
Administering	SQL	Server

Administering	SQL	Server	Overview
Microsoft®	SQL	Server™	2000	administration	applications,	and	the
accompanying	services,	are	designed	to	assist	the	system	administrator	with	all
administrative	tasks	related	to	maintaining	and	monitoring	server	performance
and	activities.

Topic Description
Starting,	Pausing,	and	Stopping
SQL	Server

Explains	how	to	start	an	instance	of
SQL	Server,	and	what	you	need	to	do
before,	during,	and	after	you	log	in.

Failover	Clustering Describes	how	to	set	up	and	use	a
failover	cluster.

Importing	and	Exporting	Data Describes	how	to	retrieve	data	from
external	sources	and	feed	data	to	other
applications.

Backing	Up	and	Restoring
Databases

Describes	how	to	protect	and	restore
data	over	a	wide	range	of	potential
system	problems.

Using	the	Copy	Database	Wizard Describes	how	to	copy	or	move
databases	between	servers	and	upgrade
databases	from	SQL	Server	version	7.0
to	SQL	Server	2000.

Managing	Servers Describes	how	to	register	and
configure	remote	and	linked	servers,
add	or	remove	servers,	and	modify
server	settings.

Managing	Clients Describes	how	to	configure	client
connections	with	server	components
and	change	the	default	network
protocol	to	meet	the	needs	of	your	site.

Automating	Administrative	Tasks Describes	how	to	establish	which
administrative	responsibilities	will
occur	regularly,	define	jobs	and	alerts,
and	run	SQL	Server	Agent.

Managing	Security Describes	how	to	protect	and
safeguard	database	access	by
restricting	permissions	to	include	only
authorized	users.

Monitoring	Server	Performance	and
Activity

Describes	how	to	develop	a	strategy
for	ensuring	that	server	and	activity
performance	are	at	acceptable	levels.

Using	the	Web	Assistant	Wizard Explains	how	to	use	the	wizard	to
create	Web	pages.

Administering	SQL	Server

Starting,	Pausing,	and	Stopping	SQL	Server
Before	you	log	in	to	an	instance	of	Microsoft®	SQL	Server™,	you	need	to	know
how	to	start,	pause,	and	stop	an	instance	of	SQL	Server.	After	you	are	logged	in,
you	can	perform	tasks	such	as	administering	the	server	or	querying	a	database.

Using	the	SQL	Server	Service
When	you	start	an	instance	of	SQL	Server,	you	are	starting	the	SQL	Server
service.	After	you	start	the	SQL	Server	service,	users	can	establish	new
connections	to	the	server.	The	SQL	Server	service	can	be	started	and	stopped	as
a	Microsoft	Windows	NT®	4.0	or	Windows®	2000	service,	either	locally	or
remotely.	The	SQL	Server	service	is	referred	to	as	MSSQLServer	if	it	is	the
default	instance,	or	MSSQL$instancename	if	it	is	a	named	instance.

Using	SQL	Server	Service	Manager
If	you	are	running	Microsoft	Windows	98,	SQL	Server	Service	Manager	can	be
used	start,	pause,	stop	and	check	the	state	of	local	services,	though	it	cannot
remotely	administer	services.

If	you	have	to	restart	your	computer,	SQL	Server	Service	Manager	appears
automatically	and	the	default	service	is	displayed.	It	is	possible	to	change	the
default	service	on	the	local	computer	through	the	SQL	Server	Service	Manager.
When	you	restart	the	computer,	the	default	service	will	now	be	displayed	in	SQL
Server	Service	Manager.	For	example,	if	you	change	the	default	service	to	SQL
Server	Agent	service,	and	then	shut	down	the	computer,	the	next	time	you	start
it,	SQL	Server	Agent	service	will	be	displayed	in	SQL	Server	Service	Manager.

SQL	Server	Service	Manager	can	also	be	used	to	start,	pause,	or	stop	an	instance
of	SQL	Server	2000	Analysis	Services.

To	change	the	default	service

Administering	SQL	Server

Starting	SQL	Server
You	can	start	an	instance	of	Microsoft®	SQL	Server™	automatically,	manually,
or	from	the	command	prompt.	Both	the	automatic	and	manual	methods	start	an
instance	of	SQL	Server	as	a	Microsoft	Windows	NT®	4.0	or	Windows®	2000
service.	If	you	run	sqlservr	from	a	command	prompt,	you	cannot	pause,	stop,	or
resume	an	instance	of	SQL	Server	as	a	Windows	NT	4.0	or	Windows	2000
service	using	any	net	commands.

See	Also

SQL	Server	Service	Manager

Using	Startup	Options

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Starting	SQL	Server	Automatically
During	installation,	you	can	configure	Microsoft®	SQL	Server™	to	start
automatically	in	the	following	ways:

You	can	configure	an	instance	of	SQL	Server	to	start	automatically	each
time	you	start	the	Microsoft	Windows	NT®	4.0	or	Windows®	2000
operating	system.

You	can	configure	a	server	running	Microsoft	Windows	98	to	start
automatically.	Select	the	Auto-start	service	when	OS	starts	check	box
in	SQL	Server	Service	Manager.	Windows	98	does	not	have	a
component	that	corresponds	to	Window	NT	4.0	and	Windows	2000
services.	The	SQL	Server	database	engine	and	SQL	Server	Agent	run	as
executable	programs	on	Windows	98.	These	SQL	Server	components
cannot	be	started	as	services	automatically.

Note		The	SQL-DMO	AutoStartServer	property	does	not	work	with
Windows	98.

You	can	also	use	the	Services	application	in	Control	Panel.

After	SQL	Server	is	installed,	you	can	enable	or	disable	the	server	configuration
using	SQL	Server	Enterprise	Manager.	For	more	information,	see	the	Windows
NT	4.0	and	Windows	2000	documentation.

To	start	an	instance	of	SQL	Server	automatically

Administering	SQL	Server

Starting	SQL	Server	Manually
You	can	start	an	instance	of	Microsoft®	SQL	Server™	manually	using	the
following	methods.

Method Description
SQL	Server	Enterprise	Manager Start,	pause,	continue,	and	stop	an

instance	of	a	local	or	remote	SQL	Server
or	the	SQL	Server	Agent	service	in	the
same	window	in	which	you	administer
other	servers	and	databases.

SQL	Server	Service	Manager Start,	pause,	continue,	and	stop	an
instance	of	a	local	or	remote	SQL	Server
or	the	SQL	Server	Agent	service.

Services	application	in	Control
Panel

Start,	pause,	continue,	and	stop	an
instance	of	SQL	Server	or	the	SQL	Server
Agent	service	on	the	local	server.

Command	prompt Start	an	instance	of	SQL	Server	or	the
SQL	Server	Agent	service	from	a
command	prompt	by	typing:
net	start	mssqlserver	or	sqlservr,	or	net
start	SQLServerAgent	or	by	running
SQLSERVR.EXE.	If	you	are	referring	to
a	named	instance	of	SQL	Server,	you
must	specify	mssql$instancename	or
SQLAgent$instancename.

Before	you	choose	a	startup	method,	consider	the	following:

If	you	start	an	instance	of	SQL	Server	using	sqlservr	from	a	command
prompt	(independent	of	the	Service	Control	Manager):

All	system	messages	appear	in	the	window	used	to	start	an
instance	of	SQL	Server.

You	cannot	pause,	stop,	or	resume	an	instance	of	SQL	Server
as	a	Windows	NT	4.0	or	Windows	2000	service	using	SQL
Server	Enterprise	Manager,	SQL	Server	Service	Manager,	the
Services	application	in	Control	Panel,	or	any	net	commands
(for	example,	net	start,	net	pause,	net	stop,	and	net
continue).

You	must	shut	down	an	instance	of	SQL	Server	before	logging
off	Windows	NT	4.0	or	Windows	2000.

If	you	start	an	instance	of	SQL	Server	from	a	command	prompt:

Any	command	prompt	options	that	you	type	take	precedence
over	the	default	command	prompt	options	written	to	the
Windows	2000	registry	by	SQL	Server	Setup.

SQL	Server	Service	Manager	and	SQL	Server	Enterprise
Manager	show	the	service	as	stopped.

You	can	log	off	the	Windows	NT	4.0	or	Windows	2000	network	without
shutting	down	an	instance	of	SQL	Server.

To	start	the	default	instance	of	SQL	Server

Administering	SQL	Server

Starting	SQL	Server	in	Single-User	Mode
Under	certain	circumstances,	you	may	need	to	start	an	instance	of	Microsoft®
SQL	Server™	in	single-user	mode	using	the	startup	option	-m.	For	example,	you
may	want	to	change	server	configuration	options	or	recover	a	damaged	master
database	or	other	system	database.	Both	actions	require	starting	an	instance	of
SQL	Server	in	single-user	mode.

When	you	start	an	instance	of	SQL	Server	in	single-user	mode:

Only	one	user	can	connect	to	the	server.

The	CHECKPOINT	process	is	not	executed.	By	default,	it	is	executed
automatically	at	startup.

The	sp_configure	system	stored	procedure	allow	updates	option	is
enabled.	By	default,	the	allow	updates	option	is	disabled.

To	start	SQL	Server	in	single-user	mode

Administering	SQL	Server

Starting	SQL	Server	with	Minimal	Configuration
If	you	have	configuration	problems	that	prevent	the	server	from	starting,	you	can
start	an	instance	of	Microsoft®	SQL	Server™	using	the	minimal	configuration
startup	option.	This	is	the	startup	option	-f.	Starting	an	instance	of	SQL	Server
with	minimal	configuration	places	the	server	in	single-user	mode	automatically.

When	you	start	an	instance	of	SQL	Server	in	minimal	configuration	mode:

Only	a	single	user	can	connect,	and	the	CHECKPOINT	process	is	not
executed.

Remote	access	and	read-ahead	are	disabled.

Startup	stored	procedures	do	not	run.

The	sp_configure	stored	procedure	allow	updates	option	is	enabled.
By	default,	the	allow	updates	option	is	disabled.

After	the	server	has	been	started	with	minimal	configuration,	you	should	change
the	appropriate	server	option	value	or	values,	stop,	and	then	restart	the	server.

IMPORTANT		Stop	the	SQL	Server	Agent	service	before	connecting	to	an	instance
of	SQL	Server	in	minimal	configuration	mode.	Otherwise,	the	SQL	Server	Agent
service	uses	the	connection,	thereby	blocking	it.

To	start	SQL	Server	with	minimal	configuration

Administering	SQL	Server

Using	Startup	Options
When	you	install	Microsoft®	SQL	Server™,	SQL	Server	Setup	writes	a	set	of
default	startup	options	in	the	Microsoft	Windows®	2000	registry.	You	can	use
these	startup	options	to	specify	an	alternate	master	database	file,	master
database	log	file,	or	error	log	file.

Default	startup
options Description
-dmaster_file_	path The	fully	qualified	path	for	the	master	database

file	(typically,	C:\Program	Files\Microsoft	SQL
Server\MSSQL\Data\Master.mdf).	If	you	do	not
provide	this	option,	the	existing	registry
parameters	are	used.

-eerror_log_	path The	fully	qualified	path	for	the	error	log	file
(typically,	C:\Program	Files\Microsoft	SQL
Server\MSSQL\Log\Errorlog).	If	you	do	not
provide	this	option,	the	existing	registry
parameters	are	used.

-lmaster_log_path The	fully	qualified	path	for	the	master	database
log	file	(typically	C:\Program	Files\Microsoft	SQL
Server\MSSQL\Data\Mastlog.ldf).

You	can	override	the	default	startup	options	temporarily	and	start	an	instance	of
SQL	Server	by	using	the	following	additional	startup	options.

Other	startup	options Description
-c Shortens	startup	time	by	starting	an	instance	of

SQL	Server	independently	of	the	Service	Control
Manager,	so	that	SQL	Server	does	not	run	as	a
Microsoft	Windows	NT®	4.0	or	Windows	2000
service.

-f Starts	an	instance	of	SQL	Server	with	minimal
configuration.	Useful	if	the	setting	of	a
configuration	value	(for	example,	over-committing
memory)	has	prevented	the	server	from	starting.

Enables	the	sp_configure	allow	updates	option.
By	default,	allow	updates	is	disabled.

-g Specifies	the	amount	of	virtual	address	space	(in
megabytes)	SQL	Server	will	leave	available	for
memory	allocations	within	the	SQL	Server
process,	but	outside	the	SQL	Server	memory	pool.
This	is	the	area	used	by	SQL	Server	for	loading
items	such	as	extended	procedure	.dll	files,	the
OLE	DB	providers	referenced	by	distributed
queries,	and	automation	objects	referenced	in
Transact-SQL	statements.	The	default	is	128
megabytes	(MB).

Use	of	this	option	may	help	tune	memory
allocation,	but	only	when	physical	memory
exceeds	2	gigabytes	(GB)	for	the	SQL	Server	2000
Personal	Edition	or	SQL	Server	2000	Standard
Edition,	or	3	GB	for	SQL	Server	2000	Enterprise
Edition.	Configurations	with	less	physical	memory
will	not	benefit	from	using	this	option.	Use	of	this
option	may	be	appropriate	in	large	memory
configurations	in	which	the	memory	usage
requirements	of	SQL	Server	are	atypical	and	the
virtual	address	space	of	the	SQL	Server	process	is
totally	in	use.	Incorrect	use	of	this	option	can	lead
to	conditions	under	which	an	instance	of	SQL
Server	may	not	start	or	may	encounter	run-time
errors.

Use	the	default	for	the	-g	parameter	unless	you	see
the	following	warning	in	the	SQL	Server	error	log:

WARNING:	Clearing	procedure	cache	to	free
contiguous	memory

This	message	may	indicate	that	SQL	Server	is
trying	to	free	parts	of	the	SQL	Server	memory	pool
in	order	to	find	space	for	items	such	as	extended
stored	procedure	.dll	files	or	automation	objects.	In

this	case,	consider	increasing	the	amount	of
memory	reserved	by	the	-g	switch.	Using	a	value
lower	than	the	default	will	increase	the	amount	of
memory	available	to	the	buffer	pool	and	thread
stacks;	this	may,	in	turn,	provide	some
performance	benefit	to	memory-intensive
workloads	in	systems	that	do	not	use	many
extended	stored	procedures,	distributed	queries,	or
automation	objects.

-m Starts	an	instance	of	SQL	Server	in	single-user
mode.	When	you	start	an	instance	of	SQL	Server
in	single-user	mode,	only	a	single	user	can
connect,	and	the	CHECKPOINT	process	is	not
started.	CHECKPOINT	guarantees	that	completed
transactions	are	regularly	written	from	the	disk
cache	to	the	database	device.	(Typically,	this
option	is	used	if	you	experience	problems	with
system	databases	that	should	be	repaired.)	Enables
the	sp_configure	allow	updates	option.	By
default,	allow	updates	is	disabled.

-n Does	not	use	the	Windows	application	log	to
record	SQL	Server	events.	If	you	start	an	instance
of	SQL	Server	with	-n,	it	is	recommended	that	you
use	the	-e	startup	option	too;	otherwise,	SQL
Server	events	are	not	logged.

-s Allows	you	to	start	a	named	instance	of	SQL
Server	2000.	Without	the	-s	parameter	set,	the
default	instance	will	attempt	to	start.	You	must
switch	to	the	appropriate	BINN	directory	for	the
instance	at	a	command	prompt	before	starting
sqlservr.exe.	For	example,	if	Instance1	were	to	use
\mssql$Instance1	for	its	binaries,	the	user	must	be
in	the	\mssql$Instance1\binn	directory	to	start
sqlservr.exe-sinstance1.

/Ttrace# Indicates	that	an	instance	of	SQL	Server	should	be
started	with	a	specified	trace	flag	(trace#)	in	effect.

Trace	flags	are	used	to	start	the	server	with
nonstandard	behavior.

-x Disables	the	keeping	of	CPU	time	and	cache-hit
ratio	statistics.	Allows	maximum	performance.

IMPORTANT		When	specifying	a	trace	flag	with	the	/T	option,	use	an	uppercase
"T"	to	pass	the	trace	flag	number.	A	lowercase	"t"	is	accepted	by	SQL	Server,
but	this	sets	other	internal	trace	flags	that	are	required	only	by	SQL	Server
support	engineers.	(Parameters	specified	in	the	Control	Panel	startup	window	are
not	read.)

See	Also

CHECKPOINT

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Logging	In	to	SQL	Server
You	can	log	in	to	an	instance	of	Microsoft®	SQL	Server™	by	using	any	of	the
graphical	administration	tools	or	from	a	command	prompt.

When	you	log	in	to	an	instance	of	SQL	Server	using	a	graphical	administration
tool	such	as	SQL	Server	Enterprise	Manager	or	SQL	Query	Analyzer,	you	are
prompted	to	supply	the	server	name,	a	login	ID,	and	a	password,	if	necessary.
How	you	log	in	to	an	instance	of	SQL	Server	depends	on	whether	SQL	Server	is
using	Windows	Authentication	or	mixed	mode	(SQL	Server	Authentication	and
Windows	Authentication).	If	SQL	Server	is	using	Windows	Authentication,	you
do	not	have	to	provide	a	login	ID	each	time	you	access	a	registered	SQL	Server.
Instead,	SQL	Server	logs	you	in	automatically	using	your	Microsoft	Windows
NT®	4.0	or	Windows®	2000	account.

Note		If	you	selected	a	case-sensitive	sort	order	when	you	installed	SQL	Server,
your	login	ID	is	also	case-sensitive.

To	log	in	to	SQL	Server

Administering	SQL	Server

Running	SQL	Server
Microsoft®	SQL	Server™	can	run	over	the	network	or	without	a	network.

Running	SQL	Server	on	a	Network
For	SQL	Server	to	communicate	over	the	network,	the	SQL	Server	service	must
be	running.	By	default,	Microsoft	Windows	NT®	4.0	and	Windows®	2000
automatically	start	the	built-in	SQL	Server	service.	To	find	out	whether	the	SQL
Server	service	has	been	started,	at	the	command	prompt,	type:

net	start

If	the	SQL	Server	service	has	been	started,	the	following	appears	in	the	net	start
output:

C:\>	net	start
These	Windows	NT	services	are	started:

			ClipBook	Server
			Computer	Browser
			EventLog
			Messenger
			Network	DDE
			Network	DDE	DSDM
			Server
			Workstation

The	command	completed	successfully.

If	the	SQL	Server	service	has	not	been	started,	at	the	command	prompt,	type:

net	start	server

The	following	message	indicates	that	the	service	has	been	started:

The	Server	service	was	started	successfully.

You	can	also	use	the	Services	application	in	Control	Panel	to	check	service
status	and	to	start	and	stop	services.	For	more	information,	see	the	Windows	NT
4.0	and	Windows	2000	documentation.

Running	SQL	Server	Without	a	Network
When	running	an	instance	of	SQL	Server	without	a	network,	you	do	not	need	to
start	the	built-in	SQL	Server	service.	Because	SQL	Server	Enterprise	Manager,
SQL	Server	Service	Manager,	and	the	net	start	and	net	stop	commands	are
functional	even	without	a	network,	the	procedures	for	starting	and	stopping	an
instance	of	SQL	Server	are	identical	for	a	network	or	stand-alone	operation.

When	connecting	to	an	instance	of	a	stand-alone	SQL	Server	from	a	local	client
such	as	osql,	you	bypass	the	network	and	connect	directly	to	the	instance	of	SQL
Server	by	using	a	local	pipe.	The	difference	between	a	local	pipe	and	a	network
pipe	is	whether	you	are	using	a	network.	Both	local	and	network	pipes	establish
a	connection	with	an	instance	of	SQL	Server	by	using	the	standard	pipe
(\pipe\sql\query),	unless	otherwise	directed.

When	you	connect	to	an	instance	of	a	local	SQL	Server	without	specifying	a
server	name,	you	are	using	a	local	pipe.	When	you	connect	to	an	instance	of	a
local	SQL	Server	and	specify	a	server	name	explicitly,	you	are	using	either	a
network	pipe	or	another	network	interprocess	communication	(IPC)	mechanism,
such	as	Internetwork	Packet	Exchange/Sequenced	Packet	Exchange	(IPX/SPX)
(assuming	you	have	configured	SQL	Server	to	use	multiple	networks).	Because	a
stand-alone	SQL	Server	does	not	support	network	pipes,	you	must	omit	the
unnecessary	/Sserver_name	argument	when	connecting	to	the	instance	of	SQL
Server	from	a	client.	For	example,	to	connect	to	a	stand-alone	instance	of	SQL
Server	from	osql,	type:

osql	/Usa	/P

See	Also

Named	Pipes	Clients

Administering	SQL	Server

Pausing	and	Resuming	SQL	Server
When	you	pause	an	instance	of	Microsoft®	SQL	Server™,	users	who	are
connected	to	the	server	can	finish	tasks,	but	new	connections	are	not	allowed.
For	example,	you	can	pause	an	instance	of	SQL	Server	for	a	few	minutes	and
send	a	shutdown	message	to	connected	users	before	shutting	it	down.	You	can
also	resume	a	SQL	Server	service.

You	can	pause	an	instance	of	SQL	Server	before	stopping	the	server.	Pausing	an
instance	of	SQL	Server	prevents	new	users	from	logging	in	and	gives	you	time
to	send	a	message	to	current	users	asking	them	to	log	out	before	you	stop	the
server.

Note		You	cannot	pause	an	instance	of	SQL	Server	if	it	was	started	by	running
sqlservr.	Only	SQL	Server	services	started	as	a	Microsoft	Windows	NT®	4.0	or
Windows®	2000	service	can	be	paused.

For	more	information	about	pausing	and	resuming	an	instance	of	SQL	Server
from	the	Services	application	in	Control	Panel,	see	the	Windows	NT	4.0	or
Windows	2000	documentation.

To	pause	and	resume	SQL	Server

Administering	SQL	Server

Stopping	SQL	Server
You	can	stop	an	instance	of	Microsoft®	SQL	Server™	locally	from	the	server	or
remotely	from	a	client	or	another	server.	If	you	stop	an	instance	of	SQL	Server
without	pausing	it,	all	server	processes	are	terminated	immediately.	Stopping	an
instance	of	SQL	Server	prevents	new	connections	and	disconnects	current	users.

The	following	table	describes	the	available	methods	for	stopping	an	instance	of
SQL	Server.

Method Description
SQL	Server	Enterprise
Manager

Stops	a	local	or	remote	instance	of	SQL	Server
or	a	SQL	Server	Agent	service.

SQL	Server	Service
Manager

Stops	a	local	or	remote	instance	of	SQL	Server
or	a	SQL	Server	Agent	service	from	a	single
window	or	from	the	Windows®	taskbar.

SHUTDOWN	statement Stops	an	instance	of	SQL	Server	when	executed
within	osql	or	another	query	tool.	Using	the
WITH	NOWAIT	option	stops	an	instance	of
SQL	Server	immediately.

net	stop	mssqlserver Stops	an	instance	of	SQL	Server	either	remotely
or	locally	if	you	are	running	the	Microsoft
Windows	NT®	4.0	or	Windows®	2000
operating	systems.	To	stop	a	named	instance	of
SQL	Server	2000,	you	must	enter	net	stop
mssql$instancename	from	the	command
prompt.

Control	Panel Stops	an	instance	of	SQL	Server	using	the
Services	application	in	Control	Panel.

CTRL+C Stops	an	instance	of	SQL	Server	if	it	was	started
as	a	program	from	the	command	prompt.

When	you	stop	an	instance	of	SQL	Server,	the	server	performs	these	services
before	it	shuts	down:

Disables	logins	(except	for	system	administrators).

Performs	a	CHECKPOINT	in	every	database.	However,	if	you	stop	an
instance	of	SQL	Server	using	CTRL+C	at	the	command	prompt,	it	does
not	perform	a	CHECKPOINT	in	every	database.	Therefore,	the	next
time	the	server	is	started,	recovery	time	takes	longer.

Waits	for	all	Transact-SQL	statements	or	stored	procedures	currently
executing	to	finish.

Note		To	bring	the	system	to	an	immediate	halt,	you	can	issue	the	SHUTDOWN
WITH	NOWAIT	statement	from	the	osql	utility.

To	stop	SQL	Server

Administering	SQL	Server

Broadcasting	a	Shutdown	Message
Before	you	stop	an	instance	of	Microsoft®	SQL	Server™,	you	can	broadcast	a
message	to	warn	users	of	an	impending	shutdown.	In	the	message,	you	can
include	the	time	the	instance	of	SQL	Server	will	be	stopped	so	users	can	finish
their	tasks.

To	broadcast	a	shutdown	message

Administering	SQL	Server

Failover	Clustering
In	Microsoft®	SQL	Server™	2000	Enterprise	Edition,	SQL	Server	2000	failover
clustering	provides	high	availability	support.	For	example,	during	an	operating
system	failure	or	a	planned	upgrade,	you	can	configure	one	failover	cluster	to
fail	over	to	any	other	node	in	the	failover	cluster	configuration.	In	this	way,	you
minimize	system	downtime,	thus	providing	high	server	availability.

To	install,	configure,	and	maintain	a	failover	cluster,	use	SQL	Server	Setup.	For
information	about	upgrading	to	a	SQL	Server	2000	failover	cluster,	see
Upgrading	to	a	SQL	Server	2000	Failover	Cluster.

Use	failover	clustering	to:

Install	SQL	Server	on	multiple	nodes	in	a	failover	cluster.	You	are
limited	only	by	the	number	of	nodes	supported	by	the	operating	system.

Before	installing	failover	clustering,	you	must	install	Microsoft	Windows
NT®	4.0,	Enterprise	Edition,	Microsoft	Windows®	2000	Advanced	Server
or	Windows	2000	Datacenter	Server,	and	the	Microsoft	Cluster	Service
(MSCS).

There	are	specific	installation	steps	that	must	be	followed	to	use	failover
clustering.	For	more	information,	see	Installing	Failover	Clustering	and
Handling	a	Failover	Cluster	Installation.

Specify	multiple	IP	addresses	for	each	virtual	server.

SQL	Server	2000	allows	you	to	use	all	available	network	IP	subnets,	thereby
providing	alternate	ways	to	connect	if	one	subnet	fails	and	increasing
network	scalability.	For	example,	with	a	single	network	adaptor,	a	network
failure	can	disrupt	communications.	However,	with	multiple	network	cards
in	the	server,	each	network	can	be	on	a	different	IP	subnet.	If	one	subnet
fails,	at	least	one	connection	can	continue	to	function.	If	a	router	fails,	MSCS
continues	to	function,	and	all	IP	addresses	still	work.	However,	if	the
network	card	on	the	local	computer	fails,	communication	still	may	be
disrupted.	For	more	information,	see	Creating	a	Failover	Cluster.

Administer	a	failover	cluster	from	any	node	in	the	clustered	SQL	Server

configuration.	To	perform	setup	tasks,	you	must	be	working	from	the
node	in	control	of	the	cluster	disk	resource.	For	more	information,	see
Creating	a	Failover	Cluster.

Allow	one	virtual	server	to	fail	over	to	any	other	node	on	the	failover
cluster	configuration.	For	more	information,	see	Creating	a	Failover
Cluster.

Add	or	remove	nodes	from	the	failover	cluster	configuration	using	the
Setup	program.	For	more	information,	see	Maintaining	a	Failover
Cluster.

Reinstall	or	rebuild	a	virtual	server	on	any	node	in	the	failover	cluster
without	affecting	the	other	nodes.	For	more	information,	see
Maintaining	a	Failover	Cluster.

Perform	full-text	queries	by	using	Microsoft	Search	service	with
failover	clustering.	For	more	information,	see	Using	SQL	Server	Tools
with	Failover	Clustering.

Multiple	Instance	Support

Failover	clustering	also	supports	multiple	instances.	Multiple	instance	support
makes	it	easier	to	build,	install,	and	configure	virtual	servers	in	a	failover	cluster.
Applications	can	connect	to	each	instance	on	a	single	computer	in	much	the
same	way	as	they	connect	to	instances	of	SQL	Server	running	on	multiple
computers.	For	more	information	about	virtual	servers,	see	Creating	a	Failover
Cluster.

With	multiple	instance	support,	you	can	isolate	work	environments	(for	example,
testing	from	production)	or	volatile	application	environments	and	provide
different	system	administrators	for	each	instance	of	SQL	Server	on	the	same
computer.	For	more	information,	see	Multiple	Instances	of	SQL	Server.

See	Also

JavaScript:hhobj_1.Click()

Failover	Clustering	Architecture

JavaScript:hhobj_2.Click()

Administering	SQL	Server

Failover	Clustering	Support
In	Microsoft®	SQL	Server™	2000	Enterprise	Edition,	the	number	of	nodes
supported	in	SQL	Server	2000	failover	clustering	depends	on	the	operating
system	you	are	running:

Microsoft	Windows	NT®	4.0,	Enterprise	Edition,	Microsoft	Windows®
2000	Advanced	Server,	and	Microsoft	Windows	2000	Datacenter	Server
support	two-node	failover	clustering.	

Windows	2000	Datacenter	Server	supports	up	to	four-node	failover
clustering,	including	an	active/active/active/active	failover	clustering
configuration.

The	following	tools,	features	and	components	are	supported	with	failover
clustering:

Microsoft	Search	service.	For	more	information,	see	Using	SQL	Server
Tools	with	Failover	Clustering.

Multiple	instances.	For	more	information,	see	Failover	Clustering.

SQL	Server	Enterprise	Manager.	For	more	information,	see	Using	SQL
Server	Tools	with	Failover	Clustering.

Service	Control	Manager.	For	more	information,	see	Using	SQL	Server
Tools	with	Failover	Clustering.

Replication.	For	more	information,	see	Creating	a	Failover	Cluster.	

SQL	Profiler.	For	more	information,	see	Using	SQL	Server	Tools	with
Failover	Clustering.

SQL	Query	Analyzer.	For	more	information,	see	Using	SQL	Server
Tools	with	Failover	Clustering.

SQL	Mail.	For	more	information,	see	Using	SQL	Server	Tools	with
Failover	Clustering.

The	following	component	is	not	supported	for	failover	clustering:

SQL	Server	2000	Analysis	Services

Note		Microsoft	Data	Access	Components	(MDAC)	2.6	is	not	supported	for
SQL	Server	version	6.5	or	SQL	Server	7.0,	when	either	version	is	in	a	failover
cluster	configuration.

Before	using	failover	clustering,	consider	the	following:

Failover	clustering	resources,	including	the	IP	addresses	and	network
name,	must	be	used	only	when	you	are	running	an	instance	of	SQL
Server	2000.	They	should	not	be	used	for	other	purposes,	such	as	file
sharing.	

In	a	failover	cluster	configuration,	SQL	Server	2000	supports	Windows
NT	4.0,	Enterprise	Edition	but	requires	that	the	service	accounts	for
SQL	Server	services	(SQL	Server	and	SQL	Server	Agent)	be	local
administrators	of	all	nodes	in	the	cluster.

IMPORTANT		SQL	Server	2000	supports	both	Named	Pipes	and	TCP/IP	Sockets
over	TCP/IP	within	a	failover	cluster.	However,	it	is	strongly	recommended	that
you	use	TCP/IP	Sockets	in	a	clustered	configuration.

Administering	SQL	Server

Creating	a	Failover	Cluster
To	create	a	Microsoft®	SQL	Server™	2000	failover	cluster,	you	must	create	and
configure	the	virtual	servers	on	which	the	failover	cluster	runs.	You	create
virtual	servers	during	SQL	Server	Setup.	Virtual	servers	are	not	provided	by
Microsoft	Windows	NT®	4.0	or	Microsoft	Windows®	2000.

To	create	a	failover	cluster,	you	must	be	a	local	administrator	with	rights	to	log
on	as	a	service	and	to	act	as	part	of	the	operating	system	on	all	computers	in	the
failover	cluster.

Elements	of	a	Virtual	Server
A	virtual	server	contains:

A	combination	of	one	or	more	disks	in	a	Microsoft	Cluster	Service
(MSCS)	cluster	group.

Each	MSCS	cluster	group	can	contain	at	most	one	virtual	SQL	Server.

A	network	name	for	each	virtual	server.	This	network	name	is	the
virtual	server	name.

One	or	more	IP	addresses	that	are	used	to	connect	to	each	virtual	server.

One	instance	of	SQL	Server	2000,	including	a	SQL	Server	resource,	a
SQL	Server	Agent	resource,	and	a	full-text	resource.

If	an	administrator	uninstalls	the	instance	of	SQL	Server	2000	within	a
virtual	server,	the	virtual	server,	including	all	IP	addresses	and	the
network	name,	is	also	removed	from	the	MSCS	cluster	group.

A	failover	cluster	can	run	across	one	or	more	actual	Windows	2000	Advanced
Server	or	Windows	2000	Datacenter	Server	servers	or	Windows	NT	4.0,
Enterprise	Edition	servers	that	are	participating	nodes	of	the	cluster.	However,	a
SQL	Server	virtual	server	always	appears	on	the	network	as	a	single	Windows
2000	Advanced	Server,	Windows	2000	Datacenter	Server,	or	Microsoft

Windows	NT	4.0,	Enterprise	Edition	server.

Naming	a	Virtual	Server
SQL	Server	2000	depends	on	distinct	registry	keys	and	service	names	within	the
failover	cluster	so	that	operations	will	continue	correctly	after	a	failover.
Therefore,	the	name	you	provide	for	the	instance	of	SQL	Server	2000,	including
the	default	instance,	must	be	unique	across	all	nodes	in	the	failover	cluster,	as
well	as	across	all	virtual	servers	within	the	failover	cluster.	For	example,	if	all
instances	failed	over	to	a	single	server,	their	service	names	and	registry	keys
would	conflict.	If	INST1	is	a	named	instance	on	virtual	server	VIRTSRV1,	there
cannot	be	a	named	instance	INST1	on	any	node	in	the	failover	cluster,	either	as
part	of	a	failover	cluster	configuration	or	as	a	stand-alone	installation.

Additionally,	you	must	use	the	VIRTUAL_SERVER\Instance-name	string	to
connect	to	a	clustered	instance	of	SQL	Server	2000	running	on	a	virtual	server.
You	cannot	access	the	instance	of	SQL	Server	2000	by	using	the	computer	name
that	the	clustered	instance	happens	to	reside	on	at	any	given	time.	SQL	Server
2000	does	not	listen	on	the	IP	address	of	the	local	servers.	It	listens	only	on	the
clustered	IP	addresses	created	during	the	setup	of	a	virtual	server	for	SQL	Server
2000.

Usage	Considerations
Before	you	create	a	failover	cluster,	consider	the	following:

If	you	are	using	the	Windows	2000	Address	Windowing	Extensions
(AWE)	API	to	take	advantage	of	memory	greater	than	3	gigabytes
(GB),	make	certain	that	the	maximum	available	memory	you	configure
on	one	instance	of	SQL	Server	will	still	be	available	after	you	fail	over
to	another	node.	If	the	failover	node	has	less	physical	memory	than	the
original	node,	instances	of	SQL	Server	may	fail	to	start	or	may	start
with	less	memory	than	they	had	on	the	original	node.	You	must:

Give	each	server	in	the	cluster	the	same	amount	of	physical
RAM.

Ensure	that	the	summed	value	of	the	max	server	memory

settings	for	all	instances	is	less	than	the	lowest	amount	of
physical	RAM	available	on	any	of	the	virtual	servers	in	the
failover	cluster.

For	more	information	about	AWE,	see	Using	AWE	Memory	on
Windows	2000.

If	you	need	high-availability	servers	in	replication,	it	is	recommended
that	you	use	an	MSCS	cluster	file	share	as	your	snapshot	folder	when
configuring	a	Distributor	on	a	failover	cluster.	In	the	case	of	server
failure,	the	distribution	database	will	be	available	and	replication	will
continue	to	be	configured	at	the	Distributor.

Also,	when	creating	publications,	specify	the	MSCS	cluster	file	share
for	the	additional	storage	of	snapshot	files	or	as	the	location	from	which
Subscribers	apply	the	snapshot.	This	way,	the	snapshot	files	are
available	to	all	nodes	of	the	cluster	and	to	all	Subscribers	that	must
access	it.	For	more	information,	see	Publishers,	Distributors,	and
Subscribers	and	Alternate	Snapshot	Locations.

If	you	want	to	use	encryption	with	a	failover	cluster,	you	must	install
the	server	certificate	with	the	fully	qualified	DNS	name	of	the	virtual
server	on	all	nodes	in	the	failover	cluster.	For	example,	if	you	have	a
two-node	cluster,	with	nodes	named	test1.redmond.corp.microsoft.com
and	test2.redmond.corp.microsoft.com	and	a	virtual	SQL	Server
"Virtsql",	you	need	to	get	a	certificate	for
"virtsql.redmond.corp.microsoft.com"	and	install	the	certificate	on	both
nodes.	You	can	then	check	the	Force	protocol	encryption	check	box
on	the	Server	Network	Utility	to	configure	your	failover	cluster	for
encryption.

You	should	not	remove	the	BUILTIN/Administrators	account	from	SQL
Server.	The	IsAlive	thread	runs	under	the	context	of	the	cluster	service
account,	and	not	the	SQL	Server	service	account.	The	cluster	service
must	be	part	of	the	administrator	group	on	each	node	of	the	cluster.	If
you	remove	the	BUILTIN/Administrators	account,	the	IsAlive	thread
will	no	longer	be	able	to	create	a	trusted	connection,	and	you	will	lose
access	to	the	virtual	server.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Creating	a	Failover	Cluster

Here	are	the	basic	steps	for	creating	a	failover	cluster	using	the	Setup	program:

1.	 Identify	the	information	you	need	to	create	your	virtual	server	(for
example,	cluster	disk	resource,	IP	addresses,	and	network	name)	and
the	nodes	available	for	failover.

The	cluster	disks	to	use	for	failover	clustering	should	all	be	in	a	single
cluster	group	and	owned	by	the	node	from	which	the	Setup	program	is
run.	This	configuration	must	take	place	before	you	run	the	Setup
program.	You	configure	this	through	Cluster	Administrator	in
Windows	NT	4.0	or	Windows	2000.	You	need	one	MSCS	group	for
each	virtual	server	you	want	to	set	up.

2.	 Start	the	Setup	program	to	begin	your	installation.	After	all	necessary
information	has	been	entered,	the	Setup	program	installs	a	new
instance	of	SQL	Server	binaries	on	the	local	disk	of	each	computer	in
the	cluster	and	installs	the	system	databases	on	the	specified	cluster
disk.	The	binaries	are	installed	in	exactly	the	same	path	on	each	cluster
node,	so	you	must	ensure	that	each	node	has	a	local	drive	letter	in
common	with	all	the	other	nodes	in	the	cluster.

In	SQL	Server	2000,	during	a	failover	only	the	databases	fail	over.	In
SQL	Server	version	6.5	and	SQL	Server	version	7.0,	both	the	SQL
Server	databases	and	binaries	fail	over	during	a	failover.

If	any	resource	(including	SQL	Server)	fails	for	any	reason,	the
services	(SQL	Server,	SQL	Server	Agent,	Full-Text	Search,	and	all
services	in	the	failover	cluster	group)	fail	over	to	any	available	nodes
defined	in	the	virtual	server.

3.	 You	install	one	instance	of	SQL	Server	2000,	creating	a	new	virtual
server	and	all	resources.

How	to	create	a	new	failover	cluster

Administering	SQL	Server

Failover	Clustering	Example
The	following	example	illustrates	how	you	configure	Microsoft®	SQL	Server™
2000	failover	clustering.

CLUSTERNODEA	and	CLUSTERNODEB	are	two	computers	in	a	failover
cluster.	Run	SQL	Server	Setup	on	CLUSTERNODEA	and	create	a	virtual	server
named	"SQLCLUSTA."	Then	install	a	default	instance	of	SQL	Server	2000,
which	can	run	on	both	CLUSTERNODEA	and	CLUSTERNODEB.	From	this
point	forward,	connect	to	the	server	by	specifying	"SQLCLUSTA"	as	the	server
name	in	the	connection	string.

Run	the	Setup	program	again	on	CLUSTERNODEB.	Create	a	new	virtual	server
named	"SQLCLUSTB"	(in	a	different	Microsoft	Cluster	Service	(MSCS)	cluster
group)	and	install	an	instance	named	"Inst1"	that	can	run	on	both
CLUSTERNODEA	and	CLUSTERNODEB.	From	this	point	forward,	connect	to
the	server	by	specifying	"SQLCLUSTB\Inst1"	as	the	connection	string.

The	two	virtual	servers	are	running	in	the	MSCS	cluster	consisting	of
CLUSTERNODEA	and	CLUSTERNODEB.	Other	than	that,	they	are
completely	separate	from	each	other.	Each	virtual	server	resides	in	a	different
MSCS	cluster	group,	and	each	has	a	different	set	of	IP	addresses,	a	distinct
network	name,	and	data	files	that	reside	on	a	separate	set	of	shared	cluster	disks.

When	a	failover	occurs	for	any	resource	in	an	MSCS	cluster	group,	all	resources
that	are	members	of	that	group	also	fail	over.	For	SQLCLUSTA,	any	failure
(from	the	disk	resources,	IP	address,	the	network	name,	or	the	installations	of
SQL	Server	2000	within	the	virtual	server)	causes	all	members	of	the	cluster
group	to	fail	over	when	the	failover	threshold	is	reached.

The	following	illustration	is	a	two-node	cluster	with	binaries	and	data.	Each
virtual	server	in	this	illustration	must	have	exclusive	ownership	of	the	disk	on
which	the	data	and	log	files	are	located.

See	Also

Failover	Clustering	Architecture

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Upgrading	to	a	SQL	Server	2000	Failover	Cluster
When	you	are	upgrading	to	a	Microsoft®	SQL	Server™	2000	failover	cluster,
only	one	default	instance	is	allowed.	Use	the	Cluster	Wizard	in	SQL	Server
version	6.5	or	SQL	Server	7.0	to	uncluster	any	existing	SQL	Server	6.5	or	SQL
Server	7.0	clustered	instances	before	upgrading	to	SQL	Server	2000.	Then	run
SQL	Server	Setup	on	SQL	Server	2000.

SQL	Server	6.5	or	SQL	Server	7.0	failover	clusters	cannot	exist	on	the	same
computer	as	a	SQL	Server	2000	failover	cluster.	In	SQL	Server	6.5	or	SQL
Server	7.0,	in	an	active/active	configuration	or	in	an	active/passive	configuration
where	one	server	contains	an	unclustered	SQL	Server,	there	is	a	name	conflict.
Both	servers	are	default	instances.

IMPORTANT		You	cannot	run	the	Cluster	Wizard	in	SQL	Server	6.5	or	SQL	Server
7.0	after	SQL	Server	2000	has	been	installed.

For	SQL	Server	2000,	you	must	use	a	domain	account	for	the	services	(SQL
Server,	SQL	Server	Agent,	and	all	services	in	the	clustered	group).	That	account
must	be	an	administrator	on	all	computers	in	the	cluster,	if	those	computers	are
running	on	Microsoft	Windows	NT®	Server	4.0,	Enterprise	Edition.

Note		If	you	are	using	replication	on	a	SQL	Server	6.5	or	7.0	failover	cluster	and
upgrading	to	a	SQL	Server	2000	failover	cluster,	you	must	uncluster	the	previous
installation.	Delete	all	publications,	remove	replication,	and	then	reconfigure
replication	after	upgrading.	This	will	not	be	a	requirement	when	upgrading	from
SQL	Server	2000	in	future	releases.

To	upgrade	from	a	SQL	Server	6.5	active/passive	failover	cluster

Administering	SQL	Server

Handling	a	Failover	Cluster	Installation
When	you	install	a	Microsoft®	SQL	Server™	2000	failover	cluster,	you	must:

Ensure	that	the	operating	system	is	installed	properly	and	designed	to
support	failover	clustering.	For	more	information	about	what	to	do
before	installing	a	failover	cluster,	see	Before	Installing	Failover
Clustering.	For	more	information	about	the	order	of	installation,	see
Installing	Failover	Clustering.

Consider	whether	the	SQL	Server	tools,	features,	and	components	you
want	to	use	are	supported	with	failover	clustering.	For	more
information,	see	Failover	Clustering	Support.

Consider	whether	failover	clustering	is	dependent	on	the	products	you
want	to	use.	For	more	information,	see	Failover	Clustering
Dependencies.

Consider	how	to	create	a	new	failover	cluster.	For	more	information
about	creating	a	new	failover	cluster	configuration,	see	Creating	a
Failover	Cluster.

Review	the	instructions	for	upgrading	from	a	SQL	Server	version	6.5	or
SQL	Server	version	7.0	cluster	to	a	SQL	Server	2000	failover	cluster.
For	more	information,	see	Upgrading	to	a	SQL	Server	2000	Failover
Cluster.

Administering	SQL	Server

Before	Installing	Failover	Clustering
Before	you	install	a	Microsoft®	SQL	Server™	2000	failover	cluster,	you	must
select	the	operating	system	on	which	your	computer	will	run.	You	can	use
Microsoft	Windows	NT®	4.0,	Enterprise	Edition,	Microsoft	Windows®	2000
Advanced	Server,	or	Microsoft	Windows	2000	Datacenter	Server.	You	also	must
install	Microsoft	Cluster	Service	(MSCS).

Preinstallation	Checklist
Before	you	begin	the	installation	process,	verify	that:

There	is	no	IRQ	sharing	between	network	interface	cards	(NICs)	and
drive/array	(SCSI)	controllers.	Although	some	hardware	may	support
this	sharing,	it	is	not	recommended.

Your	hardware	is	listed	on	the	Windows	NT	Hardware	Compatibility
List.

For	a	complete	list	of	supported	hardware,	see	the	Hardware
Compatibility	List	at	the	Microsoft	Web	site.

The	hardware	system	must	appear	under	the	category	of	cluster.
Individual	cluster	components	added	together	do	not	constitute	an
approved	system.	Only	systems	purchased	as	a	cluster	solution	and
listed	in	the	cluster	group	are	approved.	When	checking	the	list,	specify
cluster	as	the	category.	All	other	categories	are	for	OEM	use.

MSCS	has	been	installed	completely	on	at	least	one	node	before	you
run	Windows	NT	4.0,	Enterprise	Edition	or	Windows	2000	Advanced
Server	or	Windows	2000	Datacenter	Server	simultaneously	on	all
nodes.

When	using	MSCS,	you	must	make	certain	that	one	node	is	in	control
of	the	shared	SCSI	bus	prior	to	the	other	node(s)	coming	online.	Failure
to	do	this	can	cause	application	failover	to	go	into	an	online	pending
state.	As	a	result,	the	cluster	either	fails	on	the	other	node	or	fails	totally.
However,	if	your	hardware	manufacturer	has	a	proprietary	installation

http://www.microsoft.com/isapi/redir.dll?Prd=Hardware Compatibility List

process,	follow	the	hardware	manufacturer	instructions.

WINS	is	installed	according	to	the	following	article	in	the	Product
Support	Services	Microsoft	Web	site:

Q258750	Recommended	Private	"Heartbeat"	Configuration	on	Cluster
Server

The	disk	drive	letters	for	the	cluster-capable	disks	are	the	same	on	both
servers.

You	have	disabled	NetBIOS	for	all	private	network	cards	before
beginning	SQL	Server	Setup.

You	have	cleared	the	system	logs	in	all	nodes	and	viewed	the	system
logs	again.	Ensure	that	the	logs	are	free	of	any	error	messages	before
continuing.

http://www.microsoft.com/isapi/redir.dll?Prd=productsupport

Administering	SQL	Server

Installing	Failover	Clustering
If	you	are	installing	Microsoft®	SQL	Server™	2000	failover	clustering	on
Microsoft	Windows	NT®	4.0,	Enterprise	Edition,	you	need	to	install	programs
in	the	order	specified	below.	However,	this	is	not	necessary	if	you	are	installing
failover	clustering	on	Microsoft	Windows®	2000	Advanced	Server	or	Windows
2000	Datacenter	Server.

CAUTION		If	you	do	not	install	the	programs	in	the	following	order,	the	software
products	can	fail	on	installation	and	require	that	you	completely	reinitialize	the
disk	and	restart	installation.

Before	installing	SQL	Server	2000	in	a	failover	cluster	configuration,	you	must
upgrade	any	pre-release	versions	of	SQL	Server	2000.

To	install	failover	clustering	on	Windows	NT	4.0

1.	 Install	Windows	NT	4.0,	Enterprise	Edition.

Windows	NT	4.0,	Enterprise	Edition	includes	Windows	NT	4.0
Service	Pack	3.	Service	Pack	3	is	required	to	install	Microsoft	Cluster
Service	(MSCS).

Do	not	go	directly	to	Service	Pack	4	or	later	if	you	intend	to
install	the	Windows	NT	Option	Pack.	

Do	not	install	Microsoft	Internet	Information	Server	(IIS).

IMPORTANT		IIS	is	installed	by	default.	It	is	recommended	that	you
clear	this	option	during	the	Windows	NT	4.0	installation.

2.	 Install	MSCS.	

3.	 Install	Microsoft	Internet	Explorer	version	5.0	or	later.

4.	 Manually	create	a	Microsoft	Distributed	Transaction	Coordinator	(MS
DTC)	compatible	resource	group	where	MS	DTC	setup	can	create	its

resources.	This	should	contain	an	IP	address,	network	name,	and
cluster	disk	resource.	Any	group	with	these	three	things	is	compatible
with	MS	DTC.

SQL	Server	Setup	will	install	MS	DTC	in	a	later	step.	Install	Windows
NT	4.0	Option	Pack	only	if	you	require	components	of	the	Windows
NT	4.0	Option	pack	besides	MS	DTC.

5.	 Install	the	latest	Windows	NT	4.0	Service	Pack,	Service	Pack	5	at	the
latest.	Click	Create	an	uninstall	directory,	click	Year	2000	Setup,
and	then	select	the	Service	Pack	install	for	Intel	based	systems
check	box.

Do	not	select	Microsoft	Message	Queue	Server	(MSMQ	1.0)	or	IIS.
MSMQ	1.0	is	not	supported	on	SQL	Server	2000.	It	is	recommended
that	IIS	functionality	be	used	with	Windows	NT	Load	Balancing
Service	(WLBS).	For	more	information	about	WLBS,	search	on
"WLBS	Features	Overview"	on	the	NT	Server	Microsoft	Web	site.

Prior	to	Step	5,	it	is	recommended	that	you	rename	the	hidden
directory	$NTServicePackUninstall$	to
$NTServicePackUninstall$.service	packnumber.	After	installing	the
service	pack,	add	a	new	directory.	This	way	you	have	uninstall
directories	available,	which	prevents	the	directories	from	being
accidentally	overwritten.

6.	 Install	SQL	Server	2000.

Note		Install	any	additional	server	products	before	installing	any	other
applications.

To	install	failover	clustering	on	Windows	2000

1.	 Install	Windows	2000	and	accept	the	default	application	choices.	

2.	 After	installing	Windows	2000	on	the	first	node	and	prior	to	installing
MSCS,	click	Start\Programs\Administrative	Tools\Configure	Your
Server.

http://www.microsoft.com/isapi/redir.dll?Prd=ntserver&Ar=root

3.	 Click	Advanced\Cluster	Service,	and	then	in	the	right	pane,	click
Learn	More.

4.	 From	Help,	review	Item	2	under	Windows	Clustering.

Windows	Clustering	is	used	during	the	installation	of	Windows	2000
and	with	SQL	Server	2000	failover	clustering.	Follow	these
instructions	to	install	MSCS.

IMPORTANT		It	is	necessary	to	read	the	section	on	Planning	for
Windows	Clustering\Requirements	for	server	clusters	and	to	follow	the
Checklist	for	server	clusters	called	Checklist:	Creating	a	server	cluster.
This	is	found	under	the	Server	Clusters	section\Checklist	for	server
clusters.

5.	 After	you	have	successfully	installed	MSCS,	you	need	to	configure
MS	DTC	to	run	on	a	cluster.

For	more	information	about	MS	DTC,	see	Failover	Clustering
Dependencies.

6.	 On	the	Start	menu,	point	to	Programs\Administrative	Tools\Cluster
Administrator,	and	click	View	Groups\Cluster	Group.	If	the	group
contains	an	MS	DTC	resource,	proceed	to	Step	9.	If	not,	complete	the
following	two	steps.

7.	 On	the	Start	menu,	point	to	Command	Prompt.	Enter	comclust.exe
from	the	command	prompt.

8.	 Repeat	Step	7	on	the	remaining	nodes	of	the	cluster,	one	node	at	a
time.

9.	 Install	SQL	Server	2000.

Note		Install	any	additional	server	products	before	installing	any	user
applications.

Administering	SQL	Server

Failover	Clustering	Dependencies
There	are	several	products	that	interact	with	Microsoft®	SQL	Server™	2000
failover	clustering.	To	ensure	that	your	failover	cluster	functions	properly,	you
need	to	understand	the	underlying	dependencies	that	failover	clustering	has	on
other	products.

Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)
SQL	Server	2000	requires	Microsoft	Distributed	Transaction	Coordinator	(MS
DTC)	in	the	cluster	for	distributed	queries	and	two-phase	commit	transactions,
as	well	as	for	some	replication	functionality.	After	you	install	Microsoft
Windows®	2000	and	configure	your	cluster,	you	must	run	the	Cluster	Wizard
(the	comclust.exe	program)	on	all	nodes	to	configure	MS	DTC	to	run	in
clustered	mode.

The	Cluster	Wizard	makes	the	following	changes	to	the	MS	DTC	configuration:

It	creates	an	MS	DTC	resource	in	a	resource	group	containing	a	shared
cluster	disk	resource	and	a	network	name	resource.

It	creates	an	MS	DTC	log	file	on	the	shared	cluster	disk	contained	in	the
MS	DTC	resource	group.	Placing	the	MS	DTC	log	file	on	the	shared
cluster	disk	makes	it	possible	for	the	MS	DTC	transaction	manager	to
access	the	MS	DTC	log	file	from	any	system	in	the	cluster.

It	copies	critical	MS	DTC	registry	entries	to	the	shared	cluster	registry.

Running	MS	DTC	in	Clustered	Mode

When	MS	DTC	is	running	in	clustered	mode,	only	one	node	in	the	cluster	runs
the	MS	DTC	transaction	manager	at	a	time.

Any	process	running	on	any	node	in	the	cluster	can	use	MS	DTC.	These
processes	simply	call	the	MS	DTC	Proxy	and	the	MS	DTC	Proxy	automatically
forwards	MS	DTC	calls	to	the	MS	DTC	transaction	manager	that	is	controlling

the	entire	cluster.

If	the	node	running	the	MS	DTC	transaction	manager	fails,	the	MS	DTC
transaction	manager	is	automatically	restarted	on	another	node	in	the	cluster.	The
newly	restarted	MS	DTC	transaction	manager	reads	the	MS	DTC	log	file	on	the
shared	cluster	disk	to	determine	the	outcome	of	pending	and	recently	completed
transactions.	Resource	managers	reconnect	to	the	MS	DTC	transaction	manager
and	perform	recovery	to	determine	the	outcome	of	in-doubt	transactions.
Applications	reconnect	to	MS	DTC	so	they	can	initiate	new	transactions.

For	example,	suppose	the	MS	DTC	transaction	manager	is	active	on	system	B.
The	application	program	and	resource	manager	on	system	A	call	the	MS	DTC
proxy.	The	MS	DTC	proxy	on	system	A	forwards	all	MS	DTC	calls	to	the	MS
DTC	transaction	manager	on	system	B.

If	system	B	fails,	the	MS	DTC	transaction	manager	on	system	A	will	take	over.
It	will	read	the	entire	MS	DTC	log	file	on	the	shared	cluster	disk,	perform
recovery,	and	then	serve	as	the	transaction	manager	for	the	entire	cluster.

Note		The	MS	DTC	transaction	manager,	MS	DTC	Proxy,	and	Component
Services	administrative	tools	are	installed	on	each	node	of	a	Windows	2000
cluster	using	MSCS	as	part	of	Windows	2000	Setup.

To	manually	install	MS	DTC	on	a	Windows	2000	system	running	MSCS

1.	 Install	Windows	2000	on	each	node	in	the	cluster.

2.	 Use	the	Windows	2000	Configure	Your	Server	facility	to	configure
your	cluster.

3.	 From	a	command	prompt,	run	comclust.exe	on	each	node	in	the
cluster.	Comclust.exe	can	be	found	in	the	system32	directory.

To	automatically	install	MS	DTC	on	a	Windows	2000	cluster	system

1.	 Install	Windows	2000	on	each	node	in	the	cluster	and	configure	your
cluster	using	automatic	installation	scripts.

2.	 From	a	command	prompt,	run	comclust.exe	on	each	node	in	the

cluster.	Comclust.exe	can	be	found	in	the	system32	directory.

To	upgrade	a	non-clustered	Windows	NT	4.0	SP4	system	to	a	Windows	2000
cluster

1.	 Upgrade	each	system	that	will	be	part	of	the	cluster	to	Windows	2000.

2.	 Use	the	Windows	2000	Configure	Your	Server	facility	to	configure
your	server.

3.	 From	a	command	prompt,	run	comclust.exe	on	each	node	in	the
cluster.	Comclust.exe	can	be	found	in	the	system32	directory.

To	upgrade	a	clustered	Windows	NT	4.0	SP4	system	to	a	Windows	2000
cluster

1.	 Install	Windows	2000	on	each	node	in	the	cluster.

MS	DTC	requires	that	all	nodes	in	the	cluster	be	upgraded	to	Windows
2000	at	the	same	time.

2.	 From	a	command	prompt,	run	comclust.exe	on	each	node	in	the
cluster.	Comclust.exe	can	be	found	in	the	system32	directory.

IMPORTANT		Microsoft	System	Management	Server	1.2	is	not	supported	with
SQL	Server	or	Microsoft	Cluster	Service	(MSCS).

To	recover	from	a	cluster	failure	and	rebuild	MS	DTC	on	a	Windows	2000
cluster

1.	 When	a	node	is	lost,	MS	DTC	will	continue	to	work	on	the	remaining
nodes	in	the	cluster.	It	does	not	matter	whether	the	node	that	is	lost	is
the	primary	or	secondary	node.

2.	 When	you	are	ready	to	restore	the	lost	node,	join	the	lost	node	back	to
the	cluster.	After	the	node	has	joined	the	cluster,	run	Comclust.exe,
which	can	be	found	in	the	system32	directory.	This	will	reconfigure
MS	DTC	on	the	node.

Administering	SQL	Server

Maintaining	a	Failover	Cluster
After	you	have	installed	a	Microsoft®	SQL	Server™	2000	failover	cluster,	you
can	change	or	repair	your	existing	setup.	For	example,	you	can	add	additional
nodes	to	a	virtual	server	in	a	failover	cluster,	run	a	clustered	instance	as	a	stand-
alone	instance,	remove	a	node	from	a	clustered	instance,	or	recover	from	failover
cluster	failure.

Adding	a	Node	to	an	Existing	Virtual	Server
During	SQL	Server	Setup,	you	are	given	the	option	of	maintaining	an	existing
virtual	server.	If	you	choose	this	option,	you	can	add	other	nodes	to	your	failover
cluster	configuration	at	a	later	time.	You	can	add	up	to	three	additional	nodes	to
an	existing	virtual	server	configured	to	run	on	one	node.

To	add	a	node	to	an	existing	virtual	server

Administering	SQL	Server

Using	SQL	Server	Tools	with	Failover	Clustering
You	can	use	Microsoft®	SQL	Server™	2000	failover	clustering	with	a	variety	of
SQL	Server	tools	and	features.	However,	review	the	following	usage
considerations.

Full-Text	Queries
To	use	the	Microsoft	Search	service	to	perform	full-text	queries	with	failover
clustering,	consider	the	following:

An	instance	of	SQL	Server	2000	must	run	on	the	same	system	account
on	all	failover	cluster	nodes	in	order	for	full-text	queries	to	work	on
failover	clusters.

You	must	change	the	start-up	account	for	SQL	Server	2000	in	the
failover	cluster	using	SQL	Server	Enterprise	Manager.	If	you	use
Control	Panel	or	the	Services	Application	in	Microsoft	Windows®
2000,	you	will	break	the	full-text	configuration	for	SQL	Server.

SQL	Server	Enterprise	Manager

To	use	SQL	Server	Enterprise	Manager	with	failover	clustering,	consider	the
following:

You	must	change	the	start-up	account	for	SQL	Server	2000	in	the
failover	cluster	by	using	SQL	Server	Enterprise	Manager.	If	you	use
Control	Panel	or	the	Services	Application	in	Microsoft	Windows	2000,
you	could	break	your	server	configuration.

When	creating	or	altering	databases,	you	will	only	be	able	to	view	the
cluster	disks	for	the	local	virtual	server.

If	you	are	browsing	a	table	through	SQL	Server	Enterprise	Manager	and
lose	the	connection	to	SQL	Server	during	a	failover,	you	will	see	the

error	message,	"Communication	Link	Failure".	You	must	press	ESC	and
undo	the	changes	to	exit	out	of	the	SQL	Server	Enterprise	Manager
window.	You	cannot	click	Run	Query,	save	any	changes,	or	edit	the
grid.

If	you	use	Enterprise	Manager	to	reset	the	properties	of	the	SQL	Server
service	account,	you	will	be	prompted	to	restart	SQL	Server.	When	SQL
Server	is	running	in	a	failover	cluster	configuration,	this	will	bring	the
full	text	and	SQL	Agent	resources	offline,	as	well	as	SQL	Server.
However,	when	SQL	Server	is	restarted,	it	will	not	bring	the	full	text	or
SQL	Agent	resources	back	online.	You	must	start	those	resources
manually	using	the	Windows	Cluster	Administrator	utility.

Service	Control	Manager

Use	the	Service	Control	Manager	to	start	or	stop	a	clustered	instance	of	SQL
Server.	You	cannot	pause	a	clustered	instance	of	SQL	Server.

To	start	a	clustered	instance	of	SQL	Server	using	Service	Control	Manager

Administering	SQL	Server

Failover	Cluster	Troubleshooting
This	topic	provides	information	about:

Resolving	the	most	common	Microsoft®	SQL	Server™	2000	failover
clustering	usage	issues.	

Optimizing	failover	cluster	performance.

Using	failover	clustering	with	extended	stored	procedures	that	use
COM	objects.

Resolving	Common	Usage	Issues

The	following	list	describes	common	usage	issues	and	explains	how	to	resolve
them:

SQL	Server	2000	cannot	log	on	to	the	network	after	it	migrates	to
another	node.

SQL	Server	service	account	passwords	must	be	identical	on	all	nodes	or
else	the	node	cannot	restart	a	SQL	Server	service	that	has	migrated	from
a	failed	node.

If	you	change	the	SQL	Server	service	account	passwords	on	one	node,
you	must	change	the	passwords	on	all	other	nodes.	However,	if	you
change	the	account	using	SQL	Server	Enterprise	Manager,	this	task	will
be	done	automatically.

SQL	Server	cannot	access	the	cluster	disks.

A	node	cannot	recover	cluster	disks	that	have	migrated	from	a	failed
node	if	the	shared	cluster	disks	use	a	different	letter	drive.	The	disk
drive	letters	for	the	cluster	disks	must	be	the	same	on	both	servers.	If
they	are	not,	review	your	original	installation	of	the	operating	system
and	Microsoft	Cluster	Service	(MSCS).	For	more	information,	see	the
Microsoft	Windows	NT®	4.0,	Enterprise	Edition,	Windows®	2000

Advanced	Server,	or	Windows	2000	Datacenter	Server	documentation.

You	do	not	want	a	failure	of	a	service,	such	as	full-text	search	or	SQL
Server	Agent,	to	cause	a	failover.

To	prevent	the	failure	of	specific	services	from	causing	the	SQL	Server
group	to	fail	over,	configure	those	services	using	Cluster	Administrator
in	Windows	NT	4.0	or	Windows	2000.	For	example,	to	prevent	the
failure	of	the	Full-Text	Search	service	from	causing	a	failover	of	SQL
Server,	clear	the	Affect	the	Group	check	box	on	the	Advanced	tab	of
the	Full	Text	Properties	dialog	box.	However,	if	SQL	Server	causes	a
failover,	the	full-text	search	service	will	restart.

SQL	Server	will	not	start	automatically.

You	cannot	start	a	failover	cluster	automatically	using	SQL	Server.	You
must	use	Cluster	Administrator	in	MSCS	to	automatically	start	a
failover	cluster.

The	error	message	"No	compatible	resource	groups	found"	is	displayed
during	SQL	Server	Setup.

This	error	is	caused	by	the	Microsoft	Distributed	Transaction
Coordinator	(MS	DTC)	setup	on	Windows	NT	4.0,	Enterprise	Edition.
MS	DTC	requires	a	group	containing	a	network	name,	IP	address,	and
shared	cluster	disk	to	be	owned	by	the	local	node	when	the	Setup
program	is	run.	If	this	error	is	displayed,	open	Cluster	Administrator
and	make	certain	there	is	a	group	that	meets	these	requirements	owned
by	the	local	node.	The	easiest	way	to	do	this	is	to	move	a	disk	into	the
cluster	group	that	already	contains	a	network	name	and	IP	address.
After	you	have	this	group	on	the	local	node,	click	Retry.

The	error	message	"All	cluster	disks	available	to	this	virtual	server	are
owned	by	other	node(s)"	is	displayed	during	Setup.

This	message	is	displayed	when	you	select	the	drive	and	path	for
installing	data	files,	and	the	drive	you	selected	is	not	owned	by	the	local
node.	Move	the	disk	to	the	local	node	using	Cluster	Administrator.

The	error	message	"Unable	to	delete	SQL	Server	resources.	They	must
be	manually	removed.	Uninstallation	will	continue."	is	displayed	during

SQL	Server	Setup.

This	message	is	displayed	if	SQL	Server	Setup	cannot	delete	all	of	the
SQL	Server	resources.	You	must	go	into	Control	Panel	and	uninstall	the
instance	you	were	trying	to	remove	on	every	node.

You	cannot	enable	the	clustering	operating	system	error	log.

The	operating	system	cluster	error	log	is	used	by	MSCS	to	record
information	about	the	cluster.	Use	this	error	log	to	debug	cluster
configuration	issues.	To	enable	the	cluster	error	log,	set	the	system
environment	variable	CLUSTERLOG=<path	to	file>	(for	example,
CLUSTERLOG=c:\winnt\cluster\cluster.log).	This	error	log	is	on	by
default	in	Windows	2000.

If	the	Network	Name	is	offline	and	you	cannot	connect	using	TCP/IP,
you	must	use	Named	Pipes.

To	connect	using	Named	Pipes,	create	an	alias	using	the	Client	Network
Utility	to	connect	to	the	appropriate	computer.	For	example,	if	you	have
a	cluster	with	two	nodes	(Node	A	and	Node	B),	and	a	virtual	server
(Virtsql)	with	a	default	instance,	you	can	connect	to	the	server	that	has
the	Network	Name	resource	offline	by	doing	the	following:

1.	 Determine	on	which	node	the	group	containing	the	instance	of
SQL	Server	is	running	by	using	the	Cluster	Administrator.	For
this	example,	it	will	be	Node	A.

2.	 Start	the	SQL	Server	service	on	that	computer	using	net	start.
For	more	information	about	using	net	start,	see	Starting	SQL
Server	Manually.

3.	 Start	the	SQL	Server	Network	Utility	on	Node	A.	View	the
pipe	name	on	which	the	server	is	listening.	It	should	be
similar	to	\\.\$$\VIRTSQL\pipe\sql\query.

4.	 On	the	client	computer,	start	the	Client	Network	Utility.

5.	 Create	an	alias	SQLTEST1	to	connect	via	Named	Pipes	to	this
pipe	name.	To	do	this,	put	Node	A	as	the	server	name	and	edit
the	pipe	to	be	\\.\pipe\$$\VIRTSQL\sql\query.	Connect	to	this
instance	using	the	alias	SQLTEST1	as	the	server	name.

For	more	information,	see	Client	Net-Libraries	and	Network	Protocols.

Optimizing	Failover	Clustering	Performance

To	optimize	performance	when	using	failover	clustering,	consider	the	following:

If	your	disk	controller	is	not	external	to	your	clustered	computer,	you
must	turn	off	write-caching	within	the	controller	to	prevent	data	loss
during	a	failover.	

Write-back	caching	cannot	be	used	on	host	controllers	in	a	cluster
without	hindering	performance.	However,	if	you	use	external
controllers,	you	continue	to	provide	performance	benefits.	External	disk
arrays	are	not	affected	by	failover	clustering	and	can	sync	the	cache
correctly,	even	across	a	SCSI	bus.

It	is	recommended	that	you	do	not	use	the	cluster	drive	for	file	shares.
Using	these	drives	impacts	recovery	times	and	can	cause	a	failover	of
the	cluster	group	due	to	resource	failures.

Using	Extended	Stored	Procedures	and	COM	Objects

When	you	use	extended	stored	procedures	with	a	failover	clustering
configuration,	all	extended	stored	procedures	need	to	be	installed	on	the	shared
cluster	disk.	This	is	to	ensure	that	when	a	node	fails	over,	the	extended	stored
procedures	can	still	be	used.

If	the	extended	stored	procedures	use	COM	components,	the	administrator	needs
to	register	the	COM	components	on	each	node	of	the	cluster.	The	information	for
loading	and	executing	COM	components	must	be	in	the	registry	of	the	active
node	in	order	for	the	components	to	be	created.	Otherwise,	the	information	will
remain	in	the	registry	of	the	computer	on	which	the	COM	components	were	first

registered.	For	more	information,	see	Extended	Stored	Procedure	Architecture.

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Importing	and	Exporting	Data
Importing	data	is	the	process	of	retrieving	data	from	sources	external	to
Microsoft®	SQL	Server™	(for	example,	an	ASCII	text	file)	and	inserting	it	into
SQL	Server	tables.	Exporting	data	is	the	process	of	extracting	data	from	an
instance	of	SQL	Server	into	some	user-specified	format	(for	example,	copying
the	contents	of	a	SQL	Server	table	to	a	Microsoft	Access	database).

Importing	data	from	an	external	data	source	into	an	instance	of	SQL	Server	is
likely	to	be	the	first	step	you	perform	after	setting	up	your	database.	After	data
has	been	imported	into	your	SQL	Server	database,	you	can	start	to	work	with	the
database.

Importing	data	into	an	instance	of	SQL	Server	can	be	a	one-time	occurrence	(for
example,	migrating	data	from	another	database	system	to	an	instance	of	SQL
Server).	After	the	initial	migration	is	complete,	the	SQL	Server	database	is	used
directly	for	all	data-related	tasks,	rather	than	the	original	system.	No	further	data
imports	are	required.

Importing	data	can	also	be	an	ongoing	task.	For	example,	a	new	SQL	Server
database	is	created	for	executive	reporting	purposes,	but	the	data	resides	in
legacy	systems	updated	from	a	large	number	of	business	applications.	In	this
case,	you	can	copy	new	or	updated	data	from	the	legacy	system	to	an	instance	of
SQL	Server	on	a	daily	or	weekly	basis.

Usually,	exporting	data	is	a	less	frequent	occurrence.	SQL	Server	provides	tools
and	features	that	allow	applications,	such	as	Access	or	Microsoft	Excel,	to
connect	and	manipulate	data	directly,	rather	than	having	to	copy	all	the	data	from
an	instance	of	SQL	Server	to	the	tool	before	manipulating	it.	However,	data	may
need	to	be	exported	from	an	instance	of	SQL	Server	regularly.	In	this	case,	the
data	can	be	exported	to	a	text	file	and	then	read	by	the	application.	Alternatively,
you	can	copy	data	on	an	ad	hoc	basis.	For	example,	you	can	extract	data	from	an
instance	of	SQL	Server	into	an	Excel	spreadsheet	running	on	a	portable
computer	and	take	the	computer	on	a	business	trip.

SQL	Server	provides	tools	for	importing	and	exporting	data	to	and	from	data
sources,	including	text	files,	ODBC	data	sources	(such	as	Oracle	databases),
OLE	DB	data	sources	(such	as	other	instances	of	SQL	Server),	ASCII	text	files,

and	Excel	spreadsheets.

Additionally,	SQL	Server	replication	allows	data	to	be	distributed	across	an
enterprise,	copying	data	between	locations	and	synchronizing	changes
automatically	between	different	copies	of	data.

Administering	SQL	Server

Choosing	a	Tool	to	Import	or	Export	Data
Data	can	be	imported	to	and	exported	from	instances	of	Microsoft®	SQL
Server™	using	several	SQL	Server	tools	and	Transact-SQL	statements.	You	can
also	write	your	own	programs	to	import	and	export	data	using	the	programming
models	and	application	programming	interfaces	(APIs)	available	with	SQL
Server.

You	can	copy	data	to	and	from	instances	of	SQL	Server	by:

Using	the	Data	Transformation	Services	(DTS)	Import/Export	Wizard
or	DTS	Designer	to	create	a	DTS	package	that	can	be	used	to	import,
export	and	transform	data.

For	more	information,	see	DTS	Tools.

Using	SQL	Server	replication	to	distribute	data	across	an	enterprise.

The	replication	technology	in	SQL	Server	allows	you	to	make	duplicate
copies	of	your	data,	move	those	copies	to	different	locations,	and
synchronize	the	data	automatically	so	that	all	copies	have	the	same	data
values.	Replication	can	be	implemented	between	databases	on	the	same
server	or	different	servers	connected	by	LANs,	WANs,	or	the	Internet.

For	more	information,	see	Replication	Overview.

Using	the	bcp	command	prompt	utility	to	import	and	export	data
between	an	instance	of	SQL	Server	and	a	data	file.

Selecting	data	from	an	OLE	DB	provider	and	copying	it	from	external
data	sources	into	an	instance	of	SQL	Server.

Using	a	distributed	query	to	select	data	from	another	data	source	and
specify	the	data	to	be	inserted.

For	more	information,	see	Distributed	Queries.

Using	the	INSERT	statement	to	add	data	to	an	existing	table.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

For	more	information,	see	INSERT.

Using	the	BULK	INSERT	statement	to	import	data	from	a	data	file	to
an	instance	of	SQL	Server.

For	more	information,	see	BULK	INSERT.

Using	the	SELECT	INTO	statement	to	create	a	new	table	based	on	an
existing	table.

For	more	information,	see	SELECT.

The	method	chosen	to	import	or	export	data	depends	on	user	requirements,	for
example:

The	format	of	the	source	and	destination	data.

The	location	of	the	source	and	destination	data.

Whether	the	import	or	export	is	a	one-time	occurrence	or	an	ongoing
task.

Whether	a	command	prompt	utility,	Transact-SQL	statement,	or
graphical	interface	is	preferred.

The	performance	of	the	import	or	export	operation.

This	table	describes	the	capabilities	of	various	import	and	export	options	in	SQL
Server.

Required
functionality

DTS
wizards Replication bcp

BULK
INSERT

SELECT
INTO/
INSERT

Import	text	data YES YES YES YES	1
Export	text	data YES YES
Import	from
ODBC	data

YES YES

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

sources
Export	to	ODBC
data	sources

YES YES

Import	from	OLE
DB	data	sources

YES YES YES	(1)

Export	to	OLE
DB	data	sources

YES YES YES

Graphical	user
interface	(GUI)

YES YES

Command
prompt/batch
scripts

YES YES YES

Transact-SQL
scripts

YES YES YES

Automatic
scheduling

YES YES YES	2 YES	2

Ad	hoc
import/export

YES YES YES YES

Recurring
import/export

YES YES YES

Maximum
performance

YES YES

Data
transformation

YES

Programmatic
interface

YES YES YES

1	Using	a	distributed	query	that	retrieves	data	from	an	external	source	by	using	an	OLE	DB	provider.
2	By	explicitly	creating	a	job	scheduled	using	SQL	Server	Agent.

See	Also

bcp	Utility

JavaScript:hhobj_7.Click()

Administering	SQL	Server

Preparing	Data	for	Importing	and	Exporting
In	order	for	the	bcp	and	BULK	INSERT	utilities	to	insert	data,	the	data	file	must
be	in	row	and	column	format.	Microsoft®	SQL	Server™	can	accept	data	in	any
ASCII	or	binary	format	as	long	as	the	terminators	(characters	used	to	separate
columns	and	rows)	can	be	described.	The	structure	of	the	data	file	does	not	need
to	be	identical	to	the	structure	of	the	SQL	Server	table	because	bcp	and	BULK
INSERT	allow	columns	to	be	skipped	or	reordered	during	the	bulk	copy	process.

Data	that	is	bulk	copied	into	an	instance	of	SQL	Server	is	appended	to	any
existing	contents	in	a	table.	Data	that	is	bulk	copied	from	an	instance	of	SQL
Server	to	a	data	file	overwrites	the	previous	contents	of	the	data	file.

To	bulk	copy	data:

If	importing	data,	the	destination	table	must	already	exist.	If	exporting
to	a	file,	bcp	will	create	the	file.

The	number	of	fields	in	the	data	file	does	not	have	to	match	the	number
of	columns	in	the	table	or	be	in	the	same	order.

The	data	in	the	data	file	must	be	character	format	or	a	format	generated
previously	by	the	bcp	utility,	such	as	native	format.

Each	column	in	the	table	must	be	compatible	with	the	field	in	the	data
file	being	copied.	For	example,	it	is	not	possible	to	copy	an	int	field	to	a
datetime	column	using	native	format	bcp.

Relevant	permissions	to	bulk	copy	data	are	required	on	source	and
destination	files	and	tables.

To	bulk	copy	data	from	a	data	file	into	a	table,	you	must	have	INSERT
and	SELECT	permissions	on	the	table.	To	bulk	copy	a	table	or	view	to	a
data	file,	you	must	have	SELECT	permission	on	the	table	or	view	being
bulkcopied.

Before	using	bulk	copy	operations,	consider	the	following:

It	is	possible	to	specify	the	number	of	rows	to	load	from	the	data	file
rather	than	loading	the	entire	file.	For	example,	to	load	only	the	first

150	rows	from	a	10,000	row	data	file,	specify	the	-L	last_row	switch
when	loading	the	data.	This	can	be	useful	for	testing	a	batch	load
process.

When	using	the	-F	first_row	switch	to	specify	the	first	row	in	the	table
or	view	to	bulk	copy,	all	rows	in	the	table	or	view	are	first	returned	to
the	client,	and	then	the	bcp	utility	determines	which	rows	to	skip	and
write	to	the	data	file.	Therefore,	specifying	-F	first_row	does	not	limit
the	amount	of	data	returned	to	the	client	and	does	not	necessarily	cause
the	bulk	copy	operation	to	execute	any	faster.

Because	SQL	Server	can	use	parallel	scans	to	retrieve	data,	the	data
bulk	copied	from	an	instance	of	SQL	Server	is	not	guaranteed	to	be	in
any	specific	order	unless	you	bulk	copy	from	a	query	and	specify	an
ORDER	BY	clause.

To	copy	data	from	earlier	versions	of	SQL	Server	using	native	format
data	files,	use	the	same	version	of	bcp	for	importing,	exporting,	and
formatting	files.

Importing	and	Exporting	Data	Example

To	bulk	copy	data	from	the	publishers	table	in	the	pubs	database	to	the
Publishers.txt	data	file	in	ASCII	text	format,	from	the	command	prompt,
execute:

bcp	pubs..publishers	out	publishers.txt	-c	-Sservername	-Usa	-Ppassword

The	contents	of	the	Publishers.txt	file:

0736 New	Moon	Books Boston MA USA
0877 Binnet	&	Hardley Washington DC USA
1389 Algodata	Infosystems Berkeley CA USA
1622 Five	Lakes	Publishing Chicago IL USA
1756 Ramona	Publishers Dallas TX USA

9901 GGG&G München -- Germany
9952 Scootney	Books New	York NY USA
9999 Lucerne	Publishing Paris -- France

Conversely,	to	bulk	copy	data	from	the	Publishers.txt	file	into	the	publishers2
table	in	the	pubs	database,	from	the	command	prompt,	execute:

bcp	pubs..publishers2	in	publishers.txt	-c	-Sservername	-Usa	-Ppassword

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool,	such
as	SQL	Query	Analyzer,	to	bulk	copy	data:

BULK	INSERT	pubs..publishers2	FROM	'c:\publishers.txt'	
WITH	(DATAFILETYPE	=	'char')

Note		The	publishers2	table	must	be	created	first.

See	Also

bcp	Utility

BULK	INSERT.

Character	Format

ExportData	Method

ImportData	Method

Managing	Security	Accounts

Native	Format

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Administering	SQL	Server

Using	bcp	and	BULK	INSERT
The	bcp	command	prompt	utility	copies	Microsoft®	SQL	Server™	data	to	or
from	a	data	file.	It	is	used	most	frequently	to	transfer	large	volumes	of	data	into	a
SQL	Server	table	from	another	program,	usually	another	database	management
system	(DBMS).	The	data	is	first	exported	from	the	source	program	to	a	data
file,	and	then	imported	from	the	data	file	into	a	SQL	Server	table	using	bcp.
Alternatively,	bcp	can	be	used	to	transfer	data	from	a	SQL	Server	table	to	a	data
file	for	use	in	other	programs.	For	example,	the	data	can	be	copied	from	an
instance	of	SQL	Server	into	a	data	file.	From	there,	another	program	can	import
the	data.

Note		The	bcp	utility	is	written	using	the	ODBC	bulk	copy	application
programming	interface	(API).	Earlier	versions	of	the	bcp	utility	were	written
using	the	DB-Library	bulk	copy	API.

Data	can	also	be	transferred	into	a	SQL	Server	table	from	a	data	file	using	the
BULK	INSERT	statement.	However,	the	BULK	INSERT	statement	cannot	bulk
copy	data	from	an	instance	of	SQL	Server	to	a	data	file.	The	BULK	INSERT
statement	allows	you	to	bulk	copy	data	to	an	instance	of	SQL	Server	using	the
functionality	of	the	bcp	utility	with	a	Transact-SQL	statement,	rather	than	from
the	command	prompt.

It	is	also	possible	to	write	programs	to	bulk	copy	SQL	Server	data	to	or	from	a
data	file	using	the	bulk	copy	API.	The	bulk	copy	API	can	be	used	in	ODBC,
OLE	DB,	SQL-DMO,	and	DB-Library-based	applications.

Trigger	Execution
All	bulk	copy	operations	(the	BULK	INSERT	statement,	bcp	utility,	and	the
bulk	copy	API)	support	a	bulk	copy	hint,	FIRE_TRIGGERS.	If
FIRE_TRIGGERS	is	specified	on	a	bulk	copy	operation	that	is	copying	rows
into	a	table,	INSERT	and	INSTEAD	OF	triggers	defined	on	the	destination	table
are	executed	for	all	rows	inserted	by	the	bulk	copy	operation.	By	default,	bulk
copy	operations	do	not	execute	triggers.

These	considerations	apply	to	bulk	copy	operations	that	specify
FIRE_TRIGGERS:

Bulk	copy	operations	that	would	usually	be	minimally	logged	are	fully
logged.

Triggers	are	fired	once	for	each	batch	in	the	bulk	copy	operation.	The
inserted	table	passed	to	the	trigger	contains	all	of	the	rows	inserted	by
the	batch.	Specify	FIRE_TRIGGERS	only	when	bulk	copying	into	a
table	with	INSERT	and	INSTEAD	OF	triggers	that	support	multiple
row	inserts.

No	result	sets	generated	by	the	insert	triggers	are	returned	to	the	client
performing	the	bulk	copy	operation.

See	Also

SQL	Server	Backward	Compatibility	Details

Bulk-Copy	Functions

Bulk-Copy	Rowsets

BulkCopy	Object

BULK	INSERT.

Performing	Bulk	Copy	Operations

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Administering	SQL	Server

Using	Native,	Character,	and	Unicode	Formats
The	bcp	utility	can	create	or	read	data	files	in	the	following	default	data	formats
by	specifying	a	switch	at	the	command	prompt.

Data	format bcp	utility	switch BULK	INSERT	clause
Native -n DATAFILETYPE	=

'native'
Character -c DATAFILETYPE	=	'char'
Unicode	character -w DATAFILETYPE	=

'widechar'
Unicode	native -N DATAFILETYPE	=

'widenative'

By	default,	the	bcp	utility	operates	in	interactive	mode	and	queries	Microsoft®
SQL	Server™	and	the	user	for	information	required	to	specify	the	data	format.
However,	when	using	the	-n,	-c,	-w,	or	-N	switches,	bcp	does	not	query	for
information	about	the	SQL	Server	table	on	a	column-by-column	basis.	It	reads	or
writes	the	data	using	the	default	format	specified.

By	default,	the	BULK	INSERT	statement	operates	in	character	mode	(char).
Interactive	mode	does	not	apply.

Additionally,	the	–V	switch	causes	the	bcp	utility	to	modify	native	(-n)	or
character	(-c)	data	to	a	format	compatible	with	earlier	versions	of	SQL	Server
clients.	For	more	information,	see	Copying	Native	and	Character	Format	Data
from	Earlier	Versions	of	SQL	Server.

Native	mode	bulk	copies	are	best	for	sql_variant	columns.	Unlike	character	or
Unicode	bulk	copies,	native	mode	bulk	copies	preserve	the	meta	data	for	each
sql_variant	value.

The	recommended	default	data	format	depends	on	the	type	of	bulk	copy
operation.

Bulk	copy	operation Native Character
Unicode
character

Unicode
native

Bulk	copying	data	between -- -- --

multiple	instances	of	SQL	Server
using	a	data	file	(no
extended/double-byte	character
set	(DBCS)	characters	involved).

YES	1

Bulk	copying	data	between
multiple	instances	of	SQL	Server
using	a	data	file	(extended/DBCS
characters	involved).

-- -- -- YES

Exporting	data	to	a	text	file	to	be
used	in	another	program.

-- YES -- --

Importing	data	from	a	text	file
generated	by	another	program.

-- YES -- --

Bulk	copying	data	between
multiple	instances	of	SQL	Server
using	a	data	file	(Unicode	data/no
extended/DBCS	characters).

-- -- YES --

1	Fastest	method	for	bulk	copying	data	from	SQL	Server	using	bcp.

See	Also

Specifying	Data	Formats

Administering	SQL	Server

Native	Format
The	-n	switch	(or	native	value	for	the	DATAFILETYPE	clause	of	the	BULK
INSERT	statement)	uses	native	(database)	data	types.	Storing	information	in
native	format	is	useful	when	information	must	be	copied	from	one	instance	of
Microsoft®	SQL	Server™	to	another.	Using	native	format	saves	time	and	space,
preventing	unnecessary	conversion	of	data	types	to	and	from	character	format.
However,	a	data	file	in	native	format	cannot	be	read	by	any	program	other	than
bcp.

For	example,	the	command	to	bulk	copy	the	publishers	table	in	the	pubs
database	to	the	Publ.txt	data	file	using	native	data	format	is:

bcp	pubs..publishers	out	publ.txt	-n	-Sservername	-Usa	-Ppassword

sql_variant	data	stored	as	a	SQLVARIANT	in	a	native	mode	data	file	maintains
all	of	its	characteristics.	The	meta	data	recording	the	data	type	of	each	data	value
is	stored	along	with	the	data	value	and	is	used	to	re-create	the	data	value	with	the
same	data	type	in	a	destination	sql_variant	column.	If	the	data	type	of	the
destination	column	is	not	sql_variant,	each	data	value	is	converted	to	the	data
type	of	the	destination	column,	following	the	normal	rules	of	implicit	data
conversion.	If	a	data	conversion	error	occurs,	the	current	batch	is	rolled	back.
char	and	varchar	values	transferred	between	sql_variant	columns	may	have
code	page	conversion	issues.	For	more	information,	see	Copying	Data	Between
Different	Collations.

The	bcp	utility	adds	an	ASCII	character	to	the	beginning	of	each	char	or
varchar	field	equivalent	to	the	length	of	the	data	in	those	fields.	Noncharacter
data	in	the	table	is	written	to	the	data	file	in	the	SQL	Server	internal	binary	data
format.

IMPORTANT		Using	native	mode,	bcp,	by	default,	always	converts	characters	from
the	data	file	to	ANSI	characters	before	bulk	copying	them	into	SQL	Server	and
converts	characters	from	SQL	Server	to	OEM	characters	before	copying	them	to
the	data	file.	Extended	character	data	can	be	lost	during	the	OEM	to	ANSI	or
ANSI	to	OEM	conversions.	To	prevent	loss	of	extended	characters,	use	Unicode

native	format,	or	specify	a	code	page	for	the	bulk	copy	operation	using	-C	(or
the	CODEPAGE	clause	for	the	BULK	INSERT	statement).

Nonidentical	and	Improperly	Defined	Tables
Using	native	format	to	bulk	copy	data	into	an	improperly	defined	table	can	cause
the	table	to	be	loaded	incorrectly.	The	incorrect	loading	may	appear	as	an
unusual	formatting	of	data	in	the	target	table.	This	also	applies	to	client	tools	that
use	the	bcp	API	in	native	mode.

Native	format	is	intended	for	high-speed	data	transfer	between	identically
defined	SQL	Server	tables.	To	achieve	the	optimum	transfer	rate,	few	checks	are
performed	regarding	data	formatting.	If	the	table	is	not	defined	correctly,	use
character	format.

Correct	table	definition	includes	the	correct	number	of	columns,	data	type,
length,	and	NULL	status.

Loading	ASCII	Files
Often,	users	attempt	to	load	an	ASCII	file	in	the	SQL	Server	native	format.	This
leads	to	misinterpretation	of	the	hexadecimal	values	in	the	ASCII	file	and
sometimes	the	"unexpected	end	of	file"	error	message.	The	correct	method	of
loading	the	ASCII	file	is	to	represent	each	field	in	the	data	file	as	a	character
string	(character	format	bcp)	and	let	SQL	Server	do	the	data	conversion	to
internal	data	types	(for	example,	int,	float,	or	datetime)	as	rows	are	inserted	into
the	table.

See	Also

BULK	INSERT.

ServerBCPDataFileType	Property

Unicode	Native	Format

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Character	Format
The	-c	switch	(or	char	value	for	the	DATAFILETYPE	clause	of	the	BULK
INSERT	statement)	uses	the	character	(char)	data	format	for	all	columns,
providing	tabs	between	fields	and	a	newline	character	at	the	end	of	each	row	as
default	terminators.	Storing	information	in	character	format	is	useful	when	the
data	is	used	with	another	program,	such	as	a	spreadsheet,	or	when	the	data	needs
to	be	copied	into	an	instance	of	Microsoft®	SQL	Server™	from	another
database.	Character	format	tends	to	be	used	when	copying	data	from	other
programs	that	have	the	functionality	to	export	and	import	data	in	plain	text
format.

For	example,	the	command	to	bulk	copy	the	publishers	table	in	the	pubs
database	to	the	Publ.txt	data	file	using	character	format	is:

bcp	pubs..publishers	out	publ.txt	-c	-Sservername	-Usa	-Ppassword

The	following	table	shows	the	contents	of	the	Publ.txt	file.

0736 New	Moon	Books Boston MA USA
0877 Binnet	&	Hardley Washington DC USA
1389 Algodata	Infosystems Berkeley CA USA
1622 Five	Lakes	Publishing Chicago IL USA
1756 Ramona	Publishers Dallas TX USA
9901 GGG&G München 	 Germany
9952 Scootney	Books New	York NY USA
9999 Lucerne	Publishing Paris 	 France

To	use	field	and	row	terminators	other	than	the	default	provided	with	character
format,	specify	the	following.

Terminator bcp	utility	switch BULK	INSERT	clause
Field -t FIELDTERMINATOR
Row -r ROWTERMINATOR

For	example,	the	command	to	bulk	copy	the	publishers	table	in	the	pubs
database	to	the	Publ.txt	data	file	using	character	format,	with	a	comma	as	a	field
terminator	and	the	newline	character	(\n)	as	the	row	terminator,	is:

bcp	pubs..publishers	out	publ.txt	-c	-t	,	-r	\n	-Sservername	-Usa	-Ppassword

Here	are	the	contents	of	the	Publ.txt	file:

0736,New	Moon	Books,Boston,MA,USA
0877,Binnet	&	Hardley,Washington,DC,USA
1389,Algodata	Infosystems,Berkeley,CA,USA
1622,Five	Lakes	Publishing,Chicago,IL,USA
1756,Ramona	Publishers,Dallas,TX,USA
9901,GGG&G,München,Germany
9952,Scootney	Books,New	York,NY,USA
9999,Lucerne	Publishing,Paris,France

IMPORTANT		Using	character	mode,	bcp,	by	default,	always	converts	characters
from	the	data	file	to	ANSI	characters	before	bulk	copying	them	into	an	instance
of	SQL	Server,	and	converts	characters	from	SQL	Server	to	OEM	characters
before	copying	them	to	the	data	file.	Extended	character	data	can	be	lost	during
the	OEM	to	ANSI	or	ANSI	to	OEM	conversions.	To	prevent	loss	of	extended
characters,	use	Unicode	character	format,	or	specify	a	code	page	for	the	bulk
copy	operation	using	-C	(or	the	CODEPAGE	clause	for	the	BULK	INSERT
statement).

sql_variant	data	stored	in	a	character	mode	file	is	stored	without	any	meta	data.
Each	data	value	is	converted	to	char	following	the	rules	of	implicit	data
conversion.	When	it	is	bulk	copied	into	a	sql_variant	destination	column,	the
data	is	imported	as	char.	When	it	is	bulk	copied	into	a	destination	column	with	a
data	type	other	than	sql_variant,	the	values	are	converted	from	char	following
the	rules	of	implicit	conversion.

Note		The	bcp	utility	exports	money	values	in	character	format	data	files
without	digit	grouping	symbols	such	as	comma	separators,	but	with	four	digits
after	the	decimal	point.	For	example,	a	money	column	containing	the	value

1,234,567.123456	is	bulk	copied	to	a	data	file	as	the	character	string
1234567.1235.

See	Also

Copying	Data	Between	Different	Collations

ServerBCPDataFileType	Property

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Copying	Native	and	Character	Format	Data	from
Earlier	Versions	of	SQL	Server
To	copy	native	and	character	format	data	from	Microsoft®	SQL	Server™	7.0	or
earlier,	use	the	–V	switch.	When	this	switch	is	specified,	SQL	Server	2000	uses
data	types	from	earlier	versions	of	SQL	Server.	Use	the	–V	switch	to	specify
whether	the	bcp	data	file	is	at	the	level	of	SQL	Server	version	6.0	(-V	60),	SQL
Server	version	6.5	(-V	65),	or	SQL	Server	version	7.0	(-V	70).

The	–V	switch	extends	the	functionality	of	the	–6	switch	used	in	SQL	Server	7.0.
Using	–6	is	the	same	as	using	–V	60	or	–V	65.	Although	SQL	Server	2000	still
supports	the	–6	switch,	the	use	of	–V	is	recommended.

Note		The	-V	switch	does	not	apply	to	the	BULK	INSERT	statement.

If	you	bulk	copy	data	from	SQL	Server	7.0	or	earlier	into	a	data	file,	consider	the
following:

bcp	does	not	generate	SQL	Server	6.0	or	SQL	Server	6.5	date	formats
for	any	datetime	or	smalldatetime	data.	Dates	are	always	written	in
ODBC	format.

Null	values	in	bit	columns	are	written	as	the	value	0	because	SQL
Server	6.5	and	earlier	versions	do	not	support	nullable	bit	data.

In	SQL	Server	6.5	or	earlier,	bcp	represented	null	values	as	a	length
value	of	0,	whereas	null	is	now	stored	as	the	length	value	-1.	In	SQL
Server	7.0	and	SQL	Server	2000,	the	value	0	represents	a	zero-length
column.

bigint	data	copied	to	a	SQL	Server	7.0,	SQL	Server	6.5,	or	SQL	Server
6.0	native	mode	or	Unicode	native	mode	data	file	is	stored	as
decimal(19,0).	bigint	data	in	a	character	mode	or	Unicode	character
mode	data	file	is	stored	as	a	character	or	Unicode	string	of	[-]digits,	(for

example,	–25688904432).

In	a	table	with	char	or	varchar	fields,	the	bcp	utility	adds	an	ASCII
character	to	the	beginning	of	each	data	file	field	equivalent	to	the	length
of	the	data.	In	a	table	with	numeric	data,	the	information	is	written	to
the	data	file	in	the	SQL	Server	internal	binary	data	format.

Copying	Date	Values

In	SQL	Server	7.0	and	SQL	Server	2000,	bcp	uses	the	ODBC	bulk	copy	API.
Therefore,	bcp	uses	the	ODBC	date	format	(yyyy-mm-dd	hh:mm:ss[.f...])	to
import	date	values.	However,	in	SQL	Server	6.5	or	earlier,	bcp	uses	the	DB-
Library	bulk	copy	API	and	the	DB-Library	date	format.	Use	the	–V	65	switch	to
copy	date	formats	from	SQL	Server	6.5	or	earlier	to	SQL	Server	7.0	and	SQL
Server	2000.	If	you	specify	–V	65,	the	bcp	utility	first	attempts	to	convert	the
date	value	in	the	data	file	using	ODBC	date	format.	If	the	conversion	fails,	bcp
attempts	to	convert	the	date	value	using	DB-Library	formats.

Even	if	–V	65	is	specified,	however,	the	bcp	utility	always	exports	character
format	data	files	using	the	ODBC	default	format	for	datetime	and
smalldatetime	values.	For	example,	a	datetime	column	containing	the	date	12
Aug	1998	is	bulk	copied	to	a	data	file	as	the	character	string	1998-08-12
00:00:00.000.

IMPORTANT		When	importing	data	into	a	smalldatetime	field	using	bcp,	be	sure
the	value	for	seconds	is	00.000;	otherwise	the	bcp	operation	will	fail.	The
smalldatetime	data	type	only	holds	values	to	the	nearest	minute.	BULK
INSERT	will	not	fail	in	this	instance	but	will	truncate	the	seconds	value.

Using	the	–V	65	switch	can	affect	performance	because	of	the	overhead	required
to	support	multiple	date	conversions.

See	Also

Using	bcp	and	BULK	INSERT

SQL	Server	Backward	Compatibility	Details

CAST	and	CONVERT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Use6xCompatible	Property

JavaScript:hhobj_3.Click()

Administering	SQL	Server

Unicode	Character	Format
The	-w	switch	(or	widechar	value	for	the	DATAFILETYPE	clause	of	the	BULK
INSERT	statement)	uses	the	Unicode	character	data	format	for	all	columns,
providing,	as	default	terminators,	tabs	between	fields	and	a	newline	character	at
the	end	of	each	row.	This	allows	data	to	be	copied	both	from	a	server	using	a
code	page	different	from	the	code	page	used	by	the	client	running	bcp,	and	to
another	server	with	the	same	(or	a	different)	code	page	as	the	original	server:

Without	loss	of	any	character	data,	if	the	source	and	destination	are
Unicode	data	types.

With	minimal	loss	of	extended	characters	in	the	source	data	that	cannot
be	represented	at	the	destination	if	the	source	and	destination	are	not
Unicode	data	types.

For	example,	the	command	to	bulk	copy	the	publishers	table	in	the	pubs
database	to	the	Publ.txt	file	using	Unicode	character	format	is:

bcp	pubs..publishers	out	publ.txt	-w	-Sservername	-Usa	-Ppassword
Unicode	character	format	data	files	follow	the	conventions	for	Unicode	files:	the
first	two	bytes	of	the	file	are	either	of	the	hexadecimal	numbers	0xFEFF	or
0xFFFE.	These	bytes	serve	as	byte-order	marks,	specifying	whether	the	high-
order	byte	is	stored	first	or	last	in	the	file.

To	use	field	and	row	terminators	other	than	the	default	provided	with	Unicode
character	format,	specify	the	following.

Terminator bcp	utility	switch BULK	INSERT	clause
Field -t FIELDTERMINATOR
Row -r ROWTERMINATOR

For	example,	the	command	to	bulk	copy	the	publishers	table	to	the	Publ.txt	data
file	using	Unicode	character	format,	with	a	comma	as	a	field	terminator	and	the

newline	character	(\n)	as	the	row	terminator,	is:

bcp	pubs..publishers	out	publ.txt	-w	-t	,	-r	\n	-Sservername	-Usa	-Ppassword

Two	character	positions	are	used	for	each	character	in	the	Publ.txt	data	file,	with
each	field	separated	by	a	comma,	and	each	row	separated	by	a	newline	character.

sql_variant	data	stored	in	a	Unicode	character	mode	data	file	operates	the	same
way	it	does	in	a	character	mode	data	file,	except	that	the	data	is	stored	as	nchar
instead	of	char	data.

See	Also

ServerBCPDataFileType	Property

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Unicode	Native	Format
The	-N	switch	(or	widenative	value	for	the	DATAFILETYPE	clause	of	the
BULK	INSERT	statement)	uses	native	(database)	data	types	for	all	noncharacter
data,	and	Unicode	character	data	format	for	all	character	(char,	nchar,	varchar,
nvarchar,	text,	and	ntext)	data.

Storing	information	in	Unicode	native	format	is	useful	when	information	must
be	copied	from	one	Microsoft®	SQL	Server™	installation	to	another.	Using
native	format	for	noncharacter	data	saves	time,	preventing	unnecessary
conversion	of	data	types	to	and	from	character	format.	Using	Unicode	character
format	for	all	character	data	prevents	loss	of	any	extended	characters	when	bulk
loading	data	between	servers	using	different	code	pages.	However,	a	data	file	in
Unicode	native	format	can	be	read	only	by	the	bcp	utility	and	the	BULK
INSERT	statement.

For	example,	the	command	to	bulk	copy	the	sales	table	in	the	pubs	database	to
the	Sales.dat	data	file	using	Unicode	native	data	format	is:

bcp	pubs..sales	out	Sales.dat	-N	-Sservername	-Usa	-Ppassword

sql_variant	data	stored	as	a	SQLVARIANT	in	a	Unicode	native	mode	data	file
operates	the	same	as	it	does	in	a	native	mode	data	file,	except	that	char	and
varchar	values	are	converted	to	nchar	and	nvarchar.	The	original	meta	data	is
preserved,	and	the	values	are	converted	back	to	their	original	char	and	varchar
data	type	when	bulk	copied	into	the	destination	column.

See	Also

ServerBCPDataFileType	Property

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Specifying	Data	Formats
If	data	is	being	copied	between	an	instance	of	Microsoft®	SQL	Server™	and
other	programs,	such	as	another	database	program,	the	default	data	type	formats
(native,	character,	or	Unicode)	may	not	be	compatible	with	the	data	structures
expected	by	the	other	programs.	Therefore,	the	bcp	utility	allows	more	detailed
information	regarding	the	structure	of	the	data	file	to	be	specified.

If	the	-n,	-c,	-w,	or	-N	switches	are	not	specified,	the	bcp	utility	prompts	for
further	information	interactively	on	each	column	of	data	being	copied:

File	storage	type

Prefix	length

Field	length

Field	terminator

Note		Interactive	mode	is	not	available	when	using	the	BULK	INSERT
statement.

The	bcp	utility	provides	default	values	at	each	of	these	prompts	based	on	the
SQL	Server	data	type	of	the	source	or	destination	column.	Accepting	the	default
values	supplied	by	bcp	at	these	prompts	produces	the	same	result	as	native
format	(-n),	and	provides	a	way	to	bulk	copy	data	out	of	other	programs	for	later
reloading	into	SQL	Server.

A	format	file	can	be	created	to	store	the	responses	of	the	prompts	for	each	field
in	the	data	file,	allowing	the	same	responses	to	be	reused	without	having	to	enter
them	again.	The	format	file	can	be	used	to	provide	all	the	format	information
required	to	bulk	copy	data	to	and	from	an	instance	of	SQL	Server.	A	format	file
provides	a	flexible	system	for	writing	data	files	that	requires	little	or	no	editing
to	conform	to	other	data	formats,	or	for	reading	data	files	from	other	software.

For	example,	the	command	to	bulk	copy	the	publishers	table	interactively	to	the

Publ.txt	file	is:

bcp	pubs..publishers	out	publ.txt	-Sservername	-Usa	-Ppassword

A	series	of	prompts	appears	for	each	column	of	the	publishers	table,	with	the
bcp-supplied	default	displayed	in	brackets.	This	example	is	for	the	pub_id
column	in	the	publishers	table	only.

Enter	the	file	storage	type	of	field	pub_id	[char]:
Enter	prefix	length	of	field	pub_id	[0]:
Enter	length	of	field	pub_id	[4]:
Enter	field	terminator	[none]:

Pressing	ENTER	accepts	the	supplied	default.	To	specify	a	value	other	than	the
default,	enter	the	new	value	at	the	command	prompt.

See	Also

Using	Format	Files

Administering	SQL	Server

File	Storage	Type
The	file	storage	type	describes	how	data	is	stored	in	the	data	file.	Data	can	be
copied	to	a	data	file	as	its	database	table	type	(native	format),	as	a	character
string	in	ASCII	format	(character	format),	or	as	any	data	type	where	implicit
conversion	is	supported	(for	example,	copying	a	smallint	as	an	int).	User-
defined	data	types	are	copied	as	their	base	types.

To	bulk	copy	data	from	an	instance	of	Microsoft®	SQL	Server™	to	a	data	file	in
the	most	compact	storage	possible	(native	data	format),	accept	the	default	file
storage	types	provided	by	bcp.

To	bulk	copy	data	from	an	instance	of	SQL	Server	to	a	data	file	as	ASCII	text,
specify	char	as	the	file	storage	type	for	all	columns	in	the	table.

To	bulk	copy	data	to	an	instance	of	SQL	Server	from	a	data	file,	specify	the	file
storage	type	as	char	for	ASCII-only	files,	and	the	following	appropriate	file
storage	type	for	data	stored	in	native	data	type	format.

File	storage	type Enter	at	command	prompt
char c[har]
varchar c[har]
nchar w
nvarchar w
text T[ext]
ntext W
binary x
varbinary x
image I[mage]
datetime d[ate]
smalldatetime D
decimal n
numeric n
float f[loat]

real r
Int i[nt]
bigint B[igint]
smallint s[mallint]
tinyint t[inyint]
money m[oney]
smallmoney M
Bit b[it]
uniqueidentifier u
sql_variant V[ariant]
timestamp x

Entering	a	file	storage	type	that	represents	an	invalid	implicit	conversion	causes
bcp	to	fail.	For	example,	specifying	smallint	for	int	data	causes	overflow	errors,
but	specifying	int	for	smallint	data	is	valid.	Specifying	char	as	the	file	storage
type	when	bulk	copying	any	data	type	from	an	instance	of	SQL	Server	to	a	data
file	is	always	valid.

When	noncharacter	data	types	(for	example,	float,	money,	datetime,	or	int)	are
stored	as	their	database	types,	the	data	is	written	to	the	data	file	in	the	SQL
Server	internal	binary	data	format.

A	format	file	can	also	be	generated	to	save	the	responses	of	the	file	storage	type
for	each	field.	This	format	file	can	be	used	to	provide	the	default	information
used	to	bulk	copy	the	data	in	the	data	file	back	into	an	instance	of	SQL	Server,	or
to	bulk	copy	data	out	from	the	table	another	time,	without	needing	to	respecify
the	format.

Each	native	file	storage	type	is	recorded	in	the	format	file	as	a	corresponding
host	file	data	type.

File	storage	type Host	file	data	type
char SQLCHAR
varchar SQLCHAR
nchar SQLNCHAR
nvarchar SQLNCHAR
text SQLCHAR

ntext SQLNCHAR
binary SQLBINARY
varbinary SQLBINARY
image SQLBINARY
datetime SQLDATETIME
smalldatetime SQLDATETIM4
decimal SQLDECIMAL
numeric SQLNUMERIC
float SQLFLT8
real SQLFLT4
int SQLINT
bigint SQLBIGINT
smallint SQLSMALLINT
tinyint SQLTINYINT
money SQLMONEY
smallmoney SQLMONEY4
bit SQLBIT
uniqueidentifier SQLUNIQUEID
sql_variant SQLVARIANT
timestamp SQLBINARY

Because	data	files	stored	as	ASCII	text	use	char	as	the	file	storage	type,	only
SQLCHAR	appears	in	the	format	file	in	those	instances.

See	Also

Using	Format	Files

Administering	SQL	Server

Prefix	Length
To	provide	the	most	compact	file	storage	when	bulk	copying	data	in	native
format	to	a	data	file,	bcp	precedes	each	field	with	one	or	more	characters	that
indicates	the	length	of	the	field.	These	characters	are	called	length	prefix
characters.	The	number	of	length	prefix	characters	required	is	called	the	prefix
length.

The	number	of	length	prefix	characters	required	to	store	the	length	of	the	data
field	depends	on	the	file	storage	type,	the	nullability	of	a	column,	and	whether
the	data	is	being	stored	in	the	data	file	in	its	native	(database)	data	type	or	as
ASCII	characters	(character	format).	A	text	or	image	data	type	requires	four
prefix	characters	to	store	the	field	length,	whereas	a	varchar	data	type	requires
two	characters.

Note		These	length	prefix	characters	are	stored	in	the	data	file	in	Microsoft®
SQL	Server™	internal	binary	data	format.

Null	values	are	represented	as	an	empty	field	when	copied	from	an	instance	of
SQL	Server	to	a	data	file.	To	indicate	that	the	field	is	empty	(represents	NULL),
the	field	prefix	contains	the	value	-1.	Any	SQL	Server	column	that	allows	null
values	requires	a	prefix	length	of	1	or	greater,	depending	on	the	file	storage	type.

Use	these	prefix	lengths	when	bulk	copying	data	from	an	instance	of	SQL	Server
to	a	data	file,	storing	the	data	using	either	native	data	types	or	as	ASCII
characters	(text	file).

