
ADO	and	SQL	Server

Programming	ADO	SQL	Server	Applications
Microsoft®	ActiveX®	Data	Objects	(ADO)	is	a	data	access	interface	used	to
communicate	with	OLE	DB-compliant	data	sources,	such	as	Microsoft	SQL
Server™	2000.	Data	consumer	applications	can	use	ADO	to	connect	to,	retrieve,
manipulate,	and	update	data	from	an	instance	of	SQL	Server.

Architecturally,	ADO	is	an	application-level	interface	that	uses	OLE	DB,	a
library	of	COM	interfaces	that	enables	universal	access	to	diverse	data	sources.
Because	ADO	uses	OLE	DB	as	its	foundation,	it	benefits	from	the	data	access
infrastructure	that	OLE	DB	provides;	yet	shields	the	application	developer	from
the	necessity	of	programming	COM	interfaces.	Developers	can	use	ADO	for
general-purpose	access	programs	in	business	applications	(Accounting,	Human
Resources,	and	Customer	Management),	and	use	OLE	DB	for	tool,	utility,	or
system-level	development	(development	tools	and	database	utilities).

The	ADO	topics	emphasize	the	use	of	ADO	2.6	with	SQL	Server	2000,	and	are
not	intended	as	a	general	primer	in	using	ADO.	For	more	information	about
ADO	2.6,	see	the	ADO	documentation	in	the	Microsoft	Data	Access
Components	(MDAC)	SDK,	located	in	the	MSDN	Library	at	Microsoft	Web
site.	The	ADO	sections	in	MSDN	Online	contain	ADO	getting	started	topics	and
reference	topics	for	ADO	objects,	collections,	properties,	and	methods.

Data	sources	in	SQL	Server	2000	are	suited	for	access	through	ADO.	Because
SQL	Server	is	OLE	DB-compliant,	you	can	use	ADO	to	develop	client
applications,	service	providers,	Web	applications,	and	business	objects	that
access	data	in	SQL	Server	2000.

When	programming	ADO	applications,	consider:

Which	OLE	DB	provider	to	use.

Which	development	environment	to	use.

Additional	data	access	requirements	(for	example,	cursor	types,
transaction	management,	stored	procedure	usage,	and	so	on).

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

A	developer	might	also	consider	using	Microsoft	Remote	Data	Services	(RDS).
RDS	is	a	Web-based	technology	that	uses	Microsoft	Internet	Information
Services	(IIS)	and	special	ActiveX	controls	to	bind	data	from	an	SQL	data
source	to	data	controls	on	a	Web	page.	RDS	is	integrated	with	ADO	technology.
For	more	information	about	RDS,	see	the	RDS	documentation	in	the	Microsoft
Data	Access	Components	(MDAC)	SDK,	located	in	the	Platform	SDK	in	MSDN
Online.

ADO	can	also	be	integrated	with	Microsoft®	ActiveX®	Data	Objects
(Multidimensional)	(ADO	MD),	which	you	can	use	to	browse	a
multidimensional	schema,	and	query	and	retrieve	the	results	of	a	cube;	and
Microsoft®	ActiveX®	Data	Objects	Extensions	for	Data	Definition	Language
and	Security	(ADOX),	which	includes	objects	for	schema	creation	and
modification,	and	security.

ADO	and	SQL	Server

Getting	Started	with	ADO
Microsoft®	SQL	Server™	2000	applications	can	use	ADO	to	connect	to,
retrieve,	manipulate,	and	update	data	from	an	instance	of	SQL	Server.	These
topics	are	discussed	in	Getting	Started	with	ADO.

Topic Description
ADO	Syntax	Conventions Describes	text	formatting	used	when	explaining

ADO	syntax.
System	Requirements	for
ADO

Lists	software	required	for	using	ADO	to	access
data	in	SQL	Server	2000.

ADO	and	OLE	DB
Provider	Installation

Describes	the	OLE	DB	providers	that	are
installed	with	SQL	Server	2000.

ADO	File	Locations Lists	the	locations	of	all	files	that	are	required
for	ADO	to	communicate	with	SQL	Server
2000.

Upgrading	the	Catalog
Stored	Procedures

Explains	the	process	for	updating	catalog	stored
procedures	when	using	ADO	with	instances	of
SQL	Server	version	6.5	or	earlier.

Using	ADO	in	Different
Development
Environments

Discusses	using	ADO	with	Microsoft	Visual
Basic®,	Microsoft	Visual	C++®,	and	using
ADO	in	Web-based	applications.

Adding	a	Data	Source Describes	how	to	add	data	sources	for	use	with
ADO.

Deleting	a	Data	Source Describes	how	to	delete	data	sources.

ADO	and	SQL	Server

ADO	Syntax	Conventions
ADO	programming	documentation	uses	the	following	conventions	to	distinguish
elements	of	text.

Convention Used	for
UPPERCASE Transact-SQL	functions	and	statements,	and	C	macro

names.
courier	new Sample	commands	and	program	code.

italic Function	parameter	names	and	information	that	the
user	or	the	application	must	provide.

bold Function	names,	parameter	keywords,	and	other	syntax
that	must	be	typed	exactly	as	shown.

ADO	and	SQL	Server

System	Requirements	for	ADO
To	access	data	in	Microsoft®	SQL	Server™	2000,	you	must	have	the	following
software	installed:

Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	or
Microsoft	OLE	DB	Provider	for	ODBC	(MSDASQL).

SQL	Server	2000.

Network	software	on	the	computers	on	which	the	driver	and	instance	of
SQL	Server	are	installed	(not	required	when	connecting	to	a	local
desktop	instance	of	SQL	Server).

SQL	Server

If	you	use	the	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB),	or
Microsoft	OLE	DB	Provider	for	ODBC	(MSDASQL)	to	access	data	in	version
6.0,	or	6.5	of	SQL	Server,	you	may	need	to	install	the	catalog	stored	procedures.
For	more	information,	see	Upgrading	the	Catalog	Stored	Procedures.

Network	Software
Network	software	is	required	to	connect	the	clients	running	SQLOLEDB	or
MSDASQL	to	the	server	on	which	an	instance	of	SQL	Server	resides.	To
connect	to	a	server	running	an	instance	of	SQL	Server,	you	can	use	the	Microsoft
Windows®	95,	Microsoft	Windows	98,	Microsoft	Windows	NT®	version	4.0,	or
Microsoft	Windows	2000	operating	system,	or	a	compatible	network	such	as
Novell	NetWare,	or	Banyan	VINES.	For	information	about	the	hardware	and
software	required	for	each	network,	see	the	documentation	for	the	network.

ADO	and	SQL	Server

ADO	and	OLE	DB	Provider	Installation
ADO	clients	that	communicate	with	OLE	DB	need	an	OLE	DB	provider,	a
dynamic-link	library	that	uses	OLE	DB	interfaces	and	methods	to	query	an	SQL
data	source.	For	Microsoft®	SQL	Server™	2000,	the	following	types	of	OLE
DB	providers	can	be	used:

Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB),	which
maps	OLE	DB	interfaces	and	methods	over	SQL	Server	data	sources.

Microsoft	OLE	DB	Provider	for	ODBC	(MSDASQL),	which	maps
OLE	DB	interfaces	and	methods	to	ODBC	APIs.	OLE	DB	consumers
connect	to	an	instance	of	SQL	Server	using	the	SQL	Server	ODBC
driver	as	an	intermediary	layer.

SQLOLEDB	is	installed	with	SQL	Server	2000	and	is	recommended	when
developing	new	applications.	MSDASQL	is	provided	for	backward
compatibility	only.

The	ADO	Connection	and	Error	Handling	sample	application,	used	in	some	of
the	code	examples	in	ADO	topics,	uses	SQLOLEDB.	Where	pertinent,
MSDASQL	examples	are	also	provided.

SQLOLEDB	does	not	support	the	use	of	an	ODBC	DSN	connection,	but	it	does
support	the	use	of	Microsoft	Data	Links.	For	more	information	about	the	use	of
connection	properties	for	SQLOLEDB	and	MSDASQL,	see	Connecting	to	a
SQL	Server	Data	Source.

If	you	are	running	ADO	code	with	SQL	Server	2000	and	an	unexpected	error
occurs,	check	the	provider	properties.	The	error	could	be	attributable	to	the	way
ADO	interacts	with	different	OLE	DB	providers.

ADO	and	SQL	Server

ADO	File	Locations
All	required	ADO	components	are	installed	as	part	of	either	a	Microsoft®	SQL
Server™	2000	server	or	client	installation.	You	can	develop	ADO	applications
on	either	a	client	or	a	server.

ADO	sample	applications,	which	provide	additional	reference	material	for	ADO
application	development,	are	included	with	SQL	Server	2000.	The	ADO	DLLs
are	installed	automatically	as	part	of	SQL	Server	Setup	in	the	C:\Program
Files\Common	Files\System\ADO	directory.

Directory File Description
C:\Program	Files\Common
Files\System\ADO

ALL Files	implementing
ADO	objects.

C:\Program	Files\Common
Files\System\OLE	DB

Sqloledb.dll Dynamic-link	library
that	implements	the
SQLOLEDB
provider.

C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Include

Sqloledb.h C/C++	header	file
used	for	developing
SQLOLEDB
consumers.

C:\Program	Files\Common
Files\System\OLE	DB

Sqloledb.rll SQLOLEDB
resource	file	for
developing	Microsoft
Visual	Basic®
applications.

C:\Program	Files\Common
Files\System\OLE	DB

Msdasql.dll Dynamic-link	library
that	implements	the
MSDASQL	provider.

C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Include

Msdasql.h C/C++	header	file
used	for	developing
MSDASQL
consumers.

C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Ado

ALL Sample	applications
that	illustrate	the	use
of	ADO.

See	Also

Overview	of	Installing	SQL	Server	2000

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Upgrading	the	Catalog	Stored	Procedures
The	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	and	Microsoft
OLE	DB	Provider	for	ODBC	(MSDASQL)	can	use	a	set	of	system	stored
procedures,	known	as	catalog	stored	procedures,	to	obtain	information	from	the
SQL	Server	system	catalog.	SQL	Server	2000	installs	the	catalog	stored
procedures	automatically	when	you	install	or	upgrade	SQL	Server.	The
Instcat.sql	file	includes	updates	to	the	catalog	stored	procedures.	If	the	current
version	of	SQLOLEDB	or	MSDASQL	will	be	used	against	SQL	Server	version
6.5	or	earlier,	the	SQL	Server	system	administrator	must	upgrade	the	catalog
stored	procedures.	Upgrading	the	catalog	stored	procedures	does	not	affect	the
operation	of	existing	SQL	Server	clients.

To	upgrade	the	catalog	stored	procedures,	the	system	administrator	can	run	a
script	using	the	osql	utility.	To	run	osql,	the	computer	must	be	installed	as	a
client	workstation	for	SQL	Server.	The	system	administrator	should	back	up	the
master	database	before	running	Instcat.sql.

At	a	command	prompt,	use	the	osql	utility	to	run	the	Instcat.sql	script.	For
example:

C:>	ISQL	-Usa	-Psa_password	-Sserver_name	-ilocation\Instcat.sql

Arguments
sa_password

System	administrator	password.

server_name

Name	of	the	server	on	which	an	instance	of	SQL	Server	2000	is	installed.

location

Full	path	of	the	location	of	Instcat.sql.	You	can	use	Instcat.sql	from	an
installed	instance	of	SQL	Server	(the	default	location	is	C:\Program
Files\Microsoft	SQL	Server\MSSQL\Install)	or	from	the	SQL	Server	2000
compact	disc	(the	default	location	is	D:\platform	where	D	is	the	CD-ROM
drive	letter	and	platform	is	the	appropriate	server	platform	directory,	such	as

386).

The	Instcat.sql	script	generates	many	messages.	Most	of	these	indicate	how
Transact-SQL	statements	issued	by	the	script	affected	rows.	These	messages	can
be	ignored,	although	the	output	should	be	scanned	for	messages	that	indicate	an
execution	error.	When	Instcat.sql	is	run	against	SQL	Server	6.0,	the	message
generated	about	the	object	sp_MS_upd_sysobj_category	not	existing	can	be
ignored.	The	last	message	should	indicate	that	Instcat.sql	completed
successfully.

The	Instcat.sql	script	fails	when	there	is	not	enough	space	available	in	the
master	database	to	store	the	catalog	stored	procedures	or	to	log	the	changes	to
existing	procedures.	If	the	Instcat.sql	script	fails,	contact	your	system
administrator.

The	system	administrator	can	also	run	Instcat.sql	using	SQL	Query	Analyzer.

ADO	and	SQL	Server

Using	ADO	in	Different	Development	Environments
The	ADO	object	model	is	language	neutral;	it	can	be	used	in	a	variety	of
development	environments.	These	include	any	of	the	Microsoft	Visual	languages
(Microsoft®	Visual	Basic®,	Microsoft	Visual	C++®,	Microsoft	Visual	J++®),
and	Web	development	environments	such	as	Microsoft	Visual	InterDev™.

ADO	and	SQL	Server

Visual	Basic	and	ADO
With	Microsoft®	Visual	Basic®,	the	ADO	object	model	is	integrated	into	the
development	environment.	This	allows	you	to	use	features	such	as	drop-down
lists	of	ADO	properties	and	methods	as	you	enter	code,	and	internally,	high-level
access	to	OLE	DB	functionality.

Visual	Basic	version	6.0	includes:

The	ADO	Data	Control	and	other	ADO/OLE	DB	capable	data	bound
controls.

The	Data	Environment	Designer,	an	interactive	graphical	tool	that
allows	for	the	building	of	ADO	connections	and	commands.	It	provides
a	programmatic	interface	to	the	data	access	objects	in	a	project.

Dynamic	data	binding,	which	allows	the	run-time	setting	of	a
DataSource	property	of	a	data	consumer,	such	as	a	DataGrid	control,	to
a	data	source,	such	as	the	ADO	Data	Control.

To	use	ADO	to	access	SQL	Server	2000	data	in	a	Visual	Basic	application

1.	 Reference	ADO	from	your	Visual	Basic	Project.

2.	 Set	the	Provider	property	of	the	Connection	object	by	specifying
Sqloledb.

To	reference	ADO	from	a	Visual	Basic	project

1.	 In	Visual	Basic,	on	the	Project	menu,	click	References.

2.	 Select	Microsoft	ActiveX	Data	Objects	2.6	Library.	Verify	that	at
least	the	following	libraries	are	also	selected:

Visual	Basic	for	Applications

Visual	Basic	runtime	objects	and	procedures

Visual	Basic	objects	and	procedures

OLE	Automation

The	library	for	ADO	is	msado15.dll	and	the	program	ID	(ProgID)	is	ADODB.

For	more	information	about	the	use	of	connection	properties	for	SQLOLEDB,
see	Connecting	to	a	SQL	Server	Data	Source.

For	more	information	about	Visual	Basic,	see	the	MSDN	Library	at	Microsoft
Web	site.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO	and	SQL	Server

Visual	C++	and	ADO
Using	Microsoft®	Visual	C++®	with	ADO	allows	you	to	write	data	access
applications	for	Microsoft	SQL	Server™	2000.	When	developing	a	SQL	Server
application,	you	can:

Use	the	#import	Compiler	COM	directive	to	import	the	Msado15.dll
before	using	ADO.	The	directive	generates	header	files	containing
typedef	declarations,	smart	pointers	for	interfaces,	and	enumerated
constants.	Each	interface	is	encapsulated,	or	wrapped,	in	a	class.	This	is
the	recommended	way	to	program	ADO	using	Visual	C++.

Use	the	IADORecordBinding	interface	(also	referred	to	as	ADO
Visual	C++	Extensions),	which	supports	retrieving	data	into	native
C/C++	data	types	without	going	through	a	VARIANT	data	type.	It	also
provides	preprocessor	macros	when	using	the	interface.	The	interface
has	methods	to	associate	ADO	Recordset	fields	with	C/C++	variables,
to	add	new	rows,	and	to	perform	updates.	This	method	of	programming
ADO	using	Visual	C++	is	recommended	for	backward	compatibility
only.

Visual	Studio	version	6.0	includes	the	ADO	Data	Control	and	other
databound	controls	that	you	can	use	to	design	Microsoft	Win32®
applications	that	use	ADO.

The	Component	Gallery	contains	the	ADO	Data	Bound	Dialog	Wizard,
which	guides	you	through	the	process	of	creating	a	Microsoft
Foundation	Class	Library	(MFC)	data	bound	dialog	box	with	ADO.	The
controls	of	the	dialog	box	bind	to	the	fields	of	a	recordset.	Using	the
wizard,	you	can	automatically	generate	all	of	the	resources,	classes,	and
Component	Object	Model	(COM)	initialization	code	necessary	to	build
a	data	bound	dialog	box	and	add	it	to	your	project.

For	more	information	about	using	Visual	C++	with	ADO,	see	the	MSDN	Library
at	Microsoft	Web	site.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO	and	SQL	Server

Web-Based	Applications	and	ADO
ADO	helps	build	Web	applications	that	access	data	in	Microsoft®	SQL	Server™
2000.	With	Microsoft	Visual	InterDev™	as	a	Web	development	environment,
you	can	use	ADO	connection	and	data	access	routines	from	within	your
Microsoft	Visual	Basic®	Scripting	Edition	or	Microsoft	JScript®	code	in	your
client	.htm	or	server	.asp	pages.	You	can	encapsulate	ADO	routines	into	business
objects	that	perform	specific	functions,	such	as	validation	and	authentication.

An	example	of	a	Web	application	that	uses	ADO	to	communicate	with	a	SQL
Server	2000	database	is	the	Northwind	Inventory	Management	sample.	This
online	inventory	management	application	allows	users	to	view	Northwind
database	inventory-related	tables,	make	product	updates,	add	new	products,	and
remove	old	ones.

See	Also

ADO	Web	Application

ADO	and	SQL	Server

Adding	a	Data	Source
With	ADO,	you	can	connect	to	an	instance	of	Microsoft®	SQL	Server™	by
using	the	following	types	of	data	sources:

Microsoft	Data	Links,	using	the	Microsoft	OLE	DB	Provider	for	SQL
Server	(SQLOLEDB).

ODBC	data	sources,	using	the	Microsoft	OLE	DB	Provider	for	ODBC
(MSDASQL).

Adding	a	Microsoft	Data	Link

You	can	add	a	Microsoft	Data	Link	by	using	Microsoft	Windows®	Explorer.

To	add	a	Microsoft	Data	Link	by	using	Windows	Explorer

1.	 In	Windows	Explorer,	select	the	folder	in	which	to	add	the	new	data
link.

2.	 On	the	File	menu,	point	to	New,	and	then	click	Text	Document.

3.	 Rename	the	file	in	the	form	Filename.udl.

4.	 Double-click	the	new	file	to	open	the	Data	Link	Properties	window.

5.	 Select	the	Provider	tab,	select	Microsoft	OLE	DB	Provider	for	SQL
Server,	and	then	select	the	Connection	tab.

6.	 Specify	a	server	name,	the	login	type,	and	the	default	database.

Adding	an	ODBC	Data	Source

You	can	add	a	data	source	by	using	ODBC	Administrator,	programmatically	(by
using	SQLConfigDataSource),	or	by	creating	a	file.

To	add	a	data	source	by	using	ODBC	Administrator

1.	 On	the	Start	menu,	point	to	Settings,	and	then	click	Control	Panel.

2.	 Double-click	ODBC	Data	Sources	(32bit)	(if	using	Windows	95	or
Windows	98)	or	Data	Sources	(ODBC)	(if	using	Windows	NT	4.0	or
Windows	2000),	click	the	User	DSN,	System	DSN,	or	File	DSN	tab,
and	then	click	Add.

3.	 Click	SQL	Server,	and	then	click	Finish.

Complete	the	steps	in	the	Create	a	New	Data	Source	to	SQL	Server
Wizard.

ADO	and	SQL	Server

Deleting	a	Data	Source
Data	sources	can	be	deleted	by:

Deleting	the	.udl	file	if	the	data	source	is	a	Microsoft	Data	Link.

Using	ODBC	Administrator	if	the	data	source	is	an	ODBC	data	source.

Deleting	a	Microsoft	Data	Link

To	delete	a	Microsoft	Data	Link	file	by	using	Windows	Explorer

1.	 In	Windows	Explorer,	select	the	Microsoft	Data	Link	file.

2.	 Click	Delete,	and	then	click	Yes	to	confirm	the	deletion.

Deleting	an	ODBC	Data	Source

To	delete	a	data	source	by	using	ODBC	Administrator

1.	 On	the	Start	menu,	point	to	Settings,	and	then	click	Control	Panel.

2.	 Double-click	ODBC	Data	Sources	(32bit)	(if	using	Windows	95	or
Windows	98)	or	Data	Sources	(ODBC)	(if	using	Windows	NT	4.0	or
Windows	2000),	and	then	click	the	User	DSN,	System	DSN,	or	File
DSN	tab.

3.	 Click	the	data	source	to	delete,	click	Remove,	and	then	click	Yes	to
confirm	the	deletion.

ADO	and	SQL	Server

Creating	an	ADO	Application
The	following	components	and	functions	are	part	of	the	ADO	architecture.

Component Function
Application Calls	ADO	objects,	collections,	methods,	and	properties

to	communicate	with	a	data	source.	Submits	SQL
statements,	and	processes	result	sets.

ADO Manages	communication	between	an	application	and	the
OLE	DB	provider	used	by	the	application.

OLE	DB
provider

Processes	all	ADO	calls	from	the	application,	connects
to	a	data	source,	passes	SQL	statements	from	the
application	to	the	data	source,	and	returns	results	to	the
application.

Data	source Contains	the	information	used	by	a	provider	to	access	a
specific	instance	of	data	in	a	DBMS.

An	application	that	uses	ADO	to	communicate	with	Microsoft®	SQL	Server™
2000	performs	the	following	tasks:

Connects	with	a	data	source.

Sends	SQL	statements	to	the	data	source.

Processes	the	results	of	statements	from	the	data	source.

Processes	errors	and	messages.

Terminates	the	connection	to	the	data	source.

A	more	complex	application	written	using	ADO	can	also	perform	the	following
tasks:

Use	cursors	to	control	location	in	a	result	set.

Execute	stored	procedures	on	a	server.

Execute	user-defined	functions	on	a	server.

Manage	queries	that	generate	multiple	result	sets.

Request	commit	or	rollback	operations	for	transaction	control.

Perform	catalog	operations	to	inquire	about	the	attributes	of	a	result	set.

Manage	long	data	(text,	ntext,	and	image	columns)	operations.

Perform	XML	operations	using	XPath	queries,	annotated	schemas,	and
Transact-SQL	extensions	such	as	FOR	XML	and	OpenXML.

For	more	information,	see	Using	ADO	in	Different	Development	Environments.

ADO	and	SQL	Server

Connecting	to	a	SQL	Server	Data	Source
ADO	can	use	any	OLE	DB	provider	to	establish	a	connection.	The	provider	is
specified	through	the	Provider	property	of	the	Connection	object.	Microsoft®
SQL	Server™	2000	applications	use	SQLOLEDB	to	connect	to	an	instance	of
SQL	Server,	although	existing	applications	can	also	use	MSDASQL	to	maintain
backward	compatibility.

Using	the	Execute	method	of	the	Connection	object	is	one	way	to	execute	an
SQL	statement	against	a	SQL	Server	data	source.

The	Connection	object	allows	you	to:

Configure	a	connection.

Establish	and	terminate	sessions	with	data	sources.

Identify	an	OLE	DB	provider.

Execute	a	query.	

Manage	transactions	on	the	open	connection.

Choose	a	cursor	library	available	to	the	data	provider.

There	are	some	differences	in	connection	properties	between	SQLOLEDB	and
MSDASQL.	For	information	about	connection	properties	for	MSDASQL,	see
the	MSDN	Library	at	Microsoft	Web	site.

If	you	are	writing	a	connection	string	for	use	with	SQLOLEDB:

Use	the	Initial	Catalog	property	to	specify	the	database.

Use	the	Data	Source	property	to	specify	the	server	name.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

Use	the	Integrated	Security	keyword,	set	to	a	value	of	SSPI,	to	specify
Windows	Authentication	(recommended),
or
use	the	User	ID	and	Password	connection	properties	to	specify	SQL
Server	Authentication.

If	you	are	writing	a	connection	string	for	use	with	MSDASQL:

Use	the	Database	keyword	or	Initial	Catalog	property	to	specify	the
database.

Use	the	Server	keyword	or	Data	Source	property	to	specify	the	server
name.

Use	the	Trusted_Connection	keyword,	set	to	a	value	of	yes,	to	specify
Windows	Authentication	(recommended),
or
Use	the	UID	keyword	or	User	ID	property,	and	the	Pwd	keyword	or
Password	property	to	specify	SQL	Server	Authentication.

For	more	information	about	a	complete	list	of	keywords	available	for	use	with	a
SQLOLEDB	connection	string,	see	Connection	Object.

Restrictions	on	Multiple	Connections
SQLOLEDB	does	not	allow	multiple	connections.	Unlike	MSDASQL,
SQLOLEDB	does	not	attempt	to	reconnect	when	the	connection	is	blocked.

Examples

A.	Using	SQLOLEDB	to	connect	to	an	instance	of	SQL	Server:
setting	individual	properties
The	following	Microsoft	Visual	Basic®	code	fragments	from	the	ADO
Introductory	Visual	Basic	Sample	show	how	to	use	SQLOLEDB	to	connect	to
an	instance	of	SQL	Server.

JavaScript:hhobj_1.Click()

'	Initialize	variables.
Dim	cn	As	New	ADODB.Connection
.	.	.
Dim	ServerName	As	String,	DatabaseName	As	String,	_
			UserName	As	String,	Password	As	String

'	Put	text	box	values	into	connection	variables.
ServerName	=	txtServerName.Text
DatabaseName	=	txtDatabaseName.Text
UserName	=	txtUserName.Text
Password	=	txtPassword.Text

'	Specify	the	OLE	DB	provider.
cn.Provider	=	"sqloledb"

'	Set	SQLOLEDB	connection	properties.
cn.Properties("Data	Source").Value	=	ServerName
cn.Properties("Initial	Catalog").Value	=	DatabaseName

'	Decision	code	for	login	authorization	type:	
'	Windows	NT	or	SQL	Server	authentication.
If	optWinNTAuth.Value	=	True	Then
				cn.Properties("Integrated	Security").Value	=	"SSPI"
Else
				cn.Properties("User	ID").Value	=	UserName
				cn.Properties("Password").Value	=	Password
End	If

'	Open	the	database.
cn.Open

B.	Using	SQLOLEDB	to	connect	to	an	instance	of	SQL	Server:
connection	string	method

The	following	Visual	Basic	code	fragment	shows	how	to	use	SQLOLEDB	to
connect	to	an	instance	or	SQL	Server:

'	Initialize	variables.
Dim	cn	As	New	ADODB.Connection
Dim	provStr	As	String

'	Specify	the	OLE	DB	provider.
cn.Provider	=	"sqloledb"

'	Specify	connection	string	on	Open	method.
ProvStr	=	"Server=MyServer;Database=northwind;Trusted_Connection=yes"
cn.Open	provStr

C.	Using	MSDASQL	to	connect	to	an	instance	of	SQL	Server
To	use	MSDASQL	to	connect	to	an	instance	of	SQL	Server,	use	the	following
types	of	connections.

The	first	type	of	connection	is	based	on	the	ODBC	API	SQLConnect	function.
This	type	of	connection	is	useful	in	situations	where	you	do	not	want	to	code
specific	information	about	the	data	source.	This	may	be	the	case	if	the	data
source	could	change	or	if	you	do	not	know	its	particulars.

In	the	code	fragment	shown,	the	ConnectionTimeout	method	sets	the
connection	time-out	value	to	100	seconds.	Next,	the	data	source	name,	user	ID,
and	password	are	passed	as	parameters	to	the	Open	method	of	the	Connection
object,	using	an	ODBC	data	source	named	MyDataSource	that	points	to	the
northwind	database	on	an	instance	of	SQL	Server.	The	sa	login	ID	is	provided
as	the	second	parameter	and	the	password	is	the	third	parameter.

Dim	cn	As	New	ADODB.Connection

cn.ConnectionTimeout	=	100
'	DSN	connection.	You	can	use	variables	for	the	parameters.
cn.Open	"MyDataSource",	"sa",	"MyPassword"
'	Alternative	syntax	follows:

'	cn.Open	"DSN=DataSourceName;UID=sa;PWD=Password;"

cn.Close

The	second	type	of	connection	is	based	on	the	ODBC	API	SQLDriverConnect
function.	This	type	of	connection	is	useful	in	situations	where	you	want	a	driver-
specific	connection	string.	To	make	a	connection,	use	the	Open	method	of	the
Connection	object	and	specify	the	driver,	server	name,	user	ID,	password,	and
database.	You	can	also	specify	any	other	valid	keywords	to	include	in	the
connection	string.	For	more	information	about	the	keyword	list,	see
SQLDriverConnect.

Dim	cn	As	New	ADODB.Connection

'	Connection	to	SQL	Server	without	using	ODBC	data	source.
cn.Open	"Driver={SQL	Server};Server=Server1;Uid=SA;Pwd=;Database=northwind"

cn.Close

See	Also

ADO	Connection	and	Error	Handling

JavaScript:hhobj_2.Click()

ADO	and	SQL	Server

Connecting	to	Multiple	Instances	of	SQL	Server
Multiple	instances	of	Microsoft®	SQL	Server™	2000	can	be	run	on	one
computer.	The	computer	can	support	a	default	instance	of	SQL	Server	and
additional	named	instances	of	SQL	Server.	An	application	connects	to	the	default
instance	of	SQL	Server	by	specifying	the	name	of	the	computer.	To	connect	to	a
named	instance,	the	application	specifies	both	the	computer	name	and	the
instance	name	using	this	format:	'<computername>\<instancename>'

Examples

A.	Using	ADO	and	SQLOLEDB	to	connect	to	a	default	instance
of	SQL	Server
The	following	Microsoft	Visual	Basic®	code	fragment	shows	use	ADO	and
SQLOLEDB	to	connect	to	a	default	instance	of	SQL	Server.

'Initialize	variables.
Dim	cn	As	New	ADODB.Connection
Dim	provStr	As	String
'Specify	the	OLE	DB	provider.
cn.Provider	=	"sqloledb"
'Specify	a	connection	string	for	the	default	instance
'of	SQL	Server.
ProvStr	=	"Server=NorthRegion;Database=northwind;UID=sa;pwd=;"
cn.Open	ProvStr

B.	Using	ADO	and	SQLOLEDB	to	connect	to	a	named	instance	of
SQL	Server
The	following	Visual	Basic	code	fragment	shows	how	to	use	ADO	and
SQLOLEDB	to	connect	to	a	named	instance	of	SQL	Server	2000.

Note		To	connect	to	an	instance	of	SQL	Server,	you	must	have	the	latest	version
of	Microsoft	Data	Access	Components	(MDAC)	installed	on	both	computers.

The	latest	version	of	MDAC	is	installed	automatically	with	SQL	Server	2000;
however,	if	you	are	using	SQL	Server	7.0,	6.5,	or	6.0,	you	need	to	install	the
latest	version	of	MDAC.

'Initialize	variables.
Dim	cn	As	New	ADODB.Connection
Dim	provStr	As	String
'Specify	the	OLE	DB	provider.
cn.Provider	=	"sqloledb"
'Specify	a	connection	string	for	an	additional	instance
'of	SQL	Server.
ProvStr	=	"Server=NorthRegion\Inst02;Database=northwind;UID=sa;pwd=;"
cn.Open	ProvStr

Note		To	connect	to	a	named	instance	using	JScript,	use	this	format:
'<computername>\\<instancename>'

ADO	and	SQL	Server

Retrieving	Connection	Properties
The	Properties	collection	and	Property	object	provide	information	about	the
characteristics	of	the	Connection,	Command,	Recordset,	and	Field	objects.
The	Properties	collection	can	be	accessed	through	any	of	these	objects,	and	the
Property	object	can	be	accessed	through	the	Properties	collection	by	using	the
default	indexing	method.

Examples

A.	Retrieving	the	ConnectionTimeout,	CommandTimeout,	and
Updatability	properties.
The	Properties	collection	is	retrieved	through	the	Connection,	Command,	and
Recordset	objects.	The	ConnectionTimeout	property	of	the	Connection	object
is	then	printed.	The	same	steps	are	performed	for	the	Command	and	Recordset
objects.

This	example	demonstrates	how	to	retrieve	connection	properties.

Dim	cn	As	New	ADODB.Connection
Dim	cmd	As	New	ADODB.Command
Dim	rs	As	New	ADODB.Recordset

cn.Provider	=	"sqloledb"
cn.Properties("Data	Source").Value	=	"MyServerName"
cn.Properties("Initial	Catalog").Value	=	"northwind"
cn.Properties("Integrated	Security").Value	=	"SSPI"
cn.Open

'	Retrieve	the	ConnectionTimeout	property.
Debug.Print	cn.Properties("ConnectionTimeout")

Set	Cmd.ActiveConnection	=	Cn
cmd.CommandText	=	"titles"

cmd.CommandType	=	adCmdTable
Set	rs	=	cmd.Execute

'	Retrieve	the	CommandTimeout	property.
Debug.Print	cmd.Properties("CommandTimeout")

'	Retrieve	the	Updatability	property.
Debug.Print	rs.Properties("Updatability")

ADO	and	SQL	Server

Executing	Queries
After	an	ADO	application	connects	with	a	data	source,	it	can	execute	SQL
statements	on	the	data	source.	The	general	sequence	of	events	in	executing	an
SQL	statement	is:

1.	 Construct	the	statement.

2.	 Execute	the	statement.

3.	 Retrieve	any	result	sets.

After	an	application	retrieves	all	of	the	rows	in	all	of	the	result	sets	returned	by
the	SQL	statement,	it	can	execute	another	query	using	the	same	connection.	If	an
application	does	not	need	to	retrieve	all	of	the	rows	in	a	particular	result	set,	it
can	cancel	the	remainder	of	the	result	set	by	calling	the	Close	method	to	close
the	Connection	object.	This	closes	any	active	Recordset	objects	associated	with
the	connection.

If	an	ADO	application	must	execute	the	same	SQL	statement	multiple	times	with
different	data,	you	can	use	the	Parameters	collection,	which	consists	of
Parameter	objects	that	provide	parameter	information	and	data	to	the
Command	object.

In	addition	to	executing	SQL	statements,	an	application	can:

Execute	stored	procedures.

Execute	user-defined	functions.

Perform	batch	updates.

Generate	multiple	recordsets.

ADO	and	SQL	Server

Using	the	Command	Object
An	application	can	use	the	Command	object	to	issue	commands	to	the	database.
These	commands	include	query	strings,	prepared	query	strings,	and	associated
parameters.	The	actual	command	language	and	features	supported	depend	on	the
underlying	OLE	DB	provider.

The	Command	object	can	either	open	a	new	connection	or	use	an	existing
connection	to	perform	queries,	depending	on	what	is	specified	in	the
ActiveConnection	property	of	the	Command	object:

If	the	ActiveConnection	property	is	set	with	a	reference	to	a
Connection	object,	the	Command	object	uses	the	existing	connection.

If	the	ActiveConnection	property	is	set	with	a	connection	string,	a	new
connection	is	established.

More	than	one	Command	object	can	use	the	connection	from	the	same
Connection	object.

Executing	commands	can	generate	zero,	one,	or	multiple	recordsets.	For
example,	executing	a	data	definition	language	query	does	not	generate	a
recordset.	Executing	one	SELECT	statement	can	generate	a	recordset,	and
executing	a	batch	of	SELECT	statements	or	a	stored	procedure	can	generate
more	than	one	recordset.

