
Accessing	and	Changing	Relational	Data

Accessing	and	Changing	Relational	Data	Overview
Accessing	and	Changing	Relational	Data	contains	information	about	how	you
retrieve	data	from	SQL	Server	tables	and	modify	data	in	SQL	Server	tables.	SQL
Server	applications	typically	work	with	SQL	Server	data	in	one	of	two	ways:

Applications	use	database	Application	Programming	Interfaces	(APIs)
such	as	ADO,	OLE	DB,	or	ODBC	to	execute	Transact-SQL	statements
that	work	with	SQL	Server	data	in	the	form	of	tabular	result	sets.

Internet	applications	use	Universal	Resource	Locators	(URLs)	or	the
ADO	or	OLE	DB	APIs	to	execute	either	XPath	queries	or	Transact-SQL
statements	that	work	with	SQL	Server	data	in	the	form	of	XML
documents.

Accessing	and	Changing	Relational	Data	deals	with	fundamental	aspects	of
building	and	executing	Transact-SQL	statements	and	processing	results	in	the
form	of	relational	(or	tabular)	result	sets.	For	more	information	about	using
XPath	queries	or	Transact-SQL	statements	that	work	with	XML	documents,	see
Overview	of	XML	and	Internet	Access.

Topic Description
Query	Tools	and
Programming	Interfaces

Describes	the	different	classes	of	tools	used
to	work	with	SQL	Server.	Outlines	how
Transact-SQL	interfaces	with	utilities	and
database	APIs.

Transact-SQL	Syntax
Elements

Describes	the	primary	syntax	elements	used
in	Transact-SQL	statements.

Accessing	and	Changing
Data	Fundamentals

Describes	fundamental	issues	that	SQL
Server	applications	must	address,	but	which
are	not	specific	to	any	Transact-SQL
statement:

Choosing	a	database
Using	Transact-SQL	batches	and	scripts
Using	variables	and	parameters

Controlling	the	flow	of	logic
Understanding	permissions

Query	Fundamentals Descirbes	the	fundamental	processes	of
building	Transact-SQL	statements.	Describes
the	main	clauses	used	in	the	SELECT,
INSERT,	DELETE,	and	UPDATE
statements:

Select	list
FROM	clause
WHERE	clause
ORDER	BY	clause
JOIN	clauses

Advanced	Query	Concepts Describes	advanced	concepts	such	as:

Using	aggregate	functions
Using	GROUP	BY	and	UNION
Partitioning	views
Subqueries
Summarizing	data
Error	handling
Transact-SQL	tips

Modifying	Data Describes	the	methods	for	inserting	new
rows,	and	updating	or	deleting	existing	rows.

Transactions Describes	how	several	data	modification
statements	can	be	grouped	in	a	transaction.

Cursors Describes	how	SELECT	statements	always
return	a	set	of	rows,	but	applications
sometimes	need	to	go	through	the	result	set
one	row	at	a	time.	Cursors	support
processing	a	result	set	one	row,	or	a	block	of
rows,	at	a	time.

Locking Describes	how	SQL	Server	prevents	multiple
users	from	modifying	the	same	data	at	the
same	time.

Distributed	Queries Describes	how	to	code	Transact-SQL

statements	that	reference	data	on	separate
instances	of	SQL	Server,	or	even	in	non-SQL
Server	OLE	DB	or	ODBC	data	sources.

Full-text	Search Describes	how	to	use	more	powerful	text
search	functionality	than	is	supported	in
SQL-92,	and	include	files	outside	a	database
in	the	text	searches.

Accessing	and	Changing	Relational	Data

Query	Tools	and	Programming	Interfaces
Users	who	access	and	change	data	in	instances	of	Microsoft®	SQL	Server™
require	different	levels	of	Transact-SQL	knowledge,	depending	on	the	way	users
access	the	database:

Users	of	graphical	report	generators	and	general	business	applications
need	little	or	no	knowledge	of	Transact-SQL.	The	applications	present
either	easy-to-use	charts	and	graphs,	which	require	little	database
knowledge,	or	dialog	boxes	based	on	the	user's	business	functions.

Users	of	general	purpose	SQL	applications,	such	as	SQL	Query
Analyzer	and	the	osql	utility,	must	understand	how	to	use	Transact-SQL
from	the	utilities	or	in	scripts	of	Transact-SQL	statements.

Application	programmers	must	have	a	complete	understanding	of	the
Transact-SQL	functionality	in	SQL	applications,	as	well	as	how	to	use	a
database	application	programming	interface	(API)	to	provide	data
values	for	Transact-SQL	statements	and	to	retrieve	data	in	a	relational
(tabular)	result	set.

Internet	application	programmers	must	understand	the	fundamentals	of
how	Transact-SQL	statements	work	with	relational	rowsets,	but	they
must	also	understand	how	SQL	Server	works	with	XML	documents.
They	must	understand:

How	merged	schemas	present	XML-based	views	of	the	data	in
SQL	Server	tables,	and	how	to	use	XPath	queries	to	retrieve
that	data	in	the	form	of	XML	documents.

How	to	use	the	FOR	XML	clause	to	direct	SELECT	statements
to	return	results	as	XML	documents	instead	of	tabular	result
sets.

How	to	add	XML	documents	to	a	database	and	then	use	the
OPENXML	clause	to	present	the	data	from	the	document	as	a
relational	result	set.

How	to	execute	Transact-SQL	statements,	query	templates,	and
XPath	queries	using	Universal	Resource	Locators	(URLs),
ADO,	or	OLE	DB.

Many	users	may,	at	different	times,	work	in	all	categories	of	applications.
Application	programmers	may	use	a	SQL	Server	tool,	such	as	SQL	Query
Analyzer,	to	test	their	Transact-SQL	statements	before	coding	them	into	an
application.	Database	administrators	work	at	all	levels	as	they	work	with	users
and	programmers	to	design	new	features	and	resolve	database	problems.

The	topics	in	Accessing	and	Changing	Relational	Data	pertain	primarily	to	users
of	generic	SQL	tools	and	application	programmers.	Where	relevant,	information
about	additional	features	available	to	application	programmers	is	provided.
Internet	programmers	must	know	many	of	the	concepts	in	Accessing	and
Changing	Relational	Data	to	understand	the	effects	of	the	many	Transact-SQL
statements	they	execute.	For	information	specific	to	working	with	data	in	the
form	of	XML	documents,	see	XML	and	Internet	Support	Overview.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Query	Tools
Microsoft®	offers	these	tools	for	accessing	and	changing	data	in	instances	of
Microsoft	SQL	Server™:

SQL	Query	Analyzer

SQL	Server	Enterprise	Manager

osql	Utility

bcp	Utility

The	level	of	Transact-SQL	knowledge	required	to	use	these	tools	varies.

Accessing	and	Changing	Relational	Data

SQL	Server	Tools
SQL	Query	Analyzer	and	the	osql	utility	support	using	Transact-SQL
interactively	to	access	and	change	data,	and	the	bcp	utility	can	be	used	to	insert
large	numbers	of	new	rows	into	a	table	quickly.	SQL	Server	Enterprise	Manager
is	used	to	administer	multiple	instances	of	SQL	Server	from	a	single	console.

SQL	Query	Analyzer	and	osql	are	used	to:

Execute	one	or	more	Transact-SQL	statements.

Either	display	the	results	of	a	query	to	the	user,	or	save	the	results	in	a
text	file.

Using	SQL	Query	Analyzer,	you	can	connect	simultaneously	to	multiple
instances	of	SQL	Server	Enterprise	Manager.	SQL	Server	Enterprise	Manager
also	supports	working	with	multiple	instances	of	SQL	Server	at	the	same	time.
The	osql	and	bcp	utilities	only	support	working	with	one	instance	at	a	time.

Accessing	and	Changing	Relational	Data

Using	SQL	Query	Analyzer
SQL	Query	Analyzer	is	a	Microsoft®	Win32®	application	that	is	an	excellent
tool	for	the	ad	hoc,	interactive	execution	of	Transact-SQL	statements	and	scripts.
To	use	SQL	Query	Analyzer,	users	must	understand	Transact-SQL.

In	SQL	Query	Analyzer,	users	enter	Transact-SQL	statements	in	a	full-text
window,	execute	the	statements,	and	view	the	results	in	a	results	window.	Users
also	can	open	a	text	file	containing	Transact-SQL	statements,	execute	the
statements,	and	view	the	results	in	the	results	window.

SQL	Query	Analyzer	also	provides	tools	for	determining	how	Microsoft	SQL
Server	is	interpreting	and	working	with	a	Transact-SQL	statement.	A	user	can:

Display	a	graphical	representation	of	the	execution	plan	generated	for
the	statement.

Start	the	Index	Tuning	Wizard	to	determine	which	indexes	can	be
defined	for	the	underlying	tables	to	optimize	the	performance	of	the
statement.

Display	statistics	about	the	performance	of	the	statement.

Accessing	and	Changing	Relational	Data

Using	SQL	Server	Enterprise	Manager
SQL	Query	Analyzer	can	be	started	from	SQL	Server	Enterprise	Manager.

In	SQL	Server	Enterprise	Manager,	on	the	Tools	menu,	click	SQL	Query
Analyzer	to	run	SQL	Query	Analyzer.	With	SQL	Query	Analyzer,	users	can
interactively	design	and	execute	queries.

SQL	Server	Enterprise	Manager	also	includes	the	Query	Designer,	a	graphical
user	interface	(GUI)	tool	for	designing	queries	used	in	specific	objects:

In	the	console	tree,	in	the	database	you	are	working	on,	right-click
Views,	and	then	click	New	View.	Query	Designer	can	be	used	to	design
the	SELECT	statement	for	the	view.	For	more	information,	see	Creating
Views.

In	DTS	Designer,	open	a	DTS	package	and	add	an	Execute	SQL	task,
and	then	click	Build	Query	to	access	the	DTS	Query	Designer.	For
more	information,	see	DTS	Query	Designer.

In	the	right	pane,	right-click	a	table,	click	Open	Table,	and	then	click
Return	all	rows	to	see	all	the	rows	in	the	table.	Query	Designer	can	be
used	to	change	the	query	to	see	specific	rows.	For	more	information,	see
Performing	Basic	Operations	with	Queries.

The	Query	Designer	window	has	four	separate	panes	for	specifying	or
displaying	different	items	associated	with	a	query.

Pane Description
Diagram Has	a	diagram	showing	the	tables	referenced	in	the	query.	The

diagram	shows	all	columns	for	each	table	and	checks	the
columns	used	in	the	result	set.

SQL Shows	the	SQL	statement	syntax.
Grid Shows	the	details	of	the	result	set	columns,	such	as	name,	data

type,	and	size.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Results Shows	the	result	set	returned	by	the	last	query	execution.

For	more	information	about	using	Query	Designer	panes,	see	Query	and	View
Designer	Layout.

JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Using	the	osql	Utility
The	osql	utility	is	a	Microsoft®	Win32®	command	prompt	utility	for	ad	hoc,
interactive	execution	of	Transact-SQL	statements	and	scripts.	To	use	osql,	users
must	understand	Transact-SQL.

The	osql	utility	is	typically	used	in	these	ways:

Users	interactively	enter	Transact-SQL	statements	in	a	manner	similar
to	working	on	the	command	prompt.	The	results	are	displayed	in	the
command	prompt	window.

Users	submit	an	osql	job	either	specifying	a	single	Transact-SQL
statement	to	execute	or	pointing	the	utility	to	a	text	file	that	contains
Transact-SQL	statements	to	execute.	The	output	is	usually	directed	to	a
text	file,	but	it	also	can	be	displayed	in	the	command	prompt	window.

The	osql	utility	uses	the	ODBC	database	application	programming	interface
(API).	It	is	a	replacement	for	the	isql	command	prompt	utility	based	on	the	DB-
Library	API.	Both	utilities	are	provided	with	Microsoft	SQL	Server™	2000.	The
DB-Library	API	remains	at	a	SQL	Server	6.5	level;	therefore,	applications	that
depend	on	DB-Library,	such	as	isql,	do	not	support	some	SQL	Server	2000
features.	For	example,	isql	cannot	access	columns	defined	with	the	ntext	data
type	and	truncates	any	char,	varchar,	nchar,	or	nvarchar	columns	longer	than
255	bytes.	It	also	cannot	retrieve	results	as	XML	documents.	Except	for	these
limitations	in	isql,	both	osql	and	isql	support	the	same	features.	For	more
information	about	features	not	supported	by	isql,	see	Connecting	Early	Version
Clients	to	SQL	Server	2000.

See	Also

isql	Utility

osql	Utility

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	the	bcp	Utility
The	bcp	bulk	copy	utility	can	be	used	to	insert	large	numbers	of	new	rows	into
Microsoft®	SQL	Server™	tables.	The	utility	requires	no	knowledge	of	Transact-
SQL,	but	users	must	understand	the	structure	of	the	tables	into	which	the	new
rows	are	being	copied,	as	well	as	the	types	of	data	that	are	valid	for	the	rows	in
the	table.

See	Also

bcp	Utility

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Programming	Interfaces
Microsoft®	SQL	Server™	supports	a	number	of	database	application
programming	interfaces	(APIs)	used	to	write	applications	that	store	their	data	in
SQL	Server	databases.	Although	the	users	of	these	applications	need	little,	if
any,	database	knowledge,	the	programmers	who	develop	the	applications	must
know	how	to	use	the	database	APIs	to	execute	the	Transact-SQL	statements	or
XPath	queries	that	give	the	application	access	to	the	data	stored	in	SQL	Server
databases.

Accessing	and	Changing	Relational	Data

Microsoft	Programming	Environments
Microsoft®	Visual	Studio®	includes	the	major	Microsoft	development	systems:
Microsoft	Visual	Basic®,	Microsoft	Visual	C++®,	Microsoft	Visual	J++®,
Microsoft	Visual	InterDev™,	and	Microsoft	Visual	FoxPro®.

These	systems	support	the	development	of	Microsoft	Windows®	and	Web-based
applications.	Microsoft	SQL	Server™	supports	the	database	application
programming	interfaces	(APIs)	used	by	these	and	other	languages	when	building
applications	that	store	their	data	in	a	database:	ADO,	OLE	DB,	ODBC,
Embedded	SQL,	and	legacy	APIs	such	as	DB-Library.	SQL	Server	2000	also
supports	accessing	instances	of	SQL	Server	through	Uniform	Resource	Locators
(URLs),	and	processing	data	in	the	form	of	XML	documents.

In	addition	to	being	familiar	with	the	use	of	Transact-SQL,	programmers	must
understand	how	the	database	API	interacts	with	Transact-SQL.	They	must
understand	how	to	supply	data	values	for	parameters,	and	how	to	move	the	data
values	in	a	result	set	into	variables	in	their	applications.

Internet	application	programmers	must	also	understand	how	to	work	with	SQL
Server	2000	data	as	XML	documents.	For	more	information,	see	XML	and
Internet	Support	Overview.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Application	Programming	Interfaces
Microsoft®	SQL	Server™	supports	several	database	application	programming
interfaces	(APIs):	Active	Data	Object	(ADO),	OLE	DB,	Open	Database
Connectivity	(ODBC),	Remote	Data	Object	(RDO),	Data	Access	Object	(DAO),
the	Microsoft	Foundation	Class	(MFC)	Database	Classes,	Embedded	SQL,	and
DB-Library.	SQL	Server	supports	these	APIs	usually	in	the	form	of	a	dynamic-
link	library	(DLL)	called	a	provider	or	driver.	The	provider	or	driver	translates
the	calls	made	by	the	application	to	the	database	API	into	commands	sent	to	an
instance	of	SQL	Server.

To	work	with	a	database,	an	API:

1.	 Opens	a	connection	to	the	database.

2.	 Sets	options	that	control	certain	behaviors,	such	as	whether	cursors
will	be	used,	what	type	of	cursor	will	be	used,	and	whether	updates	are
allowed.

3.	 Executes	a	Transact-SQL	statement.	Optionally,	the	application	may
also	use	program	variables	to	supply	parameter	values	for	the	executed
statement.	An	application	may	execute	only	one	statement	at	a	time	on
each	connection,	or	it	may	execute	several	simultaneously.

4.	 Moves	the	data	values	of	return	codes,	output	parameters,	and	result
sets	into	program	variables,	where	they	can	be	used	by	the	application
logic.	If	the	statement	returns	its	result	set	in	the	form	of	an	XML
document,	the	application	can	stream	that	to	a	component	that
consumes	XML	documents.

5.	 Disconnects	when	finished	working	in	the	database.

The	application	programmer	must	understand	both	Transact-SQL	and	the	proper
use	of	the	database	API.

See	Also

Application	Development	Architecture

Building	SQL	Server	Applications	Overview

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Connecting	to	and	Disconnecting	from	an	Instance
An	application	must	connect	to	an	instance	of	Microsoft®	SQL	Server™	before
it	can	work	with	a	SQL	Server	database.	Connection	occurs	through	a
component	such	as	shared	memory	or	a	network.	An	application	can	open
multiple	connections	to	an	instance	of	SQL	Server.

After	a	connection	is	made,	the	application	can	execute	Transact-SQL	statements
through	the	connection.	After	an	application	completes	all	the	work	that	must	be
done	in	an	instance	of	SQL	Server,	the	application	disconnects.	This	frees	all
resources	held	by	the	connection	in	the	server	and	terminates	the	network	or
shared-memory	connection	between	the	application	and	the	instance.

In	general,	connections:

Are	associated	with	a	database,	which	the	application	can	change	as
needed.	Object	references	that	do	not	specify	a	database	are	assumed	to
be	in	the	current	database	associated	with	the	connection.

Are	associated	with	a	specific	login	account.	The	login	account	is
associated	with	user	IDs	in	the	SQL	Server	databases.	A	connection
cannot	perform	an	action	in	a	database	that	is	not	permitted	to	the	user
ID	associated	with	the	connection's	login	account.

Are	the	units	of	transaction	control.	If	a	connection	is	broken,	all
uncommitted	modifications	made	by	statements	executed	through	the
connection	are	rolled	back	without	affecting	uncommitted	modifications
made	through	other	connections	opened	by	the	same	application.	Locks
held	by	one	connection	opened	by	an	application	prevent	the	locked
rows	from	being	worked	on	by	other	connections	opened	by	the	same
application.

Have	attributes,	such	as	the	transaction	isolation	level,	which	can	be	set
by	the	application	to	specify	connection-level	behaviors.

Internet	applications	also	connect	to	an	instance	of	SQL	Server,	either	through	an
ADO	or	OLE	DB	connection,	or	by	specifying	a	SQL	Server	virtual	root	in	a
Uniform	Resource	Locator	(URL).	While	the	Internet	application	uses	Transact-
SQL	statements	or	XPath	queries	that	use	XML	documents	instead	of	relational
result	sets,	all	of	the	characteristics	listed	above	still	apply	to	the	connection.

Accessing	and	Changing	Relational	Data

Preparing	and	Executing	Statements
With	Microsoft®	SQL	Server™	tools,	such	as	SQL	Query	Analyzer	or	the	osql
utility,	a	user	can	key	in	and	execute	one	or	more	Transact-SQL	statements.
Everything	needed	by	the	Transact-SQL	statements	must	be	specified	in	the
batch	of	statements	executed.	Everything	must	be	part	of	the	character	text	of	the
Transact-SQL	statements.

The	database	APIs	support	many	options	for	executing	a	Transact-SQL
statement.	The	most	important	options	are:

Using	precompiled	execution	plans	of	frequently	used	statements.	If	a
Transact-SQL	statement	is	executed	several	times,	the	application	can
prepare	the	statement	once,	and	then	execute	it	as	many	times	as
needed.	Preparing	a	statement	directs	the	server	to	compile	the
statement	into	an	execution	plan.	Subsequent	executions	are	faster
because	they	use	the	precompiled	plan	so	the	statement	has	to	be
compiled	only	once.

For	better	performance,	the	statement	preparation	may	be	deferred	until
the	statement	is	executed	or	a	metaproperty	operation	(such	as
SQLDescribeCol	or	SQLDescribeParam	in	ODBC)	is	performed.
This	is	the	default	behavior.	Any	errors	in	the	statement	being	prepared
are	not	known	until	the	statement	is	executed	or	a	metaproperty
operation	is	performed.	Setting	appropriate	statement	options	can	turn
off	this	default	behavior.

Binding	program	variables	with	the	parameters.	Instead	of	having	to
include	the	actual	data	values	for	input	parameters	as	part	of	the
Transact-SQL	statement,	an	application	can	associate,	or	bind,	program
variables	with	the	parameters.	This	means	that	the	parameter	values	do
not	have	to	be	converted	to	character	strings	to	be	included	in	the	text	of
the	Transact-SQL	statement,	but	instead	can	be	used	in	their	native
format.

Prepared	statements	cannot	be	used	to	create	temporary	objects	in	SQL	Server
2000	or	SQL	Server	7.0.	Prepared	statements	cannot	reference	system	stored

procedures	that	create	temporary	objects,	such	as	temporary	tables.	These
procedures	must	be	executed	directly.

Accessing	and	Changing	Relational	Data

Processing	Results
With	Microsoft®	SQL	Server™	tools,	such	as	SQL	Query	Analyzer	or	the	osql
utility,	the	results	of	a	Transact-SQL	statement	are	either	displayed	as	character
text	or	saved	in	a	text	file.	SQL	Server	displays	the	entire	result	set	at	once,
rather	than	fetching	the	rows	one	at	a	time.

When	an	application	executes	a	Transact-SQL	statement	that	returns	a	relational
result	set,	the	database	APIs	enable	an	application	to	associate,	or	bind,	the
columns	of	a	result	set	with	variables	in	the	application.	When	a	result	set	row	is
retrieved,	the	data	in	the	row	columns	is	moved	into	the	bound	variables	where	it
can	then	be	used	by	the	application.	Once	again,	the	data	can	be	retrieved	in	its
native	format	without	being	converted	to	character	text.

The	database	APIs	also	support	cursor	processing	of	relational	result	sets.	This
allows	the	application	to	retrieve	the	rows	in	the	result	set	one	at	a	time,	or	one
block	of	rows	at	a	time.	The	application	is	not	forced	to	retrieve	and	store	the
entire	result	set	before	processing	it.

When	an	application	executes	an	XPath	query	or	Transact-SQL	statement	that
returns	an	XML	document,	the	document	is	returned	as	a	stream	object.	For
more	information,	see	XML	and	Internet	Support	Overview.

Data	Type	Conversions
Programmers	building	database	applications	that	use	relational	result	sets	must
handle	two	levels	of	data	conversion:

All	of	the	Transact-SQL	statements	coded	in	the	application	must
comply	with	the	Transact-SQL	data	conversion	rules	when	combining
objects	with	operators	and	functions.	The	Transact-SQL	data	conversion
and	precedence	rules	also	determine	the	final	output	data	type	of	these
operations.

The	program	must	comply	with	the	database	API	data	conversion	rules
when	moving	data	between	program	variables	and	database	objects

JavaScript:hhobj_1.Click()

such	as	result	set	columns,	parameters,	and	return	codes.

Transact-SQL	supports	conversion	of	data	values	from	one	data	type	to	another.
For	example,	this	statement	converts	an	integer	value	into	a	character	string:

CAST	(123	AS	VARCHAR(5))

The	conversions	can	be	explicit,	using	the	CAST	function,	or	they	can	be
implicit.	For	example,	if	an	int	column	is	compared	to	a	char	column,	the	char
value	is	implicitly	converted	to	an	int	before	the	comparison	is	made.	The
Transact-SQL	Reference	defines	the	implicit	and	explicit	conversions	allowed	by
SQL	Server.	These	rules	apply	only	to	conversions	between	Transact-SQL
objects.

Another	set	of	rules	applies	when	converting	between	Transact-SQL	objects
such	as	parameters,	return	codes,	and	result	set	columns	and	their	bound
program	variables.	These	rules	are	defined	in	the	documentation	for	the	provider
or	driver	supporting	the	API.	The	rules	can	vary	among	the	APIs.	For	example,
the	SQL	Server	ODBC	driver	supports	converting	the	data	from	a	datetime
result	set	column	into	an	ODBC	timestamp	data	structure,	but	the	DB-Library
interface	does	not	allow	this	conversion	because	it	does	not	support	ODBC
timestamp	data	structures.

See	Also

Data	Type	Conversion

CAST	and	CONVERT

Data	Types

Mapping	Data	Types

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Transact-SQL	Syntax	Elements
Transact-SQL	has	several	syntax	elements	that	are	used	by,	or	influence,	most
statements:

Identifiers

Are	the	names	of	objects	such	as	tables,	views,	columns,	databases,	and
servers.

Data	types

Define	the	types	of	data	contained	by	data	objects,	such	as	columns,
variables,	and	parameters.	Most	Transact-SQL	statements	do	not	reference
data	types	explicitly,	but	the	results	of	most	statements	are	influenced	by	the
interactions	between	the	data	types	of	the	objects	referenced	in	the	statement.

Functions

Are	syntax	elements	that	take	zero,	one,	or	more	input	values	and	return	a
scalar	value	or	a	tabular	set	of	values.	Examples	include	the	SUM	function
for	adding	several	values,	the	DATEDIFF	function	for	determining	how
many	units	of	time	separate	two	dates,	the	@@SERVERNAME	function	for
getting	the	name	of	an	instance	of	Microsoft®	SQL	Server™,	or	the
OPENQUERY	function	for	executing	a	Transact-SQL	statement	against	a
remote	server	and	retrieving	the	result	set.

Expressions

Are	units	of	syntax	that	Microsoft	SQL	Server	can	resolve	to	single	values.
Examples	of	expressions	include	constants,	functions	that	return	a	single
value,	a	reference	to	a	column,	or	a	variable.

Operators

Work	with	one	or	more	simple	expressions	to	form	a	more	complex
expression.	For	example,	combining	the	minus	sign	(-)	with	the	constant	12
results	in	the	constant	-12.	The	multiplication	sign	(*)	in	the	expression
PriceColumn	*1.1	increases	the	price	by	10	percent.

Comments

Are	pieces	of	text	inserted	into	Transact-SQL	statements	or	scripts	to	explain
the	purpose	of	the	statement.	The	comments	are	not	executed	by	SQL	Server.

Reserved	Keywords

Are	words	reserved	for	the	use	of	SQL	Server	and	should	not	be	used	for	the
names	of	objects	in	a	database.

Accessing	and	Changing	Relational	Data

Using	Identifiers
The	database	object	name	is	known	as	its	identifier.	Everything	in	Microsoft®
SQL	Server™	can	have	an	identifier.	Servers,	databases,	and	database	objects
such	as	tables,	views,	columns,	indexes,	triggers,	procedures,	constraints,	rules,
and	so	on	can	have	identifiers.	Identifiers	are	required	for	most	objects,	but	are
optional	for	some	objects,	such	as	constraints.

An	object	identifier	is	created	when	the	object	is	defined.	The	identifier	is	then
used	to	reference	the	object.	For	example,	this	statement	creates	a	table	with	the
identifier	TableX,	and	two	columns	with	the	identifiers	KeyCol	and
Description:

CREATE	TABLE	TableX
(KeyCol	INT	PRIMARY	KEY,	Description	NVARCHAR(80))

This	table	also	has	an	unnamed	constraint.	The	PRIMARY	KEY	constraint	has
no	identifier.

Classes	of	Identifiers
There	are	two	classes	of	identifiers:

Regular	identifiers

Conform	to	the	rules	for	the	format	of	identifiers.	Regular	identifiers	are	not
delimited	when	used	in	Transact-SQL	statements.

SELECT	*
FROM	TableX
WHERE	KeyCol	=	124

Delimited	identifiers

Are	enclosed	in	double	quotation	marks	(")	or	brackets	([]).	Identifiers	that
comply	with	the	rules	for	the	format	of	identifiers	may	or	may	not	be
delimited.

SELECT	*

FROM	[TableX]									--Delimiter	is	optional.
WHERE	[KeyCol]	=	124		--Delimiter	is	optional.

Identifiers	that	do	not	comply	with	all	of	the	rules	for	identifiers	must	be
delimited	in	a	Transact-SQL	statement.

SELECT	*
FROM	[My	Table]						--Identifier	contains	a	space	and	uses	a	reserved	keyword.
WHERE	[order]	=	10			--Identifier	is	a	reserved	keyword.

Both	regular	and	delimited	identifiers	must	contain	from	1	through	128
characters.	For	local	temporary	tables,	the	identifier	can	have	a	maximum	of	116
characters.

Rules	for	Regular	Identifiers
The	rules	for	the	format	of	regular	identifiers	are	dependent	on	the	database
compatibility	level,	which	can	be	set	with	sp_dbcmptlevel.	For	more
information,	see	sp_dbcmptlevel.	When	the	compatibility	level	is	80,	the	rules
are:

1.	 The	first	character	must	be	one	of	the	following:

A	letter	as	defined	by	the	Unicode	Standard	2.0.	The	Unicode
definition	of	letters	includes	Latin	characters	from	a	through	z
and	from	A	through	Z,	in	addition	to	letter	characters	from
other	languages.

The	underscore	(_),	"at"	sign	(@),	or	number	sign	(#).

Certain	symbols	at	the	beginning	of	an	identifier	have	special
meaning	in	SQL	Server.	An	identifier	beginning	with	the	"at"
sign	denotes	a	local	variable	or	parameter.	An	identifier
beginning	with	a	number	sign	denotes	a	temporary	table	or
procedure.	An	identifier	beginning	with	double	number	signs
(##)	denotes	a	global	temporary	object.

Some	Transact-SQL	functions	have	names	that	start	with
double	at	signs	(@@).	To	avoid	confusion	with	these

JavaScript:hhobj_1.Click()

functions,	it	is	recommended	that	you	do	not	use	names	that
start	with	@@.

2.	 Subsequent	characters	can	be:

Letters	as	defined	in	the	Unicode	Standard	2.0.

Decimal	numbers	from	either	Basic	Latin	or	other	national
scripts.

The	"at"	sign,	dollar	sign	($),	number	sign,	or	underscore.

3.	 The	identifier	must	not	be	a	Transact-SQL	reserved	word.	SQL	Server
reserves	both	the	uppercase	and	lowercase	versions	of	reserved	words.

4.	 Embedded	spaces	or	special	characters	are	not	allowed.

When	used	in	Transact-SQL	statements,	identifiers	that	fail	to	comply	with	these
rules	must	be	delimited	by	double	quotation	marks	or	brackets.

See	Also

ALTER	TABLE

CREATE	DATABASE

CREATE	DEFAULT

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	TRIGGER

CREATE	VIEW

DECLARE	@local_variable

DELETE

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Delimited	Identifiers

INSERT

Reserved	Keywords

SELECT

UPDATE

JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()

Accessing	and	Changing	Relational	Data

Using	Identifiers	as	Object	Names
The	complete	name	of	an	object	consists	of	four	identifiers:	the	server	name,
database	name,	owner	name,	and	object	name.	They	appear	in	the	following
format:

[[[server.]	[database]	.]	[owner_name]	.]	object_name

The	server,	database,	and	owner	names	are	known	as	the	qualifiers	of	the	object
name.	When	referring	to	an	object,	it	is	not	necessary	to	specify	the	server,
database,	and	owner.	The	qualifiers	can	be	omitted	by	marking	their	positions
with	a	period.	The	valid	forms	of	object	names	are:

server.database.owner_name.object_name	server.database..object_name	
server..owner_name.object_name	
server...object_name

database.owner_name.object_name	
database..object_name

owner_name.object_name

object_name

An	object	name	that	specifies	all	four	parts	is	known	as	a	fully	qualified	name.
Each	object	created	in	Microsoft®	SQL	Server™	must	have	a	unique,	fully
qualified	name.	For	example,	there	can	be	two	tables	named	xyz	in	the	same
database	if	they	have	different	owners.

Column	names	must	be	unique	within	a	table	or	view.	Assume	that	both	a	table
and	a	view	in	the	customer	database	have	the	same	column	named	telephone.
To	refer	to	the	telephone	column	in	the	employees	table,	specify
customer..employees.telephone.	To	refer	to	the	telephone	column	in	the
mktg_view	view	(marketing	department	view),	specify
customer..mktg_view.telephone.

Most	object	references	use	three-part	names	and	default	to	the	local	server.	Four-
part	names	are	generally	used	for	distributed	queries	or	remote	stored	procedure
calls	and	use	this	format.

linkedserver.catalog.schema.object_name

The	table	shows	the	part	names	and	their	descriptions.

Part	name Description
linkedserver Name	of	the	linked	server	that	contains	the	object

referenced	by	the	distributed	query.
Catalog Name	of	the	catalog	that	contains	the	object	referenced	by

the	distributed	query.
Schema Name	of	the	schema	that	contains	the	object	referenced	by

the	distributed	query.
object_name Object	name	or	table	name.

For	distributed	queries,	the	server	part	of	a	four-part	name	refers	to	a	linked
server.	A	linked	server	is	a	server	name	defined	with	sp_addlinkedserver.	The
linked	server	identifies	an	OLE	DB	provider	and	an	OLE	DB	data	source	that
can	return	a	record	set	that	SQL	Server	can	use	as	part	of	a	Transact-SQL
statement.

See	the	documentation	for	the	OLE	DB	provider	specified	for	the	linked	server
to	determine	what	components	in	the	OLE	DB	data	source	are	used	for	the
catalog	and	schema	parts	of	the	name.	If	the	linked	server	is	running	an	instance
of	SQL	Server,	the	catalog	name	is	the	database	containing	the	object,	and	the
schema	is	the	owner	of	the	object.	For	more	information	about	four-part	names
and	distributed	queries,	see	Distributed	Queries.

For	remote	procedure	calls,	the	server	part	of	a	four-part	name	refers	to	a	remote
server.	A	remote	server,	which	is	specified	with	sp_addserver,	is	an	instance	of
SQL	Server	accessed	through	the	local	server.	Execute	stored	procedures	on	the
remote	server	using	this	format	for	the	procedure	name:

server.database.owner_name.procedure

All	four	parts	of	the	name	are	required	when	using	a	remote	stored	procedure.
For	more	information	about	remote	servers,	see	Configuring	Remote	Servers.

See	Also

FROM

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Transact-SQL	Syntax	Conventions

JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Object	Visibility	and	Qualification	Rules
When	you	create	an	object,	Microsoft®	SQL	Server™	2000	uses	the	following
defaults	for	the	parts	of	the	name	not	specified:

Server	defaults	to	the	local	server.

Database	defaults	to	the	current	database.

Owner_name	defaults	to	the	username	in	the	specified	database
associated	with	the	login	ID	of	the	current	connection.

For	example,	if	a	user	is	logged	on	to	Northwind	as	the	database	owner	(dbo)
user,	either	of	the	following	two	statements	creates	a	table	named
Northwind.dbo.TableX:

CREATE	TABLE	TableX	(cola	INT	PRIMARY	KEY,	colb	NCHAR(3))

-Or-

CREATE	TABLE	Northwind.dbo.TableX
						(cola	INT	PRIMARY	KEY,	colb	NCHAR(3))

Note		It	is	recommended	that	the	full	table	or	view	name	be	specified	to
eliminate	possible	confusion	relating	to	the	object	in	question.

Similarly,	when	you	refer	to	an	object,	Microsoft®	SQL	Server™	uses	the
following	defaults	for	the	parts	of	the	name	not	specified:

Server	defaults	to	the	local	server.

Database	defaults	to	the	current	database.

owner_name	defaults	to	the	username	in	the	specified	database
associated	with	the	login	ID	of	the	current	connection.	If	that	user	owns
no	object	with	the	specified	name,	SQL	Server	looks	for	an	object	with

the	specified	name	owned	by	the	database	owner	(dbo)	user.

For	example,	assume	LoginX	connects	to	a	server	that	has	two	databases:	DBY
and	DBZ.	LoginX	is	associated	with	UserA	in	database	DBY	and	with	UserB	in
database	DBZ.

LoginX	executes	a	SELECT	statement	in	the	current	database:

USE	DBY
SELECT	*	FROM	DBY..TableX

Because	LoginX	is	associated	with	UserA	in	DBY,	SQL	Server	first	looks	for
DBY.UserA.TableX.	If	there	is	no	table	with	this	name,	SQL	Server	looks	for	a
table	DBY.dbo.TableX.

In	the	next	example,	LoginX	executes	a	SELECT	statement	on	a	table	not	in	the
current	database:

USE	DBY
SELECT	*	FROM	DBZ..TableY

Because	LoginX	is	associated	with	UserB	in	database	DBZ,	SQL	Server	first
looks	for	DBZ.UserB.TableY.	If	there	is	no	table	with	this	name,	SQL	Server
then	looks	for	a	table	DBZ.dbo.TableY.

Note		SQL	Server	does	not	try	to	deduce	the	owner	of	remote	tables	based	on	the
current	login.	To	ensure	that	distributed	queries	execute	properly,	use	fully
qualified	names.

The	visibility	for	stored	procedures	that	begin	with	sp_	differs	from	the	visibility
for	regular	stored	procedures.	For	more	information,	see	CREATE
PROCEDURE.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Delimited	Identifiers
An	identifier	that	complies	with	all	the	rules	for	the	format	of	identifiers	can	be
used	with	or	without	delimiters.	An	identifier	that	does	not	comply	with	the	rules
for	the	format	of	regular	identifiers	must	always	be	delimited.

Delimited	identifiers	are	used	in	these	situations:

When	reserved	words	are	used	for	object	names	or	portions	of	object
names.

It	is	recommended	that	reserved	keywords	not	be	used	as	object	names.
Databases	upgraded	from	earlier	versions	of	Microsoft®	SQL	Server™
may	contain	identifiers	that	include	words	not	reserved	in	the	earlier
version,	but	are	reserved	words	for	SQL	Server	2000.	You	can	refer	to
the	object	using	delimited	identifiers	until	the	name	can	be	changed.

When	using	characters	not	listed	as	qualified	identifiers.

SQL	Server	allows	any	character	in	the	current	code	page	to	be	used	in
a	delimited	identifier;	however,	indiscriminate	use	of	special	characters
in	an	object	name	may	make	SQL	statements	and	scripts	difficult	to
read	and	maintain.

Types	of	delimiters	used	in	Transact-SQL:

Note		Delimiters	are	for	identifiers	only.	Delimiters	cannot	be	used	for
keywords,	whether	or	not	they	are	marked	as	reserved	in	SQL	Server.

Quoted	identifiers	are	delimited	by	double	quotation	marks	("):
SELECT	*	FROM	"Blanks	in	Table	Name"

Bracketed	identifiers	are	delimited	by	brackets	([]):
SELECT	*	FROM	[Blanks	In	Table	Name]

Quoted	identifiers	are	valid	only	when	the	QUOTED_IDENTIFIER	option	is	set
to	ON.	By	default,	the	Microsoft	OLE	DB	Provider	for	SQL	Server	and	SQL
Server	ODBC	driver	set	QUOTED_IDENTIFIER	ON	when	they	connect.	DB-
Library	does	not	set	QUOTED_IDENTIFIER	ON	by	default.	Regardless	of	the

interface	used,	individual	applications	or	users	may	change	the	setting	at	any
time.	SQL	Server	provides	a	number	of	ways	to	specify	this	option.	For	example,
in	SQL	Server	Enterprise	Manager	and	SQL	Query	Analyzer,	the	option	can	be
set	in	a	dialog	box.	In	Transact-SQL,	the	option	can	be	set	at	various	levels	using
SET	QUOTED_IDENTIFIER,	the	quoted	identifier	option	of	sp_dboption,	or
the	user	options	option	of	sp_configure.

When	QUOTED_IDENTIFIER	is	ON,	SQL	Server	follows	the	SQL-92	rules	for
the	use	of	double	quotation	marks	and	the	single	quotation	mark	(')	in	SQL
statements:

Double	quotation	marks	can	be	used	only	to	delimit	identifiers.	They
cannot	be	used	to	delimit	character	strings.

To	maintain	compatibility	with	existing	applications,	SQL	Server	does
not	fully	enforce	this	rule.	Character	strings	can	be	enclosed	in	double
quotation	marks	if	the	string	does	not	exceed	the	length	of	an	identifier;
this	practice	is	not	recommended.

Single	quotation	marks	must	be	used	to	enclose	character	strings.	They
cannot	be	used	to	delimit	identifiers.

If	the	character	string	contains	an	embedded	single	quotation	mark,
insert	an	additional	single	quotation	mark	in	front	of	the	embedded
mark:

SELECT	*	FROM	"My	Table"
WHERE	"Last	Name"	=	'O''Brien'

When	QUOTED_IDENTIFIER	is	OFF,	SQL	Server	follows	these	rules	for	the
use	of	single	and	double	quotation	marks:

Quotation	marks	cannot	be	used	to	delimit	identifiers.	Instead,	use
brackets	as	delimiters.

Single	or	double	quotation	marks	can	be	used	to	enclose	character
strings.

If	double	quotation	marks	are	used,	embedded	single	quotation	marks
do	not	have	to	be	denoted	by	two	single	quotation	marks:

SELECT	*	FROM	[My	Table]
WHERE	[Last	Name]	=	"O'Brien"

Delimiters	in	brackets	can	always	be	used,	regardless	of	the	setting	of
QUOTED_IDENTIFIER.

Rules	for	Delimited	Identifiers
The	rules	for	the	format	of	delimited	identifiers	are:

1.	 Delimited	identifiers	can	contain	the	same	number	of	characters	as
regular	identifiers	(from	1	through	128	characters,	not	including	the
delimiter	characters).	Local	temporary	table	identifiers	can	be	a
maximum	of	116	characters.

2.	 The	body	of	the	identifier	can	contain	any	combination	of	characters	in
the	current	code	page	except	the	delimiting	characters	themselves.	For
example,	delimited	identifiers	can	contain	spaces,	any	characters	valid
for	regular	identifiers,	and	any	of	the	following	characters:

tilde	(~) hyphen	(-)
exclamation	point	(!) left	brace	({)
percent	(%) right	brace	(})
caret	(^) apostrophe	(')
ampersand	(&) period	(.)
left	parenthesis	(() backslash	(\)
right	parenthesis	()) accent	grave	(`)

These	examples	use	quoted	identifiers	for	table	names	and	column	names.	Both
methods	for	specifying	delimited	identifiers	are	shown:

SET	QUOTED_IDENTIFIER	ON
GO
CREATE	TABLE	"$Employee	Data"
(

	"^First	Name"			varchar(25)	NOT	NULL,
	"^Last	Name"			varchar(25)	NOT	NULL,
	"^Dept	ID"			int
)
--	INSERT	statements	go	here.
SET	QUOTED_IDENTIFIER	OFF
GO
CREATE	TABLE	[^$Employee	Data]
(
	[^First	Name]			varchar(25)	NOT	NULL,
	[^Last	Name]			varchar(25)	NOT	NULL,
	[^Dept	ID]			int
)
--	INSERT	statements	go	here.

After	the	$Employee	Data	and	^$Employee	Data	tables	are	created	and	data	is
entered,	rows	can	be	retrieved:

SET	QUOTED_IDENTIFIER	ON
GO
SELECT	*	
FROM	"$Employee	Data"
SET	QUOTED_IDENTIFIER	OFF
GO
--	Or
SELECT	*
FROM	[^$Employee	Data]

In	this	example,	a	table	named	table	contains	columns	tablename,	user,	select,
insert,	and	so	on.	Because	TABLE,	SELECT,	INSERT,	UPDATE,	and	DELETE
are	reserved	keywords,	the	identifiers	must	be	delimited	each	time	the	objects
are	accessed.

SET	QUOTED_IDENTIFIER	ON
GO

CREATE	TABLE	"table"
(
	tablename	char(128)	NOT	NULL,
	"USER"				char(128)	NOT	NULL,
	"SELECT"		char(128)	NOT	NULL,
	"INSERT"		char(128)	NOT	NULL,
	"UPDATE"		char(128)	NOT	NULL,
	"DELETE"		char(128)	NOT	NULL
)

If	the	SET	QUOTED_IDENTIFIER	option	is	not	ON,	the	table	and	columns
cannot	be	accessed	unless	bracket	delimiters	are	used.

SET	QUOTED_IDENTIFIER	OFF
GO
SELECT	*	
FROM	"table"

Here	is	the	result	set:

Msg	170,	Level	15,	State	1
Line	1:	Incorrect	syntax	near	'table'.

Here	is	the	result	set	(using	bracket	delimiters):

SET	QUOTED_IDENTIFIER	OFF
GO
SELECT	*	
FROM	[table]

Delimiting	Identifiers	with	Multiple	Parts
When	using	qualified	object	names	you	may	have	to	delimit	more	than	one	of
the	identifiers	that	make	up	the	object	name.	Each	identifier	must	be	delimited
individually,	for	example:

/*	SQL-92	quoted	identifier	syntax	*/

SELECT	*
FROM	"My	DB"."My#UserID"."My.Table"

-Or-

/*	Transact-SQL	bracketed	identifier	syntax	*/
/*	Not	available	in	SQL	Server	6.5	or	earlier	*/
SELECT	*
FROM	[My	DB].[My#UserID].[My.Table]

There	are	some	special	rules	regarding	how	you	delimit	multi-part	stored
procedure	names	in	the	ODBC	CALL	statement.	For	more	information,	see
Calling	a	Stored	Procedure.

Using	Identifiers	as	Parameters	in	SQL	Server
Many	system	stored	procedures,	functions,	and	DBCC	statements	take	object
names	as	parameters.	Some	of	these	parameters	accept	multipart	object	names,
while	others	accept	only	single-part	names.	Whether	a	single-part	or	multipart
name	is	expected	determines	how	a	parameter	is	parsed	and	used	internally	by
SQL	Server.

Single-part	Parameter	Names
If	the	parameter	is	a	single-part	identifier,	the	name	can	be	specified:

Without	quotation	marks	or	delimiters.

Enclosed	in	single	quotation	marks.

Enclosed	in	double	quotation	marks.

Enclosed	in	brackets.

For	single-part	names,	the	string	inside	the	single	quotation	marks	represents	the
object	name.	If	delimiters	are	used	inside	single	quotation	marks,	the	delimiter

JavaScript:hhobj_1.Click()

characters	are	treated	as	part	of	the	name.

If	the	name	contains	a	period	or	another	character	that	is	not	part	of	the	character
set	defined	for	regular	identifiers,	you	must	enclose	the	object	name	in	single
quotation	marks,	double	quotation	marks,	or	brackets.

Multipart	Parameter	Names
Multipart	names	are	qualified	names	that	include	the	database	or	owner	name	in
addition	to	the	object	name.	SQL	Server	requires	that	when	a	multipart	name	is
used	as	a	parameter,	the	entire	string	that	constitutes	the	multipart	name	must	be
enclosed	in	a	set	of	single	quotation	marks.

EXEC	MyProcedure	@name	=	'dbo.Employees'

If	individual	name	parts	require	delimiters,	each	part	of	the	name	should	be
delimited	separately	as	required.	For	example,	if	a	name	part	contains	a	period,
double	quotation	mark,	or	left	or	right	bracket,	use	brackets	or	double	quotation
marks	to	delimit	the	part.	Enclose	the	complete	name	in	single	quotation	marks.

For	example,	the	table	name,	tab.one,	contains	a	period.	To	prevent	the	name
from	being	interpreted	as	a	three-part	name,	dbo.tab.one,	delimit	the	table	name
part.

EXEC	sp_help	'dbo.[tab.one]'

This	example	shows	the	same	table	name	delimited	with	double	quotation
marks.

SET	QUOTED_IDENTIFIER	ON	
GO	
EXEC	sp_help	'dbo."tab.one"'
GO	

This	table	lists	some	of	the	Transact-SQL	functions,	DBCC	statements,	and
system	stored	procedures	that	use	multipart	names.

Function	or	stored	procedure	name Parameter	name
COL_LENGTH table

DBCC	CHECKIDENT table_name
DBCC	CHECKTABLE table_name
DBCC	DBREINDEX database.owner.table_name
DBCC	SHOW_STATISTICS table
DBCC	TEXTALLOC table_name
DBCC	UPDATEUSAGE table_name
IDENT_INCR table_or_view
IDENT_SEED table_or_view
INDEX_COL table
OBJECT_ID object
sp_addextendedproc procedure
sp_autostats table_name
sp_bindefault default

object_name
sp_bindrule rule

object_name
sp_changeobjectowner object
sp_depends object
sp_dropextendedproc procedure
sp_fulltext_column qualified_table_name
sp_fulltext_table qualified_table_name
sp_help name
sp_helpconstraint table
sp_help_fulltext_columns table_name
sp_help_fulltext_columns_cursor table_name
sp_help_fulltext_tables table_name
sp_help_fulltext_tables_cursor table_name
sp_helpindex name
sp_helprotect object_statement
sp_helptext name
sp_helptrigger table
sp_procoption procedure
sp_recompile table

sp_rename object_name

sp_spaceused objname
sp_tableoption table
sp_unbindefault object_name
sp_unbindrule object_name

See	Also

ALTER	DATABASE

ALTER	PROCEDURE

ALTER	TABLE

ALTER	TRIGGER

ALTER	VIEW

CREATE	DATABASE

CREATE	DEFAULT

CREATE	PROCEDURE

CREATE	RULE

CREATE	TABLE

CREATE	TRIGGER

Reserved	Keywords

SET	QUOTED_IDENTIFIER

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

Accessing	and	Changing	Relational	Data

Using	Data	Types
Objects	that	contain	data	have	an	associated	data	type	that	defines	the	kind	of
data	(character,	integer,	binary,	and	so	on)	the	object	can	contain.	The	following
objects	have	data	types:

Columns	in	tables	and	views.

Parameters	in	stored	procedures.

Variables.

Transact-SQL	functions	that	return	one	or	more	data	values	of	a	specific
data	type.

Stored	procedures	that	have	a	return	code,	which	always	has	an	integer
data	type.

Assigning	a	data	type	to	an	object	defines	four	attributes	of	the	object:

The	kind	of	data	contained	by	the	object.	For	example,	character,
integer	or	binary.

The	length	of	the	stored	value,	or	its	size.

The	length	of	an	image,	binary,	and	varbinary	data	type	is	defined	in
bytes.	The	length	of	any	of	the	numeric	data	types	is	the	number	of
bytes	required	to	hold	the	number	of	digits	allowed	for	that	data	type.
The	length	of	the	character	string	and	Unicode	data	types	is	defined	in
characters.

The	precision	of	the	number	(numeric	data	types	only).

The	precision	is	the	number	of	digits	the	number	can	contain.	For
example,	a	smallint	object	can	hold	a	maximum	of	5	digits;	it	has	a

precision	of	5.

The	scale	of	the	number	(numeric	data	types	only).

The	scale	is	the	number	of	digits	that	can	be	stored	to	the	right	of	the
decimal	point.	For	example,	an	int	object	cannot	accept	a	decimal	point
and	has	a	scale	of	0.	A	money	object	can	have	a	maximum	of	4	digits	to
the	right	of	the	decimal	point	and	has	a	scale	of	4.

If	an	object	is	defined	as	money,	it	can	contain	a	maximum	of	19	digits,	4	of
which	can	be	to	the	right	of	the	decimal.	The	object	uses	8	bytes	to	store	the
data.	The	money	data	type	therefore	has	a	precision	of	19,	a	scale	of	4,	and	a
length	of	8.

Transact-SQL	has	these	base	data	types.

bigint Binary bit char cursor
datetime Decimal float image int
money Nchar ntext nvarchar real
smalldatetime Smallint smallmoney text timestamp
tinyint Varbinary Varchar uniqueidentifier 	

All	data	stored	in	Microsoft®	SQL	Server™	must	be	compatible	with	one	of
these	base	data	types.	The	cursor	data	type	is	the	only	base	data	type	that	cannot
be	assigned	to	a	table	column.	It	can	be	used	only	for	variables	and	stored
procedure	parameters.

Several	base	data	types	have	synonyms	(for	example,	rowversion	is	a	synonym
for	timestamp,	and	national	character	varying	is	a	synonym	for	nvarchar).
For	more	information	about	the	behavior	of	synonyms,	see	Data	Type
Synonyms.

User-defined	data	types	can	also	be	created,	for	example:

--	Create	a	birthday	datetype	that	allows	nulls.
EXEC	sp_addtype	birthday,	datetime,	'NULL'
GO
--	Create	a	table	using	the	new	data	type.

JavaScript:hhobj_1.Click()

CREATE	TABLE	employee

emp_id char(5)

emp_first_name char(30)

emp_last_name char(40)

emp_birthday birthday

User-defined	data	types	are	always	defined	in	terms	of	a	base	data	type.	They
provide	a	mechanism	for	applying	a	name	to	a	data	type	that	is	more	descriptive
of	the	types	of	values	to	be	held	in	the	object.	This	can	make	it	easier	for	a
programmer	or	database	administrator	to	understand	the	intended	use	of	any
object	defined	with	the	data	type.

Instances	of	SQL	Server	include	a	user-defined	data	type	named	sysname.
sysname	is	used	for	table	columns,	variables,	and	stored	procedure	parameters
that	store	object	names.	The	exact	definition	of	sysname	is	related	to	the	rules
for	identifiers;	therefore,	it	can	vary	between	instances	of	SQL	Server.	sysname
is	functionally	equivalent	to	nvarchar(128).	SQL	Server	version	6.5	or	earlier
only	supports	only	smaller	identifiers;	thus,	in	earlier	versions,	sysname	is
defined	as	varchar(30).

See	Also

CREATE	TABLE

Data	Types

Designing	Tables

sp_addtype

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Using	Binary	Data
The	binary	and	varbinary	data	types	store	strings	of	bits.	Although	character
data	is	interpreted	based	on	the	Microsoft®	SQL	Server™	2000	code	page,
binary	and	varbinary	data	is	simply	a	stream	of	bits.	binary	and	varbinary
data	can	be	a	maximum	of	8,000	bytes.

Binary	constants	have	a	leading	0x	(a	zero	and	the	lowercase	letter	x)	followed
by	the	hexadecimal	representation	of	the	bit	pattern.	For	example,	0x2A
specifies	the	hexadecimal	value	of	2A,	which	is	equivalent	to	a	decimal	value	of
42	or	a	one-byte	bit	pattern	of	00101010.

Use	binary	data	when	storing	hexadecimal	values	such	as	a	security
identification	number	(SID),	a	GUID	(using	the	uniqueidentifier	data	type),	or	a
complex	number	that	can	be	stored	using	hexadecimal	shorthand.

This	Transact-SQL	example	stores	a	SID	and	hexadecimal	literal:

USE	pubs
CREATE	TABLE	mycustomertable
(
	user_login	DEFAULT	SUSER_SID,	
	data_value
)

INSERT	mycustomertable	(data_value)
			VALUES	(0x4F)

See	Also

Binary	Data

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	char	and	varchar	Data
The	char	and	varchar	data	types	store	data	composed	of:

Uppercase	or	lowercase	characters	such	as	a,	b,	and	C.

Numerals	such	as	1,	2,	or	3.

Special	characters	such	as	the	"at"	sign	(@),	ampersand	(&),	and
exclamation	point	(!).

char	or	varchar	data	can	be	a	single	character,	or	a	string	with	a	maximum	of
8,000	characters.

Each	char	and	varchar	data	value	has	a	collation.	Collations	define	attributes
such	as	the	bit	patterns	used	to	represent	each	character,	comparison	rules,	and
sensitivity	to	case	or	accenting.	Each	database	has	a	default	collation.	When	a
column	is	defined,	or	a	constant	specified,	they	are	assigned	the	default	collation
of	the	database	unless	you	assign	a	specific	collation	using	the	COLLATE
clause.	When	two	char	or	varchar	values	having	different	collations	are
combined	or	compared,	collation	precedence	rules	determine	which	collation	is
used	for	the	operation.

Character	constants	must	be	enclosed	in	single	quotation	marks	(')	or	double
quotation	marks	(").	Enclosing	a	character	constant	in	single	quotation	marks	is
recommended.	Enclosing	a	character	constant	in	double	quotation	marks	is
sometimes	not	allowed	when	the	QUOTED	IDENTIFIER	option	is	set	to	ON.

This	Transact-SQL	example	sets	a	character	variable	to	a	value:

DECLARE	@MyCharVar	CHAR(25)
SET	@MyCharVar	=	'Ricardo	Adocicados'

When	using	single	quotation	marks	to	delimit	a	character	constant	that	contains
an	embedded	single	quotation	mark,	use	two	single	quotation	marks	to	represent
the	embedded	single	quotation	mark,	for	example:

SET	@MyCharVar	=	'O''Leary'

If	the	data	to	be	stored	is	longer	than	the	number	of	characters	allowed,	the	data
is	truncated.	For	example,	if	a	column	is	defined	as	char(10)	and	the	value	"This
is	a	really	long	character	string"	is	stored	into	the	column,	Microsoft®	SQL
Server™	truncates	the	character	string	to	"This	is	a".

The	char	data	type	is	a	fixed-length	data	type	when	the	NOT	NULL	clause	is
specified.	If	a	value	shorter	than	the	length	of	the	column	is	inserted	into	a	char
NOT	NULL	column,	the	value	is	right-padded	with	blanks	to	the	size	of	the
column.	For	example,	if	a	column	is	defined	as	char(10)	and	the	data	to	be
stored	is	"music",	SQL	Server	stores	this	data	as	"music_____",	where	"_"
indicates	a	blank.

If	ANSI_PADDING	is	ON	when	a	char	NULL	column	is	created,	it	behaves	the
same	as	a	char	NOT	NULL	column:	values	are	right-padded	to	the	size	of	the
column.	If	ANSI_PADDING	is	OFF	when	a	char	NULL	column	is	created,	it
behaves	like	a	varchar	column	with	ANSI_PADDING	set	OFF:	trailing	blanks
are	truncated.

The	varchar	data	type	is	a	variable-length	data	type.	Values	shorter	than	the	size
of	the	column	are	not	right-padded	to	the	size	of	the	column.	If	the
ANSI_PADDING	option	was	set	to	OFF	when	the	column	was	created,	any
trailing	blanks	are	truncated	from	character	values	stored	in	the	column.	If
ANSI_PADDING	was	set	ON	when	the	column	was	created,	trailing	blanks	are
not	truncated.

The	CHAR	function	can	be	used	to	convert	an	integer	code	to	an	ASCII
character.	This	is	useful	when	trying	to	specify	control	characters,	such	as	a
carriage	return	or	line	feed.	Use	CHAR(13)	and	CHAR(10)	to	put	a	carriage
return	and	new	line	in	a	character	string:

PRINT	'First	line.'	+	CHAR(13)	+	CHAR(10)	+	'Second	line.'

The	way	the	bit	patterns	stored	in	the	bytes	of	a	character	string	are	interpreted	is
based	on	the	Microsoft	SQL	Server	code	page	specified	during	Setup.	A	char	or
varchar	object	can	contain	any	character	in	the	SQL	Server	code	page.	For	more
information,	see	Collations.

DB-Library	applications	and	applications	using	the	SQL	Server	ODBC	drivers

JavaScript:hhobj_1.Click()

from	SQL	Server	version	6.5	or	earlier	support	only	a	maximum	of	255	bytes	of
character	data.	If	these	applications	attempt	to	retrieve	character	parameters	of
SQL	Server	version	7.0	or	later,	or	result	set	columns	containing	more	than	255
bytes	of	data,	the	character	data	is	truncated	at	255	bytes.

See	Also

Character	Data

Collations

Collation	Precedence

Data	Types

SET	ANSI_PADDING

sp_dbcmptlevel

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Using	Date	and	Time	Data
Microsoft®	SQL	Server™	2000	has	the	datetime	and	smalldatetime	data	types
to	store	date	and	time	data.

There	are	no	separate	time	and	date	data	types	for	storing	only	times	or	only
dates.	If	only	a	time	is	specified	when	setting	a	datetime	or	smalldatetime
value,	the	date	defaults	to	January	1,	1900.	If	only	a	date	is	specified,	the	time
defaults	to	12:00	A.M.	(Midnight).

On	datetime	data	you	can	perform	operations	such	as:

Entering	new	or	changing	existing	dates.

Performing	date	and	time	calculations,	such	as	adding	or	subtracting
dates.	For	more	information	about	date	arithmetic,	see	+	(Add)	and	-
(Subtract).	

Searching	for	a	particular	date	and/or	time.

You	can	perform	some	arithmetic	calculations	on	datetime	data	with	the	system
date	functions.	For	more	information,	see	Functions.

Here	are	some	guidelines	when	using	date	and	time	data:

To	search	for	an	exact	match	on	both	date	and	time,	use	an	equal	sign
(=).	Microsoft	SQL	Server	returns	date	and	time	values	exactly
matching	the	month,	day,	and	year,	and	at	the	precise	time	of
12:00:00:000	A.M.	(default).

To	search	for	a	partial	date	or	time	value,	use	the	LIKE	operator.	SQL
Server	first	converts	the	dates	to	datetime	format	and	then	to	varchar.
Because	the	standard	display	formats	do	not	include	seconds	or
milliseconds,	you	cannot	search	for	them	with	LIKE	and	a	matching
pattern,	unless	you	use	the	CONVERT	function	with	the	style	parameter
set	to	9	or	109.	For	more	information	about	searching	for	partial	dates
or	times,	see	LIKE.	

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

SQL	Server	evaluates	datetime	constants	at	run	time.	A	date	string	that
works	for	the	date	formats	expected	by	one	language	may	be
unrecognizable	if	the	query	is	executed	by	a	connection	using	a
different	language	and	date	format	setting.	For	example,	this	view
works	correctly	for	connections	made	with	the	language	set	to	U.S.
English,	but	not	for	connections	made	using	other	languages:
CREATE	VIEW	USA_Dates	AS
SELECT	*
FROM	Northwind.dbo.Orders
WHERE	OrderDate	<	'May	1,	1997'

When	you	use	datetime	constants	in	queries	executed	by	connections
using	different	language	settings,	ensure	that	the	dates	are	acceptable	for
all	the	language	settings.	The	same	care	must	be	taken	with	datetime
constants	in	permanent	objects	in	international	databases,	such	as	table
constraints	and	view	WHERE	clauses.	For	more	information	about	date
formats	interpreted	the	same	by	all	language	settings,	see	Writing
International	Transact-SQL	Statements.

SQL	Server	recognizes	date	and	time	data	enclosed	in	single	quotation	marks	(')
in	these	formats:

Alphabetic	date	formats	(for	example,	'April	15,	1998')

Numeric	date	formats	(for	example,	'4/15/1998',	'April	15,	1998')

Unseparated	string	formats	(for	example,	'19981207',	'December	12,
1998')

Accessing	and	Changing	Relational	Data

Alphabetic	Date	Format
Microsoft®	SQL	Server™	2000	allows	you	to	specify	date	data	with	a	month
specified	as	the	full	month	name	(for	example,	April)	or	the	month	abbreviation
(for	example,	Apr)	given	in	the	current	language;	commas	are	optional	and
capitalization	(case)	is	ignored.

Here	are	some	guidelines	for	the	use	of	alphabetic	date	formats:

Enclose	the	date	and	time	data	in	single	quotation	marks	(').

These	are	the	valid	alphabetic	formats	for	SQL	Server	date	data
(characters	enclosed	in	brackets	are	optional):
Apr[il]	[15][,]	1996	
Apr[il]	15[,]	[19]96	
Apr[il]	1996	[15]

[15]	Apr[il][,]	1996	
15	Apr[il][,][19]96	
15	[19]96	apr[il]
[15]	1996	apr[il]

1996	APR[IL]	[15]
1996	[15]	APR[IL]

If	you	specify	only	the	last	two	digits	of	the	year,	values	less	than	the
last	two	digits	of	the	value	of	the	two	digit	year	cutoff	configuration
option	are	in	the	same	century	as	the	cutoff	year.	Values	greater	than	or
equal	to	the	value	of	this	option	are	in	the	century	that	precedes	the
cutoff	year.	For	example,	if	two	digit	year	cutoff	is	2050	(default),	25
is	interpreted	as	2025	and	50	is	interpreted	as	1950.	To	avoid	ambiguity,
use	four-digit	years.

If	the	day	is	missing,	the	first	day	of	the	month	is	supplied.

The	SET	DATEFORMAT	session	setting	is	not	applied	when	you
specify	the	month	in	alphabetic	form.

See	Also

Date	and	Time	Data

datetime	and	smalldatetime

LIKE

SET	DATEFORMAT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Numeric	Date	Format
Microsoft®	SQL	Server™	2000	allows	you	to	specify	date	data	with	a	numeric
month	specified.	For	example,	5/20/97	represents	the	twentieth	day	of	May,
1997.	When	using	numeric	date	format,	specify	the	month,	day,	and	year	in	a
string	with	slash	marks	(/),	hyphens	(-),	or	periods	(.)	as	separators.	This	string
must	appear	in	the	following	form:

number	separator	number	separator	number	[time]	[time]

These	numeric	formats	are	valid:

[0]4/15/[19]96	--	(mdy)
[0]4-15-[19]96	--	(mdy)
[0]4.15.[19]96	--	(mdy)
[04]/[19]96/15	--	(myd)

15/[0]4/[19]96	--	(dmy)
15/[19]96/[0]4	--	(dym)
[19]96/15/[0]4	--	(ydm)
[19]96/[04]/15	--	(ymd)

When	the	language	is	set	to	us_english,	the	default	order	for	the	date	is	mdy.
You	can	change	the	date	order	with	the	SET	DATEFORMAT	statement,	which
can	also	affect	the	date	order,	depending	on	the	language.

The	setting	for	SET	DATEFORMAT	determines	how	date	values	are	interpreted.
If	the	order	does	not	match	the	setting,	the	values	are	not	interpreted	as	dates
(because	they	are	out	of	range),	or	the	values	are	misinterpreted.	For	example,
12/10/08	can	be	interpreted	as	one	of	six	dates,	depending	on	the
DATEFORMAT	setting.

See	Also

Date	and	Time	Data

JavaScript:hhobj_1.Click()

datetime	and	smalldatetime

SET	DATEFORMAT

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Unseparated	String	Format
Microsoft®	SQL	Server™	2000	allows	you	to	specify	date	data	as	an
unseparated	string.	The	date	data	can	be	specified	with	four,	six,	or	eight	digits,
an	empty	string,	or	a	time	value	without	a	date	value.

The	SET	DATEFORMAT	session	setting	does	not	apply	to	all-numeric	date
entries	(numeric	entries	without	separators).	Six-	or	eight-digit	strings	are	always
interpreted	as	ymd.	The	month	and	day	must	always	be	two	digits.

This	is	the	valid	unseparated	string	format:

[19]960415

A	string	of	only	four	digits	is	interpreted	as	the	year.	The	month	and	date	are	set
to	January	1.	When	specifying	only	four	digits,	you	must	include	the	century.

See	Also

Date	and	Time	Data

datetime	and	smalldatetime

SET	DATEFORMAT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Time	Formats
Microsoft®	SQL	Server™	2000	recognizes	the	following	formats	for	time	data.
Enclose	each	format	with	single	quotation	marks	(').

14:30
14:30[:20:999]
14:30[:20.9]
4am
4	PM
[0]4[:30:20:500]AM

You	can	specify	a	suffix	of	AM	or	PM	to	indicate	if	the	time	value	is	before	or
after	12	noon.	The	case	of	AM	or	PM	is	ignored.

Hours	can	be	specified	using	either	a	12-hour	or	24-hour	clock.	This	is	how	the
hour	values	are	interpreted:

The	hour	value	of	0	represents	the	hour	after	midnight	(AM),	regardless
of	whether	or	not	you	specify	AM.	You	cannot	specify	PM	when	the
hour	equals	0.

Hour	values	from	1	through	11	represent	the	hours	before	noon	if
neither	AM	nor	PM	is	specified.	They	also	represent	the	hours	before
noon	when	AM	is	specified.	They	represent	hours	after	noon	if	PM	is
specified.

The	hour	value	12	represents	the	hour	that	starts	at	noon	if	neither	AM
nor	PM	is	specified.	If	AM	is	specified,	it	represents	the	hour	that	starts
at	midnight.	If	PM	is	specified,	it	represents	the	hour	that	starts	at	noon.
For	example:	12:01	is	1	minute	after	noon,	as	is	12:01	PM,	while	12:01
AM	is	1	minute	after	midnight.	Specifying	12:01	AM	is	the	same	as
specifying	00:01	or	00:01	AM.

Hour	values	from	13	through	23	represents	hours	after	noon	if	AM	or
PM	is	specified.	They	also	represent	the	hours	after	noon	when	PM	is
specified.	You	cannot	specify	AM	when	the	hour	value	is	from	13
through	23.

An	hour	value	of	24	is	not	valid,	use	12:00	AM	or	00:00	to	represent
midnight.

Milliseconds	can	be	preceded	by	either	a	colon	(:)	or	a	period	(.).	If	preceded	by
a	colon,	the	number	means	thousandths-of-a-second.	If	preceded	by	a	period,	a
single	digit	means	tenths-of-a-second,	two	digits	mean	hundredths-of-a-second,
and	three	digits	mean	thousandths-of-a-second.	For	example,	12:30:20:1
indicates	twenty	and	one-thousandth	seconds	past	12:30;	12:30:20.1	indicates
twenty	and	one-tenth	seconds	past	12:30.

See	Also

Date	and	Time	Data

datetime	and	smalldatetime

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

ODBC	Datetime	Format
The	ODBC	API	defines	escape	sequences	to	represent	date	and	time	values,
which	ODBC	calls	timestamp	data.	This	ODBC	timestamp	format	is	also
supported	by	the	OLE	DB	language	definition	(DBGUID-SQL)	supported	by	the
Microsoft	OLE	DB	Provider	for	SQL	Server.	Applications	using	the	ADO,	OLE
DB,	and	ODBC-based	APIs	can	use	this	ODBC	timestamp	format	to	represent
dates	and	times.

ODBC	timestamp	escape	sequences	are	of	the	format:

{	literal_type	'constant_value'	}

literal_type

Specifies	the	type	of	the	escape	sequence.	Timestamps	have	three
literal_type	specifiers:

d	=	date	only

t	=	time	only

ts	=	timestamp	(time	+	date)

'constant_value'

Is	the	value	of	the	escape	sequence.	constant_value	must	follow	these
formats	for	each	literal_type.

literal_type constant_value	format
D yyyy-mm-dd
T hh:mm:ss[.fff]
Ts yyyy-mm-dd	hh:mm:ss[.fff]

These	are	examples	of	ODBC	time	and	date	constants:

{	ts	'1998-05-02	01:23:56.123'	}

{	d	'1990-10-02'	}

{	t	'13:33:41'	}

Do	not	confuse	the	ODBC	and	OLE	DB	timestamp	data	type	name	with	the
Transact-SQL	timestamp	data	type	name.	The	ODBC	and	OLE	DB	timestamp
data	type	records	dates	and	times.	The	Transact-SQL	timestamp	data	type	is	a
binary	data	type	with	no	time-related	values.

Accessing	and	Changing	Relational	Data

Using	Integer	Data
Integers	are	whole	numbers	and	contain	no	decimals	or	fractions.

Microsoft®	SQL	Server™	2000	has	the	following	sizes	of	integer	data	types:

bigint

Has	a	length	of	8	bytes	and	stores	numbers	from	
–2^63	(-9,223,372,036,854,775,808)	through	2^63-1
(9,223,372,036,854,775,807).

integer	or	int

Has	a	length	of	4	bytes,	and	stores	numbers	from	-2,147,483,648
through	2,147,483,647.

smallint

Has	a	length	of	2	bytes,	and	stores	numbers	from	-32,768	through
32,767.

tinyint

Has	a	length	of	1	byte,	and	stores	numbers	from	0	through	255.

Integer	objects	and	expressions	can	be	used	with	any	mathematical	operations.
Any	fractions	generated	by	these	operations	are	truncated,	not	rounded.	For
example,	SELECT	5/3	returns	a	value	of	1,	not	the	value	2,	which	would	return
if	the	fractional	result	were	rounded.

The	integer	data	types	are	the	only	ones	that	can	be	used	with	the	IDENTITY
property,	which	is	an	automatically	incrementing	number.	The	IDENTITY
property	is	typically	used	to	automatically	generate	unique	identification
numbers	or	primary	keys.

Integer	data	does	not	need	to	be	enclosed	in	single	quotation	marks	like
character	or	date	and	time	data.

See	Also

CAST	and	CONVERT

int,	bigint,	smallint,	and	tinyint

Numeric	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	bigint	Data
The	bigint	data	type	is	intended	for	use	in	cases	where	integer	values	might
exceed	the	range	supported	by	the	int	data	type.	For	compatibility,	the	int	data
type	remains	the	primary	integer	data	type	in	Microsoft®	SQL	Server™	2000.

Unless	explicitly	stated,	functions,	statements,	and	system	stored	procedures	that
accept	int	expressions	for	their	parameters	have	not	been	changed	to	support
implicit	conversion	of	bigint	expressions	to	those	parameters.	Thus,	SQL	Server
only	implicitly	converts	bigint	to	int	when	the	bigint	value	is	within	the	range
supported	by	the	int	data	type.	A	conversion	error	occurs	at	run	time	if	the	bigint
expression	contains	a	value	outside	the	range	supported	by	the	int	data	type.

bigint	in	Transact-SQL	Functions
Although	SQL	Server	sometimes	promotes	tinyint	or	smallint	values	to	int	data
type,	it	will	not	automatically	promote	tinyint,	smallint,	or	int	to	bigint.	For
example,	if	the	data	type	of	the	parameter	expression	is	tinyint	or	smallint,
certain	aggregate	functions	promote	the	data	type	of	the	return	value	to	an	int.
These	aggregate	functions	will	not	return	a	bigint	unless	the	parameter
expression	is	of	type	bigint.

When	you	specify	bigint	parameters	and	the	return	values	are	of	type	bigint,
you	may	use	the	following	Transact-SQL	functions.

ABS FLOOR POWER
AVG IDENTITY RADIANS
CEILING MAX ROUND
COALESCE MIN SIGN
DEGREES NULLIF SUM

When	you	reference	bigint	columns	or	variables,	but	you	are	not	looking	for
bigint	data	types	for	return	values,	you	may	use	these	functions.

@@IDENTITY ISNULL VARP
COL_LENGTH ISNUMERIC 	

DATALENGTH STDEV[P] 	

SQL	Server	provides	these	functions	specifically	for	use	with	bigint	values.

COUNT_BIG

Use	when	counting	the	number	of	items	in	a	group	if	the	value	exceeds	the
range	supported	by	the	int	data	type,	and	returns	bigint.	COUNT_BIG	is	like
the	COUNT	function	except	for	the	return	type.

ROWCOUNT_BIG

Use	when	counting	the	number	of	rows	affected	in	the	last	statement
executed	and	the	value	exceeds	the	range	supported	by	the	int	data	type.	This
function	is	similar	to	the	ROWCOUNT	function,	except	that
ROWCOUNT_BIG	returns	a	bigint	data	type.

bigint	in	Other	Transact-SQL	Elements
The	CAST	and	CONVERT	clauses	support	bigint.	These	clauses	apply	similar
conversion	rules	for	bigint	as	for	the	other	integer	data	types.	The	bigint	data
type	fits	above	int	and	below	smallmoney	in	the	data	type	precedence	chart.	For
more	information	about	bigint	conversions,	see	CAST	and	CONVERT.

When	using	the	CASE	expression,	you	will	get	a	result	of	type	bigint	if	the
result_expression	or	the	optional	else_result_expression	evaluate	to	bigint.

You	may	use	the	bigint	data	type	in	all	syntax	locations	where	integer	data	types
are	specified	in	these	Transact-SQL	statements:

ALTER	PROCEDURE

ALTER	TABLE

CREATE	PROCEDURE

CREATE	TABLE

JavaScript:hhobj_1.Click()

DECLARE	variable

In	addition,	the	SQL	Server	catalog	components	report	information	about	bigint
columns.

Specifying	bigint	Constants
Whole	number	constants	that	are	outside	the	range	supported	by	the	int	data	type
continue	to	be	interpreted	as	numeric,	with	a	scale	of	0	and	a	precision	sufficient
to	hold	the	value	specified.	For	example,	the	constant	3000000000	is	interpreted
as	numeric.	These	numeric	constants	are	implicitly	convertible	to	bigint	and
can	be	assigned	to	bigint	columns	and	variables:

CREATE	TABLE	BigintTable	(ColA	bigint)

INSERT	INTO	BigintTable	VALUES	(3000000000)

SELECT	*
FROM	BigintTable
WHERE	ColA	=	3000000000

You	can	also	cast	constants	to	bigint:

CAST(3000000000	AS	bigint)

To	get	a	bigint	value	into	an	sql_variant	column,	use	this	method:

CREATE	TABLE	VariantTable	(ColA	sql_variant)

--	Inserts	a	value	with	a	numeric	base	data	type.
INSERT	INTO	VariantTable	VALUES	(3000000000)
--	Inserts	a	value	with	a	bigint	base	data	type.
INSERT	INTO	VariantTable	VALUES	(CAST(3000000000	AS	bigint))

See	Also

CASE

JavaScript:hhobj_2.Click()

CAST	and	CONVERT

COUNT_BIG

int,	bigint,	smallint,	and	tinyint

Numeric	Data

sql_variant

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Using	decimal,	float,	and	real	Data
The	decimal	data	type	can	store	a	maximum	of	38	digits,	all	of	which	can	be	to
the	right	of	the	decimal	point.	The	decimal	data	type	stores	an	exact
representation	of	the	number;	there	is	no	approximation	of	the	stored	value.

The	two	attributes	that	define	decimal	columns,	variables,	and	parameters	are:

p

Specifies	the	precision,	or	the	number	of	digits	the	object	can	hold.

s

Specifies	the	scale,	or	the	number	of	digits	that	can	be	placed	to	the
right	of	the	decimal	point.

p	and	s	must	observe	the	rule:	0	<=	s	<=	p	<=	38.

The	default	maximum	precision	of	numeric	and	decimal	data	types	is	38.	In
Transact-SQL,	numeric	is	functionally	equivalent	to	the	decimal	data	type.

Use	the	decimal	data	type	to	store	numbers	with	decimals	when	the	data	values
must	be	stored	exactly	as	specified.

For	more	information	about	how	mathematical	operations	affect	the	precision
and	scale	of	the	result,	see	Precision,	Scale,	and	Length.

Using	float	and	real	Data
The	float	and	real	data	types	are	known	as	approximate	data	types.	The	behavior
of	float	and	real	follows	the	IEEE	754	specification	on	approximate	numeric
data	types.

Approximate	numeric	data	types	do	not	store	the	exact	values	specified	for	many
numbers;	they	store	an	extremely	close	approximation	of	the	value.	For	many
applications,	the	tiny	difference	between	the	specified	value	and	the	stored
approximation	is	not	noticeable.	At	times,	though,	the	difference	becomes
noticeable.	Because	of	the	approximate	nature	of	the	float	and	real	data	types,
do	not	use	these	data	types	when	exact	numeric	behavior	is	required,	such	as	in

JavaScript:hhobj_1.Click()

financial	applications,	in	operations	involving	rounding,	or	in	equality	checks.
Instead,	use	the	integer,	decimal,	money,	or	smallmoney	data	types.

Avoid	using	float	or	real	columns	in	WHERE	clause	search	conditions,
especially	the	=	and	<>	operators.	It	is	best	to	limit	float	and	real	columns	to	>
or	<	comparisons.

The	IEEE	754	specification	provides	four	rounding	modes:	round	to	nearest,
round	up,	round	down,	and	round	to	zero.	Microsoft®	SQL	Server™	uses	round
up.	All	are	accurate	to	the	guaranteed	precision	but	can	result	in	slightly	different
floating-point	values.	Because	the	binary	representation	of	a	floating-point
number	may	use	one	of	many	legal	rounding	schemes,	it	is	impossible	to	reliably
quantify	a	floating-point	value.

See	Also

Data	Types

Numeric	Data

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	Monetary	Data
Microsoft®	SQL	Server™	stores	monetary	data	(currency	values)	using	two	data
types:	money	and	smallmoney.	These	data	types	can	use	any	one	of	the
following	currency	symbols.

Currency	or	monetary	data	does	not	need	to	be	enclosed	in	single	quotation
marks	(').	However,	the	monetary	data	value	must	be	preceded	by	the
appropriate	currency	symbol.	For	example,	to	specify	100	English	pounds,	use
£100.

money	and	smallmoney	are	limited	to	four	decimal	points.	Use	the	decimal

data	type	if	more	decimal	points	are	required.

Use	a	period	to	separate	partial	monetary	units,	like	cents,	from	whole	monetary
units.	For	example,	2.15	specifies	2	dollars	and	15	cents.

Comma	separators	are	not	allowed	in	money	or	smallmoney	constants,	although
the	display	format	of	these	data	types	includes	comma	separators.	You	can
specify	the	comma	separators	only	in	character	strings	explicitly	cast	to	money
or	smallmoney,	for	example:

USE	Northwind
GO
CREATE	TABLE	TestMoney	(cola	INT	PRIMARY	KEY,	colb	MONEY)
GO
SET	NOCOUNT	ON
GO

--	The	following	three	INSERT	statements	work.
INSERT	INTO	TestMoney	VALUES	(1,	$123.45)
GO
INSERT	INTO	TestMoney	VALUES	(2,	$123123.45)
GO
INSERT	INTO	TestMoney	VALUES	(3,	CAST('$444,123.45'	AS	MONEY))
GO

--	This	INSERT	statement	gets	an	error	because	of	the	comma
--	separator	in	the	money	string.
INSERT	INTO	TestMoney	VALUES	(3,	$555,123.45)
GO
SET	NOCOUNT	OFF
GO
SELECT	*	FROM	TestMoney
GO	

See	Also

Data	Types

Monetary	Data

money	and	smallmoney

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	text	and	image	Data
Microsoft®	SQL	Server™	2000	stores	character	strings	longer	than	8,000
characters	and	binary	data	longer	than	8,000	bytes	in	special	data	types	named
text	and	image.	Unicode	strings	longer	than	4,000	characters	are	stored	in	the
ntext	data	type.

For	example,	a	large	text	file	(.txt)	of	customer	information	must	be	imported
into	your	SQL	Server	database.	This	data	should	be	stored	as	one	piece	of	data
rather	than	integrated	into	the	multiple	columns	of	your	data	tables.	You	can
create	a	column	with	the	text	data	type	for	this	purpose.	However,	if	you	must
store	company	logos	currently	stored	as	Tagged	Image	File	Format	(TIFF)
images	(.tif)	that	are	10	KB	each,	create	a	column	with	the	image	data	type.

If	the	textual	data	to	be	stored	is	in	Unicode	format,	use	the	ntext	data	type.	For
example,	a	form	letter	created	for	international	customers	is	likely	to	contain
international	spellings	and	characters	used	in	various	different	languages.	Store
this	data	in	an	ntext	column.

Each	text	and	ntext	data	value	has	a	collation.	Collations	define	attributes	such
as	comparison	rules	and	sensitivity	to	case	or	accenting.	The	collations	for	text
values	also	specify	a	code	page,	which	defines	the	bit	patterns	used	to	represent
each	character.	Each	ntext	value	uses	the	Unicode	code	page,	which	is	the	same
for	all	the	collations.	Each	database	has	a	default	collation.	When	a	text	or	ntext
column	is	created,	it	is	assigned	the	default	collation	of	the	database	unless	you
assign	a	specific	collation	using	the	COLLATE	clause.	When	two	text	or	ntext
values	having	different	collations	are	combined	or	compared,	collation
precedence	rules	determine	which	collation	is	used	for	the	operation.

Data	in	an	image	data	is	stored	as	a	string	of	bits	and	is	not	interpreted	by	SQL
Server.	Any	interpretation	of	the	data	in	an	image	column	must	be	made	by	the
application.	For	example,	an	application	could	store	data	in	an	image	column
using	a	BMP,	TIFF,	GIF,	or	JPEG	format.	The	application	that	reads	the	data
from	the	image	column	must	recognize	the	format	of	the	data	and	display	it
correctly.	All	an	image	column	does	is	provide	a	location	to	store	the	stream	of
bits	that	make	up	the	image	data	value.

Using	text	in	row	to	Store	text,	ntext,	and	image	Values
Usually,	text,	ntext,	or	image	strings	are	large	(a	maximum	of	2GB)	character	or
binary	strings	stored	outside	a	data	row.	The	data	row	contains	only	a	16-byte
text	pointer	that	points	to	the	root	node	of	a	tree	built	of	internal	pointers	that
map	the	pages	in	which	the	string	fragments	are	stored.

With	Microsoft	SQL	Server,	you	can	store	small	to	medium	text,	ntext,	and
image	values	in	a	data	row,	thereby	increasing	the	speed	of	queries	accessing
these	values.

When	the	text,	ntext,	or	image	string	is	stored	in	the	data	row,	SQL	Server	does
not	have	to	access	a	separate	page	or	set	of	pages	to	read	or	write	the	string.	This
makes	reading	and	writing	the	text,	ntext,	or	image	in-row	strings	about	as	fast
as	reading	or	writing	varchar,	nvarchar,	or	varbinary	strings.

To	store	text,	ntext,	or	image	strings	in	the	data	row,	enable	the	text	in	row
option	using	the	sp_tableoption	stored	procedure.

sp_tableoption	N'MyTable',	'text	in	row',	'ON'

Optionally,	you	can	specify	a	maximum	limit,	from	24	through	7000	bytes,	for
the	length	of	a	text,	ntext,	and	image	string	stored	in	a	data	row:

sp_tableoption	N'MyTable',	'text	in	row',	'1000'

If	you	specify	'ON'	instead	of	a	specific	limit,	the	limit	defaults	to	256	bytes.
This	default	value	provides	most	of	the	performance	benefits:	It	is	large	enough
to	ensure	that	small	strings	and	the	root	text	pointers	can	be	stored	in	the	rows
but	not	so	large	that	it	decreases	the	rows	per	page	enough	to	affect	performance.

Although	in	general,	you	should	not	set	the	value	below	72,	you	also	should	not
set	the	value	too	high,	especially	for	tables	where	most	statements	do	not
reference	the	text,	ntext,	and	image	columns	or	there	are	multiple	text,	ntext,
and	image	columns.

You	can	also	use	sp_tableoption	to	turn	the	option	off	by	specifying	an	option
value	of	either	'OFF'	or	0:

sp_tableoption	N'MyTable',	'text	in	row',	'OFF'

See	Also

Character	Data

Data	Types

sp_tableoption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	uniqueidentifier	Data
The	uniqueidentifier	data	type	stores	16-byte	binary	values	that	operate	as
globally	unique	identifiers	(GUIDs).	A	GUID	is	a	unique	binary	number;	no
other	computer	in	the	world	will	generate	a	duplicate	of	that	GUID	value.	The
main	use	for	a	GUID	is	for	assigning	an	identifier	that	must	be	unique	in	a
network	that	has	many	computers	at	many	sites.

A	GUID	value	for	a	uniqueidentifier	column	is	usually	obtained:

In	a	Transact-SQL	statement,	batch,	or	script	by	calling	the	NEWID
function.

In	application	code	by	calling	an	application	API	function	or	method
that	returns	a	GUID.

The	Transact-SQL	NEWID	function	and	the	application	API	functions	and
methods	generate	new	uniqueidentifier	values	from	the	identification	number	of
their	network	card	plus	a	unique	number	from	the	CPU	clock.	Each	network	card
has	a	unique	identification	number.	The	uniqueidentifier	returned	by	NEWID	is
generated	using	the	network	card	on	the	server.	The	uniqueidentifier	returned
by	application	API	functions	and	methods	is	generated	using	the	network	card
on	the	client.

A	uniqueidentifier	is	not	typically	defined	as	a	constant	because	it	is	difficult	to
ensure	that	the	uniqueidentifier	created	is	actually	unique.	There	are	two	ways
to	specify	a	uniqueidentifier	constant:

Character	string	format
'6F9619FF-8B86-D011-B42D-00C04FC964FF'

Binary	format
0xff19966f868b11d0b42d00c04fc964ff

The	uniqueidentifier	data	type	does	not	automatically	generate	new	IDs	for
inserted	rows	the	way	the	IDENTITY	property	does.	To	get	new
uniqueidentifier	values,	a	table	must	have	a	DEFAULT	clause	specifying	the

NEWID	function,	or	INSERT	statements	must	use	the	NEWID	function:

CREATE	TABLE	MyUniqueTable
			(UniqueColumn			UNIQUEIDENTIFIER						DEFAULT	NEWID(),
			Characters						VARCHAR(10))
GO
INSERT	INTO	MyUniqueTable(Characters)	VALUES	('abc')
INSERT	INTO	MyUniqueTable	VALUES	(NEWID(),	'def')
GO

uniqueidentifier	columns	may	contain	multiple	occurrences	of	an	individual
uniqueidentifier	value,	unless	the	UNIQUE	or	PRIMARY	KEY	constraints	are
also	specified	for	the	column.	A	foreign	key	column	referencing	a
uniqueidentifier	primary	key	in	another	table	will	have	multiple	occurrences	of
individual	uniqueidentifier	values	when	multiple	rows	reference	the	same
primary	key	in	the	source	table.

A	table	can	have	multiple	uniqueidentifier	columns.	One	uniqueidentifier
column	for	each	table	may	be	specified	with	the	ROWGUIDCOL	property.	The
ROWGUIDCOL	property	indicates	that	the	uniqueidentifier	values	in	the
column	uniquely	identify	rows	in	the	table.	The	property	does	not	do	anything	to
enforce	this,	however.	The	uniqueness	must	be	enforced	through	other
mechanisms,	such	as	specifying	the	PRIMARY	KEY	constraint	for	the	column.
The	ROWGUIDCOL	property	is	primarily	used	by	SQL	Server	replication.

The	main	advantage	of	the	uniqueidentifier	data	type	is	that	the	values
generated	by	the	Transact-SQL	NEWID	function	or	the	application	GUID
functions	are	guaranteed	to	be	unique	throughout	the	world.

The	uniqueidentifier	data	type	has	several	disadvantages:

The	values	are	long	and	obscure.	This	makes	them	difficult	for	users	to
type	correctly,	and	more	difficult	for	users	to	remember.

The	values	are	random	and	cannot	accept	any	patterns	that	may	make
them	more	meaningful	to	users.

There	is	no	way	to	determine	the	sequence	in	which	uniqueidentifier
values	were	generated.	They	are	not	suited	for	existing	applications	that
depend	on	incrementing	key	values	serially.

At	16	bytes,	the	uniqueidentifier	data	type	is	relatively	large	compared
to	other	data	types	such	as	4-byte	integers.	This	means	indexes	built
using	uniqueidentifier	keys	may	be	relatively	slower	than
implementing	the	indexes	using	an	int	key.

Consider	using	the	IDENTITY	property	when	global	uniqueness	is	not
necessary,	or	when	having	a	serially	incrementing	key	is	desirable.

See	Also

Data	Types

uniqueidentifier

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	Special	Data
Special	data	types	are	those	that	do	not	fit	into	any	of	the	other	data	type
categories.	For	example,	to	store	data	as	1	or	0	corresponding	to	yes	or	no	values
in	a	customer	survey,	use	the	bit	data	type.	Microsoft®	SQL	Server™	2000	has
several	data	types	that	fit	into	this	category:

bit

bit	data	does	not	need	to	be	enclosed	in	single	quotation	marks.	It	is
numeric	data	similar	to	SQL	Server	integer	and	numeric	data,	except
that	only	0s	and	1s	can	be	stored	in	bit	columns.

sql_variant

The	sql_variant	data	type	in	SQL	Server	allows	a	single	column,
parameter,	or	variable	to	store	data	values	of	different	data	types.	Each
instance	of	an	sql_variant	column	records	the	data	value	and	the
metadata	describing	the	value:	its	base	data	type,	maximum	size,	scale,
precision,	and	collation.

The	second	table	in	this	example	contains	an	sql_variant	column:

CREATE	TABLE	ObjectTable
				(ObjectID												int
																												CONSTRAINT	PKObjectTable	PRIMARY	KEY,
				ObjectName												nvarchar(80),
				ObjectWeight								decimal(10,3),
				ObjectColor								nvarchar(20)
)

CREATE	TABLE	VariablePropertyTable
				(ObjectID												int	REFERENCES	ObjectTable(ObjectID),
				PropertyName								nvarchar(100),
				PropertyValue								sql_variant,
				CONSTRAINT	PKVariablePropertyTable
																				PRIMARY	KEY(ObjectID,	PropertyName)

)

To	get	the	meta	data	information	for	any	specific	sql_variant	instance,
use	the	SQL_VARIANT_PROPERTY	function.

table

table	data	type	is	like	temporary	tables	and	can	be	used	to	store	a	result
set	for	later	processing.	This	data	type	can	only	be	used	to	define	local
variables	of	type	table	and	the	return	value	of	a	user-defined	function.

The	definition	of	a	table	variable	or	return	value	includes	definitions	of
the	columns,	the	data	type,	precision,	and	scale	of	each	column,	and
optional	PRIMARY	KEY,	UNIQUE,	and	CHECK	constraints.

The	format	of	the	rows	stored	in	a	table	variable	or	returned	by	a	user-
defined	function	must	be	defined	when	the	variable	is	declared	or	the
function	is	created.	The	syntax	is	based	on	the	CREATE	TABLE	syntax.
For	example:

DECLARE	@TableVar	TABLE
		(Cola	int	PRIMARY	KEY,
			Colb	char(3))

INSERT	INTO	@TableVar	VALUES	(1,	'abc')
INSERT	INTO	@TableVar	VALUES	(2,	'def')

SELECT	*	FROM	@TableVar
GO

table	variables	and	user-defined	functions	that	return	a	table	can	be
used	only	in	certain	SELECT	and	INSERT	statements,	and	where	tables
are	supported	in	the	UPDATE,	DELETE,	and	DECLARE	CURSOR
statements.	table	variables	and	user-defined	functions	that	return	a
table	cannot	be	used	in	any	other	Transact-SQL	statements.

Indexes	or	other	constraints	applied	to	the	table	must	be	defined	as	part
of	the	DECLARE	variable	or	CREATE	FUNCTION	statement.	They
cannot	be	applied	later,	because	the	CREATE	INDEX	or	ALTER

TABLE	statements	cannot	reference	table	variables	and	user-defined
functions.

For	more	information	about	the	syntax	used	to	define	the	table
variables	and	user-defined	functions,	see	DECLARE	@local_variable
and	CREATE	FUNCTION.

timestamp

The	SQL	Server	timestamp	data	type	has	nothing	to	do	with	times	or
dates.	SQL	Server	timestamps	are	binary	numbers	that	indicate	the
relative	sequence	in	which	data	modifications	took	place	in	a	database.
The	timestamp	data	type	was	originally	implemented	to	support	the
SQL	Server	recovery	algorithms.	Each	time	a	page	was	modified,	it	was
stamped	with	the	current	@@DBTS	value	and	@@DBTS	was
incremented	by	one.	This	was	sufficient	for	recovery	to	determine	the
relative	sequence	in	which	pages	had	been	modified,	but	the	timestamp
values	had	no	relationship	to	time.

In	SQL	Server	version	7.0	and	SQL	Server	2000,	@@DBTS	is	only
incremented	for	use	in	timestamp	columns.	If	a	table	contains	a
timestamp	column,	every	time	a	row	is	modified	by	an	INSERT,
UPDATE,	or	DELETE	statement,	the	timestamp	value	in	the	row	is	set
to	the	current	@@DBTS	value,	and	then	@@DBTS	is	incremented	by
one.

Never	use	timestamp	columns	in	keys,	especially	primary	keys,
because	the	timestamp	value	changes	every	time	the	row	is	modified.

To	record	the	times	data	modifications	take	place	in	a	table,	use	either	a
datetime	or	smalldatetime	data	type	to	record	the	events	and	triggers
to	automatically	update	the	values	when	any	modification	takes	place.

User-defined	data	types

User-defined	data	types	allow	you	to	extend	an	SQL	Server	base	data
type	(such	as	varchar)	with	a	descriptive	name	and	format	tailored	to	a
specific	use.	For	example,	this	statement	implements	a	birthday	user-
defined	data	type	that	allows	NULLs,	using	the	datetime	base	data
type:

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

EXEC	sp_addtype	birthday,	datetime,	'NULL'

Be	careful	when	choosing	the	base	types	for	implementing	user-defined
data	types.	For	example,	in	the	United	States,	Social	Security	numbers
have	a	format	of	nnn-nn-nnnn.	While	Social	Security	numbers	contain
numbers,	the	numbers	form	an	identifier	and	are	not	subjected	to
mathematical	operations.	It	is	therefore	common	practice	to	create	a
user-defined	Social	Security	number	data	type	as	varchar	and	create	a
CHECK	constraint	to	enforce	the	format	of	the	social	security	numbers
stored	in	the	table:

EXEC	sp_addtype	SSN,	'VARCHAR(11)',	'NOT	NULL'
GO
CREATE	TABLE	ShowSSNUsage
				(EmployeeID								INT	PRIMARY	KEY,
				EmployeeSSN								SSN,
				CONSTRAINT	CheckSSN	CHECK	(EmployeeSSN	LIKE
								'[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]')
)
GO

If	the	SSN	columns	are	typically	used	as	key	columns	in	indexes,
especially	clustered	indexes,	the	size	of	the	keys	can	be	shrunk	from	11
bytes	to	4	if	the	SSN	user-defined	data	type	is	instead	implemented
using	the	int	base	data	type.	This	reduction	in	key	size	improves	data
retrieval.	The	improved	efficiency	of	data	retrieval	and	the	elimination
of	the	need	for	the	CHECK	constraint	will	usually	outweigh	the	extra
conversion	processing	from	int	to	a	character	format	when	displaying	or
modifying	SSN	values.

See	Also

CREATE	FUNCTION

Data	Types

DECLARE	@local_variable

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Special	Data

SQL_VARIANT_PROPERTY

table

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Accessing	and	Changing	Relational	Data

Using	sql_variant	Data
The	sql_variant	data	type	operates	similarly	to	the	variant	data	type	in
Microsoft®	Visual	Basic®.	It	allows	a	single	column,	parameter,	or	variable	to
store	data	values	of	different	data	types.	For	example,	a	single	sql_variant
column	can	hold	int,	decimal,	char,	binary,	and	nchar	values.	Each	instance	of
an	sql_variant	column	records	the	data	value	and	the	meta	data	information,
which	includes	the	base	data	type,	maximum	size,	scale,	precision,	and	collation.

The	sql_variant	data	type	follows	these	rules:

1.	 General	value	assignment

sql_variant	objects	can	hold	data	of	any	SQL	Server	data
type	except	text,	ntext,	image,	and	timestamp.	An	instance
of	sql_variant	data	also	cannot	have	sql_variant	as	its
underlying	base	data	type.

Constants	of	any	type	can	be	specified	in	predicates	or
assignments	referencing	sql_variant	columns.

If	an	sql_variant	value	is	NULL,	it	is	not	considered	to	have
an	underlying	base	data	type.	This	rule	applies	even	when	the
null	value	comes	from	a	variable	or	column	with	a	specific
data	type.

In	this	example,	the	value	of	VariantCol	is	set	to	NULL	with
no	associated	data	type,	even	though	the	null	value	came	from
an	int	variable:

DECLARE	@IntVar	int
SET	@IntVar	=	NULL
UPDATE	SomeTable	SET	VariantCol	=	@IntVar	WHERE	PriKey	=	123

In	assignments	from	sql_variant	objects	to	an	object	with	any
other	data	type,	the	sql_variant	value	must	be	explicitly	cast

to	the	data	type	of	the	destination.	No	implicit	conversions	are
supported	when	an	sql_variant	value	is	assigned	to	an	object
with	another	data	type.

For	compatibility	with	other	data	types,	the	catalog	objects
(such	as	the	DATALENGTH	function)	that	report	the	length
of	sql_variant	objects	report	the	length	of	the	data.	The
length	of	the	meta	data	contained	in	an	sql_variant	object	is
not	returned.

sql_variant	columns	always	operate	with	ANSI_PADDING
ON.	If	char,	nchar,	varchar,	nvarchar,	or	varbinary	values
are	assigned	from	a	source	that	has	ANSI_PADDING	OFF,
the	values	are	not	padded.

2.	 sql_variant	in	tables

sql_variant	columns	can	be	used	in	indexes	and	unique	keys,
as	long	as	the	length	of	the	data	in	the	key	columns	does	not
exceed	900	bytes.

sql_variant	columns	do	not	support	the	IDENTITY	property,
but	sql_variant	columns	are	allowed	as	part	primary	or
foreign	keys.

sql_variant	columns	cannot	be	used	in	a	computed	column.

Use	ALTER	TABLE	to	change	a	column	of	any	data	type
except	text,	ntext,	image,	timestamp,	or	sql_variant	to
sql_variant.	All	existing	values	are	converted	to	sql_variant
values	whose	base	data	type	is	the	same	as	the	data	type	of	the
column	before	the	ALTER	TABLE	statement	was	executed.
ALTER	TABLE	cannot	be	used	to	change	the	data	type	of	an
sql_variant	column	to	any	other	data	type	because	there	are
no	supported	implicit	conversions	from	sql_variant	to	other

data	types.

3.	 Collation

The	COLLATE	clause	cannot	be	used	to	assign	a	column
collation	to	an	sql_variant	column.	The	character-based
values	(char,	nchar,	varchar,	and	nvarchar)	in	an
sql_variant	column	can	be	of	any	collation,	and	a	single
sql_variant	column	can	hold	character-based	values	of	mixed
collations.

When	a	value	is	assigned	to	an	sql_variant	instance,	both	the
data	value	and	base	data	type	of	the	source	are	assigned.	If	the
source	value	has	a	collation,	the	collation	is	also	assigned.	If
the	source	value	has	a	user-defined	data	type,	the	base	data
type	of	the	user-defined	data	type	is	assigned,	not	the	user-
defined	data	type.	The	sql_variant	instance	does	not	inherit
any	rules	or	defaults	bound	to	the	user-defined	data	type.	If	a
value	from	a	column	with	an	identity	property	is	assigned	to
an	sql_variant	instance,	the	sql_variant	takes	the	base	data
type	of	the	source	column	but	does	not	inherit	the	IDENTITY
property.	It	is	an	error	to	assign	a	text,	ntext,	or	image	value
to	an	sql_variant	instance.	Implicit	conversions	are	supported
when	assigning	values	from	objects	with	other	data	types	to
an	sql_variant	object.

sql_variant	Comparisons

sql_variant	columns	can	contain	values	of	several	base	data	types	and
collations,	so	special	rules	apply	when	comparing	sql_variant	operands.	These
rules	apply	to	operations	involving	comparisons,	such	as:

Transact-SQL	comparison	operators

ORDER	BY,	GROUP	BY

Indexes

The	MAX	and	MIN	aggregate	functions

UNION	(without	ALL)

CASE	expressions

For	sql_variant	comparisons,	the	SQL	Server	data	type	hierarchy	order	is
grouped	into	data	type	families	(the	sql_variant	family	has	the	highest	family
precedence).

Data	type	hierarchy Data	type	family
sql_variant sql_variant
datetime Datetime
smalldatetime Datetime
float approximate	number
real approximate	number
decimal exact	number
money exact	number
smallmoney exact	number
bigint exact	number
int exact	number
smallint exact	number
tinyint exact	number
bit exact	number
nvarchar Unicode
nchar Unicode
varchar Unicode
char Unicode
varbinary Binary
binary Binary
uniqueidentifier Uniqueidentifier

These	rules	apply	to	sql_variant	comparisons:

When	sql_variant	values	of	different	base	data	types	are	compared,	and
the	base	data	types	are	in	different	data	type	families,	the	value	whose
data	type	family	is	higher	in	the	hierarchy	chart	is	considered	the	higher
of	the	two	values.

When	sql_variant	values	of	different	base	data	types	are	compared,	and
the	base	data	types	are	in	the	same	data	type	family,	the	value	whose
base	data	type	is	lower	in	the	hierarchy	chart	is	implicitly	converted	to
the	other	data	type	and	the	comparison	is	then	made.

When	sql_variant	values	of	the	char,	varchar,	nchar,	or	varchar	data
types	are	compared,	they	are	evaluated	based	on	the	following	criteria:
LCID,	LCID	version,	comparison	flags,	and	sort	ID.	Each	of	these
criteria	are	compared	as	integer	values,	and	in	the	order	listed.

These	rules	can	yield	different	results	for	comparisons	between	sql_variant
values	than	comparisons	between	values	of	the	same	base	data	type.

Operand	A Operand	B
Non-variant
comparison	result

sql_variant
comparison	result

'123'	char 111	int A	>	B B	>	A
50000	int 5E1	float A	>	B B	>	A

Because	values	from	different	data	type	families	must	be	explicitly	cast	before
being	referenced	in	comparison	predicates,	the	effects	of	the	rules	are	observed
only	when	ordering	result	sets	on	an	sql_variant	column.	The	values	in	this
table	are	examples	of	the	rules	regarding	data	type	precedence.

PriKey VariantCol
1 50.0	(base	type	float)
2 5000	(base	type	int)
3 '124000'	(base	type	char(6))

This	is	the	result	of	the	statement	SELECT	*	FROM	VariantTest	ORDER	BY
VariantCol	ASC.

PriKey VariantCol
3 '124000'	(base	type	char(6))
2 5000	(base	type	int)
1 50.0	(base	type	float)

The	values	in	this	table	are	examples	of	the	rules	regarding	collation	precedence
using	different	collations.

IntKey VariantCol
1 qrs	(varchar	SQL_Latin1_General_Pref_Cp1_CI_AS)
2 abc	(varchar	SQL_Latin1_General_Pref_Cp1_CI_AS)
3 qrs	(varchar	SQL_Latin1_General_CP1_CS_AS)
4 17.5	(decimal)
5 abc	(varchar	SQL_Latin1_General_CP1_CS_AS)
6 klm	(varchar	SQL_Latin1_General_CP1_CS_AS)
7 1.2	(decimal)

This	is	the	result	of	the	statement	SELECT	*	FROM	CollateTest	ORDER	BY
VariantCol.	This	table	shows	values	from	the	exact	number	data	type	family
grouped	together,	and	varchar	values	grouped	within	their	respective	collations.

