgr.NoOfReports	+	1	--	Add	1	for	newly
			WHERE	emp_mgr.emp	=	@e																												--	added	employee.

			FETCH	NEXT	FROM	c1	INTO	@e
END
CLOSE	c1

DEALLOCATE	c1
GO
--	This	recursive	UPDATE	trigger	works	assuming:
--			1.	Only	singleton	updates	on	emp_mgr.
--			2.	No	inserts	in	the	middle	of	the	org	tree.
CREATE	TRIGGER	emp_mgrupd	ON	emp_mgr	FOR	UPDATE
AS
IF	UPDATE	(mgr)
BEGIN
			UPDATE	emp_mgr
			SET	emp_mgr.NoOfReports	=	emp_mgr.NoOfReports	+	1	--	Increment	mgr's
			FROM	inserted																												--	(no.	of	reports)	by
			WHERE	emp_mgr.emp	=	inserted.mgr									--	1	for	the	new	report.

			UPDATE	emp_mgr
			SET	emp_mgr.NoOfReports	=	emp_mgr.NoOfReports	-	1	--	Decrement	mgr's
			FROM	deleted																													--	(no.	of	reports)	by	1
			WHERE	emp_mgr.emp	=	deleted.mgr										--	for	the	new	report.
END
GO
--	Insert	some	test	data	rows.
INSERT	emp_mgr(emp,	mgr)	VALUES	('Harry',	NULL)
INSERT	emp_mgr(emp,	mgr)	VALUES	('Alice',	'Harry')
INSERT	emp_mgr(emp,	mgr)	VALUES	('Paul',	'Alice')
INSERT	emp_mgr(emp,	mgr)	VALUES	('Joe',	'Alice')
INSERT	emp_mgr(emp,	mgr)	VALUES	('Dave',	'Joe')
GO
SELECT	*	FROM	emp_mgr
GO
--	Change	Dave's	manager	from	Joe	to	Harry
UPDATE	emp_mgr	SET	mgr	=	'Harry'
WHERE	emp	=	'Dave'
GO

SELECT	*	FROM	emp_mgr
GO

Here	are	the	results	before	the	update:

emp																												mgr																											NoOfReports
------------------------------	-----------------------------	-----------
Alice																										Harry																										2
Dave																											Joe																												0
Harry																										NULL																											1
Joe																												Alice																										1
Paul																											Alice																										0

Here	are	the	results	after	the	update:

emp																												mgr																											NoOfReports
------------------------------	-----------------------------	-----------
Alice																										Harry																										2
Dave																											Harry																										0
Harry																										NULL																											2
Joe																												Alice																										0
Paul																											Alice																										0

To	set	the	nested	triggers	option

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Using	INSTEAD	OF	Triggers
INSTEAD	OF	triggers	override	the	standard	actions	of	the	triggering	statement
(INSERT,	UPDATE,	or	DELETE).	For	example,	an	INSTEAD	OF	trigger	can	be
defined	to	perform	error	or	value	checking	on	one	or	more	columns,	and	then
perform	additional	actions	before	inserting	the	record.	For	instance,	when	the
value	being	updated	in	an	hourly	wage	column	in	a	payroll	table	exceeds	a
specified	value,	a	trigger	can	be	defined	to	either	produce	an	error	message	and
roll	back	the	transaction,	or	insert	a	new	record	into	an	audit	log	before	inserting
the	record	into	the	payroll	table.	For	more	information,	see	Designing	INSTEAD
OF	Triggers.

INSTEAD	OF	triggers	can	be	defined	on	either	tables	or	views;	however,
INSTEAD	OF	triggers	are	most	useful	for	extending	the	types	of	updates	a	view
can	support.	For	example,	INSTEAD	OF	triggers	can	provide	the	logic	to
modify	multiple	base	tables	through	a	view	or	to	modify	base	tables	that	contain
these	columns:

timestamp	data	type

Computed	columns

Identity	columns

Creating	and	Maintaining	Databases

INSTEAD	OF	INSERT	Triggers
INSTEAD	OF	INSERT	triggers	can	be	defined	on	a	view	or	table	to	replace	the
standard	action	of	the	INSERT	statement.	Usually,	the	INSTEAD	OF	INSERT
trigger	is	defined	on	a	view	to	insert	data	into	one	or	more	base	tables.

Columns	in	the	view	select	list	can	be	nullable	or	not	nullable.	If	a	view	column
does	not	allow	nulls,	an	INSERT	statement	must	provide	values	for	the	column.
View	columns	allow	nulls	if	the	expression	defining	the	view	column	includes
items	such	as:

References	to	any	base	table	column	that	allows	nulls.

Arithmetic	operators.

References	to	functions.

CASE	or	COALESCE	with	a	nullable	subexpression.

NULLIF.

You	can	use	the	AllowsNull	property	reported	by	the	COLUMNPROPERTY
function	to	determine	whether	a	view	column	allows	nulls.	The	sp_help	stored
procedure	also	reports	which	view	columns	allow	nulls.

An	INSERT	statement	referencing	a	view	that	has	an	INSTEAD	OF	INSERT
trigger	must	supply	values	for	every	view	column	that	does	not	allow	nulls.	This
includes	view	columns	that	reference	columns	in	the	base	table	for	which	input
values	cannot	be	specified:

Computed	columns	in	the	base	table.

Identity	columns	in	the	base	table	for	which	IDENTITY	INSERT	is
OFF.

Base	table	columns	with	the	timestamp	data	type.

If	the	INSTEAD	OF	INSERT	view	trigger	generates	an	INSERT	against	the	base
table	using	the	data	in	the	inserted	table,	it	must	ignore	the	values	for	these
types	of	columns	by	not	including	the	columns	in	the	select	list	of	the	INSERT
statement.	The	INSERT	statement	can	generate	dummy	values	for	these	types	of
columns.

For	example,	while	an	INSERT	statement	must	specify	a	value	for	a	view
column	that	maps	to	an	identity	or	computed	column	in	a	base	table,	it	can
supply	a	placeholder	value.	The	INSTEAD	OF	trigger	can	ignore	the	value
supplied	when	it	forms	the	INSERT	statement	that	inserts	the	values	into	the
base	table.

These	statements	create	a	table,	view,	and	trigger	that	illustrate	the	process:

CREATE	TABLE	BaseTable
		(PrimaryKey					int	IDENTITY(1,1)
			Color										nvarchar(10)	NOT	NULL,
			Material							nvarchar(10)	NOT	NULL,
			ComputedCol	AS	(Color	+	Material)
)
GO

--Create	a	view	that	contains	all	columns	from	the	base	table.
CREATE	VIEW	InsteadView
AS	SELECT	PrimaryKey,	Color,	Material,	ComputedCol
FROM	BaseTable
GO

--Create	an	INSTEAD	OF	INSERT	trigger	on	the	view.
CREATE	TRIGGER	InsteadTrigger	on	InsteadView
INSTEAD	OF	INSERT
AS
BEGIN

		--Build	an	INSERT	statement	ignoring	inserted.PrimaryKey	and	
		--inserted.ComputedCol.
		INSERT	INTO	BaseTable
							SELECT	Color,	Material
							FROM	inserted
END
GO

An	INSERT	statement	that	refers	directly	to	BaseTable	cannot	supply	a	value
for	the	PrimaryKey	and	ComputedCol	columns.	For	example:

--A	correct	INSERT	statement	that	skips	the	PrimaryKey	and	ComputedCol	columns.
INSERT	INTO	BaseTable	(Color,	Material)
							VALUES	(N'Red',	N'Cloth')

--View	the	results	of	the	INSERT	statement.
SELECT	PrimaryKey,	Color,	Material,	ComputedCol
FROM	BaseTable

--An	incorrect	statement	that	tries	to	supply	a	value	for	the	
--PrimaryKey	and	ComputedCol	columns.
INSERT	INTO	BaseTable
							VALUES	(2,	N'Green',	N'Wood',	N'GreenWood')

INSERT	statements	that	refer	to	InsteadView,	however,	must	supply	a	value	for
PrimaryKey	and	ComputedCol:

--A	correct	INSERT	statement	supplying	dummy	values	for	the	
--PrimaryKey	and	ComputedCol	columns.
INSERT	INTO	InsteadView	(PrimaryKey,	Color,	Material,	ComputedCol)
							VALUES	(999,	N'Blue',	N'Plastic',	N'XXXXXX')
--View	the	results	of	the	INSERT	statement.
SELECT	PrimaryKey,	Color,	Material,	ComputedCol
FROM	InsteadView

The	inserted	table	passed	to	InsteadTrigger	is	built	with	a	nonnullable
PrimaryKey	and	ComputedCol	column;	therefore,	the	INSERT	statement
referencing	the	view	must	supply	a	value	for	those	columns.	The	values	999	and
N'XXXXXX'	are	passed	in	to	InsteadTrigger,	but	the	INSERT	statement	in	the
trigger	does	not	select	either	inserted.PrimaryKey	or	inserted.ComputedCol;
therefore,	the	values	are	ignored.	The	row	actually	inserted	into	BaseTable	has	2
in	PrimaryKey	and	N'BluePlastic'	in	ComputedCol.

The	values	contained	in	the	inserted	table	for	computed,	identity,	and
timestamp	columns	are	different	for	INSTEAD	OF	INSERT	triggers	specified
on	tables	compared	to	an	INSTEAD	OF	triggers	specified	on	views.

Base	table
column

Value	in	inserted	table	in
any	INSERT	trigger	on	a
table

Value	in	inserted	table	in
an	INSTEAD	OF
INSERT	trigger	on	a
view

Is	a	computed
column.

Computed	expression User-specified	value	or
NULL

Has	an
IDENTITY
property.

0	if	IDENTITY_INSERT	is
OFF,	specified	value	if
IDENTITY_INSERT	is	ON

User-specified	value	or
NULL

Has	a
timestamp	data
type.

Binary	zeros	if	the	column
does	not	allow	nulls,	NULL	if
column	allows	nulls

User-specified	value	or
NULL

An	INSERT	statement	that	directly	references	a	base	table	does	not	have	to
supply	values	for	a	NOT	NULL	column	that	also	has	a	DEFAULT	definition.	If
the	INSERT	statement	does	not	supply	a	value,	the	default	value	is	used.	If	a
NOT	NULL	column	with	a	DEFAULT	definition	is	referenced	by	a	simple
expression	in	a	view	that	has	an	INSTEAD	OF	INSERT	trigger,	however,	any
INSERT	statement	referencing	the	view	must	supply	a	value	for	the	column.
This	value	is	required	to	build	the	inserted	table	passed	to	the	trigger.	A
convention	is	required	for	a	value	that	signals	to	the	trigger	that	the	default	value
should	be	used.	The	best	convention	is	for	the	INSERT	statement	to	supply	the
default	value.

The	deleted	table	in	an	INSTEAD	OF	INSERT	trigger	is	always	empty.

See	Also

COLUMNPROPERTY

sp_help

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

INSTEAD	OF	UPDATE	Triggers
INSTEAD	OF	UPDATE	triggers	can	be	defined	on	a	view	or	table	to	replace	the
standard	action	of	the	UPDATE	statement.	Usually,	the	INSTEAD	OF	UPDATE
trigger	is	defined	on	a	view	to	modify	data	in	one	or	more	base	tables.

UPDATE	statements	that	reference	views	with	INSTEAD	OF	UPDATE	triggers
must	supply	values	for	all	nonnullable	view	columns	referenced	in	the	SET
clause.	This	includes	view	columns	that	reference	columns	in	the	base	table	for
which	input	values	cannot	be	specified,	such	as:

Computed	columns	in	the	base	table.

Identity	columns	in	the	base	table	for	which	IDENTITY	INSERT	is	set
to	OFF.

Base	table	columns	with	the	timestamp	data	type.

Usually,	when	an	UPDATE	statement	that	references	a	table	attempts	to	set	the
value	of	a	computed,	identity,	or	timestamp	column,	an	error	is	generated
because	the	values	for	these	columns	must	be	determined	by	Microsoft®	SQL
Server™.	These	columns	must	be	included	in	the	UPDATE	statement	to	meet
the	NOT	NULL	requirement	of	the	column.	However,	if	the	UPDATE	statement
references	a	view	with	an	INSTEAD	OF	UPDATE	trigger,	the	logic	defined	in
the	trigger	can	bypass	these	columns	and	avoid	the	error.	To	do	so,	the
INSTEAD	OF	UPDATE	trigger	must	not	try	to	update	the	values	for	the
corresponding	columns	in	the	base	table.	This	is	done	by	not	including	the
columns	in	the	SET	clause	of	the	UPDATE	statement.	When	a	record	is
processed	from	the	inserted	table,	the	computed,	identity,	or	timestamp	column
can	contain	a	dummy	value	to	meet	the	NOT	NULL	column	requirement,	but	the
INSTEAD	OF	UPDATE	trigger	ignores	those	values	and	the	correct	values	are
set	by	SQL	Server.