SQL	Server Native	format Character	format
data	type NOT	NULL NULL NOT	NULL NULL
char 2 2 2 2
varchar 2 2 2 2
nchar 2 2 2 2
nvarchar 2 2 2 2
text 4 4 4 4
ntext 4 4 1 1
binary 1 1 2 2

varbinary 1 1 2 2
image 4 4 4 4
datetime 0 1 1 1
smalldatetime 0 1 1 1
decimal 1 1 1 1
numeric 1 1 1 1
float 0 1 1 1
real 0 1 1 1
int 0 1 1 1
bigint 0 1 1 1
smallint 0 1 1 1
tinyint 0 1 1 1
money 0 1 1 1
smallmoney 0 1 1 1
bit 0 1 0 1
uniqueidentifier 1 1 1 1
timestamp 1 1 2 2

When	storing	data	as	nchar	rather	than	char,	the	prefix	length	for	all	data	types
is	the	same	as	the	native	data	type	value,	except	char,	varchar,	text,	ntext,	and
image,	which	all	have	a	prefix	length	of	1.

When	bulk	copying	data	to	an	instance	of	SQL	Server,	the	prefix	length	is	the
value	specified	when	the	data	file	was	created	originally.	If	the	data	file	was	not
created	with	bcp,	it	is	unlikely	that	length	prefix	characters	exist.	In	this
instance,	specify	0	for	the	prefix	length.

Note		The	default	values	provided	at	the	prompts	indicate	the	most	efficient
prefix	lengths.

Administering	SQL	Server

Field	Length
When	bulk	copying	char,	nchar,	or	binary	data	with	a	prefix	length	of	0	from
Microsoft®	SQL	Server™,	bcp	also	prompts	for	a	field	length.	The	field	length
indicates	the	maximum	number	of	characters	needed	to	represent	data	in
character	format.	A	column	of	type	tinyint	can	have	values	from	0	through	255;
the	maximum	number	of	characters	needed	to	represent	any	number	in	that	range
is	three	(representing	values	100	through	255).	When	bcp	converts	noncharacter
data	to	character,	it	suggests	a	default	field	length	large	enough	to	store	the	data.

If	the	file	storage	type	is	noncharacter,	data	is	stored	in	the	SQL	Server	native
data	representation	(native	format)	and	the	bcp	utility	does	not	prompt	for	a	field
length.

These	are	the	default	field	lengths	for	data	to	be	stored	as	char	file	storage	type
(nullable	data	is	the	same	length	as	nonnull	data).

Data	type Default	length	(characters)
Char Length	defined	for	the	column
Varchar Length	defined	for	the	column
Nchar Twice	the	length	defined	for	the	column
Nvarchar Twice	the	length	defined	for	the	column
Text 0
Ntext 0
Bit 1
Binary Twice	the	length	defined	for	the	column	+

1
Varbinary Twice	the	length	defined	for	the	column	+

1
Image 0
Datetime 24
Smalldatetime 24
Float 30
Real 30

Int 12
Bigint 19
Smallint 7
Tinyint 5
Money 30
Smallmoney 30
Decimal 41*
Numeric 41*
Uniqueidentifier 37
Timestamp 17*For	more	information	about	the	decimal	and	numeric	data	types,	see	decimal	and	numeric.

These	are	the	default	field	lengths	for	data	to	be	stored	as	native	file	storage	type
(nullable	data	is	the	same	length	as	nonnull	data,	and	character	data	is	always
stored	in	character	format).

Data	type Default	length	(characters)
bit 1
binary Length	defined	for	the	column
varbinary Length	defined	for	the	column
image 0
datetime 8
smalldatetime 4
float 8
real 4
int 4
bigint 8
smallint 2
tinyint 1
money 8
smallmoney 4
decimal *
numeric *
uniqueidentifier 16
timestamp 8

JavaScript:hhobj_1.Click()

*For	more	information	about	the	decimal	and	numeric	data	types,	see	decimal	and	numeric.

Accepting	the	bcp	default	values	for	the	field	length	is	recommended.

Note		Using	default	data	type	sizes	(field	length)	can	lead	to	an	"unexpected	end
of	file"	error	message.	This	generally	occurs	with	the	money	and	datetime	data
types	when	only	part	of	the	field	occurs	in	the	data	file	(for	example,	a	datetime
value	of	mm/dd/yy	with	no	time	component)	rather	than	an	entire	string,	as
expected	by	SQL	Server.	When	using	the	default	size	option,	SQL	Server
expects	to	read	24	characters	(the	length	of	the	datetime	data	type	when	stored
in	char	format).	To	avoid	this	problem,	bulk	copy	data	using	field	terminators,
or	fixed-length	data	fields.

Specifying	a	field	length	too	short	for	numeric	data	when	bulk	copying	data
causes	bcp	to	print	an	overflow	message	and	not	copy	the	data.	When	datetime
data	is	copied	to	a	data	file	as	a	character	string	of	less	than	26	bytes,	the	data	is
truncated	without	an	error	message.	When	creating	an	ASCII	data	file,	use	the
default	field	length	to	ensure	that	data	is	not	truncated	and	that	numeric	overflow
errors	causing	bcp	to	fail	do	not	occur.	To	change	the	default	field	length,	supply
another	value.

Note		To	create	a	data	file	for	later	reloading	into	SQL	Server	and	keep	the
storage	space	to	a	minimum,	use	a	length	prefix	character	with	the	default	file
storage	type	and	the	default	field	length.

The	amount	of	storage	space	allocated	in	the	data	file	for	noncharacter	data
stored	as	char	file	storage	type	also	depends	on	whether	a	prefix	length	or
terminators	are	specified:

If	specifying	a	prefix	length	of	1,	2,	or	4,	the	field	length	is	not	used.
The	data	file	storage	space	used	is	the	length	of	the	data,	the	length	of
the	prefix,	plus	any	terminators.

If	specifying	a	prefix	length	of	0	and	no	terminator,	bcp	allocates	the
maximum	amount	of	space	shown	in	the	field	length	prompt	because
this	is	the	maximum	space	that	may	be	needed	for	the	data	type	in
question.	The	field	is	treated	as	if	it	were	of	fixed	length	so	that	it	is
possible	to	determine	where	one	field	ends	and	the	next	begins.

JavaScript:hhobj_2.Click()

If	specifying	a	prefix	length	of	0	and	a	terminator,	the	field	length
specified	is	ignored.	The	data	file	storage	space	used	is	the	length	of	the
data,	plus	any	terminators.

SQL	Server	char	data	is	always	stored	in	the	data	file	as	the	full	length	of	the
defined	column.	For	example,	a	column	defined	as	char(10)	always	occupies	10
characters	in	the	data	file	regardless	of	the	length	of	the	data	stored	in	the
column;	spaces	are	appended	to	the	data	as	padding.	For	more	information,	see
SET	ANSI_PADDING.

The	interaction	of	prefix	lengths	(P),	terminators	(T),	and	field	length	on	data
determines	the	storage	space	used	in	the	data	file.	In	this	example,	the	field
length	is	8	for	each	column,	and	the	6-character	value	"string"	is	stored	each
time.	Dashes	(-)	indicate	appended	spaces	and	ellipses	(...)	indicate	that	the
pattern	repeats	for	each	field.

This	is	the	pattern	for	SQL	Server	char	data.

	 Prefix	length	=	0 Prefix	length	=	1,	2,	or	4
No	terminator string--string--... Pstring--Pstring--...
Terminator string--Tstring--T... Pstring--TPstring--T...

This	is	the	pattern	for	other	data	types	converted	to	char	storage.

	 Prefix	length	=	0 Prefix	length	=	1,	2,	or	4
No	terminator string--string--... PstringPstring...
Terminator stringTstringT... PstringTPstringT...

JavaScript:hhobj_3.Click()

Administering	SQL	Server

Field	Terminator
It	is	possible	to	use	optional	terminating	characters	to	mark	the	end	of	a	field	or
row,	separating	one	field	or	row	in	the	data	file	from	the	next.	Terminating
characters	indicate	to	a	program	reading	the	data	file	where	one	field	or	row	ends
and	another	begins.	The	default	provided	by	the	bcp	utility	is	to	use	no
terminating	characters	between	fields	and	rows	in	the	data	file.

Field	terminators	are	needed	when	the	data	file	does	not	contain:

Length	prefixes	to	indicate	the	length	of	each	field	(perhaps	because	the
program	reading	the	data	file	does	not	understand	length	prefixes).	

Fixed-length	data	fields	(perhaps	because	storage	space	needs	to	be
minimized).

The	bcp	utility	allows	many	characters	to	be	used	as	field	or	row	terminators.

Terminator Indicated	by
Tab \t
Newline	character \n
Carriage	return \r
Backslash \\
Null	terminator	(no	visible	terminator) \0
Any	printable	character	(control	characters	are	not
printable,	except	null,	tab,	newline,	and	carriage
return)

(*,	A,	t,	l,	and	so	on)

String	of	up	to	10	printable	characters,	including
some	or	all	of	the	terminators	listed	earlier

(**\t**,	end,	!!!!!!!!!!,
\t--\n,	and	so	on)

Note		Only	the	t,	n,	r,	\,	and	0	characters	work	with	the	backslash	escape
character	to	produce	a	control	character.

It	is	possible	to	change	the	default	field	and	row	terminators	using	the	-t	and	-r

switches	of	bcp.	When	using	these	switches,	the	bracketed	default	listed	in	the
interactive	bcp	prompt	changes	for	all	fields	and	rows	to	the	value	specified	at
the	command	prompt.	Use	-t	to	change	the	default	field	terminator	and	-r	to
change	the	default	row	terminator.

The	command	to	change	the	default	field	terminator	to	a	comma	(,)	and	the
default	row	terminator	to	the	newline	character	(\n):

bcp	pubs..publishers	out	publ.txt	-t	,	-r	\n	-Sservername	-Usa	-Ppassword

IMPORTANT		Terminators	must	be	chosen	to	ensure	that	their	pattern	does	not
appear	in	any	of	the	data.	For	example,	when	using	tab	terminators	with	a	field
that	contains	tabs	as	part	of	the	data,	bcp	does	not	know	which	tab	represents	the
end	of	the	field.	The	bcp	utility	always	looks	for	the	first	possible	character(s)
that	matches	the	terminator	it	expects.	Using	a	character	sequence	with
characters	that	do	not	occur	in	the	data	avoids	this	conflict.

Native	format	data	can	also	conflict	with	terminators	because	this	file	is	in	the
SQL	Server	internal	binary	data	format.	When	using	native	format,	use	length
prefixes	rather	than	field	terminators.

Any	data	column	that	contains	null	values	is	considered	variable	length	for	bulk
copy	purposes.	Therefore,	a	length	prefix	or	field	terminator	needs	to	be	used	to
specify	the	length	of	each	field.

Note		The	no	terminator	value	is	different	from	the	null	terminator	(\0)	value.
The	no	terminator	value	places	no	row	terminator	character(s).	The	null
terminator	value	puts	a	null	character	after	the	column.	A	null	character	is
invisible	but	real.

Because	bcp	does	not	prompt	for	a	row	terminator,	the	field	terminator	for	the
last	column	in	a	row	serves	that	purpose.	Given	a	row	with	10	columns,	the	field
terminator	for	the	tenth	column	is	also	the	row	terminator.	Therefore,	the
terminator	for	the	last	field	can	be	(but	is	not	required	to	be)	different	from	the
field	terminator	used	for	other	fields	in	the	same	row.	For	tabular	output,
terminate	the	last	field	with	the	newline	character	(\n)	and	all	other	fields	with
the	tab	character	(\t).

A	common	row	terminator	used	when	exporting	SQL	Server	data	to	ASCII	data
files	is	\r\n	(carriage	return,	newline).	Using	both	characters	as	the	row

terminator	ensures	that	each	row	of	data	appears	on	its	own	line	in	the	data	file.
However,	it	is	only	necessary	to	enter	the	characters	\r\n	as	the	terminator	when
manually	editing	the	terminator	column	of	a	bcp	format	file.	When	you	use	bcp
interactively	and	specify	\n	(newline)	as	the	row	terminator,	bcp	prefixes	the	\r
(carriage	return)	character	automatically.

See	Also

ColumnDelimiter	Property

RowDelimiter	Property

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Using	Format	Files
When	bulk	copying	data	using	interactive	mode,	the	bcp	utility	prompts	you	to
store	information	regarding	the	storage	type,	prefix	length,	field	length,	and	field
and	row	terminators.	The	file	used	to	store	the	format	information	for	each	field
in	the	data	file	is	called	the	format	file:

Do	you	want	to	save	this	format	information	in	a	file?	[Y/n]	y
Host	filename:	[bcp.fmt]

Although	the	default	name	for	the	format	file	is	Bcp.fmt,	a	different	file	name
can	be	specified.

This	format	file	provides	the	default	information	used	either	to	bulk	copy	the
data	in	the	data	file	back	into	an	instance	of	Microsoft®	SQL	Server™	or	to	bulk
copy	data	out	from	the	table	another	time,	without	needing	to	respecify	the
format.	When	bulk	copying	data	into	or	out	of	an	instance	of	SQL	Server	with	an
existing	format	file,	bcp	does	not	prompt	for	the	file	storage	type,	prefix	length,
field	length,	or	field	terminator	because	it	uses	the	values	already	recorded.

To	use	a	previously	created	format	file	when	importing	data	into	an	instance	of
SQL	Server,	use	the	-f	switch	with	the	bcp	utility	or	the	FORMATFILE	clause
with	the	BULK	INSERT	statement.	For	example,	the	command	to	bulk	copy	the
contents	of	New_auth.dat	data	file	into	the	authors2	table	in	the	pubs	database
using	the	previously	created	format	file	(Authors.fmt)	is:

bcp	pubs..authors2	in	c:\new_auth.dat	-fc:\authors.fmt	-Sservername	-Usa	-P

The	BULK	INSERT	statement	can	use	format	files	saved	by	the	bcp	utility.	For
example:

BULK	INSERT	pubs..authors2	FROM	'c:\new_auth.dat'	
WITH	(FORMATFILE	=	'c:\authors.fmt')

The	format	file	is	a	tab-delimited	text	file	with	a	specific	structure.

The	following	table	describes	the	file	format	structures.

Field Description
Version Version	number	of	bcp.
Number	of	fields Number	of	fields	in	the	data	file.	This	must	be	the

same	for	all	rows.
Host	file	field	order Position	of	each	field	within	the	data	file.	The	first

field	in	the	row	is	1,	and	so	on.
Host	file	data	type Data	type	stored	in	the	particular	field	of	the	data

file.	With	ASCII	data	files,	use	SQLCHAR;	for
native	format	data	files,	use	default	data	types.	For
more	information,	see	File	Storage	Type.

Prefix	length Number	of	length	prefix	characters	for	the	field.
Legal	prefix	lengths	are	0,	1,	2,	and	4.	To	avoid
specifying	the	length	prefix,	set	this	to	0.	A	length
prefix	must	be	specified	if	the	field	contains	null
data	values.	For	more	information,	see	Prefix
Length.

Host	file	data	length Maximum	length,	in	bytes,	of	the	data	type	stored	in
the	particular	field	of	the	data	file.	For	more
information,	see	Field	Length.

Terminator Delimiter	to	separate	the	fields	in	a	data	file.
Common	terminators	are	comma	(,),	tab	(\t),	and	end
of	line	(\r\n).	For	more	information,	see	Field
Terminator.

Server	column	order Order	that	columns	appear	in	the	SQL	Server	table.
For	example,	if	the	fourth	field	in	the	data	file	maps
to	the	sixth	column	in	a	SQL	Server	table,	then	for
the	fourth	field	the	server	column	order	is	6.	
To	omit	a	column	in	the	table	from	receiving	any
data	in	the	data	file,	set	the	server	column	order
value	to	0.

Server	column	name Name	of	the	column	taken	from	the	SQL	Server
table.	It	is	not	necessary	to	use	the	actual	name	of
the	field.	The	only	condition	is	that	the	field	in	the
format	file	not	be	blank.

Collation The	collation	used	to	store	character	and	Unicode
data	in	the	bulk	copy	data	file.

Note		It	is	possible	to	skip	importing	a	table	column	if	the	field	does	not	exist	in
the	data	file	by	specifying	0	prefix	length,	0	length,	0	server	column	order,	and
no	terminator.	This	effectively	states	that	the	data	field	does	not	exist	in	the	data
file,	and	that	the	server	column	should	not	have	data	loaded	into	it.

Selectively	Copying	Data
A	format	file	provides	a	way	to	bulk	copy	data	selectively	from	a	data	file	to	an
instance	of	SQL	Server.	This	allows	the	transfer	of	data	to	a	table	when	there	is	a
mismatch	between	fields	in	the	data	file	and	columns	in	the	table.	This	approach
can	be	used	when	the	fields	in	the	data	file	are:

Fewer	than	the	columns	in	the	table.

More	than	the	columns	in	the	table.

In	a	different	order	from	the	columns	in	the	table.

By	using	a	format	file,	it	is	possible	to	bulk	copy	data	into	an	instance	of	SQL
Server	without	having	to	add	or	delete	unnecessary	data,	or	reorder	existing	data,
in	the	data	file.

The	following	three	topics	contain	examples	of	selectively	copying	data.	For	the
following	examples,	first	make	a	copy	of	the	authors	table,	named	authors2,	in
the	pubs	database.	To	create	a	copy	of	the	authors	table,	execute:

USE	pubs
GO
SELECT	*	INTO	authors2	FROM	authors
GO

See	Also

FormatFilePath	Property

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Using	a	Data	File	with	Fewer	Fields
In	some	cases,	a	data	file	may	have	fewer	fields	than	there	are	columns	in	the
table.	For	example,	the	New_auth.dat	data	file	(ASCII,	or	character	format)	does
not	contain	matching	fields	for	the	address	and	zip	columns	in	the	authors2
table.

The	New_auth.dat	file:

777-77-7777,Smith,Chris,303	555-1213,Denver,CO,1
888-88-8888,Doe,John,206	555-1214,Seattle,WA,0
999-99-9999,Door,Jane,406	555-1234,Bozeman,MT,1

To	bulk	copy	data	selectively	to	the	correct	columns	in	authors2,	create	a
default	format	file	(Authors.fmt)	with	the	following	command:

bcp	pubs..authors2	out	c:\authors.txt	-Sservername	-Usa	-Ppassword

The	bcp	utility	prompts	for	the	file	storage	type,	prefix	length,	field	length,	and
field	terminator	of	each	column	of	authors2.	The	field	terminator	for	every
column	should	be	a	comma	(,),	except	for	the	contract	column,	which	should
use	the	row	terminator	\n	(newline)	because	it	is	the	last	column	in	the	row.	Also,
the	contract	column	has	a	file	storage	type	of	char,	because	the	data	file	is	an
ASCII	file.	The	address	and	zip	columns	should	not	have	field	terminators	and
should	have	their	field	length	set	to	0.	When	prompted	for	the	format	file	name,
specify	Authors.fmt.

The	Authors.fmt	file:

8.0
9
1		SQLCHAR		0		11	","						1		au_id							SQL_Latin1_General_Cp437_BIN
2		SQLCHAR		0		40	","						2		au_lname				SQL_Latin1_General_Cp437_BIN
3		SQLCHAR		0		20	","						3		au_fname				SQL_Latin1_General_Cp437_BIN
4		SQLCHAR		0		12	","						4		phone							SQL_Latin1_General_Cp437_BIN
5		SQLCHAR		0		0		""							5		address					SQL_Latin1_General_Cp437_BIN

6		SQLCHAR		0		20	","						6		city								SQL_Latin1_General_Cp437_BIN
7		SQLCHAR		0		2		","						7		state							SQL_Latin1_General_Cp437_BIN
8		SQLCHAR		0		0		""							8		zip									SQL_Latin1_General_Cp437_BIN
9		SQLCHAR		0		1		"\r\n"			9		contract				SQL_Latin1_General_Cp437_BIN

The	format	file	contains	all	the	information	necessary	to	bulk	copy	data	from	the
data	file	to	the	Microsoft®	SQL	Server™	table.	A	prefix	length	of	0,	field	length
of	0,	and	no	field	terminator	for	address	and	zip	means	that	these	columns	do
not	exist	in	the	data	file.	However,	the	format	file	must	be	modified	further	with
a	text	editor	to	ensure	that	no	data	will	be	loaded	into	address	and	zip.	The
server	column	numbers	(sixth	field	in	the	format	file)	for	these	columns	should
be	0:

8.0
9
1		SQLCHAR		0		11	","						1		au_id							SQL_Latin1_General_Cp437_BIN
2		SQLCHAR		0		40	","						2		au_lname				SQL_Latin1_General_Cp437_BIN
3		SQLCHAR		0		20	","						3		au_fname				SQL_Latin1_General_Cp437_BIN
4		SQLCHAR		0		12	","						4		phone							SQL_Latin1_General_Cp437_BIN
5		SQLCHAR		0		0		""							0		address					SQL_Latin1_General_Cp437_BIN
6		SQLCHAR		0		20	","						6		city								SQL_Latin1_General_Cp437_BIN
7		SQLCHAR		0		2		","						7		state							SQL_Latin1_General_Cp437_BIN
8		SQLCHAR		0		0		""							0		zip									SQL_Latin1_General_Cp437_BIN
9		SQLCHAR		0		1		"\r\n"			9		contract				SQL_Latin1_General_Cp437_BIN

The	data	in	the	data	file	can	now	be	bulk	copied	into	authors2	using	the
command:

bcp	pubs..authors2	in	c:\new_auth.dat	-fc:\authors.fmt	-Sservername	-Usa	-P

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool,	such
as	SQL	Query	Analyzer,	to	bulk	copy	data:

BULK	INSERT	pubs..authors2	FROM	'c:\new_auth.dat'	
WITH	(FORMATFILE	=	'c:\authors.fmt')

Note		Because	address	and	zip	are	not	present	in	the	data	file,	those	columns
will	contain	NULL	in	the	SQL	Server	table	if	no	DEFAULT	values	have	been
defined.	Therefore,	authors2	must	allow	null	values	in	those	columns.

Administering	SQL	Server

Using	a	Data	File	with	More	Fields
In	some	cases,	a	data	file	may	have	more	fields	than	there	are	columns	in	the
table.	For	example,	the	New_auth.dat	data	file	(ASCII,	or	character	format)
contains	two	fields	(age	and	salutation)	not	contained	on	authors2.	These	fields
will	be	omitted,	or	skipped,	during	the	bulk	copy	procedure.

The	New_auth.dat	file:

777-77-7777,Smith,Chris,303	555-1213,27	College	Ave,Denver,CO,80220,1,28,Ms.
888-88-8888,Doe,John,206	555-1214,123	Maple	Street,Seattle,WA,95099,0,35,Mr.
999-99-9999,Door,Jane,406	555-1234,45	East	Main,Bozeman,MT,59715,1,33,Mrs.

To	bulk	copy	data	selectively	to	the	correct	columns	in	authors2	only,	create	a
default	format	file	(Authors.fmt)	with	the	command:

bcp	pubs..authors2	out	c:\authors.txt	-Sservername	-Usa	-Ppassword

The	bcp	utility	prompts	for	the	file	storage	type,	prefix	length,	field	length,	and
field	terminator	of	each	column	of	authors2.	The	field	terminator	for	every
column	should	be	a	comma	(,).	Also,	the	contract	column	has	a	file	storage	type
of	char	because	the	data	file	is	an	ASCII	file.	When	prompted	for	the	format	file
name,	specify	Authors.fmt.

The	Authors.fmt	file:

8.0
9
1		SQLCHAR		0		11	","						1		au_id							SQL_Latin1_General_Cp437_BIN
2		SQLCHAR		0		40	","						2		au_lname				SQL_Latin1_General_Cp437_BIN
3		SQLCHAR		0		20	","						3		au_fname				SQL_Latin1_General_Cp437_BIN
4		SQLCHAR		0		12	","						4		phone							SQL_Latin1_General_Cp437_BIN
5		SQLCHAR		0		40	","						5		address					SQL_Latin1_General_Cp437_BIN
6		SQLCHAR		0		20	","						6		city								SQL_Latin1_General_Cp437_BIN
7		SQLCHAR		0		2		","						7		state							SQL_Latin1_General_Cp437_BIN

8		SQLCHAR		0		5		","						8		zip									SQL_Latin1_General_Cp437_BIN
9		SQLCHAR		0		1		"\r\n"			9		contract				SQL_Latin1_General_Cp437_BIN

The	format	file	contains	all	the	information	necessary	to	bulk	copy	data	from	the
data	file	to	the	Microsoft®	SQL	Server™	table.	However,	the	format	file	needs
to	be	modified	further	with	a	text	editor	to	reflect	the	addition	of	two	new
columns:	age	and	salutation.	The	second	line	of	the	format	file	specifies	the
number	of	columns	and	should	now	be	changed	to	11	because	there	are	11	fields
in	the	data	file.	Two	new	rows	need	to	be	added	to	the	end	of	the	format	file	to
provide	format	information	for	the	additional	fields.	The	row	terminator	needs	to
be	moved	from	the	contract	column	to	the	salutation	column	and	the	server
column	numbers	(sixth	field	in	the	format	file)	for	the	age	and	salutation
columns	should	be	0:

8.0
11
1		SQLCHAR		0		11	","						1		au_id							SQL_Latin1_General_Cp437_BIN
2		SQLCHAR		0		40	","						2		au_lname				SQL_Latin1_General_Cp437_BIN
3		SQLCHAR		0		20	","						3		au_fname				SQL_Latin1_General_Cp437_BIN
4		SQLCHAR		0		12	","						4		phone							SQL_Latin1_General_Cp437_BIN
5		SQLCHAR		0		40	","						5		address					SQL_Latin1_General_Cp437_BIN
6		SQLCHAR		0		20	","						6		city								SQL_Latin1_General_Cp437_BIN
7		SQLCHAR		0		2		","						7		state							SQL_Latin1_General_Cp437_BIN
8		SQLCHAR		0		5		","						8		zip									SQL_Latin1_General_Cp437_BIN
9		SQLCHAR		0		1		","						9		contract				SQL_Latin1_General_Cp437_BIN
10	SQLCHAR		0		0		","						0		age									SQL_Latin1_General_Cp437_BIN
11	SQLCHAR		0		0		"\r\n"			0		salutation		SQL_Latin1_General_Cp437_BIN

The	data	in	the	data	file	can	now	be	bulk	copied	into	authors2	using	the
command:

bcp	pubs..authors2	in	c:\new_auth.dat	-fc:\authors.fmt	-Sservername	-Usa	-P

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool,	such
as	SQL	Query	Analyzer,	to	bulk	copy	data:

BULK	INSERT	pubs..authors2	FROM	'c:\new_auth.dat'	
WITH	(FORMATFILE	=	'c:\authors.fmt')

Administering	SQL	Server

Using	a	Data	File	with	Fields	in	a	Different	Order
In	some	cases,	a	data	file	may	have	fields	in	an	order	different	from	the
corresponding	columns	in	the	table.	For	example,	the	New_auth.dat	data	file
(ASCII,	or	character	format)	contains	the	same	number	of	fields	as	the	authors2
table,	but	the	au_lname	and	au_fname	fields	are	reversed.	These	fields	will	be
reordered	during	the	bulk	copy	procedure.

The	New_auth.dat	file:

777-77-7777,Chris,Smith,303	555-1213,27	College	Ave,Denver,CO,80220,1
888-88-8888,John,Doe,206	555-1214,123	Maple	Street,Seattle,WA,95099,0
999-99-9999,Jane,Door,406	555-1234,45	East	Main,Bozeman,MT,59715,1

To	bulk	copy	data	selectively	to	the	correct	columns	in	authors2,	create	a
default	format	file	(Authors.fmt)	with	the	command:

bcp	pubs..authors2	out	c:\authors.txt	-Sservername	-Usa	-Ppassword

The	bcp	utility	prompts	for	the	file	storage	type,	prefix	length,	field	length,	and
field	terminator	of	each	column	of	authors2.	The	field	terminator	for	every
column	should	be	a	comma	(,),	except	for	the	contract	column,	which	should
use	the	row	terminator	\n	(newline)	because	it	is	the	last	column	in	the	row.	Also,
the	contract	column	has	a	file	storage	type	of	char	because	the	data	file	is	an
ASCII	file.	When	prompted	for	the	format	file	name,	specify	Authors.fmt.

The	Authors.fmt	file:

8.0
9
1		SQLCHAR		0		11	","						1		au_id							SQL_Latin1_General_Cp437_BIN
2		SQLCHAR		0		40	","						2		au_lname				SQL_Latin1_General_Cp437_BIN
3		SQLCHAR		0		20	","						3		au_fname				SQL_Latin1_General_Cp437_BIN
4		SQLCHAR		0		12	","						4		phone							SQL_Latin1_General_Cp437_BIN
5		SQLCHAR		0		40	","						5		address					SQL_Latin1_General_Cp437_BIN
6		SQLCHAR		0		20	","						6		city								SQL_Latin1_General_Cp437_BIN

7		SQLCHAR		0		2		","						7		state							SQL_Latin1_General_Cp437_BIN
8		SQLCHAR		0		5		","						8		zip									SQL_Latin1_General_Cp437_BIN
9		SQLCHAR		0		1		"\r\n"			9		contract				SQL_Latin1_General_Cp437_BIN

The	format	file	contains	all	the	information	necessary	to	bulk	copy	data	from	the
data	file	to	the	Microsoft®	SQL	Server™	table.	However,	the	format	file	needs
to	be	further	modified	with	a	text	editor	to	change	the	server	column	order	(sixth
field	in	the	format	file)	of	the	au_lname	and	au_fname	fields.

8.0
9
1		SQLCHAR		0		11	","						1		au_id							SQL_Latin1_General_Cp437_BIN
2		SQLCHAR		0		40	","						3		au_lname				SQL_Latin1_General_Cp437_BIN
3		SQLCHAR		0		20	","						2		au_fname				SQL_Latin1_General_Cp437_BIN
4		SQLCHAR		0		12	","						4		phone							SQL_Latin1_General_Cp437_BIN
5		SQLCHAR		0		40	","						5		address					SQL_Latin1_General_Cp437_BIN
6		SQLCHAR		0		20	","						6		city								SQL_Latin1_General_Cp437_BIN
7		SQLCHAR		0		2		","						7		state							SQL_Latin1_General_Cp437_BIN
8		SQLCHAR		0		5		","						8		zip									SQL_Latin1_General_Cp437_BIN
9		SQLCHAR		0		1		"\r\n"			9		contract				SQL_Latin1_General_Cp437_BIN

The	data	in	the	data	file	can	now	be	bulk	copied	into	authors2	using	the
command:

bcp	pubs..authors2	in	c:\new_auth.dat	-fc:\authors.fmt	-Sservername	-Usa	-P

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool	such
as	SQL	Query	Analyzer	to	bulk	copy	data:

BULK	INSERT	pubs..authors2	FROM	'c:\new_auth.dat'	
WITH	(FORMATFILE	=	'c:\authors.fmt')

Administering	SQL	Server

Copying	Data
There	are	six	options	for	copying	data	using	bcp	or	BULK	INSERT.

Topic Description
Copying	Data	Between	Servers Describes	which	data	format	to	use

when	copying	data	between	instances
of	Microsoft®	SQL	Server™.

Copying	Data	from	a	Data	File	to
SQL	Server

Describes	how	to	copy	data	from	a
data	file	to	an	instance	of	SQL
Server,	including	how	to	handle
identity	values	and	image	data.

Copying	Data	From	a	Query	to	a
Data	File

Describes	how	to	copy	the	result	set
from	a	Transact	SQL	statement	to	a
data	file.

Copying	Data	To	or	From	a
Temporary	Table

Describes	how	to	copy	data	to	or
from	a	temporary	table.

Copying	Data	To	or	From	a	View Describes	how	to	copy	data	to	or
from	a	view.

Copying	Data	Between	Different
Collations

Describes	how	to	copy	data	between
different	collations,	including	the	use
of	column-level	collations.

Administering	SQL	Server

Copying	Data	Between	Servers
To	bulk	copy	data	from	one	Microsoft®	SQL	Server™	database	to	another,	data
from	the	source	database	must	first	be	bulk	copied	into	a	file.	The	file	is	then
bulk	copied	into	the	destination	database.

After	bulk	copying	data	into	a	table,	if	the	recovery	model	is	simple,	then	a	full
or	differential	backup	is	recommended.	If	the	recovery	model	is	bulk-logged	or
full,	a	log	backup	is	sufficient.

Note		Native,	character,	and	Unicode	format	bcp	can	be	used	to	bulk	copy	data
between	different	instances	of	SQL	Server	on	different	processor	architectures.
However,	the	same	format	must	be	used	when	importing	as	exporting.

Storing	information	in	Unicode	native	format	is	useful	when	information	must
be	copied	from	one	instance	of	SQL	Server	to	another.	Using	native	format	for
noncharacter	data	saves	time,	preventing	unnecessary	conversion	of	data	types	to
and	from	character	format.	Using	Unicode	character	format	for	all	character	data
prevents	loss	of	any	extended	characters	when	bulk	loading	data	between	servers
using	different	code	pages	(character	loss	is	possible	if	extended	characters	are
copied	into	non-Unicode	columns	and	the	extended	character	cannot	be
represented).	However,	a	data	file	in	Unicode	native	format	cannot	be	read	by
any	program	other	than	bcp	or	the	BULK	INSERT	statement.

It	is	also	possible	to	copy	data	from	one	SQL	Server	database	to	another	using:

The	DTS	Import/Export	Wizard.

The	Transact-SQL	statements	BACKUP	and	RESTORE	(to	copy	entire
databases).

Distributed	queries	as	part	of	an	INSERT	statement.

The	SELECT	INTO	statement.

See	Also

BACKUP

Distributed	Queries

DTS	Import/Export	Wizard

INSERT

Optimizing	Bulk	Copy	Performance

RESTORE

SELECT

Unicode	Character	Format

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Administering	SQL	Server

Copying	Data	From	a	Data	File	to	SQL	Server
To	bulk	copy	a	data	file	to	an	instance	of	Microsoft®	SQL	Server™,	follow
these	guidelines:

When	bulk	copying	data	to	a	table	with	no	indexes,	set	the	recovery
model	to	bulk-logged	if	you	usually	use	full	recovery.

This	is	recommended	to	help	prevent	the	transaction	log	from	running
out	of	space	because	row	inserts	are	not	logged.	The	system
administrator	or	database	owner	can	set	this	option.	For	more
information,	see	Logged	and	Minimally	Logged	Bulk	Copy	Operations.

If	you	are	loading	a	large	amount	of	data	relative	to	the	amount	of	data
already	in	the	table,	it	can	be	quicker	to	drop	the	indexes	on	the	table
before	performing	the	bulk	copy	operation.

Conversely,	if	you	are	loading	a	small	amount	of	data	relative	to	the
amount	of	data	already	in	the	table,	dropping	the	indexes	may	not	be
necessary	because	the	time	taken	to	rebuild	the	indexes	can	be	longer
than	performing	the	bulk	copy	operation.	For	more	information,	see
Optimizing	Bulk	Copy	Performance.

Be	sure	that	the	user	account	used	to	log	in	to	SQL	Server	using	bcp	(or
the	query	tool	when	using	the	BULK	INSERT	statement)	has	SELECT
and	INSERT	permissions	on	the	table	(assigned	by	the	table	owner).

Note		Only	members	of	the	sysadmin	fixed	server	role	can	execute	the
BULK	INSERT	statement.

If	the	recovery	model	is	simple,	then	a	full	or	differential	backup	is
recommended;	for	bulk-logged	recovery	and	full	recovery,	a	log	backup
is	sufficient.	For	more	information,	see	Backup	and	Restore	Operations.

To	bulk	copy	data	successfully	into	a	table	from	a	data	file	with	the	bcp
utility	or	BULK	INSERT	statement,	the	terminators	in	the	data	file	must
be	known	and	specified.

JavaScript:hhobj_1.Click()

Note		A	hidden	character	in	an	ASCII	data	file	can	cause	problems	when	trying
to	bulk	copy	data	into	an	instance	of	SQL	Server,	resulting	in	an	"unexpected
null	found"	error	message.	Many	utilities	and	text	editors	display	hidden
characters	which	can	usually	be	found	at	the	bottom	of	the	data	file.	Finding	and
removing	these	characters	should	resolve	the	problem.

The	Newpubs.dat	file:

1111,Stone	Age	Books,Boston,MA,USA
2222			,Harley	&	Davidson,Washington,DC,USA
3333			,Infodata	Algosystems,Berkeley,CA,USA

Because	the	data	file	is	all	character	data,	the	following	options	and	switches
need	to	be	specified.

Bulk	copy	option bcp	utility	switch BULK	INSERT	clause
Character	mode	format -c DATAFILETYPE	=	'char'
Field	terminator -t FIELDTERMINATOR
Row	terminator -r ROWTERMINATOR

In	the	Newpubs.dat	file,	each	field	in	a	row	ends	with	a	comma	(,);	each	row
ends	with	a	newline	character	(\n).

The	publishers2	table	in	the	following	example	can	be	created	by	executing:

USE	pubs
GO
SELECT	*	INTO	publishers2	FROM	publishers
GO

The	command	to	bulk	copy	data	from	Newpubs.dat	into	publishers2	is:

bcp	pubs..publishers2	in	newpubs.dat	-c	-t	,	-r	\n	-Sservername	-Usa	-P

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool,	such
as	SQL	Query	Analyzer,	to	bulk	copy	data:

BULK	INSERT	pubs..publishers2	FROM	'c:\newpubs.dat'

WITH	(
			DATAFILETYPE	=	'char',
			FIELDTERMINATOR	=	',',
			ROWTERMINATOR	=	'\n'
)

Data	from	the	Newpubs.dat	file	has	been	now	appended	to	publishers2:

Pub_id pub_name city state Country
------ ---------------- ---------- ----- -----
0736 New	Moon	Books Boston MA USA
0877 Binnet	&	Hardley Washington DC USA
1111 Stone	Age	Books Boston MA USA
1389 Algodata	Infosystems Berkeley CA USA
1622 Five	Lakes	Publishing Chicago IL USA
1756 Ramona	Publishers Dallas TX USA
2222 Harley	&	Davidson Washington DC USA
3333 Infodata	Algosystems Berkeley CA USA
9901 GGG&G München 	 Germany
9952 Scootney	Books New	York NY USA
9999 Lucerne	Publishing Paris 	 France

Copying	Data	Containing	Identity	Values
The	bcp	utility	and	BULK	INSERT	statement	allow	data	files	containing
identity	values	to	be	bulk	copied	into	an	instance	of	SQL	Server.	To	prevent	SQL
Server	from	supplying	identity	values,	the	bcp	utility	accepts	the	-E	switch,	and
the	BULK	INSERT	statement	accepts	the	KEEPIDENTITY	clause.	While	the
rows	in	the	data	file	are	bulk	copied	into	the	table,	SQL	Server	does	not	assign
unique	identity	values	automatically;	the	identity	values	are	taken	from	the	data
file.

If	these	options	are	not	supplied,	the	values	for	the	identifier	column	in	the	data
file	being	imported	are	ignored	and	SQL	Server	assigns	unique	values

automatically	based	on	the	seed	and	increment	values	specified	during	table
creation.	If	the	data	file	does	not	contain	values	for	the	identifier	column	in	the
table,	use	a	format	file	to	specify	that	the	identifier	column	in	the	table	should	be
skipped	when	importing	data.	SQL	Server	assigns	unique	values	automatically
for	the	column.

Importing	Image	Data
It	is	possible	to	bulk	copy	a	data	file	as	image	data	into	an	instance	of	SQL
Server.	The	command	to	load	the	data	file	Test.doc	into	the	bitmap	table	in	the
pubs	database	using	the	bcp	utility	is:

bcp	pubs..bitmap	in	test.doc	-Usa	-Ppassword	-Sservername

bcp	prompts:

Enter	the	file	storage	type	of	field	c1	[image]:
Enter	the	prefix	length	of	field	c1	[4]:	0
Enter	length	of	field	c1	[4096]:	5578	
Enter	the	field	terminator	[none]:

In	this	example,	the	data	file	will	be	loaded	into	column	c1,	and	5578	is	the
length	of	the	data	file.

Using	the	BULK	INSERT	statement,	a	format	file	needs	to	be	created	first	and
then	used	to	provide	the	format	information.	To	create	the	format	file,	use	the
bcp	utility:

bcp	pubs..bitmap	out	c:\bitmap.txt	-Sservername	-Usa	-Ppassword

The	bcp	utility	prompts	for	the	file	storage	type,	prefix	length,	field	length,	and
field	terminator	of	each	column	of	bitmap.	The	values	for	the	c1	column	are
listed	in	this	table.

Prompt Value
File	storage	type Image
Prefix	length 0
Field	length 5578

Field	terminator None

The	Bcp.fmt	file:

8.0
1
1			SQLIMAGE			0			5578						""						1			c1

Using	the	BULK	INSERT	statement	to	bulk	copy	the	Test.doc	data	file	into	the
bitmap	table	in	the	pubs	database,	execute	from	a	query	tool,	such	as	SQL
Query	Analyzer:

BULK	INSERT	pubs..bitmap	FROM	'c:\test.doc'
WITH	(
			FORMATFILE	=	'c:\Bcp.fmt'
)

Note		You	cannot	bulk	copy	data	into	text,	ntext,	and	image	columns	that	have
DEFAULT	values.

See	Also

bcp	Utility

BULK	INSERT.

ImportData	Method

IncludeIdentityValues	Property

SuspendIndexing	Property

UseBulkCopyOption	Property

Using	a	Data	File	with	Fewer	Fields

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Administering	SQL	Server

Copying	Data	From	a	Query	to	a	Data	File
The	bcp	utility	allows	you	to	copy	the	result	set	from	a	Transact-SQL	statement
to	a	data	file.	The	Transact-SQL	statement	can	be	any	valid	statement	that
returns	a	results	set,	such	as	a	distributed	query	or	a	SELECT	statement	joining
several	tables.	For	example,	to	copy	the	names	of	all	the	authors,	ordered	by
surname,	from	the	authors	table	in	the	pubs	database	to	the	Authors.txt	data
file,	execute	at	the	command	prompt:

bcp	"SELECT	au_fname,	au_lname	FROM	pubs..authors	ORDER	BY	au_lname"	queryout	Authors.txt	-c	-S

Bulk	copying	data	from	a	query	is	useful	if	you	want	to	ensure	that	the	order	of
the	data	is	preserved	in	the	data	file;	bulk	copying	data	from	a	table	or	view	does
not	guarantee	the	order	of	the	data	written	to	the	data	file.	Preserving	the	order	of
the	data	in	the	data	file	allows	you	to	make	use	of	the	ORDER	hint	when	bulk
copying	data	from	the	data	file	back	into	a	table.	Using	the	ORDER	hint	can
significantly	improve	bulk	copy	performance.	For	more	information,	see
Optimizing	Bulk	Copy	Performance.

If	the	Transact-SQL	statement	returns	multiple	result	sets,	such	as	a	SELECT
statement	that	specifies	the	COMPUTE	clause,	or	the	execution	of	a	stored
procedure	that	contains	multiple	SELECT	statements,	only	the	first	result	set	is
copied;	subsequent	result	sets	are	ignored.

See	Also

bcp	Utility

Ordered	Data	Files

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Copying	Data	To	or	From	a	Temporary	Table
When	using	bcp	or	BULK	INSERT	to	bulk	copy	data	using	a	global	temporary
table,	the	table	name	must	be	specified	at	the	command	prompt,	including	initial
number	signs	(##).	For	example,	to	bulk	copy	data	from	the	global	temporary
table	##temp_authors	to	the	Temp_authors.txt	data	file,	execute	at	the
command	prompt:

bcp	##temp_authors	out	temp_authors.txt	-c	-Sservername	-Usa	-Ppassword

However,	do	not	specify	the	database	name	when	using	global	temporary	tables
because	temporary	tables	exist	only	in	tempdb.	It	is	possible	to	use	a	local
temporary	table	(for	example,	#temp_authors)	only	when	bulk	copying	data
using	the	BULK	INSERT	statement.

Administering	SQL	Server

Copying	Data	To	or	From	a	View
Data	can	be	bulk	copied	to	or	from	a	view.	This	includes	copying	data	from
multiple	joined	tables,	adding	a	WHERE	clause,	or	performing	special
formatting,	such	as	changing	data	formats	using	the	CONVERT	function.	For
example,	to	bulk	copy	data	from	the	view	titleview	in	the	pubs	database	to	the
Titleview.txt	data	file,	execute	at	the	command	prompt:

bcp	pubs..titleview	out	titleview.txt	-c	-Sservername	-Usa	-Ppassword

To	bulk	copy	data	into	a	view	using	bcp	or	the	BULK	INSERT	statement,	the
rules	for	inserting	data	into	a	view	apply.

Note		When	data	is	bulk	copied	into	a	view,	NULL	values	will	be	inserted	even
if	a	default	value	is	defined	for	the	field.

See	Also

Modifying	Data	Through	a	View

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Copying	Data	Between	Different	Collations
When	bulk	copying	data	using	native	or	character	format,	bcp,	by	default,
converts	character	data	to:

OEM	code	page	characters	when	exporting	data	from	an	instance	of
Microsoft®	SQL	Server™.

ANSI/Microsoft	Windows®	code	page	characters	when	importing	data
into	an	instance	of	SQL	Server.

This	can	cause	the	loss	of	extended	or	DBCS	characters	during	the	conversion
between	OEM	and	ANSI	code	pages.	To	prevent	the	loss	of	extended	or	DBCS
characters,	bcp	can	create	data	files	using:

Unicode	native	data	format	(-N).

Unicode	character	data	format	(-w).

A	specific	code	page	(-C).

Unicode	native	format	and	Unicode	character	format	convert	character	data	to
Unicode	during	the	bulk	copy,	resulting	in	no	loss	of	extended	characters.

Using	the	-C	(code	page)	switch,	the	bcp	utility	can	create	or	read	data	files
using	the	code	page	specified	by	the	user.	For	example,	to	bulk	copy	the
authors2	table	in	the	pubs	database	to	the	Authors.txt	data	file	using	code	page
850,	execute	from	the	command	prompt:

bcp	pubs..authors2	out	authors.txt	-c	-C850	-Sservername	-Usa	-Ppassword

Alternatively,	using	the	CODEPAGE	clause,	the	BULK	INSERT	statement	can
read	data	files	using	the	code	page	specified	by	the	user.	For	example,	to	bulk
copy	the	Authors.txt	data	file	into	the	authors2	table	in	the	pubs	database	using
code	page	850,	execute	from	a	query	tool	such	as	SQL	Query	Analyzer:

BULK	INSERT	pubs..authors2	FROM	'c:\authors.txt'
WITH	(
			CODEPAGE	=	850
)

The	following	are	valid	values	for	the	code	page.

Code	page	value Description
ACP Columns	of	char,	varchar,	or	text	data	type	are

converted	from	the	ANSI/Windows	code	page	(ISO
1252)	to	the	SQL	Server	code	page	when	importing	data
to	an	instance	of	SQL	Server,	and	vice	versa	when
exporting	data	from	an	instance	of	SQL	Server.

OEM	(default) Columns	of	char,	varchar,	or	text	data	type	are
converted	from	the	system	OEM	code	page	to	the	SQL
Server	code	page	when	importing	data	to	an	instance	of
SQL	Server,	and	vice	versa	when	exporting	data	from	an
instance	of	SQL	Server.

RAW This	is	the	fastest	option	because	no	conversion	from
one	code	page	to	another	occurs.

<value> Specific	code	page	number	(for	example,	850).

Column-level	Collations
In	SQL	Server	2000,	you	can	specify	column-level	collations	for	bulk	copy
operations.	These	collations	define	how	character	and	Unicode	data	is	stored	in
the	specified	columns	of	the	data	file.

Users	and	applications	specify	only	the	collation	in	which	the	data	is	stored	in
the	data	file.	The	bulk	copy	components	perform	internally	any	required
translations	between	the	data	file	collation	and	the	collations	of	the	source	or
destination	columns	in	the	database.

On	a	bulk	copy	out	operation,	the	column	and	default	collation	specifications
define	the	code	pages	used	to	build	all	SQLCHAR	data	in	the	resulting	bulk
copy	data	file.	On	a	bulk	copy	in	operation,	the	column	and	default	collation

specifications	define	the	code	pages	used	to	read	SQLCHAR	data	from	the
source	data	file.

If	the	SORTED	hint	is	specified	on	a	bulk	copy	in	operation,	the	collations
defined	for	any	character	and	Unicode	columns	referenced	in	the	SORTED	hint
define	the	expected	sequence	of	the	data.

On	a	bulk	copy	in	operation,	you	must	ensure	that	the	collation	specifications
you	make	match	the	collations	present	in	the	bulk	copy	data	file.

Format	files	in	SQL	Server	2000	support	an	eighth	column	in	which	you	can
provide	a	collation	specification	that	defines	how	the	data	for	that	column	is
stored	in	the	data	file:

"RAW"	specifies	the	data	is	stored	in	the	collation	specified	in	the	–C
switch,	BCPFILECP	hint,	or	CODEPAGE	option.	If	none	of	these	is
specified,	the	collation	of	the	data	file	is	that	of	the	OEM	code	page	of
the	bulk	copy	client	computer.

"name"	specifies	the	name	of	the	collation	used	to	store	the	data	in	the
data	file.

""	has	the	same	meaning	as	RAW.

This	is	an	example	of	a	format	file	with	column	collations	specified:

8.0
5
1		SQLCHAR		0			4		"/t"	pub_id			1			"SQL_LATIN1_General_Cp1_CI_AS_KI_WI"
2		SQLCHAR		0		40		"/t"	pub_name	2			"SQL_LATIN1_General_Cp850_BIN"
3		SQLCHAR		0		20		"/t"	city					3			"RAW"
4		SQLCHAR		0			2		"/t"	state				4			"RAW"
5		SQLCHAR		0		30		"/t"	country		5			""

Column	collation	specifications	are	ignored	for	columns	that	do	not	have
SQLCHAR	or	SQLNCHAR	specified	as	their	host	data	type.	Collations	for
SQLNCHAR	columns	are	ignored	on	bulk	copy	out	operations;	they	apply	only
to	bulk	copy	in	operations	where	the	SQLNCHAR	column	is	referenced	in	a

SORTED	hint.	Collations	apply	to	SQLCHAR	columns	on	both	in	and	out
operations.

On	a	bulk	copy	out	operation,	the	collation	specification	controls	only	the	code
page	used	to	store	character	data	in	the	bulk	copy	data	file.	It	applies	to:

All	columns	in	a	character	mode	data	file.

Any	column	in	a	native	mode	file	where	SQLCHAR	is	specified	as	the
host	file	data	type.

SQLCHAR	characters	whose	values	are	greater	than	127	or	less	than
32.	Collations	are	applied	to	characters	whose	values	are	between	32
and	127,	but	all	code	pages	map	the	same	characters	to	the	values	from
32	to	127,	so	applying	different	collations	has	no	noticeable	effect.

The	rules	for	determining	which	collation	is	used	on	a	bulk	copy	out	are:

If	a	column	collation	is	specified	in	either	a	format	file	or	by	using
bcp_setcolfmt,	the	character	data	is	stored	using	the	ANSI	code	page
associated	with	the	collation.	This	overrides	all	other	methods	of
specifying	a	collation.

If	a	column	collation	was	not	specified,	but	either	the	bcp	–C	switch	or
the	bcp_control	BCPFILECP	hint	was	specified,	all	SQLCHAR	data
from	columns	having	no	column	collation	specification	is	stored	using
the	code	page	specified	in	BCPFILECP	or	–C.	Column	collations	are
not	specified	for	any	columns	when	producing	a	character	mode	data
file	with	no	format	file.	This	rules	also	applies	when	""	or	"RAW"	is
specified	for	a	column	collation.

If	no	collations	are	specified	at	all	(no	column	collation	specifications,
no	–C	switch,	and	no	BCPFILECP	hint),	SQLCHAR	data	is	stored
using	the	OEM	code	page	of	the	bulk	copy	client	computer.

On	a	bulk	copy	in	operation,	the	collation	specification	controls:

How	bulk	copy	attempts	to	interpret	the	code	page	of	SQLCHAR
columns	in	the	data	file.

How	bulk	copy	applies	the	ORDER	hint.

For	a	bulk	copy	in	operation,	code	page	interpretation	applies	only	to	columns
stored	as	SQLCHAR	in	a	data	file.	All	columns	in	a	character	mode	data	file	are
stored	as	SQLCHAR	in	a	data	file.	It	also	applies	to	any	column	for	which
SQLCHAR	is	specified	in	a	format	file	or	using	bcp_setcolfmt:

If	a	column	collation	is	specified	in	a	format	file	or	using
bcp_setcolfmt,	the	SQLCHAR	data	in	a	data	file	is	interpreted	using
the	ANSI	code	page	associated	with	the	specified	column	collation.

If	a	column	collation	is	not	specified,	but	a	default	code	page	is
specified	using	the	BULK	INSERT	CODEPAGE	option,	the	bcp	–C
switch,	or	the	bcp_control	BCPFILECP	hint,	the	SQLCHAR	data	is
interpreted	using	the	code	page	specified	in	either	CODEPAGE,	–C,	or
BCPFILECP.

If	the	user	did	not	specify	any	collations	(no	column	collation,	no
BULK	INSERT	CODEPAGE	option,	no	bcp	–C	switch,	no
BCPFILECP	hint),	then	data	in	SQLCHAR	columns	is	interpreted	using
the	OEM	code	page	of	the	client	computer.

A	bulk	copy	in	operation	also	uses	collations	to	properly	interpret	the	ORDER
bulk	copy	hint.	This	applies	to	both	SQLCHAR	and	SQLNCHAR	columns.	The
data	in	the	columns	referenced	by	a	SORTED	hint	must	be	in	the	sequence
defined	by	the	collation	mapped	to	those	columns.

See	Also

bcp	Utility

BULK	INSERT.

SetCodePage	Method

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Unicode	Character	Format

Unicode	Native	Format

Administering	SQL	Server

Bulk	Copy	Performance	Considerations
To	bulk	copy	data	as	fast	as	possible,	it	is	important	to	understand	how	data	is
copied,	and	what	options	are	available	to	specify	how	data	should	be	copied.

Topic Description
The	Query	Processor Describes	how	bcp	and	BULK

INSERT	work	in	conjunction	with
the	query	processor.

Logged	and	Nonlogged	Bulk	Copies Describes	when	bulk	copy	operations
are	logged	and	how	to	perform
nonlogged	bulk	copy	operations.

Parallel	Data	Loads Describes	bulk	copying	data	in
parallel	from	multiple	clients	to	a
single	table.

Batch	Switches Describes	the	switches	used	to
control	the	size	of	batches	used	in
bulk	copy	operations.

Constraint	Checking Describes	how	to	specify	if
constraints	are	checked	during	bulk
copy	operations.

Ordered	Data	Files Describes	how	to	specify	the
ordering	of	data	in	a	data	file.

Bypassing	DEFAULT	Definitions Describes	how	to	bypass	default
values	specified	in	the	destination
table.

Controlling	the	Locking	Behavior Describes	how	to	specify	the	locking
behavior	used	during	bulk	copy
operations.

See	Also

Optimizing	Bulk	Copy	Performance

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

The	Query	Processor
The	bcp	utility	works	in	conjunction	with	the	query	processor	to	insert	data	into
an	instance	of	Microsoft®	SQL	Server™.	The	bcp	utility	generates	client	OLE
DB	rowsets	that	are	sent	to	SQL	Server	and	are	inserted	into	the	table	by	the
query	processor.	This	has	the	advantage	of	allowing	the	query	processor	to	plan
and	optimize	queries	that	import	and	export	data	from	an	instance	of	SQL
Server.	It	also	allows	optimized	index	maintenance,	constraint	checking,	and
parallel	data	load	operations.	The	BULK	INSERT	statement	works	in
conjunction	with	the	query	processor	to	bulk	copy	data	into	an	instance	of	SQL
Server.

Any	program	written	using	the	bulk	copy	API	takes	advantage	of	using	client
OLE	DB	rowsets	and	the	SQL	Server	query	processor	to	insert	data.

See	Also

Bulk-Copy	Rowsets

Constraint	Checking

Parallel	Data	Loads

Query	Processor	Architecture

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Logged	and	Minimally	Logged	Bulk	Copy	Operations
When	using	the	full	recovery	model,	all	row-insert	operations	performed	by	bcp
are	logged	in	the	transaction	log.	For	large	data	loads,	this	can	cause	the
transaction	log	to	fill	rapidly.	To	help	prevent	the	transaction	log	from	running
out	of	space,	a	minimally	logged	bulk	copy	can	be	performed	if	all	of	these
conditions	are	met:

The	recovery	model	is	simple	or	bulk-logged.

The	target	table	is	not	being	replicated.

The	target	table	does	not	have	any	triggers.

The	target	table	has	either	0	rows	or	no	indexes.

The	TABLOCK	hint	is	specified.	For	more	information,	see
Controlling	the	Locking	Behavior.

Any	bulk	copy	into	an	instance	of	Microsoft®	SQL	Server™	that	does	not	meet
these	conditions	is	logged.

Before	doing	bulk	copy	operations,	it	is	recommended	that	you	set	the	recovery
model	to	bulk-logged	if	you	usually	use	full	recovery.	This	will	prevent	the	bulk
copy	operations	from	using	excessive	log	space	and	possibly	filling	the	log.
However,	even	with	bulk-logged	recovery,	some	transaction	log	space	will	be
used.	You	may	want	to	create	transaction	log	backups	during	the	bulk	copy
operation	to	free	up	transaction	log	space.

When	bulk	copying	a	large	number	of	rows	into	a	table	with	indexes,	it	can	be
faster	to	drop	all	the	indexes,	perform	the	bulk	copy,	and	re-create	the	indexes.
For	more	information,	see	Optimizing	Bulk	Copy	Performance.

Note		Although	data	insertions	are	not	logged	in	the	transaction	log	when	a

JavaScript:hhobj_1.Click()

minimally	logged	bulk	copy	is	performed,	SQL	Server	still	logs	extent
allocations	each	time	a	new	extent	is	allocated	to	the	table.

See	Also

BACKUP

sp_dboption

SuspendIndexing	Property

UseBulkCopyOption	Property

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Administering	SQL	Server

Parallel	Data	Loads
Microsoft®	SQL	Server™	allows	data	to	be	bulk	copied	into	a	single	table	from
multiple	clients	in	parallel	using	the	bcp	utility	or	BULK	INSERT	statement.
This	can	improve	the	performance	of	data	load	operations.	To	bulk	copy	data
into	an	instance	of	SQL	Server	in	parallel:

Set	the	database	to	Bulk-Logged	Recovery	if	you	usually	use	the	Full
Recovery	model.

Specify	the	TABLOCK	hint.	For	more	information,	see	Controlling	the
Locking	Behavior.	

Ensure	the	table	does	not	have	any	indexes.

Note		Any	application	based	on	the	DB-Library	client	library	supplied	with	SQL
Server	version	6.5	or	earlier,	including	the	bcp	utility,	is	not	able	to	participate	in
parallel	data	loads	into	an	instance	of	SQL	Server.	Only	applications	using	the
ODBC	or	SQL	OLE	DB-based	APIs	can	perform	parallel	data	loads	into	a	single
table.

After	data	has	been	bulk	copied	into	a	single	table	from	multiple	clients,	any
nonclustered	indexes	that	need	to	be	created	can	also	be	created	in	parallel	by
simply	creating	each	nonclustered	index	from	a	different	client	concurrently.

Note		Any	clustered	index	on	the	table	should	be	created	first	from	a	single
client	before	creating	the	nonclustered	indexes.

See	Also

bcp	Utility

Logged	and	Nonlogged	Bulk	Copy	Operations

Optimizing	Bulk	Copy	Performance

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Batch	Switches
The	bcp	utility	and	BULK	INSERT	statement	accept	two	switches	that	allow	the
user	to	specify	the	number	of	rows	per	batch	sent	to	Microsoft®	SQL	Server™
for	the	bulk	copy	operation.

Bcp	utility	switch BULK	INSERT	clause
-b	batch_size BATCHSIZE	=	batch_size
-h	"ROWS_PER_BATCH	=	bb" ROWS_PER_BATCH	=

rows_per_batch

The	use	of	these	switches	has	a	large	effect	on	how	data	insertions	are	logged.

Using	the	-b	Switch	or	BATCHSIZE	Clause
Each	batch	of	rows	is	inserted	as	a	separate	transaction.	If,	for	any	reason,	the
bulk	copy	operation	terminates	before	completion,	only	the	current	transaction	is
rolled	back.	For	example,	if	a	data	file	has	1,000	rows,	and	a	batch	size	of	100	is
used,	SQL	Server	logs	the	operation	as	10	separate	transactions;	each	transaction
inserts	100	rows	into	the	destination	table.	If	the	bulk	copy	operation	terminates
while	copying	row	750,	only	the	previous	49	rows	are	removed	as	SQL	Server
rolls	back	the	current	transaction.	The	destination	table	still	contains	the	first	700
rows.

Using	ROWS_PER_BATCH
If	the	-b	switch	or	BATCHSIZE	clause	is	not	used,	the	entire	file	is	sent	to	SQL
Server	and	the	bulk	copy	operation	is	treated	as	a	single	transaction.	In	this	case,
the	ROWS_PER_BATCH	hint	or	ROWS_PER_BATCH	clause	can	be	used	to
give	an	estimate	of	the	number	of	rows.	SQL	Server	optimizes	the	load
automatically,	according	to	the	batch	size	value,	which	may	result	in	better
performance.

Note		Generally,	the	larger	the	batch	size	is,	the	better	the	performance	of	the
bulk	copy	operation	will	be.	Make	the	batch	size	as	large	as	is	practical,	although
accuracy	in	the	hint	is	not	critical.

If,	for	any	reason,	the	operation	terminates	before	completion,	the	entire
transaction	is	rolled	back,	and	no	new	rows	are	added	to	the	destination	table.

Although	all	rows	from	the	data	file	are	copied	into	an	instance	of	SQL	Server	in
one	batch,	bcp	displays	the	message	"1000	rows	sent	to	SQL	Server"	after	every
1000	rows.	This	message	is	for	information	only	and	occurs	regardless	of	the
batch	size.

Note		Supplying	both	switches	with	different	batch	sizes	will	generate	an	error
message.

When	bulk	copying	large	data	files	into	an	instance	of	SQL	Server,	it	is	possible
for	the	transaction	log	to	fill	before	the	bulk	copy	is	complete,	even	if	the	row
inserts	are	not	logged,	from	the	extent	allocation	logging.	In	this	situation,
enlarge	the	transaction	log,	allow	it	to	grow	automatically	or	perform	the	bulk
copy	using	the	-b	or	BATCHSIZE	switch,	and	set	the	recovery	model	to	simple.
Because	only	committed	transactions	can	be	truncated,	this	option	does	not	free
up	space	during	the	bulk	copy	operation	if	the	-b	switch	is	not	used;	the	entire
operation	is	logged	as	a	single	transaction.

The	bcp	utility	and	BULK	INSERT	statement	also	accept	the
KILOBYTES_PER_BATCH	hint	or	KILOBYTES_PER_BATCH	clause,
respectively,	which	can	be	used	to	specify	the	approximate	amount	of	data	(in
kilobytes)	contained	in	a	batch.	SQL	Server	optimizes	the	bulk	load	according	to
the	value	set.

Batch	sizes	are	not	applicable	when	bulk	copying	data	from	an	instance	of	SQL
Server	to	a	data	file.

See	Also

BACKUP

bcp	Utility

BULK	INSERT.

ImportRowsPerBatch	Property

Optimizing	Bulk	Copy	Performance

sp_dboption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Administering	SQL	Server

Constraint	Checking
The	bcp	utility	and	BULK	INSERT	statement	accept	the
CHECK_CONSTRAINTS	hint	and	CHECK_CONSTRAINT	clause,
respectively,	which	allows	the	user	to	specify	whether	constraints	are	checked
during	a	bulk	load.

By	default,	constraints	are	ignored	during	the	bulk	load.	This	improves	the
performance	of	the	bulk	load	but	allows	the	possibility	of	data	being	inserted
into	the	table	that	violates	existing	constraints.	CHECK_CONSTRAINTS
specifies	that	constraints	are	enforced	during	the	bulk	load.	This	reduces	the
performance	of	the	bulk	load	but	ensures	that	all	data	inserted	does	not	violate
any	existing	constraints.	For	example,	to	bulk	copy	data	from	the	Authors.txt
data	file	to	the	authors2	table	in	the	pubs	database,	specifying	that	any
constraints	should	be	enforced,	execute	from	the	command	prompt:

bcp	pubs..authors2	in	authors.txt	-c	-t,	-Sservername	-Usa	-Ppassword	

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool,	such
as	SQL	Query	Analyzer,	to	bulk	copy	data:

BULK	INSERT	pubs..authors2	FROM	'c:\authors.txt'
WITH	(
			DATAFILETYPE	=	'char',
			FIELDTERMINATOR	=	',',
			CHECK_CONSTRAINTS
)

When	data	is	copied	into	a	table,	any	triggers	defined	for	the	table	are	ignored.

To	find	any	rows	that	violate	constraints	or	triggers,	you	must	check	the	copied
data	manually	using	queries.	Bulk	copy	data	into	the	table	and	run	queries	or
stored	procedures	that	test	the	constraint	or	trigger	conditions,	such	as:

UPDATE	pubs..authors2	SET	au_fname	=	au_fname

Although	this	query	does	not	change	data	to	a	different	value,	it	causes
Microsoft®	SQL	Server™	to	update	each	value	in	the	au_fname	column	to
itself.	This	causes	any	constraints	or	triggers	to	be	tested.

Note		Although,	by	default,	constraints	on	the	table	are	not	checked	for	the	bulk
copy	operation	unless	CHECK_CONSTRAINTS	is	specified,	constraints	act	as
expected	for	other	concurrent	operations,	such	as	INSERT,	UPDATE,	or
DELETE.

See	Also

bcp	Utility

BULK	INSERT.

DBCC	CHECKCONSTRAINTS

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

Ordered	Data	Files
The	bcp	utility	and	BULK	INSERT	statement	accept	the	ORDER	hint	and
ORDER	clause,	respectively,	which	allows	the	user	to	specify	how	data	in	the
data	file	is	sorted.	Although	it	is	not	necessary	for	data	in	the	data	file	to	be
sorted	in	the	same	order	as	the	table,	the	same	ordering	can	improve
performance	of	the	bulk	copy	operation.

The	order	of	data	in	the	table	is	determined	by	the	clustered	index.	The	order	and
columns	listed	in	the	ORDER	hint	or	ORDER	clause	must	match	the	columns
and	be	in	the	same	order	in	the	clustered	index	to	improve	the	performance	of
the	bulk	copy	operation.

For	example,	to	bulk	copy	data	from	the	Authors.txt	data	file	to	the	authors2
table	in	the	pubs	database,	specifying	that	the	data	file	is	in	ascending	order	on
the	au_id	column,	execute	from	the	command	prompt:

bcp	pubs..authors2	in	authors.txt	-c	-t,	-Sservername	-Usa	-Ppassword	

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool,	such
as	SQL	Query	Analyzer,	to	bulk	copy	data:

BULK	INSERT	pubs..authors2	FROM	'c:\authors.txt'
WITH	(
			DATAFILETYPE	=	'char',
			FIELDTERMINATOR	=	',',
			ORDER	(au_id	ASC)
)

By	default,	the	bulk	copy	operation	assumes	that	the	data	file	is	unordered.

See	Also

bcp	Utility

BULK	INSERT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Optimizing	Bulk	Copy	Performance

JavaScript:hhobj_3.Click()

Administering	SQL	Server

Bypassing	DEFAULT	Definitions
The	bcp	utility	and	the	BULK	INSERT	statement	accept	the	-k	switch	and	the
KEEPNULLS	clause,	respectively,	which	can	be	used	to	specify	that	empty
columns	should	retain	a	null	value	during	the	bulk	copy	operation,	rather	than
have	any	default	values	for	the	columns	inserted.

Note		If	default	values	are	not	inserted,	the	column	must	be	defined	to	allow	null
values.

By	default,	when	data	is	copied	into	a	table	using	the	bcp	utility	or	BULK
INSERT	statement,	any	defaults	defined	for	the	columns	in	the	table	are
observed.	For	example,	if	there	is	a	null	field	in	a	data	file,	the	default	value	for
the	column	is	loaded	instead.

For	example,	the	data	file	Publishers.txt	has	two	rows:

0111,New	Moon	Books,Boston,MA,
0222,Binnet	&	Hardley,Washington,DC,USA

Commas	separate	the	fields;	a	newline	character	separates	the	rows.	There	is	no
country	for	the	first	row.	If	the	country	column	of	the	publishers	table	had	a
default	of	"USA",	the	rows	bulk	loaded	into	the	table	by	bcp	or	the	BULK
INSERT	statement	when	the	-k	switch	or	KEEPNULLS	clause	is	not	specified
are:

0111			New	Moon	Books																		Boston																MA						USA
0222			Binnet	&	Hardley																Washington												DC						USA

Alternatively,	to	bulk	copy	data	from	the	Publishers.txt	data	file	into	the
publishers	table	in	the	pubs	database	and	insert	the	value	null	into	the	country
column,	rather	than	the	default	value	of	"USA",	execute	from	the	command
prompt:

bcp	pubs..publishers	in	publishers.txt	-c	-t,	-Sservername	-Usa	-Ppassword	

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool,	such

as	SQL	Query	Analyzer,	to	bulk	copy	data:

BULK	INSERT	pubs..publishers	FROM	'c:\publishers.txt'
WITH	(
			DATAFILETYPE	=	'char',
			FIELDTERMINATOR	=	',',
			KEEPNULLS
)

Note		Although	DEFAULT	definitions	on	the	table	are	not	checked	for	the	bulk
copy	operation	if	-k	or	KEEPNULLS	is	specified,	DEFAULT	definitions	are
expected	for	other	concurrent	INSERT	statements.

See	Also

BACKUP

bcp	Utility

Creating	and	Modifying	DEFAULT	Definitions

ServerBCPKeepNulls	Property

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Administering	SQL	Server

Controlling	the	Locking	Behavior
The	bcp	utility	and	BULK	INSERT	statement	accept	the	TABLOCK	hint,
which	allows	the	user	to	specify	the	locking	behavior	used.	TABLOCK
specifies	that	a	bulk	update	table-level	lock	is	taken	for	the	duration	of	the	bulk
copy.	Using	TABLOCK	can	improve	performance	of	the	bulk	copy	operation
due	to	reduced	lock	contention	on	the	table.	For	example,	to	bulk	copy	data	from
the	Authors.txt	data	file	to	the	authors2	table	in	the	pubs	database,	specifying	a
table-level	lock,	execute	from	the	command	prompt:

bcp	pubs..authors2	in	authors.txt	-c	-t,	-Sservername	-Usa	-Ppassword	

Alternatively,	you	can	use	the	BULK	INSERT	statement	from	a	query	tool,	such
as	SQL	Query	Analyzer,	to	bulk	copy	data:

BULK	INSERT	pubs..authors2	FROM	'c:\authors.txt'
WITH	(
			DATAFILETYPE	=	'char',
			FIELDTERMINATOR	=	',',
			TABLOCK
)

If	TABLOCK	is	not	specified,	the	default	uses	row-level	locks,	unless	the	table
lock	on	bulk	load	option	is	set	to	on.	Setting	the	table	lock	on	bulk	load	option
using	sp_tableoption	sets	the	locking	behavior	for	a	table	during	a	bulk	load.

Table	lock	on	bulk	load Table	locking	behavior
Off Row-level	locks	used
On Table-level	lock	used

If	the	TABLOCK	hint	is	specified,	the	default	setting	for	the	table	set	with
sp_tableoption	is	overridden	for	the	duration	of	the	bulk	load.

Note		It	is	not	necessary	to	use	the	TABLOCK	hint	to	bulk	load	data	into	a	table
from	multiple	clients	in	parallel,	but	doing	so	can	improve	performance.

See	Also

bcp	Utility

BULK	INSERT.

sp_tableoption

Understanding	Locking	in	SQL	Server

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Administering	SQL	Server

Backing	Up	and	Restoring	Databases
The	backup	and	restore	component	of	Microsoft®	SQL	Server™	2000	provides
an	important	safeguard	for	protecting	critical	data	stored	in	SQL	Server
databases.

With	proper	planning,	you	can	recover	from	many	failures,	including:

Media	failure.

User	errors.

Permanent	loss	of	a	server.

Additionally,	backing	up	and	restoring	databases	is	useful	for	other	purposes,
such	as	copying	a	database	from	one	server	to	another.	By	backing	up	a	database
from	one	computer	and	restoring	the	database	to	another,	a	copy	of	a	database
can	be	made	quickly	and	easily.

This	section	provides	the	information	necessary	to	implement	a	complete	backup
and	recovery	plan.

Topic Description
Designing	a	Backup	and	Restore
Strategy

Helps	you	analyze	and	refine	your	data
availability	requirements	and	choose	a
recovery	model	for	each	database.

Using	Recovery	Models Describes	each	recovery	model	in
detail,	as	well	as	appropriate	backup
and	restore	strategies.	This	topic	also
describes	how	to	switch	between
recovery	models.

Backup	and	Restore	Operations Describes	the	various	types	of	backups
available	and	how	they	are	used.	This
topic	also	describes	point-in-time
recovery,	restarting	a	failed	backup	or
restore,	recovering	to	a	particular

transaction,	and	recovering	part	of	a
database.

Managing	Backups Describes	backup	devices,	the	backup
format,	and	removable	media
terminology.	This	section	also
describes	password	security	and	media
management	including	formatting,
appending,	overwriting,	listing,	and
verifying	media	contents.

Backing	Up	and	Restoring	the
System	Databases

Describes	the	procedures	necessary	to
protect	and	recover	the	system
databases.

Handling	Large	Mission-Critical
Environments

Describes	features	and	techniques
appropriate	for	highly	available	or
very	large	production	databases.	These
include	using	multiple	backup	devices,
file	and	filegroup	backups,	file
differential	backups,	and	snapshot
backups.

Copying	Databases	to	Other
Servers

Describes	the	use	of	backup	and
restore	to	quickly	transport	a	database
to	another	server.

See	Also

Backup/Restore	Architecture

Copying	Databases	to	Other	Servers

Databases

Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

Designing	a	Backup	and	Restore	Strategy
You	must	identify	the	requirements	for	the	availability	of	your	data	in	order	to
choose	the	appropriate	backup	and	restore	strategy.	Your	overall	backup	strategy
defines	the	type	and	frequency	of	backups	and	the	nature	and	speed	of	the
hardware	required	for	them.

It	is	strongly	recommended	that	you	test	your	backup	and	recovery	procedures
thoroughly.	Testing	helps	to	ensure	that	you	have	the	required	backups	to	recover
from	various	failures,	and	that	your	procedures	can	be	executed	smoothly	and
quickly	when	a	real	failure	occurs.

This	section	includes	the	following	topics.

Topic Description
Analyzing	Availability	and
Recovery	Requirements

Explains	the	basic	requirements	for
developing	a	backup	and	restore	plan.

Planning	for	Disaster	Recovery Explains	how	to	plan	for	a	disaster	(for
example,	the	complete	loss	of	a
server).

Selecting	a	Recovery	Model Introduces	Microsoft®	SQL	Server™
2000	recovery	models,	which	you
implement	after	analyzing	your
availability	requirements.

Administering	SQL	Server

Analyzing	Availability	and	Recovery	Requirements
In	order	to	develop	a	successful	backup	and	restore	plan,	you	must	understand
when	your	data	needs	to	be	accessible	and	the	potential	impact	of	data	loss	on
your	business.	Answering	the	following	questions	can	help	you	determine	your
availability	requirements	and	sensitivity	to	data	loss.	Then	you	can	choose	the
correct	Microsoft®	SQL	Server™	2000	recovery	models	for	your	databases	and
make	the	necessary	technical	and	financial	tradeoffs.

Here	are	some	basic	questions	to	help	you	analyze	your	availability	and	recovery
requirements:

What	are	your	availability	requirements?	What	portion	of	each	day	must
the	database	be	online?

What	is	the	financial	cost	of	downtime	to	your	business?

If	you	experience	media	failure,	such	as	a	failing	disk	drive,	what	is	the
acceptable	downtime?

In	case	of	a	disaster,	such	as	the	loss	of	a	server	in	a	fire,	what	is	the
acceptable	downtime?	

How	important	is	it	to	never	lose	a	change?

How	easy	would	it	be	to	re-create	lost	data?

Does	your	organization	employ	system	or	database	administrators?		

Who	will	be	responsible	for	performing	backup	and	recovery
operations,	and	how	will	they	be	trained?

Here	are	some	questions	to	help	you	choose	the	tools,	techniques,	and	hardware

appropriate	for	your	site:

How	large	is	each	database?

How	often	does	the	data	in	each	database	change?

Are	some	tables	modified	more	often	than	others?

What	are	your	critical	database	production	periods?

When	does	the	database	experience	heavy	use,	resulting	in	frequent
inserts	and	updates?

Is	transaction	log	space	consumption	likely	to	be	a	problem	due	to
heavy	update	activity?

Is	your	database	subject	to	periodic	bulk	data	loading?

Is	your	database	subject	to	risky	updates	or	application	errors	that	may
not	be	detected	immediately?

Is	your	database	server	part	of	a	SQL	Server	2000	failover	cluster	for
high	availability?

Is	your	database	in	a	multi-server	environment	with	centralized
administration?

Managing	Media

When	you	back	up	and	restore	a	database,	you	need	to	back	up	the	data	onto
media	(for	example,	tapes	and	disks).	It	is	recommended	that	your	backup	plan
include	provisions	for	managing	media,	such	as:

A	tracking	and	management	plan	for	storing	and	recycling	backup	sets.

A	schedule	for	overwriting	backup	media.

In	a	multi-server	environment,	a	decision	to	use	either	centralized	or
distributed	backups.

A	means	of	tracking	the	useful	life	of	media.

A	procedure	to	minimize	the	effects	of	the	loss	of	a	backup	set	or
backup	media	(for	example,	a	tape).

A	decision	to	store	backup	sets	on	or	offsite,	and	an	analysis	of	how	this
will	affect	recovery	time.

Administering	SQL	Server

Planning	for	Disaster	Recovery
You	need	to	create	a	disaster	recovery	plan	in	order	to	ensure	that	all	your
systems	and	data	can	be	quickly	restored	to	normal	operation	in	the	event	of	a
natural	disaster	(for	example,	a	fire)	or	a	technical	disaster	(for	example,	a	two-
disk	failure	in	a	RAID-5	array).	When	you	create	a	disaster	recovery	plan,	you
prepare	all	the	actions	that	must	occur	in	response	to	a	catastrophic	event.	It	is
recommended	that	you	verify	your	disaster	recovery	plan	through	the	simulation
of	a	catastrophic	event.

Consider	disaster	recovery	planning	in	light	of	your	own	environment	and
business	needs.	For	example,	suppose	a	fire	occurs	and	wipes	out	your	24-hour
data	center.	Are	you	certain	you	can	recover?	How	long	will	it	take	you	to
recover	and	have	your	system	available?	How	much	data	loss	can	your	users
tolerate?

Ideally,	your	disaster	recovery	plan	states	how	long	recovery	will	take	and	the
final	database	state	the	users	can	expect.	For	example,	you	might	determine	that
after	the	acquisition	of	specified	hardware,	recovery	will	be	completed	in	48
hours,	and	data	will	be	guaranteed	only	up	to	the	end	of	the	previous	week.

A	disaster	recovery	plan	can	be	structured	in	many	different	ways	and	can
contain	many	types	of	information,	including:

A	plan	to	acquire	hardware.	

A	communication	plan.	

A	list	of	people	to	be	contacted	in	the	event	of	a	disaster.	

Instructions	for	contacting	the	people	involved	in	the	response	to	the
disaster.	

Information	on	who	owns	the	administration	of	the	plan.

Running	a	Base	Functionality	Script

Usually,	you	include	a	base	functionality	script	as	part	of	your	disaster	recovery
plan	in	order	to	confirm	that	everything	is	working	as	intended.	The	base
functionality	script	provides	a	dependable	tool	for	the	system	administrator	or
database	administrator	to	be	able	to	see	that	the	database	is	back	in	a	viable	state,
without	depending	on	end	users	for	verification.	Most	commonly,	this	is	an	.sql
file	with	batched	SQL	statements	run	into	the	server	from	osql.	For	other
applications,	a	.bat	file	is	more	appropriate	because	it	can	contain	bcp	and	osql
commands.	This	base	functionality	script	is	very	application	specific,	and	it	can
take	many	different	forms.	For	example,	on	a	decision	support/reporting	system,
the	script	may	merely	be	a	copy	of	several	of	your	key	reporting	queries.	For	an
online	transaction	processing	(OLTP)	application,	the	script	may	execute	a	batch
of	stored	procedures	that	execute	INSERT,	UPDATE,	and	DELETE	statements.

Preparing	for	a	Disaster
To	prepare	for	disaster,	it	is	recommended	that	you	periodically	perform	the
following	steps:

Perform	regular	database	and	transaction	log	backups	to	minimize	the
amount	of	lost	data.	It	is	recommended	that	both	system	and	user
databases	be	backed	up.

Maintain	system	logs	in	a	secure	fashion.	Keep	records	of	all	service
packs	installed	on	Microsoft®	Windows	NT®	4.0	or	Windows®	2000
and	Microsoft	SQL	Server™.	Keep	records	of	network	libraries	used,
the	security	mode,	and	the	sa	password.

Maintain	a	base	functionality	script	for	quickly	assessing	minimal
capability.

Assess	the	steps	you	need	to	take	to	recover	from	a	disaster	ahead	of
time	on	another	server,	and	amend	the	steps	as	necessary	to	suit	your
environment.

Recovering	from	a	Disaster

To	recover	from	a	disaster,	perform	the	following	steps	after	acquiring	suitable
replacement	hardware:

1.	 Install	Windows	NT	4.0	or	Windows	2000,	and	apply	the	appropriate
service	pack.	Verify	that	appropriate	domain	functionality	exists.

2.	 Install	SQL	Server,	and	apply	the	appropriate	service	pack.	Restore	the
master	and	msdb	database	backups.	Restart	the	server	after	restoring
the	master	database.	

3.	 Reconfigure	the	server	for	the	appropriate	network	libraries	and
security	mode.

4.	 Confirm	that	SQL	Server	is	running	properly	by	checking	SQL	Server
Service	Manager	and	the	Windows	application	log.	If	the	Windows	NT
4.0	or	Windows	2000	name	was	changed,	use	sp_dropserver	and
sp_addserver	to	match	it	with	the	SQL	Server	computer	name.

5.	 Restore	and	recover	each	database	according	to	its	recovery	plan.

6.	 Verify	the	availability	of	the	system.	Run	a	base	functionality	script	to
ensure	correct	operation.

7.	 Allow	users	to	resume	normal	usage.

See	Also

Managing	Permissions

sqlservr	Application

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Selecting	a	Recovery	Model
Microsoft®	SQL	Server™	provides	three	recovery	models	to:

Simplify	recovery	planning.	

Simplify	backup	and	recovery	procedures.

Clarify	tradeoffs	between	system	operational	requirements.

These	models	each	address	different	needs	for	performance,	disk	and	tape	space,
and	protection	against	data	loss.	For	example,	when	you	choose	a	recovery
model,	you	must	consider	the	tradeoffs	between	the	following	business
requirements:

Performance	of	large-scale	operation	(for	example,	index	creation	or
bulk	loads).

Data	loss	exposure	(for	example,	the	loss	of	committed	transactions).		

Transaction	log	space	consumption.

Simplicity	of	backup	and	recovery	procedures.

Depending	on	what	operations	you	are	performing,	more	than	one	model	may	be
appropriate.	After	you	have	chosen	a	recovery	model	or	models,	plan	the
required	backup	and	recovery	procedures.

This	table	provides	an	overview	of	the	benefits	and	implications	of	the	three
recovery	models.

Recovery
model Benefits Work	loss	exposure

Recover	to	point
in	time?

Simple Permits	high- Changes	since	the Can	recover	to	the

performance	bulk
copy	operations.

Reclaims	log	space
to	keep	space
requirements
small.

most	recent	database
or	differential	backup
must	be	redone.

end	of	any	backup.
Then	changes	must
be	redone.

Full No	work	is	lost
due	to	a	lost	or
damaged	data	file.

Can	recover	to	an
arbitrary	point	in
time	(for	example,
prior	to	application
or	user	error).

Normally	none.

If	the	log	is	damaged,
changes	since	the
most	recent	log
backup	must	be
redone.

Can	recover	to	any
point	in	time.

Bulk-
Logged

Permits	high-
performance	bulk
copy	operations.

Minimal	log	space
is	used	by	bulk
operations.

If	the	log	is	damaged,
or	bulk	operations
occurred	since	the
most	recent	log
backup,	changes
since	that	last	backup
must	be	redone.

Otherwise,	no	work
is	lost.

Can	recover	to	the
end	of	any	backup.
Then	changes	must
be	redone.

When	a	database	is	created,	it	has	the	same	recovery	model	as	the	model
database.	To	alter	the	default	recovery	model,	use	ALTER	DATABASE	to
change	the	recovery	model	of	the	model	database.	You	set	the	recovery	model
with	the	RECOVERY	clause	of	the	ALTER	DATABASE	statement.	For	more
information,	see	ALTER	DATABASE.

Simple	Recovery
Simple	Recovery	requires	the	least	administration.	In	the	Simple	Recovery

JavaScript:hhobj_1.Click()

model,	data	is	recoverable	only	to	the	most	recent	full	database	or	differential
backup.	Transaction	log	backups	are	not	used,	and	minimal	transaction	log	space
is	used.	After	the	log	space	is	no	longer	needed	for	recovery	from	server	failure,
it	is	reused.

The	Simple	Recovery	model	is	easier	to	manage	than	the	Full	or	Bulk-Logged
models,	but	at	the	expense	of	higher	data	loss	exposure	if	a	data	file	is	damaged.

IMPORTANT		Simple	Recovery	is	not	an	appropriate	choice	for	production
systems	where	loss	of	recent	changes	is	unacceptable.

When	using	Simple	Recovery,	the	backup	interval	should	be	long	enough	to
keep	the	backup	overhead	from	affecting	production	work,	yet	short	enough	to
prevent	the	loss	of	significant	amounts	of	data.

For	more	information,	see	Simple	Recovery.

Full	and	Bulk-Logged	Recovery
Full	Recovery	and	Bulk-Logged	Recovery	models	provide	the	greatest
protection	for	data.	These	models	rely	on	the	transaction	log	to	provide	full
recoverability	and	to	prevent	work	loss	in	the	broadest	range	of	failure	scenarios.

The	Full	Recovery	model	provides	the	most	flexibility	for	recovering	databases
to	an	earlier	point	in	time.	For	more	information,	see	Full	Recovery.

The	Bulk-Logged	model	provides	higher	performance	and	lower	log	space
consumption	for	certain	large-scale	operations	(for	example,	create	index	or	bulk
copy).	It	does	this	at	the	expense	of	some	flexibility	of	point-in-time	recovery.
For	more	information,	see	Bulk-Logged	Recovery.

Because	many	databases	undergo	periods	of	bulk	loading	or	index	creation,	you
may	want	to	switch	between	Bulk-Logged	and	Full	Recovery	models.	For	more
information,	see	Switching	Recovery	Models.

See	Also

ALTER	DATABASE

JavaScript:hhobj_2.Click()

Administering	SQL	Server

Using	Recovery	Models
You	can	select	one	of	three	recovery	models	for	each	database	in	Microsoft®
SQL	Server™	2000	to	determine	how	your	data	is	backed	up	and	what	your
exposure	to	data	loss	is.	The	following	recovery	models	are	available:

Simple	Recovery

Simple	Recovery	allows	the	database	to	be	recovered	to	the	most	recent
backup.

Full	Recovery

Full	Recovery	allows	the	database	to	be	recovered	to	the	point	of
failure.

Bulk-Logged	Recovery

Bulk-Logged	Recovery	allows	bulk-logged	operations.

The	recovery	model	of	a	new	database	is	inherited	from	the	model	database
when	the	new	database	is	created.

Note		The	recovery	model	for	a	new	database	in	SQL	Server	2000	Personal
Edition	and	SQL	Server	2000	Desktop	Engine	defaults	to	Simple	Recovery.

Administering	SQL	Server

Simple	Recovery
With	the	Simple	Recovery	model,	the	database	can	be	recovered	to	the	point	of
the	last	backup.	However,	you	cannot	restore	the	database	to	the	point	of	failure
or	to	a	specific	point	in	time.	To	do	that,	choose	either	the	Full	Recovery	or
Bulk-Logged	Recovery	model.

The	backup	strategy	for	simple	recovery	consists	of:

Database	backups.

Differential	backups	(optional).

Note		This	model	is	similar	to	setting	the	trunc.	log	on	chkpt.	database	option
in	Microsoft®	SQL	Server™	version	7.0	or	earlier.

To	recover	in	the	event	of	media	failure

1.	 Restore	the	most	recent	full	database	backup.	

2.	 If	differential	backups	exist,	restore	the	most	recent	one.

Changes	since	the	last	database	or	differential	backup	are	lost.

To	create	a	database	backup

Administering	SQL	Server

Full	Recovery
The	Full	Recovery	model	uses	database	backups	and	transaction	log	backups	to
provide	complete	protection	against	media	failure.	If	one	or	more	data	files	is
damaged,	media	recovery	can	restore	all	committed	transactions.	In-process
transactions	are	rolled	back.

Full	Recovery	provides	the	ability	to	recover	the	database	to	the	point	of	failure
or	to	a	specific	point	in	time.	To	guarantee	this	degree	of	recoverability,	all
operations,	including	bulk	operations	such	as	SELECT	INTO,	CREATE	INDEX,
and	bulk	loading	data,	are	fully	logged.

The	backup	strategy	for	full	recovery	consists	of:

Database	backups.

Differential	backups	(optional).	

Transaction	log	backups.

Full	and	bulk-logged	recovery	are	similar	and	many	users	of	the	Full
Recovery	model	will	use	the	Bulk-Logged	model	on	occasion.	For	more
information,	see	Bulk-Logged	Recovery.

Recovering	in	the	Event	of	Media	Failure

You	can	restore	a	database	to	the	state	it	was	in	at	the	point	of	failure	if	the
current	transaction	log	file	for	the	database	is	available	and	undamaged.	To
restore	the	database	to	the	point	of	failure:

1.	 Back	up	the	currently	active	transaction	log.	For	more	information,	see
Transaction	Log	Backups.

2.	 Restore	the	most	recent	database	backup	without	recovering	the
database.

3.	 If	differential	backups	exist,	restore	the	most	recent	one.

4.	 Restore	each	transaction	log	backup	created	since	the	database	or
differential	backup	in	the	same	sequence	in	which	they	were	created
without	recovering	the	database.

5.	 Apply	the	most	recent	log	backup	(created	in	Step	1),	and	recover	the
database.

IMPORTANT		To	protect	against	loss	of	transactions	under	the	Full
Recovery	model,	the	transaction	log	must	be	protected	against
damage.	It	is	strongly	recommended	that	fault-tolerant	disk	storage	be
used	for	the	transaction	log.

To	create	a	database	backup

Administering	SQL	Server

Bulk-Logged	Recovery
The	Bulk-Logged	Recovery	model	provides	protection	against	media	failure
combined	with	the	best	performance	and	minimal	log	space	usage	for	certain
large-scale	or	bulk	copy	operations.	These	operations	are	minimally	logged:

SELECT	INTO.

Bulk	load	operations	(bcp	and	BULK	INSERT).

CREATE	INDEX	(including	indexed	views).

text	and	image	operations	(WRITETEXT	and	UPDATETEXT).

In	a	Bulk-Logged	Recovery	model,	the	data	loss	exposure	for	these	bulk	copy
operations	is	greater	than	in	the	Full	Recovery	model.	While	the	bulk	copy
operations	are	fully	logged	under	the	Full	Recovery	model,	they	are	minimally
logged	and	cannot	be	controlled	on	an	operation-by-operation	basis	under	the
Bulk-Logged	Recovery	model.	Under	the	Bulk-Logged	Recovery	model,	a
damaged	data	file	can	result	in	having	to	redo	work	manually.

In	addition,	the	Bulk-Logged	Recovery	model	only	allows	the	database	to	be
recovered	to	the	end	of	a	transaction	log	backup	when	the	log	backup	contains
bulk	changes.	Point-in-time	recovery	is	not	supported.

In	Microsoft®	SQL	Server™	2000,	you	can	switch	between	full	and	bulk-logged
recovery	models	easily.	It	is	not	necessary	to	perform	a	full	database	backup
after	bulk	copy	operations	complete	under	the	Bulk-Logged	Recovery	model.
Transaction	log	backups	under	this	model	capture	both	the	log	and	the	results	of
any	bulk	operations	performed	since	the	last	backup.

The	backup	strategy	for	bulk-logged	recovery	consists	of:

Database	backups.

Differential	backups	(optional).

Log	backups.

Backing	up	a	log	that	contains	bulk-logged	operations	requires	access	to
all	data	files	in	the	database.	If	the	data	files	are	not	accessible,	the	final
transaction	log	cannot	be	backed	up	and	all	committed	operations	in
that	log	will	be	lost.

To	recover	in	the	event	of	media	failure

1.	 Back	up	the	currently	active	transaction	log.	For	more	information,	see
Transaction	Log	Backups.

2.	 Restore	the	most	recent	full	database	backup.	

3.	 If	differential	backups	exist,	restore	the	most	recent	one.

4.	 Apply	in	sequence	all	transaction	log	backups	created	since	the	most
recent	differential	or	full	database	backup.

5.	 Manually	redo	all	changes	since	the	most	recent	log	backup.

IMPORTANT		If	the	active	transaction	log	is	lost	(for	example,	due	to	hardware
failure	on	the	disk	containing	the	transaction	log	files),	all	transactions	in	that	log
are	lost.	To	prevent	loss	of	the	active	transaction	log,	place	the	transaction	log
files	on	mirrored	disks.

To	create	a	database	backup

Administering	SQL	Server

Switching	Recovery	Models
You	can	switch	a	database	from	one	recovery	model	to	another	in	order	to	meet
changing	business	needs.	For	example,	a	mission-critical	online	transaction
processing	(OLTP)	system	requires	full	recoverability	but	periodically	undergoes
bulk	load	and	indexing	operations.	The	recovery	model	for	the	database	can	be
changed	to	Bulk-Logged	for	the	duration	of	the	load	and	indexing	operations	and
then	returned	to	Full	Recovery.	This	increases	performance	and	reduces	the
required	log	space	while	maintaining	server	protection.

Note		Switching	recovery	models	during	a	bulk	load	operation	is	permitted.	The
logging	of	the	bulk	operation	changes	appropriately.

The	following	table	indicates	what	action	to	take	when	switching	from	one
recovery	model	to	another.

From To Action Description
Full
Recovery

Bulk-Logged
Recovery

No	action Requires	no	change	in
backup	strategy.	Continue	to
perform	periodic	database,
log,	and	(optionally)
differential	backups.

Full
Recovery

Simple
Recovery

Optionally	back
up	the	transaction
log	prior	to	the
change

Executing	a	log	backup
immediately	before	the
change	permits	recovery	to
that	point.	After	switching	to
the	simple	model,	stop
executing	log	backups.

Bulk-Logged
Recovery

Full
Recovery

No	action Requires	no	change	in
backup	strategy.	Recovery	to
any	point	in	time	is	enabled
after	the	next	log	backup.	If
point-in-time	recovery	is
important,	execute	a	log
backup	immediately	after
switching.

Bulk-Logged
Recovery

Simple
Recovery

Optionally	back
up	the	transaction
log	prior	to	the
change

Executing	a	log	backup
immediately	before	the
change	permits	recovery	to
that	point.	After	switching	to
the	simple	model,	stop
executing	log	backups.

Simple
Recovery

Full
Recovery

Back	up	the
database	after	the
change

Execute	a	database	or
differential	backup	after
switching	to	the	Full
Recovery	model.	Begin
executing	periodic	database,
log,	and	(optionally)
differential	backups.

Simple
Recovery

Bulk-Logged
Recovery

Back	up	the
database	after	the
change

Execute	a	database	or
differential	backup	after
switching	to	the	bulk-logged
model.	Begin	executing
periodic	database,	log,	and
(optionally)	differential
backups.

Administering	SQL	Server

Backup	and	Restore	Operations
Microsoft®	SQL	Server™	supports	various	types	of	backups	to	be	used
separately	or	in	combination.	The	recovery	model	you	choose	will	determine
your	overall	backup	strategy,	including	the	types	of	backups	available	to	you.
For	more	information,	see	Designing	a	Backup	and	Restore	Strategy	and	Using
Recovery	Models.

The	following	table	illustrates	the	types	of	backups	that	are	available	for	each
recovery	model.

Model Backup	Type

	 Database
Database
differential

Transaction
log

File	or	file
differential

Simple Required Optional Not	allowed Not	allowed

Full
Required
(or	file	backups)

Optional Required Optional

Bulk-Logged
Required
(or	file	backups)

Optional Required Optional

Backups	are	created	on	backup	devices,	such	as	disk	or	tape	media.	With	SQL
Server,	you	can	decide	how	you	want	to	create	your	backups	on	backup	devices.
For	example,	you	can	overwrite	outdated	backups,	or	you	can	append	new
backups	to	the	backup	media.	For	more	information,	see	Managing	Backups.

Performing	a	backup	operation	has	minimal	effect	on	running	transactions,	so
backup	operations	can	be	run	during	normal	operations.

Note		Creating	or	deleting	database	files	is	not	possible	when	the	database	or
transaction	log	is	being	backed	up.	If	you	attempt	to	create	or	delete	a	database
file	while	a	backup	operation	is	in	progress,	the	create	or	delete	will	fail.	If	you
attempt	to	start	a	backup	operation	while	a	database	file	is	being	created	or
deleted,	the	backup	operation	will	wait	until	the	create	or	delete	is	completed	or
the	backup	operation	times	out.

See	Also

Selecting	a	Recovery	Model

Analyzing	Availability	and	Recovery	Requirements

Planning	for	Disaster	Recovery

Administering	SQL	Server

Database	Backups
A	database	backup	creates	a	duplicate	of	the	data	that	is	in	the	database	when	the
backup	completes.	This	is	a	single	operation,	usually	scheduled	at	regular
intervals.	Database	backups	are	self-contained.

You	can	re-create	the	entire	database	from	a	database	backup	in	one	step	by
restoring	the	database.	The	restore	process	overwrites	the	existing	database	or
creates	the	database	if	it	does	not	exist.	The	restored	database	will	match	the
state	of	the	database	at	the	time	the	backup	completed,	minus	any	uncommitted
transactions.	Uncommitted	transactions	are	rolled	back	when	the	database	is
recovered.

A	database	backup	uses	more	storage	space	per	backup	than	transaction	log	and
differential	database	backups.	Consequently,	database	backups	need	more	time
to	complete	the	backup	operation	and	so	are	typically	created	less	frequently
than	differential	database	or	transaction	log	backups.	For	more	information,	see
Transaction	Log	Backups	and	Differential	Database	Backups.

Restoring	a	Database	Backup
Restoring	a	database	backup	re-creates	the	database	and	all	of	its	associated	files
that	were	in	the	database	when	the	backup	was	completed.	However,	any
modifications	made	to	the	database	after	the	backup	was	created	are	lost.	To
restore	transactions	made	after	the	database	backup	was	created,	you	must	use
transaction	log	backups	or	differential	backups.

When	restoring	a	database,	Microsoft®	SQL	Server™:

1.	 Copies	all	of	the	data	from	the	backup	into	the	database.	The	rest	of
the	database	is	created	as	empty	space.

2.	 Rolls	back	any	incomplete	transactions	in	the	database	backup	to
ensure	that	the	database	is	consistent.

To	prevent	overwriting	a	database	unintentionally,	the	restore	operation	performs
safety	checks	automatically.	The	restore	operation	fails	if:

The	database	name	in	the	restore	operation	does	not	match	the	database
name	recorded	in	the	backup	set.

The	database	named	in	the	restore	operation	already	exists	on	the	server
but	is	not	the	same	database	contained	in	the	database	backup.	For
example,	the	database	names	are	the	same,	but	each	database	was
created	differently.

One	or	more	files	need	to	be	created	automatically	by	the	restore
operation,	but	the	file	names	already	exist.

These	safety	checks	can	be	disabled	if	the	intention	is	to	overwrite	another
database.	For	more	information,	see	RESTORE.

Note		If	you	restore	a	database	on	a	different	instance	of	SQL	Server	than	the
one	on	which	the	backup	was	created,	you	may	need	to	run
sp_change_users_login	to	update	user	login	information.	For	more	information,
see	sp_change_users_login.

Backing	Up	Full-Text	Indexes
Backing	up	a	database	does	not	back	up	full-text	index	data	in	full-text	catalogs.
However,	if	full-text	indexes	have	been	defined	for	tables,	the	meta	data	is
backed	up	when	a	database	backup	is	created.	After	a	database	backup	is
restored,	the	full-text	index	catalogs	can	be	re-created	and	repopulated.	For	more
information,	see	Full-text	Indexes.

Estimating	the	Size	of	Your	Database	Backup
Before	you	implement	a	backup	and	restore	strategy,	you	need	to	estimate	how
much	disk	space	your	database	backup	will	use.	During	a	database	backup,	the
backup	operation	copies	only	the	data	in	the	database	to	the	backup	file.	Because
the	database	backup	contains	only	the	actual	data	in	the	database	and	not	any
unused	space,	the	database	backup	is	likely	to	be	smaller	than	the	database	itself.
You	can	estimate	the	size	of	the	database	backup	by	using	the	sp_spaceused
system	stored	procedure.	For	more	information,	see	sp_spaceused.

To	create	a	database	backup

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Administering	SQL	Server

Differential	Database	Backups
A	differential	database	backup	records	only	the	data	that	has	changed	since	the
last	database	backup.	You	can	make	more	frequent	backups	because	differential
database	backups	are	smaller	and	faster	than	database	backups.	Making	frequent
backups	decreases	your	risk	of	losing	data.

Note		If	you	have	created	any	file	backups	since	the	last	full	database	backup,
those	files	will	be	scanned	by	Microsoft®	SQL	Server™	2000	at	the	beginning
of	a	differential	database	backup.	This	may	cause	some	degradation	of
performance	in	the	differential	database	backup.	For	more	information,	see
Using	File	Backups.

You	use	differential	database	backups	to	restore	the	database	to	the	point	at
which	the	differential	database	backup	was	completed.	To	recover	to	the	exact
point	of	failure,	you	must	use	transaction	log	backups.	For	more	information,	see
Transaction	Log	Backups.

Consider	using	differential	database	backups	when:

Only	a	relatively	small	portion	of	the	data	in	the	database	has	changed
since	the	last	database	backup.	Differential	database	backups	are
particularly	effective	if	the	same	data	is	modified	many	times.

You	are	using	the	Simple	Recovery	model	and	want	more	frequent
backups,	but	don't	want	to	do	frequent	full	database	backups.

You	are	using	the	Full	or	Bulk-Logged	Recovery	model	and	want	to
minimize	the	time	it	takes	to	roll	forward	transaction	log	backups	when
restoring	a	database.

A	recommended	process	for	implementing	differential	database	backups	is:

1.	 Create	regular	database	backups.

2.	 Create	a	differential	database	backup	periodically	between	database
backups,	such	as	every	four	hours	or	more	for	highly	active	systems.

3.	 If	using	Full	or	Bulk-Logged	Recovery,	create	transaction	log	backups
more	frequently	than	differential	database	backups,	such	as	every	30
minutes.

The	sequence	for	restoring	differential	database	backups	is:

1.	 Restore	the	most	recent	database	backup.

2.	 Restore	the	last	differential	database	backup.

3.	 Apply	all	transaction	log	backups	created	after	the	last	differential
database	backup	was	created	if	you	use	Full	or	Bulk-Logged
Recovery.

To	create	a	differential	database	backup

Administering	SQL	Server

Transaction	Log	Backups
The	transaction	log	is	a	serial	record	of	all	the	transactions	that	have	been
performed	against	the	database	since	the	transaction	log	was	last	backed	up.
With	transaction	log	backups,	you	can	recover	the	database	to	a	specific	point	in
time	(for	example,	prior	to	entering	unwanted	data),	or	to	the	point	of	failure.

When	restoring	a	transaction	log	backup,	Microsoft®	SQL	Server™	rolls
forward	all	changes	recorded	in	the	transaction	log.	When	SQL	Server	reaches
the	end	of	the	transaction	log,	it	has	re-created	the	exact	state	of	the	database	at
the	time	the	backup	operation	started.	If	the	database	is	recovered,	SQL	Server
then	rolls	back	all	transactions	that	were	incomplete	when	the	backup	operation
started.

Transaction	log	backups	generally	use	fewer	resources	than	database	backups.
As	a	result,	you	can	create	them	more	frequently	than	database	backups.
Frequent	backups	decrease	your	risk	of	losing	data.

Note		Sometimes	a	transaction	log	backup	is	larger	than	a	database	backup.	For
example,	a	database	has	a	high	transaction	rate	causing	the	transaction	log	to
grow	quickly.	In	this	situation,	create	transaction	log	backups	more	frequently.

Transaction	log	backups	are	used	only	with	the	Full	and	Bulk-Logged	Recovery
models.	For	more	information,	see	Using	Recovery	Models.

Using	Transaction	Log	Backups	with	Database	Backups
Restoring	a	database	using	both	database	and	transaction	log	backups	works
only	if	you	have	an	unbroken	sequence	of	transaction	log	backups	after	the	last
database	or	differential	database	backup.	If	a	log	backup	is	missing	or	damaged,
you	must	create	a	database	or	differential	database	backup	and	start	backing	up
the	transaction	logs	again.	Retain	the	previous	transaction	logs	backups	if	you
want	to	restore	the	database	to	a	point	in	time	within	those	backups.

The	only	time	database	or	differential	database	backups	must	be	synchronized
with	transaction	log	backups	is	when	starting	a	sequence	of	transaction	log
backups.	Every	sequence	of	transaction	log	backups	must	be	started	by	a
database	or	differential	database	backup.

Usually,	the	only	time	that	a	new	sequence	of	backups	is	started	is	when	the
database	is	backed	up	for	the	first	time	or	a	change	in	recovery	model	from
Simple	to	Full	or	Bulk-Logged	has	occurred.	For	more	information,	see
Switching	Recovery	Models.

Truncating	the	Transaction	Log
When	SQL	Server	finishes	backing	up	the	transaction	log,	it	automatically
truncates	the	inactive	portion	of	the	transaction	log.	This	inactive	portion
contains	completed	transactions	and	so	is	no	longer	used	during	the	recovery
process.	Conversely,	the	active	portion	of	the	transaction	log	contains
transactions	that	are	still	running	and	have	not	yet	completed.	SQL	Server	reuses
this	truncated,	inactive	space	in	the	transaction	log	instead	of	allowing	the
transaction	log	to	continue	to	grow	and	use	more	space.

Although	the	transaction	log	may	be	truncated	manually,	it	is	strongly
recommended	that	you	do	not	do	this,	as	it	breaks	the	log	backup	chain.	Until
a	full	database	backup	is	created,	the	database	is	not	protected	from	media
failure.	Use	manual	log	truncation	only	in	very	special	circumstances,	and
create	a	full	database	backup	as	soon	as	practical.

The	ending	point	of	the	inactive	portion	of	the	transaction	log,	and	hence	the
truncation	point,	is	the	earliest	of	the	following	events:

The	most	recent	checkpoint.	

The	start	of	the	oldest	active	transaction,	which	is	a	transaction	that	has
not	yet	been	committed	or	rolled	back.

This	represents	the	earliest	point	to	which	SQL	Server	would	have	to
roll	back	transactions	during	recovery.

The	start	of	the	oldest	transaction	that	involves	objects	published	for
replication	whose	changes	have	not	been	replicated	yet.

This	represents	the	earliest	point	that	SQL	Server	still	has	to	replicate.

Conditions	for	Backing	Up	the	Transaction	Log

The	transaction	log	cannot	be	backed	up	during	a	full	database	backup	or	a

differential	database	backup.	However,	the	transaction	log	can	be	backed	up
while	a	file	backup	is	running.

Do	not	back	up	the	transaction	log:

Until	a	database	or	file	backup	has	been	created	because	the	transaction
log	contains	the	changes	made	to	the	database	after	the	last	backup	was
created.	For	more	information,	see	Using	File	Backups.

If	the	transaction	log	has	been	explicitly	truncated,	unless	a	database	or
differential	database	backup	is	created	after	the	transaction	log
truncation	occurs.

Restoring	Transaction	Log	Backups

It	is	not	possible	to	apply	a	transaction	log	backup:

Unless	the	database	or	differential	database	backup	preceding	the
transaction	log	backup	is	restored	first.	

Unless	all	preceding	transaction	logs	created	since	the	database	or
differential	database	was	backed	up	are	applied	first.

If	a	previous	transaction	log	backup	is	lost	or	damaged,	you	can	restore
only	transaction	logs	up	to	the	last	backup	before	the	missing
transaction	log.

If	the	database	has	already	recovered	and	all	outstanding	transactions
have	been	either	rolled	back	or	rolled	forward.

When	applying	transaction	log	backups,	the	database	must	not	be
recovered	until	the	final	transaction	log	has	been	applied.	If	you	allow
recovery	to	take	place	when	applying	one	of	the	intermediate
transaction	log	backups,	you	cannot	restore	past	that	point	without
restarting	the	entire	restore	operation,	starting	with	the	database	backup.

Creating	a	Sequence	of	Transaction	Log	Backups

To	create	a	set	of	backups,	you	typically	make	a	database	backup	at	periodic

intervals,	such	as	daily,	and	transaction	log	backups	at	shorter	intervals,	such	as
every	10	minutes.	You	must	have	at	least	one	database	backup,	or	a	covering	set
of	file	backups,	to	make	log	backups	useful.	The	interval	between	backups	varies
with	the	criticality	of	the	data	and	the	workload	of	the	server.	If	your	transaction
log	is	damaged,	you	will	lose	work	performed	since	the	most	recent	log	backup.
This	suggests	frequent	log	backups	for	critical	data,	and	highlights	the
importance	of	placing	the	log	files	on	fault	tolerant	storage.

