combit List & Label

Designer Help

P

(LLJ List & Label” 16

)

Designer

No responsibility is taken for the correctness of the information contained in this
manual. The information is subject to alteration without previous notice. combit
GmbH accepts no liabilities in connection with this document. The availability of
many of the functions described in this manual (e.g. the procedure for accessing
the functions) is dependent on your system's version and release, the installed
service packs (e.g. operating system, text processing software, mail program
etc.) and the configuration of the system. If in doubt, please ask the person
responsible for IT.

This manual or excerpts from this manual may not be copied or replicated in any
other form (e.g. digital) without the written approval of combit GmbH.

PDF creation utilizes wPDF3 (c) wpCubed GmbH - www.pdfcontrol.com

Copyright © combit GmbH 1992-2011; Rev. 16.002
www.combit.net
All rights reserved.

http://www.pdfcontrol.com/
http://www.combit.net/

combit List & Label

Introduction

With the List & Label Designer, you create or edit different
print templates for printing information that originates either
from a database or another data source. In the Designer, you
then have all the data at your disposal and can prepare it for
printing in different ways.

The Designer always uses the data that is passed from the
program, in other words, the application handles the process
of selecting and compiling the data.

Thus, "the Designer" is not a self-contained
application, but rather is incorporated in List & Label
as an inherent part of an application.

The Designer € the print, preview and export dialog @ is
normally started via a menu item (e.g. Configuration > Print
or Output > Print).

See also:
» General
» Screen

JavaScript:RT_7.HHClick()
JavaScript:RT_7.HHClick()
JavaScript:RT_602.HHClick()
JavaScript:RT_602.HHClick()

combit List & Label

General

The different print templates are referred to as "Projects".
Along with the actual print information, a project also
contains, above all, layout specifications such as page size
and orientation, fonts, colors, frames, circles, lines, graphics
etc. The List & Label Designer can handle three different
types of projects: Lists, labels and cards.

The individual elements of such a project are called
"objects". For example, a project can contain text objects,
picture objects and a report container.

The required objects are normally selected in the object list,
created on the workspace with the mouse and then given the
respective contents and layout properties.

The List & Label Designer provides different types of objects
which you can position freely in the workspace and change

the size as required.
Text and contents of variables

3 Lines

= Rectangles

|

Circles and ellipses

>
Picture object

F R

1 Barcode

= Report container or Table object (depending on

the application): The Report container can hold
tables, charts and crosstabs.

- Charts. Schematic view of data.

e Crosstabs. For presenting data in multiple
dimensions.

= Formatted text. For changing the formatting within
a line.

o Form elements. For entering data in the preview and

- PDF format.
= Gauge

HTML content

o OLE container. For linking OLE documents (e.g.
' Word, Excel).

” Form templates are placed in the background of the

workspace as a template so that other objects can be
aligned to them. Form templates are not included
when printing.

combit List & Label

Screen

The Designer interface consists of a workspace and different

tool windows.

§ You add objects by means of the 'Objects' toolbar.

§ The objects are placed in the workspace. You change the
shape and size of the workspace via Project > Page
Setup.

§ You can select the viewing mode by means of the tabs in
the bottom margin of the workspace: Layout, Layout
Preview, Preview.

§ The status bar with the current mouse position, the current
operation and the position/size.

§ The variable list displays all variables which are available in
the current project; for list projects, all available fields are
also displayed.

§ The layer list shows the different display layers.

§ The hierarchical object list shows all objects in the order in
which they will later be printed.

§ The "Report Structure" shows all elements belonging to a
report container in the order in which they will later be
printed.

§ The properties of the selected objects or project are
displayed in the properties tool window.

combit List & Label

Getting Started

This chapter describes how to create a simple list based on
the combit List & Label Sample Application.

If you use List & Label as part of an application, you can
usually start the Designer via a menu item or similar. The
functionality can differ slightly from the description below.

See also:

» The Sample Application

» The Sample Database

» Produce a Simple Report

» Producing a Simple Invoice
» Creating a Simple Label

JavaScript:RT_604.HHClick()
JavaScript:RT_604.HHClick()
JavaScript:RT_605.HHClick()
JavaScript:RT_605.HHClick()
JavaScript:RT_606.HHClick()
JavaScript:RT_606.HHClick()
JavaScript:RT_614.HHClick()
JavaScript:RT_614.HHClick()
JavaScript:RT_624.HHClick()
JavaScript:RT_624.HHClick()

combit List & Label

The Sample Application

The Designer is not available as a self-contained application,
but rather is incorporated in List & Label as an inherent part
of an application. For this reason, the Sample Application is
used to create the examples.

You will find the Sample Application in the program menu of
the List & Label installation. Alternatively, you can download
it as part of the combit List & Label program installation at
www.combit.net/en/reporting/.

You can then start the Designer via the "Design" menu item.
Start the print, preview and export dialog via the "Print"
menu item. Under options, you will find various configuration
settings such as the language of the program interface or
the number of sample files.

{51 s A Ll Spmsple Appicanon - Jep—

Ble fign P Webh Opbam !

Arports Barcodes samples Iewsicn

Figure 2.1: Sample Application

http://www.combit.net/en/reporting/

combit List & Label

The Sample Database

The List & Label Sample Application contains a Microsoft
Access Database for a fictitious company called "Northwind"
with sample data for a food wholesaler.

It is a relational database meaning that the data is
distributed across several tables. Each table contains data
elements that are related to one another. For instance, one
table contains the product data. Another contains the
product categories. A table's columns are referred to as fields
(product name), and the rows of a table as data records.

i]
— o rt

ma— L e i
1 =

120

Figure 2.2: Structure of the Microsoft Northwind sample
database

combit List & Label

Produce a Simple Report

For a first simple report, you will produce a product list in

alphabetical order with a report title and a company logo.

1. Start the combit List & Label Sample Application

2. Choose Design > Extended Samples to start the Designer.

3. A file selection dialog will appear. To start a new project,
choose the New button.

Note: This button is not available in Windows XP. Enter a
name for the new print template in the "File name" field
and then choose "Open".

To open or edit an existing project, choose Open.

............................

Figure 2.3: Open dialog

4. The standard project for the respective project type is
displayed. This standard project is normally an empty
workspace with a certain paper size and alignment.

i | Dt -

Herpey o bt

Figure 2.4: Empty workspace

With label projects, a certain label format (size and
arrangement of the individual labels on the sheet) is
already specified as a default value.

Note: A standard project is a standard template for
creating projects. However, you can change it to suit
your needs and save it again under the name "Default".

5. If you have chosen "New project wizard" under Project >
Options > Workspace the project wizard will start. The
project wizard simplifies the job of creating new projects
by leading you through different page setup options. But
you will not be using the wizard for this example.

See also:

»Inserting a Company Logo Into the Report
»Adding a Title to the Report

»Insert the Table for the Product List

» Formatting Table Fields

» Displaying a Preview of the Report
»Adding a Page Number

» Print or Export the Report

JavaScript:RT_607.HHClick()
JavaScript:RT_607.HHClick()
JavaScript:RT_608.HHClick()
JavaScript:RT_608.HHClick()
JavaScript:RT_609.HHClick()
JavaScript:RT_609.HHClick()
JavaScript:RT_610.HHClick()
JavaScript:RT_610.HHClick()
JavaScript:RT_611.HHClick()
JavaScript:RT_611.HHClick()
JavaScript:RT_612.HHClick()
JavaScript:RT_612.HHClick()
JavaScript:RT_613.HHClick()
JavaScript:RT_613.HHClick()

combit List & Label

Inserting a Company Logo Into the
Report

For the company logo, please use the "sunshine.qgif" file,
which you will find in the directory for the Sample
Application. We also need a "Picture" object. Proceed as
follows:

1. In the "Objects" toolbar, choose the "Picture" object type.

A sl Rl

Figure 2.5: "Objects" toolbar

Note: Objects are your project's building blocks. They
are generated in the workspace where they are also
given a border with which their size and position can be
changed. This border defines the space that the object
takes up and thus also the maximum size to which the
contents of the respective object can be expanded.
Objects may overlap fully or partly.

2. In the workspace, point the mouse to the position where
the upper left corner of the object is to begin. The mouse
cursor changes to a crosshair. Hold down the left mouse
button and drag the crosshair to the lower right corner of
the planned object. Release the mouse button when the
object (the dashed border) is the right size.

Note: Objects can be added to the workspace in
different ways: via the menu Objects > Insert, via the
toolbar or via keyboard shortcuts, or with Drag & Drop
from the list of variables.

3. A file selection dialog will appear. Select the image file
that you want.

Note: The following formats are available: WMF, EMF,
BMP, DIB, PCX, SCR, TIFF, GIF, JPEG, PCD, PNG and ICO.
As a general rule, you should use the RGB color space
(not CYMK). List & Label itself supports transparency in
PNG files by using the corresponding Windows functions.
In our experience the majority of printer drivers do not
support transparency so that reports with e.g. partly
transparent PNG files should thoroughly be tested on the
actual hard-software combination. If that is not possible
we recommend doing without the alpha channel.

In addition, you can insert the picture into the project by
enabling the ("Embed image in project file" checkbox
option. This option copies the image to the project thus
making it available even without the external file.

4. After you select the file, the logo will be inserted.

% : - 2 |
|/ B 2 P Pt L 3 s b i o1 . —-—ul

——— |

| agency |

Carmpray laga

P phara

Figure 2.6: Report with picture object

combit List & Label

Adding a Title to the Report

Use a text object to add a title to the report. Text objects let
you place text in the workspace. As well as fixed text, you
can also insert the contents of fields (variables) from the
database (e.g. company name), or you can use functions
(page number, date etc.).

1. In the "Objects" toolbar, choose the "Text" object type.

Figure 2.7: "Objects" toolbar

2. In the workspace, hold down the left mouse button and
pull the object to the required size.

3. The formula wizard will now appear which you can use to
define the contents of the text object.
This dialog consists of a series of tabs each containing
different elements to be edited. The following chapters
explain the meanings of these elements in more detail.
§ Variables and Functions: the available variables, fields

and functions.

§ Condition: for defining IF-THEN-ELSE conditions.
§ Text: for entering fixed text and tabs.
§ Date Format: different date formats.
§ Number Format: different number formats.
§ Operators: available conjunction operators.
You can also enter the expression that you want directly in
the edit box or modify the text that is there (e.g. put
something in brackets).
Therefore, enter our title "List of products" directly. Fixed
text must be enclosed in quotation marks. Enter names of
variables and functions without brackets.

Figure 2.8: Text in the formula wizard

Note: Please note that there are two ways of writing
expressions, depending on their use. You will find more
information about this in the chapter Variables, Formulae
and Expressions.

4. The title will be displayed when you close the dialog with
OK.

5. Enlarge the letters by changing the font size in the mini
toolbar that appears automatically.

Anal L] T\ﬂ‘ I U B 4
2]

Ay

o= . T SUNSHINE
List of products : agency
Figure 2.9: Formatting menu in mini toolbar

6. You have now added the title:

JavaScript:TL_18399.HHClick()

LAE T AN LN R

=
o PR i e

i T

L9 LTH T e - R T W D)
e e e

Figure 2.10: Report with text object

combit List & Label

Insert the Table for the Product List

Use the "Report Container" object to add a table to the
report. As the name says, a report container can hold several
objects: tables, charts and crosstabs can be added in any
order.

Note: The report container is not available in all
applications. In applications that don't have the report
container, use the "Table" object.

1. In the "Objects" toolbar, choose the "Report Container"
object type.

Figure 2.11: "Objects" toolbar

2. In the workspace, hold down the left mouse button and
pull the object to the required size.

3. A selection dialog will appear for the chosen object type.
Choose the "Table" object type.

Choote Object Type i

Cancel

Figure 2.12: Choosing the object type

4. Now supply the data source in the following dialog. All
available tables are shown hierarchically; in other words,
under the tables, you will find the relational tables in each

case.

[i] Chooue Sousce Table Pash e

Please chasie the isuice table here

Free content
Categorses
Cuntomery
Ergdazee
ke Doty
Oniders
Products

0K] Cancel

Figure 2.13: Choosing the data source

Select the "Products” table because it contains the fields
that we want for our product list.

A selection dialog will appear with all the fields in the
"Products” table. In addition, underneath the "Products"
table, you will also find the fields in the tables "Categories"
and "Suppliers" which have a 1:1.relationship with
"Products".

e name
s rriatigde bevet of The 13me Brpe Lo ot aried ysil Sl Chvieirit $0) prapeats SHLIE0SN 0 e Sble 1 diiivsquath e livt bemes Traen oty
ivnable frebis Cobarrma ¥ 3
Produts {stegon G strgpmen © abrpourd C stegord lame
(B Warisbiey Presdusits vt
2 0 Fahds
123 Paeebucns
& 4D Cotegery (Prodesti Csegondll <« « Cabrgomts £ b
¥ Coiegaryli
Al Criegarshises
& Dipsimpue
& Pt
D) Supphen (Fraduity Suppballt - - Sepphn Spphall
i CategonD
e pr—
& Pradutil

i Prastsctt lasnr
A DrssrttcPerl it

Pl chaean tha Sl Ba b prnted n thn bna. Propertin con be 1ot aftersanch

B — e —

Figure 2.14: Field selection dialog

In this dialog, now choose the columns for the table.
Double-click a field, e.g. "ProductName". The field will be
added to the "Columns" area.

6. Repeat this step for all fields that are to be shown in the
table; i.e. also the "CategoryName" field from the linked
table "Categories" and the "UnitPrice" field for the unit
price. Confirm your selection with OK,

7. The table will now be displayed in the workspace.

§ The selected fields are displayed in the data line, in other
words, the data line contains the data.

§ In addition, a header line is automatically produced.
Header lines are used mostly as column titles, i.e. the
selected field names are now shown here as text.

§ If you pull the report container widthwise to make it
wider or narrower while holding down the CtrL key, the
columns will be adjusted proportionally to fit.

§ List & Label adjusts the width of the columns
automatically. You can adjust the width of a column
manually by moving the separating line to the right or
the left with the mouse.

Note: This changes all table columns, whose
separators are within +/-2 mm from the mouse
position. If you hold down the CtrL key, the action will
only be carried out for the line on which the mouse is
positioned. If the "Column width modification affects
next column" option is enabled (Project > Options >
Workspace), you can alter the column width while
making the next column smaller.

e A e g -
IS A8 F N e AR O am . LN}

(TR

LT

Figure 2.15: Report with table in the report container object

combit List & Label

Formatting Table Fields

Chapter Creating Professional Tables describes how you can

format and modify a table. Only a few basic formatting

options are explained here.

1. In the product category column title, the field name
"CategoryName" is shown. Click the respective field in
order to change this text to "Category". The formula
wizard will now appear, which you can use to change the
contents of the field. Please consider that text must be

enclosed in quotation marks.

[LL] Ectit Tatda

Wariabbey and Fanctiom. | Condtion | Tast | [ate Fosmat | bumbes Fama Operabor

& Fasbedn

=

Figure 2.16: Formula wizard with text input

2. In addition, we want to format the unit price as currency
and align the entire column to the right. You will find both
formatting options in the mini toolbar that appears
automatically. Click in the upper left corner to select the

field containing the unit price.

JavaScript:TL_18400.HHClick()

SUNSHINE
= s 7 imiu BHUNSHINE
=g agency
qI'Pvmlnn- [-";-I-:‘zrf HER s, '..!j?-ﬁ:i;';g” TSRS .lﬂ
[Erai [Beverages Ve |

Figure 2.17: Selecting a single field
Click the button for the formatting dialog

Ariad =1 -8 fF U@|d aenc
e L e

— St} = . o E .

|Froductisme Calepory i rice

B Pl Bt g 2 |1 8.0

Figure 2.18: Formatting a field directly

. A selection dialog will now appear in which you can select
the formatting that you want for the numeric field. To do
this, choose the type on the left hand side i.e. "Currency".
In the right pane, you can specify the currency formatting
in detail. The settings for the relevant application will be
used in each case as standard. Alternatively, you can
choose the system setting or a user defined setting.

(1] Format i
e format
cumal places: A ppplncat Tl
Hiambeer b F L. phinbin
EEEE ol pyint Applcation setting
[iage
Tirae Thouiirds Leparator: Appiatai g
|| | Date and Tame
Peicertage Canrenscy yymbaol Application sethng o
Angle ; :
aarmiak for postive valises: AppRCIION S -
Date- Teme [efference P ppcation jettng
Faarmat for pegatee vadis Al AN LG
Exponentsl format: Ha -

o output i wabae 13 §

#| Abways @ before decgmal pont

{512 145.4T)

Ok] Cancel

Figure 2.19: Formatting dialog

. Finally, select both fields (the header and the data line) to
align them to the right. To do this, hold down the CtrL key
and select both fields by clicking in the upper left corner in

each case. Then click the button for right alignment.

SUNSHINE
agency

-1 B & US| Y

Al
EzEn 5| 2X e wmE|

Figure 2.20: Multiple field selection

combit List & Label

Displaying a Preview of the Report

Until now, you have only seen the report in layout view as a
structure with a record. To get an impression of the result,
you can display a preview of the report. Use the tabs in the
bottom margin of the workspace to change to the preview.

Note: Real data preview mode is not supported by all
applications.

(=) o Layout Preview waF

Figure 2.21: "Preview Options" toolbar

The report will now be displayed with the data from the

"Products” table. You can also change the number of

"products" or data records in the Sample Application.

1. To do this, save the report with File > Save.

2. End the Designer with File > Close.

3. In the Sample Application, choose Options > Settings and
increase the maximum number of root records to 50.

4. Open the print template that you created again via
Design > Extended Samples, and switch to preview mode.
Your report will look roughly like this:

| - .
Figure 2.22: Real data preview

combit List & Label

Adding a Page Number

It's a good idea to add a page number in the lower area of
the page. To do this, add a new text object. You will be using
functions (such as the page number function) as well as fixed
text with this object.

1. In the "Objects" toolbar, choose the "Text" object type.

.nzv"‘

Figure 2.23: "Objects" toolbar

2. In the workspace, hold down the left mouse button and
pull the object to the required size.

3. The formula wizard will now appear which you can use to
define the contents of the text object. The available
functions are shown in the right pane. You can use an auto
filter with this list. Type "page" in the filter field. This will
cause all functions containing the expression "page" to be
displayed.

§ The "Page$ ()" function returns the page number.

§ The "TotalPage$ ()" function returns the total number of
pages.

Add the "Page$ ()" function to the result area by double-

clicking.

4. If you now want to output a footer in the form of "Page 1
of 2", you can enter the text "of" directly in the usual way.
Please consider that individual parts must be joined with a
"+" and that text must be enclosed in quotation marks.

5. Now add the "TotalPages$ ()" function by double-clicking
to get the total number pages. The formula will look like
this:

2 Luitpaege [}

18 Page g
23 Mne huntsani
A Paged (liPurmbed T
(A TotatPaged (it kamber 1
I3 Pacrct sedl peint dependimt funchieen

d L1 i

Pageli(+ " of * « TatalPages i1

el
o Led @l TeasPugit

[=
Figure 2.24: Formula wizard with functions and text

6. You can center this line in the report in the usual way:

Al =0 =B 5 U @M
E AW BX * s =P
E 1 of L. ToleP agesl I

Figure 2.25: Quick format "centered" alignment

ENL-piE Ted - i 1T L T 5 3 B R e
—_—

Figure 2.26: Real data preview in the Designer

combit List & Label

Print or Export the Report

You can start the print function directly from the higher-level
program, from the real data preview or via File > Export.
1. Choose File > Export.
2. The Print Options dialog will appear.
§ Under "Print target", you can change the printer or the
printer configuration.

§ Select the output format (e.qg. preview, printer, Excel)
under "Direct to".

Srint Diptamns [

Change

= Dwectis 3 Praftmn - Chptions.

{Enter pages of ranges, sepasated by comma f mecessary, e "L 3-4.10-5

Popt All sebeched pages

Figure 2.27: Output options

3. If you have selected an export format (such as PDF),
choose the storage location in the following "Save As"

dialog and enter a name for the file to be created in the
"File name" field.

CIS o« combe » 116 + Sompiedppicon s < | by] e o oyt |

U Favorites

(& Recently Changs
4 Public

B Coitep

18 Doanlsads

B Recent Places

i Libeasies
¥ Documents
o M
i Pictures
B videos

M Companter = a

File pmme: TEEFE]
Seve as type: |POF Files (. pf)
I Open the file in the

iegitened apgboation
afer the output.

[Pl Send exported files by
#=rrusl

Figure 2.28: Save dialog when exporting to a different format

combit List & Label

Producing a Simple Invoice

In this chapter, you will now meet functions and possibilities
for designing reports.

For the next example, you will create a multi-page invoice
with covering letter, invoice header, totals, footers, enclosure
and printed copy.

See also:

» Create a New Print Template

»Adding a Company Logo

» Add the Address Field

» Create Invoice Header With Number and Date
»Adding the Item List

» Alignment and Formatting

» Background Color and Frame

»Invoice Footer With Totals

» Create Additional Footer Lines

JavaScript:RT_615.HHClick()
JavaScript:RT_615.HHClick()
JavaScript:RT_616.HHClick()
JavaScript:RT_616.HHClick()
JavaScript:RT_617.HHClick()
JavaScript:RT_617.HHClick()
JavaScript:RT_618.HHClick()
JavaScript:RT_618.HHClick()
JavaScript:RT_619.HHClick()
JavaScript:RT_619.HHClick()
JavaScript:RT_620.HHClick()
JavaScript:RT_620.HHClick()
JavaScript:RT_621.HHClick()
JavaScript:RT_621.HHClick()
JavaScript:RT_622.HHClick()
JavaScript:RT_622.HHClick()
JavaScript:RT_623.HHClick()
JavaScript:RT_623.HHClick()

combit List & Label

Create a New Print Template

1. Start the combit List & Label Sample Application (see
Chapter The Sample Application).

2. Choose Design > Invoice to start the Designer.

3. A file selection dialog will appear. To start a new project,
choose the New button.

Note: This button is not available in Windows XP. Enter a
name for the new print template in the "File name" field
and then choose "Open".

To open or edit an existing project, choose Open.

JavaScript:TL_18402.HHClick()

combit List & Label

Adding a Company Logo

Use the picture object to add a logo.
1. In the "Objects" toolbar, choose the "Picture" object type.

o &
A 2=

Figure 2.29: "Objects" toolbar

2. Pull the object to the right size and select an image file
(see Chapter Inserting a Company Logo Into the Report).

JavaScript:TL_18403.HHClick()

combit List & Label

Add the Address Field

To add an address, use the text object. Text objects let you
place text or the contents of fields in the workspace.

Al -1 -8B Fr US| *

b 2 -

Figure 2.30: Address field: it should look like this.
1. In the "Objects" toolbar, choose the "Text" object type.

.nzv"‘

Figure 2.31: "Objects" toolbar

2. Pull the object to the required size.

3. The formula wizard will now appear which you can use to
define the contents of the text object.
This dialog consists of a series of tabs. On the "Variables
and Functions" tab, select the variable for the company
address (company) from the list of available variables and
fields.
You will see an auto filter field above the list of variables.
This means that you can enter "Company" to display all
fields and variables containing this expression. Select the
variable that you want by double-clicking and confirm your
selection with OK. You have now defined the first line of
the address field.

i

Figure 2.32: Formula wizard with variable

. A text object can hold as many paragraphs as you want
and they can all have completely different display
properties. You can add more paragraphs by means of the
mini toolbar which appears automatically. Choose "Append
paragraph" to define an additional line.

Arial 1 B I U B

» o i |
[} [.}
fLightweighl Tin Lid
B e ot iron

B

! - i
Figure 2.33: Adding another paragraph via the mini toolbar

. The formula wizard will now appear, which you can use to
define the contents of the paragraph. Now enter the first
name and the last name of the recipient. First choose the
"Firstname" variable.

. You should insert a space before choosing the "Lastname"
variable to prevent the contents of the two variables from
being placed end to end. A space is simply "Text". Fixed
text must be enclosed in quotation marks. So now enter
"+" as a joining operator followed by " " for the space.

. Now select the "Lastname" variable. You must naturally
also join this with "+". The whole line looks like this:

Cursioined Fasiieune =" " + Custorme Lastoume =
= b
)
o Foshwn by
=] e 3 Lancdd

Figure 2.34: Linking variables and text

8. Now continue with the other variables: street and city. You
have now completed the address field.

Asigh =12 «B r U A
W im | g

510 Sleslesirost B
.l Motal Sty XY 128

|
o o

Figure 2.35: Text field with 4 paragraphs

combit List & Label

Create Invoice Header With Number and
Date

Use the text object again to add the text "“Invoice", the
invoice date and the invoice number to an invoice header.

Adiad - - I U B ‘4
>

¥l Invoice
B Prsf TRanod
» TiioE s

L]
Hium ber

2

B

o

Figure 2.36: Invoice header: it should look like this.

1. In the "Objects" toolbar, choose the "Text" object type.

2. Pull the object to the required size.

3. The formula wizard will now appear, which you can use to
define the contents of the text object. Type "Invoice".

4. Add another paragraph by means of the mini toolbar that
appears automatically and the "Append paragraph"
(insert) button.

5. The formula wizard will appear. Type "Invoice date".

6. Before you enter the invoice date, insert a tab stop so
that the invoice date is aligned to the right. You can insert
a tab stop by means of the "Text" tab. You create a tab
stop with the "Tab" button and you define the position and
alignment with the "Properties" button.

Note: Only one tab stop can be inserted on each line. A
tab stop causes the preceding text to run only as far as
the tab stop. A tab stop that is right aligned will cause
the text that follows it to be justified to the right. The
distance from the left margin determines the position of
the tab stop.

Since a tab stop is also a character, it must also be

enclosed in quotation marks. Alternatively, in this
example, you can insert the tab stop with "Insert" to the
existing "Invoice date" text.

| L] Bt Tt
|

Wanabbey and Fenctiom. | Condibon | Test | Date Fosm.

@ pephit abagned

[Lmatieed Propartan

0 Date

Figure 2.37: Adding a tab stop to a text expression

7. Finally, position the cursor outside of the text field and
insert the "Invoice_Date" variable with the "Variables and
Functions" tab.

The format will be converted automatically.

Conversion with the "Date$()" function is essential since
the invoice date has the "date" type and the value that is
returned is already defined as a "string" by the "Invoice
date" text expression entered earlier. The return value
must always be unique. The date value must therefore be
converted to a string by means of a function. The
"Date$()" function is one way of doing this.

0.

[Li] Ectit Text é

Wanabbes and Fenctiom. | Condion | Tt | Dafe Foemat | Mumilar Famast | Opaiagen

"Diate+" = dafle§] bnoece _Date, "%

0 Dt =T/ L T H

Figure 2.38: Format conversion with Date$()

The automatic format conversion uses "%x" as the
formatting parameter. If you want a different output
format, switch to the "Date Format" tab. You can choose a
format here and then select the "Invoice_Date" variable.

. Now add the invoice number in the same way.

The format will be converted automatically here as well.

rNLIFf nar=" + gty §rmeodce_Numdeer 0,0)

Figure 2.39: Format conversion with Str$()

Conversion with the "Str$()" function is essential since the
invoice number is a field with the "number" type and the
value that is returned is already defined as a "string" by
the "Invoice number" text expression entered earlier. The
return value must always be unique. The number must
therefore be converted to a string by means of a function.
The "Str$()" function is one way of doing this. This function
has 3 parameters: The first parameter is the number that
is to be converted to a string; the second parameter
specifies the minimum length and the third parameter the
number of decimal places.

Now increase the font size for "Invoice". To do this, select
the relevant line.

10. Set the font size to 28 by means of the "font size" button

in the mini toolbar that appears automatically.

11. Now increase the distance to the next line, i.e. open the
paragraph properties dialog via the "Object properties"
button in the mini toolbar. In this dialog, you can define
the properties for each line. Set the value for the
"Paragraph Spacing" property for the first line to 12 pt.

Baragrapin = G ¢ [E] 4]
B appesanie
] Fomt [Balad 240 pt]
Data-" « datad] rvarce_Date, "% Foamat Phane
"Humiber =" + sri{imoice_Murmbar 0.0) Bl Layont
Abenent Leh
Appratands Candisan Edwayr Shaw
Blank Optanaatian e
Bverialle I
hntdyed T
L Spasmng (T
8 bns Wiap Wrap
Pastnip aph Sebiwsg [} ya|
Pt s Sgacing
Gpaie betwren the and e dollowmyg parsgraph
B FIWLTNG o | Cancel

Figure 2.40: Paragraph properties dialog
12. And you now have an attractive invoice header:

Anal - - B 1 U B M

F] * = |5
......................... :

IEEmEc&

= TRanod

B} fean ber 4TINS

- o a

Figure 2.41: Invoice header

combit List & Label

Adding the Item List

Use the "Report Container" object to add the item list to the
report. As the name says, a report container can hold several
objects: tables and freely defined content, charts and cross
tabulations. You need the "Table" element for the item list,
and "Free content" for the covering letter. Please see chapter
Insert the Table for the Product List for an introduction about

how to create tables.

1. In the "Objects" toolbar, choose the "Report Container"

object type.

Figure 2.42: "Objects" toolbar

2. In the workspace, hold down the left mouse button and
pull the object to the required size.
3. A selection dialog will appear for the chosen object type.

Choose the "Table" object type.

Choore Object Type

+ Crosstab

ey

Figure 2.43: Object type selection

4. Now select the data source in the following dialog. All
available tables are shown hierarchically; in other words,
under the tables, you will find the related tables in each

case.

JavaScript:TL_18404.HHClick()

Select the "ltems" table because it contains the fields that
we want for our item list.

. A selection dialog will appear with all the fields in the
"Iltems" table.

. In this dialog, now choose the columns for the item list.
Double-click one after another on the fields: "Quantity",
"No", "Descriptionl”, "UnitPrice". This will add the fields to
the "Columns" area. Confirm your selection with OK.

Sepk Seberian Wiased

Figure 2.44: Field selection dialog

. The table will now be displayed in the workspace. A
header line with strings as the column titles and a data
line with the contents of the fields will be created
automatically.

List & Label adjusts the width of the columns
automatically. You can adjust the width of a column
manually by moving the separating line to the right or the
left with the mouse.

Note: This changes all table columns, whose separators
are within +/-2 mm from the mouse position. If you hold
down the CtrL key, the action will only be carried out for
the line on which the mouse is positioned. The "Column
width modification affects next column" option (Project >
Options > Workspace), lets you alter the column width
while making the next column smaller.

SUNSHINE

Lightwmight Tin Lbd
Disar W Jishe fron
1 Stosledseel
Matal Ciy XY 12345
Invoice
Dl TN
Anal =12 B 5 U B | ™A P by ATE0ES
E > we- 0] |
PLaeI Ty eIt i H n
Wty aud sk JEremcdrtion Jn ice
S ERPSAN Southem Arca 1500.00
: Eapiorer ey lour
- "' Fom C ape Town bo
3 victorm F sy
2 auciudivg S i

Figure 2.45: Changing column widths with the mouse

8. In the next step, you add a new column: "Total". Select

the "UnitPrice" field by clicking in the upper left corner of

the field. Then choose the "Append column" button in the
mini toolbar.

Arual ~ ! «~B 5 U B4

B8 % = 0| &

) 1 oo
i [Gusntity Mo |ezcniphiont hretP
1.00 ExXPSal SoUERa T AT RETTTS 1]
Explorer. 20-cary boor
Worn O s Torah 58 B
\icdoeia Fals

eiduing Rt

i

Figure 2.46: Select column

9. A menu will appear for the selected field type. Choose
"Text" here.

10. The formula wizard will now appear, which you can use

to define the contents of the field. Type "Total" and confirm
with OK,

A message will now appear giving you the option of

reducing the width of the columns to allow the new
column to be inserted in the visible area. Confirm this
dialog. You have now added an additional column to the
header line. You now need this column in the data line as
well.

11. Now select the data line field containing the item price
and add a new column to it.

Axigl = B «B L UE M

WX ® e o[
L

[3

i ll-.'n.u-.u-.- |N.;. [ezcnption T eicn Fokal
|10 NP S AL [erttern Avica Explocer 2-day [150000

o [t Fom Cape Town o vidoria 8
| |F e dasiony W gt

'l = a

Figure 2.47: Add a new column

The total price is now to be calculated here. The total price
is calculated by entering "Quantity*ltemPrice". To do this,

select the relevant variables by double-clicking them.
[LL] Ecit Tatda =]

Wanabbey and Fanctiom. | Condtion | Tt | [ate Fosmat | Humbar Famast | Opeisten

e Ny * Eenulnai e -

0 1500 84

=7 o Cancel

Figure 2.48: Multiplying two values in the formula wizard

Note: Open the list of available operators by clicking the
"Operators" tab. Operators join two or more values or
variables to give a new value. In this way, you can
formulate arithmetic expressions (basic arithmetic
operations) or logical expression. You can combine
multiple operations in one expression. Please consider
the calculation hierarchy of the operators used and place

them in brackets if necessary. The "+" operator has a
special meaning. It is not only suitable for additions

("Number" and "Date" value types) but is also used for
joining strings.

combit List & Label

Alignment and Formatting

Make use of the numerous formatting options to present the
invoice in the form that you want. For example, change the
column title and format the amounts as currency.

1. Click the column title that you want to change. The
formula wizard will now appear, which you can use to
change the contents of the field. Please consider that text
must be enclosed in quotation marks.

2. In addition, you should also align the columns for the unit
price and the total price with the column titles. To do this,
hold down the SHiFT key and select all 4 fields by clicking in
the upper left corner of the "ltem Price" data line. Then
choose the button for right alignment in the mini toolbar.

3. To format both amounts as currency, hold down the CtrL
key and select both fields by clicking in the upper left
corner of each one. Then choose the button for the
formatting dialog.

Figure 2.49: Multiple field selection

4. A selection dialog will now appear in which you can select
the formatting that you want for the numeric field. To do
this, choose the type on the left hand side i.e. "Currency".
In the right pane, you can specify the currency formatting
in detail. The settings for the relevant application will be
used in each case as standard. Alternatively, you can
choose the system setting or a user defined setting.

i Hio Forman
| Pharnber

Dgcmaal plates:

Decimal paint:

Diate

Tinse | Thousands separator:
Diate and Time:

Cunteney yyenbeed

Diste Tarve il ecisrin Format for posdrve vahaes:

Format for negate values:
Expomentsal farmat:

T Mo output if wabue is 8

[+ Abwarys @ befare deggmal point

Figure 2.50: Formatting a field

. Format the field for the quantity as a number without
decimal points.
Our item list will now look roughly like this:

ety o Coairpn) Juraprcs Tow]
P03 [EAPSATE [emnem Abica Dipiome oy | PP 00] H30000
pour From Capn T owh b0 Viclors

F sl sndudeg Sght

I [EXPMALEY [Maidves dung Tp |4 a, V000 380000
e S M Mo, P ncion

T [Exrrices [vucaten, Or e Tl afie W00 | 2800
By, 2wtk round B,

gt

T TREFRADY [From Gotic b0 Danagn 1o A (1] T
Piesm Oy g1 Fragus
ireiting

e TRV Fight crfy Brazl W] §eam

T [ExcPakes [Par, adesscion to T lted Wmm| svem
ke o o8 B Moutin
P8 ki Trss-Taris

Figure 2.51: Preview

combit List & Label

Background Color and Frame

In order to structure the invoice and make it more attractive,
it's a good idea to give at least the column headers a colored
background. You can also modify the background color.

1. To do this, select a column title.

2. Now open the paragraph properties dialog via the "Object
properties" button in the mini toolbar. In this dialog, you
can define the properties for each column and row. Hold
down the CtrL key and select all columns.

3. Click the "+" sign to expand the "Background" property
group.

4. For the background, choose the "Pattern/block color"
property and the color, e.g. LL.Color.LightSkyBlue. You
reach the LL.Colors via the arrow button and the standard

color dialog via the ... button.

abla Coniaesty, - Fue T el

Figure 2.52: Object properties dialog for the table: background

5. In addition, you want to increase the spacing between the
header and the data line. Since this is a line property (and
not a column property), select the line.

Here you have the "Spacing" property. Choose e.g. 0.1
inch as "Bottom" to increase the spacing below the column
title.

i | Tubile Conwiy - Hpm i i]

¥ Masbe L * st Lis Fostes vk Cwngs Heiles S

Figure 2.53: Object properties dialog for the table: margins

6. Now it only remains to make the settings for the frame.
You can define different settings independently for each
cell. However, it's normally a good idea to make the
settings for the entire table. For this reason, the settings
for the frame are included in the table properties. You will
find the table properties, as standard, on the lower left
when you select the table in the "Report Container" tool
window. When you select the property, there is a button
which you can use to open the dialog for the frame

.
properties.
E Frame Progerbed =
Presets s
Hone % Crathng Type
Framses amd ditasces 1o the coarbent [unic &) = ey R
e e —
L : e eetes E—
I e —
010 148 T
[=: Calor T
: |
E bl J | Wit fan) B
To apply the choven hine type. select ane of the prevety, chick the ey inthe preview 20 use the batton:
O Caniel

Figure 2.54: Frame properties

7. Choose "white" as the color and click "Outline" to apply
the color.
Please note: If you don't apply the setting but simply
confirm the dialog with OK, your settings will be lost!

8. The invoice will now look roughly like this in the preview:

agency

Inwoice

.Figure 2.55: Preview (framé and background)

combit List & Label

Invoice Footer With Totals

You now need to output the net totals, the VAT and the total

amount in the invoice footer. You can simply insert these

values if they are held as fields in the database.