IntKey VariantCol
5 abc	(varchar	SQL_Latin1_General_CP1_CS_AS)
6 klm	(varchar	SQL_Latin1_General_CP1_CS_AS)
3 qrs	(varchar	SQL_Latin1_General_CP1_CS_AS)
2 abc	(varchar	SQL_Latin1_General_Pref_Cp1_CI_AS)
1 qrs	(varchar	SQL_Latin1_General_Pref_Cp1_CI_AS)
7 1.2	(decimal)
4 17.5	(decimal)

Functions	and	sql_variant	Data
The	following	Transact-SQL	functions	support	sql_variant	parameters	and
return	an	sql_variant	value	when	an	sql_variant	parameter	is	specified:

COALESCE

MAX

MIN

NULLIF

These	functions	support	references	to	sql_variant	columns	or	variables	and	do
not	use	sql_variant	as	the	data	type	of	their	return	values.

COL_LENGTH DATALENGTH TYPEPROPERTY
COLUMNPROPERTY ISNULL 	

These	Transact-SQL	functions	do	not	support	sql_variant	parameters.

AVG RADIANS STDEV[P]
IDENTITY ROUND SUM
ISNUMERIC SIGN VAR[P]
POWER 	 	

The	CAST	and	CONVERT	functions	support	sql_variant

The	new	function	SQL_VARIANT_PROPERTY():	is	used	to	obtain	property
information	about	sql_variant	values,	such	as	data	type,	precision,	or	scale.

Other	Transact-SQL	Elements	and	sql_variant	Data

sql_variant	columns	are	not	supported	in	the	LIKE	predicate.

sql_variant	columns	are	not	supported	in	full-text	indexes.	They	cannot	be
specified	in	full-text	functions	such	as	CONTAINSTABLE	and
FREETEXTTABLE.

These	Transact-SQL	statements	support	specifying	sql_variant	in	the	same
syntax	locations	that	other	integer	data	types	are	specified:

ALTER	PROCEDURE

ALTER	TABLE

CREATE	PROCEDURE

CREATE	TABLE

DECLARE	variable

The	Microsoft®	SQL	Server™	2000	catalog	components	report	information
about	sql_variant	columns.

The	result	of	the	CASE	expression	is	sql_variant	if	any	of	the	input	or	result
expressions	evaluate	to	sql_variant.	The	underlying	base	type	of	the	result	is
that	of	the	expression	evaluated	as	the	result	at	run	time.

Operands	of	numeric	or	string	concatenation	operators	cannot	be	sql_variant:

--	Generates	an	error:
SELECT	VariantCol	+	@CharacterVar
FROM	MyTable

Casting	the	sql_variant	operand	can	perform	the	operation:

--	Does	not	generates	an	error:
SELECT	CAST(VariantCol	AS	varchar(25))	+	@CharacterVar
FROM	MyTable

Applications	and	sql_variant	Data
If	an	application	requests	a	result	set	in	which	a	given	column	returns
sql_variant	data	of	a	single	underlying	base	data	type,	the	application	can	use
the	CAST	or	CONVERT	functions	in	the	Transact-SQL	statements	to	return	the
sql_variant	data	by	using	the	underlying	base	data	type.	In	this	case	the
application	treats	the	data	the	same	way	as	a	result	set	column	of	the	underlying
base	data	type.	This	topic	describes	how	Microsoft®	SQL	Server™	returns
sql_variant	data	that	has	not	been	cast	or	converted	to	a	specific	base	data	type.

The	OLE	DB	Provider	for	SQL	Server	introduces	a	provider-specific	OLE	DB
type	DBTYPE_SQLVARIANT	for	use	with	sql_variant	columns	and
parameters.

The	SQL	Server	ODBC	Driver	introduces	a	provider-specific	ODBC	database
data	type	SQL_SS_VARIANT	for	use	with	sql_variant	columns	and
parameters.

SQL	Server	converts	sql_variant	values	to	nvarchar(4000)	when	working	with
applications	that	have	connected	with	the	following	interfaces:

The	OLE	DB	Provider	for	SQL	Server	version	7.0.

The	SQL	Server	ODBC	Driver	from	SQL	Server	7.0.

If	the	resulting	string	exceeds	4000	characters,	SQL	Server	returns	the	first	4000
characters.

SQL	Server	converts	sql_variant	values	to	varchar(255)	when	working	with
applications	that	have	connected	with	the	following	interfaces:

The	SQL	Server	ODBC	Drivers	from	SQL	Server	version	6.5	or	earlier.

Any	version	of	the	DB-Library	dll.

If	the	resulting	string	exceeds	255	characters,	SQL	Server	returns	the	first	255
characters.

See	Also

CAST	and	CONVERT

sql_variant

SQL_VARIANT_PROPERTY

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	Unicode	Data
The	Unicode	specification	defines	a	single	encoding	scheme	for	most	characters
widely	used	in	businesses	around	the	world.	All	computers	consistently	translate
the	bit	patterns	in	Unicode	data	into	characters	using	the	single	Unicode
specification.	This	ensures	that	the	same	bit	pattern	is	always	converted	to	the
same	character	on	all	computers.	Data	can	be	freely	transferred	from	one
database	or	computer	to	another	without	concern	that	the	receiving	system	will
translate	the	bit	patterns	into	characters	incorrectly.

One	problem	with	data	types	that	use	1	byte	to	encode	each	character	is	that	the
data	type	can	only	represent	256	different	characters.	This	forces	multiple
encoding	specifications	(or	code	pages)	for	different	alphabets	such	as	European
alphabets,	which	are	relatively	small.	It	is	also	impossible	to	handle	systems
such	as	the	Japanese	Kanji	or	Korean	Hangul	alphabets	that	have	thousands	of
characters.

Each	Microsoft®	SQL	Server™	collation	has	a	code	page	that	defines	what
patterns	of	bits	represent	each	character	in	char,	varchar,	and	text	values.
Individual	columns	and	character	constants	can	be	assigned	a	different	code
page.	Client	computers	use	the	code	page	associated	with	the	operating	system
locale	to	interpret	character	bit	patterns.	There	are	many	different	code	pages.
Some	characters	appear	on	some	code	pages,	but	not	on	others.	Some	characters
are	defined	with	one	bit	pattern	on	some	code	pages,	and	with	a	different	bit
pattern	on	other	code	pages.	When	you	build	international	systems	that	must
handle	different	languages,	it	becomes	difficult	to	pick	code	pages	for	all	the
computers	that	meet	the	language	requirements	of	multiple	countries.	It	is	also
difficult	to	ensure	that	every	computer	performs	the	correct	translations	when
interfacing	with	a	system	using	a	different	code	page.

The	Unicode	specification	addresses	this	problem	by	using	2	bytes	to	encode
each	character.	There	are	enough	different	patterns	(65,536)	in	2	bytes	for	a
single	specification	covering	the	most	common	business	languages.	Because	all
Unicode	systems	consistently	use	the	same	bit	patterns	to	represent	all
characters,	there	is	no	problem	with	characters	being	converted	incorrectly	when
moving	from	one	system	to	another.	You	can	minimize	character	conversion
issues	by	using	Unicode	data	types	throughout	your	system.

In	Microsoft	SQL	Server,	these	data	types	support	Unicode	data:

nchar

nvarchar

ntext

Note		The	n	prefix	for	these	data	types	comes	from	the	SQL-92
standard	for	National	(Unicode)	data	types.

Use	of	nchar,	nvarchar,	and	ntext	is	the	same	as	char,	varchar,	and	text,
respectively,	except	that:

Unicode	supports	a	wider	range	of	characters.

More	space	is	needed	to	store	Unicode	characters.

The	maximum	size	of	nchar	and	nvarchar	columns	is	4,000	characters,
not	8,000	characters	like	char	and	varchar.

Unicode	constants	are	specified	with	a	leading	N:	N'A	Unicode	string'.

All	Unicode	data	uses	the	same	Unicode	code	page.	Collations	do	not
control	the	code	page	used	for	Unicode	columns,	only	attributes	such	as
comparison	rules	and	case	sensitivity.

See	Also

Collations

Data	Types

NCHAR

UNICODE

Unicode	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Data	Type	Conversion
In	Transact-SQL,	two	levels	of	data	type	conversions	are	possible:

When	data	from	one	object	is	moved	to,	compared	with,	or	combined
with	data	from	another	object,	the	data	may	have	to	be	converted	from
the	data	type	of	one	object	to	the	data	type	of	the	other.

When	data	from	a	Transact-SQL	result	column,	return	code,	or	output
parameter	is	moved	into	a	program	variable,	it	must	be	converted	from
the	Microsoft®	SQL	Server™	data	type	to	the	data	type	of	the	variable.

There	are	two	categories	of	data	type	conversions:

Implicit	conversions	are	invisible	to	the	user.

SQL	Server	automatically	converts	the	data	from	one	data	type	to
another.	For	example,	if	a	smallint	is	compared	to	an	int,	the	smallint
is	implicitly	converted	to	int	before	the	comparison	proceeds.

Explicit	conversions	use	the	CAST	or	CONVERT	functions.

The	CAST	and	CONVERT	functions	convert	a	value	(a	local	variable,	a	column,
or	another	expression)	from	one	data	type	to	another.	For	example,	the	following
CAST	function	converts	the	numeric	value	of	$157.27	into	a	character	string	of
'$157.27':

CAST	($157.27	AS	VARCHAR(10))

CAST	is	based	on	the	SQL-92	standard	and	is	preferred	over	CONVERT.

When	converting	from	the	data	type	of	one	SQL	Server	object	to	another,	some
implicit	and	explicit	data	type	conversions	are	not	supported.	For	example,	an
nchar	value	cannot	be	converted	to	an	image	value	at	all.	An	nchar	can	only	be
converted	to	binary	using	explicit	conversion;	an	implicit	conversion	to	binary
is	not	supported.	An	nchar	can	be	either	explicitly	or	implicitly	converted	to
nvarchar.

When	handling	sql_variant	data	types,	SQL	Server	supports	implicit

conversions	of	objects	with	other	data	types	to	sql_variant	type.	However,	SQL
Server	does	not	support	implicit	conversions	from	sql_variant	data	to	an	object
with	another	data	type.

For	more	information	about	supported	conversions	between	SQL	Server	objects,
see	CAST	and	CONVERT.

When	converting	between	an	application	variable	and	an	SQL	Server	result	set
column,	return	code,	parameter,	or	parameter	marker,	the	supported	data	type
conversions	are	defined	by	the	database	application	programming	interface.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Moving	Data	to	Program	Variables
Applications	accessing	Microsoft®	SQL	Server™	2000	databases	through	a
database	application	programming	interface	(API)	must	move	data	between
application	variables	and:

Result	set	columns.

Applications	must	move	data	from	the	columns	of	a	fetched	row	in	a
result	set	into	application	variables.

Return	codes.

Applications	must	move	data	from	a	stored	procedure	return	code	into
an	application	variable.

Parameters.

Applications	must	move	data	between	stored	procedure	parameters	and
application	variables.	Parameters	can	be	input	or	output	parameters,	so
data	movement	can	be	either	from	the	variable	to	the	parameter,	or	from
the	parameter	to	the	variable.

Parameter	markers.

ODBC	and	OLE	DB	parameter	markers	are	used	in	SQL	statements	in
place	of	either	input	expressions	(such	as	in	a	WHERE	clause	search
condition)	or	stored	procedure	parameters	and	return	codes.
Applications	must	move	data	from	application	variables	and	the
expression	replaced	by	the	parameter	marker.	For	more	information,	see
Parameter	Markers.

Many	database	APIs	use	the	concept	of	binding	to	specify	how	the	data	is	to	be
moved	between	an	application	variable	and	the	SQL	Server	object.	Database
APIs	provide	functions	that	an	application	can	call	to:

Determine	the	data	type,	size,	precision,	and	scale	of	a	result	set
column,	return	code,	parameter,	or	parameter	marker.	After	the
application	has	received	this	information	it	can	allocate	a	variable	or	an

array	of	variables	with	compatible	attributes.

Bind	the	result	set	column,	return	code,	parameter,	or	parameter	marker
to	a	specific	variable	or	array	of	variables.	The	binding	information
typically	includes:

The	address	and	attributes	(data	type,	size,	precision,	and	scale)
of	the	variable.

The	name	and	attributes	of	the	database	object.

Data	movement	typically	occurs:

When	a	Transact-SQL	statement	or	batch	is	executed.	The	OLE	DB
provider	or	ODBC	driver	pulls	in	the	data	bound	to	any	input
parameters	or	parameter	markers	and	includes	them	in	the	packet	sent	to
SQL	Server.

When	a	result	set	row	is	fetched.	The	OLE	DB	provider	or	ODBC
driver	moves	the	data	for	each	column	to	the	bound	variables.

After	all	the	result	sets	from	a	stored	procedure	have	been	fetched	or
canceled.	The	OLE	DB	provider	or	ODBC	driver	moves	the	data	for
any	output	parameters	or	return	codes	to	their	bound	variables.

The	bound	application	variables	are	not	required	to	have	the	same	data	type	as
the	SQL	Server	object	to	which	they	are	bound.	If	the	data	types	are	different,
the	OLE	DB	provider	or	ODBC	driver	converts	the	data	when	it	is	moved.	The
set	of	conversions	supported	by	each	OLE	DB	provider	and	ODBC	driver	are
specified	in	the	documentation	for	the	provider	or	driver.

See	Also

Using	Variables	and	Parameters

Accessing	and	Changing	Relational	Data

Converting	binary	and	varbinary	Data
When	data	is	converted	from	a	string	data	type	(char,	varchar,	nchar,
nvarchar,	binary,	varbinary,	text,	ntext,	or	image)	to	a	binary	or	varbinary
data	type	of	unequal	length,	Microsoft®	SQL	Server™	pads	or	truncates	the	data
on	the	right.	When	other	data	types	are	converted	to	binary	or	varbinary,	the
data	is	padded	or	truncated	on	the	left.	Padding	is	done	with	hexadecimal	zeros.

Converting	data	to	the	binary	and	varbinary	data	types	is	useful	if	binary	data
is	the	easiest	way	to	move	data	around.	For	any	value	of	any	type,	converting
that	value	to	a	binary	value	of	large	enough	size,	and	then	back	to	the	type,	will
always	result	in	the	same	value	if	both	conversions	on	the	same	version	of	SQL
Server.	The	binary	representation	of	a	value	may	change	from	release	to	release
of	SQL	Server.

The	conversion	of	money,	datetime,	smalldatetime,	and	numeric	data	types	to
or	from	binary	or	varbinary	are	different	from	earlier	versions	of	SQL	Server
because	of	a	change	in	storage	representation.

You	can	convert	int,	smallint,	and	tinyint	to	binary	or	varbinary,	but	if	you
convert	the	binary	value	back	to	an	integer	value,	it	will	be	different	from	the
original	integer	value	if	truncation	has	occurred.	For	example,	this	SELECT
statement	shows	that	the	integer	value	123456	is	usually	stored	as	a	binary
0x0001e240:

SELECT	CAST(123456	AS	BINARY(4))

This	SELECT	statement	shows	that	if	the	binary	target	is	too	small	to	hold	the
entire	value,	the	leading	digits	are	silently	truncated	so	that	the	same	number	is
stored	as	0xe240:

SELECT	CAST(123456	AS	BINARY(2))

This	batch	shows	that	the	silent	truncation	can	affect	arithmetic	operations
without	raising	an	error:

DECLARE	@BinaryVariable2	BINARY(2)

SET	@BinaryVariable2	=	123456
SET	@BinaryVariable2	=	@BinaryVariable2	+	1

SELECT	CAST(@BinaryVariable2	AS	INT)
GO

The	final	result	is	57921,	not	123457.

Note		Conversions	between	any	data	type	and	the	binary	data	types	are	not
guaranteed	to	be	the	same	between	SQL	Server	versions.

See	Also

CAST	and	CONVERT

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Converting	bit	Data
Converting	to	bit	promotes	any	nonzero	value	to	1.

See	Also

CAST	and	CONVERT

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Converting	Character	Data
When	character	expressions	are	converted	to	a	character	data	type	of	a	different
size,	values	too	long	for	the	new	data	type	are	truncated.

When	a	character	expression	is	converted	to	a	character	expression	of	a	different
data	type	or	size	(such	as	from	char(5)	to	varchar(5),	or	char(20)	to	char(15)),
the	collation	of	the	input	value	is	assigned	to	the	converted	value.	If	a	non-
character	expression	is	converted	to	a	character	data	type,	the	default	collation	of
the	current	database	is	assigned	to	the	converted	value.	In	either	case,	you	can
assign	a	specific	collation	using	the	COLLATE	clause.

Note		Code	page	translations	are	supported	for	char	and	varchar	data	types,	but
not	for	text	data	type.	As	with	previous	versions	of	Microsoft®	SQL	Server™,
data	loss	during	code	page	translations	are	not	reported.

Character	expressions	being	converted	to	an	approximate	numeric	data	type	can
include	optional	exponential	notation	(a	lowercase	e	or	uppercase	E	followed	by
an	optional	plus	(+)	or	minus	(-)	sign	and	then	a	number).

Character	expressions	being	converted	to	an	exact	numeric	data	type	must
consist	of	digits,	a	decimal	point,	and	an	optional	plus	(+)	or	minus	(-).	Leading
blanks	are	ignored.	Comma	separators	(such	as	the	thousands	separator	in
123,456.00)	are	not	allowed	in	the	string.

Character	expressions	being	converted	to	money	or	smallmoney	data	types	can
also	include	an	optional	decimal	point	and	dollar	sign	($).	Comma	separators	(as
in	$123,456.00)	are	allowed.

This	example	shows	how	to	convert	data	for	display.	This	example	converts
sales	data	to	character	data	prior	to	performing	a	string	comparison	and	converts
the	current	date	to	style	3,	dd/mm/yy.

USE	pubs
GO
SELECT	title,
			CAST(ytd_sales	AS	CHAR(12)),

			CAST(GETDATE()	AS	CHAR(12))
FROM	titles
WHERE	CAST(ytd_sales	AS	CHAR(20))	LIKE	'1%'
GO

This	example	converts	a	uniqueidentifier	value	to	a	char	data	type.

DECLARE	@myid	uniqueidentifier
SET	@myid	=	NEWID()
SELECT	CONVERT(char(255),	@myid)	AS	'Char'
GO

This	example	converts	the	current	date	to	style	3,	dd/mm/yy.

SELECT	CONVERT(char(12),	GETDATE(),	3)
GO

See	Also

CAST	and	CONVERT

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Converting	datetime	and	smalldatetime	Data
When	converting	to	datetime,	Microsoft®	SQL	Server™	2000	rejects	all	values
it	cannot	recognize	as	dates	(including	dates	earlier	than	January	1,	1753).	You
can	convert	datetime	values	to	smalldatetime	when	the	date	is	in	the	proper
range	(from	January	1,	1900	through	June	6,	2079).	The	time	value	is	rounded	to
the	nearest	minute.

This	example	converts	smalldatetime	and	datetime	values	to	varchar	and
binary	data	types,	respectively.

DECLARE	@mydate_sm		SMALLDATETIME
SET		@mydate_sm		=	'4/05/98'

SELECT		CAST(@mydate_sm	AS	VARCHAR)	AS	SM_DATE_VARCHAR
GO

DECLARE	@mydate		DATETIME
SET	@mydate					=	'4/05/98'

SELECT		CAST(@mydate	AS	BINARY)	AS	DATE_BINARY
GO

Here	is	the	result	set:

(1	row(s)	affected)

SM_DATE_VARCHAR																

Apr		5	1998	12:00AM												

(1	row(s)	affected)

DATE_BINARY																																																				

--	
0x008c3000000000	

(1	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Converting	float	and	real	Data
Values	of	float	are	truncated	when	converted	to	any	integer	type.

When	converting	from	float	or	real	to	character	data,	the	string	function	STR()
is	usually	a	better	choice	than	CAST(),	because	STR()	enables	more	control
over	formatting.	For	more	information,	see	Functions.

See	Also

CAST	and	CONVERT

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Converting	money	Data
When	converting	to	money	from	integer	data	types,	units	are	assumed	to	be	in
monetary	units.	For	example,	the	integer	value	of	4	is	converted	to	the	money
equivalent	of	4	monetary	units.

This	example	converts	smallmoney	and	money	values	to	varchar	and	decimal
data	types,	respectively.

USE	pubs
GO
DECLARE	@mymoney_sm	SMALLMONEY
SET		@mymoney_sm	=	3148.29
SELECT		CAST(@mymoney_sm	AS	VARCHAR)	AS	"SM_MONEY	VARCHAR"
GO
DECLARE	@mymoney				MONEY
SET		@mymoney				=	3148.29
SELECT		CAST(@mymoney	AS	DECIMAL)				AS	"MONEY	DECIMAL"
GO

Here	is	the	result	set:

SM_MONEY	VARCHAR															

3148.29																								

(1	row(s)	affected)

MONEY	DECIMAL										

3148																			

(1	row(s)	affected)

See	Also

CAST	and	CONVERT

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Converting	decimal	and	numeric	Data
For	the	decimal	and	numeric	data	types,	Microsoft®	SQL	Server™	considers
each	specific	combination	of	precision	and	scale	as	a	different	data	type.	For
example,	decimal(5,5)	and	decimal(5,0)	are	considered	different	data	types.

In	Transact-SQL	statements,	a	constant	with	a	decimal	point	is	automatically
converted	into	a	numeric	data	value,	using	the	minimum	precision	and	scale
necessary.	For	example,	the	constant	12.345	is	converted	into	a	numeric	value
with	a	precision	of	5	and	a	scale	of	3.

Converting	from	decimal	or	numeric	to	float	or	real	can	result	in	some	loss	of
precision.	Converting	from	int,	smallint,	tinyint,	float,	real,	money,	or
smallmoney	to	either	decimal	or	numeric	can	result	in	overflow.

By	default,	SQL	Server	uses	rounding	when	converting	a	number	to	a	decimal
or	numeric	value	with	a	lower	precision	and	scale.	However,	if	the	SET
ARITHABORT	option	is	ON,	SQL	Server	raises	an	error	when	overflow	occurs.
Loss	of	only	precision	and	scale	is	not	sufficient	to	raise	an	error.

See	Also

CAST	and	CONVERT

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Data	Type	Conversions	Using	OLE	Automation
Stored	Procedures
Because	Microsoft®	SQL	Server™	uses	Transact-SQL	data	types,	and	OLE
Automation	uses	Microsoft	Visual	Basic®	data	types,	the	OLE	Automation
stored	procedures	must	convert	the	data	that	passes	between	them.

The	following	table	describes	SQL	Server	to	Visual	Basic	data	type	conversions.

SQL	Server	data	type Visual	Basic	data	type
char,	varchar,	text,	nvarchar,	ntext String
decimal,	numeric String
bit Boolean
binary,	varbinary,	image One-dimensional	Byte()

array
int Long
smallint Integer
tinyint Byte
float Double
real Single
money,	smallmoney Currency
datetime,	smalldatetime Date
anything	set	to	NULL Variant	set	to	Null

All	single	SQL	Server	values	are	converted	to	a	single	Visual	Basic	value	with
the	exception	of	binary,	varbinary,	and	image	values.	These	values	are
converted	to	a	one-dimensional	Byte()	array	in	Visual	Basic.	This	array	has	a
range	of	Byte(0	To	length–1)	where	length	is	the	number	of	bytes	in	the	SQL
Server	binary,	varbinary,	or	image	values.

These	are	the	conversions	from	Visual	Basic	data	types	to	SQL	Server	data
types.

Visual	Basic	data	type SQL	Server	data	type

Long,	Integer,	Byte,	Boolean,	Object int
Double,	Single float
Currency money
Date datetime
String	with	4000	characters	or	less varchar/nvarchar
String	with	more	than	4000	characters text/ntext
One-dimensional	Byte()	array	with	8000	bytes
or	less

varbinary

One-dimensional	Byte()	array	with	more	than
8000	bytes

image

See	Also

How	to	create	an	OLE	Automation	object	(Transact-SQL)

OLE	Automation	Sample	Script

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

System	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	Constants
A	constant	is	a	symbol	that	represents	a	specific	data	value.	The	format	of	a
constant	depends	on	the	data	type	of	the	value	it	represents.	Constants	are	also
called	literals.	Some	examples	of	constants	are:

Character	strings:
'O''Brien'
'The	level	for	job_id:	%d	should	be	between	%d	and	%d.'

Unicode	strings:
N'Michél'

Binary	string	constants:
0x12Ef
0x69048AEFDD010E

bit	constants	are	represented	by	the	numbers	0	or	1.

datetime	constants:
'April	15,	1998'
'04/15/98'
'14:30:24'
'04:24	PM'

integer	constants:
1894
2

decimal	constants:
1894.1204
2.0

float	and	real	constants:

101.5E5
0.5E-2

money	constants:
$12
$542023.14

uniqueidentifier	constants:
0xff19966f868b11d0b42d00c04fc964ff
'6F9619FF-8B86-D011-B42D-00C04FC964FF'

For	numeric	constants,	to	specify	the	sign	of	the	numeric	value	use	the	unary	+
and	-	operators:

+$156.45
-73.52E8
-129.42
+442

Character	and	Unicode	constants	are	assigned	the	default	collation	of	the	current
database,	unless	you	assign	a	specific	collation	using	the	COLLATE	clause:

'abc'	COLLATE	French_CI_AI
N'lustig'	COLLATE	German_Phonebook_CS_AS

Using	Constants	in	Transact-SQL
In	Transact-SQL,	constants	can	be	used	in	many	ways.	Here	are	some	examples:

As	a	constant	value	in	an	arithmetic	expression:
SELECT	Price	+	$.10
FROM	MyTable

As	the	data	value	a	column	is	compared	against	in	a	WHERE	clause:
SELECT	*
FROM	MyTable
WHERE	LastName	=	'O''Brien'

As	the	data	value	to	be	placed	in	a	variable:
SET	@DecimalVar	=	-1200.02

As	the	data	value	that	should	be	placed	in	a	column	of	the	current	row.
This	is	specified	with	the	SET	clause	of	the	UPDATE	statement	or	the
VALUES	clause	of	an	INSERT	statement:
UPDATE	MyTable
SET	Price	=	$99.99
WHERE	PartNmbr	=	1234

INSERT	INTO	MyTable	VALUES	(1235,	$88.88)

As	the	character	string	that	specifies	the	text	of	the	message	issued	by	a
PRINT	or	RAISERROR	statement:
PRINT	'This	is	a	message.'

As	the	value	to	test	for	in	a	conditional	statement	such	as	an	IF
statement	or	CASE	functions:
IF	(@@SALESTOTAL	>	$100000.00)
				EXECUTE	Give_Bonus_Procedure

See	Also

Constants

INSERT

Expressions

LIKE

Operators

PRINT

ALTER	TABLE

RAISERROR

CREATE	TABLE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

UPDATE

DELETE

WHERE

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

Accessing	and	Changing	Relational	Data

Using	Functions
Microsoft®	SQL	Server™	2000	has	built-in	functions	to	perform	certain
operations.	The	function	categories	are:

Aggregate	functions.

Perform	operations	that	combine	multiple	values	into	one.	Examples	are
COUNT,	SUM,	MIN,	and	MAX.

Configuration	functions.

Are	scalar	functions	that	return	information	about	configuration	settings.

Cursor	functions.

Return	information	about	the	status	of	a	cursor.

Date	and	time	functions.

Manipulate	datetime	and	smalldatetime	values.

Mathematical	functions.

Perform	trigonometric,	geometric,	and	other	numeric	operations.

Meta	data	functions.

Return	information	on	the	attributes	of	databases	and	database	objects.

Rowset	functions.

Return	rowsets	that	can	be	used	in	the	place	of	a	table	reference	in	a
Transact-SQL	statement.

Security	functions.

Return	information	about	users	and	roles.

String	functions.

Manipulate	char,	varchar,	nchar,	nvarchar,	binary,	and	varbinary	values.

System	functions.

Operate	on	or	report	on	various	system	level	options	and	objects.

System	statistical	functions.

Return	information	regarding	the	performance	of	SQL	Server.

Text	and	image	functions.

Manipulate	text	and	image	values.

Uses	of	Functions
Functions	can	be	used	or	included	in:

The	select	list	of	a	query	using	a	SELECT	statement	to	return	a	value.
SELECT	DB_NAME()

A	WHERE	clause	search	condition	of	a	SELECT	or	data-modification
(SELECT,	INSERT,	DELETE,	or	UPDATE)	statement	to	limit	the	rows
that	qualify	for	the	query.
SELECT	*
FROM	[Order	Details]
WHERE	Quantity	=
				(SELECT	MAX(Quantity)	FROM	[Order	Details])

The	search	condition	(WHERE	clause)	of	a	view	to	make	the	view
dynamically	conform	to	the	user	or	environment	at	run	time.
CREATE	VIEW	ShowMyEmploymentInfo	AS
SELECT	*	FROM	Employees
WHERE	EmployeeID	=	SUSER_SID()
GO

Any	expression.

A	CHECK	constraint	or	trigger	to	check	for	specified	values	when	data
is	inserted.
CREATE	TABLE	SalesContacts
				(SalesRepID				INT	PRIMARY	KEY	CHECK	(SalesRepID	=	SUSER_SID()),
				ContactName				VARCHAR(50)	NULL,

				ContactPhone				VARCHAR(13)	NULL)

A	DEFAULT	constraint	or	trigger	to	supply	a	value	in	case	one	is	not
specified	on	an	INSERT.
CREATE	TABLE	SalesContacts
				(
				SalesRepID				INT	PRIMARY	KEY	CHECK	(SalesRepID	=	SUSER_SID()),
				ContactName				VARCHAR(50)	NULL,
				ContactPhone				VARCHAR(13)	NULL,
				WhenCreated				DATETIME	DEFAULT	GETDATE(),
				Creator								INT	DEFAULT	SUSER_SID()
)
GO

Functions	are	always	used	with	parentheses,	even	when	there	is	no	parameter.
An	exception	to	this	are	the	niladic	functions	(functions	that	take	no	parameters)
used	with	the	DEFAULT	keyword.	For	more	information	about	the	DEFAULT
keyword,	see	ALTER	TABLE	and	CREATE	TABLE,	or	Defaults.

The	parameters	to	specify	a	database,	computer,	login,	or	database	user	are
sometimes	optional.	If	they	are	not	specified,	they	default	to	the	current
database,	host	computer,	login,	or	database	user.

Functions	can	be	nested	(one	function	used	inside	another	function).

Using	Deterministic	and	Nondeterministic	Functions
A	function	is	either	deterministic	or	nondeterministic.	When	it	always	returns	the
same	result	any	time	it	is	called	with	a	specific	set	of	input	values,	the	function	is
called	deterministic.	When	it	returns	different	results	each	time	it	is	called	with	a
specific	set	of	input	values,	it	is	nondeterministic.

A	function's	determinism	can	limit	where	it	can	be	used.	Only	deterministic
functions	can	be	invoked	in	views	and	computed	columns	indexed.

For	more	information	see	Deterministic	and	Nondeterministic	Functions.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Using	System	Functions
System	functions	allow	you	to	access	information	from	Microsoft®	SQL
Server™	system	tables	without	accessing	the	system	tables	directly.

This	group	of	five	pairs	of	system	functions	for	databases,	hosts,	objects,	logins,
and	users	returns	a	name	when	given	an	identifier	(ID)	and	returns	an	ID	when
given	a	name:

DB_ID	and	DB_NAME

HOST_ID	and	HOST_NAME

OBJECT_ID	and	OBJECT_NAME

SUSER_ID	and	SUSER_NAME	(or	SUSER_SID	and
SUSER_SNAME)

USER_ID	and	USER_NAME

For	example,	use	the	DB_ID	function	to	get	a	database	ID	number	rather	than
executing	a	SELECT	of	the	sysobjects	table.

The	following	example	shows	how	to	retrieve	the	username	for	the	current	user
who	is	logged	on	(using	SQL	Server	Authentication):

SELECT	SUSER_NAME()

The	following	functions	are	similar,	but	they	do	not	occur	in	complementary
pairs	and	they	take	more	than	one	input	parameter:

COL_NAME

Returns	a	column	name.

COL_LENGTH

Returns	a	column	length.

INDEX_COL

Returns	an	index	column	name.

COL_LENGTH	returns	the	length	of	a	column,	not	the	length	of	any	individual
strings	stored	in	the	column.	Use	the	DATALENGTH	function	to	determine	the
total	number	of	characters	in	a	specific	value.

This	example	returns	the	column	length	and	data	length	of	the	LastName
column	in	the	Employees	table:

SELECT	COL_LENGTH('Employees',	'LastName')	AS	Col_Length,	
			DATALENGTH(LastName)	AS	DataLength
FROM	Employees
WHERE	EmployeeID	>	6

Note		It	is	recommended	that	the	system	functions,	Information	Schema	Views,
or	the	system	stored	procedures	be	used	to	gain	access	to	system	information
without	querying	the	system	tables	directly.	System	tables	can	change
significantly	between	versions	of	SQL	Server.

See	Also

System	Functions

ALTER	TABLE

DEFAULT	Definitions

CREATE	TABLE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Using	String	Functions
String	functions	are	used	for	various	operations	on	character	and	binary	strings,
and	they	return	values	commonly	needed	for	operations	on	character	data.	Most
string	functions	can	be	used	only	on	char,	nchar,	varchar,	and	nvarchar	data
types	or	the	data	types	that	implicitly	convert	to	them.	A	few	string	functions	can
also	be	used	on	binary	and	varbinary	data.

You	can	use	string	functions	to:

Retrieve	only	a	portion	of	a	string	(SUBSTRING).

Search	for	similarities	in	the	sounds	of	a	character	string	(SOUNDEX
and	DIFFERENCE).

Find	a	starting	position	for	a	particular	string	in	a	column	or	expression.
For	example,	the	position	number	of	the	letter	A	in	"What	a	beautiful
day!"

Concatenate	strings	into	one	string.	For	example,	combining	a	first
name,	last	name,	and	middle	name	or	initial	into	a	full	name.

Convert	a	nonstring	value	to	a	string	value	(such	as	converting	the	value
of	15.7	stored	as	a	float	to	char).

Inserting	a	specific	string	into	an	existing	string.	For	example,	inserting
the	string	"Once"	into	the	existing	string	of	"upon	a	time"	to	produce	the
string	"Once	upon	a	time".

When	string	functions	operate	on	strings	that	have	different	collations,	the
collation	of	the	result	is	determined	using	the	rules	of	collation	precedence.	For
more	information,	see	Collation	Precedence.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	SUBSTRING
The	SUBSTRING	function	returns	a	portion	of	either	a	character	or	binary
string,	or	a	text	string,	and	takes	three	parameters:

A	character	or	binary	string,	a	column	name,	or	a	string-valued
expression	that	includes	a	column	name.

The	position	at	which	the	substring	should	begin.

The	length	(in	number	of	characters,	or	in	number	of	bytes	for	binary)
of	the	string	to	be	returned.

This	example	displays	the	first	initial	and	last	name	of	each	employee,	for
example,	A	Fuller:

USE	Northwind
SELECT	SUBSTRING(FirstName,	1,	1),	LastName
FROM	Employees

This	example	displays	the	second,	third,	and	fourth	characters	of	the	string
constant	abcdef:

SELECT	x	=	SUBSTRING('abcdef',	2,	3)

x

bcd

(1	row(s)	affected)

See	Also

String	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Comparing	CHARINDEX	and	PATINDEX
The	CHARINDEX	and	PATINDEX	functions	return	the	starting	position	of	a
pattern	you	specify.	PATINDEX	can	use	wildcard	characters	while
CHARINDEX	cannot.

These	functions	take	two	parameters:

The	pattern	whose	position	you	want.	With	PATINDEX,	the	pattern	is	a
literal	string	that	can	contain	wildcard	characters.	With	CHARINDEX,
the	pattern	is	a	literal	string	(no	wildcard	characters).

A	string-valued	expression,	usually	a	column	name,	in	which
Microsoft®	SQL	Server™	searches	for	the	specified	pattern.

For	example,	find	the	position	at	which	the	pattern	"wonderful"	begins	in	a
certain	row	of	the	notes	column	in	the	titles	table.

USE	pubs

SELECT	CHARINDEX('wonderful',	notes)

FROM	titles

WHERE	title_id	=	'TC3218'
Here	is	the	result	set:

46

(1	row(s)	affected)
If	you	do	not	restrict	the	rows	to	be	searched,	the	query	returns	all	rows	in	the
table	and	it	reports	nonzero	values	for	those	rows	in	which	the	pattern	was
found,	and	zero	for	all	others.

For	example,	to	use	wildcards	to	find	the	position	at	which	the	pattern	"candies"

begins	in	any	row	of	the	Description	column	in	the	Categories	table:

USE	Northwind
GO
SELECT	CategoryID,	PATINDEX('%candies%',	Description)AS	POSITION
FROM	Categories
WHERE	PATINDEX('%candies%',	Description)	<>	0

If	you	do	not	restrict	the	rows	to	be	searched,	the	query	returns	all	rows	in	the
table	and	reports	nonzero	values	for	those	rows	in	which	the	pattern	was	found.

PATINDEX	is	useful	with	text	data	types;	it	can	be	used	in	a	WHERE	clause	in
addition	to	IS	NULL,	IS	NOT	NULL,	and	LIKE	(the	only	other	comparisons
that	are	valid	on	text	in	a	WHERE	clause).

See	Also

String	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	STR
The	STR	function	converts	numbers	to	characters,	with	optional	parameters	for
specifying	the	total	length	of	the	result,	including	the	decimal	point	and	the
number	of	places	after	the	decimal	point.

Length	and	decimal	parameters	to	STR	(if	supplied)	should	be	positive.	The
default	length	is	10.	The	number	is	rounded	to	an	integer	by	default	or	if	the
decimal	parameter	is	0.	The	specified	length	should	be	greater	than	or	equal	to
the	part	of	the	number	before	the	decimal	point	plus	the	number	sign	(if	any):

This	example	converts	the	float	expression	of	123.45	to	a	character	with	a	length
of	6	characters	and	2	decimal	places.

SELECT	STR(123.45,	6,	2)

Here	is	the	result	set:

123.45

(1	row(s)	affected)

If	the	integer	part	of	the	expression	converted	to	a	character	string	exceeds	the
length	specified	in	STR,	STR	returns	**	for	the	specified	length.	For	example,
the	number	1234567.89	has	7	digits	to	the	left	of	the	decimal	point.	If	the	length
parameter	on	STR	is	7	or	more,	the	resulting	string	contains	the	integer	and	as
many	of	the	decimals	as	will	fit.	If	the	length	parameter	in	STR	is	6	or	less,	then
asterisks	are	returned.	For	example,	the	batch:

SELECT	STR(1234567.89,	7,	2)
SELECT	STR(1234567.89,	6,	2)

Here	is	the	result	set:

1234568

(1	row(s)	affected)

(1	row(s)	affected)

STR	offers	more	flexibility	than	CAST	when	converting	decimal	data	types	to
characters	because	it	gives	explicit	control	over	formatting.

See	Also

String	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	STUFF
The	STUFF	function	inserts	a	string	into	another	string.	It	deletes	a	specified
length	of	characters	in	the	first	string	at	the	start	position	and	then	inserts	the
second	string	into	the	first	string	at	the	start	position.

If	the	start	position	or	the	length	is	negative,	or	if	the	starting	position	is	larger
than	length	of	the	first	string,	a	null	string	is	returned.	If	the	length	to	delete	is
longer	than	the	first	string,	it	is	deleted	to	the	first	character	in	the	first	string.

This	example	puts	in	the	character	string	of	"xyz"	starting	at	the	second	character
of	the	"abc"	character	expression,	and	replaces	a	total	of	three	characters.

SELECT	STUFF('abc',	2,	3,	'xyz')

Here	is	the	result	set:

axyz

(1	row(s)	affected)

See	Also

String	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Comparing	SOUNDEX	and	DIFFERENCE
The	SOUNDEX	function	converts	a	character	string	to	a	four-digit	code	for	use
in	a	comparison.	Vowels	are	ignored	in	the	comparison.	Nonalphabetic
characters	are	used	to	terminate	the	comparison.	This	function	always	returns
some	value.

This	example	displays	the	results	of	the	SOUNDEX	function	for	the	similar
character	strings	of	"Smith"	and	"Smythe".	When	character	strings	are	similar,
both	strings	have	the	same	SOUNDEX	codes.

SELECT	SOUNDEX	('smith'),	SOUNDEX	('smythe')

Here	is	the	result	set:

-----										-----

S530											S530

(1	row(s)	affected)
The	DIFFERENCE	function	compares	the	SOUNDEX	values	of	two	strings	and
evaluates	the	similarity	between	them,	returning	a	value	from	0	through	4,	where
4	is	the	best	match.	This	example	returns	a	DIFFERENCE	of	4	for	the	first
SELECT	because	"Smithers"	and	"Smothers"	differ	by	only	one	character.

SELECT	DIFFERENCE('smithers',	'smothers')

Here	is	the	result	set:

											4
(1	row(s)	affected)

The	following	example	returns	a	DIFFERENCE	of	3,	indicating	that	the	two
character	strings	have	a	similar	sound	even	though	they	differ	in	several
characters.

SELECT	DIFFERENCE('Jeff',	'Geoffe')

See	Also

String	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	text,	ntext,	and	image	Functions
There	are	two	text,	ntext,	and	image	functions	used	exclusively	for	operations
on	text,	ntext,	and	image	data:

TEXTPTR	returns	a	binary(16)	object	containing	a	pointer	to	a	text,
ntext,	or	image	instance.	The	pointer	remains	valid	until	the	row	is
deleted.

TEXTVALID	function	checks	whether	a	specified	text	pointer	is	valid
or	not.

Text	pointers	are	passed	to	the	READTEXT,	UPDATETEXT,	WRITETEXT,
PATINDEX,	DATALENGTH,	and	SET	TEXTSIZE	Transact-SQL	statements
used	to	manipulate	text,	ntext,	and	image	data.

In	Transact-SQL	statements,	text,	ntext,	and	image	data	is	always	referenced
using	pointers	or	the	address	of	the	data.

This	example	uses	the	TEXTPTR	function	to	locate	the	text	column	(pr_info)
associated	with	pub_id	0736	in	the	pub_info	table	of	the	pubs	database.	It	first
declares	the	local	variable	@val.	The	text	pointer	(a	long	binary	string)	is	then
put	into	@val	and	supplied	as	a	parameter	to	the	READTEXT	statement,	which
returns	10	bytes	starting	at	the	fifth	byte	(offset	of	4).

USE	pubs
DECLARE	@val	varbinary(16)
SELECT	@val	=	textptr(pr_info)	FROM	pub_info
WHERE	pub_id	=	'0736'
READTEXT	pub_info.pr_info	@val	4	4

Here	is	the	result	set:

(1	row(s)	affected)

pr_info
--

	yet

Explicit	conversion	using	the	CAST	function	is	supported	from	text	to	varchar,
from	ntext	to	nvarchar,	and	from	image	to	varbinary	or	binary,	but	the	text	or
image	data	is	truncated	to	8,000	bytes	and	ntext	data	is	truncated	at	4,000
characters	(8,000	bytes).	Conversion	of	text,	ntext,	or	image	to	another	data
type	is	not	supported,	implicitly	or	explicitly.	However,	indirect	conversion	of
text,	ntext	or	image	data	can	be	done,	for	example:

CAST(CAST(text_column_name	AS	VARCHAR(10))	AS	INT).

See	Also

Text	and	Image	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	Mathematical	Functions
A	mathematical	function	performs	a	mathematical	operation	on	numeric
expressions	and	returns	the	result	of	the	operation.	Mathematical	functions
operate	on	the	Microsoft®	SQL	Server™	system-supplied	numeric	data
(decimal,	integer,	float,	real,	money,	smallmoney,	smallint,	and	tinyint).	The
precision	of	built-in	operations	on	float	data	type	data	is	six	decimal	places	by
default.

By	default,	a	number	passed	to	a	mathematical	function	will	be	interpreted	as	a
decimal	data	type.	The	CAST	or	CONVERT	functions	can	be	used	to	change	the
data	type	to	something	else,	such	as	a	float.	For	example,	the	value	returned	by
the	FLOOR	function	has	the	data	type	of	the	input	value.	The	input	of	this
SELECT	statement	is	a	decimal,	and	FLOOR	returns	123,	which	is	a	decimal
value:

SELECT	FLOOR(123.45)

123

(1	row(s)	affected)

But,	this	example	uses	a	float	value	and	FLOOR	returns	a	float	value:

SELECT	FLOOR	(CONVERT	(float,	123.45))

123.000000

(1	row(s)	affected)

A	floating	point	underflow	error	occurs	when	the	float	or	real	result	of	a
mathematical	function	is	too	small	to	display.	A	result	of	0.0	is	returned	and	no
error	message	is	displayed.	For	example,	the	mathematical	calculation	of	2	to	the
-100.0	power	has	a	result	0.0.

Domain	errors	occur	when	the	value	provided	in	the	mathematical	function	is
not	a	valid	value.	For	example,	values	specified	for	the	ASIN	function	must	be
from	-1.00	through	1.00.	If	a	range	of	-2	is	specified,	a	domain	error	occurs.

Range	errors	occur	when	the	value	specified	is	outside	of	the	allowable	values.
For	example,	POWER(10.0,	400)	is	out	of	the	range	of	the	maximum	of
~2e+308	of	the	float	data	type,	while	POWER(-10.0,	401)	is	out	of	the	range	of
the	minimum	of	~	-2e+308	of	the	float	data	type.

This	table	shows	mathematical	functions	that	produce	either	a	domain	or	range
error.

Mathematical	function Result
SQRT(-1) Domain	error.
POWER(10.0,	400) Arithmetic	Overflow	error.
POWER(10.0,	-400) Value	of	0.0	(floating	point

underflow).

Error	traps	are	provided	to	handle	domain	or	range	errors	of	these	functions.	You
can	use:

SET	ARITHABORT	ON,	which	terminates	the	query	and	quits	the
user-defined	transaction.	The	SET	ARITHABORT	setting	overrides	the
setting	for	SET	ANSI_WARNINGS.

SET	ANSI_WARNINGS	ON,	which	stops	the	command.

SET	ARITHIGNORE	ON,	which	causes	no	warning	message	to	be
displayed.	Both	the	SET	ARITHABORT	and	SET	ANSI_WARNINGS
settings	override	the	SET	ARITHIGNORE	setting.

If	neither	of	these	options	is	set,	SQL	Server	returns	NULL	and	returns	a
warning	message	after	the	query	is	executed.	For	more	information,	see	SET
ARITHABORT,	SET	ANSI_WARNINGS,	and	SET	ARITHIGNORE.

Internal	conversion	to	float	can	cause	loss	of	precision	if	either	the	money	or
numeric	data	types	are	used.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	Trigonometric	Functions
Microsoft®	SQL	Server™	2000	provides	trigonometric	functions	that	return
radians.

Functions	returning	radians Use	radians	as	input	value
ACOS TAN
COS SIN
ATAN ASIN
ATN2 	
COT 	

ACOS	and	COS
Both	ACOS	and	COS	are	trigonometric	functions.	The	ACOS	function	returns
the	angle,	in	radians,	whose	cosine	is	the	given	float	expression.	The	COS
function	returns	the	cosine	of	the	specified	angle,	in	radians,	given	the	float
expression.	For	example,	this	SELECT	statement	calculates	the	ACOS	of	-.997
and	the	COS	for	the	value	1.134:

SELECT	ACOS(-.997),	COS(1.134)

Therefore,	the	angle	that	measures	3.06411360866591	radians	has	a	cosine	value
of	-.997,	and	the	angle	measuring	1.134	radians	has	a	cosine	value	of	1.134.

The	valid	ranges	for	ACOS	are	from	-1	through	1.

ASIN	and	SIN
Both	ASIN	and	SIN	are	trigonometric	functions	that	use	a	float	expression.	The
ASIN	function	calculates	the	angle,	measured	in	radians,	whose	sine	is	the	given
float	expression.	The	SIN	function	calculates	the	trigonometric	sine	value	of	the
angle,	measured	in	radians,	as	a	float	expression.

This	example	calculates	the	ASIN	of	-.7582	and	the	SIN	of	5.	The	angle	that
measures	-0.860548023283932	in	radians	has	a	sine	value	of	-.7582	and	the

angle	that	measures	5	radians	has	a	sine	value	of	-0.958924274663138.

SELECT	ASIN(-.7582),	SIN(5)

The	valid	ranges	for	ASIN	are	from	-1	through	1.

ATAN,	ATN2,	TAN,	and	COT
The	ATAN,	ATN2,	TAN,	and	COT	functions	are	mathematical	functions.	The
ATAN	function	returns	the	measurement	of	the	angle,	in	radians,	whose	tangent
is	the	given	float	expression.	An	angle	having	a	tangent	value	of	-27.29
measures	
-1.53416925536896	in	radians.

The	ATN2	function	returns	the	angle,	in	radians,	for	an	angle	whose	tangent	is
between	the	two	given	float	expressions.	An	angle	with	a	tangent	from	3.273
through	15	measures	0.214832755968629	in	radians.

The	TAN	function	returns	the	trigonometric	tangent	of	the	given	float
expression.	An	angle	that	measures	27.92	radians	has	a	tangent	of
-0.36994766163616.

The	COT	function	returns	the	trigonometric	cotangent	of	the	specified	angle,	in
radians,	specified	in	the	given	float	expression.	An	angle	of	97.1928	radians	has
a	cotangent	value	of	-5.02149424849997.

DEGREES
The	DEGREES	function	returns	a	numeric	expression,	the	measurement	of	an
angle,	in	degrees,	from	the	angle's	measurement	in	radians.	An	angle	measuring	
-14.578	radians	measures	-835.257873741714090000	degrees.

SELECT	DEGREES(-14.578)

RADIANS
The	RADIANS	function	calculates	the	angle	in	radians	given	the	angle's
measurement	in	degrees.	To	calculate	the	measurement	in	radians	of	an	angle
that	measures	10.75	degrees,	use:

SELECT	RADIANS(10.75)

See	Also

Mathematical	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Comparing	CEILING	and	FLOOR
The	CEILING	function	returns	the	smallest	integer	greater	than	or	equal	to	the
given	numeric	expression.	The	FLOOR	function	returns	the	largest	integer	less
than	or	equal	to	the	given	numeric	expression.	For	example,	given	a	numeric
expression	of	12.9273,	CEILING	returns	13,	and	FLOOR	returns	12.	The	return
value	of	both	FLOOR	and	CEILING	has	the	same	data	type	as	the	input	numeric
expression.

See	Also

Mathematical	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Comparing	LOG	and	LOG10
The	LOG	function	returns	the	natural	logarithm	for	the	given	float	expression.
Natural	logarithms	are	calculated	by	using	the	base-2	system.	However,	the
LOG10	function	returns	the	base-10	logarithm.	Use	both	LOG	and	LOG10	for
trigonometric	applications.	For	example,	this	SELECT	statement	calculates	both
the	LOG	and	LOG10	of	the	value	1.75:

SELECT	LOG(1.75),	LOG10(1.75)

See	Also

Mathematical	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	the	POWER	and	EXP	Exponential	Functions
The	POWER	function	returns	the	value	of	the	given	numeric	expression	to	the
specified	power.	POWER(2,3)	returns	2	to	the	third	power,	or	the	value	8.
Negative	powers	can	be	specified,	so	POWER(2.000,	-3)	returns	0.125.	Notice
that	the	result	of	POWER(2,	-3)	is	0.	This	is	because	the	result	is	the	same	data
type	as	the	given	numeric	expression.	Therefore,	if	the	result	has	three	decimal
places,	the	number	to	raise	to	a	given	power	must	have	three	decimals,	too.

The	EXP	function	returns	the	exponential	value	in	scientific	notation	of	the
given	float	expression.	So,	with	a	value	of	198.1938327,	the	EXP	function
returns	a	value	of	1.18710159597953e+086.

SELECT	EXP(198.1938327)

See	Also

Mathematical	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	RAND
The	RAND	function	calculates	a	random	floating-point	number	from	0	through
1,	and	can	optionally	take	a	tinyint,	int,	or	smallint	value	for	the	starting	point
of	the	random	number	to	calculate.

This	example	calculates	two	random	numbers.	The	first	RAND()	function	lets
Microsoft®	SQL	Server™	pick	the	seed	value,	and	the	second	RAND()	function
uses	the	value	of	3	for	the	starting	position.

SELECT	RAND(),	RAND(3)

The	RAND	function	is	a	pseudorandom	number	generator	that	operates	in	a
manner	similar	to	the	C	run-time	library	rand	function.	If	no	seed	is	provided,
the	system	generates	its	own	variable	seed	numbers.	If	you	call	RAND	with	a
seed	value,	you	must	use	variable	seed	values	to	generate	random	numbers.	If
you	call	RAND	multiple	times	with	the	same	seed	value,	it	returns	the	same
generated	value.	This	script	returns	the	same	value	for	the	calls	to	RAND
because	they	all	use	the	same	seed	value:

SELECT	RAND(159784)
SELECT	RAND(159784)
SELECT	RAND(159784)

A	common	way	to	generate	random	numbers	from	RAND	is	to	include
something	relatively	variable	as	the	seed	value,	such	as	adding	several	parts	of	a
GETDATE:

SELECT	RAND((DATEPART(mm,	GETDATE())	*	100000)
											+	(DATEPART(ss,	GETDATE())	*	1000)
											+	DATEPART(ms,	GETDATE()))

When	you	use	an	algorithm	based	on	GETDATE	to	generate	seed	values,	RAND
can	still	generate	duplicate	values	if	the	calls	to	RAND	are	made	within	the
interval	of	the	smallest	datepart	used	in	the	algorithm.	This	is	especially	likely	if
the	calls	to	RAND	are	included	in	a	single	batch.	Multiple	calls	to	RAND	in	a

single	batch	can	be	executed	within	the	same	millisecond,	which	is	the	smallest
increment	of	DATEPART.	In	this	case,	incorporate	a	value	based	on	something
other	than	time	to	generate	the	seed	values.

See	Also

Mathematical	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Date	Functions
Date	functions	are	used	to	display	information	about	dates	and	times.	These
functions	manipulate	datetime	and	smalldatetime	values,	performing	arithmetic
operations	on	them.	Date	functions	can	be	used	anywhere	an	expression	can	be
used.

SQL	Server	recognizes	a	wide	variety	of	datetime	data	entry	formats.	You	can
use	the	SET	DATEFORMAT	statement	to	set	the	order	of	the	dateparts
(month/day/year)	for	entering	datetime	or	smalldatetime	data.	Enclose
datetime	or	smalldatetime	values	in	single	quotation	marks.

See	Also

Date	and	Time	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	GETDATE
The	GETDATE	function	produces	the	current	date	and	time	in	Microsoft®	SQL
Server™	internal	format	for	datetime	values.	GETDATE	takes	the	null
parameter	().

This	example	finds	the	current	system	date	and	time:

SELECT	GETDATE()

Here	is	the	result	set:

July	29	1995			2:50				PM

(1	row(s)	affected)

You	can	use	GETDATE	in	designing	a	report	to	have	the	current	date	and	time
printed	every	time	the	report	is	produced.	GETDATE	is	also	useful	for	functions
such	as	logging	the	time	a	transaction	occurred	on	an	account.

You	can	use	GETDATE	anywhere	to	return	the	current	system	date.	For
example,	you	can	use	GETDATE	as	a	default	value	for	data	entry,	with	a	local
variable,	or	comparing	an	order	date	to	today's	date.

See	Also

Date	and	Time	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Comparing	DATEPART	and	DATENAME
The	DATEPART	and	DATENAME	functions	produce	the	specified	part	of	a
datetime	value	(the	year,	quarter,	day,	hour,	and	so	on)	as	either	an	integer	or	an
ASCII	string.	Because	smalldatetime	is	accurate	only	to	the	minute,	when	a
smalldatetime	value	is	used	with	either	of	these	functions,	the	seconds	and
milliseconds	returned	are	always	zero.

These	examples	assume	the	date	May	29:

SELECT	DATEPART(month,	GETDATE())

Here	is	the	result	set:

5

(1	row(s)	affected)

SELECT	DATENAME(month,	GETDATE())

Here	is	the	result	set:

May

(1	row(s)	affected)

See	Also

Date	and	Time	Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Comparing	DATEADD	and	DATEDIFF
The	DATEADD	function	adds	an	interval	to	a	date	you	specify.	For	example,	if
the	publication	dates	of	all	books	in	the	titles	table	slipped	three	days,	you	could
get	the	new	publication	dates	with	this	statement:

USE	pubs
SELECT	DATEADD(day,	3,	pubdate)
FROM	titles

If	the	date	parameter	is	a	smalldatetime	data	type,	the	result	is	also	a
smalldatetime.	You	can	use	DATEADD	to	add	seconds	or	milliseconds	to	a
smalldatetime	value,	but	doing	this	is	meaningful	only	if	the	result	date	returned
by	DATEADD	changes	by	at	least	1	minute.

The	DATEDIFF	function	calculates	the	amount	of	time	in	dateparts	between	the
second	and	first	of	two	dates	you	specify.	In	other	words,	it	finds	an	interval
between	two	dates.	The	result	is	a	signed	integer	value	equal	to	date2	-	date1	in
date	parts.

This	query	uses	the	date	November	30,	1995,	and	finds	the	number	of	days	that
elapsed	between	pubdate	and	that	date:

USE	pubs
SELECT	DATEDIFF(day,	pubdate,	'Nov	30	1995')
FROM	titles

For	the	rows	in	titles	having	a	pubdate	of	October	21,	1995,	the	result	produced
by	the	last	query	is	40.	(There	are	40	days	between	October	21	and	November
30.)	To	calculate	an	interval	in	months,	use	this	query:

USE	pubs
SELECT	interval	=	DATEDIFF(month,	pubdate,	'Nov	30	1995')
FROM	titles

The	query	produces	a	value	of	1	for	the	rows	with	a	pubdate	in	October	and	a

value	of	5	for	the	rows	with	a	pubdate	in	June.

When	the	first	date	in	the	DATEDIFF	function	is	later	than	the	second	date
specified,	the	resulting	value	is	negative.	Because	two	of	the	rows	in	titles	have
values	for	pubdate	assigned	using	the	GETDATE	function	as	a	default,	these
values	are	set	to	the	date	that	your	pubs	database	was	created	and	return
negative	values	in	the	two	preceding	queries.

If	one	or	both	of	the	date	arguments	is	a	smalldatetime	value,	they	are	converted
to	datetime	values	internally	for	the	calculation.	Seconds	and	milliseconds	in
smalldatetime	values	are	automatically	set	to	0	for	the	purpose	of	calculation.

See	Also

CAST	and	CONVERT

DATENAME

Date	and	Time	Functions

DATEPART

DATEADD

GETDATE

DATEDIFF

SET	DATEFORMAT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Accessing	and	Changing	Relational	Data

Functions	That	Return	User	Names	and	User	IDs
Several	system	functions	return	user	names	and	user	IDs.	Understanding	the
parameters	and	output	of	these	functions	requires	an	understanding	of	the	types
of	names	and	IDs	used	in	Microsoft®	SQL	Server™	2000.

Each	user	logging	on	to	SQL	Server	has	two	levels	of	names	in	SQL	Server,	and
each	name	is	associated	with	a	unique	ID:

Login	names.

Each	user	authorized	to	log	on	to	SQL	Server	has	one	login	name	that
gives	them	access	to	an	instance	of	SQL	Server.	There	are	two	types	of
login	names:

Microsoft	Windows®	account	names.

Members	of	the	sysadmin	or	securityadmin	fixed	server	roles
can	authorize	the	Windows	accounts	of	individual	users	or
Windows	groups	to	log	on	to	an	instance	of	SQL	Server	using
sp_grantlogin.	The	user	identified	by	the	Windows	account,	or
any	person	in	the	Windows	group,	can	then	connect	to	an
instance	of	SQL	Server	using	Windows	Authentication.	Each
Windows	account	or	group	name	is	stored	in
master.dbo.syslogins.loginname.	The	Windows
security_identifier	for	the	Windows	account	or	group	is	stored
in	syslogins.sid.

SQL	Server	login	names.

These	are	used	when	logging-on	using	SQL	Server
Authentication.	SQL	Server	login	names	are	defined	by
members	of	the	sysadmin	or	securityadmin	fixed	server	roles
using	sp_addlogin.	Each	SQL	Server	login	name	is	stored	in
master.dbo.syslogins.loginname.	SQL	Server	generates	a
GUID	used	as	a	security_identifier	and	stores	it	in
syslogins.sid.

SQL	Server	2000	uses	master.dbo.syslogins.sid	as	the

security_identifier	for	the	login	name.

Database	user	name.

Each	Windows	account	or	SQL	Server	login	must	be	associated	with	a
user	name	in	each	database	the	user	is	authorized	to	access,	or	the
database	must	have	guest	access	enabled.	Database	user	names	are
defined	by	members	of	the	db_owner	or	db_accessadmin	fixed
database	role,	and	are	stored	in	the	sysusers	table	found	in	each
database.	Each	database	user	name	is	associated	with	a	database	user	ID
stored	in	sysusers.uid.

The	security_identifier	for	each	user	is	stored	in	sysusers.sid;	therefore,
users	can	be	mapped	back	to	their	associated	logins.	It	is	less	confusing
if	the	same	name	for	the	database	user	is	used	for	the	SQL	Server	login
or	Windows	account;	however,	there	is	no	requirement	to	do	this.

For	more	information	about	login	and	database	user	accounts,	see	Logins,	Users,
Roles,	and	Groups.

Getting	Login	Accounts	or	IDs
When	connected	to	SQL	Server	2000,	use:

SUSER_SNAME	to	get	the	SQL	Server	login	name	or	Windows
account	associated	with	a	security_identifier.

SUSER_SID	to	get	the	security_identifier	associated	with	a	SQL	Server
login	name	or	Windows	NT	account.

SUSER_SID()	(SUSER_SID	specified	without	a	login_account
parameter)	to	get	the	security_identifier	of	the	current	connection
regardless	of	whether	SQL	Server	Authentication	or	Windows
Authentication	is	used.

The	SQL-92	function	SYSTEM_USER	to	get	the	Windows	account	for
a	Windows	Authentication	connection	or	the	SQL	Server	login	name	for
an	SQL	Server	Authentication	connection.	In	Transact-SQL,

JavaScript:hhobj_1.Click()

SYSTEM_USER	is	implemented	as	a	synonym	for	SUSER_SNAME()
(SUSER_SNAME	specified	without	a	security_identifier).

In	SQL	Server	2000,	the	functions	that	return	login	names	or	accounts	operate	in
this	manner:

SUSER_SNAME(security_identifier)

SUSER_SNAME	takes	either:

The	security_identifier	for	a	Windows	account	or	group,	in
which	case	it	returns	the	name	of	the	Windows	account	or
group.

The	pseudo	security_identifier	generated	for	a	SQL	Server
login,	in	which	case	it	returns	the	SQL	Server	login	name.

If	a	security_identifier	is	not	specified	for	a	connection	made	using
Windows	Authentication,	SUSER_SNAME	returns	the	name	of	the
Windows	account	associated	with	the	connection.	If	the	connection	was
made	using	SQL	Server	Authentication,	SUSER_SNAME	returns	the
SQL	Server	login	associated	with	the	connection.

SYSTEM_USER

This	SQL-92	function	is	implemented	as	a	synonym	for
SUSER_SNAME()	(SUSER_SNAME	specified	without	a
security_identifier	parameter)	in	Transact-SQL.

Getting	Database	User	Names	or	User	IDs

When	connected	to	SQL	Server	2000,	use:

USER_ID	to	get	the	database	user	ID	associated	with	a	database	user
name.

USER_ID()	to	get	the	database	user	ID	associated	with	the	current
connection.

USER_NAME	to	get	the	database	user	name	associated	with	a	database
user	ID.

Either	the	SQL-92	CURRENT_USER	or	SESSION_USER	functions	to
get	the	database	user	name	associated	with	the	current	connection.	In
Transact-SQL	these	functions	are	implemented	as	synonyms	for	the
USER_NAME()	(USER_NAME	specified	without	a	database_user_ID
parameter).	The	Transact-SQL	function	USER	is	also	implemented	as	a
synonym	for	USER_NAME().

SQL-92	allows	for	SQL	statements	to	be	coded	in	SQL	modules	that
can	have	authorization	identifiers	separate	from	the	authorization
identifier	of	the	user	that	has	connected	to	a	SQL	database.	SQL-92
specifies	that	SESSION_USER	always	return	the	authorization
identifier	of	the	user	that	made	the	connection.	CURRENT_USER
returns	the	authorization	identifier	of	the	SQL	module	for	any
statements	executed	from	a	SQL	module,	or	of	the	user	that	made	the
connection	if	the	SQL	statements	were	not	executed	from	a	SQL
module.	If	the	SQL	module	does	not	have	a	separate	authorization
identifier,	SQL-92	specifies	that	CURRENT_USER	return	the	same
value	as	SESSION_USER.	Microsoft	SQL	Server	does	not	have
separate	authorization	identifiers	for	SQL	modules;	therefore,
CURRENT_USER	and	SESSION_USER	are	always	the	same.	The
USER	function	is	defined	by	SQL-92	as	a	backward	compatibility
function	for	applications	written	to	earlier	versions	of	the	standard.	It	is
specified	to	return	the	same	value	as	CURRENT_USER.

In	SQL	Server,	the	functions	that	return	login	names	or	accounts	operate	in	this
manner:

USER_ID('database_user_name')

USER_ID	returns	the	database	user	ID	associated	with	the	specified
database	user	name.	If	database_user_name	is	not	specified,	USER_ID
returns	the	database	user	ID	associated	with	the	current	connection.

USER_NAME(database_user_ID)

USER_NAME	returns	the	database	user	name	associated	with	the

specified	database	user	ID.	If	database_user_ID	is	not	specified,
USER_NAME	returns	the	database	user	name	associated	with	the
current	connection.

CURRENT_USER,	SESSION_USER,	USER

These	functions	are	synonyms	for	USER_NAME()	(USER	NAME
specified	without	a	database_user_ID	parameter).

See	Also

CURRENT_USER

SYSTEM_USER

USER_ID

SUSER_SID

USER_NAME

SUSER_SNAME

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Conversion	Functions
Use	the	conversion	functions,	CAST	and	CONVERT,	to	convert	expressions	of
one	data	type	to	another	data	type	when	these	conversions	are	not	performed
automatically	by	Microsoft®	SQL	Server™	2000.	These	conversion	functions
are	also	used	to	obtain	a	variety	of	special	data	formats.	Either	of	the	conversion
functions	can	be	used	in	the	select	list,	in	the	WHERE	clause,	and	anywhere	an
expression	is	allowed.

Use	CAST	rather	than	CONVERT	if	you	want	Transact-SQL	program	code	to
comply	with	SQL-92.	Use	CONVERT	rather	than	CAST	to	take	advantage	of
the	style	functionality	in	CONVERT.

When	using	either	CAST	or	CONVERT,	two	pieces	of	information	are	required:

The	expression	to	convert	(for	example,	the	sales	report	requires	the
sales	data	to	be	converted	from	monetary	data	to	character	data).

The	data	type	to	convert	the	given	expression	to,	for	example,	varchar
or	any	other	SQL	Server-supplied	data	type.

Unless	you	store	the	converted	value,	a	conversion	is	valid	only	for	the	length	of
the	CAST	or	CONVERT	function.

This	example	uses	CAST	in	the	first	SELECT	statement	and	CONVERT	in	the
second	SELECT	statement	to	convert	the	title	column	to	a	char(50)	column,	to
make	the	results	more	readable:

USE	pubs
SELECT	CAST(title	AS	char(50)),	ytd_sales
FROM	titles
WHERE	type	=	'trad_cook'

Or

USE	pubs
SELECT	CONVERT(char(50),	title),	ytd_sales

FROM	titles
WHERE	type	=	'trad_cook'

Here	is	the	result	set:	(for	either	query)

																																																		ytd_sales
---							-----------
Onions,	Leeks,	and	Garlic:	Cooking	Secrets	of	the							375
Fifty	Years	in	Buckingham	Palace	Kitchens													15096
Sushi,	Anyone?																																									4095

(3	row(s)	affected)

In	this	example,	the	ytd_sales	column,	an	int	column,	is	converted	to	a	char(20)
column	so	that	it	can	be	used	with	the	LIKE	predicate:

USE	pubs
SELECT	title,	ytd_sales
FROM	titles
WHERE	CAST(ytd_sales	AS	char(20))	LIKE	'15%'
			AND	type	=	'trad_cook'

Here	is	the	result	set:

Title																																										ytd_sales

---						---------

Fifty	Years	in	Buckingham	Palace	Kitchens										15096

(1	row(s)	affected)

SQL	Server	automatically	handles	certain	data	type	conversions.	For	example,	if
you	compare	a	char	and	a	datetime	expression,	or	a	smallint	and	an	int
expression,	or	char	expressions	of	different	lengths,	SQL	Server	converts	them
automatically.	This	is	called	an	implicit	conversion.	You	do	not	have	to	use	the
CAST	function	for	these	conversions.	However,	it	is	acceptable	to	use	the	CAST
when:

Two	expressions	are	exactly	the	same	data	type.

Two	expressions	are	implicitly	convertible.

It	is	necessary	to	explicitly	convert	the	data	types.

If	you	attempt	a	conversion	that	is	not	possible	(for	example,	converting	a	char
expression	that	includes	letters	to	int),	SQL	Server	displays	an	error	message.

If	you	do	not	specify	a	length	when	converting	for	the	data	type,	SQL	Server
automatically	supplies	a	length	of	30.

When	converting	to	datetime	or	smalldatetime,	SQL	Server	rejects	all	values	it
cannot	recognize	as	dates	(including	dates	earlier	than	January	1,	1753).	You	can
convert	datetime	values	to	smalldatetime	when	the	date	is	in	the	proper	range
(from	January	1,	1900	through	June	6,	2079).	The	time	value	is	rounded	to	the
nearest	minute.

Converting	to	bit	changes	any	nonzero	value	to	1.

When	converting	to	money	or	smallmoney,	integers	are	assumed	to	be
monetary	units.	For	example,	the	integer	value	of	4	is	converted	to	the	money
equivalent	of	4	dollars	(for	us_english,	the	default	language).	Numbers	to	the
right	of	the	decimal	in	floating-point	values	are	rounded	to	four	decimal	places
for	money	values.	Expressions	of	data	types	char	or	varchar	that	are	being
converted	to	an	integer	data	type	must	consist	only	of	digits	and	an	optional	plus
or	minus	sign	(+	or	-).	Leading	blanks	are	ignored.	Expressions	of	data	types
char	or	varchar	converted	to	money	can	also	include	an	optional	decimal	point
and	leading	dollar	sign	($).

Expressions	of	data	types	char	or	varchar	that	are	being	converted	to	float	or
real	can	also	include	optional	exponential	notation	(e	or	E,	followed	by	an
optional	+	or	-	sign,	and	then	a	number).

When	character	expressions	are	converted	to	a	data	type	of	a	different	size,
values	too	long	for	the	new	data	type	are	truncated,	and	SQL	Server	displays	an
asterisk	(*)	in	both	the	osql	utility	and	SQL	Query	Analyzer.	When	numeric
expressions	are	too	long	for	the	new	data	type	to	display,	values	are	truncated.
This	is	an	example	of	character	truncation:

USE	pubs
SELECT	SUBSTRING(title,	1,	25)	AS	Title,	CONVERT(char(2),	ytd_sales)
FROM	titles
WHERE	type	=	'trad_cook'

Here	is	the	result	set:

Title																								
-------------------------	--	
Onions,	Leeks,	and	Garlic	*		
Fifty	Years	in	Buckingham	*		
Sushi,	Anyone?												*		

(3	row(s)	affected)

When	converting	between	data	types	in	which	the	target	data	type	has	fewer
decimal	places	than	the	source	data	type,	the	value	is	truncated.	For	example,	the
result	of	CAST(10.3496	AS	money)	is	$10.35.

You	can	explicitly	convert	text	data	to	char	or	varchar,	and	image	data	to
binary	or	varbinary.	Because	these	data	types	are	limited	to	8,000	characters,
you	are	limited	to	the	maximum	length	of	the	character	and	binary	data	types,
8,000	characters.	You	can	explicitly	convert	ntext	data	to	nchar	or	nvarchar,
but	the	maximum	length	is	4,000	characters.	If	you	do	not	specify	the	length,	the
converted	value	has	a	default	length	of	30	characters.	Implicit	conversion	is	not
supported.

The	style	Parameter
The	style	parameter	of	CONVERT	provides	a	variety	of	date	display	formats
when	converting	datetime	data	to	char	or	varchar.	The	number	you	supply	as
the	style	parameter	determines	how	the	datetime	data	is	displayed.	The	year	can
be	displayed	in	either	two	or	four	digits.	By	default,	SQL	Server	supplies	a	two-
digit	year.	To	display	a	four-digit	year	including	the	century	(yyyy),	even	if	the
year	data	was	stored	by	using	a	two-digit	year	format,	add	100	to	a	style	value	to
get	a	four-place	year.

This	example	shows	CONVERT	with	the	style	parameter:

SELECT	CONVERT(char(12),	GETDATE(),	3)

This	statement	converts	the	current	date	to	style	3,	dd/mm/yy.

See	Also

CAST	and	CONVERT

Functions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Invoking	User-Defined	Functions
When	you	reference	or	invoke	a	user-defined	function,	you	specify	the	function
name	followed	by	parentheses.	Within	the	parentheses,	you	can	specify
expressions	called	arguments	that	provide	the	data	to	be	passed	in	to	the
parameters.	You	cannot	specify	parameter	names	in	the	arguments	when
invoking	a	function.	When	you	invoke	a	function,	you	must	supply	argument
values	for	all	of	the	parameters	and	you	must	specify	the	argument	values	in	the
same	sequence	in	which	the	parameters	are	defined	in	the	CREATE	FUNCTION
statement.	For	example,	if	a	function	named	fn_MyIntFunc	that	returns	an
integer	is	defined	with	an	integer	parameter	and	an	nchar(20)	parameter,	it	can
be	invoked	using:

SELECT	*
FROM	SomeTable
WHERE	PriKey	=	dbo.fn_MyIntFunc(1,	N'Anderson')

This	is	an	example	of	invoking	a	function	named	fn_MyTableFunc	defined	to
return	a	table:

SELECT	*
FROM	dbo.fn_MyTableFunc(123.09,	N'O''Neill')

See	Also

User-Defined	Functions

CREATE	FUNCTION

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Invoking	User-Defined	Functions	That	Return	a
Scalar	Value
You	can	invoke	a	user-defined	function	that	returns	a	scalar	value	anywhere	a
scalar	expression	of	the	same	data	type	is	allowed	in	Transact-SQL	statements:

Queries

User-defined	functions	that	return	scalar	values	are	allowed	in	these	locations:

As	an	expression	in	the	select_list	of	a	SELECT	statement:
SELECT	*,	dbo.fn_CalculateDaysLate(RequiredDate)	AS	DaysLate
FROM	Northwind.dbo.Employees

As	an	expression	or	string_expression	in	a	WHERE	or	HAVING	clause
predicate:
SELECT	*
FROM	Northwind.dbo.[Order	Details]
WHERE	UnitPrice	<	dbo.fn_MeanUnitPrice()

As	a	group_by_expression	in	a	GROUP	BY	clause.

As	an	order_by_expression	in	an	ORDER	BY	clause.

As	an	expression	in	the	SET	clause	in	an	UPDATE	statement:
UPDATE	Orders
	SET	ShipVia	=	dbo.fn_FindLeastCostShipper(ShipCity)
	WHERE	OrderID	=	10274

As	an	expression	in	the	VALUES	clause	of	an	INSERT	statement:
INSERT	INTO	Shippers
			VALUES	(4,	dbo.fn_GetShipperName(),	n'(503)555-9931'

User-defined	functions	referenced	in	these	locations	are	logically
executed	once	per	row.

CHECK	constraints

User-defined	functions	that	return	scalar	values	can	be	invoked	in	CHECK
constraints	if	the	argument	values	passed	to	the	function	reference	columns	only
in	the	table	or	constants.	Each	time	the	query	processor	checks	the	constraint,
query	processor	calls	the	function	with	the	argument	values	associated	with	the
current	row	being	checked.	The	owner	of	a	table	must	also	be	the	owner	of	the
user-defined	function	invoked	by	a	CHECK	constraint	on	the	table.

DEFAULT	definitions

User-defined	functions	can	be	invoked	as	the	constant_expression	of	DEFAULT
definitions	if	the	argument	values	passed	to	the	function	contains	only	constants.
The	owner	of	the	table	must	also	be	the	owner	of	the	user-defined	function
invoked	by	a	DEFAULT	definition	on	the	table.

Computed	columns

Functions	can	be	invoked	by	computed	columns	if	the	argument	values	passed	to
the	function	reference	only	columns	in	the	table	or	constants.	The	owner	of	the
table	must	also	be	the	owner	of	the	user-defined	function	invoked	by	a	computed
column	in	the	table.

Assignment	operators

Assignment	operators	(left_operand	=	right_operand)	can	invoke	user-defined
functions	that	return	a	scalar	value	in	the	expression	specified	as	the	right
operand.

Control-of-Flow	statements

User-defined	functions	that	return	scalar	values	can	be	invoked	by	control-of-
flow	statements	in	their	Boolean	expressions.

CASE	expressions

User-defined	functions	that	return	a	scalar	value	can	be	invoked	in	any	of	the
CASE	expressions.

PRINT	statements

User-defined	functions	that	return	a	character	string	can	be	invoked	as	the
string_expr	expression	of	PRINT	statements.

Functions	and	stored	procedures

Function	arguments	can	also	be	a	reference	to	a	user-defined	function
that	returns	a	scalar	value.

RETURN	integer_expression	statements	in	stored	procedures	can
invoke	user-defined	functions	that	return	an	integer	as	the
integer_expression.	

RETURN	return_type_spec	statements	in	user-defined	functions	can
invoke	user-defined	functions	that	return	a	scalar	data	type	such	as	the
return_type_spec,	provided	the	value	returned	by	the	invoked	user-
defined	function	can	be	implicitly	converted	to	the	return	data	type	of
the	invoking	function.

Executing	User-Defined	Functions	That	Return	a	Scalar	Value

You	can	execute	user-defined	functions	that	return	scalar	values	in	the	same
manner	as	stored	procedures.	When	executing	a	user-defined	function	that
returns	a	scalar	value,	the	parameters	are	specified	as	they	are	for	stored
procedures:

The	argument	values	are	not	enclosed	in	parentheses.

Parameter	names	can	be	specified.

If	parameter	names	are	specified,	the	argument	values	do	not	have	to	be
in	the	same	sequence	as	the	parameters.

This	is	a	definition	of	a	user-defined	function	that	returns	a	decimal:

CREATE	FUNCTION	fn_CubicVolume
--	Input	dimensions	in	centimeters.

			(@CubeLength	decimal(4,1),	@CubeWidth	decimal(4,1),
				@CubeHeight	decimal(4,1))
RETURNS	decimal(12,3)	--	Cubic	Centimeters.
WITH	SCHEMABINDING
AS
BEGIN
			RETURN	(@CubeLength	*	@CubeWidth	*	@CubeHeight)
END

This	is	an	example	of	executing	the	fn_CubicVolume	function.	Using	the
Transact-SQL	EXECUTE	statement,	the	arguments	are	identified	in	a	different
order	than	the	parameters	in	the	function	definition:

DECLARE	@MyDecimalVar	decimal(12,3)
EXEC	@MyDecimalVar	=	dbo.fn_CubicVolume	@CubeLength	=	12.3,
																								@CubeHeight	=	4.5,	@CubeWidth	=	4.5

This	is	an	example	of	executing	the	fn_CubicVolume	function	without
specifying	the	parameter	names:

DECLARE	@MyDecimalVar	decimal(12,3)
EXEC	@MyDecimalVar	=	dbo.fn_CubicVolume	12.3,	4.5,	4.5

You	can	also	use	the	ODBC	CALL	syntax	to	execute	the	fn_CubicVolume
function	from	OLE	DB	or	ODBC	applications:

--	First	use	SQLBindParam	to	bind	the	return	value	parameter	marker
--	to	a	program	variable	of	the	appropriate	type
SQLExecDirect(hstmt,
														"{	CALL	?	=	fn_CubicVolume(12.3,	4.5,	4.5)	}",
														SQL_NTS);

Accessing	and	Changing	Relational	Data

Invoking	User-Defined	Functions	That	Return	a	Table
Data	Type
You	can	invoke	a	user-defined	function	that	returns	a	table	where	table
expressions	are	allowed	in	the	FROM	clause	of	SELECT,	INSERT,	UPDATE,	or
DELETE	statements.	An	invocation	of	a	user-defined	function	that	returns	a
table	can	be	followed	by	an	optional	table	alias.	This	example	illustrates	calling
a	function	fn_Products	and	assigning	an	alias:

SELECT	OD.OrderID,	OD.ProductID,	fnPr.Price
FROM	OrderDetails	as	OD,	fn_Products('Discontinued')	AS	fnPr
WHERE	OD.ProductID	=	fnPr.ProductID
ORDER	BY	OD.OrderID,	OD.ProductID

When	a	user-defined	function	that	returns	a	table	is	invoked	in	the	FROM	clause
of	a	subquery,	the	function	arguments	cannot	reference	any	columns	from	the
outer	query.

Static,	read-only	cursors	are	the	only	type	of	cursor	that	can	be	opened	on	a
SELECT	statement	whose	FROM	clause	refers	to	a	user-defined	function	that
returns	a	table.

A	SELECT	statement	that	references	a	user-defined	function	that	returns	a	table
invokes	the	function	once.

See	Also

User-Defined	Functions	That	Return	a	Table

Inline	User-Defined	Functions

table

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Invoking	Built-in	User-Defined	Functions
Microsoft®	SQL	Server™	2000	implements	several	built-in	functions	as	user-
defined	functions	that	return	a	table.	The	invocation	of	these	built-in	user-
defined	functions	follows	special	rules:

For	built-in	user-defined	functions	that	return	a	table,	the	function	name
must	be	specified	with	a	leading	double	colon	(::)	to	distinguish	it	from
user-defined	functions	that	are	not	built-in.	It	also	must	be	specified	as	a
one-part	name	with	no	database	or	owner	qualifications.	For	example:
SELECT	*
FROM	::fn_helpcollations()

For	built-in	user-defined	functions	that	return	a	scalar	value,	the
function	name	must	be	specified	as	a	one-part	name	(do	not	specify
database	or	owner).	Do	not	specify	a	leading	double	colon	(::).

Accessing	and	Changing	Relational	Data

Expressions
An	expression	is	a	combination	of	identifiers,	values,	and	operators	that
Microsoft®	SQL	Server™	can	evaluate	to	get	a	result.	The	data	can	be	used	in
several	different	places	when	accessing	or	changing	data.	Expressions	can	be
used,	for	example,	as	part	of	the	data	to	retrieve	(in	a	query)	or	as	a	search
condition	to	look	for	data	meeting	a	set	of	criteria.

An	expression	can	be	a:

Constant

Function

Column	name

Variable

Subquery

CASE,	NULLIF	or	COALESCE

An	expression	can	also	be	built	from	combinations	of	these	entities	joined	by
operators.

In	the	following	SELECT	statement,	for	each	row	of	the	result	set,	SQL	Server
can	resolve	LastName	to	a	single	value;	therefore,	it	is	an	expression.

SELECT	LastName	
FROM	Northwind..Employees	

An	expression	can	also	be	a	calculation,	such	as	(price	*	1.5)	or	(price	+
sales_tax).

In	an	expression,	enclose	character	date	values	in	single	quotation	marks.	In	the

following	SELECT	the	character	literal	B%	used	as	the	pattern	for	the	LIKE
clause	must	be	in	single	quotation	marks:

SELECT	LastName,	FirstName	
FROM	Northwind..Employees	
WHERE	LastName	LIKE	'B%'

In	the	following	SELECT,	the	date	value	is	enclosed	in	quotation	marks:

SELECT	*
FROM	Northwind..Orders
WHERE	OrderDate	=	'Sep	13	1996'

In	this	example,	more	than	one	expression	is	used	in	the	query.	For	example,
col1,	SUBSTRING,	col3,	price,	and	1.5	are	all	expressions.

SELECT	col1,	SUBSTRING('This	is	a	long	string',	1,	5),	col3,	price	*	1.5	
FROM	mytable

See	Also

CASE

INSERT

COALESCE

UPDATE

Functions

DELETE

SELECT

Expressions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Accessing	and	Changing	Relational	Data

Using	Operators	in	Expressions
Operators	allow	you	to	perform	arithmetic,	comparison,	concatenation,	or
assignment	of	values.	For	example,	you	can	test	data	to	verify	that	the	country
column	for	your	customer	data	is	populated	(or	not	NULL).

In	queries,	anyone	who	can	see	the	data	in	the	table	that	needs	to	be	used	with
some	type	of	operator	can	perform	operations.	You	need	the	appropriate
permissions	before	you	can	successfully	change	the	data.

Operators	are	used	in	Microsoft®	SQL	Server™	to:

Change	data,	either	permanently	or	temporarily.	

Search	for	rows	or	columns	that	meet	a	specified	condition.	

Implement	a	decision	between	columns	of	data	or	between	expressions.	

Test	for	specific	conditions	before	beginning	or	committing	a
transaction,	or	before	executing	specific	lines	of	code.

SQL	Server	has	seven	categories	of	operators.

To	perform	this	type	of	operation Use	this	operator	category
Compare	a	value	against	another	value	or	an
expression.

Comparison	operators

Test	for	the	truth	of	a	condition,	such	as	AND,
OR,	NOT,	LIKE,	ANY,	ALL,	IN.

Logical

Addition,	subtraction,	multiplication,	division,
modulo.

Arithmetic	operators

Performs	an	operation	on	one	operand,	such	as
positive	or	negative	or	one's	complement.

Unary

Temporarily	turn	regular	numeric	values	(like
150)	into	an	integer	and	perform	bitwise	(0
and	1)	arithmetic.

Bitwise	Operators

Either	permanently	or	temporarily	combine
two	strings	(either	character	or	binary	data)
into	one	string.

String	Concatenation
Operator

Assigns	a	value	to	a	variable,	or	associates	a
result	set	column	with	an	alias.

Assignment

An	expression	can	be	built	from	several	smaller	expressions	combined	by
operators.	In	these	complex	expressions,	the	operators	are	evaluated	in	order
based	on	the	SQL	Server	definition	of	operator	precedence.	Operators	with
higher	precedence	are	performed	before	operators	with	lower	precedence.	For
more	information,	see	Operators.

When	simple	expressions	are	combined	to	form	a	complex	expression,	the	data
type	of	the	result	is	determined	by	combining	the	rules	for	the	operators	with	the
rules	for	data	type	precedence.	If	the	result	is	a	character	or	Unicode	value,	the
collation	of	the	result	is	determined	by	combining	the	rules	for	the	operators
with	the	rules	for	collation	precedence.	There	are	also	rules	that	determine	the
precision,	scale,	and	length	of	the	result	based	on	the	precision,	scale,	and	length
of	the	simple	expressions.

See	Also

Collation	Precedence

Data	Type	Precedence

Precision,	Scale,	and	Length

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Arithmetic	Operators
Arithmetic	operators	can	be	used	for	any	arithmetic	computations,	such	as:

Addition.

Subtraction.

Multiplication.

Division.

Modulo	(the	remainder	from	a	division	operation).

Here	is	some	information	about	arithmetic	operators:

When	there	is	more	than	one	arithmetic	operator	in	an	expression,
multiplication,	division,	and	modulo	are	calculated	first,	followed	by
subtraction	and	addition.	

When	all	arithmetic	operators	in	an	expression	have	the	same	level	of
precedence,	the	order	of	execution	is	left	to	right.	

Expressions	within	parentheses	take	precedence	over	all	other
operations.

The	following	SELECT	statement	subtracts	the	part	of	the	year-to-date	sales	that
the	author	receives	(sales	*	author's	royalty	percentage	/	100)	from	the	total
sales.	The	result	is	the	amount	of	money	the	publisher	receives.	The	product	of
ytd_sales	and	royalty	is	calculated	first	because	the	operator	is	multiplication.
Next,	the	total	is	divided	by	100.	The	result	is	subtracted	from	ytd_sales.

USE	pubs

SELECT	title_id,	ytd_sales	-	ytd_sales	*	royalty	/	100
FROM	titles

For	clarity,	you	can	use	parentheses:

USE	pubs
SELECT	title_id,	ytd_sales	-	((ytd_sales	*	royalty)	/	100)
FROM	titles

You	can	also	use	parentheses	to	change	the	order	of	execution.	Calculations
inside	parentheses	are	evaluated	first.	If	parentheses	are	nested,	the	most	deeply
nested	calculation	has	precedence.	For	example,	the	result	and	meaning	of	the
preceding	query	can	be	changed	if	you	use	parentheses	to	force	the	evaluation	of
subtraction	before	multiplication:

USE	pubs
SELECT	title_id,	(ytd_sales	-	ytd_sales)	*	royalty	/	100
FROM	titles

See	Also

-	(Subtract)

+	(Add)

*	(Multiply)

/	(Divide)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Bitwise	Operators
Bitwise	operators	are	used	on	int,	smallint,	or	tinyint	data.	The	~	(Bitwise
NOT)	operator	can	also	use	bit	data.	All	bitwise	operators	perform	an	operation
on	the	one	or	more	specified	integer	values	as	translated	to	binary	expressions
within	Transact-SQL	statements.	For	example,	the	~	(Bitwise	NOT)	operator
changes	binary	1s	to	0s	and	0s	to	1s.	To	check	bitwise	operations,	you	can
convert	or	calculate	decimal	values.

For	example,	you	want	to	add	150	and	75	together,	but	you're	interested	in	not
only	the	decimal	value	of	225,	but	want	to	use	binary	arithmetic	(addition	of	0s
and	1s).	Use	the	bitwise	AND	operator	(&)	for	this	purpose.

If	you	are	storing	integer	data	(normal	decimal	values	like	the	150	and	75
mentioned	earlier)	and	want	to	perform	internal	translation	to	do	binary	math,
use	bitwise	operators.	Bitwise	operators	are	also	valuable	to	get	a	NOT	value
which	is	not	necessarily	the	exact	opposite.

See	Also

&	(Bitwise	AND)

~	(Bitwise	NOT)

|	(Bitwise	OR)

^	(Bitwise	Exclusive	OR)

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Comparison	Operators
Comparison	operators	are	used	with	character,	numeric,	or	date	data	and	can	be
used	in	the	WHERE	or	HAVING	clause	of	a	query.	Comparison	operators
evaluate	to	a	Boolean	data	type;	they	return	TRUE	or	FALSE	based	on	the
outcome	of	the	tested	condition.

For	example,	to	calculate	a	bonus	for	those	employees	who	have	been	hired	on
or	before	March	15,	1998,	a	computation	of	whether	the	hire_date	for	an
employee	is	less	than	or	equal	to	March	15,	1998	provides	the	list	of	employees
who	should	receive	bonuses.

Valid	comparison	operators	are:

>	(greater	than).

<	(less	than).

=	(equals).

<=	(less	than	or	equal	to).

>=	(greater	than	or	equal	to).

!=	(not	equal	to).

<>	(not	equal	to).

!<	(not	less	than).

!>	(not	greater	than).

Comparison	operators	can	also	be	used	in	program	logic	to	check	for	a
condition.	For	example,	if	the	country	column	is	UK	rather	than	Spain,	different
shipping	rates	may	apply.	In	this	case,	a	combination	of	a	comparison	operator,
an	expression	(the	column	name),	a	literal	('UK')	and	a	control-of-flow
programming	keyword	(IF)	are	used	together	to	achieve	this	purpose.

Anyone	with	access	to	the	actual	data	(for	queries)	can	use	comparison	operators
in	additional	queries.	For	those	data-modification	statements,	it	is	recommended
that	you	use	comparison	operators	only	if	you	know	you	have	the	appropriate
permissions	and	that	data	will	be	changed	by	only	a	limited	group	of	people	(to
maintain	data	integrity).

Queries	also	use	string	comparisons	to	compare	the	value	in	a	local	variable,
cursor,	or	column	with	a	constant.	For	example,	all	customer	rows	should	be
printed	if	the	country	is	the	UK.	The	table	shows	string	comparison	examples
between	Unicode	and	non-Unicode	data;	ST1	is	char	and	ST2	is	nchar.

Comparison Description
ST1	=	ST2 Equivalent	to	CONVERT(nchar,	ST1)	=

ST2	or	CAST(ST1	as	nchar)	=	ST2.
ST1	=	'non-Unicode	string' Regular	SQL-92	string	comparison.
ST2	=	'non-Unicode	string' Equivalent	to	ST2	=	CONVERT(nchar,

'non-Unicode	string')	or	ST2	=	CAST('non-
Unicode	string'	AS	nchar).

ST2	=	N'Unicode	string' Unicode	comparison.
CONVERT(nchar,	ST1)	=
ST2	
or
CAST(ST1	AS	nchar)	=	ST2

Unicode	comparison.

ST1	=	CONVERT(char,
ST2)	
or
ST1	=	CAST(ST2	AS	char)

Regular	SQL-92	string	comparison.

N''	(Unicode	empty	string	in
parentheses)

Empty	string.

''	(non-Unicode	empty	string) Either	an	empty	string	or	a	string	containing
one	blank	character	(depending	on	SQL-92

settings).

See	Also

=	(Equals)

<>	(Not	Equal	To)

>	(Greater	Than)

!<	(Not	Less	Than)

<	(Less	Than)

!=	(Not	Equal	To)

>=	(Greater	Than	or	Equal	To)

!>	(Not	Greater	Than)

<=	(Less	Than	or	Equal	To)

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Accessing	and	Changing	Relational	Data

String	Concatenation	Operator
The	string	concatenation	operator	is	the	plus	sign	(+).	You	can	combine,	or
concatenate,	two	or	more	character	strings	into	a	single	character	string.	You	can
also	concatenate	binary	strings.	This	is	an	example	of	concatenation:

SELECT	('abc'	+	'def')

Here	is	the	result	set:

abcdef

(1	row(s)	affected)

This	query	displays	names	of	authors	with	California	addresses	under	the
Moniker	column	in	last	name,	first	name	order,	with	a	comma	and	space	after
the	last	name.

USE	Northwind
GO
SELECT	LastName	+	',	'	+	FirstName	AS	Moniker	
FROM	Employees
WHERE	Region	=	'WA'

Here	is	the	result	set:

Moniker

Davolio,	Nancy
Fuller,	Andrew
Leverling,	Janet
Peacock,	Margaret
Callahan,	Laura

(15	row(s)	affected)

Other	data	types,	such	as	datetime	and	smalldatetime,	must	be	converted	to
character	strings	using	the	CAST	conversion	function	before	they	can	be
concatenated	with	a	string.

USE	pubs
SELECT	'The	due	date	is	'	+	CAST(pubdate	AS	varchar(128))
FROM	titles
WHERE	title_id	=	'BU1032'

Here	is	the	result	set:

The	due	date	is	Jun	12	1991	12:00AM

(1	row(s)	affected)

The	empty	string	('')	is	evaluated	as	a	single	space:

SELECT	'abc'	+	''	+	'def'

Here	is	the	result	set:

abcdef

(1	row(s)	affected)

Note		Whether	an	empty	string	('')	is	interpreted	as	a	single	blank	character	or	as
an	empty	character	is	determined	by	the	compatibility	level	setting	of
sp_dbcmptlevel.	For	this	example,	if	sp_dbcmptlevel	is	65,	empty	literals	are
treated	as	a	single	blank.

When	the	input	strings	both	have	the	same	collation,	the	output	string	has	the
same	collation	as	the	inputs.	When	the	input	strings	have	different	collations,	the
rules	of	collation	precedence	determine	the	collation	of	the	output	string.	You

can	also	assign	a	specific	collation	using	the	COLLATE	clause.

See	Also

COLLATE

Collation	Precedence

Operators

sp_dbcmptlevel

+	(String	Concatentation)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Null	Values
A	value	of	NULL	indicates	the	value	is	unknown.	A	value	of	NULL	is	different
from	an	empty	or	zero	value.	No	two	null	values	are	equal.	Comparisons
between	two	null	values,	or	between	a	NULL	and	any	other	value,	return
unknown	because	the	value	of	each	NULL	is	unknown.

Null	values	usually	indicate	data	that	is	unknown,	not	applicable,	or	to	be	added
at	a	later	time.	For	example,	a	customer's	middle	initial	may	not	be	known	at	the
time	the	customer	places	an	order.

Here	is	some	information	about	nulls:

To	test	for	null	values	in	a	query	use	IS	NULL	or	IS	NOT	NULL	in	the
WHERE	clause.

When	query	results	are	viewed	in	SQL	Query	Analyzer,	null	values	are
shown	as	(null)	in	the	result	set.

Null	values	can	be	inserted	into	a	column	by	explicitly	stating	NULL	in
an	INSERT	or	UPDATE	statement,	or	by	leaving	a	column	out	of	an
INSERT	statement,	or	when	adding	a	new	column	to	an	existing	table
using	the	ALTER	TABLE	statement.

Null	values	cannot	be	used	for	information	required	to	distinguish	one
row	in	a	table	from	another	row	in	a	table	(for	example,	foreign	or
primary	keys).

In	program	code,	you	can	check	for	null	values	so	that	certain	calculations	are
performed	only	on	rows	with	valid	(or	not	NULL)	data.	For	example,	a	report
can	print	the	social	security	column	only	if	there	is	data	that	is	not	NULL	in	the
column.	Eliminating	null	values	when	performing	calculations	can	be	important
because	certain	calculations	(such	as	an	average)	can	be	inaccurate	if	NULL
columns	are	included.

If	it	is	possible	that	null	values	may	be	stored	in	your	data,	it	is	a	good	idea	to

create	queries	and	data-modification	statements	that	either	eliminate	NULLs	or
transform	NULLs	into	some	other	value	(if	you	do	not	want	null	values
appearing	in	your	data).

IMPORTANT		To	minimize	maintenance	and	possible	effects	on	existing	queries	or
reports,	it	is	recommended	that	you	minimize	the	use	of	null	values.	Plan	your
queries	and	data-modification	statements	so	that	null	values	have	minimal	effect.

When	null	values	are	present	in	data,	logical	and	comparison	operators	can
potentially	return	a	third	result	of	UNKNOWN	instead	of	just	TRUE	or	FALSE.
This	need	for	three-valued	logic	is	a	source	of	many	application	errors.	These
tables	outline	the	effect	of	introducing	null	comparisons.

This	table	shows	the	results	of	applying	an	AND	operator	to	two	Boolean
operands.

AND TRUE UNKNOWN FALSE
TRUE TRUE UNKNOWN FALSE
UNKNOWN UNKNOWN UNKNOWN FALSE
FALSE FALSE FALSE FALSE

This	table	shows	the	results	of	applying	an	OR	operator	to	two	Boolean
operands.

OR TRUE UNKNOWN FALSE
TRUE TRUE TRUE TRUE
UNKNOWN TRUE UNKNOWN UNKNOWN
FALSE TRUE UNKNOWN FALSE

This	table	shows	how	the	NOT	operator	negates,	or	reverses,	the	result	of	a
Boolean	operator.

Boolean	expression	to	which	the
NOT	operator	is	applied Evaluates	to
TRUE FALSE
UNKNOWN UNKNOWN

FALSE TRUE

The	SQL-92	standard	introduces	the	keywords	IS	NULL	and	IS	NOT	NULL	to
test	for	the	presence	of	null	values.

Boolean
expression	to
which	the	
IS	NULL	operator
is	applied Evaluates	to

Boolean	expression
to	which	the	
IS	NOT	NULL
operator	is	applied Evaluates	to

TRUE FALSE TRUE TRUE
NULL TRUE NULL FALSE
FALSE FALSE FALSE TRUE

Transact-SQL	also	offers	an	extension	for	null	processing.	If	the	option
ANSI_NULLS	is	set	off,	then	comparisons	between	nulls,	such	as	NULL	=
NULL,	evaluate	to	TRUE.	Comparisons	between	NULL	and	any	data	value
evaluate	to	FALSE.

See	Also

AND

NOT

CREATE	TABLE

OR

Allowing	Null	Values

Modifying	Column	Properties

ISNULL

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Accessing	and	Changing	Relational	Data

Using	Comments
Comments	are	nonexecuting	text	strings	in	program	code	(also	known	as
remarks).	Comments	can	be	used	to	document	code	or	temporarily	disable	parts
of	Transact-SQL	statements	and	batches	being	diagnosed.	Using	comments	to
document	code	makes	future	program	code	maintenance	easier.	Comments	are
often	used	to	record	the	program	name,	the	author	name,	and	the	dates	of	major
code	changes.	Comments	can	be	used	to	describe	complicated	calculations	or
explain	a	programming	method.

Microsoft®	SQL	Server™	supports	two	types	of	commenting	characters:

--	(double	hyphens).	These	comment	characters	can	be	used	on	the	same
line	as	code	to	be	executed,	or	on	a	line	by	themselves.	Everything	from
the	double	hyphens	to	the	end	of	the	line	is	part	of	the	comment.	For	a
multiple-line	comment,	the	double	hyphens	must	appear	at	the
beginning	of	each	comment	line.	For	more	information	about	using	the
comment	characters,	see		--	(Comment).	

/*	...	*/	(forward	slash-asterisk	character	pairs).	These	comment
characters	can	be	used	on	the	same	line	as	code	to	be	executed,	on	lines
by	themselves,	or	even	within	executable	code.	Everything	from	the
open	comment	pair	(/*)	to	the	close	comment	pair	(*/)	is	considered	part
of	the	comment.	For	a	multiple-line	comment,	the	open-comment
character	pair	(/*)	must	begin	the	comment,	and	the	close-comment
character	pair	(*/)	must	end	the	comment.	No	other	comment	characters
should	appear	on	any	lines	of	the	comment.	For	more	information	about
using	the	/*	...	*/	comment	characters,	see	/*	...	*/	(Comment).

Multiple-line	/*	*/	comments	cannot	span	a	batch.	The	complete	comment	must
be	contained	within	a	batch.	For	example,	in	SQL	Query	Analyzer	and	the	osql
utility,	the	GO	command	signals	the	end	of	a	batch.	When	the	utilities	read	the
characters	GO	in	the	first	two	bytes	of	a	line,	they	send	all	the	code	since	the	last
GO	command	to	the	server	as	one	batch.	If	a	GO	occurs	at	the	start	of	a	line
between	the	/*	and	*/	delimiters,	then	an	unmatched	comment	delimiter	will	be
sent	with	each	batch	and	they	will	trigger	syntax	errors.	For	example,	the

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

following	script	contains	syntax	errors:

USE	Northwind
GO
SELECT	*	FROM	Employees
/*	The
GO	in	this	comment	causes	it	to	be	broken	in	half	*/
SELECT	*	FROM	Products
GO

Here	are	some	valid	comments:

USE	Northwind
GO
--	First	line	of	a	multiple-line	comment.
--	Second	line	of	a	multiple-line	comment.
SELECT	*	FROM	Employees
GO

/*	First	line	of	a	multiple-line	comment.
			Second	line	of	a	multipl-line	comment.	*/
SELECT	*	FROM	Products
GO

--	Using	a	comment	in	a	Transact-SQL	statement
--	during	diagnosis.
SELECT	EmployeeID,	/*	FirstName,	*/	LastName
FROM	Employees

--	Using	a	comment	after	the	code	on	a	line.
USE	Northwind
GO
UPDATE	Products
SET	UnitPrice	=	UnitPrice	*	.9	--	Try	to	build	market	share.

GO

Here	is	some	basic	information	regarding	comments:

All	alphanumeric	characters	or	symbols	can	be	used	within	the
comment.	SQL	Server	ignores	all	characters	within	a	comment,
although	SQL	Query	Analyzer,	osql,	and	isql	will	search	for	GO	as	the
first	two	characters	in	lines	within	a	multiple	line	comment.

There	is	no	maximum	length	for	a	comment	within	a	batch.	A	comment
can	consist	of	one	or	more	lines.

Accessing	and	Changing	Relational	Data

Using	Reserved	Keywords
Microsoft®	SQL	Server™	2000	reserves	certain	keywords	for	its	exclusive	use.
For	example,	using	either	the	Transact-SQL	DUMP	or	BACKUP	keyword	in	an
osql	or	SQL	Query	Analyzer	session	tells	SQL	Server	to	make	a	backup	copy	of
all	or	part	of	a	database,	or	a	backup	copy	of	the	log.

It	is	not	legal	to	include	the	reserved	keywords	in	a	Transact-SQL	statement	in
any	location	except	that	defined	by	SQL	Server.	No	objects	in	the	database
should	be	given	a	name	that	matches	a	reserved	keyword.	If	such	a	name	exists,
the	object	must	always	be	referred	to	using	delimited	identifiers.	Although	this
method	does	allow	for	objects	whose	names	are	reserved	words,	it	is
recommended	that	you	do	not	name	any	database	objects	with	a	name	that	is	the
same	as	a	reserved	word.

The	system	and	database	administrators	roles	or	the	database	creator	is	usually
responsible	for	checking	for	reserved	keywords	in	Transact-SQL	code	and
database	names.

Use	a	naming	convention	that	avoids	using	reserved	keywords.	Consonants	or
vowels	can	be	removed	if	an	object	name	must	resemble	a	reserved	keyword.
For	example,	a	procedure	named	bckup	that	performs	BACKUP	statements	for
all	user-defined	databases.

See	Also

Reserved	Keywords

SET	QUOTED_IDENTIFIER

Delimited	Identifiers

CREATE	TABLE

ALTER	TABLE

CREATE	RULE

CREATE	DATABASE

ALTER	DATABASE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Accessing	and	Changing	Data	Fundamentals
The	primary	purpose	of	a	Microsoft®	SQL	Server™	2000	database	is	to	store
data	and	then	make	that	data	available	to	authorized	applications	and	users.
While	database	administrators	create	and	maintain	the	database,	users	work	with
the	contents	of	the	database:

Accessing,	or	retrieving,	existing	data

Changing,	or	updating,	existing	data

Adding,	or	inserting,	new	data

Deleting	existing	data

Accessing	and	changing	data	in	Microsoft	SQL	Server	is	accomplished	by	using
an	application	or	utility	to	send	data	retrieval	and	modification	requests	to	SQL
Server.	For	example,	you	can	connect	to	SQL	Server	using	SQL	Server
Enterprise	Manager,	SQL	Query	Analyzer,	or	the	osql	utility	to	begin	working
with	the	data	in	SQL	Server.

