
SQL	Server	Architecture

SQL	Server	Architecture	Overview
Microsoft®	SQL	Server™	2000	is	a	set	of	components	that	work	together	to
meet	the	data	storage	and	analysis	needs	of	the	largest	Web	sites	and	enterprise
data	processing	systems.	The	topics	in	SQL	Server	Architecture	describe	how
the	various	components	work	together	to	manage	data	effectively.

Topic Description
Features	of	SQL	Server
2000

Highlights	the	features	of	Microsoft	SQL	Server
2000.

Relational	Database
Components

Describes	the	main	relational	database
components	of	SQL	Server	2000,	including	the
database	engine	itself	and	the	components
involved	in	communications	between	applications
and	the	database	engine.

Database	Architecture Describes	the	logical	components	defined	in	SQL
Server	databases	and	how	they	are	physically
implemented	in	database	files.

Relational	Database
Engine	Architecture

Describes	the	features	of	the	server	engine	that
make	it	efficient	at	processing	large	numbers	of
concurrent	requests	for	data	from	many	users.

Administration
Architecture

Describes	how	the	easy-to-use	tools	provided	with
SQL	Server	2000	and	the	dynamic	configuration
capabilities	of	SQL	Server	minimize	routine
administrative	tasks.

Replication	Architecture Describes	the	replication	components	of	SQL
Server	2000	and	how	they	can	be	used	to
distribute	data	between	databases.

Data	Warehousing	and
Online	Analytical
Processing

Describes	Data	Transformation	Services	(DTS)
and	Microsoft	SQL	Server	2000	Analysis
Services,	and	how	they	help	in	building	and
analyzing	a	data	warehouse	or	data	mart.

Application
Development
Architecture

Describes	how	SQL	Server	2000	supports	the
various	database	programming	APIs,	which	allow
users	to	build	robust	database	applications.

Implementation	Details Provides	implementation	details,	such	as	the
maximum	capacities	of	Transact-SQL	statements,
the	ranges	of	SQL	Server	configuration	options,
memory	usage	of	SQL	Server	objects,	and	the
differences	among	the	editions	of	Microsoft	SQL
Server.

SQL	Server	Architecture

Fundamentals	of	SQL	Server	2000	Architecture
Microsoft®	SQL	Server™	2000	is	a	family	of	products	that	meet	the	data
storage	requirements	of	the	largest	data	processing	systems	and	commercial	Web
sites,	yet	at	the	same	time	can	provide	easy-to-use	data	storage	services	to	an
individual	or	small	business.

The	data	storage	needs	of	a	modern	corporation	or	government	organization	are
very	complex.	Some	examples	are:

Online	Transaction	Processing	(OLTP)	systems	must	be	capable	of
handling	thousands	of	orders	placed	at	the	same	time.

Increasing	numbers	of	corporations	are	implementing	large	Web	sites	as
a	mechanism	for	their	customers	to	enter	orders,	contact	the	service
department,	get	information	about	products,	and	for	many	other	tasks
that	previously	required	contact	with	employees.	These	sites	require
data	storage	that	is	secure,	yet	tightly	integrated	with	the	Web.

Organizations	are	implementing	off-the-shelf	software	packages	for
critical	services	such	as	human	resources	planning,	manufacturing
resources	planning,	and	inventory	control.	These	systems	require
databases	capable	of	storing	large	amounts	of	data	and	supporting	large
numbers	of	users.

Organizations	have	many	users	who	must	continue	working	when	they
do	not	have	access	to	the	network.	Examples	are	mobile	disconnected
users,	such	as	traveling	sales	representatives	or	regional	inspectors.
These	users	must	synchronize	the	data	on	a	notebook	or	laptop	with	the
current	data	in	the	corporate	system,	disconnect	from	the	network,
record	the	results	of	their	work	while	in	the	field,	and	then	finally
reconnect	with	the	corporate	network	and	merge	the	results	of	their
fieldwork	into	the	corporate	data	store.

Managers	and	marketing	personnel	need	increasingly	sophisticated
analysis	of	trends	recorded	in	corporate	data.	They	need	robust	Online
Analytical	Processing	(OLAP)	systems	easily	built	from	OLTP	data	and
support	sophisticated	data	analysis.

Independent	Software	Vendors	(ISVs)	must	be	able	to	distribute	data
storage	capabilities	with	applications	targeted	at	individuals	or	small
workgroups.	This	means	the	data	storage	mechanism	must	be
transparent	to	the	users	who	purchase	the	application.	This	requires	a
data	storage	system	that	can	be	configured	by	the	application,	and	then
tune	itself	automatically	so	that	the	users	do	not	need	to	dedicate
database	administrators	to	constantly	monitor	and	tune	the	application.

SQL	Server	Architecture

SQL	Server	2000	Component	Overview
This	diagram	is	an	illustration	of	the	relationships	between	the	major
components	of	Microsoft®	SQL	Server™	2000.

SQL	Server	2000	provides	two	fundamental	services	to	applications	in	a
Windows®	DNA	environment:

The	SQL	Server	2000	relational	database	engine	is	a	modern,	highly
scalable,	highly	reliable	engine	for	storing	data.	The	database	engine
stores	data	in	tables.	Each	table	represents	some	object	of	interest	to	the
organization,	such	as	vehicles,	employees,	or	customers.	Each	table	has
columns	that	represent	an	attribute	of	the	object	modeled	by	the	table
(such	as	weight,	name,	or	cost),	and	rows	that	represent	a	single
occurrence	of	the	type	of	object	modeled	by	the	table	(such	as	the	car

with	license	plate	number	ABC-123,	or	the	employee	with	ID	123456).
Applications	can	submit	Structured	Query	Language	(SQL)	statements
to	the	database	engine,	which	returns	the	results	to	the	application	in	the
form	of	a	tabular	result	set.	The	specific	dialect	of	SQL	supported	by
SQL	Server	is	called	Transact-SQL.	Applications	can	also	submit	either
SQL	statements	or	XPath	queries	and	request	that	the	database	engine
return	the	results	in	the	form	of	an	XML	document.

The	relational	database	engine	is	highly	scalable.	The	SQL	Server	2000,
Enterprise	Edition	can	support	groups	of	database	servers	that	cooperate
to	form	terabyte-sized	databases	accessed	by	thousands	of	users	at	the
same	time.	The	engine	is	capable	of	handling	the	traffic	of	any	Web	site
in	the	world.	The	database	engine	also	tunes	itself,	dynamically
acquiring	resources	as	more	users	connect	to	the	database,	and	then
freeing	the	resources	as	the	users	log	off.	This	means	that	the	smaller
editions	of	SQL	Server	can	be	used	for	individuals	or	small	workgroups
that	do	not	have	dedicated	database	administrators.	SQL	Server	for
Windows	CE	even	extends	the	SQL	Server	programming	model	to
Windows	CE	devices	used	by	mobile,	disconnected	users.	Even	large
Enterprise	Edition	database	servers	running	in	production	are	easy	to
administer	using	the	graphical	user	interface	(GUI)	administration
utilities	that	are	a	part	of	the	product.

The	relational	database	engine	is	highly	reliable	and	capable	of	running
for	long	periods	without	down	time.	Administrative	actions	that
required	stopping	and	starting	in	earlier	versions	of	the	database	engine
can	now	be	performed	while	the	engine	is	running,	increasing
availability.	The	integration	of	the	database	engine	with	Windows	2000
and	Windows	NT®	failover	clustering	allows	you	to	define	virtual
servers	that	keep	running	even	if	one	of	the	physical	servers	in	the	node
fails.	Where	appropriate,	log	shipping	can	be	used	to	maintain	a	warm
standby	server	that	can	replace	a	production	server	within	minutes	of	a
failure.

The	relational	database	engine	is	also	highly	secure.	Login
authentication	can	be	integrated	with	Windows	Authentication,	so	that
no	passwords	are	stored	in	SQL	Server	or	sent	across	the	network	where
they	could	be	read	by	network	sniffers.	Sites	can	set	up	C2-level
auditing	of	all	users	accessing	a	database,	and	can	use	Secure	Sockets

Layer	(SSL)	encryption	to	encrypt	all	data	transferred	between
applications	and	the	database.

The	distributed	query	feature	of	the	database	engine	allows	you	to
access	data	from	any	source	of	data	that	can	be	accessed	using	OLE
DB.	The	tables	of	the	remote	OLE	DB	data	source	can	be	referenced	in
Transact-SQL	statements	just	like	tables	that	actually	reside	in	a	SQL
Server	database.	In	addition,	the	full-text	search	feature	allows	you	to
perform	sophisticated	pattern	matches	against	textual	data	stored	in
SQL	Server	databases	or	Windows	files.

The	relational	database	engine	is	capable	of	storing	detailed	records	of
all	the	transactions	generated	by	the	top	online	transaction	processing
(OLTP)	systems.	The	database	engine	can	also	support	the	demanding
processing	requirements	for	fact	tables	and	dimension	tables	in	the
largest	online	analytical	(OLAP)	data	warehouses.

For	more	information	about	the	SQL	Server	2000	relational	database
component,	see	Relational	Database	Components

Microsoft	SQL	Server	2000	Analysis	Services	provides	tools	for
analyzing	the	data	stored	in	data	warehouses	and	data	marts.	Certain
analytical	processes,	such	as	getting	a	summary	of	the	monthly	sales	by
product	of	all	the	stores	in	a	district,	take	a	long	time	if	run	against	all
the	detail	records	of	an	OLTP	system.	To	speed	up	these	types	of
analytical	processes,	data	from	an	OLTP	system	is	periodically
summarized	and	stored	in	fact	and	dimension	tables	in	a	data	warehouse
or	data	mart.	Analysis	Services	presents	the	data	from	these	fact	and
dimension	tables	as	multidimensional	cubes	that	can	be	analyzed	for
trends	and	other	information	that	is	important	for	planning	future	work.
Processing	OLAP	queries	on	multidimensional	Analysis	Services	cubes
is	substantially	faster	than	attempting	the	same	queries	on	the	detail	data
recorded	in	OLTP	databases.	For	more	information	about	Analysis
Services,	see	Data	Warehousing	and	Online	Analytical	Processing.

Application	Support

Both	the	relational	database	engine	and	Analysis	Services	provide	native	support
for	the	common	Windows	DNA	or	Win32	data	access	interfaces,	such	as

ActiveX®	Data	Objects	(ADO),	OLE	DB,	and	Open	Database	Connectivity
(ODBC).	Applications	can	use	any	of	these	application	programming	interfaces
(APIs)	to	send	SQL	or	XML	statements	to	the	relational	database	engine	using	a
native	OLE	DB	provider	or	ODBC	driver.	SQL	Server	2000	also	introduces	the
ability	to	use	HTTP	to	send	SQL	or	XML	statements	to	the	relational	database
engine.	Applications	can	use	the	multidimensional	extensions	of	either	ADO	or
OLE	DB	to	send	Multidimensional	Expressions	(MDX)	queries	to	Analysis
Services.	Because	SQL	Server	uses	the	standard	Windows	DNA	data	access
APIs,	the	development	of	SQL	Server	applications	is	well	supported	by	the
Microsoft	application	development	environments.	In	addition,	interactive	query
tools,	such	as	Query	Analyzer,	provide	templates,	interactive	debuggers,	and
interactive	test	environments	that	speed	the	ability	of	your	programmers	to
deliver	SQL	Server	applications.

In	addition	to	supporting	the	data	storage	and	OLAP	processing	needs	of
applications,	SQL	Server	2000	provides	a	full	set	of	easy	to	use,	graphical
administration	tools	and	wizards	for	creating,	configuring,	and	maintaining
databases,	data	warehouses,	and	data	marts.	SQL	Server	also	documents	the
administration	APIs	used	by	the	SQL	Server	tools,	giving	you	the	ability	to
incorporate	SQL	Server	administration	functionality	directly	into	your	own
applications.	The	SQL	Server	administration	APIs	include:

SQL	Distributed	Management	Objects	(SQL-DMO),	a	set	of	COM
objects	that	encapsulates	the	administration	functions	for	all	of	the
entities	in	the	relational	database	engine	and	databases.

Decision	Support	Objects	(DSO),	a	set	of	COM	objects	that
encapsulates	the	administration	functions	for	all	of	the	entities	in
Analysis	Services	engine	and	multidimensional	cubes.

Windows	Management	Instrumentation	(WMI),	SQL	Server	2000
provides	a	SQL	Server	WMI	provider	that	lets	WMI	applications	get
information	on	SQL	Server	databases	and	instances.

For	more	information	about	developing	SQL	Server	applications,	see
Application	Development	Architecture,	and	SQL	Server	and	XML	Support.

Additional	Components
SQL	Server	2000	provides	several	components	that	support	important
requirements	of	modern	data	storage	systems.	The	data	storage	needs	of	today's
large	enterprises	are	very	complex,	and	go	beyond	having	a	single	OLTP	system
integrated	with	a	single	data	warehouse	or	data	mart.	Increasing	numbers	of	field
personnel	need	to	load	sets	of	data,	disconnect	from	the	network,	record	their
work	autonomously	during	the	day,	then	plug	back	in	to	the	network	and	merge
their	records	into	the	central	data	store	at	the	end	of	the	day.	OLTP	systems	have
to	support	the	needs	of	both	internal	employees	operating	through	an	intranet
and	hundreds	of	thousands	of	customers	placing	orders	through	your	Web	portal.
Keeping	data	close	to	the	workgroups	or	even	individuals	who	primarily	work
on	the	data,	and	then	replicating	the	data	to	a	primary	data	store	may	minimize
the	overall	processing	load	of	your	system.

SQL	Server	2000	replication	allows	sites	to	maintain	multiple	copies	of
data	on	different	computers	in	order	to	improve	overall	system
performance	while	at	the	same	time	making	sure	the	different	copies	of
data	are	kept	synchronized.	For	example,	a	department	could	maintain
the	department	sales	data	on	a	departmental	server,	but	use	replication
to	update	the	sales	data	in	the	corporate	computer.	Several	mobile
disconnected	users	can	disconnect	from	the	network,	work	throughout
the	day,	and	at	the	end	of	the	day	use	merge	replication	to	merge	their
work	records	back	into	the	main	database.	These	workers	can	be	using
SQL	Server	Personal	Edition	on	notebook	or	laptop	computers,	or	using
SQL	Server	for	Windows	CE	on	Windows	CE	devices;	all	are	supported
by	SQL	Server	replication.	SQL	Server	replication	also	supports
replicating	data	to	data	warehouses,	and	can	replicate	data	to	or	from
any	data	source	that	supports	OLE	DB	access.	For	more	information,
see	Replication	Architecture.

SQL	Server	2000	Data	Transformation	Services	(DTS)	greatly	improves
the	process	of	building	OLAP	data	warehouses.	Large	OLTP	databases
are	finely	tuned	to	support	the	entry	of	thousands	of	business
transactions	at	the	same	time.	OLTP	databases	are	also	structured	to
record	the	details	of	every	transaction.	Trying	to	perform	sophisticated
analysis	to	discover	trends	in	sales	over	a	number	of	months	and	years

would	require	scanning	huge	numbers	of	records,	and	the	heavy
processing	load	would	drag	down	the	performance	of	the	OLTP
databases.	Data	warehouses	and	data	marts	are	built	from	the	data	in
one	or	more	OLTP	systems	that	is	extracted	and	transformed	into
something	more	useful	for	OLAP	processing.	OLTP	detail	rows	are
periodically	pulled	into	a	staging	database,	where	they	are	summarized
and	the	summary	data	is	stored	in	a	data	warehouse	or	data	mart.	Data
Transformation	Services	supports	extracting	data	from	one	source	of
data,	performing	sometimes	complex	transformations	of	the	data,	and
then	storing	the	summarized,	transformed	data	in	another	data	source.
The	component	greatly	simplifies	the	process	of	extracting	data	from
multiple	OLTP	systems	and	building	it	into	an	OLAP	data	warehouse	or
data	mart.	For	more	information,	see	Transforming	OLTP	Data	to
OLAP	Data	Warehouses.

DTS	is	not	limited	to	being	used	to	build	data	warehouses.	It	can	be
used	any	time	you	have	to	retrieve	data	from	one	data	source,	perform
complex	transformations	on	the	data,	and	then	store	it	in	another	data
source.	DTS	is	also	not	limited	to	working	with	SQL	Server	databases
or	Analysis	Services	cubes,	DTS	can	work	with	any	data	source	that	can
be	accessed	using	OLE	DB.

SQL	Server	2000	English	Query	allows	you	to	build	applications	that
can	customize	themselves	to	ad	hoc	user	questions.	An	English	Query
administrator	defines	for	the	English	Query	engine	all	of	the	logical
relationships	between	the	tables	and	columns	of	a	database	or	the	cubes
in	a	data	warehouse	or	data	mart.	An	application	can	then	present	the
user	with	a	box	where	she	can	enter	a	character	string	with	a	question
(written	in	English)	about	the	data	in	the	database	or	data	warehouse.
The	application	passes	the	string	to	the	English	Query	engine,	which
analyzes	the	string	against	the	relationships	defined	between	the	tables
or	cubes.	English	Query	then	returns	to	the	application	a	SQL	statement
or	MDX	(multidimensional	expression)	query	that	will	return	the
answer	to	the	user's	question.	For	more	information,	see	SQL	Server
and	English	Query.

Meta	Data	Services	provides	facilities	for	storing,	viewing,	and

retrieving	descriptions	of	the	objects	in	your	applications	and	system.
Meta	Data	Services	supports	the	MDC	Open	Information	Model	(OIM)
specification	defining	a	common	format	for	storing	descriptions	of
entities	such	as	tables,	views,	cubes,	or	transformations,	as	well	as	the
relationships	between	these	entities.	Application	development	tools	that
support	OIM	can	use	these	descriptions	to	facilitate	rapid	development
and	interchange	with	other	tools	and	applications.	SQL	Server
components,	such	as	Data	Transformation	Services	packages	and
Analysis	Services	databases,	can	also	be	stored	in	the	Meta	Data
Services	repository.	For	more	information,	see	SQL	Server	2000	Data
Warehouse	and	OLAP	Components.

Using	SQL	Server	2000

An	organization	may	use	the	SQL	Server	2000	components	to	perform	various
tasks,	for	example:

Each	department	might	have	a	departmental	SQL	Server	database
server.	Each	of	these	servers	periodically	replicate	their	data	into	a
central	database	server	that	serves	the	entire	organization.

The	organization	may	have	another	central	database	computer	that
services	the	organization's	Web	site,	sometimes	servicing	thousands	of
queries	at	once.	Some	of	the	Web	applications	use	English	Query	to
allow	customers	to	tailor	requests	for	the	data	in	the	Web	site	database.

Several	employees	may	be	running	individual	copies	of	a	shrink-
wrapped	software	product	that	installed	a	copy	of	SQL	Server	Desktop
Engine	as	its	data	storage	component.

Several	other	employees	in	the	service	department	are	operating	as
mobile	disconnected	users,	where	they	use	replication	each	morning	to
load	their	daily	schedules	into	notebook	computers	or	Microsoft
Windows	CE	devices,	work	in	the	field	all	day,	then	use	merge
replication	at	the	end	of	the	day	to	enter	their	work	items	back	into	the
central	computer.

Periodically,	detailed	OLTP	data	is	extracted	from	the	central	databases
by	Data	Transformation	Services	packages	that	scrub	the	data	and	build
it	into	summary	data	that	is	then	loaded	into	a	data	warehouse.

The	senior	managers	and	marketing	personnel	use	Analysis	Services	to
analyze	the	data	warehouse	for	business	trends	that	indicate	possible
opportunities	that	could	be	exploited	or	risks	that	must	be	minimized.

SQL	Server	Architecture

Features	of	SQL	Server	2000
Microsoft®	SQL	Server™	2000	features	include:

Internet	Integration.

The	SQL	Server	2000	database	engine	includes	integrated	XML
support.	It	also	has	the	scalability,	availability,	and	security	features
required	to	operate	as	the	data	storage	component	of	the	largest	Web
sites.	The	SQL	Server	2000	programming	model	is	integrated	with	the
Windows	DNA	architecture	for	developing	Web	applications,	and	SQL
Server	2000	supports	features	such	as	English	Query	and	the	Microsoft
Search	Service	to	incorporate	user-friendly	queries	and	powerful	search
capabilities	in	Web	applications.

Scalability	and	Availability.

The	same	database	engine	can	be	used	across	platforms	ranging	from
laptop	computers	running	Microsoft	Windows®	98	through	large,
multiprocessor	servers	running	Microsoft	Windows	2000	Data	Center
Edition.	SQL	Server	2000	Enterprise	Edition	supports	features	such	as
federated	servers,	indexed	views,	and	large	memory	support	that	allow
it	to	scale	to	the	performance	levels	required	by	the	largest	Web	sites.

Enterprise-Level	Database	Features.

The	SQL	Server	2000	relational	database	engine	supports	the	features
required	to	support	demanding	data	processing	environments.	The
database	engine	protects	data	integrity	while	minimizing	the	overhead
of	managing	thousands	of	users	concurrently	modifying	the	database.
SQL	Server	2000	distributed	queries	allow	you	to	reference	data	from
multiple	sources	as	if	it	were	a	part	of	a	SQL	Server	2000	database,
while	at	the	same	time,	the	distributed	transaction	support	protects	the
integrity	of	any	updates	of	the	distributed	data.	Replication	allows	you
to	also	maintain	multiple	copies	of	data,	while	ensuring	that	the	separate
copies	remain	synchronized.	You	can	replicate	a	set	of	data	to	multiple,
mobile,	disconnected	users,	have	them	work	autonomously,	and	then
merge	their	modifications	back	to	the	publisher.

Ease	of	installation,	deployment,	and	use.

SQL	Server	2000	includes	a	set	of	administrative	and	development	tools
that	improve	upon	the	process	of	installing,	deploying,	managing,	and
using	SQL	Server	across	several	sites.	SQL	Server	2000	also	supports	a
standards-based	programming	model	integrated	with	the	Windows
DNA,	making	the	use	of	SQL	Server	databases	and	data	warehouses	a
seamless	part	of	building	powerful	and	scalable	systems.	These	features
allow	you	to	rapidly	deliver	SQL	Server	applications	that	customers	can
implement	with	a	minimum	of	installation	and	administrative	overhead.

Data	warehousing.

SQL	Server	2000	includes	tools	for	extracting	and	analyzing	summary
data	for	online	analytical	processing.	SQL	Server	also	includes	tools	for
visually	designing	databases	and	analyzing	data	using	English-based
questions.

SQL	Server	Architecture

Integrated	with	the	Internet
The	Microsoft®	SQL	Server™	2000	relational	database	engine	includes	native
support	for	XML:

Transact-SQL	results	can	be	returned	as	XML	documents	to	Web	or	line
of	business	applications	using	the	OLE	DB	and	ADO	APIs.

You	can	define	annotated	XDR	schemas	that	represent	a	logical	view	of
the	tables	in	your	database.	Web	applications	can	then	reference	these
schemas	in	XPath	queries	to	build	XML	documents.

The	SQL	Server	2000	includes	an	ISAPI	DLL	that	allows	you	to	define
virtual	roots	in	Microsoft	Internet	Information	Services	(IIS)	associated
with	an	instance	of	SQL	Server	2000.	Internet	applications	can	then
compose	URL	strings	that	reference	a	SQL	Server	2000	virtual	root	and
contains	a	Transact-SQL	statement.	The	Transact-SQL	statement	is	sent
to	the	instance	of	SQL	Server	2000	associated	with	the	virtual	root,	and
the	result	is	returned	as	an	XML	document.

XML	documents	can	be	added	to	SQL	Server	2000	databases.	The
OPENXML	function	can	be	used	to	expose	the	data	from	an	XML
document	in	a	rowset,	which	can	be	referenced	by	Transact-SQL
statements,	such	as	SELECT,	INSERT,	or	UPDATE.

SQL	Server	2000	works	with	other	products	to	form	a	stable	and	secure	data
store	for	Internet	and	intranet	networks:

SQL	Server	2000	works	with	Microsoft	Windows®	2000	Server	and
Microsoft	Windows	NT®	Server	security	and	encryption	facilities	to
implement	secure	data	storage.

SQL	Server	2000	forms	a	high-performance	data	storage	service	for
Web	applications	running	under	IIS,	or	accessing	the	database	through	a

firewall.

SQL	Server	2000	can	be	used	with	Site	Server	to	build	and	maintain
large,	sophisticated	e-commerce	Web	sites.

The	SQL	Server	2000	TCP/IP	Sockets	communications	support	can	be
integrated	with	Microsoft	Proxy	Server	to	implement	secure	Internet
and	intranet	communications.

Analysis	Services	includes	features	that	support	the	functionality	required	in
many	Business	to	Business,	or	Business	to	Consumer	Web	applications:

An	integrated	data	mining	engine	supports	data	mining	analysis	of	both
relational	databases	and	OLAP	cubes.	The	data	mining	engine	is
extensible	through	OLE	DB	for	Data	Mining,	allowing	you	to
incorporate	algorithms	from	Independent	Software	Vendors	(ISVs)	to
support	extended	data	mining	features.

Features	such	as	distinct	count	and	OLAP	alerts	allow	you	perform
actions	such	as	analyzing	Web	site	click-streams	to	evaluate	the
effectiveness	of	your	Web	interface.

English	Query	allows	Web	applications	to	support	users	of	any	skill	level
entering	English	language	questions	about	data	in	either	a	relational	database	or
OLAP	cube.	English	Query	will	match	the	question	against	a	model	of	the
database	or	cube,	and	return	either	a	SQL	or	MDX	query	to	retrieve	the	proper
results.

All	of	these	SQL	Server	2000	features	are	also	supported	from	your	line	of
business	applications,	allowing	you	to	more	easily	integrate	your	Web	and	line
of	business	applications.

See	Also

Communication	Components

Managing	Security

JavaScript:hhobj_1.Click()

SQL	Server	and	XML	Support

SQL	Server	Architecture

Scalability	and	Availability
The	same	Microsoft®	SQL	Server™	2000	database	engine	operates	on
Microsoft	Windows®	2000	Professional,	Microsoft	Windows	2000	Server,
Microsoft	Windows	2000	Advanced	Server,	Windows	98,	and	Windows
Millennium	Edition.	It	also	runs	on	all	editions	of	Microsoft	Windows	NT®
version	4.0.	The	database	engine	is	a	robust	server	that	can	manage	terabyte-
sized	databases	accessed	by	thousands	of	users.	Additionally,	when	running	at	its
default	settings,	SQL	Server	2000	has	features	such	as	dynamic	self-tuning	that
let	it	work	effectively	on	laptops	and	desktops	without	burdening	users	with
administrative	tasks.	SQL	Server	2000	Windows	CE	Edition	extends	the	SQL
Server	2000	programming	model	to	mobile	Windows	CE	devices	and	is	easily
integrated	into	SQL	Server	2000	environments.

SQL	Server	2000	works	with	Windows	NT	and	Windows	2000	failover
clustering	to	support	immediate	failover	to	a	backup	server	in	continuous
operation.	SQL	Server	2000	also	introduces	log	shipping,	which	allows	you	to
maintain	a	warm	standby	server	in	environments	with	lower	availability
requirements.

Same	Server	Across	Windows	2000,	Windows	NT,	Windows	98,
and	Windows	Millennium	Edition	Platforms
The	same	programming	model	is	shared	in	all	environments,	because	the	SQL
Server	2000	database	engine	runs	on	Windows	NT	Workstation,	Windows	NT
Server,	Windows	2000	Professional,	Windows	2000	Server,	Windows	2000
Advanced	Server,	Windows	2000	Datacenter	Server,	Windows	98,	and	Windows
Millennium	Edition.

In	general,	an	application	written	for	an	instance	of	SQL	Server	2000	operating
in	one	environment	works	on	any	other	instance	of	SQL	Server	2000.	The
Microsoft	Search	service	is	not	available	on	the	Windows	NT	Workstation,
Windows	2000	Professional,	Windows	Millennium	Edition,	or	Windows	98
operating	systems.	SQL	Server	databases	on	those	platforms	do	not	support	full-
text	catalogs	and	indexes.	Applications	running	on	these	operating	systems	can,
however,	make	use	of	the	full-text	capabilities	if	they	connect	to	an	instance	of
SQL	Server	2000	on	a	different	computer	that	supports	them.

The	differences	in	the	behavior	of	SQL	Server	2000	when	running	on	the
different	operating	systems	are	due	mainly	to	features	not	supported	by
Windows	Millennium	Edition	or	Windows	98.	Generally,	these	features,	such	as
asynchronous	I/O	and	scatter/gather	I/O,	do	not	affect	the	data	or	responses
given	to	applications.	They	just	prevent	instances	of	SQL	Server	running	on
Windows	Millennium	or	Windows	98	from	supporting	the	same	levels	of
performance	as	are	possible	for	instances	of	SQL	Server	on	Windows	NT	or
Windows	2000.	Instances	of	SQL	Server	on	Windows	Millennium	Edition	or
Windows	98,	however,	do	not	support	failover	clustering	and	cannot	publish
transactional	replications.

Federated	Database	Servers
SQL	Server	2000	introduces	support	for	updatable,	distributed	partitioned	views.
These	views	can	be	used	to	partition	subsets	of	the	rows	in	a	table	across	a	set	of
instances	of	SQL	Server,	while	having	each	instance	of	SQL	Server	operate	as	if
it	had	a	full	copy	of	the	original	table.	These	partitioned	views	can	be	used	to
spread	the	processing	of	one	table	across	multiple	instances	of	SQL	Server,	each
on	a	separate	server.	By	partitioning	all,	or	many,	of	the	tables	in	a	database,	this
feature	can	be	used	to	spread	the	database	processing	of	a	single	Web	site	across
multiple	servers	running	SQL	Server	2000.	The	servers	do	not	form	a	cluster
because	each	server	is	administered	separately	from	the	others.	Collections	of
such	autonomous	servers	are	called	federations	of	servers.	Federations	of	servers
running	SQL	Server	2000	are	capable	of	supporting	the	growth	needs	of	the
largest	Web	sites	or	enterprise	database	systems	that	exist	today.

To	improve	the	performance	and	scalability	of	federated	servers,	SQL	Server
2000	supports	high-speed	system	area	networks	such	as	GigaNet.

Very	Large	Database	Improvements
SQL	Server	2000	has	high-speed	optimizations	that	support	very	large	database
environments.	SQL	Server	version	6.5	and	earlier	can	support	databases	from
200	GB	through	300	GB.	SQL	Server	2000	and	SQL	Server	version	7.0	can
effectively	support	terabyte-sized	databases.

The	Transact-SQL	BACKUP	and	RESTORE	statements	are	optimized	to	read
through	a	database	serially	and	write	in	parallel	to	multiple	backup	devices.	Sites
can	also	reduce	the	amount	of	data	to	be	backed	up	by	performing	differential

backups	that	back	up	only	the	data	changed	after	the	last	backup,	or	by	backing
up	individual	files	or	file	groups.	In	SQL	Server	2000,	the	time	required	to	run	a
differential	backup	has	been	improved,	making	it	proportional	to	the	amount	of
data	modified	since	the	last	backup.

Multiple	bulk	copy	operations	can	be	performed	concurrently	against	a	single
table	to	speed	data	entry.	The	database	console	command	utility	statements	are
implemented	with	reduced	locking	requirements	and	support	for	parallel
operations	on	computers	with	multiple	processors,	greatly	improving	their	speed.

Operations	that	create	multiple	indexes	on	a	table	can	create	them	concurrently.

SQL	Server	2000	databases	map	directly	to	Windows	files,	simplifying	the
creation	and	administration	of	databases.	The	database	page	size	is	8-KB,	and
the	size	of	extents	increases	to	64	KB,	which	results	in	improved	I/O.

Improved	Query	Optimizer
The	SQL	Server	2000	query	optimizer	has	new	access	methods	to	increase	the
speed	of	query	processing.	These	improved	access	methods	are	often	matched	to
improvements	and	simplifications	in	the	on-disk	data	structures	in	the	database:

The	query	optimizer	uses	serial,	read-ahead	I/O	when	scanning	tables
and	indexes	for	improved	performance.	The	optimizer	also	uses	merge
and	hash	algorithms	for	performing	joins.

The	query	optimizer	natively	supports	the	prepare/execute	model	of
executing	SQL	statements.	When	an	application	executes	an	SQL
statement,	the	optimizer	has	efficient	algorithms	for	determining	if	the
same	statement	has	already	been	executed	by	any	application.	If	the
optimizer	finds	an	existing	execution	plan	for	the	statement,	it	saves
processing	resources	by	reusing	the	existing	plan	instead	of	compiling	a
new	plan.	In	systems	where	many	users	are	running	the	same
application,	this	can	reduce	the	resources	needed	to	compile	SQL
statements	into	execution	plans.

Intra-Query	Parallelism

When	running	on	servers	with	multiple	multiprocessors,	or	CPUs,	SQL	Server

2000	can	build	parallel	execution	plans	that	split	the	processing	of	a	SQL
statement	into	several	parts.	Each	part	can	be	run	on	a	different	CPU	and	the
complete	result	set	built	more	quickly	than	if	the	different	parts	were	executed
serially.

Large	Memory	Support
SQL	Server	2000	Enterprise	Edition	uses	the	Microsoft	Windows	2000	Address
Windowing	Extensions	API	to	support	memory	approaching	64	GB	of	RAM.
This	allows	SQL	Server	2000	Enterprise	Edition	to	cache	large	number	of	rows
in	memory,	which	reduces	overhead	and	speeds	its	ability	to	process	queries.

Indexed	Views
The	SQL	Server	2000	relational	database	engine	supports	creating	indexes	on
views.	The	result	set	of	the	index	is	materialized	at	the	time	the	index	is	created,
and	is	maintained	as	the	underlying	base	data	is	modified.	Creating	an	index	on	a
view	that	performs	complex	calculations	on	large	amounts	of	data	can	speed
subsequent	queries	by	orders	of	magnitude.	The	performance	benefits	are	not
limited	to	queries	that	specify	the	indexed	view	in	their	FROM	clause,	the
performance	benefits	apply	to	any	query	that	references	data	covered	by	the
indexed	view.	This	means	existing	queries	can	realize	performance	gains	from
using	the	view	without	having	to	be	recoded	to	explicitly	reference	the	indexed
view.	Indexed	views	substantially	improve	the	performance	of	large,	complex
reporting	applications	that	access	SQL	Server	databases.

High	Availability
SQL	Server	2000	can	maintain	the	extremely	high	levels	of	availability	required
by	large	Web	sites	and	enterprise	systems.

SQL	Server	2000	carries	forward	the	SQL	Server	7.0	architecture,	which	has
proven	to	be	robust	in	high-volume	Web	sites	and	enterprise	systems.

SQL	Server	2000	has	improved	support	for	Windows	NT	and	Windows	2000
failover	clustering.	Support	for	setting	up	failover	clustering	is	now	implemented
as	a	Setup	option	that	is	much	easier	to	use	than	earlier	versions	of	Microsoft
SQL	Server.	SQL	Server	2000	also	supports	up	to	four	nodes	in	a	failover
cluster.

SQL	Server	2000	introduces	log	shipping	for	Web	sites	and	enterprise	systems
that	do	not	require	immediate	failover	support	and	can	potentially	lose	some
updates.	You	can	create	a	production	database,	copy	it	to	a	warm	standby	server,
and	then	use	log	shipping	to	feed	transaction	logs	from	the	production	server	to
the	standby	at	set	intervals,	such	as	every	10	minutes.	By	restoring	the	logs	on
the	standby,	you	create	a	server	that	can	replace	the	production	server	in	case	of
a	problem.	The	only	data	that	might	be	lost	would	be	any	modifications	made
since	the	last	set	of	logs	shipped	to	the	warm	standby	server.	Log	shipping	can
also	be	used	to	copy	data	from	a	production	server	to	one	or	more	read-only
reporting	servers,	assuming	the	reporting	systems	do	not	have	to	be	kept	exactly
synchronized	with	the	production	server.

See	Also

Designing	Federated	Database	Servers

Relational	Database	Engine	Architecture	Overview

Server	Scalability

Log	Shipping

Creating	a	Failover	Cluster

Using	AWE	Memory	on	Windows	2000

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

Enterprise-Level	Database	Features
Microsoft®	SQL	Server™	2000	includes	several	features	that	support	the
complex	data	storage	needs	of	large	Web	sites	and	modern,	enterprise	data
processing	systems.

Distributed	Query
SQL	Server	2000	supports	referencing	heterogeneous	OLE	DB	data	sources
directly	in	Transact-SQL	statements.	Distributed	queries	allow	you	to	integrate
data	from	several	sources	with	the	data	in	a	SQL	Server	2000	database.

OLE	DB	providers	return	their	results	as	rowsets	in	a	tabular	form.	SQL	Server
2000	supports	functions,	such	as	OPENQUERY	and	OPENDATASOURCE,	that
return	rowsets	from	OLE	DB	data	sources.	These	functions	can	be	used	in	place
of	a	table	reference	in	a	Transact-SQL	statement.	You	can	also	define	linked
server	names	that	reference	an	OLE	DB	data	source,	and	then	reference	tables
from	that	data	source	in	the	FROM	clause	of	Transact-SQL	statements,	just	as
you	would	reference	any	SQL	Server	table.

The	distributed	query	capability	of	SQL	Server	2000	supports	referencing	the
OLE	DB	rowsets	in	data	modification	statements	such	as	INSERT,	UPDATE,
and	DELETE,	if	the	OLE	DB	provider	supports	updates.	The	OLE	DB	rowset
modifications	are	protected	by	distributed	transactions	if	the	OLE	DB	provider
supports	the	required	interfaces.

SQL	Server	2000	can	also	take	advantage	of	OLE	DB	providers	that	publish
statistics	regarding	the	distribution	of	data	values	in	the	rowsets	exposed	by	the
provider.	SQL	Server	2000	uses	this	information	to	build	intelligent	queries	that
minimize	the	numbers	of	rows	the	OLE	DB	provider	must	return	to	SQL	Server.
This	improves	the	speed	of	distributed	query	processing.

Dynamic	Row-Level	Locking
SQL	Server	2000	dynamically	adjusts	the	granularity	of	locking	to	the
appropriate	level	for	each	table	referenced	by	a	query.	When	a	query	references	a
small	number	of	rows	scattered	in	a	large	table,	the	best	way	to	maximize
concurrent	access	to	data	is	to	use	fine-grained	locks	such	as	row	locks.

However,	if	a	query	references	most	or	all	of	the	rows	in	a	table,	the	best	way	to
maximize	concurrency	may	be	to	lock	the	whole	table	to	minimize	the	locking
overhead	and	finish	the	query	as	quickly	as	possible.

SQL	Server	2000	maximizes	overall	concurrent	access	to	data	by	choosing	the
appropriate	locking	level	for	each	table	in	each	query.	For	one	query,	the
database	engine	may	use	row-level	locking	for	a	large	table	where	few	rows	are
referenced;	page-level	locking	for	another	large	table	where	many	rows	on	a	few
pages	are	referenced;	and	table-level	locking	for	a	small	table	in	which	all	the
rows	are	referenced.

Full	Integrity	Protection
SQL	Server	2000	fully	protects	the	integrity	of	its	databases.	All	data
modifications	are	performed	in	transactions,	and	each	transaction	is	either
wholly	committed	if	it	reaches	a	state	of	consistency,	or	completely	rolled	back
if	it	encounters	errors.	If	a	server	fails,	all	uncompleted	transactions	are
automatically	rolled	back	from	all	SQL	Server	2000	databases	when	the	server	is
restarted.

Distributed	Transactions
SQL	Server	2000	databases	can	participate	in	distributed	transactions	managed
by	an	X/Open	XA	compliant	transaction	manager.	This	includes	distributed
transactions	spanning	multiple	SQL	Server	2000	databases,	and	also	distributed
transactions	spanning	heterogeneous	resource	managers.	The	OLE	DB	Provider
for	SQL	Server	2000	and	the	SQL	Server	2000	ODBC	Driver	both	support
enlistment	in	distributed	transactions.

Transact-SQL	scripts	and	applications	can	have	their	local	transactions	escalated
dynamically	to	distributed	transactions	if	they	reference	objects	on	other	SQL
Server	2000	systems	or	heterogeneous	OLE	DB	data	sources.	SQL	Server	2000
manages	these	distributed	transactions	transparently	using	the	Microsoft
Distributed	Transaction	Coordinator.

Replication
SQL	Server	2000	replication	allows	you	to	maintain	copies	of	data	in	multiple
sites,	sometimes	hundreds	of	sites,	using	a	publish-subscribe	metaphor.	This

allows	sites	to	locate	data	close	to	the	users	who	most	frequently	access	it,	while
keeping	it	synchronized	with	copies	in	other	locations.

SQL	Server	2000	supports	three	types	of	replication.	Snapshot	replication	copies
data	or	database	objects	as	they	exist	at	a	particular	time.	In	transactional
replication,	Publishers	and	Subscribers	first	synchronize	their	data	(typically
using	a	snapshot)	and	then,	as	data	is	modified	on	the	Publisher,	the
modifications	are	transmitted	to	the	Subscribers.	Merge	replication	lets	multiple
Subscribers	work	autonomously	with	copies	of	a	set	of	data,	and	then	later
merge	their	updated	versions	back	to	the	Publisher.	Merge	replication	supports
several	methods	for	resolving	conflicts	in	how	different	Subscribers	modify	the
same	data.

Replication	in	SQL	Server	2000	supports	queued	updating,	which	allows
transactional	and	snapshot	replication	subscribers	to	modify	published	data
without	requiring	an	active	network	connection.

SQL	Server	2000	Replication	introduces	transformable	subscriptions,	which
allow	subscriptions	to	use	the	flexibility	and	power	of	Data	Transformation
Services	to	map,	transform,	and	filter	replicated	data.

The	usability	of	replication	has	been	further	enhanced,	making	it	very	easy	to
administer.	Transactional	replication	can	now	be	synchronized	with	backing	up
and	restoring	databases,	eliminating	the	need	to	reconfigure	transactional
replication.	You	can	browse	the	Windows	2000	Active	Directory	for
publications,	subject	to	proper	permissions.	SQL	Server	2000	introduces	new,
improved	replication	wizards,	and	supports	more	centralized	recording	of
Publications	and	Subscriptions.

See	Also

Distributed	Query	Architecture

Relational	Database	Engine	Architecture	Overview

Transactions	Architecture

Replication	Architecture

SQL	Server	Architecture

Ease	of	Installation,	Deployment,	and	Use
Many	databases	capable	of	supporting	all	of	the	processing	needs	of	an
enterprise	are	complex	and	difficult	to	administer.	Microsoft®	SQL	Server™
2000	includes	many	tools	and	features	that	simplify	the	process	of	installing,
deploying,	managing,	and	using	databases.	SQL	Server	2000	provides	database
administrators	with	all	the	tools	required	to	fine-tune	SQL	Server	2000
installations	running	production	online	systems.	SQL	Server	2000	is	also	capable
of	operating	efficiently	on	a	small,	single-user	system	with	minimal
administrative	overhead.

Dynamic	Self-Management
SQL	Server	2000	reconfigures	itself	automatically	and	dynamically	while
running.	As	more	users	connect	to	SQL	Server	2000,	it	can	dynamically	acquire
additional	resources,	such	as	memory.	As	the	workload	falls,	SQL	Server	2000
frees	the	resources	back	to	the	system.	If	other	applications	are	started	on	the
server,	SQL	Server	2000	will	detect	the	additional	allocations	of	virtual	memory
to	those	applications,	and	reduce	its	use	of	virtual	memory	to	reduce	paging
overhead.	SQL	Server	2000	can	also	increase	or	decrease	the	size	of	a	database
automatically	as	data	is	inserted	or	deleted.

Database	administrators	can	control	the	amount	of	dynamic	reconfiguration	in
each	instance	of	SQL	Server	2000.	A	small	database	used	by	someone	not
familiar	with	databases	can	run	with	the	default	configuration	settings,	in	which
case	it	will	configure	itself	dynamically.	A	large	production	database	monitored
by	experienced	database	administrators	can	be	set	up	to	give	the	administrators
full	control	of	configuration.

Complete	Administrative	Tool	Set
SQL	Server	2000	offers	database	administrators	several	tools	for	managing	their
systems:

SQL	Server	Enterprise	Manager	is	a	snap-in	component	for	Microsoft
Management	Console	(MMC).

MMC	supports	the	management	of	multiple	types	of	servers	from	a

single	console,	such	as	Microsoft	Windows®	2000	Services,	Microsoft
Internet	Information	Servers,	Microsoft	SNA	Servers,	and	instances	of
SQL	Server	2000.	An	administrator	at	a	single	console	has	the	ability	to
manage	all	the	servers	on	a	worldwide	network.	SQL	Server	Enterprise
Manager	shares	a	subset	of	the	MMC	user	interface	for	Web
administration.	It	presents	all	SQL	Server	objects	in	a	hierarchical
console	tree	with	an	easy-to-use	graphical	user	interface.

SQL	Server	Agent	allows	the	definition	and	scheduling	of	tasks	that	run
on	a	scheduled	or	recurring	basis.

It	also	alerts	administrators	when	certain	warning	conditions	occur,	and
can	even	be	programmed	to	take	corrective	action.

SQL	Profiler	offers	administrators	a	sophisticated	tool	for	monitoring
and	analyzing	network	traffic	to	and	from	a	server	running	SQL	Server
2000.

It	also	profiles	server	events	such	as	the	acquisition	of	locks.

SQL	Server	Performance	Monitor	integrates	SQL	Server	counters	into
the	Windows	Performance	Monitor,	allowing	administrators	to	monitor
and	graph	the	performance	of	SQL	Server	with	the	same	tool	used	to
monitor	Microsoft	Windows	NT®	Servers.

The	Index	Tuning	Wizard	analyzes	how	a	SQL	statement,	or	group	of
statements,	uses	the	existing	indexes	on	a	set	of	tables.

The	wizard	makes	recommendations	on	index	changes	that	would	speed
up	the	SQL	statements.

Programmable	Administration

Administering	SQL	Server	2000	can	be	highly	automated,	freeing	database
administrators	to	design	new	databases	and	applications.

SQL	Distributed	Management	Objects	(SQL-DMO)	is	a	set	of	Automation
objects	that	can	be	used	to	code	applications	with	the	logic	to	administer	an
instance	of	SQL	Server	2000.	This	gives	application	packages	the	ability	to
transparently	embed	SQL	Server	2000	into	their	applications.	Experienced

database	administrators	can	also	use	SQL-DMO	to	build	applications	for	many
of	the	common	administrative	tasks	unique	to	their	site.	SQL	Server	2000	also
includes	support	for	the	Windows	Management	Instrumentation	(WMI)	API.
The	WMI	support	maps	over	the	SQL-DMO	API.

Routine,	recurring	tasks	can	be	implemented	as	automatically	scheduled	jobs
that	run	without	constant	supervision	by	an	operator.	For	example,	after	a
database	administrator	has	designed	a	backup	procedure	for	a	server,	the	backups
can	be	implemented	as	a	set	of	automatic	jobs.

SQL	Server	2000	can	also	be	programmed	to	raise	alerts	when	specific	events
occur.	The	actions	taken	by	alerts	can	take	several	forms:

E-mail,	paging	messages,	or	Windows	2000	net	send	messages	can	be
sent	to	the	affected	parties.

For	example,	if	the	number	of	Full	Scans	(a	scan	of	an	entire	table	or
index)	in	a	server	exceeds	a	specific	number,	an	e-mail	can	be	sent	to
the	database	administrator	for	investigation.

A	predefined	job	can	be	executed	to	address	the	problem	(if	it	is
relatively	routine	and	can	be	addressed	programmatically).

Installation	and	Upgrade

The	SQL	Server	2000	compact	disc	has	an	autorun	application	that	enables	users
to	make	several	choices,	such	as:

Install	a	new	instance	of	SQL	Server	2000.

Upgrade	an	existing	instance	of	Microsoft	SQL	Server	version	7.0	or
earlier.

Install	prerequisite	software.

Install	only	the	documentation	from	the	CD	so	that	it	can	be	reviewed
before	the	product	is	installed.

View	an	evaluation	guide	explaining	the	benefits	of	SQL	Server	2000
features.

The	installation	or	upgrade	of	SQL	Server	2000	is	driven	by	a	graphical	user
interface	(GUI)	application	that	guides	users	through	the	information	required	by
SQL	Server	2000	Setup.	The	Setup	program	itself	detects	automatically	if	an
earlier	version	of	SQL	Server	is	present	and,	after	SQL	Server	2000	is	installed,
asks	users	if	they	want	to	launch	the	SQL	Server	2000	Upgrade	Wizard	to
quickly	guide	them	through	the	upgrade	process.	The	entire	installation	or
upgrade	process	is	accomplished	quickly	and	with	minimal	input	from	the	users.

Sites	needing	to	install	SQL	Server	2000	on	many	servers	can	take	advantage	of
the	SQL	Server	unattended	installation	feature	to	install	SQL	Server	with	the
appropriate	configuration	on	all	the	servers.

Building	SQL	Server	2000	Applications
SQL	Server	2000	has	several	advantages	in	building	applications:

Full	integration	in	the	Windows	DNA	architecture	by	providing	native
support	for	the	Windows	DNA	data	access	APIs,	including	ADO,	OLE
DB,	and	the	MDX	(multi-dimensional)	OLAP	extensions	to	these	APIs

These	APIs	include	powerful,	low-level	APIs,	such	as	ODBC	and	OLE
DB,	that	allow	programmers	control	over	the	interaction	between	the
application	and	database.	They	also	include	APIs	such	as	ADO	that
support	Rapid	Application	Development.

SQL-DMO,	SQL-DTS,	and	replication	components

These	are	Automation	objects	used	to	write	customized	applications	to
administer	a	server	running	SQL	Server.

SQL	Query	Analyzer

This	component	enables	programmers	to	develop	and	test	Transact-SQL
statements	interactively.	It	includes	aids	such	as	a	graphical	display	of
the	execution	plan	and	performance	statistics	of	a	Transact-SQL
statement.	It	color-codes	the	different	syntax	elements	to	increase	the
readability	of	Transact-SQL	statements,	and	includes	an	integrated
Transact-SQL	debugger.	It	also	has	an	Object	Browser	that	determines

the	attributes	of	the	tables,	views,	stored	procedures,	and	other	objects
in	a	database,	and	supports	templates	used	to	speed	the	building	of
complex	statements.

Analysis	Services,	Meta	Data	Services,	and	English	Query
programming

Analysis	Services	and	Meta	Data	Services	supply	OLE	DB	Providers
that	support	the	online	analytical	process	(OLAP)	extensions	to	OLE
DB	and	ADO.	These	allow	the	easy	integration	of	OLAP	and	meta	data
processing	in	applications	using	the	Microsoft	data-access	APIs.
English	Query	also	supports	an	object-model	API	that	allows	the	easy
integration	of	English	Query	functionality	into	applications	accessing
SQL	Server	2000	databases	and	Analysis	Services	cubes	through	OLE
DB	or	ADO.

Transact-SQL	programmability	improvements

SQL	Server	2000	introduces	several	items	that	improve	the	power	and
flexibility	of	Transact-SQL,	as	well	as	increasing	programmer
productivity.	Cascading	referential	integrity	actions	can	replace	the	need
to	develop	triggers	to	enforce	referential	integrity	actions	when	you
update	or	delete	rows.	INSTEAD	OF	triggers	can	be	used	to	greatly
extend	the	types	of	update	actions	that	views	can	support,	and	you	can
now	specify	which	AFTER	triggers	fire	first	or	last.	User	defined
functions	can	be	used	to	introduce	new	functionality	to	Transact-SQL
statements.

Security	Integrated	with	Windows	NT	and	Windows	2000
Security

SQL	Server	supports	using	Windows	NT	and	Windows	2000	user	and	domain
accounts	as	SQL	Server	2000	login	accounts.	This	is	called	Windows
Authentication.	Users	are	validated	by	Windows	2000	when	they	connect	to	the
network.	When	a	connection	is	formed	to	SQL	Server,	the	SQL	Server	client
software	requests	a	trusted	connection,	which	can	be	granted	only	if	validated	by
Windows	2000.	SQL	Server	then	does	not	have	to	validate	the	user	separately.
Users	do	not	have	to	have	separate	logins	and	passwords	for	each	SQL	Server
system	to	which	they	connect.

With	Windows	Authentication,	no	passwords	are	transmitted	to	the	server
running	SQL	Server,	eliminating	a	security	concern.	Also,	SQL	Server	2000
supports	the	use	of	Secure	Sockets	Layer	encryption	of	all	network	traffic
between	their	client	computer	and	an	instance	of	SQL	Server.

SQL	Server	2000	also	provides	auditing,	which	allows	you	to	trace	and	record
the	activity	in	an	instance	of	SQL	Server.	SQL	Server	2000	auditing	can	support
the	C2	level	of	security	defined	by	the	United	States	government.	For	more
information,	see	the	Trusted	Facilities	Manual.

See	Also

Administration	Architecture

Application	Development	Architecture

Overview	of	Installing	SQL	Server	2000

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Data	Warehousing
Microsoft®	SQL	Server™	2000	includes	several	components	you	can	use	to
build	data	warehouses	that	effectively	support	your	decision	support	processing
needs.

Data	Warehousing	Framework
The	Data	Warehousing	Framework	is	a	set	of	components	and	APIs	that
implement	the	data	warehousing	features	of	SQL	Server	2000.	It	provides	a
common	interface	to	be	used	by	various	components	seeking	to	build	and	use	a
data	warehouse	or	data	mart.

Data	Transformation	Services
Data	Transformation	Services	(DTS)	provides	a	set	of	services	used	to	build	a
data	warehouse	or	data	mart.	Decision	support	systems	analyze	data	to	find
trends	of	interest	to	the	database	users.	Online	transaction	processing	databases
store	large	numbers	of	records	covering	the	details	of	each	transaction,	and
online	analytical	processing	(OLAP)	systems	aggregate	and	summarize	the
information	to	speed	analysis	of	the	trends	exhibited	in	the	data.

DTS	offers	support	for	extracting	data	from	heterogeneous	OLE	DB	data	sources
and	the	summarizing	or	aggregating	of	data	to	build	a	data	warehouse.

Online	Analytical	Processing	Support
Microsoft	SQL	Server	2000	Analysis	Services	allows	you	to	build	flexible,
powerful	business	intelligence	applications	for	Web	sites	and	large	enterprise
systems.

Microsoft	SQL	Server	2000	Analysis	Services	provides	OLAP	processing
capabilities	against	heterogeneous	OLE	DB	data	sources.	It	has	efficient
algorithms	for	defining	and	building	multidimensional	cubes	that	can	be
referenced	by	applications	using	the	OLE	DB	2.0	OLAP	extensions	or	the
Microsoft	ActiveX®	Data	Objects	Multidimensional	extensions.	Analysis
Services	is	an	excellent	tool	for	multidimensional	analysis	of	data	in	SQL	Server

2000	databases.

Analysis	Services	supports	multidimensional	queries	against	cubes	with
hundreds	of	millions	of	dimensions.	You	can	control	cube	security	down	to	the
level	of	cells	and	members.	You	can	create	custom	rollup	functions	that	tailor	the
types	of	aggregations	and	processing	that	can	be	performed	in	multidimensional
cubes.

Data	Mining	Support
Data	mining	allows	you	to	define	models	containing	grouping	and	predictive
rules	that	can	be	applied	to	data	in	either	a	relational	database	or	multi-
dimensional	OLAP	cubes.	These	predictive	models	are	then	used	to
automatically	perform	sophisticated	analysis	of	the	data	to	find	trends	that	help
you	identify	new	opportunities	and	chose	the	ones	that	have	a	winning	outcome.
SQL	Server	2000	Analysis	Services	includes	support	for	data	mining	models,
including	API	support	of	the	OLE	DB	for	Data	Mining	specification.	Through
the	OLE	DB	for	Data	Mining	API,	Analysis	Services	supports	integration	with
third-party	data	mining	providers.

English	Query
English	Query	makes	a	definition	of	the	entities	and	relationships	defined	in	a
SQL	Server	2000	database.	Given	this	definition,	an	application	can	use	an
Automation	API	to	pass	English	Query	a	string	containing	a	natural-language
question	about	the	data	in	the	database.	English	Query	returns	a	SQL	statement
that	the	application	can	use	to	extract	the	necessary	data.

Meta	Data	Services
SQL	Server	2000	includes	Microsoft	Meta	Data	Services,	which	consists	of	a	set
of	Microsoft	ActiveX®	interfaces	and	information	models	that	define	database
schema	and	data	transformations	as	defined	by	the	Microsoft	Data	Warehousing
Framework.	A	goal	of	the	Microsoft	Data	Warehousing	Framework	is	to	provide
meaningful	integration	of	multiple	products	through	shared	meta	data.	It
combines	business	and	technical	meta	data	to	provide	an	industry	standard
method	for	storing	the	schema	of	production	data	sources	and	destinations.

Meta	Data	Services	is	the	preferred	means	of	storing	DTS	packages	in	a	data

warehousing	scenario	because	it	is	the	only	method	of	providing	data	lineage	for
packages.	DTS	also	uses	Meta	Data	Services	storage	to	allow	transformations,
queries,	and	ActiveX	scripts	to	be	reused	by	heterogeneous	applications.

See	Also

Data	Warehousing	and	Online	Analytical	Processing

SQL	Server	Architecture

Relational	Database	Components
The	database	component	of	Microsoft®	SQL	Server™	2000	is	a	Structured
Query	Language	(SQL)–based,	scalable,	relational	database	with	integrated
Extensible	Markup	Language	(XML)	support	for	Internet	applications.	Each	of
the	following	terms	describes	a	fundamental	part	of	the	architecture	of	the	SQL
Server	2000	database	component:

Database

A	database	is	similar	to	a	data	file	in	that	it	is	a	storage	place	for	data.	Like	a
data	file,	a	database	does	not	present	information	directly	to	a	user;	the	user
runs	an	application	that	accesses	data	from	the	database	and	presents	it	to	the
user	in	an	understandable	format.

Database	systems	are	more	powerful	than	data	files	in	that	data	is	more
highly	organized.	In	a	well-designed	database,	there	are	no	duplicate	pieces
of	data	that	the	user	or	application	must	update	at	the	same	time.	Related
pieces	of	data	are	grouped	together	in	a	single	structure	or	record,	and
relationships	can	be	defined	between	these	structures	and	records.

When	working	with	data	files,	an	application	must	be	coded	to	work	with	the
specific	structure	of	each	data	file.	In	contrast,	a	database	contains	a	catalog
that	applications	use	to	determine	how	data	is	organized.	Generic	database
applications	can	use	the	catalog	to	present	users	with	data	from	different
databases	dynamically,	without	being	tied	to	a	specific	data	format.

A	database	typically	has	two	main	parts:	first,	the	files	holding	the	physical
database	and	second,	the	database	management	system	(DBMS)	software
that	applications	use	to	access	data.	The	DBMS	is	responsible	for	enforcing
the	database	structure,	including:

Maintaining	relationships	between	data	in	the	database.

Ensuring	that	data	is	stored	correctly,	and	that	the	rules	defining	data
relationships	are	not	violated.

Recovering	all	data	to	a	point	of	known	consistency	in	case	of	system
failures.

Relational	Database

Although	there	are	different	ways	to	organize	data	in	a	database,	relational
databases	are	one	of	the	most	effective.	Relational	database	systems	are	an
application	of	mathematical	set	theory	to	the	problem	of	effectively
organizing	data.	In	a	relational	database,	data	is	collected	into	tables	(called
relations	in	relational	theory).

A	table	represents	some	class	of	objects	that	are	important	to	an	organization.
For	example,	a	company	may	have	a	database	with	a	table	for	employees,
another	table	for	customers,	and	another	for	stores.	Each	table	is	built	of
columns	and	rows	(called	attributes	and	tuples	in	relational	theory).	Each
column	represents	some	attribute	of	the	object	represented	by	the	table.	For
example,	an	Employee	table	would	typically	have	columns	for	attributes
such	as	first	name,	last	name,	employee	ID,	department,	pay	grade,	and	job
title.	Each	row	represents	an	instance	of	the	object	represented	by	the	table.
For	example,	one	row	in	the	Employee	table	represents	the	employee	who
has	employee	ID	12345.

When	organizing	data	into	tables,	you	can	usually	find	many	different	ways
to	define	tables.	Relational	database	theory	defines	a	process	called
normalization,	which	ensures	that	the	set	of	tables	you	define	will	organize
your	data	effectively.

Scalable

SQL	Server	2000	supports	having	a	wide	range	of	users	access	it	at	the	same
time.	An	instance	of	SQL	Server	2000	includes	the	files	that	make	up	a	set	of
databases	and	a	copy	of	the	DBMS	software.	Applications	running	on
separate	computers	use	a	SQL	Server	2000	communications	component	to
transmit	commands	over	a	network	to	the	SQL	Server	2000	instance.	When
an	application	connects	to	an	instance	of	SQL	Server	2000,	it	can	reference
any	of	the	databases	in	that	instance	that	the	user	is	authorized	to	access.	The
communication	component	also	allows	communication	between	an	instance
of	SQL	Server	2000	and	an	application	running	on	the	same	computer.	You
can	run	multiple	instances	of	SQL	Server	2000	on	a	single	computer.

SQL	Server	2000	is	designed	to	support	the	traffic	of	the	largest	Web	sites	or
enterprise	data	processing	systems.	Instances	of	SQL	Server	2000	running	on
large,	multiprocessor	servers	are	capable	of	supporting	connections	to
thousands	of	users	at	the	same	time.	The	data	in	SQL	Server	tables	can	be
partitioned	across	multiple	servers,	so	that	several	multiprocessor	computers
can	cooperate	to	support	the	database	processing	requirements	of	extremely
large	systems.	These	groups	of	database	servers	are	called	federations.

Although	SQL	Server	2000	is	designed	to	work	as	the	data	storage	engine	for
thousands	of	concurrent	users	who	connect	over	a	network,	it	is	also	capable
of	working	as	a	stand-alone	database	directly	on	the	same	computer	as	an
application.	The	scalability	and	ease-of-use	features	of	SQL	Server	2000
allow	it	to	work	efficiently	on	a	single	computer	without	consuming	too
many	resources	or	requiring	administrative	work	by	the	stand-alone	user.
The	same	features	allow	SQL	Server	2000	to	dynamically	acquire	the
resources	required	to	support	thousands	of	users,	while	minimizing	database
administration	and	tuning.	The	SQL	Server	2000	relational	database	engine
dynamically	tunes	itself	to	acquire	or	free	the	appropriate	computer	resources
required	to	support	a	varying	load	of	users	accessing	an	instance	of	SQL
Server	2000	at	any	specific	time.	The	SQL	Server	2000	relational	database
engine	has	features	to	prevent	the	logical	problems	that	occur	if	a	user	tries
to	read	or	modify	data	currently	used	by	others.

Structured	Query	Language

To	work	with	data	in	a	database,	you	have	to	use	a	set	of	commands	and
statements	(language)	defined	by	the	DBMS	software.	Several	different
languages	can	be	used	with	relational	databases;	the	most	common	is	SQL.
The	American	National	Standards	Institute	(ANSI)	and	the	International
Standards	Organization	(ISO)	define	software	standards,	including	standards
for	the	SQL	language.	SQL	Server	2000	supports	the	Entry	Level	of	SQL-92,
the	SQL	standard	published	by	ANSI	and	ISO	in	1992.	The	dialect	of	SQL
supported	by	Microsoft	SQL	Server	is	called	Transact-SQL	(T-SQL).	T-SQL
is	the	primary	language	used	by	Microsoft	SQL	Server	applications.

Extensible	Markup	Language

XML	is	the	emerging	Internet	standard	for	data.	XML	is	a	set	of	tags	that	can
be	used	to	define	the	structure	of	a	hypertext	document.	XML	documents	can
be	easily	processed	by	the	Hypertext	Markup	Language,	which	is	the	most

important	language	for	displaying	Web	pages.

Although	most	SQL	statements	return	their	results	in	a	relational,	or	tabular,
result	set,	the	SQL	Server	2000	database	component	supports	a	FOR	XML
clause	that	returns	results	as	an	XML	document.	SQL	Server	2000	also
supports	XPath	queries	from	Internet	and	intranet	applications.	XML
documents	can	be	added	to	SQL	Server	databases,	and	the	OPENXML
clause	can	be	used	to	expose	data	from	an	XML	document	as	a	relational
result	set.

SQL	Server	Architecture

Database	Applications	and	Servers
Microsoft®	SQL	Server™	2000	is	designed	to	work	effectively	as:

A	central	database	on	a	server	shared	by	many	users	who	connect	to	it
over	a	network.	The	number	of	users	can	range	from	a	handful	in	one
workgroup,	to	thousands	of	employees	in	a	large	enterprise,	to	hundreds
of	thousands	of	Web	users.

A	desktop	database	that	services	only	applications	running	on	the	same
desktop.

Server	Database	Systems

Server-based	systems	are	constructed	so	that	a	database	on	a	central	computer,
known	as	a	server,	is	shared	among	multiple	users.	Users	access	the	server
through	an	application:

In	a	multitier	system,	such	as	Windows®	DNA,	the	client	application
logic	is	run	in	two	or	more	locations:

A	thin	client	is	run	on	the	user's	local	computer	and	is	focused
on	displaying	results	to	the	user.

The	business	logic	is	located	in	server	applications	running	on
a	server.	Thin	clients	request	functions	from	the	server
application,	which	is	itself	a	multithreaded	application	capable
of	working	with	many	concurrent	users.	The	server	application
is	the	one	that	opens	connections	to	the	database	server.	The
server	application	can	be	running	on	the	same	server	as	the
database,	or	it	can	connect	across	the	network	to	a	separate
server	operating	as	a	database	server.	In	complex	systems,	the
business	logic	may	be	implemented	in	several	interconnected
server	applications,	or	in	multiple	layers	of	server	applications.

This	is	a	typical	scenario	for	an	Internet	application.	For

example,	a	multithreaded	server	application	can	run	on	a
Microsoft®	Internet	Information	Services	(IIS)	server	and
service	thousands	of	thin	clients	running	on	the	Internet	or	an
intranet.	The	server	application	uses	a	pool	of	connections	to
communicate	with	one	or	more	instances	of	SQL	Server	2000.
The	instances	of	SQL	Server	2000	can	be	on	the	same
computer	as	IIS,	or	they	can	be	on	separate	servers	in	the
network.

In	a	two-tier	client/server	system,	users	run	an	application	on	their	local
computer,	known	as	a	client	application,	that	connects	over	a	network	to
an	instance	of	SQL	Server	2000	running	on	a	server	computer.	The
client	application	runs	both	business	logic	and	the	code	to	display
output	to	the	user,	so	this	is	sometimes	referred	to	as	a	thick	client.

Advantages	of	Server	Database	System

Having	data	stored	and	managed	in	a	central	location	offers	several	advantages:

Each	data	item	is	stored	in	a	central	location	where	all	users	can	work
with	it.

Separate	copies	of	the	item	are	not	stored	on	each	client,	which
eliminates	problems	with	users	having	to	ensure	they	are	all	working
with	the	same	information.	Their	system	does	not	need	to	ensure	that	all
copies	of	the	data	are	updated	with	the	current	values,	because	there	is
only	one	copy	in	the	central	location.

Business	and	security	rules	can	be	defined	one	time	on	the	server	and
enforced	equally	among	all	users.

Rule	enforcement	can	be	done	in	a	database	through	the	use	of
constraints,	stored	procedures,	and	triggers.	Rules	can	also	be	enforced
in	a	server	application,	since	these	applications	are	also	central
resources	accessed	by	many	thin	clients.

A	relational	database	server	optimizes	network	traffic	by	returning	only
the	data	an	application	needs.

For	example,	if	an	application	working	with	a	file	server	needs	to

display	a	list	of	the	names	of	sales	representatives	in	Oregon,	it	must
retrieve	the	entire	employee	file.	If	the	application	is	working	with	a
relational	database	server,	it	sends	this	command:

SELECT	first_name,	last_name
FROM	employees
WHERE	emp_title	=	'Sales	Representative'
		AND	emp_state	=	'OR'

The	relational	database	sends	back	only	the	names	of	the	sales
representatives	in	Oregon,	not	all	of	the	information	about	all
employees.

Hardware	costs	can	be	minimized.

Because	the	data	is	not	stored	on	each	client,	clients	do	not	have	to
dedicate	disk	space	to	storing	data.	The	clients	also	do	not	need	the
processing	capacity	to	manage	data	locally,	and	the	server	does	not	need
to	dedicate	processing	power	to	displaying	data.

The	server	can	be	configured	to	optimize	the	disk	I/O	capacities	needed
to	retrieve	data,	and	clients	can	be	configured	to	optimize	the	formatting
and	display	of	data	retrieved	from	the	server.

The	server	can	be	stored	in	a	relatively	secure	location	and	equipped
with	devices	such	as	an	Uninterruptable	Power	Supply	more
economically	than	fully	protecting	each	client.

Maintenance	tasks	such	as	backing	up	and	restoring	data	are	simplified
because	they	can	focus	on	the	central	server.

Advantages	of	SQL	Server	2000	as	a	Database	Server

Microsoft	SQL	Server	2000	is	capable	of	supplying	the	database	services	needed
by	extremely	large	systems.	Large	servers	may	have	thousands	of	users
connected	to	an	instance	of	SQL	Server	2000	at	the	same	time.	SQL	Server	2000
has	full	protection	for	these	environments,	with	safeguards	that	prevent
problems,	such	as	having	multiple	users	trying	to	update	the	same	piece	of	data
at	the	same	time.	SQL	Server	2000	also	allocates	the	available	resources

effectively,	such	as	memory,	network	bandwidth,	and	disk	I/O,	among	the
multiple	users.

Extremely	large	Internet	sites	can	partition	their	data	across	multiple	servers,
spreading	the	processing	load	across	many	computers,	and	allowing	the	site	to
serve	thousands	of	concurrent	users.

Multiple	instances	of	SQL	Server	2000	can	be	run	on	a	single	computer.	For
example,	an	organization	that	provides	database	services	to	many	other
organizations	can	run	a	separate	instance	of	SQL	Server	2000	for	each	customer
organization,	all	on	one	computer.	This	isolates	the	data	for	each	customer
organization,	while	allowing	the	service	organization	to	reduce	costs	by	only
having	to	administer	one	server	computer.

SQL	Server	2000	applications	can	run	on	the	same	computer	as	SQL	Server
2000.	The	application	connects	to	SQL	Server	2000	using	Windows	Interprocess
Communications	(IPC)	components,	such	as	shared	memory,	instead	of	a
network.	This	allows	SQL	Server	2000	to	be	used	on	small	systems	where	an
application	must	store	its	data	locally.

The	illustration	shows	an	instance	of	SQL	Server	2000	operating	as	the	database
server	for	both	a	large	Web	site	and	a	legacy	client/server	system.

The	largest	Web	sites	and	enterprise-level	data	processing	systems	often	generate
more	database	processing	than	can	be	supported	on	a	single	computer.	In	these
large	systems,	the	database	services	are	supplied	by	a	group	of	database	servers
that	form	a	database	services	tier.	SQL	Server	2000	does	not	support	a	load-
balancing	form	of	clustering	for	building	a	database	services	tier,	but	it	does
support	a	mechanism	that	can	be	used	to	partition	data	across	a	group	of
autonomous	servers.	Although	each	server	is	administered	individually,	the
servers	cooperate	to	spread	the	database-processing	load	across	the	group.	A
group	of	autonomous	servers	that	share	a	workload	is	called	a	federation	of
servers.	For	more	information,	see	Designing	Federated	Database	Servers.

Desktop	Database	Systems
Although	SQL	Server	2000	works	effectively	as	a	powerful	database	server,	the

JavaScript:hhobj_1.Click()

same	database	engine	can	also	be	used	in	applications	that	need	stand-alone
databases	stored	locally	on	the	client.	SQL	Server	2000	can	configure	itself
dynamically	to	run	efficiently	with	the	resources	available	on	a	client	desktop	or
laptop	computer,	without	the	need	to	dedicate	a	database	administrator	to	each
client.	Application	vendors	can	also	embed	SQL	Server	2000	as	the	data	storage
component	of	their	applications.

When	clients	use	local	SQL	Server	2000	databases,	applications	connect	to	local
instances	of	the	database	engine	in	much	the	same	way	they	connect	across	the
network	to	a	database	engine	running	on	a	remote	server.	The	primary	difference
is	that	local	connections	are	made	through	local	IPCs	such	as	shared	memory,
and	remote	connections	must	go	through	a	network.

The	illustration	shows	using	SQL	Server	2000	in	a	desktop	database	system.

SQL	Server	Architecture

Logins
To	connect	to	an	instance	of	Microsoft®	SQL	Server™	2000,	you	typically	give
an	application	only	two	or	three	pieces	of	information:

The	network	name	of	the	computer	on	which	the	SQL	Server	instance	is
running.

The	name	of	the	instance	(optional,	required	only	if	you	are	connecting
to	a	named	instance).

Your	login	identifier	(ID).

A	login	ID	is	the	account	identifier	that	controls	access	to	any	SQL	Server	2000
system.	SQL	Server	2000	does	not	complete	a	connection	unless	it	has	first
verified	that	the	login	ID	specified	is	valid.	Verification	of	the	login	is	called
authentication.

One	of	the	properties	of	a	login	is	the	default	database.	When	a	login	connects	to
SQL	Server,	this	default	database	becomes	the	current	database	for	the
connection,	unless	the	connection	request	specifies	that	another	database	be
made	the	current	database.

A	login	ID	only	enables	you	to	connect	to	an	instance	of	SQL	Server.
Permissions	within	specific	databases	are	controlled	by	user	accounts.	The
database	administrator	maps	your	login	account	to	a	user	account	in	any
database	you	are	authorized	to	access.	For	more	information,	see	Logins,	Users,
Roles,	and	Groups.

Authenticating	Logins
Instances	of	SQL	Server	must	verify	that	the	login	ID	supplied	on	each
connection	request	is	authorized	to	access	the	instance.	This	process	is	called
authentication.	SQL	Server	2000	uses	two	types	of	authentication:	Windows
Authentication	and	SQL	Server	Authentication.	Each	has	a	different	class	of
login	ID.

Windows	Authentication

A	member	of	the	SQL	Server	2000	sysadmin	fixed	server	role	must	first
specify	to	SQL	Server	2000	all	the	Microsoft	Windows	NT®	or	Microsoft
Windows®	2000	accounts	or	groups	that	can	connect	to	SQL	Server	2000.
When	using	Windows	Authentication,	you	do	not	have	to	specify	a	login	ID
or	password	when	you	connect	to	SQL	Server	2000.	Your	access	to	SQL
Server	2000	is	controlled	by	your	Windows	NT	or	Windows	2000	account	or
group,	which	is	authenticated	when	you	log	on	to	the	Windows	operating
system	on	the	client.

When	you	connect,	the	SQL	Server	2000	client	software	requests	a	Windows
trusted	connection	to	SQL	Server	2000.	Windows	does	not	open	a	trusted
connection	unless	the	client	has	logged	on	successfully	using	a	valid
Windows	account.	The	properties	of	a	trusted	connection	include	the
Windows	NT	and	Windows	2000	group	and	user	accounts	of	the	client	that
opened	the	connection.	SQL	Server	2000	gets	the	user	account	information
from	the	trusted	connection	properties	and	matches	them	against	the
Windows	accounts	defined	as	valid	SQL	Server	2000	logins.	If	SQL	Server
2000	finds	a	match,	it	accepts	the	connection.	When	you	connect	to	SQL
Server	2000	using	Windows	2000	Authentication,	your	identification	is	your
Windows	NT	or	Windows	2000	group	or	user	account.

The	Microsoft	Windows	98	operating	system	does	not	support	the	server	side
of	the	trusted	connection	API.	When	SQL	Server	is	running	on	Windows	98,
it	does	not	support	Windows	Authentication.	Users	must	supply	a	SQL
Server	login	when	they	connect.	When	SQL	Server	is	running	on	Windows
NT	or	Windows	2000,	Windows	95	and	Windows	98	clients	can	connect	to	it
using	Windows	2000	Authentication.

SQL	Server	Authentication

A	member	of	the	sysadmin	fixed	server	role	first	specifies	to	SQL	Server	2000
all	the	valid	SQL	Server	2000	login	accounts	and	passwords.	These	are	not
related	to	your	Microsoft	Windows	account	or	network	account.	You	must
supply	both	the	SQL	Server	2000	login	and	password	when	you	connect	to	SQL
Server	2000.	You	are	identified	in	SQL	Server	2000	by	your	SQL	Server	2000
login.

SQL	Server	Authentication	Modes
When	SQL	Server	2000	is	running	on	Windows	NT	or	Windows	2000,	members
of	the	sysadmin	fixed	server	role	can	specify	one	of	two	authentication	modes:

Windows	Authentication	Mode

Only	Windows	Authentication	is	allowed.	Users	cannot	specify	a	SQL
Server	2000	login	ID.	This	is	the	default	authentication	mode	for	SQL
Server	2000.	You	cannot	specify	Windows	Authentication	Mode	for	an
instance	of	SQL	Server	running	on	Windows	98,	because	the	operating
system	does	not	support	Windows	Authentication.

Mixed	Mode

If	users	supply	a	SQL	Server	2000	login	ID	when	they	log	on,	they	are
authenticated	using	SQL	Server	Authentication.	If	they	do	not	supply	a
SQL	Server	2000	login	ID,	or	request	Windows	Authentication,	they	are
authenticated	using	Windows	Authentication.

These	modes	are	specified	during	setup	or	with	SQL	Server	Enterprise	Manager.

Login	Delegation
If	you	use	Windows	Authentication	to	log	on	to	an	instance	of	SQL	Server	2000
running	on	Windows	2000,	and	the	computer	has	Kerberos	support	enabled,
SQL	Server	2000	can	pass	your	Windows	login	credentials	to	other	instances	of
SQL	Server.	Delegation	of	your	credentials	from	one	instance	to	another	is
sometimes	called	impersonation,	typically	when	both	instances	of	SQL	Server
are	running	on	the	same	computer.

For	example,	if	Instance	A	and	Instance	B	are	running	on	separate	computers
using	Windows	2000,	you	can	connect	to	Instance	A	and	execute	a	distributed
query	that	references	tables	on	Instance	B.	When	Instance	A	connects	to	Instance
B	to	retrieve	the	required	data,	Instance	A	can	use	your	Windows	account
credentials	for	the	connection.	Instance	B	has	visibility	to	your	specific	account,
and	can	validate	your	individual	permissions	to	access	the	data	requested.

Without	delegation,	administrators	have	to	specify	the	login	that	Instance	A	uses
to	connect	to	Instance	B	(or	any	other	instance).	This	login	is	used	regardless	of
which	user	executes	a	distributed	query	on	Instance	A,	and	prevents	Instance	B

from	having	any	knowledge	of	the	actual	user	executing	the	query.	The
administrators	of	Instance	B	cannot	define	permissions	specific	to	individual
users	coming	in	from	Instance	A,	they	must	define	a	global	set	of	permissions
for	the	login	account	used	by	Instance	A.	The	administrators	also	cannot	audit
which	specific	users	perform	actions	in	Instance	B.	Using	delegation	with
Windows	Authentication	on	Windows	2000	allows	administrators	greater	control
over	user	permissions	and	gives	auditors	greater	visibility	to	the	actions	of
individual	users.

Connections	that	use	delegation	are	authenticated	using	a	Kerberos	ticket.	Each
ticket	has	a	timeout	period	defined	by	the	Windows	2000	security	administrator.
If	a	connection	remains	idle	for	a	long	period	and	the	Kerberos	ticket	times	out,
all	subsequent	attempts	to	execute	a	distributed	query	will	fail	until	the	user
disconnects	and	reconnects.

See	Also

Managing	Security

Security	Account	Delegation

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Client	Components
Clients	do	not	access	Microsoft®	SQL	Server™	2000	directly;	instead,	clients
use	applications	written	to	access	the	data	in	SQL	Server.	These	can	include
utilities	that	come	with	SQL	Server	2000,	third-party	applications	that	access
SQL	Server	2000,	in-house	applications	developed	by	programmers	at	the	SQL
Server	2000	site,	or	Web	pages.	SQL	Server	2000	can	also	be	accessed	through
COM,	Microsoft	ActiveX®,	or	Windows®	DNA	components.

SQL	Server	2000	supports	two	main	classes	of	applications:

Relational	database	applications	that	send	Transact-SQL	statements	to
the	database	engine;	results	are	returned	as	relational	result	sets.

Internet	applications	that	send	either	Transact-SQL	statements	or	XPath
queries	to	the	database	engine;	results	are	returned	as	XML	documents.

Relational	Database	APIs

Relational	database	applications	are	written	to	access	SQL	Server	2000	through
a	database	application	programming	interface	(API).	A	database	API	contains
two	parts:

The	language	statements	passed	to	the	database.

The	language	by	relational	SQL	Server	2000	applications	is	Transact-
SQL.	Transact-SQL	supports	all	SQL-92	Entry	Level	SQL	statements
and	many	additional	SQL-92	features.	It	also	supports	the	ODBC
extensions	to	SQL-92	and	other	extensions	specific	to	Transact-SQL.

A	set	of	functions	or	object-oriented	interfaces	and	methods	used	to
send	the	language	statements	to	the	database	and	process	the	results
returned	by	the	database.

Native	API	Support

Native	API	support	means	the	API	function	calls	are	mapped	directly	to	the

network	protocol	sent	to	the	server.	There	is	no	intermediate	translation	to
another	API	needed.	SQL	Server	2000	provides	native	support	for	two	main
classes	of	database	APIs:

OLE	DB

SQL	Server	2000	includes	a	native	OLE	DB	provider.	The	provider
supports	applications	written	using	OLE	DB,	or	other	APIs	that	use
OLE	DB,	such	as	ActiveX	Data	Objects	(ADO).	Through	the	native
provider,	SQL	Server	2000	also	supports	objects	or	components	using
OLE	DB,	such	as	ActiveX,	ADO,	or	Windows	DNA	applications.

ODBC

SQL	Server	2000	includes	a	native	ODBC	driver.	The	driver	supports
applications	or	components	written	using	ODBC,	or	other	APIs	using
ODBC,	such	as	DAO,	RDO,	and	the	Microsoft	Foundation	Classes
(MFC)	database	classes.

An	example	of	nonnative	support	for	an	API	would	be	a	database	that	does	not
have	an	OLE	DB	provider,	but	does	have	an	ODBC	driver.	An	OLE	DB
application	could	use	the	OLE	DB	provider	for	ODBC	to	connect	to	the	database
through	an	ODBC	driver.	This	provider	maps	the	OLE	DB	API	function	calls
from	the	application	to	ODBC	function	calls	it	sends	to	the	ODBC	driver.

Additional	SQL	Server	API	Support
SQL	Server	2000	also	supports:

DB-Library

DB-Library	is	an	API	specific	to	SQL	Server	2000	and	Microsoft	SQL
Server.	SQL	Server	2000	supports	DB-Library	applications	written	in	C.
DB-Library	has	not	been	extended	beyond	the	functionality	it	had	in
Microsoft	SQL	Server	version	6.5.	Existing	DB-Library	applications
developed	against	earlier	versions	of	Microsoft	SQL	Server	can	be	run
against	SQL	Server	2000,	but	many	features	introduced	in	SQL	Server
2000	and	SQL	Server	version	7.0	are	not	available	to	DB-Library
applications.

Embedded	SQL

SQL	Server	2000	includes	a	C	precompiler	for	the	Embedded	SQL	API.
Embedded	SQL	applications	use	the	DB-Library	DLL	to	access	SQL
Server	2000.

XML	Access

Internet	applications	retrieve	results	in	the	form	of	XML	documents	rather	than
relational	result	sets.	The	applications	execute	either	XPath	queries	or	Transact-
SQL	statements	that	use	the	FOR	XML	clause	to	specify	that	results	be	returned
as	XML	documents.	If	you	define	a	virtual	root	on	a	Microsoft	Internet
Information	Server	(IIS)	that	points	to	an	instance	of	SQL	Server	2000,	IIS
applications	can	use	three	mechanisms	for	executing	XPath	queries	or	Transact-
SQL	statements:

Execute	a	Uniform	Resource	Locator	(URL)	that	references	the	virtual
root	and	contains	an	XPath	query	or	Transact-SQL	statement	with	FOR
XML.

Use	the	ADO	API	to	execute	an	XPath	query	to	Transact-SQL
statement	with	FOR	XML.

Use	the	OLE	DB	API	to	execute	an	XPath	query	to	Transact-SQL
statement	with	FOR	XML.

Client	Communications

The	Microsoft	OLE	DB	Provider	for	SQL	Server	2000,	the	SQL	Server	2000
ODBC	driver,	and	DB-Library	are	each	implemented	as	a	DLL	that
communicates	to	SQL	Server	2000	through	a	component	called	a	client	Net-
Library.

See	Also

Application	Development	Architecture

Overview	of	Building	SQL	Server	Applications

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Communication	Components
Microsoft®	SQL	Server™	2000	supports	several	methods	of	communicating
between	client	applications	and	the	server.	When	the	application	is	on	the	same
computer	as	an	instance	of	SQL	Server	2000,	Windows	Interprocess
Communication	(IPC)	components,	such	as	local	named	pipes	or	shared
memory,	are	used.	When	the	application	is	on	a	separate	client,	a	network	IPC	is
used	to	communicate	with	SQL	Server.

An	IPC	has	two	components:

Application	Programming	Interface	(API)

The	API	is	a	definition	of	the	set	of	functions	software	uses	to	send
requests	to	and	retrieve	results	from	the	IPC.

Protocol

The	protocol	defines	the	format	of	the	information	sent	between	any
two	components	communicating	through	the	IPC.	In	the	case	of	a
network	IPC,	the	protocol	defines	the	format	of	the	packets	sent
between	two	computers	using	the	IPC.

Some	network	APIs	can	be	used	over	multiple	protocols.	For	example,	the
Named	Pipes	API	and	the	Microsoft	Win32®	RPC	API	can	both	be	used	with
several	protocols.	Other	network	APIs,	such	as	the	Banyan	VINES	API,	can	be
used	with	only	one	protocol.

The	SQL	Server	2000	client	communication	components	require	little	or	no
administration	when	they	connect	to	SQL	Server	2000.	Although	the	actual
implementation	of	the	communication	components	is	more	complex	than	in
earlier	versions	of	SQL	Server,	SQL	Server	2000	users	are	shielded	from	this
when	connecting	to	instances	of	SQL	Server	2000.	The	SQL	Server	2000	client
software	dynamically	determines	the	network	address	needed	to	communicate
with	any	instance	of	SQL	Server	2000.	All	the	client	software	needs	is	the
network	name	of	the	computer	on	which	the	SQL	Server	2000	instance	is
running,	and	the	name	of	the	instance	if	connecting	to	a	named	instance.	There
are	very	few	reasons	for	SQL	Server	2000	users	to	manage	the	client
communications	components	using	the	Client	Network	Utility.

System	Area	Networks
SQL	Server	2000	Enterprise	Edition	introduces	support	for	System	Area
Network	(SAN)	protocols	built	using	the	Virtual	Interface	Architecture	(VIA).	A
SAN	is	a	high-speed,	highly	reliable	network	for	interconnecting	servers	or
clusters	of	servers.	A	multi-tier,	distributed	system	can	generate	extremely	high
levels	of	network	traffic	between	servers.	Gaining	high	performance	in	such	a
system	is	possible	only	if	message	transmissions	are	fast	enough	to	minimize	the
time	the	servers	spend	processing	messages	and	waiting	for	replies.	Compared	to
local	area	networks	(LANs)	or	wide	area	networks	(WANs),	SANs	support	high
levels	of	messaging	traffic	by	lowering	CPU	loads	and	message	latency.	SANs
are	also	more	reliable	than	LANs	or	WANs,	and	are	implemented	in	groups	or
clusters	of	servers	that	are	located	close	together,	such	as	in	the	same	computer
room.

Compaq®,	Intel®,	Microsoft,	and	other	companies	have	defined	Virtual
Interface	Architecture	(VIA)	as	a	generic	definition	of	a	SAN	that	allows	many
possible	hardware	implementations.	The	Virtual	Interface	Architecture	allows	a
VIA	provider	to	implement	a	flexible,	scalable,	robust	messaging	component
built	at	low	cost	using	standard	components.	VIA	SANs	can	support	the	intense
messaging	requirements	of	large	Web	servers.

The	Virtual	Interface	Architecture	defines	both	an	API	and	a	protocol.	The	API
is	referred	to	as	the	VIA	API,	and	protocol	is	referred	to	as	the	VIA	protocol.

SANs	are	well	suited	for	these	uses	with	SQL	Server	2000:

The	application	servers	forming	the	business	services	tier	can	use	the
SAN	for	high-speed	communications	with	the	data	services	tier.	This	is
done	when	the	application	servers	and	database	servers	are	at	the	same
physical	location.

SQL	Server	2000	servers	can	use	the	SAN	to	improve	the	performance
of	distributed	queries,	distributed	transactions,	and	data	replication
between	database	servers	at	the	same	location.	A	SAN	can	improve	the
distributed	queries	needed	to	support	the	distributed	views	used	to
implement	federations	of	computers	running	SQL	Server.

SQL	Server	2000	supports	the	Giganet	VIA	SAN	implementation.	Because

SANs	are	intended	to	support	the	high	communications	bandwidth	between
servers,	SQL	Server	2000	only	supports	the	VIA	Net-Libraries	on	the	Windows
NT®	Server,	Windows	2000	Data	Center,	Advanced	Server,	and	Server
operating	systems.

SQL	Server	Architecture

Client	and	Server	Net-Libraries
Microsoft®	SQL	Server™	2000	uses	components	called	client	Net-Libraries	to
shield	the	OLE	DB	Provider	for	SQL	Server	2000,	the	SQL	Server	2000	ODBC
driver,	and	the	DB-Library	DLL,	from	the	details	of	communicating	with
different	Interprocess	Communication	(IPC)	components.	Server	Net-Libraries
perform	the	same	function	for	the	database	engine.

The	following	components	manage	communications	between	SQL	Server	2000
and	its	clients	in	this	sequence:

1.	 The	client	application	calls	the	OLE	DB,	ODBC,	DB-Library,	or
Embedded	SQL	API.	This	causes	the	OLE	DB	provider,	ODBC	driver,
or	DB-Library	DLL	to	be	used	for	SQL	Server	communications.

