
2.04	(2010-10-09)
©2010	-	see	Credits

au3Irr2	Project	page

http://code.google.com/p/au3irrlicht2/

Introduction
au3Irr2	brings	together	the	ease	of	AutoIt	with	the	power	of	the	3D
engine	Irrlicht.	It	covers	a	whole	bunch	of	features	to	create	serious	3D
applications	as	well	as	nice	games,	useable	both	by	beginners	and	more
experienced	to	learn,	prototye,	and	realise	ideas	without	a	big	overhead.

Also	au3Irr2	is	still	work	in	progress,	it	already	provides	well	over	260
commands	that	cover	features	like	Bitmaps,	3D	models,	Animation,
Collision,	Scene	management,	Maps,	Terrains,	Cameras,	Lights,	special
effects,	GUI	and	more.	Additionally,	there	are	around	100	well
commented	examples	showing	the	different	features	and	their	usage.

Technically,	au3Irr2	is	a	'wrapper	for	a	wrapper',	based	upon	Frank
Dodd's	great	FreeBasic	Irrlicht	Wrapper.	Standing	on	this	mature
project	au3Irr2	has	really	good	potential	to	grow	and	prosper.	Especially	if
you	use	it	and	be	active	in	the	forum!

http://www.autoitscript.com/autoit3/index.shtml
http://www.autoitscript.com/forum/index.php?showtopic=113881

How	to	start

Pretty	easy.	Of	course	you	need	installed	AutoIt,	also	full	version	of
SciTE	is	highly	recommend.

Extract	the	au3Irr2.zip	to	whereever	you	like.
Run	the	'example	launcher'	to	run	&	enjoy	the	examples.	Open	them
via	the	launcher	with	SciTE	to	see	how	it	is	done.
Use	the	helpfile	-	it	lists	all	working	functions,	so	it	can	be	used	as
reference	and	overview.
Use	the	setup	feature	inside	the	example	launcher	to	add	context
help	and	calltips	into	SciTE.

Remark
Because	helpfile	does	(yet)	not	provide	detailed	informations	about
parameters	and	usage	of	all	working	functions,	documentation	of	the
original	Freebasic	Wrapper	is	also	included	as	appendix.
au3Irr2	follows	(mostly)	its	syntax	and	usage,	so	it's	a	good	place	to	look
into	(keep	in	mind:	not	all	FB	Wrapper	functions	are	also	implemented	in
au3Irr2).

http://www.autoitscript.com/autoit3/index.shtml
http://www.autoitscript.com/autoit3/scite/

Where	to	continue

jRowe's	au3Irr2	topic	on	autoitscript.com.	Don't	be	shy,	be	part	of	it.
au3Irr2	project	page	with	latest	releases	and	sources.
Frank	Dodd's	Irrlicht	Wrapper	Online	Portal.
Frank	Dodd's	Irrlicht	Wrapper	in	the	FreeBasic	Forum.
Irrlicht	engine	-	the	'mother'	of	it	all.

	

	

http://www.autoitscript.com/forum/index.php?showtopic=113881
http://code.google.com/p/au3irrlicht2/
http://www.frankdodd.screaming.net/IrrlichtWrapper/IrrlichtWrapperPortal.htm
http://www.freebasic.net/forum/viewtopic.php?t=3584
http://irrlicht.sourceforge.net/

Software	License

au3Irr2

WWW	:	http://code.google.com/p/au3irrlicht2/
Contact	:	via	au3Irr2	topic	on	autoitscript.com
(http://www.autoitscript.com/forum/index.php?showtopic=113881)
Authors	:	J.Rowe	and	Andreas	Templin

END-USER	LICENSE	AGREEMENT	FOR	THIS	SOFTWARE

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a
copy	of	this	software	and	associated	documentation	files	(the
"Software"),	to	deal	in	the	Software	without	restriction,	including	without
limitation	the	rights	to	use,	copy,	modify,	merge,	publish,	distribute,
sublicense,	and/or	sell	copies	of	the	Software,	and	to	permit	persons	to
whom	the	Software	is	furnished	to	do	so,	subject	to	the	following
conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included
in	all	copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF
ANY	KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED
TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A
PARTICULAR	PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT
SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR
ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN
ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,
OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE
OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

ADDENDUM

au3Irr2	is	based	upon	the	open	source	projects

'IrrlichtWrapper	for	FreeBasic'	from	Frank	Dodd	and	the
IrrlichtWrapper	for	FB	team
(http://www.freebasic.net/forum/viewtopic.php?t=3584),	and
'Irrlicht	Engine'	from	Nikolaus	Gebhardt	and	the	Irrlicht	team
(http://irrlicht.sourceforge.net/).
The	Irrlicht	Engine	itself	is	based	in	part	on	the	work	of	the
Independent	JPEG	Group	and	the	zlib.

Please	refer	to	documentations	and	license	agreements	of	this	two
projects	for	further	information.

	

[END	OF	LICENSE]

	

	

au3Irr2	History/Changelog
This	file	was	created	automatically	as	a	subset.	See
\include_au3Irr2_changelog.txt	for	complete	list	of	changes.
	

Release	2.04	(2010-10-09)

Script	breaking	changes:

_IrrAddSplineAnimator:	Parameters	changed	to	simplify	usage	(see
examples)
_IrrGetNodePosition,	_IrrGetNodeRotation,
_IrrGetNodeAbsolutePosition,	_IrrGetCameraTarget:	Removed
required	byRef	array	parameter	(see	help	file/adjusted	examples	for
syntax)

UDFs:

Fixed/Added:	Some	more	working	functions	(mainly	around	added
examples)
Added:	Some	missing	2D	functions	and	documentation
(contributions	from	smashly)
Fixed:	_IrrSetFog	(linear	and	exponential	fog	were	interchanged)
Fixed:	_IrrCreateMesh	($s_MeshName	not	being	passed	in	the	DLL
call)
Fixed:	_IrrGetScreenCoordinatesFrom3DPosition	(did	not	return
anything	useable	because	of	wrong	dllCall)

Examples:

Added:	015	(CustomMesh),	022	(Indices+Vertices),	024	(Mesh	to
file),	062	(6D0F_Camera)
Added:	(contribution	from	smashly):	039	(Texture	blending),	070
(Texture_and_Images),	103	(Billboard	Groups),	104	(LOD)
Added:	007/025/027/066/067/068/069/074/075	(ParticleSystem)
Reworked:	011	(Animators)	shows	usage	of	changed
_IrrAddSplineAnimator
Fixed:	010	(TerrainAndFog)	/	029/054	(Skydomes)

Help	file:

Added:	Completed	documentation	including	example	code	for	some
more	functions.	Current	status:	Topics	completed	along	examples	1-
16	+	several	more.	At	least	naked	reference	w/o	detailed

informations	for	all	functions	inside	other	examples.
Added:	'Copy	to	clipboard'-button	for	included	examples	(using	VBS
code	from	GEOSoft)

Internal	tools:

Fixed:	Examples	could	not	be	opened	when	running	launcher	from
path	with	spaces
Added:	Setup	feature	to	example	launcher	to	merge	au3Irr2	help	into
local	au3	help	and	add/update	calltips	for	SciTe
Excluded	\internal_tools	because	not	too	interesting	for	99.9%	(for
the	0.1%:	available	via	the	sources	from	project	page)

Other:

Changed:	global	$result	used	in	UDF	files	switched	to	local	variables
(WIP,	finished	for	2D,	Scene,	Camera,	Animation,	Node)

	

Release	2.03	(2010-09-05)

UDF:

Changed:	Splitted	UDF	per	category	into	\include.	Main	UDF	(and
the	only	one	which	is	needed	to	be	included)	is	still	au3Irrlicht2.au3
Changed:	All	used	dll	files	are	moved	to	\bin	to	clean	up	the	root	dir.
_IrrStart	is	modified	to	find	them	anyway.
Fixed:	_IrrSetNodeVisibility

Examples:

Added:	089	(Orthogonal	Camera),	106	(Advanced	start)
Changed:	029	(Skydome)
Fixed:	049	(Loaded_Scene_Collision),	051	(Clouds)

Help	file:

Added:	First	version	as	reference	of	all	working	+	proven	functions.
Current	status:	Topics	completed	including	example	code	along
examples	1	to	6.	Naked	reference	w/o	detailed	informations	for	other
examples.
Changed:	Moved	original	freeBasic	Wrapper	docs	from
\FB_documentation	to	\internal_tools\buildHelp\html_static.	It's	now
included	into	help	file.
Added:	Merged	help	to	use	the	au3Irr2	help	inside	the	au3	help.

Internal	tools:

Added:	helper	scripts	and	files	for	building	help	file	and
au3.user.calltips.api	(see	\internal
tools\help_building_readme.txt)

Other:

Fixed:	\media\fonthaettenschweiler.bmp	(bogQ)
Added:	msvcr71.dll	-	possibly	missing	on	some	machines	(jl)

	

Release	2.02	(2010-07-29)
First	release	in	one	package	(updated	UDF	+	all	needed	.dll's,	more
examples,	ExampleLauncher)

	

Release	2.01	(2010-07-20)
Updated	UDF	with	fixes,	additions	and	separate	example	package

	

Release	2.00	(2010-05-03)
First	release	of	jRowe

Tutorials
Where	are	the	tutorials?
There	are	no	tutorials	nor	bigger	demos	yet.	But	why	not	be	the	first	to
write	one?
Get	yourself	a	place	on	the	credits	page	and	help	au3Irr2	to	become	a
mature	project!

In	the	meantime	...
...	you	are	not	alone.	There	are	a	lot	of	well	commented	examples	in	the
\example	directory.	They	should	give	you	all	you	need	to	work	yourself
into	au3Irr2.
Have	fun!

au3Irr2	Function	Reference

_IrrSetTextureCreationFlag

Sets	texture	creation	flags	controlling	how	textures	are	handled	when
they	are	created.

#Include	<au3Irrlicht2.au3>
_IrrSetTextureCreationFlag($i_Flag,	$i_Value)

	

Parameters

$i_Value

The	following	flags	can	be	set;
$ETCF_ALWAYS_16_BIT	-	Forces	the	driver	to	always
create	16	bit	textures,	independently	of	which	format	the	file
on	disk	has.
$ETCF_ALWAYS_32_BIT	-	Forces	the	driver	to	always
create	32	bit	textures,	independently	of	which	format	the	file
on	disk	has.
$ETCF_OPTIMIZED_FOR_QUALITY	-	Lets	the	driver
decide	in	which	format	the	textures	are	created	and	tries	to
make	the	textures	look	as	good	as	possible.
$ETCF_OPTIMIZED_FOR_SPEED	-	Lets	the	driver	decide
in	which	format	the	textures	are	created	and	tries	to	create
them	maximizing	render	speed.
$ETCF_CREATE_MIP_MAPS	-	Automatically	creates	mip
map	levels	for	the	textures.
$ETCF_NO_ALPHA_CHANNEL	-	Discard	any	alpha	layer
and	use	non-alpha	color	format.

$i_Flag Turn	Creation	Flag	Off	or	On	($IRR_OFF	or	$IRR_ON)

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
None.

	

Example

#include	<au3Irrlicht2.au3>
Global	$hTexture,	$aInfo

_IrrStart()

				;	Set	the	Texture	creation	flag	to	load	textures	in	16	bit	without	alpha
(R5G6B5	format)
				_IrrSetTextureCreationFlag(BitOR($ETCF_ALWAYS_16_BIT,
$ETCF_NO_ALPHA_CHANNEL),	$IRR_ON)

				;	Load	a	texture
				$hTexture	=	_IrrGetTexture("./media/cross.bmp")

				;	query	some	info	about	the	loaded	texture,	index	3	of	the	returned	array	is
Color	Reference
				$aInfo	=	_IrrGetTextureInformation($hTexture)

				;	show	the	color	format	in	a	string	to	see	the	Texture	creation	flag	was	set
				MsgBox(64,	"Texture	color	format",	_TextureFormatString($aInfo[3]))

_IrrStop()

Func	_TextureFormatString($iValue)

				Local	$sMsg
				Switch	$iValue
								Case	$ECF_R5G6B5
												$sMsg	&=	"R5G6B5	-	16	bit	without	alpha	channel"
								Case	$ECF_A1R5G5B5
												$sMsg	&=	"A1R5G5B5	-	16	bit	with	alpha	channel"
								Case	$ECF_R8G8B8
												$sMsg	&=	"R8G8B8	-	24	bit	without	alpha	channel"
								Case	$ECF_A8R8G8B8
												$sMsg	&=	"A8R8G8B8	-	32	bit	with	alpha	channel"
								Case	Else
												$sMsg	&=	"Unknown"
				EndSwitch
				Return	$sMsg
EndFunc			;==>_TextureFormatString

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetTexture

Loads	2D	texture	from	bitmap	file	into	video	memory	that	can	then	be
used	to	texture	a	model	or	to	draw	onto	the	screen.

#Include	<au3Irrlicht2.au3>
_IrrGetTexture($s_ImageFile)

	

Parameters

$s_ImageFile Full	path	to	the	bitmap	file.

	

Return	Value
Success:	Handle	of	the	device	dependend	irrlicht	texture	object
Failure:	False

	

Remarks
Irrlicht	engine	supports	currently	this	image	file	formats:
JPEG	File	Interchange	Format	(.jpg,
r/w)

Portable	Network	Graphics	(.png,
r/w)

Truevision	Targa	(.tga,	r/w) Windows	Bitmap	(.bmp,	r/w)
Zsoft	Paintbrush	(.pcx,	r/w) Portable	Pixmaps	(.ppm,	r/w)
Adobe	Photoshop	(.psd,	r) Quake	2	textures	(.wal,	r)

	

Related
_IrrRemoveTexture,	_IrrGetImage

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetImage

Loads	2D	texture	from	bitmap	file	into	main	memory	for	CPU	based
operations.

#Include	<au3Irrlicht2.au3>
_IrrGetImage($s_ImageFile)

	

Parameters

$s_ImageFile Full	path	to	the	bitmap	file.

	

Return	Value
Success:	Handle	of	the	irrlicht	memory	texture	object
Failure:	False

	

Remarks
This	images	can	not	be	used	to	texture	3D	objects!	Instead,	they	can
be	used	to	supply	a	heightmap	to	a	terrain	or	other	similar	CPU	based
operations.

Irrlicht	engine	supports	currently	this	image	file	formats:
JPEG	File	Interchange	Format	(.jpg,
r/w)

Portable	Network	Graphics	(.png,
r/w)

Truevision	Targa	(.tga,	r/w) Windows	Bitmap	(.bmp,	r/w)
Zsoft	Paintbrush	(.pcx,	r/w) Portable	Pixmaps	(.ppm,	r/w)
Adobe	Photoshop	(.psd,	r) Quake	2	textures	(.wal,	r)

	

Related
_IrrRemoveImage,	_IrrGetTexture

	

au3Irr2	Function	Reference

_IrrCreateTexture

Creates	a	blank	texture.

#Include	<au3Irrlicht2.au3>
_IrrCreateTexture($s_TextureName,	$i_XSize,	$i_YSize,	$i_ColorFormat)

	

Parameters

$s_TextureName Texture_name	as	string.
$i_XSize Width	of	the	texture.
$i_YSize Height	of	the	texture.

$i_ColorFormat

The	format	of	the	texture	can	be	one	of	the	following:
$ECF_A1R5G5B5	-	16	bit	color	format	used	by	the
software	driver,	and	thus	preferred	by	all	other	irrlicht
engine	video	drivers.
$ECF_R5G6B5	-	Standard	16	bit	color	format.
$ECF_R8G8B8	-	24	bit	color,	no	alpha	channel,	but	8
bit	for	red,	green	and	blue.
$ECF_A8R8G8B8	-	Default	32	bit	color	format.	8	bits
are	used	for	every	component:	red,	green,	blue	and
alpha.

	

Return	Value
Success:	Handle	of	the	newly	created	irrlicht	texture	object
Failure:	False	and	@error	1

	

Remarks
None.

	

Related
_IrrDraw2DImage,	_IrrGetTextureInformation,	_IrrLockTexture,
_IrrUnlockTexture

	

Example

#include	"au3Irrlicht2.au3"

Global	$hTexture

_IrrStart()

$hTexture	=	_IrrCreateTexture("MyTexture",	128,	128,	$ECF_A8R8G8B8)

While	_IrrRunning()

				_IrrBeginScene(255,	255,	0)
				_IrrDraw2DImage($hTexture,	0,	0)
				_IrrEndScene()

WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrCreateImage

Creates	a	blank	image	that	does	not	use	video	memory.

#Include	<au3Irrlicht2.au3>
_IrrCreateImage($i_XSize,	$i_YSize,	$i_ColorFormat)

	

Parameters

$i_XSize Width	of	the	texture.
$i_XSize Width	of	the	texture.

$i_ColorFormat

The	format	of	the	texture	can	be	one	of	the	following:
$ECF_A1R5G5B5	-	16	bit	color	format	used	by	the
software	driver,	and	thus	preferred	by	all	other	irrlicht
engine	video	drivers.
$ECF_R5G6B5	-	Standard	16	bit	color	format.
$ECF_R8G8B8	-	24	bit	color,	no	alpha	channel,	but	8
bit	for	red,	green	and	blue.
$ECF_A8R8G8B8	-	Default	32	bit	color	format.	8	bits
are	used	for	every	component:	red,	green,	blue	and
alpha.

	

Return	Value
Success:	Handle	of	the	newly	created	device	dependend	irrlicht	image
object
Failure:	False	and	@error	1

	

Remarks
This	images	can	not	be	used	to	texture	3D	objects!
Instead,	they	can	be	used	to	supply	a	heightmap	to	a	terrain	or	other
similar	CPU	based	operations.

	

Related
_IrrLockImage,	_IrrUnlockImage

	

au3Irr2	Function	Reference

_IrrRemoveTexture

Removes	the	texture	from	memory	freeing	up	the	space	it	occupied.

#Include	<au3Irrlicht2.au3>
_IrrRemoveTexture($h_Texture)

	

Parameters

$h_Texture Handle	of	an	device	dependend	irrlicht	texture	object

	

Return	Value
Success:	True
Failure:	False

	

Remarks
You	should	ensure	that	the	texture	is	not	in	use	by	materials	assigned	to
nodes.

	

Related
_IrrGetTexture,	_IrrGetImage

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

local	$time	=	TimerInit()
WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()

				if	$sceneNode	<>	0	AND	TimerDiff($time)	>	3000	then
								_IrrRemoveNode($sceneNode)
								_IrrRemoveTexture($texture)	;	no	longer	needed
								$sceneNode	=	0
				EndIf

WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrRemoveImage

Removes	the	image	from	memory	freeing	up	the	space	it	occupied.

#Include	<au3Irrlicht2.au3>
_IrrRemoveImage($h_Image)

	

Parameters

$h_Image Handle	of	the	irrlicht	memory	image	object.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
You	should	ensure	that	the	image	is	not	in	use	by	other	functions.

	

Related
_IrrGetImage,	_IrrGetTexture

	

au3Irr2	Function	Reference

_IrrLockTexture

Locks	the	texture	and	returns	a	pointer	to	the	pixels.

#Include	<au3Irrlicht2.au3>
_IrrLockTexture($h_Texture)

	

Parameters

$h_Texture Handle	to	an	irrlicht	texture	object

	

Return	Value
Success:	Pointer	to	the	pixels.
Failure:	False	and	@error	1

	

Remarks
None.

	

Related
_IrrUnlockTexture

	

Example

#include	"au3Irrlicht2.au3"

Global	$hTexture
Global	$iWidthHeight	=	128

Global	$iPixelsAmount	=	$iWidthHeight	*	$iWidthHeight
Global	$pPixels,	$tPixels
Global	$iColor	=	0xFFFF0000	;	Red

_IrrStart()

$hTexture	=	_IrrCreateTexture("Red",	$iWidthHeight,	$iWidthHeight,
$ECF_A8R8G8B8)
$pPixels	=	_IrrLockTexture($hTexture)
$tPixels	=	DllStructCreate("uint["	&	$iPixelsAmount	&	"]",	$pPixels)
For	$i	=	1	To	$iPixelsAmount
				DllStructSetData($tPixels,	1,	$iColor,	$i)
				$pPixels	+=	1
Next
_IrrUnlockTexture($hTexture)
$tPixels	=	0

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(255,	255,	0)
				_IrrDraw2DImage($hTexture,	0,	0)
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrUnlockTexture

Unlock	the	texture,	presumably	after	it	has	been	modified	and	recreate
the	mipmap	levels.

#Include	<au3Irrlicht2.au3>
_IrrUnlockTexture($h_Texture)

	

Parameters

$h_Texture Handle	to	an	irrlicht	texture	object	that	has	been	Locked	byprior	call	to	_IrrLockOpenGLTexture	or	_IrrLockTexture.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrLockOpenGLTexture,	_IrrLockTexture

	

Example

#include	"au3Irrlicht2.au3"

Global	$hTexture
Global	$iWidthHeight	=	128
Global	$iPixelsAmount	=	$iWidthHeight	*	$iWidthHeight
Global	$pPixels,	$tPixels
Global	$iColor	=	0xFFFF0000	;	Red

_IrrStart()

$hTexture	=	_IrrCreateTexture("Red",	$iWidthHeight,	$iWidthHeight,
$ECF_A8R8G8B8)
$pPixels	=	_IrrLockTexture($hTexture)
$tPixels	=	DllStructCreate("uint["	&	$iPixelsAmount	&	"]",	$pPixels)
For	$i	=	1	To	$iPixelsAmount
				DllStructSetData($tPixels,	1,	$iColor,	$i)
				$pPixels	+=	1
Next
_IrrUnlockTexture($hTexture)
$tPixels	=	0

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(255,	255,	0)
				_IrrDraw2DImage($hTexture,	0,	0)
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrLockImage

Locks	an	image	object	and	returns	a	pointer	to	the	pixels.

#Include	<au3Irrlicht2.au3>
_IrrLockImage($h_Image)

	

Parameters

$h_Image Handle	to	an	irrlicht	image	object

	

Return	Value
Success:	Pointer	to	the	image	pixels
Failure:	False	and	@error	1

	

Remarks
None.

	

Related
_IrrCreateImage,	_IrrGetImage,	_IrrUnlockImage

	

Example

#include	"au3Irrlicht2.au3"

Global	$hSrcImage,	$hDesTexture
Global	$pSrcPixels,	$pDesPixels

Global	$tSrcPixels,	$tDesPixels
Global	$iWidthHeight	=	256
Global	$iPixelsAmount	=	$iWidthHeight	*	$iWidthHeight

_IrrStart()

$hSrcImage	=	_IrrGetImage("./media/splatter.tga")
$hDesTexture	=	_IrrCreateTexture("Desination",	$iWidthHeight,
$iWidthHeight,	$ECF_A8R8G8B8)

$pSrcPixels	=	_IrrLockImage($hSrcImage)
$pDesPixels	=	_IrrLockTexture($hDesTexture)

$tSrcPixels	=	DllStructCreate("uint["	&	$iPixelsAmount	&	"]",	$pSrcPixels)
$tDesPixels	=	DllStructCreate("uint["	&	$iPixelsAmount	&	"]",	$pDesPixels)
For	$i	=	1	To	$iPixelsAmount
				DllStructSetData($tDesPixels,	1,	DllStructGetData($tSrcPixels,	1,	$i),	$i)
				$pDesPixels	+=	1
				$pSrcPixels	+=	1
Next

_IrrUnlockImage($hSrcImage)
_IrrUnlockTexture($hDesTexture)

$tSrcPixels	=	0
$tDesPixels	=	0

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(255,	255,	0)
				_IrrDraw2DImage($hDesTexture,	0,	0)
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrUnlockImage

[todo]

#Include	<au3Irrlicht2.au3>
_IrrUnlockImage($h_Image)

	

Parameters

$h_Image Handle	to	an	irrlicht	image	object	that	has	been	Locked	by
prior	call	to	_IrrLockImage

	

Return	Value
Success:	True
Failure:	False	and	@error	>	0

	

Remarks
None.

	

Related
_IrrLockImage

	

Example

#include	"au3Irrlicht2.au3"

Global	$hSrcImage,	$hDesTexture

Global	$pSrcPixels,	$pDesPixels
Global	$tSrcPixels,	$tDesPixels
Global	$iWidthHeight	=	256
Global	$iPixelsAmount	=	$iWidthHeight	*	$iWidthHeight

_IrrStart()

$hSrcImage	=	_IrrGetImage("./media/splatter.tga")
$hDesTexture	=	_IrrCreateTexture("Desination",	$iWidthHeight,
$iWidthHeight,	$ECF_A8R8G8B8)

$pSrcPixels	=	_IrrLockImage($hSrcImage)
$pDesPixels	=	_IrrLockTexture($hDesTexture)

$tSrcPixels	=	DllStructCreate("uint["	&	$iPixelsAmount	&	"]",	$pSrcPixels)
$tDesPixels	=	DllStructCreate("uint["	&	$iPixelsAmount	&	"]",	$pDesPixels)
For	$i	=	1	To	$iPixelsAmount
				DllStructSetData($tDesPixels,	1,	DllStructGetData($tSrcPixels,	1,	$i),	$i)
				$pDesPixels	+=	1
				$pSrcPixels	+=	1
Next

_IrrUnlockImage($hSrcImage)
_IrrUnlockTexture($hDesTexture)

$tSrcPixels	=	0
$tDesPixels	=	0

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(255,	255,	0)
				_IrrDraw2DImage($hDesTexture,	0,	0)
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrCreateRenderTargetTexture

Create	a	texture	that	is	suitable	for	the	scene	manager	to	use	as	a
surface	to	which	it	can	render	its	3d	object.

#Include	<au3Irrlicht2.au3>
_IrrCreateRenderTargetTexture($i_XSize,	$i_YSize)

	

Parameters

$i_XSize Width	of	the	texture
$i_YSize Height	of	the	texture

	

Return	Value
Success:	Handle	to	an	irrlicht	texture	object
Failure:	False	and	@error	1

	

Remarks
Each	of	the	dimentions	must	be	of	a	power	of	two	for	example	128x128
or	256x256.
This	function	is	very	important	when	producing	texture	maps	for	special
effects	for	example	a	rendering	of	a	model	for	a	2D	image	displayed	in
the	HUD,
the	rendering	of	a	model	for	display	on	a	3D	surface	for	example	a	video
display	of	virtual	camera,	the	rendering	of	the	texture	for	the	reflection	of
a	mirror,
the	rendering	of	the	environment	for	use	in	a	water	or	chrome	shader.
Most	cards,	even	old	cards,	will	support	this	very	important	function.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMakeNormalMapTexture

Create	a	normal	map	from	a	gray-scale	height	map	texture.

#Include	<au3Irrlicht2.au3>
_IrrMakeNormalMapTexture($h_Texture,	$f_Amplitude)

	

Parameters

$h_Texture Handle	of	an	device	dependend	irrlicht	texture	object
$f_Amplitude

	

Return	Value
Success:	True
Failure:	False	and	@error	1

	

Remarks
Normal	maps	are	used	to	add	a	high	level	of	surface	lighting	detail	to
what	are	normally	low	resolution	models.
They	can	have	a	massive	effect	on	the	realism	of	an	object,	the	model
you	create	will	have	to	be	created	in	"tangent"	space	to	support	this.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrBlendTextures

Blend	the	source	texture	into	the	destination	texture	to	create	a	single
texture.

#Include	<au3Irrlicht2.au3>
_IrrBlendTextures($h_TextureDest,	$h_TextureSrc,	$i_Xoffset,	$i_Yoffset,
$i_Operation)

	

Parameters

$h_TextureDest Handle	to	the	Destination	irrlicht	texture	object.
$h_TextureSrc Handle	to	the	Source	irrlicht	texture	object.

$i_Xoffset X	position	where	the	Source	texture	will	be	drawn	into
the	Desination	texture.

$i_Yoffset Y	position	where	the	Source	texture	will	be	drawn	into
the	Desination	texture.

$i_Operation

Can	be	one	of	the	following:
$BLEND_SCREEN	;	0
$BLEND_ADD	;	1
$BLEND_SUBTRACT	;	2
$BLEND_MULTIPLY	;	3
$BLEND_DIVIDE	;	4

	

Return	Value
Success:	True
Failure:	False	and	set	@error,	check	@extended	to	see	what	the	error	is.
				@extended	0	then	the	@error	is	autoit	failed	the	DllCall
				@extended	1	Incompatible	texture	types
				@extended	2	Unsupported	texture	format,	must	be	32bit

	

Remarks
Textures	must	be	32	bit	format.

	

Related
_IrrGetTexture,	_IrrCreateTexture,	_IrrDraw2DImage

	

Example

#include	"au3Irrlicht2.au3"

Global	$hTextureDest,	$hTextureSrc

_IrrStart()

$hTextureDest	=	_IrrGetTexture("./media/Diagonal.bmp")
$hTextureSrc	=	_IrrGetTexture("./media/cross.bmp")

_IrrBlendTextures($hTextureDest,	$hTextureSrc,	0,	0,	$BLEND_MULTIPLY)

While	_IrrRunning()	And	Sleep(10)

				_IrrBeginScene(50,	50,	50)
				_IrrDraw2DImage($hTextureDest,	0,	0)
				_IrrEndScene()

WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrColorKeyTexture

Copies	any	parts	of	the	texture	that	are	the	same	as	the	specified	color
into	the	textures	alpha	channel.

#Include	<au3Irrlicht2.au3>
_IrrColorKeyTexture($h_Texture,	$i_Red,	$i_Green,	$i_Blue)

	

Parameters

$h_Texture Handle	of	the	texture	object
$i_Red Red	value	from	0	to	255
$i_Green Green	value	from	0	to	255
$i_Blue Blue	value	from	0	to	255

	

Return	Value
Success:	True
Failure:	False

	

Remarks
This	can	be	used	for	special	effects	or	to	make	these	regions
transparent.

	

Related
None.

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$logo	=	_IrrGetTexture("./media/cross.bmp")
_IrrColorKeyTexture($logo,	255,	255,	255)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	0,	0)
				_IrrDraw2DImageElement($logo,	0,	0	,	0,	0,	128,	64,
$IRR_IGNORE_ALPHA)
				_IrrDraw2DImageElement($logo,	0,	64,	0,	64,	128,	128,
$IRR_USE_ALPHA)
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrDraw2DImage

Draws	the	texture	to	the	display	at	the	supplied	coordinates.

#Include	<au3Irrlicht2.au3>
_IrrDraw2DImage($h_Image,	$i_XPos,	$i_YPos)

	

Parameters

$h_Image Handle	to	an	irrlicht	image	object
$i_XPos X	position	on	display	from	where	drawing	starts
$i_YPos Y	position	on	display	from	where	drawing	starts

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
_IrrGetTexture,	_IrrDraw2DImageElement

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$logo	=	_IrrGetTexture("./media/cross.bmp")

WHILE	_IrrRunning()
				_IrrBeginScene(50,	0,	0)
				_IrrDraw2DImage($logo,	0,	0)
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrDraw2DImageElement

Draws	given	rectangular	section	from	a	texture	to	the	display	at	the
supplied	coordinates

#Include	<au3Irrlicht2.au3>
_IrrDraw2DImageElement($h_Texture,	$i_XPos,	$i_YPos,	$i_SourceTopX,
$i_SourceTopY,	$i_SourceBottomX,	$i_SourceBottomY,	$i_UseAlpha)

	

Parameters

$h_Image Handle	to	an	irrlicht	image	object
$i_XPos X	position	on	display	from	where	drawing	starts
$i_YPos Y	position	on	display	from	where	drawing	starts
$i_SourceTopX X	top	position	of	rectangle	in	the	source	texture
$i_SourceTopY Y	top	position	of	rectangle	in	the	source	texture
$i_SourceBottomX X	bottom	position	of	rectangle	in	the	source	texture
$i_SourceBottomY Y	bottom	position	of	rectangle	in	the	source	texture

$i_UseAlpha

Whether	or	not	to	use	the	alpha	channel	should	be
one	of	the	following	values:
$IRR_IGNORE_ALPHA
$IRR_USE_ALPHA

	

Return	Value
Success:	True
Failure:	False

	

Remarks
Draws	the	texture	to	the	display	at	the	supplied	co-ordinates,	the	image	is

copied	from	the	specified	rectangle	in	the	source	texture,	this	enables
you	to	put	many	images	onto	a	single	texture.
This	function	also	supports	the	alpha	channel	when	drawing	the	image	to
the	display	and	can	draw	the	image	transparently.

	

Related
_IrrGetTexture,	_IrrColorKeyTexture,	_IrrDraw2DImage,
_IrrDraw2DImageElementStretch

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$logo	=	_IrrGetTexture("./media/cross.bmp")
_IrrColorKeyTexture($logo,	255,	255,	255)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	0,	0)
				_IrrDraw2DImageElement($logo,	0,	0	,	0,	0,	128,	64,
$IRR_IGNORE_ALPHA)
				_IrrDraw2DImageElement($logo,	0,	64,	0,	64,	128,	128,
$IRR_USE_ALPHA)
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrDraw2DImageElementStretch

Draws	specified	rectangle	from	Source	texture	sizing	it	to	fit	the	specified
Desination	rectangle.

#Include	<au3Irrlicht2.au3>
_IrrDraw2DImageElementStretch($h_Texture,	$i_DestTopX,	$i_DestTopY,
$i_DestBottomX,	$i_DestBottomY,	$i_SourceTopX,	$i_SourceTopY,
$i_SourceBottomX,	$i_SourceBottomY,	$i_UseAlpha)

	

Parameters

$h_Texture Handle	to	an	irrlicht	image	object
$i_DestTopX Top	X	Destination	where	the	drawing	will	start.
$i_DestTopY Top	Y	Destination	where	the	drawing	will	start.
$i_DestBottomX Bottom	X	Destination	where	the	drawing	will	end.
$i_DestBottomY Bottom	Y	Destination	where	the	drawing	will	end.
$i_SourceTopX X	top	position	of	rectangle	in	the	source	texture
$i_SourceTopY Y	top	position	of	rectangle	in	the	source	texture
$i_SourceBottomX X	bottom	position	of	rectangle	in	the	source	texture
$i_SourceBottomY Y	bottom	position	of	rectangle	in	the	source	texture

$i_UseAlpha

Whether	or	not	to	use	the	alpha	channel	should	be
one	of	the	following	values:
$IRR_IGNORE_ALPHA
$IRR_USE_ALPHA

	

Return	Value
Success:	True
Failure:	False

	

Remarks
The	image	is	copied	from	the	specified	rectangle	in	the	source	texture,
this	enables	you	to	put	many	images	onto	a	single	texture.
If	the	rectangles	are	different	sizes	this	function	will	scale	the	images
appropriately.
This	function	also	supports	the	alpha	channel	when	drawing	the	image	to
the	display	and	can	draw	the	image	transparently.

	

Related
_IrrGetTexture,	_IrrColorKeyTexture,	_IrrDraw2DImageElement

	

Example

#include	<au3Irrlicht2.au3>

_IrrStart()

Local	$hLogo	=	_IrrGetTexture("./media/Cross.bmp")

;	Use	White	as	Alpha	color
_IrrColorKeyTexture($hLogo,	255,	255,	255)

While	_IrrRunning()

				_IrrBeginScene(255,	255,	0)

				;	Draw	Original	texture	just	to	see	what	the	unchanged	texture	looks	like.
				_IrrDraw2DImage($hLogo,	0,	0)

				;Draw	texture	smaller	using	Alpha	beside	the	original.
				_IrrDraw2DImageElementStretch($hLogo,	128,	0,	192,	64,	0,	0,	128,	128,
$IRR_USE_ALPHA)

				;Draw	texture	Larger	using	Alpha	beside	the	previous	smaller	texture.
				_IrrDraw2DImageElementStretch($hLogo,	192,	0,	448,	256,	0,	0,	128,	128,
$IRR_USE_ALPHA)

				;Draw	beside	Larger	texture	quarter	of	source	texture	to	new	larger
destination	not	using	Alpha.
				_IrrDraw2DImageElementStretch($hLogo,	448,	0,	800,	352,	0,	0,	64,	64,
$IRR_IGNORE_ALPHA)

				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetFont

Loads	a	bitmap	containing	a	bitmap	font.

#Include	<au3Irrlicht2.au3>
_IrrGetFont($s_Font)

	

Parameters

$s_Font Filename	of	the	bitmap	font	file

	

Return	Value
Success:	Handle	of	the	irrlicht	font	texture	object
Failure:	False

	

Remarks
None

	

Related
_Irr2DFontDraw

	

Example

#include	"au3Irrlicht2.au3"
_IrrStart()
local	$bitmapFont	=	_IrrGetFont	("./media/fonthaettenschweiler.bmp")

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,0)
				_Irr2DFontDraw	($BitmapFont,	"@!	Example	Text	with	'German
Umlauts':	ÄäÖöÜü	!@",	120,	80,	250,	96)
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_Irr2DFontDraw

Draws	the	text	into	the	supplied	rectangular	area	using	the	supplied	font
object.

#Include	<au3Irrlicht2.au3>
_Irr2DFontDraw($h_Font,	$s_Text,	$i_XPos,	$i_YPos,	$i_BottomX,
$i_BottomY)

	

Parameters

$h_Font Handle	of	an	irrlicht	font	texture	object
$s_Text Text	string	to	display
$i_XPos X	top	position	of	rectangle	for	the	text
$i_YPos Y	top	position	of	rectangle	for	the	text
$i_BottomX X	bottom	position	of	rectangle	for	the	text
$i_BottomY Y	bottom	position	of	rectangle	for	the	text

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrGetFont

	

Example

#include	"au3Irrlicht2.au3"
_IrrStart()
local	$bitmapFont	=	_IrrGetFont	("./media/fonthaettenschweiler.bmp")

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,0)
				_Irr2DFontDraw	($BitmapFont,	"@!	Example	Text	with	'German
Umlauts':	ÄäÖöÜü	!@",	120,	80,	250,	96)
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSaveScreenShot

Save	a	screenshot	out	to	a	file.

#Include	<au3Irrlicht2.au3>
_IrrSaveScreenShot($s_Filename)

	

Parameters

$s_Filename file	name	to	save	the	screenshot	as.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
The	image	format	is	defined	by	the	extension	applied	to	the	filename.

Irrlicht	currently	supports:	bmp,	png,	tga,	ppm	and	jpg

	

Related
_IrrGetScreenShot

	

Example

#include	"au3Irrlicht2.au3"

Global	$sScreenShot	=	@MyDocumentsDir	&	"\IrrScreenShot.jpg"
Global	$camera,	$mesh,	$sceneNode,	$texture

_IrrStart()

;	Adding	some	props	to	the	scene,	so	we	get	a	screenshot	of	something.
$camera	=	_IrrAddCamera(2,2,2,	0,0,0)
$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
$sceneNode	=	_IrrAddMeshToScene($mesh)
$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

;	We	want	the	props	to	be	drawn	before	we	take	a	screenshot.
_IrrBeginScene(50,	50,	50)
_IrrDrawScene()
_IrrEndScene()

;	Taking	a	screenshot	now	the	props	have	been	drawn.
_IrrSaveScreenShot($sScreenShot)

;If	the	screenshot	was	successful	then	we	open	it	with	the	users	default	viewer
If	FileExists($sScreenShot)	Then	ShellExecute($sScreenShot)

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetScreenShot

Return	a	pointer	to	a	texture	containing	a	rectangular	portion	of	a
screenshot.

#Include	<au3Irrlicht2.au3>
_IrrGetScreenShot($i_XPos,	$i_YPos,	$i_Width,	$i_Height)

	

Parameters

$i_XPos X	position	for	the	screenshot
$i_YPos Y	position	for	the	screenshot
$i_Width Width	of	the	screebshot
$i_Height Height	of	the	screebshot

	

Return	Value
Success:	Pointer	to	a	texture	containing	a	rectangular	portion	of	a
screenshot.
Failure:	False	and	@error	1

	

Remarks
None

	

Related
_IrrSaveScreenShot,	_IrrDraw2DImage,	_IrrDraw2DImageElement,
_IrrDraw2DImageElementStretch

	

Example

#include	"au3Irrlicht2.au3"

Global	$hTexture,	$camera,	$mesh,	$sceneNode,	$texture

_IrrStart()

;	Just	adding	some	props	to	the	scene,	so	we	can	get	a	screenshot	of	something
$camera	=	_IrrAddCamera(2,2,2,	0,0,0)
$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
$sceneNode	=	_IrrAddMeshToScene($mesh)
$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

WHILE	_IrrRunning()

				_IrrBeginScene(50,	50,	50)

				;	We	want	the	props	to	be	drawn	before	we	take	a	screenshot.
				_IrrDrawScene()

				;	This	will	draw	our	screenshot	scaled	down	to	the	top	left	of	the	window
				If	$hTexture	Then	_IrrDraw2DImageElementStretch($hTexture,	0,	0,	200,
150,	0,	0,	800,	600,	$IRR_IGNORE_ALPHA)

				_IrrEndScene()

				;	Taking	a	screenshot	just	once	now	the	props	have	been	drawn.
				If	Not	$hTexture	Then	$hTexture	=	_IrrGetScreenShot(0,	0,	800,	600)

WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetTextureInformation

Get	information	of	a	texture.	The	width,	height,	pitch	and	color	format	is
returned	in	an	array.

#Include	<au3Irrlicht2.au3>
_IrrGetTextureInformation($h_Texture)

	

Parameters

$h_Texture Handle	to	an	irrlicht	texture	object

	

Return	Value
Success:	1D	Array	with	the	information
				$Array[0]	=	Width	of	the	texture
				$Array[1]	=	Height	of	the	texture
				$Array[2]	=	Pitch	of	the	texture
				$Array[3]	=	Color	Reference	of	the	texture	(e.g.:	$ECF_A1R5G5B5,
$ECF_R5G6B5,	$ECF_R8G8B8,	$ECF_A8R8G8B8)
Failure:	Empty	Array	and	Sets	@error	to	1

	

Remarks
This	function	cannot	be	used	for	image	objects.	For	this,	use
_IrrGetImageInformation	instead.

	

Related
_IrrGetTexture,	_IrrGetImageInformation

	

Example

#include	<au3Irrlicht2.au3>

_IrrStart()

Local	$hLogo	=	_IrrGetTexture("./media/Cross.bmp")

Local	$aInfo	=	_IrrGetTextureInformation($hLogo)
If	Not	@error	Then	MsgBox(64,	"Texture	Information",	"Width:	"	&	$aInfo[0]
&	@LF	&	_
																										"Height:	"	&	$aInfo[1]	&	@LF	&	"Pitch:	"	&	$aInfo[2]	&
@LF	&	_
																										"Color	Format:	"	&	$aInfo[3])
_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetImageInformation

Get	information	of	an	image.	The	width,	height,	pitch	and	color	format	is
returned	in	an	array.

#Include	<au3Irrlicht2.au3>
_IrrGetImageInformation($h_Image)

	

Parameters

$h_Texture Handle	to	an	irrlicht	image	object

	

Return	Value
Success:	1D	Array	with	the	information
				$Array[0]	=	Width	of	the	image
				$Array[1]	=	Height	of	the	image
				$Array[2]	=	Pitch	of	the	image
				$Array[3]	=	Color	Reference	of	the	image	(e.g.:	$ECF_A1R5G5B5,
$ECF_R5G6B5,	$ECF_R8G8B8,	$ECF_A8R8G8B8)
Failure:	Empty	Array	and	Sets	@error	to	1

	

Remarks
This	function	cannot	be	used	for	texture	objects.	For	this,	use
_IrrGetTextureInformation	instead.

	

Related
_IrrGetImage,	_IrrGetTextureInformation

	

Example

#include	<au3Irrlicht2.au3>

_IrrStart()

Local	$hLogo	=	_IrrGetImage("./media/Cross.bmp")

Local	$aInfo	=	_IrrGetImageInformation($hLogo)
If	Not	@error	Then	MsgBox(64,	"Image	Information",	"Width:	"	&	$aInfo[0]
&	@LF	&	_
																										"Height:	"	&	$aInfo[1]	&	@LF	&	"Pitch:	"	&	$aInfo[2]	&
@LF	&	_
																										"Color	Format:	"	&	$aInfo[3])
_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodeAnimationRange

Sets	the	range	of	animation	that	is	to	be	played	in	the	node.

#Include	<au3Irrlicht2.au3>
_IrrSetNodeAnimationRange($h_Node,	$i_Start,	$i_End)

	

Parameters

$h_Node Handle	to	a	character	scene	node.
$i_Start Start	frame
$i_End End	frame

	

Return	Value
Success:	True
Failure:	False

	

Remarks
An	anaimation	sequences	might	run	from	0	to	200	frames	and	a
sequence	where	your	character	is	running	might	only	occupy	a	portion	of
this.

	

Related
_IrrGetMesh,	_IrrAddMeshToScene,	_IrrGetMeshFrameCount,
_IrrGetNodeAnimationFrame,	_IrrPlayNodeMD2Animation,
_IrrSetNodeAnimationSpeed

	

Example

#include	"au3Irrlicht2.au3"

Global	$hMD2Mesh,	$hMeshTexture,	$hSceneNode

_IrrStart()

$hMD2Mesh	=	_IrrGetMesh("./media/zumlin.md2")
$hMeshTexture	=	_IrrGetTexture("./media/zumlin.pcx")
$hSceneNode	=	_IrrAddMeshToScene($hMD2Mesh)
_IrrSetNodeMaterialTexture($hSceneNode,	$hMeshTexture,	0)
_IrrSetNodeMaterialFlag($hSceneNode,	$IRR_EMF_LIGHTING,
$IRR_OFF)

_IrrSetNodeAnimationRange($hSceneNode,	200,	230)

_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrPlayNodeMD2Animation

Selects	the	animation	sequence	of	MD2	to	be	played.

#Include	<au3Irrlicht2.au3>
_IrrPlayNodeMD2Animation($h_Node,	$i_Animation)

	

Parameters

$h_Node Handle	to	a	character	scene	node.

$i_Animation

sequence	should	be	one	of	the	following	values:
$IRR_EMAT_STAND
$IRR_EMAT_RUN
$IRR_EMAT_ATTACK
$IRR_EMAT_PAIN_A
$IRR_EMAT_PAIN_B
$IRR_EMAT_PAIN_C
$IRR_EMAT_JUMP
$IRR_EMAT_FLIP
$IRR_EMAT_SALUTE
$IRR_EMAT_FALLBACK
$IRR_EMAT_WAVE
$IRR_EMAT_POINT
$IRR_EMAT_CROUCH_STAND
$IRR_EMAT_CROUCH_WALK
$IRR_EMAT_CROUCH_ATTACK
$IRR_EMAT_CROUCH_PAIN
$IRR_EMAT_CROUCH_DEATH
$IRR_EMAT_DEATH_FALLBACK
$IRR_EMAT_DEATH_FALLFORWARD
$IRR_EMAT_DEATH_FALLBACKSLOW
$IRR_EMAT_BOOM

	

Return	Value
Success:	True
Failure:	False

	

Remarks
MD2	format	models	have	specific	animation	sequences	contained	within
them	that	can	be	played	back	with	a	simple	call.

	

Related
_IrrGetMesh,	_IrrAddMeshToScene,	_IrrGetMeshFrameCount,
_IrrGetNodeAnimationFrame,	_IrrSetNodeAnimationRange,
_IrrSetNodeAnimationSpeed

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$MD2Mesh	=	_IrrGetMesh("./media/zumlin.md2")
local	$MeshTexture	=	_IrrGetTexture("./media/zumlin.pcx")
local	$SceneNode	=	_IrrAddMeshToScene($MD2Mesh)
_IrrSetNodeMaterialTexture($SceneNode,	$MeshTexture,	0)
_IrrSetNodeMaterialFlag($SceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

_IrrPlayNodeMD2Animation($SceneNode,	$IRR_EMAT_SALUTE)

local	$camera	=	_IrrAddCamera(50,0,0,	0,0,0)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)

				_IrrDrawScene()
				_IrrEndScene()
WEND

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodeAnimationSpeed

Change	the	speed	at	which	an	animation	is	played	for	a	node

#Include	<au3Irrlicht2.au3>
_IrrSetNodeAnimationSpeed($h_Node,	$f_Speed)

	

Parameters

$h_Node Handle	to	a	character	scene	node.
$f_Speed How	many	frames	per	second.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
You	could	use	this	to	make	a	character	run	slowly	or	quickly	and	still
keep	its	feet	on	the	ground.

	

Related
_IrrGetMesh,	_IrrAddMeshToScene,	_IrrGetMeshFrameCount,
_IrrGetNodeAnimationFrame,	_IrrSetNodeAnimationRange

	

Example

#include	"au3Irrlicht2.au3"

Global	$hMD2Mesh,	$hMeshTexture,	$hSceneNode

_IrrStart()

$hMD2Mesh	=	_IrrGetMesh("./media/zumlin.md2")
$hMeshTexture	=	_IrrGetTexture("./media/zumlin.pcx")
$hSceneNode	=	_IrrAddMeshToScene($hMD2Mesh)
_IrrSetNodeMaterialTexture($hSceneNode,	$hMeshTexture,	0)
_IrrSetNodeMaterialFlag($hSceneNode,	$IRR_EMF_LIGHTING,
$IRR_OFF)

_IrrSetNodeAnimationSpeed($hSceneNode,	75)

_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetNodeAnimationFrame

Get	the	frame	number	that	is	currently	being	played	by	the	node.

#Include	<au3Irrlicht2.au3>
_IrrGetNodeAnimationFrame($h_Node)

	

Parameters

$h_Node Handle	to	a	character	scene	node.

	

Return	Value
Success:	Current	frame	number	being	played.
Failure:	False	and	@error	1

	

Remarks
None.

	

Related
_IrrGetMesh,	_IrrAddMeshToScene,	_IrrGetMeshFrameCount,
_IrrSetNodeAnimationSpeed,	_IrrSetNodeAnimationRange

	

Example

#include	"au3Irrlicht2.au3"

Global	$hMD2Mesh,	$hMeshTexture,	$hSceneNode

_IrrStart()

$hMD2Mesh	=	_IrrGetMesh("./media/zumlin.md2")
$hMeshTexture	=	_IrrGetTexture("./media/zumlin.pcx")
$hSceneNode	=	_IrrAddMeshToScene($hMD2Mesh)
_IrrSetNodeMaterialTexture($hSceneNode,	$hMeshTexture,	0)
_IrrSetNodeMaterialFlag($hSceneNode,	$IRR_EMF_LIGHTING,
$IRR_OFF)

_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(240,	255,	255)
				_IrrSetWindowCaption("_IrrGetNodeAnimationFrame	-	Playing	Frame:	"
&	_IrrGetNodeAnimationFrame($hSceneNode))
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodeAnimationFrame

Set	the	current	frame	number	being	played	in	the	animation.

#Include	<au3Irrlicht2.au3>
_IrrSetNodeAnimationFrame($h_Node,	$f_Frame)

	

Parameters

$h_Node Handle	to	a	character	scene	node.
$f_Frame Frame	number	to	play

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
_IrrGetMesh,	_IrrAddMeshToScene,	_IrrGetMeshFrameCount

	

Example

#include	"au3Irrlicht2.au3"

Global	$hMD2Mesh,	$hMeshTexture,	$hSceneNode

_IrrStart()

$hMD2Mesh	=	_IrrGetMesh("./media/zumlin.md2")
$hMeshTexture	=	_IrrGetTexture("./media/zumlin.pcx")
$hSceneNode	=	_IrrAddMeshToScene($hMD2Mesh)
_IrrSetNodeMaterialTexture($hSceneNode,	$hMeshTexture,	0)
_IrrSetNodeMaterialFlag($hSceneNode,	$IRR_EMF_LIGHTING,
$IRR_OFF)

_IrrSetNodeAnimationFrame($hSceneNode,	600)

_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetTransitionTime

Sets	the	transition	time	across	which	two	poses	of	an	animated	mesh	are
blended.

#Include	<au3Irrlicht2.au3>
_IrrSetTransitionTime($h_Node,	$f_Speed)

	

Parameters

$h_Node Handle	to	a	character	scene	node.
$f_Speed Speed	of	the	transition

	

Return	Value
Success:	True
Failure:	False

	

Remarks
For	example	a	character	in	a	sitting	pose	can	be	switched	into	a	lying
down	pose	by	blending	the	two	frames,
this	will	provide	a	more	convincing	smooth	transition	instead	of	a	snap
change	in	position.
_IrrAnimateJoints	must	be	called	before	IrrDrawScene	if	blending	is
used.

	

Related
_IrrAnimateJoints,	_IrrSetJointMode

	

au3Irr2	Function	Reference

_IrrAnimateJoints

Animates	the	mesh	based	on	the	position	of	the	joints.

#Include	<au3Irrlicht2.au3>
_IrrAnimateJoints($h_Node)

	

Parameters

$h_Node Handle	to	a	character	scene	node.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
This	should	be	used	at	the	end	of	any	manual	joint	operations	including
blending	and
joints	animated	using	IRR_JOINT_MODE_CONTROL	and
_IrrSetNodeRotation	on	a	bone	node.

	

Related
_IrrSetNodeRotation,	_IrrSetJointMode

	

au3Irr2	Function	Reference

_IrrSetJointMode

Sets	the	animation	mode	of	joints	in	a	node.

#Include	<au3Irrlicht2.au3>
_IrrSetJointMode($h_Node,	$i_Mode)

	

Parameters

$h_Node Handle	to	a	character	scene	node.

$i_Mode

can	be	one	of	the	following;
$IRR_JOINT_MODE_NONE	-	no	animation	of	the	model
based	on	bones.
$IRR_JOINT_MODE_READ	-	automatic	animation	based
upon	the	animation	defined	with	calls	like
_IrrSetNodeAnimationRange.
IRR_JOINT_MODE_CONTROL	-	allow	the	position	of	the
bones	to	be	set	through	code.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
When	using	the	control	mode	_IrrAnimateJoints	must	be	called	before
IrrDrawScene.

	

Related
_IrrSetNodeAnimationRange,	_IrrAnimateJoints,	_IrrSetTransitionTime

	

au3Irr2	Function	Reference

_IrrAddCollisionAnimator

Animator	applying	collision	detection	and	gravity	to	its	parent	node.

#Include	<au3Irrlicht2.au3>
_IrrAddCollisionAnimator($h_IrrSelector,	$h_Node,	$f_RadiusX,
$f_RadiusY,	$f_RadiusZ,	$f_GravityX,	$f_GravityY,	$f_GravityZ,
$f_OffsetX,	$f_OffsetY,	$f_OffsetZ)

	

Parameters

$h_IrrSelector

Handle	of	a	selecor	object	as	created	with
_IrrGetCollision[...]
The	selector	represents	a	selection	of	triangles	in	the
scene,	this	is	usually	all	of	the	triangles	in	a	map	for
instance.

$h_Node Handle	of	a	scene	node	to	be	collided	against	the
selector.

$f_RadiusX,
$f_RadiusY,
$f_RadiusZ

Define	an	ellipsoid	that	defines	the	area	of	collision	this
eliptical	shape	allows	the	collision	detection	to	slide	the
object	up	steps	and	even	ladders.
If	you	make	it	too	big	you	might	be	too	large	to	get
through	a	doorway	but	if	you	make	it	too	small	you	may
not	be	able	to	climb	steps.	You	should	play	with	these
values	and	find	the	best	ones	for	your	scene.

$f_GravityX,
$f_GravityY,
$f_GravityZ

Specify	the	force	that	is	applied	to	the	node	for	each	axis.
For	example	0.0,-9.8,0.0	defines	a	typical	downward
force.	Other	values	could	be	used	to	simulate	e.g.	wind
effects.

$f_OffsetX,
$f_OffsetY,
$f_OffsetZ

Offset	the	node	by	a	specific	distance	from	the	center	of
the	collision.
As	the	center	of	the	object	and	the	size	of	your	collision
ellipsoid	vary	you	can	use	this	to	adjust	the	position	of

the	node	and	to	bring	it	into	contact	with	the	ground.

	

Return	Value
Success:	Handle	of	the	created	animator.
Failure:	False

	

Remarks
The	collision	detection	will	stop	the	object	penetrating	through	a	surface
in	the	objects	it	is	colliding	against	and	will	also	press	it	against	the
surface	using	gravity.

	

Related
_IrrRemoveAnimator,	_IrrGetCollisionGroupFromMesh,
_IrrGetCollisionGroupFromComplexMesh,
_IrrGetCollisionGroupFromBox,	_IrrGetCollisionGroupFromTerrain,
_IrrCreateCombinedCollisionGroup

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

_IrrAddZipFile("./media/map-20kdm2.pk3",	$IRR_IGNORE_CASE,
$IRR_IGNORE_PATHS)
$meshBSP	=	_IrrGetMesh("20kdm2.bsp")
local	$nodeBSP	=	_IrrAddMeshToSceneAsOcttree($meshBSP)

local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($nodeCamera,	1750,	149,	1369)

local	$selectorMap	=	_IrrGetCollisionGroupFromComplexMesh($meshBSP,
$nodeBSP)
local	$animator	=	_IrrAddCollisionAnimator($selectorMap,	$nodeCamera,	_
																									30.0,30.0,30.0,			0.0,-9.8,0.0,			0.0,50.0,0.0)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddDeleteAnimator

Animator	deleting	its	parent	node	after	specified	time	(ms).

#Include	<au3Irrlicht2.au3>
_IrrAddDeleteAnimator($h_Node,	$i_Time)

	

Parameters

$h_Node Handle	of	a	scene	Node.
$i_Time Living	time	of	the	animator	in	milliseconds.

	

Return	Value
Success:	Handle	of	the	created	animator.
Failure:	False

	

Remarks
You	could	use	this	animator	to	delete	a	falling	rock	for	example,	all	you
would	need	to	do	is	attach	the	delete	animator,	a	movement	animator
and	then	forget	about	it.

	

Related
_IrrRemoveAnimator

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

_IrrAddDeleteAnimator($nodeTest,	3000)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddFlyCircleAnimator

Animator	moving	its	parent	node	in	a	circular	path.

#Include	<au3Irrlicht2.au3>
_IrrAddFlyCircleAnimator($h_Node,	$f_CenterX,	$f_CenterY,	$f_CenterZ,
$f_Radius,	$f_Speed)

	

Parameters

$h_Node Handle	of	a	scene	Node.
$f_CenterX,
$f_CenterY,
$f_CenterZ

Define	center	of	the	circular	path.

$f_Radius Defines	the	radius	of	the	circular	path.
$f_Speed Defines	how	far	the	node	is	moved	each	frame.

	

Return	Value
Success:	Handle	of	the	created	animator.
Failure:	False

	

Remarks
None

	

Related
_IrrRemoveAnimator

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

_IrrAddFlyCircleAnimator($nodeTest,	0,	0,	0,	5,	0.005)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddFlyStraightAnimator

Animator	moving	its	parent	node	in	a	straight	line	from	a	start	to	an	end
point.

#Include	<au3Irrlicht2.au3>
_IrrAddFlyStraightAnimator($h_Node,	$f_StartX,	$f_StartY,	$f_StartZ,
$f_EndX,	$f_EndY,	$f_EndZ,	$i_Time,	$i_DoLoop)

	

Parameters

$h_Node Handle	of	a	scene	Node.
$f_StartX,
$f_StartY,
$f_StartZ

Specify	the	start	point	of	the	path.

$f_EndX,
$f_EndY,
$f_EndZ

Specify	the	end	point	of	the	path.

$i_Time Number	of	milliseconds	the	animator	will	take	to	move	the
node	from	start	to	end	point.

$i_DoLoop
Determines	single	or	continously	movement	type:
$IRR_ONE_SHOT	-	For	a	single	animation	and	then	stop.
$IRR_LOOP	-	To	continuously	repeat	the	animation.

	

Return	Value
Success:	Handle	of	the	created	animator.
Failure:	False

	

Remarks
None

	

Related
_IrrRemoveAnimator

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

_IrrAddFlyStraightAnimator($nodeTest,	-25,	-10,	-10,	25,	10,	2,	5000,
$IRR_LOOP)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddRotationAnimator

Animator	spinning	its	parent	node	around	each	axis.

#Include	<au3Irrlicht2.au3>
_IrrAddRotationAnimator($h_Node,	$f_RotX,	$f_RotY,	$f_RotZ)

	

Parameters

$h_Node Handle	of	a	scene	Node.
$f_RotX,
$f_RotY,
$f_RotZ

Specify	number	of	radians	the	object	is	spun	around	each
axis.

	

Return	Value
Success:	Handle	of	the	created	animator.
Failure:	False

	

Remarks
None

	

Related
_IrrRemoveAnimator

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

_IrrAddRotationAnimator($nodeTest,	0.1,	0.2,	0.3)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddSplineAnimator

Animator	moving	its	parent	node	along	a	spline	curve.

#Include	<au3Irrlicht2.au3>
_IrrAddSplineAnimator($h_Node,	$tVectorStruct,	$i_Start,	$f_Speed,
$f_Tightness)

	

Parameters

$h_Node Handle	of	a	scene	Node.

$tVectorStruct
Struct	array	with	3D-points	defining	the	spline	curve.
Use	__CreateVectStruct	and	__SetVectStruct	to	build	the
required	struct.

$i_Start Time	in	milliseconds	that	must	pass	before	the	animation
starts.

$f_Speed Defines	the	rate	the	node	moves	along	the	spline	curve.

$f_Tightness Specifies	how	tightly	the	curve	is	tied	to	the	points.
Value	between	0	(angular)	and	1	(very	loose).

	

Return	Value
Success:	Handle	of	the	created	animator.
Failure:	False	and	sets	@error:
				1	-	error	from	.dll	call
				2	-	$tVectorStruct	is	not	a	dllstruct

	

Remarks
This	is	one	of	the	more	difficult	to	set	up	of	the	animators	but	is	very
natural	looking	and	powerful.
A	spline	is	a	curved	line	that	passes	through	or	close	to	a	list	of	co-

ordinates,	creating	a	smooth	flight.
This	animator	needs	a	list	of	coordinates	stored	in	a	struct	array	for	the	X,
Y	and	Z	locations	of	all	the	points.
A	good	way	to	get	coordinates	for	this	struct	is	to	load	in	the	camera
position	example	and	move	your	camera	to	a	point	and	write	down	its
coordinates.

	

Related
__CreateVectStruct,	__SetVectStruct,	_IrrRemoveAnimator

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(150,50,0,	0,75,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

local	$tVectors	=	__CreateVectStruct(4)
__SetVectStruct($tVectors,	0,	-100,	50,	0)
__SetVectStruct($tVectors,	1,	0,	100,	-100)
__SetVectStruct($tVectors,	2,	100,	50,	0)
__SetVectStruct($tVectors,	3,	0,	100,	100)

_IrrAddSplineAnimator($nodeTest,	$tVectors,	0,	0.5,	1)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()

WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddFadeAnimator

This	animator	deletes	the	node	it	is	attached	to	after	the	specified
number	of	milliseconds.

#Include	<au3Irrlicht2.au3>
_IrrAddFadeAnimator($h_Node,	$i_DeleteAfterMiliseconds,	$f_Scale	=
1.0)

	

Parameters

$h_Node Handle	of	a	scene	Node.

$i_DeleteAfterMiliseconds Number	of	milliseconds	before	deleting	thenode.
$f_Scale Scaled	amount	while	fading.

	

Return	Value
Success:	Handle	of	the	created	animator.
Failure:	False

	

Remarks
During	the	time	while	it	is	waiting	to	delete	it	the	node	is	slowly	faded	to
invisibility	and	is	also	scaled	by	the	specified	amount.
You	could	use	this	animator	to	fade	and	delete	an	object	from	a	scene
that	was	no	longer	required	like	a	used	medical	pack,
all	you	would	need	to	do	is	attach	the	fade	animator	and	forget	about	it.

	

Related

_IrrAddDeleteAnimator,	_IrrRemoveAnimator

	

Example

#include	"au3Irrlicht2.au3"

Global	$hMD2Mesh,	$hMeshTexture,	$hSceneNode

_IrrStart()

$hMD2Mesh	=	_IrrGetMesh("./media/zumlin.md2")
$hMeshTexture	=	_IrrGetTexture("./media/zumlin.pcx")
$hSceneNode	=	_IrrAddMeshToScene($hMD2Mesh)
_IrrSetNodeMaterialTexture($hSceneNode,	$hMeshTexture,	0)
_IrrSetNodeMaterialFlag($hSceneNode,	$IRR_EMF_LIGHTING,	$IRR_ON)
_IrrSetAmbientLight(1,1,1)

_IrrAddFadeAnimator($hSceneNode,	3000,	-1)

_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrRemoveAnimator

Removes	an	applied	animator	from	a	node.

#Include	<au3Irrlicht2.au3>
_IrrRemoveAnimator($h_Node,	$h_Animator)

	

Parameters

$h_Node Handle	of	a	scene	Node.
$h_Animator Handle	of	the	animator	to	be	removed.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
After	the	function	call	a	played	animation	is	stopped	or	the	animator
cleaned	up	so	you	can	apply	a	new	one.

	

Related
_IrrAddCollisionAnimator,	_IrrAddDeleteAnimator,
_IrrAddFlyCircleAnimator,	_IrrAddFlyStraightAnimator,
_IrrAddRotationAnimator,	_IrrAddSplineAnimator,	_IrrAddFadeAnimator

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

local	$animator	=	_IrrAddFlyCircleAnimator($nodeTest,	0,	0,	0,	5,	0.005)

local	$timer	=	TimerInit()

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()

				if	TimerDiff($timer)	>	3000	then	_IrrRemoveAnimator($nodeTest,
$animator)
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddFPSCamera

Adds	a	'first	person	shooter'	style	camera	with	mouse	and	keyboard
control	into	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddFPSCamera($h_ParentNode	=	0,	$f_RotateSpeed	=	100.0,
$f_MoveSpeed	=	0.5,	$i_ID	=	-1,	$h_KeyMapArray	=	0,	$i_KeyMapSize	=
0,	$i_NoVerticalMovement	=	0,	$f_JumpSpeed	=	0.0)

	

Parameters

$h_ParentNode [optional]	Parent	scene	node	of	the	camera.
Can	be	null.

$f_RotateSpeed
[optional]	Speed	in	degress	with	which	the
camera	is	rotated.	This	can	be	done	only	with
the	mouse.

$f_MoveSpeed
[optional]	Speed	in	units	per	millisecond	with
which	the	camera	is	moved.	Movement	is
done	with	the	cursor	keys.

$i_ID [optional]	id	of	the	camera.	This	id	can	be
used	to	identify	the	camera.

$h_KeyMapArray

[optional]	Adress	of	a	key	map	as	created
with	__CreatePtrKeyMapArray,	specifying
what	keys	should	be	used	to	move	the
camera.	If	this	is	null,	the	default	keymap	is
used.
You	can	define	actions	more	then	one	time	in
the	array,	to	bind	multiple	keys	to	the	same
action.

$i_KeyMapSize [optional]	Amount	of	items	in	the	keymap
array.

$b_NoVerticalMovement

[optional]	Setting	this	to	true	makes	the
camera	only	move	within	a	horizontal	plane,
and	disables	vertical	movement	as	known	from
most	ego	shooters.
Default	is	'false',	with	which	it	is	possible	to	fly
around	in	space,	if	no	gravity	is	there.

$f_JumpSpeed [optional]	Speed	with	which	the	camera	is
moved	when	jumping.

	

Return	Value
Success:	Handle	of	the	camera	object
Failure:	False

	

Remarks
Adds	a	camera	scene	node	with	an	animator	which	provides	mouse	and
keyboard	control	appropriate	for	first	person	shooters	(FPS).
If	however	you	capture	events	when	starting	irrlicht	this	will	become	a
normal	camera	that	can	only	be	moved	by	code.
This	FPS	camera	is	intended	to	provide	a	demonstration	of	a	camera	that
behaves	like	a	typical	First	Person	Shooter.
It	is	useful	for	simple	demos	and	prototyping	but	is	not	intended	to
provide	a	full	solution	for	a	production	quality	game.
It	binds	the	camera	scene	node	rotation	to	the	look-at	target.

	

Related
__CreatePtrKeyMapArray,	_IrrAddCamera,	_IrrAddMayaCamera

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddFPSCamera()

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)
_IrrSetNodePosition($sceneNode,	0,	0,	5)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

_IrrSetWindowCaption("Move	with	mouse	+	cursor	keys	-	quit	with	ALT-
F4!")
WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddCamera

Adds	a	camera	into	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddCamera($f_CamX,	$f_CamY,	$f_CamZ,	$f_TargetX,	$f_TargetY,
$f_TargetZ)

	

Parameters

$f_CamX X	value	for	view	point	of	the	camera.
$f_CamY Y	value	for	view	point	of	the	camera.
$f_CamZ Z	value	for	view	point	of	the	camera.
$f_TargetX X	value	for	target	of	camera.
$f_TargetY Y	value	for	target	of	camera.
$f_TargetZ Z	value	for	target	of	camera.

	

Return	Value
Success:	Handle	of	the	camera	object
Failure:	False

	

Remarks
The	camera	will	be	used	to	define	the	view	point	and	target	point	and
other	attributes	of	the	view	into	the	3D	scene.
Animators	and	other	node	functions	can	be	applied	to	this	node.

	

Related
_IrrAddFPSCamera,	_IrrAddMayaCamera

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddMayaCamera

Adds	a	Maya	style	camera	to	into	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddMayaCamera($h_Node	=	$IRR_NO_OBJECT,	$f_Rotate	=	100.0,
$f_Zoom	=	100.0,	$f_Move	=	100.0)

	

Parameters

$h_Node Handle	parent	irr	node,	if	no	parent	is	needed	then	use
$IRR_NO_OBJECT.

$f_Rotate Speed	at	which	the	camera	revolves.
$f_Zoom Speed	at	which	the	camera	zooms	in	and	out.
$f_Move Speed	at	which	the	camera	moves.

	

Return	Value
Success:	Handle	of	the	camera	object
Failure:	False

	

Remarks
The	user	can	click	with	the	left,	middle	and	right	mouse	buttons	to	move,
zoom	and	rotate	the	camera.

	

Related
_IrrAddCamera,	_IrrAddFPSCamera

	

Example

#include	"au3Irrlicht2.au3"

Global	$hMD2Mesh,	$hMeshTexture,	$hSceneNode,	$hMayaCamera

_IrrStart()

$hMD2Mesh	=	_IrrGetMesh("./media/zumlin.md2")
$hMeshTexture	=	_IrrGetTexture("./media/zumlin.pcx")
$hSceneNode	=	_IrrAddMeshToScene($hMD2Mesh)
_IrrSetNodeMaterialTexture($hSceneNode,	$hMeshTexture,	0)
_IrrSetNodeMaterialFlag($hSceneNode,	$IRR_EMF_LIGHTING,
$IRR_OFF)

$hMayaCamera	=	_IrrAddMayaCamera($hSceneNode)
_IrrSetCameraTarget($hMayaCamera,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetCameraTarget

Sets	the	point	in	space	that	the	camera	is	looking	at.

#Include	<au3Irrlicht2.au3>
_IrrSetCameraTarget($h_Camera,	$f_CamX,	$f_CamY,	$f_CamZ)

	

Parameters

$h_Camera Handle	of	a	camera	object
$f_CamX,
$f_CamY,
$f_CamZ

Position	in	the	scene	to	target	with	the	camera.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
The	camera	view	point	can	be	moved	by	simply	using	the
_IrrSetNodePosition	function	but	this	operation	will	change	the	point	that
the	camera	is	pointing	at.

	

Related
_IrrGetCameraTarget,	_IrrSetCameraUpAtRightAngle,
_IrrSetCameraUpDirection,	_IrrGetCameraOrientation,
_IrrGetCameraUpDirection

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

;	set	up	a	sphere	into	the	scene:
local	$nodeSphere	=	_IrrAddSphereSceneNode(5)
_IrrSetNodeMaterialTexture($nodeSphere,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeSphere,	$IRR_EMF_LIGHTING,	$IRR_OFF
)
_IrrSetNodePosition($nodeSphere,	10,	5,	10)

local	$nodeCamera	=	_IrrAddFPSCamera()

;	target	the	sphere	with	the	camera:
_IrrSetCameraTarget($nodeCamera,	10,	5,	10)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetCameraTarget

Returns	array	with	coordinates	of	point	in	space	that	the	camera	is
looking	at.

#Include	<au3Irrlicht2.au3>
_IrrGetCameraTarget($h_Camera)

	

Parameters

$h_Camera Handle	of	a	camera	object

	

Return	Value
success:	Array	with	three	elements	for	X,	Y,	Z.
failure:	False

	

Remarks
None.

	

Related
_IrrSetCameraTarget,	_IrrSetCameraUpAtRightAngle,
_IrrSetCameraUpDirection,	_IrrGetCameraOrientation,
_IrrGetCameraUpDirection

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

_IrrAddTestSceneNode()
local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($nodeCamera,	0,	0,	-50)

local	$aTarget

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	50)

				$aTarget	=	_IrrGetCameraTarget($nodeCamera)
				_IrrSetWindowCaption('Targeting:	X:	'	&	int($aTarget[0])	&	'	/	Y:	'	&
int($aTarget[1])	&	'	/	Z:	'	&	int($aTarget[2]))

				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetCameraOrientation

Gets	the	camera	orientation	(forward,	upward	and	sideways	vectors	of
the	camera)

#Include	<au3Irrlicht2.au3>
_IrrGetCameraOrientation($h_Camera,	ByRef	$a_Vector1,	ByRef
$a_Vector2,	ByRef	$a_Vector3)

	

Parameters

$h_Camera Handle	of	a	camera	object
$a_Vector1,
$a_Vector2,
$a_Vector3

Any	variables	to	populate	with	the	camera	orientation
vectors,	must	not	explicitly	be	arrays.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
Returned	vectors	will	be	different	lengths	depending	on	how	much	the
camera	is	rotated	The	described	camera	direction	is	useful	after	the
camera	has	been	revolved.