In our case, however, you must first calculate the values. To

do this, you use the "Sum()" aggregate function. This

function totals the values that are passed to it.

Since the totals are to be output at the end of the table, you

define a footer for this purpose.

1. Click the "Append Line" button in the mini toolbar and
then click "Footer".

Figure 2.56: Add new line

2. You have not yet defined a line for this line type so you
will be asked whether you want to use an existing line
definition from one of the other line types. This wouldn't
save any time at this point. Therefore, choose the "Single
field or free content" option.

[i2] Chosie a Tais Line Defintion ——

Thie row you e Brvang Ba et i denpty, Pleste choore whether vou want 1o wie the
defuwiton of snathed iow o 188 the hild sebection weard

Sangle frebd o1 Tees (orters
¥ Skart field sebection wizard
% Choose santing line defaretion
) Headar Law
= Line Defstion |
) [iaka Liee
* Lane Dafwrstasn [

[+ 3 | Cancel

Figure 2.57: Applying a line definition

3. The formula wizard will open to allow you to define the
contents of the first column. Enter "Subtotal”, not
forgetting to enclose it in quotation marks.

4. Once you have created the first line, add another column
to it for the aggregation. Use the "Sum()" function for
aggregating values. You can either type it in directly in the
result field in the formula wizard or you can select the
function from the list of aggregate functions by double-
clicking. As a parameter, enter the value to be aggregated

@ in this case Quantity*ItemPrice.
[ic] it Tade o

Wanalibey and Fanciom. | Condiion | Tt | Date Foamat | Mumilar Famast | Opaiagen

W Varables
il Project wanabley
&3 Felads

Calculnes et sim
Ewamphs Sl
Tioreh

ET T i

Figure 2.58: Totaling with Sum()

5. The entire line should now be moved a little to the right.
Hold down the CtrL key and drag the column separator on
the extreme left at the outer edge of the table to the right.
An empty column will be inserted automatically as a

spacer on the extreme left.

6. You must also format the total field as currency, give both
columns the same background color as the header line
and set the "Top" margin to 0.1 inch to correspond with
the "Bottom" margin of the header line.

7. As these footers are only to be output on the last page,
even in the case of multiple page invoices, you must now
specify the "Lastpage()" or "LastFooterThisTable()"

function for the "Appearance Condition" line property.

=

[L1] Takle Contents - hem

—

¥ Header Line Data Line g Hesder
- ¥ i
Drfnition 1

a3 Ling Flame

A "Totak™

Foamat

Ebgament

Geeup Footer

Pattern/Block Color

[Anal 10.0 g
F2L AR 2 AL

i

—

Figure 2.59: Object dialog with 3 columns

8. You have now defined the first footer and the invoice

looks like this:

SUNSHINE
agency

e B
o b el
S
————
bvwodcs
Lo oo
S =
T T
e i e
A58 TRREE g v i -
e A Feb o
T =
R e e o nme sne
e, e e b,
=ity
L e - T
. iy e b
W IeaRn Tt Bas PEE
[—]

Figure 2.60: Preview (footer)

combit List & Label

Create Additional Footer Lines

You can create as many line definitions as required for each
line type (data line, footer). The different line definitions are
shown in the object dialog as a tree structure.

For our example, now create two more footers for the VAT

and the grand total.

Subloial 56
19% VAT 107122
Tetal $6 70922

Figure 2.61: Preview 3 footers

1. To add more lines in the object dialog, first select an
existing line definition. You can then create a new line
definition with the "Append line definition" button.

Mlarker if a1 beast one Line cr cokemn
Limetypes ne defirition exdsts properties

Edit colaving and
e definiions

.
Live definitions ' kit T N e v o 18

Cobamin content A | .I A LT
=
., dack

Fade ot dialog Edit dialog layour by

Figure 2.62: Object dialog with 3 columns

Alternatively, you can add a new line in the workspace via
the context menu or with the mini toolbar.
2. A dialog will appear asking you whether you want to use

an existing line definition. It saves some time if you use
the footer that you have already created as you will not
have to configure the left margin, alignment or
background colors. Therefore, choose the "Line definition
1" entry from the "Footer" area.

. The line will now be inserted. Click the "Subtotal" field so
that you can then change the content to "VAT 19%" with
the formula wizard. Don't forget to enclose the text in
quotation marks.

. Once you have created the column, click in the column to
enter the aggregation. Instead of the total net amount, the
19% VAT is to be output here. Therefore, you simply
multiply the amount by 0.19.

Sum(ltem.Quantity * Item.UnitPrice * 0.19)

. Proceed in the same way with the third footer. Copy the
existing footer, change the content and, in the formula,
add the VAT to the total, like this:

Sum(ltem.Quantity * Item.UnitPrice * 1.19)

. You have now defined the first footer and the invoice
looks like this:

M Busnessing
Dl . Joihi Senilty

£ ABT B
Cpreg e 17HE

SUNSHINE
agency

Invoice

Dt TREND
M ATINOE &

100

00

200

1on

100

ENFRAN

ExPMALI

EXFYVICT

Souniom Axica £ xploss X-day 000 930000
Your Fom Cops Towh 1o Victoria

F ks gnchuding Sph

ek i i g 4 s, 000 3380000

stuthern Male Mol P arsdes

(Bt == axdudifg Sgh

‘Wucaten, Onihes Tral of e F 20000 5240000

iy, 2o e g,

ke 10

From Gxghic b Biarogques i At FXEE 00 SIS 00

Hgiray, Cly i o Prague

Fshary i

Fight onky. Bracil e e
Sehtchsl AN
ey Hana
s WTRN

Figure 2.63: Invoice with 3 footers

combit List & Label

Creating a Simple Label

For your first label, you will now create an item label.

1. Start the combit List & Label Sample Application

2. Choose Design > Item Labels to start the Designer.

3. A file selection dialog will appear. To start a new project,
choose the New button.

Note: This button is not available in Windows XP. Enter a
name for the new print template in the "File name" field
and then choose "Open".

To open or edit an existing project, choose Open.

4. The standard project for this project type is displayed.
This standard project is normally an empty workspace with
a certain paper size and alignment.

5. Select a label format via Project > Page Setup. In the
"Templates" tab, choose the template that you want from
the predefined label formats of various manufacturers.
This specifies automatically the size of the individual
labels, how many are to appear on the sheet and how they
are to be distributed. You will find more information about
this in the chapter Templates for Label Formats.

JavaScript:TL_18405.HHClick()

Dty Count lount: Offaete s
B

L1378 Feady Index Tat LM m) A0 n 000 in |

1LA70 Rrwdly Incdes Tad 2000, LM AMm 0LMw
171 Ready Indes Tat 1500in, A00in] W0Mn| ddobin] 1
LU97L Beady Index Tat 100kin, LU 40M nl aaskin] 1|
L7 Reacy Trdes Tt 158kin 9,100 | | awrie 1

R

LE7] Ready Index Tal UL L 1830 m 0iMin 1i
L7 Ready Indes Tal 2300 n EXTITH Q00 i |

1873 Beady Indes Tal 3008 in’ 0040 0808 in.
1874 Ready Indes Tat 2500in’ 4.1 in 0800 in’
11873 Ready Index Tat 3000 in) 8500 in| 0080
1L476 ey Incdex Tat 150in 4,100 in 08 in.
1U67% Beady Indes Tat 3008 in’ L3t in| | 0480,
LUATT Beady Indes Tat| L50hin 4.1 in| 0804 in
LITT Ready Indes Tak 380 in 1830 in| f.02#in,
1878 Ready Indes Tak 2500 2,180 i 040 0.
ltl?lh.bd}'hﬂn'l‘t 2000 i I.I-'lln!

i

(] inky sk temgiates for cumrent page vettings

@
ure 2.64:ecify label format
6. A single label will now be displayed in the workspace.

See also:
»Insert Object
» Printing Labels

JavaScript:RT_625.HHClick()
JavaScript:RT_625.HHClick()
JavaScript:RT_626.HHClick()
JavaScript:RT_626.HHClick()

combit List & Label

Insert Object

A picture of the item is to be displayed as a picture object on
the label together with two text objects (Item_No,
Description and Price). Place a tab stop between the text
"Item No." and the "Item No) varlable

il e R]

Itern no.: Expsn.m

'ww "-Smlme |I'l.1r_;|E pq:\l:h’ ?I)da iour fl;\n'lL,p-t'
Tenwem 10 Victoria Falls excluding fight

Figure 2.65: It should look like this

1. Begin by positioning the text object. In the "Objects"
toolbar choose the "Text" object type.

0S89 @

Flgure 2 66 "Objects" toolbar

2. Pull the object to the required size.

3. The formula wizard will now appear, which you can use to
define the contents of the text object.

4. Now follow the steps described in Chapter Add the
Address Field onwards.

5. Use the picture object to add a logo. Drag the "Picture"

JavaScript:TL_18406.HHClick()

variable from the list of variables into the workspace. Pull
the object to the required size.

combit List & Label

Printing Labels

You can start the print function directly from the higher-level
program, from the real data preview or via File > Export.
1. Choose File > Export.

2. The output options dialog will appear.

§ Under "Print target", you can change the printer or the
printer configuration.

§ Select the output format (e.g. preview, printer) under
"Direct to".

3. The "Select" button lets you specify the starting position
when printing the sheet of labels. In this way, you can also
print sheets of labels that have already been partly used.
You will find a sample label sheet for your label project in
the dialog for selecting the start position. Click the label
where the print is to start.

combit List & Label

Effective Workspace
Techniques

This chapter will provide you with useful information and the

most important techniques for working efficiently with the
Designer.

See also:
» General Procedures
» Arrangement and Alignment of the Objects

JavaScript:RT_628.HHClick()
JavaScript:RT_628.HHClick()
JavaScript:RT_634.HHClick()
JavaScript:RT_634.HHClick()

combit List & Label

General Procedures

See also:

» Choosing a Page Layout

»View Mode

» Status Line

» Mini Toolbar

» Default Settings for Font and Frame
» Real Data Preview

JavaScript:RT_629.HHClick()
JavaScript:RT_629.HHClick()
JavaScript:RT_630.HHClick()
JavaScript:RT_630.HHClick()
JavaScript:RT_631.HHClick()
JavaScript:RT_631.HHClick()
JavaScript:RT_632.HHClick()
JavaScript:RT_632.HHClick()
JavaScript:RT_633.HHClick()
JavaScript:RT_633.HHClick()
JavaScript:RT_502.HHClick()
JavaScript:RT_502.HHClick()

combit List & Label

Choosing a Page Layout

The first task in a new project is to set up the page layout
that you want. Choose Project > Page Layout to specify
properties such the choice of printer, paper size and
orientation.

If multiple layout areas are defined, the active workspace
can be selected via the "Active Design Layout" project
property.

combit List & Label

View Mode

You can select the view mode by means of the tabs in the

margin of the workspace
= t % Layout Pre i

28] 4
l = Jr-.1 i 1] [m]

.0 1.0 5.0
||...T.|.|.I.|.|.<.|.| Wevalatanetanet abotalutvtan ottt Ten ol et stan s b stan Tenanet alursbon T ptan s lananatatanin bt

Flgure 3.1: Tabs for selecting the view mode

o

§ In layout mode, you merely see the object frame and the
contents of the objects as formulas.

§ The layout preview shows the objects in the WYSIWYG
format. In addition, the objects are transparent and are
drawn in the color of the layer to which they are assigned.

§ Preview mode display is a real data preview, provided that
this is supported by the application.

combit List & Label

Status Line

The status line is divided in three sections.
§ The current mouse position from upper left.
§ The active operation (e.g. selection).

§ Name, position upper left, position lower right, width,
height and layer of the selected object.

3635 14339 Select Tet - 0.715in, LeMin - 3.500m, 1.709mn = 2.T495in, LEEDin (Base)

Figure 3.2: Status line

combit List & Label

Mini Toolbar

When you select a text object or a table object, a convenient
toolbar in miniature format is displayed, the mini toolbar. You
can close the mini toolbar by pressing Esc.

With the mini toolbar you can apply fonts, font sizes,
orientations, text colors and formatting as well as open the
object dialog.

Additionally with text objects: Add paragraph. Right mouse
click: Add paragraph before the last selected paragraph.
Move paragraphs upwards/downwards.

§ To select a complete paragraph, click onto the bar
on the left. Hold CtrL or SHiFT to select multiple
paragraphs or a complete range.

Anal - - IS U B

e

= =
U Invoice

M Prosie Teomn R
B} Number 4719015

Figure 3.3: Mini toolbar for text objects

Additionally with table objects: Define new line, insert new

row, move selected rows/cells to the left/right, borders.

§ To select a complete line, click onto the bar on the
left. Hold CtrL or SHIFT to select multiple paragraphs
or a complete range.

§ To select a field, click in the top left corner of the
field. Hold CtrL or SHiFT to select multiple fields or a
complete range.

§ To select a complete column, hold AcLt. Hold CtrL OF
SHIFT to select multiple columns or a complete
range.

Adad sl -BIUS|Y CHNSHINE
[Elzam u|sx -+ =0|F |agency

i

L

Figure 3.4: Mini toolbar for table objects

combit List & Label

Default Settings for Font and Frame

Choose Project > Options > Objects.

The "Select" button under "Object font" lets you choose the
default font to be used for objects. Under "Color
preferences", you can specify the border and the filling for
objects.

1] Cptens g

Arial 124 Select

Figure 3.5: Project options for objects

New objects will be created according to these settings.
However, you can change the settings later individually for
each object.

When you start a new project, it's a good idea to configure
these settings using suitable values to keep the effort
required for making manual changes to a minimum. The
settings only apply for the current project.

The "Default" parameter in the respective object properties
(Font/Frame/Background) is active as standard for all objects.

Therefore, if the default values are changed later, this will
also affect all objects whose font has not been changed
manually.

combit List & Label

Real Data Preview

The real data preview function is also available directly in the
Designer provided that your application supports it. In this
way, you can check the layout of a printout without wasting
paper in order to do so. The screen preview is accurate down
to the last detail (WYSIWYG € What You See Is What You
Get), exactly as it would be when printed. After checking the
layout, the actual print can be started from the preview
without having to use the print command again. Also see
chapter Output Options.

i -l
| "
5 P ——
|— agency
| pe—— presiceiim | ;
T - | = T B=
o= i s g
| - o [---.._.. — par s | ..
| — . 1..._ By e - i Fi |...
[—
e . 3
-l

F.ig.u_re 36 ..Real data preview in the Designer

JavaScript:TL_18415.HHClick()

combit List & Label

Arrangement and Alignment of the
Objects

Objects are your project's building blocks. They are
generated in the workspace where they are also given a
border with which their size and position can be changed.
This border defines the space that the object takes up and
thus also the maximum size to which the contents of the
respective object can be expanded. Objects may overlap
fully or partly.

See also:

» Arrangement as an Object List
» Displaying the Alignment Grid
»Aligning Objects

» Guides in the Workspace

» Size and Position of Objects

» Grouping of Objects

» Multiple Copies of Objects

JavaScript:RT_635.HHClick()
JavaScript:RT_635.HHClick()
JavaScript:RT_636.HHClick()
JavaScript:RT_636.HHClick()
JavaScript:RT_637.HHClick()
JavaScript:RT_637.HHClick()
JavaScript:RT_638.HHClick()
JavaScript:RT_638.HHClick()
JavaScript:RT_639.HHClick()
JavaScript:RT_639.HHClick()
JavaScript:RT_844.HHClick()
JavaScript:RT_844.HHClick()
JavaScript:RT_845.HHClick()
JavaScript:RT_845.HHClick()

combit List & Label

Arrangement as an Object List

The object list defines the implicit print order of the objects,
thus they are automatically sequentially linked to one
another. Unlinked objects are printed first, followed by the
tables and finally the objects that are linked in any other
way.

The most important commands for the respective objects are
available via context menus as in the work space. Objects
that are in a hidden layer have parentheses around the
rectangle in front of their names. Locked objects are
identified by a small X.

Dbypects

Figure 3.7: Print order in the object list

combit List & Label

Displaying the Alignment Grid

Choose Project > Options > Project. Here, the "Show
grid" option lets you specify whether a grid is to be shown in
the background of the workspace to assist with orientation.
You can specify the spacing of the grid lines in each case.
The "Horiz./vertical synchronized" option causes the same
grid spacing in both directions.

combit List & Label

Aligning Objects

Via the Objects > Arrange > Alignment menu item, or the
corresponding toolbar, you can align multiple objects with
one another. At least two objects must be selected for the
function to be enabled.

Figure 3.8: Toolbar for the alignment functions

§ Left, right, top, bottom: The selected objects are aligned to
the border of the selection rectangle in which they are
enclosed.

§ Centered: The selected objects are centered in the
respective direction (horizontal or vertical) within the
selection rectangle.

§ Size adjustment: The frames of the selected objects are
adjusted to a common size in the respective direction
(horizontal or vertical).

§ Equal shape distance: The distance between the edges of
the selected object is set to be equal. The outer edges in
each case are significant here. The average distance is
determined relative to the edges of the objects and the
objects are arranged accordingly. In the event that the
selected objects overlap, i.e. the intermediate area has a
negative value, the function will not spread the objects
apart but instead, only the degree of overlapping will be
adjusted to the average value.

§ Equal center distance: The distance between the centers of
the selected object is set to be equal. The average
distance is determined relative to the centers of the
objects and the objects are arranged accordingly. In the
event that the selected objects overlap, the function will

not spread the objects apart but instead, merely the
degree of overlapping is adjusted to the average value.

combit List & Label

Guides in the Workspace

You can create horizontal and vertical guides. To do this,
position the mouse on a ruler, press and hold the mouse
button and release it again in the workspace. The new guide
is aligned in the same direction as the originally selected
ruler. You can then move the guides around as you wish.

A catch function helps you to position objects directly on the
guide. This function does not connect the objects
permanently to the guide but merely helps you when
positioning objects.

If you hold down the CtrL key when you move the guide, the
objects connected to the guide will be moved as well.

The options relating to guides are defined via a context
menu which appears when you click the right mouse button.
This lets you choose a catch range in pixels for each guide.
When you come within this range, the object will be drawn to
the guide. The catch function is switched off if you hold down
the CtrL function when working with objects.

e
Cateh Range 10 Puscad
Locked [#] 2pua

30 Pioed

40 Pueed

Postron

Delete

Figure 3.9: Context menu for guides

You can fix the guides in the workspace and prevent them
from being moved by mistake. You can also specify the
position of the guide directly.

combit List & Label

Size and Position of Objects

You can move each selected object or change its size. If you
select multiple objects, you can change them all as if a single
object were selected.

1. Changing the size with the mouse: Select the object. If
you position the mouse on the frame, you can change the
size by pulling the frame inwards or outwards, as indicated
by the arrows, while holding down the left mouse button.
You must position the mouse in one corner of the frame in
order to change the size both horizontally and vertically.

2. Moving with the mouse: Select the object. Hold down the
mouse button and drag the object to the position that you
want. If you press the SHirt key, you will only be able to
move the objects horizontally or vertically. The alignment
remains the same.

3. Changing the size and moving with the dialog: You can
also change the size and position of an object by means of
the property list. You can enter values precisely here. If
you double click the "Position" sub-item in the property
list, a position dialog will appear which makes it even
easier to enter the size and position of objects with the
keyboard.

4. Using the keyboard to move objects or change their size:
Select the object. Use the pirecTion keys to move the object
in the respective direction. Pressing the key once moves
the object by the smallest possible unit, if you hold down
the CtrL key, the object will be moved by ten times the
smallest unit.

combit List & Label

Grouping of Objects

You can group multiple objects that belong together and then
modify them as if they were a single object. Please note that
an object can only belong to one group. It is therefore not
possible to combine groups to a higher-level group.

In order to make a group of two or more objects, select the
objects in question and then choose Group in the context
menu.

To remove the grouping, choose the item Ungroup.

combit List & Label

Multiple Copies of Objects

If you want to place several, similar objects with the same
distance on the workspace, select the object and then
choose Multiple Copies in the context menu. Define the
number and spacing of the objects horizontally and vertically.

combit List & Label

Mastering Appearance
Conditions

In this chapter, you will examine the concept of appearance
conditions using a multi-page standard letter or mail merge
as an example. By means of appearance conditions, you can
specify when objects, elements, paragraphs, lines or columns
are to be printed or displayed.

In addition, it is frequently helpful to assign objects that
belong together in terms of content into what is called a
layer. An appearance condition can be defined for each layer.
This condition specifies the conditions under which the
objects assigned to this layer are to be printed.

See also:

» Where Will the Objects be Printed?

» Working With Appearance Conditions
» Working With Layers

» Practice: Create a Mail Merge Project

JavaScript:RT_642.HHClick()
JavaScript:RT_642.HHClick()
JavaScript:RT_643.HHClick()
JavaScript:RT_643.HHClick()
JavaScript:RT_157.HHClick()
JavaScript:RT_157.HHClick()
JavaScript:RT_645.HHClick()
JavaScript:RT_645.HHClick()

combit List & Label

Where Will the Objects be Printed?

If a layer has not been defined for the objects, they will be
printed on each page.

As an exception to this rule, table objects, cross tabs, text
and formatted text are printed consecutively starting on the
1st page.

With text and formatted text, the "Page break" property must
be set to "yes".

A new page will therefore be created automatically whenever
the space available in the object is no longer sufficient. This
means that you do not have to create a second page; this is
taken care of automatically by table objects, crosstabs, text,
formatted text or by means of the "Minimum page count”
project property.

combit List & Label

Working With Appearance Conditions

You can use filter conditions to control precisely the data to
be output. In this way, you can specify conditions not only for
displaying data records but also for displaying objects.
These conditions are logical expressions whose results
decide whether a certain data record or a certain object is
printed or not. If the logical expression is true, the data
record or the object is printed. If the logical expression is
false, the data record or the object is not printed.

In order to achieve this, you define a corresponding
"Appearance condition". You will find these conditions in the
properties of projects, layers, objects, elements, paragraphs,
lines or columns.

For example, if you want to output the terms of payment in
the footer of an item table, use the appearance condition for
this line to specify that it is only to be printed on the last
page. Otherwise, this footer will be printed on every page at
the end of the table.

Example "Last page only": Lastpage()

Or you define a condition specifying that the company logo is
only to be output if the letter is created as a PDF file, since,
when outputting to the printer, the company logo is already
printed on the letterheads.

Example "For PDF output only": LL.OutputDevice="PDF"

In appearance conditions for table footer lines, you can also
use the predefined "Last page only" value. Internally, this
entry uses the functions "Lastpage()" or
"LastFooterThisTable()".

In appearance conditions for table headers, you can also use
the predefined "First page only" value. Internally, this entry
uses the functions "not Lastpage()" or

"FirstHeaderThisTable()".

combit List & Label

Working With Layers

If you define appearance conditions for a layer, you can then
assign objects to this layer. This is very useful especially with
large and complex projects as it allows you to hide or display
the objects assigned to a specific layer via the checkbox in
the tool window.

In this way, you avoid overlapping the different objects on
the workspace which would otherwise make working on
individual objects difficult.

Ly

F Il Baae

P [Fuit Page

A8 Folowing Pages |

Layens

Figure 4.1: Layers tool window

See also:
» Defining Layers
»Assigning Objects to a Layer

JavaScript:RT_158.HHClick()
JavaScript:RT_158.HHClick()
JavaScript:RT_644.HHClick()
JavaScript:RT_644.HHClick()

combit List & Label

Defining Layers

You define layers via Project > Layer Definitions or by

double clicking in the "Layers" tool window.

In the "Layers" dialog, you can define as many additional

layers as you want with the "Insert line" button. Each new

layer appears initially with the name "Layer". You can enter a

meaningful name for the layer in the "Name" field.

§ When creating new projects, the "Base", "First page" and
"Following pages" layers are automatically defined.

§ So that you can differentiate better between the different
layers on the workspace, it's a good idea to give the layers
different colors. This also causes the objects in the
respective layers to be shown in different colors in the
layout preview display mode. This color has no effect on
the actual print.

§ If you delete a layer, the associated objects are
automatically assigned to the base layer. At least one

layer must be defined.
i i

ety

Figure 4.2: Layer definition dialog
In the "Condition" field you define the appearance

condition for this layer. This appearance condition then
applies for all objects on the layer in question, i.e. the
associated objects are only printed when the condition for
the layer is met.

Typical appearance conditions:

Condition Explanation
no condition The objects on this layer are always printed.
Page()=1 The objects on this layer are only printed on

the first page.

Page()<>1 The objects on this layer are printed from the
second page onwards.

Note: The Lastpage() function in an appearance
condition can only be evaluated correctly if it is used
within the footnote of a table object or in an object linked
to a table. In the data lines, the result of Lastpage() is
always "False".

combit List & Label

Assigning Objects to a Layer

Once you have defined the layers, you can assign objects to
them. You have two options:

1.

In order to assign multiple objects to a layer, select the
objects in the workspace and choose Assign to layer in
the context menu.

Select the layer that you want in the dialog that appears
and confirm with OK.

Crocse o

-

Figure 4.3: Dialog for assigning objects to a layer

In the workspace, the assigned objects automatically
receive the color of the corresponding layer so that they
can be easily differentiated from the other objects. This
only affects the appearance on the workspace and not the
print.

. Alternatively, you can also copy objects into a layer. This

is useful when you want to include the same objects in
different layers. Example: you create one layer for each
language. You then copy all objects into the language layer
and translate them.

The original object remains in its original layer and a copy
of the object is created in an additional layer. To do this
choose Copy to Layer from the context menu for the

selected object.

combit List & Label

Practice: Create a Mail Merge Project

You learned the basic procedures in Chapter 2. In this
chapter, you will now meet other functions and possibilities
for designing reports, using a serial or standard letter as an
example. As opposed to the previous examples, you use the
formatted text object here for the text of the mail merge and

change the position of the object from the second page
onwards.

See also:

» Create a New Print Template

»Adding a Company Logo

»Add the Address Field

»Adding the Date and Page Number

»Adding Formatted Text for the Letter

» Adjusting the Position of the Letter Text for Following Pages
» Assigning Objects to the Layer

JavaScript:TL_18441.HHClick()
JavaScript:RT_646.HHClick()
JavaScript:RT_646.HHClick()
JavaScript:RT_647.HHClick()
JavaScript:RT_647.HHClick()
JavaScript:RT_648.HHClick()
JavaScript:RT_648.HHClick()
JavaScript:RT_649.HHClick()
JavaScript:RT_649.HHClick()
JavaScript:RT_650.HHClick()
JavaScript:RT_650.HHClick()
JavaScript:RT_651.HHClick()
JavaScript:RT_651.HHClick()
JavaScript:RT_652.HHClick()
JavaScript:RT_652.HHClick()

combit List & Label

Create a New Print Template

1. Start the combit List & Label Sample Application (see
Chapter The Sample Application).

2. Choose Design > Mail Merge / Letter to start the Designer.

3. A file selection dialog will appear. To start a new project,
choose the New button.

Note: This button is not available in Windows XP. Enter a
name for the new print template in the "File name" field
and then choose "Open".

To open or edit an existing project, choose Open.

JavaScript:TL_18442.HHClick()

combit List & Label

Adding a Company Logo

Use the picture object to add a logo.
1. In the "Objects" toolbar, choose the "Picture" object type.

i g5 g e

Figure 4.4: "Objects" toolbar

2. Pull the object to the right size and select an image file
(see Chapter 2.3.1).

3. The company logo is only to be printed for PDF output.
The logo is not to be printed when outputting to the
printer. This means, you select the picture object and
enter the "LL.OutputDevice = "PDF" logical condition in
the "Appearance Condition" object property.

Also see chapter Overview of LL Variables and LL Fields.

JavaScript:TL_18443.HHClick()
JavaScript:TL_18444.HHClick()

combit List & Label

Add the Address Field

To add an address, use the text object. Text objects let you
place text or the contents of fields in the workspace.

Al -1 -8B Fr US| *

b 2 -

Figure 4.5: Address field: it should look like this.
1. In the "Objects" toolbar, choose the "Text" object type.

C S g e
% 2

Figure 4.6: "Objects" toolbar

2. Pull the object to the required size.

3. The formula wizard will now appear, which you can use to
define the contents of the text object.
This dialog consists of a series of tabs. On the "Variables
and Functions" tab, select the variable for the company
address (company) from the list of available variables and
fields.
You will see an auto filter field above the list of variables.
This means that you can enter "Company" to display all
fields and variables containing this expression.
Select the variable that you want by double-clicking and
confirm your selection with OK. You have now defined the
first line of the address field.

||||||||||

||||||||||

Sample vanibls ‘Cunbeisr Compan

Figure 4.7: Formula wizard with variable

. A text object can hold as many paragraphs as you want
and they can all have completely different display
properties. You can add more paragraphs by means of the
mini toolbar which appears automatically. Choose "Append
paragraph" to define an additional line.

Anal L -8 F U A

A e | o
] W =
{ Lightwaight Tin L2
| e, Joineom

Figure 4.8: Adding another paragraph via the mini toolbar

. The formula wizard will now appear, which you can use to
define the contents of the paragraph. Now enter the first
name and the last name of the recipient. First choose the
"Firstname" variable.

. You should insert a space before choosing the "Lastname"
variable to prevent the contents of the two variables from
being placed directly end to end. A space is simply "Text",
Fixed text must be enclosed in quotation marks. So now
enter "+" as a joining operator followed by " " for the
space.

. Now select the "Lastname" variable. You must of course
also join this with "+". The whole line looks like this:

Cursioined Fasiieune =" " + Custorme Lastoume =
= b
)
o Foshwn by
=] e 3 Lancdd

Figure 4.9: Linking variables and text

8. Now continue with the other variables: street and city. You
have now completed the address field.

Asigh =12 «B r U A
W im | g

510 Sleslesirost B
.l Motal Sty XY 128

|
o o

Figure 4.10: Text field with 4 paragraphs

combit List & Label

Adding the Date and Page Number

Use a text object once more to add a date and the page

number to the letter.

1. In the "Objects" toolbar, choose the "Text" object type.

2. Pull the object to the required size.

3. The formula wizard will now appear, which you can use to
define the contents of the text object. Switch to the "Date
Format" tab.

4. Select the date format that you want. When you do so,
the Now() function will be inserted automatically in the
Date$() function. This outputs the current date in the
format that you have chosen.

5. Then create a further text object in the footer area for the
page number. In the result area of the formula wizard,
enter the Page$() function directly to output the page
number.

combit List & Label

Adding Formatted Text for the Letter

You output the text for the letter with the formatted text

object. As opposed to the normal text object, this object also

lets you change the formatting of the text within a line.

1. In the "Objects" toolbar, choose the "Formatted text"
object type.

Figure 4.11: "Objects" toolbar

2. Pull the object to the required size.

3. A dialog appears where you can type in the letter in the
form of continuous text.
Alternatively, you can select an RTF variable from the
"Source" drop-down list if available.

Expert tip: If the current RTF object is appended to
another RTF object for which the "Page break" option is
enabled, the "Transfer exceeding text of ..." option is
available as a data source ...". If you select this option,
you cannot enter text in the RTF object because the
(remaining) text will be transferred automatically from
the other RTF object (e.g. for a two-column print).

7.

Apphe L Cangal

Figure 4.12: Formatted text object dialog

. If you click the formula button, the formula wizard will

appear here as well, which you can use to insert variables.
You want to address the recipient personally so you now
create the salutation. When doing so, please make sure
that you do not enter an unnecessary space character at
the end of the salutation formula if the "Name" field in
"Dear Sir or Madam" salutations is to be empty. One
possibility for a perfect salutation formula is the use of
Rtrims$() e.qg.:

«Rtrim$(Recipient.Salutation + " " +
Recipient.Lastname)»,

. Now write the letter text. You have various formatting

options at your disposal. You create a tab stop with
CTRL+TAB.

Or you can create the letter text or pictures and graphics
in your normal text processing program (e.g. MS Word),
and insert them into this dialog with copy CtrL.+C and
paste CTrL+V.

. The "WYSIWYG" (What You See Is What You Get) button

shows you the hyphenation based on the object size. This
is just an approximate guide and can differ slightly.
Page breaks are created automatically if the available

space is no longer sufficient and the "Page break" object
property is set to "Yes". If you want to trigger a page break
manually, you can do this by means of the context menu.
Select the Pagebreak control character.

Charscte 3 Fant
Paragraph ¥ Bald
Iralic
Unedesfaned

Serikeaut

Edit L]

Superscmpt
Subsompt

Color

Insént Control character ¥ Unbreakable Space

l.:lptn}lul H:fph{n

Pagelreak |~} |

Figure 4.13: Context menu for a user defined page break

combit List & Label

Adjusting the Position of the Letter Text
for Following Pages

Because of the address field, the text starts further down on

the first page of a letter. So that the text begins at the top

margin in multiple page mail merge projects, a condition can

be applied to the position (top, height) of the formatted text

object with which the object can be moved upwards and

increased in height on following pages.

1. Select the formatted text object.

2. Select the "Position.top" property and set the
Cond(Page()=1,125,50) condition.

3. Select the "Position.height" property and set the
Cond(Page()=1,150,225) condition.

B Pastion [0.9%6 4051 7.46L 10542 m]
Left 4.906 in
Top 4050 in
Wdth §.555 in
Height 6791 in

Figure 4.14: Specifying the position with a formula

combit List & Label

Assigning Objects to the Layer

So that the objects for address, company logo and date are
only printed on the first page, you can assign these objects
to the corresponding layer.

1. Hold down the CtrL key and select the objects for the
address, company logo and date.

2. Right-click to open the context menu and choose "Assign
to Layer".

3. A selection dialog will now appear in which you can select
the "First page" layer. Confirm your selection with OK.

4. The objects are now assigned to the "First page" layer.
This is indicated by the fact that the objects are shown in
the layout preview in green, the color assigned to this
layer.

agency

Figure 4.15: Objects are shown in different colors

5. The "formatted text" object remains assigned to the base
layer so that it will be printed on all pages.

combit List & Label

Creating Professional Tables

In this chapter, we will extend the previous examples to
include more functions, output grouped data, use
appearance conditions and layers to allow multiple pages to
be output and add more elements to the report container.

See also:

» Using Advanced Features With the Report Structure
» Practice: Defining the Report Structure Correctly

» Modifying the Fields and Columns

» Defining Multiple Line Layouts

» Defining Column Contents

» Defining Group Lines

» Table Layouts

JavaScript:RT_654.HHClick()
JavaScript:RT_654.HHClick()
JavaScript:RT_655.HHClick()
JavaScript:RT_655.HHClick()
JavaScript:RT_656.HHClick()
JavaScript:RT_656.HHClick()
JavaScript:RT_659.HHClick()
JavaScript:RT_659.HHClick()
JavaScript:RT_660.HHClick()
JavaScript:RT_660.HHClick()
JavaScript:RT_661.HHClick()
JavaScript:RT_661.HHClick()
JavaScript:RT_662.HHClick()
JavaScript:RT_662.HHClick()

combit List & Label

Using Advanced Features With the
Report Structure

You use the "Report Container" object to add a table. As the
name says, a report container can hold several objects.
Tables, charts and crosstabs can be added in any order, even
as sub-elements of tables. This lets you define sub-reports
with almost any relationships between tables.

However, only one report container is permitted and you
cannot define any separate tables, crosstabs or charts.

You define new elements in the "Report Structure" tool
window along with the hierarchical structure that you want.
All elements and respective sub-elements of a report
structure are shown here, with object type and data source
[relation name, sort name], in the order in which they will
later be printed (sequence plan).

To add a new element to the report container, select the
"Append an element" or the "Append a sub-element" button.
Sub-elements are only possible with tables.

Eepeaat Sruch

Report Stnact.

Figure 5.1: "Report Structure" tool window

Only one element is displayed at any time in the workspace.
This means that with the "Report Structure" toolbar, you
select the element that you want to be displayed in the
workspace.

combit List & Label

Practice: Defining the Report Structure
Correctly

Let us assume that you want to produce a list of all
customers, showing the orders of the respective customers
and all order items.

You want the result to look roughly like this:

Customers
10 Compamy Address City Customer ID
Qrdaers
Pos Customer D Crder date Shipping date Weight Crder IO
1 ALFKI 8252008 W3 2848 10,643
Pos Order ID Article nun Count Praduct Price
1 10643 b 5 FEissle Sauerkrag 4580
} 10643 2] 21 Charnreuse vernsa £1800
§63.60
2 ALFKI] 11432008 1132009 B102 10,692
Pos Order ID Article nun Count Product Price
T 10682 £3 0 Vege-spread $4380
54350

90,48 kg $107.50

Orders

Pos Customer ID Crder date Shipping date Weight Order D

1 ANATR 10/19/2008 102572008 161 10,308
Fos Order D Artlcle nun Count FPradust Price

CE B 1 Gaudnrandsdalzost §28 80

2 10,308 k] El Outback Lager £1200

ETET

2 ANATR Grar2008 anarzong 4380 10,625
FPos Order ID Article nun Count Product Price

i 10,625] 3 Tolu $2345

2 10.EXS5 42 g Singaporean Hokkden Fred Mee $14.00

s3T5

45.51 kg $78.05

Figure 5.2: Hierarchical invoice list

To achieve this, proceed as follows:
1. In the "Objects" toolbar, choose the "Report Container"
object type.
o ANocoawBEasee
Figure 5.3: "Objects" toolbar

2. In the workspace, hold down the left mouse button and
pull the object to the required size.

3. A selection dialog will appear for the chosen object type.
Choose the "Table" object type.

Choote Object Type e
‘Which abject would you ke to insert into the report container?