2.	 The	OLE	DB	provider,	ODBC	driver,	or	DB-Library	DLL	calls	a
client	Net-Library.	The	client	Net-Library	calls	an	IPC	API.

3.	 The	client	calls	to	the	IPC	API	are	transmitted	to	a	server	Net-Library
by	the	underlying	IPC.	If	it	is	a	local	IPC,	calls	are	transmitted	using	a
Windows	operating	IPC	such	as	shared	memory	or	local	named	pipes.
If	it	is	a	network	IPC,	the	network	protocol	stack	on	the	client	uses	the
network	to	communicate	with	the	network	protocol	stack	on	the	server.

4.	 The	server	Net-Library	passes	the	requests	coming	from	the	client	to
the	instance	of	SQL	Server	2000.

Replies	from	SQL	Server	2000	to	the	client	follow	the	reverse	sequence.

This	illustration	shows	the	communication	path	when	a	SQL	Server	application
runs	on	the	same	computer	as	an	instance	of	SQL	Server.

This	is	a	simplified	illustration	of	the	communication	path	when	a	SQL	Server
application	connects	through	a	LAN	or	WAN	to	an	instance	of	SQL	Server	2000
on	a	separate	computer.	Although	the	illustration	shows	the	OLE	DB	Provider
for	SQL	Server	2000,	SQL	Server	2000	ODBC	driver,	and	DB-Library	DLL
using	specific	Net-Libraries,	there	is	nothing	that	limits	these	components	to
these	Net-Libraries.	The	provider,	driver,	and	DB-Library	can	each	use	any	of
the	SQL	Server	Net-Libraries.

SQL	Server	2000	classifies	the	Net-Libraries	as	primary	or	secondary	Net-
Libraries.	The	OLE	DB	Provider	for	SQL	Server	2000,	the	SQL	Server	2000
ODBC	driver,	the	DB-Library	DLL,	and	the	database	engine	communicate
directly	with	only	the	two	primary	Net-Libraries:

By	default,	local	connections	between	an	application	and	an	instance	of
SQL	Server	2000	on	the	same	computer	use	the	Shared	Memory
primary	Net-Library.	This	path	is	shown	in	the	illustration	above.

Intercomputer	connections	communicate	through	the	Super	Socket
primary	Net-Library.	The	Super	Socket	Net-Library	has	two
communication	paths:

If	you	choose	a	TCP/IP	Sockets	connection	or	an	NWLINK
IPX/SPX	connection,	the	Super	Socket	Net-Library	directly
calls	the	Windows	Socket	2	API	for	the	communication
between	the	application	and	the	instance	of	SQL	Server	2000.

If	a	Named	Pipes,	Virtual	Interface	Architecture	(VIA)	SAN,

Multiprotocol,	AppleTalk,	or	Banyan	VINES	connection	is
chosen,	a	subcomponent	of	the	Super	Socket	Net-Library,
called	the	Net-Library	router,	loads	the	secondary	Net-Library
for	the	chosen	protocol	and	routes	all	Net-Library	calls	to	it.

This	illustration	shows	in	more	detail	the	communication	paths	through	the
client	and	server	Net-Libraries	for	network	connections	between	a	computer
running	the	SQL	Server	2000	client	components	and	an	instance	of	SQL	Server
2000.

The	server	Super	Socket	Net-Library	is	implemented	as	Ssnetlib.dll,	and	the
client	Super	Socket	Net-Library	is	implemented	as	Dbnetlib.dll.

This	table	shows	how	the	Net-Libraries	relate	to	the	IPC	APIs	and	protocols
used	to	make	connections.

Protocol
specified	in
network
utilities

Client	Net-
Library	used

Server	Net-
Library	used

IPC	API
called	by
Net-
Library

Protocols
supporting	the
IPC	API

TCP/IP
Sockets

Dbnetlib.dll Ssnetlib.dll Windows
Socket	2

TCP/IP

Named	Pipes Dbnetlib.dll
routes	to
Dbnmpntw.dll

Ssnetlib.dll
routes	to
Ssnmpn70.dll
(Microsoft
Windows	NT®
and	Windows®
2000	only)

Windows
Named
Pipes

File	system
(local)
TCP/IP
NetBEUI
NWLink

NWLink
IPX/SPX

Dbnetlib.dll Ssnetlib.dll Windows
Socket	2

NWLink

VIA	GigaNet
SAN

Dbnetlib.dll
routes	to
Dbmsgnet.dll
(Microsoft
Windows	NT
and	Windows
2000	only)

Ssnetlib.dll
routes	to
Dbmsgnet.dll
(Microsoft
Windows	NT
and	Windows
2000	only)

Virtual
Interface
Architecture
(VIA)

Virtual
Interface
Architecture
(VIA)

Multiprotocol Dbnetlib.dll
routes	to
Dbmsrpcn.dll

Ssnetlib.dll
routes	to
Ssmsrpc.dll
(default	instance
only)

Windows
RPC

File	system
(local)
TCP/IP
NetBEUI
NWLink

AppleTalk Dbnetlib.dll
routes	to

Ssnetlib.dll
routes	to

AppleTalk
ADSP

AppleTalk

Dbmsadsn.dll Ssmsad70.dll
(default	instance
only)

Banyan	Vines Dbnetlib.dll
routes	to
Dbmsvinn.dll

Ssnetlib.dll
routes	to
Ssmsvi70.dll
(default	instance
only)

Banyan
VINES	SPP

Banyan	VINES

Instances	of	SQL	Server	2000	running	on	Microsoft	Windows®	98	do	not
support	the	server	Named	Pipes	and	Banyan	VINES	Net-Libraries,	because	the
Windows	98	operating	system	does	not	support	the	server	part	of	these	APIs.
SQL	Server	2000	also	does	not	support	the	server	NWLink	IPX/SPX	Net-
Library	on	Windows	98.	SQL	Server	2000	does	support	the	client	side	of	these
Net-Libraries	on	Windows	98;	therefore,	applications	running	on	Windows	98
can	use	the	Net-Libraries	to	connect	to	instances	of	SQL	Server	on	Microsoft
Windows	NT	or	Microsoft	Windows	2000.	Applications	running	on	Windows	95
can	also	make	connections	using	the	client	side	of	these	Net-Libraries.

The	AppleTalk	Net-Library	does	not	run	on	computers	running	Windows	95	or
Windows	98.

VIA	networks	are	designed	to	support	the	high	levels	of	messaging	traffic
between	servers	in	the	same	data	center,	such	as	in	a	Web	site	implemented	as
one	or	more	Internet	Information	Services	application	servers	connected	to	one
or	more	database	servers	running	SQL	Server.	VIA	networks	are	not	used	to
connect	individual	workstations.	Both	the	client	and	server	SQL	Server	VIA	Net-
Libraries	are	supported	only	on	Windows	NT	Server	and	Advanced	Server,	and
Windows	2000	Server,	Advanced	Server,	and	Data	Center.

Named	instances	of	SQL	Server	2000	support	only	the	Named	Pipes,	TCP/IP
Sockets,	NWLink	IPX/SPX,	and	Shared	Memory	Net-Libraries.	Named
instances	do	not	support	the	Multiprotocol,	AppleTalk,	or	Banyan	VINES	Net-
Libraries.	To	maintain	compatibility	with	earlier	versions	of	SQL	Server,	default
instances	support	all	server	Net-Libraries.

Some	of	the	Net-Libraries	support	only	one	type	of	protocol	stack.	For	example,

the	AppleTalk	Net-Library	requires	an	AppleTalk	protocol	stack.	Other	Net-
Libraries,	such	as	the	Named	Pipes	and	Multiprotocol	Net-Libraries	support
several	protocol	stacks.

The	Microsoft	SQL	Server	Net-Libraries	have	been	tested	intensively	with	the
Microsoft	protocol	stacks	and	are	supported	with	these	stacks.	Protocol	stacks
from	other	vendors	should	work,	provided	that	the	stacks	fully	support	the	APIs
used	by	the	Microsoft	SQL	Server	Net-Libraries.

When	the	Named	Pipes	or	Multiprotocol	Net-Libraries	are	used	to	connect	an
application	to	an	instance	of	SQL	Server	on	the	same	computer,	and	the
computer	does	not	have	a	protocol	stack,	the	IPC	APIs	are	implemented	by	the
file	system.

SQL	Server	Architecture

Controlling	Net-Libraries	and	Communications
Addresses
After	installing	Microsoft®	SQL	Server™	2000,	you	define	the	behaviors	of	the
client	Net-Libraries	by	using	the	Client	Network	Utility	and	server	Net-Libraries
by	using	the	Server	Network	Utility.

Each	instance	of	SQL	Server	2000	can	be	listening	on	any	combination	of	the
server	Net-Libraries	at	one	time.	There	is	one	set	of	server	Net-Libraries	for	each
set	of	database	engine	executable	files.	The	server	Net-Libraries	are	installed	in:
C:\Program	Files\Microsoft	SQL	Server\MSSQL$n,	where	n	is	the	number
associated	with	this	set	of	database	engine	executable	files.

All	of	the	server	Net-Libraries	are	installed	during	the	server	portion	of	SQL
Server	Setup,	but	some	of	them	may	not	be	active.	The	person	running	the	Setup
program	can	choose	which	combination	of	Net-Libraries	is	active	for	the
instance	being	installed.	The	table	shows	the	default	server	Net-Libraries	that	are
activated	by	SQL	Server	Setup	for	the	Microsoft	Windows	NT®,	Microsoft
Windows®	2000,	and	Microsoft	Windows	98	operating	systems.

Windows	NT	and	Windows	2000 Windows	98
TCP/IP	Sockets TCP/IP	Sockets
Shared	Memory Shared	Memory
Named	Pipes 	

Disabling	and	Enabling	Net-Libraries
After	setup,	you	can	disable	and	enable	individual	server	Net-Libraries	for	each
instance	of	SQL	Server	on	a	database	computer	using	the	Server	Network
Utility.	When	a	server	Net-Library	is	disabled	for	a	specific	instance,	the
database	engine	for	the	instance	does	not	load	the	server	Net-Library	and	does
not	accept	connections	using	that	Net-Library.	The	server	Net-Library	remains
installed	and	can	be	enabled	for	other	instances	sharing	the	same	set	of
executable	files.	For	more	information,	see	SQL	Server	Network	Utility.

There	is	always	one	set	of	the	client	Net-Library	DLLs	installed	on	any
computer	running	SQL	Server	2000	client	components.	The	client	Net-Library

JavaScript:hhobj_1.Click()

DLLs	are	installed	in	the	C:\Windows\System32	or	C:\Windows\System
directory.	All	of	the	client	Net-Libraries	are	installed	when	you	install	the	SQL
Server	2000	client	utilities.	You	can	enable	and	disable	the	various	client	Net-
Libraries	using	the	Client	Network	Utility.	When	a	client	Net-Library	is	disabled
it	remains	installed	but	is	not	considered	for	any	connections.	You	can:

Specify	the	sequence	in	which	client	Net-Libraries	are	considered	for	all
connections	except	those	that	use	a	server	alias.

Enable	or	disable	specific	client	Net-Libraries.

As	a	compatibility	option,	define	server	aliases	that	define	specific	Net-
Libraries	and	connection	parameters	to	use	when	connecting	to
instances	of	SQL	Server	version	7.0	or	earlier.

For	more	information,	see	Configuring	Client	Net-Libraries.

Connecting	to	SQL	Server	2000
For	a	client	to	connect	to	a	server	running	SQL	Server	2000,	the	client	must	use
a	client	Net-Library	that	matches	one	of	the	server	Net-Libraries	the	server	is
currently	listening	on.	Also,	both	the	client	and	server	must	be	running	a
protocol	stack	supporting	the	network	API	called	by	the	Net-Library	being	used
for	the	connection.	For	example,	if	the	client	tries	using	the	client	Multiprotocol
Net-Library,	and	the	server	is	listening	on	the	server	Multiprotocol	Net-Library,
but	the	server	is	running	with	the	TCP/IP	protocol	while	the	client	computer	is
running	only	with	the	IPX/SPX	protocol	stack,	the	client	cannot	connect	to	the
server.	Both	the	client	and	the	server	must	be	using	the	same	Net-Library	and
running	the	same	protocol	stack.

Each	instance	of	SQL	Server	on	a	computer	must	listen	on	different	network
addresses	so	that	applications	can	connect	to	specific	instances.	Default
instances	of	SQL	Server	2000	listen	on	the	same	default	network	addresses	as
earlier	versions	of	SQL	Server	so	that	existing	client	computers	can	continue	to
connect	to	the	default	instance.	The	table	shows	the	default	network	addresses
that	instances	of	SQL	Server	2000	listen	on.

JavaScript:hhobj_2.Click()

Net-
Library

Default	instance	network
address Named	instance	network	address

TCP/IP
Sockets

TCP	Port	1433 A	TCP	port	is	chosen	dynamically	the	first	time	the
MSSQL$instancename	service	is	started.

Named
Pipes

\\computername\pipe\sql\query \\computername\pipe\MSSQL$instancename

NWLink
IPX/SPX

Port	33854 First	available	port	after	33854	for	each	instance.

VIA
Giganet
SAN

VIA	Port	0:1433 VIA	Port	0:1433

The	VIA	server	Net-Libraries	assign	the	same	default	address	to	both	default	and
named	instances.	The	system	administrator	must	use	the	Server	Network	Utility
to	assign	unique	port	addresses	to	each	instance	on	a	computer.

You	can	use	the	SQL	Server	2000	Server	Network	Utility	to	find	out	what
specific	set	of	network	address	each	instance	of	SQL	Server	is	listening	on	for
client	connections.

When	the	SQL	Server	2000	client	Net-Libraries	connect	to	an	instance	of	SQL
Server	2000,	only	the	network	name	of	the	computer	running	the	instance	and
the	instance	name	are	required.	When	an	application	requests	a	connection	to	a
remote	computer,	Dbnetlib.dll	opens	a	connection	to	UDP	port	1434	on	the
computer	network	name	specified	in	the	connection.	All	computers	running	an
instance	of	SQL	Server	2000	listen	on	this	port.	When	a	client	Dbnetlib.dll
connects	to	this	port,	the	server	returns	a	packet	listing	all	the	instances	running
on	the	server.	For	each	instance,	the	packet	reports	the	server	Net-Libraries	and
network	addresses	the	instance	is	listening	on.	After	the	Dbnetlib.dll	on	the
application	computer	receives	this	packet,	it	chooses	a	Net-Library	that	is
enabled	on	both	the	application	computer	and	on	the	instance	of	SQL	Server,	and
makes	a	connection	to	the	address	listed	for	that	Net-Library	in	the	packet.	The
connection	attempt	fails	only	if:

The	requested	instance	of	SQL	Server	2000	is	not	running.

None	of	the	Net-Libraries	that	the	instance	of	SQL	Server	2000	is
listening	on	is	active	on	the	application	computer.

When	Dbnetlib.dll	compares	the	network	protocols	enabled	on	the	application
computer	against	those	enabled	on	the	instance	of	SQL	Server	2000,	the
sequence	of	the	comparison	is	specified	using	the	Client	Network	Utility	on	the
application	computer.	For	example,	assume	an	application	computer	has	three
client	Net-Libraries	enabled	and	specifies	that	the	comparison	sequence	is
TCP/IP	Sockets	first,	NWLink	IPX/SPX	second,	and	named	pipes	third.	If	the
application	computer	attempts	a	connection	to	an	instance	of	SQL	Server	2000
that	has	enabled	only	the	NWLink	IPX/SPX,	named	pipes	and	Multiprotocol
server	Net-Libraries,	the	connection	is	made	using	NWLink	IPX/SPX.	For	more
information	about	configuring	the	comparison	sequence,	see	Configuring	Client
Net-Libraries.

You	cannot	assign	UDP	port	1434	to	an	application	other	than	SQL	Server	on
computers	running	instances	of	SQL	Server	2000.	Network	administrators
managing	network	filters	must	allow	communications	on	UDP	port	1434	to
enable	SQL	Server	2000	connections	to	pass	through	the	filter.

When	running	an	application	on	the	same	computer	as	a	default	instance	of	SQL
Server,	you	can	use	these	names	to	reference	the	default	instance.

Windows	NT	and	Windows	2000 Windows	98	and	Windows	95
Computer	name Computer	name
(local)* (local)*
.* 	
*Where	"(local)"	is	the	word	local	in	parentheses	and	"."	is	a	period,	or	dot.	"."	is	valid	only	in	SQL	Server
utilities,	such	as	SQL	Query	Analyzer	and	osql;	it	cannot	be	specified	in	API	connection	requests.

Do	not	use	either	(local)	or	.	to	connect	to	a	virtual	server	implemented	using
failover	clustering.

Using	the	computer	name	is	recommended.	These	connections	will	be	made	with
the	Shared	Memory	Net-Library.	DB-Library	does	not	support	using	(local).

Connecting	to	Earlier	Instances	of	SQL	Server
When	applications	using	the	SQL	Server	2000	client	components	connect	to

JavaScript:hhobj_3.Click()

instances	of	SQL	Server	version	7.0	or	earlier,	the	communications	between	the
instance	and	the	application	function	the	same	as	they	did	in	the	earlier	versions
of	SQL	Server.	Applications	using	SQL	Server	version	7.0	or	earlier	client
components	to	connect	to	default	instances	of	SQL	Server	2000	also
communicate	as	they	did	in	earlier	versions	of	SQL	Server.	In	both	of	these	cases
you	must	administer	the	network	addresses	the	way	they	were	administered	in
earlier	versions	of	SQL	Server.	For	more	information	about	configuring	a	client
in	earlier	versions	of	SQL	Server,	see	Managing	Clients.

SQL	Server	version	6.5	and	earlier	supported	Windows	Authentication	(called
Integrated	Security	in	those	versions)	only	on	the	Named	Pipes	and
Multiprotocol	Net-Libraries.	SQL	Server	2000	and	SQL	Server	version	7.0
support	Windows	Authentication	on	all	Net-Libraries.	Existing	SQL	Server
version	6.5	or	7.0	applications	that	use	the	default	Named	Pipes	Net-Library	can
be	used	to	open	Windows	Authentication	connections	to	instances	of	SQL	Server
version	6.5.	However,	if	you	upgrade	the	SQL	Server	client	utilities	on	the
application	computer	to	SQL	Server	2000,	the	default	Net-Library	changes	to
TCP/IP,	and	any	attempt	to	open	a	Windows	Authentication	connection	to
instances	of	SQL	Server	version	6.5	fails.	To	resolve	this,	you	can	use	the	Client
Network	Utility	to	put	the	Named	Pipes	Net-Library	at	the	top	of	the	Net-
Library	list,	thereby	establishing	it	as	the	default	Net-Library.

See	Also

Managing	Clients

Managing	Servers

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

SQL	Server	Architecture

Tabular	Data	Stream	Protocol
Microsoft®	SQL	Server™	2000	uses	an	application-level	protocol	called
Tabular	Data	Stream	(TDS)	for	communication	between	client	applications	and
SQL	Server.	The	TDS	packets	are	encapsulated	in	the	packets	built	for	the
protocol	stack	used	by	the	Net-Libraries.	For	example,	if	you	are	using	the
TCP/IP	Sockets	Net-Library,	then	the	TDS	packets	are	encapsulated	in	the
TCP/IP	packets	of	the	underlying	protocol.

The	contents	of	the	packets	that	send	result	sets	back	to	the	application	depends
on	whether	FOR	XML	is	specified	in	the	Transact-SQL	statement	transmitted	to
the	database	engine:

If	FOR	XML	is	not	specified,	the	database	engine	sends	a	relational
result	set	back	to	the	application.	The	TDS	packets	contain	the	rows	of
the	result	set,	with	each	row	comprised	of	one	or	more	columns,	as
specified	in	the	select	list	of	the	SELECT	statement.

If	FOR	XML	is	specified,	the	database	engine	streams	an	XML
document	back	to	the	application.	The	XML	document	is	formatting	in
the	TDS	packets	as	if	it	were	a	single,	long	Unicode	value,	with	each
packet	being	approximately	4	KB	in	size.

You	can	configure	the	SQL	Server	packet	size,	which	is	the	size	of	the	TDS
packets.	The	size	of	the	TDS	packets	defaults	to	4	KB	on	most	clients	(DB-
Library	applications	default	to	512	bytes),	which	testing	has	shown	to	be	the
optimal	TDS	packet	size	in	almost	all	scenarios.	The	size	of	the	TDS	packets	can
be	larger	than	the	size	of	the	packets	in	the	underlying	protocol.	If	this	is	the
case,	the	protocol	stack	on	the	sending	computer	disassembles	the	TDS	packets
automatically	into	units	that	fit	into	the	protocol	packets,	and	the	protocol	stack
on	the	client	computer	reassembles	the	TDS	packets	on	the	receiving	computer.

SQL	Server	Architecture

Net-Library	Encryption
Microsoft®	SQL	Server™	2000	can	use	the	Secure	Sockets	Layer	(SSL)	to
encrypt	all	data	transmitted	between	an	application	computer	and	a	SQL	Server
instance	on	a	database	computer.	The	SSL	encryption	is	performed	within	the
Super	Socket	Net-Library	(Dbnetlib.dll	and	Ssnetlib.dll)	and	applies	to	all	inter-
computer	protocols	supported	by	SQL	Server	2000.	When	SSL	encryption	is
active,	the	Super	Socket	Net-Library	performs	the	SSL	encryption	before
calling:

The	Windows	Socket	2	API	to	transmit	TCP/IP	Sockets	or	NWLink
IPX/SPX	packets.

The	Net-Library	router	to	send	a	packet	to	the	Named	Pipe,
Multiprotocol,	AppleTalk,	or	Banyan	VINES	Net-Libraries.

SSL	encryption	works	only	with	instances	of	SQL	Server	2000	running	on	a
computer	that	has	been	assigned	a	certificate	from	a	public	certification
authority.	The	computer	on	which	the	application	is	running	must	also	have	a
root	CA	certificate	from	the	same	authority.

The	Net-Library	encryption	is	implemented	using	the	Secure	Sockets	Layer	API.
The	level	of	encryption,	40-bit	or	128-bit,	depends	on	the	version	of	the
Microsoft	Windows®	operating	system	that	is	running	on	the	application	and
database	computers.

Enabling	encryption	slows	the	performance	of	the	Net-Libraries.	Encryption
forces	these	actions	in	addition	to	all	of	the	work	for	an	unencrypted	connection:

An	extra	network	round	trip	is	required	at	connect	time.

All	packets	sent	from	the	application	to	the	instance	of	SQL	Server	must
be	encrypted	by	the	client	Net-Library	and	decrypted	by	the	server	Net-
Library.

All	packets	sent	from	the	SQL	Server	instance	to	the	application	must

be	encrypted	by	the	server	Net-Library	and	decrypted	by	the	client	Net-
Library.

Shared	memory	Net-Library	communications	are	inherently	secure	without	the
need	for	encryption.	The	shared	memory	Net-Library	never	participates	in	inter-
computer	communications.	The	area	of	memory	shared	between	the	application
process	and	the	database	engine	process	cannot	be	accessed	from	any	other
Windows	process.

For	compatibility	with	earlier	versions	of	SQL	Server,	the	Multiprotocol	Net-
Library	continues	to	support	its	own	encryption.	This	encryption	is	specified
independently	of	the	SSL	encryption	and	is	implemented	by	calling	the	Windows
RPC	encryption	API.	It	does	not	require	the	use	of	certificates.	The	level	of	RPC
encryption,	40-bit	or	128-bit,	depends	on	the	version	of	the	Windows	operating
system	that	is	running	on	the	application	and	database	computers.	The
Multiprotocol	Net-Library	is	not	supported	by	named	instances.

SQL	Server	Architecture

Server	Components
In	addition	to	the	server	Net-Libraries,	Microsoft®	SQL	Server™	2000
incorporates	these	main	server	components:

SQL	Server	database	engine	(MSSQLServer	service)

SQL	Server	Agent	(SQLServerAgent	service)

Microsoft	Search	service

Microsoft	Distributed	Transaction	Coordinator	(MS	DTC	service)

The	server	components	are	supported	on	computers	running	the	Microsoft
Windows	NT®,	Windows®	2000,	and	Windows	98	operating	systems.	The
server	components	are	not	supported	on	computers	running	Microsoft	Windows
95.	When	SQL	Server	is	running	on	Windows	NT	or	Windows	2000,	the	SQL
Server	database	engine,	SQL	Server	Agent,	and	MS	DTC	are	implemented	as
Windows	NT	or	Windows	2000	services.	On	Windows	98,	the	server
components	are	not	implemented	as	services	because	the	operating	system	does
not	support	services.	The	Microsoft	Search	service	is	not	available	on	Windows
95	or	Windows	98.

The	server	components	can	be	stopped	and	started	several	ways:

Windows	NT	and	Windows	2000	can	start	each	service	automatically
when	the	operating	system	is	starting.

Use	SQL	Server	Service	Manager	to	start	or	stop	the	service.

Use	SQL	Server	Enterprise	Manager	to	start	or	stop	the	service.

On	Windows	NT	or	Windows	2000,	use	the	net	start	and	net	stop
command	prompt	commands	to	stop	or	start	each	service	(except	for	a

virtual	server	in	a	failover	cluster).

SQL	Server	2000	supports	multiple	instances	of	SQL	Server	on	computers
running	Windows	NT	or	Windows	2000.	Each	instance	has	its	own	copy	of	the
SQL	Server	service	and	the	SQL	Server	Agent	Service.	There	are	only	single
copies	of	the	Microsoft	Search	service	or	the	MS	DTC	service,	whose	services
are	shared	among	the	multiple	instances	of	SQL	Server	running	on	the	computer.

SQL	Server	Architecture

SQL	Server	Service
The	Microsoft®	SQL	Server™	2000	database	engine	runs	as	a	service	on	the
Microsoft	Windows	NT®	or	Microsoft	Windows®	2000	operating	systems.	It
does	not	run	as	a	service	on	Microsoft	Windows	98	because	this	operating
system	does	not	support	services.	SQL	Server	can	also	run	as	an	executable	file
on	Windows	NT	and	Windows	2000,	although	it	is	usually	run	as	a	service.

When	multiple	instances	of	SQL	Server	are	run	on	the	same	computer,	each
instance	has	its	own	SQL	Server	service.	The	service	name	for	the	default
instance	is	named	MSSQLServer,	the	service	name	for	named	instances	is
MSSQL$InstanceName.	For	more	information,	see	Multiple	Instances	of	SQL
Server.

The	SQL	Server	service	manages	all	of	the	files	that	comprise	the	databases
owned	by	an	instance	of	SQL	Server.	It	is	the	component	that	processes	all
Transact-SQL	statements	sent	from	SQL	Server	client	applications.	SQL	Server
also	supports	distributed	queries	that	retrieve	data	from	multiple	sources,	not
only	SQL	Server.

The	SQL	Server	service	allocates	computer	resources	effectively	between
multiple	concurrent	users.	It	also	enforces	business	rules	defined	in	stored
procedures	and	triggers,	ensures	the	consistency	of	the	data,	and	prevents	logical
problems	such	as	having	two	people	trying	to	update	the	same	data	at	the	same
time.

SQL	Server	Architecture

SQL	Server	Agent	Service
SQL	Server	Agent	supports	features	allowing	the	scheduling	of	periodic
activities	on	Microsoft®	SQL	Server™	2000,	or	the	notification	to	system
administrators	of	problems	that	have	occurred	with	the	server.	The	SQL	Server
Agent	components	that	implement	this	capability	are:

Jobs

Defined	objects	consisting	of	one	or	more	steps	to	be	performed.	The
steps	are	Transact-SQL	statements	that	can	be	executed.	Jobs	can	be
scheduled,	for	example,	to	execute	at	specific	times	or	recurring
intervals.

Alerts

Actions	to	be	taken	when	specific	events	occur,	such	as	a	specific	error,
errors	of	certain	severities,	or	a	database	reaching	a	defined	limit	of	free
space	available.	The	alert	can	be	defined	to	take	such	actions	as	sending
an	e-mail,	paging	an	operator,	or	running	a	job	to	address	the	problem.

Operators

People	identified	through	their	network	account	or	e-mail	identifier	(ID)
who	can	address	problems	with	the	server.	They	can	be	the	targets	of
alerts,	either	through	e-mail,	a	pager,	or	a	net	send	network	command.

The	service	name	of	SQLServerAgent	applies	only	to	the	Agent	service
associated	with	a	default	instance.	SQL	Server	Agent	services	associated	with
named	instances	are	named	SQLAgent$InstanceName.

Managing	Scheduled	Operations
The	illustration	shows	the	primary	components	that	are	used	in	the	definition	and
operation	of	jobs,	alerts,	and	operators.

Jobs,	alerts,	and	operators	are	specified	using:

SQL	Server	Enterprise	Manager.

Applications	that	use	SQL	Distributed	Management	Objects
(SQL-DMO).

Applications	that	use	Transact-SQL	and	a	standard	database
API.

The	definitions	are	stored	by	SQL	Server	in	the	msdb	system	database.

When	the	SQLServerAgent	service	is	started,	it	queries	the	system
tables	in	the	msdb	database	to	determine	what	jobs	and	alerts	to	enable.

SQL	Server	Agent	executes	jobs	at	their	scheduled	time.

SQL	Server	passes	any	events	that	occur	to	the	SQL	Server	Agent.

SQL	Server	Agent	executes	any	alerts,	or	sends	SQL	Mail	requests	to
SQL	Server,	or	sends	net	send	commands	to	Windows.

SQL	Server	2000	is	more	highly	automated	than	SQL	Server	version	6.5	and
earlier,	and	more	efficiently	tunes	itself	to	meet	processing	demands.	These
features	lower	the	potential	for	exception	conditions	that	would	trigger	alerts.
Scheduled	jobs	remain	a	good	feature	for	implementing	recurring	tasks	such	as
backup	procedures.

See	Also

Automating	Administrative	Tasks

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Microsoft	Search	Service
The	Microsoft	Search	service	is	a	full-text	indexing	and	search	engine.

The	SQL-92	standard	defines	only	basic	character-search	capabilities:

For	a	character	value	equal	to,	less	than,	or	greater	than	a	character
constant.

For	a	character	value	containing	a	string	pattern.

Using	the	Microsoft	Search	service	allows	Microsoft®	SQL	Server™	2000	and
SQL	Server	version	7.0	to	support	more	sophisticated	searches	on	character
string	columns.

The	Microsoft	Search	service	has	two	roles:

Indexing	support

Implements	the	full-text	catalogs	and	indexes	defined	for	a	database.
Accepts	definitions	of	full-text	catalogs,	and	the	tables	and	columns
comprising	the	indexes	in	each	catalog.	Implements	requests	to	populate
the	full-text	indexes.

Querying	support

Processes	full-text	search	queries.	Determines	which	entries	in	the	index
meet	the	full-text	selection	criteria.	For	each	entry	that	meets	the
selection	criteria,	it	returns	the	identity	of	the	row	plus	a	ranking	value
to	the	SQL	Server	service,	where	this	information	is	used	to	construct
the	query	result	set.	The	types	of	queries	supported	include	searching
for:

Words	or	phrases.

Words	in	close	proximity	to	each	other.

Inflectional	forms	of	verbs	and	nouns.

The	full-text	engine	runs	as	a	service	named	Microsoft	Search	on	Microsoft
Windows	NT®	or	Microsoft	Windows®	2000.	It	is	installed	when	the	Full-Text
Search	feature	is	selected	during	custom	installation.	The	Microsoft	Search
service	itself	is	not	installed	on	Microsoft	Windows	95	or	Microsoft	Windows
98,	although	Windows	95	and	Windows	98	clients	can	make	use	of	the	service
when	connected	to	a	SQL	Server	installation	running	on	Windows	NT	or
Windows	2000.

The	Microsoft	Search	service	runs	in	the	context	of	the	local	system	account.
During	setup,	SQL	Server	adds	itself	as	an	administrator	of	the	Microsoft	Search
service.	To	ensure	this	relationship	is	maintained	correctly,	all	changes	to	the
SQL	Server	service	account	information	must	be	made	using	the	Properties	tab
of	the	SQL	Server	Properties	dialog	box	in	SQL	Server	Enterprise	Manager.

The	full-text	catalogs	and	indexes	are	not	stored	in	a	SQL	Server	database.	They
are	stored	in	separate	files	managed	by	the	Microsoft	Search	service.	The	full-
text	catalog	files	are	accessible	only	to	the	Microsoft	Search	service	and	the
Windows	NT	or	Windows	2000	system	administrator.

See	Also

Full-Text	Catalogs	and	Indexes

Full-Text	Query	Architecture

SQL	Server	Architecture

MSSQLServerADHelper	Service
The	MSSQLServerADHelper	service	performs	two	functions:

It	adds	and	removes	the	objects	used	to	register	instances	of	Microsoft®
SQL	Server™	2000	relational	database	engine	or	Analysis	server	in	the
Microsoft	Windows®	2000	Active	Directory™.

It	ensures	that	the	Windows	account	under	which	a	SQL	Server	service
is	running	has	permissions	to	update	all	of	the	Active	Directory	objects
for	the	instance,	as	well	as	any	replication	publications	and	databases
for	that	instance.

The	service	is	dynamically	started	by	an	instance	of	SQL	Server	or	the	Analysis
Manager	when	needed.	The	service	is	stopped	as	soon	as	it	has	completed	its
work.

Active	Directory	objects	in	a	computer	container	can	be	created	or	removed	only
by	programs	that	have	been	assigned	either	domain	administration	rights	or	that
are	running	under	the	localsystem	Windows	account.	Few	sites	run	their	SQL
Server	service	under	either	of	these	types	of	accounts.	A	service	application	that
does	not	perform	network	administration,	such	as	SQL	Server,	is	rarely	granted
full	domain	administration	rights.	The	localsystem	account	cannot	be	given	any
privileges	on	remote	computers;	therefore,	running	SQL	Server	under	this
account	would	prevent	much	of	the	SQL	Server	distributed	functionality	from
working.	The	MSSQLServerADHelper	service	is	run	under	the	localsystem
account	so	that	it	can	add	and	remove	objects	registering	SQL	Server	entities	in
the	Active	Directory.

There	is	only	one	MSSQLServerADHelper	service	on	a	computer.	The	single
service	handles	the	Active	Directory	objects	for	all	instances	of	the	SQL	Server
relational	database	engine	and	all	Analysis	Manager	applications	running	on	the
computer.

Registering	SQL	Server	Analysis	Servers
Analysis	servers	are	registered	from	the	Analysis	Manager,	which	is	a	Microsoft

Management	Console	(MMC)	application.	When	users	of	Analysis	Manager
request	that	an	Analysis	server	be	registered	in	the	Active	Directory,	the
application	dynamically	starts	the	MSSQLServerADHelper	service	and
requests	that	it	create	an	MS-SQL-OLAPServer	object	in	the	Active	Directory.
The	helper	service	is	stopped	after	the	object	has	been	completed,	and	the
Analysis	Manager	finishes	filling	in	the	information	for	the	object.	For	more
information,	see	Using	Active	Directory	with	Analysis	Services.

Registering	SQL	Server	Relational	Components
All	management	of	the	registrations	of	instances	of	SQL	Server,	and	the
databases	and	replication	publications	in	each	instance,	are	made	using	system
stored	procedures	on	the	instance	of	SQL	Server.	SQL	Server	Enterprise
Manager	calls	the	system	stored	procedures	when	users	specify	Active	Directory
actions	in	the	user	interface.	The	procedures	used	are:

sp_ActiveDirectory_SCP.	Manages	the	registration	of	an	instance	of
the	relational	database	engine.

sp_addpublication,	sp_addmergepublication,	sp_changepublication,
or	sp_changemergepublication.	Manage	the	registration	of	replication
publications.

sp_ActiveDirectory_Obj.	Manages	the	registration	of	a	database.

Each	of	these	system	stored	procedures	internally	call	an	internal	component	that
use	the	Active	Directory	Services	Interface	(ADSI)	to	manage	the	objects.	When
an	MS-SQL-SQLServer	object	must	be	added	or	removed	from	the	Active
Directory,	or	permissions	granted,	the	SQL	Server	ADSI	component	calls	the
MSSQLServerADHelper	service	to	perform	the	task.	The	SQL	Server	service
uses	the	SQL	Server	ADSI	component	to	dynamically	start	the
MSSQLServerADHelper	service	as	needed.

The	SQL	Server	service	dynamically	calls	the	MSSQLServerADHelper	service
at	these	times:

When	an	MS-SQL-SQLServer	object	must	be	created	in	the	Active
Directory	to	register	an	instance	of	SQL	Server,	the	SQL	Server	service

JavaScript:hhobj_1.Click()

calls	MSSQLServerADHelper	to	create	the	object.
MSSQLServerADHelper	creates	the	object	and	gives	update
permissions	to	the	Windows	account	under	which	the	SQL	Server
service	is	running,	and	then	MSSQLServerADHelper	stops.	The	SQL
Server	service	now	has	the	permissions	needed	to	maintain	the	object
until	it	is	removed.	These	permissions	include	creating	MS-SQL-
SQLPublication	and	MS-SQL-SQLDatabase	objects	as	children	of
the	MS-SQL-SQLServer	object.

If	an	administrator	changes	the	Windows	account	under	which	the	SQL
Server	service	runs,	the	SQL	Server	service	detects	this	the	next	time	it
attempts	to	update	any	information	in	objects	that	existed	in	the	Active
Directory	before	the	account	change.	The	SQL	Server	service
automatically	starts	MSSQLServerADHelper.	That	service	reassigns
update	permissions	on	the	all	the	objects	related	to	the	current	instance
of	SQL	Server	to	the	new	Windows	account.

When	a	request	is	made	to	delete	an	MS-SQL-SQLServer	object,	the
SQL	Server	ADSI	component	calls	the	MSSQLServerADHelper
service	to	delete	the	object	and	any	children	that	are	still	present.

The	SQL	Server	service	must	be	run	under	a	Windows	account	that	has
permissions	to	start	the	MSSQLServerADHelper	service.	By	default,	members
of	the	local	Power	Users	and	local	Administrator's	groups	have	this	permission.

SQL	Server	Architecture

MS	DTC	Service
The	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)	is	a	transaction
manager	that	allows	client	applications	to	include	several	different	sources	of
data	in	one	transaction.	MS	DTC	coordinates	committing	the	distributed
transaction	across	all	the	servers	enlisted	in	the	transaction.

An	installation	of	Microsoft®	SQL	Server™	can	participate	in	a	distributed
transaction	by:

Calling	stored	procedures	on	remote	servers	running	SQL	Server.

Automatically	or	explicitly	promoting	the	local	transaction	to	a
distributed	transaction	and	enlist	remote	servers	in	the	transaction.

Making	distributed	updates	that	update	data	on	multiple	OLE	DB	data
sources.

If	these	OLE	DB	data	sources	support	the	OLE	DB	distributed
transaction	interface,	SQL	Server	can	also	enlist	them	in	the	distributed
transaction.

The	MS	DTC	service	coordinates	the	proper	completion	of	the	distributed
transaction	to	ensure	that	either	all	of	the	updates	on	all	the	servers	are	made
permanent,	or,	in	the	case	of	errors,	all	erased.

SQL	Server	applications	can	also	call	MS	DTC	directly	to	start	a	distributed
transaction	explicitly.	One	or	more	servers	running	SQL	Server	can	then	be
instructed	to	enlist	in	the	distributed	transaction	and	coordinate	the	proper
completion	of	the	transaction	with	MS	DTC.

See	Also

Distributed	Transactions

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Multiple	Instances	of	SQL	Server
Microsoft®	SQL	Server™	2000	supports	multiple	instances	of	the	SQL	Server
database	engine	running	concurrently	on	the	same	computer.	Each	instance	of
the	SQL	Server	database	engine	has	its	own	set	of	system	and	user	databases	that
are	not	shared	between	instances.	Applications	can	connect	to	each	SQL	Server
database	engine	instance	on	a	computer	in	much	the	same	way	they	connect	to
SQL	Server	database	engines	running	on	different	computers.

There	are	two	types	of	instances	of	SQL	Server:

Default	Instances

The	default	instance	of	the	SQL	Server	2000	database	engine	operates	the
same	way	as	the	database	engines	in	earlier	versions	of	SQL	Server.	The
default	instance	is	identified	solely	by	the	name	of	the	computer	on	which
the	instance	is	running,	it	does	not	have	a	separate	instance	name.	When
applications	specify	only	the	computer	name	in	their	requests	to	connect	to
SQL	Server,	the	SQL	Server	client	components	attempt	to	connect	to	the
default	instance	of	the	database	engine	on	that	computer.	This	preserves
compatibility	with	existing	SQL	Server	applications.

There	can	only	be	one	default	instance	on	any	computer,	the	default	instance
can	be	any	version	of	SQL	Server.

Named	Instances

All	instances	of	the	database	engine	other	than	the	default	instance	are
identified	by	an	instance	name	specified	during	installation	of	the	instance.
Applications	must	provide	both	the	computer	name	and	the	instance	name	of
any	named	instance	to	which	they	are	attempting	to	connect.	The	computer
name	and	instance	name	are	specified	in	the	format
computer_name\instance_name.

There	can	be	multiple	named	instances	running	on	a	computer,	but	only	the
SQL	Server	2000	database	engine	can	operate	as	a	named	instance.	The
database	engines	from	earlier	versions	of	SQL	Server	cannot	operate	as	a
named	instance.

Instances	apply	primarily	to	the	database	engine	and	its	supporting	components,

not	to	the	client	tools.	When	you	install	multiple	instances,	each	instance	gets	a
unique	set	of:

System	and	user	databases.

The	SQL	Server	and	SQL	Server	Agent	services.	For	default	instances,
the	names	of	the	services	remain	MSSQLServer	and	SQLServerAgent.
For	named	instances,	the	names	of	the	services	are	changed	to
MSSQL$instancename	and	SQLAgent$instancename,	allowing	them	to
be	started	and	stopped	independently	of	the	other	instances	on	the
server.	The	database	engines	for	the	different	instances	are	started	and
stopped	using	the	associated	SQL	Server	service.	The	SQL	Server
Agent	services	manage	scheduled	events	for	the	associated	instances	of
the	database	engine.

The	registry	keys	associated	with	the	database	engine	and	the	SQL
Server	and	SQL	Server	Agent	services.

Network	connection	addresses	so	that	applications	can	connect	to
specific	instances.

Shared	Components

The	following	components	are	shared	between	all	of	the	instances	running	on	the
same	computer:

There	is	only	one	SQL	Server	2000	program	group	(Microsoft	SQL
Server)	on	the	computer,	and	only	one	copy	of	the	utility	represented	by
each	icon	in	the	program	group.	There	is	only	one	copy	of	SQL	Server
Books	Online.

The	versions	of	the	utilities	in	the	program	group	are	from	the	first
version	of	SQL	Server	2000	installed	on	the	computer.	For	example,	if
you	install	the	French	version	of	SQL	Server	2000	as	a	default	instance
and	then	the	U.S.	English	version	of	SQL	Server	2000	as	a	named
instance,	there	is	one	SQL	Server	2000	program	group.	All	of	the	utility
icons	and	the	SQL	Server	Books	Online	icon	in	the	program	group	start

the	French	versions	of	the	tools.

All	of	the	SQL	Server	2000	utilities	work	with	multiple	instances.	You
can	start	and	stop	each	of	the	instances	from	a	single	copy	of	the	SQL
Server	2000	Service	Manager.	You	can	use	a	single	copy	of	the	SQL
Server	2000	SQL	Server	Enterprise	Manager	to	control	objects	in	all
instances	on	the	computer,	and	use	a	single	copy	of	the	SQL	Server
2000	Server	Network	Manager	to	manage	the	network	addresses	with
which	all	of	the	instances	on	the	computer	communicate.

There	is	only	one	copy	of	the	MSSearchService	that	manages	full-text
searches	against	all	of	the	instances	of	SQL	Server	on	the	computer.

There	is	only	one	copy	each	of	the	English	Query	and	Microsoft	SQL
Server	2000	Analysis	Services	servers.

The	registry	keys	associated	with	the	client	software	are	not	duplicated
between	instances.

There	is	only	one	copy	of	the	SQL	Server	development	libraries
(include	and	.lib	files)	and	sample	applications.

Default	Instances

Configurations	that	can	operate	as	a	default	instance	include:

A	default	instance	of	SQL	Server	2000.

An	installation	of	SQL	Server	version	7.0	operates	as	a	default	instance.

An	installation	of	SQL	Server	version	6.5	operates	as	a	default	instance.

A	default	instance	of	SQL	Server	2000	that	can	be	version	switched
with	an	installation	of	SQL	Server	version	6.5	using	the	SQL	Server
2000	vswitch	utility.

An	installation	of	SQL	Server	version	7.0	that	can	be	version	switched
with	an	installation	of	SQL	Server	version	6.5	using	the	SQL	Server
version	7.0	vswitch	utility.

Note		You	must	apply	SQL	Server	6.5	Service	Pack	5	to	any	instance	of
SQL	Server	6.5	before	installing	instances	of	SQL	Server	2000	on	the
same	computer.

Switching	Between	Versions	of	SQL	Server

You	cannot	version	switch	between	an	installation	of	SQL	Server	version	7.0	and
a	default	instance	of	SQL	Server	2000.

You	can	have	any	number	of	named	instances	of	SQL	Server	2000	in	addition	to
the	default	instance.	You	are	not	required	to	run	a	default	instance	on	a	computer
before	you	can	run	named	instances.	You	can	run	named	instances	on	a	computer
that	has	no	default	instance.	SQL	Server	version	6.5	and	SQL	Server	7.0	cannot
operate	as	named	instances,	only	as	default	instances.

Microsoft	does	not	support	more	than	16	instances	on	a	single	computer	or
failover	cluster.

If	you	run	SQL	Server	version	6.5	as	a	default	instance	and	run	one	or	more
named	instances	of	SQL	Server	2000	on	a	single	computer,	the	computer	has
two	SQL	Server	program	groups	instead	of	one	SQL	Server	program	group:

A	SQL	Server	2000	program	group	executes	the	SQL	Server	2000	tools.

A	SQL	Server	version	6.5	program	group	runs	the	SQL	Server	6.5	tools.

If	you	are	running	SQL	Server	version	7.0	with	SQL	Server	2000,	the	icons	in
the	SQL	Server	7.0	program	group	will	execute	the	SQL	Server	2000	tools.

Note		You	must	apply	SQL	Server	6.5	Service	Pack	5	to	any	instance	of	SQL
Server	6.5	before	installing	instances	of	SQL	Server	2000	on	the	same	computer.

Multiple	Instances	of	SQL	Server	on	a	Failover	Cluster

You	can	run	only	one	instance	of	SQL	Server	on	each	virtual	server	of	a	SQL
Server	failover	cluster,	although	you	can	install	up	to	16	virtual	servers	on	a
failover	cluster.	The	instance	can	be	either	a	default	instance	or	a	named
instance.	The	virtual	server	looks	like	a	single	computer	to	applications
connecting	to	that	instance	of	SQL	Server.	When	applications	connect	to	the
virtual	server,	they	use	the	same	convention	as	when	connecting	to	any	instance
of	SQL	Server;	they	specify	the	virtual	server	name	of	the	cluster	and	the
optional	instance	name	(only	needed	for	named	instances):
virtualservername\instancename.	For	more	information	about	clustering,	see
Failover	Clustering	Architecture.

SQL	Server	Architecture

Communicating	with	Multiple	Instances
Each	instance	of	Microsoft®	SQL	Server™	2000	listens	on	a	unique	set	of
network	address	so	that	applications	can	connect	to	different	instances.	SQL
Server	2000	clients	do	not	have	to	be	configured	to	connect	to	an	instance	of
SQL	Server	2000.	The	SQL	Server	2000	client	components	query	a	computer
running	instances	of	SQL	Server	2000	to	determine	the	Net-Libraries	and
network	addresses	for	each	instance.	The	client	components	then	transparently
choose	a	supported	Net-Library	and	address	for	the	connection	without	having	to
be	configured	on	the	client.	The	only	information	the	application	must	supply	is
the	computer	name	and	instance	name.	For	more	information,	see	Controlling
Net-Libraries	and	Communications	Addresses.

A	default	instance	of	SQL	Server	2000	listens	on	the	same	network	addresses	as
earlier	versions	of	SQL	Server;	therefore,	applications	using	the	client
connectivity	components	of	SQL	Server	version	7.0	or	earlier	can	continue	to
connect	to	the	default	instance	with	no	change.	Named	instances	listen	on
alternative	network	addresses,	and	client	computers	using	the	client	connectivity
components	of	SQL	Server	version	7.0	or	earlier	must	be	set	up	to	connect	to	the
alternative	addresses.

SQL	Server	Architecture

Using	Multiple	Instances
Although	running	multiple	instances	of	Microsoft®	SQL	Server™	2000	on	a
single	computer	expands	the	capabilities	of	SQL	Server,	the	recommended
configuration	for	most	production	databases	servers	is	to	use	a	single	instance	of
SQL	Server	with	multiple	databases.

Using	a	single	instance	of	SQL	Server	on	a	production	server	offers	these
benefits:

Only	one	instance	needs	to	be	administered.

There	is	no	duplication	of	components	or	processing	overhead,	such	as
having	to	run	multiple	database	engines	on	the	same	computer.	This
means	that	the	overall	performance	of	a	server	with	a	single	instance
may	be	higher	than	a	server	running	multiple	instances.

A	single	instance	of	SQL	Server	2000	is	capable	of	handling	the
processing	growth	requirements	of	the	largest	Web	sites	and	enterprise
data-processing	systems,	especially	when	it	is	part	of	a	federation	of
database	servers.	For	more	information,	see	Federated	SQL	Server	2000
Database	Servers.

Running	multiple	instances	of	SQL	Server	on	a	single	computer	is	best:

When	you	must	support	different	systems	that	have	to	be	securely
isolated	from	each	other,	such	as	when	a	service	bureau	has	a	large
server	and	must	create	a	separate	instance	of	SQL	Server	for	each
customer.

When	you	need	to	support	multiple	test	and	development	databases,	and
the	most	economical	configuration	is	to	run	these	as	separate	instances
of	SQL	Server	on	a	single	large	server.

When	you	need	to	run	multiple	applications	on	a	desktop,	and	each
application	installs	a	separate	instance	of	SQL	Server	2000	Desktop
Engine.

SQL	Server	Architecture

Working	with	Multiple	Instances
Although	multiple	instances	of	Microsoft®	SQL	Server™	2000	can	run	on	a
single	computer,	there	is	no	direct	connection	between	instances.	Each	instance
operates	in	many	ways	as	if	it	is	on	a	separate	server.	An	application	connected
to	one	instance	cannot	access	objects	in	databases	created	in	another	instance,
except	through	distributed	queries.	Databases	and	database	files	cannot	be
shared	between	instances.

Named	instances	of	SQL	Server	2000	database	engines	have	almost	the	same
behaviors	as	default	instances.	The	main	difference	is	that	you	must	supply	both
the	computer	name	and	instance	name	to	identify	a	named	instance.	When	you
specify	only	computername,	you	work	with	the	default	instance.	When	you
specify	computername\instancename	you	work	with	the	named	instance.

Service	Manager.

When	you	specify	only	computername	in	Service	Manager,	you	can
stop	and	start	the	default	instance.	When	you	specify
computername\instancename	you	can	stop	and	start	the	named	instance.
When	a	specific	instance	is	started,	any	database	created	in	that	instance
is	available	to	any	application	that	connects	to	the	instance	using	an
authorization	ID	that	has	permissions	to	access	the	database.

SQL	Server	Enterprise	Manager.

Using	SQL	Server	Enterprise	Manager	you	can	register	each	instance
for	which	you	have	permissions.	After	an	instance	is	registered,	you	can
create,	edit,	and	drop	objects	in	the	databases	associated	with	that
instance,	subject	to	the	permissions	granted	to	you.	You	can	also	create,
edit,	and	drop	Data	Transformation	Services,	Replication,	and	SQL
Server	Agent	objects	for	that	instance.

Applications.

In	an	application,	when	you	specify	computername	as	the	server	name
parameter	in	a	connection	request,	you	are	connected	to	the	default
instance	on	the	computer.	You	can	access	any	databases	in	the	default

instance	that	you	have	permissions	to	access.	If	you	specify
computername\instancename	as	the	server	name	parameter,	you	are
connected	to	the	named	instance.	You	can	access	any	databases	in	that
named	instance	that	you	have	permissions	to	access.	When	you	are
connected	to	a	specific	instance,	objects	in	databases	in	other	instances
can	be	accessed	only	through	distributed	queries,	just	as	objects	in
databases	on	other	servers	can	be	accessed	only	through	distributed
queries.	Applications	specify	the	instance	name	in	different	ways:

ADO	applications	specify
"Server=computername\instancename"	in	the	provider	string.
For	more	information,	see	Connecting	to	Multiple	Instances	of
SQL	Server.

OLE	DB	applications	specify
"Server=computername\instancename"	in	the	provider	string.
They	can	alternatively	set	DBPROP_INIT_DATASOURCE	to
computername\\instancename	(the	backslash	must	be	escaped
with	a	second	backslash).	For	more	information,	see
Establishing	a	Connection	to	a	Data	Source.

ODBC	applications	specify
"Server=computername\instancename"	in	the	connection	string
specified	on	SQLDriverConnect.	They	can	alternatively
specify	computername\\instancename	for	the	ServerName
parameter	on	SQLConnect,	or	connect	through	a	data	source
that	has	computername\instancename	specified	for	the	server
name.	For	more	information,	see	Support	for
SQLDriverConnect	and	SQLConfigDataSource.

SQL	DMO	applications	can	manage	instances	of	SQL	Server
2000	using	the	SQLServer2	object.	For	more	information,	see
SQLServer2	Object.

DB-Library	and	Embedded	SQL	for	C	do	not	support	multiple

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

instances.

Distributed	queries	and	linked	servers.

Distributed	queries	and	linked	server	definitions	use
computername\instancename	to	identify	named	instances	and
computername	to	identify	default	instances.	For	more	information,	see
Distributed	Queries	on	Multiple	Instances	of	SQL	Server.

Command	prompt	utilities.

When	you	use	the	command	prompt	utilities,	you	can	use	the	Server
switch	to	specify	an	instance	by	using	computername\instancename,	for
example:

osql	-E	-Scomputer1\instance1
sqlservr	/Sinstance1

The	isql	utility	does	not	support	named	instances.

SQL	Server	2000	client	components.

Applications	using	SQL	Server	2000	client	components	can	enumerate
the	instances	available	for	connections:

The	OLE	DB	Provider	for	SQL	Server	2000	returns	instance
names	using	ISourcesRowset::GetSourcesRowset.	The
names	of	named	instances	are	returned	as	the	data	source	name
in	the	format	computername\instancename,	where
computername	can	be	either	the	name	of	a	single	computer	or
the	virtual	server	name	of	a	failover	cluster.	The	names	of
default	instances	are	returned	as	the	data	source	name	in	the
format	computername,	with	no	instance	name.

The	SQL	Server	2000	ODBC	driver	supports	extensions	to
SQLBrowseConnect	and	SQLSetConnectAttr	that	allow
applications	to	enumerate	instances	on	a	server.	ODBC
applications	can	also	determine	whether	the	computername	is
the	name	of	a	single	computer	or	a	virtual	server	name	for	a
failover	cluster.	For	more	information,	see

JavaScript:hhobj_6.Click()

SQLBrowseConnect.

SQL-DMO	applications	can	enumerate	instances	using	the
SQLServer2	object.	The	SQLServer2	object	also	presents
information	such	as	the	names	of	the	SQL	Server	and	SQL
Server	Agent	services	for	the	instance,	or	whether	the	instance
is	running	on	a	single	computer	or	a	failover	cluster.	For	more
information,	see	SQLServer2	Object.

DB-Library	and	Embedded	SQL	for	C	do	not	support	named
instances.

Identifying	Instances

Performance	Monitor	counters,	Profiler	events,	and	Windows	events	in	the	Event
Viewer	Application	Log	all	identify	the	instance	of	SQL	Server	with	which	they
are	associated.

The	string	returned	by	the	@@SERVERNAME	function	identifies	the	name	of
the	instance	in	the	form	servername\instancename	if	you	are	connected	to	a
named	instance.	If	connected	to	a	default	instance	@@SERVERNAME	returns
only	servername.	For	more	information,	see	@@SERVERNAME.

The	SERVERPROPERTY	function	INSTANCENAME	property	reports	the
instance	name	of	the	instance	to	which	you	are	connected.	INSTANCENAME
returns	NULL	if	connected	to	a	default	instance.	In	addition,	the
SERVERNAME	property	returns	the	same	format	string	returned	by
@@SERVERNAME	and	will	have	the	format	servername\instancename	when
connected	to	a	named	instance.	For	more	information,	see	SERVERPROPERTY.

Although	the	strings	reported	by	@@SERVERNAME	and	SERVERNAME	use
the	same	format,	the	information	they	report	can	be	different,	for	example:

The	string	returned	by	@@SERVERNAME	is	affected	by	the	actions	of
sp_addserver	and	sp_dropserver,	and	the	string	reported	by
SERVERNAME	is	not.

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

SERVERNAME	automatically	reports	changes	in	the	network	name	of
the	computer,	and	@@SERVERNAME	does	not,	unless	sp_dropserver
and	sp_addserver	are	used	to	change	the	name	it	reports.

SQL	Server	Architecture

Federated	SQL	Server	2000	Servers
Microsoft®	SQL	Server™	2000	databases	can	be	spread	across	a	group	of
autonomous	database	servers	capable	of	supporting	the	processing	growth
requirements	of	the	largest	Web	sites	and	enterprise	data-processing	systems
built	with	Microsoft	Windows®	DNA.

Windows	DNA	divides	the	processing	units	of	a	data	processing	system	into
logical	tiers:

User	services	tier

Presents	the	interface	seen	by	the	users,	and	typically	calls	the	second
tier	for	business	logic	processing.

Business	services	tier

Contains	the	business	logic	that	controls	the	operation	of	the	Web	site,
and	uses	the	persistent	data	storage	provided	by	the	third	tier.

Data	services	tier

Stores	the	persistent	data	required	to	run	the	Web	site.

Scaling	refers	to	the	process	of	adding	resources	to	a	tier	so	that	it	can	handle
increased	workloads.	Scaling	can	be	done	in	one	of	two	ways:

Scale	up

Increases	the	processing	power	of	a	server	by	using	a	more	powerful
computer.

Scale	out

Increases	the	processing	power	of	a	system	designed	in	a	modular
fashion,	such	as	becoming	a	cluster	of	computers,	by	adding	one	or
more	additional	computers,	or	nodes,	to	the	system.

The	growth	requirements	of	the	largest	Web	sites	generate	processing	loads	that
exceed	the	capacity	of	large	individual	servers.	In	these	cases,	scaling	out	may
be	the	best	option	for	increasing	the	processing	capacity	of	the	system.

Microsoft	Windows	2000	COM+	components	are	designed	to	be	used	in	clusters
of	Windows	2000	application	servers	to	form	a	clustered	business	services	tier.
Each	server	has	identical	sets	of	COM+	components,	and	Windows	2000
balances	the	cluster	processing	load	by	sending	new	requests	to	the	server	that
has	the	least	processing	load.	This	forms	an	easily	administered	cluster	that	can
quickly	scale	out	by	simply	adding	a	new	server.

SQL	Server	2000	does	not	support	this	type	of	clustering.	However,	SQL	Server
2000	does	support	updatable	distributed	partitioned	views	used	to	transparently
partition	data	horizontally	across	a	group	of	servers.	Although	these	servers
cooperate	in	managing	the	partitioned	data,	they	operate	autonomously.	Each
server	is	managed	independently,	has	separate	operational	rules,	and	can	support
independent	processes	and	data.	A	group	of	autonomous	servers	that	cooperate
to	process	a	workload	is	known	as	a	federation.	Although	SQL	Server	2000
delivers	very	impressive	performance	when	scaled	up	on	servers	with	eight	or
more	processors,	it	can	support	huge	processing	loads	when	partitioned	across	a
federation.	A	federation	of	servers	running	SQL	Server	2000	is	capable	of
supporting	the	growth	requirements	of	any	Web	site,	or	of	the	largest	enterprise
systems.

SQL	Server	Architecture

Partitioning	Data
The	first	step	in	building	a	set	of	federated	database	servers	is	to	horizontally
partition	the	data	in	a	set	of	tables	across	multiple	servers.	Horizontally
partitioning	a	table	refers	to	dividing	a	table	into	multiple	smaller	tables,	called
member	tables.	Each	member	table	has	the	same	format	as	the	original	table,	but
only	part	of	the	rows.	Each	table	is	placed	on	a	separate	resource	(files	or
servers)	to	spread	the	processing	load	across	the	resources.	For	example,	a
company	assigns	customer	identifiers	(IDs)	from	1	through	9999999.	The
Customers	table	may	be	partitioned	into	three	member	tables,	with	each
member	table	having	an	equal	customer	ID	range.

If	used	without	views,	horizontal	partitioning	would	require	applications	to	have
logic	to	determine	which	member	tables	have	the	data	requested	by	the	user	and
dynamically	build	SQL	statements	referencing	the	tables.	The	application	would
require	complex	queries	joining	the	member	tables.	Changing	the	member	tables
would	also	involve	recoding	the	application.	Views	solve	the	problem	by	making
the	member	tables	look	like	one	table.	The	SQL	UNION	operator	combines
result	sets	with	identical	formats	into	one.	Because	all	the	member	tables	have
the	same	format,	the	result	of	SELECT	*	statements	for	each	table	have	the	same
format,	and	can	be	combined	using	the	UNION	clause	to	form	a	single	result	set
that	operates	similarly	to	the	original	table.	For	example,	the	Customers	table
has	been	partitioned	across	three	servers	(Server1,	Server2,	and	Server3).	The
distributed	partitioned	view	defined	on	Server1	is:

CREATE	VIEW	Customers
AS
SELECT	*	FROM	Customers_33
			UNION	ALL
SELECT	*	FROM	Server2.CustomerDB.dbo.Customers_66
			UNION	ALL
SELECT	*	FROM	Server3.CustomerDB.dbo.Customers_99

This	view	makes	the	actual	location	of	the	data	transparent	to	an	application.
When	a	SQL	statement	is	executed	on	Server1	that	references	the	Customers

partitioned	view,	the	application	has	no	visibility	to	where	the	data	is	located.	If
some	of	the	rows	required	to	complete	the	SQL	statement	reside	on	Server2	or
Server3,	the	instance	of	SQL	Server	on	Server1	automatically	generates	a
distributed	query	that	pulls	in	the	required	rows	from	the	other	servers.	This
transparency	allows	database	administrators	to	repartition	tables	without
recoding	applications.	If	the	Customers	view	is	updatable,	the	behavior	of	the
view	is	the	same	as	a	table	named	Customers.

Local	partitioned	views	reference	member	tables	on	one	server.	Distributed
partitioned	views	reference	member	tables	on	multiple	servers.	A	server
containing	a	member	table	is	called	a	member	server,	and	a	database	containing
a	member	table	is	called	a	member	database.	Each	member	server	contains	one
member	table	and	a	distributed	partitioned	view.	An	application	that	references
the	partitioned	view	on	any	of	the	servers	gets	the	same	results	as	if	a	complete
copy	of	the	original	table	were	present	on	each	server.

Microsoft	SQL	Server	2000	and	Microsoft	SQL	Server	version	7.0	support
partitioned	views;	however,	SQL	Server	2000	introduces	key	features	that	allow
the	views	to	scale	out	and	form	federations	of	database	servers:

SQL	Server	2000	partitioned	views	are	updatable.	This	is	crucial	for
distributing	data	so	that	the	location	of	the	data	is	transparent	to	the
application.	Updatable	views	support	the	full	behavior	of	the	original
table;	nonupdatable	views	are	like	read-only	copies.

The	SQL	Server	2000	query	optimizer	supports	new	optimizations	that
minimize	the	amount	of	distributed	data	that	has	to	be	transferred.	The
distributed	execution	plans	generated	by	SQL	Server	2000	result	in
good	performance	for	a	larger	set	of	queries	than	the	plans	generated	by
SQL	Server	version	7.0.

SQL	Server	2000	partitioned	views	are	best	suited	for	the	types	of	SQL
statements	generated	by	Web	sites	and	online	transaction	processing	(OLTP)
systems.

Partitioning	a	Database
To	build	an	effective	federation	of	database	servers:

Create	multiple	databases,	each	on	a	different	member	server	running	an
instance	of	SQL	Server	2000.

Partition	the	individual	tables	in	the	original	database	so	that	most
related	data	is	placed	together	on	a	member	server.	This	may	require
different	methods	of	distributing	the	data	in	the	various	tables	across	all
the	member	databases;	partitioning	some	tables;	making	complete
copies	of	other	tables	in	each	member	database;	and	leaving	some	tables
intact	on	the	original	server.

Devise	data	routing	rules	that	can	be	incorporated	in	the	business
services	tier,	so	that	applications	can	send	each	SQL	statement	to	the
member	server	that	stores	most	of	the	data	required	by	the	statement.

The	most	important	goal	is	to	minimize	distributed	processing	in	such	a	system.
You	must	be	able	to	collocate	related	data	on	the	same	member	server,	and	then
route	each	SQL	statement	to	a	member	server	that	contains	most,	if	not	all,	of	the
data	required	to	process	the	statement.	For	example,	you	may	find	that	all	the
sales,	customer,	sales	personnel,	and	inventory	tables	in	a	database	can	be
partitioned	by	sales	region,	and	that	most	SQL	statements	only	reference	data	in
a	single	region.	You	can	then	create	member	servers	where	each	server	has	the
horizontally	partitioned	data	for	one	or	more	regions.	If	applications	can	identify
the	region	currently	referenced	in	the	user's	input,	the	application	can	submit	any
generated	SQL	statement	to	the	member	server	containing	the	data	for	that
region.	The	only	SQL	statements	that	will	generate	distributed	queries	are	those
that	reference	data	from	multiple	regions.

SQL	Server	Architecture

Failover	Clustering	Architecture
Microsoft®	SQL	Server™	2000	failover	clustering	increases	server	availability
by	allowing	a	system	to	automatically	switch	the	processing	for	an	instance	of
SQL	Server	from	a	failed	server	to	a	working	server.	For	example,	an	instance	of
SQL	Server	can	quickly	restore	database	services	to	a	Web	site	or	enterprise
network	even	if	the	server	running	the	instance	fails.	SQL	Server	2000
implements	failover	clustering	based	on	the	failover	clustering	features	of	the
Microsoft	Clustering	Service	(MSCS)	in	Windows	NT®	4.0	and	Windows®
2000.

The	type	of	MSCS	failover	cluster	used	by	SQL	Server	2000	consists	of	multiple
server	computers	(two	on	Windows	NT	4.0,	up	to	four	on	Windows	2000
Datacenter	Server)	that	share	a	common	set	of	cluster	resources,	such	as	disk
drives.	Each	server	in	the	cluster	is	called	a	node.	Each	server,	or	node,	is
connected	to	the	network,	and	each	node	can	communicate	with	each	other	node.
Each	node	runs	the	same	version	of	MSCS.

The	shared	resources	in	the	failover	cluster	are	collected	into	cluster	groups.	For
example,	if	a	failover	cluster	has	four	clustered	disk	drives,	two	of	the	drives	can
be	collected	in	one	cluster	group	and	the	other	two	in	a	second	cluster	group.
Each	cluster	group	is	owned	by	one	of	the	nodes	in	the	failover	cluster,	although
the	ownership	can	be	transferred	between	nodes.

Applications	can	be	installed	on	the	nodes	in	the	failover	cluster.	These
applications	are	typically	server	applications	or	distributed	COM	objects	that
users	access	through	network	connections.	The	application	executables	and	other
resources	are	typically	stored	in	one	or	more	of	the	cluster	groups	owned	by	the
node.	Each	node	can	have	multiple	applications	installed	on	it.

The	failover	cluster	nodes	periodically	send	each	other	network	messages	called
heartbeat	messages.	If	the	MSCS	software	detects	the	loss	of	a	heartbeat	signal
from	one	of	the	nodes	in	the	cluster,	it	treats	the	server	as	a	failed	server.	MSCS
then	automatically	transfers	the	cluster	groups	and	application	resources	of	that
node	to	the	other	nodes	in	the	network.	The	cluster	administrator	specifies	the
alternate	nodes	to	which	cluster	groups	are	transferred	when	any	given	node
fails.	The	other	nodes	then	continue	processing	user	network	requests	for	the
applications	transferred	from	the	failed	server.

For	more	information	about	MSCS,	see	the	Windows	NT	Server,	Windows	2000
Server,	Windows	2000	Advanced	Server,	or	Windows	2000	Datacenter
documentation.

SQL	Server	Architecture

SQL	Server	2000	Failover	Clusters
You	can	install	up	to	16	instances	of	Microsoft®	SQL	Server™	2000	in	a
Microsoft	Clustering	Service	(MSCS)	failover	cluster.

You	install	an	instance	of	SQL	Server	2000	by	running	SQL	Server	Setup	on	one
of	the	nodes	of	the	cluster.	The	Setup	program	installs	the	instance	on	the	nodes
of	the	failover	cluster	that	you	specify	during	setup.	The	SQL	Server	2000
executable	files	are	installed	on	the	local	disk	drives	of	each	node	in	the	failover
cluster.	This	means	that	each	node	must	have	a	local	hard	drive	that	is	assigned
the	same	drive	letter	as	on	all	the	other	nodes,	and	that	drive	letter	must	be	in	the
path	of	the	location	you	specify	for	the	SQL	Server	executable	files	during	setup.
For	example,	if	you	specify	C:\Program	Files\Microsoft	SQL	Server	as	the
location	in	which	to	install	the	SQL	Server	executables,	each	node	in	the	cluster
must	have	drive	letter	C	mapped	to	a	local	drive.	The	registry	information	for	the
instance	is	also	stored	in	the	registry	of	each	node	in	the	failover	cluster.

An	MSCS	cluster	group	is	a	collection	of	clustered	resources,	such	as	clustered
disk	drives,	which	are	owned	by	one	of	the	failover	cluster	nodes.	The
ownership	of	the	group	can	be	transferred	from	one	node	to	another,	but	each
group	can	only	be	owned	by	one	node	at	a	time.	The	database	files	for	an
instance	of	SQL	Server	2000	are	placed	in	a	single	MSCS	cluster	group	owned
by	the	node	on	which	you	install	the	instance.	If	a	node	running	an	instance	of
SQL	Server	fails,	MSCS	switches	the	cluster	group	containing	the	data	files	for
that	instance	to	another	node.	Since	the	new	node	already	has	the	executable
files	and	registry	information	for	that	instance	of	SQL	Server	on	its	local	disk
drive,	it	can	start	up	the	instance	of	SQL	Server	and	start	accepting	connection
requests	for	that	instance.

Because	the	executable	files	and	registry	information	for	each	instance	of	SQL
Server	2000	is	stored	in	each	node,	the	SQL	Server	2000	limit	of	16	instances
per	computer	also	applies	to	each	failover	cluster.	Each	instance	in	the	failover
cluster	must	either	have	a	unique	instance	name	or	be	a	default	instance.	There
can	only	be	one	default	instance	per	failover	cluster.

The	MSCS	cluster	group	that	holds	the	database	files	for	an	instance	is
associated	with	a	SQL	Server	virtual	server	name	during	SQL	Server	setup.

There	can	only	be	one	instance	per	virtual	server,	which	also	means	that	there
can	only	be	one	instance	associated	with	any	cluster	group.

When	an	application	attempts	to	connect	to	an	instance	of	SQL	Server	2000
running	on	a	failover	cluster,	the	application	must	specify	both	the	virtual	server
name	and	the	instance	name.	The	application	does	not	have	to	specify	an
instance	name	only	if	the	instance	associated	with	the	virtual	server	is	a	default
instance	that	does	not	have	a	name.

For	example:

A	Windows	cluster	administrator	creates	a	failover	cluster	with	two
nodes:	NodeA	and	NodeB.	Each	node	maps	the	drive	letter	C	to	a	local
hard	drive.

There	is	one	shared	disk	in	the	cluster.	The	cluster	administrator	creates
ClusterGroupA	to	hold	the	drive,	and	assigns	it	to	NodeA.

The	SQL	Server	system	administrator	runs	the	Setup	program	to	install
a	default	instance	of	SQL	Server	on	NodeA.	During	setup,	the
administrator	specifies	a	SQL	Server	virtual	server	name	of
VirtualServerX,	and	specifies	that	the	database	files	be	placed	on	the
drive	in	ClusterGroupA.	Setup	installs	the	SQL	Server	executable	files
on	the	local	drives	of	both	NodeA	and	NodeB,	and	places	the	database
files	in	ClusterGroupA.

Applications	attempting	to	connect	to	the	default	instance	only	need	to
specify	the	virtual	server	name	VirtualServerA.	The	default	instance
normally	runs	on	NodeA.	Should	NodeA	fail,	however,	the	MSCS
clustering	will	transfer	ownership	of	ClusterGroupA	to	NodeB	and
will	restart	the	default	instance	on	NodeB.	Applications	will	still
connect	to	the	default	instance	by	specifying	the	virtual	server	name
VirtualServerX.

See	Also

Failover	Clustering

JavaScript:hhobj_1.Click()

Installing	a	Virtual	Server	Configuration

JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Active	Directory	Integration
The	Microsoft®	Windows®	2000	Active	Directory™	operates	as	a	secure
central	resource	for	storing	information	about	the	users,	devices,	and	services
available	on	a	Windows	2000	network.	Microsoft	SQL	Server™	2000	supports
registering	instances	of	the	SQL	Server	relational	engine,	databases,	replication
publications,	and	Analysis	servers	in	the	Active	Directory.	The	SQL	Server	tools
also	provide	a	dialog	box	that	supports	browsing	for	replication	publications
registered	in	the	Active	Directory.

SQL	Server	Objects	in	the	Active	Directory	Hierarchy
The	Active	Directory	uses	a	hierarchy	to	represent	the	relationships	between
network	entities	such	as	users,	services,	and	devices	(such	as	computers,
scanners,	or	printers).	The	hierarchy	starts	from	a	single	root	node	at	the	top	and
branches	down	to	leaf	nodes	representing	individual	entities	in	the	network.	The
intermediate	nodes	in	the	hierarchy	are	containers	that	hold	references	to
multiple	entities.	For	example,	several	Windows	users	can	be	collected	into	a
group	for	administrative	purposes.	Each	node	is	implemented	as	an	Active
Directory	object	that	represents	the	specific	entity	for	that	node.

When	you	register	an	instance	of	the	SQL	Server	relational	database	engine	in
the	Active	Directory,	an	MS-SQL-SQLServer	object	is	added	as	a	Service
Connection	Point	(SCP)	object	in	the	container	for	the	computer	on	which	the
instance	is	running.	An	SCP	is	the	type	of	Active	Directory	object	that	represents
services	available	on	the	network.	An	SCP	object	records	information	about	the
service,	such	as	connection	information.	An	Analysis	server	is	also	registered	as
an	SCP	of	the	computer	on	which	the	Analysis	server	is	running.

After	registering	an	instance	of	the	SQL	Server	relational	database	engine	in	the
Active	Directory,	you	can	also	register	the	replication	publications	that	reside	in
the	instance.	The	publications	are	registered	as	children	of	the	instance.	After
registering	replication	publications	in	the	Active	Directory,	the	Create	Pull
Subscription	Wizard	supports	a	dialog	box	that	allows	users	to	search	for
registered	publications	in	the	Active	Directory.	For	more	information,	see	Active
Directory	Services.

JavaScript:hhobj_1.Click()

After	registering	an	instance	of	the	relational	database	engine	in	the	Active
Directory,	you	can	also	register	any	databases	in	that	instance.	In	SQL	Server
Enterprise	Manager,	right-click	the	database	and	select	Properties.	The	Options
tab	has	a	check	box	at	the	bottom	that	controls	whether	the	database	is	registered
in	the	Active	Directory.	When	you	select	the	checkbox,	the	database	is	registered
in	the	Active	Directory	when	you	close	the	Properties	dialog	box.	After	the
check	box	is	selected,	the	database	object	in	the	Active	Directory	is	refreshed
each	time	you	close	the	Properties	dialog	box,	provided	the	check	box	is
selected	when	you	open	the	Properties	dialog	box	and	remains	checked	when
you	click	OK	to	close	the	dialog	box.	You	can	also	use	the
sp_ActiveDirectory_Obj	stored	procedure	to	register	databases	from	Transact-
SQL	scripts	or	applications.

You	can	register	Analysis	servers	in	the	Active	Directory.	For	more	information,
see	Using	Active	Directory	with	Analysis	Services.	The	SQL	Server	2000	tools
do	not	provide	any	facilities	for	browsing	the	Active	Directory	for	instances	of
the	relational	database	engine,	Analysis	servers,	or	relational	databases.
Applications	can	be	coded	to	browse	the	Active	Directory	for	the	objects	used	to
register	these	SQL	Server	entities.

The	Active	Directory	class	objects	supported	by	SQL	Server	2000	are	defined	in
the	Windows	2000	Active	Directory	schema:

Active	Directory	Object	Name SQL	Server	Entity
MS-SQL-SQLServer An	instance	of	SQL	Server
MS-SQL-SQLPublication A	replication	publication	defined	in

an	instance	of	SQL	Server.
MS-SQL-SQLDatabase A	database	in	an	instance	of	SQL

Server.
MS-SQL-OLAPServer An	instance	of	the	SQL	Server

Analysis	server.

SQL	Server	2000	makes	no	extensions	to	the	definitions	of	these	objects;	SQL
Server	uses	the	objects	as	defined	in	the	Windows	2000	Active	Directory
schema.	Users	can	also	code	Active	Directory	Service	Interfaces	(ADSI)
applications	that	browse	the	Active	Directory	for	registered	instances	of	SQL
Server,	Analysis	servers,	publications,	and	databases,	For	more	information
about	ADSI	and	the	structure	of	Active	Directory	schema	objects,	see	the

JavaScript:hhobj_2.Click()

MSDN®	Library	at	Microsoft	Web	site.

Note		SQL	Server	2000	does	not	use	the	MS-SQL-OLAPCube,	MS-SQL-
OLAPDatabase,	or	MS-SQL-SQLRepository	class	objects	defined	in	the
Windows	2000	Active	Directory	schema.

See	Also

MSSQLServerADHelper	Service_mssqlserveradhelper_service

sp_ActiveDirectory_SCP_sp_activedirectory_scp

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

SQL	Server	Architecture

SQL	Server	and	XML	Support
Extensible	Markup	Language	(XML)	is	a	hypertext	programming	language	used
to	describe	the	contents	of	a	set	of	data	and	how	the	data	should	be	output	to	a
device	or	displayed	in	a	Web	page.	Markup	languages	originated	as	ways	for
publishers	to	indicate	to	printers	how	the	content	of	a	newspaper,	magazine,	or
book	should	be	organized.	Markup	languages	for	electronic	data	perform	the
same	function	for	electronic	documents	that	can	be	displayed	on	different	types
of	electronic	gear.

Both	XML	and	the	Hypertext	Markup	Language	(HTML)	are	derived	from
Standard	Generalized	Markup	Language	(SGML).	SGML	is	a	very	large,
complex	language	that	is	difficult	to	fully	use	for	publishing	data	on	the	Web.
HTML	is	a	more	simple,	specialized	markup	language	than	SGML,	but	has	a
number	of	limitations	when	working	with	data	on	the	Web.	XML	is	smaller	than
SGML	and	more	robust	than	HTML,	so	is	becoming	an	increasingly	important
language	in	the	exchange	of	electronic	data	through	the	Web	or	intracompany
networks.

In	a	relational	database	such	as	Microsoft®	SQL	Server™	2000,	all	operations
on	the	tables	in	the	database	produce	a	result	in	the	form	of	a	table.	The	result	set
of	a	SELECT	statement	is	in	the	form	of	a	table.	Traditional	client/server
applications	that	execute	a	SELECT	statement	process	the	results	by	fetching
one	row	or	block	of	rows	from	the	tabular	result	set	at	a	time	and	mapping	the
column	values	into	program	variables.	Web	application	programmers,	on	the
other	hand,	are	more	familiar	with	working	with	hierarchical	representations	of
data	in	XML	or	HTML	documents.

SQL	Server	2000	introduces	support	for	XML.	These	new	features	include:

The	ability	to	access	SQL	Server	through	a	URL.

Support	for	XML-Data	schemas	and	the	ability	to	specify	XPath	queries
against	these	schemas.

The	ability	to	retrieve	and	write	XML	data:

Retrieve	XML	data	using	the	SELECT	statement	and	the	FOR
XML	clause.

Write	XML	data	using	the	OpenXML	rowset	provider.

Enhancements	to	the	Microsoft	SQL	Server	2000	OLE	DB	provider
(SQLOLEDB)	that	allow	XML	documents	to	be	set	as	command	text
and	to	return	result	sets	as	a	stream.

See	Also

XML	and	Internet	Support	Overview

Accessing	SQL	Server	Using	a	URL

Creating	XML	Views	Using	Annotated	Schemas

Using	XPath	Queries

Retrieving	and	Writing	XML	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Architecture

Database	Architecture
Microsoft®	SQL	Server™	2000	data	is	stored	in	databases.	The	data	in	a
database	is	organized	into	the	logical	components	visible	to	users.	A	database	is
also	physically	implemented	as	two	or	more	files	on	disk.

When	using	a	database,	you	work	primarily	with	the	logical	components	such	as
tables,	views,	procedures,	and	users.	The	physical	implementation	of	files	is
largely	transparent.	Typically,	only	the	database	administrator	needs	to	work
with	the	physical	implementation.

Each	instance	of	SQL	Server	has	four	system	databases	(master,	model,
tempdb,	and	msdb)	and	one	or	more	user	databases.	Some	organizations	have
only	one	user	database,	containing	all	the	data	for	their	organization.	Some
organizations	have	different	databases	for	each	group	in	their	organization,	and
sometimes	a	database	used	by	a	single	application.	For	example,	an	organization
could	have	one	database	for	sales,	one	for	payroll,	one	for	a	document
management	application,	and	so	on.	Sometimes	an	application	uses	only	one
database;	other	applications	may	access	several	databases.

It	is	not	necessary	to	run	multiple	copies	of	the	SQL	Server	database	engine	to
allow	multiple	users	to	access	the	databases	on	a	server.	An	instance	of	the	SQL
Server	Standard	or	Enterprise	Edition	is	capable	of	handling	thousands	of	users
working	in	multiple	databases	at	the	same	time.	Each	instance	of	SQL	Server
makes	all	databases	in	the	instance	available	to	all	users	that	connect	to	the
instance,	subject	to	the	defined	security	permissions.

When	connecting	to	an	instance	of	SQL	Server,	your	connection	is	associated
with	a	particular	database	on	the	server.	This	database	is	called	the	current
database.	You	are	usually	connected	to	a	database	defined	as	your	default
database	by	the	system	administrator,	although	you	can	use	connection	options
in	the	database	APIs	to	specify	another	database.	You	can	switch	from	one
database	to	another	using	either	the	Transact-SQL	USE	database_name
statement,	or	an	API	function	that	changes	your	current	database	context.

SQL	Server	2000	allows	you	to	detach	databases	from	an	instance	of	SQL
Server,	then	reattach	them	to	another	instance,	or	even	attach	the	database	back
to	the	same	instance.	If	you	have	a	SQL	Server	database	file,	you	can	tell	SQL
Server	when	you	connect	to	attach	that	database	file	with	a	specific	database
name.

See	Also

Database	Design	Considerations

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Logical	Database	Components
The	data	in	a	Microsoft®	SQL	Server™	2000	database	is	organized	into	several
different	objects.	These	objects	are	what	a	user	can	see	when	they	connect	to	the
database.

In	SQL	Server	2000,	these	components	are	defined	as	objects:

Constraints Tables
Defaults Triggers
Indexes User-defined	data	types
Keys User-defined	functions
Stored	procedures Views

SQL	Server	Architecture

Data	Types	and	Table	Structures
All	the	data	in	Microsoft®	SQL	Server™	2000	databases	is	contained	in	objects
called	tables.	Each	table	represents	some	type	of	object	meaningful	to	the	users.
For	example,	in	a	school	database	you	would	find	tables	such	as	a	class	table,	an
instructor	table,	and	a	student	table.

SQL	Server	tables	have	two	main	components:

Columns

Each	column	represents	some	attribute	of	the	object	modeled	by	the
table,	such	as	a	parts	table	having	columns	for	ID,	color,	and	weight.

Rows

Each	row	represents	an	individual	occurrence	of	the	object	modeled	by
the	table.	For	example,	the	parts	table	would	have	one	row	for	each	part
carried	by	the	company.

Data	Types
Because	each	column	represents	one	attribute	of	an	object,	the	data	in	each
occurrence	of	the	column	is	similar.	One	of	the	properties	of	a	column	is	called
its	data	type,	which	defines	the	type	of	data	the	column	can	hold.	SQL	Server
has	several	base	data	types	that	can	be	specified	for	columns:

binary Bigint bit Char datetime
decimal Float image Int Money

nchar Ntext nvarchar Numeric Real
smalldatetime smallint smallmoney sql_variant sysname
text timestamp tinyint varbinary varchar
uniqueidentifier 	 	 	 	

SQL	Server	2000	also	supports	a	table	base	data	type,	which	can	be	used	to
store	the	result	set	of	an	SQL	statement.	The	table	data	type	cannot	be	used	for
columns	in	a	table.	It	can	only	be	used	for	Transact-SQL	variables	and	the	return
values	of	user-defined	functions.	For	more	information,	see	Using	Special	Data.

Users	can	also	create	their	own	user-defined	data	types,	for	example:

--	Create	a	birthday	data	type	that	allows	nulls.
EXEC	sp_addtype	birthday,	datetime,	'NULL'
GO
--	Create	a	table	using	the	new	data	type.
CREATE	TABLE	employee
			(emp_id									char(5),
			emp_first_name			char(30),
			emp_last_name			char(40),
			emp_birthday						birthday)

A	user-defined	data	type	makes	a	table	structure	more	meaningful	to
programmers	and	helps	ensure	that	columns	holding	similar	classes	of	data	have
the	same	base	data	type.

SQL	Server	provides	several	data	type	synonyms	to	help	support	SQL-92	data
type	names	not	included	as	base	data	types,	such	as	national	character	and
character	varying.	When	a	synonym	is	specified	in	a	CREATE	TABLE
statement,	the	column	is	assigned	the	base	data	type	associated	with	the
synonym.	For	more	information,	see	Data	Type	Synonyms.

A	domain	is	the	set	of	all	allowable	values	in	a	column.	It	includes	not	only	the
concept	of	enforcing	data	types,	but	also	the	values	allowed	in	the	column.	For
example,	a	part	color	domain	would	include	both	the	data	type,	such	as	char(6),
and	the	character	strings	allowed	in	the	column,	such	as	Red,	Blue,	Green,
Yellow,	Brown,	Black,	White,	Teal,	Grey,	and	Silver.	Domain	values	can	be
enforced	through	mechanisms	such	as	CHECK	constraints	and	triggers.

JavaScript:hhobj_1.Click()

When	a	column	has	been	assigned	a	data	type,	all	values	placed	into	the	column
must	be	of	that	data	type.	SQL	statements	can	specify	that	values	of	different
data	types	be	used	as	the	source	value	only	if	SQL	Server	can	implicitly	convert
the	source	value	data	type	to	the	data	type	of	the	column.	For	example,	SQL
Server	supports	the	implicit	conversion	of	int	values	to	decimal;	therefore,	SQL
statements	can	specify	int	values	as	the	value	to	be	assigned	to	a	decimal
column.

The	SQL	Server	2000	sql_variant	data	type	is	a	special	data	type	that	allows
you	to	store	values	of	multiple	base	data	types	in	the	same	column.	For	example,
you	can	store	nchar	values,	int	values,	and	decimal	values	in	the	same	column.
For	more	information,	see	Using	sql_variant	Data.

Null	Values
Columns	can	either	accept	or	reject	null	values.	NULL	is	a	special	value	in
databases	that	represents	the	concept	of	an	unknown	value.	NULL	is	not	the
same	as	a	blank	character	or	0.	Blank	is	actually	a	valid	character,	and	0	is	a
valid	number.	NULL	simply	represents	the	idea	that	we	do	not	know	what	this
value	is.	NULL	is	also	different	from	a	zero-length	string.	If	a	column	definition
contains	the	NOT	NULL	clause,	you	cannot	insert	rows	having	the	value	NULL
for	that	row.	If	the	column	definition	has	only	the	NULL	keyword,	it	accepts
NULL	values.

Allowing	NULL	values	in	a	column	can	increase	the	complexity	of	any	logical
comparisons	using	the	column.	The	SQL-92	standard	states	that	any	comparison
against	a	NULL	value	does	not	evaluate	to	TRUE	or	FALSE,	it	evaluates	to
UNKNOWN.	This	introduces	three-value	logic	to	comparison	operators,	which
can	be	difficult	to	manage	correctly.

System	Tables
SQL	Server	stores	the	data	defining	the	configuration	of	the	server	and	all	its
tables	in	a	special	set	of	tables	known	as	system	tables.	Users	should	not	query
or	update	the	system	tables	directly	unless	there	is	no	other	way	to	get	the	data
required	by	the	application.	Only	SQL	Server	should	reference	the	system	tables
in	response	to	administration	commands	issued	by	users.	The	system	tables	can
change	from	version	to	version;	applications	referencing	system	tables	directly
may	have	to	be	rewritten	before	they	can	be	upgraded	to	a	newer	version	of	SQL

JavaScript:hhobj_2.Click()

Server	with	a	different	version	of	the	system	tables.	SQL	Server	exposes	most	of
the	information	from	the	system	tables	through	other	means.	For	more
information,	see	System	Tables.

Temporary	Tables
SQL	Server	supports	temporary	tables.	These	tables	have	names	that	start	with	a
number	sign	(#).	If	a	temporary	table	is	not	dropped	when	a	user	disconnects,
SQL	Server	automatically	drops	the	temporary	table.	Temporary	tables	are	not
stored	in	the	current	database;	they	are	stored	in	the	tempdb	system	database.

There	are	two	types	of	temporary	tables:

Local	temporary	tables

The	names	of	these	tables	begin	with	one	number	sign	(#).	These	tables
are	visible	only	to	the	connection	that	created	them.

