
Building	SQL	Server	Applications



Building	SQL	Server	Applications	Overview
Application	Programming	Interfaces	(APIs)	are	the	mechanisms	used	by
applications	to	access	resources	on	the	local	computer	or	available	through	a
network.	Microsoft®	SQL	Server™	2000	supports	several	classes	of	APIs	that
applications	can	use	to	access	SQL	Server	resources:

General	database	access	APIs	allow	applications	to	work	with	the	data
in	a	relational	database.	The	APIs	present	results	to	applications	in	one
of	two	forms:

Tabular	result	sets,	which	some	APIs	call	rowsets.

XML	documents,	which	are	the	preferred	way	of	representing
data	in	Internet	applications.

SQL	Server	database	services	APIs	allow	applications	to	administer	and
configure	the	services	included	with	the	relational	database	engine,	such
as	replication	and	Data	Transformation	Services	(DTS).

The	Analysis	Services	API	gives	applications	access	to	the	OLAP	and
data	mining	facilities	of	Analysis	Services.	For	more	information,	see
Programming	Analysis	Services	Applications.

The	Meta	Data	Services	API	gives	applications	access	to	the	repository
of	SQL	Server	meta	data	stored	in	Meta	Data	Services.	For	more
information,	see	Programming	Meta	Data	Services	Applications.

The	English	Query	API	provides	applications	the	ability	to	pass
customer	questions,	written	in	English,	about	information	in	a	database
or	OLAP	cube	to	the	English	Query	engine.	The	engine	returns	a
Transact-SQL	statement	or	MDX	query	that	can	be	executed	to	answer
the	question.	For	more	information,	see	Developing	and	Deploying
English	Query	Applications.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


For	information	about	additional	considerations	regarding	the	use	of	the	APIs
supported	by	SQL	Server	2000,	see	Application	Development	Architecture.

General	Database	Access	APIs
Database	applications	generally	deal	with	data	in	one	of	two	formats:

Tabular	result	sets,	which	are	sometimes	called	rowsets.	The	application
uses	a	database	API	to	execute	a	Transact-SQL	statement	and	process
any	result	sets	that	may	be	returned.	These	APIs	support	result	set
processing:	ADO,	OLE	DB,	ODBC,	Embedded	SQL	for	C,	and	DB-
Library.

XML	documents.	The	application	uses	an	API	or	Universal	Resource
Locator	(URL)	to	execute	a	Transact-SQL	statement	or	XPath	query.
The	application	then	retrieves	any	XML	document	that	is	returned.
These	access	methods	support	XML	documents:	ADO,	URLs,	OLE
DB.

While	result	set	and	XML	processing	is	typically	discussed	in	relation	to
retrieving	the	results	of	a	command,	result	sets	and	XML	documents	can	both	be
used	as	the	source	of	data	for	modifications	of	database	tables:

An	application	using	tabular	result	sets	can	open	a	cursor	over	a	result
set,	and	use	data	from	the	cursor	to	modify	data	in	tables.

An	application	using	XML	documents	can	use
sp_xml_preparedocument	to	add	a	document	to	the	database,	and	then
use	OPENXML	to	retrieve	data	from	the	document.	The	retrieved	data
can	be	used	to	modify	data	in	tables.

Most	of	the	general	database	APIs	supported	by	SQL	Server	are	of	two	types:

An	object	database	API	uses	an	object	model	comprised	of	objects,
properties,	and	interfaces	an	application	uses	to	connect	to	a	database,
pass	commands	to	the	database,	and	retrieve	results.

JavaScript:hhobj_4.Click()


A	C	database	API	is	a	set	of	C	functions	an	application	calls	to	connect
to	a	database,	pass	commands	to	the	database,	and	retrieve	results.

In	addition,	SQL	Server	2000	can	be	accessed	from	URLs	in	Internet
applications.	URLs	are	formatted	strings,	or	stream	objects,	that	Internet
applications	use	to	access	resources	available	through	the	Internet	or	an
enterprises	intranet.	SQL	Server	2000	supports	URLs	that	specify	Transact-SQL
statements,	query	templates,	or	XPath	queries.