	

Related
_IrrGetCameraTarget,	_IrrSetCameraTarget,
_IrrSetCameraUpAtRightAngle,	_IrrSetCameraUpDirection,
_IrrGetCameraUpDirection

	

Example

#include	"au3Irrlicht2.au3"

;	better	example	welcome	:)

_IrrStart()

_IrrAddTestSceneNode()
local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($nodeCamera,	0,	0,	-50)

local	$aVectForward,	$aVectUpward,	$aVectSide

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	50)

				_IrrGetCameraOrientation($nodeCamera,	$aVectForward,	$aVectUpward,
$aVectSide)
				_IrrSetWindowCaption('Upward	vector:	'	&	_
								$aVectUpward[0]	&	'	/	Y:	'	&	$aVectUpward[1]	&	'	/	Z:	'	&
$aVectUpward[2])

				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrRevolveCamera

Revolve	the	camera	using	quaternion	calculations.

#Include	<au3Irrlicht2.au3>
_IrrRevolveCamera($h_Camera,	$f_Yaw,	$f_Pitch,	$f_Roll,	$f_Drive,
$f_Strafe,	$f_Elevate)

	

Parameters

$h_Camera Handle	of	a	camera	node.
$f_Yaw Affects	turning	left	and	right.
$f_Pitch Affects	tilting	up	and	down.
$f_Roll Affects	rolling	left	and	right.
$f_Drive Affects	moving	forwards	and	backward.
$f_Strafe Affects	moving	left	and	right.
$f_Elevate Affects	moving	up	and	down.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
This	will	help	avoid	gimbal	lock	associated	with	normal	Rotations	and	is
ideal	for	spacecraft	and	aircraft.

	

Related

[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetCameraUpAtRightAngle

Set	the	camera	up	at	a	right	angle	to	the	camera	vector.

#Include	<au3Irrlicht2.au3>
_IrrSetCameraUpAtRightAngle($h_Camera)

	

Parameters

$h_Camera Handle	of	a	camera	node.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetCameraOrthagonal

Set	the	projection	of	the	camera	to	an	orthagonal	view,	where	there	is	no
sense	of	perspective.

#Include	<au3Irrlicht2.au3>
_IrrSetCameraOrthagonal($h_Camera,	$f_DistanceX,	$f_DistanceY,
$f_DistanceZ)

	

Parameters

$h_Camera Handle	of	a	camera	node.
$f_DistanceX X	Distance
$f_DistanceY Y	Distance
$f_DistanceZ Z	Distance

	

Return	Value
Success:	True
Failure:	False

	

Remarks
The	distance	to	the	target	adjusts	the	width	and	height	of	the	camera
view,	essentially	the	smaller	it	is	the	larger	the	object	will	appear.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetCameraClipDistance

Defines	far	and	near	distances	for	camera	clipping

#Include	<au3Irrlicht2.au3>
_IrrSetCameraClipDistance($h_Camera,	$f_Distance,	$f_NearDistance	=
1.0)

	

Parameters

$h_Camera Handle	of	a	camera	node
$f_Distance Defines	the	far	distance	for	clipping

$f_NearDistance [optional]	Defines	the	near	distance	for	clipping(towards	the	camera)

	

Return	Value
Success:	True
Failure:	False

	

Remarks
The	clipping	distances	of	a	camera	are	the	distances	beyond	and	before
which	no	triangles	are	rendered.	Default	clipping	is	before	1.0	and	behind
2000.0.
This	speeds	the	scene	up	by	not	showing	geometry	that	is	beyond	or
before	the	defined	distances	and	increases	rendering	performance
without	requiring	you	to	manage	adding	and	deleting	the	objects	from	the
view.
To	make	the	far	distance	clipping	less	abrupt	you	can	use	it	in
combination	with	_IrrSetFog.

	

Related
_IrrAddCamera,	_IrrAddFPSCamera,	_IrrSetFog

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCube	=	_IrrAddCubeSceneNode(12)
_IrrSetNodeMaterialTexture($nodeCube,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)

local	$nodeCamera	=	_IrrAddCamera(10,	10,	10,	0,	0,	0)
_IrrSetCameraClipDistance($nodeCamera,	15)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetActiveCamera

When	you	have	several	camera	objects	in	the	scene	you	can	use	this	call
to	define	which	of	them	is	to	be	used	to	look	through	when	drawing	the
scene.

#Include	<au3Irrlicht2.au3>
_IrrSetActiveCamera($h_Camera)

	

Parameters

$h_Camera Handle	of	a	camera	node.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetCameraFOV

Sets	the	field	of	vision	of	the	camera.

#Include	<au3Irrlicht2.au3>
_IrrSetCameraFOV($h_Camera,	$f_FOV)

	

Parameters

$h_Camera Handle	of	a	camera	node.
$f_FOV The	value	is	in	radians	and	has	a	default	value	of	PI	/	2.5

	

Return	Value
Success:	True
Failure:	False

	

Remarks
A	wide	field	of	vision	will	give	a	distorted	perspective,	if	the	angle	is	too
narrow	the	display	will	feel	restricted.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetCameraAspectRatio

Sets	the	aspect	ratio	of	the	camera	in	the	same	way	you	think	of
standard	screens	and	widescreens.

#Include	<au3Irrlicht2.au3>
_IrrSetCameraAspectRatio($h_Camera,	$f_AspectRatio)

	

Parameters

$h_Camera Handle	of	a	camera	node.
$f_AspectRatio Aspect	ratio	as	a	float	value.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
A	widescreen	usually	has	an	aspect	ratio	of	16:9	or	16/9	=	1.78.	The
camera	apect	ratio	is	set	up	automatically.
However	if	you	are	using	split	screen	effects	you	may	need	to	change	the
camera	aspect	ratio.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

__CreatePtrKeyMapArray

Helper	function:	returns	pointer	to	a	keymap	for	_IrrAddFPSCamera.

#Include	<au3Irrlicht2.au3>
__CreatePtrKeyMapArray(ByRef	$keyStruct,	$i_kForward	=
$KEY_KEY_W,	$i_kBackward	=	$KEY_KEY_S,	$i_kLeft	=
$KEY_KEY_A,	$i_kRight	=	$KEY_KEY_D,	$i_kJump	=	$KEY_SPACE)

	

Parameters

$keyStruct Any	variable	which	is	then	returned	as	a	a	keymap	for
_IrrAddFPSCamera.

$i_kForward Key	for	forward	movement,	default	is	$KEY_KEY_W
$i_kBackward Key	for	backward	movement,	default	is	$KEY_KEY_S
$i_kLeft Key	for	left	movement,	default	is	$KEY_KEY_A
$i_kRight Key	for	right	movement,	default	is	$KEY_KEY_D
$i_kJump Key	for	jumping,	default	is	$KEY_SPACE

	

Return	Value
Success:	Pointer	to	Dllstruct	containing	key	struct	useable	by
_IrrAddFpsCamera.
Failure:	False

	

Remarks
$keyStruct	can	be	set	to	'0'	after	call	of	_IrraddFPSCamera	to	delete	the
Dllstruct.	Usage	with	defaults	creates	WASD	keys,	e.g.:
_IrrAddFPSCamera	(...,	__CreatePtrKeyMapArray($keyStruct),	4,	...)

	

Related
_IrraddFPSCamera

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$keyStruct
local	$camera	=	_IrrAddFPSCamera(0,	150.0,	0.1,	-1,	_
																__CreatePtrKeyMapArray($keyStruct),	4)
$keyStruct	=	0

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)
_IrrSetNodePosition($sceneNode,	0,	0,	5)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

_IrrSetWindowCaption("Move	with	mouse	+	WASD	keys	-	quit	with	ALT-
F4!")
WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetCollisionGroupFromMesh

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetCollisionGroupFromMesh($h_Mesh,	$h_Node,	$i_Frame	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
_IrrGetCollisionGroupFromComplexMesh,
_IrrGetCollisionGroupFromBox,	_IrrGetCollisionGroupFromTerrain,
_IrrRemoveCollisionGroup,	_IrrCreateCombinedCollisionGroup

	

au3Irr2	Function	Reference

_IrrGetCollisionGroupFromComplexMesh

Creates	an	optimized	triangle	selection	group	from	a	large	complex	mesh
like	a	map.

#Include	<au3Irrlicht2.au3>
_IrrGetCollisionGroupFromComplexMesh($h_Mesh,	$h_Node,	$i_Frame	=
0)

	

Parameters

$h_Mesh Handle	of	mesh	the	node	was	created	from.
$h_Node Handle	of	the	node	to	create	a	selector	from.
$i_Frame [optional]	Number	of	mesh	frame	to	use.

	

Return	Value
success:	Handle	to	a	selector	object
failure:	False

	

Remarks
The	returned	triangle	selection	group	can	then	be	used	in	collision
functions	to	collide	objects	against	this	node.

	

Related
_IrrGetCollisionGroupFromMesh,	_IrrGetCollisionGroupFromBox,
_IrrGetCollisionGroupFromTerrain,	_IrrRemoveCollisionGroup,
_IrrCreateCombinedCollisionGroup

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

_IrrAddZipFile("./media/map-20kdm2.pk3",	$IRR_IGNORE_CASE,
$IRR_IGNORE_PATHS)
$meshBSP	=	_IrrGetMesh("20kdm2.bsp")
local	$nodeBSP	=	_IrrAddMeshToSceneAsOcttree($meshBSP)

local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($nodeCamera,	1750,	149,	1369)

local	$selectorMap	=	_IrrGetCollisionGroupFromComplexMesh($meshBSP,
$nodeBSP)
local	$animator	=	_IrrAddCollisionAnimator($selectorMap,	$nodeCamera,	_
																									30.0,30.0,30.0,			0.0,-9.8,0.0,			0.0,50.0,0.0)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetCollisionGroupFromBox

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetCollisionGroupFromBox($h_Node)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
_IrrGetCollisionGroupFromMesh,
_IrrGetCollisionGroupFromComplexMesh,
_IrrGetCollisionGroupFromTerrain,	_IrrRemoveCollisionGroup,
_IrrCreateCombinedCollisionGroup

	

au3Irr2	Function	Reference

_IrrCreateCombinedCollisionGroup

[todo]

#Include	<au3Irrlicht2.au3>
_IrrCreateCombinedCollisionGroup()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
_IrrGetCollisionGroupFromMesh,
_IrrGetCollisionGroupFromComplexMesh,
_IrrGetCollisionGroupFromBox,	_IrrGetCollisionGroupFromTerrain,
_IrrRemoveCollisionGroup

	

au3Irr2	Function	Reference

_IrrAddCollisionGroupToCombination

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddCollisionGroupToCombination($h_CombinedCollisionGroup,
$h_CollisionGroup)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetCollisionPoint

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetCollisionPoint($a_StartVector,	$a_EndVector,	$h_CollisionGroup,
byRef	$a_CollisionVector)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetCollisionNodeFromCamera

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetCollisionNodeFromCamera($h_Camera)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetCollisionNodeFromRay

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetCollisionNodeFromRay(byRef	$h_StartVector,	byRef	$h_EndVector)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetCollisionNodeFromScreenCoordinates

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetCollisionNodeFromScreenCoordinates($i_X,	$i_Y)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetScreenCoordinatesFrom3DPosition

Screen	co-ordinates	are	returned	for	the	position	of	the	specified	3D	co-
ordinates.

#Include	<au3Irrlicht2.au3>
_IrrGetScreenCoordinatesFrom3DPosition(ByRef	$i_ScreenX,	ByRef
$i_ScreenY,	$a_3DPositionVector)

	

Parameters

$i_ScreenX,
$i_ScreenY

Variables	which	will	contain	coordinates	after	call
of	the	function.

$a_3DPositionVector 1D	array	with	three	elements	for	x,	y,	z	values	of	aposition	in	space.

	

Return	Value
Success:	True	and	sets	passed	$i_ScreenX	and	$i_ScreenY
Failure:	False	and	@error	=	1

	

Remarks
Screen	co-ordinates	are	returned	for	the	position	of	the	specified	3D	co-
ordinates	as	if	an	object	were	drawn	at	them	on	the	screen,	this	is	ideal
for	drawing	2D	bitmaps	or	text	around	or	on	your	3D	object	on	the	screen
for	example	in	the	HUD	of	an	aircraft.

	

Related
_IrrGet3DPositionFromScreenCoordinates,
_IrrGet2DPositionFromScreenCoordinates

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$x,	$y,	$vect[3]
local	$BitmapFont	=	_IrrGetFont	("./media/bitmapfont.bmp")

local	$SceneNode	=	_IrrAddMeshToScene(_IrrGetMesh(
"./media/zumlin.md2"))
_IrrSetNodeMaterialTexture($SceneNode,	_IrrGetTexture(
"./media/zumlin.pcx"),	0)
_IrrSetNodeMaterialFlag($SceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

local	$nodeCam	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.1)
_IrrSetNodePosition($nodeCam,	80,0,0)
_IrrSetCameraTarget($nodeCam,	0,0,0)

$vect[1]	=	35	;	move	the	vector	to	just	over	the	nodes	head

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()

				;	using	3D	coordinate	get	x/y	position	of	this	coordinate;	it	appears	on	the
screen
				_IrrGetScreenCoordinatesFrom3DPosition($x,	$y,	$vect)
				;	draw	the	name	of	the	model	over	the	head	of	the	model
				_Irr2DFontDraw	($BitmapFont,	"ZUMLIN",	$x-15,	$y-8,	$x+35,	$y)

				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGet3DPositionFromScreenCoordinates

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGet3DPositionFromScreenCoordinates($i_X,	$i_Y,	ByRef
$a_Vector3df,	$h_Camera,	$f_NormalX=0.0,	$f_NormalY=0.0,
$f_NormalZ=1.0,	$f_DistanceFromOrigin=0.0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGet2DPositionFromScreenCoordinates

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGet2DPositionFromScreenCoordinates($i_X,	$i_Y,	ByRef	$f_X,	ByRef
$f_Y,	$h_Camera)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetChildCollisionNodeFromRay

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetChildCollisionNodeFromRay($h_Node,	$i_Mask,	$i_Recurse,
$a_StartVector,	$a_EndVector)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetChildCollisionNodeFromPoint

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetChildCollisionNodeFromPoint($h_Node,	$i_Mask,	$i_Recurse,
$a_PointVector)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetNodeAndCollisionPointFromRay

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetNodeAndCollisionPointFromRay($a_StartVector,	$a_EndVector,
ByRef	$h_Node,	ByRef	$f_PosX,	ByRef	$f_PosY,	ByRef	$f_PosZ,	ByRef
$f_NormalX,	ByRef	$f_NormalY,	ByRef	$f_NormalZ,	$i_ID	=	0,
$h_RootNode	=	$IRR_NO_OBJECT)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetDistanceBetweenNodes

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetDistanceBetweenNodes($h_NodeA,	$h_NodeB)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAreNodesIntersecting

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAreNodesIntersecting($h_NodeA,	$h_NodeB)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrIsPointInsideNode

[todo]

#Include	<au3Irrlicht2.au3>
_IrrIsPointInsideNode($h_NodeA,	$f_X,	$f_Y,	$f_Z)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetCollisionResultPosition

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetCollisionResultPosition($h_Selector,	ByRef	$a_EllipsoidPosition,
ByRef	$a_EllipsoidRadius,	ByRef	$a_Velocity,	ByRef	$a_Gravity,
$f_SlidingSpeed,	ByRef	$a_OutPosition,	ByRef	$a_OutHitPosition,	ByRef
$i_OutFalling)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddZipFile

Adds	a	zip	archive	to	the	filing	system	allowing	to	load	files	out	of	the	zip
file.

#Include	<au3Irrlicht2.au3>
_IrrAddZipFile($s_Zipfile,	$i_IgnoreCase,	$i_IgnorePaths)

	

Parameters

$s_ZipFile Path	to	the	zipfile	(or	pk3	file)

$i_IgnoreCase
Should	be	one	of	the	following	values:
$IRR_USE_CASE
$IRR_IGNORE_CASE

$i_IgnorePaths

Ignore	paths	allows	you	to	simply	use	the	filename
without	the	path,	the	filename	should	always	be	unique
in	the	archive	when	using	this	option.	The	value	should
be	one	of	the	following:
$IRR_USE_PATHS
$IRR_IGNORE_PATHS

	

Return	Value
Success:	True
Failure:	False

	

Remarks
Files	inside	the	.zip	can	be	opened	as	if	they	were	in	the	current	working
directory.
Common	pk3	files	are	simply	zip	files.

	

Related
None.

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

_IrrAddZipFile("./media/map-20kdm2.pk3",	$IRR_IGNORE_CASE,
$IRR_IGNORE_PATHS)
$BSPMesh	=	_IrrGetMesh("20kdm2.bsp")
local	$BSPNode	=	_IrrAddMeshToSceneAsOcttree($BSPMesh)

local	$camera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($camera,	1750,	149,	1369)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrChangeWorkingDirectory

[todo]

#Include	<au3Irrlicht2.au3>
_IrrChangeWorkingDirectory($s_WorkingDir)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetWorkingDirectory

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetWorkingDirectory()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

__getGuiEvt

Helper	function:	returns	value	of	$i_Element	inside	a	GuiEvent-structure.

#Include	<au3Irrlicht2.au3>
__getGuiEvt($p_GUIEvent,	$i_Element	=	$EVT_GUI_IID)

	

Parameters

$p_GUIEvent A	pointer	as	returned	from	_IrrReadGUIEvent.

$i_Element

[optional]	Event	type	to	return:
$EVT_GUI_IID	-	ID	of	GUI	element	as	integer
$EVT_GUI_IEVENT	-	Event	type	from	enum
$IRR_EGUI_EVENT_TYPE
$EVT_GUI_IX	-	X	as	integer
EVT_GUI_IY	-	Y	as	integer

	

Return	Value
Success:	Value	of	selected	event	type
Failure:	Returns	False	and	sets	@error	=	1

	

Remarks
[todo]

	

Related
_IrrReadGUIEvent

	

au3Irr2	Function	Reference

_IrrGUIClear

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGUIClear()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGUIEvents

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGUIEvents($i_EventsForGUI)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGUIEventAvailable

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGUIEventAvailable()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrReadGUIEvent

[todo]

#Include	<au3Irrlicht2.au3>
_IrrReadGUIEvent()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGUIRemove

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGUIRemove($h_Widget)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGUIGetText

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGUIGetText($h_Widget)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGUISetText

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGUISetText($h_Widget,	$s_Text)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGUISetFont

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGUISetFont($h_Font)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGUISetColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGUISetColor($i_Element,	$i_Red,	$i_Green,	$i_Blue,	$i_Alpha)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddWindow

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddWindow($s_Title,	$i_TopX,	$i_TopY,	$i_BottomX,	$i_BottomY,
$i_Modal,	$h_Parent	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddStaticText

Creates	a	static	text	object	on	the	Graphical	User	Interface.

#Include	<au3Irrlicht2.au3>
_IrrAddStaticText($s_Text,	$i_TopX,	$i_TopY,	$i_BottomX,	$i_BottomY,
$i_Border,	$i_WordWrap,	$h_Parent	=	0)

	

Parameters

$s_Text String	that	contains	the	text	you	want	to	display.
$i_TopX Top	X	position	of	a	box	in	which	the	text	is	drawn
$i_TopY Top	Y	position	of	a	box	in	which	the	text	is	drawn
$i_BottomX Bottom	X	position	of	a	box	in	which	the	text	is	drawn
$i_BottomY Bottom	Y	position	of	a	box	in	which	the	text	is	drawn

$i_Border

Border	is	used	to	draw	a	visible	box	around	the	text,	its
value	should	be	either	of:
$IRR_GUI_NO_BORDER
$IRR_GUI_BORDER

$i_WordWrap

Word	wrap	is	used	to	define	whether	text	is	to	be
wrapped	around	into	a	second	line	when	it	fills	the	width
of	the	text	box,	its	value	should	be	either	of:
$IRR_GUI_NO_WRAP
$IRR_GUI_WRAP

$h_Parent [optional]	Parent	defines	the	parent	object	of	this
window.	This	can	be	ommited	if	the	object	has	no	parent.

	

Return	Value
Success:	Pointer	to	the	static	text	Object
Failure:	False

	

Remarks
This	function	simply	displays	the	specifed	text	in	the	specified	box.

	

Related
_IrrDrawGUI

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

_IrrAddStaticText("Hello	AU3-World	;-)",	8,	8,	200,	20,
$IRR_GUI_NO_BORDER,	$IRR_GUI_NO_WRAP)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawGUI()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddButton

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddButton($i_TopX,	$i_TopY,	$i_BottomX,	$i_BottomY,	$i_ID,
$s_Text	=	"",	$s_TextTip	=	"",	$h_Parent	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddScrollBar

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddScrollBar($i_Horizontal,	$i_TopX,	$i_TopY,	$i_BottomX,
$i_BottomY,	$i_ID,	$i_CurrentValue,	$i_MaxValue,	$h_Parent	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddListBox

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddListBox($i_TopX,	$i_TopY,	$i_BottomX,	$i_BottomY,	$i_ID,
$i_Background,	$h_Parent=0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddListBoxItem

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddListBoxItem($h_ListBox,	$s_Text)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSelectListBoxItem

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSelectListBoxItem($h_ListBox,	$i_Index)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddEditBox

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddEditBox($s_Text,	$i_TopX,	$i_TopY,	$i_BottomX,	$i_BottomY,
$i_ID,	$i_Border,	$i_Password	=	$IRR_GUI_NOT_PASSWORD,
$h_Parent	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddCheckBox

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddCheckBox($s_Text,	$i_TopX,	$i_TopY,	$i_BottomX,	$i_BottomY,
$i_ID,	$i_Checked,	$h_Parent	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddImage

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddImage($h_Texture,	$i_X,	$i_Y,	$i_UseAlpha,	$i_ID,	$h_Parent	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddFileOpen

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddFileOpen($s_Title,	$i_ID,	$i_Modal,	$h_Parent	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetLastSelectedFile

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetLastSelectedFile()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

__getKeyEvt

helper	function:	returns	value	of	$i_Element	inside	a	keyEvent-structure.

#Include	<au3Irrlicht2.au3>
__getKeyEvt($p_KeyEvent,	$i_Element	=	$EVT_KEY_IKEY)

	

Parameters

$p_KeyEvent A	pointer	as	returned	from	_IrrReadKeyEvent.

$i_Element

[optional]	Event	type	to	return:
$EVT_KEY_IKEY	-	ID	of	pressed	key	(see	remarks).
$EVT_KEY_IDIRECTION	-	Direction	value	-	can	be	either
$IRR_KEY_DOWN	or	$IRR_KEY_UP
$EVT_KEY_IFLAGS	-	Bits	are	set	in	this	parameter	to
specify	whether	the	shift	or	control	key	was	keydown	at
the	time	the	key	action	occured.

	

Return	Value
Success:	Value	of	selected	event	element.

	

Remarks
$p_KeyEvent	is	a	pointer	as	returned	from	_IrrReadKeyEvent.

Key	code	table	for	$EVT_KEY_IKEY:

$KEY_LBUTTON Left	mouse
button $KEY_RBUTTON

Right
mouse
button

Control-break

Middle
mouse
button

$KEY_CANCEL processing $KEY_MBUTTON (three-
button
mouse)

$KEY_XBUTTON1
Windows
2000/XP:	X1
mouse	button

$KEY_XBUTTON2

Windows
2000/XP:
X2	mouse
button

$KEY_BACK BACKSPACE
key $KEY_TAB Tab	key

$KEY_CLEAR Clear	key $KEY_RETURN ENTER	key
$KEY_SHIFT SHIFT	key $KEY_CONTROL CTRL	key
$KEY_MENU ALT	key $KEY_PAUSE PAUSE	key

$KEY_CAPITAL CAPS	Lock	key $KEY_KANA IME	Kana
mode

$KEY_HANGUEL

IME	Hanguel
mode
(maintained	For
compatibility
use
KEY_HANGUL)

$KEY_HANGUL IME	Hangul
mode

$KEY_JUNJA IME	Junja
mode $KEY_FINAL IME	final

mode

$KEY_HANJA IME	Hanja
mode $KEY_KANJI IME	Kanji

mode
$KEY_ESCAPE ESC	key $KEY_CONVERT IME	convert
$KEY_NONCONVERT IME	nonconvert $KEY_ACCEPT IME	accept

$KEY_MODECHANGE IME	mode
change	request $KEY_SPACE SPACEBAR

$KEY_PRIOR PAGE	UP	key $KEY_NEXT PAGE
DOWN	key

$KEY_END End	key $KEY_HOME HOME	key

$KEY_LEFT Left	ARROW
key $KEY_UP

UP
ARROW
key

$KEY_RIGHT Right	ARROW
key $KEY_DOWN DOWN

ARROW
key

$KEY_SELECT Select	key $KEY_PRINT Print	key

$KEY_EXECUT EXECUTE	key $KEY_SNAPSHOT Print
Screen	key

$KEY_INSERT INS	key $KEY_DELETE DEL	key
$KEY_HELP HELP	key $KEY_KEY_0 0	key
$KEY_KEY_1 1	key
$KEY_KEY_9 9	key $KEY_KEY_A A	key
$KEY_KEY_B B	key

$KEY_KEY_Z Z	key $KEY_LWIN

Left	Win
key
(Microsoft®
Natural®
keyboard)

$KEY_RWIN
Right	Win	key
(Natural
keyboard)

$KEY_APPS
Applications
key	(Natural
keyboard)

$KEY_SLEEP Computer
Sleep	key $KEY_NUMPAD0

Numeric
keypad	0
key

$KEY_NUMPAD1 Numeric
keypad	1	key

$KEY_NUMPAD9 Numeric
keypad	9	key $KEY_MULTIPLY Multiply	key

$KEY_ADD Add	key $KEY_SEPARATOR Separator
key

$KEY_SUBTRACT Subtract	key $KEY_DECIMAL Decimal
key

$KEY_DIVIDE Divide	key $KEY_F1 F1	key
$KEY_F2 F2	key

$KEY_F24 F24	key $KEY_NUMLOCK NUM	Lock
key

$KEY_SCROLL SCROLL	Lock
key

$KEY_LSHIFT Left	SHIFT
key

$KEY_RSHIFT Right	SHIFT
key $KEY_LCONTROL

Left
CONTROL
key

$KEY_RCONTROL Right
CONTROL	key $KEY_LMENU Left	MENU

key

$KEY_RMENU Right	MENU
key $KEY_PLUS Plus	Key

(+)

$KEY_COMMA Comma	Key	(,) $KEY_MINUS Minus	Key
(-)

$KEY_PERIOD Period	Key	(.) $KEY_ATTN Attn	key
$KEY_CRSEL CrSel	key $KEY_EXSEL ExSel	key
$KEY_EREOF Erase	Eof	key $KEY_PLAY Play	key
$KEY_ZOOM Zoom	key $KEY_PA1 PA1	key

$KEY_OEM_CLEAR Clear	key $KEY_KEY_CODES_COUNT

This	Is	Not
a	key	but
the	amount
of	keycodes
there	are.

	

Related
_IrrReadKeyEvent,	_IrrKeyEventAvailable

	

Example

#include	"au3Irrlicht2.au3"

local	$pKeyEvent

;	enable	event	capturing:
_IrrStart($IRR_EDT_DIRECT3D9,	800,	600,	$IRR_BITS_PER_PIXEL_32,

_
												$IRR_WINDOWED,	$IRR_NO_SHADOWS,
$IRR_CAPTURE_EVENTS)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)

								;	process	all	available	key	events	and	check	for	ESC:
							while	_IrrKeyEventAvailable()
												$pKeyEvent	=	_IrrReadKeyEvent()
												if	__getKeyEvt($pKeyEvent,	$EVT_KEY_IKEY)	=	$KEY_ESCAPE
then	_IrrStop()
								WEnd

				_IrrEndScene()
WEND

Copy	to	Clipboard

	

au3Irr2	Function	Reference

__getMouseEvt

helper	function:	returns	value	of	$i_Element	inside	a	MouseEvent-
structure.

#Include	<au3Irrlicht2.au3>
__getMouseEvt($p_MouseEvent,	$i_Element	=	$EVT_MOUSE_IACTION)

	

Parameters

$p_MouseEvent A	pointer	as	returned	from	_IrrReadMouseEvent.

$i_Element

[optional]	Event	type	to	return:
$EVT_MOUSE_IACTION	-	ID	of	mouse	action	(see
remarks).
$EVT_MOUSE_FDELTA	-	Amount	of	movement	of	the
mouse	wheel	(>	0	means	wheel	up,	<	0	means	wheel
down).
$EVT_MOUSE_IX	-	Horizontal	screen	coordinate	at
which	the	event	took	place.
$EVT_MOUSE_IY	-	Vertical	screen	coordinate	at
which	the	event	took	place.

	

Return	Value
Success:	Value	of	selected	event	element.

	

Remarks
$p_MouseEvent	is	a	pointer	as	returned	from	_IrrReadMouseEvent.

Mouse	actions	table	for	$EVT_MOUSE_IACTION:
$IRR_EMIE_LMOUSE_PRESSED_DOWN Left	mouse	button	pressed

Right	mouse	button

$IRR_EMIE_RMOUSE_PRESSED_DOWN pressed

$IRR_EMIE_MMOUSE_PRESSED_DOWN Middle	mouse	button
pressed

$IRR_EMIE_LMOUSE_LEFT_UP Left	mouse	button	released

$IRR_EMIE_RMOUSE_LEFT_UP Right	mouse	button
released

$IRR_EMIE_MMOUSE_LEFT_UP Middle	mouse	button
released

$IRR_EMIE_MOUSE_MOVED Mouse	was	moved
horizontal	and/or	vertical

$IRR_EMIE_MOUSE_WHEEL Mouse	wheel	was	moved
up	or	down

	

Related
_IrrReadMouseEvent,	_IrrMouseEventAvailable

	

Example

#include	"au3Irrlicht2.au3"

local	$pMouseEvent

;	enable	event	capturing:
_IrrStart($IRR_EDT_DIRECT3D9,	800,	600,	$IRR_BITS_PER_PIXEL_32,
_
												$IRR_WINDOWED,	$IRR_NO_SHADOWS,
$IRR_CAPTURE_EVENTS)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)

								;	process	all	available	mouse	events:

								while	_IrrMouseEventAvailable()
												$pMouseEvent	=	_IrrReadMouseEvent()

												;	check	for	mousewheel	event,	report	up	or	down	movement	inside	this
window	title:
												if	__getMouseEvt($pMouseEvent,	$EVT_MOUSE_IACTION)	=
$IRR_EMIE_MOUSE_WHEEL	then
																if	__getMouseEvt($pMouseEvent,	$EVT_MOUSE_FDELTA)	>	0
Then
																				_IrrSetWindowCaption("Mousewheel	up")
																Else
																				_IrrSetWindowCaption("Mousewheel	down")
																EndIf
												endif
								wend

				_IrrEndScene()
WEND

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrKeyEventAvailable

Determine	if	there	are	any	keystrokes	waiting	to	be	read.

#Include	<au3Irrlicht2.au3>
_IrrKeyEventAvailable()

	

Parameters

None.

	

Return	Value
Success:	True	if	there	are	keystrokes,	otherwise	False.

	

Remarks
Event	capturing	needs	to	be	enabled	before	with	_IrrStart	or
_IrrStartAdvanced!

	

Related
_IrrReadKeyEvent,	__getKeyEvt,	_IrrStart

	

Example

#include	"au3Irrlicht2.au3"

local	$pKeyEvent

;	enable	event	capturing:
_IrrStart($IRR_EDT_DIRECT3D9,	800,	600,	$IRR_BITS_PER_PIXEL_32,
_
												$IRR_WINDOWED,	$IRR_NO_SHADOWS,
$IRR_CAPTURE_EVENTS)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)

								;	process	all	available	key	events	and	check	for	ESC:
							while	_IrrKeyEventAvailable()
												$pKeyEvent	=	_IrrReadKeyEvent()
												if	__getKeyEvt($pKeyEvent,	$EVT_KEY_IKEY)	=	$KEY_ESCAPE
then	_IrrStop()
								WEnd

				_IrrEndScene()
WEND

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrReadKeyEvent

Read	a	key	event	from	the	Irrlicht	window.

#Include	<au3Irrlicht2.au3>
_IrrReadKeyEvent()

	

Parameters

None.

	

Return	Value
success:	Pointer	of	a	key	event.
failure:	False

	

Remarks
The	properties	of	the	returned	key	event	are	readable	with	the	helper
function	__getKeyEvt.

	

Related
_IrrKeyEventAvailable,	__getKeyEvt

	

Example

#include	"au3Irrlicht2.au3"

local	$pKeyEvent

;	enable	event	capturing:
_IrrStart($IRR_EDT_DIRECT3D9,	800,	600,	$IRR_BITS_PER_PIXEL_32,
_
												$IRR_WINDOWED,	$IRR_NO_SHADOWS,
$IRR_CAPTURE_EVENTS)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)

								;	process	all	available	key	events	and	check	for	ESC:
							while	_IrrKeyEventAvailable()
												$pKeyEvent	=	_IrrReadKeyEvent()
												if	__getKeyEvt($pKeyEvent,	$EVT_KEY_IKEY)	=	$KEY_ESCAPE
then	_IrrStop()
								WEnd

				_IrrEndScene()
WEND

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrMouseEventAvailable

Determine	if	there	are	any	mouse	events	waiting	to	be	read.

#Include	<au3Irrlicht2.au3>
_IrrMouseEventAvailable()

	

Parameters

None.

	

Return	Value
Success:	True	if	there	are	mouse	events,	otherwise	False.

	

Remarks
Event	capturing	needs	to	be	enabled	before	with	_IrrStart	or
_IrrStartAdvanced!

	

Related
_IrrReadMouseEvent,	__getMouseEvt,	_IrrStart

	

Example

#include	"au3Irrlicht2.au3"

local	$pMouseEvent

;	enable	event	capturing:
_IrrStart($IRR_EDT_DIRECT3D9,	800,	600,	$IRR_BITS_PER_PIXEL_32,
_
												$IRR_WINDOWED,	$IRR_NO_SHADOWS,
$IRR_CAPTURE_EVENTS)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)

								;	process	all	available	mouse	events:
								while	_IrrMouseEventAvailable()
												$pMouseEvent	=	_IrrReadMouseEvent()

												;	check	for	mousewheel	event,	report	up	or	down	movement	inside	this
window	title:
												if	__getMouseEvt($pMouseEvent,	$EVT_MOUSE_IACTION)	=
$IRR_EMIE_MOUSE_WHEEL	then
																if	__getMouseEvt($pMouseEvent,	$EVT_MOUSE_FDELTA)	>	0
Then
																				_IrrSetWindowCaption("Mousewheel	up")
																Else
																				_IrrSetWindowCaption("Mousewheel	down")
																EndIf
												endif
								wend

				_IrrEndScene()
WEND

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrReadMouseEvent

Read	a	key	event	from	the	Irrlicht	window.

#Include	<au3Irrlicht2.au3>
_IrrReadMouseEvent()

	

Parameters

None.

	

Return	Value
success:	Pointer	of	a	mouse	event.
failure:	False

	

Remarks
The	properties	of	the	returned	mouse	event	are	readable	with	the	helper
function	__getMouseEvt.

	

Related
_IrrMouseEventAvailable,	__getMouseEvt

	

Example

#include	"au3Irrlicht2.au3"

local	$pMouseEvent

;	enable	event	capturing:
_IrrStart($IRR_EDT_DIRECT3D9,	800,	600,	$IRR_BITS_PER_PIXEL_32,
_
												$IRR_WINDOWED,	$IRR_NO_SHADOWS,
$IRR_CAPTURE_EVENTS)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)

								;	process	all	available	mouse	events:
								while	_IrrMouseEventAvailable()
												$pMouseEvent	=	_IrrReadMouseEvent()

												;	check	for	mousewheel	event,	report	up	or	down	movement	inside	this
window	title:
												if	__getMouseEvt($pMouseEvent,	$EVT_MOUSE_IACTION)	=
$IRR_EMIE_MOUSE_WHEEL	then
																if	__getMouseEvt($pMouseEvent,	$EVT_MOUSE_FDELTA)	>	0
Then
																				_IrrSetWindowCaption("Mousewheel	up")
																Else
																				_IrrSetWindowCaption("Mousewheel	down")
																EndIf
												endif
								wend

				_IrrEndScene()
WEND

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetMousePosition

Sets	relative	position	of	the	mouse	pointer	and	returns	relative	position
before	this	change.

#Include	<au3Irrlicht2.au3>
_IrrSetMousePosition(ByRef	$f_XPos,	ByRef	$f_YPos)

	

Parameters

$f_XPos Fractional	value	for	new	horizontal	position	(0-1).
$f_YPos Fractional	value	for	new	vertical	position	(0-1).

	

Return	Value
success:	True	and	sets	$f_XPos	and	$f_YPos	to	relative	position	where
the	mouse	was	before	(both	0-1).
failure:	False

	

Remarks
This	function	works	independent	from	the	resolution	of	current	Irrlicht
display.	Expected	and	returned	values	are	fractional	values,	where	0/0	is
top	left	and	1/1	bottom	right	of	the	Irrlicht	display.

	

Related
_IrrReadMouseEvent,	_IrrGetAbsoluteMousePosition

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

_IrrAddSkyDomeToScene(_IrrGetTexture("./media/au3irr2_logo.jpg"),	16,
16,	1,	2)
local	$nodeCamera	=	_IrrAddCamera(0,0,5,	0,0,0)
local	$X,	$Y,	$camY

_IrrHideMouse()
WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)

				;	center	mouse	cursor
				$X	=	.5
				$Y	=	.5
				_IrrSetMousePosition($X,	$Y)

				;	add	any	mouse	movement	to	the	cam-Y	position	...
				$camY	+=	(0.5	-	$Y)

				;	...	and	reset	it	slowly	back	to	centre	of	the	display:
				if	$camY	>	0	then	$camY	-=	0.005
				if	$camY	<	0	then	$camY	+=	0.005
				_IrrSetCameraTarget($nodeCamera,	0,	$camY,	0)

				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetAbsoluteMousePosition

Get	the	absolute	mouse	X	and	Y	position

#Include	<au3Irrlicht2.au3>
_IrrGetAbsoluteMousePosition()

	

Parameters

None.

	

Return	Value
success:	1D	Array	containing	absolute	mouse	position.
				$Array[0]	=	X	position	of	the	mouse
				$Array[1]	=	Y	position	of	the	mouse
failure:	Empty	1D	Array	and	Set	@error	1

	

Remarks
None.

	

Related
	

Example

#include	<au3Irrlicht2.au3>

Global	$aGAMP

_IrrStart()

While	_IrrRunning()

				$aGAMP	=	_IrrGetAbsoluteMousePosition()
				_IrrSetWindowCaption("Absolute	Mouse	Poition	-	X:	"	&	$aGAMP[0]	&	"
Y:	"	&	$aGAMP[1])

WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrHideMouse

Hides	the	mouse	pointer

#Include	<au3Irrlicht2.au3>
_IrrHideMouse()

	

Parameters

None.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrShowMouse,	_IrrDisplayMouse

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$time	=	TimerInit()
WHILE	_IrrRunning()

				if	int(mod((TimerDiff($time)	/	1000),	2))	=	true	Then
								_IrrHideMouse()
				Else
								_IrrShowMouse()
				EndIf

				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrShowMouse

Shows	the	mouse	pointer

#Include	<au3Irrlicht2.au3>
_IrrShowMouse()

	

Parameters

None.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrHideMouse,	_IrrDisplayMouse

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$time	=	TimerInit()
WHILE	_IrrRunning()

				if	int(mod((TimerDiff($time)	/	1000),	2))	=	true	Then
								_IrrHideMouse()
				Else
								_IrrShowMouse()
				EndIf

				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrDisplayMouse

Hide	or	show	the	mouse	pointer	while	it	is	within	the	Irrlicht	display.

#Include	<au3Irrlicht2.au3>
_IrrDisplayMouse($i_HideShow)

	

Parameters

$i_HideShow True	shows	and	False	hides	the	mouse	pointer.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
There	are	two	functions	available	to	simply	hide	or	show	the	mouse:
IrrHideMouse	and	IrrShowMouse.

	

Related
_IrrShowMouse,	_IrrHideMouse

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(0,0,0,	0,0,0)

local	$time	=	TimerInit()
WHILE	_IrrRunning()

				_IrrDisplayMouse(int(mod((TimerDiff($time)	/	1000),	2)))

				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddLight

Adds	a	light	node	into	scene	to	naturally	illuminate	your	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddLight($h_parentNode,	$f_X,	$f_Y,	$f_Z,	$f_Red,	$f_Green,
$f_Blue,	$f_Size)

	

Parameters

$h_parentNode
Handle	of	the	node	to	attach	the	light	to.
$IRR_NO_PARENT	attaches	to	the	root	node	of	the
scene.

$f_X,	$f_Y,
$f_Z Coordinates	of	the	light	in	the	scene

$f_Red,
$f_Green,
$f_Blue

Intensity	of	the	light.
Red/green/blue	are	fractional	values	from	0	to	1!

$f_Size Radius	of	effect	of	the	light

	

Return	Value
Success:	Handle	of	light	node	in	the	scene
Failure:	False

	

Remarks
When	using	shadows	you	probably	only	want	one	or	two	lights	-	they	can
be	time	consuming.

	

Related

_IrrAddNodeShadow,	_IrrSetAmbientLight

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_IGNORE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$nodeSphere	=	_IrrAddSphereSceneNode(4,	32)
_IrrSetNodeMaterialTexture($nodeSphere,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)

local	$nodeLight	=	_IrrAddLight($IRR_NO_PARENT,	0,50,0,	0.9,0.9,0.9,
1000.0)
_IrrAddFlyCircleAnimator($nodeLight,	0,	0,	0,	500,	0.001)

local	$nodeCamera	=	_IrrAddCamera(-5,5,-6,	0,0,0)

WHILE	_IrrRunning()
				_IrrBeginScene(100,	100,	100)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetAmbientLight

Sets	the	ambient	lighting	level	across	entire	scene.

#Include	<au3Irrlicht2.au3>
_IrrSetAmbientLight($f_Red,	$f_Green,	$f_Blue)

	

Parameters

$i_Red,
$i_Green,
$i_Blue

Colour	values	for	ambient	lighting.
Red/green/blue	are	fractional	values	from	0	to	1!

	

Return	Value
Success:	True
Failure:	False

	

Remarks
Ambient	light	illuminates	all	surfaces	in	the	scene	uniformly.	This	is
usually	a	low	value	to	increase	the	overall	lighting	level.
It	should	never	be	greater	than	the	brightness	of	the	darkest	area	of	your
scene,	it	can	however	reduce	the	number	of	lights	you	need	in	the	scene.

	

Related
_IrrAddLight,	_IrrSetLightAmbientColor

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_IGNORE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$nodeSphere	=	_IrrAddSphereSceneNode(4,	32)
_IrrSetNodeMaterialTexture($nodeSphere,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)

local	$nodeLight	=	_IrrAddLight($IRR_NO_PARENT,	0,50,0,	0.9,0.9,0.9,
1000.0)
_IrrSetAmbientLight(8,	0,	0)
_IrrAddFlyCircleAnimator($nodeLight,	0,	0,	0,	500,	0.001)

local	$nodeCamera	=	_IrrAddCamera(-5,5,-6,	0,0,0)

WHILE	_IrrRunning()
				_IrrBeginScene(100,	100,	100)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetLightAmbientColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetLightAmbientColor($h_Light,	$f_Red,	$f_Green,	$f_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetLightAttenuation

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetLightAttenuation($h_Light,	$f_Red,	$f_Green,	$f_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetLightDiffuseColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetLightDiffuseColor($h_Light,	$f_Red,	$f_Green,	$f_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetLightFalloff

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetLightFalloff($h_Light,	$f_Falloff)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetLightInnerCone

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetLightInnerCone($h_Light,	$f_InnerCone)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetLightOuterCone

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetLightOuterCone($h_Light,	$f_OuterCone)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetLightType

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetLightType($h_Light,	$i_Type)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetNodeAmbientColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetNodeAmbientColor($h_Node,	$i_Color)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetNodeDiffuseColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetNodeDiffuseColor($h_Node,	$i_Color)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetNodeSpecularColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetNodeSpecularColor($h_Node,	$i_Color)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetNodeEmissiveColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetNodeEmissiveColor($h_Node,	$i_Color)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetNodeColorByVertex

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetNodeColorByVertex($h_Node,	$i_ColorMaterial)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMaterialVertexColorAffects

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMaterialVertexColorAffects($h_Material,	$i_AffectedProperty)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetMaterialBlend

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetMaterialBlend($h_Material,	$i_SrcBlend,	$i_DstBlend)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMaterialSetShininess

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMaterialSetShininess($h_Material,	$f_Shininess)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMaterialSetSpecularColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMaterialSetSpecularColor($h_Material,	$i_Alpha,	$i_Red,	$i_Green,
$i_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMaterialSetDiffuseColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMaterialSetDiffuseColor($h_Material,	$i_Alpha,	$i_Red,	$i_Green,
$i_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMaterialSetAmbientColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMaterialSetAmbientColor($h_Material,	$i_Alpha,	$i_Red,	$i_Green,
$i_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMaterialSetEmissiveColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMaterialSetEmissiveColor($h_Material,	$i_Alpha,	$i_Red,	$i_Green,
$i_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMaterialSetMaterialTypeParam

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMaterialSetMaterialTypeParam($h_Material,	$f_Param)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsStart

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsStart($i_Vsm=$IRR_OFF,	$i_SoftShadows=$IRR_OFF,
$iBitdepth32=$IRR_OFF)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsAddShadowToNode

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsAddShadowToNode($h_Node,	$i_FilterType=$EFT_NONE,
$i_shadowType=$ESM_BOTH)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsAddShadowLight

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsAddShadowLight($i_ShadowDimen,	$f_PosX,	$f_PosY,
$f_PosZ,	$f_TargetX,	$f_TargetY,	$f_TargetZ,	$f_R,	$f_G,	$f_B,	$f_Alpha,
$f_LightNearDist,	$f_LightFarDist,	$f_AngleDegrees)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsSetAmbientColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsSetAmbientColor($i_R,	$i_G,	$i_B,	$i_Alpha)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsSetClearColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsSetClearColor($i_R,	$i_G,	$i_B,	$i_Alpha)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsSetShadowLightPosition

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsSetShadowLightPosition($i_Index,	$f_PosX,	$f_PosY,
$f_PosZ)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsEnableDepthPass

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsEnableDepthPass($i_Enable)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsAddPostProcessingFromFile

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsAddPostProcessingFromFile($s_Name,	$i_Enable=0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsAddNodeToDepthPass

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsAddNodeToDepthPass($h_Node)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrXEffectsSetPostProcessingUserTexture

[todo]

#Include	<au3Irrlicht2.au3>
_IrrXEffectsSetPostProcessingUserTexture($h_Texture)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetNodeName

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetNodeName($h_Node)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetNodeName

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetNodeName($h_Node,	$s_Name)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetNodeMesh

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetNodeMesh	($h_Node)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetMaterialCount

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetMaterialCount($h_Node)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetMaterial

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetMaterial($h_Node,	$i_Material)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetNodeMaterialTexture

Applys	a	texture	to	a	node	in	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrSetNodeMaterialTexture($h_Node,	$h_Texture,	$i_Index)

	

Parameters

$h_Node Handle	of	a	node	in	the	scene
$h_Texture Handle	of	a	texture	object
$i_Index Material	index	number	of	the	material	layer,	usually	0	or	1.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
How	the	texture	is	applied	across	the	surface	of	the	node	will	depend	on
the	texturing	coordinates	in	each	of	the	vectors	of	the	mesh	and	how	they
are	plotted	across	the	surface	of	the	texture.
Some	nodes	can	have	several	textures	applied	to	them	to	create	special
material	effects.

	

Related
_IrrSetNodeMaterialFlag,	_IrrSetNodeMaterialType

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodeMaterialFlag

Sets	material	properies	of	a	node	that	will	effect	its	appearance	on	the
screen.

#Include	<au3Irrlicht2.au3>
_IrrSetNodeMaterialFlag($h_Node,	$i_Type,	$i_Flag)

	

Parameters

$h_Node Handle	of	a	node	in	the	scene

$i_Type

Material	type	is	one	of	the	following	properties:
$IRR_EMF_WIREFRAME	-	Render	as	wireframe	outline
$IRR_EMF_GOURAUD_SHADING	-	Render	smoothly
across	polygons
$IRR_EMF_LIGHTING	-	Material	is	effected	by	lighting
$IRR_EMF_ZBUFFER	-	Enable	z	buffer
$IRR_EMF_ZWRITE_ENABLE	-	Can	write	as	well	as	read	z
buffer
$IRR_EMF_BACK_FACE_CULLING	-	Cull	polygons	facing
away
$IRR_EMF_BILINEAR_FILTER	-	Enable	bilinear	filtering
$IRR_EMF_TRILINEAR_FILTER	-	Enable	trilinear	filtering
$IRR_EMF_ANISOTROPIC_FILTER	-	Reduce	blur	in	distant
textures
$IRR_EMF_FOG_ENABLE	-	Enable	fogging	in	the	distance
$IRR_EMF_NORMALIZE_NORMALS	-	Use	when	scaling
dynamically	lighted	models

$i_Flag
Switches	selected	property	on	or	off:
$IRR_ON
$IRR_OFF

	

Return	Value

Success:	True
Failure:	False

	

Remarks
None.

	

Related
_IrrSetNodeMaterialTexture,	_IrrSetNodeMaterialType

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodeMaterialType

Set	the	way	that	materials	are	applied	to	a	scene	node

#Include	<au3Irrlicht2.au3>
_IrrSetNodeMaterialType($h_Node,	$i_Type)

	

Parameters

$h_Node Handle	of	a	scene	node

$i_Type Material	property	to	apply	to	the	scene	node	(see	table	in
remarks)

	

Return	Value
success:	True
failure:	False

	

Remarks
Valid	material	properties:
$IRR_EMT_SOLID Standard	solid	rendering	uses	one	texture
$IRR_EMT_SOLID_2_LAYER 2	blended	textures	using	vertex	alpha	value

$IRR_EMT_LIGHTMAP 2	textures:	0=color	1=lighting	level	and
ignores	vertex	lighting

$IRR_EMT_LIGHTMAP_ADD ...	as	above	but	adds	levels	instead	of
modulating	between	them

$IRR_EMT_LIGHTMAP_M2 ...	as	above	but	color	levels	are	multiplied	by
2	for	brightening

$IRR_EMT_LIGHTMAP_M4 ...	as	above	but	color	leels	are	multiplied	by	4
for	brightening

$IRR_EMT_LIGHTMAP_LIGHTING 2	textures:	0=color	1=lighting	level	but
supports	dynamic	lighting

$IRR_EMT_LIGHTMAP_LIGHTING_M2 ...	as	above	but	color	levels	are	multiplied	by
2	for	brightening

$IRR_EMT_LIGHTMAP_LIGHTING_M4 ...	as	above	but	color	levels	are	multiplied	by
4	for	brightening

$IRR_EMT_DETAIL_MAP
2	blended	textures:	the	first	is	a	color	map	the
second	at	a	different	scale	adds	and	subtracts
from	the	color	to	add	detail

$IRR_EMT_SPHERE_MAP makes	the	material	appear	reflective

$IRR_EMT_REFLECTION_2_LAYER a	reflective	material	blended	with	a	color
texture

$IRR_EMT_TRANSPARENT_ADD_COLOR
a	transparency	effect	that	simply	adds	a	color
texture	to	the	background.	the	darker	the
color	the	more	transparent	it	is.

$IRR_EMT_TRANSPARENT_ALPHA_CHANNEL a	transparency	effect	that	uses	the	color
textures	alpha	as	a	transparency	level

$IRR_EMT_TRANSPARENT_ALPHA_CHANNEL_REF

a	transparency	effect	that	uses	the	color
textures	alpha,	the	pixel	is	only	drawn	if	the
alpha	is	>	127.	this	is	a	fast	effect	that	does
not	blur	edges	and	is	ideal	for	leaves	&	grass
etc.

$IRR_EMT_TRANSPARENT_VERTEX_ALPHA a	transparency	effect	that	uses	the	vertex
alpha	value

$IRR_EMT_TRANSPARENT_REFLECTION_2_LAYER
a	transparent	&	reflecting	effect.	the	first
texture	is	a	reflection	map,	the	second	a	color
map.	transparency	is	from	vertex	alpha

$IRR_EMT_NORMAL_MAP_SOLID

A	solid	normal	map	renderer.	First	texture	is
color,	second	is	normal	map.	Only	use	nodes
added	with
IrrAddStaticMeshForNormalMappingToScene.
Only	supports	nearest	two	lights.	Requires
vertex	and	pixel	shaders	1.1

$IRR_EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR
...	as	above	only	with	a	transparency	effect
that	simply	adds	the	color	to	the	background.
the	darker	the	color	the	more	transparent	it	is.

$IRR_EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA ...	as	above	only	with	a	transparency	effect
that	uses	the	vertex	alpha	value

$IRR_EMT_PARALLAX_MAP_SOLID

similar	to	the	solid	normal	map	but	more
realistic	providing	virtual	displacement	of	the
surface.	Uses	the	alpha	channel	of	the	normal
map	for	height	field	displacement.	Requires
vertex	shader	1.1	and	pixel	shader	1.4.

$IRR_EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR
...	as	above	only	with	a	transparency	effect
that	simply	adds	the	color	to	the	background.
the	darker	the	color	the	more	transparent	it	is.

$IRR_EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA ...	as	above	only	with	a	transparency	effect
that	uses	the	vertex	alpha	value

	

Related
_IrrSetNodeMaterialTexture,	_IrrSetNodeMaterialFlag

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(2,2,2,	0,0,0)
local	$nodeCube	=	_IrrAddCubeSceneNode(2)	;	_IrrAddMeshToScene($mesh
)
_IrrSetNodeMaterialTexture($nodeCube,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)

_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)
_IrrSetNodeMaterialType($nodeCube,	$IRR_EMT_SPHERE_MAP)

_IrrAddRotationAnimator($nodeCube,	0.1,	0.1,	0.1)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodePosition

Moves	the	node	to	the	specified	position

#Include	<au3Irrlicht2.au3>
_IrrSetNodePosition($h_Node,	$f_X,	$f_Y,	$f_Z)

	

Parameters

$h_Node Handle	of	a	scene	node
$f_X,
$f_Y,	$f_Z X,	Y,	Z	values	of	new	position

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrGetNodePosition,	_IrrGetNodeRotation,	_IrrSetNodeRotation,
_IrrGetNodeAbsolutePosition

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCube	=	_IrrAddCubeSceneNode(5)
_IrrSetNodeMaterialTexture($nodeCube,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)

_IrrSetNodePosition($nodeCube,	5,	5,	5)
local	$nodeCamera	=	_IrrAddCamera(0,	0,	0,	5,	5,	5)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodeRotation

Rotate	a	node	to	the	specified	orientation	through	its	X,	Y	and	Z	axis

#Include	<au3Irrlicht2.au3>
_IrrSetNodeRotation($h_Node,	$f_X,	$f_Y,	$f_Z)

	

Parameters

$h_Node Handle	of	a	scene	node
$f_X,
$f_Y,	$f_Z Values	of	rotation	along	X,	Y,	Z	axes	in	degrees	(0-360)

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrGetNodePosition,	_IrrSetNodePosition,	_IrrGetNodeRotation,
_IrrGetNodeAbsolutePosition

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,	0,	0,	0,	0,	0)
local	$nodeCube	=	_IrrAddCubeSceneNode(5)
_IrrSetNodeMaterialTexture($nodeCube,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)

_IrrSetNodeRotation($nodeCube,	90,	45,	45)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodeScale

Sets	the	scale	of	the	scene	node

#Include	<au3Irrlicht2.au3>
_IrrSetNodeScale($h_Node,	$f_X,	$f_Y,	$f_Z)

	

Parameters

$h_Node Handle	of	a	scene	node
$f_X,
$f_Y,	$f_Z Scaling	factors	for	X,	Y,	Z	axes.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrSetNodePosition,	_IrrSetNodeRotation

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(5,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

_IrrSetNodeScale($nodeTest,	0.5,	1,	1.5)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrDebugDataVisible

Displays	debugging	data	around	a	node	(typically	the	bounding	box
around	edges	of	the	node).

#Include	<au3Irrlicht2.au3>
_IrrDebugDataVisible($h_Node,	$i_Visible	=	$EDS_BBOX)

	

Parameters

$h_Node Handle	of	a	scene	node.

$i_Visible

Type	of	debugging	information	(not	all	of	them	are	supported
on	all	node	types):
$EDS_OFF:	No	Debugging
$EDS_BBOX:	Bounding	Box
$EDS_NORMALS:	Normals
$EDS_SKELETON:	Skeleton
$EDS_MESH_WIRE_OVERLAY:	Wireframe
$EDS_HALF_TRANSPARENCY:	Transparency
$EDS_BBOX_BUFFERS:	Bounding	Box	Buffers
$EDS_FULL:	Everything

	

Return	Value
None.

	

Remarks
None.

	

Related

None.

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddFPSCamera()
local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$nodeTest	=	_IrrAddMeshToScene($mesh)
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)
_IrrSetNodePosition($nodeTest,	0,	0,	8)

_IrrDebugDataVisible($nodeTest,	$EDS_FULL)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetNodePosition

Returns	array	with	position	coordinates	of	a	scene	node.

#Include	<au3Irrlicht2.au3>
_IrrGetNodePosition($h_Node)

	

Parameters

$h_Node Handle	of	a	scene	node

	

Return	Value
success:	0-based	array	with	three	elements	for	X,	Y,	Z	coordinates.
failure:	False

	

Remarks
None.

	

Related
_IrrSetNodePosition,	_IrrGetNodeRotation,	_IrrSetNodeRotation,
_IrrGetNodeAbsolutePosition

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeTest	=	_IrrAddTestSceneNode()
local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($nodeCamera,	0,	0,	-50)

local	$aVector3df

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	50)
				_IrrDrawScene()

				$aVector3df	=	_IrrGetNodePosition($nodeCamera)
				_IrrSetWindowCaption("Camera	position	(x/y/z):	"	&	_
								int($aVector3df[0])	&	"	/	"	&	int($aVector3df[1])	&	"	/	"	&
int($aVector3df[2]))

				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetNodeAbsolutePosition

Get	the	absoloute	position	of	the	node	in	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrGetNodeAbsolutePosition($h_Node)

	

Parameters

$h_Node Handle	of	a	scene	node

	

Return	Value
success:	0-based	array	with	three	elements	for	X,	Y,	Z	coordinates.
failure:	False

	

Remarks
The	absolute	postion	includes	the	position	changes	of	all	of	the	nodes
parents	too.

	

Related
_IrrGetNodePosition,	_IrrSetNodePosition,	_IrrGetNodeRotation,
_IrrSetNodeRotation

	

au3Irr2	Function	Reference

_IrrGetNodeRotation

Returns	array	with	rotation	values	of	a	scene	node.

#Include	<au3Irrlicht2.au3>
_IrrGetNodeRotation($h_Node)

	

Parameters

$h_Node Handle	of	a	scene	node

	

Return	Value
success:	0-based	array	with	three	elements	for	X,	Y,	Z	rotation.
failure:	False

	

Remarks
None.

	

Related
_IrrGetNodePosition,	_IrrSetNodePosition,	_IrrSetNodeRotation,
_IrrGetNodeAbsolutePosition

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeTest	=	_IrrAddTestSceneNode()
local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($nodeCamera,	0,	0,	-50)

local	$aVector3df

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	50)
				_IrrDrawScene()

				$aVector3df	=	_IrrGetNodeRotation($nodeCamera)
				_IrrSetWindowCaption("Camera	rotation	(x/y/z):	"	&	_
								int($aVector3df[0])	&	"	/	"	&	int($aVector3df[1])	&	"	/	"	&
int($aVector3df[2]))

				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetJointNode

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetJointNode($h_Node,	$s_Joint)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddChildToParent

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddChildToParent($h_ChildNode,	$h_ParentNode)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetNodeFirstChild

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetNodeFirstChild($h_Node,	ByRef	$h_Position)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetNodeNextChild

Get	the	next	child	node	of	this	node,	returns	0	if	there	is	no	child.

#Include	<au3Irrlicht2.au3>
_IrrGetNodeNextChild($h_Node,	ByRef	$h_Position)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrIsNodeLastChild

[todo]

#Include	<au3Irrlicht2.au3>
_IrrIsNodeLastChild($h_Node,	ByRef	$h_Position)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddNodeShadow

Adds	shadows	to	a	node	that	are	cast	across	other	nodes	in	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddNodeShadow($h_Node,	$h_mesh	=	0)

	

Parameters

$h_Node Handle	of	a	node	in	the	scene

$h_mesh [optional]	Handle	of	mesh	casting	the	shadow	(0	uses	mesh
of	h_Node,	see	remarks)

	

Return	Value
Success:	True
Failure:	False

	

Remarks
_IrrAddShadows	will	only	work	when	shadowing	has	been	activated	with
_IrrStart	or	_IrrStartAdvanced.
You	should	analyse	the	performance	of	your	scene	carefully	when	using
this	function	as	it	can	have	a	significant	effect	on	your	frame	rate.
You	can	supply	a	different	mesh	to	the	one	used	to	display	the	node,	this
shadow	mesh	could	be	a	much	lower	resoloution	than	that	used	for	your
model	thereby	improving	performance.

_IrrAddNodeShadow	does	NOT	work	with	buildin	nodes	types
_IrrAddTestSceneNode,	_IrrAddCubeSceneNode,	and
_IrrAddSphereSceneNode.	If	you	need	a	cube	or	a	sphere	casting
shadows,	create	a	node	from	a	loaded	cube	or	sphere	mesh	as
workaround.

	

Related
_IrrStart,	_IrrStartAdvanced,	_IrrSetShadowColor,	_IrrAddLight,
_IrrSetAmbientLight

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_IGNORE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$texture	=	_IrrGetTexture(".\media\au3irr2_logo.jpg")

local	$meshReceive	=	_IrrAddHillPlaneMesh("Plane",	8,	8,	1,	1)
local	$nodeReceive	=	_IrrAddMeshToScene($meshReceive)
_IrrSetNodeMaterialTexture($nodeReceive,	$texture,	0)

local	$meshCast	=	_IrrGetMesh(".\media\sphere.obj")
local	$nodeCast	=	_IrrAddMeshToScene($meshCast)
_IrrSetNodeMaterialTexture($nodeCast,	$texture,	0)
_IrrAddFlyCircleAnimator($nodeCast,	1,	3,	1,	3,	0.0005)

local	$nodeLight	=	_IrrAddLight($IRR_NO_PARENT,	0,50,0,	0.9,0.3,0.3,
1000.0)
_IrrAddNodeShadow($nodeCast)

local	$nodeCamera	=	_IrrAddCamera(-5,5,-6,	0,0,0)

WHILE	_IrrRunning()
				_IrrBeginScene(100,	100,	100)
				_IrrDrawScene()

				_IrrEndScene()
WEND

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetNodeVisibility

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetNodeVisibility($h_Node,	$i_Visible)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrRemoveNode

Removes	a	node	from	the	scene	deleting	it.

#Include	<au3Irrlicht2.au3>
_IrrRemoveNode($h_Node)

	

Parameters

$h_Node Handle	of	a	scene	node

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
None.

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

local	$time	=	TimerInit()
WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()

				if	$sceneNode	<>	0	AND	TimerDiff($time)	>	3000	then
								_IrrRemoveNode($sceneNode)
								_IrrRemoveTexture($texture)	;	no	longer	needed
								$sceneNode	=	0
				EndIf

WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrRemoveAllNodes

[todo]

#Include	<au3Irrlicht2.au3>
_IrrRemoveAllNodes()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetNodeID

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetNodeID($h_Node,	$i_ID)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

__CreateParticleSettings

Helper	function:	Creates	particle	settings	as	required	from
_IrrAddParticleEmitter.

#Include	<au3Irrlicht2.au3>
__CreateParticleSettings($minBoxX,	$minBoxY,	$minBoxZ,	$maxBoxX,
$maxBoxY,	$maxBoxZ,	$directionX,	$directionY,	$directionZ,
$minParticlesSecond,	$maxParticlesSecond,	$minStartColorR,
$minStartColorG,	$minStartColorB,	$maxStartColorR,	$maxStartColorG,
$maxStartColorB,	$minLifetime,	$maxLifetime,	$minStartSizeX,
$minStartSizeY,	$maxStartSizeX,	$maxStartSizeY,	$maxAngleDegrees)

	

Parameters

$minBoxX,
$minBoxY,	$minBoxZ

Minimal	positions	of	a	a	box	in	space	inside
which	the	position	of	a	particle	is	randomly
created.

$maxBoxX,
$maxBoxY,
$maxBoxZ

Maximal	positions	of	a	a	box	in	space	inside
which	the	position	of	a	particle	is	randomly
created.

$directionX,
$directionY,
$directionZ

Define	a	direction	into	which	the	particles	will	be
ejected	as	the	animation	plays.

$minParticlesSecond,
$maxParticlesSecond

A	range	defining	the	minimum	and	maximum
number	of	particles	that	will	be	created	each
second.

$minStartColorR,
$minStartColorG,
$minStartColorB,
$maxStartColorR,
$maxStartColorG,
$maxStartColorB

Although	particles	can	be	textured	by	texturing
the	particle	system	node,	these	can	be	used	to
apply	a	range	that	tints	the	color	of	the	particles.

$minLifetime,
$maxLifetime

How	long	the	partilce	will	live,	long	lifespans	can
create	very	large	numbers	of	particles.

$minStartSizeX,
$minStartSizeY,
$maxStartSizeX,
$maxStartSizeY

The	minimum	and	maximum	start	sizes	for	the
particles.

$maxAngleDegrees
The	maximum	number	of	degrees	that	the
ejected	particles	will	deviate	from	the	defined
direction.

	

Return	Value
None.

	

Remarks
None

	

Related
_IrrAddParticleSystemToScene,	_IrrAddParticleEmitter

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_NO_EMITTER,	0,	0,	0,	0,	0,	0,	0,	0,	6,
3,	6)

local	$SmokeEmitter	=	__CreateParticleSettings(-7.0,	0,	-7.0,	7.0,	1.0,	7.0,	0,
0.04,	0,	80,	100,	_

																																																255,	255,	255,	255,	255,	255,	_
																																																800,	2000,	15.0,	15.0,	15.0,	15.0,	15)

_IrrAddParticleEmitter($particleSystem,	$SmokeEmitter)

local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")
_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	20,40,0)

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddParticleEmitter

Adds	a	particle	emitter	to	a	particle	system.

#Include	<au3Irrlicht2.au3>
_IrrAddParticleEmitter($h_ParticleSystem,	$a_Settings)

	

Parameters

$h_ParticleSystem Handle	of	particle	system	the	emitter	shall	be
attached	to.

$a_Settings Array	with	particle	emitter	settings	created	with
__CreateParticleSettings.

	

Return	Value
success:	Handle	of	the	created	particle	emitter
failure:	False

	

Remarks
The	emitter	creates	particles	and	controls	how	they	move	and	when	they
are	to	be	removed.

	

Related
_IrrAddParticleSystemToScene,	__CreateParticleSettings

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_NO_EMITTER,	0,	0,	0,	0,	0,	0,	0,	0,	6,
3,	6)

local	$SmokeEmitter	=	__CreateParticleSettings(-7.0,	0,	-7.0,	7.0,	1.0,	7.0,	0,
0.04,	0,	80,	100,	_
																																																255,	255,	255,	255,	255,	255,	_
																																																800,	2000,	15.0,	15.0,	15.0,	15.0,	15)

_IrrAddParticleEmitter($particleSystem,	$SmokeEmitter)

local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")
_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	20,40,0)

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddAnimatedMeshSceneNodeEmitter

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddAnimatedMeshSceneNodeEmitter($h_ParticleSystem,	$h_Node,
$b_UseNormals,	$f_NormalModifier,	$b_FromAllVertices,	$a_Settings)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddRotationAffector

Adds	a	an	affector	to	a	particle	system	rotating	the	particles.

#Include	<au3Irrlicht2.au3>
_IrrAddRotationAffector($h_ParticleSystem,	$f_SpeedX,	$f_SpeedY,
$f_SpeedZ,	$f_PivotX,	$f_pivotY,	$f_pivotZ)

	

Parameters

$h_ParticleSystem Handle	of	the	particle	system	the	created	affector	is
attached	to.

$f_SpeedX,
$f_SpeedY,
$f_SpeedZ

Set	the	speed	in	degrees	per	second	in	all	3
dimensions.

$f_PivotX,
$f_pivotY,
$f_pivotZ

Set	the	point	that	particles	will	rotate	around.

	

Return	Value
success:	Handle	of	the	created	affector.
failure:	false

	

Remarks
This	affector	modifies	the	positions	of	the	particles	and	attracts	them	to	a
specified	point	at	a	specified	speed	per	second.

	

Related

_IrrAddParticleSystemToScene,	_IrrSetParticleAffectorEnable,
_IrrRemoveAffectors

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

;	add	particle	system	with	default	emitter	to	the	irrlicht	scene	manager
local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_DEFAULT_EMITTER)
local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")

;	setup	affector	rotating	particles	around	all	three	axes	with	particles	attracted
to	30/0/0:
_IrrAddRotationAffector	($particleSystem,	50.0,	-120.0,	50.0,	30.0,0.0,0.0)

_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	0,50,50)

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddFadeOutParticleAffector

Adds	a	fade	out	affector	to	a	particle	system	gradually	fading	particles	out
so	they	are	invisible	when	they	are	deleted.

#Include	<au3Irrlicht2.au3>
_IrrAddFadeOutParticleAffector($h_ParticleSystem,	$i_FadeFactor,	$i_Red,
$i_Green,	$i_Blue)

	

Parameters

$h_ParticleSystem Handle	of	the	particle	system	the	created	affector	is
attached	to.

$i_FadeFactor Milliseconds	the	fade	out	effect	will	take	place.
$i_Red,	$i_Green,
$i_Blue

Values	of	the	colour	the	particles	are	faded	to	(0-
255)

	

Return	Value
success:	Handle	of	the	created	affector.
failure:	false

	

Remarks
The	fade	out	affector	fades	the	particles	out	as	they	come	to	the	end	of
their	lifespan	and	stops	them	'popping'	out	of	existance.	This	creates	a
convincing	effect	for	fire	and	smoke	in	particular.

	

Related
_IrrAddParticleSystemToScene,	_IrrSetParticleAffectorEnable,

_IrrRemoveAffectors

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

;	add	particle	system	with	default	emitter	to	the	irrlicht	scene	manager
local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_DEFAULT_EMITTER)
local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")

;	setup	this	affector	for	a	simple	flashing-out	effect
_IrrAddFadeOutParticleAffector($particleSystem,	250,	255,	255,	0)

_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	20,40,0)

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddGravityParticleAffector

Adds	a	gravity	affector	to	a	particle	system	gradually	pulling	the	particles
in	the	direction	of	the	effect.

#Include	<au3Irrlicht2.au3>
_IrrAddGravityParticleAffector($h_ParticleSystem,	$f_X,	$f_Y,	$f_Z,
$i_TimeForceLost	=	1000)

	

Parameters

$h_ParticleSystem Handle	of	the	particle	system	the	created	affector	is
attached	to.

$f_X,	$f_Y,	$f_Z Set	the	direction	and	force	of	gravity	in	all	3
dimensions.

$i_TimeForceLost
[optional]	Set	the	time	in	milliseconds	when	the
gravity	force	is	totally	lost.	At	that	point	the	particle
does	not	move	any	more.

	

Return	Value
success:	Handle	of	the	created	affector.
failure:	false

	

Remarks
The	gravity	affector	is	adding	a	small	amount	of	velocity	to	the	particles
each	frame.	Although	its	called	a	gravity	affector	it	can	be	used	to	push
the	particles	in	any	direction	so	you	can	have	drifting	smoke	bubbling
fountains,	to	make	a	wind	effect	and	have	the	particles	drift	off	to	the
side,	etc.

	

Related
_IrrAddParticleSystemToScene,	_IrrSetParticleAffectorEnable,
_IrrRemoveAffectors

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

;	add	particle	system	with	default	emitter	to	the	irrlicht	scene	manager
local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_DEFAULT_EMITTER)
local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")

;	setup	this	affector	to	let	the	particles	drift	off
_IrrAddGravityParticleAffector($particleSystem,	-0.4,	0,	0.8,	3000)

_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	0,40,40)

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddParticleAttractionAffector

Adds	an	affector	to	a	particle	system	attracting	particles	to	a	specified
point	at	a	specified	speed.

#Include	<au3Irrlicht2.au3>
_IrrAddParticleAttractionAffector($h_ParticleSystem,	$f_X,	$f_Y,	$f_Z,
$f_Speed	=	1,	$i_Attract	=	$IRR_ATTRACT,	$b_AffectX	=	true,
$b_AffectY	=	true,	$b_AffectZ	=	true)

	

Parameters

$h_ParticleSystem Handle	of	the	particle	system	the	created	affector	is
attached	to.