Applications	and	utilities	use	two	components	to	access	SQL	Server:

Database	application	programming	interfaces	(APIs)	send	commands	to
SQL	Server	and	retrieve	the	results	of	these	commands.	The	APIs	can
be	general-purpose	database	APIs	such	as	ADO,	OLE	DB,	ODBC,	or
DB-Library.	They	can	also	be	APIs	designed	specifically	to	use	special
features	in	SQL	Server,	such	as	SQL-DMO,	SQL-DTS,	or	the	SQL
Server	replication	components.

Commands	sent	to	SQL	Server	are	Transact-SQL	statements.

Transact-SQL	statements	are	built	using	the	SQL	language	defined	in
the	Transact-SQL	Reference.	Most	of	these	operations	are	implemented
using	one	of	four	Transact-SQL	statements:

The	SELECT	statement	is	used	to	retrieve	existing	data.

The	UPDATE	statement	is	used	to	change	existing	data.

The	INSERT	statement	is	used	to	add	new	data	rows.

The	DELETE	statement	is	used	to	remove	rows	that	are	no
longer	needed.

These	four	statements	form	the	core	of	the	SQL	language.	Understanding	how
these	four	statements	work	is	a	large	part	of	understanding	how	SQL	works.

Graphical	or	forms-based	query	tools	require	no	knowledge	of	SQL.	They
present	the	user	with	a	graphical	representation	of	the	table.	The	user	can
graphically	select	the	columns	to	be	retrieved	and	easily	specify	how	to	qualify
the	rows	to	be	retrieved.

Some	applications,	such	as	SQL	Query	Analyzer	and	the	osql	utility,	are	tools
for	executing	Transact-SQL	statements.	These	statements	are	entered
interactively	or	read	from	a	file.	To	use	these	tools,	you	must	be	able	to	build
Transact-SQL	statements.

Applications	written	to	the	general-purpose	database	APIs,	such	as	ADO,	OLE
DB,	ODBC,	or	DB-Library,	also	send	Transact-SQL	statements	to	SQL	Server.
These	applications	present	the	user	with	an	interface	reflecting	the	business
function	they	support.	When	the	user	has	indicated	what	business	function
should	be	performed,	the	application	uses	one	of	the	database	APIs	to	pass	SQL
statements	to	SQL	Server.	You	must	be	able	to	build	Transact-SQL	statements	to
code	these	types	of	applications.

Other	applications,	such	as	SQL	Server	Enterprise	Manager,	use	an	object	model
that	increases	efficiency	in	using	SQL	Server.	SQL	Server	Enterprise	Manager
uses	an	object	model	that	eases	the	task	of	administering	SQL	Servers.	APIs
such	as	SQL-DMO,	SQL-DTS,	and	the	replication	components	also	use	similar
object	models.	The	objects	themselves,	however,	communicate	with	SQL	Server
using	Transact-SQL.	Knowing	the	Transact-SQL	language	can	help	you
understand	these	objects.

Building	Transact-SQL	Statements
Accessing	and	Changing	Data	Fundamentals	contains	information	about	the
basic	elements	used	to	build	Transact-SQL	statements.	It	also	provides
information	about	the	functions	Transact-SQL	can	perform,	as	well	as	similar
functionality	offered	by	the	database	APIs.

A	SELECT	statement	contains	the	common	elements	used	in	Transact-SQL
statements.	For	example,	to	select	the	names,	contact	names,	and	telephone
numbers	of	customers	who	live	in	the	USA	from	the	Customers	table	in	the
Northwind	database,	these	elements	are	used:

The	name	of	the	database	containing	the	table	(Northwind)

The	name	of	the	table	containing	the	data	(Customers)

A	list	of	the	columns	for	which	data	is	to	be	returned	(CompanyName,
ContactName,	Phone)

Selection	criteria	(only	for	customers	living	in	the	USA)

This	is	the	Transact-SQL	syntax	to	retrieve	this	information:

SELECT	CompanyName,	ContactName,	Phone
FROM	Northwind.dbo.Customers
WHERE	Country	=	'USA'

Additional	elements	used	in	Transact-SQL	statements	include:

Functions.

Functions	are	used	in	SQL	Server	queries,	reports,	and	many	Transact-
SQL	statements	to	return	information,	similar	to	functions	in	other
programming	languages.	They	take	input	parameters	and	return	a	value
that	can	be	used	in	expressions.	For	example,	the	DATEDIFF	function
takes	two	dates	and	a	datepart	(weeks,	days,	months,	and	so	on)	as
arguments,	and	returns	the	number	of	datepart	units	there	are	between
the	two	dates.

Identifiers.

Identifiers	are	the	names	given	to	objects	such	as	tables,	views,
databases,	and	indexes.	An	identifier	can	be	specified	without	delimiters
(for	example,	TEST),	with	quoted	delimiters	("TEST"),	or	in	brackets
([TEST]).

Comments.

Comments	are	nonexecuting	remarks	in	program	code.

Expressions.

Expressions	include	constants	or	literal	values	(for	example,	5	is	a
numeric	literal),	functions,	column	names,	arithmetic,	bitwise
operations,	scalar	subqueries,	CASE	functions,	COALESCE	functions,
or	NULLIF	functions.

Reserved	keywords.

Words	that	SQL	Server	reserves	for	its	own	functionality.	It	is
recommended	that	you	avoid	using	these	reserved	keywords	as
identifiers.

Null	values.

Null	values	are	values	that	are	unknown.	You	can	use	values	of	NULL
to	indicate	that	this	information	will	come	later.	For	example,	if	the
contact	at	the	Leka	Trading	company	changes	and	the	new	contact	is
unknown,	you	could	indicate	the	unknown	contact	name	with	a	value	of
NULL.

Data	types.

Data	types	define	the	format	in	which	data	is	stored.	For	example,	you
can	use	any	of	the	character	or	Unicode	data	types	(char,	varchar,
nchar,	or	nvarchar)	to	store	character	data	such	as	customer	names.

Batches.

Batches	are	groups	of	statements	transmitted	and	executed	as	a	unit.
Some	Transact-SQL	statements	cannot	be	grouped	in	a	batch.	For
example,	to	create	five	new	tables	in	the	pubs	database,	each	CREATE

TABLE	statement	must	be	in	its	own	batch	or	unit.	This	is	an	example
of	a	Transact-SQL	batch:

USE	Northwind
SELECT	*
FROM	Customers
WHERE	Region	=	'WA'
		AND	Country	=	'USA'
ORDER	BY	PostalCode	ASC,	CustomerID	ASC
UPDATE	Employees
SET	City	=	'Missoula'
WHERE	CustomerID	=	'THECR'
GO

Control-of-flow	language.

Control-of-flow	language	allows	program	code	to	take	action,
depending	on	whether	a	condition	is	met.	For	example,	IF	the	amount	of
products	ordered	are	equal	to	or	less	than	the	amount	of	products
currently	on	hand,	THEN	we	must	order	more	products.

Operators.

SQL	Server	includes	operators,	which	allow	certain	actions	to	be
performed	on	data.	For	example,	using	arithmetic	operators,	you	can
perform	mathematical	operations	such	as	addition	and	subtraction	on
your	data.

See	Also

Data	Types

CREATE	TABLE

Expressions

ALTER	TABLE

Using	Identifiers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Operators

Functions

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

Choosing	a	Database
All	objects	in	Microsoft®	SQL	Server™	are	stored	in	databases.	All	references
to	SQL	Server	objects	have	to	be	resolved	to	the	specific	database	in	which	they
reside.

Explicit	database	references	occur	when	a	Transact-SQL	statement
names	the	database	holding	the	data.	This	example	explicitly	names	the
Northwind	database:
SELECT	*
FROM	Northwind..Employees

Implicit	database	references	occur	when	a	Transact-SQL	statement	does
not	specify	the	database:
SELECT	*
FROM	Employees

To	resolve	implicit	database	references,	SQL	Server	uses	the	concept	of	a	current
database.	Every	connection	to	SQL	Server	always	has	a	database	set	as	the
current	database.	All	object	references	that	do	not	specify	a	database	name	are
assumed	to	refer	to	the	current	database.	For	example,	if	a	connection	has
Northwind	set	as	its	current	database,	any	statement	referring	to	an	object
named	Products	is	resolved	to	the	Products	table	in	Northwind.

Every	SQL	Server	login	has	a	default	database.	At	the	time	the	login	is	defined
by	a	member	of	the	sysadmin	fixed	server	role,	the	default	database	for	the	login
can	be	specified.	If	a	default	database	is	not	specified,	master	becomes	the
default	database	for	the	login.	The	default	database	for	a	login	can	be	changed
later	using	the	sp_defaultdb	stored	procedure.

When	you	first	connect	to	SQL	Server,	the	default	database	for	the	login	is
usually	made	the	current	database.	You	can,	however,	specify	a	specific	database
as	the	current	database	at	connect	time.	This	request	overrides	the	default
database	designated	for	the	login.	Here	are	the	ways	you	can	specify	a	database
on	a	connect	request:

In	the	osql	and	isql	utilities,	specify	the	database	name	using	the	/d

switch.

In	ADO,	specify	the	database	name	in	the	Initial	Catalog	property	of
an	ADO	connection	object.

In	OLE	DB,	specify	the	database	name	in	the
DBPROP_INIT_CATALOG	property.

In	ODBC,	you	can	set	a	database	name	in	an	ODBC	data	source	using
the	Database	box	of	the	Microsoft	SQL	Server	DSN	Configuration
Wizard	or	the	DATABASE	=	parameter	on	a	call	to
SQLConfigDataSource.	You	can	also	specify	DATABASE	=	on	a	call
to	SQLDriverConnect	or	SQLBrowseConnect.

You	can	switch	the	current	database	setting	at	any	time	while	you	are	connected
to	SQL	Server.	This	is	called	using,	or	choosing,	a	database.	Here	are	ways	you
can	switch	the	current	database:

You	can	execute	the	Transact-SQL	USE	database_name	statement,
regardless	of	the	database	API	an	application	is	using.

In	SQL	Query	Analyzer,	you	can	select	a	database	in	the	Database	list
box	at	the	top	of	the	Query	Window.

In	ODBC,	you	can	call	SQLSetConnectAttr	to	set	the
SQL_ATTR_CURRENT_CATALOG	connection	attribute.

In	DB-Library,	you	can	call	the	dbuse	function.

Note		In	many	Transact-SQL	reference	examples,	"USE	pubs"	or	"USE
Northwind"	is	the	first	line	in	the	example.	This	ensures	the	examples	are
executed	against	the	explicitly	specified	database	instead	of	another	database.

See	Also

osql	Utility

USE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	Multiple	Statements
To	perform	processes	that	cannot	be	done	using	a	single	Transact-SQL
statement,	Microsoft®	SQL	Server™	allows	you	to	group	Transact-SQL
statements	together	in	several	ways:

Using	batches

A	batch	is	a	group	of	one	or	more	Transact-SQL	statements	that	are	sent
from	an	application	to	the	server	as	one	unit.	SQL	Server	executes	each
batch	as	a	single	executable	unit.

Using	stored	procedures

A	stored	procedure	is	a	group	of	Transact-SQL	statements	that	have
been	predefined	and	precompiled	on	the	server.	The	stored	procedure
can	accept	parameters,	and	can	return	result	sets,	return	codes,	and
output	parameters	to	the	calling	application.

Using	triggers

A	trigger	is	a	special	type	of	stored	procedure.	It	is	not	called	directly	by
applications.	It	is	instead	executed	whenever	a	user	performs	a	specified
modification	(INSERT,	UPDATE,	or	DELETE)	to	a	table.

Using	scripts

A	script	is	a	series	of	Transact-SQL	statements	stored	in	a	file.	The	file
can	be	used	as	input	to	the	osql	utility	or	SQL	Query	Analyzer.	The
utilities	then	execute	the	Transact-SQL	statements	stored	in	the	file.

The	following	SQL	Server	features	allow	you	control	the	use	of	multiple
Transact-SQL	statements	at	a	time:

Control-of-flow	statements

Allow	you	to	include	conditional	logic.	For	example,	if	the	country	is
Canada,	perform	one	series	of	Transact-SQL	statements.	If	the	country
is	U.K.,	do	some	other	series	of	Transact-SQL	statements.

Variables

Allow	you	to	store	data	for	use	as	input	in	a	later	Transact-SQL
statement.	For	example,	you	can	code	a	query	that	needs	different	data
values	specified	in	the	WHERE	clause	each	time	the	query	is	executed.
You	can	write	the	query	to	use	variables	in	the	WHERE	clause,	and
code	logic	to	fill	the	variables	with	the	proper	data.	The	parameters	of
stored	procedures	are	a	special	class	of	variables.

Error	handling

Lets	you	customize	the	way	SQL	Server	responds	to	problems.	You	can
specify	appropriate	actions	to	take	when	errors	occur,	or	display
customized	error	messages	that	are	more	informative	to	a	user	than	a
generic	SQL	Server	error.

Accessing	and	Changing	Relational	Data

Batches
A	batch	is	a	group	of	one	or	more	Transact-SQL	statements	sent	at	one	time	from
an	application	to	Microsoft®	SQL	Server™	for	execution.	SQL	Server	compiles
the	statements	of	a	batch	into	a	single	executable	unit,	called	an	execution	plan.
The	statements	in	the	execution	plan	are	then	executed	one	at	a	time.

A	compile	error,	such	as	a	syntax	error,	prevents	the	compilation	of	the	execution
plan,	so	none	of	the	statements	in	the	batch	are	executed.

A	run-time	error,	such	as	an	arithmetic	overflow	or	a	constraint	violation,	has
one	of	two	effects:

Most	run-time	errors	stop	the	current	statement	and	the	statements	that
follow	it	in	the	batch.

A	few	run-time	errors,	such	as	constraint	violations,	stop	only	the
current	statement.	All	the	remaining	statements	in	the	batch	are
executed.

The	statements	executed	before	the	one	that	encountered	the	run-time	error	are
not	affected.	The	only	exception	is	if	the	batch	is	in	a	transaction	and	the	error
causes	the	transaction	to	be	rolled	back.	In	this	case,	any	uncommitted	data
modifications	made	before	the	run-time	error	are	rolled	back.

Assume	there	are	10	statements	in	a	batch.	If	the	fifth	statement	has	a	syntax
error,	none	of	the	statements	in	the	batch	are	executed.	If	the	batch	is	compiled,
and	the	second	statement	then	fails	while	executing,	the	results	of	the	first
statement	are	not	affected	because	it	has	already	executed.

These	rules	apply	to	batches:

CREATE	DEFAULT,	CREATE	PROCEDURE,	CREATE	RULE,
CREATE	TRIGGER,	and	CREATE	VIEW	statements	cannot	be
combined	with	other	statements	in	a	batch.	The	CREATE	statement
must	begin	the	batch.	All	other	statements	that	follow	in	that	batch	will
be	interpreted	as	part	of	the	definition	of	the	first	CREATE	statement.

A	table	cannot	be	altered	and	then	the	new	columns	referenced	in	the
same	batch.

If	an	EXECUTE	statement	is	the	first	statement	in	a	batch,	the
EXECUTE	keyword	is	not	required.	The	EXECUTE	keyword	is
required	if	the	EXECUTE	statement	is	not	the	first	statement	in	the
batch.

Accessing	and	Changing	Relational	Data

Specifying	Batches
Batches	are	implemented	as	part	of	the	database	APIs.

In	ADO,	a	batch	is	the	string	of	Transact-SQL	statements	enclosed	in
the	CommandText	property	of	a	Command	object:
Dim	Cmd	As	New	ADODB.Command
Set	Cmd.ActiveConnection	=	Cn
Cmd.CommandText	=	"SELECT	*	FROM	Suppliers;	SELECT	*	FROM	Products"
Cmd.CommandType	=	adCmdText
Cmd.Execute

In	OLE	DB,	a	batch	is	the	string	of	Transact-SQL	statements	enclosed
in	the	string	used	to	set	the	command	text:
WCHAR*	wszSQLString	=
L"SELECT	*	FROM	Employees;	SELECT	*	FROM	Products";
hr	=	pICommandText->SetCommandText
								(DBGUID_DBSQL,	wszSQLString)

In	ODBC,	a	batch	is	the	string	of	Transact-SQL	statements	enclosed	on
a	SQLPrepare	or	SQLExecDirect	call:
SQLExecDirect(hstmt1,
				"SELECT	*	FROM	Employees;	SELECT	*	FROM	Products",
				SQL_NTS):

In	DB-Library,	a	batch	is	comprised	of	the	Transact-SQL	statements
stored	in	the	command	buffer	using	dbcmd	or	dbfcmd	before
dbsqlsend	or	dbsqlexec	are	called:
dbcmd	(dbproc,
				"SELECT	*	FROM	Suppliers;	SELECT	*	FROM	Products");
dbsqlexec	(dbproc);

Some	data	access	tools,	such	as	Microsoft®	Access,	do	not	have	an	explicit

batch	terminator.

The	GO	Command
SQL	Query	Analyzer,	the	osql	utility,	and	the	isql	utility	use	the	GO	command
to	signal	the	end	of	a	batch.	GO	is	not	a	Transact-SQL	statement;	it	simply
signals	to	the	utilities	how	many	SQL	statements	should	be	included	in	a	batch.
In	SQL	Query	Analyzer	and	osql,	all	the	Transact-SQL	statements	from	one	GO
command	to	the	next	are	put	in	the	string	sent	to	SQLExecDirect.	In	isql,	all	the
Transact-SQL	statements	between	GO	commands	are	placed	into	the	command
buffer	before	being	executed.

For	example,	if	these	statements	are	executed	in	SQL	Query	Analyzer:

SELECT	@@VERSION
SET	NOCOUNT	ON
GO

SQL	Query	Analyzer	does	the	equivalent	of:

SQLExecDirect(hstmt,
"SELECT	@@VERSION	SET	NOCOUNT	ON",
SQL_NTS);

Because	a	batch	is	compiled	into	a	single	execution	plan,	a	batch	must	be
logically	complete.	The	execution	plan	created	for	one	batch	has	no	ability	to
reference	any	variables	declared	in	another	batch.	Comments	must	both	start	and
end	in	one	batch.	For	more	information,	see	SQL	Query	Analyzer.

See	Also

GO

osql	Utility

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Batch	Examples
These	examples	are	scripts	that	use	SQL	Query	Analyzer	and	the	osql	utility	GO
command	to	define	batch	boundaries.

This	example	creates	a	view.	Because	CREATE	VIEW	must	be	the	only
statement	in	a	batch,	the	GO	commands	are	required	to	isolate	the	CREATE
VIEW	statement	from	the	USE	and	SELECT	statements	around	it.

USE	pubs
GO	/*	Signals	the	end	of	the	batch	*/

CREATE	VIEW	auth_titles
AS
SELECT	*
FROM	authors
GO	/*	Signals	the	end	of	the	batch	*/

SELECT	*	
FROM	auth_titles
GO	/*	Signals	the	end	of	the	batch	*/

This	example	shows	several	batches	combined	into	one	transaction.	The	BEGIN
TRANSACTION	and	COMMIT	statements	delimit	the	transaction	boundaries.
The	BEGIN	TRANSACTION,	USE,	CREATE	TABLE,	SELECT,	and
COMMIT	statements	are	all	in	their	own	single-statement	batches.	All	of	the
INSERT	statements	are	included	in	one	batch.

BEGIN	TRANSACTION
GO
USE	pubs
GO
CREATE	TABLE	mycompanies
(

	id_num	int	IDENTITY(100,	5),
	company_name	nvarchar(100)
)
GO
INSERT	mycompanies	(company_name)
			VALUES	('New	Moon	Books')
INSERT	mycompanies	(company_name)
			VALUES	('Binnet	&	Hardley')
INSERT	mycompanies	(company_name)
			VALUES	('Algodata	Infosystems')
INSERT	mycompanies	(company_name)
			VALUES	('Five	Lakes	Publishing')
INSERT	mycompanies	(company_name)
			VALUES	('Ramona	Publishers')
INSERT	mycompanies	(company_name)
			VALUES	('GGG&G')
INSERT	mycompanies	(company_name)
			VALUES	('Scootney	Books')
INSERT	mycompanies	(company_name)
			VALUES	('Lucerne	Publishing')
GO
SELECT	*
FROM	mycompanies
ORDER	BY	company_name	ASC
GO
COMMIT
GO

The	following	script	illustrates	two	problems.	First,	the	variable	@MyVar	is
declared	in	the	second	batch	and	referenced	in	the	third.	Also,	the	second	batch
has	the	start	of	a	comment,	but	no	end.	The	third	batch	has	the	end	of	the
comment,	but	when	osql	reads	the	GO	command	it	sends	the	first	batch	to
Microsoft®	SQL	Server™	where	the	/*	with	no	matching	*/	generates	a	syntax
error.

USE	Northwind
GO
DECLARE	@MyVar	INT
/*	Start	of	the	split	comment.
GO
End	of	the	split	comment.	*/
SELECT	@MyVar	=	29
GO
	

Accessing	and	Changing	Relational	Data

Stored	Procedures	and	Triggers
A	stored	procedure	is	a	group	of	Transact-SQL	statements	that	is	compiled	one
time,	and	then	can	be	executed	many	times.	This	increases	performance	when
the	stored	procedure	is	executed	because	the	Transact-SQL	statements	do	not
have	to	be	recompiled.

A	trigger	is	a	special	type	of	stored	procedure	that	is	not	called	directly	by	a	user.
When	the	trigger	is	created,	it	is	defined	to	execute	when	a	specific	type	of	data
modification	is	made	against	a	specific	table	or	column.

A	CREATE	PROCEDURE	or	CREATE	TRIGGER	statement	cannot	span
batches.	This	means	that	a	stored	procedure	or	trigger	is	always	created	in	a
single	batch	and	compiled	into	an	execution	plan.

See	Also

Stored	Procedures

Enforcing	Business	Rules	with	Triggers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Transact-SQL	Scripts
A	script	is	a	series	of	Transact-SQL	statements	stored	in	a	file.	The	file	can	be
used	as	input	to	SQL	Query	Analyzer	or	the	osql	and	isql	utilities.	The	utilities
then	execute	the	SQL	statements	stored	in	the	file.

Transact-SQL	scripts	have	one	or	more	batches.	The	GO	command	signals	the
end	of	a	batch.	If	a	Transact-SQL	script	does	not	have	any	GO	commands,	it	is
executed	as	a	single	batch.

Transact-SQL	scripts	can	be	used	to:

Keep	a	permanent	copy	of	the	steps	used	to	create	and	populate	the
databases	on	your	server	(a	backup	mechanism).

Transfer	the	statements	from	one	computer	to	another,	when	necessary.

Quickly	educate	new	employees	by	enabling	them	to	find	problems	in
the	code,	understand	the	code,	or	change	the	code.

Accessing	and	Changing	Relational	Data

Using	Variables	and	Parameters
Transact-SQL	has	several	ways	to	pass	data	between	Transact-SQL	statements.
Among	these	are:

Transact-SQL	local	variables.

A	Transact-SQL	variable	is	an	object	in	Transact-SQL	batches	and
scripts	that	can	hold	a	data	value.	After	the	variable	has	been	declared,
or	defined,	one	Transact-SQL	statement	in	a	batch	can	set	the	variable
to	a	value	and	a	later	statement	in	the	batch	can	get	the	value	from	the
variable.	For	example:

DECLARE	@EmpIDVar	INT

SET	@EmpIDVar	=	1234

SELECT	*
FROM	Employees
WHERE	EmployeeID	=	@EmpIDVar

Transact-SQL	parameters.

A	parameter	is	an	object	used	to	pass	data	between	a	stored	procedure
and	the	batch	or	script	that	executes	the	stored	procedure.	Parameters
can	be	either	input	or	output	parameters.	For	example:

CREATE	PROCEDURE	ParmSample	@EmpIDParm	INT	AS
SELECT	*
FROM	Employees
WHERE	EmployeeID	=	@EmpIDParm
GO

EXEC	ParmSample	@EmpIDParm	=	1234
GO

Applications	use	application	variables	and	parameter	markers	to	work	with	the
data	from	Transact-SQL	statements.

Application	variables

The	application	programming	languages	such	as	C,	C++,	Basic,	and
Java	have	their	own	variables	for	holding	data.	Applications	using	the
database	APIs	must	move	the	data	returned	by	Transact-SQL	statements
into	application	variables	before	they	can	work	with	the	data.	This	is
typically	done	using	a	process	called	binding.	The	application	uses	an
API	function	to	bind	the	result	set	column	to	a	program	variable.	When
a	row	is	fetched	the	API	provider	or	driver	moves	the	data	from	the
column	to	the	bound	program	variable.

Parameter	markers

Parameter	markers	are	supported	by	the	ADO,	OLE	DB,	and	ODBC-
based	database	APIs.	A	parameter	marker	is	a	question	mark	(?)	placed
in	the	location	of	an	input	expression	in	a	Transact-SQL	statement.	The
parameter	marker	is	then	bound	to	an	application	variable.	This	allows
data	from	application	variables	to	be	used	as	input	in	Transact-SQL
statements.	Parameter	markers	also	let	stored	procedure	output
parameters	and	return	codes	be	bound	to	application	variables.	The
output	data	is	then	returned	to	the	bound	variables	when	the	procedure
is	executed.	The	DB-Library	API	also	supports	binding	stored
procedure	parameter	and	return	codes	to	program	variables.

See	Also

DECLARE	@local_variable

SELECT

Functions

SET	@local	variable

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Transact-SQL	Variables
A	Transact-SQL	local	variable	is	an	object	that	can	hold	a	single	data	value	of	a
specific	type.	Variables	in	batches	and	scripts	are	typically	used:

As	a	counter	either	to	count	the	number	of	times	a	loop	is	performed	or
to	control	how	many	times	the	loop	is	performed.

To	hold	a	data	value	to	be	tested	by	a	control-of-flow	statement.

To	save	a	data	value	to	be	returned	by	a	stored	procedure	return	code.

The	following	script	creates	a	small	test	table	and	populates	it	with	26	rows.	The
script	uses	a	variable	to	do	three	things:

Control	how	many	rows	are	inserted	by	controlling	how	many	times	the
loop	is	executed.

Supply	the	value	inserted	into	the	integer	column.

Function	as	part	of	the	expression	that	generates	letters	to	be	inserted
into	the	character	column.

--	Create	the	table.
CREATE	TABLE	TestTable	(cola	INT,	colb	CHAR(3))
GO
SET	NOCOUNT	ON
GO
--	Declare	the	variable	to	be	used.
DECLARE	@MyCounter	INT

--	Initialize	the	variable.
SET	@MyCounter	=	0

--	Test	the	variable	to	see	if	the	loop	is	finished.
WHILE	(@MyCounter	<	26)
BEGIN
			--	Insert	a	row	into	the	table.
			INSERT	INTO	TestTable	VALUES
							--	Use	the	variable	to	provide	the	integer	value
							--	for	cola.	Also	use	it	to	generate	a	unique	letter
							--	for	each	row.	Use	the	ASCII	function	to	get	the
							--	integer	value	of	'a'.	Add	@MyCounter.	Use	CHAR	to
							--	convert	the	sum	back	to	the	character	@MyCounter
							--	characters	after	'a'.
							(@MyCounter,
								CHAR((@MyCounter	+	ASCII('a')))
)
			--	Increment	the	variable	to	count	this	iteration
			--	of	the	loop.
			SET	@MyCounter	=	@MyCounter	+	1
END
GO
SET	NOCOUNT	OFF
GO

Declaring	a	Transact-SQL	Variable

The	DECLARE	statement	initializes	a	Transact-SQL	variable	by:

Assigning	a	name.	The	name	must	have	a	single	@	as	the	first	character.

Assigning	a	system-supplied	or	user-defined	data	type	and	a	length.	For
numeric	variables,	a	precision	and	scale	are	also	assigned.

Setting	the	value	to	NULL.

Note		Use	system-supplied	data	types	for	local	variables	to	minimize	future
maintenance	issues.

For	example,	the	following	DECLARE	statement	creates	a	local	variable	named
@mycounter	with	an	int	data	type.

DECLARE	@MyCounter	INT

To	declare	more	than	one	local	variable,	use	a	comma	after	the	first	local
variable	defined,	and	then	specify	the	next	local	variable	name	and	data	type.

For	example,	this	DECLARE	statement	creates	three	local	variables	named
@last_name,	@fname	and	@state,	and	initializes	each	to	NULL:

DECLARE	@LastName	NVARCHAR(30),	@FirstName	NVARCHAR(20),	@State	NCHAR(2)

The	scope	of	a	variable	is	the	range	of	Transact-SQL	statements	that	can
reference	the	variable.	The	scope	of	a	variable	lasts	from	the	point	it	is	declared
until	the	end	of	the	batch	or	stored	procedure	in	which	it	is	declared.	For
example,	this	script	generates	a	syntax	error	because	the	variable	is	declared	in
one	batch	and	referenced	in	another:

DECLARE	MyVariable	INT
SET	@MyVariable	=	1
GO	--	This	terminates	the	batch.
--	@MyVariable	has	gone	out	of	scope	and	no	longer	exists.

--	This	SELECT	statement	gets	a	syntax	error	because	it	is
--	no	longer	legal	to	reference	@MyVariable.
SELECT	*
FROM	Employees
WHERE	EmployeeID	=	@MyVariable

Setting	a	Value	in	a	Transact-SQL	Variable
When	a	variable	is	first	declared,	its	value	is	set	to	NULL.	To	assign	a	value	to	a
variable,	use	the	SET	statement.	This	is	the	preferred	method	of	assigning	a
value	to	a	variable.	A	variable	can	also	have	a	value	assigned	by	being

referenced	in	the	select	list	of	a	SELECT	statement.

To	assign	a	variable	a	value	by	using	the	SET	statement,	include	the	variable
name	and	the	value	to	assign	to	the	variable.	This	is	the	preferred	method	of
assigning	a	value	to	a	variable.	This	batch,	for	example,	declares	two	variables,
assigns	values	to	them,	and	then	uses	them	in	the	WHERE	clause	of	a	SELECT
statement:

USE	Northwind
GO
--	Declare	two	variables.
DECLARE	@FirstNameVariable	NVARCHAR(20),
			@RegionVariable	NVARCHAR(30)

--	Set	their	values.
SET	@FirstNameVariable	=	N'Anne'
SET	@RegionVariable	=	N'WA'

--	Use	them	in	the	WHERE	clause	of	a	SELECT	statement.
SELECT	LastName,	FirstName,	Title
FROM	Employees
WHERE	FirstName	=	@FirstNameVariable
			OR	Region	=	@RegionVariable
GO

A	variable	can	also	have	a	value	assigned	by	being	referenced	in	a	select	list.	If	a
variable	is	referenced	in	a	select	list,	it	should	be	assigned	a	scalar	value	or	the
SELECT	statement	should	only	return	one	row.	For	example:

USE	Northwind
GO
DECLARE	@EmpIDVariable	INT

SELECT	@EmpIDVariable	=	MAX(EmployeeID)
FROM	Employees
GO

If	a	SELECT	statement	returns	more	than	one	row	and	the	variable	references	a
nonscalar	expression,	the	variable	is	set	to	the	value	returned	for	the	expression
in	the	last	row	of	the	result	set.	For	example,	in	this	batch	@EmpIDVariable	is
set	to	the	EmployeeID	value	of	the	last	row	returned,	which	is	1:

USE	Northwind
GO
DECLARE	@EmpIDVariable	INT

SELECT	@EmpIDVariable	=	EmployeeID
FROM	Employees
ORDER	BY	EmployeeID	DESC

SELECT	@EmpIDVariable
GO

See	Also

DECLARE	@local_variable

SET	@local_variable

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Parameters
Parameters	are	used	to	exchange	data	between	stored	procedures	and	the
application	or	tool	that	called	the	stored	procedure:

Input	parameters	allow	the	caller	to	pass	a	data	value	to	the	stored
procedure.

Output	parameters	allow	the	stored	procedure	to	pass	a	data	value	or	a
cursor	variable	back	to	the	caller.

Every	stored	procedure	returns	an	integer	return	code	to	the	caller.	If	the
stored	procedure	does	not	explicitly	set	a	value	for	the	return	code,	the
return	code	is	0.

The	following	stored	procedure	shows	the	use	of	an	input	parameter,	an	output
parameter,	and	a	return	code:

USE	Northwind
GO
--	Create	a	procedure	that	takes	one	input	parameter
--	and	returns	one	output	parameter	and	a	return	code.
CREATE	PROCEDURE	SampleProcedure	@EmployeeIDParm	INT,
									@MaxQuantity	INT	OUTPUT
AS
--	Declare	and	initialize	a	variable	to	hold	@@ERROR.
DECLARE	@ErrorSave	INT
SET	@ErrorSave	=	0

--	Do	a	SELECT	using	the	input	parameter.
SELECT	FirstName,	LastName,	Title
FROM	Employees
WHERE	EmployeeID	=	@EmployeeIDParm

--	Save	any	nonzero	@@ERROR	value.
IF	(@@ERROR	<>	0)
			SET	@ErrorSave	=	@@ERROR

--	Set	a	value	in	the	output	parameter.
SELECT	@MaxQuantity	=	MAX(Quantity)
FROM	[Order	Details]

IF	(@@ERROR	<>	0)
			SET	@ErrorSave	=	@@ERROR

--	Returns	0	if	neither	SELECT	statement	had
--	an	error;	otherwise,	returns	the	last	error.
RETURN	@ErrorSave
GO

When	a	stored	procedure	is	executed,	input	parameters	can	either	have	their
value	set	to	a	constant	or	use	the	value	of	a	variable.	Output	parameters	and
return	codes	must	return	their	values	into	a	variable.	Parameters	and	return	codes
can	exchange	data	values	with	either	Transact-SQL	variables	or	application
variables.

If	a	stored	procedure	is	called	from	a	batch	or	script,	the	parameters	and	return
code	values	can	use	Transact-SQL	variables	defined	in	the	same	batch.	This
example	is	a	batch	that	executes	the	procedure	created	earlier.	The	input
parameter	is	specified	as	a	constant	and	the	output	parameter	and	return	code
place	their	values	in	Transact-SQL	variables:

--	Declare	the	variables	for	the	return	code	and	output	parameter.
DECLARE	@ReturnCode	INT
DECLARE	@MaxQtyVariable	INT

--	Execute	the	stored	procedure	and	specify	which	variables
--	are	to	receive	the	output	parameter	and	return	code	values.

EXEC	@ReturnCode	=	SampleProcedure	@EmployeeIDParm	=	9,
			@MaxQuantity	=	@MaxQtyVariable	OUTPUT

--	Show	the	values	returned.
PRINT	'	'
PRINT	'Return	code	=	'	+	CAST(@ReturnCode	AS	CHAR(10))
PRINT	'Maximum	Quantity	=	'	+	CAST(@MaxQtyVariable	AS	CHAR(10))
GO

An	application	can	use	parameter	markers	bound	to	program	variables	to
exchange	data	between	application	variables,	parameters,	and	return	codes.

See	Also

SQL	Stored	Procedures

Stored	Procedures

Parameter	Markers

CREATE	PROCEDURE

DECLARE	@local_variable

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Application	Variables
The	application	programming	languages	such	as	C,	C++,	Basic,	and	Java	use
variables	to	hold	data.	Variables	are	areas	of	storage	that	can	hold	a	data	value.
Each	application	variable	has	a	data	type	and	size.	Numeric	variables	also	have	a
precision	(the	number	of	digits	the	variable	can	hold)	and	scale	(the	number	of
digits	that	are	to	the	right	of	the	decimal	point).

In	order	for	an	application	to	work	with	the	data	returned	from	Transact-SQL
statements,	it	must	have	a	mechanism	to	move	the	Transact-SQL	data	into
application	variables.	The	database	APIs	support	the	concept	of	binding	a	result
set	column,	parameter,	return	code,	or	parameter	marker	in	a	Transact-SQL
statement	to	an	application	variable.

To	retrieve	the	data	in	a	result	set,	an	application	uses	a	process	similar	to	this:

1.	 Executes	a	Transact-SQL	statement.

2.	 Calls	a	database	API	function	to	find	out	how	many	columns	are	in	the
result	set.

3.	 For	each	result	set	column	the	application:

Calls	a	database	API	function	that	returns	the	attributes	(data
type,	size,	and	so	on)	of	the	column.

Allocates	an	application	variable	with	attributes	compatible
with	the	attributes	of	the	column.

Calls	a	database	API	function	to	bind,	or	map,	the	result	set
column	with	the	application	variable.

4.	 Uses	database	API	functions	to	fetch	the	result	set	rows	one	row	at	a
time.	On	each	fetch,	the	values	of	each	result	set	column	are	placed	in
the	application	variable	bound	to	the	column.

Applications	can	vary	this	process.	For	example,	if	the	application	is	executing	a
hard-coded	Transact-SQL	statement	against	a	known	table,	the	attributes	of	the
result	set	columns	are	known	in	advance	and	the	application	does	not	have	to
call	the	database	API	to	get	these	attributes.

If	the	application	binds	a	result	set	column	to	an	application	variable	whose	data
type	differs	from	that	of	the	associated	database	object,	then	the	OLE	DB
provider	or	ODBC	driver	must	convert	the	data.	For	example,	if	an	application
binds	a	money	column	to	a	character	array,	the	OLE	DB	provider	or	ODBC
driver	has	to	convert	the	money	data	to	a	character	string.	The	documentation
for	the	Microsoft	OLE	DB	Provider	for	SQL	Server	and	the	SQL	Server	ODBC
driver	define	the	data	type	conversions	they	support.

For	more	information	about	retrieving	parameters	and	return	codes	in
applications,	see	Parameter	Markers.

See	Also

Using	the	Fields	Collection	and	Field	Object

Rowsets

Processing	Results

Results	Processing

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Parameter	Markers
Parameter	markers	are	supported	by	the	ADO,	OLE	DB,	and	ODBC-based
database	APIs.	A	parameter	marker	is	a	question	mark	(?)	placed	in	the	location
of	an	input	or	output	expression	in	a	Transact-SQL	statement.	Parameter	markers
allow	an	application	to	optimize	the	case	where	the	same	Transact-SQL
statement	is	executed	several	times	with	different	values	for	the	input	and	output
expressions.

For	example,	a	user	may	have	given	an	application	five	different	stock	symbols
and	the	application	has	to	call	a	stored	procedure	that	gets	the	current	data	for
each	stock.	The	application	could:

Prepare	this	Transact-SQL	statement:
EXEC	GetQuoteProcedure	@StockSymbolParameter	=	?

Bind	an	application	variable	to	the	parameter	marker	(?).

Execute	a	loop:

Move	the	next	stock	symbol	to	the	bound	variable.

Execute	the	statement	to	retrieve	the	quote	for	that	stock.	(there
are	symbols)

Parameter	markers	are	not	limited	to	being	mapped	to	stored	procedure
parameters.	They	can	be	used	anywhere	an	input	expression	is	used:

UPDATE	Employees
SET	Title	=	?
WHERE	EmployeeID	=	?

Parameter	markers	can	also	be	used	to	map	stored	procedure	output	parameters
and	return	codes.	When	the	application	executes	a	stored	procedure,	the	OLE
DB	provider	or	ODBC	driver	moves	the	data	values	from	any	output	parameters

or	return	codes	into	the	variables	bound	to	the	parameter's	markers.	For	example,
an	application	can	execute	this	procedure,	which	returns	an	integer	return	code
and	a	character	output	parameter:

1.	 Prepare	a	statement:
{?	=	CALL	MyProc	(?)}

2.	 Bind	the	first	parameter	marker	to	an	integer	variable	and	the	second
marker	to	a	character	array.

3.	 Execute	the	statement.

4.	 Fetch	or	cancel	all	the	result	sets	returned	by	the	stored	procedure.

At	this	point,	the	Microsoft	OLE	DB	Provider	for	SQL	Server	or	SQL	Server
ODBC	driver	will	have	placed	the	return	code	and	output	parameter	value	in	the
bound	variables.	Microsoft®	SQL	Server™	returns	output	parameter	and	return
code	values	in	the	last	packet	it	returns	to	the	client.	Therefore,	the	application
must	process	or	cancel	all	result	sets	returned	by	the	stored	procedure	before	it
has	access	to	the	return	code	and	output	parameter	values.

The	ADO	API	has	a	variation	on	this	process	for	executing	stored	procedures.
An	ADO	application:

1.	 Sets	the	Command	object	type	to	adCmdStoredProc.

2.	 Sets	the	command	text	to	just	the	name	of	the	procedure.

3.	 Builds	a	Parameters	collection	binding	all	the	parameters	and	return
codes	to	application	variables.

4.	 Executes	the	Command	object.

Parameter	markers	are	associated	with	a	database	object	that	has	a	specific	data
type.	If	the	application	binds	a	parameter	marker	to	a	variable	whose	data	type
differs	from	that	of	the	associated	database	object,	then	the	OLE	DB	provider	or

ODBC	driver	must	convert	the	data.	For	example,	if	an	application	binds	an
integer	return	code	to	a	character	array,	then	the	OLE	DB	provider	or	ODBC
driver	must	convert	the	return	code	integer	data	to	a	character	string.	For
information	about	the	data	type	conversions	that	are	supported,	see	the
documentation	for	OLE	DB	Provider	for	SQL	Server	and	SQL	Server	ODBC
driver.

See	Also

Executing	Prepared	Statements

Parameters	Collection

Parameter	Object

Running	Stored	Procedures	(OLE	DB)

Command	Parameters

Using	Statement	Parameters

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

Control-of-Flow
Transact-SQL	provides	special	words	called	control-of-flow	language	that
control	the	flow	of	execution	of	Transact-SQL	statements,	statement	blocks,	and
stored	procedures.	These	words	can	be	used	in	ad	hoc	Transact-SQL	statements,
in	batches,	and	in	stored	procedures.

Without	control-of-flow	language,	separate	Transact-SQL	statements	are
performed	sequentially,	as	they	occur.	Control-of-flow	language	permits
statements	to	be	connected,	related	to	each	other,	and	made	interdependent	using
programming-like	constructs.

These	control-of-flow	words	are	useful	when	you	need	to	direct	Transact-SQL	to
take	some	kind	of	action.	For	example,	use	a	BEGIN...END	pair	of	statements
when	including	more	than	one	Transact-SQL	statement	in	a	logical	block.	Use	an
IF...ELSE	pair	of	statements	when	a	certain	statement	or	block	of	statements
needs	to	be	executed	IF	some	condition	is	met,	and	another	statement	or	block	of
statements	should	be	executed	if	that	condition	is	not	met	(the	ELSE	condition).

The	control-of-flow	statements	cannot	span	multiple	batches	or	stored
procedures.

These	are	the	control-of-flow	keywords.

BEGIN...END WAITFOR
GOTO WHILE
IF...ELSE BREAK
RETURN CONTINUE

See	Also

Using	CASE

CONTINUE

Using	GOTO

DECLARE	@local_variable

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Using	RETURN

ELSE	(IF...ELSE)

Using	WAITFOR

END	(BEGIN...END)

Control-of-Flow	Language

EXECUTE

--	(Comment)

IF...ELSE

/*...*/	(Comment)

PRINT

BEGIN...END

RAISERROR

BREAK

WHILE

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()

Accessing	and	Changing	Relational	Data

Using	BEGIN...END
The	BEGIN	and	END	statements	are	used	to	group	multiple	Transact-SQL
statements	into	a	logical	block.	Use	the	BEGIN	and	END	statements	anywhere	a
control-of-flow	statement	must	execute	a	block	of	two	or	more	Transact-SQL
statements.

For	example,	when	an	IF	statement	controls	the	execution	of	only	one	Transact-
SQL	statement,	no	BEGIN	or	END	statement	is	needed:

IF	(@@ERROR	<>	0)
			SET	@ErrorSaveVariable	=	@@ERROR

If	@@ERROR	is	0,	only	the	single	SET	statement	is	jumped.

Use	BEGIN	and	END	statements	to	make	the	IF	statement	skip	a	block	of
statements	when	it	evaluates	to	FALSE:

IF	(@@ERROR	<>	0)
BEGIN
			SET	@ErrorSaveVariable	=	@@ERROR
			PRINT	'Error	encountered,	'	+	
									CAST(@ErrorSaveVariable	AS	VARCHAR(10))
END

The	BEGIN	and	END	statements	must	be	used	as	a	pair:	one	cannot	be	used
without	the	other.	The	BEGIN	statement	appears	on	a	line	by	itself	followed	by
the	block	of	Transact-SQL	statements.	Finally,	the	END	statement	appears	on	a
line	by	itself	to	indicate	the	end	of	the	block.

The	BEGIN	and	END	statements	are	used	when:

A	WHILE	loop	needs	to	include	a	block	of	statements.

An	element	of	a	CASE	function	needs	to	include	a	block	of	statements.

An	IF	or	ELSE	clause	needs	to	include	a	block	of	statements.

See	Also

BEGIN...END

END	(BEGIN...END)

Control-of-Flow	Language

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	GOTO
The	GOTO	statement	causes	the	execution	of	a	Transact-SQL	batch	to	jump	to	a
label.	None	of	the	statements	between	the	GOTO	statement	and	the	label	are
executed.	The	label	name	is	defined	using	the	syntax:

label_name:

Use	the	GOTO	statement	sparingly.	Excessive	use	of	the	GOTO	statement	can
make	it	difficult	to	understand	the	logic	of	a	Transact-SQL	batch.	The	logic
implemented	using	GOTO	can	almost	always	be	implemented	using	the	other
control-of-flow	statements.	GOTO	is	best	used	for	breaking	out	of	deeply	nested
control-of-flow	statements.

The	label	that	is	the	target	of	a	GOTO	identifies	only	the	target	of	the	jump.	The
label	does	nothing	to	isolate	the	statements	following	it	from	the	statements
immediately	before	it.	Any	user	executing	the	statements	immediately	before	the
label	skips	the	label	and	executes	the	statements	after	the	label.	This	happens
unless	the	statement	immediately	preceding	the	label	is	itself	a	control-of-flow
statement,	such	as	a	RETURN.

This	is	an	example	of	a	GOTO:

IF	(SELECT	SYSTEM_USER())	=	'payroll'
			GOTO	calculate_salary
--	Other	program	code	would	appear	here.
--	When	the	IF	statement	evaluates	to	TRUE,	the	statements
--	between	the	GOTO	and	the	calculate_salary	label	are
--	ignored.	When	the	IF	statement	evaluates	to	FALSE	the
--	statements	following	the	GOTO	are	executed.
calculate_salary:
			--	Statements	to	calculate	a	salary	would	appear	after	the	label.

See	Also

GOTO

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	IF...ELSE
The	IF	statement	is	used	to	test	for	a	condition.	The	resulting	flow	of	control
depends	on	whether	the	optional	ELSE	statement	is	specified:

IF	specified	without	ELSE

When	the	IF	statement	evaluates	to	TRUE,	the	statement	or	block	of
statements	following	the	IF	statement	are	executed.	When	the	IF
statement	evaluates	to	FALSE,	the	statement,	or	block	of	statements,
following	the	IF	statement	is	skipped.

IF	specified	with	ELSE

When	the	IF	statement	evaluates	to	TRUE,	the	statement,	or	block	of
statements,	following	the	IF	statement,	is	executed.	Then	control	jumps
to	the	point	after	the	statement,	or	block	of	statements,	following	the
ELSE	statement.	When	the	IF	statement	evaluates	to	FALSE,	the
statement,	or	block	of	statements,	following	the	IF	statement	is	skipped
and	the	statement,	or	block	of	statements,	following	the	optional	ELSE
statement	is	executed.

For	example,	if	a	stored	procedure	has	been	saving	any	error	codes	returned	by
@@ERROR	during	a	transaction,	it	might	have	an	IF	statement	similar	to	the
following	at	the	end	of	the	procedure:

IF	(@ErrorSaveVariable	<>	0)
BEGIN
			PRINT	'Errors	encountered,	rolling	back.'
			PRINT	'Last	error	encountered:	'	+
						CAST(@ErrorSaveVariable	AS	VARCHAR(10))
			ROLLBACK
END
ELSE
BEGIN
			PRINT	'No	Errors	encountered,	committing.'

			COMMIT
END
RETURN	@ErrorSaveVariable

See	Also

ELSE	(IF...ELSE)

IF...ELSE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	RETURN
The	RETURN	statement	unconditionally	terminates	a	query,	stored	procedure,	or
batch.	None	of	the	statements	in	a	stored	procedure	or	batch	following	the
RETURN	statement	are	executed.

When	used	in	a	stored	procedure,	the	RETURN	statement	can	specify	an	integer
value	to	return	to	the	calling	application,	batch,	or	procedure.	If	no	value	is
specified	on	RETURN,	a	stored	procedure	returns	the	value	0.

Most	stored	procedures	follow	the	convention	of	using	the	return	code	to
indicate	the	success	or	failure	of	the	stored	procedure.	The	stored	procedures
return	a	value	of	0	when	no	errors	were	encountered.	Any	nonzero	value
indicates	an	error	occurred.	For	example:

USE	Northwind
GO
--	Create	a	procedure	that	takes	one	input	parameter
--	and	returns	one	output	parameter	and	a	return	code.
CREATE	PROCEDURE	SampleProcedure	@EmployeeIDParm	INT,
									@MaxQuantity	INT	OUTPUT
AS
--	Declare	and	initialize	a	variable	to	hold	@@ERROR.
DECLARE	@ErrorSave	INT
SET	@ErrorSave	=	0

--	Do	a	SELECT	using	the	input	parameter.
SELECT	FirstName,	LastName,	Title
FROM	Employees
WHERE	EmployeeID	=	@EmployeeIDParm

--	Save	any	nonzero	@@ERROR	value.
IF	(@@ERROR	<>	0)
			SET	@ErrorSave	=	@@ERROR

--	Set	a	value	in	the	output	parameter.
SELECT	@MaxQuantity	=	MAX(Quantity)
FROM	[Order	Details]

IF	(@@ERROR	<>	0)
			SET	@ErrorSave	=	@@ERROR

--	Returns	0	if	neither	SELECT	statement	had
--	an	error,	otherwise	returns	the	last	error.
RETURN	@ErrorSave
GO

A	Transact-SQL	batch	or	stored	procedure	that	executes	a	stored	procedure	can
retrieve	the	return	code	into	an	integer	variable:

DECLARE	@ReturnStatus	INT
DECLARE	@MaxQtyVariable	INT
EXECUTE	@ReturnStatus	=	SampleProcedure	@EmployeeIDParm	=	9,
									@MaxQtyVariable	=	@MaxQuantity	OUTPUT

--	Show	the	values	returned.
PRINT	'	'
PRINT	'Return	code	=	'	+	CAST(@ReturnStatus	AS	CHAR(10))
PRINT	'Maximum	Quantity	=	'	+	CAST(@MaxQtyVariable	AS	CHAR(10))
GO

Applications	that	call	a	stored	procedure	can	bind	to	an	integer	variable	a
parameter	marker	corresponding	to	the	return	code.

See	Also

EXECUTE

RETURN

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Parameter	Markers

Accessing	and	Changing	Relational	Data

Using	WAITFOR
The	WAITFOR	statement	suspends	the	execution	of	a	connection	until	either:

A	specified	time	interval	has	passed.

A	specified	time	of	day	is	reached.

The	WAITFOR	statement	is	specified	with	one	of	two	clauses:

The	DELAY	keyword	followed	by	an	amount_of_time_to_pass	before
completing	the	WAITFOR	statement.	The	time	to	wait	before
completing	the	WAITFOR	statement	can	be	up	to	24	hours.

The	TIME	keyword	followed	by	a	time_to_execute,	which	specifies
completion	of	the	WAITFOR	statement.

This	example	uses	the	DELAY	keyword	to	wait	for	two	seconds	before
performing	a	SELECT	statement:

WAITFOR	DELAY	'00:00:02'
SELECT	EmployeeID	FROM	Northwind.dbo.Employees

This	example	uses	the	TIME	keyword	to	wait	until	10	P.M.	to	perform	a	check
of	the	pubs	specified	database	to	make	sure	that	all	pages	are	correctly	allocated
and	used:

USE	pubs
BEGIN
			WAITFOR	TIME	'22:00'
			DBCC	CHECKALLOC
END

The	disadvantage	of	the	WAITFOR	statement	is	that	the	connection	from	the
application	remains	suspended	until	the	WAITFOR	completes.	WAITFOR	is

best	used	when	an	application	or	stored	procedure	must	suspend	processing	for
some	relatively	limited	amount	of	time.	Using	SQL	Server	Agent	or	SQL-DMO
to	schedule	a	task	is	a	better	method	of	executing	an	action	at	a	specific	time	of
day.

See	Also

WAITFOR

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	WHILE...BREAK	or	CONTINUE
The	WHILE	statement	repeats	a	statement	or	block	of	statements	as	long	as	a
specified	condition	remains	true.

Two	Transact-SQL	statements	are	commonly	used	with	WHILE:	BREAK	or
CONTINUE.	The	BREAK	statement	exits	the	innermost	WHILE	loop	and	the
CONTINUE	statement	restarts	a	WHILE	loop.	A	program	might	execute	a
BREAK	statement	if,	for	example,	there	are	no	other	rows	to	process.	A
CONTINUE	statement	could	be	executed	if,	for	example,	the	execution	of	the
code	should	continue.

Note		If	a	SELECT	statement	is	used	as	the	condition	for	the	WHILE	statement,
the	SELECT	statement	must	be	in	parentheses.

This	example	uses	a	WHILE	statement	to	control	how	many	fetches	are	done:

USE	Northwind
GO
DECLARE	abc	CURSOR	FOR
SELECT	*	FROM	Shippers

OPEN	abc

FETCH	NEXT	FROM	abc
WHILE	(@@FETCH_STATUS	=	0)
			FETCH	NEXT	FROM	abc

CLOSE	abc
DEALLOCATE	abc
GO

Other	valid	WHILE	condition	tests	could	be	the	following:

WHILE	(@ACounterVariable	<	100)

Or

WHILE	EXISTS(SELECT	au_lname	FROM	authors	WHERE	au_fname	=	'Anne')

See	Also

BEGIN...END

END	(BEGIN...END)

BREAK

WHILE

CONTINUE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Using	CASE
The	CASE	function	is	a	special	Transact-SQL	expression	that	allows	an
alternative	value	to	be	displayed	depending	on	the	value	of	a	column.	This
change	in	data	is	temporary;	therefore,	there	are	no	permanent	changes	to	the
data.	For	example,	the	CASE	function	can	display	California	in	a	query	result	set
for	rows	that	have	the	value	CA	in	the	state	column.

The	CASE	function	consists	of:

The	CASE	keyword.

The	column	name	to	transform.

WHEN	clauses	specifying	the	expressions	to	search	for	and	THEN
clauses	specifying	the	expressions	to	replace	them	with.

The	END	keyword.

An	optional	AS	clause	defining	an	alias	for	the	CASE	function.

This	example	displays,	in	the	query	result	set,	the	full	name	of	the	state	each
author	lives	in:

SELECT	au_fname,	au_lname,	
			CASE	state
						WHEN	'CA'	THEN	'California'
						WHEN	'KS'	THEN	'Kansas'
						WHEN	'TN'	THEN	'Tennessee'
						WHEN	'OR'	THEN	'Oregon'
						WHEN	'MI'	THEN	'Michigan'
						WHEN	'IN'	THEN	'Indiana'
						WHEN	'MD'	THEN	'Maryland'

						WHEN	'UT'	THEN	'Utah'
								END	AS	StateName
FROM	pubs.dbo.authors
ORDER	BY	au_lname

See	Also

CASE

NULLIF

COALESCE

Conditional	Data	Processing	Using	CASE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Building	Statements	at	Run	Time
Most	Microsoft®	SQL	Server™	applications	that	have	to	dynamically	build
SQL	statements	at	run	time	do	so	before	calling	a	database	API	function	or
method	to	execute	the	statement.	For	example,	a	C-language	application	using
ODBC	can	dynamically	build	one	or	more	SQL	statements	into	a	character	array,
then	pass	that	array	to	the	ODBC	SQLPrepare	or	SQLExecDirect	functions.

Transact-SQL	supports	two	methods	of	building	SQL	statements	at	run	time	in
Transact-SQL	scripts,	stored	procedures,	and	triggers:

Use	the	sp_executesql	system	stored	procedure	to	execute	a	Unicode
string.	sp_executesql	supports	parameter	substitution	similar	to	the
RAISERROR	statement.

Use	the	EXECUTE	statement	to	execute	a	character	string.	The
EXECUTE	statement	does	not	support	parameter	substitution	in	the
executed	string.

This	is	a	simple	example	of	using	sp_executesql	to	execute	a	dynamically	built
string	containing	an	SQL	statement:

USE	Northwind
DECLARE	@SQLString	NVARCHAR(500)

/*	Set	column	list.	CHAR(13)	is	a	carriage	return,	line	feed.*/
SET	@SQLString	=	N'SELECT	FirstName,	LastName,	Title'	+	CHAR(13)

/*	Set	FROM	clause	with	carriage	return,	line	feed.	*/
SET	@SQLString	=	@SQLString	+	N'FROM	Employees'	+	CHAR(13)

/*	Set	WHERE	clause.	*/
SET	@SQLString	=	@SQLString	+	N'WHERE	LastName	LIKE	''D%'''

EXEC	sp_executesql	@SQLString

GO

Accessing	and	Changing	Relational	Data

Using	sp_executesql
Using	sp_executesql	is	recommended	over	using	the	EXECUTE	statement	to
execute	a	string.	Not	only	does	the	support	for	parameter	substitution	make
sp_executesql	more	versatile	than	EXECUTE,	it	also	makes	sp_executesql
more	efficient	because	it	generates	execution	plans	that	are	more	likely	to	be
reused	by	SQL	Server.

Self-contained	Batches
When	either	sp_executesql	or	the	EXECUTE	statement	executes	a	string,	the
string	is	executed	as	its	own	self-contained	batch.	SQL	Server	compiles	the
Transact-SQL	statement	or	statements	in	the	string	into	an	execution	plan	that	is
separate	from	the	execution	plan	of	the	batch	that	contained	the	sp_executesql
or	EXECUTE	statement.	These	rules	apply	for	self-contained	batches:

The	Transact-SQL	statements	in	the	sp_executesql	or	EXECUTE	string
are	not	compiled	into	an	execution	plan	until	sp_executesql	or	the
EXECUTE	statement	are	executed.	The	strings	are	not	parsed	or
checked	for	errors	until	they	are	executed.	The	names	referenced	in	the
strings	are	not	resolved	until	they	are	executed.

The	Transact-SQL	statements	in	the	executed	string	do	not	have	access
to	any	of	the	variables	declared	in	the	batch	that	contains	the
sp_executesql	or	EXECUTE	statement.	The	batch	containing	the
sp_executesql	or	EXECUTE	statement	does	not	have	access	to
variables	or	local	cursors	defined	in	the	executed	string.

If	the	executed	string	has	a	USE	statement	that	changes	the	database
context,	the	change	to	the	database	context	only	lasts	until
sp_executesql	or	the	EXECUTE	statement	completes.

Executing	these	two	batches	illustrates	these	points:

/*	Show	not	having	access	to	variables	from	the	calling	batch.	*/

DECLARE	@CharVariable	CHAR(3)
SET	@CharVariable	=	'abc'
/*	sp_executesql	fails	because	@CharVariable	has	gone	out	of	scope.	*/
sp_executesql	N'PRINT	@CharVariable'
GO

/*	Show	database	context	resetting	after	sp_executesql	completes.	*/
USE	pubs
GO
sp_executesql	N'USE	Northwind'
GO
/*	This	statement	fails	because	the	database	context
			has	now	returned	to	pubs.	*/
SELECT	*	FROM	Shippers
GO

Substituting	Parameter	Values
sp_executesql	supports	the	substitution	of	parameter	values	for	any	parameters
specified	in	the	Transact-SQL	string,	but	the	EXECUTE	statement	does	not.
Therefore,	the	Transact-SQL	strings	generated	by	sp_executesql	are	more
similar	than	those	generated	by	the	EXECUTE	statement.	The	SQL	Server	query
optimizer	will	probably	match	the	Transact-SQL	statements	from	sp_executesql
with	execution	plans	from	the	previously	executed	statements,	saving	the
overhead	of	compiling	a	new	execution	plan.

With	the	EXECUTE	statement,	all	parameter	values	must	be	converted	to
character	or	Unicode	and	made	a	part	of	the	Transact-SQL	string:

DECLARE	@IntVariable	INT
DECLARE	@SQLString	NVARCHAR(500)
/*	Build	and	execute	a	string	with	one	parameter	value.	*/
SET	@IntVariable	=	35
SET	@SQLString	=	N'SELECT	*	FROM	pubs.dbo.employee	WHERE	job_lvl	=	'	+
																	CAST(@IntVariable	AS	NVARCHAR(10))
EXEC(@SQLString)

/*	Build	and	execute	a	string	with	a	second	parameter	value.	*/
SET	@IntVariable	=	201
SET	@SQLString	=	N'SELECT	*	FROM	pubs.dbo.employee	WHERE	job_lvl	=	'	+
																	CAST(@IntVariable	AS	NVARCHAR(10))
EXEC(@SQLString)

If	the	statement	is	executed	repeatedly,	a	completely	new	Transact-SQL	string
must	be	built	for	each	execution,	even	when	the	only	differences	are	in	the
values	supplied	for	the	parameters.	This	generates	extra	overhead	in	several
ways:

The	ability	of	the	SQL	Server	query	optimizer	to	match	the	new
Transact-SQL	string	with	an	existing	execution	plan	is	hampered	by	the
constantly	changing	parameter	values	in	the	text	of	the	string,	especially
in	complex	Transact-SQL	statements.

The	entire	string	must	be	rebuilt	for	each	execution.

Parameter	values	(other	than	character	or	Unicode	values)	must	be	cast
to	a	character	or	Unicode	format	for	each	execution.

sp_executesql	supports	the	setting	of	parameter	values	separately	from	the
Transact-SQL	string:

DECLARE	@IntVariable	INT
DECLARE	@SQLString	NVARCHAR(500)
DECLARE	@ParmDefinition	NVARCHAR(500)

/*	Build	the	SQL	string	once.	*/
SET	@SQLString	=
					N'SELECT	*	FROM	pubs.dbo.employee	WHERE	job_lvl	=	@level'
/*	Specify	the	parameter	format	once.	*/
SET	@ParmDefinition	=	N'@level	tinyint'

/*	Execute	the	string	with	the	first	parameter	value.	*/

SET	@IntVariable	=	35
EXECUTE	sp_executesql	@SQLString,	@ParmDefinition,
																						@level	=	@IntVariable
/*	Execute	the	same	string	with	the	second	parameter	value.	*/
SET	@IntVariable	=	32
EXECUTE	sp_executesql	@SQLString,	@ParmDefinition,
																						@level	=	@IntVariable

This	sp_executesql	example	accomplishes	the	same	task	as	the	EXECUTE
example	shown	earlier,	but	with	these	additional	benefits:

Because	the	actual	text	of	the	Transact-SQL	statement	does	not	change
between	executions,	the	query	optimizer	should	match	the	Transact-
SQL	statement	in	the	second	execution	with	the	execution	plan
generated	for	the	first	execution.	Therefore,	SQL	Server	does	not	have
to	compile	the	second	statement.

The	Transact-SQL	string	is	built	only	once.

The	integer	parameter	is	specified	in	its	native	format.	Conversion	to
Unicode	is	not	required.

Note		Object	names	in	the	statement	string	must	be	fully	qualified	in	order	for
SQL	Server	to	reuse	the	execution	plan.

Reusing	Execution	Plans
In	earlier	versions	of	SQL	Server,	the	only	way	to	be	able	to	reuse	execution
plans	was	to	define	the	Transact-SQL	statements	as	a	stored	procedure	and	have
the	application	execute	the	stored	procedure.	This	generates	extra	administrative
overhead	for	the	applications.	Using	sp_executesql	can	help	reduce	this
overhead	while	still	allowing	SQL	Server	to	reuse	execution	plans.
sp_executesql	can	be	used	instead	of	stored	procedures	when	executing	a
Transact-SQL	statement	a	number	of	times,	when	the	only	variation	is	in	the
parameter	values	supplied	to	the	Transact-SQL	statement.	Because	the	Transact-
SQL	statements	themselves	remain	constant	and	only	the	parameter	values

change,	the	SQL	Server	query	optimizer	is	likely	to	reuse	the	execution	plan	it
generates	for	the	first	execution.

This	example	builds	and	executes	a	DBCC	CHECKDB	statement	for	every
database	on	a	server,	except	for	the	four	system	databases:

USE	master
GO
SET	NOCOUNT	ON
GO
DECLARE	AllDatabases	CURSOR	FOR
SELECT	name	FROM	sysdatabases	WHERE	dbid	>	4

OPEN	AllDatabases

DECLARE	@DBNameVar	NVARCHAR(128)
DECLARE	@Statement	NVARCHAR(300)

FETCH	NEXT	FROM	AllDatabases	INTO	@DBNameVar
WHILE	(@@FETCH_STATUS	=	0)
BEGIN
			PRINT	N'CHECKING	DATABASE	'	+	@DBNameVar
			SET	@Statement	=	N'USE	'	+	@DBNameVar	+	CHAR(13)
						+	N'DBCC	CHECKDB	('	+	@DBNameVar	+	N')'
			EXEC	sp_executesql	@Statement
			PRINT	CHAR(13)	+	CHAR(13)
			FETCH	NEXT	FROM	AllDatabases	INTO	@DBNameVar
END

CLOSE	AllDatabases
DEALLOCATE	AllDatabases
GO
SET	NOCOUNT	OFF
GO

The	SQL	Server	ODBC	driver	uses	sp_executesql	to	implement
SQLExecDirect	when	the	Transact-SQL	statement	being	executed	contains
bound	parameter	markers.	The	one	exception	is	that	sp_executesql	is	not	used
with	data-at-execution	parameters.	This	allows	applications	that	use	the	standard
ODBC	functions,	or	that	use	the	APIs	defined	over	ODBC	(such	as	RDO),	to
gain	the	advantages	provided	by	sp_executesql.	Existing	ODBC	applications
ported	to	SQL	Server	2000	automatically	acquire	the	performance	gains	without
having	to	be	rewritten.	For	more	information,	see	Using	Statement	Parameters.

The	Microsoft	OLE	DB	Provider	for	SQL	Server	also	uses	sp_executesql	to
implement	the	direct	execution	of	statements	with	bound	parameters.
Applications	using	OLE	DB	or	ADO	gain	the	advantages	provided	by
sp_executesql	without	having	to	be	rewritten.

See	Also

DECLARE	@local_variable

SELECT

EXECUTE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Permissions
Every	object	in	a	Microsoft®	SQL	Server™	2000	database	has	an	owner,
typically	the	user	ID	in	effect	for	the	connection	that	created	the	object.	Other
users	cannot	access	that	object	until	the	owner	authorizes	their	user	ID	to	access
the	object.

Certain	Transact-SQL	statements	are	also	limited	to	specific	user	IDs.	For
example,	CREATE	DATABASE	is	limited	to	members	of	the	sysadmin	and
dbcreator	fixed	server	roles.	Users	cannot	access	an	object	or	execute	a
statement	unless	authorized.

All	Transact-SQL	statements	that	a	user	issues	are	subject	to	the	permissions	the
user	has	been	granted.	Members	of	the	sysadmin	fixed	server	role,	members	of
the	db_owner	fixed	database	role,	and	owners	of	database	objects	can	grant,
deny,	or	revoke	permissions	for	a	person	or	role.	When	using	Transact-SQL,	use
the	GRANT,	DENY,	and	REVOKE	statements	to	specify	who	can	use	which
data-modification	statements:

GRANT	gives	permissions	to	either	work	with	data	or	execute	other
Transact-SQL	statements.

DENY	denies	permission	and	prevents	the	specified	user,	group,	or	role
from	inheriting	the	permission	through	group	and	role	memberships.

REVOKE	removes	previously	granted	or	denied	permissions.

The	permissions	that	can	be	granted	for	objects	are:

SELECT

Permits	a	user	to	issue	SELECT	statements	against	a	table	or	view.

INSERT

Permits	a	user	to	issue	INSERT	statements	against	a	table	or	view.

UPDATE

Permits	a	user	to	issue	UPDATE	statements	against	a	table	or	view.

DELETE

Permits	a	user	to	issue	DELETE	statements	against	a	table	or	view.

REFERENCES

Permits	a	user	to	make	foreign	key	references	to	the	primary	key	and
unique	columns	of	a	table.	Also	used	to	allow	SCHEMABINDING
references	from	views	and	functions.

EXECUTE

Permits	a	user	to	issue	EXECUTE	statements	against	a	stored
procedure.

Permissions	can	also	be	granted	to	execute	Transact-SQL	statements	that	are
usually	limited	to	members	of	a	specific	role.	For	example,	a	member	of	the
sysadmin	fixed	server	role	can	grant	CREATE	DATABASE	permissions	to	a
user	who	usually	could	not	create	databases.

See	Also

Logins

DENY

Logins,	Users,	Roles,	and	Groups

GRANT

Managing	Security

REVOKE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

Using	Options	in	SQL	Server
Microsoft®	SQL	Server™	2000	provides	options	that	affect	the	result	and
performance	of	SQL	statements.	Transact-SQL	allows	you	to	set	these	options	in
the	following	ways:

Server-wide	configuration	options	(server	options)	are	set	by	executing
the	sp_configure	stored	procedure.

Database-level	options	(database	options)	are	set	by	executing	the
sp_dboption	stored	procedure.

The	database	compatibility	level	is	set	by	executing	the
sp_dbcmptlevel	stored	procedure.

Connection-level	options	(SET	options)	are	specified	with	SET
statements,	such	as	SET	ANSI_PADDING	and	SET	ANSI_NULLS.

Statement-level	options	(query	hints,	table	hints,	and	join	hints)	are
specified	in	individual	Transact-SQL	statements.

ODBC	applications	can	specify	connection	options	that	control	some	of	the
ANSI	SET	options.	The	Microsoft	OLE	DB	Provider	for	SQL	Server	and	SQL
Server	ODBC	driver	both	set	several	SET	options	by	default.	Options	can	also
be	set	using	the	SQL	Server	Enterprise	Manager.

Avoid	changing	SET	options	and	setting	them	through	the	SET	statements.
Instead,	it	is	recommended	that	SET	options	be	set	at	the	connection	level
through	the	connection	properties	of	ODBC	or	OLE	DB.	Alternatively,	change
SET	option	settings	using	the	sp_configure	stored	procedure.

Hierarchy	of	Options
When	an	option	is	supported	at	more	than	one	level:

1.	 A	database	option	overrides	a	server	option.	

2.	 A	SET	option	overrides	a	database	option.	

3.	 A	hint	overrides	a	SET	option.

Note		sp_configure	provides	the	option	user	options,	which	allows
you	to	change	the	default	values	of	several	SET	options.	Although
user	options	appears	to	be	a	server	option,	it	is	a	SET	option.

Accessing	and	Changing	Relational	Data

SET	Options
This	table	contains	an	alphabetic	list	of	SET	options	and	the	corresponding
database	and	server	options	supported	in	Microsoft®	SQL	Server™	2000.

SET	option
Database
option

Server
option

Default
setting

ANSI_DEFAULTS None None n/a
ANSI_NULL_DFLT_OFF
ANSI_NULL_DFLT_ON

ANSI	null
default

user
options
assigns	a
default

OFF

ANSI_NULLS ANSI
nulls

user
options
assigns	a
default

OFF

ANSI_PADDING None user
options
assigns	a
default

ON	

ANSI_WARNINGS ANSI
warnings

user
options
assigns	a
default

OFF

ARITHABORT None user
options
assigns	a
default

OFF

ARITHIGNORE None user
options
assigns	a
default

OFF

CONCAT_NULL_YIELDS_NULL concat
null	yields
null

None OFF

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

CONTEXT_INFO None None OFF
CURSOR_CLOSE_ON_COMMIT cursor

close	on
commit

user
options
assigns	a
default

OFF

DATEFIRST None None 7
DATEFORMAT None None mdy
DEADLOCK_PRIORITY None None NORMAL
DISABLE_DEF_CNST_CHK None user

options
assigns	a
default

OFF

FIPS_FLAGGER None None OFF
FMTONLY None None OFF
SET	FORCEPLAN None None OFF
IDENTITY_INSERT None 	 OFF
IMPLICIT_TRANSACTIONS None user

options
assigns	a
default

OFF

LANGUAGE None None us_english
LOCK_TIMEOUT None None No	limit
NOCOUNT None user

options
assigns	a
default

OFF

NOEXEC None None OFF
NUMERIC_ROUNDABORT None None OFF
OFFSETS None None OFF
PARSEONLY None None OFF
QUERY_GOVERNOR_COST_LIMITNone query

governor
cost	limit

OFF

QUOTED_IDENTIFIER quoted
identifier

user
options

OFF

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()
JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()

assigns	a
default

REMOTE_PROC_TRANSACTIONS None None OFF
ROWCOUNT None None OFF
SHOWPLAN_ALL None None OFF
SHOWPLAN_TEXT None None OFF
STATISTICS	IO None None OFF
STATISTICS	PROFILE None None n/a
STATISTICS	TIME None None OFF
TEXTSIZE None None OFF
TRANSACTION	ISOLATION
LEVEL

None None n/a

XACT_ABORT None None OFF

Parse-Time	and	Execute-Time	SET	Options
The	point	at	which	a	SET	option	takes	effect	depends	upon	whether	the	option	is
a	parse-time	option	or	an	execute-time	option.	Parse-time	options	take	effect
during	parsing,	as	the	options	are	encountered	in	text,	without	regard	to	control
of	flow	statements.	Execute-time	options	take	effect	during	the	execution	of	the
code	in	which	they	are	specified.	If	execution	fails	before	the	SET	statement	is
executed,	the	option	is	not	set.	If	execution	fails	after	the	SET	statement	is
executed,	the	option	is	set.

The	QUOTED_IDENTIFIER,	PARSEONLY,	OFFSETS,	and	FIPS_FLAGGER
options	are	parse-time	options.	All	other	SET	options	are	execute-time	options.

SET	QUOTED_IDENTIFIER	and	SET	ANSI_NULLS	statements	that	occur
within	a	batch	or	stored	procedure	do	not	affect	that	batch	or	stored	procedure.
Instead,	the	settings	that	are	used	for	statements	inside	the	batch	or	stored
procedure	are	the	settings	that	are	in	effect	when	the	batch	or	stored	procedure	is
created.

Duration	of	SET	Options
This	section	describes	the	duration	of	SET	options.

JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()
JavaScript:hhobj_32.Click()
JavaScript:hhobj_33.Click()
JavaScript:hhobj_34.Click()
JavaScript:hhobj_35.Click()
JavaScript:hhobj_36.Click()
JavaScript:hhobj_37.Click()
JavaScript:hhobj_38.Click()
JavaScript:hhobj_39.Click()

SET	options	that	are	set	by	a	user	in	a	script	apply	until	reset	or	the
user's	session	with	the	server	is	terminated.	

SET	options	that	are	set	within	a	stored	procedure	or	trigger	apply	until
reset	inside	that	stored	procedure	or	trigger,	or	until	control	returns	to
the	code	that	invoked	the	stored	procedure	or	trigger.

Unless	explicitly	reset,	SET	option	values	from	all	higher	level	code
apply	within	a	stored	procedure	or	trigger.

Unless	explicitly	or	implicitly	reset,	SET	options	set	for	a	connection
apply	after	connecting	to	a	different	database.

Note		An	additional	consideration	is	that	when	a	user	connects	to	a
database,	some	option	may	be	set	ON	automatically,	based	on	the
values	specified	by	the	prior	use	of	the	user	options,	server	option	or
the	values	that	apply	to	all	ODBC	and	OLE	DB	connections.

Shortcut	SET	Option

Transact-SQL	provides	the	SET	ANSI_DEFAULTS	statement	as	a	shortcut	for
setting	these	SQL-92	standard	options:

SET	ANSI_NULLS

SET	CURSOR_CLOSE_ON_COMMIT

SET	ANSI_NULL_DFLT_ON

SET	IMPLICIT_TRANSACTIONS

SET	ANSI_PADDING	

SET	QUOTED_IDENTIFIER

SET	ANSI_WARNINGS

The	shortcut	resets	the	values	for	these	options.	Any	individual	option	set	after
the	shortcut	is	used	overrides	the	corresponding	value	set	by	the	shortcut.

Note		SET	ANSI_DEFAULTS	does	not	set	all	of	the	options	required	to	comply
with	the	SQL-92	standard.

Accessing	and	Changing	Relational	Data

Database	Options
This	table	is	an	alphabetic	list	of	database	options	and	corresponding	SET	and
server	options	supported	in	Microsoft®	SQL	Server™	2000.

Database
option SET	option

Server	
option

Default
setting

ANSI	null
default

ANSI_NULL_DFLT_ON
ANSI_NULL_DFLT_OFF	

user	options
assigns	a
default

OFF

ANSI	nulls ANSI_NULLS user	options
assigns	a
default

OFF

ANSI
warnings

ANSI_WARNINGS user	options
assigns	a
default

OFF

auto	create
statistics

None None ON

auto	update
statistics

None None ON

autoclose None None FALSE1

autoshrink None None FALSE
concat	null
yields	null

CONCAT_NULL_YIELDS_NULLNone OFF

cursor	close
on	commit

CURSOR_CLOSE_ON_COMMIT user	options
assigns	a
default

OFF

dbo	use	only None None FALSE
default	to
local	cursor

None None FALSE

merge
publish

None None FALSE

offline None None FALSE
published None None FALSE

quoted
identifier

QUOTED_IDENTIFIER user	options
assigns	a
default

OFF

read	only None None FALSE
recursive
triggers

None None FALSE

select	into/
bulkcopy

None None FALSE

single	user None None FALSE
subscribed None None TRUE
torn	page
detection

	 None TRUE

trunc.	log	on
chkpt.

None None TRUE

1	By	default,	autoclose	is	set	to	TRUE	in	SQL	Server	2000	Desktop	Engine.

The	default	database	options	for	a	new	database	are	those	defined	in	the	model
database.	In	new	SQL	Server	installations,	the	settings	in	the	model	and	master
databases	are	the	same.

A	change	to	a	database	option	forces	a	recompile	of	everything	in	the	cache.

Options	and	Database	Context
The	database	context	of	scripts	and	the	batches	within	scripts	is	determined	by
the	most	recent	connection.	The	connection	can	be	explicitly	set	with	the	USE
statement	in	Transact-SQL	and	by	both	implicit	and	explicit	means	in	other
environments	such	as	ODBC	and	OLE	DB.	For	more	information,	see	Choosing
a	Database.

When	a	stored	procedure	is	executed	from	a	batch	or	another	stored	procedure,	it
is	executed	under	the	option	settings	of	the	database	in	which	it	is	stored.	For
example,	when	stored	procedure	db1.dbo.sp1	calls	stored	procedure
db2.dbo.sp2,	sp1	is	executed	under	the	current	compatibility	level	setting	of
db1,	and	sp2	is	executed	under	the	current	compatibility	level	setting	of	db2.

When	a	Transact-SQL	statement	refers	to	objects	in	multiple	databases,	the
current	database	context	and	the	current	connection	context	(the	database

defined	by	the	USE	statement	if	it	is	in	a	batch,	or	the	database	that	contains	the
stored	procedure	if	it	is	in	a	stored	procedure)	apply	to	that	statement.

Accessing	and	Changing	Relational	Data

Server	Options
This	table	is	an	alphabetic	list	of	server	options	and	corresponding	database	and
SET	options	supported	in	Microsoft®	SQL	Server™	2000.

Server	option SET	option
Database
option

Default
setting

affinity	mask None None 0
allow	updates None None 0
awe	enabled None None 0
c2	audit	mode None None 0
cost	threshold
for	parallelism

None None 5

cursor
threshold

None None -1

default	full-
text	language

None None 1033

default
language

None None 0

fill	factor None None 0
index	create
memory

None None 0

lightweight
pooling

None None 0

locks None None 0
max	degree	of
parallelism

None None 0

max	server
memory

None None 2147483647

max	text	repl
size

None None 65536

max	worker
threads

None None 255

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()
JavaScript:hhobj_14.Click()
JavaScript:hhobj_15.Click()
JavaScript:hhobj_16.Click()

media
retention

None None 0

min	memory
per	query

None None 1024

min	server
memory

None None 0

nested	triggers None None 1
network	packet
size

None None 4096

open	objects None None 0
priority	boost None None 0
query	governor
cost	limit

QUERY_GOVERNOR_COST_
LIMIT

None 0

query	wait None None -1
recovery
interval

None None 0

remote	access None None 1
remote	login
timeout

None None 20

remote	proc
trans

None None 0

remote	query
timeout

None None 600

scan	for
startup	procs

None None 0

set	working	set
size

None None 0

show	advanced
options

None None 0

two	digit	year
cutoff

None None 2049

user
connections

None None 0

user	options ANSI_NULL_DFLT_ON ANSI	nullOFF

JavaScript:hhobj_17.Click()
JavaScript:hhobj_18.Click()
JavaScript:hhobj_19.Click()
JavaScript:hhobj_20.Click()
JavaScript:hhobj_21.Click()
JavaScript:hhobj_22.Click()
JavaScript:hhobj_23.Click()
JavaScript:hhobj_24.Click()
JavaScript:hhobj_25.Click()
JavaScript:hhobj_26.Click()
JavaScript:hhobj_27.Click()
JavaScript:hhobj_28.Click()
JavaScript:hhobj_29.Click()
JavaScript:hhobj_30.Click()
JavaScript:hhobj_31.Click()
JavaScript:hhobj_32.Click()
JavaScript:hhobj_33.Click()
JavaScript:hhobj_34.Click()
JavaScript:hhobj_35.Click()
JavaScript:hhobj_36.Click()

ANSI_NULL_DFLT_OFF	 default
	 ANSI_NULLS ANSI

nulls
OFF

	 ANSI_PADDING None ON	
	 ANSI_WARNINGS ANSI

warnings
OFF

CURSOR_CLOSE_ON_COMMIT cursor
close	on
commit

OFF

	 IMPLICIT_TRANSACTIONS None OFF
QUOTED_IDENTIFIER quoted

identifier
OFF

	 ARITHABORT None OFF
	 ARITHIGNORE None OFF
	 DISABLE_DEF_CNST_CHK None OFF
	 NOCOUNT None OFF

Accessing	and	Changing	Relational	Data

Hints
This	table	lists	the	options	available	for	join	hints,	query	hints,	and	table	hints	in
Microsoft®	SQL	Server™	2000.

Hint
type Option Description

Default
setting

Join LOOP		|		HASH	
|		MERGE		|		REMOTE

Specifies	the	strategy	to	use
when	joining	the	rows	of
two	tables.

Chosen	by
SQL	Server.

Query {	HASH	|	ORDER	}
GROUP

Specifies	whether	hashing
or	ordering	is	used	to
compute	GROUP	BY	and
COMPUTE	aggregations.

Chosen	by
SQL	Server.

Query {	MERGE	|	HASH	|	
CONCAT	}		UNION

Specifies	the	strategy	to	use
for	all	UNION	operations
within	the	query.

Chosen	by
SQL	Server.

Query FAST	integer Optimizes	the	query	for
retrieval	of	the	specified
number	of	rows.

No	such
optimization.

Query FORCE	ORDER Performs	joins	in	the	order
in	which	the	tables	appear
in	the	query.

Chosen	by
SQL	Server.

Query ROBUST	PLAN Creates	a	plan	that
accommodates	maximum
potential	row	size.

Chosen	by
SQL	Server.

Table FASTFIRSTROW Has	the	same	effect	as
specifying	the	FAST	1
query	hint.

No	such
optimization.

Table INDEX	= Instructs	SQL	Server	to	use
the	specified	indexes	for	a
table.

Chosen	by
SQL	Server.

Table HOLDLOCK		
|		SERIALIZABLE					
|		REPEATABLEREAD		

Specifies	the	isolation	level
for	a	table.

Defaults	to	a
transaction
isolation

|		READCOMMITTED		
|	
READUNCOMMITTED
|		NOLOCK

level.

Table ROWLOCK
|		PAGLOCK
|		TABLOCK
|		TABLOCKX
|		NOLOCK

Specifies	locking
granularity	for	a	table.

Chosen	by
SQL	Server.

Table READPAST Skips	locked	rows
altogether.

Wait	for
locked	rows.

Table UPDLOCK Takes	update	locks	instead
of	shared	locks.	Cannot	be
used	with	NOLOCK	or
XLOCK.

Take	shared
locks.

Table XLOCK Takes	an	exclusive	lock
that	will	be	held	until	the
end	of	the	transaction.
Cannot	be	used	with
NOLOCK	or	UPDLOCK.

Chosen	by
SQL	Server.

Accessing	and	Changing	Relational	Data

Database	Compatibility	Level	Option
Transact-SQL	provides	the	sp_dbcmptlevel	stored	procedure	that	sets	certain
database	behaviors	to	be	compatible	with	the	specified	earlier	version	of
Microsoft®	SQL	Server™	2000.

A	special	rule	applies	to	the	relationship	among	the	database	compatibility	level
option,	the	concat	null	yields	null	database	option,	and	the
CONCAT_NULL_YIELDS_NULL	SET	option.	The	settings	of	concat	null
yields	null	and	CONCAT_NULL_YIELDS_NULL	are	ignored	when	the	value
of	compatibility	level	is	for	a	release	earlier	than	SQL	Server	7.0.

The	compatibility	level	affects	the	behaviors	in	the	specified	database,	not	the
entire	server.	For	more	information,	see	sp_dbcmptlevel.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Behavior	if	Both	ARITHABORT	and
ARITHIGNORE	Are	Set	ON
If	both	the	ARITHABORT	and	ARITHIGNORE	query-processing	options	are
set	ON,	ARITHABORT	takes	precedence.

ARITHABORT	and	ARITHIGNORE	are	two	distinct	options;	setting	one	ON
does	not	set	the	other	OFF	automatically.	For	example,	if	an	application	contains
these	statements	then	both	options	are	set	ON:

SET	ARITHABORT	ON
SET	ARITHIGNORE	ON
GO

When	a	SET	statement	is	executed	in	a	stored	procedure,	the	new	setting	is
active	only	until	the	procedure	is	completed.	When	the	procedure	is	completed,
the	connection's	setting	for	that	option	will	go	back	to	what	it	was	before	the
procedure	was	executed.

Effect	of	ANSI_WARNINGS	Setting
The	ANSI_WARNINGS	setting	affect	query	processor	behavior	despite	the
current	settings	of	ARITHABORT	and	ARITHIGNORE.

For	example,	even	if	SET	ARITHABORT	or	SET	ARITHIGNORE	is	OFF,	if
SET	ANSI_WARNINGS	is	ON,	SQL	Server	still	returns	an	error	message	when
encountering	divide-by-zero	or	overflow	errors.

This	table	summarizes	the	behavior.

ARITHABORT ANSI_WARNINGS Behavior
ON ON Abort	statement	only.
ON OFF Abort	batch.
OFF ON Abort	statement	only.
OFF OFF Continue;	value	is

NULL.

See	Also

SET	ANSI_WARNINGS

SET	ARITHABORT

SET	ARITHIGNORE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Query	Fundamentals
A	query	is	a	request	for	data	stored	in	Microsoft®	SQL	Server™	2000.	A	query
can	be	issued	using	several	forms:

An	MS	Query	or	Microsoft	Access	user	can	use	a	graphical	user
interface	(GUI)	to	pick	the	data	the	user	wants	to	see	from	one	or	more
SQL	Server	tables.

A	user	of	SQL	Query	Analyzer	or	the	osql	utility	can	issue	a	SELECT
statement.

A	Microsoft	Visual	Basic®	application	can	map	the	data	from	a	SQL
Server	table	into	a	bound	control,	such	as	a	grid.

Although	queries	have	various	ways	of	interacting	with	a	user,	they	all
accomplish	the	same	task:	They	present	the	result	set	of	a	SELECT	statement	to
the	user.	Even	if	the	user	never	specifies	a	SELECT	statement,	as	is	usually	the
case	with	graphical	tools	such	as	MS	Query,	the	client	software	transforms	each
user	query	into	a	SELECT	statement	that	is	sent	to	SQL	Server.

The	SELECT	statement	retrieves	data	from	SQL	Server	and	presents	it	back	to
the	user	in	one	or	more	result	sets.	A	result	set	is	a	tabular	arrangement	of	the
data	from	the	SELECT.	Like	an	SQL	table,	the	result	set	comprises	columns	and
rows.

The	full	syntax	of	the	SELECT	statement	is	complex,	but	most	SELECT
statements	describe	four	primary	properties	of	a	result	set:

The	number	and	attributes	of	the	columns	in	the	result	set.	These
attributes	must	be	defined	for	each	result	set	column:

The	data	type	of	the	column.

The	size	of	the	column,	and	for	numeric	columns,	the	precision
and	scale.

The	source	of	the	data	values	returned	in	the	column.

The	tables	from	which	the	result	set	data	is	retrieved,	and	any	logical
relationships	between	the	tables.

The	conditions	that	the	rows	in	the	source	tables	must	meet	to	qualify
for	the	SELECT.	Rows	that	do	not	meet	the	conditions	are	ignored.

The	sequence	in	which	the	rows	of	the	result	set	are	ordered.

This	SELECT	statement	finds	the	product	ID,	name,	and	unit	price	of	any
products	whose	unit	price	exceeds	$40:

SELECT	ProductID,	ProductName,	UnitPrice
FROM	Products
WHERE	UnitPrice	>	$40
ORDER	BY	UnitPrice	ASC

The	column	names	listed	after	the	SELECT	keyword	(ProductID,
ProductName,	and	UnitPrice)	form	the	select	list.	This	specifies	that	the	result
set	has	three	columns,	and	each	column	has	the	name,	data	type,	and	size	of	the
associated	column	in	the	Products	table.	Because	the	FROM	clause	specifies
only	one	base	table,	all	column	names	in	the	SELECT	statement	refer	to
columns	in	that	table.

The	FROM	clause	lists	the	single	table,	Products,	from	which	the	data	is	to	be
retrieved.

The	WHERE	clause	specifies	that	the	only	rows	in	Products	that	qualify	for	this
SELECT	are	those	in	which	the	value	of	the	UnitPrice	column	exceeds	$40.

The	ORDER	BY	clause	specifies	that	the	result	set	is	to	be	sorted	in	ascending
sequence	based	on	the	value	in	the	UnitPrice	column.

See	Also

FROM

JavaScript:hhobj_1.Click()

SELECT

Distributed	Queries

WHERE

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Parts	of	a	SELECT	Statement
The	full	syntax	of	the	SELECT	statement	is	complex,	but	the	main	clauses	can
be	summarized	as:

SELECT	select_list
[INTO	new_table_name]
FROM	table_list
[WHERE	search_conditions]
[GROUP	BY	group_by_list]
[HAVING	search_conditions]
[ORDER	BY	order_list	[ASC	|	DESC]]

select_list

Describes	the	columns	of	the	result	set.	It	is	a	comma-separated	list	of
expressions.	Each	expression	defines	both	the	format	(data	type	and	size)	and
the	source	of	the	data	for	the	result	set	column.	Each	select	list	expression	is
usually	a	reference	to	a	column	in	the	source	table	or	view	the	data	is	coming
from,	but	can	be	any	other	expression,	such	as	a	constant	or	a	Transact-SQL
function.	Using	the	*	expression	in	a	select	list	specifies	that	all	columns	in
the	source	table	are	returned.

INTO	new_table_name

Specifies	that	the	result	set	is	used	to	create	a	new	table.	new_table_name
specifies	the	name	of	the	new	table.

FROM	table_list

Contains	a	list	of	the	tables	from	which	the	result	set	data	is	retrieved.	These
sources	can	be:

Base	tables	in	the	local	server	running	Microsoft®	SQL	Server™.

Views	in	the	local	SQL	Server.	SQL	Server	internally	resolves	a	view
reference	to	references	against	the	base	tables	that	make	up	the	view.

Linked	tables,	which	are	tables	in	OLE	DB	data	sources	made
accessible	to	SQL	Server.	This	is	called	a	distributed	query.	OLE	DB
data	sources	can	be	accessed	from	SQL	Server	by	linking	them	as	a
linked	server,	or	referencing	the	data	source	in	an	OPENROWSET	or
OPENQUERY	function.

The	FROM	clause	can	also	contain	join	specifications,	which	define
the	specific	path	SQL	Server	is	to	use	in	navigating	from	one	table
to	another.

The	FROM	clause	is	also	used	on	the	DELETE	and	UPDATE
statements	to	define	the	tables	that	are	modified.

WHERE	search_conditions

The	WHERE	clause	is	a	filter	that	defines	the	conditions	each	row	in	the
source	tables	must	meet	to	qualify	for	the	SELECT.	Only	rows	that	meet	the
conditions	contribute	data	to	the	result	set.	Data	from	rows	that	do	not	meet
the	conditions	are	not	used.

The	WHERE	clause	is	also	used	on	the	DELETE	and	UPDATE	statements	to
define	the	rows	in	the	target	tables	that	are	modified.

GROUP	BY	group_by_list

The	GROUP	BY	clause	partitions	the	result	set	into	groups	based	on	the
values	in	the	columns	of	the	group_by_list.	For	example,	the	Northwind
Orders	table	has	three	values	in	ShipVia.	A	GROUP	BY	ShipVia	clause
partitions	the	result	set	into	three	groups,	one	for	each	value	of	ShipVia.

HAVING	search_conditions

The	HAVING	clause	is	an	additional	filter	that	is	applied	to	the	result	set.
Logically,	the	HAVING	clause	filters	rows	from	the	intermediate	result	set
built	from	the	application	of	any	FROM,	WHERE,	or	GROUP	BY	clauses	in
the	SELECT	statement.	HAVING	clauses	are	most	commonly	used	with	a
GROUP	BY	clause,	although	a	GROUP	BY	clause	is	not	required	before	a
HAVING	clause.

ORDER	BY	order_list	[ASC	|	DESC]

The	ORDER	BY	clause	defines	the	order	in	which	the	rows	in	the	result	set

are	sorted.	order_list	specifies	the	result	set	columns	that	make	up	the	sort
list.	The	ASC	and	DESC	keywords	are	used	to	specify	if	the	rows	are	sorted
in	an	ascending	or	descending	sequence.

ORDER	BY	is	important	because	relational	theory	specifies	that	the	rows	in
a	result	set	cannot	be	assumed	to	have	any	sequence	unless	ORDER	BY	is
specified.	ORDER	BY	must	be	used	in	any	SELECT	statement	for	which	the
order	of	the	result	set	rows	is	important.

The	clauses	in	a	SELECT	statement	must	be	specified	in	the	proper	order.

Each	reference	to	a	database	object	must	be	unambiguous.	Ambiguity	can	come
from	these	sources:

There	may	be	multiple	objects	with	the	same	name	in	a	system.	For
example,	both	User1	and	User2	may	have	defined	a	table	named
TableX.	To	resolve	the	ambiguity	and	specify	the	TableX	owned	by
User1,	qualify	the	table	name	with	at	least	the	user	ID:
SELECT	*
FROM	User1.TableX

The	database	in	which	the	object	resides	may	not	always	be	the	current
database	when	the	SELECT	statement	is	executed.	To	ensure	that	the
proper	object	is	always	used,	regardless	of	the	current	database	setting,
qualify	the	object	name	with	the	database	and	owner:
SELECT	*
FROM	Northwind.dbo.Shippers

The	tables	and	views	specified	in	the	FROM	clause	may	have	duplicate
column	names.	It	is	especially	likely	that	foreign	keys	will	have	the
same	column	name	as	their	related	primary	key.	To	resolve	the
ambiguity	between	duplicate	names,	the	column	name	must	be	qualified
with	the	table	or	view	name:
SELECT	DISTINCT	Customers.CustomerID,	Customers.CompanyName
FROM	Customers	JOIN	Orders	ON
							(Customers.CustomerID	=	Orders.CustomerID)
WHERE	Orders.ShippedDate	>	'May	1	1998'

This	syntax	becomes	cumbersome	when	the	table	and	view	names	must
themselves	be	fully	qualified.	This	problem	is	resolved	by	assigning	a
correlation	name	(also	known	as	a	range	variable	or	alias)	to	the	table,
using	the	AS	keyword	in	the	FROM	clause.	The	fully	qualified	table	or
view	name	has	to	be	specified	only	in	the	FROM	clause.	All	other	table
or	view	references	can	then	use	the	correlation	name.	Applying
correlation	names	and	fully	qualifying	the	tables	in	the	earlier	sample
results	in	this	SELECT	statement:

SELECT	DISTINCT	Cst.CustomerID,	Cst.CompanyName
FROM	Northwind.dbo.Customers	AS	Cst
			JOIN
					Northwind.dbo.Orders	AS	Ord
			ON	(Cst.CustomerID	=	Ord.CustomerID)
WHERE	Ord.ShippedDate	>	'May	1	1998'

For	more	information	about	object	qualification,	see	Using	Identifiers.

Many	Transact-SQL	examples	in	the	SQL	Server	Books	Online	are	simplified	by
not	using	qualified	names.	Although	these	elements	are	left	out	of	the	examples
to	promote	readability,	it	is	recommended	that	Transact-SQL	statements	in
production	systems	use	qualified	names.

See	Also

Expressions

SELECT

IDENTITY	(Property)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	the	Select	List
The	select	list	defines	the	columns	in	the	result	set	of	a	SELECT	statement.	The
select	list	is	a	series	of	expressions	separated	by	commas.	Each	expression
defines	a	column	in	the	result	set.	The	columns	in	the	result	set	are	in	the	same
order	as	the	sequence	of	expressions	in	the	select	list.

These	attributes	of	the	result	set	columns	are	defined	by	the	expressions	in	the
select	list:

The	data	type,	size,	precision,	and	scale	of	the	result	set	column	are	the
same	as	those	of	the	expression	defining	the	column.

The	name	of	the	result	set	column	is	the	name	associated	with	the
expression	defining	the	column.	The	optional	AS	keyword	can	be	used
to	change	the	name,	or	to	assign	a	name	if	the	expression	has	no	name.

The	data	values	for	the	result	set	column	are	derived	from	the
evaluation	of	the	expression	for	each	row	of	the	result	set.

The	select	list	can	also	contain	keywords	controlling	the	final	format	of	the
result	set:

DISTINCT

The	DISTINCT	keyword	eliminates	duplicate	rows	from	a	result	set.
For	example,	there	are	many	rows	in	the	Northwind	Orders	table	with
the	same	value	for	ShipCity.	To	get	a	list	of	the	ShipCity	values	with
duplicates	removed:

SELECT	DISTINCT	ShipCity,	ShipRegion
FROM	Orders
ORDER	BY	ShipCity

TOP	n

The	TOP	keyword	specifies	that	the	first	n	rows	of	the	result	set	are

returned.	If	ORDER	BY	is	specified,	the	rows	are	selected	after	the
result	set	is	ordered.	n	is	the	number	of	rows	to	return,	unless	the
PERCENT	keyword	is	specified.	PERCENT	specifies	that	n	is	the
percentage	of	rows	in	the	result	set	that	are	returned.	For	example,	this
SELECT	statement	returns	the	first	10	cities,	in	alphabetic	sequence,
from	the	Orders	table:

SELECT	DISTINCT	TOP	10	ShipCity,	ShipRegion
FROM	Orders
ORDER	BY	ShipCity

The	items	in	the	select	list	can	include:

A	simple	expression:	a	reference	to	a	function,	a	local	variable,	a
constant,	or	a	column	in	a	table	or	view.

A	scalar	subquery,	which	is	a	SELECT	statement	that	evaluates	to	a
single	value	for	each	result	set	row.

A	complex	expression	built	by	using	operators	on	one	or	more	simple
expressions.

The	*	keyword,	which	specifies	that	all	columns	in	a	table	are	returned.

Variable	assignment	in	the	form	@local_variable	=	expression.	The
SET	@local_variable	statement	can	also	be	used	for	variable
assignment.

The	IDENTITYCOL	keyword,	which	is	resolved	as	a	reference	to	the
column	in	the	table	having	the	IDENTITY	property.	For	example,	the
IDENTITY	property	has	been	defined	for	the	OrderID	column	in	the
Northwind	Orders	table,	so	the	expression	Orders.	IDENTITYCOL	is
equal	to	Orders.OrderID.

The	ROWGUILDCOL	keyword,	which	is	resolved	as	a	reference	to	the
column	in	a	table	having	the	ROWGUIDCOL	property.

Creating	a	new	column	(using	SELECT	INTO)	that	uses	the	IDENTITY
property	by	using	the	specified	syntax.	For	example,	to	create	a	new
column	named	counter	in	the	authors	table	that	is	an	int	column,	you
should	start	at	a	value	of	100	and	increment	by	values	of	1	for	each
succeeding	number,	use	counter	=	IDENTITY(int,	100,	1).

Temporarily	adding	a	column	to	the	query	results	that	designates
whether	the	CUBE	or	ROLLUP	operation	added	the	row	or	not.	Use	the
GROUPING	keyword.

This	example	shows	many	of	the	items	that	can	be	in	a	select	list:

SELECT	FirstName	+	'	'	+	LastName	AS	"Employee	Name",	
							IDENTITYCOL	AS	"Employee	ID",
							HomePhone,
							Region,
							10	AS	Constant
FROM	Northwind.dbo.Employees
ORDER	BY	LastName,	FirstName	ASC

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Choosing	All	Columns
The	asterisk	(*)	has	a	special	meaning	in	SELECT	statements:

When	specified	without	a	qualifier,	it	is	resolved	as	a	reference	to	all
columns	in	all	tables	or	views	specified	in	the	FROM	clause.	This
example	retrieves	all	book	information	stored	in	the	Shippers	table:
USE	Northwind
GO
SELECT	*
FROM	Shippers
ORDER	BY	CompanyName
GO

When	qualified	with	a	table	or	view	name,	it	is	resolved	as	a	reference
to	all	the	columns	in	the	table	or	view.	This	example	uses	the	asterisk	to
reference	all	the	columns	in	the	Shippers	table:
USE	Northwind
GO
SELECT	Orders.OrderID,	Shippers.*
FROM	Shippers
			JOIN
					Orders
			ON	(Shippers.ShipperID	=	Orders.ShipVia)
ORDER	BY	Orders.OrderID
GO

When	*	is	used,	the	order	of	the	columns	in	the	result	set	is	the	same	as	the	order
in	which	they	were	specified	in	the	CREATE	TABLE,	ALTER	TABLE,	or
CREATE	VIEW	statements.

Because	SELECT	*	finds	all	columns	currently	in	a	table,	changes	in	the
structure	of	a	table	(adding,	removing,	or	renaming	columns)	are	automatically
reflected	each	time	a	SELECT	*	statement	is	executed.

If	a	SELECT	is	used	in	an	application	or	script	that	has	logic	dependent	on	the
number	of	columns	in	the	result	set,	it	is	better	to	specify	all	the	columns	in	the
select	list	rather	than	specify	an	asterisk.	If	columns	are	later	added	to	the	table
or	views	referenced	by	the	SELECT	statement,	the	application	is	shielded	from
the	change	if	the	columns	were	listed	individually.	If	*	was	specified,	the	new
columns	become	a	part	of	the	result	set	and	may	affect	the	logic	of	the
application	or	script.

This	example	retrieves	all	columns	in	the	publishers	table	and	displays	them	in
the	order	in	which	they	were	defined	when	the	publishers	table	was	created:

USE	Northwind
GO
SELECT	*
FROM	[Order	Details]
ORDER	BY	OrderID	ASC
GO

To	get	exactly	the	same	results,	explicitly	list	all	the	column	names	in	the	table,
in	order,	after	the	SELECT	statement:

USE	Northwind
GO
SELECT	OrderID,	ProductID,	UnitPrice,	Quantity,	Discount
FROM	[Order	Details]
ORDER	BY	OrderID	ASC
GO

Note		To	find	out	the	column	names	for	a	table,	use	sp_help,	use	SELECT
column_name	FROM	INFORMATION_SCHEMA.COLUMNS	WHERE
TABLE_NAME	=	table,	or	use	SELECT	TOP	0	*	FROM	table.

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Choosing	Specific	Columns
To	select	specific	columns	in	a	table,	explicitly	list	each	column	in	the	select	list.
For	example,	to	list	only	the	author	first	names	and	their	telephone	numbers,	use:

SELECT	FirstName,	HomePhone
FROM	Northwind.dbo.Employees
ORDER	BY	FirstName	ASC

Specifying	the	columns	in	the	select	list	can	also	include	specifying	an	alias	(for
example,	proj_sales	AS	"Projected	Sales")	or	other	expressions,	such	as	(price
=	price	*	1.15,	or	SUM(SalesAmount).

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Constants	in	Query	Result	Sets
Constants	are	not	usually	specified	as	a	separate	column	in	a	result	set.	It	is
usually	more	efficient	for	an	application	itself	to	build	the	constant	value	into	the
results	when	they	are	displayed,	rather	than	requiring	the	server	to	incorporate
the	constant	value	in	every	result	set	row	returned	across	the	network.

Exceptions	to	this	general	rule	include:

Stored	procedures	may	be	called	by	many	different	applications	or
scripts.	These	procedures	do	not	have	access	to	the	constant	value	that
should	be	incorporated	in	the	results.	The	SELECT	statement	in	the
procedure	itself	should	then	specify	the	constant	as	part	of	the	select
list.

When	a	site	wants	to	enforce	a	formatting	or	display	standard,	the
format	can	be	built	into	a	view	or	stored	procedure.

A	SELECT	statement	may	be	executed	from	a	script	or	a	tool	that	does
not	support	merging	constants	with	a	result	set	after	the	result	set	has
been	returned	from	the	server.