Global	temporary	tables

The	names	of	these	tables	begin	with	two	number	signs	(##).	These
tables	are	visible	to	all	connections.	If	the	tables	are	not	dropped
explicitly	before	the	connection	that	created	them	disconnects,	they	are
dropped	as	soon	as	all	other	tasks	stop	referencing	them.	No	new	tasks
can	reference	a	global	temporary	table	after	the	connection	that	created
it	disconnects.	The	association	between	a	task	and	a	table	is	always
dropped	when	the	current	statement	completes	executing;	therefore,
global	temporary	tables	are	usually	dropped	soon	after	the	connection
that	created	them	disconnects.

Many	traditional	uses	of	temporary	tables	can	now	be	replaced	with	variables
that	have	the	table	data	type.

Working	with	Tables
Users	work	with	the	data	in	tables	using	data	manipulation	language	(DML)
SQL	statements:

--	Get	a	list	of	all	employees	named	Smith:
SELECT	emp_first_name,	emp_last_name

JavaScript:hhobj_3.Click()

FROM	employee
WHERE	emp_last_name	=	'Smith'

--	Delete	an	employee	who	quit:
DELETE	employee
WHERE	emp_id	=	'OP123'

--	Add	a	new	employee:
INSERT	INTO	employee
VALUES	('OP456',	'Dean',	'Straight',	'01/01/1960')

--	Change	an	employee	name:
UPDATE	employee
SET	emp_last_name	=	'Smith'
WHERE	emp_id	=	'OP456'

See	Also

Specifying	a	Column	Data	Type

Tables

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Architecture

SQL	Views
A	view	can	be	thought	of	as	either	a	virtual	table	or	a	stored	query.	The	data
accessible	through	a	view	is	not	stored	in	the	database	as	a	distinct	object.	What
is	stored	in	the	database	is	a	SELECT	statement.	The	result	set	of	the	SELECT
statement	forms	the	virtual	table	returned	by	the	view.	A	user	can	use	this	virtual
table	by	referencing	the	view	name	in	Transact-SQL	statements	the	same	way	a
table	is	referenced.	A	view	is	used	to	do	any	or	all	of	these	functions:

Restrict	a	user	to	specific	rows	in	a	table.

For	example,	allow	an	employee	to	see	only	the	rows	recording	his	or
her	work	in	a	labor-tracking	table.

Restrict	a	user	to	specific	columns.

For	example,	allow	employees	who	do	not	work	in	payroll	to	see	the
name,	office,	work	phone,	and	department	columns	in	an	employee
table,	but	do	not	allow	them	to	see	any	columns	with	salary	information
or	personal	information.

Join	columns	from	multiple	tables	so	that	they	look	like	a	single	table.

Aggregate	information	instead	of	supplying	details.

For	example,	present	the	sum	of	a	column,	or	the	maximum	or
minimum	value	from	a	column.

Views	are	created	by	defining	the	SELECT	statement	that	retrieves	the	data	to	be
presented	by	the	view.	The	data	tables	referenced	by	the	SELECT	statement	are
known	as	the	base	tables	for	the	view.	In	this	example,	titleview	in	the	pubs
database	is	a	view	that	selects	data	from	three	base	tables	to	present	a	virtual
table	of	commonly	needed	data:

CREATE	VIEW	titleview
AS
SELECT	title,	au_ord,	au_lname,	price,	ytd_sales,	pub_id
FROM	authors	AS	a

					JOIN	titleauthor	AS	ta	ON	(a.au_id	=	ta.au_id)
					JOIN	titles	AS	t	ON	(t.title_id	=	ta.title_id)

You	can	then	reference	titleview	in	statements	in	the	same	way	you	would
reference	a	table:

SELECT	*
FROM	titleview

A	view	can	reference	another	view.	For	example,	titleview	presents	information
that	is	useful	for	managers,	but	a	company	typically	discloses	year-to-date
figures	only	in	quarterly	or	annual	financial	statements.	A	view	can	be	built	that
selects	all	the	titleview	columns	except	au_ord	and	ytd_sales.	This	new	view
can	be	used	by	customers	to	get	lists	of	available	books	without	seeing	the
financial	information:

CREATE	VIEW	Cust_titleview
AS
SELECT	title,	au_lname,	price,	pub_id
FROM	titleview

Views	can	be	used	to	partition	data	across	multiple	databases	or	instances	of
Microsoft®	SQL	Server™	2000.	Partitioned	views	can	be	used	to	distribute
database	processing	across	a	group	of	servers.	The	group	of	servers	has	the	same
performance	benefits	as	a	cluster	of	servers,	and	can	be	used	to	support	the
processing	needs	of	the	largest	Web	sites	or	corporate	data	centers.	An	original
table	is	subdivided	into	several	member	tables,	each	of	which	has	a	subset	of	the
rows	from	the	original	table.	Each	member	table	can	be	placed	in	databases	on
separate	servers.	Each	server	also	gets	a	partitioned	view.	The	partitioned	view
uses	the	Transact-SQL	UNION	operator	to	combine	the	results	of	selects	against
all	the	member	tables	into	a	single	result	set	that	behaves	exactly	like	a	copy	of
the	full	original	table.	For	example,	a	table	is	partitioned	across	three	servers.	On
the	first	server	you	define	a	partitioned	view	similar	to	this:

CREATE	VIEW	PartitionedView	AS
SELECT	*
				FROM	MyDatabase.dbo.PartitionTable1

UNION	ALL
SELECT	*
				FROM	Server2.MyDatabase.dbo.PartitionTable2
UNION	ALL
SELECT	*
				FROM	Server3.MyDatabase.dbo.PartitionTable3

You	define	similar	partitioned	views	on	each	of	the	other	servers.	With	these
three	views,	any	Transact-SQL	statements	on	any	of	the	three	servers	that
reference	PartitionedView	will	see	the	same	behavior	as	from	the	original	table.
It	is	as	if	a	copy	of	the	original	table	exists	on	each	server,	when	in	fact	there	is
only	one	member	table	and	a	partitioned	view	on	each	table.	For	more
information,	see	Scenarios	for	Using	Views.

Views	in	all	versions	of	SQL	Server	are	updatable	(can	be	the	target	of
UPDATE,	DELETE,	or	INSERT	statements),	as	long	as	the	modification	affects
only	one	of	the	base	tables	referenced	by	the	view,	for	example:

--	Increase	the	prices	for	publisher	'0736'	by	10%.
UPDATE	titleview
SET	price	=	price	*	1.10
WHERE	pub_id	=	'0736'
GO

SQL	Server	2000	supports	more	complex	types	of	INSERT,	UPDATE,	and
DELETE	statements	that	reference	views.	INSTEAD	OF	triggers	can	be	defined
on	a	view	to	specify	the	individual	updates	that	must	be	performed	against	the
base	tables	to	support	the	INSERT,	UPDATE,	or	DELETE	statement.	Also,
partitioned	views	support	INSERT,	UDPATE,	and	DELETE	statements	that
modify	multiple	member	tables	referenced	by	the	view.

Indexed	views	are	a	SQL	Server	2000	feature	that	greatly	improves	the
performance	of	complex	views	of	the	type	usually	found	in	data	warehouses	or
other	decision	support	systems.

Views	are	called	virtual	tables	because	the	result	set	of	a	view	is	us	not	usually
saved	in	the	database	The	result	set	for	a	view	is	dynamically	incorporated	into
the	logic	of	the	statement	and	the	result	set	is	built	dynamically	at	run	time.	For

JavaScript:hhobj_1.Click()

more	information,	see	View	Resolution.

Complex	queries,	such	as	those	in	decision	support	systems,	can	reference	large
numbers	of	rows	in	base	tables,	and	aggregate	large	amounts	of	information	into
relatively	concise	aggregates	such	as	sums	or	averages.	SQL	Server	2000
supports	creating	a	clustered	index	on	a	view	that	implements	such	a	complex
query.	When	the	CREATE	INDEX	statement	is	executed	the	result	set	of	the
view	SELECT	is	stored	permanently	in	the	database.	Future	SQL	statements	that
reference	the	view	will	have	substantially	better	response	times.	Modifications	to
the	base	data	are	automatically	reflected	in	the	view.

The	SQL	Server	2000	CREATE	VIEW	statement	supports	a
SCHEMABINDING	option	that	prevents	the	tables	referenced	by	the	view	being
changed	without	adjusting	the	view.	You	must	specify	SCHEMABINDING	for
any	view	on	which	you	create	an	index.

See	Also

CREATE	INDEX

CREATE	TRIGGER

CREATE	VIEW

Designing	an	Indexed	View

Views

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

SQL	Server	Architecture

SQL	Stored	Procedures
A	stored	procedure	is	a	group	of	Transact-SQL	statements	compiled	into	a	single
execution	plan.

Microsoft®	SQL	Server™	2000	stored	procedures	return	data	in	four	ways:

Output	parameters,	which	can	return	either	data	(such	as	an	integer	or
character	value)	or	a	cursor	variable	(cursors	are	result	sets	that	can	be
retrieved	one	row	at	a	time).

Return	codes,	which	are	always	an	integer	value.

A	result	set	for	each	SELECT	statement	contained	in	the	stored
procedure	or	any	other	stored	procedures	called	by	the	stored	procedure.

A	global	cursor	that	can	be	referenced	outside	the	stored	procedure.

Stored	procedures	assist	in	achieving	a	consistent	implementation	of	logic	across
applications.	The	SQL	statements	and	logic	needed	to	perform	a	commonly
performed	task	can	be	designed,	coded,	and	tested	once	in	a	stored	procedure.
Each	application	needing	to	perform	that	task	can	then	simply	execute	the	stored
procedure.	Coding	business	logic	into	a	single	stored	procedure	also	offers	a
single	point	of	control	for	ensuring	that	business	rules	are	correctly	enforced.

Stored	procedures	can	also	improve	performance.	Many	tasks	are	implemented
as	a	series	of	SQL	statements.	Conditional	logic	applied	to	the	results	of	the	first
SQL	statements	determines	which	subsequent	SQL	statements	are	executed.	If
these	SQL	statements	and	conditional	logic	are	written	into	a	stored	procedure,
they	become	part	of	a	single	execution	plan	on	the	server.	The	results	do	not
have	to	be	returned	to	the	client	to	have	the	conditional	logic	applied;	all	of	the
work	is	done	on	the	server.	The	IF	statement	in	this	example	shows	embedding
conditional	logic	in	a	procedure	to	keep	from	sending	a	result	set	to	the
application:

IF	(@QuantityOrdered	<	(SELECT	QuantityOnHand

																		FROM	Inventory
																		WHERE	PartID	=	@PartOrdered))
			BEGIN
			--	SQL	statements	to	update	tables	and	process	order.
			END
ELSE
			BEGIN
			--	SELECT	statement	to	retrieve	the	IDs	of	alternate	items
			--	to	suggest	as	replacements	to	the	customer.
			END

Applications	do	not	need	to	transmit	all	of	the	SQL	statements	in	the	procedure:
they	have	to	transmit	only	an	EXECUTE	or	CALL	statement	containing	the
name	of	the	procedure	and	the	values	of	the	parameters.

Stored	procedures	can	also	shield	users	from	needing	to	know	the	details	of	the
tables	in	the	database.	If	a	set	of	stored	procedures	supports	all	of	the	business
functions	users	need	to	perform,	users	never	need	to	access	the	tables	directly;
they	can	just	execute	the	stored	procedures	that	model	the	business	processes
with	which	they	are	familiar.

An	illustration	of	this	use	of	stored	procedures	is	the	SQL	Server	system	stored
procedures	used	to	insulate	users	from	the	system	tables.	SQL	Server	includes	a
set	of	system	stored	procedures	whose	names	usually	start	with	sp_.	These
system	stored	procedures	support	all	of	the	administrative	tasks	required	to	run	a
SQL	Server	system.	You	can	administer	a	SQL	Server	system	using	the
Transact-SQL	administration-related	statements	(such	as	CREATE	TABLE)	or
the	system	stored	procedures,	and	never	need	to	directly	update	the	system
tables.

Stored	Procedures	and	Execution	Plans
In	SQL	Server	version	6.5	and	earlier,	stored	procedures	were	a	way	to	partially
precompile	an	execution	plan.	At	the	time	the	stored	procedure	was	created,	a
partially	compiled	execution	plan	was	stored	in	a	system	table.	Executing	a
stored	procedure	was	more	efficient	than	executing	an	SQL	statement	because
SQL	Server	did	not	have	to	compile	an	execution	plan	completely,	it	only	had	to

finish	optimizing	the	stored	plan	for	the	procedure.	Also,	the	fully	compiled
execution	plan	for	the	stored	procedure	was	retained	in	the	SQL	Server
procedure	cache,	meaning	that	subsequent	executions	of	the	stored	procedure
could	use	the	precompiled	execution	plan.

SQL	Server	2000	and	SQL	Server	version	7.0	incorporate	a	number	of	changes
to	statement	processing	that	extend	many	of	the	performance	benefits	of	stored
procedures	to	all	SQL	statements.	SQL	Server	2000	and	SQL	Server	7.0	do	not
save	a	partially	compiled	plan	for	stored	procedures	when	they	are	created.	A
stored	procedure	is	compiled	at	execution	time,	like	any	other	Transact-SQL
statement.	SQL	Server	2000	and	SQL	Server	7.0	retain	execution	plans	for	all
SQL	statements	in	the	procedure	cache,	not	just	stored	procedure	execution
plans.	The	database	engine	uses	an	efficient	algorithm	for	comparing	new
Transact-SQL	statements	with	the	Transact-SQL	statements	of	existing	execution
plans.	If	the	database	engine	determines	that	a	new	Transact-SQL	statement
matches	the	Transact-SQL	statement	of	an	existing	execution	plan,	it	reuses	the
plan.	This	reduces	the	relative	performance	benefit	of	precompiling	stored
procedures	by	extending	execution	plan	reuse	to	all	SQL	statements.

SQL	Server	2000	and	SQL	Server	version	7.0	offer	new	alternatives	for
processing	SQL	statements.	For	more	information,	see	Query	Processor
Architecture.

Temporary	Stored	Procedures
SQL	Server	2000	also	supports	temporary	stored	procedures	that,	like	temporary
tables,	are	dropped	automatically	when	you	disconnect.	Temporary	stored
procedures	are	stored	in	tempdb	and	are	useful	when	connected	to	earlier
versions	of	SQL	Server.	Temporary	stored	procedures	can	be	used	when	an
application	builds	dynamic	Transact-SQL	statements	that	are	executed	several
times.	Rather	than	have	the	Transact-SQL	statements	recompiled	each	time,	you
can	create	a	temporary	stored	procedure	that	is	compiled	on	the	first	execution,
and	then	execute	the	precompiled	plan	multiple	times.	Heavy	use	of	temporary
stored	procedures,	however,	can	lead	to	contention	on	the	system	tables	in
tempdb.

Two	features	of	SQL	Server	2000	and	SQL	Server	7.0	eliminate	the	need	for
using	temporary	stored	procedures:

Execution	plans	from	prior	SQL	statements	can	be	reused.	This	is
especially	powerful	when	coupled	with	the	use	of	the	new
sp_executesql	system	stored	procedure.

Natively	support	for	the	prepare/execute	model	of	OLE	DB	and	ODBC
without	using	any	stored	procedures.

For	more	information	about	alternatives	to	using	temporary	stored	procedures,
see	Execution	Plan	Caching	and	Reuse.

Stored	Procedure	Example
This	simple	stored	procedure	example	illustrates	three	ways	stored	procedures
can	return	data:

1.	 It	first	issues	a	SELECT	statement	that	returns	a	result	set
summarizing	the	order	activity	for	the	stores	in	the	sales	table.

2.	 It	then	issues	a	SELECT	statement	that	fills	an	output	parameter.

3.	 Finally,	it	has	a	RETURN	statement	with	a	SELECT	statement	that
returns	an	integer.	Return	codes	are	generally	used	to	pass	back	error
checking	information.	This	procedure	runs	without	errors,	so	it	returns
another	value	to	illustrate	how	returned	codes	are	filled.

USE	Northwind
GO
DROP	PROCEDURE	OrderSummary
GO
CREATE	PROCEDURE	OrderSummary	@MaxQuantity	INT	OUTPUT	AS
--	SELECT	to	return	a	result	set	summarizing
--	employee	sales.
SELECT	Ord.EmployeeID,	SummSales	=	SUM(OrDet.UnitPrice	*	OrDet.Quantity)
FROM	Orders	AS	Ord
					JOIN	[Order	Details]	AS	OrDet	ON	(Ord.OrderID	=	OrDet.OrderID)

GROUP	BY	Ord.EmployeeID
ORDER	BY	Ord.EmployeeID

--	SELECT	to	fill	the	output	parameter	with	the
--	maximum	quantity	from	Order	Details.
SELECT	@MaxQuantity	=	MAX(Quantity)	FROM	[Order	Details]

--	Return	the	number	of	all	items	ordered.
RETURN	(SELECT	SUM(Quantity)	FROM	[Order	Details])
GO

--	Test	the	stored	procedure.

--	DECLARE	variables	to	hold	the	return	code
--	and	output	parameter.
DECLARE	@OrderSum	INT
DECLARE	@LargestOrder	INT

--	Execute	the	procedure,	which	returns
--	the	result	set	from	the	first	SELECT.
EXEC	@OrderSum	=	OrderSummary	@MaxQuantity	=	@LargestOrder	OUTPUT

--	Use	the	return	code	and	output	parameter.
PRINT	'The	size	of	the	largest	single	order	was:	'	+
																	CONVERT(CHAR(6),	@LargestOrder)
PRINT	'The	sum	of	the	quantities	ordered	was:	'	+
																	CONVERT(CHAR(6),	@OrderSum)
GO

The	output	from	running	this	sample	is:

EmployeeID		SummSales																		
-----------	--------------------------	
1											202,143.71																	

2											177,749.26																	
3											213,051.30																	
4											250,187.45																	
5											75,567.75																		
6											78,198.10																		
7											141,295.99																	
8											133,301.03																	
9											82,964.00																		
The	size	of	the	largest	single	order	was:	130	
The	sum	of	the	quantities	ordered	was:	51317

See	Also

Stored	Procedures

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL	User-Defined	Functions
Functions	in	programming	languages	are	subroutines	used	to	encapsulate
frequently	performed	logic.	Any	code	that	must	perform	the	logic	incorporated
in	a	function	can	call	the	function	rather	than	having	to	repeat	all	of	the	function
logic.

Microsoft®	SQL	Server™	2000	supports	two	types	of	functions:

Built-in	functions

Operate	as	defined	in	the	Transact-SQL	Reference	and	cannot	be
modified.	The	functions	can	be	referenced	only	in	Transact-SQL
statements	using	the	syntax	defined	in	the	Transact-SQL	Reference.	For
more	information	about	these	built-in	functions,	see	Using	Functions.

User-defined	functions

Allow	you	to	define	your	own	Transact-SQL	functions	using	the
CREATE	FUNCTION	statement.	For	more	information	about	these
built-in	functions,	see	User-defined	Functions.

User-defined	functions	take	zero	or	more	input	parameters,	and	return	a	single
value.	Some	user-defined	functions	return	a	single,	scalar	data	value,	such	as	an
int,	char,	or	decimal	value.

For	example,	this	statement	creates	a	simple	function	that	returns	a	decimal:

CREATE	FUNCTION	CubicVolume
--	Input	dimensions	in	centimeters.
			(@CubeLength	decimal(4,1),	@CubeWidth	decimal(4,1),
				@CubeHeight	decimal(4,1))
RETURNS	decimal(12,3)	--	Cubic	Centimeters.
AS
BEGIN
			RETURN	(@CubeLength	*	@CubeWidth	*	@CubeHeight)
END

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

This	function	can	then	be	used	anywhere	an	integer	expression	is	allowed,	such
as	in	a	computed	column	for	a	table:

CREATE	TABLE	Bricks
			(
				BrickPartNmbr			int	PRIMARY	KEY,
				BrickColor						nchar(20),
				BrickHeight					decimal(4,1),
				BrickLength					decimal(4,1),
				BrickWidth						decimal(4,1),
				BrickVolume	AS
														(
															dbo.CubicVolume(BrickHeight,
																									BrickLength,	BrickWidth)
)
)

SQL	Server	2000	also	supports	user-defined	functions	that	return	a	table	data
type:

A	function	can	declare	an	internal	table	variable,	insert	rows	into	the
variable,	and	then	return	the	variable	as	its	return	value.

A	class	of	user-defined	functions	known	as	in-line	functions,	return	the
result	set	of	a	SELECT	statement	as	a	variable	of	type	table.

These	functions	can	be	used	in	places	where	table	expressions	can	be	specified.
For	more	information	about	the	table	data	type,	see	Using	Special	Data.

User-defined	functions	that	return	a	table	can	be	powerful	alternatives	to	views.
A	user-defined	function	that	returns	a	table	can	be	used	where	table	or	view
expressions	are	allowed	in	Transact-SQL	queries.	Views	are	limited	to	a	single
SELECT	statement;	however,	user-defined	functions	can	contain	additional
statements	that	allow	more	powerful	logic	than	is	possible	in	views.

A	user-defined	function	that	returns	a	table	can	also	replace	stored	procedures
that	return	a	single	result	set.	The	table	returned	by	a	user-defined	function	can

JavaScript:hhobj_3.Click()

be	referenced	in	the	FROM	clause	of	a	Transact-SQL	statement,	whereas	stored
procedures	that	return	result	sets	cannot.	For	example,	fn_EmployeesInDept	is
a	user-defined	function	that	returns	a	table	and	can	be	invoked	by	a	SELECT
statement:

SELECT	*
FROM	tb_Employees	AS	E,
					dbo.fn_EmployeesInDept('shipping')	AS	EID
WHERE	E.EmployeeID	=	EID.EmployeeID

This	is	an	example	of	a	statement	that	creates	a	function	in	the	Northwind
database	that	will	return	a	table:

CREATE	FUNCTION	LargeOrderShippers	(@FreightParm	money)
RETURNS	@OrderShipperTab	TABLE
			(
				ShipperID					int,
				ShipperName			nvarchar(80),
				OrderID							int,
				ShippedDate			datetime,
				Freight							money
)
AS
BEGIN
			INSERT	@OrderShipperTab
								SELECT	S.ShipperID,	S.CompanyName,
															O.OrderID,	O.ShippedDate,	O.Freight
								FROM	Shippers	AS	S
													INNER	JOIN	Orders	AS	O	ON	(S.ShipperID	=	O.ShipVia)
								WHERE	O.Freight	>	@FreightParm
			RETURN
END

In	this	function,	the	local	return	variable	name	is	@OrderShipperTab.
Statements	in	the	function	build	the	table	result	returned	by	the	function	by

inserting	rows	into	the	variable	@OrderShipperTab.	External	statements
invoke	the	function	to	reference	the	table	returned	by	the	function:

SELECT	*
FROM	LargeOrderShippers($500)

SQL	Server	Architecture

Constraints,	Rules,	Defaults,	and	Triggers
Table	columns	have	properties	other	than	data	type	and	size.	These	other
properties	are	an	important	part	in	ensuring	the	integrity	of	data	in	a	database:

Data	integrity	refers	to	each	occurrence	of	a	column	having	a	correct
data	value.

The	data	values	must	be	of	the	right	data	type	and	in	the	correct	domain.

Referential	integrity	indicates	that	the	relationships	between	tables	have
been	properly	maintained.

Data	in	one	table	should	only	point	to	existing	rows	in	another	table;	it
should	not	point	to	rows	that	do	not	exist.

Objects	used	to	maintain	both	types	of	integrity	include:

Constraints

Rules

Defaults

Triggers

SQL	Server	Architecture

Constraints
Constraints	allow	you	to	define	the	way	Microsoft®	SQL	Server™	2000
automatically	enforces	the	integrity	of	a	database.	Constraints	define	rules
regarding	the	values	allowed	in	columns	and	are	the	standard	mechanism	for
enforcing	integrity.	Using	constraints	is	preferred	to	using	triggers,	rules,	and
defaults.	The	query	optimizer	also	uses	constraint	definitions	to	build	high-
performance	query	execution	plans.

Classes	of	Constraints
SQL	Server	2000	supports	five	classes	of	constraints.

NOT	NULL	specifies	that	the	column	does	not	accept	NULL	values.

CHECK	constraints	enforce	domain	integrity	by	limiting	the	values	that
can	be	placed	in	a	column.

A	CHECK	constraint	specifies	a	Boolean	(evaluates	to	TRUE	or
FALSE)	search	condition	that	is	applied	to	all	values	entered	for	the
column;	all	values	that	do	not	evaluate	to	TRUE	are	rejected.	You	can
specify	multiple	CHECK	constraints	for	each	column.	This	sample
shows	the	creation	of	a	named	constraint,	chk_id,	that	further	enforces
the	domain	of	the	primary	key	by	ensuring	that	only	numbers	within	a
specified	range	are	entered	for	the	key.

CREATE	TABLE	cust_sample
				(
				cust_id																int								PRIMARY	KEY,
				cust_name												char(50),
				cust_address												char(50),
				cust_credit_limit				money,
				CONSTRAINT	chk_id	CHECK	(cust_id	BETWEEN	0	and	10000)
)

UNIQUE	constraints	enforce	the	uniqueness	of	the	values	in	a	set	of
columns.

No	two	rows	in	the	table	are	allowed	to	have	the	same	not	null	values
for	the	columns	in	a	UNIQUE	constraint.	Primary	keys	also	enforce
uniqueness,	but	primary	keys	do	not	allow	null	values.	A	UNIQUE
constraint	is	preferred	over	a	unique	index.

PRIMARY	KEY	constraints	identify	the	column	or	set	of	columns
whose	values	uniquely	identify	a	row	in	a	table.

No	two	rows	in	a	table	can	have	the	same	primary	key	value.	You
cannot	enter	a	NULL	for	any	column	in	a	primary	key.	NULL	is	a
special	value	in	databases	that	represents	an	unknown	value,	which	is
distinct	from	a	blank	or	0	value.	Using	a	small,	integer	column	as	a
primary	key	is	recommended.	Each	table	should	have	a	primary	key.

A	table	may	have	more	than	one	combination	of	columns	that	could
uniquely	identify	the	rows	in	a	table;	each	combination	is	a	candidate
key.	The	database	administrator	picks	one	of	the	candidate	keys	to	be
the	primary	key.	For	example,	in	the	part_sample	table	both
part_nmbr	and	part_name	could	be	candidate	keys,	but	only
part_nmbr	is	chosen	as	a	primary	key.

CREATE	TABLE	part_sample
												(part_nmbr								int												PRIMARY	KEY,
												part_name								char(30),
												part_weight								decimal(6,2),
												part_color								char(15))

FOREIGN	KEY	constraints	identify	the	relationships	between	tables.

A	foreign	key	in	one	table	points	to	a	candidate	key	in	another	table.
Foreign	keys	prevent	actions	that	would	leave	rows	with	foreign	key
values	when	there	are	no	candidate	keys	with	that	value.	In	the
following	sample,	the	order_part	table	establishes	a	foreign	key
referencing	the	part_sample	table	defined	earlier.	Usually,	order_part
would	also	have	a	foreign	key	against	an	order	table,	but	this	is	a	simple
example.

CREATE	TABLE	order_part
								(order_nmbr								int,
								part_nmbr								int
												FOREIGN	KEY	REFERENCES	part_sample(part_nmbr)
																ON	DELETE	NO	ACTION,
								qty_ordered								int)
GO

You	cannot	insert	a	row	with	a	foreign	key	value	(except	NULL)	if
there	is	no	candidate	key	with	that	value.	The	ON	DELETE	clause
controls	what	actions	are	taken	if	you	attempt	to	delete	a	row	to	which
existing	foreign	keys	point.	The	ON	DELETE	clause	has	two	options:

NO	ACTION	specifies	that	the	deletion	fails	with	an	error.

CASCADE	specifies	that	all	the	rows	with	foreign	keys
pointing	to	the	deleted	row	are	also	deleted.

The	ON	UPDATE	clause	defines	the	actions	that	are	taken	if	you
attempt	to	update	a	candidate	key	value	to	which	existing	foreign	keys
point.	It	also	supports	the	NO	ACTION	and	CASCADE	options.

Column	and	Table	Constraints

Constraints	can	be	column	constraints	or	table	constraints:

A	column	constraint	is	specified	as	part	of	a	column	definition	and
applies	only	to	that	column	(the	constraints	in	the	earlier	samples	are
column	constraints).

A	table	constraint	is	declared	independently	from	a	column	definition
and	can	apply	to	more	than	one	column	in	a	table.

Table	constraints	must	be	used	when	more	than	one	column	must	be	included	in
a	constraint.

For	example,	if	a	table	has	two	or	more	columns	in	the	primary	key,	you	must

use	a	table	constraint	to	include	both	columns	in	the	primary	key.	Consider	a
table	that	records	events	happening	in	a	computer	in	a	factory.	Assume	that
events	of	several	types	can	happen	at	the	same	time,	but	that	no	two	events
happening	at	the	same	time	can	be	of	the	same	type.	This	can	be	enforced	in	the
table	by	including	both	the	type	and	time	columns	in	a	two-column	primary	key.

CREATE	TABLE	factory_process
			(event_type			int,
			event_time			datetime,
			event_site			char(50),
			event_desc			char(1024),
CONSTRAINT	event_key	PRIMARY	KEY	(event_type,	event_time))

See	Also

CREATE	TABLE

Creating	and	Modifying	a	Table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Rules
Rules	are	a	backward-compatibility	feature	that	perform	some	of	the	same
functions	as	CHECK	constraints.	CHECK	constraints	are	the	preferred,	standard
way	to	restrict	the	values	in	a	column.	CHECK	constraints	are	also	more	concise
than	rules;	there	can	only	be	one	rule	applied	to	a	column,	but	multiple	CHECK
constraints	can	be	applied.	CHECK	constraints	are	specified	as	part	of	the
CREATE	TABLE	statement,	while	rules	are	created	as	separate	objects	and	then
bound	to	the	column.

This	example	creates	a	rule	that	performs	the	same	function	as	the	CHECK
constraint	example	in	the	preceding	topic.	The	CHECK	constraint	is	the
preferred	method	to	use	in	Microsoft®	SQL	Server™	2000.

CREATE	RULE	id_chk	AS	@id	BETWEEN	0	and	10000
GO
CREATE	TABLE	cust_sample
			(
			cust_id												int
			PRIMARY	KEY,
			cust_name									char(50),
			cust_address									char(50),
			cust_credit_limit			money,
)
GO
sp_bindrule	id_chk,	'cust_sample.cust_id'
GO

See	Also

CREATE	TABLE

Creating	and	Modifying	a	Table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Defaults
Defaults	specify	what	values	are	used	in	a	column	if	you	do	not	specify	a	value
for	the	column	when	inserting	a	row.	Defaults	can	be	anything	that	evaluates	to	a
constant,	such	as:

Constant

Built-in	function

Mathematical	expression

There	are	two	ways	to	apply	defaults:

Create	a	default	definition	using	the	DEFAULT	keyword	in	CREATE
TABLE	to	assign	a	constant	expression	as	a	default	on	a	column.

This	is	the	preferred,	standard	method.	It	is	also	the	more	concise	way
to	specify	a	default.

Create	a	default	object	using	the	CREATE	DEFAULT	statement	and
bind	it	to	columns	using	the	sp_bindefault	system	stored	procedure.

This	is	a	backward	compatibility	feature.

This	example	creates	a	table	using	one	of	each	type	of	default.	It	creates	a
default	object	to	assign	a	default	to	one	column,	and	binds	the	default	object	to
the	column.	It	then	does	a	test	insert	without	specifying	values	for	the	columns
with	defaults	and	retrieves	the	test	row	to	verify	the	defaults	were	applied.

USE	pubs
GO
CREATE	TABLE	test_defaults
			(keycol						smallint,
			process_id			smallint	DEFAULT	@@SPID,			--Preferred	default	definition
			date_ins			datetime	DEFAULT	getdate(),			--Preferred	default	definition

			mathcol						smallint	DEFAULT	10	*	2,			--Preferred	default	definition
			char1						char(3),
			char2						char(3)	DEFAULT	'xyz')	--Preferred	default	definition
GO
/*	Illustration	only,	use	DEFAULT	definitions	instead.*/
CREATE	DEFAULT	abc_const	AS	'abc'
GO
sp_bindefault	abc_const,	'test_defaults.char1'
GO
INSERT	INTO	test_defaults(keycol)	VALUES	(1)
GO
SELECT	*	FROM	test_defaults
GO

The	output	of	this	sample	is:

Default	bound	to	column.

(1	row(s)	affected)

keycol	process_id	date_ins																				mathcol	char1	char2	
------	----------	---------------------------	-------	-----	-----	
1						7										Oct	16	1997		8:34PM									20						abc			xyz			

(1	row(s)	affected)

See	Also

CREATE	TABLE

Creating	and	Modifying	a	Table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Triggers
Microsoft®	SQL	Server™	2000	triggers	are	a	special	class	of	stored	procedure
defined	to	execute	automatically	when	an	UPDATE,	INSERT,	or	DELETE
statement	is	issued	against	a	table	or	view.	Triggers	are	powerful	tools	that	sites
can	use	to	enforce	their	business	rules	automatically	when	data	is	modified.
Triggers	can	extend	the	integrity	checking	logic	of	SQL	Server	constraints,
defaults,	and	rules,	although	constraints	and	defaults	should	be	used	instead
whenever	they	provide	all	the	needed	functionality.

Tables	can	have	multiple	triggers.	The	CREATE	TRIGGER	statement	can	be
defined	with	the	FOR	UPDATE,	FOR	INSERT,	or	FOR	DELETE	clauses	to
target	a	trigger	to	a	specific	class	of	data	modification	actions.	When	FOR
UPDATE	is	specified,	the	IF	UPDATE	(column_name)	clause	can	be	used	to
target	a	trigger	to	updates	affecting	a	particular	column.

Triggers	can	automate	the	processing	for	a	company.	In	an	inventory	system,
update	triggers	can	detect	when	a	stock	level	reaches	a	reorder	point	and
generate	an	order	to	the	supplier	automatically.	In	a	database	recording	the
processes	in	a	factory,	triggers	can	e-mail	or	page	operators	when	a	process
exceeds	defined	safety	limits.

The	following	trigger	generates	an	e-mail	whenever	a	new	title	is	added	in	the
pubs	database:

CREATE	TRIGGER	reminder
ON	titles
FOR	INSERT
AS
			EXEC	master..xp_sendmail	'MaryM',
						'New	title,	mention	in	the	next	report	to	distributors.'

Triggers	contain	Transact-SQL	statements,	much	the	same	as	stored	procedures.
Triggers,	like	stored	procedures,	return	the	result	set	generated	by	any	SELECT
statements	in	the	trigger.	Including	SELECT	statements	in	triggers,	except
statements	that	only	fill	parameters,	is	not	recommended.	This	is	because	users

do	not	expect	to	see	any	result	sets	returned	by	an	UPDATE,	INSERT,	or
DELETE	statement.

You	can	use	the	FOR	clause	to	specify	when	a	trigger	is	executed:

AFTER

The	trigger	executes	after	the	statement	that	triggered	it	completes.	If
the	statement	fails	with	an	error,	such	as	a	constraint	violation	or	syntax
error,	the	trigger	is	not	executed.	AFTER	triggers	cannot	be	specified
for	views,	they	can	only	be	specified	for	tables.	You	can	specify
multiple	AFTER	triggers	for	each	triggering	action	(INSERT,	UPDATE,
or	DELETE).	If	you	have	multiple	AFTER	triggers	for	a	table,	you	can
use	sp_settriggerorder	to	define	which	AFTER	trigger	fires	first	and
which	fires	last.	All	other	AFTER	triggers	besides	the	first	and	last	fire
in	an	undefined	order	which	you	cannot	control.

AFTER	is	the	default	in	SQL	Server	2000.	You	could	not	specify
AFTER	or	INSTEAD	OF	in	SQL	Server	version	7.0	or	earlier,	all
triggers	in	those	versions	operated	as	AFTER	triggers.

INSTEAD	OF

The	trigger	executes	in	place	of	the	triggering	action.	INSTEAD	OF
triggers	can	be	specified	on	both	tables	and	views.	You	can	define	only
one	INSTEAD	OF	trigger	for	each	triggering	action	(INSERT,
UPDATE,	and	DELETE).	INSTEAD	OF	triggers	can	be	used	to
perform	enhance	integrity	checks	on	the	data	values	supplied	in
INSERT	and	UPDATE	statements.	INSTEAD	OF	triggers	also	let	you
specify	actions	that	allow	views,	which	would	normally	not	support
updates,	to	be	updatable.

See	Also

Enforcing	Business	Rules	with	Triggers

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Collations
The	physical	storage	of	character	strings	in	Microsoft®	SQL	Server™	2000	is
controlled	by	collations.	A	collation	specifies	the	bit	patterns	that	represent	each
character	and	the	rules	by	which	characters	are	sorted	and	compared.

SQL	Server	2000	supports	objects	that	have	different	collations	being	stored	in	a
single	database.	Separate	SQL	Server	2000	collations	can	be	specified	down	to
the	level	of	columns.	Each	column	in	a	table	can	be	assigned	different	collations.
Earlier	versions	of	SQL	Server	support	only	one	collation	for	each	instance	of
SQL	Server.	All	databases	and	database	objects	created	in	an	instance	of	SQL
Server	7.0	or	earlier	have	the	same	collation.

How	Character	Data	Is	Stored
In	a	computer,	characters	are	represented	by	different	patterns	of	bits	being	either
ON	or	OFF.	There	are	8	bits	in	a	byte,	and	the	8	bits	can	be	turned	ON	and	OFF
in	256	different	patterns.	A	program	that	uses	1	byte	to	store	each	character	can
therefore	represent	up	to	256	different	characters	by	assigning	a	character	to
each	of	the	bit	patterns.	There	are	16	bits	in	2	bytes,	and	16	bits	can	be	turned
ON	and	OFF	in	65,536	unique	patterns.	A	program	that	uses	2	bytes	to	represent
each	character	can	represent	up	to	65,536	characters.

Single-byte	code	pages	are	definitions	of	the	characters	mapped	to	each	of	the
256	bit	patterns	possible	in	a	byte.	Code	pages	define	bit	patterns	for	uppercase
and	lowercase	characters,	digits,	symbols,	and	special	characters	such	as	!,	@,	#,
or	%.	Each	European	language,	such	as	German	or	Spanish,	has	its	own	single-
byte	code	page.	Although	the	bit	patterns	used	to	represent	the	Latin	alphabet
characters	A	through	Z	are	the	same	for	all	the	code	pages,	the	bit	patterns	used
to	represent	accented	characters	such	as	'é'	and	'á'	vary	from	one	code	page	to	the
next.	If	data	is	exchanged	between	computers	running	different	code	pages,	all
character	data	must	be	converted	from	the	code	page	of	the	sending	computer	to
the	code	page	of	the	receiving	computer.	If	the	source	data	has	extended
characters	that	are	not	defined	in	the	code	page	of	the	receiving	computer,	data	is
lost.	When	a	database	serves	clients	from	many	different	countries,	it	is	difficult
to	pick	a	code	page	for	the	database	that	contains	all	the	extended	characters
required	by	all	the	client	computers.	Also,	there	is	a	lot	of	processing	time	spent

doing	the	constant	conversions	from	one	code	page	to	another.

Single-byte	character	sets	are	also	inadequate	to	store	all	the	characters	used	by
many	languages.	For	example,	some	Asian	languages	have	thousands	of
characters,	so	must	use	two	bytes	per	character.	Double-byte	character	sets	have
been	defined	for	these	languages.	Still,	each	of	these	languages	have	their	own
code	page,	and	there	are	difficulties	in	transferring	data	from	a	computer	running
one	double-byte	code	page	to	a	computer	running	another.

SQL	Server	2000	supports	these	code	pages.

Code	page Description
1258 Vietnamese
1257 Baltic
1256 Arabic
1255 Hebrew
1254 Turkish
1253 Greek
1252 Latin1	(ANSI)
1251 Cyrillic
1250 Central	European
950 Chinese	(Traditional)
949 Korean
936 Chinese	(Simplified)
932 Japanese
874 Thai
850 Multilingual	(MS-DOS	Latin1)
437 MS-DOS	U.S.	English

To	address	the	character	conversion	and	interpretation	problems	that	occur	when
trying	to	support	multiple	code	pages	in	a	network,	the	ISO	standards
organization	and	a	group	called	the	Unicode	Consortium	defined	the	Unicode
standard.	Unicode	uses	two	bytes	to	store	each	character.	Because	65,536
characters	are	enough	to	cover	all	the	commonly	used	characters	from	all	the
languages	of	the	world,	all	major	languages	are	covered	by	the	Unicode
standard.	If	all	the	computers	and	programs	in	a	network	use	Unicode,	there	is
no	need	for	any	character	conversions,	each	user	will	see	exactly	the	same

characters	as	all	other	users,	and	no	loss	of	characters	will	occur.

On	computers	running	Microsoft	Windows®	operating	systems,	the	code	page
used	by	the	operating	system	and	Windows	applications	is	defined	by	the
Windows	locale.	The	locale	is	selected	when	the	operating	system	is	installed.
Windows	applications	interpret	character	data	using	the	code	page	defined	by	the
Windows	locale.	Windows	applications	also	support	wide	character,	or	Unicode,
data.

SQL	Server	2000	supports	two	categories	of	character	data	types:

The	Unicode	data	types	nchar,	nvarchar,	and	ntext.	These	data	types
use	the	Unicode	character	representation.	Code	pages	do	not	apply	to
these	data	types.

The	non-Unicode	character	data	types	char,	varchar,	and	text.	These
data	types	use	the	character	representation	scheme	defined	in	a	single	or
double-byte	code	page.

For	more	information	about	how	character	data	is	stored	and	the	operation	of
code	pages,	Unicode,	and	sort	orders,	see	Developing	International	Software	for
Windows	95	and	Windows	NT	4.0	in	the	MSDN®	page	at
http://msdn.microsoft.com.

International	Data	and	Unicode
Storing	data	in	multiple	languages	within	one	database	is	difficult	to	manage
when	using	only	character	data	and	code	pages.	It	is	difficult	to	find	one	code
page	for	the	database	that	can	store	all	the	required	language-specific	characters.
It	is	also	difficult	to	ensure	the	proper	translation	of	special	characters	when
being	read	or	updated	by	different	clients	running	various	code	pages.	Databases
that	support	international	clients	should	always	use	Unicode	data	types	instead
of	non-Unicode	data	types.

For	example,	a	database	of	customers	in	North	America	has	to	handle	three
major	languages:

Spanish	names	and	addresses	for	Mexico.

http://msdn.microsoft.com/default.asp

French	names	and	addresses	for	Quebec.

English	names	and	addresses	for	the	rest	of	Canada	and	the	United
States.

When	you	use	only	character	columns	and	code	pages,	care	has	to	be	taken	to
ensure	the	database	is	installed	with	a	code	page	that	will	handle	the	characters
of	all	three	languages.	More	care	must	be	taken	to	ensure	the	proper	translation
of	characters	from	one	of	the	languages	when	read	by	clients	running	a	code
page	for	another	language.

With	the	growth	of	the	Internet,	it	is	becoming	more	important	than	ever	before
to	support	many	client	computers	running	different	locales.	It	is	difficult	to	pick
a	code	page	for	character	data	types	that	will	support	all	of	the	characters
required	by	a	worldwide	audience.

The	easiest	way	to	manage	character	data	in	international	databases	is	to	always
use	the	Unicode	nchar,	nvarchar,	and	ntext	data	types	in	place	of	their	non-
Unicode	equivalents	(char,	varchar,	and	text).	If	all	the	applications	that	work
with	international	databases	also	use	Unicode	variables	instead	of	non-Unicode
variables,	character	translations	do	not	have	to	be	performed	anywhere	in	the
system.	All	clients	will	see	exactly	the	same	characters	in	data	as	all	other
clients.

For	systems	that	could	use	single-byte	code	pages,	the	fact	that	Unicode	data
needs	twice	as	much	storage	space	as	non-Unicode	character	data	is	at	least
partially	offset	by	eliminating	the	need	to	convert	extended	characters	between
code	pages.	Systems	using	double-byte	code	pages	do	not	have	this	issue.

SQL	Server	2000	stores	all	textual	system	catalog	data	in	columns	having
Unicode	data	types.	The	names	of	database	objects	such	as	tables,	views,	and
stored	procedures	are	stored	in	Unicode	columns.	This	allows	applications	to	be
developed	using	only	Unicode,	which	avoids	all	issues	with	code	page
conversions.

Sort	Order
A	sort	order	specifies	the	rules	used	by	SQL	Server	to	interpret,	collate,	compare,
and	present	character	data.	For	example,	a	sort	order	defines	whether	'a'	is	less

than,	equal	to,	or	greater	than	'b'.	A	sort	order	defines	whether	the	collation	is
case-sensitive,	for	example	whether	'm'	is	equal	or	not	equal	to	'M'.	It	also
defines	if	the	collation	is	accent-sensitive,	for	example	whether	'á'	is	equal	or	not
equal	to	'ä'.

SQL	Server	2000	uses	two	sort	orders	with	each	collation,	one	for	Unicode	data
and	another	for	the	character	code	page.

Many	SQL	Server	collations	use	the	same	code	page,	but	have	a	different	sort
order	for	the	code	page.	This	allows	sites	to	choose:

Whether	characters	will	simply	be	sorted	based	on	the	numeric	value
represented	by	their	bit	patterns.	Binary	sorting	is	fastest	because	SQL
Server	does	not	have	to	make	any	adjustments	and	can	use	fast,	simple
sorting	algorithms.	Binary	sort	orders	are	always	case-sensitive.
Because	the	bit	patterns	in	a	code	page	may	not	be	arranged	in	the	same
sequence	as	defined	by	the	dictionary	rules	for	a	specific	language,
binary	sorting	sometimes	does	not	sort	characters	in	a	sequence	users
who	speak	that	language	might	expect.

Between	case-sensitive	or	case-insensitive	behavior.

Between	accent-sensitive	or	accent-insensitive	behavior.

See	Also

Collation	Options	for	International	Support

SQL	Server	Collation	Fundamentals

Unicode	Data

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

SQL	Server	Collation	Fundamentals
Microsoft®	SQL	Server™	2000	supports	several	collations.	A	collation	encodes
the	rules	governing	the	proper	use	of	characters	for	either	a	language,	such	as
Macedonian	or	Polish,	or	an	alphabet,	such	as	Latin1_General	(the	Latin
alphabet	used	by	western	European	languages).

Each	SQL	Server	collation	specifies	three	properties:

The	sort	order	to	use	for	Unicode	data	types	(nchar,	nvarchar,	and
ntext).	A	sort	order	defines	the	sequence	in	which	characters	are	sorted,
and	the	way	characters	are	evaluated	in	comparison	operations.

The	sort	order	to	use	for	non-Unicode	character	data	types	(char,
varchar,	and	text).

The	code	page	used	to	store	non-Unicode	character	data.

Note		You	cannot	specify	the	equivalent	of	a	code	page	for	the	Unicode
data	types	(nchar,	nvarchar,	and	ntext).	The	double-byte	bit	patterns
used	for	Unicode	characters	are	defined	by	the	Unicode	standard	and
cannot	be	changed.

SQL	Server	2000	collations	can	be	specified	at	any	level.	When	you	install	an
instance	of	SQL	Server	2000,	you	specify	the	default	collation	for	that	instance.
Each	time	you	create	a	database,	you	can	specify	the	default	collation	used	for
the	database.	If	you	do	not	specify	a	collation,	the	default	collation	for	the
database	is	the	default	collation	for	the	instance.	Whenever	you	define	a
character	column,	variable,	or	parameter,	you	can	specify	the	collation	of	the
object.	If	you	do	not	specify	a	collation,	the	object	is	created	with	the	default
collation	of	the	database.

If	all	of	the	users	of	your	instance	of	SQL	Server	speak	the	same	language,	you
should	pick	the	collation	that	supports	that	language.	For	example,	if	all	of	the
users	speak	French,	choose	the	French	collation.

If	the	users	of	your	instance	of	SQL	Server	speak	multiple	languages,	you	should
pick	a	collation	that	best	supports	the	requirements	of	the	various	languages.	For
example,	if	the	users	generally	speak	western	European	languages,	choose	the
Latin1_General	collation.	When	you	support	users	who	speak	multiple
languages,	it	is	most	important	to	use	the	Unicode	data	types,	nchar,	nvarchar,
and	ntext,	for	all	character	data.	Unicode	was	designed	to	eliminate	the	code
page	conversion	difficulties	of	the	non-Unicode	char,	varchar,	and	text	data
types.	Collation	still	makes	a	difference	when	you	implement	all	columns	using
Unicode	data	types	because	it	defines	the	sort	order	for	comparisons	and	sorts	of
Unicode	characters.	Even	when	you	store	your	character	data	using	Unicode	data
types	you	should	pick	a	collation	that	supports	most	of	the	users	in	case	a
column	or	variable	is	implemented	using	the	non-Unicode	data	types.

A	SQL	Server	collation	defines	how	the	database	engine	stores	and	operates	on
character	and	Unicode	data.	After	data	has	been	moved	into	an	application,
however,	character	sorts	and	comparisons	done	in	the	application	are	controlled
by	the	Windows	locale	selected	on	the	computer.	The	collation	used	for
character	data	by	applications	is	one	of	the	items	controlled	by	the	Windows
locale	(a	locale	also	defines	other	items,	such	as	number,	time,	date,	and
currency	formats).	For	Microsoft	Windows	NT®	4.0,	Microsoft	Windows®	98,
and	Microsoft	Windows	95,	the	Windows	locale	is	specified	using	the	Regional
Settings	application	in	Control	Panel.	For	Microsoft	Windows	2000,	the	locale	is
specified	using	the	Regional	Options	application	in	Control	Panel.	For	more
information	about	Windows	locales,	see	Developing	International	Software	for
Windows	95	and	Windows	NT	4.0	in	the	MSDN®	page	at	Microsoft	Web	site.

Multiple	collations	can	use	the	same	code	page	for	non-Unicode	data.	For
example,	the	1251	code	page	defines	a	set	of	Cyrillic	characters.	This	code	page
is	used	by	several	collations,	such	as	Cyrillic_General,	Ukrainian,	and
Macedonian.	Although	all	of	these	collations	use	the	same	set	of	bits	to	represent
non-Unicode	character	data,	the	sorting	and	comparison	rules	they	apply	are
slightly	different	to	handle	the	dictionary	definitions	of	the	correct	sequence	of
characters	in	the	language	or	alphabet	associated	with	the	collation.

Because	SQL	Server	2000	collations	control	both	the	Unicode	and	non-Unicode
sort	orders,	you	do	not	encounter	problems	caused	by	specifying	different
sorting	rules	for	Unicode	and	non-Unicode	data.	In	earlier	versions	of	SQL
Server,	the	code	page	number,	the	character	sort	order,	and	the	Unicode	collation
are	specified	separately.	Earlier	versions	of	SQL	Server	also	support	varying

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

numbers	of	sort	orders	for	each	code	pages,	and	for	some	code	pages	support
sort	orders	not	available	in	Windows	locales.	In	SQL	Server	7.0,	it	is	also
possible	to	specify	a	Unicode	sort	order	that	is	different	from	the	sort	order
chosen	for	non-Unicode	data.	This	can	cause	ordering	and	comparison
operations	to	return	different	results	when	working	with	Unicode	data	as
opposed	to	non-Unicode	data.

See	Also

COLLATE

Collation	Options	for	International	Support

Collations

Unicode	Data

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Architecture

Selecting	Collations
In	Microsoft®	SQL	Server™	2000,	you	specify	a	single	collation	name	that
controls	all	three	collation	attributes:	the	Unicode	sort	order,	the	non-Unicode
code	page,	and	the	non-Unicode	sort	order.	None	of	the	SQL	Server	2000
collations	allow	different	comparison	and	sorting	rules	for	Unicode	and	non-
Unicode	character	data.	There	are	two	groups	of	SQL	Server	2000	collations:
Windows	collations	and	SQL	collations.

Windows	Collations
Windows	collations	are	collations	defined	for	SQL	Server	to	support	Microsoft
Windows®	locales.	By	specifying	a	Windows	collation	for	SQL	Server,	the
instance	of	SQL	Server	uses	the	same	code	pages	and	sorting	and	comparison
rules	as	an	application	running	on	a	computer	for	which	you	have	specified	the
associated	Windows	locale.	For	example,	the	French	Windows	collation	for	SQL
Server	matches	the	collation	attributes	of	the	French	locale	for	Windows.

There	are	more	Windows	locales	than	there	are	SQL	Server	Windows	collations.
The	names	of	Windows	locales	are	based	on	a	language	and	territory,	for
example	French	(Canada).	Several	languages,	however,	share	common	alphabets
and	rules	for	sorting	and	comparing	characters.	For	example,	33	Windows
locales,	including	all	of	the	Portuguese,	and	English	Windows	locales,	use	the
Latin1	code	page	(1252)	and	follow	a	common	set	of	rules	for	sorting	and
comparing	characters.	The	SQL	Server	Windows	collation	based	on	the
Latin1_General	code	page	and	sorting	rules	supports	all	33	of	these	Windows
locales.	Also,	Windows	locales	specify	attributes	not	covered	by	SQL	Server
Windows	collations,	such	as	currency,	date,	and	time	formats.	Because	countries
such	as	Great	Britain	and	the	United	States	have	different	currency,	date,	and
time	formats,	they	require	different	Windows	collations.	They	do	not	require
different	SQL	Server	collations	because	they	have	the	same	alphabet	and	rules
for	sorting	and	comparing	characters.

SQL	Collations
SQL	collations	are	a	compatibility	option	to	match	the	attributes	of	common

combinations	of	code	page	number	and	sort	orders	that	have	been	specified	in
earlier	versions	of	SQL	Server.	For	example,	for	mapping	a	SQL	Server	2000
SQL	collation	to	what	is	specified	in	earlier	versions	of	SQL	Server,	the	SQL
Server	2000	SQL	collation	SQL_Latin1_General_CP1_CI_AS	matches	the	SQL
Server	version	7.0	default	specification	of:

The	ISO	code	page	1252.

The	dictionary	order,	case-insensitive	character	sort	order.

The	General	Unicode	collation.

The	SQL	collations	available	in	SQL	Server	2000	do	not	match	all	combinations
that	can	be	specified	in	earlier	versions	of	SQL	Server.	For	example,	no	SQL
Server	2000	SQL	collation	supports	a	case-sensitive	sort	order	for	non-Unicode
data	and	case-insensitive	sort	order	for	Unicode	data.	The	earlier	SQL	collations
that	cannot	be	exactly	specified	in	SQL	Server	2000	are	called	obsolescent	SQL
collations.

In	SQL	Server	2000,	you	should	primarily	use	Windows	collations.	You	should
use	SQL	collations	only	to	maintain	compatibility	with	existing	instances	of
earlier	versions	of	SQL	Server,	or	to	maintain	compatibility	in	applications
developed	using	SQL	collations	in	earlier	versions	of	SQL	Server.

Collation	Comparison	and	Ordering	Rules
Most	of	the	comparison	and	ordering	rules	defined	in	a	collation	are	governed	by
the	dictionary	definition	of	the	correct	sequence	of	characters	for	the	alphabet	or
language.	The	attributes	you	can	control	are	whether	comparisons	and	sorts	of
character	and	Unicode	data	should	be:

Based	on	the	dictionary	conventions	that	define	the	correct	sequence	of
characters	in	the	language	or	alphabet	associated	with	the	collation,	or
based	on	the	sequence	of	the	binary	bit	patterns	representing	the
different	characters.

Case-sensitive	or	case-insensitive.	For	example,	defining	whether	'a'	is

equal	or	not	equal	to	'A'.	If	you	choose	case-insensitive,	comparisons
always	ignore	case,	so	the	uppercase	version	of	a	character	evaluates	to
being	equal	to	the	lowercase	version	of	the	character.	When	you	choose
case-insensitivity,	the	relative	sequence	in	which	uppercase	and
lowercase	are	sorted	is	undefined	unless	you	also	specify	uppercase
preference.	Uppercase	preference	affects	only	sort	operations	and
specifies	that	uppercase	versions	of	a	character	come	earlier	in	the	sort
sequence	than	lowercase	versions	of	the	same	character.	Uppercase
preference	has	no	affect	on	comparisons,	so	'A'	still	evaluates	to	being
equal	to	'a'	when	uppercase	preference	is	on.	Uppercase	preference	can
be	specified	only	in	SQL	collations,	not	in	Windows	collations.

Sensitive	or	insensitive	to	accented	characters,	also	known	as	extended
characters.	Accented	characters	are	those	characters	that	have	a
diacritical	mark,	such	as	the	German	umlaut	(ë)	or	the	Spanish	tilde	(~).
For	example,	accent	sensitivity	defines	whether	'a'	is	equal	or	not	equal
to	'ä'.

When	you	choose	a	collation,	you	can	specify	if	you	want	binary	behavior,	or
dictionary	sorting	that	is	sensitive	or	insensitive	to	case	and	accents:

In	binary	collations,	comparisons	and	sorting	are	based	strictly	on	the
bit	pattern	of	the	characters.	This	is	the	fastest	option.	Because
uppercase	characters	are	stored	with	different	bit	patterns	than	their
corresponding	lowercase	characters,	and	accented	characters	have
different	bit	patterns	than	characters	without	accents,	binary	sort	orders
are	always	case-sensitive	and	accent	sensitive.	Binary	collations	also
ignore	dictionary	sequences	that	have	been	defined	for	specific
languages.	They	simply	order	the	characters	based	on	the	relative	value
of	the	bit	patterns	that	represent	each	character.	While	the	bit	patterns
defined	for	Latin	characters,	such	as	'A'	or	'z',	are	such	that	binary
sorting	yields	the	correct	results,	the	bit	patterns	for	some	extended
characters	in	some	code	pages	may	be	different	than	the	ordering
sequence	defined	in	dictionaries	for	the	language	associated	with	a
collation.	This	can	lead	to	occasional	ordering	and	comparison	results
that	are	different	than	what	a	speaker	of	the	language	might	expect.

If	you	do	not	specify	a	binary	collation,	SQL	Server	uses	the	dictionary
ordering	of	the	collation	you	have	chosen.	Dictionary	order	means
characters	are	not	sorted	or	compared	based	only	on	their	bit	patterns.
The	collation	follows	the	conventions	of	the	associated	language
regarding	the	proper	sequence	for	characters.	For	example,	case-
insensitive	sort	orders	must	use	dictionary	rules	to	determine	which
lowercase	and	uppercase	bit	patterns	are	equal.

Although	the	bit	patterns	in	a	code	page	generally	yield	the	correct
comparison	and	ordering	results	for	any	language	that	uses	the	code
page,	the	conventions	for	some	of	the	languages	may	require	different
results	than	are	generated	for	the	bit	patterns	of	a	small	number	of
characters.	For	example,	the	Czech,	Hungarian,	and	Polish	collations
use	the	same	code	page,	1250,	which	was	designed	for	the	Slavic
languages.	Each	of	these	languages,	however,	use	slightly	different
conventions	for	the	sequence	in	which	accented	characters	should	be
sorted.

If	you	do	not	specify	binary	sorting,	all	SQL	Server	operations	follow
the	dictionary	conventions	for	sorting	and	comparing	characters.	When
the	dictionary	order	is	used,	you	can	specify	whether	you	want	the
collation	to	be	sensitive	or	insensitive	to	both	case	and	accented
characters.

Case-sensitivity	applies	to	SQL	identifiers	and	passwords	as	well	as	to	data.	If
you	specify	a	binary	or	case-sensitive	default	sort	order	for	an	instance	of	SQL
Server	or	database,	all	references	to	objects	must	use	the	same	case	with	which
they	were	created.	For	example,	consider	this	table:

CREATE	TABLE	MyTable	(PrimaryKey	int	PRIMARY	KEY,	CharColumn	nchar(10))

If	the	CREATE	TABLE	statement	is	executed	on	an	instance	of	SQL	Server	or
database	that	has	a	case-sensitive	or	binary	sort	order,	all	references	to	the	table
must	use	the	same	case	that	was	specified	in	the	CREATE	TABLE	statement:

--	Object	not	found	error	because	case	is	not	correct:
SELECT	*	FROM	MYTABLE
--	Invalid	column	name	error	because	case	is	not	correct
--	for	the	WHERE	clause	reference	to	the	PrimaryKey	column.

SELECT	*
FROM	MyTable
WHERE	PRIMARYKEY	=	123
--	Correct	statement:
SELECT	CharColumn
FROM	MyTable
WHERE	PrimaryKey	=	123

See	Also

Collation	Options	for	International	Support

Specifying	Collations

Unicode	Data

Using	Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

Specifying	Collations
Microsoft®	SQL	Server™	2000	collations	can	be	specified	at	several	levels,
including	the	following:

When	you	install	an	instance	of	SQL	Server,	you	can	specify	the	default
collation	for	that	instance	during	setup.	The	default	collation	for	the
instance	also	becomes	the	default	collation	of	the	system	databases:
master,	model,	tempdb,	msdb,	and	Distribution.

When	you	create	a	database,	you	can	use	the	COLLATE	clause	of	the
CREATE	DATABASE	statement	to	specify	the	default	collation	of	the
database.	You	can	also	specify	a	collation	when	you	create	a	database
using	SQL	Server	Enterprise	Manager.	If	you	do	not	specify	a	collation,
the	database	is	assigned	the	default	collation	of	the	model	database.	The
default	collation	of	the	model	database	is	the	same	as	the	default
collation	of	the	instance	of	SQL	Server.

When	you	create	a	table,	you	can	specify	collations	for	each	character
string	column	using	the	COLLATE	clause	of	the	CREATE	TABLE
statement.	You	can	also	specify	a	collation	when	you	create	a	table
using	SQL	Server	Enterprise	Manager.	If	you	do	not	specify	a	collation,
the	column	is	assigned	the	default	collation	of	the	database.

You	can	also	use	the	database_default	option	in	the	COLLATE	clause	to
specify	that	a	column	in	a	temporary	table	use	the	collation	default	of
the	current	user	database	for	the	connection	instead	of	tempdb.

When	you	specify	a	literal	string,	you	can	use	the	COLLATE	clause	to
specify	the	collation.	If	you	do	not	specify	a	collation,	the	literal	is
assigned	the	database	default	collation.

In	SQL-DMO	you	can	use	the	Collation	property	to	specify	collations
for	instances,	databases,	and	columns.	For	more	information,	see

Collation	Property.

Parameters	for	stored	procedures	or	functions,	user-defined	data	types,
and	variables	are	assigned	the	default	collation	of	the	database:

The	collation	of	an	identifier	depends	on	the	level	at	which	it	is	defined.
Identifiers	of	instance-level	objects,	such	as	logins	and	database	names,	are
assigned	the	default	collation	of	the	instance.	Identifiers	of	objects	within	a
database,	such	as	tables,	views,	and	column	names,	are	assigned	the	default
collation	of	the	database.	Variables,	GOTO	labels,	temporary	stored	procedures,
and	temporary	tables	can	be	created	when	the	connection	context	is	associated
with	one	database,	and	then	referenced	when	the	context	has	been	switched	to
another	database.	Because	of	this,	the	identifiers	for	variables,	GOTO	labels,	and
temporary	tables	are	in	the	default	collation	of	the	instance.

Specifying	collations	for	columns	or	literals	can	be	done	only	for	the	char,
varchar,	text,	nchar,	nvarchar,	and	ntext	data	types.

Collations	are	generally	identified	by	a	collation	name.	There	are	two	classes	of
names:	Windows	collation	names	for	the	new	collations	aligned	with	Windows
locales,	and	SQL	collation	names	for	the	compatibility	mode	collations	that
result	when	upgrading	from	earlier	versions	of	SQL	Server.	For	more
information,	see	Windows	Collation	Name),	and	SQL	Collation	Name.

The	exception	to	specifying	collation	names	is	in	Setup:

You	do	not	specify	a	collation	name	for	Windows	collations,	but	instead
specify	the	collation	designator,	and	then	select	check	boxes	to	specify
binary	sorting	or	dictionary	sorting	that	is	either	sensitive	or	insensitive
to	either	case	or	accents.

You	do	not	specify	SQL	collation	names,	but	instead	select	a	collation
based	on	a	longer,	more	human-readable	display	name.

You	can	execute	the	system	function	fn_helpcollations	to	retrieve	a	list	of	all	the
valid	collation	names	for	Windows	collations	and	SQL	collations,	for	example:

SELECT	*

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

FROM	::fn_helpcollations()

You	can	also	use	the	SQL-DMO	ListCollations	method	to	get	a	list	of	the	valid
collation	names.	For	more	information,	see	ListCollations	Method.

The	system	catalog	stored	procedures	have	been	enhanced	to	report	the	collation
of	all	SQL	Server	objects	that	have	a	collation.

SQL	Server	can	support	only	code	pages	that	are	supported	by	the	underlying
operating	system.	When	you	perform	an	action	that	depends	on	collations,	the
SQL	Server	collation	used	by	the	referenced	object	must	use	a	code	page
supported	by	the	operating	system	running	on	the	computer.	These	actions	can
include:

Specifying	a	default	collation	for	an	instance	of	SQL	Server.

Specifying	a	default	collation	for	a	database	when	you	create	the
database.

Restoring	a	database	backup.	Windows	must	support	the	code	page	of
the	default	collation	used	by	the	database.

Attaching	a	database.	Windows	must	support	the	code	page	of	the
default	collation	used	by	the	database.

Specifying	a	collation	for	a	column	when	creating	a	table.

Specifying	a	collation	when	creating	a	user-defined	data	type.

Specifying	a	collation	when	declaring	a	character-string	constant.

If	the	collation	specified	or	the	collation	used	by	the	referenced	object,	uses	a
code	page	not	supported	by	the	Microsoft	Windows®	operating	systems,	SQL
Server	issues	error	2775:

"Code	page	codepagenumber	is	not	supported	by	the	system."

JavaScript:hhobj_4.Click()

Your	response	to	this	message	depends	on	the	version	of	the	Windows	operating
system	installed	on	the	computer:

Microsoft	Windows	2000	supports	all	of	the	code	pages	used	by	SQL
Server	collations,	so	the	error	message	will	not	occur.

Microsoft	Windows	NT®	4.0	may	require	that	you	install	a	language
pack	to	support	some	code	pages.	For	more	information	about	installing
a	Windows	NT	language	pack,	see	the	Windows	NT	Help.

Microsoft	Windows	98	supports	only	one	code	page	on	a	computer.	You
must	choose	a	SQL	Server	collation	that	uses	the	same	code	page	used
by	Windows	98.

See	Also

ALTER	TABLE

Collation	Options	for	International	Support

Collations

Constants

CREATE	DATABASE

CREATE	TABLE

DECLARE	@local_variable

table

Using	Unicode	Data

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

SQL	Server	Architecture

Specifying	the	Default	Collation	for	an	Instance	of
SQL	Server
The	default	collation	for	an	instance	of	Microsoft®	SQL	Server™	2000	is
defined	during	setup.	If	you	choose	the	minimal	or	typical	setup	options,	then
Setup	installs	these	collations:

If	you	upgrade	a	default	instance	of	SQL	Server	version	6.5	or	SQL
Server	version	7.0	to	SQL	Server	2000,	or	if	you	install	a	default
instance	of	SQL	Server	2000	that	will	be	version	switched	with	a
default	instance	of	SQL	Server	version	6.5,	SQL	Server	Setup	carries
forward	the	same	collation	used	in	the	existing	instance	of	SQL	Server
version	6.5	or	SQL	Server	version	7.0,	including	obsolescent	collations.

In	all	other	cases,	Setup	chooses	the	Windows	collation	that	supports
the	Windows	locale	of	the	computer	on	which	the	instance	of	SQL
Server	2000	is	being	installed.

Note		The	Setup	program	does	not	set	the	instance	default	collation	to	the
Windows	collation	Latin1_General_CI_AS	if	the	computer	is	using	the	U.S.
English	locale.	Instead,	it	sets	the	instance	default	collation	to	the	SQL	collation
SQL_Latin1_General_Cp1_CI_AS.	This	may	change	in	a	future	release.

If	you	choose	the	Custom	setup	option,	Setup	uses	the	same	logic	as	in	the
minimal	and	typical	options	to	set	the	collation	that	is	selected	when	the
Character	Set	/	Sort	Order	/	Windows	Collation	window	is	displayed.	You
should	not	use	the	selected	collation	in	these	cases:

If	the	instance	will	be	included	in	a	replication	scheme,	all	instances	of
SQL	Server	involved	in	the	replication	scheme	(Publishers,	Subscribers,
and	Distributors)	should	use	the	same	code	page.	You	should	make	sure
the	collation	selected	by	Setup	uses	the	same	code	page	as	the	other
instances	of	SQL	Server	in	the	replication	scheme.

If	the	primary	language	that	the	instance	must	support	is	different	than

the	Windows	locale	of	the	computer	on	which	the	instance	is	being
installed.

For	a	table	showing	which	collation	designator	to	specify	for	a	Windows	locale,
see	Windows	Collation	Names	Table.

During	setup,	the	master,	model,	tempdb,	msdb,	and	Distribution	system
databases	are	assigned	the	same	default	collation	as	the	default	collation	chosen
for	the	instance.

See	Also

Collation	Options	for	International	Support

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Mixed	Collation	Environments
Compatibility	issues	can	have	an	impact	on	organizations	that	use	multiple
collations	to	store	their	data.	Most	organizations	use	the	same	collation	for	all	of
their	Microsoft®	SQL	Server™	2000	databases,	thereby	eliminating	all	collation
compatibility	issues.	Other	organizations,	however,	must	store	data	viewed	by
users	who	speak	various	languages	and	want	to	do	so	with	a	minimum	of
collation	compatibility	issues.

All	character	and	Unicode	objects	(such	as	columns,	variables,	and	constants)
have	a	collation.	Whenever	you	work	with	objects	that	have	different	collations
and	code	pages,	you	must	code	your	queries	to	comply	with	the	rules	of	collation
coercion.	When	you	code	a	complex	expression	that	uses	operators	to	combine
multiple	simple	expressions	that	have	different	collations,	all	of	the	collations
must	be	implicitly	convertible,	or	explicitly	converted	using	the	COLLATE
clause.	For	more	information	about	collation	coercion,	see	Collation	Precedence.

If	you	do	not	specify	a	collation	in	a	character	or	Unicode	expression,	the	default
collation	may	vary	depending	on	the	current	database	setting	for	the	connection.
For	example,	if	you	do	not	specify	a	COLLATE	clause	on	a	character	or
Unicode	constant,	the	constant	is	assigned	the	default	collation	of	the	current
database.	This	means	that	the	result	of	a	Transact-SQL	statement	may	have
different	collations	when	executed	in	the	context	of	different	databases.

If	you	are	setting	up	replication,	all	of	the	databases	involved	in	a	replication
network,	including	Publishers,	Subscribers,	and	Distributors,	must	have	the	same
code	page.

The	bulk	copy	functions,	BULK	INSERT,	and	the	bcp	command	prompt	utility
support	column	collations.	For	more	information,	see	Copying	Data	Between
Different	Collations.

Minimizing	Collation	Issues
If	you	must	store	character	data	that	reflects	multiple	languages,	you	can
minimize	collation	compatibility	issues	by	always	using	the	Unicode	nchar,
nvarchar,	and	ntext	data	types	instead	of	the	char,	varchar,	text	data	types.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Using	the	Unicode	data	types	eliminates	code	page	conversion	issues.

Another	recommendation	that	minimizes	collation	compatibility	issues	is	to
standardize	your	site	as	either	sensitive	or	insensitive	to	case	and	accented
characters.	If	you	always	choose	collations	with	the	same	case	and	accent
sensitivity,	end	users	experience	consistent	behavior	across	all	systems.	Most
SQL	Server	2000	sites	choose	to	be	case-insensitive	and	accent-sensitive.	Case
sensitivity	also	applies	to	the	names	of	SQL	Server	objects;	therefore,	if	you
specify	case-sensitive	collations,	all	users	must	specify	the	correct	case	when
querying	the	database.	For	example,	if	you	have	a	case-sensitive	server	and
create	a	table	named	Employees,	all	queries	must	refer	to	the	table	as
Employees.	References	that	do	not	use	the	correct	case,	such	as	EMPLOYEES
or	employees,	are	invalid.

Collations	and	tempdb
The	tempdb	database	is	built	each	time	SQL	Server	is	started,	and	has	the	same
default	collation	as	the	model	database,	which	is	typically	the	same	as	the
default	collation	of	the	instance.	If	you	create	a	user	database	and	specify	a
different	default	collation	than	model,	the	user	database	has	a	different	default
collation	than	tempdb.	All	temporary	stored	procedures	or	temporary	tables	are
created	and	stored	in	tempdb,	which	means	that	all	implicit	columns	in
temporary	tables	and	all	coercible-default	constants,	variables,	and	parameters	in
temporary	stored	procedures	have	different	collations	than	comparable	objects
created	in	permanent	tables	and	stored	procedures.

This	can	lead	to	problems	with	the	text	data	type,	which	does	not	support	code
page	conversions.	For	example,	an	instance	of	SQL	Server	2000	defaults	to	the
Latin1_General_CS_AS	collation,	and	you	execute	these	statements:

CREATE	DATABASE	TestDB	COLLATE	Estonian_CS_AS
USE	TestDB
CREATE	TABLE	TestPermTab	(PrimaryKey	int	PRIMARY	KEY,	TextCol	text)

In	this	system,	the	tempdb	database	uses	the	Latin1_General_CS_AS	collation
with	code	page	1252,	and	TestDB	and	TestPermTab.TextCol	use	the
Estonian_CS_AS	collation	with	code	page	1257.	If	you	then	execute:

USE	TestDB

GO
--	Create	a	temporary	table	with	the	same	column	declarations
--	as	TestPermTab
CREATE	TABLE	#TestTempTab	(PrimaryKey	int	PRIMARY	KEY,	TextCol	text)
--	This	statement	gets	an	code	page	conversion	not	allowed	error
--	because	the	temporary	table	is	created	in	tempdb,	which	has	a	
--	different	default	collation	than	TestDB.
INSERT	INTO	#TestTempTab
									SELECT	*	FROM	TestPermTab
GO

To	eliminate	the	error	you	can	use	one	of	these	alternatives:

Use	the	Unicode	data	type	ntext	instead	of	text	for	the	two	TextCol
columns.

Specify	that	the	temporary	table	column	use	the	default	collation	of	the
user	database,	not	tempdb.	This	allows	the	temporary	table	to	work
with	similarly	formatted	tables	in	multiple	databases,	if	that	is	a
requirement	of	your	system.
CREATE	TABLE	#TestTempTab
			(PrimaryKey	int	PRIMARY	KEY,
				TextCol	text	COLLATE	database_default
)

Specify	the	correct	collation	for	the	#TestTempTab	column:
CREATE	TABLE	#TestTempTab
			(PrimaryKey	int	PRIMARY	KEY,
				TextCol	text	COLLATE	Estonian_CS_AS
)

Collations	in	BACKUP	and	RESTORE

If	you	restore	a	database,	RESTORE	uses	the	collation	of	the	source	database
that	was	recorded	in	the	backup	file.	The	restored	database	has	the	same

collation	as	the	original	database	that	was	backed	up.	Individual	objects	within
the	database	that	have	different	collations	also	retain	their	original	collation.	The
database	can	be	restored	even	if	the	instance	on	which	you	run	restore	has	a
different	default	collation	than	the	instance	on	which	BACKUP	was	run.

If	there	is	already	a	database	with	the	same	name	on	the	target	server,	the	only
way	to	restore	from	the	backup	is	to	specify	REPLACE	on	the	RESTORE
statement.	If	you	specify	REPLACE,	the	existing	database	is	completely
replaced	with	the	contents	of	the	database	on	the	backup	file,	and	the	restored
version	of	the	database	will	have	the	same	collation	recorded	in	the	backup	file.

If	you	are	restoring	log	backups,	the	destination	database	must	have	the	same
collation	as	the	source	database.

Collations	and	text	column
If	you	create	a	table	with	a	text	column	that	has	a	different	code	page	than	the
code	page	of	the	database's	default	collation,	there	are	only	two	ways	you	can
specify	data	values	to	be	inserted	into	the	column,	or	update	existing	values.	You
can:

Specify	a	Unicode	constant.

Select	a	value	from	another	column	with	the	same	code	page.

Assume	the	following	database	and	table:

--	Create	a	database	with	a	default	of	code	page	1252.
CREATE	DATABASE	TestDB	COLLATE	Latin1_General_CS_AS
--	Create	a	table	with	a	different	code	page,	1253.
CREATE	TABLE	TestTab
			(PrimaryKey	int	PRIMARY	KEY,
				TextCol	text	COLLATE	Greek_CS_AS
)

--	This	INSERT	statement	successfully	inserts	a	Unicode	string.
INSERT	INTO	TestTab	VALUES	(1,	N'abc')

--	This	INSERT	statement	successfully	inserts	data	by	selecting
--	from	a	similarly	formatted	table	in	another	database	that	uses
--	uses	the	Greek	1253	code	page	as	its	default.
INSERT	INTO	TestTab
					SELECT	*	FROM	GreekDatabase.dbo.TestTab

SQL	Server	Architecture

Changing	Collations
You	can	change	the	collation	of	a	column	by	using	the	ALTER	TABLE
statement:

CREATE	TABLE	MyTable
		(PrimaryKey			int	PRIMARY	KEY,
			CharCol						varchar(10)	COLLATE	French_CI_AS	NOT	NULL
)
GO
ALTER	TABLE	MyTable	ALTER	COLUMN	CharCol
												varchar(10)COLLATE	Latin1_General_CI_AS	NOT	NULL
GO

You	cannot	alter	the	collation	of	a	column	that	is	currently	referenced	by:

A	computed	column.

An	index.

Distribution	statistics,	either	generated	automatically	or	by	the	CREATE
STATISTICS	statement.

A	CHECK	constraint.

A	FOREIGN	KEY	constraint.

You	can	also	use	the	COLLATE	clause	on	an	ALTER	DATABASE	to	change	the
default	collation	of	the	database:

ALTER	DATABASE	MyDatabase	COLLATE	French_CI_AS

Altering	the	default	collation	of	a	database	does	not	change	the	collations	of	the

columns	in	any	existing	user-defined	tables.	These	can	be	changed	with	ALTER
TABLE.	The	COLLATE	CLAUSE	on	an	ALTER	DATABASE	statement
changes:

The	default	collation	for	the	database.	This	new	default	collation	is
applied	to	all	columns,	user-defined	data	types,	variables,	and
parameters	subsequently	created	in	the	database.	It	is	also	used	when
resolving	the	object	identifiers	specified	in	SQL	statements	against	the
objects	defined	in	the	database.

Any	char,	varchar,	text,	nchar,	nvarchar,	or	ntext	columns	in	system
tables	to	the	new	collation.

All	existing	char,	varchar,	text,	nchar,	nvarchar,	or	ntext	parameters
and	scalar	return	values	for	stored	procedures	and	user-defined
functions	to	the	new	collation.

The	char,	varchar,	text,	nchar,	nvarchar,	or	ntext	system	data	types,
and	all	user-defined	data	types	based	on	these	system	data	types,	to	the
new	default	collation.

After	a	collation	has	been	assigned	to	any	object	other	than	a	column	or
database,	you	cannot	change	the	collation	except	by	dropping	and	re-creating	the
object.	This	can	be	a	complex	operation.	To	change	the	default	collation	for	an
instance	of	Microsoft®	SQL	Server™	2000	you	must:

Make	sure	you	have	all	of	the	information	or	scripts	needed	to	re-create
your	user	databases	and	all	of	the	objects	in	them.

Export	all	of	your	data	using	a	tool	such	as	bulk	copy.

Drop	all	of	the	user	databases.

Rebuild	the	master	database	specifying	the	new	collation.

Create	all	of	the	databases	and	all	of	the	objects	in	them.

Import	all	of	your	data.

Note		Instead	of	changing	the	default	collation	of	an	instance	of	SQL
Server	2000,	you	can	specify	a	default	collation	for	each	new	database
you	create.

SQL	Server	Architecture

SQL	Indexes
A	Microsoft®	SQL	Server™	2000	index	is	a	structure	associated	with	a	table	or
view	that	speeds	retrieval	of	rows	from	the	table	or	view.	An	index	contains	keys
built	from	one	or	more	columns	in	the	table	or	view.	These	keys	are	stored	in	a
structure	that	allows	SQL	Server	to	find	the	row	or	rows	associated	with	the	key
values	quickly	and	efficiently.

SQL	Server	Architecture

Table	Indexes
Microsoft®	SQL	Server™	2000	supports	indexes	defined	on	any	column	in	a
table,	including	computed	columns.

If	a	table	is	created	with	no	indexes,	the	data	rows	are	not	stored	in	any
particular	order.	This	structure	is	called	a	heap.

The	two	types	of	SQL	Server	indexes	are:

Clustered

Clustered	indexes	sort	and	store	the	data	rows	in	the	table	based	on	their
key	values.	Because	the	data	rows	are	stored	in	sorted	order	on	the
clustered	index	key,	clustered	indexes	are	efficient	for	finding	rows.
There	can	only	be	one	clustered	index	per	table,	because	the	data	rows
themselves	can	only	be	sorted	in	one	order.	The	data	rows	themselves
form	the	lowest	level	of	the	clustered	index.

The	only	time	the	data	rows	in	a	table	are	stored	in	sorted	order	is	when
the	table	contains	a	clustered	index.	If	a	table	has	no	clustered	index,	its
data	rows	are	stored	in	a	heap.

Nonclustered

Nonclustered	indexes	have	a	structure	completely	separate	from	the
data	rows.	The	lowest	rows	of	a	nonclustered	index	contain	the
nonclustered	index	key	values	and	each	key	value	entry	has	pointers	to
the	data	rows	containing	the	key	value.	The	data	rows	are	not	stored	in
order	based	on	the	nonclustered	key.

The	pointer	from	an	index	row	in	a	nonclustered	index	to	a	data	row	is
called	a	row	locator.	The	structure	of	the	row	locator	depends	on
whether	the	data	pages	are	stored	in	a	heap	or	are	clustered.	For	a	heap,
a	row	locator	is	a	pointer	to	the	row.	For	a	table	with	a	clustered	index,
the	row	locator	is	the	clustered	index	key.

The	only	time	the	rows	in	a	table	are	stored	in	any	specific	sequence	is	when	a
clustered	index	is	created	on	the	table.	The	rows	are	then	stored	in	sequence	on

the	clustered	index	key.	If	a	table	only	has	nonclustered	indexes,	its	data	rows
are	stored	in	a	unordered	heap.

Indexes	can	be	unique,	which	means	no	two	rows	can	have	the	same	value	for
the	index	key.	Otherwise,	the	index	is	not	unique	and	multiple	rows	can	share	the
same	key	value.

There	are	two	ways	to	define	indexes	in	SQL	Server.	The	CREATE	INDEX
statement	creates	and	names	an	index.	The	CREATE	TABLE	statement	supports
the	following	constraints	that	create	indexes:

PRIMARY	KEY	creates	a	unique	index	to	enforce	the	primary	key.

UNIQUE	creates	a	unique	index.

CLUSTERED	creates	a	clustered	index.

NONCLUSTERED	creates	a	nonclustered	index.

When	you	create	an	index	on	SQL	Server	2000,	you	can	specify	whether	the
keys	are	stored	in	ascending	or	descending	order.

SQL	Server	2000	supports	indexes	defined	on	computed	columns,	as	long	as	the
expression	defined	for	the	column	meets	certain	restrictions,	such	as	only
referencing	columns	from	the	table	containing	the	computed	column,	and	being
deterministic.

A	fill	factor	is	a	property	of	a	SQL	Server	index	that	controls	how	densely	the
index	is	packed	when	created.	The	default	fill	factor	usually	delivers	good
performance,	but	in	some	cases	it	may	be	beneficial	to	change	the	fill	factor.	If
the	table	is	going	to	have	many	updates	and	inserts,	create	an	index	with	a	low
fill	factor	to	leave	more	room	for	future	keys.	If	the	table	is	a	read-only	table	that
will	not	change,	create	the	index	with	a	high	fill	factor	to	reduce	the	physical
size	of	the	index,	which	lowers	the	number	of	disk	reads	SQL	Server	uses	to
navigate	through	the	index.	Fill	factors	are	only	applied	when	the	index	is
created.	As	keys	are	inserted	and	deleted,	the	index	will	eventually	stabilize	at	a
certain	density.

Indexes	not	only	speed	up	the	retrieval	of	rows	for	selects,	they	also	usually
increase	the	speed	of	updates	and	deletes.	This	is	because	SQL	Server	must	first
find	a	row	before	it	can	update	or	delete	the	row.	The	increased	efficiency	of
using	the	index	to	locate	the	row	usually	offsets	the	extra	overhead	needed	to
update	the	indexes,	unless	the	table	has	a	lot	of	indexes.

This	example	shows	the	Transact-SQL	syntax	for	creating	indexes	on	a	table.

USE	pubs
GO
CREATE	TABLE	emp_sample
			(emp_id						int									PRIMARY	KEY	CLUSTERED,
			emp_name						char(50),
			emp_address			char(50),
			emp_title			char(25)						UNIQUE	NONCLUSTERED)
GO
CREATE	NONCLUSTERED	INDEX	sample_nonclust	ON	emp_sample(emp_name)
GO

Deciding	which	particular	set	of	indexes	will	optimize	performance	depends	on
the	mix	of	queries	in	the	system.	Consider	the	clustered	index	on
emp_sample.emp_id.	This	works	well	if	most	queries	referencing	emp_sample
have	equality	or	range	comparisons	on	emp_id	in	their	WHERE	clauses.	If	the
WHERE	clauses	of	most	queries	reference	emp_name	instead	of	emp_id,
performance	could	be	improved	by	instead	making	the	index	on	emp_name	the
clustered	index.

Many	applications	have	a	complex	mix	of	queries	that	is	difficult	to	estimate	by
interviewing	users	and	programmers.	SQL	Server	2000	provides	an	Index
Tuning	Wizard	to	help	design	indexes	in	a	database.	The	easiest	way	to	design
indexes	for	large	schemas	with	complex	access	patterns	is	to	use	the	Index
Tuning	Wizard.

You	provide	the	Index	Tuning	Wizard	with	a	set	of	SQL	statements.	This	could
be	a	script	of	statements	you	build	to	reflect	a	typical	mix	of	statements	in	the
system,	but	it	is	usually	a	SQL	Profiler	trace	of	the	actual	SQL	statements
processed	on	the	system	during	a	period	of	time	that	reflects	the	typical	load	on
the	system.	The	Index	Tuning	Wizard	analyzes	the	workload	and	the	database,

and	then	recommends	an	index	configuration	that	will	improve	the	performance
of	the	workload.	You	can	choose	to	either	replace	the	existing	index
configuration,	or	to	keep	the	existing	index	configuration	and	implement	new
indexes	to	improve	the	performance	of	a	slow-running	subset	of	the	queries.

See	Also

Indexes

Parallel	Operations	Creating	Indexes

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

View	Indexes
Microsoft®	SQL	Server™	2000	supports	defining	indexes	on	views.	Views	are
sometimes	called	virtual	tables	because	the	result	set	returned	by	the	view	has
the	same	general	form	as	a	table	with	columns	and	rows,	and	views	can	be
referenced	the	same	way	as	tables	in	SQL	statements.	The	result	set	of	a	non-
indexed	view	is	not	stored	permanently	in	the	database.	Each	time	a	query
references	the	view,	SQL	Server	dynamically	merges	the	logic	needed	to	build
the	view	result	set	into	the	logic	needed	to	build	the	complete	query	result	set
from	the	data	in	the	base	tables.	The	process	of	building	the	view	results	is	called
materializing	the	view.	For	more	information,	see	View	Resolution.

For	a	nonindexed	view,	the	overhead	of	dynamically	building	the	result	set	for
each	query	that	references	a	view	can	be	substantial	for	views	that	involve
complex	processing	of	large	numbers	of	rows.	Examples	include	views	that
aggregate	large	amounts	of	data,	or	join	many	rows.	If	such	views	are	frequently
referenced	in	queries,	you	can	improve	performance	by	creating	a	unique
clustered	index	on	the	view.	When	a	unique	clustered	index	is	created	on	a	view,
the	view	is	executed	and	the	result	set	is	stored	in	the	database	in	the	same	way	a
table	with	a	clustered	index	is	stored.	For	more	information	about	the	structure
used	to	store	clustered	indexes,	see	Clustered	Indexes.

Another	benefit	of	creating	an	index	on	a	view	is	that	the	optimizer	starts	using
the	view	index	in	queries	that	do	not	directly	name	the	view	in	the	FROM
clause.	Existing	queries	can	benefit	from	the	improved	efficiency	of	retrieving
data	from	the	indexed	view	without	having	to	be	recoded.

Creating	a	clustered	index	on	a	view	stores	the	result	set	built	at	the	time	the
index	is	created.	An	indexed	view	also	automatically	reflects	modifications
made	to	the	data	in	the	base	tables	after	the	index	is	created,	the	same	way	an
index	created	on	a	base	table	does.	As	modifications	are	made	to	the	data	in	the
base	tables,	the	data	modifications	are	also	reflected	in	the	data	stored	in	the
indexed	view.	The	requirement	that	the	view's	clustered	index	be	unique
improves	the	efficiency	with	which	SQL	Server	can	find	the	rows	in	the	index
that	are	affected	by	any	data	modification.

You	must	have	set	specific	SET	options	before	you	can	create	an	index	on	a

view.	The	query	optimizer	will	not	consider	the	index	for	any	subsequent	SQL
statements	unless	the	connection	executing	the	statement	has	the	same	option
settings.	For	more	information,	see	SET	Options	That	Affect	Results.

Indexed	views	can	be	more	complex	to	maintain	than	indexes	on	base	tables.
You	should	create	indexes	only	on	views	where	the	improved	speed	in	retrieving
results	outweighs	the	increased	overhead	of	making	modifications.	This	usually
occurs	for	views	mapped	over	relatively	static	data,	that	process	many	rows,	and
are	referenced	by	many	queries.

The	first	index	created	on	a	view	must	be	a	unique	clustered	index.	After	the
unique	clustered	index	has	been	created,	you	can	create	additional	nonclustered
indexes.	The	naming	conventions	for	indexes	on	views	are	the	same	as	for
indexes	on	tables.	The	only	difference	is	that	the	table	name	is	replaced	with	a
view	name.

All	indexes	on	a	view	are	dropped	if	the	view	is	dropped.	All	nonclustered
indexes	on	the	view	are	dropped	if	the	clustered	index	is	dropped.	Nonclustered
indexes	can	be	dropped	individually.	Dropping	the	clustered	index	on	the	view
removes	the	stored	result	set,	and	the	optimizer	returns	to	processing	the	view
like	a	standard	view.