This	solution	works	because	an	INSTEAD	OF	UPDATE	trigger	does	not	have	to
process	data	from	the	inserted	columns	that	are	not	updated.	In	the	inserted

table	passed	to	an	INSTEAD	OF	UPDATE	trigger,	the	columns	specified	in	the
SET	clause	follow	the	same	rules	as	the	inserted	columns	in	an	INSTEAD	OF
INSERT	trigger.	For	columns	not	specified	in	the	SET	clause,	the	inserted	table
contains	the	values	as	they	existed	before	the	UPDATE	statement	was	issued.
The	trigger	can	test	whether	a	specific	column	has	been	updated	using	the	IF
UPDATED(column)	clause.	For	more	information,	see	INSTEAD	OF	INSERT
Triggers.

INSTEAD	OF	UPDATE	triggers	should	use	values	supplied	for	computed,
identity,	or	timestamp	columns	only	in	WHERE	clause	search	conditions.

The	logic	an	INSTEAD	OF	UPDATE	trigger	on	a	view	should	use	to	process
updated	values	supplied	for	computed,	identity,	timestamp,	or	default	columns
is	the	same	as	the	logic	applied	to	inserted	values	for	these	column	types.

Note		INSTEAD	OF	UPDATE	triggers	cannot	be	defined	on	a	table	that	has	a
foreign	key	defined	with	an	UPDATE	action.

Creating	and	Maintaining	Databases

INSTEAD	OF	DELETE	Triggers
INSTEAD	OF	DELETE	triggers	can	be	defined	on	a	view	or	table	to	replace	the
standard	action	of	the	DELETE	statement.	Usually,	the	INSTEAD	OF	DELETE
trigger	is	defined	on	a	view	to	modify	data	in	one	or	more	base	tables.

DELETE	statements	do	not	specify	modifications	to	existing	data	values.
DELETE	statements	specify	only	the	rows	that	are	to	be	deleted.	The	inserted
table	passed	to	a	DELETE	trigger	is	always	empty.	The	deleted	table	sent	to	a
DELETE	trigger	contains	an	image	of	the	rows	as	they	existed	before	the
UPDATE	statement	was	issued.	In	the	case	of	an	INSTEAD	OF	DELETE
trigger	on	a	view	or	table,	the	format	of	the	deleted	table	is	based	on	the	format
of	the	select	list	defined	for	the	view.

Note		INSTEAD	OF	DELETE	triggers	cannot	be	defined	on	a	table	that	has	a
foreign	key	defined	with	a	DELETE	action.

Creating	and	Maintaining	Databases

Expressions	and	Computed	Columns	in	INSTEAD	OF
Triggers
The	select	list	of	a	view	can	have	expressions	other	than	simple	expressions
made	up	of	only	a	column	name.	INSTEAD	OF	triggers	on	these	views	must
have	logic	to	correctly	determine	from	the	values	specified	on	INSERT	and
UPDATE	what	values	must	be	set	into	columns	in	the	base	table.	Examples	of
such	expressions	include:

View	expressions	that	do	not	map	to	any	column	in	any	table,	such	as	a
constant	or	some	types	of	functions.

View	expressions	that	map	to	multiple	columns,	such	as	complex
expressions	formed	by	concatenating	strings	from	two	or	more	columns.

View	expressions	that	transform	the	value	of	a	single	base	table	column,
such	as	referencing	a	column	in	a	function.

These	issues	also	apply	to	view	columns	that	are	simple	expressions	referencing
a	computed	column	in	a	base	table.	The	expression	defining	the	computed
column	can	have	the	same	form	as	a	more	complex	expression	in	the	view	select
list.

Views	can	contain	expressions	in	their	select	list	that	do	not	map	to	any	base
table	columns,	for	example:

CREATE	VIEW	ExpressionView
AS
SELECT	*,	GETDATE()	AS	TodaysDate
FROM	Northwind.dbo.Employees

Although	the	TodaysDate	column	does	not	map	to	any	table	column,
Microsoft®	SQL	Server™	2000	must	build	a	TodaysDate	column	in	the
inserted	table	it	passes	to	an	INSTEAD	OF	trigger	defined	on	ExpressionView.

The	inserted.TodaysDate	column	is	nullable,	however,	so	an	INSERT
referencing	ExpressionView	does	not	have	to	supply	a	value	for	this	column.
Because	the	expression	does	not	map	to	a	column	in	a	table,	the	trigger	can
ignore	any	value	supplied	by	the	INSERT	in	this	column.

The	same	approach	should	be	applied	to	simple	view	expressions	that	reference
computed	columns	in	base	tables	that	also	build	a	result	that	is	not	dependent	on
other	columns,	for	example:

CREATE	TABLE	ComputedExample
			(
				PrimaryKey				int	PRIMARY	KEY,
				ComputedCol			AS	SUSER_NAME()
)

Some	complex	expressions	map	to	multiple	columns:

CREATE	TABLE	SampleTable
					(
						PriKey				int,
						FirstName	nvarchar(20),
						LastName		nvarchar(30)
)
GO
CREATE	VIEW	ConcatView
AS
SELECT	PriKey,	FirstName	+	'	'	+	LastName	AS	CombinedName
FROM	SampleTable

The	expression	CombinedName	in	ConcatView	has	the	concatenated	values	of
the	FirstName	and	LastName	values.	If	an	INSTEAD	OF	INSERT	trigger	is
defined	on	ConcatView,	you	must	have	a	convention	for	how	INSERT
statements	supply	a	value	for	the	CombinedName	column	that	lets	the	trigger
determine	which	part	of	the	string	should	be	put	in	the	FirstName	column	and
which	part	should	be	put	in	the	LastName	column.	If	you	choose	a	convention
of	having	INSERT	statements	specify	the	value	of	CombinedName	using	the
convention	'first_name;last_name',	this	trigger	can	successfully	process	an

INSERT:

CREATE	TRIGGER	InsteadSample	on	ConcatView
INSTEAD	OF	INSERT
AS
BEGIN

			INSERT	INTO	SampleTable
						SELECT	PriKey,
									--	Pull	out	the	first	name	string.
									SUBSTRING(
												CombinedName,
												1,
												(CHARINDEX(';',	CombinedName)	-	1)
),
									--	Pull	out	the	last	name	string.
									SUBSTRING(
												CombinedName,
												(CHARINDEX(';',	CombinedName)	+	1),
												DATALENGTH(CombinedName)
)
						FROM	inserted
END

Similar	logic	is	needed	to	process	view	columns	that	are	simple	expressions
referring	to	computed	columns	that	have	complex	expressions.

Some	view	expressions	can	transform	the	value	of	a	base	table	column,	for
example,	by	performing	a	mathematical	operation	or	using	the	column	as	a
parameter	to	a	function.	In	this	case,	the	logic	in	the	INSTEAD	OF	INSERT
trigger	can	take	a	couple	of	approaches:

The	convention	can	be	that	all	INSERT	statements	supply	the	raw	value
to	place	in	the	base	table,	and	the	trigger	logic	moves	the	value	from	the
inserted	table	to	the	base	table.

The	convention	can	be	that	all	INSERT	statements	supply	the	value	they
expect	to	have	returned	by	a	SELECT	on	the	view,	in	which	case	the
logic	in	the	trigger	must	reverse	the	operation.	For	example:
CREATE	TABLE	BaseTable
		(
			PrimaryKey			int	PRIMARY	KEY,
			ColumnB						int,
			ColumnC						decimal(19,3)
)

CREATE	VIEW	SquareView	AS
SELECT	PrimaryKey,	ColumnB,
							--	Square	the	value	of	ColumnC
							SQUARE(ColumnC)	AS	SquareC
FROM	BaseTable

CREATE	TRIGGER	SquareTrigger	ON	SquareView
INSTEAD	OF	INSERT
AS
BEGIN
		INSERT	INTO	BaseTable
					SELECT	PrimaryKey,	ColumnB,
													--	Perform	logical	inverse	of	function	in	view.
													SQRT(SquareC)
					FROM	inserted
END

For	some	expressions,	such	as	complex	expressions	using	mathematical
operations	like	addition	and	subtraction,	it	may	not	be	possible	for	users	to
supply	a	value	that	the	trigger	can	use	to	unambiguously	build	values	for	the
destination	base	table	columns.	For	example,	if	a	view	select	list	contains	the
expression	IntColA	+	IntColB	AS	AddedColumns,	what	does	a	value	of	10	in
inserted.AddedColumns	mean?	Is	10	the	result	of	3	+	7,	2	+	8,	or	5	+	5?	There
is	no	way	to	tell	from	the	value	of	inserted.AddedColumns	alone	what	values

should	be	placed	in	IntColA	and	IntColB.

In	these	cases,	the	trigger	can	be	coded	to	use	alternative	sources	of	information
to	determine	the	values	to	set	in	the	base	table	columns.	For	views	that	have
INSTEAD	OF	triggers,	the	view	select	list	must	contain	enough	information	to
build	values	for	all	non-null	columns	in	the	base	tables	modified	by	the	trigger.
Not	all	data	must	come	directly	from	the	inserted	table.	In	some	cases,	the
values	in	the	inserted	table	can	be	key	values	that	the	trigger	uses	to	retrieve	the
relevant	data	from	other	base	tables.

Creating	and	Maintaining	Databases

Using	text,	ntext,	and	image	Data	in	INSTEAD	OF
Triggers
Data	modifications	may	involve	text,	ntext,	and	image	columns.	In	base	tables,
the	value	stored	in	a	text,	ntext,	or	image	column	is	a	text	pointer	pointing	to	the
pages	holding	the	data.	For	more	information,	see	text,	ntext,	and	image	Data.

Although	AFTER	triggers	do	not	support	text,	ntext,	or	image	data	in	the
inserted	and	deleted	tables,	INSTEAD	OF	triggers	do	support	them.	text,	ntext,
and	image	data	is	stored	in	the	inserted	and	deleted	tables	differently	from	the
way	the	data	is	stored	in	base	tables.	text,	ntext,	and	image	data	is	not	stored	as
a	separate	chain	of	pages.	Instead,	they	are	stored	as	a	continuous	string	within
each	row,	which	means	there	are	no	text	pointers	for	text,	ntext,	or	image
columns	in	the	inserted	and	deleted	tables.	The	TEXTPTR	and	TEXTVALID
functions	and	the	READTEXT,	UPDATETEXT,	and	WRITETEXT	statements
are	not	valid	against	text,	ntext,	or	image	columns	from	the	inserted	or	deleted
tables.	All	other	uses	of	text,	ntext,	or	image	columns	are	supported,	such	as
referring	to	them	in	select	lists,	WHERE	clause	search	conditions,	or	the
SUBSTRING,	PATINDEX,	or	CHARINDEX	functions.	Operations	on	text,
ntext,	or	image	data	in	the	INSTEAD	OF	triggers	are	affected	by	the	current
SET	TEXTSIZE	option,	which	can	be	determined	with	the	@@TEXTSIZE
function.

The	type	of	text,	ntext,	or	image	data	stored	in	the	inserted	and	deleted	tables
varies	depending	on	the	triggering	action	(INSERT,	UPDATE,	or	DELETE):

On	INSERT	statements,	the	inserted	table	contains	the	new	value	for
the	text,	ntext,	or	image	column.	The	deleted	table	has	no	rows.

On	DELETE	statements,	the	inserted	table	has	no	rows	and	the	deleted
table	rows	contain	the	values	the	text,	ntext,	or	image	column	had
before	the	DELETE	started.

On	UPDATE	statements	in	which	the	text,	ntext,	or	image	value	is	not
changed,	both	the	inserted	and	deleted	table	rows	contain	the	same
values	for	the	text,	ntext,	or	image	column.

JavaScript:hhobj_1.Click()

On	UPDATE	statements	in	which	the	text,	ntext,	or	image	value	is
changed,	the	deleted	table	contains	the	data	values	as	they	existed
before	the	UPDATE	started,	and	the	inserted	table	contains	the	data
with	any	modifications	specified	in	the	SET	clause.

If	an	INSERT,	UPDATE,	or	DELETE	statement	modifies	many	rows	with	large
text,	ntext,	or	image	values,	considerable	memory	can	be	required	to	hold	the
copies	of	the	text,	ntext,	or	image	data	in	the	inserted	and	deleted	tables.
Copying	these	large	amounts	of	data	can	also	lower	performance.	INSERT,
UPDATE,	and	DELETE	statements	that	reference	views	or	tables	that	have
INSTEAD	OF	triggers	should	modify	one	row	at	a	time,	or	only	a	few	rows	at	a
time,	whenever	possible.