Any	SQL	commands	sent	to	SQL	Server	2000	through	the	database	APIs	or
URLs	must	comply	with	the	Transact-SQL	language.	Transact-SQL	complies
with	the	Entry	Level	of	the	SQL-92	standard,	and	in	addition,	supports	powerful
extensions	to	SQL-92.The	SQL	Server	OLE	DB	provider	and	SQL	Server
ODBC	driver	also	support	the	ODBC	SQL	specification.	For	more	information,
see	Transact-SQL	Overview.

These	are	the	general	database	APIs	supported	by	SQL	Server	2000.

Topic Description
Programming	ADO	SQL
Server	Applications
(Microsoft	ActiveX®	Data
Objects)

COM	API	recommended	as	the	primary	API
for	accessing	data	from	general	business
applications,	such	as	human	resources,
accounting,	and	marketing	applications.	ADO
encapsulates	the	OLE	DB	API	in	a	simplified
object	model	that	reduces	application
development	and	maintenance	costs.	The	SQL
Server	OLE	DB	provider	is	the	preferred
provider	to	use	in	ADO	applications	that
access	SQL	Server.	ADO,	similar	to	OLE	DB,
can	access	data	from	many	sources,	not	just
SQL	databases.	In	SQL	Server	2000,	ADO
supports	XML	document	processing	in
addition	to	relational	result	set	processing.

URL	Access Formatted	strings	or	stream	objects	used	by
Internet	applications	to	access	resources
available	on	the	Internet	or	intranet.	SQL
Server	2000	supplies	an	ISAPI	.dll	that	Internet
Information	Services	(IIS)	supports	references

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()


to	SQL	Server	2000	from	URLs.
OLE	DB	and	SQL	Server Strategic,	low-level,	COM	API	for	accessing

data.	OLE	DB	is	recommended	for	developing
tools,	utilities,	or	low-level	components	that
need	high	performance.	The	SQL	Server	OLE
DB	provider	is	a	native,	high	performance
provider	that	accesses	the	SQL	Server	TDS
protocol	directly.	In	SQL	Server	2000,	OLE
DB	supports	XML	document	processing	in
addition	to	relational	result	set	processing.

Programming	ODBC	SQL
Server	Applications
(Open	Database
Connectivity)

Open	C	API	designed	to	access	data	in	SQL
databases.	The	SQL	Server	ODBC	driver	is	a
native,	high-performance	driver	that	directly
accesses	the	SQL	Server	TDS	protocol.

Programming	Embedded
SQL	for	C

Standard	API	defined	for	accessing	SQL
databases	from	C	or	COBOL	applications.

Programming	DB-Library
for	C

Legacy	C	API	designed	to	work	with	SQL
Server.

Through	its	support	of	ODBC,	SQL	Server	2000	also	supports	applications
written	to	the	Remote	Data	Objects	(RDO)	and	Data	Access	Objects	(DAO)
APIs.	These	are	object	APIs	that	encapsulate	ODBC.	They	are	not	discussed
further	in	SQL	Server	Books	Online;	programmers	using	RDO	and	DAO	should
refer	to	ODBC	and	SQL	Server	2000	for	implementation	details	for	the	SQL
Server	ODBC	Driver.

SQL	Server	Books	Online	topics	about	ADO,	OLE	DB,	and	ODBC	do	not	cover
the	full	functionality	of	those	APIs.	The	topics	cover	only	the	issues	specific	to
those	APIs	when	you	are	using	the	SQL	Server	OLE	DB	provider	or	the	SQL
Server	ODBC	driver.	They	assume	that	you	are	familiar	with	the	general
concepts	for	the	API	you	are	using,	and	that	you	have	access	to	the
documentation	for	the	API.	You	can	download	the	documentation	for	ADO,
OLE	DB,	and	ODBC	at	Microsoft	Web	site.

Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)	is	a	component	that
allows	applications	to	define	distributed	transactions.	Distributed	transactions
protect	the	integrity	of	a	series	of	updates	made	against	multiple	servers.	SQL

JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home


Server	2000	database	applications	can	initiate	distributed	transactions
themselves	by	calling	the	MS	DTC	API	directly,	but	the	SQL	Server	database
engine	can	also	call	MS	DTC	to	implement	the	functionality	required	by
distributed	Transact-SQL	statements	executed	by	applications.	For	more
information,	see	MS	DTC	Distributed	Transactions

SQL	Server	Database	Services	APIs
SQL	Server	2000	supports	APIs	that	allow	applications	to	configure	and
administer	the	DTS	and	replication	components	of	SQL	Server.	Applications	can
use	the	same	administration	and	configuration	API,	SQL-DMO,	which	the	SQL
Server	tools	use	when	managing	instances	of	SQL	Server.

Topic Description
DTS	Programming
Reference
(Data	Transformation
Services)

Set	of	COM	interfaces	(based	on	OLE	DB)	for
defining	and	executing	complex	data
transformations	between	OLE	DB	data
providers.

MS	DTC	Distributed
Transactions

Component	that	allows	applications	to	define
distributed	transactions	that	protect	the
integrity	of	a	series	of	updates	made	against
multiple	servers.	Applications	use	the
transaction	commands	of	an	API	or	Transact-
SQL,	the	API	or	SQL	Server	2000	interface
with	MS	DTC	to	implement	the	distributed
transactions.

Programming	Extended
Stored	Procedures

C	API	for	writing	SQL	Server	extended	stored
procedures.

Getting	Started	with
Replication	Programming

Set	of	COM	interfaces	for	defining	and
managing	replication	between	instances	of
SQL	Server	databases.	You	can	also	replicate
data	from	heterogeneous	third-party	databases
to	SQL	Server.

Developing	SQL-DMO
Applications
(SQL	Distributed
Management	Objects)

Set	of	COM	interfaces	for	managing	and
administering	SQL	Server	2000.

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()


For	information	about	additional	considerations	regarding	the	use	of	the	APIs
discussed,	see	Application	Development	Architecture.

Through	its	support	of	ODBC,	SQL	Server	2000	also	supports	applications
written	to	the	Remote	Data	Objects	(RDO)	and	Data	Access	Objects	(DAO)
APIs.	These	are	object	APIs	that	encapsulate	ODBC.	They	are	not	discussed
further	in	SQL	Server	Books	Online;	programmers	using	RDO	and	DAO	should
refer	to	ODBC	and	SQL	Server	2000	for	implementation	details	for	the	SQL
Server	ODBC	Driver.

SQL	Server	Books	Online	topics	about	ADO,	OLE	DB,	and	ODBC	do	not	cover
the	full	functionality	of	those	APIs.	The	topics	cover	only	the	issues	specific	to
those	APIs	when	you	are	using	the	SQL	Server	OLE	DB	provider	or	the	SQL
Server	ODBC	driver.	They	assume	that	you	are	familiar	with	the	general
concepts	for	the	API	you	are	using,	and	that	you	have	access	to	the
documentation	for	the	API.	You	can	download	the	documentation	for	ADO,
OLE	DB,	and	ODBC	at	Microsoft	Web	site.

JavaScript:hhobj_18.Click()
http://www.microsoft.com/isapi/redir.dll?Prd=uda&Ar=home


Building	SQL	Server	Applications



Connecting	Early	Version	Clients	to	SQL	Server	2000
Microsoft®	SQL	Server™	2000	supports	connections	from	client	applications
that	use	the	client	software	of	SQL	Server	version	7.0	or	earlier.	SQL	Server
2000	supports	these	connections	in	a	compatibility	mode.	If	a	database	is
migrated	to	SQL	Server	2000	from	SQL	Server	4.21a,	6.0,	6.5,	or	7.0,	the
applications	using	the	database	can	continue	working	with	few,	if	any,	changes.

SQL	Server	uses	an	application	level	protocol	called	Tabular	Data	Stream	(TDS)
to	communicate	between	applications	and	instances	of	SQL	Server.	SQL	Server
2000	supports	these	versions	of	TDS:

Applications	using	the	SQL	Server	2000	versions	of	the	OLE	DB
provider	for	SQL	Server	or	the	SQL	Server	ODBC	driver	communicate
using	TDS	8.0.

Applications	using	the	SQL	Server	7.0	versions	of	the	OLE	DB
provider	for	SQL	Server	or	the	SQL	Server	ODBC	driver	communicate
using	TDS	7.0.