Character	string	constants	are	included	for	proper	formatting	or	readability	when
character	columns	are	concatenated.	This	example	combines	the	LastName	and
FirstName	columns	into	a	single	column.	The	character	string	',	'	separates	the
two	parts	of	the	name	in	the	new	combined	column:

SELECT	LastName	+	',	'	+	FirstName	AS	EmployeeName
FROM	Northwind.dbo.Employees
ORDER	BY	LastName,	FirstName	ASC

See	Also

+	(Add)

String	Concatenation	Operator

JavaScript:hhobj_1.Click()

SELECT

JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Computed	Values	in	the	Select	List
A	select	list	can	contain	expressions	that	are	built	by	applying	operators	to	one	or
more	simple	expressions.	This	allows	result	sets	to	contain	values	that	do	not
exist	in	the	base	tables,	but	are	calculated	from	the	values	stored	in	the	base
tables.	These	result	set	columns	are	called	derived	columns,	and	include:

Calculations	and	computations	that	use	arithmetic	operators	or	functions
on	numeric	columns	or	constants:
SELECT	ROUND((UnitPrice	*	.9),	2)	AS	DiscountPrice
FROM	Products
WHERE	ProductID	=	58

Data	type	conversions:
SELECT	(CAST(ProductID	AS	VARCHAR(10))	+	':	'
							+	ProductName)	AS	ProductIDName
FROM	Products

CASE	functions:
SELECT	ProductID,	ProductName,
				CASE	CategoryID
								WHEN	1	THEN	ROUND((UnitPrice	*	.6),	2)
								WHEN	2	THEN	ROUND((UnitPrice	*	.7),	2)
								WHEN	3	THEN	ROUND((UnitPrice	*	.8),	2)
								ELSE	ROUND((UnitPrice	*	.9),	2)
				END	AS	DiscountPrice
FROM	Products

Subqueries:
SELECT	Prd.ProductID,	Prd.ProductName,
							(SELECT	SUM(OD.UnitPrice	*	OD.Quantity)
											FROM	Northwind.dbo.[Order	Details]	AS	OD
											WHERE	OD.ProductID	=	Prd.ProductID
)	AS	SumOfSales

FROM	Northwind.dbo.Products	AS	Prd
ORDER	BY	Prd.ProductID

Calculations	and	computations	can	be	performed	with	data	by	using	numeric
columns	or	numeric	constants	in	a	select	list	with	arithmetic	operators,	functions,
conversions,	or	nested	queries.	Arithmetic	operators	let	you	add,	subtract,
multiply,	and	divide	numeric	data.

The	following	arithmetic	operators	are	supported.

Symbol Operation
+ Addition
- Subtraction
/ Division
* Multiplication
% Modulo

The	arithmetic	operators	that	perform	addition,	subtraction,	division,	and
multiplication	can	be	used	on	any	numeric	column	or	expression	(int,	smallint,
tinyint,	decimal,	numeric,	float,	real,	money,	or	smallmoney).	The	modulo
operator	can	only	be	used	on	int,	smallint,	or	tinyint	columns	or	expressions.

Arithmetic	operations	can	also	be	performed	on	datetime	and	smalldatetime
columns	using	the	date	functions	or	regular	addition	or	subtraction	arithmetic
operators.

You	can	use	arithmetic	operators	to	perform	computations	involving	one	or	more
columns.	The	use	of	constants	in	arithmetic	expressions	is	optional,	as	shown	in
this	example:

SELECT	ProductID,	ProductName,
							UnitPrice	*	UnitsInStock	AS	InventoryValue
FROM	Northwind.dbo.Products

See	Also

FROM

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Operators

Join	Fundamentals

Subquery	Fundamentals

+	(Add)

-	(Subtract)

Functions

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

Assigning	Result	Set	Column	Names
The	AS	clause	can	be	used	either	to	change	the	name	of	a	result	set	column	or
assign	a	name	to	a	derived	column.

When	a	result	set	column	is	defined	by	a	reference	to	a	column	in	a	table	or
view,	the	name	of	the	result	set	column	is	the	same	as	the	name	of	the	referenced
column.	The	AS	clause	can	be	used	to	assign	a	different	name,	or	alias,	to	the
result	set	column.	This	can	be	done	to	increase	readability.	For	example:

SELECT	EmpSSN	AS	"Employee	Social	Security	Number"
FROM	EmpTable

Derived	columns	are	those	columns	in	the	select	list	that	are	specified	as
something	other	than	a	simple	reference	to	a	column.	Derived	columns	have	no
name	unless	the	AS	clause	is	used	to	assign	a	name.	In	this	example,	the	derived
column	specified	using	the	DATEDIFF	function	would	have	no	name	if	the	AS
clause	were	removed:

SELECT	OrderID,
							DATEDIFF(dd,	ShippedDate,	GETDATE())	AS	DaysSinceShipped
FROM	Northwind.dbo.Orders
WHERE	ShippedDate	IS	NOT	NULL

The	AS	clause	is	the	syntax	defined	in	the	SQL-92	standard	for	assigning	a	name
to	a	result	set	column.	This	is	the	preferred	syntax	to	use	in	Microsoft®	SQL
Server™.

column_name	AS	column_alias

Or

result_column_expression	AS	derived_column_name

Transact-SQL	also	supports	the	following	syntax	for	compatibility	with	earlier
versions	of	SQL	Server:

column_alias	=	column_name

Or

derived_column_name	=	result_column_expression

For	example,	the	last	sample	can	be	coded	as:

SELECT	OrderID,
							DaysSinceShipped	=	DATEDIFF(dd,	ShippedDate,	GETDATE())
FROM	Northwind.dbo.Orders
WHERE	ShippedDate	IS	NOT	NULL

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Delimiting	Result	Set	Column	Names
The	name	of	a	result	set	column	is	an	identifier.	If	the	name	is	a	regular	identifier
that	follows	the	rules	for	identifiers,	it	does	not	have	to	be	delimited.	If	the	name
does	not	follow	the	rules	for	identifiers	it	must	be	delimited	using	either	brackets
([])	or	double	quotation	marks	("").	Double	quotation	marks	can	be	used	to
delimit	result	set	column	names,	regardless	of	the	setting	of	the
QUOTED_IDENTIFIER	option.

Note		A	name	of	up	to	128	characters	can	be	supplied	for	a	result	set	column
name.	However,	DB-Library	applications,	such	as	the	isql	utility,	truncate	the
name	of	any	result	set	column	to	30	characters	in	the	query	output.	The	SQL
Server	ODBC	drivers	from	SQL	Server	version	6.5	or	earlier	also	truncate	the
result	set	column	names	to	30	characters.

This	example	retrieves	the	publisher	name	from	the	publishers	table	with	a
column	heading	of	Book	Publisher	rather	than	the	default	column	heading	of
pub_name:

USE	pubs
SELECT	pub_name	AS	"Book	Publisher"
FROM	publishers
ORDER	BY	pub_name	ASC

In	addition,	Transact-SQL	reserved	keywords	can	be	used	in	quoted	column
headings.	For	example,	this	query	uses	the	reserved	word	SUM	as	a	column
heading:

USE	pubs
SELECT	SUM(ytd_sales)	AS	"sum"
FROM	titles

Transact-SQL	also	supports	using	single	quotation	marks	('')	to	delimit	a	result
set	column	name.	This	allows	compatibility	with	earlier	versions	of	SQL	Server:

USE	pubs
SELECT	SUM(ytd_sales)	AS	'sum'

FROM	titles

See	Also

Using	Identifiers

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Eliminating	Duplicates	with	DISTINCT
The	DISTINCT	keyword	eliminates	duplicate	rows	from	the	results	of	a
SELECT	statement.	If	DISTINCT	is	not	specified,	all	rows	are	returned,
including	duplicates.	For	example,	if	you	select	all	the	author	IDs	in	titleauthor
without	DISTINCT,	the	following	rows	are	returned	(with	some	duplicate
listings):

USE	pubs
SELECT	au_id
FROM	titleauthor

Here	is	the	result	set:

au_id							

172-32-1176	
213-46-8915	
213-46-8915	
238-95-7766	
267-41-2394	
267-41-2394	
274-80-9391	
409-56-7008	
427-17-2319	
472-27-2349	
486-29-1786	
486-29-1786	
648-92-1872	
672-71-3249	
712-45-1867	
722-51-5454	
724-80-9391	
724-80-9391	

756-30-7391	
807-91-6654	
846-92-7186	
899-46-2035	
899-46-2035	
998-72-3567	
998-72-3567	

(25	row(s)	affected)

With	DISTINCT,	you	can	eliminate	duplicates	and	see	only	the	unique	author
IDs:

USE	pubs
SELECT	DISTINCT	au_id
FROM	titleauthor

Here	is	the	result	set:

au_id							

172-32-1176	
213-46-8915	
238-95-7766	
267-41-2394	
274-80-9391	
409-56-7008	
427-17-2319	
472-27-2349	
486-29-1786	
648-92-1872	
672-71-3249	
712-45-1867	
722-51-5454	
724-80-9391	

756-30-7391	
807-91-6654	
846-92-7186	
899-46-2035	
998-72-3567	

(19	row(s)	affected)

IMPORTANT		The	output	for	statements	involving	DISTINCT	depends	on	the
collation	of	the	column	or	expression	on	which	the	DISTINCT	is	applied.	For
more	information	about	the	effects	of	different	collations,	see	SQL	Server
Collation	Fundamentals.

For	the	DISTINCT	keyword,	null	values	are	considered	to	be	duplicates	of	each
other.	When	DISTINCT	is	included	in	a	SELECT	statement,	only	one	NULL	is
returned	in	the	results,	regardless	of	how	many	null	values	are	encountered.

Note		For	compatibility	with	the	SQL-92	standard	and	other	implementations	of
Microsoft®	SQL	Server™,	the	ALL	keyword	can	explicitly	ask	for	all	rows.
However,	there	is	no	need	to	specify	ALL	because	it	is	the	default.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Limiting	Result	Sets	Using	TOP	and	PERCENT
The	TOP	clause	limits	the	number	of	rows	returned	in	the	result	set.

TOP	n	[PERCENT]

n	specifies	how	many	rows	are	returned.	If	PERCENT	is	not	specified,	n	is	the
number	of	rows	to	return.	If	PERCENT	is	specified,	n	is	the	percentage	of	the
result	set	rows	to	return:

TOP	120	/*Return	the	top	120	rows	of	the	result	set.	*/
TOP	15	PERCENT	/*	Return	the	top	15%	of	the	result	set.	*/.

If	a	SELECT	statement	that	includes	TOP	also	has	an	ORDER	BY	clause,	the
rows	to	be	returned	are	selected	from	the	ordered	result	set.	The	entire	result	set
is	built	in	the	specified	order	and	the	top	n	rows	in	the	ordered	result	set	are
returned.

The	other	method	of	limiting	the	size	of	a	result	set	is	to	execute	a	SET
ROWCOUNT	n	statement	before	executing	a	statement.	SET	ROWCOUNT
differs	from	TOP	in	these	ways:

The	SET	ROWCOUNT	limit	applies	to	building	the	rows	in	the	result
set	after	an	ORDER	BY	is	evaluated.	When	ORDER	BY	is	specified,
the	SELECT	statement	is	terminated	when	n	rows	have	been	selected
from	a	set	of	values	that	has	been	sorted	according	to	specified	ORDER
BY	classification.

The	TOP	clause	applies	to	the	single	SELECT	statement	in	which	it	is
specified.	SET	ROWCOUNT	remains	in	effect	until	another	SET
ROWCOUNT	statement	is	executed,	such	as	SET	ROWCOUNT	0	to
turn	the	option	off.

See	Also

SELECT

SET	ROWCOUNT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	the	FROM	Clause
The	FROM	clause	is	required	in	every	SELECT	statement	in	which	data	is	being
retrieved	from	tables	or	views.	Use	the	FROM	clause	to:

List	the	tables	and	views	containing	the	columns	referenced	in	the	select
list	and	in	the	WHERE	clause.	The	table	or	view	names	can	be	aliased
using	the	AS	clause.

Join	types.	These	are	qualified	by	join	conditions	specified	in	the	ON
clause.

The	FROM	clause	is	a	comma-separated	list	of	table	names,	view	names,	and
JOIN	clauses.

Transact-SQL	has	extensions	that	support	the	specification	of	objects	other	than
tables	or	views	in	the	FROM	clause.	These	other	objects	return	a	result	set,	or
rowset	in	OLE	DB	terms,	that	form	a	virtual	table.	The	SELECT	statement	then
operates	as	if	the	result	set	were	a	table.

The	FROM	clause	can	specify:

One	or	more	tables	or	views.	For	example:
SELECT	*
FROM	Shippers

Joins	between	two	tables	or	views:
SELECT	Cst.CustomerID,	Cst.CompanyName,	Cst.ContactName,
							Ord.ShippedDate,	Ord.Freight	
FROM	Northwind.dbo.Orders	AS	Ord
		JOIN
					Northwind.dbo.Customers	AS	Cst
		ON	(Cst.CustomerID	=	Ord.CustomerID)

One	or	more	derived	tables,	which	are	SELECT	statements	in	the
FROM	clause	referred	to	by	an	alias	or	a	user-specified	name.	The

result	set	of	the	SELECT	in	the	FROM	clause	forms	a	table	used	by	the
outer	SELECT	statement.	For	example,	this	SELECT	uses	a	derived
table	to	find	if	any	store	carries	all	book	titles	in	the	pubs	database:
SELECT	ST.stor_id,	ST.stor_name
FROM	stores	AS	ST,
					(SELECT	stor_id,	COUNT(DISTINCT	title_id)	AS	title_count
						FROM	sales
						GROUP	BY	stor_id
)	AS	SA
WHERE	ST.stor_id	=	SA.stor_id
		AND	SA.title_count	=	(SELECT	COUNT(*)	FROM	titles)

One	or	more	tables	or	views	from	a	linked	server	defined	using
sp_addlinkedserver.	A	linked	server	can	be	any	OLE	DB	data	source.

An	OLE	DB	rowset	returned	by	either	the	OPENROWSET	or
OPENQUERY	functions.

The	basis	of	Microsoft®	SQL	Server™	2000	distributed	queries	are	linked
servers,	OPENROWSET,	and	OPENQUERY.	They	provide	the	ability	to	query
or	modify	data	in	any	OLE	DB	data	source	as	a	part	of	Transact-SQL	statements.

SELECT	Statements	Without	FROM	Clauses
The	SELECT	statements	that	do	not	require	a	FROM	clause	are	those	that	are
not	selecting	data	from	any	tables	in	the	database.	These	SELECT	statements
only	select	data	from	local	variables	or	Transact-SQL	functions	that	do	not
operate	on	a	column,	for	example:

SELECT	@MyIntVariable
SELECT	@@VERSION
SELECT	DB_ID('Northwind')

See	Also

Distributed	Queries

OPENQUERY

FROM

Using	Joins

OPENROWSET

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	Table	Aliases
The	readability	of	a	SELECT	statement	can	be	improved	by	giving	a	table	an
alias,	also	known	as	a	correlation	name	or	range	variable.	A	table	alias	can	be
assigned	either	with	or	without	the	AS	keyword:

table_name	AS	table	alias

table_name	table_alias

In	this	example,	the	alias	p	is	assigned	to	publishers.

USE	pubs
SELECT	p.pub_id,	p.pub_name
FROM	publishers	AS	p

If	an	alias	is	assigned	to	a	table,	all	explicit	references	to	the	table	in	the
Transact-SQL	statement	must	use	the	alias,	not	the	table	name.	For	example,	the
following	SELECT	generates	a	syntax	error	because	it	uses	the	name	of	the	table
when	an	alias	has	been	assigned:

SELECT	Customers.CustomerID,	/*	Illegal	reference	to	Customers.	*/
							Cst.FirstName,	Cst.LastName
FROM	Northwind.dbo.Customers	AS	Cst

See	Also

FROM

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Filtering	Rows	with	WHERE	and	HAVING
The	WHERE	and	HAVING	clauses	in	a	SELECT	statement	control	the	rows
from	the	source	tables	that	are	used	to	build	the	result	set.	WHERE	and
HAVING	are	filters.	They	specify	a	series	of	search	conditions,	and	only	those
rows	that	meet	the	terms	of	the	search	conditions	are	used	to	build	the	result	set.
Those	rows	meeting	the	search	conditions	are	said	to	be	qualified	to	participate
in	the	result	set.	For	example,	the	WHERE	clause	in	this	SELECT	statement
qualifies	the	rows	only	where	the	region	is	Washington	State:

SELECT	CustomerID,	CompanyName
FROM	Northwind.dbo.Customers
WHERE	Region	=	'WA'

The	HAVING	clause	is	typically	used	in	conjunction	with	the	GROUP	BY
clause,	although	it	can	be	specified	without	GROUP	BY.	The	HAVING	clause
specifies	further	filters	that	are	applied	after	the	WHERE	clause	filters.	For
example,	this	WHERE	clause	only	qualifies	orders	selling	a	product	with	a	unit
price	exceeding	$100,	and	the	HAVING	clause	further	restricts	the	result	to	only
thos	orders	that	include	more	than	100	units:

SELECT	OrdD1.OrderID	AS	OrderID,
							SUM(OrdD1.Quantity)	AS	"Units	Sold",
							SUM(OrdD1.UnitPrice	*	OrdD1.Quantity)	AS	Revenue
FROM	[Order	Details]	AS	OrdD1
WHERE	OrdD1.OrderID	in	(SELECT	DISTINCT	OrdD2.OrderID
																								FROM	[Order	Details]	AS	OrdD2
																								WHERE	OrdD2.UnitPrice	>	$100)
GROUP	BY	OrdD1.OrderID
HAVING	SUM(OrdD1.Quantity)	>	100

The	search	conditions,	or	qualifications,	in	the	WHERE	and	HAVING	clauses
can	include:

Comparison	operators	(such	as	=,	<	>,	<,	and	>).	For	example,	this
query	retrieves	the	rows	from	the	Products	table	for	the	products	that

are	in	product	category	2:
SELECT	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	CategoryID	=	2
ORDER	BY	ProductID

Ranges	(BETWEEN	and	NOT	BETWEEN).	For	example,	this	query
retrieves	rows	from	the	Products	table	with	categories	from	2	to	4:
SELECT	CategoryID,	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	CategoryID	BETWEEN	2	and	4
ORDER	BY	CategoryID,	ProductID

Lists	(IN,	NOT	IN).	For	example,	this	query	retrieves	rows	from	the
Products	table	in	which	the	Category	ID	matches	one	in	a	list	of	IDs:
SELECT	CategoryID,	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	CategoryID	IN	(1,4,5,7)
ORDER	BY	CategoryID,	ProductID

Pattern	matches	(LIKE	and	NOT	LIKE).	For	example,	this	query
retrieves	rows	from	the	Products	table	in	which	the	product	name	starts
with	the	letters	Ch:
SELECT	CategoryID,	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	ProductName	LIKE	'Ch%'
ORDER	BY	CategoryID,	ProductID

Note		The	only	WHERE	conditions	that	you	can	use	on	text	columns
are	functions	that	return	another	data	type,	such	as	PATINDEX(),	or	the
operators,	such	as	IS	NULL,	IS	NOT	NULL,	LIKE,	and	NOT	LIKE.

Null	values	(IS	NULL	and	IS	NOT	NULL).	For	example,	this	query
retrieves	rows	from	the	Customers	table	in	which	the	customers'	region
is	not	NULL:

SELECT	CompanyName,	City,	Region,	Country
FROM	Northwind.dbo.Customers
WHERE	Region	IS	NOT	NULL
ORDER	BY	CompanyName

Note		Use	caution	when	comparing	null	values.	For	example,	specifying
=	NULL	is	not	the	same	as	specifying	IS	NULL.	For	more	information,
see	Null	Values.

All	records	(=ALL,	>ALL,	<=	ALL,	ANY).	For	example,	this	query
retrieves	order	and	product	IDs	from	the	Order	Details	table	in	which
the	quantity	of	the	product	shipped	is	larger	than	the	quantity	shipped
for	any	product	in	category	1:
USE	Northwind
GO
SELECT	OrdD1.OrderID,	OrdD1.ProductID
FROM	"Order	Details"	OrdD1
WHERE	OrdD1.Quantity	>	ALL
						(SELECT	OrdD2.Quantity
							FROM	"Order	Details"	OrdD2	JOIN	Products	Prd
													ON	OrdD2.ProductID	=	Prd.ProductID
							WHERE	Prd.CategoryID	=	1)
GO

Combinations	of	these	conditions	(AND,	OR,	NOT).	For	example,	this
query	retrieves	all	products	for	which	either	the	stock	level	is	lower	than
the	reorder	point	or	the	product	comes	from	supplier	15	and	is	in
category	4:
SELECT	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	UnitsInStock	<	ReorderLevel
			OR	(SupplierID	=	15	AND	CategoryID	=	4)

Note		When	you	search	for	a	Unicode	string	in	a	WHERE	clause,	place	the	N
character	before	the	search	string,	for	example:

SELECT	CompanyName,	ContactName,	Phone,	Fax
FROM	Northwind.dbo.Customers
WHERE	CompanyName	=	N'Berglunds	snabbköp'

See	Also

IS	[NOT]	NULL

Operators

ISNULL

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Comparison	Search	Conditions
Microsoft®	SQL	Server™	2000	uses	these	comparison	operators.

Operator Meaning
= Equal	to
> Greater	than
< Less	than
>= Greater	than	or	equal	to
<= Less	than	or	equal	to
<	> Not	equal	to	(SQL-92	compatible)
!> Not	greater	than
!< Not	less	than
!= Not	equal	to

Comparison	operators	are	specified	between	two	expressions.	For	example,	to
retrieve	the	names	of	only	those	products	for	which	the	unit	price	is	greater	than
$50,	use:

SELECT	ProductName
FROM	Northwind.dbo.Products
WHERE	UnitPrice	>	$50.00

When	you	compare	character	string	data,	the	logical	sequence	of	the	characters
is	defined	by	the	collation	of	the	character	data.	The	result	of	comparison
operators	such	as	<	and	>	are	controlled	by	the	character	sequence	defined	by	the
collation.	The	same	SQL	Collation	might	have	different	sorting	behavior	for
Unicode	and	non-Unicode	data.	(For	more	information,	see	SQL	Server
Collation	Fundamentals.)

Trailing	blanks	are	ignored	in	comparisons	in	non-Unicode	data;	for	example,
these	are	equivalent:

WHERE	au_lname	=	'White'
WHERE	au_lname	=	'White	'
WHERE	au_lname	=	'White'	+	SPACE(1)

JavaScript:hhobj_1.Click()

The	use	of	NOT	negates	an	expression.	For	example,	this	query	finds	all
products	that	have	a	unit	price	of	$50	or	more,	which	is	logically	the	same	as
asking	for	all	products	that	do	not	have	a	unit	price	of	less	than	$50:

SELECT	ProductID,	ProductName,	UnitPrice
FROM	Northwind.dbo.Products
WHERE	NOT	UnitPrice	<	$50
ORDER	BY	ProductID

See	Also

String	Concatenation	Operator

+	(String	Concatentation)

Data	Types

Operators

SQL	Server	Collation	Fundamentals

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Range	Search	Conditions
A	range	search	is	one	that	returns	all	values	between	two	specified	values.
Inclusive	ranges	return	any	values	that	match	the	two	specified	values.	Exclusive
ranges	do	not	return	any	values	that	match	the	two	specified	values.

The	BETWEEN	keyword	specifies	an	inclusive	range	to	search.	For	example,
this	SELECT	returns	all	products	whose	units	in	stock	is	between	15	and	25:

SELECT	UnitsInStock,	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	UnitsInStock	BETWEEN	15	AND	25
ORDER	BY	UnitsInStock

The	results	of	this	SELECT	statement	contains	any	products	that	have	either	15
or	25	units	in	stock.

SELECT	UnitsInStock,	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	UnitsInStock	=	15	OR	UnitsInStock	=	25
ORDER	BY	UnitsInStock

To	specify	an	exclusive	range,	use	the	greater-than	and	less-than	operators	(>
and	<).	The	following	query	using	the	greater-than	and	less-than	operators
returns	different	results	than	the	last	example	because	these	operators	do	not
include	rows	matching	the	values	that	limit	the	range.

SELECT	UnitsInStock,	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	UnitsInStock	>	15	AND	UnitsInStock	<	25
ORDER	BY	UnitsInStock

NOT	BETWEEN	finds	all	rows	outside	the	range	you	specify.	Use	this	query	to
find	all	products	for	which	the	number	of	units	in	stock	are	outside	the	15	to	25
range:

SELECT	UnitsInStock,	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	UnitsInStock	NOT	BETWEEN	15	AND	25
ORDER	BY	UnitsInStock

See	Also

WHERE

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

List	Search	Conditions
The	IN	keyword	allows	you	to	select	rows	that	match	any	one	of	a	list	of	values.
For	example,	without	IN,	if	you	want	a	list	of	the	names	and	states	of	all	authors
who	live	in	California,	Indiana,	or	Maryland,	you	would	need	this	query:

SELECT	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	CategoryID	=	1	OR	CategoryID	=	4	OR	CategoryID	=	5

However,	you	can	get	the	same	results	with	less	typing	if	you	use	IN:

SELECT	ProductID,	ProductName
FROM	Northwind.dbo.Products
WHERE	CategoryID	IN	(1,	4,	5)

The	items	following	the	IN	keyword	must	be	separated	by	commas	and	be
enclosed	in	parentheses.

Perhaps	the	most	important	use	for	the	IN	keyword	is	in	nested	queries,	also
referred	to	as	subqueries.	For	more	information	about	subqueries,	see	Subquery
Fundamentals.

This	query	finds	all	au_ids	in	the	titleauthor	table	for	authors	who	make	less
than	50	percent	of	the	royalty	on	any	one	book,	and	then	selects	from	the
authors	table	all	author	names	with	au_ids	that	match	the	results	from	the
titleauthor	query:

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	au_id	IN
			(SELECT	au_id
			FROM	titleauthor
			WHERE	royaltyper	<	50)

The	results	show	that	several	authors	fall	into	the	less	than	50	percent	category.

This	query	finds	the	names	of	authors	who	do	not	make	less	than	50	percent	of
the	royalties	on	at	least	one	book:

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	au_id	NOT	IN
			(SELECT	au_id
			FROM	titleauthor
			WHERE	royaltyper	<	50)

NOT	IN	finds	the	authors	who	do	not	match	the	items	in	the	values	list.

See	Also

WHERE

Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Pattern	Matching	in	Search	Conditions
The	LIKE	keyword	searches	for	character	string,	date,	or	time	values	that	match
a	specified	pattern.	For	more	information,	see	Data	Types.	The	LIKE	keyword
uses	a	regular	expression	to	contain	the	pattern	that	the	values	are	matched
against.	The	pattern	contains	the	character	string	to	search	for,	which	can	contain
any	combination	of	four	wildcards.

Wildcard Meaning
% Any	string	of	zero	or	more	characters.
_ Any	single	character.
[] Any	single	character	within	the	specified	range	(for

example,	[a-f])	or	set	(for	example,	[abcdef]).
[^] Any	single	character	not	within	the	specified	range	(for

example,	[^a	-	f])	or	set	(for	example,	[^abcdef]).

Enclose	the	wildcard(s)	and	the	character	string	in	single	quotation	marks,	for
example:

LIKE	'Mc%'	searches	for	all	strings	that	begin	with	the	letters	Mc
(McBadden).

LIKE	'%inger'	searches	for	all	strings	that	end	with	the	letters	inger
(Ringer,	Stringer).

LIKE	'%en%'	searches	for	all	strings	that	contain	the	letters	en
anywhere	in	the	string	(Bennet,	Green,	McBadden).

LIKE	'_heryl'	searches	for	all	six-letter	names	ending	with	the	letters
heryl	(Cheryl,	Sheryl).

LIKE	'[CK]ars[eo]n'	searches	for	Carsen,	Karsen,	Carson,	and	Karson
(Carson).

JavaScript:hhobj_1.Click()

LIKE	'[M-Z]inger'	searches	for	all	names	ending	with	the	letters	inger
that	begin	with	any	single	letter	from	M	through	Z	(Ringer).

LIKE	'M[^c]%'	searches	for	all	names	beginning	with	the	letter	M	that
do	not	have	the	letter	c	as	the	second	letter	(MacFeather).

This	query	finds	all	phone	numbers	in	the	authors	table	that	have	area	code	415:

SELECT	phone
FROM	pubs.dbo.authors
WHERE	phone	LIKE	'415%'

You	can	use	NOT	LIKE	with	the	same	wildcards.	To	find	all	phone	numbers	in
the	authors	table	that	have	area	codes	other	than	415,	use	either	of	these
equivalent	queries:

SELECT	phone
FROM	pubs.dbo.authors
WHERE	phone	NOT	LIKE	'415%'

--	Or

SELECT	phone
FROM	pubs.dbo.authors
WHERE	NOT	phone	LIKE	'415%'

The	IS	NOT	NULL	clause	can	be	used	with	wildcards	and	the	LIKE	clause.	For
example,	this	query	retrieves	telephone	numbers	from	the	authors	table	in	which
the	telephone	number	begins	with	415	and	IS	NOT	NULL:

USE	pubs
SELECT	phone
FROM	authors
WHERE	phone	LIKE	'415%'	and	phone	IS	NOT	NULL

IMPORTANT		The	output	for	statements	involving	the	LIKE	keyword	depends	on

the	sort	order	chosen	during	installation.	For	more	information	about	the	effects
of	different	sort	orders,	see	Collations.

The	only	WHERE	conditions	that	you	can	use	on	text	columns	are	LIKE,	IS
NULL,	or	PATINDEX.

Wildcards	used	without	LIKE	are	interpreted	as	constants	rather	than	as	a
pattern,	that	is,	they	represent	only	their	own	values.	The	following	query
attempts	to	find	any	phone	numbers	that	consist	of	the	four	characters	415%
only.	It	will	not	find	phone	numbers	that	start	with	415.	For	more	information
about	constants,	see	Using	Constants.

SELECT	phone
FROM	pubs.dbo.authors
WHERE	phone	=	'415%'

Another	important	consideration	in	using	wildcards	is	their	effect	on
performance.	If	a	wildcard	begins	the	expression,	an	index	cannot	be	used.	(Just
as	you	wouldn't	know	where	to	start	in	a	phone	book	if	given	the	name	'%mith',
not	'Smith'.)	A	wildcard	in	or	at	the	end	of	an	expression	does	not	preclude	use
of	an	index	(just	as	in	a	phone	book,	you	would	know	where	to	search	if	the
name	was	'Samuel%',	regardless	of	whether	the	names	Samuels	and	Samuelson
are	both	there).

Searching	for	Wildcard	Characters
You	can	search	for	wildcard	characters.	There	are	two	methods	for	specifying	a
character	that	would	ordinarily	be	a	wildcard:

Use	the	ESCAPE	keyword	to	define	an	escape	character.	When	the
escape	character	is	placed	in	front	of	the	wildcard	in	the	pattern,	the
wildcard	is	interpreted	as	a	character.	For	example,	to	search	for	the
string	5%	anywhere	in	a	string,	use:
WHERE	ColumnA	LIKE	'%5/%%'	ESCAPE	'/'

In	this	LIKE	clause,	the	leading	and	ending	percent	signs	(%)	are
interpreted	as	wildcards,	and	the	percent	sign	preceded	by	a	slash	(/)	is
interpreted	as	the	%	character.

JavaScript:hhobj_2.Click()

Use	square	brackets	([])	to	enclose	the	wildcard	by	itself.	To	search	for
a	dash	(-),	rather	than	using	it	to	specify	a	search	range,	use	the	dash	as
the	first	character	inside	a	set	of	brackets:
WHERE	ColumnA	LIKE	'9[-]5'

The	table	shows	the	use	of	wildcards	enclosed	in	square	brackets.

Symbol Meaning
LIKE	'5[%]' 5%
LIKE	'5%' 5	followed	by	any	string	of	0	or	more

characters
LIKE	'[_]n' _n
LIKE	'_n' an,	in,	on	(and	so	on)
LIKE	'[a-cdf]' a,	b,	c,	d,	or	f
LIKE	'[-acdf]' -,	a,	c,	d,	or	f
LIKE	'[[]' [
LIKE	']']

When	string	comparisons	are	performed	with	LIKE,	all	characters	in	the	pattern
string	are	significant,	including	every	leading	and/or	trailing	blank	(space).	If	a
comparison	to	return	all	rows	with	a	string	LIKE	'abc	'	(abc	followed	by	a	single
space)	is	requested,	a	row	in	which	the	value	of	that	column	is	abc	(abc	without
a	space)	is	not	returned.	The	reverse,	however,	is	not	true.	Trailing	blanks	in	the
expression	to	which	the	pattern	is	matched	are	ignored.	If	a	comparison	to	return
all	rows	with	a	string	LIKE	'abc'	(abc	without	a	space)	is	requested,	all	rows	that
start	with	abc	and	have	zero	or	more	trailing	blanks	are	returned.

See	Also

LIKE

WHERE

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

NULL	Comparison	Search	Conditions
The	value	NULL	means	the	data	value	for	the	column	is	unknown	or	not
available.	NULL	is	not	synonymous	with	zero	(numeric	or	binary	value),	a	zero-
length	string,	or	blank	(character	value).	Rather,	null	values	allow	you	to
distinguish	between	an	entry	of	zero	(numeric	columns)	or	blank	(character
columns)	and	a	nonentry	(NULL	for	both	numeric	and	character	columns).

NULL	can	be	entered	in	a	column	for	which	null	values	are	permitted	(as
specified	in	the	CREATE	TABLE	statement)	in	two	ways:

Microsoft®	SQL	Server™	2000	automatically	enters	the	value	NULL	if
no	data	is	entered	and	there	is	no	default	or	DEFAULT	constraint	on	the
column	or	data	type.

The	user	can	explicitly	enter	the	value	NULL	by	typing	NULL	without
quotation	marks.	If	the	word	NULL	is	typed	into	a	character	column
with	quotation	marks,	it	is	treated	as	the	letters	N,	U,	L,	and	L,	not	as	a
null	value.

When	null	values	are	retrieved,	an	application	typically	displays	a	string	such	as
NULL,	or	(NULL),	or	(null)	in	the	appropriate	position.	For	example,	the
advance	column	of	the	titles	table	allows	null	values:

SELECT	title_id,	type,	advance
FROM	pubs.dbo.titles
WHERE	advance	IS	NULL

Here	is	the	result	set:

title_id	type									advance																				
--------	------------	--------------------------	
MC3026			UNDECIDED				(null)																					
PC9999			popular_comp	(null)																					

(2	row(s)	affected)

Comparing	Null	Values
Care	must	be	taken	when	comparing	null	values.	The	behavior	of	the
comparison	depends	on	the	setting	of	the	SET	ANSI_NULLS	option.

When	SET	ANSI_NULLS	is	ON,	a	comparison	in	which	one	or	more	of	the
expressions	is	NULL	does	not	yield	either	TRUE	or	FALSE;	it	yields
UNKNOWN.	This	is	because	a	value	that	is	unknown	cannot	be	compared
logically	against	any	other	value.	This	occurs	if	either	an	expression	is	compared
to	the	literal	NULL,	or	if	two	expressions	are	compared	and	one	of	them
evaluates	to	NULL.	For	example,	this	comparison	always	yields	UNKNOWN
when	ANSI_NULLS	is	ON:

ytd_sales	>	NULL

This	comparison	also	yields	UNKNOWN	any	time	the	variable	contains	the
value	NULL:

ytd_sales	>	@MyVariable

Use	the	IS	NULL	or	IS	NOT	NULL	clauses	to	test	for	a	NULL	value.	This	can
add	complexity	to	the	WHERE	clause.	For	example,	the	Region	column	in	the
Northwind	Customers	table	allows	null	values.	If	a	SELECT	statement	is	to
test	for	null	values	in	addition	to	others,	it	must	include	an	IS	NULL	clause:

SELECT	CustomerID,	CompanyName,	Region
FROM	Northwind.dbo.Customers
WHERE	Region	IN	('WA',	'SP',	'BC')
			OR	Region	IS	NULL

Transact-SQL	supports	an	extension	that	allows	for	the	comparison	operators	to
return	TRUE	or	FALSE	when	comparing	against	null	values.	This	option	is
activated	by	setting	ANSI_NULLS	OFF.	When	ANSI_NULLS	is	OFF,
comparisons	such	as	ColumnA	=	NULL	return	TRUE	when	ColumnA	contains
a	null	value	and	FALSE	when	ColumnA	contains	some	value	besides	NULL.
Also,	a	comparison	of	two	expressions	that	have	both	evaluated	to	null	values
yields	TRUE.	With	ANSI_NULLS	set	OFF,	this	SELECT	statement	returns	all
the	rows	in	the	Customer	table	for	which	Region	is	a	null	value:

SELECT	CustomerID,	CompanyName,	Region
FROM	Northwind.dbo.Customers
WHERE	Region	=	NULL

Regardless	of	the	ANSI_NULLS	setting,	Null	values	are	always	considered
equal	for	the	purposes	of	the	ORDER	BY,	GROUP	BY,	and	DISTINCT
keywords.	Also,	a	unique	index	or	UNIQUE	constraint	that	allows	NULL	can
contain	only	one	row	with	a	NULL	key	value.	A	subsequent	row	with	NULL	is
rejected.	A	primary	key	cannot	have	NULL	in	any	column	that	is	part	of	the	key.

Computations	involving	NULL	evaluate	to	NULL	because	the	result	must	be
UNKNOWN	if	any	of	the	factors	is	unknown.	For	example,	column1	+	1
evaluates	to	NULL	if	column1	is	NULL.

When	the	columns	being	searched	include	those	defined	as	allowing	null	values,
you	can	find	null	or	nonnull	values	in	the	database	with	this	pattern:

WHERE	column_name	IS	[NOT]	NULL

See	Also

Null	Values

IS	[NOT]	NULL

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Logical	Operators
The	logical	operators	are	AND,	OR,	and	NOT.	AND	and	OR	are	used	to	connect
search	conditions	in	WHERE	clauses.	NOT	reverses	the	result	of	a	search
condition.

AND	joins	two	conditions	and	returns	TRUE	only	when	both	conditions	are
true.	For	example,	this	query	returns	only	the	one	row	in	which	the	customer	ID
starts	with	the	letter	F	and	the	contact	name	is	Lino	Rodriguez:

SELECT	CustomerID,	CompanyName,	ContactName
FROM	Northwind.dbo.Customers
WHERE	CustomerID	LIKE	N'F%'
		AND	ContactName	=	N'Lino	Rodriguez'

OR	also	connects	two	conditions,	but	it	returns	TRUE	when	either	of	the
conditions	is	true.	The	following	query	returns	two	rows,	one	with	a	customer	ID
of	CACTU	and	the	other	with	a	contact	name	of	Lino	Rodriguez:

SELECT	CustomerID,	CompanyName,	ContactName
FROM	Customers
WHERE	CustomerID	=	N'CACTU'
			OR	ContactName	=	N'Lino	Rodriguez'

See	Also

WHERE

Operators

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Logical	Operator	Precedence
When	more	than	one	logical	operator	is	used	in	a	statement,	NOT	is	evaluated
first,	then	AND,	and	finally	OR.	Arithmetic	(and	bitwise)	operators	are	handled
before	logical	operators.

In	this	example,	the	advance	condition	pertains	to	psychology	books	and	not	to
business	books	because	AND	has	precedence	over	OR:

SELECT	title_id,	type,	advance
FROM	pubs.dbo.titles
WHERE	type	=	'business'	OR	type	=	'psychology'
		AND	advance	>	$5500

You	can	change	the	meaning	of	the	query	by	adding	parentheses	to	force
evaluation	of	the	OR	first.	This	query	finds	all	business	and	psychology	books
that	have	advances	over	$5,500:

SELECT	title_id,	type,	advance
FROM	titles
WHERE	(type	=	'business'	OR	type	=	'psychology')
			AND	advance	>	$5500

The	use	of	parentheses,	even	when	not	required,	can	improve	the	readability	of
queries	and	reduce	the	chance	of	making	a	subtle	mistake	because	of	operator
precedence.	There	is	no	significant	performance	penalty	in	using	parentheses.
This	example	is	more	readable	than	the	original	example,	although	they	are
syntactically	the	same:

SELECT	title_id,	type,	advance
FROM	pubs.dbo.titles
WHERE	type	=	'business'
			OR	(type	=	'psychology'	AND	advance	>	$5500)

See	Also

Operators

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Transact-SQL	Joins
In	earlier	versions	of	Microsoft®	SQL	Server™	2000,	left	and	right	outer	join
conditions	were	specified	in	the	WHERE	clause	using	the	*=	and	=*	operators.
In	some	cases,	this	syntax	results	in	an	ambiguous	query	that	can	be	interpreted
in	more	than	one	way.	SQL-92	compliant	outer	joins	are	specified	in	the	FROM
clause	and	do	not	result	in	this	ambiguity.	Because	the	SQL-92	syntax	is	more
precise,	detailed	information	about	using	the	old	Transact-SQL	outer	join	syntax
in	the	WHERE	clause	is	not	included	with	this	release.	The	syntax	may	not	be
supported	in	a	future	version	of	SQL	Server.	Any	statements	using	the	Transact-
SQL	outer	joins	should	be	changed	to	use	the	SQL-92	syntax.

The	SQL-92	standard	does	support	the	specification	of	inner	joins	in	either	the
FROM	or	WHERE	clause.	Inner	joins	specified	in	the	WHERE	clause	do	not
have	the	same	problems	with	ambiguity	as	the	Transact-SQL	outer	join	syntax.

See	Also

FROM

Join	Fundamentals

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Sorting	Rows	with	ORDER	BY
The	ORDER	BY	clause	sorts	query	results	by	one	or	more	columns	up	to	8,060
bytes.	For	more	information	about	the	maximum	ORDER	BY	clause	size,	see
SELECT.

A	sort	can	be	ascending	(ASC)	or	descending	(DESC).	If	neither	is	specified,
ASC	is	assumed.

IMPORTANT		The	exact	results	of	an	ORDER	BY	clause	depend	on	the	collation
chosen	during	installation.	For	information	about	the	effects	of	different
collations,	see	SQL	Server	Collation	Fundamentals.

This	query	returns	results	ordered	by	ascending	pub_id:

USE	pubs
SELECT	pub_id,	type,	title_id
FROM	titles
ORDER	BY	pub_id

Here	is	the	result	set:

pub_id	type									title_id	
------	------------	--------	
0736			business					BU2075			
0736			psychology			PS2091			
0736			psychology			PS2106			
0736			psychology			PS3333			
0736			psychology			PS7777			
0877			mod_cook					MC2222			
0877			mod_cook					MC3021			
0877			UNDECIDED				MC3026			
0877			psychology			PS1372			
0877			trad_cook				TC3218			
0877			trad_cook				TC4203			
0877			trad_cook				TC7777			

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

1389			business					BU1032			
1389			business					BU1111			
1389			business					BU7832			
1389			popular_comp	PC1035			
1389			popular_comp	PC8888			
1389			popular_comp	PC9999			

(18	row(s)	affected)

If	more	than	one	column	is	named	in	the	ORDER	BY	clause,	sorts	are	nested.
The	following	statement	sorts	the	rows	in	the	titles	table,	first	by	publisher	in
descending	order,	and	then	by	type	in	ascending	order	within	each	publisher,	and
finally	by	price	(also	ascending,	because	DESC	is	not	specified).

USE	pubs
SELECT	pub_id,	type,	title_id,	price
FROM	titles
ORDER	BY	pub_id	DESC,	type,	price

Note		You	cannot	use	ORDER	BY	on	columns	that	have	the	text	or	image	data
types.	Also,	subqueries,	aggregates,	and	constant	expressions	are	not	allowed	in
the	ORDER	BY	list;	however,		a	user-specified	name	can	be	used	in	the	select
list	for	aggregates	or	expressions,	for	example:

SELECT	type,	sum	(ytd_sales)	AS	sales_total
FROM	titles
GROUP	BY	type
ORDER	BY	sales_total

Accessing	and	Changing	Relational	Data

Join	Fundamentals
By	using	joins,	you	can	retrieve	data	from	two	or	more	tables	based	on	logical
relationships	between	the	tables.	Joins	indicate	how	Microsoft®	SQL	Server™
2000	should	use	data	from	one	table	to	select	the	rows	in	another	table.

A	join	condition	defines	the	way	two	tables	are	related	in	a	query	by:

Specifying	the	column	from	each	table	to	be	used	for	the	join.	A	typical
join	condition	specifies	a	foreign	key	from	one	table	and	its	associated
key	in	the	other	table.

Specifying	a	logical	operator	(=,	<>,	and	so	on)	to	be	used	in	comparing
values	from	the	columns.

Joins	can	be	specified	in	either	the	FROM	or	WHERE	clauses.	The	join
conditions	combine	with	the	WHERE	and	HAVING	search	conditions	to	control
the	rows	that	are	selected	from	the	base	tables	referenced	in	the	FROM	clause.

Specifying	the	join	conditions	in	the	FROM	clause	helps	separate	them	from	any
other	search	conditions	that	may	be	specified	in	a	WHERE	clause,	and	is	the
recommended	method	for	specifying	joins.	A	simplified	SQL-92	FROM	clause
join	syntax	is:

FROM	first_table	join_type	second_table	[ON	(join_condition)]

join_type	specifies	what	kind	of	join	is	performed:	an	inner,	outer,	or	cross	join.
join_condition	defines	the	predicate	to	be	evaluated	for	each	pair	of	joined	rows.
This	is	an	example	of	a	FROM	clause	join	specification:

FROM	Suppliers	JOIN	Products
					ON	(Suppliers.SupplierID	=	Products.SupplierID)

This	is	a	simple	SELECT	statement	using	this	join:

SELECT	ProductID,
							Suppliers.SupplierID,
							CompanyName

FROM	Suppliers	JOIN	Products
					ON	(Suppliers.SupplierID	=	Products.SupplierID)
WHERE	UnitPrice	>	$10
		AND	CompanyName	LIKE	N'F%'
GO

The	select	returns	the	product	and	supplier	information	for	any	combination	of
parts	supplied	by	a	company	for	which	the	company	name	starts	with	the	letter	F
and	the	price	of	the	product	is	more	than	$10.

When	multiple	tables	are	referenced	in	a	single	query,	all	column	references
must	be	unambiguous.	In	the	previous	example,	both	the	Products	and
Suppliers	table	have	a	column	named	SupplierID.	Any	column	name	that	is
duplicated	between	two	or	more	tables	referenced	in	the	query	must	be	qualified
with	the	table	name.	All	references	to	the	SupplierID	columns	in	the	example
are	qualified.

When	a	column	name	is	not	duplicated	in	two	or	more	tables	used	in	the	query,
references	to	it	do	not	have	to	be	qualified	with	the	table	name.	This	is	shown	in
the	previous	example.	Such	a	SELECT	statement	is	sometimes	difficult	to
understand	because	there	is	nothing	to	indicate	the	table	that	provided	each
column.	The	readability	of	the	query	is	improved	if	all	columns	are	qualified
with	their	table	names.	The	readability	is	further	improved	if	table	aliases	are
used,	especially	when	the	table	names	themselves	must	be	qualified	with	the
database	and	owner	names.	This	is	the	same	example,	except	that	table	aliases
have	been	assigned	and	the	columns	qualified	with	table	aliases	to	improve
readability:

SELECT	P.ProductID,
							S.SupplierID,
							S.CompanyName
FROM	Suppliers	AS	S	JOIN	Products	AS	P
					ON	(S.SupplierID	=	P.SupplierID)
WHERE	P.UnitPrice	>	$10
		AND	S.CompanyName	LIKE	N'F%'

The	previous	examples	specified	the	join	conditions	in	the	FROM	clause,	which

is	the	preferred	method.	This	query	contains	the	same	join	condition	specified	in
the	WHERE	clause:

SELECT	P.ProductID,
							S.SupplierID,
							S.CompanyName
FROM	Suppliers	AS	S,	Products	AS	P
WHERE	S.SupplierID	=	P.SupplierID
		AND	P.UnitPrice	>	$10
		AND	S.CompanyName	LIKE	N'F%'

The	select	list	for	a	join	can	reference	all	the	columns	in	the	joined	tables,	or	any
subset	of	the	columns.	The	select	list	is	not	required	to	contain	columns	from
every	table	in	the	join.	For	example,	in	a	three-table	join,	only	one	table	can	be
used	to	bridge	from	one	of	the	other	tables	to	the	third	table,	and	none	of	the
columns	from	the	middle	table	have	to	be	referenced	in	the	select	list.

Although	join	conditions	usually	have	equality	comparisons	(=),	other
comparison	or	relational	operators	can	be	specified,	as	can	other	predicates.	For
more	information,	see	Using	Operators	in	Expressions	and	WHERE.

When	SQL	Server	processes	joins,	the	query	engine	chooses	the	most	efficient
method	(out	of	several	possibilities)	of	processing	the	join.	Although	the
physical	execution	of	various	joins	uses	many	different	optimizations,	the	logical
sequence	is:

The	join	conditions	in	the	FROM	clause	are	applied.

The	join	conditions	and	search	conditions	from	the	WHERE	clause	are
applied.

The	search	conditions	from	the	HAVING	clause	are	applied.

This	sequence	can	sometimes	influence	the	results	of	the	query	if	conditions	are
moved	between	the	FROM	and	WHERE	clauses.

Columns	used	in	a	join	condition	are	not	required	to	have	the	same	name	or	be
the	same	data	type.	However,	if	the	data	types	are	not	identical,	they	must	be

JavaScript:hhobj_1.Click()

compatible,	or	be	types	that	SQL	Server	can	implicitly	convert.	If	the	data	types
cannot	be	implicitly	converted,	the	join	condition	must	explicitly	convert	the
data	type	using	the	CAST	function.	For	more	information	about	implicit	and
explicit	conversions,	see	Data	Type	Conversion.

Most	queries	using	a	join	can	be	rewritten	using	a	subquery	(a	query	nested
within	another	query),	and	most	subqueries	can	be	rewritten	as	joins.	For	more
information	about	subqueries,	see	Subquery	Fundamentals.

Note		Tables	cannot	be	joined	directly	on	ntext,	text,	or	image	columns.
However,	tables	can	be	joined	indirectly	on	ntext,	text,	or	image	columns	by
using	SUBSTRING.	For	example,	SELECT	*	FROM	t1	JOIN	t2	ON
SUBSTRING(t1.textcolumn,	1,	20)	=	SUBSTRING(t2.textcolumn,	1,	20)
performs	a	two-table	inner	join	on	the	first	20	characters	of	each	text	column	in
tables	t1	and	t2.	In	addition,	another	possibility	for	comparing	ntext	or	text
columns	from	two	tables	is	to	compare	the	lengths	of	the	columns	with	a
WHERE	clause,	for	example	(where	a	self-join	is	performed	on	the	pub_info
table):

WHERE	DATALENGTH(p1.pr_info)	=	DATALENGTH(p2.pr_info)

See	Also

Logical	Operator	Precedence

SELECT	Examples

JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	Joins
Join	conditions	can	be	specified	in	either	the	FROM	or	WHERE	clauses;
specifying	them	in	the	FROM	clause	is	recommended.	WHERE	and	HAVING
clauses	can	also	contain	search	conditions	to	further	filter	the	rows	selected	by
the	join	conditions.

Joins	can	be	categorized	as:

Inner	joins	(the	typical	join	operation,	which	uses	some	comparison
operator	like	=	or	<>).	These	include	equi-joins	and	natural	joins.

Inner	joins	use	a	comparison	operator	to	match	rows	from	two	tables
based	on	the	values	in	common	columns	from	each	table.	For	example,
retrieving	all	rows	where	the	student	identification	number	is	the	same
in	both	the	students	and	courses	tables.

Outer	joins.	Outer	joins	can	be	a	left,	a	right,	or	full	outer	join.

Outer	joins	are	specified	with	one	of	the	following	sets	of	keywords
when	they	are	specified	in	the	FROM	clause:

LEFT	JOIN	or	LEFT	OUTER	JOIN

The	result	set	of	a	left	outer	join	includes	all	the	rows	from	the
left	table	specified	in	the	LEFT	OUTER	clause,	not	just	the
ones	in	which	the	joined	columns	match.	When	a	row	in	the
left	table	has	no	matching	rows	in	the	right	table,	the	associated
result	set	row	contains	null	values	for	all	select	list	columns
coming	from	the	right	table.

RIGHT	JOIN	or	RIGHT	OUTER	JOIN.

A	right	outer	join	is	the	reverse	of	a	left	outer	join.	All	rows
from	the	right	table	are	returned.	Null	values	are	returned	for
the	left	table	any	time	a	right	table	row	has	no	matching	row	in
the	left	table.

FULL	JOIN	or	FULL	OUTER	JOIN.

A	full	outer	join	returns	all	rows	in	both	the	left	and	right

tables.	Any	time	a	row	has	no	match	in	the	other	table,	the
select	list	columns	from	the	other	table	contain	null	values.
When	there	is	a	match	between	the	tables,	the	entire	result	set
row	contains	data	values	from	the	base	tables.

Cross	joins.

Cross	joins	return	all	rows	from	the	left	table,	each	row	from	the	left
table	is	combined	with	all	rows	from	the	right	table.	Cross	joins	are	also
called	Cartesian	products.

For	example,	here	is	an	inner	join	retrieving	the	authors	who	live	in	the	same
city	and	state	as	a	publisher:

USE	pubs
SELECT	a.au_fname,	a.au_lname,	p.pub_name
FROM	authors	AS	a	INNER	JOIN	publishers	AS	p
			ON	a.city	=	p.city
			AND	a.state	=	p.state
ORDER	BY	a.au_lname	ASC,	a.au_fname	ASC

The	tables	or	views	in	the	FROM	clause	can	be	specified	in	any	order	with	an
inner	join	or	full	outer	join;	however,	the	order	of	tables	or	views	specified	when
using	either	a	left	or	right	outer	join	is	important.	For	more	information	about
table	ordering	with	left	or	right	outer	joins,	see	Using	Outer	Joins.

See	Also

Operators

CAST	and	CONVERT

Using	Operators	in	Expressions

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	Inner	Joins
An	inner	join	is	a	join	in	which	the	values	in	the	columns	being	joined	are
compared	using	a	comparison	operator.

In	the	SQL-92	standard,	inner	joins	can	be	specified	in	either	the	FROM	or
WHERE	clause.	This	is	the	only	type	of	join	that	SQL-92	supports	in	the
WHERE	clause.	Inner	joins	specified	in	the	WHERE	clause	are	known	as	old-
style	inner	joins.

This	Transact-SQL	query	is	an	example	of	an	inner	join:

USE	pubs
SELECT	*
FROM	authors	AS	a	INNER	JOIN	publishers	AS	p
			ON	a.city	=	p.city
ORDER	BY	a.au_lname	DESC

This	inner	join	is	known	as	an	equi-join.	It	returns	all	the	columns	in	both	tables,
and	returns	only	the	rows	for	which	there	is	an	equal	value	in	the	join	column.

Here	is	the	result	set:

au_id								au_lname		au_fname	phone									address										city				
-----------		--------		--------	------------		---------------		--------
238-95-7766		Carson				Cheryl			415	548-7723		589	Darwin	Ln.				Berkeley
409-56-7008		Bennet				Abraham		415	658-9932		6223	Bateman	St.		Berkeley

state	zip			contract	pub_id	pub_name														city					state	country
-----	-----	--------	------	---------------------	--------	-----	-------
CA				94705	1								1389			Algodata	Infosystems		Berkeley	CA				USA				
CA				94705	1								1389			Algodata	Infosystems		Berkeley	CA				USA				

(2	row(s)	affected)

In	the	result	set,	the	city	column	appears	twice.	Because	there	is	no	point	in
repeating	the	same	information,	one	of	these	two	identical	columns	can	be
eliminated	by	changing	the	select	list.	The	result	is	called	a	natural	join.	You	can
restate	the	preceding	Transact-SQL	query	to	form	a	natural	join.	For	example:

USE	pubs
SELECT	p.pub_id,	p.pub_name,	p.state,	a.*
FROM	publishers	p	INNER	JOIN	authors	a
			ON	p.city	=	a.city
ORDER	BY	a.au_lname	ASC,	a.au_fname	ASC

Here	is	the	result	set:

pub_id	pub_name														state				au_id								au_lname		au_fname
------	---------------							--------	-----------		--------		--------	1389			Algodata	Infosystems		CA							409-56-7008		Bennet				Abraham
1389			Algodata	Infosystems		CA							238-95-7766		Carson				Cheryl

phone									address										city						state	zip			contract
---------------		-------------	--------		-----	-----	---------
415	658-9932		6223	Bateman	St.	Berkeley		CA				94705	1
415	548-7723		589	Darwin	Ln.			Berkeley		CA				94705	1

(2	row(s)	affected)

In	this	example,	publishers.city	does	not	appear	in	the	results.

Joins	Using	Operators	Other	Than	Equal
You	can	also	join	values	in	two	columns	that	are	not	equal.	The	same	operators
and	predicates	used	for	inner	joins	can	be	used	for	not-equal	joins.	For	more
information	about	the	available	operators	and	predicates	that	can	be	used	in
joins,	see	Using	Operators	in	Expressions	and	WHERE.

This	Transact-SQL	example	is	of	a	greater-than	(>)	join	which	finds	New	Moon
authors	who	live	in	states	that	come	alphabetically	after	Massachusetts,	where
New	Moon	Books	is	located.

JavaScript:hhobj_1.Click()

USE	pubs
SELECT	p.pub_name,	p.state,	a.au_lname,	a.au_fname,	a.state
FROM	publishers	p	INNER	JOIN	authors	a
			ON	a.state	>	p.state
WHERE	p.pub_name	=	'New	Moon	Books'
ORDER	BY	au_lname	ASC,	au_fname	ASC

Here	is	the	result	set:

pub_name									state			au_lname													au_fname													state	
----------------	-------	--------------------	--------------------	-----	
New	Moon	Books			MA				Blotchet-Halls									Reginald													OR
New	Moon	Books			MA				del	Castillo											Innes																MI
New	Moon	Books			MA				Greene																	Morningstar										TN
New	Moon	Books			MA				Panteley															Sylvia															MD
New	Moon	Books			MA				Ringer																	Albert															UT
New	Moon	Books			MA				Ringer																	Anne																	UT

(6	row(s)	affected)

Joins	Using	the	Not-equal	Operator
The	not-equal	join	(<	>)	is	rarely	used.	As	a	general	rule,	not-equal	joins	make
sense	only	when	used	with	a	self-join.	For	example,	this	not-equal	Transact-SQL
join	and	self-join	are	used	to	find	the	categories	with	two	or	more	inexpensive
(less	than	$15)	books	of	different	prices:

USE	pubs
SELECT	DISTINCT	t1.type,	t1.price
FROM	titles	t1	INNER	JOIN	titles	t2	
			ON	t1.type	=	t2.type
			AND	t1.price	<>	t2.price
WHERE	t1.price	<	$15	AND	t2.price	<	$15

Note		The	expression	NOT	column_name	=	column_name	is	equivalent	to
column_name	<	>	column_name.

This	Transact-SQL	example	uses	a	not-equal	join	combined	with	a	self-join	to
find	all	rows	in	the	titleauthor	table	in	which	two	or	more	rows	have	the	same
title_id	but	different	au_id	numbers	(that	is,	books	with	more	than	one	author):

USE	pubs
SELECT	DISTINCT	t1.au_id,	t1.title_id
FROM	titleauthor	t1	INNER	JOIN	titleauthor	t2	
			ON	t1.title_id	=	t2.title_id
WHERE	t1.au_id	<>	t2.au_id
ORDER	BY	t1.au_id

Here	is	the	result	set:

au_id												title_id
-----------									--------
213-46-8915									BU1032
267-41-2394									BU1111
267-41-2394									TC7777
409-56-7008									BU1032
427-17-2319									PC8888
472-27-2349									TC7777
672-71-3249									TC7777
722-51-5454									MC3021
724-80-9391									BU1111
724-80-9391									PS1372
756-30-7391									PS1372
846-92-7186									PC8888
899-46-2035									MC3021
899-46-2035									PS2091
998-72-3567									PS2091

(15	row(s)	affected)

See	Also

Conversion	Functions

WHERE

SELECT	Examples

SELECT

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Using	Outer	Joins
Inner	joins	return	rows	only	when	there	is	at	least	one	row	from	both	tables	that
matches	the	join	condition.	Inner	joins	eliminate	the	rows	that	do	not	match	with
a	row	from	the	other	table.	Outer	joins,	however,	return	all	rows	from	at	least
one	of	the	tables	or	views	mentioned	in	the	FROM	clause,	as	long	as	those	rows
meet	any	WHERE	or	HAVING	search	conditions.	All	rows	are	retrieved	from
the	left	table	referenced	with	a	left	outer	join,	and	all	rows	from	the	right	table
referenced	in	a	right	outer	join.	All	rows	from	both	tables	are	returned	in	a	full
outer	join

Microsoft®	SQL	Server™	2000	uses	these	SQL-92	keywords	for	outer	joins
specified	in	a	FROM	clause:

LEFT	OUTER	JOIN	or	LEFT	JOIN

RIGHT	OUTER	JOIN	or	RIGHT	JOIN

FULL	OUTER	JOIN	or	FULL	JOIN

SQL	Server	supports	both	the	SQL-92	outer	join	syntax	and	a	legacy	syntax	for
specifying	outer	joins	based	on	using	the	*=	and	=*	operators	in	the	WHERE
clause.	The	SQL-92	syntax	is	recommended	because	it	is	not	subject	to	the
ambiguity	that	sometimes	results	from	the	legacy	Transact-SQL	outer	joins.

Using	Left	Outer	Joins
Consider	a	join	of	the	authors	table	and	the	publishers	table	on	their	city
columns.	The	results	show	only	the	authors	who	live	in	cities	in	which	a
publisher	is	located	(in	this	case,	Abraham	Bennet	and	Cheryl	Carson).

To	include	all	authors	in	the	results,	regardless	of	whether	a	publisher	is	located
in	the	same	city,	use	an	SQL-92	left	outer	join.	The	following	is	the	query	and
results	of	the	Transact-SQL	left	outer	join:

USE	pubs

SELECT	a.au_fname,	a.au_lname,	p.pub_name
FROM	authors	a	LEFT	OUTER	JOIN	publishers	p
			ON	a.city	=	p.city
ORDER	BY	p.pub_name	ASC,	a.au_lname	ASC,	a.au_fname	ASC

Here	is	the	result	set:

au_fname													au_lname																							pub_name										
--------------------	------------------------------	-----------------	
Reginald													Blotchet-Halls																	NULL
Michel															DeFrance																							NULL
Innes																del	Castillo																			NULL
Ann																		Dull																											NULL
Marjorie													Green																										NULL
Morningstar										Greene																									NULL
Burt																	Gringlesby																					NULL
Sheryl															Hunter																									NULL
Livia																Karsen																									NULL
Charlene													Locksley																							NULL
Stearns														MacFeather																					NULL
Heather														McBadden																							NULL
Michael														O'Leary																								NULL
Sylvia															Panteley																							NULL
Albert															Ringer																									NULL
Anne																	Ringer																									NULL
Meander														Smith																										NULL
Dean																	Straight																							NULL
Dirk																	Stringer																							NULL
Johnson														White																										NULL
Akiko																Yokomoto																							NULL
Abraham														Bennet																									Algodata	Infosystems
Cheryl															Carson																									Algodata	Infosystems

(23	row(s)	affected)

The	LEFT	OUTER	JOIN	includes	all	rows	in	the	authors	table	in	the	results,
whether	or	not	there	is	a	match	on	the	city	column	in	the	publishers	table.
Notice	that	in	the	results	there	is	no	matching	data	for	most	of	the	authors	listed;
therefore,	these	rows	contain	null	values	in	the	pub_name	column.

Using	Right	Outer	Joins
Consider	a	join	of	the	authors	table	and	the	publishers	table	on	their	city
columns.	The	results	show	only	the	authors	who	live	in	cities	where	a	publisher
is	located	(in	this	case,	Abraham	Bennet	and	Cheryl	Carson).	The	SQL-92	right
outer	join	operator,	RIGHT	OUTER	JOIN,	indicates	all	rows	in	the	second	table
are	to	be	included	in	the	results,	regardless	of	whether	there	is	matching	data	in
the	first	table.

To	include	all	publishers	in	the	results,	regardless	of	whether	a	city	has	a
publisher	located	in	the	same	city,	use	an	SQL-92	right	outer	join.	Here	is	the
Transact-SQL	query	and	results	of	the	right	outer	join:

USE	pubs
SELECT	a.au_fname,	a.au_lname,	p.pub_name
FROM	authors	AS	a	RIGHT	OUTER	JOIN	publishers	AS	p
			ON	a.city	=	p.city
ORDER	BY	p.pub_name	ASC,	a.au_lname	ASC,	a.au_fname	ASC

Here	is	the	result	set:

au_fname													au_lname																	pub_name													
--------------------	------------------------	--------------------	
Abraham														Bennet																			Algodata	Infosystems
Cheryl															Carson																			Algodata	Infosystems
NULL																	NULL																					Binnet	&	Hardley
NULL																	NULL																					Five	Lakes	Publishing
NULL																	NULL																					GGG&G
NULL																	NULL																					Lucerne	Publishing
NULL																	NULL																					New	Moon	Books
NULL																	NULL																					Ramona	Publishers
NULL																	NULL																					Scootney	Books

(9	row(s)	affected)

An	outer	join	can	be	further	restricted	by	using	a	predicate	(such	as	comparing
the	join	to	a	constant).	This	example	contains	the	same	right	outer	join,	but
eliminates	all	titles	that	have	sold	fewer	than	50	copies:

USE	pubs
SELECT	s.stor_id,	s.qty,	t.title
FROM	sales	s	RIGHT	OUTER	JOIN	titles	t
			ON	s.title_id	=	t.title_id
			AND	s.qty	>	50
ORDER	BY	s.stor_id	ASC

Here	is	the	result	set:

stor_id	qty				title																																																					
-------	------	---	
(null)	(null)	But	Is	It	User	Friendly?																																			
(null)	(null)	Computer	Phobic	AND	Non-Phobic	Individuals:	Behavior	
												Variations																		
(null)	(null)	Cooking	with	Computers:	Surreptitious	Balance	Sheets							
(null)	(null)	Emotional	Security:	A	New	Algorithm																								
(null)	(null)	Fifty	Years	in	Buckingham	Palace	Kitchens																		
7066			75					Is	Anger	the	Enemy?																																								
(null)	(null)	Life	Without	Fear																																										
(null)	(null)	Net	Etiquette																																														
(null)	(null)	Onions,	Leeks,	and	Garlic:	Cooking	Secrets	of	the	
												Mediterranean																		
(null)	(null)	Prolonged	Data	Deprivation:	Four	Case	Studies														
(null)	(null)	Secrets	of	Silicon	Valley																																		
(null)	(null)	Silicon	Valley	Gastronomic	Treats																										
(null)	(null)	Straight	Talk	About	Computers																														
(null)	(null)	Sushi,	Anyone?																																													
(null)	(null)	The	Busy	Executive's	Database	Guide																								

(null)	(null)	The	Gourmet	Microwave																																						
(null)	(null)	The	Psychology	of	Computer	Cooking																									
(null)	(null)	You	Can	Combat	Computer	Stress!																												

(18	row(s)	affected)

For	more	information	about	predicates,	see	WHERE.

Using	Full	Outer	Joins
To	retain	the	nonmatching	information	by	including	nonmatching	rows	in	the
results	of	a	join,	use	a	full	outer	join.	Microsoft®	SQL	Server™	2000	provides
the	full	outer	join	operator,	FULL	OUTER	JOIN,	which	includes	all	rows	from
both	tables,	regardless	of	whether	or	not	the	other	table	has	a	matching	value.

Consider	a	join	of	the	authors	table	and	the	publishers	table	on	their	city
columns.	The	results	show	only	the	authors	who	live	in	cities	in	which	a
publisher	is	located	(in	this	case,	Abraham	Bennet	and	Cheryl	Carson).	The
SQL-92	FULL	OUTER	JOIN	operator	indicates	that	all	rows	from	both	tables
are	to	be	included	in	the	results,	regardless	of	whether	there	is	matching	data	in
the	tables.

To	include	all	publishers	and	all	authors	in	the	results,	regardless	of	whether	a
city	has	a	publisher	located	in	the	same	city,	or	whether	a	publisher	is	located	in
the	same	city,	use	a	full	outer	join.	The	following	is	the	query	and	results	of	the
Transact-SQL	full	outer	join:

USE	pubs
SELECT	a.au_fname,	a.au_lname,	p.pub_name
FROM	authors	a	FULL	OUTER	JOIN	publishers	p
			ON	a.city	=	p.city
ORDER	BY	p.pub_name	ASC,	a.au_lname	ASC,	a.au_fname	ASC

Here	is	the	result	set:

au_fname													au_lname																					pub_name													
--------------------	----------------------------	--------------------	
Reginald													Blotchet-Halls															NULL

JavaScript:hhobj_1.Click()

Michel															DeFrance																					NULL
Innes																del	Castillo																	NULL
Ann																		Dull																									NULL
Marjorie													Green																								NULL
Morningstar										Greene																							NULL
Burt																	Gringlesby																			NULL
Sheryl															Hunter																							NULL
Livia																Karsen																							NULL
Charlene													Locksley																					NULL
Stearns														MacFeather																			NULL
Heather														McBadden																					NULL
Michael														O'Leary																						NULL
Sylvia															Panteley																					NULL
Albert															Ringer																							NULL
Anne																	Ringer																							NULL
Meander														Smith																								NULL
Dean																	Straight																					NULL
Dirk																	Stringer																					NULL
Johnson														White																								NULL
Akiko																Yokomoto																					NULL
Abraham														Bennet																							Algodata	Infosystems
Cheryl															Carson																							Algodata	Infosystems
NULL																	NULL																									Binnet	&	Hardley
NULL																	NULL																									Five	Lakes	Publishing
NULL																	NULL																									GGG&G
NULL																	NULL																									Lucerne	Publishing
NULL																	NULL																									New	Moon	Books
NULL																	NULL																									Ramona	Publishers
NULL																	NULL																									Scootney	Books

(30	row(s)	affected)

See	Also

Operators

SELECT

Using	Operators	in	Expressions

SELECT	Examples

Writing	Readable	Code

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Using	Cross	Joins
A	cross	join	that	does	not	have	a	WHERE	clause	produces	the	Cartesian	product
of	the	tables	involved	in	the	join.	The	size	of	a	Cartesian	product	result	set	is	the
number	of	rows	in	the	first	table	multiplied	by	the	number	of	rows	in	the	second
table.	This	is	an	example	of	a	Transact-SQL	cross	join:

USE	pubs
SELECT	au_fname,	au_lname,	pub_name
FROM	authors	CROSS	JOIN	publishers	
ORDER	BY	au_lname	DESC

The	result	set	contains	184	rows	(authors	has	23	rows	and	publishers	has	8;	23
multiplied	by	8	equals	184).

However,	if	a	WHERE	clause	is	added,	the	cross	join	behaves	as	an	inner	join.
For	example,	these	Transact-SQL	queries	produce	the	same	result	set:

USE	pubs
SELECT	au_fname,	au_lname,	pub_name
FROM	authors	CROSS	JOIN	publishers	
WHERE	authors.city	=	publishers.city
ORDER	BY	au_lname	DESC

--	Or
USE	pubs
SELECT	au_fname,	au_lname,	pub_name
FROM	authors	INNER	JOIN	publishers	
ON	authors.city	=	publishers.city
ORDER	BY	au_lname	DESC

See	Also

WHERE

JavaScript:hhobj_1.Click()

SELECT

Operators

SELECT	Examples

Using	Operators	in	Expressions

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Using	Self-Joins
A	table	can	be	joined	to	itself	in	a	self-join.	For	example,	you	can	use	a	self-join
to	find	out	the	authors	in	Oakland,	California	who	live	in	the	same	ZIP	Code
area.

Because	this	query	involves	a	join	of	the	authors	table	with	itself,	the	authors
table	appears	in	two	roles.	To	distinguish	these	roles,	you	must	give	the	authors
table	two	different	aliases		(au1	and	au2)	in	the	FROM	clause.	These	aliases	are
used	to	qualify	the	column	names	in	the	rest	of	the	query.	This	is	an	example	of
the	self-join	Transact-SQL	statement:

USE	pubs
SELECT	au1.au_fname,	au1.au_lname,	au2.au_fname,	au2.au_lname
FROM	authors	au1	INNER	JOIN	authors	au2	
			ON	au1.zip	=	au2.zip
WHERE	au1.city	=	'Oakland'	
ORDER	BY	au1.au_fname	ASC,	au1.au_lname	ASC

Here	is	the	result	set:

au_fname													au_lname												au_fname													au_lname	
--------------------	-------------------	--------------------	---------
Dean																	Straight												Dean																	Straight	
Dean																	Straight												Dirk																	Stringer	
Dean																	Straight												Livia																Karsen			
Dirk																	Stringer												Dean																	Straight	
Dirk																	Stringer												Dirk																	Stringer	
Dirk																	Stringer												Livia																Karsen			
Livia																Karsen														Dean																	Straight	
Livia																Karsen														Dirk																	Stringer	
Livia																Karsen														Livia																Karsen			
Marjorie													Green															Marjorie													Green				
Stearns														MacFeather										Stearns														MacFeather

(11	row(s)	affected)

To	eliminate	the	rows	in	the	results	in	which	the	authors	match	themselves	and
to	eliminate	rows	that	are	identical,	except	the	order	of	the	authors	is	reversed,
make	this	change	to	the	Transact-SQL	self-join	query:

USE	pubs
SELECT	au1.au_fname,	au1.au_lname,	au2.au_fname,	au2.au_lname
FROM	authors	au1	INNER	JOIN	authors	au2	
			ON		au1.zip	=	au2.zip
WHERE	au1.city	=	'Oakland'
			AND	au1.state	=	'CA'
			AND	au1.au_id	<	au2.au_id
ORDER	BY	au1.au_lname	ASC,	au1.au_fname	ASC

Here	is	the	result	set:

au_fname					au_lname										au_fname													au_lname													
------------	-----------------	--------------------	--------------------	
Dean									Straight										Dirk																	Stringer
Dean									Straight										Livia																Karsen
Dirk									Stringer										Livia																Karsen

(3	row(s)	affected)

It	is	now	clear	that	Dean	Straight,	Dirk	Stringer,	and	Livia	Karsen	all	have	the
same	ZIP	Code	and	live	in	Oakland,	California.

See	Also

WHERE

SELECT

Operators

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

SELECT	Examples

Using	Operators	in	Expressions

JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Joining	Three	or	More	Tables
Although	each	join	specification	joins	only	two	tables,	FROM	clauses	can
contain	multiple	join	specifications.	This	allows	many	tables	to	be	joined	for	a
single	query.

The	titleauthor	table	of	the	pubs	database	offers	a	good	example	of	a	situation
in	which	joining	more	than	two	tables	is	helpful.	This	Transact-SQL	query	finds
the	titles	of	all	books	of	a	particular	type	and	the	names	of	their	authors:

USE	pubs
SELECT	a.au_lname,	a.au_fname,	t.title
FROM	authors	a	INNER	JOIN	titleauthor	ta
			ON	a.au_id	=	ta.au_id	JOIN	titles	t
			ON	ta.title_id	=	t.title_id
WHERE	t.type	=	'trad_cook'
ORDER	BY	t.title	ASC

Here	is	the	result	set:

au_lname										au_fname													title						
-----------------	--------------------	----------	
Blotchet-Halls				Reginald													Fifty	Years	in	Buckingham	Palace	
			Kitchens
Panteley										Sylvia															Onions,	Leeks,	and	Garlic:	
			Cooking	Secrets	of	the	Mediterranean
O'Leary											Michael														Sushi,	Anyone?
Gringlesby								Burt																	Sushi,	Anyone?
Yokomoto										Akiko																Sushi,	Anyone?

(5	row(s)	affected)

Notice	that	one	of	the	tables	in	the	FROM	clause,	titleauthor,	does	not
contribute	any	columns	to	the	results.	Also,	none	of	the	joined	columns,	au_id

and	title_id,	appear	in	the	results.	Nonetheless,	this	join	is	possible	only	by	using
titleauthor	as	an	intermediate	table.

The	middle	table	of	the	join	(the	titleauthor	table)	can	be	called	the	translation
table	or	intermediate	table,	because	titleauthor	is	an	intermediate	point	of
connection	between	the	other	tables	involved	in	the	join.

When	there	is	more	than	one	join	operator	in	the	same	statement,	either	to	join
more	than	two	tables	or	to	join	more	than	two	pairs	of	columns,	the	join
expressions	can	be	connected	with	AND	or	with	OR.

See	Also

WHERE

SELECT

Operators

SELECT	Examples

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Null	Values	and	Joins
When	there	are	null	values	in	the	columns	of	the	tables	being	joined,	the	null
values	do	not	match	each	other.	The	presence	of	null	values	in	a	column	from
one	of	the	tables	being	joined	can	be	returned	only	by	using	an	outer	join	(unless
the	WHERE	clause	excludes	null	values).

Here	are	two	tables	that	each	have	NULL	in	the	column	that	will	participate	in
the	join:

table1																										table2
a											b																			c												d
-------					------														-------						------
						1								one																	NULL									two
			NULL						three																				4								four
						4						join4

A	join	that	compares	the	values	in	column	a	against	column	c	does	not	get	a
match	on	the	columns	that	have	values	of	NULL:

SELECT	*
FROM	table1	t1	JOIN	table2	t2
			ON	t1.a	=	t2.c
ORDER	BY	t1.a

Only	one	row	with	4	in	column	a	and	c	is	returned:

a											b						c											d						
-----------	------	-----------	------	
4											join4		4											four			

(1	row(s)	affected)

Null	values	returned	from	a	base	table	are	also	difficult	to	distinguish	from	the
null	values	returned	from	an	outer	join.	For	example,	this	SELECT	statement
does	a	left	outer	join	on	these	two	tables:

SELECT	*
FROM	table1	t1	LEFT	OUTER	JOIN	table2	t2
			ON	t1.a	=	t2.c
ORDER	BY	t1.a

Here	is	the	result	set:

a											b						c											d						
-----------	------	-----------	------	
NULL								three		NULL								NULL	
1											one				NULL								NULL	
4											join4		4											four			

(3	row(s)	affected)

The	results	do	not	make	it	easy	to	distinguish	a	NULL	in	the	data	from	a	NULL
that	represents	a	failure	to	join.	When	null	values	are	present	in	data	being
joined,	it	is	usually	preferable	to	omit	them	from	the	results	by	using	a	regular
join.

See	Also

sp_dbcmptlevel

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Specifying	Joins	in	FROM	or	WHERE	Clauses
The	rows	selected	by	a	query	are	filtered	first	by	the	FROM	clause	join
conditions,	then	the	WHERE	clause	search	conditions,	and	then	the	HAVING
clause	search	conditions.	Inner	joins	can	be	specified	in	either	the	FROM	or
WHERE	clause	without	affecting	the	final	result.

Outer	join	conditions,	however,	may	interact	differently	with	the	WHERE	clause
search	conditions,	depending	on	whether	the	join	conditions	are	in	the	FROM	or
WHERE	clause.	Therefore,	the	ability	to	specify	Transact-SQL	outer	joins	in	the
WHERE	clause	is	not	recommended,	is	no	longer	documented,	and	will	be
dropped	in	a	future	release.

For	example,	these	queries	both	specify	a	left	outer	join	to	SELECT	23	rows	that
display	the	title	identification	number,	title	name,	and	the	number	of	books	sold:

--	Join	in	WHERE	clause.
USE	pubs
SELECT	t.title_id,	t.title,	s.qty
FROM	titles	AS	t,	sales	AS	s
WHERE	t.title_id	*=	s.title_id

--	Join	in	FROM	clause.
USE	pubs
SELECT	t.title_id,	t.title,	s.qty
FROM	titles	AS	t	LEFT	OUTER	JOIN	sales	AS	s
			ON	t.title_id	=	s.title_id

In	this	query,	a	search	condition	is	also	specified	in	the	WHERE	clause:

--	Join	and	search	condition	in	WHERE	clause.
USE	pubs
SELECT	t.title_id,	t.title,	s.qty
FROM	titles	AS	t,	sales	AS	s
WHERE	t.title_id	*=	s.title_id

			AND	s.stor_id	=	'7066'

The	condition	stor_id	=	'7066'	is	evaluated	along	with	the	join.	The	join	only
selects	the	rows	for	stor_id	7066	from	the	sales	table,	but	because	it	is	an	outer
join	null	values	are	supplied	as	the	store	information	in	all	the	other	rows.	This
query	returns	18	rows.

The	join	condition	can	be	moved	to	the	FROM	clause,	and	the	stor_id	condition
left	in	the	WHERE	clause:

USE	pubs
SELECT	t.title_id,	t.title,	s.qty
FROM	titles	AS	t	LEFT	OUTER	JOIN	sales	AS	s
			ON	t.title_id	=	s.title_id
WHERE	s.stor_id	=	'7066'

This	query	returns	only	two	rows	because	the	restriction	of	stor_id	=	'7066'	is
applied	after	the	left	outer	join	has	been	performed.	This	eliminates	all	the	rows
from	the	outer	join	that	have	NULL	for	their	stor_id.	To	return	the	same
information	with	the	join	condition	in	the	FROM	clause,	specify	the	stor_id	=
'7066'	condition	as	part	of	the	ON	join_criteria	section	in	the	FROM	clause	and
remove	the	WHERE	clause:

USE	pubs
SELECT	t.title_id,	t.title,	s.qty
FROM	titles	AS	t	LEFT	OUTER	JOIN	sales	AS	s
			ON	t.title_id	=	s.title_id	
			AND	s.stor_id	=	'7066'

See	Also

WHERE

Using	Operators	in	Expressions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Advanced	Query	Concepts
After	you	have	mastered	query	fundamentals,	you	can	explore	these	advanced
query	concepts	for	query	solutions:

Using	aggregate	functions	in	the	select	list

Grouping	rows	with	GROUP	BY

Combining	results	with	UNION

Subquery	fundamentals

Conditional	data	processing	using	CASE

Parallel	queries

Summarizing	data

See	Also

Query	Fundamentals

Accessing	and	Changing	Relational	Data

Using	Aggregate	Functions	in	the	Select	List
Aggregate	functions	(such	as	SUM,	AVG,	COUNT,	COUNT(*),	MAX,	and
MIN)	generate	summary	values	in	query	result	sets.	An	aggregate	function	(with
the	exception	of	COUNT(*))	processes	all	the	selected	values	in	a	single	column
to	produce	a	single	result	value.	Aggregate	functions	can	be	applied	to	all	rows
in	a	table,	to	a	subset	of	the	table	specified	by	a	WHERE	clause,	or	to	one	or
more	groups	of	rows	in	the	table.	When	an	aggregate	function	is	applied,	a	single
value	is	generated	from	each	set	of	rows.

This	example	calculates	the	sum	of	year-to-date	sales	for	all	books	in	the	titles
table:

USE	pubs
SELECT	SUM(ytd_sales)
FROM	titles

Here	is	the	result	set:

97446

(1	row(s)	affected)

With	this	query,	you	can	find	the	average	price	of	all	books	if	prices	were
doubled:

USE	pubs
SELECT	avg(price	*	2)
FROM	titles

Here	is	the	result	set:

29.53

(1	row(s)	affected)

The	table	shows	the	syntax	of	the	aggregate	functions	and	their	results
(expression	is	almost	always	a	column	name).

Aggregate	function Result
SUM([ALL	|	DISTINCT]	expression) Total	of	the	values	in	the	numeric

expression
AVG([ALL	|	DISTINCT]	expression) Average	of	the	values	in	the

numeric	expression
COUNT([ALL	|	DISTINCT]
expression)

Number	of	values	in	the
expression

COUNT(*) Number	of	selected	rows
MAX(expression) Highest	value	in	the	expression
MIN(expression) Lowest	value	in	the	expression

SUM,	AVG,	COUNT,	MAX,	and	MIN	ignore	null	values;	COUNT(*)	does	not.

The	optional	keyword	DISTINCT	can	be	used	with	SUM,	AVG,	and	COUNT	to
eliminate	duplicate	values	before	an	aggregate	function	is	applied	(the	default	is
ALL).

SUM	and	AVG	can	be	used	only	with	numeric	columns,	for	example	int,
smallint,	tinyint,	decimal,	numeric,	float,	real,	money,	and	smallmoney	data
types.	MIN	and	MAX	cannot	be	used	with	bit	data	types.	Aggregate	functions
other	than	COUNT(*)	cannot	be	used	with	text	and	image	data	types.

With	these	exceptions,	aggregate	functions	can	be	used	with	any	type	of	column.
For	example,	in	a	character	data	type	column,	use	MIN	(minimum)	to	find	the
lowest	value	(the	one	closest	to	the	beginning	of	the	alphabet):

USE	pubs
SELECT	MIN(au_lname)
FROM	authors

Here	is	the	result	set:

Bennet

(1	row(s)	affected)

The	result	type	returned	by	an	aggregate	function	may	have	a	larger	precision
than	the	inputs	so	that	the	result	type	is	large	enough	to	hold	the	aggregated
result	value.	For	example,	the	SUM	or	AVG	functions	return	an	int	value	when
the	data	type	of	the	inputs	is	smallint	or	tinyint.	For	more	information	about	the
data	type	returned	by	an	aggregate	function,	see	the	topic	for	the	function	in
Microsoft®	SQL	Server™	2000	Transact-SQL	Reference.

Note		The	output	for	statements,	involving	MIN	or	MAX	on	character	columns,
depends	on	the	collation	chosen	during	installation.	For	more	information	about
the	effects	of	different	collations,	see	SQL	Server	Collation	Fundamentals.

When	aggregate	functions	are	used	in	a	select	list,	the	select	list	can	contain
only:

Aggregate	functions.

Grouping	columns	from	a	GROUP	BY	clause.

An	expression	that	returns	the	same	value	for	every	row	in	the	result	set,
such	as	a	constant.

For	more	information	about	generating	aggregate	values	for	result	sets
containing	multiple	rows,	see	Grouping	Rows	with	GROUP	BY.

Aggregate	functions	cannot	be	used	in	a	WHERE	clause.	However,	a	SELECT
statement	with	aggregate	functions	in	its	select	list	often	includes	a	WHERE
clause	that	restricts	the	rows	to	which	the	aggregate	function	is	applied.	If	a
SELECT	statement	includes	a	WHERE	clause	(but	not	a	GROUP	BY	clause),	an
aggregate	function	produces	a	single	value	for	the	subset	of	rows	specified	by
the	WHERE	clause.	This	is	true	whether	it	is	operating	on	all	rows	in	a	table	or
on	a	subset	of	rows	defined	by	a	WHERE	clause.	Such	a	function	is	called	a
scalar	aggregate.

This	query	returns	the	average	advance	and	the	sum	of	year-to-date	sales	for
business	books	only:

JavaScript:hhobj_1.Click()

USE	pubs
SELECT	AVG(advance),	SUM(ytd_sales)
FROM	titles
WHERE	type	=	'business'

Here	is	the	result	set:

---------					-------
6,281.25						30788

(1	row(s)	affected)

You	can	use	more	than	one	aggregate	function	in	the	same	select	list	and	produce
more	than	one	scalar	aggregate	in	a	single	SELECT	statement.

See	Also

Aggregate	Functions

SELECT

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	COUNT(*)
COUNT(*)	does	not	require	an	expression	parameter	because	it	does	not	use
information	about	any	particular	column.	It	counts	the	total	number	of	rows	that
meet	the	qualifications	of	the	query.	COUNT(*)	returns	the	number	of	rows	that
match	the	search	conditions	specified	in	the	query	without	eliminating
duplicates.	It	counts	each	row	separately,	including	rows	that	contain	null	values.
This	query	finds	the	total	number	of	books	in	titles:

USE	pubs
SELECT	COUNT(*)
FROM	titles

Here	is	the	result	set:

18

(1	row(s)	affected)

COUNT(*)	can	be	combined	with	other	aggregate	functions.	This	query	shows
COUNT(*)	combined	with	an	AVG	function	in	which	both	aggregate	functions
aggregate	data	only	from	the	rows	that	satisfy	the	WHERE	clause	search
condition:

USE	pubs
SELECT	COUNT(*),	AVG(price)
FROM	titles
WHERE	advance	>	$1000

Here	is	the	result	set:

-----------	------	
15										14.42																						

(1	row(s)	affected)

See	Also

COUNT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	DISTINCT
The	DISTINCT	keyword	is	optional	with	SUM,	AVG,	and	COUNT.	When
DISTINCT	is	used,	duplicate	values	are	eliminated	before	the	sum,	average,	or
count	is	calculated.

If	you	use	DISTINCT,	the	expression	must	consist	of	a	column	name	only.	It
cannot	include	an	arithmetic	expression.

This	query	returns	the	average	prices	of	business	books	(without	duplicate
values):

USE	pubs
SELECT	AVG(DISTINCT	price)
FROM	titles
WHERE	type	=	'business'

Here	is	the	result	set:

14.64

(1	row(s)	affected)

Without	DISTINCT,	the	AVG	function	finds	the	average	price	of	all	business
titles:

USE	pubs
SELECT	AVG(price)
FROM	titles
WHERE	type	=	'business

Here	is	the	result	set:

13.73

(1	row(s)	affected)

See	Also

Aggregate	Functions

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Null	Values
Null	values	in	a	column	are	ignored	while	an	aggregate	function	is	operating.
For	example,	the	count	of	advances	in	the	titles	table	is	not	the	same	as	the	count
of	title	names	because	null	values	in	the	advance	column	are	not	counted.

USE	pubs
SELECT	COUNT(advance)
FROM	titles

Here	is	the	result	set:

16

(1	row(s)	affected)

USE	pubs
SELECT	COUNT(title)
FROM	titles

Here	is	the	result	set:

18			

(1	row(s)	affected)

If	no	rows	meet	the	condition(s)	specified	in	the	WHERE	clause,	COUNT
returns	a	value	of	zero.	The	other	functions	all	return	NULL.	COUNT(*),	counts
each	row,	even	if	all	column	values	are	NULL.	Here	are	examples:

USE	pubs
SELECT	COUNT(DISTINCT	title)

FROM	titles
WHERE	type	=	'poetry'

Here	is	the	result	set:

0

(1	row(s)	affected)

USE	pubs
SELECT	AVG(advance)
FROM	titles
WHERE	type	=	'poetry'

Here	is	the	result	set:

(null)

(1	row(s)	affected)

Accessing	and	Changing	Relational	Data

Grouping	Rows	with	GROUP	BY
The	GROUP	BY	clause	is	used	to	produce	aggregate	values	for	each	row	in	the
result	set.	When	used	without	a	GROUP	BY	clause,	aggregate	functions	report
only	one	aggregate	value	for	a	SELECT	statement.

This	example	returns	the	number	of	units	sold	for	each	product	in	category	2:

USE	Northwind
SELECT	OrdD.ProductID	AS	ProdID,
							SUM(OrdD.Quantity)	AS	AmountSold
FROM	[Order	Details]	AS	OrdD	JOIN	Products	as	Prd
					ON	OrdD.ProductID	=	Prd.ProductID
					AND	Prd.CategoryID	=	2
GROUP	BY	OrdD.ProductID

Here	is	the	result	set:

ProdID						AmountSold		
-----------	-----------	
3											328									
4											453									
5											298									
6											301									
8											372									
15										122									
44										601									
61										603									
63										445									
65										745									
66										239									
77										791									

(12	row(s)	affected)

The	GROUP	BY	keywords	are	followed	by	a	list	of	columns,	known	as	the
grouping	columns.	The	GROUP	BY	clause	restricts	the	rows	of	the	result	set;
there	is	only	one	row	for	each	distinct	value	in	the	grouping	column	or	columns.
Each	result	set	row	contains	summary	data	related	to	the	specific	value	in	its
grouping	columns.

There	are	restrictions	on	the	items	that	can	be	specified	in	the	select	list	when	a
SELECT	statement	contains	a	GROUP	BY.	Items	allowed	in	the	select	list	are:

The	grouping	columns.

Expressions	that	return	only	one	value	for	each	value	in	the	grouping
columns,	such	as	aggregate	functions	that	have	a	column	name	as	one
of	their	parameters.	These	are	known	as	vector	aggregates.

For	example,	TableX	contains:

ColumnA ColumnB ColumnC
------- ------- -------
1 abc 5
1 def 4
1 ghi 9
2 jkl 8
2 mno 3

If	ColumnA	is	the	grouping	column,	there	will	be	two	rows	in	the	result	set,	one
summarizing	the	information	for	the	value	1,	and	the	other	summarizing	the
information	for	value	2.

When	ColumnA	is	the	grouping	column,	the	only	way	ColumnB	or	ColumnC
can	be	referenced	is	if	they	are	parameters	in	an	aggregate	function	that	can
return	a	single	value	for	each	value	in	ColumnA.	It	is	legal	for	the	select	list	to
include	expressions	such	as	MAX(ColumnB),	SUM(ColumnC),	or
AVG(ColumnC):

SELECT	ColumnA,
							MAX(ColumnB)	AS	MaxB,
							SUM(ColumnC)	AS	SumC
FROM	TableX
GROUP	BY	ColumnA

This	select	returns	two	rows,	one	for	each	unique	value	in	ColumnA:

ColumnA					MaxB	SumC								
-----------	----	-----------	
1											ghi		18										
2											mno		11										

(2	row(s)	affected)

It	is	not	legal,	however,	to	have	just	the	expression	ColumnB	in	the	select	list:

SELECT	ColumnA,
							ColumnB,
							SUM(ColumnC)	AS	SumC
FROM	TableX
GROUP	BY	ColumnA

Because	the	GROUP	BY	can	return	only	one	row	with	a	value	of	1	in	ColumnA,
there	is	no	way	to	return	the	three	values	of	ColumnB	(abc,	def,	and	ghi)
associated	with	the	value	1	in	ColumnA.

You	cannot	use	GROUP	BY	or	HAVING	on	ntext,text,image,	or	bit	columns
unless	they	are	in	a	function	that	returns	a	value	having	another	data	type.
Examples	of	such	functions	are	SUBSTRING	and	CAST.

See	Also

CAST	and	CONVERT

SUBSTRING

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

SELECT

JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

GROUP	BY	Components
The	GROUP	BY	clause	contains	the	following	components:

One	or	more	aggregate-free	expressions.	These	are	usually	references	to
the	grouping	columns.

Optionally,	the	ALL	keyword,	which	specifies	that	all	groups	produced
by	the	GROUP	BY	clause	are	returned,	even	if	some	of	the	groups	do
not	have	any	rows	that	meet	the	search	conditions.

CUBE	or	ROLLUP.

Typically,	the	HAVING	clause	is	used	with	the	GROUP	BY	clause,
although	HAVING	can	be	specified	separately.

You	can	group	by	an	expression	as	long	as	it	does	not	include	aggregate
functions,	for	example:

SELECT	DATEPART(yy,	HireDate)	AS	Year,
							COUNT(*)	AS	NumberOfHires
FROM	Northwind.dbo.Employees
GROUP	BY	DATEPART(yy,	HireDate)

This	is	the	result	set.

Year					NumberOfHires
1992					3
1993					3
1994					3

(3	row(s)	affected)

In	a	GROUP	BY,	you	must	specify	the	name	of	a	table	or	view	column,	not	the

name	of	a	result	set	column	assigned	with	an	AS	clause.	For	example,	replacing
the	GROUP	BY	DATEPART(yy,	HireDate)	clause	with	GROUP	BY	Year	is	not
legal.

You	can	list	more	than	one	column	in	the	GROUP	BY	clause	to	nest	groups;	that
is,	you	can	group	a	table	by	any	combination	of	columns.	For	example,	this
query	finds	the	average	price	and	the	sum	of	year-to-date	sales,	grouped	by	type
and	publisher	ID:

USE	pubs
SELECT	type,	pub_id,	'avg'	=	AVG(price),	'sum'	=	sum(ytd_sales)
FROM	titles
GROUP	BY	type,	pub_id

Here	is	the	result	set:

type									pub_id	avg																				sum									
------------	------	----------------------	-----------	
business					0736				2.99																		18722							
psychology			0736			11.48																		9564								
mod_cook					0877			11.49																		24278							
psychology			0877			21.59																		375									
trad_cook				0877			15.96																		19566							
UNDECIDED				0877				NULL																		NULL						
business					1389			17.31																		12066							
popular_comp	1389			21.48																		12875							

(8	row(s)	affected)

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

GROUP	BY	and	the	WHERE	Clause
You	can	use	a	WHERE	clause	in	a	query	containing	a	GROUP	BY	clause.	Rows
not	meeting	the	conditions	in	the	WHERE	clause	are	eliminated	before	any
grouping	is	done.	For	example:

USE	pubs
SELECT	type,	AVG(price)
FROM	titles
WHERE	advance	>	$5000
GROUP	BY	type

Here	is	the	result	set:

type																																				
------------	--------------------------	
business					2.99																							
mod_cook					2.99																							
popular_comp	21.48																						
psychology			14.30																						
trad_cook				17.97																						

(5	row(s)	affected)

Only	rows	with	advances	greater	than	$5,000	are	included	in	the	groups	shown
in	the	query	results.

See	Also

SELECT

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Choosing	Rows	with	the	HAVING	Clause
The	HAVING	clause	sets	conditions	on	the	GROUP	BY	clause	similar	to	the
way	WHERE	interacts	with	SELECT.	The	WHERE	search	condition	is	applied
before	the	grouping	operation	occurs;	the	HAVING	search	condition	is	applied
after	the	grouping	operation	occurs.	The	HAVING	syntax	is	similar	to	the
WHERE	syntax,	except	HAVING	can	contain	aggregate	functions.	HAVING
clauses	can	reference	any	of	the	items	that	appear	in	the	select	list.

This	query	finds	publishers	whose	year-to-date	sales	are	greater	than	$40,000:

USE	pubs
SELECT	pub_id,	total	=	SUM(ytd_sales)
FROM	titles
GROUP	BY	pub_id
HAVING	SUM(ytd_sales)	>	40000

Here	is	the	result	set:

pub_id	total							
------	-----------	
0877			44219							

(1	row(s)	affected)

To	make	sure	there	are	at	least	six	books	involved	in	the	calculations	for	each
publisher,	this	example	uses	HAVING	COUNT(*)	>	5	to	eliminate	the
publishers	that	return	totals	for	fewer	than	six	books:

USE	pubs
SELECT	pub_id,	total	=	SUM(ytd_sales)
FROM	titles
GROUP	BY	pub_id
HAVING	COUNT(*)	>	5

Here	is	the	result	set:

pub_id	total							
------	-----------	
0877			44219							
1389			24941							

(2	row(s)	affected)

Understanding	the	correct	sequence	in	which	the	WHERE,	GROUP	BY,	and
HAVING	clauses	are	applied	helps	in	coding	efficient	queries:

The	WHERE	clause	is	used	to	filter	the	rows	that	result	from	the
operations	specified	in	the	FROM	clause.

The	GROUP	BY	clause	is	used	to	group	the	output	of	the	WHERE
clause.

The	HAVING	clause	is	used	to	filter	rows	from	the	grouped	result.

For	any	search	conditions	that	could	be	applied	either	before	or	after	the
grouping	operation,	it	is	more	efficient	to	specify	them	in	the	WHERE	clause.
This	reduces	the	number	of	rows	that	have	to	be	grouped.	The	only	search
conditions	that	should	be	specified	in	the	HAVING	clause	are	those	search
conditions	that	must	be	applied	after	the	grouping	operation	has	been	performed.

The	Microsoft®	SQL	Server™	2000	query	optimizer	can	deal	with	most	of	these
conditions.	If	the	query	optimizer	determines	that	a	HAVING	search	condition
can	be	applied	before	the	grouping	operation,	it	will	do	so.	The	query	optimizer
might	not	be	able	to	recognize	all	of	the	HAVING	search	conditions	that	can	be
applied	before	the	grouping	operation.	It	is	recommended	that	you	place	all	such
search	conditions	in	the	WHERE	clause	instead	of	the	HAVING	clause.

The	following	query	shows	HAVING	with	an	aggregate	function.	It	groups	the
rows	in	the	titles	table	by	type	and	eliminates	the	groups	that	include	only	one
book:

USE	pubs

SELECT	type
FROM	titles
GROUP	BY	type
HAVING	COUNT(*)	>	1

Here	is	the	result	set:

type

business
mod_cook
popular_comp
psychology
trad_cook

(5	row(s)	affected)

This	is	an	example	of	a	HAVING	clause	without	aggregate	functions.	It	groups
the	rows	in	titles	by	type	and	eliminates	those	types	that	do	not	start	with	the
letter	p.

USE	pubs
SELECT	type
FROM	titles
GROUP	BY	type
HAVING	type	LIKE	'p%'

Here	is	the	result	set:

type

popular_comp
psychology

(2	row(s)	affected)

When	multiple	conditions	are	included	in	HAVING,	they	are	combined	with
AND,	OR,	or	NOT.	The	following	example	shows	how	to	group	titles	by
publisher,	including	only	those	publishers	with	identification	numbers	greater
than	0800,	who	have	paid	more	than	$15,000	in	total	advances,	and	who	sell
books	for	an	average	of	less	than	$20.

SELECT	pub_id,	SUM(advance)	AS	AmountAdvanced,
							AVG(price)	AS	AveragePrice
FROM	pubs.dbo.titles
WHERE	pub_id	>	'0800'
GROUP	BY	pub_id
HAVING	SUM(advance)	>	$15000
			AND	AVG(price)	<	$20

ORDER	BY	can	be	used	to	order	the	output	of	a	GROUP	BY	clause.	This
example	shows	using	the	ORDER	BY	clause	to	define	the	order	in	which	the
rows	from	a	GROUP	BY	clause	are	returned:

SELECT	pub_id,	SUM(advance)	AS	AmountAdvanced,
							AVG(price)	AS	AveragePrice
FROM	pubs.dbo.titles
WHERE	pub_id	>	'0800'
		AND	price	>=	$5
GROUP	BY	pub_id
HAVING	SUM(advance)	>	$15000
			AND	AVG(price)	<	$20
ORDER	BY	pub_id	DESC

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

GROUP	BY	and	ALL
Transact-SQL	provides	the	ALL	keyword	in	the	GROUP	BY	clause.	ALL	is
meaningful	only	when	the	SELECT	statement	also	includes	a	WHERE	clause.

If	you	use	ALL,	the	query	results	include	all	groups	produced	by	the	GROUP
BY	clause,	even	if	some	of	the	groups	have	no	rows	that	meet	the	search
conditions.	Without	ALL,	a	SELECT	statement	that	includes	GROUP	BY	does
not	show	groups	for	which	no	rows	qualify.

Here	are	examples:

USE	pubs
SELECT	type,	AVG(price)
FROM	titles
WHERE	royalty	=	10
GROUP	BY	type

Here	is	the	result	set:

type																																				
------------	--------------------------	
business					17.31																						
popular_comp	20.00																						
psychology			14.14																						
trad_cook				17.97																						

(4	row(s)	affected)

USE	pubs
SELECT	type,	AVG(price)
FROM	titles
WHERE	royalty	=	10
GROUP	BY	ALL	type

Here	is	the	result	set:

type																																				
------------	--------------------------	
business					17.31																						
mod_cook					(null)																					
popular_comp	20.00																						
psychology			14.14																						
trad_cook				17.97																						
UNDECIDED				(null)																					

(6	row(s)	affected)

The	first	query	produces	groups	only	for	those	books	that	commanded	royalties
of	10	percent.	Because	no	modern	cookbooks	have	a	royalty	of	10	percent,	there
is	no	group	in	the	results	for	the	mod_cook	type.

The	second	query	produces	groups	for	all	types,	including	modern	cookbooks
and	UNDECIDED,	even	though	the	modern	cookbook	group	does	not	include
any	rows	that	meet	the	qualification	specified	in	the	WHERE	clause.

The	column	that	holds	the	aggregate	value	(the	average	price)	is	NULL	for
groups	that	lack	qualifying	rows.

See	Also

ALL

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

GROUP	BY	and	Null	Values
If	the	grouping	column	contains	a	null	value,	that	row	becomes	a	group	in	the
results.	If	the	grouping	column	contains	more	than	one	null	value,	the	null	values
are	put	into	a	single	group.	This	behavior	is	defined	in	the	SQL-92	standard.

The	royalty	column	in	the	titles	table	contains	some	null	values,	for	example:

SELECT	royalty,	AVG(price	*	2)	AS	AveragePrice
FROM	pubs.dbo.titles
GROUP	BY	royalty

Here	is	the	result	set:

royalty					AveragePrice															
-----------	--------------------------	
(null)						(null)																					
10										32.89																						
12										30.94																						
14										23.90																						
16										45.90																						
24										5.98																							

(6	row(s)	affected)

This	SELECT	statement	can	be	changed	to	remove	the	null	values	by	adding	a
WHERE	clause:

SELECT	royalty,	AVG(price	*	2)	AS	AveragePrice
FROM	pubs.dbo.titles
WHERE	royalty	IS	NOT	NULL
GROUP	BY	royalty

Accessing	and	Changing	Relational	Data

Combining	Results	with	UNION
The	UNION	operator	allows	you	to	combine	the	results	of	two	or	more	SELECT
statements	into	a	single	result	set.	The	result	sets	combined	using	UNION	must
all	have	the	same	structure.	They	must	have	the	same	number	of	columns,	and
the	corresponding	result	set	columns	must	have	compatible	data	types.	For	more
information,	see	Guidelines	for	Using	UNION.

UNION	is	specified	as:

select_statement	UNION	[ALL]	select_statement

For	example,	Table1	and	Table2	have	the	same	two-column	structure.

Table1 	 	 Table2 	

ColumnA ColumnB	 	 ColumnC ColumnD
char(4) int 	 char(4) int
------- --- 	 ------- ---
abc 1 	 ghi 3
def 2 	 jkl 4
ghi 3 	 mno 5

This	query	creates	a	UNION	between	the	tables:

SELECT	*	FROM	Table1
UNION
SELECT	*	FROM	Table2

Here	is	the	result	set:

ColumnA		ColumnB
-------		--------
abc						1
def						2
ghi						3

jkl						4
mno						5

The	result	set	column	names	of	a	UNION	are	the	same	as	the	column	names	in
the	result	set	of	the	first	SELECT	statement	in	the	UNION.	The	result	set
column	names	of	the	other	SELECT	statements	are	ignored.

By	default,	the	UNION	operator	removes	duplicate	rows	from	the	result	set.	If
you	use	ALL,	all	rows	are	included	in	the	results	and	duplicates	are	not	removed.

The	exact	results	of	a	UNION	operation	depend	on	the	collation	chosen	during
installation	and	the	ORDER	BY	clause.	For	more	information	about	the	effects
of	different	collations,	see	SQL	Server	Collation	Fundamentals.