$f_X,	$f_Y,	$f_Z Set	the	point	that	particles	will	attract	to.

$f_Speed [optional]	Speed	in	units	per	second,	to	attract	to
the	specified	point.

$i_Attract

[optional]	Set	whether	or	not	the	particles	are
attracting	or	detracting.	Values	are:
$IRR_ATTRACT	-	particles	are	attracting.
IRR_REPEL	-	particles	are	detracting.

$b_AffectX,
$b_AffectY,
$b_AffectZ

[optional]	Set	whether	or	not	this	will	affect	particles
in	the	X,	Y,	Z	direction.

	

Return	Value
success:	Handle	of	the	created	affector.
failure:	false

	

Remarks

None.

	

Related
_IrrAddParticleSystemToScene,	_IrrSetParticleAffectorEnable,
_IrrRemoveAffectors

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

;	add	particle	system	with	default	emitter	to	the	irrlicht	scene	manager
local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_DEFAULT_EMITTER)
local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")

;	setup	this	affector	to	detract	particles	downwards
_IrrAddParticleAttractionAffector	($particleSystem,	0,100.0,0.0,	80.0,
$IRR_REPEL)

_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	0,-20,0)

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()

WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddStopParticleAffector

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddStopParticleAffector($h_ParticleSystem,	$i_Time,	$h_Emitter)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddParticlePushAffector

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddParticlePushAffector($h_ParticleSystem,	$f_X,	$f_Y,	$f_Z,
$f_SpeedX,	$f_SpeedY,	$f_SpeedZ,	$f_Far,	$f_Near,	$f_Column,
$i_Distant)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddColorMorphAffector

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddColorMorphAffector($h_ParticleSystem,	$a_ParticleColors,
$a_ParticleTimes,	$b_Smooth)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddSplineAffector

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddSplineAffector($h_ParticleSystem,	$tVectors,	$f_Speed,
$f_Tightness,	$f_Attraction,	$b_DeleteAtEnd)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrRemoveAffectors

Removes	all	affectors	from	a	particle	system.

#Include	<au3Irrlicht2.au3>
_IrrRemoveAffectors($h_ParticleSystem)

	

Parameters

$h_ParticleSystem Handle	of	an	Irrlicht	particle	system.

	

Return	Value
success:	true
failure:	false

	

Remarks
You	might	use	this	if	you	want	to	change	the	direction	or	strength	of	the
wind	for	example.

	

Related
_IrrAddParticleSystemToScene,	_IrrSetParticleAffectorEnable

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

;	add	particle	system	with	default	emitter	to	the	irrlicht	scene	manager
local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_DEFAULT_EMITTER)
local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")

;	add	two	affectors	to	the	particle	system:
_IrrAddRotationAffector	($particleSystem,	50.0,	-120.0,	50.0,	30.0,0.0,0.0)
_IrrAddFadeOutParticleAffector($particleSystem,	100,	255,	0,	0)

_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	0,50,50)

local	$time	=	TimerInit()
WHILE	_IrrRunning()

				if	TimerDiff($time)	>	8000	then	_IrrRemoveAffectors($particleSystem)

				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()

WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetParticleEmitterMinParticlesPerSecond

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetParticleEmitterMinParticlesPerSecond($h_ParticleEmitter,	$i_Min)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetParticleEmitterMaxParticlesPerSecond

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetParticleEmitterMaxParticlesPerSecond($h_ParticleEmitter,	$i_Max)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetParticleEmitterMinStartColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetParticleEmitterMinStartColor($h_ParticleEmitter,	$i_Red,	$i_Green,
$i_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetParticleEmitterMaxStartColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetParticleEmitterMaxStartColor($h_ParticleEmitter,	$i_Red,	$i_Green,
$i_Blue)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetParticleAffectorEnable

Enables	or	disables	an	Irrlicht	affector.

#Include	<au3Irrlicht2.au3>
_IrrSetParticleAffectorEnable($h_ParticleAffector,	$b_Enabled)

	

Parameters

$h_ParticleAffector Handle	of	an	Irrlicht	particle	affector

$i_Enabled $IRR_ON	(or	true)	enables	the	affector,	$IRR_OFF
(or	false)	disables	it.

	

Return	Value
success:	true
failure:	false

	

Remarks
None

	

Related
_IrrAddParticleSystemToScene,	_IrrRemoveAffectors

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

;	add	particle	system	with	default	emitter	to	the	irrlicht	scene	manager
local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_DEFAULT_EMITTER)
local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")

local	$affector	=	_IrrAddRotationAffector	($particleSystem,	50.0,	-120.0,
50.0,	30.0,0.0,0.0)

_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	0,50,50)

local	$time	=	TimerInit()
local	$enabled	=	true
WHILE	_IrrRunning()

				;	enable/disable	affector	every	2	seconds:
				if	TimerDiff($time)	>	2000	then
								$enabled	=	NOT	$enabled
								_IrrSetParticleAffectorEnable($affector,	$enabled)
								$time	=	TimerInit()
				EndIf

				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()

WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetFadeOutParticleAffectorTime

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetFadeOutParticleAffectorTime($h_ParticleAffector,	$f_Time)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetGravityParticleAffectorDirection

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetGravityParticleAffectorDirection($h_ParticleAffector,	$f_X,	$f_Y,
$f_Z)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetCenterOfEffect

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetCenterOfEffect($h_ParticleAffector,	$f_X,	$f_Y,	$f_Z)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetRootSceneNode

Get	the	scenes	root	node,	all	scene	nodes	are	children	of	this	node.

#Include	<au3Irrlicht2.au3>
_IrrGetRootSceneNode()

	

Parameters

None.

	

Return	Value
Success:	Handle	of	root	node	in	the	scene
Failure:	False	and	@error	1

	

Remarks
[todo]

	

Related
_IrrAddMeshToScene

	

au3Irr2	Function	Reference

_IrrGetMesh

Loads	the	specified	mesh	ready	to	be	added	to	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrGetMesh($s_MeshFile)

	

Parameters

$s_MeshFile Filename	of	the	mesh	object	to	load

	

Return	Value
Success:	Handle	of	the	loaded	mesh	object
Failure:	False

	

Remarks
The	Irrlicht	engine	supports	a	wide	range	of	mesh	types.

Static	objects:
Irrlicht	static	meshes	(.irrmesh,	r/w) 3D	Studio	meshes	(.3ds,	r)
|Alias	Wavefront	Maya	(.obj,	r/w) Lightwave	Objects	(.lwo,	r)
|COLLADA	1.4	(.xml,	.dae,	r/w) OGRE	meshes	(.mesh,	r)
|My3DTools	3	(.my3D,	r) LMTools	(.lmts,	r)
|Quake	3	levels	(.bsp,	r) DeleD	(.dmf,	r)
|FSRad	oct	(.oct,	r) Cartography	shop	4	(.csm,	r)
|STL	3D	files	(.stl,	r/w) PLY	3D	files	(.ply,	r/w)

Animated	objects:
Microsoft	DirectX	(.x,	r)	(binary	&	text,

B3D	files	(.b3d,	r,	skeleton) skeleton)

|Milkshape	(.ms3d,	r,
skeleton) Quake	3	models	(.md3,	r,	morph)

	

Related
_IrrAddMeshToScene,	_IrrRemoveMesh

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrCreateMesh

Create	a	new	mesh	from	lists	of	vertices	and	indices.

#Include	<au3Irrlicht2.au3>
_IrrCreateMesh($s_MeshName,	$tVertexArray,	$a_Indices)

	

Parameters

$s_MeshName String	name	for	the	newly	created	mesh	object.

$tVertexArray Vertex	array	struct	as	created	with	__CreateVertStruct
or	returned	from	_IrrGetMeshVertices.

$a_Indices
3D-array	with	list	of	indices	as	returned	from
_IrrGetMeshIndices	or	created	e.g.	with	DIM
$aIndices[indicesNumber]	=	[0,1,4,	1,2,4,	...]

	

Return	Value
Success:	Handle	to	the	newly	created	mesh	object
Failure:	False	and	set	@error:
				@error	1	:	either	AutoIt	DllCall	or	IrrCreateMesh	call	failed
				@error	2	:	$tVertexArray	param	is	not	a	Struct
				@error	2	:	$a_Indices	param	is	not	an	Array

	

Remarks
You	must	supply	a	list	of	vertices	inside	a	vertex	array	struct	and	an	array
of	indices	that	refer	to	these	vertices.
The	indices	are	taken	in	groups	of	three	joining	up	the	dots	defined	by
the	verticies	and	forming	a	collection	of	triangles.

	

Related
_IrrGetMeshVertices,	_IrrGetMeshIndices,	_IrrAddMeshToScene,
__CreateVertStruct

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$orgMesh	=	_IrrGetMesh("./media/zumlin.md2")

local	$tVertex;	variable	for	the	vertex	array	struct
;	copy	the	vertex	information	into	the	array:
local	$vertex_count	=	_IrrGetMeshVertices($orgMesh,	0,	$tVertex)

local	$i
for	$i	=	0	to	$vertex_count	-	1	;	itterate	through	all	of	the	vertices
				;	shrink	vertex	Y	location	by	half	its	size,	then	change	vertex	colour	value
				__SetVertStruct($tVertex,	$i,	$VERT_Y,	__GetVertStruct($tVertex,	$i,
$VERT_Y)	*	0.5)
				__SetVertStruct($tVertex,	$i,	$VERT_VCOLOR,	_IrrMakeARGB(0,
Random(0,255),	Random(0,255),	Random(0,255)))
next	;	$i

;	create	a	second	mesh	with	the	modified	vertices	data	and	unmodified
indices:
local	$aIndices	;	variable	that	will	hold	array	of	indices:
_IrrGetMeshIndices($orgMesh,	0,	$aIndices)
local	$secondMesh	=	_IrrCreateMesh("secondMesh",	$tVertex,	$aIndices)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")

;	add	both	meshes	and	a	camera	to	the	scene:
local	$nodeCube1	=	_IrrAddMeshToScene($orgMesh)
_IrrSetNodeMaterialTexture($nodeCube1,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeCube1,	$IRR_EMF_LIGHTING,	$IRR_OFF
)
local	$nodeCube2	=	_IrrAddMeshToScene($secondMesh)
_IrrSetNodeMaterialFlag($nodeCube2,	$IRR_EMF_LIGHTING,	$IRR_OFF
)
_IrrSetNodePosition($nodeCube2,	0,	0,	30)

_IrrAddCamera(50,	0,	30,	0,	0,	18)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddHillPlaneMesh

Creates	a	hill	plane	mesh	that	represents	a	simple	terrain.

#Include	<au3Irrlicht2.au3>
_IrrAddHillPlaneMesh($s_Name,	$f_TileSizeX,	$f_TileSizeY,
$i_TileCountX,	$i_TileCountY,	$h_Material	=	0,	$f_HillHeight	=	0,
$f_CountHillsX	=	0,	$f_CountHillsY	=	0,	$f_TextureRepeatCountX	=	1,
$f_TextureRepeatCountY	=	1)

	

Parameters

$s_Name
$f_TileSizeX
$f_TileSizeY
$i_TileCountX
$i_TileCountY
$h_Material
$f_HillHeight
$f_CountHillsX
$f_CountHillsY
$f_TextureRepeatCountX
$f_TextureRepeatCountY

	

Return	Value
Success:	Handle	to	a	Terrain	Mesh
Failure:	False	and	@error	1

	

Remarks

Many	properties	have	default	values	allowing	a	mesh	to	be	created	with	a
simple	call.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrWriteMesh

Write	the	first	frame	of	the	supplied	animated	mesh	out	to	a	file	using	the
specified	file	format.

#Include	<au3Irrlicht2.au3>
_IrrWriteMesh($h_Mesh,	$i_FileFormat,	$s_Filename)

	

Parameters

$h_Mesh Handle	to	mesh	object

$i_FileFormat

Format	to	write	the	file	as:
$EMWT_IRR_MESH	-	Irrlicht	Native	mesh	writer,	for
static	.irrmesh	files.
$EMWT_COLLADA	-	COLLADA	mesh	writer	for	.dae	and
.xml	files.
$EMWT_STL	-	STL	mesh	writer	for	.stl	files.

$s_Filename File	name	to	save	as.

	

Return	Value
Success:	True
Failure:	False	and	set	@error
				@error	1	-	AutoIt	DllCall	failed.
				@error	2	-	Could	not	get	mesh	writer	object.
				@error	3	-	Could	not	open	file.

	

Remarks
None

	

Related
_IrrCreateMesh,	_IrrGetMesh

	

Example

#include	"au3Irrlicht2.au3"

Global	$hMD2Mesh
Global	$hMeshTexture
Global	$hSceneNode
Global	$hCamera
Global	$hIrrMesh
Global	$sIrrMesh	=	"ZumlinStaticMesh.irrmesh"

_IrrStart()

$hMD2Mesh	=	_IrrGetMesh("./media/zumlin.md2")
$hMeshTexture	=	_IrrGetTexture("./media/zumlin.pcx")
$hSceneNode	=	_IrrAddMeshToScene($hMD2Mesh)
_IrrSetNodeMaterialTexture($hSceneNode,	$hMeshTexture,	0)
_IrrSetNodeMaterialFlag($hSceneNode,	$IRR_EMF_LIGHTING,
$IRR_OFF)
_IrrSetNodePosition($hSceneNode,	0,	0,	20)

If	_IrrWriteMesh($hMD2Mesh,	$EMWT_IRR_MESH,	$sIrrMesh)	And
FileExists($sIrrMesh)	Then
				$hIrrMesh	=	_IrrGetMesh($sIrrMesh)
				$hSceneNode	=	_IrrAddMeshToScene($hIrrMesh)
				_IrrSetNodeMaterialTexture($hSceneNode,	$hMeshTexture,	0)
				_IrrSetNodeMaterialFlag($hSceneNode,	$IRR_EMF_LIGHTING,
$IRR_OFF)
				_IrrSetNodePosition($hSceneNode,	0,	0,	-20)
				FileDelete($sIrrMesh)
EndIf

$hCamera	=	_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrRemoveMesh

Removes	a	mesh	from	the	scene	cache,	freeing	up	resources.

#Include	<au3Irrlicht2.au3>
_IrrRemoveMesh($h_Mesh)

	

Parameters

$h_Mesh Handle	of	a	mesh	object

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrGetMesh

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

_IrrRemoveMesh($mesh)	;	it's	in	the	scene,	mesh	no	longer	needed!

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrClearUnusedMeshes

Clears	all	meshes	that	are	held	in	the	mesh	cache	but	not	used
anywhere	else.

#Include	<au3Irrlicht2.au3>
_IrrClearUnusedMeshes()

	

Parameters

None.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
Any	references	to	these	meshes	will	become	invalid.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetMeshHardwareAccelerated

Set	the	supplied	mesh	as	a	Hardware	Accelerated	object.

#Include	<au3Irrlicht2.au3>
_IrrSetMeshHardwareAccelerated($h_mesh,	$i_frame	=	0)

	

Parameters

$h_mesh Handle	of	a	mesh	object
$i_frame Frame	number

	

Return	Value
Success:	True
Failure]:	False

	

Remarks
This	offloads	the	verticies	and	indicies	to	hardware	support	on	the
graphics	card,	making	the	process	of	rendering	those	meshes	much
faster.
The	feature	must	be	supported	on	the	graphics	card	and	the	object	must
contain	over	500	vertices	for	the	operation	to	be	successful.
This	operation	is	applied	to	all	mesh	buffers	in	the	mesh.

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetMeshIndexCount

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetMeshIndexCount($h_Mesh,	$i_Frame,	$i_MeshBuffer	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetMeshIndices

Gets	the	list	of	indices	in	a	mesh	and	copies	them	into	the	supplied
variable.

#Include	<au3Irrlicht2.au3>
_IrrGetMeshIndices($h_Mesh,	$i_FrameNumber,	ByRef	$a_IndicesArray,
$i_MeshBuffer	=	0)

	

Parameters

$h_Mesh Handle	to	a	mesh	object

$i_FrameNumber Frame	number	of	the	mesh	to	get	indices	from(should	be	0	for	static	meshes).
$i_MeshBuffer [optional]	Mesh	buffer	to	access.

	

Return	Value
Success:	Number	of	indices	returned	in	the	array	$a_IndicesArray.
Failure:	False	and	@error	=	1

	

Remarks
[todo]

	

Related
_IrrSetMeshIndices,	_IrrGetMeshIndexCount,	_IrrGetMeshVertices

	

au3Irr2	Function	Reference

_IrrSetMeshIndices

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetMeshIndices($h_Mesh,	$i_FrameNumber,	ByRef	$a_IndicesArray,
$i_MeshBuffer	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetMeshVertexCount

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetMeshVertexCount($h_Mesh,	$i_Frame,	$i_MeshBuffer	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetMeshVertices

Gets	the	list	of	vertices	in	a	mesh	and	copies	them	into	the	supplied
variable.

#Include	<au3Irrlicht2.au3>
_IrrGetMeshVertices($h_Mesh,	$i_FrameNumber,	ByRef	$tVertex,
$i_MeshBuffer	=	0)

	

Parameters

$h_Mesh Handle	to	a	mesh	object

$i_FrameNumber Frame	number	of	the	mesh	to	get	vertices	from(should	be	0	for	static	meshes).
$i_MeshBuffer [optional]	Mesh	buffer	to	access.

	

Return	Value
Success:	Number	of	vertices	returned	in	the	vertex	array	struct	$tVertex.
Failure:	False	and	@error	=	1

	

Remarks
Each	vertex	represents	a	point	in	the	mesh	that	is	the	corner	of	one	of
the	group	of	triangles	that	is	used	to	construct	the	mesh.
If	the	mesh	is	animated	frame	number	indicates	the	number	of	the	frame
to	recover	mesh	data	for	if	it	is	not	animated	this	value	should	be	set	to	0.
If	the	mesh	contains	a	number	of	mesh	buffers	you	can	specific	which
mesh	buffer	you	want	to	access,	if	you	omit	this	parameter	mesh	buffer	0
will	be	used.

	

Related
__SetVertStruct,	__GetVertStruct,	_IrrSetMeshVertices,
_IrrGetMeshVertexCount,	_IrrGetMeshIndices

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$mesh	=	_IrrGetMesh("./media/cube.x")

local	$tVertex;	variable	for	the	vertex	array	struct
;	copy	the	vertex	information	into	the	array
local	$vertex_count	=	_IrrGetMeshVertices($mesh,	0,	$tVertex)

local	$i
for	$i	=	0	to	$vertex_count	-	1	;	itterate	through	all	of	the	vertices
				;	shrink	vertex	X	location	by	half	its	size,	then	change	vertex	colour	value
				__SetVertStruct($tVertex,	$i,	$VERT_X,	__GetVertStruct($tVertex,	$i,
$VERT_X)	*	0.5)
				__SetVertStruct($tVertex,	$i,	$VERT_VCOLOR,	_IrrMakeARGB(0,
Random(0,255),	Random(0,255),	Random(0,255)))
next	;	$i

;	copy	the	altered	vertex	infomation	back	to	the	mesh
_IrrSetMeshVertices($mesh,	0,	$tVertex)

;	add	mesh	and	camera	to	the	scene:
local	$nodeCube	=	_IrrAddMeshToScene($mesh)
_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)
_IrrSetNodePosition($nodeCube,	-0.5,	-0.5,	5)

_IrrAddFPSCamera($IRR_NO_OBJECT,	5,	0.01)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetMeshVertices

This	sets	the	value	of	the	list	of	vertices	in	a	mesh	copying	them	from	the
supplied	vertex	array	struct.

#Include	<au3Irrlicht2.au3>
_IrrSetMeshVertices($h_Mesh,	$i_FrameNumber,	ByRef	$tVertex,
$i_MeshBuffer	=	0)

	

Parameters

$h_Mesh Handle	to	a	mesh	object

$i_FrameNumber Frame	number	of	the	mesh	to	write	vertices	to(should	be	0	for	static	meshes).
$i_MeshBuffer [optional]	Mesh	buffer	to	access.

	

Return	Value
Success:	None.
Failure:	False	and	@error	=	1

	

Remarks
Each	vertex	represents	a	point	in	the	mesh	that	is	the	corner	of	one	of
the	group	of	triangles	that	is	used	to	construct	the	mesh.
If	the	mesh	is	animated	frame	number	indicates	the	number	of	the	frame
to	recover	mesh	data	for	if	it	is	not	animated	this	value	should	be	set	to	0.
If	the	mesh	contains	a	number	of	mesh	buffers	you	can	specific	which
mesh	buffer	you	want	to	access,	if	you	omit	this	parameter	mesh	buffer	0
will	be	used.

	

Related
_IrrGetMeshVertices,	__CreateVertStruct

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$mesh	=	_IrrGetMesh("./media/cube.x")

local	$tVertex;	variable	for	the	vertex	array	struct
;	copy	the	vertex	information	into	the	array
local	$vertex_count	=	_IrrGetMeshVertices($mesh,	0,	$tVertex)

local	$i
for	$i	=	0	to	$vertex_count	-	1	;	itterate	through	all	of	the	vertices
				;	shrink	vertex	X	location	by	half	its	size,	then	change	vertex	colour	value
				__SetVertStruct($tVertex,	$i,	$VERT_X,	__GetVertStruct($tVertex,	$i,
$VERT_X)	*	0.5)
				__SetVertStruct($tVertex,	$i,	$VERT_VCOLOR,	_IrrMakeARGB(0,
Random(0,255),	Random(0,255),	Random(0,255)))
next	;	$i

;	copy	the	altered	vertex	infomation	back	to	the	mesh
_IrrSetMeshVertices($mesh,	0,	$tVertex)

;	add	mesh	and	camera	to	the	scene:
local	$nodeCube	=	_IrrAddMeshToScene($mesh)
_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)
_IrrSetNodePosition($nodeCube,	-0.5,	-0.5,	5)

_IrrAddFPSCamera($IRR_NO_OBJECT,	5,	0.01)

WHILE	_IrrRunning()

				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddMeshToScene

Adds	a	mesh	to	the	scene	as	a	new	3D	node.

#Include	<au3Irrlicht2.au3>
_IrrAddMeshToScene($h_Mesh)

	

Parameters

$h_Mesh Handle	of	a	mesh	object

	

Return	Value
Success:	Handle	of	the	new	node	in	the	scene
Failure:	False

	

Remarks
None

	

Related
_IrrGetMesh

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$camera	=	_IrrAddCamera(2,2,2,	0,0,0)

local	$mesh	=	_IrrGetMesh(".\media\capsuleX.obj")
local	$sceneNode	=	_IrrAddMeshToScene($mesh)

local	$texture	=	_IrrGetTexture(".\media\default_texture.png")
_IrrSetNodeMaterialTexture($sceneNode,	$texture,	0)
_IrrSetNodeMaterialFlag($sceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddMeshToSceneAsOcttree

Adds	a	mesh	to	the	scene	as	a	new	3D	node,	optimised	with	an	Octtree.

#Include	<au3Irrlicht2.au3>
_IrrAddMeshToSceneAsOcttree($h_Mesh)

	

Parameters

$h_Mesh Handle	of	an	mesh	object

	

Return	Value
Success:	Handle	to	the	irrlicht	node	object
Failure:	False

	

Remarks
This	method	optimise's	the	mesh	with	an	Octtree,	this	is	particularly
useful	for	maps	where	there	is	a	lot	of	geometry	in	the	mesh	but	little	of	it
can	be	seen	at	any	one	time.
Optimizing	your	node	with	this	function	will	result	in	a	large	increase	in
performance.

	

Related
None.

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

_IrrAddZipFile("./media/map-20kdm2.pk3",	$IRR_IGNORE_CASE,
$IRR_IGNORE_PATHS)
$BSPMesh	=	_IrrGetMesh("20kdm2.bsp")
local	$BSPNode	=	_IrrAddMeshToSceneAsOcttree($BSPMesh)

local	$camera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($camera,	1750,	149,	1369)

WHILE	_IrrRunning()
				_IrrBeginScene(50,	50,	50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddStaticMeshForNormalMappingToScene

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddStaticMeshForNormalMappingToScene($h_Mesh)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrLoadScene

[todo]

#Include	<au3Irrlicht2.au3>
_IrrLoadScene($s_Filename)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSaveScene

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSaveScene($s_Filename)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetSceneNodeFromId

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetSceneNodeFromId($i_ID)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetSceneNodeFromName

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetSceneNodeFromName($s_Name)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddBillBoardToScene

Adds	a	billboard	to	the	scene	of	the	specified	size	and	at	the	specified
position.

#Include	<au3Irrlicht2.au3>
_IrrAddBillBoardToScene($f_XSize,	$f_YSize,	$f_XPos	=	0.0,	$f_YPos	=
0.0,	$f_ZPos	=	0.0)

	

Parameters

$f_XSize X	size	of	the	node
$f_YSize Y	size	of	the	node
$f_XPos [optional]	X	position
$f_YPos [optional]	Y	position
$f_ZPos [optional]	Z	position

	

Return	Value
Success:	Handle	of	the	new	billboard	scene	node
Failure:	False

	

Remarks
A	billboard	is	a	flat	3D	textured	sprite	that	always	faces	towards	the
camera.	You	need	to	texture	this	element	with	a	separate	command.

	

Related
_IrrSetNodeMaterialTexture,	_IrrSetNodeMaterialFlag

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$BillboardTexture	=	_IrrGetTexture("./media/au3irr2_logo.jpg")
local	$Billboard	=	_IrrAddBillBoardToScene(200.0,102,	0.0,0.0,100.0)

_IrrSetNodeMaterialTexture($Billboard,	$BillboardTexture,	0)
_IrrSetNodeMaterialFlag($Billboard,	$IRR_EMF_LIGHTING,	$IRR_OFF)

local	$Camera	=	_IrrAddFPSCamera()

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetBillBoardSize

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetBillBoardSize($h_Node,	$f_Width,	$f_Height)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddBillboardTextSceneNode

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddBillboardTextSceneNode($h_Font,	$s_Text,	$f_XSize,	$f_YSize,
$f_XPos=0,	$f_YPos=0,	$f_ZPos=0,	$h_Parent=0,
$i_TopRGBA=0xFFFFFFFF,	$i_BottomRGBA=0xFFFFFFFF)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$font	=	_IrrGetFont("./media/fonthaettenschweiler.bmp")

_IrrAddBillboardTextSceneNode($font,	"au3Irrlicht2	...",	30.0,	15.0,	0.0,	0.0,
20.0,	0,	_
																																_IrrMakeARGB(0,	255,	0,	0),	_IrrMakeARGB(0,	255,
255,	0))
_IrrAddBillboardTextSceneNode($font,	"...	what	else?",	30.0,	15.0,	0.0,	-5.0,
17.0,	0,	_
																																_IrrMakeARGB(0,	255,	255,	0),	_IrrMakeARGB(0,	0,
255,	0))

_IrrAddFPSCamera()

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddParticleSystemToScene

Adds	a	particle	system	to	the	irrlicht	scene	manager.

#Include	<au3Irrlicht2.au3>
_IrrAddParticleSystemToScene($b_AddEmitter,	$h_Parent	=	0,	$i_Id	=	-1,
$f_PosX	=	0,	$f_PosY	=	0,	$f_PosZ	=	0,	$f_RotX	=	0,	$f_RotY	=	0,
$f_RotZ	=	0,	$f_ScaleX	=	1,	$f_ScaleY	=	1,	$f_ScaleZ	=	1)

	

Parameters

$b_AddEmitter

Whether	default	emitter	shall	be	created	or	not:
$IRR_NO_EMITTER	-	For	no	default	emitter	(this	is
probably	the	option	you	will	use	and	you	will	then	add	a
specific	emitter	later).
IRR_DEFAULT_EMITTER	-	To	create	a	default	emitter
that	ejects	a	thin	vertical	stream	of	particles.

$h_Parent [optional]	Handle	of	scene	node	the	particle	shall	be
attached	to	(0	means	attach	to	the	root	scene	node)

$i_Id [optional]	Assigns	given	integer	as	ID	to	the	created
particle	system.

$f_PosX,
$f_PosY,
$f_PosZ

[optional]	Set	position	of	particle	system	in	the	Irrlicht
scene.

$f_RotX,
$f_RotY,
$f_RotZ

[optional]	Rotate	the	particle	system	along	x,	y,	z	axes
(0-360).

$f_ScaleX,
$f_ScaleY,
$f_ScaleZ

[optional]	Scaling	factors	for	created	particle	system.

	

Return	Value

success:	Handle	of	the	created	particle	system.
failure:	False

	

Remarks
A	particle	system	is	an	object	that	creates	and	manages	hundreds	of
small	billboard	like	objects	that	are	used	to	represent	smoke,	rain	and
other	natural	effects.
Once	created	you	then	need	to	add	emitters	and	affectors	to	create	and
control	the	particles.

	

Related
_IrrAddParticleEmitter,	_IrrAddFadeOutParticleAffector,
_IrrAddGravityParticleAffector,	_IrrAddParticleAttractionAffector,
_IrrAddRotationAffector

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

;	add	particle	system	with	default	emitter	to	the	irrlicht	scene	manager	and
scale	it	for	more	depth
local	$particleSystem	=
_IrrAddParticleSystemToScene($IRR_DEFAULT_EMITTER,	0,	0,	0,	0,	0,	0,
0,	0,	6,	3,	6)
;	load	a	grey	smoke	like	image	for	the	particle
local	$ParticleTexture	=	_IrrGetTexture("./media/ParticleGrey.bmp")

;	apply	the	texture	to	the	particles	system	to	be	drawn	across	each	particles
surface
_IrrSetNodeMaterialTexture($particleSystem,	$ParticleTexture,	0)
;	particle	system	is	not	affected	by	lighting	so	make	it	self	illuminating

_IrrSetNodeMaterialFlag($particleSystem,	$IRR_EMF_LIGHTING,
$IRR_OFF)
;	don't	draw	black	parts	of	the	particle	texture:
_IrrSetNodeMaterialType	($particleSystem,
$IRR_EMT_TRANSPARENT_ADD_COLOR)

local	$nodeCamera	=	_IrrAddCamera(80,0,0,	20,40,0)

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,50)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddSkyBoxToScene

Adds	a	skybox	node	to	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddSkyBoxToScene($h_UpTexture,	$h_DownTexture,	$h_LeftTexture,
$h_RightTexture,	$h_FrontTexture,	$h_BackTexture)

	

Parameters

$h_UpTexture Handle	of	the	top	side	texture
$h_DownTexture Handle	of	the	bottom	side	texture
$h_LeftTexture Handle	of	the	left	side	texture
$h_RightTexture Handle	of	the	right	side	texture
$h_FrontTexture Handle	of	the	front	side	texture
$h_BackTexture Handle	of	the	back	side	texture

	

Return	Value
success:	Handle	of	the	skybox	node
failure:	False

	

Remarks
A	skybox	is	a	huge	hollow	cube	that	encapsulates	the	entire	scene	and
has	a	different	texture	applied	to	each	of	its	six	surfaces	to	represent	a
distant	sky	or	matte	scene.

	

Related
_IrrAddSkyDomeToScene

	

Example

#include	<au3Irrlicht2.au3>

_IrrStart()

local	$nodeSkyBox	=	_IrrAddSkyBoxToScene(_
								_IrrGetTexture("./media/irrlicht2_up.jpg"),	_
								_IrrGetTexture("./media/irrlicht2_dn.jpg"),	_
								_IrrGetTexture("./media/irrlicht2_rt.jpg"),	_
								_IrrGetTexture("./media/irrlicht2_lf.jpg"),	_
								_IrrGetTexture("./media/irrlicht2_ft.jpg"),	_
								_IrrGetTexture("./media/irrlicht2_bk.jpg"))

local	$nodeCamera	=	_IrrAddFPSCamera()

WHILE	_IrrRunning()
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddSkyDomeToScene

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddSkyDomeToScene($h_Texture,	$i_HorizontalRes,	$i_VerticalRes,
$d_TexturePercent,	$d_SpherePercent,	$d_SphereRadius	=	1000.0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
_IrrAddSkyBoxToScene,	_IrrSetSkyDomeColor,
_IrrSetSkyDomeColorBand,	_IrrSetSkyDomeColorPoint

	

au3Irr2	Function	Reference

_IrrAddTestSceneNode

Adds	a	simple	cube	node	to	the	scene

#Include	<au3Irrlicht2.au3>
_IrrAddTestSceneNode()

	

Parameters

None.

	

Return	Value
success:	Handle	of	the	cube	scene	node
failure:	False

	

Remarks
The	test	scene	node	is	a	cube	with	fixed	dimensions	mainly	for	test
purposes.

	

Related
_IrrAddCubeSceneNode,	_IrrAddSphereSceneNode

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddCubeSceneNode

Adds	a	cube	object	to	the	scene	with	the	specified	dimensions.

#Include	<au3Irrlicht2.au3>
_IrrAddCubeSceneNode($f_Size)

	

Parameters

$f_Size Edge	length	of	the	cube.

	

Return	Value
success:	Handle	of	the	cube	scene	node
failure:	False

	

Remarks
None

	

Related
_IrrAddTestSceneNode,	_IrrAddSphereSceneNode

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddCubeSceneNode(10)
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddSphereSceneNode

Adds	a	simple	sphere	object	to	the	scene

#Include	<au3Irrlicht2.au3>
_IrrAddSphereSceneNode($f_Size,	$i_PolyCount	=	16)

	

Parameters

$f_Size Radius	of	the	sphere

$i_PolyCount
[optional]	Level	of	detail	for	the	sphere.
Too	high	values	could	produce	a	very	high	density	mesh
and	affect	your	frame	rate	adversely.

	

Return	Value
success:	Handle	of	the	sphere	scene	node
failure:	False

	

Remarks
None

	

Related
_IrrAddTestSceneNode,	_IrrAddCubeSceneNode

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$nodeTest	=	_IrrAddSphereSceneNode(8,32)
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddWaterSurfaceSceneNode

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddWaterSurfaceSceneNode($h_Mesh,	$f_WaveHeight	=	2.0,
$f_WaveSpeed	=	300.0,	$f_WaveLength	=	10.0,	$h_Parent	=	0,	$i_ID	=	-1,
$f_PosX	=	0,	$f_PosY	=	0,	$f_PosZ	=	0,	$f_RotX	=	0,	$f_RotY	=	0,
$f_RotZ	=	0,	$f_ScaleX	=	1.0,	$f_ScaleY	=	1.0,	$f_ScaleZ	=	1.0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddZoneManager

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddZoneManager($f_NearDistance=0,	$f_FarDistance=12000)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddClouds

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddClouds($h_Texture,	$i_Lod,	$i_Depth,	$i_Density)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

Example

#include	"au3Irrlicht2.au3"

Global	$hCloudNode,	$hCloudTexture

_IrrStart()

$hCloudTexture	=	_IrrGetTexture("./media/cloud4.png")
$hCloudNode	=	_IrrAddClouds($hCloudTexture,	10,	1,	200)
_IrrSetNodePosition($hCloudNode,	0,	200,	0)

_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(128,	128,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddLensFlare

Adds	a	lens	flare	patch	object	to	the	scene,	this	object	simulates	the
effect	of	bright	lights	on	the	optics	of	a	camera.

#Include	<au3Irrlicht2.au3>
_IrrAddLensFlare($h_Texture)

	

Parameters

$h_Texture Handle	to	texture	(image	containing	a	series	of	128x128images	representing	stages	of	the	the	lens	flare).

	

Return	Value
Success:	Handle	to	a	flare	node
Failure:	False	and	@error	1

	

Remarks
[todo]

	

Related
_IrrSetFlareScale,	_IrrGetTexture

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$hFlare	=	_IrrAddLensFlare(_IrrGetTexture("./media/flares.jpg"))
_IrrSetNodePosition($hFlare,	300,100,1000)

_IrrAddFPSCamera()
_IrrHideMouse()

While	_IrrRunning()
				_IrrBeginScene(180,	225,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddGrass

Adds	a	grass	object	to	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddGrass($h_Terrain,	$i_X,	$i_Y,	$i_PatchSize,	$f_FadeDistance,
$i_Crossed,	$f_GrassScale,	$i_MaxDensity,	$i_DataPosX,	$i_DataPosY,
$h_HeightMap,	$h_TextureMap,	$h_GrassMap,	$h_GrassTexture)

	

Parameters

$h_Terrain [explanation]
$i_X X	Positon	of	grass	patch.
$i_Y Y	Positon	of	grass	patch.
$i_PatchSize Size	of	grass	patch

$f_FadeDistance

Distance	at	which	the	number	of	displayed	grass
elements	in	that	patch	are	reduced.
If	this	is	set	to	1.0	then	when	the	cameral	is	inside	the
patch	all	of	grass	will	be	displayed	but	once	outside
less	and	less	will	be	shown.
By	increasing	this	to	2.0	then	all	of	the	grass	is	shown
until	the	camera	is	two	patches	distant.
This	gives	a	better	appearence	but	reduces
performance	as	more	grass	has	to	be	drawn.

$i_Crossed

IRR_ON	or	IRR_OFF.
When	off	each	piece	of	grass	is	a	separate	entity	with
its	own	position	and	rotation.
When	On	grass	is	paired	up	and	placed	to	form	a
cross.	Crossed	grass	can	have	a	better	appearance
as	you	rotate	around	it.
However	individual	grass	can	give	the	impression	that
there	is	more	of	it	and	you	can	therefore	reduce	the
number	of	grass	blades	and	increase	performance.

$f_GrassScale Scale	of	a	grass	patch.

$i_MaxDensity number	of	individual	clumps	of	folliage	that	are
created.

$i_DataPosX
X	position	of	large	bitmap	associated	with	a	tiled
terrain	and	allow	the	color	information	to	be	taken
from	an	offset	position	on	the	bitmap.

$i_DataPosY
Y	position	of	large	bitmap	associated	with	a	tiled
terrain	and	allow	the	color	information	to	be	taken
from	an	offset	position	on	the	bitmap.

$h_TextureMap Handle	to	an	image	that	contains	the	height	of	the
terrain	onto	which	the	grass	is	placed.

$h_GrassMap

Handle	to	an	image	used	to	adjust	the	height	and
density	of	the	grass.	For	example	you	might	have	a
patch	where	you	dont	want	to	see	any	grass	or	a
barren	patch	where	you	want	short	stubble.

$h_GrassTexture

Handle	to	a	Texture	used	for	the	grass.	This	RGBA
image	is	automatically	broken	up	into	a	number	of
sections	that	are	used	to	texure	different	clumps	of
grass.

	

Return	Value
Success:	Handle	to	a	Grass	node.
Failure:	False	and	@error	1

	

Remarks
Grass	objects	are	associated	with	terrain	and	tile	terrain	objects	and	are
used	to	place	small	billboard	objects	into	the	scene	representing	folliage,
this	implementation	of	grass	creates	a	large	number	of	grass	objects
already	positioned	across	the	terrain	and	then	dynamically	shows	or
hides	them	depending	on	where	the	camera	is	within	the	scene.
The	grass	is	also	affected	with	a	wind	modifier	that	gently	moves	the
grass	as	if	it	were	caught	in	the	wind.
By	setting	the	speed	of	the	wind	to	zero	the	grass	will	become	static	and
you	will	see	an	increase	in	performance.

Grass	usually	looks	best	when	it	is	closely	matched	to	the	color	of	the
terrain	and	to	assist	with	this	a	new	Material	Type	has	been
added	IRR_EMT_TRANSPARENT_ADD_ALPHA_CHANNEL_REF	that
adds	the	color	of	grass	texture	to	the	color	of	the	grass	which	is
automatically	set	to	the	color	of	the	terrain	that	it	lies	upon.

	

Related
_IrrGetGrassDrawCount,	_IrrSetGrassDensity,	_IrrSetGrassWind

	

au3Irr2	Function	Reference

_IrrSetShadowColor

Sets	the	colour	of	shadows	cast	by	objects	in	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrSetShadowColor($i_Alpha,	$i_Red,	$i_Green,	$i_Blue)

	

Parameters

$i_Alpha

Alpha	blend	for	the	shadow.
Value	of	128	would	mean	a	half	washed	out	shadow	which
gives	the	appearence	of	ambient	light	in	the	room
illuminating	the	shadowed	surface.

$i_Red,
$i_Green,
$i_Blue

Colour	values	for	shadow	colour	from	0	to	255.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
The	shadow	colour	is	a	global	property	for	the	whole	scene	(however	you
can	change	it	when	moving	into	different	areas	of	your	scene).
If	you	are	observing	a	bright	scene	you	might	use	a	light	grey	shadow
instead	of	a	heavy	black	shadow	to	add	to	realism.

	

Related
_IrrAddNodeShadow,	_IrrAddLight

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_IGNORE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$texture	=	_IrrGetTexture(".\media\au3irr2_logo.jpg")

local	$meshReceive	=	_IrrAddHillPlaneMesh("Plane",	8,	8,	1,	1)
local	$nodeReceive	=	_IrrAddMeshToScene($meshReceive)
_IrrSetNodeMaterialTexture($nodeReceive,	$texture,	0)

local	$meshCast	=	_IrrGetMesh(".\media\sphere.obj")
local	$nodeCast	=	_IrrAddMeshToScene($meshCast)
_IrrSetNodeMaterialTexture($nodeCast,	$texture,	0)
_IrrAddFlyCircleAnimator($nodeCast,	1,	3,	1,	3,	0.0005)

local	$nodeLight	=	_IrrAddLight($IRR_NO_PARENT,	0,50,0,	1,0.1,0.1,
1000.0)
_IrrAddNodeShadow($nodeCast)
_IrrSetShadowColor(128,	255,	0,	0)

local	$nodeCamera	=	_IrrAddCamera(-5,5,-6,	0,0,0)

WHILE	_IrrRunning()
				_IrrBeginScene(100,	100,	100)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetFog

Set	the	properties	of	fog	in	the	scene

#Include	<au3Irrlicht2.au3>
_IrrSetFog($i_Red,	$i_Green,	$i_Blue,	$i_FogType,	$f_FogStart,
$f_FogEnd,	$f_Density	=	0.025)

	

Parameters

$i_Red,
$i_Green,
$i_Blue

Define	colour	of	the	fog	(0-255).
Should	be	set	to	the	same	colour	as	the	scene	sky	so	the
scene	fogs	out	nicely	into	nothing.

$i_FogType

Defines	how	the	fog	is	calculated:
$IRR_LINEAR_FOG	-	computed	as	[end	-	distance	/	end	-
start],	density	value	is	not	used.
$IRR_EXPONENTIAL_FOG	-	computed	as	[1	/
(2.718^(distance	*	densitiy))],	both	start	and	end	values	are
not	used.

$f_FogStart,
$f_FogEnd

Distances	at	which	the	fog	starts	and	at	which	it	reaches	its
maximum	density.
Values	are	ignored	for	exponential	fog.

$f_Density

[optional]	Determines	how	quickly	the	exponential	change
takes	place,	with	value	from	0	to	1.
Example:	A	value	of	0.025	equals	20%	visibility	at	50	units
distance.	Value	is	ignored	for	linear	fog.

	

Return	Value
success:	True
failure:	False

	

Remarks
None.

	

Related
None.

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(10,	10,	10,	0,	0,	0)
local	$nodeCube	=	_IrrAddCubeSceneNode(12)
_IrrSetNodeMaterialTexture($nodeCube,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)

_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_FOG_ENABLE,
$IRR_ON)
_IrrSetFog	(100,100,100,	$IRR_EXPONENTIAL_FOG,	0.0,	0.0,	0.15)

WHILE	_IrrRunning()
				_IrrBeginScene(100,	100,	100)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrDraw3DLine

Draws	a	line	onto	the	display	using	3D	co-ordinates	and	a	specified
colour.

#Include	<au3Irrlicht2.au3>
_IrrDraw3DLine($f_XStart,	$f_YStart,	$f_ZStart,	$f_XEnd,	$f_YEnd,
$f_ZEnd,	$i_Red,	$i_Green,	$i_Blue)

	

Parameters

$f_XStart,
$f_YStart,
$f_ZStart

Defines	start	point	for	the	3D-line.

$f_XEnd,
$f_YEnd,
$f_ZEnd

Defines	end	point	for	the	3D-line.

$i_Red,
$i_Green,
$i_Blue

Colour	values	for	the	3D-Line	(0-255).

	

Return	Value
success:	True
failure:	False

	

Remarks
The	lines	are	not	part	of	the	Irrlicht	scene	but	drawn	before	and
separately.	They	need	to	be	redrawn	for	every	new	frame.

	

Related
_IrrBeginScene,	_IrrEndScene()

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$i
local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetCameraTarget($nodeCamera,	50,	0,	50)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	50)

				;	draw	a	grid	to	sreen	before	drawing	the	scene:
				for	$i	=	0	to	250	step	25
												_IrrDraw3DLine($i,	-25,	0,	$i,	-25,	250,	255,	255,	0)
												_IrrDraw3DLine(0,	-25,	$i,	250,	-25,	$i,	255,	255,	0)
				next	;	$i

				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetSkyDomeColor

Set	the	color	of	the	verticies	in	the	skydome.

#Include	<au3Irrlicht2.au3>
_IrrSetSkyDomeColor($h_Dome,	$i_HorizontalRed,	$i_HorizontalGreen,
$i_HorizontalBlue,	$i_ZenithRed,	$i_ZenithGreen,	$i_ZenithBlue)

	

Parameters

$h_Dome [explanation]
$i_HorizontalRed Red	color	0	-	255
$i_HorizontalGreen Green	color	0	-	255
$i_HorizontalBlue Blue	color	0	-	255
$i_ZenithRed Red	color	0	-	255
$i_ZenithGreen Green	color	0	-	255
$i_ZenithBlue Blue	color	0	-	255

	

Return	Value
Success:	True
Failure:	False

	

Remarks
Two	colors	are	defined	one	for	the	horizon	and	another	for	the	top	of	the
sky	dome,	this	simulates	the	type	of	coloring	effects	you	see	in	the	sky.
If	you	are	using	a	full	spherical	skydome	the	horizontal	color	will	be	the
color	at	the	bottom	of	the	skydome.

	

Related
_IrrSetSkyDomeColorPoint,	_IrrSetSkyDomeColorBand,
_IrrSAddSkyDome

	

au3Irr2	Function	Reference

_IrrSetSkyDomeColorBand

Creates	a	horizontal	band	of	color	in	the	skydome.

#Include	<au3Irrlicht2.au3>
_IrrSetSkyDomeColorBand($h_Dome,	$i_HorizontalRed,
$i_HorizontalGreen,	$i_HorizontalBlue,	$i_BandVerticalPosition,
$f_BandFade,	$i_Additive)

	

Parameters

$h_Dome [explanation]
$i_HorizontalRed Red	color	0	-	255
$i_HorizontalGreen Green	color	0	-	255
$i_HorizontalBlue Blue	color	0	-	255
$i_BandVerticalPosition Vertex	at	which	you	wish	to	create	the	band.

$f_BandFade Amount	that	the	band	is	faded	into	the	existing
skydome	color.

$i_Additive
IRR_ON	to	add	the	color	of	the	band	to	the
existing	color	of	the	skydome	or	IRR_OFF	to
replace	it.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
This	is	mainly	useful	for	creating	additional	bands	of	color	at	the	horizon,
where	your	sky	is	a	graduation	of	blues	and	then	in	the	morning	you	have
a	brighter	golden	band	as	the	sun	rises.

	

Related
_IrrSetSkyDomeColorPoint,	_IrrSetSkyDomeColor,	_IrrSAddSkyDome

	

au3Irr2	Function	Reference

_IrrSetSkyDomeColorPoint

Set	the	color	of	the	verticies	in	the	skydome	radiating	out	from	a	point.

#Include	<au3Irrlicht2.au3>
_IrrSetSkyDomeColorPoint($h_Dome,	$i_Red,	$i_Green,	$i_Blue,
$f_PosX,	$f_PosY,	$f_PosZ,	$f_Radius,	$f_PointFade,	$i_Additive)

	

Parameters

$h_Dome Handle	to	a	SkyDome	node.
$i_Red Red	color	0	-	255
$i_Green Green	color	0	-	255
$i_Blue Blue	color	0	-	255
$f_PosX X	position.
$f_PosY Y	position.
$f_PosZ Z	position.
$f_Radius Limit	the	distance	of	the	coloring

$f_PointFade Amount	that	the	band	is	faded	into	the	existing	skydomecolor.

$i_Additive IRR_ON	to	add	the	color	of	the	band	to	the	existing	color
of	the	skydome	or	IRR_OFF	to	replace	it.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
This	is	powerful	effect	that	can	be	used	to	color	parts	of	the	skydome	and

create	effects	to	represent	the	glows	of	the	rising	sun	or	the	moon	in	the
sky.

	

Related
_IrrSetSkyDomeColorBand,	_IrrSetSkyDomeColor,	_IrrSAddSkyDome

	

au3Irr2	Function	Reference

_IrrSetZoneManagerProperties

Sets	the	draw	distances	of	nodes	in	the	zone/distance	management	node
and	whether	or	not	the	zone	manager	is	to	accumulate	the	bounding
boxes	of	its	children	as	they	are	added.

#Include	<au3Irrlicht2.au3>
_IrrSetZoneManagerProperties($h_ZoneManager,	$f_NearDistance,
$f_FarDistance,	$i_AccumulateBoxes)

	

Parameters

$h_ZoneManager Handle	to	the	zone	node.
$f_NearDistance
$f_FarDistance
$i_AccumulateBoxes

	

Return	Value
Success:	True
Failure:	False

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetZoneManagerBoundingBox

Allows	the	user	to	manually	set	the	bounding	box	of	a	zone	manager
node.

#Include	<au3Irrlicht2.au3>
_IrrSetZoneManagerBoundingBox($h_ZoneManager,	$f_X,	$f_Y,	$f_Z,
$f_BoxWidth,	$f_BoxHeight,	$f_BoxDepth)

	

Parameters

$h_ZoneManager Handle	to	the	zone	node.
$f_X X	position.
$f_Y Y	position.
$f_Z Z	position.
$f_BoxWidth Width	of	zone	box.
$f_BoxHeight Height	of	zone	box.
$f_BoxDepth Depth	of	zone	box.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related

[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetGrassDensity

Set	the	grass	density.

#Include	<au3Irrlicht2.au3>
_IrrSetGrassDensity($h_Grass,	$f_Density,	$f_Distance)

	

Parameters

$h_Grass Handle	to	the	grass	node.
$f_Density Number	of	grass	nodes	visible	in	the	scene.
$f_Distance Distance	at	which	they	can	be	seen.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
_IrrAddGrass,	_IrrGetGrassDrawCount,	_IrrSetGrassWind

	

au3Irr2	Function	Reference

_IrrSetGrassWind

Set	the	grass	wind	effect.

#Include	<au3Irrlicht2.au3>
_IrrSetGrassWind($h_Grass,	$f_Strength,	$f_Resolution)

	

Parameters

$h_Grass Handle	to	the	grass	node.
$f_Strength Strength	of	the	wind.
$f_Resolution How	often	the	effect	is	calculated.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
By	setting	the	resoloution	to	zero	the	wind	effect	will	be	stopped	and
there	will	be	a	performance	increase,
however	the	wind	effect	adds	significantly	to	the	subtle	atmosphere	of	the
scene.

	

Related
_IrrAddGrass,	_IrrGetGrassDrawCount,	_IrrSetGrassDensity

	

au3Irr2	Function	Reference

_IrrCreateBatchingMesh

Create	a	batching	mesh	that	will	be	a	collection	of	other	meshes	into	a
single	source	mesh.

#Include	<au3Irrlicht2.au3>
_IrrCreateBatchingMesh()

	

Parameters

None.

	

Return	Value
Success:	Handle	to	a	bactching	mesh.
Failure:	False	and	@error	1

	

Remarks
The	function	of	the	batching	mesh	is	to	avoid	the	use	of	large	numbers	of
nodes	that	adds	an	overhead	to	the	rendering	process	that	can
significantly	slow	it	down.
Where	you	have	a	forest	with	a	thousand	trees	you	will	see	a	significant
increase	in	performance	by	batching	all	of	those	trees	into	a	smaller
number	of	node.
While	this	is	handled	as	an	irr_mesh	it	should	only	be	used	with	batching
mesh	commands.

	

Related
[todo:	functionName,	functionName]

	

See	Also
_IrrAddToBatchingMesh,	_IrrFinalizeBatchingMesh

	

au3Irr2	Function	Reference

_IrrAddToBatchingMesh

Adds	a	mesh	to	the	batching	mesh	at	the	specified	position,	rotation	and
scale.

#Include	<au3Irrlicht2.au3>
_IrrAddToBatchingMesh($h_meshBatch,	$h_mesh,	$f_posX	=	0.0,	$f_posY
=	0.0,	$f_posZ	=	0.0,	$f_rotX	=	0.0,	$f_rotY	=	0.0,	$f_rotZ	=	0.0,	$f_scaleX
=	1.0,	$f_scaleY	=	1.0,	$f_scaleZ	=	1.0)

	

Parameters

$h_meshBatch Handle	to	a	bactching	mesh	as	returned	by
_IrrCreateBatchingMesh.

$h_mesh Handle	to	the	meash	to	add.
$f_posX X	position
$f_posY Y	position
$f_posZ Z	position
$f_rotX X	rotation
$f_rotY Y	rotation
$f_rotZ Z	rotation
$f_scaleX X	scale
$f_scaleY Y	scale
$f_scaleZ Z	scale

	

Return	Value
Success:	True
Failure:	False

	

Remarks
If	each	of	your	meshes	requires	a	different	texture	you	should	call
IrrSetMeshMaterialTexture	for	the	mesh	you	are	about	to	add	prior	to
adding	the	mesh	to	the	batch.

	

Related
_IrrCreateBatchingMesh,	_IrrFinalizeBatchingMesh

	

au3Irr2	Function	Reference

_IrrFinalizeBatchingMesh

Finalises	the	batching	mesh.

#Include	<au3Irrlicht2.au3>
_IrrFinalizeBatchingMesh($h_meshBatch)

	

Parameters

$h_meshBatch Handle	to	a	bactching	mesh	as	returned	by
_IrrCreateBatchingMesh.

	

Return	Value
Success:	Handle	to	a	new	mesh
Failure:	False	and	@error	1

	

Remarks
This	should	be	called	once	all	of	the	meshes	have	been	added	to	the
batching	mesh.
The	function	returns	a	new	mesh	object	that	can	be	used	in	all	standard
mesh	calls..

	

Related
_IrrCreateBatchingMesh,	_IrrAddToBatchingMesh

	

au3Irr2	Function	Reference

_IrrSetMeshMaterialTexture

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetMeshMaterialTexture($h_mesh,	$h_texture,	$i_index,	$i_buffer	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrScaleMesh

[todo]

#Include	<au3Irrlicht2.au3>
_IrrScaleMesh($h_mesh,	$f_scale,	$i_frame	=	0,	$i_meshBuffer	=	0,
$h_sourceMesh	=	0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddBeamSceneNode

Add	a	beam	scene	node.

#Include	<au3Irrlicht2.au3>
_IrrAddBeamSceneNode()

	

Parameters

None.

	

Return	Value
Success:	Handle	to	a	beam	node.
Failure:	False	and	@error	1

	

Remarks
The	beam	is	a	special	scene	node	that	can	be	used	to	replicate	beam
effects	like	lasers	and	tracer	gun	fire.
This	command	simply	adds	the	beam	you	should	then	make	calls	to	set
the	beams	properties.

	

Related
_IrrSetBeamSize,	_IrrSetBeamPosition

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBeamNode
Global	$hTexture
Global	$hCamera

_IrrStart()

$hBeamNode	=	_IrrAddBeamSceneNode()
_IrrSetBeamPosition($hBeamNode,	15.0,	20.0,	20.0,	-15.0,	-20.0,	-20.0)
_IrrSetBeamSize($hBeamNode,	5.0)
$hTexture	=	_IrrGetTexture("./media/beam.png")
_IrrSetNodeMaterialTexture($hBeamNode,	$hTexture,	0)
_IrrSetNodeMaterialType($hBeamNode,
$IRR_EMT_TRANSPARENT_ALPHA_CHANNEL)

$hCamera	=	_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetBeamSize

Sets	the	width	of	a	beam	node.

#Include	<au3Irrlicht2.au3>
_IrrSetBeamSize($h_BeamNode,	$f_Size)

	

Parameters

$h_BeamNode Handle	to	a	beam	node.
$f_Size Width	of	the	beam	node.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
_IrrAddBeamSceneNode,	_IrrSetBeamPosition

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBeamNode

Global	$hTexture
Global	$hCamera

_IrrStart()

$hBeamNode	=	_IrrAddBeamSceneNode()
_IrrSetBeamPosition($hBeamNode,	15.0,	20.0,	20.0,	-15.0,	-20.0,	-20.0)
_IrrSetBeamSize($hBeamNode,	5.0)
$hTexture	=	_IrrGetTexture("./media/beam.png")
_IrrSetNodeMaterialTexture($hBeamNode,	$hTexture,	0)
_IrrSetNodeMaterialType($hBeamNode,
$IRR_EMT_TRANSPARENT_ALPHA_CHANNEL)

$hCamera	=	_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetBeamPosition

Sets	the	start	and	end	positions	of	a	beam	node.	The	beam	will	stretch
between	the	two	nodes.

#Include	<au3Irrlicht2.au3>
_IrrSetBeamPosition($h_BeamNode,	$f_SX,	$f_SY,	$f_SZ,	$f_EX,	$f_EY,
$f_EZ)

	

Parameters

$h_BeamNode Handle	to	a	beam	node.
$f_SX X	start	position
$f_SY Y	start	position
$f_SZ Z	start	position
$f_EX X	end	position
$f_EY X	end	position
$f_EZ X	end	position

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related

_IrrAddBeamSceneNode,	_IrrSetBeamSize

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBeamNode
Global	$hTexture
Global	$hCamera

_IrrStart()

$hBeamNode	=	_IrrAddBeamSceneNode()
_IrrSetBeamPosition($hBeamNode,	15.0,	20.0,	20.0,	-15.0,	-20.0,	-20.0)
_IrrSetBeamSize($hBeamNode,	5.0)
$hTexture	=	_IrrGetTexture("./media/beam.png")
_IrrSetNodeMaterialTexture($hBeamNode,	$hTexture,	0)
_IrrSetNodeMaterialType($hBeamNode,
$IRR_EMT_TRANSPARENT_ALPHA_CHANNEL)

$hCamera	=	_IrrAddCamera(50,	0,	0,	0,	0,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddBoltSceneNode

The	bolt	is	a	special	scene	node	that	can	be	used	to	replicate	electrical
effects.

#Include	<au3Irrlicht2.au3>
_IrrAddBoltSceneNode()

	

Parameters

None.

	

Return	Value
Success:	Handle	to	a	Bolt	node
Failure:	False	and	@error	1

	

Remarks
This	command	simply	adds	the	bolt	you	should	then	make	a	call	to	set
the	bolts	properties.
This	node	can	be	used	to	simulate	lightning	and	other	electrical	effects.

	

Related
_IrrSetBoltProperties

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBoltNode,	$hTexture,	$hCamera

_IrrStart()

$hBoltNode	=	_IrrAddBoltSceneNode()
_IrrSetBoltProperties($hBoltNode,	0,	90,	0,	0,	0,	0,	50,	10,	2,	10,	6,
$IRR_ON,	0xFFFFFFFF)
$hTexture	=	_IrrGetTexture("./media/ParticleBlue.bmp")
_IrrSetNodeMaterialTexture($hBoltNode,	$hTexture,	0)

$hCamera	=	_IrrAddCamera(40,	50,	40,	0,	50,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(16,	24,	32)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetBoltProperties

This	sets	the	properties	of	a	bolt	node	that	simulates	an	electrical	effect.

#Include	<au3Irrlicht2.au3>
_IrrSetBoltProperties($h_BoltNode,	$f_SX,	$f_SY,	$f_SZ,	$f_EX,	$f_EY,
$f_EZ,	$i_UpdateTime=50,	$i_Height=10,	$f_Thickness=5.0,	$i_Parts=10,
$i_Bolts=6,	$i_Steadyend=$IRR_OFF,	$i_Color=0x0000FFFF)

	

Parameters

$h_BoltNode [explanation]
$f_SX,	$f_SY,
$f_SZ Starting	point	that	the	bolt	origionates	from.

$f_EX,	$f_EY,
$f_EZ End	terminating	point	for	the	bolt.

$i_UpdateTime Number	of	miliseconds	between	updates	to	theappearence	of	the	bolt.
$i_Height Radius	is	the	radius	of	the	entire	bolt	effect.
$f_Thickness Thickness	of	a	single	electrical	element	in	the	bolt.
$i_Parts Number	of	segments	the	bolt	is	divided	into.
$i_Bolts Number	of	individual	electrical	arcs	that	are	rendered.

$i_Steadyend Set	to	IRR_ON	ends	in	a	tight	point,	Set	to	IRR_OFF	it
ends	with	the	same	width	as	the	rest	of	the	bolt.

$i_Color Diffuse	color	that	is	applied	to	the	bolt.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
There	are	a	number	of	properties	that	control	many	aspects	of	the	bolt	to
produce	a	wide	range	of	appearences.

	

Related
_IrrAddBoltSceneNode

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBoltNode,	$hTexture,	$hCamera

_IrrStart()

$hBoltNode	=	_IrrAddBoltSceneNode()
_IrrSetBoltProperties($hBoltNode,	0,	90,	0,	0,	0,	0,	50,	10,	2,	10,	6,
$IRR_ON,	0xFFFFFFFF)
$hTexture	=	_IrrGetTexture("./media/ParticleBlue.bmp")
_IrrSetNodeMaterialTexture($hBoltNode,	$hTexture,	0)

$hCamera	=	_IrrAddCamera(40,	50,	40,	0,	50,	0)

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(16,	24,	32)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetBillBoardColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetBillBoardColor($h_Node,	$i_TopColor,	$i_BottomColor)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddBillBoardGroupToScene

Adds	a	billboard	group	to	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddBillBoardGroupToScene()

	

Parameters

None.

	

Return	Value
Success:	Handle	to	an	irr	node	object.
Failure:	False	and	@error	1

	

Remarks
This	is	a	special	object	that	can	have	billboard	like	objects	added	and
removed	from	it	and	rendered	in	a	very	quick	an	efficient	manner.
They	are	all	treated	as	a	single	object	rather	than	as	many	individual
nodes.	This	is	particuallarly	useful	for	custom	particle	effects.

	

Related
_IrrAddBillBoardToGroup,	_IrrRemoveBillBoardFromGroup,
_IrrAddBillBoardByAxisToGroup,	_IrrGetBillBoardGroupCount,
IrrBillBoardGroupShadows,	_IrrBillBoardForceUpdate

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBillboardGroup
Global	$hBillboardTexture
Global	$aBillboard[6]
Global	$hCamera

_IrrStart()

$hBillboardGroup	=	_IrrAddBillBoardGroupToScene()
For	$i	=	1	To	5
				$aBillboard[$i]	=	_IrrAddBillBoardToGroup($hBillboardGroup,	150,	100,
-450	+	($i	*	150),	0,	400,	0,	255,	255,	255,	255)
Next
$hBillboardTexture	=	_IrrGetTexture("./media/au3irr2_logo.jpg")
_IrrSetNodeMaterialTexture($hBillboardGroup,	$hBillboardTexture,	0)
_IrrSetNodeMaterialFlag($hBillboardGroup,	$IRR_EMF_LIGHTING,
$IRR_OFF)

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.1)
_IrrSetCameraClipDistance($hCamera,	128000)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddBillBoardToGroup

Adds	a	billboard	to	a	billboard	group.	There	are	a	number	of	properties
that	are	used	to	specify	the	billboard

#Include	<au3Irrlicht2.au3>
_IrrAddBillBoardToGroup($h_BillboardGroup,	$f_XSize,	$f_YSize,
$f_XPos,	$f_YPos,	$f_ZPos,	$f_Roll,	$u_Alpha,	$u_Red	,	$u_Green,
$u_Blue)

	

Parameters

$h_BillboardGroup Handle	to	the	Billboard	Group	as	returned	by_IrrAddBillBoardGroupToScene
$f_XSize Width	of	the	billboard
$f_YSize Height	of	the	billboard
$f_XPos X	position	of	the	billboard
$f_YPos Y	position	of	the	billboard
$f_ZPos Z	position	of	the	billboard

$f_Roll Specifies	the	number	of	degrees	that	the	billboard	is
spun	around	its	center

$u_Alpha Alpha	color	used	for	the	billboard	0	-	255
$u_Red Red	color	used	for	the	billboard	0	-	255
$u_Green Green	color	used	for	the	billboard	0	-	255
$u_Blue Blue	color	used	for	the	billboard	0	-	255

	

Return	Value
Success:	Handle	to	the	billbord	scene	node	address	in	the	billbord	group
Failure:	False	and	@error	1

	

Remarks
None

	

Related
_IrrAddBillBoardGroupToScene,	_IrrRemoveBillBoardFromGroup,
_IrrGetBillBoardGroupCount,	_IrrAddBillBoardByAxisToGroup,
_IrrBillBoardForceUpdate

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBillboardGroup
Global	$hBillboardTexture
Global	$aBillboard[6]
Global	$hCamera

_IrrStart()

$hBillboardGroup	=	_IrrAddBillBoardGroupToScene()
For	$i	=	1	To	5
				$aBillboard[$i]	=	_IrrAddBillBoardToGroup($hBillboardGroup,	150,	100,
-450	+	($i	*	150),	0,	400,	0,	255,	255,	255,	255)
Next
$hBillboardTexture	=	_IrrGetTexture("./media/au3irr2_logo.jpg")
_IrrSetNodeMaterialTexture($hBillboardGroup,	$hBillboardTexture,	0)
_IrrSetNodeMaterialFlag($hBillboardGroup,	$IRR_EMF_LIGHTING,
$IRR_OFF)

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.1)
_IrrSetCameraClipDistance($hCamera,	128000)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddBillBoardByAxisToGroup

Adds	a	billboard	to	a	billboard	group	that	is	fixed	to	a	particular	axis.

#Include	<au3Irrlicht2.au3>
_IrrAddBillBoardByAxisToGroup($h_BillboardGroup,	$f_XSize,	$f_YSize,
$f_XPos,	$f_YPos,	$f_ZPos,	$f_Roll,	$u_Alpha,	$u_Red	,	$u_Green,
$u_Blue,	$f_XAxis,	$f_YAxis,	$f_ZAxis)

	

Parameters

$h_BillboardGroup Handle	to	the	Billboard	Group	as	returned	by_IrrAddBillBoardGroupToScene
$f_XSize Width	of	the	billboard
$f_YSize Height	of	the	billboard
$f_XPos X	position	of	the	billboard
$f_YPos Y	position	of	the	billboard
$f_ZPos Z	position	of	the	billboard

$f_Roll Specifies	the	number	of	degrees	that	the	billboard	is
spun	around	its	center

$u_Alpha Alpha	color	used	for	the	billboard	0	-	255
$u_Red Red	color	used	for	the	billboard	0	-	255
$u_Green Green	color	used	for	the	billboard	0	-	255
$u_Blue Blue	color	used	for	the	billboard	0	-	255

$f_XAxis X	direction	around	which	the	billboard	is	spun	to
face	the	camera.

$f_YAxis Y	direction	around	which	the	billboard	is	spun	to
face	the	camera.

$f_ZAxis Z	direction	around	which	the	billboard	is	spun	to	face
the	camera

	

Return	Value
Success:	Handle	to	the	billbord	scene	node	address	in	the	billbord	group
Failure:	False	and	@error	1

	

Remarks
These	billboards	are	particularly	useful	for	things	like	grass.
There	are	a	number	of	properties	that	are	used	to	specify	the	billboard.

	

Related
_IrrAddBillBoardGroupToScene,	_IrrRemoveBillBoardFromGroup,
_IrrGetBillBoardGroupCount,	_IrrBillBoardForceUpdate

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBillboardGroup
Global	$hBillboardTexture
Global	$aBillboard[6]
Global	$hCamera

_IrrStart()

$hBillboardGroup	=	_IrrAddBillBoardGroupToScene()
For	$i	=	1	To	5
				$aBillboard[$i]	=	_IrrAddBillBoardByAxisToGroup($hBillboardGroup,
150,	100,	-450	+	($i	*	150),	0,	400,	0,	255,	255,	255,	255,	0,	1,	0)
Next
$hBillboardTexture	=	_IrrGetTexture("./media/au3irr2_logo.jpg")
_IrrSetNodeMaterialTexture($hBillboardGroup,	$hBillboardTexture,	0)
_IrrSetNodeMaterialFlag($hBillboardGroup,	$IRR_EMF_LIGHTING,

$IRR_OFF)

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.1)
_IrrSetCameraClipDistance($hCamera,	128000)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrRemoveBillBoardFromGroup

Removes	the	specified	billboard	from	the	billboard	group.

#Include	<au3Irrlicht2.au3>
_IrrRemoveBillBoardFromGroup($h_BillboardGroup,
$h_BillboardGroupSceneNode)

	

Parameters

$h_BillboardGroup
Handle	to	the	Billboard	Group	as
returned	by
_IrrAddBillBoardGroupToScene

$h_BillboardGroupSceneNode
Handle	to	the	billbord	scene	node
address	in	the	billbord	group	as	returned
by	_IrrAddBillBoardToGroup

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
_IrrAddBillBoardGroupToScene,	_IrrAddBillBoardToGroup

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBillboardGroup
Global	$hBillboardTexture
Global	$aBillboard[6]
Global	$iBillBoards
Global	$hCamera
Global	$iTimer	=	TimerInit()

_IrrStart()

$hBillboardGroup	=	_IrrAddBillBoardGroupToScene()
For	$i	=	1	To	5
				$aBillboard[$i]	=	_IrrAddBillBoardToGroup($hBillboardGroup,	150,	100,
-450	+	($i	*	150),	0,	400,	0,	255,	255,	255,	255)
Next
$hBillboardTexture	=	_IrrGetTexture("./media/au3irr2_logo.jpg")
_IrrSetNodeMaterialTexture($hBillboardGroup,	$hBillboardTexture,	0)
_IrrSetNodeMaterialFlag($hBillboardGroup,	$IRR_EMF_LIGHTING,
$IRR_OFF)

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.1)
_IrrSetCameraClipDistance($hCamera,	128000)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				$iBillBoards	=	_IrrGetBillBoardGroupCount($hBillboardGroup)
				If	TimerDiff($iTimer)	>	2000	And	$iBillBoards	>	0	Then
								_IrrRemoveBillBoardFromGroup($hBillboardGroup,
$aBillboard[$iBillBoards])
								$iTimer	=	TimerInit()
				EndIf
				_IrrBeginScene(0,	0,	255)
				_IrrDrawScene()
				_IrrEndScene()

WEnd
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrBillBoardGroupShadows

Applies	lighting	to	the	billboards	in	a	cluster	of	billboards.

#Include	<au3Irrlicht2.au3>
_IrrBillBoardGroupShadows($h_BillboardGroup,	$f_X,	$f_Y,	$f_Z,
$f_Intensity,	$f_Ambient)

	

Parameters

$h_BillboardGroup Handle	to	the	Billboard	Group	as	returned	by_IrrAddBillBoardGroupToScene
$f_X X	direction	from	which	the	light	is	arriving.
$f_Y Y	direction	from	which	the	light	is	arriving.
$f_Z Z	direction	from	which	the	light	is	arriving.
$f_Intensity Strength	of	the	light
$f_Ambient Strength	of	ambient	light	in	the	billboard	group

	

Return	Value
Success:	True
Failure:	False

	

Remarks
This	can	be	used	for	example	to	shade	the	particles	in	a	group	of
billboards	representing	a	cloud.

	

Related
_IrrAddBillBoardGroupToScene,	_IrrAddBillBoardToGroup

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBillboardGroup
Global	$hBillboardTexture
Global	$aBillboard[6]
Global	$hCamera

_IrrStart()

$hBillboardGroup	=	_IrrAddBillBoardGroupToScene()
For	$i	=	1	To	5
				$aBillboard[$i]	=	_IrrAddBillBoardToGroup($hBillboardGroup,	150,	100,
-450	+	($i	*	150),	0,	400,	0,	255,	255,	255,	255)
Next
_IrrBillBoardGroupShadows($hBillboardGroup,	1,	0,	0,	2.0,	1.7)
$hBillboardTexture	=	_IrrGetTexture("./media/au3irr2_logo.jpg")
_IrrSetNodeMaterialTexture($hBillboardGroup,	$hBillboardTexture,	0)
_IrrSetNodeMaterialFlag($hBillboardGroup,	$IRR_EMF_LIGHTING,
$IRR_OFF)

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.1)
_IrrSetCameraClipDistance($hCamera,	128000)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetBillBoardGroupCount

Get	the	number	of	billboards	in	the	billboard	group.

#Include	<au3Irrlicht2.au3>
_IrrGetBillBoardGroupCount($h_BillboardGroup)

	

Parameters

$h_BillboardGroup Handle	to	the	Billboard	Group	as	returned	by_IrrAddBillBoardGroupToScene

	

Return	Value
Success:	The	number	of	billboards	in	the	billboard	group
Failure:	False	and	@error	1

	

Remarks
None.