Although	only	the	columns	that	make	up	the	clustered	index	key	are	specified	in
the	CREATE	UNIQUE	CLUSTERED	INDEX	statement,	the	complete	result	set
of	the	view	is	stored	in	the	database.	As	in	a	clustered	index	on	a	base	table,	the
b-tree	structure	of	the	clustered	index	contains	only	the	key	columns,	but	the
data	rows	contain	all	of	the	columns	in	the	view	result	set.

See	Also

CREATE	INDEX

Creating	an	Indexed	View

Using	Indexes	on	Views

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Architecture

Maximum	Size	of	Index	Keys
Microsoft®	SQL	Server™	2000	retains	the	900-byte	limit	for	the	maximum	size
of	an	index	key	but	changes	the	algorithm	used	by	CREATE	INDEX	to	check	if
the	specified	index	key	exceeds	the	maximum	allowable	key	size	of	900	bytes.
The	new	CREATE	INDEX	algorithm	is	similar	to	the	row	size	algorithm	used
for	CREATE	TABLE.

Microsoft	SQL	Server	version	7.0	and	earlier	always	used	the	maximum	size	of
variable	columns	when	checking	whether	the	key	specified	in	a	CREATE
INDEX	statement	exceeded	900	bytes,	for	example:

CREATE	TABLE	TestTable
				(PrimaryKey						int	PRIMARY	KEY,
					VarCharCol1					varchar(500),
					VarCharCol2					varchar(500)
)
--	This	statement	fails	because	the	maximum	sizes
--	of	the	two	columns	exceeds	900	bytes:
CREATE	INDEX	TestIdx	ON	TestTable(VarCharCol1,	VarCharCol2)

In	SQL	Server	2000,	the	preceding	CREATE	INDEX	statement	succeeds	with	a
warning	message,	unless	one	or	more	rows	of	data	will	generate	a	key	whose
value	exceeds	900	bytes.

The	SQL	Server	2000	CREATE	INDEX	statement	uses	these	algorithms:

If	the	size	of	all	fixed	columns	plus	the	maximum	size	of	all	variable
columns	specified	in	the	CREATE	INDEX	statement	is	less	than	900
bytes,	the	CREATE	INDEX	statement	completes	successfully	with	no
warnings	or	errors.

If	the	size	of	all	fixed	columns	plus	the	maximum	size	of	all	variable
columns	exceeds	900,	but	the	size	of	all	fixed	columns	plus	the
minimums	of	the	variable	columns	is	less	than	900,	the	CREATE

INDEX	statement	succeeds	with	a	warning	that	a	subsequent	INSERT
or	UPDATE	statement	may	fail	if	it	specifies	values	that	generates	a	key
value	larger	than	900	bytes.	The	CREATE	INDEX	statement	fails	if
existing	data	rows	in	the	table	have	values	that	generate	a	key	larger
than	900	bytes.	A	subsequent	INSERT	or	UPDATE	statement	that
specifies	data	values	that	generates	a	key	value	longer	than	900	bytes
fails.

The	CREATE	INDEX	statement	fails	if	the	size	of	all	fixed	columns
plus	the	minimum	size	of	all	variable	columns	specified	in	the	CREATE
INDEX	statement	exceeds	900	bytes.

This	table	shows	the	results	of	creating	indexes	where	the	keys	contain	only
fixed	or	only	variable-length	columns.

Index	Columns 	 	 	

Size	of	the
fixed-data
column(s)

Maximum
size	of
variable-
length
column(s)

MAX	of
the	SUM	of
the	index
key	column
lengths*

Index
created Message

INSERT	or
UPDATE	run-
time	error	due
to	oversized
index	key	value

>	900	bytes None Not	relevant No Error No	index	present
to	generate	error.

<	=	900
bytes

None Not	relevant Yes None No

None <	=	900
bytes

Not	relevant Yes None No

None >	900	bytes >	900	bytes No Error No	index	present
to	generate	error.

None >	900	bytes <	=	900
bytes

Yes Warning Only	if	the	sum
of	current	lengths
of	all	index
columns	is
greater	than	900
bytes.

*	None	of	the	rows	in	the	table	at	time	the	CREATE	INDEX	statement	is	executed	can	have	index	key
values	whose	total	lengths	exceed	900	bytes.

This	table	shows	the	results	of	creating	indexes	where	the	keys	contain	a	mixture
of	fixed	and	variable-length	columns.

Index	Columns 	 	 	
Minimum
size	of
variable-
length
column(s)	+
Size	of	the
fixed-data
column(s)

Maximum
size	of
variable-
length
column(s)	+
Size	of	the
fixed-data
column(s)

MAX	of
the	SUM
of	the
index	key
column
lengths	*

Index
created Message

INSERT	or
UPDATE	run-
time	error	due
to	oversized
index	key
value

>	900	bytes Not	relevant Not
relevant

No Error No	index
present	to
generate	error.

<	=	900	bytes <	=	900	bytes Not
relevant

Yes None No.

<	=	900	bytes >	900	bytes <	=	900
bytes

Yes Warning Only	if	the	sum
of	current
lengths	of	all
index	columns
is	greater	than
900	bytes.

<=	900	bytes >	900	bytes >	900
bytes

No Error No	index
present	to
generate	error.

*	None	of	the	rows	in	the	table	at	time	the	CREATE	INDEX	statement	is	executed	can	have	index	key
values	whose	total	lengths	exceed	900	bytes.

See	Also

CREATE	INDEX

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Property	Management
Microsoft®	SQL	Server™	2000	introduces	extended	properties	that	users	can
define	on	various	objects	in	a	database.	These	extended	properties	can	be	used	to
store	application-specific	or	site-specific	information	about	the	database	objects.
Because	the	property	is	stored	in	the	database,	all	applications	reading	the
property	can	evaluate	the	object	in	the	same	way.	This	helps	enforce	consistency
in	how	data	is	treated	by	all	of	the	programs	in	the	system.

Each	extended	property	has	a	user-defined	name	and	value.	The	value	of	an
extended	property	is	a	sql_variant	that	can	contain	up	to	7500	bytes	of	data.
Individual	database	objects	can	have	multiple	extended	properties.

Extended	properties	are	managed	using	three	system	stored	procedures:
sp_addextendedproperty,	sp_updateextendedproperty,	and
sp_dropextendedproperty.	You	can	read	the	value	of	an	existing	extended
property	using	the	system	function	FN_LISTEXTENDEDPROPERTY.

There	is	no	convention	or	standard	for	defining	extended	properties.	The
database	designer	sets	the	rules	specifying	the	property	names	and	contents
when	the	database	is	designed,	and	then	the	applications	accessing	the	database
have	to	be	coded	to	follow	those	rules	or	conventions.

See	Also

Using	Extended	Properties	on	Database	Objects

fn_listextendedproperty

sp_addextendedproperty

sp_dropextendedproperty

sp_updateextendedproperty

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Architecture

Full-Text	Catalogs	and	Indexes
A	Microsoft®	SQL	Server™	2000	full-text	index	provides	efficient	support	for
sophisticated	word	searches	in	character	string	data.	The	full-text	index	stores
information	about	significant	words	and	their	location	within	a	given	column.
This	information	is	used	to	quickly	complete	full-text	queries	that	search	for
rows	with	particular	words	or	combinations	of	words.

Full-text	indexes	are	contained	in	full-text	catalogs.	Each	database	can	contain
one	or	more	full-text	catalogs.	A	catalog	cannot	belong	to	multiple	databases	and
each	catalog	can	contain	full-text	indexes	for	one	or	more	tables.	A	table	can
only	have	one	full-text	index,	so	each	table	with	a	full-text	index	belongs	to	only
one	full-text	catalog.

Full-text	catalogs	and	indexes	are	not	stored	in	the	database	to	which	they
belong.	The	catalogs	and	indexes	are	managed	separately	by	the	Microsoft
Search	service.

A	full-text	index	must	be	defined	on	a	base	table;	it	cannot	be	defined	on	a	view,
system	table,	or	temporary	table.	A	full-text	index	definition	includes:

A	column	that	uniquely	identifies	each	row	in	the	table	(primary	or
candidate	key)	and	does	not	allow	NULLs.

One	or	more	character	string	columns	covered	by	the	index.

The	full-text	index	is	populated	with	the	key	values.	The	entry	for	each	key	has
information	about	the	significant	words	(noise-words	or	stop-words	are	stripped
out)	that	are	associated	with	the	key,	the	column	they	are	in,	and	their	location	in
the	column.

Formatted	text	strings,	such	as	Microsoft®	Word™	document	files	or	HTML
files,	cannot	be	stored	in	character	string	or	Unicode	columns	because	many	of
the	bytes	in	these	files	contain	data	structures	that	do	not	form	valid	characters.
Database	applications	may	still	have	a	need	to	access	this	data	and	apply	full-
text	searches	to	it.	Many	sites	store	this	type	of	data	in	image	columns,	because
image	columns	do	not	require	that	each	byte	form	a	valid	character.	SQL	Server
2000	introduces	the	ability	to	perform	full-text	searches	against	these	types	of

data	stored	in	image	columns.	SQL	Server	2000	supplies	filters	that	allow	it	to
extract	the	textual	data	from	Microsoft	Office™	files	(.doc,	.xls,	and	.ppt	files),
text	files	(.txt	files),	and	HTML	files	(.htm	files).	When	you	design	the	table,	in
addition	to	the	image	column	that	holds	the	data,	you	include	a	binding	column
to	hold	the	file	extension	for	the	format	of	data	stored	in	the	image	column.	You
can	create	a	full-text	index	that	references	both	the	image	column	and	the
binding	column	to	enable	full-text	searches	on	the	textual	information	stored	in
the	image	column.	The	SQL	Server	2000	full-text	search	engine	uses	the	file
extension	information	from	the	binding	column	to	select	the	proper	filter	to
extract	the	textual	data	from	the	column.

Full-text	indexing	is	the	component	that	implements	two	Transact-SQL
predicates	for	testing	rows	against	a	full-text	search	condition:

CONTAINS

FREETEXT

Transact-SQL	also	has	two	functions	that	return	a	set	of	rows	that	match	a	full-
text	search	condition:

CONTAINSTABLE	

FREETEXTTABLE

Internally,	SQL	Server	sends	the	search	condition	to	the	Microsoft	Search
service.	The	Microsoft	Search	service	finds	all	the	keys	that	match	the	full-text
search	condition	and	returns	them	to	SQL	Server.	SQL	Server	then	uses	the	list
of	keys	to	determine	which	table	rows	are	to	be	processed.

See	Also

Full-text	Indexes

Full-Text	Query	Architecture

Full-text	Querying	SQL	Server	Data

Microsoft	Search	Service

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Logins,	Users,	Roles,	and	Groups
Logins,	users,	roles,	and	groups	are	the	foundation	for	the	security	mechanisms
of	Microsoft®	SQL	Server™	2000.	Users	that	connect	to	SQL	Server	must
identify	themselves	using	a	specific	login	identifier	(ID).	Users	can	then	only	see
the	tables	and	views	they	are	authorized	to	see,	and	can	only	execute	the	stored
procedures	and	administrative	functions	they	are	authorized	to	execute.	This
system	of	security	is	based	on	the	IDs	used	to	identify	users.

See	Also

Managing	Security

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Logins
Login	identifiers	(Ids)	are	associated	with	users	when	they	connect	to
Microsoft®	SQL	Server™	2000.	Login	IDs	are	the	accounts	that	control	access
to	the	SQL	Server	system.	A	user	cannot	connect	to	SQL	Server	without	first
specifying	a	valid	login	ID.	Members	of	the	sysadmin	fixed	server	role	define
login	IDs.

sp_grantlogin	authorizes	a	Microsoft	Windows®	network	account	(either	a
group	or	a	user	account)	to	be	used	as	a	SQL	Server	login	for	connecting	to	SQL
Server	using	Windows	Authentication.	sp_addlogin	defines	a	login	account	for
SQL	Server	connections	using	SQL	Server	Authentication.

See	Also

Logins

sp_addlogin

sp_grantlogin

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Users
A	user	identifier	(ID)	identifies	a	user	within	a	database.	All	permissions	and
ownership	of	objects	in	the	database	are	controlled	by	the	user	account.	User
accounts	are	specific	to	a	database;	the	xyz	user	account	in	the	sales	database	is
different	from	the	xyz	user	account	in	the	inventory	database,	even	though	both
accounts	have	the	same	ID.	User	IDs	are	defined	by	members	of	the	db_owner
fixed	database	role.

A	login	ID	by	itself	does	not	give	a	user	permissions	to	access	objects	in	any
databases.	A	login	ID	must	be	associated	with	a	user	ID	in	each	database	before
anyone	connecting	with	that	login	ID	can	access	objects	in	the	databases.	If	a
login	ID	has	not	been	explicitly	associated	with	any	user	ID	in	a	database,	it	is
associated	with	the	guest	user	ID.	If	a	database	has	no	guest	user	account,	a
login	cannot	access	the	database	unless	it	has	been	associated	with	a	valid	user
account.

When	a	user	ID	is	defined,	it	is	associated	with	a	login	ID.	For	example,	a
member	of	the	db_owner	role	can	associate	the	Microsoft®	Windows®	2000
login	NETDOMAIN\Joe	with	user	ID	abc	in	the	sales	database	and	user	ID	def
in	the	employee	database.	The	default	is	for	the	login	ID	and	user	ID	to	be	the
same.

This	example	shows	giving	a	Windows	2000	account	access	to	a	database	and
associating	the	login	with	a	user	in	the	database:

USE	master
GO
sp_grantlogin	'NETDOMAIN\Sue'
GO
sp_defaultdb	@loginame	=	'NETDOMAIN\Sue',	defdb	=	'sales'
GO
USE	sales
GO
sp_grantdbaccess	'NETDOMAIN\Sue',	'Sue'

GO

In	the	sp_grantlogin	statement,	the	Windows	2000	user	NETDOMAIN\Sue	is
given	access	to	Microsoft	SQL	Server™	2000.	The	sp_defaultdb	statement
makes	the	sales	database	her	default	database.	The	sp_grantdbaccess	statement
gives	the	login	NETDOMAIN\Sue	access	to	the	sales	database	and	sets	her	user
ID	within	sales	to	Sue.

This	example	shows	defining	a	SQL	Server	login,	assigning	a	default	database,
and	associating	the	login	with	a	user	in	the	database:

USE	master
GO
sp_addlogin	@loginame	=	'TempWorker',	@password	=	'fff',	defdb	=	'sales'
GO
USE	sales
GO
sp_grantdbaccess	'TempWorker'
GO

The	sp_addlogin	statement	defines	a	SQL	Server	login	that	will	be	used	by
various	temporary	workers.	The	statement	also	specifies	the	sales	database	as	the
default	database	for	the	login.	The	sp_grantdbaccess	statement	grants	the
TempWorker	login	access	to	the	sales	database;	because	no	username	is
specified,	it	defaults	to	TempWorker.

A	user	in	a	database	is	identified	by	their	user	ID,	not	their	login	ID.	For
example,	sa	is	a	login	account	mapped	to	the	special	user	account	dbo	(database
owner)	in	every	database.	All	the	security-related	Transact-SQL	statements	use
the	user	ID	as	the	security_name	parameter.	The	administration	and
understanding	of	permissions	is	less	confusing	if	the	members	of	the	sysadmin
fixed	server	role	and	the	db_owner	fixed	database	role	set	up	the	system	such
that	the	login	ID	and	user	ID	of	each	user	are	the	same,	but	it	is	not	a
requirement.

The	guest	account	is	a	special	user	account	in	SQL	Server	databases.	If	a	user
enters	a	USE	database	statement	to	access	a	database	in	which	they	are	not
associated	with	a	user	account,	they	are	instead	associated	with	the	guest	user.

See	Also

guest	User

sp_addlogin

sp_defaultdb

sp_grantdbaccess

sp_grantlogin

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Architecture

Roles
Roles	are	a	powerful	tool	that	allow	you	to	collect	users	into	a	single	unit	against
which	you	can	apply	permissions.	Permissions	granted	to,	denied	to,	or	revoked
from	a	role	also	apply	to	any	members	of	the	role.	You	can	establish	a	role	that
represents	a	job	performed	by	a	class	of	workers	in	your	organization	and	grant
the	appropriate	permissions	to	that	role.	As	workers	rotate	into	the	job,	you
simply	add	them	as	a	member	of	the	role;	as	they	rotate	out	of	the	job,	remove
them	from	the	role.	You	do	not	have	to	repeatedly	grant,	deny,	and	revoke
permissions	to	or	from	each	person	as	they	accept	or	leave	the	job.	The
permissions	are	applied	automatically	when	the	users	become	members	of	the
role.

Microsoft®	Windows	NT®	and	Windows®	2000	groups	can	be	used	in	much
the	same	way	as	roles.	For	more	information,	see	Groups.

It	is	easy	to	manage	the	permissions	in	a	database	if	you	define	a	set	of	roles
based	on	job	functions	and	assign	each	role	the	permissions	that	apply	to	that
job.	You	can	then	simply	move	users	between	roles	rather	than	having	to	manage
the	permissions	for	each	individual	user.	If	the	function	of	a	job	changes,	it	is
easier	to	simply	change	the	permissions	once	for	the	role	and	have	the	changes
applied	automatically	to	all	members	of	the	role.

In	Microsoft®	SQL	Server™	2000	and	SQL	Server	version	7.0,	users	can	belong
to	multiple	roles.

The	following	script	shows	adding	a	few	logins,	users,	and	roles,	and	granting
permissions	to	the	roles.

USE	master
GO
sp_grantlogin	'NETDOMAIN\John'
GO
sp_defaultdb	'NETDOMAIN\John',	'courses'
GO
sp_grantlogin	'NETDOMAIN\Sarah'

GO
sp_defaultdb	'NETDOMAIN\Sarah',	'courses'
GO
sp_grantlogin	'NETDOMAIN\Betty'
GO
sp_defaultdb	'NETDOMAIN\Betty',	'courses'
GO
sp_grantlogin	'NETDOMAIN\Ralph'
GO
sp_defaultdb	'NETDOMAIN\Ralph',	'courses'
GO
sp_grantlogin	'NETDOMAIN\Diane'
GO
sp_defaultdb	'NETDOMAIN\Diane',	'courses'
GO
USE	courses
GO
sp_grantdbaccess	'NETDOMAIN\John'
GO
sp_grantdbaccess	'NETDOMAIN\Sarah'
GO
sp_grantdbaccess	'NETDOMAIN\Betty'
GO
sp_grantdbaccess	'NETDOMAIN\Ralph'
GO
sp_grantdbaccess	'NETDOMAIN\Diane'
GO
sp_addrole	'Professor'
GO
sp_addrole	'Student'
GO
sp_addrolemember	'Professor',	'NETDOMAIN\John'
GO

sp_addrolemember	'Professor',	'NETDOMAIN\Sarah'
GO
sp_addrolemember	'Professor',	'NETDOMAIN\Diane'
GO
sp_addrolemember	'Student',	'NETDOMAIN\Betty'
GO
sp_addrolemember	'Student',	'NETDOMAIN\Ralph'
GO
sp_addrolemember	'Student',	'NETDOMAIN\Diane'
GO
GRANT	SELECT	ON	StudentGradeView	TO	Student
GO
GRANT	SELECT,	UPDATE	ON	ProfessorGradeView	TO	Professor
GO

This	script	gives	the	professors	John	and	Sarah	permission	to	update	students'
grades,	while	the	students	Betty	and	Ralph	can	only	select	their	grades.	Diane
has	been	added	to	both	roles	because	she	is	teaching	one	class	while	taking
another.	The	view	ProfessorGradeView	should	restrict	professors	to	the	rows
for	students	in	their	classes,	while	StudentGradeView	should	restrict	students	to
selecting	only	their	own	grades.

There	are	several	fixed	roles	defined	in	SQL	Server	2000	and	SQL	Server
version	7.0	during	setup.	Users	can	be	added	to	these	roles	to	pick	up	the
associated	administration	permissions.	These	are	server-wide	roles.

Fixed	server	role Description
sysadmin Can	perform	any	activity	in	SQL	Server.
serveradmin Can	set	serverwide	configuration	options,	shut

down	the	server.
setupadmin Can	manage	linked	servers	and	startup

procedures.
securityadmin Can	manage	logins	and	CREATE	DATABASE

permissions,	also	read	error	logs	and	change
passwords.

processadmin Can	manage	processes	running	in	SQL	Server.
dbcreator Can	create,	alter,	and	drop	databases.
diskadmin Can	manage	disk	files.
bulkadmin Can	execute	BULK	INSERT	statements.

You	can	get	a	list	of	the	fixed	server	roles	from	sp_helpsrvrole,	and	get	the
specific	permissions	for	each	role	from	sp_srvrolepermission.

Each	database	has	a	set	of	fixed	database	roles.	While	roles	with	the	same	names
exist	in	each	database,	the	scope	of	an	individual	role	is	only	within	a	specific
database.	For	example,	if	Database1	and	Database2	both	have	user	IDs	named
UserX,	adding	UserX	in	Database1	to	the	db_owner	fixed	database	role	for
Database1	has	no	effect	on	whether	UserX	in	Database2	is	a	member	of	the
db_owner	role	for	Database2.

Fixed	database	role Description
db_owner Has	all	permissions	in	the	database.
db_accessadmin Can	add	or	remove	user	IDs.
db_securityadmin Can	manage	all	permissions,	object	ownerships,

roles	and	role	memberships.
db_ddladmin Can	issue	ALL	DDL,	but	cannot	issue	GRANT,

REVOKE,	or	DENY	statements.
db_backupoperator Can	issue	DBCC,	CHECKPOINT,	and	BACKUP

statements.
db_datareader Can	select	all	data	from	any	user	table	in	the

database.
db_datawriter Can	modify	any	data	in	any	user	table	in	the

database.
db_denydatareader Cannot	select	any	data	from	any	user	table	in	the

database.
db_denydatawriter Cannot	modify	any	data	in	any	user	table	in	the

database.

You	can	get	a	list	of	the	fixed	database	roles	from	sp_helpdbfixedrole,	and	get
the	specific	permissions	for	each	role	from	sp_dbfixedrolepermission.

Every	user	in	a	database	belongs	to	the	public	database	role.	If	you	want
everyone	in	a	database	to	be	able	to	have	a	specific	permission,	assign	the
permission	to	the	public	role.	If	a	user	has	not	been	specifically	granted
permissions	on	an	object,	they	use	the	permissions	assigned	to	public.

See	Also

Adding	a	Member	to	a	Predefined	Role

sp_dbfixedrolepermission

sp_helpdbfixedrole

sp_helpsrvrole

sp_srvrolepermission

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Architecture

Groups
There	are	no	groups	in	Microsoft®	SQL	Server™	2000	or	SQL	Server	version
7.0.	You	can,	however,	manage	SQL	Server	security	at	the	level	of	an	entire
Microsoft	Windows	NT®	or	Microsoft	Windows®	2000	group.

If	you	use	sp_grantlogin	and	specify	the	name	of	a	Windows	NT	or	Windows
2000	group,	all	members	of	the	group	can	then	connect	to	SQL	Server	using
Windows	Authentication.

After	the	group	has	been	authorized	to	connect,	you	can	use	sp_grantdbaccess
to	associate	the	group	members	with	a	user	identifier	(ID)	in	each	database	they
need	to	access.	You	can	use	two	methods:

Associate	the	group	with	a	user	ID	in	the	database.

In	this	case,	all	members	of	the	group	will	be	associated	with	that	user
ID	when	they	reference	the	database.

Associate	an	individual	user	account	in	the	Windows	NT	or	Windows
2000	group	with	a	user	ID	in	the	database.

This	individual	will	be	associated	with	the	user	ID	when	they	reference
the	database.	None	of	the	other	individuals	in	the	group	will	be
associated	with	the	user	ID.	They	will	be	assigned	the	user	ID
associated	with	the	group	login.

Consider	a	Windows	NT	or	Windows	2000	group	NETDOMAIN\Managers
with	three	members:	NETDOMAIN\Sue,	NETDOMAIN\Fred,	and
NETDOMAIN\Mary.	The	following	Transact-SQL	statements	add	the
Windows	NT	or	Windows	2000	group	as	both	a	login	and	a	user	in	the	sales
database,	and	then	associate	NETDOMAIN\Sue	with	a	specific	user	ID:

USE	master
GO
--	Authorize	all	members	of	NETDOMAIN\Managers	to	connect
--	using	Windows	Authentication.
sp_grantlogin	'NETDOMAIN\Managers'

GO
--	Make	sales	the	default	database	for	all	members.
sp_dbdefault	'NETDOMAIN\Managers',	'sales'
USE	sales
GO
--	Grant	all	members	of	the	group	access	to	sales
--	No	user	ID	is	specified,	so	SQL	Server	creates
--	one	named	'NETDOMAIN\Managers'
sp_grantdbaccess	'NETDOMAIN\Managers'
GO
--	Grant	a	specific	member	of	the	group	access	to
--	sales	with	a	specific	user.
sp_grantdbaccess	'NETDOMAIN\Sue',	'Sue'

Permissions	can	now	be	granted	to	either	user	NETDOMAIN\Managers	or	user
Sue:

USE	sales
GO
GRANT	SELECT	ON	SalesTable	TO	NETDOMAIN\Managers
GO
GRANT	UPDATE	ON	SalesTable	to	NETDOMAIN\Sue

The	permissions	applied	to	NETDOMAIN\Sue	are	the	union	of	the	permissions
granted,	revoked,	or	denied	to	both	the	NETDOMAIN\Managers	or	Sue	users.
Any	DENY	permission	overrides	any	corresponding	GRANT	permissions.

Unless	their	Windows	NT	or	Windows	2000	account	has	been	associated	with	a
specific	user,	members	of	a	group	are	subject	to	the	permissions	assigned	to	the
user	associated	with	the	group.	If	a	member	of	the	group	creates	an	object,
however,	the	owner	name	of	the	object	is	their	Windows	NT	or	Windows	2000
account	name,	not	the	group	name.	Consider	the	NETDOMAIN\Manager
account.	If	NETDOMAIN\Fred	connects	to	the	sales	database,	he	can	see	all
tables	for	which	NETDOMAIN\Managers	has	been	granted	SELECT
permission.	If	NETDOMAIN\Fred	executes	the	following	statement,	the	table
is	created	as	sales.NETDOMAIN\Fred.TableX,	not

sales.NETDOMAIN\Managers.TableX:

CREATE	TableX	(cola	INT	PRIMARY	KEY,	colb	CHARACTER(200))

See	Also

sp_grantdbaccess

sp_grantlogin

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Owners	and	Permissions
Every	object	in	Microsoft®	SQL	Server™	2000	is	owned	by	a	user.	The	owner
is	identified	by	a	database	user	identifier	(ID).	When	an	object	is	first	created,
the	only	user	ID	that	can	access	the	object	is	the	user	ID	of	the	owner	or	creator.
For	any	other	user	to	access	the	object,	the	owner	must	grant	permissions	to	that
user.	If	the	owner	wants	only	specific	users	to	access	the	object,	the	owner	can
grant	permissions	to	those	specific	users.

For	tables	and	views,	the	owner	can	grant	INSERT,	UPDATE,	DELETE,
SELECT,	and	REFERENCES	permissions,	or	ALL	permissions.	A	user	must
have	INSERT,	UPDATE,	DELETE,	or	SELECT	permissions	on	a	table	before
they	can	specify	it	in	INSERT,	UPDATE,	DELETE,	or	SELECT	statements.	The
REFERENCES	permission	lets	the	owner	of	another	table	use	columns	in	your
table	as	the	target	of	a	REFERENCES	FOREIGN	KEY	constraint	from	their
table.	The	following	example	illustrates	granting	SELECT	permissions	to	a
group	named	Teachers	and	REFERENCES	permissions	to	another	development
user:

GRANT	SELECT	ON	MyTable	TO	Teachers
GRANT	REFERENCES	(PrimaryKeyCol)	ON	MyTable	to	DevUser1

The	owner	of	a	stored	procedure	can	grant	EXECUTE	permissions	for	the	stored
procedure.	If	the	owner	of	a	base	table	wants	to	prevent	users	from	accessing	the
table	directly,	they	can	grant	permissions	on	views	or	stored	procedures
referencing	the	table,	but	not	grant	any	permissions	on	the	table	itself.	This	is	the
foundation	of	the	SQL	Server	mechanisms	to	ensure	that	users	do	not	see	data
they	are	not	authorized	to	access.

Users	can	also	be	granted	statement	permissions.	Some	statements,	such	as
CREATE	TABLE	and	CREATE	VIEW,	can	only	be	executed	by	certain	users	(in
this	case,	the	dbo	user).	If	the	dbo	wants	another	user	to	be	able	to	create	tables
or	views,	they	must	grant	the	permission	to	execute	these	statements	to	that	user.

SQL	Server	Architecture

Session	Context	Information
Microsoft®	SQL	Server™	2000	introduces	the	ability	to	programmatically
associate	up	to	128	bytes	of	binary	information	with	the	current	session	or
connection.	Session	context	information	enables	applications	to	set	binary	values
that	can	be	referenced	in	multiple	batches,	stored	procedures,	triggers,	or	user-
defined	functions	operating	on	the	same	session,	or	connection.	You	can	set	a
session	context	by	using	the	new	SET	CONTEXT_INFO	statement,	and	then
you	can	retrieve	the	context	string	from	the	new	context_info	column	in	the
master.dbo.sysprocesses	table.

Session	context	information	differs	from	Transact-SQL	variables,	whose	scope	is
limited	to	the	current	batch,	stored	procedure,	trigger,	or	function.	Session
context	information	can	be	used	to	store	information	specific	to	each	user	or	the
current	state	of	the	application,	which	can	then	be	used	to	control	the	logic	in
Transact-SQL	statements.

The	SET	CONTEXT_INFO	statement	supports:

A	constant,	with	a	maximum	of	128	bytes,	that	is	either	binary	or	a	data
type	that	can	be	implicitly	converted	to	binary.

The	name	of	a	varbinary(128)	or	binary(128)	variable.

SET	CONTEXT_INFO	cannot	be	specified	in	a	user-defined	function.	You
cannot	supply	a	null	value	to	SET	CONTEXT_INFO	because	the	sysprocesses
table,	where	the	information	is	stored,	does	not	allow	null	values.

To	get	the	current	session	context	for	the	current	connection,	select	the
context_info	column	from	the	master.dbo.sysprocesses	row	whose	SQL	Server
Process	ID	(SPID)	is	equal	to	the	SPID	for	the	connection.	The	SPID	for	the
current	connection	is	returned	by	the	@@SPID	function:

SELECT	context_info
FROM	master.dbo.sysprocesses
WHERE	spid	=	@@SPID

The	value	in	the	context_info	column	is	initialized	to	128	bytes	of	binary	zeros
if	SET	CONTEXT_INFO	has	not	yet	been	executed	for	the	current	connection.
If	SET	CONTEXT_INFO	has	been	executed,	the	context_info	column	contains
the	value	set	by	the	last	execution	of	SET	CONTEXT_INFO	for	the	current
connection.	The	context_info	column	is	a	varbinary(128)	column.

This	is	an	example	of	using	session	context	information:

--	Set	context	information	at	start.
SET	CONTEXT_INFO	0x1256698456
GO
--	Perform	several	non-related	batches.
sp_who
GO
USE	Northwind
GO
SELECT	CustomerID
FROM	Customers
WHERE	City	=	'London'
GO
--	Select	context	information	set	several	batches	earlier.
SELECT	context_info
FROM	master.dbo.sysprocesses
WHERE	spid	=	@@spid
GO

SET	CONTEXT_INFO	does	not	support	referencing	expressions	other	than
constants	or	variable	names,	such	as	functions.	If	you	need	to	set	the	context
information	to	the	result	of	a	function	call,	you	must	first	place	the	function	call
result	in	a	binary	or	varbinary	variable:

DECLARE	@BinVar	varbinary(128)
SET	@BinVar	=	CAST(REPLICATE(0x20,	128)	AS	varbinary(128))
SET	CONTEXT_INFO	@BinVar

See	Also

SET	CONTEXT_INFO

sysprocesses

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

System	Databases	and	Data
Microsoft®	SQL	Server™	2000	systems	have	four	system	databases:

master

The	master	database	records	all	of	the	system	level	information	for	a
SQL	Server	system.	It	records	all	login	accounts	and	all	system
configuration	settings.	master	is	the	database	that	records	the	existence
of	all	other	databases,	including	the	location	of	the	database	files.
master	records	the	initialization	information	for	SQL	Server;	always
have	a	recent	backup	of	master	available.

tempdb

tempdb	holds	all	temporary	tables	and	temporary	stored	procedures.	It
also	fills	any	other	temporary	storage	needs	such	as	work	tables
generated	by	SQL	Server.	tempdb	is	a	global	resource;	the	temporary
tables	and	stored	procedures	for	all	users	connected	to	the	system	are
stored	there.	tempdb	is	re-created	every	time	SQL	Server	is	started	so
the	system	starts	with	a	clean	copy	of	the	database.	Because	temporary
tables	and	stored	procedures	are	dropped	automatically	on	disconnect,
and	no	connections	are	active	when	the	system	is	shut	down,	there	is
never	anything	in	tempdb	to	be	saved	from	one	session	of	SQL	Server
to	another.

By	default,	tempdb	autogrows	as	needed	while	SQL	Server	is	running.
Unlike	other	databases,	however,	it	is	reset	to	its	initial	size	each	time
the	database	engine	is	started.	If	the	size	defined	for	tempdb	is	small,
part	of	your	system	processing	load	may	be	taken	up	with	autogrowing
tempdb	to	the	size	needed	to	support	your	workload	each	time	to	restart
SQL	Server.	You	can	avoid	this	overhead	by	using	ALTER	DATABASE
to	increase	the	size	of	tempdb.

model

The	model	database	is	used	as	the	template	for	all	databases	created	on
a	system.	When	a	CREATE	DATABASE	statement	is	issued,	the	first
part	of	the	database	is	created	by	copying	in	the	contents	of	the	model

database,	then	the	remainder	of	the	new	database	is	filled	with	empty
pages.	Because	tempdb	is	created	every	time	SQL	Server	is	started,	the
model	database	must	always	exist	on	a	SQL	Server	system.

msdb

The	msdb	database	is	used	by	SQL	Server	Agent	for	scheduling	alerts
and	jobs,	and	recording	operators.

In	SQL	Server	2000	and	SQL	Server	version	7.0,	every	database,	including	the
system	databases,	has	its	own	set	of	files	and	does	not	share	those	files	with
other	databases.

Database	file Physical	file	name
Default	size,	typical
setup

master	primary	data Master.mdf 11.0	MB
master	log Mastlog.ldf 1.25	MB
tempdb	primary	data Tempdb.mdf 8.0	MB
tempdb	log Templog.ldf 0.5	MB
model	primary	data Model.mdf 0.75	MB
model	log Modellog.ldf 0.75	MB
msdb	primary	data Msdbdata.mdf 12.0	MB
msdb	log Msdblog.ldf 2.25	MB

The	sizes	of	these	files	may	vary	slightly	for	different	editions	of	SQL	Server
2000.	For	more	information	about	default	locations	of	these	files,	see	Directories
and	File	Locations.

Each	database	in	SQL	Server	2000	contains	system	tables	recording	the	data
needed	by	the	SQL	Server	components.	The	successful	operation	of	SQL	Server
depends	on	the	integrity	of	information	in	the	system	tables;	therefore,	Microsoft
does	not	support	users	directly	updating	the	information	in	the	system	tables.

Microsoft	provides	a	complete	set	of	administrative	tools	that	allow	users	to
fully	administer	their	system	and	manage	all	users	and	objects	in	a	database.
Users	can	use	the	administration	utilities,	such	as	SQL	Server	Enterprise
Manager,	to	directly	manage	the	system.	Programmers	can	use	the	SQL-DMO
API	to	include	complete	functionality	for	administering	SQL	Server	in	their
applications.	Programmers	building	Transact-SQL	scripts	and	stored	procedures

JavaScript:hhobj_1.Click()

can	use	the	system	stored	procedures	and	Transact-SQL	DDL	statements	to
support	all	administrative	functions	in	their	systems.

An	important	function	of	SQL-DMO,	system	stored	procedures,	and	data
definition	languare	(DDL)	statements	is	to	shield	applications	from	changes	in
the	system	tables.	Microsoft	sometimes	needs	to	change	the	system	tables	in	new
versions	of	SQL	Server	to	support	new	functionality	being	added	in	that	version.
Applications	issuing	SELECT	statements	that	directly	reference	system	tables
are	frequently	dependent	on	the	old	format	of	the	system	tables.	Sites	may	not	be
able	to	upgrade	to	a	new	version	of	SQL	Server	until	they	have	rewritten
applications	that	are	selecting	from	system	tables.	Microsoft	considers	the
system	stored	procedures,	DDL,	and	SQL-DMO	published	interfaces,	and	seeks
to	maintain	the	backward	compatibility	of	these	interfaces.

Microsoft	does	not	support	triggers	defined	on	the	system	tables;	they	may	alter
the	operation	of	the	system.

Another	important	tool	for	querying	the	SQL	Server	catalog	is	the	set	of
Information	Schema	Views.	These	views	comply	with	the	information	schema
defined	in	the	SQL-92	standard.	These	views	provide	applications	a	standards-
based	component	for	querying	the	SQL	Server	catalog.

You	should	not	code	Transact-SQL	statements	that	directly	query	the	system
tables	unless	that	is	the	only	way	to	obtain	the	information	required	by	the
application.	In	most	cases	applications	should	obtain	catalog	and	system
information	from:

The	SQL-92	Information	Schema	Views.

SQL-DMO.

The	catalog	functions,	methods,	attributes,	or	properties	of	the	data	API
used	in	the	application,	such	as	ADO,	OLE	DB,	or	ODBC.

Transact-SQL	system	stored	procedures,	catalog	statements,	and	built-in
functions.

SQL	Server	Architecture

Physical	Database	Architecture
The	topics	in	this	section	describe	the	way	Microsoft®	SQL	Server™	2000	files
and	databases	are	organized.	The	organization	of	SQL	Server	2000	and	SQL
Server	version	7.0	is	different	from	the	organization	of	data	in	SQL	Server
version	6.5	or	earlier.

SQL	Server	Architecture

Pages	and	Extents
The	fundamental	unit	of	data	storage	in	Microsoft®	SQL	Server™	is	the	page.
In	SQL	Server	2000,	the	page	size	is	8	KB.	This	means	SQL	Server	2000
databases	have	128	pages	per	megabyte.

The	start	of	each	page	is	a	96-byte	header	used	to	store	system	information,	such
as	the	type	of	page,	the	amount	of	free	space	on	the	page,	and	the	object	ID	of
the	object	owning	the	page.

The	table	shows	eight	types	of	pages	in	the	data	files	of	a	SQL	Server	2000
database.

Page	type Contents
Data Data	rows	with	all	data	except	text,	ntext,	and	image

data.
Index Index	entries.
Text/Image Text,	ntext,	and	image	data.
Global	Allocation
Map,	Secondary
Global	Allocation
Map

Information	about	allocated	extents.

Page	Free	Space Information	about	free	space	available	on	pages.
Index	Allocation
Map

Information	about	extents	used	by	a	table	or	index.

Bulk	Changed	Map Information	about	extents	modified	by	bulk
operations	since	the	last	BACKUP	LOG	statement.

Differential	Changed
Map

Information	about	extents	that	have	changed	since
the	last	BACKUP	DATABASE	statement.

Log	files	do	not	contain	pages;	they	contain	a	series	of	log	records.

Data	pages	contain	all	the	data	in	data	rows	except	text,	ntext,	and	image	data,
which	is	stored	in	separate	pages.	Data	rows	are	placed	serially	on	the	page
starting	immediately	after	the	header.	A	row	offset	table	starts	at	the	end	of	the
page.	The	row	offset	table	contains	one	entry	for	each	row	on	the	page	and	each
entry	records	how	far	the	first	byte	of	the	row	is	from	the	start	of	the	page.	The

entries	in	the	row	offset	table	are	in	reverse	sequence	from	the	sequence	of	the
rows	on	the	page.

Rows	cannot	span	pages	in	SQL	Server.	In	SQL	Server	2000,	the	maximum
amount	of	data	contained	in	a	single	row	is	8060	bytes,	not	including	text,	ntext,
and	image	data.

Extents	are	the	basic	unit	in	which	space	is	allocated	to	tables	and	indexes.	An
extent	is	8	contiguous	pages,	or	64	KB.	This	means	SQL	Server	2000	databases
have	16	extents	per	megabyte.

To	make	its	space	allocation	efficient,	SQL	Server	2000	does	not	allocate	entire
extents	to	tables	with	small	amounts	of	data.	SQL	Server	2000	has	two	types	of
extents:

Uniform	extents	are	owned	by	a	single	object;	all	eight	pages	in	the
extent	can	only	be	used	by	the	owning	object.

Mixed	extents	are	shared	by	up	to	eight	objects.

A	new	table	or	index	is	usually	allocated	pages	from	mixed	extents.	When	the
table	or	index	grows	to	the	point	that	it	has	eight	pages,	it	is	switched	to	uniform
extents.	If	you	create	an	index	on	an	existing	table	that	has	enough	rows	to
generate	eight	pages	in	the	index,	all	allocations	to	the	index	are	in	uniform
extents.

SQL	Server	Architecture

Physical	Database	Files	and	Filegroups
Microsoft®	SQL	Server™	2000	maps	a	database	over	a	set	of	operating-system
files.	Data	and	log	information	are	never	mixed	on	the	same	file,	and	individual
files	are	used	only	by	one	database.

SQL	Server	2000	databases	have	three	types	of	files:

Primary	data	files

The	primary	data	file	is	the	starting	point	of	the	database	and	points	to
the	other	files	in	the	database.	Every	database	has	one	primary	data	file.
The	recommended	file	name	extension	for	primary	data	files	is	.mdf.

Secondary	data	files

Secondary	data	files	comprise	all	of	the	data	files	other	than	the	primary
data	file.	Some	databases	may	not	have	any	secondary	data	files,	while
others	have	multiple	secondary	data	files.	The	recommended	file	name
extension	for	secondary	data	files	is	.ndf.

Log	files

Log	files	hold	all	of	the	log	information	used	to	recover	the	database.
There	must	be	at	least	one	log	file	for	each	database,	although	there	can
be	more	than	one.	The	recommended	file	name	extension	for	log	files	is
.ldf.

SQL	Server	2000	does	not	enforce	the	.mdf,	.ndf,	and	.ldf	file	name	extensions,
but	these	extensions	are	recommended	to	help	identify	the	use	of	the	file.

In	SQL	Server	2000,	the	locations	of	all	the	files	in	a	database	are	recorded	in
both	the	master	database	and	the	primary	file	for	the	database.	Most	of	the	time
the	database	engine	uses	the	file	location	information	from	the	master	database.
For	some	operations,	however,	the	database	engine	uses	the	file	location
information	from	the	primary	file	to	initialize	the	file	location	entries	in	the
master	database:

When	attaching	a	database	using	the	sp_attach_db	system	stored
procedure.

When	upgrading	from	SQL	Server	version	7.0	to	SQL	Server	2000.

When	restoring	the	master	database.

SQL	Server	2000	files	have	two	names:

logical_file_name	is	a	name	used	to	refer	to	the	file	in	all	Transact-SQL
statements.

The	logical	file	name	must	conform	to	the	rules	for	SQL	Server
identifiers	and	must	be	unique	to	the	database.

os_file_name	is	the	name	of	the	physical	file.

It	must	follow	the	rules	for	Microsoft	Windows	NT®	or	Microsoft
Windows®	98,	and	Microsoft	Windows	95	file	names.

These	are	examples	of	the	logical	file	names	and	physical	file	names	of	a
database	created	on	a	default	instance	of	SQL	Server	2000:

SQL	Server	data	and	log	files	can	be	placed	on	either	FAT	or	NTFS	file	systems,
but	cannot	be	placed	on	compressed	file	systems.

Pages	in	a	SQL	Server	2000	data	file	are	numbered	sequentially	starting	with	0

for	the	first	page	in	the	file.	Each	file	has	a	file	ID	number.	Uniquely	identifying
a	page	in	a	database	requires	both	the	file	ID	and	page	number.	The	following
example	shows	the	page	numbers	in	a	database	that	has	a	4-MB	primary	data	file
and	a	1-MB	secondary	data	file.

The	first	page	in	each	file	is	a	file	header	page	containing	information	about	the
attributes	of	the	file.	Several	of	the	other	pages	at	the	start	of	the	file	also	contain
system	information,	such	as	allocation	maps.	One	of	the	system	pages	stored	in
both	the	primary	data	file	and	the	first	log	file	is	a	database	boot	page	containing
information	about	the	attributes	of	the	database.

SQL	Server	2000	files	can	grow	automatically	from	their	originally	specified
size.	When	you	define	a	file,	you	can	specify	a	growth	increment.	Each	time	the
file	fills,	it	increases	its	size	by	the	growth	increment.	If	there	are	multiple	files
in	a	filegroup,	they	do	not	autogrow	until	all	the	files	are	full.	Growth	then
occurs	using	a	round-robin	algorithm.

Each	file	can	also	have	a	maximum	size	specified.	If	a	maximum	size	is	not
specified,	the	file	can	continue	to	grow	until	it	has	used	all	available	space	on	the
disk.	This	feature	is	especially	useful	when	SQL	Server	is	used	as	a	database
embedded	in	an	application	where	the	user	does	not	have	ready	access	to	a
system	administrator.	The	user	can	let	the	files	autogrow	as	needed	to	lessen	the
administrative	burden	of	monitoring	the	amount	of	free	space	in	the	database	and
allocating	additional	space	manually.

When	multiple	instances	of	SQL	Server	are	run	on	a	single	computer,	each
instance	gets	a	different	default	directory	to	hold	the	files	for	the	databases
created	in	the	instance.	For	more	information,	see	Directories	and	File	Locations.

Database	Filegroups

JavaScript:hhobj_1.Click()

Database	files	can	be	grouped	together	in	filegroups	for	allocation	and
administration	purposes.	Some	systems	can	improve	their	performance	by
controlling	the	placement	of	data	and	indexes	onto	specific	disk	drives.
Filegroups	can	aid	this	process.	The	system	administrator	can	create	filegroups
for	each	disk	drive,	then	assign	specific	tables,	indexes,	or	the	text,	ntext,	or
image	data	from	a	table,	to	specific	filegroups.

No	file	can	be	a	member	of	more	than	one	filegroup.	Tables,	indexes,	and	text,
ntext,	and	image	data	can	be	associated	with	a	filegroup,	in	which	case	all	their
pages	will	be	allocated	in	that	filegroup.

Log	files	are	never	a	part	of	a	filegroup.	Log	space	is	managed	separately	from
data	space.

Files	in	a	filegroup	will	not	autogrow	unless	there	is	no	space	available	on	any	of
the	files	in	the	filegroup.

There	are	two	types	of	filegroups:

Primary

The	primary	filegroup	contains	the	primary	data	file	and	any	other	files
not	specifically	assigned	to	another	filegroup.	All	pages	for	the	system
tables	are	allocated	in	the	primary	filegroup.

User-defined

User-defined	filegroups	are	any	filegroups	specified	using	the
FILEGROUP	keyword	in	a	CREATE	DATABASE	or	ALTER
DATABASE	statement.

One	filegroup	in	each	database	operates	as	the	default	filegroup.	When	SQL
Server	allocates	a	page	to	a	table	or	index	for	which	no	filegroup	was	specified
when	they	were	created,	the	pages	are	allocated	from	the	default	filegroup.	Only
one	filegroup	at	a	time	can	be	the	default	filegroup.	Members	of	the	db_owner
fixed	database	role	can	switch	the	default	filegroup	from	one	filegroup	to
another.	If	no	default	filegroup	is	specified,	the	primary	filegroup	is	the	default
filegroup.

SQL	Server	2000	can	work	quite	effectively	without	filegroups,	so	many
systems	will	not	need	to	specify	user-defined	filegroups.	In	this	case,	all	files	are
included	in	the	primary	filegroup	and	SQL	Server	2000	can	allocate	data

anywhere	in	the	database.	Filegroups	are	not	the	only	method	that	can	be	used	to
distribute	I/O	across	multiple	drives.

Members	of	the	db_owner	fixed	database	role	can	back	up	and	restore
individual	files	or	filegroups	instead	of	backing	up	or	restoring	an	entire
database.

The	following	example	creates	a	database	on	a	default	instance	of	SQL	Server
2000.	The	database	has	a	primary	data	file,	a	user-defined	filegroup,	and	a	log
file.	The	primary	data	file	is	in	the	primary	filegroup	and	the	user-defined
filegroup	has	two	secondary	data	files.	An	ALTER	DATABASE	statement
makes	the	user-defined	filegroup	the	default.	A	table	is	then	created	specifying
the	user-defined	filegroup.

USE	master
GO
--	Create	the	database	with	the	default	data
--	filegroup	and	the	log	file.	Specify	the
--	growth	increment	and	the	max	size	for	the
--	primary	data	file.
CREATE	DATABASE	MyDB
ON	PRIMARY
		(NAME='MyDB_Primary',
			FILE	NAME=
						'c:\Program	Files\Microsoft	SQL	Server\MSSQL\data\MyDB_Prm.mdf',
			SIZE=4,
			MAXSIZE=10,
			FILEGROWTH=1),
FILEGROUP	MyDB_FG1
		(NAME	=	'MyDB_FG1_Dat1',
			FILE	NAME	=
						'c:\Program	Files\Microsoft	SQL	Server\MSSQL\data\MyDB_FG1_1.ndf',
			SIZE	=	1MB,
			MAXSIZE=10,
			FILEGROWTH=1),
		(NAME	=	'MyDB_FG1_Dat2',

			FILE	NAME	=
						'c:\Program	Files\Microsoft	SQL	Server\MSSQL\data\MyDB_FG1_2.ndf',
			SIZE	=	1MB,
			MAXSIZE=10,
			FILEGROWTH=1)
LOG	ON
		(NAME='MyDB_log',
			FILE	NAME	=
						'c:\Program	Files\Microsoft	SQL	Server\MSSQL\data\MyDB.ldf',
			SIZE=1,
			MAXSIZE=10,
			FILEGROWTH=1)
GO
ALTER	DATABASE	MyDB	
MODIFY	FILEGROUP	MyDB_FG1	DEFAULT
GO

--	Create	a	table	in	the	user-defined	filegroup.
USE	MyDB
CREATE	TABLE	MyTable
		(cola						int			PRIMARY	KEY,
			colb						char(8))
ON	MyDB_FG1
GO

User	filegroups	can	be	made	read-only.	The	data	cannot	be	altered,	but	the
catalog	can	still	be	modified	to	allow	work	such	as	permissions	management.

SQL	Server	2000	databases	can	be	detached	from	a	server	and	reattached	to
either	another	server	or	the	same	server.	This	is	especially	useful	in	making
databases	distributed	for	use	on	a	customer's	local	SQL	Server	installation.	For
example,	a	company	could	create	a	database	containing	their	current	product
catalog.	The	company	could	create	this	database	on	a	writable	compact	disc
drive	and	make	the	database	read-only.	They	could	then	copy	the	compact	disc
and	send	copies	to	all	of	their	field	sales	representatives	equipped	with	a	catalog
application	and	SQL	Server	on	Windows	95	laptops.	The	sales	representatives
would	then	have	the	latest	catalog	information.

SQL	Server	Architecture

Space	Allocation	and	Reuse
Microsoft®	SQL	Server™	2000	is	effective	at	quickly	allocating	pages	to
objects	and	reusing	space	freed	up	by	deleted	rows.	These	operations	are	internal
to	the	system	and	use	data	structures	not	visible	to	users,	yet	these	processes	and
structures	are	occasionally	referenced	in	SQL	Server	messages.	This	topic	is	an
overview	of	the	space	allocation	algorithms	and	data	structures	to	give	users	and
administrators	the	knowledge	needed	to	understand	references	to	the	terms	in
messages	generated	by	SQL	Server.

SQL	Server	Architecture

Managing	Extent	Allocations	and	Free	Space
The	Microsoft®	SQL	Server™	2000	data	structures	that	track	free	space	have	a
relatively	simple	structure.	This	has	two	benefits:

The	free	space	information	is	densely	packed,	so	there	are	relatively	few
pages	containing	this	information.

This	increases	speed	by	reducing	the	amount	of	disk	reads	necessary	to
retrieve	allocation	information,	and	increasing	the	chance	the	allocation
pages	will	remain	in	memory,	eliminating	even	more	reads.

Most	of	the	allocation	information	is	not	chained	together,	which
simplifies	the	maintenance	of	the	allocation	information.

Each	page	allocation	or	deallocation	can	be	performed	quickly,
decreasing	the	contention	between	concurrent	tasks	needing	to	allocate
or	free	pages.

SQL	Server	uses	two	types	of	allocation	maps	to	record	the	allocation	of	extents:

Global	Allocation	Map	(GAM)

GAM	pages	record	what	extents	have	been	allocated.	Each	GAM
covers	64,000	extents,	or	nearly	4	GB	of	data.	The	GAM	has	one	bit	for
each	extent	in	the	interval	it	covers.	If	the	bit	is	1,	the	extent	is	free;	if
the	bit	is	0,	the	extent	is	allocated.

Shared	Global	Allocation	Map	(SGAM)

SGAM	pages	record	what	extents	are	currently	used	as	mixed	extents
and	have	at	least	one	unused	page.	Each	SGAM	covers	64,000	extents,
or	nearly	4	GB	of	data.	The	SGAM	has	one	bit	for	each	extent	in	the
interval	it	covers.	If	the	bit	is	1,	the	extent	is	being	used	as	a	mixed
extent	and	has	free	pages;	if	the	bit	is	0,	the	extent	is	not	used	as	a
mixed	extent,	or	it	is	a	mixed	extent	whose	pages	are	all	in	use.

Each	extent	has	the	following	bit	patterns	set	in	the	GAM	and	SGAM	based	on
its	current	use.

Current	use	of	extent GAM	bit	setting SGAM	bit	setting
Free,	not	in	use 1 0
Uniform	extent,	or	full	mixed
extent

0 0

Mixed	extent	with	free	pages 0 1

This	results	in	simple	extent	management	algorithms.	To	allocate	a	uniform
extent,	SQL	Server	searches	the	GAM	for	a	1	bit	and	sets	it	to	0.	To	find	a	mixed
extent	with	free	pages,	SQL	Server	searches	the	SGAM	for	a	1	bit.	To	allocate	a
mixed	extent,	SQL	Server	searches	the	GAM	for	a	1	bit,	sets	it	to	0,	and	then
also	sets	the	corresponding	bit	in	the	SGAM	to	1.	To	free	an	extent,	SQL	Server
ensures	the	GAM	bit	is	set	to	1	and	the	SGAM	bit	is	set	to	0.	The	algorithms
actually	used	internally	by	SQL	Server	are	more	sophisticated	than	what	is	stated
here	(SQL	Server	distributes	data	evenly	in	a	database),	but	even	the	real
algorithms	are	simplified	by	not	having	to	manage	chains	of	extent	allocation
information.

Page	Free	Space	(PFS)	pages	record	whether	an	individual	page	in	a	heap	or	an
ntext,	text,	or	image	column	has	been	allocated,	and	the	amount	of	space	free
on	each	page.	Each	PFS	page	covers	approximately	8,000	pages.	For	each	page,
the	PFS	has	a	bitmap	recording	whether	the	page	is	empty,	1-50%	full,	51-80%
full,	81-95%	full,	or	96-100%	full.

After	an	extent	has	been	allocated	to	an	object,	SQL	Server	uses	the	PFS	pages
to	record	which	pages	in	the	extent	are	allocated	or	free,	and	how	much	free
space	is	available	for	use.	This	information	is	used	when	SQL	Server	has	to
allocate	a	new	page,	or	when	it	needs	to	find	a	page	with	free	space	available	to
hold	a	newly	inserted	row.

A	PFS	page	is	the	first	page	after	the	file	header	page	in	a	data	file	(with	page
number	1).	Next	comes	a	GAM	(with	page	number	2)	followed	by	an	SGAM
(page	3).	There	is	a	PFS	page	approximately	8,000	pages	after	the	first.	There	is
another	GAM	each	64,000	extents	after	the	first	GAM	on	page	2,	and	another
SGAM	each	64,000	extents	after	the	first	SGAM	on	page	3.

SQL	Server	Architecture

Managing	Space	Used	by	Objects
Index	Allocation	Map	(IAM)	pages	map	the	extents	in	a	database	file	used	by	a
heap	or	index.	IAM	pages	also	map	the	extents	allocated	to	the	ntext,	text,	and
image	page	chain	for	any	table	that	has	columns	of	these	types.	Each	of	these
objects	has	a	chain	of	one	or	more	IAM	pages	recording	all	the	extents	allocated
to	it.	Each	object	has	at	least	one	IAM	for	each	file	on	which	it	has	extents.	They
may	have	more	than	one	IAM	on	a	file	if	the	range	of	the	extents	on	the	file
allocated	to	the	object	exceeds	the	range	that	an	IAM	can	record.

IAM	pages	are	allocated	as	needed	for	each	object	and	are	located	randomly	in
the	file.	sysindexes.dbo.FirstIAM	points	to	the	first	IAM	page	for	an	object,
and	all	the	IAM	pages	for	that	object	are	linked	in	a	chain.

An	IAM	page	has	a	header	indicating	the	starting	extent	of	the	range	of	extents
mapped	by	the	IAM.	The	IAM	also	has	a	large	bitmap	in	which	each	bit
represents	one	extent.	The	first	bit	in	the	map	represents	the	first	extent	in	the
range,	the	second	bit	represents	the	second	extent,	and	so	on.	If	a	bit	is	0,	the
extent	it	represents	is	not	allocated	to	the	object	owning	the	IAM.	If	the	bit	is	1,

the	extent	it	represents	is	allocated	to	the	object	owning	the	IAM	page.

When	Microsoft®	SQL	Server™	2000	needs	to	insert	a	new	row	and	no	space	is
available	in	the	current	page,	it	uses	the	IAM	and	PFS	pages	to	find	a	page	with
enough	space	to	hold	the	row.	SQL	Server	uses	the	IAM	pages	to	find	the	extents
allocated	to	the	object.	For	each	extent,	SQL	Server	searches	the	PFS	pages	to
see	if	there	is	a	page	with	enough	free	space	to	hold	the	row.	Each	IAM	and	PFS
page	covers	a	large	number	of	data	pages,	so	there	are	few	IAM	and	PFS	pages
in	a	database.	This	means	that	the	IAM	and	PFS	pages	are	generally	in	memory
in	the	SQL	Server	buffer	pool,	so	they	can	be	searched	quickly.

SQL	Server	allocates	a	new	extent	to	an	object	only	when	it	cannot	quickly	find
a	page	in	an	existing	extent	with	enough	space	to	hold	the	row	being	inserted.
SQL	Server	allocates	extents	from	those	available	in	the	filegroup	using	a
proportional	allocation	algorithm.	If	a	filegroup	has	two	files,	one	of	which	has
twice	the	free	space	of	the	other,	two	pages	will	be	allocated	from	the	file	with
more	empty	space	for	every	one	page	allocated	from	the	other	file.	This	means
that	every	file	in	a	filegroup	should	have	a	similar	percentage	of	space	used.

SQL	Server	Architecture

Tracking	Modified	Extents
SQL	Server	2000	introduces	two	new	internal	data	structures	to	track	extents
modified	by	bulk	copy	operations	or	modified	since	the	last	full	backup.	These
new	data	structures	greatly	speed	differential	backups	and	logging	bulk	copy
operations	when	a	database	is	using	the	bulk-logged	recovery	model.	Like	the
Global	Allocation	Map	(GAM)	and	Secondary	Global	Allocation	Map	(SGAM)
pages,	these	new	structures	are	bitmaps	where	each	bit	represents	a	single	extent.

Differential	Changed	Map	(DCM)

Tracks	the	extents	that	have	changed	since	the	last	BACKUP
DATABASE	statement.	If	the	bit	for	an	extent	is	1,	the	extent	has	been
modified	since	the	last	BACKUP	DATABASE	statement.	If	the	bit	is	0,
the	extent	has	not	been	modified.

Differential	backups	can	now	read	just	the	DCM	pages	to	find	out
which	extents	have	been	modified.	This	greatly	reduces	the	number	of
pages	that	a	differential	backup	must	scan.	The	length	of	time	a
differential	backup	runs	is	now	proportional	to	the	number	of	extents
modified	since	the	last	BACKUP	DATABASE	statement,	not	the
overall	size	of	the	database.

Bulk	Changed	Map	(BCM)

Tracks	the	extents	that	have	been	modified	by	bulk	logged	operations
since	the	last	BACKUP	LOG	statement.	If	the	bit	for	an	extent	is	1,	the
extent	has	been	modified	by	a	bulk	logged	operation	after	the	last
BACKUP	LOG	statement.	If	the	bit	is	0,	the	extent	has	not	been
modified	by	bulk	logged	operations.

BCM	pages	are	only	relevant	when	the	database	is	using	the	bulk-
logged	recovery	model.	In	this	recovery	model,	when	a	BACKUP	LOG
is	performed,	the	backup	process	scans	the	BCMs	for	extents	that	have
been	modified	and	includes	those	extents	in	the	log	backup.	This	allows
the	bulk	logged	operations	to	be	recovered	if	the	database	is	restored
from	a	database	backup	and	a	sequence	of	transaction	log	backups.
BCM	pages	are	not	relevant	in	a	database	is	using	the	simple	recovery

model	because	no	bulk	logged	operations	are	logged.	They	are	not
relevant	in	a	database	using	the	full	recovery	model	because	that
recovery	model	treats	bulk	logged	operations	as	fully	logged	operations.

The	interval	between	DCM	pages	and	BCM	pages	is	the	same	as	the	interval
between	GAM	and	SGAM	pages;	64,000	extents.	The	DCM	and	BCM	pages	are
located	behind	the	GAM	and	SGAM	pages	in	a	physical	file:

See	Also

Managing	Extent	Allocations	and	Free	Space

SQL	Server	Architecture

Shrinking	Databases
SQL	Server	2000	autoshrinks	databases	that	have	a	large	amount	of	free	space.
Only	those	databases	where	the	autoshrink	option	has	been	set	to	true	are
candidates	for	this	process.	The	server	checks	the	space	usage	in	each	database
periodically.	If	a	database	is	found	with	a	lot	of	empty	space	and	it	has	the
autoshrink	option	set	to	true,	SQL	Server	reduces	the	size	of	the	files	in	the
database.	You	can	also	use	SQL	Server	Enterprise	Manager	or	the	DBCC
SHRINKDATABASE	and	DBCC	SHRINKFILE	statements	to	shrink	the	files	of
a	database	manually.

Files	are	always	shrunk	from	the	end.	For	example,	if	you	have	a	5	GB	file	and
specify	4GB	as	the	target_size	in	a	DBCC	SHRINKDB	statement,	SQL	Server
will	free	as	much	space	as	it	can	from	the	last	1	GB	of	the	file.	If	there	are	used
pages	in	the	part	of	the	file	being	released,	SQL	Server	first	relocates	the	pages
to	the	part	being	retained.	You	can	only	shrink	a	database	to	the	point	where	it
has	no	free	space	remaining.	For	example,	if	a	5GB	database	has	4	GB	of	data
and	you	specify	3	GB	as	the	target_size	of	a	DBCC	SHRINKDATABASE
statement,	only	1	GB	will	be	freed.

If	a	DBCC	SHRINKDATABASE	or	DBCC	SHRINKFILE	statement	cannot
reclaim	all	the	space	in	a	log	file,	the	statement	will	issue	an	informational
message	indicating	what	action	you	must	perform	to	make	more	space	eligible	to
be	freed.	For	more	information	about	shrinking	log	files,	see	Shrinking	the
Transaction	Log.

SQL	Server	Architecture

Table	and	Index	Architecture
Objects	in	a	Microsoft®	SQL	Server™	2000	database	are	stored	as	a	collection
of	8-KB	pages.	This	topic	describes	the	way	the	pages	for	tables	and	indexes	are
organized.

SQL	Server	2000	supports	indexes	on	views.	The	first	index	allowed	on	a	view
is	a	clustered	index.	At	the	time	a	CREATE	INDEX	statement	is	executed	on	a
view,	the	result	set	for	the	view	is	materialized	and	stored	in	the	database	with
the	same	structure	as	a	table	that	has	a	clustered	index.	The	result	set	that	is
stored	is	the	same	as	that	which	is	produced	by	this	statement.

SELECT	*	FROM	ViewName

The	data	rows	for	each	table	or	indexed	view	are	stored	in	a	collection	of	8-KB
data	pages.	Each	data	page	has	a	96-byte	header	containing	system	information
such	as	the	identifier	(ID)	of	the	table	that	owns	the	page.	The	page	header	also
includes	pointers	to	the	next	and	previous	pages	that	are	used	if	the	pages	are
linked	in	a	list.	A	row	offset	table	is	at	the	end	of	the	page.	Data	rows	fill	the	rest
of	the	page.

Organization	of	Data	Pages
SQL	Server	2000	tables	use	one	of	two	methods	to	organize	their	data	pages:

Clustered	tables	are	tables	that	have	a	clustered	index.

The	data	rows	are	stored	in	order	based	on	the	clustered	index	key.	The
index	is	implemented	as	a	B-tree	index	structure	that	supports	fast
retrieval	of	the	rows	based	on	their	clustered	index	key	values.	The
pages	in	each	level	of	the	index,	including	the	data	pages	in	the	leaf
level,	are	linked	in	a	doubly-linked	list,	but	navigation	from	one	level	to

another	is	done	using	key	values.

Heaps	are	tables	that	have	no	clustered	index.

The	data	rows	are	not	stored	in	any	particular	order,	and	there	is	no
particular	order	to	the	sequence	of	the	data	pages.	The	data	pages	are
not	linked	in	a	linked	list.

Indexed	views	have	the	same	storage	structure	as	clustered	tables.

SQL	Server	also	supports	up	to	249	nonclustered	indexes	on	each	table	or
indexed	view.	The	nonclustered	indexes	have	a	B-tree	index	structure	similar	to
the	one	in	clustered	indexes.	The	difference	is	that	nonclustered	indexes	have	no
effect	on	the	order	of	the	data	rows.	Clustered	tables	and	indexed	views	keep
their	data	rows	in	order	based	on	the	clustered	index	key.	The	collection	of	data
pages	for	a	heap	is	not	affected	if	nonclustered	indexes	are	defined	for	the	table.
The	data	pages	remain	in	a	heap	unless	a	clustered	index	is	defined.

The	pages	holding	text,	ntext,	and	image	data	are	managed	as	a	single	unit	for
each	table.	All	of	the	text,	ntext,	and	image	data	for	a	table	is	stored	in	one
collection	of	pages.

All	of	the	page	collections	for	tables,	indexes	and	indexed	views	are	anchored	by
page	pointers	in	the	sysindexes	table.	Every	table	and	indexed	view	has	one
collection	of	data	pages,	plus	additional	collections	of	pages	to	implement	each
index	defined	for	the	table	or	view.

Each	table,	index	and	indexed	view	has	a	row	in	sysindexes	uniquely	identified
by	the	combination	of	the	object	identifier	(id)	column	and	the	index	identifier
(indid)	column.	The	allocation	of	pages	to	tables,	indexes,	and	indexed	views	is
managed	by	a	chain	of	IAM	pages.	The	column	sysindexes.FirstIAM	points	to
first	IAM	page	in	the	chain	of	IAM	pages	managing	the	space	allocated	to	the
table,	index	or	indexed	view.

Each	table	has	a	set	of	rows	in	sysindexes:

A	heap	has	a	row	in	sysindexes	with	indid	=	0.

The	FirstIAM	column	points	to	the	IAM	chain	for	the	collection	of
data	pages	for	the	table.	The	server	uses	the	IAM	pages	to	find	the
pages	in	the	data	page	collection	because	they	are	not	linked	together.

A	clustered	index	on	a	table	or	view	has	a	row	in	sysindexes	with	indid
=	1.

The	root	column	points	to	the	top	of	the	clustered	index	B-tree.	The
server	uses	the	index	B-tree	to	find	the	data	pages.

Each	nonclustered	index	created	for	a	table	or	view	has	a	row	in
sysindexes.

The	values	for	indid	in	the	rows	for	each	nonclustered	index	range	from
2	through	250.	The	root	column	points	to	the	top	of	the	nonclustered
index	B-tree.

Each	table	that	has	at	least	one	text,	ntext,	or	image	column	also	has	a
row	in	sysindexes	with	indid	=	255.

The	column	FirstIAM	points	to	the	chain	of	IAM	pages	that	manage
the	text,	ntext,	and	image	pages.

In	SQL	Server	version	6.5	and	earlier,	sysindexes.first	always	points	to	the	start
of	a	heap,	the	start	of	the	leaf	level	of	an	index,	or	the	start	of	a	chain	of	text	and
image	pages.	In	SQL	Server	version	7.0	and	later,	sysindexes.first	is	largely
unused.	In	SQL	Server	version	6.5	and	earlier,	sysindexes.root	in	a	row	with
indid	=	0	points	to	the	last	page	in	a	heap.	In	SQL	Server	version	7.0	and	later,
sysindexes.root	in	a	row	with	indid	=	0	is	unused.

SQL	Server	Architecture

Distribution	Statistics
All	indexes	have	distribution	statistics	that	describe	the	selectivity	and
distribution	of	the	key	values	in	the	index.	Selectivity	is	a	property	that	relates	to
how	many	rows	are	typically	identified	by	a	key	value.	A	unique	key	has	high
selectivity;	a	key	value	found	in	1,000	rows	has	poor	selectivity.	The	selectivity
and	distribution	statistics	are	used	by	Microsoft®	SQL	Server™	2000	to
optimize	its	navigation	through	tables	and	indexed	views	when	processing
Transact-SQL	statements.	The	distribution	statistics	are	used	to	estimate	how
efficient	an	index	would	be	in	retrieving	data	associated	with	a	key	value	or
range	specified	in	the	query.	The	statistics	for	each	index	are	not	limited	to	a
single	page	but	are	stored	as	a	long	string	of	bits	across	multiple	pages	in	the
same	way	image	data	is	stored.	The	column	sysindexes.statblob	points	to	this
distribution	data.	You	can	use	the	DBCC	SHOW_STATISTICS	statement	to	get
a	report	on	the	distribution	statistics	for	an	index.

Distribution	statistics	may	also	be	maintained	for	unindexed	columns.	These	can
be	defined	manually	using	the	CREATE	STATISTICS	statement	or	created
automatically	by	the	query	optimizer.	Statistics	on	unindexed	columns	count
against	the	limit	of	249	nonclustered	indexes	allowed	on	a	table.

To	be	useful	to	query	optimizer,	distribution	statistics	must	be	kept	reasonably
current.	The	distribution	statistics	should	be	refreshed	anytime	significant
numbers	of	changes	to	keys	occur	in	the	index.	Distribution	statistics	can	be
updated	manually	using	the	UPDATE	STATISTICS	statement.	SQL	Server	2000
can	also	detect	when	distribution	statistics	are	out	of	date	and	update	the
statistics	automatically.	This	update	is	performed	by	the	task	that	detected	that
the	statistics	needed	to	be	updated.	The	update	is	performed	using	a	complex
sampling	method	that	minimizes	the	effect	of	the	update	on	transaction
throughput.

See	Also

Statistical	Information

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Heap	Structures
Heaps	have	one	row	in	sysindexes	with	indid	=	0.	The	column
sysindexes.FirstIAM	points	to	the	first	IAM	page	in	the	chain	of	IAM	pages
that	manage	the	space	allocated	to	the	heap.	Microsoft®	SQL	Server™	2000
uses	the	IAM	pages	to	navigate	through	the	heap.	The	data	pages	and	the	rows
within	them	are	not	in	any	specific	order,	and	are	not	linked	together.	The	only
logical	connection	between	data	pages	is	that	recorded	in	the	IAM	pages.

Table	scans	or	serial	reads	of	a	heap	can	be	done	by	scanning	the	IAM	pages	to
find	the	extents	holding	pages	for	the	heap.	Because	the	IAM	represents	extents
in	the	same	order	they	exist	in	the	data	files,	this	means	that	serial	heap	scans
progress	uniformly	down	each	file.	This	is	more	efficient	than	following	the	data
page	chains	used	in	earlier	versions	of	SQL	Server,	in	which	the	data	page	chain
often	takes	a	somewhat	random	path	through	the	files	of	a	database.	Using	the
IAM	pages	to	set	the	scan	sequence	also	means	that	rows	from	the	heap	are	not
typically	returned	in	the	order	in	which	they	were	inserted.

SQL	Server	Architecture

Clustered	Indexes
Clustered	indexes	have	one	row	in	sysindexes	with	indid	=	1.	The	pages	in	the
data	chain	and	the	rows	in	them	are	ordered	on	the	value	of	the	clustered	index
key.	All	inserts	are	made	at	the	point	the	key	value	in	the	inserted	row	fits	in	the
ordering	sequence.

Microsoft®	SQL	Server™	2000	indexes	are	organized	as	B-trees.	Each	page	in
an	index	holds	a	page	header	followed	by	index	rows.	Each	index	row	contains	a
key	value	and	a	pointer	to	either	a	lower-level	page	or	a	data	row.	Each	page	in
an	index	is	called	an	index	node.	The	top	node	of	the	B-tree	is	called	the	root
node.	The	bottom	layer	of	nodes	in	the	index	are	called	the	leaf	nodes.	The	pages
in	each	level	of	the	index	are	linked	together	in	a	doubly-linked	list.	In	a
clustered	index,	the	data	pages	make	up	the	leaf	nodes.	Any	index	levels
between	the	root	and	the	leaves	are	collectively	known	as	intermediate	levels.

For	a	clustered	index,	sysindexes.root	points	to	the	top	of	the	clustered	index.
SQL	Server	navigates	down	the	index	to	find	the	row	corresponding	to	a
clustered	index	key.	To	find	a	range	of	keys,	SQL	Server	navigates	through	the
index	to	find	the	starting	key	value	in	the	range,	and	then	scans	through	the	data
pages	using	the	previous	or	next	pointers.	To	find	the	first	page	in	the	chain	of
data	pages,	SQL	Server	follows	the	leftmost	pointers	from	the	root	node	of	the
index.

This	illustration	shows	the	structure	of	a	clustered	index.

SQL	Server	Architecture

Nonclustered	Indexes
Nonclustered	indexes	have	the	same	B-tree	structure	as	clustered	indexes,	with
two	significant	differences:

The	data	rows	are	not	sorted	and	stored	in	order	based	on	their
nonclustered	keys.

The	leaf	layer	of	a	nonclustered	index	does	not	consist	of	the	data
pages.

Instead,	the	leaf	nodes	contain	index	rows.	Each	index	row	contains	the
nonclustered	key	value	and	one	or	more	row	locators	that	point	to	the
data	row	(or	rows	if	the	index	is	not	unique)	having	the	key	value.

Nonclustered	indexes	can	be	defined	on	a	table	with	a	clustered	index,	a	heap,	or
an	indexed	view.	In	Microsoft®	SQL	Server™	2000,	the	row	locators	in
nonclustered	index	rows	have	two	forms:

If	the	table	is	a	heap	(does	not	have	a	clustered	index),	the	row	locator	is
a	pointer	to	the	row.	The	pointer	is	built	from	the	file	identifier	(ID),
page	number,	and	number	of	the	row	on	the	page.	The	entire	pointer	is
known	as	a	Row	ID.

If	the	table	does	have	a	clustered	index,	or	the	index	is	on	an	indexed
view,	the	row	locator	is	the	clustered	index	key	for	the	row.	If	the
clustered	index	is	not	a	unique	index,	SQL	Server	2000	makes	duplicate
keys	unique	by	adding	an	internally	generated	value.	This	value	is	not
visible	to	users;	it	is	used	to	make	the	key	unique	for	use	in
nonclustered	indexes.	SQL	Server	retrieves	the	data	row	by	searching
the	clustered	index	using	the	clustered	index	key	stored	in	the	leaf	row
of	the	nonclustered	index.

Because	nonclustered	indexes	store	clustered	index	keys	as	their	row	locators,	it
is	important	to	keep	clustered	index	keys	as	small	as	possible.	Do	not	choose

large	columns	as	the	keys	to	clustered	indexes	if	a	table	also	has	nonclustered
indexes.

SQL	Server	Architecture

tempdb	and	Index	Creation
When	you	create	an	index,	you	can	specify	WITH	SORT_IN_TEMPDB	option,
which	directs	the	database	engine	to	use	tempdb	to	store	the	intermediate	sort
results	used	to	build	the	index.	Although	this	option	increases	the	amount	of	disk
space	used	to	create	an	index,	it	reduces	the	time	it	takes	to	create	an	index	when
tempdb	is	on	a	different	set	of	disks	than	the	user	database.

As	the	database	engine	builds	an	index,	it	goes	through	two	phases:

The	database	engine	first	scans	the	data	pages	to	retrieve	key	values	and
builds	a	index	leaf	row	for	each	data	row.	When	the	internal	sort	buffers
have	been	filled	with	leaf	index	entries,	the	entries	are	sorted	and
written	to	disk	as	an	intermediate	sort	run.	The	database	engine	then
resumes	the	data	page	scan	until	the	sort	buffers	are	again	filled.	This
pattern	of	scanning	multiple	data	pages	followed	by	sorting	and	writing
a	sort	run	continues	until	all	the	rows	of	the	base	table	have	been
processed.	In	a	clustered	index,	the	leaf	rows	of	the	index	are	the	data
rows	of	the	table,	so	the	intermediate	sort	runs	contain	all	the	data	rows.
In	a	nonclustered	index,	the	leaf	rows	do	not	contain	values	from
nonkey	columns,	so	are	generally	smaller.	A	nonclustered	sort	run	can
be	large,	however,	if	the	index	keys	are	large.

The	database	engine	merges	the	sorted	runs	of	index	leaf	rows	into	a
single,	sorted	stream.	The	sort	merge	component	of	the	engine	starts
with	the	first	page	of	each	sort	run,	finds	the	lowest	key	in	all	the	pages,
and	passes	that	leaf	row	to	the	index	create	component.	The	next	lowest
key	is	then	processed,	then	the	next,	and	so	on.	When	the	last	leaf	index
row	is	extracted	from	a	sort	run	page,	the	process	shifts	to	the	next	page
from	that	sort	run.	When	all	the	pages	in	a	sort	run	extent	have	been
processed,	the	extent	is	freed.	As	each	leaf	index	row	is	passed	to	the
index	create	component,	it	is	placed	in	a	leaf	index	page	in	the	buffer.
Each	leaf	page	is	written	as	it	is	filled.	As	leaf	pages	are	written,	the
database	engine	also	builds	the	upper	levels	of	the	index.	Each	upper
level	index	page	is	written	when	it	is	filled.

If	you	create	a	clustered	index	on	a	table	that	has	existing	nonclustered	indexes,
the	general	process	is:

The	nonclustered	indexes	are	deallocated,	but	the	definitions	of	the
indexes	are	retained.	The	space	is	not	available	for	use	until	the	end	of
the	transaction	containing	the	CREATE	INDEX	statement,	so	that	the
old	index	pages	are	still	available	if	they	have	to	be	restored	during	a
rollback	of	the	transaction.

The	clustered	index	is	created.

The	nonclustered	indexes	are	re-created.

When	SORT_IN_TEMPDB	is	not	specified,	the	sort	runs	are	stored	in	the
destination	filegroup.	During	the	first	phase	of	creating	the	index,	the	alternating
reads	of	the	base	table	pages	and	writes	of	the	sort	runs	move	the	disk	read-write
heads	from	one	area	of	the	disk	to	another.	The	heads	are	in	the	data	page	area	as
the	data	pages	are	scanned.	They	move	to	an	area	of	free	space	when	the	sort
buffers	fill	and	the	current	sort	run	has	to	be	written	to	disk,	then	move	back	to
the	data	page	area	as	the	table	page	scan	is	resumed.	The	read-write	head
movement	is	higher	in	the	second	phase.	At	that	time	the	sort	process	is	typically
alternating	reads	from	each	sort	run	area.	Both	the	sort	runs	and	the	new	index
pages	are	built	in	the	destination	filegroup,	meaning	that	at	the	same	time	the
database	engine	is	spreading	reads	across	the	sort	runs,	it	has	to	periodically
jump	to	the	index	extents	to	write	new	index	pages	as	they	are	filled.

If	the	SORT_IN_TEMPDB	option	is	specified	and	tempdb	is	on	a	separate	set
of	disks	from	the	destination	filegroup,	then	during	the	first	phase	the	reads	of
the	data	pages	occur	on	a	different	disk	than	the	writes	to	the	sort	work	area	in
tempdb.	This	means	the	disk	reads	of	the	data	keys	tend	to	proceed	more
serially	across	the	disk,	and	the	writes	to	the	tempdb	disk	also	tend	to	be	serial,
as	do	the	writes	to	build	the	final	index.	Even	if	other	users	are	using	the
database	and	accessing	separate	disk	addresses,	the	overall	pattern	of	reads	and
writes	are	more	efficient	when	SORT_IN_TEMPDB	is	specified	than	when	it	is
not.

The	SORT_IN_TEMPDB	option	may	improve	the	contiguity	of	index	extents,
especially	if	the	CREATE	INDEX	is	not	being	processed	in	parallel.	The	sort

work	area	extents	are	freed	on	a	somewhat	random	basis	with	respect	to	their
location	in	the	database.	If	the	sort	work	areas	are	contained	in	the	destination
filegroup,	then	as	the	sort	work	extents	are	freed,	they	can	be	acquired	by	the
requests	for	extents	to	hold	the	index	structure	as	it	is	built.	This	can	randomize
the	locations	of	the	index	extents	to	a	certain	degree.	If	the	sort	extents	are	held
separately	in	tempdb,	the	sequence	in	which	they	are	freed	has	no	bearing	on
the	location	of	the	index	extents.	Also,	when	the	intermediate	sort	runs	are	stored
in	tempdb	instead	of	the	destination	filegroup,	there	is	more	space	available	in
the	destination	filegroup,	which	increases	the	chances	that	index	extents	will	be
contiguous.

The	SORT_IN_TEMPDB	option	affects	only	the	current	statement.	No	meta
data	records	that	the	index	was	or	was	not	sorted	in	tempdb.	For	example,	if	you
create	a	nonclustered	index	using	the	SORT_IN_TEMPDB	option,	and	later
create	a	clustered	index	without	specifying	the	option,	the	database	engine	does
not	use	the	option	when	it	re-creates	the	nonclustered	index.

Free	Space	Requirements
When	you	specify	the	SORT_IN_TEMPDB	option,	you	must	have	sufficient
free	space	available	in	tempdb	to	hold	the	intermediate	sort	runs,	and	enough
free	space	in	the	destination	filegroup	to	hold	the	new	index.	The	CREATE
INDEX	statement	fails	if	there	is	not	enough	free	space	and	there	is	some	reason
the	databases	cannot	autogrow	to	acquire	more	space	(such	as	no	space	on	the
disk,	or	autogrow	turned	off).

If	SORT_IN_TEMPDB	is	not	specified,	the	available	free	space	in	the
destination	filegroup	must	be	roughly	the	size	of	the	final	index.	During	the	first
phase,	the	sort	runs	are	built	and	require	about	the	same	amount	of	space	as	the
final	index.	During	the	second	phase,	each	sort	run	extent	is	freed	after	it	has
been	processed.	This	means	that	sort	run	extents	are	freed	at	about	the	same	rate
at	which	extents	are	acquired	to	hold	the	final	index	pages,	so	the	overall	space
requirements	do	not	greatly	exceed	the	size	of	the	final	index.	One	side	effect	of
this	is	that	if	the	amount	of	free	space	is	very	close	to	the	size	of	the	final	index,
the	database	engine	will	tend	to	reuse	the	sort	run	extents	very	quickly	after	they
are	freed.	Because	the	sort	run	extents	are	freed	in	a	somewhat	random	manner,
this	reduces	the	continuity	of	the	index	extents	in	this	scenario.	If
SORT_IN_TEMPDB	is	not	specified,	the	continuity	of	the	index	extents	is

improved	if	there	is	enough	free	space	available	in	the	destination	filegroup	that
the	index	extents	can	be	allocated	from	a	contiguous	pool	rather	than	from	the
freshly	deallocated	sort	run	extents.

At	the	time	you	execute	the	CREATE	INDEX	statement,	you	must	have
available	as	free	space:

When	you	create	a	nonclustered	index:

If	SORT_IN_TEMPDB	is	specified,	there	must	be	enough	free
space	in	tempdb	to	store	the	sort	runs,	and	enough	free	space
in	the	destination	filegroup	to	store	the	final	index	structure.
The	sort	runs	contain	the	leaf	rows	of	the	index.

If	SORT_IN_TEMPDB	is	not	specified,	the	free	space	in	the
destination	filegroup	must	be	large	enough	to	store	the	final
index	structure.	The	continuity	of	the	index	extends	may	be
improved	if	more	free	space	is	available.

When	you	create	a	clustered	index	on	a	table	that	does	not	have
nonclustered	indexes:

If	SORT_IN_TEMPDB	is	specified,	there	must	be	enough	free
space	in	tempdb	to	store	the	sort	runs,	which	include	the	data
rows	of	the	table.	There	must	be	enough	free	space	in	the
destination	filegroup	to	store	the	final	index	structure,
including	the	data	rows	of	the	table	and	the	index	B-tree.	A
rough	estimate	is	1.2	times	the	size	of	the	original	table,
although	you	may	need	to	adjust	the	estimate	for	factors	such
as	having	a	large	key	size	or	a	fillfactor	with	a	low	value.

If	SORT_IN_TEMPDB	is	not	specified,	the	free	space	in	the
destination	filegroup	must	be	large	enough	to	store	the	final
table,	including	the	index	structure.	The	continuity	of	the	table
and	index	extents	may	be	improved	if	more	free	space	is
available.

When	you	create	a	clustered	index	on	a	table	that	has	nonclustered
indexes:

If	SORT_IN_TEMPDB	is	specified,	there	must	be	enough	free
space	in	tempdb	to	store	the	collection	of	sort	runs	for	the
largest	index	(typically	the	clustered	index),	and	enough	free
space	in	the	destination	filegroup	to	store	the	final	structures	of
all	the	indexes,	including	the	clustered	index	that	contains	the
data	rows	of	the	table.

If	SORT_IN_TEMPDB	is	not	specified,	the	free	space	in	the
destination	filegroup	must	be	large	enough	to	store	the	final
table,	including	the	structures	of	all	the	indexes.	The	continuity
of	the	table	and	index	extents	may	be	improved	if	more	free
space	is	available.

See	Also

CREATE	INDEX

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

text,	ntext,	and	image	Data
Individual	text,	ntext,	and	image	values	can	be	a	maximum	of	2-GB,	which	is
too	long	to	store	in	a	single	data	row.	In	Microsoft®	SQL	Server™	2000,	small
text,	ntext,	or	image	values	can	be	stored	directly	in	the	row,	but	values	too
large	to	fit	in	the	row	are	stored	in	a	collection	of	pages	separate	from	the	pages
holding	the	data	for	the	other	columns	of	the	row.

The	administrator	uses	the	text	in	row	option	in	sp_tableoption	to	specify
whether	small	text,	ntext,	or	image	values	are	stored	directly	in	a	row:

When	text	in	row	is	OFF,	SQL	Server	2000	has	the	same	ntext,	text,
and	image	behavior	as	SQL	Server	version	7.0.	For	each	text,	ntext,	or
image	value,	all	that	is	stored	in	the	data	row	is	a	16-byte	pointer.	For
each	row,	this	pointer	points	to	the	location	of	the	text,	ntext,	or	image
data.	A	row	containing	multiple	text,	ntext,	or	image	columns	has	one
pointer	for	each	text,	ntext,	or	image	column.

When	text	in	row	is	ON,	SQL	Server	2000	stores	small	text,	ntext,	and
image	values	in	the	data	row.	Only	text,	ntext,	or	image	values	that
cannot	fit	in	the	row	are	stored	in	a	separate	collection	of	pages.

Each	table	has	only	one	collection	of	pages	to	hold	text,	ntext,	and	image	data.
The	sysindexes	row	that	has	indid	=	255	is	the	anchor	for	the	collection.	The
text,	ntext,	and	image	data	for	all	the	rows	in	the	table	is	interleaved	in	this
collection	of	text	and	image	pages.

In	SQL	Server	2000,	individual	text,	ntext,	and	image	pages	are	not	limited	to
holding	data	for	only	one	occurrence	of	a	text,	ntext,	or	image	column.	A	text,
ntext,	or	image	page	can	hold	data	from	multiple	rows;	the	page	can	even	have	a
mix	of	text,	ntext,	and	image	data.

Although	the	user	always	works	with	text,	ntext,	and	image	data	as	if	it	is	a
single	long	string	of	bytes,	the	data	is	not	stored	in	that	format.	The	data	is	stored
in	a	collection	of	8-KB	pages	that	are	not	necessarily	located	next	to	each	other.
In	SQL	Server	2000,	the	pages	are	organized	logically	in	a	B-tree	structure,	and

in	SQL	Server	version	6.5	and	earlier	they	are	linked	in	a	page	chain.	The
advantage	of	the	method	used	by	SQL	Server	2000	is	that	operations	starting	in
the	middle	of	the	string	are	more	efficient.	SQL	Server	2000	can	quickly
navigate	the	B-tree,	and	SQL	Server	version	6.5	must	scan	through	the	page
chain.

See	Also

sp_tableoption

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

ntext,	text,	and	image	Data	When	text	in	row	Is	Set	to
OFF
The	structure	of	the	B-tree	used	to	store	text,	ntext,	or	image	data	when	the	text
in	row	option	of	sp_tableoption	is	set	to	OFF	differs	slightly	if	there	is	less	than
32	KB	of	data	than	if	there	is	more.

If	there	is	less	than	32	KB	of	data,	the	16-byte	text	pointer	in	the	data	row	points
to	an	84-byte	text	root	structure.	This	forms	the	root	node	of	the	B-tree	structure.
The	root	node	points	to	the	blocks	of	text,	ntext,	or	image	data.