Creating	and	Maintaining	Databases

Activating	Triggers	with	Implicit	and	Explicit	Null
Values
Inserting	an	explicit	null	value	into	a	column	or	using	the	DEFAULT	keyword	to
assign	a	value	to	a	column	activates	the	trigger	as	expected.	Similarly,	when	no
value	is	specified	in	the	INSERT	statement	for	a	column,	the	trigger	is	still
activated	when:

An	implicit	null	value	is	inserted	into	a	column	because	no	DEFAULT
definition	exists.

A	default	value	is	inserted	into	a	column	because	a	DEFAULT
definition	does	exist.

Examples

A.	Test	trigger	activation	with	null	and	default	values

The	following	examples	show	how	a	trigger	is	affected	by	implicit	and	explicit
null	values.	A	small	table	is	created	to	hold	two	integer	values.	One	column	can
contain	null	values;	the	other	column	contains	a	default	value.	A	trigger
evaluates	whether	the	both	columns	are	modified,	and	displays	a	message	when
the	trigger	is	activated.	A	series	of	INSERT	statements	tests	trigger	activation	by
inserting	combinations	of	implicit	and	explicit	null	values.

CREATE	TABLE	t1
(a	int	NULL,	b	int	NOT	NULL	DEFAULT	99)
GO

CREATE	TRIGGER	t1trig
ON	t1
FOR	INSERT,	UPDATE
AS
IF	UPDATE(a)	AND	UPDATE(b)

			PRINT	'FIRING'
GO

--When	two	values	are	inserted,	the	UPDATE	is	TRUE	for	both	columns	and	the	trigger	is	activated.
INSERT	t1	(a,	b)	
VALUES	(1,	2)	

--When	two	values	are	updated,	the	UPDATE	is	TRUE	for	both	columns	and	the	trigger	is	activated.
UPDATE	t1	
SET	a	=	1,	b	=	2

--When	an	explicit	NULL	is	inserted	in	column	a,	the	UPDATE	is	TRUE	for	both	columns	and	the	trigger	is	activated.
INSERT	t1
VALUES	(NULL,	2)

--When	an	explicit	NULL	is	updated	in	column	a,	the	UPDATE	is	TRUE	for	both	columns,the	trigger	is	activated.
UPDATE	t1	
SET	a	=	NULL,	b	=	2

--When	an	implicit	NULL	is	inserted	in	column	a,	the	UPDATE	is	TRUE	for	both	columns	and	the	trigger	is	activated.
INSERT	t1	(b)
VALUES	(2)

--When	column	a	is	updated	with	an	implicit	NULL,	the	UPDATE	is	FALSE	for	both	columns	and	the	trigger	is	not	activated.
UPDATE	t1	
SET	b	=	2

--When	the	default	value	is	implicitly	inserted	in	column	b,	the	UPDATE	is	TRUE	for	both	columns	and	the	trigger	is	activated.
INSERT	t1	(a)
VALUES	(2)

--When	column	b	is	updated	with	an	implicit	NULL,	the	UPDATE	is	FALSE	for	both	columns	and	the	trigger	is	not	activated.
UPDATE	t1	

SET	a	=	2

--When	the	default	value	is	explicitly	inserted	in	column	b,	the	UPDATE	is	TRUE	for	both	columns	and	the	trigger	is	activated.
INSERT	t1	(a,	b)
VALUES	(2,	DEFAULT)

--When	column	b	is	updated	explicitly	with	the	default	value,	the	UPDATE	is	TRUE	for	both	columns	and	the	trigger	is	activated.
UPDATE	t1	
SET	a	=	2,	b	=	DEFAULT

See	Also

DEFAULT	Definitions

Null	Values

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Modifying	and	Renaming	a	Trigger
If	you	must	modify	the	definition	of	a	trigger,	you	can	either	drop	and	re-create
the	trigger	or	redefine	the	existing	trigger	in	a	single	step.

If	you	change	the	name	of	an	object	referenced	by	a	trigger,	you	must	modify	the
trigger	so	that	its	text	reflects	the	new	name.	Therefore,	before	renaming	an
object,	display	the	dependencies	of	the	object	first	to	determine	if	any	triggers
are	affected	by	the	proposed	change.

You	can	also	rename	a	trigger.	The	new	name	must	follow	the	rules	for
identifiers.	You	can	rename	only	the	triggers	that	you	own,	but	the	database
owner	can	change	the	name	of	any	user's	triggers.	The	trigger	to	be	renamed
must	be	in	the	current	database.

A	trigger	can	also	be	modified	to	encrypt	its	definition.

To	modify	a	trigger

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Viewing	a	Trigger
In	Microsoft®	SQL	Server™	2000,	you	can	determine	the	types	of	triggers	on	a
table,	the	name	of	the	trigger,	its	owner,	and	the	date	it	was	created.

You	can	also:

Gain	information	about	the	definition	of	a	trigger	if	it	was	not	encrypted
when	created	or	modified.	You	may	need	to	see	the	definition	of	the
trigger	to	see	its	Transact-SQL	statements	or	to	understand	how	it
affects	the	table	upon	which	it	is	defined.

List	the	objects	used	by	the	specified	trigger.	This	information	can	be
used	to	identify	the	objects	that	affect	the	trigger	if	they	are	changed	or
deleted	in	the	database.

The	result	set	of	sp_helptrigger	contains	the	columns	isafter	and	isinsteadof	to
report	whether	a	trigger	is	an	AFTER	or	INSTEAD	OF	trigger.	The
OBJECTPROPERTY	function	reports	whether	a	trigger	is	an	AFTER	or
INSTEAD	OF	trigger	through	the	ExecIsInsteadOfTrigger	and
ExecIsAfterTrigger	properties.

To	view	the	types	of	triggers	on	a	table

Transact-SQL

SQL-DMO

To	view	information	about	a	trigger

Transact-SQL

SQL-DMO

To	view	a	trigger

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Creating	and	Maintaining	Databases

Deleting	a	Trigger
When	a	trigger	is	no	longer	needed,	you	can	delete	it.	When	a	trigger	is	deleted,
the	table	and	the	data	upon	which	it	is	based	are	not	affected.	Deleting	a	table
automatically	deletes	any	triggers	on	the	table.	Permissions	to	delete	a	trigger
default	to	the	owner	of	the	table	upon	which	the	trigger	is	defined.

To	delete	a	trigger

Transact-SQL

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

User-Defined	Functions
Functions	are	subroutines	made	up	of	one	or	more	Transact-SQL	statements	that
can	be	used	to	encapsulate	code	for	reuse.	Microsoft®	SQL	Server™	2000	does
not	limit	users	to	the	built-in	functions	defined	as	part	of	the	Transact-SQL
language,	but	allows	users	to	create	their	own	user-defined	functions.

User-defined	functions	are	created	using	the	CREATE	FUNCTION	statement,
modified	using	the	ALTER	FUNCTION	statement,	and	removed	using	the
DROP	FUNCTION	statement.	Each	fully	qualified	user-defined	function	name
(database_name.owner_name.function_name)	must	be	unique.

You	must	have	been	granted	CREATE	FUNCTION	permissions	to	create,	alter,
or	drop	user-defined	functions.	Users	other	than	the	owner	must	be	granted
appropriate	permissions	on	a	function	before	they	can	use	it	in	a	Transact-SQL
statement.	To	create	or	alter	tables	with	references	to	user-defined	functions	in
the	CHECK	constraint,	DEFAULT	clause,	or	computed	column	definition,	you
must	also	have	REFERENCES	permission	on	the	functions.

Transact-SQL	errors	that	cause	a	statement	to	be	canceled	and	continue	with	the
next	statement	in	the	module	(such	as	triggers	or	stored	procedures)	are	treated
differently	inside	a	function.	In	functions,	such	errors	cause	the	execution	of	the
function	to	stop.	This	in	turn	causes	the	statement	that	invoked	the	function	to	be
canceled.

Types	of	User-Defined	Functions
SQL	Server	2000	supports	three	types	of	user-defined	functions:

Scalar	functions

Inline	table-valued	functions

Multistatement	table-valued	functions

A	user-defined	function	takes	zero	or	more	input	parameters	and	returns	either	a
scalar	value	or	a	table.	A	function	can	have	a	maximum	of	1024	input

parameters.	When	a	parameter	of	the	function	has	a	default	value,	the	keyword
default	DEFAULT	must	be	specified	when	calling	the	function	to	get	the	default
value.	This	behavior	is	different	from	parameters	with	default	values	in	stored
procedures	in	which	omitting	the	parameter	also	implies	the	default	value.	User-
defined	functions	do	not	support	output	parameters.

Scalar	functions	return	a	single	data	value	of	the	type	defined	in	a	RETURNS
clause.	All	scalar	data	types,	including	bigint	and	sql_variant,	can	be	used.	The
timestamp	data	type,	user-defined	data	type,	and	nonscalar	types,	such	as	table
or	cursor,	are	not	supported.	The	body	of	the	function,	defined	in	a
BEGIN...END	block,	contains	the	series	of	Transact-SQL	statements	that	return
the	value.	The	return	type	can	be	any	data	type	except	text,	ntext,	image,
cursor,	and	timestamp.

Table-valued	functions	return	a	table.	For	an	inline	table-valued	function,	there
is	no	function	body;	the	table	is	the	result	set	of	a	single	SELECT	statement.	For
a	multistatement	table-valued	function,	the	function	body,	defined	in	a
BEGIN...END	block,	contains	the	TRANSACT-SQL	statements	that	build	and
insert	rows	into	the	table	that	will	be	returned.	For	more	information	about	inline
table-valued	functions,	see	Inline	User-Defined	Functions.	For	more	information
about	table-valued	functions,	see	User-Defined	Functions	That	Return	a	table
Data	Type.

The	statements	in	a	BEGIN...END	block	cannot	have	any	side	effects.	Function
side	effects	are	any	permanent	changes	to	the	state	of	a	resource	that	has	a	scope
outside	the	function	such	as	a	modification	to	a	database	table.	The	only	changes
that	can	be	made	by	the	statements	in	the	function	are	changes	to	objects	local	to
the	function,	such	as	local	cursors	or	variables.	Modifications	to	database	tables,
operations	on	cursors	that	are	not	local	to	the	function,	sending	e-mail,
attempting	a	catalog	modification,	and	generating	a	result	set	that	is	returned	to
the	user	are	examples	of	actions	that	cannot	be	performed	in	a	function.

The	types	of	statements	that	are	valid	in	a	function	include:

DECLARE	statements	can	be	used	to	define	data	variables	and	cursors
that	are	local	to	the	function.

Assignments	of	values	to	objects	local	to	the	function,	such	as	using
SET	to	assign	values	to	scalar	and	table	local	variables.

Cursor	operations	that	reference	local	cursors	that	are	declared,	opened,
closed,	and	deallocated	in	the	function.	FETCH	statements	that	return
data	to	the	client	are	not	allowed.	Only	FETCH	statements	that	assign
values	to	local	variables	using	the	INTO	clause	are	allowed.

Control-of-flow	statements.

SELECT	statements	containing	select	lists	with	expressions	that	assign
values	to	variables	that	are	local	to	the	function.

UPDATE,	INSERT,	and	DELETE	statements	modifying	table	variables
that	are	local	to	the	function.

EXECUTE	statements	calling	an	extended	stored	procedure.

The	number	of	times	that	a	function	specified	in	a	query	is	actually	executed	can
vary	between	execution	plans	built	by	the	optimizer.	An	example	is	a	function
invoked	by	a	subquery	in	a	WHERE	clause.	The	number	of	times	the	subquery
and	its	function	is	executed	can	vary	with	different	access	paths	chosen	by	the
optimizer.

Built-in	functions	that	can	return	different	data	on	each	call	are	not	allowed	in
user-defined	functions.	The	built-in	functions	not	allowed	in	user-defined
functions	are:

@@CONNECTIONS @@PACK_SENT GETDATE
@@CPU_BUSY @@PACKET_ERRORS GetUTCDate
@@IDLE @@TIMETICKS NEWID
@@IO_BUSY @@TOTAL_ERRORS RAND
@@MAX_CONNECTIONS@@TOTAL_READ TEXTPTR
@@PACK_RECEIVED @@TOTAL_WRITE 	

Schema-Bound	Functions
CREATE	FUNCTION	supports	a	SCHEMABINDING	clause	that	binds	the
function	to	the	schema	of	any	objects	it	references,	such	as	tables,	views,	and
other	user-defined	functions.	An	attempt	to	alter	or	drop	any	object	referenced
by	a	schema-bound	function	fails.