Any	number	of	UNION	operators	can	appear	in	a	Transact-SQL	statement,	for
example:

SELECT	*	FROM	TableA
UNION
SELECT	*	FROM	TableB
UNION
SELECT	*	FROM	TableC
UNION
SELECT	*	FROM	TableD

By	default,	Microsoft®	SQL	Server™	2000	evaluates	a	statement	containing
UNION	operators	from	left	to	right.	Use	parentheses	to	specify	the	order	of
evaluation.	For	example,	the	following	statements	are	not	equivalent:

/*	First	statement.	*/
SELECT	*	FROM	TableA
UNION	ALL
(SELECT	*	FROM	TableB
			UNION
			SELECT	*	FROM	TableC
)
GO

JavaScript:hhobj_1.Click()

/*	Second	statement.	*/
(SELECT	*	FROM	TableA
	UNION	ALL
	SELECT	*	FROM	TableB
)
UNION
SELECT	*	FROM	TableC)
GO

In	the	first	statement,	duplicates	are	eliminated	in	the	union	between	TableB	and
TableC.	In	the	union	between	that	set	and	TableA,	duplicates	are	not	eliminated.
In	the	second	statement,	duplicates	are	included	in	the	union	between	TableA
and	TableB	but	are	eliminated	in	the	subsequent	union	with	TableC.	ALL	has	no
effect	on	the	final	result	of	this	expression.

When	UNION	is	used,	the	individual	SELECT	statements	cannot	have	their	own
ORDER	BY	or	COMPUTE	clauses.	There	can	be	only	one	ORDER	BY	or
COMPUTE	clause	after	the	last	SELECT	statement;	it	is	applied	to	the	final,
combined	result	set.	GROUP	BY	and	HAVING	can	be	specified	only	in	the
individual	SELECT	statements.

See	Also

UNION

JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Guidelines	when	Using	UNION
Follow	these	guidelines	when	using	UNION	operators:

All	select	lists	in	the	statements	being	combined	with	UNION	must
have	the	same	number	of	expressions	(column	names,	arithmetic
expressions,	aggregate	functions,	and	so	on).

Corresponding	columns	in	the	result	sets	being	combined	with	UNION,
or	any	subset	of	columns	used	in	individual	queries,	must	be	of	the
same	data	type,	have	an	implicit	data	conversion	possible	between	the
two	data	types,	or	have	an	explicit	conversion	supplied.	For	example,
UNION	is	not	possible	between	a	column	of	datetime	data	type	and
one	of	binary	data	type	unless	an	explicit	conversion	is	supplied,	while
UNION	is	possible	between	a	column	of	money	data	type	and	one	of
int	data	type	because	they	can	be	implicitly	converted.

Corresponding	result	set	columns	in	the	individual	statements	being
combined	with	UNION	must	occur	in	the	same	order	because	UNION
compares	the	columns	one-to-one	in	the	order	given	in	the	individual
queries.

Here	is	an	example.

table3 	 	 table4 	

a b c a b
int char(4) char(4) char(4) float
--- ------- ------- ------- -------
1 abc jkl jkl 1.000
2 def mno mno 5.000
3 ghi pqr 	 	

Execute	this	query:

SELECT	a,	b	FROM	table3
UNION	
SELECT	b,	a	FROM	table4

Here	is	the	result	set:

a										b
--------			-----
1.000000			abc
2.000000			def
3.000000			ghi
1.000000			jkl
5.000000			mno

When	different	data	types	are	combined	in	a	UNION	operation,	they	are
converted	using	the	rules	of	data	type	precedence.	In	the	preceding
example,	the	int	values	are	converted	to	float	because	float	has	a	higher
precedence	than	int.	For	more	information,	see	Data	Type	Precedence.

This	query	produces	an	error	message	because	the	data	types	of
corresponding	columns	are	not	compatible:

SELECT	b,	c	FROM	table3
UNION	
SELECT	a,	b	FROM	table4

The	column	names	in	the	table	resulting	from	UNION	are	taken	from
the	first	individual	query	in	the	UNION	statement.	To	refer	to	a	column
in	the	result	set	by	a	new	name	(for	example,	in	an	ORDER	BY	clause),
the	column	must	be	referred	to	that	way	in	the	first	SELECT:
SELECT	city	AS	Cities	FROM	stores_west
UNION	
SELECT	city	FROM	stores_east
ORDER	BY	city

JavaScript:hhobj_1.Click()

See	Also

UNION

JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	UNION	with	Other	Transact-SQL	Statements
Follow	these	guidelines	when	using	UNION	with	other	Transact-SQL
statements:

The	first	query	in	the	UNION	statement	can	contain	an	INTO	clause
that	creates	a	table	to	hold	the	final	result	set.	Only	the	first	query	can
use	an	INTO	clause.	If	it	appears	anywhere	else,	Microsoft®	SQL
Server™	2000	displays	an	error	message.	Also,	remember	that	if	the
select	into/bulkcopy	option	is	not	set,	SELECT	INTO	can	create	only
temporary	tables.	

ORDER	BY	and	COMPUTE	clauses	to	define	the	order	of	the	final
results	or	compute	summary	values	are	allowed	only	at	the	end	of	the
UNION	statement.	They	cannot	be	used	within	the	individual	queries
that	make	up	the	UNION	statement.

GROUP	BY	and	HAVING	clauses	can	be	used	within	individual
queries	only;	they	cannot	be	used	to	affect	the	final	result	set.

The	UNION	operator	can	be	used	within	an	INSERT	statement.

The	FOR	BROWSE	clause	cannot	be	used	in	statements	involving	the
UNION	operator.

See	Also

SELECT

UNION

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	Partitioned	Views
Partitioned	views	allow	the	data	in	a	large	table	to	be	split	into	smaller	member
tables.	The	data	is	partitioned	between	the	member	tables	based	on	ranges	of
data	values	in	one	of	the	columns.	The	data	ranges	for	each	member	table	are
defined	in	a	CHECK	constraint	specified	on	the	partitioning	column.	A	view	that
uses	UNION	ALL	to	combine	selects	of	all	the	member	tables	into	a	single	result
set	is	then	defined.	When	SELECT	statements	referencing	the	view	specify	a
search	condition	on	the	partition	column,	the	query	optimizer	uses	the	CHECK
constraint	definitions	to	determine	which	member	table	contains	the	rows.

For	example,	a	sales	table	that	records	sales	for	1998	has	been	partitioned	into
12	member	tables,	one	for	each	month.	Each	member	table	has	a	constraint
defined	on	the	OrderMonth	column:

CREATE	TABLE	May1998Sales
			(OrderID			INT						PRIMARY	KEY,
			CustomerID						INT									NOT	NULL,
			OrderDate						DATETIME						NULL
						CHECK	(DATEPART(yy,	OrderDate)	=	1998),
			OrderMonth						INT
						CHECK	(OrderMonth	=	5),
			DeliveryDate						DATETIME						NULL,
						CHECK	(DATEPART(mm,	OrderDate)	=	OrderMonth)
)

The	application	populating	May1998Sales	must	ensure	all	rows	have	5	in	the
OrderMonth	column	and	the	order	date	specifies	a	date	in	May,	1998.	This	is
enforced	by	the	constraints	defined	on	the	table.

A	view	is	then	defined	that	uses	UNION	ALL	to	select	the	data	from	all	12
member	tables	as	a	single	result	set:

CREATE	VIEW	Year1998Sales
AS
SELECT	*	FROM	Jan1998Sales

UNION	ALL
SELECT	*	FROM	Feb1998Sales
UNION	ALL
SELECT	*	FROM	Mar1998Sales
UNION	ALL
SELECT	*	FROM	Apr1998Sales
UNION	ALL
SELECT	*	FROM	May1998Sales
UNION	ALL
SELECT	*	FROM	Jun1998Sales
UNION	ALL
SELECT	*	FROM	Jul1998Sales
UNION	ALL
SELECT	*	FROM	Aug1998Sales
UNION	ALL
SELECT	*	FROM	Sep1998Sales
UNION	ALL
SELECT	*	FROM	Oct1998Sales
UNION	ALL
SELECT	*	FROM	Nov1998Sales
UNION	ALL
SELECT	*	FROM	Dec1998Sales

For	example,	this	SELECT	statement

SELECT	*
FROM	Year1998Sales
WHERE	OrderMonth	IN	(5,6)	AND	CustomerID	=	64892

The	SQL	Server	query	optimizer	recognizes	that	the	search	condition	in	this
SELECT	statement	references	only	rows	in	the	May1998Sales	and
Jun1998Sales	tables,	and	limits	its	search	to	those	tables.

CHECK	constraints	are	not	needed	for	the	partitioned	view	to	return	the	correct
results.	However,	if	the	CHECK	constraints	have	not	been	defined,	the	query

optimizer	must	search	all	the	tables	instead	of	only	those	that	cover	the	search
condition	on	the	partitioning	column.	Without	the	CHECK	constraints,	the	view
operates	like	any	other	view	with	UNION	ALL.	The	query	optimizer	cannot
make	any	assumptions	about	the	values	stored	in	different	tables	and	it	cannot
skip	searching	the	tables	that	participate	in	the	view	definition.

If	all	the	member	tables	referenced	by	a	partitioned	view	are	on	the	same	server,
the	view	is	a	local	partitioned	view.	If	the	member	tables	are	on	multiple	servers,
the	view	is	a	distributed	partitioned	view.	Distributed	partitioned	views	can	be
used	to	spread	the	database	processing	load	of	a	system	across	a	group	of
servers.

Partitioned	views	make	it	easier	to	maintain	the	member	tables	independently.
For	example,	at	the	end	of	a	period:

The	definition	of	the	partitioned	view	for	current	results	can	be	changed
to	add	the	newest	period	and	drop	the	oldest	period.

The	definition	of	the	partitioned	view	for	past	results	can	be	changed	to
add	the	period	just	dropped	from	the	current	results	view.	The	past
results	view	can	also	be	updated	to	remove	and	archive	the	oldest	period
it	covers.

When	you	insert	data	into	the	partitioned	views,	the	sp_executesql	system	stored
procedure	can	be	used	to	create	INSERT	statements	with	execution	plans	that
have	a	high	chance	of	being	reused	in	systems	with	many	concurrent	users.

See	Also

Creating	a	Partitioned	View

Resolving	Distributed	Partitioned	Views

Federated	SQL	Server	2000	Servers

ALTER	VIEW

SELECT

CREATE	VIEW

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

sp_executesql

JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Designing	Applications	to	Use	Federated	Database
Servers
Updatable	distributed	partitioned	views	support	having	groups	of	Microsoft®
SQL	Server™	2000	servers	cooperate	in	processing	the	database	workload	of	the
largest,	multi-tier	Web	sites.	While	each	server	is	administered	independently,
the	instances	of	SQL	Server	2000	on	each	server	use	distributed	partitioned
views	to	share	the	work.	A	group	of	autonomous	servers	that	cooperate	to	share
work	is	called	a	federation.

You	build	federated	database	servers	by	creating	databases	on	each	server,	and
then	partitioning	tables	across	the	databases.	Each	original	table	is	split	into	a
member	table	on	each	member	server.	Each	member	table	has	a	subset	of	the
rows	from	the	original	table;	the	original	table	is	partitioned	horizontally	across
the	member	tables.	When	designing	a	federated	database	system,	partition	all	the
tables	so	that	all	related	data	is	located	on	the	same	member	server.

One	result	of	partitioning	tables	across	a	set	of	federated	database	servers	is	a	set
of	data	routing	rules.	An	application	can	match	some	piece	of	data	it	can	infer
from	user	requests	against	the	data	routing	rules	to	determine	which	member
server	has	most	of	the	data	required	by	the	SQL	statements	the	application	must
generate	to	satisfy	the	user	request.	For	more	information,	see	Designing
Federated	Database	Servers.

In	a	multi-tier	Windows	DNA	architecture,	a	system	is	implemented	in	these
tiers:

Users	services	tier.	A	set	of	thin	clients	that	focus	on	managing	the
application	user	interface.	The	user	services	tier	calls	the	next	tier	to
perform	the	business	functions	needed	to	support	user	requests.

Business	services	tier.	A	set	of	COM+	components	that	encapsulate	the
business	logic	of	the	organization.	The	business	services	tier	uses	the
next	tier	for	any	permanent	data	storage	that	needs	to	be	done.

Data	services	tier.	A	set	of	components,	such	as	SQL	Server	databases,

JavaScript:hhobj_1.Click()

that	can	store	data	in	a	permanent	medium.	This	is	also	called	persisting
the	data.

In	Windows	DNA,	the	business	services	tier	is	designed	as	a	set	of	COM+
components	running	on	application	servers.	This	allows	Microsoft®	Windows®
2000	Network	Load	Balancing	to	distribute	the	user	requests	evenly	across	the
business	tier.	Because	any	user	request	can	be	processes	on	any	application
server,	the	business	components	must	have	some	mechanism	for	routing	the	SQL
statements	they	generate	to	the	appropriate	member	server.	The	business
components	must	be	able	to	match	some	piece	of	information	in	the	data
received	from	the	client	against	the	data	routing	rules	to	determine	what	member
server	should	process	the	request.

A	flexible	mechanism	for	implementing	data	routing	in	the	business	services	tier
is	store	the	routing	rules	in	a	persistent	store,	such	as	SQL	Server	2000	or
Windows	2000	Active	Directory,	and	having	the	business	components	retrieve
them	at	run	time.	You	can	code	a	COM+	component	that	will	match	keys	against
the	routing	rules	to	determine	which	member	server	would	most	efficiently
process	the	query.	This	COM+	routing	component	can	then	be	called	by	any
other	COM+	component	in	the	business	services	tier	that	needs	to	access	the
partitioned	data.	For	example,	in	a	system	accessing	customer	data	partitioned
on	customer	ID,	you	could:

Create	a	routing	rules	table	recording	which	keys	are	maintained	on
each	member	server.

Create	a	data	routing	business	component	that	takes	either	one	key
value	or	the	starting	and	ending	keys	of	a	range	of	key	values	as	input.
The	COM+	component	would	read	the	routing	rules	table,	compare	the
input	key	or	key	ranges	against	the	key	ranges	recorded	for	each
member	server,	and	then	return	the	name	of	the	member	server	having
the	best	match	to	the	calling	component	or	application.

Code	the	general	business	services	tier	components	or	applications	to
always	call	the	data	routing	component	when	executing	an	SQL
statement	referencing	the	partitioned	view.	The	business	component	will
use	the	server	name	returned	by	the	data	routing	component	to	select	the

database	connection	on	which	to	execute	the	SQL	statement.

This	method	requires	no	changes	to	application	code	if	the	partitioning	of	the
data	is	changed.	The	data	routing	rules	can	be	changed	while	the	applications	are
running.

Accessing	and	Changing	Relational	Data

Subquery	Fundamentals
A	subquery	is	a	SELECT	query	that	returns	a	single	value	and	is	nested	inside	a
SELECT,	INSERT,	UPDATE,	or	DELETE	statement,	or	inside	another
subquery.	A	subquery	can	be	used	anywhere	an	expression	is	allowed.	In	this
example	a	subquery	is	used	as	a	column	expression	named	MaxUnitPrice	in	a
SELECT	statement.

SELECT	Ord.OrderID,	Ord.OrderDate,
							(SELECT	MAX(OrdDet.UnitPrice)
								FROM	Northwind.dbo.[Order	Details]	AS	OrdDet
								WHERE	Ord.OrderID	=	OrdDet.OrderID)	AS	MaxUnitPrice
FROM	Northwind.dbo.Orders	AS	Ord

A	subquery	is	also	called	an	inner	query	or	inner	select,	while	the	statement
containing	a	subquery	is	also	called	an	outer	query	or	outer	select.

Many	Transact-SQL	statements	that	include	subqueries	can	be	alternatively
formulated	as	joins.	Other	questions	can	be	posed	only	with	subqueries.	In
Transact-SQL,	there	is	usually	no	performance	difference	between	a	statement
that	includes	a	subquery	and	a	semantically	equivalent	version	that	does	not.
However,	in	some	cases	where	existence	must	be	checked,	a	join	yields	better
performance.	Otherwise,	the	nested	query	must	be	processed	for	each	result	of
the	outer	query	to	ensure	elimination	of	duplicates.	In	such	cases,	a	join
approach	would	yield	better	results.	This	is	an	example	showing	both	a	subquery
SELECT	and	a	join	SELECT	that	return	the	same	result	set:

/*	SELECT	statement	built	using	a	subquery.	*/
SELECT	ProductName
FROM	Northwind.dbo.Products
WHERE	UnitPrice	=
						(SELECT	UnitPrice
							FROM	Northwind.dbo.Products
							WHERE	ProductName	=	'Sir	Rodney''s	Scones')

/*	SELECT	statement	built	using	a	join	that	returns
			the	same	result	set.	*/
SELECT	Prd1.ProductName
FROM	Northwind.dbo.Products	AS	Prd1
					JOIN	Northwind.dbo.Products	AS	Prd2
							ON	(Prd1.UnitPrice	=	Prd2.UnitPrice)
WHERE	Prd2.ProductName	=	'Sir	Rodney''s	Scones'

A	subquery	nested	in	the	outer	SELECT	statement	has	the	following
components:

A	regular	SELECT	query	including	the	regular	select	list	components.

A	regular	FROM	clause	including	one	or	more	table	or	view	names.

An	optional	WHERE	clause.

An	optional	GROUP	BY	clause.

An	optional	HAVING	clause.

The	SELECT	query	of	a	subquery	is	always	enclosed	in	parentheses.	It	cannot
include	a	COMPUTE	or	FOR	BROWSE	clause,	and	may	only	include	an
ORDER	BY	clause	when	a	TOP	clause	is	also	specified.

A	subquery	can	be	nested	inside	the	WHERE	or	HAVING	clause	of	an	outer
SELECT,	INSERT,	UPDATE,	or	DELETE	statement,	or	inside	another
subquery.	Up	to	32	levels	of	nesting	is	possible,	although	the	limit	varies	based
on	available	memory	and	the	complexity	of	other	expressions	in	the	query.
Individual	queries	may	not	support	nesting	up	to	32	levels.	A	subquery	can
appear	anywhere	an	expression	can	be	used,	if	it	returns	a	single	value.

If	a	table	appears	only	in	a	subquery	and	not	in	the	outer	query,	then	columns
from	that	table	cannot	be	included	in	the	output	(the	select	list	of	the	outer
query).

Statements	that	include	a	subquery	usually	take	one	of	these	formats:

WHERE	expression	[NOT]	IN	(subquery)

WHERE	expression	comparison_operator	[ANY	|	ALL]	(subquery)

WHERE	[NOT]	EXISTS	(subquery)

In	some	Transact-SQL	statements,	the	subquery	can	be	evaluated	as	if	it	were	an
independent	query.	Conceptually,	the	subquery	results	are	substituted	into	the
outer	query	(although	this	is	not	necessarily	how	Microsoft®	SQL	Server™
actually	processes	Transact-SQL	statements	with	subqueries).

There	are	three	basic	types	of	subqueries.	Those	that:

Operate	on	lists	introduced	with	IN,	or	those	that	a	comparison	operator
modified	by	ANY	or	ALL.

Are	introduced	with	an	unmodified	comparison	operator	and	must
return	a	single	value.

Are	existence	tests	introduced	with	EXISTS.

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Subquery	Rules
A	subquery	is	subject	to	a	number	of	restrictions:

The	select	list	of	a	subquery	introduced	with	a	comparison	operator	can
include	only	one	expression	or	column	name	(except	that	EXISTS	and
IN	operate	on	SELECT	*	or	a	list,	respectively).

If	the	WHERE	clause	of	an	outer	query	includes	a	column	name,	it	must
be	join-compatible	with	the	column	in	the	subquery	select	list.

The	ntext,	text	and	image	data	types	are	not	allowed	in	the	select	list	of
subqueries.

Because	they	must	return	a	single	value,	subqueries	introduced	by	an
unmodified	comparison	operator	(one	not	followed	by	the	keyword
ANY	or	ALL)	cannot	include	GROUP	BY	and	HAVING	clauses.

The	DISTINCT	keyword	cannot	be	used	with	subqueries	that	include
GROUP	BY.

The	COMPUTE	and	INTO	clauses	cannot	be	specified.

ORDER	BY	can	only	be	specified	if	TOP	is	also	specified.

A	view	created	with	a	subquery	cannot	be	updated.

The	select	list	of	a	subquery	introduced	with	EXISTS	by	convention
consists	of	an	asterisk	(*)	instead	of	a	single	column	name.	The	rules	for
a	subquery	introduced	with	EXISTS	are	identical	to	those	for	a	standard
select	list	because	a	subquery	introduced	with	EXISTS	constitutes	an

existence	test	and	returns	TRUE	or	FALSE,	rather	than	data.

Accessing	and	Changing	Relational	Data

Qualifying	Column	Names	in	Subqueries
In	the	following	example,	the	pub_id	column	in	the	WHERE	clause	of	the	outer
query	is	implicitly	qualified	by	the	table	name	in	the	outer	query's	FROM	clause,
publishers.	The	reference	to	pub_id	in	the	select	list	of	the	subquery	is	qualified
by	the	subquery's	FROM	clause,	that	is,	by	the	titles	table.

USE	pubs
SELECT	pub_name
FROM	publishers
WHERE	pub_id	NOT	IN
			(SELECT	pub_id
			FROM	titles
			WHERE	type	=	'business'

The	general	rule	is	that	column	names	in	a	statement	are	implicitly	qualified	by
the	table	referenced	in	the	FROM	clause	at	the	same	level.

Here's	what	the	query	looks	like	with	these	implicit	assumptions	specified:

USE	pubs
SELECT	pub_name
FROM	publishers
WHERE	publishers.pub_id	NOT	IN
			(SELECT	titles.pub_id
			FROM	titles
			WHERE	type	=	'business')

It	is	never	wrong	to	state	the	table	name	explicitly,	and	it	is	always	possible	to
override	implicit	assumptions	about	table	names	with	explicit	qualifications.

See	Also

FROM

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Subquery	Types
Subqueries	can	be	specified	in	many	places:

With	aliases

With	IN	or	NOT	IN

In	UPDATE,	DELETE,	and	INSERT	statements

With	comparison	operators

With	ANY,	SOME,	or	ALL

With	EXISTS	or	NOT	EXISTS

In	place	of	an	expression

Accessing	and	Changing	Relational	Data

Subqueries	with	Aliases
Many	statements	in	which	the	subquery	and	the	outer	query	refer	to	the	same
table	can	be	stated	as	self-joins	(joining	a	table	to	itself).	For	example,	you	can
find	authors	who	live	in	the	same	city	as	Livia	Karsen	by	using	a	subquery:

USE	pubs
SELECT	au_lname,	au_fname,	city
FROM	authors
WHERE	city	IN
			(SELECT	city
			FROM	authors
			WHERE	au_fname	=	'Livia'
						AND	au_lname	=	'Karsen')

Here	is	the	result	set:

au_lname																																	au_fname													city							
--	--------------------	----------	
Green																																				Marjorie													Oakland				
Straight																																	Dean																	Oakland				
Stringer																																	Dirk																	Oakland				
MacFeather																															Stearns														Oakland				
Karsen																																			Livia																Oakland				

(5	row(s)	affected)

Or	you	can	use	a	self-join:

USE	pubs
SELECT	au1.au_lname,	au1.au_fname,	au1.city
FROM	authors	AS	au1	INNER	JOIN	authors	AS	au2	ON	au1.city	=	au2.city
			AND	au2.au_lname	=	'Karsen'

			AND	au2.au_fname	=	'Livia'

Table	aliases	are	required	because	the	table	being	joined	to	itself	appears	in	two
different	roles.	Aliases	can	also	be	used	in	nested	queries	that	refer	to	the	same
table	in	an	inner	and	outer	query.

USE	pubs
SELECT	au1.au_lname,	au1.au_fname,	au1.city
FROM	authors	AS	au1
WHERE	au1.city	in
			(SELECT	au2.city
			FROM	authors	AS	au2
			WHERE	au2.au_fname	=	'Livia'
						AND	au2.au_lname	=	'Karsen')

Explicit	aliases	make	it	clear	that	reference	to	authors	in	the	subquery	does	not
mean	the	same	thing	as	the	reference	in	the	outer	query.

Accessing	and	Changing	Relational	Data

Subqueries	with	IN
The	result	of	a	subquery	introduced	with	IN	(or	with	NOT	IN)	is	a	list	of	zero	or
more	values.	After	the	subquery	returns	results,	the	outer	query	makes	use	of
them.

This	query	finds	the	names	of	the	publishers	who	have	published	business
books.

USE	pubs
SELECT	pub_name
FROM	publishers
WHERE	pub_id	IN
			(SELECT	pub_id
			FROM	titles
			WHERE	type	=	'business')

Here	is	the	result	set:

pub_name																																	
--	
Algodata	Infosystems																					
New	Moon	Books																											

(2	row(s)	affected)

This	statement	is	evaluated	in	two	steps.	First,	the	inner	query	returns	the
identification	numbers	of	the	publishers	that	have	published	business	books
(1389	and	0736).	Second,	these	values	are	substituted	into	the	outer	query,	which
finds	the	names	that	go	with	the	identification	numbers	in	publishers.

USE	pubs
SELECT	pub_name
FROM	publishers

WHERE	pub_id	in	('1389',	'0736')

One	difference	in	using	a	join	rather	than	a	subquery	for	this	and	similar
problems	is	that	the	join	lets	you	show	columns	from	more	than	one	table	in	the
result.	For	example,	if	you	want	to	include	the	titles	of	the	business	books	in	the
result,	you	must	use	a	join	version.

USE	pubs
SELECT	pub_name,	title
FROM	publishers	INNER	JOIN	titles	ON	publishers.pub_id	=	titles.pub_id
			AND	type	=	'business'

Here	is	the	result	set:

pub_name															title																																													
----------------------	---	
Algodata	Infosystems			The	Busy	Executive's	Database	Guide															
Algodata	Infosystems			Cooking	with	Computers:	Surreptitious	Balance				
																					Sheets																													
New	Moon	Books									You	Can	Combat	Computer	Stress!																			
Algodata	Infosystems			Straight	Talk	About	Computers																					

(4	row(s)	affected)

This	query	shows	the	join	produces	four	rows,	not	two	as	in	the	preceding
subquery.

Here	is	another	example	of	a	query	that	can	be	formulated	with	either	a	subquery
or	a	join.	This	query	finds	the	names	of	all	second	authors	who	live	in	California
and	who	receive	less	than	30	percent	of	the	royalties	for	a	book.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	state	=	'CA'
			AND	au_id	IN
						(SELECT	au_id

						FROM	titleauthor
						WHERE	royaltyper	<	30
									AND	au_ord	=	2)

Here	is	the	result	set:

au_lname																																	au_fname													
--	--------------------	
MacFeather																															Stearns														

(1	row(s)	affected)

The	inner	query	is	evaluated,	producing	the	ID	numbers	of	the	three	authors	who
meet	the	subquery	qualifications.	The	outer	query	is	then	evaluated.	Notice	that
you	can	include	more	than	one	condition	in	the	WHERE	clause	of	both	the	inner
and	the	outer	query.

Using	a	join,	the	same	query	is	expressed	like	this:

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors	INNER	JOIN	titleauthor	ON	authors.au_id	=	titleauthor.au_id
WHERE	state	=	'CA'
			AND	royaltyper	<	30
			AND	au_ord	=	2

A	join	can	always	be	expressed	as	a	subquery.	A	subquery	can	often,	but	not
always,	be	expressed	as	a	join.	This	is	because	joins	are	symmetric:	you	can	join
table	A	to	B	in	either	order	and	get	the	same	answer.	The	same	is	not	true	if	a
subquery	is	involved.

Accessing	and	Changing	Relational	Data

Subqueries	with	NOT	IN
Subqueries	introduced	with	the	keyword	NOT	IN	also	return	a	list	of	zero	or
more	values.

This	query	finds	the	names	of	the	publishers	who	have	not	published	business
books.

USE	pubs
SELECT	pub_name
FROM	publishers
WHERE	pub_id	NOT	IN
			(SELECT	pub_id
			FROM	titles
			WHERE	type	=	'business')

The	query	is	exactly	the	same	as	the	one	in	Subqueries	with	IN,	except	that	NOT
IN	is	substituted	for	IN.	However,	this	statement	cannot	be	converted	to	a	join.
The	analogous	not-equal	join	has	a	different	meaning:	It	finds	the	names	of
publishers	who	have	published	some	book	that	is	not	a	business	book.	For
information	about	interpreting	the	meaning	of	joins	not	based	on	equality,	see
Joining	Three	or	More	Tables.

Accessing	and	Changing	Relational	Data

Subqueries	in	UPDATE,	DELETE,	and	INSERT
Statements
Subqueries	can	be	nested	in	UPDATE,	DELETE,	and	INSERT	statements,	as
well	as	in	SELECT	statements.

The	following	query	doubles	the	price	of	all	books	published	by	New	Moon
Books.	The	query	updates	the	titles	table;	its	subquery	references	the	publishers
table.

UPDATE	titles
SET	price	=	price	*	2
WHERE	pub_id	IN
			(SELECT	pub_id
			FROM	publishers
			WHERE	pub_name	=	'New	Moon	Books')

Here's	an	equivalent	UPDATE	statement	using	a	join:

UPDATE	titles
SET	price	=	price	*	2
FROM	titles	INNER	JOIN	publishers	ON	titles.pub_id	=	publishers.pub_id
			AND	pub_name	=	'New	Moon	Books'

You	can	remove	all	sales	records	of	business	books	with	this	nested	query:

DELETE	sales
WHERE	title_id	IN
			(SELECT	title_id
			FROM	titles
			WHERE	type	=	'business')

Here's	an	equivalent	DELETE	statement	using	a	join:

DELETE	sales

FROM	sales	INNER	JOIN	titles	ON	sales.title_id	=	titles.title_id
			AND	type	=	'business'

Accessing	and	Changing	Relational	Data

Subqueries	with	Comparison	Operators
Subqueries	can	be	introduced	with	one	of	the	comparison	operators	(=,	<	>,	>,	>
=,	<,	!	>,	!	<,	or	<	=).

A	subquery	introduced	with	an	unmodified	comparison	operator	(a	comparison
operator	not	followed	by	ANY	or	ALL)	must	return	a	single	value	rather	than	a
list	of	values,	like	subqueries	introduced	with	IN.	If	such	a	subquery	returns
more	than	one	value,	Microsoft®	SQL	Server™	displays	an	error	message.

To	use	a	subquery	introduced	with	an	unmodified	comparison	operator,	you	must
be	familiar	enough	with	your	data	and	with	the	nature	of	the	problem	to	know
that	the	subquery	will	return	exactly	one	value.

For	example,	if	you	assume	each	publisher	is	located	in	only	one	city,	and	you
want	to	find	the	names	of	authors	who	live	in	the	city	in	which	Algodata
Infosystems	is	located,	you	can	write	a	statement	with	a	subquery	introduced
with	the	simple	=	comparison	operator.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	city	=
			(SELECT	city
			FROM	publishers
			WHERE	pub_name	=	'Algodata	Infosystems')

Here	is	the	result	set:

au_lname						au_fname
--------						--------
Carson						Cheryl
Bennet						Abraham

(2	row(s)	affected)

If,	however,	Algodata	Infosystems	was	located	in	multiple	cities,	then	an	error
message	would	result.	Instead	of	the	=	comparison	operator,	an	IN	formulation
could	be	used	(=	ANY	also	works).

Subqueries	introduced	with	unmodified	comparison	operators	often	include
aggregate	functions,	because	these	return	a	single	value.	For	example,	this
statement	finds	the	names	of	all	books	priced	higher	than	the	current	minimum
price.

USE	pubs
SELECT	DISTINCT	title
FROM	titles
WHERE	price	>
			(SELECT	MIN(price)
			FROM	titles)

Here	is	the	result	set:

title
--
But	Is	It	User	Friendly?
Computer	Phobic	and	Non-Phobic	Individuals:	Behavior	Variations
Cooking	with	Computers:	Surreptitious	Balance	Sheets
Emotional	Security:	A	New	Algorithm
Fifty	Years	in	Buckingham	Palace	Kitchens
Is	Anger	the	Enemy?
Life	Without	Fear
Onions,	Leeks,	and	Garlic:	Cooking	Secrets	of	the	Mediterranean
Prolonged	Data	Deprivation:	Four	Case	Studies
Secrets	of	Silicon	Valley
Silicon	Valley	Gastronomic	Treats
Straight	Talk	About	Computers
Sushi,	Anyone?
The	Busy	Executive's	Database	Guide

(14	row(s)	affected)

Because	subqueries	introduced	with	unmodified	comparison	operators	must
return	a	single	value,	they	cannot	include	GROUP	BY	or	HAVING	clauses
unless	you	know	the	GROUP	BY	or	HAVING	clause	itself	returns	a	single
value.	For	example,	this	query	finds	the	books	priced	higher	than	the	lowest
priced	book	that	has	a	type	'trad_cook'.

USE	pubs
SELECT	DISTINCT	title
FROM	titles
WHERE	price	>
			(SELECT	MIN(price)
			FROM	titles
			GROUP	BY	type
			HAVING	type	=	'trad_cook')

Here	is	the	result	set:

title																																																																			
--
But	Is	It	User	Friendly?																																																
Computer	Phobic	AND	Non-Phobic	Individuals:	Behavior	Variations									
Onions,	Leeks,	and	Garlic:	Cooking	Secrets	of	the	Mediterranean									
Prolonged	Data	Deprivation:	Four	Case	Studies																											
Secrets	of	Silicon	Valley																																															
Silicon	Valley	Gastronomic	Treats																																							
Straight	Talk	About	Computers																																											
Sushi,	Anyone?																																																										
The	Busy	Executive's	Database	Guide																																					

(9	row(s)	affected)

Accessing	and	Changing	Relational	Data

Comparison	Operators	Modified	by	ANY,	SOME,	or
ALL
Comparison	operators	that	introduce	a	subquery	can	be	modified	by	the
keywords	ALL	or	ANY.	SOME	is	an	SQL-92	standard	equivalent	for	ANY.

Subqueries	introduced	with	a	modified	comparison	operator	return	a	list	of	zero
or	more	values	and	can	include	a	GROUP	BY	or	HAVING	clause.	These
subqueries	can	be	restated	with	EXISTS.

Using	the	>	comparison	operator	as	an	example,	>ALL	means	greater	than	every
value--in	other	words,	greater	than	the	maximum	value.	For	example,	>ALL	(1,
2,	3)	means	greater	than	3.	>ANY	means	greater	than	at	least	one	value,	that	is,
greater	than	the	minimum.	So	>ANY	(1,	2,	3)	means	greater	than	1.

For	a	row	in	a	subquery	with	>ALL	to	satisfy	the	condition	specified	in	the	outer
query,	the	value	in	the	column	introducing	the	subquery	must	be	greater	than
each	value	in	the	list	of	values	returned	by	the	subquery.

Similarly,	>ANY	means	that	for	a	row	to	satisfy	the	condition	specified	in	the
outer	query,	the	value	in	the	column	that	introduces	the	subquery	must	be	greater
than	at	least	one	of	the	values	in	the	list	of	values	returned	by	the	subquery.

Note		This	example	can	be	run	many	different	ways,	as	long	as	the	inner	query
returns	only	one	value.

USE	pubs
--	Option	1	using	MAX	in	the	inner	query
SELECT	title
FROM	titles
HAVING	MAX(advance)	>	ALL
WHERE	advance	>	ALL
			(
				SELECT	MAX(advance)
				FROM	publishers	INNER	JOIN	titles	ON	
						titles.pub_id	=	publishers.pub_id

				WHERE	pub_name	=	'Algodata	Infosystems'
)

--	Option	2	using	GROUP	BY	and	HAVING	and	no	ALL	
USE	pubs
SELECT	title
FROM	titles
GROUP	BY	title
HAVING	MAX(advance)	>	
			(
				SELECT	MAX(advance)
				FROM	publishers	INNER	JOIN	titles	ON	
						titles.pub_id	=	publishers.pub_id
				WHERE	pub_name	=	'Algodata	Infosystems'
)

The	following	query	provides	an	example	of	a	subquery	introduced	with	a
comparison	operator	modified	by	ANY.	It	finds	the	titles	that	received	an
advance	larger	than	the	minimum	advance	amount	paid	by	Algodata
Infosystems.

USE	pubs
SELECT	title
FROM	titles
WHERE	advance	>	ANY
			(SELECT	advance
			FROM	publishers	INNER	JOIN	titles
			ON	titles.pub_id	=	publishers.pub_id
						AND	pub_name	=	'Algodata	Infosystems')

Here	is	the	result	set:

title

You	Can	Combat	Computer	Stress!

The	Gourmet	Microwave
But	Is	It	User	Friendly?
Secrets	of	Silicon	Valley
Computer	Phobic	and	Non-Phobic	Individuals:	Behavior	Variations
Life	Without	Fear
Onions,	Leeks,	and	Garlic:	Cooking	Secrets	of	the	Mediterranean
Sushi,	Anyone?

(8	row(s)	affected)

For	each	title,	the	inner	query	finds	a	list	of	advance	amounts	paid	by	Algodata.
The	outer	query	looks	at	all	values	in	the	list	and	determines	whether	the	title
currently	being	considered	has	commanded	an	advance	larger	than	any	of	those
amounts.	In	other	words,	it	finds	titles	with	advances	as	large	or	larger	than	the
lowest	value	paid	by	Algodata.

If	the	subquery	does	not	return	any	values,	the	entire	query	fails	to	return	any
values.

The	=ANY	operator	is	equivalent	to	IN.	For	example,	to	find	authors	who	live	in
the	same	city	as	a	publisher,	you	can	use	either	IN	or	=ANY.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	city	IN
			(SELECT	city
			FROM	publishers)

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	city	=	ANY
			(SELECT	city
			FROM	publishers)

Here	is	the	result	set	for	either	query:

au_lname									au_fname
--------									---------
Carson									Cheryl
Bennet									Abraham

(2	row(s)	affected)

The	<	>ANY	operator,	however,	differs	from	NOT	IN:	<	>ANY	means	not	=	a,
or	not	=	b,	or	not	=	c.	NOT	IN	means	not	=	a,	and	not	=	b,	and	not	=	c.	<>ALL
means	the	same	as	NOT	IN.

For	example,	this	query	finds	the	authors	who	live	in	a	city	in	which	no
publisher	is	located.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	city	<>	ANY
			(SELECT	city
			FROM	publishers)

Here	is	the	result	set:

au_lname																																	au_fname													
--	--------------------	
White																																				Johnson														
Green																																				Marjorie													
Carson																																			Cheryl															
O'Leary																																		Michael														
Straight																																	Dean																	
Smith																																				Meander														
Bennet																																			Abraham														
Della	Buena																														Ann																		
Gringlesby																															Burt																	

Locksley																																	Charlene													
Greene																																			Morningstar										
Blotchet-Halls																											Reginald													
Yokomoto																																	Akiko																
del	Covello																														Innes																
DeFrance																																	Michel															
Stringer																																	Dirk																	
MacFeather																															Stearns														
Karsen																																			Livia																
Panteley																																	Sylvia															
Hunter																																			Sheryl															
McBadden																																	Heather														
Ringer																																			Anne																	
Ringer																																			Albert															

(23	row(s)	affected)

The	results	include	all	23	authors	because	every	author	lives	in	a	city	in	which
one	or	more	of	the	publishers	is	not	located.	The	inner	query	finds	all	the	cities
in	which	publishers	are	located,	and	then,	for	each	city,	the	outer	query	finds	the
authors	who	don't	live	there.

However,	when	you	use	NOT	IN	in	this	query,	the	results	include	all	the	authors
except	Cheryl	Carson	and	Abraham	Bennet,	who	live	in	Berkeley,	where
Algodata	Infosystems	is	located.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	city	NOT	IN
			(SELECT	city
			FROM	publishers)

Here	is	the	result	set:

au_lname																																	au_fname													

--	--------------------	
White																																				Johnson														
Green																																				Marjorie													
O'Leary																																		Michael														
Straight																																	Dean																	
Smith																																				Meander														
Della	Buena																														Ann																		
Gringlesby																															Burt																	
Locksley																																	Charlene													
Greene																																			Morningstar										
Blotchet-Halls																											Reginald													
Yokomoto																																	Akiko																
del	Covello																														Innes																
DeFrance																																	Michel															
Stringer																																	Dirk																	
MacFeather																															Stearns														
Karsen																																			Livia																
Panteley																																	Sylvia															
Hunter																																			Sheryl															
McBadden																																	Heather														
Ringer																																			Anne																	
Ringer																																			Albert															

(21	row(s)	affected)

You	can	get	the	same	results	with	the	<	>ALL	operator,	which	is	equivalent	to
NOT	IN.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	city	<>	ALL
			(SELECT	city
			FROM	publishers)

Accessing	and	Changing	Relational	Data

Subqueries	with	EXISTS
When	a	subquery	is	introduced	with	the	keyword	EXISTS,	it	functions	as	an
existence	test.	The	WHERE	clause	of	the	outer	query	tests	for	the	existence	of
rows	returned	by	the	subquery.	The	subquery	does	not	actually	produce	any	data;
it	returns	a	value	of	TRUE	or	FALSE.

A	subquery	introduced	with	EXISTS	has	the	following	syntax:

WHERE	[NOT]	EXISTS	(subquery)

This	query	finds	the	names	of	all	publishers	who	publish	business	books:

USE	pubs
SELECT	pub_name
FROM	publishers
WHERE	EXISTS
			(SELECT	*
			FROM	titles
			WHERE	pub_id	=	publishers.pub_id
						AND	type	=	'business')

Here	is	the	result	set:

pub_name

New	Moon	Books
Algodata	Infosystems

(2	row(s)	affected)

To	determine	the	results	of	this	query,	consider	each	publisher's	name	in	turn.
Does	this	value	cause	the	subquery	to	return	at	least	one	row?	In	other	words,
does	it	cause	the	existence	test	to	evaluate	to	TRUE?

In	this	case,	the	first	publisher	name	is	Algodata	Infosystems,	with	identification

number	1389.	Are	there	any	rows	in	the	titles	table	in	which	pub_id	is	1389	and
type	is	business?	If	so,	Algodata	Infosystems	should	be	one	of	the	values
selected.	The	same	process	is	repeated	for	each	of	the	other	publisher	names.

Notice	that	subqueries	introduced	with	EXISTS	are	a	bit	different	from	other
subqueries	in	these	ways:

The	keyword	EXISTS	is	not	preceded	by	a	column	name,	constant,	or
other	expression.

The	select	list	of	a	subquery	introduced	by	EXISTS	almost	always
consists	of	an	asterisk	(*).	There	is	no	reason	to	list	column	names
because	you	are	simply	testing	for	the	existence	of	rows	that	meet	the
conditions	specified	in	the	subquery.

The	EXISTS	keyword	is	important	because	often	there	is	no	alternative,
nonsubquery	formulation.	Although	some	queries	formulated	with	EXISTS
cannot	be	expressed	any	other	way,	all	queries	that	use	IN	or	a	comparison
operator	modified	by	ANY	or	ALL	can	be	expressed	with	EXISTS.

Examples	of	queries	using	EXISTS	and	equivalent	alternatives	follow.

Here	are	two	ways	to	find	authors	who	live	in	the	same	city	as	a	publisher:

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	city	=ANY
			(SELECT	city
			FROM	publishers)
--	Or
USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	exists
			(SELECT	*
			FROM	publishers

			WHERE	authors.city	=	publishers.city)

Here	is	the	result	set	for	either	query:

au_lname									au_fname
--------									--------
Carson									Cheryl
Bennet									Abraham

(2	row(s)	affected)

These	two	queries	find	titles	of	books	published	by	any	publisher	located	in	a
city	that	begins	with	the	letter	B:

USE	pubs
SELECT	title
FROM	titles
WHERE	pub_id	IN
			(SELECT	pub_id
			FROM	publishers
			WHERE	city	LIKE	'B%')
--	Or
USE	pubs
SELECT	title
FROM	titles
WHERE	EXISTS
			(SELECT	*
			FROM	publishers
			WHERE	pub_id	=	titles.pub_id
						AND	city	LIKE	'B%')

Here	is	the	result	set	for	either	query:

title
--

The	Busy	Executive's	Database	Guide
Cooking	with	Computers:	Surreptitious	Balance	Sheets
You	Can	Combat	Computer	Stress!
Straight	Talk	About	Computers
But	Is	It	User	Friendly?
Secrets	of	Silicon	Valley
Net	Etiquette
Is	Anger	the	Enemy?
Life	Without	Fear
Prolonged	Data	Deprivation:	Four	Case	Studies
Emotional	Security:	A	New	Algorithm

(11	row(s)	affected)

See	Also

EXISTS

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Subqueries	with	NOT	EXISTS
NOT	EXISTS	works	like	EXISTS,	except	the	WHERE	clause	in	which	it	is	used
is	satisfied	if	no	rows	are	returned	by	the	subquery.

For	example,	to	find	the	names	of	publishers	who	do	not	publish	business	books:

USE	pubs
SELECT	pub_name
FROM	publishers
WHERE	NOT	EXISTS
			(SELECT	*
			FROM	titles
			WHERE	pub_id	=	publishers.pub_id
						AND	type	=	'business')

Here	is	the	result	set:

pub_name																																	
--	
Binnet	&	Hardley																									
Five	Lakes	Publishing																				
Ramona	Publishers																								
GGG&G																																				
Scootney	Books																											
Lucerne	Publishing																							

(6	row(s)	affected)

This	query	finds	the	titles	for	which	there	have	been	no	sales.

USE	pubs
SELECT	title
FROM	titles

WHERE	NOT	EXISTS
			(SELECT	title_id
			FROM	sales
			WHERE	title_id	=	titles.title_id)

Here	is	the	result	set:

title

The	Psychology	of	Computer	Cooking
Net	Etiquette

(2	row(s)	affected)

See	Also

EXISTS

NOT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	EXISTS	and	NOT	EXISTS	to	Find	Intersection
and	Difference
Subqueries	introduced	with	EXISTS	and	NOT	EXISTS	can	be	used	for	two	set-
theory	operations:	intersection	and	difference.	The	intersection	of	two	sets
contains	all	elements	that	belong	to	both	of	the	original	sets.	The	difference
contains	elements	that	belong	only	to	the	first	of	the	two	sets.

The	intersection	of	authors	and	publishers	over	the	city	column	is	the	set	of
cities	in	which	both	an	author	and	a	publisher	are	located.

USE	pubs
SELECT	DISTINCT	city
FROM	authors
WHERE	EXISTS
			(SELECT	*
			FROM	publishers
			WHERE	authors.city	=	publishers.city)

Here	is	the	result	set:

city

Berkeley

(1	row(s)	affected)

Of	course,	this	query	could	be	written	as	a	simple	join.

USE	pubs
SELECT	DISTINCT	authors.city
FROM	authors	INNER	JOIN	publishers
ON	authors.city	=	publishers.city

The	difference	between	authors	and	publishers	over	the	city	column	is	the	set
of	cities	where	an	author	lives	but	no	publisher	is	located,	that	is,	all	the	cities
except	Berkeley.

USE	pubs
SELECT	DISTINCT	city
FROM	authors
WHERE	NOT	EXISTS
			(SELECT	*
			FROM	publishers
			WHERE	authors.city	=	publishers.city)

This	query	could	also	be	written	as:

USE	pubs
SELECT	DISTINCT	city
FROM	authors
WHERE	city	NOT	IN
			(SELECT	city	
			FROM	publishers)

Accessing	and	Changing	Relational	Data

Subqueries	Used	in	Place	of	an	Expression
In	Transact-SQL,	a	subquery	can	be	substituted	anywhere	an	expression	can	be
used	in	SELECT,	UPDATE,	INSERT,	and	DELETE	statements,	except	in	an
ORDER	BY	list.

The	following	example	illustrates	how	you	might	use	this	enhancement.	This
query	finds	the	price	of	a	popular	computer	book,	the	average	price	of	all	books,
and	the	difference	between	the	price	of	the	book	and	the	average	price	of	all
books.

USE	pubs
SELECT	title,	price,
(SELECT	AVG(price)	FROM	titles)	AS	average,
price-(SELECT	AVG(price)	FROM	titles)	AS	difference
FROM	titles
WHERE	type='popular_comp'

Here	is	the	result	set:

title																					price										average								difference							
------------------------		--------------	--------------	----------------	
But	Is	It	User	Friendly?		22.95										14.77										8.18													
Secrets	of	Silicon	Valley	20.00										14.77										5.23													
Net	Etiquette													(null)									14.77										(null)											

(3	row(s)	affected)

Accessing	and	Changing	Relational	Data

Multiple	Levels	of	Nesting
A	subquery	can	itself	include	one	or	more	subqueries.	Any	number	of	subqueries
can	be	nested	in	a	statement.

This	query	finds	the	names	of	authors	who	have	participated	in	writing	at	least
one	popular	computer	book.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	au_id	IN
			(SELECT	au_id
			FROM	titleauthor
			WHERE	title_id	IN
						(SELECT	title_id
						FROM	titles
						WHERE	type	=	'popular_comp'))

Here	is	the	result	set:

au_lname																																	au_fname													
--	--------------------	
Carson																																			Cheryl															
Dull																																					Ann																		
Locksley																																	Charlene													
Hunter																																			Sheryl															

(4	row(s)	affected)

The	innermost	query	returns	the	title	ID	numbers	PC1035,	PC8888,	and	PC9999.
The	query	at	the	next	higher	level	is	evaluated	with	these	title	IDs	and	returns
the	author	ID	numbers.	Finally,	the	outer	query	uses	the	author	IDs	to	find	the
names	of	the	authors.

You	can	also	express	this	query	as	a	join:

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors	INNER	JOIN	titleauthor	ON	authors.au_id	=	titleauthor.au_id
			JOIN	titles	ON	titleauthor.title_id	=	titles.title_id
WHERE	type	=	'popular_comp'

Accessing	and	Changing	Relational	Data

Correlated	Subqueries
Many	queries	can	be	evaluated	by	executing	the	subquery	once	and	substituting
the	resulting	value	or	values	into	the	WHERE	clause	of	the	outer	query.	In
queries	that	include	a	correlated	subquery	(also	known	as	a	repeating	subquery),
the	subquery	depends	on	the	outer	query	for	its	values.	This	means	that	the
subquery	is	executed	repeatedly,	once	for	each	row	that	might	be	selected	by	the
outer	query.

This	query	finds	the	names	of	all	authors	who	earn	100	percent	of	the	shared
royalty	(royaltyper)	on	a	book.

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	100	IN
			(SELECT	royaltyper
			FROM	titleauthor
			WHERE	titleauthor.au_ID	=	authors.au_id)

Here	is	the	result	set:

au_lname																																	au_fname													
--	--------------------	
White																																				Johnson														
Green																																				Marjorie													
Carson																																			Cheryl															
Straight																																	Dean																	
Locksley																																	Charlene													
Blotchet-Halls																											Reginald													
del	Castillo																													Innes																
Panteley																																	Sylvia															
Ringer																																			Albert															

(9	row(s)	affected)

Unlike	most	of	the	subqueries	shown	earlier,	the	subquery	in	this	statement
cannot	be	resolved	independently	of	the	main	query.	It	needs	a	value	for
authors.au_id,	but	this	value	is	a	variable.	It	changes	as	Microsoft®	SQL
Server™	examines	different	rows	of	the	authors	table.

That	is	exactly	how	this	query	is	evaluated:	SQL	Server	considers	each	row	of
the	authors	table	for	inclusion	in	the	results	by	substituting	the	value	in	each
row	into	the	inner	query.	For	example,	if	SQL	Server	first	examines	the	row	for
Cheryl	Carson,	the	variable	authors.au_id	takes	the	value	238-95-7766,	which
SQL	Server	substitutes	into	the	inner	query.

USE	pubs
SELECT	royaltyper
FROM	titleauthor
WHERE	au_id	=	'238-95-7766'

The	result	is	100,	so	the	outer	query	evaluates	to:

USE	pubs
SELECT	au_lname,	au_fname
FROM	authors
WHERE	100	IN	(100)

Because	this	is	true,	the	row	for	Cheryl	Carson	is	included	in	the	results.	Go
through	the	same	procedure	with	the	row	for	Abraham	Bennet;	you'll	see	that
this	row	is	not	included	in	the	results.

Accessing	and	Changing	Relational	Data

Correlated	Subqueries	with	Aliases
Correlated	subqueries	can	be	used	in	operations	such	as	selecting	data	from	a
table	referenced	in	the	outer	query.	In	this	case	a	table	alias	(also	called	a
correlation	name)	must	be	used	to	specify	unambiguously	which	table	reference
to	use.	For	example,	you	can	use	a	correlated	subquery	to	find	the	types	of	books
published	by	more	than	one	publisher.	Aliases	are	required	to	distinguish	the	two
different	roles	in	which	the	titles	table	appears.

USE	pubs
SELECT	DISTINCT	t1.type
FROM	titles	t1
WHERE	t1.type	IN
			(SELECT	t2.type
			FROM	titles	t2
			WHERE	t1.pub_id	<>	t2.pub_id)

Here	is	the	result	set:

type

business
psychology

(2	row(s)	affected)

The	preceding	nested	query	is	equivalent	to	this	self-join:

USE	pubs
SELECT	DISTINCT	t1.type
FROM	titles	t1	INNER	JOIN	titles	t2	ON	t1.type	=	t2.type	
			AND	t1.pub_id	<>	t2.pub_id

Accessing	and	Changing	Relational	Data

Correlated	Subqueries	with	Comparison	Operators
Use	a	correlated	subquery	with	a	comparison	operator	to	find	sales	where	the
quantity	is	less	than	the	average	quantity	for	sales	of	that	title.

USE	pubs
SELECT	s1.ord_num,	s1.title_id,	s1.qty
FROM	sales	s1
WHERE	s1.qty	<
			(SELECT	AVG(s2.qty)
			FROM	sales	s2
			WHERE	s2.title_id	=	s1.title_id)

Here	is	the	result	set:

ord_num														title_id	qty				
--------------------	--------	------	
6871																	BU1032			5						
722a																	PS2091			3						
D4482																PS2091			10					
N914008														PS2091			20					
423LL922													MC3021			15					

(5	row(s)	affected)

The	outer	query	selects	the	rows	of	sales	(that	is,	of	s1)	one	by	one.	The
subquery	calculates	the	average	quantity	for	each	sale	being	considered	for
selection	in	the	outer	query.	For	each	possible	value	of	s1,	Microsoft®	SQL
Server™	evaluates	the	subquery	and	puts	the	record	being	considered	in	the
results	if	the	quantity	is	less	than	the	calculated	average.

Sometimes	a	correlated	subquery	mimics	a	GROUP	BY	clause.	This	example
finds	all	titles	that	have	a	price	greater	than	the	average	for	books	of	its	type.

USE	pubs
SELECT	t1.type,	t1.title
FROM	titles	t1
WHERE	t1.price	>
			(SELECT	AVG(t2.price)
			FROM	titles	t2
			WHERE	t1.type	=	t2.type)

Here	is	the	result	set:

type									title																																																							
------------	---	
business					The	Busy	Executive's	Database	Guide																									
business					Straight	Talk	About	Computers																															
mod_cook					Silicon	Valley	Gastronomic	Treats																											
popular_comp	But	Is	It	User	Friendly?																																				
psychology			Computer	Phobic	AND	Non-Phobic	Individuals:	Behavior	
												Variations																		
psychology			Prolonged	Data	Deprivation:	Four	Case	Studies															
trad_cook				Onions,	Leeks,	and	Garlic:	Cooking	Secrets	of	the	
												Mediterranean																		

(7	row(s)	affected)

For	each	possible	value	of	t1,	SQL	Server	evaluates	the	subquery	and	includes
the	row	in	the	results	if	the	price	value	of	that	row	is	greater	than	the	calculated
average.	It	is	not	necessary	to	group	by	type	explicitly,	because	the	rows	for
which	average	price	is	calculated	are	restricted	by	the	WHERE	clause	in	the
subquery.

Accessing	and	Changing	Relational	Data

Correlated	Subqueries	in	a	HAVING	Clause
A	correlated	subquery	can	also	be	used	in	the	HAVING	clause	of	an	outer	query.
This	construction	can	be	used	to	find	the	types	of	books	for	which	the	maximum
advance	is	more	than	twice	the	average	within	a	given	group.

In	this	case,	the	subquery	is	evaluated	once	for	each	group	defined	in	the	outer
query	(once	for	each	type	of	book).

USE	pubs
SELECT	t1.type
FROM	titles	t1
GROUP	BY	t1.type
HAVING	MAX(t1.advance)	>=ALL
			(SELECT	2	*	AVG(t2.advance)
			FROM	titles	t2
			WHERE	t1.type	=	t2.type)

Here	is	the	result	set:

type

mod_cook

(1	row(s)	affected)

Accessing	and	Changing	Relational	Data

Conditional	Data	Processing	Using	CASE
The	CASE	function	is	used	to	evaluate	several	conditions	and	return	a	single
value	for	each	condition.	A	common	use	of	the	CASE	function	is	to	replace
codes	or	abbreviations	with	more	readable	values.	The	following	query	uses	the
CASE	function	to	rename	book	categories	so	that	they	are	more	understandable.

USE	pubs
SELECT
			CASE	type
						WHEN	'popular_comp'	THEN	'Popular	Computing'
						WHEN	'mod_cook'	THEN	'Modern	Cooking'
						WHEN	'business'	THEN	'Business'
						WHEN	'psychology'	THEN	'Psychology'
						WHEN	'trad_cook'	THEN	'Traditional	Cooking'
						ELSE	'Not	yet	categorized'
			END	AS	Category,	
CONVERT(varchar(30),	title)	AS	"Shortened	Title",	
price	AS	Price
FROM	titles
WHERE	price	IS	NOT	NULL
ORDER	BY	1

Here	is	the	result	set:

category												shortened	title																Price			
-------------------	------------------------------	-------	
Business												Cooking	with	Computers:	Surrep	11.95			
Business												Straight	Talk	About	Computers		19.99			
Business												The	Busy	Executive's	Database		19.99			
Business												You	Can	Combat	Computer	Stress	2.99				
Modern	Cooking						Silicon	Valley	Gastronomic	Tre	19.99			
Modern	Cooking						The	Gourmet	Microwave										2.99				
Popular	Computing			But	Is	It	User	Friendly?							22.95			

Popular	Computing			Secrets	of	Silicon	Valley						20.00			
Psychology										Computer	Phobic	AND	Non-Phobic	21.59			
Psychology										Emotional	Security:	A	New	Algo	7.99				
Psychology										Is	Anger	the	Enemy?												10.95			
Psychology										Life	Without	Fear														7.00				
Psychology										Prolonged	Data	Deprivation:	Fo	19.99			
Traditional	Cooking	Fifty	Years	in	Buckingham	Pala	11.95			
Traditional	Cooking	Onions,	Leeks,	and	Garlic:	Coo	20.95			
Traditional	Cooking	Sushi,	Anyone?																	14.99			

(16	row(s)	affected)

Another	use	of	CASE	is	to	categorize	data.	The	following	query	uses	the	CASE
function	to	categorize	prices.

SELECT
			CASE	
						WHEN	price	IS	NULL	THEN	'Not	yet	priced'
						WHEN	price	<	10	THEN	'Very	Reasonable	Title'
						WHEN	price	>=	10	and	price	<	20	THEN	'Coffee	Table	Title'
						ELSE	'Expensive	book!'
			END	AS	"Price	Category",
CONVERT(varchar(20),	title)	AS	"Shortened	Title"
FROM	pubs.dbo.titles
ORDER	BY	price

Here	is	the	result	set:

Price	Category								Shortened	Title						
---------------------	--------------------	
Not	yet	priced								The	Psychology	of	Co	
Not	yet	priced								Net	Etiquette								
Very	Reasonable	Title	You	Can	Combat	Compu	
Very	Reasonable	Title	The	Gourmet	Microwav	
Very	Reasonable	Title	Life	Without	Fear				

Very	Reasonable	Title	Emotional	Security:		
Coffee	Table	Title				Is	Anger	the	Enemy?		
Coffee	Table	Title				Cooking	with	Compute	
Coffee	Table	Title				Fifty	Years	in	Bucki	
Coffee	Table	Title				Sushi,	Anyone?							
Coffee	Table	Title				The	Busy	Executive's	
Coffee	Table	Title				Straight	Talk	About		
Coffee	Table	Title				Silicon	Valley	Gastr	
Coffee	Table	Title				Prolonged	Data	Depri	
Expensive	book!							Secrets	of	Silicon	V	
Expensive	book!							Onions,	Leeks,	and	G	
Expensive	book!							Computer	Phobic	AND		
Expensive	book!							But	Is	It	User	Frien	

(18	row(s)	affected)

See	Also

CASE

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Summarizing	Data
Producing	summary	reports	of	aggregated	transaction	data	for	decision	support
systems	can	be	a	complex	and	resource-intensive	operation.	Microsoft®	SQL
Server™	2000	provides	two	flexible	and	powerful	components	for	building	SQL
Server	2000	Analysis	Services.	These	components	are	the	main	tools
programmers	should	use	in	performing	multidimensional	analysis	of	SQL	Server
data:

Data	Transformation	Services	(DTS)

DTS	supports	extracting	transaction	data	and	transforming	it	into
summary	aggregates	in	a	data	warehouse	or	data	mart.	For	more
information,	see	DTS	Overview.

Microsoft	SQL	Server	Analysis	Services

Analysis	Services	organizes	data	from	a	data	warehouse	into
multidimensional	cubes	with	precalculated	summary	information	to
provide	rapid	answers	to	complex	analytical	queries.	PivotTable®
Service	provides	client	access	to	multidimensional	data.	Analysis
Services	also	provides	a	set	of	wizards	for	defining	the
multidimensional	structures	used	in	the	Analysis	processing,	and	a
Microsoft	Management	Console	snap-in	for	administering	the	Analysis
structures.	Applications	can	then	use	either	the	OLE	DB	for	Analysis
API	or	the	Microsoft	ActiveX®	Data	Objects	(Multidimensional)	(ADO
MD)	API	to	analyze	the	Analysis	data.	For	more	information,	see
Analysis	Services	Overview.

Using	Transact-SQL	for	Simple	Summary	Reports

Applications	generating	simple	summary	reports	can	use	these	Transact-SQL
elements:

The	CUBE	or	ROLLUP	operators,	which	are	both	part	of	the	GROUP
BY	clause	of	the	SELECT	statement.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

The	COMPUTE	or	COMPUTE	BY	operators,	which	are	also	associated
with	GROUP	BY.

These	operators	generate	result	sets	that	contain	both	detail	rows	for	each	item	in
the	result	set	and	summary	rows	for	each	group	showing	the	aggregate	totals	for
that	group.	The	GROUP	BY	clause	can	be	used	to	generate	results	that	contain
aggregates	for	each	group,	but	no	detail	rows.

It	is	recommended	that	applications	use	Analysis	Services	instead	of	CUBE,
ROLLUP,	COMPUTE,	or	COMPUTE	BY.	CUBE	and	ROLLUP	should	be
reserved	for	environments	that	do	not	have	access	to	OLE	DB	or	ADO,	such	as
scripts	or	stored	procedures.

COMPUTE	and	COMPUTE	BY	are	supported	for	backward	compatibility.	The
ROLLUP	operator	is	preferred	over	either	COMPUTE	or	COMPUTE	BY.	The
summary	values	generated	by	COMPUTE	or	COMPUTE	BY	are	returned	as
separate	result	sets	interleaved	with	the	result	sets	returning	the	detail	rows	for
each	group,	or	a	result	set	containing	the	totals	appended	after	the	main	result
set.	Handling	these	multiple	result	sets	increases	the	complexity	of	the	code	in	an
application.	Neither	COMPUTE	nor	COMPUTE	BY	are	supported	with	server
cursors,	and	ROLLUP	is.	CUBE	and	ROLLUP	generate	a	single	result	set
containing	embedded	subtotal	and	total	rows.	The	query	optimizer	can	also
sometimes	generate	more	efficient	execution	plans	for	ROLLUP	than	it	can	for
COMPUTE	and	COMPUTE	BY.

When	GROUP	BY	is	used	without	these	operators,	it	returns	a	single	result	set
with	one	row	per	group	containing	the	aggregate	subtotals	for	the	group.	There
are	no	detail	rows	in	the	result	set.

Accessing	and	Changing	Relational	Data

Summarizing	Data	Using	CUBE
The	CUBE	operator	generates	a	result	set	that	is	a	multidimensional	cube.	A
multidimensional	cube	is	an	expansion	of	fact	data,	or	data	that	records
individual	events.	The	expansion	is	based	on	columns	that	the	user	wants	to
analyze.	These	columns	are	called	dimensions.	The	cube	is	a	result	set
containing	a	cross	tabulation	of	all	the	possible	combinations	of	the	dimensions.

The	CUBE	operator	is	specified	in	the	GROUP	BY	clause	of	a	SELECT
statement.	The	select	list	contains	the	dimension	columns	and	aggregate	function
expressions.	The	GROUP	BY	specifies	the	dimension	columns	and	the	keywords
WITH	CUBE.	The	result	set	contains	all	possible	combinations	of	the	values	in
the	dimension	columns,	along	with	the	aggregate	values	from	the	underlying
rows	that	match	that	combination	of	dimension	values.

For	example,	a	simple	table	Inventory	contains:

Item																	Color																Quantity																			
--------------------	--------------------	--------------------------	
Table																Blue																	124																								
Table																Red																		223																								
Chair																Blue																	101																								
Chair																Red																		210																								

This	query	returns	a	result	set	that	contains	the	Quantity	subtotal	for	all	possible
combinations	of	Item	and	Color:

SELECT	Item,	Color,	SUM(Quantity)	AS	QtySum
FROM	Inventory
GROUP	BY	Item,	Color	WITH	CUBE

Here	is	the	result	set:

Item																	Color																QtySum																					
--------------------	--------------------	--------------------------	
Chair																Blue																	101.00																					

Chair																Red																		210.00																					
Chair																(null)															311.00																					
Table																Blue																	124.00																					
Table																Red																		223.00																					
Table																(null)															347.00																					
(null)															(null)															658.00																					
(null)															Blue																	225.00																					
(null)															Red																		433.00																					

The	following	rows	from	the	result	set	are	of	special	interest:

Chair																(null)															311.00																					

This	row	reports	a	subtotal	for	all	rows	having	the	value	Chair	in	the	Item
dimension.	The	value	NULL	is	returned	for	the	Color	dimension	to	show	that
aggregate	reported	by	the	row	includes	rows	with	any	value	of	the	Color
dimension.

Table																(null)															347.00																					

This	row	is	similar,	but	reports	the	subtotal	for	all	rows	having	Table	in	the	Item
dimension.

(null)															(null)															658.00																					

This	row	reports	the	grand	total	for	the	cube.	Both	the	Item	and	Color
dimensions	have	the	value	NULL	showing	that	all	values	of	both	dimensions	are
summarized	in	the	row.

(null)															Blue																	225.00																					
(null)															Red																		433.00																					

These	two	rows	report	the	subtotals	for	the	Color	dimension.	Both	have	NULL
in	the	Item	dimension	to	show	that	the	aggregate	data	came	from	rows	having
any	value	for	the	Item	dimension.

Using	GROUPING	to	Distinguish	Null	Values

The	null	values	generated	by	the	CUBE	operation	present	a	problem:	How	can	a
NULL	generated	by	the	CUBE	operation	be	distinguished	from	a	NULL
returned	in	the	actual	data?	This	is	achieved	using	the	GROUPING	function.
The	GROUPING	function	returns	0,	if	the	column	value	came	from	the	fact
data,	and	1	if	the	column	value	is	a	NULL	generated	by	the	CUBE	operation.	In
a	CUBE	operation,	a	generated	NULL	represents	all	values.	The	SELECT
statement	can	be	written	to	use	the	GROUPING	function	to	substitute	the	string
ALL	in	place	of	any	generated	NULL.	Because	a	NULL	from	the	fact	data
indicates	the	data	value	is	unknown,	the	SELECT	can	also	be	coded	to	return	the
string	UNKNOWN	in	place	of	any	NULL	from	the	fact	data.	For	example:

SELECT	CASE	WHEN	(GROUPING(Item)	=	1)	THEN	'ALL'
												ELSE	ISNULL(Item,	'UNKNOWN')
							END	AS	Item,
							CASE	WHEN	(GROUPING(Color)	=	1)	THEN	'ALL'
												ELSE	ISNULL(Color,	'UNKNOWN')
							END	AS	Color,
							SUM(Quantity)	AS	QtySum
FROM	Inventory
GROUP	BY	Item,	Color	WITH	CUBE

Multidimensional	Cubes
The	CUBE	operator	can	be	used	to	generate	n-dimensional	cubes,	or	cubes	with
any	number	of	dimensions.	A	single	dimension	cube	can	be	used	to	generate	a
total,	for	example:

SELECT	CASE	WHEN	(GROUPING(Item)	=	1)	THEN	'ALL'
												ELSE	ISNULL(Item,	'UNKNOWN')
							END	AS	Item,
							SUM(Quantity)	AS	QtySum
FROM	Inventory
GROUP	BY	Item	WITH	CUBE
GO

This	SELECT	statement	returns	a	result	set	showing	both	the	subtotals	for	each

value	of	Item	and	the	grand	total	for	all	values	of	Item:

Item																	QtySum																					
--------------------	--------------------------	
Chair																311.00																					
Table																347.00																					
ALL																		658.00																					

SELECT	statements	that	contain	a	CUBE	with	many	dimensions	can	generate
large	result	sets,	because	these	statements	generate	rows	for	all	combinations	of
the	values	in	all	the	dimensions.	These	large	result	sets	may	contain	too	much
data	to	be	easily	read	and	understood.	One	solution	to	this	problem	is	to	put	the
SELECT	statement	into	a	view:

CREATE	VIEW	InvCube	AS
SELECT	CASE	WHEN	(GROUPING(Item)	=	1)	THEN	'ALL'
												ELSE	ISNULL(Item,	'UNKNOWN')
							END	AS	Item,
							CASE	WHEN	(GROUPING(Color)	=	1)	THEN	'ALL'
												ELSE	ISNULL(Color,	'UNKNOWN')
							END	AS	Color,
							SUM(Quantity)	AS	QtySum
FROM	Inventory
GROUP	BY	Item,	Color	WITH	CUBE

The	view	can	then	be	used	to	query	only	the	dimension	values	of	interest:

SELECT	*
FROM	InvCube
WHERE	Item	=	'Chair'
		AND	Color	=	'ALL'

Item																	Color																QtySum																					
--------------------	--------------------	--------------------------	
Chair																ALL																		311.00																					

(1	row(s)	affected)

See	Also

SELECT

Summarizing	Data	Using	ROLLUP

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Summarizing	Data	Using	ROLLUP
The	ROLLUP	operator	is	useful	in	generating	reports	that	contain	subtotals	and
totals.	The	ROLLUP	operator	generates	a	result	set	that	is	similar	to	the	result
sets	generated	by	the	CUBE	operator.	For	more	information,	see	Summarizing
Data	Using	CUBE.

The	differences	between	CUBE	and	ROLLUP	are:

CUBE	generates	a	result	set	showing	aggregates	for	all	combinations	of
values	in	the	selected	columns.

ROLLUP	generates	a	result	set	showing	aggregates	for	a	hierarchy	of
values	in	the	selected	columns.

For	example,	a	simple	table	Inventory	contains:

Item																	Color																Quantity																			
--------------------	--------------------	--------------------------	
Table																Blue																	124																								
Table																Red																		223																								
Chair																Blue																	101																								
Chair																Red																		210																								

This	query	generates	a	subtotal	report:

SELECT	CASE	WHEN	(GROUPING(Item)	=	1)	THEN	'ALL'
												ELSE	ISNULL(Item,	'UNKNOWN')
							END	AS	Item,
							CASE	WHEN	(GROUPING(Color)	=	1)	THEN	'ALL'
												ELSE	ISNULL(Color,	'UNKNOWN')
							END	AS	Color,
							SUM(Quantity)	AS	QtySum
FROM	Inventory
GROUP	BY	Item,	Color	WITH	ROLLUP

Item																	Color																QtySum																					
--------------------	--------------------	--------------------------	
Chair																Blue																	101.00																					
Chair																Red																		210.00																					
Chair																ALL																		311.00																					
Table																Blue																	124.00																					
Table																Red																		223.00																					
Table																ALL																		347.00																					
ALL																		ALL																		658.00																					

(7	row(s)	affected)

If	the	ROLLUP	keyword	in	the	query	is	changed	to	CUBE,	the	CUBE	result	set
is	the	same,	except	these	two	additional	rows	are	returned	at	the	end:

ALL																		Blue																	225.00																					
ALL																		Red																		433.00																					

The	CUBE	operation	generated	rows	for	possible	combinations	of	values	from
both	Item	and	Color.	For	example,	not	only	does	CUBE	report	all	possible
combinations	of	Color	values	combined	with	the	Item	value	Chair	(Red,	Blue,
and	Red	+	Blue),	it	also	reports	all	possible	combinations	of	Item	values
combined	with	the	Color	value	Red	(Chair,	Table,	and	Chair	+	Table).

For	each	value	in	the	columns	on	the	right	in	the	GROUP	BY	clause,	the
ROLLUP	operation	does	not	report	all	possible	combinations	of	values	from	the
column	(or	columns)	on	the	left.	For	example,	ROLLUP	does	not	report	all	the
possible	combinations	of	Item	values	for	each	Color	value.

The	result	set	of	a	ROLLUP	operation	has	functionality	similar	to	that	returned
by	a	COMPUTE	BY;	however,	ROLLUP	has	these	advantages:

ROLLUP	returns	a	single	result	set;	COMPUTE	BY	returns	multiple
result	sets	that	increase	the	complexity	of	application	code.

ROLLUP	can	be	used	in	a	server	cursor;	COMPUTE	BY	cannot.

The	query	optimizer	can	sometimes	generate	more	efficient	execution
plans	for	ROLLUP	than	it	can	for	COMPUTE	BY.

See	Also

SELECT

Summarizing	Data	Using	COMPUTE	and	COMPUTE	BY

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Summarizing	Data	Using	COMPUTE	and
COMPUTE	BY
The	COMPUTE	and	COMPUTE	BY	clauses	are	provided	for	backward
compatibility.	Instead,	use	these	components:

Microsoft®	SQL	Server™	2000	Analysis	Services	in	conjunction	with
OLE	DB	for	Analysis	Services	or	Microsoft	ActiveX®	Data	Objects
Multidimensional	(ADO	MD).	For	more	information,	see	Microsoft
SQL	Server™	2000	Analysis	Services.	

The	ROLLUP	operator.	For	more	information,	see	Summarizing	Data
Using	ROLLUP.

A	COMPUTE	BY	clause	allows	you	to	see	both	detail	and	summary	rows	with
one	SELECT	statement.	You	can	calculate	summary	values	for	subgroups,	or	a
summary	value	for	the	entire	result	set.

The	COMPUTE	clause	takes	the	following	information:

The	optional	BY	keyword,	which	calculates	the	specified	row	aggregate
on	a	per	column	basis.

A	row	aggregate	function	name;	for	example,	SUM,	AVG,	MIN,	MAX,
or	COUNT.

A	column	to	perform	the	row	aggregate	function	upon.

Results	Sets	Generated	by	COMPUTE

The	summary	values	generated	by	COMPUTE	appear	as	separate	result	sets	in
the	query	results.	The	results	of	a	query	that	includes	a	COMPUTE	clause	are
like	a	control-break	report,	which	is	a	report	whose	summary	values	are
controlled	by	the	groupings,	or	breaks,	that	you	specify.	You	can	produce
summary	values	for	groups,	and	you	can	calculate	more	than	one	aggregate

function	for	the	same	group.

When	COMPUTE	is	specified	with	the	optional	BY	clause,	there	are	two	result
sets	for	each	group	that	qualifies	for	the	SELECT:

The	first	result	set	for	each	group	has	the	set	of	details	rows	containing
the	select	list	information	for	that	group.

The	second	result	set	for	each	group	has	one	row	containing	the
subtotals	of	the	aggregate	functions	specified	in	the	COMPUTE	clause
for	that	group.

When	COMPUTE	is	specified	without	the	optional	BY	clause,	there	are	two
result	sets	for	the	SELECT:

The	first	result	set	for	each	group	has	all	of	the	detail	rows	containing
the	select	list	information.

The	second	result	set	has	one	row	containing	the	totals	of	the	aggregate
functions	specified	in	the	COMPUTE	clause.

Examples	Using	COMPUTE

This	SELECT	statement	uses	a	simple	COMPUTE	clause	to	produce	a	grand
total	of	the	sum	of	the	price	and	advances	from	the	titles	table:

USE	pubs
SELECT	type,	price,	advance
FROM	titles
ORDER	BY	type
COMPUTE	SUM(price),	SUM(advance)

This	query	adds	the	optional	BY	keyword	to	the	COMPUTE	clause	to	produce
subtotals	for	each	group:

USE	pubs
SELECT	type,	price,	advance

FROM	titles
ORDER	BY	type
COMPUTE	SUM(price),	SUM(advance)	BY	type

The	results	of	this	SELECT	statement	are	returned	in	12	result	sets,	2	result	sets
for	each	of	the	6	groups.	The	first	result	set	for	each	group	has	a	set	of	rows
containing	the	information	called	for	in	the	select	list.	The	second	result	set	for
each	group	contains	the	subtotals	of	the	two	SUM	functions	in	the	COMPUTE
clause.

Note		Some	utilities,	such	as	osql,	display	multiple	subtotal	or	total	aggregate
summaries	in	a	way	that	may	lead	users	to	assume	that	each	subtotal	is	a
separate	row	in	a	result	set.	This	is	due	to	how	the	utility	formats	the	output;	the
subtotal	or	total	aggregates	are	returned	in	one	row.	Other	applications,	such	as
SQL	Query	Analyzer,	format	multiple	aggregates	on	the	same	line.

Comparing	COMPUTE	to	GROUP	BY
To	summarize	the	differences	between	COMPUTE	and	GROUP	BY:

GROUP	BY	produces	a	single	result	set.	There	is	one	row	for	each
group	containing	only	the	grouping	columns	and	aggregate	functions
showing	the	subaggregate	for	that	group.	The	select	list	can	contain
only	the	grouping	columns	and	aggregate	functions.

COMPUTE	produces	multiple	result	sets.	One	type	of	result	set
contains	the	detail	rows	for	each	group	containing	the	expressions	from
the	select	list.	The	other	type	of	result	set	contains	the	subaggregate	for
a	group,	or	the	total	aggregate	for	the	SELECT	statement.	The	select	list
can	contain	expressions	other	than	the	grouping	columns	or	aggregate
functions.	The	aggregate	functions	are	specified	in	the	COMPUTE
clause,	not	in	the	select	list.

This	query	uses	GROUP	BY	and	aggregate	functions;	it	returns	one	result	set
having	one	row	per	group	containing	the	aggregate	subtotals	for	that	group:

USE	pubs
SELECT	type,	SUM(price),	SUM(advance)

FROM	titles
GROUP	BY	type

Note		You	cannot	include	ntext,	text,	or	image	data	types	in	a	COMPUTE	or
COMPUTE	BY	clause.

See	Also

Query	Fundamentals

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Error	Handling
Errors	raised	in	Microsoft®	SQL	Server™	2000	have	several	attributes:

Error	number.

Each	error	condition	has	a	unique	error	number.

Error	message	string.

The	error	message	gives	diagnostic	information	about	the	cause	of	the
error.	Many	error	messages	have	substitution	variables	in	which
information,	such	as	the	name	of	the	object	generating	the	error,	is
placed.	Every	error	number	has	a	unique	error	message.

Severity.

The	severity	indicates	how	serious	the	error	is.	Errors	with	a	low
severity,	such	as	1	or	2,	are	information	messages	or	low-level
warnings.	Errors	with	a	high	severity	indicate	problems	that	should	be
addressed	as	soon	as	possible.

State	code.

Some	error	codes	can	be	raised	at	multiple	points	in	the	source	code	for
SQL	Server.	For	example,	an	"1105"	error	can	be	raised	for	several
different	conditions.	Each	place	the	error	code	is	raised	assigns	a	unique
state	code.	A	Microsoft	support	engineer	can	use	the	state	code	from	an
error	to	find	the	location	in	the	source	code	where	that	error	code	is
being	raised,	which	may	provide	additional	ideas	on	how	to	diagnose
the	problem.

Procedure	name.

If	the	error	occurred	in	a	stored	procedure,	the	name	of	the	stored
procedure	may	be	available.

Line	number.

The	line	number	indicates	which	statement	in	a	stored	procedure
generated	the	error.

All	of	the	SQL	Server	errors	are	stored	in	the	system	table
master.dbo.sysmessages.	User-defined	messages	can	also	be	stored	in
sysmessages.	The	RAISERROR	statement	can	then	be	used	to	return	these	user-
defined	errors	to	an	application	if	necessary.

All	the	database	APIs,	such	as	ADO,	OLE	DB,	ODBC,	DB-Library,	and
Embedded	SQL,	report	the	basic	error	attributes:	the	error	number	and	message
string.	However,	there	are	variations	in	how	many	of	the	other	error	attributes
each	database	can	report.

Other	SQL	Server	components	can	also	raise	errors:

The	OLE	DB	provider,	ODBC	driver,	and	DB-Library	dynamic-link
library	raise	errors	of	their	own.	The	format	of	these	errors	is	consistent
with	the	formats	defined	in	the	API	specifications.

The	Net-Libraries	raise	errors	of	their	own.

Open	Data	Services	raises	errors	in	its	own	format.

The	SQL	Server	wizards,	applications,	and	utilities	such	as	the	Index
Tuning	Wizard,	SQL	Server	Enterprise	Manager,	and	the	osql	utility	can
raise	their	own	errors.

Embedded	SQL	can	raise	SQL-92	errors.

See	Also

sysmessages

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Handling	Errors	and	Messages	in	Applications
Errors	raised	either	by	Microsoft®	SQL	Server™	2000	or	the	RAISERROR
statement	are	not	part	of	a	result	set.	Errors	are	returned	to	applications	through
an	error	handling	mechanism	separate	from	the	processing	of	result	sets.

Each	database	API	has	some	set	of	functions,	interfaces,	methods,	objects	or
structures	through	which	they	return	errors	and	messages.	Each	API	function	or
method	typically	returns	a	status	code	indicating	the	success	of	that	operation.	If
the	status	is	anything	other	than	success,	the	application	can	call	the	error
functions,	methods,	or	objects	to	retrieve	the	error	information.

SQL	Server	actually	has	two	mechanisms	for	returning	error	information:

Errors

The	errors	from	sysmessages	with	a	severity	of	11	or	higher.

Any	RAISERROR	statement	with	a	severity	of	11	or	higher.

Messages

The	output	of	the	PRINT	statement.

The	output	of	several	DBCC	statements.

The	errors	from	sysmessages	with	a	severity	of	10	or	lower.

Any	RAISERROR	statement	with	a	severity	of	10	or	lower.

Applications	using	APIs	such	as	ADO	and	OLE	DB	cannot	generally	distinguish
between	errors	and	messages.	In	ODBC	applications,	messages	generate	a
SQL_SUCCESS_WITH_INFO	function	return	code,	and	errors	usually	generate
a	SQL_ERROR	return	code.	The	difference	is	most	pronounced	in	DB-Library,
in	which	errors	are	returned	to	the	application	error	handler	function,	and
messages	are	returned	to	the	application	message	handler	function.

ODBC	Error	Handling
The	ODBC	specification	introduced	an	error	model	that	has	served	as	the
foundation	of	the	error	models	of	the	generic	database	APIs	such	as	ADO,	OLE
DB,	and	the	APIs	built	over	ODBC	(RDO,	DAO,	and	the	MFC	Database
Classes).	In	the	ODBC	model,	errors	have	the	following	attributes:

SQLSTATE

The	SQLSTATE	is	a	five-character	error	code	defined	originally	in	the
ODBC	specification.	SQLSTATEs	are	common	across	all	ODBC
drivers	and	provide	a	way	for	applications	to	code	basic	error	handling
without	testing	for	all	the	different	error	codes	returned	by	various
databases.	The	ODBC	SQLSTATE	has	nothing	to	do	with	the	state
attribute	of	SQL	Server	error	messages.

ODBC	2.x	returns	one	set	of	SQLSTATE	codes,	and	ODBC	3.x	returns
a	set	of	SQLSTATE	codes	aligned	with	the	X/Open	Data	Management:
Structured	Query	Language	(SQL),	version	2	standard.	Because	all
ODBC	drivers	return	the	same	sets	of	SQLSTATE	codes,	applications
basing	their	error	handling	on	SQLSTATE	codes	are	more	portable.

Native	error	number

The	native	error	number	is	the	error	number	from	the	underlying
database.	ODBC	applications	receive	the	SQL	Server	error	numbers	as
native	error	numbers.

Error	message	string

The	error	message	is	returned	in	the	error	message	string	parameter.

When	an	ODBC	function	returns	a	status	other	than	SQL_SUCCESS,	the
application	can	call	SQLGetDiagRec	to	get	the	error	information.	For	example,
if	an	ODBC	application	gets	a	syntax	error	(SQL	Server	error	number	170),
SQLGetDiagRec	returns:

szSqlState	=	42000,	pfNative	=	170
szErrorMsg	=
'[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]
																																					Line	1:	Incorrect	syntax	near	*'

The	ODBC	SQLGetDiagField	function	allows	ODBC	drivers	to	specify	driver-
specific	diagnostic	fields	in	the	diagnostic	records	returned	by	the	driver.	The
SQL	Server	ODBC	driver	specifies	driver-specific	fields	to	hold	SQL	Server
error	information	such	as	the	SQL	Server	severity	and	state	codes.

For	more	information	about	retrieving	error	messages	in	ODBC	applications,	see
Handling	Errors	and	Messages.

ADO	Error	Handling
ADO	uses	an	Errors	object	and	Errors	collection	to	return	standard	error
information	such	as	SQLSTATE,	native	error	number,	and	the	error	message
string.	These	are	the	same	as	their	ODBC	counterparts.	ADO	does	not	support
any	provider-specific	error	interfaces,	so	SQL	Server-specific	error	information
such	as	the	severity	or	state	are	available	to	ADO	applications.

For	more	information	about	retrieving	error	messages	in	ADO	applications,	see
Handling	Errors	and	Messages	in	ADO.

OLE	DB	Error	Handling
OLE	DB	uses	the	IErrorInfo	interface	to	return	standard	error	information	such
as	the	SQLSTATE,	native	error	number,	and	error	string.	These	are	the	same	as
their	ODBC	counterparts.	The	Microsoft	OLE	DB	Provider	for	SQL	Server
defines	an	ISQLServerErrorInfo	interface	to	return	SQL	Server-specific
information	such	as	the	severity,	state,	procedure	name,	and	line	number.

For	more	information	about	retrieving	error	messages	in	OLE	DB	applications,
see	Errors.

DB-Library	Error	Handling
DB-Library	uses	a	different	mechanism	for	returning	error	information	to	an
application.	An	application	defines	two	call-back	functions,	an	error	handler	and
a	message	handler.	When	the	DB-Library	dynamic-link	library	has	errors	or
messages	to	return,	it	calls	the	application's	error	handler	or	message	handler
function.	Because	DB-Library	is	specific	to	SQL	Server,	all	SQL	Server	error
information	is	available	in	the	error	and	message	handlers.	DB-Library	returns
PRINT	messages	and	low-severity	error	or	RAISERROR	messages	to	the

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

message	handler.	High	severity	errors	and	RAISERROR	messages	are	returned
to	the	error	handler	function.

For	more	information	about	DB-Library	error	handling	see	Error	and	Message
Handling.

JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Using	@@ERROR
The	@@ERROR	system	function	returns	0	if	the	last	Transact-SQL	statement
executed	successfully;	if	the	statement	generated	an	error,	@@ERROR	returns
the	error	number.	The	value	of	@@ERROR	changes	on	the	completion	of	each
Transact-SQL	statement.

Because	@@ERROR	gets	a	new	value	when	every	Transact-SQL	statement
completes,	process	@@ERROR	in	one	of	two	ways:

Test	or	use	@@ERROR	immediately	after	the	Transact-SQL	statement.

Save	@@ERROR	in	an	integer	variable	immediately	after	the	Transact-
SQL	statement	completes.	The	value	of	the	variable	can	be	used	later.

@@ERROR	is	the	only	part	of	a	Microsoft®	SQL	Server™	2000	error	available
within	the	batch,	stored	procedure,	or	trigger	that	generated	the	error.	All	other
parts	of	the	error,	such	as	its	severity,	state,	and	message	text	containing
replacement	strings	such	as	object	names,	are	returned	only	to	the	application	in
which	they	can	be	processed	using	the	API	error	handling	mechanisms.	Also,
@@ERROR	is	raised	only	for	errors,	not	for	warnings;	therefore,	batches,	stored
procedures,	and	triggers	do	not	have	visibility	to	any	warnings	that	may	have
occurred.

A	common	use	of	@@ERROR	is	to	indicate	the	success	or	failure	of	a	stored
procedure.	An	integer	variable	is	initialized	to	0.	After	each	Transact-SQL
statement	completes,	@@ERROR	is	tested	for	being	0,	and	if	it	is	not	0,	it	is
stored	in	the	variable.	The	procedure	then	returns	the	variable	on	the	RETURN
statement.	If	none	of	the	Transact-SQL	statements	in	the	procedure	had	an	error,
the	variable	remains	at	0.	If	one	or	more	statements	generated	an	error,	the
variable	holds	the	last	error	number.	This	is	a	simple	stored	procedure	with	this
logic:

USE	Northwind
GO

DROP	PROCEDURE	SampleProcedure

GO
--	Create	a	procedure	that	takes	one	input	parameter
--	and	returns	one	output	parameter	and	a	return	code.
CREATE	PROCEDURE	SampleProcedure	@EmployeeIDParm	INT,
												@MaxQuantity	INT	OUTPUT
AS
--	Declare	and	initialize	a	variable	to	hold	@@ERROR.
DECLARE	@ErrorSave	INT
SET	@ErrorSave	=	0

--	Do	a	SELECT	using	the	input	parameter.
SELECT	FirstName,	LastName,	Title
FROM	Employees
WHERE	EmployeeID	=	@EmployeeIDParm

--	Save	any	non-zero	@@ERROR	value.
IF	(@@ERROR	<>	0)
				SET	@ErrorSave	=	@@ERROR

--	Set	a	value	in	the	output	parameter.
SELECT	@MaxQuantity	=	MAX(Quantity)
FROM	[Order	Details]

--	Save	any	non-zero	@@ERROR	value.
IF	(@@ERROR	<>	0)
				SET	@ErrorSave	=	@@ERROR

--	Returns	0	if	neither	SELECT	statement	had
--	an	error,	otherwise	returns	the	last	error.
RETURN	@ErrorSave
GO

There	are	situations	when	@@ERROR	can	be	used	with	@@ROWCOUNT.	In

the	following	example,	@@ERROR	is	used	to	determine	if	a	constraint	violation
error	occurred,	and	@@ROWCOUNT	is	used	to	determine	the	number	of	rows
modified	by	the	UPDATE	statement,	if	any	rows	were	successfully	changed.

BEGIN	TRAN
		UPDATE	Northwind.dbo.Products
		SET	UnitPrice	=	UnitPrice	*	1.1
		WHERE	CategoryID	IN	(1,	2,	5,	6)
		
IF	@@ERROR	=	547
		PRINT	'A	CHECK	CONSTRAINT	violation	occurred'
IF	@@ROWCOUNT	=	0	
		PRINT	'No	rows	updated.'
ELSE
		PRINT	STR(@@ROWCOUNT)	+	'	rows	updated.'
COMMIT	--	Commits	rows	successfully	updated.

See	Also

@@ERROR

@@ROWCOUNT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	PRINT
The	PRINT	statement	takes	either	one	character	or	a	Unicode	string	expression
as	a	parameter.	It	returns	the	string	as	a	message	to	the	application.	The	message
is	returned	as	an	informational	error	in	ADO,	OLE	DB,	and	ODBC	applications.
SQLSTATE	is	set	to	01000,	the	native	error	is	set	to	0,	and	the	error	message
string	is	set	to	the	character	string	specified	in	the	PRINT	statement.	The	string
is	returned	to	the	message	handler	call-back	function	in	DB-Library	applications.

The	PRINT	statement	accepts	any	character	string	expression,	including
character	or	Unicode	constants,	a	character	or	Unicode	local	variable	name,	or	a
function	that	returns	a	character	or	Unicode	string.	With	Microsoft®	SQL
Server™	2000,	PRINT	also	accepts	complex	strings	built	by	concatenating	two
or	more	constants,	local	variables,	or	functions.

Use	PRINT	to	help	in	troubleshooting	Transact-SQL	code,	to	check	the	values	of
data,	or	to	produce	reports.

This	example	uses	PRINT	inside	an	IF	statement	to	return	a	message	to	the
application:

IF	(SELECT	COUNT(au_lname)	FROM	authors	WHERE	state	=	'UT')	>	0
		PRINT	'More	than	one	author	resides	in	the	state	of	Utah.'

This	example	prints	a	combination	of	a	local	variable,	system	functions,	and	a
text	string	using	concatenation:

USE	Northwind
GO
DECLARE	@MyObject	NVARCHAR(128)

SET	@MyObject	=	'Products'

PRINT	'Object	Name:	'	+	@MyObject
PRINT	'			Object	ID:	'	+	STR(Object_ID(@MyObject))
PRINT	'The	computer	'	+	RTRIM(@@SERVERNAME)	+	'	is	running	'
		+	RTRIM(@@VERSION)

GO
--	This	shows	building	a	character	variable	into	a	print
--	message.	This	is	required	for	earlier	versions	of	SQL
--	Server,	in	which	the	PRINT	statement	did	not	support
--	concatenation.
DECLARE	@Msg	VARCHAR(255)
SELECT	@Msg	=	'The	computer	'	+	RTRIM(@@SERVERNAME)	+	'	is	running	'
		+	RTRIM(@@VERSION)
PRINT	@Msg

Accessing	and	Changing	Relational	Data

Using	RAISERROR
RAISERROR	is	a	more	powerful	statement	than	PRINT	for	returning	messages
back	to	applications.	RAISERROR	can	return	messages	in	either	of	these	forms:

A	user-defined	error	message	that	has	been	added	to
master.dbo.sysmessages	using	the	sp_addmessage	system	stored
procedure.

A	message	string	specified	in	the	RAISERROR	statement.

RAISERROR	also	has	these	extensions	to	the	capabilities	of	PRINT:

RAISERROR	can	assign	a	specific	error	number,	severity,	and	state.

RAISERROR	can	request	that	the	error	be	logged	in	the	Microsoft®
SQL	Server™	2000	error	log	and	the	Microsoft	Windows	NT®
application	log.

The	message	string	can	contain	substitution	variables	and	arguments,
much	like	the	C	language	printf	function.

When	RAISERROR	is	used	with	the	msg_id	of	a	user-defined	message	in
sysmessages,	msg_id	is	returned	as	the	SQL	Server	error	number,	or	native	error
code.	When	RAISERROR	is	used	with	a	msg_str	instead	of	a	msg_id,	the	SQL
Server	error	number	and	native	error	number	returned	is	50000.

When	you	use	RAISERROR	to	return	a	user-defined	error	message,	use	a
different	state	number	in	each	RAISERROR	that	references	that	error.	This	can
aid	in	diagnosing	the	errors	when	they	are	raised.

Use	RAISERROR	to	help	in	troubleshooting	Transact-SQL	code,	to	check	the
values	of	data,	or	to	return	messages	that	contain	variable	text.

This	example	substitutes	the	values	from	the	DB_ID	and	DB_NAME	functions
in	a	message	sent	back	to	the	application:

DECLARE	@DBID	INT
SET	@DBID	=	DB_ID()

DECLARE	@DBNAME	NVARCHAR(128)
SET	@DBNAME	=	DB_NAME()

RAISERROR
			('The	current	database	ID	is:%d,	the	database	name	is:	%s.',
				16,	1,	@DBID,	@DBNAME)

This	example	accomplishes	the	same	process	using	a	user-defined	message:

sp_addmessage	50005,	16,
				'The	current	database	ID	is:%d,	the	database	name	is:	%s.'
GO
DECLARE	@DBID	INT
SET	@DBID	=	DB_ID()

DECLARE	@DBNAME	NVARCHAR(128)
SET	@DBNAME	=	DB_NAME()

RAISERROR	(50005,	16,	1,	@DBID,	@DBNAME)
GO

This	second	RAISERROR	example	shows	that	substitution	parameters	can	be
specified	in	a	user-defined	error	and	filled	with	substitution	arguments	at	the
time	the	RAISERROR	statement	executes.

Accessing	and	Changing	Relational	Data

Querying	SQL	Server	System	Catalogs
Dynamic	applications	that	are	not	hard-coded	to	work	with	a	specific	set	of
tables	and	views	must	have	a	mechanism	for	determining	the	structure	and
attributes	of	the	objects	in	any	database	to	which	it	connects.	The	applications
may	need	information	such	as:

The	number	and	names	of	the	tables	and	views	in	a	database.

The	number	of	columns	in	a	table	or	view,	along	with	each	column's
name,	data	type,	scale,	and	precision.

The	constraints	defined	on	a	table.

The	indexes	and	keys	defined	for	a	table.

The	Microsoft®	SQL	Server™	2000	system	catalog	provides	this	information
for	SQL	Server	databases.	The	core	of	the	SQL	Server	system	catalogs	is	a	set	of
system	tables	containing	meta	data	describing	the	objects	in	a	SQL	Server
database.	Meta	data	is	data	that	describes	the	attributes	of	objects	in	a	system.

SQL	Server	applications	can	access	the	information	in	the	system	catalogs	in
several	ways	by	using:

Information	Schema	Views

Information	Schema	Views	are	based	on	catalog	view	definitions	in	the
SQL-92	standard.	They	present	the	catalog	information	in	a	format
independent	of	any	catalog	table	implementation,	thus	are	not	affected
by	changes	in	the	underlying	catalog	tables.	Applications	that	use	these
views	are	portable	between	heterogeneous	SQL-92	compliant	database
systems.	For	more	information,	see	Information	Schema	Views.

OLE	DB	schema	rowsets

The	OLE	DB	specification	defines	an	IDBSchemaRowset	interface	that
exposes	a	set	of	schema	rowsets	that	contain	the	catalog	information.

JavaScript:hhobj_1.Click()

The	OLE	DB	schema	rowsets	are	a	standard	method	of	presenting
catalog	information	supported	by	different	OLE	DB	providers.	The
rowsets	are	independent	of	the	structure	of	the	underlying	catalog
tables.	For	more	information,	see	Schema	Rowset	Support	in
SQLOLEDB.

The	OLE	DB	Provider	for	SQL	Server	supports	an	extension	to
IDBSchemaRowset	that	reports	catalog	information	for	the	linked
servers	used	in	distributed	queries.	For	more	information,	see
LINKEDSERVERS	Rowset.

ODBC	catalog	functions

The	ODBC	specification	defines	a	set	of	catalog	functions	that	return
result	sets	that	contain	the	catalog	information.	These	functions	are	a
standard	method	of	presenting	catalog	information	supported	by
different	ODBC	drivers.	The	result	sets	are	independent	of	the	structure
of	the	underlying	catalog	tables.

The	SQL	Server	ODBC	driver	supports	two	driver-specific	functions
that	report	catalog	information	for	the	linked	servers	used	in	distributed
queries.	For	more	information,	see	Using	Catalog	Functions.

System	stored	procedures	and	functions

Transact-SQL	defines	server	system	stored	procedures	and	system
functions	that	return	catalog	information.	Although	these	stored
procedures	and	functions	are	specific	to	SQL	Server,	they	insulate	users
from	the	structure	of	the	underlying	system	catalog	tables.	For	more
information,	see	Metadata	Functions	and	System	Stored	Procedures.

It	is	not	recommended	that	users	query	the	system	catalog	tables	directly.		This
should	only	be	done	if	none	of	the	methods	above	supply	the	needed
information.	The	structure	of	the	system	catalog	tables	is	dependent	on	the
underlying	architecture	of	SQL	Server,	and	changes	from	one	version	to	another.
Even	an	application	that	only	issues	SELECT	statements	may	have	to	be	at	least
partially	rewritten	when	migrating	to	a	new	version	of	SQL	Server	if	it	directly
queries	system	tables	that	change	or	are	not	present	in	the	new	version.

Updating,	deleting,	or	inserting	data	in	a	system	table	can	cause	unpredictable
effects	in	a	SQL	Server	system.	Such	updates	are	not	supported	by	Microsoft.

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

Managing	ntext,	text,	and	image	Data
The	Microsoft®	SQL	Server™	ntext,	text,	and	image	data	types	are	capable	of
holding	extremely	large	amounts	of	data	(up	to	2	GB)	in	a	single	value.	A	single
data	value	is	typically	larger	than	can	be	retrieved	by	an	application	in	one	step;
some	values	may	be	larger	than	the	virtual	memory	available	on	the	client.
Therefore,	special	steps	are	usually	needed	to	retrieve	these	values.

If	an	ntext,	text,	and	image	data	value	is	no	longer	than	a	Unicode,	character,	or
binary	string	(4,000	characters,	8,000	characters,	8,000	bytes	respectively),	the
value	can	be	referenced	in	SELECT,	UPDATE,	and	INSERT	statements	much
the	same	way	as	the	smaller	data	types.	For	example,	an	ntext	column	with	a
short	value	can	be	referenced	in	a	SELECT	statement	select	list	the	same	way	an
nvarchar	column	is	referenced.	Some	restrictions	that	must	be	observed,	such	as
not	being	able	to	directly	reference	an	ntext,	text,	or	image	column	in	a
WHERE	clause.	These	columns	can	be	included	in	a	WHERE	clause	as
parameters	of	a	function	that	returns	another	data	type	(such	as	ISNULL,
SUBSTRING	or	PATINDEX)	or	in	an	IS	NULL,	IS	NOT	NULL,	or	LIKE
expression.

Handling	Larger	Data	Values
When	the	ntext,	text,	and	image	data	values	get	larger,	however,	they	must	be
handled	on	a	block-by-block	basis.	Both	Transact-SQL	and	the	database	APIs
contain	functions	that	allow	applications	to	work	with	ntext,	text,	and	image
data	block	by	block.

The	database	APIs	follow	a	common	pattern	in	the	ways	they	handle	long	ntext,
text,	and	image	columns:

To	read	a	long	column,	the	application	simply	includes	the	ntext,	text,
or	image	column	in	a	select	list,	and	then	binds	the	column	to	a
program	variable	large	enough	to	hold	a	reasonable	block	of	the	data.
The	application	then	executes	the	statement	and	uses	an	API	function	or
method	to	retrieve	the	data	into	the	bound	variable	one	block	at	a	time.

To	write	a	long	column,	the	application	executes	an	INSERT	or

UPDATE	statement	with	a	parameter	marker	(?)	in	the	place	of	the
value	to	be	placed	in	the	ntext,	text,	or	image	column.	The	parameter
marker	(or	parameter	in	the	case	of	ADO)	is	bound	to	a	program
variable	large	enough	to	hold	the	blocks	of	data.	The	application	goes
into	a	loop	where	it	first	moves	the	next	set	of	data	into	the	bound
variable,	and	then	calls	an	API	function	or	method	to	write	that	block	of
data.	This	is	repeated	until	the	entire	data	value	has	been	sent.

Using	text	in	row

In	Microsoft	SQL	Server	2000,	users	can	enable	a	text	in	row	option	on	a	table
so	it	could	store	text,	ntext,	or	image	data	in	its	data	row.

To	enable	the	option,	execute	the	sp_tableoption	stored	procedure,	specifying
text	in	row	as	the	option	name	and	on	as	the	option	value.	The	default
maximum	size	that	can	be	stored	in	a	row	for	a	BLOB	(binary	large	object:	text,
ntext,	or	image	data)	is	256	bytes,	but	values	may	range	from	24	through	7000.
To	specify	a	maximum	size	that	is	not	the	default,	specify	an	integer	within	the
range	as	the	option	value.

text,	ntext,	or	image	strings	are	stored	in	the	data	row	if	the	following
conditions	apply:

text	in	row	is	enabled.

The	length	of	the	string	is	shorter	than	the	limit	specified	in
@OptionValue

There	is	enough	space	available	in	the	data	row.

When	BLOB	strings	are	stored	in	the	data	row,	reading	and	writing	the	text,
ntext,	or	image	strings	can	be	as	fast	as	reading	or	writing	character	and	binary
strings.	SQL	Server	does	not	have	to	access	separate	pages	to	read	or	write	the
BLOB	string.

If	a	text,	ntext,	or	image	string	is	larger	than	the	specified	limit	or	the	available
space	in	the	row,	pointers	are	stored	in	the	row	instead.	The	conditions	for
storing	the	BLOB	strings	in	the	row	still	apply	though:	There	must	be	enough

space	in	the	data	row	to	hold	the	pointers.

For	more	information,	see	sp_tableoption.

Using	text	pointers
Unless	the	text	in	row	option	is	specified,	text,	ntext,	or	image	strings	are
stored	outside	a	data	row;	only	the	text	pointers	to	these	strings	reside	in	the	data
rows.	Text	pointers	point	to	the	root	node	of	a	tree	built	of	internal	pointers	that
map	to	the	pages	in	which	string	fragments	(of	text,	ntext,	and	image	data)	are
actually	stored.

In	row	text	pointers	in	SQL	Server	2000	are	different	from	the	text	pointers	in
earlier	versions	of	SQL	Server.	In	row	text	pointers	behave	like	file	handles	for
BLOB	data;	earlier	text	pointers	function	like	addresses	to	the	BLOB	data.	Thus,
when	using	in	row	text	pointers,	keep	in	mind	the	following	characteristics:

IMPORTANT		Although	an	in	row	text	is	allowed	in	a	cursor,	an	in	row	text	pointer
is	not.	SQL	Server	will	return	the	error	message	(8654,	16,	1,	'A	cursor	plan
could	not	be	generated	for	the	given	statement	because	it	contains	textptr(inrow
lob).',	1033)	if	you	attempt	to	declare	a	cursor	that	contains	an	in	row	text
pointer.

1.	 Number

A	maximum	of	1024	active	in	row	text	pointers	are	allowed	per
transaction	per	database.

2.	 Locking

When	a	user	obtains	an	active	text	pointer,	SQL	Server	2000	locks	the
data	row	and	ensures	no	other	user	modifies	or	deletes	the	row	while
the	first	user	has	the	text	pointer.	The	lock	is	released	when	the	text
pointer	becomes	invalid.	To	invalidate	a	text	pointer,	use
sp_invalidate_textptr.