The	sequence	of	transaction	log	backups	is	independent	of	the	database	backups.
You	make	one	sequence	of	transaction	log	backups,	and	then	make	periodic
database	backups	that	are	used	to	start	a	restore	operation.	For	example,	assume
the	following	sequence	of	events.

Time Event
8:00	A.M. Back	up	database
Noon Back	up	transaction	log
4:00	P.M. Back	up	transaction	log
6:00	P.M. Back	up	database
8:00	P.M. Back	up	transaction	log
10:00	P.M. Failure	occurs

The	transaction	log	backup	created	at	8:00	P.M.	contains	transaction	log	records
from	4:00	P.M.	through	8:00	P.M.,	spanning	the	time	when	the	database	backup
was	created	at	6:00	P.M.	The	sequence	of	transaction	log	backups	is	continuous
from	the	initial	database	backup	created	at	8:00	A.M.	to	the	last	transaction	log
backup	created	at	8:00	P.M.	The	following	procedures	can	be	used	to	restore	the
database	to	its	state	at	10:00	P.M.	(point	of	failure).

Restore	the	database	using	the	last	database	backup	created.

1.	 Create	a	backup	of	the	currently	active	transaction	log.

2.	 Restore	the	6:00	P.M.	database	backup,	and	then	apply	the	8:00	P.M.
and	active	transaction	log	backups.

The	restore	process	detects	that	the	8:00	P.M.	transaction	log	backup
contains	transactions	that	have	occurred	prior	to	the	last	restored

backup.	Therefore,	the	restore	operation	scans	down	the	transaction
log	to	the	point	corresponding	to	when	the	6:00	P.M.	database	backup
completed	and	rolls	forward	only	the	completed	transactions	from	that
point	on	within	the	transaction	log	backup.	This	occurs	again	for	the
10:00	P.M.	transaction	log	backup.

Restore	the	database	using	an	earlier	database	backup	(earlier	than	the
most	recent	database	backup	created).

1.	 Create	a	backup	of	the	currently	active	transaction	log.

2.	 Restore	the	8:00	A.M.	database	backup,	and	then	restore	all	four
transaction	log	backups	in	sequence.	Do	not	restore	the	6:00	P.M.
database	backup.	This	rolls	forward	all	completed	transactions	up	to
10:00	P.M.

This	process	will	take	longer	than	restoring	the	6:00	P.M.	database
backup.

The	second	option	points	out	the	redundant	security	offered	by	a	chain	of
transaction	log	backups	that	can	be	used	to	restore	a	database	even	if	a	database
backup	is	lost.	You	can	restore	an	earlier	database	backup,	and	then	restore	all	of
the	transaction	log	backups	created	after	the	database	backup	was	created.

Note		It	is	important	not	to	lose	a	transaction	log	backup.	Consider	making
multiple	copies	of	log	backup	sets.	This	can	be	accomplished	by	backing	the	log
up	to	disk,	then	copying	the	disk	file	to	another	device,	such	as	a	separate	disk	or
tape.

Recovery	and	Transaction	Logs
When	you	finish	the	restore	operation	and	recover	the	database,	all	incomplete
transactions	are	rolled	back.	This	is	required	to	restore	the	integrity	of	the
database.

After	this	has	been	done,	no	more	transaction	log	backups	can	be	applied	to	the
database.	For	example,	a	series	of	transaction	log	backups	contain	a	long-
running	transaction.	The	start	of	the	transaction	is	recorded	in	the	first
transaction	log	backup,	but	the	end	of	the	transaction	is	recorded	in	the	second

transaction	log	backup.	There	is	no	record	of	a	commit	or	rollback	operation	in
the	first	transaction	log	backup.	Therefore,	if	a	recovery	operation	runs	when	the
first	transaction	log	backup	is	applied,	the	long-running	transaction	is	treated	as
incomplete.	Data	modifications	recorded	in	the	first	transaction	log	backup	for
the	transaction	are	rolled	back.	SQL	Server	does	not	allow	the	second	transaction
log	backup	to	be	applied	after	the	recovery	operation	has	run.

Therefore,	when	restoring	transaction	log	backups,	the	database	must	not	be
recovered	until	the	final	transaction	log	has	been	applied.	This	prevents	any
transactions	from	being	partially	rolled	back.	The	only	time	outstanding
transactions	need	to	be	rolled	back	is	at	the	end	of	the	last	restore	operation.

Administering	SQL	Server

Backup	Restrictions
In	Microsoft®	SQL	Server™,	backup	operations	can	occur	while	the	database	is
online	and	in	use.	However,	some	operations	are	not	allowed	during	a	database
backup:

Creating	or	deleting	database	files.

The	file	truncation	portion	of	a	shrink	operation	on	either	the	database
(automatically	or	manually)	or	the	database	files.	They	will	fail	if	a
backup	is	running.	You	can	perform	the	truncation	after	the	backup
completes.	For	more	information,	see	Shrinking	a	Database.

If	a	backup	is	started	when	one	of	these	operations	is	in	progress,	the	backup
waits	for	the	operation	to	complete,	up	to	the	limit	set	by	the	session	timeout.	If	a
backup	is	in	progress	and	one	of	these	operations	is	attempted,	the	operation	fails
and	the	backup	continues.

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Restoring	a	Database	to	a	Prior	State
At	times,	you	may	want	to	restore	your	database	to	an	earlier	point	in	time.	For
example,	if	an	earlier	transaction	within	a	database	changed	some	data
incorrectly,	you	will	need	to	restore	the	database	to	a	point	in	time	earlier	than
the	incorrect	data	entry.	To	do	this,	recover	the	entire	database	to	a	point	within	a
transaction	log.	You	can	recover	a	database	to	either	a	specific	point	in	time
within	a	transaction	log	or	to	a	named	mark	that	was	previously	inserted	into	the
log.

To	create	a	transaction	log	backup

Administering	SQL	Server

Recovering	to	a	Point	In	Time
You	can	recover	to	a	point	in	time	by	recovering	only	the	transactions	that
occurred	before	a	specific	point	in	time	within	a	transaction	log	backup,	rather
than	the	entire	backup.	By	viewing	the	header	information	of	each	transaction
log	backup	or	the	information	in	the	backupset	table	in	msdb,	you	can	quickly
identify	which	backup	contains	the	time	to	which	you	want	to	restore	the
database.	You	then	need	only	apply	transaction	log	backups	up	to	that	point.

You	cannot	skip	specific	transactions.	This	would	compromise	the	integrity	of
the	data	in	the	database.	Any	transactions	that	occur	after	the	transaction	you
want	to	undo	might	depend	on	the	data	modified	by	the	undone	transaction.

If	you	do	not	want	to	restore	any	modifications	made	to	the	database	after	a
specific	point	in	time:

Restore	the	last	database	backup	without	recovering	the	database.	

Apply	each	transaction	log	backup	in	the	same	sequence	in	which	they
were	created.	

Recover	the	database	at	the	desired	point	in	time	within	a	transaction
log	backup.

This	process	also	can	be	used	to	restore	a	database	and	transaction	logs	if	some
transaction	log	backups	created	after	a	point	in	time	are	missing	or	damaged.

To	restore	to	a	point	in	time

Administering	SQL	Server

Recovering	to	a	Named	Transaction
Microsoft®	SQL	Server™	2000	supports	the	insertion	of	named	marks	into	the
transaction	log	to	allow	recovery	to	that	specific	mark.	Log	marks	are
transactional	and	are	inserted	only	if	their	associated	transaction	commits.	As	a
result,	marks	can	be	tied	to	specific	work,	and	you	can	recover	to	a	point	that
includes	or	excludes	this	work.

Before	inserting	named	marks	into	the	transaction	log,	consider	the	following:

Because	transaction	marks	consume	log	space,	use	them	only	for
transactions	that	play	a	significant	role	in	the	database	recovery	strategy.

For	each	marked	transaction	that	commits,	a	row	is	inserted	in	the
logmarkhistory	table	in	msdb.	

If	a	marked	transaction	spans	multiple	databases	on	the	same	database
server	or	on	different	servers,	the	marks	must	be	recorded	in	the	logs	of
all	the	affected	databases.	For	more	information,	see	Backup	and
Recovery	of	Related	Databases.

Inserting	Named	Marks	into	a	Transaction	Log

To	insert	marks	into	the	transaction	logs,	use	the	BEGIN	TRANSACTION
statement	and	the	WITH	MARK	[description]	clause.	Because	the	name	of	the
mark	is	the	same	as	its	transaction,	a	transaction	name	is	required.	The	optional
description	is	a	textual	description	of	the	mark.

The	transaction	log	records	the	mark	name,	description,	database,	user,	datetime
information,	and	the	Log	Sequence	Number	(LSN).	To	allow	their	reuse,	the
transaction	names	are	not	required	to	be	unique.	The	datetime	information	is
used	along	with	the	name	to	uniquely	identify	the	mark.

Recovering	to	a	Mark

There	are	two	ways	to	recover	to	a	mark	in	the	log:

Use	RESTORE	LOG	and	the	WITH	STOPATMARK='mark_name'
clause	to	roll	forward	to	the	mark	and	include	the	transaction	that
contains	the	mark.

Use	RESTORE	LOG	and	the	WITH
STOPBEFOREMARK='mark_name'	clause	to	roll	forward	to	the	mark
and	exclude	the	transaction	that	contains	the	mark.

The	WITH	STOPATMARK	and	WITH	STOPBEFOREMARK	clauses	support
an	optional	AFTER	datetime	clause.	If	AFTER	datetime	is	omitted,	recovery
stops	at	the	first	mark	with	the	specified	name.	If	AFTER	datetime	is	specified,
recovery	stops	at	the	first	mark	with	the	specified	name	on	or	after	datetime.

Note		Recovering	to	a	mark	is	subject	to	the	same	restrictions	as	point-in-time
recovery.	Specifically,	recovering	to	a	mark	is	disallowed	during	intervals	in
which	the	database	is	undergoing	operations	that	are	bulk-logged.

Administering	SQL	Server

Recovery	Paths
A	new	recovery	path	is	created	if	you	recover	a	database	to	an	earlier	point	in
time	and	begin	using	the	database	from	that	point.	This	recovery	path	will
contain	new	transactions	that	make	it	unique.	If	you	need	to	restore	the	database
again,	it	is	not	possible	to	combine	the	data	from	the	two	recovery	paths.	You
must	restore	data	along	one	path	or	the	other.

Note		Restoring	a	full	database	backup	and	recovering	the	database	without
using	any	other	type	of	backup	does	not	result	in	a	new	recovery	path.

Examples	of	when	a	new	recovery	path	is	created	include:

Restoring	a	full	database	backup	and	a	differential	backup	and
recovering	the	database	without	applying	existing	transaction	log
backups.

Recovering	the	database	at	the	end	of	a	differential	backup	other	than
the	most	recent	differential	backup.

Recovering	the	database	at	the	end	of	a	transaction	log	backup	other
than	the	most	recent	transaction	log	backup.

Recovering	the	database	at	a	specific	time	or	a	marked	transaction
within	a	transaction	log	backup.

In	the	example	above,	a	Full	Database	Backup	and	a	sequence	of	four	Log
Backups	are	created.	The	database	is	then	restored	to	the	end	of	Log	Backup	2
by	restoring	the	Full	Database	Backup,	Log	Backup	1,	and	Log	Backup	2.	The
database	is	recovered	at	this	point,	creating	a	new	recovery	path.	The	database	is
then	used	for	a	time,	and	two	more	transaction	log	backups,	Log	Backup	5	and
Log	Backup	6,	are	created.	If	you	again	restore	the	Full	Database	Backup	and
apply	transaction	log	backups,	you	must	follow	one	of	the	two	recovery	paths:

Log	Backup	1,	Log	Backup	2,	Log	Backup	3,	and	Log	Backup	4

-or-

Log	Backup	1,	Log	Backup	2,	Log	Backup	5,	and	Log	Backup	6

The	database	can	be	recovered	at	any	point	in	time	along	either	path,	but	it	is	not
possible	to	combine	data	from	the	two.	For	example,	you	cannot	restore	Log
Backups	1	through	6	in	sequence	because	Log	Backups	3	and	4	contain	data	that
is	inconsistent	with	Log	Backups	5	and	6.

Administering	SQL	Server

Partial	Database	Restore	Operations
Application	or	user	errors	often	affect	an	isolated	portion	of	the	database,	such	as
a	table.	To	support	recovery	from	these	events,	Microsoft®	SQL	Server™
provides	a	mechanism	to	restore	part	of	the	database	to	another	location	so	that
the	damaged	or	missing	data	can	be	copied	back	to	the	original	database.	For
example,	if	an	application	erroneously	dropped	a	table,	you	may	want	to	restore
only	the	part	of	the	database	that	contained	the	table.	Restoring	log	or
differential	backups	can	bring	the	table	to	a	point	prior	to	when	the	table	was
dropped.	Then	the	content	of	the	table	can	be	extracted	and	reloaded	into	the
original	database.

Performing	a	partial	restore	operation	is	also	useful	when	you	are:

Creating	a	subset	of	a	database	on	another	server	for	development	or
reporting	purposes.

Restoring	archived	data.

Partial	restore	operations	work	with	database	filegroups.	The	primary	filegroup
is	always	restored,	along	with	the	files	that	you	specify	and	their	corresponding
filegroups.	The	result	is	a	subset	of	the	database.	Filegroups	that	are	not	restored
are	marked	as	offline	and	are	not	accessible.

Note		Because	the	primary	file	is	restored,	all	catalogs	(except	full-text	catalogs)
are	restored,	even	those	associated	with	files	that	are	not	included	in	the	restore
operation.

Partial	restore	operations	are	accomplished	with	the	PARTIAL	clause	of	the
RESTORE	statement.	You	can	also	use	the	PARTIAL	option	when	restoring	a
full	database	backup.	Partial	database	restore	of	file	backups	is	not	supported.

To	perform	a	partial	restore	operation

1.	 Execute	the	RESTORE	DATABASE	statement	using	a	full	database
backup,	specifying:

The	name	of	the	database	to	restore.	Specify	a	new	name	for
the	database,	unless	you	are	planning	to	overwrite	the	original

database	or	are	restoring	the	database	on	a	different	server.

The	backup	device	from	which	the	database	backup	will	be
restored.

The	FILEGROUP	clause	for	each	file	or	filegroup	to	restore.

Note		If	a	file	is	specified,	all	of	the	files	in	its	filegroup	are
also	restored.

The	MOVE	clause	if	you	are	restoring	the	files	in	a	new
location.

The	PARTIAL	clause.	

The	NORECOVERY	clause,	if	there	are	transaction	log	or
differential	backups	to	be	applied.	Otherwise,	specify
RECOVERY.

2.	 Optionally,	execute	the	RESTORE	DATABASE	statement	to	restore	a
differential	database	backup,	specifying:

The	name	of	the	database	to	which	the	differential	database
backup	will	be	applied.

The	backup	device	where	the	differential	database	backup
will	be	restored	from.

The	NORECOVERY	clause,	if	you	have	transaction	log
backups	to	apply	after	the	differential	database	backup	is
restored;	otherwise	specify	the	RECOVERY	clause.

3.	 Execute	the	RESTORE	LOG	statement	to	apply	each	transaction	log
backup,	specifying:

The	name	of	the	database	to	which	the	log	is	to	be	applied.

The	backup	device	from	which	the	log	backup	will	be
restored.

The	NORECOVERY	clause,	if	there	are	other	log	backups	to
be	applied.	Otherwise,	specify	RECOVERY.

Examples

This	example	performs	a	partial	restore	operation	in	a	database,	named	mywind.
mywind	is	using	the	Full	Recovery	model.	The	database	is	created	on	two
filegroups,	new_customers,	which	contains	the	file	mywind_data_1,	and	sales,
which	contains	the	file	mywind_data_2:

CREATE	DATABASE	mywind
GO

ALTER	DATABASE	mywind	ADD	FILEGROUP	new_customers
ALTER	DATABASE	mywind	ADD	FILEGROUP	sales
GO

ALTER	DATABASE	mywind	ADD	FILE	
			(NAME='mywind_data_1',
			FILENAME='g:\mw.dat1')	
			TO	FILEGROUP	new_customers
ALTER	DATABASE	mywind	
			ADD	FILE	
			(NAME='mywind_data_2',
			FILENAME='g:\mw.dat2')	
			TO	FILEGROUP	sales
GO

A	full	database	backup	is	performed.	Then	the	t1	table	is	created	on
new_customers	and	the	t2	table	is	created	on	sales.	The	transaction	log	is

backed	up:

BACKUP	DATABASE	mywind
			TO	DISK	='g:\mywind.dmp'
			WITH	INIT
GO

USE	mywind
GO

CREATE	TABLE	t1	(id	int)	ON	new_customers
CREATE	TABLE	t2	(id	int)	ON	sales
GO

BACKUP	LOG	mywind	TO	DISK='g:\mywind.dmp'
WITH	NOINIT
GO

At	some	point,	it	becomes	necessary	to	restore	the	t2	table	on	the	sales	filegroup.
RESTORE	FILELISTONLY	lists	the	database	files	and	the	filegroups	in	which
they	reside.	RESTORE	HEADERONLY	lists	the	contents	of	the	backup
medium:

RESTORE	FILELISTONLY	FROM	DISK='g:\mywind.dmp'
GO
RESTORE	HEADERONLY	FROM	DISK='g:\mywind.dmp'
GO

The	RESTORE	DATABASE	statement	restores	the	database	under	a	different
name	and	the	sales	filegroup	using	the	WITH	PARTIAL	and	NORECOVERY
options.	In	addition,	the	primary	file	and	filegroup	(mywind),	the	log
(mywind_log),	and	all	files	in	the	restored	filegroup	(in	this	example,
mywind_data_2	is	the	only	file	in	sales)	are	moved	to	a	new	location.	The	log	is
then	recovered:

RESTORE	DATABASE	mywind_part	

			FILEGROUP	=	'sales'
			FROM	DISK='g:\mywind.dmp'	
			WITH	FILE=1,NORECOVERY,PARTIAL,
			MOVE	'mywind'	TO	'g:\mw2.pri',
			MOVE	'mywind_log'	TO	'g:\mw2.log',
			MOVE	'mywind_data_2'	TO	'g:\mw2.dat2'
GO

RESTORE	LOG	mywind_part	
			FROM	DISK	=	'g:\mywind.dmp'	
			WITH	FILE	=	2,RECOVERY
GO

Notice	that	t2	is	accessible	after	the	partial	restore	operation.
SELECT	COUNT(*)	FROM	mywind_part..t2

Here	is	the	result:

0

Notice	that	t1	is	not	accessible	after	the	partial	restore	operation.

SELECT	COUNT(*)	FROM	mywind_part..t1

Here	is	the	resulting	message:

The	query	processor	is	unable	to	produce	a	plan	because	
the	table	'mywind_part..t1'	is	marked	OFFLINE.

See	Also

Recovering	to	a	Point	In	Time

RESTORE

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Recovering	a	Database	Without	Restoring
Usually,	you	recover	the	database	when	you	restore	the	last	backup.	It	is	also
possible	to	recover	the	database	without	restoring	a	backup.	This	is	necessary	if:

You	did	not	recover	the	database	as	part	of	the	last	restore,	but	you	now
want	to	use	the	database.

Your	database	is	in	standby	mode,	and	you	want	to	make	it	updatable
without	applying	another	log	backup.

To	recover	a	database	without	restoring

Administering	SQL	Server

Restarting	Interrupted	Backup	and	Restore
Operations
If	a	backup	or	restore	operation	is	interrupted	(for	example,	if	the	power	fails),
you	can	restart	the	backup	or	restore	operation	from	the	point	at	which	it	was
interrupted.	This	can	be	useful	if	you	restore	large	databases	onto	other	servers
as	an	automated	process.	If	the	automated	process	fails	near	the	end	of	the
restore	operation,	you	can	attempt	to	restart	the	restore	operation	from	where	it
left	off,	rather	than	restoring	the	whole	database	from	the	beginning.

To	restart	an	interrupted	backup	operation

Administering	SQL	Server

Backup	and	Recovery	of	Related	Databases
If	you	have	two	or	more	databases	that	must	be	logically	consistent,	you	may
need	to	implement	special	procedures	to	ensure	the	recoverability	of	these
databases.

It	is	important	to	consider	the	recovery	goals	for	the	entire	set	of	databases.	In
the	worst	case	you	need	to	consider	how	long	it	will	take	to	recover	all	of	the
databases.	To	avoid	excessive	recovery	with	a	large	number	of	databases,	you
need	to	avoid	sharing	media	at	backup	time,	and	you	need	sufficient	hardware	to
restore	the	databases	in	parallel.

Three	potential	related	database	scenarios	are:

You	experience	media	failure	that	affects	one	or	more	of	the	databases,
but	the	transaction	log(s)	are	not	damaged.	You	want	to	recover	to
current	time.

One	or	more	transaction	logs	are	destroyed.	You	need	to	restore	the	set
of	databases	to	a	consistent	state	at	the	time	of	your	last	log	backup.

You	need	to	restore	the	entire	set	of	databases	to	a	mutually	consistent
state	at	some	earlier	point	in	time.

In	all	three	of	these	cases,	you	must	be	using	the	Full	Recovery	model	for	these
databases.	For	more	information,	see	Full	Recovery.

The	first	scenario	does	not	require	you	to	implement	any	special	recovery
procedures.	To	recover	the	damaged	databases,	back	up	the	tail	of	the	log,
restore	the	damaged	files	or	the	database,	and	then	roll	forward	using	transaction
log	backups.	The	undamaged	databases	require	no	action.

The	other	two	scenarios	require	you	to	use	a	special	procedure	to	ensure
recoverability:	marking	transactions	in	the	databases.

Marked	Transaction	Basics

You	can	mark	transactions	across	related	databases	and	use	these	marked
transactions	to	recover	related	databases	to	the	same	transaction-consistent	point
in	time.	Accomplish	this	by	placing	distributed	marks	across	all	databases	before
backing	up	the	log	in	any	database.	This	will	ensure	that	all	log	backups	have	a
mark	that	will	appear	in	all	databases.	Synchronized	backups	are	not	necessary.
Instead,	placing	marks	in	the	transaction	log	allows	synchronization	during
restore.	Use	the	Full	Recovery	model	to	ensure	that	all	the	marks	will	be	valid.

IMPORTANT		Related	database	recovery	does	not	allow	recovery	to	a	specific
point	in	time.	Recovery	of	related	databases	can	only	be	accomplished	by
recovering	to	a	marked	transaction.

An	example	of	related	database	recovery	is	a	bank	that	has	a	database	containing
checking	account	data	and	another	database	containing	savings	account	data.
The	two	databases	are	located	on	different	servers,	and	there	are	transactions	that
transfer	funds	back	and	forth	between	checking	accounts	and	savings	accounts.
When	the	databases	are	backed	up	while	fund	transfer	transactions	are	active	in
the	system,	even	if	the	databases	are	backed	up	at	the	same	time,	there	is	a	good
chance	that	some	transfer	transactions	will	have	committed	in	one	database	but
not	the	other.	Marked	transactions	can	be	used	to	backup	and	later	restore	these
databases	to	a	point	where	the	outcome	of	all	transactions	is	the	same	in	both	of
the	restored	databases.

For	this	example,	the	backup	strategy	would	be:

1.	 Set	the	recovery	model	to	Full	for	both	databases.

2.	 Back	up	each	database.

Databases	can	be	backed	up	in	series	or	in	parallel.

3.	 Prior	to	backing	up	the	transaction	log,	run	a	marked	transaction	that
spans	each	database.

4.	 Back	up	the	transaction	log	on	each	database.

To	restore	the	backup:

1.	 Restore	each	database	backup.

2.	 Restore	each	log	backup,	stopping	at	the	marked	transaction.

3.	 Recover	each	database.

In	the	event	of	a	media	failure,	if	you	want	to	recover	all	the	databases	to	a
marked	transaction,	you	must	determine	the	most	recent	marked	transaction	that
is	available	in	all	of	the	transaction	logs.	This	information	is	stored	in	the
logmarkhistory	table,	which	is	in	the	msdb	database,	on	all	of	the	servers.

When	you	have	determined	the	marked	transaction	to	which	you	want	to	restore:

1.	 Identify	the	log	backups	for	all	related	databases	containing	this	mark.

2.	 Create	transaction	log	backups	on	the	undamaged	databases	as
required.

3.	 Resolve	hardware	problems.

4.	 Restore	and	recover	all	related	databases	to	the	target	mark.

Creating	Marked	Transactions

The	statement	BEGIN	TRAN	new_name	WITH	MARK	can	be	nested	within	an
already	existing	transaction.	Upon	doing	so,	new_name	becomes	the	mark	name
for	the	transaction,	despite	the	name	that	the	transaction	may	already	have	been
given.	Issuing	a	second,	nested	BEGIN	TRAN...WITH	MARK	will	result	in	a
warning	(not	error)	message:

Server:	Msg	3920,	Level	16,	State	1,	Line	2
WITH	MARK	option	only	applies	to	the	first	BEGIN	TRAN	WITH	MARK.
The	option	is	ignored.

The	transaction	mark	is	only	placed	in	the	logs	of	databases	that	are	updated	by
the	marked	transaction.	In	addition,	the	only	databases	that	will	contain	the	mark

are	those	on	the	server	where	the	BEGIN	TRAN...WITH	MARK	statement	was
executed.	The	following	example	shows	how	to	put	a	mark	in	multiple
databases:

BEGIN	TRAN	T1
UPDATE	db1.dbo.table1	set	column1	=	2
BEGIN	TRAN	M2	WITH	MARK
UPDATE	db2.dbo.table1	set	column1	=	2
UPDATE	server2.db21.dbo.table1	set	column1	=	2
SELECT	*	from	db3.dbo.table1
COMMIT	TRAN	M2
UPDATE	db4.dbo.table1	set	column1	=	2
COMMIT	TRAN	T1

In	this	example	the	name	of	the	mark	is	M2,	and	it	will	be	placed	in	the	logs	of
databases	db1,	db2,	and	db4.	The	mark	is	placed	in	the	logs	when	the	transaction
commit	log	record	is	generated	for	the	COMMIT	TRAN	T1	statement.	db1	is
marked	even	though	the	update	was	executed	before	the	transaction	was	actually
marked.	db3	is	not	marked,	despite	having	been	accessed,	because	no	update
was	made	in	db3.	Also,	even	though	db21	on	another	server	was	updated	within
the	transaction,	it	will	not	be	marked	because	no	BEGIN	TRAN...WITH	MARK
was	actually	executed	by	server2.

As	indicated	in	the	example,	a	transaction	mark	name	is	not	automatically
distributed	to	another	server	as	the	transaction	spreads	to	the	other	server.	In
order	to	force	the	mark's	spread	to	the	other	servers,	a	stored	procedure	must	be
written	which	contains	a	BEGIN	TRAN	name	WITH	MARK.	That	stored
procedure	must	then	be	executed	on	the	remote	server	under	the	scope	of	the
transaction	in	the	originating	server.	For	example,	consider	a	partitioned
database	that	exists	on	multiple	instances	of	Microsoft®	SQL	Server™.	On	each
instance	is	a	database	named	coyote.	First,	create	stored	procedure	sp_SetMark
in	every	database:

CREATE	PROCEDURE	sp_SetMark
@name	nvarchar	(128)
AS
BEGIN	TRANSACTION	@name	WITH	MARK

UPDATE	coyote.dbo.Marks	SET	on	=	1
COMMIT	TRANSACTION
GO

Next,	create	stored	procedure	sp_MarkAll	containing	a	transaction	that	will
place	a	mark	in	every	database.	sp_MarkAll	can	be	run	from	any	of	the
instances:

CREATE	PROCEDURE	sp_MarkAll
@name	nvarchar	(128)
AS
BEGIN	TRANSACTION
EXEC	instance0.coyote.dbo.sp_SetMark	@name
EXEC	instance1.coyote.dbo.sp_SetMark	@name
EXEC	instance2.coyote.dbo.sp_SetMark	@name
COMMIT	TRANSACTION
GO

When	a	marked	transaction	is	committed,	the	commit	log	record	for	each
database	in	the	marked	transaction	is	placed	in	the	log	at	a	point	where	there	are
no	in-doubt	transactions	in	any	of	the	logs.	At	this	point,	it	is	guaranteed	that
there	are	no	transactions	that	appear	as	committed	in	one	log,	but	not	committed
in	another	log.	The	following	steps	accomplish	this	during	the	commit	of	a
marked	transaction:

Note		The	commit	of	a	distributed	transaction	is	done	in	two	phases:	prepare	and
commit.

1.	 Prepare	phase	of	a	marking	transaction	will	stall	all	new	prepares	and
commits.

2.	 Only	commits	of	already	prepared	transactions	are	allowed	to
continue.

3.	 Marking	transaction	then	waits	for	all	prepared	transactions	to	drain
(with	time	out).

4.	 Marked	transaction	is	prepared	and	committed.

5.	 The	stall	of	new	prepares	and	commits	is	removed.

The	stalls	generated	by	marked	transactions	that	span	multiple	databases	can
reduce	the	transaction	processing	performance	of	the	server.

While	rare	in	practice,	it	is	possible	for	the	commit	of	a	distributed	(cross-server)
marked	transaction	to	deadlock	with	other	distributed	transactions	that	are
committing	at	the	same	time.	When	this	happens,	the	marking	transaction	will	be
chosen	as	the	deadlock	victim	and	will	be	rolled	back.	When	this	error	occurs,
the	application	can	retry	the	marked	transaction.	When	multiple	marked
transactions	attempt	to	commit	concurrently,	there	is	a	higher	probability	of
deadlock.	Thus,	running	concurrent	marked	transactions	is	not	recommended.

If	the	database	is	using	log	backups,	and	a	log	backup	chain	is	active,	log	marks
are	traced	in	the	logmarkhistory	table:

In	the	background	after	a	transaction	commits.

One	row	per	marked	database,	containing	mark	name,	description,
commit	LSN,	time.

Time	is	computed	before	the	commit	record	is	generated.

All	entries	for	a	distributed	mark	have	the	same	time	in	a	given	msdb
database.

All	times	are	before	the	timestamp	in	the	commit	log	record.

See	Also

BEGIN	TRANSACTION

RESTORE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Distributed	Transactions	Architecture

JavaScript:hhobj_3.Click()

Administering	SQL	Server

Managing	Backups
Manage	your	backups	carefully	to	ensure	that	you	can	restore	your	system	when
needed.	Each	backup	contains	the	descriptive	text	you	provided	when	you
created	the	backup,	as	well	as	expiration	information.	This	information	can	be
used	to:

Identify	a	backup.

Determine	when	the	backup	can	be	safely	overwritten.	

Identify	all	the	backups	on	a	backup	medium,	such	as	a	tape,	to
determine	which	backup	needs	to	be	restored.

Additionally,	the	msdb	database	contains	a	complete	history	of	all	backup	and
restore	operations	on	the	server.	SQL	Server	Enterprise	Manager	uses	this
information	to	suggest	and	execute	a	restore	plan	that	can	be	used	if	a	database
needs	to	be	restored.	For	example,	if	a	database	backup	for	a	user	database	is
created	every	night,	and	transaction	log	backups	are	created	every	hour	during
the	day,	this	backup	history	information	is	stored	in	the	msdb	database.	If	the
user	database	needs	to	be	restored,	SQL	Server	Enterprise	Manager	can	use	the
history	information	stored	in	msdb	to	apply	all	the	transaction	log	backups	that
relate	to	a	specific	database	backup	when	the	database	backup	is	restored.

Note		If	the	msdb	database	needs	to	be	restored,	any	backup	history	information
saved	since	the	last	backup	of	msdb	was	created	is	lost.

When	working	with	backups:

Maintain	backups	in	a	secure	place,	preferably	at	a	site	different	from
the	site	where	the	data	resides.

Keep	older	backups	for	a	designated	amount	of	time	in	case	the	most
recent	backup	is	damaged,	destroyed,	or	lost.

Establish	a	system	for	overwriting	backups,	reusing	the	oldest	backups
first.

Use	expiration	dates	on	backups	to	prevent	premature	overwriting.

Label	backup	media	to	prevent	overwriting	critical	backups.	This	allows
for	easy	identification	of	the	data	stored	on	the	backup	media	or	the
specific	backup	set.

See	Also

Using	Backup	Media

Using	Media	Sets	and	Families

Viewing	Information	About	Backups

Administering	SQL	Server

Backup	Devices
When	creating	backups,	you	must	select	a	backup	device	for	the	data	to	be
backed	up	to.	Microsoft®	SQL	Server™	2000	can	back	up	databases,	transaction
logs,	and	files	to	disk	and	tape	devices.

Disk	Devices
Disk	backup	devices	are	files	on	hard	disks	or	other	disk	storage	media	and	are
the	same	as	regular	operating	system	files.	Referring	to	a	disk	backup	device	is
the	same	as	referring	to	any	other	operating	system	file.	Disk	backup	devices	can
be	defined	on	a	local	disk	of	a	server	or	on	a	remote	disk	on	a	shared	network
resource,	and	they	can	be	as	large	or	as	small	as	needed.	The	maximum	file	size
is	equivalent	to	the	free	disk	space	available	on	the	disk.

If	the	backup	is	to	be	performed	over	the	network	to	a	disk	on	a	remote
computer,	use	the	universal	naming	convention	(UNC)	name	in	the	form
\\Servername\Sharename\Path\File	to	specify	the	location	of	the	file.	As	with
writing	files	to	the	local	hard	disk,	the	appropriate	permissions	needed	to	read	or
write	to	the	file	on	the	remote	disk	must	be	granted	to	the	user	account	used	by
SQL	Server.

Because	backing	up	data	over	a	network	can	be	subject	to	network	errors,	verify
the	backup	operation	after	completion.	For	more	information,	see	Verifying
Backups.

IMPORTANT		Backing	up	to	a	file	on	the	same	physical	disk	as	the	database	is	not
recommended.	If	the	disk	device	containing	the	database	fails,	there	is	no	way	to
recover	the	database	because	the	backup	is	located	on	the	same	failed	disk.

Tape	Devices
Tape	backup	devices	are	used	in	the	same	way	as	disk	devices,	with	the
exception	that:

The	tape	device	must	be	connected	physically	to	the	computer	running
an	instance	of	SQL	Server.

Backing	up	to	remote	tape	devices	is	not	supported.

If	a	tape	backup	device	is	filled	during	the	backup	operation,	but	more
data	still	needs	to	be	written,	SQL	Server	prompts	for	a	new	tape	and
continues	the	backup	operation.

Note		Backups	to	tape	devices	cannot	be	performed	on	instances	of	SQL	Server
2000	running	on	Microsoft	Windows®	98.

To	back	up	SQL	Server	(or	Microsoft	Windows	NT®	4.0	or	Windows	2000)
data	to	tape,	use	a	tape	backup	device	or	tape	drive	supported	by	Windows	NT
4.0	or	Windows	2000.	Additionally,	use	only	the	recommended	tapes	for	the
specific	tape	drive	(as	suggested	by	the	drive	manufacturer).	For	more
information	about	installing	a	tape	drive,	see	the	Windows	NT	4.0	and	Windows
2000	documentation.

Physical	and	Logical	Devices
SQL	Server	identifies	backup	devices	using	either	a	physical	or	logical	device
name.

A	physical	backup	device	is	the	name	used	by	the	operating	system	to	identify
the	backup	device,	for	example,	C:\Backups\Accounting\Full.bak.

A	logical	backup	device	is	an	alias,	or	common	name,	used	to	identify	the
physical	backup	device.	The	logical	device	name	is	stored	permanently	in	the
system	tables	within	SQL	Server.	The	advantage	of	using	a	logical	backup
device	is	that	it	can	be	simpler	to	refer	to	than	a	physical	device	name.	For
example,	a	logical	device	name	could	be	Accounting_Backup,	but	the	physical
device	would	be	C:\Backups\Accounting\Full.bak.

When	backing	up	or	restoring	a	database,	you	can	use	either	physical	or	logical
backup	device	names	interchangeably.

For	example,	execute	the	BACKUP	statement	with	either	the	logical	or	physical
device	name:

--	Specify	the	logical	backup	device.
BACKUP	DATABASE	accounting	
			TO	Accounting_Backup
--	Or,	specify	the	physical	backup	device.
BACKUP	DATABASE	accounting	

			TO	DISK	=	'C:\Backups\Accounting\Full.Bak'

To	create	a	logical	disk	backup	device

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Using	Backup	Media
The	backup	media	is	the	actual	physical	storage	used	by	the	backup	device	to
store	the	backup.	Backup	media	can	be	either	disk	or	tape.

For	example,	a	backup	device	might	be	the	file	C:\Backups\Accounting\Full.bak.
The	backup	media	is	the	disk	containing	the	file.	Similarly	for	tape,	a	backup
device	might	be	the	\\.\TAPE0	tape	device	on	the	local	computer.	The	backup
media	are	the	physical	tapes	used	to	store	the	backup.

This	section	discusses	the	following	aspects	of	working	with	backup	media.

Topic Description
Using	Media	Sets	and	Families Microsoft®	SQL	Server™	uses

media	sets,	families,	sequence
numbers	and	other	methods	to
properly	organize	backups	and
ensure	correct	media	is	being	used
for	each	backup	and	restore
operation.

Initializing	Backup	Media Before	using	the	backup	media	for
the	first	time,	SQL	Server	must
initialize,	or	format,	the	media	and
write	a	media	header.

Password	Protection SQL	Server	2000	allows	backups	to
be	protected	with	a	password.	Both
the	media	and	the	backup	itself	can
be	password	protected.

Overwriting	Backup	Media SQL	Server	has	safeguards	to	prevent
you	from	accidentally	overwriting
media.	Additionally,	SQL	Server	can
automatically	overwrite	backup	sets
that	have	reached	a	predefined
expiration	date.

Appending	Backup	Sets New	backup	sets	can	be	appended	to
existing	media	to	make	the	best

possible	use	of	the	available	space.
Identifying	the	Backup	Set	to	Restore Backup	sets	are	numbered	so	that

users	can	specify	which	backup	set
on	the	media	is	to	be	restored.

See	Also

BACKUP

RESTORE

Using	Media	Sets	and	Families

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Using	Media	Sets	and	Families
A	media	set	can	contain	one	or	more	backup	sets	and	describes	all	of	the	media
used	by	those	backup	sets,	regardless	of	the	number	of	media	or	backup	devices
involved.	For	example,	if	four	tape	backup	devices	are	used	when	creating	a
database	backup,	and	five	tapes	per	tape	backup	device	are	used	to	store	the
backup,	the	media	set	contains	20	tapes.

A	media	family	describes	all	the	media	used	by	a	single	backup	device	for	a
single	backup	set.	In	the	example	earlier,	there	are	four	media	families	with	each
set	of	five	tapes	used	by	each	tape	backup	device	comprising	one	media	family.

The	initial	media	is	the	first	media	in	a	media	family.	If	the	initial	media
becomes	full	during	the	backup	operation,	more	media	is	used	until	the	backup

operation	is	complete.	All	media	in	a	media	family	except	the	initial	media	is
described	as	continuation	media.

Note		Only	tape	backup	devices	use	continuation	media,	allowing	Microsoft®
SQL	Server™	to	continue	writing	the	backup	after	the	initial	tape	is	full.

To	distinguish	between	each	physical	medium	used	within	a	media	family,	each
medium	is	tagged	with	a	sequence	number	to	specify	the	order	in	which	the
media	were	used.	The	initial	media	is	tagged	with	1,	the	second	media	(the	first
continuation	media)	is	tagged	with	2,	and	so	on.	These	sequence	numbers	are
used	when	the	backup	set	is	restored	to	ensure	that	the	operator	restoring	the
backup	mounts	the	correct	media	in	the	correct	order.	Additionally,	media
families	within	a	media	set	are	numbered	sequentially.

When	appending	a	backup	set	to	a	media	set	containing	multiple	media	families,
you	must	mount	the	last	media	in	the	family.	If	the	last	media	is	not	mounted,
SQL	Server	scans	forward	to	the	end	of	the	media,	requiring	media	to	be
changed	until	the	last	media	in	the	family	is	mounted	correctly.

Each	SQL	Server	backup	is	stored	on	a	media	set,	regardless	of	the	number	of
backup	devices	used	by	the	individual	backup	operation.	Examples	of	media	sets
include:

A	single	disk	file.

A	single	tape.

A	set	of	tapes	written	by	one	backup	device.	This	set	of	tapes	consists	of
a	single	media	family	(an	initial	media	and	one	or	more	continuation
media).

A	set	of	tapes	written	by	four	backup	devices.	Each	set	of	tapes	written
by	one	backup	device	is	the	media	family.	Each	media	family	contains
an	initial	media	and	possibly	one	or	more	continuation	media.

A	set	of	three	disk	files,	used	by	one	or	more	backup	operations,	with
each	backup	operation	using	three	backup	devices.

When	using	multiple	backup	devices:

The	entire	media	set	created	by	a	backup	operation	must	be	used	by	all
subsequent	backup	operations.	For	example,	if	a	media	set	was	created
using	two	tape	backup	devices,	all	subsequent	backup	operations
involving	the	same	media	set	must	use	two	backup	devices.

When	restoring	using	tape	devices,	it	is	not	necessary	to	use	the	same
number	of	backup	devices	used	by	the	media	set	when	the	backup	was
created.	For	example,	restoring	using	fewer	backup	devices	may	be
necessary	when	moving	a	database	to	another	server,	because	the	server
may	have	fewer	physical	backup	devices.	You	can	restore	media
families	in	parallel.	However,	you	must	complete	restoring	an	entire
media	family	before	starting	another	on	a	given	tape	device.

See	Also

Using	Backup	Media

Administering	SQL	Server

Initializing	Backup	Media
When	creating	a	backup	on	a	tape	backup	device	for	the	first	time,	Microsoft®
SQL	Server™	needs	to	initialize	the	backup	media	before	the	backup	can	be
created.	Initializing	media	causes	a	media	header	to	be	written	and	deletes	any
existing	media	header,	effectively	deleting	the	previous	contents	of	the	tape.
When	initialized,	previous	information	on	the	tape	cannot	be	retrieved.

Initializing	disk	media	involves	only	the	backup	device	file(s)	specified	by	the
backup	operation.	Other	files	on	the	disk	are	unaffected.	When	using	backup
devices	for	the	first	time,	SQL	Server	automatically	creates	the	file(s)	needed	by
the	backup	device(s)	for	the	backup	operation.	Reinitializing	disk	backup
devices	overwrites	the	contents	of	the	files	used	by	the	backup	devices	and
writes	a	new	media	header.

To	initialize	media	for	the	first	time	when	creating	a	backup

Administering	SQL	Server

Password	Protection
Microsoft®	SQL	Server™	2000	supports	password	protection	for	backup	media
and	backup	sets.	Passwords	are	not	required	to	perform	backup	operations,	but
they	provide	an	added	level	of	security.	You	can	use	them	in	addition	to	using
SQL	Server	security	roles.	The	use	of	password	protection	helps	guard	against:

Unauthorized	restoration	of	databases.	

Unauthorized	appends	to	the	media.

Unintentional	overwriting	of	the	media.

IMPORTANT		Password	security	does	not	prevent	overwriting	the	media	by
formatting	it	or	using	it	for	a	continuation	volume.	Additionally,	specifying	a
password	does	not	encrypt	the	data	in	any	way.

Passwords	can	be	used	for	either	media	sets	or	backup	sets:

Media	set	passwords	protect	all	the	data	saved	to	that	media.	The	media
set	password	is	set	when	the	media	header	is	written;	it	cannot	be
altered.	If	a	password	is	defined	for	the	media	set,	the	password	must	be
supplied	to	perform	any	append	or	restore	operation.

You	will	only	be	able	to	use	the	media	for	SQL	Server	backup	and
restore	operations.	Specifying	a	media	set	password	prevents	a
Microsoft	Windows	NT®	4.0	or	Windows®	2000	backup	from	being
able	to	share	the	media.

Backup	set	passwords	protect	only	a	particular	backup	set.	Different
backup	set	passwords	can	be	used	for	each	backup	set	on	the	media.	A
backup	set	password	is	set	when	the	backup	set	is	written	to	the	media.
If	a	password	is	defined	for	the	backup	set,	the	password	must	be
supplied	to	perform	any	restore	of	that	backup	set.

Administering	SQL	Server

Overwriting	Backup	Media
By	overwriting	backups	on	media,	the	existing	contents	of	the	backup	set	are
overwritten	with	the	new	backup	and	are	no	longer	available.	For	disk	backup
media,	only	the	files	used	by	the	backup	device(s)	specified	in	the	backup
operation	are	overwritten;	other	files	on	the	disk	are	unaffected.	When
overwriting	backups,	the	existing	media	header	can	be	preserved,	and	the	new
backup	is	created	as	the	first	backup	on	the	backup	device.	If	there	is	no	existing
media	header,	a	valid	media	header	with	an	associated	media	name	and	media
description	is	written	automatically.	If	the	existing	media	header	is	invalid,	the
backup	operation	terminates.

Backup	media	is	not	overwritten	if	either	of	the	following	conditions	is	met:

The	existing	backups	on	the	media	have	not	expired.

The	expiration	date	specifies	the	date	the	backup	expires	and	can	be
overwritten	by	another	backup.	You	can	specify	the	expiration	date
when	a	backup	is	created.	By	default,	the	expiration	date	is	determined
by	the	media	retention	option	set	with	sp_configure.

The	media	name,	if	provided,	does	not	match	the	name	on	the	backup
media.

The	media	name	is	a	descriptive	name	used	for	easy	identification	of	the
media.

However,	these	checks	can	be	explicitly	skipped	if	you	are	sure	you	want	to
overwrite	the	existing	media	(for	example,	if	you	know	that	the	backups	on	the
tape	are	no	longer	needed).

If	the	backup	media	is	password	protected	by	Microsoft®	Windows	NT®	4.0	or
Windows®	2000,	Microsoft	SQL	Server™	does	not	write	to	the	media.	To
overwrite	media	that	is	password	protected,	you	need	to	reinitialize	the	media.

To	create	a	database	backup

Administering	SQL	Server

Appending	Backup	Sets
Backups	performed	at	different	times	from	the	same	or	different	databases	can
be	stored	on	the	same	media.	Additionally,	data	other	than	Microsoft®	SQL
Server™	data	can	be	stored	on	the	same	media,	such	as	Microsoft	Windows
NT®	4.0	file	backups.	By	appending	a	new	backup	set	to	existing	media,	the
previous	contents	of	the	media	remain	intact,	and	the	new	backup	is	written	after
the	end	of	the	last	backup	on	the	media.

By	default,	SQL	Server	always	appends	new	backups	to	media.	Appending	can
occur	only	at	the	end	of	the	media.	For	example,	if	a	media	contains	five	backup
sets,	it	is	not	possible	to	skip	the	first	three	backup	sets	to	overwrite	the	fourth
backup	set	with	a	new	backup	set.

If	you	use	BACKUP	WITH	NOREWIND	for	a	tape	backup,	the	tape	will	be	left
open	at	the	end	of	the	operation.	This	allows	you	to	append	further	backups	to
the	tape	without	rewinding	the	tape	and	then	scanning	forward	again	to	find	the
last	backup	set.	A	list	of	currently	open	tapes	can	be	found	by	querying	the
sysopentapes	table	in	the	master	database.

Windows	NT	4.0	and	Microsoft	Windows®	2000	backups	and	SQL	Server
backups	are	not	interoperable.	Though	media	can	be	shared	between	the	two,	a
SQL	Server	backup	cannot	be	used	to	backup	Windows	NT	4.0	data.	You	can
use	NTBackup	to	backup	database	files	if	an	instance	of	SQL	Server	is	not
running.	Do	not	rely	on	file-level	backups	using	NTBackup	if	an	instance	of
SQL	Server	is	running.

To	append	a	new	backup	to	existing	media

Administering	SQL	Server

Identifying	the	Backup	Set	to	Restore
Each	backup	set	on	media,	including	foreign	backup	sets	such	as	Microsoft®
Windows	NT®	4.0	file	backups,	is	numbered.	This	allows	the	backup	set	you
want	to	restore	to	be	referenced	easily.	For	example,	the	following	media
contains	four	backup	sets:	two	Microsoft	SQL	Server™	backups	and	two	foreign
backup	sets	(for	example,	Windows	NT	4.0	files).

To	restore	a	specific	backup	set,	specify	the	position	number	of	the	backup	set
you	want	to	restore.	For	example,	to	restore	the	second	SQL	Server	backup	set,
the	fourth	backup	set	on	the	media,	specify	4	as	the	backup	set	to	restore.

To	restore	a	specific	database	backup

Administering	SQL	Server

Backup	Formats
All	media	used	for	a	backup	or	restore	operation	use	a	standard	backup	format
called	Microsoft®	Tape	Format	(MTF).	MTF	enables	Microsoft	SQL	Server™
backups	to	coexist	on	the	same	media	as	backups	that	are	not	SQL	Server
backups	(foreign	backup	sets),	provided	that	the	backups	use	MTF.	For	example,
SQL	Server	backups	can	exist	on	the	same	media	as	Microsoft	Windows	NT®
4.0	and	Windows®	2000	backups.

Integrating	any	backups	supporting	MTF	onto	a	single	tape	reduces	backup
media	storage	requirements,	costs,	and	administrative	overhead	because	the
same	tape	media	can	be	used	to	store	different	backups	from	different
applications.

All	media	begins	with	a	media	header	describing	the	media.	The	media	header	is
usually	written	one	time	and	remains	intact	for	the	life	of	the	media.	This	allows
each	piece	of	media	to	be	tracked.	The	media	header	can	contain	a	media	name,
the	name	given	to	the	particular	media,	and	is	assigned	by	the	first	person	using
the	media.	Consistent	use	of	media	names	helps	identify	the	media	and	prevent
errors.

See	Also

BACKUP

Using	Backup	Media

RESTORE	HEADERONLY

RESTORE	LABELONLY

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

Viewing	Information	About	Backups
After	backups	are	created,	you	may	need	to	view	information	about	the	backups,
such	as:

A	list	of	the	database	and	transaction	log	files	contained	in	a	specific
backup	set.

The	backup	header	information	for	all	backups	on	a	particular	backup
media.

The	media	header	information	for	a	particular	backup	medium.

Listing	Database	and	Transaction	Log	Files

Information	displayed	when	listing	the	database	and	transaction	log	files	in	a
backup	includes	the	logical	name,	physical	name,	file	type	(database	or	log),
filegroup	membership,	file	size	(in	bytes),	the	maximum	allowed	file	size,	and
the	predefined	file	growth	size	(in	bytes).	This	information	is	useful	to	determine
the	names	of	the	files	in	a	database	backup	before	restoring	the	database	backup
when:

You	have	lost	a	disk	drive	containing	one	or	more	of	the	files	for	a
database.

You	can	list	the	files	in	the	database	backup	to	determine	which	files
were	affected,	and	then	restore	those	files	onto	a	different	drive	when
restoring	the	entire	database,	or	restore	just	those	files	and	apply	any
transaction	log	backups	created	since	the	database	was	backed	up.

You	are	restoring	a	database	from	one	server	onto	another	server,	but
the	directory	structure	and	drive	mapping	does	not	exist	on	the	server.

Listing	the	files	in	the	backup	allows	you	to	determine	which	files	are
affected.	For	example,	the	backup	contains	a	file	that	it	needs	to	restore
to	the	E:\	drive,	but	the	destination	server	does	not	have	an	E:\	drive.
The	file	needs	to	be	relocated	to	another	location,	such	as	the	C:\	drive,

when	the	file	is	restored.

Viewing	Header	Information

Viewing	the	backup	header	displays	information	about	all	Microsoft®	SQL
Server™	and	foreign	backup	sets	on	the	media.	Information	displayed	includes
the	types	of	backup	devices	used,	the	types	of	backup	(for	example,	database,
transaction,	file,	or	differential	database),	and	backup	start	and	stop	date/time
information.	This	information	is	useful	when	you	need	to	determine	which
backup	set	on	the	tape	to	restore,	or	the	backups	that	are	contained	on	the	media.

Note		Viewing	backup	header	information	can	take	a	long	time	for	high-capacity
tapes	because	the	entire	media	needs	to	be	scanned	to	display	information	about
each	backup	on	the	media.

Viewing	the	media	header	displays	information	about	the	media	itself,	rather
than	the	backups	on	the	media.	Media	header	information	displayed	includes	the
media	name,	description,	name	of	the	software	that	created	the	media	header,
and	the	date	the	media	header	was	written.	For	more	information	about	a
detailed	list	of	the	header	information	displayed,	see	RESTORE	LABELONLY.

Note		Viewing	the	media	header	is	quick	because	only	the	media	header	is	read
after	it	has	been	located	one	time	at	the	beginning	of	the	media.

The	following	chart	provides	an	example	of	the	differences	between	viewing
backup	header	and	media	header	information.	In	this	example,	restoring	the
backup	header	information	for	the	tape	media	containing	two	SQL	Server
backups	and	two	foreign	(Microsoft	Windows	NT®	4.0	or	Microsoft	Windows®
2000)	backups	retrieves	information	for	all	backup	sets	on	the	media,	requiring
that	the	entire	tape	be	scanned.	However,	restoring	the	media	header	requires
only	information	from	the	single	media	header	written	at	the	beginning	of	the
tape	to	be	retrieved.

JavaScript:hhobj_1.Click()

To	view	the	data	and	log	files	in	a	backup	set

Transact-SQL

JavaScript:hhobj_2.Click()

Administering	SQL	Server

Verifying	Backups
Although	not	required,	verifying	a	backup	checks	that	the	backup	is	intact
physically,	and	that	you	can	rely	on	your	backup	in	the	event	you	need	to	use	it.
Verifying	a	backup	involves:

Checking	the	backup	set	to	ensure	that	all	files	have	been	written.

Checking	to	ensure	that	the	files	in	the	backup	are	readable.

Verifying	a	backup	does	not	check	that	the	structure	of	the	data	contained	within
the	backup	set	is	correct.	For	example,	although	the	backup	set	may	have	been
written	correctly,	it	may	be	possible	for	some	type	of	database	integrity	problem
to	be	present	within	the	database	files	that	comprise	the	backup	set.	To	verify	the
structure	of	the	data	before	creating	a	backup,	you	can	perform	database
consistency	checks.	For	more	information	about	running	database	consistency
checks,	see	Data	Integrity	Validation.

To	verify	the	backup	set

Transact-SQL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Backing	Up	and	Restoring	System	Databases
The	system	databases	need	to	be	backed	up	just	as	user	databases	are	backed	up.
This	allows	the	system	to	be	rebuilt	in	the	event	of	system	or	database	failure,
for	example,	if	a	hard	disk	fails.	It	is	important	to	have	regular	backups	of	the
following	system	databases:

master

msdb

distribution	(when	the	server	is	configured	as	a	replication	Distributor)

model	(if	modified)

Note		It	is	not	possible	to	back	up	the	tempdb	system	database.	tempdb	is
rebuilt	each	time	an	instance	of	Microsoft®	SQL	Server™	is	started.	When	an
instance	of	SQL	Server	is	shut	down,	any	data	in	tempdb	is	deleted
permanently.

Administering	SQL	Server

Backing	Up	the	master	Database
The	master	database	must	be	backed	up.	If	master	is	damaged	in	some	way,	for
example	because	of	media	failure,	an	instance	of	Microsoft®	SQL	Server™	may
not	be	able	to	start.	In	this	event,	it	is	necessary	to	rebuild	master,	and	then
restore	the	database	from	a	backup.

Consider	backing	up	master	after	any	statement	or	system	procedure	is	executed
that	changes	information	in	master,	for	example,	changing	a	server-wide
configuration	option.	If	master	is	not	backed	up	after	it	changes	and	then	the
backup	is	restored,	any	changes	since	the	last	backup	are	lost.	For	example,	a
user	database	is	created	after	master	is	backed	up	and	tables	and	data	are	added
to	the	database.	If	master	is	then	restored	because	of	a	hard	disk	failure,	the	user
database	will	not	be	known	to	SQL	Server	because	there	are	no	entries	in	the
restored	master	database	for	this	new	user	database.	In	this	case,	if	all	database
files	comprising	the	user	database	still	exist	on	the	disk(s),	the	user	database	can
be	created	by	attaching	the	database	files.	For	more	information,	see	Attaching
and	Detaching	Databases.

Note		It	is	recommended	that	user	objects	not	be	created	in	master;	otherwise
master	needs	to	be	backed	up	more	frequently.	Additionally,	user	objects
compete	with	the	system	objects	for	space.

The	types	of	operations	that	cause	master	to	be	updated,	and	that	require	a
backup	to	take	place,	include:

Creating	or	deleting	a	user	database.

If	a	user	database	grows	automatically	to	accommodate	new	data,	this
does	not	affect	master.	Deleting	files	and	filegroups	does	not	affect
master.

Adding	logins	or	other	login	security-related	operations.

Database	security	operations,	such	as	adding	a	user	to	a	database,	do	not
affect	master.

Changing	any	server-wide	or	database	configuration	options.

JavaScript:hhobj_1.Click()

Creating	or	removing	logical	backup	devices.

Configuring	the	server	for	distributed	queries	and	remote	procedure
calls,	such	as	adding	linked	servers	or	remote	logins.

Note		Only	full	database	backups	of	master	can	be	created.

To	create	a	database	backup

Administering	SQL	Server

Restoring	the	master	Database
If	master	is	damaged	in	some	way,	for	example	due	to	media	failure,	an	instance
of	Microsoft®	SQL	Server™	may	not	be	able	to	start	if	the	damage	is	severe.
There	are	two	methods	to	return	master	to	a	usable	state:

Restore	from	a	current	backup.

Rebuild	completely	using	the	Rebuild	Master	utility.

IMPORTANT		Keep	a	current	backup	of	master.	Rebuilding	master	using	the
Rebuild	Master	utility	causes	all	data	stored	previously	in	master	to	be	lost
permanently.	SQL	Server	will	still	be	able	to	access	other	databases.

If	an	instance	of	SQL	Server	can	be	started	because	master	is	accessible,	and	at
least	partly	usable,	it	is	possible	to	restore	master	from	a	full	database	backup.
However,	if	an	instance	of	SQL	Server	cannot	be	started	because	of	severe
damage	to	master,	it	is	not	possible	to	restore	a	backup	of	master	immediately
because	an	instance	of	SQL	Server	needs	to	be	running	to	restore	any	database.
The	master	database	first	needs	to	be	rebuilt	using	the	Rebuild	Master	utility,
and	the	current	database	backup	can	be	restored	as	normal.

Administering	SQL	Server

Restoring	the	master	Database	from	a	Current
Backup
If	there	have	been	any	changes	to	master	after	the	database	backup	was	created,
those	changes	are	lost	when	the	backup	is	restored.	Therefore,	it	is	necessary	to
re-create	those	changes	manually	after	restoring	master	from	a	backup	by
executing	the	statements	necessary	to	re-create	the	missing	changes.	For
example,	if	any	Microsoft®	SQL	Server™	logins	have	been	created	after	the
backup	was	performed,	those	are	lost	when	master	is	restored.	Re-create	the
logins	using	SQL	Server	Enterprise	Manager	or	the	original	scripts	used	to	create
the	logins.

The	master	database	can	only	be	restored	from	a	backup	created	on	an	instance
of	SQL	Server	2000.	Restore	of	master	database	backups	which	were	made	on
SQL	Server	version	7.0	or	earlier	is	not	supported.

Note		Any	database	users	previously	associated	with	logins	that	need	to	be	re-
created	are	orphaned	because	the	login	is	lost.	For	information	about	associating
an	existing	database	user	to	a	new	SQL	Server	login,	see	sp_addlogin.	For
information	about	associating	an	existing	database	user	with	a	Microsoft
Windows	NT®	4.0	or	Windows®	2000	user,	see	sp_grantlogin.

If	any	user	databases	were	created	after	master	was	backed	up,	those	databases
cannot	be	accessed	once	master	is	restored	unless:

The	databases	are	restored	from	backups.

-or-

The	databases	are	reattached	to	SQL	Server.	It	is	recommended	that	you
attach	the	databases	to	avoid	restore	time.

Attaching	the	database	to	SQL	Server	re-creates	the	system	table	entries	needed
and	makes	the	database	available	in	the	same	state	it	was	before	the	master
database	was	restored.	It	is	not	necessary	to	re-create	the	database	first;	the	files
can	be	attached	without	knowing	how	the	database	was	created,	as	long	as	all	the
files	comprising	the	database	are	attached.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

It	is	necessary	to	restore	a	backup	of	the	database	only	if	the	data	and	transaction
log	files	of	the	database	no	longer	exist	or	are	unusable	or	damaged	in	some
other	way	due	to	a	media	failure.

If	any	objects,	logins,	or	databases,	for	example,	have	been	deleted	after	master
was	backed	up,	those	objects,	logins,	and	databases	should	be	deleted	from
master.

IMPORTANT		If	any	databases	no	longer	exist,	but	are	referenced	in	a	backup	of
master	that	is	restored,	SQL	Server	may	report	errors	when	it	starts	because	it
cannot	find	those	databases	any	longer.	Those	databases	should	be	dropped	after
the	backup	is	restored.

After	restoring	master,	the	instance	of	SQL	Server	is	stopped	automatically.	If
you	need	to	make	further	repairs	and	wish	to	prevent	more	than	a	single
connection	to	the	server,	you	should	start	the	server	in	single	user	mode	again.
Otherwise,	the	server	can	be	restarted	normally.	If	you	choose	to	restart	the
server	in	single-user	mode,	all	SQL	Server	services	(except	SQL	Server	itself)
and	utilities,	such	as	the	SQL	Server	Agent,	should	be	stopped	because	they	may
try	to	access	the	instance	of	SQL	Server.

When	master	has	been	restored	and	any	changes	have	been	reapplied,	back	up
master	immediately.

To	start	the	default	instance	of	SQL	Server	in	single-user	mode

Administering	SQL	Server

Rebuilding	the	master	Database
The	master	database	can	be	rebuilt	using	the	Rebuild	Master	utility	if:

A	current	backup	of	master	is	not	available.

The	backup	cannot	be	restored	because	an	instance	of	Microsoft®	SQL
Server™	cannot	start	due	to	severe	damage	to	master.

When	master	has	been	rebuilt,	a	current	backup	of	master	can	be	restored	or	the
user	databases,	backup	devices,	SQL	Server	logins,	and	so	on	can	be	re-created
using	SQL	Server	Enterprise	Manager	or	the	original	scripts	used	to	create	those
entries.

IMPORTANT		The	Rebuild	Master	utility	rebuilds	master	completely.	Because	the
msdb	and	model	system	databases	are	rebuilt	as	well,	it	will	normally	be
necessary	to	restore	backups	of	those	databases.

The	general	steps	required	to	rebuild	master	completely	if	no	backup	is
available	are:

Run	the	Rebuild	Master	utility	to	rebuild	the	system	databases.

IMPORTANT		The	compact	disc	or	shared	network	directory	containing
the	SQL	Server	installation	software	is	required	to	rebuild	the	master
database.

Re-create	any	necessary	backup	devices.

Reimplement	security	operations.

Restore	msdb	if	necessary.

Restore	model	if	necessary.

Restore	distribution	if	necessary.

Restore	or	attach	user	databases	if	necessary.

When	master	has	been	re-created	and	any	changes	have	been	reapplied,	back	up
master	immediately.

To	rebuild	the	master	database

Administering	SQL	Server

Backing	Up	the	model,	msdb,	and	distribution
Databases
The	model,	msdb,	and	distribution	databases	are	backed	up	in	the	same	way	as
user	databases	and	should	be	backed	up	regularly	if	they	are	changed.	These
databases	perform	the	following	functions:

The	model	database	is	the	template	used	by	Microsoft®	SQL	Server™
when	creating	other	databases,	such	as	tempdb	or	user	databases.	When
a	database	is	created,	the	entire	contents	of	the	model	database,
including	database	options,	are	copied	to	the	new	database.	

The	msdb	database	is	used	by	SQL	Server,	SQL	Server	Enterprise
Manager,	and	SQL	Server	Agent	to	store	data,	including	scheduling
information	and	backup	and	restore	history	information.

SQL	Server	automatically	maintains	a	complete	online	backup	and
restore	history	in	msdb.	This	information	includes	who	performed	the
backup,	at	what	time,	and	on	which	devices	or	files	it	is	stored.	This
information	is	used	by	SQL	Server	Enterprise	Manager	to	propose	a
plan	for	restoring	a	database	and	applying	any	transaction	log	backups.
Backup	events	for	all	databases	are	recorded	even	if	they	were	created
with	custom	applications	or	third-party	tools.	For	example,	if	you	use	a
Microsoft	Visual	Basic®	application	that	calls	SQL-DMO	objects	to
perform	backup	operations,	the	event	is	logged	in	the	msdb	system
tables,	the	Microsoft	Windows®	application	log,	and	SQL	Server	error
log.

If	you	use	the	backup	and	restore	history	information	in	msdb	when
recovering	user	databases,	it	is	recommended	that	you	use	the	Full
Recovery	model	for	msdb.	Additionally,	consider	placing	the	msdb
transaction	log	on	fault	tolerant	storage.

The	distribution	database	is	used	by	the	replication	components	of
SQL	Server,	such	as	the	Distribution	Agent,	to	store	such	data	as
transactions,	snapshot	jobs,	synchronization	status,	and	replication
history	information.	Any	server	configured	to	participate	either	as	a

remote	distribution	server	or	as	a	combined	Publisher/Distributor	has	a
distribution	database.

Backup	Considerations

It	is	important	to	back	up	model,	msdb,	or	distribution	after	any	operation	that
updates	the	database:

If	model	is	damaged	in	some	way	due	to	media	failure,	and	there	is	no
current	backup	available,	any	user-specific	template	information	added
to	model	is	lost	and	needs	to	be	re-created	manually.	

If	msdb	is	damaged,	then	any	scheduling	information	used	by	the	SQL
Server	Agent	is	lost	and	needs	to	be	re-created	manually.	Backup	and
restore	history	information	is	also	lost.

If	distribution	is	damaged,	and	there	is	no	current	backup	available,
any	replication	information	used	by	the	SQL	Server	replication	utilities
is	lost	and	needs	to	be	re-created	manually.	For	this	reason,	consider
using	Full	Recovery	model	for	distribution.

All	recovery	models	are	supported	for	model,	msdb	and	distribution.

Modifying	the	model,	msdb	and	distribution	Databases
The	model,	msdb	and	distribution	databases	can	be	modified	in	the	following
ways:

The	model	database	is	modified	only	by	specific	user	changes.

The	msdb	database	is	altered	automatically	by:

Scheduling	tasks.

Storing	Data	Transformation	Services	(DTS)	packages	created
with	the	DTS	Import/Export	Wizard	to	an	instance	of	SQL
Server.

Maintaining	online	backup	and	restore	history.

Replication.

The	distribution	database	is	altered	automatically	by:

The	Replication	Log	Reader	Agent	utility.

The	Replication	Distribution	Agent	utility.

The	Replication	Snapshot	Agent	utility.

The	Replication	Merge	Agent	utility.

As	with	master,	it	is	recommended	that	user	objects	not	be	created	in	msdb	or
distribution;	otherwise	msdb	and	distribution	need	to	be	backed	up	more
frequently.	Additionally,	user	objects	compete	with	the	system	objects	for	space.

See	Also

Backing	Up	and	Restoring	Databases

Backing	Up	and	Restoring	Replication	Databases

Configuring	the	SQLServerAgent	Service

Replication	Overview

System	Tables

Using	Recovery	Models

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

Restoring	the	model,	msdb,	and	distribution
Databases
The	model,	msdb,	or	distribution	database	may	need	to	be	restored	from	a
backup	when:

The	master	database	has	been	rebuilt	using	the	Rebuild	master
command	prompt	utility.

The	model,	msdb,	or	distribution	database	has	been	damaged,	for
example,	due	to	media	failure.

The	model	has	been	modified.	In	this	case,	it	is	necessary	to	restore
model	from	a	backup	when	you	rebuild	master	because	the	Rebuild
Master	utility	deletes	and	re-creates	model.

The	model	and	msdb	databases	can	only	be	restored	from	backups	created	on	a
Microsoft®	SQL	Server™	2000	server.	Restore	of	backups	of	these	databases
made	on	SQL	Server	version	7.0	or	earlier	is	not	supported.

If	msdb	contains	scheduling	or	other	data	used	by	the	system,	it	is	necessary	to
restore	msdb	from	a	backup	when	you	rebuild	master	because	the	utility	deletes
and	re-creates	msdb.	This	results	in	a	loss	of	all	scheduling	information,	as	well
as	the	backup	and	restore	history.	If	msdb	is	not	restored,	and	is	not	accessible,
SQL	Server	Agent	cannot	access	or	initiate	any	previously	scheduled	tasks.

Meta	Data	Services	uses	msdb	as	the	default	repository	database.	An	open
connection	between	Meta	Data	Services	and	msdb	will	disrupt	an	msdb	restore.
To	release	the	connection,	restart	Enterprise	Manager	and	then	restore	msdb.	Do
not	click	the	Meta	Data	Services	node	in	Enterprise	Manager	until	msdb	is	fully
restored.

The	distribution	database	is	not	rebuilt	automatically	when	the	Rebuild	Master
utility	is	used	to	rebuild	master;	therefore	it	is	not	necessary	to	restore
distribution	after	rebuilding	master.	If	the	distribution	database	is	still	intact,
distribution	can	be	re-created	automatically	by	attaching	the	database	to	SQL

Server.	Alternatively,	a	backup	of	distribution	can	be	restored	instead.

However,	if	distribution	is	not	re-created	by	restoring	a	backup	or	attaching	the
database,	the	SQL	Server	replication	utilities	will	not	run,	preventing	data
replication.	If	the	distribution	database	is	used	for	replication	by	many
Publishers,	this	can	affect	many	systems.

You	cannot	restore	a	database	that	is	being	accessed	by	users.	Therefore,	when
restoring	msdb,	SQL	Server	Agent	should	be	stopped.	If	SQL	Server	Agent	is
running,	it	may	access	msdb.	Similarly,	when	restoring	distribution,	the	SQL
Server	replication	utilities	should	be	stopped.	If	the	SQL	Server	replication
utilities	are	running,	they	may	access	distribution.

Replication	utilities	that	must	be	stopped	are:

The	Replication	Log	Reader	Agent	utility.

The	Replication	Distribution	Agent	utility.

The	Replication	Snapshot	Agent	utility.

The	Replication	Merge	Agent	utility.

See	Also

Attaching	and	Detaching	Databases

Backing	Up	and	Restoring	Replication	Databases

Configuring	the	SQLServerAgent	Service

Replication	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

Handling	Large	Mission-Critical	Environments
Mission-critical	environments	often	require	that	databases	be	available
continuously,	or	for	extended	periods	of	time	with	minimal	down-time	for
maintenance	tasks.	Therefore,	the	duration	of	unexpected	situations,	such	as	a
hardware	failure,	that	require	databases	to	be	restored	needs	to	be	kept	as	short
as	possible.	Additionally,	mission-critical	databases	are	often	large,	requiring
longer	periods	of	time	to	back	up	and	restore.	Microsoft®	SQL	Server™	offers
several	methods	for	increasing	the	speed	of	backup	and	restore	operations,
thereby	minimizing	the	effect	on	users	during	both	operations.

The	following	practices	will	help:

Use	multiple	backup	devices	simultaneously	to	allow	backups	to	be
written	to	all	devices	at	the	same	time.	Similarly,	the	backup	can	be
restored	from	multiple	devices	at	the	same	time.

Use	a	combination	of	database,	differential	database,	and	transaction	log
backups	to	minimize	the	number	of	backups	that	need	to	be	applied	to
bring	the	database	to	the	point	of	failure.

Use	file	and	filegroup	backups	and	transaction	log	backups,	which
allows	only	those	files	that	contain	the	relevant	data,	rather	than	the
entire	database,	to	be	backed	up	or	restored.

Use	snapshot	backups	which	reduce	backup	and	restore	time	to	a
minimum.	Snapshot	backups	are	supported	by	third	party	vendors.	For
more	information,	see	Snapshot	Backups.

Administering	SQL	Server

Using	Multiple	Media	or	Devices
Multiple	backup	devices	can	be	used	for	backup	and	restore	operations.	This
allows	Microsoft®	SQL	Server™	to	use	parallel	I/O	to	increase	the	speed	of
backup	and	restore	operations	because	each	backup	device	can	be	written	to	or
read	from	at	the	same	time	as	other	backup	devices.	For	enterprises	with	large
databases,	using	many	backup	devices	can	greatly	reduce	the	time	taken	for
backup	and	restore	operations.	SQL	Server	supports	a	maximum	of	64	backup
devices	for	a	single	backup	operation.

However,	all	backup	devices	used	in	a	single	backup	(and	consequently	restore)
operation	must	be	of	the	same	type	(disk	or	tape).	For	example,	to	back	up	the
sales_db	database	daily	using	database	and	differential	database	backups	to	tape,
only	multiple	tape	drives	can	be	used.

Note		Tape	backup	devices	must	be	attached	to	the	server	physically.	It	is	not
possible	to	use	tape	backup	devices	on	remote	computers.

Creating	and	restoring	backups	using	multiple	backup	devices	is	the	same	as
creating	and	restoring	backups	using	a	single	device.	The	only	difference	is	that
all	backup	devices	involved	in	the	operation,	not	just	one,	are	specified.	For
example,	if	a	database	backup	is	to	be	created	using	three	tape	backup	devices
such	as	\\.\TAPE0,	\\.\TAPE1,	and	\\.\TAPE2,	each	of	the	tape	devices	needs	to
be	specified	as	part	of	the	backup	operation,	although	fewer	tape	backup	devices
can	be	used	when	restoring	the	backup	later.

When	creating	a	backup	using	multiple	backup	devices	on	removable	media,
each	backup	media	does	not	need	to	be	the	same	size,	have	the	same	amount	of
storage	available,	or	operate	at	the	same	speed.	If	one	backup	media	used	by	a
backup	device	runs	out	of	space	while	a	backup	is	being	created,	SQL	Server
stops	writing	to	the	backup	device	and	prompts	for	new	media	to	continue
writing	to	that	backup	device.	While	waiting	for	new	media	to	be	inserted	into
the	backup	device,	the	backup	operation	continues	writing	data	to	any	other
backup	devices	involved	in	the	backup	operation,	as	long	as	the	backup	media
used	by	these	devices	has	space	available.

For	example,	three	tape	backup	devices	of	equal	speed	are	used	to	store	a
database	backup.	The	first	two	tape	media	are	10	gigabytes	(GB)	in	size,	but	the

third	is	only	5	GB	in	size.	If	the	sales	database,	which	is	20	GB	in	size,	is	backed
up	to	all	three	tape	backup	devices	simultaneously,	the	backup	operation	will
stop	writing	to	the	third	backup	device	and	prompt	for	a	new	tape	when	5	GB
has	been	written	to	the	tape.	However,	the	backup	operation	continues	writing
data	to	the	other	two	backup	devices.	When	the	tape	media	on	the	third	backup
device	is	replaced	with	a	new	tape,	the	backup	operation	continues	writing	data
to	the	third	backup	device.

Several	internal	synchronization	points	occur	when	a	database	backup	is	written
to	multiple	backup	devices.	The	most	important	synchronization	point	occurs
when	all	the	data	in	the	database	has	been	backed	up,	and	the	transaction	log	is
about	to	be	backed	up.	All	backup	devices	used	in	the	backup	operation	must	not
be	blocked	during	these	synchronization	points;	otherwise,	the	entire	backup
operation	is	blocked	until	all	backup	media	is	available.	For	example,	three	tape
backup	devices	are	used	to	store	a	database	backup,	and	the	second	tape	backup
device	is	blocked,	waiting	for	the	existing	tape	to	be	replaced	because	the	space
on	the	tape	has	been	exhausted.	If	a	synchronization	point	occurs,	the	entire
backup	operation	will	stop	until	the	tape	in	the	second	backup	device	is	replaced.

IMPORTANT		When	using	multiple	backup	devices	to	perform	backup	operations,
the	backup	media	involved	can	be	used	only	for	SQL	Server	backup	operations.
For	more	information,	see	Using	Backup	Media.

See	Also

Using	Backup	Media

Optimizing	Backup	and	Restore	Performance

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Reducing	Recovery	Time
Using	database,	differential	database,	and	transaction	log	backups	together	can
reduce	the	amount	of	time	it	takes	to	restore	a	database	back	to	any	point	in	time
after	the	database	backup	was	created.	Additionally,	creating	both	differential
database	and	transaction	log	backups	can	increase	the	robustness	of	a	backup	in
the	event	that	either	a	transaction	log	backup	or	differential	database	backup
becomes	unavailable,	for	example,	due	to	media	failure.

Typical	backup	procedures	using	database,	differential	database,	and	transaction
log	backups	create	database	backups	at	longer	intervals,	differential	database
backups	at	medium	intervals,	and	transaction	log	backups	at	shorter	intervals.
For	example,	create	database	backups	weekly,	differential	database	backups	one
or	more	times	per	day,	and	transaction	log	backups	every	ten	minutes.

If	a	database	needs	to	be	recovered	to	the	point	of	failure,	for	example,	due	to	a
system	failure:

1.	 Back	up	the	currently	active	transaction	log.	This	operation	will	fail	if
the	transaction	log	has	been	damaged.

2.	 Restore	the	last	database	backup	created.

3.	 Restore	the	last	differential	backup	created	since	the	database	backup
was	created.

4.	 Apply	all	transaction	log	backups,	in	sequence,	created	after	the	last
differential	backup	was	created,	finishing	with	the	transaction	log
backup	created	in	Step	1.

Note		If	the	active	transaction	log	cannot	be	backed	up,	it	is	possible	to	restore
the	database	only	to	the	point	when	the	last	transaction	log	backup	was	created.
Changes	made	to	the	database	since	the	last	transaction	log	backup	are	lost	and
must	be	redone	manually.

By	using	differential	database	and	transaction	log	backups	together	to	restore	a

database	to	the	point	of	failure,	the	time	taken	to	restore	a	database	is	reduced
because	only	the	transaction	log	backups	created	since	the	last	differential
database	backup	was	created	need	to	be	applied.	If	a	differential	database	backup
was	not	created,	then	all	the	transaction	log	backups	created	since	the	database
was	backed	up	need	to	be	applied.

For	example,	a	mission-critical	database	system	requires	that	a	database	backup
is	created	each	night	at	midnight,	a	differential	database	backup	is	created	on	the
hour,	Monday	through	Saturday,	and	transaction	log	backups	are	created	every
10	minutes	throughout	the	day.	If	the	database	needs	to	be	restored	to	its	state	at
5:19	A.M.	on	Wednesday:

1.	 Restore	the	database	backup	created	on	Tuesday	night.

2.	 Restore	the	differential	database	backup	created	at	5:00	A.M.	on
Wednesday.

3.	 Apply	the	transaction	log	backup	created	at	5:10	A.M.	on	Wednesday.

4.	 Apply	the	transaction	log	backup	created	at	5:20	A.M.	on	Wednesday,
specifying	that	the	recovery	process	only	applies	transactions	that
occurred	before	5:19	A.M.

Alternatively,	if	the	database	needs	to	be	restored	to	its	state	at	3:04	A.M.	on
Thursday,	but	the	differential	database	backup	created	at	3:00	A.M.	on	Thursday
is	unavailable:

1.	 Restore	the	database	backup	created	on	Wednesday	night.

2.	 Restore	the	differential	database	backup	created	at	2:00	A.M.	on
Thursday.

3.	 Apply	all	the	transaction	log	backups	created	from	2:10	A.M.	to	3:00
A.M.	on	Thursday.

4.	 Apply	the	transaction	log	backup	created	at	3:10	A.M.	on	Thursday,
specifying	that	the	recovery	process	only	applies	transactions	that
occurred	before	3:04	A.M.

To	create	a	database	backup

Administering	SQL	Server

Using	File	Backups
The	files	in	a	database	can	be	backed	up	and	restored	individually.	Doing	this
can	increase	the	speed	of	recovery	by	allowing	you	to	restore	only	damaged	files
without	restoring	the	rest	of	the	database.	For	example,	if	a	database	is
comprised	of	several	files	physically	located	on	different	disks	and	one	disk
fails,	only	the	file	on	the	failed	disk	needs	to	be	restored.

File	backup	and	restore	operations	must	be	used	in	conjunction	with	transaction
log	backups.	For	this	reason,	file	backups	can	only	be	used	with	the	Full
Recovery	and	Bulk-Logged	Recovery	models.	For	more	information	on	recovery
models,	see	Selecting	a	Recovery	Model.

File	backups	offer	these	advantages:

Recovery	from	isolated	media	failures	is	faster.	The	damaged	file	or
files	can	be	quickly	restored.

File	and	transaction	log	backups	can	be	created	simultaneously,
allowing	you	to	maintain	regular	log	backup	schedules.

File	backups	allow	greater	flexibility	in	scheduling	and	media	handling.
For	example,	for	very	large	databases,	full	database	backups	can
become	unmanageable.

This	flexibility	also	is	useful	for	large	databases	that	contain	data	with
varying	update	characteristics.

To	maximize	these	advantages,	consider	your	data	layout	and	usage	patterns.	It
is	recommended	that	you:

Back	up	frequently	modified	data	often.

Back	up	infrequently	modified	data	less	often.

Back	up	read-only	data	once.

Note		When	restoring	a	file	backup,	you	must	roll	forward	the	transaction	log	to
ensure	the	file	is	consistent	with	the	rest	of	the	database.	To	avoid	needing	to	roll
forward	many	transaction	log	backups	on	files	that	are	backed	up	rarely,	use	file
differential	backups.	For	more	information,	see	File	Differential	Backups.

File	and	filegroup	backups	are	functionally	equivalent.	A	filegroup	backup	is	a
single	backup	of	all	files	in	the	filegroup	and	is	equivalent	to	explicitly	listing	all
files	in	the	filegroup	when	creating	the	backup.	Files	in	a	filegroup	backup	can
be	restored	individually	or	as	a	group.

Only	one	file	backup	operation	can	occur	at	a	time.	You	can	backup	multiple
files	in	a	single	operation,	but	this	may	extend	your	recovery	time	if	you	only
need	to	restore	a	single	file,	because	the	entire	backup	will	be	read	to	locate	that
file.

A	complete	set	of	file	backups,	together	with	backups	of	the	transaction	log
covering	the	time	that	the	file	backups	were	created,	is	the	equivalent	of	a
database	backup.

Note		Individual	files	can	be	restored	from	a	database	backup.	This	means	that
you	can	use	database	and	transaction	log	backups	as	your	backup	procedure,	and
still	be	able	to	restore	individual	files.	However,	it	will	take	longer	to	locate	and
restore	a	file	from	a	database	backup	than	a	file	backup.

The	primary	disadvantage	of	file	backups	as	compared	to	database	backups	is
the	additional	administrative	complexity.	Care	must	be	taken	to	maintain	a	full
set	of	file	backups	and	covering	log	backups.	A	media	failure	can	render	an
entire	database	unrecoverable	if	there	is	no	backup	of	the	damaged	file.

When	creating	file	backups,	the	transaction	log	is	not	captured	by	the	backup
operation.	Transaction	log	backups	must	be	created	after	a	file	backup	is	created.
After	restoring	files,	you	must	bring	the	database	to	a	consistent	state	by
restoring	the	transaction	log	backups	created	since	the	file	backups	were	created.

Recovery	time	can	be	reduced	through	the	use	of	file	differential
backups.	For	more	information,	see	File	Differential	Backups.

Restoring	File	Backups

After	restoring	files,	you	must	restore	the	transaction	log	backups	created	since

the	file	backups	were	created	to	bring	the	database	to	a	consistent	state.	The
transaction	log	backup	can	be	rolled	forward	quickly,	because	only	the	changes
that	apply	to	the	restored	files	are	applied.

To	restore	a	damaged	file	or	files	from	file	backups:

1.	 Back	up	the	active	transaction	log.	If	you	cannot	do	this	because	the
log	has	been	damaged,	you	must	restore	the	entire	database.

2.	 Restore	each	damaged	file	from	the	most	recent	backup	of	that	file.

3.	 Restore	transaction	log	backups	in	sequence,	starting	with	the	backup
that	covers	the	oldest	of	the	restored	files.

4.	 Restore	the	backup	of	the	active	transaction	log	created	in	step	1.

5.	 Recover	the	database.

IMPORTANT		Microsoft®	SQL	Server™	requires	that	files	be	recovered	to	a	state
consistent	with	the	rest	of	the	database.	It	is	not	possible	to	stop	the	recovery	of
individual	files	early.	For	this	reason,	you	must	always	back	up	the	active
transaction	log	prior	to	restoring	a	file	backup.	If	the	transaction	log	is	damaged
or	if	you	wish	to	recover	the	entire	database	to	a	specific	point	in	time,	you	must
restore	the	entire	set	of	file	backups	before	you	apply	transaction	log	backups.
To	minimize	the	risk	of	transaction	log	damage,	locate	the	transaction	log	on
fault	tolerant	storage.

The	procedure	for	restoring	the	entire	database	is	similar.	The	only	difference	is
that	all	files	are	restored.	File	backups	can	also	be	used	to	restore	the	database	to
an	earlier	point	in	time.	To	do	this,	you	must	restore	a	complete	set	of	file
backups,	then	restore	transaction	log	backups	in	sequence	to	reach	the	desired
time.	You	can	stop	at	a	time	or	a	marked	transaction.

For	more	information	on	point-in-time	recovery,	see	Restoring	a	Database	to	a
Prior	State.

To	back	up	files	and	filegroups

Administering	SQL	Server

File	Differential	Backups
You	can	create	a	file	differential	backup	to	back	up	only	the	data	changed	since
the	last	file	backup.	File	differential	backups	can	dramatically	reduce	recovery
time	by	reducing	the	amount	of	transaction	log	that	must	be	restored.	In
Microsoft®	SQL	Server™	2000,	file	differential	backups	can	be	extremely	fast
because	SQL	Server	2000	tracks	changes	made	since	the	file	was	last	backed	up.
Therefore,	the	file	is	not	scanned.

Consider	file	differential	backups	if:

You	are	backing	up	some	files	much	less	frequently	than	others.

Your	files	are	large	and	the	data	is	updated	infrequently,	or	the	same
data	is	updated	repeatedly.

You	have	backed	up	a	read-only	file.	A	recent	file	differential	backup
will	eliminate	the	need	to	apply	many	log	backups	to	recover	the	file.

File	differential	backups	can	be	used	only	in	conjunction	with	file	backups	and
are	only	supported	by	the	Full	Recovery	and	Bulk-Logged	Recovery	models.	For
more	information,	see	Using	File	Backups	and	Selecting	a	Recovery	Model.

To	restore	a	damaged	file	or	files	from	file	backups	and	file	differential	backups:

1.	 Back	up	the	active	transaction	log.	If	you	cannot	do	this	because	the
log	has	been	damaged,	you	must	restore	the	entire	database.

2.	 Restore	each	damaged	file	from	the	most	recent	file	backup	of	that
file.

3.	 Restore	the	most	recent	file	differential	backup	for	each	file	restored	in
Step	2.

4.	 Restore	transaction	log	backups	in	sequence,	starting	with	the	backup
that	covers	the	oldest	of	the	restored	files.	

5.	 Restore	the	backup	of	the	active	transaction	log	created	in	Step	1.

6.	 Recover	the	database.

The	procedure	for	restoring	the	entire	database	is	similar.	The	only	difference	is
that	all	files	are	restored,	and	you	can	recover	to	a	specific	point	in	time	or	a
named	transaction.

Information	about	available	backups	is	contained	in	msdb.	If	msdb	is
unavailable,	this	information	can	be	obtained	from	the	backup	itself.

It	is	not	recommended	to	use	both	database	differential	and	file	differential
backups	on	the	same	database.	

Administering	SQL	Server

Snapshot	Backups
Microsoft®	SQL	Server™	2000	supports	snapshot	backup	and	restore
technologies	in	conjunction	with	independent	hardware	and	software	vendors.
Snapshot	backups	minimize	or	eliminate	the	use	of	server	resources	to
accomplish	the	backup.	This	is	especially	beneficial	for	moderate	to	very	large
databases	in	which	availability	is	extremely	important.	The	primary	benefits	of
this	technology	are:

A	backup	can	be	created	in	a	very	short	time,	typically	measured	in
seconds,	with	little	or	no	impact	on	the	server.	

Restore	can	be	accomplished	from	a	disk	backup	just	as	quickly.

Backup	to	tape	can	be	accomplished	by	another	host	with	no	impact	on
the	production	system.

A	copy	of	a	production	database	can	be	created	instantly	for	reporting	or
testing.

Snapshot	backups	can	be	created	for	an	entire	database	or	individual	files.	They
are	functionally	equivalent	to	conventional	full	database	and	file	backups	and
can	be	rolled	forward	using	conventional,	differential	and	log	backups.	Like
other	backups,	snapshot	backups	and	restores	are	tracked	in	msdb.

The	snapshot	backup	and	restore	functionality	is	accomplished	in	cooperation
with	third	party	hardware	and/or	software	vendors.	These	vendors	use	features	of
SQL	Server	2000	designed	for	this	purpose.	The	underlying	backup	technology
creates	an	instantaneous	copy	of	the	data	being	backed	up.	This	is	typically
accomplished	by	splitting	a	mirrored	set	of	disks	or	creating	a	copy	of	a	disk
block	when	it	is	written,	preserving	the	original.	At	restore	time,	the	original	is
made	available	immediately	and	synchronizing	the	underlying	disks	is	done	in
the	background,	resulting	in	almost	instantaneous	restores.

For	more	information,	see	the	SQL	Server	page	at	the	Microsoft	Web	site.	In
addition,	you	can	contact	your	enterprise	storage	and/or	backup	software	vendor.

http://www.microsoft.com/isapi/redir.dll?Prd=SQL&Ar=home

Administering	SQL	Server

Copying	Databases	to	Other	Servers
Creating	database	backups	allows	you	to	copy	data	from	one	computer	to
another.	The	copied	database	can	be	used	for	testing,	checking	consistency,
developing	software,	running	reports,	or	possibly	making	databases	available	to
remote	branch	operations.	By	copying	a	database	from	one	computer	to	another,
it	is	possible	to	reduce	resource	contention	because	processing	is	offloaded	to
other	computers.	Copied	databases	restored	onto	separate	computers	are	often
used	for	read-only	operations.

Note		With	Microsoft®	SQL	Server™	2000,	the	sort	order	and	code	page	of	the
database	being	copied	is	no	longer	a	concern.	SQL	Server	now	handles	multiple
collations.

A	database	can	also	be	copied	to	another	computer	to	act	as	a	standby	server.
The	database	and	the	transaction	logs	are	copied	to	another	computer
periodically,	which	can	be	brought	online	if	the	primary	computer	fails	for	some
reason.	The	level	of	synchronization	between	the	primary	computer	and	the
standby	server	is	determined	by	how	often	regular	backups	of	the	primary
computer	are	created	and	then	applied	to	the	standby	server.	For	more
information,	see	Using	Standby	Servers.

Note		It	is	possible	to	back	up	and	restore	databases	between	computers	running
an	instance	of	SQL	Server	on	Microsoft	Windows	NT®	4.0,	Microsoft
Windows®	2000,	and	Windows	98.

Other	methods	for	copying	data	between	multiple	instances	of	SQL	Server
include	using:

The	Data	Transformation	Services	(DTS)	Import/Export	Wizard	to	copy
and	modify	data	between	any	ODBC,	OLE	DB,	or	text	data	source	and
an	instance	of	SQL	Server.

The	bcp	utility	to	copy	data	between	an	instance	of	SQL	Server	and	a
data	file,	using	native,	character,	or	Unicode	mode.

The	INSERT	statement,	which	uses	a	distributed	query	as	the	select	list

to	extract	data	from	another	data	source.

The	Copy	Database	Wizard	to	copy	or	move	databases	and	associated
meta	data	between	servers.

See	Also

bcp	Utility

DTS	Import/Export	Wizard

Using	Standby	Servers

Using	the	Copy	Database	Wizard

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Copying	Databases
The	general	steps	required	to	copy	a	database	to	another	computer	are:

1.	 Back	up	the	database	from	the	source	computer	running	an	instance	of
Microsoft®	SQL	Server™.

2.	 Create	backup	devices,	if	desired,	at	the	destination	computer	running
an	instance	of	SQL	Server.

3.	 Restore	the	database	backup	to	the	destination	computer.	It	is	not
necessary	to	create	the	files	or	the	database	before	restoring	the
backup.

Re-creating	Database	Files

Restoring	a	database	automatically	creates	the	files	needed	by	the	database
backup	to	restore	the	backup	into.	The	database	files	(hence	the	database)	do	not
need	to	be	created	before	restoring	a	backup.	By	default,	the	files	created	by
SQL	Server	during	the	restoration	process	use	the	same	name	and	path	as	the
backup	files	from	the	original	database	on	the	source	computer.	Therefore,	it	is
useful	to	know	in	advance	the	files	that	are	created	automatically	by	the	restore
operation,	because:

The	file	names	may	already	exist	on	the	computer,	causing	an	error.

The	directory	structure	or	drive	mapping	may	not	exist	on	the	computer.

For	example,	the	backup	contains	a	file	that	it	needs	to	restore	to	drive
E,	but	the	destination	computer	does	not	have	a	drive	E.

If	the	database	files	are	allowed	to	be	replaced,	any	existing	database
and	files	with	the	same	names	as	those	in	the	backup	are	overwritten,
unless	those	files	belong	to	a	different	database.

Moving	the	Database	Files

If	the	files	within	the	database	backup	cannot	be	restored	onto	the	destination
computer	because	of	the	reasons	mentioned	earlier,	it	is	necessary	to	move	the
files	to	a	new	location	as	they	are	being	restored.	For	example:

It	may	be	necessary	to	restore	some	of	the	database	files	in	the	backup
to	a	different	drive	because	of	capacity	considerations.	This	is	likely	to
be	a	common	occurrence	because	most	computers	within	an
organization	do	not	have	the	same	number	and	size	of	disk	drives	or
identical	software	configurations.

It	may	be	necessary	to	create	a	copy	of	an	existing	database	on	the	same
computer	for	testing	purposes.	In	this	case,	the	database	files	for	the
original	database	already	exist,	so	different	file	names	need	to	be
specified	when	the	database	copy	is	created	during	the	restore
operation.

Changing	the	Database	Name

The	name	of	the	database	can	be	changed	as	it	is	restored	to	the	destination
computer,	without	having	to	restore	the	database	first	and	then	change	the	name
manually.	For	example,	it	may	be	necessary	to	change	the	database	name	from
Sales	to	SalesCopy	to	indicate	that	this	is	a	copy	of	a	database.

The	database	name	explicitly	supplied	when	restoring	a	database	is	used
automatically	as	the	new	database	name.	Because	the	database	name	does	not
already	exist,	a	new	one	is	created	using	the	files	in	the	backup.

Database	Ownership
When	a	database	is	restored	onto	another	computer,	the	SQL	Server	login	or
Windows	NT®	4.0	or	Windows®	2000	user	who	initiates	the	restore	operation
becomes	the	owner	of	the	new	database	automatically.	When	the	database	is
restored,	the	system	administrator	or	the	new	database	owner	can	change
database	ownership.	To	prevent	unauthorized	restores	of	a	database,	use	media
or	backup	set	passwords.	For	more	information,	see	Password	Protection.

Restoring	Full-Text	Index	Data
If	the	database	being	copied	contains	tables	that	have	been	defined	for	full-text
indexing,	then	the	destination	computer	must	also	have	Full-Text	Search
installed	and	the	MSSearch	Service	started	before	the	full-text	catalogs	can	be
re-created	and	repopulated.

Because	the	meta	data	for	the	full-text	index	definitions	is	stored	in	the	system
tables	of	a	database,	it	is	useful	to	know	in	advance	whether	any	of	the	full-text
catalogs	on	the	source	computer	resided	on	drives	and	directories	other	than	the
default.	These	directories	or	drive	mappings	may	not	exist	on	the	destination
computer	and	must	be	created	first.	To	view	the	locations	of	the	full-text
catalog(s)	on	the	source	computer,	execute	the	sp_help_fulltext_catalogs
system	stored	procedure.	The	PATH	column	value	is	the	location	where	the	full-
text	catalog	will	be	re-created	on	the	destination	computer.	If	the	PATH	column
value	of	the	result	set	is	NULL,	then	this	denotes	the	default	full-text	catalog
location.

To	view	the	data	and	log	files	in	a	backup	set

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Copying	Databases	from	Earlier	Versions	of	SQL
Server
In	Microsoft®	SQL	Server™	2000,	you	can	restore	a	database	backup	created
using	SQL	Server	version	7.0.	You	can	also	use	the	Copy	Database	Wizard	to
copy	databases	from	SQL	Server	7.0.	For	more	information,	see	Using	the	Copy
Database	Wizard.

However,	backups	of	the	master,	model	and	msdb	created	using	SQL	Server
7.0	cannot	be	restored	by	SQL	Server	2000.	Also,	it	is	not	possible	to	restore	a
database	backup	created	using	SQL	Server	version	6.5	or	earlier.	Database
backups	created	using	SQL	Server	6.5	or	earlier	are	in	a	format	incompatible
with	SQL	Server	2000.

You	can,	however,	convert	a	database	created	using	SQL	Server	6.5	or	earlier	to
SQL	Server	2000	by	doing	one	of	the	following:

Upgrading	to	SQL	Server	2000.

Any	databases	are	upgraded	automatically.	New	backups	from	the
upgraded	computer	running	SQL	Server	can	now	be	restored	into
another	computer	running	an	instance	of	SQL	Server	2000.

Using	the	Data	Transformation	Services	(DTS)	Import/Export	Wizard
to	copy	data	between	multiple	instances	of	SQL	Server.

Using	the	bcp	utility	to	copy	data	from	a	computer	running	an	instance
of	SQL	Server	6.5	or	earlier	to	a	data	file,	and	then	copy	the	data	from
the	data	file	into	a	computer	running	an	instance	of	SQL	Server	2000.

See	Also

DTS	Import/Export	Wizard

Importing	and	Exporting	Data

Upgrading	Databases	from	SQL	Server	6.5	(Upgrade	Wizard)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Using	the	Copy	Database	Wizard
The	Copy	Database	Wizard	allows	you	to	copy	or	move	databases	between
servers.	You	can	move	and	copy	databases	between	different	instances	of
Microsoft®	SQL	Server™	2000,	and	you	can	upgrade	databases	from	SQL
Server	version	7.0	to	SQL	Server	2000.	For	more	information,	see	Database
Upgrade	from	SQL	Server	7.0	(Copy	Database	Wizard).

To	upgrade	databases	online	using	the	Copy	Database	Wizard

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Managing	Servers
Microsoft®	SQL	Server™	server	management	comprises	a	wide	variety	of
administration	tasks,	including:

Registering	servers	and	assigning	passwords.

Reconfiguring	network	connectivity.

Configuring	linked	servers,	which	allows	you	to	execute	distributed
queries	and	distributed	transactions	on	OLE	DB	data	sources	across	the
enterprise.

Configuring	remote	servers,	which	allows	you	to	use	one	instance	of
SQL	Server	to	execute	a	stored	procedure	residing	on	another	instance
of	SQL	Server.

Configuring	standby	servers.

Setting	server	configuration	options.

Managing	SQL	Server	messages.

Setting	the	polling	intervals.

In	most	cases,	you	do	not	need	to	reconfigure	the	server.	The	default	settings	for
the	server	components,	configured	during	SQL	Server	Setup,	allow	you	to	run
SQL	Server	immediately	after	it	is	installed.	However,	server	management	is
necessary	in	those	situations	where	you	want	to	add	new	servers,	set	up	special
server	configurations,	change	the	network	connections,	or	set	server
configuration	options	to	improve	SQL	Server	performance.

Administering	SQL	Server

Registering	Servers
You	must	register	a	local	or	remote	server	before	you	can	administer	and	manage
it	by	using	SQL	Server	Enterprise	Manager.	When	you	register	a	server,	you
must	specify:

The	name	of	the	server.

The	type	of	security	used	to	log	on	to	the	server.

Your	login	name	and	password,	if	appropriate.

The	name	of	the	group	where	you	want	the	server	to	be	listed	after	it	is
registered.

You	also	can	optionally	display	the	Microsoft®	SQL	Server™	state	in	the
console,	start	an	instance	of	SQL	Server	automatically,	or	show	system	databases
and	system	objects.	The	first	two	options	are	selected	by	default	when	you
register	a	server.

When	you	run	SQL	Server	Enterprise	Manager	for	the	first	time,	it	automatically
registers	all	instances	of	a	local	SQL	Server.	However,	if	you	have	one	instance
of	SQL	Server	registered,	and	then	install	more	instances	of	SQL	Server,	only
the	original	instance	of	SQL	Server	will	be	registered.	You	can	launch	the
Register	Server	Wizard	or	use	the	Registered	SQL	Server	Properties	dialog
box	to	register	additional	servers.	The	Registered	SQL	Server	Properties
dialog	box	is	populated	with	the	names	of	all	local	instances	of	SQL	Server.

If	you	have	difficulty	connecting	to	the	remote	server,	you	can	use	the	Client
Network	Utility	to	configure	access	to	the	server.

To	register	a	server

Administering	SQL	Server

Creating	Server	Groups
You	can	create	a	server	group	within	SQL	Server	Enterprise	Manager	and	place
your	server	within	the	server	group.	Server	groups	provide	a	convenient	way	to
organize	a	large	number	of	servers	into	a	few	manageable	groups.

To	create	server	groups

Administering	SQL	Server

Accessing	Server	Registration	Options
Microsoft®	SQL	Server™	allows	you	to	maintain	shared	or	private	registry
information.	Shared	registry	information	allows	multiple	users	to	use	the	same
configuration	from	the	same	local	computer	or	from	a	central	computer.
Alternatively,	private	registry	information	prevents	others	from	gaining	access	to
your	configuration.

You	can	access	server	registration	information	in	two	ways:

Remotely,	on	a	central	computer	referred	to	as	the	central	store.

Remotely	accessing	the	server	registration	information	stored	on	a
central	computer	allows	different	client	computers	to	view	shared
registry	information.	For	example,	the	system	administrator	registers
servers	x,	y,	and	z	to	view	server	activity.	With	a	central	registration
store,	the	system	administrator	can	view	all	servers	from	any	client.

Note		To	read	server	registration	information	from	a	remote	server,	you
must	have	servers	registered	and	disable	the	Store	User	Independent
option	on	the	remote	computer.

Locally,	accessing	either	private	or	shared	information.

From	a	local	computer,	the	system	administrator	can	make	changes	to
the	central	store	and	configure	SQL	Server	Enterprise	Manager	to	save
registration	information	without	enabling	the	Store	User	Independent
option.	The	Store	User	Independent	option	allows	all	users	to	share
registration	information.	When	this	option	is	disabled,	the	central	store
maintains	private	registration	information	for	each	user.

To	set	up	a	central	store	for	server	registration	information

Administering	SQL	Server

Assigning	an	sa	Password
When	you	install	Microsoft®	SQL	Server™,	SQL	Server	Setup	does	not	assign
a	password	to	the	sa	login.	Assign	a	password	to	sa	after	a	server	is	installed.

Assign	an	sa	password	if	the	server	security	is	set	for	Mixed	Mode.	If	the	server
is	set	for	Windows	Authentication	Mode,	an	sa	password	is	not	necessary,
because	sa	is	a	SQL	Server	login.

IMPORTANT		If	you	cannot	provide	the	correct	sa	password,	you	must	reinstall
SQL	Server.

The	first	time	you	log	in	to	an	instance	of	SQL	Server,	use	sa	as	your	login
identification	and	no	password.	After	you	log	in,	change	the	sa	password	to
prevent	other	users	from	using	the	sa	permissions.

Note		Before	the	sa	password	can	be	changed,	the	server	must	be	registered	to
use	SQL	Server	Enterprise	Manager.

To	assign	the	sa	password	on	a	newly	installed	server

Administering	SQL	Server

Managing	AWE	Memory
Microsoft®	SQL	Server™	2000	uses	the	Microsoft	Windows®	2000	Address
Windowing	Extensions	(AWE)	API	to	support	very	large	memory	sizes.	SQL
Server	2000	can	use	as	much	memory	as	Windows	2000	Advanced	Server	or
Windows	2000	Datacenter	Server	allows.	For	more	information	about	the	AWE
API,	search	on	"awe	memory"	in	the	MSDN®	Online	Microsoft	Web	site.

Note		This	feature	is	available	only	in	the	SQL	Server	2000	Enterprise	and
Developer	editions.

Using	AWE	Memory
To	use	AWE	memory,	you	must	run	the	SQL	Server	2000	database	engine	under
a	Windows	2000	account	that	has	been	assigned	the	Windows	2000	lock	pages
in	memory	privilege.

SQL	Server	Setup	will	automatically	grant	the	MSSQLServer	service	account
permission	to	use	the	Lock	Page	in	Memory	option.	If	you	are	starting	an
instance	of	SQL	Server	2000	from	the	command	prompt	using	sqlservr.exe,	you
must	manually	assign	this	permission	to	the	interactive	user's	account	using	the
Windows	2000	Group	Policy	utility	(gpedit.msc),	or	SQL	Server	will	be	unable
to	use	AWE	memory	when	not	running	as	a	service.

To	enable	the	Lock	Page	in	Memory	option

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red

Administering	SQL	Server

Configuring	Network	Connections
Server	management	includes	reconfiguring	the	Microsoft®	SQL	Server™	server
network	connections.	Most	of	the	time,	you	do	not	need	to	change	the	server
network	connections.	Only	reconfigure	the	server	connections	if	you	need	to:

Configure	an	instance	of	SQL	Server	to	listen	on	a	particular	network
protocol.

Use	a	proxy	server	to	connect	to	an	instance	of	SQL	Server.

Use	a	firewall	system	to	isolate	the	network	containing	the	instance	of
SQL	Server	from	the	rest	of	the	Internet.

Administering	SQL	Server

Net-Libraries	and	Network	Protocols
A	matching	pair	of	Microsoft®	SQL	Server™	Net-Libraries	must	be	installed	on
a	client	and	server	computer	to	support	a	particular	network	protocol	(for
example,	client	TCP/IP	Sockets	Net-Library	and	server	TCP/IP	Sockets	Net-
Library).	Some	Net-Libraries,	such	as	Named	Pipes	and	Multiprotocol,	support
several	network	protocols.

All	of	the	SQL	Server	client	and	server	Net-Libraries	are	installed	by	SQL
Server	Setup.	By	default,	during	setup:

Named	Pipes	and	TCP/IP	Sockets	listen	on	Microsoft	Windows	NT®
4.0	or	Windows®	2000	servers.

TCP/IP	and	Shared	Memory	listen	on	Microsoft	Windows	98	servers.
(Shared	Memory	is	a	Net-Library	used	only	for	client/server
connections	on	the	same	computer.	You	do	not	need	to	configure	the
Shared	Memory	Net-Library.)

After	the	network	connections	are	installed	and	configured,	SQL	Server	can
listen	on	any	combination	of	the	server	Net-Libraries	simultaneously.

The	correct	network	protocols	should	already	be	installed	on	the	client	and
server.	Network	protocols	are	typically	installed	during	Windows	setup;	they	are
not	part	of	SQL	Server	Setup.	A	SQL	Server	Net-Library	will	not	work	unless	its
corresponding	network	protocol	is	already	installed	on	both	the	client	and	server.

Activating	Server	Net-Libraries	after	Setup
If	you	have	installed	SQL	Server	and	want	to	change	your	server	Net-Libraries,
start	SQL	Server	Network	Utility.	This	application	allows	you	to	activate,
deactivate,	and	reconfigure	server	Net-Libraries	to	listen	for	clients	on	their
corresponding	network	protocols.

Windows	98	Servers	and	Named	Pipes
When	running	on	Windows	98,	SQL	Server	does	not	support	the	server	Named

Pipes	Net-Library.	If	you	are	using	a	Windows	98	server	to	run	SQL	Server,
either	the	default	Net-Library	for	the	client	must	be	changed	to	TCP/IP	Sockets
or	Multiprotocol,	or	a	new	configuration	entry	must	be	created	on	the	client	that
uses	one	of	those	Net-Libraries.

Configuring	Clients
After	activating	the	appropriate	server	Net-Library	for	a	network	protocol,	you
must	configure	any	clients	accessing	the	server	through	that	network	protocol.
Use	Client	Network	Utility	to:

Set	up	a	new	configuration	entry	to	connect	to	that	specific	server.

Change	the	default	Net-Library	used	by	the	client	to	support	the	Net-
Library	you	just	configured	on	the	server;	however,	the	client	Net-
Library	you	select	becomes	the	default	Net-Library	for	all	connections
from	that	client.

See	Also

Client	Network	Utility

Communication	Components

Configuring	Client	Network	Connections

Managing	Clients

Client	Net-Libraries	and	Network	Protocols

SQL	Server	Network	Utility

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

SQL	Server	Network	Utility
In	most	cases,	you	do	not	need	to	reconfigure	Microsoft®	SQL	Server™	to
listen	on	additional	server	Net-Libraries.	However,	if	your	server	uses	a	network
protocol	on	which	SQL	Server,	by	default,	is	not	listening	(for	example,	if	your
server	is	using	NWLink	IPX/SPX),	and	the	SQL	Server	server	Net-Library	for
that	protocol	is	not	activated	to	listen	for	SQL	Server	clients,	you	must	use	SQL
Server	Network	Utility.