Execute	Method
Use	the	Execute	method	of	the	Command	object	to	execute	a	query,	data
definition	command,	or	stored	procedure.	The	syntax	is:

Set	rs	=	cmd.Execute(NumRecords,	Parameters,	Options)

The	variable	rs	is	the	returned	Recordset	object,	and	the	parameters	are
optional.	The	NumRecords	parameter	specifies	the	number	of	rows	returned;
Parameters	is	a	variant	that	specifies	initial	input	parameter	values;	and	Options
specifies	the	type	of	query	(in	the	form	of	a	CommandTypeEnum	constant),	if
known,	to	optimize	processing.

Command	Type	Options
Command	type	options	are	specified	in	the	CommandType	property.	A
command	can	be	a	standard	SQL	data	manipulation	language	statement,	such	as
SELECT,	INSERT,	UPDATE,	or	DELETE,	or	any	data	definition	language
statement,	such	as	CREATE	or	DROP.	A	command	can	also	be	the	name	of	a
stored	procedure	or	table.

The	CommandType	property	has	the	following	values.

CommandTypeEnum
Constant Query	String
adCmdFile File	name	of	a	persistently	stored

Recordset	object
adCmdStoreProc Stored	procedure
adCmdTable Table	name
adCmdTableDirect Table	name	whose	columns	are	all	returned
adCmdText SQL	statement
adCmdUnknown Contents	of	the	command	are	not	known

(default)
adCmdUnspecified Unspecified	command	type	argument

Prepared	Property
You	can	prepare	query	strings	using	the	Prepared	property.	Setting	the
Prepared	property	allows	a	query	plan	to	be	created	when	it	is	first	executed.
The	query	plan	is	then	used	for	subsequent	executions	to	enhance	performance.
A	query	string	should	be	prepared	only	when	executed	more	than	one	time
because	it	may	take	more	time	to	create	a	query	plan	than	to	execute	the	query
string	directly.	Performance	is	enhanced	only	when	you	execute	the	query	string
more	than	one	time.

The	Prepared	property	can	also	be	useful	when	executing	a	parameterized	query
string	repeatedly.	Different	parameter	values	can	be	substituted	each	time	it	is
executed	instead	of	reconstructing	the	query	string.	The	Parameter	object	can
be	created	using	the	CreateParameter	method.

See	Also

Command	Object

ADO	and	SQL	Server

Using	the	Connection	Object
In	addition	to	the	Command	object,	an	application	can	use	the	Connection
object	to	issue	commands,	stored	procedures,	and	user-defined	functions	to	a
database	as	if	they	were	native	methods	on	the	Connection	object.	To	execute	a
query	without	using	a	Command	object,	an	application	can	pass	a	query	string
to	the	Execute	method	of	a	Connection	object.

However,	a	Command	object	is	required	if	you	want	to	save	and	re-execute	the
command	text,	or	use	query	parameters.

To	execute	a	command	on	the	Connection	object

1.	 Assign	a	name	to	the	command	using	the	Name	property	of	the
Command	object.	

2.	 Set	the	ActiveConnection	property	of	the	Command	object	to	the
connection.	

3.	 Issue	a	statement	where	the	command	name	is	used	as	if	it	were	a
method	on	the	Connection	object,	followed	by	any	parameters.	

4.	 Create	a	Recordset	object	if	any	rows	are	returned.	

5.	 Set	the	Recordset	properties	to	customize	the	resulting	Recordset.

Using	the	Connection	Object	to	Execute	Commands

This	example	shows	how	to	use	the	Execute	method	of	the	Connection	object
to	execute	commands.

Dim	cn	As	New	ADODB.Connection
.	.	.
Dim	rs	As	New	ADODB.Recordset

cmd1	=	txtQuery.Text
Set	rs	=	cn.Execute(cmd1)

After	the	Connection	and	Recordset	objects	are	created,	the	variable	cmd1	is
assigned	the	value	of	a	user-supplied	query	string	(txtQuery.Text)	from	a
Microsoft	Visual	Basic®	form.	The	recordset	is	assigned	the	results	of	a	query,
by	calling	the	Execute	method	of	the	Connection	object,	with	the	variable	cmd1
used	as	the	query	string	parameter.

See	Also

Connection	Object

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Constructing	an	SQL	Statement
ADO	applications	perform	much	of	their	database	access	by	executing	SQL
statements.	The	form	of	these	statements	depends	on	the	needs	of	the
application.	SQL	statements	can	be	constructed	in	the	following	ways:

Hard-coded	

Constructed	at	run	time

Hard-coded	SQL	statements	are	static	statements	performed	by	an	application	as
a	fixed	task.

SQL	statements	constructed	at	run	time	enable	the	user	to	tailor	the	statement	by
using	common	clauses,	such	as	SELECT,	WHERE,	and	ORDER	BY.	This
includes	ad	hoc	queries	entered	by	users.

The	column	list	in	a	SELECT	statement	should	contain	only	the	columns	needed
to	perform	the	current	task.	This	reduces	the	amount	of	data	sent	over	the
network,	and	it	reduces	the	effect	of	database	changes	on	the	application.	For
example,	if	an	application	does	not	reference	a	column	from	a	table,	the
application	is	not	affected	by	any	changes	made	to	that	column.

Constructing	SQL	Statements	for	Cursors
The	set	of	rows	returned	by	a	SELECT	statement	consists	of	all	the	rows	that
satisfy	the	conditions	in	the	WHERE	clause	of	the	statement,	and	is	known	as
the	result	set.	Because	ADO	applications	cannot	always	work	effectively	with
the	entire	result	set	as	a	unit,	they	must	use	either	ADO	client-side	cursors	or
SQL	Server	server-side	cursors	to	work	with	a	smaller	subset	of	rows.	For	more
information,	see	Cursors	and	Using	Cursors	with	ADO.

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Using	Parameters
Prepared	statements,	stored	procedures,	and	user-defined	functions	may	require
the	use	of	parameters.	The	Parameters	collection,	which	consists	of	Parameter
objects,	provides	parameter	information	and	data	for	the	Command	object.	You
use	the	Parameters	collection	and	Parameter	objects	when	the	query	in	the
Command	object	requires	parameters.

A	Parameter	object	can	serve	as	an	input	parameter,	an	output	parameter	data,
or	a	return	value.	The	Refresh	method	of	the	Parameters	collection	can	force
providers	to	update	parameter	information;	however,	this	operation	can	take
some	time	to	complete.

The	Parameters	collection	provides	parameter	information	and	data	for	the
Command	object.	You	use	the	Parameters	collection	and	Parameter	objects
when	the	query	in	the	Command	object	requires	parameters.

This	example	shows	the	creation	of	an	input	parameter	for	a	stored	procedure
using	Transact-SQL	syntax:

USE	NORTHWIND
GO
drop	proc	myADOParaProc	
GO
CREATE	PROC	myADOParaProc	
@categoryid	int(4)	
AS	
SELECT	*	FROM	products	WHERE	categoryid	=	@categoryid
GO

The	myADOParaProc	stored	procedure	performs	a	SELECT	query	against	the
products	table	of	the	northwind	database,	taking	one	@categoryid	input
parameter	in	its	WHERE	clause.	The	data	type	for	the	@category	parameter	is
int,	and	its	size	is	4.

Here	is	the	Microsoft®	Visual	Basic®	code:

Dim	cn	As	New	ADODB.Connection
Dim	cmd	As	New	ADODB.Command
Dim	rs	As	New	ADODB.Recordset
Dim	prm	As	ADODB.Parameter
Dim	fld	As	ADODB.Field
Dim	provStr	As	String
										
'	Connect	using	the	SQLOLEDB	provider.
cn.Provider	=	"sqloledb"

'	Specify	connection	string	on	Open	method.
provStr	=	"Server=MyServer;Database=northwind;Trusted_Connection=yes"
cn.Open	provStr

'	Set	up	a	command	object	for	the	stored	procedure.
Set	cmd.ActiveConnection	=	cn
cmd.CommandText	=	"myADOParaProc"
cmd.CommandType	=	adCmdStoredProc
cmd.CommandTimeout	=	15
							
'	Set	up	a	new	parameter	for	the	stored	procedure.
Set	prm	=	Cmd.CreateParameter("CategoryID",	adInteger,	adParamInput,	4,	7)
Cmd.Parameters.Append	prm

'	Create	a	recordset	by	executing	the	command.
Set	rs	=	cmd.Execute
Set	Flds	=	rs.Fields

'	Print	the	values	for	all	rows	in	the	result	set.
While	(Not	rs.EOF)
			For	Each	fld	in	Flds
						Debug.Print	fld.Value
			Next

			Debug.Print	""
				rs.MoveNext
Wend

'	Close	recordset	and	connection.
rs.Close
cn.Close

The	myADOParaProc	stored	procedure	expects	an	input	parameter	with	a	data
type	of	int	and	a	size	of	4.	The	CreateParameter	method	is	used	to	create	a
Parameter	object	with	the	following	characteristics:	the	data	type	is	adInteger
for	an	integer,	the	parameter	type	is	adParamInput	for	input	parameter,	and	the
data	length	is	4.	This	Parameter	object	is	also	given	the	name	CategoryID.	The
data	value	7	(one	of	the	possible	values	of	CategoryID	in	the	products	table)	is
hard-coded.

After	the	parameter	is	specified,	the	Append	method	adds	the	Parameter	object
to	the	Parameters	collection.	The	myADOParaProc	stored	procedure	is
executed,	and	a	Recordset	object	is	created.	The	values	for	the	columns	of	each
row	in	the	recordset	are	printed,	and	the	Connection	and	Recordset	objects	are
closed.

See	Also

Using	Return	Code	and	Output	Parameters	for	Stored	Procedures

ADO	and	SQL	Server

Executing	Statements
An	ADO	application	can	execute	an	SQL	statement	in	the	following	ways:

Direct	execution

Prepared	execution

These	methods	of	execution	can	be	used	for	one	SQL	statement,	a	call	of	a
stored	procedure	or	user-defined	function,	or	a	batch	of	SQL	statements.

ADO	and	SQL	Server

Executing	Statements	Directly
Direct	execution	is	the	most	basic	way	to	execute	a	statement	and	is	commonly
used	by	applications	that	build	and	execute	statements	at	run	time.	It	is	the	most
efficient	method	for	using	statements	that	will	be	executed	a	single	time	or	for
calling	stored	procedures.	One	drawback	of	direct	execution	is	that	a	SQL
statement	must	be	parsed	and	compiled	every	time	it	is	executed,	which
increases	overhead	if	the	statement	is	executed	a	number	of	times.

An	application	builds	a	character	string	containing	an	SQL	statement	and
submits	it	for	execution	using	the	Execute	method	of	the	Command	or
Connection	object.	When	the	statement	reaches	the	server,	Microsoft®	SQL
Server™	2000	compiles	it	into	an	execution	plan	and	then	immediately	runs	the
execution	plan.

For	SQL	Server	2000	applications,	using	the	Execute	method	with	parameter
markers	for	commonly	executed	SQL	Statements	can	approach	the	efficiency	of
prepared	execution.

ADO	and	SQL	Server

Executing	Prepared	Statements
Prepared	execution	is	commonly	used	by	applications	to	execute	the	same
parameterized	SQL	statement	repeatedly.	Prepared	execution	is	faster	than	direct
execution	for	statements	executed	more	than	three	or	four	times	because	the
statement	is	compiled	only	once,	while	statements	executed	directly	are
compiled	each	time	they	are	executed.	Prepared	execution	can	also	provide	a
reduction	in	network	traffic	because	the	driver	can	send	an	execution	plan
identifier	and	the	parameter	values,	rather	than	an	entire	SQL	statement,	to	the
data	source	each	time	the	statement	is	executed.	The	Prepared	property	of	the
Command	object	allows	you	to	specify	whether	to	prepare	a	statement.

An	ADO	application	can	use	prepared	execution	to	reduce	the	parsing	and
compiling	overhead	associated	with	repeatedly	executing	an	SQL	statement	that
is	executed	numerous	times.	The	application	builds	a	character	string	containing
an	SQL	statement	and	then	uses	the	Prepared	property	to	have	the	provider	save
a	prepared	(or	compiled)	version	of	the	query	specified	in	the	CommandText
property	before	the	first	execution	of	a	Command	object.	This	can	slow	the	first
call	of	the	Execute	method,	but	after	the	command	is	compiled,	the	provider	uses
the	compiled	version	of	the	command	for	any	subsequent	executions,	which
results	in	improved	performance.

If	the	Prepared	property	is	set	to	False,	the	provider	executes	the	Command
object	directly	without	creating	a	compiled	version.

The	Prepared	property	can	be	used	when	executing	a	statement	with	multiple
parameter	sets.	An	application	can	execute	a	parameterized	statement	more	than
once	by	supplying	a	different	parameter	set	at	each	execution	instead	of
reconstructing	the	statement	whenever	the	parameter	set	is	different.

Microsoft®	SQL	Server™	2000	continues	to	support	the	prepare/execute	model
of	OLE	DB	and	ODBC.	For	applications	using	the	Microsoft	OLE	DB	Provider
for	ODBC	(MSDASQL),	this	option	can	be	disabled	through	the	SQL	Server
ODBC	Data	Source	Setup	dialog	box	if	an	ODBC	data	source	is	used	to
connect	to	an	instance	of	SQL	Server.	If	the	option	is	disabled,	the	SQL
statement	is	stored	and	then	sent	to	the	server	each	time	it	is	executed.

This	example	shows	using	a	prepared	statement	to	update	a	query	and	construct
the	query	dynamically	with	a	different	set	of	parameters	at	execution	time.

Dim	cn	As	New	ADODB.Connection
Dim	cmdPrep1	As	New	ADODB.Command
Dim	prm1	As	New	ADODB.Parameter
Dim	prm2	As	New	ADODB.Parameter
Dim	strCn	As	String

strCn	=	"Server=MyServerName;Database=pubs;Trusted_Connection=yes"
cn.Provider	=	"sqloledb"
cn.Open	strCn
Set	cmdPrep1.ActiveConnection	=	cn
cmdPrep1.CommandText	=	"UPDATE	titles	SET	type=?	WHERE	title_id	=?"
cmdPrep1.CommandType	=	adCmdText
cmdPrep1.Prepared	=	True
		
Set	prm1	=	cmdPrep1.CreateParameter("Type",	adChar,	adParamInput,	12,	"New	Bus")
cmdPrep1.Parameters.Append	prm1
		
Set	prm2	=	cmdPrep1.CreateParameter("ProductID",	adInteger,	adParamInput,	4,	3)
cmdPrep1.Parameters.Append	prm2

cmdPrep1.Execute

cmdPrep1("Type")	=	"New	Cook"
cmdPrep1("title_id")	=	"TC7777"
cmdPrep1.Execute

cn.Close

Data	is	updated	in	the	titles	table	by	using	different	parameter	values.	The	query
string	is	prepared	so	that	different	sets	of	parameters	can	be	supplied.	Two
parameters	are	required	for	the	update	operation:	type	and	title_id.	They	are

created	by	the	two	CreateParameter	methods	and	appended	to	the	Parameters
collection	with	the	Append	method.

The	first	set	of	parameters	has	the	values	New	Bus	and	BU7832.	Because	the
Prepared	property	is	set	to	TRUE,	different	values	can	be	supplied	to	cmdPrep1
without	reconstructing	and	re-executing	the	query	string.

Note		Prepared	statements	cannot	be	used	to	create	temporary	objects	on	SQL
Server.	Prepared	statements	cannot	reference	system	stored	procedures	that
create	temporary	objects,	such	as	temporary	tables.	An	application	must	directly
execute	these	procedures.

ADO	and	SQL	Server

Executing	Stored	Procedures
A	stored	procedure	is	a	precompiled	executable	object	that	contains	one	or	more
SQL	statements.	Stored	procedures	can	have	input	and	output	parameters	and
can	issue	an	integer	return	code.

Executing	a	stored	procedure	is	similar	to	executing	a	prepared	statement,	except
that	the	stored	procedure	exists	as	a	permanently	compiled	object	in	the
database.	A	stored	procedure	can	also	be	used	to	hide	complex	SQL	statements
from	the	application.

When	executing	a	stored	procedure	in	a	Command	object,	the	CommandType
property	must	be	specified	with	the	adCmdStoredProc	value.	With
adCmdStoredProc,	the	corresponding	SQL	statement	for	the	underlining
provider	is	generated.	For	applications	that	use	the	Microsoft	OLE	DB	Provider
for	ODBC	(MSDASQL),	ODBC	escape	sequences	for	procedure	calls	are
generated.

There	is	no	need	to	prepare	a	statement	that	calls	only	a	stored	procedure.	Both
stored	procedures	and	prepared	statements	are	methods	of	precompiling
statements.	Because	a	stored	procedure	is	precompiled,	preparing	a	stored
procedure	call	adds	overhead.	The	prepared	statement	adds	a	small	precompiled
execution	plan	that	calls	the	stored	procedure	execution	plan,	rather	than
executing	the	stored	procedure	execution	plan	directly.

This	example	shows	the	execution	of	the	sp_who	SQL	Server	system	stored
procedure:

Dim	cn	As	New	ADODB.Connection
Dim	cmd	As	New	ADODB.Command
Dim	rs	As	New	ADODB.Recordset

cn.Provider	=	"sqloledb"
cn.Properties("Data	Source").Value	=	"MyServerName"
cn.Properties("Initial	Catalog").Value	=	"northwind"
cn.Properties("Integrated	Security").Value	=	"SSPI"
cn.Open

Cmd.ActiveConnection	=	cn
Cmd.CommandText	=	"sp_who"
Cmd.CommandType	=	adCmdStoredProc

Set	rs	=	Cmd.Execute
Debug.Print	rs(0)
rs.Close

See	Also

Calling	a	Stored	Procedure	(OLE	DB)

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Using	Return	Code	and	Output	Parameters	for	Stored
Procedures
Stored	procedures	can	contain	input	parameters,	output	parameters,	and	return
values.	You	specify	input	parameters,	output	parameters,	and	return	values	for	a
stored	procedure	through	the	Parameter	object.	In	the	case	of	output	parameters
and	return	values,	the	values	are	not	returned	until	the	data	of	the	Recordset
object	has	been	fetched	completely	or	the	Recordset	has	been	closed.

The	following	stored	procedure	contains	one	input	parameter,	one	output
parameter,	and	a	return	parameter.	The	procedure	selects	those	rows	in	the	titles
table	of	the	pubs	database	where	the	royalty	percent	paid	to	the	author	is	greater
than	the	amount	entered	by	the	user	(the	input	parameter).	The	program	returns
the	number	of	rows	as	the	output	variable.	If	the	program	returns	any	rows,	a
return	code	of	0	is	issued;	if	no	rows	are	returned,	a	return	code	of	99	is	issued.

USE	pubs
GO
CREATE	PROCEDURE	myProc
@outparm						int						OUTPUT
@inparm						int
AS
SELECT	*	FROM	titles	WHERE	royalty	>	@inparm
SELECT	@outparm	=	COUNT	(*)	FROM	TITLES	WHERE	royalty	>	@inparm
IF	(@outparm	>	0)
RETURN	0
ELSE
RETURN	99
GO

An	ADO	code	program	that	executes	the	stored	procedure	myProc	is	shown
here.

Dim	cn	As	New	ADODB.Connection

Dim	cmd	As	New	ADODB.Command
Dim	rs	As	New	ADODB.Recordset
Dim	fldloop	As	ADODB.Field
Dim	param1	As	Parameter,	param2	As	Parameter,	param3	As	Parameter
Dim	provStr	As	String
Dim	royalty	As	Variant
				
Private	Sub	spStart()

'	Connect	using	the	SQLOLEDB	provider.
cn.Provider	=	"sqloledb"

'	Specify	connection	string	on	Open	method.
provStr	=	"Server=MyServer;Database=pubs;Trusted_Connection=yes"
cn.Open	provStr

'	Set	up	a	command	object	for	the	stored	procedure.
Set	cmd.ActiveConnection	=	cn
cmd.CommandText	=	"myProc"
cmd.CommandType	=	adCmdStoredProc

'	Set	up	a	return	parameter.
Set	param1	=	cmd.CreateParameter("Return",	adInteger,	adParamReturnValue)
cmd.Parameters.Append	param1
												
'	Set	up	an	output	parameter.
Set	param2	=	cmd.CreateParameter("Output",	adInteger,	adParamOutput)
cmd.Parameters.Append	param2
		
'	Set	up	an	input	parameter.
Set	param3	=	cmd.CreateParameter("Input",	adInteger,	adParamInput)
cmd.Parameters.Append	param3
royalty	=	Trim(InputBox("Enter	royalty:"))

param3.Value	=	royalty

'	Execute	command,	and	loop	through	recordset,	printing	out	rows.
Set	rs	=	cmd.Execute

Dim	i	As	Integer
While	Not	rs.EOF
				For	Each	fldloop	In	rs.Fields
								Debug.Print	rs.Fields(i)
								i	=	i	+	1
				Next	fldloop
				Debug.Print	""
				i	=	0
				rs.MoveNext
Wend

'	Need	to	close	recordset	before	getting	return	
'	and	output	parameters.
rs.Close

Debug.Print	"Program	ended	with	return	code:	"	&	Cmd(0)
Debug.Print	"Total	rows	satisfying	condition:	"	&	Cmd(1)
cn.Close

End	Sub

The	following	parameters	are	needed	for	the	myProc	stored	procedure:

A	return	parameter	to	hold	the	return	value	(0	or	99).The	return
parameter	is	created	as	a	return	type	of	parameter
adParamReturnValue,	and	the	data	type	is	adInteger	for	integer.
Because	the	return	parameter	is	the	first	parameter	added	to	the
collection,	its	index	value	is	zero,	and	it	can	be	dereferenced	through
that	index	(for	example,	as	Cmd(0)).	

An	output	parameter	to	hold	the	value	of	the	count	of	the	number	of
returned	rows.	The	output	parameter	is	created	as	adParamOuput	for
the	output	parameter	type,	and	the	data	type	is	adInteger	for	integer.
Because	the	output	parameter	is	the	second	parameter	added	to	the
collection,	its	index	value	is	1,	and	it	can	be	dereferenced	through	that
index	(for	example,	as	Cmd(1)).	

An	input	parameter,	which	holds	the	value	of	the	user-supplied	percent
royalty	number.	The	input	parameter	is	created	as	adParamInput	for
the	input	parameter	type,	and	the	data	type	is	adInteger	for	integer.

Because	the	data	type	of	these	stored	procedure	parameters	is	integer,	there	is	no
need	to	specify	the	data	length	as	a	parameter	when	defining	them	with	the
CreateParameter	method.

After	each	parameter	is	added	to	the	Parameters	collection,	executing	the	query
string	creates	a	recordset.	After	the	recordset	is	closed,	the	values	for	the	return
code	and	output	parameters	are	available.

ADO	and	SQL	Server

Executing	User-Defined	Functions
Executing	a	user-defined	function	is	similar	to	executing	a	prepared	Transact-
SQL	statement,	except	that	the	user-defined	function	exists	as	a	permanent
object	in	the	database.	Executing	a	user-defined	function	can	increase	the
efficiency	of	an	application	because	it	can	reference	complex	Transact-SQL
statements	at	the	server	instead	of	from	an	application.

This	example	shows	the	execution	of	the	fn_helpcollations	built-in,	user-
defined	function.	All	user-defined	functions	can	be	executed	using	the	technique
demonstrated	in	this	example.

Dim	cn	As	New	ADODB.Connection
Dim	cmd	As	New	ADODB.Command
Dim	rs	As	New	ADODB.Recordset

cn.Open	"Provider=sqloledb;Data	Source=MyServerName;"	&	_
			"Initial	Catalog=northwind;User	Id=sa;Password=;"

'Prepare	the	user-defined	function	statement	and	execute	the	command.
Cmd.ActiveConnection	=	cn
Cmd.CommandText	=	"select	*	from	::fn_helpcollations()"
Set	rs	=	Cmd.Execute

rs.Close

ADO	and	SQL	Server

Using	Batch	Updates
The	Update	method	of	the	Recordset	object	allows	you	to	update	the	current
row.	The	UpdateBatch	method	applies	all	pending	new,	updated,	and	deleted
rows	to	the	Recordset	object.	Using	a	LockType	property	value	of
adLockBatchOptimistic,	the	UpdateBatch	method	allows	you	to	commit	all
pending	changes	at	the	client	and	send	all	the	changes	to	the	database	at	one
time.	The	pending	changes	can	be	canceled	by	calling	the	CancelBatch	method.

With	the	UpdateBatch	method,	an	error	is	returned	if	all	the	changes	fail	to	be
applied	to	the	database.	If	only	some	of	the	changes	fail,	a	warning	is	returned
instead	of	an	error,	by	using	the	Errors	collection	and	Error	object.

The	UpdateBatch	method	is	valid	only	when	the	LockType	property	is
specified	with	adLockBatchOptimistic	and	the	cursor	type	is	either	keyset-
driven	or	static.	The	keyset-driven	cursor	can	be	supported	only	with	tables	that
have	unique	indexes.

This	example	shows	the	use	of	the	UpdateBatch	method	to	apply	all	pending
changes;	it	creates	a	recordset	by	using	the	keyset-driven	cursor	with	the
LockType	property	set	to	adLockBatchOptimistic.	After	the	Recordset	object
is	created,	the	user	is	prompted	to	change	any	row	in	the	titles	table	of	pubs	with
a	type	of	psychology	to	self	help.	Clicking	OK	commits	the	changes	using	the
UpdateBatch	method;	clicking	No	cancels	the	changes	using	the	CancelBatch
method.	The	routine	at	the	end	restores	the	original	values	to	the	table.:

Public	Sub	UpdateBatchX()

			Dim	rstTitles	As	ADODB.Recordset
			Dim	strCnn	As	String
			Dim	strTitle	As	String
			Dim	strMessage	As	String

			'	Assign	connection	string	to	variable.
						strCnn	=	"Provider=sqloledb;"	&	_
						"Data	Source=srv;Initial	Catalog=pubs;User	Id=sa;Password=;	"

			Set	rstTitles	=	New	ADODB.Recordset
			rstTitles.CursorType	=	adOpenKeyset
			rstTitles.LockType	=	adLockBatchOptimistic
			rstTitles.Open	"titles",	strCnn,	,	,	adCmdTable
			
			rstTitles.MoveFirst

			'	Loop	through	recordset,	and	prompt	user	for	
			'	change	of	type	for	a	specified	title.
			Do	Until	rstTitles.EOF
						If	Trim(rstTitles!Type)	=	"psychology"	Then
									strTitle	=	rstTitles!Title
									strMessage	=	"Title:	"	&	strTitle	&	vbCr	&	_
												"Change	type	to	self	help?"

									If	MsgBox(strMessage,	vbYesNo)	=	vbYes	Then
												rstTitles!Type	=	"self_help"
									End	If
						End	If

						rstTitles.MoveNext
			Loop

			'	Ask	if	the	user	wants	to	commit	to	all	the	
			'	changes	made	earlier.
			If	MsgBox("Save	all	changes?",	vbYesNo)	=	vbYes	Then
						rstTitles.UpdateBatch
			Else
						rstTitles.CancelBatch
			End	If

			'	Print	current	data	in	recordset.

			rstTitles.Requery
			rstTitles.MoveFirst
			Do	While	Not	rstTitles.EOF
						Debug.Print	rstTitles!Title	&	"	-	"	&	rstTitles!Type
						rstTitles.MoveNext
			Loop

			'	Restore	original	values	because	this	is	a	demonstration.
			rstTitles.MoveFirst
			Do	Until	rstTitles.EOF
						If	Trim(rstTitles!Type)	=	"self_help"	Then
									rstTitles!Type	=	"psychology"
						End	If
						rstTitles.MoveNext
			Loop
			rstTitles.UpdateBatch

			rstTitles.Close

End	Sub

ADO	and	SQL	Server

Generating	Multiple	Recordsets
Microsoft®	SQL	Server™	2000	allows	a	batch	of	queries	to	be	issued	and
executed.	When	a	batch	of	queries	is	executed,	more	than	one	recordset	can	be
generated.	Multiple	recordsets	can	also	be	generated	by	SQL	statements	that
include	multiple	SELECT	statements	or	COMPUTE	BY	and	COMPUTE
clauses,	or	by	stored	procedures	that	contain	more	than	one	SELECT	statement.

Note		If	you	are	using	a	SQL	Server	API	server	cursor,	you	cannot	execute	a
Transact-SQL	statement	or	stored	procedure	that	generates	more	than	one	result
set.	If	you	need	to	generate	multiple	result	sets,	use	a	client	cursor	by	leaving	the
cursor	properties	of	the	Recordset	object	set	to	their	defaults	(for	example,
forward	only/read-only	(adOpenForwardOnly)	and	an	editing	lock	of
adLockReadOnly).

When	multiple	recordsets	are	generated,	you	need	to	fetch	one	recordset	at	a
time	until	no	more	recordsets	are	available.	The	NextRecordset	method	of	the
Recordset	object	allows	you	to	fetch	subsequent	recordsets.	If	no	more
recordsets	are	available,	the	returned	Recordset	object	is	set	to	Nothing.
Generally,	you	write	code	to	test	whether	a	Recordset	object	is	set	to	Nothing	as
the	test	condition	for	exiting	the	multiple	recordset	loop.

The	following	example	shows	how	to	fetch	multiple	recordsets	from	a	stored
procedure	using	the	NextRecordset	method	of	the	Recordset	object.

The	stored	procedure	syntax	is:

DROP	PROC	myNextproc
GO
CREATE	PROC	myNextproc	AS
SELECT	*	FROM	titles
SELECT	*	FROM	publishers
GO

The	stored	procedure	generates	two	result	sets:	one	for	the	result	of	SELECT	*
FROM	titles	and	the	other	for	the	result	of	SELECT	*	FROM	publishers.

The	ADO	code	syntax	is:

Dim	cmd	As	New	ADODB.Command
Dim	rs	As	ADODB.Recordset				

cn.Provider	=	"sqloledb"
cn.Properties("Data	Source")	=	"MyServerName"
cn.Properties("Initial	Catalog")	=	"pubs"
cn.Properties("user	ID")	=	"sa"
cn.Properties("password")	=	""
cn.Open

Cmd.CommandText	=	"myNextProc"
Cmd.CommandType	=	adCmdStoredProc

Set	rs	=	Cmd.Execute
While	Not	rs	Is	Nothing
				If	(Not	rs.EOF)	Then
								Debug.Print	rs(0)
				End	If
				Set	rs	=	rs.NextRecordset
Wend

After	the	myNextProc	stored	procedure	is	executed,	a	Recordset	object	is
created.	Because	two	result	sets	are	generated	by	the	myNextProc	stored
procedure,	each	Recordset	object	can	be	retrieved	by	using	the	NextRecordset
method.	The	Recordset	object,	rs,	is	reused	for	each	recordset.

ADO	and	SQL	Server

Processing	Results
After	an	application	submits	an	SQL	statement,	Microsoft®	SQL	Server™	2000
returns	any	resulting	data	as	one	or	more	result	sets.	A	result	set	is	a	set	of	rows
and	columns	that	match	the	criteria	of	the	query.	SELECT	statements,	catalog
functions,	and	some	procedures	produce	a	result	set	made	available	to	an
application	in	tabular	form.	If	the	executed	SQL	statement	is	a	stored	procedure,
a	batch	containing	multiple	commands,	or	a	SELECT	statement	containing
keywords,	such	as	COMPUTE	or	COMPUTE	BY,	there	will	be	multiple	result
sets	to	process.

The	ADOX	Catalog	object	can	also	retrieve	data.	For	example,	The	Catalog
object	allows	you	to	manipulate	and	retrieve	data	about	tables,	views,	and	stored
procedures	in	a	SQL	Server	2000	database.	These	result	sets	can	contain	zero	or
more	rows.	Other	SQL	statements,	such	as	GRANT	or	REVOKE,	do	not	return
result	sets.

Each	INSERT,	UPDATE,	and	DELETE	statement	returns	a	result	set	containing
only	the	number	of	rows	affected	by	the	modification.	These	counts	can	be
canceled	by	including	a	SET	NOCOUNT	ON	statement	in	the	batch	or	stored
procedure.

Transact-SQL	includes	the	SET	NOCOUNT	statement.	When	the	NOCOUNT
option	is	set	to	ON,	SQL	Server	does	not	return	the	counts	of	the	rows	affected
by	a	statement.

Several	other	Transact-SQL	statements	return	their	data	in	messages	rather	than
result	sets,	such	as:

DBCC

SET	SHOWPLAN

SET	STATISTICS

PRINT

RAISERROR

ADO	applications	use	the	Recordset	object	to	manipulate	result	sets,	and	the
Fields	collection	and	Field	object	to	access	data	in	a	row.	In	addition,	you	can
use	the	Properties	collection	and	Property	object	to	provide	information	about
the	characteristics	of	a	result	set.

ADO	and	SQL	Server

Using	the	Recordset	Object
The	Recordset	object	provides	methods	for	manipulating	result	sets.	It	allows
you	to	add,	update,	delete,	and	scroll	through	rows	in	the	recordset.

A	Recordset	object	can	be	created	using	the	Execute	method	of	the	Connection
or	Command	object.

Each	row	in	a	recordset	can	also	be	retrieved	and	updated	using	the	Fields
collection	and	the	Field	object.	Updates	on	the	Recordset	object	can	be	in	an
immediate	or	batch	mode.	When	a	Recordset	object	is	created,	a	cursor	is
opened	automatically.

The	Recordset	object	allows	you	to	specify	the	cursor	type	and	location	for
fetching	the	result	set.	With	the	CursorType	property,	you	can	specify	whether
the	cursor	is	read-only,	forward-only,	static,	keyset-driven,	or	dynamic.	Cursor
type	determines	if	a	Recordset	object	can	be	scrolled	or	updated	and	affects	the
visibility	of	changed	rows.	By	default,	the	cursor	type	is	read-only	and	forward-
only.

An	application	can	specify	the	location	of	the	cursor	with	the	CursorLocation
property.	This	property	allows	you	to	specify	whether	to	use	a	client	or	server
cursor.	The	CursorLocation	property	setting	is	important	when	you	use
disconnected	recordsets.

The	first	part	of	the	cmdExecute_Click	method	in	the	ADO	Introductory	Visual
Basic	Sample	shows	an	example	of	creating,	opening,	passing	a	command	string
variable	to,	and	positioning	the	cursor	in	a	recordset.

Dim	cn	As	New	ADODB.Connection
Dim	rs	As	ADODB.Recordset
.	.	.	
cmd1	=	txtQuery.Text
Set	rs	=	New	ADODB.Recordset
rs.Open	cmd1,	cn
rs.MoveFirst
.	.	.

'	Code	to	loop	through	result	set(s)

See	Also

Using	Cursors	with	ADO

ADO	and	SQL	Server

Using	the	Fields	Collection	and	Field	Object
The	Fields	collection	and	Field	object	allow	you	to	access	each	data	column	of
the	current	row.	The	Fields	collection	can	be	accessed	through	the	Recordset
object	and	the	Field	object	can	be	accessed	through	the	Fields	collection	by
using	the	default	indexing	method.	You	can	use	the	Field	object	to	create	a	new
row	or	change	existing	data,	and	use	the	AddNew,	Update,	or	UpdateBatch
method	of	the	Recordset	object	to	apply	the	new	or	changed	data.	An	explicit
Edit	method	does	not	need	to	specified.

This	code	fragment	shows	how	to	use	the	Field	object	to	retrieve	the	name,	type,
and	values	for	each	data	column	of	the	current	row.	This	code	assumes	you	have
made	a	connection	and	passed	an	SQL	command	string	to	the	cmdText	variable.
After	the	Recordset	object	is	created,	the	Fields	collection	can	be	retrieved.	The
example	loops	through	the	Fields	collection	to	retrieve	each	Field	object.	The
Name,	Type,	and	Value	property	of	each	Field	object	is	printed.