The report container cam hodd amy number of cbjects. The following okgect types are svadable

+ Table
& table deplays data i 8 s [e.g. sdebiess list). The selection of Tree conbent’ 55 & dabs source
Mt dEsceipitie et e
<+ Crosstab
& crositab collects dats in bwe dimerasont (8.4, tuinger per region and quares
& Chart

& chart displays data graphically (e.g. pie chast)

Cancel

Figure 5.4: Choosing the object type

. You specify the data source in the following dialog. All
available tables are shown hierarchically, in other words,
under the tables, you will find the relational tables in each
case.

E Croase Tource Table Path i

Pleaie chadie e source tabile heis:

Free conbent
Categones
& Customeen
& Orders [Cantarmans 2ordert]
Dweebd Dgtacts | O s POvdler Dotaili]
Empleyes
Duder Details
Dby
PFraduscti
Sabey
Wuppe

Suppliets

Le Cancel

Figure 5.5: Choosing the data source

For the list of invoices, you need the following structure:

Customers > Orders > Order_Details.

You have 2 alternative procedures at this point:

a) You select the "Customers" table to first create the
"top" table. This corresponds to a top-down procedure;
meaning that you then add the "Orders" sub-table
followed by the "Order details" sub-table by means of the
"Report Structure" tool window.

b) Or you choose the structure that you want right from
the start by selecting the "lowest" table. This

corresponds to a bottom-up procedure, meaning that you
create all three tables starting by designing the "lowest"
table.

5. You will be using the second method in this example.
Accordingly, you select the table "Customers > Orders >
Order_Details".

6. A selection dialog will appear with all the fields in the

"Order Details" table.

4 Seberton Wisied e

aaaaaa

Figure 5.6: Field selection dialog

In this dialog, now choose the columns for this sub-table.
For example, double-click the "ProductID", "Quantity",
"UnitPrice" and "ProductName" fields from the "Products"
table which has a 1:1 relationship. This will add the fields
to the "Columns" area. You can change the order with the
arrow button.

7. The "Order_Details" table will now be displayed in the
workspace.

§ The selected fields are displayed in the data line, in other
words, the data line contains the data.

§ In addition, a header line is automatically produced.
Header lines are used mostly as column titles, i.e. the
selected field names are now shown here as text.

§ List & Label adjusts the width of the columns
automatically. You can adjust the width of a column
manually by moving the separating line to the right or

the left with the mouse.

Note: This changes all table columns whose
separators are within +/-2 mm from the mouse
position. If you hold down the CtrL key, the action will
only be carried out for the line on which the mouse is
positioned. The "Column width modification affects
next column" option lets you alter the column width
while making the next column smaller.

8. To define the columns of the "Orders" table, double-click
the table in the "Report Structure" tool window.

combit List & Label

Modifying the Fields and Columns

There are two possibilities for adding additional columns to
tables or for editing and formatting them in detail.

See also:
» Mini Toolbar
» Object Dialog

JavaScript:RT_657.HHClick()
JavaScript:RT_657.HHClick()
JavaScript:RT_658.HHClick()
JavaScript:RT_658.HHClick()

combit List & Label

Mini Toolbar

For the most frequent functions, use the mini toolbar which

appears automatically. To select a single field, click the upper

left corner of the field.

§ To select multiple fields, hold down the CtrL key and click
the upper left corner of the fields.

§ To select a whole area, hold down the SHIFT key.

§ To select an entire column, hold down the ALt key.

Apal =10 ~B F U@ "4

we [g

ir

BSHNS

u
[[Prosucsiama [Categary

“LingP pes |
[Ehai_ [Eeversges sism|

Figure 5.7: Multiple field selection

You have various functions at your disposal including:

§ Font: font, font size, bold, italic, underline, color, open font
settings dialog or set font to default (via right-click)

§ Properties: Alignment, edit line definition, append new line,
delete selected cells, move selected columns or cells to
the right or left, open formatting dialog, open frame
properties dialog.

combit List & Label

Object Dialog

Use the object dialog for more advanced functionalities. You
open this dialog via the corresponding button in the mini
toolbar or by double-clicking the element in the report
structure.

Warker # af least one Line or columin
Linetypes lne defintion exits propenies

Edit cokemns and
line definitions

Line definitions

Cokemn conbent 1] i O P et [

Fade aut dialog Ecit dalag layout By

Figure 5.8: Object properties dialog for tables

There is a tab for each type of line where you can specify the

different definitions and columns for the respective line. The

following types of line are available: header line, data line,

footer line, group header, group footer. A checkmark on the

tab indicates that a line type has one or more line definitions.

§ Header lines are mostly used as titles for the columns of
the table.

§ Data lines contain the formatting for the actual table rows
and the data that is to be shown in the table.

§ Footer lines are displayed at the very end of the table and
can hold final information about the data lines that are

output above.

§ Group header and footer lines are used to structure the
data lines by means of "Intermediate headings" and
"Intermediate footers".

All line types can be defined independently of one another.

§ This means that the columns of a header line can have a
different appearance as the data lines or footers that
follow.

§ You can also create different line layouts or line definitions
for the individual line types. It is then possible to activate
the different line definitions with special appearance
conditions as required.

combit List & Label

Defining Multiple Line Layouts

You can define different layouts for each type of line.
Depending on the appearance conditions, the appropriate
layout is used in each case according to the situation. For
example, you can output two table lines for each data record
in this way:

article no description price

Southern Africa Explorer. 20-day tour from Cape Town ta Victora Falls =
MPSAD] B 1500
2 exthuding fRight $1.500.00
-

T e Safan: Travel throwgh the Okavango Delta in dug-out canoes,
’d‘ ; _5;' chimb sand dunas in Marmdbea, vt Elosha National Park,

il
L : AT .
- ¥ Victoria Falls
1 E
H J

EXPCHI Morthern & Soughem Chilec 73-day tour from Santiago to Punta Arenas ncluding

flight $3.500 00
Travel Irarm the Atscarma desen m Mahem Chale, the
metropoks of Santiago, across the |3 ned wolcanoes
region to the S of Magedlan Torres del Paine
- Mational Pask agonia; Carret Southem
I Highwray] with spectacular ¢ ry. visid the second

largest lake i South Amen

Figure 5.9: Two line definitions

Proceed as follows to create table lines in the object dialog.
1. First select the line type that you want to edit by clicking
the relevant tab, e.g. Data Line.
2. Now choose "Insert Table Line" in the context menu.
Alternatively, you can select an existing Line definition and
then click the "New (Append line definition)" button.
3. In the "Choose a Table Line Definition" dialog that follows,
you have the option of
§ using an already existing layout as a template for the
new line definition (very useful if the layout is similar).

§ starting the field selection wizard (very useful if you want
to create several columns in one operation)

§ or creating an empty line definition so that you can then
add the columns by means of the object dialog.

0K Canced

ifigure 5.10: Using an existing line layout

4. You have now created the new line. Edit the columns as
described in Defining Column Contents . Change the order
of the line with the arrow button or with Drag & Drop.

5. You can then specify the appearance of the new line as a
whole. Various properties are available for this including:

§ "Appearance Condition" with which you can specify when
the line is to be printed. This is useful if you define
multiple line layouts that are to be printed depending on
certain values. The familiar dialog for defining logical
expressions opens up here.

Example line 1: Subtotal not on last page
Appearance condition: not Lastpage()
Example line 2: Grand total only on last page

Appearance condition: Lastpage()

§ Name of the line e.g. "data first line". This makes it
easier to find the line in complex layouts.

§ Display in Designer: with this property, you can hide the
lines in the workspace @ this is very useful if you have a
lot of line definitions.

§ Spacing (margins): here you define the top, bottom, right

JavaScript:TL_18456.HHClick()

and left spacing of the line. The "top" or "bottom" values
cause a corresponding space between the individual
table rows. With the "left" and "right" spacing values, you
can specify the margin in relation to the table object, i.e.
you can indent lines or columns.

§ The "Default Font" property sets the font for the entire
table row. Newly inserted columns appear initially in this
font.

§ Outline Level (index level) of the bookmark in preview
mode or for PDF export.

Also see chapters Overview of Properties and Defining

Group Lines.

]

¥ e L ¥ Data L et L Gipimage by [y g

Figure 5.11: Line properties

JavaScript:TL_18457.HHClick()
JavaScript:TL_18458.HHClick()

combit List & Label

Defining Column Contents

You can define as many columns as you want for each line.
You must only make sure that these columns can be
displayed within the width defined for the table.

The individual columns are shown in the object dialog as a
tree structure. The buttons let you edit, delete, cut, copy,
insert and move the selected columns. You can also move
columns outside of the line definitions by using Drag & Drop.
Proceed as follows to create new columns in the object
dialog:

1.

2.

First select the line in which you want to insert a new
column.

Now choose "Append column" in the context menu.
(ALT+Ins). Alternatively, you can select an existing Column
definition and then click the "New (Append column)"
button or the small downwards arrow next to this button to
specify the type.

. Each column has a certain type. Various properties are

available for the column type including: text, drawing,
barcode, RTF text, chart, gauge, HTML text and OLE
container. When selecting a field, this data type will be set
automatically.

. To define the contents, the familiar formula wizard will

appear in which you can define the column contents in the
form of expressions. You will find more information about
this under Variables, Formulae and Expressions.

. Now define the column's properties. Each column in a line

can be edited and formatted separately. Select the column
that you want in the tree structure in the object dialog.

JavaScript:TL_18459.HHClick()

¥ Mg L ¥ Data L ¥ Feelew Gieapbbidks | G Pt -

deubembr 0000000 | BN
L) Mol a:

...............

Figure 5.12: Column properties

To select multiple columns, hold down the ALt or the SHiFt

key. Various properties are available including:

§ Formatting e.g. as number or currency.

§ Name of the column: this will help you to maintain an
overview with complex expressions. If you change the
name directly in the tree structure, your change will also
be applied as "content" where appropriate.

§ You can specify when this column is to be printed with an
"appearance condition". This is useful if you define
multiple columns that are to be printed depending on
certain values. The familiar dialog for defining logical
expressions opens up here.

§ Rotation of the content in increments of 90°.

§ Background, frame, font, vertical and horizontal
alignment.

§ A fixed height for the field irrespective of the content.

§ The column width.

Also see chapter Overview of Properties.

JavaScript:TL_18460.HHClick()

combit List & Label

Defining Group Lines

Group lines are a special type of line. They are used to group
together the data lines that are to be printed.

You can use the "Group by" line property to specify how the
data is to be grouped. This means that the line is printed
whenever the result of the expression changes from one data
line to the next. If you don't enter an expression, the line will
not be printed and the property is highlighted in red in the
property window.

A group header is printed accordingly before the data line is
output, e.g. "ltem group XYZ" group heading.

A group footer appears after the condition of the "Group By"
property has changed, in other words, after outputting the
data line. Group footers are suitable e.qg. for totals of data
within a group.

Example: Grouping by the first letter of the "ltem.No" field.

1. Create a new line definition on the "Group header" tab.
Enter the following expression for the content of the
column:

"Main group: ' + Left$ (Item.No,1)"

The result of the expression "Left$ (Iltem.No,1)" is the first
character of the "ltem.No" variable.

Whenever the first letter of "ltem.No" changes, the text
"Main group: " and the first letter in each case will be
printed.

2. Enter "Left$ (Item.No,1)" as the condition for the "Group
By" property.

With each new first letter, a corresponding intermediate
header will be printed in the list.

3. Multiple line layouts are possible with group headers as
well. In this way, you can produce hierarchically structured
intermediate headers. For example, you can define a line

layout that is produced, as in the above example, based
on the first letter of the "ltem.No" variable. In addition, you
define a second line layout that produces intermediate
headers based on the first three characters of "ltem.No".
Create a new line grouping for the sub-group header in the
same way. Enter "Left$ (Iltem.No,3)" as the condition for
the "Group By" property.

Enter the "sub-group" for the content of the column: ' +
Left$ (Artikel.Nr,3)":

When the first 3 letters change, a corresponding
intermediate header will be printed in the list.

artlele no barcode description price

main group 'E'
sub-group 'EXP*

— J-:m-‘l oir from i X
B I eseisemesmiinsnn oo
‘ilk'll? 1 & Bouth E Gy lour
EXPCHD | | S- ahiapd to "I Inic luding $2.500 01
. W aldwes dving trip: 14 |1'o.- mulnwn Maln -
KIFM. 1
cow (NI csmmsseammae v
B '-Imu r-;| and Bal 2w -:- nciuding P
o [N ommsizzsee o
T Yucatan, O e Trad ol 1he Maes, Mebsk ¥ 0l
Py 1)
Ll |I”ll ﬂlll o i, seludo9 P s
& artic

tliss in EXF = ¥4, 76000
sub-group 'EXC’

Wi Louvre incipding guded

Pants, admisseon 10 the latesl cabarl show
EXCRARDY II”I I"“”II | r-eMm -:u.ge r-cl :ﬂ'r?&r'.-ulf-? TR0
2 ariches in EXC = $218.00
sub-group ‘EXP*
o London, sighisesng lour wilh baal g on F
SO | | [} e
1 atlos in EXFE w000
B artiches inE'= 10000k ()
man group 'R

sub-group ‘RNT

RRTEmT Il!ﬂ mml"l . PN E A #1,050.00
R | |1 |

Figure 5.13: Group lines in an article list

Along with the properties of the "normal” lines, you also have
the following at your disposal:
§ Group sums: You can set sum variables to 0 here once they

have been output in order to produce group sums.

§ Page break before outputting a group header or break after

outputting a group footer.

§ The option of always displaying the group header

additionally at the start of the table if the group has been
separated by a page break.

Also see chapter Overview of Properties.

BB <acng A0 A0 0S4 80]

|
@5][cmea |
Figure 5.14: Group Headers

JavaScript:TL_18463.HHClick()

combit List & Label

Table Layouts

There are various properties and functions which you can use
to influence the layout of a table. Also see chapters Creating
Statistical Reports With Footers, Drilldown Reports (Increase
Detail Level), Different Layout Techniques and Overview of
Properties.

See also:

»Align Columns

» Fixed Size

» Printing Header Lines and Footer Lines Again
» Defining the Size of the Table Variably

» Forcing a New Page

» Creating a Conditional Page Break

» Keeping Lines Together

» Defining Totals and Counters

» Outputting Free Content Before and After a Table
» Defining Columns Across Multiple Lines

JavaScript:TL_18465.HHClick()
JavaScript:TL_18466.HHClick()
JavaScript:TL_18467.HHClick()
JavaScript:TL_18468.HHClick()
JavaScript:RT_663.HHClick()
JavaScript:RT_663.HHClick()
JavaScript:RT_664.HHClick()
JavaScript:RT_664.HHClick()
JavaScript:RT_665.HHClick()
JavaScript:RT_665.HHClick()
JavaScript:RT_666.HHClick()
JavaScript:RT_666.HHClick()
JavaScript:RT_667.HHClick()
JavaScript:RT_667.HHClick()
JavaScript:RT_668.HHClick()
JavaScript:RT_668.HHClick()
JavaScript:RT_669.HHClick()
JavaScript:RT_669.HHClick()
JavaScript:RT_670.HHClick()
JavaScript:RT_670.HHClick()
JavaScript:RT_671.HHClick()
JavaScript:RT_671.HHClick()
JavaScript:RT_672.HHClick()
JavaScript:RT_672.HHClick()

combit List & Label

Align Columns

There are various ways of simplifying the use of table

objects.

§ If you hold down the CtrL key when reducing the size of a
table, all columns will be automatically reduced in size by
the same factor.

§ To align (sub) tables exactly with one another, additional
tick marks can be shown on the ruler by means of an
eleme*nt property.

: w0 74
T R . | SR (BT T LA o e, . Jo e

Fi-gure 5.15: Tooltip for a column separator

§ List & Label adjusts the width of the columns
automatically. You can adjust the width of a column
manually by moving the separating line to the right or
the left with the mouse. This changes all table columns,
whose separators are within +/-2 mm from the mouse
position. If you hold down the CtrL key, the action will
only be carried out for the line on which the mouse is
positioned. If the "Column width modification affects next
column" option is enabled (Project > Options >
Workspace), you can alter the column width while
making the next column smaller.

§ You can hide Line Types (header, data, footer, group
lines) in the workspace. To do this, select the table object
and use Visible Line Types in the context menu or the
corresponding menu item View> Visible Line Types.

combit List & Label

Fixed Size

The "Fixed Size" property lets you specify that the size of the
table is not to be adjusted automatically when fewer data
lines are printed than the available space in the table object.
This property is useful to ensure that footers are always
printed at the bottom of the page, e.q. if the page number is
output in the footer. If the property is disabled, the end of the
table automatically moves upwards (and the footer therefore
also).

combit List & Label

Printing Header Lines and Footer Lines
Again

If the print of a table is continued on the following page, the
header lines of this table and the outer table will be printed
again. To suppress repeated printing of the header lines on
the following page, use the FirstHeaderThisTable() function
as an appearance condition.

This functionality is also available for footer lines, here you
use the LastFooterThisTable() function as the appearance
condition. This ensures that footer lines are only output on
the last page of the table in the event that the print is
continued on the following page due to lack of space.

You will find more information about this in the chapter
Overview of Functions.

JavaScript:TL_18473.HHClick()

combit List & Label

Defining the Size of the Table Variably

You can define the height and width of the report containers
variably to avoid data being truncated when the page format
is changed (e.g. from portrait to landscape).

To do this, select the report container in the "Report
Structure" tool window and use the LL.Device.Page variables
and the UnitFromSCM() function to specify the height and

width.

El Position [0.39, 0.33, 786, 11.28 in]
Left UnitFromSCM{10000) [0.3% in]
Top LratFroemSC A {10000) [0.39 in]

‘Width LL .Dwicr.Fagr.Si:r.rr = UnitFromSCMZ0000) [7.47 in] !

T L Ceice. Page Size.cy - UnitFromSCH{20000) | -
Figure 5.16: Size of the report container defined variably

combit List & Label

Forcing a New Page

With complex projects containing hierarchical tables, it is
sometimes wise to create a page break before outputting a
line of the "top" table.

Alternatively, you may want to have a new page if, after
outputting a data line of the "top" table, there is not enough
room for the following data lines of the sub-table.

You can handle both cases with the "Pagebreak Condition"
property.

For example, in the case of a hierarchical table, in order to
output each data line of the main table on a new page,
select the main table in the "Report Structure" tool window
and set the "Pagebreak Condition" property to True.

g¢|utl_'m.5' =rHlE@ e "-"k*-:|'|°

Product Categories

Bhtoyon Wy LappVorschau %, Voeschau |

Figure 5.17: ActiveEge break condition

combit List & Label

Creating a Conditional Page Break

Let€s assume that you want to create a continuous table.
However, you want to avoid printing data lines from the main
table at the bottom of the table unless there is enough room
for at least 3 data lines from the sub-table.

You do not want it to look like this:

Product categories

Figure 5.18: Data lines from the main table without following
line

You can avoid this by means of the RemainingTableSpace()
function. This function returns a value showing the available
space. If you set the parameter to "True", the value will be
returned as 1/1000 mm.

If you want to specify that a new page should be started
before outputting the data line of the main table if the space
remaining is less than 3 cm, enter the following formula for
the "Pagebreak Condition" property:
RemainingTableSpace(True)<30000

combit List & Label

Keeping Lines Together

If the print of a table is continued on the following page due
to lack of space, you can decide whether the lines are to be
separated or kept together if possible.

This option is useful for multi-line data lines or for invoice
footer lines containing totals. You can use this option with
data lines, footer lines, group footers and group headers

combit List & Label

Defining Totals and Counters

You define totals and counters with sum variables or the
corresponding aggregate functions. You will find more

information about this in chapters Using Functions, Overview
of Functions and Working With Sum Variables.

JavaScript:TL_18476.HHClick()
JavaScript:TL_18477.HHClick()
JavaScript:TL_18478.HHClick()

combit List & Label

Outputting Free Content Before and
After a Table

You can output free text before and after a table. To do this,
use the RTF object and link the object to the project as free
text via the report container.

Produce a first page with a covering letter for the invoice

that we created in Chapter Producing a Simple Invoice and

an enclosure with the General Terms and Conditions.

1. To add a new element to the report container, select the
"Append an element" or the "Append a sub-element"
button in the "Report Structure" tool window.

2. A selection dialog will appear for the chosen object type.
Choose the "Table" object type.

3. In the following dialog, select "Free content" as the data

source.
] Chocse Source Table Path i

Pleate chods 1he sourte lable here

o, g Cancel

Figure 5.19: Add free content to the report container

4. Then add a column via the properties dialog for the table
object. In our case, we want to create the covering letter

JavaScript:TL_18481.HHClick()

as formatted text. Therefore, click the small arrow on the
right of the button and choose the Formatted Text option.

Taile Conterds - Free contend []

O Cancel

Figure 5.20: Specifying formatted text for the content of the column

5. A dialog appears where you can type in the covering
letter in the form of continuous text. You will find detailed
instructions for working with formatted text in Chapter
Practice: Create a .

6. Please don't forget to remove the (column) frame for free
content. The best way is to remove the frame via the
"Default Frame" property in the element properties.

7. You may also have to change the layer condition as the
covering letter will now be output on the first page.

8. If the General Terms and Conditions are also to be output
at the end of the invoice, you must add another free
content object to the container after the item table. Use
the Formatted Text object here as well or include the
content via a linked file.

Use the LoadFile$() function to load a linked file and enter
the path of the file as the parameter as follows LoadFile$
(ProjectPath$()+"\gtc.txt").

JavaScript:TL_18482.HHClick()

B85
Figure 5.21: Including content from a file with LoadFile$()

combit List & Label

Defining Columns Across Multiple Lines

Let us assume that you want to output the contents of a
column across two lines. You can achieve this by specifying a
negative value for the "Frame.Top.Distance" property, e.g.
-0.2 inch. The content will then be moved upwards by this
distance. Please note, however, that this will cause content
to be overlapped and that the export function cannot always
apply the layout 1:1.

article no

EXPSADI

EXPCHI1

description

Southern Africa Explorer 20-day tour from Cape Town 1o Victaria Falis
excluding flight
T Safari; Travel through the Ckavango Cielta in dusg-out canoes,
3‘" b clhimb sand dunes in Mamibia, visit Etosha Mational Park,

- i
_' ﬁlq- Wictona Falls
L I E

Northermn & Southern Chiec Z3-day tour from Santiago to Punta Arenas ndudng
Fligrht

Trawel from the Atacama desert in Morthemn Chile, the

rmetropalis of Santiago, across the lakes and volcanoes

region to the Strag of Mageltan and the huge Tomes del Paine
g Mational Pack . Patagomea Carmefera Austral (Southem

Higinway) with Spectacular nalursl scenery, visi the second

largest lake n South Armenca, marbbe caves

Figure 5.22: Column contents across two lines

price

£1.,500.00

$3.50000

combit List & Label

Producing Analyses

In List & Label, you can make use of charts, gauges,
crosstabs, footer lines in tables or drilldown reports to
analyze your data.

See also:

» Creating Charts

» Creating Gauges

» Creating a Crosstab

» Creating Statistical Reports With Footers
» Drilldown Reports (Increase Detail Level)
» Multi-Column Reports

JavaScript:RT_674.HHClick()
JavaScript:RT_674.HHClick()
JavaScript:RT_682.HHClick()
JavaScript:RT_682.HHClick()
JavaScript:RT_685.HHClick()
JavaScript:RT_685.HHClick()
JavaScript:RT_691.HHClick()
JavaScript:RT_691.HHClick()
JavaScript:RT_692.HHClick()
JavaScript:RT_692.HHClick()
JavaScript:RT_693.HHClick()
JavaScript:RT_693.HHClick()

combit List & Label

Creating Charts

This object is used to evaluate and display data graphically
in diagrams. This gives you an overview of your data and lets
you recognize anomalies immediately.
For example, you can analyze sales trends, illustrate
percentage shares and show data in multiple dimensions.
You have a wide range of different types of diagrams at your
disposal:
§ Pie chart
§ Bar chart (also displayed as cylinders, pyramids, cones,
octahedrons)
§ Simple (e.qg. sales per customer)
§ Multi-row (e.g. sales to various customers over the years,
scaled by customer)
§ Clustered (e.g. sales to various customers over the years,
grouped by year)
§ Stacked (e.g. percentage of sales to various customers
stacked over the years)
§ 100% stacked (e.g. respective sales percentages for
various customers over the years)
§ Lines/symbols
§ Simple
§ Multi-row
§ Stacked
§ 100% stacked

See also:

»Inserting a Chart Object

» Creating a Pie Chart

» Creating a Multi-Row Bar Chart

» 100% Stacked Bar Chart

» Multi-Row Line Chart

»Using Series to Determine the Values

JavaScript:RT_675.HHClick()
JavaScript:RT_675.HHClick()
JavaScript:RT_676.HHClick()
JavaScript:RT_676.HHClick()
JavaScript:RT_677.HHClick()
JavaScript:RT_677.HHClick()
JavaScript:RT_678.HHClick()
JavaScript:RT_678.HHClick()
JavaScript:RT_679.HHClick()
JavaScript:RT_679.HHClick()
JavaScript:RT_680.HHClick()
JavaScript:RT_680.HHClick()

» Special Fields With Diagrams

JavaScript:RT_681.HHClick()
JavaScript:RT_681.HHClick()

combit List & Label

Inserting a Chart Object

There are various ways of outputting chart objects:

1. A chart as an element in the report container. Add the
object via the "Report Structure" tool window. If you have
not yet added a report container to the workspace, select
"Report Container" in the "Objects" toolbar and pull the
object to the right size in the workspace while holding
down the left mouse button. A selection dialog will appear
for the chosen object type. Choose the "Chart" object type.

2. You can output charts and gauges in a table cell. To do
this, select the relevant entry by means of the context
menu in the object dialog for the table. If you want to
output the aggregated data, a good way of doing this is to
use a footer line.

3 - Pegdhatty)

Figure 6.1: Chart object in a footer line

3. In the following dialog, now select the data source. All
available tables are shown hierarchically, in other words,
under the tables you will find the relational tables in each

case.

To evaluate sales per country, for example, choose the

"Customers > Orders > Order Details" table in the List &

Label Sample Application so that you have all three tables

at your disposal. The "Customers" table contains the

country, the "Orders" table the order date and the

"Order_Details" table the sales.

. The chart object dialog is displayed. In the drop down lists

in the top left you can select the base type and the

corresponding sub type; three types with up to nine sub

types are available:

§ Pie: Pie, Circle.

§ Bar/Ribbon: Simple (also 3D), Multi-Row, Clustered (also
3D), Stacked (also 3D), 100% Stacked (also 3D).

§ Line/Symbol: Simple, Multi-Row, Stacked, 100% Stacked.

The properties are defined in the tabs. You can click

directly into the live preview (e.g. onto the title or axis

label) to quickly jump to the corresponding property.

Right chick onto the déferent regions (headling, s label
1] in the preview 1o quickly switch 1o the
coirriponding propery.

Coordnate label ted. LLChanObject AnsCoardeate’ s 3 suitable delaul for ot caser.

=y o [Conem |

Figure 6.2: Chart object dialog

combit List & Label

Creating a Pie Chart

Let's assume that you want to evaluate the sales per

country. The pie chart is the right choice for this. It lets you

read off the percentages immediately. Proceed as follows in

the List & Label Sample Application:

1. As the data source, select the "Customers > Orders >
Order_Details" table.

2. For the diagram type, choose Pie > Pie.

3. You should first specify the coordinate values for the data
source, i.e. the values that define the individual pie
segments, e.g. Customers.Country.

Data Souree Fre Segivient Disgearn | Olpret | Colors

Lot Cooidiutes

Figure 6.3: Definition of the data source in the pie chart object

4. Switch to the "Pie Segment" tab to specify the coordinate
values for size of the pie segment, i.e. the sales. Double-
click the "Coordinate Value" property.

Now select the aggregate function that you want for the
contents in the "Coordinate Value" dialog that follows. You
want to create a sales evaluation so choose the "Sum"
function.

o SamrrlCader_Detads UnaPace * Cadei_Detads Ouiatity]

A]

Figure 6.4: Wizard for creating the coordinate value formula

5. In the upper part of the dialog, you can specify the
contents by clicking the formula button to start the
formula wizard. In the Sample Application, the sales per
order value is not supplied directly as a field so you must
calculate it using the "Order_Details.Quantity *
Order_Details.UnitPrice" formula.

6. The "Label on Object" property is already set to "Yes" so
that a label with the percentage value is shown on the pie
segments. Define the value as "percent" without decimal
places by means of the "Format" property.

Dista Source | Pie Segment | Duagram | Obgect | Coloss

) 4 e
Brata
Cardinate Valae Sam{Order_Details ProductiDg Products. ProductiDAn...
H Apperar ancs
Esplation Cffuet Cond[LL ChartObject. Arclndex = 118 28) [%]
5 bl v Clject Jtes .
@ Fant Waial 12.0 o)
Format L33 456, L%~ LT T 456, L3%
Content LL.ChartObject. ArcPere
@ Filing Tramparent
Width e

Labeed om Oibsject

Sattn the Test 1o be diplayed onthe bty

Figure 6.5: Definition of the pie segment in the pie chart object

7. The "Explosion Offset" property lets you specify a
distance to the center for the pie segment. With the
"Arcindex" chart field, which numbers the pie segments
according to their size, you can even display the largest

pie segment with a greater offset. Example:

Cond (LL.ChartObject.Arcindex=1,50,10)

. On the "Diagram" tab, select the general diagram

options. Various properties are available including:

§ The degree of perspective, e.g. strong.

§ The color mode, e.qg. single color

Also see chapter Overview of Properties.

. On the "Object" tab, select the general layout options for

the entire chart object. Various properties are available for

this including:

§ Title, e.g. "Customer turnover per country"

§ Position of the title

§ Background including filling, border and shadow, e.g.
border = transparent

Also see chapter Overview of Properties.

10. On the "Colors" tab, you can specify the colors for the

display:

§ Assigned Colors: You can assign fixed colors to particular
axis values. If you click the "New" button, you can create
a new assignment e.g. Customers.Country = "Germany".

§ Unassigned Colors: Specifies the colors and color
sequences for the data rows that are not specified by the
"Assigned Colors".

11. The pie chart now looks like this:

Customer turnover per country

26.09%

Bweﬂenj X0

Figure 6.6: Pie chart

JavaScript:TL_18488.HHClick()
JavaScript:TL_18488.HHClick()

combit List & Label

Creating a Multi-Row Bar Chart

Let's assume that you want to evaluate the sales for various

countries over the years, scaled by country. A multi row bar

chart is perfect for this. You get a diagram in which you can

see the turnover achieved in the respective country for each

quarter. Proceed as follows in the List & Label Sample

Application:

1. As the data source, select the "Customers > Orders >
Order_Details" table.

2. Choose Bar/Ribbon > Multi-Row (3D) as the diagram type.

3. First specify the coordinate values for the category axis,
i.e. the values of the x-axis. In the Sample Application, the
order year is not supplied directly as a field so you must
calculate it using the "Year$(Orders.OrderDate" formula.
If you want to evaluate the data by quarter and year,
simply enter "Orders.OrderDate" as the coordinate value
and then choose an appropriate date format by means of
the "Coordinate Label > Format" property, e.g. "Q%q %y".
Then change the "Sort Coordinates" property to "No" so
that the values are not sorted by quarter.

4. Type "Year" as the text for the "Axis Label".

i} | Walus foms [y} | Diagraen | Obyest | Colois

] # ot
Year M Ovders DoderDiate)
Vs

Humibés of Sample Baconds 1a
Filter M Filten (&0 Dista]

Figure 6.7: Definition of the category axis

5. Now specify the coordinate values for the series axis, i.e.
the values of the y-axis. Select the "Customers.Country"
field via the formula wizard.

Drsgiam | Olyect | Colai

Category Auas) | Seiers Ao (yh | Vahes Ao ()

Wi Farrmiels 5i data woinge

L 54_ £+l
Bl rada
Coordinate Vabae
Saet Coordmite
HBlunhen of Sample Becordy
Filte
Forinid Start and End Vahisy
B Axis Label
=
B Cooondirate Label

Legend

Axii Laliel

Customers.Country
Vau

1

P Filnes (A0 Dista]

Vau

LL ChastDbsject Al oordingte

Right

Figure 6.8: Definition of the series axis

6. Now specify the coordinate values for the value axis (z-
axis), i.e. the height of the bars representing the turnover.
Double-click the "Coordinate Value" property.

Now select the aggregate function that you want for the
contents in the "Coordinate Value" dialog that follows. You
want to create a sales evaluation so choose the "Sum"

function.

[L] Coosdnate Vi =

Canbent

Dvedaw_Dretaiy Unitfrice * Ovae_Diptasly Grawtity

Agqregate bunction For the contenty

0 ol Cder_[etadi UnaPace * Cadei_[etad Oniaimtiny)

Ok

e

]

Figure 6.9: Wizard for creating the coordinate value formula
7. In the upper part of the dialog, you can specify the

contents by clicking the formula button to invoke the
formula wizard. In the Sample Application, the sales per

order value is not supplied directly as a field so you must
calculate it using the "Order_Details.Quantity *
Order_Details.UnitPrice" formula.

Category Asi s} | Seties A [y} | Value Asas {2} | Dasgeam | Obpren | Cobors

Ulge Dhngeain » Segamdieg A to enalis

o dinarte W aluss Sum{Ovder_Details UnitPrice * Order_Details. Juanti... :
LR 1) e | 1w b}

.......

Figure 6.10: Definition of the value axis

8. Various other properties are available on this tab

including the following layout options:

§ Maximum Value Automatic: You can limit the height of
the displayed area, e.g. to cater for "anomalies".

§ Presentation: The data can be presented in various ways:
cylinders, bars, pyramids, ribbons, octahedrons, cones

§ Thickness of the bars

§ Zebra mode for the background

Also see chapter Overview of Properties.

9. On the "Diagram" tab, select the general diagram

options. Various properties are available including:

§ The degree of perspective, e.g. strong.

§ Color Mode: Specifies which axis determines the color,
e.g. the y-axis values.

Also see chapter Overview of Properties.

JavaScript:TL_18489.HHClick()
JavaScript:TL_18489.HHClick()

Category Asm s | Series A {v) | Value Asas {2} | Dugram | Obgect | Coban
i) 4 e [@)
(= [

B Secondary &y Hia
H Apperar ance
Ahgrmera
[Backguovmd Codoe Tranaparent

Bhivanated

hattom to tep

Yer

Biotropec Ha

Frrpastove Strang

% &5 Rotabeon dngle]
L Baas Rotatssn Arngle 2

Color Mods
Sats the 3s deterrrararg the colar (8 apph:able)

Figure 6.11: Definition of the diagram options

10. On the "Object" tab, select the general layout options for
the entire diagram. Various properties are available for this
including:

§ Title, e.g. "Customer turnover per country"

§ Background including filling, border and shadow, e.g.
border = transparent

Also see chapter Overview of Properties.

11. On the "Colors" tab, you can specify the colors for the
display:
§ Assigned Colors: You can assign fixed colors to particular

axis values as a condition, e.g. Customers.Country =
"Germany".

§ Unassigned Colors: Specifies the colors and color

sequences for the data rows that are not specified by the
"Assigned Colors".

12. The multi-row bar chart now looks like this:
Customer turnover per country

TOO0 00
G000 00
« 5000.00
400000
£ 3000.00-
F 2000.00-
1000.00-

=

2010
2009
2008 Yeor

Figure 6.12: Multi row bar chart

JavaScript:TL_18489.HHClick()

combit List & Label

100% Stacked Bar Chart

The pie chart in the first example gave you an overview of

the percentages for the entire evaluation period. But in order

to be able to recognize trends, it would be good to see how

the percentages have changed during the course of the

evaluation period. The 100% stacked bar chart can be used

for precisely these types of applications. The respective

percentage of the length of the bars relates directly to the

turnover percentage of the respective country.

Proceed as follows in the List & Label Sample Application:

1. As the data source, select the "Customers > Orders >
Order_Details" table.

2. Choose Bar/Ribbon > 100% stacked as the diagram type.

3. First specify the coordinate values for the category axis,
i.e. the values of the x-axis. In the Sample Application, the
order year is not supplied directly as a field so you must
calculate it using the "Year$(Orders.OrderDate" formula.

4. Now specify the coordinate values for the series axis, i.e.
the values of the y-axis. Select the "Customers.Country"
field via the formula wizard.

5. Specify the coordinate values for the value axis (z-axis),
i.e. calculate the turnover with the "Order_Details.Quantity
* Order_Details.UnitPrice" formula.

6. On the "Diagram" tab, choose "Left to Right" for the
"Alignment" to create a horizontal diagram.

7. The multi-row bar chart now looks like this:

Customer turnover per country

Tumaver
I:I.I:ILI:I% ; m.Enm. i M.I;I_ﬂ"ﬁ 3 EI:I.EI:I% i Bn.l;lﬂ".ﬁ i 10000 %

1 uGarmany
= Whbexico
2008 = Sweden
= . LK

Figure 6.13: 100% Stacked bar chart

combit List & Label

Multi-Row Line Chart

A line diagram offers an alternative to a multi-row bar chart.
You can read off the values faster here.
Customer turnover per year
200000

17.500~

16.000

12500 -)

WG armany

10,000 . ~ mMexico

Sweden
[=uK

Turmawvear

7.500-+

5.000

2,500+ ———— g

(1Y
2008 2009 2010
b

Figure 6.14: Multi-row line chart

Proceed as follows in the List & Label Sample Application:

1. As the data source, select the "Customers > Orders >
Order_Details" table.

2. Choose Line/Symbol > Multi-Row as the diagram type.

3. First specify the coordinate values for the category axis,
i.e. the values of the x-axis. In the Sample Application, the
order year is not supplied directly as a field so you must
calculate it using the "Year$(Orders.OrderDate" formula.