A	text	pointer	cannot	be	used	to	update	BLOB	values	when	the
isolation	level	of	the	transaction	is	read	uncommitted,	or	the	database
is	in	read-only	mode.

SQL	Server	2000	does	not	lock	the	data	row	if	the	database	is	in
single-user	mode.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

To	illustrate,	given	the	following	table:

CREATE	TABLE	t1	(c1	int,	c2	text)
EXEC	sp_tableoption	't1',	'text	in	row',	'on'
INSERT	t1	VALUES	('1',	'a')

The	following	transaction	will	succeed:

INSERT	t1	VALUES	('1','This	is	text.')
SET	TRANSACTION	ISOLATION	LEVEL	READ	UNCOMMITTED
GO
BEGIN	TRAN
DECLARE	@ptr	varbinary(16)
SELECT	@ptr	=	textptr(c2)
FROM	t1
WHERE	c1	=	1
READTEXT	t1.c2	@ptr	0	5
COMMIT	TRAN
GO

The	following	transaction	will	fail:

SET	TRANSACTION	ISOLATION	LEVEL	READ	UNCOMMITTED
GO
BEGIN	TRAN
DECLARE	@ptr	varbinary(16)
SELECT	@ptr	=	textptr(c2)
FROM	t1
WHERE	c1	=	1
WRITETEXT	t1.c2	@ptr	'xx'
COMMIT	TRAN
GO

3.	 Duration

In	row	text	pointers	are	valid	only	within	a	transaction.	When	a

transaction	is	committed,	the	text	pointer	becomes	invalid.

Within	a	transaction,	in	row	text	pointers	can	be	invalidated	when	any
of	the	following	actions	take	place:

The	session	ends.

The	data	row	is	deleted	in	the	same	transaction.	(Other
transactions	cannot	delete	a	data	row	because	of	the	lock
obtained	on	it.)

The	schema	of	a	table	in	which	the	text	pointer	resides	is
changed.	Schema-changing	actions	that	invalidate	text
pointers	include:	creating	or	dropping	clustered	index,	altering
or	dropping	the	table,	truncating	the	table,	changing	the	text
in	row	option	through	sp_tableoption,	and	executing
sp_indexoption.

Using	the	earlier	example,	the	following	script	would	work	in	earlier
versions	of	SQL	Server,	but	will	generate	an	error	in	SQL	Server	2000.

DECLARE	@ptrval	varbinary(16)
PRINT	'get	error	here'
SELECT	@ptrval	=	TEXTPTR(c2)
FROM	t1
WHERE	c1	=	1
READTEXT	t1.c2	@ptrval	0	1

In	SQL	Server	2000,	the	in	row	text	pointer	must	be	used	inside	a
transaction:

BEGIN	TRAN
DECLARE	@ptrval	varbinary(16)
SELECT	@ptrval	=	TEXTPTR(c2)
FROM	t1
WHERE	c1	=	1
READTEXT	t1.c2	@ptrval	0	1

COMMIT

4.	 NULL	text

You	can	get	an	in	row	text	pointer	on	NULL	text	that	is	generated	by
INSERT.	Previously,	you	can	get	text	pointers	only	after	updating	a
BLOB	to	NULL.

For	example,	the	following	code	does	not	work	in	SQL	Server	7.0,	but
works	in	SQL	Server	2000.

SET	TRANSACTION	ISOLATION	LEVEL	READ	COMMITTED
GO
INSERT	INTO	t1	VALUES	(4,	NULL)
BEGIN	TRAN
DECLARE	@ptrval	VARBINARY(16)
SELECT	@ptrval	=	TEXTPTR(c2)
FROM	t1
WHERE	c1	=	4
WRITETEXT	t1.c2	@ptrval	'x4'
COMMIT

In	SQL	Server	7.0,	you	must	do	the	following:

INSERT	INTO	t1	VALUES	(4,	NULL)
UPDATE	t1	
				SET	c2	=	NULL	
				WHERE	c1	=	4
DECLARE	@ptrval	VARBINARY(16)
SELECT	@ptrval	=	TEXTPTR(c2)
FROM	t1
WHERE	c1	=	4
WRITETEXT	t1.c2	@ptrval	'x4'

This	table	summarizes	the	differences.

Non	in	row	text

Difference in	row	text	pointer pointer
Number Maximum	of	1024	active	per

transaction	per	database.
Unlimited.

Locking Data	row	is	S	locked	until	the
pointer	becomes	invalid.

Locks	are	not	obtained	when	the
transaction	is	'read	uncommitted',	or
the	database	is	'single-user'	or	'read-
only'	mode.

Data	row	is	not	locked.

Duration Becomes	invalid	at	the	end	of
transaction	or	session,	when	a	row	is
deleted	or	the	schema	of	the	table	is
changed.

Becomes	invalid	when
the	row	is	deleted.

NULL	text Obtainable	right	after	the	insert	of
NULL	text.

Obtainable	only	after
update.

Using	ntext,	text,	and	image	Data	with	Database	APIs
This	is	a	summary	of	the	ways	the	database	APIs	handle	ntext,	text,	and	image
data:

ADO

ADO	can	map	ntext,	text,	or	image	columns	or	parameters	to	a	Field
or	Parameter	object.	Use	the	GetChunk	method	to	retrieve	the	data
one	block	at	a	time	and	the	AppendChunk	method	to	write	data	one
block	at	a	time.	For	more	information,	see	Managing	Long	Data	Types.

OLE	DB

OLE	DB	uses	the	ISequentialStream	interface	to	support	ntext,	text,
and	image	data	types.	The	ISequentialStream::Read	method	reads	the
long	data	one	block	at	a	time,	and	ISequentialStream::Write	writes
the	long	data	to	the	database	one	block	at	a	time.	For	more	information,
see	BLOBs	and	OLE	Objects.

ODBC

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

ODBC	has	a	feature	called	"data-at-execution"	to	deal	with	the	ODBC
data	types	for	long	data:	SQL_WLONGVARCHAR	(ntext),
SQL_LONGVARCHAR	(text),	and	SQL_LONGVARBINARY
(image).	These	data	types	are	bound	to	a	program	variable.
SQLGetData	is	then	called	to	retrieve	the	long	data	one	block	at	a	time,
and	SQLPutData	is	called	to	send	long	data	one	block	at	a	time.	For
more	information,	see	Managing	text	and	image	Columns.

DB-Library

DB-Library	applications	also	bind	ntext,	text,	and	image	columns	to
program	variables.	The	DB-Library	function	dbtxtptr	is	used	to	get	a
pointer	to	the	location	of	the	long	column	occurrence	in	the	database.
dbreadtext	is	used	to	read	the	long	data	one	block	at	a	time.	Functions
such	as	dbwritetext,	dbupdatetext,	and	dbmoretext	are	used	to	write
the	long	data	one	block	at	a	time.

Note		Accessing	in	row	text	with	DB-Library	is	not	supported.

For	more	information,	see	Text	and	Image	Functions.

JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

Retrieving	ntext,	text,	or	image	Values
You	can	retrieve	ntext,	text	or	image	values	by:

Simply	referencing	the	column	in	a	SELECT	statement.

For	example,	this	query	returns	all	information	in	the	pr_info	column
for	each	publisher:

USE	pubs
SELECT	pr_info
FROM	pub_info

This	is	the	method	used	in	a	database	application	using	an	API	such	as
ADO,	OLE	DB,	ODBC,	or	DB-Library.	The	column	is	bound	to	a
program	variable,	and	then	a	special	API	function	or	method	is	used	to
retrieve	the	data	one	block	at	a	time.

When	this	method	is	used	in	Transact-SQL	scripts,	stored	procedures,
and	triggers,	it	works	only	for	relatively	short	values.	If	the	length	of	the
data	is	longer	than	the	length	specified	in	SET	TEXTSIZE,	you	must
use	increase	TEXTSIZE	or	use	another	method.	The	current	TEXTSIZE
setting	is	reported	by	the	@@TEXTSIZE	function	and	is	changed	with
the	SET	TEXTSIZE	statement:

SET	TEXTSIZE	64512

The	default	setting	for	TEXTSIZE	is	4096	(4	KB).	This	statement	resets
TEXTSIZE	to	its	default	value:

SET	TEXTSIZE	0

The	full	amount	of	data	is	returned	if	the	length	is	less	than	TEXTSIZE.

The	DB-Library	API	also	supports	a	dbtextsize	parameter	that	controls
the	length	of	ntext,	text,	and	image	data	that	can	be	selected.	The
Microsoft	OLE	DB	Provider	for	SQL	Server	and	the	SQL	Server	ODBC
driver	automatically	set	@@TEXTSIZE	to	its	maximum	of	2	GB.

Using	the	TEXTPTR	function	to	get	a	text	pointer	that	is	passed	to	the
READTEXT	statement.

The	READTEXT	statement	is	used	to	read	blocks	of	ntext,	text,	or
image	data.	For	example,	this	query	returns	the	first	25	characters	(or
first	row)	of	the	sample	text	data	for	each	publisher:

USE	pubs
DECLARE	@textpointer	varbinary(16)
SELECT	@textpointer	=	TEXTPTR(pr_info)
FROM	pub_info
READTEXT	pub_info.pr_info	@textpointer	1	25

Using	the	SUBSTRING	function	to	retrieve	a	block	of	data	starting	at	a
specific	offset	from	the	start	of	the	column.

For	example,	this	query	returns	the	first	25	characters	(or	first	row)	of
the	sample	text	data	for	each	publisher:

USE	pubs
SELECT	SUBSTRING(pr_info,	1,	25)	AS	pr_info
FROM	pub_info

Using	the	PATINDEX	function	to	retrieve	offset	of	some	particular
pattern	of	bytes.

This	value	can	then	be	used	in	a	SUBSTRING	function	or	READTEXT
statement	to	retrieve	the	data.	For	example,	this	query	searches	for	the
string	Germany	in	the	pr_info	column	of	the	pub_info	table	and	returns
the	starting	position	of	103	(the	G	of	the	string	Germany	begins	at
character	103	of	the	pr_info	column):

USE	pubs
SELECT	PATINDEX('%Germany%',	pr_info)	AS	pr_info
FROM	pub_info

PATINDEX	operates	on	text	and	character	data	types	only;	it	does	not
accept	image	values.

Retrieving	Parts	of	ntext,	text,	or	image	Values

These	methods	are	not	limited	to	retrieving	the	entire	ntext,	text,	or	image	value
starting	with	the	first	byte.	The	methods	can	be	combined	to	provide	flexible
processing	that	retrieves	different	parts	of	the	ntext,	text,	or	image	values.	For
example,	this	SELECT	statement	retrieves	whatever	part	of	a	text	value	is
between	a	start	tag	and	an	end	tag:

USE	Northwind
GO
CREATE	TABLE	TextParts	(ColA	INT	PRIMARY	KEY,	ColB	TEXT)
GO
INSERT	INTO	TextParts
			VALUES(1,
											'Sample	string	START	TAG	What	I	want	END	TAG	Trailing	text.')
GO
SELECT	SUBSTRING(ColB,
																				/*	Calculate	start	as	start	of	tag	+	tag	length.	*/
																				(PATINDEX('%START	TAG%',	ColB)	+	10),
																			/*	Calculate	SUBSTRING	length	as	end	-	start.	*/
																				(
																						PATINDEX('%END	TAG%',	ColB)	-
																						(PATINDEX('%START	TAG%',	ColB)	+	10)
)
)
FROM	TextParts
GO

Here	is	the	result	set:

What	I	want

(1	row(s)	affected)

Note		When	you	are	selecting	image	data,	the	returned	value	includes	the
characters	0x,	which	indicate	that	the	data	is	hexadecimal.	These	two	characters
are	counted	as	part	of	TEXTSIZE.

See	Also

READTEXT

SET	TEXTSIZE

SELECT

Text	and	Image	Functions

BLOBs	and	OLE	Objects

Managing	Long	Data	Types

Managing	text	and	image	Columns

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Modifying	ntext,	text,	or	image	Values
You	can	modify	ntext,	text,	or	image	values	by:

Using	a	database	API	such	as	ADO,	OLE	DB,	or	ODBC	to	execute	an
UPDATE	or	INSERT	statement	with	a	program	variable	bound	to	a
parameter	marker	for	the	ntext,	text,	or	image	column.	Then	call	the
appropriate	database	API	functions	to	send	long	data	to	the	database
one	block	at	a	time.	DB-Library	supports	the	same	functionality	with	its
text	and	image	functions.

Using	the	WRITETEXT	statement	to	rewrite	the	entire	data	value	for
the	column.

For	example,	this	query	changes	the	contents	of	the	pr_info	column	for
New	Moon	Books:

USE	pubs
sp_dboption	'pubs',	'select	into/bulkcopy',	'true'
DECLARE	@ptrval	varbinary(16)
SELECT	@ptrval	=	TEXTPTR(pr_info)	
FROM	pub_info	pr	INNER	JOIN	publishers	p
				ON	p.pub_id	=	pr.pub_id	
				AND	p.pub_name	=	'New	Moon	Books'
WRITETEXT	pub_info.pr_info	@ptrval	'New	Moon	Books	(NMB)	'
sp_dboption	'pubs',	'select	into/bulkcopy',	'true'

Use	the	UPDATETEXT	statement	to	update	specific	blocks	of	an	ntext,
text,	or	image	column.

For	example,	this	query	replaces	the	eighty-eighth	character	in	the	text
column	for	New	Moon	Books	(the	second	letter	o	in	Moon)	with	the
letter	z:

USE	pubs
sp_dboption	'pubs',	'select	into/bulkcopy',	'true'

DECLARE	@ptrval	varbinary(16)
SELECT	@ptrval	=	TEXTPTR(pr_info)	
				FROM	pub_info	pr	INNER	JOIN	publishers	p
								ON	p.pub_id	=	pr.pub_id	
								AND	p.pub_name	=	'New	Moon	Books'
UPDATETEXT	pub_info.pr_info	@ptrval	88	1	'z'	
sp_dboption	'pubs',	'select	into/bulkcopy',	'false'

See	Also

WRITETEXT

UPDATETEXT

Managing	Long	Data	Types

BLOBs	and	OLE	Objects

Managing	text	and	image	Columns

Text	and	Image	Functions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

OLE	Automation	Objects	in	Transact-SQL
Transact-SQL	includes	several	system	stored	procedures	that	allow	OLE
Automation	objects	to	be	referenced	in	Transact-SQL	batches,	stored	procedures,
and	triggers.	These	system	stored	procedures	run	as	extended	stored	procedures,
and	the	OLE	Automation	objects	that	are	executed	through	the	stored	procedures
run	in	the	Microsoft®	SQL	Server™	2000	address	space	in	the	same	way	that	an
extended	stored	procedure	runs.

The	OLE	Automation	stored	procedures	allow	Transact-SQL	batches	to
reference	SQL	DMO	objects	and	custom	OLE	Automation	objects,	such	as
objects	that	expose	the	IDispatch	interface.	A	custom	in-process	OLE	server
created	using	Microsoft	Visual	Basic®	must	have	an	error	handler	(specified
with	the	On	Error	GoTo	statement)	for	the	Class_Initialize	and
Class_Terminate	subroutines.	The	error	handlers	prevent	unhandled	errors	from
occurring	in	these	subroutines.	Unhandled	errors	in	the	Class_Initialize	and
Class_Terminate	subroutines	can	cause	unpredictable	errors,	such	as	an	SQL
Server	access	violation.	Error	handlers	for	other	subroutines	are	also
recommended.

The	first	step	when	using	an	OLE	Automation	object	in	Transact-SQL	is	to	call
the	sp_OACreate	system	stored	procedure	to	create	an	instance	of	the	object	in
the	SQL	Server	address	space.

After	an	instance	of	the	object	has	been	created,	call	these	stored	procedures	to
work	with	the	properties,	methods,	and	error	information	related	to	the	object:

sp_OAGetProperty	obtains	the	value	of	a	property.

sp_OASetProperty	sets	the	value	of	a	property.

sp_OAMethod	calls	a	method.

sp_OAGetErrorInfo	obtains	the	most	recent	error	information.

When	there	is	no	more	need	for	the	object,	call	sp_OADestroy	to	deallocate	the

instance	of	the	object	created	with	sp_OACreate.

OLE	Automation	objects	return	data	through	property	values	and	methods.
sp_OAGetProperty	and	sp_OAMethod	return	these	data	values	in	the	form	of
a	result	set.

The	scope	of	an	OLE	Automation	object	is	a	batch.	All	references	to	the	object
must	be	contained	in	a	single	batch,	stored	procedure,	or	trigger.

When	referencing	objects,	the	SQL	Server	OLE	Automation	objects	support
traversing	the	object	to	other	objects	it	contains.	For	example,	when	using	the
SQL-DMO	SQLServer	object,	references	can	be	made	to	databases	and	tables
contained	on	that	server.	For	more	information,	see	Object	Hierarchy	Syntax.

See	Also

sp_OACreate

sp_OAGetProperty

sp_OASetProperty

sp_OAMethod

sp_OAGetErrorInfo

sp_OADestroy

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

OLE	Automation	Return	Codes	and	Error
Information
The	OLE	Automation	system	stored	procedures	return	an	int	return	code	that	is
the	HRESULT	returned	by	the	underlying	OLE	Automation	operation.	An
HRESULT	of	0	indicates	success.	A	nonzero	HRESULT	is	an	OLE	error	code	of
the	hexadecimal	form	0x800nnnnn,	but	when	returned	as	an	int	value	in	a	stored
procedure	return	code,	it	has	the	form	–214nnnnnnn.

For	example,	passing	an	invalid	object	name	(SQLDMO.Xyzzy)	to
sp_OACreate	causes	the	procedure	to	return	an	int	HRESULT	of	–2147221005,
which	is	0x800401f3	in	hexadecimal.

You	can	use	CONVERT(binary(4),	@hresult)	to	convert	an	int	HRESULT	to	a
binary	value.	However,	using	CONVERT(char(10),	CONVERT(binary(4),
@hresult))	results	in	an	unreadable	string	because	each	byte	of	the	HRESULT	is
converted	to	a	single	ASCII	character.	You	can	use	the	following	sample
sp_hexadecimal	stored	procedure	to	convert	an	int	HRESULT	to	a	char	value
that	contains	a	readable	hexadecimal	string.

CREATE	PROCEDURE	sp_hexadecimal
				@binvalue	varbinary(255),
				@hexvalue	varchar(255)	OUTPUT
AS
DECLARE	@charvalue	varchar(255)
DECLARE	@i	int
DECLARE	@length	int
DECLARE	@hexstring	char(16)
SELECT	@charvalue	=	'0x'
SELECT	@i	=	1
SELECT	@length	=	DATALENGTH(@binvalue)
SELECT	@hexstring	=	'0123456789abcdef'
WHILE	(@i	<=	@length)
BEGIN
DECLARE	@tempint	int

DECLARE	@firstint	int
DECLARE	@secondint	int
SELECT	@tempint	=	CONVERT(int,	SUBSTRING(@binvalue,@i,1))
SELECT	@firstint	=	FLOOR(@tempint/16)
SELECT	@secondint	=	@tempint	-	(@firstint*16)
SELECT	@charvalue	=	@charvalue	+
SUBSTRING(@hexstring,	@firstint+1,	1)	+
SUBSTRING(@hexstring,	@secondint+1,	1)
SELECT	@i	=	@i	+	1
END
SELECT	@hexvalue	=	@charvalue

You	can	use	the	following	sample	stored	procedure,	sp_displayoaerrorinfo,	to
display	OLE	Automation	error	information	when	one	of	the	OLE	Automation
procedures	returns	a	nonzero	HRESULT	return	code.	This	sample	stored
procedure	uses	sp_hexadecimal.

CREATE	PROCEDURE	sp_displayoaerrorinfo
				@object	int,
				@hresult	int
AS
DECLARE	@output	varchar(255)
DECLARE	@hrhex	char(10)
DECLARE	@hr	int
DECLARE	@source	varchar(255)
DECLARE	@description	varchar(255)
PRINT	'OLE	Automation	Error	Information'
EXEC	sp_hexadecimal	@hresult,	@hrhex	OUT
SELECT	@output	=	'		HRESULT:	'	+	@hrhex
PRINT	@output
EXEC	@hr	=	sp_OAGetErrorInfo	@object,	@source	OUT,	@description	OUT
IF	@hr	=	0
BEGIN
SELECT	@output	=	'		Source:	'	+	@source

PRINT	@output
SELECT	@output	=	'		Description:	'	+	@description
PRINT	@output
END
ELSE
BEGIN
				PRINT	'	sp_OAGetErrorInfo	failed.'
				RETURN
END

See	Also

sp_OAGetErrorInfo

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

OLE	Automation	Result	Sets
If	an	OLE	Automation	property	or	method	returns	data	in	an	array	with	one	or
two	dimensions,	the	array	is	returned	to	the	client	as	a	result	set:

A	one-dimensional	array	is	returned	to	the	client	as	a	single-row	result
set	with	as	many	columns	as	there	are	elements	in	the	array.	For
example,	an	array(10)	is	returned	as	a	single	row	of	10	columns.

A	two-dimensional	array	is	returned	to	the	client	as	a	result	set	with	as
many	columns	as	there	are	elements	in	the	first	dimension	of	the	array
and	with	as	many	rows	as	there	are	elements	in	the	second	dimension	of
the	array.	For	example,	an	array(2,3)	is	returned	as	2	columns	in	3	rows.

When	a	property	return	value	or	method	return	value	is	an	array,
sp_OAGetProperty	or	sp_OAMethod	returns	a	result	set	to	the	client.	(Method
output	parameters	cannot	be	arrays.)	These	procedures	scan	all	the	data	values	in
the	array	to	determine	the	appropriate	Microsoft®	SQL	Server™	data	types	and
data	lengths	to	use	for	each	column	in	the	result	set.	For	a	particular	column,
these	procedures	use	the	data	type	and	length	required	to	represent	all	data
values	in	that	column.

When	all	data	values	in	a	column	share	the	same	data	type,	that	data	type	is	used
for	the	whole	column.	When	data	values	in	a	column	use	different	data	types,	the
data	type	of	the	whole	column	is	chosen	based	on	the	following	table.

	 int float money datetime varchar nvarchar
int int float money varchar varchar nvarchar
float float float money varchar varchar nvarchar
money money money money varchar varchar nvarchar
datetime varchar varchar varchar datetime varchar nvarchar
varchar varchar varchar varchar varchar varchar nvarchar
nvarchar nvarchar nvarchar nvarchar nvarchar nvarchar nvarchar

For	more	information	about	how	the	OLE	Automation	stored	procedures	convert

data	between	Microsoft	Visual	Basic®	and	SQL	Server	data	types,	see	Data
Type	Conversions	Using	OLE	Automation	Stored	Procedures.

Accessing	and	Changing	Relational	Data

Diagnosing	OLE	Automation	Objects	in	Transact-
SQL
When	developing	Transact-SQL	batches	that	call	custom	OLE	Automation
objects,	errors	can	occur	in	processing	the	data	returned	from	the	object.	The
problems	can	be	diagnosed	through	Microsoft®	Visual	Basic®	if	the	source
code	for	the	object	is	available.	To	do	this,	Visual	Basic	must	be	installed	on	the
computer	running	the	instance	of	Microsoft	SQL	Server™	2000	and	both	SQL
Server	and	Visual	Basic	must	be	running	under	the	same	Microsoft	Windows®
user	account.	SQL	Server	must	be	started	from	the	command	prompt	and	started
independently	of	Windows	Service	Control	Manager	(by	using	the	sqlservr	/c
command),	or	the	SQL	Server	service	must	be	started	under	the	same	Windows
user	account	used	to	log	on	to	the	system.

When	running	Visual	Basic	and	SQL	Server	under	the	same	Windows	user
accounts:

1.	 Load	the	custom	OLE	Automation	server	project	into	Visual	Basic.

2.	 Set	breakpoint(s)	on	the	desired	lines	of	source	code.

3.	 On	the	Visual	Basic	Run	menu,	click	Start	With	Full	Compile.

This	registers	and	runs	the	custom	OLE	Automation	server.

4.	 Use	the	OLE	Automation	stored	procedures	to	call	the	OLE	objects
exposed	by	the	custom	OLE	Automation	server.

When	a	breakpoint	is	hit,	the	Visual	Basic	debugger	is	activated.

For	more	information,	see	the	Microsoft	Visual	Basic	documentation.

Accessing	and	Changing	Relational	Data

OLE	Automation	Sample	Script
This	is	an	example	of	a	Transact-SQL	statement	batch	that	uses	the	OLE
Automation	stored	procedures	to	create	and	use	an	SQL-DMO	SQLServer
object.	Portions	of	the	code	are	used	as	examples	in	the	stored	procedure
references.

DECLARE	@object	int
DECLARE	@hr	int
DECLARE	@property	varchar(255)
DECLARE	@return	varchar(255)
DECLARE	@src	varchar(255),	@desc	varchar(255)

--	Create	an	object.
EXEC	@hr	=	sp_OACreate	'SQLDMO.SQLServer',	@object	OUT
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc
				RETURN
END

--	Set	a	property.
EXEC	@hr	=	sp_OASetProperty	@object,	'HostName',	'Gizmo'
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc
				RETURN
END

--	Get	a	property	using	an	output	parameter.
EXEC	@hr	=	sp_OAGetProperty	@object,	'HostName',	@property	OUT

IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc
				RETURN
END
PRINT	@property

--	Get	a	property	using	a	result	set.
EXEC	@hr	=	sp_OAGetProperty	@object,	'HostName'
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc
				RETURN
END

--	Get	a	property	by	calling	the	method.
EXEC	@hr	=	sp_OAMethod	@object,	'HostName',	@property	OUT
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc
				RETURN
END
PRINT	@property

--	Call	a	method.
EXEC	@hr	=	sp_OAMethod	@object,	'Connect',	NULL,	'my_server',	'my_login',	'my_password'
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc

				RETURN
END

--	Call	a	method	that	returns	a	value.
EXEC	@hr	=	sp_OAMethod	@object,	'VerifyConnection',	@return	OUT
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc
				RETURN
END
PRINT	@return

--	Destroy	the	object.
EXEC	@hr	=	sp_OADestroy	@object
IF	@hr	<>	0
BEGIN
			EXEC	sp_OAGetErrorInfo	@object,	@src	OUT,	@desc	OUT	
			SELECT	hr=convert(varbinary(4),@hr),	Source=@src,	Description=@desc
				RETURN
END

See	Also

sp_OACreate

sp_OAGetProperty

sp_OASetProperty

sp_OAMethod

sp_OADestroy

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Transact-SQL	Tips
Database	programmers	sometimes	encounter	puzzling	query	issues	that	other
programmers	may	already	have	resolved.	This	section	lists	some	of	the	common
challenges	and	guidelines	that	improve	query	performance.

Cross-Tab	Reports.	Creates	summary	information.	Most	cross-tab
reports	can	be	generated	by	using	either	the	CASE	function	or	the
CUBE	or	ROLLUP	options	of	SELECT.

Expanding	Hierarchies.	Shows	the	hierarchical	steps	of	getting	to	a
particular	result	(for	example,	tracing	a	genealogical	family	tree	from	a
great-great-grandparent	to	yourself).

Expanding	Networks.	Shows	the	multiple	hierarchical	steps	(for
example,	all	flights	originating	from	Seattle	and	landing	in	New	York).

Writing	International	Transact-SQL	Statements.	Lists	guidelines	for
writing	applications	that	can	be	adapted	for	use	around	the	world.	

Writing	Readable	Code	Lists	good	programming	practices	that	make
code	usable,	flexible,	and	understandable.

Transact-SQL	Programming	for	Improved	Performance

When	writing	Transact-SQL	statements,	batches,	stored	procedures,	and	triggers,
use	the	programming	features	in	Microsoft®	SQL	Server™	2000	to	create
efficient	code.

Reusing	Execution	Plans
SQL	Server	2000	has	a	better	chance	of	reusing	execution	plans	of	Transact-SQL
statements	if	they	are	written	following	these	guidelines.

Use	fully	qualified	names	of	objects	such	as	tables	and	views.

Use	parameterized	queries,	and	supply	the	parameter	values	instead	of
specifying	stored	procedure	parameter	values	or	the	values	in	search
condition	predicates	directly.	Use	either	the	parameter	substitution	in
sp_executesql	or	the	parameter	binding	of	the	ADO,	OLE	DB,	ODBC,
and	DB-Library	APIs.

For	example,	do	not	code	this	SELECT:

SELECT	*	FROM	Northwind.dbo.Shippers	WHERE	ShipperID	=	3

Instead,	using	ODBC	as	an	example,	use	the	SQLBindParameter
ODBC	function	to	bind	the	parameter	marker	(?)	to	a	program	variable
and	code	the	SELECT	statement	as:

SELECT	*	FROM	Northwind.dbo.Shippers	WHERE	ShipperID	=	?

In	a	Transact-SQL	script,	stored	procedure,	or	trigger,	use
sp_executesql	to	execute	the	SELECT	statement:

DECLARE	@IntVariable	INT
DECLARE	@SQLString	NVARCHAR(500)
DECLARE	@ParmDefinition	NVARCHAR(500)

/*	Build	the	SQL	string.	*/
SET	@SQLString	=
					N'SELECT	*	FROM	Northwind.dbo.Shippers	WHERE	ShipperID	=	@ShipID'
/*	Specify	the	parameter	format	once.	*/
SET	@ParmDefinition	=	N'@ShipID	int'

/*	Execute	the	string.	*/
SET	@IntVariable	=	3
EXECUTE	sp_executesql	@SQLString,	@ParmDefinition,
																						@ShipID	=	@IntVariable

Use	sp_executesql	when	you	do	not	need	the	overhead	of	defining
stored	procedures.	Always	use	sp_executesql	instead	of	a	temporary
stored	procedure.

For	more	information,	see	Execution	Plan	Caching	and	Reuse	and	Building
Statements	at	Run	Time.

Reusing	Execution	Plans	for	Batches
When	multiple	concurrent	applications	will	be	executing	the	same	batch	with	a
known	set	of	parameters,	implement	the	batch	as	a	stored	procedure	that	will	be
called	by	the	applications.

When	an	ADO,	OLE	DB,	or	ODBC	application	will	be	executing	the	same	batch
multiple	times,	use	the	PREPARE/EXECUTE	model	of	executing	the	batch.	Use
parameter	markers	bound	to	program	variables	to	supply	all	needed	input	values,
such	as	the	expressions	used	in	an	UPDATE	VALUES	clause	or	in	the	predicates
in	a	search	condition.

Using	the	ODBC	Escape	Sequence
When	calling	a	stored	procedure	from	an	ADO,	OLE	DB,	or	ODBC	application,
use	the	ODBC	{	CALL	procedure_name	}	escape	sequence	instead	of	the
Transact-SQL	EXECUTE	statement.	For	more	information,	see	Calling	a	Stored
Procedure.

Outstanding	Transactions	and	Result	Sets
Do	not	keep	a	transaction	outstanding	for	long	periods	of	time.	A	long-standing
transaction	can	reduce	throughput	by	holding	locks	on	rows	for	long	times,
preventing	other	connections	from	accessing	the	rows	in	a	timely	manner.

Do	not	keep	a	result	set	outstanding	for	a	long	period	of	time.	After	executing	a
Transact-SQL	batch,	fully	process	or	cancel	all	result	sets	from	the	batch	as
quickly	as	possible.

Minimizing	Rows	and	Operations
Minimize	the	number	of	rows	returned	from	a	SELECT	statement	by	using	the

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

WHERE	and	HAVING	clauses	to	select	only	the	rows	needed.

Minimize	the	use	of	not	equal	operations,	<>,	or	!=.	SQL	Server	has	to	scan	a
table	or	index	to	find	all	values	to	see	if	they	are	not	equal	to	the	value	given	in
the	expression.	Try	rephrasing	the	expression	using	ranges:

WHERE	KeyColumn	<	'TestValue'	AND	KeyColumn	>	'TestValue'

Reduce	roundtrips	between	the	application	and	the	server	by:

Including	multiple	statements	in	a	single	batch	sent	from	the	application
to	the	server.	For	more	information,	see	Batches.	

Placing	several	Transact-SQL	statements	in	a	single	stored	procedure.
This	reduces	the	amount	of	information	that	has	to	be	sent	from	the
application.

Reserving	the	use	of	server	cursors	to	when	the	cursor	functionality	is
needed	by	the	application;	use	a	default	result	set	instead.	For	more
information,	see	Cursors.

For	ODBC	applications,	consider	using	a	fast	forward-only	cursor	with
the	autofetch	option.	For	more	information,	see	Fast	Forward-Only
Cursors	(ODBC).

Using	Advanced	Features

Use	advanced	features	available	in	Transact-SQL	to	perform	work	in	one	batch
on	the	server	instead	of	pulling	the	results	to	the	application	and	then	using	them
to	send	another	Transact-SQL	statement	to	SQL	Server:

Use	variables	and	control-of-flow	statements	to	build	logic	into	batches,
stored	procedures,	and	triggers	instead	of	pulling	large	result	sets	to	the
client	and	performing	the	logic	there.	For	more	information,	see	Using
Multiple	Statements.	

Use	constructs,	such	as	CASE,	to	include	logic	in	individual	Transact-
SQL	statements.	For	more	information,	see	Using	CASE.	

JavaScript:hhobj_3.Click()

Use	the	UPDATE	statement	with	the	FROM	clause	to	update	values	in
one	table	using	values	from	other	tables	in	one	operation	instead	of
selecting	the	source	result	set	to	the	client	and	then	updating	the	target
table	one	row	at	a	time.

Use	the	join	capabilities	of	SQL	Server	2000.	For	more	information,	see
Join	Fundamentals.

Keeping	Data	Definition	Language	Statements	Together

Within	a	batch,	keep	all	data	definition	language	(DDL)	statements	for	a
temporary	table	together.	For	example:

/*	Example	1.	*/
CREATE	TABLE	#temp1	(ColA	INT	NOT	NULL)
CREATE	UNIQUE	INDEX	MyIndex	ON	#temp1(ColA)
INSERT	INTO	#temp1	SELECT	IntCol	FROM	SomeTable
SELECT	*	FROM	#temp1
GO

/*	Example	2.	*/
CREATE	TABLE	#temp1	(ColA	INT	UNIQUE	NOT	NULL)
INSERT	INTO	#temp1	SELECT	IntCol	FROM	SomeTable
SELECT	*	FROM	#temp1
GO

Do	not	code:
/*	Example	3.	*/
CREATE	TABLE	#temp1	(ColA	INT	NOT	NULL)
INSERT	INTO	#temp1	SELECT	IntCol	FROM	SomeTable
CREATE	UNIQUE	INDEX	MyIndex	ON	#temp1(ColA)
SELECT	*	FROM	#temp1
GO

Each	time	a	DDL	operation	is	performed	on	a	temporary	table,	all	batches	that
refer	to	it	must	be	recompiled.	The	query	optimizer	ensures	that	the	CREATE
statements	in	Examples	1	and	2	are	done	in	one	operation	and	the	batches	are
recompiled	only	once.	In	Example	3,	the	INSERT	statement	between	the
CREATE	statements	forces	a	separate	recompile	for	each	CREATE	statement.

Minimizing	the	Use	of	Temporary	Tables
Minimize	the	use	of	temporary	tables	as	places	to	store	intermediate	results	in	a
series	of	Transact-SQL	statements.	Some	logic	is	too	complex	to	perform	in	a
single	Transact-SQL	statement.	In	these	cases,	you	must	code	multiple	Transact-
SQL	statements	and	use	temporary	tables	to	pass	the	results	of	one	statement	to
the	next.	Creating	and	maintaining	the	temporary	tables	requires	overhead;	if
possible,	consider	coding	the	operation	as	a	single,	more	complex	Transact-SQL
statement.

In	SQL	Server	2000,	use	of	temporary	tables	in	stored	procedures	and	triggers
may	cause	the	stored	procedure	or	trigger	to	be	recompiled	every	time	it	is	used.
To	avoid	such	recompilation,	stored	procedures	or	triggers	that	use	temporary
tables	must	meet	the	following	requirements:

In	the	stored	procedure	or	trigger,	all	statements	that	contain	the	name
of	a	temporary	table	must	refer	to	a	temporary	table	created	in	the	same
stored	procedure.	The	temporary	table	cannot	have	been	created	in	a
calling	or	called	stored	procedure,	or	in	a	string	executed	using
EXECUTE	or	sp_executesql.

All	statements	that	contain	the	name	of	a	temporary	table	must	appear
syntactically	after	its	creation	in	the	stored	procedure	or	trigger.

The	stored	procedure	or	trigger	cannot	contain	any	DECLARE
CURSOR	statement	whose	SELECT	statement	references	a	temporary
table.

All	statements	that	contain	the	name	of	any	temporary	table	must
precede	any	DROP	TABLE	statement	that	references	a	temporary	table.
DROP	TABLE	statements	are	not	needed	for	temporary	tables	created

in	a	stored	procedure;	the	tables	are	dropped	automatically	when	the
procedure	terminates.

Statements	creating	a	temporary	table	(such	as	CREATE	TABLE	or
SELECT	INTO)	may	not	appear	in	a	control-of-flow	statement	such	as
IF...ELSE	or	WHILE.

Preventing	Issues	with	Dates

To	prevent	issues	with	the	interpretation	of	centuries	in	dates,	do	not	specify
years	using	two	digits.	For	example:

/*	Do	this.	*/
SELECT	*
FROM	Northwind.dbo.Orders
WHERE	OrderDate	>	'12/31/1997'
/*	Do	not	do	this.	*/
SELECT	*
FROM	Northwind.dbo.Orders
WHERE	OrderDate	>	'12/31/97'

Accessing	and	Changing	Relational	Data

Cross-Tab	Reports
Sometimes	it	is	necessary	to	rotate	results	so	that	columns	are	presented
horizontally	and	rows	are	presented	vertically.	This	is	known	as	creating	a
PivotTable®,	creating	a	cross-tab	report,	or	rotating	data.

Assume	there	is	a	table	Pivot	that	has	one	row	per	quarter.	A	SELECT	of	Pivot
reports	the	quarters	vertically:

Year						Quarter						Amount
----						-------						------
1990						1											1.1
1990						2											1.2
1990						3											1.3
1990						4											1.4
1991						1											2.1
1991						2											2.2
1991						3											2.3
1991						4											2.4

A	report	must	be	produced	with	a	table	that	contains	one	row	for	each	year,	with
the	values	for	each	quarter	appearing	in	a	separate	column,	such	as:

Year Q1 Q2 Q3 Q4

1990 1.1 1.2 1.3 1.4

1991 2.1 2.2 2.3 2.4

These	are	the	statements	used	to	create	the	Pivot	table	and	populate	it	with	the
data	from	the	first	table:

USE	Northwind
GO

CREATE	TABLE	Pivot
(Year						SMALLINT,
		Quarter			TINYINT,	
		Amount						DECIMAL(2,1))
GO
INSERT	INTO	Pivot	VALUES	(1990,	1,	1.1)
INSERT	INTO	Pivot	VALUES	(1990,	2,	1.2)
INSERT	INTO	Pivot	VALUES	(1990,	3,	1.3)
INSERT	INTO	Pivot	VALUES	(1990,	4,	1.4)
INSERT	INTO	Pivot	VALUES	(1991,	1,	2.1)
INSERT	INTO	Pivot	VALUES	(1991,	2,	2.2)
INSERT	INTO	Pivot	VALUES	(1991,	3,	2.3)
INSERT	INTO	Pivot	VALUES	(1991,	4,	2.4)
GO

This	is	the	SELECT	statement	used	to	create	the	rotated	results:

SELECT	Year,	
				SUM(CASE	Quarter	WHEN	1	THEN	Amount	ELSE	0	END)	AS	Q1,
				SUM(CASE	Quarter	WHEN	2	THEN	Amount	ELSE	0	END)	AS	Q2,
				SUM(CASE	Quarter	WHEN	3	THEN	Amount	ELSE	0	END)	AS	Q3,
				SUM(CASE	Quarter	WHEN	4	THEN	Amount	ELSE	0	END)	AS	Q4
FROM	Northwind.dbo.Pivot
GROUP	BY	Year
GO

This	SELECT	statement	also	handles	a	table	in	which	there	are	multiple	rows	for
each	quarter.	The	GROUP	BY	combines	all	rows	in	Pivot	for	a	given	year	into	a
single	row	in	the	output.	When	the	grouping	operation	is	being	performed,	the
CASE	functions	in	the	SUM	aggregates	are	applied	in	such	a	way	that	the
Amount	values	for	each	quarter	are	added	into	the	proper	column	in	the	result
set	and	0	is	added	to	the	result	set	columns	for	the	other	quarters.

If	the	results	of	this	SELECT	statement	are	used	as	input	to	a	spreadsheet,	it	is

easy	for	the	spreadsheet	to	calculate	a	total	for	each	year.	When	the	SELECT	is
used	from	an	application	it	may	be	easier	to	enhance	the	SELECT	statement	to
calculate	the	yearly	total.	For	example:

SELECT	P1.*,	(P1.Q1	+	P1.Q2	+	P1.Q3	+	P1.Q4)	AS	YearTotal
FROM	(SELECT	Year,
													SUM(CASE	P.Quarter	WHEN	1	THEN	P.Amount	ELSE	0	END)	AS	Q1,
													SUM(CASE	P.Quarter	WHEN	2	THEN	P.Amount	ELSE	0	END)	AS	Q2,
													SUM(CASE	P.Quarter	WHEN	3	THEN	P.Amount	ELSE	0	END)	AS	Q3,
													SUM(CASE	P.Quarter	WHEN	4	THEN	P.Amount	ELSE	0	END)	AS	Q4
					FROM	Pivot	AS	P
					GROUP	BY	P.Year)	AS	P1
GO

Both	GROUP	BY	with	CUBE	and	GROUP	BY	with	ROLLUP	compute	the
same	sort	of	information	as	shown	in	the	example,	but	in	a	slightly	different
format.

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Expanding	Hierarchies
Databases	often	store	hierarchical	information.	For	example,	the	following	data
is	a	hierarchical	representation	of	regions	of	the	world.	This	representation	does
not	clearly	show	the	structure	implied	by	the	data.

Parent																													Child																													
----------------------------------	----------------------------------
World																														Europe																												
World																														North	America																					
Europe																													France																												
France																													Paris																													
North	America																						United	States																					
North	America																						Canada																												
United	States																						New	York																										
United	States																						Washington																								
New	York																											New	York	City																					
Washington																									Redmond																											

This	example	is	easier	to	interpret:

World
			North	America
						Canada
						United	States
									Washington
												Redmond
									New	York
												New	York	City
			Europe
						France
									Paris

The	following	Transact-SQL	procedure	expands	an	encoded	hierarchy	to	any

arbitrary	depth.	Although	Transact-SQL	supports	recursion,	it	is	more	efficient	to
use	a	temporary	table	as	a	stack	to	keep	track	of	all	of	the	items	for	which
processing	has	begun	but	is	not	complete.	When	processing	is	complete	for	a
particular	item,	it	is	removed	from	the	stack.	New	items	are	added	to	the	stack	as
they	are	identified.

CREATE	PROCEDURE	expand	(@current	char(20))	as
SET	NOCOUNT	ON
DECLARE	@level	int,	@line	char(20)
CREATE	TABLE	#stack	(item	char(20),	level	int)
INSERT	INTO	#stack	VALUES	(@current,	1)
SELECT	@level	=	1

WHILE	@level	>	0
BEGIN
			IF	EXISTS	(SELECT	*	FROM	#stack	WHERE	level	=	@level)
						BEGIN
									SELECT	@current	=	item
									FROM	#stack
									WHERE	level	=	@level
									SELECT	@line	=	space(@level	-	1)	+	@current
									PRINT	@line
									DELETE	FROM	#stack
									WHERE	level	=	@level
												AND	item	=	@current
									INSERT	#stack
												SELECT	child,	@level	+	1
												FROM	hierarchy
												WHERE	parent	=	@current
									IF	@@ROWCOUNT	>	0
												SELECT	@level	=	@level	+	1
						END
			ELSE
						SELECT	@level	=	@level	-	1

END	--	WHILE

The	input	parameter	(@current)	indicates	the	place	in	the	hierarchy	to	start.	It
also	keeps	track	of	the	current	item	in	the	main	loop.

The	local	variables	used	are	@level,	which	keeps	track	of	the	current	level	in	the
hierarchy,	and	@line,	which	is	a	work	area	used	to	construct	the	indented	line.

The	SET	NOCOUNT	ON	statement	avoids	cluttering	the	output	with
ROWCOUNT	messages	from	each	SELECT.

The	temporary	table,	#stack,	is	created	and	primed	with	the	item	identifier	of	the
starting	point	in	the	hierarchy,	and	@level	is	set	to	match.	The	level	column	in
#stack	allows	the	same	item	to	appear	at	multiple	levels	in	the	database.
Although	this	situation	does	not	apply	to	the	geographic	data	in	the	example,	it
can	apply	in	other	examples.

In	this	example,	when	@level	is	greater	than	0,	the	procedure	follows	these
steps:

1.	 If	there	are	any	items	in	the	stack	at	the	current	level	(@level),	the
procedure	chooses	one	and	calls	it	@current.

2.	 Indents	the	item	@level	spaces,	and	then	prints	the	item.

3.	 Deletes	the	item	from	the	stack	so	it	will	not	be	processed	again,	and
then	adds	all	its	child	items	to	the	stack	at	the	next	level	(@level	+	1).
This	is	the	only	place	where	the	hierarchy	table	(#stack)	is	used.

With	a	conventional	programming	language,	you	would	have	to	find
each	child	item	and	add	it	to	the	stack	individually.	With	Transact-
SQL,	you	can	find	all	child	items	and	add	them	with	a	single
statement,	avoiding	another	nested	loop.

4.	 If	there	are	child	items	(IF	@@ROWCOUNT	>	0),	descends	one	level
to	process	them	(@level	=	@level	+	1);	otherwise,	continues
processing	at	the	current	level.

5.	 If	there	are	no	items	on	the	stack	awaiting	processing	at	the	current

level,	goes	back	one	level	to	see	if	there	are	any	awaiting	processing	at
the	previous	level	(@level	=	@level	-	1).	When	there	is	no	previous
level,	the	expansion	is	complete.

Accessing	and	Changing	Relational	Data

Expanding	Networks
In	a	network,	an	item	can	have	more	than	one	superior.	For	example,	the
following	data	is	a	representation	of	airline	flights	among	a	number	of	cities:

Departure																										Destination																							
----------------------------------	----------------------------------
Chicago																												New	York																										
Chicago																												Milwaukee																									
Denver																													Chicago																											
Seattle																												Chicago																											
Seattle																												Denver																												
Seattle																												San	Francisco																					

With	this	data,	finding	all	routes	between	a	given	pair	of	cities	is	a	common
problem:

Itineraries

Seattle,	Chicago,	New	York
Seattle,	Denver,	Chicago,	New	York

To	solve	this	problem,	you	can	make	these	changes	to	the	example	in	Expanding
Hierarchies:

Two	additional	input	parameters	are	required:	the	goal	city	and	the
depth-of-search	limit.

The	current	itinerary	is	saved	in	another	temporary	table	and	displayed
only	when	a	goal	is	reached.

To	avoid	expanding	around	a	cycle	in	the	network,	do	not	expand	cities
that	appear	in	the	current	itinerary.

These	changes	are	shown	in	this	example	(not	from	the	pubs	database):

CREATE	PROCEDURE	route	
(@current	char(20),	@dest	char(20),	@maxlevel	int	=	5)	AS
SET	NOCOUNT	ON
DECLARE	@level	int
CREATE	TABLE	#stack	(city	char(20),	level	int)
CREATE	TABLE	#list	(city	char(20),	level	int)
INSERT	#stack	VALUES	(@current,	1)
SELECT	@level	=	1

WHILE	@level	>	0
BEGIN
			IF	EXISTS	(SELECT	*	FROM	#stack	WHERE	level	=	@level)
						BEGIN
									SELECT	@current	=	city
									FROM	#stack
									WHERE	level	=	@level
									DELETE	FROM	#stack	
									WHERE	level	=	@level	
												AND	city	=	@current
									DELETE	FROM	#list	
									WHERE	level	>=	@level
									IF	EXISTS	(SELECT	*	FROM	#list	WHERE	city	=	@current)
												CONTINUE
									INSERT	#list	VALUES(@current,	@level)
									IF(@current	=	@dest)
									BEGIN
												SELECT	city	AS	itinerary
												FROM	#list
												CONTINUE
									END

									INSERT	#stack
									SELECT	destination,	@level	+	1

									FROM	flights
									WHERE	departure	=	@current
												AND	@level	<	@maxlevel
									IF	@@rowcount	>	0
												SELECT	@level	=	@level	+	1
						END
			ELSE
						SELECT	@level	=	@level	-	1
END	--	WHILE

In	this	example,	when	@level	is	greater	than	0,	the	procedure	follows	these
steps:

1.	 The	current	city	is	added	to	#list	by	clearing	anything	at	the	current
level	or	below	(DELETE	FROM	#list	WHERE	level	>	=	@level),	and
then	by	adding	the	current	city	(INSERT	#list	VALUES(@current,
@level)).

2.	 When	the	goal	city	is	reached	(@current	=	@dest),	the	procedure
displays	the	path	(SELECT	itinerary	=	city	FROM	#list)	and	does	not
expand	the	path	any	further	(CONTINUE).

3.	 The	depth	of	search	is	limited	by	adding	a	condition	(@level	<
@maxlevel)	to	the	INSERT	statement	that	adds	cities	to	the	stack.

The	IF	EXISTS	statement	at	the	beginning	of	the	WHILE	loop	skips	the	current
city	if	it	is	already	in	the	current	itinerary.

If	the	flights	table	also	contains	cost	information,	the	lowest	cost	route	can	be
found	by	saving	the	current	itinerary	if	its	total	cost	is	less	than	the	best	cost	so
far:

SELECT	@cost	=	sum(cost)
FROM	#list
IF	@cost	<	@lowest_cost
BEGIN

			@lowest_cost	=	@cost
			TRUNCATE	TABLE	#best_route
			INSERT	#best_route
						SELECT	*
						FROM	#list
END

For	greater	efficiency,	stop	expanding	the	current	route	if	the	current	cost
exceeds	the	cost	of	the	best	route:

IF	(SELECT	SUM(cost)	FROM	#list)	>	@lowest_cost
			CONTINUE

If	the	flights	table	includes	a	departure	and	arrival	time,	you	can	add	an	IF
statement	to	expand	only	the	routes	that	have	a	departure	time	at	least	one	hour
after	the	arrival	time	of	the	current	route:

IF	((SELECT	SUM(cost)	FROM	#list)	>	@lowest_cost)
			AND	datediff(hh,	departuretime,	@arrivaltime)	>	1)
CONTINUE

Accessing	and	Changing	Relational	Data

Writing	International	Transact-SQL	Statements
Databases	and	database	applications	that	use	Transact-SQL	statements	will
become	more	portable	from	one	language	to	another,	or	will	support	multiple
languages,	if	these	guidelines	are	followed:

Replace	all	uses	of	the	char,	varchar,	and	text	data	types	with	nchar,
nvarchar,	and	ntext.	This	eliminates	the	need	to	consider	code	page
conversion	issues.

When	performing	month	and	day-of-week	comparisons	and	operations,
use	the	numeric	dateparts	rather	than	the	name	strings.	Different
language	settings	return	different	names	for	the	months	and	week	days.
For	example,	DATENAME(MONTH,GETDATE())	returns	May	when
the	language	is	set	to	U.S.	English,	returns	Mai	when	the	language	is	set
to	German,	and	returns	mai	when	the	language	is	set	to	French.	Instead,
use	a	function	such	as	DATEPART	that	uses	the	number	of	the	month
instead	of	the	name.	Use	the	DATEPART	names	when	building	result
sets	to	be	displayed	to	a	user	because	the	date	names	are	often	more
meaningful	than	a	numeric	representation;	however,	do	not	code	any
logic	that	depends	on	the	displayed	names	being	from	a	specific
language.

When	specifying	dates	in	comparisons	or	for	input	to	INSERT	or
UPDATE	statements,	use	constants	that	are	interpreted	the	same	for	all
language	settings:

ADO,	OLE	DB,	and	ODBC	applications	should	use	the	ODBC
timestamp,	date,	and	time	escape	clauses	of:
{	ts	'yyyy-mm-dd	hh:mm:ss[.fff]	'}	such	as:	{	ts	'1998-09-24
10:02:20'	}
{	d	'yyyy-mm-dd'}	such	as:	{	d	'1998-09-24'	}
{	t	'hh:mm:ss'}	such	as:	{	t	'10:02:20'}

Applications	using	other	APIs,	or	Transact-SQL	scripts,	stored

procedures,	and	triggers,	should	use	the	unseparated	numeric
strings	(for	example,	yyyymmdd	as	19980924).

Applications	using	other	APIs,	or	Transact-SQL	scripts	stored
procedures,	and	triggers	should	use	the	CONVERT	statement
with	an	explicit	style	parameter	for	all	conversions	between	the
date	and	smalldate	data	types	and	character	string	data	types.
For	example,	this	statement	is	interpreted	the	same	for	all
language	or	date	format	connection	settings:
SELECT	*
FROM	Northwind.dbo.Orders
WHERE	OrderDate	=	CONVERT(DATETIME,	'7/19/1996',	101)

For	more	information,	see	CAST	and	CONVERT.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Writing	Readable	Code
Here	are	guidelines	for	writing	readable	code:

Use	comments	to	describe	the	program	or	script,	including	the	author,
the	date,	and	a	description	of	the	modifications.

Put	each	major	Transact-SQL	clause	on	a	separate	line	so	the	statements
are	easier	to	read:
USE	pubs
SELECT	au_fname,	au_lname
FROM	authors
WHERE	state	=	'CA'

Put	Transact-SQL	keywords	such	as	SELECT	and	FROM,	function
names	such	as	SUM,	AVG,	DATEPART,	CASE,	and	CONVERT,	and
data	types	such	as	INT,	CHAR,	NTEXT	in	uppercase:
USE	pubs
CREATE	TABLE	myauthors
(
	first	VARCHAR(30)	NOT	NULL,
	last	VARCHAR(40)	NOT	NULL,
	address	VARCHAR(40)	NOT	NULL,
	city	VARCHAR(30)	NOT	NULL,
	state	VARCHAR(2)	NOT	NULL,
	zip	CHAR(9)	NOT	NULL,
	phone	VARCHAR(20)	NULL
)

Define	and	use	a	style	convention	for	object	names	consistently.	Two
typical	conventions	are:

Capitalize	the	first	letter	in	each	name	part;	do	not	separate
name	parts	with	underscores:	TableName.

Make	all	characters	lowercase	and	separate	name	parts	with
underscore	characters	(_):	table_name.

Even	if	the	current	instance	of	Microsoft®	SQL	Server™	is	not	case
sensitive,	readability	is	improved	if	a	consistent	style	is	used.	It	is	good
practice	to	always	code	object	names	in	Transact-SQL	statements	using
the	exact	same	case	as	was	used	to	define	the	object.

For	objects	that	are	common	in	your	organization,	define	a	set	of
standard	abbreviations	to	be	used	consistently	in	object	names.

Use	single	quotation	marks	for	all	character,	string,	binary,	and	Unicode
constants,	so	that	quoted	identifiers	are	the	only	items	that	use	double
quotation	marks	(").

Use	easy-to-type	and	easy-to-remember	alias	names	when	using
multitable	joins.	For	example,	an	alias	of	t	for	the	titles	table	and	an
alias	of	a	for	the	authors	table.

If	the	information	following	a	Transact-SQL	keyword	wraps	to	another
line,	consider	tabbing	the	second	and	successive	lines	in	one	tab
(usually	five	spaces)	to	make	it	easier	to	find	the	major	keywords.

Use	parentheses	to	indicate	the	execution	order	of	complex
mathematical	computations.	This	allows	for	easier	readability.	For
example,	use	"(price	*	1.15)	+	sales"	instead	of	"price	*	1.15	+	sales".

See	Also

Batches

Functions

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Modifying	Data
The	topics	in	this	section	describe	the	techniques	for	manipulating	data	in	the
tables	of	a	relational	database.	You	can	add	new	rows	of	data,	change	the	data	in
existing	rows,	and	delete	rows.

See	Also

Adding	Data

Changing	Data

Deleting	Data

Accessing	and	Changing	Relational	Data

Adding	Data
Microsoft®	SQL	Server™	supports	these	ways	to	add	data	to	a	table:

The	INSERT	statement	with	one	of	two	options:

A	VALUES	clause	to	insert	one	row	with	a	specific	set	of
values.

A	SELECT	subquery	to	insert	data	selected	from	a	table	or
view.

Database	application	programming	interfaces	(APIs)

Support	options	for	inserting	data	while	processing	a	result	set.

The	WRITETEXT	statement	and	several	database	API	options

Can	be	used	to	add	ntext,	text,	or	image	data	to	a	row.

Functions	in	the	database	APIs	(ADO,	OLE	DB,	ODBC,	and	DB-
Library)

Support	adding	new	ntext,	text,	and	image	data	to	a	row.

The	SELECT	INTO	statement

Can	be	used	to	create	a	new	table	containing	all	the	rows	of	the
SELECT	INTO	result	set.

The	bulk	copy	component	for	inserting	large	numbers	of	rows

There	are	three	main	ways	to	specify	bulk	copy	operations:

The	bulk	copy	program	(the	bcp	utility),	a	command	prompt
utility.

The	BULK	INSERT	statement	used	in	Transact-SQL	batches,
stored	procedures,	and	triggers.

The	bulk	copy	APIs	for	OLE	DB,	ODBC,	and	DB-Library
applications.

INSERT	statements	work	on	views	as	well	as	on	tables,	with	some	restrictions.
For	more	information,	see	Creating	a	View.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Adding	Rows	with	INSERT
The	INSERT	statement	adds	one	or	more	new	rows	to	a	table.	In	a	simplified
treatment,	INSERT	has	this	form:

INSERT	[INTO]	table_or_view	[(column_list)]	data_values

The	statement	causes	the	data_values	to	be	inserted	as	one	or	more	rows	into	the
named	table	or	view.	column_list	is	a	list	of	column	names,	separated	by
commas,	that	can	be	used	to	specify	the	columns	for	which	data	is	supplied.	If
column_list	is	not	specified,	all	the	columns	in	the	table	or	view	receive	data.

When	a	column_list	does	not	name	all	the	columns	in	a	table	or	view,	a	value	of
NULL	(or	the	default	value	if	a	default	is	defined	for	the	column)	is	inserted	into
any	column	not	named	in	the	list.	All	columns	not	specified	in	the	column	list
must	either	allow	null	values	or	have	a	default	assigned.

INSERT	statements	do	not	specify	values	for	the	following	types	of	columns
because	Microsoft®	SQL	Server™	generates	the	values	for	columns	of	these
types:

Columns	with	an	IDENTITY	property	that	generates	the	values	for	the
column.

Columns	that	have	a	default	that	uses	the	NEWID	function	to	generate	a
unique	GUID	value.

Computed	columns.

These	are	virtual	columns	that	were	defined	as	an	expression	calculated
from	one	or	more	other	columns	in	the	CREATE	TABLE	statement,
such	as:

CREATE	TABLE	TestTable
		(ColA	INT	PRIMARY	KEY,
			ColB	INT	NOT	NULL,
			ColC	AS	(ColA	+	ColB)	*	2)

The	data	values	supplied	must	match	the	column	list.	The	number	of	data	values
must	be	the	same	as	the	number	of	columns,	and	the	data	type,	precision,	and
scale	of	each	data	value	must	match	those	of	the	corresponding	column.	There
are	two	ways	to	specify	the	data	values:

Use	a	VALUES	clause	to	specify	the	data	values	for	one	row:
INSERT	INTO	MyTable	(PriKey,	Description)
							VALUES	(123,	'A	description	of	part	123.')

Use	a	SELECT	subquery	to	specify	the	data	values	for	one	or	more
rows.
INSERT	INTO	MyTable		(PriKey,	Description)
							SELECT	ForeignKey,	Description
							FROM	SomeView

Accessing	and	Changing	Relational	Data

Inserting	a	Row	Using	INSERT...Values
The	VALUES	keyword	specifies	the	values	for	one	row	of	a	table.	The	values
are	specified	as	a	comma-separated	list	of	scalar	expressions	whose	data	type,
precision,	and	scale	must	be	the	same	as	or	implicitly	convertible	to	the
corresponding	column	in	the	column	list.	If	a	column	list	is	not	specified,	the
values	must	be	specified	in	the	same	sequence	as	the	columns	in	the	table	or
view.

For	example,	this	statement	inserts	a	new	shipper	into	the	Shippers	table	using
the	VALUES	clause:

INSERT	INTO	Northwind.dbo.Shippers	(CompanyName,	Phone)
			VALUES	(N'Snowflake	Shipping',	N'(503)555-7233')

A	column	list	is	required	for	this	insert	because	the	ShipperID	column	has	the
IDENTITY	property;	therefore,	values	cannot	be	inserted	into	it.

To	insert	data	using	INSERT

Transact-SQL

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Inserting	Rows	Using	INSERT...SELECT
The	SELECT	subquery	in	the	INSERT	statement	can	be	used	to	add	values	into
a	table	from	one	or	more	other	tables	or	views.	Using	a	SELECT	subquery	also
lets	more	than	one	row	be	inserted	at	one	time.

This	INSERT	statement	inserts	into	a	separate	table	some	of	the	data	from	all	the
rows	in	titles	whose	type	is	modern	cooking:

USE	pubs
INSERT	INTO	MyBooks
			SELECT	title_id,	title,	type
			FROM	titles
			WHERE	type	=	'mod_cook'

The	select	list	of	the	subquery	must	match	the	column	list	of	the	INSERT
statement.	If	no	column	list	is	specified,	the	select	list	must	match	the	columns	in
the	table	or	view	being	inserted	into.

Another	use	of	the	INSERT...SELECT	statement	is	to	insert	data	from	a	source
outside	of	Microsoft®	SQL	Server™.	The	SELECT	in	the	INSERT	statement
can:

Reference	a	remote	table	on	a	linked	server	by	using	a	four-part	name.
For	more	information,	Identifying	a	Data	Source	Using	a	Linked	Server
Name.

Reference	a	remote	table	using	OPENROWSET.	For	more	information,
see	Identifying	a	Data	Source	Using	the	Ad	Hoc	Name.

Use	the	result	set	of	a	query	executed	on	a	remote	server.	For	more
information,	see	Using	Pass-through	Queries	as	Tables.

Accessing	and	Changing	Relational	Data

Inserting	Rows	Using	SELECT	INTO
The	SELECT	INTO	statement	creates	a	new	table	and	populates	it	with	the
result	set	of	the	SELECT.	The	structure	of	the	new	table	is	defined	by	the
attributes	of	the	expressions	in	the	select	list,	for	example:

SELECT	Shippers.*,	Link.Address,	Link.City,
																			Link.Region,	Link.PostalCode
INTO	NewShippers
FROM	Shippers
					JOIN	LinkServer.DB.dbo.Shippers	AS	Link
							ON	(Shippers.ShipperID	=	Link.ShipperID)

SELECT	INTO	can	be	used	to	combine	data	from	several	tables	or	views	into
one	table.	It	can	also	be	used	to	create	a	new	table	containing	data	selected	from
a	linked	server.

See	Also

SELECT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Adding	a	Row	Using	a	Result	Set	Position
The	ADO,	OLE	DB	and	ODBC	application	programming	interfaces	(APIs)
support	adding	rows	while	processing	the	result	set	of	a	query.	The	fundamental
process	is	to:

1.	 Bind	the	result	set	columns	to	program	variables.

2.	 Execute	the	query.

3.	 Execute	API	functions	or	methods	to	position	the	application	on	a	row
within	the	result	set.

4.	 Fill	the	bound	program	variables	with	the	data	values	for	the	new	row
to	be	inserted.

5.	 Execute	one	of	these	functions	or	methods	to	insert	the	row:

In	ADO,	call	the	AddNew	method	of	the	Recordset	object.

In	OLE	DB,	call	the	InsertRow	method	of	the
IRowsetChange	interface.

In	ODBC	3.x,	call	the	SQLBulkOperations	function	with	the
SQL_ADD	option.

The	new	row	is	not	necessarily	inserted	at	a	position	based	on	the	application's
position	within	the	result	set.	The	new	row	is	inserted	at	a	position	in	the	base
tables	related	to	the	values	of	any	clustered	key	values	specified.

Accessing	and	Changing	Relational	Data

Adding	ntext,	text,	or	image	Data	to	Inserted	Rows
These	are	ways	to	add	ntext,	text,	or	image	values	to	a	row:

Specify	relatively	short	amounts	of	data	in	an	INSERT	statement	in	the
same	way	char,	nchar,	or	binary	data	is.

Use	the	WRITETEXT	statement.	For	more	information,	see
WRITETEXT.	

ADO	applications	can	use	the	AppendChunk	method	to	specify	long
amounts	of	ntext,	text,	or	image	data.	For	more	information,	see
Managing	Long	Data	Types.	

OLE	DB	applications	can	use	the	ISequentialStream	interface	to	write
new	ntext,	text,	or	image	values.	For	more	information,	see	BLOBs
and	OLE	Objects.	

ODBC	applications	can	use	the	data-at-execution	form	of	SQLPutData
to	write	new	ntext,	text,	or	image	values.	For	more	information,	see
Managing	text	and	image	Columns.	

DB-Library	applications	can	use	the	dbwritetext	function.	For	more
information,	see	Text	and	Image	Functions.

See	Also

BACKUP

UPDATETEXT

INSERT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Accessing	and	Changing	Relational	Data

Adding	Rows	Using	Bulk	Copy	Operations
The	Microsoft®	SQL	Server™	bulk	copy	components	support:

Inserting	numbers	of	rows	into	a	table	or	view.

Retrieving	large	numbers	of	rows	from	a	table,	view,	or	query.

Bulk	copy	is	the	fastest	way	to	add	large	numbers	of	rows	in	SQL	Server.	There
are	three	ways	to	run	bulk	copy	operations:

Use	the	bulk	copy	program	(the	bcp	utility).

bcp	is	a	command	prompt	utility.	bcp	provides	for	running	bulk	copies
in	.bat	and	.cmd	scripts.	bcp	is	used	to	bulk	copy	large	files	into	tables
or	views	in	SQL	Server	databases.

Use	the	BULK	INSERT	statement	in	Transact-SQL	batches,	stored
procedures,	and	triggers	to	bulk	copy	data	from	a	file	into	a	table	or
view	in	a	SQL	Server	database.

The	BULK	INSERT	statement	is	executed	on	the	server	in	the	context
of	the	MSSQLServer	service,	not	on	the	client.	If	the	file	being	bulk
copied	is	also	on	the	server	the	data	is	not	moved	across	the	network	at
all.	This	makes	a	BULK	INSERT	from	a	file	on	the	server	the	fastest
bulk	copy	option.	For	more	information,	see	BULK	INSERT.

Use	the	bulk	copy	APIs	for	OLE	DB,	ODBC,	and	DB-Library
applications.

The	bcp	utility	is	an	ODBC	command	prompt	utility	that	uses	the	SQL
Server	ODBC	driver	bulk	copy	functions.	Any	application	can	use	these
published	bulk	copy	functions	in	ODBC	or	DB-Library	applications	to
run	bulk	copy	operations.	Applications	can	bulk	copy	from	files	into	a
SQL	Server	table	or	view.	Applications	can	also	bulk	copy	from
program	variables	into	a	SQL	Server	table	or	view.	For	more
information	about	OLE	DB	bulk	copies,	see	Bulk-Copy	Rowsets.	For
more	information	about	ODBC	bulk	copies,	see	Performing	Bulk	Copy
Operations.	For	more	information	about	DB-Library	bulk	copies,	see

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Bulk-Copy	Functions.

To	add	data	using	the	bcp	utility

Client	Utility

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Changing	Data
After	the	tables	have	been	created	and	the	data	added,	changing	or	updating	data
in	the	tables	becomes	one	of	the	day-to-day	processes	in	maintaining	a	database.
Microsoft®	SQL	Server™	provides	these	ways	to	change	data	in	an	existing
table:

The	UPDATE	statement

Can	be	used	to	update	data	in	specific	rows	in	a	table	or	view.

Database	application	programming	interfaces	(APIs)

Support	options	for	updating	data	at	the	current	position	of	a	result	set.
Transact-SQL	server	cursors	also	support	updating	data	at	the	current
row	of	a	cursor.

The	UPDATETEXT	statement

Can	be	used	to	update	specific	ntext,	text,	and	image	values.

Updates	work	on	views	as	well	as	on	tables,	with	some	restrictions.	For	more
information,	see	Creating	a	View.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Changing	Data	with	UPDATE
The	UPDATE	statement	can	change	data	values	in	single	rows,	groups	of	rows,
or	all	the	rows	in	a	table	or	view.	It	can	also	be	used	to	update	rows	in	a	remote
server	using	either	a	linked	server	name	or	the	OPENROWSET,
OPENDATASOURCE,	and	OPENQUERY	functions,	as	long	as	the	OLE	DB
provider	used	to	access	the	remote	server	supports	updates.	An	UPDATE
statement	referencing	a	table	or	view	can	change	the	data	in	only	one	base	table
at	a	time.

The	UPDATE	statement	has	these	major	clauses:

SET

Contains	a	comma-separated	list	of	the	columns	to	be	updated	and	the
new	value	for	each	column,	in	the	form	column_name	=	expression.	The
value	supplied	by	the	expressions	includes	items	such	as	constants,
values	selected	from	a	column	in	another	table	or	view,	or	values
calculated	by	a	complex	expression.

FROM

Identifies	the	tables	or	views	that	supply	the	values	for	the	expressions
in	the	SET	clause,	and	optional	join	conditions	between	the	source
tables	or	views.

WHERE

Specifies	the	search	condition	that	defines	the	rows	from	the	source
tables	and	views	that	qualify	to	provide	values	to	the	expressions	in	the
SET	clause.

This	update	statement	increases	the	prices	of	all	the	Northwind	products	in
category	2	by	10	percent:

UPDATE	Northwind.dbo.Products
SET	UnitPrice	=	UnitPrice	*	1.1
WHERE	CategoryID	=	2

To	change	data	using	UPDATE

Transact-SQL

Note		UPDATE	is	logged;	if	you	are	changing	large	blocks	of	text	or	image
data,	consider	using	the	UPDATETEXT	or	WRITETEXT	statement,	which	by
default	is	not	logged.	For	more	information,	see	Adding	ntext,	text,	or	image
Data	to	Inserted	Rows.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Changing	Data	Using	the	SET	Clause
SET	specifies	the	columns	to	be	changed	and	the	new	values	for	the	columns.
The	values	in	the	specified	columns	are	updated	with	the	values	given	in	the
SET	in	all	rows	that	match	the	WHERE	clause	search	condition.	If	no	WHERE
clause	is	specified,	all	rows	are	updated.	For	example,	if	all	the	publishing
houses	in	the	publishers	table	move	their	head	offices	to	Atlanta,	Georgia,	this
UPDATE	statement	would	be	used:

UPDATE	publishers	SET	city	=	'Atlanta',	state	=	'Georgia'

Computed	column	values	can	be	calculated	and	used	in	an	update.	For	example,
to	double	all	the	prices	in	the	titles	table,	the	price	column	in	the	titles	table	can
be	set	to	equal	price	*	2.

The	expressions	used	in	the	SET	clause	can	also	be	subqueries	that	return	only
one	value;	for	example,	if	the	Northwind	database	had	an	OrderSummary
table:

UPDATE	OrderSummary
SET	Last30Days	=
				(SELECT	SUM(OrdDet.UnitPrice	*	OrdDet.Quantity)
					FROM	[Order	Details]	AS	OrdDet
										JOIN	Orders	AS	Ord
										ON	(OrdDet.OrderID	=	Ord.OrderID
														AND	Ord.OrderDate	>	DATEADD(dd,-30,GETDATE()))
)

Accessing	and	Changing	Relational	Data

Changing	Data	Using	the	WHERE	Clause
The	WHERE	clause	performs	two	functions:

Specifies	the	rows	to	be	updated.

Indicates	the	rows	from	the	source	tables	that	qualify	to	supply	values
for	the	update	if	a	FROM	clause	is	also	specified.

If	no	WHERE	clause	is	specified	all	rows	in	the	table	are	updated.

This	UPDATE	statement	implements	a	name	change	for	one	of	the	shippers:

UPDATE	Northwind.dbo.Shippers
SET	CompanyName	=	'United	Shippers'
WHERE	CompanyName	=	'United	Packages'

Accessing	and	Changing	Relational	Data

Changing	Data	Using	the	FROM	Clause
Use	the	FROM	clause	to	pull	data	from	one	or	more	tables	or	views	into	the
table	you	want	to	update.	For	example,	when	author	Dirk	Stringer	gets	a
contract,	a	title	identification	number	is	assigned	to	his	book,	The	Psychology	of
Computer	Cooking,	in	the	titles	table.	Dirk's	row	in	the	titleauthor	table	can	be
updated	by	adding	a	title	identification	number	for	this	latest	book.

This	example	updates	Dirk	Stringer's	row	in	the	titleauthor	table	to	add	a	title
identification	number	for	his	latest	book:

UPDATE	titleauthor
			SET	title_id	=	titles.title_id
			FROM	titles	INNER	JOIN	titleauthor	
						ON	titles.title_id	=	titleauthor.title_id	
						INNER	JOIN	authors
						ON	titleauthor.au_id	=	authors.au_id
			WHERE	titles.title	=	'Net	Etiquette'
						AND	au_lname	=	'Locksley'

To	update	data	using	UPDATE

Transact-SQL

See	Also

FROM

WHERE

UPDATE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Changing	Data	with	a	Cursor
The	ADO,	OLE	DB,	and	ODBC	application	programming	interfaces	(APIs)
support	updating	the	current	row	on	which	the	application	is	positioned	in	a
result	set.	The	fundamental	process	is	to:

1.	 Bind	the	result	set	columns	to	program	variables.

2.	 Execute	the	query.

3.	 Execute	API	functions	or	methods	to	position	the	application	on	a	row
within	the	result	set.

4.	 Fill	the	bound	program	variables	with	the	new	data	values	for	any
columns	to	be	updated.

5.	 Execute	one	of	these	functions	or	methods	to	insert	the	row:

In	ADO,	call	the	Update	method	of	the	Recordset	object.

In	OLE	DB,	call	the	SetData	method	of	the	IRowsetChange
interface.

In	ODBC,	call	the	SQLSetPos	function	with	the
SQL_UPDATE	option.

When	using	a	Transact-SQL	server	cursor,	you	can	update	the	current	row	by
using	an	UPDATE	statement	that	includes	a	WHERE	CURRENT	OF	clause.
Changes	made	with	this	clause	affect	only	the	row	on	which	the	cursor	is
positioned.	When	a	cursor	is	based	on	a	join,	only	the	table_name	specified	in
the	UPDATE	statement	is	modified.	Other	tables	participating	in	the	cursor	are
not	affected.

USE	Northwind

GO
DECLARE	abc	CURSOR	FOR
SELECT	CompanyName
FROM	Shippers

OPEN	abc
GO

FETCH	NEXT	FROM	abc
GO

UPDATE	Shippers	SET	CompanyName	=	N'Speedy	Express,	Inc.'
WHERE	CURRENT	OF	abc
GO

CLOSE	abc
DEALLOCATE	abc
GO

For	information	about	joins,	see	Join	Fundamentals.

See	Also

UPDATE

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Changing	ntext,	text,	or	image	Data
These	are	ways	to	update	ntext,	text,	or	image	values	in	a	row	when	replacing
the	entire	value:

Specify	relatively	short	amounts	of	data	in	an	UPDATE	statement	in	the
same	way	char,	nchar,	or	binary	data	is.

Use	the	Transact-SQL	WRITETEXT	statement.	For	more	information,
see	WRITETEXT.	

ADO	applications	can	use	the	AppendChunk	method	to	specify	long
amounts	of	ntext,	text,	or	image	data.	For	more	information,	see
Managing	Long	Data	Types.	

OLE	DB	applications	can	use	the	ISequentialStream	interface	to	write
new	ntext,	text,	or	image	values.	For	more	information,	see	BLOBs
and	OLE	Objects.	

ODBC	applications	can	use	the	data-at-execution	form	of	SQLPutData
to	write	new	ntext,	text,	or	image	values.	For	more	information,	see
Managing	text	and	image	Columns.	

DB-Library	applications	can	use	the	dbwritetext	function.	For	more
information,	see	Text	and	Image	Functions.

Microsoft®	SQL	Server™	also	supports	updating	only	a	portion	of	an	ntext,
text,	or	image	value.	In	DB-Library	this	can	be	done	using	the	dbupdatetext
function.	For	more	information,	see	dbupdatetext.	All	other	applications	and
Transact-SQL	scripts,	batches,	stored	procedures,	and	triggers	can	use	the
UPDATETEXT	statement	to	update	only	a	portion	of	an	ntext,	text,	or	image
column.

This	script	shows	using	UPDATETEXT	in	conjunction	with	PATINDEX	to	find

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

and	replace	a	specific	string	in	a	text	value:

USE	Northwind
GO
CREATE	TABLE	TextParts	(ColA	INT	PRIMARY	KEY,	ColB	TEXT)
GO
INSERT	INTO	TextParts
			VALUES(1,
											'Sample	string	START	TAG	Text	to	go	END	TAG	Trailing	text.')
GO
DECLARE	@PtrVar	BINARY(16)
DECLARE	@InsertPos	INT
DECLARE	@DeleteLen	INT

SELECT	@PtrVar	=	TEXTPTR(ColB),
							@InsertPos	=	(PATINDEX('%START	TAG%',	ColB)	+	9),
							@DeleteLen	=	(
																						PATINDEX('%END	TAG%',	ColB)	-
																						(PATINDEX('%START	TAG%',	ColB)	+	9
																														+	2	/*	allow	for	blanks	*/)
)
FROM	TextParts
WHERE	ColA	=	1

UPDATETEXT	TextParts.ColB
											@PtrVar
											@InsertPos
											@DeleteLen
											WITH	LOG
											'The	new	text'
GO

SELECT	*	FROM	TextParts
GO

The	result	set	from	the	final	SELECT	statement	is:

ColA								ColB
-----------	--
1											Sample	string	START	TAG	The	new	text	END	TAG	Trailing	text.

To	update	data	using	UPDATETEXT

Transact-SQL

JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Deleting	Data
Microsoft®	SQL	Server™	supports	these	ways	to	delete	data	in	an	existing
table:

The	DELETE	statement

The	deletion	of	the	current	row	in	a	result	set	or	cursor	

The	TRUNCATE	TABLE	statement

The	data	modification	statements	work	on	views	as	well	as	on	tables,	with	some
restrictions.	For	more	information,	see	Creating	a	View.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Deleting	Rows	with	DELETE
The	DELETE	statement	removes	one	or	more	rows	in	a	table	or	view.	A
simplified	form	of	the	DELETE	syntax	is:

DELETE	table_or_view	FROM	table_sources	WHERE	search_condition

table_or_view	names	a	table	or	view	from	which	the	rows	are	to	be	deleted.	All
rows	in	table_or_view	that	meet	the	qualifications	of	the	WHERE	search
condition	are	deleted.	If	a	WHERE	clause	is	not	specified,	all	the	rows	in
table_or_view	are	deleted.	The	FROM	clause	specifies	additional	tables	or	views
and	join	conditions	that	can	be	used	by	the	predicates	in	the	WHERE	clause
search	condition	to	qualify	the	rows	to	be	deleted	from	table_or_view.	Rows	are
not	deleted	from	the	tables	named	in	the	FROM	clause,	only	from	the	table
named	in	table_or_view.

Any	table	that	has	all	rows	removed	remains	in	the	database.	The	DELETE
statement	deletes	only	rows	from	the	table;	the	table	must	be	removed	from	the
database	by	using	the	DROP	TABLE	statement.

To	delete	rows	using	DELETE

Transact-SQL

This	script	shows	the	three	DELETE	statements	needed	to	delete	the	rows
associated	with	products	supplied	by	the	company	named	Lyngbysild	in	the
Northwind	database.	This	would	not	be	a	typical	business	operation	because	it
involves	deleting	lines	from	existing	orders,	but	it	does	show	a	series	of	deletes
of	differing	complexity.

USE	Northwind
GO
DELETE	[Order	Details]
FROM	Suppliers,	Products
WHERE	Products.SupplierID	=	Suppliers.SupplierID
		AND	Suppliers.CompanyName	=	'Lyngbysild'
		AND	[Order	Details].ProductID	=	Products.ProductID
GO

JavaScript:hhobj_1.Click()

DELETE	Products
FROM	Suppliers
WHERE	Products.SupplierID	=	Suppliers.SupplierID
		AND	Suppliers.CompanyName	=	'Lyngbysild'
GO
DELETE	Suppliers
WHERE	CompanyName	=	'Lyngbysild'
GO

See	Also

DROP	TABLE

JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Deleting	Rows	in	Result	Sets
The	ADO,	OLE	DB,	and	ODBC	application	programming	interfaces	(APIs)
support	deleting	the	current	row	on	which	an	application	is	positioned	in	a	result
set.	The	application	executes	a	statement,	and	then	fetches	rows	from	the	result
set.	After	an	application	has	fetched	the	row,	it	can	use	the	following	functions
or	methods	to	delete	the	row:

ADO	applications	use	the	Delete	method	of	the	Recordset	object.

OLE	DB	applications	use	the	DeleteRows	method	of	the
IRowsetChange	interface.

ODBC	applications	use	the	SQLSetPos	function	with	the
SQL_DELETE	option.

DB-library	applications	use	dbcursor	to	perform	a	CRS_DELETE
operation.

Transact-SQL	scripts,	stored	procedures,	and	triggers	can	use	the	WHERE
CURRENT	OF	clause	on	a	DELETE	statement	to	delete	the	cursor	row	on
which	they	are	currently	positioned,	for	example:

DECLARE	abc	CURSOR	FOR
		SELECT	*	FROM	MyTable

OPEN	abc

FETCH	NEXT	FROM	abc

DELETE	MyTable	WHERE	CURRENT	OF	abc

CLOSE	abc

DEALLOCATE	abc

Accessing	and	Changing	Relational	Data

Deleting	All	Rows	Using	TRUNCATE	TABLE
The	TRUNCATE	TABLE	statement	is	a	fast,	nonlogged	method	of	deleting	all
rows	in	a	table.	It	is	almost	always	faster	than	a	DELETE	statement	with	no
conditions	because	DELETE	logs	each	row	deletion,	and	TRUNCATE	TABLE
logs	only	the	deallocation	of	whole	data	pages.	TRUNCATE	TABLE
immediately	frees	all	the	space	occupied	by	that	table's	data	and	indexes.	The
distribution	pages	for	all	indexes	are	also	freed.

As	with	DELETE,	the	definition	of	a	table	emptied	using	TRUNCATE	TABLE
remains	in	the	database,	along	with	its	indexes	and	other	associated	objects.	The
DROP	TABLE	statement	must	be	used	to	drop	the	definition	of	the	table.

To	delete	all	rows	in	a	table	using	TRUNCATE	TABLE

Transact-SQL

See	Also

DROP	TABLE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Transactions
A	transaction	is	a	sequence	of	operations	performed	as	a	single	logical	unit	of
work.	A	logical	unit	of	work	must	exhibit	four	properties,	called	the	ACID
(Atomicity,	Consistency,	Isolation,	and	Durability)	properties,	to	qualify	as	a
transaction:

Atomicity

A	transaction	must	be	an	atomic	unit	of	work;	either	all	of	its	data
modifications	are	performed,	or	none	of	them	is	performed.

Consistency

When	completed,	a	transaction	must	leave	all	data	in	a	consistent	state.	In	a
relational	database,	all	rules	must	be	applied	to	the	transaction's
modifications	to	maintain	all	data	integrity.	All	internal	data	structures,	such
as	B-tree	indexes	or	doubly-linked	lists,	must	be	correct	at	the	end	of	the
transaction.

Isolation

Modifications	made	by	concurrent	transactions	must	be	isolated	from	the
modifications	made	by	any	other	concurrent	transactions.	A	transaction
either	sees	data	in	the	state	it	was	in	before	another	concurrent	transaction
modified	it,	or	it	sees	the	data	after	the	second	transaction	has	completed,	but
it	does	not	see	an	intermediate	state.	This	is	referred	to	as	serializability
because	it	results	in	the	ability	to	reload	the	starting	data	and	replay	a	series
of	transactions	to	end	up	with	the	data	in	the	same	state	it	was	in	after	the
original	transactions	were	performed.

Durability

After	a	transaction	has	completed,	its	effects	are	permanently	in	place	in	the
system.	The	modifications	persist	even	in	the	event	of	a	system	failure.

Specifying	and	Enforcing	Transactions
SQL	programmers	are	responsible	for	starting	and	ending	transactions	at	points
that	enforce	the	logical	consistency	of	the	data.	The	programmer	must	define	the

sequence	of	data	modifications	that	leave	the	data	in	a	consistent	state	relative	to
the	organization's	business	rules.	The	programmer	then	includes	these
modification	statements	in	a	single	transaction	so	that	Microsoft®	SQL	Server™
can	enforce	the	physical	integrity	of	the	transaction.

It	is	the	responsibility	of	an	enterprise	database	system,	such	as	SQL	Server,	to
provide	mechanisms	ensuring	the	physical	integrity	of	each	transaction.	SQL
Server	provides:

Locking	facilities	that	preserve	transaction	isolation.	

Logging	facilities	that	ensure	transaction	durability.	Even	if	the	server
hardware,	operating	system,	or	SQL	Server	itself	fails,	SQL	Server	uses
the	transaction	logs,	upon	restart,	to	automatically	roll	back	any
uncompleted	transactions	to	the	point	of	the	system	failure.	

Transaction	management	features	that	enforce	transaction	atomicity	and
consistency.	After	a	transaction	has	started,	it	must	be	successfully
completed,	or	SQL	Server	undoes	all	of	the	data	modifications	made
since	the	transaction	started.

Accessing	and	Changing	Relational	Data

Controlling	Transactions
Applications	control	transactions	mainly	by	specifying	when	a	transaction	starts
and	ends.	This	can	be	specified	using	either	Transact-SQL	statements	or
database	API	functions.	The	system	must	also	be	able	to	correctly	handle	errors
that	terminate	a	transaction	before	it	completes.

Transactions	are	managed	at	the	connection	level.	When	a	transaction	is	started
on	a	connection,	all	Transact-SQL	statements	executed	on	that	connection	are
part	of	the	transaction	until	the	transaction	ends.

Starting	Transactions
You	can	start	transactions	in	Microsoft®	SQL	Server™	as	explicit,	autocommit,
or	implicit	transactions.

Explicit	transactions

Explicitly	start	a	transaction	by	issuing	a	BEGIN	TRANSACTION
statement.

Autocommit	transactions

This	is	the	default	mode	for	SQL	Server.	Each	individual	Transact-SQL
statement	is	committed	when	it	completes.	You	do	not	have	to	specify	any
statements	to	control	transactions.

Implicit	transactions

Set	implicit	transaction	mode	on	through	either	an	API	function	or	the
Transact-SQL	SET	IMPLICIT_TRANSACTIONS	ON	statement.	The	next
statement	automatically	starts	a	new	transaction.	When	that	transaction	is
completed,	the	next	Transact-SQL	statement	starts	a	new	transaction.

Connection	modes	are	managed	at	the	connection	level.	If	one	connection
changes	from	one	transaction	mode	to	another	it	has	no	effect	on	the	transaction
modes	of	any	other	connection.

Ending	Transactions

You	can	end	transactions	with	either	a	COMMIT	or	ROLLBACK	statement.

COMMIT

If	a	transaction	is	successful,	commit	it.	A	COMMIT	statement	guarantees	all
of	the	transaction's	modifications	are	made	a	permanent	part	of	the	database.
A	COMMIT	also	frees	resources,	such	as	locks,	used	by	the	transaction.

ROLLBACK

If	an	error	occurs	in	a	transaction,	or	if	the	user	decides	to	cancel	the
transaction,	then	roll	the	transaction	back.	A	ROLLBACK	statement	backs
out	all	modifications	made	in	the	transaction	by	returning	the	data	to	the	state
it	was	in	at	the	start	of	the	transaction.	A	ROLLBACK	also	frees	resources
held	by	the	transaction.

Specifying	Transaction	Boundaries
You	can	identify	when	SQL	Server	transactions	start	and	end	with	Transact-SQL
statements	or	API	functions	and	methods.

Transact-SQL	statements

Use	the	BEGIN	TRANSACTION,	COMMIT	TRANSACTION,	COMMIT
WORK,	ROLLBACK	TRANSACTION,	ROLLBACK	WORK,	and	SET
IMPLICIT_TRANSACTIONS	statements	to	delineate	transactions.	These
are	primarily	used	in	DB-Library	applications	and	in	Transact-SQL	scripts,
such	as	the	scripts	that	are	run	using	the	osql	command	prompt	utility.

API	functions	and	methods

Database	APIs	such	as	ODBC,	OLE	DB,	and	ADO	contain	functions	or
methods	used	to	delineate	transactions.	These	are	the	primary	mechanisms
used	to	control	transactions	in	a	SQL	Server	application.

Each	transaction	must	be	managed	by	only	one	of	these	methods.	Using	both
methods	on	the	same	transaction	can	lead	to	undefined	results.	For	example,	you
should	not	start	a	transaction	using	the	ODBC	API	functions,	and	then	use	the
Transact-SQL	COMMIT	statement	to	complete	the	transaction.	This	would	not
notify	the	SQL	Server	ODBC	driver	that	the	transaction	was	committed.	In	this
case,	use	the	ODBC	SQLEndTran	function	to	end	the	transaction.

Errors	During	Transaction	Processing
If	a	severe	error	prevents	the	successful	completion	of	a	transaction,	SQL	Server
automatically	rolls	back	the	transaction	and	frees	all	resources	held	by	the
transaction.	If	the	client's	network	connection	to	SQL	Server	is	broken,	any
outstanding	transactions	for	the	connection	are	rolled	back	when	the	network
notifies	SQL	Server	of	the	break.	If	the	client	application	fails	or	if	the	client
computer	goes	down	or	is	restarted,	this	also	breaks	the	connection,	and	SQL
Server	rolls	back	any	outstanding	connections	when	the	network	notifies	it	of	the
break.	If	the	client	logs	off	the	application,	any	outstanding	transactions	are
rolled	back.

If	a	run-time	statement	error	(such	as	a	constraint	violation)	occurs	in	a	batch,
the	default	behavior	in	SQL	Server	is	to	roll	back	only	the	statement	that
generated	the	error.	You	can	change	this	behavior	using	the	SET	XACT_ABORT
statement.	After	SET	XACT_ABORT	ON	is	executed,	any	run-time	statement
error	causes	an	automatic	rollback	of	the	current	transaction.	Compile	errors,
such	as	syntax	errors,	are	not	affected	by	SET	XACT_ABORT.

It	is	the	responsibility	of	the	programmer	to	code	the	application	to	specify	the
correct	action	(COMMIT	or	ROLLBACK)	if	a	run-time	or	compile	error	occurs.

See	Also

BEGIN	TRANSACTION

ROLLBACK	TRANSACTION

COMMIT	TRANSACTION

ROLLBACK	WORK

COMMIT	WORK

SET	IMPLICIT_TRANSACTIONS

Performing	Transactions	in	ADO

Transactions

Performing	Transactions	(ODBC)

SET	XACT_ABORT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()

Accessing	and	Changing	Relational	Data

Explicit	Transactions
An	explicit	transaction	is	one	in	which	you	explicitly	define	both	the	start	and
end	of	the	transaction.	Explicit	transactions	were	also	called	user-defined	or
user-specified	transactions	in	earlier	versions	of	Microsoft®	SQL	Server™.

DB-Library	applications	and	Transact-SQL	scripts	use	the	BEGIN
TRANSACTION,	COMMIT	TRANSACTION,	COMMIT	WORK,
ROLLBACK	TRANSACTION,	or	ROLLBACK	WORK	Transact-SQL
statements	to	define	explicit	transactions.

BEGIN	TRANSACTION

Marks	the	starting	point	of	an	explicit	transaction	for	a	connection.

COMMIT	TRANSACTION	or	COMMIT	WORK

Used	to	end	a	transaction	successfully	if	no	errors	were	encountered.	All	data
modifications	made	in	the	transaction	become	a	permanent	part	of	the
database.	Resources	held	by	the	transaction	are	freed.

ROLLBACK	TRANSACTION	or	ROLLBACK	WORK

Used	to	erase	a	transaction	in	which	errors	are	encountered.	All	data
modified	by	the	transaction	is	returned	to	the	state	it	was	in	at	the	start	of	the
transaction.	Resources	held	by	the	transaction	are	freed.

You	can	also	use	explicit	transactions	in	OLE	DB.	Call	the
ITransactionLocal::StartTransaction	method	to	start	a	transaction.	Call	either
the	ITransaction::Commit	or	ITransaction::Abort	method	with	fRetaining	set
to	FALSE	to	end	the	transaction	without	automatically	starting	another
transaction.

In	ADO,	use	the	BeginTrans	method	on	a	Connection	object	to	start	an	explicit
transaction.	To	end	the	transaction,	call	the	Connection	object's	CommitTrans
or	RollbackTrans	methods.

The	ODBC	API	does	not	support	explicit	transactions,	only	autocommit	and
implicit	transactions.

Explicit	transaction	mode	lasts	only	for	the	duration	of	the	transaction.	When	the

transaction	ends,	the	connection	returns	to	the	transaction	mode	it	was	in	before
the	explicit	transaction	was	started,	either	implicit	or	autocommit	mode.

See	Also

BEGIN	TRANSACTION

ROLLBACK	TRANSACTION

COMMIT	TRANSACTION

ROLLBACK	WORK

COMMIT	WORK

Performing	Transactions	in	ADO

Supporting	Local	Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Autocommit	Transactions
Autocommit	mode	is	the	default	transaction	management	mode	of	Microsoft®
SQL	Server™.	Every	Transact-SQL	statement	is	committed	or	rolled	back	when
it	completes.	If	a	statement	completes	successfully,	it	is	committed;	if	it
encounters	any	error,	it	is	rolled	back.	A	SQL	Server	connection	operates	in
autocommit	mode	whenever	this	default	mode	has	not	been	overridden	by	either
explicit	or	implicit	transactions.	Autocommit	mode	is	also	the	default	mode	for
ADO,	OLE	DB,	ODBC,	and	DB-Library.

A	SQL	Server	connection	operates	in	autocommit	mode	until	a	BEGIN
TRANSACTION	statement	starts	an	explicit	transaction,	or	implicit	transaction
mode	is	set	on.	When	the	explicit	transaction	is	committed	or	rolled	back,	or
when	implicit	transaction	mode	is	turned	off,	SQL	Server	returns	to	autocommit
mode.

Compile	and	Run-time	Errors
In	autocommit	mode,	it	sometimes	appears	as	if	SQL	Server	has	rolled	back	an
entire	batch	instead	of	just	one	SQL	statement.	This	happens	only	if	the	error
encountered	is	a	compile	error,	not	a	run-time	error.	A	compile	error	prevents
SQL	Server	from	building	an	execution	plan,	so	nothing	in	the	batch	is	executed.
Although	it	appears	that	all	the	statements	before	the	one	generating	the	error
were	rolled	back,	the	error	prevented	anything	in	the	batch	from	being	executed.
In	this	example,	none	of	the	INSERT	statements	in	the	third	batch	are	executed
because	of	a	compile	error.	It	appears	that	the	first	two	INSERT	statements	are
rolled	back	when	they	are	never	executed.

USE	pubs
GO
CREATE	TABLE	TestBatch	(Cola	INT	PRIMARY	KEY,	Colb	CHAR(3))
GO
INSERT	INTO	TestBatch	VALUES	(1,	'aaa')
INSERT	INTO	TestBatch	VALUES	(2,	'bbb')
INSERT	INTO	TestBatch	VALUSE	(3,	'ccc')		/*	Syntax	error	*/
GO

SELECT	*	FROM	TestBatch			/*	Returns	no	rows	*/
GO

In	this	example,	the	third	INSERT	statement	generates	a	run-time	duplicate
primary	key	error.	The	first	two	INSERT	statements	are	successful	and
committed,	so	they	remain	after	the	run-time	error.

USE	pubs
GO
CREATE	TABLE	TestBatch	(Cola	INT	PRIMARY	KEY,	Colb	CHAR(3))
GO
INSERT	INTO	TestBatch	VALUES	(1,	'aaa')
INSERT	INTO	TestBatch	VALUES	(2,	'bbb')
INSERT	INTO	TestBatch	VALUES	(1,	'ccc')		/*	Duplicate	key	error	*/
GO
SELECT	*	FROM	TestBatch			/*	Returns	rows	1	and	2	*/
GO

SQL	Server	uses	delayed	name	resolution,	in	which	object	names	are	not
resolved	until	execution	time.	In	this	example,	the	first	two	INSERT	statements
are	executed	and	committed,	and	those	two	rows	remain	in	the	TestBatch	table
after	the	third	INSERT	statement	generates	a	run-time	error	by	referring	to	a
table	that	does	not	exist.

USE	pubs
GO
CREATE	TABLE	TestBatch	(Cola	INT	PRIMARY	KEY,	Colb	CHAR(3))
GO
INSERT	INTO	TestBatch	VALUES	(1,	'aaa')
INSERT	INTO	TestBatch	VALUES	(2,	'bbb')
INSERT	INTO	TestBch	VALUES	(3,	'ccc')		/*	Table	name	error	*/
GO
SELECT	*	FROM	TestBatch			/*	Returns	rows	1	and	2	*/
GO

See	Also

Transactions

Transactions	in	ODBC

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Implicit	Transactions
When	a	connection	is	operating	in	implicit	transaction	mode,	Microsoft®	SQL
Server™	automatically	starts	a	new	transaction	after	the	current	transaction	is
committed	or	rolled	back.	You	do	nothing	to	delineate	the	start	of	a	transaction;
you	only	commit	or	roll	back	each	transaction.	Implicit	transaction	mode
generates	a	continuous	chain	of	transactions.

After	implicit	transaction	mode	has	been	set	on	for	a	connection,	SQL	Server
automatically	starts	a	transaction	when	it	first	executes	any	of	these	statements:

ALTER	TABLE INSERT
CREATE OPEN
DELETE REVOKE
DROP SELECT
FETCH TRUNCATE	TABLE
GRANT UPDATE

The	transaction	remains	in	effect	until	you	issue	a	COMMIT	or	ROLLBACK
statement.	After	the	first	transaction	is	committed	or	rolled	back,	SQL	Server
automatically	starts	a	new	transaction	the	next	time	any	of	these	statements	are
executed	by	the	connection.	SQL	Server	keeps	generating	a	chain	of	implicit
transactions	until	implicit	transaction	mode	is	turned	off.

Implicit	transaction	mode	is	set	either	using	the	Transact-SQL	SET	statement,	or
through	database	API	functions	and	methods.

Accessing	and	Changing	Relational	Data

Transact-SQL	Implicit	Transactions
DB-Library	applications	and	Transact-SQL	scripts	use	the	Transact-SQL	SET
IMPLICIT_TRANSACTIONS	ON	statement	to	start	implicit	transaction	mode.
Use	the	SET	IMPLICIT_TRANSACTIONS	OFF	statement	to	turn	implicit
transaction	mode	off.	Use	the	COMMIT	TRANSACTION,	COMMIT	WORK,
ROLLBACK	TRANSACTION,	or	ROLLBACK	WORK	statements	to	end	each
transaction.

SET	QUOTED_IDENTIFIER	OFF
GO
SET	NOCOUNT	OFF
GO
USE	pubs
GO
CREATE	TABLE	ImplicitTran	(Cola	int	PRIMARY	KEY,
									Colb	char(3)	NOT	NULL)
GO
SET	IMPLICIT_TRANSACTIONS	ON
GO
/*	First	implicit	transaction	started	by	an	INSERT	statement	*/
INSERT	INTO	ImplicitTran	VALUES	(1,	'aaa')
GO
INSERT	INTO	ImplicitTran	VALUES	(2,	'bbb')
GO
/*	Commit	first	transaction	*/
COMMIT	TRANSACTION
GO
/*	Second	implicit	transaction	started	by	a	SELECT	statement	*/
SELECT	COUNT(*)	FROM	ImplicitTran
GO
INSERT	INTO	ImplicitTran	VALUES	(3,	'ccc')
GO

SELECT	*	FROM	ImplicitTran
GO
/*	Commit	second	transaction	*/
COMMIT	TRANSACTION
GO
SET	IMPLICIT_TRANSACTIONS	OFF
GO

See	Also

COMMIT	TRANSACTION

ROLLBACK	WORK

COMMIT	WORK

SET	IMPLICIT_TRANSACTIONS

ROLLBACK	TRANSACTION

BEGIN	TRANSACTION

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

API	Implicit	Transactions
The	API	mechanisms	used	to	set	implicit	transactions	are	ODBC	and	OLE	DB.

ODBC

Call	the	SQLSetConnectAttr	function	with	Attribute	set	to
SQL_ATTR_AUTOCOMMIT	and	ValuePtr	set	to
SQL_AUTOCOMMIT_OFF	to	start	implicit	transaction	mode.	

The	connection	remains	in	implicit	transaction	mode	until	you	call
SQLSetConnectAttr	with	Attribute	set	to
SQL_ATTR_AUTOCOMMIT	and	ValuePtr	set	to
SQL_AUTOCOMMIT_ON.	

Call	the	SQLEndTran	function	with	CompletionType	set	to	either
SQL_COMMIT	or	SQL_ROLLBACK	to	commit	or	roll	back	each
transaction.	

When	SQL_AUTOCOMMIT_OFF	is	set	by	an	ODBC	application,	the
Microsoft®	SQL	Server™	ODBC	driver	issues	a	SET
IMPLICIT_TRANSACTION	ON	statement.

OLE	DB

OLE	DB	does	not	have	a	method	to	set	implicit	transaction	mode
specifically.

Call	the	ITransactionLocal::StartTransaction	method	to	start	an
explicit	transaction.	

When	you	then	call	either	the	ITransaction::Commit	or
ITransaction::Abort	method	with	fRetaining	set	to	TRUE,	OLE	DB
completes	the	current	transaction	and	goes	into	implicit	transaction
mode.	The	connection	remains	in	implicit	transaction	mode	as	long	as

you	set	fRetaining	on	ITransaction::Commit	or	ITransaction::Abort
to	TRUE.	

Call	ITransaction::Commit	or	ITransaction::Abort	with	fRetaining
set	to	FALSE	to	stop	implicit	transaction	mode.

ADO

ADO	does	not	support	implicit	transactions.	ADO	applications	use	either
autocommit	mode	or	explicit	transactions.

See	Also

Transactions

Performing	Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Distributed	Transactions
Distributed	transactions	span	two	or	more	servers	known	as	resource	managers.
The	management	of	the	transaction	must	be	coordinated	between	the	resource
managers	by	a	server	component	called	a	transaction	manager.	Microsoft®	SQL
Server™	can	operate	as	a	resource	manager	in	distributed	transactions
coordinated	by	transaction	managers	such	as	the	Microsoft	Distributed
Transaction	Coordinator	(MS	DTC),	or	other	transaction	managers	that	support
the	X/Open	XA	specification	for	Distributed	Transaction	Processing.	For	more
information,	see	the	Microsoft	Distributed	Transaction	Coordinator
documentation.

A	transaction	within	a	single	SQL	Server	that	spans	two	or	more	databases	is
actually	a	distributed	transaction.	SQL	Server,	however,	manages	the	distributed
transaction	internally;	to	the	user	it	operates	as	a	local	transaction.

At	the	application,	a	distributed	transaction	is	managed	much	the	same	as	a	local
transaction.	At	the	end	of	the	transaction,	the	application	requests	the	transaction
to	be	either	committed	or	rolled	back.	A	distributed	commit	must	be	managed
differently	by	the	transaction	manager	to	minimize	the	risk	that	a	network	failure
may	result	in	some	resource	managers	successfully	committing	while	others	roll
back	the	transaction.	This	is	achieved	by	managing	the	commit	process	in	two
phases	(the	prepare	phase	and	the	commit	phase),	which	is	known	as	a	two-
phase	commit	(2PC).

Prepare	phase

When	the	transaction	manager	receives	a	commit	request,	it	sends	a	prepare
command	to	all	the	resource	managers	involved	in	the	transaction.	Each
resource	manager	then	does	everything	required	to	make	the	transaction
durable	and	all	buffers	holding	log	images	for	the	transaction	are	flushed	to
disk.	As	each	resource	manager	completes	the	prepare	phase,	it	returns
success	or	failure	of	the	prepare	to	the	transaction	manager.

Commit	phase

If	the	transaction	manager	receives	successful	prepares	from	all	the	resource
managers,	it	sends	commit	commands	to	each	resource	manager.	The
resource	managers	can	then	complete	the	commit.	If	all	the	resource

managers	report	a	successful	commit,	the	transaction	manager	then	sends	a
success	notification	to	the	application.	If	any	resource	manager	reported	a
failure	to	prepare,	the	transaction	manager	sends	a	rollback	command	to	each
resource	manager	and	indicates	the	failure	of	the	commit	to	the	application.

SQL	Server	applications	can	manage	distributed	transactions	either	through
Transact-SQL	or	the	database	API.

Accessing	and	Changing	Relational	Data

Transact-SQL	Distributed	Transactions
The	distributed	transactions	started	in	Transact-SQL	have	a	relatively	simple
structure:

1.	 A	Transact-SQL	script	or	application	connection	executes	a	Transact-
SQL	statement	that	starts	a	distributed	transaction.	

2.	 The	Microsoft®	SQL	Server™	executing	the	statement	becomes	the
controlling	server	in	the	transaction.	

3.	 The	script	or	application	then	executes	either	distributed	queries
against	linked	servers	or	remote	stored	procedures	against	remote
servers.	

4.	 As	distributed	queries	and	remote	procedure	calls	are	made,	the
controlling	server	automatically	calls	MS	DTC	to	enlist	the	linked	and
remote	servers	in	the	distributed	transaction.	

5.	 When	the	script	or	application	issues	either	a	COMMIT	or
ROLLBACK	statement,	the	controlling	SQL	Server	calls	MS	DTC	to
manage	the	two	phase	commit	process,	or	to	notify	the	linked	and
remote	servers	to	roll	back	their	transactions.