Dim	rs	As	New	ADODB.Recordset
Dim	fld	As	ADODB.Field
Dim	cn	As	ADODB.Connection
Dim	cmdText	As	String

cn.Provider	=	"sqloledb"
cn.Properties("Data	Source").Value	=	"MyServerName"
cn.Properties("Initial	Catalog").Value	=	"northwind"
cn.Properties("Integrated	Security").Value	=	"SSPI"
cn.Open

cmdText	=	"select	*	from	authors"

rs.Open	cmdText,	cn
Set	Flds	=	rs.Fields
Dim	TotalCount	As	Integer
TotalCount	=	Flds.Count

For	Each	fld	In	Flds
				Debug.Print	fld.Name
				Debug.Print	fld.Type
				Debug.Print	fld.Value
Next
rs.Close

ADO	and	SQL	Server

Determining	the	Characteristics	of	a	Result	Set
The	Properties	collection	and	Property	object	provide	information	about	the
characteristics	of	the	Connection,	Command,	Recordset,	and	Field	objects.
The	Properties	collection	can	be	accessed	through	any	of	these	objects,	and	the
Property	object	can	be	accessed	through	the	Properties	collection	by	using	the
default	indexing	method.

The	Properties	collection	consists	of	Property	objects.	In	addition	to	returning
the	value	and	type	for	a	property,	the	Property	object	provides	attributes	of	a
property.	Attributes	describe	things	such	as	whether	the	specific	property	of	an
object	is	supported	or	required,	or	whether	it	is	read/write	or	read-only.	For
example,	ConnectionTimeout	is	a	property	that	provides	information	about	the
number	of	seconds	to	wait	to	establish	a	connection	before	returning	a	time-out
error.

Examples

Enumerating	Through	the	Properties	Collection	for	an	Object.
The	following	code	shows	a	method	for	listing	each	property	of	an	object,	using
a	Connection	object	and	Recordset	object	as	examples.

Dim	cn	As	New	ADODB.Connection
Dim	rs	As	ADODB.Recordset

cn.Provider	=	"sqloledb"
cn.Properties("Data	Source").Value	=	"MyServerName"
cn.Properties("Initial	Catalog").Value	=	"northwind"
cn.Properties("Integrated	Security").Value	=	"SSPI"
cn.Open

Set	rs	=	New	ADODB.Recordset
rs.Open	"select	*	from	products",	cn

'	Create	a	variable	to	list	the	properties.
Dim	prop	As	ADODB.Property

'	Enumerate	through	the	properties	of	the	Connection	object.
For	Each	prop	In	cn.Properties
			Debug.Print	prop.Name,	prop.Value,	prop.Attributes
Next

'	Enumerate	through	the	properties	of	the	Recordset	object.
For	Each	prop	In	rs.Properties
			Debug.Print	prop.Name,	prop.Value,	prop.Attributes
Next

ADO	and	SQL	Server

Mapping	Data	Types
In	rowsets	and	as	parameter	values,	ADO	represents	data	in	Microsoft®	SQL
Server™	2000	by	using	the	following	data	types.	The	ADO	enumerated
constant,	DataTypeEnum,	specifies	the	data	type	of	the	Field	and	Parameter
objects.

SQL	Server	Data	Type ADO	Data	Type
bigint adBigInt
binary adBinary
bit adBoolean
char adChar
datetime adDBTimeStamp
decimal adNumeric
float adDouble
image adVarbinary
int adInteger
money adCurrency
nchar adWChar
ntext adWChar
numeric adNumeric
nvarchar adWChar
real adSingle
smalldatetime adTimeStamp
smallint adSmallInt
smallmoney adCurrency
sql_variant adVariant
sysname adWChar
text adChar
timestamp adBinary
tinyint adVarbinary
uniqueidentifier adGUID
varbinary adVarbinary

varchar adChar

ADO	supports	consumer-requested	data	conversions	as	shown	in	this
illustration.

ADO	and	SQL	Server

Data	Type	Usage	Considerations
Microsoft®	SQL	Server™	2000	includes	the	following	data	types	that	cannot	be
used	with	SQL	Server	version	7.0	or	earlier:

bigint

sql_variant

Using	the	bigint	Data	Type

The	bigint	data	type	is	an	integer	containing	values	from	-2^63
(-9,223,372,036,854,775,807)	through	2^63-1	(9,223,372,036,854,775,807).	The
storage	size	is	8	bytes.

The	ADO	enumerated	constant,	DataTypeEnum,	specifies	the	data	type	of	an
ADO	field,	parameter,	or	property.	The	DataTypeEnum	value,	adBigInt,	has	a
value	of	20,	and	indicates	an	8-byte	signed	integer,	which	maps	to	the	SQL
Server	2000	bigint	data	type	and	the	OLE	DB	DBTYPE_I8	data	type.

Using	the	sql_variant	Data	Type
The	sql_variant	data	type	can	contain	data	of	any	of	the	SQL	Server	2000	data
types	except	those	for	large	objects	(text,	ntext,	and	image	data	types),	and	the
timestamp	data	type.	For	example,	a	sql_variant	column	can	contain	smallint
values	for	some	rows,	float	values	for	other	rows,	and	char/nchar	values	in	the
remainder.

Although	there	are	some	restrictions,	the	sql_variant	data	type	is	similar	to	the
variant	data	type	in	Microsoft	Visual	Basic®	and	DBTYPE_VARIANT	in	OLE
DB.	The	ADO	DataTypeEnum	value,	adVariant,	has	a	value	of	12,	and	maps	to
the	OLE	DB	DBTYPE_VARIANT	data	type.	However,	ADO	does	not	yet
support	this	data	type	completely,	and	usage	may	cause	unpredictable	results.

For	more	information	about	support	of	the	sql_variant	data	type	by	the
Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB),	see	Data	Type
Mapping	in	Rowsets	and	Parameters.

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Using	Cursors	with	ADO
ADO	uses	both	client	and	server	cursors	to	implement	the	cursor	functionality
required	by	an	application.	An	ADO	application	controls	the	cursor	behavior	by
using	the	CursorType,	CursorLocation,	LockType,	and	CacheSize	properties
of	the	Recordset	object.

When	these	properties	are	set	to	their	default	values	at	the	time	an	SQL
statement	is	executed,	the	Microsoft	OLE	DB	Provider	for	SQL	Server
(SQLOLEDB)	does	not	use	a	server	cursor	to	implement	the	result	set;	instead,	it
uses	a	default	result	set.	If	any	of	the	values	of	these	properties	are	changed	from
their	default	values	at	the	time	an	SQL	statement	is	executed,	SQLOLEDB
attempts	to	use	a	server	cursor	to	implement	the	result	set.

Cursor	Options	with	SQL	Server
Because	ADO	allows	the	setting	of	cursor	properties,		the	following	options
exist	for	using	cursors	with	ADO	and	Microsoft®	SQL	Server™	2000:

Leave	all	cursor	properties	set	to	their	defaults.

If	you	use	these	settings,	the	provider	uses	default	result	set	processing
(forward	only	and	read-only	cursor).	The	default	settings	allow	a
program	to	execute	any	Transact-SQL	statement;	however,	only	one
statement	can	be	active	on	any	connection	at	a	time.	The	program	must
either	fetch	all	the	rows	or	cancel	the	result	set	before	another	statement
can	be	executed	on	the	same	connection.	Following	those	rules,	a
program	can	process	Transact-SQL	statements	or	stored	procedures	that
allow	multiple	result	sets.

Change	the	default	cursor	type	or	lock	type.

The	provider	uses	SQL	Server	API	server	cursors	to	deliver	the
requested	cursor	functionality.	Although	this	option	provides	a	wide
range	of	cursor	functionality,	it	introduces	some	restrictions.	For
example,	you	cannot	execute	any	Transact-SQL	statement,	batch,	or
stored	procedure	that	returns	more	than	one	result	set.	However,	it	is
possible	to	have	multiple	active	statements	on	one	connection	(there	can

be	pending	results	in	the	statement	handle),	provided	they	are	all
executed	with	API	server	cursors.

Use	an	ADO	client	cursor	(set	the	CursorLocation	property	to
adUseClient).

ADO	implements	the	cursor;	therefore,	the	application	can	use	only	the
capabilities	supported	by	the	ADO	client	cursors.	The	application
cannot	access	the	cursor	capabilities	of	the	underlying	provider.	Only	a
CursorType	property	of	adOpenStatic	(static	cursor)	is	supported	for	a
setting	of	adUseClient.

ADO	Cursor	Settings

An	ADO	application	can	control	the	cursor	functionality	using	these	Recordset
properties.

Property Description
CursorType Default:	adOpenForwardOnly

Indicates	the	type	of	cursor	used:
Forward-only/read-only	(adOpenForwardOnly)
Static	(adOpenStatic)
Keyset	(adOpenKeyset)
Dynamic	(adOpenDynamic)

CursorLocation Default:	adUseServer
Sets	or	returns	the	location	of	the	cursor	engine.	If	you
set	this	property	to	adUseClient,	you	can	open	only	a
static	cursor.

LockType Default:	adLockReadOnly
Indicates	the	type	of	locks	placed	on	rows	during
editing.

CacheSize Default:	1
Controls	how	many	rows	the	provider	keeps	in	its
buffer	and	how	many	rows	to	retrieve	at	one	time	into
local	memory.

See	Also

Cursors

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Using	Default	Result	Sets
By	default,	an	ADO	application	does	not	use	Microsoft®	SQL	Server™	2000
API	server	cursors	with	SQLOLEDB.	The	default	cursor	used	by	the	ADO
application	is	read-only	and	forward-only,	and	uses	default	result	set	processing.

Default	result	sets	support	all	of	the	Transact-SQL	statements.	There	are	no
restrictions	on	the	types	of	SQL	statements	that	can	be	executed	when	using	a
default	result	set.	However,	server	cursors	do	not	support	all	Transact-SQL
statements.	For	example,	server	cursors	do	not	support	any	SQL	statement	that
generates	multiple	result	sets.

The	following	types	of	statements	are	not	supported	by	server	cursors:

Batches.	These	are	SQL	statements	built	from	two	or	more	individual
SQL	SELECT	statements.	For	example:

SELECT	*	FROM	authors;	SELECT	*	FROM	titles
Stored	procedures	with	multiple	SELECT	statements.	These	are	SQL
statements	that	execute	a	stored	procedure	containing	more	than	one
SELECT	statement.	This	includes	SELECT	statements	that	fill
parameters	or	variables.

Keywords	These	are	SQL	statements	containing	the	keywords
COMPUTE,	COMPUTE	BY,	FOR	BROWSE,	or	INTO.

In	SQL	Server	2000,	if	an	SQL	statement	that	matches	any	of	these	types	is
executed	with	a	server	cursor,	the	server	cursor	is	implicitly	converted	to	a
default	result	set.	An	application	can	call	the	Supports	method	of	the	Recordset
object	to	verify	the	specific	functionality	of	the	cursor	setting.	For	more
information,	see	Implicit	Cursor	Conversions.

SQL	statements	that	do	not	fit	the	types	listed	earlier	can	be	executed	with	any
statement	settings;	they	work	equally	well	with	either	a	default	result	set	or	a
server	cursor.

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Using	Server	Cursors	with	ADO
ADO	and	OLE	DB	map	cursors	over	the	result	sets	of	executed	SQL	statements.
SQLOLEDB	implements	these	operations	using	server	cursors,	which	are
cursors	implemented	on	the	server	and	managed	by	API	cursor	functions.

Server	Cursor	Details
To	use	a	server	cursor,	an	application	can	set	these	properties	to	anything	other
than	the	default	value:

Set	the	cursor	type	of	the	Recordset	object	to	adOpenKeyset,
adOpenDynamic,	or	adOpenStatic.

Set	the	LockType	of	the	Recordset	object	to	adLockPessimistic,
adLockOptimistic,	or	adLockBatchOptimistic.

Set	the	CacheSize	property	to	anything	other	than	the	default	value	of
1.

The	CursorLocation	property	should	remain	at	the	default	setting,
adUseServer.

Server	cursors	are	created	only	for	statements	that	begin	with:

SELECT

EXEC[ute]	procedure_name

call	procedure_name

Even	if	an	application	explicitly	requests	a	server	cursor,	server	cursors	are	not
created	for	statements	such	as	INSERT.

Server	cursors	cannot	be	used	with	statements	that	generate	more	than	one

recordset.

This	restriction	applies	to	all	statements	described	in	Generating	Multiple
Recordsets.	For	more	information,	see	Generating	Multiple	Recordsets.	If	a
server	cursor	is	used	with	any	statement	that	generates	multiple	recordsets,	an
application	can	return	one	of	the	following	errors:

Cannot	open	a	cursor	on	a	stored	procedure	that	has	anything	other	than
a	single	SELECT	statement	in	it.

sp_cursoropen.	The	statement	parameter	can	only	be	a	single	SELECT
statement	or	stored	procedure.

This	example	shows	the	opening	of	a	dynamic	server	cursor:

Dim	rs	As	New	ADODB.Recordset
.	.	.	
rs.Open	"SELECT	*	FROM	titles",	,	adOpenDynamic,	adLockOptimistic
rs.Close

See	Also

API	Server	Cursors

Default	Result	Sets

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

ADO	and	SQL	Server

Scrolling	and	Retrieving	Rows
An	application	can	use	the	MoveFirst,	MoveLast,	MoveNext,	and
MovePrevious	methods	to	scroll	through	a	recordset	to	retrieve	rows.	Use	the
MoveFirst	method	to	move	the	current	record	position	to	the	first	record	in	the
Recordset.	Use	the	MoveLast	method	to	move	the	current	record	position	to	the
last	record	in	the	Recordset.

Use	the	MoveNext	method	to	move	the	current	record	position	one	record
forward.	If	the	last	record	is	the	current	record	and	you	call	the	MoveNext
method,	ADO	sets	the	current	record	to	the	position	after	the	last	record	in	the
Recordset	and	sets	the	EOF	property	to	True.	An	attempt	to	move	forward
when	the	EOF	property	is	set	to	True	generates	an	error.

Use	the	MovePrevious	method	to	move	the	current	record	position	one	record
backward.	If	the	first	record	is	the	current	record	and	you	call	the	MovePrevious
method,	ADO	sets	the	current	record	to	the	position	before	the	first	record	in	the
Recordset	and	sets	the	BOF	property	to	True.	An	attempt	to	move	backward
when	the	BOF	property	is	set	to	True	generates	an	error.

If	the	Recordset	object	does	not	support	backward	cursor	movement,	a	call	to
the	MoveFirst	or	MovePrevious	methods	generates	an	error.	For	example,	the
default	setting	of	the	CursorType	property	is	adOpenForwardOnly,	which
supports	only	the	MoveLast	and	MoveNext	methods.

Determining	Recordset	Limits
An	application	can	use	the	BOF	and	EOF	properties	to	determine	whether	a
Recordset	object	contains	records	or	whether	you	have	gone	beyond	the	limits
of	a	Recordset	object	when	you	move	from	record	to	record.	By	testing	the
values	of	the	BOF	and	EOF	properties,	an	application	can	avoid	generating	an
error	by	using	the	MoveFirst,	MoveLast,	MoveNext	and	MovePrevious
methods.

The	BOF	property	returns	True	(-1)	if	the	current	record	position	is	before	the
first	record,	and	returns	False	(0)	if	the	current	record	position	is	on	or	after	the
first	record.	The	EOF	property	returns	True	if	the	current	record	position	is	after
the	last	record,	and	returns	False	if	the	current	record	position	is	on	or	before	the

last	record.	If	the	BOF	and	EOF	properties	both	are	set	to	True,	there	is	no
current	record.	In	this	situation,	the	RecordCount	property	is	set	to	zero.

If	you	delete	the	last	remaining	record	in	the	Recordset	object,	the	BOF	and
EOF	properties	may	remain	False	until	you	attempt	to	reposition	the	current
record.

ADO	and	SQL	Server

Bookmarking	Rows
An	application	can	use	the	Bookmark	property	to	save	the	position	of	the
current	record	and	to	return	to	that	record	at	any	time.	When	you	open	a
Recordset	object,	each	of	its	records	has	a	unique	bookmark.	To	save	the
bookmark	for	the	current	record,	assign	the	value	of	the	Bookmark	property	to	a
variable.	To	return	to	that	record	at	any	time	after	moving	to	a	different	record,
set	the	Recordset	object	Bookmark	property	to	the	value	of	that	variable.

The	user	may	not	be	able	to	view	the	value	of	the	bookmark.	Also,	users	should
not	expect	bookmarks	to	be	directly	comparable;	two	bookmarks	that	refer	to	the
same	record	may	have	different	values.

If	you	use	the	Clone	method	to	create	a	copy	of	a	Recordset	object,	the
Bookmark	property	settings	for	the	original	and	for	the	duplicate	Recordset
objects	are	identical	and	you	can	use	them	interchangeably.	However,	you
cannot	use	bookmarks	from	different	Recordset	objects	interchangeably,	even	if
they	were	created	from	the	same	source	or	command.

ADO	and	SQL	Server

Performing	Transactions	in	ADO
ADO	supports	transaction	management	in	Microsoft®	SQL	Server™	2000,
allowing	an	application	to	perform	explicitly	and	implicitly	started	transactions
on	a	single	connection	to	an	instance	of	SQL	Server.	After	the	connection	is
established,	a	recordset	is	opened	on	the	result	set	of	a	select	query,	using	a
dynamic	cursor	and	pessimistic	locking	(properties	of	a	Recordset	object).	After
you	edit	or	update	the	data,	you	select	whether	to	commit	the	changes	or	cancel
them.	The	data	changed	in	the	transaction	can	then	be	committed	or	rolled	back.

To	perform	an	explicit	transaction	in	an	application

1.	 Open	a	new	connection	to	an	instance	of	SQL	Server.

2.	 Retrieve	a	recordset	from	an	instance	of	SQL	Server.

3.	 Call	the	BeginTrans	method	of	the	Connection	object	to	begin	the
transaction.

4.	 Make	changes	to	the	recordset.

5.	 Call	the	CommitTrans	method	of	the	Connection	object	to	save
changes	to	the	recordset

Or

Call	the	RollbackTrans	method	of	the	Connection	object	to	discard
changes	to	the	recordset.

Managing	a	Transaction

This	example	shows	how	to	use	the	ADO	transaction	methods	BeginTrans,
CommitTrans,	and	RollbackTrans	to	manage	a	transaction.

Dim	cn	As	New	ADODB.Connection

Dim	rs	As	New	ADODB.Recordset

.	.	.	
'	Open	connection.
cn.Open

'	Open	titles	table.
rs.Open	"SELECT	*	FROM	titles",	Cn,	adOpenDynamic,	adLockPessimistic
.	.	.
'	Begin	the	transaction.
rs.MoveFirst
cn.BeginTrans

'	User	loops	through	the	recordset	making	changes.
.	.	.	
'	Ask	if	the	user	wants	to	commit	all	the	changes	made.
If	MsgBox("Save	all	changes?",	vbYesNo)	=	vbYes	Then
			cn.CommitTrans
Else
			cn.RollbackTrans
End	If

See	Also

Transactions

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Handling	Errors	and	Messages	in	ADO
ADO	applications	use	the	Errors	collection	and	the	Error	object	to	return
provider-specific	error	information	to	an	application.	The	Errors	collection
contains	the	errors	generated	by	a	single	operation.	Each	Error	object
constitutes	one	such	error	in	the	collection.	To	get	information	about	an	error,
query	the	properties	of	an	Error	object	from	the	Connection	object.	To	get	all
the	Error	objects	in	the	Errors	collection,	use	code	to	loop	through	the
collection.

ADO	errors	(for	example,	invalid	use	of	ADO	properties	or	methods),	as
opposed	to	provider	errors,	do	not	appear	in	the	Errors	collection.	ADO	errors
are	captured	by	the	exception	handling	mechanism	of	your	run-time
environment.	For	example,	in	Microsoft®	Visual	Basic®,	the	occurrence	of	an
ADO	error	triggers	an	On	Error	event	and	appears	as	a	Visual	Basic	Error
object.

If	you	want	to	trap	both	provider-specific	errors	(by	querying	the	properties	of	an
Error	object)	and	ADO	errors	(by	trapping	ADO	errors	through	the	run-time
exception	handler)	in	your	application,	you	have	to	write	error-handling	code	for
both.	For	more	information	about	ADO	Error	Codes,	see	the	MSDN	Library	at
Microsoft	Web	site.

Warning	messages	that	do	not	stop	code	execution	can	be	saved	in	the	Errors
collection.	A	warning	message	has	a	positive	number	value,	which	differentiates
it	from	an	error	message.

However,	critical	warning	or	status	messages	(such	as	calls	made	with
unsupported	or	conflicting	properties)	may	be	ignored	by	ADO	and	not	saved	to
the	Errors	collection	if	the	operation	succeeded.

The	properties	of	an	Error	object	contain	specific	details	about	each	error:

The	Description	property	contains	the	text	of	the	error.

The	Number	property	contains	the	long	integer	value	of	the	error
constant.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

The	Source	property	identifies	the	object	that	raised	the	error.	

The	SQLState	and	NativeError	properties	provide	information	from
SQL	data	sources.	

The	HelpFile	and	HelpContext	properties	indicate	the	appropriate
Microsoft	Windows®	Help	file	and	topic,	respectively,	(if	any	exist)	for
the	error.

This	code	fragment,	taken	from	the	ADO	Introductory	Visual	Basic	Sample,
shows	how	to	create	a	basic	data	provider	error	log.	The	code	enumerates	the
first	five	properties	(all	properties	except	for	HelpFile	and	HelpContext)	of
each	Error	object	in	the	Errors	collection	and	displays	them	in	a	list	on	a	Visual
Basic	form.	In	this	example,	the	variable	errLoop	is	an	Error	object	in	the
Errors	collection.	The	variable	strError	is	an	array	of	five	strings,	with	each
array	element	corresponding	to	a	label	and	a	specific	property	of	an	Error
object.	The	routine	loops	through	each	Error	object,	exposes	the	value	for	each
specified	property,	and	displays	the	results	as	items	in	a	list.The	routine	provides
a	count	of	the	errors,	using	the	Errors	collection	Count	property,	and	clears	out
the	Errors	collection	(using	the	Clear	property).

Private	Sub	ErrorLog()
.	.	.	
Dim	errLoop	As	ADODB.Error
.	.	.	
'	Loop	through	each	Error	object	in	Errors	collection.
For	Each	errLoop	In	cn.Errors

			Dim	strError(5)
			Dim	i	As	Integer
															
			strError(0)	=	"Error	Number:	"	&	errLoop.Number
			strError(1)	=	"		Description:	"	&	errLoop.Description
			strError(2)	=	"		Source:	"	&	errLoop.Source
			strError(3)	=	"		SQL	State:	"	&	errLoop.SQLState

			strError(4)	=	"		Native	Error:	"	&	errLoop.NativeError
																
			'	Loop	through	the	five	specified	properties	of	Error	object.
			i	=	0
			Do	While	i	<	5
						Form2.lstErrors.AddItem	strError(i)
						i	=	i	+	1
			Loop
																
			Form2.lstErrors.AddItem	""
												
Next	
												
'	Create	string	for	summary	count	of	errors.
c	=	cn.Errors.Count	&	"	provider	error(s)	occurred."
												
'	Display	a	count	of	the	provider	errors.
Form2.lstErrors.AddItem	c
Form2.lstErrors.AddItem	""

'	Clear	the	Errors	collection.
cn.Errors.Clear

See	Also

ADO	Connection	and	Error	Handling

ADO	and	SQL	Server

Handling	Data	Definition	Language
Data	definition	language	(DDL)	statements	are	SQL	statements	that	support	the
definition	or	declaration	of	database	objects	(for	example,	CREATE	TABLE,
DROP	TABLE,	and	ALTER	TABLE).

You	can	use	the	ADO	Command	object	to	issue	DDL	statements.	To
differentiate	DDL	statements	from	a	table	or	stored	procedure	name,	set	the
CommandType	property	of	the	Command	object	to	adCmdText.	Because
executing	DDL	queries	with	this	method	does	not	generate	any	recordsets,	there
is	no	need	for	a	Recordset	object.

Microsoft®	SQL	Server™	2000	provides	a	group	of	query	processing	options
that	can	be	specified	by	using	the	SET	statement.	These	SET	options	do	not
generate	result	sets	and	can	be	treated	as	the	same	category	of	DDL	queries.

This	example	shows	the	use	of	the	Command	object	to	turn	off	the	SET
NOCOUNT	option	of	the	Transact-SQL	SET	statement.	This	example	drops	a
table,	creates	a	table,	and	then	inserts	data	into	the	new	table	by	using	the
Execute	method	of	the	Command	object.	Recordset	objects	are	not	created	for
this	type	of	query.	The	ADOTestTable	table	may	not	exist	in	the	database,	so
execution	of	DROP	TABLE	ADOTestTable	may	generate	an	error	indicating	the
table	does	not	exist	in	the	database.	Some	error	handling	code	is	provided	for
this	situation.	The	SET	NOCOUNT	ON	SET	option	is	also	executed.

Dim	Cn	As	New	ADODB.Connection
Dim	Cmd	As	New	ADODB.Command

'	If	the	ADOTestTable	does	not	exist,	go	to	AdoError.
On	Error	GoTo	AdoError

'	Connect	using	the	SQLOLEDB	provider.
cn.Provider	=	"sqloledb"
cn.Properties("Data	Source").Value	=	"MyServerName"
cn.Properties("Initial	Catalog").Value	=	"northwind"
cn.Properties("Integrated	Security").Value	=	"SSPI"

cn.Open

'	Set	up	command	object.
Set	Cmd.ActiveConnection	=	Cn
Cmd.CommandText	=	"DROP	TABLE	ADOTestTable"
Cmd.CommandType	=	adCmdText
Cmd.Execute

Done:
				Cmd.CommandText	=	"SET	NOCOUNT	ON"
				Cmd.Execute
				Cmd.CommandText	=	"CREATE	TABLE	ADOTestTable	(id	int,	name	char(100))"
				Cmd.Execute
				Cmd.CommandText	=	"INSERT	INTO	ADOTestTable	values(1,	'Jane	Doe')"
				Cmd.Execute
				Cn.Close
Exit	Sub

AdoError:
						Dim	errLoop	As	Error
						Dim	strError	As	String

						'	Enumerate	Errors	collection	and	display	properties	of
						'	each	Error	object.
						Set	Errs1	=	Cn.Errors
						For	Each	errLoop	In	Errs1
												Debug.Print	errLoop.SQLState
												Debug.Print	errLoop.NativeError
												Debug.Print	errLoop.Description
						Next

						GoTo	Done

End	Sub

Using	ADOX
Microsoft®	ActiveX®	Data	Objects	Extensions	for	Data	Definition	Language
and	Security	(ADOX)	is	an	extension	to	the	ADO	objects	and	programming
model.	ADOX	includes	objects	for	schema	creation	and	modification,	as	well	as
security.	However,	certain	features	of	ADOX	are	not	be	supported	by	the
Microsoft	SQL	Server	OLE	DB	Provider	(SQLOLEDB).	For	more	information,
see	Provider	Support	for	ADOX.

ADO	and	SQL	Server

Managing	Long	Data	Types
Long	data	types	include	ntext,	text,	and	image	data	types.	ntext,	text,	and
image	data	can	be	so	large	that	they	cannot	be	retrieved	in	one	operation	or	fit
into	memory.	If	the	long	data	can	fit	into	memory,	the	Value	property	of	the
Field	object	can	be	used	to	retrieve	all	the	data	in	one	operation.	If	the	long	data
is	too	large	to	fit	into	memory,	the	data	must	be	retrieved	or	written	in	chunks.
You	can	manipulate	long	data	in	chunks	through	the	Field	object	or	through	the
Parameter	object.

The	Field	object	allows	you	to	write	and	read	long	data	through	the	Recordset
object.	The	AppendChunk	method	of	the	Field	object	allows	you	to	append
data	at	the	end	of	the	current	data	when	the	query	has	already	been	executed.
The	GetChunk	method	allows	you	to	read	the	data	in	chunks.

With	the	Parameter	object,	there	is	no	GetChunk	method,	and	there	is	no
Recordset	object	when	you	are	dealing	with	long	data	at	run	time.	With	the
Parameter	object,	long	data	is	bound	at	run	time	and	executed	with	the
Command	object.

There	are	some	restrictions	for	long	data	when	using	MSDASQL.	If	no	server
cursor	is	used,	all	long	columns	must	be	to	the	right	of	all	nonlong	columns.	If
there	are	multiple	long	columns,	the	long	columns	must	be	accessed	in	order
(from	left	to	right).

This	example	shows	how	to	use	ADO	with	SQLOLEDB	to	read	and	write	image
data.	The	critical	routines	are	the	while	loops	that	copy	the	long	data	(image)	to
a	variable	and	write	the	variable	to	a	record	in	chunks	(using	the	GetChunk	and
AppendChunk	methods).

Before	setting	up	the	destination	table	in	this	example,	make	sure	to	run	the
sp_dboption	stored	procedure:

EXEC	sp_dboption	'pubs',	'Select	into/bulkcopy',	'True'

The	destination	table	is	a	copy	of	the	pub_info	table	in	the	pubs	database.
Create	the	table	by	running:

USE	pubs

SELECT	*	INTO	pub_info_x
			FROM	pub_info
GO

The	pub_info_x	table	is	the	destination	table	in	which	the	long	data	will	be
inserted.

The	ADO	code	is:

Public	Sub	AppendChunkX()

			Dim	cn	As	ADODB.Connection
			Dim	rstPubInfo	As	ADODB.Recordset
			Dim	strCn	As	String
			Dim	strPubID	As	String
			Dim	strPRInfo	As	String
			Dim	lngOffset	As	Long
			Dim	lngLogoSize	As	Long
			Dim	varLogo	As	Variant
			Dim	varChunk	As	Variant

			Const	conChunkSize	=	100

			'	Open	a	connection.
			Set	cn	=	New	ADODB.Connection
			strCn	=	"Server=srv;Database=pubs;UID=sa;Pwd=;"

			cn.Provider	=	"sqloledb"
			cn.Open	strCn

			'Open	the	pub_info_x	table.
			Set	rstPubInfo	=	New	ADODB.Recordset
			rstPubInfo.CursorType	=	adOpenDynamic
			rstPubInfo.LockType	=	adLockOptimistic

			rstPubInfo.Open	"pub_info_x",	cn,	,	,	adCmdTable

			'Prompt	for	a	logo	to	copy.
			strMsg	=	"Available	logos	are	:	"	&	vbCr	&	vbCr

			Do	While	Not	rstPubInfo.EOF
						strMsg	=	strMsg	&	rstPubInfo!pub_id	&	vbCr	&	_	
								Left(rstPubInfo!pr_info,
									InStr(rstPubInfo!pr_info,	",")	-	1)	&	vbCr	&	vbCr
						rstPubInfo.MoveNext
			Loop

			strMsg	=	strMsg	&	"Enter	the	ID	of	a	logo	to	copy:"
			strPubID	=	InputBox(strMsg)

			'	Copy	the	logo	to	a	variable	in	chunks.
			rstPubInfo.Filter	=	"pub_id	=	'"	&	strPubID	&	"'"
			lngLogoSize	=	rstPubInfo!logo.ActualSize
			Do	While	lngOffset	<	lngLogoSize
						varChunk	=	rstPubInfo!logo.GetChunk(conChunkSize)
						varLogo	=	varLogo	&	varChunk
						lngOffset	=	lngOffset	+	conChunkSize
			Loop

			'	Get	data	from	the	user.
			strPubID	=	Trim(InputBox("Enter	a	new	pub	ID:"))
			strPRInfo	=	Trim(InputBox("Enter	descriptive	text:"))

			'	Add	a	new	record,	copying	the	logo	in	chunks.
			rstPubInfo.AddNew
			rstPubInfo!pub_id	=	strPubID
			rstPubInfo!pr_info	=	strPRInfo
			lngOffset	=	0			'	Reset	offset.

			Do	While	lngOffset	<	lngLogoSize
						varChunk	=	LeftB(RightB(varLogo,	lngLogoSize	-	_	
								lngOffset),conChunkSize)
						rstPubInfo!logo.AppendChunk	varChunk
						lngOffset	=	lngOffset	+	conChunkSize
			Loop

			rstPubInfo.Update

			'	Show	the	newly	added	data.
			MsgBox	"New	record:	"	&	rstPubInfo!pub_id	&	vbCr	&	_	
					"Description:	"	&	rstPubInfo!pr_info	&	vbCr	&	_	
					"Logo	size:	"	&	rstPubInfo!logo.ActualSize

			rstPubInfo.Close
			cn.Close

End	Sub

See	Also

ADO	and	Long	Data	Types	(C++)

ADO	and	Long	Data	Types	(Visual	Basic)

ADO	and	Long	Data	Types	(Web)

ADO	and	SQL	Server

ADO	Support	for	SQL	Server	XML	Features
ADO	applications	can	use	the	Microsoft	OLE	DB	Provider	for	SQL	Server
(SQLOLEDB)	to	use	the	XML	features	of	Microsoft®	SQL	Server™	2000.
Applications	can:

Use	template	queries.	A	template	is	a	valid	XML	document,	containing
one	or	more	SQL	queries.

Use	XML	Views	on	the	database.	XML	Views	provide	a	mapping	from
an	XML	document	to	a	relational	database.	The	mapping	is	done	by
annotating	an	XML-Data	Reduced	Schema.	Once	the	XML	View	is
defined,	an	XPath	query	can	be	executed	to	retrieve	data	from	the
database.

Use	the	OpenXML	extension	to	Transact-SQL.	OpenXML	provides	a
relational	view	on	an	XML	document	by	allowing	stored	procedures	to
process	XML	and	generate	rowsets	from	the	data	for	use	by	Transact
SQL	statements.

ADO	and	SQL	Server

XML-Related	Properties
The	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	implements
several	new	provider-specific	properties	that	are	used	to	retrieve	XML	from
Microsoft®	SQL	Server™	2000.	These	properties	are	available	to	ADO
applications	as	dynamic	properties.

These	properties	are	used	to	specify	the	mapping	schema	against	which	an
XPath	query	is	specified	as	a	command	or	to	specify	an	XSL	file	to	process	the
results.

Property	Name Description
Base	Path	Property The	Base	Path	property	specifies	a	file

path	or	URL	to	use	for	resolving	relative
paths	in	a	template	(for	example,	XSL	on	a
template	root	directory,	sql:mapping-
schema	attribute	on	a	sql:xpath:query,
external	schema	references	in	an	inline
schema,	or	Mapping	Schema	and	XML
Root	properties).

Content	Type	Property The	Content	Type	property	returns	the
output	content	type	of	an	XML
transmission.

Mapping	Schema	Property The	Mapping	Schema	property	specifies	a
file	name	or	URL	that	points	to	the
mapping	schema	used	by	the	provider	to
translate	an	XPath	command.

SS	STREAM	FLAGS	Property The	SS	STREAM	FLAGS	property
specifies	how	an	application	manages
mapping	schemas,	XSL	files,	and
templates.

XML	Root	Property The	XML	Root	property	provides	a	root
tag	in	which	the	query	result	is	wrapped	to
return	a	well-formed	document.

XSL	Property The	XSL	property	specifies	an	XSL	file

name	or	URL	applied	to	the	result	of	a
query.

These	ADO	properties	map	to	standard	OLE	DB	2.6	properties	and	are	used
when	retrieving	the	results	of	a	Command	execution	as	a	stream.

Property	Name Description
Output	Encoding	Property The	Output	Encoding	property	specifies

the	encoding	to	use	in	the	stream	set	or
returned	by	the	Execute	method.

Output	Stream	Property The	Output	Stream	property	specifies	the
stream	containing	the	results	returned	by
the	Execute	method.