Although	the	data	for	text,	ntext,	and	image	columns	is	arranged	logically	in	a
B-tree,	both	the	root	node	and	the	individual	blocks	of	data	are	spread
throughout	the	chain	of	text,	ntext,	and	image	pages	for	the	table.	They	are
placed	wherever	there	is	space	available.	The	size	of	each	block	of	data	is
determined	by	the	size	written	by	an	application.	Small	blocks	of	data	will	be
combined	to	fill	a	page.	If	there	is	less	than	64	bytes	of	data,	it	is	all	stored	in	the
root	structure.

For	example,	if	an	application	first	writes	1	KB	of	image	data,	this	is	stored	as
the	first	1-KB	block	of	image	data	for	the	row.	If	the	application	then	writes	12
KB	of	image	data,	then	7	KB	is	combined	with	the	first	1-KB	block	so	the	first
block	becomes	8	KB.	The	remaining	5	KB	forms	the	second	block	of	image
data.	(The	actual	capacity	of	each	ntext,	text,	or	image	page	is	8080	bytes	of
data.)

Because	the	blocks	of	text,	ntext,	or	image	data	and	the	root	structures	can	all
share	space	on	the	same	text,	ntext,	or	image	pages,	SQL	Server	7.0	uses	less
space	with	small	amounts	of	text,	ntext,	or	image	data	than	earlier	versions	of
SQL	Server.	For	example,	if	you	insert	20	rows	that	each	have	200	bytes	of	data
in	a	text	column,	the	data	and	all	the	root	structures	can	all	fit	on	the	same	8-KB
page.

If	the	amount	of	data	for	one	occurrence	of	a	text,	ntext,	or	image	column
exceeds	32	KB,	SQL	Server	starts	building	intermediate	nodes	between	the	data
blocks	and	the	root	node.

The	root	structure	and	the	data	blocks	are	interleaved	throughout	the	text,	ntext,
or	image	pages	in	the	same	manner	as	described	earlier.	The	intermediate	nodes,
however,	are	stored	in	pages	not	shared	between	occurrences	of	text,	ntext,	or
image	columns.	A	page	storing	intermediate	nodes	contains	only	intermediate
nodes	for	one	ntext,	text,	or	image	data	value	in	one	data	row.

See	Also

sp_tableoption

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

text,	ntext,	and	image	Data	When	text	in	row	Is	Set	to
ON
You	enable	the	text	in	row	option	for	a	table	by	using	sp_tableoption.	With	the
text	in	row	option	set	to	ON,	Microsoft®	SQL	Server™	2000	stores	text,	ntext,
or	image	strings	directly	in	the	data	row	if:

The	length	of	the	string	is	shorter	than	the	specified	limit.

There	is	enough	space	available	in	the	data	row	to	hold	the	string.

When	the	text,	ntext,	or	image	string	is	stored	in	the	data	row,	SQL	Server	does
not	have	to	access	a	separate	page	or	set	of	pages	to	read	or	write	the	string.	This
makes	reading	and	writing	the	text,	ntext,	or	image	in-row	strings	about	as	fast
as	reading	or	writing	varchar,	nvarchar,	or	varbinary	strings.

If	a	text,	ntext,	or	image	string	is	longer	than	the	text	in	row	option	limit	or	the
available	space	in	the	row,	the	set	of	pointers	otherwise	stored	in	the	root	node	of
the	pointer	tree	are	stored	in	the	row.	Moving	the	root	node	to	the	row	itself
allows	SQL	Server	to	eliminate	a	page	access	each	time	it	references	the	string
value,	which	speeds	processing.

A	full	root	structure	placed	in	a	data	row	requires	72	bytes	to	hold	five	pointers.
If	the	text	in	row	option	limit	is	less	than	72	bytes,	or	if	there	are	fewer	than	72
bytes	available	in	the	row,	SQL	Server	puts	as	many	pointers	as	it	can	in	the	row.
The	lowest	limit	is	24	bytes,	which	holds	a	root	node	with	only	one	pointer.

Reducing	the	number	of	pointers	in	the	root	structure	truncates	the	top	level	of
the	tree	structure	used	to	store	the	text,	ntext,	or	image	string.	For	example,	if
the	root	structure	has	only	three	pointers,	the	top	level	of	the	tree	structure	can
only	contain	three	nodes,	not	five.	Reducing	the	size	of	the	root	structure	can
introduce	extra	layers	in	the	tree	structure.	Setting	the	text	in	row	option	limit
under	72	can	also	cause	the	top	level	to	be	truncated.

When	text,	ntext,	or	image	strings	are	stored	in	the	row,	they	are	stored
similarly	to	variable-length	strings.	For	example,	if	the	text	in	row	option	limit

is	500	bytes	and	you	store	a	200-byte	string	in	a	row,	SQL	Server	uses	only	the
number	of	bytes	needed	to	store	the	string.	If	a	string	longer	than	500	bytes	is
inserted,	so	that	pointers	are	stored	in	the	row,	SQL	Server	uses	only	enough
space	to	hold	the	pointers	and	not	the	entire	500	bytes.

If	a	table	has	multiple	text,	ntext,	or	image	columns,	and	you	attempt	to	insert
multiple	text,	ntext,	or	image	strings,	SQL	Server	assigns	space	to	the	strings
one	at	a	time	in	sequence	based	on	column	ID.	For	example,	assume	you	have	a
table	containing	four	text	columns	and	you	have	set	the	text	in	row	option	limit
to	1000.	You	then	insert	a	row	where	with	a	900-byte	string	for	each	text
column,	and	enough	data	for	all	of	the	other	columns	in	the	table	so	there	is	only
3,000	bytes	of	free	space	in	the	row	to	hold	the	text	strings.	The	strings	for	the
first	three	text	columns	are	stored	in	the	row,	using	2,700	bytes	of	the	3,000
bytes	available.	The	string	for	the	fourth	text	column	is	not	stored	in	the	row,	but
the	pointers	from	the	root	node	are	stored	in	the	row.

Setting	the	text	in	row	option	on	has	several	side	effects	in	regards	to	processing
text,	ntext,	or	image	data.	For	more	information,	see	Managing	ntext,	text,	and
image	Data.

See	Also

sp_tableoption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Transaction	Log	Architecture
Every	Microsoft®	SQL	Server™	2000	database	has	a	transaction	log	that
records	all	transactions	and	the	database	modifications	made	by	each	transaction.
This	record	of	transactions	and	their	modifications	supports	three	operations:

Recovery	of	individual	transactions.

If	an	application	issues	a	ROLLBACK	statement,	or	if	SQL	Server
detects	an	error	such	as	the	loss	of	communication	with	a	client,	the	log
records	are	used	to	roll	back	the	modifications	made	by	an	incomplete
transaction.

Recovery	of	all	incomplete	transactions	when	SQL	Server	is	started.

If	a	server	running	SQL	Server	fails,	the	databases	may	be	left	in	a	state
where	some	modifications	were	never	written	from	the	buffer	cache	to
the	data	files,	and	there	may	be	some	modifications	from	incomplete
transactions	in	the	data	files.	When	a	copy	of	SQL	Server	is	started,	it
runs	a	recovery	of	each	database.	Every	modification	recorded	in	the
log	which	may	not	have	been	written	to	the	data	files	is	rolled	forward.
Every	incomplete	transaction	found	in	the	transaction	log	is	then	rolled
back	to	ensure	the	integrity	of	the	database	is	preserved.

Rolling	a	restored	database	forward	to	the	point	of	failure.

After	the	loss	of	a	database,	as	is	possible	if	a	hard	drive	fails	on	a
server	that	does	not	have	RAID	drives,	you	can	restore	the	database	to
the	point	of	failure.	You	first	restore	the	last	full	or	differential	database
backup,	and	then	restore	the	sequence	of	transaction	log	backups	to	the
point	of	failure.	As	you	restore	each	log	backup,	SQL	Server	reapplies
all	the	modifications	recorded	in	the	log	to	roll	forward	all	the
transactions.	When	the	last	log	backup	is	restored,	SQL	Server	then	uses
the	log	information	to	roll	back	all	transactions	that	were	not	complete
at	that	point.

The	characteristics	of	the	SQL	Server	2000	transaction	log	are:

The	transaction	log	is	not	implemented	as	a	table	but	as	a	separate	file

or	set	of	files	in	the	database.	The	log	cache	is	managed	separately	from
the	buffer	cache	for	data	pages,	resulting	in	simple,	fast,	and	robust	code
within	the	database	engine.

The	format	of	log	records	and	pages	is	not	constrained	to	follow	the
format	of	data	pages.

The	transaction	log	can	be	implemented	on	several	files.	The	files	can
be	defined	to	autogrow	as	required.	This	reduces	the	potential	of
running	out	of	space	in	the	transaction	log,	while	at	the	same	time
reducing	administrative	overhead.

The	mechanism	to	truncate	unused	parts	of	the	log	is	quick	and	has
minimal	effect	on	transaction	throughput.

SQL	Server	Architecture

Write-Ahead	Transaction	Log
Microsoft®	SQL	Server™	2000,	like	many	relational	databases,	uses	a	write-
ahead	log.	A	write-ahead	log	ensures	that	no	data	modifications	are	written	to
disk	before	the	associated	log	record.

SQL	Server	maintains	a	buffer	cache	into	which	it	reads	data	pages	when	data
must	be	retrieved.	Data	modifications	are	not	made	directly	to	disk,	but	are
instead	made	to	the	copy	of	the	page	in	the	buffer	cache.	The	modification	is	not
written	to	disk	until	either	the	database	is	checkpointed,	or	the	modifications
must	be	written	to	disk	so	the	buffer	can	be	used	to	hold	a	new	page.	Writing	a
modified	data	page	from	the	buffer	cache	to	disk	is	called	flushing	the	page.	A
page	modified	in	the	cache	but	not	yet	written	to	disk	is	called	a	dirty	page.

At	the	time	a	modification	is	made	to	a	page	in	the	buffer,	a	log	record	is	built	in
the	log	cache	recording	the	modification.	This	log	record	must	be	written	to	disk
before	the	associated	dirty	page	is	flushed	from	the	buffer	cache	to	disk.	If	the
dirty	page	were	flushed	before	the	log	record,	it	would	create	a	modification	on
disk	that	could	not	be	rolled	back	if	the	server	failed	before	the	log	record	were
written	to	disk.	SQL	Server	has	logic	that	prevents	a	dirty	page	from	being
flushed	before	the	associated	log	record.	Because	log	records	are	always	written
ahead	of	the	associated	data	pages,	the	log	is	called	a	write-ahead	log.

See	Also

Backup/Restore	Architecture

Transactions	Architecture

SQL	Server	Architecture

Transaction	Log	Logical	Architecture
The	Microsoft®	SQL	Server™	2000	transaction	log	operates	logically	as	if	it	is
a	serial	string	of	log	records.	Each	log	record	is	identified	by	a	log	sequence
number	(LSN).	Each	new	log	record	is	written	to	the	logical	end	of	the	log	with
an	LSN	higher	than	the	LSN	of	the	record	before	it.

Log	records	for	data	modifications	record	either	the	logical	operation	performed
or	before	and	after	images	of	the	modified	data.	A	before	image	is	a	copy	of	the
data	before	the	operation	is	performed;	an	after	image	is	a	copy	of	the	data	after
the	operation	has	been	performed.	The	steps	to	recover	an	operation	depend	on
the	type	of	log	record:

Logical	operation	logged.

To	roll	the	logical	operation	forward,	it	is	performed	again.

To	roll	the	logical	operation	back,	the	reverse	logical	operation
is	performed.

Before	and	after	image	logged.

To	roll	the	operation	forward,	the	after	image	is	applied.

To	roll	the	operation	back,	the	before	image	is	applied.

Many	types	of	operations	are	recorded	in	the	transaction	log,	including:

The	start	and	end	of	each	transaction.

Every	data	modification	(insert,	update,	or	delete).	This	includes
changes	to	system	tables	made	by	system	stored	procedures	or	data
definition	language	(DDL)	statements.

Every	extent	allocation	or	deallocation.

The	creation	or	dropping	of	a	table	or	index.

Log	records	are	stored	in	a	serial	sequence	as	they	are	created.	Each	log	record	is
stamped	with	the	ID	of	the	transaction	to	which	it	belongs.	For	each	transaction,
all	log	records	associated	with	the	transaction	are	singly-linked	in	a	chain	using
backward	pointers	that	speed	the	rollback	of	the	transaction.

Rollback	statements	are	also	logged.	Each	transaction	reserves	space	on	the
transaction	log	to	ensure	enough	log	space	exists	to	support	a	rollback	if	an	error
is	encountered.	This	reserve	space	is	freed	when	the	transaction	completes.	The
amount	of	space	reserved	depends	on	the	operations	performed	in	the
transaction,	but	is	generally	equal	to	the	amount	of	space	used	to	log	each
operation.

SQL	Server	Architecture

Checkpoints	and	the	Active	Portion	of	the	Log
Checkpoints	minimize	the	portion	of	the	log	that	must	be	processed	during	a	full
recovery	of	a	database.	During	a	full	recovery,	two	types	of	actions	must	be
performed:

The	log	may	contain	records	of	modifications	not	flushed	to	disk	before
the	system	stopped.	These	modifications	must	be	rolled	forward.

All	the	modifications	associated	with	incomplete	transactions
(transactions	for	which	there	is	no	COMMIT	or	ROLLBACK	log
record)	must	be	rolled	back.

Checkpoints	flush	dirty	data	and	log	pages	from	the	buffer	cache	of	the	current
database,	minimizing	the	number	of	modifications	that	have	to	be	rolled	forward
during	a	recovery.

A	SQL	Server	2000	checkpoint	performs	these	processes	in	the	current	database:

Writes	to	the	log	file	a	record	marking	the	start	of	the	checkpoint.

Stores	information	recorded	for	the	checkpoint	in	a	chain	of	checkpoint
log	records.	The	LSN	of	the	start	of	this	chain	is	written	to	the	database
boot	page.

One	piece	of	information	recorded	in	the	checkpoint	records	is	the	LSN
of	the	first	log	image	that	must	be	present	for	a	successful	database-
wide	rollback.	This	LSN	is	called	the	Minimum	Recovery	LSN
(MinLSN)	and	is	the	minimum	of:

The	LSN	of	the	start	of	the	checkpoint.

The	LSN	of	the	start	of	the	oldest	active	transaction.

The	LSN	of	the	start	of	the	oldest	replication	transaction	that
has	not	yet	replicated	to	all	subscribers.

Another	piece	of	information	recorded	in	the	checkpoint	records	is	a	list
of	all	outstanding,	active	transactions.

Deletes	all	log	records	before	the	new	MinLSN,	if	the	database	is	using
the	simple	recovery	model.

Writes	to	disk	all	dirty	log	and	data	pages.

Writes	to	the	log	file	a	record	marking	the	end	of	the	checkpoint.

The	portion	of	the	log	file	from	the	MinLSN	to	the	last-written	log	record	is
called	the	active	portion	of	the	log.	This	is	the	portion	of	the	log	required	to	do	a
full	recovery	of	the	database.	No	part	of	the	active	log	can	ever	be	truncated.	All
log	truncation	must	be	done	from	the	parts	of	the	log	before	the	MinLSN.

This	is	a	simplified	version	of	the	end	of	a	transaction	log	with	two	active
transactions.	Checkpoint	records	have	been	compacted	to	a	single	record.

LSN	148	is	the	last	record	in	the	transaction	log.	At	the	time	the	checkpoint
recorded	at	LSN	147	was	processed,	Tran	1	had	been	committed	and	Tran	2	was
the	only	active	transaction.	That	makes	the	first	log	record	for	Tran	2	the	oldest
log	record	for	a	transaction	active	at	the	time	of	the	last	checkpoint.	This	makes
LSN	142,	the	begin	transaction	record	for	Tran	2,	the	MinLSN.

Checkpoints	occur:

When	a	CHECKPOINT	statement	is	executed.	The	current	database	for
the	connection	is	checkpointed.

When	ALTER	DATABASE	is	used	to	change	a	database	option.

ALTER	DATABASE	checkpoints	the	database	when	database	options
are	changed.

When	an	instance	of	SQL	Server	is	stopped	by:

Executing	a	SHUTDOWN	statement.

Using	the	SQL	Server	Service	Control	Manager	to	stop	the
service	running	an	instance	of	the	database	engine.

Either	of	these	methods	checkpoints	each	database	in	the	instance	of
SQL	Server.

When	an	instance	SQL	Server	periodically	generates	automatic
checkpoints	in	each	database	to	reduce	the	amount	of	time	the	instance
would	take	to	recover	the	database.

Automatic	Checkpoints

SQL	Server	2000	always	generates	automatic	checkpoints.	The	interval	between
automatic	checkpoints	is	based	on	the	number	of	records	in	the	log,	not	time.
The	time	interval	between	automatic	checkpoints	can	be	highly	variable.	The
time	interval	between	automatic	checkpoints	is	long	if	few	modifications	are
made	in	the	database.	Automatic	checkpoints	occur	frequently	if	a	lot	of	data	is
modified.

The	interval	between	automatic	checkpoints	is	calculated	from	the	recovery
interval	server	configuration	option.	This	option	specifies	the	maximum	time
SQL	Server	should	use	to	recover	a	database	during	a	system	restart.	SQL	Server
estimates	how	many	log	records	it	can	process	in	the	recovery	interval	during	a
recovery	operation.	The	interval	between	automatic	checkpoints	also	depends	on
whether	or	not	the	database	is	using	the	simple	recovery	model.

If	the	database	is	using	either	the	full	or	bulk-logged	recovery	model,	an
automatic	checkpoint	is	generated	whenever	the	number	of	log	records
reaches	the	number	SQL	Server	estimates	it	can	process	during	the	time
specified	in	the	recovery	interval	option.

If	the	database	is	using	the	simple	recovery	model,	an	automatic
checkpoint	is	generated	whenever	the	number	of	log	records	reaches	the
lesser	of	these	two	values:

The	log	becomes	70	percent	full.

The	number	of	log	records	reaches	the	number	SQL	Server
estimates	it	can	process	during	the	time	specified	in	the
recovery	interval	option.

Automatic	checkpoints	truncate	the	unused	portion	of	the	transaction	log	if	the
database	is	using	the	simple	recovery	model.	The	log	is	not	truncated	by
automatic	checkpoints	if	the	database	is	using	the	full	or	bulk-logged	recovery
models.	For	more	information,	see	Truncating	the	Transaction	Log.

Long-Running	Transactions
The	active	portion	of	the	log	must	include	every	part	of	all	uncommitted
transactions.	An	application	that	starts	a	transaction	and	does	not	commit	it	or
roll	it	back	prevents	SQL	Server	from	advancing	the	MinLSN.	This	can	cause
two	types	of	problems:

If	the	system	is	shut	down	after	the	transaction	has	performed	many
uncommitted	modifications,	the	recovery	phase	of	the	subsequent
restart	can	take	considerably	longer	than	the	amount	of	time	specified	in
the	recovery	interval	option.

The	log	may	grow	very	large	because	the	log	cannot	be	truncated	past
the	MinLSN.	This	happens	even	if	the	database	is	using	the	simple
recovery	model,	in	which	the	transaction	log	is	normally	truncated	on
each	automatic	checkpoint.

Replication	Transactions

The	active	portion	of	the	log	must	also	contain	all	transactions	marked	for
replication,	but	that	have	not	yet	been	replicated	to	a	subscriber.	If	these
transactions	are	not	replicated	in	a	timely	manner,	they	can	also	prevent

truncation	of	the	log.

See	Also

Backup/Restore	Architecture

CHECKPOINT

Freeing	and	Writing	Buffer	Pages

Transaction	Recovery

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Truncating	the	Transaction	Log
If	log	records	were	never	deleted	from	the	transaction	log,	the	logical	log	would
grow	until	it	filled	all	the	available	space	on	the	disks	holding	the	physical	log
files.	At	some	point	in	time,	old	log	records	no	longer	necessary	for	recovering
or	restoring	a	database	must	be	deleted	to	make	way	for	new	log	records.	The
process	of	deleting	these	log	records	to	reduce	the	size	of	the	logical	log	is	called
truncating	the	log.

The	active	portion	of	the	transaction	log	can	never	be	truncated.	The	active
portion	of	the	log	is	the	part	of	the	log	needed	to	recover	the	database	at	any
time,	so	must	have	the	log	images	needed	to	roll	back	all	incomplete
transactions.	It	must	always	be	present	in	the	database	in	case	the	server	fails
because	it	will	be	required	to	recover	the	database	when	the	server	is	restarted.
The	record	at	the	start	of	the	active	portion	of	the	log	is	identified	by	the
minimum	recovery	log	sequence	number	(MinLSN).

The	recovery	model	chosen	for	a	database	determines	how	much	of	the
transaction	log	in	front	of	the	active	portion	must	be	retained	in	the	database.
Although	the	log	records	in	front	of	the	MinLSN	play	no	role	in	recovering
active	transactions,	they	are	required	to	roll	forward	modifications	when	using
log	backups	to	restore	a	database	to	the	point	of	failure.	If	you	lose	a	database
for	some	reason,	you	can	recover	the	data	by	restoring	the	last	database	backup,
and	then	restoring	every	log	backup	since	the	database	backup.	This	means	that
the	sequence	of	log	backups	must	contain	every	log	record	that	was	written	since
the	database	backup.	When	you	are	maintaining	a	sequence	of	transaction	log
backups,	no	log	record	can	be	truncated	until	after	it	has	been	written	to	a	log
backup.

The	log	records	before	the	MinLSN	are	only	needed	to	maintain	a	sequence	of
transaction	log	backups.

In	the	simple	recovery	model,	a	sequence	of	transaction	logs	is	not
being	maintained.	All	log	records	before	the	MinLSN	can	be	truncated
at	any	time,	except	while	a	BACKUP	statement	is	being	processed.
NO_LOG	and	TRUNCATE_ONLY	are	the	only	BACKUP	LOG
options	that	are	valid	for	a	database	that	is	using	the	simple	recovery

model.

Note		The	tempdb	database	always	uses	the	simple	recovery	model,	it	cannot	be
switched	to	another	recovery	model.	Log	truncation	always	occurs	on	a
checkpoint	in	tempdb.

In	the	full	and	bulk-logged	recovery	models,	a	sequence	of	transaction
log	backups	is	being	maintained.	The	part	of	the	logical	log	before	the
MinLSN	cannot	be	truncated	until	those	log	records	have	been	copied
to	a	log	backup.

Log	truncation	occurs	at	these	points:

At	the	completion	of	any	BACKUP	LOG	statement.

Every	time	a	checkpoint	is	processed,	provided	the	database	is	using	the
simple	recovery	model.	This	includes	both	explicit	checkpoints
resulting	from	a	CHECKPOINT	statement	and	implicit	checkpoints
generated	by	the	system.	The	exception	is	that	the	log	is	not	truncated	if
the	checkpoint	occurs	when	a	BACKUP	statement	is	still	active.	For
more	information	about	the	interval	between	automatic	checkpoints,	see
Checkpoints	and	the	Active	Portion	of	the	Log..

Transaction	logs	are	divided	internally	into	sections	called	virtual	log	files.
Virtual	log	files	are	the	unit	of	truncation.	When	a	transaction	log	is	truncated,
all	log	records	before	the	start	of	the	virtual	log	file	containing	the	MinLSN	are
deleted.	For	more	information	about	virtual	log	files,	see	Transaction	Log
Physical	Architecture.

The	size	of	a	transaction	log	is	therefore	controlled	in	one	of	these	ways:

When	a	log	backup	sequence	is	being	maintained,	schedule	BACKUP
LOG	statements	to	occur	at	intervals	that	will	keep	the	transaction	log
from	growing	past	the	desired	size.

When	a	log	backup	sequence	is	not	maintained,	specify	the	simple
recovery	model.

This	illustration	shows	a	transaction	log	that	has	four	virtual	logs.	The	log	has

not	been	truncated	after	the	database	was	created.	The	logical	log	starts	at	the
beginning	of	the	first	virtual	log	and	the	part	of	virtual	log	4	beyond	the	end	of
the	logical	file	has	never	been	used.

This	illustration	shows	how	the	log	looks	after	truncation.	The	rows	before	the
start	of	the	virtual	log	containing	the	MinLSN	record	have	been	truncated.

Truncation	does	not	reduce	the	size	of	a	physical	log	file,	it	reduces	the	size	of
the	logical	log	file.	For	information	on	shrinking	the	size	of	a	physical	log	file,
see	Shrinking	the	Transaction	Log.

See	Also

BACKUP

Setting	Database	Options

Transaction	Log	Backups

Truncate	Method

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Architecture

Transaction	Log	Physical	Architecture
The	transaction	log	in	a	database	maps	over	one	or	more	physical	files.
Conceptually,	the	log	file	is	a	serial	string	of	log	records.	Physically,	the
sequence	of	log	records	must	be	stored	efficiently	in	the	set	of	physical	files	that
implement	the	transaction	log.

Microsoft®	SQL	Server™	2000	segments	each	physical	log	file	internally	into	a
number	of	virtual	log	files.	Virtual	log	files	have	no	fixed	size,	and	there	is	no
fixed	number	of	virtual	log	files	for	a	physical	log	file.	SQL	Server	chooses	the
size	of	the	virtual	log	files	dynamically	while	creating	or	extending	log	files.
SQL	Server	tries	to	maintain	a	small	number	of	virtual	files.	The	size	of	the
virtual	files	after	a	log	file	name	extension	is	based	on	the	size	of	the	existing	log
and	the	size	of	the	new	file	increment.	The	size	or	number	of	virtual	log	files
cannot	be	configured	or	set	by	administrators;	it	is	determined	dynamically	by
the	SQL	Server	code.

The	only	time	virtual	log	files	affect	system	performance	is	if	the	log	files	are
defined	with	small	size	and	growth_increment	values.	If	these	log	files	grow	to	a
large	size	through	many	small	increments,	they	will	have	a	lot	of	virtual	log
files,	which	can	slow	down	recovery.	It	is	recommended	that	log	files	be	defined
with	a	size	value	close	to	the	final	size	needed,	and	also	have	a	relatively	large
growth_increment	value.

The	transaction	log	is	a	wrap-around	log	file.	For	example,	consider	a	database
with	one	physical	log	file	divided	into	four	virtual	log	files.	When	the	database	is
created,	the	logical	log	file	begins	at	the	start	of	the	physical	log	file.	New	log
records	are	added	at	the	end	of	the	logical	log,	which	grows	toward	the	end	of
the	physical	log.	As	truncation	operations	occur,	the	records	in	the	virtual	logs
before	the	minimum	recovery	log	sequence	number	(MinLSN)	are	deleted.	The
log	in	the	example	database	would	look	like	the	one	in	the	illustration.

When	the	end	of	the	logical	log	reaches	the	end	of	the	physical	log	file,	the	new
log	records	wrap	around	to	the	start	of	the	physical	log	file.

This	cycle	repeats	endlessly,	as	long	as	the	end	of	the	logical	log	never	reaches
the	beginning	of	the	logical	log.	If	the	old	log	records	are	truncated	often	enough
to	always	leave	enough	room	for	all	the	new	log	records	created	through	the	next
checkpoint,	the	log	never	fills.	If	the	end	of	the	logical	log	does	reach	the	start	of
the	logical	log,	however,	one	of	two	things	happens:

If	autogrow	is	enabled	for	the	log	and	space	is	available	on	the	disk,	the
file	is	extended	by	the	amount	specified	in	growth_increment	and	the
new	log	records	are	added	to	the	extension.

If	autogrow	is	not	enabled,	or	the	disk	holding	the	log	file	has	less	free
space	than	the	amount	specified	in	growth_increment,	an	1105	error	is
generated.

If	the	log	contains	multiple	physical	log	files,	then	the	logical	log	will	move
through	all	of	the	physical	log	files	before	it	wraps	back	to	the	start	of	the	first
physical	log	file.

See	Also

Transaction	Log	Backups

JavaScript:hhobj_1.Click()

Transaction	Logs

JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Shrinking	the	Transaction	Log
The	size	of	the	log	files	are	physically	reduced	when:

A	DBCC	SHRINKDATABASE	statement	is	executed.

A	DBCC	SHRINKFILE	statement	referencing	a	log	file	is	executed.

An	autoshrink	operation	occurs.

Shrinking	a	log	is	dependent	on	first	truncating	the	log.	Log	truncation	does	not
reduce	the	size	of	a	physical	log	file,	it	reduces	the	size	of	the	logical	log	and
marks	as	inactive	the	virtual	logs	that	do	not	hold	any	part	of	the	logical	log.	A
log	shrink	operation	removes	enough	inactive	virtual	logs	to	reduce	the	log	file
to	the	requested	size.

The	unit	of	size	reduction	is	a	virtual	log.	For	example,	if	you	have	a	600	MB
log	file	that	has	been	divided	into	six	100	MB	virtual	logs,	the	size	of	the	log	file
can	only	be	reduced	in	100	MB	increments.	The	file	size	can	be	reduced	to	sizes
such	as	500	MB	or	400	MB,	but	it	cannot	be	reduced	to	sizes	such	as	433	MB	or
525	MB.

Virtual	logs	that	hold	part	of	the	logical	log	cannot	be	freed.	If	all	the	virtual	logs
in	a	log	file	hold	parts	of	the	logical	log,	the	file	cannot	be	shrink	until	a
truncation	marks	one	or	more	of	the	virtual	logs	at	the	end	of	the	physical	log	as
inactive.

When	any	file	is	shrunk,	the	space	freed	must	come	from	the	end	of	the	file.
When	a	transaction	log	file	is	shrunk,	enough	virtual	logs	from	the	end	of	the	file
are	freed	to	reduce	the	log	to	the	size	requested	by	the	user.	The	target_size
specified	by	the	user	is	rounded	to	the	next	highest	virtual	log	boundary.	For
example,	if	a	user	specifies	a	target_size	of	325	MB	for	our	sample	600	MB	file
with	100	MB	virtual	log	files,	the	last	two	virtual	log	files	are	removed	and	the
new	file	size	is	400	MB.

In	SQL	Server	2000,	a	DBCC	SHRINKDATABASE	or	DBCC	SHRINKFILE

operation	attempts	to	shrink	the	physical	log	file	to	the	requested	size	(subject	to
rounding)	immediately:

If	no	part	of	the	logical	log	is	in	the	virtual	logs	beyond	the	target_size
mark,	the	virtual	logs	after	the	target_size	mark	are	freed	and	the
successful	DBCC	statement	completes	with	no	messages.

If	part	of	the	logical	log	is	in	the	virtual	logs	beyond	the	target_size
mark,	SQL	Server	2000	frees	as	much	space	as	possible	and	issues	an
informational	message.	The	message	tells	you	what	actions	you	need	to
perform	to	get	the	logical	log	out	of	the	virtual	logs	at	the	end	of	the
file.	After	you	perform	this	action,	you	can	then	reissue	the	DBCC
statement	to	free	the	remaining	space.

For	example,	assume	that	a	600	MB	log	file	with	six	virtual	logs	has	a	logical
log	starting	in	virtual	log	3	and	ending	in	virtual	log	4,	when	you	execute	a
DBCC	SHRINKFILE	statement	with	a	target_size	of	275	MB:

Virtual	logs	5	and	6	are	freed	immediately	because	they	hold	no	portion	of	the
logical	log.	To	meet	the	specified	target_size,	however,	virtual	log	4	should	also
be	freed,	but	cannot	because	it	holds	the	end	portion	of	the	logical	log.	After
freeing	virtual	logs	5	and	6,	SQL	Server	2000	fills	the	remaining	part	of	virtual
log	4	with	dummy	records.	This	forces	the	end	of	the	log	file	to	virtual	log	1.	In
most	systems,	all	transactions	starting	in	virtual	log	4	will	be	committed	within
seconds,	meaning	that	all	of	the	active	portion	of	the	log	moves	to	virtual	log	1,
and	the	log	file	now	looks	like	this:

The	DBCC	SHRINKFILE	statement	also	issues	an	informational	message	that	it
could	not	free	all	the	space	requested,	and	indicate	that	you	can	execute	a
BACKUP	LOG	statement	to	make	it	possible	to	free	the	remaining	space.	Once
the	active	portion	of	the	log	moves	to	virtual	log	1,	a	BACKUP	LOG	statement
will	truncate	the	entire	logical	log	that	is	in	virtual	log	4:

Because	virtual	log	4	no	longer	holds	any	portion	of	the	logical	log,	if	you	now
execute	the	same	DBCC	SHRINKFILE	statement	with	a	target_size	of	275	MB,
virtual	log	4	will	be	freed	and	the	size	of	the	physical	log	file	reduced	to	the	size
requested.

See	Also

BACKUP

Setting	Database	Options

Space	Allocation	and	Reuse

Transaction	Log	Backups

Truncating	the	Transaction	Log

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

Relational	Database	Engine	Architecture
The	server	is	the	component	of	Microsoft®	SQL	Server™	2000	that	receives
SQL	statements	from	clients	and	performs	all	the	actions	necessary	to	complete
the	statements.	This	section	discusses:

An	overview	of	the	components	that	make	up	the	server.

How	the	server	compiles	each	batch	of	SQL	statements	into	an
execution	plan	that	tells	the	server	how	to	process	the	statement.

How	the	server	manages	Microsoft	Windows®	resources	such	as
memory,	threads,	and	tasks.

How	the	server	determines	what	part	of	a	distributed	query	references	a
linked	server	and	what	request	to	transmit	to	the	server	to	obtain	the
needed	data.

How	the	server	transmits	remote	stored	procedure	calls	to	remote
servers.

How	the	server	manages	concurrency	and	transaction	issues.

How	the	server	implements	server	cursors.

The	features	that	allow	SQL	Server	to	scale	from	small	laptop
computers	to	large	servers	that	provide	the	primary	data	storage	for
large	enterprises.

How	the	SQL	Mail	component	integrates	SQL	Server	with	e-mail
servers	to	allow	the	server	to	send	e-mail	and	pages	when	specified

events	occur.

SQL	Server	Architecture

Relational	Database	Engine	Architecture	Overview
The	server	components	of	Microsoft®	SQL	Server	2000™	receive	SQL
statements	from	clients	and	process	those	SQL	statements.	This	illustration
shows	the	major	components	involved	with	processing	an	SQL	statement
received	from	a	SQL	Server	client.

Tabular	Data	Stream
SQL	statements	are	sent	from	clients	by	using	an	application-level	protocol
specific	to	SQL	Server	called	Tabular	Data	Stream	(TDS).	SQL	Server	2000
accepts	the	following	versions	of	TDS:

TDS	8.0	sent	by	clients	running	versions	of	the	SQL	Server	client
components	from	SQL	Server	2000.	TDS	8.0	clients	support	all	the
features	of	SQL	Server	2000.

TDS	7.0	sent	by	clients	running	versions	of	the	SQL	Server	client
components	from	SQL	Server	version	7.0.	TDS	4.2	clients	do	not
support	features	introduced	in	SQL	Server	2000,	and	the	server
sometimes	has	to	adjust	the	data	it	sends	back	to	the	clients	using	TDS
7.0.	For	example,	TDS	7.0	clients	do	not	support	the	sql_variant	data
type,	so	SQL	Server	2000	must	convert	any	sql_variant	data	to
Unicode.

TDS	4.2	sent	by	clients	running	SQL	Server	client	components	from
SQL	Server	6.5,	6.0,	and	4.21a.	TDS	4.2	clients	do	not	support	features
introduced	in	either	SQL	Server	2000	or	SQL	Server	7.0,	and	the	server
sometimes	has	to	adjust	the	data	it	sends	back	to	clients	using	TDS	4.2.
For	example,	TDS	4.2	clients	do	not	support	Unicode	data	types,	so
SQL	Server	2000	must	convert	any	Unicode	data	to	character	data
before	sending	it	to	the	client,	with	possible	loss	of	extended	characters.
TDS	4.2	clients	also	do	not	support	char,	varchar,	binary,	or
varbinary	values	longer	than	255	bytes,	so	SQL	Server	2000	must
truncate	any	values	longer	than	255	before	sending	them	to	the	client.

Server	Net-Libraries

TDS	packets	are	built	by	the	Microsoft	OLE	DB	Provider	for	SQL	Server,	the
SQL	Server	ODBC	driver,	or	the	DB-Library	DLL.	The	TDS	packets	are	then
passed	to	a	SQL	Server	client	Net-Library,	which	encapsulates	the	TDS	packets
into	network	protocol	packets.	On	the	server,	the	network	protocol	packets	are
received	by	a	server	Net-Library	that	extracts	the	TDS	packet	and	passes	it	to	the
relational	database	server.

This	process	is	reversed	when	results	are	returned	to	the	client.

Each	server	can	be	listening	simultaneously	on	several	network	protocols	and
will	be	running	one	server	Net-Library	for	each	protocol	on	which	it	is	listening.

Relational	Database	Engine
The	database	server	processes	all	requests	passed	to	it	from	the	server	Net-
Libraries.	It	compiles	all	the	SQL	statements	into	execution	plans,	and	then	uses
the	plans	to	access	the	requested	data	and	build	the	result	set	returned	to	the

client.

See	Also

Relational	Database	Components

SQL	Server	Architecture

Database	Engine	Components
The	relational	database	server	of	Microsoft®	SQL	Server™	2000	has	two	main
parts:	the	relational	engine	and	the	storage	engine.	One	of	the	most	important
architectural	changes	made	in	SQL	Server	version	7.0	was	to	strictly	separate	the
relational	and	storage	engine	components	within	the	server	and	to	have	them	use
the	OLE	DB	API	to	communicate	with	each	other.

The	processing	for	a	SELECT	statement	that	references	only	tables	in	local
databases	can	be	summarized	as:

1.	 The	relational	engine	compiles	the	SELECT	statement	into	an
optimized	execution	plan.	The	execution	plan	defines	a	series	of
operations	against	basic	rowsets	from	the	individual	tables	or	indexes
referenced	in	the	SELECT	statement.

A	rowset	is	the	OLE	DB	term	for	a	result	set.	The	rowsets	requested
by	the	relational	engine	return	the	amount	of	data	needed	from	a	table
or	index	to	perform	one	of	the	operations	used	to	build	the	SELECT
result	set.	For	example,	this	SELECT	statement	requires	a	table	scan	if
it	references	a	table	with	no	indexes:

SELECT	*	FROM	ScanTable

The	relational	engine	implements	the	table	scan	by	requesting	one
rowset	containing	all	the	rows	from	ScanTable.

This	SELECT	statement	only	needs	information	available	in	an	index:

SELECT	DISTINCT	LastName
FROM	Northwind.dbo.Employees

The	relational	engine	implements	the	index	scan	by	requesting	one
rowset	containing	the	leaf	rows	from	the	index	built	on	the	LastName
column.

This	SELECT	statement	needs	information	from	two	indexes:

SELECT	CompanyName,	OrderID,	ShippedDate
FROM	Northwind.dbo.Customers	AS	Cst
					JOIN	Northwind.dbo.Orders	AS	Ord
							ON	(Cst.CustomerID	=	Ord.CustomerID)

The	relational	engine	requests	two	rowsets,	one	for	the	clustered	index
on	Customers	and	the	other	on	one	of	the	nonclustered	indexes	in
Orders.

2.	 The	relational	engine	uses	the	OLE	DB	API	to	request	that	the	storage
engine	open	the	rowsets.

3.	 As	the	relational	engine	works	through	the	steps	of	the	execution	plan
and	needs	data,	it	uses	OLE	DB	to	fetch	the	individual	rows	from	the
rowsets	it	requested	the	storage	engine	to	open.	The	storage	engine
transfers	the	data	from	the	data	buffers	to	the	relational	engine.

4.	 The	relational	engine	combines	the	data	from	the	storage	engine
rowsets	into	the	final	result	set	transmitted	back	to	the	user.

SQL	Server	Architecture

Relational	Engine
The	main	responsibilities	of	the	relational	engine	are:

Parsing	the	SQL	statements.

The	parser	scans	an	SQL	statement	and	breaks	it	down	into	the	logical
units,	such	as	keywords,	parameters,	operators,	and	identifiers.	The
parser	also	breaks	down	the	overall	SQL	statement	into	a	series	of
smaller	logical	operations.

Optimizing	the	execution	plans.

Typically,	there	are	many	ways	that	the	server	could	use	data	from	the
source	tables	to	build	the	result	set.	The	query	optimizer	determines
what	these	various	series	of	steps	are,	estimates	the	cost	of	each	series
(primarily	in	terms	of	file	I/O),	and	chooses	the	series	of	steps	that	has
the	lowest	cost.	It	then	combines	the	specific	steps	with	the	query	tree	to
produce	an	optimized	execution	plan.

Executing	the	series	of	logical	operations	defined	in	the	execution	plan.

After	the	query	optimizer	has	defined	the	logical	operations	required	to
complete	a	statement,	the	relational	engine	steps	through	these
operations	in	the	sequence	specified	in	the	optimized	execution	plan.

Processing	Data	Definition	Language	(DDL)	and	other	statements.

These	statements	are	not	the	typical	SELECT,	INSERT,	UPDATE,	or
DELETE	statements;	these	statements	have	special	processing	needs.
Examples	are	the	SET	statements	to	set	connection	options,	and	the
CREATE	statements	to	create	objects	in	a	database.

Formatting	results.

The	relational	engine	formats	the	results	returned	to	the	client.	The
results	are	formatted	as	either	a	traditional,	tabular	result	set	or	as	an
XML	document.	The	results	are	then	encapsulated	in	one	or	more	TDS
packets	and	returned	to	the	application.

SQL	Server	Architecture

Storage	Engine
The	main	responsibilities	of	the	storage	engine	include:

Managing	the	files	on	which	the	database	is	stored	and	managing	the
use	of	space	in	the	files.

Building	and	reading	the	physical	pages	used	to	store	data.

Managing	the	data	buffers	and	all	I/O	to	the	physical	files.

Controlling	concurrency.	Managing	transactions	and	using	locking	to
control	concurrent	user	access	to	rows	in	the	database.

Logging	and	recovery.

Implementing	utility	functions	such	as	the	BACKUP,	RESTORE,	and
DBCC	statements	and	bulk	copy.

SQL	Server	Architecture

SQL	Server	Language	Support
Microsoft®	SQL	Server™	2000	is	installed	with	33	natural	languages	defined	on
the	server.	The	definitions	for	each	language	establish	how	date	data	is
interpreted:

The	formats	in	which	dates	are	presented:

dmy	(day,	month,	year)

mdy	(month,	day,	year)

ymd	(year,	month,	day)

Short	and	long	names	for	each	month.

Names	for	each	day.

Which	day	is	considered	the	first	day	of	the	week.

These	language	definitions	are	stored	in	master.dbo.syslanguages	and	a
language	identifier	(ID)	identifies	each	language.

Each	instance	of	SQL	Server	uses	a	default	language	for	all	connections	to	the
server.	For	more	information	about	configuring	the	setting,	see	default	language
Option.

Most	connections	use	the	default	language	configured	for	the	server,	but	each
connection	can	individually	set	a	SQL	Server	language	to	be	used	for	the
connection:

Microsoft	ActiveX®	Data	Object	and	OLE	DB	applications	can	include
the	Language	keyword	in	a	provider	string	specified	when	they	connect.

OLE	DB	applications	can	also	set	the	provider-specific	property

JavaScript:hhobj_1.Click()

SSPROP_INIT_CURRENTLANGUAGE	before	connecting.

Open	Database	Connectivity	(ODBC)	applications	can	include	the
LANGUAGE	keyword	in	a	connection	string	specified	on
SQLDriverConnect.	ODBC	applications	can	also	specify	the	language
setting	in	a	SQL	Server	ODBC	data	source	definition.

DB-Library	applications	can	use	dblogin	to	allocate	a	loginrec,	and
then	use	the	DBSETNATLANG	macro	to	specify	a	language	setting
before	calling	dbopen	to	connect.

Any	application	can	use	the	SET	LANGUAGE	statement	to	specify	the
SQL	Server	language.

SQL	Server	supports	having	multiple,	language-specific	copies	of	the	error
messages	stored	in	master.dbo.sysmessages.	All	instances	of	SQL	Server
contain	the	set	of	English	messages.	SQL	Server	is	localized,	or	translated,	into
French,	German,	Spanish,	and	Japanese	versions.	Installations	of	localized
versions	of	SQL	Server	install	the	translated	set	of	messages	in	addition	to	the
English	set.	When	SQL	Server	sends	a	message	to	a	connection,	it	uses	the
localized	message	if	the	language	ID	of	the	connection	matches	one	of	the
language	IDs	present	in	sysmessages.	If	there	is	no	message	in	sysmessages
with	the	same	language	ID,	the	English	version	of	the	message	is	sent.

SQL	Server	Architecture

Query	Processor	Architecture
SQL	statements	are	the	only	commands	sent	from	applications	to	Microsoft®
SQL	Server™	2000.	All	of	the	work	done	by	an	instance	of	SQL	Server	is	the
result	of	accepting,	interpreting,	and	executing	SQL	statements.	The	processes
by	which	SQL	statements	are	executed	by	SQL	Server	include:

Single	SQL	statement	processing.

Batch	processing.

Stored	procedure	and	trigger	execution.

Execution	plan	caching	and	reuse.

Parallel	query	processing.

SQL	Server	Architecture

Single	SQL	Statement	Processing
Processing	a	single	SQL	statement	is	the	most	basic	way	that	Microsoft®	SQL
Server™	2000	executes	SQL	statements.	The	steps	used	to	process	a	single
SELECT	statement	that	references	only	local	base	tables	(no	views	or	remote
tables)	illustrates	the	basic	process.

Optimizing	SELECT	Statements
A	SELECT	statement	is	nonprocedural;	it	does	not	state	the	exact	steps	the
database	server	should	use	to	retrieve	the	requested	data.	This	means	the
database	server	must	analyze	the	statement	to	determine	the	most	efficient	way
to	extract	the	requested	data.	This	is	called	optimizing	the	SELECT	statement,
and	the	component	that	does	this	is	called	the	query	optimizer.

A	SELECT	statement	defines	only:

The	format	of	the	result	set.	This	is	specified	mostly	in	the	select	list,
although	other	clauses	such	as	ORDER	BY	and	GROUP	BY	also	affect
the	final	form	of	the	result	set.

The	tables	containing	the	source	data.	This	is	specified	in	the	FROM
clause.

How	the	tables	are	logically	related	for	the	purposes	of	the	SELECT
statement.	This	is	defined	in	the	join	specifications.

What	conditions	the	rows	in	the	source	tables	must	satisfy	to	qualify	for
the	SELECT	statement.	These	are	specified	in	the	WHERE	and
HAVING	clauses.

A	query	execution	plan	is	a	definition	of:

The	sequence	in	which	the	source	tables	are	accessed.

Typically,	there	are	many	sequences	in	which	the	database	server	can

access	the	base	tables	to	build	the	result	set.	For	example,	if	the
SELECT	statement	references	three	tables,	the	database	server	could
first	access	TableA,	use	the	data	from	TableA	to	extract	matching	rows
from	TableB,	and	then	use	the	data	from	TableB	to	extract	data	from
TableC.	The	other	sequences	in	which	the	database	server	could	access
the	tables	are:	TableC,	TableB,	TableA;	or	TableB,	TableA,	TableC;	or
TableB,	TableC,	TableA;	or	TableC,	TableA,	TableB.

The	methods	used	to	extract	data	from	each	table.

Usually,	there	are	different	methods	for	accessing	the	data	in	each	table.
If	only	a	few	rows	with	specific	key	values	are	needed,	the	database
server	can	use	an	index.	If	all	the	rows	in	the	table	are	needed,	the
database	server	can	ignore	the	indexes	and	do	a	table	scan.	If	all	the
rows	in	a	table	are	needed,	but	there	is	an	index	whose	key	columns	are
in	an	ORDER	BY,	performing	an	index	scan	instead	of	a	table	scan	may
save	a	separate	sort	of	the	result	set.	If	a	table	is	very	small,	table	scans
may	be	the	most	efficient	method	for	almost	all	access	to	the	table.

The	process	of	choosing	one	execution	plan	out	of	several	possible	plans	is
called	optimization.	The	query	optimizer	is	one	of	the	most	important
components	of	a	SQL	database	system.	While	some	overhead	is	used	by	the
query	optimizer	to	analyze	the	query	and	choose	a	plan,	this	overhead	is	saved
several-fold	when	the	query	optimizer	picks	an	efficient	execution	plan.	For
example,	two	construction	companies	can	be	given	identical	blueprints	for	a
house.	If	one	company	spends	a	few	days	at	the	start	to	plan	how	they	will	build
the	house,	and	the	other	company	starts	building	without	planning,	the	company
that	takes	the	time	to	plan	their	project	will	most	likely	finish	first.

The	SQL	Server	query	optimizer	is	a	cost-based	optimizer.	Each	possible
execution	plan	has	an	associated	cost	in	terms	of	the	amount	of	computing
resources	used.	The	query	optimizer	must	analyze	the	possible	plans	and	choose
the	one	with	the	lowest	estimated	cost.	Some	complex	SELECT	statements	have
thousands	of	possible	execution	plans.	In	these	cases,	the	query	optimizer	does
not	analyze	all	possible	combinations.	Instead,	it	uses	complex	algorithms	to
find	an	execution	plan	that	has	a	cost	reasonably	close	to	the	theoretical
minimum.

The	SQL	Server	query	optimizer	does	not	choose	only	the	execution	plan	with

the	lowest	resource	cost;	it	chooses	the	plan	that	returns	results	to	the	user	with	a
reasonable	cost	in	resources	and	returns	the	results	the	fastest.	For	example,
processing	a	query	in	parallel	typically	uses	more	resources	than	processing	it
serially,	but	completes	the	query	faster.	The	SQL	Server	optimizer	will	use	a
parallel	execution	plan	to	return	results	if	the	load	on	the	server	will	not	be
adversely	affected.

Query	optimizer	relies	on	distribution	statistics	when	estimating	the	resource
costs	of	different	methods	of	extracting	information	from	a	table	or	index.
Distribution	statistics	are	kept	for	columns	and	indexes.	They	indicate	the
selectivity	of	the	values	in	a	particular	index	or	column.	For	example,	in	a	table
representing	cars,	many	cars	have	the	same	manufacturer,	but	each	car	has	a
unique	vehicle	identification	number	(VIN).	An	index	on	the	VIN	is	more
selective	than	an	index	on	the	manufacturer.	If	the	index	statistics	are	not
current,	the	query	optimizer	may	not	make	the	best	choice	for	the	current	state	of
the	table.	For	more	information	about	keeping	index	statistics	current,	see
Statistical	Information.

The	query	optimizer	is	important	because	it	enables	the	database	server	adjust
dynamically	to	changing	conditions	in	the	database	without	requiring	input	from
a	programmer	or	database	administrator.	This	enables	programmers	to	focus	on
describing	the	final	result	of	the	query.	They	can	trust	that	the	query	optimizer
will	always	build	an	efficient	execution	plan	for	the	state	of	the	database	each
time	the	statement	is	run.

Processing	a	SELECT	Statement
The	basic	steps	that	SQL	Server	uses	to	process	a	single	SELECT	statement	are:

1.	 The	parser	scans	the	SELECT	statement	and	breaks	it	into	logical	units
such	as	keywords,	expressions,	operators,	and	identifiers.

2.	 A	query	tree,	sometimes	called	a	sequence	tree,	is	built	describing	the
logical	steps	needed	to	transform	the	source	data	into	the	format
needed	by	the	result	set.

3.	 The	query	optimizer	analyzes	all	the	ways	the	source	tables	can	be
accessed	and	selects	the	series	of	steps	that	returns	the	results	fastest

JavaScript:hhobj_1.Click()

while	consuming	fewer	resources.	The	query	tree	is	updated	to	record
this	exact	series	of	steps,	and	the	final,	optimized	version	of	the	query
tree	is	called	the	execution	plan.

4.	 The	relational	engine	begins	executing	the	execution	plan.	As	steps
that	need	data	from	the	base	tables	are	processed,	the	relational	engine
uses	OLE	DB	to	request	that	the	storage	engine	pass	up	data	from	the
rowsets	requested	from	the	relational	engine.

5.	 The	relational	engine	processes	the	data	returned	from	the	storage
engine	into	the	format	defined	for	the	result	set,	and	returns	the	result
set	to	the	client.

Processing	Other	Statements

The	basic	steps	described	for	processing	a	SELECT	statement	apply	to	other
SQL	statements	such	as	INSERT,	UPDATE,	and	DELETE.	UPDATE	and
DELETE	statements	both	have	to	target	the	set	of	rows	to	be	modified	or
deleted;	the	process	of	identifying	these	rows	is	the	same	process	used	to
identify	the	source	rows	that	contribute	to	the	result	set	of	a	SELECT	statement.
The	UPDATE	and	INSERT	statements	may	both	contain	embedded	SELECT
statements	that	provide	the	data	values	to	be	updated	or	inserted.

Even	Data	Definition	Language	(DDL)	statements	such	as	CREATE
PROCEDURE	or	ALTER	TABLE	are	ultimately	resolved	to	a	series	of
relational	operations	on	the	system	catalog	tables	and	sometimes	(such	as
ALTER	TABLE	ADD	COLUMN)	against	the	data	tables.

SQL	Server	Architecture

View	Resolution
The	Microsoft®	SQL	Server™	2000	query	processor	treats	indexed	and
nonindexed	views	differently:

Indexed	views	are	stored	in	the	database	in	the	same	format	as	a	table.
The	query	processor	treats	indexed	views	the	same	way	it	treats	base
tables.

Only	the	source	of	a	nonindexed	view	is	stored.	The	query	optimizer
incorporates	the	logic	from	the	view	source	into	the	execution	plan	it
builds	for	the	SQL	statement	that	references	the	nonindexed	view.

The	logic	used	by	the	SQL	Server	query	optimizer	to	decide	when	to	use	an
indexed	view	is	similar	to	the	logic	used	to	decide	when	to	use	an	index	on	a
table.	If	the	data	in	the	indexed	view	covers	the	SQL	statement,	and	the	query
optimizer	determines	that	an	index	on	the	view	is	the	low-cost	access	path,	the
query	optimizer	will	choose	the	index	regardless	of	whether	the	view	is
referenced	in	the	WHERE	clause.	For	more	information,	see	Resolving	Indexes
on	Views.

When	an	SQL	statement	references	a	nonindexed	view,	the	parser	and	query
optimizer	analyze	the	source	of	both	the	SQL	statement	and	the	view,	and
resolve	them	into	a	single	execution	plan.	There	is	not	one	plan	for	the	SQL
statement	and	a	separate	plan	for	the	view.

For	example,	consider	the	following	view:

USE	Northwind
GO
CREATE	VIEW	EmployeeName	AS
SELECT	EmployeeID,	LastName,	FirstName
FROM	Northwind.dbo.Employees
GO

Given	this	view,	both	of	these	SQL	statements	perform	the	same	operations	on
the	base	tables	and	produce	the	same	results:

/*	SELECT	referencing	the	EmployeeName	view.	*/
SELECT	LastName	AS	EmployeeLastName,
							OrderID,	OrderDate
FROM	Northwind.dbo.Orders	AS	Ord
					JOIN	Northwind.dbo.EmployeeName	as	EmpN
							ON	(Ord.EmployeeID	=	EmpN.EmployeeID)
WHERE	OrderDate	>	'31	May,	1996'

/*	SELECT	referencing	the	Employees	table	directly.	*/
SELECT	LastName	AS	EmployeeLastName,
							OrderID,	OrderDate
FROM	Northwind.dbo.Orders	AS	Ord
					JOIN	Northwind.dbo.Employees	as	Emp
							ON	(Ord.EmployeeID	=	Emp.EmployeeID)
WHERE	OrderDate	>	'31	May,	1996'

The	SQL	Query	Analyzer	showplan	feature	shows	that	the	relational	engine
builds	the	same	execution	plan	for	both	of	these	SELECT	statements.

SQL	Server	Architecture

Resolving	Indexes	on	Views
The	Microsoft®	SQL	Server™	2000	query	optimizer	determines	whether	a
given	query	will	benefit	from	using	any	indexes	defined	in	the	database.	This
includes	both	indexed	views	and	indexes	on	base	tables.	The	SQL	Server	query
optimizer	uses	an	indexed	view	when	these	conditions	are	met:

These	session	options	are	set	to	ON:

ANSI_NULLS

ANSI_PADDING

ANSI_WARNINGS

ARITHABORT

CONCAT_NULL_YIELDS_NULL

QUOTED_IDENTIFIERS

The	NUMERIC_ROUNDABORT	session	option	is	set	to	OFF.

The	query	optimizer	finds	a	match	between	the	view	index	columns	and
elements	in	the	query,	such	as:

Search	condition	predicates	in	the	WHERE	clause.

Join	operations.

Aggregate	functions.

The	estimated	cost	for	using	the	index	has	the	lowest	cost	of	any	access
mechanisms	considered	by	the	query	optimizer.

Other	than	the	requirements	for	the	SET	options,	these	are	the	same	rules	the
query	optimizer	uses	to	determine	if	a	table	index	covers	a	query.	Nothing	has	to
be	specified	in	the	query	to	make	use	of	an	indexed	view.

A	query	does	not	have	to	explicitly	reference	an	indexed	view	in	the	FROM
clause	for	the	query	optimizer	to	use	the	indexed	view.	If	the	query	contains
references	to	columns	in	the	base	tables	that	are	also	present	in	the	indexed	view,
and	the	query	optimizer	estimates	that	using	the	indexed	view	provides	the
lowest	cost	access	mechanism,	the	query	optimizer	chooses	the	indexed	view,
similar	to	the	way	it	chooses	base	table	indexes	when	they	are	not	directly
referenced	in	a	query.	The	query	optimizer	may	choose	the	view	when	it
contains	columns	that	are	not	referenced	by	the	query,	as	long	as	the	view	offers
the	lowest	cost	option	for	covering	one	or	more	of	the	columns	specified	in	the
query.

You	can	prevent	view	indexes	from	being	used	for	a	query	by	using	the
EXPAND	VIEWS	option.	You	can	use	the	NOEXPAND	view	hint	to	force	the
use	of	an	index	for	an	indexed	view	specified	in	the	FROM	clause	of	a	query.	It
is	recommended,	however,	to	let	the	query	optimizer	dynamically	determine	the
best	access	methods	to	use	for	each	individual	query.	Limit	your	use	of
EXPAND	and	NOEXPAND	to	specific	cases	where	testing	has	shown	they
improve	performance	significantly.

The	EXPAND	VIEWS	option	specifies	that	the	query	optimizer	not	use	any
view	indexes	for	the	entire	query.

The	query	optimizer	does	not	use	any	indexed	views	unless	the	view	is
specified	in	the	FROM	clause.	The	query	optimizer	ignores	all	view
indexes	when	estimating	the	low-cost	method	for	covering	columns
referenced	in	the	query.

The	query	optimizer	treats	an	indexed	view	referenced	in	the	FROM
clause	as	a	standard	view.	The	query	optimizer	incorporates	the	logic	of
the	view	into	the	query	execution	plan	and	dynamically	builds	the	result
set	from	the	base	tables.	The	query	optimizer	ignores	indexes	defined
on	the	view.

When	NOEXPAND	is	specified	for	a	view,	the	query	optimizer	considers	the	use
of	any	indexes	defined	on	the	view.	NOEXPAND	specified	with	the	optional
INDEX()	clause	forces	the	query	optimizer	to	use	the	specified	indexes.
NOEXPAND	can	be	specified	only	for	an	indexed	view	and	cannot	be	specified
for	a	view	not	indexed.

SQL	Server	Architecture

Resolving	Distributed	Partitioned	Views
The	Microsoft®	SQL	Server	2000™	query	processor	is	enhanced	to	optimize	the
performance	of	distributed	partitioned	views.	The	most	important	aspect	of
distributed	partitioned	view	performance	is	minimizing	the	amount	of	data
transferred	between	member	servers.

SQL	Server	2000	builds	intelligent,	dynamic	plans	that	make	efficient	use	of
distributed	queries	to	access	data	from	remote	member	tables:

The	query	processor	first	uses	OLE	DB	to	retrieve	the	CHECK
constraint	definitions	from	each	member	table.	This	allows	the	query
processor	to	map	the	distribution	of	key	values	across	the	member
tables.

The	query	processor	compares	the	key	ranges	specified	in	an	SQL
statement	WHERE	clause	to	the	map	showing	how	the	rows	are
distributed	in	the	member	tables.	The	query	processor	then	builds	a
query	execution	plan	that	uses	distributed	queries	to	retrieve	only	those
remote	rows	needed	to	complete	the	SQL	statement.	The	execution	plan
is	also	built	in	such	a	way	that	any	access	to	remote	member	tables,	for
either	data	or	meta	data,	are	delayed	until	the	information	is	required.

For	example,	consider	a	system	where	a	customers	table	is	partitioned	across
Server1	(CustomerID	from	1	through	3299999),	Server2	(CustomerID	from
3300000	through	6599999),	and	Server3	(CustomerID	from	6600000	through
9999999).

Consider	the	execution	plan	built	for	this	query	executed	on	Server1:

SELECT	*
FROM	CompanyData.dbo.Customers
WHERE	CustomerID	BETWEEN	3200000	AND	3400000

The	execution	plan	for	this	query	extracts	the	rows	with	CustomerID	key	values
from	3200000	through	3299999	from	the	local	member	table,	and	issues	a

distributed	query	to	retrieve	the	rows	with	key	values	from	3300000	through
3400000	from	Server2.

The	SQL	Server	2000	query	processor	can	also	build	dynamic	logic	into	query
execution	plans	for	SQL	statements	where	the	key	values	are	not	known	when
the	plan	must	be	built.	For	example,	consider	this	stored	procedure:

CREATE	PROCEDURE	GetCustomer	@CustomerIDParameter	INT
AS
SELECT	*
FROM	CompanyData.dbo.Customers
WHERE	CustomerID	=	@CustomerIDParameter

SQL	Server	2000	cannot	predict	what	key	value	will	be	supplied	by	the
@CustomerIDParameter	parameter	each	time	the	procedure	is	executed.
Because	the	key	value	cannot	be	predicted,	the	query	processor	also	cannot
predict	which	member	table	will	have	to	be	accessed.	To	handle	this	case,	SQL
Server	builds	an	execution	plan	that	has	conditional	logic,	called	dynamic	filters,
to	control	which	member	table	is	accessed	based	on	the	input	parameter	value.
Assuming	the	GetCustomer	stored	procedure	was	executed	on	Server1,	the
execution	plan	logic	can	be	represented	as:

IF	@CustomerIDParameter	BETWEEN	1	and	3299999
			Retrieve	row	from	local	table	CustomerData.dbo.Customer_33
ELSEIF	@CustomerIDParameter	BETWEEN	3300000	and	6599999
			Retrieve	row	from	linked	table	Server2.CustomerData.dbo.Customer_66
ELSEIF	@CustomerIDParameter	BETWEEN	6600000	and	9999999
			Retrieve	row	from	linked	table	Server3.CustomerData.dbo.Customer_99

SQL	Server	2000	sometimes	builds	these	types	of	dynamic	execution	plans	even
for	queries	that	are	not	parameterized.	The	optimizer	may	auto-parameterize	a
query	so	that	the	execution	plan	can	be	reused.	If	the	optimizer	auto-
parameterizes	a	query	referencing	a	partitioned	view,	then	the	optimizer	can	no
longer	assume	the	required	rows	will	come	from	a	specified	base	table,	and	it
will	have	to	use	dynamic	filters	in	the	execution	plan.	For	more	information,	see
Auto-Parameterization.

SQL	Server	Architecture

Worktables
The	relational	engine	may	need	to	build	a	worktable	to	perform	a	logical
operation	specified	in	an	SQL	statement.	Worktables	are	typically	generated	for
certain	GROUP	BY,	ORDER	BY,	or	UNION	queries.	For	example,	if	an
ORDER	BY	clause	references	columns	not	covered	by	any	indexes,	the
relational	engine	may	need	to	generate	a	worktable	to	sort	the	result	set	into	the
order	requested.

Worktables	are	built	in	tempdb	and	are	dropped	automatically	at	the	end	of	the
statement.

SQL	Server	Architecture

Batch	Processing
A	batch	is	a	collection	of	one	or	more	SQL	statements	sent	in	one	unit	by	the
client.	Each	batch	is	compiled	into	a	single	execution	plan.	If	the	batch	contains
multiple	SQL	statements,	all	of	the	optimized	steps	needed	to	perform	all	the
statements	are	built	into	a	single	execution	plan.

There	are	several	ways	to	specify	a	batch:

All	the	SQL	statements	sent	in	a	single	execution	unit	from	an
application	comprise	a	single	batch	and	generate	a	single	execution
plan.	For	more	information	about	how	an	application	specifies	a	batch,
see	Batches.	

All	the	statements	in	a	stored	procedure	or	trigger	comprise	a	single
batch.	Each	stored	procedure	or	trigger	is	compiled	into	a	single
execution	plan.

The	string	executed	by	an	EXECUTE	statement	is	a	batch	compiled
into	a	single	execution	plan.

The	string	executed	by	an	sp_executesql	system	stored	procedure	is	a
batch	compiled	into	a	single	execution	plan.

When	a	batch	sent	from	an	application	contains	an	EXECUTE	statement,	the
execution	plan	for	the	executed	string	or	stored	procedure	is	executed	separately
from	the	execution	plan	containing	the	EXECUTE	statement.	The	execution
plan	generated	for	the	string	executed	by	an	sp_executesql	stored	procedure	also
remains	separate	from	the	execution	plan	for	the	batch	containing	the
sp_executesql	call.	If	a	statement	in	a	batch	invokes	a	trigger,	the	trigger
execution	plan	executes	separately	from	the	original	batch.

For	example,	a	batch	that	contains	these	four	statements	uses	five	execution
plans:

An	EXECUTE	statement	executing	a	stored	procedure.

JavaScript:hhobj_1.Click()

An	sp_executesql	call	executing	a	string.

An	EXECUTE	statement	executing	a	string.

An	UPDATE	statement	referencing	a	table	that	has	an	update	trigger.

SQL	Server	Architecture

Stored	Procedure	and	Trigger	Execution
Microsoft®	SQL	Server™	2000	stores	only	the	source	for	stored	procedures	and
triggers.	When	a	stored	procedure	or	trigger	is	first	executed,	the	source	is
compiled	into	an	execution	plan.	If	the	stored	procedure	or	trigger	is	again
executed	before	the	execution	plan	is	aged	from	memory,	the	relational	engine
detects	the	existing	plan	and	reuses	it.	If	the	plan	has	aged	out	of	memory,	a	new
plan	is	built.	This	process	is	similar	to	the	process	SQL	Server	2000	follows	for
all	SQL	statements.	The	main	performance	advantage	that	stored	procedures	and
triggers	have	in	SQL	Server	2000	is	that	their	SQL	statements	are	always	the
same;	therefore,	the	relational	engine	matches	them	with	any	existing	execution
plans.

Stored	procedures	had	a	more	pronounced	performance	advantage	over	other
SQL	statements	in	earlier	versions	of	SQL	Server.	Earlier	versions	of	SQL
Server	did	not	attempt	to	reuse	execution	plans	for	batches	that	were	not	stored
procedures	or	triggers.	The	only	way	to	reuse	execution	plans	was	to	encode	the
SQL	statements	in	stored	procedures.

The	execution	plan	for	stored	procedures	and	triggers	is	executed	separately
from	the	execution	plan	for	the	batch	calling	the	stored	procedure	or	firing	the
trigger.	This	allows	for	greater	reuse	of	the	stored	procedure	and	trigger
execution	plans.	For	more	information,	see	Batch	Processing.

SQL	Server	Architecture

Execution	Plan	Caching	and	Reuse
Microsoft®	SQL	Server™	2000	has	a	pool	of	memory	used	to	store	both
execution	plans	and	data	buffers.	The	percentage	of	the	pool	allocated	to	either
execution	plans	or	data	buffers	fluctuates	dynamically	depending	on	the	state	of
the	system.	The	part	of	the	memory	pool	used	to	store	execution	plans	is	called
the	procedure	cache.

SQL	Server	2000	execution	plans	have	the	following	main	components:

Query	plan

The	bulk	of	the	execution	plan	is	a	reentrant,	read-only	data	structure
used	by	any	number	of	users.	This	is	called	the	query	plan.	No	user
context	is	stored	in	the	query	plan.	There	are	never	more	than	one	or
two	copies	of	the	query	plan	in	memory:	one	copy	for	all	serial
executions	and	another	for	all	parallel	executions.	The	parallel	copy
covers	all	parallel	executions,	regardless	of	their	degree	of	parallelism.

Execution	context

Each	user	currently	executing	the	query	has	a	data	structure	that	holds
the	data	specific	to	their	execution,	such	as	parameter	values.	This	data
structure	is	called	the	execution	context.	The	execution	context	data
structures	are	reused.	If	a	user	executes	a	query	and	one	of	the	structures
is	not	in	use,	it	is	reinitialized	with	the	context	for	the	new	user.

When	any	SQL	statement	is	executed	in	SQL	Server	2000,	the	relational	engine
first	looks	through	the	procedure	cache	to	verify	that	an	existing	execution	plan
for	the	same	SQL	statement	exists.	SQL	Server	2000	reuses	any	existing	plan	it
finds,	saving	the	overhead	of	recompiling	the	SQL	statement.	If	no	existing
execution	plan	exists,	SQL	Server	2000	generates	a	new	execution	plan	for	the
query.

SQL	Server	2000	has	an	efficient	algorithm	to	find	any	existing	execution	plans
for	any	given	SQL	statement.	In	most	systems,	the	minimal	resources	used	by
this	scan	are	less	than	the	resources	saved	by	being	able	to	reuse	existing	plans
instead	of	compiling	every	SQL	statement.

The	algorithms	to	match	new	SQL	statements	to	existing,	unused	execution
plans	in	the	cache	require	that	all	object	references	be	fully	qualified.	For
example,	the	first	of	these	SELECT	statements	is	not	matched	with	an	existing
plan,	and	the	second	is	matched:

SELECT	*	FROM	Employees

SELECT	*	FROM	Northwind.dbo.Employees

There	is	a	higher	probability	that	individual	execution	plans	will	be	reused	in	an
instance	of	SQL	Server	2000	than	in	SQL	Server	version	6.5	and	earlier.

Aging	Execution	Plans
After	an	execution	plan	is	generated,	it	stays	in	the	procedure	cache.	SQL	Server
2000	ages	old,	unused	plans	out	of	the	cache	only	when	space	is	needed.	Each
query	plan	and	execution	context	has	an	associated	cost	factor	that	indicates	how
expensive	the	structure	is	to	compile.	These	data	structures	also	have	an	age
field.	Each	time	the	object	is	referenced	by	a	connection,	the	age	field	is
incremented	by	the	compilation	cost	factor.	For	example,	if	a	query	plan	has	a
cost	factor	of	8	and	is	referenced	twice,	its	age	becomes	16.	The	lazywriter
process	periodically	scans	the	list	of	objects	in	the	procedure	cache.	The
lazywriter	decrements	the	age	field	of	each	object	by	1	on	each	scan.	The	age	of
our	sample	query	plan	is	decremented	to	0	after	16	scans	of	the	procedure	cache,
unless	another	user	references	the	plan.	The	lazywriter	process	deallocates	an
object	if	these	conditions	are	met:

The	memory	manager	requires	memory	and	all	available	memory	is
currently	in	use.

The	age	field	for	the	object	is	0.

The	object	is	not	currently	referenced	by	a	connection.

Because	the	age	field	is	incremented	each	time	an	object	is	referenced,
frequently	referenced	objects	do	not	have	their	age	fields	decremented	to	0	and
are	not	aged	from	the	cache.	Objects	infrequently	referenced	are	soon	eligible
for	deallocation,	but	are	not	actually	deallocated	unless	memory	is	required	for
other	objects.

Recompiling	Execution	Plans
Certain	changes	in	a	database	can	cause	an	execution	plan	to	be	either	inefficient
or	invalid,	given	the	new	state	of	the	database.	SQL	Server	detects	the	changes
that	invalidate	an	execution	plan,	and	marks	the	plan	as	invalid.	A	new	plan	must
then	be	recompiled	for	the	next	connection	that	executes	the	query.	The
conditions	that	cause	a	plan	to	be	invalidated	include:

Any	structural	changes	made	to	a	table	or	view	referenced	by	the	query
(ALTER	TABLE	and	ALTER	VIEW).

New	distribution	statistics	generated	either	explicitly	from	a	statement
such	as	UPDATE	STATISTICS	or	automatically.

Dropping	an	index	used	by	the	execution	plan.

An	explicit	call	to	sp_recompile.

Large	numbers	of	changes	to	keys	(generated	by	INSERT	or	DELETE
statements	from	other	users	that	modify	a	table	referenced	by	the
query).

For	tables	with	triggers,	if	the	number	of	rows	in	the	inserted	or
deleted	tables	grows	significantly.

SQL	Server	Architecture

Parameters	and	Execution	Plan	Reuse
The	use	of	parameters,	including	parameter	markers	in	ADO,	OLE	DB,	and
ODBC	applications,	can	increase	the	reuse	of	execution	plans.

The	only	difference	between	the	following	two	SELECT	statements	are	the
values	compared	in	the	WHERE	clause:

SELECT	*	FROM	Northwind.dbo.Products	WHERE	CategoryID	=	1

SELECT	*	FROM	Northwind.dbo.Products	WHERE	CategoryID	=	4

The	only	difference	between	the	execution	plans	for	these	queries	is	the	value
stored	for	the	comparison	against	the	CategoryID	column.	While	the	goal	is	for
SQL	Server	2000	to	always	recognize	that	the	statements	generate	essentially	the
same	plan	and	reuse	the	plans,	SQL	Server	sometimes	does	not	detect	this	in
complex	SQL	statements.

Separating	constants	from	the	SQL	statement	by	using	parameters	helps	the
relational	engine	recognize	duplicate	plans.	You	can	use	parameters	in	the
following	ways:

In	Transact-SQL,	use	sp_executesql:
DECLARE	@MyIntParm	INT
SET	@MyIntParm	=	1
EXEC	sp_executesql
		N'SELECT	*	FROM	Northwind.dbo.Products	WHERE	CategoryID	=	@Parm',
		N'@Parm	INT',
		@MyIntParm

This	method	is	recommended	for	Transact-SQL	scripts,	stored
procedures,	or	triggers	that	generate	SQL	statements	dynamically.	For
more	information,	see	Building	Statements	at	Run	Time.

ADO,	OLE	DB,	and	ODBC	use	parameter	markers.	Parameter	markers
are	question	marks	(?)	that	replace	a	constant	in	an	SQL	statement	and

JavaScript:hhobj_1.Click()

are	bound	to	a	program	variable.	For	example,	in	an	ODBC	application:

Use	SQLBindParameter	to	bind	an	integer	variable	to	the
first	parameter	marker	in	an	SQL	statement.

Place	the	integer	value	in	the	variable.

Execute	the	statement,	specifying	the	parameter	marker	(?):
SQLExecDirect(hstmt,	
		"SELECT	*	FROM	Northwind.dbo.Products	WHERE	CategoryID	=	?",
		SQL_NTS);

The	Microsoft	OLE	DB	Provider	for	SQL	Server	and	the	SQL	Server
ODBC	driver	that	are	included	with	SQL	Server	2000	use
sp_executesql	to	send	statements	to	SQL	Server	2000	when	parameter
markers	are	used	in	applications.

See	Also

sp_executesql

Using	Parameters

Command	Parameters

Using	Statement	Parameters

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Architecture

Auto-Parameterization
In	Microsoft®	SQL	Server™	2000,	using	parameters	or	parameter	markers	in
Transact-SQL	statements	increases	the	ability	of	the	relational	engine	to	match
new	SQL	statements	with	existing,	unused	execution	plans.	If	an	SQL	statement
is	executed	without	parameters,	SQL	Server	2000	parameterizes	the	statement
internally	to	increase	the	possibility	of	matching	it	against	an	existing	execution
plan.

Consider	this	statement:

SELECT	*	FROM	Northwind.dbo.Products	WHERE	CategoryID	=	1

The	value	1	at	the	end	of	the	statement	can	be	specified	as	a	parameter.	The
relational	engine	builds	the	execution	plan	for	this	batch	as	if	a	parameter	had
been	specified	in	place	of	the	value	1.	Because	of	this	auto-parameterization,
SQL	Server	2000	recognizes	that	the	following	two	statements	generate
essentially	the	same	execution	plan	and	reuses	the	first	plan	for	the	second
statement:

SELECT	*	FROM	Northwind.dbo.Products	WHERE	CategoryID	=	1

SELECT	*	FROM	Northwind.dbo.Products	WHERE	CategoryID	=	4

When	processing	complex	SQL	statements,	the	relational	engine	may	have
difficulty	determining	which	expressions	can	be	auto-parameterized.	To	increase
the	ability	of	the	relational	engine	to	match	complex	SQL	statements	to	existing,
unused	execution	plans,	explicitly	specify	the	parameters	using	either
sp_executesql	or	parameter	markers.	For	more	information,	see	Parameters	and
Execution	Plan	Reuse.

SQL	Server	Architecture

Preparing	SQL	Statements
The	Microsoft®	SQL	Server™	2000	relational	engine	introduces	full	support	for
preparing	SQL	statements	before	they	are	executed.	If	an	application	needs	to
execute	an	SQL	statement	several	times,	using	the	database	API	it	can:

Prepare	the	statement	once.	This	compiles	the	SQL	statement	into	an
execution	plan.

Execute	the	precompiled	execution	plan	each	time	it	needs	to	execute
the	statement.	This	saves	recompiling	the	SQL	statement	on	each
execution	after	the	first.

Preparing	and	executing	statements	is	controlled	by	API	functions	and
methods.	It	is	not	a	part	of	the	Transact-SQL	language.	The
prepare/execute	model	of	executing	SQL	statements	is	supported	by	the
Microsoft	OLE	DB	Provider	for	SQL	Server	and	the	SQL	Server	ODBC
driver.	On	a	prepare	request,	either	the	provider	or	the	driver	sends	the
statement	to	SQL	Server	with	a	request	to	prepare	the	statement.	SQL
Server	compiles	an	execution	plan	and	returns	a	handle	to	that	plan	to
the	provider	or	driver.	On	an	execute	request,	either	the	provider	or	the
driver	sends	the	server	a	request	to	execute	the	plan	associated	with	the
handle.

Prepared	statements	cannot	be	used	to	create	temporary	objects	on	SQL	Server
2000	or	SQL	Server	version	7.0.	Prepared	statements	cannot	reference	system
stored	procedures	that	create	temporary	objects,	such	as	temporary	tables.	These
procedures	must	be	executed	directly.

Excess	use	of	the	prepare/execute	model	can	degrade	performance.	If	a
statement	is	executed	only	once,	a	direct	execution	requires	only	one	network
round	trip	to	the	server.	Preparing	and	executing	an	SQL	statement	executed
only	one	time	requires	an	extra	network	round-trip;	one	trip	to	prepare	the
statement	and	one	trip	to	execute	it.

Preparing	a	statement	is	more	effective	if	parameter	markers	are	used.	For

example,	assume	an	application	is	asked	occasionally	to	retrieve	product
information	from	the	Northwind	sample	database.	There	are	two	methods	for
how	the	application	can	do	this.

In	the	first	method,	the	application	could	execute	a	separate	query	for	each
product	requested:

SELECT	*	FROM	Northwind.dbo.Products
WHERE	ProductID	=	63

An	alternative	would	be	for	the	application	to:

1.	 Prepare	a	statement	containing	a	parameter	marker	(?):
SELECT	*	FROM	Northwind.dbo.Products
WHERE	ProductID	=	?

2.	 Bind	a	program	variable	to	the	parameter	marker.

3.	 Each	time	product	information	is	needed,	fill	the	bound	variable	with
the	key	value	and	execute	the	statement.

The	second	method	is	more	efficient	when	the	statement	is	executed	more	than
three	times.

In	SQL	Server	2000,	the	prepare/execute	model	has	little	performance	advantage
over	direct	execution	because	of	the	way	SQL	Server	2000	reuses	execution
plans.	SQL	Server	2000	has	efficient	algorithms	for	matching	current	SQL
statements	with	execution	plans	generated	for	prior	executions	of	the	same	SQL
statement.	If	an	application	executes	an	SQL	statement	with	parameter	markers
multiple	times,	SQL	Server	2000	will	reuse	the	execution	plan	from	the	first
execution	for	the	second	and	subsequent	executions	(unless	the	plan	ages	from
the	procedure	cache).	The	prepare/execute	model	still	offers	these	benefits:

Finding	an	execution	plan	by	an	identifying	handle	is	more	efficient
than	the	algorithms	used	to	match	an	SQL	statement	to	existing
execution	plans.

The	application	can	control	when	the	execution	plan	is	created	and

when	reused.

The	prepare/execute	model	is	portable	to	other	databases,	including
earlier	versions	of	SQL	Server.

Prepare	and	Execute	in	Earlier	Versions	of	SQL	Server

SQL	Server	version	6.5	and	earlier	did	not	support	the	prepare/execute	model
directly.	The	SQL	Server	ODBC	driver,	however,	supported	the	prepare/execute
model	by	using	stored	procedures:

When	an	application	requested	that	an	SQL	statement	be	prepared,	the
ODBC	driver	would	wrap	the	SQL	statement	in	a	CREATE
PROCEDURE	statement	and	send	it	to	SQL	Server.

On	an	execute	request,	the	ODBC	driver	would	request	that	SQL	Server
execute	the	generated	stored	procedure.

In	SQL	Server	6.5	and	SQL	Server	6.0,	the	generated	stored	procedures	were
temporary	stored	procedures	stored	in	tempdb.	SQL	Server	version	4.21a	and
earlier	did	not	support	temporary	stored	procedures,	so	the	driver	generated
regular	stored	procedures	stored	in	the	current	database.	The	Microsoft	OLE	DB
Provider	for	SQL	Server	and	the	SQL	Server	ODBC	driver	included	with	SQL
Server	2000	follows	these	behaviors	when	connected	to	SQL	Server	version	6.5,
SQL	Server	version	6.0,	and	SQL	Server	version	4.21a.

See	Also

Execution	Plan	Caching	and	Reuse

Parameters	and	Execution	Plan	Reuse

Executing	Prepared	Statements

Preparing	Commands

Prepared	Execution

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

Parallel	Query	Processing
Microsoft®	SQL	Server™	2000	provides	parallel	queries	to	optimize	query
execution	for	computers	having	more	than	one	microprocessor.	By	allowing
SQL	Server	to	perform	a	query	in	parallel	by	using	several	operating	system
threads,	SQL	Server	completes	complex	queries	with	large	amounts	of	data
quickly	and	efficiently.

During	query	optimization,	SQL	Server	looks	for	queries	that	might	benefit	from
parallel	execution.	For	these	queries,	SQL	Server	inserts	exchange	operators	into
the	query	execution	plan	to	prepare	the	query	for	parallel	execution.	An
exchange	operator	is	an	operator	in	a	query	execution	plan	that	provides	process
management,	data	redistribution,	and	flow	control.	After	exchange	operators	are
inserted,	the	result	is	a	parallel	query	execution	plan.	A	parallel	query	execution
plan	can	use	more	than	one	thread,	whereas	a	serial	execution	plan,	used	by	a
nonparallel	query,	uses	only	a	single	thread	for	its	execution.	The	actual	number
of	threads	used	by	a	parallel	query	is	determined	at	query	plan	execution
initialization	and	is	called	the	degree	of	parallelism.

SQL	Server	Architecture

Degree	of	Parallelism
Microsoft®	SQL	Server™	2000	detects	the	best	degree	of	parallelism	for	each
instance	of	a	parallel	query	execution	automatically	by	considering:

1.	 Is	SQL	Server	running	on	a	computer	with	more	than	one
microprocessor	or	CPU,	such	as	a	symmetric	multiprocessing
computer	(SMP)?

Only	computers	with	more	than	one	CPU	can	use	parallel	queries.

2.	 What	is	the	number	of	concurrent	users	active	on	the	SQL	Server
installation	at	this	moment?

SQL	Server	monitors	CPU	usage	and	adjusts	the	degree	of	parallelism
at	the	query	startup	time.	Lower	degrees	of	parallelism	are	chosen	if
CPU	usage	is	high.

3.	 Is	there	sufficient	memory	available	for	parallel	query	execution?

Each	query	requires	a	certain	amount	of	memory	to	execute.	Executing
a	parallel	query	requires	more	memory	than	a	nonparallel	query.	The
amount	of	memory	required	for	executing	a	parallel	query	increases
with	the	degree	of	parallelism.	If	the	memory	requirement	of	the
parallel	plan	for	a	given	degree	of	parallelism	cannot	be	satisfied,	SQL
Server	decreases	the	degree	of	parallelism	automatically	or	completely
abandons	the	parallel	plan	for	the	query	in	the	given	workload	context
and	executes	the	serial	plan.

4.	 What	is	the	type	of	query	executed?

Queries	heavily	consuming	CPU	cycles	are	the	best	candidates	for	a
parallel	query.	For	example,	joins	of	large	tables,	substantial
aggregations,	and	sorting	of	large	result	sets	are	good	candidates.
Simple	queries,	often	found	in	transaction	processing	applications,	find
the	additional	coordination	required	to	execute	a	query	in	parallel
outweigh	the	potential	performance	boost.	To	distinguish	between
queries	that	benefit	from	parallelism	and	those	that	do	not	benefit,	SQL

Server	compares	the	estimated	cost	of	executing	the	query	with	the
cost	threshold	for	parallelism	value.	Although	not	recommended,
users	can	change	the	default	value	of	5	using	sp_configure.

5.	 Is	there	a	sufficient	amount	of	rows	processed	in	the	given	stream?

If	the	query	optimizer	determines	the	number	of	rows	in	a	stream	is
too	low,	it	does	not	introduce	exchange	operators	to	distribute	the
stream.	Consequently,	the	operators	in	this	stream	are	executed
serially.	Executing	the	operators	in	a	serial	plan	avoids	scenarios	when
the	startup,	distribution,	and	coordination	cost	exceeds	the	gains
achieved	by	parallel	operator	execution.

The	INSERT,	UPDATE,	and	DELETE	operators	are	executed	serially;	however,
the	WHERE	clause	of	either	an	UPDATE	or	DELETE,	or	SELECT	portion	of	an
INSERT	statement	may	be	executed	in	parallel.	The	actual	data	changes	are	then
serially	applied	to	the	database.

Static	and	keyset	cursors	can	be	populated	by	parallel	execution	plans.	However,
the	behavior	of	dynamic	cursors	can	be	provided	only	by	serial	execution.	The
query	optimizer	always	generates	a	serial	execution	plan	for	a	query	that	is	part
of	a	dynamic	cursor.

At	execution	time,	SQL	Server	determines	if	the	current	system	workload	and
configuration	information	allow	for	parallel	query	execution.	If	parallel	query
execution	is	warranted,	SQL	Server	determines	the	optimal	number	of	threads
and	spreads	the	execution	of	the	parallel	query	across	those	threads.	When	a
query	starts	executing	on	multiple	threads	for	parallel	execution,	the	query	uses
the	same	number	of	threads	until	completion.	SQL	Server	reexamines	the
optimal	number	of	thread	decisions	each	time	a	query	execution	plan	is	retrieved
from	the	procedure	cache.	For	example,	one	execution	of	a	query	can	result	in
use	of	a	serial	plan,	a	later	execution	of	the	same	query	can	result	in	a	parallel
plan	using	three	threads,	and	a	third	execution	can	result	in	a	parallel	plan	using
four	threads.

Use	SQL	Profiler	to	monitor	the	degree	of	parallelism	for	individual	statements.
Use	the	Degree	Of	Parallelism	event	class	in	the	Performance	event	category.
For	more	information,	see	Performance	Event	Category.

The	showplan	output	for	every	parallel	query	will	have	at	least	one	of	these

JavaScript:hhobj_1.Click()

logical	operators:

Distribute	Streams

Gather	Streams

Repartition	Streams

See	Also

Setting	Configuration	Options

sp_configure

System	Stored	Procedures

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Architecture

Parallel	Query	Example
The	following	query	counts	the	number	of	orders	placed	in	a	given	quarter
starting	on	April	1,	2000	in	which	at	least	one	line	item	of	the	order	was	received
by	the	customer	later	than	the	committed	date.	This	query	lists	the	count	of	such
orders	grouped	by	each	order	priority	and	sorted	in	ascending	priority	order.

This	example	uses	theoretical	table	and	column	names.

SELECT	o_orderpriority,	COUNT(*)	AS	Order_Count
FROM	orders
WHERE	o_orderdate	>=	'2000/04/01'
			AND	o_orderdate	<	DATEADD	(mm,	3,	'2000/04/01')
			AND	EXISTS
									(
										SELECT	*
												FROM				lineitem
												WHERE	l_orderkey	=	o_orderkey
															AND	l_commitdate	<	l_receiptdate
)
			GROUP	BY	o_orderpriority
			ORDER	BY	o_orderpriority

Assume	the	following	indexes	are	defined	on	the	lineitem	and	orders	tables:

CREATE	INDEX	l_order_dates_idx	
			ON	lineitem
						(l_orderkey,	l_receiptdate,	l_commitdate,	l_shipdate)

CREATE	UNIQUE	INDEX	o_datkeyopr_idx
			ON	ORDERS
						(o_orderdate,	o_orderkey,	o_custkey,	o_orderpriority)

Here	is	one	possible	parallel	plan	generated	for	the	query	shown	earlier:

|--Stream	Aggregate(GROUP	BY:([ORDERS].[o_orderpriority])
																		DEFINE:([Expr1005]=COUNT(*)))
				|--Parallelism(Gather	Streams,	ORDER	BY:
																		([ORDERS].[o_orderpriority]	ASC))
									|--Stream	Aggregate(GROUP	BY:
																		([ORDERS].[o_orderpriority])
																		DEFINE:([Expr1005]=Count(*)))
														|--Sort(ORDER	BY:([ORDERS].[o_orderpriority]	ASC))
																			|--Merge	Join(Left	Semi	Join,	MERGE:
																		([ORDERS].[o_orderkey])=
																								([LINEITEM].[l_orderkey]),
																		RESIDUAL:([ORDERS].[o_orderkey]=
																								[LINEITEM].[l_orderkey]))
																								|--Sort(ORDER	BY:([ORDERS].[o_orderkey]	ASC))
																								|				|--Parallelism(Repartition	Streams,
																											PARTITION	COLUMNS:
																											([ORDERS].[o_orderkey]))
																								|									|--Index	Seek(OBJECT:
																					([tpcd1G].[dbo].[ORDERS].[O_DATKEYOPR_IDX]),
																					SEEK:([ORDERS].[o_orderdate]	>=
																											Apr		1	2000	12:00AM	AND
																											[ORDERS].[o_orderdate]	<
																											Jul		1	2000	12:00AM)	ORDERED)
																								|--Parallelism(Repartition	Streams,
																					PARTITION	COLUMNS:
																					([LINEITEM].[l_orderkey]),
																					ORDER	BY:([LINEITEM].[l_orderkey]	ASC))
																													|--Filter(WHERE:
																											([LINEITEM].[l_commitdate]<
																											[LINEITEM].[l_receiptdate]))
																																		|--Index	Scan(OBJECT:
									([tpcd1G].[dbo].[LINEITEM].[L_ORDER_DATES_IDX]),	ORDERED)

The	illustration	shows	a	query	optimizer	plan	executed	with	a	degree	of
parallelism	equal	to	4	and	involving	a	two-table	join.