4. Now specify the coordinate values for the series axis, i.e.
the values of the y-axis. Select the "Customers.Country"
field via the formula wizard.

5. Specify the coordinate values for the value axis (z-axis),
i.e. calculate the turnover with the "Order_Details.Quantity
* Order_Details.UnitPrice" formula.

combit List & Label

Using Series to Determine the Values

With three-axis diagrams, you can also determine the values
of the series axis (y-axis) by means of rows. This means that
you define the different rows (e.g. measured value/target
value/actual value) with a single data record and can show
them parallel e.g. in a bar chart.

As an example, we will create a diagram which shows the
currency percentages of the 3 economic areas. Data for
APAC, EMEA and NAFTA is supplied as rows.

Currency shares of the economic areas per year in percent

" [Econemic areas)
' I { mAPAC
IEMEA
I [SNAFTA [
1 |
. |
R I

YE‘ET

Pan:enr

Figure 6.15: Example of a diagram using rows

Proceed as follows in the List & Label Sample Application:

1. Select the "Sales" table as the data source.

2. Choose Bar/Ribbon > 100% stacked as the diagram type.

3. First specify the coordinate values for the category axis,
i.e. the values of the x-axis. Select the "Sales.Year" field
with the formula wizard. Remove the 2 decimal places
using the "Str$(Sales.Year,0,0)" formula.

4. Now specify the coordinate values for the series axis, i.e.
the values of the y-axis. Select the "Use rows as data
source" entry from the drop-down list above the
properties.

| Categary Ao (| Senes Ao (1 | Vaoe s (2} | Dungram [Ogect |

Wit 2 dlta douie =
(&) 4 e [®]
Bana

Eound Start and End Vabues Yeu

R Defindion APACEMEL HAFTA li
B Awis Lalizl
B Aas Lahel "Ecanomic sress”
B Copadinate Labed LL ChartObspect.domil aoa dinate

Legerd Right
Row Definitions

ek the properhies Foo the defferent daga rows,

Figure 6.16: Option for using rows to determine the value

This option changes the properties of the series axis and
displays a dialog for defining the rows when you click the
"Row Definitions" property. Create the individual rows

choosing "Sales.APAC", "Sales.EMEA" or "Sales.NAFTA" in

RGBS, 5L
[Labl sn Oibgest Ha
Presentation Clinder
Weikh ()
B A Labi
Coandeute Labsl "APALCT
Blaguun

Coordmate Vale
This formula determines the coordinate valae of the data

Belaree thee 1owws B0 the sequaed sades wsng the butbons o drag & diop.

&][conee
Figure 6.17: Row definitions dialog

combit List & Label

Special Fields With Diagrams

Various fields are available for diagrams including:

§ LL.ChartObject.Arcindex: returns the index of the current
pie segment. The largest pie segment has index 1, the
second largest has index 2 and so on.

This means, for example, that you can assign a greater
explosion offset to the largest pie segment:
Cond(LL.ChartObject.Arcindex=1,30,10)

§ LL.ChartObject.ArcPerc: returns the percentage share of the
current pie segment. This field is especially useful for
labeling the pie segment.

§ LL.ChartObject.ArcTotal: returns the absolute value of the
total data volume with pie charts.

§ LL.ChartObject.ArcTypelsOthers: returns True, if the current
pie segment is the "other" segment.

This means, for example, that you can assign a greater
explosion offset to the "other" pie segment:
Cond(LL.ChartObject.ArcTypelsOthers,30,10)

§ LL.ChartObject.ArcValue: returns the absolute value of the
current pie segment. This field is especially useful for
labeling the pie segment.

§ LL.ChartObject.AxisCoordinate: returns the coordinate
value and can be used for labeling the axes.

You will find more information about this in the chapter

Overview of Functions.

JavaScript:TL_18491.HHClick()

combit List & Label

Creating Gauges

Gauges are a good way of presenting actual values.

Let's assume that you want to output the current turnover in
relation to the target value. A gauge is the right choice for
this. It provides you with the value at a glance.

See also:
»Inserting a Gauge
» Specify Properties

JavaScript:RT_683.HHClick()
JavaScript:RT_683.HHClick()
JavaScript:RT_684.HHClick()
JavaScript:RT_684.HHClick()

combit List & Label

Inserting a Gauge

There are various ways of outputting gauges:

1. A gauge as an object. Select the "Gauge" in the "Objects"
toolbar and pull the object to the right size in the
workspace while holding down the left mouse button.

2. You can output gauges in a table cell. To do this, select
the "Gauge" entry by means of the context menu in the
tables object dialog. If you want to output the aggregated

footer line.

data, a good way of doing this

e —

] Tasie Connests - em 8

¥ pnder e - e Lot

Fpomutted Test

is to use a

e

Figure 6.18: Gauge object in a footer line

combit List & Label

Specify Properties

1.

2.

4.

Choose the type, form, shadow and pointer properties for

the gauge using the drop-down lists.
The "Value" property lets you determine the value that
the pointer is to display, e.g. the customer's turnover or

rating.

. You can also make use of various other layout options

including:

§ Appearance: Filling, pointer options, glass properties.

§ Lettering: Rotation angle, white space before and after
the scale range, tickmarks, scale labels, signal ranges,
text fields

§ Values: Minimum and maximum vales of the scale

Also see the chapter Overview of Properties.

Lt

[L1] Gauge Properies

Type:

Maodubes:

I;igure 6.19: Gauge properties
Indicate the optimal area, e.q., by specifying the color of
the signal range.

JavaScript:TL_18493.HHClick()

Figure 6.20: Gauge with colored signal ranges

To do this, set the "Signal Ranges" property to "Show" and
click the "..." button to open the dialog for defining the
regions. In this dialog, click the "New" button to create the
respective ranges with start and end values and assign the
colors that you want.

T IR N e
I
Eegiana: > E" §j =1 |.;_1_.-1
(] © e e
b=Td Start Color LL.Cobar Greem =}
10 =130 Ened Coloi LL.Cabai Green =a

Bl Lagount

Skart Walue 4
v

End Vabue
Ena value for the signal range

Figure 6.21: Signal range definition dialog

5. You can also define text areas in the same way, i.e. you
can output text to any position, as you wish.

Figure 6.22: Gauge with text area

To do this, set the "Labels" property to "Show" and click
the "..." button to open the dialog for defining the regions.
In this dialog, click the "New" button to create the
respective ranges with position, rotation, frame size,
background, font and formatting. You specify the position
in relation to the area of the gauge (measured from left to
right). For example, a vertical and horizontal position of
50% each positions the label precisely in the middle.

(] Tess Laoes g E ciel
T - — — 1
Eeqiana > EL| 8l tea ,_I'l.i
osre e e CTAE
{Covtenia) T
D Aprpenat annce
] Bashground Trampaien
| x
] Bl Font [ratal 36 0 2
Format Hene
Franse Sze Fi o
Fotaban "
Bl Lagout
Appeaance Conddaon Abssarys Shew
ST 5 1~
Hisrmeaital W
Wipitsal EL
Pagition
[hefines the podimon of the test area relatrve to the gauge sea, measured
from beft oo abave
¥ # Cangel

Figure 6.23: Text label definition dialog

combit List & Label

Creating a Crosstab

Crosstabs are used for evaluating and presenting data in
multiple dimensions. Crosstabs (or contingency tables) are
tables containing information about the frequency of the
occurrence of combinations of certain characteristics.
These frequencies are extended by their marginal totals
which form "contingencies." With a three-dimensional
crosstab, (three characteristics), the table includes an
additional column grouping.

For example, you can examine turnover trends per year and
region, evaluating sales according to quantities and
customers, and create marginal totals for quarters and
years.

A normal ("flat") table has the attribute names in the first
row and the occurrences of these attributes in all other rows.
A crosstab is different. The titles of both columns and rows
receive characteristic occurrences and, at the point of
intersection of the respective column and row, a value is
shown that depends on the characteristics specified for the

column and row in each case.

Customer turnover per year and quarter
Callahan Davolio Fuller King Leverling Peacock Suyama Total

ALFKI - 1342 -- 1208 1086 3636
ANATR - - - 89 800 514 - 1403
ANTON - 957 -— 2963 403 2157 --- 6480
ARCUT 899 2596 - - - 1704 480 2679
BERGS 1489 - 613 - 3429 5531

Total 2388 4895 613 3052 4832 5583 1556 22724
Figure 6.24: Example of a three-dimensional crosstab
For the schematic presentation of two-dimensional crosstabs,

the 3D multi-row bar chart is the best choice. You can find
more information about this in chapter Creating Charts.

See also:
» Creating a Crosstab Object

JavaScript:TL_18495.HHClick()
JavaScript:RT_686.HHClick()
JavaScript:RT_686.HHClick()

» Defining Groupings

» Defining Cell Properties

» The Layout Option and Wrapping Behavior
» Special Functions

JavaScript:RT_687.HHClick()
JavaScript:RT_687.HHClick()
JavaScript:RT_688.HHClick()
JavaScript:RT_688.HHClick()
JavaScript:RT_689.HHClick()
JavaScript:RT_689.HHClick()
JavaScript:RT_690.HHClick()
JavaScript:RT_690.HHClick()

combit List & Label

Creating a Crosstab Object

Let's assume that you want to examine the development of
turnover per year, quarter and country. Proceed as follows in
the List & Label Sample Application:

1. Crosstabs are elements in the report container. Therefore,
you add these objects in the "Report Structure" tool
window. If you have not yet added a report container to
the workspace, select "Report Container" in the "Objects"
toolbar and pull the object to the right size in the
workspace while holding down the left mouse button.

2. A selection dialog will appear for the chosen object type.
Choose the "Crosstab" object type.

3. In the following dialog, now select the data source. All
available tables are shown hierarchically, in other words,
under the tables you will find the related tables in each
case.

For our turnover analysis, choose the "Customers > Orders
> Order Details" table in the List & Label Sample
Application so that you have all three tables at your
disposal. The "Customers" table contains the country, the
"Orders" table the order date and the "Order Details" table
the turnover.

4. A wizard appears which will lead you through the 3
configuration dialogs for crosstabs.

combit List & Label

Defining Groupings

In the wizard's first dialog, or alternatively on the "Axis
Definition" tab, you first define the grouping for the rows and
columns, i.e. the characteristics.

1.

2.

In the "Rows" pane, click on the "Insert a row grouping"
button.

In the formula wizard, you now enter the field or the
expression for the row grouping e.g. Customers.Country.
You have now created a row grouping and the data will be
grouped by this characteristic.

. In the "Columns" pane, click on the “Insert a column

grouping" button.

. In the formula wizard, you now enter the field or the

expression for the column grouping.

. Since you first want to group the data by year, you must

enter an expression here that returns the year of the order
date. You have the Year() function in the formula wizard at
your disposal; i.e. you select this function from the list and
insert the order date as the parameter by double-clicking.

The formula looks like this: Year(Orders.OrderDate).

. Since we also want to examine the data at another level,

insert an additional column grouping via the "Insert a
column grouping" button.

. Now enter an expression to return the quarter of the

order date. You can use the Quarter() function in the
formula wizard for this. The formula then looks like this:
Quarter(Orders.OrderDate).

Note: You can change the order of the groupings with
the arrow button. The column at the bottom is the inner

grouping.

To swap lines and rows (Pivot function) use the button on
the lower right on the "Axis Definition" tab. This button is
only available in the object dialog, not in the wizard.

¥alue of the result cells:

SamiOrder_Detais, Quantity™Order_Details. UnitPrice) 4

=
™,
L

| o | Cancel

Figure 6.25:Swap all rows and lines

8. You have now created the groupings and you can go on to
define the value for the intersection of the respective
columns and rows. Click on the "Edit group result formula"
button located under "Value of the result cells".

9. Now select the aggregate function that you want for the
contents in the "Cell Contents" dialog that appears. You
want to create a sales evaluation so choose the "Sum"
function. In the upper part of the dialog, you can specify
the contents by clicking the formula button to start the

formula wizard.
[L] Coosdnate Vi]

Cantent

her of Dhotenct Vaduey

Biriih

]

Figure 6.26: Formula wizard for defining the cell content

10. In the Sample Application, the sales per order value is
not supplied directly as a field so you must calculate it
using the "Order_Details.Quantity *
Order_Details.UnitPrice" formula.

Heading
2008

Total

Z o] ™

Headin Germany 0.00 0.00| 0.00

9 Total |0.00] 0.00| 0.00
s e o o e Pt b | G T E
g e e T I —————
B e s Imhdt.m.t“n. .
T] ' Gty Cumod i St et B
B S b | et [t

Figure 6.27: Definition of the axes of a three-dimensional crosstab

combit List & Label

Defining Cell Properties

In the wizard's second dialog or, alternatively, on the "Cell
Definition" tab, you edit the properties of the different cells.
You can select the cells directly in the drawing in the upper
pane of the dialog and then edit their properties. To select
multiple cells, hold down the CtrL key or you can draw a
border around the cells with the mouse.

1. Assuming that you want to prefix the number of the
quarter with a "Q" as the title of a column. Select the
respective column title and then double-click on the
"Displayed Contents" property.
] Crontae = ==

~z
Ay, Definition .-l.':i!.l.'.lﬂ.F-.':r;:-:.. Propertes
Haadng
T Total
04 |Total
[Toermany|0. 00 [0.00]0.00
Haad =
[Total[0.00 [5.00]0.09
B 8 19 | [Edit the properties of FT——
3 e Wiz can sebeet by sl
B Dais Cirll e by masiing e DT Is
Dizplirped Conterts Chreders, CircbeeDat sostch above snd set th
ot LY peepenie
Bl Appearase s
g ckgromung i

B Font Jrial 190 pg

oK " Cancel

Figure 6.28: Cell definition for the crosstab

2. With this property, you can now specify the text that is to

be displayed in this cell (independent of the value that you
have defined for this column grouping).

Now define either a suitable formula, e.g. "Q " +

Str$(Quarter(Orders.OrderDate)) in the formula wizard, or
use the "Format" property. Then remove the "Quarter$()"
here, i.e. only the date field remains in the field, and
format the value by means of the property.

To do this, click the "Formatting" property, choose "Date"
as the formatting type, and finally select the "User-
defined" entry from the drop-down list. At the end of the
list you will find an example for formatting a quarter plus
the number of the year. Since we don't need the number
of the year, shorten the formula's string to "Q%q".

ii_! Farmat ﬂ
hin Feemat fuser=defied) -
Humber
Cumency g
Diane
v Sl Femn Sy ST ML

. Sl e 2 S 45072010
[rage and Teie i S ey ST
Percentage Sl el i by [T]
Angle ed-Termi-Tay 5-1-1014
[rate- Tane Defference el2d-Tellm-Tay #5-07-1h14

e Yo Ty STHLO
Sl el 2 ey #5497 ML
S Med Tew PEETrL I
el Tl del Ty TS e
erm-Ted -Tay 1-5-2019
Tolbm- Yol 2d- ey #1-05-1M19
e o ed M5
e Slim 22 d M19AT.05
ey S e NS

o Sl Bon el 2 WA
Har-om-Yed H1A-7-5

Preview
02
| O | Cancel

Figure 6.29: Formatting for date values

. This cell is now formatted and you can go on to format all
other cells in the same way. Various properties are
available including:

§ Rotation of the content in increments of 90°

§ Background

§ Frame

§ Font

§ Vertical and horizontal alignment

§ Maximum width, minimum width and minimum height
Also see chapter Overview of Properties.

JavaScript:TL_18496.HHClick()

combit List & Label

The Layout Option and Wrapping
Behavior

In the wizard's third dialog or, alternatively, on the
"Properties" tab, you edit the layout properties and specify
the wrapping behavior.

Various layout properties are available including:

§ Background

§ Default frame

§ Minimum size (%) and minimum height

In addition, as crosstabs are often wider and higher than the
specified page format, you can also specify the wrapping
behavior for columns and rows. List & Label creates as many
pages (shadow pages) as necessary. The row labels are
repeated on all pages as standard while the column labels
are not repeated.

Various wrapping properties are available including:

§ Repeat Labels: Specifies whether the labels of columns or
rows are to be printed again in the case of a page break.

§ Break Level: Specifies the optimum break level, e.g. "0".
This corresponds to the lowest group, i.e. the quarter.

§ Column > Page Break on Shadow Pages: If the cross
table is too wide, the wrapped parts are printed on
shadow pages. A shadow page does not count as a "real"
page and therefore does not have a page number. The
default setting specifies that the wrapped parts are to be
output below the table.

Also see chapter Overview of Properties.

JavaScript:TL_18497.HHClick()

Heading
2008
Q4 |Total

Total

0.00|0.00
0.00| 0.00

[k thet coestats area poogesties have.
et W chisiie vl Liy R i

| oot the miugpang bahiesi of the
crautsh.

igure 6.30: Crosstab properties

combit List & Label

Special Functions

Various additional functions are available in crosstabs

including:

§ Crosstab.Value() returns the content of the cell (as a value).

§ Crosstab.Cells.Avg() returns the average value of the
volume of data.

§ Crosstab.Col$() or Crosstab.Row$() returns the description
of the column or the row for the current cell.
With this, you can, for example, assign a particular color to
the background of a column or row. The following example
sets the background color to orange for all cells in a row
where the cell descriptor is "Germany":
Cond(Crosstab.Row$()="Germany",LL.Color.Orange,LL.Color.

Customer turnover per year and quarter

2008 xam 2010 Tolsd

a3 4 ol FF) FE] F] o Q2
Gaimary 1,086 1,208 851 441 E°F 5
Mexico 492 3,038 2,562 1,277 514 TRER
Swedan 2,102 3,429 E53
Uk 440 1,352 2,143 1,704 EE7d
Tedal 210 ae 4781 3038 S 4183 851 100e 22T

Figure 6.31: Coloring a particular row

§ Crosstab.Cells.Max() or Crosstab.Cells.Min() returns the
largest or smallest value in the entire crosstab. With this,
you can, for example, emphasize the largest or smallest
value of the volume of data or perform calculations. The
following example sets the background color of the cell
with the largest value to green:
Cond(Crosstab.Value=Crosstab.Cells.Max(),LL.Color.Green,
Cond(Crosstab.Row$()="Germany",LL.Color.Orange,LL.Color.

Customer turnover per year and quarter

2008 009 L Total

a3 04 ot az o3 04 Qi o2
Garmarny 1,086 1,208 B51 91 3BE
Mexnco 493 3.038 2.563 1,277 Sl4 a3
Sweden 2,102 3,429 5531
UK 480 1,352 2,143 1,704 5T
Tofal 2102 72 4TE = LTl] 4189 851 1006 273

Figure 6.32: Coloring a particular cell

§ Crosstab.Col() or Crosstab.Row() returns the index of the
column or the row for the current cell. Here, for example,
you can set the background color of alternate rows
thereby producing a zebra pattern. Example:
Cond(Odd(Crosstab.Row()),LL.Color.LightGray,LL.Color.White

Customer turnover per year and quarter
2008 2008 210

o3 o4 an o2 o3 a4 =]} o2 o

Girimary 1,085 1,208 E51 491 EE
Mexico 4652 3,038 2,562 1,277 514 7E83
Swedan 2,102 3,429 sE31
UK 450 1,352 2,143 1,704 EETR
Total 2102 ar2 4781 3038 579 4189 851 1006 2279

Figure 6.33: Creating a zebra pattern

§ Join$() returns a collection of strings, separated by a
particular character. For example, you can output the
individual turnover amounts in addition to the total
turnover. Example:

Fstr$(Sum(Order _Details.Quantity*Order_Details.UnitPrice),"
HH# SR HEHER) + """+
Join$(Fstr$(Sum(Order_Details.Quantity*Order_Details.UnitPi
HH S HEHR))H"]"

Customer turnover per year and quarter

2008 03 kil
- Tolsl
o4 a3 o T o
2 'n;u"z:ll | ';.T::h i it
- 2 1 : 17 = - P ™
Lo 39 Bg; 487) 1931 118 480 118 |]‘_':"_',_“ X I::::."ih B

2,214 Lo 1,743 2,862)

1,382 2,143 o
a0 foe; £91 pram aee o o .
[0; 480] @99 1083 1,500; 7.000 5 AT =

LEET] 2,147

Figure 6.34: Display detailed information
§ You can use Total() for calculations across all cells.
Otherwise, calculations are always made across all values

that affect the respective cell.
Also see chapter Overview of Functions.

JavaScript:TL_18499.HHClick()

combit List & Label

Creating Statistical Reports With
Footers

When you enable the "Data Lines.Suppress" object property
in tables, all data lines are completely suppressed. This
option is particularly useful in combination with the "Force
Sums" option. The latter option specifies that totals are also
calculated when a data line is not printed. By combining both
options, you can output footer lines with totals and produce
interesting statistics in this way.

Let's assume that you want to output the turnover per
country:

Customer turnover

Mexico $172.80
Sweden $380.00
Denmark 140,00
LISA $616.00
Ihaly $320.25

Figure 6.35: Creating statistical reports with footers

Proceed as follows in the List & Label Sample Application:

1. Create a new element in the report container and choose
"Table" as the object type.

2. In the following dialog, now select the data source. All
available tables are shown hierarchically, in other words,
under the tables you will find the relational tables in each
case.

To evaluate sales per country, for example, choose the
"Orders > Order Details" table so that you have both
tables at your disposal. The "Customers" table has a 1:1
relationship with the "Orders" table so you don't need to
select it. The turnover is held in the "Order_Details" table.

Repart Aructure]
1 | X &

& 70 Table: Duders

Taksde: Oréler Dytashs [Ordders 04t Daesali]

Reporkt Sorec

Figure 6.36: Hierarchical tables for statistical reports

3. Create a data line with the "OrderID" field in the
"Orders.Order_Details" table. Although the data line is not
output (it is suppressed), List & Label still needs a field so
that the table can be printed at all.

4. Define the actual statistic as a footer line, i.e. with the
country name in the first column, and total the turnover in
the second column. Now calculate the total again with the
"Sum(Order_Details.Quantity * Order_Details.UnitPrice)"
formula.

15 - e Do, [Fooel e vt Dnni]]

Canca

Figure 6.37: Creating footer lines for a statistical report

5. In the "Orders" table, create a data line with the
"Country" field from the linked table "Customers".
Although the data line is not output (it is suppressed), List
& Label still needs a field so that the table can be printed
at all.

6. Define the grand total across all countries as a footer line,
i.e. with "Total" in the first column, and total the turnover
again in the second column.

7. Now select the "Orders" table in the "Report Structure"

tool window and set the "Data Lines.Suppress" property to
"YeS".

Finally, also select the "Orders" table and set the "Data
Lines.Suppress" property to "Yes" here as well.

Bl Line Oyptions

El Diata Limees
Force Sums es
Keep Rows Together Yes
T
Bl Zebea Pattern Pattern/Block Color

[Faater Lnes
B Group Foober Lines
[l Group Header Lines

Figure 6.38: Suppressed data lines for statistics

combit List & Label

Drilldown Reports (Increase Detail

Level)

Navigation in hierarchical data is known as drilling down.
Drilling down makes it possible to "zoom in" to examine the
data at different levels of detail. Different print templates are
linked to each other to achieve this. This property is only
available with hierarchical tables.

agency

Pas Cargoirerill ooy’ i et imy Amdits i |
e - [rimr. s .
wcbors s chst ®
[T——— Opurn v
w " - - . i Opmmrewph [
..... s
- s . -
Ceabiborn st sl L] AP
- PR
- W—— MCHIRE
" e Orders |
wru
Yon Drtw mie e
e @ uam mm wea
L Lt - g T D sty Fradisciiimms
ET W Rt B mu
g . M Gl ven e
o 3 e e
- T " T
o4 00 e
et iy Erebrd®emy i
R Lamw LS o R Ll L L J:.'pl'..:
e
Eo... -
™ REssbeds 00000000000 Eee LR o
o " t2d 4
e
2 - e e
e P $r Pebcih -
(o - [Ty o
nx - e Am 8
- w
s oz wm Ay
. Grieets Sl Gty Bebidiies
T ' Wiy by e
13 = 2 nm
T 11 08 23 2 "
. Cramst e T -
T=Nin) £} e ——— A
s] O il ime
T
TR
e
P — v

Figure 6.39: Examp-l_e of a report with an open drilldown

report

These reports make it possible for anyone to find the
information they are looking for quickly, even with very large
and complex data inventories.

Only one level is printed to start with (e.g. customers). A new

detail report opens (e.g. orders) when you click on a

customer.

This drilldown report can be opened in the context menu

either in the same window (navigation via the green arrow

button in the preview window), or in a new foreground or
background tab.

The drilldown function is only available in the preview. You

can export any drilldown report to another format from the

preview, e.g. PDF.

Drilldown reports can be embedded in the preview file to

allow them to be sent or saved as a complete unit. You will

find the respective option "Embed Drilldown Reports" in the
project properties.

A drilldown link relates either to a single field or an entire

table row. A whole series of links can be associated with each

of these elements, e.q., to present the data in different ways.

Proceed as follows to create a drilldown report:

1. In the "Objects" toolbar, choose the "Report Container"
object type. In the workspace, hold down the left mouse
button and pull the object to the required size. A selection
dialog will appear for the chosen object type. Choose the
"Table" object type.

2. In the following dialog, now select the data source. All
available tables are shown hierarchically, in other words,
under the tables you will find the related tables in each
case.

In order to be able to open a sub-report in drilldown mode,
you must select a table here that also has a sub-table! In
the Sample Application, select the "Customers" table, for
example, as it has "Orders" as a sub-table.

3. Now define the columns of the table with the wizard, i.e.
CustomerlD, CompanyName, ContactName, City.

4. In the object dialog for the table, now define an additional

column for the drilldown link. Enter the text "Show..." as
the content.
5. Now open the dialog for creating the drilldown link by
means of the "Drilldown Links" column property.

AAPTE, - Laiomay

e Lo - Dwts Line Foutas ke G Hamdes

................

Figure 6.40: Data line with additional column for a drilldown link

6. Create a new drilldown link with the "Insert new link"
button in the dialog that appears.

L= F > B
I o

Figure 6.41: Dialogs for defining the linked drilldown report

7. A dialog appears where you can create the print template
for the sub-report. Select the "Create a new project"” option
and enter the name for the print template.

8. A second instance of the Designer opens for you to create
the print template. Proceed as usual to create this sub-

report. l.e. you create a report container, choose the
"Table" object type, choose "Orders" as the data source
and define the columns of the orders table that are to be
shown in the report.

9. Once you have completed the report, close this second
Designer instance.

10. Back in the "Drilldown Links" dialog, you now define the
"Menu Text" property for this link. If you have more than
one link, its text will be shown in a context menu. The text
will also be used as the title for a tab if multiple drilldown
reports are shown in a preview window.

11. You have now finished the drilldown report and you can
display it in the preview.

combit List & Label

Multi-Column Reports

With complex projects containing many different diagrams, it
may be a good idea to present them over several columns.

et L Ly

Q: &
" i d
(it

F}g(jre 6.42: Multi-column report container
To make this possible, the "Column Count" property is
provided in the report container and also in tables. You can

define up to five columns whereby the report container and

the included tables can have different column count values.
Creation is easy:

1. Select the "Report Container" object in the "Report
Structure" tool window.
2. Set the "Column Count" object property to "2".
3. If you select individual objects, you will then have various
properties for controlling column breaks at your disposal:
§ Column Break Before: A column break will be performed
before the object is output.
§ Column Break Condition: If the result is "True" when a
data line is output in a multi-column table, a column
break will be triggered. Tip: the "LL.CurrentTableColumn"

field returns the index of the current column.
(Page) Break Before: A page break is performed before the
object is output. If you have multiple multi-column objects, a
page break is triggered automatically after an object if the
column counts for the objects are different (e.g. 2-column
table followed by a 3-column table) and if there would be
insufficient room for the object that follows.

combit List & Label

Advanced Functions

In this chapter, we will concern ourselves with topics that
you will probably only use very rarely. Nevertheless, the
possibilities offered by linking objects and by sum and user-
defined variables provide you with an important and useful
tool for producing sophisticated printed outputs.

See also:

» Linking Objects

» Working With Sum Variables

» Working With User Variables

» Project Includes

» Displaying HTML Pages
»Adding OLE Documents

» Adding Form Template Objects
» Importing Objects

JavaScript:RT_695.HHClick()
JavaScript:RT_695.HHClick()
JavaScript:RT_62.HHClick()
JavaScript:RT_62.HHClick()
JavaScript:RT_67.HHClick()
JavaScript:RT_67.HHClick()
JavaScript:RT_700.HHClick()
JavaScript:RT_700.HHClick()
JavaScript:RT_701.HHClick()
JavaScript:RT_701.HHClick()
JavaScript:RT_702.HHClick()
JavaScript:RT_702.HHClick()
JavaScript:RT_703.HHClick()
JavaScript:RT_703.HHClick()
JavaScript:RT_704.HHClick()
JavaScript:RT_704.HHClick()

combit List & Label

Linking Objects

By interlinking objects, you can influence the order of
printing causing some objects to be printed after others
thereby overlaying them in the event that they overlap
("sequential (temporal) linking"). Another possibility is to
cause the size and position of some objects to be adjusted
automatically to correspond to changes to other objects
("spatial linking"). Designer differentiates between three
kinds of interlinking:

§ Sequential

§ Individual size and position adaptation

§ At end, keep size

When linking objects, there is a hierarchy: the main object
and the attached (interlinked) object.

See also:

» Object List

» Creating Interlinks

» Sequential Interlinking

» The Individual Size and Position Adaptations
» The "at end, keep size" Interlink

JavaScript:RT_696.HHClick()
JavaScript:RT_696.HHClick()
JavaScript:RT_697.HHClick()
JavaScript:RT_697.HHClick()
JavaScript:RT_698.HHClick()
JavaScript:RT_698.HHClick()
JavaScript:RT_699.HHClick()
JavaScript:RT_699.HHClick()
JavaScript:RT_176.HHClick()
JavaScript:RT_176.HHClick()

combit List & Label

Object List

The object list defines the implicit print order of the objects,
thus they are automatically sequentially interlinked with one
another. Unlinked objects are printed first, followed by the
tables and finally the objects that are linked in any other
way.

Project
a company kogo
| sddrriien
\ iFrvoice daka
- Ausrrry-ractanoie For positioning th Bem ke
s m e b
\ payment berme
L Eage court

!l:

Ohjexts

Figure 7.1: Object list in the tool window

Example: In the above object list, the objects "company
logo", "addressee", "invoice data", "dummy rectangle" and
"page count" are printed first. The table "item list" comes
next followed by the interlinked object "payment terms".

This means that if an object is to be printed over another
object, it must be printed after this object. Sequential
interlinking is therefore always necessary if an object that
is not interlinked is to be printed after the interlinked
objects, if an object is to be printed over a report container
or if the contents are only available after another object
has been printed.

combit List & Label

Creating Interlinks

You create interlinks or edit existing ones in the "Object List"
dialog. This dialog opens up via the Object > Object List
(Num followed by * on the number pad) or by double-clicking

the "Objects" tool window.
[i1] Ot List —ie—

Objecty: F X

Background [This teniplate is not an pring template and o only incladed by othas pring templates!)

O Canced

Figure 7.2: Defining interlinks in the ainject list

You can interlink the selected object with other objects via
the "Link with..." button. The link is shown in the object list in
the form of a tree structure in which you can see the defined
interlinks. You can also interlink several objects with one
object.

When you select the interlinked object, you can choose from
the three different kinds of interlink in the lower part of the
dialog.

The "Detach link" button lets you remove an existing

interlink. The interlinked object will then be shown in the
object list as an independent object.

combit List & Label

Sequential Interlinking

Sequential, or temporal interlinking makes sense if the
content of the interlinked object can only be filled once the
main object has been printed or if an object is to be printed

over another object.

Example 1: You are printing an article list and want to
output the number range of the articles on this page.

Amicle from EXFSADT o EXFHEDN

article no description

Southem Afnca Explarer 20-day tour from Cape Town to Viciona Falls
exachuding fight
I"" Wy rough the Okavango Delta in dug-cut

afan; Travel th
X chmb sand dunes in Mamibia

e -“"" o victoria Falls

EXPSAD

wizit Etosha Mational P2

Canoes
ark

price

£1.500.00

Figure 7.3: Range of article numbers at the top of the list

But the "Article To" object only knows the last article number
on the page once the table has been printed. Therefore, the
"Article To" text object must be interlinked sequentially with

the "Article List" table.

Select the "Article To" object in the object dialog and interlink

it with the "Article List" table. The "Sequential” interlink type

is already selected.

You must also interlink the table with the "Article From"
object. Sequential interlinking is sufficient here as you don't
want to change the size or position of the object.

g

Figure 7.4: Object list with sequential interlinking
Example 2: You want to output "Copy" over a table.

You therefore create a text object containing "Copy".
Because objects that are not interlinked are printed first and
tables are printed last, the text object must be linked
sequentially with the table. Otherwise it would be printed
before the table and therefore under the object.

Quanbty No Descrphbion UnitFrice Tutal
Soughem Alnca Explorer 20-day $150000 §1,50000
Victo s

0 Acoommoc ation
= §70300 §7EIO0

Figure 7.5:';I'éth object over the list

1.00 TRVERADT Fhight

Select the text object in the object dialog and interlink it with
the "Article List" table. The "Sequential" interlink type is
already selected.

Dihjecti]
Propect

g

Figu1re 7.6: Object list with sequential interlinking

combit List & Label

The Individual Size and Position
Adaptations

Individual size and position adaptations are spatial interlinks,
i.e. the size and position of the main object determines the
size and position of the linked object. This automatically
causes sequential interlinking as well.

If the size or position of the main object changes because the

variables that it contains take up less room as the object

provides, the linked objects adjust their size automatically to
these changes.

Two kinds of interlinking are therefore available:

§ Position adaptation: If the position of a main object
changes, the position of the linked object changes too. You
have three options here:

§ Relative to begin: The interlinked object moves in
relation to the upper left corner of the parent object.

§ Relative to end: The interlinked object moves in relation
to the lower right corner of the parent object.

§ To end: The upper edge of the interlinked object starts at
the end of the main object, irrespective of its original
position. This causes an implicit size change on the first
page on which the child object is printed.

§ Size adaptation: If the size of a main object changes, the
position of the linked object changes too. You have two
options here:

§ Proportional: The size of the linked object changes
exactly like that of the parent object. E.g. if the main
object becomes 10 mm shorter, the interlinked object will
also become 10 mm shorter.

§ Inverse: The size of the interlinked object is adjusted

inversely to the size of the main object. E.qg. if the main
object becomes 10 mm shorter, the interlinked object will
become 10 mm longer.

You can specify whether the interlinking is to be horizontal

and/or vertical in each case:

§ Vertical interlinking: The linked object adjusts its position or
size to changes in the vertical position or height of the
main object.

§ Horizontal interlinking: The linked object adjusts its position
or size to changes in the horizontal position or width of the
main object.

Example of vertical, relative to end position
adjustment: You print an invoice and want to output a
closing text after the table.

You therefore create a text object and position it below the
table.

SlLIMNSHIME
agency
Lightesight Tan Lid

Doar Mr, John Ingn

10 St ciren]

Metal Ciy BY 17345

Invoice
C NS0

Diale
Mumbar ATHI0E 5

Qubnsty Ha Degctiphon UniPrice Totsl
1.00 EXPEAD Egutheam Africa Explor i, 20-day $1, 500 00 §1,500.00
tour from Cape Town (0 Victoria
Falls e chudirsg Fight
Supiolal 0
18% VAT .00

Tolal §0.00

Figure 7.7: Text object below the list

Select the text object in the object dialog and interlink it with
the table. Choose "Individual size and position adaptation" as
the type of interlink. On the "Vertical Interlink" tab, enable
the "Vertical" check box for the position adaptation and
choose the "Relative to end" option so that the interlinked
text object adjusts its size depending on the position of the
lower right corner of the table.

design time print time

! parent object smaller than
ptengk designed

object moves up

child ohject
child ohject

Figure 7.8: Diagram of vertical, relative to end position
adjustment

If the table becomes smaller, the text object moves upwards
proportionally. It doesn't matter where the table ends, the
text object will always be output after the table in the
specified size.

Quantly Mo Desriphon UritPrica Tiodal
200 TRPRY SO 3 $1.50000 $3,000.00
i

i
500 Ex PMALDE W 120000 §1,80000

100 TRVALIEN] $F55.00 95500

Sublots 3425500
10% VAT 300845

Figure 7.9: Closing text below the list

Example of vertical, relative to end position
adjustment and vertical inverse size adjustment: On a
multi-page invoice, the item table is to start on the first page
below the address. On following pages it is to start at the
upper page margin.

1. Create an invisible frame by inserting a rectangular

object.

2. The upper edge of the object is positioned precisely
where the invoice table is to begin on the following pages.
The lower edge is positioned precisely where the invoice
table is to begin on the first page.

3. Assign the "Page()=1" appearance condition to the
rectangle so that it is only printed on the first page.

4. Create a table. This begins directly below the rectangular

hirual 0 B S5 U B 4
Ea SUNSHINE
Lightweight T LId
Chpar Wi, John iron
10 Stealastroal
MWatal City XY 17 M5
Invoice
Date HEI0
Mumbar s
Ry Mo DwescripSion UniEPrice Tolal
1.00 EXPEAD Southéam Africa Explorer 30-dary $1.50000 $1,50000
1our frain Cape Town o Viclids
Fally @ cluding fight
Butilotal 0.0
10% VAT m
Tofal ¥

e thank you for ¥ oor Soder

Figure 7.10: Invisible rectangular object above the table

5. Now interlink the table with the rectangle (main object)
and select "Individual size and position adaptation" as the
type of interlink.