ADO	and	SQL	Server

Using	Streams	for	Command	Input
ADO	queries	can	be	specified	by	setting	the	CommandText	property	on	the
Command	object	or	by	associating	the	stream	with	the	Command	object	using
the	CommandStream	property.This	example	demonstrates	using	a	stream	to
access	the	Northwind	database.	It	uses	an	Active	Server	Page	(ASP)	and	is
written	in	Microsoft	Visual	Basic®	Scripting	Edition.

Using	XML	Template	Queries	in	Streams
The	application	initializes	the	ADO	Stream	object	to	contain	query	text:

Dim	adoStreamQuery
Set	adoStreamQuery	=	Server.CreateObject("ADODB.Stream")
adoStreamQuery.Open

The	application	requires	a	reference	to	the	XML	Namespace	identified	by	the
sql:	prefix	of	the	<sql:query>	tag.	The	SELECT	statement	with	a	reference	to	the
sql:	Namespace	takes	this	form:

<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<sql:query>	SELECT	*	FROM	PRODUCTS	ORDER	BY	PRODUCTNAME	FOR	XML	AUTO	</sql:query>
</ROOT>

By	using	the	FOR	XML	AUTO	mode	of	the	SELECT	statement,	this	query
requests	that	results	are	returned	in	XML	format,	rather	than	as	a	Recordset
object.	For	more	information,	see	Retrieving	and	Writing	XML	Data.

The	command	is	then	assigned	to	a	string	variable,	and	copied	to	the
adoStreamQuery	stream,	which	is	associated	with	an	ADO	Command	object:

sQuery	=	"<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
<sql:query>	SELECT	*	FROM	PRODUCTS	ORDER	BY	PRODUCTNAME	FOR	XML	AUTO	</sql:query>
</ROOT>"
adoStreamQuery.WriteText	sQuery,	adWriteChar
adoStreamQuery.Position	=	0

JavaScript:hhobj_1.Click()

Dim	adoCmd	
Set	adoCmd	=	Server.CreateObject("ADODB.Command")
Set	adoCmd.CommandStream	=	adoStreamQuery

Setting	the	Command	Language	Dialect
The	second	requirement	of	the	application	is	setting	the	command	language
dialect,	which	specifies	how	the	Microsoft	OLE	DB	Provider	for	SQL	Server
interprets	the	command	text	received	from	ADO.	The	dialect	is	specified	by	a
globally	unique	identifier	(GUID)	and	is	set	using	the	Dialect	property	of	the
Command	object.	The	Microsoft	OLE	DB	Provider	for	SQL	Server
(SQLOLEDB)	supports	these	values.

ADO	Value OLE	DB	Constant Description
{C8B521FB-5CF3-11CE-
ADE5-00AA0044773D}

DBGUID_DEFAULT Provider-specific
default	behavior

{C8B522D7-5CF3-11CE-
ADE5-00AA0044773D}

DBGUID_SQL Transact-SQL	query

{5D531CB2-E6Ed-11D2-
B252-00C04F681B71}

DBGUID_MSSQLXMLXML	template
query

{EC2A4293-E898-11D2-
B1B7-00C04F680C56}

DBGUID_XPATH XPath	query

The	command	dialect	for	XML	queries	is	specified	as	follows:

AdoCmd.Dialect	=	"{5D531CB2-E6Ed-11D2-B252-00C04F681B71}"

ADO	and	SQL	Server

Retrieving	Result	Sets	into	Streams
In	addition	to	receiving	results	in	a	Recordset	object,	an	ADO	application	can
use	the	Stream	object	to	contain	these	results	in	XML	format.	These	results	also
can	be	streamed	into	any	object	that	supports	the	OLE	DB	IStream	interface,
(for	example,	the	ASP	Response	object.

This	example	demonstrates	using	a	stream	to	access	the	Northwind	database.	It
uses	an	Active	Server	Page	(ASP)	and	is	written	in	Microsoft	Visual	Basic
Scripting	Edition	(VBScript).

FOR	XML	Queries
The	FOR	XML	clause,	which	allows	SQL	Server	to	return	data	in	the	form	of	an
XML	document,	has	been	added	to	the	SELECT	statement	in	SQL	Server	2000.
The	syntax	of	the	FOR	XML	clause	is:

FOR	XML	[RAW|AUTO|EXPLICIT]

FOR	XML	RAW	generates	generic	row	elements	with	column	values	as
attributes.	FOR	XML	AUTO	uses	heuristics	to	generate	a	hierarchical	tree	with
element	names	based	on	table	names.	FOR	XML	EXPLICIT	provides	complete
control	over	the	format	of	the	XML	returned	by	the	query.	For	more	information,
see	Retrieving	XML	Data	Using	FOR	XML.

The	command	can	be	entered	in	the	form	of:

<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'>
SELECT	*	FROM	PRODUCTS	ORDER	BY	PRODUCTNAME	FOR	XML	AUTO

The	command	can	also	be	entered	in	the	form	of	a	template	query.	When
constructing	a	template	query	for	use	with	the	ADO	Command	object,	the
application	must	enclose	the	command	text	in	<sql:query>	</sql:query>	tags	to
reference	an	XML	Namespace	specific	to	SQL	Server	queries.	The	command	is
entered	in	the	form	of:

<sql:query>	SELECT	*	FROM	PRODUCTS	ORDER	BY	PRODUCTNAME
FOR	XML	AUTO	</sql:query>

JavaScript:hhobj_1.Click()

The	application	must	also	specify	where	to	send	the	output	of	the	query.	When
using	the	FOR	XML	clause,	the	application	can	specifies	a	Stream	object	to
receive	the	resulting	XML	output.	In	this	example,	the	application	uses	the	ASP
Response	object	by	setting	the	Output	Stream	property	on	the	ADO
Command	object:

adoCmd.Properties("Output	Stream")	=	Response

After	the	output	stream	has	been	associated	with	the	Command	object	using	the
Output	Stream	property,	the	command	can	be	executed.	The	application	sets
the	adExecuteStream	parameter	to	retrieve	results	in	the	form	of	a	stream	instead
as	a	record	set,	which	is	the	default.	This	example	encloses	the	stream	in	XML
tags	that	create	an	XML	data	island.

Response.write	"<XML	ID='MyDataIsle'>"
adoCmd.Execute	,	,	adExecuteStream
Response.write	"</XML>"

At	this	point	in	the	code	execution,	the	application	has	streamed	XML	to	the
client	browser	and	to	display	it	using	client-side	VBScript	to	bind	the	XML
document	to	an	instance	of	the	Document	Object	Model	(DOM),	looping
through	each	child	node	to	build	a	list	of	products	in	HTML:

<SCRIPT	language="VBScript"	For="window"	Event="onload">

Dim	xmlDoc
Set	xmlDoc	=	MyDataIsle.XMLDocument
xmlDoc.resolveExternals=false
xmlDoc.async=false

Dim	root,	child
Set	root	=	xmlDoc.documentElement

For	each	child	in	root.childNodes
			dim	OutputXML
			OutputXML	=	document.all("log").innerHTML

			document.all("log").innerHTML	=	OutputXML	&	""	&	child.getAttribute("ProductName")	&	""
Next

</SCRIPT>
</HEAD>
<BODY>
<H3>Client-side	processing	of	XML	Document	MyDataIsle</H3>
<UL	id=log>

</BODY>
</HTML>

Example
This	is	the	complete	code	listing	from	the	ASP	described	previously.	The	ASP:

Queries	SQL	Server	2000.

Binds	the	resulting	XML	stream	to	the	DOM.

Displays	data	from	several	nodes.

<%@	LANGUAGE	=	VBScript				%>
<%		Option	Explicit						%>

<HTML>
<HEAD>
<META	NAME="GENERATOR"	Content="Microsoft	Developer	Studio"/>
<META	HTTP-EQUIV="Content-Type"	content="text/html"	charset="iso-8859-1"/>
<TITLE>ADO	2.6	E</TITLE>

<!--	#include	file="adovbs.inc"	-->
<%
			Response.Write	"<H3>Server-side	processing</H3>"

							Dim	adoConn
Set	adoConn	=	Server.CreateObject("ADODB.Connection")

Dim	sConn
sConn	=	"Provider=SQLOLEDB;Data	Source=MYSERVER1;Initial	Catalog=Northwind;User	ID=SA;Password=;"
adoConn.ConnectionString	=	sConn
adoConn.CursorLocation	=	adUseClient
adoConn.Open

			Dim	adoCmd
Set	adoCmd	=	Server.CreateObject("ADODB.Command")
Set	adoCmd.ActiveConnection	=	adoConn

			Dim	sQuery
sQuery	=	"<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'><sql:query>SELECT	*	FROM	PRODUCTS	ORDER	BY	PRODUCTNAME	FOR	XML	AUTO</sql:query></ROOT>"

			Dim	adoStreamQuery
Set	adoStreamQuery	=	Server.CreateObject("ADODB.Stream")
adoStreamQuery.Open
			adoStreamQuery.WriteText	sQuery,	adWriteChar
			adoStreamQuery.Position	=	0

			Set	adoCmd.CommandStream	=	adoStreamQuery
			adoCmd.Dialect	=	"{5D531CB2-E6Ed-11D2-B252-00C04F681B71}"

			Response.write	"Pushing	XML	to	client	for	processing	"		&	"
"

			adoCmd.Properties("Output	Stream")	=	Response
Response.write	"<XML	ID='MyDataIsle'>"
			adoCmd.Execute	,	,	adExecuteStream
			Response.write	"</XML>"
%>

<SCRIPT	language="VBScript"	For="window"	Event="onload">
			
			Dim	xmlDoc
			Set	xmlDoc	=	MyDataIsle.XMLDocument
			xmlDoc.resolveExternals=false
			xmlDoc.async=false
						
			Dim	root,	child
			Set	root	=	xmlDoc.documentElement

			For	each	child	in	root.childNodes
						dim	OutputXML
						OutputXML	=	document.all("log").innerHTML
						document.all("log").innerHTML	=	OutputXML	&	""	&	child.getAttribute("ProductName")	&	""
			Next
			
</SCRIPT>
</HEAD>
<BODY>
			<H3>Client-side	processing	of	XML	Document	MyDataIsle</H3>
			<UL	id=log>
			
</BODY>
</HTML>

See	Also

ADO	and	FOR	XML

ADO	and	SQL	Server

Mapping	an	XML	Schema	to	a	Relational	Schema
Using	Annotated	Schemas
An	application	can	create	XML	views	of	relational	data	using	annotated	XDR
(XML-Data	Reduced)	schemas,	which	can	then	be	queried	using	XPath	queries.
This	process	is	conceptually	similar	to	creating	views	using	Transact-SQL
CREATE	VIEW	statements,	and	then	specifying	SQL	queries	against	the	view.
Annotated	schemas,	which	are	Microsoft-developed	extensions	to	the	XML	Data
specification,	allow	client	applications	to	view	a	relational	database	as	an	XML
document	instead	of	a	group	of	tables.	An	XML	file	that	maps	XML	elements
and	attributes	to	tables	and	columns	of	a	relational	database	is	called	a	Mapping
Schema.	Applications	can	use	these	two	technologies	to	query	Microsoft®	SQL
Server™	without	using	SQL	commands	and	without	knowing	the	relational
design	of	the	database.	For	more	information	about	XPath	queries,	see	Using
XPath	Queries.	For	more	information	about	XML	views	and	annotated	schemas,
see	Creating	XML	Views	Using	Annotated	XDR	Schemas.

The	following	example	demonstrates	how	to	build	an	XPath	query	that	is
functionally	equivalent	to	this	Transact-SQL	statement:

SELECT	o.OrderID,	o.OrderDate	from	Orders	o,	Customers	c,	
WHERE	o.CustomerID	=	c.CustomerID	and	c.CompanyName	=	?

This	example	passes	the	CompanyName,	Tortuga	Restaurante,	as	an	input
parameter.

The	Customers	and	Orders	tables	from	the	Northwind	database	are	used	to
create	a	mapping	schema.	This	is	the	structure	of	the	Customers	and	Orders
tables,	including	primary	and	foreign	key	relationships.

CREATE	TABLE	[Customers]	
			[CustomerID]	[nchar]	(5)	NOT	NULL	,
			[CompanyName]	[nvarchar]	(40)	NOT	NULL	,
			[ContactName]	[nvarchar]	(30)	NULL	,
			[ContactTitle]	[nvarchar]	(30)		NULL	,
			[Address]	[nvarchar]	(60)	NULL	,

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

			[City]	[nvarchar]	(15)	NULL	,
			[Region]	[nvarchar]	(15)	NULL	,
			[PostalCode]	[nvarchar]	(10)	NULL	,
			[Country]	[nvarchar]	(15)	NULL	,
			[Phone]	[nvarchar]	(24)	NULL	,
			[Fax]	[nvarchar]	(24)	NULL	

			PRIMARY	KEY	[CustomerID]

CREATE	TABLE	[Orders]	(
			[OrderID]	[int]	IDENTITY	(1,	1)	NOT	NULL,
			[CustomerID]	[nchar]	(5)	NULL,
			[EmployeeID]	[int]	NULL,
			[OrderDate]	[datetime]	NULL,
			[RequiredDate]	[datetime]	NULL,
			[ShippedDate]	[datetime]	NULL,
			[ShipVia]	[int]	NULL,
			[Freight]	[money]	NULL,
			[ShipName]	[nvarchar]	(40)	NULL,
			[ShipAddress]	[nvarchar]	(60)	NULL,
			[ShipCity]	[nvarchar]	(15)	NULL,
			[ShipRegion]	[nvarchar]	(15)	NULL,
			[ShipPostalCode]	[nvarchar]	(10)	NULL,
			[ShipCountry]	[nvarchar]	(15)	NULL

			PRIMARY	KEY	[OrderID]
			FOREIGN	KEY	[Customers].[CustomerID]

The	example	SQL	query	requires	the	OrderID,	OrderDate,	and	CustomerID
columns	from	the	Orders	table,	and	the	CompanyName	and	CustomerID
columns	from	the	Customers	table.

The	application	also	requires	a	mapping	schema,	which	in	this	example,	is	stored
in	the	Orders.xml	file	in	the	virtual	root	directory.

The	document	contains	Namespace	declarations,	specifically	the	XML-Data
namespace.	These	table-mapping	elements	are	also	included:

The	sql:relation	attribute,	which	is	used	to	identify	the	table	or	view	in
the	database.	Inside	each	element	are	attributes	that	map	to	columns	in
the	table	identified	by	the	element.	

The	sql:field	attribute,	which	is	used	to	identify	the	field	in	the	SQL
table.	

The	sql:relationship	attribute,	which	is	used	to	identify	the	primary	and
foreign	key	relationships	between	the	two	tables.

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"
											xmlns:dt="urn:schemas-microsoft-com:datatypes"
								xmlns:sql="urn:schemas-microsoft-com:xml-sql">

<ElementType	name="Order"	sql:relation="Orders"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="OrderID"	/>
				<AttributeType	name="OrderDate"	/>
				<attribute	type="CustomerID"	sql:field="CustomerID"	/>
				<attribute	type="OrderID"	sql:field="OrderID"	/>
				<attribute	type="OrderDate"	sql:field="OrderDate"	/>
</ElementType>

<ElementType	name="Customer"	sql:relation="Customers"	>
				<AttributeType	name="CustomerID"	/>
				<AttributeType	name="CompanyName"	/>
				<attribute	type="CustomerID"	sql:field="CustomerID"	/>
				<attribute	type="CompanyName"	sql:field="CompanyName"	/>
						<element	type="Order"	>
						<sql:relationship	key-relation="Customers"	key="CustomerID"

									foreign-key="CustomerID"	foreign-relation="Orders"	/>
				</element>
</ElementType>
</Schema>

Using	an	Active	Server	Page	(ASP),	an	application	user	generates	a	URL
containing	a	company	name	for	which	he	or	she	wants	to	see	orders.	In	this
example,	the	URL	takes	the	form:

http://WebServer/Vroot/Orders.asp?CompanyName="Tortuga%20Restaurante"

Using	the	customer	name	passed	in	by	the	user,	the	ASP	constructs	this	XPath
query	to	run	against	the	mapping	schema:

Customer[@CompanyName="Tortuga	Restaurante"]

This	query	string	is	passed	to	the	ADO	Command	object	and	executed,
returning	the	results	in	an	XML	stream.

The	ASP	begins	by	using	the	ASP	Request	object	to	capture	the	CompanyName
passed	in	using	the	URL	and	storing	it	in	a	string	variable	called
sCompanyName.

dim	sCompanyName
sCompanyName	=	Request.QueryString("CompanyName")	

The	application	then	creates	ADO	Connection	and	Command	objects.	Because
the	application	issues	commands	written	as	XPATH	queries,	it	must	use	the
XPATH	command	dialect.

adoCmd.CommandText	=	"Customer[@CompanyName="	&	sCompanyName	&	"]"
adoCmd.Dialect	=	"{ec2a4293-e898-11d2-b1b7-00c04f680c56}"

The	application	then	sets	properties	specific	to	the	Microsoft	OLE	DB	Provider
for	SQL	Server:	Mapping	Schema	and	Base	Path.	The	application	sets	the
Mapping	Schema	property	to	the	name	of	the	mapping	schema	file,	and	Base
Path	property	to	the	directory	containing	the	mapping	schema	file.

			adoCmd.Properties("Mapping	Schema")	=	"Orders.xml"

			adoCmd.Properties("Base	Path")	=	"C:\INETPUB\WWWROOT\Kowalski\"
			

After	the	Output	Stream	property	is	set	to	the	ASP	Response	object,	the
command	can	be	executed.	The	application	sets	the	adExecuteStream	parameter
of	the	Command	object,	and	encloses	the	setting	in	XML	tags	to	create	an	XML
data	island.

Response.write	"<XML	ID='MyDataIsle'>"
			adoCmd.Execute	,	,	adExecuteStream
			Response.write	"</XML>"
%>

At	this	point	in	the	code	execution,	the	application	has	passed	the	XML	stream
to	the	client	browser.	The	XML	stream	is	displayed	using	client-side	VBScript	to
bind	the	XML	document	to	an	instance	of	the	DOM,	and	by	looping	through
each	child	node	to	build	a	list	of	OrderIDs	and	OrderDates	using	HTML.

Examples
This	is	the	complete	code	listing	from	the	ASP	described	previously.

<HTML>
<HEAD>
<META	NAME="GENERATOR"	Content="Microsoft	Developer	Studio"/>
<META	HTTP-EQUIV="Content-Type"	content="text/html"	charset="iso-8859-1"/>
<TITLE>XPATH	Query	Annotated	Schema	Orders.asp</TITLE>

<STYLE>
			BODY
			{
						FONT-FAMILY:	Tahoma;
						FONT-SIZE:	8pt;
						OVERFLOW:	auto
			}
			H3

			{
						FONT-FAMILY:	Tahoma;
						FONT-SIZE:	8pt;
						OVERFLOW:	auto
			}

</STYLE>

<!--	#include	file="adovbs.inc"	-->
<%
			dim	sCompanyName
			sCompanyName	=	Request.QueryString("CompanyName")
			If	Len(sCompanyName)	=	0	then
						Response.redirect	"http://MYSERVER1/Kowalski/OrdersErr.asp"
			Else
Dim	sConn
sConn	=	"Provider=SQLOLEDB;	Data	Source=MYSERVER1;	Initial	Catalog=Northwind;	
User	ID=SA;Password=;"

Dim	adoConn
Set	adoConn	=	Server.CreateObject("ADODB.Connection")
			adoConn.ConnectionString	=	sConn
adoConn.CursorLocation	=	adUseClient
adoConn.Open

						Dim	adoCmd
										Set	adoCmd	=	CreateObject("ADODB.Command")
										Set	adoCmd.ActiveConnection	=	adoConn
										adoCmd.CommandText	=	"/Customer[@CompanyName="	&	sCompanyName	&	"]"
adoCmd.Dialect	=	"{ec2a4293-e898-11d2-b1b7-00c04f680c56}"

							adoCmd.Properties("Mapping	Schema")	=	"Orders.xml"
										adoCmd.Properties("Base	Path")	=	"C:\INETPUB\WWWROOT\Kowalski\"

										adoCmd.Properties("Output	Stream")	=	Response

Response.write	"<XML	ID='MyDataIsle'>"
						adoCmd.Execute	,	,	adExecuteStream
						Response.write	"</XML>"
End	If
%>

<SCRIPT	language="VBScript"	For="window"	Event="onload">
			
			Dim	xmlDoc
			Set	xmlDoc	=	MyDataIsle.XMLDocument
			xmlDoc.resolveExternals=false
			xmlDoc.async=false
						
			Dim	root,	child,	header,	OutputHeader
			Set	root	=	xmlDoc.documentElement

			OutputHeader	=	document.all("header").innerHTML	
			OutputHeader	=	OutputHeader	&	"CustomerID:	"	&	root.getAttribute("CustomerID")
			document.all("header").innerHTML	=	OutputHeader	
			
			For	each	child	in	root.childNodes
						dim	OutputOrders,	OrderList
						OutputOrders	=	document.all("Orders").innerHTML	
						OrderList	=	"	Order	#	"	&	child.getAttribute("OrderID")	&	",	Date:	"	&	
child.getAttribute("OrderDate")	&	""
						TotalPage	=	OutputOrders	&	OrderList
						document.all("Orders").innerHTML	=	TotalPage
			Next

</SCRIPT>

</HEAD>
<BODY>
			<H3>Client-side	processing	of	XML	Document	MyDataIsle</H3>
			<DIV	id=Header></DIV>
			<UL	id=Orders>
</BODY>
</HTML>

See	Also

ADO	and	XPath	Query

ADO	and	SQL	Server

ADO	Support	for	OpenXML
OpenXML	is	a	SQL	Server	2000	extension	to	Transact-SQL	that	allows	stored
procedures	to	process	XML	and	generate	rowsets	from	the	data	for	use	by
Transact-SQL	statements.	In	the	following	example,	ADO	passes	an	XML
document	to	a	stored	procedure.	The	stored	procedure	executes	a	SELECT
statement	generating	a	rowset.	This	rowset	can	then	be	processed	by	the	stored
procedure,	or	returned	to	the	client	as	an	ADO	Recordset.

To	use	stored	procedures	to	process	XML:

1.	 Execute	the	sp_xml_preparedocument	stored	procedure	to	prepare
the	XML	document	for	use	by	Transact-SQL	statements.

2.	 Use	the	OpenXML-generated	rowset	in	one	or	more	queries.

3.	 Execute	sp_xml_removedocument	to	remove	the	prepared	XML
document	from	memory.

The	ASP	calls	Command.Execute	to	execute	the	stored	procedure,	and	passes
in	the	XML	document.	The	application	then	executes
sp_xml_preparedocument	to	create	an	in-memory	representation	of	the	XML
document.	sp_xml_preparedocument	has	an	output	parameter	(@iDoc,	int),
which	is	a	pointer	to	the	prepared	XML	document,	and	an	input	parameter
(@XMLDoc,	VarChar(2000),	which	contains	the	text	of	an	XML	document	to
be	accessed	using	T-SQL	statements.

						EXECUTE	sp_xml_preparedocument	@iDoc	OUTPUT,	@XMLDoc

In	this	SELECT	statement,	the	application	passes	in	the	@iDoc	handle,	an	XPath
command	'/Root/Customers',	a	flag	'1'	indicating	that	the	XML	is	attribute-
centric,	and	a	WITH	clause	describing	the	structure	of	the	rowset	to	be	returned.

SELECT	*	FROM	OpenXML(@iDoc,	'/ROOT/Customers',1)	
						WITH	(CustomerID	varchar(10),	ContactName	varchar(20))	

Any	Transact-SQL	statement	that	operates	with	a	rowset	can	be	used	with	the
OpenXML	keyword.	For	example,	an	application	can	also	use	INSERT,
UPDATE,	DELETE,	and	JOIN	statements.

After	the	application	completes	processing	of	the	in-memory	XML	document,	it
releases	the	document	by	passing	the	@iDoc	parameter	to
sp_xml_removedocument:

			EXECUTE	sp_xml_removedocument	@iDoc

For	more	information	about	OpenXML,	see	Writing	XML	Using	OpenXML.

Example
This	is	the	complete	listing	of	the	stored	procedure	discussed	previously.

CREATE	PROCEDURE	SP_OpenXML_Example	
						@XMLDoc	varchar(2000)
AS
						DECLARE	@ReturnCode	INT
			DECLARE	@iDoc	int

						EXECUTE	sp_xml_preparedocument	@iDoc	OUTPUT,	@XMLDoc

			SELECT	*	FROM	OpenXML(@iDoc,	'/ROOT/Customers',1)	
									WITH	(CustomerID	varchar(10),	ContactName	varchar(20))	

			EXECUTE	sp_xml_removedocument	@iDoc

						SELECT	@ReturnCode	=	1
			RETURN	@ReturnCode
GO

Active	Server	Page
This	is	the	complete	listing	of	the	ASP	discussed	previously.

JavaScript:hhobj_1.Click()

<HTML>
<HEAD>
<META	NAME="GENERATOR"	Content="Microsoft	Developer	Studio"/>
<META	HTTP-EQUIV="Content-Type"	content="text/html"	charset="iso-8859-1"/>
<TITLE>ADO	2.6	OpenXML	Example	-	OpenXML.asp</TITLE>

<STYLE>
			BODY
			{
						FONT-FAMILY:	Tahoma;
						FONT-SIZE:	8pt;
						OVERFLOW:	auto
			}

			H3
			{
						FONT-FAMILY:	Tahoma;
						FONT-SIZE:	8pt;
						OVERFLOW:	auto
			}

</STYLE>

<!--	#include	file="adovbs.inc"	-->
<%
Response.Write	"Page	Generated	@	"	&	Now()	&	"
"

			Dim	sConn
			sConn	=	"Provider=SQLOLEDB;Data	Source=MYSERVER1;Initial	Catalog=Northwind;User	ID=SA;Password=;"

			Response.write	"Connect	String	=	"	&	sConn	&	"
"

			Dim	adoConn

			Set	adoConn	=	Server.CreateObject("ADODB.Connection")
			adoConn.ConnectionString	=	sConn
			adoConn.CursorLocation	=	adUseClient
			adoConn.Open

			Response.write	"ADO	Version	=	"	&	adoConn.Version	&	"
"
			Response.write	"adoConn.State	=	"	&	adoConn.State	&	"
"

			Dim	sXMLDoc,	sQuery

			sXMLDoc	=	"<ROOT>"
			sXMLDoc	=	sXMLDoc	&	"<Customers	CustomerID='VINET'	ContactName='Paul	Henriot'>"
			sXMLDoc	=	sXMLDoc	&	"<Orders	CustomerID='VINET'	EmployeeID='5'	OrderDate='1996-07-04T00:00:00'>"
			sXMLDoc	=	sXMLDoc	&	"<Order_0020_Details	OrderID='10248'	ProductID='11'	Quantity='12'/>"
			sXMLDoc	=	sXMLDoc	&	"<Order_0020_Details	OrderID='10248'	ProductID='42'	Quantity='10'/>"
			sXMLDoc	=	sXMLDoc	&	"</Orders>"
			sXMLDoc	=	sXMLDoc	&	"</Customers>"
			sXMLDoc	=	sXMLDoc	&	"<Customers	CustomerID='LILAS'	ContactName='Carlos	Gonzlez'>"
			sXMLDoc	=	sXMLDoc	&	"<Orders	CustomerID='LILAS'	EmployeeID='3'	OrderDate='1996-08-16T00:00:00'>"
			sXMLDoc	=	sXMLDoc	&	"<Order_0020_Details	OrderID='10283'	ProductID='72'	Quantity='3'/>"
			sXMLDoc	=	sXMLDoc	&	"</Orders>"
			sXMLDoc	=	sXMLDoc	&	"</Customers>"
			sXMLDoc	=	sXMLDoc	&	"</ROOT>"

sQuery	=	"SP_OpenXML_Example"
			Response.write	"sQuery	=	"	&	sQuery	&	"
"

			Dim	adoCmd
			Set	adoCmd	=	Server.CreateObject("ADODB.Command")
			Set	adoCmd.ActiveConnection	=	adoConn
			adoCmd.CommandText	=	sQuery
			adoCmd.CommandType	=	adCmdStoredProc
			adoCmd.Parameters.Refresh

			adoCmd.Parameters.Item(1).Value	=	sXMLDoc

			Dim	adoRS
			Set	adoRS	=	adoCmd.Execute()

			Response.write	"Data	=	"	&	adoRS.Fields(0).Value	&	"
"
			adoRS.Close

			Response.write	"ReturnValue	=	"	&	adoCmd.Parameters.Item(0).Value	&	"
"

%>
</HEAD>
<BODY>
</BODY>
</HTML>

See	Also

ADO	and	Open	XML

ADO	and	SQL	Server

SQL	Server	ADO	Programmer's	Reference
Microsoft®	ActiveX®	Data	Objects	(ADO)	is	a	Win32	API	used	by	applications
to	manipulate	data	in	a	database	server	through	an	OLE	DB	provider.

The	SQL	Server	ADO	Programmer's	Reference	does	not	document	all	of	the
ADO	features.	Those	features	that	have	provider-specific	properties,	parameters,
or	behaviors	when	used	with	the	Microsoft	OLE	DB	Provider	for	SQL	Server
(SQLOLEDB)	are	discussed.

SQLOLEDB	allows	ADO	to	access	Microsoft	SQL	Server,	and	supports	these
provider-specific	features:

Command	dynamic	properties

Connection	dynamic	properties

Connection	parameters

Recordset	dynamic	properties

These	features	use	ADO	2.6.

For	more	information	about	ADO,	see	the	MSDN	Library	at	the	Microsoft	Web
site.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO	and	SQL	Server

Objects
The	ADO	object	model	defines	a	collection	of	programmable	objects	that	can	be
used	by	any	of	the	Microsoft	Visual	languages	(Microsoft®	Visual	Basic®,
Microsoft	Visual	C++®,	and	Microsoft	Visual	J++™);	Web	scripting	languages
such	as	Visual	Basic	Scripting	Edition	and	Microsoft	JScript®;	and	generally,
any	platform	that	supports	both	COM	and	Automation.	The	ADO	object	model,
which	contains	nine	objects	and	four	collections,	is	designed	to	expose	the	most
commonly	used	features	of	OLE	DB.

The	following	diagram	shows	the	relationships	among	the	ADO	objects	and
collections:

The	Connection,	Command,	and	Recordset	objects	are	the	most	commonly
used	ADO	objects.

The	Connection	object	is	used	to	establish	connections	between	the
client	and	database	server.

The	Command	object	is	used	to	issue	commands,	such	as	SQL	queries
and	updates,	to	the	database.	

The	Recordset	object	is	used	to	view	and	manipulate	the	results	of	the
query.

Use	the	Parameters	collection	and	Parameter	objects	when	the	query	in	the
Command	object	requires	parameters.	The	Errors	collection	and	Error	object
are	accessed	through	the	Connection	object	after	a	provider	error	occurs.	The
Fields	collection	and	Field	object	are	accessed	through	the	Recordset	object
after	data	exists	in	the	Recordset	object,	and	through	the	Row	object.

The	Properties	collection	provides	information	about	the	characteristics	of	the
Connection,	Command,	Recordset,	Row,	Field,	and	Stream	objects.	Each
Property	object	belonging	to	the	Properties	collection	must	be	accessed
through	one	of	those	six	objects.

Although	ADO	defines	an	object	hierarchy,	all	ADO	objects	except	for	the
Error,	Field,	and	Property	objects	can	be	created	on	their	own.	(This	differs
somewhat	from	the	DAO	and	RDO	object	models,	where	an	object	must	often
be	qualified	with	its	parent	objects	when	used.)

Because	ADO	offers	flexibility	in	defining	programmable	objects,	there	are
often	several	ways	of	accomplishing	the	same	task.	For	example,	to	execute	a
query,	you	can	use	the	Execute	method	of	either	the	Connection	object	or	the
Command	object.

See	Also

Using	the	Fields	Collection	and	Field	Object

Using	Parameters

ADO	and	SQL	Server

Command	Object
The	Command	object	is	used	to	query	a	database	and	return	records	in	a
Recordset	object,	to	execute	a	bulk	operation,	or	to	manipulate	the	structure	of	a
database.

In	addition	to	the	standard	ADO	properties,	these	dynamic	properties	are	added
to	the	Properties	collection	of	the	Command	object.

Dynamic	Properties

Access	Order	Property Notification	Granularity	Property
Base	Path	Property Notification	Phases	Property
Blocking	Storage	Objects	Property Objects	Transacted	Property
Bookmark	Type	Property Others'	Changes	Visible	Property
Bookmarkable	Property Others'	Inserts	Visible	Property
Change	Inserted	Rows	Property Output	Encoding	Property
Column	Privileges	Property Output	Stream	Property
Column	Set	Notification	Property Own	Changes	Visible	Property
Content	Type	Property Own	Inserts	Visible	Property
Cursor	Auto	Fetch	Property Preserve	on	Abort	Property
Defer	Column	Property Preserve	on	Commit	Property
Defer	Prepare	Property Quick	Restart	Property
Delay	Storage	Object	Updates
Property

Reentrant	Events	Property

Fetch	Backwards	Property Remove	Deleted	Rows	Property
Hold	Rows	Property Report	Multiple	Changes	Property
IAccessor	Property Return	Pending	Inserts	Property
IColumnsInfo	Property Row	Delete	Notification	Property
IColumnsRowset	Property Row	First	Change	Notification

Property
IConnectionPointContainer
Property

Row	Insert	Notification	Property

IConvertType	Property Row	Privileges	Property

Immobile	Rows	Property Row	Resynchronization	Notification
Property

IRowset	Property Row	Threading	Model	Property
IRowsetChange	Property Row	Undo	Change	Notification

Property
IRowsetIdentity	Property Row	Undo	Delete	Notification

Property
IRowsetInfo	Property Row	Undo	Insert	Notification	Property
IRowsetLocate	Property Row	Update	Notification	Property
IRowsetResynch	Property Rowset	Fetch	Position	Change

Notification	Property
IRowsetScroll	Property Rowset	Release	Notification	Property
IRowsetUpdate	Property Scroll	Backwards	Property
ISequentialStream	Property Server	Cursor	Property
ISupportErrorInfo	Property Server	Data	on	Insert	Property
Literal	Bookmarks	Property Skip	Deleted	Bookmarks	Property
Literal	Row	Identity	Property SS	STREAM	FLAGS	Property
Lock	Mode	Property Strong	Row	Identity	Property
Mapping	Schema	Property Updatability	Property
Maximum	Open	Rows	Property Use	Bookmarks	Property
Maximum	Pending	Rows	Property XML	Root	Property
Maximum	Rows	Property XSL	Property

See	Also

Using	the	Command	Object

ADO	and	SQL	Server

Connection	Object
A	Connection	object	represents	a	unique	session	with	a	data	source.	In	the	case
of	a	client/server	database	system,	it	may	be	equivalent	to	an	actual	network
connection	to	the	server.

In	addition	to	the	standard	ADO	properties,	these	dynamic	properties	are	added
to	the	Properties	collection	of	the	Connection	object.