	

Related
_IrrAddBillBoardGroupToScene,	_IrrAddBillBoardToGroup,
_IrrRemoveBillBoardFromGroup

	

Example

#include	"au3Irrlicht2.au3"

Global	$hBillboardGroup
Global	$hBillboardTexture
Global	$aBillboard[6]
Global	$hCamera

_IrrStart()

$hBillboardGroup	=	_IrrAddBillBoardGroupToScene()
For	$i	=	1	To	5
				$aBillboard[$i]	=	_IrrAddBillBoardToGroup($hBillboardGroup,	150,	100,
-450	+	($i	*	150),	0,	400,	0,	255,	255,	255,	255)
Next
$hBillboardTexture	=	_IrrGetTexture("./media/au3irr2_logo.jpg")
_IrrSetNodeMaterialTexture($hBillboardGroup,	$hBillboardTexture,	0)
_IrrSetNodeMaterialFlag($hBillboardGroup,	$IRR_EMF_LIGHTING,
$IRR_OFF)

_IrrSetWindowCaption(_IrrGetBillBoardGroupCount($hBillboardGroup)	&	"
Billboards	in	the	Billboard	Group")

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.1)
_IrrSetCameraClipDistance($hCamera,	128000)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrBillBoardForceUpdate

Force	the	billboard	group	update	the	scene.	(see	remarks	for	further
explanation)

#Include	<au3Irrlicht2.au3>
_IrrBillBoardForceUpdate($h_BillboardGroup)

	

Parameters

$h_BillboardGroup Handle	to	the	Billboard	Group	as	returned	by_IrrAddBillBoardGroupToScene

	

Return	Value
Success:	True
Failure:	False

	

Remarks
Unlike	regular	billboards	the	billboard	group	does	not	always	update	the
orientation	of	the	billboards	every	frame.
If	you	are	a	long	distance	away	from	the	billboard	group	the	camera
needs	to	travel	a	significant	distance	before	the
angle	has	changed	enough	to	warrent	an	update	of	all	of	the	billboards
verticies	to	make	them	point	to	the	camera	once	more.
You	may	want	to	force	a	refresh	at	some	point	with	this	call.

	

Related
_IrrAddBillBoardGroupToScene,	_IrrAddBillBoardToGroup,
_IrrAddBillBoardByAxisToGroup,	_IrrRemoveBillBoardFromGroup

	

au3Irr2	Function	Reference

_IrrAddLODManager

Adds	a	level	of	detail	manager	to	the	scene.

#Include	<au3Irrlicht2.au3>
_IrrAddLODManager($u_FadeScale,	$u_UseAlpha[,	$p_Callback	=	0])

	

Parameters

$u_FadeScale Number	of	1/4	seconds	that	the	node	takes	to	fade	outor	in.	4	units	equals	1	second.

$u_UseAlpha Specifies	whether	or	not	the	Alpha	color	of	the	object	is
faded	too.

$p_Callback
[optional]	Register	a	callback	function	that	is	called
whenever	a	node	is	made	invisible	or	visible.
This	allows	you	to	stop	processing	hidden	nodes.

	

Return	Value
Success:	Handle	to	the	LOD	Manager	node
Failure:	False	and	@error	1

	

Remarks
The	primary	use	for	this	node	is	to	add	other	scene	nodes	to	it	as
children	and	have	their	level	of	detail	controlled	automatically.
If	those	nodes	are	made	from	loaded	meshs	different	meshes	containing
different	amounts	of	detail	can	be	displayed	at	different	distances.
The	other	function	of	the	LOD	manager	is	to	fade	nodes	in	an	out	at	a
specific	distance	so	they	gradually	fade	rather	than	disappear	abruptly.
This	is	achieved	by	applying	a	distance	without	supplying	a	mesh.

	

Related
_IrrAddLODMesh,	_IrrSetLODMaterialMap

	

Example

#include	"au3Irrlicht2.au3"

Global	$ROWS_AND_COLUMNS	=	20
Global	$hLOD1Mesh
Global	$hLOD2Mesh
Global	$hMeshTexture
Global	$iAmountNodes	=	$ROWS_AND_COLUMNS	*
$ROWS_AND_COLUMNS
Global	$aSceneNodes[$iAmountNodes]
Global	$hMaterial
Global	$k	=	0
Global	$hLODManager
Global	$hCamera

_IrrStart()

$hLOD1Mesh	=	_IrrGetMesh("./media/cylinderY.obj")
$hLOD2Mesh	=	_IrrGetMesh("./media/cylinderYLow.obj")
_IrrScaleMesh($hLOD1Mesh,	8.0)
_IrrScaleMesh($hLOD2Mesh,	8.0)
_IrrSetMeshHardwareAccelerated($hLOD1Mesh)
_IrrSetMeshHardwareAccelerated($hLOD2Mesh)
$hMeshTexture	=	_IrrGetTexture("./media/Cross.bmp")
For	$i	=	-($ROWS_AND_COLUMNS	/	2)	To	($ROWS_AND_COLUMNS	/
2)	-	1
				For	$j	=	-($ROWS_AND_COLUMNS	/	2)	To	($ROWS_AND_COLUMNS
/	2)	-	1
								$aSceneNodes[$k]	=	_IrrAddMeshToScene($hLOD1Mesh)
								_IrrSetNodePosition($aSceneNodes[$k],	$i	*	40.0,	0.0,	$j	*	40.0)

								_IrrSetNodeMaterialTexture($aSceneNodes[$k],	$hMeshTexture,	0)
								_IrrSetNodeMaterialFlag($aSceneNodes[$k],	$IRR_EMF_LIGHTING,
$IRR_ON)
								$hMaterial	=	_IrrGetMaterial($aSceneNodes[$k],	0)
								_IrrMaterialVertexColorAffects($hMaterial,	$ECM_NONE)
								_IrrMaterialSetAmbientColor($hMaterial,	255,	255,	255,	255)
								_IrrMaterialSetDiffuseColor($hMaterial,	255,	255,	255,	255)
								$k	+=	1
				Next
Next
$hLODManager	=	_IrrAddLODManager(2,	$IRR_ON)
_IrrSetLODMaterialMap($hLODManager,
$IRR_EMT_TRANSPARENT_ADD_COLOR,
$IRR_EMT_TRANSPARENT_ADD_COLOR)
_IrrAddLODMesh($hLODManager,	0.0,	$hLOD1Mesh)
_IrrAddLODMesh($hLODManager,	300.0,	$hLOD2Mesh)
_IrrAddLODMesh($hLODManager,	500.0,	$IRR_NO_OBJECT)
_IrrSetNodeMaterialFlag($hLODManager,	$IRR_EMF_LIGHTING,
$IRR_OFF)
For	$i	=	0	To	$k	-	1
				_IrrAddChildToParent($aSceneNodes[$i],	$hLODManager)
Next

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.05)
_IrrSetNodePosition($hCamera,	0,	$ROWS_AND_COLUMNS	*	4,
$ROWS_AND_COLUMNS	*	2)
_IrrSetCameraTarget($hCamera,	0,	50,	0)
_IrrSetCameraClipDistance($hCamera,	2500.0)

_IrrSetAmbientLight(1,	1,	1)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()

WEnd

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddLODMesh

Set	the	distance	at	which	a	particular	mesh	is	to	be	applied	to	child	mesh
nodes.

#Include	<au3Irrlicht2.au3>
_IrrAddLODMesh($h_LODManager,	$f_Distance,	$h_Mesh)

	

Parameters

$h_LODManager Handle	to	the	LOD	Manager	node.
$f_Distance Distance	at	which	this	effect	will	be	applied.
$h_Mesh Handle	to	an	irr	mesh	object

	

Return	Value
Success:	True
Failure:	False

	

Remarks
If	no	mesh	is	supplied	it	specifies	the	distance	at	which	the	node	should
be	faded	in	an	out.

	

Related
_IrrAddLODManager,	_IrrSetLODMaterialMap

	

Example

#include	"au3Irrlicht2.au3"

Global	$ROWS_AND_COLUMNS	=	20
Global	$hLOD1Mesh
Global	$hLOD2Mesh
Global	$hMeshTexture
Global	$iAmountNodes	=	$ROWS_AND_COLUMNS	*
$ROWS_AND_COLUMNS
Global	$aSceneNodes[$iAmountNodes]
Global	$hMaterial
Global	$k	=	0
Global	$hLODManager
Global	$hCamera

_IrrStart()

$hLOD1Mesh	=	_IrrGetMesh("./media/cylinderY.obj")
$hLOD2Mesh	=	_IrrGetMesh("./media/cylinderYLow.obj")
_IrrScaleMesh($hLOD1Mesh,	8.0)
_IrrScaleMesh($hLOD2Mesh,	8.0)
_IrrSetMeshHardwareAccelerated($hLOD1Mesh)
_IrrSetMeshHardwareAccelerated($hLOD2Mesh)
$hMeshTexture	=	_IrrGetTexture("./media/Cross.bmp")
For	$i	=	-($ROWS_AND_COLUMNS	/	2)	To	($ROWS_AND_COLUMNS	/
2)	-	1
				For	$j	=	-($ROWS_AND_COLUMNS	/	2)	To	($ROWS_AND_COLUMNS
/	2)	-	1
								$aSceneNodes[$k]	=	_IrrAddMeshToScene($hLOD1Mesh)
								_IrrSetNodePosition($aSceneNodes[$k],	$i	*	40.0,	0.0,	$j	*	40.0)
								_IrrSetNodeMaterialTexture($aSceneNodes[$k],	$hMeshTexture,	0)
								_IrrSetNodeMaterialFlag($aSceneNodes[$k],	$IRR_EMF_LIGHTING,
$IRR_ON)
								$hMaterial	=	_IrrGetMaterial($aSceneNodes[$k],	0)
								_IrrMaterialVertexColorAffects($hMaterial,	$ECM_NONE)
								_IrrMaterialSetAmbientColor($hMaterial,	255,	255,	255,	255)
								_IrrMaterialSetDiffuseColor($hMaterial,	255,	255,	255,	255)
								$k	+=	1

				Next
Next
$hLODManager	=	_IrrAddLODManager(2,	$IRR_ON)
_IrrSetLODMaterialMap($hLODManager,
$IRR_EMT_TRANSPARENT_ADD_COLOR,
$IRR_EMT_TRANSPARENT_ADD_COLOR)
_IrrAddLODMesh($hLODManager,	0.0,	$hLOD1Mesh)
_IrrAddLODMesh($hLODManager,	300.0,	$hLOD2Mesh)
_IrrAddLODMesh($hLODManager,	500.0,	$IRR_NO_OBJECT)
_IrrSetNodeMaterialFlag($hLODManager,	$IRR_EMF_LIGHTING,
$IRR_OFF)
For	$i	=	0	To	$k	-	1
				_IrrAddChildToParent($aSceneNodes[$i],	$hLODManager)
Next

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.05)
_IrrSetNodePosition($hCamera,	0,	$ROWS_AND_COLUMNS	*	4,
$ROWS_AND_COLUMNS	*	2)
_IrrSetCameraTarget($hCamera,	0,	50,	0)
_IrrSetCameraClipDistance($hCamera,	2500.0)

_IrrSetAmbientLight(1,	1,	1)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetLODMaterialMap

Specifies	which	material	is	used	to	apply	the	fade	effect	for	another
material	type.

#Include	<au3Irrlicht2.au3>
_IrrSetLODMaterialMap($h_LODManager,	$i_SourceType,	$i_TargetType)

	

Parameters

$h_LODManager Handle	to	the	LOD	Manager	node.
$u_SourceType The	irr	material	type	your	node	uses
$u_TargetType The	material	type	used	for	the	fade	effect.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
How	this	is	used	will	depend	on	the	effect	that	you	want	to	achieve.
By	default	fading	is	applied	with	the
$IRR_EMT_TRANSPARENT_VERTEX_ALPHA	material.

	

Related
_IrrAddLODManager,	_IrrAddLODMesh

	

Example

#include	"au3Irrlicht2.au3"

Global	$ROWS_AND_COLUMNS	=	20
Global	$hLOD1Mesh
Global	$hLOD2Mesh
Global	$hMeshTexture
Global	$iAmountNodes	=	$ROWS_AND_COLUMNS	*
$ROWS_AND_COLUMNS
Global	$aSceneNodes[$iAmountNodes]
Global	$hMaterial
Global	$k	=	0
Global	$hLODManager
Global	$hCamera

_IrrStart()

$hLOD1Mesh	=	_IrrGetMesh("./media/cylinderY.obj")
$hLOD2Mesh	=	_IrrGetMesh("./media/cylinderYLow.obj")
_IrrScaleMesh($hLOD1Mesh,	8.0)
_IrrScaleMesh($hLOD2Mesh,	8.0)
_IrrSetMeshHardwareAccelerated($hLOD1Mesh)
_IrrSetMeshHardwareAccelerated($hLOD2Mesh)
$hMeshTexture	=	_IrrGetTexture("./media/Cross.bmp")
For	$i	=	-($ROWS_AND_COLUMNS	/	2)	To	($ROWS_AND_COLUMNS	/
2)	-	1
				For	$j	=	-($ROWS_AND_COLUMNS	/	2)	To	($ROWS_AND_COLUMNS
/	2)	-	1
								$aSceneNodes[$k]	=	_IrrAddMeshToScene($hLOD1Mesh)
								_IrrSetNodePosition($aSceneNodes[$k],	$i	*	40.0,	0.0,	$j	*	40.0)
								_IrrSetNodeMaterialTexture($aSceneNodes[$k],	$hMeshTexture,	0)
								_IrrSetNodeMaterialFlag($aSceneNodes[$k],	$IRR_EMF_LIGHTING,
$IRR_ON)
								$hMaterial	=	_IrrGetMaterial($aSceneNodes[$k],	0)
								_IrrMaterialVertexColorAffects($hMaterial,	$ECM_NONE)
								_IrrMaterialSetAmbientColor($hMaterial,	255,	255,	255,	255)
								_IrrMaterialSetDiffuseColor($hMaterial,	255,	255,	255,	255)

								$k	+=	1
				Next
Next
$hLODManager	=	_IrrAddLODManager(2,	$IRR_ON)
_IrrSetLODMaterialMap($hLODManager,
$IRR_EMT_TRANSPARENT_ADD_COLOR,
$IRR_EMT_TRANSPARENT_ADD_COLOR)
_IrrAddLODMesh($hLODManager,	0.0,	$hLOD1Mesh)
_IrrAddLODMesh($hLODManager,	300.0,	$hLOD2Mesh)
_IrrAddLODMesh($hLODManager,	500.0,	$IRR_NO_OBJECT)
_IrrSetNodeMaterialFlag($hLODManager,	$IRR_EMF_LIGHTING,
$IRR_OFF)
For	$i	=	0	To	$k	-	1
				_IrrAddChildToParent($aSceneNodes[$i],	$hLODManager)
Next

$hCamera	=	_IrrAddFPSCamera($IRR_NO_OBJECT,	100.0,	0.05)
_IrrSetNodePosition($hCamera,	0,	$ROWS_AND_COLUMNS	*	4,
$ROWS_AND_COLUMNS	*	2)
_IrrSetCameraTarget($hCamera,	0,	50,	0)
_IrrSetCameraClipDistance($hCamera,	2500.0)

_IrrSetAmbientLight(1,	1,	1)

_IrrHideMouse()

While	_IrrRunning()	And	Sleep(10)
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEnd

_IrrStop()
Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrStart

Opens	the	IrrlichtWrapper.dll,	starts	Irrlicht	interface	and	opens	a	window
for	rendering.

#Include	<au3Irrlicht2.au3>
_IrrStart($i_DeviceType=$IRR_EDT_DIRECT3D9,	$i_ScreenWidth=800,
$i_ScreenHeight=600,	$i_BitsPerPixel=$IRR_BITS_PER_PIXEL_32,
$b_FullScreen=$IRR_WINDOWED,	$b_Shadows=$IRR_NO_SHADOWS,
$b_InputCapture=$IRR_IGNORE_EVENTS,
$b_VSync=$IRR_VERTICAL_SYNC_OFF)

	

Parameters

$i_DeviceType

[optional]	specifies	the	renderer	to	use	when	drawing
to	the	display	this	may	be	one	of	the	following	types:
$IRR_EDT_NULL	-	A	NULL	device	with	no	display
$IRR_EDT_SOFTWARE	-	Irrlichts	default	software
renderer
$IRR_EDT_SOFTWARE2	-	An	improved	quality
software	renderer
$IRR_EDT_OPENGL	-	Hardware	accelerated	OpenGL
renderer
$IRR_EDT_DIRECT3D8	-	Hardware	accelerated
DirectX	8	renderer
$IRR_EDT_DIRECT3D9	-	Hardware	accelerated
DirectX	9	renderer

$i_ScreenWidth [optional]	Screen	width	specifies	the	width	of	the
viewport	in	pixels

$i_ScreenHeight [optional]	Screen	height	specifies	the	height	of	theviewport	in	pixels
[optional]	The	number	of	color	bits	that	is	used	for
each	pixel	32	bit	color	gives	24	million	different	colors

$i_BitsPerPixel

whereas	16	bit	color	gives	only	32,000	colors.
However	the	advantage	of	16	bit	color	is	that	some
operations	use	half	the	memory	and	can	run	at	up	to
twice	the	speed.
This	setting	can	be	either	of:
$IRR_BITS_PER_PIXEL_16
$IRR_BITS_PER_PIXEL_32

$b_FullScreen

[optional]	Specifies	whether	the	display	is	to	opened
in	full	screen	mode	or	in	a	window:
$IRR_WINDOWED	-	For	window	mode
$IRR_FULLSCREEN	-	For	fullscreen	mode.	When
using	full	screen	mode	you	will	need	to	adjust	the
window	size	to	the	same	dimensions	as	a	supported
screen	resolution	on	the	target	display	640x400	for
example.

$b_Shadows

[optional]	Use	shadows	starts	the	engine	in	a	mode
that	supports	the	rendering	of	stencil	shadows.
$IRR_NO_SHADOWS	-	For	a	display	that	does	not
support	shadows.
$IRR_SHADOWS	-	For	a	display	that	supports
shadows.

$b_InputCapture

[optional]	Capture	mouse	and	keyboard	specified
whether	you	want	to	capture	keyboard	and	mouse
events,	if	you	choose	to	ignore	them	they	will	be
handled	by	Irrlicht	for	FPS	camera	control.	This
parameter	should	be	either	of:
$IRR_IGNORE_EVENTS
$IRR_CAPTURE_EVENTS

$b_VSync

[optional]	Vertical	syncronisation	specifies	whether
the	display	of	each	new	frame	is	syncronised	with
vertical	refresh	of	the	graphics	card.	This	produces	a
smoother	display	and	avoids	'tearing'	where	the	viewer
can	see	parts	of	two	different	frames	at	the	same	time.
The	setting	can	be	either	of:
$IRR_VERTICAL_SYNC_OFF
$IRR_VERTICAL_SYNC_ON

	

Return	Value
Success:	True
Failure:	False	and	sets	@error:
				1	-	error	occured	on	dll	call
				2	-	IrrlichtWrapper.dll	not	found

	

Remarks
if	.dll	cannot	be	opened,	path	environment	is	extended	with:
-	.\bin	(allows	an	au3Irr2	script	to	have	its	binaries	in	a	subdir)	and
-	.\..	(allows	au3Irr2	examples	to	be	started	from	their	\include	subdir).
Nevertheless,	ensuring	DLL's	in	a	permanent	dir	reachable	via	path	may
be	the	better	way,	as	the	temporary	update	of	environment	can	be	time-
consuming.

Other	needed	.dll's	(Irrlicht.dll	+	maybe	msvcp71.dll,	msvcr71.dll)	are
NOT	checked	but	simply	expected	to	be	at	last	in	same	dir	as	the
IrrlichtWrapper.dll.

	

Related
_IrrStartAdvanced,	_IrrRunning,	_IrrStop

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$Camera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$testNode	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($testNode,

_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($testNode,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrStartAdvanced

Opens	the	IrrlichtWrapper.dll	and	starts	Irrlicht	engine	with	advanced
method.

#Include	<au3Irrlicht2.au3>
_IrrStartAdvanced($i_DeviceType=$IRR_EDT_DIRECT3D9,
$i_ScreenWidth=800,	$i_ScreenHeight=600,
$i_BitsPerPixel=$IRR_BITS_PER_PIXEL_32,
$b_FullScreen=$IRR_WINDOWED,	$b_Shadows=$IRR_NO_SHADOWS,
$b_InputCapture=$IRR_IGNORE_EVENTS,
$b_VSync=$IRR_VERTICAL_SYNC_OFF,	$i_TypeOfDevice=0,
$b_DoublebufferEnabled=$IRR_OFF,	$i_AntialiasEnabled=0,
$b_HighPrecisionFpu=$IRR_OFF)

	

Parameters

$i_DeviceType

[optional]	specifies	the	renderer	to	use	when
drawing	to	the	display	this	may	be	one	of	the
following	types:
$IRR_EDT_NULL	-	A	NULL	device	with	no
display
$IRR_EDT_SOFTWARE	-	Irrlichts	default
software	renderer
$IRR_EDT_SOFTWARE2	-	An	improved
quality	software	renderer
$IRR_EDT_OPENGL	-	Hardware	accelerated
OpenGL	renderer
$IRR_EDT_DIRECT3D8	-	Hardware
accelerated	DirectX	8	renderer
$IRR_EDT_DIRECT3D9	-	Hardware
accelerated	DirectX	9	renderer

$i_ScreenWidth [optional]	Screen	width	specifies	the	width	of
the	viewport	in	pixels

$i_ScreenHeight [optional]	Screen	height	specifies	the	height
of	the	viewport	in	pixels

$i_BitsPerPixel

[optional]	The	number	of	color	bits	that	is
used	for	each	pixel	32	bit	color	gives	24
million	different	colors	whereas	16	bit	color
gives	only	32,000	colors.	However	the
advantage	of	16	bit	color	is	that	some
operations	use	half	the	memory	and	can	run
at	up	to	twice	the	speed.
This	setting	can	be	either	of:
$IRR_BITS_PER_PIXEL_16
$IRR_BITS_PER_PIXEL_32

$b_FullScreen

[optional]	Specifies	whether	the	display	is	to
opened	in	full	screen	mode	or	in	a	window:
$IRR_WINDOWED	-	For	window	mode
$IRR_FULLSCREEN	-	For	fullscreen	mode.
When	using	full	screen	mode	you	will	need	to
adjust	the	window	size	to	the	same
dimensions	as	a	supported	screen	resolution
on	the	target	display	640x400	for	example.

$b_Shadows

[optional]	Use	shadows	starts	the	engine	in	a
mode	that	supports	the	rendering	of	stencil
shadows.
$IRR_NO_SHADOWS	-	For	a	display	that
does	not	support	shadows.
$IRR_SHADOWS	-	For	a	display	that
supports	shadows.

$b_InputCapture

[optional]	Capture	mouse	and	keyboard
specified	whether	you	want	to	capture
keyboard	and	mouse	events,	if	you	choose	to
ignore	them	they	will	be	handled	by	Irrlicht	for
FPS	camera	control.	This	parameter	should
be	either	of:
$IRR_IGNORE_EVENTS
$IRR_CAPTURE_EVENTS
[optional]	Vertical	syncronisation	specifies
whether	the	display	of	each	new	frame	is

$b_VSync

syncronised	with	vertical	refresh	of	the
graphics	card.	This	produces	a	smoother
display	and	avoids	'tearing'	where	the	viewer
can	see	parts	of	two	different	frames	at	the
same	time.	The	setting	can	be	either	of:
$IRR_VERTICAL_SYNC_OFF
$IRR_VERTICAL_SYNC_ON

$i_TypeOfDevice

[optional]	Devicetype	allows	a	specific	type	of
device	for	example	a	windows	screen	or	a
console	to	be	selected.	For	the	time	being	this
should	be	set	to	0	which	automatically	selects
the	best	device.

$b_DoublebufferEnabled

[optional]	Doublebufferenabled	is	used	to
control	whether	double	buffering	is	used.
When	double	buffering	is	used	two	drawing
surfaces	are	created	one	for	display	and	the
other	that	is	used	for	drawing	too.	Double
buffering	is	required	for	anit-aliasing	the
options	are:
$IRR_ON	or	$IRR_OFF

$i_AntialiasEnabled

[optional]	Antialiasenabled	is	used	to	enable
the	antialiasing	effect,	this	effect	produces	a
blurring	at	the	edges	of	object	giving	their	lines
a	smooth	natural	appearence.	There	is	usually
a	big	penalty	for	using	this	effect	though
sometimes	as	high	as	30%	of	the	frame	rate
or	more.	This	is	a	value	for	the	anti-aliasing
and	should	be	a	power	of	2.
(e.g:	2,	4,	8,	16)

$b_HighPrecisionFpu

[optional]	Highprecisionfpu	is	used	to	enable
high	precision	Floating	point	calculations,	that
produce	more	accurate	result	at	the	expense
of	a	slower	operating	speed.

	

Return	Value
Success:	True

Failure:	False	and	sets	@error:
				1	-	error	occured	on	dll	call
				2	-	IrrlichtWrapper.dll	not	found

	

Remarks
if	.dll	cannot	be	opened,	path	environment	is	extended	with:
-	.\bin	(allows	an	au3Irr2	script	to	have	its	binaries	in	a	subdir)	and
-	.\..	(allows	au3Irr2	examples	to	be	started	from	their	\include	subdir).
Nevertheless,	ensuring	DLL's	in	a	permanent	dir	reachable	via	path	may
be	the	better	way,	as	the	temporary	update	of	environment	can	be	time-
consuming.

Other	needed	.dll's	(Irrlicht.dll	+	maybe	msvcp71.dll,	msvcr71.dll)	are
NOT	checked	but	simply	expected	to	be	at	last	in	same	dir	as	the
IrrlichtWrapper.dll.

	

Related
_IrrStart,	_IrrRunning,	_IrrStop

	

Example

#include	"au3Irrlicht2.au3"

_IrrStartAdvanced	($IRR_EDT_OPENGL,	800,	600,
$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,
$IRR_VERTICAL_SYNC_ON,	_
								0,	$IRR_ON,	4,	$IRR_ON)

local	$Camera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$testNode	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($testNode,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)

_IrrSetNodeMaterialFlag($testNode,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrRunning

Used	to	determine	if	the	Irrlicht	engine	is	still	running.

#Include	<au3Irrlicht2.au3>
_IrrRunning()

	

Parameters

None.

	

Return	Value
True	if	running:	False	if	not.
				Sets	@error	to	true	on	failures.

	

Remarks
None

	

Related
_IrrStart,	_IrrStartAdvanced,	_IrrStop

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,

$IRR_VERTICAL_SYNC_ON)

local	$Camera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$testNode	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($testNode,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($testNode,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrSetViewPort

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetViewPort($i_TopX,	$i_TopY,	$i_BottomX,	$i_BottomY)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrBeginScene

Starts	to	draw	a	frame,	erasing	the	canvas	with	the	specified	color.

#Include	<au3Irrlicht2.au3>
_IrrBeginScene($i_Red,	$i_Green,	$i_Blue)

	

Parameters

$i_Red Red	value	from	0	to	255	(full	intensity)
$i_Green Green	value	from	0	to	255	(full	intensity)
$i_Blue Blue	value	from	0	to	255	(full	intensity)

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrBeginSceneAdvanced,	_IrrDrawScene,	_IrrDrawGUI,	_IrrEndScene

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$Camera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$testNode	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($testNode,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($testNode,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrBeginSceneAdvanced

[todo]

#Include	<au3Irrlicht2.au3>
_IrrBeginSceneAdvanced($i_SceneBGColor,	$b_ClearBackBuffer	=
$IRR_ON,	$b_ClearZBuffer	=	$IRR_ON)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrDrawScene

This	renders	the	3D	scene	to	the	canvas,	drawing	all	3D	elements:
nodes,	particles,	billboards,	etc	.

#Include	<au3Irrlicht2.au3>
_IrrDrawScene()

	

Parameters

None.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrBeginScene,	_IrrBeginSceneAdvanced,	_IrrDrawGUI,	_IrrEndScene

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_

								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$Camera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$testNode	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($testNode,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($testNode,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrDrawSceneToTexture

[todo]

#Include	<au3Irrlicht2.au3>
_IrrDrawSceneToTexture($h_RenderTargetTexture)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetRenderTarget

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetRenderTarget($h_Texture,	$i_SceneBGColor	=	0,
$b_ClearBackBuffer	=	$IRR_ON,	$b_ClearZBuffer	=	$IRR_ON)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrDrawGUI

This	renders	the	2D	graphical	user	interface	that	has	been	created	to	the
scene.

#Include	<au3Irrlicht2.au3>
_IrrDrawGUI()

	

Parameters

None.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrBeginScene,	_IrrBeginSceneAdvanced,	_IrrDrawScene,
_IrrEndScene

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_
								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

_IrrAddStaticText("Hello	AU3-World	;-)",	8,	8,	200,	20,
$IRR_GUI_NO_BORDER,	$IRR_GUI_NO_WRAP)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawGUI()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrEndScene

This	renders	the	3D	scene	to	the	canvas,	drawing	all	3D	elements:
nodes,	particles,	billboards,	etc	.

#Include	<au3Irrlicht2.au3>
_IrrEndScene()

	

Parameters

None.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None

	

Related
_IrrBeginScene,	_IrrBeginSceneAdvanced,	_IrrDrawScene,	_IrrDrawGUI

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_

								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$Camera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$testNode	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($testNode,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($testNode,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrStop

Stops	the	Irrlicht	Engine	freeing	all	of	the	resources,	closing	the	display
window	and	IrrlichtWrapper.dll.

#Include	<au3Irrlicht2.au3>
_IrrStop()

	

Parameters

None.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
_IrrStart,	_IrrStartAdvanced,	_IrrRunning

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart($IRR_EDT_OPENGL,	800,	600,	$IRR_BITS_PER_PIXEL_32,	_

								$IRR_WINDOWED,	$IRR_SHADOWS,	$IRR_CAPTURE_EVENTS,
$IRR_VERTICAL_SYNC_ON)

local	$Camera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$testNode	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($testNode,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($testNode,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrTransparentZWrite

[todo]

#Include	<au3Irrlicht2.au3>
_IrrTransparentZWrite()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetFPS

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetFPS()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetPrimitivesDrawn

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetPrimitivesDrawn()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetWindowCaption

Set	the	caption	in	the	Irrlicht	window	title	bar.

#Include	<au3Irrlicht2.au3>
_IrrSetWindowCaption($s_Caption)

	

Parameters

$s_Caption String	for	the	title	bar.

	

Return	Value
Success:	True
Failure:	False

	

Remarks
None.

	

Related
	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

_IrrSetWindowCaption("Title	of	the	window")

local	$nodeCamera	=	_IrrAddCamera(10,10,10,	0,0,0)
local	$testNode	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($testNode,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($testNode,	$IRR_EMF_LIGHTING,	$IRR_OFF)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	0)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetScreenSize

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetScreenSize(ByRef	$i_Width,	ByRef	$i_Height)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMaximizeWindow

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMaximizeWindow()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMinimizeWindow

[todo]

#Include	<au3Irrlicht2.au3>
_IrrMinimizeWindow()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrRestoreWindow

[todo]

#Include	<au3Irrlicht2.au3>
_IrrRestoreWindow()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetResizableWindow

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetResizableWindow($i_Resizable)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrMakeARGB

Computes	valid	32bit	color	value	including	alpha	(translucency)	as
expected	from	several	functions.

#Include	<au3Irrlicht2.au3>
_IrrMakeARGB($i_Alpha,	$i_Red,	$i_Green,	$i_Blue)

	

Parameters

$i_Alpha Alpha	component	of	the	colour.
$i_Red,
$i_Green,
$i_Blue

Red,	green	and	blue	components	(0-255).

	

Return	Value
success:	32bit	unsigned	int	colour	value	including	alpha.

	

Remarks
None.

	

Related
None.

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$font	=	_IrrGetFont("./media/fonthaettenschweiler.bmp")

_IrrAddBillboardTextSceneNode($font,	"au3Irrlicht2	...",	30.0,	15.0,	0.0,	0.0,
20.0,	0,	_
																																_IrrMakeARGB(0,	255,	0,	0),	_IrrMakeARGB(0,	255,
255,	0))
_IrrAddBillboardTextSceneNode($font,	"...	what	else?",	30.0,	15.0,	0.0,	-5.0,
17.0,	0,	_
																																_IrrMakeARGB(0,	255,	255,	0),	_IrrMakeARGB(0,	0,
255,	0))

_IrrAddFPSCamera()

WHILE	_IrrRunning()
				_IrrBeginScene(0,0,25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrQueryFeature

[todo]

#Include	<au3Irrlicht2.au3>
_IrrQueryFeature($i_Feature)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetTime

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetTime()

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

__CreateVertStruct

Helper	function:	creates	a	structure	array	of	vertices	as	expected	from
some	functions.

#Include	<au3Irrlicht2.au3>
__CreateVertStruct($iVert)

	

Parameters

$iVert Number	of	vertex	elements	the	struct	array	shall	contain.

	

Return	Value
Success:	The	created	vertex	array	struct

	

Remarks
None

	

Related
__GetVertStruct,	__SetVertStruct,	__CreateVectStruct

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()
local	$tVertex	=	__CreateVertStruct(5)

;	set	up	five	vertices	to	define	the	points	of	a	pyramid.	the	vertices	have
;	many	properties	that	need	to	be	set	up	to	properly	define	the	structure
__SetVertStruct($tVertex,	0,	$VERT_X,	-20)
__SetVertStruct($tVertex,	0,	$VERT_Y,	0)
__SetVertStruct($tVertex,	0,	$VERT_Z,	-20)
__SetVertStruct($tVertex,	1,	$VERT_X,	-20)
__SetVertStruct($tVertex,	1,	$VERT_Y,	0)
__SetVertStruct($tVertex,	1,	$VERT_Z,	20)
__SetVertStruct($tVertex,	2,	$VERT_X,	20)
__SetVertStruct($tVertex,	2,	$VERT_Y,	0)
__SetVertStruct($tVertex,	2,	$VERT_Z,	20)
__SetVertStruct($tVertex,	3,	$VERT_X,	20)
__SetVertStruct($tVertex,	3,	$VERT_Y,	0)
__SetVertStruct($tVertex,	3,	$VERT_Z,	-20)
__SetVertStruct($tVertex,	4,	$VERT_X,	0)
__SetVertStruct($tVertex,	4,	$VERT_Y,	35)
__SetVertStruct($tVertex,	4,	$VERT_Z,	0)

;	co-ordinates	across	a	texture	run	from	0	to	1	so	we	place	each	of	the	vertices
;	on	this	texture	plane	to	appear	;	if	the	pyramid	was	painted	from	its	bottom
up
__SetVertStruct($tVertex,	0,	$VERT_TEXTUREX,	0)
__SetVertStruct($tVertex,	0,	$VERT_TEXTUREY,	0)
__SetVertStruct($tVertex,	1,	$VERT_TEXTUREX,	0)
__SetVertStruct($tVertex,	1,	$VERT_TEXTUREY,	1)
__SetVertStruct($tVertex,	2,	$VERT_TEXTUREX,	1)
__SetVertStruct($tVertex,	2,	$VERT_TEXTUREY,	1)
__SetVertStruct($tVertex,	3,	$VERT_TEXTUREX,	1)
__SetVertStruct($tVertex,	3,	$VERT_TEXTUREY,	0)
__SetVertStruct($tVertex,	4,	$VERT_TEXTUREX,	0.5)
__SetVertStruct($tVertex,	4,	$VERT_TEXTUREY,	0.5)

;	each	of	the	vertices	can	be	assigned	a	colour	to	tint	the	texture:
__SetVertStruct($tVertex,	0,	$VERT_VCOLOR,	_IrrMakeARGB(0,	255,	255,
255))
__SetVertStruct($tVertex,	1,	$VERT_VCOLOR,	_IrrMakeARGB(0,	255,	255,

255))
__SetVertStruct($tVertex,	2,	$VERT_VCOLOR,	_IrrMakeARGB(0,	255,	255,
255))
__SetVertStruct($tVertex,	3,	$VERT_VCOLOR,	_IrrMakeARGB(0,	255,	255,
255))
__SetVertStruct($tVertex,	4,	$VERT_VCOLOR,	_IrrMakeARGB(0,	255,	255,
255))

;	---
;	create	the	faces,	this	is	an	array	of	indices	referencing	the	vectors	they
;	are	collected	into	groups	of	three	each	defining	a	triangle	in	the	mesh
local	$aIndices[18]	=	[0,1,4,		1,2,4,		2,3,4,		3,0,4,		2,1,0,		0,3,2]

;	create	the	mesh	from	the	array	of	vertices	and	indices
local	$hMesh	=	_IrrCreateMesh("testMesh",	$tVertex,	$aIndices)

;	add	the	mesh	to	the	scene
local	$SceneNode	=	_IrrAddMeshToScene($hMesh)
_IrrAddRotationAnimator($SceneNode,	0,	0.2,	0)
_IrrSetNodeMaterialTexture($SceneNode,	_IrrGetTexture(
"./media/au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($SceneNode,	$IRR_EMF_LIGHTING,	$IRR_OFF
)

_IrrAddCamera(30,	30,	30,	0,	10,	0)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

__GetVertStruct

Helper	function:	Returns	a	specific	value	from	a	structure	array	of
vertices.

#Include	<au3Irrlicht2.au3>
__GetVertStruct(ByRef	$tVertex,	$iVertex,	$vMember)

	

Parameters

$tVertex Structure	array	of	vertices	as	created	with
__CreateVertStruct

$iVertex Vertex	element	from	which	value	shall	be	returned	(0-
based!)

$vMember

One	of	following	values	to	return:
$VERT_X
$VERT_Y
$VERT_Z
$VERT_NORMALX
$VERT_NORMALY
$VERT_NORMALZ
$VERT_VCOLOR
$VERT_TEXTUREX
$VERT_TEXTUREY

	

Return	Value
Success:	Requested	$vMember

	

Remarks
None

	

Related
__CreateVertStruct,	__SetVertStruct,	__CreateVectStruct

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$mesh	=	_IrrGetMesh("./media/cube.x")

local	$tVertex;	variable	for	the	vertex	array	struct
;	copy	the	vertex	information	into	the	array
local	$vertex_count	=	_IrrGetMeshVertices($mesh,	0,	$tVertex)

local	$i
for	$i	=	0	to	$vertex_count	-	1	;	itterate	through	all	of	the	vertices
				;	shrink	vertex	X	location	by	half	its	size,	then	change	vertex	colour	value
				__SetVertStruct($tVertex,	$i,	$VERT_X,	__GetVertStruct($tVertex,	$i,
$VERT_X)	*	0.5)
				__SetVertStruct($tVertex,	$i,	$VERT_VCOLOR,	_IrrMakeARGB(0,
Random(0,255),	Random(0,255),	Random(0,255)))
next	;	$i

;	copy	the	altered	vertex	infomation	back	to	the	mesh
_IrrSetMeshVertices($mesh,	0,	$tVertex)

;	add	mesh	and	camera	to	the	scene:
local	$nodeCube	=	_IrrAddMeshToScene($mesh)
_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)
_IrrSetNodePosition($nodeCube,	-0.5,	-0.5,	5)

_IrrAddFPSCamera($IRR_NO_OBJECT,	5,	0.01)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

__SetVertStruct

Helper	function:	Sets	a	value	into	a	structure	array	of	vertices.

#Include	<au3Irrlicht2.au3>
__SetVertStruct(ByRef	$tVertex,	$iVertex,	$vMember,	$vData)

	

Parameters

$tVertex Structure	array	of	vertices	as	created	with
__CreateVertStruct

$iVertex Vertex	element	where	specific	value	shall	be	set	(0-based!)

$vMember

One	of	following	values	to	set:
$VERT_X
$VERT_Y
$VERT_Z
$VERT_NORMALX
$VERT_NORMALY
$VERT_NORMALZ
$VERT_VCOLOR
$VERT_TEXTUREX
$VERT_TEXTUREY

	

Return	Value
None.

	

Remarks
None

	

Related
__CreateVertStruct,	__GetVertStruct,	__CreateVectStruct

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$mesh	=	_IrrGetMesh("./media/cube.x")

local	$tVertex;	variable	for	the	vertex	array	struct
;	copy	the	vertex	information	into	the	array
local	$vertex_count	=	_IrrGetMeshVertices($mesh,	0,	$tVertex)

local	$i
for	$i	=	0	to	$vertex_count	-	1	;	itterate	through	all	of	the	vertices
				;	shrink	vertex	X	location	by	half	its	size,	then	change	vertex	colour	value
				__SetVertStruct($tVertex,	$i,	$VERT_X,	__GetVertStruct($tVertex,	$i,
$VERT_X)	*	0.5)
				__SetVertStruct($tVertex,	$i,	$VERT_VCOLOR,	_IrrMakeARGB(0,
Random(0,255),	Random(0,255),	Random(0,255)))
next	;	$i

;	copy	the	altered	vertex	infomation	back	to	the	mesh
_IrrSetMeshVertices($mesh,	0,	$tVertex)

;	add	mesh	and	camera	to	the	scene:
local	$nodeCube	=	_IrrAddMeshToScene($mesh)
_IrrSetNodeMaterialFlag($nodeCube,	$IRR_EMF_LIGHTING,	$IRR_OFF)
_IrrSetNodePosition($nodeCube,	-0.5,	-0.5,	5)

_IrrAddFPSCamera($IRR_NO_OBJECT,	5,	0.01)

WHILE	_IrrRunning()

				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

__CreateVectStruct

Helper	function:	creates	a	structure	array	of	vectors	as	expected	from
some	functions.

#Include	<au3Irrlicht2.au3>
__CreateVectStruct($iVect)

	

Parameters

$iVect Number	of	vector	elements	the	created	struct	array	shall
contain.

	

Return	Value
Success:	The	created	vector	struct.

	

Remarks
None

	

Related
__SetVectStruct,	__GetVectStruct,	__CreateVertStruct

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(150,50,0,	0,50,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

local	$tVectors	=	__CreateVectStruct(4)
__SetVectStruct($tVectors,	0,	-100,	50,	0)
__SetVectStruct($tVectors,	1,	0,	100,	-100)
__SetVectStruct($tVectors,	2,	100,	50,	0)
__SetVectStruct($tVectors,	3,	0,	100,	100)

_IrrAddSplineAnimator($nodeTest,	$tVectors,	0,	0.5,	1)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

__GetVectStruct

Helper	function:	Returns	a	specific	value	from	a	structure	array	of
vectors.

#Include	<au3Irrlicht2.au3>
__GetVectStruct(ByRef	$tVector,	$iVector,	$vMember)

	

Parameters

$tVector Structure	array	of	vectors	as	created	with
__CreateVectStruct

$iVector Vector	element	from	which	value	shall	be	returned	(0-
based!)

$vMember

One	of	following	values	to	return:
$VECT_X
$VECT_Y
$VECT_Z

	

Return	Value
Success:	Requested	$vMember

	

Remarks
None

	

Related
__CreateVectStruct,	__SetVectStruct,	__CreateVertStruct

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(150,50,0,	0,50,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

local	$tVectors	=	__CreateVectStruct(4)
__SetVectStruct($tVectors,	0,	-100,	50,	0)
__SetVectStruct($tVectors,	1,	0,	100,	-100)
__SetVectStruct($tVectors,	2,	100,	50,	0)
__SetVectStruct($tVectors,	3,	0,	100,	100)

_IrrAddSplineAnimator($nodeTest,	$tVectors,	0,	0.5,	1)

MsgBox	(0,	"",	"Y	value	of	very	last	vector:	"	&	__GetVectStruct($tVectors,	3,
$VECT_Y))

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

__SetVectStruct

Helper	function:	Sets	x,	y,	z	values	into	a	structure	array	of	vectors.

#Include	<au3Irrlicht2.au3>
__SetVectStruct(ByRef	$tVector,	$iVector,	$fX,	$fY,	$fZ)

	

Parameters

$tVector Structure	array	of	vectors	as	created	with
__CreateVectStruct

$iVector Vector	element	to	set	(0-based!)
$fX,	$fY,
$fZ X,	Y,	Z	values	of	the	vector

	

Return	Value
None.

	

Remarks
None

	

Related
__CreateVectStruct,	__GetVectStruct,	__CreateVertStruct

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeCamera	=	_IrrAddCamera(150,50,0,	0,50,0)
local	$nodeTest	=	_IrrAddTestSceneNode()
_IrrSetNodeMaterialTexture($nodeTest,
_IrrGetTexture(".\media\au3irr2_logo.jpg"),	0)
_IrrSetNodeMaterialFlag($nodeTest,	$IRR_EMF_LIGHTING,	$IRR_OFF)

local	$tVectors	=	__CreateVectStruct(4)
__SetVectStruct($tVectors,	0,	-100,	50,	0)
__SetVectStruct($tVectors,	1,	0,	100,	-100)
__SetVectStruct($tVectors,	2,	100,	50,	0)
__SetVectStruct($tVectors,	3,	0,	100,	100)

_IrrAddSplineAnimator($nodeTest,	$tVectors,	0,	0.5,	1)

WHILE	_IrrRunning()
				_IrrBeginScene(0,	0,	25)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddTerrain

Creates	a	terrain	object	from	a	gray	scale	bitmap.

#Include	<au3Irrlicht2.au3>
_IrrAddTerrain($s_Path,	$f_PosX	=	0.0,	$f_PosY	=	0.0,	$f_PosZ	=	0.0,
$f_RotX	=	0.0,	$f_RotY	=	0.0,	$f_RotZ	=	0.0,	$f_ScaleX	=	1.0,	$f_ScaleY
=	1.0,	$f_ScaleZ	=	1.0,	$i_VertexAlpha	=	255,	$i_VertexRed	=	255,
$i_VertexGreen	=	255,	$i_VertexBlue	=	255,	$i_Smoothing	=	0,
$i_MaxLOD	=	5,	$i_PatchSize	=	$ETPS_17)

	

Parameters

$s_Path Filename	of	a	gray	scale	image	used	to	define	the
contours	of	the	surface

$f_PosX,
$f_PosY,
$f_PosZ

[optional]	Define	position	of	the	terrain

$f_RotX,
$f_RotY,
$f_RotZ

[optional]	Define	rotation	of	the	terrain

$f_ScaleX,
$f_ScaleY,
$f_ScaleZ

[optional]	Define	scaling	of	the	terrain

$i_VertexAlpha [optional]	Alpha	value	for	the	vertex	colour	from	0	to
255.

$i_VertexRed,
$i_VertexGreen,
$i_VertexBlue

[optional]	Define	the	vertex	colour	of	all	points	in	the
terrain	(values	from	0	to	255)

$i_Smoothing [optional]	True	or	false	defines	whether	the	contours
of	the	surface	of	the	terrain	are	smoothed	over.
[optional]	Control	the	properties	of	the	level	of	detail

$i_MaxLOD,
$i_PatchSize

calculations	applied	to	the	terrain.
It	is	recommended	that	these	are	left	at	default	values.

Valid	values	for	$i_PatchSize:
$ETPS_9	(patch	size	of	9,	at	most,	use	4	levels	of
detail	with	this	patch	size)
$ETPS_17	(patch	size	of	17,	at	most,	use	5	levels	of
detail	with	this	patch	size)
$ETPS_33	(patch	size	of	33,	at	most,	use	6	levels	of
detail	with	this	patch	size)
$ETPS_65	(patch	size	of	65,	at	most,	use	7	levels	of
detail	with	this	patch	size)
$ETPS_129	(patch	size	of	129,	at	most,	use	8	levels	of
detail	with	this	patch	size)

	

Return	Value
success:	Handle	of	the	terrain	object
failure:	false

	

Remarks
The	terrain	is	created	from	a	gray	scale	bitmap	where	bright	pixels	are
high	points	on	the	terrain	and	black	pixels	are	low	points.
You	will	inevitablly	have	to	rescale	the	terrain	during	the	call	or	after	it	is
created.
The	Terrain	object	is	a	special	dynamic	mesh	whose	resoloution	is
reduced	in	the	distance	to	reduce	the	number	of	triangles	it	consumes.

	

Related
_IrrScaleTexture

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeTerrain	=	_IrrAddTerrain("./media/terrain-heightmap.bmp")
_IrrSetNodeScale($nodeTerrain,	40.0,	4.4,	40.0)

_IrrSetNodeMaterialTexture($nodeTerrain,	_IrrGetTexture("./media/terrain-
texture.jpg"),	0)
_IrrSetNodeMaterialTexture($nodeTerrain,	_IrrGetTexture(
"./media/detailmap3.jpg"),	1)

_IrrScaleTexture($nodeTerrain,	1.0,	60.0)

_IrrSetNodeMaterialFlag($nodeTerrain,	$IRR_EMF_LIGHTING,	$IRR_OFF
)
_IrrSetNodeMaterialType	($nodeTerrain,	$IRR_EMT_DETAIL_MAP)

local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($nodeCamera,	3942.8,	1102.7,	5113.9)

_IrrSetCameraClipDistance($nodeCamera,	12000)

WHILE	_IrrRunning()
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrAddTerrainTile

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddTerrainTile($h_Image,	$i_TileSize	=	256,	$i_DataX	=	0,	$i_DataY	=
0,	$f_PosX	=	0.0,	$f_PosY	=	0.0,	$f_PosZ	=	0.0,	$f_RotX	=	0.0,	$f_RotY	=
0.0,	$f_RotZ	=	0.0,	$f_ScaleX	=	1.0,	$f_ScaleY	=	1.0,	$f_ScaleZ	=	1.0,
$i_Smoothing	=	1,	$i_MaxLOD	=	5,	$i_PatchSize	=	$ETPS_17)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrAddSphericalTerrain

[todo]

#Include	<au3Irrlicht2.au3>
_IrrAddSphericalTerrain($s_TopPath,	$s_FrontPath,	$s_BackPath,
$s_LeftPath,	$RightPath,	$s_BottomPath,	$f_PosX	=	0.0,	$f_PosY	=	0.0,
$f_PosZ	=	0.0,	$f_RotX	=	0.0,	$f_RotY	=	0.0,	$f_RotZ	=	0.0,	$f_ScaleX	=
1.0,	$f_ScaleY	=	1.0,	$f_ScaleZ	=	1.0,	$i_VertexAlpha	=	255,	$i_VertexRed
=	255,	$i_VertexGreen	=	255,	$i_VertexBlue	=	255,	$i_Smoothing	=	0,
$i_Spherical	=	0,	$i_MaxLOD	=	5,	$i_PatchSize	=	$ETPS_17)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrGetTerrainHeight

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetTerrainHeight($h_Terrain,	$f_X,	$f_Y)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrScaleTexture

Specifies	the	scaling	of	a	terrain	object	detail	texture

#Include	<au3Irrlicht2.au3>
_IrrScaleTexture($h_Terrain,	$f_X,	$f_Y)

	

Parameters

$h_Terrain Handle	of	a	terrain	object
$f_X,	$f_Y Scaling	values	for	detail	texture	along	x	and	y	axis

	

Return	Value
success:	True
Failure:	False

	

Remarks
As	a	terrain	object	is	a	particularly	huge	mesh	when	textures	are	applied
to	it	they	look	extremely	pixelated.
To	get	over	this	effect	a	terrain	object	can	have	two	materials	applied	to
it,	one	to	give	general	surface	color	and	a	second	that	is	copied	across
the	surface	like	tiles	to	give	a	rough	detailed	texture.
This	call	specifies	the	scaling	of	this	detail	texture.

	

Related
_IrrAddTerrain

	

Example

#include	"au3Irrlicht2.au3"

_IrrStart()

local	$nodeTerrain	=	_IrrAddTerrain("./media/terrain-heightmap.bmp")
_IrrSetNodeScale($nodeTerrain,	40.0,	4.4,	40.0)

_IrrSetNodeMaterialTexture($nodeTerrain,	_IrrGetTexture("./media/terrain-
texture.jpg"),	0)
_IrrSetNodeMaterialTexture($nodeTerrain,	_IrrGetTexture(
"./media/detailmap3.jpg"),	1)

_IrrScaleTexture($nodeTerrain,	1.0,	60.0)

_IrrSetNodeMaterialFlag($nodeTerrain,	$IRR_EMF_LIGHTING,	$IRR_OFF
)
_IrrSetNodeMaterialType	($nodeTerrain,	$IRR_EMT_DETAIL_MAP)

local	$nodeCamera	=	_IrrAddFPSCamera()
_IrrSetNodePosition($nodeCamera,	3942.8,	1102.7,	5113.9)

_IrrSetCameraClipDistance($nodeCamera,	12000)

WHILE	_IrrRunning()
				_IrrBeginScene(240,	255,	255)
				_IrrDrawScene()
				_IrrEndScene()
WEND

_IrrStop()

Copy	to	Clipboard

	

au3Irr2	Function	Reference

_IrrGetTerrainTileHeight

[todo]

#Include	<au3Irrlicht2.au3>
_IrrGetTerrainTileHeight($h_Terrain,	$f_X,	$f_Y)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrScaleTileTexture

[todo]

#Include	<au3Irrlicht2.au3>
_IrrScaleTileTexture($h_Terrain,	$f_X,	$f_Y)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrSetTileColor

[todo]

#Include	<au3Irrlicht2.au3>
_IrrSetTileColor($h_Terrain,	$h_Image,	$i_X=0,	$i_Y=0)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

au3Irr2	Function	Reference

_IrrScaleSphericalTexture

[todo]

#Include	<au3Irrlicht2.au3>
_IrrScaleSphericalTexture($h_Terrain,	$f_X,	$f_Y)

	

Parameters

[param1] [explanation]
[moreTextForParam1]

	

Return	Value
[success]:	[explanation]
[failure]:	[explanation]
				[moreExplanationIndented]

	

Remarks
[todo]

	

Related
[todo:	functionName,	functionName]

	

Credits
AutoIt	Forum	names	are	mentioned	in	<brackets>	where	available.

http://www.autoitscript.com/forum/index.php?act=idx

au3Irr2

au3Irr2	Authors

J.	Rowe	<JRowe>
Andreas	Templin	<linus>

au3Irr2	Help	Files

One	of	the	above	;)
Frank	Dodd	(his	FreeBasic	Wrapper	reference	is	greatly	reusable!)

Additional	Contributions

Code	and	documentation	submitted	via	the	forum	or	by	email.

<ProgAndy>
<smashly>	(also	disturbing	a	sunday	morning	breakfast	coffee	is	a
sin:	thanks	for	excellent	work	;))

	

Last	but	not	least	Special	Thanks	to

Frank	Dodd,	his	team	from	the	FreeBasic	community,	and	a	LOT	of
others	that	have	supported	his	Irrlicht	Wrapper	project	with
contributions	or	with	technical	assistance	(see	here	for	detailed
acknowledgments).
Nikolaus	Gebhardt	and	the	Irrlicht	team.
All	the	people	that	did	the	used	models,	textures,	...
The	tool	authors	around	the	au3	help	-	saved	a	lot	of	time
All	other	not-yet-mentioned	people	sharing	time,	tips	and	work	for
nuts
Everyone	who	uses	and	support	au3Irr2

	

	

http://www.frankdodd.screaming.net/IrrlichtWrapper/IrrlichtWrapperPortal.htm
http://irrlicht.sourceforge.net/author.html

Wrapper	Library	for	Irrlicht

Introduction

http://www.frankdodd.screaming.net//IrrlichtWrapper/IrrlichtWrapperPortal.htm

Overview

The	first	thing	I	must	do	is	acknowledge	the	fantastic
work	that	has	been	carried	out	by	the	many	different
authors	whos	amazing	work	makes	it	possible	for	this
package	to	enable	BASIC	programmers	to	build	rich	and
immersive	3D	applications	and	games.	You	can	find	a
list	of	acknowledgements	at	the	end	of	this	document.

This	wrapper	library	provides	a	simple	and	partial
gateway	from	non	object-oriented	languages	like
FreeBasic	into	the	object	oriented	3D	graphics	Engine
Irrlicht.	Although	the	wrapper	only	exposes	part	of	the
functionality	of	Irrlicht	it	endevours	to	expose	the	most
important	parts	to	give	you	access	to	Irrlichts	powerful
features.	It	does	not	directly	expose	the	Irrlicht
commands	but	provides	a	seperate	syntax	to	encapsulate
the	engine.

In	total	it	provides	well	over	200	commands	that	cover	Bitmaps,	3D	models,	Maps,	Terrains,
Cameras,	Lights	and	more.	At	this	time	there	is	no	practical	support	for	the	Irrlicht	GUI,
applications	would	need	to	provide	any		widget	controls	with.

This	document	serves	as	an	introduction	into	the	wrapper,	from	here	I	suggest	you	follow	the
installation	instructions	below	and	then	try	out	the	examples,	these	practical	demonstrations
provide	an	excellent	way	to	learn	how	the	wrapper	functions.	If	you	need	specific	information
your	first	port	of	call	will	be	the	reference	manual	and	your	last	port	of	call
the	IrrlichtWrapper.bi	which	hopefully	you	will	not	need.

Installation

The	installation	of	the	IrrlichtWrapper	for	FreeBasic	package	is	very	simple,	just	extract	the	zip
file	to	a	folder	of	your	choice	and	your	ready	to	go.	You	may	prefer	to	move	the
IrrlichtWrapper.bi	file	to	your	FreeBasic\inc	directory	however	I	leave	it	where	it	is	and	create
my	project	files	within	the	same	directory.	As	the	Irrlicht	DLL	included	with	this	package	is
modified	to	include	addition	features	you	cannot	use	a	standard	Irrlicht.dll	from	another
download	with	this	package,	however	if	you	like	to	compile	your	own	executables	C++	source	is
provided	to	enable	you	to	do	this.

Note:	You	will	need	FreeBasic	verion	0.20	or	better	to	use	the	wrapper

The	Scene

When	you	start	Irrlicht	with	the	IrrStart	command	you	create	a	scene	that	represents	your	3D
world,	this	scene	is	hidden	behind	the	wrapper	and	is	used	to	load	and	store	all	of	your	resources:
Bitmap	Textures,	3D	Meshes,	Fonts	and	the	Nodes	in	your	world.

The	Texture	and	Image	Objects

The	texture	and	the	image	objects	are	both	2D	bitmaps	that	are	loaded	from	a
bitmap	file.

Textures	are	used	to	paint	the	surface	of	nodes	(3D	objects)	in	the	scene	or	can
be	drawn	directly	to	the	screen	as	an	image	for	counters	or	logos.	Textures	are
stored	in	the	computers	main	memory	but,	where	possible,	they	are	also	stored
in	the	Graphics	Cards	video	memory	to	speed	up	3D	drawing.	When	you	get	a
new	texture	the	wrapper	will	return	the	object	to	you	as	an	irr_texture	type

Images	are	usualy	used	as	a	source	of	information	and	are	not	drawn	to	the
screen	and	are	instead	used	to	set	the	height	of	terrains	or	to	describe	how	grass
is	distributed.	Images	are	stored	only	in	the	computers	main	memory.	When	you
get	a	new	image	file	the	wrapper	will	return	the	object	to	you	as	an	irr_image.

You	need	to	save	and	manage	both	of	theses	objects	so	you	can	use	them	later.	Once	you	are
finished	with	them	it	is	important	that	you	remove	them	from	memory	as	images	can	occupy	a
lot	of	memory	and	you	can	easily	run	out	of	video	memory	in	particular.

The	Font	Object

An	Irrlicht	font	is	a	monochromatic	bitmap	font	that	can	be	used	to	draw	simple
text	onto	the	display.	When	you	get	a	new	font	the	wrapper	will	return	the	object
to	you	as	an	irr_font	type.

The	Mesh	Object

The	Mesh	can	be	thought	of	like	a	blue	print	and	is	not	actually	displayed	in
your	scene.	It	is	a	list	of	triangular	geometry	that	fits	together	to	describe	a	3D
model,	this	can	be	a	static	prop,	a	complex	map	or	a	character.	The	mesh	can
also	store	animation	information	and	a	description	of	which	parts	of	a	texture	are
to	be	painted	onto	its	surface.

Where	a	mesh	describes	a	map	it	will	also	have	references	to	dozens	of	bitmaps
that	it	uses	to	paint	its	surfaces..	When	you	get	a	new	mesh	object	the	wrapper
will	return	it	to	you	as	an	irr_mesh	type.

The	Node	Object

A	node	is	a	physical	object	in	your	world	a	3D	Model,	Camera,	Light,	Terrain,
Billboard	or	Particle	System.	It	is	an	element	that	has	a	position,	rotation	and
scale,	it	will	usually	be	rendered	as	a	visible	element	if	it	is	in	front	of	the	active
camera	when	the	canvas	is	drawn.

Nodes	can	usually	be	painted	with	a	texture	a	process	that	is	referred	to	as
applying	a	material,	they	can	be	moved,	rotated	and	scaled,	hidden	from	view
and	deleted	from	the	scene.

A	3D	model	is	usually	created	by	adding	a	mesh	object	to	the	scene.	When	you
create	a	new	node	it	will	be	returned	to	you	as	an	irr_node	type.

The	Camera	Object

A	camera	object	is	a	special	node	type	and	represent	your	vantage	point	into	the	3D	world,	the
camera	has	a	viewpoint	and	a	target	at	which	it	looks.	Cameras	have	a	series	of	special
commands	that	can	alter	the	appearance	of	the	display	however	they	can	also	be	copied	directly
into	variables	of	type	irr_node	and	be	manipulated	with	all	of	the	node	commands.	When	a
camera	is	created	it	is	returned	to	you	an	irr_camera	type.

The	Terrain	Object

A	terrain	object	is	a	special	node	type	and	consists	of	a	large	square	mesh	that	is
pulled	and	lowered	to	represent	hills,	valleys	and	mountains.	The	terrain	can	be
textured	to	give	the	appearance	of	a	realistic	landmass	and	with	careful	design	it
can	even	have	map	objects	buried	into	it.	Terrains	have	some	special	commands
however	they	can	also	be	copied	directly	into	variables	of	type	irr_node	and	be
manipulated	with	all	of	the	node	commands.	When	a	terrain	is	created	it	is
returned	to	you	an	irr_texture	type.

The	Particle	System	Object

A	particle	system	is	a	special	node	type	that	can	be	set	up	to	spit	out	hundreds	of
tiny	little	Billboard	like	objects	and	simulate	effects	like,	fire,	explosions,
fountains,	waterfalls,	rain	etc	...	The	particle	system	has	an	item	called	an
emitters	attached	to	spit	out	particles	and	items	called	affectors	attached	to	fade
then	out	and	change	their	direction.	Particle	systems	have	some	special
commands	however	they	can	also	be	copied	directly	into	variables	of	type
irr_node	and	be	manipulated	with	all	of	the	node	commands.	When	a	particle
system	is	created	it	is	returned	to	you	an	irr_particle_system	type.

The	Animator	Object

Animator	objects	are	attached	to	nodes	and	are	used	to	delete,	rotate	or	move	the	object	in	some
way	without	you	having	to	control	the	animation	yourself	step	by	step.	When	you	create	an
animator	it	will	be	returned	to	you	as	an	irr_animator	type.

The	Selector	Object

Selector	objects	are	used	to	gather	together	groups	of	triangular	geometry	in	the	scene	that	can
be	used	for	special	functions,	at	the	moment	the	wrapper	only	supports	using	them	for	collision
detection.	When	you	create	a	selector	object	it	will	be	returned	to	you	as	a	irr_selector	

License

The	Irrlicht	Engine	is	based	in	part	on	the	work	of	the	Independent	JPEG	Group	and	the	zlib.
Please	refer	to	the	Irrlicht	documentation	and	license	agreements	for	further	information.

This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.	In	no	event	will	the
author	be	held	liable	for	any	damages	arising	from	the	use	of	this	software.	Permission	is	granted
to	anyone	to	use	this	software	for	any	purpose,	including	commercial	applications,	and	to	alter	it
and	redistribute	it	freely,	subject	to	the	following	restrictions:

1.	The	origin	of	this	software	must	not	be	misrepresented;	you	must	not	claim	that	you	wrote	the
original	software.	If	you	use	this	software	in	a	product,	an	acknowledgment	in	the	product
documentation	would	be	appreciated	but	is	not	required.

2.	Altered	source	versions	must	be	plainly	marked	as	such,	and	must	not	be	misrepresented	as
being	the	original	software.

3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

Contact

If	you	have	any	problems	or	suggestions	I	would	be	happy	to	receive	them.	Although	I	can	not
promise	any	action	or	an	individual	response	I	do	try	to	help	where	possible	and	to	look	after	my
babies	even	when	I	release	them	into	the	wild.	Mail::frankdodd@ukonline.co.uk

Acknowledgements

I	wish	to	express	my	gratitude		to	the	following	people	whose	work	the	wrapper	is	built	upon	or
who	have	helped	with	contributions	to	the	wrapper	or	with	technical	assistance	for	various
features	and	problems.
Irrlicht http://irrlicht.sourceforge.net/author.html
FreeBasic http://www.freebasic.net/index.php/about?section=credits
Simple	Terrain
Spattering

With	invaluable	help	from	the	OpenGL	Splat	tutorial	by	Jarno	van	der
Linden	(http://www.cs.auckland.ac.nz/~jvan006/multitex/multitex.html)

Grass	SceneNode Released	under	the	Irrlicht	License	by	G	Davidson
Clouds	SceneNode Released	under	the	Irrlicht	License	by	G	Davidson
Lens	Flare	Scene
Node Placed	into	the	public	domain	by	Paulo	Oliveira

6DOF	Camera With	lots	of	help	from	Colin	MacDonald	and	theoretical	advice	from
Aleofjax

Color	and	Spline
particle	affectors Released	under	the	Irrlicht	License	by	Dark	Kilauea

Newton	Physics
Engine	support

Developed	by	SiskinEDGE	and	the	library	provided	by	the	Newton	Game
Dynamics	team

Open	Dynamics
Engine	Physics
support

Bindings	developed	by	D.J	Peters	and	the	library	provided	by	the	Open
Dynamics	Engine	team.

Many	Irrilicht
commands	and
support

Provided	by	Agamemnus	and	The	Car

FreeType	truetype
font	support Provided	by	the	FreeType	team	(www.freetype.org)

Batching	Meshes Provided	by	Gaz	Davidson	(Bitplane)	
Beam	Node Provided	by	Gaz	Davidson	(Bitplane)
Bolt	Node Provided	by	Sudi	and	Trivtn	under	the	Irrlicht	License
XEffects	-	Reloaded Provided	by	Blindside
Many	thanks	for	the
development	tools

Code::Blocks	(www.codeblocks.org);	GCC	Compiler	(gcc.gnu.org);
FBIde	(www.freebasic.net);	FBEdit	(fbedit.freebasic.net);	NVu

Lots	of	thanks	for Eponasoft;	Daiwa;	Crocodudule,	John	K,	AlecZ,	Alvaro	Victor;	

help	in	the	Forums and	everyone	that	has	offered	their	support.	Thanks.
And	many	thanks	to	the	thousands	of	mails	posts,	examples,	replies	and	comments

scattered	across	the	Internet	that	provided	insights	into	many	of	the	questions	that	needed
to	be	solved	in	creating	this	library.

Wrapper	Library	for	Irrlicht

Reference	Manual

http://www.frankdodd.screaming.net//IrrlichtWrapper/IrrlichtWrapperPortal.htm

Table	of	Contents

Overview
System
Keyboard	and	Mouse
Filing	System	
2D
Materials
Scene
Node
Animation
Collision
Camera
Lighting
Particle	System
Terrain
Graphical	User	Interface
Wrapper	Structure	Definitions

Overview

Before	using	this	manual	I	suggest	that	you	first	read	the
introduction	document	that	will	introduce	the	basic
concepts.	While	I	have	made	great	effort	to	make	this
document	both	comprehensive	and	accurate	there	are
bound	to	be	errors	and	omissions	please	be	careful	when
relying	on	the	information	when	solving	problems.

Irrlicht	is	a	highly	impressive	and	powerful	rendering
engine	that	has	a	wide	range	of	operations	that	can	be
used	for	many	types	of	3D	application,	it	has	an
impressive,	clean	and	well	designed	object	oriented
structure	that	is	linked	to	through	a	simple	DLL	interface.

Unfortunately	its	object	oriented	structure	makes	it
extremely	difficult	to	use	from	imperative	languages	like
FreeBasic	that	do	not	support	an	object	model.	This	is
where	the	wrapper	come	in.	It	provides	an	interface
between	languages	like	FreeBasic	and	the	objected
oriented	model	of	Irrlicht.	Many	functions	are	translated
into	simple	calls	that	return	the	objects	back	to	FreeBasic
as	simple	variables	that	it	can	then	manage,	there	is	some
overhead	in	going	through	the	wrapper	although	the
interface	code	has	been	kept	simple	to	reduce	to	a
minimum.

System

These	calls	deal	with	starting,	running	and	stopping	the
Irrlicht	engine,	it	also	includes	calls	that	get	system
metrics	and	some	other	miscellaneous	tools.	
IrrStart
Syntax
IrrStart	(device	type	,	screen	width	as	integer,	screen	height	as	integer,	bits	per
pixel,	full	screen,	use	shadows,	capture	mouse	and	keyboard,	vertical
syncronisation)

Description
Starts	the	Irrlicht	interface	and	opens	a	window	for	rendering.

device	type	specifies	the	renderer	to	use	when	drawing	to	the	display	this	may
be	one	of	the	following	types:	-

IRR_EDT_NULL
A	NULL	device	with	no	display
IRR_EDT_SOFTWARE
Irrlichts	default	software	renderer
IRR_EDT_SOFTWARE2
An	improved	quality	software	renderer
IRR_EDT_OPENGL
Hardware	accelerated	OpenGL	renderer
IRR_EDT_DIRECT3D8
Hardware	accelerated	DirectX	8	renderer	(not	included	in	the	Wrappers
'Irlicht.dll'	distribution)
IRR_EDT_DIRECT3D9
Hardware	accelerated	DirectX	9	renderer	(not	included	in	the	Wrappers
'Irlicht.dll'	distribution)

screen	width	specifies	the	width	of	the	viewport	in	pixels
screen	height	specifies	the	height	of	the	viewport	in	pixels

The	number	of	color	bits	that	is	used	for	each	pixel	32	bit	color	gives	24
million	different	colors	whereas	16	bit	color	gives	only	32,000	colors.	However
the	advantage	of	16	bit	color	is	that	some	operations	use	half	the	memory	and
can	run	at	up	to	twice	the	speed.	This	setting	can	be	either	of:	-	
IRR_BITS_PER_PIXEL_16
IRR_BITS_PER_PIXEL_32

Full	screen	specifies	whether	the	display	is	to	opened	in	full	screen	mode	or	in
a	window
IRR_WINDOWED
For	window	mode
IRR_FULLSCREEN
For	fullscreen	mode.	When	using	full	screen	mode	you	will	need	to	adjust	the
window	size	to	the	same	dimensions	as	a	supported	screen	resolution	on	the
target	display	640x400	for	example.

Use	shadows	starts	the	engine	in	a	mode	that	supports	the	rendering	of	stencil
shadows.
IRR_NO_SHADOWS
For	a	display	that	does	not	support	shadows.
IRR_SHADOWS
For	a	display	that	supports	shadows.

Capture	mouse	and	keyboard	specified	whether	you	want	to	capture	keyboard
and	mouse	events,	if	you	choose	to	ignore	them	they	will	be	handled	by	Irrlicht
for	FPS	camera	control.	This	parameter	should	be	either	of:	-
IRR_IGNORE_EVENTS
IRR_CAPTURE_EVENTS

vertical	syncronisation	specifies	whether	the	display	of	each	new	frame	is
syncronised	with	vertical	refresh	of	the	graphics	card.	This	produces	a
smoother	display	and	avoids	'tearing'	where	the	viewer	can	see	parts	of	two
different	frames	at	the	same	time.	The	setting	can	be	either	of	:-
IRR_VERTICAL_SYNC_OFF
IRR_VERTICAL_SYNC_ON

Example
IrrStart(IRR_EDT_OPENGL,	screen_width,	screen_height,

IRR_BITS_PER_PIXEL_32,	IRR_WINDOWED,	IRR_SHADOWS,

IRR_IGNORE_EVENTS,	IRR_VERTICAL_SYNC_ON)

IrrStop

IrrStartAdvanced
Syntax
integer	=	IrrStart	(_
				drivertype	as	IRR_DEVICE_TYPES,	_
				scrWidth	as	integer,	_
				scrHeight	as	integer,	_
				bits	as	uinteger,	_
				fullscreen	as	uinteger,	_
				shadows	as	uinteger,	_
				dontignoreinput	as	uinteger,	_
				vsyncenabled	as	uinteger	=	IRR_OFF,	_
				devicetype	as	uinteger	=	0,	_
				doublebufferenabled	as	uinteger	=	IRR_ON,	_
				antialiasenabled	as	uinteger	=	0,	_
				highprecisionfpu	as	uinteger	=	IRR_OFF)

Description
An	advanced	call	for	starting	the	Irrlicht	interface	and	opens	a	window	for
rendering.

device	type	specifies	the	renderer	to	use	when	drawing	to	the	display	this	may
be	one	of	the	following	types:	-

IRR_EDT_NULL
A	NULL	device	with	no	display
IRR_EDT_SOFTWARE
Irrlichts	default	software	renderer
IRR_EDT_SOFTWARE2
An	improved	quality	software	renderer
IRR_EDT_OPENGL
Hardware	accelerated	OpenGL	renderer

IRR_EDT_DIRECT3D8
Hardware	accelerated	DirectX	8	renderer	(not	included	in	the	Wrappers
'Irlicht.dll'	distribution)
IRR_EDT_DIRECT3D9
Hardware	accelerated	DirectX	9	renderer	(not	included	in	the	Wrappers
'Irlicht.dll'	distribution)

screen	width	specifies	the	width	of	the	viewport	in	pixels
screen	height	specifies	the	height	of	the	viewport	in	pixels

The	number	of	color	bits	that	is	used	for	each	pixel	32	bit	color	gives	24
million	different	colors	whereas	16	bit	color	gives	only	32,000	colors.	However
the	advantage	of	16	bit	color	is	that	some	operations	use	half	the	memory	and
can	run	at	up	to	twice	the	speed.	This	setting	can	be	either	of:	-	
IRR_BITS_PER_PIXEL_16
IRR_BITS_PER_PIXEL_32

Full	screen	specifies	whether	the	display	is	to	opened	in	full	screen	mode	or	in
a	window
IRR_WINDOWED
For	window	mode
IRR_FULLSCREEN
For	fullscreen	mode.	When	using	full	screen	mode	you	will	need	to	adjust	the
window	size	to	the	same	dimensions	as	a	supported	screen	resolution	on	the
target	display	640x400	for	example.