Cihyecti
Propect
A [Test]
A [Test]
i |Drawng]
|Re ezt Coinkaineer]
oo A Dunemy sectangde for posmioning congamns

Dbgecits

Figure 7.11: Spatial interlinks in the object list

On the "Vertical Interlink" tab, choose the position option
"Relative to end" and the size option "Inverse".

Itelend Type | Werndal betealnl | Hoiseatal Interhak

Postion Adaptatsen Sare it

4| Wernial Felatree 19 hegin o+ Vertizal

& Eelatree to snd @ Jnverse
Toened

Figure 7.12: Interlink options in the object list

design tirme print tirme

i parent object sma_ller than
parent object designed

objed rmoves
up and
increases sige

child object il bl

Figure 7.13: Diagram: Vertical, relative to end position adaptation and vertical
inverse size adaptation

The table now changes its position based on the lower
right corner of the rectangle (main object) and adjusts its
height inversely in proportion.

The Page()=1 appearance condition prevents the
rectangle from being printed on the second page.
Therefore, it "shrinks" by 80 mm on the second page, and
the table moves upwards proportionally and becomes

80 mm larger.

agency

il

Figure 7.14: Position and size adaptation on the second page

Example: position adaptation, vertical to end: The
interlinked object changes its position based on the main
object. The size is also adjusted implicitly because the upper
edge of the interlinked object changes based on the main
object but the position of the main object does not change.
The interlinked object must overlap the main object. The
main object must be larger than the interlinked object. If the
main object becomes smaller, the interlinked object only
changes its position from above and increases its size. If the
main object becomes larger, the linked object shrinks (the
main object must be in the foreground).

design time print time

parent object b smaller than
parent oojec designed

object starts at
end of parent
and inaeases

child ohje ct size

Buydde pan o

child ohject

Figure 7.15: Diagram: Position adaptation vertical, to end

Example: position adaptation, vertical, relative to
begin: The interlinked object changes its position based on
the upper left corner of the main object. This type of interlink

is the exact opposite of "vertical, relative to end". Example:
The main object moves upwards due to the "Alignment
bottom = True" setting in the Designer and the interlinked
object follows this position adaptation in an upwards
direction.

design time print tirme
taller than
designed &
parent objed parent objed bottom aligned
object moves up
child olyjed
child ohject

Figure 7.16: Diagram: Position adaptation, vertical, relative to
begin

combit List & Label

The "at end, keep size" Interlink

This kind of interlink is similar to position adaptation. But
here, the main object's available space is taken into
consideration and the interlinked object always keeps its
size. In other words, the object is always output within the
boundary of the main object. If the available space is not
sufficient, a page break will be triggered.

The interlinked object must overlap the main object in the
Designer. It is crucial that the main object is always larger
than the interlinked object. The interlinked object always
tries to occupy the space remaining from the original size of
the main object and, if the interlinked object is larger, this
leads to an infinite loop because there is never enough

space.
design time print time
arent object : analler than
e ! parent object desigred

object starts at
end of parent,

£ child object sizeis kept

T !] constant

ﬁ child ohjedt

(=

Figure 7.17: Function of the "At end, keep size" type of
interlink

Example: Assuming you want to output a scanned signature
after a text. The size of the signature must not change and it
must be output within the border of the text object.

You therefore create a picture object and position it directly
on the formatted text object. The height of the picture object
is less than that of the table object.

Select the picture object in the object dialog and interlink it
with the formatted text object. Choose "At end, keep size" as
the type of interlink.

Irrespective of where the text ends, the picture object will
always be output after the text in the specified size. If there
is no longer sufficient space after the text, the picture object
will be output on the next page so that the size can be kept.

Craar Mr. Iron,

thank you for choozing Sunahine Agency For your trip, We ara happy to send you yvour traval
docurments today.

Emcloped you will find your flight tickets, & traval guide and the route descripticn with the
rental car to the hotel. Your personal travel atbendant Michaela Soleil will expect you on
location,

i {i " 1 sbout the booking, you can contact us by infoi@sunshine-
7[o fl . i7s:msoe01n.
b, / L"C_‘,‘_t.'-\-l.-

113 g e ngar

Wour travel team from Sunshine Agency

Figure 7.18: The interlinked picture object overlaps the main
object in the Designer

Dear Mr. Srmith,

thark you for choosing Sunshine Agency far your trip. We are happy to send you your travel
docurnants bodey.

Enclozed you will fird your flight tickets, atravel guide snd the route description w ith the
rantal car tothe hotel. Vouw personal travel attendart Michaala Solell will axpect you on
locaticn,

I you have any questions sbout the booking, you can contadt us by ln‘o@ surshire
sgency. de or by phone 07331 90 60 10

Sunnl greeking §

our travel bearn froen Sunching Agency

A. i
Figure 7.19: The signature is output at the end without
changing the size

In this way you can also position multiple objects after each
other (e.qg. charts, pictures etc.).The "Base object" of the
chain is the first object in the interlink hierarchy with an
active page break.

combit List & Label

Working With Sum Variables

Sum variables offer another way of creating totals and
counters and work fundamentally across tables.

They are therefore a good choice whenever you want to
create totals across different table hierarchies.

In all other cases, we recommend the use of the aggregate
functions Sum(), Count() and Countlf() for totals and
counters. Aggregate functions are always table-specific. You
can even produce statistical analyses directly with aggregate
functions e.g. Median(), Variance(), StdDeviation(). You will
find a list of all functions in the "Aggregate functions"
function category in the formula wizard.

Sum variables can be used to create totals over data sets,
e.g. to add up the "ltem.UnitPrice" fields in a table in order to
calculate the total price. Such totals are permitted for all
numeric variables or for expressions that return a numeric
value as the result.

But sum variables are also a convenient way of defining a
counter which can be updated accordingly for each data
record that is printed.

You can create a total across all data sets of a printed page

(page totals) or across the entire project (grand totals).
[i] et Surm Variables i o

welable sum vanables: >

Figure 7.20: Totaling with sum variables.

Proceed as follows to define the variables:

1. Choose Project > Sum Variables or the "Edit sum
variables" button in the formula wizard.

2. In the dialog that follows, create a new sum variable via
the "Insert a new variable" button.

3. An input dialog appears where you can enter a
description of the new variable. Give the variable a
meaningful name, the "@" character will be added
automatically as a prefix.

4. Click the "Edit" button to open the formula wizard and
assign a field or an expression to the new sum variable.
For example, select the numeric field "ltem.UnitPrice" if
you want to add up the "ltem.UnitPrice" column.

You can, however, also perform aggregations with complex
expressions provided that the result is a numeric value.
For instance, you can add up the gross price from the net
price and the VAT. Enter the following expression, for
example, in the "Sums over" field:

ltem.UnitPrice+ ltem.UnitPrice* (ltem.VAT/100)

5. If you don't want to add up any values but merely want to
create a counter or a numeration, the definition is simple:
In the "Sums over" field, simply enter the value that is to
be added to the existing counter.

The simplest case is a consecutive number that is
increased by 1 for each data record. Just enter the value
"1".

6. The "Page sum" checkbox lets you specify whether the
totals are to be set to 0 at the end of a page. In this way,
you can define page totals and counters.

7. Once you have defined which sums are to be stored in
which sum variables, you can use these sum variables in
your objects. In the formula wizard, you will find the sum
variables at the end of the variable list in the "Sum
variables" folder.

combit List & Label

Working With User Variables

User variables are a way of saving values and expressions for
later use. This saves you having to enter them anew each
time if they are frequently needed in precisely this form or if
user-defined data is to be output repeatedly. They are, so to
speak, "formula building blocks".

You can then store these user variables in project includes if
they are also to be used in other projects.

Note: User variables cannot be used within appearance
conditions for layers.

You can also use the SetVar() and GetVar() functions if you
only want to save values in the variable repository for later
use. You will find more information about functions in the
chapter Overview of Functions.

Proceed as follows to define user variables:

1. Choose Project > User Variables or the "Edit user
variables" button in the formula wizard.

2. In the dialog that follows, create a new user variable via
the "Insert a new variable" button.

3. An entry dialog appears where you can enter a
description of the new variable. Give the variable a
meaningful name, the "@" character will be added
automatically as a prefix.

4. Click the "Edit" button to open the formula wizard and
assign a field or an expression to the new user variable.

JavaScript:TL_18513.HHClick()

(2] con vaer vacees)

fvadlable wner vamablen B X

= MName Formula

P Date Mk Strinag { Dhate of tsrang”, F., Pt Dy Aoy Toder) « LKL ™)

AdkSenng 8 Date of cemrheate”, F. FriDaAddDui(Toadasl « LOY. 71
i Toasees AskSmng 8 Which rame ™ F

D 0meLertdicate

Ask gt Daste of tramn q”, F. FariiDe{AddDaniTodad « LIK 7

Expaeitban i1 commect.

o] (e

Figure 7.21: Edit user variables

5. You can use the arrow to specify the evaluation order. The
variables are evaluated from top to bottom.

6. Once you have defined the user variables, you can use
them in your objects. In the formula wizard, you will find

the user variables at the end of the variable list in the
"User-defined variables" folder.

combit List & Label

Project Includes

If you design several similar projects, it's a good idea to
include other projects as "Includes" to avoid having to create
elements that occur repeatedly in each new project. In this
way, you can easily include a letter head, for example, and
any changes can be made centrally, e.qg. if the design
changes.

For example, if the address of your company changes, it can
be updated in a single project instead of having to change
hundreds of individual projects.

Or user variables that are used repeatedly (e.g. complex
formulas in address fields) can be stored in includes.

You must consider the following restrictions: (1) Includes
may not contain other includes. (2) Elements can be
interlinked with elements in includes; the element in the
include is always the parent element because it is printed
first.

Totals and user variables are read and used in the same way.
When designing includes, please make sure that you do not
cause any overlaps (e.g. use a project with a sum variable as
a include which is already contained in the current project).
Via Project > Include, you can add other projects as
includes. You can see the objects belonging to these projects
but you cannot change them in the current project.

1] Inshuded Fropeats
poses X 0 o @ ®
s beadenspe [T
Harma Baal header
Vs =
B Faa
Fele Mlaine PrajectPathfl « " LLESVE..
BLayon
Appearance Comdibon Thow
Vinkde
St wheether the mcladed progect i visble in the Deugnes
Bl the files to the requeed aades usmg the buttons or dracgy & drep.
[o][cma] Fi 722

Dialog for project includes

You can specify the name, visibility and appearance
condition for each include by means of the property list. The
buttons let you specify the (print) order. Project includes are
always inserted at the beginning of the object list.

combit List & Label

Displaying HTML Pages

¥ HTML objects are used for displaying HTML content. You
specify the HTML page by specifying the file name (e.q.
combit.htm) or the URL (e.g. www.combit.net) in the object
properties, or by means of the formula wizard.

Also see the chapter Overview of Properties.

JavaScript:TL_18516.HHClick()

combit List & Label

Adding OLE Documents

® Use the OLE container object to embed OLE server
documents. In this way, you can embed documents from
other applications (e.g. Word, Excel, Visio, MapPoint) in a
report. Only the first page will be displayed as there is no
standard for multi-page OLE objects.

You select the object type via the standard Windows dialog
"Insert Object". Here you can choose an existing file ("Create
from File") or create a new file.

Also see chapter Overview of Properties.

JavaScript:TL_18520.HHClick()

combit List & Label

Adding Form Template Objects

Form templates are images, i.e. scanned forms, which you
place in the background of your workspace as a template.
This lets you position objects in a project precisely to fit the
form. Although form templates are shown in the workspace,
they are not printed and cannot be modified.

The best way of positioning them is by means of the property
list.

To place a form template in the background of your
workspace, use the form template object which you can
insert via the Objects > Insert > Form Template menu
item. Once you have created the template, it's best to use
the objects tool window to select it. Form templates cannot
be selected by clicking in the workspace.

combit List & Label

Importing Objects

With File > Import, you can insert a copy of all objects
belonging to another project to the project that is currently
loaded.

combit List & Label

Different Layout Techniques

You can influence the layout of your report in many different
ways. In this chapter, we will examine the possibilities
offered by different layout regions, define a multi-page
report and control the page break behavior.

See also:
» Specifying the Page Layout
» Layout Regions

JavaScript:RT_706.HHClick()
JavaScript:RT_706.HHClick()
JavaScript:RT_712.HHClick()
JavaScript:RT_712.HHClick()

combit List & Label

Specifying the Page Layout

YYour first task in a new project is to set up the page layout
that you want. Choose Project > Page Layout to specify
properties such the choice of printer, paper size and
orientation. There are different layout options depending on
the project mode (label or list).
With multi-page projects, it is sometimes a good idea to
choose different layout settings, e.qg. printer, page size,
orientation, paper bin, for the different pages. You will find
more information about this in the chapter Different Layout

Techniques.

[] Lot

Descoption Dusgimal

writ apeecified

o

Figure 8.1: Definition of the layout regions

See also:

» Printer Settings

» Export Media

» Templates for Label Formats
» Defining Your Own Label Format

JavaScript:TL_18531.HHClick()
JavaScript:RT_707.HHClick()
JavaScript:RT_707.HHClick()
JavaScript:RT_92.HHClick()
JavaScript:RT_92.HHClick()
JavaScript:RT_709.HHClick()
JavaScript:RT_709.HHClick()
JavaScript:RT_710.HHClick()
JavaScript:RT_710.HHClick()

combit List & Label

Printer Settings

By means of the properties, you can make different settings
for each layout region for printer, page size, orientation,
duplex print, number of copies, sort copies and paper bin
(e.q. first page on company letterhead and normal paper for
the following pages).

The printer settings (and changed export format options) are
saved in a special file (e.g. Article_List.Isp). If the respective
file is not available when printing, the current default
Windows printer is used.

See also:

» Size Adjustment

» Use Physical Page
» Force Paper Size

JavaScript:RT_493.HHClick()
JavaScript:RT_493.HHClick()
JavaScript:RT_708.HHClick()
JavaScript:RT_708.HHClick()
JavaScript:RT_492.HHClick()
JavaScript:RT_492.HHClick()

combit List & Label

Size Adjustment

Specifies whether the project is to be adjusted to fit the page
when different printers are used when printing from the
preview or whether the scale is to be kept.

combit List & Label

Use Physical Page

Specifies whether the whole physical page, including the non
printable margin area, is to be available in the Designer. This
is sometimes necessary in order to position labels correctly,
e.g. if you use sheets of labels without margins. The non-
printable page margins are shown as hatched areas in the
preview.

This enables you to use the complete page when defining
the layout of your project but, of course, the printer cannot
print these margins. If you place objects on such projects,
you must still consider the non-printable margins. If this
property is set to "False", only the area that can actually be
printed is shown in the workspace.

combit List & Label

Force Paper Size

If there is no printer definition file, the application tries to
force the page size set during design (e.qg. Letter) as far as
possible. This is only possible, however, if the selected
printer supports either exactly this size or the "user-defined"
option. If this is not the case, it will first check whether the
printer's default size is large enough, otherwise it will choose
the next largest size.

combit List & Label

Export Media

This list shows the various export possibilities offered by List
& Label.

O .

Eeguora | Esport bedia

it atian

G Mutti-Mane HTML Foanat
E] Adcbe PDF Format
S Batriags
B Menatite (1)
|||||
B Pbulti-TIFF Pachune
B TIFF Pacture
(5] Rech Test Feurvan (RTF)
I Pt T
&) Text Format
] OHTML OS5 Foarnat
A1 Micravals Bxeel Formag

e — |
Figure 8.2: Default setting for the output format

With the two buttons on the upper right, you can define a
selected format as the default value for the later print and
specify the options for this format. These options are saved
in a special file (e.g. Article_List.Isp).

combit List & Label

Templates for Label Formats

Via the "Templates" tab in the page layout for labels, you can
make your selection from numerous predefined label formats
from different manufacturers. This automatically specifies
the size of the individual labels, how many are to appear on

the sheet and how they are to be distributed.
Qoo = -

{ |
Eequom | Export bedia | Templates

S w ey E [nif w

1870 Eeady Index Tat 2508 2,100 m 03¢ m
1L870 Randy Inedex Tal 200 in [BELT0Y WM
1187 L Ready Inden Tat 2500 n 3.1 i i 2408 in
LE#7 1 Feady Indes Tat 1d¢din L13in 4% in
L7 Eeady Index Tat 1588 m LAT LI LE LI
1L87] Raady Inades Tal 100 m 2430 m 012N
LL#7E Randy Iedbex Tk 230 in 5.1 W A
11872 Beady Indes Tal 1084 in .40 m 0004 in
10078 Eeady Indes Tat 2508 in A, 1M ins LELTT
1172 Bedhy Index Tat A m 4590 .14 n
1876 Ready Inadex Tal 258 n 9. 10 m A n
LL#VE Ready Indes Tal 2900 in L1 i 24%in
LEATT Beady Index Tat 250 in 31900y LEL T
LIA7T Beady Index Tat B4 m A.450mn Wi m
TR Beady Irdex Tal 2500 mn 2,180 i LE LR
L&V Renily Iedes Tal 200 A0 m

Only sk temgplates far durren t page veftings

Figure 8.3: Definition of the label size

combit List & Label

Defining Your Own Label Format

You can also define your own label formats if you can't find

the layout that you want among the templates. You can

make the required settings with the "Layout Definition"

region property; there is a special dialog for this:

§ Offset: The offset specifies the horizontal or vertical
distance of the upper left label to the margin of the chosen
page region (physical/printable)

Note: In the screen display, the upper left corner of the
workspace always starts at coordinates 0/0 irrespective
of the chosen page size and specified offset. However,
you will see the effect of the offset in the preview or
when printing.

[E o Hedp
e IE_‘% ¥ LS
Distance = 4 [

Figure 8.4: Defining customized label layouts

§ Size: This value defines the size (horizontal=width /
vertical=height) of the label.
§ Distance: The distance to the next label is specified here.

With single-column labels, only the vertical distance must
be entered.

§ Number: This option specifies the number of labels per
page (horizontal number = number of columns per page,
vertical number = number of rows per page).

§ Print Order: Specifies the order of the print if multiple
labels are printed on a page. Possible values: 0
(horizontal), 1 (vertical), 2 (horizontal bottom up), 3
(vertical bottom up).

The default is to print labels row by row from the upper left
to the lower right (horizontal). However, in the case of
sheets of labels that have already been started, it is
possible that the first label row has already been used.
This causes a loss of stiffness in the upper part of the
sheet. Many printers have problems feeding in sheets that
have already been started, resulting in a paper jam. In this
case, it helps to print the labels in reverse, from the
bottom upwards instead of from the top downwards. In this
way, the upper row of labels on the sheet is always printed
as the last and the sheet retains the stiffness required for
feeding in.

See also:
»Saving your own label formats in the label template list

JavaScript:RT_711.HHClick()
JavaScript:RT_711.HHClick()

combit List & Label

Saving your own label formats in the label
template list

To save your own label formats, you can edit the file
"cmll1601.inf".

Layout of a label definition (all measurements in 1/1000
mm):

<A> , <C> = <D>, <E>, <F>, <G>, <H>, <I>, <J>,
<K>

A: code, B: description, C: page size, D: label width, E: label
height, F: horizontal distance between labels, G: vertical
distance between labels, H: number horizontal, I: number
vertical, J: margin left and right, K: margin top and bottom

e.g. 3420 universal labels, 70 x 16.9 mm = 70000, 16900, O,
0, 3,17, 0, 4850

combit List & Label

Layout Regions

With multi-page projects, it is sometimes a good idea to
choose different layout settings, e.g. printer, page size,
orientation, paper bin, for the different regions.

You define the layout regions with Projects > Page Setup.
You create a new region with the relevant button on the
"Layout" tab and then define the properties for this region.
You will find a detailed explanation of the properties in
chapter Overview of Properties.

See also:

» Active Design Layout

» Practice: Report With Different Page Orientations
» Practice: Managing Issues (Copies)

» Practice: Payment Form on the Last Page

JavaScript:TL_18546.HHClick()
JavaScript:RT_713.HHClick()
JavaScript:RT_713.HHClick()
JavaScript:RT_714.HHClick()
JavaScript:RT_714.HHClick()
JavaScript:RT_715.HHClick()
JavaScript:RT_715.HHClick()
JavaScript:RT_716.HHClick()
JavaScript:RT_716.HHClick()

combit List & Label

Active Design Layout

If you define different layouts, you can decide which layout is
to be displayed as the workspace. The "Active Design
Layout" project property lets you choose from all defined
layout regions.

Praperties E.]
P i
H e al Seitings

regeet [escnpitesn Liat £2 Laksel Prapect File
[EEET TR Standard Layout
He f Eguses 2

[ian far hiwe Pr., Truie

1 Pasge Count L
Tr s Effect fed Shidetha

B Ll Pt bim e

[Fau Paameter

Active Desiqn Layouwt
Acteve regeon for the designes worlspace

Figure 8.5: Selecting the active design layout

combit List & Label

Practice: Report With Different Page
Orientations

Let's assume that you want to change the page orientation
within a report: the first section with the bar chart is to be

printed in portrait mode, the second section with the cross
tab in landscape mode and the remaining section with the
pie charts in portrait mode again.
The report should look like this:

; Category analysis
At

*“i-*ﬂ.a*}.il

h

<%

Figure 8.6: Report with different layout regions

Proceed as follows:

1. Position the report container on the workspace and create
the bar charts, pie charts and the cross tab. You can find
more information about this in the chapter Producing
Analyses.

2. Since you want to change the page orientation, you must
also adjust the height and the width of the report

JavaScript:TL_18548.HHClick()

container. If you don®t do this, the crosstab data will be
truncated when the report container is positioned in
portrait mode.

Select the report container in the "Report Structure" tool
window and use the LL.Device.Page variables and the
UnitFromSCM() function to specify the height and width:

B Position 1035, 0.39, 7.86, 11.29 in]
Left UnitFromSCM{10000) [0.359 in]
Top UnitFromSCR{10000) [0.39 in]

Width Li.Dﬂirr.Fq_:’Q.Si:r.rx- UnitFromSCM{20000) [7.AT in] !

T Oevice Page Size.cy - UnitFromSCM{Z0000] M| -
Figure 8.7: Size of the report container defined variably
. Create headings by adding a Table > Free Content
element in each case.
. Enter "Orders per Customer" as the name of the
crosstab's heading. This element name will then be
available later in the "LL.CurrentContainerlitem" field.
. So that the titles are always printed at the beginning of a
page, set the "Pagebreak before" property to "Yes" in each
case. This will produce a page break before outputting the
element.
. Now define the layout regions. Select Project > Page
Setup.
. The dialog for defining the layout will now appear. The
default region "Standard Layout" is always the last area
with the "True" condition and cannot be renamed. Leave
"Portrait" as the orientation for this layout.

L=

[T

LL, Curremtf antasnebiam=_ [Falue]
Cheart Layaut

HF Laswif 5

................

..............

Figure 8.8: Layout definition for a particular element

8. Create a new region with the "New" button. Enter a
meaningful name for this layout in the "Description”
property, e.g. "Landscape".

9. Then specify the specific properties for this layout.
Change the "Orientation" property to "Landscape”.

10. You can specify when this layout region is to be used as a
"Condition." In this example, the mode must change when
the element with the name "Orders per Customer” is
printed. The formula for the logical condition is therefore:
LL.CurrentContainerltem = "Orders per Customer".

combit List & Label

Practice: Managing Issues (Copies)

Let's assume that you want to produce two copies of an
invoice. The first copy is to be printed on a company
letterhead in paper bin 1. The second copy is to be printed
on the cheaper paper in paper bin 2.

1. In the project properties, enter "2" in the "Number of
issues" property.

2. Open the dialog for the report container via Project >
Page Setup.

3. Create a new region "Original”. In this case, use the
Issuelndex() function as the "Condition". This function
returns the number of the issue. So you define the logical
condition "Issuelndex()=1". Select paper bin 1 for this
layout.

4. Create a layout called "Copy" and define the logical
condition "Issuelndex()=2". Select paper bin 2 for this

layout.

Frgrern | Empoet Mrda

...............

Cancel

Figure 8.9: Definition of the layout regions

If you want to endorse the second copy additionally with the
text "Copy" over the invoice table, carry out the following
steps:

1. Create a text object containing "Copy".

2. Because objects that are not interlinked are printed first
and tables are printed last, the text object must be linked
sequentially with the table. Otherwise it would be printed
before the table and therefore under the object.

3. Select the text object in the object dialog and interlink it
with the Report Container. The "Sequential" interlink type

is already selected.

o

Dbgects 1

Figure 8.10: Object list with sequential interlinking

4. Now select the text object again and set the value of the
"Display condition for issue print" object property to
Issuelndex()=2. This text object will now only be printed
on the second copy.

Cuartty Mo Description LinitPrice Tetal

HPSAD]

fH0Ln 'y £ gue
ncluding acconmed ation
TRVERAD] Flght only Eranl $7E300 §T83.00

Figure 8.11: Text object over the list

combit List & Label

Practice: Payment Form on the Last
Page

Let's assume that you want to print a payment form on the
last page of a multi-page invoice. The payment form is
preprinted on a special paper in paper bin 2 in the lower
range of the page. The field contents have to be printed
exactly at the correct positions.

Proceed as follows:

1.

2.

Open the dialog for the layout regions by Project > Page
Setup.

Create a new region "Last page". Use the function
Lastpage() as a condition that returns the value "True" if
the last page is printed. Choose paper bin 2 for this region
so the last page will always be printed on the special
payment form preprint from paper bin 2.

. Position the text objects for the field contents of the

payment form exactly at the correct position. You can put
a scanned-in picture of the payment form in the
background by choosing/clicking Objects > Insert > Form
Template.

. Set the appearance condition of all text objects to

Lastpage() to make sure they are only printed on the last
page.

. You have to link all text fields with the table as the

function Lastpage() can only be evaluated correctly in
tables, layout regions or objects linked to tables.

Links are created and edited in the "Object List" dialog.
Open this dialog by choosing/clicking Objects > Object
List. Select the table object and link via text object of the
payment form to it by clicking "Link with...". The interlink

type "Sequential” is already selected. The sequential
interlink is sufficient here as no changes in object position
or object size are desired.

Repeat these steps for all text objects.

6. Now you have to avoid that the fields of the payment
form are printed on top of the table if the table ends on
the last page in the area of the payment order.

Therefore create a placeholder by inserting a rectangle
object without border and filling. The rectangle has the
exact height of the payment form and has to overlap the
table necessarily! Select the table in the object dialog and
link the rectangle to it. Choose "At end, keep size" as
interlink type. No matter where the table ends, the
rectangle is always output in the selected size after the
text. If there is not enough space after the table, the
rectangle is output on the next page and a page break is
triggered.

T

agency

B g ey g gy b paryreprd lrer Sl

Figure 8.12: Invoice with fields and placeholders for paynhent order

combit List & Label

Output Options

There are two ways of printing projects: Start the print from
the higher-level application or via the real data preview in
the Designer (if supported by the application).

See also:

» Output Options

» Real Data Preview

» Export in another Format (PDF, XLS ...)
» Print Sample in the Designer

JavaScript:RT_718.HHClick()
JavaScript:RT_718.HHClick()
JavaScript:RT_719.HHClick()
JavaScript:RT_719.HHClick()
JavaScript:RT_720.HHClick()
JavaScript:RT_720.HHClick()
JavaScript:RT_721.HHClick()
JavaScript:RT_721.HHClick()

combit List & Label

Output Options

You can start the print function directly from the higher-level
program, via a menu item or from the preview.

If you start the print from the higher-level program, the print
settings dialog will normally appear once you have selected
the project to print.

Srint Dphons et

{Eriter pages of ianges, aepasated by comenad f meceiaary, e 'L3-4 107

Figure 9.1: Output options

You have various configuration options here:

§ Under "Print Target", you can change the printer settings.
If you have defined different layout regions in the page
layout dialog, you can also change the printer settings
here for the various regions. Enter the number of copies
under "Issues".

§ Select the output format (e.qg. preview, printer, PDF) under
"Direct to".

§ The "Preview" option lets you view the output first on the

screen as it would be printed. In this way, you can check
the result before printing.

§ If you select the "Save options permanently" setting,
your choice of printer and output format will be saved as
default values for this print template.

§ With "First Page", you specify the page with which the
print is to start.

§ "Pages" lets you select certain pages or a page range for
printing, e.g. 1, 3-4, 10-.

§ The "print" drop-down list lets you restrict the output to
even/odd pages or the pages that you have selected
above.

§ When printing labels, you have an extra "Select" button
which you can use to specify the position where you want
to start printing the sheet of labels.

In this way, you can also print sheets of labels that have
already been partly used. You will find a sample label
sheet for your label project in the dialog for selecting the
start position. Click the label where the print is to start.
Please take note of the selected print order. You can print
not only in rows from upper left to lower right but also
column for column or in the reverse direction. The labels
will be printed in the specified direction starting with the

selected label.
] Choase Stars Positaon ey

Label Cedes

| o] Cancdl

Figure 9.2: Additional print settings for labels

combit List & Label

Real Data Preview

The real data preview function is also available directly in the
Designer provided that your application supports it. In this
way, you can check the layout of a printout without wasting
paper in order to do so. The screen preview is accurate down
to the last detail (WYSIWYG € What You See Is What You
Get), exactly as it would be when printed. After checking the
layout, the actual print can be started from the preview
without having to use the print command again.

§ On the "Pages" tab, the individual pages are shown as
miniatures to let you navigate quickly and directly. Via
Project > Options > Preview, you can specify the
maximum number of pages that are to be displayed in the
real data preview.

§ You will find the table of contents on the "Outline" tab. With
Project > Options > Project, you can specify the maximum
folder depth of lines and objects to be used as bookmarks
in the preview. Table rows and objects have the "Outline
level" property for defining the table of contents.

§ The "Number of copies" specified in the print options is
ignored in the preview as this is only relevant for the
actual print.

§ The preview window contains a toolbar which you can use
to select the different preview functions.

Hom e

s o =
SN

Figure 9.3: Real data preview in the Designer

combit List & Label

Export in another Format (PDF, XLS ...)

You can also output a print in different file formats.

To do this, choose the relevant output medium in the Print

Options > Print Setup dialog, which you reach via File >

Export or via "Save as" from the preview.

Please consider that, due to the format, the layout cannot

always be taken over 1:1 because there are specific

restrictions when converting to these formats.

Many formats have various possibilities for configuration. You

can make use of these by clicking the "Options" button.

§ For example, with Excel formats, you can reduce the
number of columns and rows to the minimum required by
means of the "Only data from table object(s)" option.

§ With PDF exports, you will find the option for creating a file
that is PDF/A compliant. You will find more information
about creating a PDF table of contents in Chapter Levels in
the Table of Contents.

| L] Print Optscers

S HP Laserder 4009 Seres POLE Lhange

= [mectgo] adabie PDF Feimat - Opesens
{ Cutput settrgs for POF

Opesssns 8 Atlpust the serings for the POF sutpan hese

JavaScript:TL_18560.HHClick()

Figure 9.4: Output settings for PDF

When you start the print, choose the storage location in the
following "Save As" dialog and enter a name for the file to be
created in the "File name" field.

§ By checking the option "Open the file in the registered
application after the output", you can display the file after
creation directly in the respective program (e.g. Excel).

§ The option "Send exported files by email" lets you send the
files directly by email.

§ You can add a digital signature to your files by means of the
"Digitally sign created files" option (not available in all
applications).

Pleads ypaciy & e fad thee outpiit fbe

S Samphe Applcstion = 3

Hame Diate talen Tags tme I

Fis e ciches£1FELpal - B
Gave ot hppe POF Fies [gH] - Cancel

| Open the file i the regntered gpphcation sfer the autput

S exparted filed by grnad

ifigure 9.5: Output options

combit List & Label

Print Sample in the Designer

Choose File> Print Sample for a test print of your current
project. In the print sample, fixed text appears as it is
defined in the project; variables and fields however are

replaced by a predefined sample text or by a single repeated
sample data record.

combit List & Label

Variables, Formulae and
Expressions

Information such as a return address line on an address label
or a heading over a list can be entered directly into the
project as "fixed text". Fixed text is printed exactly as it is
held in the project.

Alternatively, this information can be taken over dynamically
from a higher-level program. Such information is entered into
the projects as "variables" or "fields".

Fields are the data that changes for each line of a table.
Variables remain the same throughout the page. For
example, you might choose the TELEPHONE field for the
contents of a column of a table. The different telephone
numbers for the data records in the database are printed in
this column. In other words, variables and fields are
placeholders.

With these two kinds of information, attractive projects can
already be designed that are adequate for many purposes.
However, List & Label Designer offers much more. With the
aid of formulas and expressions, the information held in
variables and fixed text can be joined or modified in almost
any conceivable way. The "formulas" and "expressions"
make this possible. In formulas and expressions, fixed text
and variables can be used in "functions" and joined by
"operators”.

For example, with projects for printing address labels, you
can use an expression to automatically add the text "PO Box"
to a PO Box number held in a variable called POBOX. In this
way, not just the number alone will be printed on the label
but something like "PO Box 111111" instead.

Or, consider this: The net price of an article is held in a
variable called PRICE. However, you want to print the price

including VAT in your list. A formula that calculates the VAT

from the net price and then adds it on will help you here. The
gross price will then be printed.

See also:

»Variable List

» The Elements of an Expression
» Working With Functions

» Working With Operators

JavaScript:RT_723.HHClick()
JavaScript:RT_723.HHClick()
JavaScript:RT_724.HHClick()
JavaScript:RT_724.HHClick()
JavaScript:RT_46.HHClick()
JavaScript:RT_46.HHClick()
JavaScript:RT_751.HHClick()
JavaScript:RT_751.HHClick()

combit List & Label

Variable List

The variable list displays all variables available in the current
project; for list type projects, all available fields are also
displayed.

The hierarchical list differentiates between variables, fields,
database tables, user variables and sum variables.
User-defined variables and fields can also be structured
hierarchically. The contents of variables normally remain
unchanged at least throughout a page; fields change from
table row to table row.

If you want to assign variables or fields to existing objects,
you can simply select the variables and fields that you want
in the list and drag them to the object with the mouse (Drag
& Drop). List & Label inserts them automatically where
possible. If you drag a variable to a free area on the
workspace, a new text object will be created there. The size
relates to the size of the last object whose size was changed.

Vanuhles x

400 Vaniables Boailable variables
a3l List & Label varisbles
b2 Device

A CumemtContamenltem
A Curmertlanguags
[CumemtTableC sl
[A] FittesExpressson
[LFarcedPage
& OutputDence
(A SortStrateqy
4 \Zd) Propect variables
o 23 BLLEAY
4\ Frebds. Byailable felds
w3 LL List & Label felds
AL Categouns
b) Customers
4 Emplayess
oL Order_Detads
#1035 Ordens Table name
ol Custamers (Ousders CustamedD <> Custamens.Cy
o LD Emplayess [Ouders EmployedD <~ =Emplayees. Er
B Sheppers [Oeders, Saphia <- = Sluppers. Suppedl) —————— 1:1 - Retation
A CustemedD
(8 EmployeedD Mumaric figld
& Fresght
0 OnderDate Diate field
& OrderdD
[RequiredDiate
A ShepAddress Text field
[ShipCay
[A] ShepCoumtry
(A Shiphlame
T ShippedDate
A shpPostalCode
(A ShipRegron
@ Shep¥ia
o 1C3 Products
b Sales
oD Huppers
[4 Suppliers
a g Wser vanabl, Uzer vanables
) GRGE Blue
QRGE_Green
- QRGE LightBlue
@ GRGE Red
4 Z) Sum wariables Sum vanables
il

Ll (1]

Figure 10.1: Variable list

combit List & Label

The Elements of an Expression

Fixed text, variables, formulae, functions, operators and the
like € generally referred to below as "Elements of
expressions" € are all inserted and combined by means of a
common dialog.

The formula wizard helps you with your entries in several

ways:

§ Function syntax display: A tooltip appears describing the
chosen function; it lists the required parameters and
shows the result type.

§ Auto complete: When you type a letter, the available
functions, fields and variables are listed that begin with
this letter. Within functions, suitable values are suggested
for parameters.

§ Syntax coloring: Functions, parameters, operators and
comments are shown in different colors.

§ Automatic type conversion: Variable and field types are
converted automatically when inserted in existing
expressions to ensure that the data type corresponds to

that expected.

H| Uniefrice

Figure 10.2: Autocomplete in the formula wizard

See also:

» Different Expression Modes
» The Tabs

» The Editing Line

»Inserting Variables

»Insert Fixed Text

»Inserting Comments

JavaScript:RT_725.HHClick()
JavaScript:RT_725.HHClick()
JavaScript:RT_726.HHClick()
JavaScript:RT_726.HHClick()
JavaScript:RT_727.HHClick()
JavaScript:RT_727.HHClick()
JavaScript:RT_728.HHClick()
JavaScript:RT_728.HHClick()
JavaScript:RT_43.HHClick()
JavaScript:RT_43.HHClick()
JavaScript:RT_485.HHClick()
JavaScript:RT_485.HHClick()

combit List & Label

Different Expression Modes

Please note that there are two ways of writing expressions.
Which mode is being used is set by the application.

On the one hand, there is the normal expression mode, in
which you can enter names of variables and functions
without brackets. Fixed text must be enclosed in quotation
marks. The individual variables must be joined with the "+"
operator.

On the other hand, there is the extended mode, in which
you can enter fixed text without quotation marks. You must
enclose variables with "<" and ">" and functions with
chevrons ("«" and "»").