Dynamic	Properties

Active	Sessions	Property NULL	Collation	Order	Property
Asynchable	Abort	Property NULL	Concatenation	Behavior

Property
Asynchable	Commit	Property OLE	DB	Version	Property
Autocommit	Isolation	Levels
Property

OLE	Object	Support	Property

Catalog	Location	Property Open	Rowset	Support	Property
Catalog	Term	Property ORDER	BY	Columns	in	Select	List

Property
Column	Definition	Property Output	Parameter	Availability

Property
Connect	Timeout	Property Pass	By	Ref	Accessors	Property
Current	Catalog	Property Password	Property
Data	Source	Property Persist	Security	Info	Property
Data	Source	Name	Property Persistent	ID	Type	Property
Data	Source	Object	Threading
Model	Property

Prepare	Abort	Behavior	Property

DBMS	Name	Property Prepare	Commit	Behavior	Property
DBMS	Version	Property Procedure	Term	Property
Extended	Properties	Property Prompt	Property
GROUP	BY	Support	Property Provider	Friendly	Name	Property
Heterogeneous	Table	Support
Property

Provider	Name	Property

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Identifier	Case	Sensitivity	Property Provider	Version	Property
Initial	Catalog	Property Read-Only	Data	Source	Property
Isolation	Levels	Property Rowset	Conversions	on	Command

Property
Isolation	Retention	Property Schema	Term	Property
Locale	Identifier	Property Schema	Usage	Property
Maximum	Index	Size	Property SQL	Support	Property
Maximum	Row	Size	Property Structured	Storage	Property
Maximum	Row	Size	Includes
BLOB	Property

Subquery	Support	Property

Maximum	Tables	in	SELECT
Property

Table	Term	Property

Multiple	Parameter	Sets	Property Transaction	DDL	Property
Multiple	Results	Property User	ID	Property
Multiple	Storage	Objects	Property User	Name	Property
Multi-Table	Update	Property Window	Handle	Property

Provider-Specific	Connection	Parameters
The	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB),	supports
several	provider-specific	connection	parameters	in	addition	to	those	defined	by
ADO.	As	with	the	ADO	connection	properties,	these	provider-specific	properties
can	be	set	using	the	ConnectionString	property	of	the	Connection	object.

Parameter Description
Trusted_Connection Indicates	the	user	authentication	mode.	This	can	be

set	to	Yes	or	No.	The	default	value	is	No.	If	this
property	is	set	to	Yes,	SQLOLEDB	uses	Microsoft
Windows	Authentication	(recommended)	to
authorize	user	access	to	the	Microsoft®	SQL
Server™	database	specified	by	the	Location	and
Datasource	property	values.	If	this	property	is	set	to
No,	SQLOLEDB	uses	Mixed	Mode	to	authorize	user
access	to	the	SQL	Server	database.	The	SQL	Server
login	and	password	are	specified	in	the	User	ID	and
Password	properties.

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Current	Language Indicates	a	SQL	Server	language	name.	Identifies	the
language	used	for	system	message	selection	and
formatting.	The	language	must	be	installed	on	the
computer	running	SQL	Server;	otherwise,	opening
the	connection	will	fail.

Network	Address Indicates	the	network	address	of	the	instance	of	SQL
Server	specified	by	the	Location	property.

Network	Library Indicates	the	name	of	the	network	library	(DLL)	used
to	communicate	with	the	SQL	Server.	The	name
should	not	include	the	path	or	the	.dll	file	name
extension.	The	default	is	provided	by	the	SQL	Server
client	configuration.

Use	Procedure	for
Prepare

Determines	whether	SQL	Server	creates	temporary
stored	procedures	when	commands	are	prepared
using	the	Prepared	property.

Auto	Translate Indicates	whether	OEM/ANSI	characters	are
converted.	This	property	can	be	set	to	True	or	False.
The	default	value	is	True.	If	this	property	is	set	to
True,	SQLOLEDB	performs	OEM/ANSI	character
conversion	when	multibyte	character	strings	are
retrieved	from,	or	sent	to,	SQL	Server.	If	this
property	is	set	to	False,	SQLOLEDB	does	not
perform	OEM/ANSI	character	conversion	on
multibyte	character	string	data.

Packet	Size Indicates	a	network	packet	size	in	bytes.	The	packet
size	property	value	must	be	from	512	through	32767.
The	default	SQLOLEDB	network	packet	size	is
4096.

Application	Name Indicates	the	client	application	name.
Workstation	ID A	string	identifying	the	workstation.

See	Also

Connecting	to	a	SQL	Server	Data	Source

Using	the	Connection	Object

ADO	and	SQL	Server

Record	Object
A	Record	object	represents	one	row	of	data,	and	has	some	conceptual
similarities	with	a	one-row	Recordset.	An	application	can	retrieve	Record
objects	directly	from	the	provider	instead	of	a	one-row	Recordset,	for	example
when	an	SQL	query	that	selects	only	one	row	(singleton	select)	is	executed.	It	is
much	more	efficient	for	an	application	to	use	a	Record	object	than	a	Recordset
object	if	only	one	row	is	to	be	retrieved	from	a	query.

A	Record	object	also	can	be	obtained	directly	from	a	Recordset	object.

ADO	and	SQL	Server

Recordset	Object
You	use	Recordset	objects	to	manipulate	data	from	the	provider.	When	you	use
ADO,	you	manipulate	data	almost	entirely	using	Recordset	objects.	All
Recordset	objects	consist	of	records	(rows)	and	fields	(columns).

In	addition	to	the	standard	ADO	properties,	these	dynamic	properties	are	added
to	the	Properties	collection	of	the	Recordset	object.

Dynamic	Properties

Access	Order	Property Notification	Granularity	Property
Blocking	Storage	Objects	Property Notification	Phases	Property
Bookmark	Type	Property Objects	Transacted	Property
Bookmarkable	Property Others'	Changes	Visible	Property
Change	Inserted	Rows	Property Others'	Inserts	Visible	Property
Column	Privileges	Property Own	Changes	Visible	Property
Column	Set	Notification	Property Own	Inserts	Visible	Property
Command	Time	Out	Property Preserve	on	Abort	Property
Defer	Column	Property Preserve	on	Commit	Property
Delay	Storage	Object	Updates
Property

Quick	Restart	Property

Fetch	Backwards	Property Reentrant	Events	Property
Hold	Rows	Property Remove	Deleted	Rows	Property
IAccessor	Property Report	Multiple	Changes	Property
IColumnsInfo	Property Return	Pending	Inserts	Property
IColumnsRowset	Property Row	Delete	Notification	Property
IConnectionPointContainer	Property Row	First	Change	Notification

Property
IConvertType	Property Row	Insert	Notification	Property
Immobile	Rows	Property Row	Privileges	Property
IRowset	Property Row	Resynchronization	Notification

Property
IRowsetChange	Property Row	Threading	Model	Property

IRowsetIdentity	Property Row	Undo	Change	Notification
Property

IRowsetInfo	Property Row	Undo	Delete	Notification
Property

IRowsetLocate	Property Row	Undo	Insert	Notification
Property

IRowsetResynch	Property Row	Update	Notification	Property
IRowsetScroll	Property Rowset	Fetch	Position	Change

Notification	Property
IRowsetUpdate	Property Rowset	Release	Notification

Property
ISequentialStream	Property Scroll	Backwards	Property
ISupportErrorInfo	Property Server	Cursor	Property
Literal	Bookmarks	Property Skip	Deleted	Bookmarks	Property
Literal	Row	Identity	Property Strong	Row	Identity	Property
Maximum	Open	Rows	Property Unique	Rows	Property
Maximum	Pending	Rows	Property Updatability	Property
Maximum	Rows	Property Use	Bookmarks	Property

See	Also

Using	the	Recordset	Object

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Stream	Object
In	tree-structured	hierarchies	such	as	a	file	system	or	an	e-mail	system,	a	Record
object	may	have	a	default	binary	stream	of	bits	associated	with	it	that	contains
the	contents	of	the	file	or	the	e-mail.	A	Stream	object	can	be	used	to	manipulate
fields	or	records	containing	these	streams	of	data.	A	Stream	object	can	be
obtained:

From	a	URL	pointing	to	an	object	(typically	a	file)	containing	binary	or
text	data.	This	object	can	be	a	simple	document,	a	Record	object
representing	a	structured	document,	or	a	folder.	

By	opening	the	default	Stream	object	associated	with	a	Record	object.
You	can	obtain	the	default	stream	associated	with	a	Record	object	when
the	Record	is	opened,	to	eliminate	a	round-trip	just	to	open	the	stream.	

By	instantiating	a	Stream	object.	These	Stream	objects	can	be	used	to
store	data	for	the	purposes	of	your	application.	Unlike	a	Stream
associated	with	a	URL,	or	the	default	Stream	of	a	Record,	an
instantiated	Stream	has	no	association	with	an	underlying	source	by
default.

ADO	and	SQL	Server

Dynamic	Properties
The	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	inserts	a
number	of	dynamic	properties	into	the	Properties	collection	of	the	unopened
Connection,	Recordset,	and	Command	objects.

Each	of	the	topics	in	this	section	cross-reference	a	dynamic	property	with	the
ADO	objects	to	which	it	applies,	and	the	corresponding	OLE	DB	property	to
which	it	maps.	ADO	dynamic	properties	either	map	to	standard	OLE	DB
properties,	or	to	provider-specific	OLE	DB	properties.

Provider-Specific	Dynamic	Properties
Properties	in	the	form	of	DBPROP_PROPERTYNAME	are	standard	OLE	DB
properties.	Properties	in	the	form	of	SSPROP_PROPERTYNAME	are	provider-
specific	OLE	DB	properties.	SQLOLEDB	supports	these	provider-specific
dynamic	properties:

Property	Name Description
Base	Path	Property The	Base	Path	property	specifies	a	file

path	or	URL	to	use	for	resolving	relative
paths	in	a	template	(for	example,	XSL	on	a
template	root	directory,	sql:mapping-
schema	attribute	on	a	sql:xpath:query,
external	schema	references	in	an	inline
schema,	or	Mapping	Schema	and	XML
Root	properties).

Content	Type	Property The	Content	Type	property	returns	the
output	content	type	of	an	XML
transmission.

Cursor	Auto	Fetch	Property The	Cursor	Auto	Fetch	property	specifies
whether	the	initial	result	set	is	returned
when	a	cursor	is	opened.

Defer	Prepare	Property The	Defer	Prepare	property	specifies
whether	to	prepare	and	perform	the	initial
execution	of	a	statement	in	a	single

operation.
Mapping	Schema	Property The	Mapping	Schema	property	specifies	a

file	name	or	URL	that	points	to	the
mapping	schema	used	by	the	provider	to
translate	an	XPath	command.

SS	STREAM	FLAGS	Property The	SS	STREAM	FLAGS	property
specifies	how	an	application	manages
mapping	schemas,	XSL	files,	and
templates.

XML	Root	Property The	XML	Root	property	provides	a	root
tag	in	which	the	query	result	is	wrapped	to
return	a	well-formed	document.

XSL	Property The	XSL	property	specifies	an	XSL	file
name	or	URL	applied	to	the	result	of	a
query.

Examples
Applications	reference	ADO	dynamic	properties	though	the	ADO	Properties
collection	using	this	VBScript	syntax:

Dim	adoCmd	
Set	adoCmd	=	CreateObject("ADODB.Command")

Dim	sBasePath
sBasePath	=	adoCmd.Properties("Base	Path")
'Or	
adoCmd.Properties("Base	Path")	=	"C:\Inetpub\wwwroot\myvroot\"

ADO	and	SQL	Server

A

ADO	and	SQL	Server

Access	Order	Property
The	Access	Order	property	sets	the	order	in	which	columns	must	be	accessed
by	methods	that	operate	on	recordsets,	rows,	and	streams.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Access	Order")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	specifying	the	access	order	as	described	in	Settings.

Settings

Constant Description
DBPROPVAL_AO_RANDOM Columns	can	be

accessed	in	any
order.

DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTSColumns	bound
as	storage
objects	can	be
accessed	only	in
sequential	order
as	determined	by
the	column

ordinal.	Storage
objects	from	one
row	must	be
retrieved	before
retrieving	any
columns	in	any
subsequent	row.

DBPROPVAL_AO_SEQUENTIAL All	columns
must	be	accessed
in	sequential
order	determined
by	the	column
ordinal.	Further,
all	columns	from
one	row	must	be
retrieved	before
retrieving	any
columns	in	any
subsequent	row.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_ACCESSORDER

Remarks
For	optimal	performance	and	interoperability,	applications	should	set	the	Access
Order	property	to	DBPROPVAL_AO_SEQUENTIALSTORAGEOBJECTS.

ADO	and	SQL	Server

Active	Sessions	Property
The	Active	Sessions	property	returns	the	maximum	number	of	session	objects
that	can	be	active	at	one	time.

Applies	To

Connection	Object

Syntax
object.Properties("Active	Sessions")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_ACTIVESESSIONS

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Asynchable	Abort	Property
The	Asynchable	Abort	property	indicates	whether	transactions	can	be	aborted
asynchronously.

Applies	To

Connection	Object

Syntax
object.Properties("Asynchable	Abort")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	these	settings.

Value Description
True Transactions	can	be	aborted

asynchronously.
False Transactions	cannot	be	aborted

asynchronously.

Data	Type
adBoolean

Modifiable

JavaScript:hhobj_1.Click()

Read-only

OLE	DB	Property
DBPROP_ASYNCTXNABORT

See	Also

Asynchable	Commit	Property

ADO	and	SQL	Server

Asynchable	Commit	Property
The	Asynchable	Commit	property	indicates	whether	transactions	can	be
committed	asynchronously.

Applies	To

Connection	Object

Syntax
object.Properties("Asynchable	Commit")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	these	settings.

Value Description
True Transactions	can	be	committed	asynchronously.
False Transactions	cannot	be	committed	asynchronously.

Data	Type
adBoolean

Modifiable
Read-only

JavaScript:hhobj_1.Click()

OLE	DB	Property
DBPROP_ASYNCTXNCOMMIT

See	Also

Asynchable	Abort	Property

ADO	and	SQL	Server

Autocommit	Isolation	Levels	Property
The	Autocommit	Isolation	Levels	property	specifies	the	transaction	isolation
levels	while	in	auto-commit	mode.

Applies	To

Connection	Object

Syntax
object.Properties("Autocommit	Isolation	Levels")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	specifying	supported	transaction	isolation	levels	as	described	in
Settings.

Settings
A	bitmask	consisting	of	zero	or	more	of	these	settings.

Constant Description
DBPROPVAL_TI_BROWSE Equivalent	to

DBPROPVAL_TI_READUNCOMMITTED
DBPROPVAL_TI_CURSORSTABILITY Equivalent	to

DBPROPVAL_TI_READCOMMITTED
DBPROPVAL_TI_ISOLATED Equivalent	to

DBPROPVAL_TI_SERIALIZABLE
DBPROPVAL_TI_READCOMMITTED A	transaction	operating	at	the	Read

Committed	level	cannot	see	changes	made

JavaScript:hhobj_1.Click()

Committed	level	cannot	see	changes	made
by	other	transactions	until	those	transactions
are	committed.	At	this	level	of	isolation,
dirty	reads	are	not	possible,	but
nonrepeatable	reads	and	phantoms	are
possible.

DBPROPVAL_TI_READUNCOMMITTEDA	transaction	operating	at	the	Read
Uncommitted	level	can	see	uncommitted

changes	made	by	other	transactions.	At	this
level	of	isolation,	dirty	reads,	nonrepeatable
reads,	and	phantoms	are	all	possible.

DBPROPVAL_TI_REPEATABLEREAD A	transaction	operating	at	the	Repeatable
Read	level	is	guaranteed	not	to	see	any
changes	made	by	other	transactions	in
values	it	has	already	read.	At	this	level	of
isolation,	dirty	reads	and	nonrepeatable
reads	are	not	possible,	but	phantoms	are
possible.

DBPROPVAL_TI_SERIALIZABLE A	transaction	operating	at	the	Serializable
level	guarantees	that	all	concurrent
transactions	interact	only	in	ways	that
produce	the	same	effect	as	though	each
transaction	were	entirely	executed	one	after
the	other.	At	this	isolation	level,	dirty	reads,
nonrepeatable	reads,	and	phantoms	are	not
possible.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property

DBPROP_SESS_AUTOCOMMITISOLEVELS

ADO	and	SQL	Server

B

ADO	and	SQL	Server

Base	Path	Property
The	Base	Path	property	specifies	a	file	path	or	URL	to	use	for	resolving	relative
paths	in	a	template	(for	example,	XSL	on	a	template	root	directory,	sql:mapping-
schema	attribute	on	a	sql:xpath:query,	external	schema	references	in	an	inline
schema,	or	Mapping	Schema	and	XML	Root	properties).

Applies	To

Command	Object

Syntax
object.Properties("Base	Path")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	a	file	name	or	URL.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
SSPROP_STREAM_BASEPATH

See	Also

Content	Type	Property

Mapping	Schema	Property

SS	STREAM	FLAGS	Property

XML	Root	Property

XSL	Property

ADO	and	SQL	Server

Blocking	Storage	Objects	Property
The	Blocking	Storage	property	indicates	whether	storage	objects	might	prevent
use	of	other	methods	on	the	recordset.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Blocking	Storage	Objects")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

definition

Settings

Value Description
True Instantiated	storage	objects	might

prevent	the	use	of	other	methods	on
the	recordset.	For	example,	after	a
storage	object	is	created	and	before	it
is	released,	methods	other	than	those
on	the	storage	object	might	return
E_UNEXPECTED.

False Instantiated	storage	objects	do	not
prevent	the	use	of	other	methods.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_BLOCKINGSTORAGEOBJECTS

ADO	and	SQL	Server

Bookmark	Type	Property
The	Bookmark	Type	property	indicates	the	bookmark	type	supported	by	the
recordset.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Bookmark	Type")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	specifying	the	bookmark	type	as	specified	in	settings.

Settings

Constant Description
DBPROPVAL_BMK_NUMERICThe	bookmark	type	is	numeric.	Numeric

bookmarks	are	based	on	a	row	property
that	is	not	dependent	on	the	values	in	the
columns	of	the	row.	For	example,	they
can	be	based	on	the	absolute	position	of
the	row	within	a	recordset	or	on	a	row
ID	that	the	storage	engine	assigns	to	the
row	at	its	creation.	The	validity	of
numeric	bookmarks	is	not	changed	by
modifying	the	columns	in	a	row.

DBPROPVAL_BMK_KEY The	bookmark	type	is	key.	Key
bookmarks	are	based	on	the	values	of
one	or	more	of	the	columns	in	a	row.
These	values	form	a	unique	key	for	each
row.	A	key	bookmark	may	be	left
dangling	if	the	key	values	of	the
corresponding	row	are	changed.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_BOOKMARKTYPE

ADO	and	SQL	Server

Bookmarkable	Property
The	Bookmarkable	property	specifies	whether	a	recordset	supports	bookmarks.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Bookmarkable")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	bookmark	support	as	described	in	Settings.

Settings

Value Description
True The	recordset	supports	the	specified	interface.	This	setting

implicitly	causes	the	created	recordset	to	support	bookmarks,
setting	the	Use	Bookmarks	property	to	True.

False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBProp_IRowsetLocate

See	Also

Literal	Bookmarks	Property

Use	Bookmarks	Property

ADO	and	SQL	Server

C

ADO	and	SQL	Server

Catalog	Location	Property
The	Catalog	Location	property	indicates	the	position	of	the	catalog	name	in	a
qualified	table	name	in	a	text	command.

Applies	To

Connection	Object

Syntax
object.Properties("Catalog	Location")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Settings

Constant Description
DBPROPVAL_CL_START The	catalog	name	is	at	the	start	of	the

fully	qualified	name.
DBPROPVAL_CL_END The	catalog	name	is	at	the	end	of	the

fully	qualified	name.

Data	Type
adInteger

Modifiable
Read-only

JavaScript:hhobj_1.Click()

OLE	DB	Property
DBPROP_CATALOGLOCATION

ADO	and	SQL	Server

Catalog	Term	Property
The	Catalog	Term	property	returns	the	name	the	data	source	object	uses	for	a
catalog	(for	example,	catalog,	database,	or	directory).

Applies	To

Connection	Object

Syntax
object.Properties("Catalog	Term")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_CATALOGTERM

Remarks
An	application	can	use	the	value	returned	by	the	Catalog	Term	property	in	user
interfaces.

JavaScript:hhobj_1.Click()

See	Also

Procedure	Term	Property

Schema	Term	Property

Table	Term	Property

ADO	and	SQL	Server

Change	Inserted	Rows	Property
The	Change	Inserted	Rows	property	specifies	whether	an	application	can	call
the	Delete	or	Update	methods	on	a	newly	inserted	row.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Change	Inserted	Rows")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	an	application	can	call	the	Delete	or	Update
methods	as	specified	in	Settings.

Settings

Value Description
True The	consumer	can	call	the	Delete	or

Update	methods	on	newly	inserted	rows.
False If	the	consumer	calls	the	Delete	or	Update

method	for	newly	inserted	rows,	Delete
returns	a	status	of
DBROWSTATUS_E_NEWLYINSERTED
for	the	row	and	Update	returns
DB_E_NEWLYINSERTED.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_CHANGEINSERTEDROWS

Remarks
A	newly	inserted	row	is	defined	to	be	a	row	for	which	the	insertion	has	been
transmitted	to	the	data	source,	as	opposed	to	a	pending	insert	row.

ADO	and	SQL	Server

Column	Definition	Property
The	Column	Definition	property	returns	valid	clauses	that	can	be	used	in
column	definition.

Applies	To

Connection	Object

Syntax
object.Properties("Column	Definition")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_COLUMNDEFINITION

Remarks
Column	Definition	returns	a	bitmask	defining	the	valid	clauses	for	the
definition	of	a	column.	For	example,	if	Column	Definition	returns
DBPROPVAL_CD_NOTNULL,	the	NOT	NULL	clause	is	supported.

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Column	Privileges	Property
The	Column	Privileges	property	indicates	whether	access	rights	are	restricted
on	a	column-by-column	basis.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Column	Privileges")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True Access	rights	are	restricted	on	a	column-by-column	basis.	The

Update	method	cannot	be	called	in	a	query	that	would	specify	a
column	for	which	the	user	has	no	read	access	rights.

False Access	rights	are	not	restricted	on	a	column-by-column	basis.
The	Update	method	can	be	called	for	any	column	in	the
recordset.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_COLUMNRESTRICT

Remarks
If	access	is	restricted	both	by	row	and	by	column,	individual	columns	of
particular	rows	might	have	their	own	stricter	access	rights,	therefore	the
application	might	not	even	be	permitted	to	read	such	columns.	In	this	case,	the
column	values	are	returned	as	NULL.	If	schema	rules	prevent	a	NULL	value,	the
recordset	should	not	count	or	return	any	rows	that	would	have	this	condition.

See	Also

Row	Privileges	Property

ADO	and	SQL	Server

Column	Set	Notification	Property
The	Column	Set	Notification	property	specifies	whether	the	notification	phase
is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Column	Set	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	bitmask	containing	zero	or	more	of	these	settings.

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYCOLUMNSET

ADO	and	SQL	Server

Command	Time	Out	Property
The	Command	Time	Out	property	specifies	the	number	of	seconds	before	a
command	times	out.

Applies	To

Recordset	Object

Syntax
object.Properties("Command	Time	Out")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	the	number	of	seconds	before	a	command	times	out.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_COMMANDTIMEOUT

Remarks

The	Command	Time	Out	property	applies	to	any	commands	sent	to	the
database.	A	value	of	zero	indicates	an	infinite	time-out.

ADO	and	SQL	Server

Connect	Timeout	Property
The	Connect	Timeout	property	specifies	the	amount	of	time	in	seconds	to	wait
for	connection	initialization	to	complete.

Applies	To

Connection	Object

Syntax
object.Properties("Connect	Timeout")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	the	number	of	seconds	to	wait	for	connection
initialization	to	complete.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_INIT_TIMEOUT

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Content	Type	Property
The	Content	Type	property	returns	the	output	content	type	of	an	XML
transmission.

Applies	To

Command	Object

Syntax
object.Properties("Content	Type")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
SSPROP_STREAM_CONTENTTYPE

Returns

Value Description
image/jpeg Indicates	that	image	is	the	general	type

and	JPEG	is	the	specific	format	of	the

data.
text/html Indicates	that	text	is	the	general	type

and	HTML	is	the	specific	format	of
the	data.

text/XML Default.	Indicates	that	text	is	the
general	type	and	XML	is	the	specific
format	of	the	data.

Remarks
The	value	returned	by	the	Content	Type	property	describes	the	data	contained	in
the	body	fully	enough	that	the	receiving	agent,	or	Web	browser,	can	pick	an
appropriate	mechanism	to	present	the	data	to	the	user.

Content	Type	provides	the	content-type	and	the	subtype,	which	describes	the
nature	of	the	data.	The	content-type	(such	as	text,	image,	audio,	video,	and	so
on)	describes	the	general	type	of	data,	and	the	subtype	specifies	a	specific	format
for	that	type	of	data.

The	value	returned	by	Content	Type	becomes	the	content-type	field	that	is	sent
to	the	browser	as	part	of	the	HTTP	header,	which	contains	the	MIME-type
(Multipurpose	Internet	Mail	Extensions)	of	the	document	being	sent	as	the	body.

When	a	query	specifies	a	Microsoft®	SQL	Server™	BLOB	field	(for	example,	a
JPEG	image),	Content	Type	returns	image/jpeg.	Many	BLOB	types	have
corresponding	MIME	types.	A	full	list	of	registered	MIME	types	is	maintained
by	IANA	(Internet	Assigned	Numbers	Authority).

See	Also

Base	Path	Property

Mapping	Schema	Property

SS	STREAM	FLAGS	Property

URL	Access

XML	Root	Property

JavaScript:hhobj_1.Click()

XSL	Property

ADO	and	SQL	Server

Current	Catalog	Property
The	Current	Catalog	property	specifies	the	name	of	the	current	catalog.

Applies	To

Connection	Object

Syntax
object.Properties("Current	Catalog")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	the	name	of	the	current	catalog.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
DBPROP_CURRENTCATALOG

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Cursor	Auto	Fetch	Property
The	Cursor	Auto	Fetch	property	specifies	whether	the	initial	result	set	is
returned	when	a	cursor	is	opened.

Applies	To

Command	Object

Syntax
object.Properties("Cursor	Auto	Fetch")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	when	the	initial	result	set	is	returned	as	specified	in
Settings.

Settings

Value Description
True When	a	cursor	is	opened,	the	initial	result	set	is	returned.
False Default.	When	a	cursor	is	opened,	no	results	are	returned.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
SSPROP_CURSORAUTOFETCH

Remarks
Setting	Cursor	Auto	Open	to	True	can	result	in	a	performance	enhancement	by
avoiding	an	extra	round	trip	to	the	server.

ADO	and	SQL	Server

D

ADO	and	SQL	Server

Data	Source	Property
The	Data	Source	property	specifies	the	name	of	the	database	to	which	to
connect.

Applies	To

Connection	Object

Syntax
object.Properties("Data	Source")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	the	name	of	the	database.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
DBPROP_INIT_DATASOURCE

Remarks

JavaScript:hhobj_1.Click()

An	ADO	application	can	also	use	the	OLE	DB	Server	keyword,	which	is
equivalent	to	the	Data	Source	property.

ADO	and	SQL	Server

Data	Source	Name	Property
The	Data	Source	Name	property	returns	the	name	of	the	data	source	object,	and
is	typically	used	during	the	connection	process.

Applies	To

Connection	Object

Syntax
object.Properties("Data	Source	Name")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_DATASOURCENAME

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Data	Source	Object	Threading	Model	Property
The	Data	Source	Object	Threading	Model	property	specifies	which	threading
models	are	supported	by	the	data	source.

Applies	To

Connection	Object

Syntax
object.Properties("Data	Source	Object	Threading	Model")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Settings
A	bitmask	containing	one	or	more	of	these	settings:

Constant Description
DBPROPVAL_RT_APTMTTHREAD The	apartment	thread	model	is

supported.
DBPROPVAL_RT_FREETHREAD The	free	thread	model	is	supported.
DBPROPVAL_RT_SINGLETHREADThe	single	thread	model	is

supported.

Data	Type
adInteger

JavaScript:hhobj_1.Click()

Modifiable
Read-only

OLE	DB	Property
DBPROP_DSOTHREADMODEL

Remarks
In	the	case	where	additional	threading	limitations	are	imposed	by	underlying
components,	the	threading	model	returned	by	the	Data	Source	Object
Threading	Model	property	might	be	stricter	than	the	thread	model	registered
under	the	CLSID	of	the	provider.

ADO	and	SQL	Server

DBMS	Name	Property
The	DBMS	Name	property	returns	the	name	of	the	product	accessed	by	the
provider	(for	example,	Microsoft®	SQL	Server™,	or	Microsoft	Excel).

Applies	To

Connection	Object

Syntax
object.Properties("DBMS	Name")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_DBMSNAME

See	Also

DBMS	Version	Property

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

DBMS	Version	Property
The	DBMS	Version	property	returns	the	version	of	the	product	accessed	by	the
provider.

Applies	To

Connection	Object

Syntax
object.Properties("DBMS	Version")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_DBMSVER

Remarks
The	version	is	of	the	form	##.##.####,	where	the	first	two	digits	are	the	major
version,	the	next	two	digits	are	the	minor	version,	and	the	last	four	digits	are	the
release	version.	The	provider	must	render	the	product	version	in	this	form	but

JavaScript:hhobj_1.Click()

can	also	append	the	product-specific	version	(for	example,	04.01.0000	Rdb	4.1).

See	Also

DBMS	Name	Property

OLE	DB	Version	Property

ADO	and	SQL	Server

Defer	Column	Property
The	Defer	Column	property	specifies	when	data	in	a	column	is	fetched.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Defer	Column")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	when	data	is	fetched,	as	specified	in	Settings.

Settings

Value Description
True The	data	in	the	column	is	not	fetched	until	an	accessor	is	used	on

the	column.
False The	data	in	the	column	is	fetched	when	the	row	containing	it	is

fetched.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_DEFERRED

ADO	and	SQL	Server

Defer	Prepare	Property
The	Defer	Prepare	property	specifies	whether	to	prepare	and	perform	the	initial
execution	of	a	statement	in	a	single	operation.

Applies	To

Command	Object

Syntax
object.Properties("Defer	Prepare")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	how	to	prepare	and	perform	initial	execution	of	a
statement,	as	specified	in	Settings.

Settings

Value Description
True A	statement	is	prepared	and	initially	executed	in	a	single

operation.
False Default.	A	statement	is	prepared,	and	then	executed	in	two

operations.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
SSPROP_DEFERPREPARE

Remarks
Setting	Defer	Prepare	to	True	can	result	in	a	performance	enhancement	by
avoiding	an	extra	round	trip	to	the	server	when	a	statement	must	be	executed
repeatedly.

Note		If	an	application	calls	Defer	Prepare	on	an	instance	of	Microsoft®	SQL
Server™	version	7.0,	the	operation	is	ignored.

ADO	and	SQL	Server

Delay	Storage	Object	Updates	Property
The	Delay	Storage	Object	Updates	property	specifies	whether	changes	to
storage	objects	are	immediately	transmitted	to	the	data	source	when	delayed
update	mode	is	in	effect.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Delay	Storage	Object	Updates")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	changes	to	storage	objects	are	immediately
transmitted,	as	specified	in	Settings.

Settings

Value Description
True Changes	to	the	object	are	not	transmitted	to	the	data	source	until

the	Update	method	is	called.	
CancelBatch	undoes	any	pending	changes.

False Changes	to	the	object	are	immediately	transmitted	to	the	data
source	object.	The	Update	method	has	no	effect	on	the	object.	
CancelBatch	does	not	undo	changes	made	to	the	object	since
the	row	was	last	fetched	or	updated.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_DELAYSTORAGEOBJECTS

Remarks
The	Delay	Storage	Object	Updates	property	has	no	effect	on	storage	objects	in
immediate	update	mode.

ADO	and	SQL	Server

E

ADO	and	SQL	Server

Extended	Properties	Property
The	Extended	Properties	property	sets	or	retrieves	provider-specific	connection
information	that	cannot	be	explicitly	described	through	the	property	mechanism.

Applies	To

Connection	Object

Syntax
object.Properties("Extended	Properties")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	containing	provider-specific,	extended	connection	information.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
DBPROP_INIT_PROVIDERSTRING

Remarks

JavaScript:hhobj_1.Click()

Use	of	this	property	implies	that	the	application	developer	knows	how	this	string
will	be	interpreted	and	used	by	the	provider.	Applications	should	use	this
property	only	for	provider-specific	connection	information	that	cannot	be
explicitly	described	through	the	property	mechanism.

ADO	and	SQL	Server

F

ADO	and	SQL	Server

Fetch	Backwards	Property
The	Fetch	Backwards	property	indicates	whether	the	recordset	can	fetch
backward.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Fetch	Backwards")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	recordset	can	fetch	backward,	as	specified
in	Settings.

Settings

Value Description
True The	recordset	can	fetch	backward.
False The	recordset	cannot	fetch	backward.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_CANFETCHBACKWARDS

ADO	and	SQL	Server

G

ADO	and	SQL	Server

GROUP	BY	Support	Property
The	GROUP	BY	Support	property	indicates	the	relationship	between	the
columns	in	a	GROUP	BY	clause	and	the	nonaggregated	columns	in	a	SELECT
statement.

Applies	To

Connection	Object

Syntax
object.Properties("GROUP	BY	Support")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Constant Description
DBPROPVAL_GB_EQUALS_SELECT The	GROUP	BY	clause	must

contain	all	nonaggregated
columns	in	the	select	list.	It
cannot	contain	any	other
columns	(for	example,
SELECT	DEPT,
MAX(SALARY)	FROM
EMPLOYEE	GROUP	BY
DEPT).

DBPROPVAL_GB_COLLATE A	COLLATE	clause	can	be

JavaScript:hhobj_1.Click()

specified	at	the	end	of	each
grouping	column.

DBPROPVAL_GB_CONTAINS_SELECTThe	GROUP	BY	clause	must
contain	all	nonaggregated
columns	in	the	select	list.	It	can
contain	columns	that	are	not	in
the	select	list	(for	example,
SELECT	DEPT,
MAX(SALARY)	FROM
EMPLOYEE	GROUP	BY
DEPT,	AGE).

DBPROPVAL_GB_NO_RELATION The	columns	in	the	GROUP
BY	clause	and	the	SELECT
statement	are	not	related	(for
example,	SELECT	DEPT,
SALARY	FROM	EMPLOYEE
GROUP	BY	DEPT,	AGE).

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_GROUPBY

ADO	and	SQL	Server

H

ADO	and	SQL	Server

Heterogeneous	Table	Support	Property
The	Heterogeneous	Table	Support	property	indicates	whether	the	provider	can
join	tables	from	different	catalogs	or	providers.

Applies	To

Connection	Object

Syntax
object.Properties("Heterogeneous	Table	Support")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	bitmask	containing	zero	or	more	of	these	settings.

Constant Description
DBPROPVAL_HT_DIFFERENT_CATALOGS Tables	from	different

catalogs	can	be	joined.
DBPROPVAL_HT_DIFFERENT_PROVIDERSTables	from	different

providers	can	be	joined.

Data	Type
adInteger

Modifiable

JavaScript:hhobj_1.Click()

Read-only

OLE	DB	Property
DBPROP_HETEROGENEOUSTABLES

ADO	and	SQL	Server

Hold	Rows	Property
The	Hold	Rows	property	specifies	whether	the	recordset	allows	the	application
to	retrieve	more	rows	or	change	the	next	fetch	position,	while	holding	previously
fetched	rows	or	rows	with	pending	changes.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Hold	Rows")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	specifying	whether	the	application	can	retrieve	more	rows,	as
described	in	Settings.

Settings

Value Description
True The	recordset	allows	the	application	to	retrieve	more	rows	or

change	the	next	fetch	position,	while	holding	previously	fetched
rows	or	rows	with	pending	changes.

False The	recordset	requires	pending	changes	to	be	transmitted	to	the
database	and	all	rows	to	be	released	before	fetching	additional
rows,	inserting	new	rows,	or	changing	the	next	fetch	position.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_CANHOLDROWS

Remarks
If	the	provider	makes	no	optimizations	for	releasing	all	rows	between	fetches,	it
is	not	required	to	return	DB_E_ROWSNOTRELEASED	when	retrieving	rows
without	releasing	the	previously	held	set	of	row	handles.	Such	providers	do	not
return	an	error	when	setting	the	Hold	Rows	property	to	False,	but	always	return
True	if	the	consumer	calls	Hold	Rows.