Use	shadows	starts	the	engine	in	a	mode	that	supports	the	rendering	of	stencil
shadows.
IRR_NO_SHADOWS
For	a	display	that	does	not	support	shadows.
IRR_SHADOWS
For	a	display	that	supports	shadows.

Capture	mouse	and	keyboard	specified	whether	you	want	to	capture	keyboard
and	mouse	events,	if	you	choose	to	ignore	them	they	will	be	handled	by	Irrlicht
for	FPS	camera	control.	This	parameter	should	be	either	of:	-
IRR_IGNORE_EVENTS
IRR_CAPTURE_EVENTS

vertical	syncronisation	specifies	whether	the	display	of	each	new	frame	is
syncronised	with	vertical	refresh	of	the	graphics	card.	This	produces	a
smoother	display	and	avoids	'tearing'	where	the	viewer	can	see	parts	of	two
different	frames	at	the	same	time.	The	setting	can	be	either	of	:-
IRR_VERTICAL_SYNC_OFF
IRR_VERTICAL_SYNC_ON

devicetype	allows	a	specific	type	of	device	for	example	a	windows	screen	or	a
console	to	be	selected.	For	the	time	being	this	should	be	set	to	0	which
automatically	selects	the	best	device

doublebufferenabled	is	used	to	control	whether	double	buffering	is	used.	When
double	buffering	is	used	two	drawing	surfaces	are	created	one	for	display	and
the	other	that	is	used	for	drawing	too.	Double	buffering	is	required	for	anit-
aliasing	the	options	are:	IRR_ON	or	IRR_OFF

antialiasenabled	is	used	to	enable	the	antialiasing	effect,	this	effect	produces	a
blurring	at	the	edges	of	object	giving	their	lines	a	smooth	natural	appearence.
There	is	usually	a	big	penalty	for	using	this	effect	though	sometimes	as	high	as
30%		of	the	frame	rate	or	more.	This	is	a	value	for	the	anti-aliasing	and	should
be	a	power	of	2.	(e.g:	2,	4,	8,	16)

highprecisionfpu	is	used	to	enable	high	precision	Floating	point	calculations,
that	produce	more	accurate	result	at	the	expense	of	a	slower	operating	speed.

Example
IrrStartAdvanced	(_

				IRR_EDT_OPENGL,	_							'	Use	OpenGL

				512,	512,	_													'	in	a	window	640x480

				IRR_BITS_PER_PIXEL_32,	_'	using	32	bit	true	color

				IRR_WINDOWED,	_									'	in	a	window

				IRR_NO_SHADOWS,	_							'	without	stencil	shadows

				IRR_IGNORE_EVENTS,	_				'	dont	capture	keystrokes	and	mouse

				IRR_ON,	_															'	sync	to	the	monitor	refresh	rate

				0,	_																				'	0	=	use	the	most	appropriate	window

device

				IRR_ON,	_															'	Switch	on	double	buffering	of	the

display

				4,	_																				'	Anti-aliasing	level	4

				IRR_ON)																'	use	high	precision	floating	point

math

IrrRunning
Syntax
IrrRunning

Description
Used	to	determine	if	the	Irrlicht	engine	is	still	running.

Example
IrrStart(IRR_EDT_OPENGL,	screen_width,	screen_height,

IRR_WINDOWED,	IRR_SHADOWS,	IRR_IGNORE_EVENTS)

While	IrrRunning

Wend

IrrStop

IrrSetViewPort
Syntax
IrrSetViewPort(topX	as	integer,	topY	as	integer,	bottomX	as	integer,	bottomY
as	integer)

Description
Define	the	area	of	the	screen	into	which	elements	are	going	to	be	drawn.	This
can	be	used	to	draw	the	scene	multiple	times	for	split	screen	effects.

Example
IrrSetActiveCamera(FirstCamera)

IrrSetViewPort(0,0,	200,200)

IrrDrawScene

IrrSetRenderTarget
Syntax
IrrSetRenderTarget	(texture	As	irr_texture,	sceneBackgroundColor	As	Uinteger
=	0,	clearBackBuffer	As	Ubyte	=	1,	clearZBuffer	As	Ubyte	=	1)

Description
Set	the	target	surface	for	rendering,	this	allows	objects	to	be	rendered	to	a
texture	that	can	then	be	drawn	to	the	screen	or	displayed	on	other	objects.

Calling	this	function	with	texture	set	to	0	sets	the	drawing	target	back	to	the
screen,.

Texture	is	a	texture	created	with	the	special	.IrrCreateRenderTargetTexture	call.
scene	background	color	is	generated	with	the	FreeBasic	RGBA	call	and	defines
the	colour	used	in	any	clear	operation.
clean	back	buffer	when	set	to	IRR_ON	erases	the	background	of	the	texture
clear	z	buffer	when	set	to	IRR_ON	erases	the	depth	buffer	(used	by	stencil
shadows	and	some	shaders)	

Example
Texture	=	IrrCreateRenderTargetTexture(512,	512)

IrrSetRenderTarget(Texture,	RGBA(0,0,0,0),	IRR_ON,	IRR_ON)

IrrDrawScene

IrrBeginScene
Syntax
IrrBeginScene(Red	as	integer,	Green	as	integer,	Blue	as	integer)

Description
Starts	to	draw	a	frame,	erasing	the	canvas	with	the	specified	color.	The	colors
are	integer	values	in	the	range	from	0	(black)	to	255	(full	intensity)

Example
IrrStart(IRR_EDT_OPENGL,	screen_width,	screen_height,

IRR_WINDOWED,	IRR_SHADOWS,	IRR_IGNORE_EVENTS)

While	IrrRunning

				IrrBeginScene(255,	255,	255)

				IrrDrawScene

				IrrEndScene

Wend

IrrStop

IrrDrawScene
Syntax
IrrDrawScene

Description

This	renders	the	3D	scene	to	the	canvas,	drawing	all	3D	elements:	nodes,
particles,	billboards,	etc

Example
IrrStart(IRR_EDT_OPENGL,	screen_width,	screen_height,

IRR_WINDOWED,	IRR_SHADOWS,	IRR_IGNORE_EVENTS)

While	IrrRunning

				IrrBeginScene(255,	255,	255)

				IrrDrawScene

				IrrEndScene

Wend

IrrStop

IrrDrawSceneToTexture
Syntax
IrrDrawSceneToTexture(render_texture	as	irr_texture)

Description
Draw	scene	manager	objects	to	a	texture	surface,	the	texture	must	have	been
created	with	a	call	to	IrrCreateRenderTargetTexture.	This	is	useful	for	creating
textures	from	3D	objects	in	your	scene	perhaps	nameplates	in	the	interface	for
characters	for	example.	NoteThe	target	texture	must	be	smaller	than	the	view
window	as	some	resources	are	shared	between	the	two.

Example
IrrSetActiveCamera	(StaticCamera)

IrrDrawSceneToTexture	(RenderTexture)

IrrBeginScene(240,	255,	255)

IrrSetActiveCamera	(FPSCamera)

IrrDrawScene

IrrDrawGUI
Syntax
IrrDrawGUI

Description
This	renders	the	2D	graphical	user	interface	that	has	been	created	to	the	scene.

At	the	moment	this	wrapper	only	supports	a	static	text	object	for
experimentation	purposes	only.

Example
IrrStart(IRR_EDT_OPENGL,	screen_width,	screen_height,

IRR_WINDOWED,	IRR_SHADOWS,	IRR_IGNORE_EVENTS)

While	IrrRunning

				IrrBeginScene(255,	255,	255)

				IrrDrawScene

				IrrDrawGUI

				IrrEndScene

Wend

IrrStop

IrrEndScene
Syntax
IrrEndScene

Description
This	renders	the	3D	scene	to	the	canvas,	drawing	all	3D	elements:	nodes,
particles,	billboards,	etc

Example
IrrStart(IRR_EDT_OPENGL,	screen_width,	screen_height,

IRR_WINDOWED,	IRR_SHADOWS,	IRR_IGNORE_EVENTS)

While	IrrRunning

				IrrBeginScene(255,	255,	255)

				IrrDrawScene

				IrrEndScene

Wend

IrrStop

IrrStop
Syntax
IrrStop

Description
Stop	the	Irrlicht	Engine	freeing	all	of	the	resources	and	closing	the	display
window.

Example
IrrStart(IRR_EDT_OPENGL,	screen_width,	screen_height,

IRR_WINDOWED,	IRR_SHADOWS,	IRR_IGNORE_EVENTS)

While	IrrRunning

				IrrBeginScene(255,	255,	255)

				IrrDrawScene

				IrrEndScene

Wend

IrrStop

IrrTransparentZWrite
Syntax
IrrTransparentZWrite

Description
Allow	transparency	to	write	to	the	z	buffer,	this	is	nessecary	sometimes	to
correct	problems	with	the	ordering	of	transparent	objects	in	the	scene,	it	may
also	have	an	effect	of	performance	however.

Example
IrrTransparentZWrite

IrrGetFPS
Syntax
Integer_variable	=	IrrGetFPS

Description
Get	the	current	frame	rate.	This	is	determined	by	the	number	of	times	the
IrrEndScene	is	called	per	second.

Example
frame_rate	=	IrrGetFPS

IrrStop()

Print	“Frame	Rate	was	“;frame_rate

Sleep

IrrGetScreenSize

Syntax
IrrGetScreenSize(width	as	integer,	height	as	integer)

Description
Gets	the	screen	side	into	the	two	supplied	variables.

Example
IrrGetScreenSize(ScreenWidth,	ScreenHeight)

IrrGetPrimitivesDrawn
Syntax
unsigned_Integer_variable	=	IrrGetPrimitivesDrawn

Description
Get	the	current	frame	rate.	This	is	determined	by	the	number	of	times	the
IrrEndScene	is	called	per	second.

Example
polygons	=	IrrGetPrimitivesDrawn

IrrStop()

Print	“The	system	drew	about	“;polygons;"	triangles"

Sleep

IrrSetWindowCaption
Syntax
IrrSetWindowCaption(caption	text	as	wide	string)

Description
Set	the	caption	in	the	Irrlicht	window	title	bar..

Example
IrrSetWindowCaption(“Irrlicht	in	Free	Basic”)

IrrMakeARGB	
Syntax
unsigned_integer	=	IrrMakeARGB	(Alpha,	Red,	Green,	Blue)

Description
Takes	four	values	representing	a	colors	Alpha,	Red,	Green	and	Blue	intensity
and	returns	them	as	a	32bit	unsigned	integer.	Typically	used	for	working	with
colors	in	IRR_VECT	structures.

Example
vcolor	=	IrrMakeARGB(0,	255,	128,	128)

IrrQueryFeature
Syntax
uinteger	IrrQueryFeature(Feature	as	IRR_VIDEO_FEATURE_QUERY)

Description
Used	to	determine	if	a	particular	video	feature	is	supported	by	the	graphics
card.	The	function	will	return	(1)	if	the	feature	is	supported	and	(0)	if	it	isnt.
The	feature	parameter	should	be	either	of	the	following	values:	-
EVDF_RENDER_TO_TARGET
Is	driver	able	to	render	to	a	surface?
EVDF_HARDWARE_TL
Is	hardeware	transform	and	lighting	supported?
EVDF_MULTITEXTURE
Are	multiple	textures	per	material	possible?
EVDF_BILINEAR_FILTER
Is	driver	able	to	render	with	a	bilinear	filter	applied?
EVDF_MIP_MAP
Can	the	driver	handle	mip	maps?
EVDF_MIP_MAP_AUTO_UPDATE
Can	the	driver	update	mip	maps	automatically?
EVDF_STENCIL_BUFFER
Are	stencilbuffers	switched	on	and	does	the	device	support	stencil	buffers?
EVDF_VERTEX_SHADER_1_1
Is	Vertex	Shader	1.1	supported?
EVDF_VERTEX_SHADER_2_0
Is	Vertex	Shader	2.0	supported?
EVDF_VERTEX_SHADER_3_0
Is	Vertex	Shader	3.0	supported?

EVDF_PIXEL_SHADER_1_1
Is	Pixel	Shader	1.1	supported?
EVDF_PIXEL_SHADER_1_2
Is	Pixel	Shader	1.2	supported?
EVDF_PIXEL_SHADER_1_3
Is	Pixel	Shader	1.3	supported?
EVDF_PIXEL_SHADER_1_4
Is	Pixel	Shader	1.4	supported?
EVDF_PIXEL_SHADER_2_0
Is	Pixel	Shader	2.0	supported?
EVDF_PIXEL_SHADER_3_0
Is	Pixel	Shader	3.0	supported?
EVDF_ARB_VERTEX_PROGRAM_1
Are	ARB	vertex	programs	v1.0	supported?
EVDF_ARB_FRAGMENT_PROGRAM_1
Are	ARB	fragment	programs	v1.0	supported?
EVDF_ARB_GLSL
Is	GLSL	supported?
EVDF_HLSL
Is	HLSL	supported?
EVDF_TEXTURE_NPOT
Are	non-power-of-two	textures	supported?
EVDF_FRAMEBUFFER_OBJECT
Are	framebuffer	objects	supported?
EVDF_VERTEX_BUFFER_OBJECT
Are	vertex	buffer	objects	supported?
EVDF_ALPHA_TO_COVERAGE
Is	alpha	to	coverage	supported?
EVDF_COLOR_MASK
Are	color	masks	supported?
EVDF_MULTIPLE_RENDER_TARGETS
Are	multiple	render	targets	supported?
EVDF_MRT_BLEND
Are	seperate	blend	settings	for	render	targets	supported?
EVDF_MRT_COLOR_MASK
Are	seperate	color	masks	for	render	targets	supported?
EVDF_MRT_BLEND_FUNC
Are	seperate	blend	functions	for	render	targets	supported?
EVDF_GEOMETRY_SHADER

Are	geometry	shaders	supported?

Example
if	IrrQueryFeature(EVDF_MULTITEXTURE)	=	0	then	

		?	"MultiTexture	is	NOT	supported"

End	if

IrrDisableFeature
Syntax
uinteger	IrrDisableFeature(Feature	as	IRR_VIDEO_FEATURE_QUERY,	state
as	uinteger)

Description
Used	to	disable	a	particular	video	feature	on	the	graphics	card.	The	feature
parameter	is	identical	to	IrrQueryFeature.

State	should	be	either	IRR_ON	or	IRR_OFF

Example
IrrDisableFeature(EVDF_MULTITEXTURE,	IRR_OFF)

IrrGetTime	
Syntax
unsigned_integer	=	IrrGetTime

Description
Get	the	current	time	in	milliseconds.

Example
time	=	IrrGetTime

IrrSetTime	
Syntax
IrrGetTime(time	as	uinteger)

Description

Set	the	current	animation	time	in	milliseconds.

Example
IrrSetTime(2500)

IrrIsFullscreen	
Syntax
IrrIsFullscreen()	as	integer

Description
Checks	if	the	Irrlicht	window	is	running	in	fullscreen	mode.	Returns	0	if	the
application	is	windowed	any	other	value	indicates	full	screen	mode

Example
if	IrrIsFullscreen	=	IRR_OFF	Then	Print	"Windowed	Mode"

IrrIsWindowActive	
Syntax
IrrIsWindowActive()	as	integer

Description
Checks	if	Irrlicht	window	is	active.	Returns	0	if	the	application	is	windowed
any	other	value	indicates	full	screen	mode

Example
if	IrrIsWindowActive	>	0	Then	Print	IrrDrawScene

IrrIsWindowFocused	
Syntax
IrrIsWindowFocused()	as	integer

Description
Checks	if	the	Irrlicht	window	has	focus.	Returns	0	if	the	application	is
windowed	any	other	value	indicates	full	screen	mode

Example
if	IrrIsWindowFocused	>	0	Then	Print	IrrDrawScene

IrrIsWindowMinimized	
Syntax
IrrIsWindowMinimized()	as	integer

Description
Checks	if	the	Irrlicht	window	is	minimized.	Returns	0	if	the	application	is
windowed	any	other	value	indicates	full	screen	mode

Example
if	IrrIsWindowMinimized	=	0	Then	Print	IrrDrawScene

IrrMaximizeWindow	
Syntax
IrrMaximizeWindow()

Description
Maximizes	the	window	if	possible.

Example
IrrMaximizeWindow

IrrMinimizeWindow	
Syntax
IrrMinimizeWindow()

Description
Minimizes	the	window	if	possible.

Example
IrrMinimizeWindow

IrrRestoreWindow	
Syntax
IrrRestoreWindow()

Description
Restore	the	window	to	normal	size	if	possible.

Example
IrrRestoreWindow

IrrResizableWindow	
Syntax
IrrResizableWindow()

Description
Make	the	irrlicht	window	resizable	by	dragging	on	the	corner	of	the	window.

Example
IrrResizableWindow

Keyboard	and	Mouse

These	calls	allow	you	recover	keyboard	events	and
mouse	actions	that	the	user	creates.

IrrKeyEventAvailable
Syntax
IrrSetWindowCaption

Description
Determine	if	there	are	any	keystrokes	waiting	to	be	read..

Example
while	IrrKeyEventAvailable

				KeyEvent	=	IrrReadKeyEvent

Wend

IrrReadKeyEvent
Syntax
irr_key_event_pointer	=	IrrReadKeyEvent

Description
Read	a	key	event	from	the	Irrlicht	window	the	properties	of	the	key	event	are
stored	in	the	returned	type.

Example
While	IrrKeyEventAvailable

				KeyEvent	=	IrrReadKeyEvent

				If	KeyEvent->key	=	IRR_KEY_DOWN	then

								Movement	=	DOWN

				End	If

Wend

IrrMouseEventAvailable

Syntax
IrrMouseEventAvailable

Description
Determine	if	there	are	any	mouse	actions	waiting	to	be	read.

Example
while	IrrMouseEventAvailable

				MouseEvent	=	IrrReadMouseEvent

Wend

IrrReadMouseEvent
Syntax
irr_mouse_event_pointer	=	IrrReadMouseEvent

Description
Read	a	mouse	event	from	the	Irrlicht	window	the	properties	of	the	mouse	event
are	stored	in	the	returned	type.

Example
while	IrrMouseEventAvailable

				'	read	the	mouse	event	out

				MouseEvent	=	IrrReadMouseEvent

				if	MouseEvent->action	=	IRR_EMIE_MOUSE_MOVED	then

								SPIN	=	MouseEvent->x

				endif

wend

IrrSetMousePosition
Syntax
IrrSetMousePosition(x	as	single,	y	as	single)

Description
Set	the	position	of	the	mouse	pointer	and	return	the	relative	change	in	position.

Example
IrrSetMousePosition(XPosition,	YPosition)

IrrGetAbsoluteMousePosition
Syntax
IrrGetAbsoluteMousePosition(x	as	single,	y	as	single)

Description
Gets	the	absoloute	position	of	the	mouse	pointer.

Example
IrrGetAbsoluteMousePosition(XPosition,	YPosition)

IrrHideMouse
Syntax
IrrHideMouse

Description
Hide	the	mouse	pointer	

Example
IrrHideMouse

IrrShowMouse
Syntax
IrrShowMouse

Description
Shows	the	mouse	pointer	

Example
IrrShowMouse

IrrDisplayMouse
Syntax
IrrDisplayMouse(hide	or	show	the	mouse	as	integer)

Description
Hide	or	show	the	mouse	pointer	while	it	is	within	the	Irrlicht	display.	There	are
two	macro's	available	for	the	function	IrrHideMouse	and	IrrShowMouse	to
simply	hide	or	show	the	mouse.	1	shows	the	mouse	pointer	and	0	hides	it.

Example
IrrDisplayMouse(0)

Filing	System

These	calls	deal	with	the	way	irrlicht	operates	with	the
filing	system	and	adds	archives	to	its	a	virtual	filling
system	allowing	you	to	compress	data	into	zipfiles	that
you	can	access	without	decompressing	them.

IrrAddZipFile
Syntax
IrrAddZipFile(zip	file	as	zstring,	ignore	case,	ignore	paths)

Description
Adds	a	zip	archive	to	the	filing	system	allowing	you	to	load	files	straight	out	of
the	zip	file.	Common	pk3	files	are	simply	zip	files

Ignore	case	should	be	one	of	the	following	values:	-
IRR_USE_CASE
IRR_IGNORE_CASE

Ignore	paths	allows	you	to	simply	use	the	filename	without	the	path,	the
filename	should	always	be	unique	in	the	archive	when	using	this	option.	The
value	should	be	one	of	the	following:	-
IRR_USE_PATHS
IRR_IGNORE_PATHS

Example
IrrAddZipFile("data.pk3",	IRR_IGNORE_CASE,	IRR_IGNORE_PATHS)

IrrChangeWorkingDirectory
Syntax
IrrChangeWorkingDirectory(New	directory	as	zstring)

Description
Change	the	working	directory	of	the	Irrlicht	Environment.

Example
IrrChangeWorkingDirectory("c:\media")

IrrGetWorkingDirectory
Syntax
string	=	IrrGetWorkingDirectory

Description
Get	the	current	working	directory	of	the	Irrlicht	Environment.

Example
CurrentDirectory	=	IrrGetWorkingDirectory

2D

Support	for	2D	operations	including	the	loading	of
bitmaps	that	can	be	used	for	texturing	3D	objects	or	for
display	on	the	screen	as	2D	sprites.

IrrSetTextureCreationFlag
Syntax
IrrSetTextureCreationFlag(flag_to_set	as
IRR_TEXTURE_CREATION_FLAG,	flag_value	as	uinteger)

Description
Sets	texture	creation	flags	controlling	how	textures	are	handled	when	they	are
created.	The	following	flags	can	be	set:	-

ETCF_ALWAYS_16_BIT
Forces	the	driver	to	always	create	16	bit	textures,	independently	of	which
format	the	file	on	disk	has.	When	choosing	this	you	may	loose	some	color
detail,	but	gain	speed	and	save	memory.	16	bit	textures	can	be	transferred	twice
as	quickly	as	32	bit	textures	and	only	use	half	of	the	memory	space.	When
using	this	flag,	it	does	not	make	sense	to	use	the	flags
ETCF_ALWAYS_32_BIT,	ETCF_OPTIMIZED_FOR_QUALITY,	or
ETCF_OPTIMIZED_FOR_SPEED	at	the	same	time.

ETCF_ALWAYS_32_BIT
Forces	the	driver	to	always	create	32	bit	textures,	independently	of	which
format	the	file	on	disk	has.	Please	note	that	some	drivers	(like	the	software
device)	will	ignore	this,	because	they	are	only	able	to	create	and	use	16	bit
textures.	When	using	this	flag,	it	does	not	make	sense	to	use	the	flags
ETCF_ALWAYS_16_BIT,	ETCF_OPTIMIZED_FOR_QUALITY,	or
ETCF_OPTIMIZED_FOR_SPEED	at	the	same	time.

ETCF_OPTIMIZED_FOR_QUALITY
Lets	the	driver	decide	in	which	format	the	textures	are	created	and	tries	to	make

the	textures	look	as	good	as	possible.	Usually	it	simply	chooses	the	format	in
which	the	texture	was	stored	on	disk.	When	using	this	flag,	it	does	not	make
sense	to	use	the	flags	ETCF_ALWAYS_16_BIT,	ETCF_ALWAYS_32_BIT,	or
ETCF_OPTIMIZED_FOR_SPEED	at	the	same	time.

ETCF_OPTIMIZED_FOR_SPEED
Lets	the	driver	decide	in	which	format	the	textures	are	created	and	tries	to
create	them	maximizing	render	speed.	When	using	this	flag,	it	does	not	make
sense	to	use	the	flags	ETCF_ALWAYS_16_BIT,	ETCF_ALWAYS_32_BIT,	or
ETCF_OPTIMIZED_FOR_QUALITY,	at	the	same	time.

ETCF_CREATE_MIP_MAPS
Automatically	creates	mip	map	levels	for	the	textures.

ETCF_NO_ALPHA_CHANNEL
Discard	any	alpha	layer	and	use	non-alpha	color	format.	

Example

IrrSetTextureCreationFlag(ETCF_ALWAYS_32_BIT,	IRR_ON)

IrrGetTexture
Syntax
irr_texture	=	IrrGetTexture(Texture	file	name	as	zstring)

Description
Load	a	2D	texture	from	a	bitmap	file	into	video	memoy	that	can	then	be	used	to
texture	a	model	or	to	draw	onto	the	screen.

Example
IrrlichtLogo	=	IrrGetTexture("irrlicht.bmp")

IrrGetImage
Syntax
irr_texture	=	IrrGetImage(Texture	file	name	as	zstring)

Description

Load	a	2D	texture	from	a	bitmap	file	into	main	memory	that	can	then	be	used
to	supply	a	heightmap	to	a	terrain	or	other	similar	CPU	based	operations.	The
images	can	not	be	used	to	texture	3D	objects.

Example
TerrainMap	=	IrrGetImage("heightmap.bmp")

IrrCreateTexture
Syntax
irr_texture	=	IrrCreateTexture(texture_name	as	zstring,	x_size	as	integer,
y_size	as	integer,	format	as	IRR_COLOR_FORMAT)

Description
Creates	a	blank	texture.	The	format	of	the	texture	can	be	one	of	the	following:	-

ECF_A1R5G5B5
16	bit	color	format	used	by	the	software	driver,	and	thus	preferred	by	all	other
irrlicht	engine	video	drivers.	There	are	5	bits	for	every	color	component,	and	a
single	bit	is	left	for	alpha	information.

ECF_R5G6B5
Standard	16	bit	color	format.

ECF_R8G8B8
24	bit	color,	no	alpha	channel,	but	8	bit	for	red,	green	and	blue.

ECF_A8R8G8B8
Default	32	bit	color	format.	8	bits	are	used	for	every	component:	red,	green,
blue	and	alpha.	

Example

IrrlichtLogo	=	IrrCreateTexture("mytexture",	128,	128,

ECF_A8R8G8B8)

IrrCreateImage

Syntax
irr_image	=	IrrCreateImage(x_size	as	integer,	y_size	as	integer,	format	as
IRR_COLOR_FORMAT)

Description
Creates	a	blank	image,	does	not	use	video	memory.	The	format	of	the	image
can	be	one	of	the	following:	-

ECF_A1R5G5B5
16	bit	color	format	used	by	the	software	driver,	and	thus	preferred	by	all	other
irrlicht	engine	video	drivers.	There	are	5	bits	for	every	color	component,	and	a
single	bit	is	left	for	alpha	information.

ECF_R5G6B5
Standard	16	bit	color	format.

ECF_R8G8B8
24	bit	color,	no	alpha	channel,	but	8	bit	for	red,	green	and	blue.

ECF_A8R8G8B8
Default	32	bit	color	format.	8	bits	are	used	for	every	component:	red,	green,
blue	and	alpha.	

Example

BlankPicture	=	IrrCreateImage(128,	128,	ECF_A8R8G8B8)

IrrRemoveTexture
Syntax
IrrRemoveTexture(texture	as	irr_texture)

Description
Removes	the	texture	from	memory	freeing	up	the	space	it	occupied.	You	should
ensure	that	the	texture	is	not	in	use	by	materials	assigned	to	nodes.

Example
DIM	MyTexture	as	irr_texture

MyTexture	=	IrrGetTexture("irrlicht.bmp")

IrrRemoveTexture(MyTexture)

IrrRemoveImage
Syntax
IrrRemoveImage(image	as	irr_image)

Description
Removes	the	image	from	memory	freeing	up	the	space	it	occupied.	You	should
ensure	that	the	image	is	not	in	use	by	other	functions.

Example
DIM	MyImage	as	irr_image

MyImage	=	IrrGetImage("irrlicht.bmp")

IrrRemoveImage(MyImage)

IrrLockTexture
Syntax
pixels_ptr	=	IrrLockTexture(texture	as	irr_texture)

Description
Locks	the	texture	and	returns	a	pointer	to	the	pixels.

Example
DIM	texture_pixels	as	uinteger	ptr

texture_pixels	=	IrrLockTexture(MyTexture)

IrrUnlockTexture
Syntax
IrrUnlockTexture(texture	as	irr_texture)

Description
Unlock	the	texture,	presumably	after	it	has	been	modified	and	recreate	the
mipmap	levels.

Example

IrrUnlockTexture(MyTexture)

IrrLockImage
Syntax
pixels_ptr	=	IrrLockImage(image	as	irr_image)

Description
Locks	the	image	and	returns	a	pointer	to	the	pixels.

Example
DIM	image_pixels	as	uinteger	ptr

image_pixels	=	IrrLockImage(MyImage)

IrrUnlockImage
Syntax
IrrUnlockImage(image	as	irr_image)

Description
Unlock	the	image,	presumably	after	it	has	been	modified.

Example
IrrUnlockImage(MyImage)

IrrCreateRenderTargetTexture
Syntax
irr_texture	=	IrrCreateRenderTargetTexture(x_size	as	integer,	y_size	as	integer
)

Description
Create	a	texture	that	is	suitable	for	the	scene	manager	to	use	as	a	surface	to
which	it	can	render	its	3d	object.	Each	of	the	dimentions	must	be	of	a	power	of
two	for	example	128x128	or	256x256.

This	function	is	very	important	when	producing	texture	maps	for	special	effects
for	example	a	rendering	of	a	model	for	a	2D	image	displayed	in	the	HUD,	the
rendering	of	a	model	for	display	on	a	3D	surface	for	example	a	video	display	of

virtual	camera,	the	rendering	of	the	texture	for	the	reflection	of	a	mirror,	the
rendering	of	the	environment	for	use	in	a	water	or	chrome	shader.	Most	cards,
even	old	cards,	will	support	this	very	important	function.

Example
RenderTexture	=	IrrCreateRenderTargetTexture	(256,	256)

IrrMakeNormalMapTexture
Syntax
IrrMakeNormalMapTexture(Texture	object	as	irr_texture,	Amplitude	as	single
)

Description
Create	a	normal	map	from	a	gray-scale	height	map	texture.	Normal	maps	are
used	to	add	a	high	level	of	surface	lighting	detail	to	what	are	normally	low
resolution	models.	They	can	have	a	massive	effect	on	the	realism	of	an	object,
the	model	you	create	will	have	to	be	created	in	"tangent"	space	to	support	this.

Example
IrrMakeNormalMapTexture(WallBumps,	0.9)

IrrColorKeyTexture
Syntax
IrrColorKeyTexture(Texture	object	as	irr_texture,	Red	as	integer,	Green	as
integer,	Blue	as	integer)

Description
Copies	any	parts	of	the	texture	that	are	the	same	as	the	specified	color	into	the
textures	alpha	channel.	This	can	then	be	used	for	special	effects	or	to	make
these	regions	transparent.

Example
IrrColorKeyTexture(IrrlichtLogo,	255,	255,	255)

IrrDraw2DImage

Syntax
IrrDraw2DImage(Texture	to	draw	as	irr_texture,	X	position	as	integer,	Y
position	as	integer)

Description
Draws	the	texture	to	the	display	at	the	supplied	co-ordinates.

Example
IrrDraw2DImage(IrrlichtLogo,	4,	4)

IrrDraw2DImageElement
Syntax
IrrDraw2DImageElement(Texture	to	draw	as	irr_texture,	X	position	as	integer,
Y	position	as	integer,	Source	top	X	as	integer,	Source	top	Y	as	integer,	Source
bottom	X	as	integer,	Source	bottom	Y	as	integer,	whether	to	use	alpha	as
integer)

Description
Draws	the	texture	to	the	display	at	the	supplied	co-ordinates,	the	image	is
copied	from	the	specified	rectangle	in	the	source	texture,	this	enables	you	to	put
many	images	onto	a	single	texture.	This	function	also	supports	the	alpha
channel	when	drawing	the	image	to	the	display	and	can	draw	the	image
transparently.

The	value	for	whether	or	not	to	use	the	alpha	channel	should	be	one	of	the
following	values:	-
IRR_IGNORE_ALPHA
IRR_USE_ALPHA

Example
IrrDraw2DImageElement(FreeBasicLogo,	screen_width	-	60	-	4,

4,0,0,60,31,	IRR_USE_ALPHA)

IrrDraw2DImageElementStretch
Syntax
IrrDraw2DImageElementStretch	(texture	as	irr_texture,	destination	top	X
as	integer,	destination	top	Yas	integer,	destination	bottom	X	as	integer,

destination	bottom	Y	as	integer,	source	top	X	as	integer,	source	top	Y	as
integer,	source	bottom	X	as	integer,	source	bottom	Y	as	integer,	use	Alpha	as
integer)

Description
Draws	the	texture	to	the	display	into	the	supplied	rectangle,	the	image	is	copied
from	the	specified	rectangle	in	the	source	texture,	this	enables	you	to	put	many
images	onto	a	single	texture.	If	the	rectangles	are	different	sizes	this	function
will	scale	the	images	appropriately.	This	function	also	supports	the	alpha
channel	when	drawing	the	image	to	the	display	and	can	draw	the	image
transparently.

The	value	for	whether	or	not	to	use	the	alpha	channel	should	be	one	of	the
following	values:	-
IRR_IGNORE_ALPHA
IRR_USE_ALPHA

Example
IrrDraw2DImageElementStretch(FreeBasicLogo,	16,	16,	80,	80,		0,

0,	32,	32,	IRR_USE_ALPHA)

IrrGetFont
Syntax
irr_font	=	IrrGetFont(Filename	of	the	bitmap	font	file	as	zstring)

Description
Loads	a	bitmap	containing	a	bitmap	font.

Example
BitmapFont	=	IrrGetFont	("bitmapfont.bmp")

Irr2DFontDraw
Syntax
Irr2DFontDraw	(Font	Object	as	irr_texture,	The	text	to	display	as	wstring	ptr,
Top	X	as	integer,	Top	Y	as	integer,	Bottom	X	as	integer,	Bottom	Y	as	integer)

Description

Draws	the	text	into	the	supplied	rectangular	area	using	the	supplied	font	object.

Example
Irr2DFontDraw	(BitmapFont,	"SIMPLE	MONOCHROME	FONT",	120,	80,

250,	96)

IrrSaveScreenShot
Syntax
IrrSaveScreenShot(filename	as	zstring)

Description
Save	a	screenshot	out	to	a	file,	the	image	format	is	defined	by	the	extension
applied	to	the	filename.	Irrlicht	currently	supports:	bmp,	png,	tga,	ppm	and	jpg

Example
IrrSaveScreenShot("c:\myscreen.bmp")

IrrGetScreenShot
Syntax
texture	=	IrrGetScreenShot(x	as	uinteger,	y	as	uinteger,	width	as	uinteger,
height	as	uinteger)

Description
Return	a	pointer	to	a	texture	containing	a	rectangular	portion	of	a	screenshot.

Example
DIM	texture	as	irr_texture	=	IrrGetScreenShot(0,0,	256,256)

IrrGetTextureInformation	
Syntax
texture	=	IrrGetTextureInformation	(texture	as	irr_texture,	textureWidth	as
unsigned	integer,	textureHeight	as	unsigned	integer,	texturePitch	as	unsigned
integer,textureFormat	as	IRR_COLOR_FORMAT)

Description

Get	information	on	a	texture.	The	width,	height,	pitch	and	color	format	is
returned	in	the	supplied	variables.

Example
IrrGetTextureInformation	(selectedTexture,	width,	height,	pitch,

col_format)

IrrGetImageInformation	
Syntax
texture	=	IrrGetImageInformation	(image	as	irr_image,	textureWidth	as
unsigned	integer,	textureHeight	as	unsigned	integer,	texturePitch	as	unsigned
integer,textureFormat	as	IRR_COLOR_FORMAT)

Description
Get	information	on	an	image.	The	width,	height,	pitch	and	color	format	is
returned	in	the	supplied	variables.

Example
IrrGetImageInformation	(selectedImage,	width,	height,	pitch,

col_format)

Materials

Calls	for	creating	and	manipulating	materials	that	can	be
applied	to	a	node	to	color	and	texture	the	object.	Basic
Materials	set	common	properties	like	the	shininess	and
reflective	color	of	the	objects.	Advanced	Materials	use
GPU	programs	to	create	sophisticated	texturing	effects
that	can	greatly	add	to	the	realism	of	the	scene	but	are
only	supported	by	modern	graphics	cards	with	Pixel	and
Vertex	shader	support.	Currently	Irrlicht	supports	Vertex
Shaders,	Pixel	Shaders,	ARB	Vertex	programs,	ARB
Fragment	programs,	HLSL	(DirectX	9)	and	GLSL
(OpenGL).

IrrSetNodeAmbientColor
Syntax
IrrSetNodeAmbientColor	(node	As	irr_node,	uColor	As	Uinteger)

Description
Sets	the	ambient	color	of	all	materials	in	a	node.	This	color	value	is	created
with	the	FreeBasic	RGBA	call.	The	ambient	color	is	a	color	applied	to	the
whole	node	as	a	simulation	of		ambient	lighting	reflected	from	the	objects
around	it.

Example
IrrSetNodeAmbientColor	(object_material,	RGBA(128,0,0,0))

IrrSetNodeDiffuseColor
Syntax

IrrSetNodeDiffuseColor	(node	As	irr_node,	uColor	As	Uinteger)

Description
Sets	the	diffuse	color	of	all	materials	in	a	node.	This	color	value	is	created	with
the	FreeBasic	RGBA	call.	The	diffuse	color	is	the	indirectly	lit	surface	colour.

Example
IrrSetNodeDiffuseColor	(object_material,	RGBA(128,0,0,0))

IrrSetNodeSpecularColor
Syntax
IrrSetNodeSpecularColor	(node	As	irr_node,	uColor	As	Uinteger)

Description
Sets	the	specilar	color	of	all	materials	in	a	node.	This	color	value	is	created
with	the	FreeBasic	RGBA	call.	The	specular	color	is	the	color	of	the	highlights
on	the	node	representing	reflections	of	light	sources.

Example
IrrSetNodeSpecularColor	(object_material,	RGBA(128,0,0,0))

IrrSetNodeEmissiveColor
Syntax
IrrSetNodeEmissiveColor	(node	As	irr_node,	uColor	As	Uinteger)

Description
Sets	the	emissive	color	of	all	materials	in	a	node.	This	color	value	is	created
with	the	FreeBasic	RGBA	call.	The	emissive	colour	is	the	light	'generated
within'	the	node.	Setting	this	to	255,255,255,255	will	make	the	node	appear	as
though	it	has	the	no	lighting	effect	applied	to	it.

Example
IrrSetNodeEmissiveColor	(object_material,	RGBA(128,0,0,0))

IrrSetNodeColorByVertex

Syntax
IrrSetNodeColorByVertex	(material	as	irr_material,	affected_property	as
IRR_COLOR_MATERIAL)

Description
Sets	which	aspect	of	all	of	the	materials	in	a	node	is	affected	by	the	vertex
colour.

affected_property	can	be	one	of:	-

				ECM_NONE
				Dont	use	vertex	color	for	lighting

				ECM_DIFFUSE
				Use	vertex	color	for	diffuse	light,	(the	default	value)

				ECM_AMBIENT
				Use	vertex	color	for	ambient	light

				ECM_EMISSIVE
				Use	vertex	color	for	emissive	light

				ECM_SPECULAR
				Use	vertex	color	for	specular	light

				ECM_DIFFUSE_AND_AMBIENT
				Use	vertex	color	for	both	diffuse	and	ambient	light

Example
IrrSetNodeColorByVertex	(object_material,	ECM_NONE)

IrrMaterialVertexColorAffects
Syntax
IrrMaterialVertexColorAffects	(material	as	irr_material,	affected_property	as
IRR_COLOR_MATERIAL)

Description

Sets	which	aspect	of	the	material	is	affected	by	the	vertex	colour.

affected_property	can	be	one	of:	-

				ECM_NONE
				Dont	use	vertex	color	for	lighting

				ECM_DIFFUSE
				Use	vertex	color	for	diffuse	light,	(the	default	value)

				ECM_AMBIENT
				Use	vertex	color	for	ambient	light

				ECM_EMISSIVE
				Use	vertex	color	for	emissive	light

				ECM_SPECULAR
				Use	vertex	color	for	specular	light

				ECM_DIFFUSE_AND_AMBIENT
				Use	vertex	color	for	both	diffuse	and	ambient	light

Example
IrrMaterialVertexColorAffects	(object_material,	ECM_NONE)

IrrSetMaterialBlend
Syntax
IrrSetMaterialBlend	(material	as	irr_material,	source	as
IRR_BLEND_FACTOR,	destination	as	IRR_BLEND_FACTOR)

Description
Sets	the	source	and	destination	surface	blend	factors	for	the
ONETEXTURE_BLEND	material.	This	is	mainly	useful	in	multi-pass
rendering,	where	you	render	the	scene	to	the	display	and	then	render	the	scene
a	second	time	with	the	ONETEXTURE_BLEND	material	setting	which	mixes
the	existing	pixels	and	the	new	pixels	using	the	blend	setting	defined	here.

IRR_BLEND_FACTOR	can	be	one	of	the	following	values:	-

				EBF_ZERO
				A	fixed	value	of	zero

				EBF_ONE
				A	fixed	value	of	one

				EBF_DST_COLOR
				The	destination	color

				EBF_ONE_MINUS_DST_COLOR
				The	inverted	destination	color

				EBF_SRC_COLOR
				The	source	color

				EBF_ONE_MINUS_SRC_COLOR
				The	inverted	source	color

				EBF_SRC_ALPHA
				The	source	alpha	value

				EBF_ONE_MINUS_SRC_ALPHA
				The	inverted	source	alpha	value

				EBF_DST_ALPHA
				The	destination	alpha	value

				EBF_ONE_MINUS_DST_ALPHA
				The	inverted	destination	alpha	value

				EBF_SRC_ALPHA_SATURATE										

Example
IrrSetMaterialBlend	(object_material,	EBF_SOURCE_COLOR,

EFB_DST_COLOR)

IrrMaterialSetShininess
Syntax
IrrMaterialSetShininess	(material	as	irr_material,	shininess	as	single)

Description
Set	how	shiny	the	material	is,	the	higher	the	value	the	more	defined	the
highlights.

Example
IrrMaterialSetShininess	(object_material,	20.0)

IrrMaterialSetSpecularColor
Syntax
IrrMaterialSetSpecularColor	(material	as	irr_material,	Alpha	as	uinteger,	Red
as	uinteger,	Green	as	uinteger,	Blue	as	uinteger)

Description
Set	the	color	of	specular	highlights	on	objects	with	this	material	applied.

Example
IrrMaterialSetSpecularColor	(object_material,	0,	255,	128,	128)

IrrMaterialSetDiffuseColor
Syntax
IrrMaterialSetDiffuseColor	(material	as	irr_material,	Alpha	as	uinteger,	Red	as
uinteger,	Green	as	uinteger,	Blue	as	uinteger)

Description
Set	the	color	of	diffuse	lighting	on	objects	with	this	material	applied.

Example
IrrMaterialSetDiffuseColor	(object_material,	0,	255,	128,	255)

IrrMaterialSetAmbientColor
Syntax

IrrMaterialSetAmbientColor	(material	as	irr_material,	Alpha	as	uinteger,	Red
as	uinteger,	Green	as	uinteger,	Blue	as	uinteger)

Description
Set	the	color	of	ambient	light	reflected	by	objects	with	this	material	applied.

Example
IrrMaterialSetAmbientColor	(object_material,	0,	64,	128,	255)

IrrMaterialSetEmissiveColor
Syntax
IrrMaterialSetEmissiveColor	(material	as	irr_material,	Alpha	as	uinteger,	Red
as	uinteger,	Green	as	uinteger,	Blue	as	uinteger)

Description
Set	the	color	of	light	emitted	by	objects	with	this	material	applied.

Example
IrrMaterialSetEmissiveColor	(object_material,	0,	64,	128,	255)

IrrMaterialSetMaterialTypeParam
Syntax
IrrMaterialSetMaterialTypeParam(material	as	irr_material,	value	as	single)

Description
Set	material	specific	parameter.	Used	in	a	couple	of	vertex	alpha	and	normal
mapping	material	types.

Example
IrrMaterialSetMaterialTypeParam(object_material,	0.357)

IrrSetMaterialLineThickness
Syntax
IrrSetMaterialLineThickness(material	as	irr_material,	thickness	as	single)

Description
Sets	the	line	thickness	of	none	3D	elements	associated	with	this	material.

Example
IrrSetMaterialLineThickness(object_material,	2.0)

IrrAddHighLevelShaderMaterial
Syntax
irr_shader	=	IrrAddHighLevelShaderMaterial	(vertex_program	as	zstring	ptr,
vertex_start_function	as	zstring	ptr,	vertex_prog_type	as	uinteger,
pixel_program	as	zstring	ptr,	pixel_start_function	as	zstring	ptr,
pixel_prog_type	as	uinteger,	material_type	as	uinteger)

Description
Creates	a	new	material	using	a	high	level	shading	language.

vertex	program:	String	containing	the	source	of	the	vertex	shader	program.	This
can	be	0	if	no	vertex	program	shall	be	used.	
vertex_start_function:	Name	of	the	entry	function	of	the	vertex	shader	program
vertex_program_type:	Vertex	shader	version	used	to	compile	the	GPU	program
pixel_program:	String	containing	the	source	of	the	pixel	shader	program.	This
can	be	0	if	no	pixel	shader	shall	be	used.
pixel_start_function:	Entry	name	of	the	function	of	the	pixel	shader	program
pixel_program_type:	Pixel	shader	version	used	to	compile	the	GPU	program
baseMaterial:	Base	material	which	renderstates	will	be	used	to	shade	the
material.

Returns	a	type	that	contains	a	material_type	number	that	can	be	used	to	shade
nodes	with	this	new	material.	If	the	shader	could	not	be	created	it	will	return	0

Example
shader	=	IrrAddHighLevelShaderMaterial	(_

				vertex_program,	"main",	IRR_EVST_VS_1_1,	_

				pixel_program,	"main",	IRR_EPST_PS_1_1,	_

				IRR_EMT_SOLID)

IrrAddHighLevelShaderMaterialFromFiles
Syntax
irr_mesh	=	IrrAddHighLevelShaderMaterialFromFiles	(
vertex_program_filename	as	zstring	ptr,	vertex_start_function	as	zstring	ptr,

vertex_prog_type	as	uinteger,	pixel_program_filename	as	zstring	ptr,
pixel_start_function	as	zstring	ptr,	pixel_prog_type	as	uinteger,	material_type
as	uinteger)

Description
Creates	a	new	material	using	a	high	level	shading	language	stored	in	files.

vertex	program_filename:	String	containing	the	filename	of	the	vertex	shader
program.	This	can	be	0	if	no	vertex	program	shall	be	used.	
vertex_start_function:	Name	of	the	entry	function	of	the	vertex	shader	program
vertex_program_type:	Vertex	shader	version	used	to	compile	the	GPU	program
pixel_program_filename:	String	containing	the	filename	of	the	pixel	shader
program.	This	can	be	0	if	no	pixel	shader	shall	be	used.
pixel_start_function:	Entry	name	of	the	function	of	the	pixel	shader	program
pixel_program_type:	Pixel	shader	version	used	to	compile	the	GPU	program
baseMaterial:	Base	material	which	renderstates	will	be	used	to	shade	the
material.
Returns	a	type	that	contains	a	material_type	number	that	can	be	used	to	shade
nodes	with	this	new	material.	If	the	shader	could	not	be	created	it	will	return	0.

Example
shader	=	IrrAddHighLevelShaderMaterialFromFiles	(_

			".\media\wood.vertex",	"main",	IRR_EVST_VS_1_1,	_

			".\media\wood.pixel",	"main",	IRR_EPST_PS_1_1,	_

			IRR_EMT_SOLID)

IrrAddShaderMaterial
Syntax
irr_shader	=	IrrAddShaderMaterial	(vertex_program	as	zstring	ptr,
pixel_program	as	zstring	ptr,	material_type	as	uinteger)

Description
Creates	a	new	material	using	a	shading	language	program	stored	in	a	string.

vertex	program:	String	containing	the	source	of	the	vertex	shader	program.	This
can	be	0	if	no	vertex	program	shall	be	used.	For	DX8	programs,	the	will	always
input	registers	look	like	this:	v0:	position,	v1:	normal,	v2:	color,	v3:	texture
cooridnates,	v4:	texture	coordinates	2	if	available.	For	DX9	programs,	you	can

manually	set	the	registers	using	the	dcl_	statements.
pixel_program:	String	containing	the	source	of	the	pixel	shader	program.	This
can	be	0	if	no	pixel	shader	shall	be	used.
baseMaterial:	Base	material	which	renderstates	will	be	used	to	shade	the
material.

Return:	Returns	a	type	that	contains	a	material_type	number	that	can	be	used	to
shade	nodes	with	this	new	material.	If	the	shader	could	not	be	created	it	will
return	0

Example
shader	=	IrrAddShaderMaterial	(vertex_program,	pixel_program,

IRR_EMT_SOLID)

IrrAddShaderMaterialFromFiles
Syntax
irr_shader	=	IrrAddShaderMaterialFromFiles	(vertex_program_filename	as
zstring	ptr,	pixel_program_filename	as	zstring	ptr,	material_type	as	uinteger)

Description
Creates	a	new	material	using	a	shading	language	program	stored	in	files.

vertex	program:	String	containing	the	source	of	the	vertex	shader	program.	This
can	be	0	if	no	vertex	program	shall	be	used.	For	DX8	programs,	the	will	always
input	registers	look	like	this:	v0:	position,	v1:	normal,	v2:	color,	v3:	texture
cooridnates,	v4:	texture	coordinates	2	if	available.	For	DX9	programs,	you	can
manually	set	the	registers	using	the	dcl_	statements.
pixel_program:	String	containing	the	source	of	the	pixel	shader	program.	This
can	be	0	if	no	pixel	shader	shall	be	used.
baseMaterial:	Base	material	which	renderstates	will	be	used	to	shade	the
material.
Return:	Returns	a	type	that	contains	a	material_type	number	that	can	be	used	to
shade	nodes	with	this	new	material.	If	the	shader	could	not	be	created	it	will
return	0

Example
shader	=	IrrAddShaderMaterialFromFiles	(".\media\wood_low.vtx",

".\media\wood_low.pxl"	IRR_EMT_SOLID)

IrrCreateNamedVertexShaderConstant
Syntax
result	=	IrrCreateNamedVertexShaderConstant	(shader	as	IRR_SHADER,
const_name	as	zstring	ptr,	const_preset	as	integer,	const_data	as	single,
data_count	as	integer)

Description
Creates	a	Vertex	shader	constant	that	allows	you	to	change	the	value	of	a
constant	inside	a	shader	during	the	execution	of	the	program,	simply	assign	one
of	the	preset	constants	to	the	constant	name	or	attach	the	constant	to	an	array	of
floats	and	change	the	constant	simply	by	changing	the	values	in	your	array

Returns:	1	if	the	constant	was	sucessfully	created

Example
IrrCreateNamedVertexShaderConstant	(shader,	"Time",	byval

IRR_NO_PRESET,	@time,	1)

IrrCreateNamedPixelShaderConstant
Syntax
result	=	IrrCreateNamedPixelShaderConstant	(shader	as	IRR_SHADER,
const_name	as	zstring	ptr,	const_preset	as	integer,	const_data	as	single,
data_count	as	integer)

Description
Creates	a	Pixel	shader	constant	that	allows	you	to	change	the	value	of	a
constant	inside	a	shader	during	the	execution	of	the	program,	simply	assign	one
of	the	preset	constants	to	the	constant	name	or	attach	the	constant	to	an	array	of
floats	and	change	the	constant	simply	by	changing	the	values	in	your	array

Returns:	1	if	the	constant	was	sucessfully	created

Example
dim	color(4)	as	Single	=>	{	1.0,	1.0,	1.0,	1.0	}

IrrCreateNamedPixelShaderConstant	(shader,	"color",

IRR_NO_PRESET,	@color,	4)

IrrCreateAddressedVertexShaderConstant
Syntax
result	=	IrrCreateAddressedVertexShaderConstant	(shader	as	IRR_SHADER,
const_address	as	integer,	const_preset	as	integer,	const_data	as	single,
data_count	as	integer)

Description
Creates	a	Vertex	shader	constant	that	allows	you	to	change	the	value	of	a
constant	inside	a	shader	during	the	execution	of	the	program,	simply	assign	one
of	the	preset	constants	to	the	constant	name	or	attach	the	constant	to	an	array	of
floats	and	change	the	constant	simply	by	changing	the	values	in	your	array

Returns:	1	if	the	constant	was	sucessfully	created

Example
IrrCreateAddressedVertexShaderConstant	(shader,	4,	IRR_NO_PRESET,

@time,	1)

IrrCreateAddressedPixelShaderConstant
Syntax
result	=	IrrCreateAddressedPixelShaderConstant	(shader	as	IRR_SHADER,
const_address	as	integer,	const_preset	as	integer,	const_data	as	single,
data_count	as	integer)

Description
Creates	a	Pixel	shader	constant	that	allows	you	to	change	the	value	of	a
constant	inside	a	shader	during	the	execution	of	the	program,	simply	assign	one
of	the	preset	constants	to	the	constant	name	or	attach	the	constant	to	an	array	of
floats	and	change	the	constant	simply	by	changing	the	values	in	your	array

Returns:	1	if	the	constant	was	sucessfully	created

Example
dim	position(3)	as	Single	=>	{	0.0,	0.0,	0.0	}

IrrCreateAddressedPixelShaderConstant	(shader,	2,	IRR_NO_PRESET,

@position,	3)

IrrXEffectsStart
Syntax
IrrXEffectsStart	(
								vsm	as	integer	=	IRR_OFF,	
								softShadows	as	integer	=	IRR_OFF,	
								bitdepth32	as	integer	=	IRR_OFF)

Description
Starts	the	XEffects	advanced	shader	extension	provided	by	Bitplane	from	the
Irrlicht	Forums.	This	must	be	called	before	any	other	XEffects	calls.

The	first	parameter	'vsm'	is	used	to	turn	on	the	'Variance	Shadow	Maps'	feature.
VSM	is	an	advanced	form	of	shading	used	to	avoid	aliasing	problems	that	can
be	seen	with	the	other	shadowing	function.	It	can	create	clear	sharp	shadowing.
Use	IRR_ON	to	enable	this	feature.

The	second	parameter	'soft	shadows'	provides	blurred	shadows,	similar	as	those
cast	by	a	large	source.	Use	IRR_ON	to	enable	this	feature.

The	last	parameter	'bit	depth	32'	enables	32	bit	buffers	for	the	internal
processes.	While	this	will	use	more	video	memory	it	can	produce	improved
results.

Example
IrrXEffectsStart	(IRR_OFF,	IRR_ON)

IrrXEffectsEnableDepthPass
Syntax
IrrXEffectsEnableDepthPass(enable	as	integer)

Description
Enables	a	depth	rendering	pass.	This	is	required	for	shaders	that	rely	on	depth
information.	Use	IRR_ON	to	enable	the	function.

Example
IrrXEffectsEnableDepthPass	(IRR_ON)

IrrXEffectsAddPostProcessingFromFile
Syntax
IrrXEffectsAddPostProcessingFromFile(name	as	zstring	ptr,		effectType	as
integer	=	0)

Description
Adds	a	shader	feature	to	the	display	from	a	GLSL	or	HLSL	program	stored	in	a
file.	Shaders	do	need	some	programming	support	so	only	the	XEffects	Shaders
are	supported	through	the	XEffects	calls.

The	first	parameter	is	the	path	and	file	name	for	the	shader	program.	If	you	are
operating	in	OpenGL	you	should	use	the	GLSL	extension	and	when	operating
in	DirectX	you	shouhld	use	the	HLSL	extension.

The	second	parameter	can	usually	be	omitted	or	set	to	0.	Only	when	loading	the
SSAO	shader	(not	the	SSAO	composite	shader)	should	it	be	set	to	1.

Example
IrrXEffectsAddPostProcessingFromFile	(

"./media/shaders/ssao.glsl",	1)

IrrXEffectsSetPostProcessingUserTexture
Syntax
IrrXEffectsSetPostProcessingUserTexture(texture	as	irr_texture)

Description
Sets	the	user	defined	post	processing	texture.	This	is	used	internally	for	the
SSAO	shader	but	is	used	primarily	for	the	water	shader	where	it	defines	the
specular	surface	pattern	of	the	water.

You	can	change	the	texture	through	a	sequence	of	images	to	produce	an
animated	effect.

Example
IrrXEffectsSetPostProcessingUserTexture	(waterTexture(i))

IrrXEffectsAddShadowToNode
Syntax
IrrXEffectsAddShadowToNode(node	as	irr_node,	
								filterType	as	E_FILTER_TYPE	=	EFT_NONE,	
								shadowType	as	E_SHADOW_MODE	=	ESM_BOTH)

Description
Adds	the	shadowing	effect	to	a	node.	This	controls	both	recieving	and	casting
shadows.

The	filterType	defines	the	amount	of	sampling	that	is	to	be	carried	out	on	the
node.	This	can	be	one	of	the	following	settings,	increasing	the	filter	increases
the	quality	and	also	the	cost	of	rendering.

				EFT_NONE
				EFT_4PCF
				EFT_8PCF
				EFT_12PCF
				EFT_16PCF

The	shadow	type	specifies	the	type	of	shadowing	applied	to	the	node.	This	can
be	set	to	one	of	the	following	settings:	-

				ESM_RECEIVE
				ESM_CAST
				ESM_BOTH
				ESM_EXCLUDE

Example
IrrXEffectsAddShadowToNode	(roomNode)

IrrXEffectsRemoveShadowFromNode
Syntax
IrrXEffectsRemoveShadowFromNode(node	as	irr_node)

Description

Removes	the	shadowing	effect	from	a	node.

Example
IrrXEffectsRemoveShadowFromNode	(roomNode)

IrrXEffectsExcludeNodeFromLightingCalculations
Syntax
IrrXEffectsExcludeNodeFromLightingCalculations(node	as	irr_node)

Description
Excludes	a	node	from	shadowing	calculations.

Example
IrrXEffectsExcludeNodeFromLightingCalculations	(particleNode)

IrrXEffectsAddNodeToDepthPass
Syntax
IrrXEffectsAddNodeToDepthPass(node	as	irr_node)

Description
Adds	a	node	to	the	list	of	nodes	used	for	calculating	the	depth	pass.

Example
IrrXEffectsAddNodeToDepthPass	(barrierNode)

IrrXEffectsSetAmbientColor
Syntax
IrrXEffectsSetAmbientColor(R	as	uinteger,	G	as	uinteger,	B	as	uinteger,	Alpha
as	uinteger)

Description
Sets	the	ambient	lighting	procuded	in	the	scene	by	the	XEffects	system.

Example
IrrXEffectsSetAmbientColor	(32,32,32,0)

IrrXEffectsSetClearColor
Syntax
IrrXEffectsSetClearColor(R	as	uinteger,	G	as	uinteger,	B	as	uinteger,	Alpha	as
uinteger)

Description
The	XEffects	system	uses	a	different	background	color	to	the	one	specified	in
the	IrrBeginScene	call	use	this	call	to	set	this	default	background	color.

Example
IrrXEffectsSetClearColor	(255,250,32,0)

IrrXEffectsAddShadowLight
Syntax
IrrXEffectsAddShadowLight(
				shadowDimen	as	uinteger,	
				posX	as	single,	byVal	posY	as	single,	byVal	posZ	as	single,	
				targetX	as	single,	byVal	targetY	as	single,	byVal	targetZ	as	single,	
				R	as	single,	byval	G	as	single,	byval	B	as	single,	byval	Alpha	as	single,	
				lightNearDist	as	single,	byval	lightFarDist	as	single,	
				angleDegrees	as	single)

Description
Adds	a	special	dynamic	shadow	casting	light	to	the	scene,	for	each	of	these
lights	that	you	add	there	is	a	seperate	shadow	map	created	and	a	seperate	render
pass	so	for	each	light	you	add	the	scene	takes	more	memory	and	gets	slower.

The	first	parameter	specifies	the	shadow	map	resolution	for	the	shadow	light.
The	shadow	map	is	always	square,	so	you	need	only	pass	1	dimension,
preferably	a	power	of	two	between	512	and	2048,	maybe	larger	depending	on
your	quality	requirements	and	target	hardware.
The	pos	parameters	specify	the	lights	initial	position
The	target	parameters	is	the	(look	at)	target	for	the	light
The	color	setting	are	the	floating	point	color	intensity	values	of	the	light
The	near	and	far	distance	of	the	light	are	very	important	values	for	determining
the	reach	of	the	light.

The	last	parameter	is	the	FOV	(Field	of	view),	since	the	light	is	similar	to	a	spot
light,	the	field	of	view	will	determine	its	area	of	influence.	Anything	that	is
outside	of	a	lights	frustum	(Too	close,	too	far,	or	outside	of	it's	field	of	view)
will	be	unlit	by	this	particular	light,	similar	to	how	a	spot	light	works.

Example
IrrXEffectsAddShadowLight	(512,	200,200,0,	0,0,0,	_

																												0.7,0.7,0.6,0.0,	1.0,	1200.0,	89.99)

IrrXEffectsSetShadowLightPosition
Syntax
IrrXEffectsSetShadowLightPosition(lightIndex	as	uinteger,	
				posX	as	single,	byVal	posY	as	single,	byVal	posZ	as	single)

Description
Set	the	position	of	a	shadow	light.	the	index	refers	to	the	numerical	order	in
which	the	lights	were	added.

Example
IrrXEffectsSetShadowLightPosition	(0,	200,200,0)

IrrXEffectsGetShadowLightPosition
Syntax
IrrXEffectsGetShadowLightPosition(lightIndex	as	uinteger,	
				posX	as	single,	byVal	posY	as	single,	byVal	posZ	as	single)

Description
Get	the	position	of	a	shadow	light.	the	index	refers	to	the	numerical	order	in
which	the	lights	were	added.

Example
IrrXEffectsGetShadowLightPosition	(0,	x,	y,	z)

IrrXEffectsSetShadowLightTarget
Syntax

IrrXEffectsSetShadowLightTarget(lightIndex	as	uinteger,	
				targetX	as	single,	byVal	targetY	as	single,	byVal	targetZ	as	single)

Description
Set	the	target	location	of	a	shadow	light.	the	index	refers	to	the	numerical	order
in	which	the	lights	were	added.

Example
IrrXEffectsSetShadowLightTarget	(0,	25,15,0)

IrrXEffectsGetShadowLightTarget
Syntax
IrrXEffectsGetShadowLightTarget(lightIndex	as	uinteger,	
			targetX	as	single,	byVal	targetY	as	single,	byVal	targetZ	as	single)

Description
Get	the	target	location	of	a	shadow	light.	the	index	refers	to	the	numerical	order
in	which	the	lights	were	added.

Example
IrrXEffectsGetShadowLightTarget	(0,	x,	y,	z)

IrrXEffectsSetShadowLightColor
Syntax
IrrXEffectsSetShadowLightColor(lightIndex	as	uinteger,	
				R	as	single,	byval	G	as	single,	byval	B	as	single,	byval	Alpha	as	single)

Description
Set	the	target	location	of	a	shadow	light.	the	index	refers	to	the	numerical	order
in	which	the	lights	were	added.

Example
IrrXEffectsSetShadowLightColor	(0,	1.0,	0.75,	0.2,	0.0)

IrrXEffectsGetShadowLightColor

Syntax
IrrXEffectsGetShadowLightColor(lightIndex	as	uinteger,	
			R	as	single,	byval	G	as	single,	byval	B	as	single,	byval	Alpha	as	single)

Description
Get	the	target	location	of	a	shadow	light.	the	index	refers	to	the	numerical	order
in	which	the	lights	were	added.

Example
IrrXEffectsGetShadowLightColor	(0,	r,	g,	b,	a)

Scene

Calls	for	managing	the	scene,	loading	and	creating	mesh
objects	and	then	adding	them	to	the	scene	as	nodes	to	be
rendered	on	the	screen.

IrrGetRootSceneNode
Syntax
irr_node	=	IrrGetRootSceneNode()

Description
Gets	the	scenes	root	node,	all	scene	nodes	are	children	of	this	node

Example
TheScene	=	IrrGetRootSceneNode()

IrrGetMesh
Syntax
irr_mesh	=	IrrGetMesh(Filename	of	the	mesh	object	to	load	as	zstring)

Description
Loads	the	specified	mesh	ready	to	be	added	to	the	scene.	The	Irrlicht	engine
supports	a	wide	range	of	mesh	types	including	BSP,	MD2,	3DS,	Direct	X,	etc...

Example
DolphinMesh	=	IrrGetMesh("Dolphin.x")

IrrCreateMesh
Syntax
IrrCreateMesh	(mesh_name	as	zstring	ptr,	vertex_count	as	integer,	vertices	as
IRR_VERT,	indices_count	as	integer,	indices	as	ushort)	as	irr_mesh

Description
Create	a	new	mesh.	You	must	supply	a	list	of	vertices	of	type	IRR_VECT	and
an	array	of	indices	that	refer	to	these	vertices.	The	indices	are	taken	in	groups
of	three	joining	up	the	dots	defined	by	the	veticies	and	forming	a	collection	of
triangles.

Example
PyramidMesh	=	IrrCreateMesh("Pyramid",	5,	vertices(0),	18,

indicies(0))

IrrAddHillPlaneMesh
Syntax
IrrAddHillPlaneMesh	(mesh_name	As	zString	Ptr,	tileSizeX	As	Single,
tileSizeY	As	Single,	tileCountX	As	Integer,	tileCountY	As	Integer,	material	As
uInteger	Ptr	=	0,	hillHeight	As	Single	=	0,	countHillsX	As	Single	=	0,
countHillsY	As	Single	=	0,	textureRepeatCountX	As	Single	=	1,
textureRepeatCountY	As	Single	=	1)	as	irr_mesh

Description
Creates	a	hill	plane	mesh	that	represents	a	simple	terrain.	Many	properties	have
default	values	allowing	a	mesh	to	be	created	with	a	simple	call

Example
TerrainMesh	=	IrrAddHillPlaneMesh("Terrain",	1.0,	1.0,	10,	10)

IrrWriteMesh
Syntax
IrrWriteMesh(mesh	as	irr_mesh,	file_format	as	IRR_MESH_FILE_FORMAT,
save_filename	as	zstring)	as	uinteger

Description
Write	the	first	frame	of	the	supplied	animated	mesh	out	to	a	file	using	the
specified	file	format.	The	following	file	formats	are	supported	by	Irrlicht:	-

Irrlicht	Native	mesh	writer,	for	static	.irrmesh	files.
EMWT_IRR_MESH

COLLADA	mesh	writer	for	.dae	and	.xml	files.	
EMWT_COLLADA

STL	mesh	writer	for	.stl	files.
EMWT_STL	
	

The	function	will	return	the	follow	error	codes:	-

(0)	Could	not	get	mesh	writer	object
(1)	Could	not	open	file
(2)	Unable	to	write	the	mesh	to	the	file
(3)	Successfully	wrote	file

Example

if	IrrWriteMesh(custom_mesh,	EMWT_IRR_MESH,	"mymesh.irr")	=	3

				?	"Wrote	the	mesh	to	file	successfully"

IrrRemoveMesh
Syntax
IrrRemoveMesh(mesh	as	irr_mesh)

Description
Removes	a	mesh	from	the	scene	cache,	freeing	up	resources.

Example
IrrRemoveMesh(my_mesh)

IrrRenameMesh
Syntax
IrrRenameMesh(mesh	as	irr_mesh,	name	as	zstring	ptr)

Description
Rename	a	loaded	mesh	through	the	scene	cache,	the	mesh	can	then
subsequently	be	loaded	again	as	a	different	mesh

Example
IrrRenameMesh(my_mesh,	"New	Name")

IrrClearUnusedMeshes
Syntax
IrrClearUnusedMeshes()

Description
Clears	all	meshes	that	are	held	in	the	mesh	cache	but	not	used	anywhere	else.
Any	references	to	these	meshes	will	become	invalid.

Example
IrrClearUnusedMeshes()

IrrSetMeshHardwareAccelerated
Syntax
IrrSetMeshHardwareAccelerated	(mesh	as	irr_mesh,	frame	number	as	integer)

Description
Set	the	supplied	mesh	as	a	Hardware	Accelerated	object,	this	offloads	the
verticies	and	indicies	to	hardware	support	on	the	graphics	card,	making	the
process	of	rendering	those	meshes	much	faster.	The	feature	must	be	supported
on	the	graphics	card	and	the	object	must	contain	over	500	vertices	for	the
operation	to	be	successful.	This	operation	is	applied	to	all	mesh	buffers	in	the
mesh.

Example
IrrSetMeshHardwareAccelerated(ShipMesh,	0)

IrrCreateBatchingMesh
Syntax
IrrCreateBatchingMesh	()	

Description
Create	a	batching	mesh	that	will	be	a	collection	of	other	meshes	into	a	single

source	mesh.	The	function	of	the	batching	mesh	is	to	avoid	the	use	of	large
numbers	of	nodes	that	adds	an	overhead	to	the	rendering	process	that	can
significantly	slow	it	down.	Where	you	have	a	forest	with	a	thousand	trees	you
will	see	a	significant	increase	in	performance	by	batching	all	of	those	trees	into
a	smaller	number	of	node.

Returns:	A	bactching	mesh,	while	this	is	handled	as	an	irr_mesh	it	should	only
be	used	with	batching	mesh	commands.

Example
batchingMesh	=	IrrCreateBatchingMesh()

IrrAddToBatchingMesh
Syntax
IrrAddToBatchingMesh	(
								meshBatch	as	irr_mesh,	
								mesh	as	irr_mesh,	
								posX	as	single	=	0.0f,	posY	as	single	=	0.0f,	posZ	as	single	=	0.0f,	
								rotX	as	single	=	0.0f,	rotY	as	single	=	0.0f,	rotZ	as	single	=	0.0f,	
								scaleX	as	single	=	1.0f,	scaleY	as	single	=	1.0f,	scaleZ	as	single	=	1.0f)

Description
Adds	a	mesh	to	the	batching	mesh	at	the	specified	position,	rotation	and	scale.
If	each	of	your	meshes	requires	a	different	texture	you	should	call
IrrSetMeshMaterialTexture	for	the	mesh	you	are	about	to	add	prior	to	adding
the	mesh	to	the	batch.

Example
IrrAddToBatchingMesh(batchingMesh,	treeMesh)

IrrFinalizeBatchingMesh
Syntax
IrrFinalizeBatchingMesh	(mesh	as	irr_mesh,	frame	number	as	integer)	

Description
Finalises	the	batching	mesh,	this	should	be	called	once	all	of	the	meshes	have

been	added	to	the	batching	mesh.	The	function	returns	a	new	mesh	object	that
can	be	used	in	all	standard	mesh	calls..

Example
Dim	as	irr_mesh	newMesh	=	IrrFinalizeBatchingMesh(BatchingMesh)

IrrGetMeshFrameCount
Syntax
integer	=	IrrGetMeshFrameCount	(mesh	as	irr_mesh)

Description
Gets	the	number	of	frames	in	the	supplied	mesh.You	can	use	this	value	to
traverse	the	indicies	and	vertices	in	a	mesh	containing	a	number	of	frames.

Example
MeshFrameCount	=	IrrGetMeshFrameCount(WolfMesh)

IrrGetMeshBufferCount
Syntax
integer	=	IrrGetMeshBufferCount	(mesh	as	irr_mesh,	frame	number	as	integer
)

Description
Gets	the	number	of	mesh	buffers	in	the	supplied	mesh.You	can	use	this	value	to
traverse	the	indicies	and	vertices	in	a	mesh	containing	a	number	of	mesh
buffers.	If	the	mesh	is	animated	frame	number	indicates	the	number	of	the
frame	to	recover	mesh	data	for	if	it	is	not	animated	this	value	should	be	set	to	0.

Most	meshes	only	contain	one	mesh	buffer	however	the	artist	creating	the	mesh
may	decide	to	break	the	mesh	up	into	a	number	of	groups	of	meshes,	for
example	a	house	might	have	a	roof	mesh	buffer	and	a	walls	mesh	buffer.

Example
MeshBufferCount	=	IrrGetMeshBufferCount(TankMesh,	0)

IrrGetMeshIndexCount
Syntax
integer	=	IrrGetMeshIndexCount	(mesh	as	irr_mesh,	frame	number	as	integer,
mesh_buffer	as	integer)

Description
Gets	the	number	of	Indicies	in	the	supplied	mesh.You	can	use	this	value	to
allocate	an	array	for	reading	out	the	list	of	indicies	in	a	mesh.	If	the	mesh	is
animated	frame	number	indicates	the	number	of	the	frame	to	recover	mesh	data
for	if	it	is	not	animated	this	value	should	be	set	to	0.	If	the	mesh	contains	a
number	of	mesh	buffers	you	can	specific	which	mesh	buffer	you	want	to
access,	if	you	omit	this	parameter	mesh	buffer	0	will	be	used.