These	conditions	must	be	met	before	you	can	specify	SCHEMABINDING	in
CREATE	FUNCTION:

All	views	and	user-defined	functions	referenced	by	the	function	must	be
schema-bound.

All	objects	referenced	by	the	function	must	be	in	the	same	database	as
the	function.	The	objects	must	be	referenced	using	either	one-part	or
two-part	names.

You	must	have	REFERENCES	permission	on	all	objects	(tables,	views,
and	user-defined	functions)	referenced	in	the	function.

You	can	use	ALTER	FUNCTION	to	remove	the	schema	binding.	The	ALTER
FUNCTION	statement	should	redefine	the	function	without	specifying	WITH
SCHEMABINDING.

Calling	User-Defined	Functions
When	calling	a	scalar	user-defined	function,	you	must	supply	at	least	a	two-part
name:

SELECT	*,	MyUser.MyScalarFunction()
FROM	MyTable

Table-valued	functions	can	be	called	by	using	a	one-part	name:

SELECT	*
FROM	MyTableFunction()

However,	when	you	call	SQL	Server	built-in	functions	that	return	a	table,	you

must	add	the	prefix	::	to	the	name	of	the	function:

SELECT	*	FROM	::fn_helpcollations()

A	scalar	function	can	be	referenced	any	place	an	expression	of	the	same	data
type	returned	by	the	function	is	allowed	in	a	Transact-SQL	statement,	including
computed	columns	and	CHECK	constraint	definitions.	For	example,	this
statement	creates	a	simple	function	that	returns	a	decimal:

CREATE	FUNCTION	CubicVolume
--	Input	dimensions	in	centimeters
			(@CubeLength	decimal(4,1),	@CubeWidth	decimal(4,1),
				@CubeHeight	decimal(4,1))
RETURNS	decimal(12,3)	--	Cubic	Centimeters.
AS
BEGIN
			RETURN	(@CubeLength	*	@CubeWidth	*	@CubeHeight)
END

This	function	can	then	be	used	anywhere	an	integer	expression	is	allowed,	such
as	in	a	computed	column	for	a	table:

CREATE	TABLE	Bricks
			(
				BrickPartNmbr			int	PRIMARY	KEY,
				BrickColor						nchar(20),
				BrickHeight					decimal(4,1),
				BrickLength					decimal(4,1),
				BrickWidth						decimal(4,1),
				BrickVolume	AS
														(
															dbo.CubicVolume(BrickHeight,
																									BrickLength,	BrickWidth)
)
)

dbo.CubicVolume	is	an	example	of	a	user-defined	function	that	returns	a	scalar
value.	The	RETURNS	clause	defines	a	scalar	data	type	for	the	value	returned	by
the	function.	The	BEGIN...END	block	contains	one	or	more	Transact-SQL
statements	that	implement	the	function.	Each	RETURN	statement	in	the	function
must	have	an	argument	that	returns	a	data	value	that	has	the	data	type	specified
in	the	RETURNS	clause,	or	a	data	type	that	can	be	implicitly	converted	to	the
type	specified	in	RETURNS.	The	value	of	the	RETURN	argument	is	the	value
returned	by	the	function.

Obtaining	Information	About	Functions
Several	catalog	objects	report	information	about	user-defined	functions:

sp_help	reports	information	about	user-defined	functions.

sp_helptext	reports	the	source	of	user-defined	functions.

Three	information	schema	views	report	information	about	user-defined
functions:	ROUTINES,	PARAMETERS,	and	ROUTINE_COLUMNS.	These
information	schema	views	also	report	information	for	stored	procedures.

Creating	and	Maintaining	Databases

User-Defined	Functions	That	Return	a	table	Data
Type
User-defined	functions	that	return	a	table	can	be	powerful	alternatives	to	views.
A	user-defined	function	that	returns	a	table	can	be	used	where	table	or	view
expressions	are	allowed	in	Transact-SQL	queries.	While	views	are	limited	to	a
single	SELECT	statement,	user-defined	functions	can	contain	additional
statements	that	allow	more	powerful	logic	than	is	possible	in	views.

A	user-defined	function	that	returns	a	table	can	also	replace	stored	procedures
that	return	a	single	result	set.	The	table	returned	by	a	user-defined	function	can
be	referenced	in	the	FROM	clause	of	a	Transact-SQL	statement,	but	stored
procedures	that	return	result	sets	cannot.	For	example,	assume	that
fn_EmployeesInDept	is	a	user-defined	function	that	returns	a	table	and	can	be
invoked	by	a	SELECT	statement	such	as:

SELECT	*	FROM	tb_Employees	AS	E	INNER	JOIN
					dbo.fn_EmployeesInDept('shipping')	AS	EID
			ON	E.EmployeeID	=	EID.EmployeeID

In	a	user-defined	function	that	returns	a	table:

The	RETURNS	clause	defines	a	local	return	variable	name	for	the	table
returned	by	the	function.	The	RETURNS	clause	also	defines	the	format
of	the	table.	The	scope	of	the	local	return	variable	name	is	local	within
the	function.

The	Transact-SQL	statements	in	the	function	body	build	and	insert	rows
into	the	return	variable	defined	by	the	RETURNS	clause.

When	a	RETURN	statement	is	executed,	the	rows	inserted	into	the
variable	are	returned	as	the	tabular	output	of	the	function.	The
RETURN	statement	cannot	have	an	argument.

No	Transact-SQL	statements	in	a	function	that	returns	a	table	can	return	a	result

set	directly	to	a	user.	The	only	information	the	function	can	return	to	the	user	is
the	table	returned	by	the	function.

This	example	creates	a	function	in	the	Northwind	database	that	returns	a	table:

CREATE	FUNCTION	LargeOrderShippers	(@FreightParm	money)
RETURNS	@OrderShipperTab	TABLE
			(
				ShipperID					int,
				ShipperName			nvarchar(80),
				OrderID							int,
				ShippedDate			datetime,
				Freight							money
)
AS
BEGIN
			INSERT	@OrderShipperTab
								SELECT	S.ShipperID,	S.CompanyName,
															O.OrderID,	O.ShippedDate,	O.Freight
								FROM	Shippers	AS	S	INNER	JOIN	Orders	AS	O
														ON	S.ShipperID	=	O.ShipVia
								WHERE	O.Freight	>	@FreightParm
			RETURN
END

In	this	function,	the	local	return	variable	name	is	@OrderShipperTab.
Statements	in	the	function	body	insert	rows	into	the	variable
@OrderShipperTab	to	build	the	table	result	returned	by	the	function.

This	query	references	the	table	returned	by	the	function	in	its	FROM	clause:

SELECT	*
FROM	LargeOrderShippers($500)

Note		The	text	in	row	table	option	is	automatically	set	to	256	for	a	table
returned	by	a	user-defined	function.	This	cannot	be	changed.	The	READTEXT,

WRITETEXT,	and	UPDATETEXT	statements	cannot	be	used	to	read	or	write
parts	of	any	text,	ntext,	or	image	columns	in	the	table.	For	more	information,
see	Text	in	Row	Data.

Creating	and	Maintaining	Databases

Inline	User-Defined	Functions
Inline	user-defined	functions	are	a	subset	of	user-defined	functions	that	return	a
table.	Inline	functions	can	be	used	to	achieve	the	functionality	of	parameterized
views.

Consider	this	view:

CREATE	VIEW	vw_CustomerNamesInWA	AS
SELECT	CustomerID,	CompanyName
FROM	Northwind.dbo.Customers
WHERE	Region	=	'WA'

You	can	create	a	more	generalized	version,	vw_CustomerNamesInRegion,	by
replacing	the	WHERE	Region	=	'WA'	with	a	WHERE	Region	=
@RegionParameter	and	letting	users	specify	the	region	they	are	interested	in
viewing.	Views,	however,	do	not	support	parameters	in	the	search	conditions
specified	in	the	WHERE	clause.

Inline	user-defined	functions	can	be	used	to	support	parameters	in	the	search
conditions	specified	in	the	WHERE	clause.	This	is	an	example	of	a	function	that
allows	users	to	specify	the	region	in	their	select:

CREATE	FUNCTION	fn_CustomerNamesInRegion
																	(@RegionParameter	nvarchar(30))
RETURNS	table
AS
RETURN	(
								SELECT	CustomerID,	CompanyName
								FROM	Northwind.dbo.Customers
								WHERE	Region	=	@RegionParameter
)
GO
--	Example	of	calling	the	function	for	a	specific	region
SELECT	*

FROM	fn_CustomerNamesInRegion(N'WA')
GO

Inline	user-defined	functions	follow	these	rules:

The	RETURNS	clause	contains	only	the	keyword	table.	You	do	not
have	to	define	the	format	of	a	return	variable	because	it	is	set	by	the
format	of	the	result	set	of	the	SELECT	statement	in	the	RETURN
clause.

There	is	no	function_body	delimited	by	BEGIN	and	END.

The	RETURN	clause	contains	a	single	SELECT	statement	in
parentheses.	The	result	set	of	the	SELECT	statement	forms	the	table
returned	by	the	function.	The	SELECT	statement	used	in	an	inline
function	is	subject	to	the	same	restrictions	as	SELECT	statements	used
in	views.

Inline	functions	can	also	be	used	to	increase	the	power	of	indexed	views.	The
indexed	view	itself	cannot	use	parameters	in	its	WHERE	clause	search
conditions	to	tailor	the	stored	result	set	to	specific	users.	You	can,	however,
define	an	indexed	view	that	stores	the	complete	set	of	data	that	matches	the	view,
and	then	define	an	inline	function	over	the	indexed	view	that	contains
parameterized	search	conditions	that	allow	users	to	tailor	their	results.	If	the
view	definition	is	complex,	most	of	the	work	performed	to	build	a	result	set
involves	operations	such	as	building	aggregates	or	joining	several	tables	when
the	clustered	index	is	created	on	the	view.	If	you	then	create	an	inline	function
that	references	the	view,	the	function	can	apply	the	user's	parameterized	filters	to
pull	specific	rows	from	the	result	set	that	was	built	by	the	CREATE	INDEX
statement.	The	complex	aggregations	and	joins	are	done	once,	at	CREATE
INDEX	time,	and	all	subsequent	queries	referencing	the	inline	function	filter
rows	from	the	simplified,	stored	result	set.	For	example:

1.	 You	define	a	view	vw_QuarterlySales	that	aggregates	all	sales	data
into	a	result	set	that	reports	summarized	sales	data	by	quarter	for	all
stores.

2.	 You	create	a	clustered	index	on	vw_QuarterlySales	to	materialize	a
result	set	containing	the	summarized	data.

3.	 You	create	an	inline	function	to	filter	the	summarized	data:
CREATE	FUNCTION	fn_QuarterlySalesByStore
					(
						@StoreID	int
)
RETURNS	table
AS
RETURN	(
								SELECT	*
								FROM	SalesDB.dbo.vw_QuarterlySales
								WHERE	StoreID	=	@StoreID
)

4.	 Users	can	then	get	the	data	for	their	specific	store	by	selecting	from
the	inline	function:
SELECT	*
FROM	fn_QuarterlySalesByStore(14432)

Most	of	the	work	needed	to	satisfy	the	queries	issued	at	Step	4	is	to	aggregate
the	sales	data	by	quarter.	This	work	is	done	once	at	Step	2.	Each	individual
SELECT	statement	in	Step	4	uses	the	function	fn_QuarterlySalesByStore	to
filter	out	the	aggregated	data	specific	to	their	store.

Creating	and	Maintaining	Databases

Deterministic	and	Nondeterministic	Functions
All	functions	are	deterministic	or	nondeterministic:

Deterministic	functions	always	return	the	same	result	any	time	they	are
called	with	a	specific	set	of	input	values.

Nondeterministic	functions	may	return	different	results	each	time	they
are	called	with	a	specific	set	of	input	values.

Whether	a	function	is	deterministic	or	nondeterministic	is	called	the	determinism
of	the	function.

For	example,	the	DATEADD	built-in	function	is	deterministic	because	it	always
returns	the	same	result	for	any	given	set	of	argument	values	for	its	three
parameters.	GETDATE	is	not	deterministic	because	it	is	always	invoked	with	the
same	argument,	yet	the	value	it	returns	changes	each	time	it	is	executed.

Earlier	versions	of	Microsoft®	SQL	Server™	have	no	functionality	that	is
dependent	on	the	determinism	of	functions.	In	Microsoft	SQL	Server	2000,
nondeterministic	functions	cannot	be	specified	in	two	types	of	Transact-SQL
expressions:

An	index	cannot	be	created	on	a	computed	column	if	the
computed_column_expression	references	any	nondeterministic
functions.