The	parallel	plan	contains	three	Parallelism	operators.	Both	the	Index	Seek
operator	of	the	o_datkey_ptr	index	and	the	Index	Scan	operator	of	the
l_order_dates_idx	index	are	performed	in	parallel,	producing	several	exclusive
streams.	This	can	be	determined	from	the	nearest	Parallelism	operators	above	the
Index	Scan	and	Index	Seek	operators,	respectively.	They	are	both	repartitioning
the	type	of	exchange;	they	are	merely	reshuffling	data	among	the	streams
producing	the	same	number	of	streams	on	their	output	as	they	have	on	input.
This	number	of	streams	is	equal	to	the	degree	of	parallelism.

The	Parallelism	operator	above	the	l_order_dates_idx	Index	Scan	operator	is
repartitioning	its	input	streams	using	the	value	of	L_ORDERKEY	as	a	key	so	the
same	values	of	L_ORDERKEY	end	up	in	the	same	output	stream.	At	the	same
time,	output	streams	maintain	the	order	on	the	L_ORDERKEY	column	to	meet
the	input	requirement	of	the	Merge	Join	operator.

The	Parallelism	operator	above	the	Index	Seek	operator	is	repartitioning	its	input
streams	using	the	value	of	O_ORDERKEY.	Because	its	input	is	not	sorted	on	the
O_ORDERKEY	column	values	and	this	is	the	join	column	in	the	Merge	Join

operator,	the	Sort	operator	between	the	Parallelism	and	Merge	Join	operators
ensure	the	input	is	sorted	for	the	Merge	Join	operator	on	the	join	columns.	The
Sort	operator,	like	the	Merge	Join	operator,	is	performed	in	parallel.

The	topmost	Parallelism	operator	gathers	results	from	several	streams	into	a
single	stream.	Partial	aggregations	performed	by	the	Stream	Aggregate	operator
below	the	Parallelism	operator	are	then	accumulated	into	a	single	SUM	value	for
each	different	value	of	the	O_ORDERPRIORITY	in	the	Stream	Aggregate
operator	above	the	Parallelism	operator.

See	Also

Logical	and	Physical	Operators

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Parallel	Operations	Creating	Indexes
The	query	plans	built	for	the	creation	of	indexes	allow	parallel,	multi-threaded
index	create	operations	on	computers	with	multiple	microprocessors.

Microsoft®	SQL	Server™	2000	uses	the	same	algorithms	to	determine	the
degree	of	parallelism	(the	total	number	of	separate	threads	to	run)	for	create
index	operations	as	it	does	for	other	Transact-SQL	statements.	The	only
difference	is	that	the	CREATE	INDEX,	CREATE	TABLE,	or	ALTER	TABLE
statements	that	create	indexes	do	not	support	the	MAXDOP	query	hint.	The
maximum	degree	of	parallelism	for	an	index	creation	is	subject	to	the	max
degree	of	parallelism	server	configuration	option,	but	you	cannot	set	a	different
MAXDOP	value	for	individual	index	creation	operations.

When	SQL	Server	2000	builds	a	create	index	query	plan,	the	number	of	parallel
operations	is	set	to	the	lowest	value	of:

The	number	of	microprocessors,	or	CPUs	in	the	computer.

The	number	specified	in	the	max	degree	of	parallelism	server
configuration	option.

The	number	of	CPUs	not	already	over	a	threshold	of	work	performed
for	SQL	Server	threads.

For	example,	on	a	computer	with	eight	CPUs,	but	where	max	degree	of
parallelism	is	set	to	6,	no	more	than	six	parallel	threads	are	generated	for	an
index	creation.	If	five	of	the	CPUs	in	the	computer	exceed	the	threshold	of	SQL
Server	work	when	an	index	creation	execution	plan	is	built,	the	execution	plan
specifies	only	three	parallel	threads.

The	main	phases	of	parallel	index	creation	include:

A	coordinating	thread	quickly	and	randomly	scans	the	table	to	estimate
the	distribution	of	the	index	keys.	The	coordinating	thread	establishes
the	key	boundaries	that	will	create	a	number	of	key	ranges	equal	to	the

degree	of	parallel	operations,	where	each	key	range	is	estimated	to
cover	similar	numbers	of	rows.	For	example,	if	there	are	4	million	rows
in	the	table,	and	the	degree	of	parallelism	is	4,	the	coordinating	thread
will	determine	the	key	values	that	delimit	4	sets	of	rows	with	1	million
rows	in	each	set.

The	coordinating	thread	dispatches	a	number	of	threads	equal	to	the
degree	of	parallel	operations,	and	waits	for	these	threads	to	complete
their	work.	Each	thread	scans	the	base	table	using	a	filter	that	retrieves
only	rows	with	key	values	within	the	range	assigned	to	the	thread.	Each
thread	builds	an	index	structure	for	the	rows	in	its	key	range.	For	more
information	about	how	an	index	is	built,	see	tempdb	and	Index
Creation.

After	all	the	parallel	threads	have	completed,	the	coordinating	thread
connects	the	index	subunits	into	a	single	index.

Individual	CREATE	TABLE	or	ALTER	TABLE	statements	can	have	multiple
constraints	that	require	the	creation	of	an	index.	These	multiple	index	creation
operations	are	performed	in	series,	although	each	individual	index	creation
operation	may	be	a	parallel	operation	on	a	computer	with	multiple	CPUs.

See	Also

tempdb	and	Index	Creation

SQL	Server	Architecture

Memory	Architecture
Microsoft®	SQL	Server™	2000	dynamically	acquires	and	frees	memory	as
needed.	It	is	typically	not	necessary	for	an	administrator	to	specify	how	much
memory	should	be	allocated	to	SQL	Server,	although	the	option	still	exists	and	is
required	in	some	environments.	When	running	multiple	instances	of	SQL	Server
on	a	computer,	each	instance	can	dynamically	acquire	and	free	memory	to	adjust
for	changes	in	the	workload	of	the	instance.

SQL	Server	2000	Enterprise	Edition	introduces	support	for	using	Microsoft
Windows®	2000	Address	Windowing	Extensions	(AWE)	to	address
approximately	8GB	of	memory	for	instances	running	on	Windows	2000
Advanced	Server,	and	approximately	64GB	for	instances	running	on	Windows
2000	Data	Center.	Each	instance	using	this	extended	memory,	however,	must
statically	allocate	the	memory	it	needs.

Virtual	Memory	and	the	Database	Engine
Virtual	memory	is	a	method	of	extending	the	available	physical	memory	on	a
computer.	In	a	virtual	memory	system,	the	operating	system	creates	a	pagefile,
or	swapfile,	and	divides	memory	into	units	called	pages.	Recently	referenced
pages	are	located	in	physical	memory,	or	RAM.	If	a	page	of	memory	is	not
referenced	for	a	while,	it	is	written	to	the	pagefile.	This	is	called	swapping	or
paging	out	memory.	If	that	piece	of	memory	is	later	referenced	by	an	application,
the	operating	system	reads	the	memory	page	back	from	the	pagefile	into	physical
memory,	also	called	swapping	or	paging	in	memory.	The	total	amount	of
memory	available	to	applications	is	the	amount	of	physical	memory	in	the
computer	plus	the	size	of	the	pagefile.	If	a	computer	has	256	MB	of	RAM	and	a
256	MB	pagefile,	the	total	memory	available	to	applications	is	512	MB.
Operating	systems	such	as	Microsoft	Windows	NT®,	Windows	2000,	Windows
95,	and	Windows	98	support	virtual	memory.

One	of	the	primary	design	goals	of	all	database	software	is	to	minimize	disk	I/O
because	disk	reads	and	writes	are	among	the	most	resource-intensive	operations.
SQL	Server	builds	a	buffer	cache	in	memory	to	hold	pages	read	from	the
database.	Much	of	the	code	in	SQL	Server	is	dedicated	to	minimizing	the
number	of	physical	reads	and	writes	between	the	disk	and	the	buffer	cache.	The

larger	the	buffer	cache	is,	the	less	I/O	SQL	Server	has	to	do	to	the	database	files.
However,	if	the	buffer	cache	causes	SQL	Server	memory	requirements	to	exceed
the	available	physical	memory	on	the	server,	the	operating	system	starts
swapping	memory	to	and	from	the	pagefile.	All	that	has	happened	is	that	the
physical	I/O	to	the	database	files	has	been	traded	for	physical	I/O	to	the	swap
file.

Having	a	lot	of	physical	I/O	to	the	database	files	is	an	inherent	factor	of	database
software.	By	default,	SQL	Server	tries	to	reach	a	balance	between	two	goals:

Minimizing	or	eliminating	pagefile	I/O	to	concentrate	I/O	resources	for
reads	and	writes	of	the	database	files.

Minimizing	physical	I/O	to	the	database	files	by	maximizing	the	size	of
the	buffer	cache.

By	default,	the	SQL	Server	2000	editions	dynamically	manage	the	size	of	the
address	space	for	each	instance.	There	are	differences	in	the	way	Windows	NT,
Windows	2000,	Windows	95,	and	Windows	98	report	virtual	memory	usage	to
applications.	Because	of	this,	SQL	Server	2000	uses	different	algorithms	to
manage	memory	on	these	operating	systems.

SQL	Server	2000	Enterprise	Edition	does	not	default	to	dynamic	memory
management	if	you	are	using	Windows	2000	AWE	to	support	large	address
spaces.

SQL	Server	Architecture

Dynamically	Managing	Memory	on	Windows	NT	and
Windows	2000
When	running	on	Microsoft®	Windows	NT®	or	Windows®	2000,	the	default	
memory	management	behavior	of	the	SQL	Server	database	engine	is	not	to
acquire	a	specific	amount	of	memory,	but	to	acquire	as	much	memory	as	it	can
without	generating	excess	paging	I/O.	The	database	engine	does	this	by
acquiring	as	much	memory	as	is	available,	while	leaving	enough	memory	free	to
prevent	the	operating	system	from	swapping	memory.

When	an	instance	of	SQL	Server	starts,	it	typically	acquires	8	to	12	MB	of
memory	to	complete	the	initialization	process.	After	the	instance	has	finished
initializing,	it	acquires	no	more	memory	until	users	connect	to	it	and	start
generating	a	workload.	The	instance	then	keeps	acquiring	memory	as	required	to
support	the	workload.	As	more	users	connect	and	run	queries,	SQL	Server
acquires	the	additional	memory	required	to	support	the	demand.	The	instance
will	keep	acquiring	memory	until	it	reaches	its	memory	allocation	target,	it	will
not	free	any	memory	until	it	reaches	the	lower	limit	of	the	target.

To	acquire	as	much	memory	as	possible	without	generating	excess	paging	I/O,
each	instance	of	SQL	Server	sets	a	target	of	acquiring	memory	until	free
physical	memory	on	the	computer	is	in	the	range	of	4	MB	to	10	MB.	This	range
was	chosen	because	testing	has	shown	that	Windows	NT	and	Windows	2000
have	minimal	memory	swapping	until	the	memory	allocations	equal	the
available	physical	memory	minus	4	MB.	An	instance	of	SQL	Server	that	is
processing	a	heavy	workload	keeps	the	free	physical	memory	at	the	lower	end	(4
MB)	of	the	range;	an	instance	that	is	processing	a	light	workload	keeps	the	free
memory	at	the	higher	end	of	the	range	(10	MB).

An	instance	of	SQL	Server	will	vary	its	target	as	the	workload	changes.	As	more
users	connect	and	generate	more	work,	the	instance	will	tend	to	acquire	more
memory	to	keep	the	available	free	memory	down	at	the	4	MB	limit.	As	the
workload	lightens,	the	instance	will	adjust	its	target	towards	10	MB	of	free
space,	and	will	free	memory	to	the	operating	system.	Keeping	the	amount	of	free
space	between	10	MB	and	4	MB	keeps	Windows	NT	or	Windows	2000	from
paging	excessively,	while	at	the	same	time	allowing	SQL	Server	to	have	the
largest	buffer	cache	possible	that	will	not	cause	extra	swapping.

The	target	memory	setting	for	an	instance	is	related	to	the	demand	for	pages	in
the	database	buffer	pool	relative	to	the	size	of	the	available	pool.	At	any	point	in
time,	the	overall	demand	for	buffer	pages	is	determined	by	the	number	of	data
pages	required	to	satisfy	all	of	the	currently	executing	queries.	If	the	demand	for
data	pages	is	large	relative	to	the	number	of	pages	in	the	buffer	cache,	then	each
page	currently	in	the	buffer	is	likely	to	be	replaced	by	a	new	page	in	a	relatively
short	time.	This	is	measured	by	the	page	life	expectancy	performance	counter	of
the	Buffer	Manager	object.	Having	a	high	demand	against	a	relatively	small
buffer	generates	a	short	life	expectancy,	the	net	effect	is	that	I/O	is	increased
because	pages	tend	to	be	overwritten	before	they	can	be	referenced	by	multiple
logical	reads.	The	database	engine	can	alleviate	this	by	acquiring	more	memory
to	increase	the	size	of	the	buffer	cache.	The	database	engine	will	target	free
memory	at	the	high	end	of	the	target	(10	MB)	when	the	page	life	expectancy	is
long,	and	at	the	low	end	of	the	target	range	(4	MB)	when	the	page	life
expectancy	is	short.

As	other	applications	are	started	on	a	computer	running	an	instance	of	SQL
Server,	they	consume	memory	and	the	amount	of	free	physical	memory	drops
below	the	SQL	Server	target.	The	instance	of	SQL	Server	then	frees	enough
memory	from	its	address	space	to	raise	the	amount	of	free	memory	back	to	the
SQL	Server	target.	If	another	application	is	stopped	and	more	memory	becomes
available,	the	instance	of	SQL	Server	increases	the	size	of	its	memory	allocation.
SQL	Server	can	free	and	acquire	several	megabytes	of	memory	each	second,
allowing	it	to	quickly	adjust	to	memory	allocation	changes.

SQL	Server	Architecture

Effects	of	min	and	max	server	memory
The	min	server	memory	and	max	server	memory	configuration	options
establish	upper	and	lower	limits	to	the	amount	of	memory	used	by	the	SQL
Server	database	engine.	The	database	engine	does	not	immediately	acquire	the
amount	of	memory	specified	in	min	server	memory.	The	database	engine	starts
with	only	the	memory	required	to	initialize.	As	the	database	engine	workload
increases,	it	keeps	acquiring	the	memory	required	to	support	the	workload.	The
database	engine	will	not	free	any	of	the	acquired	memory	until	it	reaches	the
amount	specified	in	min	server	memory.	Once	min	server	memory	is	reached,
the	database	engine	then	uses	the	standard	algorithm	(keeping	the	operating
system's	free	memory	within	4	MB	to	10	MB)	to	acquire	and	free	memory	as
needed.	The	only	difference	is	that	the	database	engine	never	drops	its	memory
allocation	below	the	level	specified	in	min	server	memory,	and	never	acquires
more	memory	than	the	level	specified	in	max	server	memory.

The	amount	of	memory	acquired	by	the	database	engine	is	entirely	dependent	on
the	workload	placed	on	the	instance.	A	SQL	Server	instance	that	is	not
processing	many	requests	may	never	reach	min	server	memory.

If	the	same	value	is	specified	for	both	min	server	memory	and	max	server
memory,	then	once	the	memory	allocated	to	the	database	engine	reaches	that
value,	the	database	engine	stops	dynamically	freeing	and	acquiring	memory.

If	an	instance	of	SQL	Server	is	running	on	a	computer	where	other	applications
are	frequently	stopped	or	started,	the	allocation	and	deallocation	of	memory	by
the	instance	of	SQL	Server	may	slow	the	startup	times	of	other	applications.
Also,	if	SQL	Server	is	one	of	several	server	applications	running	on	a	single
computer,	the	system	administrators	may	need	to	control	the	amount	of	memory
allocated	to	SQL	Server.	In	these	cases,	you	can	use	the	min	server	memory
and	max	server	memory	options	to	control	how	much	memory	SQL	Server	can
use.	For	more	information,	see	Server	Memory	Options.

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Dynamically	Managing	Memory	Between	Multiple
Instances
When	multiple	instances	of	SQL	Server	are	running	on	the	same	computer,	each
instance	independently	uses	the	standard	dynamic	memory	management
algorithm.	There	is	no	need	for	the	instances	to	communicate	with	each	other	to
cooperatively	manage	memory.	When	all	but	4	MB	to	10	MB	of	the	memory	on
a	computer	is	allocated,	the	amount	of	memory	allocated	to	each	specific
instance	of	the	database	engine	is	driven	by	the	relative	workload	of	each
instance.	The	instances	with	higher	workloads	acquire	more	memory,	while
instances	processing	lighter	workloads	acquire	less	memory.	Regardless	of	the
number	of	instances	of	SQL	Server	on	a	computer,	the	algorithm	ensures:

The	overall	amount	of	allocated	memory	remains	under	the	level	that
would	generate	Windows	NT®	or	Windows®	2000	page	I/Os.

The	computer	memory	is	efficiently	distributed	between	the	instances	of
SQL	Server	based	on	their	relative	workloads.

The	memory	allocations	are	dynamic	and	can	immediately	adjust	to
changes	in	the	workloads	of	individual	instances	of	SQL	Server.

The	interactions	can	be	illustrated	on	a	computer	running	two	instances,	but	the
same	principles	apply	when	several	instances	are	running	on	the	same	computer.
Consider	a	computer	with	512MB	of	physical	memory	running	two	instances
named	Instance1	and	Instance2.

When	both	instances	are	first	started,	they	typically	acquire	8	MB	to	12	MB	of
memory.	As	users	connect	to	the	instances,	each	instance	acquires	enough
memory	to	satisfy	its	current	workload.

Once	the	amount	of	memory	reaches	the	point	where	only	4	MB	to	10	MB	is
free,	the	instances	begin	competing	with	each	other	for	memory.	Assume	that
Instance1	has	a	long	page	life	expectancy	and	a	free	memory	target	of	10	MB,
Instance2	has	a	short	page	life	expectancy	with	a	free	memory	target	of	4	MB.

Assume	506	MB	of	memory	have	been	allocated,	leaving	only	6	MB	free.
Because	6	MB	free	memory	is	below	the	10	MB	target	of	Instance1,	Instance1
begins	freeing	memory.	Instance2	keeps	acquiring	memory	because	the	amount
of	free	memory	is	over	its	target	of	4	MB.	It	does	not	matter	how	much	memory
either	instance	actually	has.	What	is	important	is	that	the	current	buffer	pool	of
Instance2	is	small	relative	to	the	demand	for	its	data	pages,	while	the	buffer
pool	of	Instance1	is	large	relative	to	the	demand	for	its	data	pages.	So	long	as
this	is	true,	Instance1	will	have	a	free	memory	target	of	10	MB	and	Instance2
will	have	a	free	memory	target	of	4	MB,	driving	Instance1	to	free	memory	that
is	taken	up	by	Instance2.

As	Instance1	frees	memory,	it	reduces	the	size	of	its	buffer	cache.	Eventually,
Instance1	reaches	a	point	where	the	reduced	size	of	the	buffer	cache	starts
decreasing	the	page	life	expectancy	of	the	instance.	As	this	happens,	Instance1
starts	lowering	its	free	memory	target	from	10	MB.	At	the	same	time,	Instance2
is	using	the	memory	it	has	acquired	from	Instance1	to	increase	the	size	of	the
Instance2	buffer	cache.	This	increases	the	page	life	expectancy	of	Instance2,
and	so	Instance2	begins	raising	its	free	memory	target	from	4	MB.	At	some
point,	Instance1	will	have	transferred	enough	memory	to	Instance2	that	both
instances	have	the	same	free	memory	target.	As	soon	as	the	amount	of	free
memory	reaches	the	level	that	is	now	the	target	of	both	instances,	Instance1
stops	freeing	memory,	Instance2	stops	acquiring	memory,	and	the	system
reaches	a	state	of	equilibrium.

The	state	of	equilibrium	lasts	only	as	long	as	the	relative	workload	of	both
instances	remains	constant.	As	soon	as	the	workload	on	one	or	the	other	of	the
instances	changes,	either	increases	or	decreases,	the	instance	will	change	its	free
memory	target.	The	instance	with	the	higher	free	memory	target	will	then	start
freeing	memory	and	the	instance	with	the	lower	free	memory	target	will	start
acquiring	memory	until	a	new	equilibrium	is	reached.

The	same	mechanism	operates	with	more	than	two	instances	on	a	computer.	All
of	the	instances	will	keep	freeing	or	acquiring	memory	until	all	of	them	reach	the
same	free	memory	target.	Once	the	amount	free	memory	on	the	computer
reaches	the	common	target,	the	instances	are	in	equilibrium.

SQL	Server	Architecture

Dynamically	Managing	Memory	on	Windows	95	and
Windows	98
When	running	on	Microsoft®	Windows®	95	and	Windows	98,	each	instance	of
Microsoft	SQL	Server™	2000	uses	a	demand-driven	algorithm	for	allocating
memory.	As	more	Transact-SQL	statements	are	processed	and	demand	for
cached	database	pages	rises,	the	instance	of	SQL	Server	requests	more	virtual
memory.	When	the	demands	on	the	instance	of	SQL	Server	go	down,	such	as
when	fewer	Transact-SQL	statements	are	being	processed,	the	instance	frees
memory	back	to	the	operating	system.

SQL	Server	Architecture

Using	AWE	Memory	on	Windows	2000
Microsoft®	SQL	Server™	2000	Enterprise	Edition	uses	the	Microsoft
Windows®	2000	Address	Windowing	Extensions	(AWE)	API	to	support	very
large	amounts	of	physical	memory.	SQL	Server	2000	Enterprise	Edition	can
access	amounts	of	memory	approaching	8	GB	on	Windows	2000	Advanced
Server	and	approaching	64	GB	on	Windows	2000	Data	Center.

Standard	32-bit	addresses	can	map	a	maximum	of	4	GB	of	memory.	The
standard	address	spaces	of	32-bit	Microsoft	Windows	NT®	4.0	and	Windows
2000	processes	are	therefore	limited	to	4-GB.	By	default,	2	GB	is	reserved	for
the	operating	system,	and	2	GB	is	made	available	to	the	application.	If	you
specify	a	/3GB	switch	in	the	Boot.ini	file	of	Windows	NT	Enterprise	Edition	or
Windows	2000	Advanced	Server,	the	operating	system	reserves	only	1	GB	of	the
address	space,	and	the	application	can	access	up	to	3	GB.	For	more	information
about	the	/3GB	switch,	see	Windows	NT	Enterprise	Edition	or	Windows	2000
Advanced	Server	Help.

AWE	is	a	set	of	extensions	to	the	memory	management	functions	of	the
Microsoft	Win32®	API	that	allow	applications	to	address	more	memory	than	the
4	GB	that	is	available	through	standard	32-bit	addressing.	AWE	lets	applications
acquire	physical	memory	as	nonpaged	memory,	and	then	dynamically	map	views
of	the	nonpaged	memory	to	the	32-bit	address	space.	Although	the	32-bit
address	space	is	limited	to	4	GB,	the	nonpaged	memory	can	be	much	larger.	This
enables	memory-intensive	applications,	such	as	large	database	systems,	address
more	memory	than	can	be	supported	in	a	32-bit	address	space.	For	more
information	about	AWE,	see	the	MSDN®	page	at	Microsoft	Web	site.

Enabling	AWE	Memory
You	must	specifically	enable	the	use	of	AWE	memory	by	an	instance	of	SQL
Server	2000	Enterprise	Edition	by	using	the	sp_configure	option	awe	enabled.

When	awe	enabled	is	set	to	0,	AWE	memory	is	not	used,	and	the
instance	defaults	to	using	dynamic	memory	in	standard	32-bit	virtual
address	spaces.

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

When	awe	enabled	is	set	to	1,	AWE	memory	is	used,	and	the	instance
can	access	up	to	8	GB	of	physical	memory	on	Windows	2000	Advanced
Server	and	64	GB	on	Windows	2000	Data	Center.

When	an	instance	of	SQL	Server	2000	Enterprise	Edition	is	run	with	awe
enabled	set	to	1:

The	instance	does	not	dynamically	manage	the	size	of	the	address
space.

The	instance	holds	all	memory	acquired	at	startup	until	it	is	shut	down.

The	memory	pages	for	the	instance	come	from	the	Windows
nonpageable	pool,	meaning	that	none	of	the	memory	of	the	instance	can
be	swapped	out.

You	must	carefully	manage	the	memory	used	by	an	instance	of	SQL	Server
when	awe	enabled	is	set	to	1.	If	the	instance	acquires	most	of	the	available
physical	memory	as	nonpaged	memory,	other	applications	or	system	processes
may	not	be	able	to	get	the	memory	they	need	to	run.	Use	the	max	server
memory	configuration	setting	to	control	how	much	memory	is	used	by	each
instance	of	SQL	Server	that	uses	AWE	memory.	For	more	information,	see
Managing	AWE	Memory	on	Windows	2000.

SQL	Server	Architecture

SQL	Server	Memory	Pool
In	Microsoft®	Windows	NT®,	Windows®	2000,	Windows	95,	and	Windows	98,
the	total	amount	of	virtual	memory	available	to	an	application	forms	the	set	of
valid	memory	addresses	for	the	application.	The	total	virtual	memory	allocation
for	an	application	is	known	as	its	address	space.

Each	instance	of	Microsoft	SQL	Server™	2000	has	an	address	space	with	two
main	components,	each	of	which	has	several	subcomponents:

Executable	code

The	number	and	size	of	the	executable	files	and	dynamic	link	libraries
(DLLs)	used	by	an	instance	of	SQL	Server	varies	over	time.	In	addition
to	the	executable	files	and	DLLs	used	by	Open	Data	Services,	the	SQL
Server	engine,	and	server	Net-Libraries,	the	following	components	load
in	their	own	DLLs,	and	these	DLLs	can	allocate	memory	themselves:

Distributed	queries	can	load	an	OLE	DB	Provider	DLL	on	the
server	running	the	instance	of	SQL	Server.

Extended	stored	procedures	are	implemented	as	DLLs	that	are
loaded	into	the	address	space	of	the	instance	of	SQL	Server.

The	OLE	Automation	system	stored	procedures	are	used	to
create	instances	of	OLE	Automation	objects.	Each	class	of
OLE	Automation	object	loads	its	own	code	into	the	address
space	of	the	instance	of	SQL	Server.

Memory	pool

The	memory	pool	is	the	main	unit	of	memory	for	an	instance	of	SQL
Server.	Almost	all	data	structures	that	use	memory	in	an	instance	of
SQL	Server	are	allocated	in	the	memory	pool.	The	main	types	of	objects
allocated	in	the	memory	pool	are:

System-level	data	structures

These	are	data	structures	that	hold	data	global	to	the	instance,
such	as	database	descriptors	and	the	lock	table.

Buffer	cache

This	is	the	pool	of	buffer	pages	into	which	data	pages	are	read.

Procedure	cache

This	is	a	pool	of	pages	containing	the	execution	plans	for	all
Transact-SQL	statements	currently	executing	in	the	instance.

Log	caches

Each	log	has	a	cache	of	buffer	pages	used	to	read	and	write	log
pages.	The	log	caches	are	managed	separately	from	the	buffer
cache	to	reduce	the	synchronization	between	log	and	data
buffers.	This	results	in	fast,	robust	code.

Connection	context

Each	connection	has	a	set	of	data	structures	that	record	the
current	state	of	the	connection.	These	data	structures	hold	items
such	as	parameter	values	for	queries	and	stored	procedures,
cursor	positioning	information,	and	tables	currently	being
referenced.

Stack	space

Windows	allocates	stack	space	for	each	thread	started	by	SQL	Server.
The	default	size	for	the	stack	space	is	512K.

The	size	of	the	memory	pool	used	by	an	instance	of	SQL	Server	2000	can	be
very	dynamic,	especially	on	computers	running	other	applications	or	other
instances	of	SQL	Server.	By	default,	SQL	Server	seeks	to	keep	the	amount	of
virtual	memory	allocations	on	the	computer	at	4	to	10	MB	less	than	the	physical
memory.	The	only	way	an	instance	of	SQL	Server	can	do	this	is	by	varying	the
size	of	its	address	space.	The	only	variable	component	in	the	address	space	for
an	instance	of	SQL	Server	is	the	memory	pool.	The	other	variable	components	in
the	SQL	Server	address	space,	such	as	the	number	and	size	of	OLE	DB
providers,	OLE	Automation	objects,	and	extended	stored	procedures,	are	all
controlled	by	application	requests.	If	an	application	executes	a	distributed	query,
SQL	Server	must	load	the	associated	OLE	DB	provider.	This	means	that	if	a
SQL	Server	component	is	loaded,	or	another	application	starts	up,	the	only
mechanism	an	instance	of	SQL	Server	can	use	to	release	the	memory	needed	by
the	new	component	or	application	is	to	reduce	the	size	of	the	memory	pool.	SQL
Server	administrators	can	set	limits	on	how	much	the	size	of	the	memory	pool
varies	through	the	min	server	memory	and	max	server	memory	configuration
options.

The	regions	within	the	memory	pool	are	also	highly	dynamic.	The	SQL	Server
code	constantly	adjusts	the	amounts	of	the	memory	pool	assigned	to	the	various

areas	to	optimize	performance.	Within	the	memory	pool,	the	areas	used	to	store
connection	context	and	system	data	structures	are	controlled	by	user	requests.	As
new	connections	are	made,	SQL	Server	has	to	allocate	data	structures	to	store
their	context.	As	new	databases	are	defined,	SQL	Server	has	to	allocate	data
structures	to	define	the	attributes	of	the	database.	As	tables	and	views	are
referenced,	SQL	Server	allocates	data	structures	describing	their	structure	and
attributes.	This	leaves	the	buffer	cache,	procedure	cache,	and	log	caches	as	the
memory	units	whose	size	is	controlled	by	SQL	Server.	SQL	Server	adjusts	the
sizes	of	these	areas	dynamically	as	needed	to	optimize	performance.

For	more	information	about	the	sizes	of	the	various	system	and	connection
context	data	structures,	see	Memory	Used	by	SQL	Server	Objects	Specifications.

SQL	Server	2000	is	very	efficient	in	the	way	it	stores	the	context	and	state
information	for	each	connection,	typically	using	less	than	24	KB	for	each
connection.

SQL	Server	Architecture

Thread	and	Task	Architecture
Complex	applications	may	have	many	tasks	that	could	be	performed	at	the	same
time.	Threads	are	an	operating	system	feature	that	lets	application	logic	be
separated	into	several	concurrent	execution	paths.

When	an	operating	system	executes	an	instance	of	an	application,	it	creates	a
unit	called	a	process	to	manage	the	instance.	The	process	has	a	thread	of
execution,	which	is	the	series	of	programming	instructions	performed	by	the
application	code.	In	a	simple	application	with	a	single	set	of	instructions	that	can
be	performed	serially,	there	is	just	one	execution	path,	or	thread,	through	the
application.	More	complex	applications	may	have	several	tasks	that	could	be
performed	in	tandem,	not	serially.	The	application	could	do	this	by	starting
separate	processes	for	each	task,	but	starting	a	process	is	a	resource-intensive
operation.	Instead,	an	application	can	start	separate	threads,	which	are	relatively
less	resource-intensive.	Each	thread	can	be	scheduled	for	execution
independently	from	the	other	threads	associated	with	a	process.	Each	thread
stores	the	data	unique	to	it	in	an	area	of	memory	called	a	stack.

Threads	allow	complex	applications	to	make	more	effective	use	of	a	CPU	even
on	computers	with	a	single	CPU.	With	one	CPU,	only	one	thread	can	execute	at
a	time.	If	one	thread	executes	a	long	running	operation	that	does	not	use	the
CPU,	such	as	a	disk	read	or	write,	another	one	of	the	threads	can	execute	until
the	first	operation	completes.	Being	able	to	execute	threads	while	other	threads
are	waiting	for	an	operation	to	complete	allows	the	application	to	maximize	its
use	of	the	CPU.	This	is	especially	true	for	multiuser,	disk	I/O	intensive
applications	such	as	a	database	server.

Computers	with	multiple	microprocessors,	or	CPUs	can	execute	one	thread	per
CPU	at	the	same	time.	If	a	computer	has	eight	CPUs,	it	can	concurrently	execute
eight	threads.

Windows	NT	Fibers
The	Microsoft®	Windows®	operating	system	code	that	manages	threads	is	in
the	kernel.	Switching	threads	requires	switches	between	the	user	mode	of	the
application	code	and	the	kernel	mode	of	the	thread	manager,	which	is	a

moderately	expensive	operation.	Microsoft	Windows	NT®	fibers	are	a
subcomponent	of	threads	managed	by	code	running	in	user	mode.	Switching
fibers	does	not	require	the	user-mode	to	kernel-mode	transition	needed	to	switch
threads.	The	scheduling	of	fibers	is	managed	by	the	application,	and	Windows
manages	the	scheduling	of	threads.	Each	thread	can	have	multiple	fibers.

SQL	Server	Architecture

SQL	Server	Task	Scheduling
Each	instance	of	Microsoft®	SQL	Server™	2000	is	a	separate	operating	system
process.	Each	instance	has	to	handle	potentially	thousands	of	concurrent	requests
from	users.	Instances	of	SQL	Server	2000	use	Microsoft	Windows®	threads,	and
sometimes	fibers,	to	manage	these	concurrent	tasks	efficiently.	Each	instance	of
SQL	Server	2000	always	runs	several	threads	for	system	processes:	one	or	more
threads	for	each	server	Net-Library,	a	network	thread	to	handle	login	requests,
and	a	signal	thread	for	communicating	with	the	service	control	manager.

Each	instance	of	SQL	Server	has	an	internal	layer	that	implements	an
environment	similar	to	an	operating	system	for	scheduling	and	synchronizing
concurrent	tasks	without	having	to	call	the	Windows	kernel.	This	internal	layer
can	schedule	fibers	as	effectively	as	it	works	with	threads.	Each	instance	of	SQL
Server	maintains	a	pool	of	either	threads	or	fibers	for	user	connections.	The
maximum	size	of	this	pool	is	controlled	by	the	max	worker	threads	server
configuration	option.

The	server	configuration	lightweight	pooling	option	controls	whether	an
instance	of	SQL	Server	2000	uses	threads	or	fibers.	The	default	is	for
lightweight	pooling	to	be	set	to	0,	in	which	case	the	instance	of	SQL	Server
schedules	a	thread	per	concurrent	user	command,	up	to	the	value	of	max	worker
threads.	If	lightweight	pooling	is	set	to	1,	SQL	Server	then	uses	fibers	instead
of	threads.	This	is	called	running	in	fiber	mode.	In	fiber	mode,	an	instance	of
SQL	Server	allocates	one	thread	per	CPU,	and	then	allocates	a	fiber	per
concurrent	user	command,	up	to	the	max	worker	threads	value.	An	instance	of
SQL	Server	uses	the	same	algorithms	to	schedule	and	synchronize	tasks	when
using	either	threads	or	fibers.	SQL	Server	2000	Personal	Edition	and	SQL	Server
2000	Desktop	Engine	do	not	support	fibers.

A	SQL	batch	is	a	set	of	one	or	more	Transact-SQL	statements	sent	from	a	client
to	an	instance	of	SQL	Server	for	execution	as	a	unit.	As	an	instance	of	SQL
Server	receives	batches	from	clients,	it	associates	each	batch	with	an	available
free	thread	or	fiber	from	the	worker	pool.	If	there	are	no	free	threads	or	fibers
and	the	max	worker	threads	value	has	not	been	reached,	the	instance	of	SQL
Server	allocates	a	new	thread	or	fiber	for	the	new	batch.	If	there	are	no	free
threads	or	fibers	available	and	the	max	worker	threads	value	has	already	been

reached,	the	instance	blocks	the	new	batch	until	a	thread	is	freed.	After	a	thread
or	fiber	is	associated	with	a	batch,	it	remains	associated	with	the	batch	until	the
last	of	the	result	sets	generated	by	the	batch	has	been	returned	to	the	client.	At
that	time,	the	thread	or	fiber	is	freed	and	can	be	scheduled	to	the	next	available
batch.

While	threads	and	fibers	are	lightweight	in	their	use	of	resources,	they	still
consume	resources.	In	systems	with	hundreds	or	thousands	of	user	connections,
having	one	thread	or	fiber	per	connection	could	consume	enough	resources	to
reduce	the	efficiency	of	SQL	Server.	Allocating	a	thread	or	fiber	for	each	user
connection	is	also	not	necessary	because	most	connections	actually	spend	much
of	their	time	waiting	for	batches	to	be	received	from	the	client.	The	pool	of
worker	threads	for	an	instance	of	SQL	Server	only	needs	to	be	large	enough	to
service	the	number	of	user	connections	that	are	actively	executing	batches	at	the
same	time	in	that	instance.	Leaving	max	worker	threads	at	its	default	value	of
255	lets	the	instance	of	SQL	Server	effectively	map	user	connections	over	a
number	of	threads	or	fibers	that	do	not	consume	too	many	resources.

SQL	Server	Architecture

Allocating	Threads	to	a	CPU
By	default,	each	instance	of	Microsoft®	SQL	Server™	2000	starts	each	thread,
and	then	Microsoft	Windows	NT®	or	Windows®	2000	assigns	each	thread	to	a
specific	CPU.	Windows	NT	or	Windows	2000	distribute	threads	from	instances
of	SQL	Server	evenly	among	the	microprocessors,	or	CPUs	on	a	computer.	At
times,	Windows	NT	or	Windows	2000	can	also	move	a	thread	from	one	CPU
with	heavy	usage	to	another	CPU.

SQL	Server	administrators	can	use	the	affinity	mask	configuration	option	to
exclude	one	or	more	CPUs	from	being	eligible	to	run	threads	from	a	specific
instance	of	SQL	Server.	The	affinity	mask	value	specifies	a	bit	pattern	that
indicates	the	CPUs	that	are	used	to	run	threads	from	that	instance	of	SQL	Server.
For	example,	the	affinity	mask	value	13	represents	the	bit	pattern	1101.	On	a
computer	with	four	CPUs,	this	indicates	threads	from	that	instance	of	SQL
Server	can	be	scheduled	on	CPUs	0,	2,	and	3,	but	not	on	CPU	1.	If	affinity
mask	is	specified,	the	instance	of	SQL	Server	allocates	threads	evenly	among
the	CPUs	that	have	not	been	masked	off.	Another	effect	of	affinity	mask	is	that
Windows	NT	and	Windows	2000	do	not	move	threads	from	one	CPU	to	another.
affinity	mask	is	rarely	used;	most	systems	get	optimal	performance	by	letting
Windows	NT	or	Windows	2000	schedule	the	threads	among	the	available	CPUs.

SQL	Server	Architecture

Using	the	lightweight	pooling	Option
The	overhead	of	switching	thread	contexts	is	not	very	large.	Most	instances	of
Microsoft®	SQL	Server™	will	not	see	any	performance	difference	between
setting	the	lightweight	pooling	option	to	0	or	1.	The	only	instances	likely	to
benefit	from	lightweight	pooling	are	those	running	on	a	computer	characterized
as:

A	large	multi-CPU	server.

All	of	the	CPUs	are	running	near	maximum	capacity.

There	is	a	high	level	of	context	switching.

These	systems	may	see	a	slight	increase	in	performance	by	setting	the
lightweight	pooling	value	to	1.

See	Also

lightweight	pooling	Option

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Thread	and	Fiber	Execution
Microsoft®	Windows®	uses	a	numeric	priority	ranging	from	1	through	31	(0	is
reserved	for	operating	system	use)	to	schedule	threads	for	execution.	When
several	threads	are	waiting	to	execute,	Windows	dispatches	the	thread	with	the
highest	priority.

Each	instance	of	Microsoft	SQL	Server™	2000	defaults	to	a	priority	of	7,	which
is	called	the	normal	priority.	This	gives	SQL	Server	threads	a	high	enough
priority	to	get	adequate	CPU	resources	without	adversely	affecting	other
applications.	The	priority	boost	configuration	option	can	be	used	to	increase	the
priority	of	the	threads	from	an	instance	of	SQL	Server	to	13,	which	is	called	high
priority.	This	setting	gives	SQL	Server	threads	a	higher	priority	than	most	other
applications.	Thus,	SQL	Server	threads	will	tend	to	be	dispatched	whenever	they
are	ready	to	run	and	will	not	be	preempted	by	threads	from	other	applications.
This	can	improve	performance	when	a	server	is	running	only	instances	of	SQL
Server	and	no	other	applications.	If	a	memory-intensive	operation	occurs	in	SQL
Server,	however,	other	applications	are	not	likely	to	have	a	high-enough	priority
to	preempt	the	SQL	Server	thread.	If	you	are	running	multiple	instances	of	SQL
Server	on	a	computer,	and	turn	on	priority	boost	for	only	some	of	the	instances,
the	performance	of	any	instances	running	at	normal	priority	can	be	adversely
affected.	The	performance	of	other	applications	and	components	on	the	server
can	be	degraded	if	priority	boost	is	turned	on,	so	it	should	only	be	used	under
tightly	controlled	conditions.

Some	Transact-SQL	statements	require	large	amounts	of	memory	for	operations,
such	as	sorts.	If	there	is	not	enough	memory	available,	the	thread	waits	for
memory	to	be	freed.	The	query	wait	option	limits	how	long	a	thread	can	wait
for	memory.

See	Also

query	wait	Option

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

I/O	Architecture
The	primary	purpose	of	a	database	is	to	store	and	retrieve	data,	so	performing	a
lot	of	disk	reads	and	writes	is	one	of	the	inherent	attributes	of	a	database	engine.
Disk	I/O	operations	consume	many	resources	and	take	a	relatively	long	time	to
complete.	Much	of	the	logic	in	relational	database	software	concerns	making	the
pattern	of	I/O	usage	highly	efficient.

Microsoft®	SQL	Server™	2000	allocates	much	of	its	virtual	memory	to	a	buffer
cache	and	uses	the	cache	to	reduce	physical	I/O.	Each	instance	of	SQL	Server
2000	has	its	own	buffer	cache.	Data	is	read	from	the	database	disk	files	into	the
buffer	cache.	Multiple	logical	reads	of	the	data	can	be	satisfied	without	requiring
that	the	data	be	physically	read	again.	The	data	remains	in	the	cache	until	it	has
not	been	referenced	for	some	time	and	the	database	needs	the	buffer	area	to	read
in	more	data.	Data	is	written	back	to	disk	only	if	it	is	modified.	Data	can	be
changed	multiple	times	by	logical	writes	before	a	physical	write	transfers	the
new	data	back	to	disk.

The	data	in	a	SQL	Server	2000	database	is	stored	in	8-KB	pages.	Each	group	of
eight	contiguous	pages	is	a	64-KB	extent.	The	buffer	cache	is	also	divided	into
8-KB	pages.

The	I/O	from	an	instance	of	SQL	Server	is	divided	into	logical	and	physical	I/O.
A	logical	read	occurs	every	time	the	database	engine	requests	a	page	from	the
buffer	cache.	If	the	page	is	not	currently	in	the	buffer	cache,	a	physical	read	is
then	performed	to	read	the	page	into	the	buffer	cache.	If	the	page	is	currently	in
the	cache,	no	physical	read	is	generated;	the	buffer	cache	simply	uses	the	page
already	in	memory.	A	logical	write	occurs	when	data	is	modified	in	a	page	in
memory.	A	physical	write	occurs	when	the	page	is	written	to	disk.	It	is	possible
for	a	page	to	remain	in	memory	long	enough	to	have	more	than	one	logical	write
made	before	it	is	physically	written	to	disk.

One	of	the	basic	performance	optimization	tasks	for	an	instance	of	SQL	Server
involves	sizing	the	SQL	Server	memory.	The	goal	is	to	make	the	buffer	cache
large	enough	to	maximize	the	ratio	of	logical	reads	to	physical	reads,	but	not	so
large	that	excessive	memory	swapping	starts	generating	physical	I/O	to	the
pagefile.	Instances	of	SQL	Server	2000	do	this	automatically	under	the	default
configuration	settings.

By	maintaining	a	relatively	large	buffer	cache	in	virtual	memory,	an	instance	of
SQL	Server	can	significantly	reduce	the	number	of	physical	disk	reads	it
requires.	After	a	frequently	referenced	page	has	been	read	into	the	buffer	cache,
it	is	likely	to	remain	there,	eliminating	further	reads.

SQL	Server	2000	uses	two	Microsoft	Windows	NT®	and	Windows®	2000
features	to	improve	its	disk	I/O	performance:

Scatter-gather	I/O

Before	scatter-gather	I/O	was	introduced	in	Windows	NT	version	4.0
Service	Pack	2,	all	of	the	data	for	a	disk	read	or	write	on	Windows	NT
had	to	be	in	a	contiguous	area	of	memory.	If	a	read	transferred	in	64	KB
of	data,	the	read	request	had	to	specify	the	address	of	a	contiguous	area
of	64	KB	of	memory.	Scatter-gather	I/O	allows	a	read	or	write	to
transfer	data	in	to	or	out	of	discontiguous	areas	of	memory.	Windows
2000	also	supports	scatter-gather	I/O.

If	an	instance	of	SQL	Server	2000	reads	in	a	64	KB	extent,	it	does	not
have	to	allocate	a	single	64	KB	area	and	then	copy	the	individual	pages
to	buffer	cache	pages.	It	can	locate	eight	buffer	pages,	and	then	do	a
single	scatter-gather	I/O	specifying	the	address	of	the	eight	buffer
pages.	Windows	NT	or	Windows	2000	places	the	eight	pages	directly
into	the	buffer	pages,	eliminating	the	need	for	the	instance	of	SQL
Server	to	do	a	separate	memory	copy.

Asynchronous	I/O

In	an	asynchronous	I/O,	an	application	requests	a	read	or	write
operation	from	Windows	NT	or	Windows	2000.	Windows	NT	or
Windows	2000	immediately	returns	control	to	the	application.	The
application	can	then	perform	additional	work,	and	later	test	to	see	if	the
read	or	write	has	completed.	By	contrast,	in	a	synchronous	I/O,	the
operating	system	does	not	return	control	to	the	application	until	the	read
or	write	completes.	Using	asynchronous	I/O	allows	instances	of	SQL
Server	to	maximize	the	work	done	by	individual	threads	while	they	are
processing	a	batch.

SQL	Server	supports	multiple	concurrent	asynchronous	I/O	operations	against
each	file.	SQL	Server	2000	dynamically	determines	the	maximum	number	of	I/O

operations	an	instance	can	issue	for	any	file.

SQL	Server	Architecture

Reading	Pages
The	read	requests	generated	by	an	instance	of	Microsoft®	SQL	Server™	2000
are	controlled	by	the	relational	engine	and	further	optimized	by	the	storage
engine.	The	access	method	used	to	read	pages	from	a	table,	such	as	a	table	scan,
an	index	scan,	or	a	keyed	read,	determines	the	general	pattern	of	reads	that	will
be	performed.	The	relational	engine	determines	the	most	effective	access
method.	This	request	is	then	given	to	the	storage	engine,	which	optimizes	the
reads	required	to	implement	the	access	method.	The	thread	executing	the	batch
schedules	the	reads.

Table	scans	are	extremely	efficient	in	SQL	Server	2000.	The	IAM	pages	in	a
SQL	Server	2000	database	list	the	extents	used	by	a	table	or	index.	The	storage
engine	can	read	the	IAM	to	build	a	sorted	list	of	the	disk	addresses	that	must	be
read.	This	allows	SQL	Server	2000	to	optimize	its	I/Os	as	large	sequential	reads
that	are	done	in	sequence	based	on	their	location	on	the	disk.	SQL	Server	2000
issues	multiple	serial	read-ahead	reads	at	once	for	each	file	involved	in	the	scan.
This	takes	advantage	of	striped	disk	sets.	SQL	Server	2000	Enterprise	Edition
dynamically	adjusts	the	maximum	number	of	read	ahead	pages	based	on	the
amount	of	memory	present;	it	is	fixed	in	all	other	editions	of	SQL	Server	2000.

One	part	of	the	SQL	Server	2000	Enterprise	Edition	advanced	scan	feature
allows	multiple	tasks	to	share	full	table	scans.	If	the	execution	plan	of	a	SQL
statement	calls	for	a	scan	of	the	data	pages	in	a	table,	and	the	relational	database
engine	detects	that	the	table	is	already	being	scanned	for	another	execution	plan,
the	database	engine	joins	the	second	scan	to	the	first,	at	the	current	location	of
the	second	scan.	The	database	engine	reads	each	page	once	and	passes	the	rows
from	each	page	to	both	execution	plans.	This	continues	until	the	end	of	the	table
is	reached.	At	that	point,	the	first	execution	plan	has	the	complete	results	of	a
scan,	but	the	second	execution	plan	must	still	retrieve	the	data	pages	that	occur
before	the	point	at	which	it	joined	the	in-progress	scan.	The	scan	for	second
execution	plan	then	wraps	back	to	the	first	data	page	of	the	table	and	scans
forward	to	the	point	at	which	it	joined	the	first	scan.	Any	number	of	scans	can	be
combined	in	this	way,	the	database	engine	will	keep	looping	through	the	data
pages	until	it	has	completed	all	the	scans.

For	example,	assume	that	you	have	a	table	with	500,000	pages.	UserA	executes

a	SQL	statement	that	requires	a	scan	of	the	table.	When	that	scan	has	processed
100,000	pages,	UserB	executes	another	SQL	statement	that	scans	the	same	table.
The	database	engine	will	schedule	one	set	of	read	requests	for	pages	after
100,001,	and	passes	the	rows	from	each	page	back	to	both	scans.	When	the	scan
reaches	the	200,000th	page,	UserC	executes	another	SQL	statement	that	scans
the	same	table.	Starting	with	page	200,001,	the	database	engine	passes	the	rows
from	each	page	it	reads	back	to	all	three	scans.	After	reading	the	500,000th	row,
the	scan	for	UserA	is	complete,	and	the	scans	for	UserB	and	UserC	wrap	back
and	start	reading	pages	starting	with	page	1.	When	the	database	engine	gets	to
page	100,000,	the	scan	for	UserB	is	complete.	The	scan	for	Userc	then	keeps
going	alone	until	it	reads	page	200,000,	at	which	point	all	the	scans	have	been
completed.

Reading	Index	Pages
SQL	Server	2000	reads	index	pages	serially	in	key	order.	For	example,	this
illustration	shows	a	simplified	representation	of	a	set	of	leaf	pages	containing	a
set	of	keys	and	the	intermediate	index	node	mapping	the	leaf	pages.

SQL	Server	2000	uses	the	information	in	the	intermediate	index	page	above	the
leaf	level	to	schedule	serial	read-ahead	I/Os	for	the	pages	containing	the	keys.	If
a	request	is	made	for	all	the	keys	from	'ABC'	to	'DEF',	the	instance	of	SQL
Server	2000	first	reads	the	index	page	above	the	leaf	page.	It	does	not,	however,
simply	read	each	individual	data	page	in	sequence	from	page	504	to	page	556,
the	last	one	with	keys	in	the	desired	range.	Instead,	the	storage	engine	scans	the
intermediate	index	page	and	builds	a	list	of	the	leaf	pages	that	must	be	read.	The
storage	engine	then	schedules	all	the	I/Os	in	key	order.	The	storage	engine	also

recognizes	that	pages	504/505	and	527/528	are	contiguous,	and	performs	a
single	scatter-gather	read	to	retrieve	the	adjacent	pages	in	one	operation.	When
there	are	many	pages	to	be	retrieved	in	a	serial	operation,	SQL	Server	schedules
a	block	of	reads	at	a	time.	When	a	subset	of	these	reads	is	completed,	SQL
Server	schedules	an	equal	number	of	new	reads	until	all	the	needed	reads	have
been	scheduled.

SQL	Server	2000	uses	pre-fetching	to	speed	the	processing	of	non-clustered
indexes.	The	leaf	rows	of	a	non-clustered	index	contain	pointers	to	the	data	rows
containing	each	specific	key	value.	As	the	database	engine	reads	through	the	leaf
pages	of	the	non-clustered	index,	it	also	starts	scheduling	asynchronous	reads	for
the	data	rows	whose	pointers	have	already	been	retrieved.	This	allows	the
database	engine	to	start	retrieving	rows	before	it	has	completed	the	scan	of	the
non-clustered	index.	This	process	is	followed	regardless	of	whether	or	not	the
table	has	a	clustered	index.	SQL	Server	2000	Enterprise	Edition	uses	more	pre-
fetching	than	other	editions	of	SQL	Server,	and	the	level	of	pre-fetching	is	not
configurable	in	any	edition.

SQL	Server	Architecture

Freeing	and	Writing	Buffer	Pages
In	Microsoft®	SQL	Server™	2000,	one	system	is	responsible	for:

Writing	modified	buffer	pages	to	disk.

Marking	as	free	those	pages	that	have	not	been	referenced	for	some
time.

SQL	Server	2000	has	a	singly	linked	list	containing	the	addresses	of	free	buffer
pages.	Any	thread	needing	a	buffer	page	uses	the	first	page	in	the	free	buffer	list.

The	buffer	cache	is	an	in-memory	structure.	Each	buffer	page	has	a	header	that
contains	a	reference	counter	and	an	indicator	of	whether	the	page	is	dirty,	which
means	the	page	contains	modifications	that	have	not	yet	been	written	to	disk.
The	reference	counter	is	incremented	by	1	each	time	a	SQL	statement	references
the	buffer	page.	The	buffer	cache	is	periodically	scanned	from	the	start	to	the
end.	Because	the	buffer	cache	is	all	in	memory,	these	scans	are	very	quick	and
require	no	I/O.	During	the	scan,	the	reference	counter	in	each	buffer	page	header
is	divided	by	4	and	the	remainder	discarded.	When	the	reference	counter	goes	to
0,	the	dirty	page	indicator	is	checked.	If	the	page	is	dirty,	a	write	is	scheduled	to
write	the	modifications	to	disk.	Instances	of	SQL	Server	use	a	write-ahead	log,
so	the	write	of	the	dirty	data	page	is	blocked	while	the	log	page	recording	the
modification	is	first	written	to	disk.	After	the	modified	page	has	been	flushed	to
disk,	or	if	the	page	was	not	dirty	to	start	with,	the	page	is	freed.	The	association
between	the	buffer	page	and	the	data	page	it	contains	is	removed	and	the	buffer
is	placed	on	the	free	list.

Using	this	process,	frequently	referenced	pages	remain	in	memory	while	buffers
holding	pages	not	referenced	eventually	return	to	the	free	buffer	list.	The
instance	of	SQL	Server	determines	internally	the	size	of	the	free	buffer	list,
based	on	the	size	of	the	buffer	cache.	The	size	cannot	be	configured.

When	an	instance	of	SQL	Server	is	running	on	Microsoft	Windows	NT®	or
Windows®	2000,	the	work	of	scanning	the	buffer,	writing	dirty	pages,	and
populating	the	free	buffer	list	is	mostly	done	by	the	individual	worker	threads.
The	worker	threads	perform	their	scans	in	the	interval	of	time	after	they	have

scheduled	an	asynchronous	read	and	the	read	completes.	A	thread	gets	the
address	of	the	next	section	of	the	buffer	pool	that	needs	to	be	scanned	from	a
central	data	structure,	then	scans	that	section	of	the	buffer	pool	while	the	read
I/O	processes	asynchronously.	If	a	write	must	be	performed,	it	is	also	scheduled
asynchronously	and	does	not	interfere	with	the	thread's	ability	to	process	the
completion	of	its	own	read.

Each	instance	also	has	a	separate	lazywriter	thread	that	scans	through	the	buffer
cache.	The	lazywriter	process	sleeps	for	an	interval	of	time.	When	it	is	restarted,
it	checks	the	size	of	the	free	buffer	list.	If	the	free	buffer	list	is	below	a	certain
point	(dependent	on	the	size	of	the	cache)	the	lazywriter	process	scans	the	buffer
cache	to	reclaim	unused	pages	and	write	dirty	pages	that	have	a	reference	count
of	0.	On	the	Windows	NT	and	Windows	2000	operating	systems,	most	of	the
work	populating	the	free	buffer	list	and	writing	dirty	pages	is	done	by	the
individual	threads	and	the	lazywriter	thread	typically	finds	little	to	do.	Windows
95	and	Windows	98	do	not	support	asynchronous	writes,	so	the	lazywriter	thread
does	the	work	of	populating	the	free	buffer	list	and	writing	dirty	pages.

The	checkpoint	process	also	scans	the	buffer	cache	periodically	and	writes	any
dirty	log	or	data	pages	to	disk.	The	difference	is	that	the	checkpoint	process	does
not	place	the	buffer	page	back	on	the	free	list.	The	work	of	the	checkpoint
process	is	intended	to	minimize	the	number	of	dirty	pages	in	memory	to	reduce
the	length	of	a	recovery	if	the	server	fails,	not	to	populate	the	free	buffer	list.
Checkpoints	typically	find	few	dirty	pages	to	write	to	disk	because	most	dirty
pages	are	written	to	disk	by	the	worker	threads	or	lazywriter	thread	in	the	period
between	two	checkpoints.

Writes	of	log	records	are	usually	scheduled	asynchronously	by	a	logwriter
thread.	The	exceptions	are	when:

A	commit	forces	all	pending	log	records	for	a	transaction	to	disk.

A	checkpoint	forces	all	pending	log	records	for	all	transactions	to	disk.

SQL	Server	Architecture

Distributed	Query	Architecture
Microsoft®	SQL	Server™	2000	supports	two	methods	for	referencing
heterogeneous	OLE	DB	data	sources	in	Transact-SQL	statements:

Linked	server	names

The	system	stored	procedures	sp_addlinkedserver	and
sp_addlinkedsrvlogin	are	used	to	give	a	server	name	to	an	OLE	DB
data	source.	Objects	in	these	linked	servers	can	be	referenced	in
Transact-SQL	statements	using	four-part	names.	For	example,	if	a
linked	server	name	of	DeptSQLSrvr	is	defined	against	another	copy	of
SQL	Server	2000,	the	following	statement	references	a	table	on	that
server:

SELECT	*	FROM	DeptSQLSrvr.Northwind.dbo.Employees

The	linked	server	name	can	also	be	specified	in	an	OPENQUERY
statement	to	open	a	rowset	from	the	OLE	DB	data	source.	This	rowset
can	then	be	referenced	like	a	table	in	Transact-SQL	statements.

Ad	hoc	connector	names

For	infrequent	references	to	a	data	source,	the	OPENROWSET	or
OPENDATASOURCE	functions	are	specified	with	the	information
needed	to	connect	to	the	linked	server.	The	rowset	can	then	be
referenced	the	same	way	a	table	is	referenced	in	Transact-SQL
statements:

SELECT	*
FROM	OPENROWSET('Microsoft.Jet.OLEDB.4.0',
								'c:\MSOffice\Access\Samples\Northwind.mdb';'Admin';'';
								Employees)

SQL	Server	2000	uses	OLE	DB	to	communicate	between	the	relational	engine
and	the	storage	engine.	The	relational	engine	breaks	down	each	Transact-SQL
statement	into	a	series	of	operations	on	simple	OLE	DB	rowsets	opened	by	the
storage	engine	from	the	base	tables.	This	means	the	relational	engine	can	also

open	simple	OLE	DB	rowsets	on	any	OLE	DB	data	source.

The	relational	engine	uses	the	OLE	DB	API	to	open	the	rowsets	on	linked
servers,	to	fetch	the	rows,	and	to	manage	transactions.

For	each	OLE	DB	data	source	accessed	as	a	linked	server,	an	OLE	DB	provider
must	be	present	on	the	server	running	SQL	Server.	The	set	of	Transact-SQL
operations	that	can	be	used	against	a	specific	OLE	DB	data	source	depends	on
the	capabilities	of	the	OLE	DB	provider.	For	more	information,	see	OLE	DB
Provider	Reference	for	Distributed	Queries.

When	possible,	SQL	Server	pushes	relational	operations	such	as	joins,
restrictions,	projections,	sorts,	and	group	by	operations	to	the	OLE	DB	data
source.	SQL	Server	does	not	default	to	scanning	the	base	table	into	SQL	Server
and	performing	the	relational	operations	itself.	SQL	Server	queries	the	OLE	DB
provider	to	determine	the	level	of	SQL	grammar	it	supports,	and,	based	on	that
information,	pushes	as	many	relational	operations	as	possible	to	the	provider.
For	more	information,	see	SQL	Dialect	Requirements	for	OLE	DB	Providers.

SQL	Server	2000	specifies	a	mechanism	for	an	OLE	DB	provider	to	return

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

statistics	indicating	how	key	values	are	distributed	within	the	OLE	DB	data
source.	This	lets	the	SQL	Server	query	optimizer	better	analyze	the	pattern	of
data	in	the	data	source	against	the	requirements	of	each	SQL	statement,
increasing	the	ability	of	the	query	optimizer	to	generate	optimal	execution	plans.
For	more	information,	see	Distribution	Statistics	Requirements	for	OLE	DB
Providers.

See	Also

Configuring	Linked	Servers

Distributed	Queries

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Architecture

Full-Text	Query	Architecture
The	Microsoft®	SQL	Server™	2000	full-text	query	component	supports
sophisticated	searches	on	character	string	columns.

This	capability	is	implemented	by	the	Microsoft	Search	service,	which	has	two
roles:

Indexing	support

Implements	the	full-text	catalogs	and	indexes	defined	for	a	database.
Accepts	definitions	of	full-text	catalogs,	and	the	tables	and	columns
making	up	the	indexes	in	each	catalog.	Implements	requests	to	populate
the	full-text	indexes.

Querying	support

Processes	full-text	search	queries.	Determines	which	entries	in	the	index
meet	the	full-text	selection	criteria.	For	each	entry	that	meet	the
selection	criteria,	it	returns	the	identity	of	the	row	plus	a	ranking	value
to	the	MSSQLServer	service,	where	this	information	is	used	to
construct	the	query	result	set.	The	types	of	queries	supported	include
searching	for:

Words	or	phrases.

Words	in	close	proximity	to	each	other.

Inflectional	forms	of	verbs	and	nouns.

The	full-text	engine	runs	as	a	service	named	Microsoft	Search	on	Microsoft
Windows	NT®	Server,	Windows	NT	Advanced	Server,	Windows®	2000	Server,
or	Windows	2000	Advanced	Server.	It	is	installed	when	the	Full-Text	Search
feature	is	selected	during	custom	installation.	The	Microsoft	Search	service	itself
is	not	installed	during	an	installation	of	SQL	Server	Desktop	Engine.	While	this
means	that	the	Microsoft	Search	service	is	not	installed	on	Microsoft	Windows
95,	Windows	98,	Windows	NT	Workstation,	or	Windows	2000	Professional
clients,	these	clients	can	make	use	of	the	service	when	connected	to	an	instance

of	SQL	Server	2000	Standard	Edition,	SQL	Server	2000	Developer	Edition,	or
SQL	Server	2000	Enterprise	Edition.

The	full-text	catalogs	and	indexes	are	not	stored	in	a	SQL	Server	database.	They
are	stored	in	separate	files	managed	by	the	Microsoft	Search	service.	The	full-
text	catalog	files	are	not	recovered	during	a	SQL	Server	recovery.	They	also
cannot	be	backed	up	and	restored	using	the	Transact-SQL	BACKUP	and
RESTORE	statements.	The	full-text	catalogs	must	be	resynchronized	separately
after	a	recovery	or	restore	operation.	The	full-text	catalog	files	are	accessible
only	to	the	Microsoft	Search	service	and	the	Windows	NT	or	Windows	2000
system	administrator.

Communications	between	SQL	Server	and	the	Microsoft	Search	service	are
made	through	a	full-text	provider.

The	full-text	catalogs,	indexes,	and	searches	supported	by	the	Microsoft	Search
service	apply	only	to	tables	in	SQL	Server	databases.	The	Windows	NT	Indexing
Service	and	Windows	2000	Indexing	Service	provides	similar	functionality
against	operating	system	files.	Indexing	Service	includes	an	OLE	DB	Provider
for	Indexing	Service	that	can	be	used	by	OLE	DB	consumers.	SQL	Server
applications	can	access	the	OLE	DB	Provider	for	Indexing	Service	through
distributed	queries.	Transact-SQL	statements	can	combine	full-text	searches
referencing	SQL	Server	tables	with	textual	searches	of	file	data	by	using	both	the
full-text	SQL	constructs	with	distributed	query	references	to	the	OLE	DB
Provider	for	Indexing	Service.	For	more	information,	see	Full-text	Querying	of
File	Data.

There	is	only	one	Microsoft	Search	service	on	any	computer	running	multiple
instances	of	SQL	Server.	The	single	instance	of	the	full-text	search	engine
manages	the	full-text	indexes	for	all	the	instances	of	SQL	Server	2000	and	SQL
Server	version	7.0	on	the	computer.

See	Also

Full-Text	Catalogs	and	Indexes

Full-text	Indexes

Full-text	Search

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Microsoft	Search	Service

SQL	Server	Architecture

Full-Text	Indexing	Support
This	illustration	shows	the	components	that	make	up	the	full-text	indexing
support.	These	are	the	components	involved	in	defining,	creating,	and	populating
full-text	indexes.

Enabling	databases	and	tables	for	full-text	indexing,	defining,	and	populating	the
indexes	is	specified	using:

SQL	Server	Enterprise	Manager.

One	of	the	nodes	of	a	database	tree	in	SQL	Server	Enterprise	Manager
is	used	to	manage	the	full-text	catalogs	in	the	database.

Applications	using	SQL	Distributed	Management	Objects	(SQL-DMO).

SQL-DMO	has	objects	for	managing	full-text	catalogs	and	indexes.

Applications	using	Transact-SQL	and	a	standard	database	API.

Transact-SQL	has	a	set	of	system	stored	procedures	for	managing	full-

text	catalogs	and	indexes.

The	other	components	define	and	populate	full-text	indexes	in	this	manner:

1.	 A	Microsoft®	SQL	Server™	2000	database	is	enabled	for	full-text
indexing.

2.	 The	full-text	catalogs	for	the	database	are	specified.

3.	 Individual	tables	are	enabled	for	full-text	indexing	and	associated	with
a	catalog.

4.	 Individual	columns	in	each	table	are	added	to	the	full-text	index	for	the
table.	All	the	meta	data	information	from	Steps	from	1	through	4	is
stored	in	system	tables	in	SQL	Server	databases.

5.	 The	full-text	indexes	for	each	table	are	activated	on	a	table-by-table
basis.	When	a	full-text	table	index	is	activated,	a	start	seed	value	is
sent	from	an	instance	of	SQL	Server	to	the	indexing	service	within	the
Microsoft	Search	service.	The	start	seed	value	identifies	the	table
involved	in	the	full	text	index.

6.	 Population	is	requested	on	either	a	catalog-by-catalog	or	table-by-table
basis.	Populating	on	a	catalog	basis	allows	you	to	populate	multiple
indexes	in	one	operation;	populating	tables	lets	you	populate	specific
indexes.

The	population	in	Step	6	can	take	different	forms:

Full	population

If	a	full	population	is	requested	for	a	full-text	catalog,	index	entries	are
built	for	all	the	rows	in	all	the	tables	covered	by	the	catalog.	If	a	full
populates	is	requested	for	a	table,	index	entries	are	built	for	all	the	rows
in	that	table.	A	full	population	typically	occurs	when	a	catalog	or	index
is	first	populated,	the	indexes	can	then	be	maintained	using	change

tracking	or	incremental	populations.

Change	tracking	population

Maintains	a	record	of	the	rows	that	have	been	modified	in	a	system
table,	and	propagates	the	changes	to	the	full-text	index.	You	start	the
change	tracking	by	executing	sp_fulltext_table	and	specify
start_change_tracking	for	the	@action	parameter.	When	using	change
tracking,	you	also	specify	when	the	changes	are	taken	from	the	history
table	and	populated	in	the	full-text	index:

Background

After	starting	change	tracking	with	start_change_tracking,
you	can	execute	sp_fulltext_table	specifying
start_background_updateindex	for	the	@action	parameter.
With	this	option,	changes	to	rows	in	the	table	are	propagated	to
the	full-text	index	as	they	occur.

On	demand

In	this	option,	all	tracked	changes	are	stored	in	the	history,	and
only	propagated	to	the	full-text	index	when	you	execute
sp_fulltext_table	specifying	update_index	for	the	@action
parameter.

Scheduled

You	can	use	SQL	Agent	to	schedule	periodic	jobs	that	execute
sp_fulltext_table	specifying	update_index	for	the	@action
parameter.	This	will	propagate	all	outstanding	tracked	changes
to	the	index.

Incremental	population

Only	adjusts	index	entries	for	rows	added,	deleted,	or	modified	after	the
last	population.	This	feature	requires	that	the	indexed	table	have	a
column	of	the	timestamp	data	type.	If	the	table	does	not	have	a
timestamp	column,	only	full	or	change	tracking	populations	can	be
performed.	Requests	for	incremental	populations	on	tables	without
timestamp	columns	result	in	a	full	population	operation.

If	a	new	full-text	index	is	defined	for	a	table	not	associated	with	the
catalog	before,	the	next	catalog-level	incremental	population	request
builds	all	the	entries	for	the	table.

Incremental	population	requests	are	implemented	as	full	populations	if
any	of	the	meta	data	for	the	table	has	changed	since	the	last	population.
This	includes	altering	any	column,	index,	or	full-text	index	definitions.

Each	population	request	is	sent	to	the	indexing	service	within	the	Microsoft
Search	service:

The	indexing	service	passes	the	appropriate	start	seed	value	to	the	SQL
Server	Handler.	The	start	seed	value	contains	information	such	as	the
table	and	index	involved	in	the	population,	and	the	timestamp	value	(if
the	table	has	a	timestamp	column)	associated	with	the	last	full	or
incremental	population	performed	for	the	index.

The	SQL	Server	Handler	is	a	driver	containing	logic	to	extract	text	data
from	the	SQL	Server	columns	involved	in	a	full-text	index.	The	Handler
retrieves	the	data	from	SQL	Server	and	passes	it	back	to	the	index
service.	For	a	full	population,	the	SQL	Server	Handler	extracts	all	the
rows	in	the	table.	For	an	incremental	population,	the	SQL	Server
Handler	only	extracts	information	from	rows	whose	current	timestamp
values	are	higher	than	the	timestamp	associated	with	the	last
population,	which	is	stored	in	the	start	seed.

The	indexing	service	then	passes	an	index	identifier	and	the	strings	to
be	indexed	to	the	index	engine.	The	index	engine	eliminates	noise
words	such	as	a,	and,	or	the.	It	also	determines	the	word	boundaries	and
builds	a	full-text	index	covering	the	words	passed	down	from	the
indexing	service.	This	linguistic	analysis	differs	depending	on	the
language	in	which	the	text	is	written.	SQL	Server	2000	supports
linguistic	analysis	for	several	languages;	the	language	is	specified	using
sp_fulltext_column.	The	full-text	index	is	stored	in	the	full-text	catalog
file.

At	the	end	of	the	population,	the	indexing	service	calculates	a	new	start
seed	value	that	records	the	point	at	which	a	subsequent	incremental
population	should	start.

See	Also

Full-Text	Catalogs	and	Indexes

Full-text	Indexes

Full-text	Search

Microsoft	Search	Service

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Full-Text	Querying	Support
When	Microsoft®	SQL	Server™	2000	receives	a	Transact-SQL	statement	with	a
full-text	construct,	it	retrieves	the	needed	information	from	the	Microsoft	Search
service	using	the	full-text	provider.	Full-text	constructs	are	the	CONTAINS	or
FREETEXT	predicates,	or	the	CONTAINSTABLE	or	FREETEXTTABLE
rowset	functions.	The	full-text	constructs	can	reference	multiple	columns	in	the
full-text	index	if	it	is	not	known	which	column	may	contain	the	search
conditions.	The	following	illustration	shows	the	flow	of	this	process.

The	steps	involved	in	this	process	include:

1.	 An	application	sends	an	instance	of	SQL	Server	a	Transact-SQL
statement	with	a	full-text	construct.

2.	 The	SQL	Server	relational	engine	validates	the	full-text	construct	by
querying	the	system	tables	to	determine	if	the	column	reference	is
covered	by	a	full-text	index.	The	relational	engine	reduces	each	SQL

statement	to	a	series	of	rowset	operations,	and	uses	OLE	DB	to	pass
the	operations	to	underlying	components,	usually	the	storage	engine.
The	relational	engine	transforms	any	full-text	construct	into	a	request
for	a	rowset	from	the	full-text	provider	instead	of	the	storage	engine.
The	rowset	requested	is	the	set	of	keys	satisfying	the	search	condition
and	a	ranking	indicating	how	well	the	data	for	each	key	met	the	search
condition	criteria.	The	command	sent	with	the	rowset	request	to	the
full-text	provider	includes	the	full-text	search	condition.

3.	 The	full-text	provider	validates	the	request	and	changes	the	search
conditions	to	a	form	used	by	the	querying	support	component	of	the
Microsoft	Search	service.	The	request	is	sent	to	the	search	service.

4.	 The	querying	support	component	uses	the	search	engine	component	to
extract	the	requested	data	from	the	full-text	index.	This	data	is	then
passed	back	to	the	full-text	provider	in	the	form	of	a	rowset.

5.	 The	full-text	provider	returns	the	rowset	to	the	relational	engine.

6.	 The	relational	engine	combines	all	the	rowsets	it	receives	from	the
storage	engine	and	the	full-text	provider	to	build	the	final	result	set	it
sends	back	to	the	client.

See	Also

Full-Text	Catalogs	and	Indexes

Full-text	Indexes

Full-text	Search

Microsoft	Search	Service

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Extended	Stored	Procedure	Architecture
Microsoft®	SQL	Server™	2000	extended	stored	procedures	extend	Transact-
SQL	functionality	by	enabling	you	to	implement	logic	in	functions	contained	in
dynamic-link	library	(DLL)	files,	and	call	those	functions	from	Transact-SQL
statements	just	as	you	would	a	Transact-SQL	procedure.	Dynamic-link	library
files	have	the	.dll	file	name	extension.	Extended	stored	procedures	can	include
most	of	the	features	of	Microsoft	Win32®	and	COM	applications.

A	DLL	file	must	conform	to	the	Extended	Stored	Procedure	API	to	operate	as	an
extended	stored	procedure.	The	DLL	can	contain	multiple	functions	identified	to
SQL	Server	as	extended	stored	procedures;	each	function	is	identified	by	a
separate	extended	stored	procedure	name.	When	a	Transact-SQL	statement
references	one	of	the	extended	stored	procedures,	the	relational	database	engine
calls	the	function	associated	with	the	extended	stored	procedure	name.	Extended
stored	procedures	can	open	a	connection	back	to	the	SQL	Server	instance	that
called	them,	or	connect	to	remote	SQL	Server	installations.

Extended	stored	procedures	are	a	part	of	the	Open	Data	Services	layer	of	the
relational	database	engine,	which	is	the	interface	between	the	engine	and	the
server	Net-libraries.	The	server	Net-Libraries	receive	client	TDS	packets	and
pass	them	to	Open	Data	Services.	Open	Data	Services	transforms	the	TDS
packets	into	events	that	it	passes	to	other	parts	of	the	relational	database	engine.
The	database	engine	then	uses	Open	Data	Services	to	send	replies	back	to	SQL
Server	clients	through	the	server	Net-Libraries.

When	the	relational	database	engine	determines	that	a	Transact-SQL	statement
references	an	extended	stored	procedure:

The	relational	database	engine	passes	the	extended	stored	procedure
request	to	the	Open	Data	Services	layer.

Open	Data	Services	then	loads	the	DLL	containing	the	extended	stored
procedure	function	into	the	SQL	Server	2000	address	space,	if	not
already	loaded.

Open	Data	Services	passes	the	request	to	the	extended	stored	procedure.

Open	Data	Services	returns	the	results	of	the	operation	to	the	database
engine.

In	the	past,	The	Open	Data	Services	API	was	also	used	to	write	server
applications,	such	as	gateways	to	other	database	systems.	These	types	of
applications	have	been	replaced	by	newer	technologies	such	as:

Database	APIs	that	support	multiple	different	databases	and	other	data
sources,	such	as	OLE	DB	and	ODBC.

Applications	written	to	the	OLE	DB	or	ODBC	APIs	have	little	need	for
a	gateway	to	access	different	databases.

SQL	Server	2000	supports	heterogeneous	distributed	queries,	which
allow	Transact-SQL	queries	to	pull	data	from	any	OLE	DB	data	source
without	any	need	for	specialized	server	applications.

MS	DTC,	which	allows	distributed	transactions	to	span	multiple
databases.

Windows	NT	Component	Services,	for	running	midtier	application

logic.

SQL	Server	2000	does	not	support	the	obsolete	portions	of	the	Open	Data
Services	API.	The	only	part	of	the	original	Open	Data	Services	API	still
supported	by	SQL	Server	2000	are	the	extended	stored	procedure	functions,	so
the	API	has	been	renamed	to	the	Extended	Stored	Procedure	API.

See	Also

Programming	Extended	Stored	Procedures

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Remote	Stored	Procedure	Architecture
Remote	stored	procedures	are	a	legacy	feature	of	Microsoft®	SQL	Server™
2000.	Their	functionality	in	Transact-SQL	is	limited	to	executing	a	stored
procedure	on	a	remote	SQL	Server	installation.	The	distributed	queries
introduced	in	SQL	Server	version	7.0	support	this	ability	along	with	the	ability	to
access	tables	on	linked,	heterogeneous	OLE	DB	data	sources	directly	from	local
Transact-SQL	statements.	Instead	of	using	a	remote	stored	procedure	call	on
SQL	Server	2000,	use	distributed	queries	and	an	EXECUTE	statement	to
execute	a	stored	procedure	on	a	remote	server.

An	instance	of	SQL	Server	2000	can	send	and	receive	remote	stored	procedure
calls	to	other	instances	of	SQL	Server	2000	and	SQL	Server	version	7.0.	An
instance	of	SQL	Server	2000	can	also	send	and	receive	remote	stored	procedure
calls	to	instances	of	SQL	Server	version	6.0	or	SQL	Server	version	6.5.	A	server
running	SQL	Server	2000	can	receive	remote	stored	procedure	calls	from	an
instance	of	SQL	Server	version	4.21a,	but	the	instance	of	SQL	Server	2000
cannot	make	remote	stored	procedure	calls	to	the	instance	of	SQL	Server	version
4.21a.	The	instance	of	SQL	Server	4.21a	cannot	recognize	the	version	of	the
Tabular	Data	Stream	(TDS)	used	by	SQL	Server	2000.

Remote	Stored	Procedure	Protocol	Optimizations
The	Microsoft	OLE	DB	Provider	for	SQL	Server	and	the	SQL	Server	ODBC
driver	both	make	use	of	a	TDS	protocol	performance	optimization	originally
introduced	to	support	remote	stored	procedures.	The	use	of	this	optimization	can
be	seen	in	SQL	Profiler	traces.

SQL	Profiler	traces	events	in	an	instance	of	SQL	Server,	such	as	receipt	and
return	of	the	Tabular	Data	Stream	(TDS)	packets	sent	between	applications	and
an	instance	of	SQL	Server.	TDS	is	the	application-level	protocol	defined	for
SQL	Server	client/server	communications.

When	an	application	sends	a	Transact-SQL	batch	for	execution,	a	generic	packet
for	executing	SQL	is	used	that	shows	up	in	the	SQL	Profiler	trace	as
SQL:BatchStarting	and	SQL:BatchCompleted	events.	When	one	instance	of
SQL	Server	sends	a	request	for	another	instance	of	SQL	Server	to	execute	a

remote	stored	procedure,	a	specialized	RPC	TDS	packet	is	used.	The	RPC
packet	is	tailored	to	the	needs	of	transmitting	requests	to	execute	a	stored
procedure.	The	relational	engine	also	recognizes	that	this	is	a	specialized	packet
and	implements	a	number	of	optimizations	that	speeds	the	execution	of	the
stored	procedure.	These	show	up	in	a	SQL	Profiler	trace	as	RPC:Starting	and
RPC:Completed	events.

SQL	Server	2000	does	not	limit	the	use	of	these	specialized	RPC	packets	to
server-to-server	communications.	The	Microsoft	OLE	DB	Provider	for	SQL
Server	and	the	SQL	Server	ODBC	driver	use	this	specialized	RPC	packet	to
increase	performance	in	two	cases:

If	an	application	uses	the	ODBC	CALL	syntax	to	execute	a	stored
procedure.

When	the	provider	or	driver	internally	generate	calls	to	system	stored
procedures.

Users	analyzing	SQL	Profiler	traces	from	applications	using	the	provider	or
driver	can	see	these	RPC	TDS	events.

See	Also

Configuring	Remote	Servers

Calling	a	Stored	Procedure

Executing	Stored	Procedures

Calling	a	Stored	Procedure	(OLE	DB)

TSQL	Event	Category

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQL	Server	Architecture

Transactions	Architecture
Microsoft®	SQL	Server™	2000	maintains	the	consistency	and	integrity	of	each
database	despite	errors	that	occur	in	the	system.	Every	application	that	updates
data	in	a	SQL	Server	database	does	so	using	transactions.	A	transaction	is	a
logical	unit	of	work	made	up	of	a	series	of	statements	(selects,	inserts,	updates,
or	deletes).	If	no	errors	are	encountered	during	a	transaction,	all	of	the
modifications	in	the	transaction	become	a	permanent	part	of	the	database.	If
errors	are	encountered,	none	of	the	modifications	are	made	to	the	database.

A	transaction	goes	through	several	phases:

Before	the	transaction	starts,	the	database	is	in	a	consistent	state.

The	application	signals	the	start	of	a	transaction.	This	can	be	done
explicitly	with	the	BEGIN	TRANSACTION	statement.	Alternatively,
the	application	can	set	options	to	run	in	implicit	transaction	mode;	the
first	Transact-SQL	statement	executed	after	the	completion	of	a	prior
transaction	starts	a	new	transaction	automatically.	No	record	is	written
to	the	log	when	the	transaction	starts;	the	first	record	is	written	to	the
log	when	the	application	generates	the	first	log	record	for	a	data
modification.

The	application	starts	modifying	data.	These	modifications	are	made
one	table	at	a	time.	As	a	series	of	modifications	are	made,	they	may
leave	the	database	in	a	temporarily	inconsistent	intermediate	state.

When	the	application	reaches	a	point	where	all	the	modifications	have
completed	successfully	and	the	database	is	once	again	consistent,	the
application	commits	the	transaction.	This	makes	all	the	modifications	a
permanent	part	of	the	database.

If	the	application	encounters	some	error	that	prevents	it	from
completing	the	transaction,	it	undoes,	or	rolls	back,	all	the	data

modifications.	This	returns	the	database	to	the	point	of	consistency	it
was	at	before	the	transaction	started.

SQL	Server	applications	can	also	run	in	autocommit	mode.	In	autocommit	mode
each	individual	Transact-SQL	statement	is	committed	automatically	if	it	is
successful	and	rolled	back	automatically	if	it	generates	an	error.	There	is	no	need
for	an	application	running	in	autocommit	mode	to	issue	statements	that
specifically	start	or	end	a	transaction.

All	Transact-SQL	statements	run	in	a	transaction:	an	explicit	transaction,	an
implicit	transaction,	or	an	autocommit	transaction.	All	SQL	Server	transactions
that	include	data	modifications	either	reach	a	new	point	of	consistency	and	are
committed,	or	are	rolled	back	to	the	original	point	of	consistency.	Transactions
are	not	left	in	an	intermediate	state	where	the	database	is	not	consistent.

See	Also

Transactions

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Transaction	Recovery
Every	Microsoft®	SQL	Server™	2000	database	has	a	transaction	log	that
records	data	modifications	made	in	the	database.	The	log	records	the	start	and
end	of	every	transaction	and	associates	each	modification	with	a	transaction.	An
instance	of	SQL	Server	stores	enough	information	in	the	log	to	either	redo	(roll
forward)	or	undo	(roll	back)	the	data	modifications	that	make	up	a	transaction.
Each	record	in	the	log	is	identified	by	a	unique	log	sequence	number	(LSN).	All
of	the	log	records	for	a	transaction	are	chained	together.

An	instance	of	SQL	Server	records	many	different	types	of	information	in	the
transaction	log.	Instances	of	SQL	Server	2000	primarily	log	the	logical
operations	performed.	The	operation	is	reapplied	to	roll	forward	a	modification,
and	the	opposite	of	the	logical	operation	is	performed	to	roll	back	a
modification.

Each	instance	of	SQL	Server	controls	when	modifications	are	written	from	its
data	buffers	to	disk.	An	instance	of	SQL	Server	may	cache	modifications	in
buffers	for	a	period	of	time	to	optimize	disk	writes.	A	buffer	page	that	contains
modifications	that	have	not	yet	written	to	disk	is	known	as	a	dirty	page.	Writing
a	dirty	buffer	page	to	disk	is	called	flushing	the	page.	When	modifications	are
cached,	care	must	be	taken	to	ensure	that	no	data	modification	is	flushed	before
the	corresponding	log	image	is	written	to	the	log	file.	This	could	create	a
modification	that	could	not	be	rolled	back	if	necessary.	To	ensure	that	they	can
recover	all	modifications,	instances	of	SQL	Server	use	a	write-ahead	log,	which
means	that	all	log	images	are	written	to	disk	before	the	corresponding	data
modification.

A	commit	operation	forces	all	log	records	for	a	transaction	to	the	log	file	so	that
the	transaction	is	fully	recoverable	even	if	the	server	is	shut	down.	A	commit
operation	does	not	have	to	force	all	the	modified	data	pages	to	disk	as	long	as	all
the	log	records	are	flushed	to	disk.	A	system	recovery	can	roll	the	transaction
forward	or	backward	using	only	the	log	records.

Periodically,	each	instance	of	SQL	Server	ensures	that	all	dirty	log	and	data
pages	are	flushed.	This	is	called	a	checkpoint.	Checkpoints	reduce	the	time	and
resources	needed	to	recover	when	an	instance	of	SQL	Server	is	restarted.	For
more	information	on	checkpoint	processing,	see	Checkpoints	and	the	Active

Portion	of	the	Log.

Rolling	Back	an	Individual	Transaction
If	any	errors	occur	during	a	transaction,	the	instance	of	SQL	Server	uses	the
information	in	the	log	file	to	roll	back	the	transaction.	This	rollback	does	not
affect	the	work	of	any	other	users	working	in	the	database	at	the	same	time.
Usually,	the	error	is	returned	to	the	application,	and	if	the	error	indicates	a
possible	problem	with	the	transaction,	the	application	issues	a	ROLLBACK
statement.	Some	errors,	such	as	a	1205	deadlock	error,	roll	back	a	transaction
automatically.	If	anything	stops	the	communication	between	the	client	and	an
instance	of	SQL	Server	while	a	transaction	is	active,	the	instance	rolls	back	the
transaction	automatically	when	notified	of	the	stoppage	by	the	network	or
operating	system.	This	could	happen	if	the	client	application	terminates,	if	the
client	computer	is	shut	down	or	restarted,	or	if	the	client	network	connection	is
broken.	In	all	of	these	error	conditions,	any	outstanding	transaction	is	rolled	back
to	protect	the	integrity	of	the	database.

Recovery	of	All	Outstanding	Transactions	at	Start-up
It	is	possible	for	an	instance	of	SQL	Server	to	sometimes	stop	processing	(for
example,	if	an	operator	restarts	the	server	while	users	are	connected	and	working
in	databases).	This	can	create	two	problems:

There	may	be	an	unknown	number	of	SQL	Server	transactions	partially
completed	at	the	time	the	instance	stopped.	These	incomplete
transactions	need	to	be	rolled	back.

There	may	be	an	unknown	number	of	data	modifications	recorded	in	the
SQL	Server	database	log	files,	but	the	corresponding	modified	data
pages	were	not	flushed	to	the	data	files	before	the	server	stopped.	Any
committed	modifications	must	be	rolled	forward.

When	an	instance	of	SQL	Server	is	started,	it	must	find	out	if	either	of	these
conditions	exist	and	address	them.	The	following	steps	are	taken	in	each	SQL
Server	database	that	is	in	the	instance:

The	LSN	of	the	last	checkpoint	is	read	from	the	database	boot	block

along	with	the	Minimum	Recovery	LSN.

The	transaction	log	is	scanned	from	the	Minimum	Recovery	LSN	to	the
end	of	the	log.	All	committed	dirty	pages	are	rolled	forward	by	redoing
the	logical	operation	recorded	in	the	log	record.

The	instance	of	SQL	Server	then	scans	backward	through	the	log	file
rolling	back	all	uncompleted	transactions	by	applying	the	opposite	of
the	logical	operation	recorded	in	the	log	records.

The	RESTORE	statement	also	uses	this	type	of	recovery,	unless	a	user	specifies
the	NORECOVERY	option.	When	restoring	a	sequence	of	database,	differential,
or	log	backups	to	recover	a	database	to	a	point	of	failure,	you	specify
NORECOVERY	on	all	RESTORE	statements	except	when	restoring	the	last	log
backup.	When	the	last	backup	in	the	sequence	is	restored,	the	RESTORE
statement	also	has	to	ensure	that	all	uncompleted	transactions	are	rolled	back.
You	specify	the	RECOVERY	option	on	this	RESTORE	statement,	in	which	case
it	uses	the	same	logic	as	the	startup	recovery	process	to	roll	back	all	transactions
that	are	still	marked	incomplete	at	the	end	of	the	last	log.

SQL	Server	Architecture

Concurrency	Architecture
When	many	people	attempt	to	modify	data	in	a	database	at	the	same	time,	a
system	of	controls	must	be	implemented	so	that	modifications	made	by	one
person	do	not	adversely	affect	those	of	another	person.	This	is	called
concurrency	control.