ADO	and	SQL	Server

I

ADO	and	SQL	Server

IAccessor	Property
The	IAccessor	property	indicates	whether	the	provider	supports	the	OLE	DB
IAccessor	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IAccessor")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_IAccessor

Remarks
ADO	requires	that	the	provider	support	the	OLE	DB	IAccessor	interface.	The
value	of	the	IAccessor	property	is	read-only	and	is	always	set	to	True,	indicating
that	the	recordset	supports	the	specified	interface.	The	value	of	this	property

cannot	be	set	to	False.

The	IAccessor	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IColumnsInfo	Property
The	IColumnsInfo	property	indicates	whether	the	provider	supports	the	OLE
DB	IColumnsInfo	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IColumnsInfo")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_IColumnsInfo

Remarks
ADO	requires	that	the	provider	support	the	OLE	DB	IColumnsInfo	interface.
The	value	of	the	IColumnsInfo	property	is	read-only	and	is	always	set	to	True,
indicating	that	the	recordset	supports	the	specified	interface.	The	value	of	this

property	cannot	be	set	to	False.

The	IColumnsInfo	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IColumnsRowset	Property
The	IColumnsRowset	property	indicates	whether	the	provider	supports	the	OLE
DB	IColumnsRowset	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IColumnsRowset")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings.

Settings

Value Description
True The	recordset	supports	the	specified	interface.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_IColumnsRowset

Remarks
ADO	uses	the	OLE	DB	IColumnsRowset	interface	if	the	provider	supports	it.

The	IColumnsRowset	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IConnectionPointContainer	Property
The	IConnectionPointContainer	property	indicates	whether	the	provider
supports	the	OLE	DB	IConnectionPointContainer	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IConnectionPointContainer")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings.

Value Description
True The	recordset	supports	the	specified	interface.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_IConnectionPointContainer

Remarks
ADO	uses	the	OLE	DB	IConnectionPointContainer	interface	if	the	provider
supports	it.

The	IConnectionPointContainer	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IConvertType	Property
The	IconvertType	property	indicates	whether	the	provider	supports	the	OLE	DB
IConvertType	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IConvertType")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_IConvertType

Remarks
ADO	requires	that	the	provider	support	the	OLE	DB	IConvertType	interface.
The	value	of	the	IConvertType	property	is	read-only	and	is	always	set	to	True,
indicating	that	the	recordset	supports	the	specified	interface.	The	value	of	this

property	cannot	be	set	to	False.

The	IConvertType	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

Identifier	Case	Sensitivity	Property
The	Identifier	Case	Sensitivity	property	indicates	how	identifiers	treat	case	in
data	definition	commands	or	interfaces.

Applies	To

Connection	Object

Syntax
object.Properties("Identifier	Case	Sensitivity")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Constant Description
DBPROPVAL_IC_UPPER Identifiers	in	SQL	are	case-insensitive	and

are	stored	in	uppercase.
DBPROPVAL_IC_LOWER Identifiers	in	SQL	are	case-insensitive	and

are	stored	in	lowercase.
DBPROPVAL_IC_SENSITIVE Identifiers	in	SQL	are	case-sensitive	and

are	stored	in	mixed	case.
DBPROPVAL_IC_MIXED Identifiers	in	SQL	are	case-insensitive	and

are	stored	in	mixed	case.

JavaScript:hhobj_1.Click()

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_IDENTIFIERCASE

ADO	and	SQL	Server

Immobile	Rows	Property
The	Immobile	Rows	property	specifies	whether	to	reorder	inserted	rows	in	a
recordset.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Immobile	Rows")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	to	reorder	inserted	rows,	as	specified	in
Settings.

Settings

Value Description
True The	recordset	will	not	reorder	inserted	or	updated	rows.	Rows

appear	at	the	end	of	the	recordset.
False If	the	recordset	is	ordered,	inserted	rows	and	updated	rows

(where	one	or	more	of	the	columns	in	the	ordering	criteria	are
updated)	obey	the	ordering	criteria	of	the	recordset.	If	the
recordset	is	not	ordered,	inserted	rows	are	not	guaranteed	to
appear	in	a	determinate	position	and	the	position	of	updated
rows	is	not	changed.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_IMMOBILEROWS

Remarks
This	property	is	meaningful	only	if	the	Own	Inserts	Visible	property	is	set	to
True.

See	Also

Own	Inserts	Visible	Property

ADO	and	SQL	Server

Initial	Catalog	Property
The	Initial	Catalog	property	specifies	the	name	of	the	initial	default	catalog	to
use	when	connecting	to	a	data	source.

Applies	To

Connection	Object

Syntax
object.Properties("Initial	Catalog")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	the	catalog	name.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
DBPROP_INIT_CATALOG

Remarks

JavaScript:hhobj_1.Click()

An	ADO	application	can	also	use	the	OLE	DB	Database	keyword,	which	is
equivalent	to	the	Initial	Catalog	property.

ADO	and	SQL	Server

IRowset	Property
The	IRowset	property	indicates	whether	the	provider	supports	the	OLE	DB
IRowset	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IRowset")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_IRowset

Remarks
ADO	requires	that	the	provider	support	the	OLE	DB	IRowset	interface.	The
value	of	the	IRowset	property	is	read-only	and	is	always	set	to	True,	indicating
that	the	recordset	supports	the	specified	interface.	The	value	of	this	property

cannot	be	set	to	False.

The	IRowset	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IRowsetChange	Property
The	IRowsetChange	property	indicates	whether	the	provider	supports	the	OLE
DB	IRowsetChange	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IRowsetChange")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings.

Settings

Value Description
True The	recordset	supports	the	specified	interface.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_IRowsetChange

Remarks
ADO	uses	the	OLE	DB	IRowsetChange	interface	if	the	provider	supports	it.

The	IRowsetChange	property	is	useful	for	conformance	testing.

Setting	The	IRowsetUpdate	property	to	True	automatically	sets	the
IRowsetChange	property	to	True.

When	the	IRowsetChange	property	is	set	to	False,	the	Updatability	property	is
set	to	zero.	Any	attempt	to	set	the	Updatability	property	to	a	value	other	than
zero	results	in	a	conflict	reported	by	the	provider,	which	returns
DBPROPSTATUS_CONFLICTING.

See	Also

IRowsetUpdate	Property

Updatability	Property

ADO	and	SQL	Server

IRowsetIdentity	Property
The	IRowsetIdentity	property	indicates	whether	the	provider	supports	the	OLE
DB	IRowsetIdentity	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IRowsetIdentity")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings.

Settings

Value Description
True The	recordset	supports	the	specified	interface.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_IRowsetIdentity

Remarks
ADO	uses	the	OLE	DB	IRowsetIdentity	interface	if	the	provider	supports	it.

The	IRowsetIdentity	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IRowsetInfo	Property
The	IRowsetInfo	property	indicates	whether	the	provider	supports	the	OLE	DB
IRowsetInfo	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IRowsetInfo")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_IRowsetInfo

Remarks
ADO	requires	that	the	provider	support	the	OLE	DB	IRowsetInfo	interface.	The
value	of	the	IRowsetInfo	property	is	read-only	and	is	always	set	to	True,
indicating	that	the	recordset	supports	the	specified	interface.	The	value	of	this

property	cannot	be	set	to	False.

The	IRowsetInfo	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IRowsetLocate	Property
The	IRowsetLocate	property	indicates	whether	the	provider	supports	the	OLE
DB	IRowsetLocate	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IRowsetLocate")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings.

Settings

Value Description
True The	recordset	supports	the	specified	interface.	This	setting

implicitly	causes	the	created	recordset	to	support	bookmarks,
returning	True	for	the	Use	BookMarks	property.

False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_IRowsetLocate

Remarks
ADO	uses	the	OLE	DB	IRowsetLocate	interface	if	the	provider	supports	it.

The	IRowsetLocate	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IRowsetResynch	Property
The	IRowsetResynch	property	indicates	whether	the	provider	supports	the	OLE
DB	IRowsetResynch	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IRowsetResynch")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface.

Settings

Value Description
True The	recordset	supports	the	specified	interface.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable

Read/write

OLE	DB	Property
DBPROP_IRowsetResynch

Remarks
ADO	uses	the	OLE	DB	IRowsetResynch	interface	if	the	provider	supports	it.

The	IRowsetResynch	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IRowsetScroll	Property
The	IRowsetScroll	property	indicates	whether	the	provider	supports	the	OLE
DB	IRowsetScroll	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IRowsetScroll")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings.

Settings

Value Description
True The	recordset	supports	the	specified	interface.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_IRowsetScroll

Remarks
ADO	uses	the	OLE	DB	IRowsetScroll	interface	if	the	provider	supports	it.

The	IRowsetScroll	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

IRowsetUpdate	Property
The	IRowsetUpdate	property	indicates	whether	the	provider	supports	the	OLE
DB	IRowsetUpdate	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("IRowsetUpdate")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings.

Settings

Value Description
True The	recordset	supports	the	specified	interface,	and	automatically

sets	the	IRowsetChange	property	to	True.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_IRowsetUpdate

Remarks
ADO	uses	the	OLE	DB	IRowsetUpdate	interface	if	the	provider	supports	it.

The	IRowsetUpdate	property	is	useful	for	conformance	testing.

See	Also

IRowsetChange	Property

Updatability	Property

ADO	and	SQL	Server

ISequentialStream	Property
The	ISequentialStream	property	indicates	whether	the	provider	supports	the
OLE	DB	ISequentialStream	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("ISequentialStream")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings.

Settings

Value Description
True The	recordset	supports	the	specified	interface.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_ISequentialStream

Remarks
ADO	uses	the	OLE	DB	ISequentialStream	interface	if	the	provider	supports	it.

If	the	value	of	the	ISequentialStream	property	is	set	to	True,	the	recordset	is
capable	of	manipulating	the	contents	of	columns	as	a	storage	object	supporting
the	specified	interface.	The	provider	reports	its	ability	to	enable	this	property	on
a	per-column	basis	by	setting	the	flag	DBPROPFLAGS_COLUMNOK.	A
provider	that	does	not	have	the	ability	to	turn	the	property	on	or	off	on	a	per-
column	basis	does	not	set	DBPROPFLAGS_COLUMNOK.

Whether	or	not	the	property	is	supported	in	the	recordset	as	a	whole	or	on	a	per-
column	basis,	the	ability	to	manipulate	a	column	value	as	a	storage	object
depends	on	whether	the	provider	supports	the	coercion	from	the	column's	native
type	(BLOB	or	non-BLOB)	to	the	particular	storage	interface.

ADO	and	SQL	Server

Isolation	Levels	Property
The	Isolation	Levels	property	specifies	the	supported	transaction	isolation
levels.

Applies	To

Connection	Object

Syntax
object.Properties("Isolation	Levels")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	bitmask	containing	zero	or	more	of	these	settings.

Constant Description
DBPROPVAL_TI_BROWSE Equivalent	to

DBPROPVAL_TI_READUNCOMMITTED.
DBPROPVAL_TI_CURSORSTABILITY Equivalent	to

DBPROPVAL_TI_READCOMMITTED.
DBPROPVAL_TI_ISOLATED Equivalent	to

DBPROPVAL_TI_SERIALIZABLE.
DBPROPVAL_TI_READCOMMITTED A	transaction	operating	at	the	Read

Committed	level	cannot	see	changes	made
by	other	transactions	until	those	transactions
are	committed.	At	this	level	of	isolation,
dirty	reads	are	not	possible	but	nonrepeatable
reads	and	phantoms	are	possible.

JavaScript:hhobj_1.Click()

reads	and	phantoms	are	possible.
DBPROPVAL_TI_READUNCOMMITTEDA	transaction	operating	at	the	Read

Uncommitted	level	can	see	uncommitted
changes	made	by	other	transactions.	At	this
level	of	isolation,	dirty	reads,	nonrepeatable
reads,	and	phantoms	are	all	possible.

DBPROPVAL_TI_REPEATABLEREAD A	transaction	operating	at	the	Repeatable
Read	level	is	guaranteed	not	to	see	any
changes	made	by	other	transactions	in	values
it	has	already	read.	At	this	level	of	isolation,
dirty	reads	and	nonrepeatable	reads	are	not
possible	but	phantoms	are	possible.

DBPROPVAL_TI_SERIALIZABLE A	transaction	operating	at	the	Serializable
level	guarantees	that	all	concurrent
transactions	interact	only	in	ways	that
produce	the	same	effect	as	if	each	transaction
were	entirely	executed	one	after	the	other.	At
this	isolation	level,	dirty	reads,	nonrepeatable
reads,	and	phantoms	are	not	possible.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_SUPPORTEDTXNISOLEVELS

ADO	and	SQL	Server

Isolation	Retention	Property
The	Isolation	Retention	property	specifies	the	supported	transaction	isolation
retention	levels.

Applies	To

Connection	Object

Syntax
object.Properties("Isolation	Retention")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	bitmask	containing	zero	or	more	of	these	settings.

Constant Description
DBPROPVAL_TR_ABORT The	transaction	preserves	its	isolation

context	across	a	retaining	abort.
DBPROPVAL_TR_ABORT_DC The	transaction	may	either	preserve	or

dispose	of	isolation	context	across	a
retaining	abort.

DBPROPVAL_TR_ABORT_NO The	transaction	is	explicitly	not	to
preserve	isolation	across	a	retaining
abort.

DBPROPVAL_TR_BOTH Isolation	is	preserved	across	both	a
retaining	commit	and	a	retaining	abort.

DBPROPVAL_TR_COMMIT The	transaction	preserves	its	isolation

JavaScript:hhobj_1.Click()

context	(that	is,	it	preserves	its	locks,	if
that	is	how	isolation	is	implemented)
across	a	retaining	commit.

DBPROPVAL_TR_COMMIT_DC The	transaction	may	either	preserve	or
dispose	of	isolation	context	across	a
retaining	commit.

DBPROPVAL_TR_COMMIT_NO The	transaction	is	explicitly	not	to
preserve	isolation	across	a	retaining
commit.

DBPROPVAL_TR_DONTCARE The	transaction	may	preserve	or
dispose	of	isolation	context	across	a
retaining	commit	or	abort.	This	is	the
default.

DBPROPVAL_TR_NONE Isolation	is	explicitly	not	to	be	retained
across	either	a	retaining	commit	or	a
retaining	abort.

DBPROPVAL_TR_OPTIMISTIC Optimistic	concurrency	control	is	to	be
used.	If
DBPROPVAL_TR_OPTIMISTIC	is
specified,	and	then	whatever	isolation
technology	is	in	place	(such	as
locking),	it	must	be	the	case	that	other
transactions'	ability	to	make	changes	to
the	data	and	resources	manipulated	by
this	transaction	is	not	in	any	way
affected	by	the	data	read	or	updated	by
this	transaction.	That	is,	optimistic
control	is	to	be	used	for	all	data	in	the
transaction.

Data	Type
adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_SUPPORTEDTXNISORETAIN

ADO	and	SQL	Server

ISupportErrorInfo	Property
The	ISupportErrorInfo	property	indicates	whether	the	provider	supports	the
OLE	DB	ISupportErrorInfo	interface.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("ISupportErrorInfo")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	provider	supports	the	specified	interface,
as	specified	in	Settings

Settings

Value Description
True The	recordset	supports	the	specified	interface.
False The	recordset	does	not	support	the	specified	interface.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_ISupportErrorInfo

Remarks
ADO	uses	the	OLE	DB	ISupportErrorInfo	interface	if	the	provider	supports	it.

The	ISupportErrorInfo	property	is	useful	for	conformance	testing.

ADO	and	SQL	Server

L

ADO	and	SQL	Server

Literal	Bookmarks	Property
The	Literal	Bookmarks	property	specifies	whether	bookmarks	can	be
compared	as	a	sequence	of	bytes.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Literal	Bookmarks")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	bookmarks	can	be	compared	as	a	sequence	of
bytes,	as	specified	in	Settings

Settings

Value Description
True Bookmarks	can	be	compared	literally.	That	is,	they	can	be

compared	as	a	sequence	of	bytes.
False Bookmarks	cannot	be	compared	literally.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_LITERALBOOKMARKS

Remarks
Setting	the	value	of	this	property	to	True	automatically	sets	the	value	of	Use
BookMarks	to	True.

See	Also

Bookmarkable	Property

Use	Bookmarks	Property

ADO	and	SQL	Server

Literal	Row	Identity	Property
The	Literal	Row	Identity	property	indicates	whether	an	application	can	perform
a	binary	comparison	of	two	row	handles	to	determine	whether	they	point	to	the
same	row.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Literal	Row	Identity")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True The	application	can	perform	a	binary	comparison	of	two	row

handles	to	determine	whether	they	point	to	the	same	row.
False Multiple	and	concurrently	held	row	handles	can	represent	the

same	row	in	the	underlying	database.	To	the	recordset,	these
generally	appear	as	separate	rows.	Therefore,	a	change	made	to	a
retrieved	column	value	is	not	reflected	when	retrieving	the	row
through	a	second	row	handle.

Data	Type

adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_LITERALIDENTITY

Remarks
The	Strong	Row	Identity	property	specifies	whether	the	handle	of	a	newly
inserted	row	can	be	successfully	compared	to	another	handle.

See	Also

Strong	Row	Identity	Property

ADO	and	SQL	Server

Locale	Identifier	Property
The	Locale	Identifier	property	specifies	a	preferred	locale	ID.

Applies	To

Connection	Object

Syntax
object.Properties("Locale	Identifier")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	the	locale	ID.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_INIT_LCID

Remarks
Applications	specify	the	LCID	at	initialization.	This	provides	a	method	for	the

JavaScript:hhobj_1.Click()

server	to	determine	the	application's	specified	LCID	in	cases	where	it	can	use
this	information.	This	property	does	not	guarantee	that	all	text	returned	to	the
application	is	translated	according	to	the	LCID.

ADO	and	SQL	Server

Lock	Mode	Property
The	Lock	Mode	property	specifies	the	level	of	locking	performed	by	the
recordset.

Applies	To

Command	Object

Syntax
object.Properties("Lock	Mode")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	the	level	of	locking	as	described	in	Settings.

Settings

Constant Description
DBPROPVAL_LM_NONE The	provider	is	not	required	to	lock

rows	at	any	time	to	ensure	successful
updates.	Updates	may	fail	when	sent	to
the	server	for	reasons	of	concurrency
(for	example,	if	someone	else	has
updated	the	row).

DBPROPVAL_LM_SINGLEROWThe	provider	uses	the	minimum	level
of	locking	necessary	to	ensure	that
changes	successfully	written	to	a	single
row	returned	by	the	most	recent	fetch

will	not	fail	due	to	a	concurrency
violation.	Therefore,	using	deferred
update	mode	will	not	fail	due	to	a
concurrency	violation.	This	may	mean
that	the	provider	takes	a	lock	on	the
row	when	the	Update	method	is	first
called	on	the	row,	but	the	provider	may
lock	the	row	as	early	as	when	it	is	read
to	guarantee	that	operations	on	the	row,
such	as	updates,	will	succeed.	The
implications	of
DBPROPVAL_LM_SINGLEROW,
and	the	Lock	Mode	property	in
general,	are	the	same	in	both	immediate
and	deferred	update	modes.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_LOCKMODE

Remarks
Lock	mode	and	isolation	level	are	closely	related	but	distinct.	An	application's
isolation	level	specifies	the	isolation	of	that	application	from	changes	made	by
other	users	to	the	underlying	data.	Lock	mode	defines	when	underlying	data	is
locked	to	ensure	that	updates	succeed.	The	provider	may	use	locking	to	enforce
higher	levels	of	isolation,	in	which	case	a	higher	level	of	locking	may	occur	than
is	required	to	enforce	the	specified	lock	mode.	The	Lock	Mode	property

specifies	the	minimum	level	of	locking.

ADO	and	SQL	Server

M

ADO	and	SQL	Server

Mapping	Schema	Property
The	Mapping	Schema	property	specifies	a	file	name	or	URL	that	points	to	the
mapping	schema	used	by	the	provider	to	translate	an	XPath	command.

Applies	To

Command	Object

Syntax
object.Properties("MappingSchema")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	a	file	name	or	URL.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
SSPROP_STREAM_MAPPINGSCHEMA

Remarks

Relative	paths	are	resolved	by	the	Base	Path	property.	If	the	Base	Path	property
is	not	set,	the	relative	path	defaults	to	the	current	directory.

Mapping	Schema	is	ignored	for	SQL	statements	and	XML	template	queries.

See	Also

Base	Path	Property

Content	Type	Property

SS	STREAM	FLAGS	Property

XML	Root	Property

XSL	Property

ADO	and	SQL	Server

Maximum	Index	Size	Property
The	Maximum	Index	Size	property	returns	the	maximum	number	of	bytes
allowed	in	the	combined	columns	of	an	index.	If	there	is	no	specified	limit	or	the
limit	is	unknown,	the	value	is	set	to	zero.

Applies	To

Connection	Object

Syntax
object.Properties("Maximum	Index	Size")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_MAXINDEXSIZE

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Maximum	Open	Rows	Property
The	Maximum	Open	Rows	property	specifies	the	maximum	number	of	rows
that	can	be	active	at	the	same	time.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Maximum	Open	Rows")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	the	maximum	number	of	rows.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_MAXOPENROWS

Remarks

This	limit	on	the	maximum	number	of	rows	does	not	reflect	resource	limitations
such	as	Random	Access	Memory	(RAM),	but	does	apply	if	the	recordset
implementation	uses	some	strategy	that	results	in	a	limit.

If	there	is	no	limit,	the	value	of	the	Maximum	Open	Rows	property	is	set	to
zero.	The	provider	is	free	to	support	a	greater	number	of	active	rows	than	the
maximum	specified	by	the	application.	In	this	case,	the	provider	returns	the
actual	maximum	number	of	active	rows	instead	of	the	value	specified	by	the
application.

ADO	and	SQL	Server

Maximum	Pending	Rows	Property
The	Maximum	Pending	Rows	property	specifies	the	maximum	number	of	rows
that	can	have	pending	changes	at	the	same	time.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Maximum	Pending	Rows")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	the	maximum	number	of	rows	that	can	have	pending
changes.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_MAXPENDINGROWS

Remarks

This	limit	on	the	maximum	number	of	pending	rows	does	not	reflect	resource
limitations	such	as	Random	Access	Memory	(RAM),	but	does	apply	if	the
recordset	implementation	uses	some	strategy	that	results	in	a	limit.

If	there	is	no	limit,	the	value	of	the	Maximum	Pending	Rows	property	is	set	to
zero.	The	provider	is	free	to	support	a	greater	number	of	pending	rows	than	the
maximum	specified	by	the	application.	In	this	case,	the	provider	will	return	the
actual	maximum	number	of	pending	rows	instead	of	the	value	specified	by	the
application.

ADO	and	SQL	Server

Maximum	Row	Size	Property
The	Maximum	Row	Size	property	returns	the	maximum	length	of	a	single	row
in	a	table.

Applies	To

Connection	Object

Syntax
object.Properties("Maximum	Row	Size")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_MAXROWSIZE

Remarks
If	there	is	no	specified	limit	or	the	limit	is	unknown,	Maximum	Row	Size	is	set
to	zero.

JavaScript:hhobj_1.Click()

See	Also

Maximum	Row	Size	Includes	BLOB	Property

ADO	and	SQL	Server

Maximum	Row	Size	Includes	BLOB	Property
The	Maximum	Row	Size	Includes	BLOB	property	indicates	that	the	value
returned	by	the	Maximum	Row	Size	property	includes	all	BLOB	data.

Applies	To

Connection	Object

Syntax
object.Properties("Maximum	Row	Size	Includes	BLOB")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True The	maximum	row	size	returned	by	the	Maximum	Row	Size

property	includes	the	length	of	all	BLOB	data.
False The	maximum	row	size	returned	by	the	Maximum	Row	Size

property	does	not	include	the	length	of	all	BLOB	data.

Data	Type
adBoolean

Modifiable

JavaScript:hhobj_1.Click()

Read-only

OLE	DB	Property
DBPROP_MAXROWSIZEINCLUDESBLOB

See	Also

Maximum	Row	Size	Property

ADO	and	SQL	Server

Maximum	Rows	Property
The	Maximum	Rows	property	specifies	the	maximum	number	of	rows	that	can
be	returned	in	a	recordset.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Maximum	Rows")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	the	maximum	number	of	rows.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_MAXROWS

Remarks

If	no	limit	is	specified	for	the	Maximum	Rows	property,	the	value	is	set	to	zero.

If	the	application	attempts	to	fetch	a	greater	number	of	rows	in	a	recordset	than
specified	by	the	Maximum	Rows	property,	the	recordset	behaves	as	if	the	table
contains,	or	the	query	returns,	only	the	quantity	specified	by	MaximumRows.
The	provider	returns	DB_S_ENDOFROWSET.

Pending	deletes	do	not	count	against	the	recordset	limit	specified	by	the
Maximum	Rows	property.	The	provider	is	not	required	to	check	the	Maximum
Rows	property	when	inserting	or	deleting	rows.

ADO	and	SQL	Server

Maximum	Tables	in	SELECT	Property
The	Maximum	Tables	in	SELECT	property	specifies	the	maximum	number	of
tables	allowed	in	the	FROM	clause	of	a	SELECT	statement.

Applies	To

Connection	Object

Syntax
object.Properties("Maximum	Tables	in	SELECT")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	the	maximum	number	of	tables.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_MAXTABLESINSELECT

Remarks

JavaScript:hhobj_1.Click()

If	there	is	no	specified	limit	or	the	limit	is	unknown,	the	Maximum	Tables	in
SELECT	property	is	set	to	zero.

ADO	and	SQL	Server

Multiple	Parameter	Sets	Property
The	Multiple	Parameter	Sets	property	indicates	whether	a	provider	supports
multiple	parameter	sets.

Applies	To

Connection	Object

Syntax
object.Properties("Multiple	Parameter	Sets")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True The	provider	supports	multiple	parameter	sets.
False The	provider	supports	only	a	single	set	of	parameters	per

execution.

Data	Type
adBoolean

Modifiable

JavaScript:hhobj_1.Click()

Read-only

OLE	DB	Property
DBPROP_MULTIPLEPARAMSETS

ADO	and	SQL	Server

Multiple	Results	Property
The	Multiple	Results	property	specifies	whether	the	provider	supports	multiple
results	objects	and	what	restrictions	it	places	on	these	objects.

Applies	To

Connection	Object

Syntax
object.Properties("Multiple	Results")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	bitmask	containing	zero	or	more	of	the	following	settings:

Constant Description
DBPROPVAL_MR_CONCURRENT More	than	one	recordset	created

by	the	same	multiple	results	object
can	exist	concurrently.	If	this	bit	is
not	set,	the	consumer	must	release
the	current	recordset	before
retrieving	the	next	result.

DBPROPVAL_MR_NOTSUPPORTEDThe	provider	does	not	support
multiple	results	objects.

DBPROPVAL_MR_SUPPORTED The	provider	supports	multiple
results	objects.

JavaScript:hhobj_1.Click()

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_MULTIPLERESULTS

ADO	and	SQL	Server

Multiple	Storage	Objects	Property
The	Multiple	Storage	Objects	property	indicates	whether	the	provider	supports
multiple	open	storage	objects	at	the	same	time.

Applies	To

Connection	Object

Syntax
object.Properties("Multiple	Storage	Objects")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True The	provider	supports	multiple,	open	storage	objects	at	the	same

time.
False The	provider	supports	only	one	open	storage	object	at	a	time.

Any	method	that	attempts	to	open	a	second	storage	object	returns
a	status	of	DBSTATUS_E_CANTCREATE	for	the	column	on
which	it	attempted	to	open	the	second	storage	object,	whether	or
not	the	objects	are	constructed	over	the	same	column,	different
columns	in	the	same	row,	or	different	rows.

Data	Type

JavaScript:hhobj_1.Click()

adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_MULTIPLESTORAGEOBJECTS

ADO	and	SQL	Server

Multi-Table	Update	Property
The	Multi-Table	Update	property	indicates	whether	the	provider	can	update
recordsets	derived	from	multiple	tables.

Applies	To

Connection	Object 	

Syntax
object.Properties("Multi-Table	Update")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True The	provider	can	update	recordsets	derived	from	multiple	tables.
False The	provider	cannot	update	recordsets	derived	from	multiple

tables.

Data	Type
adBoolean

Modifiable

JavaScript:hhobj_1.Click()

Read-only

OLE	DB	Property
DBPROP_MULTITABLEUPDATE

ADO	and	SQL	Server

N

ADO	and	SQL	Server

Notification	Granularity	Property
The	Notification	Granularity	property	specifies	how	to	process	modifications
on	multiple	rows.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Notification	Granularity")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	specifying	how	to	process	modifications,	as	defined	in	Settings.

Settings

Constant Description
DBPROPVAL_NT_SINGLEROW For	methods	that	operate	on	multiple

rows,	the	provider	processes
modifications	separately	for	each
phase	for	each	row.	A	cancellation
affects	a	single	row;	it	does	not
affect	the	other	rows,	and
notifications	are	still	sent	for	these
rows.

DBPROPVAL_NT_MULTIPLEROWSFor	methods	that	operate	on	multiple
rows	and	then	for	each	phase,	the

provider	processes	modifications
once	for	all	rows	that	succeed	and
once	for	all	rows	that	fail.	This
separation	can	occur	at	each	phase
where	a	change	can	fail.	For
example,	if	the	process	deletes	some
rows	and	fails	to	delete	others	during
the	preliminary	work	phase,	it
processes	modifications	twice:	once
with
DBEVENTPHASE_SYNCHAFTER
and	the	array	of	handles	of	rows	that
it	deleted,	and	once	with
DBEVENTPHASE_FAILEDTODO
and	the	array	of	handles	of	rows	it
failed	to	delete.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_NOTIFICATIONGRANULARITY

Remarks
The	Notification	Granularity	property	does	not	affect	how	providers	return
notifications	about	events	that	affect	columns	or	the	entire	recordset.

ADO	and	SQL	Server

Notification	Phases	Property
The	Notification	Phases	property	returns	a	bitmask	specifying	the	notification
phases	supported	by	the	provider.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Notification	Phases")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	combination	of	two	or	more	of	these	settings.

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_DIDEVENT	

DBPROPVAL_NP_FAILEDTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_NOTIFICATIONPHASES

Remarks
DBPROPVAL_NP_FAILEDTODO	and	DBPROPVAL_NP_DIDEVENT	are
returned	by	all	providers	that	support	notifications.

ADO	and	SQL	Server

NULL	Collation	Order	Property
The	NULL	Collation	Order	property	indicates	how	NULLs	are	sorted	in	a	list.

Applies	To

Connection	Object

Syntax
object.Properties("NULL	Collation	Order")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Constant Description
DBPROPVAL_NC_END NULLs	are	sorted	at	the	end	of	the	list,

regardless	of	the	sort	order.
DBPROPVAL_NC_HIGH NULLs	are	sorted	at	the	high	end	of	the	list.
DBPROPVAL_NC_LOW NULLs	are	sorted	at	the	low	end	of	the	list.
DBPROPVAL_NC_STARTNULLs	are	sorted	at	the	start	of	the	list,

regardless	of	the	sort	order.

Data	Type
adInteger

JavaScript:hhobj_1.Click()

Modifiable
Read-only

OLE	DB	Property
DBPROP_NULLCOLLATION

ADO	and	SQL	Server

NULL	Concatenation	Behavior	Property
The	NULL	Concatenation	Behavior	property	specifies	how	the	data	source
handles	the	concatenation	of	NULL-valued	character	data	type	columns	with
non–NULL-valued	character	data	type	columns.

Applies	To

Connection	Object

Syntax
object.Properties("NULL	Concatenation	Behavior")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Constant Description
DBPROPVAL_CB_NULL The	result	is	NULL	valued.
DBPROPVAL_CB_NON_NULLThe	result	is	the	concatenation	of	the

non–NULL-valued	column	or	columns.

Data	Type
adInteger

Modifiable

JavaScript:hhobj_1.Click()

Read-only

OLE	DB	Property
DBPROP_CONCATNULLBEHAVIOR

ADO	and	SQL	Server

O

ADO	and	SQL	Server

Objects	Transacted	Property
The	Objects	Transacted	property	specifies	whether	an	object	created	on	the
referenced	columns	can	be	committed	in	a	transaction.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Objects	Transacted")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	the	object	can	be	committed	in	a	transaction,
as	specified	in	Settings.

Settings

Value Description
True Any	object	created	on	the	referenced	column	can	be	transacted.

Data	made	visible	to	the	database	through	the	object	can	be
committed	with	CommitTrans	or	aborted	with	Rollback.

False Any	object	created	on	the	referenced	column	cannot	be
transacted.	All	changes	to	the	object	are	permanent	once	they	are
made	visible	to	the	database.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_TRANSACTEDOBJECT

Remarks
If	the	Objects	Transacted	property	is	set	on	a	column	that	does	not	contain	an
object,	it	is	ignored.

ADO	and	SQL	Server

OLE	DB	Version	Property
The	OLE	DB	Version	property	returns	the	version	of	OLE	DB	supported	by	the
provider.

Applies	To

Connection	Object

Syntax
object.Properties("OLE	DB	Version")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_PROVIDEROLEDBVER

Remarks
The	version	is	of	the	form	##.##,	where	the	first	two	digits	are	the	major	version
and	the	next	two	digits	are	the	minor	version.	For	example,	an	OLE	DB	provider
that	conforms	to	the	2.6	specification	returns	"02.60".

JavaScript:hhobj_1.Click()

See	Also

DBMS	Version	Property

ADO	and	SQL	Server

OLE	Object	Support	Property
The	OLE	Object	Support	property	returns	a	bitmask	that	specifies	how	the
provider	supports	access	to	BLOBs	and	COM	objects	stored	in	columns.

Applies	To

Connection	Object

Syntax
object.Properties("OLE	Object	Support")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Settings
A	combination	of	zero	or	more	of	the	following	settings:

Constant Description
DBPROPVAL_OO_BLOB The	provider	supports	access	to

BLOBs	as	structured	storage	objects.	A
consumer	determines	which	interfaces
are	supported	using	the	Structured
Storage	property.

DBPROPVAL_OO_DIRECTBIND The	provider	supports	direct	binding.
DBPROPVAL_OO_IPERSIST The	provider	supports	access	to	COM

objects.
DBPROPVAL_OO_ROWOBJECT The	provider	supports	row	objects.
DBPROPVAL_OO_SCOPED Indicates	that	row	objects	implement

IScopedOperations.

JavaScript:hhobj_1.Click()

DBPROPVAL_OO_SINGLETON The	provider	supports	singleton
selects.	The	provider	supports	the
return	of	row	objects	using	the
Execute	method.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_OLEOBJECTS

ADO	and	SQL	Server

Open	Rowset	Support	Property
The	Open	Rowset	Support	property	returns	a	bitmask	that	specifies	how	the
provider	supports	opening	objects	through	the	Connection	object.

Applies	To

Connection	Object

Syntax
object.Properties("Open	Rowset	Support")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	bitmask	containing	one	or	more	of	the	following	settings:

Constant Description
DBPROPVAL_ORS_TABLE The	provider	supports

opening	tables	through	the
Connection	object	(true	for
all	providers).

DBPROPVAL_ORS_INDEX The	provider	supports
specifying	an	index	through
the	Connection	object.

DBPROPVAL_ORS_INTEGRATEDINDEXThe	provider	supports
specifying	both	a	table	and	an
index	in	the	same	call	to	the
Execute	method	in	order	to

JavaScript:hhobj_1.Click()

open	the	recordset	using	the
specified	index.

DBPROPVAL_ORS_STOREDPROC The	provider	supports
opening	a	recordset	over
stored	procedures	by
specifying	the	stored
procedure	name.