Example
MeshIndexCount	=	IrrGetMeshIndexCount(MapMesh,	0,0)

IrrGetMeshIndices
Syntax
IrrGetMeshIndices	(mesh	as	irr_mesh,	frame	number	as	integer	,	indicies	as
ushort,	mesh_buffer	as	integer)

Description
Gets	the	list	of	indices	in	a	mesh	and	copies	them	into	the	supplied	buffer.	Each
index	references	a	vertex	in	the	mesh	the	indices	are	grouped	into	three's	and
together	form	a	triangular	surface.	If	the	mesh	is	animated	frame	number
indicates	the	number	of	the	frame	to	recover	mesh	data	for	if	it	is	not	animated
this	value	should	be	set	to	0.	If	the	mesh	contains	a	number	of	mesh	buffers	you
can	specific	which	mesh	buffer	you	want	to	access,	if	you	omit	this	parameter
mesh	buffer	0	will	be	used.

Indices	should	be	the	first	element	of	an	array	or	the	first	integer	in	a	pool	of
allocated	memory,	it	is	passed	into	the	wrapper	by	reference	as	a	pointer.	You
must	ensure	that	the	array	you	supply	is	large	enough	to	contain	all	of	the
indices	otherwise	an	overflow	will	occur	and	memory	will	be	corrupted.

Example
IrrGetMeshIndices(MapMesh,	0,	Indicies(0),0)

IrrSetMeshIndices
Syntax
IrrSetMeshIndices(mesh	as	irr_mesh,	frame	number	as	integer	,	indicies	as
ushort,	mesh_buffer	as	integer)

Description
This	sets	the	value	of	the	list	of	indicies	in	a	mesh	copying	them	from	the
supplied	buffer.	Each	index	references	a	vertex	in	the	mesh	the	indices	are
grouped	into	three's	and	together	form	a	triangular	surface.	If	the	mesh	is
animated	frame	number	indicates	the	number	of	the	frame	to	recover	mesh	data
for	if	it	is	not	animated	this	value	should	be	set	to	0.	If	the	mesh	contains	a
number	of	mesh	buffers	you	can	specific	which	mesh	buffer	you	want	to
access,	if	you	omit	this	parameter	mesh	buffer	0	will	be	used.

Indices	should	be	the	first	element	of	an	array	or	the	first	integer	in	a	pool	of
allocated	memory,	it	is	passed	into	the	wrapper	by	reference	as	a	pointer.	You
must	ensure	that	the	array	you	supply	is	large	enough	to	contain	all	of	the
indices	otherwise	an	overflow	will	occur	and	erroneous	values	will	be	written
into	the	mesh	causing	unpredictable	results.

Example
IrrSetMeshIndices(MapMesh,	0,	Indicies(0),0)

IrrGetMeshVertexCount
Syntax
integer	=	IrrGetMeshVertexCount	(mesh	as	irr_mesh,	frame	number	as	integer,
mesh_buffer	as	integer)

Description
Gets	the	number	of	Vertices	in	the	supplied	mesh.You	can	use	this	value	to
allocate	an	array	for	reading	out	the	list	of	vertices	in	a	mesh.	If	the	mesh	is
animated	frame	number	indicates	the	number	of	the	frame	to	recover	mesh	data
for	if	it	is	not	animated	this	value	should	be	set	to	0.	If	the	mesh	contains	a
number	of	mesh	buffers	you	can	specific	which	mesh	buffer	you	want	to
access,	if	you	omit	this	parameter	mesh	buffer	0	will	be	used.

Example
MeshVertexCount	=	IrrGetMeshVertexCount(MapMesh,	0)

IrrGetMeshVertexMemory
Syntax
IrrGetMeshVertexMemory	(mesh	as	irr_mesh,	frame	number	as	integer
,	mesh_buffer	as	integer)

Description
Get	a	memory	pointer	to	the	vertex	memory	for	the	supplied	mesh	operations
can	be	carried	out	very	quickly	on	vertices	through	this	function	but	object
sizes	and	array	access	needs	to	be	handled	by	the	caller.

Example
Dim	as	IRR_VERT	verts	=	IrrGetMeshVertexMemory(MapMesh,	0,	0)

IrrGetMeshVertices
Syntax
IrrGetMeshVertices	(mesh	as	irr_mesh,	frame	number	as	integer	,	vertices	as
IRR_VERT,	mesh_buffer	as	integer)

Description
Gets	the	list	of	vertices	in	a	mesh	and	copies	them	into	the	supplied	buffer.
Each	vertex	represents	a	point	in	the	mesh	that	is	the	corner	of	one	of	the	grou
pof	triangles	that	is	used	to	construct	the	mesh.	If	the	mesh	is	animated	frame
number	indicates	the	number	of	the	frame	to	recover	mesh	data	for	if	it	is	not
animated	this	value	should	be	set	to	0.	If	the	mesh	contains	a	number	of	mesh
buffers	you	can	specific	which	mesh	buffer	you	want	to	access,	if	you	omit	this
parameter	mesh	buffer	0	will	be	used.

Vertices	should	be	the	first	element	of	an	array	or	the	first	IRR_VERT	structure
in	a	pool	of	allocated	memory,	it	is	passed	into	the	wrapper	by	reference	as	a
pointer.	You	must	ensure	that	the	array	you	supply	is	large	enough	to	contain	all
of	the	vertices	otherwise	an	overflow	will	occur	and	memory	will	be	corrupted.

Example

IrrGetMeshVertices(MapMesh,	0,	Verticies(0),	0)

IrrSetMeshVertices
Syntax
IrrSetMeshVertices(mesh	as	irr_mesh,	frame	number	as	integer	,	indicies	as
IRR_VERT,	mesh_buffer	as	integer)

Description
This	sets	the	value	of	the	list	of	vertices	in	a	mesh	copying	them	from	the
supplied	buffer.	Each	vertex	represents	a	point	in	the	mesh	that	is	the	corner	of
one	of	the	grou	pof	triangles	that	is	used	to	construct	the	mesh.	If	the	mesh	is
animated	frame	number	indicates	the	number	of	the	frame	to	recover	mesh	data
for	if	it	is	not	animated	this	value	should	be	set	to	0.	If	the	mesh	contains	a
number	of	mesh	buffers	you	can	specific	which	mesh	buffer	you	want	to
access,	if	you	omit	this	parameter	mesh	buffer	0	will	be	used.

Vertices	should	be	the	first	element	of	an	array	or	the	first	IRR_VERT	structure
in	a	pool	of	allocated	memory,	it	is	passed	into	the	wrapper	by	reference	as	a
pointer.	You	must	ensure	that	the	array	you	supply	is	large	enough	to	contain	all
of	the	vertices	otherwise	an	overflow	will	occur	and	erroneous	values	will	be
written	into	the	mesh	causing	unpredictable	results.

Example
IrrSetMeshVertices(MapMesh,	0,	Vertices(0),	0)

IrrSetNodeMesh
Syntax
IrrSetNodeMesh	(node	as	irr_node,	mesh	as	irr_mesh)

Description
Sets	the	mesh	used	by	a	node	creaed	from	a	mesh	model.

Example
IrrSetNodeMesh(BuildingNode,	LowDetailMesh)

IrrScaleMesh
Syntax
IrrScaleMesh(mesh	as	irr_mesh,	scale	as	single,	frame	number	as	integer	=	0,
mesh_buffer	as	integer	=	0,	source	mesh	as	irr_mesh	=	0)

Description
Scales	the	verticies	in	a	mesh	without	affecting	the	normals,	tangents	or	texture
co-ordinates.	This	is	particularly	useful	for	enlarging	a	mesh	without	affecting
lighting.	It	should	be	noted	though	that	scaling	the	mesh	will	scale	all	of	the
nodes	that	use	it	as	their	source.	The	scaling	is	applied	unformly	to	all	axis.

Example
IrrScaleMesh(StatueMesh,	2.0)

IrrSetMeshMaterialTexture
Syntax
IrrSetMeshMaterialTexture(
								mesh	as	irr_mesh,	
								byval	texture	as	irr_texture,	
								byval	material_index	as	integer,	
								byval	buffer	as	integer	=	0)

Description
Apply	the	supplied	texture	the	specified	mesh.	Upto	four	textures	can	be
applied	to	the	material	by	applying	them	to	different	material	indicies,	these
textures	can	be	used	by		materials	or	shader	functions.	Setting	a	mesh	texture
will	apply	the	texture	to	all	nodes	that	use	that	mesh	it	can	also	used	for
texturing	a	mesh	before	it	is	added	to	a	batch	mesh.

Example
IrrSetMeshMaterialTexture(StatueMesh,	stoneTexture,	0)

IrrSetMeshVertexColors
Syntax
IrrSetMeshVertexColors(mesh	as	irr_mesh,	frame	number	as	integer	,
vertexColour	as	uinteger	ptr,	vertexGroupStartIndicies	as	uinteger	ptr,

vertexGroupEndIndicies	as	uinteger	ptr,	numberOfGroups	as	uinteger,
mesh_buffer	as	integer)

Description
This	sets	the	color	of	groups	of	verticies	in	a	mesh.	You	can	define	any	number
of	groups	of	verticies	and	set	the	color	of	those	group	invividually.	If	the	mesh
is	animated	frame	number	indicates	the	number	of	the	frame	to	recover	mesh
data	for	if	it	is	not	animated	this	value	should	be	set	to	0.	If	the	mesh	contains	a
number	of	mesh	buffers	you	can	specific	which	mesh	buffer	you	want	to
access,	if	you	omit	this	parameter	mesh	buffer	0	will	be	used.

Example
DIM	color(0	to	2)	as	uinteger

color(0)	=	RGBA(255,0,0,0)

color(1)	=	RGBA(255,0,0,0)

color(2)	=	RGBA(255,0,0,0)

DIM	start	as	uinteger	=	0

DIM	end	as	uinteger	=	2

IrrSetMeshVertexColors(MapMesh,	0,	@color,	@start,	@end,	1,	0)

IrrSetMeshVertexCoords
Syntax
IrrSetMeshVertexCoords(mesh	as	irr_mesh,	frame	number	as	integer	,
vertexCoordinates	as	IRR_VECTOR	Ptr,	vertexGroupStartIndicies	as	uinteger
ptr,	vertexGroupEndIndicies	as	uinteger	ptr,	numberOfGroups	as	uinteger,
mesh_buffer	as	integer)

Description
This	sets	the	co-ordinates	of	groups	of	verticies	in	a	mesh.	You	can	define	any
number	of	groups	of	verticies	and	set	the	color	of	those	group	invividually.	If
the	mesh	is	animated	frame	number	indicates	the	number	of	the	frame	to
recover	mesh	data	for	if	it	is	not	animated	this	value	should	be	set	to	0.	If	the
mesh	contains	a	number	of	mesh	buffers	you	can	specific	which	mesh	buffer
you	want	to	access,	if	you	omit	this	parameter	mesh	buffer	0	will	be	used.

Example
DIM	pos(0	to	2)	as	IRR_VECTOR

pos(0).x	=	0	:	pos(0).y	=	0	:	pos(0).z	=	0

pos(1).x	=	1	:	pos(1).y	=	0	:	pos(1).z	=	0

pos(2).x	=	0	:	pos(2).y	=	1	:	pos(2).z	=	0

DIM	start	as	uinteger	=	0

DIM	end	as	uinteger	=	2

IrrSetMeshVertexCoords(MapMesh,	0,	@color,	@start,	@end,	1,	0)

IrrSetMeshVertexSingleColor
Syntax
IrrSetMeshVertexSingleColor(mesh	as	irr_mesh,	frame	number	as	integer	,
vertexColour	as	uinteger	ptr,	vertexGroupStartIndicies	as	uinteger	ptr,
vertexGroupEndIndicies	as	uinteger	ptr,	numberOfGroups	as	uinteger,
mesh_buffer	as	integer)

Description
This	sets	the	color	of	groups	of	verticies	in	a	mesh.	You	can	define	any	number
of	groups	of	verticies	and	set	the	color	of	those	group	invividually.	If	the	mesh
is	animated	frame	number	indicates	the	number	of	the	frame	to	recover	mesh
data	for	if	it	is	not	animated	this	value	should	be	set	to	0.	If	the	mesh	contains	a
number	of	mesh	buffers	you	can	specific	which	mesh	buffer	you	want	to
access,	if	you	omit	this	parameter	mesh	buffer	0	will	be	used.

Example
DIM	start	as	uinteger	=	0

DIM	end	as	uinteger	=	2

IrrSetMeshVertexSingleColor(MapMesh,	0,	RGBA(255,255,255,255),

@start,	@end,	1,	0)

IrrGetMeshBoundingBox
Syntax
IrrGetMeshBoundingBox(mesh	as	irr_mesh,	min	X	as	single,	min	Y	as	single,
min	Z	as	single,	min	X	as	single,	min	Y	as	single,	min	Z	as	single)

Description
Gets	the	bounding	box	of	a	mesh	into	the	supplied	variables,	the	six	paramters
define	the	corners	of	an	axis	aligned	cube		that	contains	the	whole	mesh.

Example
IrrGetMeshBoundingBox(MapMesh,	topX,	topY,	topZ,	bottomX,

bottomY,	bottomZ)

IrrAddMeshToScene
Syntax
irr_node	=	IrrAddMeshToScene(Mesh	object	as	irr_mesh)

Description
Adds	a	mesh	to	the	scene	as	a	new	3D	'node'.

Example
DolphinMesh	=	IrrGetMesh("Dolphin.x")

SceneNode	=	IrrAddMeshToScene(DolphinMesh)

IrrAddMeshToSceneAsOcttree
Syntax
irr_node	=	IrrAddMeshToSceneAsOcttree	(Mesh	object	as	irr_mesh)

Description
Adds	a	mesh	to	the	scene	as	a	new	3D	'node'.	This	method	optimise's	the	mesh
with	an	Octtree,	this	is	particularly	useful	for	maps	where	there	is	a	lot	of
geometry	in	the	mesh	but	little	of	it	can	be	seen	at	any	one	time.	Optimizing
your	node	with	this	function	will	result	in	a	large	increase	in	performance.

Example
MapMesh	=	IrrGetMesh("ctfblue.bsp")

MapNode	=	IrrAddMeshToSceneAsOcttree(MapMesh)

IrrAddStaticMeshForNormalMappingToScene
Syntax
irr_node	=	IrrAddStaticMeshForNormalMappingToScene(Mesh	object	as
irr_mesh)

Description
Adds	a	mesh	to	the	scene	as	a	static	object,	the	mesh	is	altered	so	that	it	is
suitable	for	the	application	of	a	Normal	or	Parallax	mapping	material,	any
animation	information	is	lost.

Example
StoneRoomMesh	=	IrrGetMesh("StoneRoom.x")

SceneNode	=	IrrAddStaticMeshForNormalMappingToScene(StoneRoomMesh

)

IrrSetNodeMaterialTexture(SceneNode,	colorMap,	0)

IrrSetNodeMaterialTexture(SceneNode,	normalMap,	1)

IrrMaterialSetSpecularColor(IrrGetMaterial(SceneNode),	0,	0,	0

)

IrrSetNodeMaterialType(SceneNode,	EMT_PARALLAX_MAP_SOLID)

'	adjust	the	height	of	the	paralax	effect

IrrMaterialSetMaterialTypeParam(IrrGetMaterial(SceneNode),

0.035f)

IrrLoadScene
Syntax
IrrLoadScene	(file_name	As	zString	Ptr)

Description
Loads	all	meshes	and	creates	nodes	for	a	scene	defined	within	a	file	created	by
IrrEdit.

Example
IrrLoadScene("Map1.irr")

IrrSaveScene
Syntax
IrrSaveScene	(file_name	As	zString	Ptr)

Description
Saves	the	current	scene	into	a	file	that	can	be	loaded	by	irrEdit.

Example
IrrSaveScene("MyScene.irr")

IrrGetSceneNodeFromId
Syntax
Irr_node	=	IrrGetSceneNodeFromId(id	as	integer)

Description
Get	a	scene	node	based	on	its	ID	and	returns	null	if	no	node	is	found.	This	is
particularly	useful	for	obtaining	references	to	nodes	created	automatically	when
using	IrrLoadScene.

Example
IrrNode	=	IrrGetSceneNodeFromId(15)

IrrGetSceneNodeFromName
Syntax
Irr_node	=	IrrGetSceneNodeFromId(id	as	zstring	ptr)

Description
Get	a	scene	node	based	on	its	name	and	returns	null	if	no	node	is	found.	This	is
particularly	useful	for	obtaining	references	to	nodes	created	automatically	when
using	IrrLoadScene.

Example
IrrNode	=	IrrGetSceneNodeFromName("Box")

IrrAddBillBoardToScene
Syntax
irr_node	=	IrrAddBillBoardToScene	(X	size	of	the	node	as	integer,	Y	size	of
the	node	as	integer,	X	position	as	integer,	Y	position	as	integer,	Z	position	as
integer)

Description
Adds	a	billboard	to	the	scene	of	the	specified	size	and	at	the	specified	position.
A	billboard	is	a	flat	3D	textured	sprite	that	always	faces	towards	the	camera.
You	need	to	texture	this	element	with	a	separate	command.

Example
Billboard	=	IrrAddBillBoardToScene(10.0,8.0,	0,0,0)

IrrSetBillBoardColor
Syntax
irr_node	=	IrrSetBillBoardColor	(node	as	irr_node,	topColor	as
uinteger,	bottomColor	as	integer)

Description
Set	the	color	of	the	top	and	bottom	verticies	in	a	billboard	applying	a	vertical
graduated	shade	to	it.	The	colors		should	be	generated	with	the	FreeBasic
RGBA	function

Example
IrrSetBillBoardColor(Billboard,	RGBA(255,255,255,255),

RGBA(0,0,0,0))

IrrSetBillBoardSize
Syntax
irr_node	=	IrrSetBillBoardSize	(node	as	irr_node,	BillWidth	as
single,	BillHeight	as	single)

Description
Adds	a	billboard	to	the	scene	of	the	specified	size	and	at	the	specified	position.
A	billboard	is	a	flat	3D	textured	sprite	that	always	faces	towards	the	camera.
You	need	to	texture	this	element	with	a	separate	command.

Example
IrrSetBillBoardSize(Billboard,	10.0,	8.0)

IrrAddBillboardTextSceneNode
Syntax
irr_node	=	IrrAddBillboardTextSceneNode	(font	as	irr_font,	text	as	wstring,	X
size	of	the	node	as	integer,	Y	size	of	the	node	as	integer,	X	position	as	integer,
Y	position	as	integer,	Z	position	as	integer,	parent	as	irr_node,	topColor	as
uinteger,	bottomColor	as	uinteger)

Description
Adds	a	text	billboard	to	the	scene	of	the	specified	size	and	at	the	specified

position.	A	text	billboard	is	a	flat	3D	textured	sprite	that	always	faces	towards
the	camera	and	has	the	supplied	text	written	onto	it.	You	should	not	texture	this
element.

font	defines	the	font	that	is	used	to	generate	the	text.

text	is	a	wide	character	string	containing	the	text	you	want	to	display	on	the
billboard.

X_size	and	Y_size	define	the	width	and	height	of	the	billboard

X,	Y	and	Z	define	the	position	of	the	billboard.

Parent	defines	the	object	that	is	the	parent	to	this	billboard,	if	there	is	no	parent
this	should	be	set	to	IRR_NO_OBJECT

topColor	is	the	colour	value	of	the	top	of	the	text	on	the	billboard.	This	can	be
created	with	hte	RGBA	command.

bottomColor	is	the	colour	value	of	the	bottom	of	the	text	on	the	billboard.	This
can	be	created	with	hte	RGBA	command.

Example
Billboard	=	IrrAddBillboardTextSceneNode(_

								font,	"Hello	World",	_

								64.0,	12.0,	_

								0.0,	40.0,	0.0,	_

								parentNode,	_

								RGBA(255,255,0,0),	_

								RGBA(255,0,0,255))

IrrAddParticleSystemToScene
Syntax
node	as	irr_particle_system	=IrrAddParticleSystemToScene	(add_emitter)

Description
Adds	a	particle	system	to	the	scene	as	a	node,	a	particle	system	is	an	object	that
creates	and	manages	hundreds	of	small	billboard	like	objects	that	are	used	to
represent	smoke,	rain	and	other	natural	effects.	Once	created	you	then	need	to

add	emitters	and	affecters	to	create	and	control	the	particles.

Add	emitter	can	be	one	of	the	following	values:	-
IRR_NO_EMITTER
For	no	default	emitter	(this	is	probably	the	option	you	will	use	and	you	will
then	add	a	specific	emitter	later)
IRR_DEFAULT_EMITTER
To	create	a	default	emitter	that	ejects	a	thin	vertical	stream	of	particles.

Example
Smoke	=	IrrAddParticleSystemToScene(IRR_NO_EMITTER)

IrrAddSkyBoxToScene
Syntax
irr_node	=	IrrSkyBoxToScene	(up_texture	as	irr_texture,	down_texture	as
irr_texture,	left_texture	as	irr_texture,	right_texture	as	irr_texture,	front_texture
as	irr_texture,	back_texture	as	irr_texture)

Description
Adds	a	skybox	node	to	the	scene	this	is	huge	hollow	cube	that	encapsulates	the
entire	scene	and	has	a	different	texture	applied	to	each	of	its	six	surfaces	to
represent	a	distant	sky	or	matte	scene.

Example
SkyBox	=	IrrAddSkyBoxToScene(_

				IrrGetTexture("./media/irrlicht2_up.jpg"),_

				IrrGetTexture("./media/irrlicht2_dn.jpg"),_

				IrrGetTexture("./media/irrlicht2_lf.jpg"),_

				IrrGetTexture("./media/irrlicht2_rt.jpg"),_

				IrrGetTexture("./media/irrlicht2_ft.jpg"),_

				IrrGetTexture("./media/irrlicht2_bk.jpg"))

IrrAddSkyDomeToScene	(contributed	by	Eponasoft)
Syntax
irr_node	=	IrrAddSkyDomeToScene	(texture	as	irr_texture,	horizontal_res	as
uinteger,	vertical_res	as	uinteger,	texture_percentage	as
double,	sphere_percentage	as	double,	sphere_radius	as	single)

Description
Adds	a	skydome	node	to	the	scene	this	is	huge	hollow	sphere	(or	part	of	a
sphere)	that	encapsulates	the	entire	scene	to	represent	a	distant	sky	or	matte
scene.	The	horizontal	and	vertical	resolution	define	the	number	of	segments	in
the	mesh	of	the	sphere	(setting	these	too	high	can	quickly	produce	a	very	costly
mesh).	Texture	percentage	defines	the	amount	of	the	texture	that	is	mapped	to
the	scene,	this	should	be	a	value	between	0	and	1	(0	being	non	of	the	texture
and	1	being	the	whole	texture).	Finally	sphere	percentage	defines	how	much	of
a	sphere	is	created	and	should	be	a	value	between	0	and	2	(0	being	none	of	a
sphere,	1	being	a	hemi-sphere	and	2	being	a	full	sphere).

Example
SkyBox	=	IrrAddSkyDomeToScene(

IrrGetTexture("./media/domesky.jpg"),	8,	8,	1.0,	2.0,	10000.0);

IrrAddEmptySceneNode
Syntax
irr_node	=	IrrAddEmptySceneNode

Description
Adds	an	empty	node	to	the	scene.	This	is	required	if	you	wish	to	add	custom
OpenGL	commands	with	no	Irrlicht	Objects.

Example
EmptyNode	=	IrrAddEmptySceneNode

IrrAddTestSceneNode
Syntax
irr_node	=	IrrAddTestSceneNode

Description
Adds	a	simple	cube	object	to	the	scene.	This	is	particularly	useful	for	testing
and	is	a	quick	and	easy	way	of	playing	objects	into	the	scene	for	testing
placement.

Example

TestBox	=	IrrAddTestSceneNode

IrrAddCubeSceneNode
Syntax
irr_node	=	IrrAddCubeSceneNode(size	as	single)

Description
Adds	a	simple	cube	object	to	the	scene	with	the	specified	dimensions.

Example
MyCube	=	IrrAddCubeSceneNode(10.0)

IrrAddSphereSceneNode
Syntax
irr_node	=	IrrAddSphereSceneNode(radius	as	single,	poly_count	as	integer)

Description
Adds	a	simple	sphere	object	to	the	scene	of	the	specified	radius	and	with	the
specified	level	of	detail.	A	reasonable	value	for	poly_count	would	be	16	setting
this	value	too	high	could	produce	a	very	high	density	mesh	and	affect	your
frame	rate	adversely.

Example
MySphere	=	IrrAddSphereSceneNode(0.5,	16)

IrrAddWaterSurfaceSceneNode	(contributed	by	Eponasoft)
Syntax
irr_node	=	IrrAddWaterSurfaceSceneNode	(mesh	as	irr_mesh,	waveHeight	as
Single	=	2.0,	waveSpeed	as	Single	=	300.0,	waveLength	as	Single	=	10.0,
parent	as	irr_scene_node	=	0,	id	as	Integer	=	-1,	positionX	as	Single	=	0,
positionY	as	Single	=	0,	positionZ	as	Single	=	0,	rotationX	as	Single	=	0,
rotationY	as	Single	=	0,	rotationZ	as	Single	=	0,	scaleX	as	Single	=	1.0,	scaleY
as	Single	=	1.0,	scaleZ	as	Single	=	1.0)

Description

Adds	a	mesh	with	a	water	animator	applied	to	it,	the	mesh	is	animated
automatically	to	simulate	a	water	effect	across	its	surface.	Many	properties	are
predefined	for	this	node	and	a	convincing	water	effect	can	be	created	simply	by
supplying	the	parameter	for	the	mesh,	however	the	node	can	be	positioned,
rotated	and	scaled	by	this	call	and	the	appearance	of	the	waves	on	its	surface
can	be	adjusted.

Example
WaterNode	=	IrrAddWaterSurfaceSceneNode(pond_mesh)

IrrAddZoneManager
Syntax
irr_node	=	IrrAddZoneManager	(initialNearDistance	as
single,	initialFarDistance	as	single)

Description
Adds	a	zone/distance	management	node	to	the	scene.	This	simple	but	very
powerful	object	has	no	visible	geometry	in	the	scene,	it	is	used	by	attaching
other	nodes	to	it	as	children.	When	the	camera	is	further	away	than	the	far
distance	and	closer	than	the	near	distance	to	the	zone	manager	all	of	the	zones
child	objects	are	made	invisible.	This	allows	you	to	group	objects	together	and
automatically	have	them	hidden	from	the	scene	when	they	are	too	far	away	to
see.	By	using	the	near	distance	you	could	have	two	sets	of	objects	in	the	scene
one	with	high	detail	for	when	you	are	close	and	another	with	low	detail	for
when	you	are	far	away.

Another	way	to	use	the	zone	manager	would	be	to	test	when	your	camera	is
inside	the	zones	bounding	box	and	switch	its	visibility	on	and	off	manually.

Example
zone	=	IrrAddZoneManager(100,300)

IrrAddClouds	(Node	by	G	Davidson)
Syntax
irr_node	=	IrrAddClouds	(texture	as	irr_texture,	lod	as	uinteger,	depth	as
uinteger,	density	as	uinteger)

Description
Adds	a	set	of	clouds	to	the	scene.	These	clouds	are	most	appropriate	to	a	cloud
effect	experienced	by	a	vehicle	flying	through	them	and	could	be	of	particular
use	in	masking	the	transition	of	a	spacecraft	from	an	orbital	vantage	point	to	a
flat	terrain	object.	They	do	make	a	nice	ordernary	cloud	effect	too	but	can
appear	unrealistic	when	they	are	directly	over	the	observer.

LOD	defeines	the	level	of	detail	in	the	cloud,	more	detail	is	added	into	the
cloud	depending	on	the	distance	of	the	observer	from	the	object.	depth	defines
the	depth	of	recursion	when	creating	the	cloud	and	finally	density	defines	the
number	of	clouds	in	the	cloud	object.	

Example
CloudNode	=	IrrAddClouds(CloudTexture,	3,	1,	500)

IrrAddLensFlare	(Node	by	Paulo	Oliveira	with	updates	from	gammaray
and	torleif)
Syntax
irr_node	=	IrrAddLensFlare	(texture	as	irr_texture)

Description
Adds	a	lens	flare	patch	object	to	the	scene,	this	object	simulates	the	effect	of
bright	lights	on	the	optics	of	a	camera.,	the	position	of	the	lens	flare	can	be	set
and	changed	with	the	IrrSetNodePosition	command.	The	lens	flare	obejct	uses
a	bitmap	containing	a	series	of	128x128	images	representing	stages	of	the	the
lens	flare	effect.

Example
SceneNode	=	IrrAddLensFlare(LensTexture)

IrrAddGrass	(Node	by	G	Davidson)
Syntax
irr_node	=	IrrAddGrass	(terrain	as	irr_terrain,	x	as	integer,	y	as	integer,
patchSize	as	integer,	fadeDistance	as	single,	crossed	as	integer,	grassScale	as
single,	maxDensity	as	uinteger,	dataPositionX	as	integer,	dataPositionY	as

integer,	heightMap	as	irr_image,	textureMap	as	irr_image,	grassMap	as
irr_image,	grassTexture	as	irr_texture)

Description
Adds	a	grass	object	to	the	scene.	Grass	objects	are	associated	with	terrain	and
tile	terrain	objects	and	are	used	to	place	small	billboard	objects	into	the	scene
representing	folliage,	this	implementation	of	grass	creates	a	large	number	of
grass	objects	already	positioned	across	the	terrain	and	then	dynamically	shows
or	hides	them	depending	on	where	the	camera	is	within	the	scene.	The	grass	is
also	affected	with	a	wind	modifier	that	gently	moves	the	grass	as	if	it	were
caught	in	the	wind	(by	setting	the	speed	of	the	wind	to	zero	the	grass	will
become	static	and	you	will	see	an	increase	in	performance).

The	position	and	size	of	the	patch	of	grass	can	be	set	with	x,	y,	patchSize	and
grassScale.
FadeDistance	controls	the	distance	at	which	the	number	of	displayed	grass
elements	in	that	patch	are	reduced.	If	this	is	set	to	1.0	then	when	the	cameral	is
inside	the	patch	all	of	grass	will	be	displayed	but	once	outside	less	and	less	will
be	shown.	By	increasing	this	to	2.0	then	all	of	the	grass	is	shown	until	the
camera	is	two	patches	distant.	This	gives	a	better	appearence	but	reduces
performance	as	more	grass	has	to	be	drawn.
crossed	can	be	set	to	either	IRR_ON	or	IRR_OFF.	When	off	each	piece	of	grass
is	a	separate	entity	with	its	own	position	and	rotation.	When	On	grass	is	paired
up	and	placed	to	form	a	cross.	Crossed	grass	can	have	a	better	appearance	as
you	rotate	around	it.	However	individual	grass	can	give	the	impression	that
there	is	more	of	it	and	you	can	therefore	reduce	the	number	of	grass	blades	and
increase	performance.
MaxDensity	controls	the	number	of	individual	clumps	of	folliage	that	are
created.
Dataposition	X	and	Y	can	be	used	with	a	large	bitmap	associated	with	a	tiled
terrain	and	allow	the	color	information	to	be	taken	from	an	offset	position	on
the	bitmap.
Heightmap	is	an	image	that	contains	the	height	of	the	terrain	onto	which	the
grass	is	placed.
TextureMap	is	the	color	map	used	to	color	the	verticies	of	the	grass	and	allow
you	to	create	areas	of	dark	of	light	grass,	you	can	use	the	terrain	color	map
here.
GrassMap	is	an	image	used	to	adjust	the	height	and	density	of	the	grass.	For
example	you	might	have	a	patch	where	you	dont	want	to	see	any	grass	or	a

barren	patch	where	you	want	short	stubble.
GrassTexture	is	the	actually	texture	used	for	the	grass.	This	RGBA	image	is
automatically	broken	up	into	a	number	of	sections	that	are	used	to	texure
different	clumps	of	grass.

Grass	usually	looks	best	when	it	is	closely	matched	to	the	color	of	the	terrain
and	to	assist	with	this	a	new	Material	Type	has	been
added	IRR_EMT_TRANSPARENT_ADD_ALPHA_CHANNEL_REF	that
adds	the	color	of	grass	texture	to	the	color	of	the	grass	which	is	automatically
set	to	the	color	of	the	terrain	that	it	lies	upon.

Example
grassNode	=	IrrAddGrass	(Terrain,	x,	y,	1024,	1.0,	250,	0,	0,

terrainHeight,	terrainColor,	grassMap,	grassTexture)

IrrSetShadowColor
Syntax
IrrSetShadowColor	(Alpha	as	integer,	Red	as	integer,	Green	as	integer,	Blue	as
integer)

Description
Sets	the	color	of	shadows	cast	by	objects	in	the	scene.	If	you	are	observing	a
bright	scene	you	might	use	a	light	grey	shadow	instead	of	a	heavy	black
shadow	to	add	to	realism.

Example
IrrSetShadowColor(0,	128,	128,	128)

IrrSetFog
Syntax
irr_node	=	IrrSetFog	(Red	as	integer,	Green	as	integer,	Blue	as	integer,	fogtype
as	integer,	fog_start	as	single,	fog_end	as	single,	density	as	single)

Description
Set	the	properties	of	fog	in	the	scene.

Red,	Green	and	Blue	define	the	fog	color,	you	should	set	this	to	the	same	color
as	your	sky	so	the	scene	fogs	out	nicely	into	nothing.	These	are	integer	values
in	the	range	of	0	to	255

Fogtype	specifies	whether	you	want	the	fog	to	increase	in	a	linear	mannar	or
exponentially	-	exponential	fog	usually
	looks	more	atmospheric	while	linear	looks	more	like	a	dense	sea	fog.	This	may
be	specified	as	either
IRR_LINEAR_FOG
IRR_EXPONENTIAL_FOG

Fog	start	and	end	specify	the	distance	at	which	the	fog	starts	and	the	distance	at
which	the	fog	reaches	its	maximum	density.	The	values	here	will	depend	on	the
size	and	scale	of	the	scene.

Density	is	only	used	with	exponential	fog	and	determines	how	quickly	the
exponential	change	takes	place,	good	values		for	this	range	from	0	to	1

Example
ThinFog	=	IrrSetFog	(240,255,255,	IRR_EXPONENTIAL_FOG,

0.0,8000.0,	0.5)

IrrDraw3DLine
Syntax
IrrDraw3DLine(x_start	as	single,	y_start	as	single,	z_start	as	single,	x_end	as
single,	y_end	as	single,	z_end	as	single,	Red	as	integer,	Green	as	integer,	Blue
as	integer)

Description
Draws	a	line	onto	the	display	using	3D	co-ordinates	and	a	specified	color.

Example
IrrBeginScene(240,	255,	255)

IrrDraw3DLine(0.0,	0.0,	0.0,		0.0,	50.0,	0.0,		0,	255,	0)

IrrDrawScene

IrrSetSkyDomeColor
Syntax
IrrSetSkyDomeColor(dome	as	irr_node,	horizontalRed	as	uinteger,
horizontalGreen	as	uinteger,	horizontalBlue	as	uinteger,	zenithRed	as	uinteger,
zenithGreen	as	uinteger,	zenithBlue	as	uinteger)

Description
Set	the	color	of	the	verticies	in	the	skydome.	Two	colors	are	defined	one	for	the
horizon	and	another	for	the	top	of	the	sky	dome,	this	simulates	the	type	of
coloring	effects	you	see	in	the	sky.	If	you	are	using	a	full	spherical	skydome	the
horizontal	color	will	be	the	color	at	the	bottom	of	the	skydome.

Example
'	color	the	skydome	so	that	it	is	brighter	at	the	horizon	and	a

darker	blue	at	the	top	of	the	sky

IrrSetSkyDomeColor(SkyDome,	128,	128,	255,		64,	64,	255)

IrrSetSkyDomeColorBand
Syntax
IrrSetSkyDomeColorBand(dome	as	irr_node,	horizontalRed	as	uinteger,
horizontalGreen	as	uinteger,	horizontalBlue	as	uinteger,	bandVerticalPosition	as
integer,	bandFade	as	single,	addative	as	uinteger)

Description
Creates	a	horizontal	band	of	color	in	the	skydome,	this	is	mainly	useful	for
creating	additional	bands	of	color	at	the	horizon,	where	your	sky	is	a	graduation
of	blues	and	then	in	the	morning	you	have	a	brighter	golden	band	as	the	sun
rises.	The	vertical	position	in	the	vertex	at	which	you	wish	to	create	the	band,
bandFade	defines	the	amount	that	the	band	is	faded	into	the	existing	skydome
color,	addative	can	be	IRR_ON	to	add	the	color	of	the	band	to	the	existing
color	of	the	skydome	or	IRR_OFF	to	replace	it.

Example
'	add	a	band	of	golden	color	at	the	horizon

IrrSetSkyDomeColorBand	(SkyDome,	240,220,128,	24,	0.25,	IRR_ON)

IrrSetSkyDomeColorPoint

Syntax
IrrSetSkyDomeColorPoint(dome	as	irr_node,	Red	as	uinteger,	Green	as
uinteger,	Blue	as	uinteger,	pointXPosition	as	single,	pointYPosition	as	single,
pointZPosition	as	single,	pointRadius	as	single,	pointFade	as	single,	addative	as
uinteger)

Description
Set	the	color	of	the	verticies	in	the	skydome	radiating	out	from	a	point.	This	is
powerful	effect	that	can	be	used	to	color	parts	of	the	skydome	and	create	effects
to	represent	the	glows	of	the	rising	sun	or	the	moon	in	the	sky.	The	radius	is
used	to	limit	the	distance	of	the	coloring,	pointFade	defines	the	amount	that	the
band	is	faded	into	the	existing	skydome	color	and	addative	can	be	IRR_ON	to
add	the	color	of	the	band	to	the	existing	color	of	the	skydome	or	IRR_OFF	to
replace	it.

Example
'	add	a	bright	golden	circle	of	light	at	the	same	point	as	the

rising	sun

IrrSetSkyDomeColorPoint	(SkyDome,	255,220,96,	1000.0,	-250.0,

0.0,	1500.0,	0.75,	IRR_ON)

IrrSetZoneManagerProperties
Syntax
IrrAddZoneManager	(zoneManager	as	irr_node,	newNearDistance	as	single,
newFarDistance	as	single,	accumulateChildBoxes	as	uinteger)

Description
Sets	the	draw	distances	of	nodes	in	the	zone/distance	management	node	and
whether	or	not	the	zone	manager	is	to	accumulate	the	bounding	boxes	of	its
children	as	they	are	added.

Example
IrrSetZoneManagerProperties(zone,	0,	600,	IRR_ON)

IrrSetZoneManagerBoundingBox
Syntax

IrrSetZoneManagerBoundingBox	(zoneManager	as	irr_node,		x	as	single,	y	as
single,	z	as	single,	boxWidth	as	single,	boxHeight	as	single,	boxDepth	as	single
)

Description
Allows	the	user	to	manually	set	the	bounding	box	of	a	zone	manager	node.

Example
IrrSetZoneManagerBoundingBox(zone,	0,	0,	0,		100,	100,	100)

IrrSetZoneManagerAttachTerrain
Syntax
IrrSetZoneManagerAttachTerrain	(zoneManager	as	irr_node,		terrain	as
irr_terrain,	structureMapFile	as	zstring	ptr,	colorMapFile	as	zstring	ptr,
detailMapFile	as	zstring	ptr,	ImageX	as	integer,	ImageY	as	integer,	sliceSize	as
integer)

Description
A	special	feature	of	the	zone	manager	is	its	ability	to	manage	tiled	terrain
nodes,	a	zone	does	this	by	taking	position	of	an	attached	terrain	object	that	it
shares	with	other	zone	objects	whenever	the	camera	starts	to	come	into	range.
The	terrain	object	is	loaded	with	new	height	information,	color	and	detail	ready
for	when	it	becomes	visible	to	the	camera.

The	structureMapFile	is	the	name	of	an	RGBA	bitmap	file	that	is	to	be	used	to
set	the	structure	of	the	terrain.	The	Alpha	channel	is	used	to	set	the	height	and
the	RGB	channels	are	used	to	set	the	color	of	the	vertex	at	that	position.	This
can	be	used	to	load	lighting	into	the	scene	or	to	load	detail	map	blending	into
the	scene	for	simple	terrain	spattering	(discussed	in	the	tile	terrain	section).

The	optional	color	and	detail	maps	are	loaded	to	apply	new	color	and	detail
maps	to	the	terrain.	If	either	is	not	used	they	should	be	replaced	with
IRR_NO_OBJECT.

The	Image	X	and	Y	define	the	X	and	Y	position	of	this	tile	on	the	structure	and
color	images,	so	you	could	load	a	1024x1024	structure	image	and	a	1024x1024
detail	image	in	and	have	your	zones	form	a	grid	across	these	large	bitmaps.

Finally	SilceSize	allows	you	to	only	process	a	slice	of	the	terrain	on	each
frame,	as	a	tile	is	swapped	loading	in	bitmaps	and	then	adjusting	what	could	be
65,000	vertices	in	a	single	frame	will	cause	a	noticable	hiccup	in	the	smooth
running	of	the	scene,	so	by	setting	the	SliceSize	you	can	define	how	many	rows
of	the	terrain	are	to	be	processed	on	each	frame.for	example	if	your	tile	is
128x128	you	might	process	32	rows,	the	tile	would	then	be	restructured	over	4
frames	instead	of	trying	to	do	it	all	in	one.

Note:	You	can	load	your	images	manually	to	save	them	with	IrrGetImage	and
IrrGetTexture	and	let	them	stay	in	memory	to	avoid	having	to	load	images
while	the	scene	is	running	however	you	should	stay	aware	of	how	much
memory	you	are	using	especially	the	graphics	card	memory	used	by
IrrGetTexture.

Example
IrrSetZoneManagerAttachTerrain	(Zone(X	+	Y*ROW_SIZE),

Terrain(index),	"SunnyValley.tga",	"SunnyValley.bmp",

IRR_NO_OBJECT,	X*112,	Y*112,	32)

IrrSetGrassDensity
Syntax
IrrSetGrassDensity	(grass	as	irr_node,		density	as	integer,	distance	as	single)

Description
Set	grass	density,	density	being	the	number	of	grass	nodes	visible	in	the	scene
and	distance	being	the	distance	at	which	they	can	be	seen.

Example
IrrSetGrassDensity	(grassNode,	300,	4000)

IrrSetGrassWind
Syntax
IrrSetGrassWind	(grass	as	irr_node,		strength	as	single,	resoloution	as	single)

Description
Set	the	grass	wind	effect,	the	strength	being	the	strength	of	the	wind,	the

resoloution	being	how	often	the	effect	is	calculated.	By	setting	the	resoloution
to	zero	the	wind	effect	will	be	stopped	and	there	will	be	a	performance	increase
however	the	wind	effect	adds	significantly	to	the	subtle	atmosphere	of	the
scene.

Example
IrrSetGrassWind	(grassNode,	3.0,	1.0)

IrrGetGrassDrawCount
Syntax
uinteger	=	IrrGetGrassDrawCount	(grass	as	irr_node)

Description
Get	the	number	of	grass	objects	drawn.

Example
VisibleGrass	=	IrrGetGrassDrawCount(Grass)

IrrSetFlareScale
Syntax
IrrSetFlareScale	(flare	as	irr_node,		source	as	single,	optics	as	single)

Description
Sets	the	scale	of	optics	in	the	scene.	The	source	is	the	texture	used	to	surround
the	light	source	while	the	options	are	the	scale	of	textures	in	the	optics	of	the
camera.	Sometimes	it	is	effected	to	make	the	scale	of	the	source	considerably
larger	than	those	of	the	optics	and	to	scale	the	effect	in	the	optics	down	so	that
their	appearence	is	more	subtle.

Example
IrrSetFlareScale	(FlareNode,	2.0,	1.0)

IrrAddLODManager
Syntax
node	=	IrrAddLODManager	(fadeScale	as	uinteger	=	4,	useAlpha	as	uinteger	=

IRR_ON,	callback	as	any	ptr	=	0)

Description
Adds	a	level	of	detail	manager	to	the	scene.	The	primary	use	for	this	node	is	to
add	other	scene	nodes	to	it	as	children	and	have	their	level	of	detail	controlled
automatically.	If	those	nodes	are	made	from	loaded	meshs	different	meshes
containing	different	amounts	of	detail	can	be	displayed	at	different	distances.	

The	other	function	of	the	LOD	manager	is	to	fade	nodes	in	an	out	at	a	specific
distance	so	they	gradually	fade	rather	than	disappear	abruptly.	This	is	achieved
by	applying	a	distance	without	supplying	a	mesh.

fadeScale	is	the	number	of	1/4	seconds	that	the	node	takes	to	fade	out	or	in.	4
units	equals	1	second.
useAlpha	specifies	whether	or	not	the	Alpha	color	of	the	object	is	faded	too.
the	callback	function	is	called	whenever	a	node	is	made	invisible	or	visible.	this
allows	you	to	stop	processing	hidden	nodes.

Example
LODManager	=	IrrAddLODManager(4,	IRR_ON,	@NodeChangeCallback)

IrrAddLODMesh(LODManager,			0.0,	LOD1Mesh)

IrrAddLODMesh(LODManager,	400.0,	IRR_NO_OBJECT)

IrrAddLODMesh
Syntax
IrrAddLODMesh	(node	as	irr_node,	distance	as	single,	mesh	as	irr_mesh)

Description
Set	the	distance	at	which	a	particular	mesh	is	to	be	applied	to	child	mesh	nodes.
if	no	mesh	is	supplied	it	specifies	the	distance	at	which	the	node	should	be
faded	in	an	out.

node	is	the	LOD	manager	node
distance	is	the	distance	at	which	this	effect	will	be	applied
mesh	is	the	mesh	used	at	this	distance	and	beyond	or	null	to	specifiy	the	limit
of	visibility	for	this	node.

Example

LODManager	=	IrrAddLODMesh(4,	IRR_ON,	@NodeChangeCallback)

IrrAddLODMesh(LODManager,			0.0,	LOD1Mesh)

IrrAddLODMesh(LODManager,	400.0,	IRR_NO_OBJECT)

IrrSetLODMaterialMap	
Syntax
IrrSetLODMaterialMap	(node	as	irr_node,	source	as
IRR_MATERIAL_TYPES,	target	as	IRR_MATERIAL_TYPES)

Description
Specifies	which	material	is	used	to	apply	the	fade	effect	for	another	material
type.	How	this	is	used	will	depend	on	the	effect	that	you	want	to	achieve.	By
default	fading	is	applied	with	the
IRR_EMT_TRANSPARENT_VERTEX_ALPHA	material.

node	is	the	LOD	manager	node
source	is	the	material	type	your	node	uses
target	is	the	material	type	used	for	the	fade	effect.

Example
IrrSetLODMaterialMap(LODManager,	IRR_EMT_TRANSPARENT_ADD_COLOR,

IRR_EMT_TRANSPARENT_ADD_COLOR)

IrrAddBillBoardGroupToScene	
Syntax
node	=	IrrAddBillBoardGroupToScene	()

Description
Adds	a	billboard	group	to	the	scene.	This	is	a	special	object	that	can	have
billboard	like	objects	added	and	removed	from	it	and	rendered	in	a	very	quick
an	efficient	manner.	They	are	all	treated	as	a	single	object	rather	than	as	many
individual	nodes.	This	is	particuallarly	useful	for	custom	particle	effects.

Example
BillboardGroup	=	IrrAddBillBoardGroupToScene

IrrAddBillBoardToGroup	
Syntax
BillboardAddress	=	IrrAddBillBoardToGroup	(
								group	as	irr_node,	_
								sizex	as	single,	sizey	as	single,	_
								x	as	single	=	0,	y	as	single	=	0,	z	as	single	=	0,	_
								roll	as	single	=	0,	_
								A	as	uinteger	=	255,	R	as	uinteger	=	255,	G	as	uinteger	=	255,	B	as
uinteger	=	255)

Description
Adds	a	billboard	to	a	billboard	group.	There	are	a	number	of	properties	that	are
used	to	specify	the	billboard.

group	is	the	billboard	group	node
sizex	and	sizey	are	the	x	and	y	sizes	of	the	billboard
x,	y	and	z	define	the	position	of	the	billboard
roll	specifies	the	number	of	degrees	that	the	billboard	is	spun	around	its	center.
A,	R,	G	and	B	specify	the	color	used	for	the	billboard

Example
BillboardAddress	=	IrrAddBillBoardToGroup(BillboardGroup,_

								200.0,	200.0,	_

								0.0,	0.0,	0.0,	_

								0.0,	_

								0,	255,	255,	255)

IrrAddBillBoardByAxisToGroup	
Syntax
BillboardAddress	=	IrrAddBillBoardByAxisToGroup	(
								group	as	irr_node,	_
								sizex	as	single,	sizey	as	single,	_
								x	as	single	=	0,	y	as	single	=	0,	z	as	single	=	0,	_
								roll	as	single	=	0,	_
								A	as	uinteger	=	255,	R	as	uinteger	=	255,	G	as	uinteger	=	255,	B	as
uinteger	=	255,	_
								axis_x	as	single	=	0,	axis_y	as	single	=	0,	axis_z	as	single	=	0)

Description
Adds	a	billboard	to	a	billboard	group	that	is	fixed	to	a	particular	axis	these
billboards	are	particularly	useful	for	things	like	grass..There	are	a	number	of
properties	that	are	used	to	specify	the	billboard.

group	is	the	billboard	group	node
sizex	and	sizey	are	the	x	and	y	sizes	of	the	billboard
x,	y	and	z	define	the	position	of	the	billboard
roll	specifies	the	number	of	degrees	that	the	billboard	is	spun	around	its	center.
A,	R,	G	and	B	specify	the	color	used	for	the	billboard
axis_x,	axis_y,	axis_z	a	direction	around	which	the	billboard	is	spun	to	face	the
camera

Example
BillboardAddress	=	IrrAddBillBoardByAxisToGroup(BillboardGroup,_

								200.0,	200.0,	_

								0.0,	0.0,	0.0,	_

								0.0,	_

								0,	255,	255,	255,	_

								0.0,	1.0,	0.0)

IrrRemoveBillBoardFromGroup		
Syntax
IrrRemoveBillBoardFromGroup		(group	as	irr_node,	billboardAddress	as	any
ptr)

Description
Removes	the	specified	billboard	from	the	billboard	group

Example
IrrRemoveBillBoardFromGroup	(BillboardGroup,	BillboardAddress)

IrrBillBoardGroupShadows		
Syntax
IrrBillBoardGroupShadows		(group	as	irr_node,	_
								x	as	single	=	1.0,	y	as	single	=	0,	z	as	single	=	0,	_
								intensity	as	single	=	1.0,	ambient	as	single	=	0.0)

Description
Applies	lighting	to	the	billboards	in	a	cluster	of	billboards.	This	can	be	used	for
example	to	shade	the	particles	in	a	group	of	billboards	representing	a	cloud.

group	is	the	group	of	billboards	to	which	the	lighting	is	to	be	applied.
x,	y	and	z	is	the	direction	from	which	the	light	is	arriving
intensity	is	the	strength	of	the	light
ambient	is	the	strength	of	ambient	light	in	the	billboard	group

Example
IrrBillBoardGroupShadows(BillBoardGroup,	1.0,	0.0,	0.0,		1.0,	0.5

)

IrrGetBillBoardGroupCount		
Syntax
uinteger	=	IrrGetBillBoardGroupCount		(group	as	irr_node)

Description
Get	the	number	of	billboards	in	the	billboard	group.

Example
count	=	IrrGetBillBoardGroupCount	(BillboardGroup)

IrrBillBoardForceUpdate		
Syntax
IrrBillBoardForceUpdate		(group	as	irr_node)

Description
Unlike	regular	billboards	the	billboard	group	does	not	always	update	the
orientation	of	the	billboards	every	frame.	If	you	are	a	long	distance	away	from
the	billboard	group	the	camera	needs	to	travel	a	significant	distance	before	the
angle	has	changed	enough	to	warrent	an	update	of	all	of	the	billboards	verticies
to	make	them	point	to	the	camera	once	more.	You	may	want	to	force	a	refresh
at	some	point	with	this	call.

Example

IrrBillBoardForceUpdate	(BillboardGroup)

IrrAddBoltSceneNode		(Scene	Node	created	by	Sudi	with	extensions	by
Trivtn)
Syntax
irr_node	=	IrrAddBoltSceneNode	()

Description
The	bolt	is	a	special	scene	node	that	can	be	used	to	replicate	electrical	effects.
This	command	simply	adds	the	bolt	you	should	then	make	a	call	to	set	the	bolts
properties.	This	node	can	be	used	to	simulate	lightning	and	other	electrical
effects.

Example
ElectricNode	=	IrrAddBoltSceneNode()

IrrSetBoltProperties	(SceneNode,	_

								0,90,0,	_																	'	the	start	point	for	the	bolt

								0,0,0,	_																		'	the	end	point	for	the	bolt

								50,	_																					'	the	bolt	updates	every	50

miliseconds

								10,	_																					'	the	bolt	is	10	units	wide

								5,	_																						'	the	bolt	is	5	units	thick

								10,	_																					'	there	are	10	sub	parts	in	each

bolt

								4,	_																						'	there	are	4	individual	bolts

								IRR_ON,	_																	'	the	end	is	not	connected	to	an

exact	point

								RGBA(255,	255,	255,	0))	'	Lighting	color

IrrSetBoltProperties			
Syntax
IrrSetBoltProperties	(
								bolt	as	irr_node,	_
								startX	as	single,	startY	as	single,	startZ	as	single,	_
								endX	as	single,	endY	as	single,	endZ	as	single,	_
								updateTime	as	uinteger	=	50,	_
								radius	as	uinteger	=	10,	_
								thickness	as	single	=	5.0,	_
								parts	as	uinteger	=	10,	_

								bolts	as	uinteger	=	6,	_
								steadyend	as	uinteger	=	IRR_OFF,	_
								boltColor	as	uinteger	=	RGBA(0,0,255,255))

Description
This	sets	the	properties	of	a	bolt	node	that	simulates	an	electrical	effect.	There
are	a	number	of	properties	that	control	many	aspects	of	the	bolt	to	produce	a
wide	range	of	appearences..

Start	X,	Y	and	Z	define	the	point	that	the	bolt	origionates	from.

End	X,Y	and	Z|	define	the	terminating	point	for	the	bolt.

Update	time	specifies	the	number	of	miliseconds	between	updates	to	the
appearence	of	the	bolt.

Radius	is	the	radius	of	the	entire	bolt	effect.

Thickness	is	the	thickness	of	a	single	electrical	element	in	the	bolt.

Parts	defines	the	number	of	segments	the	bolt	is	divided	into.

Bolts	represents	the	number	of	individual	electrical	arcs	that	are	rendered.

SteadyEnd	when	set	to	IRR_ON	ends	in	a	tight	point,	when	set	to	IRR_OFF	it
ends	with	the	same	width	as	the	rest	of	the	bolt.

Color	specifies	the	diffuse	color	that	is	applied	to	the	bolt.

Example
ElectricNode	=	IrrAddBoltSceneNode()

IrrSetBoltProperties	(SceneNode,	_

								0,90,0,	_																	'	the	start	point	for	the	bolt

								0,0,0,	_																		'	the	end	point	for	the	bolt

								50,	_																					'	the	bolt	updates	every	50

miliseconds

								10,	_																					'	the	bolt	is	10	units	wide

								5,	_																						'	the	bolt	is	5	units	thick

								10,	_																					'	there	are	10	sub	parts	in	each

bolt

								4,	_																						'	there	are	4	individual	bolts

								IRR_ON,	_																	'	the	end	is	not	connected	to	an

exact	point

								RGBA(255,	255,	255,	0))	'	Lighting	color

IrrAddBeamSceneNode		(Scene	Node	by	Gaz	Davidson	(Blindside))
Syntax
irr_node	=	IrrAddBeamSceneNode		()

Description
The	beam	is	a	special	scene	node	that	can	be	used	to	replicate	beam	effects	like
lasers	and	tracer	gun	fire.	This	command	simply	adds	the	beam	you	should	then
make	calls	to	set	the	beams	properties.
Example
BeamNode	=	IrrAddBeamSceneNode	()

IrrSetBeamSize	(BeamNode,	5.0)

IrrSetBeamPosition	(BeamNode,	X,Y,Z,		X+100,Y,Z)

IrrSetBeamSize		
Syntax
IrrSetBeamSize		(beam	as	irr_node,	size	as	single)

Description
This	call	sets	the	width	of	a	beam	node

Example
IrrSetBeamSize	(BeamNode,	5.0)

IrrSetBeamPosition		
Syntax
IrrSetBeamPosition		(beam	as	irr_node,	_
								startX	as	single,	startY	as	single,	startZ	as	single,	_
								endX	as	single,	endY	as	single,	endZ	as	single)

Description
This	call	sets	the	start	and	end	positions	of	a	beam	node.	The	beam	will	stretch
between	the	two	nodes.

Start	X,	Y	and	Z	define	the	point	that	the	bolt	origionates	from.

End	X,Y	and	Z|	define	the	terminating	point	for	the	bolt.

Example
IrrSetBeamPosition	(BeamNode,	X,Y,Z,		X+100,Y,Z)

Scene	Nodes

Calls	for	manipulating,	texturing	and	getting	information
from	nodes	in	the	scene.

IrrGetNodeName
Syntax
const	zstring	ptr	=	IrrGetNodeName	(node	as	irr_node)

Description
Get	the	name	of	the	node.

Example
NodeName	=	IrrGetNodeName(StatueNode)

IrrSetNodeName
Syntax
IrrSetNodeName	(node	as	irr_node,	name	as	zstring	ptr)

Description
Set	the	name	of	a	node

Example
IrrSetNodeName(StatueNode,	"HeroStatue")

IrrGetNodeMesh
Syntax
irr_mesh	=	IrrGetNodeMesh	(node	as	irr_node)

Description
Get	the	mesh	that	is	associated	with	a	node

Example
myMesh	=	IrrGetNodeMesh(StatueNode)

IrrGetMaterialCount
Syntax
integer	=	IrrGetMaterialCount	(node	as	irr_node)

Description
Get	the	number	of	materials	associated	with	a	node.

Example
nummaterials	=	IrrGetMaterialCount(StatueNode)

IrrGetMaterial
Syntax
irr_material	=	IrrGetMaterial(node	as	irr_node,	material_index	as	integer)

Description
Get	the	material	associated	with	the	node	at	the	particular	index

Example
current_material	=	IrrGetMaterial(StatueNode,	index)

IrrSetNodeMaterialTexture
Syntax
IrrSetNodeMaterialTexture(node	as	irr_node,	texture	as
irr_texture,	material_index	as	integer)

Description
Applys	a	texture	to	a	node	in	the	scene,	how	the	texture	is	applied	across	the
surface	of	the	node	will	depend	on	the	texturing	co-ordinates	in	each	of	the
vectors	of	the	mesh	and	how	they	are	plotted	across	the	surface	of	the	texture.
Some	nodes	can	have	several	textures	applied	to	them	to	create	special	material
effects.

Node	refers	to	a	node	you	have	added	to	the	scene.

Texture	refers	to	a	texture	you	have	loaded	from	an	image	file.

Material	is	the	index	number	of	the	material	layer,	this	will	usually	be	0	or	1.

Example
IrrSetNodeMaterialTexture(DolphinNode,	DolphinTexture,	0)

IrrSetNodeMaterialFlag
Syntax
IrrSetNodeMaterialFlag(node	as	irr_node,	flag	as
IRR_MATERIAL_TYPES,	value	as	uinteger)

Description
Sets	material	properies	of	a	node	that	will	effect	its	appearance	on	the	screen,
each	of	these	properties	can	be	either	switched	on	or	off.

Node	refers	to	a	node	that	has	been	added	to	the	scene.

Flag	is	one	of	the	following	properties:	-

IRR_EMF_WIREFRAME
Render	as	wireframe	outline
IRR_EMF_GOURAUD_SHADING
Render	smoothly	across	polygons
IRR_EMF_LIGHTING
Material	is	effected	by	lighting
IRR_EMF_ZBUFFER
Enable	z	buffer
IRR_EMF_ZWRITE_ENABLE
Can	write	as	well	as	read	z	buffer
IRR_EMF_BACK_FACE_CULLING
Cull	polygons	facing	away
IRR_EMF_BILINEAR_FILTER
Enable	bilinear	filtering
IRR_EMF_TRILINEAR_FILTER

Enable	trilinear	filtering
IRR_EMF_ANISOTROPIC_FILTER
Reduce	blur	in	distant	textures
IRR_EMF_FOG_ENABLE
Enable	fogging	in	the	distance
IRR_EMF_NORMALIZE_NORMALS
Use	when	scaling	dynamically	lighted	models

The	value	should	be	one	of	the	following	to	switch	the	property	on	or	off:	-
IRR_ON
IRR_OFF

Example
IrrSetNodeMaterialFlag(CharacterNode,	IRR_EMF_GOURAUD_SHADING,

IRR_ON)

IrrSetNodeMaterialType
Syntax
IrrSetNodeMaterialType(node	as	irr_node,	mat_type	as
IRR_MATERIAL_FLAGS)

Description
Set	the	way	that	materials	are	applied	to	the	node.

Node	refers	to	a	node	that	has	been	added	to	the	scene.

Mat_type	is	one	of	the	following	properties	that	is	applied	to	the	node:	-

IRR_EMT_SOLID
Standard	solid	rendering	uses	one	texture

IRR_EMT_SOLID_2_LAYER
2	blended	textures	using	vertex	alpha	value

IRR_EMT_LIGHTMAP
2	textures:	0=color	1=lighting	level	and	ignores	vertex	lighting

IRR_EMT_LIGHTMAP_ADD

...	as	above	but	adds	levels	instead	of	modulating	between	them

IRR_EMT_LIGHTMAP_M2
...	as	above	but	color	levels	are	multiplied	by	2	for	brightening

IRR_EMT_LIGHTMAP_M4
...	as	above	but	color	leels	are	multiplied	by	4	for	brightening

IRR_EMT_LIGHTMAP_LIGHTING
2	textures:	0=color	1=lighting	level	but	supports	dynamic	lighting

IRR_EMT_LIGHTMAP_LIGHTING_M2
...	as	above	but	color	levels	are	multiplied	by	2	for	brightening

IRR_EMT_LIGHTMAP_LIGHTING_M4	
...	as	above	but	color	levels	are	multiplied	by	4	for	brightening

IRR_EMT_DETAIL_MAP
2	blended	textures:	the	first	is	a	color	map	the	second	at	a	different	scale	adds
and	subtracts	from	the	color	to	add	detail

IRR_EMT_SPHERE_MAP
makes	the	material	appear	reflective

IRR_EMT_REFLECTION_2_LAYER
a	reflective	material	blended	with	a	color	texture

IRR_EMT_TRANSPARENT_ADD_COLOR
a	transparency	effect	that	simply	adds	a	color	texture	to	the	background.	the
darker	the	color	the	more	transparent	it	is.

IRR_EMT_TRANSPARENT_ALPHA_CHANNEL
a	transparency	effect	that	uses	the	color	textures	alpha	as	a	transparency	level

IRR_EMT_TRANSPARENT_ALPHA_CHANNEL_REF
a	transparency	effect	that	uses	the	color	textures	alpha,	the	pixel	is	only	drawn
if	the	alpha	is	>	127.	this	is	a	fast	effect	that	does	not	blur	edges	and	is	ideal	for
leaves	&	grass	etc.

IRR_EMT_TRANSPARENT_VERTEX_ALPHA
a	transparency	effect	that	uses	the	vertex	alpha	value

IRR_EMT_TRANSPARENT_REFLECTION_2_LAYER
a	transparent	&	reflecting	effect.	the	first	texture	is	a	reflection	map,	the	second
a	color	map.	transparency	is	from	vertex	alpha

IRR_EMT_NORMAL_MAP_SOLID
A	solid	normal	map	renderer.	First	texture	is	color,	second	is	normal	map.	Only
use	nodes	added	with	IrrAddStaticMeshForNormalMappingToScene.	Only
supports	nearest	two	lights.	Requires	vertex	and	pixel	shaders	1.1

IRR_EMT_NORMAL_MAP_TRANSPARENT_ADD_COLOR
	...	as	above	only	with	a	transparency	effect	that	simply	adds	the	color	to	the
background.	the	darker	the	color	the	more	transparent	it	is.

IRR_EMT_NORMAL_MAP_TRANSPARENT_VERTEX_ALPHA
...	as	above	only	with	a	transparency	effect	that	uses	the	vertex	alpha	value

IRR_EMT_PARALLAX_MAP_SOLID
similar	to	the	solid	normal	map	but	more	realistic	providing	virtual
displacement	of	the	surface.	Uses	the	alpha	channel	of	the	normal	map	for
height	field	displacement.	Requires	vertex	shader	1.1	and	pixel	shader	1.4.

IRR_EMT_PARALLAX_MAP_TRANSPARENT_ADD_COLOR
...	as	above	only	with	a	transparency	effect	that	simply	adds	the	color	to	the
background.	the	darker	the	color	the	more	transparent	it	is.

IRR_EMT_PARALLAX_MAP_TRANSPARENT_VERTEX_ALPHA
...	as	above	only	wiht	a	transparency	effect	that	uses	the	vertex	alpha	value

Example
IrrSetNodeMaterialType(WaterNode,	IRR_EMT_LIGHTMAP)

IrrSetNodePosition
Syntax
IrrSetNodePosition(node	as	irr_node,	X	as	single,	Y	as	single,	Z	as	single)

Description
Moves	the	node	to	the	new	position.

Example
IrrSetNodePosition(CharacterNode,	500.0,	100.7,	-192.6)

IrrSetNodeRotation
Syntax
IrrSetNodeRotation(node	as	irr_node,	X	as	single,	Y	as	single,	Z	as	single)

Description
Rotate	a	node	to	the	specified	orientaion	through	its	X,	Y	and	Z	axis

Example
IrrSetNodeRotation(CharacterNode,	34.5	0.76,	-67.3)

IrrSetNodeScale
Syntax
IrrSetNodeScale(node	as	irr_node,	X	as	single,	Y	as	single,	Z	as	single)

Description
Change	the	scale	of	a	node	in	the	scene	making	it	bigger	or	smaller	in	the	X,	Y
and	Z	axis

Example
IrrSetNodeScale(CharacterNode,	1.2,1.5,1.2)

IrrSetNodeRotationPositionChange
Syntax
IrrSetNodeRotationPositionChange(node	as	irr_node,	roll	as	single,	pitch	as
single,	yaw	as	single,	drive	as	single,	strafe	as	single,	elevate	as	single,
forwardVector	as	IRR_VECTOR	ptr,	upVector	as	IRR_VECTOR	ptr,
offsetVectorCount	as	integer,	offsetVectors	as	IRR_VECTOR	ptr)

Description
Apply	a	change	in	rotation	and	a	directional	force.	we	can	also
optionally	recover	pointers	to	a	series	of	vectors.	The	first	is	a	pointer	to	a
vector	pointing	forwards	the	second	is	a	pointer	a	vector	pointing	upwards
following	this	are	any	number	of	points	that	will	also	be	rotated	(the	effect	on
these	points	is	NOT	accumulative	so	the	points	should	be	initialised	with	their
origonal	values	each	time	this	is	called)

Example
IrrSetNodeRotationPositionChange(SceneNode,	roll,	pitch,	yaw,

drive,	strafe,	elevate,	@forwardVector,	@upVector,	2,

@cameraVector(0))

IrrDebugDataVisible
Syntax
IrrDebugDataVisible	(node	as	irr_node,	visible	as	integer)

Description
Displays	debugging	data	around	a	node,	this	typically	means	drawing	the
bounding	box	around	the	edges	of	the	node.

There	are	a	series	of	values	for	displaying	different	types	of	debugging
information	and	not	all	of	them	are	supported	on	all	node	types

0	No	Debugging	
1	Bounding	Box
2	Normals
4	Skeleton
8	Wireframe
16	Transparency
32	Bounding	Box	Buffers
&hffffffff	Everything

Example
IrrDebugDataVisible	(PyramidNode,	1)

IrrGetNodePosition

Syntax
IrrGetNodePosition(node	as	irr_node,	X	as	single,	Y	as	single,	Z	as	single)

Description
Gets	the	position	of	a	node	in	the	scene	and	stores	its	X,	Y	and	Z	co-ordinates
into	the	supplied	variables.

Example
IrrGetNodePosition(CharacterNode,	XPosition,	YPosition,	ZPosition

)

IrrGetNodeAbsolutePosition
Syntax
IrrGetNodeAbsolutePosition(node	as	irr_node,	X	as	single,	Y	as	single,	Z	as
single)

Description
Get	the	absoloute	position	of	the	node	in	the	scene	this	position	includes	the
position	changes	of	all	of	the	nodes	parents	too.

Example
IrrGetNodeAbsolutePosition(CharacterNode,	XPosition,	YPosition,

ZPosition)

IrrGetNodeRotation
Syntax
IrrGetNodeRotation(node	as	irr_node,	X	as	single,	Y	as	single,	Z	as	single)

Description
Get	the	rotation	of	a	node	in	the	scene	and	stores	the	X,	Y	and	Z	rotation	values
in	the	supplied	variables..

Example
IrrGetNodeRotation(CharacterNode,	XRotation,	YRotation,	ZRotation

)

IrrGetNodeScale
Syntax
IrrGetNodeScale(node	as	irr_node,	X	as	single,	Y	as	single,	Z	as	single)

Description
Get	the	scale	of	a	node	in	the	scene	and	stores	the	X,	Y	and	Z	scale	values	in
the	supplied	variables..

Example
IrrGetNodeScale(CharacterNode,	XScale,	YScale,	ZScale)

IrrGetJointNode
Syntax
irr_node	=	IrrGetJointNode	(node	as	irr_node,	joint_name	as	zstring	ptr)

Description
This	supplies	you	with	an	invisible	node	that	follows	the	motion	of	a	particular
joint	in	an	animated	models	skeleton.	You	can	use	this	to	attach	child	nodes	that
represent	objects	a	person	is	carrying	for	example.	(This	call	now	replaces
IrrGetMS3DJointNode	and	IrrGetDirectXJointNode	which	are	only	supplied
for	backwards	compatibility).	It	can	now	also	be	used	to	manually	move	the
joint.

The	name	should	refer	to	the	name	of	a	joint	in	the	model.

Example
HandNode	=	IrrGetJointNode(CharacterNode,	"LeftHand")

IrrAddChildToParent
Syntax
IrrAddChildToParent	(child	as	irr_node,	parent	as	irr_node)

Description
Attaches	the	child	node	to	the	parent	node,	whenever	you	change	the	parent
node	the	child	node	changes	too.	This	is	useful	for	putting	a	cup	in	a	characters
hand	for	example.	You	can	move	and	rotate	the	child	node	to	move	the	object

into	position	against	its	parent.

Example
IrrAddChildToParent(CupNode,	CharacterNode)

IrrGetNodeFirstChild
Syntax
irr_node	=	IrrGetNodeFirstChild	(node	as	irr_node,	searchPosition	as	any	ptr)

Description
Get	the	first	child	node	of	this	node,	returns	0	if	there	is	no	child.

Example
ChildNode	=	IrrGetNodeFirstChild	(SectorNode,	position)

IrrGetNodeNextChild
Syntax
irr_node	=	IrrGetNodeNextChild	(node	as	irr_node,	searchPosition	as	any	ptr)

Description
Get	the	next	child	node	of	this	node,	returns	0	if	there	is	no	child.

Example
ChildNode	=	IrrGetNodeNextChild(SectorNode,	position)

IrrIsNodeLastChild
Syntax
integer	=	IrrIsNodeLastChild	(child	as	irr_node,	parent	as	irr_node)

Description
Attaches	the	child	node	to	the	parent	node,	whenever	you	change	the	parent
node	the	child	node	changes	too.	This	is	useful	for	putting	a	cup	in	a	characters
hand	for	example.	You	can	move	and	rotate	the	child	node	to	move	the	object
into	position	against	its	parent.

Example
if	IrrIsNodeLastChild(SectorNode,	position)	=	0	then

				LastNode	=	IRR_YES

end	if

IrrAddNodeShadow
Syntax
irr_node	=	IrrAddNodeShadow	(node	as	irr_node,	mesh	as	irr_mesh	=	0)

Description
Adds	shadows	to	a	node	that	are	cast	across	other	nodes	in	the	scene,
shadowing	need	to	be	turned	on	when	you	call	IrrStart.	You	should	analyse	the
performance	of	your	scene	carefully	when	using	this	function	as	it	can	have	a
significant	effect	on	your	frame	rate.	You	can	supply	a	different	mesh	to	the	one
used	to	display	the	node,	this	shadow	mesh	could	be	a	much	lower	resoloution
than	that	used	for	your	model	thereby	improving	performance.

Example
IrrAddNodeShadow	(CharacterNode)

IrrSetNodeVisibility
Syntax
IrrSetNodeVisibility	(node	as	irr_node,	visible	as	integer)

Description
This	allows	you	to	hide	nodes	from	the	display	so	you	can	quickly	and	easily
switch	objects	out	to	improve	performance	or	create	effects	liek	one	node
transforming	into	another	node	(perhaps	in	a	puff	of	particle	smoke).

Visible	can	be	one	of	the	following	values:	-
IRR_INVISIBLE
IRR_VISIBLE

Example
IrrSetNodeVisibility(CharacterNode,	IRR_VISIBLE)

IrrRemoveNode
Syntax
IrrRemoveNode(node	as	irr_node)

Description
Removes	a	node	from	the	scene	deleting	it.