A	clustered	index	cannot	be	created	on	a	view	if	the	view	references	any
nondeterministic	functions.

One	of	the	properties	SQL	Server	records	for	user-defined	functions	is	whether
the	function	is	deterministic.	A	nondeterministic	user-defined	function	cannot	be
invoked	by	either	a	view	or	computed	column	if	you	want	to	create	an	index	on
the	view	or	computed	column.

User-Defined	Function	Determinism

Whether	a	user-defined	function	is	deterministic	or	nondeterministic	depends	on
how	the	function	is	coded.	User-defined	functions	are	deterministic	if:

The	function	is	schema-bound.

All	built-in	or	user-defined	functions	called	by	the	user-defined	function
are	deterministic.

The	body	of	the	function	references	no	database	objects	outside	the
scope	of	the	function.	For	example,	a	deterministic	function	cannot
reference	tables	other	than	table	variables	that	are	local	to	the	function.

The	function	does	not	call	any	extended	stored	procedures.

User-defined	functions	that	do	not	meet	these	criteria	are	marked	as
nondeterministic.	Built-in	nondeterministic	functions	are	not	allowed	in	the	body
of	user-defined	functions.

Built-in	Function	Determinism
You	cannot	influence	the	determinism	of	any	built-in	function.	Each	built-in
function	is	deterministic	or	nondeterministic	based	on	how	the	function	is
implemented	by	Microsoft	SQL	Server.

All	of	the	aggregate	and	string	built-in	functions	are	deterministic	except	the
string	functions	CHARINDEX	and	PATINDEX.	For	a	list	of	these	functions,	see
Aggregate	Functions	and	String	Functions.

These	built-in	functions	from	categories	of	built-in	functions	other	than
aggregate	and	string	functions	are	always	deterministic:

ABS DATEDIFF PARSENAME
ACOS DAY POWER
ASIN DEGREES RADIANS
ATAN EXP ROUND
ATN2 FLOOR SIGN
CEILING ISNULL SIN

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

COALESCE ISNUMERIC SQUARE
COS LOG SQRT
COT LOG10 TAN
DATALENGTH MONTH YEAR
DATEADD NULLIF 	

These	functions	are	not	always	deterministic	but	can	be	used	in	indexed	views	or
indexes	on	computed	columns	when	they	are	specified	in	a	deterministic	manner.

Function Comments
CAST Deterministic	unless	used	with	datetime,	smalldatetime,

or	sql_variant.
CONVERT Deterministic	unless	used	with	datetime,	smalldatetime,

or	sql_variant.	The	datetime	and	smalldatetime	data
types	are	deterministic	if	the	style	parameter	is	also
specified.

CHECKSUM Deterministic,	with	the	exception	of	CHECKSUM(*).
ISDATE Deterministic	only	if	used	with	the	CONVERT	function,

the	CONVERT	style	parameter	is	specified	and	style	is
not	equal	to	0,	100,	9,	or	109.

RAND RAND	is	deterministic	only	when	a	seed	parameter	is
specified.

All	of	the	configuration,	cursor,	meta	data,	security,	and	system	statistical
functions	are	nondeterministic.	For	a	list	of	these	functions,	see	Configuration
Functions,	Cursor	Functions,	Meta	Data	Functions,	Security	Functions,	and
System	Statistical	Functions.

These	built-in	functions	from	other	categories	are	always	nondeterministic:

@@ERROR FORMATMESSAGE NEWID
@@IDENTITY GETANSINULL PATINDEX
@@ROWCOUNT GETDATE PERMISSIONS
@@TRANCOUNT GetUTCDate SESSION_USER

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

APP_NAME HOST_ID STATS_DATE
CHARINDEX HOST_NAME SYSTEM_USER
CURRENT_TIMESTAMP IDENT_INCR TEXTPTR
CURRENT_USER IDENT_SEED TEXTVALID
DATENAME IDENTITY USER_NAME

Calling	Extended	Stored	Procedures	from	Functions
Functions	that	call	extended	stored	procedures	are	nondeterministic	because	the
extended	stored	procedures	can	cause	side	effects	on	the	database.	Side	effects
are	changes	to	a	global	state	of	the	database,	such	as	an	update	to	a	table,	or	to	an
external	resource,	such	as	a	file	or	the	network	(for	example,	modifying	a	file	or
sending	an	e-mail	message).	You	should	not	rely	on	returning	a	consistent	result
set	when	executing	an	extended	stored	procedure	from	a	user-defined	function.
User-defined	functions	that	create	side	effects	on	the	database	are	not
recommended.

When	called	from	inside	a	function,	the	extended	stored	procedure	cannot	return
result	sets	to	the	client.	Any	Open	Data	Services	API	that	returns	result	sets	to
the	client	will	have	a	return	code	of	FAIL.

The	extended	stored	procedure	can	connect	back	to	SQL	Server;	however,	the
procedure	cannot	join	the	same	transaction	as	the	original	function	that	invoked
the	extended	stored	procedure.

Similar	to	invocations	from	a	batch	or	stored	procedure,	the	extended	stored
procedure	is	executed	in	the	context	of	the	Microsoft	Windows®	security
account	under	which	SQL	Server	is	running.	The	owner	of	the	extended	stored
procedure	should	consider	this	when	granting	permissions	to	other	users	to
execute	the	procedure.

Creating	and	Maintaining	Databases

Rewriting	Stored	Procedures	as	Functions
This	topic	describes	how	to	determine	whether	to	rewrite	existing	stored
procedure	logic	as	user-defined	functions.	For	example,	if	you	want	to	invoke	a
stored	procedure	directly	from	a	query,	repackage	the	code	as	a	user-defined
function.

In	general,	if	the	stored	procedure	returns	a	(single)	result	set,	define	a	table-
valued	function.	If	the	stored	procedure	computes	a	scalar	value,	define	a	scalar
function.

Criteria	for	Table-Valued	Functions
If	a	stored	procedure	meets	the	following	criteria,	it	is	a	good	candidate	for	being
rewritten	as	a	table-valued	function:

The	logic	is	expressible	in	a	single	SELECT	statement	but	is	a	stored
procedure,	rather	than	a	view,	only	because	of	the	need	for	parameters.
This	scenario	can	be	handled	with	an	inline	table-valued	function.

The	stored	procedure	does	not	perform	update	operations	(except	to
table	variables).

There	is	no	need	for	dynamic	EXECUTE	statements

The	stored	procedure	returns	one	result	set.

The	primary	purpose	of	the	stored	procedure	is	to	build	intermediate
results	that	are	to	be	loaded	into	a	temporary	table,	which	is	then
queried	in	a	SELECT	statement.	INSERT...EXEC	statements	can	be
written	using	table-valued	functions.	For	example,	consider	the
following	sequence:
INSERT	#temp	EXEC	sp_getresults
SELECT	...

				FROM	#temp,	t1
				WHERE	...

The	sp_getresults	stored	procedure	can	be	rewritten	as	a	table-valued
function,	for	example	fn_results(),	which	means	the	preceding
statements	can	be	rewritten	as:

SELECT	...
				FROM	fn_results(),	t1
				WHERE	...
	

Creating	and	Maintaining	Databases

Using	Extended	Properties	on	Database	Objects
Microsoft®	SQL	Server™	2000	introduces	extended	properties	that	users	can
define	on	various	objects	in	a	database.	These	extended	properties	can	be	used	to
store	application-specific	or	site-specific	information	about	the	database	objects.
Because	the	property	is	stored	in	the	database,	all	applications	reading	the
property	can	evaluate	the	object	in	the	same	way.	This	helps	enforce	consistency
in	the	way	data	is	treated	by	all	of	the	programs	in	the	system.

Each	extended	property	has	a	user-defined	name	and	value.	The	value	of	an
extended	property	is	a	sql_variant	value	that	can	contain	up	to	7,500	bytes	of
data.	Individual	database	objects	can	have	multiple	extended	properties.

Possible	uses	of	extended	properties	include:

Specifying	a	caption	for	a	table,	view,	or	column.	All	applications	can
then	use	the	same	caption	in	a	user	interface	that	displays	information
from	that	table,	view,	or	column.

Specifying	an	input	mask	for	a	column	so	that	all	applications	can
validate	data	before	executing	a	Transact-SQL	statement.

Specifying	formatting	rules	for	displaying	the	data	in	a	column.

Recording	a	description	of	specific	database	objects	that	applications
can	display	to	users.

Specifying	the	size	and	window	location	at	which	a	column	should	be
displayed.

For	the	purposes	of	specifying	extended	properties,	the	objects	in	a	SQL	Server
2000	database	are	classified	into	three	levels	(0,	1,	2).	Level	0	is	the	highest	level
and	2	is	the	lowest	level.	The	table	lists	the	level-0	objects,	user	and	user-defined
data	type,	with	their	valid	level-1	and	level-2	objects.

Level	0 Level	1 Level	2
User Table Column,	index,	constraint,

trigger
View Column,	INSTEAD	OF

trigger
Schema-bound	view Column,	index,	INSTEAD	OF

trigger
Stored	procedure Parameter
Rule <None>
Default <None>
Function Column,	parameter,

constraint,
Schema-bound
function

Column,	parameter,	constraint

User-defined	data
type

<None> <None>

Extended	properties	are	not	supported	on	objects	that	are	not	listed	as	level	0,	1,
or	2	objects.

References	to	an	object	in	one	level	must	be	qualified	with	the	names	of	the
higher	level	objects	that	own	or	contain	them.	For	example,	when	referencing	a
column	(level	2)	you	must	also	specify	the	table	(level	1)	that	contains	the
column	and	the	user	(level	0)	who	owns	the	table.

Extended	properties	provide	only	a	named	location	in	which	to	store	data.	All
applications	must	be	coded	to	query	the	property	and	take	appropriate	action.
For	example,	adding	a	caption	property	to	a	column	does	not	create	a	caption
that	can	be	displayed	by	an	application.	Each	application	must	be	coded	to	read
the	caption	and	display	it	properly.

Extended	properties	are	managed	using	three	system	stored	procedures:

sp_addextendedproperty

Adds	a	new	extended	property	to	a	database	object.

sp_updateextendedproperty

Updates	the	value	of	an	existing	extended	property.

sp_dropextendedproperty

Drops	an	existing	extended	property.

You	can	retrieve	the	value	of	an	existing	extended	property	using	the	system
function	FN_LISTEXTENDEDPROPERTY.

The	following	is	an	example	of	a	table	that	has:

Caption	extended	properties	for	the	table	and	the	columns.

Input-mask	extended	properties	for	the	columns.

USE	Northwind
GO
CREATE	TABLE	TestExProp
		(PriKey						int	PRIMARY	KEY	IDENTITY(1,1),
			USPhoneNmbr						char(13)
								CHECK	(USPhoneNmbr	LIKE
															'([0-9][0-9][0-9])[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]'
),
			USSocialScrty			char(11)
								CHECK	(USSocialScrty	LIKE
															'[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]'
)
)
GO
sp_addextendedproperty	'Caption',	'Caption	Test	Table',
																							'user',	dbo,	'table',	TestExProp
GO
sp_addextendedproperty	'Caption',	'Primary	Key',
																							'user',	dbo,	'table',	TestExProp,	'column',	PriKey
GO
sp_addextendedproperty	'Input	Mask',	'(NNN)NNN-NNNN',

																							'user',	dbo,	'table',	TestExProp,	'column',	USPhoneNmbr
GO
sp_addextendedproperty	'Caption',	'US	Phone	Number',
																							'user',	dbo,	'table',	TestExProp,	'column',	USPhoneNmbr
GO
sp_addextendedproperty	'Input	Mask',	'NNN-NN-NNNN',
																							'user',	dbo,	'table',	TestExProp,	'column',	USSocialScrty
GO
sp_addextendedproperty	'Caption',	'US	Social	Security	Number',
																							'user',	dbo,	'table',	TestExProp,	'column',	USSocialScrty
GO

This	statement	updates	the	primary-key	caption	property:

sp_updateextendedproperty	'Caption',	'Primary	Key	-	Integer',
																							'user',	dbo,	'table',	TestExProp,	'column',	PriKey

This	statement	drops	the	input-mask	properties:

sp_dropextendedproperty	'Input	Mask',
																							'user',	dbo,	'table',	TestExProp,
																							'column',	USSocialScrty
GO
sp_dropextendedproperty	'Input	Mask',
																							'user',	dbo,	'table',	TestExProp,
																							'column',	USPhoneNmbr
GO

This	statement	retrieves	the	table-caption	property:

SELECT	*
FROM	::FN_LISTEXTENDEDPROPERTY('Caption',	'User','dbo','table',
																															'TestExProp',	default,	default)

The	example	shows	using	CHECK	constraints	and	an	input-mask	property	to
specify	the	pattern	of	data	for	each	column.	Most	sites	choose	one	or	the	other

unless:

The	CHECK	constraints	were	used	as	an	interim	measure	until	all	the
programs	dealing	with	this	table	could	be	changed	to	use	the	input	mask
properties.