Although	no	server	Net-Library	configuration	actions	are	necessary	to	enable
SQL	Server	applications	to	connect	to	any	instance	of	SQL	Server,	you	can	do
the	following:

Manage	the	server	Net-Library	properties	for	each	instance	of	SQL
Server	on	a	database	computer.	

Enable	the	server	protocols	on	which	the	instance	of	SQL	Server	will
listen.	For	example,	enable	the	protocol	for	VIA	(Virtual	Interface
Architecture).	This	protocol	provides	highly	reliable	and	efficient	data
transfer,	when	used	with	specific	hardware.	For	VIA	to	work,	you	must
use	the	supported	hardware	(Giganet).	VIA	is	not	available	for	systems
running	Microsoft	Windows®	98.	For	more	information	about	VIA,	see
VIA	Clients.

Disable	a	server	protocol	that	is	no	longer	needed.	

Specify	or	change	the	network	address	on	which	each	enabled	protocol
will	listen.

When	you	are	entering	network	addresses	manually	on	a	computer
running	multiple	instances	of	SQL	Server,	you	must	not	duplicate
network	addresses	between	instances.	You	can	specify	a	comma-
separated	list	of	port	addresses	for	the	TCP/IP	protocol.	If	you	specify	a
list	of	port	addresses,	the	instance	of	SQL	Server	will	listen	on	those
ports	on	each	IP	address	available	on	the	computer	running	the	instance.

If	the	instance	is	running	on	a	SQL	Server	2000	failover	cluster,	it	will
listen	on	those	ports	on	each	IP	address	selected	for	SQL	Server	during
SQL	Server	setup.

Enable	the	Secure	Sockets	Layer	(SSL)	encryption	for	all	of	the	enabled
server	protocols.	The	encryption	is	turned	on	or	off	for	the	entire
enabled	server	protocols	and	you	cannot	specify	encryption	for	a
specific	protocol.	For	more	information	about	SSL	encryption,	see	Net-
Library	Encryption.

To	use	SSL	encryption,	you	must	install	a	certificate	using	the	fully
qualified	domain	name	of	the	computer	running	the	instance	of	SQL
Server	2000.	For	more	information	about	certificates,	see	the	Windows
2000	documentation.

Enable	a	WinSock	proxy.	For	more	information	about	setting	up	a	proxy
server,	see	Connections	to	SQL	Server	Through	Proxy	Server.

SQL	Server	Network	Utility	automatically	detects	if	the	instance	of	SQL	Server
you	specify	is	on	a	failover	cluster.	If	the	instance	is	on	a	failover	cluster,	all	of
the	information	you	specify	for	the	instance	is	replicated	to	all	nodes
automatically.	However,	if	you	want	to	use	encryption	with	a	failover	cluster,
you	must	install	the	server	certificate	with	the	fully	qualified	DNS	name	of	the
virtual	server	on	all	nodes	in	the	failover	cluster.	For	example,	if	you	have	a	two-
node	cluster,	with	nodes	named	test1.redmond.corp.microsoft.com	and
test2.redmond.corp.microsoft.com	and	a	virtual	SQL	Server	"Virtsql",	you	need
to	get	a	certificate	for	"virtsql.redmond.corp.microsoft.com"	and	install	the
certificate	on	both	nodes.	You	can	then	check	the	Force	protocol	encryption
check	box	on	the	Server	Network	Utility	to	configure	your	failover	cluster	for
encryption.

Use	Client	Network	Utility	to	configure	the	corresponding	client	Net-Libraries
to	any	server	Net-Libraries	you	activate.

To	start	the	SQL	Server	Network	Utility

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Connections	to	SQL	Server	Through	Proxy	Server
You	can	connect	to	an	instance	of	Microsoft®	SQL	Server™	through	Microsoft
Proxy	Server,	a	stand-alone	program	that	provides	secured	access	to	data.	Thus,
you	can	prevent	unauthorized	users	from	connecting	to	your	private	network.
This	keeps	your	sensitive	data	secure	by	controlling	all	the	permissions	and
accesses	to	the	listening	port.	Microsoft	Proxy	Server	is	integrated	with
Microsoft	Windows®	2000	Server	user	authentication.	You	can	block	access	to
restricted	sites	by	ranges	of	IP	addresses,	domains,	or	individual	users	so	you	can
ensure	that	your	users	are	using	their	Internet	permissions	appropriately.

For	more	information	about	Local	Address	Table	(LAT)	configuration	in	the
context	of	remote	listen	and	accept	calls,	see	the	Microsoft	Proxy	Server
documentation.

To	connect	to	an	instance	of	SQL	Server	through	Microsoft	Proxy	Server

Administering	SQL	Server

Connections	to	SQL	Server	Over	the	Internet
You	can	connect	to	an	instance	of	Microsoft®	SQL	Server™	over	the	Internet
using	SQL	Query	Analyzer	or	a	client	application	based	on	ODBC	or	DB-
Library.

To	share	data	over	the	Internet,	the	client	and	server	must	be	connected	to	the
Internet.	In	addition,	you	must	use	the	TCP/IP	or	Multiprotocol	Net-Libraries.	If
you	use	the	Multiprotocol	Net-Library,	ensure	that	TCP/IP	support	is	enabled.	If
the	server	is	registered	with	Domain	Name	System	(DNS),	you	can	connect
using	its	registered	name.

Although	this	connection	is	less	secure	than	a	Microsoft	Proxy	Server
connection,	using	a	firewall	or	an	encrypted	connection	will	help	keep	sensitive
data	secure.

Using	a	Firewall	System	with	SQL	Server
Many	companies	use	a	firewall	system	to	isolate	their	networks	from	unplanned
access	from	the	Internet.	A	firewall	can	be	used	to	restrict	Internet	applications
access	to	your	network	by	forwarding	only	requests	targeted	at	specific	TCP/IP
addresses	in	the	local	network.	Requests	for	all	other	network	addresses	are
blocked	by	the	firewall.	You	can	allow	Internet	applications	to	access	an	instance
of	SQL	Server	in	the	local	network	by	configuring	the	firewall	to	forward
network	requests	that	specify	the	network	address	of	the	instance	of	SQL	Server.

To	work	effectively	with	a	firewall,	you	must	ensure	that	the	instance	of	SQL
Server	always	listens	on	the	network	address	that	the	firewall	is	configured	to
forward.	The	TCP/IP	network	addresses	for	SQL	Server	are	comprised	of	two
parts:	an	IP	address	associated	with	one	or	more	network	cards	in	a	computer,
and	a	TCP	port	address	specific	to	an	instance	of	SQL	Server.	Default	instances
of	SQL	Server	use	TCP	port	1433	by	default.	Named	instances,	however,
dynamically	assign	an	unused	TCP	port	number	the	first	time	the	instance	is
started.	The	named	instance	can	also	dynamically	change	it's	TCP	port	address
on	a	subsequent	startup	if	the	original	TCP	port	number	is	being	used	by	another
application.	SQL	Server	only	dynamically	changes	to	an	unused	TCP	port	if	the
port	it	is	currently	listening	on	was	dynamically	selected.	That	is,	if	the	port	was

statically	selected	(manually),	SQL	Server	will	display	an	error	and	continue	to
listen	on	other	ports.	It	is	unlikely	another	application	would	attempt	to	use	1433
since	that	port	is	registered	as	a	well-known	address	for	SQL	Server.

When	using	a	named	instance	of	SQL	Server	with	a	firewall,	use	the	Server
Network	Utility	to	configure	the	named	instance	to	listen	on	a	specific	TCP	port.
You	must	pick	a	TCP	port	that	is	not	used	by	another	application	running	on	the
same	computer	or	cluster.	For	a	list	of	well-known	ports	registered	for	use	by
various	applications,	see	http://www.ise.edu/in-notes/iana/assignments/port-
numbers.

Have	the	network	administrator	configure	the	firewall	to	forward	the	IP	address
and	TCP	port	the	instance	of	SQL	Server	is	listening	on	(using	either	1433	for	a
default	instance,	or	the	TCP	port	you	configured	a	named	instance	to	listen	on).
Also	configure	the	firewall	to	forward	requests	for	UDP	port	1434	on	the	same
IP	address.	SQL	Server	2000	uses	UDP	port	1434	to	establish	communications
links	from	applications.

For	example,	consider	a	computer	running	one	default	instance	and	two	named
instances	of	SQL	Server.	The	computer	is	configured	such	that	the	network
addresses	that	the	three	instances	listen	on	all	have	the	same	IP	address.	The
default	instance	would	listen	on	TCP	port	1433,	one	named	instance	could	be
assigned	TCP	port	1434,	and	the	other	named	instance	TCP	port	1954.	You
would	then	configure	the	firewall	to	forward	network	requests	for	UDP	port
1434	and	TCP	ports	1433,	1434,	and	1954	on	that	IP	address.

Establishing	an	Encrypted	Connection
If	you	want	users	to	be	able	to	establish	an	encrypted	connection	to	an	instance
of	SQL	Server,	you	can	do	so	by	enabling	encryption	for	the	Multiprotocol	Net-
Library.

To	enable	encryption	after	SQL	Server	has	been	installed

Administering	SQL	Server

Configuring	Linked	Servers
A	linked	server	configuration	allows	Microsoft®	SQL	Server™	to	execute
commands	against	OLE	DB	data	sources	on	different	servers.	Linked	servers
offer	these	advantages:

Remote	server	access.

The	ability	to	issue	distributed	queries,	updates,	commands,	and
transactions	on	heterogeneous	data	sources	across	the	enterprise.

The	ability	to	address	diverse	data	sources	similarly.

Linked	Server	Components

A	linked	server	definition	specifies	an	OLE	DB	provider	and	an	OLE	DB	data
source.

An	OLE	DB	provider	is	a	dynamic-link	library	(DLL)	that	manages	and	interacts
with	a	specific	data	source.	An	OLE	DB	data	source	identifies	the	specific
database	accessible	through	OLE	DB.	Although	data	sources	queried	through
linked	server	definitions	are	usually	databases,	OLE	DB	providers	exist	for	a
wide	variety	of	files	and	file	formats,	including	text	files,	spreadsheet	data,	and
the	results	of	full-text	content	searches.	The	following	table	shows	examples	of
the	most	common	OLE	DB	providers	and	data	sources	for	SQL	Server.

OLE	DB	provider OLE	DB	data	source
Microsoft	OLE	DB	Provider	for
SQL	Server

Instance	of	SQL	Server	(in	the	form
servername\instancename)	and
database,	such	as	pubs	or	Northwind

Microsoft	OLE	DB	Provider	for	Jet Path	name	of	.mdb	database	file
Microsoft	OLE	DB	Provider	for
ODBC

ODBC	data	source	name	(pointing	to	a
particular	database)

Microsoft	OLE	DB	Provider	for
Oracle

SQL*Net	alias	that	points	to	an	Oracle
database

Microsoft	OLE	DB	Provider	for
Indexing	Service

Content	files	on	which	property
searches	or	full-text	searches	can	be
run

Note		SQL	Server	has	been	tested	only	against	the	Microsoft	OLE	DB	Provider
for	SQL	Server,	Microsoft	OLE	DB	Provider	for	Jet,	Microsoft	OLE	DB
Provider	for	Oracle,	Microsoft	OLE	DB	Provider	for	Indexing	Service,	and	the
Microsoft	OLE	DB	Provider	for	ODBC.	However,	SQL	Server	distributed
queries	are	designed	to	work	with	any	OLE	DB	provider	that	implements	the
requisite	OLE	DB	interfaces.

For	a	data	source	to	return	data	through	a	linked	server,	the	OLE	DB	provider
(DLL)	for	that	data	source	must	be	present	on	the	same	server	as	SQL	Server.

Linked	Server	Details
This	illustration	shows	the	basics	of	how	a	linked	server	configuration	functions.

Typically,	linked	servers	are	used	to	handle	distributed	queries.	When	a	client
application	executes	a	distributed	query	through	a	linked	server,	SQL	Server
breaks	down	the	command	and	sends	rowset	requests	to	OLE	DB.	The	rowset
request	may	be	in	the	form	of	executing	a	query	against	the	provider	or	opening
a	base	table	from	the	provider.

Managing	a	Linked	Server	Definition
When	setting	up	a	linked	server,	register	the	connection	information	and	data
source	information	with	SQL	Server.	After	registration	is	accomplished,	that	data
source	can	always	be	referred	to	with	a	single	logical	name.

You	can	create	or	delete	a	linked	server	definition	with	stored	procedures	or
through	SQL	Server	Enterprise	Manager.

With	stored	procedures:

Create	a	linked	server	definition	using	sp_addlinkedserver.	To
view	information	about	the	linked	servers	defined	in	a	given
instance	of	SQL	Server,	use	sp_linkedservers.	For	more
information,	see	sp_addlinkedserver	and	sp_linkedservers.	

Delete	a	linked	server	definition	using	sp_dropserver.	You	can
also	use	this	stored	procedure	to	remove	a	remote	server.	For
more	information,	see	sp_dropserver.

With	SQL	Server	Enterprise	Manager:

Create	a	linked	server	definition	using	the	SQL	Server
Enterprise	Manager	console	tree	and	the	Linked	Servers	node
(under	the	Security	folder).	Define	the	name,	provider
properties,	server	options,	and	security	options	for	the	linked
server.	For	more	information	about	the	various	ways	a	linked
server	can	be	set	up	for	different	OLE	DB	data	sources	and	the
parameter	values	to	be	used,	see	sp_addlinkedserver.	

Edit	a	linked	server	definition	by	right-clicking	the	linked
server	and	clicking	Properties.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Delete	a	linked	server	definition	by	right-clicking	the	linked
server	and	clicking	Delete.

When	executing	a	distributed	query	against	a	linked	server,	include	a	fully
qualified,	four-part	table	name	for	each	data	source	to	query.	This	four-part	name
should	be	in	the	form	linked_server_name.catalog.schema.object_name.	For
more	information,	see	Distributed	Queries.

See	Also

Identifying	a	Data	Source	Using	a	Linked	Server	Name

OLE	DB	Providers	Tested	with	SQL	Server

Using	Transactions	with	Distributed	Queries

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Administering	SQL	Server

Establishing	Security	for	Linked	Servers
During	a	linked	server	connection	(for	example,	when	processing	a	distributed
query),	the	sending	server	provides	a	login	name	and	password	to	connect	to	the
receiving	server	on	its	behalf.	For	this	connection	to	work,	create	a	login
mapping	between	the	linked	servers	using	Microsoft®	SQL	Server™	stored
procedures.

Linked	server	login	mappings	can	be	added	using	sp_addlinkedsrvlogin	and
removed	using	sp_droplinkedsrvlogin.	A	linked	server	login	mapping
establishes	a	remote	login	and	remote	password	for	a	given	linked	server	and
local	login.	When	SQL	Server	connects	to	a	linked	server	in	order	to	execute	a
distributed	query	or	a	stored	procedure,	it	looks	for	any	login	mappings	for	the
current	login	that	is	executing	the	query	of	the	procedure.	If	there	is	one,	it	sends
the	corresponding	remote	login	and	password	while	connecting	to	the	linked
server.

Consider	a	mapping	for	a	linked	server,	S1,	that	has	been	set	up	from	a	local
login,	U1,	to	remote	login,	U2,	using	a	remote	password	of	"my_pwd".	When
local	login	U1	executes	a	distributed	query	that	accesses	a	table	stored	in	linked
server	S1,	U2	and	"my_pwd"	are	passed	as	the	user	ID	and	password	when	SQL
Server	connects	to	the	linked	server	S1.

For	example,	a	mapping	for	a	linked	server,	S1,	has	been	set	up	for	a	local	login,
U1,	to	remote	login,	U2,	using	a	remote	password	of	"my	pwd".	When	local
login	U1	executes	a	distributed	query	that	accesses	a	table	stored	in	linked	server
S1,	U2	and	"my	pwd"	are	passed	as	the	user	ID	and	password	when	SQL	Server
connects	to	the	linked	server	S1.

The	default	mapping	for	a	linked	server	configuration	is	to	emulate	the	current
security	credentials	of	the	login.	This	type	of	mapping	is	known	as	self	mapping.
When	a	linked	server	is	added	using	sp_addlinkedserver,	a	default	self
mapping	is	added	for	all	local	logins.

If	security	account	delegation	is	not	available	on	the	client	or	sending	server,	or
the	linked	server/provider	does	not	recognize	Windows	Authentication	Mode,
then	self	mapping	will	not	work	for	Windows	Authenticated	logins.	Therefore,
you	need	to	set	up	a	local	login	mapping	from	a	Windows	Authenticated	login	to

a	specific	login	on	the	linked	server.	In	this	case,	the	remote	login	will	be	a	SQL
Server	Authenticated	login	if	the	linked	server	is	an	instance	of	SQL	Server.

If	security	account	delegation	is	available	and	the	linked	server	supports
Windows	Authentication,	then	the	self	mapping	for	the	Windows	Authenticated
logins	will	be	supported.	For	more	information	about	security	account
delegation,	see	Security	Account	Delegation.

Distributed	queries	are	subject	to	the	permissions	granted	to	the	remote	login	by
the	linked	server	on	the	remote	table.	While	processing	a	distributed	query,	SQL
Server	does	not	perform	any	permission	validation	at	compilation	time.	Any
permission	violations	are	detected	at	query	execution	time	as	reported	by	the
provider.

To	add	a	linked	server	login

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Configuring	OLE	DB	Providers	for	Distributed
Queries
Microsoft®	SQL	Server™	provides	a	number	of	advanced	options	for	managing
distributed	queries.	Some	of	the	options	are	managed	at	the	provider	level	in	the
Microsoft	Windows®	2000	registry,	and	others	are	managed	at	the	linked	server
level	through	sp_serveroption.	Configuring	these	options	should	be	undertaken
only	by	experienced	system	administrators	in	the	interests	of	maximizing	the
performance	of	distributed	queries	against	linked	servers.

OLE	DB	Provider	Options
The	OLE	DB	provider	options	for	managing	distributed	queries	are	set	using
SQL	Server	Enterprise	Manager.	In	the	left	pane	of	SQL	Server	Enterprise
Manager,	right-click	a	linked	server	definition	that	uses	the	OLE	DB	provider
for	which	you	want	to	set	the	properties.	On	the	General	tab,	click	Options,	and
then	set	the	properties.

Provider	option Description
DynamicParameters If	nonzero,	indicates	that	the	provider	allows	'?'

parameter	marker	syntax	for	parameterized
queries.	Set	this	option	only	if	the	provider
supports	the	ICommandWithParameters
interface	and	supports	a	'?'	as	the	parameter
marker.	Setting	this	option	allows	SQL	Server	to
execute	parameterized	queries	against	the
provider.	The	ability	to	execute	parameterized
queries	against	the	provider	can	result	in	better
performance	for	certain	queries.

NestedQueries If	nonzero,	indicates	that	the	provider	allows
nested	SELECT	statements	in	the	FROM	clause.
Setting	this	option	allows	SQL	Server	to	delegate
certain	queries	to	the	provider	that	require	nesting
SELECT	statements	in	the	FROM	clause.

LevelZeroOnly If	nonzero,	only	level	0	OLE	DB	interfaces	are

invoked	against	the	provider.
AllowInProcess If	nonzero,	SQL	Server	allows	the	provider	to	be

instantiated	as	an	in-process	server.	When	this
option	is	not	set	in	the	registry,	the	default
behavior	is	to	instantiate	the	provider	outside	the
SQL	Server	process.	Instantiating	the	provider
outside	the	SQL	Server	process	protects	the	SQL
Server	process	from	errors	in	the	provider.	When
the	provider	is	instantiated	outside	the	SQL
Server	process,	updates	or	inserts	referencing
long	columns	(text,	ntext,	or	image)	are	not
allowed.

NonTransactedUpdates If	nonzero,	SQL	Server	allows	updates,	even	if
ITransactionLocal	is	not	available.	If	this	option
is	enabled,	updates	against	the	provider	are	not
recoverable,	because	the	provider	does	not
support	transactions.

IndexAsAccessPath If	nonzero,	SQL	Server	attempts	to	use	indexes	of
the	provider	to	fetch	data.	By	default,	indexes	are
used	only	for	meta	data	and	are	never	opened.

DisallowAdhocAccess If	a	nonzero	value	is	set,	SQL	Server	does	not
allow	ad	hoc	access	through	the	OpenRowset()
and	OpenDataSource()	functions	against	the
OLE	DB	provider.	When	this	option	is	not	set,	the
default	behavior	is	to	allow	OpenRowset	and
OpenDataSource.

These	options	operate	at	the	provider	level.	When	the	options	are	set	for	a
provider,	the	settings	apply	to	all	linked	server	definitions	using	the	same	OLE
DB	provider.

Setting	either	DynamicParameters	or	NestedQueries	to	nonzero	values	allows
SQL	Server	to	send	queries	requiring	this	syntax	to	the	OLE	DB	provider	for
remote	query	execution.	These	two	options	should	be	set	only	if	the	provider
supports	their	syntax.

Linked	Server	Options

Several	options	for	managing	distributed	queries	are	available	at	the	linked
server	level	through	sp_serveroption.	The	server	level	options	(in	contrast	to
provider	level	options)	only	affect	the	behavior	against	the	specified	linked
server.

The	following	table	describes	the	various	linked	server	options.

Linked	server	options Description
use	remote	collation If	set	to	true,	SQL	Server	will	use	the	collation

information	of	character	columns	from	the	linked
server.	If	the	linked	server	is	an	instance	of	SQL
Server,	then	the	collation	information	is	derived
automatically	from	the	SQL	Server	OLE-DB
provider	interface.	If	the	linked	server	is	not	an
instance	of	SQL	Server,	then	SQL	Server	will	use
the	collation	set	in	the	collation	name	option.

If	set	to	false,	SQL	Server	will	interpret	character
data	from	the	specified	linked	server	in	the	default
collation	of	the	instance	of	a	local	SQL	Server.

collation	name This	specifies	the	collation	to	be	used	for	character
data	from	the	linked	server	if	use	remote	collation
is	set	to	true.	This	option	is	ignored	if	use	remote
collation	is	set	to	false,	or	if	the	linked	server	is	an
instance	of	SQL	Server.

connection	timeout This	specifies	the	time-out	value	(in	seconds)	to	be
used	when	SQL	Server	attempts	to	make	a
connection	to	the	linked	server.	If	this	option	is	not
set,	the	current	value	set	for	the	global
configuration	option	remote	login	timeout	is	used
as	the	default.

lazy	schema
validation

If	this	option	is	set	to	false	(the	default	value),
SQL	Server	checks	for	schema	changes	that	have
occurred	since	compilation	in	remote	tables.	This
occurs	before	query	execution	begins.	If	there	is	a
change	in	the	schema,	SQL	Server	recompiles	the
query	with	the	new	schema.

If	this	option	is	set	to	true,	the	checking	of	the
schema	of	remote	tables	is	delayed	until	execution.
This	can	cause	a	distributed	query	to	fail	with	an
error,	if	the	schema	of	a	remote	table	has	changed
between	the	time	the	query	was	compiled	and
executed.

You	may	want	to	set	this	option	to	true	when
distributed,	partitioned	views	are	being	used
against	a	linked	SQL	Server.	A	given	table
participating	in	the	partitioned	view	may	not	be
actually	used	in	a	given	execution	of	a	query
against	the	view,	so	deferring	the	schema
validation	can	be	useful	to	improve	performance.

See	Also

Establishing	Security	for	Linked	Servers

sp_addlinkedserver

sp_serveroption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Configuring	Remote	Servers
A	remote	server	configuration	allows	a	client	connected	to	one	instance	of
Microsoft®	SQL	Server™	to	execute	a	stored	procedure	on	another	instance	of
SQL	Server	without	establishing	another	connection.	The	server	to	which	the
client	is	connected	accepts	the	client	request	and	sends	the	request	to	the	remote
server	on	behalf	of	the	client.	The	remote	server	processes	the	request	and
returns	any	results	to	the	original	server,	which	in	turn	passes	those	results	to	the
client.

If	you	want	to	set	up	a	server	configuration	in	order	to	execute	stored	procedures
on	another	server	and	do	not	have	existing	remote	server	configurations,	use
linked	servers	instead	of	remote	servers.	Both	stored	procedures	and	distributed
queries	are	allowed	against	linked	servers;	however,	only	stored	procedures	are
allowed	against	remote	servers.

Note		Support	for	remote	servers	is	provided	for	backward	compatibility	only.
New	applications	that	must	execute	stored	procedures	against	remote	instances
of	SQL	Server	should	use	linked	servers	instead.

Remote	Server	Details
Remote	servers	are	set	up	in	pairs.	To	set	up	a	pair	of	remote	servers,	configure
both	servers	to	recognize	each	other	as	remote	servers.	Then,	verify	that
configuration	options	are	set	properly	for	both	servers	so	that	each	instance	of
SQL	Server	allows	remote	users	to	execute	procedure	calls.	Check	the
configuration	options	in	the	Server	Properties	dialog	box	on	both	the	local	and
the	remote	servers.

In	most	cases,	you	should	not	need	to	set	configuration	options	for	remote
servers;	the	defaults	set	on	both	local	and	remote	computers	by	SQL	Server
Setup	allow	for	remote	server	connections.

For	remote	server	access	to	work,	the	remote	access	configuration	option,	which
controls	logins	from	remote	servers,	must	be	set	to	1	(the	default	setting)	on	both
the	local	and	remote	computers.	If	the	setting	for	either	server's	remote	access
option	has	been	changed,	you	must	reset	the	option	(for	one	or	both	servers)
back	to	1	to	allow	remote	access.	This	can	be	accomplished	through	either	SQL

Server	Enterprise	Manager	or	the	Transact-SQL	sp_configure	statement.

From	the	local	server,	you	can	disable	a	remote	server	configuration	to	prevent
user	access	to	that	server.

To	set	up	a	remote	server

Administering	SQL	Server

Establishing	Security	for	Remote	Servers
Setting	up	security	for	executing	remote	procedure	calls	(RPC)	against	a	remote
server	involves	setting	up	login	mappings	in	the	remote	server	and	possibly	in
the	local	server	running	an	instance	of	Microsoft®	SQL	Server™.

Note		Support	for	remote	servers	is	provided	for	backward	compatibility	only.
New	applications	that	must	execute	stored	procedures	against	remote	instances
of	SQL	Server	should	use	linked	servers	instead.

Setting	Up	the	Remote	Server
Remote	login	mappings	must	be	set	up	on	the	remote	server.	Using	these
mappings,	the	remote	server	maps	the	incoming	login	for	an	RPC	connection
from	a	given	server	to	a	local	login.	Remote	login	mappings	can	be	set	up	using
the	sp_addremotelogin	stored	procedure	on	the	remote	server.

Setting	Up	the	Local	Server
In	SQL	Server	2000,	create	remote	server	connections	for	remote	server	logins
created	by	Windows	Authentication	by:

Setting	up	a	local	login	mapping	on	a	local	server	that	defines	what
login	and	password	are	used	by	an	instance	of	SQL	Server	when	it
makes	an	RPC	connection	to	a	remote	server.

For	logins	created	by	Windows	Authentication,	you	must	create	a
mapping	to	a	login	name	and	password.	This	login	name	and	password
must	match	the	incoming	login	and	password	expected	by	the	remote
server.

Using	the	sp_addlinkedsrvlogin	stored	procedure	to	create	local	login
mappings.

Note		For	logins	created	by	SQL	Server	Authentication,	it	is	not
necessary	to	create	any	local	login	mappings	for	executing	a	stored
procedure	against	a	remote	server.

Remote	Server	Security	Example

Consider	two	SQL	Server	installations,	serverSend	and	serverReceive.
serverReceive	is	configured	to	map	an	incoming	login	from	serverSend,	called
Sales_Mary,	to	a	SQL	Server	authenticated	login	in	serverReceive,	called	Alice.
Another	incoming	login	from	serverSend,	called	Joe,	is	mapped	to	a	SQL	Server
Athenticated	login	in	serverReceive,	called	Joe.

The	following	Transact-SQL	code	can	be	executed	to	configure	serverSend	to
perform	RPCs	against	serverReceive:

--Create	remote	server	entry	for	RPCs	from	serverSend.
EXEC	sp_addserver	'serverSend'
GO

--Create	remote	login	mapping	for	login	'Sales_Mary'	from	serverSend
--to	Alice.
EXEC	sp_addremotelogin	'serverSend',	'Alice',	'Sales_Mary'
GO

--Set	trusted	option	on	for	this	mapping	to	disable	password	checking
--for	Sales_Mary	from	serverSend.
EXEC	sp_remoteoption	'serverSend',	'Alice',	'Sales_Mary',	trusted,	true
GO

--Create	remote	login	mapping	for	login	Joe	from	serverReceive	to	same	login;
--assumes	same	password	for	Joe	in	both	servers.
EXEC	sp_addremotelogin	'serverSend',	'Joe',	'Joe'
GO

On	serverSend,	a	local	login	mapping	is	created	for	a	Windows	Authenticated
login	Sales\Mary	to	a	login	Sales_Mary.	No	local	mapping	is	necessary	for	Joe,
as	the	default	is	to	use	the	same	login	name	and	password,	and	serverReceive	has
a	mapping	for	Joe:

--Create	a	remote	server	entry	for	RPCs	from	serverReceive.

EXEC	sp_addserver	'serverReceive'
GO

--Create	a	local	login	mapping	for	the	Windows	Authenticated	login.
--Sales\Mary	to	Sales_Mary.
EXEC	sp_addlinkedsrvlogin	'serverReceive',	false,	'Sales\Mary',
			'Sales_Mary,'	NULL
GO

See	Also

Configuring	Remote	Servers

sp_addremotelogin

sysremotelogins

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Viewing	Local	or	Remote	Server	Properties
You	can	review	server	attributes	for	local	or	remote	servers	(such	as	the
Microsoft®	SQL	Server™	version	number,	type	and	number	of	processors	in	the
computer,	and	the	operating	system	version)	in	one	convenient	location.	From
the	local	server,	you	can	view	databases,	files,	logins,	and	tools	for	a	remote
server.

To	view	server	properties

Administering	SQL	Server

Using	Standby	Servers
A	standby	server	is	a	second	server	that	can	be	brought	online	if	the	primary
production	server	fails.	The	standby	server	contains	a	copy	of	the	databases	on
the	primary	server.	A	standby	server	can	also	be	used	when	a	primary	server
becomes	unavailable	due	to	scheduled	maintenance.	For	example,	if	the	primary
server	needs	a	hardware	or	software	upgrade,	the	standby	server	can	be	used.

A	standby	server	allows	users	to	continue	working	with	databases	if	the	primary
server	becomes	unavailable.	When	the	primary	server	becomes	available	again,
any	changes	to	the	standby	server's	copies	of	databases	must	be	restored	back	to
the	primary	server.	Otherwise,	those	changes	are	lost.	When	users	start	using	the
primary	server	again,	its	databases	should	be	backed	up	and	restored	on	the
standby	server	again.

Implementing	a	standby	server	involves	these	phases:

Creating	the	database	and	ongoing	transaction	log	backups	on	the
primary	server.

Setting	up	and	maintaining	the	standby	server	by	backing	up	the
database	on	the	primary	server	and	restoring	them	on	the	standby	server.

Bringing	the	standby	server	online	if	the	primary	server	fails.

IMPORTANT		All	user	processes	must	log	in	to	the	standby	server	and
restart	any	tasks	they	were	performing	when	the	primary	server	became
unavailable.	User	processes	are	not	switched	automatically	to	the
standby	server	and	transactions	are	not	maintained	between	the	primary
server	and	the	standby	server.	If	the	primary	server	is	taken	off	the
network	or	renamed	manually,	and	the	standby	server	is	renamed,	then
the	standby	server	will	have	a	network	name	and	address	different	from
the	server	the	users	were	using	previously.

Periodically,	transaction	log	backups	from	the	databases	on	the	primary	server
are	applied	on	the	standby	to	ensure	that	the	standby	remains	synchronized	with

the	primary	server.	In	the	event	of	the	primary	server	failing,	or	even	if	just	a
single	database	fails,	the	databases	on	the	standby	server	are	made	available	to
user	processes.	Any	user	processes	that	cannot	access	the	primary	server	should
use	the	standby	server	instead.

A	standby	server	configuration	is	not	the	same	as	the	virtual	server	configuration
used	in	Microsoft®	SQL	Server™	2000	failover	clustering.	A	standby	server
contains	a	second	copy	of	the	SQL	Server	databases.	In	a	virtual	server
configuration,	a	single	copy	of	the	databases,	loaded	on	a	shared	cluster	disk,	is
shared	by	the	primary	and	secondary	physical	servers	that	underlie	the	virtual
server.

Creating	the	Backups	on	the	Primary	Server
On	the	primary	server:

1.	 Create	a	full	database	backup	of	each	database	to	be	duplicated.	For
more	information,	see	Database	Backups.

2.	 Periodically,	create	a	transaction	log	backup	of	each	database	to	be
duplicated.	For	more	information,	see	Transaction	Log	Backups.

The	frequency	of	transaction	log	backups	created	on	the	primary
server	depends	on	the	volume	of	transaction	changes	of	the	production
server	database.	If	the	transaction	frequency	is	high,	it	may	be	useful
to	back	up	the	transaction	log	frequently	to	minimize	the	potential	loss
of	data	in	the	event	of	failure.

IMPORTANT		When	restoring	a	copy	of	master	from	a	production	server
to	a	standby	server,	you	cannot	back	up	the	transaction	log	of	master.
Only	a	database	backup	and	restore	of	master	is	possible.

Setting	Up	and	Maintaining	the	Standby	Server

A	standby	server	is	set	up	and	maintained	as	follows:

1.	 Restore	the	database	backups	from	the	primary	server	onto	the	standby
server	in	standby	mode,	specifying	an	undo	file	(one	undo	file	per
database).

When	a	database	or	transaction	log	is	restored	in	standby	mode,
recovery	needs	to	roll	back	any	uncommitted	transactions	so	that	the
database	can	be	left	in	a	logically	consistent	state	and	used,	if
necessary,	for	read-only	purposes.	Pages	in	the	database	affected	by
the	uncommitted,	rolled	back	transactions	are	modified.	This	undoes
the	changes	originally	performed	by	the	uncommitted	transactions.
The	undo	file	is	used	to	save	the	contents	of	these	pages	before
recovery	modifies	them	to	prevent	the	changes	performed	by	the
uncommitted	transactions	from	being	lost.	Before	a	subsequent
transaction	log	backup	is	next	applied	to	the	database,	the
uncommitted	transactions	that	were	previously	rolled	back	by	recovery
must	be	reapplied	first.	The	saved	changes	in	the	undo	file	are
reapplied	to	the	database,	and	then	the	next	transaction	log	is	applied.

Note		There	must	be	enough	disk	space	for	the	undo	file	to	grow	so
that	it	can	contain	all	the	distinct	pages	from	the	database	that	were
modified	by	rolling	back	uncommitted	transactions.

2.	 Periodically,	apply	each	subsequent	transaction	log,	created	on	the
primary	server,	to	the	databases	on	the	standby	server.	Apply	each
transaction	log	in	standby	mode,	specifying	the	same	undo	file	used
when	previously	restoring	the	database.

The	frequency	of	transaction	log	backups	applied	to	the	standby	server
depends	on	the	frequency	of	transaction	log	backups	of	the	primary
production	server	database.	Frequently	applying	the	transaction	log
reduces	the	work	required	to	bring	the	standby	server	online	in	the
event	of	a	production	system	failure.

In	standby	mode,	the	database	is	available	for	read-only	operations,	such	as
database	queries	that	do	not	attempt	to	modify	the	database.	This	allows	the
database	to	be	used	for	decision-support	queries	or	DBCC	checks.

Bringing	the	Standby	Server	Online
When	the	primary	server	initially	becomes	unavailable,	it	is	unlikely	that	all	the
databases	on	the	standby	server	are	in	complete	synchronization.	Some
transaction	log	backups	created	on	the	primary	server	may	not	have	been	applied
to	the	standby	server	yet.	Additionally,	some	changes	to	the	databases	on	the

primary	server	are	likely	to	have	occurred	since	the	transaction	log	on	those
databases	were	last	backed	up,	especially	in	heavily	used	systems.	Before	the
users	use	the	standby	copies,	it	is	possible	to	synchronize	the	primary	databases
with	the	standby	copies	and	bring	the	standby	server	online	by:

1.	 Applying	to	the	standby	server	in	sequence	any	transaction	log
backups	created	on	the	primary	server	that	have	not	yet	been	applied.	

2.	 Creating	a	backup	of	the	active	transaction	log	on	the	primary	server
and	applying	the	backup	to	the	database	on	the	standby	server.	The
backup	of	the	active	transaction	log	when	applied	to	the	standby	server
allows	users	to	work	with	an	exact	copy	of	the	primary	database	as	it
was	immediately	prior	to	failure	(although	any	noncommitted
transactions	will	have	been	permanently	lost).	For	more	information,
see	Transaction	Log	Backups.

If	the	primary	server	is	undamaged,	as	in	the	case	of	planned
maintenance	or	upgrades,	you	can	back	up	the	active	transaction	log
with	NORECOVERY.	This	will	leave	the	database	in	the	restoring
state	and	allow	you	to	update	the	primary	server	with	transaction	log
backups	from	the	secondary	server.	Then	you	can	switch	back	to	the
primary	server	without	creating	a	complete	database	backup	of	the
secondary	server.	For	more	information,	see	BACKUP.

3.	 Recover	the	databases	on	the	standby	server.	This	recovers	the
databases	without	creating	an	undo	file,	making	the	database	available
for	users	to	modify.

A	standby	server	can	contain	backups	of	databases	from	several	instances	of
SQL	Server.	For	example,	a	department	could	have	five	servers,	each	running	a
mission-critical	database	system.	Rather	than	having	five	separate	standby
servers,	a	single	standby	server	can	be	used.	The	database	backups	from	the	five
primary	systems	can	be	loaded	onto	the	single	backup	system,	reducing	the
number	of	resources	required	and	saving	money.	It	is	unlikely	that	more	than	one
primary	system	would	fail	at	the	same	time.	Additionally,	the	standby	server	can
be	of	higher	specification	than	the	primary	servers	to	cover	the	remote	chance
that	more	than	one	primary	system	is	unavailable	at	a	given	time.

To	set	up,	maintain,	and	bring	online	a	standby	server

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Log	Shipping
In	Microsoft®	SQL	Server™	2000	Enterprise	Edition,	you	can	use	log	shipping
to	feed	transaction	logs	from	one	database	to	another	on	a	constant	basis.
Continually	backing	up	the	transaction	logs	from	a	source	database	and	then
copying	and	restoring	the	logs	to	a	destination	database	keeps	the	destination
database	synchronized	with	the	source	database.	This	allows	you	to	have	a
backup	server	and	also	provides	a	way	to	offload	query	processing	from	the
main	computer	(the	source	server)	to	read-only	destination	servers.

Log	Shipping	Model
The	illustration	shows	the	log	shipping	model.

In	this	example,	an	enterprise	has	five	servers:	server	A,	server	B,	server	C,
server	D,	and	server	E.	Server	B	is	the	source	server,	the	server	on	which	log
backups	and	restores	are	performed	and	copied.	Server	C,	server	D,	and	server	E
contain	the	destination	databases	on	which	the	log	backups	from	server	B	are
restored,	keeping	these	servers	in	synchronization	with	server	B.	Server	A	is	the
monitor	server	on	which	the	enterprise-level	monitoring	of	log	shipping	occurs.
Each	destination	or	source	server	is	maintained	by	only	one	monitor	server.	The
Database	Maintenance	Plan	Wizard	is	used	to	define	an	appropriate	delay
between	the	time	server	B	backs	up	the	log	backup	and	the	time	server	C,	server
D,	and	server	E	must	restore	the	log	backup.	If	more	time	elapses	than	defined,
then	server	A	generates	an	alert	using	SQL	Server	Agent.	This	alert	can	aid	in

troubleshooting	the	reason	the	destination	server	has	failed	to	restore	the
backups.

Do	not	use	the	monitor	server	as	the	source	server,	because	the	monitor	server
maintains	critical	information	regarding	the	log	shipping	system.	The	monitor
server	should	be	regularly	backed	up.	Keeping	the	monitor	server	independent	is
also	better	for	performance,	because	monitoring	adds	unnecessary	overhead.
Also,	as	a	source	server	supporting	a	production	workload,	it	is	most	likely	to
fail,	which	would	disrupt	the	monitoring.	The	source	and	destination	servers	can
be	on	the	same	computer.	However,	in	this	case,	SQL	Server	2000	failover
clustering	may	provide	better	results.	For	more	information,	see	Failover
Clustering.

Configuring	Log	Shipping	with	the	Database	Maintenance	Plan
Wizard
To	easily	configure	log	shipping,	use	the	Database	Maintenance	Plan	Wizard.
With	this	wizard,	you	can:

Define	how	often	the	logs	are	generated,	the	time	between	a	backup	and
a	restore	operation,	and	when	a	destination	server	is	out	of
synchronization	with	a	source	server.	

Register	any	new	servers.

Create	the	source	databases	on	all	destination	servers.	When	adding	a
destination	database	through	the	Database	Maintenance	Plan	Wizard,
you	have	the	option	of	creating	the	databases	on	the	destination	server
or	using	existing	databases.	Any	existing	databases	must	be	in	standby
mode	before	you	can	configure	them	for	log	shipping.

Specify	which	destination	servers	might	assume	the	role	of	the	source
server.

Set	a	restore	delay.	This	delay	defines	how	old	a	transaction	log	must	be
before	it	is	restored.	If	something	goes	wrong	on	the	source	server,	this

delay	provides	an	extra	time	before	the	corrupted	log	is	restored	onto
the	destination	server.

Create	a	schedule	that	sets	the	backup	schedule.

Before	using	the	Database	Maintenance	Plan	Wizard,	consider	the	following:

The	user	configuring	log	shipping	must	be	a	member	of	the	sysadmin
server	role	in	order	to	have	permission	to	modify	the	database	to	log
ship.	

You	can	configure	log	shipping	only	on	one	database	at	a	time.	If	you
select	more	than	one	database,	the	log	shipping	option	on	the	wizard	is
disabled.	

The	login	used	to	start	the	MSSQLServer	and	SQLServerAgent	services
must	have	access	to	the	log	shipping	plan	jobs,	the	source	server,	and
the	destination	server.

When	you	use	the	Database	Maintenance	Plan	Wizard	to	configure	log
shipping,	you	can	log	ship	only	to	disks.	The	backup-to-tape	option	is
not	available.

Configuring	Log	Shipping	Manually

SQL	Server	2000	supports	manual	log	shipping	from	a	SQL	Server	version	7.0
Service	Pack	2	(SP2)	transaction	log	if	the	pending	upgrade	option	is	enabled	on
the	computer	running	SP2.

To	enable	this	option,	execute	the	following	code:

EXEC	sp_dboption	'database	name',	'pending	upgrade',	'true'

However,	when	you	are	restoring	the	database	after	log	shipping,	you	can
recover	only	with	the	NORECOVERY	option.

Note		When	you	manually	configure	log	shipping	between	a	computer	running

SP2	and	a	computer	running	an	instance	of	SQL	Server	2000,	you	cannot	use
SQL	Server	replication.

For	more	information,	see	the	SP2	documentation.

To	configure	log	shipping

Administering	SQL	Server

Modifying	Log	Shipping
After	log	shipping	has	been	configured,	it	is	possible	to	add,	delete,	or	edit	the
destination	servers.	For	example,	you	can	change	the	transaction	log	destination,
specify	if	you	want	to	create	a	new	database	on	the	destination	server,	or	use	an
existing	database.	If	you	choose	to	create	a	new	database,	you	must	specify	a
database	name	and	file	directories	for	the	data	and	logs.

To	add	or	edit	a	destination	server

Administering	SQL	Server

Monitoring	Log	Shipping
After	you	have	configured	log	shipping,	use	the	monitor	server	to	view
information	about	the	status	of	all	the	log	shipping	servers.

The	monitor	server	provides	you	with	all	of	the	details	of	log	shipping,	such	as:

When	the	source	server	was	last	backed	up,	and	when	the	destination
servers	last	copied	and	restored	the	backup	files.

Information	about	the	backup	failure	alert.

Information	detailing	alert	generation	suppression.

Using	the	monitor	server,	you	can	also:

Edit	the	alert	generation	suppression	information	for	both	the	source
and	destination	servers.	Alert	suppression	would	be	used	to	suppress	an
alert	during	specific	times	and	dates	in	the	event	of	a	backup	failure.

Change	the	role	of	a	server	from	a	destination	server	to	a	source	server
(if	the	destination	server	was	configured	to	assume	this	role).

To	view	the	status	of	servers	configured	for	log	shipping

Administering	SQL	Server

Concurrent	Administrative	Operations
This	table	illustrates	the	administrative	tasks	that	are	or	are	not	allowed	to	run	at
the	same	time.

Note		File	shrink	operations	spend	most	processing	time	reallocating	pages	into
areas	retained	after	the	shrink	has	completed,	and	then	attempt	to	change	the	file
size	only	as	the	last	step.	File	shrink	operations	can	be	started	while	a	backup	is
running,	provided	the	backup	finishes	before	the	file	shrink	attempts	to	change
the	size	of	the	files.

Administering	SQL	Server

Managing	SQL	Server	Messages
Microsoft®	SQL	Server™	provides	tools	for	managing	server	messages,
allowing	administrators	to:

Search	for	specific	error	messages	based	on	filters	such	as	message	text,
error	number,	severity	level,	whether	the	message	is	user-defined,	and
whether	the	message	is	logged.

Create	new	messages.

Edit	user-defined	messages.

Delete	user-defined	messages.

To	add	a	new	SQL	Server	message

Administering	SQL	Server

SQL	Mail
SQL	Mail	provides	a	way	to	receive	e-mail	messages	generated	by	Microsoft®
SQL	Server™.	Messages	can	be	triggered	to	provide	you	with	the	status	of	a	job
or	a	warning	caused	by	an	alert.	SQL	Mail	can	include	a	result	set	in	a	reply	to	e-
mail	messages	that	contain	queries.	SQL	Mail	allows	SQL	Server	to	send	and
receive	e-mail	by	establishing	a	client	connection	with	a	mail	server.

SQL	Server	uses	two	services	to	handle	mail.	MSSQLServer	processes	mail	for
all	of	the	mail	stored	procedures.	SQLServerAgent	does	not	use	SQL	Mail	to
send	e-mail.	Instead,	SQLServerAgent	uses	its	own	mail	capabilities	that	are
configured	and	operated	separately	from	SQL	Mail.

The	SQL	Server	Agent	mail	features	will	be	referred	to	as	SQLAgentMail	to
distinguish	it	from	the	SQL	Mail	features	provided	by	MSSQLServer.	SQL	Mail
establishes	an	extended	MAPI	connection	with	a	mail	host,	while
SQLAgentMail	establishes	an	extended	MAPI	connection	on	its	own.	Both	SQL
Mail	and	SQLAgentMail	can	connect	with	Microsoft	Exchange	Server,
Microsoft	Windows	NT®	Mail,	or	a	Post	Office	Protocol	3	(POP3)	server.

SQL	Mail	requires	a	post	office	connection,	a	mail	store	(mailbox),	a	mail
profile,	and	the	Windows	NT	4.0	or	Microsoft	Windows®	2000	domain	user
account	used	to	log	in	to	an	instance	of	SQL	Server.	SQL	Mail	consists	of	a
number	of	stored	procedures,	which	are	used	by	SQL	Server	to	process	e-mail
messages	that	are	received	in	the	designated	SQL	Mail	account	mailbox	or	to
reply	to	e-mail	messages	generated	by	the	stored	procedure	xp_sendmail.	Using
SQL	Mail	extended	stored	procedures,	messages	can	be	sent	from	either	a	trigger
or	a	stored	procedure.	SQL	Mail	stored	procedures	can	manipulate	data,	process
queries	received	by	e-mail	and	return	the	result	set	by	creating	a	reply	e-mail.

Processing	an	E-mail	Request	Received	by	SQL	Server
To	process	e-mail	automatically,	you	must	create	a	regularly	scheduled	job	that
uses	the	stored	procedure,	sp_processmail.	sp_processmail	checks	your	SQL
Mail	mail	profile	and	then	checks	your	mailbox	for	mail.	sp_processmail	uses
xp_sendmail	to	execute	query	requests	contained	in	the	text	of	the	e-mail	and
then	returns	the	result	set	to	the	original	sender	and	any	additional	recipients.	For

example,	a	supplier	may	be	allowed	to	execute	a	stored	procedure	that	produces
current	inventory	levels	for	all	materials	supplied	by	the	organization.

SQLAgentMail
SQLAgentMail	can	use	its	own	domain	account	and	mail	profile	that	is	different
from	the	one	set	up	for	SQL	Mail.	With	SQL	Server,	you	can	configure
SQLAgentMail	e-mail	messages	to	be	sent	when:

An	alert	is	triggered.

Alerts	can	be	configured	to	send	e-mail	notification	of	specific	events
that	occur	without	implementing	SQL	Mail.	For	example,	alerts	can	be
configured	to	notify	an	operator	of	a	particular	database	event	that	may
need	immediate	action.

For	more	information	about	configuring	alerts,	see	Defining	Alerts.

A	scheduled	task,	such	as	a	database	backup	or	replication	event,
succeeds	or	fails.

E-mail	messages	can	be	sent	to	a	list	of	recipients	informing	them	of	the	status
of	scheduled	jobs	for	possible	user	action.	You	can	expand	the	capabilities	of
jobs	to	include	sending	a	result	set	by	e-mail	to	a	list	of	recipients.	For	example,
a	monthly	inventory	report	could	send	SQLAgentMail	notification	to	the
designated	operators	and	the	result	set	to	the	purchasing	manager	and	supplier.

Administering	SQL	Server

Configuring	SQL	Mail
SQL	Mail	must	run	using	a	mail	profile	created	in	the	same	domain	account	that
is	used	to	start	an	instance	of	Microsoft®	SQL	Server™.	Under	the	Support
Services	folder	in	SQL	Server	Enterprise	Manager,	you	can	see	a	graphical
depiction	of	the	SQL	Mail	Service	and	determine	if	the	service	is	running.	You
can	start	SQL	Mail	automatically	by	clicking	Autostart	SQL	Mail	when	SQL
Server	Starts	on	the	General	tab	of	the	SQL	Mail	Configuration	dialog	box.
After	SQL	Mail	starts,	you	can	use	the	stored	procedures	to	send	and	receive
mail.

To	configure	a	mail	profile

Administering	SQL	Server

Configuring	Mail	Profiles
SQL	Mail	and	SQLAgentMail	can	use	the	same	or	different	mail	profile.	If
necessary,	each	mail	profile	can	be	configured	within	its	own	domain	account.

Configuring	a	SQL	Mail	Profile
When	configured,	mail	profiles	are	specific	to	the	Microsoft®	Windows	NT®
4.0	or	Windows®	2000	user	domain	account	that	is	activated	when	a	user	logs
on	to	Windows	NT	4.0	or	Windows	2000	successfully.	SQL	Mail	must	have	a
mail	profile	created	in	the	same	user	domain	account	or	context	that	is	used	to
start	an	instance	of	Microsoft	SQL	Server™.	When	a	mail	stored	procedure	is
executed,	SQL	Mail	looks	for	the	defined	mail	profile	in	the	domain	account	that
triggered	it.

If	you	plan	to	use	mail	stored	procedures	you	must:

Have	a	mail	server	that	is	extended	MAPI-compliant.

Configure	a	mail	profile	for	MSSQLServer	to	use	to	connect	to	your
mail	server.

To	configure	a	mail	profile

Administering	SQL	Server

Using	SQL	Mail	Stored	Procedures
SQL	Mail	contains	a	number	of	stored	procedures,	which	allow	you	to	develop
triggers,	applications,	and	other	stored	procedures.	The	stored	procedures	can
then	be	used	to	manipulate	mail,	run	queries,	return	a	result	set	to	a	list	of
recipients,	or	reply	to	an	e-mail	containing	a	simple	query	or	stored	procedure.

The	following	table	provides	a	brief	description	of	the	extended	procedures	and
how	they	can	be	used.

SQL	Mail
procedures Function
xp_startmail Starts	a	mail	client	session.	The	mail	client	session

must	be	started	prior	to	using	any	of	the	other	mail
stored	procedures.

xp_stopmail Closes	a	Microsoft®	SQL	Server™	mail	client	session.
xp_findnextmsg Used	with	sp_processmail	in	order	to	process	mail	in

the	SQL	Mail	inbox	by	accepting	a	message	ID	for
input	and	returning	the	message	ID	for	output.

xp_readmail Used	by	sp_processmail	to	read	a	mail	message	from
the	SQL	Mail	inbox.

xp_deletemail Used	by	sp_processmail	to	delete	a	message	from	the
SQL	Mail	inbox.

xp_sendmail Used	by	sp_processmail	or	as	part	of	a	stored
procedure	or	trigger.	Can	be	used	with	alerts.	Sends	a
message	and	a	query	result	set	attachment	to	the
specified	recipients.

sp_processmail Uses	extended	stored	procedures
(xp_findnextmessage,	xp_readmail,	and
xp_deletemail)	to	process	incoming	mail	messages
(expected	to	be	a	single	query	only)	and	uses
xp_sendmail	to	return	the	result	set	to	the	message
sender.	sp_processmail	must	be	set	up	as	a	regularly
scheduled	job	to	check	for	mail	received	in	the	SQL
Mail	inbox.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

To	use	SQL	Mail

Administering	SQL	Server

Setting	Configuration	Options
You	can	manage	and	optimize	Microsoft®	SQL	Server™	resources	through
configuration	options	by	using	SQL	Server	Enterprise	Manager	or	the
sp_configure	system	stored	procedure.	The	most	commonly	used	server
configuration	options	are	available	through	SQL	Server	Enterprise	Manager;	all
configuration	options	are	accessible	through	sp_configure.	Consider	the	effects
on	your	system	carefully	before	setting	these	options.

IMPORTANT		Advanced	options	are	those	that	should	be	changed	only	by	a
experienced	system	administrator	or	certified	SQL	Server	technician.

Using	the	sp_configure	System	Stored	Procedure
When	using	sp_configure,	you	must	run	either	RECONFIGURE	or
RECONFIGURE	WITH	OVERRIDE	after	setting	a	configuration	option.	The
RECONFIGURE	WITH	OVERRIDE	statement	is	usually	reserved	for
configuration	options	that	should	be	used	with	extreme	caution	(for	example,
setting	the	allow	updates	option	to	1	allows	users	to	update	fields	in	system
tables).	However,	RECONFIGURE	WITH	OVERRIDE	works	for	all
configuration	options,	and	you	can	use	it	in	place	of	RECONFIGURE.

The	following	is	an	example	of	a	script	you	would	use	with	sp_configure	to
change	the	fill	factor	option	from	its	default	setting	to	a	value	of	100:

sp_configure	'fill	factor',	100
GO
RECONFIGURE
GO

Categories	of	Configuration	Options
Configuration	options	either	take	effect	either:

Immediately	after	setting	the	option	and	issuing	the	RECONFIGURE
(or	in	some	cases,	RECONFIGURE	WITH	OVERRIDE)	statement.

-or-

After	doing	these	actions	and	stopping	and	restarting	an	instance	of
SQL	Server.

To	configure	an	advanced	option	with	sp_configure,	you	must	first	run
sp_configure	with	the	show	advanced	options	option	set	to	1,	and	then	run
RECONFIGURE:

sp_configure	'show	advanced	options',	1
GO
RECONFIGURE
GO
sp_configure	'cursor	threshold',	0
GO
RECONFIGURE
GO

In	the	previous	example,	reconfiguring	the	cursor	threshold	option	to	a	new
value	takes	place	immediately.	If	you	run	sp_configure	again,	the	new	value	for
resource	timeout	appears	in	the	configuration	options	run_value	column.

Some	options	require	a	server	stop	and	restart	before	the	new	configuration
value	takes	effect.	For	example,	you	cannot	configure	the	affinity	mask	option
until	you	set	show	advanced	options	to	1,	run	RECONFIGURE,	and	stop	and
restart	the	server.	If	you	set	the	new	value	and	run	sp_configure	before	stopping
and	restarting	the	server,	the	new	value	appears	in	the	configuration	options
config_value	column,	but	not	in	the	run_value	column.	After	stopping	and
restarting	the	server,	the	new	value	appears	in	the	run_value	column.

If	you	use	SQL	Server	Enterprise	Manager	to	change	a	configuration	option,	and
the	configuration	option	requires	a	server	stop	and	restart	to	take	effect,	SQL
Server	displays	a	dialog	box	asking	if	you	want	to	stop	and	restart	the	server.

Self-configuring	options	are	those	that	SQL	Server	adjusts	according	to	the
needs	of	the	system.	In	most	cases,	this	eliminates	the	need	for	setting	the	values
manually.	Examples	include	the	min	server	memory	and	max	server	memory
options,	and	the	user	connections	option.

Configuration	Options	Table

The	following	table	lists	all	available	configuration	options,	the	range	of	possible
settings,	and	default	values.	Letter	codes	next	to	a	configuration	option	indicate:

Advanced	options	(those	that	should	be	changed	only	by	a	certified
SQL	Server	technician,	and	require	setting	show	advanced	options	to
1),	marked	with	"A."

Options	requiring	a	server	restart	to	take	effect,	marked	with	"RR."

Self-configuring	options	(those	that	SQL	Server	self-configures,
depending	on	the	needs	of	the	system),	marked	with	"SC."

Configuration	option Minimum Maximum Default
affinity	mask	(A,	RR) 0 2147483647 0
allow	updates 0 1 0
awe	enabled	(A,	RR) 0 1 0
c2	audit	mode	(A,	RR) 0 1 0
cost	threshold	for	parallelism
(A)

0 32767 5

cursor	threshold	(A) –1 2147483647 -1
default	full-text	language	(A) 0 2147483647 1033
default	language 0 9999 0
fill	factor	(A,	RR) 0 100 0
index	create	memory	(A,	SC) 704 2147483647 0
lightweight	pooling	(A,	RR) 0 1 0
locks	(A,	RR,	SC) 5000 2147483647 0
max	degree	of	parallelism	(A) 0 32 0
max	server	memory	(A,	SC) 4 2147483647 2147483647
max	text	repl	size 0 2147483647 65536
max	worker	threads	(A,	RR) 32 32767 255
media	retention	(A,	RR) 0 365 0
min	memory	per	query	(A) 512 2147483647 1024
min	server	memory	(A,	SC) 0 2147483647 0
Using	Nested	Triggers 0 1 1

JavaScript:hhobj_1.Click()

network	packet	size	(A) 512 65536 4096
open	objects	(A,	RR,	SC) 0 2147483647 0
priority	boost	(A,	RR) 0 1 0
query	governor	cost	limit	(A) 0 2147483647 0
query	wait	(A) -1 2147483647 -1
recovery	interval	(A,	SC) 0 32767 0
remote	access	(RR) 0 1 1
remote	login	timeout 0 2147483647 20
remote	proc	trans 0 1 0
remote	query	timeout 0 2147483647 600
scan	for	startup	procs	(A,	RR) 0 1 0
set	working	set	size	(A,	RR) 0 1 0
show	advanced	options 0 1 0
two	digit	year	cutoff 1753 9999 2049
user	connections	(A,	RR,	SC) 0 32767 0
user	options 0 32767 0

See	Also

sp_configure

Using	Options	in	SQL	Server

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

affinity	mask	Option
In	Microsoft®	Windows	NT®	4.0	and	Windows®	2000,	an	activity	(thread)	in	a
process	can	migrate	from	processor	to	processor,	with	each	migration	reloading
the	processor	cache.	Under	heavy	system	loads,	specifying	which	processor
should	run	a	specific	thread	can	improve	performance	by	reducing	the	number	of
times	the	processor	cache	is	reloaded.	The	association	between	a	processor	and	a
thread	is	called	processor	affinity.

Use	the	affinity	mask	option	to	increase	performance	on	symmetric
multiprocessor	(SMP)	systems	(with	more	than	four	microprocessors)	operating
under	heavy	load.	You	can	associate	a	thread	with	a	specific	processor	and
specify	which	processors	Microsoft	SQL	Server™	will	use.	You	can	exclude
SQL	Server	activity	from	processors	given	specific	workload	assignments	by	the
Windows	NT	4.0	or	Windows	2000	operating	system.

If	you	set	a	bit	representing	a	processor	to	1,	that	processor	is	selected	for	thread
assignment.	When	you	set	affinity	mask	to	0	(the	default),	the	Windows	NT	4.0
or	Windows	2000	scheduling	algorithms	set	the	thread's	affinity.	When	you	set
affinity	mask	to	any	nonzero	value,	SQL	Server	affinity	interprets	the	value	as	a
bit	mask	that	specifies	those	processors	eligible	for	selection.	Excluding	SQL
Server	threads	from	running	on	particular	processors	helps	evaluate	the	system's
handling	of	processes	specific	to	Windows	NT	4.0	or	Windows	2000.	For
example,	you	can	use	affinity	mask	to	evaluate	whether	an	additional	network
interface	card	(NIC)	increases	performance	or	assess	NIC	performance	with
increasing	loads.

Because	using	SQL	Server	processor	affinity	is	a	specialized	operation,	it	is
recommended	that	SQL	Server	processor	affinity	be	used	only	when	necessary.
In	most	cases,	the	Windows	NT	4.0	or	Windows	2000	default	affinity	provides
the	best	performance.

Before	you	change	the	setting	of	affinity	mask,	keep	in	mind	that	Windows	NT
4.0	and	Windows	2000	assign	deferred	process	call	(DPC)	activity	associated
with	NICs	to	the	highest	numbered	processor	in	the	system.	In	systems	with
more	than	one	installed	and	active	NIC,	each	additional	card's	activity	is
assigned	to	the	next	highest	numbered	processor.	For	example,	an	eight-
processor	system	with	two	NICs	has	DPCs	for	each	NIC	assigned	to	processor	7

and	to	processor	6.

Note		You	can	use	System	Monitor	(Performance	Monitor	in	Windows	NT	4.0)
to	view	and	analyze	individual	processor	usage.

For	example,	if	processors	1,	2,	and	5	are	selected	as	available	with	bits	1,	2,	and
5	set	to	1	and	bits	0,	3,	4,	6,	and	7	set	to	0,	a	hexadecimal	value	of	0x26	or	the
decimal	equivalent	of	38	is	specified.	Number	the	bits	from	the	right	to	left.	The
rightmost	bit	is	bit	0.	Set	bits	1,	2,	and	5	(the	third,	fifth,	and	sixth	bits)	to	1.	The
number	calculated	from	setting	the	specified	bits	is	binary	00100110,	which	is
decimal	38	or	hexadecimal	0x26.

These	are	affinity	mask	values	for	an	eight-processor	system.

Decimal	value Binary	bit	mask
Allow	SQL	Server	threads	on
processors

1 00000001 0
3 00000011 0	and	1
7 00000111 0,	1,	and	2
15 00001111 0,	1,	2,	and	3
31 00011111 0,	1,	2,	3,	and	4
63 00111111 0,	1,	2,	3,	4,	and	5
127 01111111 0,	1,	2,	3,	4,	5,	and	6	(isolates	SQL

Server	activity	from	DPC	processor
only)

affinity	mask	is	an	advanced	option.	If	you	are	using	the	sp_configure	system
stored	procedure	to	change	the	setting,	you	can	change	affinity	mask	only	when
show	advanced	options	is	set	to	1.	The	setting	takes	effect	after	stopping	and
restarting	the	server.

To	configure	the	affinity	mask

Administering	SQL	Server

allow	updates	Option
Use	the	allow	updates	option	to	specify	whether	direct	updates	can	be	made	to
system	tables.	By	default,	allow	updates	is	disabled	(set	to	0),	so	users	cannot
update	system	tables	through	ad	hoc	updates.	Users	can	update	system	tables
using	system	stored	procedures	only.	When	allow	updates	is	disabled,	updates
are	not	allowed,	even	if	you	have	the	appropriate	permissions	(assigned	using
the	GRANT	statement).

When	allow	updates	is	enabled	(set	to	1),	any	user	who	has	appropriate
permissions	can	update	system	tables	directly	with	ad	hoc	updates	and	can	create
stored	procedures	that	update	system	tables.

CAUTION		Updating	fields	in	system	tables	can	prevent	an	instance	of	Microsoft®
SQL	Server™	from	running	or	can	cause	data	loss.	If	you	create	stored
procedures	while	the	allow	updates	option	is	enabled,	those	stored	procedures
always	have	the	ability	to	update	system	tables	even	after	you	disable	allow
updates.	On	production	systems,	you	should	not	enable	allow	updates	except
under	the	direction	of	Microsoft	Product	Support	Services.

Because	system	tables	are	critical	to	the	operation	of	SQL	Server,	enable	allow
updates	only	in	tightly	controlled	situations.	Prevent	other	users	from	accessing
SQL	Server	while	you	are	directly	updating	system	tables	by	restarting	an
instance	of	SQL	Server	from	the	command	prompt	with	sqlservr	-m.	This
command	starts	an	instance	of	SQL	Server	in	single-user	mode	and	enables
allow	updates.	For	more	information,	see	Starting	SQL	Server	with	Minimal
Configuration.

If	you	set	allow	updates	to	1	using	the	sp_configure	system	stored	procedure,
you	must	use	the	RECONFIGURE	WITH	OVERRIDE	statement.	This	setting
takes	effect	immediately	(without	a	server	stop	and	restart).

To	set	the	allow	updates	option

Administering	SQL	Server

awe	enabled	Option
In	Microsoft®	SQL	Server™	2000,	you	can	use	the	Microsoft	Windows®	2000
Address	Windowing	Extensions	(AWE)	API	to	support	up	to	a	maximum	of	64
gigabytes	(GB)	of	physical	memory.	The	specific	amount	of	memory	you	can
use	depends	on	hardware	configuration	and	operating	system	support.

Note		This	feature	is	available	only	in	the	SQL	Server	2000	Enterprise	and
Developer	editions.

Enabling	AWE
To	enable	AWE,	set	awe	enabled	to	1.	SQL	Server	will	reserve	almost	all
available	memory,	leaving	128	megabytes	(MB)	or	less,	unless	a	value	has	been
specified	for	max	server	memory.

If	the	option	has	been	successfully	enabled,	the	message	"Address	Windowing
Extension	enabled"	is	printed	in	the	SQL	Server	error	log	when	the	instance	of
SQL	Server	2000	is	started.

awe	enabled	is	an	advanced	option.	If	you	are	using	the	sp_configure	system
stored	procedure	to	change	the	setting,	you	can	change	awe	enabled	only	when
show	advanced	options	is	set	to	1.	You	must	restart	the	instance	of	SQL	Server
2000	for	changes	to	take	effect.

Disabling	AWE
To	disable	AWE,	set	awe	enabled	to	0.	This	setting	is	the	default.	The	AWE	API
is	not	used.	SQL	Server	2000	operates	in	a	normal	dynamic	memory	allocation
mode	and	is	limited	to	3	GB	of	physical	memory.

Usage	Considerations
Before	enabling	AWE,	consider	the	following:

When	awe	enabled	is	set	to	1,	instances	of	SQL	Server	2000	do	not
dynamically	manage	the	size	of	the	address	space.	SQL	Server	will
reserve	and	lock	almost	all	available	memory	(or	the	value	of	max

server	memory	if	the	option	has	been	set)	when	the	server	is	started.	It
is	strongly	recommended	that	you	set	a	value	for	the	max	server
memory	option	each	time	you	enable	AWE.	Otherwise	other
applications	or	instances	of	SQL	Server	2000	will	have	less	than	128
MB	of	physical	memory	in	which	to	run.

If	the	total	available	memory	is	less	than	3	GB,	the	instance	of	SQL
Server	2000	will	be	started	in	non-AWE	mode	even	if	awe	enabled	is
set	to	1.	In	this	situation,	you	do	not	need	to	manage	AWE	memory
because	dynamic	memory	allocation	is	used	automatically.

You	can	determine	the	amount	of	memory	you	can	safely	allocate	to
instances	of	SQL	Server	2000	by	identifying	how	much	memory	is
available	after	all	other	applications	to	be	used	on	the	computer	have
been	started.	

Use	the	SQL	Server	Performance	Monitor	Total	Server	Memory	(KB)
counter	to	determine	how	much	memory	is	allocated	by	the	instance	of
SQL	Server	running	in	AWE	mode.	Configure	the	max	server	memory
option	to	leave	some	additional	memory	free	to	allow	for	the	varying
needs	of	other	applications	and	Windows	2000.	For	more	information,
see	Monitoring	Memory	Usage.

IMPORTANT		Using	the	awe	enabled	option	and	the	max	server	memory	setting
can	have	a	performance	impact	on	other	applications	or	on	SQL	Server	running
in	a	multi-instance	or	cluster	environment.	For	more	information	about	using
AWE	memory,	see	Managing	AWE	Memory.

Example
The	following	example	shows	how	to	enable	AWE	and	configure	a	limit	of	6	GB
for	max	server	memory:

sp_configure	'show	advanced	options',	1
RECONFIGURE
GO
sp_configure	'awe	enabled',	1

RECONFIGURE
GO
sp_configure	'max	server	memory',	6144
RECONFIGURE
GO

See	Also

Memory	Architecture

SQL	Server:	Buffer	Manager	Object

RECONFIGURE

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

c2	audit	mode	Option
In	Microsoft®	SQL	Server™	2000,	use	the	c2	audit	mode	option	to	review	both
successful	and	unsuccessful	attempts	to	access	statements	and	objects.	With	this
information,	you	can	document	system	activity	and	look	for	security	policy
violations.

C2	auditing	tracks	C2	audit	events	and	records	them	to	a	file	in	the	\mssql\data
directory	for	default	instances	of	SQL	Server	2000,	or	the
\mssql$instancename\data	directory	for	named	instances	of	SQL	Server	2000.	If
the	file	reaches	a	size	limit	of	200	megabytes	(MB),	C2	auditing	will	start	a	new
file,	close	the	old	file,	and	write	all	new	audit	records	to	the	new	file.	This
process	will	continue	until	SQL	Server	is	shut	down	or	auditing	is	turned	off.

Enabling	and	Disabling	C2	Auditing
Before	enabling	and	disabling	C2	auditing,	consider	the	following:

You	must	be	a	member	of	the	sysadmin	role	to	enable	or	disable	C2
auditing.	

c2	audit	mode	is	an	advanced	option.	If	you	are	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	c2	audit
mode	only	when	show	advanced	options	is	set	to	1.

If	the	audit	directory	fills	up,	the	instance	of	SQL	Server	will	be
stopped.	You	can	restart	the	instance	of	SQL	Server	if	auditing	is	not	set
to	start	up	automatically.	But	if	auditing	is	set	to	start	up	automatically,
you	must	free	up	disk	space	for	the	audit	log	before	you	can	restart	the
instance	of	SQL	Server.

Alternatively,	you	can	restart	the	instance	with	the	–f	flag,	which	will
bypass	all	auditing.	This	is	useful	if	you	want	to	disable	auditing	until
you	can	free	up	additional	disk	space	or	in	an	emergency	situation
where	you	do	not	have	enough	disk	space	to	allocate	the	200	MB	audit
file.

To	enable	C2	auditing,	set	the	c2	audit	mode	option	to	1.	This	setting
establishes	the	C2	audit	trace	and	turns	on	the	option	to	fail	the	server	should	the
server	be	unable	to	write	to	the	audit	file	for	any	reason.	After	setting	the	option
to	1,	restart	the	server	to	begin	C2	audit	tracing.	To	stop	C2	audit	tracing,	set	c2
audit	mode	to	0.

IMPORTANT		If	all	audit	counters	are	turned	on	for	all	objects,	there	could	be	a
significant	performance	impact	on	the	server.

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

cost	threshold	for	parallelism	Option
Use	the	cost	threshold	for	parallelism	option	to	specify	the	threshold	where
Microsoft®	SQL	Server™	creates	and	executes	parallel	plans.	SQL	Server
creates	and	executes	a	parallel	plan	for	a	query	only	when	the	estimated	cost	to
execute	a	serial	plan	for	the	same	query	is	higher	than	the	value	set	in	cost
threshold	for	parallelism.	The	cost	refers	to	an	estimated	elapsed	time	in
seconds	required	to	execute	the	serial	plan	on	a	specific	hardware	configuration.
Only	set	cost	threshold	for	parallelism	on	symmetric	multiprocessors	(SMP).

Longer	queries	usually	benefit	from	parallel	plans;	the	performance	advantage
negates	the	additional	time	required	to	initialize,	synchronize,	and	terminate	the
plan.	The	cost	threshold	for	parallelism	option	is	actively	used	when	a	mix	of
short	and	longer	queries	is	executed.	The	short	queries	execute	serial	plans	while
the	longer	queries	use	parallel	plans.	The	value	of	cost	threshold	for
parallelism	determines	which	queries	are	considered	short,	thus	executing	only
serial	plans.

In	certain	cases,	a	parallel	plan	may	be	chosen	even	though	the	query's	cost	plan
is	less	than	the	current	cost	threshold	for	parallelism	value.	This	is	because	the
decision	to	use	a	parallel	or	serial	plan,	with	respect	to	cost	threshold	for
parallelism,	is	based	on	a	cost	estimate	provided	before	the	full	optimization	is
complete.

The	cost	threshold	for	parallelism	option	can	be	set	to	any	value	from	0
through	32767.	The	default	value	is	5.

If	your	computer	has	only	one	processor,	if	only	a	single	CPU	is	available	to
SQL	Server	because	of	the	affinity	mask	configuration	value,	or	if	the	max
degree	of	parallelism	option	is	set	to	1,	SQL	Server	ignores	cost	threshold	for
parallelism.

cost	threshold	for	parallelism	is	an	advanced	option.	If	you	are	using	the
sp_configure	system	stored	procedure	to	change	the	setting,	you	can	change
cost	threshold	for	parallelism	only	when	show	advanced	options	is	set	to	1.
The	setting	takes	effect	immediately	(without	a	server	stop	and	restart).

To	configure	the	cost	threshold	for	parallelism

Administering	SQL	Server

cursor	threshold	Option
Use	the	cursor	threshold	option	to	specify	the	number	of	rows	in	the	cursor	set
at	which	cursor	keysets	are	generated	asynchronously.	If	you	set	cursor
threshold	to	-1,	all	keysets	are	generated	synchronously,	which	benefits	small
cursor	sets.	If	you	set	cursor	threshold	to	0,	all	cursor	keysets	are	generated
asynchronously.	With	other	values,	the	query	optimizer	compares	the	number	of
expected	rows	in	the	cursor	set	and	builds	the	keyset	asynchronously	if	it
exceeds	the	number	set	in	cursor	threshold.	Do	not	set	cursor	threshold	too
low	because	small	result	sets	are	better	built	synchronously.

When	cursors	generate	a	keyset	for	a	result	set,	the	query	optimizer	estimates	the
number	of	rows	that	will	be	returned	for	that	result	set.	If	the	query	optimizer
estimates	that	the	number	of	returned	rows	is	greater	than	this	threshold,	the
cursor	is	generated	asynchronously,	allowing	the	user	to	fetch	rows	from	the
cursor	while	the	cursor	continues	to	be	populated.	Otherwise,	the	cursor	is
generated	synchronously,	and	the	query	waits	until	all	rows	are	returned.

The	accuracy	of	the	query	optimizer	to	determine	an	estimate	for	the	number	of
rows	in	a	keyset	depends	on	the	currency	of	the	statistics	for	each	of	the	tables	in
the	cursor.

cursor	threshold	is	an	advanced	option.	If	you	are	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	cursor	threshold
only	when	show	advanced	options	is	set	to	1.	The	setting	takes	effect
immediately	(without	a	server	stop	and	restart).

To	set	the	cursor	threshold	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

UPDATE	STATISTICS

JavaScript:hhobj_5.Click()

Administering	SQL	Server

default	full-text	language	Option
Use	the	default	full-text	language	option	to	specify	a	default	language	value	for
full-text	indexed	columns.	Linguistic	analysis	is	performed	on	all	data	that	is
full-text	indexed	and	is	dependant	on	the	language	of	the	data.	The	default	value
of	this	option	is	the	language	of	the	server.

The	value	of	the	default	full-text	language	option	is	used	when	no	language	has
been	specified	for	a	column	by	using	sp_fulltext_column.	If	a	value	is	specified
for	which	a	linguistic	analysis	package	is	not	available,	neutral	is	used.	Neutral
should	be	used	when	the	column	contains	data	in	multiple	languages,	or	if	the
language	being	used	is	not	supported.

The	following	linguistic	analysis	packages	are	part	of	Microsoft®	SQL	Server™
2000.

Language Setting
Chinese	Simplified 2052
Chinese	Traditional 1028
Dutch 1043
English	UK 2057
English	US 1033
French 1036
German 1031
Italian 1040
Japanese 1041
Korean 1042
Neutral 0
Spanish	Modern 3082
Swedish	Default 1053

It	is	possible	for	additional	languages	to	be	added	(for	example,	independent
software	vendors	may	provide	additional	languages).

The	default	full-text	language	option	replaces	the	language	neutral	full-text
option	in	SQL	Server	version	7.0.	When	upgrading	from	SQL	Server	7.0,	the

default	full-text	language	value	is	set	based	on	the	values	of	SQL	Server	7.0
configuration	options	Unicode	locale	id	and	language	neutral	full-text.	This	is
done	to	allow	compatibility	with	SQL	Server	7.0	applications.

default	full-text	language	is	an	advanced	option.	If	you	are	using	the
sp_configure	system	stored	procedure	to	change	the	setting,	you	can	change
default	full-text	language	only	when	show	advanced	options	is	set	to	1.

To	set	the	default	full-text	language	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

sp_fulltext_column

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Administering	SQL	Server

default	language	Option
Use	the	default	language	option	to	specify	the	default	language	for	all	newly
created	logins.	To	set	default	language,	specify	the	langid	value	of	the	desired
language,	as	listed	in	the	syslanguages	table.	For	more	information,	see
syslanguages.

The	default	language	for	a	login	can	be	overridden	by	using	sp_addlogin	or
sp_defaultlanguage.	The	default	language	for	a	session	is	the	language	for	that
session's	login,	unless	overridden	on	a	per-session	basis	using	the	ODBC	or
OLEDB	APIs.

Note		The	language	for	a	session	can	be	changed	during	the	session	through
SET	LANGUAGE.	For	more	information,	see	SET	LANGUAGE.

For	information	about	what	the	language	for	a	session	determines,	see	SQL
Server	Language	Support.	

To	set	the	default	language

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

fill	factor	Option
Use	the	fill	factor	option	to	specify	how	full	Microsoft®	SQL	Server™	should
make	each	page	when	it	creates	a	new	index	using	existing	data.	The	fill	factor
percentage	affects	performance	because	SQL	Server	must	take	time	to	split
pages	when	they	fill	up.

The	fill	factor	percentage	is	used	only	at	the	time	the	index	is	created.	The	pages
are	not	maintained	at	any	particular	level	of	fullness.

The	default	for	fill	factor	is	0;	valid	values	range	from	0	through	100.	A	fill
factor	value	of	0	does	not	mean	that	pages	are	0	percent	full.	It	is	treated
similarly	to	a	fill	factor	value	of	100	in	that	SQL	Server	creates	clustered
indexes	with	full	data	pages	and	nonclustered	indexes	with	full	leaf	pages.	It	is
different	from	100	in	that	SQL	Server	leaves	some	space	within	the	upper	level
of	the	index	tree.	There	is	seldom	a	reason	to	change	the	default	fill	factor	value
because	you	can	override	it	with	the	CREATE	INDEX	statement.

Small	fill	factor	values	cause	SQL	Server	to	create	new	indexes	with	pages	that
are	not	full.	For	example,	a	fill	factor	value	of	10	is	a	reasonable	choice	if	you
are	creating	an	index	on	a	table	that	you	know	contains	only	a	small	portion	of
the	data	that	it	will	eventually	hold.	Smaller	fill	factor	values	cause	each	index
to	take	more	storage	space,	allowing	room	for	subsequent	insertions	without
requiring	page	splits.

If	you	set	fill	factor	to	100,	SQL	Server	creates	both	clustered	and	nonclustered
indexes	with	each	page	100	percent	full.	Setting	fill	factor	to	100	is	suitable
only	for	read-only	tables,	to	which	additional	data	is	never	added.

fill	factor	is	an	advanced	option.	If	you	will	be	using	the	sp_configure	system
stored	procedure	to	change	the	setting,	you	can	change	fill	factor	only	when
show	advanced	options	is	set	to	1.	The	setting	takes	effect	after	stopping	and
restarting	the	server.

To	set	a	fixed	fill	factor

Administering	SQL	Server

index	create	memory	Option
Use	the	index	create	memory	option	to	control	the	amount	of	memory	used	by
index	creation	sorts.	The	index	create	memory	option	is	self-configuring	and
should	work	in	most	cases	without	requiring	adjustment.	However,	if	you
experience	difficulties	creating	indexes,	consider	increasing	the	value	of	this
option	from	its	run	value.	Query	sorts	are	controlled	through	the	min	memory
per	query	option.

The	default	value	for	this	option	is	0	(self-configuring).

index	create	memory	is	an	advanced	option.	If	you	are	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	index	create
memory	only	when	show	advanced	options	is	set	to	1.	The	setting	takes	effect
immediately	(without	a	server	stop	and	restart).

To	set	the	index	create	memory	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Server	Memory	Options

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Administering	SQL	Server

lightweight	pooling	Option
Use	the	lightweight	pooling	option	to	provide	a	means	of	reducing	the	system
overhead	associated	with	the	excessive	context	switching	sometimes	seen	in
symmetric	multiprocessor	(SMP)	environments.	When	excessive	context
switching	is	present,	lightweight	pooling	may	provide	better	throughput	by
performing	the	context	switching	inline,	thus	helping	to	reduce	user/kernel	ring
transitions.

Setting	lightweight	pooling	to	1	causes	Microsoft®	SQL	Server™	to	switch	to
fiber	mode	scheduling.	The	default	value	for	this	option	is	0.

lightweight	pooling	is	an	advanced	option.	If	you	are	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	lightweight
pooling	only	when	show	advanced	options	is	set	to	1.	The	setting	takes	effect
after	stopping	and	restarting	the	server.

To	set	the	lightweight	pooling	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

SQL	Server	Task	Scheduling

Using	the	lightweight	pooling	Options

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Administering	SQL	Server

locks	Option
Use	the	locks	option	to	set	the	maximum	number	of	available	locks,	thereby
limiting	the	amount	of	memory	Microsoft®	SQL	Server™	uses	for	locks.	The
default	setting	is	0,	which	allows	SQL	Server	to	allocate	and	deallocate	locks
dynamically	based	on	changing	system	requirements.

When	the	server	is	started	with	locks	set	to	0,	the	lock	manager	allocates	two
percent	of	the	memory	allocated	to	SQL	Server	to	an	initial	pool	of	lock
structures.	As	the	pool	of	locks	is	exhausted,	additional	locks	are	allocated.	The
dynamic	lock	pool	does	not	allocate	more	than	40	percent	of	the	memory
allocated	to	SQL	Server.

Generally,	if	more	memory	is	required	for	locks	than	is	available	in	current
memory,	and	more	server	memory	is	available	(the	max	server	memory
threshold	has	not	been	reached),	SQL	Server	allocates	memory	dynamically	to
satisfy	the	request	for	locks.	However,	if	allocating	that	memory	would	cause
paging	at	the	operating	system	level	(for	example,	if	another	application	was
running	on	the	same	computer	as	an	instance	of	SQL	Server	and	using	that
memory),	more	lock	space	is	not	allocated.

Allowing	SQL	Server	to	use	locks	dynamically	is	the	recommended
configuration.	However,	you	can	set	locks	and	override	SQL	Server's	ability	to
allocate	lock	resources	dynamically.	Increase	this	value	if	SQL	Server	displays	a
message	that	you	have	exceeded	the	number	of	available	locks.	Because	each
lock	consumes	memory	(96	bytes	per	lock),	increasing	this	value	can	require
increasing	the	amount	of	memory	dedicated	to	the	server.

locks	is	an	advanced	option.	If	you	are	using	the	sp_configure	system	stored
procedure	to	change	the	setting,	you	can	change	locks	only	when	show
advanced	options	is	set	to	1.	The	setting	takes	effect	after	stopping	and
restarting	the	server.

To	set	the	locks	option

Transact-SQL

SQL-DMO

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

See	Also

Locking

RECONFIGURE

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Administering	SQL	Server

max	degree	of	parallelism	Option
Use	the	max	degree	of	parallelism	option	to	limit	the	number	of	processors	(a
maximum	of	32)	to	use	in	parallel	plan	execution.	The	default	value	is	0,	which
uses	the	actual	number	of	available	CPUs.	Set	max	degree	of	parallelism	to	1	to
suppress	parallel	plan	generation.	Set	the	value	to	a	number	greater	than	1	to
restrict	the	maximum	number	of	processors	used	by	a	single	query	execution.	If
a	value	greater	than	the	number	of	available	CPUs	is	specified,	the	actual
number	of	available	CPUs	is	used.

Note		If	the	affinity	mask	option	is	not	set	to	the	default,	it	may	restrict	the
number	of	CPUs	available	to	Microsoft®	SQL	Server™	on	a	symmetric
multiprocessor	(SMP)	systems.

Change	max	degree	of	parallelism	rarely	for	servers	running	on	an	SMP
computer.	If	your	computer	has	only	one	processor,	the	max	degree	of
parallelism	value	is	ignored.

max	degree	of	parallelism	is	an	advanced	option.	If	you	are	using	the
sp_configure	system	stored	procedure	to	change	the	setting,	you	can	change
max	degree	of	parallelism	only	when	show	advanced	options	is	set	to	1.	The
setting	takes	effect	immediately	(without	a	server	stop	and	restart).

In	addition	to	queries,	this	option	also	controls	the	parallelism	of	DBCC
CHECKTABLE,	DBCC	CHECKDB,	and	DBCC	CHECKFILEGROUP.	Parallel
checking	can	be	overridden	by	using	trace	flag	2528.	For	more	information,	see
Trace	Flags.

To	set	the	max	degree	of	parallelism	option

JavaScript:hhobj_1.Click()

Administering	SQL	Server

max	text	repl	size	Option
Use	the	max	text	repl	size	option	to	specify	the	maximum	size	(in	bytes)	of	text
and	image	data	that	can	be	added	to	a	replicated	column	in	a	single	INSERT,
UPDATE,	WRITETEXT,	or	UPDATETEXT	statement.

The	setting	takes	effect	immediately	(without	a	server	stop	and	restart).

To	set	the	max	text	repl	size	option

Transact-SQL

SQL-DMO

See	Also

INSERT

RECONFIGURE

Replication	Overview

Setting	Configuration	Options

sp_configure

UPDATE

UPDATETEXT

WRITETEXT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Administering	SQL	Server

max	worker	threads	Option
Use	the	max	worker	threads	option	to	configure	the	number	of	worker	threads
available	to	Microsoft®	SQL	Server™	processes.	SQL	Server	uses	the	native
thread	services	of	the	Microsoft	Windows	NT®	4.0	or	Windows®	2000
operating	system	so	that	one	or	more	threads	support	each	network	that	SQL
Server	supports	simultaneously;	another	thread	handles	database	checkpoints;
and	a	pool	of	threads	handles	all	users.

Thread	pooling	helps	optimize	performance	when	large	numbers	of	clients	are
connected	to	the	server.	Usually,	a	separate	operating	system	thread	is	created	for
each	client	connection	to	consume	fewer	system	resources.	However,	with
hundreds	of	connections	to	the	server,	using	a	thread-per-connection	can
consume	large	amounts	of	system	resources.	max	worker	threads	enables	SQL
Server	to	create	a	pool	of	worker	threads	to	service	a	larger	number	of	client
connections,	which	improves	performance.

The	default	setting	for	max	worker	threads	(255)	is	best	for	most	systems.
However,	depending	on	your	system	configuration,	setting	max	worker	threads
to	a	smaller	value	sometimes	improves	performance.

When	the	actual	number	of	user	connections	is	less	than	the	amount	set	in	max
worker	threads,	one	thread	handles	each	connection.	However,	if	the	actual
number	of	connections	exceeds	the	amount	set	in	max	worker	threads,	SQL
Server	pools	the	worker	threads	so	that	the	next	available	worker	thread	can
handle	the	request.

When	the	maximum	number	of	worker	threads	is	reached,	SQL	Server	returns
the	following	message:

The	working	thread	limit	of	255	has	been	reached.

Because	Windows	98	does	not	support	thread	pooling,	the	option	has	no	effect
on	those	systems.

max	worker	threads	is	an	advanced	option.	If	you	will	be	using	the
sp_configure	system	stored	procedure	to	change	the	setting,	you	can	change
max	worker	threads	only	when	show	advanced	options	is	set	to	1.	The	setting

takes	effect	immediately	(without	a	server	stop	and	restart).

To	configure	the	maximum	number	of	worker	threads

Administering	SQL	Server

media	retention	Option
Use	the	media	retention	option	to	provide	a	system-wide	default	for	the	length
of	time	to	retain	each	backup	medium	after	it	has	been	used	for	a	database	or
transaction	log	backup.	media	retention	helps	protect	backups	from	being
overwritten	until	the	specified	number	of	days	has	elapsed.	When	you	set	media
retention,	you	do	not	have	to	specify	the	length	of	time	to	retain	system	backups
each	time	you	perform	a	backup.	The	default	is	0	days.	If	you	use	the	backup
medium	before	the	set	number	of	days	has	passed,	Microsoft®	SQL	Server™
issues	a	warning	message.	SQL	Server	does	not	issue	a	warning	unless	you
change	the	default.

This	option	can	be	overridden	by	using	the	RETAINDAYS	clause	of	the
BACKUP	statement.

media	retention	is	an	advanced	option.	If	you	are	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	media	retention
only	when	show	advanced	options	is	set	to	1.	The	setting	takes	effect	after
stopping	and	restarting	the	server.

To	set	the	backup	retention	duration

Administering	SQL	Server

min	memory	per	query	Option
Use	the	min	memory	per	query	option	to	specify	the	minimum	amount	of
memory	(in	kilobytes)	that	will	be	allocated	for	the	execution	of	a	query.	For
example,	if	min	memory	per	query	is	set	to	2048	kilobytes	(KB),	the	query	is
guaranteed	to	get	at	least	that	much	total	memory.	You	can	set	min	memory	per
query	to	any	value	from	512	through	2147483647	KB	(2	gigabytes).	The	default
is	1024	KB.

The	Microsoft®	SQL	Server™	2000	query	processor	attempts	to	determine	the
optimal	amount	of	memory	to	allocate	to	a	query.	The	min	memory	per	query
option	lets	the	administrator	specify	the	minimum	amount	of	memory	any	single
query	will	receive.	Queries	will	generally	receive	more	memory	than	this	if	they
have	hash	and	sort	operations	on	a	large	volume	of	data.	Increasing	the	value	of
min	memory	per	query	may	improve	performance	for	some	small	to	medium
sized	queries,	but	could	lead	to	increased	contention	for	memory	resources.	min
memory	per	query	includes	memory	allocated	for	sorting	and	replaces	the	sort
pages	option	in	SQL	Server	version	7.0	or	earlier.

min	memory	per	query	is	an	advanced	option.	If	you	are	using	the
sp_configure	system	stored	procedure	to	change	the	setting,	you	can	change
min	memory	per	query	only	when	show	advanced	options	is	set	to	1.	The
setting	takes	effect	immediately	(without	a	server	stop	and	restart).

To	set	minimum	query	memory

Administering	SQL	Server

nested	triggers	Option
Use	the	nested	triggers	option	to	control	whether	a	trigger	can	cascade	(perform
an	action	that	initiates	another	trigger	that	initiates	another	trigger,	and	so	on).
When	nested	triggers	is	set	to	0,	triggers	cannot	cascade.	When	nested	triggers
is	set	to	1	(the	default),	triggers	can	cascade	to	as	many	as	32	levels.

The	setting	takes	effect	immediately	(without	a	server	stop	and	restart).

To	set	the	nested	triggers	option

Administering	SQL	Server

network	packet	size	Option
Use	the	network	packet	size	option	to	set	the	packet	size	(in	bytes)	used	across
the	entire	network.	Packets	are	the	fixed-size	chunks	of	data	that	transfer
requests	and	results	between	clients	and	servers.	The	default	packet	size	set	by
Microsoft®	SQL	Server™	is	4096	bytes.	If	an	application	does	bulk	copy
operations,	or	sends	or	receives	large	amounts	of	text	or	image	data,	a	packet
size	larger	than	the	default	may	improve	efficiency	because	it	results	in	fewer
network	reads	and	writes.	If	an	application	sends	and	receives	small	amounts	of
information,	you	can	set	the	packet	size	to	512	bytes,	which	is	sufficient	for	most
data	transfers.

Note		Do	not	change	the	packet	size	unless	you	are	certain	that	it	will	improve
performance.	For	most	applications,	the	default	packet	size	is	best.

On	systems	using	differing	network	protocols,	set	network	packet	size	to	the
size	for	the	most	common	protocol	used.	network	packet	size	improves	network
performance	when	network	protocols	support	larger	packets.	Client	applications
can	override	this	value.

You	can	also	call	OLE	DB,	ODBC,	and	DB-Library	functions	to	change	the
packet	size.

network	packet	size	is	an	advanced	option.	If	you	will	be	using	the
sp_configure	system	stored	procedure	to	change	the	setting,	you	can	change
network	packet	size	only	when	show	advanced	options	is	set	to	1.	All
connections	created	after	this	setting	is	changed	receive	the	new	value.

To	configure	packet	size

Administering	SQL	Server

open	objects	Option
Use	the	open	objects	option	to	set	the	maximum	number	of	database	objects	that
can	be	open	at	one	time	on	an	instance	of	Microsoft®	SQL	Server™.	Database
objects	are	those	objects	defined	in	the	sysobjects	table:	tables,	views,	rules,
stored	procedures,	defaults,	and	triggers.

open	objects	is	a	dynamic	self-configuring	option	by	default	(when	the	value	is
set	to	0).	In	other	words,	SQL	Server	sets	this	value	depending	on	the	current
needs	of	the	system.	In	most	cases,	you	should	not	need	to	change	this	value.

Consider	increasing	the	value	set	in	open	objects	if	SQL	Server	displays	a
message	that	you	have	exceeded	the	number	of	open	objects.	Because	open
objects	consume	memory,	increasing	this	value	takes	memory	from	other	SQL
Server	uses	and	makes	it	necessary	to	increase	the	amount	of	memory	dedicated
to	the	server.	The	default	is	to	allow	SQL	Server	to	set	and	increase	open	objects
as	needed.

At	server	startup,	SQL	Server	builds	a	pool	of	descriptor	data	structures	in
memory	that	are	used	to	describe	database	objects	as	they	are	referenced.	The
number	of	descriptors	built	is	equal	to	the	number	set	in	open	objects.	The	first
time	a	database	object	is	referenced,	SQL	Server	takes	one	of	the	descriptors
from	the	free	pool	of	descriptor	data	and	allocates	it	to	the	specific	object.	If
multiple	tasks	reference	the	same	object	at	the	same	time,	it	is	still	considered
one	open	object.

For	example,	two	tasks	issue	the	following	command	at	the	same	time:

UPDATE	table_a	SET	cola	=	@variable

There	is	only	one	descriptor	allocated	to	table_a,	which	is	considered	one	open
object.	However,	if	table_a	has	an	update	trigger,	then	a	second	descriptor	is
allocated	to	the	trigger,	counting	as	a	second	open	object.

Each	allocated	descriptor	has	a	use	counter	that	indicates	how	many	concurrent
queries	are	referencing	the	object	it	defines.	The	use	count	is	increased	by	one	at
the	start	of	a	query,	and	decreased	by	one	by	the	end	of	the	query.	In	the	previous
example,	the	table_a	descriptor	would	have	a	use	count	of	2	until	the	two

queries	finish;	it	then	decreases	to	0.

After	the	free	pool	of	descriptors	has	been	used,	SQL	Server	starts	reusing
inactive	descriptors	when	it	needs	to	allocate	a	new	descriptor.	An	inactive
descriptor	is	one	whose	use	count	is	1.	The	first	time	SQL	Server	has	to	reuse	a
descriptor,	it	issues	this	message	in	the	error	log:

Warning:	OPEN	OBJECTS	parameter	may	be	too	low;
attempt	was	made	to	free	up	descriptors	in	localdes().
Run	sp_configure	to	increase	parameter	value.

SQL	Server	repeats	this	message	after	each	1,000	times	it	has	to	reuse	a
descriptor.	If	you	notice	that	these	messages	are	being	issued	frequently	in	the
error	log,	set	open	objects	to	a	higher	value.

open	objects	is	an	advanced	option.	If	you	are	using	the	sp_configure	system
stored	procedure	to	change	the	setting,	you	can	change	open	objects	only	when
show	advanced	options	is	set	to	1.	The	setting	takes	effect	after	stopping	and
restarting	the	server.

To	set	the	open	objects	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Administering	SQL	Server

priority	boost	Option
Use	the	priority	boost	option	to	specify	whether	Microsoft®	SQL	Server™
should	run	at	a	higher	Microsoft	Windows	NT®	4.0	or	Windows®	2000
scheduling	priority	than	other	processes	on	the	same	computer.	If	you	set	this
option	to	1,	SQL	Server	runs	at	a	priority	base	of	13	in	the	Windows	NT	4.0	or
Windows	2000	scheduler.	The	default	is	0,	which	is	a	priority	base	of	7.

priority	boost	should	be	used	only	on	a	computer	dedicated	to	SQL	Server,	and
with	a	symmetric	multiprocessor	(SMP)	configuration.

CAUTION		Boosting	the	priority	too	high	may	drain	resources	from	essential
operating	system	and	network	functions,	resulting	in	problems	shutting	down
SQL	Server	or	using	other	Windows	NT	4.0	or	Windows	2000	tasks	on	the
server.

In	some	circumstances,	setting	priority	boost	to	anything	other	than	the	default
can	cause	the	following	communication	error	to	be	logged	in	the	SQL	Server
error	log:

Error:	17824,	Severity:	10,	State:	0	Unable	to	write	to	ListenOn
connection	'<servername>',	loginname	'<login	ID>',	hostname	'<hostname>'
OS	Error:	64,	The	specified	network	name	is	no	longer	available.

Error	17824	indicates	that	SQL	Server	encountered	connection	problems	while
attempting	to	write	to	a	client.	These	communication	problems	may	be	caused
by	network	problems,	if	the	client	has	stopped	responding,	or	if	the	client	has
been	restarted.	However,	error	17824	does	not	always	indicate	a	network
problem.	Check	priority	boost	and	make	sure	that	the	option	is	set	to	the
default.	Deviating	from	the	default	may	cause	error	17824.

priority	boost	is	an	advanced	option.	If	you	are	using	the	sp_configure	system
stored	procedure	to	change	the	setting,	you	can	change	priority	boost	only	when
show	advanced	options	is	set	to	1.	The	setting	takes	effect	after	stopping	and
restarting	the	server.

To	set	the	priority	boost	option

Administering	SQL	Server

query	governor	cost	limit	Option
Use	the	query	governor	cost	limit	option	to	specify	an	upper	limit	for	the	time
in	which	a	query	can	run.	Query	cost	refers	to	the	estimated	elapsed	time,	in
seconds,	required	to	execute	a	query	on	a	specific	hardware	configuration.

If	you	specify	a	nonzero,	nonnegative	value,	the	query	governor	disallows
execution	of	any	query	that	has	an	estimated	cost	exceeding	that	value.
Specifying	0	(the	default)	for	this	option	turns	off	the	query	governor.	In	this
case,	all	queries	are	allowed	to	run.

If	you	use	sp_configure	to	change	the	value	of	query	governor	cost	limit,	the
changed	value	is	server-wide.	To	change	the	value	on	a	per	connection	basis,	use
the	SET	QUERY_GOVERNOR_COST_LIMIT	statement.

query	governor	cost	limit	is	an	advanced	option.	If	you	are	using	the
sp_configure	system	stored	procedure	to	change	the	setting,	you	can	change
query	governor	cost	limit	only	when	show	advanced	options	is	set	to	1.	The
setting	takes	effect	immediately	(without	a	server	stop	and	restart).

To	set	the	query	governor	cost	limit	option

Administering	SQL	Server

query	wait	Option
In	Microsoft®	SQL	Server™,	memory-intensive	queries,	such	as	those	involving
sorting	and	hashing,	are	queued	when	there	is	not	enough	memory	available	to
run	the	query.	The	query	times	out	after	a	set	amount	of	time	calculated	by	SQL
Server	(25	times	the	estimated	cost	of	the	query)	or	the	time	amount	specified	by
the	non-negative	value	of	the	query	wait.

Use	the	query	wait	option	to	specify	the	time	in	seconds	(from	0	through
2147483647)	that	a	query	waits	for	resources	before	timing	out.	If	the	default
value	of	-1	is	used,	or	if	–1	is	specified,	then	the	time-out	is	calculated	as	25
times	of	the	estimated	query	cost.

IMPORTANT		A	transaction	containing	the	waiting	query	may	hold	locks	while	the
query	waits	for	memory.	In	rare	situations,	it	is	possible	for	an	undetectable
deadlock	to	occur.	Decreasing	the	query	wait	time	lowers	the	probability	of	such
deadlocks.	Eventually,	a	waiting	query	will	be	terminated	and	the	transaction
locks	released.	However,	increasing	the	maximum	wait	time	may	increase	the
amount	of	time	for	the	query	to	be	terminated.	Changes	to	this	option	are	not
recommended.

query	wait	is	an	advanced	option.	If	you	are	using	the	sp_configure	system
stored	procedure	to	change	the	setting,	you	can	change	query	wait	only	when
show	advanced	options	is	set	to	1.	The	setting	takes	effect	immediately
(without	a	server	stop	and	restart).

To	set	the	query	wait	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Thread	and	Fiber	Execution

JavaScript:hhobj_5.Click()

Administering	SQL	Server

recovery	interval	Option
Use	the	recovery	interval	option	to	set	the	maximum	number	of	minutes	per
database	that	Microsoft®	SQL	Server™	needs	to	recover	databases.	Each	time
an	instance	of	SQL	Server	starts,	it	recovers	each	database,	rolling	back
transactions	that	did	not	commit	and	rolling	forward	transactions	that	did
commit	but	whose	changes	were	not	yet	written	to	disk	when	an	instance	of	SQL
Server	stopped.	This	configuration	option	sets	an	upper	limit	on	the	time	it
should	take	to	recover	each	database.	The	default	is	0,	indicating	automatic
configuration	by	SQL	Server.	In	practice,	this	means	a	recovery	time	of	less	than
one	minute	and	a	checkpoint	approximately	every	one	minute	for	active
databases.

recovery	interval	controls	when	SQL	Server	issues	a	checkpoint	in	each
database.	Checkpoints	are	done	on	a	per	database	basis.	At	a	checkpoint,	SQL
Server	ensures	all	log	information	and	all	modified	pages	are	flushed	from
memory	to	disk.	This	limits	the	time	needed	for	recovery	by	limiting	the	number
of	transactions	rolled	forward	to	ensure	they	are	on	disk.	No	modifications	done
before	the	checkpoint	need	to	be	rolled	forward	because	they	have	been	flushed
to	disk	at	the	checkpoint.

recovery	interval	does	not	affect	the	time	it	takes	to	undo	long-running
transactions.	For	example,	if	a	long-running	transaction	has	taken	two	hours	to
perform	updates	before	the	server	became	disabled,	the	actual	recovery	will	take
considerably	longer	than	the	recovery	interval	value	to	roll	back	the	long
transaction.

SQL	Server	estimates	how	many	data	modifications	it	can	roll	forward	in	the
recovery	time	interval.	SQL	Server	typically	issues	a	checkpoint	in	a	database
when	the	number	of	data	modifications	made	in	the	database	after	the	last
checkpoint	reaches	the	number	SQL	Server	estimates	it	can	roll	forward	in	the
recovery	time	interval.	Sometimes	SQL	Server	will	issue	the	checkpoint	when
the	log	becomes	70	percent	full,	if	that	is	less	than	the	estimated	number.	For
more	information,	see	Checkpoints	and	the	Active	Portion	of	the	Log.

The	frequency	of	checkpoints	in	each	database	depends	on	the	amount	of	data
modifications	made,	not	on	any	time-based	measure.	A	database	used	primarily
for	read-only	operations	will	not	have	many	checkpoints.	A	transaction	database

JavaScript:hhobj_1.Click()

will	have	frequent	checkpoints.

Keep	recovery	interval	set	at	0	(self-configuring)	unless	you	notice	that
checkpoints	are	impairing	performance	because	they	are	occurring	too
frequently.	If	this	is	the	case,	try	increasing	the	value	in	small	increments.

recovery	interval	is	an	advanced	option.	If	you	will	be	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	recovery	interval
only	when	show	advanced	options	is	set	to	1.	The	setting	takes	effect
immediately	(without	a	server	stop	and	restart).

To	set	the	recovery	interval

Administering	SQL	Server

remote	access	Option
Use	the	remote	access	option	to	control	logins	from	remote	servers	running
instances	of	Microsoft®	SQL	Server™.	remote	access	is	used	with	remote
stored	procedures.	Set	remote	access	to	1	(default)	to	allow	logins	from	remote
servers.	Set	the	option	to	0	to	secure	a	local	server	and	prevent	access	from	a
remote	server.

The	setting	takes	effect	after	stopping	and	restarting	the	server.

To	set	remote	server	access

Administering	SQL	Server

remote	login	timeout	Option
Use	the	remote	login	timeout	option	to	specify	the	number	of	seconds	to	wait
before	returning	from	a	failed	remote	login	attempt.	For	example,	if	you	are
attempting	to	log	in	to	a	remote	server	and	that	server	is	down,	remote	login
timeout	ensures	that	you	do	not	have	to	wait	indefinitely	before	your	computer
ceases	its	attempts	to	log	in.

remote	login	timeout	affects	connections	to	OLE	DB	providers	made	for
heterogeneous	queries.	The	default	setting	for	remote	login	timeout	is	20
seconds.	A	value	of	0	allows	for	an	infinite	wait.

The	setting	takes	effect	immediately	(without	a	server	stop	and	restart).

To	set	the	remote	login	timeout	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Administering	SQL	Server

remote	proc	trans	Option
Use	the	remote	proc	trans	option	to	protect	the	actions	of	a	server-to-server
procedure	through	a	Microsoft®	Distributed	Transaction	Coordinator	(MS	DTC)
transaction.	Set	remote	proc	trans	to	1	to	provide	an	MS	DTC-coordinated
distributed	transaction	that	protects	the	ACID	properties	of	transactions.
Sessions	begun	after	setting	this	option	to	1	inherit	the	configuration	setting	as
their	default.

The	setting	takes	effect	immediately	(without	a	server	stop	and	restart).

For	more	information	about	ACID	properties,	see	Transactions.

For	more	information	about	MS	DTS,	see	the	Microsoft	Distributed	Transaction
Coordinator	documentation.

To	enforce	distributed	transactions	for	remote	procedures

JavaScript:hhobj_1.Click()

Administering	SQL	Server

remote	query	timeout	Option
Use	the	remote	query	timeout	option	to	specify	the	number	of	seconds	that
must	elapse	when	processing	a	remote	operation	before	Microsoft®	SQL
Server™	assumes	the	command	failed	or	took	too	much	time	to	perform	(times
out).	The	default	is	600,	which	allows	a	ten	minute	wait.

For	heterogeneous	queries,	remote	query	timeout	specifies	the	number	of
seconds	(initialized	in	the	command	object	using	the
DBPROP_COMMANDTIMEOUT	rowset	property)	that	a	remote	provider
should	wait	for	result	sets	before	the	query	times	out.	This	value	is	also	used	to
set	DBPROP_GENERALTIMEOUT	if	supported	by	the	remote	provider.	This
will	cause	any	other	operations	to	time	out	after	the	specified	number	of	seconds.

For	remote	stored	procedures,	remote	query	timeout	specifies	the	number	of
seconds	that	must	elapse	after	sending	a	remote	"EXEC	sp"	before	the	remote
stored	procedure	times	out.

The	setting	takes	effect	immediately	(without	a	server	stop	and	restart).

To	set	a	time	limit	for	remote	queries

Administering	SQL	Server

scan	for	startup	procs	Option
Use	the	scan	for	startup	procs	option	to	scan	for	automatic	execution	of	stored
procedures	at	Microsoft®	SQL	Server™	startup	time.	If	this	option	is	set	to	1,
SQL	Server	scans	for	and	executes	all	automatically	executed	stored	procedures
defined	on	the	server.	The	default	value	for	scan	for	startup	procs	is	0	(do	not
scan).

The	value	for	this	option	can	be	set	using	sp_configure;	however,	it	will	be	set
automatically	if	you	use	sp_procoption,	which	is	used	to	mark	or	unmark	stored
procedures	as	automatically	executed	(autoprocs).	When	sp_procoption	is	used
to	mark	the	first	stored	procedure	as	an	autoproc,	this	option	is	set	automatically
to	a	value	of	1.	When	sp_procoption	is	used	to	unmark	the	last	stored	procedure
as	an	autoproc,	this	option	is	automatically	set	to	a	value	of	0.	If	you	use
sp_procoption	to	mark	and	unmark	autoprocs,	and	always	unmark	autoprocs
before	dropping	them,	there	is	no	need	to	set	this	option	manually.

scan	for	startup	procs	is	an	advanced	option.	If	you	are	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	scan	for	startup
procs	only	when	show	advanced	options	is	set	to	1.	The	setting	takes	effect
after	stopping	and	restarting	the	server.

To	set	the	scan	for	startup	procs	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

sp_procoption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Administering	SQL	Server

Server	Memory	Options
Use	the	two	server	memory	options,	min	server	memory	and	max	server
memory,	to	reconfigure	the	amount	of	memory	(in	megabytes)	in	the	buffer	pool
used	by	an	instance	of	Microsoft®	SQL	Server™.