DBPROPVAL_ORS_HISTOGRAM The	provider	supports
opening	a	histogram	recordset
using	the	Execute	method.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_OPENROWSETSUPPORT

ADO	and	SQL	Server

ORDER	BY	Columns	in	Select	List	Property
The	ORDER	BY	Columns	in	Select	List	property	indicates	whether	columns	in
an	ORDER	BY	clause	must	be	included	in	the	SELECT	statement.

Applies	To

Connection	Object

Syntax
object.Properties("ORDER	BY	Columns	in	Select	List")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True Columns	in	an	ORDER	BY	clause	must	be	included	in	the

SELECT	statement.
False Columns	in	an	ORDER	BY	clause	are	not	required	to	be

included	in	the	SELECT	statement.

Data	Type
adBoolean

Modifiable

JavaScript:hhobj_1.Click()

Read-only

OLE	DB	Property
DBPROP_ORDERBYCOLUMNSINSELECT

ADO	and	SQL	Server

Others'	Changes	Visible	Property
The	Others'	Changes	Visible	property	specifies	whether	row	updates	or
deletions	by	a	process	other	than	the	application	accessing	a	recordset	are	visible
without	statement	reexecution.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Others'	Changes	Visible")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	updates	or	deletions	by	another	process	are
visible,	as	described	in	Settings.

Settings

Value Description
True Rows	modified	(updated	or	deleted)	by	an	application	or	process

other	than	the	application	accessing	the	recordset	are	visible.	For
example,	if	another	process	or	application	updates	the	data
underlying	a	row	or	deletes	the	row,	and	the	row	is	released
completely,	any	application	accessing	the	recordset	will	see	that
change	the	next	time	it	fetches	the	row.	This	includes	updates
and	deletes	made	by	others	in	the	same	transaction	as	well	as
updates	and	deletes	made	by	others	outside	the	transaction.

The	transaction	isolation	level	does	not	affect	the	visibility	of
rows	inserted	by	others	in	the	same	transaction,	such	as	other
recordsets	in	the	same	session.	However,	it	does	restrict	the
visibility	of	rows	inserted	by	others	outside	the	transaction.

False Changes	to	the	recordset	(updates	and	deletes)	made	by	other
applications	accessing	the	recordset	are	not	visible	unless	the
command	is	reexecuted.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_OTHERUPDATEDELETE

See	Also

Others'	Inserts	Visible	Property

Own	Changes	Visible	Property

Own	Inserts	Visible	Property

ADO	and	SQL	Server

Others'	Inserts	Visible	Property
The	Others'	Inserts	Visible	property	specifies	whether	row	inserts	by	a	process
other	than	the	application	accessing	a	recordset	are	visible	without	statement
reexecution.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Others'	Inserts	Visible")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	inserts	by	another	process	are	visible,	as
described	in	Settings.

Settings

Value Description
True Rows	inserted	by	an	application	or	process	other	than	the

application	accessing	the	recordset	are	visible.	Therefore,	any
application	accessing	the	recordset	will	see	those	rows	the	next
time	it	fetches	a	set	of	rows	containing	the	inserted	rows.	This
includes	rows	inserted	in	the	same	transaction	as	well	as	rows
inserted	outside	the	transaction	by	others.

The	transaction	isolation	level	does	not	affect	the	visibility	of
rows	inserted	by	others	in	the	same	transaction,	such	as	other

recordsets	in	the	same	session.	However,	it	does	restrict	the
visibility	of	rows	inserted	by	others	outside	the	transaction.

False Inserts	to	the	recordset	made	by	other	applications	accessing	the
recordset	are	not	visible	unless	the	command	is	reexecuted.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_OTHERINSERT

See	Also

Others'	Changes	Visible	Property

Own	Changes	Visible	Property

Own	Inserts	Visible	Property

ADO	and	SQL	Server

Output	Encoding	Property
The	Output	Encoding	property	specifies	the	encoding	to	use	in	the	stream	set	or
returned	by	the	Execute	method.

Applies	To

Command	Object

Syntax
object.Properties("Output	Encoding")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	the	output	encoding.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
DBPROP_OUTPUTENCODING

Remarks

Encodings	include	UTF8,	ANSI,	and	Unicode.	If	Output	Encoding	is	not	set,
encoding	defaults	to	UTF8.

If	a	template	is	specified	at	the	URL	using	the	template=	keyword,	the	encoding
is	Unicode.	For	all	other	templates,	the	encoding	is	obtained	from	the	template,
which	is	a	valid	XML	document	and,	therefore,	has	its	own	encoding.

If	an	XML	template	is	specified	at	the	URL	(instead	of	as	a	Transact-SQL	query)
and	Output	Encoding	is	also	specified,	the	encoding	specified	in	Output
Encoding	overrides	the	template.

See	Also

Output	Stream	Property

ADO	and	SQL	Server

Output	Parameter	Availability	Property
The	Output	Parameter	Availability	property	specifies	when	output	parameter
values	become	available	to	an	application.

Applies	To

Connection	Object

Syntax
object.Properties("Output	Parameter	Availability")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Constant Description
DBPROPVAL_OA_NOTSUPPORTED Output	parameters	are	not

supported.
DBPROPVAL_OA_ATEXECUTE Output	parameter	data	is	available

immediately	after	the	Execute
method	returns.

DBPROPVAL_OA_ATROWRELEASE If	a	command	returns	a	single
result	that	is	a	recordset,	output
parameter	data	is	available	at	the
time	the	recordset	is	completely
released.	If	a	command	returns
multiple	results,	output	parameter

JavaScript:hhobj_1.Click()

data	is	available	when	the
NextRecordset	method	returns
the	next	recordset	or	the	multiple
results	object	is	completely
released,	whichever	occurs	first.
Before	the	output	parameter	data
is	available,	the	consumer's	bound
memory	is	in	an	indeterminate
state.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_OUTPUTPARAMETERAVAILABILITY

ADO	and	SQL	Server

Output	Stream	Property
The	Output	Stream	property	specifies	the	stream	containing	the	results	returned
by	the	Execute	method.

Applies	To

Command	Object

Syntax
object.Properties("Output	Stream")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Pointer	to	the	stream.

Data	Type
adIUnknown

Modifiable
Read/write

OLE	DB	Property
DBPROP_OUTPUTSTREAM

Remarks

Use	Output	Stream	to	pass	a	reference	to	the	stream	to	other	processes	(for
example,	an	XML	parser),	thereby	avoiding	the	overhead	associated	with
maintaining	multiple	copies	of	the	data.

See	Also

Output	Encoding	Property

ADO	and	SQL	Server

Own	Changes	Visible	Property
The	Own	Changes	Visible	property	specifies	whether	row	updates	or	deletions
by	the	application	accessing	a	recordset	are	visible	without	statement
reexecution.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Own	Changes	Visible")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	updates	or	deletions	by	the	application	are
visible,	as	described	in	Settings.

Settings

Value Description
True The	updates	and	deletes	made	by	the	application	accessing	the

recordset	are	visible.	For	example,	if	a	consumer	of	the	recordset
updates	or	deletes	a	row,	and	the	row	is	released	completely,	the
update	or	delete	will	be	visible	to	any	consumer	of	the	recordset
the	next	time	it	fetches	that	row.	This	ability	is	independent	of
the	transaction	isolation	level	because	all	consumers	of	the
recordset	share	the	same	transaction.

False Changes	to	the	recordset	(updates	and	deletes)	made	by

applications	accessing	the	recordset	are	not	visible	unless	the
command	is	reexecuted.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_OWNUPDATEDELETE

See	Also

Others'	Changes	Visible	Property

Others'	Inserts	Visible	Property

Own	Inserts	Visible	Property

ADO	and	SQL	Server

Own	Inserts	Visible	Property
The	Own	Inserts	Visible	property	specifies	whether	row	inserts	by	the
application	accessing	a	recordset	are	visible	without	statement	reexecution.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Own	Inserts	Visible")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	inserts	by	the	application	are	visible,	as
described	in	Settings.

Settings

Value Description
True Inserts	to	the	recordset	are	visible.	If	an	application	accessing	a

recordset	inserts	a	row,	that	row	is	visible	to	any	application
accessing	the	recordset	the	next	time	the	application	fetches	a	set
of	rows	containing	that	row.	This	ability	is	independent	of	the
transaction	isolation	level	because	all	applications	accessing	the
recordset	share	the	same	transaction.

False Changes	to	the	recordset	(updates	and	deletes)	made	by
applications	accessing	the	recordset	are	not	visible	unless	the
command	is	reexecuted.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_OWNINSERT

See	Also

Immobile	Rows	Property

Others'	Changes	Visible	Property

Others'	Inserts	Visible	Property

Own	Changes	Visible	Property

ADO	and	SQL	Server

P

ADO	and	SQL	Server

Pass	By	Ref	Accessors	Property
The	Pass	By	Ref	Accessors	property	indicates	whether	the	provider	supports	the
DBACCESSOR_PASSBYREF	flag	in	the	OLE	DB	IAccessor::CreateAccessor
interface.	This	applies	both	to	row	and	to	parameter	accessors.

Applies	To

Connection	Object

Syntax
object.Properties("Pass	By	Ref	Accessors")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_BYREFACCESSORS

Remarks
The	ADO	ActualSize	and	Value	properties	map	to	the	OLE	DB
IAccessor::CreateAccessor	interface.

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Password	Property
The	Password	property	specifies	the	password	to	be	used	when	connecting	to	a
data	source.

Applies	To

Connection	Object

Syntax
object.Properties("Password")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	contains	the	password.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
DBPROP_AUTH_PASSWORD

Remarks

JavaScript:hhobj_1.Click()

When	the	value	of	the	Password	property	is	retrieved,	the	provider	might	return
a	mask	such	as	"******"	or	an	empty	string	instead	of	the	actual	password.	The
password	is	still	set	internally	and	is	used	when	the	Open	method	is	called.

An	ADO	application	can	also	use	the	OLE	DB	Pwd	keyword,	which	is
equivalent	to	the	Password	property.

Note		The	recommended	method	for	connecting	to	an	instance	of	Microsoft®
SQL	Server™	2000	is	to	use	Windows	Authentication	mode.

ADO	and	SQL	Server

Persist	Security	Info	Property
The	Persist	Security	Info	property	specifies	whether	the	data	source	can	persist
sensitive	authentication	information	such	as	a	password.

Applies	To

Connection	Object

Syntax
object.Properties("Persist	Security	Info")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	the	data	source	can	persist	authentication
information,	as	specified	in	Settings.

Settings

Value Description
True The	data	source	object	can	persist	sensitive	authentication

information	such	as	a	password	along	with	other	authentication
information.

False The	data	source	object	cannot	persist	sensitive	authentication
information.

Data	Type

JavaScript:hhobj_1.Click()

adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_AUTH_PERSIST_SENSITIVE_AUTHINFO

Remarks
If	Persist	Security	Info	is	set	to	False	at	the	time	the	data	source	is	initialized,
the	data	source	cannot	persist	sensitive	authentication	information.	Furthermore,
a	call	to	a	property	that	contains	sensitive	authentication	information,	such	as	a
password,	returns	a	default	value	instead	of	the	actual	password.

After	the	data	source	has	been	uninitialized,	sensitive	information	that	was	set
when	the	data	source	was	initialized	with	the	Persist	Security	Info	property	set
to	False	still	cannot	be	obtained	from	the	Properties	collection	or	by	persisting
the	uninitialized	data	source	object.	However,	new	properties	set	after	the	data
source	object	has	been	uninitialized	can	be	persisted	or	obtained	if	Persist
Security	Info	is	set	to	True.

Before	the	data	source	is	initialized	for	the	first	time,	sensitive	information	can
be	obtained	from	the	Properties	collection,	and	can	be	persisted,	regardless	of
the	setting	of	the	Persist	Security	Info	property.	Therefore,	sensitive
applications	should	avoid	passing	uninitialized	data	source	objects.

Note		The	recommended	method	for	connecting	to	an	instance	of	Microsoft®
SQL	Server™	2000	is	to	use	Windows	Authentication	mode.

ADO	and	SQL	Server

Persistent	ID	Type	Property
The	Persistent	ID	Type	property	specifies	the	type	of	DBID	that	the	provider
uses	when	persisting	DBIDs	that	name	entities	in	the	database,	such	as	tables,
indexes,	columns,	commands,	or	constraints.	This	is	generally	the	type	of	DBID
that	the	provider	considers	the	most	permanent	under	schema	changes	and
physical	data	reorganizations.

Applies	To

Connection	Object

Syntax
object.Properties("Persistent	ID	Type")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Constant Description
DBPROPVAL_PT_GUID GUID	value	must	be	provided.
DBPROPVAL_PT_GUID_NAME GUID	and	_NAME	values	must	be

provided.
DBPROPVAL_PT_GUID_PROPID GUID	and	_PROPID	values	must	be

provided.
DBPROPVAL_PT_NAME NAME	value	must	be	provided.
DBPROPVAL_PT_PGUID_NAME GUID	and	_NAME	values	must	be

provided.

JavaScript:hhobj_1.Click()

DBPROPVAL_PT_PGUID_PROPIDGUID	and	_PROPID	values	must	be
provided.

DBPROPVAL_PT_PROPID PROPID	value	must	be	provided.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_PERSISTENTIDTYPE

ADO	and	SQL	Server

Prepare	Abort	Behavior	Property
The	Prepare	Abort	Behavior	property	indicates	how	aborting	a	transaction
affects	prepared	commands.

Applies	To

Connection	Object

Syntax
object.Properties("Prepare	Abort	Behavior")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Constant Description
DBPROPVAL_CB_DELETE Aborting	a	transaction	deletes	prepared

commands.	The	application	must	reprepare
commands	before	executing	them.

DBPROPAL_CB_PRESERVEAborting	a	transaction	preserves	prepared
commands.	The	application	can	reexecute
commands	without	repreparing	them.

Data	Type
adInteger

JavaScript:hhobj_1.Click()

Modifiable
Read-only

OLE	DB	Property
DBPROP_PREPAREABORTBEHAVIOR

See	Also

Prepare	Commit	Behavior	Property

Preserve	on	Abort	Property

Preserve	on	Commit	Property

ADO	and	SQL	Server

Prepare	Commit	Behavior	Property
The	Prepare	Commit	Behavior	property	specifies	how	committing	a
transaction	affects	prepared	commands.

Applies	To

Connection	Object

Syntax
object.Properties("Prepare	Commit	Behavior")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	how	committing	a	transaction	affects	prepared
commands,	as	specified	in	Settings

Settings
One	of	the	following	settings:

Constant Description
DBPROPVAL_CB_DELETE Committing	a	transaction	deletes	prepared

commands.	The	application	must	reprepare
commands	before	executing	them.

DBPROPAL_CB_PRESERVECommitting	a	transaction	preserves
prepared	commands.	The	application	can
reexecute	commands	without	repreparing
them.

JavaScript:hhobj_1.Click()

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_PREPARECOMMITBEHAVIOR

See	Also

Prepare	Abort	Behavior	Property

Preserve	on	Abort	Property

Preserve	on	Commit	Property

ADO	and	SQL	Server

Preserve	on	Abort	Property
The	Preserve	on	Abort	property	specifies	whether	a	recordset	remains	active
after	a	transaction	is	aborted.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Preserve	on	Abort")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	a	recordset	remains	active,	as	specified	in
Settings.

Settings

Value Description
True After	aborting	a	transaction,	the	recordset	remains	active.

Therefore,	it	is	possible	to	fetch	new	rows,	update,	delete,	and
insert	rows,	and	so	on.

False After	aborting	a	transaction,	the	only	operations	allowed	on	a
recordset	are	to	release	rows	and	the	recordset.

Data	Type

adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_ABORTPRESERVE

Remarks
Preserve	on	Abort	applies	only	to	local	transactions.

See	Also

Prepare	Abort	Behavior	Property

Prepare	Commit	Behavior	Property

Preserve	on	Commit	Property

ADO	and	SQL	Server

Preserve	on	Commit	Property
The	Preserve	on	Commit	property	specifies	whether	a	recordset	remains	active
after	a	transaction	is	committed.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Preserve	on	Commit")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	specifies	whether	a	recordset	remains	active,	as	specified	in
Settings.

Settings

Value Description
True After	committing	a	transaction,	the	recordset	remains	active.

Therefore,	it	is	possible	to	fetch	new	rows;	update,	delete,	and
insert	rows;	and	so	on.

False After	committing	a	transaction,	the	only	operations	allowed	on	a
recordset	are	to	release	rows	and	the	recordset.

Data	Type

adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_COMMITPRESERVE

Remarks
Preserve	on	Commit	applies	only	to	local	transactions.

See	Also

Prepare	Abort	Behavior	Property

Prepare	Commit	Behavior	Property

Preserve	on	Abort	Property

Transaction	DDL	Property

ADO	and	SQL	Server

Procedure	Term	Property
The	Procedure	Term	property	returns	a	character	string	with	the	database	name
for	a	procedure	(for	example,	database	procedure,	stored	procedure,	or
procedure).

Applies	To

Connection	Object

Syntax
object.Properties("Procedure	Term")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_PROCEDURETERM

Remarks
An	application	can	use	the	value	returned	by	the	Procedure	Term	property	in
user	interfaces.

JavaScript:hhobj_1.Click()

See	Also

Catalog	Term	Property

Schema	Term	Property

Table	Term	Property

ADO	and	SQL	Server

Prompt	Property
The	Prompt	property	specifies	how	to	prompt	the	user	when	connecting	to	a
data	source.

Applies	To

Connection	Object

Syntax
object.Properties("Prompt")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Small	integer	that	indicates	how	to	prompt	the	user,	as	specified	in	Settings.

Settings

Constant Description
DBPROMPT_PROMPT Always	prompt	the	user	for

initialization	information.
DBPROMPT_COMPLETE Prompt	the	user	only	if	more

information	is	needed.
DBPROMPT_COMPLETEREQUIRED Prompt	the	user	only	if	more

information	is	needed.	Do	not
allow	the	user	to	enter	optional
information.

DBPROMPT_NOPROMPT Do	not	prompt	the	user.

JavaScript:hhobj_1.Click()

Data	Type
adSmallInt

Modifiable
Read/write

OLE	DB	Property
DBPROP_INIT_PROMPT

Remarks
Information	obtained	from	the	user	during	prompting	is	available	following
initialization	from	the	Properties	collection.	To	prompt	for	initialization
information,	the	OLE	DB	provider	typically	displays	a	dialog	box	to	the	user.

Dynamic	properties	of	a	Connection	object	are	lost	when	the	connection	is
closed.	Therefore,	the	Prompt	property	must	be	reset	before	re-opening	the
connection	to	use	a	value	other	than	the	default.

Note		An	application	should	not	specify	that	the	provider	should	prompt	the	user
in	scenarios	in	which	the	user	will	not	be	able	to	respond	to	the	dialog	box.	For
example,	the	user	will	not	be	able	to	respond	if	the	application	is	running	on	a
server	system	instead	of	on	the	user's	client,	or	if	the	application	is	running	on	a
system	with	no	user	logged	on.	In	these	cases,	the	application	will	wait
indefinitely	for	a	response	and	appear	to	lock	up.

ADO	and	SQL	Server

Provider	Friendly	Name	Property
The	Provider	Friendly	Name	property	returns	the	display	name	of	the	provider
(for	example,	"Microsoft	OLE	DB	Provider	for	SQL	Server").

Applies	To

Connection	Object

Syntax
object.Properties("Provider	Friendly	Name")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_PROVIDERFRIENDLYNAME

See	Also

Provider	Name	Property

Provider	Version	Property

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Provider	Name	Property
The	Provider	Name	property	returns	the	file	name	of	the	provider	(for	example,
Sqloledb.dll).

Applies	To

Connection	Object

Syntax
object.Properties("Provider	Name")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_PROVIDERFILENAME

See	Also

Provider	Friendly	Name	Property

Provider	Version	Property

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Provider	Version	Property
The	Provider	Version	property	returns	the	version	of	the	provider.

Applies	To

Connection	Object

Syntax
object.Properties("Provider	Version")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_PROVIDERVER

Remarks
The	version	is	of	the	form	##.##.####,	where	the	first	two	digits	are	the	major
version,	the	next	two	digits	are	the	minor	version,	and	the	last	four	digits	are	the
release	version.	The	provider	can	append	a	description	of	the	provider.

The	Provider	Version	property	is	equivalent	to	the	DBMS	Version	property	if

JavaScript:hhobj_1.Click()

the	DBMS	supports	OLE	DB	interfaces	directly.	It	is	different	if	the	provider	is
separate	from	the	DBMS,	such	as	when	the	provider	accesses	the	DBMS
through	ODBC.

See	Also

Provider	Friendly	Name	Property

Provider	Name	Property

ADO	and	SQL	Server

Q

ADO	and	SQL	Server

Quick	Restart	Property
The	Quick	Restart	property	specifies	whether	the	command	that	created	a
recordset	must	be	reexecuted	before	the	MoveFirst	method	is	executed.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Quick	Restart")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	command	that	created	a	recordset	must	be
reexecuted,	as	specified	in	Settings.

Settings

Value Description
True The	MoveFirst	method	is	relatively	quick	to	execute.	In

particular,	it	does	not	reexecute	the	command	that	created	the
recordset.

False The	MoveFirst	method	is	expensive	to	execute	and	requires
reexecuting	the	command	that	created	the	recordset.

Data	Type

adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_QUICKRESTART

Remarks
Although	the	value	of	this	property	can	be	set	to	True,	the	provider	is	not
required	to	honor	it.	The	reason	for	this	is	that	the	provider	does	not	know	what
the	command	is	at	the	time	the	property	is	set.	For	example,	the	application	can
set	this	property	and	then	change	the	command	text.	However,	the	provider	can
fail	the	Quick	Restart	property	if	it	is	never	able	to	quickly	restart	the	next	fetch
position.	Therefore,	if	an	application	successfully	sets	the	Quick	Restart
property,	it	must	still	check	this	flag	on	the	recordset	to	determine	if	the	next
fetch	position	can	be	quickly	set.

ADO	and	SQL	Server

R

ADO	and	SQL	Server

Read-Only	Data	Source	Property
The	Read-Only	Data	Source	property	indicates	whether	the	referenced	database
is	read-only.

Applies	To

Connection	Object

Syntax
object.Properties("Read-Only	Data	Source")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True The	database	is	read-only.
False The	database	is	updatable.

Data	Type
adBoolean

Modifiable
Read-only

JavaScript:hhobj_1.Click()

OLE	DB	Property
DBPROP_DATASOURCEREADONLY

ADO	and	SQL	Server

Reentrant	Events	Property
The	Reentrant	Events	property	indicates	whether	the	provider	supports
reentrancy	on	Recordset	methods.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Reentrant	Events")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	Settings:

Value Description
True The	provider	supports	reentrancy	during	callbacks	to	the	OLE

DB	IRowsetNotify	interface.	The	provider	might	not	support
reentrancy	on	all	Recordset	methods.	These	methods	return
DB_E_NOTREENTRANT.

False The	provider	does	not	support	such	reentrancy.	The	provider
returns	DB_E_NOTREENTRANT	on	methods	called	during	the
notification.

Data	Type

adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_REENTRANTEVENTS

Remarks
Regardless	of	how	the	Reentrant	Events	property	is	set,	all	providers	support
GetRows	and	Close	methods	during	notifications,	as	long	as	the	columns	being
accessed	do	not	include	deferred	columns.

ADO	and	SQL	Server

Remove	Deleted	Rows	Property
The	Remove	Deleted	Rows	property	specifies	whether	rows	that	are	detected	as
deleted	are	removed	from	the	recordset.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Remove	Deleted	Rows")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	rows	are	removed	from	the	recordset,	as
specified	in	Settings.

Settings

Value Description
True The	provider	removes	rows	it	detects	as	having	been	deleted

from	the	recordset.	Therefore,	fetching	a	block	of	rows	that
formerly	included	a	deleted	row	does	not	return	that	row.

False The	provider	deletes	the	rows,	but	does	not	remove	them	from
the	recordset.	If	the	user	fetches	a	block	of	rows	containing	a
deleted	row,	that	row	appears	in	the	recordset.

Any	method	that	retrieves	a	deleted	row	will	return	a	code	of
DB_E_DELETEDROW.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_REMOVEDELETED

Remarks
This	property	is	independent	of	the	transaction	isolation	level.	While	the
transaction	isolation	level	in	some	cases	determines	whether	the	recordset	can
detect	a	row	as	having	been	deleted,	it	has	no	effect	on	whether	or	not	the
recordset	removes	that	row.

For	programmers	accustomed	to	the	cursor	model	in	ODBC,	the	value	of	this
property	is	always	True	for	recordsets	implemented	using	dynamic	cursors
because	dynamic	cursors	always	remove	deleted	rows.	Whether	static	and
keyset-driven	cursors	remove	deleted	rows	depends	on	the	value	of	the	Remove
Deleted	Rows	property.

ADO	and	SQL	Server

Report	Multiple	Changes	Property
The	Report	Multiple	Changes	property	indicates	whether	an	update	or	delete
operation	can	affect	multiple	rows.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Report	Multiple	Changes")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True An	update	or	delete	operation	can	affect	multiple	rows,	and	the

provider	can	detect	that	multiple	rows	have	been	updated	or
deleted.	This	happens	when	a	provider	cannot	uniquely	identify	a
row.	For	example,	the	provider	might	use	the	values	of	all	the
columns	in	the	row	to	identify	the	row;	if	these	columns	do	not
include	a	unique	key,	an	update	or	delete	might	affect	more	than
one	row.

False An	update	or	delete	always	affects	a	single	row,	or	the	provider
cannot	detect	whether	it	affects	multiple	rows.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_REPORTMULTIPLECHANGES

ADO	and	SQL	Server

Return	Pending	Inserts	Property
The	Return	Pending	Inserts	property	indicates	whether	pending	insert	rows	can
be	returned.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Return	Pending	Inserts")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True The	methods	that	fetch	rows,	such	as	GetRows,	Move,

MoveNext,	and	MovePrevious	can	return	pending	insert	rows
(rows	that	have	been	inserted	in	delayed	update	mode	but	for
which	the	Update	method	has	not	yet	been	called).

False The	methods	that	fetch	rows	cannot	return	pending	insert	rows.

Data	Type
adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_RETURNPENDINGINSERTS

ADO	and	SQL	Server

Row	Delete	Notification	Property
The	Row	Delete	Notification	property	returns	a	bitmask	that	indicates	whether
the	notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Delete	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWDELETE

ADO	and	SQL	Server

Row	First	Change	Notification	Property
The	Row	First	Change	Notification	property	returns	a	bitmask	specifying
whether	the	notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	First	Change	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWFIRSTCHANGE

ADO	and	SQL	Server

Row	Insert	Notification	Property
The	Row	Insert	Notification	property	returns	a	bitmask	specifying	whether	the
notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Insert	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWINSERT

ADO	and	SQL	Server

Row	Privileges	Property
The	Row	Privileges	property	indicates	whether	access	rights	are	restricted	on	a
row-by-row	basis.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Privileges")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	values:

Value Description
True Access	rights	are	restricted	on	a	row-by-row	basis.	If	the	recordset

supports	the	OLE	DB	IRowsetChange	interface,	the	ADO
Update	method	can	be	called	for	some	but	not	all	rows.	A
recordset	must	never	count	or	return	a	handle	for	a	row	for	which
the	application	does	not	have	read	access	rights.

False Access	rights	are	not	restricted	on	a	row-by-row	basis.	If	the
recordset	supports	the	OLE	DB	IRowsetChange	interface,	the
ADO	Update	method	can	be	called	for	any	row.

Data	Type

adBoolean

Modifiable
Read-only

OLE	DB	Property
DBPROP_ROWRESTRICT

See	Also

Column	Privileges	Property

ADO	and	SQL	Server

Row	Resynchronization	Notification	Property
The	Row	Resynchronization	Notification	property	returns	a	bitmask	that
specifies	whether	the	notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Resynchronization	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWRESYNCH

ADO	and	SQL	Server

Row	Threading	Model	Property
The	Row	Threading	Model	property	specifies	which	threading	models	are
supported	by	the	rowset.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Threading	Model")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	indicates	which	threading	models	are	supported	by	the	rowset,	as
specified	in	Settings.

Settings
A	bitmask	containing	one	or	more	of	the	following	settings:

Constant Description
DBPROPVAL_RT_APTMTTHREAD The	apartment	thread	model	is

supported.
DBPROPVAL_RT_FREETHREAD The	free	thread	model	is	supported.
DBPROPVAL_RT_SINGLETHREADThe	single	thread	model	is

supported.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_ROWTHREADMODEL

ADO	and	SQL	Server

Row	Undo	Change	Notification	Property
The	Row	Undo	Change	Notification	property	returns	a	bitmask	specifying
whether	the	notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Undo	Change	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWUNDOCHANGE

ADO	and	SQL	Server

Row	Undo	Delete	Notification	Property
The	Row	Undo	Delete	Notification	property	returns	a	bitmask	specifying
whether	the	notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Undo	Delete	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWUNDODELETE

ADO	and	SQL	Server

Row	Undo	Insert	Notification	Property
The	Row	Undo	Insert	Notification	property	returns	a	bitmask	specifying
whether	the	notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Undo	Insert	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWUNDOINSERT

ADO	and	SQL	Server

Row	Update	Notification	Property
The	Row	Update	Notification	property	returns	a	bitmask	specifying	whether
the	notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Row	Update	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWUPDATE

ADO	and	SQL	Server

Rowset	Conversions	on	Command	Property
The	Row	Conversions	on	Command	property	specifies	how	inquiries	on	a
command	about	supported	conversions	are	handled.

Applies	To

Connection	Object

Syntax
object.Properties("Rowset	Conversions	on	Command")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Settings

Value Description
True Callers	to	the	OLE	DB	IConvertType::CanConvert	interface

can	inquire	on	a	command	about	conversions	supported	on
recordsets	generated	by	the	command.

False Callers	can	inquire	on	a	command	only	about	conversions
supported	by	the	command.

Data	Type
adBoolean

Modifiable

JavaScript:hhobj_1.Click()

Read-only

OLE	DB	Property
DBPROP_ROWSETCONVERSIONSONCOMMAND

ADO	and	SQL	Server

Rowset	Fetch	Position	Change	Notification	Property
The	Rowset	Fetch	Position	Change	Notification	property	returns	a	bitmask
specifying	whether	the	notification	phase	of	DBREASON_ROWSET_CHANGE
is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Rowset	Fetch	Position	Change	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWSETFETCHPOSITIONCHANGE

ADO	and	SQL	Server

Rowset	Release	Notification	Property
The	Rowset	Release	Notification	property	returns	a	bitmask	specifying	whether
the	notification	phase	is	cancelable.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Rowset	Release	Notification")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

DBPROPVAL_NP_ABOUTTODO	

DBPROPVAL_NP_OKTODO	

DBPROPVAL_NP_SYNCHAFTER

Data	Type

adInteger

Modifiable

Read-only

OLE	DB	Property
DBPROP_NOTIFYROWSETRELEASE

ADO	and	SQL	Server

S

ADO	and	SQL	Server

Schema	Term	Property
The	Schema	Term	property	returns	the	name	the	data	source	uses	for	a	schema
(for	example,	schema	or	owner).

Applies	To

Connection	Object

Syntax
object.Properties("Schema	Term")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_SCHEMATERM

Remarks
An	application	can	use	the	value	returned	by	the	Schema	Term	property	in	user
interfaces.

JavaScript:hhobj_1.Click()

See	Also

Catalog	Term	Property

Procedure	Term	Property

Table	Term	Property

ADO	and	SQL	Server

Schema	Usage	Property
The	Schema	Usage	property	returns	a	bitmask	specifying	how	schema	names
can	be	used	in	text	commands.

Applies	To

Connection	Object

Syntax
object.Properties("Schema	Usage")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	combination	of	zero	or	more	of	the	following	settings:

Constant Description
DBPROPVAL_SU_DML_STATEMENTS Schema	names	are

supported	in	all	data
manipulation	language
(DML)	statements.

DBPROPVAL_SU_TABLE_DEFINITION Schema	names	are
supported	in	all	table
definition	statements.

DBPROPVAL_SU_INDEX_DEFINITION Schema	names	are
supported	in	all	index
definition	statements	and
may	apply	only	to	the

JavaScript:hhobj_1.Click()

table	name,	not	the	index
name,	depending	on	the
SQL	implementation.

DBPROPVAL_SU_PRIVILEGE_DEFINITION Schema	names	are
supported	in	all	privilege
definition	statements.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_SCHEMAUSAGE

ADO	and	SQL	Server

Scroll	Backwards	Property
The	Scroll	Backwards	property	indicates	whether	the	recordset	can	scroll
backward.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Scroll	Backwards")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	recordset	can	scroll	backward,	as
specified	in	Settings.

Settings

Value Description
True The	recordset	can	scroll	backward.
False The	recordset	cannot	scroll	backward.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_CANSCROLLBACKWARDS

ADO	and	SQL	Server

Server	Cursor	Property
The	Server	Cursor	property	determines	where	a	cursor,	if	required,	is
materialized.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Server	Cursor")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	determines	whether	a	cursor	is	materialized	on	the	server	or	on
the	client,	as	specified	in	Settings.

Settings

Value Description
True The	provider	attempts	to	support	any	requested	cursor

functionality	by	materializing	a	cursor	on	the	server.
False The	provider	attempts	to	support	any	requested	cursor

functionality	by	materializing	a	cursor	on	the	client.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_SERVERCURSOR

ADO	and	SQL	Server

Server	Data	on	Insert	Property
The	Server	Data	on	Insert	property	specifies	whether	an	application	can
retrieve	values	from	the	database	for	newly	inserted	rows.

Applies	To

Command	Object

Syntax
object.Properties("Server	Data	on	Insert")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	an	application	can	retrieve	new	added	values,
as	specified	in	Settings.

Settings

Value Description
True After	an	insert	is	transmitted	to	the	server	(when	the	AddNew

method	is	called	in	immediate	mode	or	when	the	Update	method
is	called	for	an	inserted	row	in	deferred	update	mode),	the
application	can	call	the	GetRows	method	to	retrieve	the	actual
values	that	appeared	in	the	database,	including	calculated
columns	and	defaults	not	explicitly	set	in	the	call	to	AddNew.

False The	provider	does	not	retrieve	values	from	the	database	for
newly	inserted	rows.	The	application	can	retrieve	only	data
values	explicitly	set	in	the	call	to	the	AddNew	method	or	by	calls

to	the	Update	method	for	the	row	handle	returned	by	InsertRow.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_SERVERDATAONINSERT

Remarks
Setting	the	Server	Data	on	Insert	property	is	potentially	expensive	and	may	not
be	supported	for	certain	types	of	recordsets.

ADO	and	SQL	Server

Skip	Deleted	Bookmarks	Property
The	Skip	Deleted	Bookmarks	property	indicates	whether	the	recordset	allows
certain	methods	of	the	RecordSet	object	to	skip	a	bookmark	row	and	continue
with	the	next	row.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Skip	Deleted	Bookmarks")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	the	called	method	skips	the	bookmark	row,	as
specified	in	Settings.

Settings

Value Description
True The	called	method	skips	the	bookmark	row	and	continues	with

the	next	row.
False The	called	method	returns	DB_E_BADBOOKMARK.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_BOOKMARKSKIPPED

Remarks
The	Skip	Deleted	Bookmarks	property	has	impact	if	a	bookmark	row	has	been
deleted,	if	a	recordset	contains	a	bookmarked	row	to	which	the	user	does	not
have	access	rights,	a	bookmark	identifying	a	row	not	in	the	chapter,	or	contains	a
bookmarked	row	that	is	no	longer	a	member	of	the	recordset.

These	methods	are	affected:

GetRows	Method

Move	Method

MoveFirst	Method

MoveLast	Method

MoveNext	Method

MovePrevious	Method

ADO	and	SQL	Server

SQL	Support	Property
The	SQL	Support	property	returns	a	bitmask	specifying	the	level	of	support	for
SQL.