The	site	also	supports	users	who	can	update	the	data	through	ad	hoc
tools	that	do	not	read	the	extended	properties.

The	advantage	of	the	input	mask	over	the	CHECK	constraint	is	that	the	logic	is
applied	in	the	applications,	which	can	generate	more	informative	errors	if	a	user
provides	improperly	formatted	data.	The	disadvantage	of	the	input	mask	is	that	it
requires	a	separate	call	to	fn_listextendedproperty	to	obtain	the	property,	and
the	logic	to	enforce	the	mask	must	be	added	in	all	programs.

See	Also

fn_listextendedproperty

Property	Management

sp_addextendedproperty

sp_dropextendedproperty

sp_updateextendedproperty

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Creating	and	Maintaining	Databases

Full-Text	Indexes
Full-text	support	for	Microsoft®	SQL	Server™	2000	data	involves	two	features:
the	ability	to	issue	queries	against	character	data,	and	the	creation	and
maintenance	of	the	underlying	indexes	facilitating	these	queries.

Full-text	indexes	differ	from	regular	SQL	indexes	in	a	number	of	ways.

Regular	SQL	indexes Full-text	indexes
Stored	under	the	control	of	the
database	in	which	they	are	defined.

Stored	in	the	file	system,	but
administered	through	the	database.

Several	regular	indexes	per	table
are	allowed.

Only	one	full-text	index	per	table	is
allowed.

Updated	automatically	when	the
data	upon	which	they	are	based	is
inserted,	updated,	or	deleted.

Addition	of	data	to	full-text	indexes,
called	population,	can	be	requested
through	either	a	schedule	or	a	specific
request,	or	can	occur	automatically
with	the	addition	of	new	data.

Not	grouped. Grouped	within	the	same	database	into
one	or	more	full-text	catalogs.

Created	and	dropped	using	SQL
Server	Enterprise	Manager,
wizards,	or	Transact-SQL
statements.

Created,	managed,	and	dropped	using
SQL	Server	Enterprise	Manager,
wizards,	or	stored	procedures.

These	differences	make	a	number	of	administrative	tasks	necessary.	Full-text
administration	is	carried	out	at	several	levels:

Server

Certain	server-wide	properties,	such	as	resource_usage,	can	be	set	to
increase	and	reduce	the	amount	of	system	resources	used	by	the	full-
text	service.

Note		The	full-text	engine	runs	as	a	service	named	Microsoft	Search	on
Microsoft	Windows	NT®	Server	and	Microsoft	Windows®	2000
Server.	The	Microsoft	Search	service	is	not	available	for	Microsoft	SQL

Server	Personal	Edition.	Although	this	means	the	Microsoft	Search
service	is	not	installed	on	Microsoft	Windows	95	or	Windows	98,
Windows	NT	Workstation,	or	Windows	2000	Professional	clients,	these
clients	can	make	use	of	the	service	when	they	are	connected	to	an
instance	of	SQL	Server	Standard	or	Enterprise	edition.

Database

A	database	must	be	enabled	to	use	the	full-text	service.	Meta	data	for
one	or	more	full-text	catalogs	can	be	created	and	dropped	in	an	enabled
database.

Full-text	catalog

A	full-text	catalog	contains	full-text	indexes	in	a	database.	Each	catalog
can	serve	the	indexing	needs	of	one	or	more	tables	within	a	database.
The	catalog	is	populated	with	indexes	using	the	administrative	facilities
described	here.	(Full-text	catalogs	must	reside	on	a	local	hard	drive
associated	with	the	instance	of	SQL	Server.	Removable	drives,	floppy
disks,	and	network	drives	are	not	supported.)	A	maximum	of	256	full-
text	catalogs	can	be	created	on	each	server.

Note		Full-text	indexing	is	fully	supported	in	a	Windows	NT	failover
cluster	environment.	For	more	information,	see	Running	Full-Text
Queries	with	Failover	Clustering.

Table

A	table	must	first	be	enabled	for	full-text	support.	Then	meta	data,	such
as	the	name	of	the	table	and	its	full-text	catalog,	is	created	for	the	full-
text	index	associated	with	the	table.	After	the	table	is	enabled,	you	can
populate	it	with	the	data	in	columns	enabled	for	full-text	support.	If	the
full-text	definition	for	a	table	is	changed	(for	example,	by	including	a
new	column	that	will	also	be	indexed	for	a	full-text	search),	the
associated	full-text	catalog	must	be	repopulated	to	synchronize	the	full-
text	index	with	the	new	full-text	definition.

Column

Columns	that	support	full-text	queries	can	be	added	or	dropped	from	an
inactive	registered	table.

JavaScript:hhobj_1.Click()

At	all	these	levels,	facilities	are	available	to	retrieve	meta	data	and	status
information.

Like	regular	SQL	indexes,	full-text	indexes	can	be	automatically	updated	as	data
is	modified	in	the	associated	tables.	Alternatively,	full-text	indexes	can	be
repopulated	manually	at	appropriate	intervals.	This	repopulation	can	be	time-
consuming	and	resource-intensive;	therefore,	it	is	an	asynchronous	process	that
usually	runs	in	the	background	during	periods	of	low	database	activity.

Tables	with	the	same	update	characteristics	(such	as	small	number	of	changes
versus	large	number	of	changes,	or	tables	that	change	frequently	during	a
particular	time	of	day)	should	be	grouped	together	and	assigned	to	the	same	full-
text	catalog.	By	setting	up	full-text	catalog	population	schedules	in	this	way,
full-text	indexes	stay	synchronous	with	the	tables	without	adversely	affecting	the
resource	usage	of	the	database	server	during	periods	of	high	database	activity.

It	is	important	to	plan	the	placement	of	full-text	indexes	for	tables	in	full-text
catalogs.	When	you	assign	a	table	to	a	full-text	catalog,	consider	the	following
guidelines:

Always	select	the	smallest	unique	index	available	for	your	full-text
unique	key.	(A	4-byte,	integer-based	index	is	optimal.)	This	reduces	the
resources	required	by	Microsoft	Search	service	in	the	file	system
significantly.	If	the	primary	key	is	large	(over	100	bytes),	consider
choosing	another	unique	index	in	the	table	(or	creating	another	unique
index)	as	the	full-text	unique	key.	Otherwise,	if	the	full-text	unique	key
size	reaches	the	maximum	size	allowed	(450	bytes),	full-text	population
will	not	be	able	to	proceed.

If	you	are	indexing	a	table	that	has	millions	of	rows,	assign	the	table	to
its	own	full-text	catalog.

Consider	the	amount	of	change	occurring	in	the	tables	being	full-text
indexed,	as	well	as	the	number	of	table	rows.	If	the	total	number	of
rows	being	changed,	together	with	the	numbers	of	rows	in	the	table
present	during	the	last	full-text	population,	represents	millions	of	rows,
assign	the	table	to	its	own	full-text	catalog.

See	Also

sp_fulltext_table

JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Administering	Full-Text	Features	Using	SQL
Enterprise	Manager
You	can	administer	full-text	indexes	using	the	Full-Text	Indexing	Wizard	or
shortcut	menus	in	SQL	Server	Enterprise	Manager.

To	enable	a	database	for	full-text	indexing

Creating	and	Maintaining	Databases

Administering	Full-Text	Features	Using	Stored
Procedures	and	Scalar	Functions
Administering	full-text	features	using	stored	procedures	and	scalar	functions	is
described	through	examples	provided	in	these	topics:

Enabling	Others	to	Issue	Full-Text	Queries

Performing	Investigation	and	Clean-up	Tasks	for	Full-Text	Catalogs

Performing	Infrequent	Tasks

The	examples	in	these	topics	use	two	fictitious	tables,	writers	and	books,	in	the
pubs	database.	This	table	shows	the	writers	table	and	the	columns	that	are
candidates	for	full-text	indexing,	specifically	the	varchar	data	type.

Column	name Data	type
Enable	full-text
features?

writer_name char(40) No
citizenship char(40) No
organization varchar(100) Yes
royalties_ytd decimal(7,2) No
Royalyties_lifetime decimal(7,2) No
Bio varchar(500) Yes
writer_id integer	(with	a	unique	value

enforced	by	the	writer_id_index
index)

No

last_changed timestamp No

This	table	shows	the	books	table	and	the	columns	that	are	candidates	for	full-
text	indexing,	specifically	the	varchar	and	text	data	types.

Column	name Data	type
Enable	full-text
features?

writer_name char(40) No
Title varchar(120) Yes
Size smallint No
pub_date datetime No
the_words text Yes
Abstract varchar(500) Yes
isbn char(15)	(with	a	unique	value

enforced	by	the	isbn_index	index)
No

last_changed timestamp No

For	more	information	about	both	querying	and	indexing,	see	Example	of
Combining	Full-Text	Administration	and	Full-Text	Query.

JavaScript:hhobj_1.Click()

Creating	and	Maintaining	Databases

Enabling	Others	to	Issue	Full-Text	Queries
This	example	demonstrates	how	to	use	SQL	Server	Service	Manager	to	enable
others	to	issue	full-text	queries	against	the	writers	and	books	tables.	The
writers	and	books	tables	are	fictitious	tables	located	in	the	pubs	database.	For	a
description	of	the	tables,	see	Administering	Full-Text	Features	Using	Stored
Procedures	and	Scalar	Functions_administering_full-
text_features_using_stored_procedures_and_scalar_functions

1.	 Use	SQL	Server	Service	Manager	to	verify	the	full-text	service,
Microsoft	Search,	is	running.

If	necessary,	the	service	can	be	started	and	stopped	in	one	of	these
ways:

Use	the	shortcut	menu	of	the	Full-Text	Search	service	in
SQL	Server	Enterprise	Manager.

Use	Microsoft	Search	service	in	SQL	Server	Service
Manager.

Type	net	start	mssearch	from	a	command	prompt.

2.	 Find	out	if	the	pubs	database	has	been	enabled	for	full-text	processing
by	executing	this	statement:
SELECT	DatabaseProperty	('Pubs',		'IsFulltextEnabled')

For	more	information,	see	DATABASEPROPERTY.

This	returns	1	if	full-text	support	has	been	enabled,	and	0	if	it	has	not.

3.	 If	not	enabled	(which	is	the	default	for	newly	created	databases),
enable	the	pubs	database	for	full-text	processing.	Using	pubs,	execute
this	stored	procedure:
sp_fulltext_database		'enable'

For	more	information,	see	sp_fulltext_database.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

4.	 Create	a	full-text	catalog	named	PubsCatalog,	opting	for	the	default
directory,	by	executing	this	stored	procedure	in	the	pubs	database:	
sp_fulltext_catalog	'PubsCatalog',	'create'				

For	more	information,	see	sp_fulltext_catalog.

This	creates	meta	data	about	a	full-text	catalog	in	the	system	tables	of
the	database	and	builds	an	empty	full-text	catalog	in	the	file	system.

5.	 Register	the	writers	and	books	tables	for	full-text	processing	by
executing	this	stored	procedure	once	for	each	table:
sp_fulltext_table		'writers',		'create',		'PubsCatalog',	
'writer_id_index'
sp_fulltext_table		'books',		'create',		'PubsCatalog',	'isbn_index'

For	more	information,	see	sp_fulltext_table.

Both	tables	use	the	PubsCatalog	full-text	catalog.	These	stored
procedure	calls	create	meta	data	about	both	full-text	indexes.

6.	 For	each	table,	specify	the	names	of	the	columns	that	are	to	support
full-text	queries	by	executing	this	stored	procedure	once	for	each
column:
sp_fulltext_column		'writers',		'organization',		'add'	
sp_fulltext_column		'writers',		'bio',		'add'	
sp_fulltext_column		'books',		'writer_name',		'add'			
sp_fulltext_column		'books',		'the	words',		'add'	
sp_fulltext_column		'books',		'abstract',		'add'	

For	more	information,	see	sp_fulltext_column.

Note		A	mistake	was	made	for	the	sake	of	illustration:	for	the	books
table,	the	writer_name	column,	rather	than	the	titles	column,	has	been
registered.

These	stored	procedure	calls	augment	meta	data	about	both	full-text
indexes.

7.	 Create	a	full-text	index	for	these	tables	by	executing	this	stored

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

procedure	once	for	each	table:
sp_fulltext_table		'writers',		'activate'
sp_fulltext_table		'books',		'activate'

This	does	not	actually	create	the	full-text	indexes.	Rather,	it	registers
the	tables	in	the	full-text	catalog	so	that	data	from	these	tables	will	be
included	in	the	next	population.