By	default,	SQL	Server	can	change	its	memory	requirements	dynamically	based
on	available	system	resources.	The	default	setting	for	min	server	memory	is	0,
and	the	default	setting	for	max	server	memory	is	2147483647.	The	minimum
amount	of	memory	you	can	specify	for	max	server	memory	is	4	megabytes
(MB).

When	SQL	Server	is	using	memory	dynamically,	it	queries	the	system
periodically	to	determine	the	amount	of	free	physical	memory	available.	SQL
Server	grows	or	shrinks	the	buffer	cache	to	keep	free	physical	memory	between
4	MB	and	10	MB	depending	on	server	activity.	This	prevents	Microsoft
Windows	NT®	4.0	or	Windows®	2000	from	paging.	If	there	is	less	memory
free,	SQL	Server	releases	memory	to	Windows	NT	4.0	or	Windows	2000	that
usually	goes	on	the	free	list.	If	there	is	more	memory	free,	SQL	Server
recommits	memory	to	the	buffer	cache.	SQL	Server	adds	memory	to	the	buffer
cache	only	when	its	workload	requires	more	memory;	a	server	at	rest	does	not
grow	its	buffer	cache.

Allowing	SQL	Server	to	use	memory	dynamically	is	the	recommended
configuration;	however,	you	can	set	the	memory	options	manually	and	override
SQL	Server's	ability	to	use	memory	dynamically.	Before	you	set	the	amount	of
memory	for	SQL	Server,	determine	the	appropriate	memory	setting	by
subtracting	from	the	total	physical	memory	the	memory	required	for	Windows
NT	4.0	or	Windows	2000	and	any	other	instances	of	SQL	Server	(and	other
system	uses,	if	the	computer	is	not	wholly	dedicated	to	SQL	Server).	This	is	the
maximum	amount	of	memory	you	can	assign	to	SQL	Server.

Note		If	you	have	installed	and	are	running	the	Full-Text	Search	support
(Microsoft	Search	service,	also	known	as	MSSearch),	then	you	must	set	the	max
server	memory	option	manually	to	leave	enough	memory	for	the	MSSearch
service	to	run.	The	max	server	memory	setting	must	be	adjusted	in	conjunction
with	the	Windows	NT	4.0	virtual	memory	size	such	that	the	virtual	memory
remaining	for	Full-Text	Search	is	1.5	times	the	physical	memory	(excluding	the

virtual	memory	requirements	of	the	other	services	on	the	computer).	Configure
the	SQL	Server	max	server	memory	option	so	that	there	is	sufficient	virtual
memory	left	to	satisfy	this	Full-Text	Search	memory	requirement.	Total	virtual
memory	-	(SQL	Server	maximum	virtual	memory	+	virtual	memory
requirements	of	other	services)	>=	1.5	times	the	physical	memory.

Setting	the	Memory	Options	Manually
There	are	two	principal	methods	for	setting	the	SQL	Server	memory	options
manually:

In	the	first	method,	set	min	server	memory	and	max	server	memory
to	the	same	value.	This	value	corresponds	to	the	fixed	amount	of
memory	to	allocate	to	SQL	Server.

In	the	second	method,	set	min	server	memory	and	max	server
memory	to	span	a	range	of	memory	values.	This	is	useful	in	situations
where	system	or	database	administrators	want	to	configure	an	instance
of	SQL	Server	in	conjunction	with	the	memory	requirements	of	other
applications	running	on	the	same	computer.

Use	min	server	memory	to	guarantee	a	minimum	amount	of	memory	to	an
instance	of	SQL	Server.	SQL	Server	will	not	immediately	allocate	the	amount	of
memory	specified	in	min	server	memory	on	startup.	However,	after	memory
usage	has	reached	this	value	due	to	client	load,	SQL	Server	cannot	free	memory
from	the	allocated	buffer	pool	unless	the	value	of	min	server	memory	is
reduced.

Note		SQL	Server	is	not	guaranteed	to	allocate	the	amount	of	memory	specified
in	min	server	memory.	If	the	load	on	the	server	never	necessitates	the
allocation	of	the	amount	of	memory	specified	in	min	server	memory,	then	SQL
Server	will	run	with	less	memory.

Use	max	server	memory	to	prevent	SQL	Server	from	using	more	than	the
specified	amount	of	memory,	thus	leaving	remaining	memory	available	to	start
other	applications	quickly.	SQL	Server	does	not	immediately	allocate	the
memory	specified	in	max	server	memory	on	startup.	Memory	usage	is
increased	as	needed	by	SQL	Server	until	reaching	the	value	specified	in	max

server	memory.	SQL	Server	cannot	exceed	this	memory	usage	unless	the	value
of	max	server	memory	is	raised.

IMPORTANT		Instances	of	SQL	Server	2000	running	in	Address	Windowing
Extensions	(AWE)	memory	mode	do	allocate	all	the	full	amount	of	memory
specified	in	max	server	memory	on	server	startup.	For	more	information	about
AWE	memory,	see	Managing	AWE	Memory.

There	is	a	short	delay	between	the	start	of	a	new	application	and	the	time	SQL
Server	releases	memory.	Using	max	server	memory	prevents	this	delay	and
may	give	better	performance	to	the	other	application.	Only	set	min	server
memory	if	the	start	time	of	new	applications	sharing	the	same	server	as	SQL
Server	shows	up	as	a	problem.	It	is	better	to	let	SQL	Server	use	all	of	the
available	memory.

If	you	set	the	memory	options	manually,	be	sure	to	set	them	appropriately	for
servers	used	in	replication.	If	the	server	is	a	remote	Distributor	or	a	combined
Publisher/Distributor,	you	must	assign	it	at	least	16	MB	of	memory.

Ideally,	you	want	to	allocate	as	much	memory	as	possible	to	SQL	Server	without
causing	the	system	to	swap	pages	to	disk.	The	threshold	varies	depending	on
your	system.	For	example,	on	a	32-MB	system,	16	MB	might	be	appropriate	for
SQL	Server;	on	a	64-MB	system,	48	MB	might	be	appropriate.

Note		As	you	increase	the	amount	of	SQL	Server	memory,	ensure	that	there	is
sufficient	disk	space	to	grow	the	operating	system's	virtual	memory	support	file
(Pagefile.sys)	to	accommodate	additional	memory.	For	more	information	about
the	virtual	memory	support	file,	see	the	Windows	NT	4.0	and	Windows	2000
documentation.

The	amount	of	memory	specified	must	be	sufficient	for	the	SQL	Server	static
memory	needs	(kernel	overhead,	open	objects,	locks,	and	so	on),	as	well	as	for
the	data	cache	(also	called	buffer	cache).

Use	statistics	from	System	Monitor	(Performance	Monitor	in	Windows	NT	4.0)
to	help	you	adjust	the	memory	value	if	necessary.	Change	this	value	only	when
you	add	or	remove	memory,	or	when	you	change	how	you	use	your	system.

Virtual	Memory	Manager

Windows	NT	4.0	and	Windows	2000	provide	a	4-gigabyte	(GB)	virtual	address
space	at	any	time,	the	lower	2	GB	of	which	is	private	per	process	and	available
for	application	use.	The	upper	2	GB	is	reserved	for	system	use.	Windows	NT
Server,	Enterprise	Edition	provides	a	4-GB	virtual	address	space	for	each
Microsoft	Win32®	application,	the	lower	3	GB	of	which	is	private	per	process
and	available	for	application	use.	The	upper	1	GB	is	reserved	for	system	use.

The	4-GB	address	space	is	mapped	to	the	available	physical	memory	by
Windows	NT	Virtual	Memory	Manager	(VMM).	The	available	physical	memory
can	be	up	to	4	GB,	depending	on	hardware	platform	support.

A	Win32	application	such	as	SQL	Server	perceives	only	virtual	or	logical
addresses,	not	physical	addresses.	How	much	physical	memory	an	application
uses	at	a	given	time	(the	working	set)	is	determined	by	available	physical
memory	and	the	VMM.	The	application	cannot	control	memory	residency
directly.

Virtual	address	systems	such	as	Windows	NT	4.0	or	Windows	2000	allow	the
over-committing	of	physical	memory,	such	that	the	ratio	of	virtual	to	physical
memory	exceeds	1:1.	As	a	result,	larger	programs	can	run	on	computers	with	a
variety	of	physical	memory	configurations.	However,	using	significantly	more
virtual	memory	than	the	combined	average	working	sets	of	all	the	processes
results	in	poor	performance.

SQL	Server	can	lock	memory	as	a	working	set.	Because	memory	is	locked,	you
can	receive	out	of	memory	errors	when	running	other	applications.	If	out-of-
memory	errors	occur,	you	may	have	too	much	memory	assigned	to	SQL	Server.
The	set	working	set	size	option	(set	with	sp_configure	or	SQL	Server
Enterprise	Manager)	can	disable	the	locking	of	memory	as	a	working	set.	By
default,	set	working	set	size	is	disabled.

Configuring	SQL	Server	manually	for	more	virtual	memory	than	there	is
physical	memory	can	result	in	poor	performance.	Also,	the	Windows	NT	4.0	or
Windows	2000	operating	system	memory	requirement	must	be	considered
(about	12	MB,	with	some	variation	depending	on	application	overhead).	System
overhead	requirements	can	grow	as	SQL	Server	parameters	are	configured
upward	and	Windows	NT	4.0	or	Windows	2000	needs	more	resident	memory	to
support	additional	threads,	page	tables,	and	so	on.	Allowing	SQL	Server	to	use
memory	dynamically	helps	to	avoid	memory-related	performance	problems.

min	server	memory	and	max	server	memory	are	advanced	options.	If	you	are
using	the	sp_configure	system	stored	procedure	to	change	these	settings,	you
can	change	them	only	when	show	advanced	options	is	set	to	1.	These	settings
take	effect	immediately	(without	a	server	stop	and	restart).

To	set	a	fixed	amount	of	memory

Administering	SQL	Server

set	working	set	size	Option
Use	the	set	working	set	size	option	to	reserve	physical	memory	space	for
Microsoft®	SQL	Server™	that	is	equal	to	the	server	memory	setting.	The	server
memory	setting	is	configured	automatically	by	SQL	Server	based	on	workload
and	available	resources.	It	will	vary	dynamically	between	min	server	memory
and	max	server	memory.	Setting	set	working	set	size	means	Microsoft®
Windows	NT®	4.0	or	Windows®	2000	do	not	swap	out	SQL	Server	pages	even
if	they	can	be	used	more	readily	by	another	process	when	SQL	Server	is	idle.

Do	not	set	set	working	set	size	if	you	are	allowing	SQL	Server	to	use	memory
dynamically.	Before	setting	set	working	set	size	to	1,	set	both	min	server
memory	and	max	server	memory	to	the	same	value,	the	amount	of	memory
you	want	SQL	Server	to	use.

set	working	set	size	is	an	advanced	option.	If	you	are	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	set	working	set
size	only	when	show	advanced	options	is	set	to	1.	The	setting	takes	effect	after
stopping	and	restarting	the	server.

To	set	the	working	set	size	option

Administering	SQL	Server

show	advanced	options	Option
Use	the	show	advanced	options	option	to	display	the	sp_configure	system
stored	procedure	advanced	options.	When	you	set	show	advanced	options	to	1,
you	can	list	the	advanced	options	by	using	sp_configure.	The	default	is	0.

The	setting	takes	effect	immediately	(without	a	server	stop	and	restart).

To	set	the	show	advanced	options	option

Transact-SQL

SQL-DMO

See	Also

RECONFIGURE

Setting	Configuration	Options

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Administering	SQL	Server

two	digit	year	cutoff	Option
Use	the	two	digit	year	cutoff	option	to	specify	an	integer	from	1753	to	9999
that	represents	the	cutoff	year	for	interpreting	two-digit	years	as	four-digit	years.

A	two-digit	year	that	is	less	than	or	equal	to	the	last	two	digits	of	the	cutoff	year
is	in	the	same	century	as	the	cutoff	year.	A	two-digit	year	that	is	greater	than	the
last	two	digits	of	the	cutoff	year	is	in	the	century	that	precedes	the	cutoff	year.
For	example,	if	two	digit	year	cutoff	is	2049	(the	default),	the	two-digit	year	49
is	interpreted	as	2049	and	the	two-digit	year	50	is	interpreted	as	1950.

Note		Microsoft®	SQL	Server™	uses	2049	as	the	cutoff	year	for	interpreting
dates;	OLE	Automation	objects	use	2030.	You	can	use	the	two	digit	year	cutoff
option	to	provide	consistency	in	date	values	between	SQL	Server	and	client
applications.	However,	to	avoid	ambiguity	with	dates,	use	four-digit	years	in
your	data.

To	set	the	two	digit	year	cutoff	option

Administering	SQL	Server

user	connections	Option
Use	the	user	connections	option	to	specify	the	maximum	number	of
simultaneous	user	connections	allowed	on	Microsoft®	SQL	Server™.	The	actual
number	of	user	connections	allowed	also	depends	on	the	version	of	SQL	Server
you	are	using	and	the	limits	of	your	application(s)	and	hardware.	SQL	Server
allows	a	maximum	of	32,767	user	connections.

Because	user	connections	is	dynamic	(self-configuring	option),	SQL	Server
adjusts	the	maximum	number	of	user	connections	automatically	as	needed,	up	to
the	maximum	value	allowable.	For	example,	if	only	10	users	are	logged	in,	10
user	connection	objects	are	allocated.	In	most	cases,	you	should	not	need	to
change	the	value	for	this	option.

You	can	use	SQL	Query	Analyzer	and	the	following	Transact-SQL	statement	to
determine	the	maximum	number	of	user	connections	that	your	system	allows:

SELECT	@@MAX_CONNECTIONS

user	connections	helps	avoid	overloading	the	server	with	too	many	concurrent
connections.	You	can	estimate	the	number	of	connections	based	on	system	and
user	requirements.	For	example,	on	a	system	with	many	users,	each	user	would
not	usually	require	a	unique	connection.	Connections	can	be	shared	among
users.	Users	who	are	running	OLE	DB	applications	need	a	connection	for	each
open	connection	object,	users	who	are	running	ODBC	applications	need	a
connection	for	each	active	connection	handle	in	the	application,	and	users	who
are	running	DB-Library	applications	need	one	connection	for	each	process
started	that	calls	the	DB-Library	dbopen	function.

IMPORTANT		If	you	must	use	this	option,	do	not	set	the	value	too	high	because
each	connection	takes	approximately	40	kilobytes	(KB)	of	overhead	regardless
of	whether	the	connection	is	being	used.	If	you	exceed	the	maximum	number	of
user	connections,	you	receive	an	error	message	and	are	not	able	to	connect	until
another	connection	becomes	available.

user	connections	is	an	advanced	option.	If	you	are	using	the	sp_configure
system	stored	procedure	to	change	the	setting,	you	can	change	user	connections
only	when	show	advanced	options	is	set	to	1.	The	setting	takes	effect	after

stopping	and	restarting	the	server.

To	set	user	connections

Administering	SQL	Server

user	options	Option
Use	the	user	options	option	to	specify	global	defaults	for	all	users.	A	list	of
default	query	processing	options	is	established	for	the	duration	of	a	user's	work
session.	user	options	allows	you	to	change	the	default	values	of	the	SET	options
(if	the	server's	default	settings	are	not	appropriate).	A	user	can	override	these
defaults	by	using	the	SET	statement.	You	can	configure	user	options
dynamically	for	new	logins.	After	you	change	the	setting	of	user	options,	new
logins	use	the	new	setting;	current	logins	are	not	affected.

Value Configuration Description
1 DISABLE_DEF_CNST_CHK Controls	interim	or	deferred

constraint	checking.
2 IMPLICIT_TRANSACTIONS Controls	whether	a	transaction

is	started	implicitly	when	a
statement	is	executed.

4 CURSOR_CLOSE_ON_COMMIT Controls	behavior	of	cursors
after	a	commit	operation	has
been	performed.

8 ANSI_WARNINGS Controls	truncation	and	NULL
in	aggregate	warnings.

16 ANSI_PADDING Controls	padding	of	fixed-
length	variables.

32 ANSI_NULLS Controls	NULL	handling	when
using	equality	operators.

64 ARITHABORT Terminates	a	query	when	an
overflow	or	divide-by-zero
error	occurs	during	query
execution.

128 ARITHIGNORE Returns	NULL	when	an
overflow	or	divide-by-zero
error	occurs	during	a	query.

256 QUOTED_IDENTIFIER Differentiates	between	single
and	double	quotation	marks
when	evaluating	an	expression.

512 NOCOUNT Turns	off	the	message	returned
at	the	end	of	each	statement
that	states	how	many	rows	were
affected.

1024 ANSI_NULL_DFLT_ON Alters	the	session's	behavior	to
use	ANSI	compatibility	for
nullability.	New	columns
defined	without	explicit
nullability	are	defined	to	allow
nulls.

2048 ANSI_NULL_DFLT_OFF Alters	the	session's	behavior
not	to	use	ANSI	compatibility
for	nullability.	New	columns
defined	without	explicit
nullability	are	defined	not	to
allow	nulls.

4096 CONCAT_NULL_YIELDS_NULLReturns	NULL	when
concatenating	a	NULL	value
with	a	string.

8192 NUMERIC_ROUNDABORT Generates	an	error	when	a	loss
of	precision	occurs	in	an
expression.

16384 XACT_ABORT Rolls	back	a	transaction	if	a
Transact-	SQL	statement	raises
a	run-time	error.

Note		Not	all	configuration	values	for	user	options	are	compatible	with	each
other.	For	example,	ANSI_NULL_DFLT_ON	cannot	be	enabled	when
ANSI_NULL_DFLT_OFF	is	enabled.

The	bit	positions	in	user	options	are	identical	to	those	in	@@OPTIONS.	Each
connection	has	its	own	@@OPTIONS	function,	which	represents	the
configuration	environment.	When	logging	in	to	Microsoft®	SQL	Server™,	a
user	receives	a	default	environment	that	assigns	the	current	user	options	value
to	the	@@OPTIONS.	Executing	SET	statements	for	user	options	affects	the
corresponding	value	in	the	session's	@@OPTIONS.

All	connections	created	after	this	setting	is	changed	receive	the	new	value.

To	configure	user	options

Administering	SQL	Server

Managing	Clients
A	client	is	a	front-end	application	that	uses	the	services	provided	by	a	server.
The	computer	that	hosts	the	application	is	referred	to	as	the	client	computer.
Client	software	enables	computers	to	connect	to	an	instance	of	Microsoft®	SQL
Server™	on	a	network.

SQL	Server	clients	can	include	applications	of	various	types,	such	as:

OLE	DB	consumers.

These	applications	use	the	Microsoft	OLE	DB	Provider	for	SQL	Server
or	the	Microsoft	OLE	DB	Provider	for	ODBC	to	connect	to	an	instance
of	SQL	Server.	The	OLE	DB	providers	serve	as	intermediaries	between
SQL	Server	and	client	applications	that	consume	SQL	Server	data	as
OLE	DB	rowsets.

ODBC	applications.

These	include	client	utilities	installed	with	SQL	Server,	such	as	SQL
Server	Enterprise	Manager	and	SQL	Query	Analyzer,	as	well	as	other
applications	that	use	the	SQL	Server	ODBC	driver	to	connect	to	an
instance	of	SQL	Server.

DB-Library	clients.

These	include	the	SQL	Server	isql	command	prompt	utility	and	clients
written	to	DB-Library.

Regardless	of	the	type	of	application,	managing	a	client	consists	mainly	of
configuring	its	connection	with	the	server	components	of	SQL	Server.
Depending	on	the	requirements	of	your	site,	client	management	can	range	from
little	more	than	entering	the	name	of	the	server	computer	to	building	a	library	of
custom	configuration	entries	to	accommodate	a	diverse	multiserver	environment.

Simple	Client	Management
For	the	majority	of	clients,	the	default	network	configuration	installed	during
SQL	Server	Setup	can	be	used	without	modification.	For	those	clients	to	be	able

to	connect,	you	need	only	supply	the	network	name	of	the	server	running	one	or
more	instances	of	SQL	Server.	For	ODBC	clients,	you	may	need	to	provide	the
client	with	the	ODBC	data	source	name	and	know	how	to	configure	an	ODBC
data	source.

Advanced	Client	Management
Advanced	users	can	create	and	save	individual	network	protocol	configurations.
This	is	useful	in	situations	where	SQL	Server	clients	are	connecting	to	multiple
servers	running	different	network	protocols,	or	where	unique	site	considerations,
such	as	nonstandard	port	addresses,	are	used.

Before	Configuring	a	Client
Before	configuring	a	SQL	Server	client:

You	must	install	a	matching	pair	of	SQL	Server	Net-Libraries	on	the
client	and	server.	By	default,	all	of	the	SQL	Server	client	Net-Libraries
and	server	Net-Libraries	are	installed	automatically	during	the	Setup
program.	Each	pair	of	Net-Libraries	supports	a	particular	network
protocol	(for	example,	the	client	TCP/IP	Sockets	Net-Library	and	server
TCP/IP	Sockets	Net-Library	support	TCP/IP).	Some	SQL	Server	server
Net-Libraries	(such	as	NW	Link	IPX/SPX)	should	be	activated	to	listen
for	clients,	either	during	or	after	setup,	using	the	SQL	Server	Network
Utility.

You	must	install	the	correct	network	protocols	on	the	client	and	server.
Network	protocols	are	typically	installed	during	Microsoft	Windows®
Setup;	they	are	not	part	of	SQL	Server	Setup	or	configuration.	A	SQL
Server	Net-Library	will	not	work	unless	its	corresponding	network
protocol	is	installed	already	on	both	the	client	and	server.

Client	Management	Tools

The	following	tools	are	used	to	manage	most	types	of	SQL	Server	clients:

Client	Network	Utility	lets	you	change	the	default	network	protocols,
and	create	and	save	entries	that	define	how	to	connect	to	specified

servers.

The	application	is	installed	as	part	of	the	standard	SQL	Server	client
setup.	SQL	Server	Client	Network	Registration	creates	registry	entries
for	the	client	network	protocol	configurations	and	default	network
protocol.	You	do	not	use	the	application	to	install	either	the	SQL	Server
Net-Libraries	or	the	network	protocols.

The	Setup	program	and	SQL	Server	Network	Library	Configuration	let
you	select	and	activate	server	Net-Libraries	(all	the	client	and	server
Net-Libraries	are	installed	during	setup).

Activating	a	server	Net-Library	allows	SQL	Server	to	listen	for	clients
on	the	corresponding	network	protocol.	The	actual	network	protocols
are	installed	as	part	of	Windows	Setup	(or	through	Networks	in	Control
Panel).

The	ODBC	Data	Source	Administrator	(available	through	ODBC	in
Control	Panel)	lets	you	configure	ODBC	data	sources	on	computers
running	the	Microsoft	Windows	NT®	4.0,	Windows	2000,	Windows	95,
or	Windows	98	operating	system.

See	Also

SQL	Server	Network	Utility

Administering	SQL	Server

Client	Net-Libraries	and	Network	Protocols
Microsoft®	SQL	Server™	uses	a	dynamic-link	library	(DLL)	called	a
Net-Library	to	communicate	with	a	particular	network	protocol.	A	matching	pair
of	Net-Libraries	must	be	active	on	client	and	server	computers	to	support	the
desired	network	protocol.	For	example,	to	enable	a	client	application	to
communicate	with	a	specific	instance	of	SQL	Server	across	TCP/IP,	the	client
TCP/IP	Sockets	Net-Library	(DBNETLIB.dll)	must	be	configured	to	connect	to
that	server	on	the	client	computer,	and	the	server	TCP/IP	Sockets	Net-Library
(SSNETLIB.dll)	must	be	listening	on	the	server	computer.

By	themselves,	a	pair	of	Net-Libraries	cannot	support	a	client/server	connection.
Both	the	client	and	server	also	must	be	running	a	protocol	stack	supporting	the
Net-Libraries.	For	example,	if	the	server	TCP/IP	Sockets	Net-Library	is	listening
on	the	server	computer,	and	the	client	TCP/IP	Sockets	Net-Library	is	configured
to	connect	to	that	server	on	the	client	computer,	the	client	can	only	connect	to	the
server	if	a	TCP/IP	protocol	stack	is	installed	on	both	computers.

Multiple	Network	Protocol	Support
The	Named	Pipes	and	Multiprotocol	Net-Libraries	both	support	multiple
network	protocols	(NW	Link	IPX/SPX,	NetBEUI,	and	TCP/IP),	and	will	select
automatically	any	supported	network	protocol	that	is	available.	Using	either	of
these	Net-Libraries	is	useful	if	the	client	must	connect	to	multiple	servers
running	different	network	protocols,	and	you	do	not	want	to	create	and	manage
configuration	entries	for	each	server-network	protocol	combination.

Net-Library	Setup	and	Defaults
The	client	Net-Libraries	are	installed	during	SQL	Server	Setup.	You	define
which	client	Net-Libraries	are	used	to	connect	to	particular	instances	of	SQL
Server	using	the	Client	Network	Utility.	You	can	specify	a	default	Net-Library
for	all	connections	and	also	define	the	use	of	specific	Net-Libraries	for
connecting	to	specific	instances	of	SQL	Server.	TCP/IP	is	the	default	protocol	on
clients	running	the	Microsoft	Windows	NT®	4.0,	Windows®	2000,	Windows
95,	or	Windows	98	operating	system.

SQL	Server	can	be	listening	simultaneously	on	any	combination	of	server	Net-
Libraries.	Use	SQL	Server	Network	Library	Configuration	during	or	after	the
Setup	program	to	choose	the	server	Net-Libraries	to	be	activated.

For	computers	running	Windows	NT	4.0	or	Windows	2000,	the	default	server
Net-Libraries	are:

TCP/IP	Sockets.

Named	Pipes.

For	computers	running	Windows	98,	the	default	server	Net-Libraries	are:

TCP/IP	Sockets.

Shared	Memory.

When	you	install	SQL	Server	client	utilities	on	a	workstation,	SQL	Server	Setup
installs	TCP/IP	as	the	default	client	protocol.

If	most	of	the	servers	to	which	you	will	be	connecting	are	not	configured	to
support	the	current	default	client	protocol,	you	can	change	the	default	to	another
protocol.

For	more	information	about	the	SQL	Server	Net-Libraries	and	the	network
protocols	they	support,	see	Communication	Components.

SQL	Server	2000	can	use	the	Secure	Sockets	Layer	(SSL)	to	encrypt	all	data
transmitted	between	an	application	computer	and	an	instance	of	SQL	Server	on	a
database	computer.	Both	the	client	and	the	server	computers	must	have	the
proper	certificates	installed	for	SSL	encryption	to	function.

Because	the	Shared	Memory	Net-Library	is	used	only	for	intra-computer
communications,	it	is	inherently	secure	and	does	not	need	encryption.	For	more
information,	see	Net-Library	Encryption.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Configuring	Client	Network	Connections
Each	instance	of	Microsoft®	SQL	Server™	2000	listens	on	a	unique	set	of
network	addresses	so	that	applications	can	connect	to	different	instances.	SQL
Server	2000	clients	do	not	need	any	specific	configuration	to	connect	to	an
instance	of	SQL	Server	2000.	The	SQL	Server	2000	client	components	query	a
computer	running	one	or	more	instances	of	SQL	Server	2000	to	determine	the
Net-Libraries	and	network	addresses	for	each	instance.	The	client	components
then	choose	a	supported	Net-Library	and	address	for	the	connection
automatically,	without	requiring	any	configuration	work	on	the	client.	The	only
information	the	application	must	supply	is	the	computer	name	and	instance
name.

A	SQL	Server	2000	default	instance	listens	on	the	same	network	addresses	as
SQL	Server	version	7.0	or	earlier,	so	applications	using	earlier	versions	of	the
client	connectivity	components	can	continue	to	connect	to	the	default	instance
with	no	change.	However,	named	instances	of	SQL	Server	2000	listen	on
alternative	network	addresses,	and	client	computers	using	earlier	versions	of	the
client	connectivity	components	must	be	set	up	to	connect	to	the	alternative
addresses.

By	default,	on	computers	running	Windows	NT	4.0	and	Windows	2000,	an
instance	of	SQL	Server	listens	on	the	server	TCP/IP	Sockets	and	Named	Pipes
Net-Libraries.	On	computers	running	Windows	98,	an	instance	of	SQL	Server
listens	on	the	server	TCP/IP	Sockets	and	Multiprotocol	Net-Libraries.	If	the
connection	is	local	on	a	computer	(client	and	server	on	the	same	computer),	an
instance	of	SQL	Server	listens	on	the	server	Shared	Memory	Net-Library.

For	information	about	compatibility	issues	with	earlier	versions	of	the	client
network	utility,	see	SQL	Server	2000	and	SQL	Server	version	7.0.

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Configuring	Client	Net-Libraries
The	Client	Network	Utility	is	installed	as	part	of	Microsoft®	SQL	Server™
client	setup.	The	application	consists	of	several	tabs	and	dialog	boxes	in	which
you	can:

Create	client	connections	to	specified	servers	and	save	them	as
configuration	entries,	which	consist	of	a	server	alias,	a	client	Net-
Library,	and	any	relevant	connection	parameters,	such	as	a	pipe	file
name	or	port	number.	Any	saved	entry	can	be	used	when	you	want	to
reconfigure	a	client	connection.

Change	the	default	client	Net-Library.

Display	information	about	the	SQL	Server	client	Net-Libraries	currently
installed	on	the	system.

Display	the	DB-Library	version	currently	installed	on	the	system,	and
set	defaults	for	DB-Library	options.

IMPORTANT		The	Client	Network	Utility	creates	registry	entries	for	the
server	alias	configurations	and	default	client	Net-Library.	The
application	does	not	install	either	the	SQL	Server	client	Net-Libraries	or
the	network	protocols.	The	SQL	Server	client	Net-Libraries	are	installed
during	SQL	Server	Setup.	The	network	protocols	are	installed	as	part	of
Microsoft	Windows®	Setup	(or	through	Networks	in	Control	Panel).	A
particular	network	protocol	may	not	available	as	part	of	Windows
Setup.	For	more	information	about	installing	these	network	protocols,
see	the	vendor	documentation.

Viewing	Network	Library	Information

If	the	Client	Network	Utility	does	not	display	a	Net-Library	version	number	and
you	are	using	a	Net-Library	provided	by	Microsoft,	then	one	of	the	following

problems	may	have	occurred:

You	are	using	a	version	that	is	no	longer	supported.

The	Client	Network	Utility	cannot	find	the	library	in	the	path.

A	component	required	by	the	selected	default	network	library	cannot	be
found.

To	display	network	library	file	and	version	information

Administering	SQL	Server

Setting	Up	Client	Configuration	Entries
By	default,	clients	running	on	the	Microsoft®	Windows	NT®	4.0,	Microsoft
Windows®	2000,	Windows	95,	or	Windows	98	operating	system	use	the	client
TCP/IP	protocol.	You	may	need	to	connect	using	an	alternate	Net-Library	if:

You	need	to	add	a	specific	client	configuration	for	communicating	with
a	specific	server.

The	server	with	which	you	want	to	communicate	is	configured	to	listen
on	another	port.

In	either	case,	you	must	create	a	configuration	entry	on	the	client.

The	Client	Network	Utility	lets	you	configure	any	of	the	following	network
protocols	to	communicate	with	a	specific	server:

Named	Pipes

TCP/IP	Sockets

Multiprotocol

NWLink	IPX/SPX

AppleTalk

Banyan	VINES

Other	(for	network	protocols	supplied	by	a	third	party)

The	Net-Libraries	for	a	protocol	must	be	installed	before	you	can	set	up	a
configuration.	If	the	client	Net-Library	for	a	network	protocol	is	not	installed,	it

will	not	be	listed	on	the	Network	Libraries	tab.	You	can	also	set	up
configurations	for	network	protocols	supplied	by	a	third	party,	using	the	Others
option	in	the	Add	Network	Library	Configuration	dialog	box.

IMPORTANT		For	a	client	to	connect	to	an	instance	of	Microsoft	SQL	Server™,	it
must	use	a	protocol	that	matches	one	of	the	protocols	listening	on	the	server.	For
example,	if	the	client	tries	to	connect	to	an	instance	of	SQL	Server	using	TCP/IP,
and	the	server	has	only	the	NWLink	IPX/SPX	protocol	installed,	the	client	will
not	be	able	to	establish	a	connection.	In	that	case,	you	must	use	the	SQL	Server
Network	Utility	on	the	server	to	activate	the	server	NWLink	IPX/SPX	protocol,
and	SQL	Server	Network	Utility	on	the	client	to	configure	the	client	NWLink
IPX/SPX	protocol	to	connect	to	that	server.	Both	the	client	and	the	server	must
be	running	the	same	network	protocol.

Client	configuration	information	is	used	by	SQL	Server	in	the	following	manner:

If	the	server	name	matches	a	server	specified	in	the	Server	alias
configurations	list,	then	the	client	connects	using	the	protocol	and
associated	parameters	of	that	configuration.

If	the	server	name	does	not	match	a	server	specified	in	the	Server	alias
configurations	list,	then	the	default	protocol	is	used.

If	no	default	protocol	has	been	defined,	then	TCP/IP	is	used.

To	add	a	network	library	configuration

Administering	SQL	Server

TCP/IP	Sockets	Clients
Microsoft®	SQL	Server™	supports	client	communication	with	the	TCP/IP
network	protocol	using	standard	Microsoft	Windows®	sockets.

IMPORTANT		The	TCP/IP	Sockets	Net-Libraries	have	been	tested	extensively	on
supported	platforms	for	connecting	to	instances	of	SQL	Server.	If	you	have
purchased	a	non-TCP/IP	Sockets	network	protocol	from	a	third-party	vendor	and
want	to	use	it	to	connect	to	SQL	Server,	the	connection	should	work	if	the
protocol	properly	supports	TCP/IP	Sockets.	However,	the	use	of	third-party
TCP/IP	protocols	on	these	platforms	is	not	guaranteed.	You	can	test	to	see	if
your	sockets	are	functioning	by	using	the	ping	command	from	a	command
prompt.

Simplified	System	Administration	Using	DHCP	and	WINS
Microsoft	Windows	NT®	version	3.5	or	later	provides	easy	administration	of
large	TCP/IP	networks	by	offering	the	Dynamic	Host	Configuration	Protocol
(DHCP)	service	for	automatic	TCP/IP	configuration,	and	the	Windows	Internet
Name	Service	(WINS)	for	dynamic	mapping	of	network	names	and	addresses.
This	enables	users	to	operate	in	large-scale	TCP/IP	networking	environments
with	little	administrative	support.

If	your	network	has	a	DHCP	service	and	WINS,	you	can	use	SQL	Server
instance	names	to	specify	a	connection	to	a	server.	If	your	network	does	not	have
these	services,	then	you	should	specify	the	server	using	the	IP	address.

To	configure	a	client	to	use	TCP/IP	(Client	Network	Utility)

Administering	SQL	Server

Named	Pipes	Clients
Named	Pipes	clients	usually	connect	using	the	server	instance	name	on	the
default	pipe.	However,	if	a	server	is	set	up	to	listen	on	an	alternate	pipe,	the
client	must	also	be	configured	to	communicate	to	that	pipe.

To	alias	a	client	to	an	alternate	pipe

Administering	SQL	Server

Multiprotocol	Clients
The	Multiprotocol	selection	has	two	key	features:

Automatic	selection	of	an	available	network	protocol	to	communicate
with	an	instance	of	Microsoft®	SQL	Server™.

This	is	convenient	when	you	want	to	connect	to	multiple	servers
running	different	network	protocols	but	do	not	want	to	reconfigure	the
client	connection	for	each	server.	If	the	client	and	server	Net-Libraries
for	TCP/IP	Sockets,	NWLink	IPX/SPX,	or	Named	Pipes	are	installed
on	the	client	and	server,	the	Multiprotocol	Net-Library	will
automatically	choose	the	first	available	network	protocol	to	establish	a
connection.

Client	encryption.

You	can	enforce	encryption	over	the	Multiprotocol	Net-Library	on
clients	running	on	the	Microsoft	Windows	NT®	4.0,	Windows®	2000,
Windows	95,	or	Windows	98	operating	system	to	prevent	others	from
intercepting	and	viewing	sensitive	data.

The	Multiprotocol	Net-Library	takes	advantage	of	the	remote	procedure	call
(RPC)	facility	of	Windows	NT	4.0	and	Windows	2000,	which	provides	Windows
Authentication.	For	the	Multiprotocol	Net-Library,	clients	determine	the	server
address	using	the	server	name.

Usage	Considerations
Before	using	the	Multiprotocol	Net-Library,	consider	the	following:

The	Multiprotocol	Net-Library	does	not	support	named	instances	of
SQL	Server	2000.	You	can	use	the	Multiprotocol	Net-Library	to	connect
to	the	default	instance	of	SQL	Server	on	a	computer,	but	you	cannot
connect	to	any	named	instances.

The	Multiprotocol	Net-Library	does	not	support	server	enumeration.

From	applications	that	can	list	servers	by	calling	dbserverenum,	you
cannot	identify	servers	running	an	instance	of	SQL	Server	and	listening
on	the	Multiprotocol	Net-Library.

Multiprotocol	Name	Resolution

Using	the	RPC	run	time,	which	is	called	by	the	Multiprotocol	Net-Library,
clients	can	connect	to	servers	using	a	variety	of	other	protocols.	When
establishing	a	connection,	the	Multiprotocol	Net-Library	passes	the	computer
name	to	the	RPC	run	time,	which	determines	the	available	network	protocols
and	attempts	to	use	each	one	until	a	connection	is	established.	Only	NWLink
IPX/SPX,	TCP/IP	Sockets,	and	Named	Pipes	are	tested	and	supported.

To	accomplish	the	computer	name	to	node	connection,	the	RPC	run	time	uses	a
naming	service	compatible	with	the	network	protocol	used	(WINS	for	TCP/IP,
SAP	for	NWLink	IPX/SPX,	and	Net	BIOS	broadcasts	for	Named	Pipes).	Only
the	computer	name	should	be	specified,	because	a	local	RPC	database	is	used	to
resolve	the	names	over	the	supported	protocols.

Client	Encryption
You	can	enforce	encryption	over	the	Multiprotocol	Net-Library	on	a	per-client
basis.	Only	this	client's	communications	are	encrypted.	Other	clients	using	the
Multiprotocol	Net-Library	that	do	not	have	this	parameter	set	do	not	use
encryption.

To	configure	a	client	to	use	the	Multiprotocol	Net-Library

Administering	SQL	Server

NetWare	Link	IPX/SPX	Clients
You	can	configure	Microsoft®	SQL	Server™	clients	to	communicate	with
instances	of	SQL	Server	by	using	the	NW	Link	IPX/SPX	Compatible	Transport,
the	native	protocol	of	Novell	NetWare	networks.

The	Client	Network	Utility	provides	two	specification	methods	for	creating	an
NW	Link	IPX/SPX	network	protocol	configuration:

By	service	name	and	port	number

By	network	address,	port	number,	and	network	number

Consult	your	network	administrator	for	this	information	before	setting	up	the
configuration.

To	configure	a	client	to	use	the	NWLink	IPX/SPX	network	library

Administering	SQL	Server

AppleTalk	ADSP	Clients
Microsoft®	SQL	Server™	can	communicate	with	clients	using	the	AppleTalk
ADSP	network	protocol.

The	AppleTalk	Net-Library	does	not	support	server	enumeration.	From
applications	that	can	list	servers	by	calling	dbserverenum,	you	cannot	identify
instances	of	SQL	Server	listening	on	the	AppleTalk	Net-Library.

If	you	experience	difficulties	establishing	connections	from	clients	through
AppleTalk,	review	the	error	messages	listed	in	the	Microsoft	Windows®
application	log	and	the	SQL	Server	error	log,	and	verify	that	the	AppleTalk	Net-
Library	is	loaded	correctly.

If	the	AppleTalk	Net-Library	is	loaded	on	the	server	correctly,	you	see	a	message
in	the	Windows	application	log	or	the	SQL	Server	error	log	similar	to	the
following:

Using	'SSMSADSN.DLL'	version	'6.00.0.0'	to	listen	on	'servicename'

To	configure	a	client	to	use	the	AppleTalk	network	library

Administering	SQL	Server

Banyan	VINES	Clients
Microsoft®	SQL	Server™	supports	Banyan	VINES	Sequenced	Packet	Protocol
(SPP)	across	the	Banyan	VINES	IP	network	protocol.

Clients	running	the	Microsoft	Windows	NT®	4.0	or	Windows®	2000	operating
system	require	Banyan	VINES	client	software	version	5.56(2)	or	later.

A	StreetTalk	language	PC-based	service	name	has	the	form:
servicename@group@org	where	servicename	is	the	StreetTalk	PC-based	service
name	used	by	the	server.

Note		The	service	name	used	by	a	server	must	first	be	created	using	the
MSERVICE	program	included	with	Banyan	VINES	software.

If	a	client	application	gives	a	partial	StreetTalk	name	(a	name	that	does	not
include	the	group	and	organization)	as	the	server	name,	the	VINES	SPP	Net-
Library	uses	standard	VINES	services	to	complete	the	rest	of	the	StreetTalk
name	with	your	login	defaults.	If	no	PC-based	service	or	nickname	matching	the
server	name	is	found	within	the	user's	own	group	and	organization,	the	VINES
SPP	Net-Library	looks	for	a	special	group	named	MSSQL	within	your
organization.	This	allows	network	administrators	to	define	a	group	of	SQL
Servers	that	are	accessible	with	one-part	names	from	all	groups	in	the	same
organization.

You	can	override	the	default	name	MSSQL	modifying	the	Banyan	VINES
properties	using	the	Client	Network	Utility.

The	VINES	SPP	Net-Library	files	do	not	support	the	use	of	StreetTalk	names
that	contain	embedded	spaces,	and	they	use	one	VINES	IP	socket	per	server	and
one	SPP	connection	per	database	connection.

To	configure	a	client	to	use	the	Banyan	VINES	network	library

Administering	SQL	Server

VIA	Clients
Microsoft®	SQL	Server™	2000	introduces	new	Net-Libraries	to	be	used	for
highly	reliable,	fast,	efficient	data	transfer	between	servers	in	the	same	data
center.	These	new	Net-Libraries	contain	functionality	for	different	hardware	sets
based	around	the	Virtual	Interface	Architecture	(VIA).	SQL	Server	2000	comes
with	Net-Libraries	to	support	hardware	from	Giganet.

To	configure	a	client	to	use	the	VIA	network	library

Administering	SQL	Server

Other	Network	Protocol	Clients
You	can	create	network	configurations	for	network	protocols	not	listed	in	the
Add	Network	Library	Configuration	dialog	box.	To	do	so,	use	the	Others
option.	To	use	this	option,	you	must	have	already	installed	the	client	and	server
Net-Libraries	supporting	the	network	protocol.

Use	the	Others	option	when	the	client	communicates	with	a	server	that	is
listening	on	a	protocol	supplied	by	a	third	party,	such	as	NLSPY32.

To	use	this	option,	you	must	know:

The	name	of	the	DLL	for	the	network	library	supplied	by	the	third	party.

Any	required	parameters	and	their	format.

To	configure	a	client	to	use	a	nonstandard	network	library

Administering	SQL	Server

Configuring	ODBC	Data	Sources
An	ODBC	application	uses	a	data	source	to	connect	to	an	instance	of
Microsoft®	SQL	Server™.	A	data	source	is	a	stored	definition	that	records:

The	ODBC	driver	to	use	for	connections	specifying	the	data	source.

The	information	used	by	the	ODBC	driver	to	connect	to	a	source	of
data.

Driver-specific	options	to	be	used	for	the	connection.	For	example,	a
SQL	Server	ODBC	data	source	can	record	the	SQL-92	options	to	use,
or	whether	the	drivers	should	record	performance	statistics.

Each	ODBC	data	source	on	a	client	has	a	unique	data	source	name	(DSN).	An
ODBC	data	source	for	the	SQL	Server	ODBC	driver	includes	all	the	information
used	to	connect	to	an	instance	of	SQL	Server,	plus	any	essential	options.

Administering	SQL	Server

Using	the	ODBC	Data	Source	Administrator
To	configure	Microsoft®	SQL	Server™	ODBC	data	sources,	use	the	ODBC
Data	Source	Administrator.	For	more	information,	see	Miscellaneous	Utilities.

Using	the	ODBC	Data	Source	Administrator,	you	can:

Display	version	information	for	the	SQL	Server	ODBC	driver	currently
installed	on	the	system.

Add,	change,	and	remove	data	sources	for	the	SQL	Server	ODBC
driver.

The	ODBC	Data	Source	Administrator	can	create	tabs	for	user,	system,	and	file
data	sources.

User	data	sources	are	specific	to	the	Microsoft	Windows	NT®	4.0,	Windows®
2000,	Windows	95,	or	Windows	98	account	that	is	in	effect	when	they	are
created.	They	are	not	visible	to	any	other	login	account.	They	are	not	always
visible	to	applications	running	as	a	service	on	a	computer	running	Windows	NT
4.0	or	Windows	2000.

System	data	sources	are	visible	to	all	login	accounts	on	a	client.	They	are	always
visible	to	applications	running	as	a	service	on	a	computer	running	Windows	NT
4.0	or	Windows	2000.

File	data	sources	were	added	with	ODBC	version	3.0.	File	data	sources	are	not
stored	in	the	system	registry;	they	are	stored	in	a	file	on	the	client.

After	you	choose	the	type	of	data	source,	the	ODBC	Data	Source	Administrator
starts	the	SQL	Server	DSN	Configuration	Wizard,	which	guides	you	through	the
process	of	adding	an	ODBC	data	source.

To	check	the	ODBC	SQL	Server	driver	version

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Using	ODBC	API	Functions
You	can	add	an	ODBC	data	source	to	connect	to	an	instance	of	Microsoft®	SQL
Server™	by	writing	one	of	the	following	ODBC	API	functions	into	your
application.

SQLConfigDataSource

User	or	system	data	sources	can	be	created	by	an	ODBC	application	that
calls	the	SQLConfigDataSource	function	with	the	fRequest	parameter	set	to
either	ODBC_ADD_DSN	or	ODBC_ADD_SYS_DSN.

SQLWriteFileDSN

A	file	data	source	can	be	created	by	an	ODBC	application	that	calls	the
SQLWriteFileDSN	function.

SQLDriverConnect

If	an	application	specifies	the	SAVEFILE	keyword	in	the	connect	string	of	a
successful	call	to	SQLDriverConnect,	a	file	data	source	is	created	using	the
information	specified	in	the	SQLDriverConnect	connect	string.

SQLCreateDataSource

An	ODBC	application	can	call	the	function	SQLCreateDataSource	to
display	an	ODBC	dialog	box	that	guides	a	user	through	creating	a	data
source.

Data	sources	that	reference	the	SQL	Server	ODBC	driver	contain	driver-specific
information	and	options.	When	a	data	source	is	created	with	either
SQLConfigDataSource	or	SQLWriteFileDSN,	all	of	the	driver-specific
information	is	supplied	through	keyword-value	pairs	in	a	character	string	passed
to	the	function.	When	a	data	source	is	created	using	the	ODBC	Data	Source
Administrator	or	SQLCreateDataSource	dialog	boxes,	the	SQL	Server	DSN
Configuration	Wizard	is	invoked	to	help	you	specify	the	driver-specific
information.

See	Also

SQLConfigDataSource

SQLDriverConnect

SQLPrepare

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

Adding	or	Deleting	an	ODBC	Data	Source
You	must	add	an	ODBC	data	source	to	connect	your	ODBC	client	to	an	instance
of	Microsoft®	SQL	Server™.	You	can	use	the	ODBC	Data	Source
Administrator	in	Control	Panel	and	the	SQL	Server	DSN	Configuration	Wizard
to	accomplish	this.	You	can	also	add	a	data	source	programmatically	using	one
of	several	ODBC	API	functions;	however,	these	methods	are	recommended	only
for	advanced	users.

ODBC	data	sources	can	be	deleted	in	several	ways:

Using	the	ODBC	Data	Source	Administrator	utility	in	Control	Panel,	

Calling	SQLConfigDataSource	with	the	fRequest	parameter	set	to
either	SQL_REMOVE_DSN	or	SQL_REMOVE_SYS_DSN.

Deleting	the	file	containing	the	data	source.

To	add	a	data	source

Administering	SQL	Server

Configuring	OLE	DB	Clients
Configuring	OLE	DB	clients	to	connect	to	an	instance	of	Microsoft®	SQL
Server™	requires	making	the	server	name	and	connection	information	available
to	the	client	(or	OLE	DB	consumer)	through	an	OLE	DB	provider.	SQL	Server
connections	through	OLE	DB	are	generally	made	using	either:

Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB).

Microsoft	OLE	DB	Provider	for	ODBC.

Connecting	SQLOLEDB	Clients

SQLOLEDB,	the	SQL	Server	native	OLE	DB	provider,	exposes	interfaces	to
consumers	who	want	access	to	data	on	one	or	more	instances	of	SQL	Server.
Using	SQLOLEDB	allows	you	to	develop	an	OLE	DB	consumer	optimized	for
SQL	Server	databases.	Unlike	the	Microsoft	OLE	DB	Provider	for	ODBC,
which	can	access	data	from	a	number	of	OLE	DB-compliant	ODBC
applications,	you	can	only	use	SQLOLEDB	with	SQL	Server.	You	cannot	use
the	information	in	an	ODBC	SQL	Server	data	source	name	(DSN)	to	make	a
connection.

When	setting	up	clients	through	the	Microsoft	OLE	DB	Provider	for	SQL
Server,	the	client	should	provide	the	necessary	connection	attributes,	and	either
prompt	for	connection	data	or	supply	that	data	from	an	OLE	DB	data	source
saved	in	a	persisted	file.

Connecting	OLE	DB	Provider	for	ODBC	Clients
Using	the	Microsoft	OLE	DB	Provider	for	ODBC	allows	you	to	use	a	single
OLE	DB	provider	to	connect	to	multiple	ODBC	data	sources,	including	SQL
Server.	However,	connecting	to	SQL	Server	clients	with	this	provider	has	more
administrative	overhead	than	using	the	native	Microsoft	OLE	DB	Provider	for
SQL	Server.

Usually,	when	connecting	to	an	instance	of	SQL	Server	using	the	Microsoft	OLE
DB	Provider	for	ODBC,	the	information	you	need	is	created	through	the	ODBC

Data	Source	Administrator	and	saved	in	a	SQL	Server	ODBC	DSN	(as	either	a
user,	system,	or	file	DSN).	Therefore,	you	can	code	your	application	to	use	a
SQL	Server	DSN	to	make	a	connection.

See	Also

Programming	OLE	DB	SQL	Server	Applications

JavaScript:hhobj_1.Click()

Administering	SQL	Server

DB-Library	Options
The	Client	Network	Utility	includes	file	information	on	the	DB-Library	installed
on	your	computer,	and	options	for	setting	DB-Library	preferences.	Options
include:

DB-Library	information

Includes	the	file	name,	version,	date,	and	size	of	the	currently	installed
DB-Library.	This	type	of	information	is	useful	if	you	have	a	technical
support	issue	with	DB-Library.

Automatic	ANSI	to	OEM	conversion

Enables	DB-Library	to	convert	characters	from	OEM	to	ANSI	when
communicating	with	an	instance	of	Microsoft®	SQL	Server™,	and
from	ANSI	to	OEM	when	communicating	with	the	client	from	an
instance	of	SQL	Server.	By	default,	the	Automatic	ANSI	to	OEM
conversion	option	is	selected	for	clients	running	Microsoft	Windows
NT®	4.0,	Windows®	2000,	Windows	95,	or	Windows	98.	For	more
information,	see	Using	the	DB-Library	Automatic	ANSI	to	OEM
Conversion	Option.

Use	international	settings

Enables	DB-Library	to	get	date,	time,	and	currency	formats	from	the
system	rather	than	using	hard-coded	parameters	or	parameters	specified
in	Sqlcommn.loc.	By	default,	the	Use	international	settings	option	is
selected	for	clients	running	Windows	NT	4.0,	Windows	2000,	Windows
95,	or	Windows	98.

To	set	DB-Library	conversion	preferences

Administering	SQL	Server

Using	the	DB-Library	Automatic	ANSI	to	OEM
Conversion	Option
When	enabled,	the	Automatic	ANSI	to	OEM	conversion	option	converts	a
character	set	when	communicating	from:

ANSI	clients	to	OEM	servers.

OEM	clients	to	ANSI	servers.

This	option	is	enabled	by	default.	When	the	option	is	disabled,	conversion	of
characters	is	disabled	for	all	connections.

If	the	client	code	page	is	different	from	the	code	page	on	the	instance	of	SQL
Server,	then	the	character	set	should	be	converted.	Microsoft	Windows	NT®,
Microsoft	Windows®	2000,	Windows	95,	and	Windows	98	have	both	an	ANSI
and	an	OEM	character	set,	which	are	set	during	installation.	For	U.S.	English,
Windows	NT,	Windows	2000,	Windows	95,	and	Windows	98	use	the	default
ANSI	character	set,	code	page	1252,	and	the	default	OEM	character	set,	code
page	437.	Windows	3.x	runs	as	an	extension	to	MS-DOS,	and	has	only	the
default	ANSI	character	set	of	code	page	1252.	The	Windows	NT	4.0	and
Windows	2000	Console	is	internally	Unicode,	which	behaves	like	an	OEM
character	set.

Any	clients	running	Windows	NT	4.0,	Windows	2000,	Windows	95,	or
Windows	98	are	considered	ANSI	clients.	Console-based	applications,	such	as
the	isql	utility,	are	considered	OEM	clients.

A	server	with	the	default	code	page	of	12xx,	such	as	1252,	is	considered	to	be	an
ANSI	server;	with	any	other	code	page,	it	is	considered	to	be	an	OEM	server	(for
example,	code	page	850	or	437).

Although	default	code	page	values	exist	for	both	ANSI	and	OEM,	the	client's
current	operating	system	code	page	determines	conversion	values	when
characters	are	translated.

Administering	SQL	Server

Checking	the	Validity	of	Saved	Data
You	can	use	the	Transact-SQL	string	function	ASCII(char_expr)	to	reveal	a
character	saved	in	a	Microsoft®	SQL	Server™	database.	You	can	also	use	the
ASCII(column_name)	function	to	reveal	the	ASCII	value	for	a	particular	column
in	the	database.

Another	way	to	reveal	the	code	page	is	to	set	Automatic	ANSI	to	OEM
conversion	to	OFF	and	query	the	data	from	SQL	Query	Analyzer.

For	example,	assume	you	have	saved	the	character	"±"	on	a	server	using	the
OEM	code	page	437.	If	you	select	this	data	from	SQL	Query	Analyzer	(which	is
using	ANSI	code	page	1252)	when	Automatic	ANSI	to	OEM	conversion	is	on,
you	see	the	"±"	character.	The	OEM	437	"±"	(which	has	an	ASCII	value	of	241)
has	been	converted	to	the	ANSI	1252	"±"	(ASCII	177).	However,	if	you	select
the	data	from	SQL	Query	Analyzer	when	Automatic	ANSI	to	OEM	conversion
is	off,	you	see	the	"ñ"	character	(ASCII	241).	The	OEM	437	ASCII	value	of	241
has	been	directly	replaced	by	the	ANSI	1252	ASCII	value	of	241.

Automatic	ANSI	to	OEM
conversion

OEM	code	page
437

ANSI	code	page
1252

ON ±	(ASCII	241) ±	(ASCII	177)
OFF ±	(ASCII	241) ñ	(ASCII	241)

Administering	SQL	Server

Code	Page	Incompatibilities
When	a	character	in	one	code	page	is	unavailable	on	another	and	conversion
occurs,	the	character	is	converted	to	its	closest	equivalent	character	in	the	other
code	page.	For	example,	ASCII	156	(œ)	in	code	page	1252	is	converted	to
ASCII	111	(o)	in	code	page	437	because	this	is	the	most	similar	character	in	the
code	page	437.	When	you	convert	this	ANSI	character	back	to	code	page	1252,
the	result	is	ASCII	111	(o)	because	ASCII	111	(o)	exists	in	both	code	pages.	The
original	1252	character	(œ)	is	lost.	This	means	that	incorrect	data	is	saved	in	the
database	if	the	character	exists	in	one	code	page	but	not	the	other,	and
Automatic	ANSI	to	OEM	conversion	is	turned	on.

Conversion ANSI	code	page	1252 OEM	code	page	437
ANSI	to
OEM

œ	(ASCII	156) Does	not	exist.	Substitutes	o	(ASCII
111).

OEM	to
ANSI

o	(ASCII	111) o	(ASCII	111).

When	you	save	data	on	a	server	with	a	code	page	different	from	the	code	page
that	is	used	by	the	clients,	be	sure	to	test	the	data	for	accuracy.	If	possible,
choose	characters	that	convert	easily	between	ANSI	and	OEM.

Administering	SQL	Server

	Automating	Administrative	Tasks
Automated	administration	is	the	programmed	response	to	a	predictable
administrative	responsibility	or	server	event.	By	using	automated	administration,
you	can	free	time	to	perform	administrative	tasks	that	lack	predictable	or
programmable	responses	and	require	creativity.

For	example,	if	you	want	to	back	up	all	the	company	servers	every	weekday
after	hours,	you	can	create	a	job	to	perform	this	task.	Schedule	the	job	to	run	at
the	required	time.	If	the	job	encounters	a	problem,	SQL	Server	Agent	can	record
the	event	and	page	you.

If	you	are	running	multiple	instances	of	Microsoft®	SQL	Server™,	use
multiserver	administration	to	automate	tasks.	For	more	information,	see
Multiserver	Administration.

To	automate	administration:

Establish	which	administrative	responsibilities	or	server	events	occur
regularly	and	can	be	administered	programmatically.

Define	a	set	of	jobs,	alerts	and	operators	by	using	SQL	Server
Enterprise	Manager,	Transact-SQL	scripts,	or	SQL-DMO	objects.	For
more	information,	see	Creating	Jobs.

Run	the	SQL	Server	Agent	service.

Automatic	Administration	Components

Jobs,	alerts,	and	operators	are	the	three	main	components	of	automatic
administration.

Jobs
A	job	is	a	specified	series	of	operations	performed	sequentially	by	SQL	Server
Agent.	Use	jobs	to	define	an	administrative	task	that	can	be	executed	one	or
more	times	and	monitored	for	success	or	failure	each	time	it	executes.	Execute

jobs:

On	one	local	server	or	on	multiple	remote	servers.

According	to	one	or	more	schedules.

By	one	or	more	alerts.

For	more	information,	see	Creating	Jobs.

Alerts
An	alert	signals	the	designated	operator	that	an	event	has	occurred.	For	example,
an	event	can	be	a	job	starting	or	system	resources	reaching	a	threshold.	You
define	the	conditions	under	which	an	alert	is	generated.	You	also	define	which	of
the	following	actions	the	alert	takes:

Notify	one	or	more	operators.

Forward	the	event	to	another	server.

Execute	a	job.

For	more	information,	see	Defining	Alerts.

Operators
An	operator	is	an	individual	responsible	for	the	maintenance	of	one	or	more
instances	of	SQL	Server.	In	some	enterprises,	operator	responsibilities	are
assigned	to	one	individual.	In	larger	enterprises	with	multiple	servers,	many
individuals	share	operator	responsibilities.

Operators	are	notified	of	alerts	in	one	or	more	of	the	following	ways:

E-mail

You	can	define	the	e-mail	alias	of	an	operator	as	the	alias	for	a	group	of
individuals.	In	this	way,	all	members	of	that	alias	are	notified	at	the

same	time.

Pager	(through	e-mail)

net	send

For	more	information,	see	Defining	Operators.

Administering	SQL	Server

Multiserver	Administration
Multiserver	administration	is	the	process	of	automating	administration	across
multiple	instances	of	Microsoft®	SQL	Server™.

Use	multiserver	administration	if	you:

Manage	two	or	more	servers.

Schedule	information	flows	between	enterprise	servers	for	data
warehousing.

With	multiserver	administration,	you	must	have	at	least	one	master	server	and	at
least	one	target	server.	A	master	server	distributes	jobs	to	and	receives	events
from	target	servers.	A	master	server	stores	the	central	copy	of	job	definitions	for
jobs	run	on	target	servers.	Target	servers	connect	periodically	to	their	master
server	to	update	their	list	of	jobs	to	perform.	If	a	new	job	exists,	the	target	server
downloads	the	job	and	disconnects	from	the	master	server.	After	the	target	server
completes	the	job,	it	reconnects	to	the	master	server	and	reports	the	status	of	the
job.

For	example,	if	you	administer	departmental	servers	across	a	large	corporation,
you	can	define:

One	backup	job	with	job	steps.	

Operators	to	notify	in	case	of	failure.

An	execution	schedule.

Write	this	backup	job	one	time	on	the	master	server	and	then	enlist	each
departmental	server	as	a	target	server.	In	this	way,	all	the	departmental	servers
run	the	same	backup	job	even	though	you	defined	it	only	one	time.

Multiserver	administration	features	are	intended	for	members	of	the	sysadmin
role.	However,	a	member	of	the	sysadmin	role	on	the	target	server	cannot	edit
the	operations	performed	on	the	target	server	by	the	master	server.	This	security
measure	prevents	job	steps	from	being	accidently	deleted	and	operations	on	the
target	server	from	being	interrupted.

Creating	a	Multiserver	Environment
To	create	a	multiserver	environment,	use	the	Make	Master	Server	Wizard.	The
wizard	takes	you	through	the	following	steps:

Checking	the	security	settings	for	the	SQL	Server	Agent	service	and	the
SQL	Server	service	on	all	servers	that	will	become	target	servers.

It	is	recommended	that	both	services	be	running	in	Microsoft
Windows	NT®	4.0	or	Windows®	2000	domain	accounts.

Creating	a	master	server	operator	(MSXOperator)	on	the	master	server.

The	MSXOperator	is	the	only	operator	that	can	receive	notifications
for	multiserver	jobs.

Starting	the	SQL	Server	Agent	service	on	the	master	server.

Enlisting	one	or	more	servers	as	target	servers.

If	you	have	a	large	number	of	target	servers,	it	is	recommended	that	you	define
your	master	server	on	a	nonproduction	server,	so	production	is	not	slowed	by
target	server	traffic.	If	you	also	forward	events	to	this	server,	you	can	centralize
administration	on	one	server.	For	more	information,	see	Managing	Events.

When	creating	a	multiserver	environment,	consider	the	following:

Each	target	server	reports	to	only	one	master	server.	You	must	defect	a
target	server	from	one	master	before	you	can	enlist	it	into	a	different

one.

The	master	and	target	servers	must	be	running	on	the	Windows	NT	4.0
or	Windows	2000	operating	system.	

When	changing	the	name	of	a	target	server,	you	must	defect	it	before
changing	the	name	and	reenlist	it	after	the	change.

If	you	want	to	dismantle	a	multiserver	configuration,	you	must	defect
all	the	target	servers	from	the	master	server.

To	make	a	master	server

Administering	SQL	Server

Configuring	the	SQLServerAgent	Service
SQLServerAgent	is	a	Microsoft®	Windows	NT®	4.0	or	Windows®	2000
service	that	executes	jobs,	monitors	Microsoft	SQL	Server™,	and	fires	alerts.
SQLServerAgent	is	the	service	that	allows	you	to	automate	some	administrative
tasks.	As	such,	you	must	start	the	SQLServerAgent	service	before	your	local	or
multiserver	administrative	tasks	can	run	automatically.	SQL	Server	Agent	is	also
supported	on	the	Microsoft	Windows	98	operating	system,	but	SQL	Server
Agent	cannot	be	used	with	Windows	Authentication	when	run	on	Windows	98.

You	can	specify	some	configuration	options	for	SQL	Server	Agent	during	SQL
Server	installation.	The	full	set	of	configuration	options	is	available	from	within
SQL	Server	Enterprise	Manager	only.

Note		You	can	click	SQL	Server	Agent	in	the	console	tree	of	SQL	Server
Enterprise	Manager	to	administer	jobs,	operators,	alerts,	and	the	SQL	Server
Agent	service.

See	Also

Security	Levels

Starting	SQL	Server	Manually

Administering	SQL	Server

Starting	SQLServerAgent	Service
The	service	startup	account	defines	the	Microsoft®	Windows	NT®	4.0	or
Windows®	2000	account	in	which	the	SQLServerAgent	service	runs.	This
information	defines	the	network	permissions	of	the	SQLServerAgent	service.
These	are	the	available	options:

System	account

The	system	account	is	the	built-in	local	system	administrator
account.	It	is	a	member	of	the	Administrators	group	on	the	local
computer,	and	is	therefore	a	member	of	the	sysadmin	role	within
Microsoft	SQL	Server™.

Use	System	account	if	your	jobs	require	resources	from	the	local
system	only.

This	account

This	account	enables	you	to	specify	in	which	Windows	NT	4.0	or
Windows	2000	domain	account	SQLServerAgent	runs.	The	domain
account	that	you	specify	must	be	a	member	of	the	sysadmin	role	on
the	local	instance	of	SQL	Server.

Use	This	account	if:

You	want	to	forward	events	to	the	application	logs	of	other
computers	running	on	the	Windows	NT	4.0	or	Windows	2000
operating	system.

Your	jobs	require	resources	across	the	network,	including
replication	resources.

You	want	to	notify	operators	through	e-mail	or	pagers.

Note		If	the	Microsoft	Exchange	or	Microsoft	Outlook®	client
is	configured	to	deliver	mail	to	a	personal	folder	that	is
password-protected,	SQL	Server	Agent	cannot	start	its	mail

session.	To	avoid	this,	remove	the	password	protection	from
the	.pst	file.

If	you	are	running	SQLServerAgent	in	an	account	other	than	a	Windows	NT	4.0
or	Windows	2000	domain	account,	the	following	will	occur:

CmdExec	and	ActiveScripting	steps	of	jobs	owned	by	nonsysadmins
will	fail.

The	autorestart	features	in	SQLServerAgent	will	not	work.

On-idle	job	schedules	will	not	allow	the	job	to	run.

For	best	results,	use	a	Windows	NT	4.0	or	Windows	2000	domain	account	that
has	sufficient	permissions	across	the	domain	to	access	information	necessary	for
SQL	Server	Agent	job	execution.	You	can	change	the	SQLServerAgent	service
account	to	a	non-Windows	NT	4.0	administrator	account.	However,	the
Windows	NT	4.0	account	must	be	a	member	of	the	sysadmin	fixed	server	role	to
run	SQL	Server	Agent.

To	set	the	service	startup	account	for	SQL	Server	Agent

Administering	SQL	Server

Connecting	to	SQL	Server
Two	methods	define	how	the	SQL	Server	Agent	service	connects	to	an	instance
of	a	local	Microsoft®	SQL	Server™.	Regardless	of	the	method	you	select,	the
account	must	have	system	administrator	permissions	within	SQL	Server.

Use	Windows	Authentication

This	method	forces	the	SQL	Server	Agent	service	to	connect	to	an
instance	of	SQL	Server	using	the	Microsoft	Windows	NT®	4.0	or
Windows®	2000	domain	account	you	defined	as	the	service	startup
account.

Use	SQL	Server	Authentication

This	method	forces	the	SQL	Server	Agent	service	to	connect	to	an
instance	of	SQL	Server	using	a	SQL	Server	authenticated	login.	Only
logins	that	are	members	of	the	sysadmin	role	are	available.

Select	Use	SQL	Server	Authentication	if	you	are	running
SQLServerAgent	on	a	server	that	is	not	running	on	the	Windows	NT	4.0
or	Windows	2000	operating	system.

Both	options	allow	you	to	set	a	time	limit	for	logins.	If	the	SQLServerAgent
service	requires	more	time	to	connect	to	the	local	instance	of	SQL	Server	than
the	duration	you	have	specified,	the	login	session	will	time	out.	You	can	specify
a	value	from	5	through	45	seconds	for	the	login	time-out.

To	set	the	SQL	Server	connection

Administering	SQL	Server

Specifying	a	SQL	Server	Alias
By	default,	SQL	Server	Agent	connects	to	an	instance	of	Microsoft®	SQL
Server™	over	named	pipes	using	dynamic	server	names	that	require	no
additional	client	configuration.

You	must	specify	a	server	connection	alias	only	when:

You	are	using	a	nondefault	network	transport	to	connect	to	an	instance
of	SQL	Server.

You	are	connecting	to	an	instance	of	SQL	Server	that	listens	on	an
alternate	named	pipe.

To	set	a	SQL	Server	alias

Administering	SQL	Server

Using	the	SQL	Server	Agent	Error	Log
SQL	Server	Agent	creates	an	error	log	that,	by	default,	records	warnings	and
errors.	The	following	types	of	messages	are	displayed	in	the	SQL	Server	Agent
error	log:

Warning	messages	that	provide	information	about	potential	problems,
such	as,	"Job	test	was	deleted	while	it	was	executing."

Error	messages	that	usually	require	intervention	by	a	system
administrator	to	resolve,	such	as,	"Unable	to	start	mail	session."	Error
messages	can	be	sent	to	a	specific	user	or	computer	by	network	popup.

SQL	Server	maintains	up	to	nine	SQL	Server	Agent	error	logs.	Each	archived
error	log	has	an	extension	indicating	the	relative	age	of	the	error	log.	For
example,	an	extension	of	.1	indicates	the	newest	archived	error	log	and	an
extension	of	.9	indicates	the	oldest	archived	error	log.

By	default,	execution	trace	messages	are	not	written	to	the	SQL	Server	Agent
error	log,	because	they	can	fill	it,	thereby	reducing	your	ability	to	select	and
analyze	more	difficult	errors.	As	the	SQL	Server	Agent	error	log	adds	an
additional	processing	load	to	the	server,	consider	what	value	you	attain	by
capturing	execution	trace	messages	to	this	error	log.	Generally,	it	is	best	to
capture	all	messages	only	when	you	are	debugging	a	specific	problem.

When	SQL	Server	Agent	is	stopped,	you	can	modify	the	location	of	the	error
log.	When	the	Microsoft®	SQL	Server™	error	log	is	empty,	it	cannot	be	viewed.

To	view	the	SQL	Server	Agent	error	log

Administering	SQL	Server

Implementing	Jobs
Using	SQL	Server	Agent	jobs,	you	can	automate	administrative	tasks	and	run
them	on	a	recurring	basis.	You	can	run	a	job	manually	or	schedule	it	to	run	in
response	to	schedules	and	alerts.

This	illustration	shows	the	job	execution	and	job	step	processing	that	occurs
when	a	job	is	run	by	SQL	Server	Agent.

Jobs	can	be	written	to	run	on	the	local	instance	of	Microsoft®	SQL	Server™	or
on	multiple	servers.	To	run	jobs	on	multiple	servers,	you	must	set	up	at	least	one
master	server	and	one	or	more	target	servers.

Anyone	can	create	a	job,	but	a	job	can	be	edited	only	by	its	owner	or	members	of
the	sysadmin	role.

Administering	SQL	Server

Creating	Jobs
A	job	is	a	specified	series	of	operations	performed	sequentially	by	SQL	Server
Agent.	A	job	can	perform	a	wide	range	of	activities,	including	running	Transact-
SQL	scripts,	command	line	applications,	and	Microsoft®	ActiveX®	scripts.	Jobs
can	be	created	to	run	tasks	that	are	often	repeated	or	schedulable,	and	they	can
automatically	notify	users	of	job	status	by	generating	alerts.

To	create	a	job

Administering	SQL	Server

Creating	Job	Steps
A	job	step	is	an	action	that	the	job	takes	on	a	database	or	a	server.	Every	job
must	have	at	least	one	job	step.	Job	steps	can	be	operating	system	commands,
Transact-SQL	statements,	Microsoft®	ActiveX®	scripts,	or	replication	tasks.

CmdExec	Job	Steps
CmdExec	job	steps	are	operating	system	commands	or	executable	programs
ending	with	.bat,	.cmd,	.com,	or	.exe.

When	you	create	a	CmdExec	job	step,	you	must	specify:

The	process	exit	code	returned	if	the	command	was	successful.

The	CmdExec	command	(for	example,	
C:\Program	Files\Microsoft	SQL	Server\80\Tools\Binn\Osql.exe\E\Q
"sp_who").

A	full	path	to	all	executables.

To	create	a	CmdExec	job	step

Administering	SQL	Server

Handling	Multiple	Job	Steps
If	your	job	has	more	than	one	job	step,	you	must	impose	an	order	of	execution
on	the	job	steps.	This	is	called	control-of-flow.	You	can	add	new	job	steps	and
rearrange	the	flow	of	job	steps	at	any	time.	The	changes	take	effect	the	next	time
the	job	is	run.	This	illustration	shows	a	control-of-flow	for	a	database	backup
job.

You	define	a	control-of-flow	action	for	the	success	and	failure	of	each	job	step.
You	must	specify	the	action	to	be	taken	when	a	job	step	succeeds	and	when	a	job
step	fails.	You	can	also	define	the	number	of	and	interval	between	retry	attempts
for	failed	job	steps.

Job	steps	must	be	atomic.	A	job	cannot	pass	Boolean	values,	data,	or	numeric
values	between	job	steps.	You	can	pass	values	from	one	Transact-SQL	job	step
to	another	by	using	permanent	tables	or	global	temporary	tables.	You	can	pass
values	from	one	CmdExec	job	step	to	another	by	using	files.

Note		If	you	create	looping	job	steps	(job	step	1	is	followed	by	job	step	2,	then
job	step	2	returns	to	job	step	1),	a	warning	message	appears	when	the	job	is
created	using	SQL	Server	Enterprise	Manager.

SQL	Server	Agent	records	job	and	job	step	execution	information	in	the	job
history.

To	set	job	step	success	or	failure	flow

Administering	SQL	Server

Scheduling	Jobs
Scheduling	your	administrative	jobs	is	one	way	to	automate	administrative	tasks.
You	can	schedule	local	jobs	or	multiserver	jobs.	You	can	define	a	job	to	run:

Whenever	SQL	Server	Agent	starts.

Whenever	CPU	utilization	of	the	computer	is	at	a	level	you	have
defined	as	idle.

One	time,	at	a	specific	date	and	time.

On	a	recurring	schedule.

In	response	to	an	alert.

You	can	also	execute	a	job	manually;	scheduling	jobs	is	optional.

Note		Only	one	instance	of	the	job	can	be	run	at	a	time.	If	you	execute	a	job
manually	while	it	is	running	as	scheduled,	SQL	Server	Agent	refuses	the	request.

All	jobs	are	enabled	by	default.	To	prevent	a	job	from	running	according	to	its
schedule,	you	must	disable	the	schedule.	The	job	can	still	execute	in	response	to
an	alert	or	when	a	user	runs	the	job	manually.

SQL	Server	Agent	automatically	disables	schedules	that	are	no	longer	current.	If
you	edit	the	schedule	after	it	has	been	disabled	by	SQL	Server	Agent,	you	must
explicitly	reenable	it.	Schedules	are	disabled	if:

They	are	defined	to	run	one	time,	at	a	specific	date	and	time,	and	that
time	has	passed.

They	are	defined	to	run	on	a	recurring	schedule,	and	the	end	date	has
passed.

CPU	Idle	Schedules

To	maximize	CPU	resources,	you	can	define	a	CPU	idle	condition	for	SQL
Server	Agent.	SQL	Server	Agent	uses	the	CPU	idle	condition	setting	to
determine	the	most	advantageous	time	to	execute	jobs.

For	example,	you	can	schedule	a	daily	backup	job	to	occur	during	CPU	idle	time
and	slow	production	periods.

Before	you	define	jobs	to	execute	during	CPU	idle	time,	determine	how	much
CPU	the	job	requires.	You	can	use	SQL	Profiler	or	System	Monitor
(Performance	Monitor	in	Windows	NT	4.0)	to	monitor	server	traffic	and	collect
statistics.	You	can	use	the	information	you	gather	to	set	the	CPU	idle	time
percentage.

Define	the	CPU	idle	condition	as	a	percentage	below	which	the	average	CPU
usage	must	remain	for	a	specified	time.	Next,	set	the	amount	of	time.	When	this
time	has	been	exceeded,	SQL	Server	Agent	starts	all	jobs	that	have	a	CPU	idle
time	schedule.

To	schedule	a	job

Administering	SQL	Server

Specifying	Job	Responses
You	can	define	job	responses	to	occur	after	a	job	completes.	Typical	job
responses	include:

Notifying	the	operator	by	using	e-mail,	electronic	paging,	or	a	net	send
message.

Use	one	of	these	job	responses	if	the	operator	must	perform	a	follow-up
action.	For	example,	if	a	backup	job	completes	successfully,	the
operator	must	be	notified	to	remove	the	backup	tape	and	store	it	in	a
safe	location.

Writing	an	event	message	to	the	Microsoft®	Windows®	application
log.

You	can	use	this	response	only	for	failed	jobs.

Automatically	deleting	the	job.

Use	this	job	response	if	you	are	certain	that	you	will	not	need	to	rerun
this	job.

To	notify	an	operator	of	job	status

Administering	SQL	Server

Running	Jobs
You	may	need	to	execute	a	job	often,	but	not	regularly.	In	such	cases,	you	can
write	a	job	once	and	execute	it	manually	as	needed.	You	can	also	execute	jobs
manually	that	have	been	assigned	a	schedule.	For	example,	even	though	you
have	scheduled	a	master	database	backup	job	to	occur	in	the	evening,	you	may
want	to	back	up	the	database	immediately	after	making	changes	to	the	system
tables.

If	a	job	has	started	according	to	its	schedule,	you	cannot	start	another	instance	of
that	job	on	the	same	server	until	the	scheduled	job	has	completed.	In	multiserver
environments,	every	target	server	can	run	one	instance	of	the	same	job
simultaneously.

You	can	disable	a	job	if	you	do	not	want	it	to	run.	You	can	also	stop	a	job	while
it	is	executing.	In	most	cases,	when	you	issue	a	stop	command,	the	current	job
step	is	canceled	and	any	retry	logic	is	ignored.	Some	job	steps,	such	as	long-
running	Transact-SQL	statements	(BACKUP)	or	some	DBCC	commands,	may
not	respond	quickly	to	stop	requests.	When	you	stop	a	job,	a	job-canceled	entry
is	recorded	in	the	job	history.

Multiserver	Job	Processing
You	can	run	a	multiserver	job	on	one	or	more	target	servers.	Each	target	server
connects	periodically	to	the	master	server,	downloads	an	actual	copy	of	any	new
jobs	assigned	to	the	target	server,	then	disconnects	from	the	master	server.	The
target	server	stores	a	complete	copy	of	the	job	locally,	then	reconnects	to	the
master	server	to	upload	the	job	outcome	status.

Note		If	the	master	server	is	inaccessible	when	the	target	server	attempts	to
upload	job	status,	the	job	status	is	spooled	until	the	master	server	is	accessible
again.

To	start	a	job

Administering	SQL	Server

Modifying	and	Viewing	Jobs
After	you	have	created	a	job,	you	can	view	the	job	definition.	After	you	have
executed	a	job,	you	can	view	its	history.	If	the	requirements	of	a	job	change,	you
can	modify	the	job	so	that	it	performs	differently.

Note		The	job	must	have	been	executed	at	least	one	time	for	there	to	be	a	job
history.	You	can	limit	the	total	size	and	the	size	per	job	of	the	job	history	log.

You	can	modify:

Response	options.

Schedules.

Job	steps.

Ownership.

Job	category.

Target	servers	(multiserver	jobs	only).

If	you	make	changes	to	multiserver	job	definitions	outside	of	SQL	Server
Enterprise	Manager,	you	must	post	the	changes	to	the	download	list	so	that	target
servers	can	download	the	updated	job	again.	To	ensure	that	target	servers	have
the	most	current	job	definitions,	post	an	INSERT	instruction	after	you	update	the
multiserver	job:

EXECUTE	sp_post_msx_operation	'INSERT',	'JOB',	'<job	id>'

You	must	notify	the	target	servers	manually	that	the	job	has	been	modified	using
the	above	command	after	you	finish	modifying	the	schedules	and	steps	of	a
multiserver	job	using	any	of	the	following	procedures:

sp_add_jobstep

sp_update_jobstep

sp_delete_jobstep

sp_add_jobschedule

sp_update_jobschedule

sp_delete_jobschedule

Note		It	is	not	necessary	to	call	sp_post_msx_operation	after	you	call
sp_update_job	or	sp_delete_job,	because	these	stored	procedures	post
the	required	changes	to	the	download	list	automatically.

To	view	a	job

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Administering	SQL	Server

Scripting	Jobs	Using	Transact-SQL
You	can	generate	Transact-SQL	scripts	to	create	the	jobs	that	you	have	defined.
With	job	scripting,	you	can:

Control	versions	of	job	creation	source	code.

Migrate	jobs	from	test	into	production.

Script	alerts	and	operators.

It	is	also	possible	to	create	a	script	on	a	computer	running	an	instance	of
Microsoft®	SQL	Server™	2000	that	can	be	run	on	a	computer	running	an
instance	of	SQL	Server	version	7.0.	If	you	choose	to	create	a	SQL	Server	7.0
compatible	script,	certain	SQL	Server	2000	features	are	ignored,	such	as:

Column	level	collation.

User-defined	functions,	extended	properties.

INSTEAD	OF	triggers	on	tables	and	views.

Indexes	on	views	(indexed	views).

Indexes	on	computed	columns.

Descending	indexes.

Reference	permissions	on	views.

This	option	is	only	available	on	an	instance	of	SQL	Server	2000.

To	script	jobs	using	Transact-SQL

Administering	SQL	Server

Responding	to	Events
Microsoft®	SQL	Server™	events	are	written	to	the	Microsoft	Windows®
application	log.	You	can	define	an	alert	on	one	or	more	events	to	specify	how
SQL	Server	Agent	should	respond.

SQL	Server	Agent	monitors	the	Windows	application	log	for	SQL	Server	events.
When	events	that	you	have	defined	for	action	occur,	SQL	Server	Agent	responds
automatically	according	to	your	specifications.	For	example,	if	an	event	of
severity	17	occurs,	you	can	specify	that	an	operator	be	notified	immediately.

Automated	event	response	is	called	alerting.	When	an	event	occurs,	SQL	Server
Agent	compares	the	event	details	against	the	alerts	defined	by	the	SQL	Server
administrator.	If	it	finds	a	match,	SQL	Server	Agent	performs	the	defined
response.

You	can	define	alerts	to:

Notify	operators.

Execute	a	job.

Forward	the	event	to	the	Windows	application	log	on	another	server.

Administering	SQL	Server

Defining	Operators
The	primary	attributes	of	an	operator	are	name	and	contact	information.	It	is
recommended	that	you	define	operators	before	you	define	alerts.	You	must	set
up	one	or	more	of	the	following	in	order	to	notify	an	operator:

For	e-mail,	a	MAPI-1-compliant	e-mail	client.

SQL	Server	Agent	requires	a	valid	mail	profile	in	order	to	send	e-mail.
Examples	of	MAPI-1	clients	include	Microsoft®	Outlook®	and
Microsoft	Exchange	client.

For	paging,	third-party	pager-to-e-mail	software	and/or	hardware.

You	need	these	to	use	the	pager	notification	features.

To	use	net	send	notifications,	you	must	be	running	the	Microsoft
Windows	NT®	4.0	or	Windows®	2000	operating	system.

Naming	an	Operator

Every	operator	must	have	a	name.	Operator	names	must	be	unique	and	can	be	no
longer	than	128	characters.

Providing	Contact	Information
An	operator's	contact	information	defines	how	the	operator	is	notified.	Operators
can	be	notified	by	e-mail,	pager,	or	net	send:

E-mail	Notification

SQL	Server	Agent	establishes	its	own	mail	session	using	the	mail
profile	information	supplied	in	the	SQL	Agent	Properties	dialog
box.

Pager	Notification

Paging	is	implemented	using	e-mail.	To	set	up	pager	notification,
you	must	install	on	the	mail	server	software	that	processes	inbound
mail	and	converts	it	to	a	pager	message.	The	software	can	take	one

of	several	approaches,	including:

Forwarding	the	mail	to	a	remote	mail	server	at	the	pager
provider's	site.

The	pager	provider	must	offer	this	service,	although	the
software	required	is	generally	available	as	part	of	the	local	mail
system.	For	more	information,	see	the	pager	documentation.

Routing	the	mail	by	way	of	the	Internet	to	a	mail	server	at	the
pager	provider's	site.

This	is	a	variation	on	the	first	approach.

Processing	the	inbound	mail	and	dial	using	an	attached	modem.

This	software	is	proprietary	to	pager	service	providers.	The
software	acts	as	a	mail	client	that	periodically	processes	its
inbox	either	by	interpreting	all	or	part	of	the	e-mail	address
information	as	a	pager	number,	or	by	matching	the	e-mail	name
to	a	pager	number	in	a	translation	table.

If	all	of	the	operators	share	a	pager	provider,	you	can	use	SQL	Server	Enterprise
Manager	to	specify	any	special	e-mail	formatting	required	by	the	pager-to-e-mail
system.	The	special	formatting	can	be	a	prefix	or	a	suffix:

Subject	line

Cc	line

To	line

Note		If	you	are	using	a	low-capacity	alphanumeric	paging	system	(for
example,	limited	to	64	characters	per	page),	you	can	shorten	the	text
sent	by	excluding	the	error	text	from	the	pager	notification.

net	send

The	net	send	notification	method	specifies	the	recipient	(computer
or	user)	of	a	network	message.	This	method	is	not	supported	on	the

Windows	98	operating	system.

Designating	a	Fail-Safe	Operator

The	fail-safe	operator	is	notified	about	an	alert	after	all	pager	notifications	to	the
designated	operators	have	failed.	For	example,	if	you	have	defined	three
operators	for	pager	notifications	and	none	of	the	designated	operators	can	be
paged,	the	fail-safe	operator	is	notified.

The	fail-safe	operator	is	notified	when:

The	operator(s)	responsible	for	the	alert	could	not	be	paged.

Reasons	for	this	include	incorrect	pager	addresses	and	off-duty
operators.

SQL	Server	Agent	cannot	access	system	tables	in	the	msdb	database.

The	sysnotifications	system	table	specifies	operator	responsibilities	for
alerts.

Because	the	fail-safe	operator	is	a	safety	feature,	you	cannot	delete	the	operator
assigned	to	fail-safe	duty	without	reassigning	fail-safe	duty	to	another	operator
or	deleting	the	fail-safe	assignment.

To	create	an	operator

Administering	SQL	Server

Modifying	and	Viewing	Operators
Because	operators	are	individuals	with	changing	responsibilities	and	job
schedules,	you	may	need	to	update	operator	information.	After	an	operator	has
been	created,	you	can:

View	an	operator's	information.

You	can	view	the	alerts	for	which	the	operator	is	responsible.	You	can
view	the	dates	of	the	most	recent	attempts	by	SQL	Server	Agent	to
notify	the	operator.

Edit	an	operator's	information.

You	can	edit	the	notification	addresses,	pager	on-duty	schedule,
assigned	alerts,	and	notification	methods.

Change	an	operator's	availability.

By	default,	operators	are	available	to	receive	notifications	(enabled)	as
soon	as	they	are	defined.	You	can	specify	the	operator	as	unavailable	to
receive	notifications	(disabled)	when	you	create	it	or	at	any	time
thereafter.

For	example,	if	an	individual	who	is	assigned	operator	responsibilities
goes	on	vacation,	you	can	disable	the	operator.	The	alerts	assigned	to
that	operator	and	the	notification	methods	for	those	alerts	have	not
changed;	only	the	operator's	availability	to	respond	to	alerts	has	been
changed.	When	the	individual	returns	from	vacation,	you	do	not	need	to
redefine	the	operator;	rather,	you	reenable	the	operator.

Delete	an	operator.

You	can	delete	an	operator	when	the	individual	no	longer	has	operator
responsibilities.	When	you	delete	an	operator,	you	also	delete	all	of	the
operator's	alert	notifications.	You	cannot	remove	an	operator	that	has
been	assigned	to	be	the	fail-safe	operator.	You	first	must	remove	the
fail-safe	duty	from	the	operator	or	reassign	the	fail-safe	duty	to	another
operator	before	you	can	delete	the	operator.

To	view	information	about	an	operator

Administering	SQL	Server

Alerting	Operators
You	can	choose	the	operators	to	be	notified	in	response	to	an	alert.	You	can
assign	rotating	responsibilities	for	operator	notification	by	using	pagers.	For
example,	if	one	or	more	defined	alerts	occur	on	Monday,	Wednesday,	or	Friday,
Mary	is	notified.	If	those	alerts	occur	on	Tuesday,	Thursday,	or	Saturday,	Joe	is
notified.	If	Mary	or	Joe	cannot	be	notified	on	the	respective	day,	or	if	the	alert
occurs	on	Sunday,	the	fail-safe	operator	is	notified.

You	notify	operators	using	one	or	more	of	these	methods:

E-mail

Pager

net	send

The	SQLServerAgent	service	uses	a	mail	session	that	is	exclusive	to	SQL	Server
Agent	activities.	If	you	are	using	a	SQL	Mail	session	for	the	MSSQLServer
service,	it	is	recommended	that	SQL	Server	Agent	and	Microsoft®	SQL
Server™	use	the	same	Microsoft	Windows	NT®	4.0	or	Windows®	2000	domain
user	account.	This	allows	both	mail	sessions	to	use	the	same	mail	profile.	If	SQL
Server	Agent	and	SQL	Server	use	separate	domain	user	accounts,	you	must
configure	a	mail	profile	for	each	service.

To	define	the	response	to	an	alert

Administering	SQL	Server

Defining	Alerts
Errors	and	messages,	or	events,	are	generated	by	Microsoft®	SQL	Server™	and
entered	into	the	Microsoft	Windows®	application	log.	SQL	Server	Agent	reads
the	application	log	and	compares	events	to	alerts	that	you	have	defined.	When
SQL	Server	Agent	finds	a	match,	it	fires	an	alert.

By	default,	the	following	SQL	Server	events	are	logged	in	the	Windows
application	log:

Severity	19	or	higher	sysmessages	errors.

You	can	use	sp_altermessage	to	designate	specific	sysmessages	errors
as	"always	logged"	to	log	error	messages	with	a	severity	lower	than	19.

Any	RAISERROR	statement	invoked	by	using	the	WITH	LOG	syntax.

RAISERROR	WITH	LOG	is	the	recommended	way	to	write	to	the
Windows	application	log	from	an	instance	of	SQL	Server.

Any	application	logged	by	using	xp_logevent.

Note		Make	sure	that	the	Windows	application	log	is	of	sufficient	size
to	avoid	losing	SQL	Server	event	information.

Alerts	must	be	defined	before	notifications	can	be	sent.	The	primary	attributes	of
an	alert	are	name	and	event	or	performance	condition	specification.

Naming	an	Alert
Every	alert	must	have	a	name.	Alert	names	must	be	unique	and	can	be	no	longer
than	128	characters.

Selecting	an	Event
You	can	specify	an	alert	to	occur	in	response	to	one	or	more	events.	You	specify
the	set	of	events	to	trigger	an	alert	according	to:

Error	number.

SQL	Server	Agent	fires	an	alert	when	a	specific	error	occurs.

Severity	level.

SQL	Server	Agent	fires	an	alert	when	any	error	of	the	specific	severity
occurs.

Database.

Specifies	a	database	in	which	the	event	occurred	if	you	want	to	restrict
the	alert.

Event	text.

Specifies	a	text	string	in	the	event	message	if	you	want	to	restrict	the
alert.

Selecting	a	Performance	Condition

You	can	specify	a	performance	condition	to	monitor	by	firing	an	alert	when	the
performance	threshold	is	reached.	To	set	a	performance	condition	you	must
define	the	following:

Object.

The	area	of	SQL	Server	performance	to	be	monitored.

Counter.

The	attribute	with	the	area	to	be	monitored.	Performance	data	is
sampled	periodically,	which	can	lead	to	a	small	delay	(a	few	seconds)
between	the	threshold	being	reached	and	the	performance	alert	firing.

Instance.

The	specific	instance	(if	any)	of	the	attribute	to	be	monitored.

Alert	if	counter/value.

The	behavior	the	counter	or	counter	instance	must	exhibit	for	the	alert
to	fire.

Creating	a	User-defined	Event	Message

You	can	create	user-defined	event	messages	if	you	have	special	event	tracking
needs	that	are	not	addressed	by	standard	SQL	Server	event	messages.	User-
defined	event	messages	generate	error	numbers	greater	than	50,000.
Additionally,	you	can	assign	them	a	severity	level.

User-defined	event	messages	must	be	unique	and	have	a	unique	error	number.
They	can	each	have	a	unique	language.

Note		When	using	SQL	Server	Enterprise	Manager,	you	should	select	the	Write
to	Windows	NT	application	event	log	option.	By	default,	user-defined
messages	with	severities	less	than	19	are	not	sent	to	the	Windows	application	log
when	they	occur	and	therefore	do	not	trigger	SQL	Server	Agent	alerts.

If	you	administer	a	multiple	language	SQL	Server	environment,	create	user-
defined	messages	in	each	of	the	languages	you	support.	For	example,	if	you	are
creating	a	new	event	message	that	will	be	used	on	both	an	English	and	a	German
server,	use	the	same	event	number	for	both,	but	assign	a	different	language	for
each.

To	create	an	alert	using	an	error	number

Administering	SQL	Server

Modifying	and	Viewing	Alerts
After	you	create	an	alert,	you	can:

View	the	alert's	information.

You	can	view	the	characteristics	of	an	alert,	the	date	of	the	most	recent
occurrence	of	and	response	to	the	alert,	as	well	as	the	number	of	times
the	alert	has	occurred	since	the	count	was	last	reset.

Modify	the	alert's	information.

You	can	add	new	operators,	reset	the	number	of	times	an	alert	has
occurred,	disable	an	alert,	or	change	a	database.

Delete	the	alert.

You	can	delete	an	alert	that	is	no	longer	needed.	When	you	delete	an
alert,	you	also	delete	all	of	the	alert's	operator	notifications.

To	view	information	about	an	alert

Administering	SQL	Server

Copying	Operators	or	Alerts	to	Other	Servers
You	can	generate	a	Transact-SQL	script	to	create	one	or	all	of	the	operators	or
alerts	that	you	have	defined.	If	the	same	group	of	operators	is	responsible	for
responding	to	the	same	alerts	on	other	servers,	you	can	save	time	by
automatically	scripting	all	the	predefined	operators	and	alerts,	and	then	copying
to	those	servers.

To	script	operators	using	Transact-SQL

Administering	SQL	Server

Managing	Events
You	can	forward	all	Microsoft®	SQL	Server™	event	messages	that	meet	or
exceed	a	specific	error	severity	level	to	one	instance	of	SQL	Server.	The
forwarding	server	is	a	dedicated	server	that	can	also	be	a	master	server.	You	can
use	event-forwarding	to	enable	centralized	alert	management	for	a	group	of
servers.	In	this	way,	you	can	reduce	the	workload	on	heavily	used	servers.

In	a	multiserver	environment,	it	is	recommended	that	you	designate	the	master
server	as	the	alerts	management	server.

Advantages
Advantages	of	setting	up	an	alerts	management	server	include:

Centralization.

Centralized	control	and	a	consolidated	view	of	the	events	of	several
instances	of	SQL	Server	is	possible	from	a	single	server.

Scalability.

Many	physical	servers	can	be	administered	as	one	logical	server.	You
can	add	or	remove	servers	to	this	physical	server	group	as	needed.

Efficiency.

Configuration	time	is	reduced,	because	you	need	to	define	alerts	and
operators	only	once	on	one	server.

Disadvantages

Disadvantages	of	setting	up	an	alerts	management	server	include:

Increased	traffic.

Forwarding	events	to	an	alerts	management	server	can	increase	network
traffic,	although	this	can	be	moderated	by	restricting	event-forwarding
to	severity	events	only	above	a	designated	level.

Single	point	of	failure.

Server	load.

Handling	alerts	for	the	forwarded	events	causes	an	increased	processing
load	at	the	alerts-forwarding	server.

Guidelines

When	configuring	event	forwarding,	follow	these	guidelines:

Avoid	running	critical	or	heavily	used	applications	on	the	alerts-
forwarding	server.

Avoid	configuring	many	servers	to	share	the	same	forwarding	server.	If
congestion	results,	reduce	the	number	of	servers	that	use	a	particular
alerts	management	server.

The	servers	that	are	registered	within	SQL	Server	Enterprise	Manager
constitute	the	list	of	servers	available	to	be	chosen	by	that	server	as	the
alerts-forwarding	server.

Define	alerts	that	require	a	server-specific	response	on	the	local	instance
of	SQL	Server	instead	of	forwarding	them.

The	alerts-forwarding	server	views	all	the	servers	forwarding	to	it	as	a
logical	whole.	For	example,	an	alerts-forwarding	server	responds	in	the
same	way	to	a	605	event	from	server	A	and	a	605	event	from	server	B.

After	configuring	your	alert	system,	periodically	check	the	Microsoft
Windows®	application	log	for	SQL	Server	Agent	events.

Failure	conditions	encountered	by	the	alerts	engine	are	written	to	the
local	Windows	application	log	with	a	source	name	of	SQL	Server
Agent.	For	example,	if	SQL	Server	Agent	cannot	send	an	e-mail
notification	as	it	has	been	defined,	an	event	is	logged	in	the	application
log.

If	a	locally	defined	alert	is	disabled	and	an	event	occurs	that	would	have	caused
the	alert	to	fire,	the	event	is	forwarded	to	the	alerts-forwarding	server	(if	it

satisfies	the	alert	forwarding	condition).	This	allows	local	overrides	(alerts
defined	locally	that	are	also	defined	at	the	alerts	forwarding	server)	to	be	turned
off	and	on	as	needed	by	the	user	at	the	local	site.	You	can	also	request	that	events
always	be	forwarded,	even	if	they	are	handled	by	local	alerts.

To	designate	an	events	forwarding	server

Administering	SQL	Server

Monitoring	the	Environment
SQL	Server	Agent	monitors	itself	and	the	Microsoft®	SQL	Server™	service.

Self-Monitoring
SQL	Server	Agent	starts	the	xp_sqlagent_monitor	extended	stored	procedure
(SQL	Server	Agent	Monitor)	to	monitor	the	SQLServerAgent	service	to	ensure
that	it	is	available	to	execute	scheduled	jobs,	raise	alerts,	and	notify	operators.	If
the	SQLServerAgent	service	terminates	unexpectedly,	the	SQL	Server	Agent
Monitor	restarts	the	service.

Restarting	the	SQL	Server	Service
SQL	Server	Agent	can	restart	the	local	instance	of	SQL	Server	if	it	has
terminated	for	reasons	other	than	a	typical	shutdown.	Automatic	restart	is
enabled	by	default.	SQL	Server	Agent	restarts	the	instance	of	SQL	Server	when
it	detects	abnormal	termination.	This	allows	an	alert	to	be	set	on	this	event.

Note		If	you	are	using	SQL	Server	2000	failover	clustering,	you	must	ensure
auto-restart	is	disabled	in	order	for	failover	clustering	to	work.

To	set	job	execution	shutdown

Administering	SQL	Server

Managing	Security
A	database	must	have	a	solid	security	system	to	control	which	activities	can	be
performed	and	which	information	can	be	viewed	and	modified.	A	solid	security
system	ensures	the	protection	of	data,	regardless	of	how	users	gain	access	to	the
database.

This	section	describes	the	security	tools	built	into	Microsoft®	SQL	Server™
2000	and	includes	information	about:

Security	Architecture

Planning	Security

Creating	Security	Accounts

Managing	Security	Accounts

Managing	Permissions

Advanced	Security	Topics

Auditing	SQL	Server	Activity

Administering	SQL	Server

Security	Architecture
The	architecture	of	a	security	system	is	based	on	users	and	groups	of	users.	The
following	illustration	shows	how	users	and	local	and	global	groups	in
Microsoft®	Windows	NT®	4.0	and	Windows®	2000	can	map	to	security
accounts	in	Microsoft	SQL	Server™,	and	how	SQL	Server	can	handle	security
accounts	independently	of	the	accounts	in	Windows	NT	4.0	and	Windows	2000.

The	CORPUSERS	local	group	contains	two	users	and	a	global	group,	Mktg,
which	also	contains	two	users.	SQL	Server	allows	Windows	NT	4.0	and
Windows	2000	local	and	global	groups	to	be	used	directly	to	organize	its	user
accounts.	Additionally,	the	Windows	NT	4.0	users	Fred	and	Jerry,	not	part	of	a
Windows	NT	4.0	group,	can	be	added	to	an	instance	of	SQL	Server	either
directly	as	a	Windows	NT	4.0	user	(Fred	for	example),	or	as	a	SQL	Server	user
(Jerry).

SQL	Server	extends	this	model	further	with	the	use	of	roles.	Roles	are	groups	of
users	organized	for	administrative	purposes,	like	Windows	NT	4.0	or	Windows
2000	groups,	but	are	created	in	SQL	Server	when	an	equivalent	Windows	NT	4.0

or	Windows	2000	group	does	not	exist.	For	example,	the	Managers	role
contains	the	Windows	NT	4.0	Mktg	global	group	and	the	Windows	NT	4.0	users
Frank	and	Fred.

SQL	Server	also	provides	security	at	the	application	level	through	the	use	of
individual	database	application	roles.

For	more	information,	see	the	Windows	NT	4.0	or	Windows	2000
documentation.

See	Also

Creating	Security	Accounts

Administering	SQL	Server

Planning	Security
A	security	plan	identifies	which	users	can	see	which	data	and	perform	which
activities	in	the	database.	To	developing	a	security	plan:

1.	 List	all	the	items	and	activities	in	the	database	that	must	be	controlled
through	security.

2.	 Identify	the	individuals	and	groups	in	the	company.

3.	 Cross-reference	the	two	lists	to	identify	which	users	can	see	which	sets
of	data	and	perform	which	activities	in	the	database.

See	Also

Single	Person	Security	Example

Small	Company	Security	Example

Corporate	Environment	Security	Example

Administering	SQL	Server

Single	Person	Security	Example
In	the	simplest	possible	security	system,	a	single	person	is	responsible	for	all
aspects	of	the	database	and	will	be	its	sole	user.	This	hypothetical	user	(Tom
Brown	in	London)	must	be	able	to:

Create	the	database	and	its	tables.

Write	programs	that	interface	with	the	data.

Load	and	maintain	data.

Produce	reports.

The	users-to-activity	map	for	this	example	lists	the	single	user	and	the	activities
he	needs	to	perform.

User	account Activity
LONDON\tombrown All	database	access

The	first	step	in	creating	a	security	system	is	to	add	a	Microsoft®	SQL	Server™
login	for	LONDON\tombrown,	allowing	him	access	to	SQL	Server.	Because
the	predefined	sysadmin	role	contains	all	permissions	necessary	for	this	user,	the
LONDON\tombrown	SQL	Server	login	should	be	added	as	a	member	of	the
sysadmin	role.	When	LONDON\tombrown	connects	to	an	instance	of	SQL
Server,	SQL	Server	calls	back	to	Microsoft	Windows	NT®	4.0	or	Windows®
2000	to	authenticate	the	connection.	If	it	is	validated,	the	connection	is	accepted,
and	he	is	allowed	to	perform	activities	based	on	the	permissions	associated	with
the	sysadmin	role.

If	Tom	Brown	did	not	have	a	Windows	NT	4.0	or	Windows	2000	login,	he	could
be	given	a	SQL	Server	login.	In	this	case,	an	instance	of	SQL	Server	would	need
to	be	running	under	Mixed	Mode,	which	allows	users	to	log	in	under	Windows
NT	4.0,	Windows	2000,	or	SQL	Server	logins.	A	login	named	tombro	could	be

added	to	SQL	Server	independent	of	the	Windows	NT	4.0	or	Windows	2000
login,	and	tombro	could	then	be	added	to	the	sysadmin	role.	When	the	user	logs
into	Windows	NT	4.0	or	Windows	2000	and	attempts	to	connect	to	an	instance
of	SQL	Server,	he	must	specify	the	tombro	login	name	and	password	that	SQL
Server	knows.

Administering	SQL	Server

Small	Company	Security	Example
In	a	moderately	complex	security	system,	multiple	people	perform	various	tasks
in	the	database.	For	example,	a	database	administrator	is	responsible	for	the
database	environment:	creating	the	database,	tables,	and	security	accounts,
performing	backups,	and	tuning	the	database.	Two	developers	are	responsible	for
writing	client	applications	to	provide	an	interface	to	the	data.	Managers	prepare
information	reports	from	the	database	and	so	need	access	to	all	available	data.
The	administrative	staff	performs	customer	and	sales	data	entry	and	must	be	able
to	view	all	data.

The	users-to-activity	map	for	this	example	is	slightly	more	complicated	than	a
single	user	database.

User	account Activity
LONDON\joetuck All	database	access.
LONDON\marysmith,
LONDON\billb

Full	access	to	data	and	the	ability	to	create
procedures.

LONDON\managers Full	access	to	all	data.
LONDON\admins Full	access	to	customer	data	and	sales.	Read-only

access	for	all	other	data.

The	first	step	in	installing	the	security	for	this	example	is	to	add	login	rights	for
LONDON\joetuck.	Then,	because	the	LONDON\joetuck	login	requires	full
access,	the	next	step	is	to	add	this	user	to	the	sysadmin	role.

Login	rights	should	be	added	for	the	developers,	too.	One	way	to	do	this	is	to
grant	individual	developers	(LONDON\marysmith	and	LONDON\billb)
permissions	to	access	data.	But	if	another	developer	(or	another	10	developers)
joined	the	project,	separate	permissions	would	have	to	be	added	to	each	new
person,	a	time-consuming	task.	A	better	solution	is	to	add	a	SQL	Server	database
role	named	Developers,	granting	permissions	to	access	data	and	creating
procedures	to	the	role.	When	LONDON\marysmith	and	LONDON\billb,	or
accounts	for	other	new	developers,	are	added	to	the	Developers	role,	their	user
accounts	get	the	permissions	granted	to	the	role.

Roles	are	only	applicable	at	the	database	level.	That	is,	roles	solve	the	problem

of	controlling	database	user	access.	Instead	of	individually	granting	database
access	to	10	developers,	you	can	create	a	role,	add	the	10	developers	to	it,	and
grant	the	role	database	access.

Finally,	login	rights	must	be	added	to	SQL	Server	for	LONDON\managers	and
LONDON\admins.	When	a	manager	connects,	she	is	recognized	as	a	member
of	an	existing	Microsoft	Windows	NT®	4.0	and	Windows®	2000	group	and
allowed	to	perform	activities	based	on	the	permissions	granted	to	that	group.	The
same	is	true	for	LONDON\admins.

Administering	SQL	Server

Corporate	Environment	Security	Example
In	a	large	corporate	security	system,	there	is	a	complex	web	of	users	who
perform	specialized,	exclusive	tasks.

A	single	person	is	responsible	for	all	aspects	of	the	database	application.	A	few
people	are	responsible	for	creating	databases	and	tables,	but	they	must	not	be
allowed	to	see	sensitive	personnel	information	about	their	coworkers	(or	even
themselves).	An	evening	team	backs	up	data,	but	these	workers	need	not	see	the
data,	nor	create	tables	and	databases.	The	Personnel	department	must	have
access	to	general	employee	information,	and	a	few	select	individuals	in	this
department	are	the	only	people	in	the	company	with	access	to	confidential	and
sensitive	employee	information.	Also,	customer	service	employees	need	to	see
but	not	change	product	specifications	in	response	to	customer	inquiries.

The	users-to-activity	map	for	this	example	is	fairly	complex.

User	account Activity
LONDON\annej All	database	access
LONDON\dbadmins Create	databases
LONDON\dboperations Perform	evening	backups
LONDON\personnel Full	access	to	general	employee	data
LONDON\mikebo,
LONDON\marym,
LONDON\billsm

Full	access	to	confidential	data

LONDON\custservice Read-only	access	to	product	information

The	LONDON\annej	user	account	must	be	granted	login	rights	to	Microsoft®
SQL	Server™	and	added	to	the	sysadmin	role	because	the	sysadmin	role	has
full	permissions	across	the	server.	The	LONDON\dbadmins	Microsoft
Windows	NT®	4.0	and	Windows®	2000	group	user	account	must	be	added	in
SQL	Server	and	granted	permission	to	create	databases.	The
LONDON\operations	Windows	NT	4.0	group	should	be	added	also	and	granted
only	the	BACKUP	DATABASE	permissions	to	allow	them	to	perform	backups.

The	LONDON\personnel	Windows	NT	4.0	and	Windows	2000	group	should	be
added	and	granted	the	permissions	to	see	only	the	nonsensitive	columns	in	the

employees	table,	as	well	as	the	permissions	to	see	other	tables.

The	users	LONDON\mikebo,	LONDON\marym,	and	LONDON\billsm	are
members	of	the	LONDON\personnel	Windows	NT	4.0	group,	so	they	already
have	the	permissions	necessary	to	do	most	of	their	work.	However,	they	also
need	special	access	to	the	sensitive	employee	information	columns.	To	meet	this
need,	create	a	database	role	called	PersonnelSecure	in	SQL	Server	and	grant	the
permissions	required	to	see	the	sensitive	employee	information.	Individual	users
get	the	special	permissions	in	SQL	Server	when	added	to	the	role.	Or,	add	the
special	permissions	to	their	user	accounts	directly.

The	final	step	is	to	add	an	account	for	the	LONDON\custservice	Windows	NT
4.0	group	in	SQL	Server,	and	grant	it	permission	to	see	product	information.

Administering	SQL	Server

Security	Levels
A	user	passes	through	two	stages	of	security	when	working	in	Microsoft®	SQL
Server™:	authentication	and	authorization	(permissions	validation).The
authentication	stage	identifies	the	user	using	a	login	account	and	verifies	only
the	ability	to	connect	to	an	instance	of	SQL	Server.	If	authentication	is
successful,	the	user	connects	to	an	instance	of	SQL	Server.	The	user	then	needs
permissions	to	access	databases	on	the	server,	which	is	done	by	granting	access
to	an	account	in	each	database,	mapped	to	the	user	login.	The	permissions
validation	stage	controls	the	activities	the	user	is	allowed	to	perform	in	the	SQL
Server	database.