Applications	using	the	SQL	Server	ODBC	driver	from	SQL	Server
versions	6.5,	6.0,	or	4.21a	communicate	using	TDS	4.2.	These	versions
of	SQL	Server	did	not	include	OLE	DB	providers.

Application	using	any	version	of	DB-Library	or	Embedded-SQL	for	C
communicates	using	TDS	4.2.	The	DB-Library	.dll	used	by	these	two
APIs	has	not	been	enhanced	since	SQL	Server	6.5,	so	even	the	.dll
versions	included	with	SQL	Server	2000	and	SQL	Server	7.0	still	use
TDS	4.2.

Application	using	any	version	of	DB-Library	or	Embedded-SQL	for	C
communicates	using	TDS	4.2.	The	DB-Library	.dll	used	by	these	two
APIs	has	not	been	enhanced	since	SQL	Server	6.5,	so	even	the	.dll
versions	included	with	SQL	Server	2000	and	SQL	Server	7.0	still	use



TDS	4.2.

Applications	using	TDS	7.0	cannot	access	all	features	introduced	in	SQL	Server
2000.	The	new	features	not	available	to	TDS	7.0	clients	include:

TDS	7.0	does	not	support	sql_variant	data.	sql_variant	data	values	are
returned	as	nvarchar(4000)	values	to	TDS	7.0	clients.

TDS	7.0	does	not	support	bigint	data.	bigint	data	values	are	returned	as
decimal(19,0)	values	to	TDS	7.0	clients.

TDS	7.0	does	not	support	column-level	collations.	SQL	Server	2000
always	reports	the	instance	default	collation	back	to	TDS	7.0	clients.

Applications	using	TDS	4.2	cannot	access	all	features	introduced	in	SQL	Server
7.0	and	SQL	Server	2000.	The	new	features	that	are	not	available	to	TDS	4.2
clients	include:

TDS	4.2	does	not	support	sql_variant	data.	sql_variant	data	values	are
returned	as	varchar(255)	values	to	TDS	4.2	clients.

TDS	4.2	does	not	support	bigint	data.	bigint	data	values	are	returned	as
float	values	to	TDS	4.2	clients.

TDS	4.2	does	not	support	column-level	collations.	SQL	Server	2000
always	reports	the	instance	default	collation	back	to	TDS	4.2	clients.

TDS	4.2	does	not	support	XML	document	processing.	TDS	4.2
applications	attempting	to	execute	SELECT	statements	with	a	FOR
XML	clause	will	receive	an	error.

char,	varchar,	nchar,	nvarchar,	binary,	and	varbinary	values	longer
than	255	bytes	are	truncated	to	255	bytes.



TDS	4.2	does	not	support	Unicode.	nchar	and	nvarchar	values	are
converted	to	char	and	varchar	using	the	non-Unicode	Windows®	code
page	of	the	server,	with	possible	loss	of	extended	characters.	ntext
values	cannot	be	retrieved.

uniqueidentifer	data	types	are	converted	to	varbinary(16).

NULL	values	in	bit	columns	are	returned	as	0.	Catalog	and	meta	data
functions	report	all	bit	columns	as	NOT	NULL	because	NULL	was	not
allowed	for	bit	columns	in	SQL	Server	version	6.5	and	earlier.

Catalog	and	meta	data	functions	do	not	report	the	SQL	Server	2000	data
types	(nchar,	nvarchar,	ntext,	or	uniqueidentifier).

In	SQL	Server	6.5	and	earlier,	sysname	was	defined	as	varchar(30).	In
SQL	Server	2000,	sysname	is	defined	as	nvarchar(128)	to	allow	for
longer	identifiers	that	contain	more	extended	characters.	TDS	4.2
clients	cannot	access	SQL	Server	2000	objects	that	have	names	more
than	30	characters	in	length	or	that	include	characters	not	represented	in
the	Windows	code	page	on	the	client	computer.

If	any	of	these	features	are	introduced	into	a	SQL	Server	database,	applications
running	with	earlier	versions	of	the	SQL	Server	client	software	must	be
upgraded	before	they	can	access	these	new	features.


	Building SQL Server Applications Overview
	Connecting Early Version Clients to SQL Server 2000