8.	 Start	a	full	population	of	the	PubsCatalog	full-text	catalog	by
executing	this	stored	procedure:
sp_fulltext_catalog		'PubsCatalog',		'start_full'

Because	the	population	of	a	full-text	catalog	is	an	asynchronous
operation,	it	is	unlikely	that	the	full-text	indexes	are	created
immediately.

9.	 Verify	the	progress	of	the	population	of	the	PubsCatalog	full-text
catalog	by	executing	this	statement:
SELECT	FulltextCatalogProperty	('PubsCatalog',		'PopulateStatus')

For	more	information,	see	FULLTEXTCATALOGPROPERTY.

This	returns	0	if	the	service	is	idle	for	the	full-text	catalog	and
therefore	finished,	and	1	or	more	to	indicate	the	stage	of	population.

10.	 Issue	Transact-SQL	queries	to	confirm	that	the	administration	was
executed	correctly.	For	example:
SELECT	B.writer_name,	B.pub_date,	B.the_words,	A.royalties_ytd
FROM	writers	A,		books	B
WHERE	A.writer_name	=	B.writer_name
AND	A.citizenship	=	'Canadian'
AND	CONTAINS	(B.the_words,	'"Indexing	Service"	NEAR	"Indexing	Service"')

SELECT	writer_name,	pub_date,	abstract
FROM	books		
WHERE	CONTAINS	(title,	'"Classic"	NEAR	"French"	NEAR	"Cooking"')

JavaScript:hhobj_6.Click()

This	last	query	results	in	an	error	because	the	title	column	was	not
enabled	for	full-text	queries.

11.	 Check	for	errors	by	executing	this	statement:
SELECT	ColumnProperty	(ObjectId('books'),	'title',		'IsFullTextIndexed')

For	more	information,	see	COLUMNPROPERTY.

This	returns	1	if	the	title	column	is	part	of	the	full-text	index	for	the
books	table,	and	0	if	it	is	not.

12.	 List	the	columns	participating	in	full-text	processing	for	the	books
table	by	executing	this	stored	procedure:
sp_help_fulltext_columns		'books'

For	more	information,	see	sp_help_fulltext_columns.

Note		The	results	of	this	query	show	there	was	a	mistake	and	that	the
writer_name	column,	rather	than	the	title	column,	was	included	in	the
full-text	index	definition.

13.	 Deactivate	the	books	table	so	that	the	title	column	can	be	added	to	the
full-text	index	and	the	writer_name	column	can	be	removed	by
executing	this	stored	procedure:
sp_fulltext_table		'books',		'deactivate'

In	addition	to	allowing	columns	to	be	added	and	deleted,	deactivating
the	books	table	means	the	table	no	longer	participates	in	the
population	of	the	PubsCatalog	full-text	catalog.	However,	the	meta
data	remains	and	the	table	can	be	reactivated.	The	existing	full-text
index	for	the	books	table	remains	in	place	until	the	next	full
population	of	the	PubsCatalog	full-text	catalog,	but	it	is	unused
because	Microsoft®	SQL	Server™	2000	blocks	queries	on	deactivated
tables.

14.	 Add	the	title	column	and	remove	the	writer_name	column	from	the
meta	data	for	the	full-text	index	of	the	books	table.	Execute	this	stored
procedure	once	for	each	column:
sp_fulltext_column		'books',		'writer_name',		'drop'			

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

sp_fulltext_column		'books',		'title',		'add'

For	more	information,	see	sp_fulltext_column.

15.	 Reactivate	the	books	table	using	this	stored	procedure:
sp_fulltext_table		'books',		'activate'

If	the	table	is	reactivated	and	the	index	is	not	repopulated,	the	old
index	is	still	available	for	queries	against	the	remaining	full-text
enabled	columns,	but	not	for	queries	against	any	new	full-text	enabled
columns.	Before	repopulation,	data	from	deleted	columns	can	be
matched	on	queries	that	specify	a	search	of	all	full-text	columns	by
typing	an	asterisk	(*)	for	the	column	name.

16.	 Start	an	incremental	population	of	the	PubsCatalog	full-text	catalog
by	executing	this	stored	procedure:
sp_fulltext_catalog		'PubsCatalog',		'start_incremental'

An	incremental	population	refreshes	the	full-text	catalog	by	indexing
data	in	full-text	enabled	columns	with	these	characteristics:

Rows	that	have	been	updated	or	inserted	since	the	last
population.

Tables	that	have	a	timestamp	column.	

All	rows	that	have	been	enabled	for	full-text	processing	since
the	last	population,	or	that	have	a	schema	that	has	been
modified	in	any	way	since	the	last	population.

17.	 After	repopulation	of	the	PubsCatalog	full-text	catalog	completes,
reissue	the	Transact-SQL	query	from	Step	10.	This	time,	no	error
occurs.

JavaScript:hhobj_9.Click()

Creating	and	Maintaining	Databases

Performing	Investigation	and	Clean-up	Tasks	for
Full-Text	Catalogs
In	this	example,	you	perform	typical	investigation	and	clean-up	tasks.	Assume
that	you	have	already	connected	to	the	pubs	database,	the	full-text	service	has
been	started,	and	that	you	are	working	with	the	fictitious	writers	and	books
tables.	For	a	description	of	the	tables,	see	Administering	Full-Text	Features
Using	Stored	Procedures	and	Scalar	Functions_administering_full-
text_features_using_stored_procedures_and_scalar_functions

1.	 Obtain	a	list	of	all	the	full-text	catalogs	linked	to	the	pubs	database	by
executing	this	stored	procedure:
sp_help_fulltext_catalogs	

For	more	information,	see	sp_help_fulltext_catalogs

Because	the	pubs	database	is	the	current	database,	this	stored
procedure	returns	the	following	meta	data	for	all	the	full-text	catalogs
linked	to	the	pubs	database:

Name	and	integer	identifier	of	the	full-text	catalog

Full-text	catalog	root	directory

Full-text	catalog	population	status

Number	of	tables	linked	to	this	full-text	catalog

A	variation	of	this	stored	procedure	in	which	a	full-text	catalog	name
parameter	is	specified	returns	this	information	for	a	single	full-text
catalog.

2.	 Obtain	a	list	of	all	the	tables	in	the	database	that	have	been	enabled	for
full-text	processing	by	executing	this	stored	procedure:

sp_help_fulltext_tables

JavaScript:hhobj_1.Click()

For	more	information,	see	sp_help_fulltext_tables

This	stored	procedure	returns	the	following	meta	data	for	each	table:

The	two-part	name	of	the	table

The	integer	identifier	of	the	column	used	as	the	table's	full-text	key

The	name	of	the	index	that	is	used	to	impose	a	unique	constraint	on	the
full-text	key	column	

The	full-text	status	of	the	table	

The	name	of	the	full-text	catalog	of	the	table

Two	other	variations	of	this	stored	procedure	are	supported.	If	the
fulltext_catalog_name	parameter	is	specified,	this	information	is
returned	for	all	the	tables	linked	to	that	full-text	catalog.	If	both	the
catalog_name	and	table_name	parameters	are	specified,	or	if	just	the
table_name	parameter	is	specified,	then	this	information	is	returned	for
that	table.

3.	 Obtain	a	list	of	all	the	columns	in	the	database	that	have	been	enabled
for	full-text	processing	by	executing	this	stored	procedure:
sp_help_fulltext_columns	

For	more	information,	see	sp_help_fulltext_columns

This	stored	procedure	returns	the	following	meta	data	about	each
column:

The	two-part	name	of	the	table	in	the	column

The	name	and	integer	identifier	of	the	column

A	variation	of	this	stored	procedure,	in	which	a	table	name	parameter
is	specified,	returns	this	information	for	a	single	table.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

The	compiled	lists	indicate	some	issues.	The	mycatalog	full-text
catalog	is	no	longer	used	except	by	the	mytable	table,	which	no	longer
has	any	full-text	columns	that	can	be	queried.

4.	 Unregister	the	mytable	table	for	full-text	processing	by	executing	this
stored	procedure:
sp_fulltext_table		'MyTable',	'drop'

For	more	information,	see	sp_fulltext_table.

This	drops	the	meta	data	about	full-text	indexing	for	the	table.	The
existing	full-text	index	remains	in	place	until	the	next	full	population
or	until	the	full-text	catalog	is	dropped.	However,	it	remains	unused.
For	more	information,	see	sp_fulltext_table.

5.	 Drop	the	mycatalog	full-text	catalog	from	the	file	system	and	its	meta
data	from	the	system	tables	by	executing	this	stored	procedure:
sp_fulltext_catalog		'MyCatalogue',	'drop'		

For	more	information,	see	sp_fulltext_catalog.

You	must	complete	Step	4	before	a	full-text	catalog	can	be	dropped
because	its	text-catalog	meta	data	must	be	updated	to	remove	all	full-
text	indexes.

There	is	at	least	one	full-text	catalog	in	the	file	system	that	no	longer
has	corresponding	SQL	Server	meta	data.	The	usual	cause	of	this	is	the
removal	of	a	database.

6.	 Remove	from	the	file	system	all	full-text	catalogs	that	no	longer	have
meta	data	for	them	in	SQL	Server	by	executing	this	stored	procedure:
sp_fulltext_service		'Clean_Up'

For	more	information,	see	sp_fulltext_service.

The	structure	of	the	MixedUpCtlg	full-text	catalog	does	not	match	the
meta	data	currently	recorded	for	it	in	SQL	Server.	This	can	occur	when
the	full-text	catalog	is	being	dropped,	or	the	database	is	being	dropped
and	the	Microsoft	Search	service	is	not	running.	The	drop	action
changes	the	meta	data	related	to	the	full-text	catalogs,	but	is	unable	to

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

complete	the	operation	because	the	Microsoft	Search	service	is	not
running.	This	leads	to	inconsistency	between	the	full-text	meta	data	in
SQL	Server	and	the	associated	physical	full-text	catalog	in	the	file
system.	This	inconsistency	can	be	corrected	by	invoking	the	clean-up
action	on	sp_fulltext_service.	(Microsoft	Search	service	must	be
running.)

7.	 Rebuild,	but	do	not	repopulate,	the	MixedUpCtlg	full-text	catalog	by
executing	this	stored	procedure:	
sp_fulltext_catalog		'MixedUpCtlg',		'Rebuild'

For	more	information,	see	sp_fulltext_catalog.

The	sp_fulltext_database	stored	procedure	with	the	ENABLE	option
may	be	used	to	rebuild	all	known	full-text	catalogs.

8.	 Start	a	full	population	of	the	MixedUpCtlg	full-text	catalog	by
executing	this	stored	procedure:
sp_fulltext_catalog		'MixedUpCtlg',		'start_full'
	

Note		Full-text	catalogs	can	be	created,	dropped,	and	modified	as
needed;	however,	avoid	making	schema	changes	on	multiple	catalogs
at	the	same	time.

JavaScript:hhobj_8.Click()

Creating	and	Maintaining	Databases

Performing	Infrequent	Tasks
The	examples	in	this	scenario	demonstrate	the	full-text	indexing	tasks	typically
required	less	frequently	than	other	administrative	tasks.

Changing	the	Amount	of	Resources	Used	for	Full-Text	Indexing
and	Searching
Determine	if	the	level	of	resource	usage	has	been	assigned	to	the	full-text	service
and	how	long	the	full-text	service	has	to	wait	after	a	request	for	population.

1.	 After	starting	the	server,	execute	this	statement:
SELECT	FulltextServiceProperty	('IsFullTextInstalled')

For	more	information,	see	FULLTEXTSERVICEPROPERTY.

This	returns	1	if	the	service	has	been	installed,	and	0	if	it	has	not.

2.	 Determine	the	level	of	resource	usage	assigned	to	the	full-text	service
by	executing	this	statement:
SELECT	FulltextServiceProperty	('ResourceUsage')

This	returns	a	value	from	1	(background)	through	5	(dedicated).

3.	 To	determine	how	long	the	full-text	service	has	to	wait	to	initialize
after	a	request	to	populate	a	full-text	index,	execute	this	statement:
SELECT	FulltextServiceProperty	('ConnectTimeout')

This	returns	the	current	time-out	value.

4.	 Because	this	installation	of	Microsoft®	SQL	Server™	2000	is	heavily
loaded,	you	may	decide	to	increase	the	initialization	time-out	from	the
default	of	20	seconds	to	90	seconds	by	executing	this	stored
procedure:
sp_fulltext_service		'ConnectTimeout',		90

For	more	information,	see	sp_fulltext_service.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Inquiring	About	the	Full-Text	Key	Column

Determine	whether	the	regular	SQL	Server	mag_id_index	index	on	the
magazines	table	in	the	pubs	database	is	used	to	enforce	the	uniqueness	of	the
full-text	key	column.