Administering	SQL	Server

Authentication	Modes
Microsoft®	SQL	Server™	can	operate	in	one	of	two	security	(authentication)
modes:

Windows	Authentication	Mode	(Windows	Authentication)

Windows	Authentication	mode	allows	a	user	to	connect	through	a
Microsoft	Windows	NT®	4.0	or	Windows®	2000	user	account.

Mixed	Mode	(Windows	Authentication	and	SQL	Server	Authentication)

Mixed	Mode	allows	users	to	connect	to	an	instance	of	SQL	Server	using
either	Windows	Authentication	or	SQL	Server	Authentication.	Users
who	connect	through	a	Windows	NT	4.0	or	Windows	2000	user	account
can	make	use	of	trusted	connections	in	either	Windows	Authentication
Mode	or	Mixed	Mode.

SQL	Server	Authentication	is	provided	for	backward	compatibility.	For
example,	if	you	create	a	single	Windows	2000	group	and	add	all
necessary	users	to	that	group	you	will	need	to	grant	the	Windows	2000
group	login	rights	to	SQL	Server	and	access	to	any	necessary	databases.

Windows	Authentication

When	a	user	connects	through	a	Windows	NT	4.0	or	Windows	2000	user
account,	SQL	Server	revalidates	the	account	name	and	password	by	calling	back
to	Windows	NT	4.0	or	Windows	2000	for	the	information.

SQL	Server	achieves	login	security	integration	with	Windows	NT	4.0	or
Windows	2000	by	using	the	security	attributes	of	a	network	user	to	control	login
access.	A	user's	network	security	attributes	are	established	at	network	login	time
and	are	validated	by	a	Windows	domain	controller.	When	a	network	user	tries	to
connect,	SQL	Server	uses	Windows-based	facilities	to	determine	the	validated
network	user	name.	SQL	Server	then	verifies	that	the	person	is	who	they	say
they	are,	and	then	permits	or	denies	login	access	based	on	that	network	user
name	alone,	without	requiring	a	separate	login	name	and	password.

Login	security	integration	operates	over	any	supported	network	protocol	in	SQL

Server.

Note		If	a	user	attempts	to	connect	to	an	instance	of	SQL	Server	providing	a
blank	login	name,	SQL	Server	uses	Windows	Authentication.	Additionally,	if	a
user	attempts	to	connect	to	an	instance	of	SQL	Server	configured	for	Windows
Authentication	Mode	by	using	a	specific	login,	the	login	is	ignored	and
Windows	Authentication	is	used.

Windows	Authentication	has	certain	benefits	over	SQL	Server	Authentication,
primarily	due	to	its	integration	with	the	Windows	NT	4.0	and	Windows	2000
security	system.	Windows	NT	4.0	and	Windows	2000	security	provides	more
features,	such	as	secure	validation	and	encryption	of	passwords,	auditing,
password	expiration,	minimum	password	length,	and	account	lockout	after
multiple	invalid	login	requests.

Because	Windows	NT	4.0	and	Windows	2000	users	and	groups	are	maintained
only	by	Windows	NT	4.0	or	Windows	2000,	SQL	Server	reads	information
about	a	user's	membership	in	groups	when	the	user	connects.	If	changes	are
made	to	the	accessibility	rights	of	a	connected	user,	the	changes	become
effective	the	next	time	the	user	connects	to	an	instance	of	SQL	Server	or	logs	on
to	Windows	NT	4.0	or	Windows	2000	(depending	on	the	type	of	change).

Note		Windows	Authentication	Mode	is	not	available	when	an	instance	of	SQL
Server	is	running	on	Windows	98	or	Microsoft	Windows	Millennium	Edition.

SQL	Server	Authentication
When	a	user	connects	with	a	specified	login	name	and	password	from	a

nontrusted	connection,	SQL	Server	performs	the	authentication	itself	by
checking	to	see	if	a	SQL	Server	login	account	has	been	set	up	and	if	the
specified	password	matches	the	one	previously	recorded.	If	SQL	Server	does	not
have	a	login	account	set,	authentication	fails	and	the	user	receives	an	error
message.

SQL	Server	Authentication	is	provided	for	backward	compatibility	because
applications	written	for	SQL	Server	version	7.0	or	earlier	may	require	the	use	of
SQL	Server	logins	and	passwords.	Additionally,	SQL	Server	Authentication	is
required	when	an	instance	of	SQL	Server	is	running	on	Windows	98	because
Windows	Authentication	Mode	is	not	supported	on	Windows	98.	Therefore,
SQL	Server	uses	Mixed	Mode	when	running	on	Windows	98	(but	supports	only
SQL	Server	Authentication).

Application	developers	and	database	users	may	prefer	SQL	Server
Authentication	because	they	are	familiar	with	the	login	and	password
functionality.	SQL	Server	Authentication	may	also	be	required	for	connections
with	clients	other	than	Windows	NT	4.0	and	Windows	2000	clients.

Note		When	connecting	to	an	instance	of	SQL	Server	running	on	Windows	NT
4.0	or	Windows	2000	using	Named	Pipes,	the	user	must	have	permission	to
connect	to	the	Windows	NT	Named	Pipes	IPC,	\\<computername>\IPC$.	If	the

user	does	not	have	permission	to	connect,	it	is	not	possible	to	connect	to	an
instance	of	SQL	Server	using	Named	Pipes	unless	either	the	Windows	NT	4.0	or
Windows	2000	guest	account	on	the	computer	is	enabled	(disabled	by	default),
or	the	permission	"access	this	computer	from	the	network"	is	granted	to	their
user	account.

To	set	up	Windows	Authentication	Mode	security

Administering	SQL	Server

Security	Account	Delegation
Security	account	delegation	is	the	ability	to	connect	to	multiple	servers,	and	with
each	server	change,	to	retain	the	authentication	credentials	of	the	original	client.
For	example,	if	a	user	(LONDON\joetuck)	connects	to	ServerA,	which	then
connects	to	ServerB,	ServerB	knows	that	the	connection	security	identity	is
LONDON\joetuck.

To	use	delegation,	all	servers	that	you	are	connecting	to	must	be	running
Microsoft®	Windows®	2000,	with	Kerberos	support	enabled,	and	you	must	be
using	Microsoft	Active	Directory™,	the	directory	service	for	Windows	2000.
The	following	options	in	Active	Directory	must	be	specified	as	follows	in	order
for	delegation	to	work:

The	Account	is	sensitive	and	cannot	be	delegated	check	box	must	not
be	selected	for	the	user	requesting	delegation.

The	Account	is	trusted	for	delegation	check	box	must	be	selected	for
the	service	account	of	SQL	Server.

The	Computer	is	trusted	for	delegation	check	box	must	be	selected
for	the	server	running	an	instance	of	Microsoft	SQL	Server™.

To	use	security	account	delegation,	SQL	Server	must	have:

A	Service	Principal	Name	(SPN)	assigned	by	the	Windows	2000
account	domain	administrator.

The	SPN	must	be	assigned	to	the	service	account	of	the	SQL	Server
service	on	that	particular	computer.	Delegation	enforces	mutual
authentication.	The	SPN	proves	that	SQL	Server	is	verified	on	the
particular	server,	at	the	particular	socket	address,	by	the	Windows	2000
account	domain	administrator.	You	can	have	your	domain	administrator
establish	an	SPN	for	SQL	Server	with	the	setspn	utility	through	the
Windows	2000	Resource	Kit.

To	create	an	SPN	for	SQL	Server,	enter	the	following	code	at	a

command	prompt:

setspn	-A	MSSQLSvc/Host:port	serviceaccount

For	example:

setspn	-A	MSSQLSvc/server1.redmond.microsoft.com	sqlaccount

For	more	information	about	the	setspn	utility,	see	the	Windows	2000
documentation.

Before	enabling	delegation,	consider	the	following:

You	must	be	using	TCP/IP.	You	cannot	use	Named	Pipes,	because	the
SPN	targets	a	particular	TCP/IP	socket.	If	you	are	using	multiple	ports,
you	must	have	a	SPN	for	each	port.

You	can	also	enable	delegation	by	running	under	the	LocalSystem
account.	SQL	Server	will	self-register	at	service	startup	and
automatically	register	the	SPN.	This	option	is	easier	than	enabling
delegation	using	a	domain	user	account.	However,	when	SQL	Server
shuts	down,	the	SPNs	will	be	unregistered	for	the	LocalSystem
account.

Note		If	you	change	service	accounts	in	SQL	Server,	you	need	to	delete
any	previous	SPNs	and	create	new	ones.

Adding	an	SPN	to	SQL	Server

To	add	an	SPN	on	an	instance	of	SQL	Server	named	"myserver.microsoft.com",
for	an	instance	listening	on	port	1433,	using	service	account
MYDOMAIN\sqlsvc,	run	the	following	at	a	command	prompt:

setspn	-A	MSSQLSvc/myserver.microsoft.com:1433	sqlsvc

You	cannot	use	the	Netbios	name.	You	must	use	the	fully	qualified	DNS	name.
You	cannot	specify	the	domain	qualifier	for	the	service	account.	You	must	use
only	the	account	name.

To	change	and	use	the	LocalSystem	account,	enter	the	following	code	at	a
command	prompt	to	delete	the	previously	registered	SPN	:

setspn	-D	MSSQLSvc/myserver.microsoft.com:1433	sqlsvc

For	more	information	about	security	account	delegation,	see	the	Windows	2000
documentation.

Administering	SQL	Server

Permissions	Validation
After	a	user	has	been	authenticated	and	allowed	to	log	in	to	an	instance	of
Microsoft®	SQL	Server™,	a	separate	user	account	is	required	in	each	database
the	user	must	access.	Requiring	a	user	account	in	each	database	prevents	users
from	connecting	to	an	instance	of	SQL	Server	and	accessing	all	the	databases	on
a	server.	For	example,	if	a	server	contains	a	personnel	database	and	a	recruiting
database,	users	who	should	be	able	to	access	the	recruiting	database	but	not	the
personnel	database	would	have	a	user	account	created	only	in	the	recruiting
database.

The	user	account	in	each	database	is	used	to	apply	security	permissions	for	the
objects	(for	example,	tables,	views,	and	stored	procedures)	in	that	database.	This
user	account	can	be	mapped	from	Microsoft	Windows	NT®	4.0	and	Windows®
2000	user	accounts,	Windows	NT	4.0	and	Windows	2000	groups	in	which	the
user	is	a	member,	or	SQL	Server	login	accounts.	If	there	is	no	account	mapped
directly,	the	user	may	be	allowed	to	work	in	a	database	under	the	guest	account,
if	one	exists.	The	activities	a	user	is	allowed	to	perform	are	controlled	by	the
permissions	applied	to	the	user	account	from	which	they	gained	access	to	a
database.

SQL	Server	accepts	commands	after	a	user	gains	access	to	a	database.	All
activities	a	user	performs	in	a	database	are	communicated	to	SQL	Server	through
Transact-SQL	statements.	When	an	instance	of	SQL	Server	receives	a	Transact-
SQL	statement,	it	ensures	the	user	has	permission	to	execute	the	statement	in	the
database.	If	the	user	does	not	have	permission	to	execute	a	statement	or	access
an	object	used	by	the	statement,	SQL	Server	returns	a	permissions	error.

Administering	SQL	Server

Hierarchical	Security
The	security	environment	in	Microsoft®	SQL	Server™	is	stored,	managed,	and
enforced	through	a	hierarchical	system	of	users.	To	simplify	the	administration
of	many	users,	SQL	Server	uses	groups	and	roles:

A	group	is	an	administrative	unit	within	Microsoft	Windows	NT®	4.0
and	Windows®	2000	that	contains	Windows	NT	4.0	and	Windows	2000
users	or	other	groups.

A	role	is	an	administrative	unit	within	SQL	Server	that	contains	SQL
Server	logins,	Windows	NT	4.0	and	Windows	2000	logins,	groups,	or
other	roles.

Arranging	users	into	groups	and	roles	makes	it	easier	to	grant	or	deny
permissions	to	many	users	at	once.	The	security	settings	defined	for	a	group	are
applied	to	all	members	of	that	group.	When	a	group	is	a	member	of	a	higher-
level	group,	all	members	of	the	group	inherit	the	security	settings	of	the	higher-
level	group,	in	addition	to	the	security	settings	defined	for	the	group	itself	or
user	accounts.

The	organizational	chart	of	the	security	system	often	corresponds	to	the
organizational	chart	of	a	company.

These	two	organizational	charts	are	largely	compatible,	but	there	is	one	common
rule	for	a	company's	organizational	hierarchy	that	does	not	apply	to	the	security
model:	an	individual	reports	only	to	one	manager.	This	rule	implies	that	an
employee	can	fall	into	only	a	single	branch	of	the	hierarchical	model,	as	shown
in	the	diagram.

The	requirements	of	a	database	security	system	go	beyond	this	one-manager
limitation;	employees	belong	to	security	groups	that	do	not	fall	within	the	strict
organizational	plan	of	the	company.	For	example,	administrative	staff	exists	in
every	branch	of	the	company	and	require	security	permissions	regardless	of	their
organizational	branch.	To	support	this	broader	model,	the	security	system	in
Windows	NT	4.0,	Windows	2000,	and	SQL	Server	allows	groups	to	be	defined
across	a	hierarchy.	An	Administrative	group	can	be	created	to	contain
administrative	employees	for	every	branch	of	the	company	from	the	Corporate
group	to	the	Payroll	group.

This	hierarchical	system	of	security	groups	simplifies	management	of	security
settings.	It	allows	security	settings	to	be	applied	collectively	to	all	group
members,	without	having	to	be	defined	redundantly	for	each	person.	The
hierarchical	model	also	accommodates	security	settings	applied	only	to	a	single
user.

Administering	SQL	Server

Creating	Security	Accounts
Each	user	must	gain	access	to	an	instance	of	Microsoft®	SQL	Server™	through
a	login	account	that	establishes	the	user's	ability	to	connect	(authentication).	This
login	then	has	to	be	mapped	to	a	SQL	Server	user	account,	which	is	used	to
control	activities	performed	in	the	database	(permissions	validation).	Therefore,
a	single	login	is	mapped	to	one	user	account	created	in	each	database	the	login	is
accessing.	If	no	user	account	exists	in	a	database,	the	user	cannot	access	the
database	even	though	the	user	may	be	able	to	connect	to	an	instance	of	SQL
Server.

The	login	is	created	in	Microsoft	Windows	NT®	4.0	or	Windows®	2000	rather
than	in	SQL	Server.	This	login	is	then	granted	permission	to	connect	to	an
instance	of	SQL	Server.	The	login	is	granted	access	within	SQL	Server.

Administering	SQL	Server

Security	Rules
Microsoft®	SQL	Server™	logins,	users,	roles,	and	passwords	can	contain	from	1
through	128	characters,	including	letters,	symbols,	and	digits,	(for	example
Andrew-Fuller,	Margaret	Peacock,	or	139abc).	Therefore,	Microsoft
Windows	NT®	4.0,	Microsoft	Windows®	2000,	or	Microsoft	Windows	98	user
names	can	be	used	as	SQL	Server	logins.

However,	because	logins,	user	names,	roles,	and	passwords	are	often	used	in
Transact-SQL	statements,	certain	symbols	must	be	delimited	with	double
quotation	marks	("),	or	square	brackets	([]).	Use	delimiters	in	Transact-SQL
statements	when	the	SQL	Server	login,	user,	role,	or	password:

Contains,	or	begins	with,	a	space	character.

Begins	with	the	$	or	@	character.

Note		It	is	not	necessary	to	specify	delimiters	when	entering	logins,
users,	roles,	and	passwords	into	the	text	boxes	of	the	SQL	Server
graphical	client	tools,	such	as	SQL	Server	Enterprise	Manager.

Additionally,	a	SQL	Server	login,	user,	or	role	cannot:

Contain	a	backslash	(\)	character,	unless	referring	to	an	existing
Windows	NT	4.0	or	Windows	2000	user	or	group.	The	backslash
separates	the	Windows	NT	4.0	or	Windows	2000	computer	or	domain
name	from	the	user	name.

Already	exist	in	the	current	database	(or	master,	for	logins	only).

Be	NULL,	or	an	empty	string	("").

See	Also

Delimited	Identifiers

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Adding	a	Windows	User	or	Group
Microsoft®	Windows	NT®	4.0	and	Windows®	2000	accounts	(users	or	groups)
must	be	granted	permissions	to	connect	to	an	instance	of	Microsoft	SQL
Server™	before	they	can	access	a	database.	If	all	members	of	a	Windows	NT	4.0
or	Windows	2000	group	will	be	connecting	to	an	instance	of	SQL	Server,	you
can	grant	permission	to	the	group	as	a	whole.	Managing	group	permissions	is
much	easier	than	managing	permissions	for	individual	users.	If	the	group	should
not	be	granted	permission	collectively,	grant	permission	to	connect	to	an
instance	of	SQL	Server	for	each	individual	Windows	NT	4.0	or	Windows	2000
user.

Users
When	granting	a	Windows	NT	4.0	or	Windows	2000	user	access	to	connect	to	an
instance	of	SQL	Server,	specify	the	Windows	NT	4.0	or	Windows	2000	domain
or	computer	name	to	which	the	user	belongs,	followed	by	a	backslash,	and	then
the	user.	For	example,	to	grant	access	to	the	Windows	NT	4.0	or	Windows	2000
user	Andrew,	in	the	Windows	NT	4.0	or	Windows	2000	domain	LONDON,
specify	LONDON\Andrew	as	the	user	name.

Local	and	Global	Groups
There	are	several	types	of	Windows	NT	4.0	and	Windows	2000	groups,
including	global	and	local:

Global	groups	contain	user	accounts	from	the	Windows	NT	4.0	or
Windows	2000	domain	in	which	they	are	created.	Global	groups	cannot
contain	other	groups	or	users	from	other	domains	and	cannot	be	created
on	a	computer	running	Microsoft	Windows	NT	4.0	Workstation	or
Microsoft	Windows	2000	Professional.

Local	groups	can	contain	user	accounts	and	global	groups	from	the
domain	in	which	they	are	created	and	in	any	trusted	domain.	Local
groups	cannot	contain	other	local	groups.

Additionally,	Windows	NT	4.0	and	Windows	2000	have	predefined,	built-in
local	groups	(for	example,	Administrators,	Users,	and	Guests).

When	granting	a	Windows	NT	4.0	or	Windows	2000	local	or	global	group
access	to	connect	to	an	instance	of	SQL	Server,	specify	the	domain	or	computer
name	the	group	is	defined	on,	followed	by	a	backslash,	and	then	the	group	name.
For	example,	to	grant	access	to	a	global	group	called	SQL_Users,	in	the
LONDON	domain,	specify	LONDON\SQL_Users	as	the	group	name.

To	grant	access	to	a	Windows	NT	4.0	or	Windows	2000	built-in,	local	group,
specify	BUILTIN	instead	of	the	domain	or	computer	name.	To	grant	access	to
the	built-in	Windows	NT	4.0	and	Windows	2000	local	group	Administrators,
specify	BUILTIN\Administrators	as	the	group	name.

For	more	information	about	these	accounts,	see	the	Windows	NT	4.0	and
Windows	2000	documentation.

To	grant	a	Windows	user	or	group	login	access	to	SQL	Server

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Granting	a	Windows	User	or	Group	Access	to	a
Database
To	obtain	access	to	a	Microsoft®	SQL	Server™	database,	a	Microsoft	Windows
NT®	4.0	and	Windows®	2000	user	or	group	must	have	a	corresponding	user
account	in	each	database	they	need	to	access.	Additionally,	permissions	must	be
applied	to	this	user	account.

Although	possible,	it	is	not	necessary	to	add	an	individual	user	account	in	a
database	for	each	Windows	NT	4.0	and	Windows	2000	user	in	a	Windows	NT
4.0	and	Windows	2000	group	whose	members	all	perform	the	same	activities.
Accounts	can	be	added	for	groups	rather	than	for	each	individual	member.	When
the	group	members	need	to	work	in	a	database,	they	are	granted	access	through
their	membership	in	the	Windows	NT	4.0	and	Windows	2000	group;	there	is	not
a	specific	account	for	individual	users	within	the	group.	For	example,	a
Windows	NT	4.0	and	Windows	2000	group	London\Managers	contains	the
Windows	NT	4.0	and	Windows	2000	user	London\JoeB.	The	SQL	Server
system	administrator	grants	login	access	only	to	London\Managers.	The	owner
of	database	Accounts	grants	only	London\Managers	permission	to	access
Accounts.	Although	London\JoeB	does	not	have	explicit	permission	granted	to
connect	to	an	instance	of	SQL	Server	or	to	access	Accounts,	he	can	connect	to
the	instance	of	SQL	Server	and	access	Accounts	due	to	his	membership	in
London\Managers.

Add	individual	Windows	NT	4.0	and	Windows	2000	users	to	a	database	only	if
the	user	performs	activities	different	from	other	members	of	any	Windows	NT
4.0	or	Windows	2000	group	(for	example,	special	database	administrative
duties).

Note		Users	who	are	granted	access	to	an	instance	of	SQL	Server	through	their
memberships	in	a	Windows	NT	4.0	or	Windows	2000	group	do	not	have	entries
for	their	individual	Windows	NT	4.0	or	Windows	2000	user	accounts	in	the
system	tables.	However,	an	entry	is	created	for	their	individual	user	accounts	if
they	create	objects,	such	as	a	table	or	a	stored	procedure,	in	a	SQL	Server
database.

To	grant	a	Windows	user	or	group	access	to	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Adding	a	SQL	Server	Login
Add	Microsoft®	SQL	Server™	login	accounts	that	allow	a	connection	by	means
of	a	specified	login	name	and	password,	rather	than	through	a	Microsoft
Windows	NT®	4.0	or	Windows®	2000	user	or	group	account,	if:

SQL	Server	is	configured	to	operate	in	Mixed	Mode.

An	instance	of	SQL	Server	is	running	on	Microsoft	Windows	98.

Adding	SQL	Server	logins	is	required:

For	compatibility	with	applications	containing	data	imported	from	other
databases	vendors.

For	applications	designed	to	work	with	general	users	who	do	not	have
Windows	NT	4.0	or	Windows	2000	accounts.

To	connect	to	an	instance	of	SQL	Server	running	on	Windows	98
because	Windows	Authentication	is	not	available	on	Windows	98.

To	add	a	SQL	Server	login

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

System	Administrator	(sa)	Login
System	administrator	(sa)	is	a	special	login	provided	for	backward	compatibility.
By	default,	it	is	assigned	to	the	sysadmin	fixed	server	role	and	cannot	be
changed.	Although	sa	is	a	built-in	administrator	login,	do	not	use	it	routinely.
Instead,	make	system	administrators	members	of	the	sysadmin	fixed	server	role,
and	have	them	log	on	using	their	own	logins.	Use	sa	only	when	there	is	no	other
way	to	log	in	to	an	instance	of	Microsoft®	SQL	Server™	(for	example,	when
other	system	administrators	are	unavailable	or	have	forgotten	their	passwords).

Note		When	SQL	Server	is	installed,	SQL	Server	Setup	prompts	you	to	change
the	sa	login	password	if	you	request	Mixed	Mode	authentication.	It	is
recommended	that	the	password	be	assigned	immediately	to	prevent
unauthorized	access	to	an	instance	of	SQL	Server	using	the	sa	login.

See	Also

Assigning	an	sa	Password

Administering	SQL	Server

Granting	a	SQL	Server	Login	Access	to	a	Database
Add	a	Microsoft®	SQL	Server™	user	account	to	each	database	for	each	SQL
Server	login	that	requires	access	to	the	database.	If	a	user	is	not	created	in	the
database,	the	SQL	Server	login	cannot	access	the	database.

To	grant	a	SQL	Server	login	access	to	a	database,	the	SQL	Server	login	must
already	exist.	Furthermore,	SQL	Server	logins	must	be	granted	access	to	a
database	one	at	a	time.

To	grant	a	SQL	Server	login	access	to	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Database	Owner	(dbo)
The	dbo	is	a	user	that	has	implied	permissions	to	perform	all	activities	in	the
database.	Any	member	of	the	sysadmin	fixed	server	role	who	uses	a	database	is
mapped	to	the	special	user	inside	each	database	called	dbo.	Also,	any	object
created	by	any	member	of	the	sysadmin	fixed	server	role	belongs	to	dbo
automatically.

For	example,	if	user	Andrew	is	a	member	of	the	sysadmin	fixed	server	role	and
creates	a	table	T1,	T1	belongs	to	dbo	and	is	qualified	as	dbo.T1,	not	as
Andrew.T1.	Conversely,	if	Andrew	is	not	a	member	of	the	sysadmin	fixed
server	role	but	is	a	member	only	of	the	db_owner	fixed	database	role	and
creates	a	table	T1,	T1	belongs	to	Andrew	and	is	qualified	as	Andrew.T1.	The
table	belongs	to	Andrew	because	he	did	not	qualify	the	table	as	dbo.T1.

The	dbo	user	cannot	be	deleted	and	is	always	present	in	every	database.

Only	objects	created	by	members	of	the	sysadmin	fixed	server	role	(or	by	the
dbo	user)	belong	to	dbo.	Objects	created	by	any	other	user	who	is	not	also	a
member	of	the	sysadmin	fixed	server	role	(including	members	of	the	db_owner
fixed	database	role):

Belong	to	the	user	creating	the	object,	not	dbo.

Are	qualified	with	the	name	of	the	user	who	created	the	object.

See	Also

Delimited	Identifiers

sp_changedbowner

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Database	Object	Owner
A	user	who	creates	a	database	object	(a	table,	index,	view,	trigger,	function,	or
stored	procedure)	is	called	a	database	object	owner.	Permission	to	create
database	objects	must	be	given	by	the	database	owner	or	system	administrator.
However,	after	these	permissions	are	granted,	a	database	object	owner	can	create
an	object	and	grant	other	users	permission	to	use	that	object.

Database	object	owners	have	no	special	login	IDs	or	passwords.	The	creator	of	a
database	object	is	granted	all	permissions	implicitly	but	must	give	explicit
permissions	to	other	users	before	they	can	access	the	object.

Referencing	database	objects
When	users	access	an	object	created	by	another	user,	the	object	should	be
qualified	with	the	name	of	the	object	owner;	otherwise,	Microsoft®	SQL
Server™	may	not	know	which	object	to	use	because	there	could	be	many	objects
of	the	same	name	owned	by	different	users.	If	an	object	is	not	qualified	with	the
object	owner	when	it	is	referenced	(for	example,	my_table	instead	of
owner.my_table),	SQL	Server	looks	for	an	object	in	the	database	in	the
following	order:

1.	 Owned	by	the	current	user.

2.	 Owned	by	dbo.

If	the	object	is	not	found,	an	error	is	returned.

For	example,	user	John	is	a	member	of	the	db_owner	fixed	database	role,	but
not	the	sysadmin	fixed	server	role,	and	creates	table	T1.	All	users,	except	John,
who	want	to	access	T1	must	qualify	T1	with	the	user	name	John.	If	T1	is	not
qualified	with	the	user	name	John,	SQL	Server	first	looks	for	a	table	named	T1
owned	by	the	current	user	and	then	owned	by	dbo.	If	the	current	user	and	dbo
do	not	own	a	table	named	T1,	an	error	is	returned.	If	the	current	user	or	dbo
owns	another	table	named	T1,	the	other	table	named	T1,	rather	than	John.T1,	is
used.

If	a	database	object	owner	must	be	removed	from	a	database,	the	owned	objects
must	be	dropped	first	or	their	ownership	transferred	to	another	user.

Note		SQL	Server	allows	a	role	or	Microsoft	Windows	NT®	4.0	or	Windows®
2000	group	to	be	specified	as	the	owner	of	an	object.	For	example,	to	create	the
table	group_table	owned	by	the	Windows	NT	4.0	or	Windows	2000	group
LONDON\Users,	specify	[LONDON\Users].group_table	as	the	qualified	table
name.	All	members	of	the	LONDON\Users	group	have	database	object	owner
permissions	on	group_table.

See	Also

Delimited	Identifiers

sp_changeobjectowner

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

guest	User
The	guest	user	account	allows	a	login	without	a	user	account	to	access	a
database.	A	login	assumes	the	identity	of	the	guest	user	when	both	of	the
following	conditions	are	met:

The	login	has	access	to	an	instance	of	Microsoft®	SQL	Server™	but
does	not	have	access	to	the	database	through	his	or	her	own	user
account.

The	database	contains	a	guest	user	account.

Permissions	can	be	applied	to	the	guest	user	as	if	it	were	any	other	user	account.
The	guest	user	can	be	deleted	and	added	to	all	databases	except	master	and
tempdb,	where	it	must	always	exist.	By	default,	a	guest	user	account	does	not
exist	in	newly	created	databases.

For	example,	to	add	a	guest	user	account	to	a	database	named	Accounts,	run	the
following	code	in	SQL	Query	Analyzer:

USE	Accounts
GO
EXECUTE	sp_grantdbaccess	guest

To	grant	a	SQL	Server	login	access	to	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Creating	User-Defined	SQL	Server	Database	Roles
Create	Microsoft®	SQL	Server™	database	roles	when	a	group	of	users	needs	to
perform	a	specified	set	of	activities	in	SQL	Server	and	one	of	the	following	is
true:

There	is	no	applicable	Microsoft	Windows	NT®	4.0	or	Windows®
2000	group.	

You	do	not	have	permissions	to	manage	Windows	NT	4.0	or	Windows
2000	user	accounts.

Note		Avoid	deep	levels	of	nested	roles	because	this	can	affect	performance.

For	example,	a	company	may	form	a	Charity	Event	Committee	involving
employees	from	different	departments	and	from	several	different	levels	in	the
organization.	These	employees	need	access	to	a	special	project	table	in	the
database.	There	is	no	existing	Windows	NT	4.0	or	Windows	2000	group	that
includes	just	these	employees,	and	there	is	no	other	reason	to	create	one	in
Windows	NT	4.0	or	Windows	2000.	A	custom	SQL	Server	database	role,
CharityEvent,	can	be	created	for	this	project	and	individual	Windows	NT	4.0
and	Windows	2000	users	added	to	the	database	role.	When	permissions	are
applied,	the	users	in	the	database	role	gain	table	access.	Permissions	for	other
database	activities	are	not	affected,	and	the	CharityEvent	users	are	the	only
ones	who	can	work	with	the	project	table.

SQL	Server	roles	exist	within	a	database	and	cannot	span	more	than	one
database.

The	advantages	of	using	database	roles	include:

For	any	user,	more	than	one	database	role	can	be	active	at	any	time.

SQL	Server	roles	can	contain	Windows	NT	4.0	or	Windows	2000
groups	and	users	and	SQL	Server	users	and	other	roles,	provided	that	all
users,	groups,	and	roles	exist	in	the	current	database.

A	user	can	belong	to	more	than	one	role	in	the	same	database.

A	scalable	model	is	provided	for	setting	up	the	correct	level	of	security
within	a	database.

Note		A	database	role	is	owned	by	either	the	user	explicitly	specified	as	the
owner	when	the	role	is	created,	or	the	user	who	created	the	role	when	no	owner
is	specified.	The	owner	of	the	role	determines	who	can	be	added	or	removed
from	the	role.	However,	because	a	role	is	not	a	database	object,	multiple	roles	of
the	same	name	in	the	same	database	owned	by	different	users	cannot	be	created.

To	create	a	SQL	Server	database	role

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Adding	a	Member	to	a	SQL	Server	Database	Role
When	you	add	a	new	user	account	in	Microsoft®	SQL	Server™	or	change	the
permissions	of	an	existing	user,	you	can	add	the	user	to	a	SQL	Server	database
role	rather	than	applying	permissions	directly	to	the	account.	Roles	can	simplify
security	administration	in	databases	with	a	large	number	of	users	or	with	a
complex	security	system.

SQL	Server	users,	Microsoft	Windows	NT®	4.0	or	Windows®	2000	users	and
groups,	and	other	SQL	Server	database	roles	all	can	be	added	as	a	member	of	a
role.	Because	a	role	is	restricted	to	a	single	database	and	cannot	be	added	from
one	database	to	another,	you	can	add	users,	groups,	and	roles	known	only	to	that
database.

Note		When	you	add	a	Windows	NT	4.0	or	Windows	2000	login	without	a	user
account	in	the	database	to	a	SQL	Server	database	role,	SQL	Server	creates	a	user
account	in	the	database	automatically,	even	if	that	Windows	NT	4.0	or	Windows
2000	login	cannot	otherwise	access	the	database.

A	user	account	can	be	a	member	of	any	number	of	roles	within	the	same
database	and	can	hold	permissions	appropriate	to	each	role.	For	example,	a	SQL
Server	user	can	be	a	member	of	the	admin	role	and	the	users	role	for	the	same
database,	with	each	role	granting	different	permissions.	The	permission	on	an
object	granted	to	a	member	of	more	than	one	role	are	the	cumulative	permissions
of	the	roles.	However,	a	denied	permission	in	one	role	has	precedence	over	the
same	permission	granted	in	another	role.	For	example,	the	admin	role	may	grant
access	to	a	table,	whereas	the	users	role	denies	access	to	the	same	table.	A
member	of	both	roles	is	denied	access	to	the	table	because	denied	access	is	more
restrictive	and	has	precedence.

Users	to	be	added	to	a	user-defined	database	role	must	already	have	permission
to	access	the	database	containing	the	user-defined	role.

To	add	a	member	to	a	SQL	Server	database	role

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Adding	a	Member	to	a	Predefined	Role
The	security	mechanism	in	Microsoft®	SQL	Server™	includes	several
predefined	roles	with	implied	permissions	that	cannot	be	granted	to	other	user
accounts.	If	you	have	users	who	require	these	permissions,	you	must	add	their
accounts	to	these	predefined	roles.	The	two	types	of	predefined	roles	are	fixed
server	and	fixed	database.

Fixed	Server	Roles
Fixed	server	roles,	which	cannot	be	created,	are	defined	at	the	server	level	and
exist	outside	of	individual	databases.	To	add	a	user	to	a	fixed	server	role,	the	user
must	have	a	SQL	Server	or	Microsoft	Windows	NT®	4.0	or	Windows®	2000
login	account.	Any	member	of	a	fixed	server	role	can	add	other	logins.

IMPORTANT		Windows	NT	4.0	or	Windows	2000	users	who	are	members	of	the
BUILTIN\Administrators	group	are	members	of	the	sysadmin	fixed	server
role	automatically.

The	following	table	describes	the	fixed	server	roles.

Fixed	server	role Description
sysadmin Performs	any	activity	in	SQL	Server.	The

permissions	of	this	role	span	all	of	the	other	fixed
server	roles.

serveradmin Configures	server-wide	settings.
setupadmin Adds	and	removes	linked	servers,	and	executes

some	system	stored	procedures,	such	as
sp_serveroption.

securityadmin Manages	server	logins.
processadmin Manages	processes	running	in	an	instance	of	SQL

Server.
dbcreator Creates	and	alters	databases.
diskadmin Manages	disk	files.
bulkadmin Executes	the	BULK	INSERT	statement.

The	securityadmin	has	permission	to	execute	the	sp_password	stored
procedure	for	all	users	other	than	members	of	the	sysadmin	role.

The	bulkadmin	fixed	server	role	has	permission	to	execute	BULK	INSERT
statements.	Members	of	the	bulkadmin	role	can	add	other	logins	to	the	role,	as
all	members	of	any	given	fixed	server	role	can	do.	However,	due	to	the	security
implications	associated	with	executing	the	BULK	INSERT	statement	(the	BULK
INSERT	statement	requires	read	access	to	any	data	on	the	network	and	machine
the	server	is	running	on),	it	may	not	be	desirable	for	members	of	the	bulkadmin
role	to	grant	permission	to	others.	The	bulkadmin	role	provides	members	of	the
sysadmin	fixed	server	role	with	a	method	to	delegate	tasks	requiring	execution
of	the	BULK	INSERT	statement,	without	granting	users	sysadmin	rights.
Members	of	the	bulkadmin	role	are	allowed	to	execute	the	BULK	INSERT
statement,	but	they	still	must	have	the	INSERT	permission	on	the	table	on	which
you	wish	to	insert	data.

To	add	a	member	to	a	fixed	server	role

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

public	Role
The	public	role	is	a	special	database	role	to	which	every	database	user	belongs.
The	public	role:

Captures	all	default	permissions	for	users	in	a	database.

Cannot	have	users,	groups,	or	roles	assigned	to	it	because	they	belong	to
the	role	by	default.

Is	contained	in	every	database,	including	master,	msdb,	tempdb,
model,	and	all	user	databases.

Cannot	be	dropped.

Administering	SQL	Server

Using	the	Create	Login	Wizard
Although	the	steps	required	to	grant	login	access	to	Microsoft®	SQL	Server™
and	a	database	can	be	performed	separately,	the	Create	Login	Wizard	can
simplify	the	process.	The	Create	Login	Wizard	allows	you	to:

Choose	which	authentication	mode	to	use	to	connect	to	an	instance	of
SQL	Server	(Windows	Authentication	Mode	or	Mixed	Mode).

Add	a	Microsoft	Windows	NT®	4.0,	Windows®	2000	or	SQL	Server
login.

Add	a	Windows	NT	4.0,	Windows	2000	or	SQL	Server	user	to	a	fixed
server	role.

Add	a	Windows	NT	4.0,	Windows	2000	or	SQL	Server	user	to	one	or
more	databases,	thereby	granting	the	user	access	to	those	databases.

To	grant	SQL	Server	login	access	to	a	user	by	using	the	Create	Login
Wizard

Administering	SQL	Server

Managing	Security	Accounts
After	security	accounts	have	been	added	to	Microsoft®	SQL	Server™,	you	can
modify	them	as	business	needs	change.	This	usually	involves	viewing,
modifying,	and	removing	the	security	accounts	in	the	database	to	fit	the	needs	of
your	business.

Administering	SQL	Server

Viewing	Logins
View	Microsoft®	SQL	Server™	logins	to	determine	if	a	user	or	Microsoft
Windows	NT®	4.0	or	Windows®	2000	group	has	permission	to	connect	to	an
instance	of	SQL	Server,	and	to	identify	which	databases	the	login	can	access.
Also,	view	a	login	before	removing	it	to	see	which	database	users	must	be
removed;	it	is	not	possible	to	remove	a	login	without	first	removing	the
associated	users.

You	can	view:

Users	in	each	database	associated	with	the	login.

Default	database	and	language	the	login	uses	when	the	user	first
connects	to	an	instance	of	SQL	Server.

Windows	NT	4.0	or	Windows	2000	security	identifier	(SID).

Note		It	is	not	possible	to	view	the	password	of	any	login	unless	the	password	is
NULL.	Passwords	are	encrypted	when	stored	in	SQL	Server.

To	view	a	SQL	Server	login	or	Windows	user	or	group

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Modifying	Logins
After	a	login	has	been	created,	it	may	be	necessary	to	change	the	password,
default	database,	or	default	language.	For	example,	a	user	may	forget	her
password,	want	to	change	the	password	for	security	reasons,	need	to	use	a
different	database	on	a	regular	basis,	or	need	to	see	messages	in	a	different
language.

Note		If	a	user	forgets	a	password,	a	member	of	the	sysadmin	or	securityadmin
fixed	server	role	can	change	the	password	without	knowing	the	original
password.	A	user	cannot	change	a	password	if	he	has	forgotten	it.	Members	of
the	securityadmin	role	cannot	change	the	password	of	members	of	the
sysadmin	role.

To	change	the	password	of	a	SQL	Server	login

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Removing	Logins	and	Users
The	process	of	deactivating	security	accounts	(for	example,	when	an	employee
leaves	a	company)	is	similar	to	the	process	of	adding	a	new	user.	Update	the
security	mechanism	in	Microsoft®	Windows	NT®	4.0	or	Windows®	2000	by
first	removing	the	user's	Windows	NT	4.0	or	Windows	2000	user	account.	If	the
user	has	a	Microsoft	SQL	Server™	user	account,	removed	it	from	SQL	Server
along	with	any	SQL	Server	database	roles	specifically	defined	for	that	user.
Finally,	remove	any	SQL	Server	login.

Removing	a	SQL	Server	user	or	Windows	NT	4.0	or	Windows	2000	user	or
group	from	a	SQL	Server	database	automatically	removes	the	permissions
defined	for	the	user	or	group	and	prevents	that	user	from	using	the	database
under	the	old	security	account.	The	permissions	do	not	have	to	be	removed
separately.	However,	it	is	not	possible	to	remove	a	user	from	SQL	Server	if	that
user	currently	owns	objects	(tables,	procedures,	or	views)	within	a	database.	If
the	user	owns	objects,	then	either	drop	those	objects	before	removing	the	user	or
transfer	ownership	to	another	existing	user	by	using	the	sp_changeobjectowner
system	stored	procedure.

Removing	a	user	does	not	remove	a	login	automatically,	so	it	does	not	prevent
the	user	from	connecting	to	an	instance	of	SQL	Server.	After	being	removed,	the
user	can	log	in	to	the	databases	only	through	the	guest	account	and	perform
activities	under	those	permissions.	To	prevent	a	user	from	connecting	to	an
instance	of	SQL	Server,	remove	his	or	her	login.

If	a	linked	server	login	is	set	up	but	is	no	longer	required,	remove	it	to	prevent
unauthorized	access	to	the	linked	server	and	to	keep	the	security	system	as
simple	as	possible.

To	remove	a	user	or	group	from	a	database

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Denying	Login	Access	to	Windows	Accounts
When	a	Microsoft®	Windows	NT®	4.0	or	Windows®	2000	user	belongs	to	a
Windows	NT	4.0	or	Windows	2000	group	that	has	a	login	account	in	Microsoft
SQL	Server™,	the	user	is	allowed	to	connect	through	the	group	login.	However,
there	may	be	times	when	such	users	or	groups	need	to	be	prevented	from
connecting	to	an	instance	of	SQL	Server.	You	can	deny	login	access	to	any
Windows	NT	4.0	or	Windows	2000	user	or	group.	Users	cannot	connect	to	an
instance	of	SQL	Server	if	their	user	account,	or	any	group	in	which	they	are	a
member,	has	been	denied	login	access.

To	deny	login	access	to	a	Windows	user	or	group

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Viewing	Roles
When	creating	and	using	a	database,	you	may	need	to	find	information	about	a
Microsoft®	SQL	Server™	database	role	or	a	fixed	server	role.	For	example,	you
may	need	to	see	which	roles	exist	in	the	current	database,	or	list	the	fixed	server
roles.

To	view	the	roles	defined	in	the	current	database

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Viewing	and	Modifying	Role	Memberships
While	using	a	database,	you	may	need	to	list	the	members	of	a	database	role	or
fixed	server	role.	Or,	when	a	Microsoft®	SQL	Server™	user	no	longer	needs	the
permissions	from	a	user-defined,	fixed	database	or	server	role	of	which	she	is	a
member,	you	may	want	to	remove	the	user	from	the	role	to	keep	the	security
system	as	simple	as	possible.

To	view	the	members	of	a	database	role

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Removing	a	SQL	Server	Database	Role
The	changing	security	requirements	of	a	database	can	render	a	Microsoft®	SQL
Server™	database	role	obsolete.	Remove	roles	when	you	have	removed	all	users
and	are	certain	that	the	role	and	its	permissions	will	not	be	required	in	the	future.
Empty	roles	can	be	saved	if	the	permissions	may	be	required	for	a	new	user.
However,	from	an	administrative	perspective,	it	is	much	easier	to	work	with	a
security	system	that	is	not	cluttered	with	unnecessary	security	roles.	SQL	Server
operates	faster	with	a	simpler	security	system,	although	it	is	will	not	be	a
problem	unless	there	are	an	extremely	large	number	of	roles.

Note		It	is	not	possible	to	remove	fixed	server	roles	or	fixed	database	roles.

To	remove	a	SQL	Server	role

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Viewing	Database	Users
Viewing	a	Microsoft®	SQL	Server™	user	account	in	a	database	shows:

The	roles	of	which	the	user	is	a	member.

The	SQL	Server	login	associated	with	the	user.

The	default	database.

Use	this	information	to	understand	how	the	user	fits	into	the	security	system	of
the	database.

To	view	a	database	user

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Managing	Permissions
When	users	connect	to	an	instance	of	Microsoft®	SQL	Server™,	the	activities
they	can	perform	are	determined	by	the	permissions	granted	to:

Their	security	accounts.

The	Microsoft	Windows	NT®	4.0	or	Windows®	2000	groups	or	role
hierarchies	to	which	their	security	accounts	belong.

The	user	must	have	the	appropriate	permissions	to	perform	any	activity	that
involves	changing	the	database	definition	or	accessing	data.

Managing	permissions	includes	granting	or	revoking	user	rights	to:

Work	with	data	and	execute	procedures	(object	permissions).

Create	a	database	or	an	item	in	the	database	(statement	permissions).

Utilize	permissions	granted	to	predefined	roles	(implied	permissions).

Object	Permissions

Working	with	data	or	executing	a	procedure	requires	a	class	of	permissions
known	as	object	permissions:

SELECT,	INSERT,	UPDATE,	and	DELETE	statement	permissions,
which	can	be	applied	to	the	entire	table	and	view.

SELECT	and	UPDATE	statement	permissions,	which	can	be	selectively
applied	to	individual	columns	of	a	table	or	view.

SELECT	permissions,	which	may	be	applied	to	user-defined	functions.

INSERT	and	DELETE	statement	permissions,	which	affect	the	entire
row,	and	therefore	can	be	applied	only	to	the	table	and	view	and	not	to
individual	columns.

EXECUTE	statement	permissions,	which	affect	stored	procedures	and
functions.

Statement	Permissions

Activities	involved	in	creating	a	database	or	an	item	in	a	database,	such	as	a
table	or	stored	procedure,	require	a	different	class	of	permissions	called
statement	permissions.	For	example,	if	a	user	must	be	able	to	create	a	table
within	a	database,	then	grant	the	CREATE	TABLE	statement	permission	to	the
user.	Statement	permissions,	such	as	CREATE	DATABASE,	are	applied	to	the
statement	itself,	rather	than	to	a	specific	object	defined	in	the	database.

Statement	permissions	are:

BACKUP	DATABASE

BACKUP	LOG

CREATE	DATABASE

CREATE	DEFAULT

CREATE	FUNCTION

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	VIEW

Implied	Permissions

Implied	permissions	control	those	activities	that	can	be	performed	only	by
members	of	predefined	system	roles	or	owners	of	database	objects.	For	example,
a	member	of	the	sysadmin	fixed	server	role	inherits	automatically	full
permission	to	do	or	see	anything	in	a	SQL	Server	installation.

Database	object	owners	also	have	implied	permissions	that	allow	them	to
perform	all	activities	with	the	object	they	own.	For	example,	a	user	who	owns	a
table	can	view,	add,	or	delete	data,	alter	the	table	definition,	or	control
permissions	that	allow	other	users	to	work	with	the	table.

See	Also

BACKUP	DATABASE

BACKUP	LOG

CREATE	DATABASE

CREATE	DEFAULT

CREATE	FUNCTION

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	VIEW

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

Administering	SQL	Server

Granting	Permissions
Grant	statement	and	object	permissions	that	allow	a	user	account	to:

Perform	activities	or	work	with	data	in	the	current	database.

Restrict	them	from	activities	or	information	not	part	of	their	intended
function.

For	example,	you	may	be	inclined	to	grant	SELECT	object	permission
on	the	payroll	table	to	all	members	of	the	personnel	role,	allowing	all
members	of	personnel	to	view	payroll.	Months	later,	you	may	overhear
members	of	personnel	discussing	management	salaries,	information	not
meant	to	be	seen	by	all	personnel	members.	In	this	situation,	grant
SELECT	access	to	personnel	for	all	columns	in	payroll	except	the
salary	column.

Note		It	is	possible	to	grant	permissions	only	to	user	accounts	in	the	current
database,	for	objects	in	the	current	database.	If	a	user	needs	permissions	to
objects	in	another	database,	create	the	user	account	in	the	other	database,	or
grant	the	user	account	access	to	the	other	database,	as	well	as	the	current
database.	System	stored	procedures	are	the	exception	because	EXECUTE
permissions	are	already	granted	to	the	public	role,	which	allows	everyone	to
execute	them.	However,	after	EXECUTE	has	been	issued,	the	system	stored
procedures	check	the	user's	role	membership.	If	the	user	is	not	a	member	of	the
appropriate	fixed	server	or	database	role	necessary	to	run	the	stored	procedure,
the	stored	procedure	will	not	continue.

To	allow	access	by	granting	permissions	(on	an	object)

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Denying	Permissions
Microsoft®	SQL	Server™	allows	Microsoft	Windows	NT®	4.0	or	Windows®
2000	users	and	groups,	SQL	Server	users,	and	SQL	Server	database	roles	to	be
members	of	other	roles.	This	results	in	a	hierarchical	security	system	that	allows
permissions	to	be	applied	through	several	levels	of	roles	and	members.	But	there
may	be	times	when	you	want	to	limit	the	permissions	of	a	user	or	role.	Denying
permissions	on	a	user	account:

Removes	permission	granted	previously	to	the	user,	group,	or	role.

Deactivates	permission	inherited	from	another	role(s).

Ensures	that	a	user,	group,	or	role	will	not	inherit	permission	from	a
higher	level	group	or	role	in	the	future.

For	example,	you	may	need	to	provide	all	tenured	employees	in	your	company
with	access	to	several	tables	in	a	database,	with	the	exception	of	a	few	new
employees	scattered	throughout	the	organization	who	you	want	to	prevent	from
seeing	the	CorporateSecrets	table.

Create	a	role	for	each	department	in	the	company	and	add	all	employees	to	their
department	role.	Then	create	a	company-wide	Corporate	role,	to	which	you	add
each	of	the	individual	department	roles	and	grant	permissions	to	view	the	tables.
At	this	point,	every	employee	in	the	company	can	see	all	the	tables	because	each
inherits	permission	from	the	Corporate	role	through	his	department	roles.

To	selectively	prevent	employees	from	seeing	CorporateSecrets,	create	a
Nonsecure	role,	and	add	the	individual	employees	who	should	not	see	the	table.
When	you	deny	permission	to	view	CorporateSecrets	to	Nonsecure,	this	access
is	removed	from	all	members	of	Nonsecure,	while	the	rest	of	the	employees	in
the	company	are	not	affected.

You	also	can	deny	permissions	to	an	individual	user.	In	the	previous	example,	a
nonemployee	may	have	a	Windows	NT	4.0	or	Windows	2000	account	while
working	on	a	short-term	project	in	the	database.	You	can	deny	the	permissions	to
see	CorporateSecrets	to	his	individual	user	account	without	creating	a	SQL

Server	database	role	for	the	purpose.

Note		You	can	deny	permissions	to	user	accounts	only	in	the	current	database,
for	objects	in	the	current	database.

To	prevent	access	by	denying	permissions	(on	an	object)

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Revoking	Permissions
You	can	revoke	a	permission	that	has	been	granted	or	denied	previously.
Revoking	is	similar	to	denying	in	that	both	remove	a	granted	permission	at	the
same	level.	However,	although	revoking	a	permission	removes	a	granted
permission,	it	does	not	prevent	the	user,	group,	or	role	from	inheriting	a	granted
permission	from	a	higher	level.	Therefore,	if	you	revoke	permission	for	a	user	to
view	a	table,	you	do	not	necessarily	prevent	the	user	from	viewing	the	table
because	permission	to	view	the	table	was	granted	to	a	role	to	which	he	belongs.

For	example,	removing	SELECT	access	on	the	Employees	table	from	the
HumanResources	role	revokes	permission	so	that	HumanResources	can	no
longer	use	the	table.	If	HumanResources	is	a	member	of	the	Administration
role.	If	you	later	grant	SELECT	permission	on	Employees	to	Administration,
members	of	HumanResources	can	see	the	table	through	their	membership	in
Administration.	However,	if	you	deny	permission	to	HumanResources,	the
permission	is	not	inherited	if	later	granted	to	Administration	because	the	deny
permission	cannot	be	undone	by	a	permission	at	a	different	level.

Similarly,	it	is	also	possible	to	remove	a	previously	denied	permission	by
revoking	the	deny	for	the	permission.	However,	if	a	user	has	other	denied
permissions	at	the	group	or	role	level,	then	the	user	still	is	denied	access.

Note		You	can	revoke	permissions	to	user	accounts	only	in	the	current	database,
for	objects	in	the	current	database.

To	revoke	permissions	on	an	object

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Resolving	Permission	Conflicts
The	permissions	granted	to	a	group	or	role	are	inherited	by	members	of	that
group	or	role.	Although	a	user	may	have	permission	granted	or	revoked	at	one
level,	conflicting	permissions	at	a	higher	level	(for	example,	due	to	role
membership)	can	prevent	or	allow	a	user	access	to	an	object.

Deny
A	denied	permission	always	takes	precedence.	Denied	permission	at	any	level
(user,	group,	or	role)	denies	the	permission	on	the	object	regardless	of	existing
granted	or	revoked	permissions	for	that	user.	For	example,	if	user	John,	who	as
a	member	of	the	sales	role	is	granted	SELECT	permissions	on	the	customer
table,	is	explicitly	denied	SELECT	permissions	on	the	customer	table,	he	can	no
longer	access	it.	Similarly,	if	the	sales	role	is	denied	access	to	customer,	but
John	is	granted	access,	he	is	denied	access.

Note		Microsoft®	SQL	Server™	always	processes	denied	permissions	first.	If
you	deny	permissions	to	public,	you	prevent	anyone	from	accessing	an	object,
including	the	issuer	of	the	DENY	statement.

Revoke
A	revoked	permission	removes	only	the	granted	or	denied	permission	at	the	level
revoked	(user,	group,	or	role).	The	same	permission	granted	or	denied	at	another
level	such	as	a	group	or	role	containing	the	user,	group,	or	role	still	applies.	For
example,	if	the	sales	role	is	granted	SELECT	permissions	on	the	customer	table,
and	John	(a	member	of	sales)	is	explicitly	revoked	SELECT	permissions	on	the
customer	table,	he	still	can	access	the	table	because	of	his	membership	in	the
sales	role.	To	prevent	John	from	accessing	the	customer	table,	do	one	of	the
following:

Revoke	permission	(assuming	no	other	permissions	have	been	granted
elsewhere).	

Deny	permission	to	the	sales	role	(preventing	all	members	of	sales	from
accessing	the	table).

Explicitly	deny	John	SELECT	permissions	on	customer.

Grant

A	granted	permission	removes	the	denied	or	revoked	permission	at	the	level
granted	(user,	group,	or	role).	The	same	permission	denied	at	another	level	such
as	group	or	role	containing	the	user	still	applies.	However,	although	the	same
permission	revoked	at	another	level	still	applies,	it	does	not	prevent	the	user
from	accessing	the	object.	For	example,	if	John	is	already	explicitly	denied
access	to	customer,	has	his	access	to	sales,	revoked,	and	then	is	explicitly
granted	access	to	customer,	he	now	can	access	customer	because	the	deny	is
removed.	The	revoke	permission	for	sales	joined	with	the	granted	permission	for
John	gives	John	a	granted	permission	overall.

Therefore,	a	user	receives	the	union	of	all	the	permissions	granted,	denied,	or
revoked	on	an	object,	with	any	denied	permissions	taking	precedence	over	the
same	permissions	granted	or	revoked	at	another	level.

The	following	diagram	shows	how	the	three	permission	management	activities
affect	the	state	of	a	permission	for	a	user	account.

Database	Access	vs.	Object	Access
As	an	example	of	a	permission	conflict,	a	Microsoft	Windows	NT®	4.0	user
LONDON\joe	belongs	to	the	LONDON\clerks	and	LONDON\secretaries
Windows	NT	4.0	groups.	LONDON\joe	can	log	in	to	an	instance	of	SQL	Server
because	the	LONDON\clerks	group	has	been	granted	permissions	to	connect	to
an	instance	of	SQL	Server.	Additionally,	LONDON\joe	can	access	the	secrets
database	because	the	LONDON\secretaries	group	has	been	granted	permissions
to	access	the	database.

Note		At	this	point	there	is	no	specific	entry	in	the	SQL	Server	system	tables,
sysusers	and	sysxlogins,	for	LONDON\joe.	These	system	tables	contain	only
entries	for	the	LONDON\clerks	and	LONDON\secretaries	groups.

LONDON\joe	creates	a	table,	joetable,	in	the	secrets	database.	At	this	point,	a
new	entry	is	created	in	the	sysusers	table	for	LONDON\joe	specifying	him	as
the	object	owner	but	not	granting	him	database	access.	If	LONDON\joe	is
dropped	from	the	LONDON\secretaries	group,	he	can	no	longer	access	the
secrets	database,	although	he	owns	an	object,	joetable,	in	the	database.

See	Also

Adding	a	Windows	NT	User	or	Group

Administering	SQL	Server

Permissions	for	User-Defined	Functions
Functions	are	subroutines	made	up	of	one	or	more	Transact-SQL	statements	that
can	be	used	to	encapsulate	code	for	reuse.	Microsoft®	SQL	Server™	2000
allows	users	to	create	their	own	user-defined	functions.

User-defined	functions	are	managed	through	the	following	statements:

CREATE	FUNCTION,	which	creates	a	user-defined	function.

ALTER	FUNCTION,	which	modifies	user-defined	functions.

DROP	FUNCTION,	which	drops	user-defined	functions.

Each	fully	qualified	user-defined	function	name
(database_name.owner_name.function_name)	must	be	unique.

You	must	have	been	granted	CREATE	FUNCTION	permissions	to	create,	alter,
or	drop	user-defined	functions.	Users	other	than	the	owner	must	be	granted
EXECUTE	permission	on	a	function	(if	the	function	is	scalar-valued)	before
they	can	use	it	in	a	Transact-SQL	statement.	If	the	function	is	table-valued,	the
user	must	have	SELECT	permissions	on	the	function	before	referencing	it.	If	a
CREATE	TABLE	or	ALTER	TABLE	statement	references	a	user-defined
function	in	a	CHECK	constraint,	a	DEFAULT	clause,	or	a	computed	column,	the
table	owner	must	also	own	the	function.	If	the	function	is	being	schema-bound,
you	must	have	REFERENCE	permission	on	tables,	views,	and	functions
referenced	by	the	function.

REFERENCE	permissions	can	be	granted	through	the	GRANT	statement	to
views	and	user-defined	functions	in	addition	to	tables.

See	Also

User-Defined	Functions

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Using	Ownership	Chains
Views	and	stored	procedures	provide	a	secondary	method	of	giving	users	access
to	data	and	the	ability	to	perform	activities.	They	provide	users	with	access	to
underlying	items	in	the	database	and	bypass	the	permissions	defined	directly	for
specific	objects	and	statements.

Views	can	depend	on	other	views	or	tables.	Procedures	can	depend	on	other
procedures,	views,	or	tables.	These	dependencies	can	be	thought	of	as	an
ownership	chain.	Ownership	chains	only	apply	to	SELECT,	INSERT,	UPDATE,
and	DELETE	statements.

Typically,	the	owner	of	a	view	also	owns	the	underlying	objects	(other	views	or
tables),	and	the	owner	of	a	stored	procedure	often	owns	all	the	referenced
procedures,	tables,	and	views.	Also,	views	and	underlying	objects	are	usually	all
in	the	same	database,	as	are	stored	procedures	and	all	the	objects	referenced.
When	temporary	objects	are	created	within	a	stored	procedure,	they	are	owned
by	the	procedure	owner	and	not	by	the	user	currently	executing	the	procedure.

When	a	user	accesses	a	view,	Microsoft®	SQL	Server™	does	not	check
permissions	on	any	of	the	view's	underlying	objects	if	these	objects	and	the	view
are	all	owned	by	the	same	user,	and	if	the	view	and	all	its	underlying	objects	are
in	the	same	database.	If	the	same	user	owns	a	stored	procedure	and	all	the	views
or	tables	it	references,	and	if	the	procedure	and	objects	are	all	in	the	same
database,	SQL	Server	checks	only	the	permissions	on	the	procedure.

If	the	ownership	chain	of	a	procedure	or	view	is	broken	(not	all	the	objects	in	the
chain	are	owned	by	the	same	user),	SQL	Server	checks	permissions	on	each
object	in	the	chain	whose	next	lower	link	is	owned	by	a	different	user.	In	this
way,	SQL	Server	allows	the	owner	of	the	original	data	to	retain	control	over	its
accessibility.

Usually,	a	user	who	creates	a	view	has	to	grant	permissions	only	on	that	view.
For	example,	Mary	has	created	a	view	called	auview1	on	the	authors	table,
which	she	also	owns.	If	Mary	grants	Sue	permission	to	use	auview1,	SQL
Server	allows	Sue	access	to	it	without	checking	permissions	on	authors.

A	user	who	creates	a	view	or	stored	procedure	that	depends	on	an	object	owned
by	another	user	must	be	aware	that	any	permissions	he	or	she	grants	depend	on

the	permissions	allowed	by	the	other	owner.

For	example,	Joe	creates	a	procedure	called	procedure1,	which	depends	on
procedure2	(also	owned	by	Joe),	and	procedure3	(owned	by	Sue).	These
procedures	in	turn	depend	on	other	tables	and	views	owned	by	Joe	and	Sue.

Joe	grants	Mary	permission	to	use	procedure1.	SQL	Server	checks	the
permissions	on	procedure1,	procedure3,	view2,	table2,	and	table3	to	check
that	Mary	is	allowed	to	use	them.

Administering	SQL	Server

Using	Views	as	Security	Mechanisms
Views	can	serve	as	security	mechanisms	by	restricting	the	data	available	to
users.	Some	data	can	be	accessible	to	users	for	query	and	modification,	while	the
rest	of	the	table	or	database	is	invisible	and	inaccessible.	Permission	to	access
the	subset	of	data	in	a	view	must	be	granted,	denied,	or	revoked,	regardless	of
the	set	of	permissions	in	force	on	the	underlying	table(s).

For	example,	the	salary	column	in	a	table	contains	confidential	employee
information,	but	the	rest	of	the	columns	contain	information	that	should	be
available	to	all	users.	You	can	define	a	view	that	includes	all	of	the	columns	in
the	table	with	the	exception	of	the	sensitive	salary	column.	As	long	as	table	and
view	have	the	same	owner,	granting	SELECT	permissions	on	the	view	allows
the	user	to	see	nonconfidential	columns	in	the	view	without	having	any
permissions	on	the	table	itself.

By	defining	different	views	and	granting	permissions	selectively	on	them,	users,
groups,	or	roles	can	be	restricted	to	different	subsets	of	data.	For	example:

Access	can	be	restricted	to	a	subset	of	the	rows	of	a	base	table.	For
example,	define	a	view	that	contains	only	rows	for	business	and
psychology	books	and	keep	information	about	other	types	of	books
hidden	from	users.

Access	can	be	restricted	to	a	subset	of	the	columns	of	a	base	table.	For
example,	define	a	view	that	contains	all	the	rows	of	the	titles	table	but
omits	the	royalty	and	advance	columns	because	this	information	is
sensitive.

Access	can	be	restricted	to	a	row-and-column	subset	of	a	base	table.

Access	can	be	restricted	to	the	rows	that	qualify	for	a	join	of	more	than
one	base	table.	For	example,	define	a	view	that	joins	the	titles,	authors,
and	titleauthor	tables	to	display	the	names	of	authors	and	books	they

have	written.	This	view	hides	personal	data	about	the	authors,	and
financial	information	about	the	books.

Access	can	be	restricted	to	a	statistical	summary	of	data	in	a	base	table.
For	example,	define	a	view	that	contains	only	the	average	price	of	each
type	of	book.

Access	can	be	restricted	to	a	subset	of	another	view	or	of	some
combination	of	views	and	base	tables.

Permissions	and	ALTER	VIEW

Use	the	ALTER	VIEW	Transact-SQL	statement	to	change	the	definition	of	a
view	without	having	to	drop	the	view	and	reapply	permissions.	Any	permissions
applied	to	a	column	in	the	view	are	based	on	the	column	name	defined	in	the
view,	rather	than	the	underlying	column	in	the	table.	Therefore,	changing	the
definition	of	the	view	with	ALTER	VIEW	by	using	the	same	column	name	but	a
different	underlying	column	in	a	table	results	in	the	same	permissions	for	the
new	column.	This	example	assumes	the	user	Fred	exists	in	the	pubs	database:

USE	pubs
GO
CREATE	VIEW	v1	AS	SELECT	title_id,	title	FROM	titles
GO
GRANT	SELECT(title_id)	ON	v1	TO	Fred
GO
ALTER	VIEW	v1	AS	SELECT	qty	AS	'title_id'	FROM	sales
GO

Although	the	view	is	altered	so	that	the	title_id	column	name	refers	to	the	qty
column	in	the	sales	table,	rather	than	the	title_id	column	in	the	titles	table,	the
SELECT	permissions	granted	to	Fred	on	the	title_id	column	name	still	apply.

See	Also

ALTER	VIEW

CREATE	VIEW

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Using	Stored	Procedures	as	Security	Mechanisms
Stored	procedures,	commonly	used	as	an	interface	to	perform	complex	activities,
can	be	used	to	customize	security	permissions	in	much	the	same	way	as	views.

For	example,	in	an	archiving	scenario,	stored	procedures	can	copy	data	older
than	a	specified	interval	into	an	archive	table	and	then	delete	it	from	the	primary
table.	Permissions	can	be	used	to	prevent	users	from	deleting	the	rows	from	the
primary	table	directly	or	from	inserting	rows	into	the	archive	table	without
deleting	them	from	the	primary	table.	You	can	create	a	procedure	to	ensure	that
both	of	these	activities	are	performed	together,	and	then	grant	users	permissions
to	execute	the	procedure.

See	Also

CREATE	PROCEDURE

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Advanced	Security	Topics
The	security	topics	presented	here	go	beyond	the	basic	use	of	security	in
Microsoft®	SQL	Server™	and	provide	more	detail	for	specialized	applications.

Administering	SQL	Server

Establishing	Application	Security	and	Application
Roles
The	security	system	in	Microsoft®	SQL	Server™	is	implemented	at	the	lowest
level:	the	database	itself.	This	is	the	best	method	for	controlling	user	activities
regardless	of	the	application	used	to	communicate	with	SQL	Server.	However,
sometimes	security	controls	must	be	customized	to	accommodate	the	special
requirements	of	an	individual	application,	especially	when	dealing	with	complex
databases	and	databases	with	large	tables.

Additionally,	you	may	want	users	to	be	restricted	to	accessing	data	only	through
a	specific	application	(for	example	using	SQL	Query	Analyzer	or	Microsoft
Excel)	or	to	be	prevented	from	accessing	data	directly.	Restricting	user	access	in
this	way	prohibits	users	from	connecting	to	an	instance	of	SQL	Server	using	an
application	such	as	SQL	Query	Analyzer	and	executing	a	poorly	written	query,
which	can	negatively	affect	the	performance	of	the	whole	server.

SQL	Server	accommodates	these	needs	through	the	use	of	application	roles.
Application	roles	are	different	than	standard	roles	in	that:

Application	roles	contain	no	members.

Microsoft	Windows	NT®	4.0	or	Windows®	2000	groups,	users,	and
roles	cannot	be	added	to	application	roles;	the	permissions	of	the
application	role	are	gained	when	the	application	role	is	activated	for	the
user's	connection	through	a	specific	application	or	applications.	A	user's
association	with	an	application	role	is	due	to	his	ability	to	run	an
application	that	activates	the	role,	rather	than	his	being	a	member	of	the
role.

Application	roles	are	inactive	by	default	and	require	a	password	to	be
activated.

Application	roles	bypass	standard	permissions.

When	an	application	role	is	activated	for	a	connection	by	the
application,	the	connection	permanently	loses	all	permissions	applied	to
the	login,	user	account,	or	other	groups	or	database	roles	in	all	databases

for	the	duration	of	the	connection.	The	connection	gains	the	permissions
associated	with	the	application	role	for	the	database	in	which	the
application	role	exists.	Because	application	roles	are	applicable	only	to
the	database	in	which	they	exist,	the	connection	can	gain	access	to
another	database	only	through	permissions	granted	to	the	guest	user
account	in	the	other	database.	Therefore,	if	the	guest	user	account	does
not	exist	in	a	database,	the	connection	cannot	gain	access	to	that
database.	If	the	guest	user	account	does	exist	in	the	database	but
permissions	to	access	an	object	are	not	explicitly	granted	to	guest,	the
connection	cannot	access	that	object,	regardless	of	who	created	the
object.	The	permissions	the	user	gained	from	the	application	role
remain	in	effect	until	the	connection	logs	out	of	an	instance	of	SQL
Server.

To	ensure	that	all	the	functions	of	the	application	can	be	performed,	a
connection	must	lose	default	permissions	applied	to	the	login	and	user
account	or	other	groups	or	database	roles	in	all	databases	for	the
duration	of	the	connection	and	gain	the	permissions	associated	with	the
application	role.	For	example,	if	a	user	is	usually	denied	access	to	a
table	that	the	application	must	access,	then	the	denied	access	should	be
revoked	so	the	user	can	use	the	application	successfully.	Application
roles	overcome	any	conflicts	with	user's	default	permissions	by
temporarily	suspending	the	user's	default	permissions	and	assigning
them	only	the	permissions	of	the	application	role.

Application	roles	allow	the	application,	rather	than	SQL	Server,	to	take	over	the
responsibility	of	user	authentication.	However,	because	SQL	Server	still	must
authenticate	the	application	when	it	accesses	databases,	the	application	must
provide	a	password	because	there	is	no	other	way	to	authenticate	an	application.

If	ad	hoc	access	to	a	database	is	not	required,	users	and	Windows	NT	4.0	or
Windows	2000	groups	do	not	need	to	be	granted	any	permissions	because	all
permissions	can	be	assigned	by	the	applications	they	use	to	access	the	database.
In	such	an	environment,	standardizing	on	one	system-wide	password	assigned	to
an	application	role	is	possible,	assuming	access	to	the	applications	is	secure.

There	are	several	options	for	managing	application	role	passwords	without	hard-
coding	them	into	applications.	For	example,	an	encrypted	key	stored	in	the
registry	(or	a	SQL	Server	database),	for	which	only	the	application	has	the

decryption	code,	can	be	used.	The	application	reads	the	key,	decrypts	it,	and	uses
the	value	to	set	the	application	role.	Using	the	Multiprotocol	Net-Library,	the
network	packet	containing	the	password	can	also	be	encrypted.	Additionally,	the
password	can	be	encrypted,	before	being	sent	to	an	instance	of	SQL	Server,
when	the	role	is	activated.

When	an	application	user	connects	to	an	instance	of	SQL	Server	using	Windows
Authentication	Mode,	an	application	role	can	be	used	to	set	the	permissions	the
Windows	NT	4.0	or	Windows	2000	user	has	in	a	database	when	using	the
application.	This	method	allows	Windows	NT	4.0	or	Windows	2000	auditing	of
the	user	account	and	control	over	user	permissions,	while	she	uses	the
application,	to	be	easily	maintained.

If	SQL	Server	Authentication	is	used	and	auditing	user	access	in	the	database	is
not	required,	it	can	be	easier	for	the	application	to	connect	to	an	instance	of	SQL
Server	using	a	predefined	SQL	Server	login.	For	example,	an	order	entry
application	authenticates	users	running	the	application	itself,	and	then	connects
to	an	instance	of	SQL	Server	using	the	same	OrderEntry	login.	All	connections
use	the	same	login,	and	relevant	permissions	are	granted	to	this	login.

Note		Application	roles	work	with	both	authentication	modes.

Example
As	an	example	of	application	role	usage,	a	user	Sue	runs	a	sales	application	that
requires	SELECT,	UPDATE,	and	INSERT	permissions	on	the	Products	and
Orders	tables	in	database	Sales	to	work,	but	she	should	not	have	any	SELECT,
INSERT,	or	UPDATE	permissions	when	accessing	the	Products	or	Orders
tables	using	SQL	Query	Analyzer	or	any	other	tool.	To	ensure	this,	create	one
user-database	role	that	denies	SELECT,	INSERT,	or	UPDATE	permissions	on
the	Products	and	Orders	tables,	and	add	Sue	as	a	member	of	that	database	role.
Then	create	an	application	role	in	the	Sales	database	with	SELECT,	INSERT,
and	UPDATE	permissions	on	the	Products	and	Orders	tables.	When	the
application	runs,	it	provides	the	password	to	activate	the	application	role	by
using	sp_setapprole,	and	gains	the	permissions	to	access	the	Products	and
Orders	tables.	If	Sue	tries	to	log	in	to	an	instance	of	SQL	Server	using	any	tool
except	the	application,	she	will	not	be	able	to	access	the	Products	or	Orders
tables.

To	create	an	application	role

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Allowing	Other	Accounts	to	Grant	Object
Permissions
When	you	grant	an	object	permission	to	a	user	account	in	a	database,	you	can
optionally	specify	the	WITH	GRANT	OPTION	clause,	which	allows	the	user
account	to	grant	that	object	permission	to	others.	A	user	account	can	be	a
Microsoft®	Windows	NT®	4.0	or	Windows®	2000	user	or	group	or	a	Microsoft
SQL	Server™	user	or	role.

For	example,	if	you	use	the	WITH	GRANT	OPTION	clause	when	you	grant
permissions	on	the	salaries	table	to	the	user	user_a,	user_a	is	able	to	grant	the
same	permissions	on	the	table	to	any	other	user	account	in	the	database.	For
groups	and	roles,	if	you	grant	permissions	on	the	salaries	table	to	role	role_a
specifying	the	WITH	GRANT	OPTION	clause,	each	member	of	role_a	can
grant	the	object	permission	to	any	other	user	account,	provided	that	the	AS
clause	of	the	GRANT	statement	is	specified.	For	more	information,	see	GRANT.

IMPORTANT		When	you	use	the	WITH	GRANT	OPTION	clause,	you	have	no
future	control	over	which	security	accounts	will	receive	that	permission.

When	you	revoke	a	permission	granted	using	the	WITH	GRANT	OPTION
clause,	specify	the	CASCADE	clause	to	have	the	permissions	revoked	from	the
user	account	as	well	as	any	other	accounts	that	received	the	permission	from	the
initial	account.

For	example,	you	have	granted	a	permission	specifying	WITH	GRANT
OPTION	to	the	user	user_a.	User_a	granted	the	permission	specifying	WITH
GRANT	OPTION	to	the	user	user_b,	and	user_b	granted	the	permission	to	the
user	user_c.	User_a	has	left	the	company,	but	SQL	Server	does	not	allow	you	to
remove	a	user	account	if	it	has	granted	a	permission	specifying	the	WITH
GRANT	OPTION	clause	to	another	account.	Specifying	the	WITH	GRANT
OPTION	clause	has	created	a	chain	from	user_a	through	user_b	to	user_c.	You
cannot	remove	the	account	for	user_a	until	the	permissions	are	revoked	for
user_b	and	user_c.	When	you	revoke	the	permission	from	user_a	and	specify
the	CASCADE	option,	the	permission	is	removed	from	the	user_a,	user_b,	and
user_c	accounts.	You	then	may	remove	the	user_a	account.

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Creating	SQL	Server	File	Permissions
Microsoft®	SQL	Server™	must	create	and	access	files	in	order	to	store
databases,	database	backups,	error	logs,	and	so	on.	This	SQL	Server	process
must	run	in	the	context	of	a	security	account	with	the	necessary	permissions	to
create	and	access	these	files,	whether	these	files	exist	on	the	local	computer	or	a
network	drive	on	a	remote	computer.	The	security	account	SQL	Server	uses
depends	on	the	method	used	to	start	the	instance	of	SQL	Server.	If	an	instance	of
SQL	Server	is	started:

As	a	service	on	Microsoft	Windows	NT®	4.0	or	Windows®	2000	using
the	Service	Control	Manager,	SQL	Server	uses	the	security	account
assigned	to	the	SQL	Server	service.

At	the	command	prompt,	independent	of	the	Service	Control	Manager,
SQL	Server	uses	the	security	account	of	the	logged	on	user.

In	Microsoft	Windows	98	and	Microsoft	Windows	Millennium	Edition,
SQL	Server	uses	the	security	account	of	the	logged	on	user.

The	security	account	used	by	SQL	Server	requires	full	access	permissions	to	the
file	system	to	create,	read,	write,	delete,	and	execute	files.	For	example,	using
the	NTFS	file	system,	the	security	account	used	by	SQL	Server	requires
authority	to	create	files	with	NTFS	Full	Control	permission.

To	prevent	unauthorized	access	to	the	files	used	by	SQL	Server,	adjust	the
permissions	on	the	files	directly	to	allow	only	the	security	account	used	by	SQL
Server	access	to	the	files.

Note		If	SQL	Server	uses	the	Windows	NT	4.0	and	Windows	2000	LocalSystem
built-in	security	account,	file	permissions	must	be	granted	to	the	SYSTEM
account	of	the	local	computer	running	an	instance	of	SQL	Server.

Securing	the	Windows	NT	Registry
SQL	Server	Setup	removes	write	permissions	from	the

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers
key	in	the	Windows	2000	registry	for	users	who	are	not	SQL	Server	system
administrators.	This	prevents	nonadministrator	users	from	setting	the	provider
options	for	linked	server	definitions	when	using	SQL	Server	Enterprise	Manager.

See	Also

Setting	up	Windows	Services	Accounts

Starting	SQL	Server

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Using	Encryption	Methods
Encryption	is	a	method	for	keeping	sensitive	information	confidential	by
changing	data	into	an	unreadable	form.	Encryption	ensures	that	data	remains
secure	by	keeping	the	information	hidden	from	everyone,	even	if	the	encrypted
data	is	viewed	directly.	Decryption	is	the	process	of	changing	encrypted	data
back	into	its	original	form	so	it	can	be	viewed	by	authorized	users.

Microsoft®	SQL	Server™	encrypts	or	can	encrypt:

Login	and	application	role	passwords	stored	in	SQL	Server.

Any	data	sent	between	the	client	and	the	server	as	network	packets.

Stored	procedure	definitions.

User-defined	function	definitions.

View	definitions.

Trigger	definitions.

Default	definitions.

Rule	definitions.

Note		If	you	are	running	Microsoft	Windows®	2000	and	want	to	use	the
Windows	2000	Encrypted	File	System	to	encrypt	any	SQL	Server	files,	you	must
unencrypt	the	files	before	you	can	change	the	SQL	Server	service	accounts.	If
you	do	not	unencrypt	the	files	and	then	reset	the	SQL	Server	service	accounts,
you	cannot	unencrypt	the	files.

Login	and	Application	Role	Passwords
Login	and	application	role	passwords	stored	in	the	SQL	Server	system	tables	are
always	encrypted.	This	prevents	users,	including	system	administrators,	from
viewing	any	passwords,	including	their	own.	Additionally,	application	role
passwords	can	be	encrypted	when	the	application	role	is	activated	before	they
are	sent	over	the	network.

Note		Using	the	sp_addlogin	system	stored	procedure,	SQL	Server	logins	can	be
added	without	encrypting	the	password,	if	required.	However,	this	is	not
recommended	unless	the	passwords	are	already	encrypted	because	they	are	being
imported	from	another	instance	of	SQL	Server.

Data	in	Network	Packets
SQL	Server	allows	data	sent	between	the	client	and	the	server	to	be	encrypted.
This	ensures	that	any	application	or	user	intercepting	the	data	packets	on	the
network	cannot	view	confidential	or	sensitive	data	(for	example,	passwords	sent
across	the	network	as	a	user	logs	into	an	instance	of	SQL	Server).	SQL	Server
can	use	the	Secure	Sockets	Layer	(SSL)	to	encrypt	all	data	transmitted	between
an	application	computer	and	an	instance	of	SQL	Server.	The	SSL	encryption	is
performed	within	the	Super	Socket	Net-Library	(Dbnetlib.dll	and	Ssnetlib.dll)
and	applies	to	all	inter-computer	protocols	supported	by	SQL	Server	2000.
Enabling	encryption	slows	the	performance	of	the	Net-Libraries.	Encryption
forces	the	following	actions	in	addition	to	all	of	the	work	for	an	unencrypted
connection:

An	extra	network	round	trip	is	required	at	connect	time.

All	packets	sent	from	the	application	to	the	instance	of	SQL	Server	must
be	encrypted	by	the	client	Net-Library	and	decrypted	by	the	server	Net-
Library.

All	packets	sent	from	the	instance	of	SQL	Server	to	the	application	must
be	encrypted	by	the	server	Net-Library	and	decrypted	by	the	client	Net-
Library.

Shared	memory	Net-Library	communications	are	inherently	secure	without	the

need	for	encryption.	The	shared	memory	Net-Library	does	not	participates	in
inter-computer	communications.	The	area	of	memory	shared	between	the
application	process	and	the	database	engine	process	cannot	be	accessed	from	any
other	Windows	process.

For	compatibility	with	earlier	versions	of	SQL	Server,	the	Multiprotocol	Net-
Library	continues	to	support	its	own	encryption.	This	encryption	is	specified
independently	of	the	SSL	encryption	and	is	implemented	by	calling	the	Windows
RPC	encryption	API.	It	does	not	require	the	use	of	certificates.	The	level	of	RPC
encryption,	40-bit	or	128-bit,	depends	on	the	version	of	the	Windows	operating
system	that	is	running	on	the	application	and	database	computers.	The
Multiprotocol	Net-Library	is	not	supported	by	named	instances.	For	more
information	about	SSL,	see	Net-Library	Encryption.

Configuring	a	Multiprotocol	Alias
When	you	configure	a	multiprotocol	alias,	enable	encryption.	This	encryption
feature	applies	only	to	the	Multiprotocol	Net-Library.	This	encryption	feature	is
offered	only	for	compatibility	with	existing	applications.	SQL	Server	clients
should	use	the	SSL	encryption	specified	on	the	General	tab	in	the	Enable
protocol	encryption	check	box	of	the	Client	Network	Utility.	For	more
information	on	the	Client	Network	Utility,	see	Configuring	Client	Net-Libraries.

To	start	the	Client	Network	Utility

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Revealing	SQL	Server	on	a	Network
When	you	install	Microsoft®	SQL	Server™,	SQL	Server	Setup	makes	an	entry
in	the	Microsoft	Windows®	2000	registry	that	enables	Named	Pipes	clients	to
see	SQL	Server	in	a	server	enumeration	box	in	SQL	Query	Analyzer.	SQL
Server	automatically	announces	itself	as	a	service	over	Named	Pipes	to	make	it
easier	to	locate	servers	running	an	instance	of	SQL	Server.	However,	if	you	are
using	Active	Directory™,	the	directory	service	included	in	Windows	2000,	this
functionality	is	no	longer	necessary.

Stop	SQL	Server	from	announcing	itself	over	Named	Pipes	by	running	the	NET
CONFIG	SERVER	command	with	the	switch	as	/HIDDEN:YES.	You	can	reveal
the	server	at	any	time.

To	reveal	or	cancel	the	announcement	of	SQL	Server	on	a	network

Administering	SQL	Server

Scripting	Data	Access	Controls	in	Internet	Explorer
Microsoft®	SQL	Server™	ships	with	several	data	access	controls:

SQL	Namespace	(SQL-NS)

SQL	Distribution	control	(replication)

SQL	Merge	control	(replication)

These	controls	are	signed	and	marked	"safe	for	initialization	and	scripting"	and
can	be	used	in	Microsoft	Internet	Explorer	5	or	later.

Before	deploying	controls	that	can	connect	to	data	sources,	you	should
thoroughly	understand	the	security	implications.	When	you	use	any	of	the	SQL
Server	controls,	the	primary	security	concern	is	the	ability	to	run	under	the
authorized	user's	account	through	a	Windows	Authentication	login	to	an	instance
of	SQL	Server.	A	Web	page	with	a	scripted	control	runs	with	the	network
identity	of	the	user	browsing	the	page.	If	the	data	source	connection	is	based	on
the	connected	user's	network	identity	(using	Windows	Authentication	login),	the
control	can	access	any	data	that	the	user	browsing	the	page	can	access.	If	a	Web
page	using	the	control	is	sent	to	a	user,	the	control	has	the	permissions	of	the
user	browsing	the	Web	page.	The	control	can	then	read	or	make	changes	to
databases	without	the	user's	knowledge.

To	prevent	unauthorized	access	or	changes	to	a	database,	all	the	data	access
controls	that	are	marked	as	"safe	for	scripting"	take	into	account	security	zones
settings	when	being	loaded	in	Internet	Explorer	version	4.0	or	later.	If	a	control
is	not	marked	safe	for	scripting,	it	can	run	a	script	inside	of	Internet	Explorer
only	at	the	Low	security	mode	of	Internet	Explorer,	and	even	then	only	after	the
user	responded	to	a	message	stating	that	a	script	will	be	run.	Another	way	to	deal
with	the	issue	is	to	remove	the	user's	ability	to	use	a	Windows	Authenticated
login.

Internet	Explorer	4.0	does	not	provide	an	explicit	security	option	for	data	access.
Therefore,	all	the	controls	marked	safe	for	scripting	allow,	prompt,	or	disallow
scripting	based	on	the	security	zone	being	used.	The	following	table	shows	the

Internet	Explorer	4.0	settings.

Security	zone Internet	Explorer	4.0	notification
Local	computer	zone Controls	can	be	initialized	or	scripted	regardless

of	data	source	or	scripts.
Local	intranet	zone User	is	warned	of	potential	safety	violation	prior

to	loading	the	page.	User	can	accept	or	reject
initialization	or	scripting.

Trusted	sites	zone Controls	can	be	initialized	or	scripted	regardless
of	data	source	or	scripts.

Internet	zone User	is	warned	of	potential	safety	violation	prior
to	loading	the	page.	User	can	accept	or	reject
initialization	or	scripting.

Restricted	sites	zone Scripting	errors	occur	if	user	attempts	to	view
page	and	execute	script.

In	contrast	to	Internet	Explorer	4.0,	Internet	Explorer	5	supports	an	explicit
security	option	for	data	access	called	"Access	data	sources	across	domains."	This
option	can	be	customized,	and	the	setting	of	this	action	is	used	to	determine	how
the	controls	behave	when	they	are	run	in	Internet	Explorer	5.	The	default	settings
in	Internet	Explorer	5	are	the	same	as	the	programmed	settings	in	Internet
Explorer	4.0.

As	with	all	security	concerns,	you	must	take	specific	actions	to	safeguard	your
system.	SQL	Server	is	protected	from	security	problems	only	if	users	with	the
ability	to	use	Windows	Authenticated	logins	configure	the	security	settings
correctly,	and	answer	all	security	prompts	correctly.

Note		These	general	steps	to	safeguard	your	system	apply	to	any	scripting	host,
including	Microsoft	Excel	spreadsheets	or	Microsoft	Word	documents.	Users
who	have	the	ability	to	use	Windows	Authenticated	logins	should	always	enable
the	macro	warning	feature	or	similar	security	setting	of	an	application	to	detect
and	prevent	any	attacks	on	data.

See	Also

Developing	SQL-DMO	Applications

Programming	SQL-NS	Applications

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Auditing	SQL	Server	Activity
Microsoft®	SQL	Server™	2000	provides	auditing	as	a	way	to	trace	and	record
activity	that	has	happened	on	each	instance	of	SQL	Server	(for	example,
successful	and	failed	logins).	SQL	Server	2000	also	provides	an	interface,	SQL
Profiler,	for	managing	audit	records.	Auditing	can	only	be	enabled	or	modified
by	members	of	the	sysadmin	fixed	security	role,	and	every	modification	of	an
audit	is	an	auditable	event.

There	are	two	type	of	auditing:

Auditing,	which	provides	some	level	of	auditing	but	does	not	require
the	same	number	of	policies	as	C2	auditing.	

C2	auditing,	which	requires	that	you	follow	very	specific	security
policies.	For	more	information	about	C2	auditing,	see	C2	Auditing.

Both	types	of	auditing	can	be	done	by	using	SQL	Profiler.

Using	SQL	Profiler
SQL	Profiler	provides	the	user	interface	for	auditing	events.	There	are	several
categories	of	events	that	can	be	audited	using	SQL	Profiler,	such	as:

End	user	activity	(all	SQL	commands,	logout/login,	enabling	of
application	roles).

DBA	activity	(DDL,	other	than	grant/revoke/deny	and	security	events,
Configuration	(DB	or	server).

Security	events	(grant/revoke/deny,	login	user/role
add/remove/configure).

Utility	events	(backup/restore/bulk	insert/BCP/DBCC	commands.

Server	events	(shutdown,	pause,	start).

Audit	events	(add	audit,	modify	audit,	stop	audit).

For	more	information	about	what	categories	of	events	can	be	monitored,	see
Security	Audit	Event	Category.

It	is	possible	to	audit	the	following	aspects	of	SQL	Server	through	SQL	Profiler:

Date	and	time	of	event.

User	who	caused	the	event	to	occur.

Type	of	event.

Success	or	failure	of	the	event.

The	origin	of	the	request	(for	example,	the	Microsoft	Windows	NT®
4.0	computer	name).

The	name	of	the	object	accessed.

Text	of	the	SQL	statement	(passwords	replaced	with	****).

If	you	are	a	member	of	the	sysadmin	or	securityadmin	fixed	server
role	and	you	reset	your	own	password	by	using	sp_password	with	all
three	arguments	specified	('old_password',	'new_password',	'login'),	the
audit	record	will	reflect	that	you	are	changing	someone	else's	password.

Auditing	can	have	a	significant	performance	impact.	If	all	audit	counters	are
turned	on	for	all	objects,	the	performance	impact	could	be	high.	It	is	necessary	to
evaluate	how	many	events	need	to	be	audited	compared	to	the	resulting
performance	impact.	Audit	trail	analysis	can	be	costly,	so	it	is	recommended	that
audit	activity	be	run	on	a	server	separate	from	the	production	server.

Note		If	SQL	Server	is	started	with	the	-f	flag,	auditing	will	not	run.

See	Also

Monitoring	with	SQL	Profiler

Administering	SQL	Server

Using	Audit	Logs
SQL	Profiler	system	stored	procedures	support	file	rollover.	The	maximum	file
size	for	the	audit	log	is	fixed	at	200	megabytes	(MB).	When	the	audit	log	file
reaches	200	MB,	a	new	file	will	be	created	and	the	old	file	handle	will	be	closed.
If	the	directory	fills	up	(for	example,	if	the	disk	quota	for	the	user	of	the	service
account	has	filled	up	or	the	disk	is	full),	then	the	instance	of	Microsoft®	SQL
Server™	is	stopped.	The	system	administrator	needs	to	either	free	up	disk	space
for	the	audit	log	before	restarting	the	instance	of	SQL	Server	or	restart	the
instance	of	SQL	Server	(if	auditing	is	not	configured	to	start	automatically).

Use	file	rollover	to	prevent	the	audit	trace	from	failing	because	the	audit	log
filled	up.	However,	SQL	Server	will	not	shut	down	unless	the	user	specifically
requested	this	feature	when	they	created	the	trace.	An	audit	failure	produces	an
entry	in	the	Microsoft	Windows®	event	log	and	the	SQL	Server	error	log.

It	is	strongly	recommended	that	during	SQL	Server	Setup	you	create	a	new
directory	to	contain	your	audit	files.	\mssql\audit	is	the	suggested	path.	If	you	are
running	SQL	Server	on	a	named	instance,	the	suggested	path	is
MSSQL$Instance\audit.

Administering	SQL	Server

C2	Auditing
C2	auditing	is	necessary	if	you	are	running	a	C2	certified	system.	A	C2	certified
system	meets	a	government	standard	that	defines	the	security	level.	To	have	a	C2
certified	Microsoft®	SQL	Server™,	you	must	configure	SQL	Server	in	the
evaluated	C2	configuration.	For	more	information	about	C2	certification,	see	the
C2	Administrator's	and	User's	Security	Guide.

Administering	SQL	Server

	Monitoring	Server	Performance	and	Activity
Microsoft®	SQL	Server™	2000	provides	a	variety	of	tools	that	can	be	used	to
monitor	the	performance	of	an	instance	of	SQL	Server	and	the	user	activity	that
occurs	in	databases.	Monitoring	allows	you	to	determine	whether	your	database
application	is	working	efficiently	and	as	expected,	even	as	your	application,
database,	and	environment	change.	For	example,	as	more	concurrent	users	use	a
database	application,	the	load	on	SQL	Server	can	increase.	By	monitoring,	you
can	determine	whether	the	current	instance	of	SQL	Server	or	system
configuration	must	be	changed	to	handle	the	increased	workload,	or	whether	the
increased	load	is	having	no	significant	effect	on	performance.

To	monitor	an	application,	an	instance	of	SQL	Server,	or	the	operating	system
environment	(hardware	and	software):

Determine	your	monitoring	goals.

Choose	the	appropriate	tool	for	the	type	of	monitoring	you	will	perform.

Use	the	tool	to	monitor	SQL	Server	or	the	system	environment	and
analyze	the	captured	data.

Identify	the	events	to	monitor.

The	events	determine	which	activities	are	monitored	and	captured.	Your
selection	of	events	to	monitor	will	depend	on	what	is	being	monitored
and	why.	For	example,	when	monitoring	disk	activity,	it	is	not	necessary
to	monitor	SQL	Server	locks.

Determine	the	event	data	to	capture.

The	event	data	describes	each	instance	of	an	event	as	it	occurs.	For
example,	when	monitoring	lock	events,	you	can	capture	data	describing
the	tables,	users,	and	connections	affected	by	the	lock	event.	The
following	explains	the	process	involved	in	capturing	event	data	and
putting	it	to	use.

Apply	filters	to	limit	the	event	data	collected.

Limiting	the	event	data	allows	the	system	to	focus	on	the
events	pertinent	to	the	monitoring	scenario.	For	example,	if
you	want	to	monitor	slow	queries,	you	can	use	a	filter	to
monitor	only	those	queries	issued	by	the	application	that	take
more	than	30	seconds	to	execute	against	a	particular	database.

Monitor	(capture)	events.

Once	enabled,	active	monitoring	captures	data	from	the
specified	application,	instance	of	SQL	Server,	or	operating
system.	For	example,	when	disk	activity	is	monitored	using
System	Monitor	(Performance	Monitor	in	Microsoft	Windows
NT®	4.0),	monitoring	captures	event	data	such	as	disk	reads
and	writes	and	displays	it	to	the	screen.

Save	captured	event	data.

Saving	captured	data	allows	you	to	analyze	it	at	a	later	time	or
even	replay	it	using	SQL	Profiler.	Captured	event	data	is	saved
to	a	file	that	can	be	loaded	back	into	the	tool	that	originally
created	the	file	for	analysis.	SQL	Profiler	allows	event	data	to
be	saved	to	a	SQL	Server	table.	Saving	captured	event	data	is
vital	when	creating	a	performance	baseline.	The	performance
baseline	data	is	saved	and	used	when	comparing	recently
captured	event	data	to	determine	whether	performance	is
optimal.

Create	definition	files	containing	the	settings	specified	to
capture	the	events.

Definition	files	include	specifications	about	the	events
themselves,	event	data,	and	filters	that	are	used	to	capture	data.
These	files	can	be	used	to	monitor	a	specific	set	of	events	at	a
later	time	without	redefining	the	events,	event	data,	and	filters.
For	example,	if	you	want	to	monitor	frequently	the	number	of
deadlocks	and	the	users	involved	in	those	deadlocks,	you	can
create	a	file	defining	those	events,	event	data,	and	event	filters;
save	the	definition;	and	reapply	the	filter	the	next	time	you

want	to	monitor	deadlocks.	SQL	Profiler	uses	trace	definition
files	for	this	purpose.

Analyze	captured	event	data.

In	order	to	be	analyzed,	the	captured,	saved	event	data	is
loaded	into	the	application	that	captured	the	data.	For	example,
a	captured	trace	from	SQL	Profiler	can	be	reloaded	into	SQL
Profiler	for	viewing	and	analysis.	Analyzing	event	data
involves	determining	what	is	happening	and	why.	This
information	allows	you	to	make	changes	that	can	improve
performance,	such	as	adding	more	memory,	changing	indexes,
correcting	coding	problems	with	Transact-SQL	statements	or
stored	procedures,	and	so	on,	depending	on	the	type	of	analysis
performed.	For	example,	you	can	use	the	Index	Tuning	Wizard
to	analyze	a	captured	trace	from	SQL	Profiler	automatically
and	make	index	recommendations	based	on	the	results.

Replay	captured	event	data.

Only	available	in	SQL	Profiler,	event	replay	allows	you	to
establish	a	test	copy	of	the	database	environment	from	which
the	data	was	captured	and	repeat	the	captured	events	as	they
occurred	originally	on	the	real	system.	You	can	replay	them	at
the	same	speed	as	they	originally	occurred,	as	fast	as	possible
(to	stress	the	system),	or	more	likely,	one	step	at	a	time	(to
analyze	the	system	after	each	event	has	occurred).	By
analyzing	the	exact	events	in	a	test	environment,	you	can
prevent	detrimental	effects	on	the	production	system.

Monitoring	SQL	Server	allows	you	to:

Determine	whether	it	is	possible	to	improve	performance.	For	example,
by	monitoring	the	response	times	for	frequently	used	queries,	you	can
determine	whether	changes	to	the	query	or	indexes	on	the	tables	are
necessary.

Evaluate	user	activity.	For	example,	by	monitoring	users	attempting	to
connect	to	an	instance	of	SQL	Server,	you	can	determine	whether

security	is	set	up	adequately	and	test	applications	and	development
systems.	For	example,	by	monitoring	SQL	queries	as	they	are	executed,
you	can	determine	whether	they	are	written	correctly	and	producing	the
expected	results.

Troubleshoot	any	problems	or	debug	application	components,	such	as
stored	procedures.

See	Also

Index	Tuning	Wizard

Optimizing	Database	Performance	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

Evaluating	Performance
Optimal	performance	comes	from	minimal	response	times	and	maximum
throughput	as	a	result	of	efficient	network	traffic,	disk	I/O,	and	CPU	time.	This
goal	is	achieved	by	analyzing	thoroughly	the	application	requirements,
understanding	the	logical	and	physical	structure	of	the	data,	and	assessing	and
negotiating	tradeoffs	between	conflicting	uses	of	the	database,	such	as	online
transaction	processing	(OLTP)	versus	decision	support.

Response	Time	vs.	Throughput
Response	time	is	measured	as	the	length	of	time	required	for	the	first	row	of	the
result	set	to	be	returned	to	the	user	in	the	form	of	visual	confirmation	that	a
query	is	being	processed.

Throughput	is	a	measure	of	the	total	number	of	queries	handled	by	the	server
during	a	given	time.

As	the	number	of	users	increases,	so	does	the	competition	for	a	server's
resources,	which	in	turn	causes	response	time	to	increase	and	overall	throughput
to	decrease.

Factors	That	Affect	Performance
The	following	areas	affect	the	performance	of	SQL	Server:

System	resources	(hardware)

The	Microsoft	Windows	NT®	4.0	and	Windows®	2000	operating
systems

Database	applications

Client	applications

Network

Before	these	areas	can	be	monitored,	you	must	know	what	level	of	performance
is	reasonable	given	normal	working	conditions.	To	do	this,	establish	a	server
performance	baseline	by	monitoring	Microsoft®	SQL	Server™	performance	at
regular	intervals,	even	when	no	problems	occur.

Troubleshooting	Problems
You	can	monitor	the	following	areas	to	troubleshoot	problems:

SQL	Server	stored	procedures	or	batches	of	SQL	statements	submitted
by	user	applications.

User	activity,	such	as	blocking	locks	or	deadlocks.

Hardware	activity,	such	as	disk	usage

Problems	can	include:

Application	development	errors	involving	incorrectly	written	Transact-
SQL	statements.

Hardware	errors,	such	as	disk	or	network-related	errors.

Excessive	blocking	due	to	an	incorrectly	designed	database.

SQL	Profiler	can	be	used	to	monitor	and	troubleshoot	Transact-SQL	and
application-related	problems.	System	Monitor	(Performance	Monitor	in
Windows	NT	4.0)	can	be	used	to	monitor	hardware	and	other	system-related
problems.

Administering	SQL	Server

Establishing	a	Performance	Baseline
To	determine	whether	your	Microsoft®	SQL	Server™	system	is	performing
optimally,	take	performance	measurements	over	time	and	establish	a	server
performance	baseline.	Compare	each	new	set	of	measurements	with	those	taken
earlier.

After	you	establish	a	server	performance	baseline,	compare	the	baseline	statistics
to	current	server	performance.	Numbers	far	above	or	far	below	your	baseline	are
candidates	for	further	investigation.	They	may	indicate	areas	in	need	of	tuning	or
reconfiguration.	For	example,	if	the	amount	of	time	to	execute	a	set	of	queries
increases,	examine	the	queries	to	determine	if	they	can	be	rewritten	or	if	column
statistics	or	new	indexes	must	be	added.

At	a	minimum,	use	baseline	measurements	to	determine:

Peak	and	off-peak	hours	of	operation.

Production	query	or	batch	command	response	times.

Database	backup	and	restore	completion	times.

See	Also

sp_configure

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Identifying	Bottlenecks
Bottlenecks	are	caused	by	excessive	demand	on	a	system	resource,	and	they	are
present	in	every	system,	to	varying	degrees.	By	monitoring	the	Microsoft®	SQL
Server™	system	for	bottlenecks,	you	can	determine	whether	changes	can	be
made	to	the	limiting	component	to	make	it	perform	at	an	optimal	level.

Reasons	that	bottlenecks	occur	include:

Insufficient	resources,	requiring	additional	or	upgraded	components.

Resources	of	the	same	type	that	do	not	share	workloads	evenly	(for
example,	one	disk	is	being	monopolized).

Malfunctioning	resources.

Incorrectly	configured	resources.

Analyzing	Bottlenecks

When	analyzing	event	data,	low	numbers	can	be	just	as	meaningful	as	high
numbers.	If	a	number	is	lower	than	expected,	it	may	indicate	a	problem	in
another	area.	For	example:

Some	other	component	may	be	preventing	the	load	from	reaching	this
component.

Network	congestion	may	be	preventing	client	requests	from	reaching
the	server.

A	bottleneck	may	be	preventing	client	computers	from	accessing	the
server	as	frequently	as	expected.

System	Monitor	(Performance	Monitor	in	Microsoft	Windows	NT®
4.0)	may	be	employed	incorrectly.	For	example,	if	you	have	not	turned
on	the	disk	counters,	or	you	are	looking	at	the	wrong	instance,	the
wrong	counters,	or	at	the	wrong	computer,	event	data	numbers	may
appear	inexplicably	low.

A	low	number	also	can	mean	that	the	system	is	performing	better	than	expected.

These	are	five	key	areas	to	monitor	when	tracking	server	performance	and
identifying	bottlenecks.

Bottleneck	candidate Effects	on	the	server
Memory	usage Insufficient	memory	allocated	or	available	to	SQL

Server	will	degrade	performance.	Data	must	be
read	from	the	disk	continually	rather	than	residing
in	the	data	cache.	Windows	NT	4.0	and	Microsoft
Windows®	2000	perform	excessive	paging	by
swapping	data	to	and	from	the	disk	as	the	pages	are
needed.

CPU	processor
utilization

A	constantly	high	CPU	rate	may	indicate	the	need
for	a	CPU	upgrade	or	the	addition	of	multiple
processors.

Disk	I/O	performance A	slow	disk	I/O	(disk	reads	and	writes)	will	cause
transaction	throughput	to	degrade.

User	connections An	improperly	configured	number	of	users	can
cause	the	system	to	run	slowly	or	restrict	the
amount	of	memory	otherwise	available	to	SQL
Server.

Blocking	locks A	process	may	be	forcing	another	process	to	wait,
thereby	slowing	down	or	stopping	the	blocking
process.

See	Also

Monitoring	CPU	Use

Monitoring	Disk	Activity

Monitoring	Memory	Usage

SQL	Server:	General	Statistics	Object

SQL	Server:	Locks	Object

Administering	SQL	Server

Determining	User	Activity
You	can	monitor	individual	user	activity	to	pinpoint	transactions	that	may	be
blocking	other	transactions	or	causing	the	performance	of	Microsoft®	SQL
Server™	to	be	slower	than	expected.

Monitoring	user	activity	helps	identify	trends	such	as	the	types	of	transactions
run	by	certain	users,	the	number	of	inefficient	ad	hoc	queries	being	run,	and	the
types	of	transactions	requiring	the	most	resources.

To	collect	statistical	information	about	users,	use	either	SQL	Profiler	or	System
Monitor	(Windows	NT	Performance	Monitor	in	Windows	NT®	4.0).	Use	the
SQL	Server	Enterprise	Manager	Current	Activity	window	to	perform	ad	hoc
monitoring	of	SQL	Server,	which	allows	you	to	determine	user	activity	on	the
system.

See	Also

Monitoring	with	SQL	Server	Enterprise	Manager

Sessions	Event	Category

SQL	Server:	General	Statistics	Object

Administering	SQL	Server

Choosing	a	Monitoring	Tool
Microsoft®	SQL	Server™	provides	a	comprehensive	set	of	tools	for	monitoring
events	in	SQL	Server.	Your	choice	of	tool	will	depend	on	the	type	of	monitoring
and	the	events	to	be	monitored.	For	example,	ad	hoc	monitoring	to	determine	the
number	of	users	currently	connected	to	an	instance	of	SQL	Server	can	be
accomplished	by	using	the	sp_who	system	stored	procedure,	rather	than	creating
a	trace	and	using	SQL	Profiler.

SQL	Profiler
Enables	you	to	monitor	server	and	database	activity	(for	example,	number	of
deadlocks,	fatal	errors,	tracing	stored	procedures	and	Transact-SQL	statements,
or	login	activity).	You	can	capture	SQL	Profiler	data	to	a	SQL	Server	table	or	a
file	for	later	analysis,	and	also	replay	the	events	captured	on	SQL	Server,	step	by
step,	to	see	exactly	what	happened.	SQL	Profiler	tracks	engine	process	events,
such	as	the	start	of	a	batch	or	a	transaction.

System	Monitor
Enables	you	to	monitor	server	performance	and	activity	using	predefined	objects
and	counters	or	user-defined	counters	to	monitor	events.	System	Monitor
(Performance	Monitor	in	Microsoft	Windows	NT®	4.0)	collects	counts	rather
than	data	about	the	events	(for	example,	memory	usage,	number	of	active
transactions,	number	of	blocked	locks,	or	CPU	activity).	You	can	set	thresholds
on	specific	counters	to	generate	alerts	that	notify	operators.	System	Monitor
primarily	tracks	resource	usage,	such	as	the	number	of	buffer	manager	page
requests	in	use.

System	Monitor	works	only	on	Microsoft	Windows®	2000	and	can	monitor
(remotely	or	locally)	an	instance	of	SQL	Server	on	Windows	NT	4.0	or
Windows	2000	only.

Current	activity	window	(SQL	Server	Enterprise	Manager)
Graphically	displays	information	about	processes	running	currently	on	an
instance	of	SQL	Server,	blocked	processes,	locks,	and	user	activity.	This	is

useful	for	ad	hoc	views	of	current	activity.

Error	Logs
Contain	additional	information	about	events	in	SQL	Server	than	is	available
elsewhere.	You	can	use	the	information	in	the	error	log	to	troubleshoot	SQL
Server-related	problems.	The	Windows	application	event	log	provides	an	overall
picture	of	events	occurring	on	the	Windows	NT	4.0	and	Windows	2000	system
as	a	whole,	as	well	as	events	in	SQL	Server,	SQL	Server	Agent,	and	full-text
search.

sp_who
Reports	snapshot	information	about	current	SQL	Server	users	and	processes,
including	the	currently	executing	statement	and	whether	the	statement	is
blocked.	This	is	a	Transact-SQL	alternative	to	viewing	user	activity	in	the
current	activity	window	in	SQL	Server	Enterprise	Manager.

sp_lock
Reports	snapshot	information	about	locks,	including	the	object	ID,	index	ID,
type	of	lock,	and	type	or	resource	to	which	the	lock	applies.	This	is	a	Transact-
SQL	alternative	to	viewing	lock	activity	in	the	current	activity	window	in	SQL
Server	Enterprise	Manager.

sp_spaceused
Displays	an	estimate	of	the	current	amount	of	disk	space	used	by	a	table	(or	a
whole	database).	This	is	a	Transact-SQL	alternative	to	viewing	database	usage	in
SQL	Server	Enterprise	Manager.

sp_monitor
Displays	statistics,	including	CPU	usage,	I/O	usage,	and	the	amount	of	time	idle
since	sp_monitor	was	last	executed.

DBCC	statements
Enables	you	to	check	performance	statistics	and	the	logical	and	physical

consistency	of	a	database.	For	more	information,	see	DBCC.

Built-in	functions
Display	snapshot	statistics	about	SQL	Server	activity	since	the	server	was
started;	these	statistics	are	stored	in	predefined	SQL	Server	counters.	For
example,	@@CPU_BUSY	contains	the	amount	of	time	the	CPU	has	been
executing	SQL	Server	code;	@@CONNECTIONS	contains	the	number	of	SQL
Server	connections	or	attempted	connections;	and	@@PACKET_ERRORS
contains	the	number	of	network	packets	occurring	on	SQL	Server	connections.
For	more	information,	see	Functions.

SQL	Profiler	stored	procedures	and	functions
Use	Transact-SQL	stored	procedures	to	gather	SQL	Profiler	statistics.	For	more
information,	see	System	Stored	Procedures.

Trace	flags
Display	information	about	a	specific	activity	within	the	server	and	are	used	to
diagnose	problems	or	performance	issues	(for	example,	deadlock	chains).	For
more	information,	see	Trace	Flags.