“*In this mode, you can insert the chevrons by clicking the
"Insert chevrons" button (e.qg. if you want to enter a function
directly". You can also use ALT+174/175. It is not necessary
to use an operator to join individual operators in this mode.
The extended mode is easier to use.

Mame «RirimE Salutaicals <Frsinames «Mams -

o Bames r. James Ford

OK Canced

Figure 10.3: Extended mode

combit List & Label

The Tabs

This dialog consists of a series of tabs, each containing
different elements to be edited.

Tab Contains the elements

Variables and The variables and functions available for this

Functions object type

Condition Special dialog for defining IF-THEN-ELSE
conditions

Text Dialog for entering fixed text and options for

setting tab stops (only text objects)
Date Format Available date formats

Number Available number formats
Format
Operators Available logical operators

You will find an "Insert" button on each of these tabs with
which you can add the selected element to the editing line. A
double-click on the relevant element has the same effect. In
addition, you can also add the elements to the editing line
with Drag & Drop (also in and from the function list).

For the different elements of an expression (variables, text,
functions etc.), certain rules apply for the way of writing and
for joining individual elements to give an expression. A
wizard integrated in the dialog makes sure that these rules
are observed. For this reason, you should always add the
different elements to the editing line by means of the
respective tab in this dialog. Thus, you should use the
"Variables and Functions" tab to enter variables and the
"Text" tab to enter text etc.

Experienced users can also enter the expression that they
want directly in the edit box or modify the text that is there
(e.g. put something in brackets).

combit List & Label

The Editing Line

The editing line contains the expression that you have
compiled by means of the various tabs, entered directly or
created with Drag & Drop.

The expression is checked continuously as you create it to
make sure that the syntax is correct. Any syntax errors are
shown in the information pane under the editing line,
together with an explanation of the cause of the error. The
syntax checker will normally produce an error until the
expression is complete. Don't let this worry you. When the
expression is complete, the resulting text should be shown
with the Designer's sample data.

To make complex expressions clearer, you can split them
across several lines with CTrRL+ReTurn. This has no effect on
the result.

With the different buttons on the right next to the input field
you can

§ mark brackets belonging to the formula expression.

§ mark the expression between matching brackets.

§ edit sum and user variables.

§ undo the last operation.

§ redo the last undo operation.

combit List & Label

Inserting Variables

There are different data types for variables: "string",
"number", "date", "Boolean" (logical values), "picture" and
"barcode". The data type is important if you want to use
variables as parameters in functions as they normally only
accept certain data types. Thus you can only multiply a
numeric value with a numeric value.

The "Variables and Functions" tab includes an overview of all
available variables, an icon indicating the data type in front
of the variable as well as the available functions.

You can filter the variables by means of the input field above
the variable list.

To add a variable, double-click the variable that you want,
use the "Insert" button or drag the variable to the editing line
(also via the function list). The variable in question will be
added to the editing line in the correct syntax.

Repeat the above steps to add more variables to your
expression. If you want to have spaces between the
individual variables, e.g. to separate FIRST_NAME and NAME,
make sure that you enter this space in the editing line.

Vansbdes and Funceons (m | Test | Date Feamat | Hansber Flfl_;l'll | Opeimens

* Funthons .
au a
a3 Custome | .
I Addaas) Humnssical functesns
Al Company A2 laghermatical funbes
Al Faimnams) Daste fesctions
1Al Lastnasne) Strwng hamttioni
Al Sshitatan o Wik, Funchans
A Tithe | o dpgreqate funchen
i Pacect vanabley . = Barcode fundion

e varable ‘Cuntomar Lastrame’
Thiss best Car be defosed by your apphoatsn

Cistammad. Tle +° = Curstones Fir sirane = ** + CUsiomsi Lasinaimes

igure 10.4: Joining variables and free text "

You can also insert variables by "dragging" the one you
want to the target object in the workspace with Drag &
Drop. The variable is then automatically added to the
object as a new line.

combit List & Label

Insert Fixed Text

Another important element in expressions is fixed text, with
which you can prefix a variable with an identifier, e.qg.
"Telephone: 1234567".

With the "Text" tab, you can insert free text in your
expression, set tab stops and page breaks.

Enter the text that you want and click "Insert" to add your
entry to the editing line. The text will be placed
automatically in quotation marks.

T

:::::::

L el Taks

arrel * v Custonser, T » = * + Custoisss Firstnaine +** + Custoimer Lasthams -

o Haemie: b, Joltn ran

= 0k Cancd

Figure 10.5: Fixed text in the formula wizard

In the above example, the fixed text "Name" is first inserted
via the "Text" tab followed by the variables "Customer.Title",
"Customer.Firstname" and "Customer.Lastname" by means of
the "Variables and Functions" tab. The "Name:" text will then
be printed first followed by title, first name and last name
from the database.

Please consider that spaces that are to appear between
variables or between variables and text, e.q. as separators,
also count as "fixed text".

Depending on the mode, variables and fixed text cannot be
simply placed together but must be joined by the "+" joining
operator. In this example, the fixed text "Name" is joined to
the "Customer.Title" variable with the "+" operator.

See also:
»Inserting Linefeed
»Inserting Tab Stops

JavaScript:RT_850.HHClick()
JavaScript:RT_850.HHClick()
JavaScript:RT_730.HHClick()
JavaScript:RT_730.HHClick()

combit List & Label

Inserting Linefeed

With the "Linefeed" button, you insert a line break ("9") into
your text line.

Lanefeed

Figure 10.6: Insert line break by clicking the button

However, such a break only has an effect if you have
specified that breaks are allowed for the object in question
(line of a text object or column of a table object). In this
case, the words that don't fit in the line/column are
continued on a new line causing the lines below to be moved
down by one line. (Caution: If the text contains just one long
word, it will not be broken but will be truncated instead).
With text objects, the value of the "Line Wrap" property in
the property list for the respective paragraph must be
"Wrap".

With table objects, the value of the "Fit" property in the
property list for the respective column must be "Wrap".

combit List & Label

Inserting Tab Stops

Tab stops are only allowed in text objects. Therefore this

button is not displayed in table objects.
Taly

Figure 10.7: Insert tab stop by clicking the button

Just one tab stop per line may be inserted between text
elements or variables. Its position can be specified in the
"Tab Properties" dialog which appears when the button is
pressed. You will find more information under Text Objects.

JavaScript:TL_18580.HHClick()

combit List & Label

Inserting Comments

You can add comments to formulas provided that this is

supported by the application. You can do this in two ways:

§ "/* <text> */" for comments in the middle of a formula

§ "/* <text>" for comments at the end of the formula. With
this variation, all the remainder of the formula becomes a
comment € not just the line.

CondlLL.ChatOgec Lo cllan = 1,501

o

{0, Cancd

Figure 10.8: Inserting comments

combit List & Label

Working With Functions

Functions open up countless possibilities and make defining
expressions really interesting. With the aid of these
functions, you can calculate values, influence the results of
variables or their appearance, convert value types and
perform many more tasks.

See also:

» Notation of Functions
»Value Types

» Overview of the Functions
» Using Functions

JavaScript:RT_731.HHClick()
JavaScript:RT_731.HHClick()
JavaScript:RT_48.HHClick()
JavaScript:RT_48.HHClick()
JavaScript:RT_732.HHClick()
JavaScript:RT_732.HHClick()
JavaScript:RT_733.HHClick()
JavaScript:RT_733.HHClick()

combit List & Label

Notation of Functions

Functions all use the same notation which is based on the
BASIC programming language:

return value = function(arguments)
You only specify the function and the arguments. Whether
you use capitals or small letters is irrelevant for the names of
the functions, but not for the arguments. Capitals or small
letters are especially important when variables are used as
arguments.
List & Label evaluates the expression and interprets it
replacing the "function(arguments)" part by the "return
value".
l.e., the return value.is produced from the
function(arguments) input line.
The elements have the following meanings:

Element Meaning

Function() The name of the respective function in its
correct syntax. The brackets () for the
arguments belong to the function name. The
brackets must always be present even if a
function does not have any arguments.

Arguments The values that a function uses in order to
produce the return value. The arguments follow
the name of the function immediately without
any spaces in between. A function can have
zero, one or more than one argument(s).
Functions usually expect arguments of a certain
value type (see below). It is important that the
value types of the arguments conform to the
types expected by the function.

Return value The value that List & Label returns as the result
of a function. The type of the return value
depends on the function in question or the
value types of the arguments.

combit List & Label

Value Types

Value type Explanation

Boolean The logical values "True" or "False". If the
condition is met, the result is true otherwise
false.

String Any string. This string can contain letters, digits
and special characters. It must be placed in
quotation marks ("") so that it can be
differentiated from names of variables.

Date Date values according to the Julian calendar.

Number A string containing only the digits 0 - 9, the
decimal point and the minus sign, other
characters are not permitted. Number strings
do not have to be enclosed in quotation marks.

Barcode A string that is made up of the characters used
for barcodes.

Picture One of the supported picture formats.

RTF

Formatted text

combit List & Label

Overview of the Functions

You will find an overview of the available functions on the
"Variables and Functions" tab. You will also see an
explanation of the currently selected function. The
explanation informs you of the nature of the function and the
type of the arguments that it expects (parameters).

If no arguments are given for a function, this means that the
function does not expect any (apart from the empty
brackets). Otherwise, the function expects exactly the
number of arguments as shown. Arguments that appear in
square brackets ([]) are optional, i.e. they can be omitted.
The argument "All" means that the argument can be any of
the following types (Boolean, string, date, number, picture,
barcode, RTF).

You will find a more detailed explanation of all functions and
parameters under Overview of Properties.

i Condiion | Test

quququ

Asgumant e rrrpty argeenent in unction ‘Barcads’

0K

JavaScript:TL_18587.HHClick()

Figure 10.9: List of functions with help text and tooltip

The functions available on the "Variables and Functions" tab
are sorted alphabetically or shown by function group. There
are the following function groups:

§ Numerical functions

§ Mathematic functions

§ Date functions

§ Character functions

§ Miscellaneous functions

§ Aggregate functions

§ Barcode functions

§ Conversion functions

§ Binary functions

§ Drawing functions

§ Project and print-dependent functions

§ Logical functions

§ Currency functions

You can filter the functions by means of the input field above
the list of functions.

When you select a function, you are shown a short
explanation in the information pane at the bottom. To add
the function to the editing line, double-click the function that
you want or use the "Insert" button.

combit List & Label

Using Functions

Examples of some selected functions are explained below.

See also:

» Convert a Number to a String With Str$()

» Convert a String to a Number With Val().

» Convert a String to a Date With Date()

» Convert a String to a Barcode With Barcode()

» Convert a String to a Picture With Drawing()

» Truncate Strings

» Formatting a Data Value With Date$()

» Formatting a Number Value With FStr$()

» Formatting Currencies With LocCurrL$() or LocCurr$()
» Page Numbers With Page$() or Page()

» Counting Values With Count()

»Only Count Certain Values With Countlf()

» Totaling With Sum()

» Obtaining User Input via a Dialog With AskString$()
» Appearance Conditions With Lastpage()

» Logical Conditions With Cond()

» Working With Null Values

JavaScript:RT_734.HHClick()
JavaScript:RT_734.HHClick()
JavaScript:RT_735.HHClick()
JavaScript:RT_735.HHClick()
JavaScript:RT_736.HHClick()
JavaScript:RT_736.HHClick()
JavaScript:RT_737.HHClick()
JavaScript:RT_737.HHClick()
JavaScript:RT_738.HHClick()
JavaScript:RT_738.HHClick()
JavaScript:RT_739.HHClick()
JavaScript:RT_739.HHClick()
JavaScript:RT_740.HHClick()
JavaScript:RT_740.HHClick()
JavaScript:RT_741.HHClick()
JavaScript:RT_741.HHClick()
JavaScript:RT_742.HHClick()
JavaScript:RT_742.HHClick()
JavaScript:RT_743.HHClick()
JavaScript:RT_743.HHClick()
JavaScript:RT_744.HHClick()
JavaScript:RT_744.HHClick()
JavaScript:RT_745.HHClick()
JavaScript:RT_745.HHClick()
JavaScript:RT_746.HHClick()
JavaScript:RT_746.HHClick()
JavaScript:RT_747.HHClick()
JavaScript:RT_747.HHClick()
JavaScript:RT_748.HHClick()
JavaScript:RT_748.HHClick()
JavaScript:RT_749.HHClick()
JavaScript:RT_749.HHClick()
JavaScript:RT_750.HHClick()
JavaScript:RT_750.HHClick()

combit List & Label

Convert a Number to a String With Str$()

The Str$ function converts a number to a string.

The (optional) second parameter specifies the length of the
string. However, if this number is too large for this format,
the resulting string may be longer than you want. If the
number is too small, the result will be padded with spaces,
according to the sign, on the right (negative) or the left
(positive).

The (optional) third parameter specifies the number of
decimal places. If it is positive, the number is shown as a
floating point number or in scientific notation if it is negative.
If the third parameter is not specified, the number of decimal
places is set to 0 with integers and, for reasons of
compatibility, to 5 with floating decimal values.

Examples:

Str$ (Constant.Pi()) result: "3.14159"
Str$ (Constant.Pi(),3) result: "3.14159"
Str$ (Constant.Pi(),3,0) result: " 3"

Str$ (-Constant.Pi(),12,-3) result: "-3.141e+00"
Str$ (Page()) result: "5.000000"
Str$ (Page(),10) result: " 5"

Str$ (Page(),-10) result: "5 "

To enter the expressions, proceed as follows:

1. Locate the function in the alphabetical list or filter the
functions by entering Str$ in the filter field above the list.

2. Double-click the "Str$ ()" function to add it to the editing
line. This also adds placeholders for the parameters that
are expected or accepted by the function. The first of
these parameters is selected automatically and you will be
prompted to replace this placeholder with a valid value.
It's a good idea to first replace all the function's

parameters with the respective values before you go on to
define the expression.

Functions are also accepted as values for most
parameters. List & Label Designer takes care of the correct
syntax provided that you also use the "Functions" tab for
entering them.

. The "Constant.Pi()" function was inserted here as a
parameter {number}.

. To insert a variable and a function at the same time, use
the mouse to drag the variable that you want to the
relevant function folder (e.g. "Numerical functions"). The
folder opens up automatically and you can select the
function that you want with the mouse. If you move the
mouse upwards or downwards, the list scrolls
automatically in the corresponding direction. If you "drop"
the variable onto a function, the function will be inserted
with the selected variable as the first parameter.

combit List & Label

Convert a String to a Number With Val().

The Val() function converts a string to a number. If there is

an error, the result will be 0. The decimal point character
must always be given as "."
Example:

Val ("3.141") result: 3.14

The "LocVal()" functions converts a string to a number and

presents the result in a format that is valid for the country.
Examples:

LocVal ("12.00","DEU") result: 12,00
LocVal ("12.00","USA") result: 1200,00

combit List & Label

Convert a String to a Date With Date()

The Date() function converts a string to a date. When doing
so, the separator is evaluated accordingly:
Example:

Date ("04.07.1776") result: 04.07.1776

combit List & Label

Convert a String to a Barcode With Barcode()

The Barcode() function converts a string to a barcode. This
function can only be used in a table or barcode object.

For the second parameter, the wizard offers you the possible
barcode types as autocomplete options. Some barcodes
have special formats which must be adhered to. You will find
detailed information about this in chapter Barcode Objects.
Example:

Barcode ("Hello World","GS1 128")

JavaScript:TL_18593.HHClick()

combit List & Label

Convert a String to a Picture With Drawing()

The "Drawing()" function converts a string to an image file.
Example:
Drawing("sunshine.gif")

combit List & Label

Truncate Strings

The "Left$()" function shortens a string from the left by a
specified number of characters. The "Right$()" function
shortens a string from the right and the "Mid$()" function
cuts out part of the string.

The second parameter specifies the maximum number of
places in the result.

Examples:
Left$ ("combit", 1) result: "c"
Mid$("combit",1,2) result: "om"
Right$("combit",3) result: "bit"

The "StrPos()" and "StrRPos()" functions return the position of
the nth occurrence of a search string in a string. You can
supply a third parameter specifying which occurrence of the
search string is to be returned. The first character of the
string corresponds to position 0. This means that with this
function, you can extract a substring from the string, e.qg.
from the first space onwards.
Example:

Left$ ("John Smith",StrPos("John Smith"," ")) result: "John"

The "Rtrim$()" function removes spaces at the end of a
string, the "Atrim$()" function removes them from the
beginning and the end of a string.
Example:

RTrim$ ("Hello World ") result: "Hello World"

combit List & Label

Formatting a Data Value With Date$()

You can format date values with the Date$() function. To
avoid having to enter the formatting parameters yourself,
you can select the parameters from a list on the "Date
Format" tab.

In this way, for example, you can specify whether days or
months are to be written in words or whether the year is to
be output with two or four digits etc. You should generally
proceed by first selecting the date format that you want from
the "Date Format" tab and then insert the value to be
formatted or the expression as a parameter.

In the format list, you will see the respective formatting
instructions on the left and the respective result on the right.
The "Now()" function, which returns the current date, is
selected automatically as the date value. But if you want to
format a different date value, simply replace "Now()" with
the value that you want. You will find more information about
the "Date$ ()" function under Overview of Functions.

JavaScript:TL_18603.HHClick()

Tuwadiay, . haly 21§
Tueaday, bbby 1058
Tueaday. & by 2814
Tuesday § huly 2018
Tusaduy, by & M1
Tuesday, baby b 2000
Tusaduy, § de buly de 2004

Dabe 4w 60, %0 WM %)

™|
ﬁdemll-hl_rHM

@S
Figure 10.10: Example with Date$()

combit List & Label

Formatting a Number Value With FStr$()

You can format numerical values with the FStr$() function. To
avoid having to enter the formatting parameters yourself,
you can select the parameters from a list on the "Number
Format" tab.

In this way you can specify the number of positions before
and after the decimal point, leading zeros and similar. You
should generally proceed by first selecting the number
format that you want from the "Number Format" tab and
then insert the value to be formatted or the expression as a
parameter. With complex expressions containing
calculations, make sure that you format the result and not a
value in the calculation formula. Otherwise you will not be
able to perform the calculation.

In the format list, you will see the respective formatting
instructions on the left and the respective result on the right.
You can add the number format that you want to the editing
line by double-clicking or with "Insert".

Insert the number value to be formatted as a parameter. You
will find more information about the "FStr$ ()" function under
Overview of Functions.

JavaScript:TL_18606.HHClick()

Chezaan o Foamat Fon your numsns ol walue

Fst b ngPrice "5 74 87

[l
ﬁiﬁlﬂl
@S .
Figure 10.11: Example with Fstr$()

combit List & Label

Formatting Currencies With LocCurrL$() or
LocCurr$()

The "LocCurrL$()" function returns a string with the currency
format and symbol that is valid for the country. Insert the
number value to be formatted as a parameter. The (optional)
second parameter is the ISO 3166-
Country code for the country whose currency format is to be
used.
Example:

LocCurrL$ (1000) result: "$1,000.00 "
The "LocCurr$()" function returns a string with the currency
format that is valid for the country but without the currency
symbol.
Example:

LocCurr$ (1000) result: "1,000.00"
You will find more information about this function under
Overview of Functions.

JavaScript:TL_18609.HHClick()

combit List & Label

Page Numbers With Page$() or Page()

The "Page$()" function returns the page number of the page
being printed as a string.
Example:
"Page " + Page$ () + "/" + TotalPages$ () result: Page
1/3
The "Page()" function returns the page number of the page
being printed as a number, thus giving you the opportunity
of using an expression or a formula, e.g. in conditions.
Example:

Cond(Page()>1, "Page " + Page$())

combit List & Label

Counting Values With Count()

The "Count()" function counts the number of values of the
first argument.
The first parameter specifies the values to be counted. The
(optional) second parameter specifies whether the values
used for the calculation are to be deleted after outputting.
Examples:

Count (Order_Details.ProductlID)

Count (1)

combit List & Label

Only Count Certain Values With CountlIf()

The "Countlf()" function counts the number of values that
satisfy the condition. You should also use the "Distinct()"
function if multiple occurrences of values are only to be counted once.
The first parameter specifies the expression for the compare.
The (optional) second parameter specifies whether the
values used for the calculation are to be deleted after
outputting (default: True).
Examples:
Countlf (Customers.Region="D")
Countlf (Distinct(Customers.Region="D")) multiple
occurrences of values are only counted once
Countlf (IsNull (Orders.OrderDate)) counts all values whose
content is empty

combit List & Label

Totaling With Sum()

The "Sum()" function adds up the values of the first
argument.

The (optional) second parameter specifies whether the
values used for the calculation are to be deleted after
outputting (default: True).

Example:

Sum (Order_Details.UnitPrice)

combit List & Label

Obtaining User Input via a Dialog With
AskString$()

You can use the "AskString$()" function to obtain information from the user
during the print process. A dialog appears when printing in which the user is
required to enter the information that you need.

The first parameter contains the text for the request that is
to appear in the dialog.

With the second parameter, you can specify whether the
user request is only to appear once when printing starts
(default: False), or whether the information is to be
requested for each individual data record (True).

The third parameter contains the string that you want to
display as a recommended value in the dialog's input field.
The last parameter specifies the maximum number of
characters that the user may enter. Example:

AskString$ ("Insert Subject",False,"Your request from " +
Date$(Now()))

Insert Subject

our request firom LK 2010}

oK 0K For 58 Cancel

Figure 10.12: Input dia_log_V\}ith AskString$()

combit List & Label

Appearance Conditions With Lastpage()

The "Lastpage()" Boolean function returns whether the actual
page is the last page, i.e. the result of this function is "True"
or "False".

This function can only be used in footer lines of tables, as a
condition in a layout region condition, or in objects linked to
a table. In all other cases, Lastpage() is always "False".

combit List & Label

Logical Conditions With Cond()

The "Cond()" and "If()" functions let you formulate a wide
variety of conditions. The first argument is a logical
expression that is evaluated for truth. If the expression is
true, the second argument is returned as the result. If the
expression is false, the third argument is returned as the
result.

A simple example: Let us assume that you want to output
the total of the article prices on a page in an invoice footer
line. You also want to output the grand total of article prices
on the last page.

T

\\\\\ bbes and Funchons | Condmon | Test | Date Feamat | Momober Farmat | Opeiston

Condition

Conedinod Lasipage 0 SamnMenc tPrics, Trs) Seen Mo st Pics, Falge))

o-}

0K Cancdl

Figure 10.13: Example of the use of Cond()

You enter this function in the formula wizard either directly in

the editing line or via the "Condition" tab.

1. As a "condition" (15t parameter), enter the expression that
is to be tested for TRUE or FALSE. In our example, we want
to use the "not Lastpage()" function to determine whether

this is the last page.

. As the "expression, if condition is TRUE" (2" parameter),
enter the expression that is to apply if the above condition
is TRUE. In our example, the condition is true if this is not
the last page and in this case the page total is to be
output (parameter of the "Sum()" function is "True").

. As the "expression, if condition is FALSE" (3" parameter),
enter the expression that is to apply if the above condition
is FALSE. In our example, the condition is false if this is the
last page and in this case the grand total is to be output
(parameter of the "Sum()" function is "False").

. If you have entered this function via the "Condition" tab,
you can use the "Insert" button to add the finished
condition to your editing line.

combit List & Label

Working With Null Values

There are various functions for working with Null values
(undefined field contents).
If there are Null values in an expression, the entire
expression can become Null. To prevent this, use the
"NullSafe()" function for fields that could be empty (e.q.
salutation or title). This function checks to see whether the
field value is Null and returns a substitute value if this is the
case; otherwise, it returns the result of the expression.
Example:
Cond (Empty(COMPANY),NullSafe(SALUTATION) + " " +
FIRSTNAME+ " " + NAME)

With the "IsNull()" function, you can check whether the value
passed to the function or the result of the expression is Null,
i.e. an empty field.
Example:
Cond (Empty(COMPANY) or IsNull(COMPANY),FIRSTNAME +
"" + NAME)

You can set a Null value with the "Null()" function.

combit List & Label

Working With Operators

Open the list of available operators by clicking the
"Operators" tab. The operators are used to join variables and
free text to give more complex conditions and to perform
compares or calculations.

On the "Operators" tab, you will find the respective operators
in the column on the extreme left; the syntax is shown in the
middle column and the value types with which the respective
operator can be used in the right column.

Operators join two or more values or variables to give a new
value. In this way, you can formulate arithmetic expressions
(basic arithmetic operations) or logical expressions. The
value type of the result of an expression depends on the
value type of the individual elements of the expression.

The "+" operator has a special meaning. It is not only used
for additions ("Number" and "Date" (value types) but also for
joining strings and fixed text ("string" value type).

You can combine multiple operations in one expression. The
normal rules of precedence apply in this case: Logical
operators are evaluated before arithmetic operators which
are evaluated before relational operators. You must use
brackets if you want a different processing order. The
"innermost" brackets are evaluated first.

The general processing hierarchy is

Priority Operator

1 brackets ()

2 functions

3 logical operators

arithmetic operators
relational operators

N

[0,]

e ey oA Lo IE;_JM—M

Symtas Applcable to

T

T
abge's | o
Nahpr =8«
Afabges g <
iWabap > ==
T
BT I —
Aabags o
abggr bz v

O Dt sty = O i _Dertala AninPaic e

L™
i

@

igure 10.14: Exple of multiplying two fields

See also:

» Arithmetic Operators
» Relational Operators
» Logical Operators

JavaScript:RT_60.HHClick()
JavaScript:RT_60.HHClick()
JavaScript:RT_59.HHClick()
JavaScript:RT_59.HHClick()
JavaScript:RT_61.HHClick()
JavaScript:RT_61.HHClick()

combit List & Label

Arithmetic Operators

The familiar rules of precedence € multiplication and
division before addition and subtraction €- apply for
arithmetic operators. The "Modulo" operator is evaluated
first followed by multiplication/division ("*" and "/") and
finally addition and subtraction ("+" and "-"). Example:
NET PRICE+(NET PRICE*0.19)

Operator Meaning Data types

+ addition string, date, number
subtraction date, number

* multiplication number

/ division number

% modulo (remainder with number

division)

combit List & Label

Relational Operators

Relational operators consist of two values of the same data
type which are compared with one another returning a
true/false value. The result (return value) is the Boolean
value true or false. Example: Page()<>1

Operator Meaning Data types

> greater string, number, date
>= greater or equal string, number, date
< less than string, number, date
<= less than or equal string, number, date
= equal string, number, date
- equal string, number, date
<> not equal string, number, date

= not equal string, number, date

combit List & Label

Logical Operators

A logical operator is a function that returns a true/false
value. The result (return value) is the Boolean value true or
false.

Depending on the type of logical operator, the compound
expression is true if both joined expressions are true (AND
conjunction) or if at least one of the joined expressions is
true (OR conjunction).

The rules of precedence are: Negations are evaluated first,
then the "logical AND" and finally the "logical OR".
Example: Zip code >=70000 AND zip code <=80000

Operator Meaning Data type
NOT or .NOT. Negation Boolean
AND or .AND. logical AND Boolean
OR or .OR. logical OR Boolean

XOR or .XOR. logical exclusive OR Boolean

combit List & Label

Overview of LL Variables and
LL Fields

List & Label provides several variables and fields
automatically € depending on the application. You will find

the variables and fields in the "LL" sub-folders in the variable
list.

See also:
» Overview of Variables
» Overview of Fields

JavaScript:RT_753.HHClick()
JavaScript:RT_753.HHClick()
JavaScript:RT_754.HHClick()
JavaScript:RT_754.HHClick()

combit List & Label

Overview of Variables

Name

Explanation

LL.Color.*

Color value of the corresponding
color.

LL.Device.Name

Identification of the output device
(printer).

LL.Device.Page.Name

Designation of the selected paper
size (example "A4").

LL.Device.Page.Size.cx

Physical page width of the output
device in the project®s unit of
measure. Can be used in formulas to
adjust the size of objects dynamically
to fit larger output formats.

Example: In the property list, set the
Position.Left property to the value O
and the Position.Right property to
LL.Device.Page.Size.cx. The object
will now always occupy the total
page width.

LL.Device.Page.Size.cy

Physical page height in the project®s
unit of measure.

LL.Device.PrintableArea.Offset.cx

Width of the unprintable left margin
in the project®s unit of measure.

Example: In the property list, set the
Position.Left property to the value
LL.Device.PrintableArea.Offset.cx.

The object will now always be
positioned precisely at the left
margin of the printer's printable area.

LL.Device.PrintableArea.Offset.cy

Height of the unprintable top margin
in the project®s unit of measure.

LL.Device.PrintableArea.Size.cx

Printable page width in the project®s
unit of measure.

LL.Device.PrintableArea.Size.cy

Printable page height in the

project®s unit of measure.

LL.CountData
(not with multiple tables)

Number of data records transferred
by the program. This number also
includes the data records that were
not printed because of their filter
condition. This counter is
incremented for each data record.

LL.CountDataThisPage
(not with multiple tables)

Number of data records transferred
by the program on the current page.
This number also includes the data
records that were not printed
because of their filter condition. This
counter is incremented for each data
record.

LL.CountPrintedData
(not with multiple tables)

Number of records actually printed.

LL.CountPrintedDataThisPage

(not with multiple tables)

Number of data records actually
printed on the current page.

LL.CurrentContainerltem

Value of an element's "Name"
property in the report container. Is
used e.g. for display and layout
region conditions.

LL.CurrentLanguage

Returns the print language, e.g. "en-
ENII

LL.CurrentTableColumn

Returns the index of the current
column in the case of multi-column
projects.

LL.FilterExpression

Selected project filter.

LL.IsForcedPage

Specifies whether the page was
forced due to the "Minimum page
count" project property.

LL.OutputDevice

Output medium. Can be used e.g. for
formatting objects for output in a
particular way (e.g. "HTML", "RTF",
"PDF" etc.

LL.SortStrategy

Sort order selected by the user.

@LLFAX.RecipName

Fax dispatch: Recipient name

@LLFAX.RecipNumber

Fax dispatch: Recipient's fax number

@LLFAX.SenderBillingCode

Fax dispatch: Sender's billing code

@LLFAX.SenderCompany

Fax dispatch: Sender company

@LLFAX.SenderDept

Fax dispatch: Sender department

@LLFAX.SenderName

Fax dispatch: Sender's name

combit List & Label

Overview of Fields

Name

Explanation

LL.ChartObject.Arcindex
(only with pie charts)

Index of the pie segment. The pie
segments are sorted by size. The
largest pie segment has index 1.

LL.ChartObject.ArcPerc
(only with pie charts)

Size of the pie segment in percent.

LL.ChartObject.ArcTotal
(only with pie charts)

Absolute value of the entire data
volume.

LL.ChartObject.ArcTypelsOthers
(only with pie charts)

True, if the current pie segment is the
"other" segment.

LL.ChartObject.ArcValue
(only with pie charts)

Absolute value of the current pie
segment.

LL.ChartObject.AxisCoordinate
(only with charts)

Coordinate value (can be used in axis
labels).

LL.CurrentRelation
(only with multiple tables)

Description of the current
relationship to the higher-level table.

LL.CurrentSortOrder
(only with multiple tables)

Description of the current sort order
in the table.

LL.CurrentTable
(only with multiple tables)

Identification of the table currently in
use.

LL.CurrentTablePath
(only with multiple tables)

Identification of the table currently in
use (hierarchically with higher-level
tables), e.qg.
Customers.Orders.Order_Details.

LL.FCountData

Number of data records transferred
by the program. This number also
includes the data records that were
not printed because of their filter
condition.

LL.FCountDataThisPage

Number of data records transferred
by the program on the current page.
This number also includes the data
records that were not printed
because of their filter condition.

LL.FCountPrintedData

Number of records actually printed.

LL.FCountPrintedDataThisPage

Number of data records actually
printed on the current page.

LL.Relations.*
(only with multiple tables)

Available relationships.

LL.Tables.* Available tables.
(only with multiple tables)

combit List & Label

Overview of Functions

All functions available in List & Label are listed here
alphabetically. In the formula wizard, you also have an
additional list sorted by functional group.

combit List & Label

Abs

Purpose:
Calculate the absolute value of a number. A negative
value will be returned as positive and a positive value will
remain unchanged.

Parameter:
Number

Return value:
Number

Example:
Abs(-3) =3
Abs(3.12) = 3.12

combit List & Label

AddDays

Purpose:
Adds the given number of days to the date, or subtracts
the number of days when a negative value is entered.
Parameter:
Date
Number
Return value:
Date

combit List & Label

AddHours

Purpose:
Adds the given number of hours to the date, or subtracts
the number of hours when a negative value is entered.
Parameter:
Date
Number
Return value:
Date

combit List & Label

AddMinutes

Purpose:
Adds the given number of minutes to the date, or
subtracts the number of minutes when a negative value
is entered.

Parameter:
Date
Number

Return value:
Date

combit List & Label

AddMonths

Purpose:
Adds the given number of months to the date, or
subtracts the number of months when a negative value is
entered.

Parameter:
Date
Number

Return value:
Date

combit List & Label

AddSeconds

Purpose:
Adds the given number of seconds to the date, or
subtracts the number of seconds when a negative value
is entered.

Parameter:
Date
Number

Return value:
Date

combit List & Label

AddWeeks

Purpose:
Adds the given number of weeks to the date, or subtracts
the number of weeks when a negative value is entered.
Parameter:
Date
Number
Return value:
Date

combit List & Label

AddYears

Purpose:
Adds the given number of years to the date, or subtracts
the number of years when a negative value is entered.
Parameter:
Date
Number
Return value:
Date

combit List & Label

Alias$

Purpose:
Returns the value that is specified for the key (first
parameter) in the key/value-pairs (second parameter).
Parameter:

String Expression for the value to be searched.
String List of values (Form: <key=value> |
[<key=value>]. To be able to use "|" or "="in

the value or key, place a "\" infront of it.

String (optional) Default if the value cannot be found.

Return value:
String

Example:
Alias$("USA", "DEU=Deutschland|USA=United States of
America|GB=United Kingdom") Result: United States of
America

combit List & Label

ArcCos

Purpose:
Calculates the arccosine of the value.
Parameter:
Number Value
Number (optional) Mode (0=Degree, 1=Radian).
Default: O.
Return value:
Number
Example:
ArcCos (0) Result: 90

combit List & Label

ArcSin

Purpose:
Calculates the arcsine of the value.
Parameter:
Number Value
Number (optional) Mode (0=Degree, 1=Radian).
Default: O.
Return value:
Number
Example:
ArcSin (0.5) Result: 30,00

combit List & Label

ArcTan

Purpose:
Calculates the arccotangent of the value.
Parameter:
Number Value
Number (optional) Mode (0=Degree, 1=Radian).
Default: 0.
Return value:
Number
Example:
ArcTan (1) Result: 45,00

combit List & Label

Asc

Purpose:
Returns the ASCII-Code of the first character of the string.
Parameter:
String
Return value:
Number
Example:
Asc("A") Result: 65

combit List & Label

AskString$

Purpose:
With this function, information can be requested from the
user during printing. A typical example of use for this
function would be in a project for a bank transfer form.
Information that remains constant, such as name and
bank details of the sender, can be integrated directly into
the project as fixed text or variables. The transfer
amount, however, will almost always be different. With
the function AskString$(), this information can be
requested from the user during printing.
At print time, a dialog will appear in which the needed
information can be entered.
The dialog allows the entered value to be carried over.
Abort with "Cancel".
With the button "All", the entered value will be
automatically used for all future result for the AskString$
function during thus print job. This is useful when the
value remains constant over all records.

Parameter:

String The first parameter contains some descriptive text that will
appear in the dialog. Since this is a formula, fixed text must be
entered in quotation marks, for example "Transfer amount: €.
This first parameter must be entered, all remaining parameters
are optional. If no other parameter(s) is/are entered, the first
string is also the default setting for the user input.

Boolean (optional) The second parameter allows you
to define whether the dialog should be shown
once prior to printing (default, FALSE), or if the
dialog should be shown for each record (TRUE).

String (optional) The third parameter contains the string that
appears as the recommended value for the user input. Since
this is a formula, fixed text must be entered in quotation marks,

for example "50.00 USD".

(optional) The last parameter defines the number of
characters that can be entered by the user. A value of 16, for

example, allows the user to enter a maximum of 16 characters.
Return value:

String

Example:
AskString$("Transfer amount",True,"50.00 USD",16)
Opens a dialog with the title "Transfer amount€, a
recommended value of "50.00 USD€ and a maximum of

16 characters. Since the second parameter is TRUE, the
dialog will be shown for each record to be printed.

Number

combit List & Label

AskStringChoice$

Purpose:
Prompts the user to choose a value for the specified
variable from a combobox at print time.
Parameter:
String Text, which is displayed and should specify
what is to be entered.
Boolean (optional) Sets whether the dialog should
be shown once prior to printing (default, FALSE),
or if the dialog should be shown for each record

(TRUE).
String (optional) The combobox entries. The single entries of
the combo box are separated by "|". If one of the entries is "***!

(three asterisks), the text is editable. So a new value which may
be different from the list items can be entered.

Number (optional) Maximum length (Default: 8192 characters).
Return value:
String
Example:
AskStringChoice$ ("Document
type".F.,"Offer|Invoice|Delivery note|***)

combit List & Label

ATrim$

Purpose:
Removes spaces from the beginning and end of a string.
Parameter:
String
Return value:
String
Example:
Atrim$(" combit GmbH ") Result: combit GmbH

combit List & Label

Avg

Purpose:
Generates the mean of the set of values that is produced
by the first argument.