Concurrency	control	theory	has	two	classifications	for	the	methods	of	instituting
concurrency	control:

Pessimistic	concurrency	control

A	system	of	locks	prevents	users	from	modifying	data	in	a	way	that
affects	other	users.	After	a	user	performs	an	action	that	causes	a	lock	to
be	applied,	other	users	cannot	perform	actions	that	would	conflict	with
the	lock	until	the	owner	releases	it.	This	is	called	pessimistic	control
because	it	is	mainly	used	in	environments	where	there	is	high
contention	for	data,	where	the	cost	of	protecting	data	with	locks	is	less
than	the	cost	of	rolling	back	transactions	if	concurrency	conflicts	occur.

Optimistic	concurrency	control

In	optimistic	concurrency	control,	users	do	not	lock	data	when	they	read
it.	When	an	update	is	performed,	the	system	checks	to	see	if	another
user	changed	the	data	after	it	was	read.	If	another	user	updated	the	data,
an	error	is	raised.	Typically,	the	user	receiving	the	error	rolls	back	the
transaction	and	starts	over.	This	is	called	optimistic	because	it	is	mainly
used	in	environments	where	there	is	low	contention	for	data,	and	where
the	cost	of	occasionally	rolling	back	a	transaction	outweighs	the	costs	of
locking	data	when	read.

Microsoft®	SQL	Server™	2000	supports	a	wide	range	of	optimistic	and
pessimistic	concurrency	control	mechanisms.	Users	specify	the	type	of
concurrency	control	by	specifying:

A	transaction	isolation	level	for	a	connection.

Concurrency	options	on	cursors.

These	attributes	can	be	defined	using	either	Transact-SQL	statements	or	through
the	properties	and	attributes	of	the	database	APIs	such	as	ADO,	OLE	DB,	and
ODBC.

See	Also

Four	Concurrency	Problems

Cursor	Concurrency

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Locking	Architecture
A	lock	is	an	object	used	by	software	to	indicate	that	a	user	has	some	dependency
on	a	resource.	The	software	does	not	allow	other	users	to	perform	operations	on
the	resource	that	would	adversely	affect	the	dependencies	of	the	user	owning	the
lock.	Locks	are	managed	internally	by	system	software	and	are	acquired	and
released	based	on	actions	taken	by	the	user.

Microsoft®	SQL	Server™	2000	uses	locks	to	implement	pessimistic
concurrency	control	among	multiple	users	performing	modifications	in	a
database	at	the	same	time.	By	default,	SQL	Server	manages	both	transactions
and	locks	on	a	per	connection	basis.	For	example,	if	an	application	opens	two
SQL	Server	connections,	locks	acquired	by	one	connection	cannot	be	shared
with	the	other	connection.	Neither	connection	can	acquire	locks	that	would
conflict	with	locks	held	by	the	other	connection.	Only	bound	connections	are	not
affected	by	this	rule.	For	more	information,	see	Using	Bound	Connections.

SQL	Server	locks	are	applied	at	various	levels	of	granularity	in	the	database.
Locks	can	be	acquired	on	rows,	pages,	keys,	ranges	of	keys,	indexes,	tables,	or
databases.	SQL	Server	dynamically	determines	the	appropriate	level	at	which	to
place	locks	for	each	Transact-SQL	statement.	The	level	at	which	locks	are
acquired	can	vary	for	different	objects	referenced	by	the	same	query;	for
example	one	table	may	be	very	small	and	have	a	table	lock	applied,	while
another,	larger	table	may	have	row	locks	applied.	The	level	at	which	locks	are
applied	does	not	have	to	be	specified	by	users	and	needs	no	configuration	by
administrators.	Each	instance	of	SQL	Server	ensures	that	locks	granted	at	one
level	of	granularity	respect	locks	granted	at	another	level.	For	example,	if	UserA
attempts	to	acquire	a	share	lock	on	a	row,	the	instance	of	SQL	Server	also
attempts	to	acquire	intent	share	locks	on	the	page	and	the	table.	If	UserB	has	an
exclusive	lock	at	the	page	or	table	level,	UserA	is	blocked	from	acquiring	locks
until	the	lock	held	by	UserB	is	freed.

There	are	several	lock	modes:	shared,	update,	exclusive,	intent,	and	schema.	The
lock	mode	indicates	the	level	of	dependency	the	connection	has	on	the	locked
object.	SQL	Server	controls	how	the	lock	modes	interact.	For	example,	an
exclusive	lock	cannot	be	obtained	if	other	connections	hold	shared	locks	on	the
resource.

JavaScript:hhobj_1.Click()

Locks	are	held	for	the	length	of	time	needed	to	protect	the	resource	at	the	level
requested:

The	duration	of	share	locks	used	to	protect	reads	depends	on	the
transaction	isolation	levels.	At	the	default	transaction	isolation	level	of
READ	COMMITTED,	a	share	lock	is	held	only	as	long	as	it	takes	to
read	a	page.	In	scans,	the	lock	is	held	until	a	lock	is	acquired	on	the	next
page	in	a	scan.	If	the	HOLDLOCK	hint	is	specified,	or	the	transaction
isolation	level	is	set	to	either	REPEATABLE	READ	or
SERIALIZABLE,	the	locks	are	held	to	the	end	of	the	transaction.

Depending	on	the	concurrency	options	set	for	a	cursor,	the	cursor	may
acquire	shared-mode,	scroll	locks	to	protect	fetches.	When	scroll	locks
are	needed,	they	are	held	until	the	next	fetch	or	the	closing	of	the	cursor,
whichever	happens	first.	If	HOLDLOCK	is	specified,	however,	the
scroll	locks	are	held	until	the	end	of	the	transaction.

Exclusive	locks	used	to	protect	updates	are	held	until	the	end	of	the
transaction.

If	a	connection	attempts	to	acquire	a	lock	that	conflicts	with	a	lock	held	by
another	connection,	the	connection	attempting	to	acquire	the	lock	is	blocked
until:

The	conflicting	lock	is	freed	and	the	connection	acquires	the	lock	it
requested.

The	time-out	interval	for	the	connection	expires.	By	default,	there	is	no
time-out	interval,	but	some	applications	set	a	time-out	interval	to
prevent	an	indefinite	wait.

If	several	connections	become	blocked	waiting	for	conflicting	locks	on	a	single
resource,	the	locks	are	granted	on	a	first-come,	first-serve	basis	as	the	preceding
connections	free	their	locks.

SQL	Server	has	an	algorithm	to	detect	deadlocks,	a	condition	where	two
connections	have	blocked	each	other.	If	an	instance	of	SQL	Server	detects	a

deadlock,	it	will	terminate	one	transaction,	allowing	the	other	to	continue.	For
more	information,	see	Deadlocking.

SQL	Server	may	dynamically	escalate	or	deescalate	the	granularity	or	type	of
locks.	For	example,	if	an	update	acquires	a	large	number	of	row	locks	and	has
locked	a	significant	percentage	of	a	table,	the	row	locks	are	escalated	to	a	table
lock.	If	a	table	lock	is	acquired,	the	row	locks	are	released.	SQL	Server	2000
rarely	needs	to	escalate	locks;	the	query	optimizer	usually	chooses	the	correct
lock	granularity	at	the	time	the	execution	plan	is	compiled.	For	more
information,	see	Lock	Escalation	and	Dynamic	Locking.

See	Also

Locking

Cursor	Locking

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

SQL	Server	Architecture

Latching
Latches	are	very	lightweight,	short-term	synchronization	objects	protecting
actions	that	need	not	be	locked	for	the	life	of	a	transaction.	They	are	primarily
used	to	protect	a	row	when	read	for	a	connection.

When	the	relational	engine	is	processing	a	query,	each	time	a	row	is	needed	from
a	base	table	or	index,	the	relational	engine	uses	the	OLE	DB	API	to	request	that
the	storage	engine	return	the	row.	While	the	storage	engine	is	actively
transferring	the	row	to	the	relational	engine,	the	storage	engine	must	ensure	that
no	other	task	modifies	either	the	contents	of	the	row	or	certain	page	structures
such	as	the	page	offset	table	entry	locating	the	row	being	read.	The	storage
engine	does	this	by	acquiring	a	latch,	transferring	the	row	in	memory	to	the
relational	engine,	and	then	releasing	the	latch.

SQL	Server	Performance	Monitor	has	a	Latches	object	that	indicates	how	many
times	latches	could	not	be	granted	immediately	and	the	amount	of	time	threads
spent	waiting	for	latches	to	be	granted.

See	Also

SQL	Server:	Latches	Object

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Distributed	Transactions	Architecture
Distributed	transactions	are	transactions	that	involve	resources	from	two	or	more
sources.	Microsoft®	SQL	Server™	2000	supports	distributed	transactions,
allowing	users	to	create	transactions	that	update	multiple	SQL	Server	databases
and	other	sources	of	data.

A	distributed	transaction	involves:

Resource	managers

The	software	controlling	each	resource	involved	in	a	distributed
transaction	is	known	as	a	resource	manager.	A	distributed	transaction	is
made	up	of	local	transactions	in	each	individual	resource	manager.	Each
resource	manager	must	be	able	to	commit	or	roll	back	its	local
transaction	in	coordination	with	all	the	other	resource	managers	in	the
distributed	transaction.	SQL	Server	can	operate	as	a	resource	manager
in	a	distributed	transaction	that	complies	with	the	X/Open	XA
specification	for	Distributed	Transaction	Processing.

Transaction	manager

Committing	or	rolling	back	a	distributed	transaction	is	controlled	by	a
software	component	called	a	transaction	manager.	The	transaction
manager	coordinates	with	each	resource	manager	to	ensure	that	all	the
local	transactions	making	up	the	distributed	transaction	are	committed
or	rolled	back	together.	The	Microsoft	Distributed	Transaction
Coordinator	(MS	DTC)	service	operates	as	a	transaction	manager.	MS
DTC	complies	with	the	X/Open	XA	specification	for	Distributed
Transaction	Processing.

Two-phase	commit	(2PC)

Special	commit	processing	is	required	to	prevent	problems	in	managing
transactions	spanning	multiple	resource	managers.	A	commit	of	a	large
transaction	can	take	a	relatively	long	time	as	log	buffers	are	flushed
freed.	The	commit	process	itself	can	also	encounter	errors	that	would
force	a	rollback.	If	a	transaction	manager	simply	asked	each	resource
manager	to	commit,	it	could	get	a	success	status	back	from	some

resource	managers	and	then	get	an	error	from	one	resource	manager.
This	creates	a	conflict	because	all	of	the	distributed	transaction	should
be	rolled	back,	but	parts	are	already	committed.	Two-phase	commits
address	this	problem	by	dividing	a	commit	into	two	phases:

Prepare

The	transaction	manager	sends	a	prepare	to	commit	request	to
each	resource	manager.	Each	resource	manager	then	performs
all	resource-intensive	actions	needed	to	complete	the	commit
process,	such	as	flushing	all	log	buffers.	The	resource	manager
only	retains	the	minimum	locks	needed	to	maintain	the
integrity	of	the	transaction,	and	then	returns	success	to	the
transaction	manager.

Commit

If	all	the	resource	managers	return	success	to	their	prepare
requests,	the	transaction	manager	then	sends	commit
commands	to	each	resource	manager.	Each	resource	manager
then	quickly	records	the	transaction	as	completed	and	frees	the
last	held	resources.	If	any	resource	manager	returns	an	error	to
the	prepare	request,	the	transaction	manager	then	sends
rollback	commands	to	each	resource	manager.

There	are	several	ways	applications	can	include	SQL	Server	2000	in	a
distributed	transaction:

If	an	application	has	a	local	transaction	and	issues	a	distributed	query,
the	local	transaction	is	escalated	to	a	distributed	transaction.

Issue	a	BEGIN	DISTRIBUTED	TRANSACTION	statement.

If	an	application	has	a	local	transaction	and	the	option
REMOTE_PROC_TRANSACTIONS	is	set	ON,	calling	a	remote	stored
procedure	escalates	the	local	transaction	to	a	distributed	transaction.

Applications	using	the	Microsoft	OLE	DB	Provider	for	SQL	Server	or

the	SQL	Server	ODBC	driver	can	use	OLE	DB	methods	or	ODBC
functions	to	have	a	SQL	Server	connection	join	a	distributed	transaction
started	by	the	application.

See	Also

Distributed	Transactions

MS	DTC	Service

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Cursor	Architecture
All	SQL	statements	operate	on	a	set	of	rows.	A	SELECT	statement	returns	a
complete	result	set	containing	all	the	rows	that	meet	the	qualifications	in	the
SELECT	statement.	Applications	need	to	process	the	result	set	one	row	or	block
of	rows	at	a	time.	Cursors	are	a	logical	extension	to	result	sets	that	let
applications	work	with	the	result	set	row	by	row.

Microsoft®	SQL	Server™	2000	supports	several	mechanisms	for	specifying
cursors:

Transact-SQL	supports	the	SQL-92	DECLARE	CURSOR,	OPEN,
FETCH,	and	CLOSE	statements	for	managing	cursors.	Transact-SQL
also	supports	cursor	extensions	such	as:

A	DEALLOCATE	statement	to	allow	optimizations	in	reusing
cursors.

Defining	a	Transact-SQL	variable	to	have	a	cursor	data	type
and	then	using	it	to	refer	to	a	cursor.

Defining	a	cursor	to	have	local	or	global	scope.

Specifying	the	cursor	types	from	the	OLE	DB	and	ODBC
specifications	(FORWARD_ONLY,	STATIC,	KEYSET,	and
DYNAMIC)	in	a	DECLARE	CURSOR	statement.

The	Microsoft	OLE	DB	Provider	for	SQL	Server	supports	the	cursor
functionality	of	the	ADO	and	OLE	DB	APIs.

The	Microsoft	SQL	Server	ODBC	driver	supports	the	cursor
functionality	of	the	ODBC,	RDO,	DAO,	and	Microsoft	Foundation
Classes	Database	Classes	APIs.

Microsoft	Embedded	SQL	for	C	supports	the	cursor	functionality	of	the

Embedded	SQL	standard.

The	DB-Library	API	supports	the	same	level	of	cursor	functionality	as
the	OLE	DB	and	ODBC	APIs.

See	Also

Cursors

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Server	Scalability
Microsoft®	SQL	Server™	2000	extends	the	scalability	of	SQL	Server	at	both
ends	of	the	performance	spectrum.	The	SQL	Server	2000	database	engine	that
runs	on	Microsoft	Windows	NT®	and	Windows®	2000	includes	support	for
items	such	as	64	GB	of	physical	memory	and	distributed	partitioned	views	that
allow	you	to	implement	groups	of	database	servers	that	can	scale	to	meet	the
processing	requirements	of	the	largest	Web	sites	or	enterprise	data	systems.	SQL
Server	CE	adds	enhanced	support	for	mobile	users	by	running	on	Microsoft
Windows	CE.	These	enhancements	make	SQL	Server	2000	a	good	choice	for
managing	databases	ranging	from	a	small,	personal	database	on	a	kilobyte-sized
Windows	CE	device	to	terabyte-sized	databases	accessed	by	thousands	of
Internet	users.

SQL	Server	Architecture

SQL	Server	2000	on	Large	Servers
One	of	the	primary	design	goals	for	Microsoft®	SQL	Server™	2000	and	SQL
Server	version	7.0	is	to	increase	their	ability	to	implement	the	databases
supporting	the	largest	Web	sites	and	enterprise	systems.	Although	earlier
versions	of	SQL	Server	do	well	at	supporting	large	numbers	of	concurrent	users,
the	length	of	time	it	takes	them	to	run	utility,	backup,	and	restore	operations
limits	the	size	of	a	manageable	SQL	Server	database	to	200	through	300	GB.

SQL	Server	2000	Enterprise	Edition	is	capable	of	handling	terabyte-sized
databases	with	thousands	of	concurrent	users.	Some	of	the	features	that	allow
this	are:

SQL	Server	Enterprise	Edition	can	scale	effectively	on	up	to	32
microprocessors	on	SMP	computers	running	Microsoft	Windows®
2000	DataCenter.

SQL	Server	2000	Enterprise	Edition	can	use	up	to	64	GB	of	physical
memory	(RAM)	on	Windows	2000	DataCenter.	For	more	information,
see	Using	AWE	Memory	on	Windows	2000.

SQL	Server	2000	Enterprise	Edition	supports	distributed	partitioned
views,	which	allow	groups	of	database	servers	to	support	the	workload
of	a	large	Web	site	or	enterprise	system.	Such	a	group,	or	federation,	of
servers	must	be	administered	separately,	but	provide	the	same	level	of
performance	as	a	cluster	of	database	servers.	For	more	information,	see
Federated	SQL	Server	2000	Servers.

SQL	Server	2000	Enterprise	Edition	supports	indexed	views.	Creating
an	index	on	a	view	causes	the	view	to	be	materialized,	and	its	result	set
stored	in	the	same	format	as	a	table.	For	certain	types	of	views,	this	can
improve	performance	exponentially.	For	more	information,	see	View
Indexes.

The	on-disk	data	structures	that	support	parallel	processing	and	serial,
read-ahead	scans.	Table	scans	and	index	scans	can	now	be	performed
serially,	which	is	especially	useful	in	online	analytical	processing
(OLAP)	that	characterizes	data	warehouses.	For	more	information,	see
I/O	Architecture.

SQL	Server	2000	natively	supports	the	prepare/execute	model	of
executing	SQL	statements.	It	also	has	logic	to	share	query	execution
plans	between	connections	without	requiring	an	application	to	prepare
the	statement.	These	features	reduce	the	overhead	associated	with
compiling	and	executing	statements.	For	more	information,	see
Execution	Plan	Caching	and	Reuse.

Hash	and	merge	join	types	offer	improved	join	performance.	For	more
information,	see	Advanced	Query	Tuning	Concepts.

SQL	Server	2000	supports	intra-query	parallelism	on	servers	that	have
more	than	one	microprocessor,	or	CPU.	Individual	SQL	statements	can
be	split	into	two	or	more	tasks	that	operate	concurrently	to	return	the
results	faster.	For	more	information,	see	Parallel	Query	Processing.

SQL	Server	2000	evaluates	an	SQL	statement	and	dynamically	chooses
the	locking	granularity	(row,	page,	table)	that	will	maximize	concurrent
throughput.	For	more	information,	see	Locking	Architecture.

SQL	Server	2000	uses	Microsoft	Windows	NT®	and	Windows	2000
asynchronous	I/O	and	scatter-gather	I/O,	along	with	buffer	cache
management	algorithms	to	maximize	OLTP	performance.	For	more
information,	see	I/O	Architecture.	

The	speed	of	the	BACKUP	and	RESTORE	statements	is	fast	enough	to
run	the	statements	during	production	work	because	they	do	not	interfere
with	database	activity.	BACKUP	and	RESTORE	use	parallel	I/Os	when
a	backup	is	stored	on	multiple	backup	devices.	BACKUP	options,	such

JavaScript:hhobj_1.Click()

as	differential	backups,	and	backing	up	only	files	or	filegroups,	reduce
size	of	backups	and	their	effect	on	the	system.	For	more	information,
see	Backup/Restore	Architecture.

The	SQL	Server	2000	and	SQL	Server	7.0	on-disk	data	structures	are
much	simpler	than	in	earlier	versions,	which	make	the	structures	more
robust.	Also,	the	database	engine	is	coded	to	detect	errors	at	relatively
early	points	in	processing	and	terminate	a	task	before	it	causes	problems
in	the	database	itself	(fail-fast	logic).	These	improvements	result	in
fewer	problems	with	on-disk	structures	and	reduce	or	eliminate	the	need
to	run	database	integrity	checks.

The	algorithms	in	the	database	integrity	check	statements	are	much
faster	in	SQL	Server	2000	and	SQL	Server	7.0	than	in	earlier	versions.
The	integrity	check	statements	now	make	a	single	serial	scan	of	the
database	and	check	objects	in	parallel	during	the	scan	of	the	database.
For	more	information,	see	Data	Integrity	Validation.

The	SQL	Server	2000	and	version	7.0	bulk	copy	components	now
transfer	data	at	increased	speeds.	The	bcp	bulk	copy	utility	can	now
copy	data	in	parallel	from	multiple	sources	into	the	same	file
concurrently.	For	more	information,	see	Parallel	Data	Loads.

SQL	Server	2000	and	version	7.0	now	support	doing	bulk	loads	directly
on	the	server	without	transferring	the	data	through	a	client.	This	is	done
using	the	new	BULK	INSERT	statement,	and	is	the	fastest	way	to	get
large	amounts	of	data	into	a	table.	For	more	information,	see	BULK
INSERT.

Distribution	statistics	indicate	the	selectivity	of	index	keys	and	are	used
by	the	query	optimizer	to	choose	the	most	efficient	index	when
compiling	a	query.	If	the	statistics	are	out	of	date,	the	optimizer	may	not
generate	an	optimal	execution	plan.	SQL	Server	2000	can	be	set	up	to
generate	distribution	statistics	automatically,	which	improves	the

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

effectiveness	of	the	query	optimizer.	The	sampling	processes	that
generate	the	statistics	have	also	been	improved;	they	can	now	generate
reliable	statistics	after	scanning	less	data	than	earlier	versions	of	SQL
Server.	For	more	information,	see	Statistical	Information.

SQL	Server	2000	defines	OLE	DB	extensions	that	OLE	DB	providers
can	use	to	report	distribution	statistics	to	the	SQL	Server	2000	database
engine.	This	allows	the	engine	to	more	efficiently	optimize	distributed
queries.	The	Microsoft	OLE	DB	Provider	for	SQL	Server	2000	supports
these	extensions,	improving	the	performance	of	distributed	queries
referencing	SQL	Server	databases.	For	more	information,	see
Distribution	Statistics	Requirements	for	OLE	DB	Providers.

SQL	Server	includes	failover	cluster	support.	Two	to	four	Windows	NT
or	Windows	2000	servers	can	have	instances	of	SQL	Server	and	all
access	a	set	of	cluster	disks	holding	SQL	Server	databases	and	each
instance	is	identified	by	a	single	virtual	server	name.	If	the	server
currently	processing	SQL	Server	requests	fails,	one	of	the	other
Windows	servers	starts	its	SQL	Server	services,	recovers	any
uncompleted	transactions	recorded	in	the	database	logs,	and	begins
operating	in	place	of	the	lost	server.	For	more	information,	see	Failover
Clustering	Architecture.

SQL	Server	2000	introduces	log	shipping,	which	can	be	used	to
maintain	a	warm	standby	server.	The	transaction	logs	from	a	production
server	are	periodically	backed	up	and	applied	to	a	warm	standby	server.
If	the	production	server	fails,	the	warm	standby	server	can	be	brought
online	in	its	place.	For	more	information,	see	Log	Shipping.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

SQL	Server	Architecture

SQL	Server	2000	Databases	on	the	Desktop
The	same	Microsoft®	SQL	Server™	2000	database	engine	that	supports
thousands	of	concurrent	users	can	also	be	installed	on	laptop	or	desktop
computers	running	either	Microsoft	Windows®	98,	Microsoft	Windows	NT®
Workstation,	or	Windows	2000	Professional.	Two	versions	of	SQL	Server	2000
that	run	on	these	operating	systems	are:

SQL	Server	2000	Personal	Edition

An	edition	of	SQL	Server	2000	used	on	personal	workstations	or	small
workgroup	servers.	SQL	Server	2000	Personal	Edition	includes	the
management	tools,	such	as	SQL	Server	Enterprise	Manager,	that	come
with	both	SQL	Server	2000	Standard	Edition	and	SQL	Server	2000
Enterprise	Edition.

SQL	Server	2000	Desktop	Engine

A	redistributable	version	of	the	SQL	Server	relational	database	engine,
which	third-party	software	developers	can	include	in	their	applications
that	use	SQL	Server	to	store	data.	The	SQL	Server	2000	Desktop
Engine	is	made	available	as	a	set	of	Windows	Installer	merge	modules
that	can	be	included	in	the	application	setup.

The	SQL	Server	2000	Desktop	Engine	does	not	include	graphical
management	tools;	the	application	distributing	the	engine	is	usually
coded	to	perform	any	needed	database	administration.	You	can	manage
instances	of	the	Desktop	Engine	from	the	SQL	Server	2000	graphical
tools	if	installed	with	another	edition	of	SQL	Server.

The	SQL	Server	2000	Desktop	Engine	includes	support	for	all	of	the
programming	APIs	and	most	of	the	functionality	of	the	other	editions	of
SQL	Server	2000.	It	also	includes	the	SQLServerAgent	service	for
managing	scheduled	tasks.	Although	the	Desktop	Engine	does	not
include	the	management	tools	or	wizards,	applications	can	fully
administer	an	instance	of	the	Desktop	Engine	using	the	SQL	Server
administration	APIs,	such	as	SQL-DMO,	the	DTS	and	Replication
programming	objects,	or	the	general	database	APIs	(such	as	ADO,	OLE
DB,	and	ODBC).	Applications	can	use	the	general	database	APIs	to

access	data	in	the	Desktop	Engine,	and	the	Desktop	Engine	can
participate	alongside	other	editions	of	SQL	Server	2000	in	DTS
transformations	and	replication	plans	(except	operating	as	a
transactional	replication	Publisher).	For	more	information	about	the
features	supported	by	the	Desktop	Engine,	see	Features	Supported	by
the	Editions	of	SQL	Server	2000.

The	database	engine	included	in	these	two	versions	of	SQL	Server	2000	is	tuned
to	support	the	workloads	typical	of	a	single	user	or	a	small	workgroup.	The
database	engine	provides	desktop	users	with	essentially	the	same	functionality
and	features	as	SQL	Server	2000	Standard	Edition	and	SQL	Server	2000
Enterprise	Edition;	however,	two	exceptions	are:

Certain	features	primarily	used	in	large	production	databases,	such	as
parallel	statement	processing	and	indexed	views,	are	not	supported.	For
more	information	about	the	features	available	in	the	various	editions	of
SQL	Server	2000,	see	Features	Supported	by	the	Editions	of	SQL
Server	2000.

A	concurrent	workload	governor	limits	the	performance	of	the	database
engine	in	these	two	editions.	The	performance	of	individual	Transact-
SQL	batches	is	decreased	when	more	than	five	batches	are	executed
concurrently.	The	amount	each	batch	is	slowed	down	depends	on	how
many	batches	over	the	five-batch	limit	are	executing	concurrently,	and
the	amount	of	data	retrieved	by	the	individual	batches.	As	more	batches
are	executed	concurrently,	and	as	more	data	is	retrieved	by	each	batch,
the	more	the	governor	slows	down	the	individual	batches.	You	can	use
the	DBCC	CONCURRENCYVIOLATION	statement	to	report	how
often	the	concurrent	workload	governor	is	activated.	For	more
information,	see	DBCC	CONCURRENCYVIOLATION.

The	ease-of-use	features	of	the	database	engine	allow	it	to	run	in	a	laptop	or
desktop	environment	with	minimal	configuration	tuning	from	the	user.	The
database	engine	automatically	configures	itself	to	acquire	or	free	resources,	such
as	memory	and	disk	space,	as	needed.	This	means	that	SQL	Server	2000
Personal	Edition	and	SQL	Server	2000	Desktop	Engine	can	be	run	on	an	end-
user	laptop	or	desktop	computer	without	requiring	the	user	or	database

administrator	to	constantly	tune	the	database.

SQL	Server	2000	Personal	Edition	and	SQL	Server	2000	Desktop	Engine
support	the	same	programming	model	as	SQL	Server	2000	Standard	Edition	and
SQL	Server	2000	Enterprise	Edition.	Applications	use	the	same	APIs	(ADO,
OLE	DB,	ODBC,	SQL-DMO,	and	so	on)	to	access	the	data	in	all	the	editions	of
SQL	Server	2000.	The	only	difference	is	the	set	of	features	supported	in	the
higher-level	editions,	such	as	failover	clustering	or	federated	database	servers,
although	most	of	these	features	are	administrative	or	scalability	features	that	are
transparent	to	most	applications.

The	database	engine	used	in	SQL	Server	2000	supports	optimizations	that
maximize	performance	in	small	laptop	or	desktop	systems	with	small	amounts	of
memory:

The	internal	data	structures	of	the	database,	such	as	mixed	extents,
significantly	reduce	the	size	of	small	databases,	or	databases	with	many
small	tables.

When	running	at	its	default	configuration	settings,	SQL	Server
configures	itself	dynamically	to	the	current	resource	usage	on	the
computer	without	the	need	for	tuning	commands	from	the	user.

Many	configuration	options	that	had	to	be	set	manually	in	SQL	Server
version	6.5	or	earlier	have	been	replaced	with	internal	logic	in	the
database	engine	that	configures	these	options	automatically	based	on
load.

It	is	no	longer	necessary	to	update	distribution	statistics	manually;	these
are	updated	automatically.

Database	files	grow	or	shrink	automatically	depending	on	the	amount	of
data.

SQL	Server	2000	replication	and	the	ability	of	the	database	engine	to	attach	and
detach	databases	offers	good	support	for	mobile	and	disconnected	users	with

laptops.	These	users	can	periodically	connect	to	a	regional	or	departmental
server	to	resynchronize	their	database	information	with	the	main	database
through	replication.	Alternatively,	a	database	can	be	placed	on	a	compact	disc
and	sent	to	remote	users,	where	they	can	simply	attach	it	to	their	server	to	get	the
latest	information.

SQL	Server	Architecture

SQL	Server	2000	on	Windows	98
Microsoft®	SQL	Server™	2000	includes	two	main	types	of	software	that	can	be
run	on	Microsoft	Windows®	98:

Client	software

All	users	covered	by	a	SQL	Server	client	access	license	can	install	the
SQL	Server	client	software	on	a	Microsoft	Windows	98	computer.	The
client	software	can	be	installed	from	the	compact	disc	for	SQL	Server
2000	Enterprise	Edition,	SQL	Server	2000	Standard	Edition,	or	SQL
Server	2000	Professional	Edition	using	the	SQL	Server	Setup	options
Client-Tools	Only	or	Connectivity	Only.	The	client	software	is	also
often	installed	by	applications	that	use	SQL	Server	to	store	data.	The
SQL	Server	2000	client	software	also	runs	on	Microsoft	Windows	95.

Server	software

Any	user	who	has	purchased	SQL	Server	2000	Personal	Edition	can
install	the	server	software	from	that	edition	on	a	computer	running	the
Windows	98	operating	system.	Applications	that	install	the	SQL	Server
2000	Desktop	Edition	can	do	so	on	Windows	98.

SQL	Server	Client	Software	on	Windows	98	and	Windows	95

SQL	Server	2000	client	software	consists	of:

Utilities	for	managing	SQL	Server	and	performing	ad	hoc	queries	of
SQL	Server	databases.

Connectivity	components	such	as	the	OLE	DB	Provider	for	SQL	Server,
the	SQL	Server	ODBC	driver,	and	the	client	Net-Libraries.	These	are
used	by	any	application	that	connects	to	an	instance	of	SQL	Server.

The	SQL	Server	2000	client	software	runs	the	same	on	a	Windows	98	or
Windows	95	computer	as	it	does	on	a	Microsoft	Windows	NT®	or	Windows
2000	computer,	with	the	following	exceptions:

The	Windows	98	and	Windows	95	network	redirectors	do	not	provide
computer	browser	support.	SQL	Server	dialog	boxes	that	depend	on	this
feature	to	get	a	list	of	servers	do	not	display	a	server	list	on	Windows	98
or	Windows	95.	This	includes	the	Register	Server	dialog	box,	the
Register	Server	Wizard,	and	the	Query	Analyzer	Login	dialog	box.

The	SQL	Server	utilities	are	not	supported	on	Windows	95.	They	are
supported	on	Windows	98.

The	SQL	Server	tools	that	poll	for	the	state	of	a	server	(SQL	Server
Enterprise	Manager,	SQL	Server	Agent)	must	do	so	actively	using	a
poll	service	state	interval	defined	by	the	user.

SQL	Server	2000	Server	Components	on	Windows	98

The	SQL	Server	2000	Personal	Edition	and	the	SQL	Server	2000	Desktop
Engine	are	the	only	editions	whose	server	components	can	be	installed	on
Windows	98.

When	SQL	Server	2000	Personal	Edition	and	the	SQL	Server	2000	Desktop
Engine	are	running	on	Windows	98	computers,	the	following	features	are	not
available:

The	Named	Pipes	and	Banyan	VINES	server	Net-Libraries	cannot	be
installed	on	Windows	98.	The	server	NWLink	IPX/SPX	Net-Library	is
also	not	supported	on	Windows	98.	An	instance	of	SQL	Server	2000	on
a	computer	running	the	Windows	98	operating	system	cannot	accept
connections	using	these	protocols.	Although	Windows	98	does	not
support	these	server	Net-Libraries,	it	does	support	the	client	Net-
Libraries.	SQL	Server	clients	running	on	Windows	98	computers	can
connect	to	instances	of	SQL	Server	on	Windows	NT	or	Windows	2000
computers	using	these	protocols.

Neither	the	client	nor	server	AppleTalk	Net-Libraries	are	supported	on
Windows	98	or	Windows	95.

Windows	98	does	not	support	the	server	functions	of	the	API	used	for
Windows	Authentication.	Clients	cannot	connect	to	an	instance	of	SQL
Server	on	a	Windows	98	computer	using	Windows	Authentication.
Windows	98	and	Windows	95	do	support	the	client	functions	of	the	API
for	Windows	Authentication.	SQL	Server	clients	running	on	Windows
98	or	Windows	95	computers	can	connect	to	instances	of	SQL	Server
2000	on	Windows	NT	or	Windows	2000	computers	using	Windows
Authentication.

The	server	side	of	using	encryption	with	the	Multiprotocol	Net-Library
is	not	supported	on	Windows	98	or	Windows	95.	Clients	cannot	connect
to	an	instance	of	SQL	Server	2000	on	a	Windows	98	or	Windows	95
computer	using	Multiprotocol	encryption.	Windows	98	and	Windows
95	do	support	the	client	functions	for	Multiprotocol	encryption,	so	SQL
Server	clients	running	on	Windows	98	and	Windows	95	computers	can
connect	to	instances	of	SQL	Server	on	Windows	NT	or	Windows	2000
computers	using	Multiprotocol	encryption.

Windows	98	does	not	support	asynchronous	I/O	or	scatter-gather	I/O.
Because	of	this,	the	database	engine	cannot	use	some	of	the	I/O
optimizations	it	uses	on	Windows	NT	and	Windows	2000	to	maximize
throughput	with	many	concurrent	users.

On	Windows	98,	SQL	Server	manages	its	memory	requests	based	on
the	amount	of	database	work	being	done	instead	of	maintaining	virtual
memory	at	a	point	that	minimizes	swapping	as	it	does	on	Windows	NT
and	Windows	2000.	For	more	information,	see	Memory	Architecture.

Windows	98	does	not	have	a	component	that	corresponds	to	Window
NT	or	Windows	2000	services.	The	SQL	Server	database	engine	and
SQL	Server	Agent	run	as	executable	programs	on	Windows	98.	These
SQL	Server	components	cannot	be	started	as	services	automatically.
They	can	be	started	by	placing	a	command	prompt	command	in	the
Windows	98	startup	group,	but	then	they	run	as	a	separate	Microsoft
MS-DOS®	window.

SQL	Server	Service	Manager	is	installed	in	the	Windows	98	startup
group	and	operates	with	the	same	user	interface	as	it	does	on	Windows
NT	and	Windows	2000.

Windows	98	does	not	have	event	logs.	SQL	Server	uses	a	SQL	Profiler–
based	mechanism	to	launch	alerts	on	Windows	98.

SQL	Server	Performance	Monitor	is	not	available	on	Windows	98
computers.	Performance	Monitor	counters	cannot	be	implemented	for
instances	of	SQL	Server	2000	running	on	Windows	98.	Windows	98
and	Windows	95	clients	cannot	monitor	the	performance	counters	of	an
instance	of	SQL	Server	running	on	Windows	NT	or	Windows	2000.

SQL	Server	Architecture

SQL	Server	2000	and	Windows	CE
Microsoft®	SQL	Server	2000™	Windows®	CE	Edition	provides	a	robust
relational	database	engine	for	Windows	CE	devices:

Optimized	for	Windows	CE

Microsoft®	SQL	Server	2000™	Windows	CE	Edition	(SQL	Server	CE)
is	designed	to	run	efficiently	on	typical	Windows	CE	devices.	The
memory	footprint	for	SQL	Server	CE	is	approximately	1	MB.	SQL
Server	CE	was	designed	from	the	ground	up	to	balance	size,	RDBMS
functionality,	connectivity	and	performance.

SQL	Server	CE	is	implemented	as	a	set	of	dynamic-link	libraries
(DLLs)	that	operate	as	an	OLE	DB	CE	provider.	This	allows	SQL
Server	CE	to	support	the	ADOCE	and	OLE	DB	CE	APIs,	and	also
means	that	multiple	applications	running	at	the	same	time	can	share	a
common	set	of	DLLs,	thereby	saving	space.

Integrated	Development	Environment

SQL	Server	2000	CE	is	tightly	integrated	with	the	Windows	CE
development	environment	in	a	way	that	leverages	the	existing	skills	of
SQL	Server	developers.	SQL	Server	CE	supports	the	ADOCE	and	OLE
DB	CE	data	access	APIs	in	the	Windows	CE-based	versions	of
Microsoft®	Visual	Basic™	and	Visual	C++™.	The	SQL	language	and
data	access	APIs	used	by	SQL	Server	CE	applications	are	generally
upwardly	compatible	with	SQL	Server	applications.	Programmers
already	used	to	developing	SQL	Server	applications	using	ADO	or	OLE
DB	in	other	Windows	environments	can	rapidly	develop	data-aware
Windows	CE	applications	using	SQL	Server	CE.

SQL	Server	2000	Interoperability

SQL	Server	CE	can	exchange	data	with	instances	of	SQL	Server	2000
running	on	other	Windows	platforms,	giving	Windows	CE	applications
access	to	centrally	located	data.	SQL	Server	CE	supports	a	wide	range
of	connectivity	options	to	match	the	connectivity	needs	of	different
devices.	SQL	Server	CE	can	operate	as	an	anonymous	merge	replication

subscriber	to	publications	from	instances	of	SQL	Server	2000	running
on	other	Windows	platforms.	This	allows	mobile	disconnected	users
who	must	work	autonomously	to	download	data	from	a	central
database,	work	offline,	and	merge	their	work	back	into	the	central
database.	Devices	that	remain	connected	to	the	network	can	use	the
Remote	Data	Access	feature	to:

Connect	to	instances	of	SQL	Server	on	other	Windows
platforms.

Execute	a	SQL	statement	and	pull	in	the	result	set	as	a
recordset.

Optionally,	modify	the	recordset	and	push	the	modifications
back	to	the	instance	of	SQL	Server	on	the	other	Windows
platform.

The	SQL	Server	CE	connectivity	options	are	tailored	for	use	on	wireless
networks	through	networking	features	such	as	data	compression	and
messaging	to	reduce	data	transmissions,	and	robust	recovery	from	lost
connections.

SQL	Server	Architecture

SQL	Server	and	Mail	Integration
Microsoft®	SQL	Server™	provides	a	set	of	extended	stored	procedures	that
allow	SQL	Server	to	operate	as	a	workgroup	post	office	for	a	MAPI-enabled	e-
mail	system.

The	computer	running	SQL	Server	must	be	set	up	as	an	e-mail	client.	SQL
Server	Enterprise	Manager	is	used	to	assign	an	e-mail	account	and	password	to
the	SQL	Server	installation.	The	mail	component	of	SQL	Server	can	then	be
enabled	to	start	automatically	when	the	SQL	Server	Agent	service	is	started.
Alternatively,	the	mail	component	can	be	started	and	stopped	at	will	using	either
SQL	Server	Enterprise	Manager,	or	the	xp_startmail,	xp_stopmail,	and
xp_sendmail	stored	procedures.

When	the	mail	component	of	SQL	Server	is	running,	it	can	be	used	to:

Send	e-mail	from	Transact-SQL	batches,	scripts,	stored	procedures,	and
triggers	using	xp_send_mail.	The	e-mail	can	be:

Message	strings.

The	result	set	of	a	query.

A	Transact-SQL	statement	or	batch	to	execute.

A	page	for	an	electronic	pager.

Read	e-mail	using	sp_processmail,	or	a	combination	of
xp_findnextmessage,	xp_readmail,	and	xp_deletemail.	The	messages
sent	to	SQL	Server	typically	contain	a	Transact-SQL	statement	or	batch
to	be	executed.	The	statement	is	executed	and	the	result	set	is	returned

as	a	reply	e-mail	with	an	optional	CC:	list.

SQL	Server	events	and	alerts	can	be	combined	with	SQL	Mail	functionality	to
build	a	system	in	which	a	server	running	SQL	Server	can	e-mail	or	page	the
relevant	administrators	automatically	if	serious	conditions	arise.

SQL	Server	Architecture

Administration	Architecture
Each	new	version	of	Microsoft®	SQL	Server™	seeks	to	automate	or	eliminate
some	of	the	repetitive	work	performed	by	database	administrators.	Because
database	administrators	are	typically	among	the	people	most	highly	trained	in
database	issues	at	a	site,	these	improvements	allow	a	valuable	resource	to	spend
more	time	working	on	database	design	and	application	data	access	issues.

The	administration	of	SQL	Server	2000	exhibits	these	characteristics:

The	SQL	Server	2000	database	server	reduces	administration	work	in
many	environments	by	dynamically	acquiring	and	freeing	resources.
The	server	automatically	acquires	system	resources	such	as	memory
and	disk	space	when	needed,	and	frees	the	resources	when	they	are	no
longer	required.	Although	large	OLTP	systems	with	critical
performance	needs	are	still	monitored	by	trained	administrators,	SQL
Server	2000	can	also	be	used	to	implement	smaller	desktop	or
workgroup	databases	that	do	not	require	constant	administrator
attention.

SQL	Server	2000	provides	a	set	of	graphical	tools	that	allow
administrators	to	perform	administrative	tasks	easily	and	efficiently.

SQL	Server	2000	provides	a	set	of	services	that	allow	administrators	to
schedule	the	automatic	execution	of	repetitive	tasks.

Administrators	of	SQL	Server	2000	can	program	the	server	to	handle
exception	conditions,	or	to	at	least	send	e-mail	or	pages	to	the	on-duty
administrator.

SQL	Server	2000	publishes	the	same	administration	Application
Programming	Interfaces	(APIs)	used	by	the	SQL	Server	utilities.	These
APIs	support	all	of	the	administration	tasks	of	SQL	Server.	This	allows
developers	of	applications	that	use	SQL	Server	2000	as	their	data	store

to	completely	shield	users	from	the	administration	of	SQL	Server	2000.

SQL	Server	Architecture

DDL	and	Stored	Procedures
Transact-SQL	is	the	language	used	for	all	commands	sent	to	Microsoft®	SQL
Server™	2000,	from	all	applications.	Transact-SQL	contains	statements	that
support	all	administrative	work	done	in	SQL	Server.	These	statements	fall	into
two	main	categories:

Data	Definition	Language	(DDL)

The	SQL	language	has	two	main	divisions:	Data	Definition	Language
(DDL),	which	is	used	to	define	and	manage	all	the	objects	in	an	SQL
database,	and	Data	Manipulation	Language	(DML),	which	is	used	to	select,
insert,	update,	and	delete	data	in	the	objects	defined	using	DDL.	The
Transact-SQL	DDL	used	to	manage	objects	such	as	databases,	tables,	and
views	is	based	on	SQL-92	DDL	statements,	with	extensions.	For	each	object
class,	there	are	usually	CREATE,	ALTER,	and	DROP	statements,	such	as
CREATE	TABLE,	ALTER	TABLE,	and	DROP	TABLE.	Permissions	are
controlled	using	the	SQL-92	GRANT	and	REVOKE	statements,	and	the
Transact-SQL	DENY	statement.

System	stored	procedures

Administrative	tasks	not	covered	by	the	SQL-92	DDL	are	typically
performed	using	system	stored	procedures.	These	stored	procedures	have
names	that	start	with	sp_	or	xp_,	and	they	are	installed	when	SQL	Server	is
installed.	Some	examples	of	system	stored	procedures	are:

sp_addtype	(Defines	a	user-defined	data	type.)

sp_configure	(Manages	the	server	configuration	option	settings.)

xp_sendmail	(Sends	an	e-mail	or	page.)

SQL	Server	2000	also	exposes	the	SQL-DMO,	SQL-NS,	DTS,	and	Replication
Component	APIs.	These	are	all	comprised	of	OLE	Automation	objects	that
encapsulate	either	DDL	or	system	stored	procedures.	When	an	application	calls
one	of	the	objects,	the	object	actually	translates	the	request	to	one	or	more

Transact-SQL	DDL	or	system	stored	procedure	statements	that	are	then	sent	to
the	server.

SQL	Server	Architecture

SQL	Distributed	Management	Framework
The	SQL	Distributed	Management	Framework	(SQL-DMF)	is	an	integrated
framework	of	objects,	services,	and	components	used	to	manage	Microsoft®
SQL	Server™	2000.	SQL-DMF	provides	a	flexible	and	scalable	management
framework	that	is	adaptable	to	the	requirements	of	an	organization.	It	lessens	the
need	for	user-attended	maintenance	tasks	(such	as	database	backup	and	alert
notification)	by	providing	services	that	interact	directly	with	SQL	Server	2000.

The	key	components	of	SQL-DMF	support	the	proactive	management	of	the
instances	of	SQL	Server	on	your	network	by	allowing	you	to	define:

All	SQL	Server	objects	and	their	permissions.

Repetitive	administrative	actions	to	be	taken	at	specified	intervals	or
times.

Corrective	actions	to	be	taken	when	specific	conditions	are	detected.
The	corrective	actions	can	either	be	tasks	defined	to	resolve	the	issue,	or
alerts	by	pages	or	e-mail	to	people	who	can	resolve	the	issue.

This	illustration	shows	the	main	components	of	SQL-DMF.

SQL	Server	Architecture

SQL-DMF	Applications
There	are	three	main	classes	of	applications	that	use	SQL-DMF.	These
applications	provide	the	interfaces	for	users	managing	Microsoft®	SQL
Server™	2000:

SQL	Server	Tools

The	SQL	Server	2000	tools	that	manage	SQL	Server	database	objects	use	the
SQL-DMO	API.	The	primary	SQL	Server	tool	that	uses	SQL-DMF	is	SQL
Server	Enterprise	Manager.	SQL	Server	Enterprise	Manager	supplies	the
primary	interface	for	users	who	are	administering	instances	of	SQL	Server
on	the	network.	Also,	the	SQL	Query	Analyzer	contains	features	(such	as	an
object	browser)	related	to	listing	and	managing	database	objects.	These
features	use	SQL-DMF.

COM+	applications	and	Active	Server	Pages

The	SQL-DMF	APIs	can	be	used	in	COM+	applications	and	Web
applications,	such	as	Active	Server	Pages	(ASP).

Applications	and	ISV	tools

Applications,	written	either	in-house	or	by	independent	software	vendors
(ISVs),	can	use	the	SQL-DMF	APIs	to	administer	and	configure	instances	of
SQL	Server.	This	allows	applications	to	shield	the	administration	of	SQL
Server	from	their	users	if	the	application	has	chosen	to	embed	SQL	Server	as
its	data	storage	mechanism.	ISVs	who	produce	tools	for	managing	server
applications	also	use	the	SQL-DMF	APIs	to	build	features	for	managing
SQL	Server	into	their	tools.

SQL	Server	Architecture

SQL-DMF	APIs
Applications	can	use	one	of	three	APIs	to	access	the	core	functionality	of	SQL-
DMF:	SQL	Namespace,	SQL	Distributed	Management	Objects,	and	Data
Transformation	Services.	These	APIs	are	implemented	as	sets	of	dual-interface
COM	interfaces.

SQL	Distributed	Management	Objects

The	SQL	Distributed	Management	Objects	(SQL-DMO)	API	is	composed	of
a	set	of	objects	that	encapsulate	the	administrative	attributes	of	the	entities,
such	as	tables,	users,	and	views,	found	in	Microsoft®	SQL	Server™
databases.	SQL-DMO	abstracts	the	use	of	DDL,	system	stored	procedures,
registry	information,	and	operating-system	resources.	SQL-DMO	can	be
used	to	program	all	administration	and	configuration	tasks	in	SQL	Server.

Data	Transformation	Services

The	Data	Transformation	Services	(DTS)	API	exposes	the	services	provided
by	SQL	Server	to	aid	in	building	data	warehouses	and	data	marts.	These
services	provide	the	ability	to	transfer	and	transform	data	between
heterogeneous	OLE	DB	and	ODBC	data	sources.	Data	from	objects	or	the
result	sets	of	queries	can	be	transferred	at	regularly	scheduled	times	or
intervals,	or	on	an	as-required	basis.

Windows	Management	Instrumentation

The	SQL	Server	2000	compact	disc	contains	support	for	a	new	API	that	will
allow	you	to	administer	instances	of	SQL	Server	using	Windows	Management
Instrumentation	(WMI).	WMI	is	a	scalable	Windows	2000	component	with	an
object-oriented	API	that	lets	management	applications	and	scripts	monitor,
configure,	and	control	the	operating	system	and	devices,	services,	and
applications	in	a	Windows	network.	Using	standard	Windows	security,	WMI
allows	only	properly	authorized	users	to	manage	the	system.	WMI	core
components	are	also	available	for	Windows	NT®	4.0,	Windows®	95,	and
Windows	98.	For	more	information	about	the	WMI	support	for	these	operating
systems,	see	the	MSDN®	page	at	Microsoft	Web	site.

A	component,	such	as	SQL	Server,	enables	WMI	support	by	supplying	a	WMI

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

provider	and	defining	a	WMI	class	schema.	The	schema	models	the	objects	in
the	component	that	can	be	managed	using	WMI.	SQL	Server	2000	includes	a
SQL	Server	WMI	provider	and	a	schema	class	model	that	maps	instances	of
SQL	Server	2000	to	WMI	classes.	The	SQL	Server	WMI	schema	models	objects
such	as	databases	and	tables.	The	SQL	Server	WMI	implementation	provides
management	functions	such	as:

Create,	change,	or	delete	managed	objects.	For	example,	create	a
database.

Administer	managed	objects.	For	example,	back	up	databases	and	logs.

Enumerate	managed	objects.	For	example,	list	all	the	tables	in	a
database.

Retrieve	information	about	a	specific	managed	object.	For	example,
determine	whether	full-text	indexing	is	enabled	on	the	Customers	table.

Query	managed	objects	that	meet	a	specific	criterion.	For	example,	list
all	encrypted	stored	procedures.

Execute	methods	defined	for	managed	objects.	For	example,	execute	a
method	that	bulk	copies	data	from	a	table.

Generate	events	when	a	managed	object	is	created,	changed,	or	deleted
(for	example,	raise	an	event	when	a	database	option	is	changed).

Describe	relationships	between	managed	objects	(for	example,	identify
which	logins	are	authorized	to	access	a	database).

All	WMI	data	is	available	remotely	and	is	fully	scriptable.	The	SQL	Server	2000
WMI	implementation	maps	over	the	SQL-DMO	API,	but	does	not	support	the
management	of	replication.	The	SQL	Server	WMI	implementation	can	be	used
with	SQL	Server	7.0.

The	SQL	Server	WMI	support	is	not	installed	by	SQL	Server	2000	Setup.	All	of
the	WMI	materials,	including	a	separate	setup	and	documentation,	are	included
in	the	folder	\x86\OTHER\wmi	on	the	SQL	Server	2000	compact	disc.

SQL	Namespace

The	SQL	Namespace	(SQL-NS)	API	exposes	the	user	interface	(UI)
elements	of	SQL	Server	Enterprise	Manager.	This	allows	applications	to
include	SQL	Server	Enterprise	Manager	UI	elements	such	as	dialog	boxes
and	wizards.

See	Also

Developing	SQL-DMO	Applications

Programming	DTS	Applications

Programming	SQL-NS	Applications

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

SQL	Server	Agent
SQL	Server	Agent	runs	on	the	server	running	instances	of	Microsoft®	SQL
Server™	2000	or	earlier	versions	of	SQL	Server.	SQL	Server	Agent	is
responsible	for:

Running	SQL	Server	tasks	scheduled	to	occur	at	specific	times	or
intervals.

Detecting	specific	conditions	for	which	administrators	have	defined	an
action,	such	as	alerting	someone	through	pages	or	e-mail,	or	a	task	that
will	address	the	conditions.

Running	replication	tasks	defined	by	administrators.

SQL	Server	Agent	is	similar	to	an	auxiliary	operator	responsible	for	handling	the
repetitive	tasks	and	exception	handling	conditions	defined	through	the	other
SQL-DMF	components.

See	Also

DTS	Overview

SQL	Namespace	API

SQL-DMO	API

SQLServerAgent	Service

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Graphical	Tools
Microsoft®	SQL	Server™	2000	includes	many	graphical	utilities	that	allow
users,	programmers,	and	administrators	to	efficiently:

Administer	and	configure	SQL	Server.

Determine	the	catalog	information	in	a	copy	of	SQL	Server.

Design	and	test	queries	for	retrieving	data.

In	addition	to	these	tools,	SQL	Server	contains	several	wizards	to	walk
administrators	and	programmers	through	the	steps	needed	to	perform	more
complex	administrative	tasks.

SQL	Server	Architecture

SQL	Server	Enterprise	Manager
SQL	Server	Enterprise	Manager	is	the	primary	administrative	tool	for
Microsoft®	SQL	Server™	2000	and	provides	a	Microsoft	Management	Console
(MMC)–compliant	user	interface	that	allows	users	to:

Define	groups	of	servers	running	SQL	Server.

Register	individual	servers	in	a	group.

Configure	all	SQL	Server	options	for	each	registered	server.

Create	and	administer	all	SQL	Server	databases,	objects,	logins,	users,
and	permissions	in	each	registered	server.

Define	and	execute	all	SQL	Server	administrative	tasks	on	each
registered	server.

Design	and	test	SQL	statements,	batches,	and	scripts	interactively	by
invoking	SQL	Query	Analyzer.

Invoke	the	various	wizards	defined	for	SQL	Server.

MMC	is	a	tool	that	presents	a	common	interface	for	managing	different	server
applications	in	a	Microsoft	Windows®	network.	Server	applications	provide	a
component	called	an	MMC	snap-in	that	presents	MMC	users	with	a	user
interface	for	managing	the	server	application.	SQL	Server	Enterprise	Manager	is
the	Microsoft	SQL	Server	2000	MMC	snap-in.

To	launch	SQL	Server	Enterprise	Manager,	select	the	Enterprise	Manager	icon	in
the	Microsoft	SQL	Server	program	group.	On	computers	running	Windows
2000,	you	can	also	launch	SQL	Server	Enterprise	Manager	from	Computer
Management	in	Control	Panel.	MMC	snap-ins	launched	from	Computer

Management	do	not	have	the	ability	to	open	child	windows	enabled	by	default.
You	may	have	to	enable	this	option	to	use	all	the	SQL	Server	Enterprise
Manager	features.

Note		If	you	register	additional	SQL	servers	in	Computer	Management,	and	then
either	close	Computer	Management	or	connect	to	another	computer,	the	servers
will	no	longer	appear	in	Computer	Management.	The	registered	servers	will
appear	in	SQL	Server	Enterprise	Manager.

See	Also

How	to	launch	SQL	Server	Enterprise	Manager	in	the	Computer	Management
console	(Windows)

How	to	enable	child	windows	(Enterprise	Manager)

Overview	of	the	SQL	Server	Tools

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

SQL	Query	Analyzer
SQL	Query	Analyzer	is	a	graphical	user	interface	for	designing	and	testing
Transact-SQL	statements,	batches,	and	scripts	interactively.	SQL	Query
Analyzer	can	be	called	from	SQL	Server	Enterprise	Manager.

SQL	Query	Analyzer	offers:

A	Free-form	text	editor	for	keying	in	Transact-SQL	statements.

Color-coding	of	Transact-SQL	syntax	to	improve	the	readability	of
complex	statements.

Object	browser	and	object	search	tools	for	easily	finding	the	objects	in	a
database	and	the	structure	of	the	objects.

Templates	that	can	be	used	to	speed	development	of	the	Transact-SQL
statements	for	creating	SQL	Server	objects.	Templates	are	files	that
include	the	basic	structure	of	the	Transact-SQL	statements	needed	to
create	objects	in	a	database.

An	interactive	debugger	for	analyzing	stored	procedures.

Results	presented	in	either	a	grid	or	a	free-form	text	window.

Graphical	diagram	of	the	showplan	information	showing	the	logical
steps	built	into	the	execution	plan	of	a	Transact-SQL	statement.

This	allows	programmers	to	determine	what	specific	part	of	a	poorly
performing	query	is	using	a	lot	of	resources.	Programmers	can	then
explore	changing	the	query	in	ways	that	minimize	the	resource	usage
while	still	returning	the	correct	data.

Index	Tuning	Wizard	to	analyze	a	Transact-SQL	statement	and	the

tables	it	references,	to	see	if	adding	additional	indexes	will	improve	the
performance	of	the	query.

See	Also

Analyzing	a	Query

Index	Tuning	Wizard

Overview	of	SQL	Query	Analyzer

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

Windows	2000	System	Monitor
The	Windows	2000	System	Monitor	(Windows	NT	Performance	Monitor)	is	a
tool	for	monitoring	resource	usage	on	a	computer	running	Microsoft®	Windows
NT®	or	Microsoft	Windows®	2000.	Users	can	set	up	charts	that	present
resource	usage	data	in	graphical	form.	The	Windows	System	Monitor	has	many
different	counters,	each	of	which	measures	some	resource	on	the	computer.

The	Windows	System	Monitor	is	extensible	so	server	applications	can	add	their
own	performance	counters.	Microsoft	SQL	Server™	2000	adds	counters	to
Windows	System	Monitor	to	track	items	such	as:

SQL	Server	I/O.

SQL	Server	memory	usage.

SQL	Server	user	connections.

SQL	Server	locking.

Replication	activity.

See	Also

Monitoring	with	Windows	Performance	Monitor

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Import	and	Export	Data
The	Import	and	Export	Data	item	in	the	Microsoft®	SQL	Server™	program
group	starts	the	Data	Transformation	Services	(DTS)	Import/Export	Wizard.	The
wizard	walks	users	through	the	DTS	functions	of	importing,	exporting,
validating,	and	transforming	data	and	objects	between	heterogeneous	OLE	DB
and	ODBC	data	sources.

See	Also

DTS	Import/Export	Wizard

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL	Profiler
SQL	Profiler	is	a	tool	that	captures	Microsoft®	SQL	Server™	2000	events	from
a	server.	The	events	are	saved	in	a	trace	file	that	can	later	be	analyzed	or	used	to
replay	a	specific	series	of	steps	when	trying	to	diagnose	a	problem.	SQL	Profiler
is	used	for	activities	such	as:

Stepping	through	problem	queries	to	find	the	cause	of	the	problem.

Finding	and	diagnosing	slow-running	queries.

Capturing	the	series	of	SQL	statements	that	lead	to	a	problem.	The
saved	trace	can	then	be	used	to	replicate	the	problem	on	a	test	server
where	the	problem	can	be	diagnosed.

Monitoring	the	performance	of	SQL	Server	to	tune	workloads.

SQL	Profiler	also	supports	auditing	the	actions	performed	on	instances	of	SQL
Server.	Audits	record	security-related	actions	for	later	review	by	a	security
administrator.	SQL	Server	2000	auditing	meets	C2	security	certification
requirements.

See	Also

Monitoring	with	SQL	Profiler

Auditing	SQL	Server	Activity

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

SQL	Server	Service	Manager
SQL	Server	Service	Manager	is	used	to	start,	stop,	and	pause	the	Microsoft®
SQL	Server™	2000	components	on	the	server.	These	components	run	as	services
on	Microsoft	Windows	NT®	or	Microsoft	Windows®	2000	and	as	separate
executable	programs	on	Microsoft	Windows	95	and	Microsoft	Windows	98:

SQL	Server	service

Implements	the	SQL	Server	database	engine.	There	is	one	SQL
Server	service	for	each	instance	of	SQL	Server	running	on	the
computer.

SQL	Server	Agent	service

Implements	the	agent	that	runs	scheduled	SQL	Server	administrative
tasks.	There	is	one	SQL	Server	Agent	service	for	each	instance	of
SQL	Server	running	on	the	computer.

Microsoft	Search	service	(Windows	NT	and	Windows	2000	only)

Implements	the	full-text	search	engine.	There	is	only	one	service,
regardless	of	the	number	of	SQL	Server	instances	on	the	computer.

MSDTC	service	(Windows	NT	and	Windows	2000	only)

Manages	distributed	transactions.	There	is	only	one	service,
regardless	of	the	number	of	SQL	Server	instances	on	the	computer.

MSSQLServerOlAPService	service	(Windows	NT	and	Windows	2000
only)

Implements	SQL	Server	2000	Analysis	Services.	There	is	only	one
service,	regardless	of	the	number	of	SQL	Server	instances	on	the
computer.

Operating	the	SQL	Server	Service	Manager

SQL	Server	Service	Manager	is	a	taskbar	application	and	follows	the	standard
behavior	of	taskbar	applications.	When	minimized,	the	SQL	Server	Service

Manager	icon	appears	in	the	area	of	the	taskbar	clock	on	the	right	of	the	taskbar.
To	get	a	menu	that	includes	all	the	tasks	SQL	Server	Service	Manager	supports,
right-click	the	taskbar	item.

To	maximize	SQL	Server	Service	Manager,	double-click	the	icon.	When	SQL
Server	Service	Manager	is	maximized,	clicking	the	close	button	of	the	SQL
Server	Service	Manager	window	does	not	terminate	the	application;	it	only
minimizes	SQL	Server	Service	Manager	to	the	taskbar.	To	terminate	SQL	Server
Service	Manager,	right-click	the	SQL	Server	Service	Manager	icon	on	the
taskbar,	and	then	select	the	File/Exit	menu	item.

See	Also

Starting,	Pausing,	and	Stopping	SQL	Server

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Client	Network	Utility
The	Client	Network	utility	is	used	to	manage	the	client	Net-Libraries	and	define
server	alias	names.	It	can	also	be	used	to	set	the	default	options	used	by	DB-
Library	applications.

Most	users	will	never	need	to	use	the	Client	Network	utility.	To	connect	to
Microsoft®	SQL	Server™	2000,	users	can	specify	only	the	network	name	of	the
server	on	which	SQL	Server	is	running,	and	optionally	the	name	of	the	instance
of	SQL	Server.

In	some	cases,	an	instance	of	SQL	Server	may	be	configured	to	listen	on
alternate	network	addresses.	If	this	is	done,	client	applications	connecting	to	that
instance	must	explicitly	specify	the	alternate	address.	While	applications	could
specify	the	alternate	addresses	on	each	connection	request,	it	is	easier	to	use	the
Client	Network	utility	to	set	up	an	alias	specifying	the	alternate	addresses.
Applications	can	then	specify	the	alias	name	in	place	of	the	server	network	name
in	their	connection	requests.

See	Also

Communication	Components

Managing	Clients

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Server	Network	Utility
The	Server	Network	utility	is	used	to	manage	the	server	Net-Libraries.	This
utility	is	used	to	specify:

The	network	protocol	stacks	on	which	an	instance	of	Microsoft®	SQL
Server™	2000	listens	for	client	requests.

The	sequence	in	which	server	Net-Libraries	are	considered	when
establishing	connections	from	applications.

New	network	addresses	that	an	instance	of	Microsoft	SQL	Server	2000
listens	on.

Most	administrators	will	never	need	to	use	the	Server	Network	utility.	They	will
specify	during	setup	the	server	Net-Libraries	on	which	SQL	Server	listens.

See	Also

Communication	Components

Configuring	Network	Connections

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Miscellaneous	Utilities
The	ODBC	administrator	utility	and	Services	utility	are	also	used	to	manage
parts	of	Microsoft®	SQL	Server™	2000:

ODBC	Administrator

The	ODBC	Administrator	utility	is	used	to	add,	delete,	and	edit	ODBC	data
sources	for	all	ODBC	drivers	on	the	computer,	including	data	sources	for	the
SQL	Server	ODBC	driver.	It	can	also	be	used	to	list	the	versions	of	all	the
ODBC	drivers	installed	on	the	computer.	In	Microsoft	Windows	NT®,
Microsoft	Windows®	95,	and	Microsoft	Windows	98,	the	ODBC	utility	is	in
Control	Panel.	In	Microsoft	Windows	2000,	the	utility	is	named	Data	Source
(ODBC)	utility	and	is	in	the	Administrative	Tools	folder	in	Control	Panel.

Services	(Windows	NT	and	Windows	2000)

The	Services	application	can	be	used	to	start,	pause,	and	stop	Microsoft
Windows	NT	or	Windows	2000	services,	including	the	services	managed	by
SQL	Server	Service	Manager.	In	Windows	NT,	the	Services	utility	is	in
Control	Panel.	In	Windows	2000,	the	utility	is	in	the	Administrative	Tools
folder	in	Control	Panel.

SQL	Server	also	installs	several	command	prompt	utilities	used	when	building
.cmd	files	to	work	with	SQL	Server.	For	more	information,	see	Getting	Started
with	Command	Prompt	Utilities.

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Automated	Administration	Architecture
Microsoft®	SQL	Server™	2000	provides	features	that	allow	administrators	to
program	the	server	to	administer	itself	for	many	repetitive	actions	or	exception
conditions.	This	frees	the	administrators	to	spend	more	time	on	activities	such	as
designing	databases	and	advising	programmers	on	efficient	database	access
coding	techniques.	Applications	from	any	vendor	can	choose	SQL	Server	as
their	data	storage	component	and	minimize	the	administrative	requirements	of
customers	by	automating	administrative	tasks.

These	automation	features	are	not	limited	to	database	administration	tasks	such
as	scheduling	backups.	They	can	also	be	used	to	help	automate	the	business
practices	that	the	database	supports.	Applications	can	be	scheduled	to	run	at
specific	times	or	intervals.	Specific	conditions	detected	in	the	system	can	be
used	to	trigger	these	applications	if	they	need	to	be	executed	before	the	next
scheduled	time.

The	features	that	support	the	automation	of	administrative	tasks	are:

SQL	Server	Agent

SQL	Server	Agent	is	a	separate	executable	program	that	executes
administrative	jobs	and	alerts	defined	by	the	system	administrators.	SQL
Server	Agent	runs	as	a	service	named	SQLServerAgent	on	computers
running	Microsoft	Windows	NT®	or	Windows®	2000,	and	as	an	executable
file	on	computers	running	Microsoft	Windows	95	or	Microsoft	Windows	98.

Jobs

A	job	defines	an	administrative	task.	Each	job	has	one	or	more	steps;	each
step	specifies	a	Transact-SQL	statement,	Windows	command,	executable
program,	replication	agent,	or	Microsoft	ActiveX®	script.	Jobs	can	be	run
once,	scheduled	to	run	at	periodic	intervals,	or	specified	to	run	when	the
server	is	idle.

Jobs	enable	administrators	to	define	when	administrative	tasks	are
performed.	Each	job	can	combine	various	operating	system	commands,
Transact-SQL	statements,	stored	procedures,	and	applications	to	complete
complex	administrative	functions.	Each	job	step	can	be	very	complex.	For

example,	a	Windows	command	could	be	a	command	or	batch	file	that
contains	many	commands.	The	Transact-SQL	statement	executed	by	a	step
could	be	a	stored	procedure	containing	many	Transact-SQL	statements.

SQL	Server	Agent	runs	these	tasks	at	the	specified	times,	without	the	need
for	human	intervention.	Complex	procedures	with	error-checking	logic	can
be	designed	into	each	job	to	address	the	most	likely	conditions	the	job	would
encounter.	These	capabilities	result	in	the	ability	to	build	complex,	robust
jobs	that	run	all	periodic	maintenance.

Events	and	alerts

Each	instance	of	SQL	Server	2000	running	on	Windows	NT	or	Windows
2000	records	significant	events	in	the	Windows	NT	or	Windows	2000
application	log.	Each	entry	in	the	log	is	called	an	event.	SQL	Server
administrators	can	define	alerts	that	specify	a	job	to	be	run	when	a	specific
event	occurs.	SQL	Server	Agent	compares	the	SQL	Server	events	in	the
application	log	against	the	alerts	defined	by	administrators.	If	a	match	is
made,	the	job	specified	in	the	alert	is	executed.

Windows	95	and	Windows	98	do	not	have	event	logs.	Installations	of	SQL
Server	Professional	edition	running	on	Windows	95	or	Windows	98	use	a
SQL	Profiler–based	mechanism	to	communicate	events	to	SQL	Server
Agent.

SQL	Server	creates	events	for	errors	with	a	severity	of	19	or	higher.	Events
are	also	raised	if	a	RAISERROR	statement	is	executed	using	the	WITH	LOG
clause,	or	the	xp_logevent	system	stored	procedure	is	executed.	This	allows
Transact-SQL	scripts,	triggers,	stored	procedures,	and	applications	to	raise
events	that	could	fire	a	job.

Operators

Operators	are	e-mail	and	page	addresses	defined	to	SQL	Server	for	use	in
alerts.	An	alert	can	be	defined	that	either	e-mails	or	pages	a	specific	person.
Instances	of	SQL	Server	running	on	Windows	NT	or	Windows	2000	can	also
use	the	Windows	NT	or	Windows	2000	net	send	command	to	send	a
network	message	to	a	Windows	user	or	group.

Triggers

Triggers	are	used	to	enforce	business	logic.	Triggers	can	be	integrated	with

automated	administrative	tasks	by	using	either	RAISERROR	or	xp_logevent
to	generate	an	event	that	fires	an	alert.	For	example,	a	retail	company	has	an
inventory	database,	and	all	of	its	suppliers	accept	electronic	orders.	Every
night,	a	scheduled	job	executes	an	application	that	reviews	all	inventory
levels	and,	using	guidelines	established	by	management,	either	places	orders
with	preferred	providers	for	items	in	short	supply	or	prints	a	report	for	the
purchasing	agents.	This	could	be	backed	up	by	a	DELETE	trigger	on	the
parts	table	that	fires	a	similar	job	for	emergency	orders	if	heavy	sales	deplete
the	inventory	during	the	day.

See	Also

Automating	Administrative	Tasks

Enforcing	Business	Rules	with	Triggers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Backup/Restore	Architecture
The	backup	and	restore	components	of	Microsoft®	SQL	Server™	2000	allow
you	to	create	a	copy	of	a	database.	This	copy	is	stored	in	a	location	protected
from	the	potential	failures	of	the	server	running	the	instance	of	SQL	Server.	If
the	server	running	the	instance	of	SQL	Server	fails,	or	if	the	database	is
somehow	damaged,	the	backup	copy	can	be	used	to	re-create,	or	restore,	the
database.

SQL	Server	2000	provides	these	sophisticated	backup	and	restore	capabilities:

Options	for	how	a	database	is	backed	up	and	restored:

A	full	database	backup	is	a	full	copy	of	the	database.

A	transaction	log	backup	copies	only	the	transaction	log.

A	differential	backup	copies	only	the	database	pages	modified
after	the	last	full	database	backup.

A	file	or	filegroup	restore	allows	the	recovery	of	just	the
portion	of	a	database	that	was	on	the	failed	disk.

These	options	allow	backup	and	restore	processes	to	be	tailored	to	how
critical	the	data	in	the	database	is.	Noncritical	databases	that	can	be
easily	re-created	from	some	other	source	may	have	no	backups,	other
databases	may	have	simple	backups	that	can	re-create	the	database	to
the	night	before	a	failure,	and	critical	databases	may	have	sophisticated
backups	that	will	restore	the	database	right	up	to	the	point	of	failure.

Control	with	the	BACKUP	and	RESTORE	statements.

Users	can	execute	the	BACKUP	and	RESTORE	statements	directly
from	applications,	Transact-SQL	scripts,	stored	procedures,	and
triggers.	It	is	more	common,	however,	to	use	SQL	Server	Enterprise
Manager	to	define	a	backup	schedule,	and	then	let	SQL	Server	Agent
run	the	backups	automatically	according	to	the	schedule.	The	Database

Maintenance	Plan	Wizard	can	be	used	to	define	and	schedule	a	full	set
of	backups	for	each	database.	This	fully	automates	the	backup	process,
requiring	minimal	or	no	operator	action.

Maintenance	of	a	set	of	backup	history	tables	in	the	msdb	database.

The	backup	history	tables	record	the	backups	for	each	database.	If	a
database	has	to	be	restored,	the	Restore	Database	dialog	box	in	SQL
Server	Enterprise	Manager	presents	the	user	with	a	list	of	all	the
backups	available	for	the	database.	The	Restore	Database	dialog	box
also	has	logic	to	display	which	set	of	the	backups	in	the	history	can	be
used	to	restore	the	database	in	the	shortest	possible	time.	When	the
dialog	box	is	displayed,	the	backups	needed	to	restore	the	database	are
checked.	If	a	user	knows	that	one	of	the	backups	is	not	available	(for
example,	if	a	tape	cartridge	was	damaged	or	lost),	the	user	can	deselect
that	backup,	and	SQL	Server	Enterprise	Manager	calculates	a	new
restore	process.	When	the	user	agrees	with	the	restore	process,	SQL
Server	Enterprise	Manager	restores	the	database,	prompting	for	tapes	as
needed.

Backups	that	can	be	performed	while	the	database	is	in	use,	allowing
backups	to	be	made	of	systems	that	must	run	continuously.

The	backup	processing	and	internal	data	structures	of	SQL	Server	2000
are	structured	so	that	backups	maximize	their	rate	of	data	transfer	with
minimal	effect	on	transaction	throughput.

Fast	data	transfer	rates	for	backup	and	restore	operations,	making	SQL
Server	2000	capable	of	supporting	very	large	databases	(VLDB).

The	data	structures	in	SQL	Server	2000	databases	and	the	backup	and
restore	algorithms	support	high	data	transfer	rates	for	backup	and
restore	operations.	SQL	Server	backup	and	restore	operations	can	also
run	in	parallel	against	multiple	backup	files	or	tape	drives,	which	further
increases	the	backup	and	restore	data	transfer	rates.

RESTORE	statement	re-creates	the	database	automatically	if	necessary.

This	eliminates	the	need	to	execute	a	separate	CREATE	DATABASE	or
CREATE	DATABASE	FOR	LOAD	statement	if	the	database	does	not
exist	at	the	time	the	RESTORE	statement	is	executed.

Interrupted	backup	and	restore	operations	started	near	the	point	of	the
interruption	when	restarted.

Verification	of	a	SQL	Server	2000	backup	before	an	attempt	to	restore
the	database.	This	includes	verifying	that	the	collation	of	the	database	is
supported	by	the	instance	of	SQL	Server.

Backup	and	restore	processes	should	be	planned	together.	The	administrators
must	first	determine	the	criticality	of	the	data	in	the	database.	They	must
determine	if	it	is	acceptable	to	just	restore	the	database	to	a	point	such	as	the
night	before	the	failure,	or	if	the	database	must	be	restored	to	a	point	as	close	as
possible	to	the	time	of	failure.	They	must	also	determine	how	long	the	database
can	be	unavailable,	whether	it	must	be	brought	back	online	as	quickly	as
possible,	or	if	it	does	not	need	to	be	restored	immediately.

After	the	restore	requirements	are	determined,	the	administrators	can	then	plan	a
backup	process	that	maintains	a	set	of	backups	that	will	meet	the	restore
requirements.	The	administrators	can	choose	the	backup	processes	that	can	be
performed	with	the	minimum	effect	on	the	system	as	it	runs,	yet	still	meet	the
restore	requirements.	Based	on	the	resource	requirements,	the	administrators
also	choose	the	recovery	model	for	the	database.	The	recovery	model	balances
logging	overhead	against	the	criticality	of	fully	recovering	the	data.	The
recovery	models	are:

Full

The	data	is	critical	and	must	be	recoverable	to	the	point	of	failure.	All
data	modifications	are	logged.	All	SQL	Server	2000	recovery	options
are	available.

Bulk-logged

Certain	bulk	operations	(bulk	copy	operations,	SELECT	INTO,	text
processing)	can	be	replayed	if	necessary,	so	these	operations	are	not
fully	logged.	Can	only	recover	to	the	end	of	the	last	database	or	log
backup.

Simple

All	data	modifications	made	since	last	backup	are	expendable,	or	can	be

redone.	Lowest	logging	overhead,	but	cannot	recover	past	the	end	of	the
last	backup.

See	Also

Backing	Up	and	Restoring	Databases

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Backup	Devices
Backups	created	in	Microsoft®	SQL	Server™	2000	and	SQL	Server	version	7.0
are	stored	using	the	Microsoft	Tape	Format	(MSTF).	MSTF	is	not	specific	to
tapes;	it	can	also	be	used	for	backing	up	to	either	disks	or	named	pipes.	Each
time	a	SQL	Server	backup	is	performed,	it	forms	a	backup	set.	This	backup	set	is
stored	in	an	MSTF	unit	called	a	media.	MSTF	media	can	store	backup	sets	from
different	software.

Using	the	MSTF	format	allows	SQL	Server	to	work	with	administrative	utilities
and	products	from	other	vendors	that	manage	MSTF	format	backups.	SQL
Server	backup	sets	can	share	media,	such	as	MSTF	tape	drives,	with	backup	sets
from	other	server	software.	SQL	Server	does	not	compress	its	backup	sets,	but
uses	the	compression	provided	on	MSTF	backup	devices.

See	Also

Using	Backup	Media

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Types	of	Backup	and	Restore	Processes
Microsoft®	SQL	Server™	2000	and	SQL	Server	version	7.0	supports	four	types
of	backups.	These	can	be	combined	to	form	many	different	types	of	backup	and
restore	processes,	each	customized	to	the	availability	requirements	of	the
database.	The	four	types	are:

Database

Transaction	log

Differential

File	and	filegroup

See	Also

Designing	a	Backup	and	Restore	Strategy

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Database	Backup	and	Restore
A	database	backup	creates	a	copy	of	the	full	database.	Not	all	pages	are	copied	to
the	backup	set,	only	those	actually	containing	data.	Both	data	pages	and
transaction	log	pages	are	copied	to	the	backup	set.

A	database	backup	set	is	used	to	re-create	the	database	as	it	was	at	the	time	the
BACKUP	statement	completed.	If	only	database	backups	exist	for	a	database,	it
can	be	recovered	only	to	the	time	of	the	last	database	backup	taken	before	the
failure	of	the	server	or	database.

See	Also

Database	Backups

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Transaction	Log	Backup	and	Restore
A	transaction	log	backup	makes	a	copy	of	only	the	log	file.	A	log	file	backup	by
itself	cannot	be	used	to	restore	a	database.	A	log	file	is	used	after	a	database
restore	to	recover	the	database	to	the	point	of	the	original	failure.	For	example,	a
site	performs	a	database	backup	on	Sunday	night	and	a	log	backup	on	each	of
the	other	nights.	If	one	of	the	data	disks	for	the	database	is	lost	at	2:30	P.M.
Tuesday,	the	site	can:

1.	 Back	up	the	current	transaction	log.

2.	 Restore	the	database	backup	from	Sunday	night.

3.	 Restore	the	log	backup	from	Monday	night	to	roll	the	database
forward.

4.	 Restore	the	log	backup	taken	after	the	failure.	This	will	roll	the
database	forward	to	the	time	of	the	failure.

A	transaction	log	recovery	requires	an	unbroken	chain	of	transaction	log	backups
from	the	time	of	the	database	backup	to	the	time	of	the	failure.

See	Also

Transaction	Log	Backups

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Differential	Backup	and	Restore
A	differential	backup	creates	a	copy	of	all	the	pages	in	a	database	modified	after
the	last	database	backup.	Differential	logs	are	used	primarily	in	heavily	used
systems	where	a	failed	database	must	be	brought	back	online	quickly.
Differential	backups	are	smaller	than	full	database	backups;	therefore,	they	have
less	of	an	effect	on	the	system	while	they	run.

For	example,	a	site	executes	a	full	database	backup	on	Sunday	night.	A	set	of
transaction	log	backups	is	made	every	four	hours	during	the	day,	with	the
backups	from	one	day	overwriting	the	backups	from	the	day	before.	Each	night
the	site	makes	a	differential	backup.	If	one	of	the	data	disks	for	the	database	fails
at	9:12	A.M.	on	Thursday,	the	site	can:

1.	 Back	up	the	current	transaction	log.

2.	 Restore	the	database	backup	from	Sunday	night.

3.	 Restore	the	differential	backup	from	Wednesday	night	to	roll	the
database	forward	to	that	point.

4.	 Restore	the	transaction	log	backups	from	4:00	A.M.	and	8:00	A.M.	to
roll	the	database	forward	to	8:00	A.M.

5.	 Restore	the	log	backup	taken	after	the	failure.	This	will	roll	the
database	forward	to	the	time	of	the	failure.

See	Also

Differential	Database	Backups

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

File	and	Filegroup	Backup	and	Restore
Microsoft®	SQL	Server™	2000	supports	backing	up	or	restoring	individual	files
or	file	groups	within	a	database.	This	is	a	relatively	sophisticated	backup	and
restore	process	usually	reserved	for	very	large	databases	(VLDB)	with	high
availability	requirements.	If	the	time	available	for	backups	is	not	long	enough	to
support	backing	up	the	full	database,	subsets	of	the	database	can	be	backed	up	at
different	times.

For	example,	it	takes	three	hours	for	a	site	to	back	up	a	database,	and	backups
can	be	performed	only	during	a	two-hour	period	each	day.	The	site	can	back	up
half	the	files	or	file	groups	on	one	night	and	half	the	next.	If	a	disk	holding
database	files	or	filegroups	fails,	the	site	can	restore	just	the	lost	files	or
filegroups.	The	site	must	also	be	making	transaction	log	backups,	and	must
restore	all	transaction	log	backups	made	after	the	file	or	filegroup	backup.

File	and	filegroup	restores	can	also	be	made	from	a	full	database	backup	set.
This	allows	for	a	quicker	recovery	because	only	the	damaged	files	or	filegroups
are	restored	in	the	first	step,	not	the	entire	database.

See	Also

Using	File	Backups

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Fuzzy	Backup	and	Restore	Operations
Microsoft®	SQL	Server™	2000	and	SQL	Server	version	7.0	use	industry-
standard	fuzzy	backup	algorithms.	These	new	algorithms	provide	several
significant	benefits	for	users:

The	BACKUP	statement	runs	faster	and	has	less	effect	on	users
modifying	data	while	the	statement	is	processing.

The	RESTORE	statement	is	faster.

A	RESTORE	operation	restores	the	database	to	the	state	it	was	in	at	the	time	the
BACKUP	statement	finished.	In	SQL	Server	version	6.5	and	earlier,	a	LOAD
statement	restored	a	database	to	the	state	it	was	in	at	the	time	the	DUMP
statement	started.

In	a	SQL	Server	fuzzy	backup	and	restore	operation:

Extents	containing	data	are	written	to	the	backup	set	without	regard	to
synchronizing	pages	being	modified	by	users	during	the	backup.	This
significantly	reduces	the	effect	the	backup	has	on	current	users.	It	also
allows	the	backup	to	copy	pages	serially.	The	elimination	of	any
random	reads	speeds	the	backup	process	in	heavily	used	systems.	It
does	mean,	however,	that	the	pages	in	the	backup	are	stored	in	an
inconsistent,	unrecovered	state.

The	transaction	log	is	copied	as	part	of	the	backup.

A	RESTORE	statement:

Creates	the	database	if	it	does	not	exist,	and	initializes	the	extents	in	the
database.	This	step	is	bypassed	if	the	database	exists	when	the
RESTORE	statement	is	executed.

Copies	in	the	extents	found	in	the	backup	set.	The	process	is	fast
because	all	the	extents	are	in	a	serial	sequence.	Extents	not	found	in	the

backup	set	are	ignored;	they	are	not	initialized	as	empty	extents.

Uses	the	transaction	log	to	recover	the	database.	The	database
modifications	recorded	in	the	log	are	rolled	forward	to	the	end	of	the
log,	and	then	any	incomplete	transactions	are	rolled	back.	This	returns
the	database	to	a	consistent,	recovered	state	that	corresponds	to	the	state
the	database	was	in	at	the	time	the	BACKUP	statement	completed.

SQL	Server	Architecture

Parallel	Backup	and	Restore
Parallel	backup	and	restore	operations	improve	the	capability	of	Microsoft®
SQL	Server™	2000	to	manage	very	large	databases.	The	BACKUP	and
RESTORE	statements	use	parallel	I/O	in	a	number	of	ways:

If	a	database	has	files	on	several	disk	devices,	BACKUP	uses	one
thread	per	disk	device	to	read	the	extents	from	the	database.

If	a	backup	set	is	stored	on	multiple	backup	devices,	both	the	BACKUP
and	RESTORE	statements	use	one	thread	per	backup	device.

If	a	database	is	defined	with	files	on	several	disk	drives,	and	RESTORE
has	to	create	the	database,	RESTORE	uses	one	thread	per	disk	device
while	it	is	initializing	the	database.

SQL	Server	Architecture

Data	Import/Export	Architecture
Microsoft®	SQL	Server™	2000	has	several	components	that	support	importing
and	exporting	data:

Data	Transformation	Services

Data	Transformation	Services	(DTS)	can	be	used	to	import	and	export	data
between	heterogeneous	OLE	DB	and	ODBC	data	sources.	A	DTS	package	is
defined	that	specifies	the	source	and	target	OLE	DB	data	sources;	the
package	can	then	be	executed	on	an	as-required	basis	or	at	scheduled	times
or	intervals.	A	single	DTS	package	can	cover	multiple	tables.	DTS	packages
are	also	not	limited	to	transferring	data	straight	from	one	table	to	another,	as
the	package	can	specify	a	query	as	the	source	of	the	data.	This	allows
packages	to	transform	data,	such	as	running	a	query	that	returns	aggregate
summary	values	instead	of	the	raw	data.

Replication

Replication	is	used	to	create	copies	of	data	in	separate	databases	and	keep
these	copies	synchronized	by	replicating	modifications	in	one	copy	to	all	the
others.	If	it	is	acceptable	for	each	site	to	have	data	that	may	be	a	minute	or	so
out	of	date,	replication	allows	the	distribution	of	data	without	the	overhead
of	requiring	distributed	transactions	to	ensure	all	sites	have	an	exact	copy	of
the	current	data.	Replication	can	therefore	support	the	distribution	of	data	for
a	relatively	low	cost	in	network	and	computing	resources.

Bulk	copying

The	bulk	copy	feature	of	SQL	Server	allows	for	the	efficient	transfer	of	large
amounts	of	data.	Bulk	copying	transfers	data	into	or	out	of	one	table	at	a
time.	Bulk	copying	supports	the	following	bulk	copy	transfers:

From	one	SQL	Server	table	or	view	to	another	table	or	view.

From	a	SQL	Server	table	or	view	into	a	data	file,	such	as	a	text	file	or
tab-delimited	file.

The	result	set	of	a	query	into	a	table,	view,	or	data	file.

The	contents	of	a	data	file	into	a	table	or	view.

There	are	several	ways	the	bulk	copy	feature	can	be	used:

The	bcp	command	prompt	utility.

The	OLE	DB	Provider	for	SQL	Server	has	a	provider-specific
IRowsetFastLoad	interface	for	bulk	copies.

The	SQL	Server	ODBC	Driver	supports	a	set	of	bulk	copy	functions.

The	Transact-SQL	BULK	INSERT	statement.	This	is	the	fastest	of	the
bulk	copy	methods.	The	data	file	is	accessed	directly	from	SQL	Server
itself,	eliminating	the	overhead	of	communicating	data	from	a	client
application	to	the	server.

The	DB-Library	API	supports	a	set	of	bulk	copy	functions.

Distributed	queries

Distributed	queries	allow	Transact-SQL	statements	to	reference	data	in	an
OLE	DB	data	source.	The	OLE	DB	data	sources	can	be	another	instance	of
SQL	Server,	or	a	heterogeneous	data	source	such	as	Microsoft	Access	or
Oracle.	SELECT	INTO	and	INSERT	statements	can	be	used	to:

Export	data	from	a	SQL	Server	database	to	an	OLE	DB	data	source.

Import	data	from	an	OLE	DB	data	source	into	SQL	Server.

See	Also

Distributed	Queries

Importing	and	Exporting	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

DTS	Overview

Replication	Overview

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Architecture

Data	Integrity	Validation
Transact-SQL	has	a	set	of	DBCC	statements	used	to	verify	the	integrity	of	a
database.	The	DBCC	statements	in	Microsoft®	SQL	Server™	2000	and	SQL
Server	version	7.0	contain	several	improvements	to	the	DBCC	statements	used
in	SQL	Server	version	6.5:

The	need	to	run	the	statements	is	reduced	significantly.	Two
architectural	changes	in	SQL	Server	have	improved	the	robustness	of
the	databases	to	the	point	that	you	do	not	have	to	verify	their	integrity:

The	database	engine	has	fail-fast	logic	to	detect	potential	errors
closer	to	the	time	they	originate.	This	means	errors	are	less
likely	to	persist	long	enough	to	cause	problems	in	a	database.

The	data	structures	in	the	database	are	simpler.	This	means
they	are	easier	to	manage	and	less	likely	to	have	errors.

It	is	not	necessary	to	run	DBCC	validation	statements	as	part	of	your
normal	backup	or	maintenance	procedures.	You	should	run	them	as	part
of	a	system	check	before	major	changes,	such	as	before	a	hardware	or
software	upgrade,	or	after	a	hardware	failure.	You	should	also	run	them
if	you	suspect	any	problems	with	the	system.

SQL	Server	2000	introduces	a	new	PHYSICAL_ONLY	option	that
allows	a	DBCC	statement	to	run	faster	by	only	checking	for	the	types	of
problems	likely	to	be	generated	by	a	hardware	problem.	Run	a	DBCC
check	with	PHYSICAL_ONLY	if	you	suspect	a	hardware	problem	on
your	database	server.

The	DBCC	statements	themselves	also	run	significantly	faster.	Checks
of	complex	databases	typically	run	8	to	10	times	faster,	and	checks	of
some	individual	objects	have	run	more	than	300	times	faster.	In	SQL
Server	6.5,	DBCC	CHECKDB	processed	the	tables	serially.	For	each
table,	it	first	checked	the	structure	of	the	underlying	data	and	then

checked	each	index	individually.	This	resulted	in	a	very	random	pattern
of	reads.	In	SQL	Server	2000,	DBCC	CHECKDB	performs	a	serial	scan
of	the	database	while	performing	parallel	checks	of	multiple	objects	as
it	proceeds.	SQL	Server	2000	also	takes	advantage	of	multiple
processors	when	running	parallel	DBCC	statements.