Required	Transact-SQL	Statements

The	Transact-SQL	statements	controlling	the	distributed	transactions	are	few
because	most	of	the	work	is	done	internally	by	Microsoft®	SQL	Server™	and
MS	DTC.	The	only	Transact-SQL	statements	required	in	the	Transact-SQL	script
or	application	are	those	required	to:

Start	a	distributed	transaction.

Perform	distributed	queries	against	linked	servers	or	execute	remote

procedure	calls	against	remote	servers.

Call	the	standard	Transact-SQL	COMMIT	TRANSACTION,	COMMIT
WORK,	ROLLBACK	TRANSACTION,	or	ROLLBACK	WORK
statements	to	complete	the	transaction.

For	any	Transact-SQL	distributed	transaction,	the	SQL	Server
processing	the	Transact-SQL	script	or	connection	automatically	calls
MS	DTC	to	coordinate	the	commitment	or	rollback	of	the	transaction.

Starting	Distributed	Transactions

You	can	start	distributed	transactions	in	Transact-SQL	in	these	ways:

Start	an	explicit	distributed	transaction	using	the	BEGIN
DISTRIBUTED	TRANSACTION	statement.

You	can	also	execute	a	distributed	query	against	a	linked	server.	The
SQL	Server	you	have	connected	to	calls	MS	DTC	to	manage	the
distributed	transaction	with	the	linked	server.	You	can	also	call	remote
stored	procedures	on	a	remote	SQL	Server	as	part	of	the	distributed
transaction.

While	in	a	local	transaction,	execute	a	distributed	query.

If	the	OLE	DB	data	source	supports	the	ITransactionJoin	interface,	the
transaction	is	promoted	to	a	distributed	transaction,	even	if	the	query	is
a	read-only	query.	If	the	data	source	does	not	support
ITransactionJoin,	only	read-only	statements	are	allowed.

If	SET	REMOTE_PROC_TRANSACTIONS	ON	has	been	executed
and	a	local	transaction	calls	a	remote	stored	procedure	on	another	SQL
Server,	the	local	transaction	is	promoted	to	a	distributed	transaction.

SQL	Server	uses	MS	DTC	to	coordinate	the	transaction	with	the	remote
server.

Calls	to	remote	stored	procedures	execute	outside	the	scope	of
a	local	transaction	if	REMOTE_PROC_TRANSACTIONS	is
set	to	OFF.	The	work	done	by	the	remote	procedure	is	not

rolled	back	if	the	local	transaction	is	rolled	back.	The	work
done	by	the	remote	stored	procedure	is	committed	at	the	time
the	procedure	completes,	not	when	the	local	transaction	is
committed.

The	REMOTE_PROC_TRANSACTIONS	option	is	a	compatibility	option	that
affects	only	remote	stored	procedure	calls	made	to	remote	servers	defined	using
sp_addserver.	For	more	information	about	remote	stored	procedures,	see
Remote	Stored	Procedure	Architecture.	The	option	does	not	apply	to	distributed
queries	that	execute	a	stored	procedure	on	a	linked	server	defined	using
sp_addlinkedserver.	For	more	information	about	distributed	queries,	see
Distributed	Queries.

See	Also

BEGIN	DISTRIBUTED	TRANSACTION

ROLLBACK	TRANSACTION

COMMIT	TRANSACTION

ROLLBACK	WORK

COMMIT	WORK

SET	REMOTE_PROC_TRANSACTIONS

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

MS	DTC	Distributed	Transactions
Applications	written	using	OLE	DB,	ODBC,	ADO,	or	DB-Library	can	use
Transact-SQL	distributed	transactions	by	issuing	Transact-SQL	statements	to
start	and	stop	Transact-SQL	distributed	transactions.	OLE	DB	and	ODBC,
however,	also	contain	support	at	the	API	level	for	managing	distributed
transactions.	OLE	DB	and	ODBC	applications	can	use	these	API	functions	to
manage	distributed	transactions	that	include	other	COM	resource	managers	that
support	MS	DTC	transactions	other	than	Microsoft®	SQL	Server™.	They	can
also	use	the	API	functions	to	gain	more	control	over	the	boundaries	of	a
distributed	transaction	that	includes	several	SQL	Servers.

ODBC	Distributed	Transactions
You	can	control	local	transactions	at	the	ODBC	API	level	by	setting	the
connection	attribute	SQL_ATTR_AUTOCOMMIT	to
SQL_AUTOCOMMIT_OFF,	and	then	by	calling	the	ODBC	SQLEndTran
function	to	commit	or	roll	back	each	transaction.	Do	not	use	these	functions	to
manage	a	distributed	transaction	in	an	ODBC	application.	Use	the	MS	DTC
COM	methods	instead:

Call	DtcGetTransactionManager	to	connect	to	MS	DTC.

Call	ITransactionDispenser::BeginTransaction	to	start	the	distributed
transaction	and	get	a	transaction	object.

For	each	ODBC	connection	participating	in	the	distributed	transaction,
call	the	ODBC	function	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_ENLIST_IN_DTC	and	vParam	holding	the	address	of
the	transaction	object	from
ITransactionDispenser::BeginTransaction.

When	the	transaction	is	completed,	instead	of	calling	the	ODBC
SQLEndTran	function,	call	the	ITransaction::Commit	or
ITransaction::Rollback	methods	on	the	transaction	object	obtained

from	ITransactionDispenser::BeginTransaction.

OLE	DB	Distributed	Transactions

The	model	for	controlling	a	distributed	transaction	in	OLE	DB	is	similar	to
controlling	a	local	transaction.	To	control	a	local	transaction,	an	OLE	DB
consumer:

Uses	the	ITransactionLocal::StartTransaction	method	to	start	the
local	transaction	and	get	a	transaction	object.

The	consumer	then	calls	the	ITransaction::Commit	or
ITransaction::Rollback	methods	on	the	transaction	object	obtained	by
ITransactionLocal::StartTransaction.

To	control	a	distributed	transaction,	the	consumer	instead:

Calls	DtcGetTransactionManager	to	connect	to	MS	DTC.

Calls	ITransactionDispenser::BeginTransaction	to	start	the
distributed	transaction	and	get	a	transaction	object.

Calls	the	ITransactionJoin	interface	of	the	distributed	transaction
object	for	each	connection	participating	in	the	distributed	transaction.

Calls	the	ITransaction::Commit	or	ITransaction::Rollback	methods
of	the	distributed	transaction	object	to	complete	the	transaction.

See	Also

Supporting	Distributed	Transactions

Performing	Distributed	Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Distributed	Queries	and	Distributed	Transactions
Microsoft®	SQL	Server™	allows	you	to	create	links	to	OLE	DB	data	sources
called	linked	servers.	After	linking	to	an	OLE	DB	data	source,	you	can:

Reference	rowsets	from	the	OLE	DB	data	sources	as	tables	in	Transact-
SQL	statements.

Pass	commands	to	the	OLE	DB	data	sources	and	include	the	resulting
rowsets	as	tables	in	Transact-SQL	statements.

Each	distributed	query	can	reference	multiple	linked	servers	and	can	perform
either	update	or	read	operations	against	each	individual	linked	server.	A	single
distributed	query	can	perform	read	operations	against	some	linked	servers	and
update	operations	against	other	linked	servers.	In	general,	Microsoft	SQL	Server
requires	distributed	transactions	support	from	the	corresponding	OLE	DB
provider	whenever	data	from	more	than	one	linked	server	are	likely	to	be
updated	in	a	transaction.	Hence,	the	types	of	queries	that	are	supported	against
linked	servers	depend	on	the	level	of	support	for	transactions	present	in	the	OLE
DB	providers.	OLE	DB	defines	two	optional	interfaces	for	transaction
management:

ITransactionLocal	supports	local	transactions	in	the	OLE	DB	data
source.

ITransactionJoin	lets	the	provider	join	a	distributed	transaction	that
includes	other	resource	managers.

Any	provider	that	supports	ITransactionJoin	also	supports
ITransactionLocal.

If	a	distributed	query	is	executed	when	the	connection	is	in	autocommit	mode,
these	rules	apply:

Only	read	operations	are	allowed	against	providers	that	do	not	support
ITransactionLocal.

All	update	operations	are	allowed	against	any	providers	that	support
ITransactionLocal.

The	controlling	SQL	Server	automatically	calls	ITransactionLocal	in
each	linked	server	participating	in	an	update	operation	to	start	a	local
transaction,	and	commits	them	when	the	statement	succeeds	or	rolls
them	back	if	the	statement	fails.

If	a	distributed	query	is	against	a	distributed	partitioned	view	or	if	it	is	executed
when	the	connection	is	in	either	an	explicit	or	implicit	transaction,	these	rules
apply:

Only	read	operations	are	allowed	against	providers	that	do	not	support
ITransactionJoin.	Providers	that	do	not	support	any	transactions	or
only	support	ITransactionLocal	cannot	participate	in	update
operations.

If	SET	XACT_ABORT	is	ON,	all	update	operations	are	allowed	against
any	providers	that	support	ITransactionJoin.	The	controlling	SQL
Server	automatically	calls	ITransactionJoin	in	each	linked	server
participating	in	an	update	operation	to	enroll	it	in	the	distributed
transaction.	MS	DTC	then	either	commits	them	or	rolls	them	back	when
the	controlling	server	indicates	the	transaction	is	either	committed	or
rolled	back.

If	SET	XACT_ABORT	is	OFF,	the	linked	server	must	also	support
nested	transactions	before	update	operations	are	allowed.	Nested
transactions	are	supported	if	the	provider	supports	calling
ITransactionLocal::StartTransaction	when	there	is	already	an
existing	transaction	for	the	session.	This	allows	SQL	Server	to	roll	back
individual	statements	in	distributed	queries	without	rolling	back	the
entire	transaction.

The	above	rules	imply	the	following	restriction	for	providers	that	do	not	support
nested	transaction:	update	operations	are	allowed	in	a	distributed	transaction
only	if	the	XACT_ABORT	option	is	ON.

See	Also

Distributed	Queries

Accessing	and	Changing	Relational	Data

Advanced	Topics
Mismanagement	of	transactions	often	leads	to	contention	and	performance
problems	in	systems	that	have	many	users.	As	the	number	of	users	in	a	system
increases,	it	becomes	important	to	have	applications	that	use	transactions
efficiently.	Microsoft®	SQL	Server™	also	supports	nesting	transactions,
transaction	savepoints,	and	bound	transactions,	which	offer	programmers
additional	options	for	writing	efficient	transactions.

Accessing	and	Changing	Relational	Data

Nesting	Transactions
Explicit	transactions	can	be	nested.	This	is	primarily	intended	to	support
transactions	in	stored	procedures	that	can	be	called	either	from	a	process	already
in	a	transaction	or	from	processes	that	have	no	active	transaction.

The	following	example	shows	the	intended	use	of	nested	transactions.	The
procedure	TransProc	enforces	its	transaction	regardless	of	the	transaction	mode
of	any	process	that	executes	it.	If	TransProc	is	called	when	a	transaction	is
active,	the	nested	transaction	in	TransProc	is	largely	ignored,	and	its	INSERT
statements	are	committed	or	rolled	back	based	on	the	final	action	taken	for	the
outer	transaction.	If	TransProc	is	executed	by	a	process	that	does	not	have	an
outstanding	transaction,	the	COMMIT	TRANSACTION	at	the	end	of	the
procedure	effectively	commits	the	INSERT	statements.

SET	QUOTED_IDENTIFIER	OFF
GO
SET	NOCOUNT	OFF
GO
USE	pubs
GO
CREATE	TABLE	TestTrans(Cola	INT	PRIMARY	KEY,
															Colb	CHAR(3)	NOT	NULL)
GO
CREATE	PROCEDURE	TransProc	@PriKey	INT,	@CharCol	CHAR(3)	AS
BEGIN	TRANSACTION	InProc
INSERT	INTO	TestTrans	VALUES	(@PriKey,	@CharCol)
INSERT	INTO	TestTrans	VALUES	(@PriKey	+	1,	@CharCol)
COMMIT	TRANSACTION	InProc
GO
/*	Start	a	transaction	and	execute	TransProc	*/
BEGIN	TRANSACTION	OutOfProc
GO
EXEC	TransProc	1,	'aaa'

GO
/*	Roll	back	the	outer	transaction,	this	will
			roll	back	TransProc's	nested	transaction	*/
ROLLBACK	TRANSACTION	OutOfProc
GO
EXECUTE	TransProc	3,'bbb'
GO
/*	The	following	SELECT	statement	shows	only	rows	3	and	4	are	
			still	in	the	table.	This	indicates	that	the	commit
			of	the	inner	transaction	from	the	first	EXECUTE	statement	of
			TransProc	was	overridden	by	the	subsequent	rollback.	*/
SELECT	*	FROM	TestTrans
GO

Committing	inner	transactions	is	ignored	by	Microsoft®	SQL	Server™.	The
transaction	is	either	committed	or	rolled	back	based	on	the	action	taken	at	the
end	of	the	outermost	transaction.	If	the	outer	transaction	is	committed,	the	inner
nested	transactions	are	also	committed.	If	the	outer	transaction	is	rolled	back,
then	all	inner	transactions	are	also	rolled	back,	regardless	of	whether	or	not	the
inner	transactions	were	individually	committed.

Each	call	to	COMMIT	TRANSACTION	or	COMMIT	WORK	applies	to	the	last
executed	BEGIN	TRANSACTION.	If	the	BEGIN	TRANSACTION	statements
are	nested,	then	a	COMMIT	statement	applies	only	to	the	last	nested	transaction,
which	is	the	innermost	transaction.	Even	if	a	COMMIT	TRANSACTION
transaction_name	statement	within	a	nested	transaction	refers	to	the	transaction
name	of	the	outer	transaction,	the	commit	applies	only	to	the	innermost
transaction.

It	is	not	legal	for	the	transaction_name	parameter	of	a	ROLLBACK
TRANSACTION	statement	to	refer	to	the	inner	transactions	of	a	set	of	named
nested	transactions.	transaction_name	can	refer	only	to	the	transaction	name	of
the	outermost	transaction.	If	a	ROLLBACK	TRANSACTION	transaction_name
statement	using	the	name	of	the	outer	transaction	is	executed	at	any	level	of	a	set
of	nested	transactions,	all	the	nested	transactions	are	rolled	back.	If	a
ROLLBACK	WORK	or	ROLLBACK	TRANSACTION	statement	without	a

transaction_name	parameter	is	executed	at	any	level	of	a	set	of	nested
transaction,	it	rolls	back	all	the	nested	transactions,	including	the	outermost
transaction.

The	@@TRANCOUNT	function	records	the	current	transaction	nesting	level.
Each	BEGIN	TRANSACTION	statement	increments	@@TRANCOUNT	by
one.	Each	COMMIT	TRANSACTION	or	COMMIT	WORK	statement
decrements	@@TRANCOUNT	by	one.	A	ROLLBACK	WORK	or	a
ROLLBACK	TRANSACTION	statement	that	does	not	have	a	transaction	name
rolls	back	all	nested	transactions	and	decrements	@@TRANCOUNT	to	0.	A
ROLLBACK	TRANSACTION	that	uses	the	transaction	name	of	the	outermost
transaction	in	a	set	of	nested	transactions	rolls	back	all	the	nested	transactions
and	decrements	@@TRANCOUNT	to	0.	When	you	are	unsure	if	you	are
already	in	a	transaction,	SELECT	@@TRANCOUNT	to	determine	if	it	is	1	or
more.	If	@@TRANCOUNT	is	0	you	are	not	in	a	transaction.

See	Also

@@TRANCOUNT

COMMIT	WORK

BEGIN	TRANSACTION

ROLLBACK	TRANSACTION

COMMIT	TRANSACTION

ROLLBACK	WORK

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

Transaction	Savepoints
Savepoints	offer	a	mechanism	to	roll	back	portions	of	transactions.	You	create	a
savepoint	using	the	SAVE	TRANSACTION	savepoint_name	statement,	and	then
later	execute	a	ROLLBACK	TRANSACTION	savepoint_name	statement	to	roll
back	to	the	savepoint	instead	of	rolling	back	to	the	start	of	a	transaction.

Savepoints	are	useful	in	situations	where	errors	are	unlikely	to	occur.	The	use	of
a	savepoint	to	roll	back	part	of	a	transaction	in	the	case	of	an	infrequent	error	can
be	more	efficient	than	having	each	transaction	test	to	see	if	an	update	is	valid
before	making	the	update.	Updates	and	rollbacks	are	expensive	operations,	so
savepoints	are	effective	only	if	the	probability	of	encountering	the	error	is	low
and	the	cost	of	checking	the	validity	of	an	update	beforehand	is	relatively	high.

This	example	shows	the	use	of	a	savepoint	in	an	order	system	in	which	there	is	a
low	probability	of	running	out	of	stock	because	the	company	has	effective
suppliers	and	reorder	points.	Usually	an	application	would	verify	that	there	is
enough	stock	on	hand	before	attempting	to	make	the	updates	that	would	record
the	order.	This	example	assumes	that,	for	some	reason	(such	as	connecting	over
a	slow	modem	or	WAN),	first	verifying	the	quantity	of	stock	available	is
relatively	expensive.	The	application	could	be	coded	to	just	make	the	update,
and	if	it	gets	an	error	indicating	that	there	is	not	enough	stock,	it	rolls	back	the
update.	In	this	case,	a	quick	check	of	@@ERROR	after	the	insert	is	much	faster
than	verifying	the	amount	before	the	update.

The	InvCtrl	table	has	a	CHECK	constraint	that	triggers	a	547	error	if	the
QtyInStk	column	goes	below	0.	The	OrderStock	procedure	creates	a	savepoint.
If	a	547	error	occurs,	it	rolls	back	to	the	savepoint	and	returns	the	number	of
items	on	hand	to	the	calling	process.	The	calling	process	can	then	decide	if	it
wants	to	replace	the	order	for	the	quantity	on	hand.	If	OrderStock	returns	a	0,
the	calling	process	knows	there	was	enough	stock	on	hand	to	satisfy	the	order.

SET	NOCOUNT	OFF
GO
USE	pubs
GO
CREATE	TABLE	InvCtrl

						(WhrhousID						int,
						PartNmbr						int,
						QtyInStk						int,
						ReordrPt						int,
						CONSTRAINT	InvPK	PRIMARY	KEY
						(WhrhousID,	PartNmbr),
						CONSTRAINT	QtyStkCheck	CHECK	(QtyInStk	>	0))
GO
CREATE	PROCEDURE	OrderStock	@WhrhousID	int,	@PartNmbr	int,
												@OrderQty	int
AS
DECLARE	@ErrorVar	int
SAVE	TRANSACTION	StkOrdTrn
UPDATE	InvCtrl	SET	QtyInStk	=	QtyInStk	-	@OrderQty
WHERE	WhrhousID	=	1
			AND	PartNmbr	=	1
SELECT	@ErrorVar	=	@@error
IF	(@ErrorVar	=	547)
BEGIN
			ROLLBACK	TRANSACTION	StkOrdTrn
			RETURN	(SELECT	QtyInStk
										FROM	InvCtrl
										WHERE	WhrhousID	=	@WhrhousID
											AND	PartNmbr	=	@PartNmbr)
END
ELSE
			RETURN	0
GO

See	Also

ROLLBACK	TRANSACTION

SAVE	TRANSACTION

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	Bound	Connections
Bound	connections	allow	two	or	more	connections	to	share	the	same	transaction
and	locks.	Bound	connections	can	work	on	the	same	data	without	lock	conflicts.
Bound	connections	can	be	created	from	multiple	connections	within	the	same
application,	or	from	multiple	applications	with	separate	connections.	Bound
connections	make	coordinating	actions	across	multiple	connections	easier.

To	participate	in	a	bound	connection,	a	connection	calls	sp_getbindtoken	or
srv_getbindtoken	(Open	Data	Services)	to	get	a	bind	token.	A	bind	token	is	a
character	string	that	uniquely	identifies	each	bound	transaction.	The	bind	token
is	then	sent	to	the	other	connections	participating	in	the	bound	connection.	The
other	connections	bind	to	the	transaction	by	calling	sp_bindsession,	using	the
bind	token	received	from	the	first	connection.

Bind	tokens	must	be	transmitted	from	the	application	code	that	makes	the	first
connection	to	the	application	code	making	any	of	the	subsequent	bound
connections.	There	is	no	Transact-SQL	statement	or	API	function	that	an
application	can	use	to	get	the	bind	token	for	a	transaction	started	by	another
process.	Some	methods	that	can	be	used	to	transmit	a	bind	token	are:

If	the	connections	are	all	made	from	the	same	application	process,	bind
tokens	can	be	stored	in	global	memory	or	passed	into	functions	as	a
parameter.

If	the	connections	are	made	from	separate	application	processes,	bind
tokens	can	be	transmitted	using	interprocess	communication	(IPC),	such
as	a	remote	procedure	call	(RPC)	or	dynamic	data	exchange	(DDE).

Bind	tokens	can	be	stored	in	a	table	in	Microsoft®	SQL	Server™	that
can	be	read	by	processes	wanting	to	bind	to	the	first	connection.

Only	one	connection	in	a	set	of	bound	connections	can	be	active	at	any	time.	If
one	connection	is	executing	a	statement	on	the	server	or	has	results	pending
from	the	server,	no	other	connections	that	share	the	same	transaction	can	access
the	server	until	the	current	connection	finishes	processing	or	cancels	the	current

statement.	If	the	server	is	busy,	an	error	occurs	indicating	the	transaction	space	is
in	use	and	the	connection	should	retry	later.

Types	of	Bound	Connections
The	two	types	of	bound	connections	are	local	and	distributed.

Local	bound	connection

Allows	bound	connections	to	share	the	transaction	space	of	a	single
transaction	on	a	single	server.

Distributed	bound	connection

Allows	bound	connections	to	share	the	same	transaction	across	two	or
more	servers	until	the	entire	transaction	is	either	committed	or	rolled
back	by	using	Microsoft	Distributed	Transaction	Coordinator	(MS
DTC).

Distributed	bound	connections	are	not	identified	by	a	character	string	bind
token;	they	are	identified	by	distributed	transaction	identification	numbers.	If	a
bound	connection	is	involved	in	a	local	transaction	and	executes	an	RPC	on	a
remote	server	with	SET	REMOTE_PROC_TRANSACTIONS	ON,	the	local
bound	transaction	is	automatically	promoted	to	a	distributed	bound	transaction
by	MS	DTC	and	an	MS	DTC	session	is	started.

When	to	Use	Bound	Connections
Bound	connections	are	useful	in	developing	extended	stored	procedures	that
must	execute	Transact-SQL	statements	on	behalf	of	the	process	that	calls	them.
Having	the	calling	process	pass	in	a	bind	token	as	one	parameter	of	the	extended
stored	procedure	allows	the	procedure	to	join	the	transaction	space	of	the	calling
process,	thereby	integrating	the	extended	stored	procedure	with	the	calling
process.

Bound	connections	can	be	used	to	develop	three-tier	applications	in	which
business	logic	is	represented	in	separate	programs	that	work	cooperatively	on	a
single	business	transaction.

The	following	example	of	bound	connections	illustrates	how	two	connections
can	access	the	same	transaction:	A	customer	decides	to	purchase	a	product	at	a

local	department	store.	The	salesperson	accesses	a	sales	transaction	system	that
inserts	a	row	into	the	sales	transaction	table,	including	a	credit	card	authorization
number.	Two	connections	are	made	to	the	same	server,	connection	C1	and
connection	C2.	C1	begins	a	transaction	that	adds	a	product	sale	row	to	the	sales
table.	A	credit	card	authorization	number	must	be	added	to	the	new	sales
transaction	row.	During	the	credit	card	authorization	process,	the	extended	stored
procedure	creates	connection	C2	to	dial	out	across	a	telephone	line	to	the	credit
card	company	and	modifies	the	sales	transaction	row	with	the	credit	card
authorization	number.	Only	by	using	bound	connections	can	both	connections
access	the	same	row	without	locking	conflicts.

See	Also

sp_bindsession

srv_getbindtoken

sp_getbindtoken

SET	REMOTE_PROC_TRANSACTIONS

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Adjusting	Transaction	Isolation	Levels
The	isolation	property	is	one	of	the	four	ACID	properties	a	logical	unit	of	work
must	display	to	qualify	as	a	transaction.	It	is	the	ability	to	shield	transactions
from	the	effects	of	updates	performed	by	other	concurrent	transactions.	The	level
of	isolation	is	actually	customizable	for	each	transaction.

Microsoft®	SQL	Server™	supports	the	transaction	isolation	levels	defined	in
SQL-92.	Setting	transaction	isolation	levels	allows	programmers	to	trade	off
increased	risk	of	certain	integrity	problems	with	support	for	greater	concurrent
access	to	data.	Each	isolation	level	offers	more	isolation	than	the	previous	level,
but	does	so	by	holding	more	restrictive	locks	for	longer	periods.	The	transaction
isolation	levels	are:

READ	UNCOMMITTED

READ	COMMITTED

REPEATABLE	READ

SERIALIZABLE

Transaction	isolation	levels	can	be	set	using	Transact-SQL	or	through	a	database
API:

Transact-SQL

Transact-SQL	scripts	and	DB-Library	applications	use	the	SET
TRANSACTION	ISOLATION	LEVEL	statement.

ADO

ADO	applications	set	the	IsolationLevel	property	of	the	Connection	object
to	adXactReadUncommitted,	adXactReadCommitted,
adXactRepeatableRead,	or	adXactReadSerializable.

OLE	DB

OLE	DB	applications	call	ITransactionLocal::StartTransaction	with
isoLevel	set	to	ISOLATIONLEVEL_READUNCOMMITTED,
ISOLATIONLEVEL_READCOMMITTED,
ISOLATIONLEVEL_REPEATABLEREAD,	or
ISOLATIONLEVEL_SERIALIZABLE

ODBC

ODBC	applications	call	SQLSetConnectAttr	with	Attribute	set	to
SQL_ATTR_TXN_ISOLATION	and	ValuePtr	set	to
SQL_TXN_READ_UNCOMMITTED,	SQL_TXN_READ_COMMITTED,
SQL_TXN_REPEATABLE_READ,	or	SQL_TXN_SERIALIZABLE.

See	Also

Isolation	Levels	in	SQLOLEDB

SET	TRANSACTION	ISOLATION	LEVEL

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Rollbacks	in	Stored	Procedures	and	Triggers
If	@@TRANCOUNT	has	a	different	value	when	a	stored	procedure	finishes
than	it	had	when	the	procedure	was	executed,	an	informational	error	266	is
generated.	This	error	is	not	generated	by	the	same	condition	in	triggers.

A	266	error	is	generated	when	a	stored	procedure	is	called	with	an
@@TRANCOUNT	of	1	or	greater	and	the	procedure	executes	a	ROLLBACK
TRANSACTION	or	ROLLBACK	WORK	statement.	This	is	because
ROLLBACK	rolls	back	all	outstanding	transactions	and	decrements
@@TRANCOUNT	to	0,	which	is	a	lower	value	than	it	had	when	the	procedure
was	called.

If	a	ROLLBACK	TRANSACTION	is	issued	in	a	trigger:

All	data	modifications	made	to	that	point	in	the	current	transaction	are
rolled	back,	including	any	that	were	made	by	the	trigger.

The	trigger	continues	executing	any	remaining	statements	after	the
ROLLBACK	statement.	If	any	of	these	statements	modify	data,	the
modifications	are	not	rolled	back.	No	nested	triggers	are	fired	by	the
execution	of	these	remaining	statements.

None	of	the	statements	in	the	batch	after	the	statement	that	fired	the
trigger	are	executed.

A	ROLLBACK	in	a	trigger	closes	and	deallocates	all	cursors	that	were
declared	and	opened	in	the	batch	containing	the	statement	that	fired	the
trigger.	This	includes	cursors	declared	and	opened	in	stored	procedures
called	by	the	batch	that	fired	the	trigger.	Cursors	declared	in	a	batch
prior	to	the	batch	that	fired	the	trigger	are	only	closed,	except	that
STATIC	or	INSENSITIVE	cursors	are	left	open	if:

CURSOR_CLOSE_ON_COMMIT	is	set	OFF.

The	static	cursor	is	either	synchronous,	or	a	fully	populated
asynchronous	cursor.

A	trigger	always	operates	as	if	there	were	an	outstanding	transaction	in	effect
when	the	trigger	is	executed.	This	is	definitely	true	if	the	statement	firing	the
trigger	is	in	an	implicit	or	explicit	transaction.	It	is	also	true	in	autocommit
mode.	When	a	statement	begins	executing	in	autocommit	mode,	there	is	an
implied	BEGIN	TRANSACTION	to	allow	the	recovery	of	all	modifications
generated	by	the	statement	if	it	encounters	an	error.	This	implied	transaction	has
no	effect	on	the	other	statements	in	the	batch	because	it	is	either	committed	or
rolled	back	when	the	statement	completes.	This	implied	transaction	is	still	in
effect,	however,	when	a	trigger	is	called.

This	means	that	any	time	a	BEGIN	TRANSACTION	statement	is	issued	in	the
trigger,	it	is	actually	beginning	a	nested	transaction.	Because	a	nested	BEGIN
TRANSACTION	statement	is	ignored	when	rolling	back	nested	transactions,
ROLLBACK	TRANSACTION	issued	in	the	trigger	always	rolls	back	past	any
BEGIN	TRANSACTION	statements	issued	by	the	trigger	itself.	ROLLBACK
rolls	back	to	the	outermost	BEGIN	TRANSACTION.

You	must	use	the	SAVE	TRANSACTION	statement	to	do	a	partial	rollback	in	a
trigger,	even	if	it	is	always	called	in	autocommit	mode.	This	is	illustrated	by	the
following	trigger:

CREATE	TRIGGER	TestTrig	ON	TestTab	FOR	UPDATE	AS
SAVE	TRANSACTION	MyName
INSERT	INTO	TestAudit
			SELECT	*	FROM	inserted
IF	(@@error	<>	0)
BEGIN
		ROLLBACK	TRANSACTION	MyName
END

This	also	affects	COMMIT	TRANSACTION	statements	that	follow	a	BEGIN
TRANSACTION	statement	in	a	trigger.	Because	BEGIN	TRANSACTION
starts	a	nested	transaction,	a	subsequent	COMMIT	statement	applies	only	to	the
nested	transaction.	If	a	ROLLBACK	TRANSACTION	statement	is	executed
after	COMMIT,	ROLLBACK	rolls	back	everything	to	the	outermost	BEGIN

TRANSACTION.	This	is	illustrated	by	the	following	trigger:

CREATE	TRIGGER	TestTrig	ON	TestTab	FOR	UPDATE	AS
BEGIN	TRANSACTION
INSERT	INTO	TrigTarget
			SELECT	*	FROM	inserted
COMMIT	TRANSACTION
ROLLBACK	TRANSACTION

This	trigger	will	never	insert	into	the	TrigTarget	table.	BEGIN
TRANSACTION	always	starts	a	nested	transaction.	COMMIT	TRANSACTION
commits	only	the	nested	transaction,	while	the	following	ROLLBACK
TRANSACTION	rolls	everything	back	to	the	outermost	BEGIN
TRANSACTION.

See	Also

@@TRANCOUNT

ROLLBACK	WORK

ROLLBACK	TRANSACTION

Nesting	Transactions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Transact-SQL	Statements	Allowed	in	Transactions
You	can	use	all	Transact-SQL	statements	in	a	transaction,	except	for	the
following	statements:

ALTER	DATABASE LOAD	DATABASE
BACKUP	LOG LOAD	TRANSACTION
CREATE	DATABASE RECONFIGURE
DISK	INIT RESTORE	DATABASE
DROP	DATABASE RESTORE	LOG
DUMP	TRANSACTION UPDATE	STATISTICS

Also,	you	cannot	use	sp_dboption	to	set	database	options	or	use	any	system
procedures	that	modify	the	master	database	inside	user-defined	transactions.

Accessing	and	Changing	Relational	Data

Coding	Efficient	Transactions
It	is	important	to	keep	transactions	as	short	as	possible.	When	a	transaction	is
started,	a	DBMS	must	hold	many	resources	to	the	end	of	the	transaction	to
protect	the	ACID	properties	of	the	transaction.	If	data	is	modified,	the	modified
rows	must	be	protected	with	exclusive	locks	that	prevent	any	other	transaction
from	reading	the	rows,	and	exclusive	locks	must	be	held	until	the	transaction	is
committed	or	rolled	back.	Depending	on	transaction	isolation	level	settings,
SELECT	statements	may	acquire	locks	that	must	be	held	until	the	transaction	is
committed	or	rolled	back.	Especially	in	systems	with	many	users,	transactions
must	be	kept	as	short	as	possible	to	reduce	locking	contention	for	resources
between	concurrent	connections.	Long-running,	inefficient	transactions	may	not
be	a	problem	with	small	numbers	of	users,	but	they	are	intolerable	in	a	system
with	thousands	of	users.

Coding	Guidelines
These	are	guidelines	for	coding	efficient	transactions:

Do	not	require	input	from	users	during	a	transaction.

Get	all	required	input	from	users	before	a	transaction	is	started.	If
additional	user	input	is	required	during	a	transaction,	roll	back	the
current	transaction	and	restart	the	transaction	after	the	user	input	is
supplied.	Even	if	users	respond	immediately,	human	reaction	times	are
vastly	slower	than	computer	speeds.	All	resources	held	by	the
transaction	are	held	for	an	extremely	long	time,	which	has	the	potential
for	causing	blocking	problems.	If	users	do	not	respond,	the	transaction
remains	active	and	locking	critical	resources	until	they	respond,	which
may	not	happen	for	several	minutes,	or	even	hours.

Do	not	open	a	transaction	while	browsing	through	data,	if	at	all
possible.

Transactions	should	not	be	started	until	all	preliminary	data	analysis	has
been	completed.

Keep	the	transaction	as	short	as	possible.

After	you	know	the	modifications	that	have	to	be	made,	start	a
transaction,	execute	the	modification	statements,	then	immediately
commit	or	roll	back.	Do	not	open	the	transaction	before	it	is	required.

Make	intelligent	use	of	lower	transaction	isolation	levels.

Many	applications	can	be	readily	coded	to	use	a	read-committed
transaction	isolation	level.	Not	all	transactions	require	the	serializable
transaction	isolation	level.

Make	intelligent	use	of	lower	cursor	concurrency	options,	such	as
optimistic	concurrency	options.

In	a	system	with	a	low	probability	of	concurrent	updates,	the	overhead
of	dealing	with	an	occasional	"somebody	else	changed	your	data	after
you	read	it"	error	can	be	much	lower	than	the	overhead	of	always
locking	rows	as	they	are	read.

Access	the	least	amount	of	data	possible	while	in	a	transaction.

This	lessens	the	number	of	locked	rows,	thereby	reducing	contention
between	transactions.

Avoiding	Concurrency	Problems

To	prevent	concurrency	problems,	manage	implicit	transactions	carefully.	When
using	implicit	transactions,	the	next	Transact-SQL	statement	after	COMMIT	or
ROLLBACK	automatically	starts	a	new	transaction.	This	can	cause	a	new
transaction	to	be	opened	while	the	application	browses	through	data,	or	even
when	it	requires	input	from	the	user.	After	completing	the	last	transaction
required	to	protect	data	modifications,	turn	off	implicit	transactions	until	a
transaction	is	once	again	required	to	protect	data	modifications.	This	process	lets
Microsoft®	SQL	Server™	use	autocommit	mode	while	the	application	is
browsing	data	and	getting	input	from	the	user.

Accessing	and	Changing	Relational	Data

Locking
Microsoft®	SQL	Server™	2000	uses	locking	to	ensure	transactional	integrity
and	database	consistency.	Locking	prevents	users	from	reading	data	being
changed	by	other	users,	and	prevents	multiple	users	from	changing	the	same	data
at	the	same	time.	If	locking	is	not	used,	data	within	the	database	may	become
logically	incorrect,	and	queries	executed	against	that	data	may	produce
unexpected	results.

Although	SQL	Server	enforces	locking	automatically,	you	can	design
applications	that	are	more	efficient	by	understanding	and	customizing	locking	in
your	applications.

Accessing	and	Changing	Relational	Data

Concurrency	Problems
If	locking	is	not	available	and	several	users	access	a	database	concurrently,
problems	may	occur	if	their	transactions	use	the	same	data	at	the	same	time.
Concurrency	problems	include:

Lost	or	buried	updates.

Uncommitted	dependency	(dirty	read).

Inconsistent	analysis	(nonrepeatable	read).

Phantom	reads.

Lost	Updates

Lost	updates	occur	when	two	or	more	transactions	select	the	same	row	and	then
update	the	row	based	on	the	value	originally	selected.	Each	transaction	is
unaware	of	other	transactions.	The	last	update	overwrites	updates	made	by	the
other	transactions,	which	results	in	lost	data.

For	example,	two	editors	make	an	electronic	copy	of	the	same	document.	Each
editor	changes	the	copy	independently	and	then	saves	the	changed	copy,	thereby
overwriting	the	original	document.	The	editor	who	saves	the	changed	copy	last
overwrites	changes	made	by	the	first	editor.	This	problem	could	be	avoided	if	the
second	editor	could	not	make	changes	until	the	first	editor	had	finished.

Uncommitted	Dependency	(Dirty	Read)
Uncommitted	dependency	occurs	when	a	second	transaction	selects	a	row	that	is
being	updated	by	another	transaction.	The	second	transaction	is	reading	data	that
has	not	been	committed	yet	and	may	be	changed	by	the	transaction	updating	the
row.

For	example,	an	editor	is	making	changes	to	an	electronic	document.	During	the
changes,	a	second	editor	takes	a	copy	of	the	document	that	includes	all	the

changes	made	so	far,	and	distributes	the	document	to	the	intended	audience.	The
first	editor	then	decides	the	changes	made	so	far	are	wrong	and	removes	the	edits
and	saves	the	document.	The	distributed	document	contains	edits	that	no	longer
exist,	and	should	be	treated	as	if	they	never	existed.	This	problem	could	be
avoided	if	no	one	could	read	the	changed	document	until	the	first	editor
determined	that	the	changes	were	final.

Inconsistent	Analysis	(Nonrepeatable	Read)
Inconsistent	analysis	occurs	when	a	second	transaction	accesses	the	same	row
several	times	and	reads	different	data	each	time.	Inconsistent	analysis	is	similar
to	uncommitted	dependency	in	that	another	transaction	is	changing	the	data	that
a	second	transaction	is	reading.	However,	in	inconsistent	analysis,	the	data	read
by	the	second	transaction	was	committed	by	the	transaction	that	made	the
change.	Also,	inconsistent	analysis	involves	multiple	reads	(two	or	more)	of	the
same	row	and	each	time	the	information	is	changed	by	another	transaction;	thus,
the	term	nonrepeatable	read.

For	example,	an	editor	reads	the	same	document	twice,	but	between	each
reading,	the	writer	rewrites	the	document.	When	the	editor	reads	the	document
for	the	second	time,	it	has	changed.	The	original	read	was	not	repeatable.	This
problem	could	be	avoided	if	the	editor	could	read	the	document	only	after	the
writer	has	finished	writing	it.

Phantom	Reads
Phantom	reads	occur	when	an	insert	or	delete	action	is	performed	against	a	row
that	belongs	to	a	range	of	rows	being	read	by	a	transaction.	The	transaction's	first
read	of	the	range	of	rows	shows	a	row	that	no	longer	exists	in	the	second	or
succeeding	read,	as	a	result	of	a	deletion	by	a	different	transaction.	Similarly,	as
the	result	of	an	insert	by	a	different	transaction,	the	transaction's	second	or
succeeding	read	shows	a	row	that	did	not	exist	in	the	original	read.

For	example,	an	editor	makes	changes	to	a	document	submitted	by	a	writer,	but
when	the	changes	are	incorporated	into	the	master	copy	of	the	document	by	the
production	department,	they	find	that	new	unedited	material	has	been	added	to
the	document	by	the	author.	This	problem	could	be	avoided	if	no	one	could	add
new	material	to	the	document	until	the	editor	and	production	department	finish
working	with	the	original	document.

Accessing	and	Changing	Relational	Data

Optimistic	and	Pessimistic	Concurrency
Microsoft®	SQL	Server™	2000	offers	both	optimistic	and	pessimistic
concurrency	control.	Optimistic	concurrency	control	uses	cursors.	Pessimistic
concurrency	control	is	the	default	for	SQL	Server.

Optimistic	Concurrency
Optimistic	concurrency	control	works	on	the	assumption	that	resource	conflicts
between	multiple	users	are	unlikely	(but	not	impossible),	and	allows	transactions
to	execute	without	locking	any	resources.	Only	when	attempting	to	change	data
are	resources	checked	to	determine	if	any	conflicts	have	occurred.	If	a	conflict
occurs,	the	application	must	read	the	data	and	attempt	the	change	again.

Pessimistic	Concurrency
Pessimistic	concurrency	control	locks	resources	as	they	are	required,	for	the
duration	of	a	transaction.	Unless	deadlocks	occur,	a	transaction	is	assured	of
successful	completion.

See	Also

Cursor	Concurrency

Deadlocking

Accessing	and	Changing	Relational	Data

Isolation	Levels
When	locking	is	used	as	the	concurrency	control	mechanism,	it	solves
concurrency	problems.	This	allows	all	transactions	to	run	in	complete	isolation
of	one	another,	although	there	can	be	more	than	one	transaction	running	at	any
time.

Serializability	is	the	database	state	achieved	by	running	a	set	of	concurrent
transactions	equivalent	to	the	database	state	that	would	be	achieved	if	the	set	of
transactions	were	executed	serially	in	order.

SQL-92	Isolation	Levels
Although	serialization	is	important	to	transactions	to	ensure	that	the	data	in	the
database	is	correct	at	all	times,	many	transactions	do	not	always	require	full
isolation.	For	example,	several	writers	are	working	on	different	chapters	of	the
same	book.	New	chapters	can	be	submitted	to	the	project	at	any	time.	However,
after	a	chapter	has	been	edited,	a	writer	cannot	make	any	changes	to	the	chapter
without	the	editor's	approval.	This	way,	the	editor	can	be	assured	of	the	accuracy
of	the	book	project	at	any	point	in	time,	despite	the	arrival	of	new	unedited
chapters.	The	editor	can	see	both	previously	edited	chapters	and	recently
submitted	chapters.

The	level	at	which	a	transaction	is	prepared	to	accept	inconsistent	data	is	termed
the	isolation	level.	The	isolation	level	is	the	degree	to	which	one	transaction
must	be	isolated	from	other	transactions.	A	lower	isolation	level	increases
concurrency,	but	at	the	expense	of	data	correctness.	Conversely,	a	higher
isolation	level	ensures	that	data	is	correct,	but	can	affect	concurrency	negatively.
The	isolation	level	required	by	an	application	determines	the	locking	behavior
SQL	Server	uses.

SQL-92	defines	the	following	isolation	levels,	all	of	which	are	supported	by
SQL	Server:

Read	uncommitted	(the	lowest	level	where	transactions	are	isolated
only	enough	to	ensure	that	physically	corrupt	data	is	not	read).

Read	committed	(SQL	Server	default	level).

Repeatable	read.

Serializable	(the	highest	level,	where	transactions	are	completely
isolated	from	one	another).

If	transactions	are	run	at	an	isolation	level	of	serializable,	any	concurrent
overlapping	transactions	are	guaranteed	to	be	serializable.

These	isolation	levels	allow	different	types	of	behavior.

Isolation	level Dirty	read Nonrepeatable	read Phantom
Read	uncommitted Yes Yes Yes
Read	committed No Yes Yes
Repeatable	read No No Yes
Serializable No No No

Transactions	must	be	run	at	an	isolation	level	of	repeatable	read	or	higher	to
prevent	lost	updates	that	can	occur	when	two	transactions	each	retrieve	the	same
row,	and	then	later	update	the	row	based	on	the	originally	retrieved	values.	If	the
two	transactions	update	rows	using	a	single	UPDATE	statement	and	do	not	base
the	update	on	the	previously	retrieved	values,	lost	updates	cannot	occur	at	the
default	isolation	level	of	read	committed.

Accessing	and	Changing	Relational	Data

Understanding	Locking	in	SQL	Server
Microsoft®	SQL	Server™	2000	has	multigranular	locking	that	allows	different
types	of	resources	to	be	locked	by	a	transaction.	To	minimize	the	cost	of	locking,
SQL	Server	locks	resources	automatically	at	a	level	appropriate	to	the	task.
Locking	at	a	smaller	granularity,	such	as	rows,	increases	concurrency,	but	has	a
higher	overhead	because	more	locks	must	be	held	if	many	rows	are	locked.
Locking	at	a	larger	granularity,	such	as	tables,	are	expensive	in	terms	of
concurrency	because	locking	an	entire	table	restricts	access	to	any	part	of	the
table	by	other	transactions,	but	has	a	lower	overhead	because	fewer	locks	are
being	maintained.

SQL	Server	can	lock	these	resources	(listed	in	order	of	increasing	granularity).

Resource Description
RID Row	identifier.	Used	to	lock	a	single	row	within	a	table.
Key Row	lock	within	an	index.	Used	to	protect	key	ranges	in

serializable	transactions.
Page 8	kilobyte	–(KB)	data	page	or	index	page.
Extent Contiguous	group	of	eight	data	pages	or	index	pages.
Table Entire	table,	including	all	data	and	indexes.
DB Database.

SQL	Server	locks	resources	using	different	lock	modes	that	determine	how	the
resources	can	be	accessed	by	concurrent	transactions.

SQL	Server	uses	these	resource	lock	modes.

Lock	mode Description
Shared	(S) Used	for	operations	that	do	not	change	or	update	data

(read-only	operations),	such	as	a	SELECT	statement.
Update	(U) Used	on	resources	that	can	be	updated.	Prevents	a

common	form	of	deadlock	that	occurs	when	multiple
sessions	are	reading,	locking,	and	potentially	updating
resources	later.

Exclusive	(X) Used	for	data-modification	operations,	such	as	INSERT,

UPDATE,	or	DELETE.	Ensures	that	multiple	updates
cannot	be	made	to	the	same	resource	at	the	same	time.

Intent Used	to	establish	a	lock	hierarchy.	The	types	of	intent
locks	are:	intent	shared	(IS),	intent	exclusive	(IX),	and
shared	with	intent	exclusive	(SIX).

Schema Used	when	an	operation	dependent	on	the	schema	of	a
table	is	executing.	The	types	of	schema	locks	are:	schema
modification	(Sch-M)	and	schema	stability	(Sch-S).

Bulk	Update
(BU)

Used	when	bulk-copying	data	into	a	table	and	the
TABLOCK	hint	is	specified.

Shared	Locks
Shared	(S)	locks	allow	concurrent	transactions	to	read	(SELECT)	a	resource.	No
other	transactions	can	modify	the	data	while	shared	(S)	locks	exist	on	the
resource.	Shared	(S)	locks	on	a	resource	are	released	as	soon	as	the	data	has	been
read,	unless	the	transaction	isolation	level	is	set	to	repeatable	read	or	higher,	or	a
locking	hint	is	used	to	retain	the	shared	(S)	locks	for	the	duration	of	the
transaction.

Update	Locks
Update	(U)	locks	prevent	a	common	form	of	deadlock.	A	typical	update	pattern
consists	of	a	transaction	reading	a	record,	acquiring	a	shared	(S)	lock	on	the
resource	(page	or	row),	and	then	modifying	the	row,	which	requires	lock
conversion	to	an	exclusive	(X)	lock.	If	two	transactions	acquire	shared-mode
locks	on	a	resource	and	then	attempt	to	update	data	concurrently,	one	transaction
attempts	the	lock	conversion	to	an	exclusive	(X)	lock.	The	shared-mode-to-
exclusive	lock	conversion	must	wait	because	the	exclusive	lock	for	one
transaction	is	not	compatible	with	the	shared-mode	lock	of	the	other	transaction;
a	lock	wait	occurs.	The	second	transaction	attempts	to	acquire	an	exclusive	(X)
lock	for	its	update.	Because	both	transactions	are	converting	to	exclusive	(X)
locks,	and	they	are	each	waiting	for	the	other	transaction	to	release	its	shared-
mode	lock,	a	deadlock	occurs.

To	avoid	this	potential	deadlock	problem,	update	(U)	locks	are	used.	Only	one

transaction	can	obtain	an	update	(U)	lock	to	a	resource	at	a	time.	If	a	transaction
modifies	a	resource,	the	update	(U)	lock	is	converted	to	an	exclusive	(X)	lock.
Otherwise,	the	lock	is	converted	to	a	shared-mode	lock.

Exclusive	Locks
Exclusive	(X)	locks	prevent	access	to	a	resource	by	concurrent	transactions.	No
other	transactions	can	read	or	modify	data	locked	with	an	exclusive	(X)	lock.

Intent	Locks
An	intent	lock	indicates	that	SQL	Server	wants	to	acquire	a	shared	(S)	lock	or
exclusive	(X)	lock	on	some	of	the	resources	lower	down	in	the	hierarchy.	For
example,	a	shared	intent	lock	placed	at	the	table	level	means	that	a	transaction
intends	on	placing	shared	(S)	locks	on	pages	or	rows	within	that	table.	Setting	an
intent	lock	at	the	table	level	prevents	another	transaction	from	subsequently
acquiring	an	exclusive	(X)	lock	on	the	table	containing	that	page.	Intent	locks
improve	performance	because	SQL	Server	examines	intent	locks	only	at	the
table	level	to	determine	if	a	transaction	can	safely	acquire	a	lock	on	that	table.
This	removes	the	requirement	to	examine	every	row	or	page	lock	on	the	table	to
determine	if	a	transaction	can	lock	the	entire	table.

Intent	locks	include	intent	shared	(IS),	intent	exclusive	(IX),	and	shared	with
intent	exclusive	(SIX).

Lock	mode Description
Intent	shared	(IS) Indicates	the	intention	of	a	transaction	to	read	some

(but	not	all)	resources	lower	in	the	hierarchy	by	placing
S	locks	on	those	individual	resources.

Intent	exclusive
(IX)

Indicates	the	intention	of	a	transaction	to	modify	some
(but	not	all)	resources	lower	in	the	hierarchy	by	placing
X	locks	on	those	individual	resources.	IX	is	a	superset
of	IS.

Shared	with	intent
exclusive	(SIX)

Indicates	the	intention	of	the	transaction	to	read	all	of
the	resources	lower	in	the	hierarchy	and	modify	some
(but	not	all)	resources	lower	in	the	hierarchy	by	placing
IX	locks	on	those	individual	resources.	Concurrent	IS
locks	at	the	top-level	resource	are	allowed.	For

example,	an	SIX	lock	on	a	table	places	an	SIX	lock	on
the	table	(allowing	concurrent	IS	locks),	and	IX	locks
on	the	pages	being	modified	(and	X	locks	on	the
modified	rows).	There	can	be	only	one	SIX	lock	per
resource	at	one	time,	preventing	updates	to	the	resource
made	by	other	transactions,	although	other	transactions
can	read	resources	lower	in	the	hierarchy	by	obtaining
IS	locks	at	the	table	level.

Schema	Locks
Schema	modification	(Sch-M)	locks	are	used	when	a	table	data	definition
language	(DDL)	operation	(such	as	adding	a	column	or	dropping	a	table)	is
being	performed.

Schema	stability	(Sch-S)	locks	are	used	when	compiling	queries.	Schema
stability	(Sch-S)	locks	do	not	block	any	transactional	locks,	including	exclusive
(X)	locks.	Therefore,	other	transactions	can	continue	to	run	while	a	query	is
being	compiled,	including	transactions	with	exclusive	(X)	locks	on	a	table.
However,	DDL	operations	cannot	be	performed	on	the	table.

Bulk	Update	Locks
Bulk	update	(BU)	locks	are	used	when	bulk	copying	data	into	a	table	and	either
the	TABLOCK	hint	is	specified	or	the	table	lock	on	bulk	load	table	option	is
set	using	sp_tableoption.	Bulk	update	(BU)	locks	allow	processes	to	bulk	copy
data	concurrently	into	the	same	table	while	preventing	other	processes	that	are
not	bulk	copying	data	from	accessing	the	table.

See	Also

Deadlocking

Cursor	Locking

Locking	Hints

Accessing	and	Changing	Relational	Data

Lock	Compatibility
Only	compatible	lock	types	can	be	placed	on	a	resource	that	is	already	locked.
For	example,	while	an	exclusive	(X)	lock	is	held,	no	other	transaction	can
acquire	a	lock	of	any	kind	(shared,	update,	or	exclusive)	on	that	resource	until
the	exclusive	(X)	lock	is	released	at	the	end	of	the	first	transaction.	Alternatively,
if	a	shared	(S)	lock	has	been	applied	to	a	resource,	other	transactions	can	also
acquire	a	shared	lock	or	an	update	(U)	lock	on	that	item,	even	if	the	first
transaction	has	not	completed.	However,	other	transactions	cannot	acquire	an
exclusive	lock	until	the	shared	lock	has	been	released.

Resource	lock	modes	have	a	compatibility	matrix	that	shows	which	locks	are
compatible	with	other	locks	obtained	on	the	same	resource	(listed	in	increasing
lock	strength).

	 Existing	granted	mode
Requested	mode IS S U IX SIX X
Intent	shared	(IS) Yes Yes Yes Yes Yes No
Shared	(S) Yes Yes Yes No No No
Update	(U) Yes Yes No No No No
Intent	exclusive
(IX)

Yes No No Yes No No

Shared	with	intent
exclusive	(SIX)

Yes No No No No No

Exclusive	(X) No No No No No No

Note		An	intent	exclusive	(IX)	lock	is	compatible	with	an	IX	lock	mode	because
IX	means	the	intention	to	update	only	some	of	the	rows	rather	than	all	of	them.
Other	transactions	that	want	to	read	or	update	some	of	the	rows	are	also
permitted	providing	they	are	not	the	same	rows	being	updated	by	other
transactions.

The	schema	stability	(Sch-S)	lock	is	compatible	with	all	lock	modes	except	the
schema	modification	(Sch-M)	lock	mode.

The	schema	modification	(Sch-M)	lock	is	incompatible	with	all	lock	modes.

The	bulk	update	(BU)	lock	is	compatible	only	with	schema	stability	(Sch-S)	and
other	bulk	update	(BU)	locks.

Accessing	and	Changing	Relational	Data

Key-Range	Locking
Key-range	locking	solves	the	phantom	read	concurrency	problem	and	supports
serializable	transactions.	Key-range	locks	cover	individual	records	and	the
ranges	between	records,	preventing	phantom	insertions	or	deletions	into	a	set	of
records	accessed	by	a	transaction.	Key-range	locks	are	used	only	on	behalf	of
transactions	operating	at	the	serializable	isolation	level.

Serializability	requires	that	any	query	executed	during	a	transaction	must	obtain
the	same	set	of	rows	if	it	is	executed	again	at	some	later	point	within	the	same
transaction.	If	this	query	attempts	to	fetch	a	row	that	does	not	exist,	the	row	must
not	be	inserted	by	other	transactions	until	the	transaction	that	attempts	to	access
the	row	completes.	If	a	second	transaction	were	allowed	to	insert	the	row,	it
would	appear	as	a	phantom.

If	a	second	transaction	attempts	to	insert	a	row	that	resides	on	a	locked	data
page,	page-level	locking	prevents	the	phantom	row	from	being	added,	and
serializability	is	maintained.	However,	if	the	row	is	added	to	a	data	page	not
already	locked	by	the	first	transaction,	a	locking	mechanism	should	be	in	place
to	prevent	the	row	from	being	added.

A	key-range	lock	works	by	covering	the	index	rows	and	the	ranges	between
those	index	rows	rather	than	locking	the	entire	base	table	rows.	Because	any
attempt	to	insert,	update,	or	delete	any	row	within	the	range	by	a	second
transaction	requires	a	modification	to	the	index,	the	second	transaction	is
blocked	until	the	first	transaction	completes	because	key-range	locks	cover	the
index	entries.

Key-Range	Lock	Modes
Key-range	locks	include	both	a	range	and	a	row	component,	specified	in	range-
row	format:

Range	represents	the	lock	mode	protecting	the	range	between	two
consecutive	index	entries.

Row	represents	the	lock	mode	protecting	the	index	entry.

Mode	represents	the	combined	lock	mode	used.	Key-range	lock	modes
consist	of	two	parts.	The	first	represents	the	type	of	lock	used	to	lock
the	index	range	(RangeT)	and	the	second	represents	the	lock	type	used
to	lock	a	specific	key	(K).	The	two	parts	are	connected	with	an
underscore	(_),	such	as	RangeT_K.

Range Row Mode Description
RangeS S RangeS_S Shared	range,	shared	resource	lock;

serializable	range	scan.
RangeS U RangeS_U Shared	range,	update	resource	lock;

serializable	update	scan.
RangeI Null RangeI_N Insert	range,	null	resource	lock;	used	to	test

ranges	before	inserting	a	new	key	into	an
index.

RangeX X RangeX_XExclusive	range,	exclusive	resource	lock;	used
when	updating	a	key	in	a	range.

Note		The	internal	Null	lock	mode	is	compatible	with	all	other	lock	modes.

Key-range	lock	modes	have	a	compatibility	matrix	that	shows	which	locks	are
compatible	with	other	locks	obtained	on	overlapping	keys	and	ranges.

	 Existing	granted	mode
Requested
mode S U X RangeS_S RangeS_URangeI_N RangeX_X
Shared	(S) Yes Yes No Yes Yes Yes No
Update	(U) Yes No No Yes No Yes No
Exclusive
(X)

No No No No No Yes No

RangeS_S Yes Yes No Yes Yes No No
RangeS_U Yes No No Yes No No No
RangeI_N Yes Yes Yes No No Yes No
RangeX_X No No No No No No No

Conversion	Locks
Conversion	locks	are	created	when	a	key-range	lock	overlaps	another	lock.

Lock	1 Lock	2 Conversion	Lock
S RangeI_N RangeI_S
U RangeI_N RangeI_U
X RangeI_N RangeI_X
RangeI_N RangeS_S RangeX_S
RangeI_N RangeS_U RangeX_U

Conversion	locks	can	be	observed	for	a	short	period	of	time	under	different
complex	circumstances,	sometimes	while	running	concurrent	processes.

Serializable	Range	Scan,	Singleton	Fetch,	Delete,	and	Insert
Key-range	locking	ensures	that	these	scenarios	are	serializable:

Range	scan	query

Singleton	fetch	of	nonexistent	row

Delete	operation

Insert	operation

However,	the	following	conditions	must	be	satisfied	before	key-range	locking
can	occur:

The	transaction-isolation	level	must	be	set	to	SERIALIZABLE.

The	operation	performed	on	the	data	must	use	an	index	range	access.
Range	locking	is	activated	only	when	query	processing	(such	as	the

optimizer)	chooses	an	index	path	to	access	the	data.

The	following	examples	for	each	of	the	scenarios	are	based	upon	this	table	and
index.

Range	Scan	Query
To	ensure	a	range	scan	query	is	serializable,	the	same	query	should	return	the
same	results	each	time	it	is	executed	within	the	same	transaction.	New	rows
must	not	be	inserted	within	the	range	scan	query	by	other	transactions;
otherwise,	these	become	phantom	inserts.	For	example,	the	following	query	uses
the	table	and	index	in	the	previous	illustration:

SELECT	name	FROM	mytable	WHERE	name	BETWEEN	'A'	AND	'C'

Key-range	locks	are	placed	on	the	index	entries	corresponding	to	the	range	of

data	rows	where	the	name	is	between	the	values	Adam	and	Dale,	preventing	new
rows	qualifying	in	the	previous	query	from	being	added	or	deleted.	Although	the
first	name	in	this	range	is	Adam,	the	RangeS_S	mode	key-range	lock	on	this
index	entry	ensures	that	no	new	names	beginning	with	the	letter	A	can	be	added
before	Adam,	such	as	Abigail.	Similarly,	the	RangeS_S	key-range	lock	on	the
index	entry	for	Dale	ensures	that	no	new	names	beginning	with	the	letter	C	can
be	added	after	Carlos,	such	as	Clive.

Note		The	number	of	RangeS_S	locks	held	is	n+1,	where	n	is	the	number	of
rows	that	satisfy	the	query.

Singleton	Fetch	of	Nonexistent	Data
If	a	query	within	a	transaction	attempts	to	select	a	row	that	does	not	exist,
issuing	the	query	at	a	later	point	within	the	same	transaction	has	to	return	the
same	result.	No	other	transaction	can	be	allowed	to	insert	that	nonexistent	row.
For	example,	given	this	query:

SELECT	name	FROM	mytable	WHERE	name	=	'Bill'

A	key-range	lock	is	placed	on	the	index	entry	corresponding	to	the	name	range
from	Ben	to	Bing	because	the	name	Bill	would	be	inserted	between	these	two
adjacent	index	entries.	The	RangeS_S	mode	key-range	lock	is	placed	on	the
index	entry	Bing.	This	prevents	any	other	transaction	from	inserting	values,	such
as	Bill,	between	the	index	entries	Ben	and	Bing.

Delete	Operation
When	deleting	a	value	within	a	transaction,	the	range	the	value	falls	into	does
not	have	to	be	locked	for	the	duration	of	the	transaction	performing	the	delete
operation.	Locking	the	deleted	key	value	until	the	end	of	the	transaction	is
sufficient	to	maintain	serializability.	For	example,	given	this	DELETE	statement:

DELETE	mytable	WHERE	name	=	'Bob'

An	exclusive	(X)	lock	is	placed	on	the	index	entry	corresponding	to	the	name
Bob.	Other	transactions	can	insert	or	delete	values	before	or	after	the	deleted
value	Bob.	However,	any	transaction	attempting	to	read,	insert,	or	delete	the
value	Bob	will	be	blocked	until	the	deleting	transaction	either	commits	or	rolls

back.

Range	delete	can	be	executed	using	three	basic	lock	modes:	row,	page,	or	table
lock.	The	page,	table,	or	row	locking	strategy	is	decided	by	query	optimizer,	or
can	be	specified	by	the	user	through	optimizer	hints	such	as	ROWLOCK,
PAGLOCK,	or	TABLOCK.	In	case	page	or	table	lock	is	used,	SQL	Server
immediately	releases	the	index	page	containing	the	deleted	rows	assuming	that
all	rows	are	deleted	from	this	page.	In	contrast,	when	row	lock	is	used,	all
deleted	rows	are	marked	only	as	deleted;	they	are	removed	from	the	index	page
later	using	a	background	task.

Insert	Operation
When	inserting	a	value	within	a	transaction,	the	range	the	value	falls	into	does
not	have	to	be	locked	for	the	duration	of	the	transaction	performing	the	insert
operation.	Locking	the	inserted	key	value	until	the	end	of	the	transaction	is
sufficient	to	maintain	serializability.	For	example,	given	this	INSERT	statement:

INSERT	mytable	VALUES	('Dan')

The	RangeI_N	mode	key-range	lock	is	placed	on	the	index	entry	corresponding
to	the	name	David	to	test	the	range.	If	the	lock	is	granted,	Dan	is	inserted	and	an
exclusive	(X)	lock	is	placed	on	the	value	Dan.	The	RangeI_N	mode	key-range
lock	is	necessary	only	to	test	the	range	and	is	not	held	for	the	duration	of	the
transaction	performing	the	insert	operation.	Other	transactions	can	insert	or
delete	values	before	or	after	the	inserted	value	Dan.	However,	any	transaction
attempting	to	read,	insert,	or	delete	the	value	Dan	will	be	locked	until	the
inserting	transaction	either	commits	or	rolls	back.

Accessing	and	Changing	Relational	Data

Lock	Escalation
Lock	escalation	is	the	process	of	converting	many	fine-grain	locks	into	fewer
coarse-grain	locks,	reducing	system	overhead.	Microsoft®	SQL	Server™	2000
automatically	escalates	row	locks	and	page	locks	into	table	locks	when	a
transaction	exceeds	its	escalation	threshold.

For	example,	when	a	transaction	requests	rows	from	a	table,	SQL	Server
automatically	acquires	locks	on	those	rows	affected	and	places	higher-level
intent	locks	on	the	pages	and	table,	or	index,	which	contain	those	rows.	When
the	number	of	locks	held	by	the	transaction	exceeds	its	threshold,	SQL	Server
attempts	to	change	the	intent	lock	on	the	table	to	a	stronger	lock	(for	example,	an
intent	exclusive	(IX)	would	change	to	an	exclusive	(X)	lock).	After	acquiring	the
stronger	lock,	all	page	and	row	level	locks	held	by	the	transaction	on	the	table
are	released,	reducing	lock	overhead.

SQL	Server	may	choose	to	do	both	row	and	page	locking	for	the	same	query,	for
example,	placing	page	locks	on	the	index	(if	enough	contiguous	keys	in	a
nonclustered	index	node	are	selected	to	satisfy	the	query)	and	row	locks	on	the
data.	This	reduces	the	likelihood	that	lock	escalation	will	be	necessary.

Lock	escalation	thresholds	are	determined	dynamically	by	SQL	Server	and	do
not	require	configuration.

See	Also

locks	Option

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Dynamic	Locking
Although	row	level	locks	increase	concurrency,	it	is	at	the	cost	of	system
overhead.	Table	or	page	locks	lower	overhead,	but	at	the	expense	of	lowering
concurrency.

Microsoft®	SQL	Server™	2000	uses	a	dynamic	locking	strategy	to	determine
the	most	cost-effective	locks.	SQL	Server	automatically	determines	what	locks
are	most	appropriate	when	the	query	is	executed,	based	on	the	characteristics	of
the	schema	and	query.	For	example,	to	reduce	the	overhead	of	locking,	the
optimizer	may	choose	page-level	locks	in	an	index	when	performing	an	index
scan.

Dynamic	locking	has	the	following	advantages:

Simplified	database	administration.	Database	administrators	no	longer
have	to	be	concerned	with	adjusting	lock	escalation	thresholds.

Increased	performance.	SQL	Server	minimizes	system	overhead	by
using	locks	appropriate	to	the	task.

Application	developers	can	concentrate	on	development.	SQL	Server
adjusts	locking	automatically.

Accessing	and	Changing	Relational	Data

Displaying	Locking	Information
Microsoft®	SQL	Server™	2000	provides	a	report	of	the	active	locks	when	the
sp_lock	system	stored	procedure	is	executed.

Here	is	the	result	set.

spid dbid ObjId IndId Type Resource ModeStatus

1 1 0 0 DB 	 S GRANT

6 1 0 0 DB 	 S GRANT

7 1 0 0 DB 	 S GRANT

8 1 0 0 DB 	 S GRANT

8 1 13962000240 RID 1:1225:2 X GRANT

8 1 13962000240 PAG 1:1225 IX GRANT

8 1 13962000242 PAG 1:1240 IX GRANT

8 1 21575115 0 TAB 	 IS GRANT

8 1 13962000242 KEY (03000100cb04) X GRANT

8 1 13962000240 TAB 	 IX GRANT

Type	Column
The	Type	column	shows	the	type	of	the	resource	currently	locked.

Resource	type Description
RID Row	identifier	used	to	lock	a	single	row	within	a	table.
KEY Row	lock	within	an	index.	Used	to	protect	key	ranges	in

serializable	transactions.
PAG Data	or	index	page.
EXT Contiguous	group	of	eight	data	pages	or	index	pages.
TAB Entire	table,	including	all	data	and	indexes.
DB Database.

Resource	Column
The	Resource	column	provides	information	about	the	resource	being	locked.

Resource	type Description
RID Row	identifier	of	the	locked	row	within	the	table.	The	row

is	identified	by	a	fileid:page:rid	combination,	where	rid	is
the	row	identifier	on	the	page.

KEY Hexadecimal	number	used	internally	by	SQL	Server.
PAG Page	number.	The	page	is	identified	by	a	fileid:page

combination,	where	fileid	is	the	fileid	in	the	sysfiles	table,
and	page	is	the	logical	page	number	within	that	file.

EXT First	page	number	in	the	extent	being	locked.	The	page	is
identified	by	a	fileid:page	combination.

TAB No	information	is	provided	because	the	ObjId	column
already	contains	the	object	ID	of	the	table.

DB No	information	is	provided	because	the	dbid	column
already	contains	the	database	ID	of	the	database.

In	the	result	set	from	sp_lock,	the	RID	resource	type	being	locked	has	a	resource
description	of	1:1225:2.	This	indicates	that	row	identifier	2,	on	page	number
1225,	on	fileid	1	has	a	lock	applied	to	it.	For	more	information,	see
Troubleshooting	Deadlocks.

JavaScript:hhobj_1.Click()

Mode	Column
The	Mode	column	describes	the	type	of	lock	being	applied	to	the	resource.	The
types	of	locks	include	any	multigranular	lock.

Status	Column
The	Status	column	shows	if	the	lock	has	been	obtained	(GRANT),	is	blocking
on	another	process	(WAIT),	or	is	being	converted	to	another	lock	(CNVT).	A
lock	being	converted	to	another	lock	is	held	in	one	mode,	but	is	waiting	to
acquire	a	stronger	lock	mode	(for	example,	update	to	exclusive).	When
diagnosing	blocking	issues,	a	CNVT	can	be	considered	similar	to	WAIT.

Other	Tools	for	Monitoring	Locking	Activity
Using	sp_lock	to	display	locking	information	may	not	always	be	feasible	when
many	locks	are	held	and	released	faster	than	sp_lock	can	display	them.	In	this
case,	SQL	Profiler	can	be	used	to	monitor	and	record	locking	information.
Additionally,	Windows	Performance	Monitor	can	be	used	to	monitor	lock
activity	using	the	SQL	Server	Locks	Object	counter.

To	view	the	current	locks

Transact-SQL

JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Customizing	Locking	with	SQL	Server
Although	Microsoft®	SQL	Server™	2000	implements	locking	automatically,	it
is	possible	to	customize	this	in	applications	by:

Handling	deadlocks	and	setting	the	deadlock	priority.

Handling	time-outs	and	setting	the	lock	time-out	duration.

Setting	the	transaction	isolation	level.

Using	table-level	locking	hints	with	the	SELECT,	INSERT,	UPDATE,
and	DELETE	statements.

Configuring	the	locking	granularity	for	an	index.

Accessing	and	Changing	Relational	Data

Deadlocking
A	deadlock	occurs	when	there	is	a	cyclic	dependency	between	two	or	more
threads	for	some	set	of	resources.

Deadlock	is	a	condition	that	can	occur	on	any	system	with	multiple	threads,	not
just	on	a	relational	database	management	system.	A	thread	in	a	multi-threaded
system	may	acquire	one	or	more	resources	(for	example,	locks).	If	the	resource
being	acquired	is	currently	owned	by	another	thread,	the	first	thread	may	have	to
wait	for	the	owning	thread	to	release	the	target	resource.	The	waiting	thread	is
said	to	have	a	dependency	on	the	owning	thread	for	that	particular	resource.

If	the	owning	thread	wants	to	acquire	another	resource	that	is	currently	owned
by	the	waiting	thread,	the	situation	becomes	a	deadlock:	both	threads	cannot
release	the	resources	they	own	until	their	transactions	are	committed	or	rolled
back,	and	their	transactions	cannot	be	committed	or	rolled	back	because	they	are
waiting	on	resources	the	other	owns.	For	example,	thread	T1	running	transaction
1	has	an	exclusive	lock	on	the	Supplier	table.	Thread	T2	running	transaction	2
obtains	an	exclusive	lock	on	the	Part	table,	and	then	wants	a	lock	on	the
Supplier	table.	Transaction	2	cannot	obtain	the	lock	because	transaction	1	has	it.
Transaction	2	is	blocked,	waiting	on	transaction	1.	Transaction	1	then	wants	a
lock	on	the	Part	table,	but	cannot	obtain	it	because	transaction	2	has	it	locked.
The	transactions	cannot	release	the	locks	held	until	the	transaction	is	committed
or	rolled	back.	The	transactions	cannot	commit	or	roll	back	because	they	require
a	lock	held	by	the	other	transaction	to	continue.

Note		Deadlocking	is	often	confused	with	normal	blocking.	When	one
transaction	has	a	lock	on	a	resource	that	another	transaction	wants,	the	second
transaction	waits	for	the	lock	to	be	released.	By	default,	SQL	Server	transactions
do	not	time	out	(unless	LOCK_TIMEOUT	is	set).	The	second	transaction	is
blocked,	not	deadlocked.	For	more	information,	see	Customizing	the	Lock	Time-
out.

In	this	illustration,	thread	T1	has	a	dependency	on	thread	T2	for	the	Part	table
lock	resource.	Similarly,	thread	T2	has	a	dependency	on	thread	T1	for	the
Supplier	table	lock	resource.	Because	these	dependencies	form	a	cycle,	there	is
a	deadlock	between	threads	T1	and	T2.

Accessing	and	Changing	Relational	Data

Detecting	and	Ending	Deadlocks
In	Microsoft®	SQL	Server™	2000,	a	single	user	session	may	have	one	or	more
threads	running	on	its	behalf.	Each	thread	may	acquire	or	wait	to	acquire	a
variety	of	resources,	such	as:

Locks.

Parallel	query	execution-related	resources	(coordinator,	producer,
consumer	threads	associated	with	an	exchange	port).

Threads.

Memory.

All	these	resources,	except	memory,	participate	in	the	SQL	Server	deadlock
detection	scheme.	For	memory,	SQL	Server	uses	a	time-out	based	mechanism,
which	is	controlled	by	the	query	wait	option	in	sp_configure.

In	SQL	Server	2000,	deadlock	detection	is	performed	by	a	separate	thread	called
the	lock	monitor	thread.	The	lock	monitor	thread	initiates	a	deadlock	search	for	a
particular	thread	in	one	of	the	following	conditions:

The	thread	has	been	waiting	for	the	same	resource	for	a	specified	period
of	time.	The	lock	monitor	thread	periodically	wakes	up	and	identifies	all
the	threads	waiting	on	some	resource.	If	these	threads	continue	to	wait
on	the	same	resource	when	the	lock	monitor	wakes	up	again,	it	initiates
a	deadlock	search	for	the	waiting	thread.

The	thread	waits	on	a	resource	and	initiates	an	eager	deadlock	search.

SQL	Server	typically	performs	periodic	deadlock	detection	only;	it	does	not	use
the	eager	mode.	Because	the	number	of	deadlocks	encountered	in	the	system	is
usually	small,	periodic	deadlock	detection	helps	to	reduce	the	overhead	of

deadlock	detection	in	the	system.

When	the	lock	monitor	initiates	deadlock	search	for	a	particular	thread,	it
identifies	the	resource	on	which	the	thread	is	waiting.	The	lock	monitor	then
finds	the	owner(s)	for	that	particular	resource	and	recursively	continues	the
deadlock	search	for	those	threads	until	it	finds	a	cycle.	A	cycle	identified	in	this
manner	forms	a	deadlock.

After	a	deadlock	is	identified,	SQL	Server	ends	a	deadlock	by	choosing	the
thread	automatically	(the	deadlock	victim)	that	can	break	the	deadlock.	SQL
Server	rolls	back	the	deadlock	victim's	transaction,	notifies	the	thread's
application	(by	returning	error	message	number	1205),	cancels	the	thread's
current	request,	and	then	allows	the	transactions	of	the	nonbreaking	threads	to
continue.

Typically,	SQL	Server	chooses	the	thread	running	the	transaction	that	is	least
expensive	to	undo	as	the	deadlock	victim.	Alternatively,	a	user	can	set	the
DEADLOCK_PRIORITY	of	a	session	to	LOW,	using	the	SET	statement.	The
DEADLOCK_PRIORITY	option	controls	how	sessions	are	weighed	in	deadlock
situations.	If	a	session's	setting	is	set	to	LOW,	that	session	becomes	the	preferred
victim	when	involved	in	a	deadlock	situation.

Identifying	Deadlocks
After	a	deadlock	is	identified,	SQL	Server	chooses	a	particular	thread	as	the
deadlock	victim	and	returns	an	error	message	with	a	list	of	resources	involved	in
the	deadlock.	The	deadlock	message	takes	the	following	form:

Your	transaction	(process	ID	#52)	was	deadlocked	on	{lock	|	communication	buffer	|	thread}	resources	with	another	process	and	has	been	chosen	as	the	deadlock	victim.	Rerun	your	transaction.

The	threads	and	resources	involved	in	a	deadlock	are	located	in	the	error	log.	For
more	information	about	how	to	identify	the	deadlocked	threads	and	the	resources
involved	in	a	deadlock,	see	Troubleshooting	Deadlocks.

See	Also

SET	DEADLOCK_PRIORITY

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Handling	Deadlocks
When	a	transaction	submitted	by	an	application	is	chosen	as	the	deadlock	victim,
the	transaction	is	terminated	automatically	and	rolled	back,	and	error	message
1205	is	returned	to	the	application.	Because	any	application	submitting	SQL
queries	can	be	chosen	as	the	deadlock	victim,	applications	should	have	an	error
handler	that	can	trap	error	message	1205.	If	an	application	does	not	trap	the
error,	it	can	proceed	unaware	that	its	transaction	has	been	rolled	back,	and	errors
can	occur.

Implementing	an	error	handler	that	traps	error	message	1205	allows	an
application	to	handle	the	deadlock	situation	and	take	remedial	action	(for
example,	automatically	resubmitting	the	query	that	was	involved	in	the
deadlock).	Resubmitting	the	query	automatically	can	mean	that	the	user	does	not
need	to	know	that	a	deadlock	occurred.

Before	resubmitting	a	query	automatically,	client	programs	should	pause	to	give
the	transaction	holding	the	required	locks	a	chance	to	complete	and	release	those
locks.	This	minimizes	the	likelihood	of	the	transaction	being	deadlocked	again
as	it	attempts	to	obtain	those	locks.

Note		A	deadlock	does	not	always	cancel	the	batch	in	which	the	error	was
returned.	It	is	important	for	the	client	program	to	check	for	errors	because	a
deadlock	does	not	always	return	a	failed	return	code.	In	most	cases,	if	a	deadlock
has	occurred	and	the	batch	has	not	been	canceled	automatically,	the	application
should	cancel	the	current	query.	If	this	is	not	done,	SQL	Server	may	still	have
results	pending	on	the	connection	that	it	expects	the	client	to	process.	If	any
pending	results	are	not	processed,	an	error	occurs	when	the	application	next	tries
to	send	a	command	to	SQL	Server.

See	Also

Handling	Errors	and	Messages

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Minimizing	Deadlocks
Although	deadlocks	cannot	be	avoided	completely,	the	number	of	deadlocks	can
be	minimized.	Minimizing	deadlocks	can	increase	transaction	throughput	and
reduce	system	overhead	because	fewer	transactions	are:

Rolled	back,	undoing	all	the	work	performed	by	the	transaction.

Resubmitted	by	applications	because	they	were	rolled	back	when
deadlocked.

To	help	minimize	deadlocks:

Access	objects	in	the	same	order.

Avoid	user	interaction	in	transactions.

Keep	transactions	short	and	in	one	batch.

Use	a	low	isolation	level.

Use	bound	connections.

Access	Objects	in	the	Same	Order

If	all	concurrent	transactions	access	objects	in	the	same	order,	deadlocks	are	less
likely	to	occur.	For	example,	if	two	concurrent	transactions	obtain	a	lock	on	the
Supplier	table,	and	then	on	the	Part	table,	one	transaction	is	blocked	on	the
Supplier	table	until	the	other	transaction	is	completed.	After	the	first	transaction
commits	or	rolls	back,	the	second	continues.	A	deadlock	does	not	occur.	Using
stored	procedures	for	all	data	modifications	can	standardize	the	order	of
accessing	objects.

Avoid	User	Interaction	in	Transactions
Avoid	writing	transactions	that	include	user	interaction	because	the	speed	of
batches	running	without	user	intervention	is	much	faster	than	the	speed	at	which
a	user	can	manually	respond	to	queries,	such	as	replying	to	a	prompt	for	a
parameter	requested	by	an	application.	For	example,	if	a	transaction	is	waiting
for	user	input,	and	the	user	goes	to	lunch,	or	even	home	for	the	weekend,	the
user	holds	up	the	transaction	from	completing.	This	degrades	system	throughput
because	any	locks	held	by	the	transaction	are	released	only	when	the	transaction
is	committed	or	rolled	back.	Even	if	a	deadlock	situation	does	not	arise,	other
transactions	accessing	the	same	resources	are	blocked,	waiting	for	the
transaction	to	complete.

Keep	Transactions	Short	and	in	One	Batch
A	deadlock	typically	occurs	when	several	long-running	transactions	execute
concurrently	in	the	same	database.	The	longer	the	transaction,	the	longer	the
exclusive	or	update	locks	are	held,	blocking	other	activity	and	leading	to
possible	deadlock	situations.

Keeping	transactions	in	one	batch	minimizes	network	roundtrips	during	a
transaction,	reducing	possible	delays	in	completing	the	transaction	and	releasing
locks.

Use	a	Low	Isolation	Level
Determine	whether	a	transaction	can	run	at	a	lower	isolation	level.	Implementing
read	committed	allows	a	transaction	to	read	data	previously	read	(not	modified)
by	another	transaction	without	waiting	for	the	first	transaction	to	complete.
Using	a	lower	isolation	level,	such	as	read	committed,	holds	shared	locks	for	a
shorter	duration	than	a	higher	isolation	level	such	as	serializable,	thereby
reducing	locking	contention.

Use	Bound	Connections
Using	bound	connections,	two	or	more	connections	opened	by	the	same
application	can	cooperate.	Any	locks	acquired	by	the	secondary	connections	are
held	as	if	they	were	acquired	by	the	primary	connection,	and	vice	versa,	and
therefore	do	not	block	each	other.

See	Also

Using	Bound	Connections

Accessing	and	Changing	Relational	Data

Customizing	the	Lock	Time-out
When	Microsoft®	SQL	Server™	2000	cannot	grant	a	lock	to	a	transaction	on	a
resource	because	another	transaction	already	owns	a	conflicting	lock	on	that
resource,	the	first	transaction	becomes	blocked	waiting	on	that	resource.	If	this
causes	a	deadlock,	SQL	Server	terminates	one	of	the	participating	transactions
(with	no	time-out	involved).	If	there	is	no	deadlock,	the	transaction	requesting
the	lock	is	blocked	until	the	other	transaction	releases	the	lock.	By	default,	there
is	no	mandatory	time-out	period,	and	no	way	to	test	if	a	resource	is	locked	before
locking	it,	except	to	attempt	to	access	the	data	(and	potentially	get	blocked
indefinitely).

Note		The	sp_who	system	stored	procedure	can	be	used	to	determine	if	a	process
is	being	blocked,	and	who	is	blocking	it.

The	LOCK_TIMEOUT	setting	allows	an	application	to	set	a	maximum	time	that
a	statement	waits	on	a	blocked	resource.	When	a	statement	has	waited	longer
than	the	LOCK_TIMEOUT	setting,	the	blocked	statement	is	canceled
automatically,	and	error	message	1222	"Lock	request	time-out	period	exceeded"
is	returned	to	the	application.

However,	any	transaction	containing	the	statement	is	not	rolled	back	or	canceled
by	SQL	Server.	Therefore,	the	application	must	have	an	error	handler	that	can
trap	error	message	1222.	If	an	application	does	not	trap	the	error,	it	can	proceed
unaware	that	an	individual	statement	within	a	transaction	has	been	canceled,	and
errors	can	occur	because	statements	later	in	the	transaction	may	depend	on	the
statement	that	was	never	executed.

Implementing	an	error	handler	that	traps	error	message	1222	allows	an
application	to	handle	the	time-out	situation	and	take	remedial	action	for
example,	automatically	resubmitting	the	statement	that	was	blocked,	or	rolling
back	the	entire	transaction.

To	determine	the	current	LOCK_TIMEOUT	setting,	execute	the
@@LOCK_TIMEOUT	function,	for	example:

DECLARE	@Timeout	int
SELECT	@Timeout	=	@@lock_timeout

SELECT	@Timeout
GO

See	Also

@@LOCK_TIMEOUT

SET	LOCK_TIMEOUT

sp_who

Handling	Errors	and	Messages

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Customizing	Transaction	Isolation	Level
By	default,	Microsoft®	SQL	Server™	2000	operates	at	an	isolation	level	of
READ	COMMITTED.	However,	an	application	may	have	to	operate	at	a
different	isolation	level.	To	make	use	of	either	more	or	less	strict	isolation	levels
in	applications,	locking	can	be	customized	for	an	entire	session	by	setting	the
isolation	level	of	the	session	with	the	SET	TRANSACTION	ISOLATION
LEVEL	statement.

When	the	isolation	level	is	specified,	the	locking	behavior	for	all	SELECT
statements	in	the	SQL	Server	session	operates	at	that	isolation	level	and	remains
in	effect	until	the	session	terminates,	or	until	the	isolation	level	is	set	to	another
level.	For	example,	to	set	the	transaction	isolation	level	to	SERIALIZABLE,
ensuring	that	no	phantom	rows	can	be	inserted	by	concurrent	transactions	into
the	authors	table,	execute:

USE	pubs
GO
SET	TRANSACTION	ISOLATION	LEVEL	SERIALIZABLE
GO
BEGIN	TRANSACTION
SELECT	au_lname	FROM	authors

Note		The	isolation	level	can	be	overridden,	if	necessary,	for	individual	SELECT
statements	by	specifying	a	table-level	locking	hint.	Specifying	a	table-level
locking	hint	does	not	affect	other	statements	in	the	session.	It	is	recommended
that	table-level	locking	hints	be	used	to	change	the	default	locking	behavior	only
when	absolutely	necessary.

To	determine	the	transaction	isolation	level	currently	set,	use	the	DBCC
USEROPTIONS	statement,	for	example:

USE	pubs
GO
SET	TRANSACTION	ISOLATION	LEVEL	REPEATABLE	READ
GO

DBCC	USEROPTIONS
GO

Set	Option Value
Textsize 4096
Language us_english
Dateformat mdy
Datefirst 7
isolation	level repeatable	read

(5	rows	affected)
DBCC	execution	completed.	If	DBCC	printed	error	messages,	see	your	System	Administrator.

See	Also

DBCC	USEROPTIONS

SET	TRANSACTION	ISOLATION	LEVEL

SELECT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Locking	Hints
A	range	of	table-level	locking	hints	can	be	specified	using	the	SELECT,
INSERT,	UPDATE,	and	DELETE	statements	to	direct	Microsoft®	SQL
Server™	2000	to	the	type	of	locks	to	be	used.	Table-level	locking	hints	can	be
used	when	a	finer	control	of	the	types	of	locks	acquired	on	an	object	is	required.
These	locking	hints	override	the	current	transaction	isolation	level	for	the
session.

Note		The	SQL	Server	query	optimizer	automatically	makes	the	correct
determination.	It	is	recommended	that	table-level	locking	hints	be	used	to
change	the	default	locking	behavior	only	when	necessary.	Disallowing	a	locking
level	can	affect	concurrency	adversely.

Locking	hint Description
HOLDLOCK Hold	a	shared	lock	until	completion	of	the

transaction	instead	of	releasing	the	lock	as	soon
as	the	required	table,	row,	or	data	page	is	no
longer	required.	HOLDLOCK	is	equivalent	to
SERIALIZABLE.

NOLOCK Do	not	issue	shared	locks	and	do	not	honor
exclusive	locks.	When	this	option	is	in	effect,	it	is
possible	to	read	an	uncommitted	transaction	or	a
set	of	pages	that	are	rolled	back	in	the	middle	of
a	read.	Dirty	reads	are	possible.	Only	applies	to
the	SELECT	statement.

PAGLOCK Use	page	locks	where	a	single	table	lock	would
usually	be	taken.

READCOMMITTED Perform	a	scan	with	the	same	locking	semantics
as	a	transaction	running	at	the	READ
COMMITTED	isolation	level.	By	default,	SQL
Server	2000	operates	at	this	isolation	level.

READPAST Skip	locked	rows.	This	option	causes	a
transaction	to	skip	rows	locked	by	other
transactions	that	would	ordinarily	appear	in	the
result	set,	rather	than	block	the	transaction

waiting	for	the	other	transactions	to	release	their
locks	on	these	rows.	The	READPAST	lock	hint
applies	only	to	transactions	operating	at	READ
COMMITTED	isolation	and	will	read	only	past
row-level	locks.	Applies	only	to	the	SELECT
statement.

READUNCOMMITTEDEquivalent	to	NOLOCK.
REPEATABLEREAD Perform	a	scan	with	the	same	locking	semantics

as	a	transaction	running	at	the	REPEATABLE
READ	isolation	level.

ROWLOCK Use	row-level	locks	instead	of	the	coarser-
grained	page-	and	table-level	locks.

SERIALIZABLE Perform	a	scan	with	the	same	locking	semantics
as	a	transaction	running	at	the	SERIALIZABLE
isolation	level.	Equivalent	to	HOLDLOCK.

TABLOCK Use	a	table	lock	instead	of	the	finer-grained	row-
or	page-level	locks.	SQL	Server	holds	this	lock
until	the	end	of	the	statement.	However,	if	you
also	specify	HOLDLOCK,	the	lock	is	held	until
the	end	of	the	transaction.

TABLOCKX Use	an	exclusive	lock	on	a	table.	This	lock
prevents	others	from	reading	or	updating	the
table	and	is	held	until	the	end	of	the	statement	or
transaction.

UPDLOCK Use	update	locks	instead	of	shared	locks	while
reading	a	table,	and	hold	locks	until	the	end	of
the	statement	or	transaction.	UPDLOCK	has	the
advantage	of	allowing	you	to	read	data	(without
blocking	other	readers)	and	update	it	later	with
the	assurance	that	the	data	has	not	changed	since
you	last	read	it.

XLOCK Use	an	exclusive	lock	that	will	be	held	until	the
end	of	the	transaction	on	all	data	processed	by
the	statement.	This	lock	can	be	specified	with
either	PAGLOCK	or	TABLOCK,	in	which	case
the	exclusive	lock	applies	to	the	appropriate	level

of	granularity.

For	example,	if	the	transaction	isolation	level	is	set	to	SERIALIZABLE,	and	the
table-level	locking	hint	NOLOCK	is	used	with	the	SELECT	statement,	key-
range	locks	typically	used	to	maintain	serializable	transactions	are	not	taken.

USE	pubs
GO
SET	TRANSACTION	ISOLATION	LEVEL	SERIALIZABLE
GO
BEGIN	TRANSACTION
SELECT	au_lname	FROM	authors	WITH	(NOLOCK)
GO

The	locks	generated	are:

EXEC	sp_lock
GO

spid dbid ObjId IndId Type Resource Mode Status
1 1 0 0 DB S GRANT
6 1 0 0 DB S GRANT
7 1 0 0 DB S GRANT
8 4 0 0 DB S GRANT
8 4 0 0 DB S GRANT
8 4 1175754570 TAB Sch-S GRANT
9 4 0 0 DB S GRANT
9 1 21575115 0 TAB IS GRANT

SELECT	object_name(117575457)
GO

authors

The	only	lock	taken	that	references	authors	is	a	schema	stability	(Sch-S)	lock.
In	this	case,	serializability	is	no	longer	guaranteed.

See	Also

DELETE

INSERT

SELECT

SET	TRANSACTION	ISOLATION	LEVEL

UPDATE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Customizing	Locking	for	an	Index
The	Microsoft®	SQL	Server™	2000	dynamic	locking	strategy	automatically
chooses	the	best	locking	granularity	for	queries	in	most	cases.	In	cases	where
access	patterns	are	well	understood	and	consistent,	limiting	the	locking	levels
available	for	an	index	can	be	beneficial.

For	example,	a	database	application	uses	a	lookup	table	that	is	refreshed	weekly
in	a	batch	process.	The	most	efficient	locking	strategy	is	to	turn	off	page	and	row
locking	and	allow	all	concurrent	readers	to	get	a	shared	(S)	lock	on	the	table,
reducing	overhead.	During	the	weekly	batch	update,	the	update	process	can	take
an	exclusive	(X)	lock,	and	then	update	the	entire	table.

The	granularity	of	locking	used	on	an	index	can	be	set	using	the	sp_indexoption
system	stored	procedure.	To	display	the	current	locking	option	for	a	given	index,
use	the	INDEXPROPERTY	function.	Page-level	locks,	row-level	locks,	or	a
combination	of	page-level	and	row-level	locks	can	be	disallowed	for	a	given
index.

Disallowed	locks Index	accessed	by
Page	level Row-level	and	table-level	locks
Row	level Page-level	and	table-level	locks
Page	level	and	row	level Table-level	locks

For	example,	when	a	table	is	known	to	be	a	point	of	contention,	it	can	be
beneficial	to	disallow	page-level	locks,	thereby	allowing	only	row-level	locks.
Or,	if	table	scans	are	always	used	to	access	an	index	or	table,	disallowing	page-
level	and	row-level	locks	can	help	by	allowing	only	table-level	locks.

IMPORTANT		The	SQL	Server	query	optimizer	automatically	makes	the	correct
determination.	It	is	recommended	that	you	do	not	override	the	choices	the
optimizer	makes.	Disallowing	a	locking	level	can	affect	the	concurrency	for	a
table	or	index	adversely.	For	example,	specifying	only	table-level	locks	on	a
large	table	accessed	heavily	by	many	users	can	affect	performance	significantly.
Users	must	wait	for	the	table-level	lock	to	be	released	before	accessing	the	table.

See	Also

INDEXPROPERTY

sp_indexoption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Cursors
Operations	in	a	relational	database	act	on	a	complete	set	of	rows.	The	set	of	rows
returned	by	a	SELECT	statement	consists	of	all	the	rows	that	satisfy	the
conditions	in	the	WHERE	clause	of	the	statement.	This	complete	set	of	rows
returned	by	the	statement	is	known	as	the	result	set.	Applications,	especially
interactive	online	applications,	cannot	always	work	effectively	with	the	entire
result	set	as	a	unit.	These	applications	need	a	mechanism	to	work	with	one	row
or	a	small	block	of	rows	at	a	time.	Cursors	are	an	extension	to	result	sets	that
provide	that	mechanism.

Cursors	extend	result	processing	by:

Allowing	positioning	at	specific	rows	of	the	result	set.

Retrieving	one	row	or	block	of	rows	from	the	current	position	in	the
result	set.

Supporting	data	modifications	to	the	rows	at	the	current	position	in	the
result	set.

Supporting	different	levels	of	visibility	to	changes	made	by	other	users
to	the	database	data	that	is	presented	in	the	result	set.

Providing	Transact-SQL	statements	in	scripts,	stored	procedures,	and
triggers	access	to	the	data	in	a	result	set.

Requesting	a	Cursor

Microsoft®	SQL	Server™	2000	supports	two	methods	for	requesting	a	cursor:

Transact-SQL

The	Transact-SQL	language	supports	a	syntax	for	using	cursors
modeled	after	the	SQL-92	cursor	syntax.

Database	application	programming	interface	(API)	cursor	functions

SQL	Server	supports	the	cursor	functionality	of	these	database	APIs:

ADO	(Microsoft	ActiveX®	Data	Object)

OLE	DB

ODBC	(Open	Database	Connectivity)

DB-Library

An	application	should	never	mix	these	two	methods	of	requesting	a	cursor.	An
application	that	has	used	the	API	to	specify	cursor	behaviors	should	not	then
execute	a	Transact-SQL	DECLARE	CURSOR	statement	to	also	request	a
Transact-SQL	cursor.	An	application	should	only	execute	DECLARE	CURSOR
if	it	has	set	all	the	API	cursor	attributes	back	to	their	defaults.

If	neither	a	Transact-SQL	nor	API	cursor	has	been	requested,	SQL	Server
defaults	to	returning	a	complete	result	set,	known	as	a	default	result	set,	to	the
application.

Cursor	Process
Transact-SQL	cursors	and	API	cursors	have	different	syntax,	but	the	following
general	process	is	used	with	all	SQL	Server	cursors:

1.	 Associate	a	cursor	with	the	result	set	of	a	Transact-SQL	statement,	and
define	characteristics	of	the	cursor,	such	as	whether	the	rows	in	the
cursor	can	be	updated.

2.	 Execute	the	Transact-SQL	statement	to	populate	the	cursor.

3.	 Retrieve	the	rows	in	the	cursor	you	want	to	see.	The	operation	to
retrieve	one	row	or	one	block	of	rows	from	a	cursor	is	called	a	fetch.
Performing	a	series	of	fetches	to	retrieve	rows	in	either	a	forward	or
backward	direction	is	called	scrolling.

4.	 Optionally,	perform	modification	operations	(update	or	delete)	on	the
row	at	the	current	position	in	the	cursor.

5.	 Close	the	cursor.

Accessing	and	Changing	Relational	Data

Default	Result	Sets
Microsoft®	SQL	Server™	2000	sends	result	sets	back	to	clients	in	the	following
way:

1.	 SQL	Server	receives	a	network	packet	from	the	client	containing	the
Transact-SQL	statement	or	batch	of	Transact-SQL	statements	to	be
executed.

2.	 SQL	Server	compiles	and	executes	the	statement	or	batch.

3.	 SQL	Server	begins	putting	the	rows	of	the	result	set	(or	multiple	result
sets	from	a	batch	or	stored	procedure)	in	network	packets	and	sending
them	to	the	client.	SQL	Server	puts	as	many	result	set	rows	as	possible
in	each	packet.

4.	 The	packets	containing	the	result	set	rows	are	cached	in	the	network
buffers	of	the	client.	As	the	client	application	fetches	the	rows,	the
ODBC	driver,	OLE	DB	provider,	or	DB-Library	dynamic-link	library
(DLL)	pulls	the	rows	from	the	network	buffers	and	transfers	the	data
to	the	client	application.	The	client	retrieves	the	results	one	row	at	a
time	in	a	forward	direction.

The	client	cannot	send	any	other	Transact-SQL	statements	on	that	connection
until	the	application	has	either	processed	all	the	rows	returned	by	SQL	Server	or
sent	SQL	Server	a	request	to	cancel	the	rest	of	the	results.	No	updates	can	be
done	on	the	connection	until	all	the	results	have	been	processed;	the	result	sets
are	read-only.

Note		Firehose	cursor	is	an	obsolete	term	for	default	result	sets.

This	is	the	type	of	result	set	processing	SQL	Server	uses	when	no	cursors	have
been	requested.	This	happens	when	the	following	conditions	are	met:

The	application	does	not	use	the	DECLARE	CURSOR	statement	to
request	a	Transact-SQL	server	cursor.	The	application	instead	executes

the	Transact-SQL	statements,	such	as	SELECT,	directly.

If	the	application	uses	ADO,	OLE	DB,	and	ODBC,	it	leaves	all	API
cursor	attributes	at	their	default	settings	so	that	no	API	cursors	are
requested.	This	default	set	of	attributes	is	to	request	a	forward-only,
read-only	cursor	with	a	rowset	size	of	1.

If	the	application	uses	DB-Library,	it	uses	the	DB-Library	core
functions	to	execute	the	statement	and	process	the	result	set.

Because	this	type	of	processing	is	used	when	all	cursor	attributes	are	set	to	their
defaults,	and	when	no	cursor	processing	is	actually	involved	from	SQL	Server	or
the	database	API,	this	is	called	a	default	result	set.

A	default	result	set	is	not	given	to	an	application	in	one	large	block.	The	result
set	is	cached	in	the	network	buffers	on	the	client.	The	application	fetches
through	the	result	set	one	row	at	a	time.	On	each	fetch,	the	OLE	DB	provider,
ODBC	driver,	or	DB-Library	DLL	moves	the	data	from	the	next	row	in	the
network	buffer	into	variables	in	the	application.	OLE	DB,	ODBC,	and	ADO
applications	use	the	same	API	functions	to	retrieve	the	rows	that	they	would	use
to	fetch	the	rows	from	a	cursor.	DB-Library	applications	use	the	core	function
dbnextrow	to	fetch	each	row.

Default	result	sets	are	the	most	efficient	way	to	transmit	results	to	the	client.	The
only	packet	sent	from	the	client	computer	to	the	server	is	the	original	packet	with
the	statement	to	execute.	When	the	results	are	sent	back	to	the	client,	SQL	Server
puts	as	many	result	set	rows	as	it	can	into	each	packet,	minimizing	the	number	of
packets	sent	to	the	client.

All	Transact-SQL	statements	are	supported	when	using	default	result	sets.	You
can	also	execute	batches	or	stored	procedures	containing	multiple	statements	that
return	result	sets	when	using	default	result	sets.

Default	result	sets	can	only	be	used	to	send	result	sets	back	to	a	client
application.	The	data	in	a	default	result	set	is	not	available	to	any	other	Transact-
SQL	statement	or	variable	in	a	batch,	stored	procedure,	or	trigger.	For	example,
consider	this	statement	in	a	stored	procedure	or	trigger:

SELECT	ProductID	FROM	Northwind.dbo.Products

The	statement	generates	a	default	result	set	containing	the	IDs	of	all	the	products
in	the	Northwind	database.	None	of	the	other	Transact-SQL	statements	or
variables	in	the	stored	procedure	or	trigger	can	reference	this	list	of	product	IDs.
The	only	thing	that	is	done	with	this	result	set	is	that	SQL	Server	sends	it	to	the
client.	For	the	data	in	this	result	set	to	be	used	by	other	Transact-SQL	statements,
it	would	have	to	be	in	a	Transact-SQL	server	cursor:

DECLARE	abc	CURSOR	FOR
SELECT	ProductID	FROM	Northwind.dbo.Products

See	Also

Using	Default	Result	Sets

Rowsets	and	SQL	Server	Cursors

Using	Default	Result	Sets

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Cursor	Implementations
Microsoft®	SQL	Server™	2000	supports	three	cursor	implementations:

Transact-SQL	cursors.

Are	based	on	the	DECLARE	CURSOR	syntax	and	are	used	mainly	in
Transact-SQL	scripts,	stored	procedures,	and	triggers.	Transact-SQL	cursors
are	implemented	on	the	server	and	are	managed	by	Transact-SQL	statements
sent	from	the	client	to	the	server.	They	are	also	contained	in	batches,	stored
procedures,	or	triggers.

Application	programming	interface	(API)	server	cursors

Support	the	API	cursor	functions	in	OLE	DB,	ODBC	and	DB-Library.	API
server	cursors	are	implemented	on	the	server.	Each	time	a	client	application
calls	an	API	cursor	function,	the	SQL	Server	OLE	DB	provider,	ODBC
driver,	or	DB-Library	dynamic-link	library	(DLL)	transmits	the	request	to
the	server	for	action	against	the	API	server	cursor.

Client	cursors

Are	implemented	internally	by	the	SQL	Server	ODBC	driver,	the	DB-
Library	DLL,	and	by	the	DLL	that	implements	the	ADO	API.	Client	cursors
are	implemented	by	caching	all	the	result	set	rows	on	the	client.	Each	time	a
client	application	calls	an	API	cursor	function,	the	SQL	Server	ODBC	driver,
the	DB-Library	DLL,	or	the	ADO	DLL	performs	the	cursor	operation	on	the
result	set	rows	cached	on	the	client.

Because	Transact-SQL	cursors	and	API	server	cursors	are	implemented	on	the
server,	they	are	referred	to	collectively	as	server	cursors.

Do	not	mix	the	use	of	these	various	types	of	cursors.	If	you	execute	a
DECLARE	CURSOR	and	OPEN	statement	from	an	application,	first	set	the	API
cursor	attributes	to	their	defaults.	If	you	set	API	cursor	attributes	to	something
other	than	their	defaults	and	then	execute	a	DECLARE	CURSOR	and	OPEN
statement,	you	are	asking	SQL	Server	to	map	an	API	cursor	over	a	Transact-SQL
cursor.	For	example,	do	not	set	the	ODBC	attributes	that	call	for	mapping	a
keyset-driven	cursor	over	a	result	set,	and	then	use	that	statement	handle	to
execute	a	DECLARE	CURSOR	and	OPEN	calling	for	an	INSENSITIVE	cursor.

A	potential	drawback	of	server	cursors	is	that	they	currently	do	not	support	all
Transact-SQL	statements.	Server	cursors	do	not	support	Transact-SQL
statements	that	generate	multiple	result	sets;	therefore,	they	cannot	be	used	when
the	application	executes	a	stored	procedure	or	a	batch	that	contain	more	than	one
SELECT	statement.	Server	cursors	also	do	not	support	SQL	statements
containing	the	keywords	COMPUTE,	COMPUTE	BY,	FOR	BROWSE,	or
INTO.

Server	Cursors	vs.	Default	Result	Sets
Using	a	cursor	is	less	efficient	than	using	a	default	result	set.	In	a	default	result
set	the	only	packet	sent	from	the	client	to	the	server	is	the	packet	containing	the
statement	to	execute.	When	using	a	server	cursor,	each	FETCH	statement	must
be	sent	from	the	client	to	the	server,	where	it	must	be	parsed	and	compiled	into
an	execution	plan.

If	a	Transact-SQL	statement	will	return	a	relatively	small	result	set	that	can	be
cached	in	the	memory	available	to	the	client	application,	and	you	know	before
executing	the	statement	that	you	must	retrieve	the	entire	result	set,	use	a	default
result	set.	Use	server	cursors	only	when	cursor	operations	are	required	to	support
the	functionality	of	the	application,	or	when	only	part	of	the	result	set	is	likely	to
be	retrieved.

Server	Cursors	vs.	Client	Cursors
There	are	several	advantages	to	using	server	cursors	instead	of	client	cursors:

Performance

If	you	are	going	to	access	a	fraction	of	the	data	in	the	cursor	(typical	of
many	browsing	applications),	using	server	cursors	provides	optimal
performance	because	only	fetched	data	is	sent	over	the	network.	Client
cursors	cache	the	entire	result	set	on	the	client.

Additional	cursor	types

If	the	SQL	Server	ODBC	driver	used	only	client	cursors,	it	could
support	only	forward-only	and	static	cursors.	By	using	API	server
cursors	the	driver	can	also	support	keyset-driven	and	dynamic	cursors.
SQL	Server	also	supports	the	full	range	of	cursor	concurrency	attributes

only	through	server	cursors.	Client	cursors	are	limited	in	the
functionality	they	support.