Parameter:
Number Expression of the value to be calculated.
Boolean (optional) TRUE: After the output, the values which were

stored for the calculation are deleted. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values are already deleted within the table.

Return value:
Number

Example:
Avg(Order_Details.Quantity*Order_Details.UnitPrice)

combit List & Label

Barcode

Purpose:
This function converts a string to a barcode.
Parameter:

String Barcode value (contents)

String Barcode type. The possible barcode types
will be listed by the auto-complete function of
the wizard. If the barcode cannot be correctly
interpreted it will not be printed. Some
barcodes require special formats that must be
used. Further information can be found in
Chapter Supported Barcode.

Return value:
Barcode

Example:
Barcode(Upper$(Name),"30f9")

JavaScript:TL_18660.HHClick()

combit List & Label

Barcode$

Purpose:
Returns the text contents of a barcode.
Parameter:
Barcode
Return value:
String
Example:
Barcode$(BC _30F9) Result: "ltem 4711"

combit List & Label

BarcodeType$

Purpose:

Returns the type of the barcode as a string.
Parameter:

Barcode
Return value:

String

combit List & Label

BasedStr$

Purpose:
Returns the value to any radix.
Parameter:

Number Value.

Number Radix (2 to 36).

Number (optional) Minimum length of the string
(without optional prefix). 0 for the minimal
length (Default).

Boolean (optional) Defines if a prefix ('0Ob' for radix
2, '00' for radix 8, '0x' for radix 16) is inserted
before the string (Default: False).

Return value:
String
Example:
BasedStr$ (1,2,1,True) Result: Obl

combit List & Label

BinaryAND

Purpose:
Links the two (integer) parameters binary with 'and' and
returns the result.
Parameter:
Number Value.
Number Value.
Return value:
String
Example:
BinaryAND (01,10) Result: 0
BinaryAND (10,11) Result: 10

combit List & Label

BinaryNOT

Purpose:

Negates the value binary and returns the result.
Parameter:

Number Value.
Return value:

String
Example:

BinaryNOT (10) Result: 5

(ten equivalent 1010, five equivalent
0101)

combit List & Label

BinaryOR

Purpose:
Links the two (integer) parameters binary with 'or' and
returns the result.
Parameter:
Number Value.
Number Value.
Return value:
String
Example:
BinaryOR (01,10) Result: 11
BinaryOR (10,11) Result: 11

combit List & Label

BinarySHL

Purpose:
Shifts the value binary to the left.
Parameter:
Number Value.
Number Number of bits, the value is shifted.
Return value:
String
Example:
BinarySHL (1,1) Result: 2

combit List & Label

BinarySHR

Purpose:
Shifts the value binary to the right.
Parameter:
Number Value.
Number Number of bits, the value is shifted.
Return value:
String
Example:
BinarySHR (2,1) Result: 1,00

combit List & Label

BinaryXOR

Purpose:
Links the two (integer) parameters binary with 'exclusive
or' and returns the result.
Parameter:
Number Value.
Number Value.
Return value:
String
Example:
BinaryXOR (01,10) Result: 11
BinaryXOR (10,11) Result: 1

combit List & Label

BMPMapToGray

Purpose:
Converts the picture to greyscales.
Parameter:
Picture or String
Return value:
Picture
Example:
BMPMapToGray ("sunshine.gif")

combit List & Label

BMPRotate

Purpose:
Rotates a picture by the given degree.
Parameter:
Picture or String
Number Rotation angle
Number (optional) Mode (0=Degree, 1=Radian)
Return value:
Picture
Example:
BMPRotate(Article.Picture,90)

combit List & Label

Capitalize$

Purpose:
Returns a string in which the first letter of the individual
words is a capital letter and the rest are small letters.
Parameter(s):
String
Return value:
String
Example:
Capitalize$ (Product.Category) Result: €Tea, Coffee,
And Soft Drinks€

combit List & Label

Case$

Purpose:

Converts a number, dependant upon the value, into a

string. Assignment is made with a formatting string that

contains the replacement string for the number values in
ascending order.
Parameter:

Number Number to be converted (n). The n-th value
of the string will be copied to the return value
string. If enough values do not exist, the string
will remain empty.

String Collection of strings separated by a
particular character. If a third parameter does
not exist, this is the "|" character, otherwise the
first character of this parameter.

String (optional) Separator for the formatting
string (default: "|")

Return value:
String

Example:
Cases(Page(),"O[[HHIIVIVIVIVIHIVIIIX]X™)
Result: "lII", if Page() = 3

combit List & Label

Ceil

Purpose:
Calculates the next bigger integer based on the given
value. See also function Floor().
Parameter:
Number Value.
Return value:
Number
Example:
Ceil(5.6) Result: 6

combit List & Label

Century

Purpose:
Returns the century of the date.
Parameter:
Date
Boolean (optional) sets whether the calculation
should be carried out 'simply' (century starts
with year 0) or 'historically' (century starts with
year 1). Default: False
Return value:
Number
Example:
Str$(Century(Today()),0,0) Result: 21
Str$(Century(Date("01.01.2000")),0,0) Result:
20
Str$(Century(Date("01.01.2001")),0,0) Result:
21
Str$(Century(Date("01.01.2000"),.T.),0,0) Result: 21

combit List & Label

CheckMod10

Purpose:

Calculate the modulo 10 checksum digit of the string.
Parameter:

String A string of digits.
Return value:

Number

combit List & Label

Chrs$

Purpose:
Converts a number to a character. This character has the
entered number as its ASCII-Code . For multibyte
character sets, the highword is the lead byte, for
Unicode, the value is the Unicode code point.
Parameter:
Number
Number (optional) Defines the type of the
parameter. 0=multibyte character sets,
1=Unicode. Default is Unicode.
Return value:
String
Example:
Chr$(64) Result: "@"

combit List & Label

ChrSubst$

Purpose:
Searches a string for a string that is contained in the
second parameter. Every occurrence of this string will be
replaced by the string defined in the third parameter. If

no third parameter exists, the strings will be removed.
Parameter:

String
String
String (optional)
Return value:
String
Example:
ChrSubst$("Otto", "Oo", " ") Result: " tt "

ChrSubst$("Normalconsumer", "aeiou","??") Result: "N??
rm?2?21c??ns??m??r"

ChrSubst$("Normalconsumer", "aeiou") Result:
"Nrmlcnsmr"
ChrSubst$("3.1415926535",".",",") Result:

"3,1415926535"

combit List & Label

Cond

Purpose:
Allows to define conditions. The first parameter is a
logical expression that will be evaluated as "True® of
"False€. If the first expression is "True€, the second
expression will be returned as the result. If the
expression is "False®, the third expression will be
returned as the result. If no third expression is entered,
the return value will assume the following standard
values, dependent upon its type:

2. Argument Type Return value if expression
= False
Boolean False
String "" (empty String)
Date Julian Date value 0
Number 0
Picture "" (empty String)
Barcode " (empty String)
Parameter:
Boolean
All
All (optional) The third parameter must be the same type

as the second parameter.
Return value:
All
Example:
Cond(COUNTRY<>"USA",COUNTRY_LONG)
Cond(PRICE=0,"on request",Str$(PRICE,0,2))
Cond(empty(COMPANY),SALUTATION,COMPANY)

combit List & Label

Constant.Pi

Purpose:
Returns the value of Pi.
Parameter: -
Return value:
Number
Example:
Constant.Pi() Result: 3,14159 (depending on the
number of decimals)

combit List & Label

Contains

Purpose:
Evaluates if a string contains another string (second
parameter).
Parameter:
String
String
Return value:
Boolean
Example:
Contains("ltemnumber: 12345", "1234") Result: True

combit List & Label

Continued

Purpose:
Indicates that a text or RTF-object had a page break. This
means that the current page is a result of the page
break.

Parameter:

Return value:
Boolean

combit List & Label

Cos

Purpose:
Calculates the cosine of the value.
Parameter:
Number Value
Number (optional) Mode (0=Degree, 1=Radian).
Default: O.
Return value:
Number
Example:
Cos (90) Result: 0

combit List & Label

Count

Purpose:
Counts the number of values of the first argument. With
this function, all Null values in the argument are included
in the count. Use the Countlf() function when you want to
disregard Null values.
Hint: Sum variables (see Working With Sum Variables)
are an alternative way of creating counters. Sum
variables are principally applicable to whole tables.
Aggregate functions principally table specific.
Parameter:

All Values to count (sets the value to count). Needed to
define the table (subtable) for which the records shall be
counted.

Boolean (optional) TRUE: The values which were stored for the

calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values will be already deleted within the table.

Return value:
Number

Example:
Count(Order_Details.ProductID)
NthLargest(Article.Price,Count(Distinct(Artikel.Stkpreis), Tru
True)
Calculates the second-smallest value, only taking
repeated values into account once.

JavaScript:TL_18688.HHClick()

combit List & Label

Countif

Purpose:
Counts the number of values that comply with the
condition. Use the function Distinct() when repeated
values are only to be counted once.

Parameter:
Boolean Expression for the comparison.
Boolean (optional) TRUE: The values which were stored for the

calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values will be already deleted within the table.

Return value:
Number

Example:
Countlf(Customers.Region="EMEA")
Countlf(Distinct(Customers.Region="EMEA")) counts
repeated values once only.
Countlf (IsNull (Orders.OrderDate)) counts all values with
empty fields.

combit List & Label

Crosstab.Cells.Avg

Purpose:
Returns the average of the cell contents. Only available
in crosstab objects.

Parameter:

Boolean (optional) True: Only defined values are
entered into the calculation (Default: False). Defined
values: if you are, for example, analyzing
customers and quarters, the quarters without
turnover constitute an undefined value and can
be treated separately in the calculation.

Number (optional) Row layer (0= bottom layer or
innermost group, 1= next lowest, ...). Default:
0.

Number (optional) Column layer (0= bottom layer
or innermost group, 1= next lowest, ...).
Default: 0.

Return value:

Number

combit List & Label

Crosstab.Cells.Max

Purpose:
Returns the largest value of the cell contents. Only
available in crosstab objects. For the parameters and
their meaning, see function Crosstab.Cells.Avg().

combit List & Label

Crosstab.Cells.Min

Purpose:
Returns the smallest value of the cell contents. Only
available in crosstab objects. For the parameters and
their meaning, see function Crosstab.Cells.Avg().

combit List & Label

Crosstab.Col$

Purpose:
Returns the column header for the cell currently being
output. Only available in crosstab objects.

Parameter:
Number (optional) Column layer (0= lowest layer
or innermost group, 1= next lowest, ...).
Default: 0.

Return value:
String

combit List & Label

Crosstab.Col

Purpose:
Returns the column index for the cell currently being
output. Only available in crosstab objects.
Parameter:
Boolean (optional) True: layer (only cells in this
layer count), Default: False.
Return value:
Number

combit List & Label

Crosstab.Row$

Purpose:
Returns the row header for the cell currently being
output. Only available in crosstab objects.
Parameter:
Number (optional) Row layer (0= lowest layer or
innermost group, 1= next lowest, ...). Default:
0.
Return value:
String

combit List & Label

Crosstab.Row

Purpose:
Returns the row index for the cell currently being output.
Only available in crosstab objects.
Parameter:
Boolean (optional) True: layer (only cells in this layer
count), Default: False.
Return value:
Number

combit List & Label

Crosstab.Value

Purpose:

Returns the cell's content.
Parameter: -
Return value:

Number

combit List & Label

CStrs$

Purpose:
Formats a number according to a format string. This is
identical to the formatting information for the function
printf() in the language C. The first parameter is a
number of double precision, and the conversion operator
can assume i.e. the following values: 'f', 'g', 'G', 'e', 'E".
Parameter:
Number
String format string in C-notation, i.e. '%<format>f".
Return value:
String
Example:
CStr(Pi,"%5.1f") Result: " 3.1"
CStr(100*Pi,"num: %qg") Result: "num:
3.141593e+02"

combit List & Label

Date

Purpose:

Converts a string to a date.

m [f the string Contains a dot ".", it will be read in the
"d.m.y" format (German).

m If the string contains a diagonal slash "/, it will be
read in the "m/d/y" format (US English).

m [f the string contains a dash "-", if will be read in the
"y-m-d" format (ANSI).

m If the input cannot be correctly interpreted, then the
date represents a value that is larger than all other
values, (1e100). The return value can be evaluated for
correctness using "JulianToDate(1e100)".

m When one or two digits represent the year, all values
under 30 will be applied to the 215t century (20xx) and
all values over 30 will be applied to the 20t century
(19xx).

Parameter:
String
Return value:

Date

Example:

Date("17.10.2007")

Date("10/17/2007")

Date("2007-10-17")

combit List & Label

Date$

Purpose:
Converts a date, using a format string, into an
appropriately formatted string.
Composition of the format string: this is a normal string
into which placeholders can be embedded.
Place holder Description

%d Day (1..31)

%<n>d Day to <n> digits

%0<n>d %ay to <n> digits, filled on left with
1 IS

%W Weekday (1..7)

%<n>W Weekday to <n> digits

%0<n>wW Weekday to <n> digits, filled on left
with '0's

%m Month (1..12)

%<n>m Month to <n> digits

%0<n>m Month to <n> digits, filled on left
with '0's

%y Year

%<n>y Year, to <n> digits

%0<n>y Year, to <n> digits, filled on left
with '0's

%q Quarter

%D Weekday, written out

%M Month, written out

"opHe no, Year in the local calendar (Japan:

<n>e" Emperor's year)

"%g", no, Era of the local calendar (Japan:

<n>g" Emperor@s era)

’

||%gg||’ ||%zgll Slngle Ietter, Iocallzed
"%999", Long name, localized
"%39"

"%g", "%1g" Single letter, Latin letters

"%Qgggg"”, Long name, Latin letters

II%4gII

VAN Localized date, short form
%H Hours in 24h-format

%h Hours in 12h-format
%<n>h Hours in <n> digits

%i Minutes

%<n>i Minutes in <n> digits

%S Seconds

%<n>s Seconds in <n> digits
%PM AM or PM

As long as one of the above formats is used, the optional
third parameter can be used to set the locale. If the
second parameter contains a valid ISO 3166-Country
code, the third parameter can be used to set either the
short "0€ or long "1€9 format.
Parameter:
Date Value to be formatted.
String (optional) Format description or ISO 3166-Country code.
String (optional) ISO 3166-Country code or date format.
Return value:
String
Example:
Date$(Today(),"Date: %D, %d/%m/%y") Result: "Date:
Thursday, 8/11/2007"
Date$(Today(),"%2wthWeek; %D, %2d/%2m/%4y")
Result: "45th Week, Thursday, 8/11/2007"
Date$(Today(),"%D, %3d/%02m/%4y") Result:
"Thursday, 8/11/2007"
Date$ (Now(),"%02h:%02i:%02s %PM") Result:
"04:03:50 PM"

combit List & Label

DateDiff

Purpose:
Returns the difference between two dates in days.
Parameter:

Date First date value
Date Second date value
Return value:
Number
Example:

DateDiff(Date("01.01.2009"),Date("01.03.2009"))
Result: 59

combit List & Label

DateDiff$

Purpose:
Returns the difference between two dates in days as
string.

Parameter:
Date First date value
Date Second date value
String (optional) Format

Return value:
String

Example:
DateDiff$(Date("01/01/2009"),Date("03/01/2009"))
Result: 2 Months

combit List & Label

DateHMS

Purpose:
Converts three numbers for hour, minute and second into
a date.

Parameter:
Number Hour
Number Minute
Number Second

Return value:
Date

combit List & Label

DatelnLeapYear

Purpose:
Checks if the given date is in leap year or not. The
calculation is made according to the proleptic gregorian
calendar.

Parameter:
Date

Return value:
Boolean

Example:
DatelnLeapYear("01.01.2012") Result: True

combit List & Label

DatelnRange

Purpose:
Evaluates if the date falls within the entered time
interval:
Minimum Date: JulianToDate(0)
Maximum Date: JulianToDate(1e100)
Parameter:
Date Date to be evaluated.
Date Lower limit of the test interval.
Date Upper limit of the test interval.
Return value:
Boolean
Example:
DatelnRange(Date("2007.10.20"),Date("2007.2.29"),Today:
Result: True

combit List & Label

DateTojulian

Purpose:
Calculates the Julian value of a date. Each day (even
those in the past) are assigned a unique number.
Parameter:
Date
Return value:
Number
Example:
DateTojulian(Today()) Result: 2453992

combit List & Label

DateYMD

Purpose:
Converts three numbers for day, month and year into a
date.
Parameter:
Number Year
Number Month
Number Day
Return value:
Date
Example:
DateYMD(2009, 11, 1) Result: 01.11.2009

combit List & Label

Day

Purpose:
Determines the day (1...31) of the month and returns it
as a number.
Parameter:
Date
Return value:
Number
Example:
Day(Date("17.10.2009")) Result: 17

combit List & Label

Day$

Purpose:
Determines the day (1€31) of the month of a date and
returns it as a string.
Parameter:
Date
Return value:
String
Example:
Day$(Date("17.10.2009")) Result: "17"

combit List & Label

Decade

Purpose:
Returns the decade of the date. Hint: The value is always
relative to the start of the century (1..10)!
Parameter:
Date
Boolean (optional) sets whether the calculation
should be carried out 'simply' (decade starts
with year 0) or 'historically' (decade starts with
year 1). Default: False
Return value:

Number

Example:
Str$(Decade(Date("01.01.2009")),0,0) Result: 1
Str$(Decade(Date("01.01.2000")),0,0) Result:
10

Str$(Decade(Date("01.01.2000"),.T.),0,0) Result: 1

combit List & Label

Distinct

Purpose:
Affects the higher order aggregate function (e.g. Sum(),
Avg(), Count()...) and causes equal values only to be
used once in the calculation.

Parameter:
All

Return value:
All

Example:
Countlf(Distinct(Customers.Region="EMEA"))

combit List & Label

Dow

Purpose:
Returns the day of the week to a number(1...7),
1=Sunday, 2=Monday, ...
Parameter:
Date
Return value:
Number
Example:
Dow(Date("04.07.1776")) Result: 4 (Thursday).

combit List & Label

Dow$

Purpose:
Returns the day of the week as a string in accordance
with the country settings, "Sunday", "Monday", ...
Parameter:
Date
Return value:
String
Example:
Dow$(Date("04.07.1776")) Result: "Thursday"

combit List & Label

Drawing

Purpose:

Converts a string type file path into a picture.
Parameter:

String
Return value:

Drawing

combit List & Label

Drawing$

Purpose:

Converts a picture into a string type file path.
Parameter:

Picture
Return value:

String

combit List & Label

DrawingHeightSCM

Purpose:
Returns the height of the Picture in SCM units (1/1000
mm).
Parameter:
Picture
Return value:
Number

combit List & Label

DrawingWidthSCM

Purpose:
Returns the width of the Picture in SCM units (1/1000
mm).
Parameter:
Picture
Return value:
Number

combit List & Label

Empty

Purpose:
Evaluates if a string is empty. If it is empty, "True® will
be the return value, otherwise "False€. Useful, for
example, to determine if the field "ADDRESS® is empty,
and if it is, in combination with the IF-THEN-ELSE
condition cond(), either print the contents of the field
"ADDRESS€ or "POBOX9.
The third parameter allows the removal of leading and
trailing spaces. If this is evaluated as "True€, a string
consisting only of multiple spaces will be recognized as
empty.

Parameter:
String
Boolean (optional)

Return value:
Boolean

Example:
Empty(“xyz") Result: False
Empty("") Result: True

combit List & Label

EndsWith

Purpose:
Checks whether the string in the first argument ends with
the string in the second argument.
Parameter(s):
String
String
Boolean Specifies whether capitals/small letters
are relevant. Default value: False
Return value:
Boolean
Examples:
EndsWith ("Hallo World","rld") Result: True
EndsWith ("Hallo World","llo") Result: False

combit List & Label

Evaluate

Purpose:
Evaluates the expression passed as parameter.
Parameter:
String
Return value:
All
Example:
Str$(Evaluate("3*4"),0,0) Result: 12
Str$(Evaluate("4-3"),0,0) Result: 1

combit List & Label

Even

Purpose:
Evaluates if a number is even. If the number is even,
"True® will be returned, otherwise "False@.
Parameter:
Number
Return value:
Boolean
Example:
"Page number "+Cond(Even(Page()),"even","odd")

combit List & Label

Exists

Purpose:
Checks if a variable or field is defined. Is often used in
connection with GetValue() and Evaluate().
Parameter:
String
Return value:
Boolean
Example:
Exists("CustomerlD") Result: False
If(Exists("Customer.Status"),Evaluate("Customer.Status"),"|
customer status")

combit List & Label

EXp

Purpose:
Calculates the exponential (e*).
Parameter:
Number
Return value:
Number
Example:
Exp(3) Result: 20.08553692

combit List & Label

ExplO

Purpose:
Calculates 10 raised to the power of number (10%).
Parameter:
Number
Return value:
Number
Example:
Expl0(3) Result: 1000

combit List & Label

FirstHeaderThisTable

Purpose:
Returns whether the header of the table is being output
for the first time. The function can be used as an
appearance condition for the header to prevent it being
printed more than once if the table continues onto the
next page due to space limitations. The header is then

only printed at the beginning of the table.
Parameter:

Return value:
Boolean

combit List & Label

Floor

Purpose:
Calculates the next smaller integer based on the given
value. See also function Ceil().
Parameter:
Number
Return value:
Number
Example:
Floor(5.6) Result: 5

combit List & Label

Frac

Purpose:
Calculates the fractional part of a number
Parameter:
Number
Return value:
Number
Example:
Frac(Pi) Result: 0.1415926535

combit List & Label

FStr$

Purpose:
Formats a number according to the format string.
These consist of the following characters ("if negative"
refers to the value to be formatted):
* Digit or "*'-Prefix
$ Local currency symbol
- Digit or sign, if negative
Digit or sign
Digit or '('-Prefix if negative
')'-Postfix if negative
Digit or space prefix
Digit or '0'
Decimal point
Comma, or space prefix

A prefix is a sign that precedes a value, when needed.
The expression FStr$(1, "***") results in "**1". The value
"1" is preceded by the characters "**",

A Postfix is a character that, when needed, is placed after
a number.

These formatting characters can be combined as needed.
If the number is too large for the desired format, a "*€
string will be returned.

With the third (optional) parameter, additional formatting

can be accomplished.
Value Description

1 Removal of leading spaces.
The use is similar to the functions RTrim$()
and LTrim$().

2 Empty string if value Null.

3 Removal of leading spaces and empty
strings when value is 0

2 F [||+

Parameter:
Number
String Format string
Number (optional) Additional formatting
Return value:
String
Example:
FStr(3.142, "#") Result: "3"
FStr(5003.1,"#,# ##.&&") Result: "5.003,10"
FStr$(3.142,"#.###") Result: "3,142"

FStr$(3.142," . ## #H#HH#HH") Result: "kt
FStr$(3.142,"(#.##4#)") Result: " 3,142 "
FStr$(-3.142,"(#.###)") Result: "(3,142)"
FStr$(3.142,"+#.###") Result: "+3,142"
FStr$(3.142,"-#.###") Result: " 3,142"
FStr$(-3.142,"-#.###") Result: "-3,142"
FStr$(3.142,"&&&. &&&") Result: "003,142"
FStr$(3.142, "k k) Result: "**3,142"
FStr$(3.142,"$$%$.$%$%$") Result: "$$3,142"
FStr$(3.142," ## # k") Result: " 3,142"
FStr$(5003.1,"#,###.&&") Result: "5.003,10"
(

FStr$(3.142,"#####") Result: " 3"

combit List & Label

GeometricAvg

Purpose:
Calculates the geometric average of the set of values
that result from the first parameter / formula.
Parameter:
Number Expression for the value to be averaged.
Boolean (optional) True: The values which were
stored for the calculation are deleted after
output. (default: True). Please note that the
stored calculation values are generally deleted
for every (sub)table end. The second parameter
only decides whether the values are already
deleted within the table.
Return value:
Number

combit List & Label

GetValue

Purpose:
Returns the value of a variable or field. Is often used in
connection with Exists().

Parameter:
String

Return value:
All

Example:
Str$(GetValue("Customers.CustomerliD"),0,0) Result:
1234
If(Exists("Customer.Status"),Evaluate("Customer.Status"),"|
customer status")

combit List & Label

GetVar

Purpose:
Fetches a value that was set with the SetVar() function
from the variable repository. The purpose of these
functions is to provide a simple buffer for values. You
shouldn't execute complex nesting with GetVar/SetVar or
combine both functions with each other - especially for
header, footer and group lines unexpected effects can

occur here.
Parameter(s):
All
Return value:
All
Example:
GetVar ("Page") result: contents of

SetVar

combit List & Label

Hour

Purpose:
Determines the hour of the date and returns it in number
format. If the parameter is not used, the hour of the print
time will be returned.

Parameter:
Date (optional)

Return value:
Number

Example:
A condition can evaluate if the current hour has the value
"104. The value of the current hour must be determined
and then compared to the value "109.
Hour()=10

combit List & Label

HSL

Purpose:
Calculates a color value in the HSL color space (Hue,
Saturation, Lightness)

Parameter:
Number Hue [0-360] (0°=red, 120°=green, 240°=blue)
Number Saturation [0-1]
Number Lightness [0-1] (O=no lightness, 1=full lightness)

Return value:
Number

combit List & Label

Hyperlink$

Purpose:
The function Hyperlink$ creates a hyperlink text that can
be inserted using an export module. When available, the
hyperlink will only be embedded if the third parameter
returns a result of "True® (=default).
To optionally use a hyperlink only on a HTML page, you
need to use the List & Label variable LL.OutputDevice:
Hyperlink$("combit","http://www.combit.net",LL.OutputDe\
If an object text contains the string:
<!--begin:hyperlink="target"-->"Display text"<!--
end:hyperlink-->
then a hyperlink will be automatically created in the
exported HTML page. The hyperlink function
automatically creates a string with the correct syntax.
Parameter:

String Text
String Hyperlink
Boolean (optional) Embedded
Return value:
String
Example:

Hyperlink$("combit","http://www.combit.net")

combit List & Label

If

see Cond

combit List & Label

Issuelndex

Purpose:
Returns the Issue Index (1..) for display and layout region
conditions, if multiple issues are selected in the project
parameters

Parameter:
Number

Return value:
Number

combit List & Label

Int

Purpose:
Calculates the integer value of a number. The value will
be truncated.
Parameter:
Number
Return value:
Number
Example
Int(3,1) Result: 3

combit List & Label

IsNull

Purpose:
Checks whether the transferred value or the result of the
expression is Null, e.g. an empty date field.
Parameter:
All
Return value:
Boolean

combit List & Label

ISNullOrEmpty

Purpose:
Checks whether a string is empty or Null.
Parameter(s):
String The string to be checked
Boolean (optional) If the value is True, then spaces
at the beginning and end of the string are
removed. Default value: False
Return value:
String
Example:
ISNullOrEmpty (€ €, True)
Result: True

combit List & Label

Join$

Purpose:
Collection of strings separated by a particular character.
Parameter:

String Collection of strings separated by a
particular character.

String (optional) Separator for the formatting
string (default: ";")

Number (optional) Maximum number of values ('...'
will be appended). Default: all values.

Boolean (optional) True: The values which were stored are

deleted after output. (Default: True). Please note that the stored
values are generally deleted for every (sub)table end. The
second parameter only decides whether the values will be
already deleted within the table.

Return value:

String

combit List & Label

JulianToDate

Purpose:
Interprets a number as a Julian date (each day is
assigned a uniqgue number) and returns the appropriate
date.

Parameter:
Number

Return value:
Date

Example:
JulianToDate(2454347) Result: 09/04/2007

combit List & Label

LangCase$
Purpose:
Returns one of the substrings according to the language
that is set.
Parameter(s):

String String that is returned if a localization string is not
found. The localization string must be a valid ISO 639 language
code.

String String with translation substrings, separated

by "|" (or by an optional third argument).
Translation texts must be formatted as follows
"ISO 639 language code = translation text|[ISO
639 language code = translation text|@]. If the

characters "|" or "=" are to be used in the value
or the key, they must be preceded by "\", e.q.
"USA=He\=llo",
String (optional) separator (default: "|")
Return value:
String
Example:

LangCase$("Hallo","USA=Hello|ESP=Hbla")
result: " Hola " (with Spanish systems)

combit List & Label

LastFooterThisTable

Purpose:
Returns whether the footer of the current table is being
output for the last time. This function can be used as an
appearance condition for the footer, in order to prevent
the footer being printed if the table is continued on the
next page due to space limitations. The footer is then
only printed on the last page of the table.

Parameter:

Return value:
Boolean

combit List & Label

Lastpage

Purpose:
Returns if the current page is also the last page. This
function can only be used in the footer lines of tables, in
objects linked with tables or in the layout regions
condition! In all other cases, the result of Lastpage() is
always False.

Parameter:

Return value:
Boolean

Example:
Cond(Lastpage(),"Total sum","Subtotal")

combit List & Label

Left$

Purpose:
Reduces a string from the right so that only the number
of characters set under Number remain. If the original

string is already small enough, it is not affected.
Parameter:

String The value to be shortened
Number maximum number of positions of the result
Boolean (optional) True: The cut off value is ended with "..."

(Default: False). With numbers < 3 the setting is ignored.
Return value:

String

Examples:
If you had a customer database that contains, amongst
other things, the field NAME for the surname. You now
wish to search for all customers whose surname starts
with "C". To do this, you must first identify the starting

letters.

Left$(NAME, 1) Result: the first letter of the
NAME string.

Left$("combit", 2) Result: "co"
Left$("combit", 4,True) Result: "c@"

Left$("combit", 2, True) Result: "co"

combit List & Label

Len

Purpose:
Returns the number of characters in a string.
Parameter:
String
Return value:
Number
Example:
Len("1234"+"12") Result: 6

combit List & Label

LoadFile$

Purpose:
Outputs the contents of the file as a string.
Parameter:

String
String (optional) When the file is not available, the value set
here is used.
Return value:
String
Example:

LoadFile$("C:\log.txt","File not found!")

combit List & Label

Locale$

Purpose:
Returns information about the country settings, for
example currency, decimals, separators, language and
country code. The code for the appropriate country is
entered in the second parameter, if no second parameter
is used the default country settings will be used.
Parameter:

Number Index of Locale Entry

String (optional) ISO 3166-Country code
Return value:

String
Example:

Locale$(42,"USA") Result: "Monday"

Possible constants for index entry:
http://msdn.microsoft.com/en-us/library/bb507201.aspx

http://msdn.microsoft.com/en-us/library/bb507201.aspx

combit List & Label

LocCurr$

Purpose:
Returns a string with the valid currency format without
the currency symbol for the entered country.
Parameter:

Number Value to be formatted

String (optional) ISO 3166-Country code
Return value:

String
Example:

LocCurr$(123,"USA") Result: "123.00"

combit List & Label

LocCurrL$

Purpose:
Returns a string with the valid currency format and
currency symbol for the entered country.
Parameter:

Number Value to be formatted

String (optional) ISO 3166-Country code
Return value:

String
Example:

LocCurr$(123,"USA") Result: "$123.00 "

combit List & Label

LocDate$

Purpose:
Returns a string with the valid date format for the
entered country.
Parameter:
Date Value to be formatted
String (optional) ISO 3166-Country code
Number (optional) Format
Return value:
String
Example
LocDate$(Date("17.11.2007"),"USA") Result:
"11/17/2007"

combit List & Label

LocDateTime

Purpose
Converts the string into a date (with time if required). The
string is expected to be in the relevant format for the
country.
Parameter:
String Date
String (optional) ISO 3166-Country code
Return value:
Date
Example
LocDateTime("04.07.1776","DEU") Result: "07/04/1776"

combit List & Label

LocNumber$

Purpose:
Returns a string with the valid number format for the
entered country.
Parameter:
Number Value to be formatted
String (optional) ISO 3166-Country code
Return value:
String
Example:
LocNumber$(123,"USA") Result:
"123.00"

combit List & Label

LocTime$

Purpose:
Returns a string with the valid time format for the
entered country.
Parameter:
Date Value to be formatted
String (optional) ISO 3166-Country code
Number (optional) Format
Return value:
String
Example:
LocTime$ (Now(),"USA") Result: 9:05:22 AM"

combit List & Label

LocVal

Purpose:
Interprets the string as a number and returns its value
(while respecting any localized decimal or 1000
separators).
Parameter:
String Number (as string)
String (optional) ISO 3166-Country code
Return value:
Number
Example:
LocVal ("12,00","USA") Result: 1200,00

combit List & Label

Log

Purpose:
Calculates the natural logarithm In(x).
Parameter:
Number
Return value:
Number
Example:
Log(Exp(1l)) Result: 1

combit List & Label

LoglO

Purpose:
Calculates the base-10 logarithm log(x).
Parameter:
Number
Return value:
Number
Example:
Log10(1000) Result: 3

combit List & Label

Lower$

Purpose:
Converts the characters of a string into lower case
letters.
Parameter:
String
Return value:
String
Example:
Lower$("George") Result: "george"

combit List & Label

LTrim$

Purpose:
Removes the leading spaces of a string.
Parameter:
String
Return value:
String
Example:
LTrim$(" George") Result: "George"

combit List & Label

Max

Purpose:

Returns the largest of the two values.
Parameter:

Number or Date

Number or Date
Return value:

Number or Date

combit List & Label

Maximum

Purpose:
Calculates the maximum of the set of values that result
from the first parameter / formula.

Parameter:
Number

Boolean (optional) TRUE: The values which were stored for the
calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values are already deleted within the table.

Return value:
Number

Example:
Maximum(Order_Details.ProductID@Products.ProductiD:Un

combit List & Label

Median

Purpose:
Calculates the median of the set of values that result
from the first parameter / formula.
Parameter:
Number Expression for the value to be averaged.
Boolean (optional) The values which were stored for
the calculation are deleted after output.
(default: TRUE). Please note that the stored
calculation values are generally deleted for
every (sub)table end. The second parameter
only decides whether the values are already
deleted within the table.
Return value:
Number
Example:
Median(UnitsinStock)

combit List & Label

Mid$

Purpose:
Returns a part of a string. The desired number of
characters starting at the starting position will be
returned.
If the third parameter is not used, the string will be
returned from the starting position to the end.
The first character of the string has the Position 0.
Parameter:
String
Number Starting position
Number (optional) Number of characters to be displayed.
Return value:
String
Example:
Mid$("Normalconsumer",6) Result: "consumer”
Mid$("Normalconsumer",6,30) Result: "consumer”
Mid$("Normalconsumer",6,3) Result: "con"
Mid$(Name,0,6) Result: "Normal"

combit List & Label

Min

Purpose:

Returns the smallest of the two values.
Parameter:

Number or Date

Number or Date
Return value:

Number or Date

combit List & Label

Minimum

Purpose:
Calculates the minimum of the set of values that result
from the first parameter / formula.
Parameter:
Number
Boolean (optional) TRUE: The values which were
stored for the calculation are deleted after
output. (default: TRUE). Please note that the
stored calculation values are generally deleted
for every (sub)table end. The second parameter
only decides whether the values are already
deleted within the table.
Return value:
Number
Example:
Minimum(Order_Details.ProductiID@Products.ProductID:Uni

combit List & Label

Minute

Determines the minute of the entered date, and returns
the result as a number. If the parameter is not used, the
minute of the time of printing will be returned.
Parameter:
Date (optional)
Return value:
Number

combit List & Label

Mode

Purpose:
Calculates the mode (most common value) of the set of
values that result from the first parameter / formula.
Parameter:
Number Expression for the value to be examined.
Boolean (optional) The values which were stored for
the calculation are deleted after output.
(default: TRUE). Please note that the stored
calculation values are generally deleted for
every (sub)table end. The second parameter
only decides whether the values are already
deleted within the table.
Return value:
Number

combit List & Label

Month

Purpose:
Determines and returns the month (1...12) as a number.
Parameter:
Date
Return value:
Number
Example:
Month(Date("2007.10.17")) Result: 10

combit List & Label

Month$

Purpose:
Determines and returns the month (1...12) as a string.
Parameter:
Date
Return value:
String
Example:
Month$(Date("2007.10.17")) Result: "10"

combit List & Label

Now

Purpose:

Returns the current date and time.
Parameter:
Return value:

Date

combit List & Label

NthLargest

Purpose:
Calculates the nth-largest value of the set of values that
result from the first parameter / formula.

Parameter:
Number
Number <n>, i.e. the index for the value which is to be returned
(1-based).
Boolean (optional) TRUE: The values which were stored for the

calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values are already deleted within the table.

Return value:
Number

Example:
NthLargest(Order Details.ProductiD,2) calculates the
2-largest number

combit List & Label

NthLargestindex

Purpose:
Calculates the index of the nth-largest value of the set of
values that result from the first parameter / formula.
Parameter:

Number

Number <n>, i.e. the index for the value which is to be returned
(1-based).

Boolean (optional) TRUE: The values which were stored for the

calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values are already deleted within the table.

Return value:
Number

Example:
NthLargestindex(Order_Details.ProductlD,2)

combit List & Label

NthValue

Purpose:
Calculates the nth value of the set of values that result
from the first parameter / formula.

Parameter:
All
Number <n>, i.e. the index for the value which is to be
produced, calculated e.g. with NthLargestindex().
Boolean (optional) TRUE: The values which were stored for the

calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values are already deleted within the table.

Return value:
Number
Example:
NthValue(NthLargestindex(Order Details.ProductlD,2))

combit List & Label

Purpose:

Returns a Null value (value not available).
Parameter:
Return value:

All

combit List & Label

NullSafe

Purpose:
Checks if the parameter is Null and returns a substitute
value if it is, otherwise it returns the value of the
parameter.