1.	 Execute	this	statement:
SELECT	IndexProperty	(Object_Id('magazines',	'mag_id_index',		'IsFulltextKey')

For	more	information,	see	INDEXPROPERTY.

This	returns	a	value	of	1	if	the	index	is	used	to	enforce	uniqueness	of
the	full-text	key	column,	and	0	if	it	does	not.

2.	 Find	the	name	of	the	full-text	key	column	in	the	books	table	by
executing	this	statement:
SELECT	ObjectProperty(Object_Id('books',	'TableFulltextKeyColumn'))

For	more	information,	see	OBJECTPROPERTY.

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Creating	and	Maintaining	Databases

Maintaining	Full-Text	Indexes
There	are	three	ways	to	maintain	a	full-text	index:

Full	rebuild

Rescans	all	rows.	Completely	rebuilds	the	full-text	index.	You	can
perform	a	full	rebuild	immediately	or	on	a	schedule,	using	SQL	Server
Agent.

Timestamp-based	incremental	rebuild

Rescans	those	rows	that	have	changed	since	the	last	full	or	incremental
rebuild.	This	requires	a	timestamp	column	on	the	table.	Changes	that
do	not	update	the	timestamp,	such	as	WRITETEXT	and
UPDATETEXT,	are	not	detected.	You	can	perform	an	incremental
rebuild	immediately	or	on	a	schedule.

Change	tracking

Maintains	a	list	of	all	changes	to	the	indexed	data.	Changes	made	with
WRITETEXT	and	UPDATETEXT	are	not	detected.	You	can	update	the
full-text	index	with	these	changes	immediately,	on	a	schedule,	or	as	they
occur,	using	the	background	update	index	option.

The	method	you	use	depends	on	factors	such	as	the	CPU	and	available	memory,
the	amount	and	rate	of	change	of	data,	the	amount	of	available	disk	space,	and
the	importance	of	the	full-text	index	being	current.	Use	these	recommendations
as	a	guide	for	selecting	a	maintenance	method.

Use	change	tracking	with	the	background	update	index	option	when
CPU	and	memory	are	available,	the	value	of	an	up-to-date	index	is	high,
and	immediate	propagation	can	keep	up	with	the	rate	of	changes.

Use	change	tracking	with	scheduled	propagation	when	CPU	and
memory	can	be	used	at	scheduled	times,	disk	space	for	storing	changes
is	available,	and	changes	between	the	scheduled	times	are	not	so
significant	that	the	propagation	takes	longer	than	a	full	rebuild.

Use	a	full	rebuild	when	a	large	percentage	of	records	change	or	are
added	at	once.	If	a	large	percentage	of	records	change	over	an	extended
period	of	time,	consider	using	change	tracking	with	scheduled	or
background	update	index.

Use	an	incremental	rebuild	when	a	large	number,	but	not	a	large
percentage,	of	documents	change	at	one	time.	If	a	large	number	of
records	change	over	an	extended	period	of	time,	consider	using	change
tracking	with	scheduled	or	background	update	index.

See	Also

OBJECTPROPERTY

sp_fulltext_table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Filtering	Supported	File	Types
When	a	cell	in	an	image	column	contains	one	of	certain	types	of	documents,
full-text	search	uses	a	filter	to	interpret	the	binary	data.	The	filter	extracts	the
textual	information	from	the	document	and	submits	it	for	indexing	and
subsequent	querying.

Microsoft®	SQL	Server™	2000	includes	filters	for	these	file	extensions:	.doc,
.xls,	.ppt,	.txt,	and	.htm.

Many	document	types	can	be	stored	in	a	single	image	column.	For	each
document,	SQL	Server	chooses	the	correct	filter	based	on	the	file	extension.
Because	the	file	extension	is	not	visible	when	the	file	is	stored	in	an	image
column,	the	file	extension	must	be	stored	in	a	separate	column	on	the	table.	This
type	column	can	be	of	any	character-based	data	type	and	contains	the	document
file	extension,	such	as	.doc	for	a	Microsoft	Word	document.	If	the	type	column	is
NULL,	the	document	is	assumed	to	be	a	text	file	(.txt).

Note		For	full-text	indexing,	a	document	must	be	less	than	16	megabytes	(MB)
in	size	and	must	not	contain	more	than	256	kilobytes	(KB)	of	filtered	text.

The	document-type	column	is	created	in	these	ways:

In	the	Full-Text	Indexing	Wizard,	select	the	image	column	for	indexing,
and	then	specify	a	Binding	column	to	hold	the	document	type.

The	sp_fulltext_column	stored	procedure	accepts	an	argument	for	the
column	to	contain	the	document	types.

To	view	the	document	type,	use	the	sp_help_fulltext_columns	stored	procedure
to	return	the	column	name	and	column	ID.

After	the	image	column	is	indexed,	it	can	be	queried	using	the	search	predicates
CONTAINS	and	FREETEXT.

Note		A	filter	may	be	able	to	handle	objects	embedded	in	the	parent	object,
depending	on	its	implementation.	Filters	do	not	follow	links	to	other	objects.

You	can	create	custom	filters	for	full-text	indexing	of	additional	file	types.	For

more	information	about	creating	custom	filters,	search	on	"custom	filters"	in	the
Platform	SDK	section	of	the	MSDN®	Library	at	Microsoft	Web	site.

See	Also

sp_fulltext_column

sp_help_fulltext_columns

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red
JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Creating	and	Maintaining	Databases

Column-Level	Linguistic	Analysis
Linguistic	analysis	is	performed	on	all	full-text	indexed	data.	Linguistic	analysis
involves	finding	word	boundaries	(word-breaking)	and	conjugating	verbs
(stemming).	The	rules	for	this	analysis	differ	for	different	languages,	and	you
can	specify	a	different	language	for	each	full-text	indexed	column.	Microsoft®
SQL	Server™	2000	includes	linguistic	analysis	packages	for	these	locales.

Neutral German
Chinese_Simplified Italian
Chinese_Traditional Japanese
Dutch Korean
English_UK Spanish_Modern
English_US Swedish_Default
French 	

Use	neutral	when	a	column	contains	data	in	multiple	languages	or	in	an
unsupported	language.

The	linguistic	analysis	performed	on	arguments	to	the	full-text	query	functions,
CONTAINS,	FREETEXT,	CONTAINSTABLE,	and	FREETEXTTABLE,	is
determined	by	the	language	of	the	full-text	indexed	column	being	queried.	If	no
language	is	specified	for	a	column,	the	default	is	the	value	of	the	configuration
option,	'default	full-text	language'.

For	a	localized	version	of	SQL	Server,	SQL	Server	Setup	sets	the	default	full-
text	language	option	to	the	language	of	the	server	if	an	appropriate	match	exists.
For	a	nonlocalized	version	of	SQL	Server,	the	default	full-text	language	option
defaults	to	neutral.

Note		All	columns	listed	in	a	single	full-text	query	function	clause	must	use	the
same	language.

The	default	full-text	language	configuration	option	replaces	the	language
neutral	full-text	option	in	SQL	Server	version	7.0.	During	an	upgrade	from
SQL	Server	7.0	to	SQL	Server	2000,	the	default	full-text	language	value	is	set,
based	on	the	values	of	the	Unicode	locale	id	and	language	neutral	full-text

options.

See	Also

sp_fulltext_column

JavaScript:hhobj_1.Click()

	Creating and Maintaining Databases Overview
	Databases
	Parts of a Database
	Files and Filegroups
	Default Filegroups
	Using Files and Filegroups
	Using Files and Filegroups to Manage Database Growth
	Read-Only Filegroups

	Transaction Logs
	Virtual Log Files

	Database Design Considerations
	Creating a Database Plan
	Online Transaction Processing vs. Decision Support
	Normalization
	Data Integrity
	Data Security
	Database Performance
	Maintenance
	Estimating the Size of a Database
	Estimating the Size of a Table
	Estimating the Size of a Table Without a Clustered Index
	Estimating the Size of a Table with a Clustered Index

	Creating a Database
	Using Raw Partitions

	Modifying a Database
	Expanding a Database
	Shrinking a Database
	Adding and Deleting Data and Transaction Log Files
	Creating Filegroups
	Changing the Default Filegroup
	Setting Database Options
	Creating a Removable Database
	Attaching and Detaching a Database
	Attaching a Single-File Database

	Renaming a Database
	Changing the Database Owner
	Transaction Termination for Changing Database States

	Viewing a Database
	Displaying Database and Transaction Log Space

	Documenting and Scripting Databases
	Database Maintenance Plan Wizard
	Deleting a Database

	Tables
	Designing Tables
	Specifying a Column Data Type
	Binary Data
	Character Data
	Unicode Data
	Date and Time Data
	Numeric Data
	Monetary Data
	Special Data
	Creating User-Defined Data Types

	Text in Row Data
	Autonumbering and Identifier Columns
	Using Constraints, Defaults, and Null Values
	PRIMARY KEY Constraints
	FOREIGN KEY Constraints
	Cascading Referential Integrity Constraints

	UNIQUE Constraints
	CHECK Constraints
	DEFAULT Definitions
	Allowing Null Values

	Creating and Modifying a Table
	Modifying Column Properties
	Adding and Deleting Columns
	Creating and Modifying PRIMARY KEY Constraints
	Creating and Modifying FOREIGN KEY Constraints
	Creating and Modifying UNIQUE Constraints
	Creating and Modifying CHECK Constraints
	Creating and Modifying DEFAULT Definitions
	Creating and Modifying Identifier Columns

	Viewing a Table
	Deleting a Table

	Indexes
	Designing an Index
	Using Clustered Indexes
	Using Nonclustered Indexes
	Using Unique Indexes
	Fill Factor
	Index Tuning Wizard

	Creating an Index
	Creating Indexes on Computed Columns
	Creating Indexes on Views
	SET Options That Affect Results
	Creating Ascending and Descending Indexes
	Statistical Information

	Rebuilding an Index
	Renaming an Index
	Viewing an Index
	Deleting an Index

	Views
	Scenarios for Using Views
	Creating a View
	Designing an Indexed View
	Using Indexes on Views

	Creating an Indexed View
	Creating a Partitioned View

	Modifying and Renaming a View
	Modifying Data Through a View
	Getting Information About a View
	Deleting a View

	Stored Procedures
	Extended Stored Procedures
	Creating a Stored Procedure
	Specifying Parameters
	Specifying a Name
	Specifying a Data Type
	Specifying the Direction of a Parameter
	Specifying a Default Value

	Programming Stored Procedures
	Nesting Stored Procedures
	Deferred Name Resolution and Compilation

	Returning Data from a Stored Procedure
	Returning Data Using OUTPUT Parameters
	Returning Data Using a Return Code

	Executing a Stored Procedure
	Automatic Execution of Stored Procedures

	Modifying and Renaming a Stored Procedure
	Recompiling a Stored Procedure
	Viewing a Stored Procedure
	Deleting a Stored Procedure

	Enforcing Business Rules with Triggers
	Designing Triggers
	Specifying When a Trigger Fires
	Trigger Execution
	Designing INSTEAD OF Triggers

	Creating a Trigger
	Programming Triggers
	Using Triggers that Include ROLLBACK TRANSACTION
	Using the inserted and deleted Tables
	Multirow Considerations
	Conditional INSERT Trigger
	Specifying First and Last Triggers
	Using Nested Triggers
	Using INSTEAD OF Triggers
	INSTEAD OF INSERT Triggers
	INSTEAD OF UPDATE Triggers
	INSTEAD OF DELETE Triggers
	Expressions and Computed Columns in INSTEAD OF Triggers

	Using text, ntext, and image Data in INSTEAD OF Triggers
	Activating Triggers with Implicit and Explicit Null Values

	Modifying and Renaming a Trigger
	Viewing a Trigger
	Deleting a Trigger

	User-Defined Functions
	User-Defined Functions That Return a table Data Type
	Inline User-Defined Functions
	Deterministic and Nondeterministic Functions
	Rewriting Stored Procedures as Functions

	Using Extended Properties on Database Objects
	Full-Text Indexes
	Administering Full-Text Features
	Administering Full-Text Features Using Stored Procedures and Scalar Functions
	Enabling Others to Issue Full-Text Queries
	Performing Investigation and Clean-up Tasks for Full-Text Catalogs
	Performing Infrequent Tasks

	Maintaining Full-Text Indexes
	Filtering Supported File Types
	Column-Level Linguistic Analysis