Example
IrrRemoveNode(CharacterNode)

IrrRemoveAllNodes
Syntax
IrrRemoveAllNodes()

Description
Clears	the	entire	scene,	any	references	to	nodes	in	the	scene	will	become
invalid.

Example
IrrRemoveAllNodes()

IrrSetNodeParent
Syntax
IrrSetNodeParent	(node	as	irr_node,	parent	as	irr_node)

Description
Sets	the	parent	of	the	specified	node.

Example
ParentNode	=	IrrSetNodeParent(ChildNode,	ParentNode)

IrrGetNodeParent
Syntax
irr_node	=	IrrGetNodeParent	(node	as	irr_node)

Description
Gets	the	parent	of	the	specified	node.

Example
ParentNode	=	IrrGetNodeParent(ChildNode)

IrrGetNodeID
Syntax
integer	=	IrrGetNodeID	(node	as	irr_node)

Description
Each	node	can	have	a	32	bit	signed	identification	number	assigned	to	them	this
can	be	used	in	collision	operations	to	filter	out	particular	classes	of	object.

Example
NodeID	=	IrrGetNodeID(TreeNode)

IrrSetNodeID
Syntax
IrrSetNodeID	(node	as	irr_node,	id	as	integer)

Description
Adds	a	simple	cube	object	to	the	scene.	This	is	particularly	useful	for	testing
and	is	a	quick	and	easy	way	of	playing	objects	into	the	scene	for	testing
placement.

Example
IrrSetNodeID	(TreeNode,	8)

IrrGetNodeBoundingBox
Syntax
integer	=	IrrGetNodeBoundingBox	(node	as	irr_node,	x1	as	single,		y1	as
single,		z1	as	single,	x2	as	single,		y2	as	single,		z2	as	single,)

Description

Gets	the	coordiantes	describing	the	bounding	box	of	the	node	into	the	six
supplied	variables.

Example
NodeID	=	IrrGetNodeBoundingBox(BuildingNode,	Xa,	Ya,	Za,	Xb,	Yb,

Zb)

IrrGetNodeTransformedBoundingBox
Syntax
integer	=	IrrGetNodeTransformedBoundingBox	(node	as	irr_node,	x1	as
single,		y1	as	single,		z1	as	single,	x2	as	single,		y2	as	single,		z2	as	single,)

Description
Gets	the	transformed	(absolute	value)	bounding	box	of	a	node	into	the	six
supplied	variables.	So	if	your	node	has	been	moved	hundreds	of	units	away
from	the	origion	the	co-ordinates	of	its	bounding	box	will	also	be	hundreds	of
units	away	corisponding	to	its	real	location	in	the	scene.

Example
NodeID	=	IrrGetNodeTransformedBoundingBox(BuildingNode,	Xa,	Ya,

Za,	Xb,	Yb,	Zb)

Animation

Calls	that	control	the	animation	of	nodes	in	the	scene
either	by	playing	animation	that	is	embedded	in	the	mesh
or	applying	animator	controls	to	automatically	effect	the
nodes.

IrrSetNodeAnimationRange
Syntax
IrrSetNodeAnimationRange(node	as	irr_node,	Start	Frame	as	integer,	End
Frame	as	integer)

Description
Sets	the	range	of	animation	that	is	to	be	played	in	the	node.	An	anaimation
sequences	might	run	from	0	to	200	frames	and	a	sequence	where	your	character
is	running	might	only	occupy	a	portion	of	this.

Example
IrrSetNodeAnimationRange(CharacterNode,	50,	75)

IrrPlayNodeMD2Animation
Syntax
IrrPlayNodeMD2Animation	(node	as	irr_node,	sequence	as	uinteger)

Description
MD2	format	models	have	specific	animation	sequences	contained	within	them
that	can	be	played	back	with	a	simple	call.

sequence	should	be	one	of	the	following	values:	-
IRR_EMAT_STAND
IRR_EMAT_RUN
IRR_EMAT_ATTACK

IRR_EMAT_PAIN_A
IRR_EMAT_PAIN_B
IRR_EMAT_PAIN_C
IRR_EMAT_JUMP
IRR_EMAT_FLIP
IRR_EMAT_SALUTE
IRR_EMAT_FALLBACK
IRR_EMAT_WAVE
IRR_EMAT_POINT
IRR_EMAT_CROUCH_STAND
IRR_EMAT_CROUCH_WALK
IRR_EMAT_CROUCH_ATTACK
IRR_EMAT_CROUCH_PAIN
IRR_EMAT_CROUCH_DEATH
IRR_EMAT_DEATH_FALLBACK
IRR_EMAT_DEATH_FALLFORWARD
IRR_EMAT_DEATH_FALLBACKSLOW
IRR_EMAT_BOOM

Example
IrrPlayNodeMD2Animation(CharacterNode,	IRR_EMAT_STAND)

IrrSetNodeAnimationSpeed
Syntax
IrrSetNodeAnimationSpeed	(node	as	irr_node,	speed	as	integer)

Description
Change	the	speed	at	which	an	animation	is	played	for	a	node.	You	could	use
this	to	make	a	character	run	slowly	or	quickly	and	still	keep	its	feet	on	the
ground.

Example
IrrSetNodeAnimationSpeed(CharacterNode,	25)

IrrGetNodeAnimationFrame
Syntax

uinteger	=	IrrGetNodeAnimationFrame(node	as	irr_node)

Description
Get	the	frame	number	that	is	currently	being	played	by	the	node.

Example
CurrentFrame	=	IrrGetNodeAnimationFrame(AnimNode)

IrrSetNodeAnimationFrame
Syntax
IrrSetNodeAnimationFrame(node	as	irr_node,	frame	as	integer)

Description
Set	the	current	frame	number	being	played	in	the	animation

Example
IrrSetNodeAnimationFrame(CharacterNode,	75)

IrrSetTransitionTime
Syntax
IrrSetTransitionTime	(node	as	irr_node,	speed	as	single)

Description
Sets	the	transition	time	across	which	two	poses	of	an	animated	mesh	are
blended.	For	example	a	character	in	a	sitting	pose	can	be	switched	into	a	lying
down	pose	by	blending	the	two	frames,	this	will	provide	a	more	convincing
smooth	transition	instead	of	a	snap	change	in	position.	IrrAnimateJoints	must
be	called	before	IrrDrawScene	if	blending	is	used.

Example
IrrSetTransitionTime(CharacterNode,	0.75)

IrrAnimateJoints
Syntax
IrrAnimateJoints(node	as	irr_node)

Description
Animates	the	mesh	based	on	the	position	of	the	joints,	this	should	be	used	at	the
end	of	any	manual	joint	operations	including	blending	and	joints	animated
using	IRR_JOINT_MODE_CONTROL	and	IrrSetNodeRotation	on	a	bone
node.

Example
IrrAnimateJoints(CharacterNode)

IrrSetJointMode
Syntax
IrrSetJointMode	(node	as	irr_node,	mode	as	uinteger)

Description
Sets	the	animation	mode	of	joints	in	a	node.	When	using	the	control	mode
IrrAnimateJoints	must	be	called	before	IrrDrawScene.

IRR_JOINT_MODE_NONE	will	result	in	no	animation	of	the	model	based	on
bones
IRR_JOINT_MODE_READ	will	result	in	automatic	animation	based	upon	the
animation	defined	with	calls	like	IrrSetNodeAnimationRange
IRR_JOINT_MODE_CONTROL	will	allow	the	position	of	the	bones	to	be	set
through	code

Example
IrrSetJointMode(CharacterNode,	IRR_JOINT_MODE_CONTROL)

IrrAddCollisionAnimator
Syntax
irr_animator	=	IrrAddCollisionAnimator	(selector	as	irr_selector,	node	as
irr_node,	radius	x	as	single,	radius	y	as	single,	radius	z	as	single,	gravity	x	as
single,	gravity	y	as	single,	gravity	z	as	single,	offset	x	as	single,	offset	y	as
single,	offset	z	as	single)

Description

This	adds	a	collision	animator	to	a	node	that	applies	collision	detection	and
gravity	to	the	object.	The	collision	detection	will	stop	the	object	penetrating
through	a	surface	in	the	objects	it	is	colliding	against	and	will	also	press	it
against	the	surface	using	gravity.

Selector	represents	a	selection	of	triangles	in	the	scene,	this	is	usually	all	of	the
triangles	in	a	map	for	instance.	Please	refer	to	the	section	on	collision	for
further	details	of	how	to	obtain	this	object.

Radius	X,	Radius	Y	and	Radius	Z	define	an	ellipsoid	that	defines	the	area	of
collision	this	eliptical	shape	allows	the	collision	detection	to	slide	the	object	up
steps	and	even	ladders.	If	you	make	it	too	big	you	might	be	too	large	to	get
through	a	doorway	but	if	you	make	it	too	small	you	may	not	be	able	to	climb
steps.	You	should	play	with	these	values	and	find	the	best	ones	for	your	scene.

Gravity	X,	Gravity	Y	and	Gravity	Z	work	together	to	specify	the	force	that	is
applied	to	the	node	to	make	it	drop	to	the	ground.	Other	values	could	be	used	to
simulate	wind	effects.

Offset	X,	Offset	Y	and	Offset	Z	are	used	to	offset	the	node	by	a	specific
distance	from	the	center	of	the	collision,	as	the	center	of	the	object	and	the	size
of	your	collision	ellipsoid	vary	you	can	use	this	to	adjust	the	position	of	the
node	and	to	bring	it	into	contact	with	the	ground.	

Example
CollisionAnimator	=	IrrAddCollisionAnimator(MapCollision,

CameraNode,	30.0,30.0,30.0,	0.0,-3.0,0.0,		0.0,50.0,0.0)

IrrAddDeleteAnimator
Syntax
irr_animator	=	IrrAddDeleteAnimator	(node	as	irr_node,	milliseconds	to
deletion	as	integer)

Description
This	animator	deletes	the	node	it	is	attached	to	after	the	specified	number	of
milliseconds	(1/1000ths	of	a	second).	You	could	use	this	animator	to	delete	a
falling	rock	for	example,	all	you	would	need	to	do	is	attach	the	delete	animator,
a	movement	animator	and	then	forget	about	it.

Example
DeleteAnimator	=	IrrAddDeleteAnimator(RockNode,	3000)

IrrAddFadeAnimator
Syntax
irr_animator	=	IrrAddFadeAnimator	(node	as	irr_node,	milliseconds	to
deletion	as	integer,	scale	as	single)

Description
This	animator	deletes	the	node	it	is	attached	to	after	the	specified	number	of
milliseconds	(1/1000ths	of	a	second).	During	the	time	while	it	is	waiting	to
delete	it	the	node	is	slowly	faded	to	invisibility	and	is	also	scaled	by	the
specified	amount.	You	could	use	this	animator	to	fade	and	delete	an	object	from
a	scene	that	was	no	longer	required	like	a	used	medical	pack,	all	you	would
need	to	do	is	attach	the	fade	animator	and	forget	about	it.

Example
FadeAnimator	=	IrrAddFadeAnimator(MedicalNode,	3000,	0.0)

IrrAddFlyCircleAnimator
Syntax
irr_animator	=	IrrAddFlyCircleAnimator	(node	as	irr_node,	center	x	as	single,
center	y	as	single,	center	z	as	single,	radius	as	single,	speed	as	single)

Description
This	animator	moves	the	node	it	is	attached	to	in	a	circular	path.	

Center	X,	Center	Y	and	Center	Z	define	the	center	of	the	circular	path.

Radius	defines	the	radius	of	the	path

Speed	defines	the	rate	the	node	moves	around	the	circular	path

Example
CircleAnimator	=	IrrAddFlyCircleAnimator(PowerNode,	0,0,0	50,	20

)

IrrAddFlyStraightAnimator
Syntax
irr_animator	=	IrrAddFlyStraightAnimator	(node	as	irr_node,	start	x	as
single,	start	y	as	single,	start	z	as	single,	end	x	as	single,	end	y	as	single,	end	z
as	single,	time	to	complete	as	uinteger,	loop	path	as	integer)

Description
This	animator	makes	the	node	it	is	attached	to	move	in	a	straight	line	from	the
start	to	the	end	end	point.	It	would	be	useful	for	objects	moving	on	a	conveyor
belt	for	example

Start	X,	Start	Y	and	Start	Z	specify	the	start	point	of	the	path.

End	X,	End	Y	and	End	Z	specify	the	end	point	of	the	path.

Time	to	complete	specifies	the	number	of	milliseconds	the	animator	will	take	to
move	the	node	from	the	start	to	the	end	point

Loop	path	determines	if	the	node	will	be	moved	from	the	start	to	the	end	and
then	stopped	or	whether	the	animation	will	be	looped	this	parameter	should	be
either:	-
IRR_ONE_SHOT
For	a	single	animation	and	then	stop
IRR_LOOP
To	continuously	repeat	the	animation

Example
FlyAnimator	=	IrrAddFlyStraightAnimator(AnimatedBox,	0,50,-300,

0,50,300,	3000,	IRR_LOOP)

IrrAddRotationAnimator
Syntax
irr_animator	=	IrrAddRotationAnimator	(node	as	irr_node,	x	as	single,	y	as
single,	z	as	single)

Description
This	animator	makes	the	node	it	is	attached	to	spin	around.

X,	Y	and	Z	specify	the	number	of	radians	the	object	is	spun	around	each	axis

Example
RotationAnimator	=	IrrAddRotationAnimator(DisplayCaseNode,	0,

0.1,	0)

IrrAddSplineAnimator
Syntax
irr_animator	=	IrrAddSplineAnimator	(node	as	irr_node,	array	size	as
integer,	x	as	single,	y	as	single,	z	as	single,	time	to	start	as	integer,	speed	as
single,	tightness	as	single)

Description
This	is	one	of	the	more	difficult	to	set	up	of	the	animators	but	is	very	natural
looking	and	powerful.	A	spline	is	a	curved	line	that	passes	through	or	close	to	a
list	of	co-ordinates,	creating	a	smooth	flight.	This	animator	needs	a	list	of
coordinates	stored	in	three	arrays,	one	array	each	for	the	X,	Y	and	Z	locations
of	all	the	points.	A	good	way	to	get	co-ordinates	for	these	arrays	is	to	load	in
the	camera	position	example	program	and	move	your	camera	to	a	point	and
write	down	its	co-ordinates.

Array	size	specifies	how	many	points	there	are	in	your	spline	motion.

The	three	arrays	X,	Y	and	Z	containing	co-ordinates	are	passed	by	reference	as
a	pointer	therefore	you	should	ensure	that	the	array	is	the	correct	size	otherwise
unpredictable	results	will	be	obtained.

Time	to	start	specifies	the	number	of	milliseconds	that	must	pass	before	the
animation	starts.

Speed	defines	the	rate	the	node	moves	along	the	spline	curve.

Tightness	specifies	how	tightly	the	curve	is	tied	to	the	points	(0	is	angular	and	1
is	very	loose)

Example
SplineX(0)	=	-100	:	SplineY((0)	=			50	:	SplineZ((0)	=				0

SplineX(1)	=				0	:	SplineY((1)	=		100	:	SplineZ((1)	=	-100

SplineX(2)	=		100	:	SplineY((2)	=			50	:	SplineZ((2)	=				0

SplineX(3)	=				0	:	SplineY((3)	=		100	:	SplineZ((3)	=		100

SplineAnimator	=	IrrAddSplineAnimator(CameraNode,	4,

SplineX(0),	SplineY(0),	SplineZ(0),	0,	0.5,	1)

IrrRemoveAnimator
Syntax
IrrRemoveAnimator	(node	as	irr_node,	node	as	irr_animator)

Description
This	removes	an	animator	from	a	node.	Stopping	the	animation	or	cleaning	an
animator	up	so	you	can	apply	a	new	one.

Example
IrrRemoveAnimator(DoorNode,	FlyAnimator)

Collision

Calls	for	creating	collision	groups	and	for	calculating
collisions	in	the	scene.

IrrGetCollisionGroupFromMesh
Syntax
irr_selector	=	IrrGetCollisionGroupFromMesh	(mesh	as	irr_mesh,	node	as
irr_node)

Description
Creates	a	collision	object	from	the	triangles	contained	within	the	specified
mesh	as	applied	to	the	position,	rotation	and	scale	of	the	supplied	node.

Example
ObjectSelector	=	IrrGetCollisionGroupFromMesh(SimpleBuildingMesh,

MyBuilding)

IrrGetCollisionGroupFromComplexMesh
Syntax
irr_selector	=	IrrGetCollisionGroupFromComplexMesh	(mesh	as
irr_mesh,	node	as	irr_node)

Description
Creates	an	optimized	triangle	selection	group	from	a	large	complex	mesh	like	a
map.	This	group	can	then	be	used	in	collision	functions	to	collide	objects
against	this	node.	You	need	to	supply	both	the	mesh	the	node	was	created	from
and	the	node	itself.

Example
MapSelector	=	IrrGetCollisionGroupFromComplexMesh(MapMesh,

MapNode)

IrrGetCollisionGroupFromBox
Syntax
irr_selector	=	IrrGetCollisionGroupFromBox	(node	as	irr_node)

Description
Creates	a	collision	object	from	the	bounding	box	of	a	node.

Example
ObjectSelector	=	IrrGetCollisionGroupFromBox(CharacterNode)

IrrGetCollisionGroupFromTerrain
Syntax
irr_selector	=	IrrGetCollisionGroupFromTerrain	(node	as	irr_node,	level	of
detail	as	integer)

Description
Creates	a	collision	object	from	a	terrain	node.	A	higher	level	of	detail	improves
the	collision	detection	but	consumes	more	resources	and	can	effect	the	speed	of
the	process.

Example
TerrainSelector	=	IrrGetCollisionGroupFromTerrain(TerrainNode,	1

)

IrrRemoveCollisionGroup
Syntax
IrrRemoveCollisionGroup	(collisionGroup	as		irr_selector,	node	as	irr_node)

Description
Remove	the	collision	selector	from	memory.	This	collision	selector	must	not	be
attached	to	another	collision	group	when	it	is	removed,	the	collision	group	is
first	removed	from	the	node	you	supply.

Example
IrrRemoveCollisionGroup(buildingCollision,	buildingNode)

IrrAttachCollisionGroupToNode
Syntax
IrrAttachCollisionGroupToNode		(collisionGroup	as		irr_selector,	node	as
irr_node)

Description
Attaches	a	collision	group	that	you	have	already	created	from	a	mesh	and	a
node	to	another	node	without	duplicating	the	collision	geometry.

Example
IrrAttachCollisionGroupToNode(boxCollision,	anotherBoxNode)

IrrSetNodeTriangleSelector
Syntax
IrrSetNodeTriangleSelector	(node	as	irr_node,	collisionGroup	as		irr_selector
)

Description
Assigns	a	collision	group	to	a	specific	node..

Example
IrrSetNodeTriangleSelector(newBuilding,	buildingCollision)

IrrCreateCombinedCollisionGroup
Syntax
irr_selector	=	IrrCreateCombinedCollisionGroup

Description
Creates	a	collision	object	that	can	be	used	to	combine	several	collision	objects
together	so	you	could	add	a	couple	of	maps	and	a	terrain	for	example.	Initially
the	combined	collision	object	is	empty.

Example
SelectorGroup	=	IrrCreateCombinedCollisionGroup

IrrAddCollisionGroupToCombination
Syntax
IrrAddCollisionGroupToCombination	(combined	collision	group	as
irr_selector,	collision	group	as	irr_selector)

Description
Adds	a	collision	object	to	group	of	collision	objects.

Example
IrrAddCollisionGroupToCombination(SelectorGroup,	MapSelector)

IrrAddCollisionGroupToCombination(SelectorGroup,	TerrainSelector

)

IrrRemoveAllCollisionGroupsFromCombination
Syntax
IrrRemoveAllCollisionGroupsFromCombination	(combined	collision	group	as
irr_selector)

Description
Empty	a	collision	group	object	so	that	you	can	add	different	collision	groups	to
it.

Example
IrrRemoveAllCollisionGroupsFromCombination(SelectorGroup)

IrrRemoveCollisionGroupFromCombination
Syntax
IrrRemoveCollisionGroupFromCombination	(combined	collision	group	as
irr_selector,	collision	group	as	irr_selector)

Description
Remove	a	single	specified	collision	object	from	a	group	of	collision	objects.

Example
IrrRemoveCollisionGroupFromCombination(SelectorGroup,

TerrainSelector)

IrrGetCollisionPoint
Syntax
integer	=	IrrGetCollisionPoint	(start	as	IRR_VECTOR,	line_end	as
IRR_VECTOR,	collision	group	as	irr_selector,	collision	point	as
IRR_VECTOR)

Description
Detect	the	collision	point	of	a	ray	in	the	scene	with	a	collision	object	if	a
collision	was	detected	1	is	returned	and	vector	collision	contains	the	co-
ordinates	of	the	point	of	collision

Start	defines	the	start	point	of	the	ray	and	End	defines	the	endpoint

Collision	group	is	a	selector	object	created	with	one	of	the	above	functions.

Collision	point	is	the	co-ordinates	in	3D	space	of	the	collision	object	the	ray
and	the	selector	object.

Example
collided	=	IrrGetCollisionPoint	(StartVector,	EndVector,

CharacterSelector,	CollisionVector)

IrrGetRayFromScreenCoordinates
Syntax
IrrGetRayFromScreenCoordinates	(screen	x	as	integer,	screen	y	as
integer,	camera	as	irr_camera,	ray	start	as	IRR_VECTOR,	ray	end	as
IRR_VECTOR)

Description
Gets	a	ray	that	goes	from	the	specified	camera	and	through	the	screen
coordinates	the	information	is	copied	into	the	supplied	start	and	end	vectors.
You	can	then	use	this	ray	in	other	collision	operations.

Example
IrrGetRayFromScreenCoordinates	(screen_x,	screen_y,	CameraNode,

StartVector,	EndVector)

IrrGetCollisionNodeFromCamera
Syntax
irr_node	=	IrrGetCollisionNodeFromCamera	(camera	as	irr_camera)

Description
A	ray	is	cast	through	the	camera	and	the	nearest	node	that	is	hit	by	the	ray	is
returned.	If	no	node	is	hit	zero	is	returned	for	the	object

Example
TargetedNode	=	IrrGetCollisionNodeFromCamera	(CameraNode)

IrrGetCollisionNodeFromRay
Syntax
irr_node	=	IrrGetCollisionNodeFromRay	(start	as	IRR_VECTOR,	line_end	as
IRR_VECTOR)

Description
A	ray	is	cast	through	the	supplied	coordinates	and	the	nearest	node	that	is	hit	by
the	ray	is	returned.	If	no	node	is	hit	zero	is	returned	for	the	object

Example
TargetedNode	=	IrrGetCollisionNodeFromRay(RayStartVector,

RayEndVector)

IrrGetCollisionNodeFromScreenCoordinates
Syntax
irr_node	=	IrrGetCollisionNodeFromScreenCoordinates	(screen	x	as
integer,	screen	y	as	integer)

Description
A	ray	is	cast	through	the	screen	at	the	specified	co-ordinates	and	the
nearest	node	that	is	hit	by	the	ray	is	returned.	If	no	node	is	hit	zero	is	returned
for	the	object.

Example

SelectedNode	=	IrrGetCollisionNodeFromScreenCoordinates(MouseX,

MouseY)

IrrGetScreenCoordinatesFrom3DPosition
Syntax
IrrGetScreenCoordinatesFrom3DPosition	(screen	x	as	integer,	screen	y	as
integer,	at	position	as	IRR_VECTOR)

Description
Screen	co-ordinates	are	returned	for	the	position	of	the	specified	3D	co-
ordinates	as	if	an	object	were	drawn	at	them	on	the	screen,	this	is	ideal	for
drawing	2D	bitmaps	or	text	around	or	on	your	3D	object	on	the	screen	for
example	in	the	HUD	of	an	aircraft.	After	the	call	Screen	X	and	Screen	Y	will
contain	the	co-ordinates.

Example
IrrGetScreenCoordinatesFrom3DPosition	(XPosition,	YPosition,

RocketVector)

IrrGet2DPositionFromScreenCoordinates	(contributed	by	agamemnus)
Syntax
IrrGet2DPositionFromScreenCoordinates	(screenx	As	integer,	screeny	As
integer,		x	As	Single,	y	As	Single,	camera	As	irr_camera)

Description
Calculates	the	intersection	between	a	ray	projected	through	the	specified	screen
co-ordinates	and	a	plane	at	the	world	origin.

The	Parameters	X,	Y	and	Z	will	recieve	the	2D	position	where	the	line	through
the	screen	intersects	with	the	plane.

Example
IrrGet2DPositionFromScreenCoordinates	(256,	256,	x,	y,	OurCamera

)

IrrSetNodePosition(MyCursor,	XPosition,	YPosition,	ZPosition)

IrrGet3DPositionFromScreenCoordinates	(contributed	by	agamemnus)
Syntax
IrrGet3DPositionFromScreenCoordinates	(screenx	as	integer,	screeny	as
integer,	x	as	single,	y	as	single,		z	as	single,	camera	as	irr_camera,	normalX	as
single	=	0.0,	normalY	as	single	=	0.0,	normalZ	as	single	=
1.0,	distanceFromOrigin	as	single	=	0.0)

Description
Calculates	the	intersection	between	a	ray	projected	through	the	specified	screen
co-ordinates	and	a	plane	defined	from	a	normal	and	the	distance	of	that
plane	from	the	world	origin.

The	Parameters	X,	Y	and	Z	will	recieve	the	3D	position	where	the	line	through
the	screen	intersects	with	the	plane.

Example
IrrGet3DPositionFromScreenCoordinates	(ScreenX,	ScreenY,

XPosition,	YPosition,	ZPosition,	MyCamera)

IrrSetNodePosition(MyModel,	XPosition,	YPosition,	ZPosition)

IrrGetChildCollisionNodeFromRay
Syntax
irr_node	=	IrrGetChildCollisionNodeFromRay	(node	as	irr_node,	idMask	as
integer,	recurse	as	uinteger,	start	as	IRR_VECTOR,	line_end	as	IRR_VECTOR
)

Description
A	ray	is	cast	through	the	supplied	coordinates	and	the	nearest	node	that	is	hit	by
the	ray	is	returned.	if	no	node	is	hit	zero	is	returned	for	the	object,	only	a	subset
of	objects	are	tested,	i.e.	the	children	of	the	supplied	node	that	match	the
supplied	id.Iif	the	recurse	option	is	enabled	the	entire	tree	of	child	objects
connected	to	this	node	are	tested.

Example
IrrGetChildCollisionNodeFromRay	(SectorNode,	100,	IRR_OFF,

StartPoint,	EndPoint)

IrrGetChildCollisionNodeFromPoint
Syntax
irr_node	=	IrrGetChildCollisionNodeFromPoint	(node	as	irr_node,	idMask	as
integer,	recurse	as	uinteger,	point	as	IRR_VECTOR)

Description
The	node	and	its	children	are	recursively	tested	and	the	first	node	that	contains
the	matched	point	is	returned.	if	no	node	is	hit	zero	is	returned	for	the	object,
only	a	subset	of	objects	are	tested,	i.e.	the	children	of	the	supplied	node	that
match	the	supplied	id.	if	the	recurse	option	is	enabled	the	entire	tree	of	child
objects	connected	to	this	node	are	tested.

Example
IrrGetChildCollisionNodeFromPoint	(SectorNode,	100,	IRR_ON,

TestPoint)

IrrGetNodeAndCollisionPointFromRay
Syntax
irr_node	=	IrrGetNodeAndCollisionPointFromRay	(vectorStart	as
IRR_VECTOR,	vectorEnd	as	IRR_VECTOR,	node	as	irr_node,	posX	as
single,	posY	as	single,	posZ	as	single,	normalX	as	single,	normalY	as
single,	normalZ	as	single,	id	as	integer	=	0,	rootNode	as	irr_node	=
IRR_NO_OBJECT)

Description
A	ray	is	cast	through	the	specified	co-ordinates	and	the	nearest	node	that	has	a
collision	selector	object	that	is	hit	by	the	ray	is	returned	along	with	the
coordinate	of	the	collision	and	the	normal	of	the	triangle	that	is	hit.	if	no	node
is	hit	zero	is	returned	for	the	object.	If	a	node	is	supplied	for	the	rootNode	that
tests	for	collision	start	from	that	node	and	are	only	tested	against	that	node	and
its	children.

Example
IrrGetRayFromScreenCoordinates	(screen_x,	screen_y,	CameraNode,

StartVector,	EndVector)

IrrGetNodeAndCollisionPointFromRay	(StartVector,	EndVector,

collidedNode,	hitX,	hitY,	hitZ,	normalX,	normalY,	normalZ,	0,

myRoom)

if	NOT	collidedNode	=	IRR_NO_OBJECT	then

				Print	"We	hit	something"

end	if

IrrGetDistanceBetweenNodes
Syntax
distance	=	IrrGetDistanceBetweenNodes	(nodeA	as	IRR_NODE,		nodeA	as
IRR_NODE)

Description
The	distance	between	two	nodes	is	measured	using	fast	maths	functions	that
will	show	inaccuracies.	Useful	for	when	it	is	nessecary	to	test	distances
between	many	nodes..

Example
Dim	As	Single	Distance		=	IrrGetDistanceBetweenNodes(nodeA,	nodeB

)

IrrAreNodesIntersecting
Syntax
test	=	IrrAreNodesIntersecting	(nodeA	as	IRR_NODE,		nodeA	as	IRR_NODE
)

Description
Tests	whether	the	bounding	boxes	are	two	nodes	are	intersecting.	Bounding
boxes	are	axis	aligned	and	do	not	rotate	when	you	rotate	the	nodes.	This	should
be	kept	in	mind	when	testing	for	collisions.

Example
If	NOT	IrrAreNodesIntersecting	(nodeA,	nodeB)	=	0	Then

				Print	"Collision"

End	If

IrrIsPointInsideNode
Syntax

irr_node	=	IrrIsPointInsideNode	(node	as	IRR_NODE,	X	as	Single,	Y	as
Single,	Z	as	Single)

Description
Determine	if	the	specified	point	is	inside	the	bounding	box	of	the	node.

Example
If	NOT	IrrIsPointInsideNode	(node,	X,	Y,	Z)	=	0	Then

				Print	"Point	is	inside	Node"

End	If

IrrGetCollisionResultPosition	(contributed	by	The	Car)
Syntax
IrrGetCollisionResultPosition	(selector	As	irr_selector,	ellipsoidPosition	As
IRR_VECTOR,	ellipsoidRadius	As	IRR_VECTOR,	velocity	As
IRR_VECTOR,	gravity	As	IRR_VECTOR,	slidingSpeed	as	single,	outPosition
As	IRR_VECTOR,	outHitPosition	As	IRR_VECTOR,	outFalling	As	Integer)

Description
Collides	a	moving	ellipsoid	with	a	3d	world	with	gravity	and	returns	the
resulting	new	position	of	the	ellipsoid,	the	point	at	which	the	elipsoid	collided
with	the	surface	and	whether	the	ellipsoid	is	falling	through	the	air.

This	can	be	used	for	moving	a	character	in	a	3d	world:	The	character	will	slide
at	walls	and	is	able	to	walk	up	stairs.	The	method	used	how	to	calculate	the
collision	result	position	is	based	on	the	paper	"Improved	Collision	detection
and	Response"	by	Kasper	Fauerby.

Example
IrrGetCollisionResultPosition	(_

								collisionGroup,	_

								vectPosition,	_

								vectRadius,	_

								vectVelocity,	_

								vectGravity,	_

								0.00005,	_

								vectResultPosition,	_

								vectHitPosition

								areFalling)

IrrSetNodePosition(rockNode,	vectPosition.X,

vectPosition.Y,	vectPosition.Z)

Cameras

Calls	for	creating	and	controlling	cameras	in	the	scene.
The	camera	objects	are	used	for	defining	a	view	point	and
a	target	point	which	is	used	to	render	the	scene.

IrrAddFPSCamera
Syntax
irr_camera	=	IrrAddFPSCamera

Description
Adds	a	'first	person	shooter'	style	camera	into	the	scene	that	will	be	used	to
define	the	view	point	and	target	point	and	other	attributes	of	the	view	into	the
3D	scene.	If	you	haven't	captured	mouse	and	keyboard	events	this	camera	can
be	controlled	with	the	cursor	keys	and	the	mouse.

Example
FPSCamera	=	IrrAddFPSCamera

IrrAddCamera
Syntax
irr_camera	=	IrrAddCamera	(camera	X	as	single,	camera	Y	as	single,	camera	Z
as	single,	target	X	as	single,	target	Y	as	single,	target	Z	as	single)

Description
Adds	a	camera	to	into	the	scene	that	will	be	used	to	define	the	view	point	and
target	point	and	other	attributes	of	the	view	into	the	3D	scene.	Animators	and
other	node	functions	can	be	applied	to	this	node.

Camera	X,	Camera	Y	and	Camera	Z	define	the	view	point	of	the	camera.

Target	X,	Target	Y	and	Target	Z	define	the	target	of	the	camera,

Example
CameraObject	=	IrrAddCamera(100,0,0,	0,-10,0)

IrrAddMayaCamera
Syntax
irr_camera	=	IrrAddMayaCamera	(parent	as	irr_node,	rotateSpeed	as	single,
zoomSpeed	as	single,	moveSpeed	as	single)

Description
Adds	a	Maya	style	camera	to	into	the	scene	the	user	can	click	with	the	left,
middle	and	right	mouse	buttons	to	move,	zoom	and	rotate	the	camera.

rotateSpeed	the	speed	at	which	the	camera	revolves
zoomSpeed	the	speed	at	which	the	camera	zooms	in	and	out
moveSpeed	the	speed	at	which	the	camera	moves

Example
CameraObject	=	IrrAddMayaCamera(IRR_NO_OBJECT,	100.0,	100.0,

100.0)

IrrSetCameraTarget
Syntax
IrrSetCameraTarget	(camera	as	irr_camera,	X	as	single,	Y	as	single,	Z	as	single
)

Description
The	camera	view	point	can	be	moved	by	simply	using	the	IrrSetNodePosition
function	but	this	operation	will	change	the	point	that	the	camera	is	pointing	at.

Example
IrrSetCameraTarget	(CameraObject,	0,	50,	0)

IrrGetCameraTarget
Syntax
IrrGetCameraTarget	(camera	as	irr_camera,	X	as	single,	Y	as	single,	Z	as

single)

Description
Get	the	point	in	space	that	the	camera	is	looking	at.	The	point	is	copied	into	the
supplied	X,	Y	and	Z	variables

Example
IrrGetCameraTarget	(CameraObject,	LookAtX,	LookAtY,	LookAtZ)

IrrGetCameraUpDirection
Syntax
IrrGetCameraUpDirection	(camera	as	irr_camera,	X	as	single,	Y	as	single,	Z	as
single)

Description
Get	the	up	vector	of	a	camera	object	into	the	supplied	variables,	this	controls
the	upward	direction	of	the	camera	and	allows	you	to	roll	it	for	free	flight
action.	This	specifies	a	point	in	space	at	which	the	top	of	the	camera	points.

Example
IrrGetCameraUpDirection	(CameraObject,

TopOfCamPointsAtX,	TopOfCamPointsAtY,	TopOfCamPointsAtZ)

IrrSetCameraUpDirection
Syntax
IrrSetCameraUpDirection	(camera	as	irr_camera,	X	as	single,	Y	as	single,	Z	as
single)

Description
Set	the	up	vector	of	a	camera	object,	this	controls	the	upward	direction	of	the
camera	and	allows	you	to	roll	it	for	free	flight	action.	This	specifies	a	point	in
space	at	which	the	top	of	the	camera	points.

Example
IrrSetCameraUpDirection	(CameraObject,

TopOfCamPointsAtX,	TopOfCamPointsAtY,	TopOfCamPointsAtZ)

IrrGetCameraOrientation
Syntax
IrrGetCameraOrientation	(camera	as	irr_camera,	X	as	IRR_VECTOR,	Y
as	IRR_VECTOR,	Z	as	IRR_VECTOR)

Description
Gets	the	vectors	describing	the	camera	direction	useful	after	the	camera	has
been	revolved.

Example
IrrGetCameraOrientation	(CameraObject,	VectorX,	VectorY,	VectorZ

)

IrrRevolveCamera
Syntax
IrrRevolveCamera	(camera	as	irr_camera,		yaw	as	single,	pitch	as	single,	roll
as	single,	drive	as	single,	strafe	as	single,	elevate	as	single)

Description
Revolve	the	camera	using	quaternion	calculations,	this	will	help	avoid	gimbal
lock	associated	with	normal	Rotations	and	is	ideal	for	spacecraft	and	aircraft.

The	command	takes	six	parameters	that	control	yaw	(turning	left	and	right),
pitch	(tilting	up	and	down),	roll	(rolling	left	and	right),	drive	(moving	forwards
and	backward),	strafe	(moving	left	and	right)	and	finally	elevate	(moving	up
and	down)

Many	thanks	to	RogerBorg	for	this.

Example
IrrRevolveCamera	(CameraObject,	CameraYaw,	CameraPitch,

CameraRoll,	CameraDrive,	CameraDrive,	CameraStrafe,	CameraElevate

)

IrrSetCameraUpAtRightAngle

Syntax
IrrSetCameraUpAtRightAngle	(camera	as	irr_camera)

Description
Set	the	camera	up	at	a	right	angle	to	the	camera	vector.

Example
IrrSetCameraUpAtRightAngle	(CameraObject)

IrrSetCameraOrthagonal
Syntax
IrrSetCameraOrthagonal	(camera	as	irr_camera,	distanceX	as	single,	distanceY
as	single,	distanceZ	as	single)

Description
Set	the	projection	of	the	camera	to	an	orthagonal	view,	where	there	is	no	sense
of	perspective.	The	distance	to	the	target	adjusts	the	width	and	height	of	the
camera	view,	essentially	the	smaller	it	is	the	larger	the	object	will	appear.

Example
IrrGetNodePosition(MyTarget,	tarX,	tarY,	tarZ)

IrrGetNodePosition(MyCamera,	camX,	camY,	camZ)

IrrSetCameraOrthagonal	(MyCamera,	camX-tarX,	camY-tarY,	camZ-tarZ

)

IrrSetCameraClipDistance
Syntax
IrrSetCameraClipDistance	(camera	as	irr_camera,	distance	as	single)

Description
A	camera	clips	objects	in	the	distance	that	may	be	a	part	of	the	scene	to
increase	rendering	performance	without	requiring	you	to	manage	adding	and
deleting	the	objects	from	the	view.	This	defines	the	distance	beyond	which	no
polygons	will	be	drawn.

Example
IrrSetCameraClipDistance	(CameraObject,	12000)

IrrSetActiveCamera
Syntax
IrrSetActiveCamera	(camera	as	irr_camera)

Description
When	you	have	several	camera	objects	in	the	scene	you	can	use	this	call	to
define	which	of	them	is	to	be	used	to	look	through	when	drawing	the	scene.

Example
IrrSetActiveCamera(CameraObject)

IrrSetCameraFOV
Syntax
IrrSetCameraFOV	(camera	as	irr_camera,	fov	as	single)

Description
Sets	the	field	of	vision	of	the	camera	a	wide	field	of	vision	will	give	a	distorted
perspective,	if	the	angle	is	too	narrow	the	display	will	feel	restricted.	The	value
is	in	radians	and	has	a	default	value	of	PI	/	2.5

Example
IrrSetCameraFOV(CameraObject,	PI	/	2)

IrrSetCameraAspectRatio
Syntax
IrrSetCameraAspectRatio	(camera	as	irr_camera,	aspectRatio	as	single)

Description
Sets	the	aspect	ratio	of	the	camera	in	the	same	way	you	think	of	standard
screens	and	widescreens.	A	widescreen	usually	has	an	aspect	ratio	of	16:9	or
16/9	=	1.78.	The	camera	apect	ratio	is	set	up	automatically	however	if	you	are
using	split	screen	effects	you	may		need	to	change	the	camera	aspect	ratio.

Example

IrrSetCameraAspectRatio(CameraObject,	1.78)

Lighting

Calls	to	create	and	effect	lighting	in	the	scene.

IrrAddLight
Syntax
irr_node	=	IrrAddLight	(x	as	single,	y	as	singlez	as	single,	red	as	single,	green
as	single,	blue	as	single,	size	as	single)

Description
Adds	a	light	into	scene	to	naturally	illuminate	your	scene.

X,	Y	and	Y	defines	the	coordinates	of	the	light	in	the	scene.

Red,	Green	and	Blue	define	the	intensities	of	the	lighting	for	those	colors.	This
is	a	fractional	number	ranging	from	0	upwards	the	higher	the	value	the	brighter
the	light.

Size	specifies	the	radius	of	effect	of	the	light

Example
WarningLight	=	IrrAddLight	(0,	100,	50,		0.5,0.5,0.5,	50)

IrrSetAmbientLight
Syntax
IrrSetAmbientLight	(Red	as	single,	Green	as	single,	Blue	as	single)

Description
Sets	the	ambient	lighting	level	in	the	scene,	ambient	light	casts	light	evenly
across	the	entire	scene	and	can	be	used	to	increase	the	overall	lighting	level.	If
should	never	be	greater	that	the	brightness	of	the	darkest	area	of	your	scene,	it
can	however	reduce	the	number	of	lights	you	need	in	the	scene.

The	Red,	Green	and	Blue	components	of	this	lighting	is	supplied	as	integers	in

the	range	or	0	to	255

Example
IrrSetAmbientLight(72,	64,	64)

IrrSetLightAmbientColor
Syntax
IrrSetLightAmbientColor(Light	as	irr_node,	Red	as	single,	Green	as	single,
Blue	as	single)

Description
Ambient	color	emitted	by	the	light,	ambient	light	casts	light	evenly	across	the
entire	scene	and	can	be	used	to	increase	the	overall	lighting	level.	If	should
never	be	greater	that	the	brightness	of	the	darkest	area	of	your	scene,	it	can
however	reduce	the	number	of	lights	you	need	in	the	scene.

The	Red,	Green	and	Blue	components	of	this	lighting	is	supplied	as	singles
specifying	the	brightness	in	each	color	channel

Example
IrrSetLightAmbientColor(SceneLight,	1.0,	0.1,	0.7)

IrrSetLightAttenuation
Syntax
IrrSetLightAttenuation(Light	as	irr_node,	Red	as	single,	Green	as	single,	Blue
as	single)

Description
Changes	the	light	strength	fading	over	distance.	Good	values	for	distance
effects	use	(1.0,	0.0,	0.0)	and	simply	add	small	values	to	the	second	and	third
element.

Example
IrrSetLightAttenuation(SceneLight,	1.0,	0.08,	0.07)

IrrSetLightCastShadows
Syntax
IrrSetLightCastShadows(Light	as	irr_node,	cast_shadows	as	uinteger)

Description
Specifies	whether	the	light	casts	shadows	in	the	scene	or	not.	Shadowing	must
be	enabled	in	the	IrrStart	call	and	also	on	the	nodes	in	the	scene.

Example
IrrSetLightCastShadows(SceneLight,	IRR_ON)

IrrSetLightDiffuseColor
Syntax
IrrSetLightDiffuseColor(Light	as	irr_node,	Red	as	single,	Green	as	single,
Blue	as	single)

Description
IrrSetLightDiffuseColor

The	Red,	Green	and	Blue	components	of	this	lighting	is	supplied	as	singles
specifying	the	brightness	in	each	color	channel

Example
IrrSetLightDiffuseColor(SceneLight,	1.0,	1.0,	0.8)

IrrSetLightFalloff
Syntax
IrrSetLightFalloff(Light	as	irr_node,	Falloff	as	single)

Description
The	light	strength's	decrease	between	Outer	and	Inner	cone.

Example
IrrSetLightFalloff(SceneLight,	0.8)

IrrSetLightInnerCone
Syntax
IrrSetLightInnerCone(Light	as	irr_node,	InnerCone	as	single)

Description
The	angle	of	the	spot's	inner	cone.	Ignored	for	other	lights.

Example
IrrSetLightInnerCone(SceneLight,	0.4)

IrrSetLightOuterCone
Syntax
IrrSetLightOuterCone(Light	as	irr_node,	OuterCone	as	single)

Description
The	angle	of	the	spot's	outer	cone.	Ignored	for	other	lights.

Example
IrrSetLightOuterCone(SceneLight,	0.9)

IrrSetLightRadius
Syntax
IrrSetLightRadius(Light	as	irr_node,	Radius	as	single)

Description
Radius	of	light.	Everything	within	this	radius	be	be	lighted.	If	some	artefacts
can	be	seen	when	the	radius	is	changed	in	this	instance	simply	make	the	radius
a	little	large

Example
IrrSetLightRadius(SceneLight,	50.2)

IrrSetLightSpecularColor
Syntax
IrrSetLightSpecularColor(Light	as	irr_node,	Red	as	single,	Green	as	single,

Blue	as	single)

Description
Sets	the	ambient	lighting	level	in	the	scene,	ambient	light	casts	light	evenly
across	the	entire	scene	and	can	be	used	to	increase	the	overall	lighting	level.	If
should	never	be	greater	that	the	brightness	of	the	darkest	area	of	your	scene,	it
can	however	reduce	the	number	of	lights	you	need	in	the	scene.

The	Red,	Green	and	Blue	components	of	this	lighting	is	supplied	as	singles
specifying	the	brightness	in	each	color	channel

Example
IrrSetLightSpecularColor(SceneLight,	1.0,	1.0,	1.0)

IrrSetLightType
Syntax
IrrSetLightType(Light	as	irr_node,	Light_type	as	E_LIGHT_TYPE)

Description
The	type	of	the	light.	All	lights	default	to	a	point	light	but	can	be	changed	with
this	setting	to	one	of	the	following	values:	-

ELT_POINT
ELT_SPOT
ELT_DIRECTIONAL

Example

IrrSetLightType(SceneLight,	ELT_SPOT)

Terrain

Calls	to	create	and	alter	the	properties	of	terrain	meshes,
special	nodes	that	are	used	to	create	large	expansive
landscapes.

IrrAddTerrain
Syntax
irr_terrain	=	IrrAddTerrain	(path	as	zstring	ptr,	xPosition	as	single	=	0.0,
yPosition	as	single	=	0.0,	zPosition	as	single	=	0.0,	xRotation	as	single	=	0.0,
yRotation	as	single	=	0.0,	zRotation	as	single	=	0.0,	xScale	as	single	=	1.0,
yScale	as	single	=	1.0,	zScale	as	single	=	1.0,	vertexAlpha	as	integer	=	255,
vertexRed	as	integer	=	255,	vertexGreen	as	integer	=	255,	vertexBlue	as	integer
=	255,	smoothing	as	integer	=	0,	maxLOD	as	integer	=	5,	patchSize	as
IRR_TERRAIN_PATCH_SIZE	=	ETPS_17)

Description
Creates	a	terrain	object	from	a	gray	scale	bitmap	where	bright	pixels	are	high
points	on	the	terrain	and	black	pixels	are	low	points.	You	will	inevitablly	have
to	rescale	the	terrain	during	the	call	or	after	it	is	created.	The	Terrain	object	is	a
special	dynamic	mesh	whose	resoloution	is	reduced	in	the	distance	to	reduce
the	number	of	triangles	it	consumes.

Path	is	the	filename	of	a	gray	scale	image	used	to	define	the	contours	of	the
surface.
xPosition,	yPosition	and	zPosition	define	the	position	of	the	terrain
xRotation,	yRotation	and	zRotation	define	the	rotation	of	the	terrain
xScale,	xScale	and	xScale	define	the	scale	of	the	terrain
vertexAlpha,	vertexRed,	vertexGreen,	vertexBlue,	define	the	vertex	color	of	all
points	in	the	terrain.
smoothing	allows	you	to	define	whether	the	contours	of	the	surface	of	the
terrain	are	smoothed	over.
maxLOD	and	patchsize	control	the	properties	of	the	level	of	detail	calculations
applied	to	the	terrain,	it	is	recommended	that	these	are	left	at	default	values.

Example
TerrainNode	=	IrrAddTerrain("CanyonsHeightField.bmp")

IrrAddTerrainTile
Syntax
irr_terrain	=	IrrAddTerrainTile	(image	as	irr_image,	tileSize	as	integer	=	256,
dataX	as	integer	=	0,	dataY	as	integer	=	0,	xPosition	as	single	=	0.0,	yPosition
as	single	=	0.0,	zPosition	as	single	=	0.0,	xRotation	as	single	=	0.0,	yRotation
as	single	=	0.0,	zRotation	as	single	=	0.0,	xScale	as	single	=	1.0,	yScale	as
single	=	1.0,	zScale	as	single	=	1.0,	smoothing	as	integer	=	1,	maxLOD	as
integer	=	5,	patchSize	as	IRR_TERRAIN_PATCH_SIZE	=	ETPS_17)

Description
Creates	a	tilable	terrain	object	from	a	gray	scale	bitmap	where	bright	pixels	are
high	points	on	the	terrain	and	black	pixels	are	low	points.	You	will	inevitablly
have	to	rescale	the	terrain	during	the	call	or	after	it	is	created.	The	Terrain
object	is	a	special	dynamic	mesh	whose	resoloution	is	reduced	in	the	distance
to	reduce	the	number	of	triangles	it	consumes.

Unlike	the	origonal	terrain	object	the	tileable	terrain	object	can	be	attached	to
other	terrain	tile	objects	without	being	affected	by	cracks	between	tiles	caused
by	the	level	of	detail	mechanism.	When	working	with	tile	terrains	it	should	be
noted	that	the	terrain	is	internally	divided	up	into	patches	that	are	patchSize	-	1
and	there	is	always	one	invisible	row	of	patches	at	the	top	and	left	of	the
terrain.	Essentially	this	means	that	if	your	tileSize	is	128	x	128	the	visible	size
of	your	terrain	will	be	112	x	112	(with	a	patchSize	of	ETPS_17)

Note:	Tiled	Terrain	object	can	be	automatically	control	with	the	Zone	Manager
objects	please	refer	to	them	for	further	details.

Image	is	an	image	file	loaded	with	IrrGetImage	and	containing	a	gray	scale
image	used	to	define	the	contours	of	the	surface.
TileSize	defines	the	size	of	the	terrain	independantly	of	the	size	of	the	image
used	to	create	it
xPosition,	yPosition	and	zPosition	define	the	position	of	the	terrain
xRotation,	yRotation	and	zRotation	define	the	rotation	of	the	terrain

xScale,	xScale	and	xScale	define	the	scale	of	the	terrain
smoothing	allows	you	to	define	whether	the	contours	of	the	surface	of	the
terrain	are	smoothed	over.
maxLOD	and	patchsize	control	the	properties	of	the	level	of	detail	calculations
applied	to	the	terrain,	it	is	recommended	that	these	are	left	at	default	values.

Example
TerrainNode	=	IrrAddTerrainTile(EasterIslandImage,	128)

IrrAddSphericalTerrain
Syntax
irr_terrain	=	IrrAddSphericalTerrain	(topPath	as	zstring	ptr,	frontPath	as
zstring	ptr,	backPath	as	zstring	ptr,	leftPath	as	zstring	ptr,	rightPath	as	zstring
ptr,	bottomPath	as	zstring	ptr,	xPosition	as	single	=	0.0,	yPosition	as	single	=
0.0,	zPosition	as	single	=	0.0,	xRotation	as	single	=	0.0,	yRotation	as	single	=
0.0,	zRotation	as	single	=	0.0,	xScale	as	single	=	1.0,	yScale	as	single	=	1.0,
zScale	as	single	=	1.0,	vertexAlpha	as	integer	=	255,	vertexRed	as	integer	=
255,	vertexGreen	as	integer	=	255,	vertexBlue	as	integer	=	255,	smoothing	as
integer	=	0,	spherical	as	integer	=	0,	maxLOD	as	integer	=	5,	patchSize	as
IRR_TERRAIN_PATCH_SIZE	=	ETPS_17)

Description
Creates	a	spherical	terrain	that	represents	a	planetary	body.	When	using	this
terrain	it	is	better	to	think	of	it	as	a	cube	rather	than	a	sphere,	in	fact	it	is	a	cube
that	is	distorted	so	that	its	surface	becomes	spherical,	like	a	cube	it	has	a	top,
bottom,	left,	right,	front	and	back	and	co-ordinates	are	thought	of	as	being	at
position	X,Y	on	cube	face	N.	In	someways	this	makes	working	with	placing
things	on	the	object	simpler	as	you	can	think	of	it	as	six	flat	surfaces.

The	first	six	paths	are	the	path	of	six	gray	scale	bitmaps	where	bright	pixels	are
high	points	on	the	terrain	and	black	pixels	are	low	points.	
The	position,	rotation	and	scale	of	the	terrain	are	specified	with	the	next	series
of	parameters.
Four	parameters	are	used	to	set	the	vertex	color	of	all	the	verticies	in	the
terrain.
Smoothing	is	used	to	smooth	out	the	contours	of	the	hills	in	the	terrain.
maxLOD	and	patchSize	allow	you	to	adjust	the	level	of	detail	within	the	terrain

although	it	is	usually	best	to	leave	these	to	default	values.

When	creating	heightmaps	for	the	faces	of	the	terrain	you	will	need	to	ensure
that	the	height	of	pixels	at	the	edge	of	adjoining	sides	of	the	terrain	are	the
same	otherwise	large	visible	cracks	will	appear	at	the	edges	of	the	faces,	the
easiest	way	to	do	this	is	to	create	terrain	texture	and	then	copy	and/or	rotate	it
onto	its	adjacent	face.	You	can	get	some	suprisingly	effective	planets	and
asteroids	with	textures	as	small	as	32x32	but	the	object	also	runs	well	with	a
terrain	size	at	the	maximum	256	x	256.

Example
Terrain	=	IrrAddSphericalTerrain(_

												"moonbase_top.bmp",	_

												"moonbase_front.bmp",	_

												"moonbase_back.bmp",	_

												"moonbase_left.bmp",	_

												"moonbase_right.bmp",	_

												"moonbase_bottom.bmp",	_

												px,py,pz,		rx,ry,rz,	64.0,64.0,64.0,	_

												0,	255,	255,	255,		-30,	0,	4,	ETPS_17)

IrrGetTerrainHeight
Syntax
single	=	IrrGetTerrainHeight	(terrain	as	irr_terrain,	X	as	single,	Y	as	single)

Description
Get	the	height	of	a	point	on	a	terrain.	This	can	be	a	particularlly	fast	and
accurate	way	to	move	an	object	over	a	terrain.

Example
Y	=	IrrGetTerrainHeight	(TerrainNode,	X,	Z)

IrrScaleTexture
Syntax
IrrScaleTexture	(terrain	as	irr_terrain,	X	as	single,	Y	as	single)

Description
As	a	terrain	object	is	a	particularly	huge	mesh	when	textured	are	applied	to	it
they	look	extremely	pixelated.	To	get	over	this	effect	a	terrain	object	can	have
two	materials	applied	to	it,	one	to	give	general	surface	color	and	a	second	that
is	copied	across	the	surface	like	tiles	to	give	a	rough	detailed	texture.	This	call
specifies	the	scaling	of	this	detail	texture.

Example
IrrScaleTexture	(TerrainNode,	20,	20)

IrrGetTerrainTileHeight
Syntax
single	=	IrrGetTerrainTileHeight	(terrain	as	irr_terrain,	X	as	single,	Y	as	single
)

Description

Get	the	height	of	a	point	on	a	terrain	tile.	This	can	be	a	particularlly	fast	and
accurate	way	to	move	an	object	over	a	terrain.

Example
Y	=	IrrGetTerrainTileHeight	(TerrainNode,	X,	Z)

IrrScaleTileTexture
Syntax
IrrScaleTileTexture	(terrain	as	irr_terrain,	X	as	single,	Y	as	single)

Description
As	a	tile	terrain	object	is	a	particularly	huge	mesh	when	textured	are	applied	to
it	they	look	extremely	pixelated.	To	get	over	this	effect	a	terrain	object	can	have
two	materials	applied	to	it,	one	to	give	general	surface	color	and	a	second	that
is	copied	across	the	surface	like	tiles	to	give	a	rough	detailed	texture.	This	call
specifies	the	scaling	of	this	detail	texture.

Example
IrrScaleTileTexture	(TerrainNode,	20,	20)

IrrAttachTile
Syntax
IrrAttachTile	(terrain	as	irr_terrain,	neighbouring_terrain	as	irr_terrain,		edge
as	integer)

Description
Set	the	adjacent	tile	to	this	tile	node.	To	avoid	cracks	appearing	between	tiles,
tiles	need	to	know	which	tiles	are	their	neighbours	and	which	edges	they	are
attached	too.

Example
IrrAttachTile(TerrainNorth,	TerrainSouth,	TOP_EDGE)

IrrAttachTile(TerrainSouth,	TerrainNorth,	BOTTOM_EDGE)

IrrSetTileStructure

Syntax
IrrSetTileStructure	(terrain	as	irr_terrain,	image	as	irr_image,		x	as	integer,	y	as
integer)

Description
Loads	the	tile	structure	from	the	supplied	image	file.	Unlike	the	image	in	the
origonal	call	to	create	a	terrain	tile	this	image	has	a	different	structure.	The
image	should	be	in	RGBA	format,	the	alpha	value	is	used	to	set	the	height	of
the	terrain	and	the	RGB	values	are	used	to	set	the	color	of	the	verticies.	This
can	either	be	for	loading	precalculated	lighting	into	the	scene	or	it	can	be	used
with	the	new	IRR_EMT_FOUR_DETAIL_MAP	material	type	to	define	the
weight	of	each	of	the	greyscale	detail	maps	in	the	RGB	channels	of	the	detail
map.	The	x	and	y	values	can	be	used	to	load	the	structure	from	a	specific	point
on	the	bitmap.

Example
IrrSetTileStructure(TerrainCove,	CoveStructure,	0,	0)

IrrSetTileColor
Syntax
IrrSetTileColor(terrain	as	irr_terrain,	image	as	irr_image,		x	as	integer,	y	as
integer)

Description
Loads	the	tile	vertex	colors	from	the	supplied	image	file.	The	RGB	values	are
used	to	set	the	color	of	the	verticies.	This	can	either	be	for	loading
precalculated	lighting	into	the	scene	or	it	can	be	used	with	the	new
IRR_EMT_FOUR_DETAIL_MAP	material	type	to	define	the	weight	of	each
of	the	greyscale	detail	maps	in	the	RGB	channels	of	the	detail	map.	The	x	and	y
values	can	be	used	to	load	the	structure	from	a	specific	point	on	the	bitmap.

Example
IrrSetTileColor(TerrainCove,	CoveStructure,	0,	0)

IrrScaleSphericalTexture
Syntax

IrrScaleSphericalTexture	(terrain	as	irr_terrain,	X	as	single,	Y	as	single)

Description
As	the	surfaces	of	a	sphereical	terrain	object	are	a	particularly	huge	mesh	when
textures	are	applied	to	them	they	look	extremely	pixelated.	To	get	over	this
effect	a	spherical	terrain	object	can	have	two	materials	applied	to	it,	one	to	give
general	surface	color	and	a	second	that	is	copied	across	the	surface	like	tiles	to
give	a	rough	detailed	texture.	This	call	specifies	the	scaling	of	this	detail
texture.

Example
IrrScaleSphericalTexture	(SphericalTerrainNode,	20,	20)

IrrSetSphericalTerrainTexture
Syntax
IrrSetSphericalTerrainTexture	(terrain	as	irr_terrain,	topTexture	as	irr_texture,
frontTexture	as	irr_texture,	backTexture	as	irr_texture,	leftTexture	as
irr_texture,	rightTexture	as	irr_texture,	bottomTexture	as	irr_texture,
materialIndex	as	uinteger)

Description
Apply	six	textures	to	the	surface	of	a	spherical	terrain.	By	using	the	material
index	you	can	set	the	color	or	the	detail	maps

Example
IrrSetSphericalTerrainTexture	(TerrainNode,	_

																																"moobbase_col_top.bmp",	_

																																"moobbase_col_front.bmp",	_

																																"moobbase_col_back.bmp",	_

																																"moobbase_col_left.bmp",	_

																																"moobbase_col_right.bmp",	_

																																"moobbase_col_bottom.bmp",	_

																																0)

IrrLoadSphericalTerrainVertexColor
Syntax
IrrLoadSphericalTerrainVertexColor	(terrain	as	irr_terrain,	topMap	as
irr_image,	frontMap	as	irr_image,	backMap	as	irr_image,	leftMap	as	irr_image,

rightMap	as	irr_image,	bottomMap	as	irr_image)

Description
Apply	six	images	to	the	vertex	colors	of	the	faces,	this	is	useful	for	setting	the
verticies	so	that	they	can	be	used	with	simple	terrain	spattering	described	in	the
section	on	tiled	terrains	above.

Example
IrrLoadSphericalTerrainVertexColor	(TerrainNode,	_

																																"moobbase_vert_top.bmp",	_

																																"moobbase_vert_front.bmp",	_

																																"moobbase_vert_back.bmp",	_

																																"moobbase_vert_left.bmp",	_

																																"moobbase_vert_right.bmp",	_

																																"moobbase_vert_bottom.bmp")

IrrGetSphericalTerrainSurfacePosition
Syntax
IrrGetSphericalTerrainSurfacePosition	(terrain	as	irr_terrain,	face	as	integer,
logicalX	as	single,	logicalZ	as	single,	X	as	single,	Y	as	single,	Z	as	single)

Description
Get	the	surface	position	of	a	logical	point	on	the	terrain.	You	supply	a	face
number	and	a	logical	X,	Y	position	on	that	face	and	this	call	will	return	the
height	of	that	point	on	the	terrain	sphere	inside	the	X,	Y,	Z	parameters.

Note:	By	subtracting	the	center	of	the	sphere	from	this	co-ordinate	and
converting	this	vector	to	angles	you	can	find	the	upward	direction	of	the	point
on	the	surface.

Example
IrrGetSphericalTerrainSurfacePosition	(TerrainNode,	IRR_TOP_FACE,

buggyX,	buggyZ,	X,	Y,	Z)

IrrGetSphericalTerrainSurfacePositionAndAngle
Syntax
IrrGetSphericalTerrainSurfacePosition	(terrain	as	irr_terrain,	face	as	integer,
logicalX	as	single,	logicalZ	as	single,	X	as	single,	Y	as	single,	Z	as	single,

RotationX	as	single,	RotationY	as	single,	RotationZ	as	single)

Description
Get	the	surface	position	and	angle	of	a	logical	point	on	the	terrain.	This	is	not
the	normal	of	the	surface	but	essentially	the	angles	to	the	gravitational	center.

Example
IrrGetSphericalTerrainSurfacePositionAndAngle	(Terrain,	F,	I,	J,

PX,PY,PZ,	RX,RY,RZ)

IrrGetSphericalTerrainLogicalSurfacePosition
Syntax
IrrGetSphericalTerrainSurfacePosition	(terrain	as	irr_terrain,	face	as	integer,
logicalX	as	single,	logicalZ	as	single,	X	as	single,	Y	as	single,	Z	as	single)

Description
Convert	a	co-ordinate	into	a	logical	Spherical	terrain	position.	Thanks	for	the
example	from	"David"	posted	on	Infinity-Universe	forum

Please	note	that	this	calculation	is	not	100%	accurate,	it	is	advised	that	the
translation	is	done	at	altitude	and	the	difference	either	ignored	or	blended	as	the
observer	decends.

Note:	The	height	above	the	surface	can	be	calculated	simply	by	calculating	the
length	of	the	center	of	the	planet	to	the	surface	and	then	the	center	of	the	planet
to	the	space	coordinate	and	subracting	the	two
Note:	The	momentum	could	be	calculated	by	converting	two	samples	and	then
measing	the	difference	in	height	and	X	and	Z	on	the	face

Example
IrrGetSphericalTerrainLogicalSurfacePosition	(Terrain,	X,	Y,	Z,

face,	LX,	LZ)

Particles

Calls	to	control	the	appearance	and	follow	of	particles	in
particle	systems.

IrrSetMinParticleSize
Syntax
IrrSetMinParticleSize	(particle	emitter	as	irr_particle_emitter,	X	as	single,	Y	as
single)

Description
Particles	in	a	particle	system	are	simple	2	dimensional	billboard	like	objects,
this	sets	the	size	of	these	particles,	larger	particles	can	be	effective	and	use	less
resources	however	they	can	look	blocky	if	taken	too	far.

Example
IrrSetMinParticleSize	(SmokeEmitter,	5,	5)

IrrSetMaxParticleSize
Syntax
IrrSetMaxParticleSize	(particle	emitter	as	irr_particle_emitter,	X	as	single,	Y
as	single)

Description
Particles	in	a	particle	system	are	simple	2	dimensional	billboard	like	objects,
this	sets	the	size	of	these	particles,	larger	particles	can	be	effective	and	use	less
resources	however	they	can	look	blocky	if	taken	too	far.

Example
IrrSetMaxParticleSize	(SmokeEmitter,	15,	15)

IrrAddParticleEmitter

Syntax
irr_emitter	=	IrrAddParticleEmitter	(particle	system	as
irr_particle_system,	settings	as	IRR_PARTICLE_EMITTER)

Description
Adds	a	particle	emitter	to	the	particle	system,	this	creates	particles	and	controls
how	they	move	and	when	they	are	to	be	removed.	It	requires	a	very	large
number	of	parameters	to	define	this	flexible	effect	and	as	such	these	parameters
are	stores	in	a	special	IRR_PARTICLE_EMITTER	structure.

Example
MyEmitter	=	IrrAddParticleEmitter(SmokeParticles,	SmokeEmitter)

IrrAddAnimatedMeshSceneNodeEmitter
Syntax
irr_emitter	=	IrrAddAnimatedMeshSceneNodeEmitter(particle_system	as
irr_particle_system,	node	as	irr_node,	use_normal_direction	as	uinteger,
normal_direction_modifier	as	single,	emit_from_every_vertex	as	integer,
settings	as	IRR_PARTICLE_EMITTER)

Description
Creates	a	particle	emitter	for	an	animated	mesh	scene	node

Parameters:
node	-		Pointer	to	the	animated	mesh	scene	node	to	emit	particles	from
useNormalDirection	-	If	true,	the	direction	of	each	particle	created	will	be	the
normal	of	the	vertex	that	it's	emitting	from.	The	normal	is	divided	by	the
normalDirectionModifier	parameter,	which	defaults	to	100.0f.
normalDirectionModifier	-	If	the	emitter	is	using	the	normal	direction	then	the
normal	of	the	vertex	that	is	being	emitted	from	is	divided	by	this	number.
everyMeshVertex	-		If	true,	the	emitter	will	emit	between	min/max	particles
every	second,	for	every	vertex	in	the	mesh,	if	false,	it	will	emit	between
min/max	particles	from	random	vertices	in	the	mesh.

A	large	number	of	additional	parameters	are	also	required	to	define	this	flexible
effect	and	as	such	these	parameters	are	stores	in	a	special
IRR_PARTICLE_EMITTER	structure.	The	box	size	properties	of	this	structure

are	unused	in	this	call

Example
MyEmitter	=	IrrAddAnimatedMeshSceneNodeEmitter	(SmokeParticles,

SceneNode,	1,	0.25,	0,	SmokeEmitter)

IrrAddFadeOutParticleAffector
Syntax
irr_affector	=	IrrAddFadeOutParticleAffector	(particle_system	as
irr_particle_system)

Description
Adds	a	fade	out	affector	to	the	particle	system,	this	fades	the	particles	out	as
they	come	to	the	end	of	their	lifespan	and	stops	them	'popping'	out	of	existance.
This	creates	a	convincing	effect	for	fire	and	smoke	in	particular.

Example
MyAffector	=	IrrAddFadeOutParticleAffector(SmokeParticles)

IrrAddGravityParticleAffector
Syntax
irr_affector	=	IrrAddGravityParticleAffector	(particle	system	as
irr_particle_system,	x	as	single,	y	as	single,	z	as	single)

Description
Adds	a	gravity	affector	to	the	particle	system,	this	gradually	pulls	the	particles
in	the	direction	of	the	effect,	although	it	is	called	a	gravity	effector	it	can	be
used	to	make	a	wind	effect	and	have	the	particles	drift	off	to	the	side.

X,	Y	and	Z	define	the	force	that	is	applied	to	the	particles	over	time.

Example
MyAffector	=	IrrAddGravityParticleAffector(SmokeParticles,	-0.1,

0,	0)

IrrAddParticleAttractionAffector

Syntax
irr_affector	=	IrrAddParticleAttractionAffector(particle_system	as
irr_particle_system,	x	as	Single,	y	as	Single,	z	as	Single,	speed	as	Single	=	1.0,
attract	as	uinteger	=	1,	affectX	as	uinteger	=	1,	affectY	as	uinteger	=	1,	affectZ
as	uinteger	=	1)

Description
Creates	a	point	attraction	affector.	This	affector	modifies	the	positions	of	the
particles	and	attracts	them	to	a	specified	point	at	a	specified	speed	per	second.

Parameters:
x,y,z	-	Point	to	attract	particles	to.
speed	-	Speed	in	units	per	second,	to	attract	to	the	specified	point.
attract	-	Whether	the	particles	attract	or	detract	from	this	point	use	the	constants
IRR_ATTRACT	or	IRR_REPEL	(defaults	to	IRR_ATTRACT)
affectX	-	Whether	or	not	this	will	affect	the	X	position	of	the	particle,	use	1	to
effect	the	position	and	0	to	leave	it	unaffected	(defaults	to	true).
affectY	-	Whether	or	not	this	will	affect	the	Y	position	of	the	particle,	use	1	to
effect	the	position	and	0	to	leave	it	unaffected	(defaults	to	true).
affectZ	-	Whether	or	not	this	will	affect	the	Z	position	of	the	particle,	use	1	to
effect	the	position	and	0	to	leave	it	unaffected	(defaults	to	true).

Example
MyAffector	=	IrrAddParticleAttractionAffector(SmokeParticles,

0.0,	10.0,	0.0,		20.0,	IRR_ATTRACT,	1,	1,	1)

IrrCreateRotationAffector
Syntax
irr_affector	=	IrrCreateRotationAffector	(particle_system	as
irr_particle_system,	Speed_X	as	Single,	Speed_Y	as	Single,	Speed_Z	as	Single,
pivot_X	as	Single,	pivot_Y	as	Single,	pivot_Z	as	Single)

Description
Creates	a	rotation	affector.	This	affector	modifies	the	positions	of	the	particles
and	attracts	them	to	a	specified	point	at	a	specified	speed	per	second.

Parameters:
speed	x,y,z	-	Rotation	in	degrees	per	second

pivot	x,y,z	-	Point	to	rotate	the	particles	around

Example
MyAffector	=	IrrCreateRotationAffector(SmokeParticles,	-120.0,

0.0,	0.0,		0.0,	0.0,	0.0)

IrrAddStopParticleAffector
Syntax
irr_affector	=	IrrAddStopParticleAffector	(particle_system	as
irr_particle_system,	time	as	uinteger,	emitter	as	irr_emitter)

Description
The	stop	particle	affector	waits	for	the	specified	period	of	time	to	elapse	and
then	stops	the	specified	emitter	emitting	particles	by	setting	its	minimum	and
maximum	particle	emission	rate	to	zero.	The	emitter	can	easily	be	started	up
again	by	changing	its	emission	rate.

Parameters:
Time	-	The	number	of	milliseconds	to	elapse	before	the	particles	are	stopped
Emitter	-	The	particle	generating	object	to	stop

Example
MyAffector	=	IrrAddStopParticleAffector(SmokeSystem,	1000,

smoke_emitter)

IrrAddParticlePushAffector
Syntax
irr_affector	=	IrrAddParticlePushAffector		(particle_system	as
irr_particle_system,		x	as	single,		y	as	single,	z	as	single,	speedX	as	single,
speedY	as	single,	speedZ	as	single,	far	as	single,	near	as	single,	column	as
single,	distant	as	integer)

Description
Creates	a	point	push	affector.	This	affector	modifies	the	positions	of	the
particles	and	pushes	them	toward	or	away	from	a	specified	point	at	a	specified
speed	per	second.	The	strength	of	this	effect	is	adjusted	by	a	near	and	a	far
distance.	Beyond	the	far	distance	the	particle	is	not	effected	at	all	and	the	closer

you	get	to	the	center	of	the	effect	the	stronger	the	force	is.

If	a	near	distance	is	defined	(a	value	greater	than	0.0)	the	effect	is	somewhat
different,	particles	closer	to	the	center	than	the	near	distance	are	not	effected	at
all,	and	the	stongest	point	of	the	effect	is	always	halfway	between	the	near	and
far	limits,	for	example	if	your	near	distance	was	25.0	and	your	far	distance	was
75.0	the	strongest	force	would	be	applied	to	particles	at	a	distance	of	50.0

If	a	column	width	is	defined	the	effect	will	only	take	place	in	a	vertical	column
that	is	that	wide,	this	is	useful	for	fountains	of	water	where	as	the	water	spreads
out	of	the	column	a	gravity	affector	can	take	over.