Parameter:
All

Return value:
All

combit List & Label

NuminRange

Purpose:
Evaluates if a number falls within the desired range.
Parameter:
Number
Number Upper limit
Number Lower limit
Return value:
Boolean
Example:
NumInRange(Page(),1,10) Result: True, if page number
is between 1 and 10.

combit List & Label

Odd

Purpose:
Evaluates if a number is odd. If the number is odd "True @
will be returned, otherwise "False®.
Parameter:
Number
Return value:
Boolean
Example:
"Page number "+Cond(Odd(Page()),"odd","even")

combit List & Label

Ord

Purpose:
Returns the ASCII value of the first character.
Parameter:
String
Return value:
Number
Example:
Ord("combit") Result: 99

combit List & Label

Page

Purpose:
Returns the current page number.
Parameter:
Return value:
Number
Example:
Case(Odd(Page()),"Even","Odd")+" page number"

combit List & Label

Page$

Purpose:
Returns the page number of the printed page as a string.
Parameter:
Return value:
String
Example:
"Page "+Page$()+"/"+TotalPages$() Result: Page 1/3

combit List & Label

Pow

Purpose:
Corresponds to the function (Base) ~ (Exponent).
Parameter:
Number Base
Number Exponent
Return value:
Number
Example:
Pow(2,3) Result: 8

combit List & Label

Previous

Purpose:
Returns the previous value of the variable, field or
formula, i.e. the value it had for the last record.
Parameter:
All Variable, field or formula
Return value:
All
Example:
Previous(NAME) Result: "consumer"

combit List & Label

PreviousUsed

Purpose:
Returns the value the given variable or expression had
when it was last evaluated.
Parameter:
All Variable, field or formula
Return value:
All
Example:
PreviousUsed(NAME) Result: "Mustermann"

combit List & Label

ProjectParameter$
Purpose:
Returns the value of a project parameter. Available
parameters:
LL.FAX.Queue Print queue
LL.FAX.RecipName Recipient name
LL.FAX.RecipNumber Recipient fax number
LL.FAX.SenderBillingCode Sender billing code
LL.FAX.SenderCompany Sender company
LL.FAX.SenderDept Sender department
LL.FAX.SenderName Sender name
LL.MAIL.To Mail address
LL.MAIL.CC Mail address for
carbon copy
LL.MAIL.BCC Mail address for blind
carbon copy
LL.MAIL.Subject Subject line
LL.MAIL.From Sender mail address
LL.MAIL.ReplyTo Reply To mail address
LL.MinPageCount Minimum page count.
LL.ProjectDescription Project Description
LL.SlideShow.TransformationID Default transition

effect for the preview
‘s slideshow mode.

LL.MAIL.ShowDialog Show mail dialog
before sending

Parameter:
String Name of the project parameter
Boolean (optional) sets whether the return value (possibly a

formula) should be returned directly (True), or should be
evaluated (False). Default: False

Return value:
String

Example:
ProjectParameter$("LL.ProjectDescription")
Result:"Article list"

combit List & Label

ProjectPath$

Purpose:
Returns the path of the project file, optionally including
the file name (otherwise with "\" at the end)
Parameter:

Boolean True: Sets that the path is returned including the file
name (Default: False).

Return value:

String

Example:
ProjectPath$() Result: C:\Program Files\LL\
ProjectPath$(True) Result: C:\Program

Files\LL\crosstab.lIsr

combit List & Label

Quarter

Purpose:
Returns the quarter of the year (1..4)
Parameter:
Date
Boolean (optional) sets whether the quarter
calculation should be returned relative to the
year (1..4) or in absolute terms since 1.1.0001
(1..). Default: False (relative).
Return value:

Number

Example:
Str$(Quarter(Date("01.01.2008")),0,0) Result: 1
Str$(Quarter(Date("01.05.2008")),0,0) Result: 2
Str$(Quarter(Date("01.05.2008"),.T.),0,0) Result:

8030

combit List & Label

RainbowColor

Purpose:
Calculates a color value between violet and red
corresponding to the value of the first parameter e.g. for
rainbow colors in crosstabs.

Parameter:
Number Value to be displayed.
Number Limiting value for violet.
Number Limiting value for red.

Return value:
Number

combit List & Label

RegExMatch$

Purpose:
Returns the part of the string that corresponds to the
regular expression or the group passed in the third
parameter.
The regular expression corresponds to Pearl 5 Syntax,
which in most details equals the regular expression
syntax of the Visual Basic Scripting engine.
Parameter:
String
String
Number
Return value:
String
Example:
Division of the "STREET" field to street and number:
"Street: " + RegExMatch$(STREET,"((?:\w*)+)(\d+[\w
1¥*$)",1) "Number: " + RegExMatch$(STREET,"((?:\w*)+)
(\d+[\w]*¥$)",2)
RegExMatch$("test1234xyz0815", "[0-9]+") Result:
"1234"

combit List & Label

RegExSubst$

Purpose:
Replaces the substrings of the first argument with a new
value if they match the regular expression.

Parameter(s):
String The string to be checked
String Regular expression
String Replacement expression (can contain

"\0" for the entire match or "\1"€® "\9" for the
respective group.

Boolean (optional) Specifies whether only the first
occurrence is to be replaced. Default value:
False
Return value:
String
Example:
RegExSubSt$("1234xyz6789","[0-9]+", "a") result:
"axyza"

RegExSubSt$("1234xyz6789","[0-9]+", "a") result:
"axyz6789"

combit List & Label

RemainingTableSpace

Purpose:
Returns the space available to data and group lines in a
table object. The parameter defines the unit of the return
value. The function can be used to carry out conditional
page breaks before group lines, e.qg. "Page break before
only 5% space is left@.

Parameter:
Boolean (optional) TRUE: the value is in units which

are independent of the system (SCM-units),
FALSE: the value is a percentage of the entire
table size (default: FALSE).
Return value:
Number

combit List & Label

Rep$

Purpose:
Returns a string that contains the appropriate number of
strings defined in the first parameter.
Parameter:
String
Number
Return value:
String
Example:
Rep$("-",10) Result: "---------- "
Rep$("+-",5) Result: "+-+-+-+-+-"

combit List & Label

RGB

Purpose:
Calculates the color value using the relative red, green
and blue saturation values (between 0 and 255). No
saturation has the value 0, full saturation the value 255.
This function can be used to set the font color using a
formula.

Parameter:
Number red saturation
Number green saturation
Number blue saturation

Return value:
Number

Example:
Cond(Amount<0, RGB(255,0,0), RGB(0,0,0) Result: red
for negative amounts

combit List & Label

Right$

Purpose:
Reduces a string from the left so that only the number of
characters set under Number remain. If the original
string is already small enough, it is not affected.
Parameter:
String
Number
Boolean (optional) True: The cut off value starts
with "..." (Default: False). If Number < 3 the
setting is ignored.
Return value:
String
Example:
Right$("normalconsumer", 8) Result: "consumer™
Right$("normalconsumer", 11,.T.) Result: "...consumer"

combit List & Label

Round

Purpose:
Rounds a value to the entered number of decimal places.
Default is 0.
Parameter:
Number
Number (optional)
Return value:
Number
Example:
Round(3.1454,2) Result: 3,15
Round(3.1454) Result: 3

combit List & Label

RTrim$

Purpose:
Removes spaces from the end of a string.
Parameter:
String
Return value:
String
Example:
RTrims$("John ") Result: "John"

combit List & Label

Second

Determines the second of the entered date and returns
the result as a number. If the parameter is not used, the
second of the print time will be returned.

Parameter:
Date (optional)

Return value:
Number

combit List & Label

SetVar

Saves a value in the variable repository for later use with
the GetVar() function. The purpose of these functions is
to provide a simple buffer for values. You shouldn't
execute complex nesting with GetVar/SetVar or combine
both functions with each other - especially for header,
footer and group lines unexpected effects can occur
here.

Parameter(s):
String
All

Return value:
All

Example:
SetVar ("Page", Page())

combit List & Label

Sign

Purpose:
Returns the sign of the value (+1 for a positive value, -1
for a negative value or O if the value is 0).
Parameter:
Number Value
Return value:
Number
Example:
Sign (-3) Result: -1

combit List & Label

Sin

Purpose:
Calculates the sine of the value.
Parameter:
Number Value
Number (optional) Mode (0=Degree, 1=Radian).
Default: O.
Return value:
Number
Example:
Sin (90) Result: 1

combit List & Label

Sqrt

Purpose:
Calculates the square root of a number.
Parameter:
Number
Return value:
Number
Example:
Sqrt(4) Result: 2

combit List & Label

StartsWith

Purpose:
Checks whether the string in the first argument begins
with the string in the second argument.
Parameter(s):
String
String
Boolean Specifies whether capitals/small letters
are relevant. Default value: False
Return value:
Boolean
Examples:
StartsWith ("Hello World","hel")
Result: True
StartsWith ("Hello World","rld")
Result: False

combit List & Label

StdDeviation

Purpose:
Calculates the standard deviation of the set of values
that result from the first parameter / formula.
Parameter:
Number

Boolean (optional) TRUE: The values which were stored for the
calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values are already deleted within the table.

Return value:
Number

Example:
StdDeviation(Order_Details.Quantity*Order_Details.UnitPric

combit List & Label

Str$

Purpose:

Converts a number into a string. The number will be

formatted with 6 decimal places that may be rounded.

The length is variable.

Parameter:

Number

Number (optional) Defines the length of the string
(default:6). If the number is too large for this
format, the resulting string may then be longer
than desired. If the number is too small, spaces
will be attached dependent upon the prefix,
right (negative) or left (positive).

Number (optional) Defines the precision (number
of decimal places). If the number is positive, the
number will be displayed as a floating-point
number, if negative in scientific format.

Return value:

String

Example:
Str$(Pi) Result: "3.141593"
Str$(Pi,3) Result: " 3"
Str$(Pi,3,0) Result: " 3"
Str$(-Pi,12,-3) Result: "-3.141e+00"
Str$(Page()) Result: "5.000000"
Str$(Page(),10) Result: * 5"
Str$(Page(),-10) Result: "5 "

combit List & Label

StrPos

Purpose:

Returns the position of the nth appearance of a search
string. The third parameter determines which
appearance will be returned. Default is 1.

The first character in the string has the position 0.

-1 as return value signifies the search string no longer

appears.
Parameter:
String
String Search string
Number (optional)
Return value:
Number
Example:
StrPos("Normalconsumer","or")
StrPos("Normalconsumer","r")
StrPos("Normalconsumer","r",1)
StrPos("Normalconsumer","r",2)

Result: 1
Result: 2
Result: 2
Result: 13

combit List & Label

StrRPos

Purpose:

Returns the position of a search string within a string.
This is a backwards search. The third parameter,
determines which appearance will be returned. Default is

1

The first character in the string has the position 0.
-1 as return value signifies the search string no longer

appears.
Parameter:
String
String Search string
Number (optional)
Return value:

Number

Examples:
StrRPos("Normalconsumer","or")
StrRPos("Normalconsumer","r")
StrRPos("Normalconsumer","r",1)
StrRPos("Normalconsumer","r",2)

Result: 1
Result: 13
Result: 13
Result: 2

combit List & Label

StrSubst$

Purpose:
Searches a string for the appearance of a search string
and replaces it with the string contained in the third
parameter (replacement string). If no third parameter is
used, the string located using the search string will be
deleted.

Parameter:
String
String Search string
String (optional) Replacement string

Return value:
String

Example:
Assume that you want to print address labels that
contain the company name. You do not have much space
available on the label and cannot afford to completely
print long company names, for example, "Forrer
Construction, Incorporated€.
With the expression StrSubst$(COMPANY,"Incorporated","Inc.")
every appearance of "Incorporated" in the COMPANY field
will be replaced with "Inc."

combit List & Label

Sum

Purpose:
Calculates the sum of the parameter / formula in the
parameter.
Hint: Sum variables (see Working With Sum Variables)
are an alternative way of creating sums and counters.
Sum variables are principally applicable to whole tables.
Aggregate functions principally table specific.
Parameter:
Number

Boolean (optional) TRUE: The values which were stored for the
calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values are already deleted within the table.

Return value:
Number
Example:
Sum (Order_Details.UnitPrice)

JavaScript:TL_18825.HHClick()

combit List & Label

Tan

Purpose:
Calculates the tangent of the value.
Parameter:
Number Value
Number (optional) Mode (0=Degree, 1=Radian).
Default: 0.
Return value:
Number
Example:
Tan (45) Result: 1,00

combit List & Label

Time$

Purpose:
Returns the current time in string format.
The following formats are available:
Placeholder Description

%h Hours in 24 hour format
%H Hours in 12 hour format
%m Minutes
%s Seconds
%P Display the part of day
(A.M. / P.M.)
%p Display the part of day
(a.m./p.m.)
Parameter:
String
Return value:
String
Example:
Time$("%02h:%02m:%02s") Result:

"18:30:45"

combit List & Label

Today

Purpose:
Returns the current date.
Parameter:
Return value:
Date
Example:
Date$(Today(),"%D, %m.%d.%4y") Result: "Friday,
11/8/2007"

combit List & Label

Token$

See Case$

combit List & Label

TOoRTF$

Purpose:
Returns a string in RTF-format. This is necessary because
some strings may contain one of the specially defined RTF-
format symbols. ('\', '{' or '}'). For compatibility reasons, this
function only processes the passed string if the optional
second parameter is explicitly set to True.
Parameter:
String
Boolean
Return value:
String
Example:
If, for example, the field PRODCODE could contain one of
the characters, then the text should be inserted in the
following way:
"<<SALUTATION>> <<NAME>>, YOU have received our
product <<PRODUCT>>, Code <<ToRTF$(PRODCODE)>>,.."

combit List & Label

Total$

Purpose:
Sets that the expression in the argument is calculated for
the whole crosstable-object.
Parameter:
All
Return value:
All
Example:
Sum(sales)/Total(Sum(sales))*100

combit List & Label

TotalPages$

Purpose:
Returns the total number of pages. The returned string is
replaced by the total number of pages when printing.
Please note when using this function that the timing
behavior of the print process can be affected. A progress
bar may reach 100% faster, but because of further
processing of the output, there may be a delay before
the actual printout is produced. No calculations may be
performed with the result of this function.

Parameter:

Return value:
String

Example:
"Page "+Page$()+"/"+TotalPages$() Result: Page
1/3

combit List & Label

Translate$

Purpose:
Translates the text in the argument provided that it is
held in the dictionary transferred by the application.
Parameter(s):
String
Return value:
String
Example:
Translate$("Page {0} of {1}", Page$(), TotalPages$())
Result in German e.g.: Seite 1 von 2

combit List & Label

UnitFromSCM

Purpose:
Converts a SCM-Unit (1/1000 mm) to the print unit
(inch/mm). Important for the definitions of property
values independent of the selected print unit.

Parameter:
Number

Return value:
Number

Example:
Cond(Page()=1,UnitFromSCM(100000),UnitFromSCM(2000(
Result: 10 cm for Page 1, 2 cm for the other pages.

combit List & Label

Uppers$

Purpose:
Converts the characters of a string to capital letters.
Parameter:
String
Return value:
String
Example:
Upper$("Otto") Result: "OTTO"

combit List & Label

Val

Purpose:
The string is interpreted and returned as a number. If an
error occurs, the return value is 0. The decimal sign must
always be entered as ".".

Parameter:
String

Return value:
Number

Example:
Val("3.141") Result: 3.141
Val("3,141") Result: 3
Val("3.141e2") Result: 314.2
Val(ChrSubst$("3,141", ",", ".")) Result: 3.141

combit List & Label

Variance

Purpose:
Calculates the variance of the set of values that result
from the first parameter / formula.

Parameter:
Number

Boolean (optional) TRUE: The values which were stored for the
calculation are deleted after output. (default: TRUE). Please
note that the stored calculation values are generally deleted for
every (sub)table end. The second parameter only decides
whether the values are already deleted within the table.

Return value:
Number

Example:
Variance(Order_Details.Quantity*Order_Details.UnitPrice)

combit List & Label

Woy

Purpose:
Returns the week number of a given date.
The optional second parameter determines the setting

for the first week of the year.
0o Week with the first
working day

1 Week of January, 1

First week with at least 4
days

3 First week with 7 days

4 Week with the first
Monday

Parameter:

Date

Number (optional)
Return value:

Number

combit List & Label

Year

Purpose:
Determines the year of a date and returns it as a number.
Parameter:
Date
Return value:
Number
Example:
Year(Today()) Result: 2010
Year$(Date("1.1.2010")) Result: 2010

combit List & Label

Year$

Purpose:
Determines the year of a date and returns it as a string.
Parameter:
Date
Return value:
String
Example:
Year$(Today()) Result: "2010"
Year$(Date("1.1.2010")) Result: "2010"

combit List & Label

Overview of Properties

All of the properties for projects and objects are described
centrally here.
Properties are defined by means of the respective property
lists. If you select multiple objects, you can set their common
properties at the same time. You can specify values in
different ways depending on the property.
§ Open a drop down list of values by means of an "arrow
down" button.
Example: Appearance condition, font color, font. At the
end of the list of values, you will almost always find the
"Formula" entry.
§ You can set the value with a formula via the formula button
or the "Formula" entry in the list of values.
Example: If you want to set the font color to red for
negative values, set the default "property" for the font to
"False" and define the "Font color" property using a
formula, e.qg.:
Cond(ltem.UnitPrice< 0,LL.Color.Red,LL.Color.Black)
§ Open a configuration dialog with the "..." button.
For example, there are dialogs for the following properties:
formatting, font, frames, position, label format.
§ Enter the value directly in the property fields.
Example: Project description in the project properties.
§ Set a file path with the open dialog.
Example: Name of the project include file or the image file.

See also:

» Project Properties

» Common Object Properties
» Text Objects

»Line Objects

JavaScript:RT_766.HHClick()
JavaScript:RT_766.HHClick()
JavaScript:RT_183.HHClick()
JavaScript:RT_183.HHClick()
JavaScript:RT_777.HHClick()
JavaScript:RT_777.HHClick()
JavaScript:RT_779.HHClick()
JavaScript:RT_779.HHClick()

» Rectangle Objects

» Circles and Ellipses

» Picture Objects

» Barcode Objects

» Report Container Object
» Table Objects

» Chart Objects

» Gauge Objects

» Crosstab Objects

» Formatted Text Objects
» Form Control Objects

» HTML Text Objects

» OLE Container

» Form Template Objects

JavaScript:RT_781.HHClick()
JavaScript:RT_781.HHClick()
JavaScript:RT_783.HHClick()
JavaScript:RT_783.HHClick()
JavaScript:RT_785.HHClick()
JavaScript:RT_785.HHClick()
JavaScript:RT_787.HHClick()
JavaScript:RT_787.HHClick()
JavaScript:RT_794.HHClick()
JavaScript:RT_794.HHClick()
JavaScript:RT_797.HHClick()
JavaScript:RT_797.HHClick()
JavaScript:RT_801.HHClick()
JavaScript:RT_801.HHClick()
JavaScript:RT_812.HHClick()
JavaScript:RT_812.HHClick()
JavaScript:RT_815.HHClick()
JavaScript:RT_815.HHClick()
JavaScript:RT_820.HHClick()
JavaScript:RT_820.HHClick()
JavaScript:RT_822.HHClick()
JavaScript:RT_822.HHClick()
JavaScript:RT_827.HHClick()
JavaScript:RT_827.HHClick()
JavaScript:RT_830.HHClick()
JavaScript:RT_830.HHClick()
JavaScript:RT_832.HHClick()
JavaScript:RT_832.HHClick()

combit List & Label

Project Properties

The project's property window is displayed if no object is
selected in the workspace.

The project properties are also available as fields (see
Overview of Fields) and can be evaluated with the
ProjectParameter$() function.

See also:
» General Settings
» Fax and Mail Variables

JavaScript:TL_18848.HHClick()
JavaScript:RT_767.HHClick()
JavaScript:RT_767.HHClick()
JavaScript:RT_770.HHClick()
JavaScript:RT_770.HHClick()

combit List & Label

General Settings

See also:

» Project Description

» Active Design Layout

» Number of Issues

» Display Condition for Issue Print
» Embedding Drilldown Reports

» Minimum Page Count

» Transition Effects for Slideshow

JavaScript:RT_82.HHClick()
JavaScript:RT_82.HHClick()
JavaScript:RT_542.HHClick()
JavaScript:RT_542.HHClick()
JavaScript:RT_543.HHClick()
JavaScript:RT_543.HHClick()
JavaScript:RT_544.HHClick()
JavaScript:RT_544.HHClick()
JavaScript:RT_768.HHClick()
JavaScript:RT_768.HHClick()
JavaScript:RT_84.HHClick()
JavaScript:RT_84.HHClick()
JavaScript:RT_769.HHClick()
JavaScript:RT_769.HHClick()

combit List & Label

Project Description

You can enter a description for the respective project in the
"Project description” field. This description is then shown in
the File > Open dialog making it easier for you to find the
project that you want. Alternatively, you can also enter the
description in the File > Save As dialog.

Praperties]
Fi2] 4 e fiE]
B fiereenal heifueg

Pregject Deicrption List 2 Lalsel Prapect File

 Layout Crigimal

Hiarribier of Hine I

Davplay Comdition For Bsus Pu... Tiee
Emnbsed Diilldown Repaiti Yeu
Frmminm Page Coung i
Trar i Effect for Sdesho
[= [T
Ta
BCC
Faom
RpheT.
hje

Seneder's Campany
Sarders Dapartiment
Sender’s Balling Code

Active Diesign Lapoart

Acteve negeon for the desigmer workspace

Figure 13.1: Project properties

combit List & Label

Active Design Layout

With multi-page projects, it is sometimes a good idea to
choose different layout settings, e.g. page size, orientation
for the different pages. You specify which layout setting is to

be shown in the workspace by means of the "Active design
layout" field.

combit List & Label

Number of Issues

Specifies the number of issues (copies) for printing and
previewing. In addition, it also enables the Issuelndex()
function for display and layout region conditions.

If you specify multiple issues, you will then have the "Display
condition for issue print" property which you can use for
printing of objects conditionally for the different copies.

combit List & Label

Display Condition for Issue Print

Allows print conditions to be set for the pages of the different

issues, e.q. if the last page containing the GTC should be
suppressed when printing the copy.

Example: If (Issuelndex()=2, not Lastpage(), True)

combit List & Label

Embedding Drilldown Reports

Drilldown reports can be embedded in the preview file to
allow them to be sent or saved as a complete unit.

combit List & Label

Minimum Page Count

With index card projects, this property specifies the minimum
number of pages that are to be printed automatically. For
example, if you want to output a four-page form with
different layouts for each of the four pages, you create a
layer for each page and position the objects on these layers
as required for the output. Specify "4" as the minimum page
count.

With list projects, the number entered here determines the
page number on which the output of the table/report
container will start. For example, if you need a covering
sheet, you can assign the "Following pages" layer to the
table and design the "First page" layer as you wish. Then
specify "2" as the minimum page count.

combit List & Label

Transition Effects for Slideshow

Here you specify the default values for the kind of page
transition in the preview's slideshow mode.

combit List & Label

Fax and Mail Variables

You send faxes of List & Label documents by selecting the
respective fax (printer) driver in the print process. A fax
program must be installed in order to be able to send faxes.
If the fax is to be sent via the Windows fax driver, the fax
parameters (at least the fax number) must be specified in
the project properties. Enter the respective variables in the
"Fax Parameters" area.

If the fax is to be sent via a different fax (printer) driver, you
enter the fax number and other field information (as far as
supported) by means of commands (e.g. DVISE commands
for Tobit David). You enter these commands directly in a text
field in the print project. Doing this suppresses the recipient
dialog during printing because all information is already
embedded in the document. You will find the precise
procedure in the documentation for your fax software.

You can also send List & Label documents directly by email.
You also define the required email variables in the project's
property window. Make the email settings (SMTP, MAPI,
XMAPI) under "combit Mail" in the Windows Control Panel.

combit List & Label

Common Object Properties

You specify most of the object properties in the property list
and/or in additional dialogs. Each object type has its own
individual properties. However, there are a number of
attributes that are common to all objects, such as size,
position, name and, appearance condition. These properties
are described here centrally and explained in more detail in
the sections that follow.

See also:

» Locked

»Name

» Display Condition for Issue Print
» Appearance Condition

» Levels in the Table of Contents

» Page Break Before Outputting Object
» Export as Picture

» Position

» Font

» Color

» Background / Filling

» Pattern

» Frame

» Format

» Content

JavaScript:RT_184.HHClick()
JavaScript:RT_184.HHClick()
JavaScript:RT_185.HHClick()
JavaScript:RT_185.HHClick()
JavaScript:RT_771.HHClick()
JavaScript:RT_771.HHClick()
JavaScript:RT_186.HHClick()
JavaScript:RT_186.HHClick()
JavaScript:RT_772.HHClick()
JavaScript:RT_772.HHClick()
JavaScript:RT_773.HHClick()
JavaScript:RT_773.HHClick()
JavaScript:RT_188.HHClick()
JavaScript:RT_188.HHClick()
JavaScript:RT_189.HHClick()
JavaScript:RT_189.HHClick()
JavaScript:RT_195.HHClick()
JavaScript:RT_195.HHClick()
JavaScript:RT_774.HHClick()
JavaScript:RT_774.HHClick()
JavaScript:RT_775.HHClick()
JavaScript:RT_775.HHClick()
JavaScript:RT_192.HHClick()
JavaScript:RT_192.HHClick()
JavaScript:RT_506.HHClick()
JavaScript:RT_506.HHClick()
JavaScript:RT_851.HHClick()
JavaScript:RT_851.HHClick()
JavaScript:RT_776.HHClick()
JavaScript:RT_776.HHClick()

combit List & Label

Locked

Locks the object to prevent it from being selected
unintentionally by clicking. This property is only relevant
during design and has no effect on the later print. If you set
"Locked" to "True", the object in question can no longer be
selected in the workspace and will be marked with a small
red logo. This property is not available for sub-tables.

Obects

Figure 13.2: Locked objects in the object list

Note: You can select a locked object as usual in the object
list thereby making it editable again. Since "locked" is only
relevant during the project®s design phase, there is no
way in which you can determine the value of the property
by means of a formula.

Property Description Value Description

Locked Locks the object and prevents True locked
it from being selected False not locked
unintentionally by clicking in
the workspace.

combit List & Label

Name

When you add a new object to the workspace, a description
of the object, made up of the type of the object (e.g. "Text")
and its coordinates, appears in the right section of the status
line. This is the default name for this object.
However, if your project has a large number of similar
objects, these identifiers can easily become confusing. For
this reason, you can give your objects meaningful names by
means of the Objects tool window or with the object's
property list. You do this by simply clicking once on the
existing name and then changing it.
Alternatively, you can enter a new name in the object name
input field via Objects > Object list or you can change it in
the property list.

Property Description Value Description

Name Name of the object Name

If you have enabled the Options > Workspace > Object

info option, the object name will also be shown in the tooltip
that appears.

combit List & Label

Display Condition for Issue Print

This option enables conditional printing of objects for the
different issues. This property is only available if you have
defined multiple issues in the project properties. The
Issuelndex() function lets you specify the index of the issue,
e.g. Issuelndex()=2. You will find more information about
managing issues in chapter Project Properties.

Property Description Value Description
Display Enables conditional printing of True Display
condition objects for the different issues, False Hide

for issue €.9.Issuelndex()=2. Formula Formula

print wizard

JavaScript:TL_18870.HHClick()

combit List & Label

Appearance Condition

You can assign an appearance condition to each object. This
specifies under which conditions the object is to be printed.
You will find a guide to defining such conditions under

Variables, Formulae and Expressions.

Property Description Value Description
Appearance Appearance condition for True Always
condition printing. There is no output show

if the result is false. False Never

In appearance conditions FirstHeaderThisTable() show

for table footers' you can LaStFOOterThiSTabIe() First page

also use the predefined Formula only

"Last page only" value.

Internally, this entry uses Last page

the functions Lastpage() or only

LastFooterThisTable().

In appearance conditions qumula

wizard

for table headers, you can
also use the predefined
"First page only" value.
Internally, this entry uses
the functions not
Lastpage() or
FirstHeaderThisTable().

JavaScript:TL_18873.HHClick()

combit List & Label

Levels in the Table of Contents

Specifies the outline level (index level) of the bookmark in
preview mode or for PDF export (O=not in index). You can set
the maximum folder depth via Project > Options >

Project.
Levels in Specifies the index level of the Number
the table bookmark (O=not in index). Formula Formula
of wizard
contents
Text Name of the bookmark. Text Formula

wizard

combit List & Label

Page Break Before Outputting Object

Each object can trigger a page break before it is printed, i.e.
the object begins on a new page.

Property Description Value Description

Page break If the condition returns "True", True Break

before a page break will be triggered False No break
before printing the object. Formula Formula

wizard

combit List & Label

Export as Picture

For exporting objects in picture format if a vector-based
export does not give the desired results, or in order to
achieve a better representation.

Property Description Value Description

Export as If the result is "True", the True Yes

picture object will be exported as a False No
picture. Formula Formula

wizard

combit List & Label

Position

An object's "Position" property group specifies the x and y

coordinates of the upper left corner of the object as well as
the width and the height.
There is also a dialog for defining the values.

Property

Description

Value

Description

Position

Position and size of the
object, all details are given in
the unit of measure for the
workspace

[..J

Position
dialog

Left

Horizontal distance of the
upper left corner of the object
from the upper left corner of
the workspace

Number
Formula

Formula
wizard

Top

Vertical distance of the upper
left corner of the object from
the upper left corner of the
workspace

Number
Formula

Formula
wizard

Width

Width of the object

Number
Formula

Formula
wizard

Height

Height of the object

Number
Formula

Formula
wizard

combit List & Label

Font

If the default value is set to "Yes", the default font will be

used.

There is also a dialog for defining the values.
Property Description Value Description
Font You can define the font (4 Font dialog

properties in a dialog. If the
default value is set to "True",
the default font will used.

Default The default font will be used True Default

value instead of the set values. False font

Formula No
Formula
wizard

Name Selected font. All installed List Font
fonts will be displayed. Formula Formula

wizard

Character Specifies the country version Number character

set of the character set. All set
available character sets are
displayed.

Size Font size in points. Lists all Number Default
available sizes for the selected size
font. Formula Formula

wizard

Width Sets the width of the font. 0 Number Width
means standard width, Formula Formula
otherwise the average wizard
character width will be
specified.

Bold Turns the "bold" text property True Yes
on and off False No

Formula Formula
wizard

Italic Turns the "italic" text property True Yes
on and off False No

Formula Formula

wizard

Underline Turns the "underline" text True Yes

property on and off False No
Formula Formula
wizard
Strike out Turns the “strike out" text True Yes
property on and off False No
Formula Formula
wizard

Color Font color (see chapter Color)

JavaScript:TL_18882.HHClick()

combit List & Label

Color

The color property lets you specify the color of the font or
the background. For background colors, you must also set
the "Background" property to a value > 0, e.g. to
"Pattern/Block color".

There is also a dialog for defining the values.

Property Description Value Description
Color You can define the color in a [7] Color
color dialog. dialog
In the dialog, you can choose Selection
the color from a list of fixed of
predefined colors or specify predefined
your own color by means of a colors and
formula or a function formula
("Formula" entry at the end of wizard
the list).

(1) With the HSL() function,
you define the color by
specifying the hue value (0-
360), the saturation value (0-
1) and the lightness value (0-
1).

(2) The RGB() function
defines a color by means of
red, green and blue values.
Each color portion can have a
value between 0 and 255.

combit List & Label

Background / Filling

The background/filling property lets you specify a block color
or a gradient.

Property Description Value Description
Filling | Select the kind of gradient that 0 Transparent
Background You want and specify the 1 Pattern/block
properties for color, mid color, color
end color and fading-in color, 2 Horiz.
depending on background. 3 gradient
4 Vert.
gradient
5 Horiz. 2-part
gradient
6 Vert. 2-part
gradient
Value 7 only with tables, 7 Partly
charts, rectangles or circles. Formula transparent
Picture
Formula
wizard

Color Font color (see chapter Color)

JavaScript:TL_18885.HHClick()

combit List & Label

Pattern

The pattern property lets you specify the texture of a color.

Property Description Value Description

Pattern Choose a pattern here from [] Selection
wide range of predefined of a
patterns. Each pattern is predefined
represented by a number. You pattern
can specify your own and
pattern/number by means of a formula
formula or a function wizard

("Formula" entry at the end of
the list). This property is only
evaluated if "Filling" or
"Background" is set to
"Pattern/Block color".

combit List & Label

Frame

The "Frame" property group defines the frame properties and

distances from the frames.

There is also a dialog for defining the values:

Ei Frame Properies
Presets Line
Eloms O gutine Type
Frames and distances to the content (unit: mj — e e
e E—
.80 ce e Sl EE—
I J el
ai 4000
TR |
=
Color . -
| L1 Widdth | LE . .
Ta spply the chaien bne type, velect ane of the presets, chich the bmes in the peeviow of e the button
v | [gl

v

Iéigure 13.3: Dialog_for the frame propérties

Property Description Value Description
Frame You can define frame L[.J Frame dialog
(default properties and distances in a
Va'ue) dlalog
To apply the selected type of
line, color or width, click one
of the default settings, the
lines of the preview or use
the buttons.
Default If set to True, the default True Lines
frame frame defined in the table False No lines
setting object will be used. Formula Formula
(with table wizard
cells)
Layout Describes the layout of the g Circumferen-
frame lines (only relevant for tial
multi-line frames). 1 Horiz.

2 priority
Formula Vert. priority
Formula
wizard
Left/Top Settings for the respective
Right/Bottom frame line.
Distance Distance between content Number
and frame. Formula Formula
wizard
Lines Visibility of the frame line. True Lines
False No lines
Formula Formula
wizard
Color Line color (see chapter Color).
Line type Line type. Line Selection of
predefined
lines (20)
Formula Formula
wizard
Width Line width. Number
Formula Formula

wizard

JavaScript:TL_18889.HHClick()

combit List & Label

Format

The format property is an alternative to formatting with the
functions Date$() and FStr$() in the formula dialog. This
property can be found, for example, in text, crosstab and
table fields. Note that the formatting will affect the
expression's result. If you only wish to format certain parts of
an expression (e.g. for text and numbers within one
expression) use the functions Date$(), LocCurrL$ or FStr$() in
the formula dialog.

With the format editor you can set the format for numbers,
currency, date, time, date and time, percentage, angle and
date-/time difference.

By default, the respective application settings are used.
Alternatively select the system setting or a custom setting. If
no application setting is passed by the application, the

application setting is the same as the system setting.
[12] Farmat i

Hes farm it
Hiarn beg

EEEEN ol pgint Apphcation setting
iake

[
Tinae Thouwiamds separstor: Apphamian pihng

Decmal places: Apphoation g

Peicentage Canremcy pymbaol Application seshig

A

Date- Terne Diiference Fearmat for positree vahses: Al Bion s evt g
Farmat for pegatses vakic Al atran seflng
Exponential format: Ha

o output i wabae 13 §

lerays @ before decgmal point

{512 145.4T)

QK Cancel

Figure 13.4: Formatting dialog

combit List & Label

Content

Many objects cannot be defined solely by means of the
property list. They contain sub-objects (or "content"), such as
text objects consisting of several paragraphs.

The "Contents" property (if available) opens up a dialog. You
will find a description of the respective content dialog
accompanying the description of the individual objects.

combit List & Label

Text Objects

Text objects let you place text in the workspace. A text
object can hold as many paragraphs as you want and they
can all have completely different display properties. These
paragraphs and their properties present the contents of the
text object.

In the paragraph properties dialog, you can edit the

individual paragraphs that make up the text object and fill
them with content.

See also:
» Object Properties
» Paragraph Properties

JavaScript:RT_778.HHClick()
JavaScript:RT_778.HHClick()
JavaScript:RT_212.HHClick()
JavaScript:RT_212.HHClick()

combit List & Label

Object Properties

Also see chapter Common Object Properties.

Property Description Value Description

Bottom Bottom aligned within the True Yes

aligned object's border. If this option is False No
enabled, the object's text will Formula Formula
be output at the lower margin wizard
of the object, or otherwise at
the upper margin. For this to
be possible, the paragraphs
must not be larger than the
object otherwise the text will
be truncated as usual at the
bottom or wrapped. This
option is very useful e.qg. if text
is to be output at the lower
margin of a page and the
length is not known.

Rotation Rotates the object 0 0°
anticlockwise. Please note that 1 90°
only TrueType fonts can be 2 180°
rotated. 3 270°

Formula Formula
wizard

Page break Specifies whether the object True Yes
can trigger a page break. If False No
this property is enabled, the Formula Formula
content will be wrapped to the wizard

next page automatically if it
exceeds the size of the object.
This is an interesting option
e.g. with text objects that are
to cover several pages. With
labels, the next label will only
be started when all objects
have been printed as a result
of this option in the previous
label. You might not be able to
set this property if page

JavaScript:TL_18901.HHClick()

breaks are not supported by
the higher-level program.

combit List & Label

Paragraph Properties

Property Description Value Description
Paragraph Distance to next paragraph Number
spacing ("Paragraph spacing"). You Formula Formula
specify the distance in points: To wizard
achieve line spacing of 1.5 with
a font size of 10 points, enter 5
points. Negative values are also
allowed. You should always make
the settings under Options >
Objects > Object font.
Alignment You can specify the alignment in 0 Left
the same way as in your text 1 Centered
processing program. 2 Right
Formula Formula
wizard
Justified Block text is justified both ri