Simple	Network	Management	Protocol	(SNMP)
Simple	Network	Management	Protocol	(SNMP)	is	an	application	protocol	that
offers	network	management	services.	Using	SNMP,	you	can	monitor	an	instance
of	SQL	Server	across	different	platforms	(for	example,	Windows	NT	4.0,
Windows	98,	and	UNIX).	With	SQL	Server	and	the	Microsoft	SQL	Server
Management	Information	Base	(MSSQL-MIB),	you	can	use	SNMP	applications
to	monitor	the	status	of	SQL	Server	installations.	You	can	monitor	performance
information,	access	databases,	and	view	server	and	database	configuration
parameters.

The	choice	of	a	monitoring	tool	depends	on	the	type	of	events	and	activity	to	be
monitored.

SQL System
Current
activity Transact- Error

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Event	or	activity Profiler Monitor window SQL logs
Trend	analysis Yes Yes
Replaying
captured	events

Yes

Ad	hoc
monitoring

Yes Yes Yes Yes

Generating	alerts Yes
Graphical
interface

Yes Yes Yes Yes

Using	within
custom
application

Yes	1 Yes

1	Using	SQL	Profiler	system	stored	procedures.

The	key	difference	between	the	two	main	monitoring	tools,	SQL	Profiler	and
System	Monitor,	is	that	SQL	Profiler	monitors	engine	events	while	System
Monitor	monitors	resource	usage	associated	with	server	processes.	For	example,
SQL	Profiler	can	be	used	to	monitor	deadlocks	events,	including	the	users	and
objects	involved	in	the	deadlock.	System	Monitor	can	be	used	to	monitor	the
total	number	of	deadlocks	occurring	in	a	database	or	on	a	specific	object.

Windows	NT	4.0	and	Windows	2000	also	provides	these	monitoring	tools:

Task	Manager

Shows	a	synopsis	of	the	processes	and	applications	running	on	the
system.

Network	Monitor	Agent

Assists	in	monitoring	network	traffic.

For	more	information	about	Windows	NT	4.0	or	Windows	2000	tools,	see	the
Windows	NT	4.0	or	Windows	2000	documentation.

Administering	SQL	Server

Monitoring	with	SQL	Profiler
SQL	Profiler	is	a	graphical	tool	that	allows	system	administrators	to	monitor
events	in	an	instance	of	Microsoft®	SQL	Server™.	You	can	capture	and	save
data	about	each	event	to	a	file	or	SQL	Server	table	to	analyze	later.	For	example,
you	can	monitor	a	production	environment	to	see	which	stored	procedures	are
hampering	performance	by	executing	too	slowly.

Use	SQL	Profiler	to	monitor	only	the	events	in	which	you	are	interested.	If
traces	are	becoming	too	large,	you	can	filter	them	based	on	the	information	you
want,	so	that	only	a	subset	of	the	event	data	is	collected.	Monitoring	too	many
events	adds	overhead	to	the	server	and	the	monitoring	process	and	can	cause	the
trace	file	or	trace	table	to	grow	very	large,	especially	when	the	monitoring
process	takes	place	over	a	long	period	of	time.

After	you	have	traced	events,	SQL	Profiler	allows	captured	event	data	to	be
replayed	against	an	instance	of	SQL	Server,	thereby	effectively	reexecuting	the
saved	events	as	they	occurred	originally.

Use	SQL	Profiler	to:

Monitor	the	performance	of	an	instance	of	SQL	Server.

Debug	Transact-SQL	statements	and	stored	procedures.

Identify	slow-executing	queries.

Test	SQL	statements	and	stored	procedures	in	the	development	phase	of
a	project	by	single-stepping	through	statements	to	confirm	that	the	code
works	as	expected.

Troubleshoot	problems	in	SQL	Server	by	capturing	events	on	a
production	system	and	replaying	them	on	a	test	system.	This	is	useful
for	testing	or	debugging	purposes	and	allows	users	to	continue	using	the
production	system	without	interference.

Audit	and	review	activity	that	occurred	on	an	instance	of	SQL	Server.
This	allows	a	security	administrator	to	review	any	of	the	auditing
events,	including	the	success	and	failure	of	a	login	attempt	and	the
success	and	failure	of	permissions	in	accessing	statements	and	objects.

SQL	Profiler	provides	a	graphical	user	interface	to	a	set	of	stored	procedures	that
can	be	used	to	monitor	an	instance	of	SQL	Server.	For	example,	it	is	possible	to
create	your	own	application	that	uses	SQL	Profiler	stored	procedures	to	monitor
SQL	Server.

You	must	have	at	least	10	megabytes	(MB)	of	free	space	to	run	SQL	Profiler.	If
free	space	drops	below	10	MB	while	you	are	using	SQL	Profiler,	all	SQL
Profiler	functions	will	stop.

Starting	SQL	Profiler
SQL	Profiler	is	started	from	the	Microsoft®	Windows	NT®	4.0,	Microsoft
Windows®	2000	or	Microsoft	Windows	98	Start	menu,	or	from	SQL	Server
Enterprise	Manager.

With	Windows	Authentication	mode,	the	user	account	that	runs	SQL	Profiler
must	be	granted	permission	to	connect	to	an	instance	of	SQL	Server.	The	login
account	also	must	be	granted	permissions	to	execute	SQL	Profiler	stored
procedures.	For	more	information,	see	System	Stored	Procedures.

To	start	SQL	Profiler

JavaScript:hhobj_1.Click()

Administering	SQL	Server

SQL	Profiler	Keyboard	Shortcuts
The	following	table	shows	the	keyboard	shortcuts	available	in	SQL	Profiler.

CTRL+Shift+Delete Clear	a	trace	window
CTRL+F4 Close	a	trace	window
- Collapse	a	trace	grouping
CTRL+C Copy
ALT+Delete Delete	a	trace
+ Expand	a	trace	grouping
CTRL+F Find
F3 Find	the	next	item
Shift+F3 Find	the	previous	item
F1 Display	available	help
CTRL+N Open	a	new	trace
ALT+F7 Replay	the	settings
CTRL+F10 Run	to	cursor
F5 Start	a	replay
F11 Step
Shift+F5 Stop	a	replay
F9 Toggle	a	breakpoint

Administering	SQL	Server

SQL	Profiler	Terminology
To	use	SQL	Profiler,	you	need	to	understand	the	terminology	that	describes	the
way	the	tool	functions.	For	example,	you	create	a	template	that	defines	the	data
you	want	to	collect.	You	collect	this	data	by	running	a	trace	on	the	events
defined	in	the	template.	While	the	trace	is	running,	the	event	classes	and	data
columns	that	describe	the	event	data	are	displayed	in	SQL	Profiler.

Template
A	template	defines	the	criteria	for	each	event	you	want	to	monitor	with	SQL
Profiler.	For	example,	you	can	create	a	template,	specifying	which	events,	data
columns,	and	filters	to	use.	Then	you	can	save	the	template	and	launch	a	trace
with	the	current	template	settings.	The	trace	data	captured	is	based	upon	the
options	specified	in	the	template.	A	template	is	not	executed,	and	must	be	saved
to	a	file	with	the	.tdf	extension.

Trace
A	trace	captures	data	based	upon	the	selected	events,	data	columns,	and	filters.
For	example,	you	can	create	a	template	to	monitor	exception	errors.	To	do	this,
you	would	select	to	trace	the	Exception	event	class,	and	the	Error,	State,	and
Severity	data	columns,	which	need	to	be	collected	for	the	trace	results	to	provide
meaningful	data.	After	you	save	the	template,	you	can	then	run	it	as	a	trace,	and
collect	data	on	any	Exception	events	that	occur	in	the	server.	This	trace	data	can
be	saved	and	then	replayed	at	a	later	date,	or	used	immediately	for	analysis.

Filter

When	you	create	a	trace	or	template,	you	can	define	criteria	to	filter	the
data	collected	by	the	event.	If	traces	are	becoming	too	large,	you	can
filter	them	based	on	the	information	you	want,	so	that	only	a	subset	of
the	event	data	is	collected.	If	a	filter	is	not	set,	all	events	of	the	selected
event	classes	are	returned	in	the	trace	output.	For	example,	you	can
limit	the	Microsoft®	Windows®	2000	user	names	in	the	trace	to
specific	users,	reducing	the	output	data	to	only	those	users	in	which	you
are	interested.

Event	Category

An	event	category	defines	the	way	events	are	grouped.	For	example,	all	lock
events	classes	are	grouped	within	the	Locks	event	category.	However,	event
categories	only	exist	within	SQL	Profiler.	This	term	does	not	reflect	the	way
engine	events	are	grouped.

Event
An	event	is	an	action	generated	within	the	Microsoft	SQL	Server™	engine.	For
example:

The	login	connections,	failures,	and	disconnections.

The	Transact-SQL	SELECT,	INSERT,	UPDATE,	and	DELETE
statements.

The	remote	procedure	call	(RPC)	batch	status.

The	start	or	end	of	a	stored	procedure.

The	start	or	end	of	statements	within	stored	procedures.

The	start	or	end	of	an	SQL	batch.

An	error	written	to	the	SQL	Server	error	log.

A	lock	acquired	or	released	on	a	database	object.

An	opened	cursor.

Security	permissions	checks.

All	of	the	data	that	is	generated	as	a	result	of	an	event	is	displayed	in	the	trace	in
a	single	row.	This	row	contains	columns	of	data	called	event	classes	that
describe	the	event	in	detail.

Event	Class
An	event	class	is	the	column	that	describes	the	event	that	was	produced	by	the
server.	The	event	class	determines	the	type	of	data	collected,	and	not	all	data
columns	are	applicable	to	all	event	classes.	Examples	of	event	classes	include:

SQL:BatchCompleted,	which	indicates	the	completion	of	an	SQL
batch.

The	name	of	the	computer	on	which	the	client	is	running.

The	ID	of	the	object	affected	by	the	event,	such	as	a	table	name.

The	SQL	Server	name	of	the	user	issuing	the	statement.

The	text	of	the	Transact-SQL	statement	or	stored	procedure	being
executed.

The	time	the	event	started	and	ended.

Data	Column

The	data	columns	describe	the	data	collected	for	each	of	the	event	classes
captured	in	the	trace.	Because	the	event	class	determines	the	type	of	data
collected,	not	all	data	columns	are	applicable	to	all	event	classes.	For	example,
the	Binary	Data	data	column,	when	captured	for	the	Lock:Acquired	event
class,	contains	the	value	of	the	locked	page	ID	or	row	but	has	no	value	for	the
Integer	Data	event	class.	Default	data	columns	are	populated	automatically	for
all	event	classes.

Administering	SQL	Server

SQL	Profiler	Scenarios
Typically,	you	use	SQL	Profiler	to:

Find	the	worst-performing	queries

For	example,	you	can	create	a	trace	that	captures	events	relating	to
TSQL	and	Stored	Procedure	event	classes,	specifically
RPC:Completed	and	SQL:BatchCompleted.	Include	all	data	columns
in	the	trace,	group	by	Duration,	and	specify	event	criteria.	For
example,	if	you	specify	that	the	Duration	of	the	event	must	be	at	least
1,000	milliseconds,	you	can	eliminate	short-running	events	from	the
trace.	The	Duration	minimum	value	can	be	increased	as	required.	If
you	want	to	monitor	only	one	database	at	a	time,	specify	a	value	for	the
Database	ID	event	criteria.

Identify	the	cause	of	a	deadlock

For	example,	you	can	create	a	trace	that	captures	events	relating	to
TSQL	and	Stored	Procedure	event	classes	(RPC:Starting	and
SQL:BatchStarting)	and	Locks	event	classes	(Lock:Deadlock	and
Lock:Deadlock	Chain).	Include	all	data	columns	in	the	trace	and	group
by	Event	Class.	If	you	want	to	monitor	only	one	database	at	a	time,
specify	a	value	for	the	Database	ID	event	criteria.

To	view	the	connections	involved	in	a	deadlock,	do	one	of	the
following:

Open	the	trace	containing	the	captured	data,	group	the	data	by
ClientProcessID,	and	expand	both	connections	involved	in	the
deadlock.

Save	the	captured	data	to	a	trace	file	and	open	the	trace	file
twice	to	make	the	file	visible	in	two	separate	SQL	Profiler
windows.	Group	the	captured	data	by	ClientProcessID	and
then	expand	the	client	process	ID	involved	in	the	deadlock;
each	deadlocked	connection	is	in	a	separate	window.	Tile	the
windows	to	view	the	events	causing	the	deadlock.

Monitor	stored	procedure	performance

For	example,	you	can	create	a	trace	that	captures	events	relating	to
Stored	Procedures	event	classes	(SP:Completed,	SP:Starting,
SP:StmtCompleted	and	SP:StmtStarting),	and	TSQL	event	classes
(SQL:BatchStarting	and	SQL:BatchCompleted).	Include	all	data
columns	in	the	trace	and	group	by	ClientProcessID.	If	you	want	to
monitor	only	one	database	at	a	time,	specify	a	value	for	the	Database
ID	event	criteria.	Similarly,	if	you	want	to	monitor	only	one	stored
procedure	at	a	time,	specify	a	value	for	the	Object	ID	event	criteria.

Audit	Microsoft®	SQL	Server™	activity

You	can	audit	activity	in	SQL	Server	using	SQL	Profiler.	For	example,	if	the
security	administrator	always	needs	to	know	who	is	logged	in	to	the	server,
you	can	create	a	SQL	Profiler	trace	that	provides	a	complete	view	of	users
who	have	logged	in	or	out	of	the	server.	This	information	can	then	be	used
for	legal	purposes	to	document	activity	and	for	technical	purposes	to	track
security	policy	violations.

To	set	up	a	SQL	Profiler	trace	that	tracks	users	who	have	logged	in	or	out	of
the	server,	do	the	following:

1.	 Create	a	trace,	selecting	Audit	Login	Event.

2.	 To	return	the	appropriate	information,	specify	the	following	data
columns:

EventClass	(selected	by	default)

EventSubClass

LoginSID

LoginName

Monitor	Transact-SQL	activity	per	user.

You	can	create	a	trace	that	captures	events	relating	to	the	Sessions	event
class,	ExistingConnection,	and	TSQL	event	classes.	Include	all	data
columns	in	the	trace,	do	not	specify	any	event	criteria,	and	group	the

captured	events	by	DBUserName.

See	Also

Locks	Event	Category

Sessions	Event	Category

Stored	Procedures	Event	Category

TSQL	Event	Category

Administering	SQL	Server

Monitoring	with	SQL	Profiler	Event	Categories
In	SQL	Profiler,	use	event	categories	to	monitor	events	in	Microsoft®	SQL
Server™.	Event	categories	contain	event	classes	that	have	been	grouped	together
within	the	SQL	Profiler	user	interface.	For	more	information,	see	SQL	Profiler
Terminology.

The	following	table	describes	the	SQL	Profiler	event	categories	and	their
associated	event	classes.

Event	category Description
Cursors Collection	of	event	classes	produced	by	cursor

operations.
Database Collection	of	event	classes	produced	when	data	or	log

files	grow	or	shrink	automatically.
Errors	and
Warnings

Collection	of	event	classes	produced	when	a	SQL
Server	error	or	warning	occurs	(for	example,	an	error
during	the	compilation	of	a	stored	procedure	or	an
exception	in	SQL	Server).

Locks Collection	of	event	classes	produced	when	a	lock	is
acquired,	cancelled,	released,	etc.

Objects Collection	of	event	classes	produced	when	database
objects	are	created,	opened,	closed,	dropped,	or
deleted.

Performance Collection	of	event	classes	produced	when	SQL	data
manipulation	(DML)	operators	execute.

Scans Collection	tables	and	indexes	are	scanned.
Security	Audit Collection	of	event	classes	used	to	audit	server

activity.
Sessions Collection	of	event	classes	produced	by	clients

connecting	to	and	disconnecting	from	an	instance	of
SQL	Server.

Stored	Procedures Collection	of	event	classes	produced	by	the	execution
of	stored	procedures.

Transactions Collection	of	event	classes	produced	by	the	execution

of	Microsoft	Distributed	Transaction	Coordinator	(MS
DTC)	transactions	or	by	writing	to	the	transaction	log.

TSQL Collection	of	event	classes	produced	by	the	execution
of	Transact-SQL	statements	passed	to	an	instance	of
SQL	Server	from	the	client.

User	Configurable Collection	of	user-configurable	event	classes.

Administering	SQL	Server

SQL	Profiler	Event	Classes
In	SQL	Profiler,	event	classes	are	rows	that	describe	the	events	you	are	tracing.
Within	SQL	Profiler,	event	classes	are	grouped	into	event	categories.	For
example,	all	lock	event	classes	are	grouped	within	the	Locks	event	category.	For
more	information,	see	SQL	Profiler	Terminology.

Administering	SQL	Server

SQL	Profiler	Default	Event	Classes
When	a	new	trace	is	created,	it	is	defined	with	a	set	of	default	event	classes.	You
can	remove	these	event	classes	and	add	others	when	you	create	new	traces.
Unless	removed	explicitly,	the	default	event	classes	are	present	each	time	a	new
trace	is	created.

These	are	the	default	event	classes	for	a	new	trace.

Default	event	class Description
Audit	Login	Event Collects	all	new	connection	events	(for	example,	a

client	requesting	a	connection	to	a	server	running
an	instance	of	Microsoft®	SQL	Server™)	since	the
trace	was	started.

Audit	Logout	Event Collects	all	new	disconnect	events	(for	example,	a
client	issues	a	disconnect	command)	since	the	trace
was	started.

ExistingConnection Detects	activity	by	all	users	connected	to	an
instance	of	SQL	Server	before	the	trace	was
started.

RPC:Completed Indicates	that	a	remote	procedure	call	(RPC)	has
completed.

SQL:BatchCompleted Indicates	that	a	transact-SQL	batch	has	completed.

See	Also

Creating	and	Managing	Traces	and	Templates

Administering	SQL	Server

SQL	Profiler	Data	Columns
SQL	Profiler	allows	you	to	select	data	columns	when	you	create	a	template.
These	data	columns	represent	the	information	you	would	like	returned	when	a
trace	is	running.	The	data	displayed	in	SQL	Profiler	can	be	displayed	either	in
the	order	the	events	occur	or	in	a	group	based	on	one	or	a	combination	of	data
columns.

For	example,	to	identify	the	user	events	that	are	taking	the	longest	to	execute,
group	events	by	DBUserName	and	Duration.	SQL	Profiler	displays	the
execution	time	for	each	event.	This	functionality	is	similar	to	the	Transact-SQL
GROUP	BY	clause.	For	more	information,	see	GROUP	BY.

Note		You	cannot	group	by	the	StartTime	or	EndTime	data	columns.

If	SQL	Profiler	can	connect	to	an	instance	of	Microsoft®	SQL	Server™	on
which	the	trace	data	was	captured,	it	will	try	to	populate	the	Database	ID,
Object	ID,	and	Index	ID	data	columns	with	the	names	of	the	database,	object,
and	index	respectively.	Otherwise,	it	will	display	identification	numbers	(IDs).

The	following	table	describes	the	SQL	Profiler	data	columns,	and	which	are
selected	by	default.

Data	column
Column
Number Description

Application
Name1

10 Name	of	the	client	application	that	created	the
connection	to	an	instance	of	SQL	Server.	This
column	is	populated	with	the	values	passed
by	the	application	rather	than	the	displayed
name	of	the	program.

Binary	Data 2 Binary	value	dependent	on	the	event	class
captured	in	the	trace.

ClientProcessID1 9 ID	assigned	by	the	host	computer	to	the
process	where	the	client	application	is
running.	This	data	column	is	populated	if	the
client	process	ID	is	provided	by	the	client.

JavaScript:hhobj_1.Click()

Column
Permissions

44 Indicates	whether	a	column	permission	was
set.	Parse	the	statement	text	to	determine
which	permissions	were	applied	to	which
columns.

CPU 18 Amount	of	CPU	time	(in	milliseconds)	used
by	the	event.

Database	ID1 3 ID	of	the	database	specified	by	the	USE
database	statement	or	the	default	database	if
no	USE	database	statement	has	been	issued
for	a	given	instance.	SQL	Profiler	displays
the	name	of	the	database	if	the	Server	Name
data	column	is	captured	in	the	trace	and	the
server	is	available.	Determine	the	value	for	a
database	by	using	the	DB_ID	function.

DatabaseName 35 Name	of	the	database	in	which	the	user
statement	is	running.

DBUserName1 40 SQL	Server	user	name	of	the	client.
Duration 13 Amount	of	time	(in	milliseconds)	taken	by

the	event.
End	Time 15 Time	at	which	the	event	ended.	This	column

is	not	populated	for	event	classes	that	refer	to
an	event	starting,	such	as
SQL:BatchStarting	or	SP:Starting.

Error 31 Error	number	of	a	given	event.	Often	this	is
the	error	number	stored	in	sysmessages.

EventClass1 27 Type	of	event	class	captured.

EventSubClass1 21 Type	of	event	subclass,	providing	further
information	about	each	event	class.	For
example,	event	subclass	values	for	the
Execution	Warning	event	class	represent	the
type	of	execution	warning:

1	=	Query	wait.	The	query	must	wait	for
resources	(for	example,	memory)	before	it
can	execute.	
2	=	Query	time-out.	The	query	timed	out

while	waiting	for	required	resources	to
execute.	This	data	column	is	not	populated
for	all	event	classes.

FileName 36 The	logical	name	of	the	file	being	modified.
Handle 33 Integer	used	by	ODBC,	OLE	DB,	or	DB-

Library	to	coordinate	server	execution.
Host	Name1 8 Name	of	the	computer	on	which	the	client	is

running.	This	data	column	is	populated	if	the
host	name	is	provided	by	the	client.	To
determine	the	host	name,	use	the
HOST_NAME	function.

Index	ID 24 ID	for	the	index	on	the	object	affected	by	the
event.	To	determine	the	index	ID	for	an
object,	use	the	indid	column	of	the
sysindexes	system	table.

Integer	Data 25 Integer	value	dependent	on	the	event	class
captured	in	the	trace.

LoginName 11 Name	of	the	login	of	the	user	(either	SQL
Server	security	login	or	the	Microsoft
Windows®	login	credentials	in	the	form	of
DOMAIN\Username).

LoginSid1 41 Security	identification	number	(SID)	of	the
logged-in	user.	You	can	find	this	information
in	the	sysxlogins	table	of	the	master
database.	Each	SID	is	unique	for	each	login
in	the	server.

Mode 32 Integer	used	by	various	events	to	describe	a
state	the	event	has	received	or	is	requesting.

NestLevel 29 Integer	representing	the	data	returned	by
@@NESTLEVEL.

NT	Domain
Name1

7 Microsoft	Windows	NT®	4.0	or	Windows
2000	domain	to	which	the	user	belongs.

NT	User	Name1 6 Windows	NT	4.0	or	Windows	2000	user
name.

Object	ID 22 System-assigned	ID	of	the	object.
ObjectName 34 Name	of	the	object	being	referenced.
ObjectType 28 Value	representing	the	type	of	the	object

involved	in	the	event.	This	value	corresponds
to	the	type	column	in	sysobjects.

Owner	Name 37 Database	user	name	of	the	object	owner.
Permissions 19 Integer	value	representing	the	type	of

permissions	checked.	Values	are:

1	=	SELECT	ALL
2	=	UPDATE	ALL
4	=	REFERENCES	ALL
8	=	INSERT
16	=	DELETE
32	=	EXECUTE	(procedures	only)
4096	=	SELECT	ANY	(at	least	one	column)
8192	=	UPDATE	ANY
16384	=	REFERENCES	ANY

Reads 16 Number	of	logical	disk	reads	performed	by
the	server	on	behalf	of	the	event.

RoleName 38 Name	of	an	application	role	being	enabled.
Server	Name1 26 Name	of	the	instance	of	SQL	Server	being

traced.
Severity 20 Severity	level	of	an	exception.
SPID1 12 Server	Process	ID	assigned	by	SQL	Server	to

the	process	associated	with	the	client.
Start	Time1 14 Time	at	which	the	event	started,	when

available.
State 30 Equivalent	to	an	error	state	code.
Success 23 Represents	whether	the	event	was	successful.

Values	include:

1	=	Success.	
0	=	Failure

For	example,	a	1	means	success	of	a
permissions	check	and	a	0	means	a	failure	of

that	check.

TargetLoginName 42 For	actions	which	target	a	login	(for	example,
adding	a	new	login),	the	name	of	the	targeted
login.

TargetLoginSid 43 For	actions	which	target	a	login	(for	example,
adding	a	new	login),	the	SID	of	the	targeted
login.

TargetUserName 39 For	actions	which	target	a	database	user	(for
example,	granting	permission	to	a	user),	the
name	of	that	user.

TextData 1 Text	value	dependent	on	the	event	class
captured	in	the	trace.	However,	if	you	are
tracing	a	parameterized	query,	the	variables
will	not	be	displayed	with	data	values	in	the
TextData	column.

Transaction	ID 4 System-assigned	ID	of	the	transaction.
Writes 17 Number	of	physical	disk	writes	performed	by

the	server	on	behalf	of	the	event.
1	These	data	columns	are	populated	by	default	for	all	events.

Administering	SQL	Server

Cursors	Event	Category
Use	the	Cursors	event	category	to	monitor	cursor	operations.	For	example,	you
can	determine	when	a	cursor	is	executed	and	what	type	of	cursor	is	used	by
monitoring	the	CursorOpen,	CursorExecute,	and	CursorImplicitConversion
event	classes.	Tracing	specific	event	classes	can	be	useful	to	determine	the	actual
cursor	type	used	for	an	operation	by	an	instance	of	Microsoft®	SQL	Server™,
rather	than	the	cursor	type	specified	by	the	application.

See	Also

Cursors	Event	Classes

Cursors	Data	Columns

Administering	SQL	Server

Cursors	Event	Classes
The	following	table	describes	the	Cursors	event	classes	in	the	Cursors	event
category.

Event	class Description
CursorClose A	cursor	previously	opened	on	a	Transact-SQL

statement	by	ODBC,	OLE	DB,	or	DB-Library
is	closed.

CursorExecute A	cursor	previously	prepared	on	a	Transact-
SQL	statement	by	ODBC,	OLE	DB,	or	DB-
Library	is	executed.	For	more	information,	see
How	to	prepare	and	execute	a	statement
(ODBC).

CursorImplicitConversionA	cursor	on	a	Transact-SQL	statement	is
converted	by	Microsoft®	SQL	Server™	from
one	type	to	another.

Triggered	for	ANSI	and	non-ANSI	cursors.

CursorOpen A	cursor	is	opened	on	a	Transact-SQL
statement	by	ODBC,	OLE	DB,	or	DB-Library.

CursorPrepare A	cursor	on	a	Transact-SQL	statement	is
prepared	for	use	by	ODBC,	OLE	DB,	or	DB-
Library.	For	more	information,	see	How	to
prepare	and	execute	a	statement	(ODBC).

CursorRecompile A	cursor	opened	on	a	Transact-SQL	statement
by	ODBC	or	DB-Library	has	been	recompiled
either	directly	or	indirectly	due	to	a	schema
change.

Triggered	for	ANSI	and	non-ANSI	cursors.

CursorUnprepare A	prepared	cursor	on	a	Transact-SQL
statement	is	deleted	by	ODBC,	OLE	DB,	or
DB-Library.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

See	Also

Cursors	Event	Category

Cursors	Data	Columns

Administering	SQL	Server

Cursors	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	Cursors
event	category.

Event	class Data	column Description
CursorClose Event	Class Type	of	event	recorded	=	78.
	 Handle Handle	of	the	cursor.
CursorExecute Event	Class

Handle

Integer	Data

Type	of	event	recorded	=	74.

Handle	of	the	cursor.

Cursor	type.	Values	are:

1		=	Keyset
2		=	Dynamic
4		=	Forward	only
8		=	Static
16	=	Fast	forward

CursorImplicitConversionEvent	Class Type	of	event	recorded	=	76.
	 Handle Handle	of	the	cursor.
	 Integer	Data Requested	cursor	type.	Values

are:

1		=	Keyset
2		=	Dynamic
4		=	Forward	only
8		=	Static
16	=	Fast	forward

	 Binary	Data Resulting	cursor	type.	Values
are:

1		=	Keyset
2		=	Dynamic
4		=	Forward	only

8		=	Static
16	=	Fast	forward

CursorOpen Event	Class

Handle

Integer	Data

Type	of	event	recorded	=	53.

Handle	of	the	cursor.

Cursor	type.	Values	are:

1		=	Keyset
2		=	Dynamic
4		=	Forward	only
8		=	Static
16	=	Fast	forward

CursorPrepare Event	Class Type	of	event	recorded	=	70.
	 Handle Handle	of	the	prepared	cursor.
CursorRecompile Event	Class

Handle

Type	of	event	recorded	=	75.

Handle	of	the	cursor	that	had
to	be	recompiled.

CursorUnprepare Event	Class

Event	Sub
Class

Type	of	event	recorded	=	77.

Handle	of	the	cursor	created
by	CursorPrepare.

See	Also

Cursors

Cursors	Event	Classes

Cursors	Event	Category

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Database	Event	Category
Use	the	Database	event	category	to	monitor	when	data	or	log	files	grow	or
shrink	automatically.

See	Also

Database	Event	Classes

Database	Data	Columns

Administering	SQL	Server

Database	Event	Classes
The	following	table	describes	the	Database	event	classes	in	the	Database	event
category.

Event	class Description
DataFileAutoGrow Indicates	that	the	data	file	grew	automatically.	This

event	is	not	triggered	if	the	data	file	is	grown
explicitly	through	ALTER	DATABASE.

DataFileAutoShrink Indicates	that	the	data	file	has	been	shrunk.
LogFileAutoGrow Indicates	that	the	log	file	grew	automatically.	This

event	is	not	triggered	if	the	log	file	is	grown
explicitly	through	ALTER	DATABASE.

LogFileAutoShrink Indicates	that	the	log	file	has	been	shrunk.

See	Also

Database	Event	Category

Database	Data	Columns

Administering	SQL	Server

Database	Data	Columns
The	following	lists	the	data	columns	for	each	event	class	in	the	Database	event
category.

Event	class Data	column Description
Data	File	Auto	Grow Event	Class Type	of	event	recorded	=	92.
	 End	Time The	time	the	data	file	auto	grow

ended.
	 Duration The	length	of	time	(in

milliseconds)	necessary	to	extend
the	file.

	 File	Name The	logical	name	of	the	file	being
extended.

	 Integer	Data The	number	of	8-kilobyte	(KB)
pages	by	which	the	file	increased.

Data	File	Auto	Shrink Event	Class Type	of	event	recorded	=	94.
	 End	Time The	time	the	auto	shrink	ended.
	 Duration The	time	(in	milliseconds)	to

shrink	the	file.
	 File	Name The	logical	name	of	the	file	being

shrunk.
	 Integer	Data The	number	of	8	KB	pages	by

which	the	file	was	reduced.
Log	File	Auto	Grow Event	Class Type	of	event	recorded	=	93.
	 End	Time The	time	the	log	file	auto	grow

ended.
	 Duration The	time	(in	milliseconds)

needed	to	extend	the	file.
	 File	Name The	logical	name	of	the	file	being

extended.
	 Integer	Data The	number	of	8	KB	pages	by

which	the	file	increased.

Log	File	Auto	Shrink Event	Class Type	of	event	recorded	=	95.
	 End	Time The	time	the	log	file	auto	shrink

ended.
	 Duration The	time	(in	milliseconds)

needed	to	shrink	the	file.
	 File	Name The	logical	name	of	the	file	being

shrunk.
	 Integer	Data The	number	of	8	KB	pages	by

which	the	file	was	reduced.

See	Also

Database	Event	Category

Database	Event	Classes

Administering	SQL	Server

Errors	and	Warnings	Event	Category
Use	the	Errors	and	Warnings	event	category	to	monitor	many	of	the	errors	and
warnings	raised	by	Microsoft®	SQL	Server™	and	components	such	as	OLE	DB.
Typically,	you	use	the	following	event	classes	to	look	for	problems	that	may	be
encountered	while	running	applications	or	executing	procedures.

See	Also

Errors	and	Warnings	Event	Classes

Errors	and	Warnings	Data	Columns

Administering	SQL	Server

Errors	and	Warnings	Event	Classes
The	following	table	describes	the	Errors	and	Warnings	event	classes	in	the
Errors	and	Warnings	event	category.

Event	class Description
Attention Collects	all	attention	events,	such	as	client-

interrupt	requests	or	when	a	client	connection	is
broken.

ErrorLog Error	events	have	been	logged	in	the	Microsoft®
SQL	Server™	error	log.

EventLog Events	have	been	logged	in	the	Microsoft
Windows®	application	log.

Exception Exception	has	occurred	in	SQL	Server.
Execution	Warnings Any	warnings	that	occurred	during	the	execution

of	a	SQL	Server	statement	or	stored	procedure.
Hash	Warning Hashing	operation	may	have	encountered	a

problem.
Missing	Column
Statistics

Column	statistics	for	the	query	optimizer	are	not
available.

Missing	Join	Predicate Executing	query	has	no	join	predicate.	This	can
result	in	a	long-running	query.

OLEDB	Errors OLE	DB	error	has	occurred.
Sort	Warnings Sort	operations	do	not	fit	into	memory.	This	does

not	include	sort	operations	from	the	creation	of
indexes,	only	sort	operations	within	a	query	(for
example,	an	ORDER	BY	clause	used	in	a
SELECT	statement).

The	Execution	Warnings	event	class	can	be	monitored	to	determine	how	long,
if	at	all,	queries	had	to	wait	for	resources	before	proceeding.	This	is	important
for	determining	whether	there	are	any	contention	issues	in	the	system	that	can
affect	performance	and	therefore	need	investigating.	Use	the	Locks	event	classes
to	determine	the	objects	affected.

The	Hash	Warning	event	class	can	be	used	to	monitor	when	a	hash	recursion	or
hash	bail	has	occurred	during	a	hashing	operation.	Hash	recursion	occurs	when
the	build	input	does	not	fit	into	memory,	resulting	in	input	split	into	multiple
partitions,	which	are	processed	separately.	If	any	of	these	partitions	still	do	not
fit	into	memory,	they	are	split	further	into	sub-partitions,	which	then	are
processed	separately.	This	process	continues	until	each	partition	fits	into	memory
or	the	maximum	recursion	level	is	reached	(displayed	in	the	Integer	Data	data
column),	thus	causing	hash	bail.

Hash	bail	occurs	when	a	hashing	operation	reaches	its	maximum	recursion	depth
and	reverts	to	an	alternate	plan	to	process	its	remaining	partitioned	data.	Hash
bail	is	due	usually	to	skewed	data,	trace	flags,	or	bit	counting.	To	eliminate	or
reduce	the	chance	of	hash	bail,	verify	that	statistics	exist	on	the	columns	being
joined	or	grouped.	For	more	information,	see	Statistical	Information.

If	hash	bail	continues	to	occur	each	time	the	query	is	executed,	consider	using	an
optimizer	hint	to	force	a	different	algorithm	to	be	used	by	the	query	optimizer
and	then	compare	the	performance	of	the	query.	For	more	information	about	join
hints,	see	FROM.

By	monitoring	the	Missing	Column	Statistics	event	class,	you	can	determine
whether	there	are	statistics	missing	for	a	column	used	by	a	query.	Missing
statistics	can	cause	the	optimizer	to	choose	a	less-efficient	query	plan.	For	more
information	about	creating	column	statistics,	see	Statistical	Information.

The	Sort	Warnings	event	class	can	be	used	to	monitor	query	performance.	If	a
query	involving	a	sort	operation	generates	a	Sort	Warnings	event	class	with	an
Event	Sub	Class	data	column	value	of	2,	the	performance	of	the	query	can	be
affected	because	multiple	passes	over	the	data	are	required	to	sort	the	data.
Investigate	the	query	further	to	determine	whether	the	sort	operation	can	be
eliminated.

See	Also

Errors	and	Warnings	Event	Category

Errors	and	Warnings	Data	Columns

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

Errors	and	Warnings	Data	Columns
These	are	the	data	columns	for	each	event	class	in	the	Errors	and	Warnings
event	category.

Event	class Data	column Description
Attention Event	Class Type	of	event	recorded	=	16.
ErrorLog Event	Class Type	of	event	recorded	=	22.
	 Error Error	number.
	 Severity Severity	of	the	error	generated.
	 Text	Data Text	of	the	error	message.
EventLog Event	Class Type	of	event	recorded	=	21.
	 Binary	Data Binary	value	dependent	on	the

event	class	captured	in	the	trace.
	 Error Error	number.
	 Severity Error	severity.
	 Text	Data Text	of	the	error	message,	if

available.
Exception Event	Class Type	of	event	recorded	=	33.
	 Error Error	number.
	 State Server	state.
	 Severity Error	severity.
Execution
Warnings

Event	Class Type	of	event	recorded	=	67.

	 Event	Sub	Class The	type	of	execution	warning.
Can	have	these	values:

1	=	Query	wait.	The	query	must
wait	for	resources	(for	example,
memory)	before	it	can	execute.
2	=	Query	time-out.	The	query
timed	out	while	waiting	for
required	resources	to	execute.

	 Error Error	number.
Hash	Warning Event	Class Type	of	event	recorded	=	55.
	 Event	Sub	Class Type	of	hash	operation.	Can	have

these	values:

0	=	Hash	recursion.
1	=	Hash	bail.

	 Integer	Data Recursion	level	(hash	recursion
only).

	 Object	ID Node	ID	of	the	root	of	the	hash
involved	in	the	repartition.

Missing	Column
Statistics

Event	Class Type	of	event	recorded	=	79.

	 Text	Data List	of	the	columns	with	missing
statistics.

Missing	Join
Predicate

Event	Class Type	of	event	recorded	=	80.

OLEDB	Errors Event	Class Type	of	event	recorded	=	61.
	 Text	Data Error	message	from	OLE	DB.
Sort	Warnings Event	Class Type	of	event	recorded	=	69.
	 Event	Sub	Class Type	of	sort	warning.	Can	have

these	values:

1	=	Single	pass.	When	the	sort
table	was	written	to	disk,	only	a
single	additional	pass	over	the	data
to	be	sorted	was	required	to	obtain
sorted	output.
2	=	Multiple	pass.	When	the	sort
table	was	written	to	disk,	multiple
passes	over	the	data	were	required
to	obtain	sorted	output.

See	Also

Error	Messages

Monitoring	the	Error	Logs

Errors	and	Warnings	Event	Classes

Errors	and	Warnings	Event	Category

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Locks	Event	Category
Use	the	Locks	event	category	to	monitor	Microsoft®	SQL	Server™	lock
activity.	By	monitoring	the	Locks	event	classes,	you	can	investigate	contention
issues	caused	by	users	and	applications	using	a	database	concurrently.

Because	lock	events	are	so	prolific,	capturing	the	lock	event	classes	can	incur
significant	overhead	on	the	server	being	traced	and	result	in	very	large	trace	files
or	trace	tables.

See	Also

Locks	Event	Classes

Locks	Data	Columns

Administering	SQL	Server

Locks	Event	Classes
The	following	table	describes	the	Locks	event	classes	in	the	Locks	event
category.

Event	class Description
Lock:Acquired Acquisition	of	a	lock	on	a	resource,	such	as	a	data

page,	has	been	achieved.	For	more	information	about
resources	that	can	be	locked,	see	Understanding
Locking	in	SQL	Server.

Lock:Cancel Acquisition	of	a	lock	on	a	resource	has	been	canceled
(for	example,	due	to	a	deadlock).

Lock:Deadlock Two	concurrent	transactions	have	deadlocked	each
other	by	trying	to	obtain	incompatible	locks	on
resources	that	the	other	transaction	owns.	For	more
information,	see	Deadlocking.

Lock:Deadlock
Chain

This	event	is	produced	for	each	of	the	events	leading
up	to	the	deadlock.

Lock:Escalation A	finer-grained	lock	has	been	converted	to	a	coarser-
grained	lock	(for	example,	a	row	lock	that	is	converted
to	a	page	lock).

Lock:Released A	lock	on	a	resource,	such	as	a	page,	has	been
released.

Lock:Timeout A	request	for	a	lock	on	a	resource,	such	as	a	page,	has
timed	out	due	to	another	transaction	holding	a
blocking	lock	on	the	required	resource.	Time-out	is
determined	by	the	@@LOCK_TIMEOUT	system
function	and	can	be	set	with	the	SET
LOCK_TIMEOUT	statement.	For	more	information,
see	Customizing	the	Lock	Time-out.

The	Lock:Acquired	and	Lock:Released	event	classes	can	be	used	to	monitor
when	objects	are	being	locked,	the	type	of	locks	taken,	and	for	how	long	the
locks	were	retained.	Locks	retained	for	long	periods	of	time	may	cause

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

contention	and	should	be	investigated.	For	example,	an	application	can	be
acquiring	locks	on	rows	in	a	table,	and	then	waiting	for	user	input.	Because	user
input	can	take	a	long	time,	the	locks	can	block	other	users.	In	this	instance,	the
application	should	be	redesigned	to	make	lock	requests	only	when	necessary	and
not	require	user	input	when	locks	have	been	acquired.

The	Lock:Deadlock,	Lock:Deadlock	Chain,	and	Lock:Timeout	event	classes
can	be	used	to	monitor	when	deadlocks	and	time-out	conditions	occur,	and
which	objects	are	involved.	This	information	is	useful	to	determine	whether
deadlocks	and	time-outs	are	affecting	the	performance	of	your	application
significantly,	and	which	objects	are	involved.	The	application	code	that	modifies
these	objects	can	then	be	examined	to	determine	whether	changes	to	minimize
deadlocks	and	time-outs	can	be	made.	For	more	information	about	reducing
deadlocks,	see	Avoiding	Deadlocks.

See	Also

Locks	Event	Category

Locks	Data	Columns

JavaScript:hhobj_4.Click()

Administering	SQL	Server

Locks	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	Locks
event	category.

Event	class Data	column Description
Lock:Acquired Event	Class Type	of	event	recorded	=	24.
	 Mode Lock	mode,	such	as	intent	exclusive,

of	the	lock	that	was	acquired.
	 Binary	Data Resource	type.
	 End	Time End	time	of	the	event.
	 Duration Wait	between	the	time	the	lock

request	was	issued	and	the	time	the
lock	was	acquired.

	 Object	ID ID	of	the	object	on	which	the	lock
was	acquired.

	 Index	ID ID	of	the	index,	if	the	object	lock
was	on	an	index.

Lock:Cancel Event	Class Type	of	event	recorded	=	26.
	 Mode Mode	of	the	lock	that	was	canceled.
	 Binary	Data Resource	type.
	 End	Time End	time	of	the	event.
	 Duration Wait	between	the	time	the	lock

requested	was	issued	and	the	time	the
lock	was	canceled.

	 Object	ID ID	of	the	object	on	which	the	lock
was	canceled.

	 Index	ID ID	of	the	index,	if	the	object	lock
was	on	an	index.

Lock:Deadlock Event	Class Type	of	event	recorded	=	25.
	 Mode Lock	mode	of	the	lock	that	triggered

the	deadlock.
	 Binary	Data Resource	type.

	 End	Time End	time	of	the	deadlock.
	 Integer	Data Deadlock	number.	Numbers	are

assigned,	beginning	with	zero,	when
the	server	is	started	and	incremented
for	each	deadlock.

	 Duration Wait	between	the	time	the	lock
request	was	issued	and	the	time	the
deadlock	occurred.

	 Object	ID ID	of	the	object	in	contention.
	 Index	ID ID	of	the	index,	if	the	object	lock

was	on	an	index.
Lock:Deadlock
Chain

Event	Class Type	of	event	recorded	=	59.

	 Mode Lock	mode	of	each	lock	in	the
deadlock	chain.

	 Binary	Data Resource	type.
	 Integer	Data Deadlock	number.	Numbers	are

assigned,	beginning	with	zero,	when
the	server	is	started	and	incremented
for	each	deadlock.

	 Object	ID ID	of	the	object	that	was	locked.
	 Index	ID ID	of	the	index,	if	the	object	lock

was	on	an	index.
Lock:Escalation Event	Class Type	of	event	recorded	=	60.
	 Object	ID ID	of	the	object	on	which	the	lock

was	escalated.
	 Index	ID ID	of	the	index,	if	the	object	lock

was	on	an	index.
	 Mode Lock	mode	after	the	escalation.
Lock:Released Event	Class Type	of	event	recorded	=	23.
	 Binary	Data Resource	type.
	 End	Time End	time	of	the	event.
	 Duration Wait	time	between	the	time	the	lock

request	was	issued	and	the	time	the
lock	was	released.

	 Object	ID ID	of	the	object	on	which	the	lock
was	released.

	 Index	ID ID	of	the	index,	if	the	object	lock
was	on	an	index.

Lock:Timeout Event	Class Type	of	event	recorded	=	27.
	 Mode Lock	mode	of	the	requested	lock	that

has	timed	out.
	 Binary	Data Resource	type.
	 End	Time End	time	of	the	event.
	 Duration Wait	time	between	the	time	the	lock

request	was	issued	and	the	time	the
lock	was	released.

	 Object	ID ID	of	the	object	on	which	the	lock
was	timed	out.

	 Index	ID ID	of	the	index,	if	the	object	lock
was	on	an	index.

See	Also

Locking

Locks	Event	Category

Locks	Event	Classes

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Objects	Event	Category
Use	the	Objects	event	classes	to	monitor	when	an	object	(for	example,	a
database,	table,	index,	view,	or	stored	procedure)	is	opened,	created,	deleted,	or
used.

Because	object	events	are	so	prolific,	capturing	the	object	event	classes	can	incur
significant	overhead	on	the	server	being	traced	and	result	in	large	trace	files	or
trace	tables.

See	Also

Objects	Event	Classes

Objects	Data	Columns

Administering	SQL	Server

Objects	Event	Classes
The	following	table	describes	the	Objects	event	classes	in	the	Objects	event
category.

Event	class Description
Auto	Stats Indicates	when	the	automatic	creation	and	updating	of

statistics	has	occurred.
Object:Closed Indicates	when	an	open	object	has	been	closed	(for

example,	such	as	at	the	end	of	a	SELECT,	INSERT,	or
DELETE	statement).

Object:Created Object	has	been	created	(for	example,	for	CREATE
INDEX,	CREATE	TABLE,	and	CREATE	DATABASE
statements).

Object:Deleted Object	has	been	deleted	(for	example,	for	DROP
INDEX	and	DROP	TABLE	statements).

Object:Opened Indicates	when	an	object	has	been	accessed	(for
example,	for	SELECT,	INSERT,	or	DELETE
statements).

The	Object:Created	and	Object:Deleted	event	classes	can	be	used	to	determine
whether	many	ad	hoc	objects	are	being	created	or	deleted	(for	example,	by
ODBC	applications	that	often	create	temporary	stored	procedures).	By
monitoring	the	DBUserName	and	NT	User	Name	default	data	columns	in
addition	to	the	Objects	event	classes,	you	can	determine	the	name	of	the	user
who	is	creating,	deleting,	or	accessing	objects.	This	can	be	used	to	determine
whether	your	security	policies	are	correctly	implemented,	for	example,	to
confirm	that	users	who	are	not	allowed	to	create	or	delete	objects	are	not	doing
so.

See	Also

Objects	Event	Category

Objects	Data	Columns

Administering	SQL	Server

Objects	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	Objects
event	category.

Event	class Data	column Description
Auto	Stats Event	Class Type	of	event	recorded	=	58.
Object:Created Event	Class Type	of	event	recorded	=	46.
	 Object	Type Type	of	object	created.
	 Object	Name Name	of	the	object	that	was

created.
	 Object	ID ID	of	the	object	that	was

created.
	 Index	ID Index	ID,	if	an	index	was

created.
Object:Deleted Event	Class Type	of	event	recorded	=	47.
	 Object	Type Type	of	the	object	that	was

deleted.
	 Object	Name Name	of	the	object	that	was

deleted.
	 Object	ID ID	of	the	object	that	was

deleted.
	 Index	ID Index	ID,	if	an	index	was

deleted.

See	Also

Creating	and	Maintaining	Databases	Overview

Objects	Event	Category

Objects	Event	Classes

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Performance	Event	Category
Use	the	Performance	event	category	to	monitor	showplan	event	classes	and
event	classes	that	are	produced	from	the	execution	of	SQL	data	manipulation
language	(DML)	operators.

See	Also

Performance	Event	Classes

Performance	Data	Columns

Administering	SQL	Server

Performance	Event	Classes
The	following	table	describes	the	Performance	event	classes	in	the
Performance	event	category.

Event	class Description
Degree	Of
Parallelism11

Describes	the	degree	of	parallelism	assigned	to	the	SQL
statement.	Occurs	before	a	SELECT,	INSERT,
UPDATE,	or	DELETE	statement	is	executed.	If	you	are
tracing	a	Microsoft®	SQL	Server™	version	7.0	server,
this	event	will	trace	an	INSERT	statement.

Degree	of
Parallelism21

Describes	the	degree	of	parallelism	assigned	to	the	SQL
statement.	Occurs	before	a	SELECT,	INSERT,
UPDATE,	or	DELETE	statement	is	executed.	If	you	are
tracing	a	SQL	Server	7.0	server,	this	event	will	trace	an
UPDATE	statement.

Degree	of
Parallelism31

Describes	the	degree	of	parallelism	assigned	to	the	SQL
statement.	Occurs	before	a	SELECT,	INSERT,
UPDATE,	or	DELETE	statement	is	executed.	If	you	are
tracing	a	SQL	Server	7.0	server,	this	event	will	trace	a
DELETE	statement.

Degree	of
Parallelism41

Describes	the	degree	of	parallelism	assigned	to	the	SQL
statement.	Occurs	before	a	SELECT,	INSERT,
UPDATE,	or	DELETE	statement	is	executed.	If	you	are
tracing	a	SQL	Server	7.0	server,	this	event	will	trace	a
SELECT	statement.

Execution	Plan Displays	the	plan	tree	of	the	SQL	statement	being
executed.

Show	Plan	All Displays	the	query	plan	with	full	compile-time	details
(for	example,	costing	estimates	and	column	lists)	of	the
SQL	statement	being	executed.

Show	Plan
Statistics

Displays	the	query	plan	with	full	run-time	details,
including	actual	number	of	rows	passing	through	each
operation,	of	the	SQL	statement	which	was	executed.

Show	Plan	Text Displays	the	query	plan	tree	of	the	SQL	statement	being
executed.1	If	you	are	tracing	a	SQL	Server	2000	server,	this	event	will	trace	SELECT,	INSERT,	UPDATE,	or

DELETE	statements.

See	Also

Performance	Event	Category

Performance	Data	Columns

Administering	SQL	Server

Performance	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the
Performance	event	category.

Event	class Data	column Description
Degree	of
Parallelism1

Event	Class Type	of	event	recorded	=	28.

	 Event	Sub	Class If	you	are	tracing	a	Microsoft®
SQL	Server™	2000	server,	the
Event	Sub	Class	can	have	these
values,	which	reflect	the	type	of
statement:

1	=	Select

2	=	Insert

3	=	Update

4	=	Delete

	 Binary	Data Supplied	binary	data,	which	is	the
number	of	CPUs	used	to	perform
the	statement.

	 Integer	Data Pages	used	in	memory	for	the
query	plan.

Degree	of
Parallelism2

Event	Class Type	of	event	recorded	=28.

	 Event	Sub	Class If	you	are	tracing	a	SQL	Server
2000	server,	the	Event	Sub	Class
can	have	these	values,	which
reflect	the	type	of	statement:

1	=	Select

2	=	Insert

3	=	Update

4	=	Delete

	 Binary	Data Supplied	binary	data,	which	is	the
number	of	CPUs	used	to	perform
the	statement.

	 Integer	Data Pages	used	in	memory	for	the
query	plan.

Degree	of
Parallelism3

Event	Class Type	of	event	recorded	=	28.

	 Event	Sub	Class If	you	are	tracing	a	SQL	Server
2000	server,	the	Event	Sub	Class
can	have	these	values,	which
reflect	the	type	of	statement:

1	=	Select

2	=	Insert

3	=	Update

4	=	Delete

	 Binary	Data Supplied	binary	data,	which	is	the
number	of	CPUs	used	to	perform
the	statement.

	 Integer	Data Pages	used	in	memory	for	the
query	plan.

Degree	of
Parallelism4

Event	Class Type	of	event	recorded	=	28.

	 Event	Sub	Class If	you	are	tracing	a	SQL	Server
2000	server,	the	Event	Sub	Class
can	have	these	values,	which
reflect	the	type	of	statement:

1	=	Select

2	=	Insert

3	=	Update

4	=	Delete

	 Binary	Data Supplied	binary	data,	which	is	the
number	of	CPUs	used	to	perform
the	statement.

	 Integer	Data Pages	used	in	memory	for	the
query	plan.

Execution	Plan Event	Class Type	of	event	recorded	=	68.
	 Binary	Data Estimated	cost	of	the	execution

plan.
	 Object	ID ID	of	the	object	that	had	its

statistics	updated.
	 Integer	Data Estimated	number	of	rows

returned.
	 Text	Data Execution	plan	tree.	Only	SQL

statements	are	expressed.	Transact-
SQL	constructs	are	not
represented.

Show	Plan	All Event	Class Type	of	event	recorded	=	97.
	 Binary	Data Estimated	cost	of	the	query.
	 Integer	Data Expected	number	of	rows	to	be

returned.
	 Text	Data Showplan	ALL	results	of	the

statement.
Show	Plan
Statistics

Event	Class Type	of	event	recorded	=	98.

	 Binary	Data Estimated	cost	of	the	query.
	 Integer	Data Expected	number	of	rows	to	be

returned.
	 Text	Data Showplan	Statistics	results	of	the

statement.
Show	Plan	Text Event	Class Type	of	event	recorded	=	96.
	 Binary	Data Estimated	cost	of	the	query.
	 Integer	Data Expected	number	of	rows	to	be

returned.

	 Text	Data Showplan	Text	results	of	the
statement.

See	Also

Performance	Event	Category

Performance	Event	Classes

Administering	SQL	Server

Scans	Event	Category
Use	the	Scans	event	category	to	monitor	when	a	table	or	index	is	being	scanned
during	the	execution	of	a	query.

Using	the	Scan:Started	and	Scan:Stopped	event	classes,	it	is	possible	to
monitor	the	type	of	scans	being	performed	by	a	query	on	a	specific	object.

See	Also

Scans	Event	Classes

Scans	Data	Columns

Administering	SQL	Server

Scans	Event	Classes
The	following	table	describes	the	Scans	event	classes	in	the	Scans	event
category.

Event	class Description
Scan:	Started Table	or	index	scan	has	started.
Scan:	Stopped Table	or	index	scan	has	stopped.

See	Also

Scans	Event	Category

Scans	Data	Columns

Administering	SQL	Server

Scans	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	Scans	event
category.

Event	class Data	column Description
Scan:	Started Event	Class Type	of	event	recorded	=	51.
	 Mode Scan	mode.	Can	have	these

values:

1	=	Normal
2	=	First
4	=	Back
8	=	Unordered
16	=	No	data
32	=	Reserved
64	=	Exlatch
128	=	Index	supplied
256	=	Marker

	 Object	ID ID	of	the	object	that	is	being
scanned.

	 Index	ID ID	of	the	index,	if	an	index	is
being	scanned.

	 Transaction	ID ID	of	the	transaction	of	which	the
scan	is	a	part.

Scan:	Stopped Event	Class Type	of	event	recorded	=	52.
	 Mode Mode	that	was	used	to	perform

the	scan.	Can	have	these	values:

1	=	Normal
2	=	First
4	=	Back
8	=	Unordered
16	=	No	data

32	=	Reserved
64	=	Exlatch
128	=	Index	supplied
256	=	Marker

	 End	Time End	time	of	the	event.
	 Duration Duration	of	the	scan.
	 Reads Number	of	logical	pages	read.
	 Index	ID ID	of	the	index,	if	an	index	is

being	scanned.
	 Object	ID ID	of	the	object	that	is	being

scanned.

By	monitoring	the	Index	ID	default	data	column,	you	can	determine	the
identification	number	of	the	index	being	used	by	a	specific	query.	The	Index	ID
data	column	contains	either:

The	value	1	when	the	clustered	index	of	the	table	is	being	scanned.

-or-

The	value	greater	than	2	and	less	than	255	when	a	non-clustered	index
of	the	table	is	being	scanned.

See	Also

Scans	Event	Category

Scans	Event	Classes

Administering	SQL	Server

Security	Audit	Event	Category
Use	the	Security	Audit	event	category	to	monitor	auditing	activity.

See	Also

Security	Audit	Event	Classes

Security	Audit	Data	Columns

Administering	SQL	Server

Security	Audit	Event	Classes
The	following	table	describes	the	Security	Audit	event	classes	in	the	Security
Audit	event	category.

Event	class Description
Audit	Add	DB	User
Event

Records	the	addition	and	removal	of	database
users	(Microsoft	Windows	NT®	4.0,	Microsoft
Windows®	2000,	or	Microsoft	SQL	Server™).

Audit	Add	Login	to
Server	Role	Event

Records	the	addition	or	removal	of	logins	to	and
from	a	fixed	server	role	for
sp_addsrvrolemember	and
sp_dropsrvrolemember.

Audit	Add	Member	to
DB	Role	Event

Records	the	addition	and	removal	of	members	to
and	from	a	database	role	(fixed	or	user-defined)
for	sp_addrolemember,	sp_droprolemember,
and	sp_changegroup.

Audit	Add	Role	Event Records	add	or	drop	actions	on	database	roles	for
sp_addrole	and	sp_droprole.

Audit	Addlogin	Event Records	add	and	drop	actions	on	SQL	Server
logins	for	sp_addlogin	and	sp_droplogin.

Audit	App	Role	Change
Password	Event

Records	changes	to	the	password	of	an
application.

Audit	Backup/Restore
Event

Records	BACKUP	and	RESTORE	events.

Audit	Change	Audit
Event

Records	AUDIT	modifications.

Audit	DBCC	Event Records	DBCC	commands	that	have	been	issued.
Audit	Login	Event Collects	all	new	connection	events	since	the	trace

was	started	(for	example,	a	client	requesting	a
connection	to	a	server	running	an	instance	of
SQL	Server).

Audit	Login	Change
Password	Event

Records	SQL	Server	login	password	changes.
Passwords	are	not	recorded.

If	you	are	a	member	of	the	sysadmin	or
securityadmin	fixed	server	role	and	you	reset
your	own	password	by	using	sp_password	with
all	three	arguments	specified	('old_password',
'new_password',	'login'),	the	audit	record	will
reflect	that	you	are	changing	someone	else's
password.

Audit	Login	Change
Property	Event

Records	modifications	on	login	property,	except
passwords	for	sp_defaultdb	and
sp_defaultlanguage.

Audit	Login	Failed
Event

Indicates	that	a	login	attempt	to	an	instance	of
SQL	Server	from	a	client	has	failed.

Audit	Login	GDR
Event

Records	grant,	revoke,	and	deny	actions	on
Windows	NT	4.0	or	Windows	2000	account	login
rights	for	sp_grantlogin,	sp_revokelogin,	and
sp_denylogin.

Audit	Logout	Event Collects	all	new	disconnect	events	since	the	trace
was	started,	such	as	when	a	client	issues	a
disconnect	command.

Audit	Object	Derived
Permission	Event

Records	when	a	CREATE,	ALTER,	or	DROP
command	is	issued	for	the	specified	object.

Audit	Object	GDR
Event

Records	permissions	events	for	GRANT,	DENY,
REVOKE	objects.

Audit	Object
Permission	Event

Records	the	successful	or	unsuccessful	use	of
object	permissions.

Audit	Server	Starts	and
Stops	Event

Records	shut	down,	start,	and	pause	activities	for
services.

Audit	Statement	GDR
Event

Records	permission	events	for	GRANT,	DENY,
REVOKE	statements.

Audit	Statement
Permission	Event

Records	the	use	of	statement	permissions.

See	Also

Security	Audit	Event	Category

Security	Audit	Data	Columns

Administering	SQL	Server

Security	Audit	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	Security
Audit	event	category.

Event	class Data	column Description
Audit	Add	DB	User
Event

Event	Class Type	of	event	recorded	=	109.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	sp_adduser
2	=	sp_dropuser
3	=	grantdbaccess
4	=	revokedbaccess

	 Database	Name Name	of	the	database	to	which	the
user	is	being	added.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Target	Login
SID

SID	of	the	targeted	Microsoft®
Windows®	login.

	 Target	Login
Name

Name	of	the	targeted	Windows
login.

	 Target	User
Name

Name	of	the	database	user	being
added	to	the	database.

	 Role	Name Name	of	a	role	to	which	the	new
database	user	is	being	added.

Audit	Add	Login	to Event	Class Type	of	event	recorded	=	108.

Server	Role	Event
	 Success The	success	or	failure	of	the	audit

indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Add
2	=	Drop

	 Target	Login
SID

Security	identification	number
(SID)	of	the	targeted	Windows
login.

	 Target	Login
Name

Name	of	the	targeted	Windows
login.

	 Role	Name Name	of	the	role	to	which	the
login	is	being	added.

Audit	Add	Member
to	DB	Role	Event

Event	Class Type	of	event	recorded	=	110.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Add
2	=	Drop

	 Database	Name Name	of	the	database	in	which	the
command	is	being	run.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Target	Login
SID

The	SID	of	the	targeted	login.

	 Target	Login
Name

The	name	of	the	login	that	is
having	role	membership	modified.

	 Target	User
Name

Name	of	the	user	that	is	having
role	membership	modified.

Audit	Add	Role
Event

Event	Class Type	of	event	recorded	=	111.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Add
2	=	Drop

	 Database	Name Name	of	the	database	in	which	the
command	is	being	run.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Role	Name Name	of	the	role	being	created	in
the	database.

Audit	Addlogin
Event

Event	Class Type	of	event	being	recorded	=
104.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Add
2	=	Drop

	 Target	Login Security	identification	number

SID (SID)	assigned	to	the	login	being
added.

	 Target	Login
Name

Name	of	the	login	being	added.

Audit	App	Role
Change	Password
Event

Event	Class Type	of	event	recorded	=	112.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Value	is:

Always	=	1

	 Database	Name Name	of	the	database	in	which	the
command	is	being	run.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Role	Name Database	application	role	name
whose	password	is	being	changed.

Audit
Backup/Restore
Event

Event	Class Type	of	event	recorded	=	115.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Backup
2	=	Restore

	 Database	Name Name	of	the	database	in	which	the

command	is	being	run.
	 DBUserName The	issuer's	user	name	in	the

database.
	 Text	Data The	SQL	text	of	the	backup/restore

statement.
Audit	Change	Audit
Event

Event	Class Type	of	event	recorded	=	117.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	New	audit	started
2	=	Audit	stopped

Audit	DBCC	Event Event	Class Type	of	event	recorded	=	116.
	 Success The	success	or	failure	of	the	audit

indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Value	is:

Always	=	1

	 Database	Name Name	of	the	database	in	which	the
command	is	being	run.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Text	Data The	SQL	text	of	the	DBCC
command.

Audit	Login	Event Event	Class Type	of	event	being	recorded	=	14.
	 Text	Data A	delimited	list	of	all	set	options.

	 Binary	Data Session	level	settings,	including
ANSI	nulls,	ANSI	padding,	cursor
close	on	commit,	null
concatenation,	and	quoted
identifiers.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

Audit	Login	Change
Password	Event

Event	Class Type	of	event	recorded	=	107.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	User	changed	his	or	her	own
password.
2	=	User	changed	the	password	of
another	user.

	 Target	Login
SID

Security	identification	number
(SID)	of	the	targeted	Windows
login.

	 Target	Login
Name

Name	of	the	targeted	Windows
login.

Audit	Login	Change
Property	Event

Event	Class Type	of	event	being	recorded	=
106.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Default	database
2	=	Default	language

	 Target	Login
SID

Security	identification	number
(SID)	of	the	targeted	Windows
login.

	 Target	Login
Name

Name	of	the	targeted	Windows
login.

Audit	Login	Failed
Event

Event	Class Type	of	event	being	recorded	=	20

	 Success The	success	or	failure	of	the	audit
indicator.	Value	will	always	be:

0	=	Failure

Audit	Login	GDR
Event

Event	Class Type	of	event	being	recorded	=
105.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Grant
2	=	Revoke
3	=	Deny

	 Target	Login
SID

Security	identification	number
(SID)	of	the	targeted	Windows
login.

	 Target	Login
Name

Name	of	the	targeted	Windows
login.

Audit	Logout	Event Event	Class Type	of	event	being	recorded	=	15.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 End	Time The	end	time	of	the	log	out.
	 Duration The	approximate	amount	of	time

since	the	user	logged	in.
	 Reads The	amount	of	logical	read	I/Os

issued	by	this	user	during	the
connection.

	 Writes The	amount	of	logical	write	I/Os
issued	by	this	user	during	the
connection.

	 CPU The	amount	of	CPU	used	by	this
user	during	the	connection.

Audit	Object
Derived	Permission
Event

Event	Class Type	of	event	being	recorded	=
118.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Create	object
2	=	Alter	object
3	=	Drop	object

	 Database	Name The	name	of	the	database	in	which
the	object	is	being	created,	altered,
or	dropped.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Object	Type Type	of	object	being	created,

altered,	or	dropped.	Values	are:

1	=	Index
2	=	Database
3	=	User	object
4	=	CHECK	constraint
5	=	Default	or	DEFAULT
constraint
6	=	FOREIGN	KEY	constraint
7	=	PRIMARY	KEY	constraint
8	=	Stored	procedure
9	=	User-defined	function	(UDF)
10	=	Rule
11	=	Replication	filter	stored
procedure
12	=	System	table
13	=	Trigger
14	=	Inline	function
15	=	Table	valued	UDF
16	=	UNIQUE	constraint
17	=	User	table
18	=	View
19	=	Extended	stored	procedure
20	=	Ad-hoc	query
21	=	Prepared	query
22	=	Statistics

	 Object	Name The	name	of	the	object	that	is
being	created,	altered,	or	dropped.

	 Owner	Name The	database	username	of	the
object	owner	of	the	object	being
created,	altered,	or	dropped.

	 Text	Data The	SQL	text	of	the	statement.
Audit	Object	GDR
Event

Event	Class Type	of	event	being	recorded	=
103.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Grant
2	=	Revoke
3	=	Deny

	 Database	Name Name	of	the	database	that	the
GRANT/DENY/REVOKE	of	the
object	permission	is	run	in.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Owner	Name Name	of	the	user	who	owns	the
object	against	which	the
GRANT/DENY/REVOKE
statement	is	being	run.

	 Object	Name Name	of	the	object	to	which	the
permissions	are	being	applied.

	 Permissions Type	of	statement	issued.	Values
are:

1	=	SELECT	ALL
2	=	UPDATE	ALL
4	=	REFERENCES	ALL
8	=	INSERT
16	=	DELETE
32	=	EXECUTE	(procedures	only)

	 Column
Permissions

Indicates	whether	a	column
permission	was	set.	Values	are:

0	=	No
1	=	Yes

	 Text	Data The	SQL	text	of	the
GRANT/REVOKE/DENY

statement.
Audit	Object
Permission	Event

Event	Class Type	of	event	recorded	=	114.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Value	is:

Always	=	1

	 Database	Name Name	of	the	database	in	which	the
command	is	being	run.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Owner	Name Owner	name	of	the	object	for
which	the	permissions	are	being
checked.

	 Object	Name Name	of	the	object	whose
permissions	are	being	checked.

	 Permissions Type	of	statement	issued.	Values
are:

1	=	SELECT	ALL
2	=	UPDATE	ALL
4	=	REFERENCES	ALL
8	=	INSERT
16	=	DELETE
32	=	EXECUTE	(procedures	only)

	 Column
Permissions

Indicates	whether	a	column
permission	was	used.	Parse	the
statement	text	to	determine	which
permissions	were	applied	to	which
columns.

	 Text	Data Text	value	dependent	on	the	event
class	captured.

Audit	Server	Starts
and	Stops	Event

Event	Class Type	of	event	recorded	=	118.

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	Instance	Shutdown
2	=	Instance	Started
3	=	Instance	Pause
4	=	Instance	Continued

	 Login	SID Security	identification	number
(SID)	of	the	login	running	the
GRANT/DENY/REVOKE
statement	for	the	Windows	login.

	 Login	Name Name	of	the	login	running
GRANT/DENY/REVOKE
statement	for	the	Windows	login.

Audit	Statement
GDR	Event

Event	Class Type	of	event	being	recorded	=
102.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Values	are:

1	=	GRANT
2	=	REVOKE
3	=	DENY

	 Database	Name Name	of	the	database	to	which	the
GRANT/DENY/REVOKE
statement	permission	is	being
applied.

	 DBUserName The	issuer's	user	name	in	the

database.
	 Permissions Type	of	statement	issued.	Values

are:

1	=	CREATE	DATABASE
(master	database	only)
2	=	CREATE	TABLE
4	=	CREATE	PROCEDURE
8	=	CREATE	VIEW
16	=	CREATE	RULE
32	=	CREATE	DEFAULT
64	=	BACKUP	DATABASE
128	=	BACKUP	LOG
512	=	CREATE	FUNCTION

	 Text	Data The	SQL	text	of	the
GRANT/DENY/REVOKE
statement.

Audit	Statement
Permission	Event

Event	Class Type	of	event	recorded	=	113.

	 Success The	success	or	failure	of	the	audit
indicator.	Values	are:

0	=	Failure
1	=	Success

	 Event	Sub
Class

Class	of	event	within	the	event.
Value	is:

Always	=	1

	 Database	Name Name	of	the	database	in	which	the
command	is	being	run.

	 DBUserName The	issuer's	user	name	in	the
database.

	 Permissions Type	of	statement	issued.	Values
are:

1	=	CREATE	DATABASE
(master	database	only)

2	=	CREATE	TABLE
4	=	CREATE	PROCEDURE
8	=	CREATE	VIEW
16	=	CREATE	RULE
32	=	CREATE	DEFAULT
64	=	BACKUP	DATABASE
128	=	BACKUP	LOG
512	=	CREATE	FUNCTION

	 Text	Data Text	value	dependent	on	the	event
class	captured.

See	Also

Security	Audit	Event	Category

Security	Audit	Event	Classes

Administering	SQL	Server

Sessions	Event	Category
Use	the	Sessions	event	category	to	monitor	Microsoft®	SQL	Server™	user
connections.

See	Also

Sessions	Event	Classes

Sessions	Data	Columns

Administering	SQL	Server

Sessions	Event	Classes
The	following	table	describes	the	Sessions	event	classes	in	the	Sessions	event
category.

Event	class Description
ExistingConnectionDetects	activity	by	all	users	connected	to	Microsoft®

SQL	Server™	before	the	trace	was	started.

Using	the	ExistingConnection	event	classes,	it	is	possible	to	monitor	the	length
of	time	each	user	connection	was	connected	to	an	instance	of	SQL	Server,	and
the	amount	of	SQL	Server	processor	time	the	queries	submitted	on	the
connection	took	to	execute.	This	information	can	be	useful	for	determining:

The	amount	of	time	and	the	volume	of	activity	used	by	each	SQL
Server	user.	This	can	be	useful	for	tracking	database	activity	and
charging	each	user	for	the	time	and	SQL	Server	CPU	time	(CPU	data
column)	used.

The	security	of	the	system,	by	checking	the	users	connecting	to	and
using	an	instance	of	SQL	Server.

See	Also

Sessions	Event	Category

Sessions	Data	Columns

Administering	SQL	Server

Sessions	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	Sessions
event	category.

Event	class Data	column Description
Existing
Connection

Event	Class Type	of	event	recorded	=	17.

	 Binary	Data Session	level	settings,	including
ANSI	nulls,	ANSI	padding,	cursor
close	on	commit,	null	concatenation,
and	quoted	identifiers.	For	more
information,	see	SET.

In	addition	to	the	data	columns	that	are	specific	to	the	Existing	Connection
event	class,	by	monitoring	the	DBUserName	and	NT	User	Name	default	data
columns,	you	can	map	the	name	of	the	user	to	each	connection.

See	Also

Sessions	Event	Category

Sessions	Event	Classes

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Stored	Procedures	Event	Category
Use	the	Stored	Procedures	event	category	to	monitor	the	execution	of	stored
procedures.

See	Also

Stored	Procedures	Event	Classes

Stored	Procedures	Data	Columns

Administering	SQL	Server

Stored	Procedures	Event	Classes
The	following	table	describes	the	Stored	Procedures	event	classes	in	the	Stored
Procedures	event	category.

Event	class Description
RPC	Output	ParameterDisplays	information	about	output	parameters	of

a	previously	executed	remote	procedure	call
(RPC).

RPC:Completed Occurs	when	an	RPC	has	been	completed.
RPC:Starting Occurs	when	an	RPC	has	started.
SP:CacheHit Procedure	is	found	in	the	cache.
SP:CacheInsert Item	is	inserted	into	the	procedure	cache.
SP:CacheMiss Stored	procedure	is	not	found	in	the	procedure

cache.
SP:CacheRemove Item	has	been	removed	from	the	procedure

cache.
SP:Completed Stored	procedure	has	completed.
SP:	ExecContextHit Execution	version	of	a	stored	procedure	has	been

found	in	the	cache.
SP:Recompile Stored	procedure	has	been	recompiled.
SP:Starting Stored	procedure	has	started.
SP:	StmtCompleted Statement	within	a	stored	procedure	has

completed.
SP:StmtStarting Statement	within	a	stored	procedure	has	started.

By	monitoring	the	SP:CacheHit	and	SP:CacheMiss	event	classes,	you	can
determine	how	often	executed	stored	procedures	are	found	in	the	cache.	For
example,	if	the	SP:CacheMiss	event	class	occurs	frequently,	it	can	indicate	that
more	memory	should	be	made	available	to	Microsoft®	SQL	Server™,	thereby
increasing	the	size	of	the	procedure	cache.	By	monitoring	the	Object	ID	of	the
SP:CacheHit	event	class,	you	can	determine	which	stored	procedures	reside	in
the	cache.

The	SP:CacheInsert,	SP:CacheRemove,	and	SP:Recompile	event	classes	can
be	used	to	determine	which	stored	procedures	are	brought	into	cache	(first
executed),	removed	from	the	cache	(aged	out	of	the	cache),	and	recompiled.	For
more	information	about	recompiling	stored	procedures,	see	Recompiling	a
Stored	Procedure.	This	information	is	useful	to	determine	how	stored	procedures
are	being	used	by	applications.

A	stored	procedure	has	a	compiled	version	with	shared	data	and	an	execution
context	version	with	session-specific	data.	When	a	stored	procedure	is	looked	up
in	the	cache,	execution	contexts	are	looked	for	first.	If	none	are	found,	the	cache
is	searched	for	compiled	plans.	Use	the	SP:ExecContextHit	event	class	to
monitor	execution	contexts.	If	the	SP:ExecContextHit	event	class	is	not
generated	for	a	stored	procedure,	then	the	stored	procedure	has	no	execution
time	cachable	queries.

The	execution	of	a	stored	procedure	can	be	monitored	by	the	SP:Starting,
SP:StmtStarting,	SP:StmtCompleted,	and	SP:Completed	event	classes	and
all	the	TSQL	event	classes.

Note		SP:StmtStarting	is	provided	for	backward	compatibility	only.	You	should
now	use	SQL:StmtStarting	to	trace	this	event.	If	you	do	choose	to	trace
SP:StmtStarting,	SQL	Profiler	will	trace	SQL:StmtStarting,	as	the	two	events
are	mapped	together.

See	Also

Stored	Procedures	Event	Category

Stored	Procedures	Data	Columns

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Stored	Procedures	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	Stored
Procedure	event	category.

Event	class Data	column Description
RPC	Output
Parameter

Event	Class Type	of	event	recorded	=	100.

	 Object	Name Name	of	the	output	parameter	from
the	RPC	event	(for	example,
handle).

	 Text	Data Value	of	the	parameter	named	in
object	name	that	was	returned	by
the	remote	procedure	call	(RPC).

RPC:Completed Event	Class Type	of	event	recorded	=	10.
	 End	Time End	time	of	the	RPC.
	 Duration Duration	of	the	RPC.
	 CPU Amount	of	CPU	used	by	the	RPC.
	 Reads Number	of	page	reads	issued	by	the

RPC.
	 Writes Number	of	page	writes	issued	by

the	RPC.
	 Text	Data Text	of	the	RPC.
RPC:Starting Event	Class Type	of	event	recorded	=	11.
	 Text	Data Text	of	the	RPC.
SP:CacheHit Event	Data Type	of	event	recorded	=	38.
	 Object	ID Object	ID	of	the	stored	procedure

found	in	the	cache.
	 Object	Name Name	of	the	stored	procedure	found

in	the	cache.
	 Text	Data Text	of	the	SQL	statement	that	was

found	in	the	cache.
SP:CacheInsert Event	Class Type	of	event	recorded	=	35.

	 Object	ID Object	ID	of	the	stored	procedure.
	 Object	Name Name	of	the	stored	procedure	found

in	the	cache.
	 Text	Data Text	of	the	SQL	statement	that	is

being	cached.
SP:CacheMiss Event	Class Type	of	event	recorded	=	34.
	 Event	Sub	Class Nesting	level	of	the	stored

procedure.
	 Object	Name The	name	of	the	stored	procedure

found	in	the	cache.
SP:CacheRemove Event	Class Type	of	event	recorded	=	36.
	 Object	ID Object	ID	of	the	stored	procedure.
	 Object	Name Name	of	the	stored	procedure	found

in	the	cache.
	 Text	Data Text	of	the	SQL	statement	being

removed	from	the	cache.
SP:Completed Event	Class Type	of	event	recorded	=	43.
	 Nest	Level Nesting	level	of	the	stored

procedure.
	 End	Time End	time	of	the	event.
	 Duration Length	of	time	the	stored	procedure

ran.
	 Object	ID Object	ID	of	the	stored	procedure.
	 Object	Name Name	of	the	stored	procedure	found

in	the	cache.
	 Object	Type Type	of	stored	procedure	that	was

called.
	 Text	Data Text	of	the	stored	procedure	call.
SP:ExecContextHit Event	Class Type	of	event	recorded	=	39.
	 Object	ID Object	ID	of	the	stored	procedure.
	 Object	Name The	name	of	the	stored	procedure

found	in	the	cache.
	 Text	Data The	text	of	the	stored	procedure	call

found	in	the	cache.

SP:Recompile Event	Class Type	of	event	recorded	=	37.

	 Nest	Level Nesting	level	of	the	stored
procedure.

	 Object	ID The	object	ID	of	the	stored
procedure.

	 Object	Name The	name	of	the	stored	procedure
found	in	the	cache.

	 Text	Data The	text	of	the	stored	procedure	call
that	triggered	the	recompile.

SP:Starting Event	Class Type	of	event	recorded	=	42.
	 Nest	Level Nesting	level	of	the	stored

procedure.
	 Object	ID The	object	ID	of	the	stored

procedure.
	 Object	Name The	name	of	the	stored	procedure

found	in	the	cache.
	 Object	Type The	type	of	stored	procedure	being

started.
	 Text	Data The	text	of	the	stored	procedure

call.
SP:StmtCompleted Event	Class Type	of	event	recorded	=	45.
	 Event	Sub	Class Nesting	level	of	the	stored

procedure.
	 Integer	Data Actual	rows	returned	by	the

statement.
	 Object	ID System-assigned	ID	of	the	stored

procedure.
	 Text	Data Text	of	the	statement	in	the	stored

procedure.
SP:StmtStarting Event	Class Type	of	event	recorded	=	44.
	 Event	Sub	Class Nesting	level	of	the	stored

procedure.
	 Object	ID System-assigned	ID	of	the	stored

procedure.

	 Text	Data Text	of	the	statement	in	the	stored
procedure.

See	Also

Stored	Procedures

Stored	Procedures	Event	Category

Stored	Procedures	Event	Classes

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Transactions	Event	Category
The	Transactions	event	classes	can	be	used	to	monitor	the	status	of	transactions.

See	Also

Transactions	Event	Classes

Transactions	Data	Columns

Administering	SQL	Server

Transactions	Event	Classes
The	following	table	describes	the	Transactions	event	classes	in	the
Transactions	event	category.

Event	class Description
DTCTransactionTracks	Microsoft®	Distributed	Transaction	Coordinator

(MS	DTC)	coordinated	transactions	between	two	or
more	databases.

SQLTransaction Tracks	Transact-SQL	BEGIN,	COMMIT,	SAVE,	and
ROLLBACK	TRANSACTION	statements.

TransactionLog Tracks	when	transactions	are	written	to	the	transaction
log.

Use	the	DTCTransaction	event	class	to	monitor	the	state	of	MS	DTC
transactions	as	they	occur.	This	can	be	useful	when	testing	an	application	that
uses	distributed	transactions.

Monitor	the	SQLTransaction	event	class	when	testing	your	application	stored
procedures	or	triggers	to	determine,	for	example,	when	transactions	are
committed	or	rolled	back.

Use	the	TransactionLog	event	class	when	you	want	to	monitor	activity	in	the
Microsoft	SQL	Server™	transaction	log,	for	example,	to	test	your	application
and	determine	the	types	of	logging	activity.

See	Also

Transactions	Event	Category

Transactions	Data	Columns

Administering	SQL	Server

Transactions	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the
Transactions	event	category.

Event	class
Data
column Description

DTCTransactionEvent	Class Type	of	event	recorded	=	19.
	 Event	Sub

Class
Microsoft®	Distributed	Transaction
Coordinator	(MS	DTC)	state.	For	more
information,	see	the	MS	DTC
documentation.	Possible	values	include:

0	=	GET_DTC_ADDRESS_SUB_CLASS
1	=	PROPAGATE_XACT_SUB_CLASS
2	=	DOWORK_SUB_CLASS
3	=	CLOSE_CONN_SUB_CLASS
4	=	DTC_VIRGIN_SUB_CLASS
5	=	DTC_IDLE_SUB_CLASS
6	=	DTC_BEG_DIST_SUB_CLASS
7	=	DTC_ENLISTING_SUB_CLASS
8	=	DTC_INT_ACTIVE_SUB_CLASS
9	=	DTC_INT_COMMIT_SUB_CLASS
10	=	DTC_INT_ABORT_SUB_CLASS
11	=
DTC_INT_ASYNC_ABORT_SUB_CLASS
12	=	DTC_ACTIVE_SUB_CLASS
13	=	DTC_INIT_PREPARE_SUB_CLASS
14	=	DTC_PREPARING_SUB_CLASS
15	=	DTC_PREPARED_SUB_CLASS
16	=	DTC_ABORTING_SUB_CLASS
17	=	DTC_COMMITTING_SUB_CLASS
18	=
DTC_DO_ASYNC_ABORT_SUB_CLASS
19	=	DTC_DISASTER_SUB_CLASS

20	=	DTC_DRAIN_ABORT_SUB_CLASS
21	=	DTC_ASYNC_ABORT_SUB_CLASS
22	=	DTC_TM_RECOVERY_SUB_CLASS

	 End	Time The	end	time	of	the	event.
	 Duration The	length	of	the	DTC	transaction.
	 Reads The	number	of	page	reads	generated	locally

by	the	DTC	transaction.
	 Writes The	number	of	page	writes	generated	locally

by	the	DTC	transaction.
	 CPU The	amount	of	CPU	used	by	the	DTC

transaction.
	 Integer

Data
Transaction	isolation	level.	Possible	values
are:

256	=	Read	uncommitted
4096	=	Read	Committed
65536	=	Repeatable	read
1048576	=	Serializable
4294967295	=	Unspecified

	 Binary
Data

Globally	unique	ID	(GUID),	in	hexadecimal
form,	of	the	transaction,	if	available.	For
possible	values	of	the	Binary	Data,	see
Table	2	below.

SQLTransaction Event	Class Type	of	event	recorded	=	50.
	 Event	Sub

Class
Type	of	SQL	transaction	event.	Possible
values	include:

0	=	Begin	Transaction
1	=	Commit	Transaction
2	=	Rollback	Transaction
3	=	A	Savepoint	was	issued

	 End	Time The	end	time	of	the	event.	This	option	is
only	for	a	COMMIT	or	ROLLBACK.

	 Duration How	long	the	transaction	ran	for.	This
option	is	only	for	a	COMMIT	or

ROLLBACK.
	 Transaction

ID
The	internal	ID	number	of	the	transaction.

	 Text	Data The	savepoint	or	rollback	name,	if	provided.
	 Object

Name
The	transaction	name,	if	provided.

TransactionLog Event	Class Type	of	event	recorded	=	54.
	 Event	Sub

Class
Type	of	transaction	log	event,	such	as
BEGINXACT(null).

	 Integer
Data

The	length	of	the	log	record.

	 Binary
Data

The	Replication	log_pubid	is	the	publication
ID	that	is	currently	being	worked	on.	If	you
are	using	replication	and	look	in	the	table
for	MSPublications	there	is	a	column	of
publication_id.	This	is	the	value	represented
in	Binary	Data.	You	can	use	this	ID	to	find
the	publication	and	any	articles	associated
with	it.

	 End	Time The	end	time	of	the	event.
	 Reads The	number	of	read	I/Os	issued	to	perform

the	log	entry.
	 Writes The	number	of	I/Os	issued	to	perform	the

log	entry.
	 CPU The	amount	of	CPU	used	to	write	the

transaction	entry.
	 Transaction

ID
The	internal	ID	number	of	the	transaction.

	 Object	ID The	ID	of	the	object	that	has	logged
modifications.

	 Index	ID The	ID	of	the	index	that	has	logged
modifications.

See	Also

Transactions	Event	Category

Transactions	Event	Classes

Administering	SQL	Server

TSQL	Event	Category
The	TSQL	event	classes	can	be	used	to	monitor	the	execution	and	completion	of
a	batch,	and	a	Transact-SQL	statement.

See	Also

TSQL	Event	Classes

TSQL	Data	Columns

Administering	SQL	Server

TSQL	Event	Classes
The	following	table	describes	the	TSQL	event	classes	in	the	TSQL	event
category.

Event	class Description
Exec	Prepared	SQL Indicates	when	a	prepared	SQL	statement

or	statements	have	been	executed	by
ODBC,	OLEDB,	or	DB-Library.

Prepare	SQL Indicates	when	an	SQL	statement	or
statements	have	been	prepared	for	use	by
ODBC,	OLEDB,	or	DB-Library.

SQL:BatchCompleted Transact-SQL	batch	has	completed.
SQL:BatchStarting Transact-SQL	batch	has	started.
SQL:StmtCompleted Transact-SQL	statement	has	completed.
SQL:StmtStarting Transact-SQL	statement	has	started.
Unprepare	SQL Indicates	when	a	prepared	SQL	statement

or	statements	have	been	unprepared	by
ODBC,	OLEDB,	or	DB-Library.

By	monitoring	the	TSQL	event	classes	and	monitoring	the	events	using	single
stepping,	you	can	monitor	your	application	queries.	The	SQL:BatchStarting
event	class	will	show	the	Transact-SQL	submitted	in	a	batch,	while	the
SQL:StmtStarting	event	class	shows	the	individual	statement	within	a	batch.
By	replaying	the	SQL:BatchCompleted	event	class,	any	results	returned	by	the
batch	are	displayed	and	can	be	checked	to	ensure	they	match	the	expected
results.

Monitoring	the	Start	Time,	End	Time,	and	Duration	default	data	columns
reveals	when	the	events	start	and	complete,	and	how	long	each	remote	procedure
call	(RPC),	batch,	or	statement	takes	to	complete.	By	grouping	events	based	on
the	Duration	default	data	column,	you	can	easily	determine	the	longest	running
queries.	Monitoring	the	NT	User	Name	and	DBUserName	default	data	columns
can	also	identify	users	who	submit	these	queries.

See	Also

TSQL	Event	Category

TSQL	Data	Columns

Administering	SQL	Server

TSQL	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	TSQL
event	category.

Event	class Data	column Description
Exec	Prepared	SQL Event	Class Type	of	event	recorded	=	72.
	 Handle Handle	of	the	prepared	TSQL

statement.
Prepare	SQL Event	Class Type	of	event	recorded	=	71.
	 Handle Handle	of	the	prepared	TSQL

statement.
SQL:BatchCompletedEvent	Class Type	of	event	recorded	=	12.
	 Duration The	duration	of	the	event.
	 End	Time The	end	time	of	the	event.
	 Reads The	number	of	page	read	I/Os

caused	by	the	batch.
	 Writes The	number	of	page	write	I/Os

caused	by	the	batch.
	 CPU The	CPU	used	during	the	batch.
	 Text	Data The	text	of	the	batch.
SQL:BatchStarting Event	Class Type	of	event	recorded	=	13.
	 Text	Data The	text	of	the	batch.
SQL:StmtCompleted Event	Class Type	of	event	recorded	=	41.
	 Duration The	duration	of	the	event.
	 End	Time The	end	time	of	the	event.
	 Reads The	number	of	page	reads	issued

by	the	SQL	statement.
	 Writes The	number	of	page	writes	issued

by	the	SQL	statement.
	 CPU The	CPU	used	by	the	SQL

statement.

	 Integer	Data The	number	of	rows	returned	by
the	SQL	statement.

	 Object	ID The	object	ID	of	the	parent	stored
procedure,	if	the	SQL	statement
was	run	within	a	stored	procedure.

	 Nest	Level The	nest	level	of	the	stored
procedure,	if	the	SQL	statement
was	run	within	a	stored	procedure.

	 Text	Data The	text	of	the	statement	that	is
about	to	be	executed.

SQL:StmtStarting Event	Class Type	of	event	recorded	=	40.
	 Object	ID The	object	ID	of	the	parent	stored

procedure,	if	the	SQL	statement
was	run	within	a	stored	procedure.

	 Nest	Level The	next	level	of	the	stored
procedure,	if	the	SQL	statement
was	run	within	a	stored	procedure.

	 Text	Data The	text	of	the	statement	that	is
about	to	be	executed.

Unprepare	SQL Event	Class Type	of	event	recorded	=	73.
	 Handle The	handle	of	the	prepared	TSQL

statement.

See	Also

TSQL	Event	Category

TSQL	Event	Classes

Administering	SQL	Server

User	Configurable	Event	Category
Use	the	User	Configurable	event	category	to	monitor	user-defined	events.
Create	user-defined	events	to	monitor	events	that	cannot	be	monitored	by	the
system-supplied	events	in	other	event	categories.	For	example,	a	user-defined
event	can	be	created	to	monitor	the	progress	of	the	application	you	are	testing.
As	the	application	runs,	it	can	generate	events	at	predefined	points,	allowing	you
to	determine	the	current	execution	point	in	your	application.

See	Also

User	Configurable	Event	Classes

User	Configurable	Data	Columns

Administering	SQL	Server

User	Configurable	Event	Classes
As	user-defined	events	are	generated	by	your	application	using	the
sp_trace_generateevent	stored	procedure,	the	event_class	parameter	you
specify	determines	which	of	the	following	10	event	classes	to	monitor.

The	following	table	describes	the	User	Configurable	event	classes	in	User
Configurable	event	category.

Event	class Description
UserConfigurable	(0-9) Event	data	defined	by	the	user.

See	Also

User	Configurable	Event	Category

User	Configurable	Data	Columns

Administering	SQL	Server

User	Configurable	Data	Columns
The	following	table	lists	the	data	columns	for	each	event	class	in	the	User
Configurable	event	category.

Event	class Data	column Description
UserConfigurable	(0-
9)

Text	Data Text	value	dependent	on	the	event
class	captured	in	the	trace.

	 Binary	Data Binary	value	dependent	on	the
event	class	captured	in	the	trace.

Not	all	data	columns	will	be	produced	for	the	User	Configurable	event	classes.
When	you	create	a	trace,	you	can	select	the	following	columns:

Application	Name

Binary	Data

Database	ID

Host	Name

Login	Name

Login	SID

NT	Domain	Name

NT	User	Name

Server	Name

Text	Data

To	create	a	user-defined	event	class

Transact-SQL

See	Also

User	Configurable	Event	Category

User	Configurable	Event	Classes

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Creating	and	Managing	Traces	and	Templates
In	Microsoft®	SQL	Server™,	you	can	use	SQL	Profiler	to	create	one	or	more
templates	that	define	the	criteria	for	each	event	you	want	to	monitor.	You	can
save	the	template	to	a	file	with	the	.tdf	extension.	A	template	is	not	executed.
After	you	define	the	template,	you	run	a	trace	that	records	the	data	for	each	event
you	selected.

For	example,	you	can	create	a	template,	specifying	which	events,	data	columns,
and	filters	to	use.	Then	you	can	save	the	template	and	launch	a	trace	with	the
current	template	settings.	The	trace	data	captured	is	based	upon	the	options
specified	in	the	template.	You	can	specify	where	the	trace	results	can	be	saved
(for	example,	in	a	trace	file	(.trc	extension	file)	or	a	trace	table).

Default	Templates
Before	creating	a	trace	using	SQL	Profiler,	you	can	specify	a	default	trace
template.	To	select	a	default	trace	template,	go	to	the	Tools	menu,	and	then
select	Options.

You	can	also	specify:

To	start	the	default	trace	immediately	after	making	a	connection.

The	number	of	lines	of	trace	data	buffered	for	display.	If	window	auto-
scrolling	is	disabled	and	the	specified	limit	is	reached,	the	trace	pauses
until	you	scroll	down	to	the	last	row.	At	this	point,	10	percent	of	the	top
rows	are	deleted	and	the	trace	continues.

A	font	for	the	displayed	trace	data.

A	font	size	for	the	displayed	trace	data.

When	creating	a	trace,	you	can	specify	the	following:

A	trace	name.

Which	instance	of	SQL	Server	to	trace.

Options	for	saving	trace	data.	For	example,	you	can	choose	to	capture
trace	data	to	the	server	file.	If	you	choose	this	option,	you	must	capture
trace	data	to	the	server	being	traced	and	set	a	maximum	file	size	for	the
server	file.	If	the	maximum	file	size	is	reached,	you	can	enable	the	file
rollover	option,	which	creates	new	files	to	store	the	trace	data.	You	can
also	save	a	trace	to	a	file,	table,	or	a	combination	of	these	options.	If
you	will	be	tracing	a	large	amount	of	data,	you	should	save	the	data	to
the	server	file.	This	guarantees	that	all	events	produced	will	be	saved	in
the	file.	There	is	a	limit	of	1	gigabyte	(GB)	for	maximum	file	size.

A	trace	stop	time.

Events	to	trace.	For	more	information	about	the	event	classes	available,
see	Monitoring	with	SQL	Profiler	Event	Categories.

Data	columns	to	capture.	For	more	information	about	the	data	columns
available,	see	Monitoring	with	SQL	Profiler	Event	Categories.

Filters	that	specify	the	criteria	for	determining	which	events	to	capture.

Using	System	Stored	Procedures

SQL	Profiler	uses	system	stored	procedures	to	create	traces	and	send	the	trace
output	to	the	appropriate	destination.	These	system	stored	procedures	can	be
used	from	within	your	own	applications	to	create	traces	manually,	instead	of
using	SQL	Profiler.	This	allows	you	to	write	custom	applications	specific	to	the
needs	of	your	enterprise.	For	example,	when	using	system	stored	procedures	to
create	traces,	you	can:

Configure	traces.

Forward	trace	events	from	one	or	more	servers	to	a	file.

The	following	table	compares	the	SQL	Server	2000	system	stored	procedures	to
the	SQL	Server	version	7.0	stored	procedures.

7.0	extended	stored	procedure 2000	stored	procedures
xp_trace_geteventclassrequired fn_trace_geteventinfo
xp_trace_getqueuecreateinfo fn_trace_geteventinfo
xp_trace_getqueueproperties fn_trace_geteventinfo
xp_trace_getqueuecreateinfo fn_trace_getinfo
xp_trace_getqueuedestination fn_trace_getinfo
xp_trace_getqueueproperties fn_trace_getinfo
xp_trace_addnewqueue sp_trace_create
xp_trace_setqueuecreateinfo sp_trace_create
xp_trace_setqueuedestination sp_trace_create
xp_trace_generate_event sp_trace_generateevent
xp_trace_addnewqueue sp_trace_setevent
xp_trace_eventclassrequired sp_trace_setevent
xp_trace_seteventclassrequired sp_trace_setevent
xp_trace_destroyqueue sp_trace_setstatus
xp_trace_pausequeue sp_trace_setstatus
xp_trace_restartqueue sp_trace_setstatus
xp_trace_startconsumer sp_trace_setstatus
xp_trace_getappfilter fn_trace_getfilterinfo
xp_trace_getconnectionidfilter fn_trace_getfilterinfo
xp_trace_getcpufilter fn_trace_getfilterinfo
xp_trace_getdbIdfilter fn_trace_getfilterinfo
xp_trace_getdurationfilter fn_trace_getfilterinfo
xp_trace_geteventfilter fn_trace_getfilterinfo
xp_trace_gethostfilter fn_trace_getfilterinfo
xp_trace_gethpIdfilter fn_trace_getfilterinfo
xp_trace_getIndIdfilter fn_trace_getfilterinfo
xp_trace_getntdmfilter fn_trace_getfilterinfo
xp_trace_getntnmfilter fn_trace_getfilterinfo

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

xp_trace_getobjidfilter fn_trace_getfilterinfo
xp_trace_getreadfilter fn_trace_getfilterinfo
xp_trace_getserverfilter fn_trace_getfilterinfo
xp_trace_getseverityfilter fn_trace_getfilterinfo
xp_trace_getspIdfilter fn_trace_getfilterinfo
xp_trace_getsysobjectsfilter fn_trace_getfilterinfo
xp_trace_gettextfilter fn_trace_getfilterinfo
xp_trace_getuserfilter fn_trace_getfilterinfo
xp_trace_getwritefilter fn_trace_getfilterinfo
xp_trace_setappfilter sp_trace_setfilter
xp_trace_setconnectionidfilter sp_trace_setfilter
xp_trace_setcpufilter sp_trace_setfilter
xp_trace_setdbIdfilter sp_trace_setfilter
xp_trace_setdurationfilter sp_trace_setfilter
xp_trace_seteventfilter sp_trace_setfilter
xp_trace_sethostfilter sp_trace_setfilter
xp_trace_sethpIdfilter sp_trace_setfilter
xp_trace_setIndIdfilter sp_trace_setfilter
xp_trace_setntdmfilter sp_trace_setfilter
xp_trace_setntnmfilter sp_trace_setfilter
xp_trace_setobjidfilter sp_trace_setfilter
xp_trace_setreadfilter sp_trace_setfilter
xp_trace_setserverfilter sp_trace_setfilter
xp_trace_setseverityfilter sp_trace_setfilter
xp_trace_setspIdfilter sp_trace_setfilter
xp_trace_setsysobjectsfilter sp_trace_setfilter
xp_trace_settextfilter sp_trace_setfilter
xp_trace_setuserfilter sp_trace_setfilter
xp_trace_setwritefilter sp_trace_setfilter

System	stored	procedures	expose	the	underlying	architecture	used	to	create
traces.	The	architecture	components	are:

JavaScript:hhobj_8.Click()

Producer

Generates	the	events	to	be	monitored.	The	SQL	Server	lock	manager,	which
generates	lock	events,	is	an	example	of	a	producer.	For	more	information,
see	Locks	Event	Category.

Filter

Restricts	the	data	monitored	by	the	trace.	For	more	information,	see	Limiting
Traces.

Destination

Houses	event	data	extracted	from	the	trace	in	files.

To	define	your	own	trace	using	stored	procedures:

1.	 Specify	the	events	to	capture	using	sp_trace_setevent.

2.	 Specify	any	event	filters.	For	more	information,	see	How	to	set	a	trace
filter	(Transact-SQL).

3.	 Specify	the	destination	for	the	captured	event	data	using
sp_trace_create.

To	set	trace	definition	defaults

JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Administering	SQL	Server

Limiting	Traces
If	a	filter	is	not	set,	all	events	of	the	selected	event	classes	are	returned	in	the
trace	output.	Filters	limit	the	events	collected	in	the	trace.	For	example,	limiting
the	Microsoft®	Windows	NT®	4.0	or	Windows®	2000	user	names	in	the	trace
to	specific	users	reduces	the	output	data	to	only	those	users	in	which	you	are
interested.

Trace	event	criteria	are	parameters	used	to	restrict	(filter)	the	event	data	captured
within	the	trace.	For	example,	you	can	monitor	the	activity	of	a	specific
application	or	exclude	an	application	from	monitoring	(the	default	trace	event
criteria	excludes	SQL	Profiler	from	monitoring	itself).	For	example,	when
monitoring	queries	to	determine	the	batches	that	take	the	longest	time	to	execute,
you	can	set	the	trace	event	criteria	to	monitor	(trace)	only	those	batches	that	take
longer	than	30	seconds	to	execute	(a	CPU	minimum	value	of	30,000
milliseconds).	You	can	specify	filters	by	right-clicking	on	the	appropriate	trace
event	criteria	value	and	entering	the	information.

To	filter	events	in	a	trace	template

Administering	SQL	Server

Maximum	File	and	Data	Size
Using	the	Maximum	file	size	and	the	Maximum	rows	options,	you	can	specify
the	maximum	size	of	the	file	or	table	holding	the	trace	information	and	control
the	amount	of	space	and	resources	used	by	a	trace.

If	a	trace	defined	to	save	data	to	a	file	is	started	using	SQL	Profiler	and	the	file
already	exists,	you	can	append	to	or	overwrite	the	file.	If	you	choose	to	append
to	the	file,	and	the	trace	file	already	meets	or	exceed	the	specified	maximum	file
size,	you	are	notified	and	given	the	opportunity	to	either	increase	the	maximum
file	size	or	specify	a	new	file.	The	same	is	true	for	trace	tables.

Maximum	File	Size
A	trace	with	a	maximum	file	size	specified	stops	saving	trace	information	to	the
file	after	the	maximum	file	size	has	been	reached.	The	maximum	file	size	option
must	be	used	when	you	are	saving	trace	data	to	a	file.	The	default	maximum	file
size	is	5	megabyte	(MB).	The	file	rollover	option	is	enabled	by	default	when	you
are	saving	trace	data	to	a	file.

There	is	a	limit	of	1	gigabyte	(GB)	for	the	maximum	file	size	option.

How	to	set	a	maximum	file	size	for	a	trace	file

Administering	SQL	Server

Datetime	Filter
You	can	set	a	trace	to	filter	out	events	that	do	not	occur	during	a	specified	time.
For	example,	if	you	want	to	view	an	event	that	started	between	2:00	A.M.	and
2:30	A.M.,	you	can	set	a	trace	to	automatically	filter	out	all	events	starting
before	2:00	A.M.	and	after	2:30	A.M.	Start	Time	and	End	Time	filters	capture
events	that	occur	only	between	the	specified	times.	The	trace	itself	is	active
during	the	time	and	does	not	autostart	or	stop	at	the	Start	Time	and	End	Time.
These	times	affect	only	the	filter.

How	to	set	a	Start	Time	filter	for	a	trace

Administering	SQL	Server

System	SPID
You	can	define	a	trace	that	records	only	Microsoft®	SQL	Server™	processes
while	filtering	out	any	unnecessary	system	events.	Filtering	out	system	server
process	IDs	(SPIDs)	saves	system	resources	and	time	when	you	run	a	trace	on	a
busy	server.

How	to	filter	system	IDs	in	a	trace

Administering	SQL	Server

Saving	Traces	and	Templates
Saving	a	trace	involves	saving	the	captured	event	data	to	a	specified	place.
Saving	a	template	involves	saving	the	definition	of	the	trace,	such	as	specified
data	columns,	events,	and	filters.

Saving	Event	Data
Save	the	captured	event	data	to	a	file	or	a	Microsoft®	SQL	Server™	table	when
you	need	to	analyze	or	replay	the	captured	data	at	a	later	time	(for	example,	for
trend	forecasting	or	troubleshooting	and	debugging	application	problems).	You
can:

Use	a	trace	file	or	trace	table	to	create	a	workload	that	is	used	as	input
for	the	Index	Tuning	Wizard.

Use	a	trace	file	to	capture	events	and	send	the	trace	file	to	the	support
provider	for	analysis.	

Use	the	query	processing	tools	in	SQL	Server	to	access	the	data	or	to
view	the	data	in	SQL	Profiler.	However,	only	members	of	the	sysadmin
fixed	server	role	or	the	table	creator	can	access	the	trace	table	directly.

IMPORTANT		Capturing	trace	data	to	a	table	is	slower	than	capturing	to	a
file.	An	alternative	is	to	capture	a	trace	to	a	file,	open	the	trace	file,	and
then	save	the	trace	as	a	trace	table.

When	using	a	trace	file,	SQL	Profiler	saves	captured	event	data	(not	trace
definitions)	to	a	SQLProfiler	(*.trc)	file.	The	extension	is	added	to	the	end	of	the
file	automatically	when	the	trace	file	is	saved,	regardless	of	any	other	specified
extension.	For	example,	if	you	specify	a	trace	file	called	Trace.dat,	the	file
created	is	called	Trace.dat.trc.

Note		If	SQL	Profiler	is	running	on	Microsoft	Windows®	2000	or	Microsoft
Windows	NT®	4.0,	you	cannot	open	trace	or	script	files	on	a	Windows	98

JavaScript:hhobj_1.Click()

shared	directory.

Saving	Templates
The	template	definition	of	a	trace	includes	the	event	classes,	data	columns,	event
criteria	(filters),	and	all	other	properties	(except	the	captured	event	data)	used	to
create	a	trace.	Templates	created	using	SQL	Profiler	are	saved	in	a	file	on	the
computer	running	SQL	Profiler.

If	you	frequently	monitor	SQL	Server,	save	templates	in	order	to	analyze
performance.	The	templates	capture	the	same	event	data	each	time	and	use	the
same	trace	definition	to	monitor	the	same	events	without	having	to	define	the
event	classes	and	data	columns	every	time	you	create	a	trace.	Additionally,	a
template	can	be	given	to	another	user	to	monitor	specific	SQL	Server	events.	For
example,	a	support	provider	can	supply	a	customer	with	a	template.	The
template	is	used	by	the	customer	to	capture	the	required	event	data,	which	is
then	sent	to	the	support	provider	for	analysis.

To	save	a	trace	to	a	file

Administering	SQL	Server

Modifying	Templates
You	can	modify	templates	saved	in	the	file	on	the	local	computer	running	SQL
Profiler	and	templates	derived	from	files.	You	may	need	to	derive	a	template
from	a	trace	file	if	you	cannot	remember	the	original	template	that	was	used	to
create	the	trace,	or	if	you	want	to	run	the	same	trace	at	a	later	date.	Template
properties,	such	as	event	classes	and	data	columns,	are	modified	in	the	same	way
in	which	the	properties	were	originally	set.	Event	classes	and	data	columns	can
be	added	or	removed,	and	filters	can	be	changed.	After	the	template	is	modified,
saving	it	with	the	same	name	overwrites	the	original	template.	For	more
information,	see	Creating	and	Managing	Traces	and	Templates.

When	working	with	existing	traces,	you	can	view	the	properties,	but	you	cannot
modify	them.

WARNING		Saving	a	trace	file	with	the	same	name	overwrites	the	original	trace
file,	causing	any	of	the	originally	captured	events	or	data	columns	that	were
removed	or	filtered	to	be	lost.

To	derive	a	template	from	a	trace	file	or	trace	table

Administering	SQL	Server

Starting,	Pausing,	and	Stopping	Traces
After	you	have	created	a	template	using	SQL	Profiler,	you	can	start,	pause,	or
stop	capturing	data	using	the	new	trace.

When	you	start	a	trace	and	the	server	is	the	defined	source,	Microsoft®	SQL
Server™	creates	a	queue	that	provides	a	temporary	holding	place	for	captured
server	events.

Each	trace	can	have	multiple	producers.	A	producer	collects	events	in	a	specific
event	category	and	sends	the	data	to	the	queue.	Events	are	read	off	the	queue	in
the	order	in	which	they	were	placed.	This	method	is	called	first-in/first-out
(FIFO).

When	using	SQL	Profiler,	starting	a	trace	opens	a	new	trace	window	(if	one	is
not	already	open),	and	data	is	immediately	captured.	When	using	SQL	Server
system	stored	procedures,	you	start	a	trace	either	manually	or	automatically
every	time	an	instance	of	SQL	Server	starts.	A	soon	as	the	trace	is	started,	data	is
captured.	When	a	trace	has	been	started,	you	can	modify	the	name	of	the	trace
only.

Pausing	a	trace	prevents	further	event	data	from	being	captured	until	the	trace	is
restarted.	Restarting	a	trace	resumes	trace	operations.	Any	previously	captured
data	is	not	lost.	When	the	trace	is	restarted,	data	capturing	is	resumed	from	that
point	onward.	When	a	trace	is	paused,	you	can	change	the	name,	events,
columns,	and	filters.	However,	you	cannot	change	the	destination(s)	to	which
you	are	sending	the	trace	or	the	server	connection.

Stopping	a	trace	stops	data	from	being	captured.	After	a	trace	is	stopped,	it
cannot	be	restarted	without	losing	any	previously	captured	data,	unless	the	data
has	been	captured	to	a	trace	file	or	trace	table.	All	trace	properties	that	were
previously	selected	are	preserved	when	a	trace	is	stopped.	When	a	trace	is
stopped,	you	can	change	the	name,	events,	columns,	and	filters.

To	run	a	trace	after	it	has	been	paused	or	stopped

Administering	SQL	Server

Viewing	and	Analyzing	Traces
Use	SQL	Profiler	to	view	captured	event	data	in	a	trace.	SQL	Profiler	displays
data	based	on	defined	trace	properties.	One	way	to	analyze	Microsoft®	SQL
Server™	data	is	to	copy	the	data	to	another	program,	such	as	SQL	Query
Analyzer	or	the	Index	Tuning	Wizard.	The	Index	Tuning	Wizard	can	use	a	trace
file	that	contains	SQL	batch	and	remote	procedure	call	(RPC)	events	(and	Text
data	columns).	By	specifying	a	server	and	database	name	when	using	the	wizard,
the	captured	data	can	be	analyzed	against	a	different	server	and	database.	For
more	information,	see	Index	Tuning	Wizard.