Applies	To

Connection	Object

Syntax
object.Properties("SQL	Support")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
Zero	or	more	of	the	following	settings:

Constant Description
DBPROPVAL_SQL_NONE SQL	is	not	supported.
DBPROPVAL_SQL_ODBC_MINIMUM The	provider	supports	the	minimum

capabilities	ODBC	by	setting	the
DBPROPVAL_SQL_ODBC_MINIMUM
bit.

DBPROPVAL_SQL_ODBC_CORE The	provider	supports	the	core
capabilities	ODBC	by	setting	the
DBPROPVAL_SQL_ODBC_CORE	bit.

DBPROPVAL_SQL_ODBC_EXTENDED These	levels	correspond	to	the	levels	of
SQL	conformance	defined	in	ODBC
version	2.5.	These	levels	are	cumulative.
That	is,	if	the	provider	supports	one	level,

JavaScript:hhobj_1.Click()

That	is,	if	the	provider	supports	one	level,
it	also	sets	the	bits	for	all	lower	levels.
For	example,	if	the	provider	sets	the
DBPROPVAL_SQL_ODBC_CORE	bit,
it	also	sets	the
DBPROPVAL_SQL_ODBC_MINIMUM
bit.

DBPROPVAL_SQL_ESCAPECLAUSES The	provider	supports	the	ODBC	escape

clause	syntax.
DBPROPVAL_SQL_ANSI92_ENTRY The	provider	supports	the	entry	level	of

SQL	92.
DBPROPVAL_SQL_FIPS_TRANSITIONAL The	provider	supports	the	transitional

level	of	the	FIPS	127-2	standard.
DBPROPVAL_SQL_ANSI92_INTERMEDIATE The	provider	supports	the	intermediate

level	of	SQL	92.
DBPROPVAL_SQL_ANSI92_FULL These	levels	correspond	to	the	levels	in

ANSI	SQL-92.	These	levels	are
cumulative.	That	is,	if	the	provider
supports	one	level,	it	also	sets	the	bits	for
all	lower	levels.

DBPROPVAL_SQL_ANSI89_IEF The	provider	supports	the	ANSI89
Integrity	Enhancement	Facility.

DBPROPVAL_SQL_SUBMINIMUM The	provider	supports	the	DBGUID_SQL
dialect	and	parses	the	command	text
according	to	SQL	rules	but	does	not
support	either	the	minimum	ODBC	level
or	the	ANSI	SQL-92	Entry	level.	This
level	is	not	cumulative;	providers	that
support	at	least	the	minimal	ODBC	Level
or	ANSI	SQL-92	Entry	Level	do	not	set
this	bit.	OLE	DB	consumers	can
determine	whether	or	not	the	provider
supports	the	DBGUID_SQL	dialect	by
verifying	that	the
DBPROPVAL_SQL_NONE	bit	is	not
set.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_SQLSUPPORT

ADO	and	SQL	Server

SS	STREAM	FLAGS	Property
The	SS	STREAM	FLAGS	property	specifies	how	an	application	controls
mapping	schemas,	XSL	files,	and	templates.

Applies	To

Command	Object

Syntax
object.Properties("SS	STREAM	FLAGS")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	how	an	application	manages	mapping	schemas,	XSL
files,	and	templates,	as	specified	in	Settings.

Settings
An	application	can	use	an	OR	logical	operator	to	specify	more	than	a	single
value.

Constant Value Description
STREAM_FLAGS_DISALLOW_URL 1 URLs	are

not	accepted
for	mapping
schemas	or
XSL.	This	is
a	security
provision

that	prevents
template
schema
references
from
allowing
URLs	to	be
XSL	values.

STREAM_FLAGS_DISALLOW_ABSOLUTE_PATH 2 Paths
specified	for
mapping
schemas	or
XSL	must
be	relative
to	the	base
path	of	the
template
itself.

STREAM_FLAGS_DISALLOW_QUERY 4 Queries	are
not	allowed
in	a
template.
This	limits
the	data	that
can	be
returned
from	the
server.

STREAM_FLAGS_DONTCACHEMAPPINGSCHEMA8 Mapping
schema	is
not	cached.
This	is
useful
during	the
development
phase,	when
database

schemas	are
subject	to
alteration.

STREAM_FLAGS_DONTCACHETEMPLATE 16 Templates
are	not
cached.	This
is	useful
during	the
development
phase,	when
database
schemas	are
subject	to
alteration.

STREAM_FLAGS_DONECACHEXSL 32 XSL	is	not
cached.	This
is	useful
during	the
development
phase,	when
database
schemas	are
subject	to
alteration.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
SSPROP_STREAM_FLAGS

See	Also

Base	Path	Property

Content	Type	Property

Mapping	Schema	Property

XML	Root	Property

XSL	Property

ADO	and	SQL	Server

Strong	Row	Identity	Property
The	Strong	Row	Identity	property	indicates	whether	the	handles	of	newly
inserted	rows	can	be	compared.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Strong	Row	Identity")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Value Description
True The	handles	of	newly	inserted	rows	can	be	compared	as	specified

by	the	Literal	Row	Identity	property.
False There	is	no	guarantee	that	the	handles	of	newly	inserted	rows	can

be	compared	successfully.

Data	Type
adBoolean

Modifiable

Read-only

OLE	DB	Property
DBPROP_STRONGIDENTITY

Remarks
A	newly	inserted	row	is	defined	as	a	row	for	which	an	insertion	has	been
transmitted	to	the	data	source	object,	as	opposed	to	a	pending	insert	row.

See	Also

Literal	Row	Identity	Property

ADO	and	SQL	Server

Structured	Storage	Property
The	Structured	Storage	property	returns	a	bitmask	specifying	which	OLE	DB
interfaces	the	recordset	supports	on	storage	objects.

Applies	To

Connection	Object

Syntax
object.Properties("Structured	Storage")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	combination	of	zero	or	more	of	the	following	settings:

Constant Description
DBPROPVAL_SS_ISEQUENTIALSTREAMThe	provider	supports	the

OLE	DB
ISequentialStream
interface.

DBPROPVAL_SS_ISTREAM The	provider	supports	the
OLE	DB	IStream	interface.

DBPROPVAL_SS_ISTORAGE The	provider	supports	the
OLE	DB	IStorage	interface.

DBPROPVAL_SS_ILOCKBYTES The	provider	supports	the
OLE	DB	ILockBytes
interface.

JavaScript:hhobj_1.Click()

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_STRUCTUREDSTORAGE

Remarks
If	a	provider	can	support	any	of	these	OLE	DB	interfaces,	it	is	also	required	to
support	ISequentialStream.

ADO	and	SQL	Server

Subquery	Support	Property
The	Subquery	Support	property	returns	a	bitmask	specifying	the	predicates	in
text	commands	that	support	subqueries.

Applies	To

Connection	Object

Syntax
object.Properties("Subquery	Support")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
A	combination	of	zero	or	more	of	the	following	settings:

Constant Description
DBPROPVAL_SQ_CORRELATEDSUBQUERIESAll	predicates	that

support	subqueries
support	correlated
subqueries.

DBPROPVAL_SQ_COMPARISON Comparison	operators
are	supported.

DBPROPVAL_SQ_EXISTS The	EXISTS	clause	is
supported.

DBPROPVAL_SQ_IN The	IN	clause	is
supported.

DBPROPVAL_SQ_QUANTIFIED Quantified	predicates

JavaScript:hhobj_1.Click()

are	supported.
DBPROPVAL_SQ_TABLE Subqueries	are

supported	in	place	of
tables	(for	example,	in
the	FROM	clause	of	an
SQL	statement).

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_SUBQUERIES

ADO	and	SQL	Server

T

ADO	and	SQL	Server

Table	Term	Property
The	Table	Term	property	returns	the	name	the	data	source	uses	for	a	table	(for
example,	table	or	file).

Applies	To

Connection	Object

Syntax
object.Properties("Table	Term")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_TABLETERM

Remarks
An	application	can	use	the	value	returned	by	the	Table	Term	property	in	user
interfaces.

JavaScript:hhobj_1.Click()

See	Also

Catalog	Term	Property

Procedure	Term	Property

Schema	Term	Property

ADO	and	SQL	Server

Transaction	DDL	Property
The	Transaction	DDL	property	indicates	the	relationship	of	transactions	to	table
and	index	modification	data	definition	language	(DDL)	statements.

Applies	To

Connection	Object

Syntax
object.Properties("Transaction	DDL")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Returns
One	of	the	following	settings:

Constant Description
DBPROPVAL_TC_NONE Transactions	are	not	supported.
DBPROPVAL_TC_DML Transactions	can	contain	only	data

manipulation	language	(DML)
statements.	Attempting	to	modify
tables	or	indexes	within	a	transaction
causes	an	error.

DBPROPVAL_TC_DDL_COMMIT Transactions	can	contain	only	DML
statements.	Modifying	tables	or
indexes	within	a	transaction	causes
the	transaction	to	be	committed.	The
provider's	commit	mode	remains

JavaScript:hhobj_1.Click()

unchanged	in	accordance	with	the
value	of	the	Preserve	on	Commit
property.	If	the	provider	is	in	auto-
commit	mode,	it	remains	in	auto-
commit	mode.	If	the	provider	is	in
manual-commit	mode,	it	remains	in
manual-commit	mode.

DBPROPVAL_TC_DDL_IGNORE Transactions	can	contain	only	DML
statements.	Attempts	to	modify	tables
or	indexes	within	a	transaction	are
ignored.	
DDL	operations	are	not	transacted
even	if	a	session	is	participating	in	a
transaction.	If	the	DDL	method
succeeds,	the	operation	is	complete
and	unaffected	by	subsequent	calls	to
abort	or	commit	the	transaction.

DBPROPVAL_TC_DDL_LOCK Transactions	can	contain	both	DML
and	table	or	index	modifications,	but
modifying	a	table	or	index	within	a
transaction	causes	the	table	or	index
to	be	locked	until	the	transaction
completes.

DBPROPVAL_TC_ALL Transactions	can	contain	DML
statements,	as	well	as	table	or	index
modifications,	in	any	order.

Data	Type
adInteger

Modifiable
Read-only

OLE	DB	Property
DBPROP_SUPPORTEDTXNDDL

See	Also

Preserve	on	Commit	Property

ADO	and	SQL	Server

U

ADO	and	SQL	Server

Unique	Rows	Property
The	Unique	Rows	property	specifies	whether	each	row	is	uniquely	identified	by
its	column	values.

Applies	To

Recordset	Object

Syntax
object.Properties("Unique	Rows")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	whether	each	row	is	uniquely	identified,	as	specified
in	Settings.

Settings

Value Description
True Each	row	is	uniquely	identified	by	its	column	values.
False Rows	in	the	recordset	may	or	may	not	be	uniquely	identified	by

their	column	values.

Data	Type
adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_UNIQUEROWS

Remarks
If	the	Unique	Rows	property	is	set	to	True	when	opening	the	recordset,	the
provider	adds	additional	columns,	if	necessary,	to	ensure	that	each	row	is
uniquely	identified	by	its	values.	These	additional	columns	appear	at	the	end	of
the	recordset;	have	a	DBID	of	type	DBKIND_GUID_PROPID,
DBKIND_PGUID_PROPID,	DBKIND_GUID_NAME,	or
DBKIND_PGUID_NAME;	and	the	guid	(or	pguid)	element	is	(or	points	to)
DBCOL_SPECIALCOL.	These	columns	typically	are	not	displayed	to	the	user
but	are	used	by	components	such	as	update	services	to	uniquely	identify	a	row.

The	provider	optionally	may	duplicate	existing	columns	in	the	recordset	to
ensure	that	key	columns	are	included.

If	the	Unique	Rows	property	is	set	to	True	and	the	provider	supports	the
optional	OLE	DB	IColumnsRowset	meta	data	column
DBCOLUMN_KEYCOLUMN,	the	set	of	columns	that	uniquely	identify	the
row	have	a	value	of	True	in	the	DBCOLUMN_KEYCOLUMN	column	returned
by	IColumnsRowset.	This	may	be	a	subset	of	the	columns	in	the	row,	or	all	of
the	columns	if	the	provider	cannot	determine	a	proper	subset	that	uniquely
identifies	the	row.

ADO	and	SQL	Server

Updatability	Property
The	Updatability	property	specifies	the	supported	methods	on	the	Recordset
object.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Updatability")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	specifies	supported	methods,	as	specified	in	Settings.

Settings

Constant Description
DBPROPVAL_UP_CHANGE The	Update	method	is	supported.
DBPROPVAL_UP_DELETE The	Delete	method	is	supported.
DBPROPVAL_UP_INSERT The	AddNew	method	is	supported.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_UPDATABILITY

Remarks
The	Updatability	property	should	be	used	in	conjunction	with	the
IRowsetChange	property.	If	the	IRowsetChange	property	is	set	to	True	and
Updatability	is	not	set,	the	provider	determines	which	methods	are	supported	by
the	IRowsetChange	property.

The	Updatability	property	is	considered	successfully	set	if	all	of	the	bits
specified	are	supported.	It	is	not	necessary	for	the	provider	to	disable	support	for
the	bits	that	are	not	set,	although	providers	may	do	so	to	optimize	performance.

See	Also

IRowsetChange	Property

IRowsetUpdate	Property

ADO	and	SQL	Server

Use	Bookmarks	Property
The	Use	Bookmarks	property	indicates	whether	the	recordset	supports
bookmarks.

Applies	To

Command	Object Recordset	Object

Syntax
object.Properties("Use	Bookmarks")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Boolean	that	indicates	bookmark	support,	as	specified	in	Settings.

Settings

Value Description
True The	recordset	supports	bookmarks.	Column	zero	is	the

bookmark	for	the	rows.	This	column	obtains	a	bookmark	value,
which	can	be	used	to	reposition	to	the	row.

False The	recordset	does	not	support	bookmarks.	The	recordset	is
sequential,	and	the	values	of	the	Literal	Bookmarks	property	is
ignored.

Data	Type

adBoolean

Modifiable
Read/write

OLE	DB	Property
DBPROP_BOOKMARKS

Remarks
The	value	of	this	property	is	automatically	set	to	True	if	the	value	of	the
Bookmarkable	or	Literal	Bookmarks	property	is	set	to	True.

See	Also

Bookmarkable	Property

Literal	Bookmarks	Property

ADO	and	SQL	Server

User	ID	Property
The	User	ID	property	specifies	the	user	ID	to	use	when	connecting	to	the	data
source.

Applies	To

Connection	Object

Syntax
object.Properties("User	ID")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	containing	the	user	ID.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
DBPROP_AUTH_USERID

Remarks

JavaScript:hhobj_1.Click()

An	ADO	application	can	also	use	the	OLE	DB	UID	keyword,	which	is
equivalent	to	the	User	ID	property.

Note		The	recommended	method	for	connecting	to	an	instance	of	Microsoft®
SQL	Server™	2000	is	Windows	Authentication	mode.

ADO	and	SQL	Server

User	Name	Property
The	User	Name	property	returns	the	name	used	in	a	particular	database,	which
can	be	different	than	a	login	name.

Applies	To

Connection	Object

Syntax
object.Properties("User	Name")

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

Data	Type
adBSTR

Modifiable
Read-only

OLE	DB	Property
DBPROP_USERNAME

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

W

ADO	and	SQL	Server

Window	Handle	Property
The	Window	Handle	property	specifies	the	window	handle	to	use	if	the	data
source	needs	to	prompt	for	additional	information.

Applies	To

Connection	Object

Syntax
object.Properties("Window	Handle")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

Integer	that	identifies	the	window	handle.

Data	Type
adInteger

Modifiable
Read/write

OLE	DB	Property
DBPROP_INIT_HWND

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

X

ADO	and	SQL	Server

XML	Root	Property
The	XML	Root	property	provides	a	root	tag	in	which	the	query	result	is
wrapped	to	return	a	well-formed	document.

Applies	To

Command	Object

Syntax
object.Properties("XML	Root")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	contains	the	root	tag.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
SSPROP_STREAM_XMLROOT

Remarks

FOR	XML	and	XPath	queries	return	results	in	the	form	of	document	fragments,
which	cannot	be	loaded	into	a	browser.	Use	the	XML	Root	property	to	wrap	the
result	set	so	that	it	can	be	loaded	into	DOM,	or	viewed	in	a	browser.	The	result
returns	the	XML	Declaration,	<?xml	version="1.0"?>,	in	the	output.

SQL	ISAPI	supports	the	keyword	'root',	which	maps	to	the	XML	Root	property.

See	Also

Base	Path	Property

Content	Type	Property

Mapping	Schema	Property

SS	STREAM	FLAGS	Property

URL	Access

XSL	Property

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

XSL	Property
The	XSL	property	specifies	an	XSL	file	name	or	URL	applied	to	the	result	of	a
query.

Applies	To

Command	Object

Syntax
object.Properties("XSL")	[=	value]

Parts
object

Expression	that	evaluates	to	an	object	in	the	Applies	To	list.

value

String	that	specifies	the	file	name	or	URL.

Data	Type
adBSTR

Modifiable
Read/write

OLE	DB	Property
SSPROP_STREAM_XSL

Remarks

Relative	paths	are	resolved	by	the	Base	Path	property.	If	the	Base	Path	property
is	not	set,	the	relative	path	defaults	to	the	current	directory.

Output	from	command	execution	is	expected	to	be	a	valid	XML	document	(for
example,	SELECT	FOR	XML	queries,	templates,	and	XPath	queries).

By	definition,	XSL	takes	two	XML	documents	and	produces	a	third.	One	of	the
input	documents	contains	the	data,	and	the	other	contains	the	XSL	processing
instructions.

Unless	specified	in	the	XSL	document,	the	output	document	has	a	default
encoding	of	UTF-8.	If	another	encoding	is	required,	it	should	be	specified	in	the
XSL	document.

If	the	Output	Encoding	property	is	specified	and	an	XSL	document	is	also
specified	by	the	XSL	property,	the	encoding	specified	in	Output	Encoding
overrides	the	encoding	of	the	XSL	document.

See	Also

Base	Path	Property

Content	Type	Property

Mapping	Schema	Property

SS	STREAM	FLAGS	Property

URL	Access

XML	Root	Property

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

Provider	Support	for	ADOX
Microsoft	ActiveX	Data	Objects	Extensions	for	Data	Definition	Language	and
Security	(ADOX)	is	an	extension	to	the	ADO	objects	and	programming	model.
ADOX	includes	objects	for	schema	creation	and	modification,	as	well	as
security.

The	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB)	and	the
Microsoft	OLE	DB	Provider	for	ODBC	(MSDASQL)	support	most	ADOX
features.	However	support	for	some	features	is	restricted	or	unavailable.

Restrictions	on	SQLOLEDB	support	for	ADOX

Object	or	Collection Usage	Restriction
Catalog	object The	Create	method	is	not	supported.
Table	object Properties	are	read/write	prior	to	object	creation,

and	read-only	when	referencing	an	existing
object.

Views	collection Views	is	not	supported.
Procedures	collection The	Append	and	Delete	methods	are	not

supported.
Procedure	object The	Command	property	is	not	supported.
Keys	collection The	Append	and	Delete	methods	are	not

supported.
Users	collection Users	is	not	supported.
Groups	collection Groups	is	not	supported.

Restrictions	on	MSDASQL	support	for	ADOX

Object	or	Collection Usage	Restriction
Catalog	object The	Create	method	is	not	supported.
Table	object Properties	are	read/write	prior	to	object	creation,

and	read-only	when	referencing	an	existing
object.

Tables	collection The	Append	and	Delete	methods	are	not
supported.

Procedures	collection The	Append	and	Delete	methods	are	not
supported.

Procedure	object The	Command	property	is	not	supported.
Indexes	collection The	Append	and	Delete	methods	are	not

supported.
Keys	collection The	Append	and	Delete	methods	are	not

supported.
Users	collection Users	is	not	supported.
Groups	collection Groups	is	not	supported.

ADO	and	SQL	Server

ADO	Samples
Microsoft®	SQL	Server™	2000	includes	the	following	query	applications	to
introduce	you	to	using	ADO:

Sample Description
ADO	and	Long	Data
Types	(C++)

C++	language	sample.	Demonstrates	how	to	use
ADO	to	display	long	data	types.

ADO	and	Long	Data
Types	(Visual	Basic)

Visual	Basic	sample.	Demonstrates	how	to	use
ADO	to	display	long	data	types.

ADO	Connection	and
Error	Handling

Visual	Basic	sample.	Uses	ADO	to	connect	to	an
instance	of	SQL	Server.

ADO	and	Long	Data
Types	(Web)

Web	sample.	Demonstrates	how	to	use	ADO	to
display	long	data	types.

ADO	Web	Application Web	sample.	Demonstrates	how	to	create	a	Web
application	using	ADO.

ADO	and	FOR	XML XML	sample.	Retrieves	result	sets	into	streams
using	the	Transact-SQL	FOR	XML	clause.

ADO	and	Open	XML XML	sample.	Maps	an	XML	schema	to	a	relational
schema	using	annotated	schemas.

ADO	and	XPath
Query

XML	sample.	Performs	an	XPath	query.

The	ADO	samples	are	not	intended	to	be	fully	featured	applications	or
demonstrations	of	the	complete	range	of	data	access	capabilities	available
through	ADO.	The	samples	are	designed	to	cover	some	basic	areas	of	ADO
usage	with	SQL	Server	2000,	such	as	connecting	to	an	instance	of	SQL	Server,
querying,	editing,	and	updating	a	data	source,	handling	multiple	result	sets,	and
enumerating	provider	errors.

To	install	the	samples	during	SQL	Server	installation
1.	 On	the	Setup	Type	page,	select	Custom.

2.	 On	the	Select	Components	page,	under	Components,	select	Code

Samples.

Samples	are	installed	as	a	self-extracting	file.	To	extract	the	samples,	double-
click	Unzip_ado.exe,	located	at	C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\Ado.

Prerequisites
C	and	C++	samples	require	Microsoft	Visual	C++	version	6.0.	Visual	Basic
samples	require	Microsoft	Visual	Basic	version	6.0.

See	Also

Samples

JavaScript:hhobj_1.Click()

ADO	and	SQL	Server

ADO	Connection	and	Error	Handling
This	sample	application	demonstrates	how	to	use	ADO	to	connect	to	and	query	a
database	in	an	instance	of	Microsoft®	SQL	Server™	using	the	Microsoft	OLE
DB	Provider	for	SQL	Server	(SQLOLEDB).	Error	handling	routines	are	also
demonstrated.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ADO\VB\Intro

Running	the	Sample
Open	the	Microsoft	Visual	Basic®	project	file,	Adomain.vbp,	and	then	start	the
project.

Remarks
Visual	Basic	version	6.0	includes	new	data	handling	tools	not	covered	in	this
sample,	such	as	the	ADO	Data	Binding	Control.	Features	such	as	these	allow	the
building	of	client	applications	with	a	minimum	amount	of	code.	For	more
information	about	building	a	basic	database	client	using	the	DataGrid	and	ADO
Data	Control,	see	the	MSDN	Library	at	Microsoft	Web	site

See	Also

ADO	Samples

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO	and	SQL	Server

ADO	and	Long	Data	Types	(Visual	Basic)
This	sample	application	demonstrates	how	to	use	ADO	and	Microsoft®	Visual
Basic®	to	display	long	data	types	using	the	Employees	table	in	the	Northwind
database.	The	Photo	column	is	an	image	data	type,	and	the	Notes	column	is	an
ntext	data	type.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ADO\VB\Employee

Running	the	Sample
Open	the	Visual	Basic	project	file,	Employee.vbp,	and	then	start	the	project.

Remarks

See	Also

ADO	Samples

ADO	and	SQL	Server

ADO	and	Long	Data	Types	(C++)
This	sample	application	demonstrates	how	to	use	ADO	and	Microsoft®	Visual
C++®	to	display	long	data	types	using	the	Employees	table	in	the	Northwind
database.	The	Photo	column	is	an	image	data	type,	and	the	Notes	column	is	an
ntext	data	type.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ADO\Cpp\Employee

Running	the	Sample
Open	the	Microsoft	Visual	C++®	project	file,	Employee.dsw,	and	then	start	the
project.

Remarks

See	Also

ADO	Samples

ADO	and	SQL	Server

ADO	and	Long	Data	Types	(Web)
This	sample	application	demonstrates	how	to	use	ADO	and	VBScript	to	display
long	data	types	on	an	Active	Server	Page	(ASP)	using	the	Employees	table	in
the	Northwind	database.	The	Photo	column	is	an	image	data	type,	and	the
Notes	column	is	an	ntext	data	type.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ADO\Web\Employee

Running	the	Sample
1.	 Register	the	ActiveX	control,	FileAccessor.dll,	using	Regsvr32.	For

example,	if	you	place	the	file	in	C:\Test,	register	it	using	this	syntax:
regsvr32	c:\test\fileaccessor.dll

2.	 In	EmployeeSample.asp,	set	the	global	variable,	TempFileDrive,	to	an
existing	directory.	This	is	where	the	temporary	image	files	are	created.

3.	 In	EmployeeSample.asp,	set	the	global	variable,	TempFileHttp,	to	a
URL	equivalent	to	TempFileDrive.	For	example,	if	TempFileDrive	is
set	to	C:\Inetpub\wwwroot\EmployeeSample\,	TempFileHttp	might	be
set	to	http://Myserver/EmployeeSample/.

Remarks
The	Visual	Basic	code	used	to	create	FileAccessor.dll	is	located	at:	C:\Program
Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ADO\Web\Employee\Fileaccessor.	If	you
create	FileAccessor.dll	using	these	files,	it	is	registered	automatically,	and	Step	1
in	Running	the	Sample	is	unnecessary.	To	create	FileAccessor.dll	using	these
files:

Open	the	Visual	Basic	project	file,	FileAccessor.vbp.

On	the	File	menu,	click	Make	FileAccessor.dll.

See	Also

ADO	Samples

ADO	and	SQL	Server

ADO	Web	Application
This	sample	application	demonstrates	how	to	use	ADO	to	build	an	Active	Server
Page	(ASP)	Web	application	that	interacts	with	an	instance	of	SQL	Server.	The
sample	models	an	inventory	management	system	based	on	the	Products	and
Categories	tables	in	the	Northwind	database.	The	application	allows	you	to
view	the	products	and	categories,	make	updates	to	product	information,	add	new
products,	and	remove	products.

Default	Location
C:\Program	Files\Microsoft	SQL	Server\80\Tools\Devtools\Samples\ADO\Web

Prerequisites
This	ASP	sample	requires	Microsoft®	Internet	Information	Services	(IIS)
version	4.0	or	later,	or	Microsoft	Personal	Web	Server	(PWS).	IIS	4.0	for
Microsoft	Windows	NT®	Server	and	PWS	for	Windows	95,	Windows	98,	and
Windows	NT	Workstation	are	included	in	the	Windows	NT	Option	Pack,	which
can	be	downloaded	from	Microsoft	Web	site.	IIS	5.0	is	included	in	Windows
2000	Server,	Windows	2000	Advanced	Server,	and	Windows	2000	Datacenter.

Running	the	Sample
Here	are	the	steps	for	running	the	Northwind	Inventory	Management	System
application:

1.	 Create	a	new	Web	page	in	IIS	or	PWS	using	the	directory	containing
the	sample	files.

2.	 Open	the	global.asa	file	in	an	editor,	add	the	name	of	an	instance	of
Microsoft	SQL	Server™	to	the	provider	string	variable,	ProvStr,	and
then	save	the	file.

3.	 Start	and	browse	the	Web	page	from	IIS	or	PWS	to	view	the
Northwind	Inventory	Management	System	application.

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

Remarks

To	use	this	sample,	you	should	have	a	basic	understanding	of	Active	Server
Pages	and	IIS.	For	more	information,	see	the	MSDN	Library	at	Microsoft	Web
site.

See	Also

ADO	Samples

http://www.microsoft.com/isapi/redir.dll?prd=msdn&ar=msdn&o1=red

ADO	and	SQL	Server

ADO	and	FOR	XML
This	sample	application	demonstrates	how	to	use	ADO	to	build	an	Active	Server
Page	(ASP)	Web	application	that	retrieves	result	sets	into	streams	using	the
Transact-SQL	FOR	XML	clause.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ADO\XML\FORXML.asp

Prerequisites
This	ASP	sample	requires	Microsoft®	Internet	Information	Services	(IIS)
version	5.0.

Running	the	Sample
Add	the	sample	file	to	a	Microsoft	Visual	InterDev®	project,	and	then	click
Start.

Remarks

See	Also

ADO	Samples

ADO	and	SQL	Server

ADO	and	Open	XML
This	sample	application	demonstrates	how	to	use	ADO	to	build	an	Active	Server
Page	(ASP)	Web	application	that	maps	an	XML	schema	to	a	relational	schema
using	annotated	schemas.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ADO\XML\OpenXML.asp

Prerequisites
This	ASP	sample	requires	Microsoft®	Internet	Information	Services	(IIS)
version	5.0.

Running	the	Sample
Add	the	sample	file	to	a	Microsoft	Visual	InterDev®	project,	and	then	click
Start.

Remarks

See	Also

ADO	Samples

ADO	and	SQL	Server

ADO	and	XPath	Query
This	sample	application	demonstrates	how	to	use	ADO	to	build	an	Active	Server
Page	(ASP)	Web	application	that	performs	an	XPath	query.

Default	Location
C:\Program	Files\Microsoft	SQL
Server\80\Tools\Devtools\Samples\ADO\XML\Xpath.asp

Prerequisites
This	ASP	sample	requires	Microsoft®	Internet	Information	Services	(IIS)
version	5.0.

Running	the	Sample
Add	the	sample	file	to	a	Microsoft	Visual	InterDev®	project,	and	then	click
Start.

Remarks

See	Also

ADO	Samples

	Programming ADO SQL Server Applications
	Getting Started with ADO
	ADO Syntax Conventions
	System Requirements for ADO
	ADO and OLE DB Provider Installation
	ADO File Locations
	Upgrading the Catalog Stored Procedures
	Using ADO in Different Development Environments
	Visual Basic and ADO
	Visual C++ and ADO
	Web-Based Applications and ADO

	Adding a Data Source
	Deleting a Data Source

	Creating an ADO Application
	Connecting to a SQL Server Data Source
	Connecting to Multiple Instances of SQL Server
	Retrieving Connection Properties

	Executing Queries
	Using the Command Object
	Using the Connection Object
	Constructing an SQL Statement
	Using Parameters
	Executing Statements
	Executing Statements Directly
	Executing Prepared Statements

	Executing Stored Procedures
	Using Return Code and Output Parameters for Stored Procedures

	Executing User-Defined Functions
	Using Batch Updates
	Generating Multiple Recordsets

	Processing Results
	Using the Recordset Object
	Using the Fields Collection and Field Object
	Determining the Characteristics of a Result Set
	Mapping Data Types
	Data Type Usage Considerations

	Using Cursors with ADO
	Using Default Result Sets
	Using Server Cursors with ADO
	Scrolling and Retrieving Rows
	Bookmarking Rows

	Performing Transactions in ADO
	Handling Errors and Messages in ADO
	Handling Data Definition Language
	Managing Long Data Types
	ADO Support for SQL Server XML Features
	XML-Related Properties
	Using Streams for Command Input
	Retrieving Result Sets into Streams
	Mapping an XML Schema to a Relational Schema Using Annotated Schemas
	ADO Support for OpenXML

	SQL Server ADO Programmer's Reference
	Objects
	Command Object
	Connection Object
	Record Object
	Recordset Object
	Stream Object

	Dynamic Properties
	A
	Access Order Property
	Active Sessions Property
	Asynchable Abort Property
	Asynchable Commit Property
	Autocommit Isolation Levels Property

	B
	Base Path Property
	Blocking Storage Objects Property
	Bookmark Type Property
	Bookmarkable Property

	C
	Catalog Location Property
	Catalog Term Property
	Change Inserted Rows Property
	Column Definition Property
	Column Privileges Property
	Column Set Notification Property
	Command Time Out Property
	Connect Timeout Property
	Content Type Property
	Current Catalog Property
	Cursor Auto Fetch Property

	D
	Data Source Property
	Data Source Name Property
	Data Source Object Threading Model Property
	DBMS Name Property
	DBMS Version Property
	Defer Column Property
	Defer Prepare Property
	Delay Storage Object Updates Property

	E
	Extended Properties Property

	F
	Fetch Backwards Property

	G
	GROUP BY Support Property

	H
	Heterogeneous Table Support Property
	Hold Rows Property

	I
	IAccessor Property
	IColumnsInfo Property
	IColumnsRowset Property
	IConnectionPointContainer Property
	IConvertType Property
	Identifier Case Sensitivity Property
	Immobile Rows Property
	Initial Catalog Property
	IRowset Property
	IRowsetChange Property
	IRowsetIdentity Property
	IRowsetInfo Property
	IRowsetLocate Property
	IRowsetResynch Property
	IRowsetScroll Property
	IRowsetUpdate Property
	ISequentialStream Property
	Isolation Levels Property
	Isolation Retention Property
	ISupportErrorInfo Property

	L
	Literal Bookmarks Property
	Literal Row Identity Property
	Locale Identifier Property
	Lock Mode Property

	M
	Mapping Schema Property
	Maximum Index Size Property
	Maximum Open Rows Property
	Maximum Pending Rows Property
	Maximum Row Size Property
	Maximum Row Size Includes BLOB Property
	Maximum Rows Property
	Maximum Tables in SELECT Property
	Multiple Parameter Sets Property
	Multiple Results Property
	Multiple Storage Objects Property
	Multi-Table Update Property

	N
	Notification Granularity Property
	Notification Phases Property
	NULL Collation Order Property
	NULL Concatenation Behavior Property

	O
	Objects Transacted Property
	OLE DB Version Property
	OLE Object Support Property
	Open Rowset Support Property
	ORDER BY Columns in Select List Property
	Others' Changes Visible Property
	Others' Inserts Visible Property
	Output Encoding Property
	Output Parameter Availability Property
	Output Stream Property
	Own Changes Visible Property
	Own Inserts Visible Property

	P
	Pass By Ref Accessors Property
	Password Property
	Persist Security Info Property
	Persistent ID Type Property
	Prepare Abort Behavior Property
	Prepare Commit Behavior Property
	Preserve on Abort Property
	Preserve on Commit Property
	Procedure Term Property
	Prompt Property
	Provider Friendly Name Property
	Provider Name Property
	Provider Version Property

	Q
	Quick Restart Property

	R
	Read-Only Data Source Property
	Reentrant Events Property
	Remove Deleted Rows Property
	Report Multiple Changes Property
	Return Pending Inserts Property
	Row Delete Notification Property
	Row First Change Notification Property
	Row Insert Notification Property
	Row Privileges Property
	Row Resynchronization Notification Property
	Row Threading Model Property
	Row Undo Change Notification Property
	Row Undo Delete Notification Property
	Row Undo Insert Notification Property
	Row Update Notification Property
	Rowset Conversions on Command Property
	Rowset Fetch Position Change Notification Property
	Rowset Release Notification Property

	S
	Schema Term Property
	Schema Usage Property
	Scroll Backwards Property
	Server Cursor Property
	Server Data on Insert Property
	Skip Deleted Bookmarks Property
	SQL Support Property
	SS STREAM FLAGS Property
	Strong Row Identity Property
	Structured Storage Property
	Subquery Support Property

	T
	Table Term Property
	Transaction DDL Property

	U
	Unique Rows Property
	Updatability Property
	Use Bookmarks Property
	User ID Property
	User Name Property

	W
	Window Handle Property

	X
	XML Root Property
	XSL Property

	Provider Support for ADOX

	ADO Samples
	ADO Connection and Error Handling
	ADO and Long Data Types (Visual Basic)
	ADO and Long Data Types (C++)
	ADO and Long Data Types (Web)
	ADO Web Application
	ADO and FOR XML
	ADO and Open XML
	ADO and XPath Query