By	adjusting	these	parameters	and	the	strength	you	can	create	columns,
spheres,	shells	and	rings	of	effect	that	can,	in	combination,	push	particles	in
complex	motions

Parameters:
x,	y,	z	-	Point	to	attract	particles	to	or	repel	particles	away	from
speedX,	speedY,	speedZ	-	A	vector	describing	the	strength	of	the	effect
Far	-	Furthest	distance	of	effect
Near	-	Closest	distance	of	effect
Column	-	The	width	of	a	vertical	column	in	which	the	push	affector	has
influence,	somewhat	like	the	column	of	water	in	a	fountain
Distant	-	Use	IRR_ON	to	apply	the	same	force	in	the	same	directionto	all
particles	and	use	IRR_OFF	to	apply	a	force	that	radiates	away	from	the	center
of	the	effect	

Example
MyAffector	=	IrrAddParticlePushAffector	(ColumnOfSmoke,	0,	0,

0,		0,	100,	0,		100,	0.0,	0.0,	IRR_OFF)

IrrAddColorMorphAffector
Syntax
irr_affector	=	IrrAddColorMorphAffector		(particle_system	as
irr_particle_system,	numberOfParticles	as	uinteger,	particlecolors	as	uinteger
ptr,	particletimes	as	uinteger	ptr,	smooth	as	uinteger)

Description
This	clever	effect	by	Dark	Kilauea	that	allows	you	to	provide	an	array	of	colors
and	an	optional	array	of	times	that	effect	the	color	of	the	particle	over	its
lifetime,	the	particle	could	start	off	bright	orange	and	fade	away	into	grey	and
then	black	for	example.

Parameters:
numEntries	-	the	number	of	entries	in	the	supplied	table
colors	-	the	table	of	colors	
time	-	the	table	of	times	at	which	each	color	becomes	active
smooth	-	Use	IRR_ON	to	smoothly	blend	between	colors	and	use	IRR_OFF	to
sharply	switch	between	colors

Example
DIM	colors(0	to	4)	as	uinteger	=	{		IrrMakeARGB(0,255,255,128),	_

'	yellow	white

																																				IrrMakeARGB(0,255,128,0),	_	'

yellow

																																				IrrMakeARGB(0,128,64,0),	_	'

orange

																																				IrrMakeARGB(0,0,0,128),	_	'

slight	blue

																																				IrrMakeARGB(255,0,0,0)	}	'

black	and	faded

DIM	times(0	to	4)	as	uinteger	=	{500,	800,	1250,	1500,	2000	}

MyAffector	=	IrrAddColorMorphAffector(Fire.particles,	5,

@colors(0),	@times(0),	IRR_ON)

IrrAddSplineAffector
Syntax
irr_affector	=	IrrAddSplineAffector		(particle_system	as
irr_particle_system,	VertexCount	as	uinteger,	verticies	as	IRR_VERT	ptr,	speed
as	single,	tightness	as	single,	attraction	as	single,	deleteAtEnd	as	uinteger)

Description
This	clever	effect	by	Dark	Kilauea	that	allows	you	to	create	an	affector	that
moves	the	particles	along	the	path	of	a	spline	for	very	controled	and	complex
particle	motion.

Parameters:
VertexCount	-	Is	the	number	of	points	in	your	spline
Verticies	-	Is	an	array	of	IRR_VERT	objects	defining	the	X,Y	and	Z	position	of
points
Speed	-	is	the	speed	with	which	particles	are	moved	along	the	spline
tightness	-	is	the	tightness	of	the	curve	of	the	spline
attraction	-		is	how	closely	the	particles	are	atracted	to	the	curve	of	the	spline
deleteAtEnd	-	Use	IRR_ON	to	delete	the	particles	when	they	reach	the	end	of
the	spline	and	use	IRR_OFF	to	allow	the	particles	to	be	deleted	naturally.

Example
DIM	splineverticies(0	to	3)	as	IRR_VERT

splineverticies(0).x	=	0.0	:	splineverticies(0).y	=	0.0	:

splineverticies(0).z	=	0.0

splineverticies(1).x	=	0.0	:	splineverticies(1).y	=	20.0	:

splineverticies(1).z	=	25.0

splineverticies(2).x	=	0.0	:	splineverticies(2).y	=	40.0	:

splineverticies(2).z	=	-25.0

splineverticies(3).x	=	0.0	:	splineverticies(3).y	=	60.0	:

splineverticies(3).z	=	0.0

IrrAddSplineAffector	(NeonLight.particles,	4,

@splineverticies(0),		2.0,	1.0,	5.0,		IRR_ON)

IrrRemoveAffectors
Syntax
IrrRemoveAffectors	(particle	system	as	irr_particle_system)

Description
Removes	all	affectors	from	a	particle	system,	you	might	use	this	if	you	wanted
to	change	the	direction	or	strength	of	the	wind	for	example.

Example
IrrRemoveAffectors(SmokeParticles)

IrrSetParticleEmitterDirection
Syntax
IrrSetParticleEmitterDirection(particle_emitter	as	irr_emitter,	x	as	single,	y	as

single,	z	as	single)

Description
Set	direction	the	emitter	emits	particles.

Example
IrrSetParticleEmitterDirection(MyEmitter,	0.0,	0.4,	0.0)

IrrSetParticleEmitterMinParticlesPerSecond
Syntax
IrrSetParticleEmitterMinParticlesPerSecond(particle_emitter	as	irr_emitter,
min_particles_per_second	as	uinteger)

Description
Set	minimum	number	of	particles	the	emitter	emits	per	second.

Example
IrrSetParticleEmitterMinParticlesPerSecond(MyEmitter,	32)

IrrSetParticleEmitterMaxParticlesPerSecond
Syntax
IrrSetParticleEmitterMaxParticlesPerSecond(particle_emitter	as	irr_emitter,
max_particles_per_second	as	uinteger)

Description
Set	maximum	number	of	particles	the	emitter	emits	per	second.

Example
IrrSetParticleEmitterMaxParticlesPerSecond(MyEmitter,	100)

IrrSetParticleEmitterMinStartColor
Syntax
IrrSetParticleEmitterMinStartColor(particle_emitter	as	irr_emitter,	Red	as
uinteger,	Green	as	uinteger,	Blue	as	uinteger)

Description
Set	minimum	starting	color	for	particles.

Example
IrrSetParticleEmitterMinStartColor(MyEmitter,	255,	192,	128)

IrrSetParticleEmitterMaxStartColor
Syntax
IrrSetParticleEmitterMaxStartColor(particle_emitter	as	irr_emitter,	Red	as
uinteger,	Green	as	uinteger,	Blue	as	uinteger)

Description
Set	maximum	starting	color	for	particles.

Example
IrrSetParticleEmitterMaxStartColor(MyEmitter,	255,	192,	128)

IrrSetParticleAffectorEnable
Syntax
IrrSetParticleAffectorEnable(particle_affector	as	irr_affector,	Enable	as
uinteger)

Description
Enable	or	disable	an	affector.	Setting	the	value	to	1	enables	the	affector,	setting
it	to	0	disables	it.	IRR_ON	and	IRR_OFF	can	be	used	also.

Example
IrrSetParticleAffectorEnable(MyAffector,	IRR_OFF)

IrrSetFadeOutParticleAffectorTime
Syntax
IrrSetFadeOutParticleAffectorTime(particle_affector	as	irr_affector,
FadeFactor	as	float)

Description

Alter	the	fadeout	affector	changing	the	fade	out	time.

Example
IrrSetFadeOutParticleAffectorTime(MyAffector,	2000.0)

IrrSetFadeOutParticleAffectorTargetColor
Syntax
IrrSetFadeOutParticleAffectorTargetColor(particle_affector	as	irr_affector,
Red	as	uinteger,	Green	as	uinteger,	Blue	as	uinteger)

Description
Alter	the	fadeout	affector	changing	the	target	color	to	the	affector	fades	to	over
time.

Example
IrrSetFadeOutParticleAffectorTargetColor(MyAffector,	16,	8,	0)

IrrSetGravityParticleAffectorDirection
Syntax
IrrSetGravityParticleAffectorDirection(particle_affector	as	irr_affector,	x	as
single,	y	as	single,	z	as	single)

Description
Alter	the	direction	and	force	of	gravity	for	a	gravity	affector.

Example
IrrSetGravityParticleAffectorDirection(MyAffector,	0.2,	0.1,	0.0

)

IrrSetGravityParticleAffectorTimeForceLost
Syntax
IrrSetGravityParticleAffectorTimeForceLost(particle_affector	as	irr_affector,
time_force_lost	as	single)

Description

Set	the	time	in	milliseconds	when	the	gravity	force	is	totally	lost	and	the
particle	does	not	move	any	more.

Example
IrrSetGravityParticleAffectorTimeForceLost(MyAffector,	800.0)

IrrSetParticleAttractionAffectorAffectX
Syntax
IrrSetParticleAttractionAffectorAffectX(particle_affector	as	irr_affector,	affect
as	uinteger)

Description
Set	whether	or	not	an	atraction	affector	will	affect	particles	in	the	X	direction..
Setting	the	value	to	1	enables	the	effect,	setting	it	to	0	disables	it.	IRR_ON	and
IRR_OFF	can	be	used	also.

Example
IrrSetParticleAttractionAffectorAffectX(MyAffector,	IRR_ON)

IrrSetParticleAttractionAffectorAffectY
Syntax
IrrSetParticleAttractionAffectorAffectY(particle_affector	as	irr_affector,	affect
as	uinteger)

Description
Set	whether	or	not	an	atraction	affector	will	affect	particles	in	the	Y	direction..
Setting	the	value	to	1	enables	the	effect,	setting	it	to	0	disables	it.	IRR_ON	and
IRR_OFF	can	be	used	also.

Example
IrrSetParticleAttractionAffectorAffectY(MyAffector,	IRR_ON)

IrrSetParticleAttractionAffectorAffectZ
Syntax
IrrSetParticleAttractionAffectorAffectZ(particle_affector	as	irr_affector,	affect

as	uinteger)

Description
Set	whether	or	not	an	atraction	affector	will	affect	particles	in	the	Z	direction..
Setting	the	value	to	1	enables	the	effect,	setting	it	to	0	disables	it.	IRR_ON	and
IRR_OFF	can	be	used	also.

Example
IrrSetParticleAttractionAffectorAffectZ(MyAffector,	IRR_ON)

IrrSetParticleAttractionAffectorAttract
Syntax
IrrSetParticleAttractionAffectorAttract(particle_affector	as	irr_affector,	affect
as	uinteger)

Description
Set	whether	or	not	the	particles	are	attracted	or	repelled	from	an	attractor
effector..	Use	the	values	IRR_ATTRACT	and	IRR_REPEL	for	convienience.

Example
IrrSetParticleAttractionAffectorAttract(MyAffector,	IRR_ATTRACT)

IrrSetParticleAttractionAffectorPoint
Syntax
IrrSetParticleAttractionAffectorPoint(particle_affector	as	irr_affector,	x	as
single,	y	as	single,	z	as	single)

Description
Set	the	point	that	particles	will	attract	to	when	affected	by	this	attractor	affector.

Example
IrrSetParticleAttractionAffectorPoint(MyAffector,	IRR_ATTRACT)

IrrSetRotationAffectorPivotPoint
Syntax

IrrSetRotationAffectorPivotPoint(particle_affector	as	irr_affector,	x	as	single,
y	as	single,	z	as	single)

Description
Set	the	point	that	particles	will	rotate	about	when	affected	by	this	rotation
affector.

Example
IrrSetRotationAffectorPivotPoint(MyAffector,	IRR_ATTRACT)

IrrSetFurthestDistanceOfEffect
Syntax
IrrSetFurthestDistanceOfEffect(particle_affector	as	irr_affector,	newDistance
as	single)

Description
Set	the	furthest	distance	of	effect	on	particles	affected	by	the	push	affector.

Example
IrrSetFurthestDistanceOfEffect(MyAffector,	100.0)

IrrSetNearestDistanceOfEffect
Syntax
IrrSetNearestDistanceOfEffect(particle_affector	as	irr_affector,	newDistance
as	single)

Description
Set	the	nearest	distance	of	effect	on	particles	affected	by	the	push	affector.

Example
IrrSetNearestDistanceOfEffect(MyAffector,	10.0)

IrrSetColumnDistanceOfEffect
Syntax
IrrSetColumnDistanceOfEffect(particle_affector	as	irr_affector,	newDistance

as	single)

Description
Set	the	column	distance	of	effect	on	particles	affected	by	the	push	affector.

Example
IrrSetColumnDistanceOfEffect(MyAffector,	20.0)

IrrSetCenterOfEffect
Syntax
IrrSetCenterOfEffect(particle_affector	as	irr_affector,	x	as	single,	y	as	single,	z
as	single)

Description
Set	the	center	of	the	effect	of	particles	affected	by	the	push	affector.

Example
IrrSetCenterOfEffect(MyAffector,	0.0,	PushHeight,	0.0)

IrrSetStrengthOfEffect
Syntax
IrrSetStrengthOfEffect(particle_affector	as	irr_affector,	x	as	single,	y	as	single,
z	as	single)

Description
Set	the	strength	of	the	effect	of	particles	affected	by	the	push	affector.

Example
IrrSetStrengthOfEffect(MyAffector,	PipeVelocity,	0.0,	0.0)

Irrlicht	Graphical	User	Interface

Calls	to	add	graphical	user	interface	objects	to	the	screen
that	can	be	drawn	with	a	single	call.	At	the	moment	this
section	is	awaiting	further	development	in	the	wrapper.

IrrGUIClear
Syntax
IrrGUIClear	()

Description
Clears	all	GUI	objects	from	the	display.

Example
IrrGUIClear()

IrrGUIRemove
Syntax
IrrGUIRemove	(object	as	IRR_GUI_OBJECT)

Description
Removes	the	specified	GUI	object	from	the	display.

Example
IrrGUIRemove(myButton)

IrrGUIGetText
Syntax
IrrGUIGetText	(object	as	IRR_GUI_OBJECT)

Description
Gets	the	text	associated	with	a	GUI	object..

Example
DIM	myString	as	wstring	=	IrrGUIGetText(myEditBox)

IrrGUISetText
Syntax
IrrGUISetText	(object	as	IRR_GUI_OBJECT,	text	as	wstring)

Description
Sets	the	text	of	a	GUI	object..

Example
DIM	fpsString	as	wstring	*	256

fpsString	=	"FPS:	"	+	Str(IrrGetFPS)

IrrGUISetText(myButton,	fpsString)

IrrAddWindow
Syntax
IrrAddWindow	(title	as	wstring	ptr,	Top	X	as	integer,	Top	Y	as	integer,	Bottom
X	as	integer,	Bottom	Y	as	integer,	modal	as	uinteger,	parent	as
IRR_GUI_OBJECT)	as	IRR_GUI_OBJECT

Description
Creates	an	empty	window	that	can	form	the	frame	to	contain	other	controls.

Title	is	a	wide	string	that	contains	the	title	of	the	window.

Top	X,	Top	Y,	Bottom	X	and	Bottom	Y	define	a	box	in	which	the	window	is
drawn

Modal	determines	if	the	window	locks	out	the	rest	of	the	interface	until	it	is
closed:	-
IRR_GUI_MODAL
IRR_GUI_NOT_MODAL

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
window	has	no	parent.

Example
windowObject	=	IrrAddWindow("A	Window",	4,0,200,64,	IRR_GUI_MODAL

)

IrrAddStaticText
Syntax
IrrAddStaticText	(text	as	wstring	ptr,	Top	X	as	integer,	Top	Y	as
integer,	Bottom	X	as	integer,	Bottom	Y	as	integer,	border	as
uinteger,	wordwrap	as	uinteger,	parent	as	IRR_GUI_OBJECT)	as
IRR_GUI_OBJECT

Description
Creates	a	static	text	object	on	the	Graphical	User	Interface,	this	simply	displays
the	specifed	text	in	the	specified	box.

Text	is	a	wide	string	that	contains	the	text	you	want	to	display.

Top	X,	Top	Y,	Bottom	X	and	Bottom	Y	define	a	box	in	which	the	text	is	drawn

Border	is	used	to	draw	a	visible	box	around	the	text,	its	value	should	be	either
of:	-
IRR_GUI_NO_BORDER
IRR_GUI_BORDER

Word	wrap	is	used	to	define	whether	text	is	to	be	wrapped	around	into	a	second
line	when	it	fills	the	width	of	the	text	box,	its	value	should	be	either	of:	-
IRR_GUI_NO_WRAP	0
IRR_GUI_WRAP	1

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
object	has	no	parent.

Example
statictextObject	=	IrrAddStaticText("Hello	World",	4,0,200,16,

NO_BORDER,	NO_WRAP,	windowObject)

IrrAddButton
Syntax
IrrAddButton	(Top	X	as	integer,	Top	Y	as	integer,	Bottom	X	as	integer,	Bottom
Y	as	integer,	id	as	integer,	text	as	wstring	ptr,	parent	as	IRR_GUI_OBJECT)	as
IRR_GUI_OBJECT

Description
Add	a	clickable	button	object	to	the	gui	display.

Top	X,	Top	Y,	Bottom	X	and	Bottom	Y	define	a	box	in	which	the	button	is
drawn

id	specifies	a	unique	numerical	reference	for	the	button	so	events	can	be
identified	as	coming	from	this	object

text	specified	the	label	assigned	to	the	button

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
object	has	no	parent.

Example
buttonObject	=	IrrAddButton(16,16,96,32,	120,	"My

Button",	windowObject)

IrrAddScrollBar
Syntax
IrrAddScrollBar	(horizontal	as	integer,	Top	X	as	integer,	Top	Y	as
integer,	Bottom	X	as	integer,	Bottom	Y	as	integer,	id	as	integer,	currentValue	as
integer,	maxValue	as	integer,	parent	as	IRR_GUI_OBJECT)	as
IRR_GUI_OBJECT

Description
Add	a	scrollbar	object	to	the	GUI	display.

Horizontal	defines	if	the	scrollbar	is	horizontal	or	vertical,	acceptable	values	for
this	field	are:	-

IRR_GUI_HORIZONTAL
IRR_GUI_VERTICAL

Top	X,	Top	Y,	Bottom	X	and	Bottom	Y	define	a	box	in	which	the	scrollbar	is
drawn

id	specifies	a	unique	numerical	reference	for	the	scrollbar	so	events	can	be
identified	as	coming	from	this	object

currentValue	specified	the	current	setting	of	the	scrollbar

maxValue	specifies	the	maximum	setting	of	the	scrollbar

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
object	has	no	parent.

Example
scrollbarObject	=	IrrAddScrollBar(IRR_GUI_HORIZONTAL,

16,16,96,32,	120,	128,	156,	windowObject)

IrrAddListBox
Syntax
IrrAddListBox	(horizontal	as	integer,	Top	X	as	integer,	Top	Y	as
integer,	Bottom	X	as	integer,	Bottom	Y	as	integer,	id	as	integer,	background	as
integer,	parent	as	IRR_GUI_OBJECT)	as	IRR_GUI_OBJECT

Description
Add	a	listbox	object	containing	a	list	of	items	to	the	gui	display.

horizontal	specifies	whether	the	scrollbar	is	oriented	horizontally	or	vertically.
acceptable	values	are:	-

IRR_GUI_HORIZONTAL
IRR_GUI_VERTICAL

Top	X,	Top	Y,	Bottom	X	and	Bottom	Y	define	a	box	in	which	the	listbox	is
drawn

id	specifies	a	unique	numerical	reference	for	the	listbox	so	events	can	be
identified	as	coming	from	this	object

background	specifies	whether	the	background	of	the	listbox	should	be	drawn.
acceptable	values	are:	-

IRR_GUI_DRAW_BACKGROUND
IRR_GUI_EMPTY_BACKGROUND

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
object	has	no	parent.

Example
listboxObject	=	IrrAddListBox(16,16,96,32,	120,

IRR_GUI_DRAW_BACKGROUND,	windowObject)

IrrAddListBoxItem
Syntax
IrrAddListBoxItem	(listbox	as	IRR_GUI_OBJECT,	text	as	wstring)

Description
Add	a	text	element	to	a	list	box.

listbox	defines	the	listbox	gui	object	to	add	the	string	too.

text	is	the	string	containing	the	new	item

Example
IrrAddListBoxItem(listboxObject,	"Apples")

IrrInsertListBoxItem
Syntax
IrrInsertListBoxItem	(parent	as	IRR_GUI_OBJECT,	text	as	wstring,	index	as
integer)

Description
Insert	a	text	element	to	a	list	box.

listbox	defines	the	listbox	gui	object	to	insert	the	string	into.

text	is	the	string	containing	the	new	item

index	is	the	position	at	which	to	insert	the	item

Example
IrrInsertListBoxItem(listboxObject,	"Pears",	3)

IrrRemoveListBoxItem
Syntax
IrrRemoveListBoxItem	(parent	as	IRR_GUI_OBJECT,	index	as	integer)

Description
Remove	a	text	element	from	a	list	box.

listbox	defines	the	listbox	gui	object	to	remove	the	string	from.

index	is	the	position	of	the	item	to	be	removed

Example
IrrRemoveListBoxItem(listboxObject,	2)

IrrSelectListBoxItem
Syntax
IrrSelectListBoxItem	(parent	as	IRR_GUI_OBJECT,	index	as	integer)

Description
Select	a	text	element	in	a	list	box.

listbox	defines	the	listbox	gui	object	to	select	the	item	within.

index	is	the	position	of	the	item	to	be	removed

Example

IrrSelectListBoxItem(listboxObject,	1)

IrrAddEditBox
Syntax
IrrAddEditBox	(text	as	wstring,		horizontal	as	integer,	Top	X	as	integer,	Top	Y
as	integer,	Bottom	X	as	integer,	Bottom	Y	as	integer,	id	as	integer,	border	as
integer,	password	as	integer,	parent	as	IRR_GUI_OBJECT)	as
IRR_GUI_OBJECT

Description
Add	a	editbox	object	containing	a	list	of	items	to	the	GUI	display.

text	is	the	string	that	is	inserted	into	the	editbox

Top	X,	Top	Y,	Bottom	X	and	Bottom	Y	define	a	box	in	which	the	editbox	is
drawn

id	specifies	a	unique	numerical	reference	for	the	editbox	so	events	can	be
identified	as	coming	from	this	object

border	specifies	whether	the	object	has	a	border	drawn	around	it.	acceptable
values	are:	-

IRR_GUI_NO_BORDER
IRR_GUI_BORDER

password	specifies	whether	the	editbox	is	a	password	field	that	hides	the	text
typed	into	it.	acceptable	values	are:	-

IRR_GUI_PASSWORD
IRR_GUI_NOT_PASSWORD

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
object	has	no	parent.

Example
editboxObject	=	IrrAddEditBox("My	String",	16,16,96,32,	120,

IRR_GUI_BORDER,	IRR_GUI_NOT_PASSWORD,	windowObject)

IrrAddCheckBox
Syntax
IrrAddCheckBox	(text	as	wstring,		horizontal	as	integer,	Top	X	as	integer,	Top
Y	as	integer,	Bottom	X	as	integer,	Bottom	Y	as	integer,	id	as	integer,	checked
as	integer,	parent	as	IRR_GUI_OBJECT)	as	IRR_GUI_OBJECT

Description
Add	a	checkbox	object	to	the	GUI	display.

text	is	the	string	that	is	used	to	label	the	checkbox

Top	X,	Top	Y,	Bottom	X	and	Bottom	Y	define	a	box	in	which	the	checkbox	is
drawn

id	specifies	a	unique	numerical	reference	for	the	checkbox	so	events	can	be
identified	as	coming	from	this	object

checked	specifies	whether	the	object	starts	in	the	checked	state.	acceptable
values	are:	-

IRR_OFF
IRR_ON

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
object	has	no	parent.

Example
checkboxObject	=	IrrAddCheckBox("My	Checkbox",	16,16,96,32,	120,

IRR_OFF,	windowObject)

IrrCheckCheckBox
Syntax
IrrCheckCheckBox	(checkbox	as	IRR_GUI_OBJECT,	checked	as	integer)

Description
Set	the	checked	state	of	a	checkbox.

checkbox	defines	the	checkbox	GUI	object	to	check	or	uncheck.

checked	specifies	whether	the	object	starts	in	the	checked	state.	acceptable
values	are:	-

IRR_OFF
IRR_ON

Example
IrrCheckCheckBox(checkboxObject,	IRR_ON)

IrrAddImage
Syntax
IrrAddImage	(texture	as	IRR_TEXTURE,		horizontal	as	integer,	X	as	integer,	Y
as	integer,	useAlpha	as	integer,	id	as	integer,	parent	as	IRR_GUI_OBJECT)	as
IRR_GUI_OBJECT

Description
Add	an	image	object	to	the	GUI	display.

texture	is	a	loaded	texture	object	that	is	to	be	displayed

X,	Y	define	a	position	at	which	the	image	is	drawn

useAlpha	specifies	whether	the	alpha	channel	of	the	texture	is	to	be	used.
acceptable	values	are:	-

IRR_IGNORE_ALPHA
IRR_USE_ALPHA

id	specifies	a	unique	numerical	reference	for	the	image	so	events	can	be
identified	as	coming	from	this	object

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
object	has	no	parent.

Example
imageObject	=	IrrAddImage(texture,	16,16,	IRR_IGNORE_ALPHA,	120,

windowObject)

IrrAddFileOpen
Syntax
IrrAddFileOpen	(title	as	wstring,		id	as	integer,	checked	as	integer,	modal	as
integer,	parent	as	IRR_GUI_OBJECT)	as	IRR_GUI_OBJECT

Description
Open	a	modal	file	open	dialog	so	that	a	file	can	be	selected.

title	is	the	string	that	is	displayed	in	the	titlebar	of	the	file	selector	window.

id	specifies	a	unique	numerical	reference	for	the	button	so	events	can	be
identified	as	coming	from	this	object

Modal	determines	if	the	window	locks	out	the	rest	of	the	interface	until	it	is
closed:	-
IRR_GUI_MODAL
IRR_GUI_NOT_MODAL

Parent	defines	the	parent	object	of	this	window.	This	can	be	ommited	if	the
window	has	no	parent.

Example
fileOpenObject	=	IrrAddFileOpen("Select	a	bitmap",	120,

IRR_GUI_MODAL,	windowObject)

IrrGetLastSelectedFile
Syntax
IrrGetLastSelectedFile	(fileopenobject	as	IRR_GUI_OBJECT,	checked	as
integer)

Description
Get	the	last	file	name	selected	from	a	file	selection	dialog.

Example
fileName	=	IrrGetLastSelectedFile()

Wrapper	Structure	Defintions

IRR_MOUSE_EVENT
action	as	uinteger
Action	determines	which	mouse	action	took	place	and	can	be	one	of	the
following	values:	-
IRR_EMIE_LMOUSE_PRESSED_DOWN
IRR_EMIE_RMOUSE_PRESSED_DOWN
IRR_EMIE_MMOUSE_PRESSED_DOWN
IRR_EMIE_LMOUSE_LEFT_UP
IRR_EMIE_RMOUSE_LEFT_UP
IRR_EMIE_MMOUSE_LEFT_UP
IRR_EMIE_MOUSE_MOVED
IRR_EMIE_MOUSE_WHEEL

delta	as	single
This	defines	the	amount	of	movement	of	the	mouse	wheel.

x	as	integer
y	as	integer
These	define	the	screen	co-ordinates	at	which	the	event	took	place.

IRR_KEY_EVENT
key	as	uinteger
The	scan	code	for	the	key

direction	as	uinteger
Whether	the	key	moved	up	or	down,	this	can	be	either	of:	-
IRR_KEY_UP
IRR_KEY_DOWN

flags	as	uinteger
Bits	are	set	in	this	parameter	to	specify	whether	the	shift	or	control	key	was

keydown	at	the	time	the	key	action	occured

IRR_PARTICLE_EMITTER
min_box_x	as	single
min_box_y	as	single
min_box_z	as	single
max_box_x	as	single
max_box_y	as	single
max_box_z	as	single
These	six	parameters	define	a	box	in	space	inside	which	the	position	of	a
particle	is	randomly	created.

direction_x	as	single
direction_y	as	single
direction_z	as	single
These	three	parameters	define	a	direction	into	which	the	particles	will	be
ejected	as	the	animation	plays

min_paritlcles_per_second	as	uinteger
max_paritlcles_per_second	as	uinteger
A	range	defining	the	minimum	and	maximum	number	of	particles	that	will	be
created	each	second.

min_start_color_red	as	integer
min_start_color_green	as	integer
min_start_color_blue	as	integer
max_start_color_red	as	integer
max_start_color_green	as	integer
max_start_color_blue	as	integer
Although	particles	can	be	textured	by	texturing	the	particle	system	node,	these
can	be	used	to	apply	a	range	that	tints	the	color	of	the	particles.

min_lifetime	as	uinteger
max_lifetime	as	uinteger
How	long	the	partilce	will	live,	long	lifespans	can	create	very	large	numbers	of
particles

min_start_sizeX	as	single

min_start_sizeY	as	single
max_start_sizeX	as	single
max_start_sizeY	as	single
The	minimum	and	maximum	start	sizes	for	the	particles.

max_angle_degrees	as	integer
The	maximum	number	of	degrees	that	the	ejected	particles	will	deviate	from
the	defined	direction

IRR_VERT
A	vertex	is	a	point	is	space	that	also	defines	a	number	of	properties	that	can	be
applied	to	the	corner	of	a	triangle.

x	as	single
y	as	single
z	as	single
The	3D	position	of	the	vertex

normal_x	as	single
normal_y	as	single
normal_z	as	single
The	normal	direction	of	the	vertex

vcolor	as	uinteger
The	32bit	ARGB	color	of	the	vertex

texture_x	as	single
texture_y	as	single
The	2	dimensional	co-ordinate	of	the	vertex	when	it	is	mapped	to	an	applied
texture	(0	to	1)

IRR_VECTOR
x	as	single
y	as	single
z	as	single
A	point	that	can	be	use	for	co-ordinates,	directions	or	speeds.

Wrapper	Library	for	Irrlicht

Release	Notes

http://www.frankdodd.screaming.net//IrrlichtWrapper/IrrlichtWrapperPortal.htm

Known	Issues

Currently	the	material	type
IRR_EMT_TRANSPARENT_ADD_ALPHA_CHANNEL_REF
when	applied	to	grass	will	only	work	when	using	the
material	type	IRR_EMT_FOUR_DETAIL_MAP	on
the	terrain.
Newton	Physics	only	uses	convex	hulls	for	collisions
at	the	moment,	this	needs	to	be	optimised	so	that
simple	boxes,	spheres	and	cylinders	can	also	be	used
to	improve	the	performance.
The	surface	of	Tiled	Terrains	are	now	inverted	in	the
X	axis,	this	has	been	inherited	from	the	Irrlicht
Terrain	node	it	has	been	derived	from.	For
compatibility	this	will	now	be	the	normal	orientation
for	a	Terrain	Tile.
Wrappers	built	with	g++	4.4.0	are	exhibiting	some
mathematical	errors	that	can	be	seen	in	example	91.
The	suppliled	binary	is	built	with	g++	3.4.5	and
MSVC	6	and	does	not	exhibit	these	errors.
The	supplied	Linux	binaries	distributed	in	a	seperate
package	are	built	on	Fedora	11	with	g++	4.4.0	using
the	mesa	libraries.	They	have	only	been	tested	on
Fedora	11.	Any	project	using	this	wrapper	should
rebuild	their	own	binaries.
Certain	cards	have	been	shown	to	exhibit	mipmap

texture	corruption	when	used	with	textures	that	have
dimentions	that	are	not	a	power	of	two.	It	is	unclear
whether	this	is	a	problem	with	the	Wrapper,	Irrlicht	or
the	Graphics	Drivers.	It	is	therefore	recommended
that	power	of	two	textures	are	always	used	(e.g:
128x128,	512x256,	etc	...)

v0.7.7

Added	a	new	LOD	manager	that	changes	the	meshes
used	by	child	mesh	objects	at	particular	distances	and	can
fade	the	node	in	and	out.

Added	a	new	Billboard	Group	node	that	is	an	optimised
collection	of	billboard	meshes	that	can	be	used	for
custom	particle	effects.

Added	a	new	Fade	animator	that	fades,	scales	and
eventually	deletes	the	node	from	the	scene.

Added	a	new	Electrical	Bolt	effect	node	that	simulates
the	effect	of	an	electrical	discharge.	Scene	Node	created
by	Sudi	with	extensions	from	Trivtn

Added	a	new	Beam	effect	node	that	simulates	a	laser	or
tracer	beam	type	effect.	Scene	Node	created	by	Gaz
Davidson	(Bitplane)

Added	IrrAddBoltSceneNode	to	create	an	electrical	bolt
effect.

Added	IrrSetBoltProperties	to	set	the	properties	of	an
electrical	bolt	effect

Added	IrrAddBeamSceneNode	to	create	a	beam	effect.

Added	IrrSetBeamSize	to	set	the	size	of	a	beam	effect.

Added	IrrSetBeamPosition	to	set	the	start	and	end
position	of	a	beam	effect.

Added	IrrAddFadeAnimator	attach	a	fade,	scale	and
delete	animator	to	a	node.

Added	IrrAddLODManager	to	create	an	LOD
management	system.

Added	IrrAddLODMesh	to	add	a	level	of	detail	to	a	LOD
management	system

Added	IrrSetLODMaterialMap	to	allow	the	assignment
of	materials	that	are	used	as	substitues	for	a	nodes	normal
material	to	face	them	out	over	time

Added	IrrSetNodeMesh	to	set	the	mesh	of	a	node

Added	IrrSetBillBoardColor	to	set	the	colour	of	a
standard	billboard

Added	IrrSetBillBoardSize	to	set	the	size	of	a	standard

billboard

Added	IrrAddBillBoardGroupToScene	to	add	a	billboard
group	management	system	

Added	IrrAddBillBoardToGroup	to	add	a	billboard	to	a
billboard	group

Added	IrrAddBillBoardByAxisToGroup	to	add	a
billboard	fixed	to	an	axis	to	a	billboard	group

Added	IrrRemoveBillBoardFromGroup	to	remove	a
billboard	from	a	billboard	group

Added	IrrBillBoardGroupShadows	to	shade	billboards	in
a	billboard	group	with	lighting	from	a	particular	direction

Added	IrrGetBillBoardGroupCount	to	retrieve	the	count
of	the	number	of	billboards	in	a	billboard	group

Added	IrrBillBoardForceUpdate	to	force	a	billboard
group	to	update	their	orientations	to	the	camera.

Added	IrrStartAdvanced	to	provide	an	advanced	start	up
function	that	allows	for	the	use	of	anti-aliasing	and	high
precision	floating	point	calculations.	Contributed	by
Agamemnus.

Added	IrrBeginSceneAdvanced	to	provide	an	advance
begin	scene	function	providing	control	over	whether	the
back	buffer	and	buffer	are	erased.	Contributed	by
Agamemnus.

Added	IrrSetRenderTarget	to	provide	control	for
switching	the	output	of	the	drawing	operations
perminantly	to	a	texture.	Contributed	by	Agamemnus.

Added	IrrGet2DPositionFromScreenCoordinates	to	get	a
coordinate	on	a	2D	plane	from	a	ray	cast	through	a
camera.	Contributed	by	Agamemnus.

Added	IrrSetNodeColorByVertex	to	change	the	way
vertex	color	effects	all	materials	in	a	node.	Contributed
by	Agamemnus.

Added	IrrSetNodeAmbientColor	to	set	the	ambient	color
of	all	materials	associated	with	a	node.	Contributed	by
Agamemnus.

Added	IrrSetNodeDiffuseColor	to	set	the	diffuse	color	of
all	materials	associated	with	a	node.	Contributed	by
Agamemnus.

Added	IrrSetNodeSpecularColor	to	set	the	specuilar	color

of	all	materials	associated	with	a	node.	Contributed	by
Agamemnus.

Added	IrrSetNodeEmissiveColor	to	set	the	emissive	color
of	all	materials	associated	with	a	node.	Contributed	by
Agamemnus.

v0.7.6

Added	IrrGetScreenSize	to	get	the	size	of	the	screen.
Contributed	by	Agamemnus.

Added	IrrGetAbsoluteMousePosition	to	get	the	absoloute
position	of	the	mouse.	Contributed	by	Agamemnus.

Added	IrrGetNodeScale	to	determine	the	scaling	applied
to	a	node.

Added	IrrGetScreenSize	to	get	the	size	of	the	screen.

Added	IrrIsFullscreen	to	check	if	the	application	is
fullscreen	mode.

Added	IrrIsWindowActive	to	check	if	the	window	is
active.

Added	IrrIsWindowFocused	to	check	if	the	window	has
focus.

Added	IrrIsWindowMinimized	to	check	if	the	window	is
minimised.

Added	IrrMaximizeWindow	to	maximise	the	window.

Added	IrrMinimizeWindow	to	minimise	the	window.

Added	IrrRestoreWindow	to	restore	the	size	of	the
window.

Added	IrrResizableWindow	to	make	a	window	resizable
by	the	user.

Changes	to	irrlicht_transforms.bi	by	Agamemnus	to
include	the	following	things:	-

Define	multikeyold	and	getmouseold	before
undefining	multikey	and	getmouse.	Now	people	can
still	use	the	"old"	multikey	functions	if	they	close	the
Irrlicht	window	later	on	in	their	program.
Added	"continue	do"	to	all	mouse	select	case	cases.
Added	a	clip	test.

Reworked	IrrlichtNewton.bi	to	provide	a	simple	interface
and	basic	example	function	on	Newton	collision.	The
origonal	include	file	is	supplied	as
"IrrlichtNewtonGamePhysics.bi"

Added	IrrlichtODE.bi	to	provide	almost	identical	physics
support	as	is	supplied	for	IrrlichtNewton.bi	only	for	ODE
physics.	This	is	all	based	on	the	ODE	include	files

contributed	to	FreeBASIC	by	D.J.Peters.

Added	the	Batching	Meshes	module	from	Gaz	Davidson
(Bitplane)	if	your	scene	contains	hundreds	of	static
scenenodes	this	technique	can	greatly	increase	the
framerate	by	batching	them	all	together	in	one	set	of
geometry.	You	can	realise	as	high	as	a	40	times	speed
increase!

Added	IrrCreateBatchingMesh	to	create	an	empty
batching	mesh	that	is	a	collection	of	other	meshes	and
used	to	reduce	node	counts	in	a	scene	thereby	increasing
framerate.

Added	IrrAddToBatchingMesh	to	add	a	standard	static
mesh	to	a	batch	of	meshes.

Added	IrrFinalizeBatchingMesh	to	complete	the	batching
mesh	once	all	meshes	have	been	added	and	recover	a
standard	mesh	object.

Added	IrrSetMeshMaterialTexture	to	set	the	texture
image	associated	with	a	mesh.

Added	IrrGetMeshVertexMemory	to	get	the	memory	for
the	array	of	vertex	data	structures	in	the	Irrlicht	Engine.

Added	the	"XEffects	-	Reloaded"	system	produced	by
BlindSide	from	the	irrlicht	community,	this	contains
several	shaders	that	can	have	a	massive	visual	impact	on
the	realism	of	your	scene.	The	Dynamic	Shadow	casting
lights	probably	have	the	biggest	impact.	of	all	of	the
shaders	introducing	quality	realistic	lighting	into	the
scene.

Added	IrrXEffectsStart	to	start	the	XEffects	GLSL	and
HLSL	shader	support	system.

Added	IrrXEffectsEnableDepthPass	to	enable	a	depth
rendering	pass	in	XEffects	used	with	the	SSAO	and	water
shaders.

Added	IrrXEffectsAddPostProcessingFromFile	to	add	a
GLSL	or	HLSL	shader	to	the	engine	from	a	file.

Added	IrrXEffectsSetPostProcessingUserTexture	to	set
the	texture	associated	with	certain	XEffects.

Added	IrrXEffectsAddShadowToNode	to	add	a	dynamic
shadow	to	a	node.

Added	IrrXEffectsRemoveShadowFromNode	to	remove
a	dynamic	shadow	from	a	node.

Added
IrrXEffectsExcludeNodeFromLightingCalculations	to
exclude	a	node	from	lighting	calculations	in	the	XEffects
rendering	passes.

Added	IrrXEffectsAddNodeToDepthPass	to	add	a	node
to	XEffects	depth	pass	rendering.

Added	IrrXEffectsSetAmbientColor	to	set	the	ambient
level	of	lighting	the	the	XEffects	shaders.

Added	IrrXEffectsSetClearColor	to	set	the	background
color	when	using	XEffect	post	processing	shaders.

Added	IrrXEffectsAddShadowLight	to	add	a	shadow
casting	XEffects	light.

Added	IrrXEffectsSetShadowLightPosition	to	set	the
position	of	an	XEffects	shadow	casting	light.

Added	IrrXEffectsGetShadowLightPosition		to	get	the
position	of	an	XEffects	shadow	casting	light.

Added	IrrXEffectsSetShadowLightTarget		to	set	the
target	of	an	XEffects	shadow	casting	light.

Added	IrrXEffectsGetShadowLightTarget	to	get	the

target	of	an	XEffects	shadow	casting	light.

Added	IrrXEffectsSetShadowLightColor	to	set	the	color
of	an	XEffects	shadow	casting	light.

Added	IrrXEffectsGetShadowLightColor	to	set	the	color
of	an	XEffects	shadow	casting	light.

Tidyied	up	styling	of	HTML	documentation

Moved	Lighting	discussion	to	the	IrrlichtWrapper
Website.

v0.7.5

Remove	the	unsupported	IrrLockOpenGLTexture	from
the	reference	and	corrected	heading	for	IrrUnlockImage.

Added	command	IrrGetNodeMesh	to	get	the	mesh
associated	with	a	scene	node	contributed	by	agamemnus

Modified	IrrStop	to	close	the	device,	this	now	means	that
resources	are	tidied	up	correctly	and	a	new	device	can
even	be	opened	to	change	resolution.

Modified	the	handling	of	Keyboard,	Mouse	and	GUI
events	so	that	all	events	are	recieved	and	the	GUI	does
not	block	the	other	two.

Removed	IrrGUIEvents	as	it	is	no	longer	needed.

Added	IrrRenameMesh	to	allow	a	loaded	mesh	to	be
renamed

Added	IrrScaleMesh	to	allow	for	the	uniform	scaling	of	a
mesh	without	effecting	its	vertex	normals.

Added	IrrDraw2DImageElementStretch	to	copy	an	image
to	the	screen	while	scaling	it	too.	Contributed	by	Eric

(The	Car)

Added	IrrSetNodeTriangleSelector	to	attach	a	triangle
selector	to	a	specific	node	for	multiple	nodes.
Recommended	by	Agamemnus.

Changed	IrrSetMeshVertexCoords,
IrrSetMeshVertexCoords	and
IrrSetMeshVertexSingleColor	to	include	an	extra	index	so
for	example	a	group	[0]	to	[0]	would	include	one	vertex.

Added	IrrGetTextureInformation	to	get	dimentions,	pitch
and	color	format	of	a	texture.

Added	IrrGetImageInformation	to	get	dimentions,	pitch
and	color	format	of	an	image.

Added	IrrSetNodeRotationPositionChange	to	allow	for
the	incremental	rotation	and	direction	dependant
incremental	position	change	of	a	node	while	returning
information	that	can	be	used	to	attach	a	camera	and	locate
other	objects	and	effects.	This	code	is	based	on	examples
from	Chev	and		also	in	large	part	the	cockpit	example
functions	by	Arras.

Added	IrrGetMeshBoundingBox	to	get	the	bounding	box
of	a	mesh.	Contributed	by	Agamemnus.

Added	IrrGetNodeTransformedBoundingBox	to	get	the
tranformed	absoloute	position	of	a	nodes	bounding	box.
Contributed	by	Agamemnus.

Changed	IrrAddNodeShadow	to	add	an	optional
parameter	allowing	a	low	resoloution	mesh	to	be	used	in
shadow	calculation.

v0.7.4

Changed		IrrMaterialVertexColourAffects	to
IrrMaterialVertexColorAffects

Changed	IrrSetNodeAnimationSpeed	to	take	a	speed
parameter	of	type	floating	point	to	conform	with	Irrlicht
signiture	changes.

Changed	IrrSetNodeAnimationFrame	to	take	a	frame
parameter	of	type	floating	point	to	conform	with	Irrlicht
signiture	changes.

Added	function	IrrGetDistanceBetweenNodes	to	get	the
distance	between	two	nodes	efficiently.

Added	function	IrrAreNodesIntersecting	to	determine	if
the	bounding	boxes	of	two	nodes	are	intersecting.

Added	function	IrrIsPointInsideNode	to	determine	if	a
point	is	inside	the	bounding	box	of	a	node.

Added	function	IrrGetCollisionResultPosition	to	add
eplisoid	collision	management	supplied	by	'The	Car'.

Corrected	IrrGetCollisionGroupFromMesh	to	return	a

triangle	selection.highlighted	by	super_castle

Updated	Newton	functions	provided	by	SiskinEDGE	to
support	mesh	buffer.

Corrected	missing	parameters	in
IrrSetMeshVertexSingleColor	highlighted	by	agamemnus

Updated	IrrRemoveCollisionGroup	to	allow	it	to	take	a
scene	node	parameter	that	lets	the	selector	be	removed
from	an	associated	node.

Updated	IrrGetCollisionGroupFromComplexMesh	and
IrrGetCollisionGroupFromBox	so	the	created	selector	is
attached	to	the	scene	node	they	are	created	from.

Added	function	IrrGet3DPositionFromScreenCoordinates
to	get	a	3D	position	on	a	plane	from	a	set	of	screen	co-
ordinates,	contributed	by	agamemnus

Included	correction	to	CParticleEmissionEffector
constructor	used	in	IrrAddStopParticleAffector	to	allow
the	stop	time	to	be	set	correctly.	Contributed	by	The	Car

Added	example	91_Example_DistanceAndCollision.bas
to	demonstrate	new	distance	and	collision	functions.

Added	example
92_Example_MovingEntitiesByCollision.bas	to
demonstrate	moving	entities	around	a	scene	through
collision.

Added	example	93_Example_3DPositionFromScreen.bas
to	demonstrate	getting	a	point	on	a	plane	from	screen	co-
ordinates.

Corrected	example	50_Example_Fading_Nodes_Out.bas
to	correctly	demonstrate	fading	nodes.

Resolved	all	compilation	warnings	at	warning	level	3
when	built	under	msvc6	and	g++3.4.5

v0.7.3

Added	in	new	video	feature	queries	supported	by	Irrlicht
for	Vertex	Buffer	Object,	Alpha	to	Coverage,	Color
Masks,	Multiple	Render	Targets,	Blend	settings	for
Multiple	Render	Targets	and	Geometry	Shaders.

Added	IrrSetMaterialBlend	for	setting	the	Blend	settings
of	materials	associated	with	the
ONETEXTURE_BLEND	material.

Added	IrrAddBillboardTextSceneNode	for	adding	a
billboard	with	text	on	it	that	can	be	used	as	a	scaling	label
in	a	3D	environment.

Added	IrrSetTime	for	setting	the	irrlicht	animation	time
in	the	system.

Updated	example	23_Example_Video_Features.bas	to
display	new	feature	capabilities.

Updated	example
81_Example_GLSL_Shader_Materials.bas	to	display	a
range	of	GLSL	materials.

Added	example	86_Example_Screenshot_to_texture.bas

to	demonstrate	capturing	screenshots	to	textures.

Added	example	87_Example_MultiPass_Rendering.bas
to	demonstrate	blending	several	rendering	passes	to	the
display.

Added	example	88_Example_Billboard_Text.bas	to
demonstrate	adding	billboard	text	and	attaching	it	to	a
node.

Added	example	89_Example_Orthagonal_Camera.bas	to
demonstrate	the	use	of	orthagonal	cameras

Added	example	90_Example_Collision_Point.bas	to
demonstrate	a	new	ray	collision	test	feature.

Added	IrrDisableFeature	for	disabling	video	driver
features.

Added	IrrGetNodeBoundingBox	to	get	the	bounding	box
of	a	node.	supplied	by	Agamemnus

Added	IrrSetMaterialLineThickness	to	set	the	material
line	thickness	of	vertex	drawing	operation.	supplied	by
Agamemnus

Added	IrrSetMeshVertexSingleColor	to	set	groups	of

verticies	in	a	mesh	to	a	uniform	color.	supplied	by
Agamemnus

Added	IrrGetCollisionGroupFromMesh	to	creates	a
collision	group	from	the	triangles	in	a	mesh.

Added	IrrRemoveCollisionGroup	to	remove	a	collision
group	freeing	the	memory	it	uses.

Added	IrrGetNodeAndCollisionPointFromRay	to	detect	a
collision	between	a	ray	and	scene	node	objects	that	have
had	collision	groups	created	for	them.

Added	IrrDisableFeature	to	disable	particular	video
features.

Added	IrrGetMeshFrameCount	to	get	the	number	of
frames	in	an	animated	mesh

Added	IrrGetMeshBufferCount	to	get	the	number	of
mesh	buffers	in	a	mesh.

Added	IrrSetCameraOrthagonal		to	set	the	camera	to
display	an	Orthagonal	view	instead	of	the	default
persepective	view.

Updated	IrrGetMeshIndexCount,	IrrGetMeshIndices,

IrrSetMeshIndices,	IrrGetMeshVertexCount,
IrrGetMeshVertices,	IrrSetMeshVertices,
IrrSetMeshVertexColors,	IrrSetMeshVertexCoords	and
IrrSetMeshVertexSingleColor	to	work	from	individual
mesh	buffers	instead	of	the	entire	mesh	as	a	single	object.

Corrected	IrrSetMeshVertices	and
IrrSetMeshVertexCoords	to	correctly	set	the	bounding
box	of	the	mesh	they	modify.

v0.7.2

Changed	the	IrrGetScreenShot	command	to	capture	a
portion	of	the	screen	to	texture	rather	than	the	whole
screen	to	an	image.

Corrected	a	bug	where	mouse	events	were	not	being
passed	to	the	active	camera	when	keyboard	and	mouse	is
being	captured.

Corrections	for	bugs	in	passing	variables	to	GLSL
materials.

v0.7.1

Updated	documentation	with	new	commands

Updated	IrrlichtWrapper	to	compile	with	Irrlicht	version
1.7.1

Updated	IrrlichtWrapper	to	compile	with	g++	upto
version	4.4.1

Added	IrrSetMeshVertexColors	for	setting	the	color	of
verticies	supplied	by	Agamemnus

Added	IrrSetMeshVertexCoords	for	setting	the	co-
ordinates	of	verticies	supplied	by	Agamemnus

Added	IrrAddEmptySceneNode	to	add	an	empty	scene
node	to	the	scene	supplied	by	Agamemnus

Added	IrrGetCameraUpDirection	to	get	the	up	direction
of	the	active	camera	supplied	by	Agamemnus

Added	IrrGetScreenShot	to	grab	a	screenshot	into	an
image

Added	IrrRemoveImage	to	remove	an	image	from

memory

Added	IrrMaterialVertexColourAffects	to	set	the	material
property	that	vertex	colour	effects

Added	IrrGUIClear	to	clear	all	GUI	objects	from	the
screen

Added	IrrGUIRemove	to	remove	a	specific	GUI	object

Added	IrrGUIGetText	to	get	the	text	associated	with	a
GUI	object

Added	IrrGUISetText	to	set	the	text	associated	with	a
GUI	object

Added	IrrAddWindow	to	add	a	blank	window	GUI	object
to	the	display

Added	IrrAddButton	to	add	a	clickable	button	GUI	object
to	the	display

Added	IrrAddScrollBar	to	add	a	scrollbar	GUI	object	to
the	display

Added	IrrAddListBox	to	add	a	listbox	GUI	object	to	the
display

Added	IrrAddListBoxItem	to	add	items	to	a	listbox	GUI
object

Added	IrrInsertListBoxItem	to	insert	items	into	specific
positions	in	a	listbox	GUI	object

Added	IrrRemoveListBoxItem	to	remove	a	specific	item
from	a	listbox	GUI	object

Added	IrrSelectListBoxItem	to	select	a	specific	item	in	a
listbox	GUI	object

Added	IrrAddEditBox	to	add	an	editable	editbox	GUI
item

Added	IrrAddImage	to	add	a	2D	image	GUI	item

Added	IrrAddCheckBox	to	add	a	clickable	checkbox
GUI	item

Added	IrrCheckCheckBox	to	set	the	check	state	of	a
checkbox	GUI	item

Added	IrrAddFileOpen	to	add	a	file	open	GUI	item

Added	IrrGUISetFont	to	set	the	font	associated	with	the

GUI

Added	IrrGUISetColor	to	set	the	colour	of	the	GUI

Added	IrrGUIEvents	to	start	or	end	capturing	GUI	events

Added	IrrGUIEventAvailable	to	check	if	there	is	a	GUI
event	available

Added	IrrReadGUIEvent	to	read	a	GUI	event

Added	IrrGetLastSelectedFile	to	get	the	last	select	file
from	a	GUI	file	selection	object

Added	IrrSetViewPort	to	allow	rendering	to	be	confined
to	an	area	of	the	screen	for	split	screen	effects

Added	IrrSetCameraAspectRatio	to	allow	the	aspect	ratio
of	a	camera	to	be	changed	primarily	for	split	screen
effects

Updated	example	36	materials	to	work	with	Irrlicht	1.7.1

Added	examples	to	demonstrate	a	GLSL	material,	GUI,
Split	Screen,	Freetype	fonts	and	Embedded	OpenGL
commands.

Added	example	85_Example_Split_Screen.bas	to
demonstrate	splitscreen	rendering.

v0.7

Newton	Physics	Engine	support	for	convex	hulls	by
SiskinEDGE

Modified	to	work	with	Irrlicht	v1.6

Support	for	hardware	accelerated	meshes	allowing	static
models	to	.

Support	for	Crossed	grass,	correction	to	reduce	grass
'popup'

Particle	systems	now	have	minimum	and	maximum
particle	size	properties	in
their	configuration	structures

v0.6.2

Corrections	to	allow	compilation	under	linux	without
modification

Captured	keyboard	commands	are	now	also	sent	to	the
active	camera.

Correction	to	example	44	to	prevent	a	crash	under	build
for	Direct3D

Corrections	to	build	for	DirectX	to	support	all	236
commands	in	the	library

v0.6.1

Corrected	examples	to	not	use	litteral	paths	thanks	AlexZ

Added	column	support	to	push	particle	affector

Added	IrrSetColumnDistanceOfEffect	to	allow	the	push
affector	columnn	effect	to	be	dynamically	changed

Added	IrrCreateImage	to	create	blank	images

Added	IrrLockImage	to	get	the	pixels	for	an	image

Added	IrrUnlockImage	to	release	the	pixels	for	an	image

Added	IrrGetSphericalTerrainSurfacePosition	for	getting
coordinates	from	a	sphereical	terrains	face	number	and	a
logical	X,Z	coordinate

Added	IrrGetSphericalTerrainSurfacePositionAndAngle
for	getting	coordinates	from	a	sphereical	terrains	face
number	and	a	logical	X,Z	coordinate,	this	also	returns	the
angle	of	the	point	at	the	surface,	useful	for	placing
objects	on	the	spheres	surface.

Added	IrrGetSphericalTerrainLogicalSurfacePosition	for

getting	the	logical	face	number	and	X,Z	coordinates	from
normal	spacial	coordinates.	(This	is	not	100%	accurate
yet)	(not	supported	in	DirectX	in	this	release)

Added	IrrAddMayaCamera	for	adding	a	maya	style
camera	to	the	view	you	can	click	and	drag	to	move,
revolve	and	zoom	this	camera.	Suggested	by	Alvaro

Updated	documentation	with	new	commands

Added	examples	70	to	76	to	demonstrate	features

Minor	correction	to	example	12	thanks	Alvaro

Significant	improvement	to	Example	14	to	show	proper
manual	camera	control

Corrected	IrrSetCameraUpDirection	in	the	manual	thanks
AlexZ

v0.6

Included	a	simple	hacha.jpg	file	to	correct	examples	21,
41	and	43

Added	IrrAddClouds	to	create	a	clouds	node	by	Gaz
Davidson	and	Nikolaus	Gebhardt

Added	IrrAddGrass	to	create	a	patch	of	grass	across	a
terrain	by	Gaz	Davidson

Added	IrrSetSkyDomeColor	for	tinting	the	texture	on	a
skydome

Added	IrrAddStopParticleAffector	to	stop	particle	flows

Added	IrrSetSkyDomeColor	for	setting	the	color	of
verticies	in	a	skydome

Added	IrrAddZoneManager	for	adding	automatic	node
management

Added	IrrGetImage	for	loading	image	files	that	do	not
use	video	memory

Added	IrrAddTerrainTile	for	adding	terrain	objects	that

can	be	tiled!

Added	IrrScaleTileTexture	for	scaling	tiled	terrain	objects

Added	IrrAttachTile	for	attaching	tilable	terrain	objects
together

Added	IrrSetTileColor	for	loading	the	vertex	color	of
terrain	tiles

Added	IrrSetTileStructure	for	loading	the	height	and
vertex	color	of	terrain	tiles

Added	IrrSetGrassDensity	for	changing	grass	density

Added	IrrSetGrassWind	for	changing	the	strength	of
wind	affecting	the	grass

Added	IrrSetZoneManagerAttachTerrain	for	attaching	a
terrain	to	a	zone

Added	IrrRevolveCamera	for	6DOF	(six	degrees	of
freedom)	camera	motion	for	spacecraft	and	aircraft

Added	IrrSetMousePosition	for	moving	the	mouse	on	the
screen

Added	IrrTransparentZWrite	for	ordering	transparent
objects.	This	causes	a	performance	hit	but	can	correct
situations	where	transparent	objects	appear	in	the	wrong
order	on	the	screen

Added	IrrGetTerrainTileHeight	to	get	the	height	of	a
point	on	a	tile	terrain

Added	IrrGetTerrainHeight	to	get	the	height	of	a	point	on
a	normal	terrain

Added	IrrAddLensFlare	to	create	a	camera	lens	flare
effect

Added	IrrSetFlareScale	to	set	the	scale	of	the	lens	flare
effect

Added	IrrSetSkyDomeColorBand	to	add	a	band	of	color
to	a	skydome

Added	IrrSetSkyDomeColorPoint	to	add	a	circle	of	color
radiating	out	from	a	point	to	the	vertices	of	a	skydome

Added	IrrSetZoneManagerProperties	to	set	the	properties
of	a	zone	management	object

Added	IrrSetNodeName	to	set	the	name	of	a	node

Added	IrrGetNodeName	to	get	the	name	of	a	node

Added	IrrGetRootSceneNode	to	get	the	root	object	within
which	all	other	nodes	are	contained

Added	IrrGetChildCollisionNodeFromRay	to	get	a	child
object	hit	by	a	ray

Added	IrrSetZoneManagerBoundingBox	to	get	the
bounding	box	of	a	zone	managment	object

Added	IrrGetChildCollisionNodeFromPoint	to	get	a	child
object	contained	in	a	specific	location

Added	IrrGetNodeFirstChild	to	get	the	first	child	object
of	a	specific	object

Added	IrrIsNodeLastChild	to	check	if	an	object	is	the	last
child	object	of	a	specific	object

Added	IrrGetNodeNextChild	to	get	the	next	child	object
of	a	specific	object

Added	IrrGetNodeAbsolutePosition	to	get	the	absolout
position	of	a	node	taking	into	account	the	positions	of	all
of	its	parents

Added	IrrSetNodeParent	to	set	the	parent	node	of	a
specific	node

Added	IrrSetCameraUpAtRightAngle	to	adust	the	camera
up	angle	so	that	it	is	at	right	angles	to	the	camera	vector

Added	IrrAddSphericalTerrain	to	create	a	spherical
terrain	object	for	planets

Added	IrrScaleSphericalTexture	to	scale	the	textures	of	a
spherical	terrain	object

Added	IrrAddStopParticleAffector	to	create	a	particle
affector	that	stops	the	flow	of	particles	from	a	specific
emitter

Added	IrrAddParticlePushAffector	to	create	a	particle
affector	that	pushes	particles	in	particular	directions

Added	IrrAddColorMorphAffector	to	create	a	particle
color	morph	affector	that	changes	the	color	of	a	particle
over	its	lifetime

Added	IrrSetFurthestDistanceOfEffect	to	set	the	furthest
distance	that	the	push	affector	has	any	influence

Added	IrrSetNearestDistanceOfEffect	to	set	the	nearest
distance	that	the	push	affector	has	any	influence

Added	IrrSetCenterOfEffect	to	set	the	center	of	the	effect
of	a	push	affector

Added	IrrSetStrengthOfEffect	to	set	the	strength	of	a
push	affector

Added	IrrAddSplineAffector	to	create	a	spline	path
affector	for	particles

v0.5.1

Included	a	new	parameter	into	IrrStart	that	allows	the
wrapper	to	enable	Irrlichts	vertical	syncronisation	to
prevent	'tearing'	of	the	picture	by	syncronising	the	refresh
of	the	display.	(suggested	by	Daiwa)

V0.5

Eponasoft	contributed	support	for	skydomes	with
IrrAddSkyDomeToScene

Eponasoft	contributed	support	for	water	nodes	with
IrrAddWaterSurfaceSceneNode

Eponasoft	contributed	support	for	hill	planes	with
IrrAddHillPlaneMesh

Eponasoft	contributed	support	for	loading	IrrEdit	scenes
with	IrrLoadScene

Added	support	for	saving	the	current	scene	to	a	file	that
can	be	loaded	into	irrEdit	with	IrrSaveScene.

Added	support	for	finding	a	node	in	the	scene	by	its	ID
with	IrrGetSceneNodeFromId

Added	support	for	finding	a	node	in	the	scene	by	its	name
with	IrrGetSceneNodeFromName

Support	for	adding	a	simple	cube	scene	node

Support	for	adding	a	simple	Sphere	scene	node

Added	support	for	the	Irrlicht	call	to	set	texture	creation
flags	with	IrrSetTextureCreationFlag

Added	support	for	the	Irrlicht	call	to	draw	a	3D	line	into
the	display	with	IrrDraw3DLine

Added	support	for	the	Irrlicht	call	to	create	a	texture	that
is	suitable	for	the	scene	manager	to	use	as	a	surface	to
which	it	can	render	its	3d	scene	with
IrrCreateRenderTargetTexture.	Each	the	dimentions	must
be	a	power	of	two	for	example	128x128	or	256x256

Added	support	for	the	Irrlicht	call	to	draw	scene	manager
objects	to	a	texture	surface	with	IrrDrawSceneToTexture.
The	texture	must	have	been	created	with	a	call	to
IrrCreateRenderTargetTexture

Added	support	for	the	Irrlicht	call	to	create	a	blank
texture	with	IrrCreateTexture

Added	support	for	the	Irrlicht	call	to	lock	the	texture	and
returns	a	pointer	to	the	pixels	with	IrrLockTexture

Added	support	for	the	Irrlicht	call	to	unlock	the	texture
with	IrrUnlockTexture,	presumably	after	it	has	been
modified	and	recreate	the	mipmap	levels

Added	support	for	the	Irrlicht	call	to	remove	a	texture
from	memory	with	IrrRemoveTexture	freeing	the
resources

Added	support	for	the	Irrlicht	query	feature	command.
The	video	card	can	now	be	queried	to	see	which	video
card	features	it	supports.

Added	support	for	the	Irrlicht	call	to	add	a	mesh	to	the
scene	as	a	static	object	with
IrrAddStaticMeshForNormalMappingToScene,	the	mesh
is	altered	so	that	it	is	suitable	for	the	application	of	a
Normal	or	Parallax	mapping	material,	at	this	time	any
animation	information	is	lost.

Added	support	for	Irrlicht	call	to	make	a	normal	map
from	a	greyscale	bump	map	texture	with
IrrMakeNormalMapTexture

Added	support	for	Irrlicht	call	to	Get	the	number	of
materials	associated	with	a	node	with
IrrGetMaterialCount

Added	support	for	Irrlicht	call	to	Get	the	material
associated	with	the	node	at	the	particular	index	with
IrrGetMaterial

Added	support	for	Irrlicht	call	to	Set	how	shiny	the
material	is	with	IrrMaterialSetShininess	the	higher	the
value	the	more	defined	the	highlights

Added	support	for	Irrlicht	call	to	set	the	color	of	specular
highlights	on	the	object	with	IrrMaterialSetSpecularColor

Added	support	for	Irrlicht	call	to	set	the	color	of	diffuse
lighting	on	the	object	with	IrrMaterialSetDiffuseColor

Added	support	for	Irrlicht	call	to	set	the	color	of	ambient
light	reflected	by	the	object	with
IrrMaterialSetAmbientColor

Added	support	for	Irrlicht	call	to	set	the	color	of	light
emitted	by	the	object	with	IrrMaterialSetEmissiveColor

Added	support	for	Irrlicht	call	to		set	material	specific
parameter	with	IrrMaterialSetMaterialTypeParam

Added	a	materials	interface	with	a	series	of	functions	for
adding	GPU	Shader	programs	for	modern	graphics	cards.
This	interface	is	in	an	early	phase	of	development	and
requires	more	work.

Added	support	for	Irrlicht	calls	for	creating	Materials

based	upon	GPU	programs	for	cards	that	support	the
feature	:	IrrAddHighLevelShaderMaterial,
IrrAddHighLevelShaderMaterialFromFiles,
IrrAddShaderMaterial	and
IrrAddShaderMaterialFromFiles

Added	support	for	Irrlicht	calls	for	creating	constants	to
materials	with:	IrrCreateNamedVertexShaderConstant,
IrrCreateNamedPixelShaderConstant,
IrrCreateAddressedVertexShaderConstant	and
IrrCreateAddressedPixelShaderConstant

IrrGetMS3DJointNode	and	IrrGetDirectXJointNode	are
now	replaced	with	a	universal	IrrGetJointNode	call.

Added	support	for	Irrlicht	calls	for	setting	the	current
frame	number	being	played	in	the	animation	with
IrrSetNodeAnimationFrame

Added	support	for	Irrlicht	calls	for	setting	the	time	in
seconds	across	which	two	animation	frames	are	blended
with	IrrSetTransitionTime.	This	can	be	used	to	smothly
animate	a	model	between	two	poses	where	no	animation
data	exists.

Added	support	for	Irrlicht	calls	for	animating	the	mesh
based	on	the	position	of	the	joints,	this	should	be	used	at

the	end	of	any	manual	joint	operations	including	blending
and	joints	animated	using
IRR_JOINT_MODE_CONTROL	and
IrrSetNodeRotation	on	a	bone	node	with
IrrAnimateJoints

Added	support	for	Irrlicht	calls	for	setting	the	animation
mode	of	joints	in	a	node	with	IrrSetJointMode	allowing
them	to	be	blended	or	controlled	programatically.

Added	support	for	Irrlicht	call	to	write	the	first	frame	of
the	supplied	animated	mesh	out	to	a	file	using	the
specified	file	format	with	IrrWriteMesh

Added	support	for	Irrlicht	calls	for	creating	a	particle
emitter	for	an	animated	mesh	scene	node	with
IrrCreateAnimatedMeshSceneNodeEmitter

Added	support	for	Irrlicht	calls	for	creating	a	point
attraction	affector	with	IrrAddParticleAttractionAffector.
This	affector	modifies	the	positions	of	the	particles	and
attracts	them	to	a	specified	point	at	a	specified	speed.

Added	support	for	Irrlicht	calls	for	creating	a	rotation
affector	with	IrrCreateRotationAffector.	This	affector
modifies	the	positions	of	the	particles	and	attracts	them	to
a	specified	point	at	a	specified	speed	per	second.

Added	support	for	Irrlicht	calls	for	setting	direction	the
emitter	emits	particles	with
IrrSetParticleEmitterDirection.

Added	support	for	Irrlicht	calls	for	setting	minimum
number	of	particles	the	emitter	emits	per	second	with
IrrSetParticleEmitterMinParticlesPerSecond.

Added	support	for	Irrlicht	calls	for	setting	maximum
number	of	particles	the	emitter	emits	per	second
IrrSetParticleEmitterMaxParticlesPerSecond.

Added	support	for	Irrlicht	calls	for	setting	minimum
starting	color	for	particles	with
IrrSetParticleEmitterMinStartColor.

Added	support	for	Irrlicht	calls	for	setting	maximum
starting	color	for	particles
IrrSetParticleEmitterMaxStartColor.

Added	support	for	Irrlicht	calls	for	enabling	or	disabling
an	affector	with	IrrSetParticleAffectorEnable.

Added	support	for	Irrlicht	calls	for	altering	the	fadeout
affector	changing	the	fade	out	time	with
IrrSetFadeOutParticleAffectorTime.

Added	support	for	Irrlicht	calls	for	altering	the	fadeout
affector	changing	the	target	color
IrrSetFadeOutParticleAffectorTargetColor.

Added	support	for	Irrlicht	calls	for	altering	the	direction
and	force	of	gravity	with
IrrSetGravityParticleAffectorDirection.

Added	support	for	Irrlicht	calls	for	setting	the	time	in
milliseconds	when	the	gravity	force	is	totally	lost	and	the
particle	does	not	move	any	more	with
IrrSetGravityParticleAffectorTimeForceLost.

Added	support	for	Irrlicht	calls	for	setting	whether	or	not
this	will	affect	particles	in	the	X	direction	with
IrrSetParticleAttractionAffectorAffectX.

Added	support	for	Irrlicht	calls	for	setting	whether	or	not
this	will	affect	particles	in	the	Y	direction	with
IrrSetParticleAttractionAffectorAffectY.

Added	support	for	Irrlicht	calls	for	setting	whether	or	not
this	will	affect	particles	in	the	Z	direction	with
IrrSetParticleAttractionAffectorAffectZ.

Added	support	for	Irrlicht	calls	for	setting	whether	or	not

the	particles	are	attracting	or	detracting	with
IrrSetParticleAttractionAffectorAttract.

Added	support	for	Irrlicht	calls	for	setting	the	point	that
particles	will	attract	to	with
IrrSetParticleAttractionAffectorSetPoint.

Added	support	for	Irrlicht	calls	for	setting	the	point	that
particles	will	rotate	about	with
IrrSetRotationAffectorSetPivotPoint.

Added	support	for	Irrlicht	calls	for	clearing	all	meshes
that	are	held	in	the	mesh	cache	but	not	used	anywhere
else	with	IrrClearUnusedMeshes

Added	support	for	Irrlicht	calls	for	removing	all	nodes	in
a	scene	with	IrrRemoveAllNodes.	This	is	useful	for
example	for	clearing	the	scene	between	levels.

Added	support	for	Irrlicht	calls	for	saving	a	screenshot
out	to	a	file	with	IrrSaveScreenShot

Added	support	for	Irrlicht	calls	for	setting	the	Ambient
color	emitted	by	the	light	with	IrrSetLightAmbientColor

Added	support	for	Irrlicht	calls	for	setting	the	the	light
strength	fading	over	distance	with	IrrSetLightAttenuation

Added	support	for	Irrlicht	calls	for	setting	whether	the
light	casts	shadows	with	IrrSetLightCastShadows

Added	support	for	Irrlicht	calls	for	setting	the	Diffuse
color	emitted	by	the	light	with	IrrSetLightDiffuseColor

Added	support	for	Irrlicht	calls	for	setting	the	lights
strength's	decrease	between	Outer	and	Inner	cone	with
IrrSetLightFalloff

Added	support	for	Irrlicht	calls	for	setting	the	angle	of	the
spot's	inner	cone	with	IrrSetLightInnerCone

Added	support	for	Irrlicht	calls	for	setting	the	angle	of	the
spot's	outer	cone	IrrSetLightOuterCone

Added	support	for	Irrlicht	calls	for	setting	the	Radius	of
light	with	IrrSetLightRadius.	Everything	within	this
radius	be	be	lighted.

Added	support	for	Irrlicht	calls	for	setting	the	Specular
color	emitted	by	the	light	with		IrrSetLightSpecularColor

Added	support	for	Irrlicht	calls	for	setting	the	type	of	the
light	with	IrrSetLightType

Adding	lighting	attributes	has	provided	support	to
defining	spot	lights	and	distant	light,	the	position	and
direction	of	these	directional	light	sources	can	be	changed
by	moving	and	rotation	the	light	node.

Wrapper	Library	for	Irrlicht

Platform	and	Compiler	Support

http://www.frankdodd.screaming.net//IrrlichtWrapper/IrrlichtWrapperPortal.htm

Overview

IrrlichtWrapper	is	supplied	with	three	sets	of	files.	MSVC
versions,	GCC	versions	and	Linux	Versions.	The	default
version	of	the	files	are	those	compiled	with	MSVC,	these
provide	support	for	OpenGL,	Direct	X	8,	Direct	X	9	and
software	rendering.	The	GCC	and	Linux	versions	support
both	OpenGL	and	Software	rendering.

GCC	Compiler

To	use	the	GCC	DLLs	you	need	to	rename	the	supplied
files:	-

1.	Rename	Irrlicht.dll	to	Irrlicht_ms.dll
2.	Rename	IrrlichtWrapper.dll	to	IrrlichtWrapper_ms.dll
3.	Rename	Irrlicht_gcc.dll	to	Irrlicht.dll
4.	Rename	IrrlichtWrapper_gcc.dll	to	IrrlichtWrapper.dll

You	will	now	be	able	to	build	the	IrrlichtWrapper	with
the	GCC	compiler	and	run	the	examples.	You	will	not	be
able	to	use	either	Direct	X	rendering	mode..

Linux	Platform

The	supplied	linux	library	files	libIrrlicht.so	and
libIrrlichtWrapper.so	can	be	installed	to	your,	/usr/lib
directory,	you	will	then	be	able	to	use	the	freebasic
compiler	to	build	and	run	the	example	files.

Linux	support	is	limited	at	the	moment	the	release	is
tested	under	Software	Rendering	on	Fedora	11.	The
supplied	libraries	may	provide	reduced	performanceand	it
is	recommended	that	you	rebuild	both	the	Irrlicht	Library
and	the	IrrlichtWrapper	library	on	your	own	system	to
utilise	the	OpenGL	support	that	may	be	available	on	your
system.	