When	a	trace	is	opened	using	SQL	Profiler,	it	is	not	necessary	for	the	trace	file	to
have	the	.trc	file	extension	if	the	file	was	created	by	either	SQL	Profiler	or	the
Profiler	stored	procedures.

Note		SQL	Profiler	can	also	read	SQL	Trace	.log	files	and	generic	SQL	script
files.	When	opening	a	SQL	Trace	.log	file	that	does	not	have	a	.log	file
extension,	for	example	trace.txt,	specify	SQLTrace_Log	as	the	file	format.

The	SQL	Profiler	display	can	be	configured	with	customized	font,	font	size,
preview	lines,	and	client	buffer	size	to	assist	in	trace	analysis.

Analyzing	Data	to	Troubleshoot
Using	SQL	Profiler,	you	can	troubleshoot	data,	such	as	queries	that	perform
poorly	or	have	exceptionally	high	numbers	of	logical	reads,	can	be	found	by
grouping	traces	or	trace	files	by	the	Duration,	CPU,	Reads,	or	Writes	data
columns.

Additional	information	can	be	found	by	saving	traces	to	tables	and	using
Transact-SQL	to	query	the	event	data.	For	example,	to	determine	which
SQL:BatchCompleted	events	had	excessive	wait	time,	execute:

SELECT		TextData,	Duration,	CPU
FROM				trace_table_name
WHERE			EventClass	=	12	--	SQL:BatchCompleted	events
AND					CPU	<	(.4	*	Duration)

JavaScript:hhobj_1.Click()

Displaying	Object	Names	When	Viewing	Traces
If	you	capture	the	Server	Name	and	Database	ID	data	columns	in	your	trace,
SQL	Profiler	displays	the	object	name	instead	of	the	object	ID	(for	example,
Orders	instead	of	the	number	165575628).	Similarly,	if	you	capture	the	Server
Name,	Database	ID,	and	Object	ID,	SQL	Profiler	displays	the	index	name
instead	of	the	index	ID.

If	you	choose	to	group	by	the	Object	ID	data	column,	group	by	the	Server
Name	and	Database	ID	data	columns	first,	and	then	Object	ID.	Similarly,	if
you	choose	to	group	by	the	Index	ID	data	column,	group	by	the	Server	Name,
Database	ID,	and	Object	ID	data	columns	first,	and	then	Index	ID.	You	need	to
group	in	this	way	because	object	and	index	IDs	are	not	unique	between	servers
and	databases	(and	objects	for	index	IDs).

Finding	Specific	Events	Within	a	Trace
Here	are	the	basic	steps	for	finding	and	grouping	events	in	a	trace:

1.	 Create	your	trace.

When	defining	the	trace,	capture	the	Event	Class,
ClientProcessID,	and	Start	Time	data	columns	in	addition	to
any	other	data	columns	you	want	to	capture.

Group	the	captured	data	by	the	Event	Class	data	column,	and
capture	the	trace	to	a	file	or	table.

2.	 Find	the	target	events.

Open	the	trace	file	or	table,	and	expand	the	node	of	the
desired	event	class,	for	example,	Deadlock	Chain.	(The	file
can	be	opened	for	viewing	while	the	trace	is	writing	to	it
unless	the	trace	is	located	on	a	computer	running	Microsoft
Windows®	Windows	98.	Use	the	Refresh	command	in	the
View	menu	to	display	the	new	rows.)

Search	through	the	trace	until	you	find	the	events	for	which
you	are	looking	(you	can	use	the	Find	option	on	the	Edit

menu	of	SQL	Profiler	to	help	you	find	values	in	the	trace).
Note	the	values	in	the	ClientProcessID	and	Start	Time	data
columns	of	the	desired	events.

3.	 Display	the	events	in	context.

Display	the	trace	data	column	properties,	and	group	by
ClientProcessID	instead	of	Event	Class.

Expand	the	nodes	of	each	client	process	ID	you	want	to	view.
Search	through	the	trace	manually,	or	use	the	Find	option
until	you	find	the	previously	noted	Start	Time	values	of	the
target	events.	The	events	are	displayed	in	chronological	order
with	the	other	events	that	belong	to	each	selected	client
process	ID.	For	example,	the	Deadlock	and	Deadlock	Chain
events,	captured	within	the	trace,	will	be	immediately	after
the	SQL:BatchStarting	events	within	the	expanded	client
process	ID.

The	same	technique	can	be	used	to	find	events	grouped	by	Server	Name,
Database	ID,	and	Object	ID.	Once	you	have	found	the	events	for	which	you	are
looking,	group	by	ClientProcessID,	Application	Name,	or	another	event	class
to	view	related	activity	in	chronological	order.

To	view	a	saved	trace

Administering	SQL	Server

Replaying	Traces
When	you	create	or	edit	a	trace,	you	can	save	the	trace	to	replay	it	later.	SQL
Profiler	features	a	multithreaded	playback	engine	that	can	simulate	user
connections	and	SQL	Server	Authentication,	allowing	the	user	to	reproduce	the
activity	captured	in	the	trace.	Therefore,	replay	is	useful	when	troubleshooting
an	application	or	process	problem.	When	you	have	identified	the	problem	and
implemented	corrections,	run	the	trace	that	found	the	potential	problem	against
the	corrected	application	or	process,	then	replay	the	original	trace	to	compare
results.

Trace	replay	supports	debugging	using	break	points	and	run-to-cursor,	which
especially	improves	the	analysis	of	long	scripts.	For	more	information,	see
Single-Stepping	Traces.

Replay	Requirements
In	addition	to	any	other	event	classes	you	want	to	monitor,	the	following	event
classes	must	be	captured	in	a	trace	to	allow	the	trace	to	be	replayed:

Connect

CursorExecute	(only	required	when	replaying	server-side	cursors)

CursorOpen	(only	required	when	replaying	server-side	cursors)

CursorPrepare	(only	required	when	replaying	server-side	cursors)

Disconnect

Exec	Prepared	SQL	(only	required	when	replaying	server-side
prepared	SQL	statements)

ExistingConnection

Prepare	SQL	(only	required	when	replaying	server-side	prepared	SQL
statements)

RPC:Starting

SQL:BatchStarting

In	addition	to	any	other	data	columns	you	want	to	capture,	the	following	data
columns	must	be	captured	in	a	trace	to	allow	the	trace	to	be	replayed:

Application	Name

Binary	Data

ClientProcessID	or	SPID

Database	ID

Event	Class

Event	Sub	Class

Host	Name

Integer	Data

Server	Name

SQL	User	Name

Start	Time

Text

Note		Use	the	sample	trace	template	SQLProfilerTSQL_Replay	for
traces	capturing	data	for	replay.

In	order	to	replay	a	trace	against	a	computer	running	Microsoft®	SQL	Server™
(the	target),	other	than	the	computer	originally	traced	(the	source):

All	logins	and	users	contained	in	the	trace	must	already	be	created	on
the	target	and	in	the	same	database	as	the	source.

All	logins	and	users	in	the	target	must	have	the	same	permissions	they
had	in	the	source.

All	login	passwords	must	be	the	same	as	the	user	executing	the	replay.

Replaying	events	associated	with	missing	or	incorrect	logins	will	result	in	replay
errors,	but	the	replay	operation	will	continue.

In	order	to	replay	a	trace	against	an	instance	of	SQL	Server	(the	target),	other
than	the	computer	originally	traced	(the	source),	either:

Database	IDs	on	the	target	must	be	the	same	as	those	on	the	source.
This	can	be	accomplished	by	creating	from	the	source	a	backup	of	the
master	database,	and	any	user	databases	referenced	in	the	trace,	and
restoring	them	on	the	target.

The	default	database	for	each	login	contained	in	the	trace	must	be	set
(on	the	target)	to	the	respective	target	database	of	the	login.	For
example,	the	trace	to	be	replayed	contains	activity	for	the	login,	Fred,	in
the	database	Fred_Db	on	the	source.	Therefore,	on	the	target,	the	default
database	for	the	login,	Fred,	must	be	set	to	the	database	that	matches
Fred_Db	(even	if	the	database	name	is	different).	To	set	the	default

database	of	the	login,	use	sp_defaultdb	system	stored	procedure.

Replay	Options

Before	replaying	a	captured	trace,	you	can	specify:

Server

The	server	is	the	name	of	the	instance	of	SQL	Server	against	which	you
want	to	replay	the	trace.	The	server	must	adhere	to	the	replay
requirements	previously	mentioned.

Output	file	name

The	output	file	contains	the	result	of	replaying	the	trace	for	later
viewing.	If	Progress	is	selected,	then	the	output	file	can	be	also
replayed	at	a	later	time.	By	default,	SQL	Profiler	displays	only	the
results	of	replaying	the	trace	to	the	screen.

Replay	Options

Replay	events	in	the	order	they	were	traced.	This	option
enables	debugging.

Specify	to	replay	events	in	the	order	they	were	traced.	This
allows	you	to	use	debugging	methods	such	as	stepping	through
each	trace.

Replay	events	using	multiple	threads.	This	option	optimizes
performance	and	disables	debugging.

Specify	to	replay	events	using	multiple	threads.	This	optimizes
performance,	but	debugging	is	disabled.

Display	replay	results

Specify	to	display	the	results	of	the	replay.	This	is	the	default
option.	If	the	trace	you	are	replaying	is	very	large,	you	may
want	to	disable	this	to	save	disk	space.

Note		For	best	replay	performance,	it	is	recommended	that	you	select	to	replay
events	using	multiple	threads,	and	do	not	select	to	display	the	replay	results.

Replay	Considerations
SQL	Profiler	cannot	replay	traces:

Captured	from	connections	that	connected	to	an	instance	of	SQL	Server
using	Windows	Authentication	Mode.	For	information	about	Windows
Authentication	Mode,	see	Authentication	Modes.

Containing	replication	and	other	transaction	log	activity.

Containing	operations	that	involve	globally	unique	identifiers	(GUID).
For	information	about	GUIDs,	see	Autonumbering	and	Identifier
Columns.

Containing	operations	on	text,	ntext,	and	image	columns	involving	the
bcp	utility,	BULK	INSERT,	READTEXT,	WRITETEXT,	and
UPDATETEXT	statements,	and	full-text	operations.

Containing	session	binding:	sp_getbindtoken	and	sp_bindsession
system	stored	procedures.

Additionally,	SQL	Profiler	cannot	replay	SQL	Trace	.log	files	that	contain	SQL
Server	6.5	server-side	cursor	statements	(sp_cursor).

Unexpected	results	or	replay	errors	can	occur	when	replaying	a	trace	containing
the	Sessions	event	classes	(Connect,	Disconnect,	and	Existing	Connection)	if
the	Binary	Data	data	column	is	not	also	captured	in	the	trace.	The	Binary	Data
data	column,	for	the	Session	event	classes,	contains	information	required	to	set
ANSI	nulls,	ANSI	padding,	cursor	close	on	commit,	concat	null	yields	null,	and
quoted	identifier	session	settings.	For	more	information,	see	SET.

When	replaying	a	trace	containing	concurrent	connections,	SQL	Profiler	creates
a	thread	for	each	connection.	Therefore,	system	performance	of	the	computer
replaying	the	trace	can	be	affected	if	the	trace	contains	many	concurrent
connections.	To	reduce	the	effect	on	system	performance,	filter	the	trace	by
specifying	a	value(s)	for	the	Application	Name,	SQL	User	Name,	or	another
data	column	captured	in	the	trace,	to	focus	the	trace	on	only	those	events	you

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

need	to	monitor.

Note		If	you	do	not	use	the	provided	replay	template	(SQLProfilerTSQL-
Replay),	you	may	encounter	difficulties	capturing	the	current	database	context.
For	more	information,	see	Troubleshooting	SQL	Profiler.

To	replay	a	trace	table

JavaScript:hhobj_3.Click()

Administering	SQL	Server

Single-Stepping	Traces
Rather	than	replay	all	events	in	a	trace	to	completion,	SQL	Profiler	allows	you	to
replay	a	trace	in	the	following	ways:

A	single	event	at	a	time

By	replaying	a	trace	a	single	event	at	a	time,	you	can	examine	the
effects	of	each	event	after	it	has	occurred.	When	trace	replay	is
continued	using	single	stepping,	the	next	event	is	replayed,	and	then	the
trace	is	paused	again.

To	a	breakpoint

By	specifying	one	or	more	breakpoints	in	the	trace,	all	events	to	the
event	marked	with	the	breakpoint	are	replayed,	as	specified	by	the
replay	options	without	any	user	intervention,	and	then	trace	replay	is
paused.	Trace	replay	can	continue	one	event	at	a	time,	to	the	next
breakpoint	(if	one	exists),	to	a	cursor,	or	to	the	end	of	the	trace.
Replaying	a	trace	to	a	breakpoint	is	useful	if	you	want	to	replay	a	trace
without	examining	each	event	up	to	the	breakpoint.	For	example,	you
have	debugged	your	code	and	determined	that	all	events	up	to	a
breakpoint	execute	as	expected	and	do	not	need	to	be	examined	further.

To	a	cursor

By	replaying	a	trace	to	a	cursor	(a	highlighted	event	in	the	trace),	all
events	to	the	highlighted	event	are	replayed	without	any	user
intervention.	However,	if	a	breakpoint	is	marked	in	the	trace	between
the	cursor	and	the	point	in	the	trace	where	execution	will	next	begin
from,	replay	will	stop	at	the	breakpoint	rather	than	continue	to	the
cursor.	Remove	all	breakpoints	in	the	trace	to	replay	the	trace	to	the
cursor.	Similar	to	a	breakpoint,	replaying	a	trace	to	a	cursor	is	useful	if
you	want	to	replay	a	trace	without	examining	each	event	up	to	the
cursor.

Single	stepping	is	useful	for	debugging	the	events	captured	in	a	trace.	For
example,	you	can	create	a	trace	monitoring	the	execution	of	all	batches

submitted.	By	replaying	the	events	in	the	trace	one	at	a	time	(single	stepping),
you	can	determine	the	effects	of	each	batch	as	they	occur,	allowing	you	to	debug
your	code.	This	is	much	more	effective	than	placing	large	amounts	of	debug
code	between	batches.	Debug	code	generally	creates	more	output	that	needs	to
be	separated	from	the	actual	results	generated,	and	that	must	be	correctly
removed	when	debugging	is	complete.

To	replay	a	single	event	at	a	time

Administering	SQL	Server

Deleting	Traces
Deleting	a	trace	permanently	removes	it.	Delete	only	traces	you	no	longer	need.
You	must	stop	the	trace	before	deleting	it.

You	can	also	choose	to	pause	or	stop	the	trace	instead	of	deleting	it.	For	more
information,	see	Starting,	Pausing,	and	Stopping	Traces.

To	delete	a	trace

Administering	SQL	Server

SQL	Profiler	Performance	Considerations
Here	are	some	hints	and	tips	that	can	help	you	use	SQL	Profiler	more	effectively.

Running	Too	Many	Traces
If	an	instance	of	Microsoft®	SQL	Server™	is	running	too	slowly,	SQL	Profiler
may	have	too	many	traces	or	a	complex	trace	may	be	running.	Stop	any	running
traces	to	see	whether	performance	improves.	If	stopping	traces	improves
performance,	then	examine	your	traces	carefully	to	make	sure	they	are	not
tracing	more	information	than	necessary.	Make	sure	you	are	not	running	too
many	complex	traces	simultaneously.

Managing	Large	Trace	Files
Large	trace	files	can	use	significant	amounts	of	disk	space	and	can	be	slow	and
expensive	to	send	across	networks.	Reduce	the	size	of	a	saved	trace	file	by
removing	unwanted	event	types	and/or	data	columns	and	applying	filters	to	limit
the	trace	to	a	specific	trace	event	criteria,	such	as	ClientProcessID,	SPID,	or	a
set	of	values	for	Application	Name.	Save	the	trace	file	with	the	same	name	or	a
new	name.

WARNING		Saving	a	trace	file	with	the	same	name	overwrites	the	original	file,
causing	any	of	the	originally	captured	events	or	data	columns	that	were	removed
or	filtered	to	be	lost.

Administering	SQL	Server

Monitoring	with	System	Monitor
If	you	are	running	the	Microsoft®	Windows®	2000	operating	system,	use
System	Monitor	(Performance	Monitor	in	Microsoft	Windows	NT®	4.0)	to
measure	the	performance	of	Microsoft	SQL	Server™.	You	can	view	SQL	Server
objects	and	performance	counters	as	well	as	the	behavior	of	other	objects,	such
as	processors,	memory,	cache,	threads,	and	processes.	Each	of	these	objects	has
an	associated	set	of	counters	that	measure	device	usage,	queue	lengths,	delays,
and	other	indicators	of	throughput	and	internal	congestion.

System	Monitor	makes	it	possible	to	obtain	up-to-the-second	SQL	Server
activity	and	performance	statistics.	With	this	graphical	tool,	you	can:

View	data	simultaneously	from	any	number	of	computers.

View	and	change	charts	to	reflect	current	activity,	and	show	counter
values	that	are	updated	at	a	user-defined	frequency.

Export	data	from	charts,	logs,	alert	logs,	and	reports	to	spreadsheet	or
database	applications	for	further	manipulation	and	printing.

Add	system	alerts	that	list	an	event	in	the	alert	log	and	can	notify	you
by	reverting	to	the	Alert	view	or	issuing	a	network	alert.

Run	a	predefined	application	the	first	time	or	every	time	a	counter	value
goes	over	or	under	a	user-defined	value.

Create	log	files	that	contain	data	about	various	objects	from	different
computers.

Append	to	one	file	selected	sections	from	other	existing	log	files	to
form	a	long-term	archive.

View	current-activity	reports,	or	create	reports	from	existing	log	files.

Save	individual	chart,	alert,	log,	or	report	settings,	or	the	entire
workspace	setup	for	reuse	when	needed.

Note		You	can	use	either	the	System	Monitor	or	Performance	Monitor
to	do	these	tasks.

For	information	about	Windows	NT	4.0	and	Windows	2000	objects	and
counters,	see	the	Windows	NT	4.0	and	Windows	2000	documentation.

Administering	SQL	Server

Monitoring	Disk	Activity
Microsoft®	SQL	Server™	uses	Microsoft	Windows	NT®	4.0	or	Windows®
2000	I/O	calls	to	perform	disk	reads	and	writes.	SQL	Server	manages	when	and
how	disk	I/O	is	performed,	but	the	Windows	operating	system	performs	the
underlying	I/O	operations.	The	I/O	subsystem	includes	the	system	bus,	disk
controller	cards,	disks,	tape	drives,	CD-ROM	drive,	and	many	other	I/O	devices.
Disk	I/O	is	frequently	the	cause	of	bottlenecks	in	a	system.

Monitoring	Disk	I/O	and	Detecting	Excess	Paging
Two	of	the	counters	that	can	be	monitored	to	determine	disk	activity	include:

PhysicalDisk:	%	Disk	Time

PhysicalDisk:	Avg.	Disk	Queue	Length

In	System	Monitor	(Performance	Monitor	in	Windows	NT	4.0),	the
PhysicalDisk:	%	Disk	Time	counter	monitors	the	percentage	of	time	that	the
disk	is	busy	with	read/write	activity.	If	the	PhysicalDisk:	%	Disk	Time	counter
is	high	(more	than	90	percent),	check	the	Physical	Disk:	Current	Disk	Queue
Length	counter	to	see	how	many	system	requests	are	waiting	for	disk	access.
The	number	of	waiting	I/O	requests	should	be	sustained	at	no	more	than	1.5	to	2
times	the	number	of	spindles	making	up	the	physical	disk.	Most	disks	have	one
spindle,	although	redundant	array	of	inexpensive	disks	(RAID)	devices	usually
have	more.	A	hardware	RAID	device	appears	as	one	physical	disk	in	System
Monitor;	RAID	devices	created	through	software	appear	as	multiple	instances.

Use	the	values	of	the	Current	Disk	Queue	Length	and	%	Disk	Time	counters
to	detect	bottlenecks	within	the	disk	subsystem.	If	Current	Disk	Queue	Length
and	%	Disk	Time	counter	values	are	consistently	high,	consider:

Using	a	faster	disk	drive.	

Moving	some	files	to	an	additional	disk	or	server.

Adding	additional	disks	to	a	RAID	array,	if	one	is	being	used.

If	you	are	using	a	RAID	device,	the	%	Disk	Time	counter	can	indicate	a	value
greater	than	100	percent.	If	it	does,	use	the	PhysicalDisk:	Avg.	Disk	Queue
Length	counter	to	determine	how	many	system	requests,	on	average,	are	waiting
for	disk	access.

Applications	and	systems	that	are	I/O-bound	may	keep	the	disk	constantly
active.

Monitor	the	Memory:	Page	Faults/sec	counter	to	make	sure	that	the	disk
activity	is	not	caused	by	paging.	In	Windows	NT	4.0	or	Windows	2000,	paging
is	caused	by:

Processes	configured	to	use	too	much	memory.

File	system	activity.

If	you	have	more	than	one	logical	partition	on	the	same	hard	disk,	use	the
Logical	Disk	counters	instead	of	the	Physical	Disk	counters.	Looking	at	the
logical	disk	counters	will	help	you	determine	which	files	are	heavily	accessed.
After	you	have	found	the	disks	with	high	levels	of	read/write	activity,	look	at	the
read-specific	and	write-specific	counters	(for	example,	Logical	Disk:	Disk
Write	Bytes/sec)	for	the	type	of	disk	activity	that	is	causing	the	load	on	each
logical	volume.

Isolating	Disk	Activity	Created	by	SQL	Server
To	determine	the	amount	of	I/O	generated	by	SQL	Server	components,	examine
the	following	performance	areas:

Writing	pages	to	disk

Reading	pages	from	disk

The	number	of	page	reads	and	writes	that	SQL	Server	performs	can	be
monitored	using	the	SQL	Server:	Buffer	Manager	Page	Reads/sec	and	Page
Writes/sec	counters.	If	these	values	start	to	approach	the	capacity	of	the
hardware	I/O	subsystem,	try	to	reduce	the	values	by	tuning	your	application	or

database	to	reduce	I/O	operations	(such	as	index	coverage,	better	indexes,	or
normalization),	increasing	the	I/O	capacity	of	the	hardware,	or	by	adding
memory.

Administering	SQL	Server

Monitoring	CPU	Usage
Monitor	an	instance	of	Microsoft®	SQL	Server™	periodically	to	determine	if
CPU	usage	rates	are	within	normal	ranges.	A	continually	high	CPU	usage	rate
may	indicate	the	need	for	a	CPU	upgrade	or	the	addition	of	multiple	processors.
Alternately,	a	high	CPU	usage	rate	may	indicate	a	poorly	tuned	or	designed
application.	Optimizing	the	application	can	lower	CPU	utilization.

A	good	way	to	determine	this	is	to	use	the	Processor:%	Processor	Time
counter	in	System	Monitor	(Performance	Monitor	in	Microsoft	Windows	NT®
4.0).	This	counter	monitors	the	amount	of	time	the	CPU	spends	processing	a
nonidle	thread.	A	consistent	state	of	80	to	90	percent	may	indicate	the	need	for	a
CPU	upgrade	or	the	addition	of	more	processors.	For	multiprocessor	systems,	a
separate	instance	of	this	counter	should	be	monitored	for	each	processor.	This
value	represents	the	sum	of	processor	time	on	a	specific	processor.	To	determine
the	average	for	all	processors,	use	the	System:	%Total	Processor	Time	counter
instead.

Optionally,	you	can	also	monitor:

Processor:	%	Privileged	Time

This	counter	corresponds	to	the	percentage	of	time	the	processor	is
spending	executing	Windows	NT	4.0	or	Microsoft	Windows®	2000
kernel	commands	such	as	processing	SQL	Server	I/O	requests.	If	this
counter	is	consistently	high	when	the	Physical	Disk	counters	is	high,
consider	a	faster	or	more	efficient	disk	subsystem.

Note		Different	disk	controllers	and	drivers	use	different	amounts	of
kernel	processing	time.	Efficient	controllers	and	drivers	use	less
privileged	time,	leaving	more	processing	time	available	for	user
applications,	increasing	overall	throughput.

Processor:	%User	Time

This	counter	corresponds	to	the	percentage	of	time	the	processor	is
spending	executing	user	processes	such	as	SQL	Server.

System:	Processor	Queue	Length

This	counter	corresponds	to	the	number	of	threads	waiting	for	processor
time.	A	processor	bottleneck	develops	when	threads	of	a	process	require
more	processor	cycles	than	are	available.	If	more	than	a	few	processes
are	trying	to	utilize	the	processor's	time,	you	might	need	to	install	a
faster	processor	or	an	additional	processor	if	you	are	using	a
multiprocessor	system.

When	you	examine	processor	usage,	consider	the	type	of	work	the	instance	of
SQL	Server	is	performing.	If	SQL	Server	is	performing	a	lot	of	calculations,
such	as	queries	involving	aggregates	or	memory-bound	queries	that	require	no
disk	I/O,	100	percent	of	the	processor's	time	can	be	used.	If	this	causes	the
performance	of	other	applications	to	suffer,	try	changing	the	workload	(for
example,	by	dedicating	the	computer	to	running	the	instance	of	SQL	Server).

Values	around	100	percent,	where	many	client	requests	are	executing,	may
indicate	that	processes	are	queuing	up,	waiting	for	processor	time,	and	causing	a
bottleneck.	Resolve	the	problem	by	adding	more	powerful	processors.

Administering	SQL	Server

Monitoring	Memory	Usage
Monitor	an	instance	of	Microsoft®	SQL	Server™	periodically	to	confirm	that
memory	usage	is	within	typical	ranges	and	that	no	processes,	including	SQL
Server,	are	lacking	or	consuming	too	much	memory.

To	monitor	for	a	low-memory	condition,	start	with	the	following	object	counters:

Memory:	Available	Bytes	

Memory:	Pages/sec

The	Available	Bytes	counter	indicates	how	many	bytes	of	memory	are	currently
available	for	use	by	processes.	The	Pages/sec	counter	indicates	the	number	of
pages	that	either	were	retrieved	from	disk	due	to	hard	page	faults	or	written	to
disk	to	free	space	in	the	working	set	due	to	page	faults.

Low	values	for	the	Available	Bytes	counter	can	indicate	that	there	is	an	overall
shortage	of	memory	on	the	computer	or	that	an	application	is	not	releasing
memory.	A	high	rate	for	the	Pages/sec	counter	could	indicate	excessive	paging.
Monitor	the	Memory:	Page	Faults/sec	counter	to	make	sure	that	the	disk
activity	is	not	caused	by	paging.

A	low	rate	of	paging	(and	hence	page	faults)	is	typical,	even	if	the	computer	has
plenty	of	available	memory.	The	Microsoft	Windows	NT®	Virtual	Memory
Manager	(VMM)	steals	pages	from	SQL	Server	and	other	processes	as	it	trims
the	working-set	sizes	of	those	processes,	causing	page	faults.	To	determine
whether	SQL	Server	rather	than	another	process	is	causing	excessive	paging,
monitor	the	Process:	Page	Faults/sec	counter	for	the	SQL	Server	process
instance.

For	more	information	about	resolving	excessive	paging,	see	the	Windows	NT
4.0	or	Microsoft	Windows®	2000	documentation.

Isolating	Memory	Used	by	SQL	Server
By	default,	SQL	Server	changes	its	memory	requirements	dynamically,	based	on
available	system	resources.	If	SQL	Server	needs	more	memory,	it	queries	the

operating	system	to	determine	whether	free	physical	memory	is	available	and
uses	the	available	memory.	If	SQL	Server	does	not	need	the	memory	currently
allocated	to	it,	it	releases	the	memory	to	the	operating	system.	However,	the
option	to	dynamically	use	memory	can	be	overridden	using	the	min	server
memory,	max	server	memory,	and	set	working	set	size	server	configuration
options.	For	more	information,	see	Server	Memory	Options.

To	monitor	the	amount	of	memory	being	used	by	SQL	Server,	examine	the
following	performance	counters:

Process:	Working	Set

SQL	Server:	Buffer	Manager:	Buffer	Cache	Hit	Ratio

SQL	Server:	Buffer	Manager:	Total	Pages

SQL	Server:	Memory	Manager:	Total	Server	Memory	(KB)

The	Working	Set	counter	shows	the	amount	of	memory	used	by	a	process.	If
this	number	is	consistently	below	the	amount	of	memory	SQL	Server	is
configured	to	use	(set	by	the	min	server	memory	and	max	server	memory
server	options),	SQL	Server	is	configured	for	more	memory	than	it	needs.
Otherwise,	fix	the	size	of	the	working	set	using	the	set	working	set	size	server
option.	For	more	information,	see	set	working	set	size	Option.

The	Buffer	Cache	Hit	Ratio	counter	is	application	specific;	however,	a	rate	of
90	percent	or	higher	is	desirable.	Add	more	memory	until	the	value	is
consistently	greater	than	90	percent,	indicating	that	more	than	90	percent	of	all
requests	for	data	were	satisfied	from	the	data	cache.

If	the	Total	Server	Memory	(KB)	counter	is	consistently	high	compared	to	the
amount	of	physical	memory	in	the	computer,	it	may	indicate	that	more	memory
is	required.

Administering	SQL	Server

Creating	a	SQL	Server	Database	Alert
Using	System	Monitor	(Performance	Monitor	in	Microsoft®	Windows	NT®
4.0),	you	can	create	an	alert	to	be	raised	when	a	threshold	value	for	a	System
Monitor	counter	has	been	reached.	In	response	to	the	alert,	System	Monitor	can
launch	an	application,	such	as	a	custom	application	written	to	handle	the	alert
condition.	For	example,	you	could	create	an	alert	that	is	raised	when	the	number
of	deadlocks	exceeds	a	specific	value.

Note		Performance	condition	alerts	are	only	available	for	the	first	99	databases.
Any	databases	created	after	the	first	99	databases	will	not	be	included	in	the
sysperfinfo	system	table,	and	using	the	sp_add_alert	procedure	will	return	an
error.

Alerts	also	can	be	defined	using	SQL	Server	Enterprise	Manager	and	SQL
Server	Agent.	For	more	information,	see	Defining	Alerts.

To	set	up	a	SQL	Server	database	alert	using	System	Monitor

Administering	SQL	Server

System	Monitor	Scenarios
When	monitoring	Microsoft®	SQL	Server™	and	the	operating	system	to
investigate	performance-related	issues,	there	are	three	main	areas	on	which	to
concentrate	your	initial	efforts:

Disk	activity.

Processor	utilization.

Memory	usage.

It	can	be	useful	to	monitor	Microsoft	Windows	NT®	4.0	or	Microsoft
Windows®	2000	and	SQL	Server	counters	at	the	same	time	to	determine	any
correlation	between	the	performance	of	SQL	Server	and	Windows	NT	4.0	or
Windows	2000.	For	example,	monitoring	the	Windows	NT	4.0	or	Windows	2000
disk	I/O	counters	and	the	SQL	Server	Buffer	Manager	counters	at	the	same	time
can	show	how	the	whole	system	is	behaving.

Monitoring	a	computer	using	System	Monitor	(Performance	Monitor	in
Windows	NT	4.0)	can	slightly	impact	the	performance	of	the	computer.
Therefore,	either	log	the	System	Monitor	data	to	another	disk	(or	computer)	so
that	it	reduces	the	effect	on	the	computer	being	monitored,	or	run	System
Monitor	remotely.	Monitor	only	the	counters	in	which	you	are	interested.
Monitoring	too	many	counters	adds	overhead	to	the	monitoring	process	and	will
impact	the	computer	being	monitored,	possibly	affecting	the	results.

Administering	SQL	Server

Running	System	Monitor
System	Monitor	(Performance	Monitor	in	Microsoft®	Windows	NT®	4.0)
collects	information	from	Microsoft	SQL	Server™	using	remote	procedure	calls
(RPC).	Any	user	who	has	Microsoft	Windows®	2000	permissions	to	run	System
Monitor	can	use	it	to	monitor	SQL	Server.

Note		When	using	either	System	Monitor	or	Performance	Monitor,	you	cannot
connect	to	an	instance	of	SQL	Server	running	on	Microsoft	Windows	98.

As	with	all	performance	monitoring	tools,	expect	some	performance	overhead
when	monitoring	SQL	Server	with	System	Monitor.	The	actual	overhead	in	any
specific	instance	will	depend	on	the	hardware	platform,	the	number	of	counters,
and	the	selected	update	interval.	However,	the	integration	of	System	Monitor
with	SQL	Server	is	designed	to	minimize	the	impact.

To	start	System	Monitor

Administering	SQL	Server

Creating	Charts,	Alerts,	Logs,	and	Reports
System	Monitor	(Performance	Monitor	in	Microsoft®	Windows	NT®	4.0)
allows	you	to	create	charts,	alerts,	logs,	and	reports	to	monitor	an	instance	of
Microsoft	SQL	Server™.

Charts
Charts	can	monitor	the	current	performance	of	selected	objects	and	counters	(for
example,	the	CPU	usage	or	disk	I/O).	You	can	add	to	a	chart	various
combinations	of	System	Monitor	objects	and	counters,	as	well	as	Windows	NT
4.0	or	Microsoft	Windows®	2000	objects	and	counters.

Each	chart	represents	a	subset	of	information	you	want	to	monitor.	For	example,
one	chart	can	track	memory	usage	statistics	and	a	second	chart	can	track	disk	I/O
statistics.

Using	a	chart	can	be	useful	for:

Investigating	why	a	computer	or	application	is	slow	or	inefficient.

Continually	monitoring	systems	to	find	intermittent	performance
problems.

Discovering	why	you	need	to	increase	capacity.

Displaying	a	trend	as	a	line	chart.

Displaying	a	comparison	as	a	histogram	chart.

Charts	are	useful	for	short-term,	real-time	monitoring	of	a	local	or	remote
computer	(for	example,	when	you	want	to	monitor	an	event	as	it	occurs).

Alerts

Using	alerts,	System	Monitor	can	track	specific	events	and	notify	you	of	these
events	as	requested.	An	alert	log	can	monitor	the	current	performance	of	selected
counters	and	instances	for	objects	in	SQL	Server.	When	a	counter	exceeds	a
given	value,	the	log	records	the	date	and	time	of	the	event.	An	event	can	also
generate	a	network	alert.	You	can	have	a	specified	program	run	the	first	time	or
every	time	an	event	occurs.	For	example,	an	alert	can	send	a	network	message	to
all	system	administrators	that	the	instance	of	SQL	Server	is	getting	low	on	disk
space.

Logs
Logs	allow	you	to	record	information	on	the	current	activity	of	selected	objects
and	computers	for	later	viewing	and	analysis.	You	can	collect	data	from	multiple
systems	into	a	single	log	file.	For	example,	you	can	create	various	logs	to
accumulate	information	on	the	performance	of	selected	objects	on	various
computers	for	future	analysis.	You	can	save	these	selections	under	a	file	name
and	reuse	them	when	you	want	to	create	another	log	of	similar	information	for
comparison.

Log	files	provide	a	wealth	of	information	for	troubleshooting	or	planning.
Whereas	charts,	alerts,	and	reports	on	current	activity	provide	instant	feedback,
log	files	enable	you	to	track	counters	over	a	long	period	of	time,	thereby
allowing	you	to	examine	information	more	thoroughly	and	to	document	system
performance.

Reports
Reports	allow	you	to	display	constantly	changing	counter	and	instance	values	for
selected	objects.	Values	appear	in	columns	for	each	instance.	You	can	adjust
report	intervals,	print	snapshots,	and	export	data.	Use	reports	when	you	need	to
display	the	raw	numbers.

For	more	information	about	charts,	alerts,	logs,	and	reports,	or	about	Windows
NT	4.0	or	Windows	2000	objects	and	counters,	see	the	Windows	4.0	or
Windows	2000	documentation.

Administering	SQL	Server

Using	SQL	Server	Objects
Microsoft®	SQL	Server™	provides	objects	and	counters	that	can	be	used	by
System	Monitor	(Performance	Monitor	in	Microsoft	Windows	NT®	4.0)	to
monitor	activity	in	computers	running	an	instance	of	SQL	Server.	An	object	is
any	Windows	NT	4.0,	Microsoft	Windows®	2000	or	SQL	Server	resource,	such
as	a	SQL	Server	lock	or	Windows	NT	4.0	or	Windows	2000	process.	Each	object
contains	one	or	more	counters	that	determine	various	aspects	of	the	objects	to
monitor.	For	example,	the	SQL	Server	Locks	object	contains	counters	called
Number	of	Deadlocks/sec	or	Lock	Timeouts/sec.

Some	objects	have	several	instances	if	multiple	resources	of	a	given	type	exist
on	the	computer.	For	example,	the	Processor	object	type	will	have	multiple
instances	if	a	system	has	multiple	processors.	The	Databases	object	type	has	one
instance	for	each	database	on	SQL	Server.	Some	object	types	(for	example,	the
Memory	Manager	object)	have	only	one	instance.	If	an	object	type	has	multiple
instances,	you	can	add	counters	to	track	statistics	for	each	instance,	or	in	many
cases,	all	instances	at	once.

Note		Performance	condition	alerts	are	only	available	for	the	first	99	databases.
Any	databases	created	after	the	first	99	databases	will	not	be	included	in	the
sysperfinfo	system	table,	and	using	the	sp_add_alert	procedure	will	return	an
error.

By	adding	or	removing	counters	to	the	chart	and	saving	the	chart	settings,	you
can	specify	the	SQL	Server	objects	and	counters	monitored	when	System
Monitor	is	started.

SQL	Server	object Counter
SQL	Server:	Buffer	Manager Buffer	Cache	Hit	Ratio
SQL	Server:	General	Statistics User	Connections
SQL	Server:	Memory	Manager Total	Server	Memory	(KB)
SQL	Server:	SQL	Statistics SQL	Compilations/sec
SQL	Server:	Buffer	Manager Page	Reads/sec
SQL	Server:	Buffer	Manager Page	Writes/sec

You	can	configure	System	Monitor	to	display	statistics	from	any	SQL	Server

counter.	In	addition,	you	can	set	a	threshold	value	for	any	SQL	Server	counter
and	then	generate	an	alert	when	a	counter	exceeds	a	threshold.	For	more
information	about	setting	an	alert,	see	Creating	a	SQL	Server	Database	Alert.

Note		SQL	Server	statistics	are	displayed	only	when	an	instance	of	SQL	Server
is	running.	If	you	stop	and	restart	an	instance	of	SQL	Server,	the	display	of
statistics	is	interrupted	and	then	resumed	automatically.

These	are	the	SQL	Server	objects.

SQL	Server	object Description
SQL	Server:	Access	Methods Searches	through	and	measures	allocation

of	SQL	Server	database	objects	(for
example,	the	number	of	index	searches	or
number	of	pages	that	are	allocated	to
indexes	and	data).

SQL	Server:	Backup	Device Provides	information	about	backup
devices	used	by	backup	and	restore
operations,	such	as	the	throughput	of	the
backup	device.

SQL	Server:	Buffer	Manager Provides	information	about	the	memory
buffers	used	by	SQL	Server,	such	as	free
memory	and	buffer	cache	hit	ratio.

SQL	Server:	Cache	Manager Provides	information	about	the	SQL
Server	cache	used	to	store	objects	such	as
stored	procedures,	triggers,	and	query
plans.

SQL	Server:	Databases Provides	information	about	a	SQL	Server
database,	such	as	the	amount	of	free	log
space	available	or	the	number	of	active
transactions	in	the	database.	There	can	be
multiple	instances	of	this	object.

SQL	Server:	General	Statistics Provides	information	about	general	server-
wide	activity,	such	as	the	number	of	users
who	are	connected	to	an	instance	of	SQL
Server.

SQL	Server:	Latches Provides	information	about	the	latches	on

internal	resources,	such	as	database	pages,
that	are	used	by	SQL	Server.

SQL	Server:	Locks Provides	information	about	the	individual
lock	requests	made	by	SQL	Server,	such
as	lock	time-outs	and	deadlocks.	There
can	be	multiple	instances	of	this	object.

SQL	Server:	Memory	Manager Provides	information	about	SQL	Server
memory	usage,	such	as	the	total	number	of
lock	structures	currently	allocated.

SQL	Server:	Replication	Agents Provides	information	about	the	SQL
Server	replication	agents	currently
running.

SQL	Server:	Replication	Dist. Measures	the	number	of	commands	and
transactions	read	from	the	distribution
database	and	delivered	to	the	Subscriber
databases	by	the	Distribution	Agent.

SQL	Server:	Replication
Logreader

Measures	the	number	of	commands	and
transactions	read	from	the	published
databases	and	delivered	to	the	distribution
database	by	the	Log	Reader	Agent.

SQL	Server:	Replication	Merge Provides	information	about	SQL	Server
merge	replication,	such	as	errors	generated
or	the	number	of	replicated	rows	that	are
merged	from	the	Subscriber	to	the
Publisher.

SQL	Server:	Replication
Snapshot

Provides	information	about	SQL	Server
snapshot	replication,	such	as	the	number
of	rows	that	are	bulk	copied	from	the
publishing	database.

SQL	Server:	SQL	Statistics Provides	information	about	aspects	of
SQL	queries,	such	as	the	number	of
batches	of	Transact-SQL	statements
received	by	SQL	Server.

SQL	Server:	User	Settable
Object

Performs	custom	monitoring.	Each
counter	can	be	a	custom	stored	procedure
or	any	Transact-SQL	statement	that

returns	a	value	to	be	monitored.

Administering	SQL	Server

SQL	Server:	Access	Methods	Object
The	Access	Methods	object	in	Microsoft®	SQL	Server™	provides	counters	to
monitor	how	the	logical	pages	within	the	database	are	accessed.	Physical	access
to	the	database	pages	on	disk	is	monitored	using	the	Buffer	Manager	counters.
Monitoring	the	methods	used	to	access	database	pages	can	help	you	to	determine
whether	query	performance	can	be	improved	by	adding	or	modifying	indexes	or
by	rewriting	queries.	The	Access	Methods	counters	can	also	be	used	to	monitor
the	amount	of	data,	indexes,	and	free	space	within	the	database,	thereby
indicating	data	volume	and	fragmentation	(excessive	fragmentation	can	impair
performance).

These	are	the	SQL	Server	Access	Methods	counters.

SQL	Server	Access	Methods
counters Description
Extent	Deallocations/sec Number	of	extents	deallocated	per	second

from	database	objects	used	for	storing
index	or	data	records.

Extents	Allocated/sec Number	of	extents	allocated	per	second	to
database	objects	used	for	storing	index	or
data	records.

Forwarded	Records/sec Number	of	records	per	second	fetched
through	forwarded	record	pointers.

FreeSpace	Page	Fetches/sec Number	of	pages	returned	per	second	by
free	space	scans	used	to	satisfy	requests	to
insert	record	fragments.

FreeSpace	Scans/sec Number	of	scans	per	second	that	were
initiated	to	search	for	free	space	in	which
to	insert	a	new	record	fragment.

Full	Scans/sec Number	of	unrestricted	full	scans	per
second.	These	can	be	either	base-table	or
full-index	scans.

Index	Searches/sec Number	of	index	searches	per	second.

These	are	used	to	start	range	scans	and
single	index	record	fetches	and	to
reposition	an	index.

Mixed	Page	Allocations/sec Number	of	pages	allocated	per	second
from	mixed	extents.	These	are	used	for
storing	the	first	eight	pages	that	are
allocated	to	an	index	or	table.

Page	Deallocations/sec Number	of	pages	deallocated	per	second
from	database	objects	used	for	storing
index	or	data	records.

Page	Splits/sec Number	of	page	splits	per	second	that
occur	as	the	result	of	overflowing	index
pages.

Pages	Allocated/sec Number	of	pages	allocated	per	second	to
database	objects	used	for	storing	index	or
data	records.

Probe	Scans/sec Number	of	probe	scans	per	second.	These
are	used	to	find	rows	in	an	index	or	base
table	directly.

Range	Scans/sec Number	of	qualified	range	scans	through
indexes	per	second.

Scan	Point	Revalidations/sec Number	of	times	per	second	that	the	scan
point	had	to	be	revalidated	to	continue	the
scan.

Skipped	Ghosted	Records/sec Number	of	ghosted	records	per	second
skipped	during	scans.

Table	Lock	Escalations/sec Number	of	times	locks	on	a	table	were
escalated.

Workfiles	Created/sec Number	of	work	files	created	per	second.
Worktables	Created/sec Number	of	work	tables	created	per	second.
Worktables	From	Cache
Ratio

Percentage	of	work	tables	created	where
the	initial	pages	were	immediately
available	in	the	work	table	cache.

See	Also

Indexes

Pages	and	Extents

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

SQL	Server:	Backup	Device	Object
The	Backup	Device	object	provides	counters	to	monitor	Microsoft®	SQL
Server™	backup	devices	used	for	backup	and	restore	operations.	Monitor
backup	devices	when	you	want	to	determine	the	throughput	or	the	progress	and
performance	of	your	backup	and	restore	operations	on	a	per	device	basis.	To
monitor	the	throughput	of	the	entire	database	backup	or	restore	operation,	use
the	Backup/Restore	Throughput/sec	counter	of	the	SQL	Server	Databases
object.	For	more	information,	see	SQL	Server:	Databases	Object.

This	is	the	SQL	Server	Backup	Device	counter.

SQL	Server	Backup	Device
counters Description
Device	Throughput	Bytes/sec Throughput	of	read	and	write

operations	(in	bytes	per	second)	for	a
backup	device	used	when	backing	up	or
restoring	databases.	This	counter	exists
only	while	the	backup	or	restore
operation	is	executing.

See	Also

Backup	Devices

Administering	SQL	Server

SQL	Server:	Buffer	Manager	Object
The	Buffer	Manager	object	provides	counters	to	monitor	how	Microsoft®	SQL
Server™	uses:

Memory	to	store	data	pages,	internal	data	structures,	and	the	procedure
cache.

Counters	to	monitor	the	physical	I/O	as	SQL	Server	reads	database
pages	from	and	writes	database	pages	to	disk.

Monitoring	the	memory	and	the	counters	used	by	SQL	Server	helps	you
determine:

If	bottlenecks	exist	due	to	a	lack	of	available	physical	memory	for
storing	frequently	accessed	data	in	cache,	in	which	case	SQL	Server
must	retrieve	the	data	from	disk.	

If	query	performance	can	be	improved	by	adding	more	memory	or	by
making	more	memory	available	to	the	data	cache	or	SQL	Server
internal	structures.

How	often	SQL	Server	needs	to	read	data	from	disk.	Compared	to	other
operations,	such	as	memory	access,	physical	I/O	consumes	a	lot	of	time.
Minimizing	physical	I/O	can	improve	query	performance.

You	can	also	monitor	Microsoft	Windows®	2000	Address	Windowing
Extensions	(AWE)	activity	in	SQL	Server	with	the	AWE	counters.	For	example,
you	can	make	sure	that	SQL	Server	has	enough	memory	allocated	for	AWE	to
run	properly.	For	more	information,	see	Using	AWE	Memory	on	Windows	2000
or	awe	enabled	Option.

These	are	the	SQL	Server	Buffer	Manager	counters.

SQL	Server	Buffer	Manager

JavaScript:hhobj_1.Click()

counters Description
AWE	Lookup	Maps/sec Number	of	times	that	a	database	page	was

requested	by	the	server,	found	in	the
buffer	pool,	and	mapped.	When	it	is
mapped,	it	is	made	a	part	of	the	server's
virtual	address	space.

AWE	Stolen	Maps/sec Number	of	times	that	a	buffer	was	taken
from	the	free	list	and	mapped.

AWE	Unmap	Call/Sec Number	of	calls	to	unmap	buffers.	When
a	buffer	is	unmapped,	it	is	excluded	from
the	virtual	server	address	space.	One	or
more	buffers	may	be	unmapped	on	each
call.

AWE	Unmap	Pages/Sec Number	of	SQL	Server	buffers	that	are
unmapped.

AWE	Write	Maps/Sec Number	of	times	that	it	is	necessary	to
map	in	a	dirty	buffer	so	it	can	be	written
to	disk.

Buffer	Cache	Hit	Ratio Percentage	of	pages	found	in	the	buffer
cache	without	having	to	read	from	disk.
The	ratio	is	the	total	number	of	cache	hits
divided	by	the	total	number	of	cache
lookups	since	an	instance	of	SQL	Server
was	started.	After	a	long	period	of	time,
the	ratio	moves	very	little.	Because
reading	from	the	cache	is	much	less
expensive	than	reading	from	disk,	you
want	this	ratio	to	be	high.	Generally,	you
can	increase	the	buffer	cache	hit	ratio	by
increasing	the	amount	of	memory
available	to	SQL	Server.

Checkpoint	pages/sec Number	of	pages	flushed	to	disk	per
second	by	a	checkpoint	or	other	operation
that	require	all	dirty	pages	to	be	flushed.

Database	pages Number	of	pages	in	the	buffer	pool	with
database	content.

Free	list	stall/sec Number	of	requests	that	had	to	wait	for	a
free	page.

Free	pages Total	number	of	pages	on	all	free	lists.
Lazy	Writes/sec Number	of	buffers	written	per	second	by

the	buffer	manager's	lazy	writer.	The	lazy
writer	is	a	system	process	that	flushes	out
batches	of	dirty,	aged	buffers	(buffers	that
contain	changes	that	must	be	written	back
to	disk	before	the	buffer	can	be	reused	for
a	different	page)	and	make	them	available
to	user	processes.	The	lazy	writer
eliminates	the	need	to	perform	frequent
checkpoints	in	order	to	create	available
buffers.

Page	life	expectancy Number	of	seconds	a	page	will	stay	in	the
buffer	pool	without	references.

Page	lookups/sec Number	of	requests	to	find	a	page	in	the
buffer	pool.

Page	Reads/sec Number	of	physical	database	page	reads
that	are	issued	per	second.	This	statistic
displays	the	total	number	of	physical	page
reads	across	all	databases.	Because
physical	I/O	is	expensive,	you	may	be
able	to	minimize	the	cost,	either	by	using
a	larger	data	cache,	intelligent	indexes,
and	more	efficient	queries,	or	by
changing	the	database	design.

Page	Writes/sec Number	of	physical	database	page	writes
issued.

Procedure	cache	pages Number	of	pages	used	to	store	compiled
queries.

Readahead	Pages/sec Number	of	pages	read	in	anticipation	of
use.

Reserved	Pages Number	of	buffer	pool	reserved	pages.
Stolen	Pages Number	of	pages	used	for	miscellaneous

server	purposes	(including	procedure
cache).

Target	Pages Ideal	number	of	pages	in	the	buffer	pool.
Total	Pages Number	of	pages	in	the	buffer	pool

(includes	database,	free,	and	stolen
pages).

See	Also

Pages	and	Extents

Server	Memory	Options

SQL	Server:	Cache	Manager	Object

JavaScript:hhobj_2.Click()

Administering	SQL	Server

SQL	Server:	Buffer	Partition	Object
The	Buffer	Partition	object	provides	counters	to	monitor	how	Microsoft®	SQL
Server™	uses	free	pages.

SQL	Server	Buffer	Partition
counters Description
Free	list	empty/sec Number	of	times	a	free	page	was

requested	and	none	was	available.
Free	list	requests/sec Number	of	times	a	free	page	was

requested.
Free	pages Total	number	of	pages	on	all	free	lists.

Administering	SQL	Server

SQL	Server:	Cache	Manager	Object
The	Cache	Manager	object	provides	counters	to	monitor	how	Microsoft®	SQL
Server™	uses	memory	to	store	objects	such	as	stored	procedures,	ad	hoc	and
prepared	Transact-SQL	statements,	and	triggers.	Multiple	instances	of	the	Cache
Manager	object	can	be	monitored	at	the	same	time,	with	each	instance
representing	a	different	type	of	plan	to	monitor.

Cache	Manager
instance Description
Ad	hoc	SQL	Plans Query	plans	produced	from	an	ad	hoc	Transact-

SQL	query,	including	auto-parameterized	queries.
SQL	Server	caches	the	plans	for	ad	hoc	SQL
statements	for	later	reuse	if	the	identical
Transact-SQL	statement	is	later	executed.

Misc.	Normalized	Trees Normalized	trees	for	views,	rules,	computed
columns,	and	check	constraints.

Prepared	SQL	Plans Query	plans	that	correspond	to	Transact-SQL
statements	prepared	using	sp_prepare,
sp_cursorprepare,	or	auto-parameterization.
User-parameterized	queries	(even	if	not	explicitly
prepared)	are	also	monitored	as	Prepared	SQL
Plans.

Procedure	Plans Query	plans	generated	by	creating	a	stored
procedure.

Replication	Procedure
Plans

Query	plans	of	a	replication	system	stored
procedure.

Trigger	Plans Query	plans	generated	by	creating	a	trigger.

These	are	the	SQL	Server	Cache	Manager	counters.

SQL	Server	Cache	Manager
counters Description
Cache	Hit	Ratio Ratio	between	cache	hits	and	lookups.

Cache	Object	Counts Number	of	cache	objects	in	the	cache.
Cache	Pages Number	of	8-kilobyte	(KB)	pages	used

by	cache	objects.
Cache	Use	Counts/sec Times	each	type	of	cache	object	has

been	used.

For	more	information	about	caching	query	plans,	see	Execution	Plan	Caching
and	Reuse.

See	Also

Server	Memory	Options

SQL	Server:	Buffer	Manager	Object

JavaScript:hhobj_1.Click()

Administering	SQL	Server

SQL	Server:	Databases	Object
The	Databases	object	in	Microsoft®	SQL	Server™	provides	counters	to
monitor	bulk	copy	operations,	backup	and	restore	throughput,	and	transaction
log	activities.	Monitor	transactions	and	the	transaction	log	to	determine	how
much	user	activity	is	occurring	in	the	database	and	how	full	the	transaction	log	is
becoming.	The	amount	of	user	activity	can	determine	the	performance	of	the
database	and	affect	log	size,	locking,	and	replication.	Monitoring	low-level	log
activity	to	gauge	user	activity	and	resource	usage	can	help	you	to	identify
performance	bottlenecks.

Multiple	instances	of	the	Databases	object,	each	representing	a	single	database,
can	be	monitored	at	the	same	time.

These	are	the	SQL	Server	Databases	counters.

SQL	Server	Databases	counters Description
Active	Transactions Number	of	active	transactions	for	the

database.
Backup/Restore	Throughput/sec Read/write	throughput	for	backup	and

restore	operations	of	a	database	per
second.	For	example,	you	can	measure
how	the	performance	of	the	database
backup	operation	changes	when	more
backup	devices	are	used	in	parallel	or
when	faster	devices	are	used.
Throughput	of	a	database	backup	or
restore	operation	allows	you	to
determine	the	progress	and
performance	of	your	backup	and
restore	operations.

Bulk	Copy	Rows/sec Number	of	rows	bulk	copied	per
second.

Bulk	Copy	Throughput/sec Amount	of	data	bulk	copied	(in
kilobytes)	per	second.

Data	File(s)	Size	(KB) Cumulative	size	(in	kilobytes)	of	all	the
data	files	in	the	database	including	any
automatic	growth.	Monitoring	this
counter	is	useful,	for	example,	for
determining	the	correct	size	of	tempdb.

DBCC	Logical	Scan	Bytes/sec Number	of	logical	read	scan	bytes	per
second	for	database	consistency
checker	(DBCC)	statements.

Log	Bytes	Flushed/sec Total	number	of	log	bytes	flushed.
Log	Cache	Hit	Ratio Percentage	of	log	cache	reads	satisfied

from	the	log	cache.
Log	Cache	Reads/sec Reads	performed	per	second	through

the	log	manager	cache.
Log	File(s)	Size	(KB) Cumulative	size	(in	kilobytes)	of	all	the

transaction	log	files	in	the	database.
Log	File(s)	Used	Size	(KB) The	cumulative	used	size	of	all	the	log

files	in	the	database.
Log	Flush	Wait	Time Total	wait	time	(in	milliseconds)	to

flush	the	log.
Log	Flush	Waits/sec Number	of	commits	per	second	waiting

for	the	log	flush.
Log	Flushes/sec Number	of	log	flushes	per	second.
Log	Growths Total	number	of	times	the	transaction

log	for	the	database	has	been	expanded.
Log	Shrinks Total	number	of	times	the	transaction

log	for	the	database	has	been	shrunk.
Log	Truncations Total	number	of	times	the	transaction

log	for	the	database	has	been	truncated.
Percent	Log	Used Percentage	of	space	in	the	log	that	is	in

use.
Repl.	Pending	Xacts Number	of	transactions	in	the

transaction	log	of	the	publication
database	marked	for	replication,	but	not
yet	delivered	to	the	distribution
database.

Repl.	Trans.	Rate Number	of	transactions	per	second	read
out	of	the	transaction	log	of	the
publication	database	and	delivered	to
the	distribution	database.

Shrink	Data	Movement	Bytes/secAmount	of	data	being	moved	per
second	by	autoshrink	operations,	or
DBCC	SHRINKDATABASE	or	DBCC
SHRINKFILE	statements.

Transactions/sec Number	of	transactions	started	for	the
database	per	second.

See	Also

Transaction	Logs

Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

SQL	Server:	General	Statistics	Object
The	General	Statistics	object	in	Microsoft®	SQL	Server™	provides	counters	to
monitor	general	server-wide	activity,	such	as	the	number	of	current	connections
and	the	number	of	users	connecting	and	disconnecting	per	second	from
computers	running	an	instance	of	SQL	Server.	This	can	be	useful	when	you	are
working	on	large	online	transaction	processing	(OLTP)	type	systems	where	there
are	many	clients	connecting	and	disconnecting	from	an	instance	of	SQL	Server.

These	are	the	SQL	Server	General	Statistics	counters.

SQL	Server	General	Statistics
counters Description
Logins/sec Total	number	of	logins	started	per

second.
Logouts/sec Total	number	of	logout	operations

started	per	second.
User	Connections Number	of	user	connections.	Because

each	user	connection	consumes	some
memory,	configuring	overly	high
numbers	of	user	connections	could
affect	throughput.	Set	user	connections
to	the	maximum	expected	number	of
concurrent	users.

Administering	SQL	Server

SQL	Server:	Latches	Object
The	Latches	object	in	Microsoft®	SQL	Server™	provides	counters	to	monitor
internal	SQL	Server	resource	locks	called	latches.	Monitoring	the	latches	to
determine	user	activity	and	resource	usage	can	help	you	to	identify	performance
bottlenecks.

These	are	the	SQL	Server	Latches	counters.

SQL	Server	Latches	counters Description
Average	Latch	Wait	Time
(ms)

Average	latch	wait	time	(in	milliseconds)
for	latch	requests	that	had	to	wait.

Latch	Waits/sec Number	of	latch	requests	that	could	not	be
granted	immediately.

Total	Latch	Wait	Time	(ms) Total	latch	wait	time	(in	milliseconds)	for
latch	requests	in	the	last	second.

See	Also

Latching

JavaScript:hhobj_1.Click()

Administering	SQL	Server

SQL	Server:	Locks	Object
The	Locks	object	in	Microsoft®	SQL	Server™	provides	information	about	SQL
Server	locks	on	individual	resource	types.	Locks	are	held	on	SQL	Server
resources,	such	as	rows	read	or	modified	during	a	transaction,	to	prevent
concurrent	use	of	resources	by	multiple	transactions.	For	example,	if	an
exclusive	(X)	lock	is	held	on	a	row	within	a	table	by	a	transaction,	no	other
transaction	can	modify	that	row	until	the	lock	is	released.	Minimizing	locks
increases	concurrency,	which	can	improve	performance.	Multiple	instances	of
the	Locks	object	can	be	monitored	at	the	same	time,	with	each	instance
representing	a	lock	on	a	resource	type.

SQL	Server	can	lock	these	resources.

Item Description
Database Database.
Extent Contiguous	group	of	eight	data	pages	or	index	pages.
Key Row	lock	within	an	index.
Page 8-kilobyte	(KB)	data	page	or	index	page.
RID Row	ID.	Used	to	lock	a	single	row	within	a	table.
Table Entire	table,	including	all	data	and	indexes.

These	are	the	SQL	Server	Locks	counters.

SQL	Server	Locks	counters Description
Average	Wait	Time	(ms) Average	amount	of	wait	time	(in

milliseconds)	for	each	lock	request	that
resulted	in	a	wait.

Lock	Requests/sec Number	of	new	locks	and	lock	conversions
per	second	requested	from	the	lock
manager.

Lock	Timeouts/sec Number	of	lock	requests	per	second	that
timed	out,	including	internal	requests	for
NOWAIT	locks.

Lock	Wait	Time	(ms) Total	wait	time	(in	milliseconds)	for	locks
in	the	last	second.

Lock	Waits/sec Number	of	lock	requests	per	second	that
required	the	caller	to	wait.

Number	of	Deadlocks/sec Number	of	lock	requests	per	second	that
resulted	in	a	deadlock.

See	Also

Understanding	Locking	in	SQL	Server

JavaScript:hhobj_1.Click()

Administering	SQL	Server

SQL	Server:	Memory	Manager	Object
The	Memory	Manager	object	in	Microsoft®	SQL	Server™	provides	counters
to	monitor	overall	server	memory	usage.	Monitoring	overall	server	memory
usage	to	gauge	user	activity	and	resource	usage	can	help	you	to	identify
performance	bottlenecks.	Monitoring	the	memory	used	by	an	instance	of	SQL
Server	can	help	determine:

If	bottlenecks	exist	due	to	a	lack	of	available	physical	memory	for
storing	frequently	accessed	data	in	cache.	If	so,	SQL	Server	must
retrieve	the	data	from	disk.	

If	query	performance	can	be	improved	by	adding	more	memory	or	by
making	more	memory	available	to	the	data	cache	or	SQL	Server
internal	structures.

These	are	the	SQL	Server	Memory	Manager	counters.

SQL	Server	Memory	Manager
counters Description
Connection	Memory	(KB) Total	amount	of	dynamic	memory	the

server	is	using	for	maintaining
connections.

Granted	Workspace	Memory
(KB)

Total	amount	of	memory	currently
granted	to	executing	processes	such	as
hash,	sort,	bulk	copy,	and	index	creation
operations.

Lock	Blocks Current	number	of	lock	blocks	in	use	on
the	server	(refreshed	periodically).	A
lock	block	represents	an	individual
locked	resource,	such	as	a	table,	page,
or	row.

Lock	Blocks	Allocated Current	number	of	allocated	lock
blocks.	At	server	startup,	the	number	of

allocated	lock	blocks	plus	the	number	of
allocated	lock	owner	blocks	depends	on
the	SQL	Server	Locks	configuration
option.	If	more	lock	blocks	are	needed,
the	value	increases.

Lock	Memory	(KB) Total	amount	of	dynamic	memory	the
server	is	using	for	locks.

Lock	Owner	Blocks Number	of	lock	owner	blocks	currently
in	use	on	the	server	(refreshed
periodically).	A	lock	owner	block
represents	the	ownership	of	a	lock	on	an
object	by	an	individual	thread.
Therefore,	if	three	threads	each	have	a
shared	(S)	lock	on	a	page,	there	will	be
three	lock	owner	blocks.

Lock	Owner	Blocks	Allocated Current	number	of	allocated	lock	owner
blocks.	At	server	startup,	the	number	of
allocated	lock	owner	blocks	and	the
number	of	allocated	lock	blocks	depend
on	the	SQL	Server	Locks	configuration
option.	If	more	lock	owner	blocks	are
needed,	the	value	increases	dynamically.

Maximum	Workspace	Memory
(KB)

Maximum	amount	of	memory	available
for	executing	processes	such	as	hash,
sort,	bulk	copy,	and	index	creation
operations.

Memory	Grants	Outstanding Total	number	of	processes	per	second
that	have	successfully	acquired	a
workspace	memory	grant.

Memory	Grants	Pending Total	number	of	processes	per	second
waiting	for	a	workspace	memory	grant.

Optimizer	Memory	(KB) Total	amount	of	dynamic	memory	the
server	is	using	for	query	optimization.

SQL	Cache	Memory	(KB) Total	amount	of	dynamic	memory	the
server	is	using	for	the	dynamic	SQL
cache.

Target	Server	Memory	(KB) Total	amount	of	dynamic	memory	the
server	can	consume.

Total	Server	Memory	(KB) Total	amount	of	dynamic	memory	(in
kilobytes)	that	the	server	is	using
currently.

See	Also

Understanding	Locking	in	SQL	Server

JavaScript:hhobj_1.Click()

Administering	SQL	Server

SQL	Server:	Replication	Agents	Object
The	Replication	Agents	object	in	Microsoft®	SQL	Server™	provides	counters
to	monitor	the	SQL	Server	replication	agents	that	are	running	currently.
Monitoring	the	number	of	running	Distribution	and	Merge	Agents	is	useful	to
determine	the	number	of	Subscribers	to	which	published	databases	are
replicating.	Multiple	instances	of	the	Replication	Agents	object	can	be
monitored	at	the	same	time,	with	each	instance	representing	a	single	replication
agent	(for	example,	Log	Reader;	Snapshot;	Distribution;	and	Merge).

This	is	the	SQL	Server	Replication	Agents	counter.

SQL	Server	Replication	Agents
counters Description
Running Number	of	instances	of	a	given

replication	agent	running	currently.

Administering	SQL	Server

SQL	Server:	Replication	Distribution	Object
The	Replication	Dist.	object	in	Microsoft®	SQL	Server™	provides	counters	to
monitor	the	number	of	commands	and	transactions	read	from	the	distribution
database	and	delivered	to	the	subscriber	databases	by	the	SQL	Server
Distribution	Agent.

These	are	the	SQL	Server	Replication	Dist.	counters.

SQL	Server	Replication	Dist.
counters Description
Dist:Delivered	Cmds/sec Number	of	distribution	commands

delivered	per	second	to	the	Subscriber.
Dist:Delivered	Trans/sec Number	of	distribution	transactions

delivered	per	second	to	the	Subscriber.
Dist:Delivery	Latency Distribution	latency	(in	milliseconds).

The	time	it	takes	for	transactions	to	be
delivered	to	the	Distributor	and	applied
at	the	Subscriber.

See	Also

Replication	Distribution	Agent	Utility

JavaScript:hhobj_1.Click()

Administering	SQL	Server

SQL	Server:	Replication	Logreader	Object
The	Replication	Logreader	object	in	Microsoft®	SQL	Server™	provides
counters	to	monitor	the	Log	Reader	Agent.

These	are	the	SQL	Server	Replication	Logreader	counters.

SQL	Server	Replication	Logreader
counters Description
Logreader:Delivered	Cmds/sec Number	of	Log	Reader	Agent

commands	delivered	per	second	to
the	Distributor.

Logreader:Delivered	Trans/sec Number	of	Log	Reader	Agent
transactions	delivered	per	second	to
the	Distributor.

Logreader:Delivery	Latency Current	amount	of	time,	in
milliseconds,	elapsed	from	when
transactions	are	applied	at	the
Publisher	to	when	they	are	delivered
to	the	Distributor.

See	Also

Replication	Log	Reader	Agent	Utility

JavaScript:hhobj_1.Click()

Administering	SQL	Server

SQL	Server:	Replication	Merge	Object
The	Replication	Merge	object	in	Microsoft®	SQL	Server™	provides	counters
to	monitor	each	SQL	Server	merge	execution	that	moves	data	changes	up	from	a
merge	replication	Subscriber	to	the	Publisher,	and	down	from	the	Publisher	to
the	Subscriber.

These	are	the	SQL	Server	Replication	Merge	counters.

SQL	Server	Replication	Merge
counters Description
Conflicts/sec Number	of	conflicts	per	second	that

occurred	in	the	Publisher/Subscriber
upload	and	download.	This	value
should	always	be	zero.	A	nonzero	value
may	require	notifying	the	losing	side,
overriding	the	conflict,	and	so	on.

Downloaded	Changes/sec Number	of	rows	per	second	merged
(inserted,	updated,	and	deleted)	from
the	Publisher	to	the	Subscriber.

Uploaded	Changes/sec Number	of	rows	per	second	merged
(inserted,	updated,	and	deleted)	from
the	Subscriber	to	the	Publisher.

Administering	SQL	Server

SQL	Server:	Replication	Snapshot	Object
The	Replication	Snapshot	object	in	Microsoft®	SQL	Server™	provides
counters	to	monitor	SQL	Server	snapshot	replication.

These	are	the	SQL	Server	Replication	Snapshot	counters.

SQL	Server	Replication	Snapshot
counters Description
Snapshot:Delivered	Cmds/sec Number	of	commands	delivered	per

second	to	the	Distributor.
Snapshot:Delivered	Trans/sec Number	of	transactions	delivered	per

second	to	the	Distributor.

See	Also

Replication	Snapshot	Agent	Utility

JavaScript:hhobj_1.Click()

Administering	SQL	Server

SQL	Server:	SQL	Statistics	Object
The	SQL	Statistics	object	in	Microsoft®	SQL	Server™	provides	counters	to
monitor	compilation	and	the	type	of	requests	sent	to	an	instance	of	SQL	Server.
Monitoring	the	number	of	query	compilations	and	recompilations	and	the
number	of	batches	received	by	an	instance	of	SQL	Server	gives	you	an
indication	of	how	quickly	SQL	Server	is	processing	user	queries	and	how
effectively	the	query	optimizer	is	processing	the	queries.

Compilation	is	a	significant	part	of	a	query's	turnaround	time.	The	objective	of
the	cache	is	to	reduce	compilation	by	storing	compiled	queries	for	later	reuse,
thus	eliminating	the	need	to	recompile	queries	when	later	executed.	However,
each	unique	query	must	be	compiled	at	least	once.	Query	recompilations	can	be
caused	by	the	following	factors:

Schema	changes,	including	base	schema	changes	such	as	adding
columns	or	indexes	to	a	table,	or	statistics	schema	changes	such	as
inserting	or	deleting	a	significant	number	of	rows	from	a	table.

Environment	(SET	statement)	changes.	Changes	in	session	settings	such
as	ANSI_PADDING	or	ANSI_NULLS	can	cause	a	query	to	be
recompiled.

These	are	the	SQL	Statistics	counters.

SQL	Server	SQL	Statistics
counters Description
Auto-Param	Attempts/sec Number	of	auto-parameterization	attempts

per	second.	Total	should	be	the	sum	of	the
failed,	safe,	and	unsafe	auto-
parameterizations.	Auto-parameterization
occurs	when	an	instance	of	SQL	Server
attempts	to	reuse	a	cached	plan	for	a
previously	executed	query	that	is	similar
to,	but	not	the	same	as,	the	current	query.

For	more	information,	see	Auto-
parameterization.

Batch	Requests/sec Number	of	Transact-SQL	command
batches	received	per	second.	This	statistic
is	affected	by	all	constraints	(such	as	I/O,
number	of	users,	cache	size,	complexity	of
requests,	and	so	on).	High	batch	requests
mean	good	throughput.	For	more
information,	see	Batch	Processing.

Failed	Auto-Params/sec Number	of	failed	auto-parameterization
attempts	per	second.	This	should	be	small.

Safe	Auto-Params/sec Number	of	safe	auto-parameterization
attempts	per	second.

SQL	Compilations/sec Number	of	SQL	compilations	per	second.
Indicates	the	number	of	times	the	compile
code	path	is	entered.	Includes	compiles	due
to	recompiles.	After	SQL	Server	user
activity	is	stable,	this	value	reaches	a
steady	state.

SQL	Re-Compilations/sec Number	of	SQL	recompiles	per	second.
Counts	the	number	of	times	recompiles	are
triggered.	In	general,	you	want	the
recompiles	to	be	low.

Unsafe	Auto-Params/sec Number	of	unsafe	auto-parameterization
attempts	per	second.	The	table	has
characteristics	that	prevent	the	cached	plan
from	being	shared.	These	are	designated	as
unsafe.

See	Also

SQL	Server:	Cache	Manager	Object

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Administering	SQL	Server

SQL	Server:	User	Settable	Object
The	User	Settable	object	in	Microsoft®	SQL	Server™	allows	you	to	create
custom	counter	instances.	Use	custom	counter	instances	to	monitor	aspects	of
the	server	not	monitored	by	existing	counters,	such	as	components	unique	to
your	SQL	Server	database	(for	example,	the	number	of	customer	orders	logged
or	the	product	inventory).

The	SQL	Server	User	Settable	object	contains	10	instances	of	the	query	counter:
User	counter	1	through	User	counter	10.	These	counters	map	to	the	SQL
Server	stored	procedures	sp_user_counter1	through	sp_user_counter10.	As
these	stored	procedures	are	executed	by	user	applications,	the	values	set	by	the
stored	procedures	are	displayed	in	System	Monitor	(Performance	Monitor	in
Microsoft	Windows	NT®	4.0).	A	counter	can	monitor	any	single	integer	value
(for	example,	a	stored	procedure	that	counts	how	many	orders	for	a	particular
product	have	occurred	in	one	day).

Note		The	user	counter	stored	procedures	are	not	polled	automatically	by	System
Monitor.	They	must	be	explicitly	executed	by	a	user	application	for	the	counter
values	to	be	updated.	Use	a	trigger	to	automatically	update	the	value	of	the
counter.	For	example,	to	create	a	counter	that	monitors	the	number	of	rows	in	a
table,	create	an	INSERT	and	DELETE	trigger	on	the	table	that	executes:

SELECT	COUNT(*)	FROM	table

Whenever	the	trigger	is	fired	because	of	an	INSERT	or	DELETE	operation
occurring	on	the	table,	the	System	Monitor	counter	is	automatically	updated.

This	is	the	SQL	Server	User	Settable	counter.

SQL	Server	User	Settable
counters Description
Query Defined	by	the	user.

To	make	use	of	the	user	counter	stored	procedures,	execute	them	from	your	own
application	with	a	single	integer	parameter	representing	the	new	value	for	the
counter.	For	example,	to	set	User	counter	1	to	the	value	10,	execute	this

Transact-SQL	statement:

EXECUTE	sp_user_counter1	10

The	user	counter	stored	procedures	can	be	called	from	anywhere	other	stored
procedures	can	be	called,	such	as	your	own	stored	procedures.	For	example,	you
can	create	the	following	stored	procedure	to	count	the	number	of	connections
and	attempted	connections	made	since	an	instance	of	SQL	Server	was	started:

DROP	PROC	My_Proc
GO
CREATE	PROC	My_Proc
AS	
			EXECUTE	sp_user_counter1	@@CONNECTIONS
GO

The	@@CONNECTIONS	function	returns	the	number	of	connections	or
attempted	connections	since	an	instance	of	SQL	Server	was	started.	This	value	is
passed	to	the	sp_user_counter1	stored	procedure	as	the	parameter.

IMPORTANT		Make	the	queries	defined	in	the	user	counter	stored	procedures	as
simple	as	possible.	Memory-intensive	queries	that	perform	substantial	sort	or
hash	operations	or	queries	that	perform	large	amounts	of	I/O	are	expensive	to
execute	and	can	impact	performance.

Administering	SQL	Server

Monitoring	with	SQL	Server	Enterprise	Manager
Use	SQL	Server	Enterprise	Manager	to	view	the	following	information	about
current	Microsoft®	SQL	Server™	activity:

Current	user	connections	and	locks.

Process	number,	status,	locks,	and	commands	that	active	users	are
running.

Objects	that	are	locked,	and	the	kinds	of	locks	that	are	present.

If	you	are	a	system	administrator,	you	can	view	additional	information	about	a
selected	process,	send	a	message	to	a	user	who	is	connected	currently	to	an
instance	of	SQL	Server,	or	terminate	a	selected	process.

Use	the	current	activity	window	in	SQL	Server	Enterprise	Manager	to	perform
ad	hoc	monitoring	of	an	instance	of	SQL	Server.	This	allows	you	to	determine,	at
a	glance,	the	volume	and	general	types	of	activity	on	the	system,	for	example:

Current	blocked	and	blocking	transactions.

Currently	connected	users	on	an	instance	of	SQL	Server	and	the	last
statement	executed.

Locks	that	are	in	effect.

SQL	Server	activity	can	be	monitored	using	the	sp_who	and	sp_lock	system
stored	procedures.

Here	are	icons	and	descriptions	of	the	icons	in	the	current	activity	window.

Icon Description
Current	Activity	gives	process	and	lock	information	at	a
designated	time.	This	information	is	a	snapshot	taken
every	time	you	open	or	refresh	Current	Activity.	The

time	of	the	snapshot	is	displayed	in	the	left	pane.	Current
Activity	provides	information	about	the	processes
(connections)	running,	the	locks	a	certain	connection	is
holding	or	trying	to	acquire,	and	the	current	and	waiting
locks	on	databases	and	tables.
Process	Info	provides	information	about	the	current
connections	and	activity	in	a	system.	A	connection	can	be
in	three	states:		running,	sleeping,	or	background.	The
database	context	is	also	displayed.	There	are	some	server
processes,	which	are	started	before	the	master	database	is
brought	online,	that	have	no	database	context.
Running	process	that	is	waiting	for	a	lock	or	user	input.

Sleeping	process	that	is	waiting	for	a	lock	or	user	input.

Background	process	that	wakes	up	periodically	to	execute
work.	SPID	2	(Lock	Monitor),	3	(Lazy	Writer)	and	6	are
background	processes.
Process	(SPID)	that	is	blocking	one	or	more	connections.
Process	(SPID)	that	is	blocked	by	another	connection.

Process	that	is	not	blocking	or	being	blocked.

Process	that	is	not	blocking	or	being	blocked.
Table	lock.	If	an	index	is	involved,	the	index	name	is
listed	in	the	index	column.	The	resource	locator	of	the
locked	part	is	displayed	in	the	resource	column.
Database	lock.

Here	are	descriptions	of	the	process	information	in	the	Current	Activity	window.

Item Description
Process	ID SQL	Server	Process	ID.
Context	ID Execution	context	ID	used	to	uniquely	identify	the

subthreads	operating	on	behalf	of	a	single	process.
User ID	of	the	user	who	executed	the	command.
Database Database	currently	being	used	by	the	process.

Status Status	of	the	process	(for	example,	running,	sleeping,
runnable,	and	background).

Open	Transactions Number	of	open	transactions	for	the	process.
Command Command	currently	being	executed.
Application Name	of	the	application	program	being	used	by	the

process.
Wait	Time Current	wait	time	in	milliseconds.	When	the	process

is	not	waiting,	the	wait	time	is	zero.
Wait	Type Indicates	the	name	of	the	last	or	current	wait	type.
Wait	Resources Textual	representation	of	a	lock	resource.
CPU Cumulative	CPU	time	for	the	process.	The	entry	is

updated	only	for	processes	performed	on	behalf	of
Transact-SQL	statements	executed	when	SET
STATISTICS	TIME	ON	has	been	activated	in	the
same	session.	The	CPU	column	is	updated	when	a
query	has	been	executed	with	SET	STATISTICS
TIME	ON.	When	zero	is	returned,	SET	STATISTICS
TIME	is	OFF.

Physical	IO Cumulative	disk	reads	and	writes	for	the	process.
Memory	Usage Number	of	pages	in	the	procedure	cache	that	are

currently	allocated	to	this	process.	A	negative	number
indicates	that	the	process	is	freeing	memory	allocated
by	another	process.

Login	Time Time	at	which	a	client	process	logged	into	the	server.
For	system	processes,	the	time	at	which	SQL	Server
startup	occurred	is	displayed.

Last	Batch Last	time	a	client	process	executed	a	remote	stored
procedure	call	or	an	EXECUTE	statement.	For	system
processes,	the	time	at	which	SQL	Server	startup
occurred	is	displayed.

Host Name	of	the	workstation.
Network	Library Column	in	which	the	client's	network	library	is	stored.

Every	client	process	comes	in	on	a	network
connection.	Network	connections	have	a	network
library	associated	with	them	that	allows	them	to	make

the	connection.	For	more	information,	see	Client	and
Server	Net-Libraries.

Network	Address Assigned	unique	identifier	for	the	network	interface
card	on	each	user's	workstation.	When	the	user	logs
in,	this	identifier	is	inserted	in	the	Network	Address
column.

Blocked	By Process	ID	(SPID)	of	a	blocking	process.
Blocking Process	ID	(SPID)	of	processes	that	are	blocked.

Here	are	descriptions	of	the	lock	information	in	the	Current	Activity	window.

Item Type Description
spid spid Server	process	ID	of	the	current	user	process.
ecid ecid Execution	context	ID.	Represents	the	ID	of	a

given	thread	associated	with	a	specific	spid.
Lock	type RID Row	identifier.	Used	to	lock	a	single	row

individually	within	a	table.
	 KEY Key;	a	row	lock	within	an	index.	Used	to

protect	key	ranges	in	serializable	transactions.
	 PAG Data	or	index	page.
	 EXT Contiguous	group	of	eight	data	pages	or

index	pages.
	 TAB Entire	table,	including	all	data	and	indexes.
	 DB Database.
Lock	mode Shared	(S) Used	for	operations	that	do	not	change	or

update	data	(read-only	operations),	such	as	a
SELECT	statement.

	 Update	(U) Used	on	resources	that	can	be	updated.
Prevents	a	common	form	of	deadlock	that
occurs	when	multiple	sessions	are	reading,
locking,	and	then	potentially	updating
resources	later.

	 Exclusive	(X) Used	for	data	modification	operations,	such
as	UPDATE,	INSERT,	or	DELETE.	Ensures

JavaScript:hhobj_1.Click()

that	multiple	updates	cannot	be	made	to	the
same	resource	at	the	same	time.

	 Intent Used	to	establish	a	lock	hierarchy.
	 Schema Used	when	an	operation	dependent	on	the

schema	of	a	table	is	executing.	There	are	two
types	of	schema	locks:	schema	stability	(Sch-
S)	and	schema	modification	(Sch-M).

	 Bulk	update
(BU)

Used	when	bulk	copying	data	into	a	table	and
the	TABLOCK	hint	is	specified.

	 RangeS_S Shared	range,	shared	resource	lock;
serializable	range	scan.

	 RangeS_U Shared	range,	update	resource	lock;
serializable	update	scan.

	 RangeI_N Insert	range,	null	resource	lock.	Used	to	test
ranges	before	inserting	a	new	key	into	an
index.

	 RangeX_X Exclusive	range,	exclusive	resource	lock.
Used	when	updating	a	key	in	a	range.

Status GRANT Lock	was	obtained.
	 WAIT Lock	is	blocked	by	another	process.
	 CNVT Lock	is	being	converted	to	another	lock.	A

lock	being	converted	to	another	lock	is	held
in	one	mode	but	is	waiting	to	acquire	a
stronger	lock	mode	(for	example,	update	to
exclusive).	When	diagnosing	blocking	issues,
a	CNVT	can	be	considered	similar	to	a
WAIT.

Owner Owner The	lock	owner:	xact	(transaction),	sess
(session),	or	curs	(cursor).

Index Index The	index	associated	with	the	resource.	If	the
index	is	clustered,	you	see	the	table	name
instead.

Resource RID Row	identifier	of	the	locked	row	within	the
table.	The	row	is	identified	by	a
fileid:page:rid	combination,	where	rid	is	the

row	identifier	on	the	page.
	 KEY Hexadecimal	number	used	internally	by	SQL

Server.
	 PAG Page	number.	The	page	is	identified	by	a

fileid:page	combination,	where	fileid	is	the
fileid	in	the	sysfiles	table,	and	page	is	the
logical	page	number	within	that	file.

	 EXT First	page	number	in	the	extent	being	locked.
The	page	is	identified	by	a	fileid:page
combination.

	 TAB No	information	is	provided	because	the
ObjId	column	already	contains	the	object	ID
of	the	table.

	 DB No	information	is	provided	because	the	dbid
column	already	contains	the	database	ID	of
the	database.

To	view	current	server	activity

Transact-SQL

JavaScript:hhobj_2.Click()

Administering	SQL	Server

Monitoring	the	Error	Logs
Microsoft®	SQL	Server™	logs	events	(although	only	certain	system	events	and
user-defined	events)	to	the	SQL	Server	error	log	and	the	Microsoft	Windows®
application	log.	Use	the	information	in	the	error	log	to	troubleshoot	problems
related	to	SQL	Server.

The	Windows	application	logs	provide	an	overall	picture	of	events	that	occur	on
the	Windows	NT®	4.0	and	Windows	2000	systems,	as	well	as	events	in	SQL
Server	and	SQL	Server	Agent.	Use	Event	Viewer	to	view	the	Windows
application	log	and	to	filter	the	information.	For	example,	you	can	filter	events,
such	as	information,	warning,	error,	success	audit,	and	failure	audit.

Both	logs	automatically	timestamp	all	recorded	events.

Comparing	Error	and	Application	Log	Output
You	can	use	both	the	SQL	Server	error	log	and	the	Windows	application	log	to
identify	the	cause	of	problems.	For	example,	while	monitoring	the	SQL	Server
error	log,	you	may	detect	a	certain	set	of	messages	for	which	you	do	not	know
the	cause.	By	comparing	the	dates	and	times	for	events	between	these	logs,	you
can	narrow	the	list	of	probable	causes.

Administering	SQL	Server

Viewing	the	SQL	Server	Error	Log
View	the	Microsoft®	SQL	Server™	error	log	to	ensure	that	processes	have
completed	successfully	(for	example,	backup	and	restore	operations,	batch
commands,	or	other	scripts	and	processes).	This	can	be	helpful	to	detect	any
current	or	potential	problem	areas,	including	automatic	recovery	messages
(particularly	if	an	instance	of	SQL	Server	has	been	stopped	and	restarted),	kernel
messages,	and	so	on.

View	the	SQL	Server	error	log	by	using	SQL	Server	Enterprise	Manager	or	any
text	editor.	By	default,	the	error	log	is	located	at	Program	Files\Microsoft	SQL
Server\Mssql\Log\Errorlog.

A	new	error	log	is	created	each	time	an	instance	of	SQL	Server	is	started,
although	the	sp_cycle_errorlog	system	stored	procedure	can	be	used	to	cycle
the	error	log	files	without	having	to	restart	the	instance	of	SQL	Server.	Typically,
SQL	Server	retains	backups	of	the	previous	six	logs	and	gives	the	most	recent
log	backup	the	extension	.1,	the	second	most	recent	the	extension	.2,	and	so	on.
The	current	error	log	has	no	extension.

To	view	the	SQL	Server	error	log

Administering	SQL	Server

Viewing	the	Windows	Application	Log
When	Microsoft®	SQL	Server™	is	configured	to	use	the	Microsoft	Windows®
application	log,	each	SQL	Server	session	writes	new	events	to	that	log.	Unlike
the	SQL	Server	error	log,	a	new	application	log	is	not	created	each	time	you	start
an	instance	of	SQL	Server.

View	and	manage	the	Windows	application	log	by	using	Event	Viewer	in
Microsoft	Windows	NT®	4.0	or	Windows	2000.

There	are	three	logs	that	can	be	viewed	with	Event	Viewer.

Windows	log
type Description
System	log Records	events	logged	by	the	Windows	NT	4.0	or

Windows	2000	system	components.	For	example,	the
failure	of	a	driver	or	other	system	component	to	load
during	startup	is	recorded	in	the	system	log.

Security	log Records	security	events,	such	as	failed	login	attempts.
This	helps	track	changes	to	the	security	system	and
identify	possible	breaches	to	security.	For	example,
attempts	to	log	on	to	the	system	may	be	recorded	in	the
security	log,	depending	on	the	audit	settings	in	the	User
Manager.

Only	members	of	the	sysadmin	fixed	server	role	can
view	the	security	log.

Application	log Records	events	that	are	logged	by	applications.	For
example,	a	database	application	might	record	a	file	error
in	the	application	log.

For	more	information	about	using	Event	Viewer,	managing	the	application	log,
and	understanding	the	information	it	presents,	see	the	Windows	NT	4.0	or
Windows	2000	documentation.

To	view	the	Windows	application	log

Administering	SQL	Server

Monitoring	with	Transact-SQL	Statements
Microsoft®	SQL	Server™	provides	several	Transact-SQL	statements	and	system
stored	procedures	that	allow	ad	hoc	monitoring	of	an	instance	of	SQL	Server.
Use	these	statements	when	you	want	to	gather,	at	a	glance,	information	about
server	performance	and	activity.	For	example:

Current	locks.

Current	user	activity.

Last	command	batch	submitted	by	a	user.

Data	space	used	by	a	table	or	database.

Space	used	by	a	transaction	log.

Oldest	active	transaction	(including	replicated	transactions)	in	the
database.

Performance	information	relating	to	I/O,	memory,	and	network
throughput.

Procedure	cache	usage.

General	statistics	about	SQL	Server	activity	and	usage,	such	as	the
amount	of	time	the	CPU	has	been	performing	SQL	Server	operations	or
the	amount	of	time	SQL	Server	has	spent	performing	I/O	operations.

Most	of	this	information	can	also	be	monitored	using	SQL	Server	Enterprise
Manager,	SQL-DMO,	or	System	Monitor	(Performance	Monitor	in	Microsoft
Windows	NT®	4.0).

To	view	the	current	locks

Transact-SQL

JavaScript:hhobj_1.Click()

Administering	SQL	Server

Monitoring	with	SNMP
Simple	Network	Management	Protocol	(SNMP)	is	an	application	protocol	that
offers	network	management	services.	Using	SNMP,	you	can	monitor	an	instance
of	Microsoft®	SQL	Server™	across	different	platforms	(for	example,	Microsoft
Windows	NT®	4.0,	Microsoft	Windows®	98,	and	UNIX).

With	SQL	Server	and	the	Microsoft	SQL	Server	Management	Information	Base
(MSSQL-MIB),	you	can	use	SNMP	applications	to:

Monitor	the	status	of	SQL	Server	installations.	SNMP	can	only	be	used
to	monitor	the	default	instances	of	SQL	Server.

Monitor	performance	information.	

Access	databases.

View	server	and	database	configuration	parameters.

Administering	SQL	Server

SNMP	Terminology
Simple	Network	Management	Protocol	(SNMP)	terms	are	defined	in	the
following	table.

Term Description
SNMP An	application	that	monitors	the	status	and	performance	of

Microsoft®	SQL	Server™	installations,	explores	defined
databases,	and	views	server	and	database	configuration
parameters.

SNMP	agent SQL	Server	SNMP	extension	agent	(Sqlsnmp.dll).	Server
software	that	extends	the	functionality	of	the	SNMP
service.	The	SNMP	agent	processes	requests	for	data	and
data	objects	that	reside	on	the	local	server.

Administering	SQL	Server

Enabling	SNMP	Support	on	SQL	Server
Microsoft®	SQL	Server™	support	of	SNMP	is	enabled	automatically	if
Microsoft	Windows	NT®	4.0	or	Microsoft	Windows®	2000	support	of	SNMP	is
installed	on	the	computer	when	you	run	SQL	Server	Setup.	If	SNMP	is	not
installed	on	the	computer	when	you	run	the	Setup	program,	SQL	Server	support
of	SNMP	is	not	enabled.

Administering	SQL	Server

Enabling	SQL	Server	Support	of	SNMP	on	Windows
98
You	can	monitor	remote	connections	to	computers	running	Microsoft®
Windows®	98	if	your	network	uses	Simple	Network	Management	Protocol
(SNMP).

The	database	controlled	by	an	SNMP	agent	is	known	as	SNMP	Management
Information	Base	(MIB).	The	values	contained	in	an	SNMP	MIB	can	be	shared
with	the	SNMP	MIB	of	another	application.

Microsoft	SQL	Server™	Management	Information	Base	(MSSQL-MIB),	stored
in	the	Mssql.mib	file,	and	the	SQL	Server	SNMP	extension	agent	(Sqlsnmp.dll)
are	copied	to	the	system	by	SQL	Server	Setup	and	are	enabled	if	SNMP	is
running	at	the	time	of	installation.	SNMP	can	be	activated	or	deactivated	at	any
time	by	selecting	the	Enable	SNMP	check	box	in	the	SQL	Server	Network
Utility	dialog	box.

For	more	information	about	SNMP,	see	the	SNMP	application	documentation.

To	enable	SQL	Server	support	of	SNMP	on	Windows	98

Administering	SQL	Server

Enabling	SQL	Server	MIB
The	database	controlled	by	a	Simple	Network	Management	Protocol	(SNMP)
agent	is	known	as	SNMP	Management	Information	Base	(MIB).	The	values
contained	in	an	SNMP	MIB	can	be	shared	with	the	SNMP	MIB	of	another
application.

Microsoft®	SQL	Server™	Management	Information	Base	(MSSQL-MIB),
stored	in	the	Mssql.mib	file,	and	the	SQL	Server	SNMP	extension	agent
(Sqlsnmp.dll)	are	copied	to	the	system	by	SQL	Server	Setup	and	are	enabled	if
SNMP	is	running	at	the	time	of	installation.

For	more	information	about	SNMP,	see	the	SNMP	application	documentation.

Copying	the	MSSQL-MIB	to	an	SNMP	Workstation
For	SNMP	applications	to	monitor	the	status	of	a	SQL	Server	installation,	a	copy
of	MSSQL-MIB,	stored	in	the	Mssql.mib	file,	must	be	placed	on	the	monitoring
workstation	and	loaded	into	the	SNMP	application.	MSSQL-MIB	enables	the
SNMP	application	to	access	and	monitor	the	SQL	Server	SNMP	extension	agent
on	an	instance	of	SQL	Server.

The	Mssql.mib	file	is	a	text	file	that	contains	the	definitions	of	objects	available
to	SNMP	workstations.	The	file	consists	of	read-only	variables	for	monitoring
general	performance	counters,	the	status	of	SQL	Server	installation	and
databases,	and	limited	discovery	of	configuration	options	and	database	files.
Mssql.mib	does	not	define	any	writable	objects.

The	following	table	describes	the	SNMP	tables.	These	tables	are	SNMP	tables,
not	SQL	Server	tables.

SNMP	table Description
MssqlSrvTable Contains	a	description	of	the	SQL	Server

installation.	Has	a	single	row	for	each
installation	of	SQL	Server	version	6.5	or
earlier	or	multiple	rows	for	each	instance	of
SQL	Server	version	7.0	or	SQL	Server	2000
running	on	the	server.

MssqlSrvInfoTable Contains	general	information	about	the	active
SQL	Server	process,	including	performance
counters.

MssqlSrvConfigParamTable Lists	SQL	Server	configuration	parameters.
MssqlSrvDeviceTable Contains	an	entry	for	each	SQL	Server

database	file	defined	on	the	system.
MssqlDbTable Lists	defined	SQL	Server	databases.	Contains

a	single	row	for	each	database.
MssqlDbOptionTable Lists	database	options	set	for	each	SQL	Server

database.

For	more	information,	see	the	SNMP	application	documentation.

To	copy	the	SQL	Server	MSSQL-MIB	to	an	SNMP	workstation

Administering	SQL	Server

Using	the	Web	Assistant	Wizard
You	can	use	the	Web	Assistant	Wizard	to	generate	standard	HTML	files	from
Microsoft®	SQL	Server™	data.	The	Web	Assistant	Wizard	generates	HTML
files	by	using	Transact-SQL	queries,	stored	procedures,	and	extended	stored
procedures.	You	can	use	the	wizard	to	generate	an	HTML	file	on	a	one	time
basis	or	as	a	regularly	scheduled	SQL	Server	task.	You	also	can	update	an
HTML	file	using	a	trigger.

With	the	Web	Assistant	Wizard,	you	can:

Schedule	a	task	to	update	a	Web	page	automatically.	For	example,	you
can	update	a	price	list	when	a	new	item	is	added	or	a	price	is	changed,
thereby	maintaining	a	dynamic	inventory	and	price	list	for	customers
and	sales	staff.

Publish	and	distribute	management	reports,	including	the	latest	sales
statistics,	resource	allocations,	or	other	SQL	Server	data.

Publish	server	reports	with	information	about	who	is	accessing	the
server	currently,	and	about	which	locks	are	being	held	by	which	users.

Publish	information	outside	of	SQL	Server	using	extended	stored
procedures.

Publish	server	jump	lists	using	a	table	of	favorite	Web	sites.

Use	the	sp_makewebtask	stored	procedure	to	generate	an	HTML	file.
This	system	stored	procedure	can	be	called	by	a	Transact-SQL	program.
You	can	also	call	system	stored	procedures	to	run	or	drop	the	task.

The	Web	Assistant	Wizard	runs	from	SQL	Server	Enterprise	Manager.

See	Also

sp_dropwebtask

sp_makewebtask

sp_runwebtask

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Administering	SQL	Server

Configuring	the	Web	Assistant	Wizard
Before	running	the	Web	Assistant	Wizard,	you	must:

Set	appropriate	permissions.

Choose	the	database	to	publish.

Create	queries.

Setting	Permissions

To	run	the	Web	Assistant	Wizard,	you	must	have:

CREATE	PROCEDURE	permissions	in	the	selected	database.

SELECT	permissions	on	chosen	columns.

Permissions	to	create	files	in	the	account	in	an	instance	of	Microsoft®
SQL	Server™.

Choosing	the	Database	to	Publish

The	Web	Assistant	Wizard	works	with	databases	created	by	SQL	Server.	Select
the	database	to	publish	in	the	console	tree	of	SQL	Server	Enterprise	Manager.	If
the	server	does	not	appear	in	this	list,	run	the	Register	Server	Wizard.

Creating	Queries
You	can	run	queries	by:

Using	tables	and	columns	you	specify.

Creating	result	sets	from	a	stored	procedure.

Selecting	data	using	Transact-SQL	statements.

The	Web	Assistant	Wizard	requires	that	each	job	be	named,	and	a	default	name
is	supplied.	For	jobs	that	will	run	at	a	later	time	or	for	jobs	that	run	on	a
continuous	basis,	choose	a	name	that	will	help	you	remember	the	focus	of	this
query.

Administering	SQL	Server

Receiving	Query	Results	with	the	Web	Assistant
Wizard
To	receive	query	results,	use	your	own	HTML	template	file.	A	template	file	is
any	HTML	file	with	the	marker	<%insert_data_here%>	to	indicate	where	the
query	results	should	be	inserted.	If	you	use	an	alternate	character	set,	you	must
insert	the	necessary	meta	tag	information	into	the	Web	page	manually,	specifying
the	character	chosen.

	Administering SQL Server Overview
	Starting, Pausing, and Stopping SQL Server
	Starting SQL Server
	Starting SQL Server Automatically
	Starting SQL Server Manually
	Starting SQL Server in Single-User Mode
	Starting SQL Server with Minimal Configuration
	Using Startup Options

	Logging In to SQL Server
	Running SQL Server
	Pausing and Resuming SQL Server
	Stopping SQL Server
	Broadcasting a Shutdown Message

	Failover Clustering
	Failover Clustering Support
	Creating a Failover Cluster
	Failover Clustering Example

	Upgrading to a SQL Server 2000 Failover Cluster
	Handling a Failover Cluster Installation
	Before Installing Failover Clustering
	Installing Failover Clustering
	Failover Clustering Dependencies

	Maintaining a Failover Cluster
	Using SQL Server Tools with Failover Clustering
	Failover Cluster Troubleshooting

	Importing and Exporting Data
	Choosing a Tool to Import or Export Data
	Preparing Data for Importing and Exporting
	Using bcp and BULK INSERT
	Using Native, Character, and Unicode Formats
	Native Format
	Character Format
	Copying Native and Character Format Data from Earlier Versions of SQL Server
	Unicode Character Format
	Unicode Native Format

	Specifying Data Formats
	File Storage Type
	Prefix Length
	Field Length
	Field Terminator

	Using Format Files
	Using a Data File with Fewer Fields
	Using a Data File with More Fields
	Using a Data File with Fields in a Different Order

	Copying Data
	Copying Data Between Servers
	Copying Data From a Data File to SQL Server
	Copying Data From a Query to a Data File
	Copying Data To or From a Temporary Table
	Copying Data To or From a View
	Copying Data Between Different Collations

	Bulk Copy Performance Considerations
	The Query Processor
	Logged and Minimally Logged Bulk Copy Operations
	Parallel Data Loads
	Batch Switches
	Constraint Checking
	Ordered Data Files
	Bypassing DEFAULT Definitions
	Controlling the Locking Behavior

	Backing Up and Restoring Databases
	Designing a Backup and Restore Strategy
	Analyzing Availability and Recovery Requirements
	Planning for Disaster Recovery
	Selecting a Recovery Model

	Using Recovery Models
	Simple Recovery
	Full Recovery
	Bulk-Logged Recovery
	Switching Recovery Models

	Backup and Restore Operations
	Database Backups
	Differential Database Backups
	Transaction Log Backups
	Backup Restrictions
	Restoring a Database to a Prior State
	Recovering to a Point In Time
	Recovering to a Named Transaction
	Recovery Paths

	Partial Database Restore Operations
	Recovering a Database Without Restoring
	Restarting Interrupted Backup and Restore Operations
	Backup and Recovery of Related Databases

	Managing Backups
	Backup Devices
	Using Backup Media
	Using Media Sets and Families
	Initializing Backup Media
	Password Protection
	Overwriting Backup Media
	Appending Backup Sets
	Identifying the Backup Set to Restore

	Backup Formats
	Viewing Information About Backups
	Verifying Backups

	Backing Up and Restoring System Databases
	Backing Up the master Database
	Restoring the master Database
	Restoring the master Database from a Current Backup
	Rebuilding the master Database

	Backing Up the model, msdb, and distribution Databases
	Restoring the model, msdb, and distribution Databases

	Handling Large Mission-Critical Environments
	Using Multiple Media or Devices
	Reducing Recovery Time
	Using File Backups
	File Differential Backups

	Snapshot Backups

	Copying Databases to Other Servers
	Copying Databases
	Copying Databases from Earlier Versions of SQL Server

	Using the Copy Database Wizard
	Managing Servers
	Registering Servers
	Creating Server Groups
	Accessing Server Registration Options

	Assigning an sa Password
	Managing AWE Memory
	Configuring Network Connections
	Net-Libraries and Network Protocols
	SQL Server Network Utility
	Connections to SQL Server Through Proxy Server
	Connections to SQL Server Over the Internet

	Configuring Linked Servers
	Establishing Security for Linked Servers
	Configuring OLE DB Providers for Distributed Queries

	Configuring Remote Servers
	Establishing Security for Remote Servers
	Viewing Local or Remote Server Properties

	Using Standby Servers
	Log Shipping
	Modifying Log Shipping
	Monitoring Log Shipping

	Concurrent Administrative Operations
	Managing SQL Server Messages
	SQL Mail
	Configuring SQL Mail
	Configuring Mail Profiles
	Using SQL Mail Stored Procedures

	Setting Configuration Options
	affinity mask Option
	allow updates Option
	awe enabled Option
	c2 audit mode Option
	cost threshold for parallelism Option
	cursor threshold Option
	default full-text language Option
	default language Option
	fill factor Option
	index create memory Option
	lightweight pooling Option
	locks Option
	max degree of parallelism Option
	max text repl size Option
	max worker threads Option
	media retention Option
	min memory per query Option
	nested triggers Option
	network packet size Option
	open objects Option
	priority boost Option
	query governor cost limit Option
	query wait Option
	recovery interval Option
	remote access Option
	remote login timeout Option
	remote proc trans Option
	remote query timeout Option
	scan for startup procs Option
	Server Memory Options
	set working set size Option
	show advanced options Option
	two digit year cutoff Option
	user connections Option
	user options Option

	Managing Clients
	Client Net-Libraries and Network Protocols
	Configuring Client Network Connections
	Configuring Client Net-Libraries
	Setting Up Client Configuration Entries
	TCP/IP Sockets Clients
	Named Pipes Clients
	Multiprotocol Clients
	NetWare Link IPX/SPX Clients
	AppleTalk ADSP Clients
	Banyan VINES Clients
	VIA Clients
	Other Network Protocol Clients

	Configuring ODBC Data Sources
	Using the ODBC Data Source Administrator
	Using ODBC API Functions
	Adding or Deleting an ODBC Data Source

	Configuring OLE DB Clients
	DB-Library Options
	Using the DB-Library Automatic ANSI to OEM Conversion Option
	Checking the Validity of Saved Data
	Code Page Incompatibilities

	Automating Administrative Tasks
	Multiserver Administration
	Configuring the SQLServerAgent Service
	Starting SQLServerAgent Service
	Connecting to SQL Server
	Specifying a SQL Server Alias

	Using the SQL Server Agent Error Log
	Implementing Jobs
	Creating Jobs
	Creating Job Steps
	Handling Multiple Job Steps
	Scheduling Jobs
	Specifying Job Responses
	Running Jobs
	Modifying and Viewing Jobs
	Scripting Jobs Using Transact-SQL

	Responding to Events
	Defining Operators
	Modifying and Viewing Operators
	Alerting Operators
	Defining Alerts
	Modifying and Viewing Alerts
	Copying Operators or Alerts to Other Servers
	Managing Events

	Monitoring the Environment

	Managing Security
	Security Architecture
	Planning Security
	Single Person Security Example
	Small Company Security Example
	Corporate Environment Security Example

	Security Levels
	Authentication Modes
	Security Account Delegation
	Permissions Validation
	Hierarchical Security

	Creating Security Accounts
	Security Rules
	Adding a Windows User or Group
	Granting a Windows User or Group Access to a Database

	Adding a SQL Server Login
	System Administrator (sa) Login
	Granting a SQL Server Login Access to a Database

	Database Owner (dbo)
	Database Object Owner
	guest User
	Creating User-Defined SQL Server Database Roles
	Adding a Member to a SQL Server Database Role
	Adding a Member to a Predefined Role
	public Role

	Using the Create Login Wizard

	Managing Security Accounts
	Viewing Logins
	Modifying Logins
	Removing Logins and Users
	Denying Login Access to Windows Accounts
	Viewing Roles
	Viewing and Modifying Role Memberships
	Removing a SQL Server Database Role
	Viewing Database Users

	Managing Permissions
	Granting Permissions
	Denying Permissions
	Revoking Permissions
	Resolving Permission Conflicts
	Permissions for User-Defined Functions

	Using Ownership Chains
	Using Views as Security Mechanisms
	Using Stored Procedures as Security Mechanisms

	Advanced Security Topics
	Establishing Application Security and Application Roles
	Allowing Other Accounts to Grant Object Permissions
	Creating SQL Server File Permissions
	Using Encryption Methods
	Revealing SQL Server on a Network
	Scripting Data Access Controls in Internet Explorer

	Auditing SQL Server Activity
	Using Audit Logs
	C2 Auditing

	Monitoring Server Performance and Activity
	Evaluating Performance
	Establishing a Performance Baseline
	Identifying Bottlenecks
	Determining User Activity

	Choosing a Monitoring Tool
	Monitoring with SQL Profiler
	SQL Profiler Keyboard Shortcuts
	SQL Profiler Terminology
	SQL Profiler Scenarios
	Monitoring with SQL Profiler Event Categories
	SQL Profiler Event Classes
	SQL Profiler Default Event Classes

	SQL Profiler Data Columns
	Cursors Event Category
	Cursors Event Classes
	Cursors Data Columns

	Database Event Category
	Database Event Classes
	Database Data Columns

	Errors and Warnings Event Category
	Errors and Warnings Event Classes
	Errors and Warnings Data Columns

	Locks Event Category
	Locks Event Classes
	Locks Data Columns

	Objects Event Category
	Objects Event Classes
	Objects Data Columns

	Performance Event Category
	Performance Event Classes
	Performance Data Columns

	Scans Event Category
	Scans Event Classes
	Scans Data Columns

	Security Audit Event Category
	Security Audit Event Classes
	Security Audit Data Columns

	Sessions Event Category
	Sessions Event Classes
	Sessions Data Columns

	Stored Procedures Event Category
	Stored Procedures Event Classes
	Stored Procedures Data Columns

	Transactions Event Category
	Transactions Event Classes
	Transactions Data Columns

	TSQL Event Category
	TSQL Event Classes
	TSQL Data Columns

	User Configurable Event Category
	User Configurable Event Classes
	User Configurable Data Columns

	Creating and Managing Traces and Templates
	Limiting Traces
	Maximum File and Data Size
	Datetime Filter
	System SPID

	Saving Traces and Templates
	Modifying Templates
	Starting, Pausing, and Stopping Traces
	Viewing and Analyzing Traces
	Replaying Traces
	Single-Stepping Traces

	Deleting Traces

	SQL Profiler Performance Considerations

	Monitoring with System Monitor
	Monitoring Disk Activity
	Monitoring CPU Usage
	Monitoring Memory Usage
	Creating a SQL Server Database Alert
	System Monitor Scenarios
	Running System Monitor
	Creating Charts, Alerts, Logs, and Reports
	Using SQL Server Objects
	SQL Server: Access Methods Object
	SQL Server: Backup Device Object
	SQL Server: Buffer Manager Object
	SQL Server: Buffer Partition Object
	SQL Server: Cache Manager Object
	SQL Server: Databases Object
	SQL Server: General Statistics Object
	SQL Server: Latches Object
	SQL Server: Locks Object
	SQL Server: Memory Manager Object
	SQL Server: Replication Agents Object
	SQL Server: Replication Distribution Object
	SQL Server: Replication Logreader Object
	SQL Server: Replication Merge Object
	SQL Server: Replication Snapshot Object
	SQL Server: SQL Statistics Object
	SQL Server: User Settable Object

	Monitoring with SQL Server Enterprise Manager
	Monitoring the Error Logs
	Viewing the SQL Server Error Log
	Viewing the Windows Application Log

	Monitoring with Transact-SQL Statements
	Monitoring with SNMP
	SNMP Terminology
	Enabling SNMP Support on SQL Server
	Enabling SQL Server Support of SNMP on Windows 98
	Enabling SQL Server MIB

	Using the Web Assistant Wizard
	Configuring the Web Assistant Wizard
	Receiving Query Results with the Web Assistant Wizard