The	level	of	locks	required	by	SQL	Server	2000	DBCC	statements	are
much	lower	than	in	SQL	Server	7.0.	DBCC	statements	can	now	be	run
concurrently	with	data	modification	statements,	significantly	lowering
their	impact	on	users	working	in	the	database.

The	SQL	Server	2000	DBCC	statements	can	repair	minor	problems	they
might	encounter.	The	statements	have	the	option	to	repair	certain	errors
in	the	B-tree	structures	of	indexes,	or	errors	in	some	of	the	allocation
structures.

See	Also

DBCC

Optimizing	DBCC	Performance

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Replication	Architecture
Replication	is	a	set	of	technologies	that	allows	you	to	keep	copies	of	the	same
data	on	multiple	sites,	sometimes	covering	hundreds	of	sites.

Replication	uses	a	publish-subscribe	model	for	distributing	data:

A	Publisher	is	a	server	that	is	the	source	of	data	to	be	replicated.	The
Publisher	defines	an	article	for	each	table	or	other	database	object	to	be
used	as	a	replication	source.	One	or	more	related	articles	from	the	same
database	are	organized	into	a	publication.	Publications	are	convenient
ways	to	group	related	data	and	objects	that	you	want	to	replicate
together.

A	Subscriber	is	a	server	that	receives	the	data	replicated	by	the
publisher.	The	Subscriber	defines	a	subscription	to	a	particular
publication.	The	subscription	specifies	when	the	Subscriber	receives	the
publication	from	the	Publisher,	and	maps	the	articles	to	tables	and	other
database	objects	in	the	Subscriber.

A	Distributor	is	a	server	that	performs	various	tasks	when	moving
articles	from	Publishers	to	Subscribers.	The	actual	tasks	performed
depend	on	the	type	of	replication	performed.

Microsoft®	SQL	Server™	2000	also	supports	replication	to	and	from
heterogeneous	data	sources.	OLE	DB	or	ODBC	data	sources	can	subscribe	to
SQL	Server	publications.	SQL	Server	can	also	receive	data	replicated	from	a
number	of	data	sources,	including	Microsoft	Exchange,	Microsoft	Access,
Oracle,	and	DB2.

Replication	Types
SQL	Server	2000	uses	three	types	of	replication:

Snapshot	replication

Snapshot	replication	copies	data	or	database	objects	exactly	as	they	exist	at

any	moment.	Snapshot	publications	are	typically	defined	to	happen	on	a
scheduled	basis.	The	Subscribers	contain	copies	of	the	published	articles	as
they	existed	at	the	last	snapshot.	Snapshot	replication	is	used	where	the
source	data	is	relatively	static,	the	Subscribers	can	be	slightly	out	of	date,
and	the	amount	of	data	to	replicate	is	small.

Transactional	replication

In	transactional	replication,	the	Subscribers	are	first	synchronized	with	the
Publisher,	typically	using	a	snapshot,	and	then,	as	the	publication	data	is
modified,	the	transactions	are	captured	and	sent	to	the	Subscribers.
Transactional	integrity	is	maintained	across	the	Subscribers	by	having	all
modifications	be	made	at	the	Publisher,	and	then	replicated	to	the
Subscribers.	Transactional	replication	is	used	when	data	must	be	replicated
as	it	is	modified,	you	must	preserve	the	transactions,	and	the	Publishers	and
Subscribers	are	reliably	and/or	frequently	connected	through	the	network.

Merge	replication

Merge	replication	lets	multiple	sites	work	autonomously	with	a	set	of
Subscribers,	and	then	later	merge	the	combined	work	back	to	the	Publisher.
The	Subscribers	and	Publisher	are	synchronized	with	a	snapshot.	Changes
are	tracked	on	both	the	Subscribers	and	Publishers.	At	some	later	point,	the
changes	are	merged	to	form	a	single	version	of	the	data.	During	the	merge,
some	conflicts	may	be	found	where	multiple	Subscribers	modified	the	same
data.	Merge	replication	supports	the	definition	of	conflict	resolvers,	which
are	sets	of	rules	that	define	how	to	resolve	such	conflicts.	Custom	conflict
resolver	scripts	can	be	written	to	handle	any	logic	that	may	be	needed	to
resolve	complex	conflict	scenarios	properly.	Merge	replication	is	used	when
it	is	important	for	the	Subscriber	computers	to	operate	autonomously	(such
as	a	mobile	disconnected	user),	or	when	multiple	Subscribers	must	update
the	same	data.

Configuring	and	Managing	Replication
SQL	Server	2000	provides	several	mechanisms	for	defining	and	administering
replication:

SQL	Server	Enterprise	Manager	supports	configuring	and	monitoring
replication.

SQL-DMO	interfaces	for	programmatically	configuring	and	monitoring
replication.

Programmatic	interfaces	for	replicating	data	from	heterogeneous	data
sources.

Microsoft	ActiveX®	controls	for	embedding	replication	functionality	in
custom	applications.

Scripting	replication	using	Transact-SQL	system	stored	procedures.

See	Also

Replication	Overview

Snapshot	Replication

How	Snapshot	Replication	Works

Merge	Replication

How	Merge	Replication	Works

Transactional	Replication

How	Transactional	Replication	Works

Replication	and	Heterogeneous	Data	Sources

Replication	Tools

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

SQL	Server	Architecture

Data	Warehousing	and	Online	Analytical	Processing
Microsoft®	SQL	Server™	2000	provides	components	that	can	be	used	to	build
data	warehouses	or	data	marts.	The	data	warehouses	or	data	marts	can	be	used
for	sophisticated	enterprise	intelligence	systems	that	process	queries	required	to
discover	trends	and	analyze	critical	factors.	These	systems	are	called	online
analytical	processing	(OLAP)	systems.	The	data	in	data	warehouses	and	data
marts	is	organized	differently	than	in	traditional	transaction	processing
databases.

Enterprise-level	relational	database	management	software,	such	as	SQL	Server
2000,	was	designed	originally	to	centrally	store	the	data	generated	by	the	daily
transactions	of	large	companies	or	government	organizations.	Over	the	decades,
these	databases	have	grown	to	be	highly	efficient	systems	for	recording	the	data
required	to	perform	the	daily	operations	of	the	enterprise.	Because	the	system	is
based	on	computers	and	records	the	business	transactions	of	the	enterprise,	these
systems	are	known	as	online	transaction	processing	(OLTP)	systems.

OLTP	Systems
The	data	in	OLTP	systems	is	organized	primarily	to	support	transactions,	such
as:

Recording	an	order	from	a	point-of-sale	terminal	or	entered	through	a
Web	site.

Placing	an	order	for	more	supplies	when	inventory	levels	drop	to	a
defined	level.

Tracking	components	as	they	are	assembled	into	a	final	product	in	a
manufacturing	facility.

Recording	employee	data.

Recording	holders	of	licenses,	such	as	restaurant	or	driver	licenses.

Individual	transactions	are	completed	quickly	and	access	relatively	small
amounts	of	data.	OLTP	systems	are	designed	and	tuned	to	process	hundreds	or
thousands	of	transactions	being	entered	at	the	same	time.

Although	OLTP	systems	excel	at	recording	the	data	required	to	support	daily
operations,	OLTP	data	is	not	organized	in	a	manner	that	easily	provides	the
information	required	by	managers	to	plan	the	work	of	their	organizations.
Managers	need	summary	information	from	which	they	can	analyze	trends	that
affect	their	organization	or	team.	They	need	to	find	the	critical	factors	affecting
the	success	of	their	organization,	and	how	best	to	adjust	those	factors	to	improve
the	success	of	the	enterprise.	They	need	to	find	how	the	workload	of	their
enterprise	is	affected	by	seasonal	and	yearly	trends	so	that	they	can	predict	how
many	employees	and	resources	will	be	required	to	perform	future	work.

OLAP	Systems
Systems	designed	to	handle	the	queries	required	to	discover	trends	and	critical
factors	are	called	online	analytical	processing	(OLAP)	systems.	OLAP	queries
typically	require	large	amounts	of	data.	For	example,	the	head	of	a	government
motor	vehicle	licensing	department	could	ask	for	a	report	that	shows	the	number
of	each	make	and	model	of	vehicle	registered	by	the	department	each	year	for
the	past	20	years.	Running	this	type	of	query	against	the	original	detail	data	in	an
OLTP	system	has	two	effects:

The	query	takes	a	long	time	to	aggregate	(sum)	all	of	the	detail	records
for	the	last	20	years,	so	the	report	is	not	ready	in	a	timely	manner.

The	query	generates	a	very	heavy	workload	that	at	least	slows	down	the
normal	users	of	the	system	from	recording	transactions	at	their	normal
pace.

Another	issue	is	that	many	large	enterprises	do	not	have	only	one	OLTP	system
that	records	all	the	transaction	data.	Most	large	enterprises	have	multiple	OLTP
systems,	many	of	which	were	developed	at	different	times	and	use	different
software	and	hardware.	In	many	cases,	the	codes	and	names	used	to	identify
items	in	one	system	are	different	from	the	codes	and	names	used	in	another.
Managers	running	OLAP	queries	generally	need	to	be	able	to	reference	the	data
from	several	of	these	OLTP	systems.

OLAP	data	is	organized	into	multidimensional	cubes.	The	structure	of	data	in
multidimensional	cubes	gives	better	performance	for	OLAP	queries	than	data
organized	in	relational	tables.	The	basic	unit	of	a	multidimensional	cube	is	called
a	measure.	Measures	are	the	units	of	data	that	are	being	analyzed.	For	example,	a
corporation	that	operates	hardware	stores	wants	to	analyze	revenue	and
discounts	for	the	different	products	it	sells.	The	measures	are	the	number	of	units
sold,	revenue,	and	the	sum	of	any	discounts.	The	measures	are	organized	along
dimensions.	In	this	example,	a	three	dimensional	cube	could	have	these
dimensions:	time,	store,	and	products.	Think	of	these	dimensions	as	forming	the
logical	x,	y,	and	z	axis	of	a	three-dimensional,	virtual	cube.

Each	dimension	is	divided	into	units	called	members.	The	members	of	a
dimension	are	typically	organized	into	a	hierarchy.	Similar	members	are	grouped
together	as	a	level	of	the	hierarchy.	For	example,	the	top	hierarchy	level	of	a
time	dimension	can	be	years,	with	months	at	the	next	level,	then	weeks,	days,
and	finally	hours	at	the	bottom	level	of	the	hierarchy.	At	each	intersection	of	the
three	dimensions,	the	values	for	the	measures	that	match	those	three	dimension
values	are	recorded.	For	example,	suppose	that	the	hour	starting	at	1:00	P.M.
Saturday,	Feb.	19,	2000	is	a	time	dimension	member,	Store	#2	of	Albany,	New
York	is	a	store	dimension	member,	and	Easy-Clean	Mops	are	a	product
dimension	member.	Where	these	three	dimensions	meet,	the	cell	records	that	10
mops	were	sold	for	revenues	of	$90.00	and	an	average	discount	of	$1.00.

The	specific	dimensions	and	measures	defined	for	the	cubes	in	any	particular
OLAP	system	depend	on	the	kinds	of	analysis	important	to	the	enterprise.
Transforming	OLTP	data	from	relational	tables	into	OLAP	cubes,	and	the	design
of	the	cubes,	is	a	complex	area	that	is	the	subject	of	many	third-party	books.

OLAP	systems	operate	on	OLAP	data	in	data	warehouses	or	data	marts.	A	data
warehouse	stores	enterprise-level	OLAP	data,	while	a	data	mart	is	smaller	and
typically	covers	a	single	function	in	an	organization.

See	Also

Creating	and	Maintaining	Databases	Overview

Creating	and	Using	Data	Warehouses	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

Transforming	OLTP	Data	to	OLAP	Data	Warehouses
The	transformation	of	OLTP	data	so	that	it	gives	acceptable	performance	in	an
OLAP	system	requires	these	processes:

Merge	Data

You	must	be	able	to	merge	all	the	data	related	to	specific	items	(products,
customers,	employees)	from	multiple	OLTP	systems	into	a	single	OLAP
system.	The	merge	process	must	resolve	differences	in	encoding	between	the
different	OLTP	systems.	For	example,	one	system	may	assign	an	ID	to	each
employee,	and	the	other	systems	have	no	employee	IDs.	The	merge	process
must	be	able	to	match	common	employee	data	from	both	systems,	perhaps
by	comparing	employee	names	and	addresses.	The	merge	process	must	also
be	able	to	convert	data	stored	using	different	data	types	in	each	OLTP	system
to	a	single	data	type	used	in	the	OLAP	system.	You	must	also	select	which
columns	in	the	OLTP	system	are	not	relevant	to	an	OLAP	system,	and
exclude	these	columns	from	the	merge	process.

The	systems	providing	input	data	for	an	OLAP	system	are	not	strictly	limited
to	traditional,	centrally	located	OLTP	systems.	Valuable	information	may	be
stored	in	various	legacy	locations,	even	in	some	cases	including	relatively
small	sources	such	as	Microsoft®	Excel	spreadsheets	stored	on	a	file	share.

Scrub	Data

Merging	the	OLTP	data	into	a	data	warehouse	gives	you	an	opportunity	to
scrub	data.	You	may	find	that	various	OLTP	systems	spell	items	differently,
or	the	merge	process	may	uncover	previously	unknown	spelling	errors.	You
may	find	other	inconsistencies,	such	as	having	different	addresses	for	the
same	store,	employee,	or	customer.	These	inconsistencies	have	to	be
addressed	before	the	data	can	be	loaded	into	the	data	warehouse	for	use	by
the	OLAP	system.

Aggregate	Data

OLTP	data	records	all	transaction	details.	OLAP	queries	typically	need
summary	data,	or	data	aggregated	in	some	fashion.	For	example,	a	query	to
retrieve	the	monthly	sales	totals	for	each	product	over	the	last	year	runs

much	faster	if	the	database	only	has	summary	rows	showing	the	daily	or
hourly	sales	for	each	product,	than	if	the	query	must	scan	every	transaction
detail	record	for	the	last	year.

The	degree	to	which	you	aggregate	the	data	in	a	data	warehouse	depends	on
a	number	of	design	factors,	such	as	the	speed	requirements	of	your	OLAP
queries	and	the	level	of	granularity	required	for	your	analysis.	For	example,
if	you	aggregate	sales	details	into	daily	summaries	instead	of	hourly
summaries,	your	OLAP	queries	would	run	faster,	but	you	could	only	do	this
if	you	had	no	need	to	analyze	sales	on	an	hourly	basis.

Organize	Data	in	Cubes

Relational	OLTP	data	is	organized	in	a	way	that	makes	some	analysis
processing	difficult	and	time-consuming.	When	OLTP	data	is	moved	into	a
data	warehouse,	it	must	be	transformed	into	an	organization	that	better
supports	decision	support	analysis.	The	process	of	building	a	data	warehouse
involves	reorganizing	OLTP	data	stored	in	relational	tables	into	OLAP	data
stored	in	multidimensional	cubes.

Transformation	Stages	and	Data	Warehousing	Components
The	process	of	making	data	available	through	OLAP	applications	typically	goes
through	three	phases:

1.	 Extract	the	data	from	OLTP	or	legacy	data	sources	into	a	staging	area.

2.	 Transform	the	data	into	a	form	usable	in	an	OLAP	system.	This
involves	actions	such	as	data	scrubbing	and	aggregation.

3.	 Load	the	data	into	a	data	warehouse	or	data	mart.

The	process	of	extracting	the	data	from	the	OLTP	and	legacy	data	sources	and
transforming	it	into	the	warehouse	servers	is	called	the	ETL	process,	and	is
typically	run	on	a	periodic	basis,	such	as	once	a	week	or	once	a	month.

Once	the	data	is	loaded	into	a	data	warehouse,	an	important	part	of	an	OLAP
system	is	to	provide	facilities	for	decision	makers	to	access	and	analyze	the	data
in	the	data	warehouses	and	data	marts.

The	illustration	shows	the	general	categories	of	components	that	OLAP	systems
use	to	provide	these	services.

Data	Sources

The	OLTP	databases	and	other	legacy	sources	of	data	that	contain	the	data
that	must	be	transformed	into	the	OLAP	data	in	data	warehouses	and	data
marts.

Intermediate	Data	Stores

The	combined	data	storage	areas	and	processes	that	stage,	cleanse,	and
transform	the	OLTP	data	into	useful	OLAP	data.

Warehouse	Servers

Warehouse	servers	are	the	computers	running	the	relational	databases	that
contain	the	data	for	data	warehouses	and	data	marts,	and	the	servers	that
manage	the	OLAP	data.

Business	Intelligence

The	sets	of	tools	and	applications	that	query	the	OLAP	data	and	provide
reports	and	information	to	the	enterprise	decision	makers.

Meta	Data

Models	the	organization	of	data	and	applications	in	the	different	OLAP
components.	Meta	data	describes	objects	such	as	tables	in	OLTP	databases,
cubes	in	data	warehouses	and	data	marts,	and	also	records	which	applications
reference	the	various	pieces	of	data.

See	Also

Creating	and	Using	Data	Warehouses	Overview

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL	Server	2000	Data	Warehouse	and	OLAP
Components
Microsoft®	SQL	Server™	2000	provides	several	components	(as	shown	in	the
illustration)	that	allow	you	to	transform	OLTP	data	into	OLAP	data,	and	make
the	OLAP	information	available	to	decision	makers.

Extensible	Markup	Language	and	OLE	DB

Extensible	Markup	Language	(XML)	is	a	standard	that	defines	a	formatting
and	data	representation	language	independent	of	specific	data	stores	or
applications.	It	is	becoming	an	increasing	important	standard	in	the
transmission	of	data	between	applications	and	across	the	Web.	SQL	Server
2000	is	enabled	to	return	the	result	sets	of	queries	as	XML	documents,	and
also	to	extract	the	data	from	XML	documents	and	store	them	in	the	relevant
tables	in	a	database.

OLE	DB	is	a	common	data	access	specification	defined	by	Microsoft.	Many
data	storage	products,	such	as	spreadsheets,	databases,	or	other	server
applications,	supply	OLE	DB	providers	that	can	be	used	by	an	OLE	DB
application	to	access	the	data.	Applications	using	the	OLE	DB	API	can
access	any	data	for	which	there	is	an	OLE	DB	provider.	OLE	DB	can	present
its	data	as	XML	documents.	OLE	DB	2.5	also	includes	multidimensional
extensions	that	let	OLE	DB	providers	expose	information	from
multidimensional	cubes.

XML	and	OLE	DB	are	important	mechanisms	for	communicating	data
between	the	various	SQL	Server	2000	data	warehousing	components.	The
definitions	of	some	of	the	conceptual	models	used	by	some	components	are
based	on	XML.

Microsoft	ActiveX®	Data	Objects	(ADO)	is	an	object	API	that	maps	over
OLE	DB,	but	is	more	concise	and	easier	to	code.	Like	OLE	DB,	ADO	can
return	its	data	as	XML	documents	and	also	supports	multi-dimensional
extensions.	Many	applications	use	ADO	as	their	API	for	accessing	OLTP
data.

SQL	Server	2000	Relational	Database	Engine

The	SQL	Server	2000	database	engine	is	used	primarily	in	the	OLTP
systems,	and	also	to	store	the	intermediate	data	stores	used	when
transforming	OLTP	data	for	storage	in	the	data	warehouse	or	data	mart,	and
to	store	and	manage	the	data	in	a	data	warehouse	or	data	mart.

Data	Transformation	Services

Data	Transformation	Services	(DTS)	is	a	component	built	to	take	data	from
one	OLE	DB	data	source,	perform	operations,	such	as	aggregating	the	data
(SUM,	MIN,	MAX,	AVG),	and	storing	it	in	a	destination	OLE	DB	data
source.	DTS	consists	of	packages,	which	define	a	particular	set	of	work	that
forms	a	logical	work	item.	Packages	contain	multiple	connections	to	data
sources,	tasks	to	be	performed,	and	workflows	connecting	connections	and
tasks.	Examples	of	tasks	include	copying	data	from	source	to	destination
connections,	transforming	data	from	a	source	connection	and	placing	the
transformed	data	in	the	destination	connection,	executing	a	set	of	Microsoft
ActiveX	scripts	or	Transact-SQL	statements	against	a	connection.

DTS	transforms	OLTP	data	stored	in	relational	tables	into	a	different
organization	that	can	be	used	as	the	foundation	for	multidimensional	cubes.
Although	the	data	in	OLTP	databases	is	stored	in	entity	and	relationship
tables,	data	in	an	OLAP	data	warehouse	is	stored	in	fact	and	dimension
tables.	Fact	tables	store	the	measures	exposed	in	multidimensional	cubes,
and	dimension	tables	stores	information	about	dimension	members.

DTS	is	a	powerful	tool	for	any	system	that	must	repeatedly	access	data	in
one	format	and	transform	it	into	another	format.	The	use	of	DTS	is	not
limited	to	building	data	warehouses,	but	the	power	and	capabilities	of	the
component	are	excellently	suited	to	the	work	of	transforming	OLTP	data	into
OLAP	data	warehouse	data.	For	more	information,	see	DTS	Overview.

Analysis	Services	and	Data	Mining

Analysis	Services	is	an	easy-to-use,	integrated,	and	scalable	set	of
components	that	enables	you	to	build	multidimensional	cubes	and	provide
the	application	programs	with	access	to	the	cubes.	Analysis	Services	is	very
flexible	in	the	types	of	storage	mechanisms	it	supports	for	the	cubes.	The
cubes	can	be	stored	in	relational	databases	(ROLAP),	as	separate,	high-
performance	multidimensional	data	structures	(MOLAP),	or	hybrid

JavaScript:hhobj_1.Click()

combinations	of	both	(HOLAP).	Analysis	Services	support	wizards	that	ease
tasks	such	as	defining	dimensions	and	cubes.	For	more	information,	see
Analysis	Services	Architecture.

Analysis	Services	exposes	the	data	in	the	multidimensional	cubes	to
applications	through	an	OLE	DB	provider.	The	Analysis	Services	provider
supports	multi-dimensional	extensions	defined	as	part	of	OLE	DB	2.5,	and
the	ActiveX	Data	Objects	(Multidimensional)	(ADO	MD)	API.	For	more
information,	see	Programming	Analysis	Services	Applications.

Analysis	Services	also	supports	industry-standard	data	mining	algorithms.
Data	mining	supports	new	and	sophisticated	tools	for	discovering	trends	in
data	and	predicting	future	results.	For	more	information,	see	Data	Mining
Models.

English	Query

English	Query	allows	end	users	to	pose	English	language	questions	about
information	stored	in	SQL	Server	2000	databases,	or	data	warehouses,	and
OLAP	cubes.	An	English	Query	administrator	defines	the	logical	and
semantic	relationships	between	the	various	tables	and	columns	in	a	database
or	cubes,	dimensions,	and	measures	in	a	data	warehouse.	An	application	can
be	coded	to	ask	the	end	user	to	type	in	an	English	query	into	a	character	field
on	a	form.	The	character	string	is	then	passed	to	the	English	Query	engine.
The	engine	analysis	the	question	against	the	logical	definitions	of	the	data
provided	by	the	administrator.	When	querying	OLAP	cubes,	the	English
Query	engine	returns	to	the	application	an	SQL	statement	that	extracts	the
requested	information	from	the	database.	When	querying	a	data	warehouse
or	data	mart,	the	English	Query	engine	returns	an	MDX	query.	The
application	executes	the	SQL	statement	or	MDX	query	and	returns	the
results	to	the	end	user.	For	more	information,	see	English	Query	Overview.

Meta	Data	Services

SQL	Server	2000	Meta	Data	Services	stores	a	model	that	maps	the
organization	of	data	in	SQL	Server	2000	databases	and	data	warehouses.
This	information	is	primarily	used	by	third-party	rapid-development	tools
that	can	either	prototype	applications	or	provide	application	templates	based
on	the	information	in	the	Meta	Data	Services	model.	For	more	information,
see	Meta	Data	Services	Overview.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

See	Also

Analysis	Services	Overview

Creating	and	Maintaining	Databases	Overview

Creating	and	Using	Data	Warehouses	Overview

DTS	Overview

English	Query	Overview

Meta	Data	Services	Overview

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

SQL	Server	Architecture

Application	Development	Architecture
Applications	use	two	components	to	access	a	database:

An	application	programming	interface	(API)	or	Uniform	Resource
Locator	(URL).

A	database	API	defines	how	to	code	an	application	to	connect	to	a
database	and	pass	commands	to	the	database.	An	object	model	API	is
usually	language	independent	and	defines	a	set	of	objects,	properties,
and	interfaces,	and	a	C	or	Microsoft®	Visual	Basic®	API	defines	a	set
of	functions	for	applications	written	in	C,	C++,	or	Visual	Basic.

A	Uniform	Resource	Locator	is	a	string,	or	stream,	that	an	Internet
application	can	use	to	access	resources	on	the	Internet	or	an	intranet.
Microsoft	SQL	Server™	2000	provides	an	ISAPI	dynamic-link	library
(DLL)	that	Microsoft	Internet	Information	Services	(IIS)	applications
use	to	build	URLs	that	reference	instances	of	SQL	Server	2000.

Database	language.

A	database	language	defines	the	syntax	of	the	commands	sent	to	the
database.	The	commands	sent	through	the	API	allow	the	application	to
access	and	modify	data.	They	also	allow	the	application	to	create	and
modify	objects	in	the	database.	All	commands	are	subject	to	the
permissions	granted	to	the	user.	SQL	Server	2000	supports	two
languages:

Internet	applications	running	on	IIS	can	use	XPath	queries	with
mapping	schemas.

The	Transact-SQL	language.

The	topics	in	this	section	provide	information	about	the	APIs	supported
by	SQL	Server	2000	and	the	issues	to	consider	when	choosing	which
API	to	use	in	an	application.

Transact-SQL

Transact-SQL	is	the	database	language	supported	by	SQL	Server	2000.	Transact-
SQL	complies	with	the	Entry	Level	of	the	SQL-92	standard,	but	also	supports
several	features	from	the	Intermediate	and	Full	Levels.	Transact-SQL	also
supports	some	powerful	extensions	to	the	SQL-92	standard.	For	more
information,	see	Transact-SQL	Overview.

The	ODBC	specification	defines	extensions	to	the	SQL	defined	in	the	SQL-92
standard.	The	ODBC	SQL	extensions	are	also	supported	by	OLE	DB.	Transact-
SQL	supports	the	ODBC	extensions	from	applications	using	the	Microsoft
ActiveX®	Data	Objects	(ADO),	OLE	DB,	or	ODBC	APIs,	or	the	APIs	that	layer
over	ODBC.	The	ODBC	SQL	extensions	are	not	supported	from	applications
that	use	the	DB-Library	or	Embedded	SQL	APIs.

XPath
SQL	Server	2000	supports	a	subset	of	the	XPath	language	defined	by	the	World
Wide	Web	Consortium	(W3C).	XPath	is	a	graph	navigation	language	used	to
select	nodes	from	XML	documents.	You	first	use	a	mapping	schema	to	define	an
XML-based	view	of	the	data	in	one	or	more	SQL	Server	tables	and	views.	You
can	then	use	XPath	queries	to	retrieve	data	from	that	mapping	schema.

You	usually	use	XPath	queries	in	either	URLs	or	the	ADO	API,	XPath	queries
are	also	supported	by	the	OLE	DB	API.

APIs	Supported	by	SQL	Server
SQL	Server	supports	a	number	of	APIs	for	building	general-purpose	database
applications,	such	as:

These	open	APIs	with	publicly	defined	specifications	supported	by
several	database	vendors:

ActiveX	Data	Objects	(ADO)

OLE	DB

Open	Database	Connectivity	(ODBC)	and	the	object	APIs	built
over	ODBC:	Remote	Data	Objects	(RDO)	and	Data	Access

JavaScript:hhobj_1.Click()

Objects	(DAO)

Embedded	SQL	for	C	(ESQL)

The	legacy	DB-Library	for	C	API	that	was	developed	specifically	to	be
used	with	earlier	versions	of	SQL	Server	that	predate	the	SQL-92
standard.

Internet	applications	can	also	use	URLs	that	specify	IIS	virtual	roots	that
reference	an	instance	of	SQL	Server.	The	URL	can	contain	an	XPath	query,	a
Transact-SQL	statement,	or	a	template.	In	addition	to	using	URLs,	Internet
applications	can	also	use	ADO	or	OLE	DB	to	work	with	data	in	the	form	of
XML	documents.

SQL	Server	Architecture

Choosing	an	API
The	general-purpose	application	programming	interfaces	(APIs)	recommended
for	use	in	new	applications	that	use	Microsoft®	SQL	Server™	2000	are:

Microsoft	ActiveX®	Data	Objects	(ADO)	for	most	database
applications.	ADO	supports	rapid	development	of	robust	applications
and	has	access	to	most	SQL	Server	features.	The	SQL	Server	features
needed	by	most	applications	are	supported	by	ADO	when	using	the
Microsoft	OLE	DB	Provider	for	SQL	Server.

URLs	in	Internet	applications	such	as	HTML	or	ASP	pages.

OLE	DB	for	COM-based	tools	and	utilities,	or	COM-based	system-
level	development	requiring	either	top	performance	or	access	to	SQL
Server	features	not	exposed	through	ADO.	The	OLE	DB	Provider	for
SQL	Server	uses	provider-specific	properties,	interfaces,	and	methods	to
expose	SQL	Server	features	not	covered	by	the	OLE	DB	specification.
Most	of	these	provider-specific	features	are	not	exposed	through	ADO.

ODBC	for	the	same	class	of	applications	as	are	listed	above	for	OLE
DB,	but	which	are	not	based	on	COM.

Selecting	a	General-Purpose	API

Several	factors	should	be	considered	when	you	select	a	general-purpose	API	to
use	in	a	SQL	Server	application:

Maturity	of	the	API	specification.

Existing

Existing	API	specifications	are	mature,	stable	specifications.
Supplementary	information	about	the	API	is	readily	available
in	third-party	books	and	classes.	There	is	an	existing	pool	of
programmers	familiar	with	the	API.

Emerging

Emerging	API	specifications	are	recent	and	may	be	evolving
rapidly.	Supplementary	information	about	the	latest	version	of
the	API	may	be	scarce.	There	are	relatively	few	programmers
available	who	have	used	the	API,	although	programmers
familiar	with	a	similar	API	can	be	retrained	quickly.

Legacy

Legacy	API	specifications	are	stable	but	unchanging.	They
may	not	support	new	features,	and	are	likely	to	be	discontinued
at	a	future	date.	Information	about	the	API	is	readily	available,
but	the	pool	of	programmers	familiar	with	the	API	may	be
shrinking.

Overhead.

Native	APIs

Native	APIs	are	low-level	APIs	implemented	with	providers	or
drivers	that	communicate	directly	to	SQL	Server	using	the
Tabular	Data	Stream	(TDS)	protocol.	They	are	relatively
complex	APIs,	but	offer	the	best	performance	because	they
have	the	least	overhead.

Object	model	APIs

Object	model	APIs	use	a	relatively	simple	object	model	to
encapsulate	a	native	API.	They	are	less	efficient	than	native
APIs	because	they	must	map	their	objects	to	the	underlying
native	API,	but	their	performance	is	acceptable	for	almost	all
applications.	Applications	using	an	object	model	API	are
simple	to	program	and	maintain.	The	object	model	API	may
not	support	all	of	the	features	of	the	underlying	native	API.

Hosted	APIs

Hosted	APIs	also	encapsulate	a	native	API,	but	do	not	use	an
object	model.	The	efficiency,	ease-of-use,	and	feature-set
issues	for	hosted	APIs	are	similar	to	those	for	object	model
APIs.

Degree	of	developer	control.

APIs	vary	in	their	overall	feature	set.	Simple	APIs	such	as	ADO	are
easy	to	learn,	program,	and	maintain,	but	they	do	not	support	all	of	the
capabilities	of	the	more	complex	APIs	such	as	OLE	DB	and	ODBC.
You	can	take	advantage	of	the	ease-of-use	advantages	of	the	APIs	such
as	ADO,	RDO,	and	ESQL	if	they	provide	the	functionality	the
application	needs.

Access	to	SQL	Server	features.

Some	APIs	have	limitations	on	the	numbers	or	types	of	SQL	Server
features	they	can	use.

Access	to	Microsoft	SQL	Server	2000	Analysis	Services	features.

Analysis	Services,	ADO	MD,	and	OLE	DB	for	OLAP	offer	support	for
online	analytical	processing.	These	services	can	be	integrated	with
ADO	and	OLE	DB	applications	using	the	OLE	DB	Provider	for	SQL
Server.

Programming	language	and	tool	support	for	the	API.

The	following	table	maps	the	general-purpose	database	APIs	supported	by	SQL
Server	to	the	factors	presented	in	the	preceding	list.

API Maturity Overhead

Degree	of
developer
control

SQL
Server
2000
feature
support

SQL
Server
2000
XML
Support

OLAP
Services
feature
support

Language
support

ADO Existing Object
Model
over	OLE
DB

Moderate Most Yes Yes Microsoft
Visual
Basic®
Microsoft
Visual
C++®
Microsoft
Visual
J++®

URL Emerging Streams
over	OLE
DB

Low Limited Yes No HTML

Active
Server
Pages
(ASP)

OLE
DB

Existing Native High All Yes Yes Visual
C++

ODBC Existing Native High All No No Visual
C++

RDO Existing Object
Model
over
ODBC

Moderate Most No No Visual
Basic
Visual
J++

DAO Legacy Object
Model
over
ODBC

Low Limited No No Visual
Basic
Visual
C++

ESQL Legacy Hosted
over	DB-
Library

Low Limited No No Visual
C++
COBOL

DB-
Library
for	C

Legacy Native High Limited No No Visual
C++

Additional	APIs
SQL	Server	also	supports	a	number	of	interfaces	that	allow	applications	to	make
full	use	of	all	SQL	Server	features:

SQL	Distributed	Management	Objects	(SQL-DMO	API)

A	set	of	COM	interfaces	for	managing	and	administering	SQL	Server.

Replication	components	(Replication	Component	Programming	API)

A	set	of	COM	interfaces	for	defining	and	managing	replication	between

SQL	Server	databases.	You	can	also	replicate	data	from	heterogeneous
databases	to	SQL	Server.

Data	Transformation	Services	(Data	Transformation	Services	API)

A	set	of	COM	interfaces	(based	on	OLE	DB)	for	defining	and	executing
complex	data	transformations	between	OLE	DB	data	providers.

Extended	Stored	Procedure	API	(Extended	Stored	Procedure	API)

A	C	language	API	for	writing	SQL	Server	extended	stored	procedures.

English	Query	API	(SQL	Server	and	English	Query)

An	Automation	API	for	evaluating	strings	that	contain	user	questions
against	the	information	in	SQL	Server	databases	or	OLAP	cubes.	The
English	Query	server	returns	the	SQL	statement	or	MDX	query	that	will
retrieve	the	answer	to	the	user	question.

Analysis	Services	APIs	(Programming	Analysis	Services	Applications)

Analysis	Services	exposes	multiple	APIs:	Decision	Support	Objects	to
manage	OLAP	and	data	mining	objects,	ADO	Multidimensional	(ADO
MD)	and	OLE	DB	OLAP	extensions	for	accessing	OLAP	cubes,	and
data	mining	functionality.

Meta	Data	Services	(Programming	Meta	Data	Services	Applications)

An	Automation	API	that	gives	applications	and	programming	tools
access	to	a	model	of	the	meta	data	in	SQL	Server	databases.

See	Also

Building	SQL	Server	Applications	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SQL	Server	Architecture

SQL	Server	and	ADO
Microsoft®	ActiveX®	Data	Objects	are	a	set	of	Automation	objects	that
consume	the	OLE	DB	API	and	allow	applications	to	consume	data	from	OLE
DB	data	sources.	This	includes	data	stored	in	many	different	formats,	not	only
SQL	databases.	The	ActiveX	Data	Object	(ADO)	API	can	be	used	from
applications	written	in	any	automation-enabled	language,	such	as	Microsoft
Visual	Basic®,	Microsoft	Visual	C++®,	Microsoft	Visual	J++®,	and	Microsoft
Visual	FoxPro®.

ADO	applications	access	data	through	OLE	DB	providers.	Microsoft	SQL
Server™	2000	includes	a	native	Microsoft	OLE	DB	Provider	for	SQL	Server
used	by	ADO	applications	to	access	the	data	in	SQL	Server.	In	SQL	Server
version	6.5	and	earlier,	ADO	applications	had	to	use	the	OLE	DB	Provider	for
ODBC	layered	over	the	Microsoft	SQL	Server	ODBC	driver.	Although	ADO
applications	can	still	use	the	OLE	DB	Provider	for	ODBC	with	the	SQL	Server
ODBC	driver,	it	is	more	efficient	to	only	use	the	OLE	DB	Provider	for	SQL
Server.

ADO	is	the	API	most	recommended	for	general-purpose	data	access	to	SQL
Server	for	these	reasons:

ADO	is	easy	to	learn	and	program.

ADO	has	the	feature	set	required	by	most	general-purpose	applications.

ADO	enables	programmers	to	quickly	produce	robust	applications.

The	core	capabilities	of	the	OLE	DB	specification	provide	all	the	data	access
functionality	needed	by	most	applications.	In	addition,	OLE	DB	allows
individual	providers	to	define	provider-specific	mechanisms	to	support
additional	features	of	the	data	engine	accessed	by	the	provider.	ADO	exposes	the
core	capabilities	of	OLE	DB,	but	does	not	expose	provider-specific	features.
ADO	applications	cannot	access	a	few	SQL	Server	features	exposed	through
provider-specific	features	of	the	OLE	DB	Provider	for	SQL	Server,	such	as	the
IRowsetFastLoad	bulk	copy	methods,	SQL	Server-specific	extended	diagnostic

information,	and	auto-fetch	cursors.

ADO	also	supports	the	XML	functionality	of	SQL	Server	2000.	This	provides	an
easy	migration	path	for	Internet	applications	coded	to	use	ADO	to	retrieve	a
rowset	and	then	convert	the	rowset	into	an	XML	document.	The	application	can
instead	use	ADO	to	execute	an	XPath	query	or	a	SELECT	statement	with	a	FOR
XML	clause,	in	which	case	the	result	set	is	built	as	an	XML	document	on	the
server	rather	than	having	to	be	converted	on	the	application	computer.

ADO	has	evolved	from	the	earlier,	ODBC-based	Remote	Data	Objects	(RDO)
and	Data	Access	Objects	(DAO)	APIs.	RDO	and	DAO	applications	can	be
converted	to	ADO,	and	RDO	and	DAO	application	programmers	quickly	learn
ADO.	ADO	is	used	extensively	in	Active	Server	Pages	(ASP).

See	Also

Programming	ADO	SQL	Server	Applications

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL	Server	and	Universal	Resource	Locators
Uniform	Resource	Locators	(URLs)	are	formatted	strings	or	streams	that	an
Internet	application	can	use	to	reference	resources	on	the	Internet	or	an	intranet.
Microsoft®	SQL	Server™	2000	supports	URLs	that	work	with	data	in	SQL
Server	databases	and	return	the	results	as	XML	documents.	The	URLs	can
execute	XPath	queries	referencing	mapping	schemas	that	provide	an	XML-based
view	of	the	data	in	SQL	Server	tables.	The	URLs	can	also	execute	Transact-SQL
statements	or	templates.

Although	not	strictly	an	API,	URLs	are	the	recommended	mechanism	for
accessing	SQL	Server	data	from	Web	applications	running	on	Microsoft	Internet
Information	Services	(IIS).	URLs	are	easily	integrated	in	HTML	and	XML-
based	environments,	such	as	HTML	pages	or	Active	Server	Pages	(ASPs).
Specifying	a	URL	that	executes	an	XPath	query	or	Transact-SQL	statement	that
returns	an	XML	document	is	a	relatively	simple	way	to	integrate	SQL	Server
results	into	a	Web	application.

See	Also

XML	and	Internet	Support	Overview

URL	Access

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

SQL	Server	and	OLE	DB
OLE	DB	is	an	API	that	allows	COM	applications	to	consume	data	from	OLE
DB	data	sources.	OLE	DB	data	sources	include	data	stored	in	many	different
formats,	not	only	SQL	databases.	An	application	uses	an	OLE	DB	provider	to
access	an	OLE	DB	data	source.	An	OLE	DB	provider	is	a	COM	component	that
accepts	calls	to	the	OLE	DB	API	and	does	whatever	is	necessary	to	process	that
request	against	the	data	source.

Microsoft®	SQL	Server™	2000	includes	a	native	Microsoft	OLE	DB	Provider
for	SQL	Server	used	by	OLE	DB	applications	to	access	the	data	in	SQL	Server.
The	OLE	DB	Provider	for	SQL	Server	complies	with	the	OLE	DB	2.0
specification.	Each	OLE	DB	provider	supports	a	command	language;	the	OLE
DB	Provider	for	SQL	Server	accepts	the	command	syntax	specified	as
DBGUID_SQL.	DBGUID_SQL	syntax	is	primarily	SQL-92	syntax	with	ODBC
escape	sequences.

In	SQL	Server	version	6.5	and	earlier,	OLE	DB	applications	had	to	use	the	OLE
DB	Provider	for	ODBC	layered	over	the	Microsoft	SQL	Server	ODBC	driver.
While	OLE	DB	applications	can	still	use	the	OLE	DB	Provider	for	ODBC	with
the	SQL	Server	ODBC	driver,	it	is	more	efficient	to	use	only	the	OLE	DB
Provider	for	SQL	Server.

OLE	DB	is	the	API	recommended	for	tools,	utilities,	or	system	level
development	needing	either	top	performance	or	access	to	SQL	Server	features
not	exposed	through	ADO.	The	core	capabilities	of	the	OLE	DB	specification
provide	all	the	data	access	functionality	needed	by	most	applications.	In
addition,	OLE	DB	allows	individual	providers	to	define	provider-specific
mechanisms	to	support	additional	features	of	the	data	engine	accessed	by	the
provider.	ADO	applications	cannot	access	some	SQL	Server	features	exposed
through	provider-specific	features	of	the	OLE	DB	Provider	for	SQL	Server,	so
applications	needing	to	use	the	provider-specific	features	of	the	OLE	DB
Provider	for	SQL	Server	must	use	the	OLE	DB	API.	These	features	include:

An	IRowsetFastLoad	interface	to	the	SQL	Server	bulk	copy
component.

An	ISQLServerErrorInfo	interface	to	get	SQL	Server-specific
information	from	messages	and	errors.

A	LINKEDSERVERS	rowset	that	exposes	catalog	information	from	the
linked	servers	used	in	SQL	Server	distributed	queries.

Various	provider-specific	properties	to	control	SQL	Server-specific
behaviors.

OLE	DB	also	supports	the	XML	functionality	of	SQL	Server	2000.	This
provides	an	easy	migration	path	for	Internet	applications	coded	to	use	OLE	DB
to	retrieve	a	rowset	and	then	convert	it	into	an	XML	document.	The	application
can	instead	use	OLE	DB	to	execute	an	XPath	query	or	a	SELECT	statement	with
a	FOR	XML	clause,	in	which	case	the	result	set	is	built	as	an	XML	document	on
the	server	rather	than	having	to	be	converted	on	the	application	computer.	Most
application	working	with	XML	are	written	in	ADO	or	use	URLs,	which	are	less
complex	than	OLE	DB.

See	Also

Programming	OLE	DB	SQL	Server	Applications

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL	Server	and	ODBC
Open	Database	Connectivity	(ODBC)	is	a	Call-Level	Interface	(CLI)	that	allows
C	and	C++	applications	to	access	data	from	ODBC	data	sources.	A	CLI	is	an
API	consisting	of	functions	an	application	calls	to	obtain	a	set	of	services.
ODBC	data	sources	include	data	stored	in	different	formats,	not	just	SQL
databases.	An	application	uses	an	ODBC	driver	to	access	a	data	source.	An
ODBC	driver	is	a	dynamic-link	library	(DLL)	that	accepts	calls	to	the	ODBC
API	functions	and	does	whatever	is	necessary	to	process	that	request	against	the
data	source.

ODBC	is	aligned	with	these	specifications	and	standards	defining	a	CLI	for	data
access:

The	X/Open	CAE	Specification	"Data	Management:	SQL	Call-Level
Interface	(CLI)"

ISO/IEC	9075-3:1995(E)	Call-Level	Interface	(SQL/CLI)

ODBC	has	been	widely	accepted	by	database	programmers,	and	several	database
vendors	or	third-party	companies	supply	ODBC	drivers.	Several	other	Microsoft
data	access	APIs	were	defined	as	simplified	object	models	over	ODBC,	such	as:

Remote	Data	Objects	(RDO)

Data	Access	Objects	(DAO)

Microsoft	Foundation	Classes	(MFC)	Database	Classes

Microsoft®	SQL	Server™	2000	includes	a	native	Microsoft	SQL	Server	ODBC
driver	used	by	ODBC	applications	to	access	the	data	in	SQL	Server.	The	SQL
Server	ODBC	Driver	complies	with	Level	2	of	the	ODBC	3.51	specification	and
exposes	all	the	features	of	SQL	Server.	In	SQL	Server	2000	all	of	the	SQL
Server	utilities	except	isql	use	the	ODBC	API	and	the	SQL	Server	ODBC
Driver.

ODBC	can	be	used	in	tools,	utilities,	or	system	level	development	needing	either
top	performance	or	access	to	SQL	Server	features,	and	which	are	not	COM
applications.	ODBC,	like	OLE	DB,	allows	individual	drivers	to	define	driver-
specific	mechanisms	to	support	additional	features	of	the	data	engine	accessed
by	the	driver.	These	features	include:

A	set	of	bulk	copy	functions	based	on	the	earlier	DB-Library	bulk	copy
functions.

Extensions	to	the	ODBC	diagnostic	functions	and	records	to	get	SQL
Server-specific	information	from	messages	and	errors.

A	set	of	functions	that	exposes	catalog	information	from	the	linked
servers	used	in	SQL	Server	distributed	queries.

Various	driver-specific	attributes	and	connection	string	keywords	to
control	SQL	Server–specific	behaviors.

See	Also

Programming	ODBC	SQL	Server	Applications

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL-DMO	API
SQL	Distributed	Management	Objects	(SQL-DMO)	encapsulate	the	objects
found	in	Microsoft®	SQL	Server™	2000	databases.	SQL-DMO	allows
applications	written	in	languages	that	support	Automation	or	COM	to	administer
all	parts	of	a	SQL	Server	installation.	SQL-DMO	is	the	application	programming
interface	(API)	used	by	SQL	Server	Enterprise	Manager	in	SQL	Server	2000;
therefore,	applications	using	SQL-DMO	can	perform	all	functions	performed	by
SQL	Server	Enterprise	Manager.

SQL-DMO	is	intended	for	any	Automation	or	COM	application	that	must
incorporate	SQL	Server	administration,	for	example:

Applications	that	encapsulate	SQL	Server	as	their	data	store	and	want	to
shield	users	from	as	much	SQL	Server	administration	as	possible.

Applications	that	have	specialized	administrative	logic	incorporated	the
application	itself.

Applications	that	want	to	integrate	SQL	Server	administrative	tasks	in
their	own	user	interface.

Windows	Management	Instrumentation

The	SQL	Server	2000	compact	disc	contains	support	for	a	new	API	that	will
allow	you	to	administer	instances	of	SQL	Server	using	Windows	Management
Instrumentation	(WMI).	WMI	is	a	scalable	Windows®	2000	component	with	an
object-oriented	API	that	lets	management	applications	and	scripts	monitor,
configure,	and	control	the	operating	system	and	devices,	services,	and
applications	in	a	Windows	network.	Using	standard	Windows	security,	WMI
allows	only	properly	authorized	users	to	manage	the	system.	WMI	core
components	are	also	available	for	Windows	NT®	4.0,	Windows	95,	and
Windows	98.	For	more	information	about	the	WMI	support	for	these	operating
systems,	see	the	MSDN®	page	at	Microsoft	Web	site.

A	component,	such	as	SQL	Server,	enables	WMI	support	by	supplying	a	WMI

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

provider	and	defining	a	WMI	class	schema.	The	schema	models	the	objects	in
the	component	that	can	be	managed	using	WMI.	SQL	Server	2000	includes	a
SQL	Server	WMI	provider	and	a	schema	class	model	that	maps	instances	of
SQL	Server	2000	to	WMI	classes.	The	SQL	Server	WMI	schema	models	objects
such	as	databases	and	tables.	The	SQL	Server	WMI	implementation	provides
management	functions	such	as:

Create,	change,	or	delete	managed	objects.	For	example,	create	a
database.

Administer	managed	objects.	For	example,	back	up	databases	and	logs.

Enumerate	managed	objects.	For	example,	list	all	the	tables	in	a
database.

Retrieve	information	on	a	specific	managed	object.	For	example,
determine	whether	full-text	indexing	is	enabled	on	the	Customers	table.

Query	managed	objects	that	meet	a	specific	criterion.	For	example,	list
all	encrypted	stored	procedures.

Execute	methods	defined	for	managed	objects.	For	example,	execute	a
method	that	bulk	copies	data	from	a	table.

Generate	events	when	a	managed	object	is	created,	changed,	or	deleted
(for	example,	send	a	event	when	a	database	option	is	changed).

Describe	relationships	between	managed	objects	(for	example,	identify
which	logins	are	authorized	to	access	a	database).

All	WMI	data	is	available	remotely	and	is	fully	scriptable.	The	SQL	Server	2000
WMI	implementation	maps	over	the	SQL-DMO	API,	but	does	not	support	the
management	of	replication.	The	SQL	Server	WMI	implementation	can	be	used
with	SQL	Server	7.0.

The	SQL	Server	WMI	support	is	not	installed	by	SQL	Server	2000	Setup.	All	of
the	WMI	materials,	including	a	separate	setup	and	documentation,	are	included
in	the	folder	\x86\OTHER\wmi	on	the	SQL	Server	2000	compact	disc.

See	Also

Administration	Architecture

Developing	SQL-DMO	Applications

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL	Namespace	API
The	SQL	Namespace	(SQL-NS)	application	programming	interface	(API)	is	a
set	of	objects	that	encapsulate	the	SQL	Server	Enterprise	Manager	user	interface.
SQL-NS	allows	applications	written	in	languages	that	support	Automation	or
COM	to	include	parts	of	the	SQL	Server	Enterprise	Manager	user	interface	in
their	own	user	interface.

Using	SQL-NS,	an	application	can	incorporate	the	following	SQL	Server
Enterprise	Manager	elements	into	its	user	interface:

Wizards	

Dialog	boxes	(including	property	dialog	boxes)

When	an	application	uses	the	SQL-NS	objects,	SQL	Server	Enterprise	Manager
must	be	installed	on	any	client	that	attempts	to	run	the	SQL-NS	application.

See	Also

Administration	Architecture

Programming	SQL-NS	Applications

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Replication	Component	Programming	API
Microsoft®	SQL	Server™	2000	includes	a	set	of	replication	objects	in	addition
to	the	replication	objects	found	in	SQL-DMO.	These	objects	include:

The	Replication	Distributor	Interface,	which	enables	you	to
programmatically	implement	and	manage	heterogeneous	transactional
replication,	in	conjunction	with	third-party	programs	that	can	perform
change	tracking	at	heterogeneous	data	sources.

Microsoft	ActiveX®	controls	that	allow	you	to	provide	the	functionality
of	the	Distribution	Agent	or	the	Merge	Agent	in	custom	programs.

See	Also

Administration	Architecture

Developing	SQL-DMO	Applications

Replication	Overview

Developing	Replication	Applications	Using	ActiveX	Controls

Programming	Replication	from	Heterogeneous	Data	Sources

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	Architecture

Data	Transformation	Services	API
The	Data	Transformation	Services	(DTS)	application	programming	interface
(API)	is	a	set	of	objects	encapsulating	services	that	assist	with	building	a	data
warehouse.	DTS	can	be	used	in	applications	written	in	languages	that	support
Automation	or	COM:

DTS	transfers	data	between	heterogeneous	OLE	DB	data	sources.

DTS	performs	customized	transformations	that	can	convert	detailed
online	transaction	processing	(OLTP)	data	to	a	summarized	form	for
easy	analysis	of	trend	information.

See	Also

DTS	Overview

Programming	DTS	Applications

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SQL	Server	Architecture

SQL	Server	and	English	Query
English	Query	provides	an	Automation	API	that	lets	users	resolve	natural-
language	questions	about	the	information	in	a	Microsoft®	SQL	Server™	2000
database.

Given	a	definition	of	the	entities	and	relationships	associated	with	a	SQL	Server
database,	English	Query	translates	a	natural-language	question	about	data	in	the
database	to	a	set	of	SQL	SELECT	statements	that	can	then	be	executed	against
the	SQL	Server	database	to	get	the	answer.

For	example,	given	a	car	sales	database,	an	application	can	send	English	Query	a
string	containing	the	question,	"How	many	blue	Fords	were	sold	in	1996?"

English	Query	returns	to	the	application	an	SQL	statement	such	as:

SELECT	COUNT(*)
FROM	CarSales
WHERE	Make	=	'Ford'
		AND	Color	=	'Blue'
		AND	DATEPART(yy,	SalesDate)	=	'1996'

The	application	can	then	execute	the	SQL	statement	against	the	SQL	Server
database	to	get	a	number	it	can	return	to	the	user.

English	Query	works	best	with	a	normalized	database.	There	are	two	parts	to
using	English	Query	in	an	application:

1.	 An	administrator	defines	an	English	Query	project	for	the	database	and
uses	that	to	compile	what	is	called	an	English	Query	application	file.
The	English	Query	model	is	what	defines	the	structure	of	the	database
to	the	English	Query	run-time	engine.

An	English	Query	model	contains:

Definitions	of	entities,	which	are	usually	associated	with
tables	and	columns	of	the	database.

Definitions	of	the	relationships	between	the	entities.

2.	 The	model	is	defined	with	a	Model	Editor	and	tested	with	a	test	tool.
The	result	is	saved	as	an	English	Query	project	(.eqp)	file.	This	file	is
compiled	to	form	the	English	Query	application	(.eqd)	file.

English	Query	uses	full-text	search	to	generate	powerful	queries	designed	to
extract	data	from	SQL	Server	database	columns	covered	by	full-text	indexes.	For
more	information,	see	Full-Text	Search.

English	Query	also	generates	queries	to	extract	data	from	the	OLAP	cubes	stored
in	Analysis	Services.	When	used	as	a	front	end	for	Analysis	Services,	English
Query	generates	the	MDX	statements	required	to	extract	the	data	from	the	OLAP
cubes.	For	more	information,	see	Analysis	Services	in	English	Query.

English	Query	is	an	Automation	server	that	can	be	called	from	any	Automation
application.	The	Automation	server,	or	run-time	engine,	exposes	an	object	model
API.	An	Automation	application	uses	the	API	to	load	the	English	Query
application	file	and	then	send	the	run-time	engine	natural-language	questions.
The	run-time	engine	usually	returns	an	SQL	statement	or	batch	that	will	retrieve
the	required	information	from	the	SQL	Server	database.	Sometimes	the	run-time
engine	can	provide	the	answer	directly,	request	clarification,	or	return	an	error.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

See	Also

Installing	English	Query

JavaScript:hhobj_3.Click()

SQL	Server	Architecture

Extended	Stored	Procedure	API
The	Extended	Stored	Procedure	application	programming	interface	(API)	is	a
server-based	API	specific	to	Microsoft®	SQL	Server™	2000.	It	can	be	used	to
produce	extended	stored	procedures.	An	extended	stored	procedure	is	a	C	or
C++	dynamic-link	library	(DLL)	that	can	be	called	from	Transact-SQL	using	the
same	syntax	as	calling	a	Transact-SQL	stored	procedure.	Extended	stored
procedures	are	a	way	to	extend	the	capabilities	of	Transact-SQL	to	include	any
resources	or	services	available	to	Microsoft	Win32®	applications.

See	Also

Programming	Extended	Stored	Procedures

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL	Server	and	Embedded	SQL
Embedded	SQL	(ESQL)	is	a	SQL-92	standard	application	programming
interface	(API)	for	SQL	database	access.	ESQL	requires	a	two-step	compilation
process:

1.	 A	precompiler	translates	Embedded	SQL	statements	into	commands	in
the	programming	language	used	to	write	the	application.	The
generated	statements	are	specific	to	the	database	that	supplied	the
precompiler,	so	although	the	original	source	is	generic	to	ESQL,	the
generated	statements	and	the	final	executable	file	are	specific	to	one
database	vendor.

2.	 The	source	generated	by	the	precompiler	is	then	compiled	using	the
compiler	for	the	application	programming	language.

Embedded	SQL	has	a	simpler	syntax	than	COM	APIs	such	as	OLE	DB	or	Call
Level	Interfaces	such	as	ODBC,	so	it	is	easier	to	learn	and	program.	It	is	less
flexible	than	OLE	DB	or	ODBC,	where	well-written	applications	can	switch
from	one	DBMS	to	another	by	simply	switching	drivers	or	providers.	OLE	DB
and	ODBC	are	also	better	at	dealing	with	environments	where	the	SQL
statements	are	not	known	when	the	application	is	compiled,	such	as	when
developing	as-required	query	tools.

Microsoft®	SQL	Server™	2000	provides	an	Embedded	SQL	precompiler	for	C
applications.	The	SQL	Server	precompiler	translates	Embedded	SQL	statements
as	calls	to	the	appropriate	DB-Library	API	functions.	The	Microsoft
implementation	of	ESQL	has	the	same	restrictions	as	DB-Library	applications.

SQL	Server	is	designed	such	that	it	can	support	COBOL	Embedded-SQL
applications	compiled	with	third-party	Embedded	SQL	precompilers	that	support
Microsoft	SQL	Server.

See	Also

Programming	Embedded	SQL	for	C

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

DB-Library	API
DB-Library	is	a	Call	Level	Interface	that	allows	C	applications	to	access
Microsoft®	SQL	Server™	2000.	DB-Library	was	the	original	application
programming	interface	(API)	that	allowed	applications	to	access	SQL	Server,
and	remains	specific	to	SQL	Server.

The	DB-Library	API	has	not	been	enhanced	beyond	the	level	of	SQL	Server
version	6.5.	All	DB-Library	applications	can	work	with	SQL	Server	2000,	but
only	as	6.5	level	clients.	Features	introduced	in	SQL	Server	2000	and	SQL
Server	version	7.0	are	not	supported	for	DB-Library	applications.

SQL	Server	2000	does	not	include	a	programming	environment	for	DB-Library
for	Microsoft	Visual	Basic®.	Existing	DB-Library	for	Visual	Basic	applications
can	run	against	SQL	Server	2000,	but	must	be	maintained	using	the	software
development	tools	from	SQL	Server	version	6.5.	All	development	of	new	Visual
Basic	applications	that	access	SQL	Server	should	use	the	Visual	Basic	data	APIs
such	as	Microsoft	ActiveX®	Data	Objects	(ADO)	and	Remote	Data	Objects
(RDO).

See	Also

DB-Library	for	C	Reference

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

SQL	Syntax	Recommendations
The	Microsoft®	SQL	Server™	2000	Transact-SQL	version	complies	with	the
Entry	level	of	the	SQL-92	standard,	and	supports	many	additional	features	from
the	Intermediate	and	Full	levels	of	the	standard.

The	OLE	DB	and	ODBC	application	programming	interfaces	(APIs)	were
developed	with	the	understanding	that	applications	would	use:

SQL-92	syntax	when	it	provides	the	functionality	needed	by	the
application.	Because	the	SQL	dialects	of	most	databases	now	comply
with	the	Entry	level	of	SQL-92	and	support	many	features	in	the
Intermediate	and	Full	levels,	this	means	many	OLE	DB	providers	and
ODBC	drivers	can	simply	pass	through	most	SQL-92	syntax	without
having	to	transform	it	to	something	accepted	by	the	database.

Use	the	ODBC	extensions	to	SQL-92	when	they	provide	functionality
needed	by	the	application	that	SQL-92	does	not	support.

Use	the	native	SQL	syntax	of	the	database	engine	when	it	provides
functionality	needed	by	the	application	that	SQL-92	and	the	ODBC
extensions	do	not	support.

This	approach	minimizes	the	overhead	of	OLE	DB	providers	and	ODBC	drivers.
The	providers	and	drivers	only	have	to	parse	incoming	SQL	statements	for
ODBC	escape	sequences	or	SQL-92	syntax	not	accepted	by	the	database.	Any
ODBC	escape	sequences	and	unsupported	SQL-92	syntax	are	transformed	into
the	corresponding	SQL	syntax	accepted	by	the	database	engine.	All	other	SQL
syntax	is	passed	through	to	the	database	engine.

SQL	Server	2000	applications	using	OLE	DB,	ODBC,	or	one	of	the	other	APIs
that	encapsulate	these	two,	should	follow	these	guidelines:

Use	SQL-92	syntax	when	it	provides	the	functionality	required	by	the
application.

Use	ODBC	escape	sequences	when	they	provide	functionality	needed
by	the	application	but	not	provided	by	SQL-92.

Use	Transact-SQL	syntax	when	it	provides	functionality	required	by	the
application	but	not	provided	by	SQL-92	or	the	ODBC	escape
sequences.

Using	SQL	with	DB-Library	and	Embedded	SQL

DB-Library	supports	only	Transact-SQL.	DB-Library	does	not	support	the
ODBC	escape	sequences	or	XML	functionality.

Embedded	SQL	for	C	supports	only	the	SQL	syntax	defined	in	Embedded	SQL
for	C	and	Microsoft®	SQL	Server™.

DB-Library	has	not	been	extended	after	SQL	Server	version	6.5.	It	operates	as	a
6.5-level	client	and	cannot	use	some	new	features	introduced	in	Microsoft	SQL
Server	2000	and	Microsoft	SQL	Server	version	7.0.	Embedded	SQL	uses	DB-
Library	to	communicate	with	SQL	Server,	so	it	also	has	the	same	restrictions.
For	more	information,	see	Connecting	Early	Version	Clients	to	SQL	Server
2000.

JavaScript:hhobj_1.Click()

SQL	Server	Architecture

Implementation	Details
The	topics	in	this	section	provide	information	about	the	editions	of	Microsoft®
SQL	Server™	2000	and	the	environments	that	support	these	editions.
Information	about	the	maximum	capacities	and	memory	usage	of	SQL	Server
2000	objects	is	also	provided.

SQL	Server	Architecture

Editions	of	SQL	Server	2000
Microsoft®	SQL	Server™	2000	is	available	in	these	editions:

SQL	Server	2000	Enterprise	Edition

Used	as	a	production	database	server.	Supports	all	features	available	in	SQL
Server	2000,	and	scales	to	the	performance	levels	required	to	support	the
largest	Web	sites	and	enterprise	online	transaction	processing	(OLTP)	and
data	warehousing	systems.

SQL	Server	2000	Standard	Edition

Used	as	a	database	server	for	a	small	workgroup	or	department.

SQL	Server	2000	Personal	Edition

Used	by	mobile	users	who	spend	some	of	their	time	disconnected	from	the
network	but	run	applications	that	require	SQL	Server	data	storage.	Also	used
when	running	a	stand-alone	application	that	requires	local	SQL	Server	data
storage	on	a	client	computer.

SQL	Server	2000	Developer	Edition

Used	by	programmers	developing	applications	that	use	SQL	Server	2000	as
their	data	store.	Although	the	Developer	Edition	supports	all	the	features	of
the	Enterprise	Edition	that	allow	developers	to	write	and	test	applications
that	can	use	the	features,	the	Developer	Edition	is	licensed	for	use	only	as	a
development	and	test	system,	not	a	production	server.

SQL	Server	2000	Windows	CE	Edition

Microsoft®	SQL	Server	2000™	Windows®	CE	Edition	(SQL	Server	CE)	is
used	as	the	data	store	on	Windows	CE	devices.	Capable	of	replicating	data
with	any	edition	of	SQL	Server	2000	to	keep	Windows	CE	data
synchronized	with	the	primary	database.

SQL	Server	2000	Enterprise	Evaluation	Edition

Full-featured	version	available	by	a	free	download	from	the	Web.	Intended
only	for	use	in	evaluating	the	features	of	SQL	Server;	this	version	will	stop
running	120	days	after	downloading.

In	addition	to	these	editions	of	SQL	Server	2000,	the	SQL	Server	2000	Desktop
Engine	is	a	component	that	allows	application	developers	to	distribute	a	copy	of
the	SQL	Server	2000	relational	database	engine	with	their	applications.	While
functionality	of	the	database	engine	in	the	SQL	Server	2000	Desktop	Engine	is
similar	to	the	database	engine	in	the	SQL	Server	Editions,	the	size	of	Desktop
Engine	databases	cannot	exceed	2	GB.

Both	the	SQL	Server	2000	Personal	Edition	and	SQL	Server	2000	Desktop
Engine	have	a	concurrent	workload	governor	that	limits	the	performance	of	the
database	engine	when	more	than	5	batches	are	executed	concurrently.	For	more
information	about	the	concurrent	workload	governor,	see	SQL	Server	2000
Databases	on	the	Desktop.

Upgrading	From	One	Edition	to	Another
These	are	the	supported	upgrade	paths	between	the	editions	and	versions	of	SQL
Server	2000:

SQL	Server	2000	Personal	Edition	to	either	SQL	Server	2000	Enterprise
Edition	or	SQL	Server	2000	Standard	Edition.

SQL	Server	2000	Standard	Edition	to	SQL	Server	2000	Enterprise
Edition.

SQL	Server	2000	Desktop	Engine	to	SQL	Server	2000	Enterprise
Edition	or	SQL	Server	2000	Standard	Edition.

SQL	Server	Architecture

Operating	Systems	Supported	by	the	Editions	of	SQL
Server	2000
This	table	shows	the	operating	systems	supported	for	running	the	server	software
from	each	Microsoft®	SQL	Server™	2000	edition.

Operating
System

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

SQL
Server
CE

Enterprise
Evaluation
Edition

Microsoft
Windows®
2000
DataCenter

Supported Supported Supported Supported Supported N/A Supported

Windows
2000
Advanced
Server

Supported Supported Supported Supported Supported N/A Supported

Windows
2000	Server

Supported Supported Supported Supported Supported N/A Supported

Windows
2000
Professional

N/A N/A Supported Supported Supported N/A Supported

Microsoft
Windows
NT®	4.0
Server,
Enterprise
Edition

Supported Supported Supported Supported Supported N/A Supported

Windows
NT	4.0
Server

Supported Supported Supported Supported Supported N/A Supported

Windows
NT	4.0

N/A N/A Supported Supported Supported N/A Supported

Workstation
Microsoft
Windows
98

N/A N/A Supported N/A Supported N/A N/A

Microsoft
Windows
CE

N/A N/A N/A N/A N/A Supported N/A

Note		The	client	software	from	all	SQL	Server	2000	editions,	except	SQL	Server
CE,	runs	on	any	version	of	Microsoft	Windows	NT,	Microsoft	Windows	2000,
and	Microsoft	Windows	98.	Only	the	server	components,	such	as	the	database
engine	and	the	Analysis	server,	are	limited	to	specific	versions	of	the	operating
systems.	For	example,	although	the	database	engine	for	SQL	Server	2000
Enterprise	Edition	does	not	run	on	Windows	2000	Professional,	Windows	NT
Workstation,	or	Windows	98,	the	SQL	Server	2000	Enterprise	Edition	compact
disc	can	be	used	to	install	the	client	software	on	any	of	these	operating	systems.

All	of	the	software	from	SQL	Server	CE	runs	exclusively	on	the	Windows
CE	operating	system.

SQL	Server	Architecture

Features	Supported	by	the	Editions	of	SQL	Server
2000
This	topic	summarizes	the	features	that	the	different	editions	of	Microsoft®	SQL
Server™	2000	support.

For	more	information	about	the	amount	of	physical	memory	SQL	Server	2000
can	address,	and	the	number	of	CPUs	each	edition	supports	in	symmetric
multiprocessor	(SMP)	computers,	see	Maximum	Capacity	Specifications.

Database	Engine	Features	Supported	by	the	Editions	of	SQL
Server	2000
This	table	shows	the	database	engine	features	and	the	editions	of	SQL	Server
2000	that	support	them.

Database
Engine
Feature

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

SQL
Server
CE

Enterprise
Evaluation
Edition

Multiple
Instance
Support

Supported Supported Supported Supported Supported N/A Supported

Failover
Clustering
(up	to
four
nodes)

Supported N/A N/A Supported N/A N/A Supported

Failover
Support	in
SQL
Server
Enterprise
Manager

Supported N/A N/A Supported N/A N/A Supported

Log Supported N/A N/A Supported N/A N/A Supported

Shipping
Parallel
DBCC

Supported N/A N/A Supported N/A N/A Supported

Parallel
CREATE
INDEX

Supported N/A N/A Supported N/A N/A Supported

Enhanced
Read-
ahead	and
Scan

Supported N/A N/A Supported N/A N/A Supported

Indexed
Views

Supported N/A N/A Supported N/A N/A Supported

Federated
Database
Server

Supported N/A N/A Supported N/A N/A Supported

System
Area
Network
(SAN)
Support

Supported N/A N/A Supported N/A N/A Supported

Graphical
DBA	and
Developer
Utilities,
Wizards

Supported Supported Supported Supported N/A N/A Supported

Graphical
Utilities
Support
for
Language
Settings

Supported N/A N/A N/A N/A N/A N/A

Full-Text
Search

Supported Supported Supported
(except
on
Windows
98)

Supported N/A N/A Supported

Replication	Features	Supported	by	the	Editions	of	SQL	Server
2000
This	table	shows	the	replication	features	and	the	editions	of	SQL	Server	2000
that	support	them.

Replication
Publisher
Feature

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

SQL
Server	CE

Snapshot
Replication

Supported Supported Supported Supported Supported N/A

Transactional
Replication

Supported Supported Subscriber
only

Supported Subscriber
only

N/A

Merge
Replication

Supported Supported Supported Supported Supported Anonymous
Subscriber
only

Immediate
Updating
Subscriptions

Supported Supported Supported Supported Supported N/A

Queued
Updating
Subscribers

Supported Supported Supported Supported Supported N/A

Analysis	Services	Features	Supported	by	the	Editions	of	SQL
Server	2000
This	table	shows	the	Analysis	Services	features	and	the	editions	of	SQL	Server
2000	that	support	them.

Analysis SQL Enterprise

Services
Feature

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

Server
CE

Evaluation
Edition

Analysis
Services

Supported Supported Supported Supported N/A N/A Supported

User-
defined
OLAP
Partitions

Supported N/A N/A Supported N/A N/A Supported

Partition
Wizard

Supported N/A N/A Supported N/A N/A Supported

Linked
OLAP
Cubes

Supported N/A N/A Supported N/A N/A Supported

ROLAP
Dimension
Support

Supported N/A N/A Supported N/A N/A Supported

HTTP
Internet
Support

Supported N/A N/A Supported N/A N/A Supported

Custom
Rollups

Supported Supported Supported Supported N/A N/A Supported

Calculated
Cells

Supported N/A N/A Supported N/A N/A Supported

Writeback
to
Dimensions

Supported N/A N/A Supported N/A N/A Supported

Very	Large
Dimension
Support

Supported N/A N/A Supported N/A N/A Supported

Actions Supported Supported Supported Supported N/A N/A Supported
Real-time
OLAP

Supported N/A N/A Supported N/A N/A Supported

Distributed
Partitioned
Cubes

Supported N/A N/A Supported N/A N/A Supported

Data
Mining

Supported Supported Supported Supported N/A N/A Supported

Data	Transformation	and	Decision	Support	Query	Features
Supported	by	the	Editions	of	SQL	Server	2000
This	table	shows	the	data	transformation	and	decision	support	query	features	and
the	editions	of	SQL	Server	2000	that	support	them.

Analysis
Services
Feature

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

SQL
Server
CE

Enterprise
Evaluation
Edition

Data
Transformation
Services

Supported Supported Supported Supported Deployment
only

N/A Supported

Integrated	Data
Mining

Supported Supported Supported Supported N/A N/A Supported

English	Query Supported Supported Supported Supported N/A N/A Supported

SQL	Server	Architecture

Maximum	Capacity	Specifications
The	first	table	specifies	maximum	capacities	that	are	the	same	for	all	editions	of
Microsoft®	SQL	Server™	2000.	The	second	and	third	tables	specify	capacities
that	vary	by	edition	of	SQL	Server	2000	and	the	operating	system.

This	table	specifies	the	maximum	sizes	and	numbers	of	various	objects	defined
in	Microsoft	SQL	Server	databases,	or	referenced	in	Transact-SQL	statements.
The	table	does	not	include	Microsoft®	SQL	Server	2000™	Windows®	CE
Edition.

	 Maximum	sizes/numbers
Object SQL	Server	7.0 SQL	Server	2000
Batch	size 65,536	*	Network

Packet	Size1
65,536	*	Network
Packet	Size1

Bytes	per	short	string	column 8,000 8,000
Bytes	per	text,	ntext,	or	image
column

2	GB-2 2	GB-2

Bytes	per	GROUP	BY,
ORDER	BY

8,060 	

Bytes	per	index 900 9002

Bytes	per	foreign	key 900 900
Bytes	per	primary	key 900 900
Bytes	per	row 8,060 8,060
Bytes	in	source	text	of	a	stored
procedure

Lesser	of	batch	size
or	250	MB

Lesser	of	batch	size
or	250	MB

Clustered	indexes	per	table 1 1
Columns	in	GROUP	BY,
ORDER	BY

Limited	only	by
number	of	bytes

Columns	or	expressions	in	a
GROUP	BY	WITH	CUBE	or
WITH	ROLLUP	statement

10

Columns	per	index 16 16
Columns	per	foreign	key 16 16

Columns	per	primary	key 16 16
Columns	per	base	table 1,024 1,024
Columns	per	SELECT
statement

4,096 4,096

Columns	per	INSERT
statement

1,024 1,024

Connections	per	client Maximum	value	of
configured
connections

Maximum	value	of
configured
connections

Database	size 1,048,516	TB3 1,048,516	TB3

Databases	per	instance	of	SQL
Server

32,767 32,767

Filegroups	per	database 256 256
Files	per	database 32,767 32,767
File	size	(data) 32	TB 32	TB
File	size	(log) 4	TB 32	TB
Foreign	key	table	references
per	table

253 253

Identifier	length	(in	characters) 128 128
Instances	per	computer N/A 16
Length	of	a	string	containing
SQL	statements	(batch	size)

65,536	*	Network
packet	size1

65,536	*	Network
packet	size1

Locks	per	connection Max.	locks	per	serverMax.	locks	per
server

Locks	per	instance	of	SQL
Server

2,147,483,647
(static)
40%	of	SQL	Server
memory	(dynamic)

2,147,483,647
(static)
40%	of	SQL	Server
memory	(dynamic)

Nested	stored	procedure	levels 32 32
Nested	subqueries 32 32
Nested	trigger	levels 32 32
Nonclustered	indexes	per	table 249 249
Objects	concurrently	open	in
an	instance	of	SQL	Server4

2,147,483,647	(or
available	memory)

2,147,483,647	(or
available	memory)

Objects	in	a	database 2,147,483,6474 2,147,483,6474

Parameters	per	stored
procedure

1,024 1,024

REFERENCES	per	table 253 253
Rows	per	table Limited	by	available

storage
Limited	by	available
storage

Tables	per	database Limited	by	number
of	objects	in	a
database4

Limited	by	number
of	objects	in	a
database4

Tables	per	SELECT	statement 256 256
Triggers	per	table Limited	by	number

of	objects	in	a
database4

Limited	by	number
of	objects	in	a
database4

UNIQUE	indexes	or
constraints	per	table

249	nonclustered	and
1	clustered

249	nonclustered	and
1	clustered

1	Network	Packet	Size	is	the	size	of	the	tabular	data	scheme	(TDS)	packets	used	to	communicate	between
applications	and	the	relational	database	engine.	The	default	packet	size	is	4	KB,	and	is	controlled	by	the
network	packet	size	configuration	option.
2	The	maximum	number	of	bytes	in	any	key	cannot	exceed	900	in	SQL	Server	2000.	You	can	define	a	key
using	variable-length	columns	whose	maximum	sizes	add	up	to	more	than	900,	provided	no	row	is	ever
inserted	with	more	than	900	bytes	of	data	in	those	columns.	For	more	information,	see	Maximum	Size	of
Index	Keys.
3	The	size	of	a	database	cannot	exceed	2	GB	when	using	the	SQL	Server	2000	Desktop	Engine	or	the
Microsoft	Data	Engine	(MSDE)	1.0.
4	Database	objects	include	all	tables,	views,	stored	procedures,	extended	stored	procedures,	triggers,	rules,
defaults,	and	constraints.	The	sum	of	the	number	of	all	these	objects	in	a	database	cannot	exceed
2,147,483,647.

Maximum	Numbers	of	Processors	Supported	by	the	Editions	of
SQL	Server	2000
This	table	shows	the	number	of	processors	that	the	database	engine	in	each	SQL
Server	2000	edition	can	support	on	symmetric	multiprocessing	(SMP)
computers.

Operating
System

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

SQL
Server
CE

Enterprise
Evaluation
Edition

Microsoft
Windows®
2000
DataCenter

32 4 2 32 2 N/A 32

Windows
2000
Advanced
Server

8 4 2 8 2 N/A 8

Windows
2000	Server

4 4 2 4 2 N/A 4

Windows
2000
Professional

N/A N/A 2 2 2 N/A 2

Microsoft
Windows
NT®	4.0
Server,
Enterprise
Edition

8 8 2 8 2 N/A 8

Windows
NT	4.0
Server

4 4 2 4 2 N/A 4

Windows
NT	4.0
Workstation

N/A N/A 2 2 2 N/A 2

Microsoft
Windows
98

N/A N/A 1 Use
Desktop
Engine

1 N/A N/A

Microsoft
Windows
CE

N/A N/A N/A N/A N/A 1 N/A

Maximum	Amount	of	Physical	Memory	Supported	by	the
Editions	of	SQL	Server	2000
This	table	shows	the	maximum	amount	of	physical	memory,	or	RAM,	that	the
database	engine	in	each	SQL	Server	2000	edition	can	support.

Operating
System

Enterprise
Edition

Standard
Edition

Personal
Edition

Developer
Edition

Desktop
Engine

SQL
Server
CE

Enterprise
Evaluation
Edition

Windows
2000
DataCenter

64	GB 2	GB 2	GB 64	GB 2	GB N/A 64	GB

Windows
2000
Advanced
Server

8	GB 2	GB 2	GB 8	GB 2	GB N/A 8	GB

Windows
2000	Server

4	GB 2	GB 2	GB 4	GB 2	GB N/A 4	GB

Windows
2000
Professional

N/A N/A 2	GB 2	GB 2	GB N/A 2	GB

Windows
NT	4.0
Server,
Enterprise
Edition

3	GB 2	GB 2	GB 3	GB 2	GB N/A 3	GB

Windows
NT	4.0
Server

2	GB 2	GB 2	GB 2	GB 2	GB N/A 2	GB

Windows
NT	4.0
Workstation

N/A N/A 2	GB 2	GB 2	GB N/A 2	GB

SQL	Server	Architecture

Configuration	Option	Specifications
Microsoft®	SQL	Server™	2000	contains	improved	algorithms	for	controlling
computer	resources.	Many	of	the	options	that	must	be	configured	manually	in
earlier	versions	of	SQL	Server	are	managed	dynamically	in	SQL	Server	2000.
These	configuration	options	are	not	applicable	in	SQL	Server	7.0	and	are	marked
N/A	in	this	table.

Several	configuration	options	are	still	specified	in	SQL	Server	2000;	however,
instead	of	specifying	the	size	of	a	static	allocation,	the	options	now	specify	the
upper	limit	for	the	number	of	objects	allocated	dynamically	as	needed.	These
options	are	marked	with	an	asterisk	(*)	in	this	table.	The	information	in	this	table
does	not	pertain	to	Microsoft®	SQL	Server	2000™	Windows®	CE	Edition.

	 SQL	Server	version	7.0 SQL	Server	2000
Configuration
values Minimum Maximum Minimum Maximum
affinity	mask 0 2,147,483,647 0 2,147,483,647
allow	updates 0 1 0 1
AWE	enabled N/A N/A 0 1
c2	audit	mode N/A N/A 0 1
cost	threshold	for
parallelism

0 32,767 0 32,767

cursor	threshold -1 2,147,483,647 -1 2,147,483,647
default	full-text
language

N/A N/A 0 2,147,483,647

default	language 0 9,999 0 9,999
default	sort	order
id

0 255 N/A N/A

extended	memory
size	(MB)

0 2,147,483,647 N/A N/A

fill	factor	(%) 0 100 0 100
index	create
memory	(K)

704 1,600,000 704 2,147,483,647

language	in	cache 3 100 N/A N/A
language	neutral
full-text	indexing

0 1 N/A N/A

lightweight
pooling

0 1 0 1

locks 5,000* 2,147,483,647* 5,000* 2,147,483,647*
max	async	IO 1 255 N/A N/A
max	degree	of
parallelism

0 32 0 32

max	server
memory	(MB)

4* 2,147,483,647* 4* 2,147,483,647*

max	text	repl	size 0 2,147,483,647 0 2,147,483,647
max	worker
threads

10 1,024 10 32,767

media	retention 0 365 0 365
min	memory	per
query	(K)

512 2,147,483,647 512 2,147,483,647

min	server
memory	(MB)

0* 2,147,483,647* 0* 2,147,483,647*

nested	triggers
(bytes)

0 1 0 1

network	packet
size

512 65,535 512 65,532

open	objects 0* 2,147,483,647* 0* 2,147,483,647*
priority	boost 0 1 0 1
query	governor
cost	limit

0 2,147,483,647 0 2,147,483,647

query	wait	(sec) -1 2,147,483,647 -1 2,147,483,647
recovery	interval
(min)

0 32,767 0 32,767

remote	access 0 1 0 1
remote	login
timeout	(sec)

0 2,147,483,647 0 2,147,483,647

remote	proc	trans 0 1 0 1
remote	query
timeout	(sec)

0 2,147,483,647 0 2,147,483,647

resource	timeout 5 2,147,483,647 N/A N/A
scan	for	startup
procs

0 1 0 1

set	working	set
size

0 1 0 1

show	advanced
options

0 1 0 1

spin	counter 1 2,147,483,647 N/A N/A
time	slice 50 1,000 N/A N/A
two	digit	year
cutoff

1,752 9,999 1,752 9,999

unicode
comparison	style

0 2,147,483,647 N/A N/A

unicode	locale	id 0 2,147,483,647 N/A N/A
user	connections 0* 32,767

(server)*	1
0* 32,767

(instance)*	1

user	options 0 4,095 0 16,383*	Lower	or	upper	limit	for	objects	allocated	dynamically.
1	The	concurrent	workload	governor	in	SQL	Server	2000	Personal	Edition	and	SQL	Server	2000	Desktop
Engine	limits	performance	when	more	than	5	batches	are	executed	concurrently.

SQL	Server	Architecture

Memory	Used	by	SQL	Server	Objects	Specifications
This	table	lists	the	amount	of	memory	used	by	different	objects	in	Microsoft®
SQL	Server™.	The	information	in	this	table	does	not	pertain	to	Microsoft®	SQL
Server	2000™	Windows®	CE	Edition.

	 Object	Size
Object SQL	Server	7.0 SQL	Server	2000
Lock 96	bytes 64	bytes	plus	32	bytes	per

owner.
Open	database 2,880	bytes 3924	bytes	plus	1640	bytes	per

file	and	336	bytes	per	filegroup.
Open	object1 276	bytes 256	bytes	plus	1724	bytes	per

index	opened	on	the	object2.
User	connection 12	KB	+	(3	*

Network	Packet
Size)3.

12	KB	+	(3	*	Network	Packet
Size)3.

1	Open	objects	include	all	tables,	views,	stored	procedures,	extended	stored	procedures,	triggers,	rules,
defaults,	and	constraints.
2	Indexes	can	be	opened	on	tables	or	views.
3	Network	Packet	Size	is	the	size	of	the	tabular	data	scheme	(TDS)	packets	used	to	communicate	between
applications	and	the	relational	database	engine.	The	default	packet	size	is	4	KB,	and	is	controlled	by	the
network	packet	size	configuration	option.

	SQL Server Architecture Overview
	Fundamentals of SQL Server 2000 Architecture
	SQL Server 2000 Component Overview

	Features of SQL Server 2000
	Integrated with the Internet
	Scalability and Availability
	Enterprise-Level Database Features
	Ease of Installation, Deployment, and Use
	Data Warehousing

	Relational Database Components
	Database Applications and Servers
	Logins
	Client Components
	Communication Components
	Client and Server Net-Libraries
	Controlling Net-Libraries and Communications Addresses
	Tabular Data Stream Protocol
	Net-Library Encryption

	Server Components
	SQL Server Service
	SQL Server Agent Service
	Microsoft Search Service
	MSSQLServerADHelper Service
	MS DTC Service
	Multiple Instances of SQL Server
	Communicating with Multiple Instances
	Using Multiple Instances
	Working with Multiple Instances

	Federated SQL Server 2000 Servers
	Partitioning Data

	Failover Clustering Architecture
	SQL Server 2000 Failover Clusters

	Active Directory Integration

	SQL Server and XML Support
	Database Architecture
	Logical Database Components
	Data Types and Table Structures
	SQL Views
	SQL Stored Procedures
	SQL User-Defined Functions
	Constraints, Rules, Defaults, and Triggers
	Constraints
	Rules
	Defaults
	Triggers

	Collations
	SQL Server Collation Fundamentals
	Selecting Collations
	Specifying Collations
	Specifying the Default Collation for an Instance of SQL Server

	Mixed Collation Environments
	Changing Collations

	SQL Indexes
	Table Indexes
	View Indexes
	Maximum Size of Index Keys

	Property Management
	Full-Text Catalogs and Indexes
	Logins, Users, Roles, and Groups
	Logins
	Users
	Roles
	Groups

	Owners and Permissions
	Session Context Information

	System Databases and Data
	Physical Database Architecture
	Pages and Extents
	Physical Database Files and Filegroups
	Space Allocation and Reuse
	Managing Extent Allocations and Free Space
	Managing Space Used by Objects
	Tracking Modified Extents
	Shrinking Databases

	Table and Index Architecture
	Distribution Statistics
	Heap Structures
	Clustered Indexes
	Nonclustered Indexes
	tempdb and Index Creation
	text, ntext, and image Data
	ntext, text, and image Data When text in row Is Set to OFF
	text, ntext, and image Data When text in row Is Set to ON

	Transaction Log Architecture
	Write-Ahead Transaction Log
	Transaction Log Logical Architecture
	Checkpoints and the Active Portion of the Log
	Truncating the Transaction Log
	Transaction Log Physical Architecture
	Shrinking the Transaction Log

	Relational Database Engine Architecture
	Relational Database Engine Architecture Overview
	Database Engine Components
	Relational Engine
	Storage Engine
	SQL Server Language Support

	Query Processor Architecture
	Single SQL Statement Processing
	View Resolution
	Resolving Indexes on Views
	Resolving Distributed Partitioned Views

	Worktables

	Batch Processing
	Stored Procedure and Trigger Execution
	Execution Plan Caching and Reuse
	Parameters and Execution Plan Reuse
	Auto-Parameterization
	Preparing SQL Statements

	Parallel Query Processing
	Degree of Parallelism
	Parallel Query Example
	Parallel Operations Creating Indexes

	Memory Architecture
	Dynamically Managing Memory on Windows NT and Windows 2000
	Effects of min and max server memory
	Dynamically Managing Memory Between Multiple Instances

	Dynamically Managing Memory on Windows 95 and Windows 98
	Using AWE Memory on Windows 2000
	SQL Server Memory Pool

	Thread and Task Architecture
	SQL Server Task Scheduling
	Allocating Threads to a CPU
	Using the lightweight pooling Option

	Thread and Fiber Execution

	I/O Architecture
	Reading Pages
	Freeing and Writing Buffer Pages

	Distributed Query Architecture
	Full-Text Query Architecture
	Full-Text Indexing Support
	Full-Text Querying Support

	Extended Stored Procedure Architecture
	Remote Stored Procedure Architecture
	Transactions Architecture
	Transaction Recovery
	Concurrency Architecture
	Locking Architecture
	Latching

	Distributed Transactions Architecture

	Cursor Architecture
	Server Scalability
	SQL Server 2000 on Large Servers
	SQL Server 2000 Databases on the Desktop
	SQL Server 2000 on Windows 98
	SQL Server 2000 and Windows CE

	SQL Server and Mail Integration

	Administration Architecture
	DDL and Stored Procedures
	SQL Distributed Management Framework
	SQL-DMF Applications
	SQL-DMF APIs
	SQL Server Agent

	Graphical Tools
	SQL Server Enterprise Manager
	SQL Query Analyzer
	Windows 2000 System Monitor
	Import and Export Data
	SQL Profiler
	SQL Server Service Manager
	Client Network Utility
	Server Network Utility
	Miscellaneous Utilities

	Automated Administration Architecture
	Backup/Restore Architecture
	Backup Devices
	Types of Backup and Restore Processes
	Database Backup and Restore
	Transaction Log Backup and Restore
	Differential Backup and Restore
	File and Filegroup Backup and Restore

	Fuzzy Backup and Restore Operations
	Parallel Backup and Restore

	Data Import/Export Architecture
	Data Integrity Validation

	Replication Architecture
	Data Warehousing and Online Analytical Processing
	Transforming OLTP Data to OLAP Data Warehouses
	SQL Server 2000 Data Warehouse and OLAP Components

	Application Development Architecture
	Choosing an API
	SQL Server and ADO
	SQL Server and Universal Resource Locators
	SQL Server and OLE DB
	SQL Server and ODBC
	SQL-DMO API
	SQL Namespace API
	Replication Component Programming API
	Data Transformation Services API
	SQL Server and English Query
	Extended Stored Procedure API
	SQL Server and Embedded SQL
	DB-Library API

	SQL Syntax Recommendations

	Implementation Details
	Editions of SQL Server 2000
	Operating Systems Supported by the Editions of SQL Server 2000
	Features Supported by the Editions of SQL Server 2000

	Maximum Capacity Specifications
	Configuration Option Specifications
	Memory Used by SQL Server Objects Specifications