More	accurate	positioned	updates

Server	cursors	directly	support	positioned	operations,	such	as	the
ODBC	SQLSetPos	function	or	UPDATE	and	DELETE	statements	with
the	WHERE	CURRENT	OF	clause.	Client	cursors,	on	the	other	hand,
simulate	positioned	cursor	updates	by	generating	a	Transact-SQL
searched	UPDATE	statement,	which	leads	to	unintended	updates	if
more	than	one	row	matches	the	WHERE	clause	conditions	of	the
UPDATE	statement.

Memory	usage

When	using	server	cursors,	the	client	does	not	need	to	cache	large
amounts	of	data	or	maintain	information	about	the	cursor	position
because	the	server	does	that.

Multiple	active	statements

When	using	server	cursors,	no	results	are	left	outstanding	on	the
connection	between	cursor	operations.	This	allows	you	to	have	multiple
cursor-based	statements	active	at	the	same	time.

The	operation	of	all	server	cursors,	except	static	or	insensitive	cursors,	depends
on	the	schema	of	the	underlying	tables.	Any	schema	changes	to	those	tables	after
a	cursor	has	been	declared	results	in	an	error	on	any	subsequent	operation	on	that
cursor.

Accessing	and	Changing	Relational	Data

Specifying	Cursors
In	the	OLE	DB,	ODBC,	and	ADO	specifications,	a	cursor	is	implicitly	opened
over	any	result	set	returned	by	a	Transact-SQL	statement.	Before	executing	a
Transact-SQL	statement,	set	attributes	or	properties	to	define	the	characteristics
of	the	cursor.	You	can	then	call	API	functions	to	fetch	one	row	or	batch	of	rows
at	a	time.	The	default	settings	for	the	API	cursor	attributes	or	properties	have	the
same	characteristics	as	a	SQL	Server	default	result	set.	The	SQL	Server	ODBC
driver	and	Microsoft	OLE	DB	Provider	for	SQL	Server	both	implement	default
result	sets	when	the	cursor	attributes	or	properties	are	set	to	their	defaults.	No
cursor	is	used	in	this	case.	The	driver	and	provider	only	implement	a	cursor	if
any	of	the	cursor	attributes	or	properties	are	changed	from	their	defaults.

OLE	DB,	ODBC,	and	ADO	each	use	different	terms	in	referring	to	this
combination	of	a	result	set	and	cursor:

OLE	DB	uses	the	term	rowset	to	refer	to	the	combination	of	a	result	set
and	its	associated	cursor	behaviors.

ODBC	uses	the	terms	result	set	and	cursor	somewhat	interchangeably
because	it	considers	each	result	set	to	have	a	cursor	automatically
mapped	over	it.	A	rowset	in	ODBC	is	specifically	the	number	of	rows
returned	on	a	fetch.

ADO	uses	the	term,	recordset,	in	the	same	way	that	OLE	DB	uses	the
term,	rowset.

The	DB-Library	API	supports	two	ways	to	process	result	sets.	The	DB-Library
core	functions	support	processing	the	results	of	a	Transact-SQL	statement	only
as	a	default	result	set.	The	core	functions	allow	you	only	to	retrieve	the	rows	of	a
result	set	one	at	a	time	in	a	forward-only	direction,	and	do	not	support	making
updates	through	the	result	set.	If	you	want	to	use	cursor	processing	in	a	DB-
Library	application,	you	must	use	the	special	functions	from	the	DB-Library
Cursor	Library	instead	of	the	core	functions.

The	default	of	the	Microsoft	OLE	DB	Provider	for	SQL	Server,	SQL	Server

ODBC	driver,	and	DB-Library	is	to	use	an	API	server	cursor	to	implement	any
requested	cursor	functions.	ODBC	client	applications	can	use	client	cursors
instead	of	server	cursors	by	loading	the	ODBC	Cursor	Library.	DB-Library
applications	can	use	client	cursors	by	setting	the	DBCLIENTCURSOR	option.
OLE	DB	does	not	have	its	own	implementation	of	client	cursors,	but	the	ADO
API	does.

The	following	illustration	summarizes	what	type	of	cursor	or	result	set	is
implemented	based	on	the	current	API	cursor	settings	and	the	Transact-SQL
statement	being	executed.	The	cells	with	"Do	not	combine	cursor	types"	indicate
that	both	a	Transact-SQL	server	cursor	and	an	API	cursor	are	being	requested	at
the	same	time.	This	can	result	in	undefined	behavior	and	should	not	be	done.

Accessing	and	Changing	Relational	Data

Transact-SQL	Cursors
Transact-SQL	cursors	are	used	mainly	in	stored	procedures,	triggers,	and
Transact-SQL	scripts	in	which	they	make	the	contents	of	a	result	set	available	to
other	Transact-SQL	statements.

The	typical	process	for	using	a	Transact-SQL	cursor	in	a	stored	procedure	or
trigger	is:

1.	 Declare	Transact-SQL	variables	to	contain	the	data	returned	by	the
cursor.	Declare	one	variable	for	each	result	set	column.	Declare	the
variables	to	be	large	enough	to	hold	the	values	returned	by	the	column
and	with	a	data	type	that	can	be	implicitly	converted	from	the	data
type	of	the	column.

2.	 Associate	a	Transact-SQL	cursor	with	a	SELECT	statement	using	the
DECLARE	CURSOR	statement.	The	DECLARE	CURSOR	statement
also	defines	the	characteristics	of	the	cursor,	such	as	the	cursor	name
and	whether	the	cursor	is	read-only	or	forward-only.

3.	 Use	the	OPEN	statement	to	execute	the	SELECT	statement	and
populate	the	cursor.

4.	 Use	the	FETCH	INTO	statement	to	fetch	individual	rows	and	have	the
data	for	each	column	moved	into	a	specified	variable.	Other	Transact-
SQL	statements	can	then	reference	those	variables	to	access	the
fetched	data	values.	Transact-SQL	cursors	do	not	support	fetching
blocks	of	rows.

5.	 When	you	are	finished	with	the	cursor,	use	the	CLOSE	statement.
Closing	a	cursor	frees	some	resources,	such	as	the	cursor's	result	set
and	its	locks	on	the	current	row,	but	the	cursor	structure	is	still
available	for	processing	if	you	reissue	an	OPEN	statement.	Because
the	cursor	is	still	present,	you	cannot	reuse	the	cursor	name	at	this

point.	The	DEALLOCATE	statement	completely	frees	all	resources
allocated	to	the	cursor,	including	the	cursor	name.	After	a	cursor	is
deallocated,	you	must	issue	a	DECLARE	statement	to	rebuild	the
cursor.

Monitoring	Transact-SQL	Cursor	Activity

You	can	use	the	sp_cursor_list	system	stored	procedure	to	get	a	list	of	cursors
visible	to	the	current	connection,	and	sp_describe_cursor,
sp_describe_cursor_columns,	and	sp_describe_cursor_tables	to	determine
the	characteristics	of	a	cursor.

After	the	cursor	is	opened,	the	@@CURSOR_ROWS	function	or	the
cursor_rows	column	returned	by	sp_cursor_list	or	sp_describe_cursor
indicates	the	number	of	rows	in	the	cursor.

After	each	FETCH	statement,	@@FETCH_STATUS	is	updated	to	reflect	the
status	of	the	last	fetch.	You	can	also	get	this	status	information	from	the
fetch_status	column	returned	by	sp_describe_cursor.	@@FETCH_STATUS
reports	conditions	such	as	fetching	beyond	the	first	or	last	row	in	the	cursor.
@@FETCH_STATUS	is	global	to	your	connection	and	is	reset	by	each	fetch	on
any	cursor	open	for	the	connection.	If	you	must	know	the	status	later,	save
@@FETCH_STATUS	into	a	user	variable	before	executing	another	statement	on
the	connection.	Even	though	the	next	statement	may	not	be	a	FETCH,	it	could	be
an	INSERT,	UPDATE	or	DELETE	that	fires	a	trigger	containing	FETCH
statements	that	reset	@@FETCH_STATUS.	The	fetch_status	column	returned
by	sp_describe_cursor	is	specific	to	the	cursor	specified	and	is	not	affected	by
FETCH	statements	that	reference	other	cursors.	sp_describe_cursor	is,
however,	affected	by	FETCH	statements	that	reference	the	same	cursor,	so	care
is	still	needed	in	its	use.

After	a	FETCH	is	completed,	the	cursor	is	positioned	on	the	fetched	row.	The
fetched	row	is	known	as	the	current	row.	If	the	cursor	was	not	declared	as	a	read-
only	cursor,	you	can	execute	an	UPDATE	or	DELETE	statement	with	a	WHERE
CURRENT	OF	cursor_name	clause	to	modify	the	current	row.

The	name	given	to	a	Transact-SQL	cursor	by	the	DECLARE	CURSOR
statement	can	be	either	global	or	local.	Global	cursor	names	are	referenced	by
any	batch,	stored	procedure,	or	trigger	executing	on	the	same	connection.	Local

cursor	names	cannot	be	referenced	outside	the	batch,	stored	procedure,	or	trigger
in	which	the	cursor	is	declared.	Local	cursors	in	triggers	and	stored	procedures
are	therefore	protected	from	unintended	references	outside	the	stored	procedure
or	trigger.

Using	the	cursor	Variable
Microsoft®	SQL	Server™	2000	also	supports	variables	with	a	cursor	data	type.
A	cursor	can	be	associated	with	a	cursor	variable	by	either	of	two	methods:

/*	Use	DECLARE	@local_variable,	DECLARE	CURSOR	and	SET.	*/
DECLARE	@MyVariable	CURSOR

DECLARE	MyCursor	CURSOR	FOR
SELECT	LastName	FROM	Northwind.dbo.Employees

SET	@MyVariable	=	MyCursor

/*	Use	DECLARE	@local_variable	and	SET	*/
DECLARE	@MyVariable	CURSOR

SET	@MyVariable	=	CURSOR	SCROLL	KEYSET	FOR
SELECT	LastName	FROM	Northwind.dbo.Employees

After	a	cursor	has	been	associated	with	a	cursor	variable,	the	cursor	variable
can	be	used	instead	of	the	cursor	name	in	Transact-SQL	cursor	statements.
Stored	procedure	output	parameters	can	also	be	assigned	a	cursor	data	type	and
associated	with	a	cursor.	This	allows	stored	procedures	to	expose	local	cursors	in
a	controlled	manner.

Referencing	Transact-SQL	Cursors
Transact-SQL	cursor	names	and	variables	are	referenced	only	by	Transact-SQL
statements;	they	cannot	be	referenced	by	the	API	functions	of	OLE	DB,	ODBC,
ADO,	and	DB-Library.	For	example,	if	you	use	DECLARE	CURSOR	and
OPEN	a	Transact-SQL	cursor,	there	is	no	way	to	use	the	ODBC	SQLFetch	or

SQLFetchScroll	functions	to	fetch	a	row	from	the	Transact-SQL	cursor.
Applications	that	need	cursor	processing	and	are	using	these	APIs	should	use	the
cursor	support	built	into	the	database	API	instead	of	Transact-SQL	cursors.

You	can	use	Transact-SQL	cursors	in	applications	by	using	FETCH	and	binding
each	column	returned	by	the	FETCH	to	a	program	variable.	The	Transact-SQL
FETCH	does	not	support	batches,	however,	so	this	is	the	least	efficient	way	to
return	data	to	an	application.	Fetching	each	row	requires	a	roundtrip	to	the
server.	It	is	more	efficient	to	use	the	cursor	functionality	built	into	the	database
APIs	that	support	fetching	batches	of	rows.

Transact-SQL	cursors	are	extremely	efficient	when	contained	in	stored
procedures	and	triggers.	This	is	because	everything	is	compiled	into	one
execution	plan	on	the	server	and	there	is	no	network	traffic	associated	with
fetching	rows.

See	Also

@@FETCH_STATUS

FETCH

CLOSE

Cursor	Functions

OPEN

DEALLOCATE

WHERE

DECLARE	CURSOR

Scope	of	Transact-SQL	Cursor	Names

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Accessing	and	Changing	Relational	Data

API	Server	Cursors
The	OLE	DB,	ODBC,	ADO,	and	DB-Library	APIs	support	mapping	cursors
over	the	result	sets	of	executed	SQL	statements.	The	Microsoft®	SQL	Server™
OLE	DB	provider,	SQL	Server	ODBC	driver,	and	DB-Library	dynamic-link
library	(DLL)	implement	these	operations	through	the	use	of	API	server	cursors.
API	server	cursors	are	cursors	implemented	on	the	server	and	managed	by	API
cursor	functions.	As	the	application	calls	the	API	cursor	functions,	the	cursor
operation	is	transmitted	to	the	server	by	the	OLE	DB	provider,	ODBC	driver,	or
DB-Library	DLL.

When	using	an	API	server	cursor	in	OLE	DB,	ODBC,	and	ADO,	use	the
functions	or	methods	of	the	API	to:

1.	 Open	a	connection.

2.	 Set	attributes	or	properties	defining	the	characteristics	of	the	cursor	the
API	automatically	maps	over	each	result	set.

3.	 Execute	one	or	more	Transact-SQL	statements.

4.	 Use	API	functions	or	methods	to	fetch	the	rows	in	the	result	sets.

In	DB-Library,	use	the	special	DB-Library	Cursor	Library	functions	to	work
with	an	API	server	cursor.

When	the	API	cursor	attributes	or	properties	are	set	to	their	default	settings,	the
SQL	Server	OLE	DB	provider	and	SQL	Server	ODBC	driver	use	default	result
sets.	Although	the	API	is	technically	asking	for	a	cursor,	the	default	cursor
characteristics	match	the	behavior	of	a	default	result	set.	The	OLE	DB	provider
and	ODBC	driver,	therefore,	implement	the	default	cursor	options	using	a
default	result	set	because	it	is	the	most	efficient	way	to	retrieve	rows	from	the
server.	When	using	default	result	sets,	an	application	can	execute	any	Transact-
SQL	statement	or	batch,	but	it	can	only	have	one	outstanding	statement	on	a
connection.	This	means	the	application	must	process	or	cancel	all	the	result	sets
returned	by	one	statement	before	it	can	execute	another	statement	on	the

connection.

When	the	API	cursor	attributes	or	properties	are	set	to	anything	other	than	their
defaults,	the	OLE	DB	provider	for	SQL	Server	and	the	SQL	Server	ODBC
driver	use	API	server	cursors	instead	of	default	result	sets.	Each	call	to	an	API
function	that	fetches	rows	generates	a	roundtrip	to	the	server	to	fetch	the	rows
from	the	API	server	cursor.

DB-Library	applications	use	the	DB-Library	Cursor	Library	functions	to	request
cursors.	If	DBCLIENTCURSOR	is	not	set,	the	DB-Library	Cursor	Library
functions	use	API	server	cursors	in	the	same	way	as	the	SQL	Server	OLE	DB
provider	and	SQL	Server	ODBC	driver.

API	Server	Cursor	Restrictions
An	application	cannot	execute	the	following	statements	when	using	API	server
cursors:

Transact-SQL	statements	that	SQL	Server	does	not	support	in	server
cursors.

Batches	or	stored	procedures	that	return	multiple	result	sets.

SELECT	statements	that	contain	COMPUTE,	COMPUTE	BY,	FOR
BROWSE,	or	INTO	clauses.

An	EXECUTE	statement	referencing	a	remote	stored	procedure.

API	Server	Cursor	Implementation

The	OLE	DB	provider	for	SQL	Server,	the	SQL	Server	ODBC	driver,	and	the
DB-Library	DLL	use	these	special	system	stored	procedures	to	signal	cursor
operations	to	the	server:

sp_cursoropen	defines	the	SQL	statement	to	be	associated	with	the
cursor	and	the	cursor	options,	then	populates	the	cursor.

sp_cursorfetch	fetches	a	row	or	block	of	rows	from	the	cursor.

sp_cursorclose	closes	and	deallocates	the	cursor.

sp_cursoroption	is	used	to	set	various	cursor	options.

sp_cursor	is	used	to	request	positioned	updates.

sp_cursorprepare	compiles	the	Transact-SQL	statement	or	batch
associated	with	a	cursor	into	an	execution	plan	but	does	not	create	the
cursor.

sp_cursorexecute	creates	and	populates	a	cursor	from	the	execution
plan	created	by	sp_cursorprepare.

sp_cursorunprepare	discards	the	execution	plan	from
sp_cursorprepare.

These	system	stored	procedures	will	show	up	in	SQL	Profiler	traces	of	ADO,
OLE	DB,,	ODBC,	and	DB-Library	applications	that	are	using	API	server
cursors.	They	are	intended	only	for	the	internal	use	of	the	SQL	Server	Provider
for	OLE	DB,	the	SQL	Server	ODBC	driver,	and	the	DB-Library	DLL.	The	full
functionality	of	these	procedures	is	available	to	the	applications	through	the	use
of	the	cursor	functionality	of	the	database	APIs.	Specifying	the	procedures
directly	in	an	application	is	not	supported.

When	SQL	Server	executes	a	statement	for	a	connection,	no	other	statements	can
be	executed	on	the	connection	until	all	the	results	from	the	first	statement	have
been	processed	or	canceled.	This	rule	still	holds	when	using	API	server	cursors,
but	to	the	application	it	looks	like	SQL	Server	has	started	supporting	multiple
active	statements	on	a	connection.	This	is	because	the	full	result	set	is	stored	in
the	server	cursor	and	the	only	statements	being	transmitted	to	SQL	Server	are	the
executions	of	the	sp_cursor	system	stored	procedures.	SQL	Server	executes	the
stored	procedure,	and	as	soon	as	the	client	retrieves	the	result	set	it	can	execute

any	other	statement.	The	OLE	DB	provider	and	ODBC	driver	always	retrieve	all
the	results	from	an	sp_cursor	stored	procedure	before	they	return	control	to	the
application.	This	lets	applications	interleave	fetches	against	multiple	active
server	cursors.

This	table	shows	how	an	application	can	process	two	cursors	at	the	same	time	on
a	connection	using	two	statement	handles.

Statement	handle	1 Statement	handle	2
Set	cursor	attributes	such	that	an
API	server	cursor	will	be	used.

	

SQLExecDirect	an	SQL	statement.
The	ODBC	driver	calls
sp_cursoropen	and	retrieves	the
result	set	returned	by	the	procedure.

	

	 Set	cursor	attributes	such	that	an	API
server	cursor	will	be	used.

	 SQLExecDirect	an	SQL	statement.
The	ODBC	driver	calls
sp_cursoropen	and	retrieves	the	result
set	returned	by	the	procedure.

SQLFetchScroll	to	retrieve	the
first	block	of	rows.	The	driver	calls
sp_cursorfetch	and	then	retrieves
the	result	set	returned	by	the
procedure.

	

	 SQLFetchScroll	to	retrieve	the	first
block	of	rows.	The	driver	calls
sp_cursorfetch	and	then	retrieves	the
result	set	returned	by	the	procedure.

SQLFetchScroll	to	retrieve	another
block	of	rows.	The	driver	calls
sp_cursorfetch	and	then	retrieves
the	result	set	returned	by	the
procedure.

	

	 SQLFetchScroll	to	retrieve	another
block	of	rows.	The	driver	calls

sp_cursorfetch	and	then	retrieves	the
result	set	returned	by	the	procedure.

Call	SQLFreeStmt	or
SQLCloseCursor.	The	driver	calls
sp_cursorclose.

	

	 Call	SQLFreeStmt	or
SQLCloseCursor.	The	driver	calls
sp_cursorclose.

Because	no	results	are	left	outstanding	on	the	connection	after	any	call	to	an
sp_cursor	stored	procedure,	you	can	execute	multiple	Transact-SQL	statements
concurrently	on	a	single	connection,	provided	they	are	all	executed	with	API
server	cursors.

Specifying	API	Server	Cursors
Here	is	a	summary	of	how	API	server	cursors	are	used	in	the	APIs:

OLE	DB

a.	 Open	a	session	object,	open	a	command	object,	and	specify
the	command	text.

b.	 Set	rowset	properties	such	as	DBPROP_OTHERINSERT,
DBPROP_OTHERUPDATEDELETE,
DBPROP_OWNINSERT,	DBPROP_OWNUDPATEDELETE
to	control	cursor	behaviors.

c.	 Execute	the	command	object.

d.	 Fetch	the	rows	in	the	result	set	using	such	methods	as
IRowset::GetNextRows,	IRowsetLocate::GetRowsAt,
IRowsetLocate::GetRowsAtBookmark,	and
IRowsetScroll::GetRowsAtRatio.

ODBC

a.	 Open	a	connection	and	call	SQLAllocHandle	to	allocate
statement	handles.

b.	 Call	SQLSetStmtAttr	to	set	the
SQL_ATTR_CURSOR_TYPE,
SQL_ATTR_CONCURRENCY,	and
SQL_ATTR_ROW_ARRAY_SIZE	attributes.	Alternatively,
you	can	specify	cursor	behaviors	by	setting	the	attributes
SQL_ATTR_CURSOR_SCROLLABLE	and
SQL_ATTR_CURSOR_SENSITIVITY.

c.	 Execute	a	Transact-SQL	statement	using	either
SQLExecDirect	or	SQLPrepare	and	SQLExecute.

d.	 Fetch	rows	or	blocks	of	rows	using	SQLFetch	or
SQLFetchScroll.

ADO

a.	 Define	a	Connection	object	and	a	Recordset	object,	and	then
execute	the	Open	method	on	the	Connection	object.

b.	 Execute	the	Open	method	on	the	Recordset	object	specifying
a	CursorType	and/or	a	LockType	parameter.

c.	 Fetch	rows	using	the	Move,	MoveFirst,	MoveLast,
MoveNext,	and	MovePrevious	recordset	methods.

DB-Library

a.	 The	DB-Library	core	functions	always	use	a	default	result	set.

b.	 Use	the	DB-Library	Cursor	Library	functions	without	setting
DBCLIENTCURSOR	to	use	API	server	cursors.

See	Also

Using	Cursors	with	ADO

Rowsets	and	SQL	Server	Cursors

Using	Cursors

Cursor	Functions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Client	Cursors
Both	ODBC	and	DB-Library	support	client	cursors,	cursors	implemented	on	the
client.	In	a	client	cursor,	a	default	result	set	is	used	to	cache	the	entire	result	set
on	the	client	and	all	cursor	operations	are	performed	against	this	client	cache.
None	of	the	server	cursor	functionality	of	Microsoft®	SQL	Server™	2000	is
used.	Client	cursors	support	only	forward-only	and	static	cursors,	not	keyset-
driven	or	dynamic	cursors.

The	DB-Library	client	cursors	were	originally	implemented	before	SQL	Server
supported	server	cursors.	ODBC	implements	client	cursors	that	use	the	ODBC
Cursor	Library.	This	is	intended	for	use	with	ODBC	drivers	that	support	only	the
default	settings	for	cursor	characteristics.	Because	both	DB-Library	and	the	SQL
Server	ODBC	driver	offer	full	support	for	cursor	operations	through	server
cursors,	limit	the	use	of	client	cursors.

Client	cursors	should	be	used	only	to	alleviate	the	restriction	that	server	cursors
do	not	support	all	Transact-SQL	statements	or	batches.	If	a	static	scrolling	cursor
is	needed	on	a	Transact-SQL	statement	or	batch	that	cannot	be	executed	with	a
server	cursor,	consider	using	a	client	cursor.

See	Also

ODBC	Cursor	Library

Cursor	Functions

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Fetching	and	Scrolling
The	operation	to	retrieve	a	row	from	a	cursor	is	called	a	fetch.	These	are	the
fetch	options:

FETCH	FIRST

Fetches	the	first	row	in	the	cursor.

FETCH	NEXT

Fetches	the	row	after	the	last	row	fetched.

FETCH	PRIOR

Fetches	the	row	before	the	last	row	fetched.

FETCH	LAST

Fetches	the	last	row	in	the	cursor.

FETCH	ABSOLUTE	n

Fetches	the	nth	row	from	the	first	row	in	the	cursor	if	n	is	a	positive
integer.	If	n	is	a	negative	integer,	the	row	n	rows	before	the	end	of	the
cursor	is	fetched.	If	n	is	0,	no	rows	are	fetched.

FETCH	RELATIVE	n

Fetches	the	row	n	rows	from	the	last	row	fetched.	If	n	is	positive,	the
row	n	rows	after	the	last	row	fetched	is	fetched.	If	n	is	negative,	the	row
n	rows	before	the	last	row	fetched	is	fetched.	If	n	is	0,	the	same	row	is
fetched	again.

When	a	cursor	is	opened,	the	current	row	position	in	the	cursor	is	logically
before	the	first	row.	This	causes	the	different	fetch	options	to	have	the	following
behaviors	if	they	are	the	first	fetch	performed	after	the	cursor	is	opened:

FETCH	FIRST

Fetches	the	first	row	in	the	cursor.

FETCH	NEXT

Fetches	the	first	row	in	the	cursor.

FETCH	PRIOR

Does	not	fetch	a	row.

FETCH	LAST

Fetches	the	last	row	in	the	cursor.

FETCH	ABSOLUTE	n

Fetches	the	nth	row	from	the	first	row	in	the	cursor	if	n	is	a	positive
integer.	If	n	is	a	negative	integer,	then	the	row	n	rows	before	the	end	of
the	cursor	is	fetched	(for	example,	n	=	-1	returns	the	last	row	in	the
cursor).	If	n	is	0,	no	rows	are	fetched.

FETCH	RELATIVE	n

Fetches	the	nth	row	in	the	cursor	if	n	is	positive.	No	rows	are	fetched	if
n	is	negative	or	0.

Transact-SQL	cursors	are	limited	to	fetching	one	row	at	a	time.	API	server
cursors	support	fetching	blocks	of	rows	with	each	fetch.	A	cursor	that	supports
fetching	multiple	rows	at	a	time	is	called	a	block	cursor.

Cursor	Classifications
A	cursor	can	be	classified	by	the	fetch	options	it	supports:

Forward-only

Rows	must	be	fetched	serially	from	the	first	row	to	the	last	row.	FETCH
NEXT	is	the	only	fetch	operation	allowed.

Scrollable

Rows	can	be	randomly	fetched	from	anywhere	in	the	cursor.	All	the
fetch	operations	are	allowed	(except	that	dynamic	cursors	do	not
support	fetch	absolute).

Scrollable	cursors	are	especially	useful	for	supporting	online	applications.	A
cursor	can	be	mapped	to	a	grid	or	list	box	in	the	application.	As	the	user	scrolls

up	and	down	and	all	around	the	grid,	the	application	uses	scroll	fetches	to
retrieve	the	rows	from	the	cursor	the	user	wants	to	see.

APIs	for	Fetching	Rows
The	APIs	for	the	actual	statements,	functions,	or	methods	used	have	different
names	to	fetch	rows:

Transact-SQL	cursors	use	the	FETCH	FIRST,	FETCH	LAST,	FETCH
NEXT,	FETCH	PRIOR,	FETCH	ABSOLUTE(n),	and	FETCH
RELATIVE(n)	statements.

OLE	DB	uses	methods	such	as	IRowset::GetNextRows,
IRowsetLocate::GetRowsAt,
IRowsetLocate::GetRowsAtBookmark,	and
IRowsetScroll::GetRowsAtRatio.

ODBC	uses	the	SQLFetch	function,	which	is	the	same	as	a	FETCH
NEXT	for	one	row,	or	the	SQLFetchScroll	function.	SQLFetchScroll
supports	block	cursors	and	all	the	fetch	options	(first,	last,	next,	prior,
absolute,	relative).

ADO	uses	the	Move,	MoveFirst,	MoveLast,	MoveNext,	and
MovePrevious	Recordset	methods	to	acquire	a	position	in	a	cursor.
The	GetRows	recordset	method	is	then	used	to	retrieve	one	or	more
rows	at	that	position.	GetRows	can	also	be	called	directly	with	the	Start
parameter	set	to	the	number	of	the	row	to	fetch.

DB-Library	uses	the	dbcursorfetch	and	dbcursorfetchex	functions.

See	Also

Scrolling	and	Retrieving	Rows

Fetching	Rows

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Cursor	Functions

FETCH

Using	Cursors

Cursor	Functions

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Accessing	and	Changing	Relational	Data

Controlling	Cursor	Behavior
There	are	two	models	for	specifying	the	behavior	of	a	cursor:

Cursor	types

The	database	APIs	usually	specify	the	behavior	of	cursors	by	dividing	them
into	four	cursor	types:	forward-only,	static	(sometimes	called	snapshot	or
insensitive),	keyset-driven,	and	dynamic.

Cursor	behaviors

The	SQL-92	standard	defines	the	DECLARE	CURSOR	keywords	SCROLL
and	INSENSITIVE	to	specify	the	behavior	of	cursors.	Some	database	APIs
also	support	defining	cursor	behavior	in	terms	of	scrollability	and	sensitivity.

ADO	and	DB-Library	support	specifying	only	cursor	types,	not	cursor
behaviors.

ODBC	supports	specifying	cursor	behavior	using	either	the	cursor	types	or	the
cursor	behaviors	of	scrollability	and	insensitivity.

Prior	to	Microsoft®	SQL	Server™	version	7.0,	the	DECLARE	CURSOR
statement	used	to	define	Transact-SQL	cursors	supported	only	cursor	behaviors
of	SCROLL	and	INSENSITIVE.	In	SQL	Server	7.0,	DECLARE	CURSOR	has
been	extended	to	support	cursor-type	keywords.

OLE	DB's	cursor	behavior	model	differs	from	both	cursor	behaviors	and	cursor
types.

Do	not	specify	both	cursor	types	and	cursor	behaviors	for	a	cursor.	Use	one	or
the	other.	Because	ODBC	and	Transact-SQL	cursors	support	both	cursor
behaviors	and	cursor	types,	use	either	ODBC	or	Transact-SQL	when	defining	the
cursor.	The	ODBC	specification	states	that	specifying	both	cursor	behaviors	and
cursor	types	can	lead	to	unpredictable	results.

Accessing	and	Changing	Relational	Data

Cursor	Types
ODBC,	ADO,	and	DB-Library	define	four	cursor	types	supported	by
Microsoft®	SQL	Server™2000.	The	DECLARE	CURSOR	statement	has	been
extended;	thus	you	can	specify	the	four	cursor	types	for	Transact-SQL	cursors.
These	cursors	vary	in	their	ability	to	detect	changes	to	the	result	set	and	in	the
resources,	such	as	memory	and	space	in	tempdb,	they	consume.	A	cursor	can
detect	changes	to	rows	only	when	it	attempts	to	fetch	those	rows	a	second	time.
There	is	no	way	for	the	data	source	to	notify	the	cursor	of	changes	to	the
currently	fetched	rows.	The	ability	of	a	cursor	to	detect	changes	is	also
influenced	by	the	transaction	isolation	level.

The	four	API	server	cursor	types	supported	by	SQL	Server	are:

Static	cursors

Dynamic	cursors

Forward-only	cursors

Keyset-driven	cursors

Static	cursors	detect	few	or	no	changes	but	consume	relatively	few	resources
while	scrolling,	although	they	store	the	entire	cursor	in	tempdb.	Dynamic
cursors	detect	all	changes	but	consume	more	resources	while	scrolling,	although
they	make	the	lightest	use	of	tempdb.	Keyset-driven	cursors	lie	in	between,
detecting	most	changes	but	at	less	expense	than	dynamic	cursors.

Although	the	database	API	cursor	models	consider	a	forward-only	cursor	to	be	a
distinct	type	of	cursor,	SQL	Server	does	not.	SQL	Server	considers	both
forward-only	and	scroll	as	options	that	can	be	applied	to	static,	keyset-driven,
and	dynamic	cursors.

See	Also

DECLARE	CURSOR

Using	Server	Cursors	with	ADO

Rowsets	and	SQL	Server	Cursors

How	Cursors	Are	Implemented

dbcursoropen

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

Forward-only	Cursors
A	forward-only	cursor	does	not	support	scrolling;	it	supports	only	fetching	the
rows	serially	from	the	start	to	the	end	of	the	cursor.	The	rows	are	not	retrieved
from	the	database	until	they	are	fetched.	The	effects	of	all	INSERT,	UPDATE,
and	DELETE	statements	made	by	the	current	user	or	committed	by	other	users
that	affect	rows	in	the	result	set	are	visible	as	the	rows	are	fetched	from	the
cursor.	Because	the	cursor	cannot	be	scrolled	backward,	however,	changes	made
to	rows	in	the	database	after	the	row	was	fetched	are	not	visible	through	the
cursor,	except	for	the	case	where	a	value	used	to	determine	the	location	of	the
row	within	the	result	set	is	modified,	such	as	updating	a	column	covered	by	a
clustered	index.

Although	the	database	API	cursor	models	consider	a	forward-only	cursor	to	be	a
distinct	type	of	cursor,	Microsoft®	SQL	Server™	2000	does	not.	SQL	Server
considers	both	forward-only	and	scroll	as	options	that	can	be	applied	to	static,
keyset-driven,	and	dynamic	cursors.	Transact-SQL	cursors	support	forward-only
static,	keyset-driven,	and	dynamic	cursors.	The	database	API	cursor	models
assume	that	static,	keyset-driven,	and	dynamic	cursors	are	always	scrollable.
When	a	database	API	cursor	attribute	or	property	is	set	to	forward-only,	SQL
Server	implements	this	as	a	forward-only	dynamic	cursor.

Accessing	and	Changing	Relational	Data

Fast	Forward-only	Cursors
Microsoft®	SQL	Server™	2000	implements	a	performance	optimization	called	a
fast	forward-only	cursor.	Fast	forward-only	cursors	are	supported	in	two
environments:

Transact-SQL	cursors	can	specify	the	FAST_FORWARD	clause	on
DECLARE	CURSOR.	This	opens	an	optimized	forward-only,	read-only
cursor.

Applications	using	the	Microsoft	OLE	DB	Provider	for	SQL	Server	can
set	the	rowset	properties	DBPROP_SERVERCURSOR,
DBPROP_OTHERINSERT,	DBPROP_OTHERUPDATEDELETE,
DBPROP_OWNINSERT,	and	DBPROP_OWNUPDATEDELETE
to	VARIANT_TRUE.

Applications	using	the	Microsoft	SQL	Server	ODBC	driver	can	set	the
driver-specific	statement	attribute
SQL_SOPT_SS_CURSOR_OPTIONS	to	SQL_CO_FFO	or
SQL_CO_FFO_AF.	Setting	SQL_CO_FFO	requests	that	the	cursor	be
opened	with	the	same	optimizations	as	the	FAST_FORWARD	clause	on
DECLARE	CURSOR.	SQL_CO_FFO_AF	request	that	an	autofetch
option	also	be	enabled.

Using	the	Autofetch	Option

Although	some	performance	improvements	are	realized	by	specifying
FAST_FORWARD	on	DECLARE	CURSOR,	or	by	specifying	SQL_CO_FFO	in
ODBC	applications,	the	most	important	performance	gain	comes	from
specifying	SQL_CO_FFO_AF	in	ODBC	applications	to	enable	the	autofetch
option.	Autofetch	enables	two	optimizations	that	can	significantly	reduce
network	traffic:

When	the	cursor	is	opened,	the	first	row	or	batch	of	rows	is

automatically	fetched	from	the	cursor.	This	saves	having	to	send	a	fetch
request	across	the	network.

When	a	fetch	hits	the	end	of	the	cursor,	the	cursor	is	automatically
closed.	This	saves	having	to	send	a	separate	close	request	across	the
network.

The	most	dramatic	improvement	is	seen	when	processing	cursors	with	relatively
small	result	sets	that	can	be	cached	in	the	memory	of	an	application.	The	fast
forward-only	cursor	with	autofetch	enabled	represents	the	most	efficient	method
of	getting	a	result	set	into	an	ODBC	application.	When	the	autofetch	option	is	on
for	a	cursor	containing	n	rows,	an	ODBC	application	can:

Specify	a	rowset	size	of	n+1.

Allocate	arrays	of	n+1	variables	to	hold	the	data	from	the	result	set
columns.

Bind	the	result	set	columns	to	the	arrays.

Execute	the	SQL	statement	that	generates	the	cursor.

When	the	SQL	Server	ODBC	driver	executes	the	statement,	it	requests	that	the
cursor	be	opened.	Because	autofetch	is	enabled,	the	server	fetches	and	sends
back	n	rows.	The	server	fits	as	many	rows	as	possible	into	each	network	packet
returned	to	the	client.	When	the	server	attempts	to	fetch	the	row	at	n+1	it	detects
the	end	of	the	cursor	and	automatically	closes	the	cursor.	When	the	application
then	executes	SQLCloseCursor	or	SQLFreeStmt	the	ODBC	driver	does	not
have	to	send	any	close	request	to	the	server.	The	entire	operation	is	done	with
only	one	packet	being	sent	from	the	client	to	the	server,	and	a	minimal	number
of	packets	being	returned	from	the	server	to	the	client.

Implicit	Conversion	of	Fast	Forward-only	Cursors
Fast	forward-only	cursors	are	implicitly	converted	to	other	cursor	types	when:

If	the	SELECT	statement	joins	one	or	more	tables	with	triggers	to	tables
without	triggers,	the	cursor	is	converted	to	a	static	cursor.

If	the	SELECT	statement	references	text,	ntext,	or	image	columns	the
cursor	is	converted	to	a	dynamic	cursor	if	the	OLE	DB	Provider	for
SQL	Server	or	the	SQL	Server	ODBC	driver	are	used.

If	a	fast	forward-only	cursor	is	not	read-only,	it	is	converted	to	a
dynamic	cursor.

If	the	SELECT	statement	is	a	distributed	query	that	references	one	or
more	remote	tables	on	linked	servers,	the	cursor	is	converted	to	a
keyset-driven	cursor.

If	the	SELECT	statement	references	text,	ntext,	or	image	columns	and
a	TOP	clause,	the	cursor	is	converted	to	a	keyset-driven	cursor.

See	Also

Rowsets	and	SQL	Server	Cursors

Fast	Forward-Only	Cursors	(ODBC)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Static	Cursors
The	complete	result	set	of	a	static	cursor	is	built	in	tempdb	when	the	cursor	is
opened.	A	static	cursor	always	displays	the	result	set	as	it	was	when	the	cursor
was	opened.

The	cursor	does	not	reflect	any	changes	made	in	the	database	that	affect	either
the	membership	of	the	result	set	or	changes	to	the	values	in	the	columns	of	the
rows	that	make	up	the	result	set.	A	static	cursor	does	not	display	new	rows
inserted	in	the	database	after	the	cursor	was	opened,	even	if	they	match	the
search	conditions	of	the	cursor	SELECT	statement.	If	rows	making	up	the	result
set	are	updated	by	other	users,	the	new	data	values	are	not	displayed	in	the	static
cursor.	The	static	cursor	displays	rows	deleted	from	the	database	after	the	cursor
was	opened.	No	UPDATE,	INSERT,	or	DELETE	operations	are	reflected	in	a
static	cursor	(unless	the	cursor	is	closed	and	reopened),	not	even	modifications
made	using	the	same	connection	that	opened	the	cursor.

Microsoft®	SQL	Server™	static	cursors	are	always	read-only.

Because	the	result	set	of	a	static	cursor	is	stored	in	a	work	table	in	tempdb,	the
size	of	the	rows	in	the	result	set	cannot	exceed	the	maximum	row	size	for	a	SQL
Server	table.

Transact-SQL	and	DB-Library	use	the	term	insensitive	for	static	cursors.	Some
database	APIs	identify	them	as	snapshot	cursors.

Accessing	and	Changing	Relational	Data

Keyset-driven	Cursors
The	membership	and	order	of	rows	in	a	keyset-driven	cursor	are	fixed	when	the
cursor	is	opened.	Keyset-driven	cursors	are	controlled	by	a	set	of	unique
identifiers	(keys)	known	as	the	keyset.	The	keys	are	built	from	a	set	of	columns
that	uniquely	identify	the	rows	in	the	result	set.	The	keyset	is	the	set	of	the	key
values	from	all	the	rows	that	qualified	for	the	SELECT	statement	at	the	time	the
cursor	was	opened.	The	keyset	for	a	keyset-driven	cursor	is	built	in	tempdb
when	the	cursor	is	opened.

Changes	to	data	values	in	nonkeyset	columns	(made	by	the	cursor	owner	or
committed	by	other	users)	are	visible	as	the	user	scrolls	through	the	cursor.
Inserts	to	the	database	made	outside	the	cursor	are	not	visible	in	the	cursor
unless	the	cursor	is	closed	and	reopened.	Inserts	made	through	the	cursor	using
an	API	function	such	as	the	ODBC	SQLSetPos	function	are	visible	at	the	end	of
the	cursor.	@@FETCH_STATUS	returns	a	"row	missing"	status	when	an
attempt	is	made	to	fetch	a	row	deleted	after	the	cursor	was	opened.	An	update	to
a	key	column	operates	like	a	delete	of	the	old	key	value	followed	by	an	insert	of
the	new	key	value.	The	new	key	value	is	not	visible	if	the	update	was	not	made
through	the	cursor;	it	is	visible	at	the	end	of	the	cursor	if	the	update	was	made
through	the	cursor	using	either	an	API	function	such	as	SQLSetPos	or	the
Transact-SQL	WHERE	CURRENT	OF	clause	and	the	SELECT	statement	did
not	contain	a	JOIN	condition	in	the	FROM	clause.	The	new	key	value	is	not
visible	if	the	insert	contained	a	remote	table	in	the	FROM	clause.	Attempts	to
retrieve	the	old	key	value	get	the	same	missing	row	fetch	status	as	a	deleted	row.

Note		An	index	on	computed	columns	cannot	be	used	when	declaring	a	keyset-
driven	cursor	on	a	remote	table.	You	can	create	another	index	to	provide	the
unique	keys	for	that	remote	table.

Accessing	and	Changing	Relational	Data

Dynamic	Cursors
Dynamic	cursors	are	the	opposite	of	static	cursors.	Dynamic	cursors	reflect	all
changes	made	to	the	rows	in	their	result	set	when	scrolling	through	the	cursor.
The	data	values,	order,	and	membership	of	the	rows	in	the	result	set	can	change
on	each	fetch.	All	UPDATE,	INSERT,	and	DELETE	statements	made	by	all
users	are	visible	through	the	cursor.	Updates	are	visible	immediately	if	they	are
made	through	the	cursor	using	either	an	API	function	such	as	SQLSetPos	or	the
Transact-SQL	WHERE	CURRENT	OF	clause.	Updates	made	outside	the	cursor
are	not	visible	until	they	are	committed,	unless	the	cursor	transaction	isolation
level	is	set	to	read	uncommitted.

Accessing	and	Changing	Relational	Data

Cursor	Behaviors
Both	ODBC	and	Transact-SQL	cursors	support	specifying	cursor	characteristics
using	the	SQL-92	cursor	behaviors	of	scrollability	and	sensitivity.

Cursor	behaviors	are	specified	in	the	following	ways:

Transact-SQL	cursors	use	the	SQL-92	syntax	of	specifying	SCROLL
and	INSENSITIVE	before	the	CURSOR	keyword	on	the	DECLARE
statement.

The	ODBC	API	uses	the	SQL_ATTR_CURSOR_SCROLLABLE	and
SQL_ATTR_CURSOR_SENSITIVITY	statement	attributes.

See	Also

DECLARE	CURSOR

How	Cursors	Are	Implemented

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Scrollable
The	scrollable	behavior	of	a	cursor	defines	the	fetch	options	the	cursor	supports.

If	the	SCROLL	keyword	is	specified	on	a	DECLARE	statement,	or	if
SQL_ATTR_CURSOR_SCROLLABLE	is	set	to	SQL_SCROLLABLE,	the
cursor	supports	all	of	the	fetch	options.

If	the	SCROLL	keyword	is	omitted	from	a	SQL-92	style	DECLARE	statement
or	if	SQL_ATTR_CURSOR_SCROLLABLE	is	set	to
SQL_NONSCROLLABLE,	the	cursor	supports	only	fetch	next	operations.

See	Also

DECLARE	CURSOR

SQLSetStmtAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Sensitivity
The	sensitivity	behavior	of	a	cursor	defines	whether	updates	made	against	the
base	rows	(used	to	build	the	cursor)	are	visible	through	the	cursor.	Sensitivity
also	defines	whether	updates	can	be	made	through	the	cursor.

If	the	INSENSITIVE	keyword	is	specified	on	a	Transact-SQL	DECLARE
statement,	or	if	SQL_ATTR_CURSOR_SENSITIVITY	is	set	to	either
SQL_UNSPECIFIED	or	SQL_INSENSITIVE	in	ODBC,	the	cursor	does	not
reflect	data	modifications.	The	cursor	is	read-only	and	does	not	support	updates.

If	the	INSENSITIVE	keyword	is	omitted	from	a	Transact-SQL	DECLARE
statement,	or	if	SQL_ATTR_CURSOR_SENSITIVITY	is	set	to
SQL_SENSITIVE	in	ODBC,	the	cursor	reflects	data	modifications	made	by	the
current	user	or	committed	by	other	users.	Positioned	updates	can	be	made	using
the	cursor,	except	when	using	a	read-only	cursor.

See	Also

DECLARE	CURSOR

SQLSetStmtAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Cursor	Locking
In	Microsoft®	SQL	Server™,	the	SELECT	statement	in	a	cursor	definition	is
subject	to	the	same	transaction	locking	rules	that	apply	to	any	other	SELECT
statement.	In	cursors,	however,	an	additional	set	of	scroll	locks	can	be	acquired
based	on	the	specification	of	a	cursor	concurrency	level.

The	transaction	locks	acquired	by	any	SELECT	statement,	including	the
SELECT	statement	in	a	cursor	definition,	are	controlled	by:

The	transaction	isolation	level	setting	for	the	connection.

Any	locking	hints	specified	in	the	FROM	clause.

These	locks	are	held	until	the	end	of	the	current	transaction	for	both	cursors	and
independent	SELECT	statements.	When	SQL	Server	is	running	in	autocommit
mode,	each	individual	SQL	statement	is	a	transaction	and	the	locks	are	freed
when	the	statement	finishes.	If	SQL	Server	is	running	in	explicit	or	implicit
transaction	mode,	then	the	locks	are	held	until	the	transaction	is	either
committed	or	rolled	back.

For	example,	the	locking	done	for	these	two	Transact-SQL	examples	is
essentially	the	same:

/*	Example	1	*/
SET	TRANSACTION	ISOLATION	LEVEL	REPEATABLE	READ
GO
BEGIN	TRANSACTION
GO
SELECT	*	FROM	authors
GO

/*	Example	2	*/
SET	TRANSACTION	ISOLATION	LEVEL	REPEATABLE	READ
GO
BEGIN	TRANSACTION

GO
DECLARE	abc	CURSOR	STATIC	FOR
SELECT	*	FROM	authors
GO
OPEN	abc
GO

Setting	the	transaction	isolation	level	to	repeatable	read	means	that	both	the
independent	SELECT	statement	in	Example	1	and	the	SELECT	statement
contained	in	the	DECLARE	CURSOR	of	Example	2	generate	share	locks	on
each	row	they	read,	and	the	share	locks	are	held	until	the	transaction	is
committed	or	rolled	back.

Acquiring	Locks
Although	cursors	obey	the	same	rules	as	independent	SELECT	statements,
regarding	the	type	of	transaction	locks	acquired,	the	locks	are	acquired	at
different	times.	The	locks	generated	by	an	independent	SELECT	or	a	cursor	are
always	acquired	when	a	row	is	retrieved.	For	an	independent	SELECT,	all	the
rows	are	retrieved	when	the	statement	is	executed.	Cursors,	however,	retrieve	the
rows	at	different	times	depending	on	the	type	of	cursor:

Static	cursors	retrieve	the	entire	result	set	at	the	time	the	cursor	is
opened.	This	locks	each	row	of	the	result	set	at	open	time.

Keyset-driven	cursors	retrieve	the	keys	of	each	row	of	the	result	set	at
the	time	the	cursor	is	opened.	This	locks	each	row	of	the	result	set	at
open	time.

Dynamic	cursors	(including	regular	forward-only	cursors)	do	not
retrieve	rows	until	they	are	fetched.	Locks	are	not	acquired	on	the	rows
until	they	have	been	fetched.

Fast	forward-only	cursors	vary	in	when	they	acquire	their	locks
depending	on	the	execution	plan	chosen	by	the	query	optimizer.	If	a

dynamic	plan	is	chosen,	no	locks	are	taken	until	the	rows	are	fetched.	If
worktables	are	generated,	then	the	rows	are	read	into	the	worktable	and
locked	at	open	time.

Cursors	also	support	their	own	concurrency	specifications,	some	of	which
generate	additional	locks	on	the	rows	in	each	fetch.	These	scroll	locks	are	held
until	the	next	fetch	operation	or	until	the	cursor	is	closed,	whichever	comes	first.
If	the	connection	option	to	keep	cursors	open	on	a	commit	is	set	on,	these	locks
will	be	kept	across	a	commit	or	rollback	operation.

Accessing	and	Changing	Relational	Data

Cursors	and	Transactions
Microsoft®	SQL	Server™	2000	supports	setting	either	connection	or	database
options	to	control	whether	cursors	are	closed	or	left	open	on	commits	and
rollbacks.

If	the	option	is	set	that	cursors	are	closed	on	commits	or	rollbacks,	then	all	scroll
locks	are	automatically	freed	when	the	cursor	closes.	If	the	option	is	set	that
cursors	remain	open	on	a	commit,	then	any	active	scroll	locks	are	kept	until	the
next	fetch	or	until	the	cursor	closes.	All	transaction	locks,	even	those	on	rows	in
a	cursor,	are	freed	when	the	transaction	is	committed	or	rolled	back,	regardless
of	whether	the	cursors	stay	open.

See	Also

SET	CURSOR_CLOSE_ON_COMMIT

sp_dboption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Cursor	Concurrency
Microsoft®	SQL	Server™	2000	supports	four	concurrency	options	for	server
cursors:

READ_ONLY

OPTIMISTIC	WITH	VALUES

OPTIMISTIC	WITH	ROW	VERSIONING

SCROLL	LOCKS

READ_ONLY:

Positioned	updates	through	the	cursor	are	not	allowed,	and	no	locks	are	held
on	the	rows	that	make	up	the	result	set.

OPTIMISTIC	WITH	VALUES

Optimistic	concurrency	control	is	a	standard	part	of	transaction	control
theory.	Optimistic	concurrency	control	is	used	in	situations	when	there	is
only	a	slight	chance	that	a	second	user	may	update	a	row	in	the	interval
between	when	a	cursor	is	opened	and	when	the	row	is	updated.	When	a
cursor	is	opened	with	this	option,	no	locks	are	held	on	the	underlying	rows,
which	helps	maximize	throughput.	If	the	user	attempts	to	modify	a	row,	the
current	values	in	the	row	are	compared	with	the	values	retrieved	when	the
row	was	last	fetched.	If	any	of	the	values	have	changed,	the	server	knows
that	someone	else	has	already	updated	the	row,	and	it	returns	an	error.	If	the
values	are	the	same,	the	server	performs	the	modification.

Selecting	this	concurrency	option	forces	the	user	or	programmer	to	accept
the	responsibility	of	dealing	with	the	occasional	error	indicating	another	user
has	modified	the	row.	A	typical	action	taken	by	an	application	that	receives
this	error	is	to	refresh	the	cursor,	get	the	new	values,	and	then	let	the	user
decide	whether	to	perform	the	modification	on	the	new	values.	text,	ntext,
and	image	columns	are	not	used	for	concurrency	comparisons	in	SQL	Server

version	6.5	or	earlier.

OPTIMISTIC	WITH	ROW	VERSIONING

This	optimistic	concurrency	control	option	is	based	on	row	versioning.	With
row	versioning,	the	underlying	table	must	have	a	version	identifier	of	some
type	that	the	server	can	use	to	determine	whether	the	row	has	been	changed
after	it	was	read	into	the	cursor.	In	SQL	Server	that	capability	is	provided	by
the	timestamp	data	type,	which	is	a	binary	number	that	indicates	the	relative
sequence	of	modifications	in	a	database.	Each	database	has	a	global	current
timestamp	value,	@@DBTS.	Each	time	a	row	with	a	timestamp	column	is
modified	in	any	way,	SQL	Server	stores	the	current	@@DBTS	value	in	the
timestamp	column	and	then	increments	@@DBTS.	If	a	table	has	a
timestamp	column,	then	the	timestamps	are	taken	down	to	the	row	level.
The	server	can	then	compare	the	current	timestamp	value	of	a	row	with	the
timestamp	value	that	was	stored	when	the	row	was	last	fetched	to	determine
whether	the	row	has	been	updated.	The	server	does	not	have	to	compare	the
values	in	all	columns,	only	the	timestamp	column.	If	an	application	requests
optimistic	concurrency	with	row	versioning	on	a	table	that	does	not	have	a
timestamp	column,	the	cursor	defaults	to	values-based	optimistic
concurrency	control.

SCROLL	LOCKS

This	option	implements	pessimistic	concurrency	control,	in	which	the
application	attempts	to	lock	the	underlying	database	rows	at	the	time	they	are
read	into	the	cursor	result	set.	When	using	server	cursors,	an	update	lock	is
placed	on	the	row	when	it	is	read	into	the	cursor.	If	the	cursor	is	opened
within	a	transaction,	the	transaction	update	lock	is	held	until	the	transaction
is	either	committed	or	rolled	back;	the	cursor	lock	is	dropped	when	the	next
row	is	fetched.	If	the	cursor	has	been	opened	outside	a	transaction,	the	lock	is
dropped	when	the	next	row	is	fetched.	Therefore,	a	cursor	should	be	opened
in	a	transaction	whenever	the	user	wants	full	pessimistic	concurrency
control.	An	update	lock	prevents	any	other	task	from	acquiring	an	update	or
exclusive	lock,	which	prevents	any	other	task	from	updating	the	row.	An
update	lock,	however,	does	not	block	a	shared	lock,	so	it	does	not	prevent
other	tasks	from	reading	the	row	unless	the	second	task	is	also	requesting	a
read	with	an	update	lock.

Scroll	Locks
These	cursor	concurrency	options	may	generate	scroll	locks,	depending	on	the
locking	hints	specified	in	the	SELECT	statement	in	the	cursor	definition.	Scroll
locks	are	acquired	on	each	row	in	a	fetch	and	held	until	the	next	fetch	or	the
close	of	the	cursor,	whichever	occurs	first.	On	the	next	fetch,	the	server	acquires
scroll	locks	for	the	rows	in	the	new	fetch	and	then	releases	the	scroll	locks	for
the	rows	in	the	previous	fetch.	Scroll	locks	are	independent	of	transaction	locks
and	may	persist	past	a	commit	or	rollback	operation.	If	the	option	to	close
cursors	on	commit	is	off,	a	COMMIT	does	not	close	any	open	cursors	and	scroll
locks	are	preserved	past	the	commit	to	maintain	the	isolation	of	the	fetched	data.

The	type	of	scroll	locks	acquired	depends	on	the	cursor	concurrency	option	and
the	locking	hints	in	the	cursor	SELECT	statement.

Locking	hints Read	only
Optimistic
with	values

Optimistic	with
row	versioning Locking

No	Hints No	locking No	locking No	locking Update
NOLOCK* No	locking No	locking No	locking No	locking
HOLDLOCK Share Share Share Update
UPDLOCK Error Update Update Update
TABLOCKX Error No	locking No	locking Update
All	Others No	locking No	locking No	locking Update
*Specifying	the	NOLOCK	hint	makes	the	table	on	which	it	is	specified	read-only	through	the	cursor.

Specifying	Cursor	Concurrency	Options
The	concurrency	options	are	specified	differently	in	each	cursor	environment:

Transact-SQL	cursors

Specify	the	READ_ONLY,	SCROLL_LOCK,	and	OPTIMISTIC
keywords	on	the	DECLARE	CURSOR	statement.	The	OPTIMISTIC
keyword	specifies	optimistic	with	row	versioning,	Transact-SQL
cursors	do	not	support	the	optimistic	with	values	concurrency	option.

ADO	applications

Specify	adLockReadOnly,	adLockPessimistic,	adLockOptimistic,	or

adLockBatchOptimistic	in	the	LockType	property	of	a	Recordset
object.

ODBC	applications

Set	the	statement	attribute	SQL_ATTR_CONCURRENCY	to
SQL_CONCUR_READ_ONLY,	SQL_CONCUR_ROWVER,
SQL_CONCUR_VALUES,	or	SQL_CONCUR_LOCK.

DB-Library	applications

Set	the	dbcursoropen	parameter	concuropt	to	CUR_READONLY,
CUR_OPTCC	(for	optimistic	using	row	versioning),
CUR_OPTCCVAL,	or	CUR_LOCKCC.

See	Also

DECLARE	CURSOR

Using	Server	Cursors	with	ADO

dbcursoropen

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Cursor	Transaction	Isolation	Levels
The	transaction	locking	behavior	of	a	specific	cursor	is	determined	by
combining	the	locking	behaviors	of	the	cursor	concurrency	setting,	any	locking
hints	specified	in	the	cursor	SELECT,	and	transaction	isolation	level	options.

Microsoft®	SQL	Server™	2000	supports	these	cursor	transaction	isolation
levels:

Read	Committed

SQL	Server	acquires	a	share	lock	while	reading	a	row	into	a	cursor	but	frees
the	lock	immediately	after	reading	the	row.	Because	shared	lock	requests	are
blocked	by	an	exclusive	lock,	a	cursor	is	prevented	from	reading	a	row	that
another	task	has	updated	but	not	yet	committed.	Read	committed	is	the
default	isolation	level	setting	for	both	SQL	Server	and	ODBC.

Read	Uncommitted

SQL	Server	requests	no	locks	while	reading	a	row	into	a	cursor	and	honors
no	exclusive	locks.	Cursors	can	be	populated	with	values	that	have	already
been	updated	but	not	yet	committed.	The	user	is	bypassing	all	of	the	locking
transaction	control	mechanisms	in	SQL	Server.

Repeatable	Read	or	Serializable

SQL	Server	requests	a	shared	lock	on	each	row	as	it	is	read	into	the	cursor	as
in	READ	COMMITTED,	but	if	the	cursor	is	opened	within	a	transaction,	the
shared	locks	are	held	until	the	end	of	the	transaction	instead	of	being	freed
after	the	row	is	read.	This	has	the	same	effect	as	specifying	HOLDLOCK	on
a	SELECT	statement.

See	Also

Customizing	Transaction	Isolation	Level

Adjusting	Transaction	Isolation	Levels

Cursor	Concurrency

Accessing	and	Changing	Relational	Data

Changing	Rows	with	Positioned	Operations
Updatable	cursors	support	data	modification	statements	that	update	rows	through
the	cursor.	When	positioned	on	a	row	in	an	updatable	cursor,	you	can	perform
update	or	delete	operations	that	target	the	base	table	rows	used	to	build	the
current	row	in	the	cursor.	These	are	called	position	updates.

The	positioned	updates	are	performed	on	the	same	connection	that	opened	the
cursor.	This	allows	the	data	modifications	to	share	the	same	transaction	space	as
the	cursor,	and	prevents	the	updates	from	being	blocked	by	locks	held	by	the
cursor.

There	are	two	methods	for	performing	positioned	updates	in	a	cursor:

The	Transact-SQL	WHERE	CURRENT	OF	clause	on	an	UPDATE	or
DELETE	statement.

A	database	API	positioned	update	function	or	method,	such	as	the
ODBC	SQLSetPos	function.

Performing	Positioned	Updates	with	Transact-SQL

The	Transact-SQL	WHERE	CURRENT	OF	clause	is	typically	used	in	Transact-
SQL	stored	procedures,	triggers,	and	scripts	when	modifications	need	to	be	made
based	on	specific	rows	in	a	cursor.	The	stored	procedure,	trigger,	or	script	will:

DECLARE	and	OPEN	a	cursor.

Use	FETCH	statements	to	get	positioned	on	a	row	in	the	cursor.

Execute	an	UPDATE	or	DELETE	statement	using	a	WHERE
CURRENT	OF	clause.	Use	the	cursor_name	from	the	DECLARE
statement	as	the	cursor_name	in	the	WHERE	CURRENT	OF	clause.

Performing	Positioned	Updates	with	APIs

Cursors	created	through	the	OLE	DB,	ADO,	and	DB-Library	API	functions	and
methods	are	not	used	in	WHERE	CURRENT	OF	clauses	because	they	do	not
have	names.	ODBC,	however,	supports	getting	a	name	for	an	API	server	cursor
with	the	SQLGetCursorName	function.	After	setting	the	cursor	attributes	and
opening	a	cursor	by	executing	a	Transact-SQL	statement,	use	the
SQLGetCursorName	function	to	get	a	name	for	the	cursor.	After	positioning	in
the	cursor,	execute	an	UPDATE	or	DELETE	statement	with	a	WHERE
CURRENT	OF	clause	referencing	the	name	returned	by	SQLGetCursorName.
But	this	method	is	not	recommended.	Instead,	it	is	better	to	use	the	positioned
update	functions	in	the	ODBC	API.

The	database	APIs	support	two	different	methods	for	performing	positioned
operations	on	API	server	cursors.	ODBC	and	DB-Library	share	one	model,	OLE
DB	and	ADO	the	other.

In	ODBC	and	DB-Library,	bind	the	columns	in	the	cursor	to	program	variables,
then	position	on	a	specific	row	in	a	cursor.	If	performing	a	positioned	update,
change	the	data	values	in	the	program	variables	to	the	new	values.	Call	these
functions	to	perform	the	positioned	operation:

ODBC:	The	SQLSetPos	function

DB-Library:	The	dbcursor	function

These	functions	have	the	following	options:

SQLSetPos(SQL_POSITION)

ODBC	only,	positions	the	ODBC	cursor	on	a	specific	row	in	the	current
rowset.

SQLSetPos(SQL_REFRESH),	dbcursor(CRS_REFRESH)

Refreshes	program	variables	bound	to	the	result	set	columns	with	the	values
from	the	row	the	cursor	is	currently	positioned	on.

SQLSetPos(SQL_UPDATE),	dbcursor(CRS_UPDATE)

Updates	the	current	row	in	the	cursor	with	the	values	stored	in	the	program
variables	bound	to	the	result	set	columns.

SQLSetPos(SQL_DELETE),	dbcursor(CRS_DELETE)

Deletes	the	current	row	in	the	cursor.

dbcursor(CRS_LOCKCC)

DB-Library	only,	locks	the	current	row.

OLE	DB	and	ADO	use	a	different	model	to	support	positioned	updates.

In	OLE	DB,	when	positioned	on	a	row	within	the	rowset,	call	the
IRowsetChange::SetData	or	IRowsetChange::DeleteRows	methods	to
perform	positioned	updates.	If	the	OLE	DB	provider	supports
IRowsetUpdate::Update,	the	changes	made	with	the	IRowsetChange	methods
are	cached	until	you	call	IRowsetUpdate::Update.	If	the	OLE	DB	provider
does	not	support	IRowsetUpdate::Update,	the	changes	made	with	the
IRowsetChange	methods	are	made	immediately.

In	ADO,	when	positioned	on	a	row	within	the	recordset,	call	the	Recordset
object's	Update	or	Delete	methods	to	perform	positioned	updates.	If	the	OLE
DB	provider	supports	IRowsetUpdate::Update,	the	changes	made	with	the
Recordset	object's	Update	or	Delete	methods	are	cached	until	you	call	the
Recordset	object's	UpdateBatch	method.	If	the	OLE	DB	provider	does	not
support	IRowsetUpdate::Update,	the	changes	made	with	the	Recordset
object's	Update	or	Delete	methods	are	made	immediately.

See	Also

WHERE

Positioned	Updates	(ODBC)

dbcursor

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Cursor	Programming	Details
Choosing	the	correct	cursor	options	is	an	important	part	of	developing	a
Microsoft®	SQL	Server™	2000	application.

Using	block	cursors	can	reduce	the	number	of	network	roundtrips	between	the
client	and	SQL	Server,	thereby	improving	performance.	SQL	Server	may
implicitly	convert	a	cursor	type	if	you	execute	a	Transact-SQL	statement	not
supported	by	the	cursor	type	you	requested.	SQL	Server	populates	the	keyset	of
a	large	keyset-driven	cursor	asynchronously,	which	shortens	the	time	between
when	the	cursor	is	opened	and	when	you	can	fetch	the	first	rows.

Accessing	and	Changing	Relational	Data

Choosing	a	Cursor	Type
Choosing	a	cursor	type	depends	on	several	variables,	including:

Size	of	the	result	set.

Percentage	of	the	data	likely	to	be	needed.

Performance	of	the	cursor	open.

Need	for	cursor	operations,	such	as	scrolling	or	positioned	updates.

Level	of	visibility	to	data	modifications	made	by	other	users.

The	default	settings	are	fine	for	a	small	result	set	if	no	updating	is	done,	but	a
dynamic	cursor	is	preferred	for	a	large	result	set	in	which	the	user	is	likely	to
find	an	answer	before	retrieving	many	of	the	rows.

Rules	for	Choosing	a	Cursor	Type
Some	simple	rules	to	follow	in	choosing	a	cursor	type	are:

Use	default	settings	for	singleton	selects	(returns	one	row),	or	other
small	result	sets.	It	is	more	efficient	to	cache	a	small	result	set	on	the
client	and	scroll	through	the	cache	instead	of	asking	the	server	to
implement	a	cursor.

Use	the	default	settings	when	fetching	an	entire	result	set	to	the	client,
such	as	when	producing	a	report.	Default	result	sets	are	the	fastest	way
to	transmit	data	to	the	client.

Default	result	sets	cannot	be	used	if	the	application	is	using	positioned
updates.

Default	result	sets	cannot	be	used	if	the	application	is	using	multiple
active	statements.	If	cursors	are	being	used	only	to	support	multiple
active	statements,	choose	fast	forward-only	cursors.

Default	result	sets	must	be	used	for	any	Transact-SQL	statement	or
batch	of	Transact-SQL	statements	that	will	generate	multiple	result	sets.

Dynamic	cursors	open	faster	than	static	or	keyset-driven	cursors.
Internal	temporary	work	tables	must	be	built	when	static	and	keyset-
driven	cursors	are	opened,	but	they	are	not	required	for	dynamic
cursors.

In	joins,	keyset-driven	and	static	cursors	can	be	faster	than	dynamic
cursors.

Keyset-driven	or	static	cursors	must	be	used	if	you	want	to	do	absolute
fetches.

Static	and	keyset-driven	cursors	increase	the	usage	of	tempdb.	Static
server	cursors	build	the	entire	cursor	in	tempdb;	keyset-driven	cursors
build	the	keyset	in	tempdb.

If	a	cursor	must	remain	open	through	a	rollback	operation,	use	a
synchronous	static	cursor	and	set	CURSOR_CLOSE_ON_COMMIT	to
OFF.

Each	call	to	an	API	fetch	function	or	method	causes	a	roundtrip	to	the	server
when	using	server	cursors.	Applications	should	minimize	these	roundtrips	by
using	block	cursors	with	a	reasonably	large	number	of	rows	returned	on	each
fetch.

See	Also

Cursor	Types

Accessing	and	Changing	Relational	Data

Block	Cursors
API	server	cursors	are	not	limited	to	fetching	one	row	at	a	time;	they	can	retrieve
multiple	rows	in	each	fetch.	When	working	with	a	client/server	database,	such	as
Microsoft®	SQL	Server™,	it	is	more	efficient	to	fetch	several	rows	at	a	time.
The	number	of	rows	returned	on	a	fetch	is	called	the	rowset	size.	Cursors	that
have	a	rowset	size	greater	than	one	are	called	block	cursors.	In	the	supported
APIs,	you	can	use	the	block	cursors	in	these	ways:

ODBC

a.	 Set	the	statement	attribute	SQL_ATTR_ROWSET_SIZE	to
the	size	of	the	rowset.

b.	 Use	column-wise	or	row-wise	binding	to	bind	the	columns	to
arrays	of	variables	to	hold	the	data	from	the	rows	returned.
The	number	of	elements	in	each	array	is	equal	to	the	rowset
size.

c.	 Each	call	to	SQLFetchScroll	fetches	the	number	of	rows	set
with	SQL_ATTR_ROWSET_SIZE.

OLE	DB

a.	 Allocate	an	array	of	row	handles	and	bind	the	columns
represented	by	each	handle	to	an	array	of	variables	to	hold	the
column	data.

b.	 Call	IRowset::GetNextRows	with	the	cRows	parameter	set	to
the	number	of	handles	in	the	row	handle	array	and	the	address
of	the	array	of	row	handles	in	the	prghRows	parameter.

ADO

a.	 Dim	a	variant	to	hold	the	data	for	the	number	of	rows	you
want	to	retrieve.

b.	 Optionally,	position	at	the	proper	point	in	the	cursor	using	the
recordset	methods	Move,	MoveFirst,	MoveLast,	MoveNext,
and	MovePrevious.

c.	 Call	the	recordset	method	GetRows	with	the	array	parameter
holding	the	address	of	the	variant	to	hold	the	rows	and	the
Crows	parameter	holding	the	number	of	rows	to	return.
Optionally,	have	the	Start	parameter	indicate	the	fetch
position	in	the	recordset.

DB-Library

a.	 Allocate	arrays	to	hold	the	data	for	each	column,	and	bind
each	array	to	its	target	column	using	dbcursorbind.

b.	 Call	dbcursorfetchex	with	the	rownum	parameter	set	to	the
number	of	rows	to	fetch.

See	Also

Rowsets	and	SQL	Server	Cursors

Cursor	Rowset	Size

dbcursorfetchex

dbcursorbind

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

Implicit	Cursor	Conversions
Applications	can	request	a	cursor	type	and	then	execute	a	Transact-SQL
statement	that	is	not	supported	by	server	cursors	of	the	type	requested.
Microsoft®	SQL	Server™	returns	an	error	that	indicates	the	cursor	type	has
changed.

These	are	the	factors	that	trigger	SQL	Server	to	implicitly	convert	a	cursor	from
one	type	to	another.

Step
Conversion
triggered	by

Forward-
only

Fast-
forward

Keyset-
driven Dynamic

Go	to
step

1 Cursor	references	a
view	with	a	TOP
clause.

Becomes
static.

Becomes
static.

Becomes
static.

Becomes
static.

Done

2 Query	FROM
clause	references
no	tables.

Becomes
static.

	 Becomes
static.

Becomes
static.

Done

3 Query	contains:
select	list
aggregates
GROUP	BY
UNION
DISTINCT
HAVING

Becomes
static.

	 Becomes
static.

Becomes
static.

Done

4 Query	references	an
inserted	or	deleted
table	within	a
trigger.

Becomes
static.

	 Becomes
static.

Becomes
static.

Done

5 Query	joins	a
trigger	table	to
another	table.

	 Becomes
static.

	 	 Done

6 READ_ONLY	is
not	specified.

	 Becomes
static.

	 	 8

7 ODBC	API	server 	 Becomes 	 	 8

cursor	references
text,	ntext,	or
image	columns.

dynamic.

8 Query	generates	an
internal	work	table,
for	example	the
columns	of	an
ORDER	BY	are	not
covered	by	an
index.

Becomes
keyset.

	 	 Becomes
keyset.

10

9 Query	references
remote	tables	in
linked	servers.

Becomes
keyset.

Becomes
keyset.

	 Becomes
keyset.

10

10 Query	references	at
least	one	table
without	a	unique
index.

	 	 Becomes
static.

	 Done

11 Cursor	references
text,	ntext,	or
image	columns;
and	the	query
contains	a	TOP
clause.

	 Becomes
keyset.

	 	 Done

SQL	Server	version	6.5	has	this	restriction	in	addition	to	the	restrictions	in	SQL
Server	7.0:

If	a	dynamic	cursor	is	requested	and	the	Transact-SQL	statement
contains	an	ORDER	BY	that	does	not	match	an	index	or	subquery,	the
cursor	is	converted	to	a	keyset-driven	or	static	cursor.	If	all	the	tables
have	a	unique	index,	but	no	index	that	covers	the	ORDER	BY,	the
cursor	is	converted	to	a	keyset-driven	cursor.	If	at	least	one	table	has	no
index	that	covers	the	ORDER	BY	and	at	least	one	has	no	unique	index
(not	necessarily	the	same	table),	the	cursor	is	converted	to	static.

An	index	column	cannot	be	used	to	cover	the	ORDER	BY	if	there	are

index	columns	to	its	left	that	are	not	referenced	by	the	ORDER	BY.	For
example,	if	an	index	is	defined	as	using	MyTable	(LastName,
FirstName),	the	index	cannot	be	used	to	cover	a	statement	using
ORDER	BY	FirstName.

The	SQL	Server	version	6.0	restriction	regarding	dynamic	cursors	is	more
simply	defined:

If	a	dynamic	cursor	is	requested	and	there	is	at	least	one	table	that	does
not	have	a	unique	index,	the	cursor	is	converted	to	a	static	cursor.

If	you	are	using	API	server	cursors	and	get	a	message	indicating	the	cursor	type
has	been	changed,	you	can	call	the	following	functions	to	see	the	type	of	cursor
SQL	Server	opened:

ODBC:	Call	SQLGetInfo	for	the	SQL_CURSOR_TYPE	attribute.

DB-Library:	Call	dbcursorinfoex	and	refer	to	the	Type	field	in	the
DBCURSORINFO	structure	returned	by	dbcursorinfoex.

Transact-SQL:	Use	sp_describe_cursor	and	refer	to	the	model	and
scrollable	columns	in	the	cursor	returned	by	the	procedure.

See	Also

Implicit	Cursor	Conversions	(ODBC)

dbcursorinfoex

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Asynchronous	Population
Microsoft®	SQL	Server™	2000	offers	a	performance	optimization	of	populating
large	keyset-driven	or	static	cursors	asynchronously.	Keyset-driven	and	static
cursors	use	work	tables	built	in	tempdb.	Keyset-driven	cursors	use	the	work
table	to	store	their	keyset,	the	set	of	keys	that	identify	the	rows	in	the	cursor.
Static	cursors	use	work	table	to	store	the	rows	comprising	the	cursor.	If	the	SQL
Server	query	optimizer	estimates	that	the	number	of	rows	returned	in	a	keyset-
driven	or	static	cursor	will	exceed	the	value	of	the	sp_configure	cursor
threshold	parameter,	the	server	starts	a	separate	thread	to	populate	the	work
table.	Control	is	immediately	returned	to	the	application,	which	can	start
fetching	the	first	rows	in	the	cursor	instead	of	having	to	wait	until	the	entire
work	table	has	been	populated	before	performing	the	first	fetch.

There	is	some	extra	overhead	associated	with	populating	a	cursor
asynchronously.	It	is	more	efficient	not	to	populate	small	cursors
asynchronously,	so	the	sp_configure	cursor	threshold	value	should	not	be	set
too	low.	Reserve	the	use	of	asynchronous	population	for	large	cursors.

The	@@CURSOR_ROWS	function	reports	the	number	of	rows	in	a	cursor.	If
you	select	@@CURSOR_ROWS	on	a	cursor	with	a	work	table	that	is	still	being
populated,	@@CURSOR_ROWS	returns	a	negative	number.	The	absolute	value
of	the	number	returned	is	the	number	of	the	rows	that	have	been	populated	in	the
work	table	up	to	that	time.	For	example,	if	@@CURSOR_ROWS	is	selected
while	the	keyset	of	a	keyset-driven	cursor	is	still	being	populated,	but	1,243	keys
are	already	in	the	keyset,	@@CURSOR_ROWS	returns	a	value	of	-1243.

See	Also

@@CURSOR_ROWS

sp_configure

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Scope	of	Transact-SQL	Cursor	Names
Microsoft®	SQL	Server™	2000	supports	the	GLOBAL	and	LOCAL	keywords
on	the	DECLARE	CURSOR	statement	to	define	the	scope	of	the	cursor	name.
GLOBAL	specifies	that	the	cursor	name	is	global	to	the	connection.	LOCAL
specifies	that	the	cursor	name	is	LOCAL	to	the	stored	procedure,	trigger,	or
batch	containing	the	DECLARE	CURSOR	statement.

Prior	to	Microsoft	SQL	Server	version	7.0,	the	names	of	Transact-SQL	cursors
were	global	to	the	connection.	You	could	execute	one	stored	procedure	that
creates	a	cursor,	and	then	call	another	stored	procedure	that	fetches	the	rows
from	that	cursor:

USE	pubs
GO
CREATE	PROCEDURE	OpenCrsr	AS

DECLARE	SampleCrsr	CURSOR	FOR
SELECT	au_lname
FROM	authors
WHERE	au_lname	LIKE	'S%'

OPEN	SampleCrsr
GO

CREATE	PROCEDURE	ReadCrsr	AS
FETCH	NEXT	FROM	SampleCrsr
WHILE	(@@FETCH_STATUS	<>	-1)
BEGIN
			FETCH	NEXT	FROM	SampleCrsr
END
GO

EXEC	OpenCrsr	/*	DECLARES	and	OPENS	SampleCrsr.	*/

GO
EXEC	ReadCrsr	/*	Fetches	the	rows	from	SampleCrsr.	*/
GO
CLOSE	SampleCrsr
GO
DEALLOCATE	SampleCrsr
GO

Local	cursors	offer	important	protection	for	cursors	implemented	in	stored
procedures	and	triggers.	Global	cursors	can	be	referenced	outside	the	stored
procedure	or	trigger	in	which	they	are	declared.	Consequently,	they	can	be
inadvertently	changed	by	statements	outside	the	stored	procedure	or	trigger.
Local	cursors	are	more	secure	than	global	cursors	because	they	cannot	be
referenced	outside	a	stored	procedure,	unless	deliberately	passed	back	to	the
caller	as	a	cursor	output	parameter.

Because	global	cursors	can	be	referenced	outside	a	stored	procedure	or	trigger,
they	can	have	unintended	side	effects	that	influence	other	statements.	An
example	is	a	stored	procedure	that	creates	a	global	cursor	with	a	name	of	xyz
and	leaves	the	cursor	open	when	it	completes.	An	attempt	to	declare	another
global	cursor	with	the	name	xyz	after	the	stored	procedure	completed	fails	with	a
duplicate	name	error.

Global	and	local	cursors	have	separate	name	spaces,	so	it	is	possible	to	have
both	a	global	cursor	and	a	local	cursor	with	the	same	name	at	the	same	time.	The
Transact-SQL	statements	that	accept	a	cursor	name	parameter	also	support	the
GLOBAL	keyword	to	identify	the	scope	of	the	name.	If	GLOBAL	is	not
specified,	and	there	are	both	a	local	and	global	cursor	with	the	name	specified	in
the	cursor	name	parameter,	the	local	cursor	is	referenced.

The	database	option	default	to	local	cursor	controls	the	default	taken	by	the
DECLARE	CURSOR	statement	if	neither	LOCAL	nor	GLOBAL	is	specified.	If
default	to	local	cursor	is	true,	Transact-SQL	cursors	default	to	local.	If	the
option	is	false,	Transact-SQL	cursors	default	to	global.	In	SQL	Server	2000,	the
default	to	local	cursors	option	itself	defaults	to	FALSE	to	match	the	behavior	of
earlier	versions	of	SQL	Server.

Stored	procedures	that	DECLARE	and	OPEN	local	cursors	can	pass	the	cursors

out	for	use	by	the	calling	stored	procedure,	trigger,	or	batch.	This	is	done	using
an	OUTPUT	parameter	defined	with	the	new	CURSOR	VARYING	data	type.
Cursor	variables	can	only	be	used	as	OUTPUT	parameters.	They	cannot	be	used
for	input	parameters.	The	cursor	must	be	open	when	the	stored	procedure
completes	to	be	passed	back	in	an	OUTPUT	parameter.	Local	variables	can	also
be	declared	with	the	new	CURSOR	data	type	to	hold	a	reference	to	a	local
cursor.

USE	pubs
GO
/*	Create	a	procedure	with	a	cursor	output	parameter.	*/
CREATE	PROCEDURE	OpenCrsr	@OutCrsr	CURSOR	VARYING	OUTPUT	AS

SET	@OutCrsr	=	CURSOR	FOR
SELECT	au_lname
FROM	authors
WHERE	au_lname	LIKE	'S%'

OPEN	@OutCrsr
GO

/*	Allocate	a	cursor	variable.	*/
DECLARE	@CrsrVar	CURSOR

/*	Execute	the	procedure	created	earlier	to	fill
		the	variable.	*/
EXEC	OpenCrsr	@OutCrsr	=	@CrsrVar	OUTPUT

/*	Use	the	variable	to	fetch	the	rows	from	the	cursor.	*/
FETCH	NEXT	FROM	@CrsrVar
WHILE	(@@FETCH_STATUS	<>	-1)
BEGIN
			FETCH	NEXT	FROM	@CrsrVar
END

CLOSE	@CrsrVar

DEALLOCATE	@CrsrVar
GO

The	database	APIs	do	not	support	cursor	output	parameters	on	stored
procedures.	A	stored	procedure	that	contains	a	cursor	output	parameter	cannot	be
executed	directly	from	a	database	API	function.	These	stored	procedures	can
only	be	executed	from	another	stored	procedure,	a	trigger,	or	a	Transact-SQL
batch	or	script.

A	GLOBAL	cursor	is	available	until	it	is	explicitly	deallocated	or	the	connection
is	closed.	LOCAL	cursors	are	implicitly	deallocated	when	the	stored	procedure,
trigger,	or	batch	in	which	they	were	created	terminates,	unless	the	cursor	has
been	passed	back	as	a	parameter.	The	LOCAL	cursor	will	then	be	implicitly
deallocated	when	the	parameter	or	variable	referencing	the	cursor	in	the	code
that	called	the	procedure	goes	out	scope.

See	Also

DECLARE	CURSOR

sp_dboption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Getting	Server	Cursor	Meta	Data
There	are	two	ways	to	get	meta	data	describing	a	server	cursor:

Applications	using	API	server	cursors	with	a	database	API	such	as
ADO,	OLE	DB,	ODBC,	or	DB-Library	typically	use	the	cursor
functionality	of	the	API	to	get	information	about	the	state	of	the	cursor.

Transact-SQL	scripts,	stored	procedures,	and	triggers	can	use	the
Transact-SQL	functions	and	system	stored	procedures	discussed	in	this
topic	to	get	information	about	a	Transact-SQL	cursor.

There	are	several	system	functions	that	report	status	information	for	a	server
cursor,	or	a	server	cursor	assigned	to	a	cursor	variable:

CURSOR_STATUS

Indicates	whether	a	cursor	is	open	or	closed,	or	if	a	cursor	variable	is
currently	associated	with	a	cursor.

@@FETCH_STATUS

Indicates	the	success	or	failure	of	the	last	fetch	operation	performed	for
the	connection.

@@CURSOR_ROWS

Reports	the	number	of	rows	populated	in	the	last	cursor	opened	for	the
connection.

There	are	several	system	stored	procedures	that	report	the	characteristics	of	a
server	cursor,	or	a	server	cursor	assigned	to	a	cursor	variable:

sp_describe_cursor

Returns	a	cursor	describing	the	attributes	of	a	cursor,	such	as	its	scope,
name,	type,	status,	and	the	number	of	rows.

sp_describe_cursor_columns

Returns	a	cursor	describing	the	attributes	of	each	column	in	the	cursor,

such	as	the	column's	name,	position,	size,	and	data	type.

sp_describe_cursor_tables

Returns	a	cursor	describing	the	base	tables	referenced	by	the	cursor.

sp_cursor_list

Returns	a	cursor	listing	all	the	currently	visible	cursors	for	the
connection.	The	format	of	the	cursor	returned	by	sp_cursor_list	is	the
same	as	the	cursor	from	sp_describe_cursor.

These	system	stored	procedures	return	their	result	sets	as	output	cursor	variables.
The	database	APIs	do	not	support	cursor	variables,	so	these	procedures	cannot
be	called	from	applications,	only	within	Transact-SQL	scripts,	stored	procedures,
and	batches.	Applications	should	use	the	cursor	functionality	of	the	database
APIs	to	get	the	metadata	for	API	server	cursors.

Be	careful	with	the	status	information	returned	by	these	functions	and	stored
procedures,	especially	@@FETCH_STATUS.	The	information	returned	by
@@FETCH_STATUS	changes	every	time	a	FETCH	statement	is	issued	against
any	cursor	open	for	the	connection.	A	stored	procedure	or	trigger	that	may	need
to	refer	to	the	status	information	after	executing	several	additional	statements
should	save	@@FETCH_STATUS	in	an	integer	variable	immediately	after	the
FETCH	statement.	@@FETCH_STATUS	may	be	reset	even	if	there	are	no
FETCH	statements	in	the	batch	between	the	FETCH	and	the	statement	that	tests
the	status.	If	an	intervening	INSERT,	UPDATE	or	DELETE	statement	fires	a
trigger,	the	trigger	can	open	and	fetch	from	a	cursor.	@@FETCH_STATUS
would	then	contain	the	status	of	the	last	FETCH	statement	in	the	trigger.

The	stored	procedures	report	their	status	information	for	a	specific	cursor,	so
their	status	information	is	not	affected	by	operations	on	other	cursors.	Their
status	information	is	still	affected	by	operations	on	the	same	cursor,	so	care	must
still	be	taken	in	using	the	status	information	returned	by	the	stored	procedures.

See	Also

@@CURSOR_ROWS

@@FETCH_STATUS

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

CURSOR_STATUS

sp_cursor_list

sp_describe_cursor

sp_describe_cursor_columns

sp_describe_cursor_tables

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Using	Cursors	with	Distributed	Queries
When	using	cursors	with	distributed	queries,	both	insensitive	(static)	and	keyset-
driven	cursor	types	are	supported	when	the	provider	supports	the	necessary	OLE
DB	functionality.	Dynamic	or	forward-only	cursors	requested	with	a	distributed
query	are	implicitly	converted	to	keyset-driven	cursors.

A	keyset-driven	cursor	is	supported	on	a	distributed	query	if	all	local	and	remote
tables	in	the	query	have	a	unique	key.	For	the	conditions	under	which	a	keyset
cursor	is	supported	on	a	distributed	query,	Keyset-driven	Cursors	Requirements
for	OLE	DB	Providers.

If	a	keyset-driven	cursor	is	allowed	on	a	distributed	query,	then	it	can	also	be
used	to	update	any	of	the	underlying	remote	tables	if	the	provider	requirements
for	updatability	are	met.	For	the	requirements	for	updates	on	a	remote	table,	see
UPDATE	and	DELETE	Requirements	for	OLE	DB	Providers.

See	Also

DECLARE	CURSOR

Using	Cursors

Using	Server	Cursors	with	ADO

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Distributed	Queries
Distributed	queries	access	data	from	multiple	heterogeneous	data	sources,	which
can	be	stored	on	either	the	same	or	different	computers.	Microsoft®	SQL
Server™	2000	supports	distributed	queries	by	using	OLE	DB,	the	Microsoft
specification	of	an	application	programming	interface	(API)	for	universal	data
access.

This	Distributed	Queries	section	discusses	general	distributed	query	concepts
and	describes	how	to	use	Transact-SQL	statements	in	distributed	queries	to
access	data	on	separate	instances	of	SQL	Server,	or	non-SQL	Server	data
sources.	Other	sections	of	SQL	Server	Books	Online	contain	additional	related
information.

For	this	information See
Configuring	OLE	DB	providers	and
linked	servers

Configuring	Linked	Servers

Configuring	OLE	DB	Providers	for
Distributed	Queries

Distributed	queries	in	distributed
transactions

Distributed	Queries	and	Distributed
Transactions

Linked	servers Accessing	External	Data
ODBC	and	distributed	queries Schema	Functions	Supporting

Distributed	Queries
Information	about	specific	OLE	DB
Providers

OLE	DB	Providers	Tested	with	SQL
Server

Performance	issues Optimizing	Distributed	Queries
Reference	for	OLE	DB	Provider
developers

OLE	DB	Provider	Reference	for
Distributed	Queries

Transact-SQL	language	in	distributed
queries

External	Data	and	Transact-SQL

System	Stored	Procedures

Troubleshooting	distributed	queries Distributed	Queries	Error	Messages

Distributed	queries	provide	SQL	Server	users	with	access	to:

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

Distributed	data	stored	in	multiple	instances	of	SQL	Server.

Heterogeneous	data	stored	in	various	relational	and	non-relational	data
sources	accessed	using	an	OLE	DB	provider.

OLE	DB	providers	expose	data	in	tabular	objects	called	rowsets.	SQL	Server
2000	allows	rowsets	from	OLE	DB	providers	to	be	referenced	in	Transact-SQL
statements	as	if	they	were	a	SQL	Server	table.

Tables	and	views	in	external	data	sources	can	be	referenced	directly	in	SELECT,
INSERT,	UPDATE,	and	DELETE	Transact-SQL	statements.	Because	distributed
queries	use	OLE	DB	as	the	underlying	interface,	distributed	queries	can	access
traditional	relational	DBMS	systems	with	SQL	query	processors,	as	well	as	data
managed	by	data	sources	of	varying	capabilities	and	sophistication.	As	long	as
the	software	owning	the	data	exposes	it	in	a	tabular	rowset	through	an	OLE	DB
provider,	the	data	can	be	used	in	distributed	queries.

Note		Using	distributed	queries	in	SQL	Server	is	similar	to	the	linked	table
functionality	through	ODBC,	which	was	supported	previously	by	Microsoft
Access.	This	functionality	is	now	built	into	SQL	Server	with	OLE	DB	as	the
interface	to	external	data.

Example

See	Also

Configuring	Linked	Servers

Distributed	Queries	and	Distributed	Transactions

Security	Account	Delegation

JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

Accessing	and	Changing	Relational	Data

Accessing	External	Data
To	access	data	from	an	OLE	DB	data	source,	provide	Microsoft®	SQL	Server™
2000	with	the	following	information:

The	name	of	the	OLE	DB	provider	that	exposes	the	data	source.

Any	information	the	OLE	DB	provider	needs	to	locate	the	source	of	the
data.

Either	the	name	of	an	object	that	the	OLE	DB	data	source	can	expose	as
a	rowset,	or	a	query	that	can	be	sent	to	the	OLE	DB	provider	that	will
cause	it	to	expose	a	rowset.	The	objects	that	can	be	exposed	as	rowsets
are	known	as	remote	tables.	The	queries	that	generate	rowsets	are
known	as	pass-through	queries.

Optionally,	you	can	supply	SQL	Server	with	valid	login	IDs	for	the
OLE	DB	data	source.

SQL	Server	2000	supports	these	methods	for	referencing	heterogeneous	OLE
DB	data	sources	in	Transact-SQL	statements:	the	linked	server	name	and	the	ad
hoc	computer	name.

Linked	Server	Names
A	linked	server	is	a	virtual	server	that	has	been	defined	to	Microsoft®	SQL
Server™	2000	with	all	the	information	needed	to	access	an	OLE	DB	data
source.	A	linked	server	name	is	defined	using	the	sp_addlinkedserver	system
stored	procedure.	The	linked	server	definition	contains	all	the	information
needed	to	locate	the	OLE	DB	data	source.	Local	SQL	Server	logins	are	then
mapped	to	logins	in	the	linked	server	using	sp_addlinkedsrvlogin.	Remote
tables	can	then	be	referenced	by	using	the	linked	server	name:

As	the	server	name	in	a	four-part	name	used	as	a	table	or	view	reference
in	a	Transact-SQL	statement.	The	other	three	parts	of	the	name

reference	an	object	in	the	linked	server	that	is	exposed	as	a	rowset.

As	an	input	parameter	to	an	OPENQUERY	function.	OPENQUERY
sends	the	OLE	DB	provider	a	command	to	execute.	The	returned	rowset
can	then	be	used	as	a	table	or	view	reference	in	a	Transact-SQL
statement.

Ad	Hoc	Names

An	ad	hoc	name	is	used	for	infrequent	queries	against	OLE	DB	data	sources	that
are	not	defined	as	a	linked	server	name.	In	SQL	Server	2000,	the
OPENROWSET	and	OPENDATASOURCE	functions	provide	connection
information	for	accessing	data	from	OLE	DB	data	sources.

OPENROWSET	and	OPENDATASOURCE	should	be	used	only	to	reference
OLE	DB	data	sources	that	are	accessed	infrequently.	For	any	data	sources	that
will	be	accessed	more	than	a	few	times,	define	a	linked	server.	Neither
OPENDATASOURCE	nor	OPENROWSET	provide	all	of	the	functionality	of
linked	server	definitions,	including	security	management	and	the	ability	to	query
catalog	information.	Each	time	these	functions	are	called,	all	connection
information,	including	passwords,	must	be	provided.

OPENROWSET	and	OPENDATASOURCE	appear	to	be	functions;	however,
they	are	macros	and	do	not	support	supplying	Transact-SQL	variables	as
arguments.

The	OPENROWSET	function	can	be	used	with	any	OLE	DB	provider	that
returns	a	rowset,	and	can	be	used	anywhere	a	table	or	view	reference	is	used	in	a
Transact-SQL	statement.	OPENROWSET	is	specified	with:

All	the	information	needed	to	connect	to	the	OLE	DB	data	source.

Either	the	name	of	an	object	that	will	generate	a	rowset,	or	a	query	that
will	generate	a	rowset.

The	OPENDATASOURCE	function	provides	connection	information	as	part	of	a
four-part	object	name.	This	function	supports	only	OLE	DB	providers	that
expose	multiple	rowsets	using	the	catalog.schema.object	notation.

OPENDATASOURCE	can	be	used	in	the	same	Transact-SQL	syntax	locations	a
linked	server	name	can	be	used.	OPENDATASOURCE	is	specified	with:

The	name	registered	as	the	PROGID	of	the	OLE	DB	provider	used	to
access	the	data	source.

A	connection	string	that	specifies	the	various	connection	properties	to
be	passed	to	the	OLE	DB	provider.	The	connection	string	syntax	is	a
sequence	of	keyword-value	pairs.	The	basic	syntax	is	defined	in	the
Microsoft®	Data	Access	Software	Development	Kit,	and	each	provider
documents	the	specific	keyword-value	pairs	it	supports.	For	more
information	about	connection	strings,	see	OPENDATASOURCE.

Accessing	Linked	Servers

After	a	linked	server	is	created	using	sp_addlinkedserver,	it	can	be	accessed
using:

Distributed	queries.	Accessing	tables	in	the	linked	server	through
SELECT,	INSERT,	UPDATE,	and	DELETE	statements	using	a	linked
server-based	name.

Remote	stored	procedures.	Stored	procedures	can	be	executed	against
the	linked	server	using	a	four-part	name.

Servers	running	an	instance	of	SQL	Server	can	be	defined	as	a	remote	server
using	sp_addserver.	The	remote	server	then	can	be	referenced	in	remote	stored
procedure	calls.	The	remote	server	component	is	maintained	as	a	compatibility
feature	for	existing	applications.

As	applications	are	ported	to	SQL	Server	2000,	they	may	need	to	run	for	a
period	of	time	with	some	new	code	using	distributed	queries	against	a	linked
server	definition	and	some	legacy	code	using	a	remote	server	definition.	Both
linked	servers	and	remote	servers	use	the	same	name	space,	so	either	the	linked
server	or	the	remote	server	definition	has	to	use	a	name	that	is	different	than	the
network	name	of	the	server	being	accessed	remotely.	Define	one	of	the	entries
with	a	different	server	name,	and	use	sp_setnetname	to	associate	that	definition

JavaScript:hhobj_1.Click()

with	the	network	name	of	the	remote	server.

Note		The	examples	in	this	section	use	system	stored	procedures	to	configure
linked	servers	because	these	system	stored	procedures	succinctly	show	the
parameters	used.	However,	SQL	Server	Enterprise	Manager	also	supports
configuring	linked	servers.	For	more	information,	see	Configuring	Linked
Servers.

JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Identifying	a	Data	Source	Using	a	Linked	Server
Name
After	a	linked	server	is	defined,	a	four-part	name	in	the	form
linked_server_name.catalog.schema.object_name	can	be	used	in	Transact-SQL
statements	to	reference	data	objects	in	that	linked	server.	The	table	describes	the
parts	of	a	four-part	name.

Part	name Description
linked_server_name Linked	server	referencing	the	OLE	DB	data	source
catalog Catalog	in	the	OLE	DB	data	source	that	contains	the

object
schema Schema	in	the	catalog	that	contains	the	object
object_name Data	object	in	the	schema

Microsoft®	SQL	Server™	uses	the	linked	server	name	to	identify	the	OLE	DB
provider	and	the	data	source.	The	catalog,	schema,	and	object_name	parameters
are	passed	to	the	OLE	DB	provider	to	identify	a	specific	data	object.	When	the
linked	server	refers	to	an	instance	of	SQL	Server,	catalog	refers	to	a	database
and	schema	refers	to	an	owner	ID.

This	illustration	shows	how	a	four-part	SQL	Server	name	resolves	to	an	object	in
the	OLE	DB	provider.

Always	use	fully	qualified	names	when	working	with	objects	on	linked	servers.
There	is	no	support	for	implicit	resolution	to	the	dbo	owner	name	for	tables	in
linked	servers.	Because	of	this,	a	query	without	a	schema	name	generates	a	7314
error	even	when	the	linked	server	is	another	instance	of	SQL	Server.	SQL	Server
does	not	support	full-text	search	over	linked	servers.

See	Also

OPENQUERY

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Identifying	a	Data	Source	Using	an	Ad	Hoc	Name
An	ad	hoc	name	can	be	used	as	a	table	reference	when	the	OLE	DB	data	source
will	not	be	referenced	often	enough	to	warrant	configuring	a	linked	server.	In
Microsoft®	SQL	Server™	2000,	you	can	use	the	OPENROWSET	and
OPENDATASOURCE	functions	to	provide	an	ad	hoc	name.

Both	the	OPENROWSET	and	OPENDATASOURCE	functions	provide	ad	hoc
connection	information.	You	can	use	these	functions	to	specify	all	the
information	needed	to	access	the	OLE	DB	data	source.	However,	you	cannot	use
OPENROWSET	and	OPENDATASOURCE	interchangeably.

You	can	use	the	OPENROWSET	function	wherever	the	OLE	DB	provider
returns	rowsets	either	by	specifying	a	table	(or	view)	name	or	by	specifying	a
query	that	returns	a	rowset.	The	OPENROWSET	function	can	be	used	in	the
place	of	a	table	or	view	name	in	a	Transact-SQL	statement.

--This	example	uses	an	ad	hoc	name	to	retrieve	data	from	the	Customers
SELECT	*
FROM	OPENROWSET('Microsoft.Jet.OLEDB.4.0',	
			'c:\MSOffice\Access\Samples\northwind.mdb';'admin';'',	
			Customers)

Use	OPENDATASOURCE	only	when	the	provider	exposes	rowsets	and	uses	the
catalog.schema.object	notation.	This	function	can	be	used	in	the	same	Transact-
SQL	syntax	locations	a	linked	server	name	can	be	used.	Thus,	in	the
catalog.schema.object	notation,	OPENDATASOURCE	can	be	used	as	the	first
part	of	a	four-part	name	that	refers	to	a	table	or	a	view	name.

--	SELECT	from	a	table	on	another	instance	of	SQL	Server.
SELECT	*
FROM	OPENDATASOURCE(
										'SQLOLEDB',
										'Data	Source=ServerName;User	ID=MyUID;Password=MyPass'
).Northwind.dbo.Categories

Both	OPENROWSET	and	OPENDATASOURCE	should	be	used	only	for
accessing	external	data	for	ad	hoc	situations,	when	it	is	not	possible	to	configure
a	permanent	linked	server.	These	functions	do	not	provide	all	of	the	functionality
available	from	a	linked	server,	such	as	management	of	login	mappings,	ability	to
query	the	linked	server's	meta	data,	and	the	ability	to	configure	various
connection	settings	such	as	time-out	values.

The	arguments	of	OPENROWSET	and	OPENDATASOURCE	do	not	support
variables.	They	have	to	be	specified	as	string-literal.	If	variables	need	to	be
passed	in	as	arguments	to	these	functions,	a	query	string	containing	these
variables	can	be	constructed	dynamically	and	executed	using	the	EXEC
statement.

See	Also

OPENDATASOURCE

OPENROWSET

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	Pass-Through	Queries	as	Tables
Microsoft®	SQL	Server™	2000	sends	pass-through	queries	as	uninterpreted
query	strings	to	an	OLE	DB	data	source.	The	query	must	be	in	a	syntax	the	OLE
DB	data	source	will	accept.	A	Transact-SQL	statement	uses	the	results	from	a
pass-through	query	as	though	it	is	a	regular	table	reference.

This	example	uses	a	pass-through	query	to	retrieve	a	result	set	from	a	Microsoft
Access	version	of	the	Northwind	sample	database.

SELECT	*
FROM	OpenRowset('Microsoft.Jet.OLEDB.4.0',	
			'c:\northwind.mdb';'admin';	'',	
			'SELECT	CustomerID,	CompanyName
									FROM	Customers
									WHERE	Region	=	''WA''	')

The	ways	to	generate	a	rowset	from	an	OLE	DB	provider	are:

Reference	an	object	in	the	data	source	that	the	provider	can	expose	as	a
tabular	rowset.	All	providers	support	this	capability.

Send	the	provider	a	command	that	the	provider	can	process	and	expose
the	results	of	the	command	as	a	rowset.	This	capability	requires	that	the
provider	support	the	OLE	DB	Command	object	and	all	of	its
mandatory	interfaces.

When	a	provider	supports	the	Command	object,	these	Transact-SQL	functions
can	be	used	to	send	it	commands	(called	pass-through	queries):

OPENQUERY	sends	a	command	string	to	an	OLE	DB	data	source
using	a	linked	server	name.

OPENROWSET	and	OPENDATASOURCE	support	sending	a
command	string	to	an	OLE	DB	data	source.	The	resulting	rowset	can	be
referenced	using	an	ad	hoc	name.

The	OLE	DB	specification	does	not	define	a	single	command	language	to	be
used	by	all	OLE	DB	providers.	OLE	DB	providers	are	allowed	to	support	any
command	language	that	is	related	to	the	data	they	expose.	OLE	DB	providers
that	expose	the	data	in	relational	databases	generally	support	the	SQL	language.
Other	types	of	providers,	such	as	those	exposing	the	data	in	an	e-mail	file	or
network	directory,	generally	support	a	different	language.

See	Also

FROM

OPENDATASOURCE

OPENQUERY

OPENROWSET

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

Accessing	and	Changing	Relational	Data

External	Data	and	Transact-SQL
As	long	as	the	provider	supports	the	required	OLE	DB	interfaces,	each	class	of
Transact-SQL	statements	mentioned	later	is	allowed.	Here	is	the	subset	of	the
Transact-SQL	language	allowed	on	remote	tables	accessed	through	linked
server-based	names	or	ad	hoc	names:

All	queries	with	the	standard	form	of	SELECT	select_list	FROM	clause
WHERE	clause	are	allowed.	The	INTO	new_table_name	clause	of
SELECT	is	not	allowed	when	the	new_table_name	refers	to	a	remote
table.

In	SELECT,	INSERT,	UPDATE,	and	DELETE	statements,	columns	in
remote	tables	cannot	be	qualified	with	a	single-part	or	four-part	table
name.	The	remote	tables	should	be	aliased	in	the	FROM	clause	and	the
alias	name	should	be	used	to	qualify	the	column	name.

When	specifying	a	large	object	(LOB)	column	from	a	remote	table	as	an
item	in	the	select_list	of	a	SELECT	statement,	the	SELECT	statement
cannot	contain	an	ORDER	BY	clause.

The	IS	NULL	and	IS	NOT	NULL	predicates	cannot	reference	LOB
columns	in	a	remote	table.

GROUP	BY	ALL	is	not	allowed	in	a	distributed	query	when	the	query
also	has	a	WHERE	clause.	GROUP	BY	without	specifying	ALL	is
supported.

INSERT	statements	are	allowed	against	remote	tables	as	long	as	the
provider	meets	the	OLE	DB	requirements	for	INSERT	statements.	For
more	information,	see	INSERT	Requirements	for	OLE	DB	Providers.	

UPDATE	and	DELETE	statements	are	allowed	against	remote	tables	if

the	provider	meets	the	OLE	DB	interface	requirements	on	the	specified
table.	For	more	information,	see	UPDATE	and	DELETE	Requirements
for	OLE	DB	Providers.

A	remote	table	can	be	updated	or	deleted	through	a	cursor	defined	on	a
distributed	query	when	the	remote	table	is	specified	in	the	UPDATE	or
DELETE	statement	(UPDATE	or	DELETE	remote_table	WHERE
CURRENT	OF	cursor_name)	if	the	provider	meets	the	conditions	for
updatability	on	the	remote	table.	For	more	information,	see	Using
Cursors	with	Distributed	Queries.

READTEXT,	WRITETEXT,	and	UPDATETEXT	statements	are	not
supported	against	remote	tables.

Columns	with	large	object	data	types	(such	as	text,	ntext,	or	image)
cannot	be	referenced	in	update	or	insert	operations	if	the	provider	is
instantiated	outside	the	Microsoft®	SQL	Server™	2000	process
(provider	option	AllowInProcess	is	0).	For	more	information,	see
Configuring	OLE	DB	Providers	for	Distributed	Queries.	

Data	Definition	Language	statements	(such	as	CREATE,	ALTER,	or
DROP	statements)	are	not	allowed	against	linked	servers.

No	other	database-level	operations	or	statements	are	allowed	on	linked
servers.

STATIC	or	INSENSITIVE	cursors	can	reference	remote	tables.
KEYSET	cursors	can	reference	remote	tables	if	the	OLE	DB	provider
meets	certain	requirements.	For	more	information	about	these
requirements,	see	Keyset-driven	Cursors	Requirements	for	OLE	DB
Providers.	No	other	type	of	cursor	can	reference	a	remote	table.

Stored	procedures	are	supported	only	against	SQL	Server	data	sources.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Setting	SQL-92	Options	for	Distributed	Queries
A	connection	must	have	the	ANSI_NULLS	and	ANSI_WARNINGS	options
turned	on	before	it	can	execute	distributed	queries.

See	Also

SET	ANSI_DEFAULTS

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	Transactions	with	Distributed	Queries
Microsoft®	SQL	Server™	2000	supports	transaction-based	access	to	external
data	using	the	ITransactionLocal	(local	transaction)	and	ITransactionJoin
(distributed	transactions)	OLE	DB	interfaces.	Using	distributed	transactions,
SQL	Server	ensures	that	a	transaction	involving	multiple	nodes	is	either
committed	or	rolled	back	in	all	the	nodes.	If	the	provider	does	not	support
participating	in	a	distributed	transaction	(does	not	support	ITransactionJoin),
only	read-only	operations	are	allowed	against	that	provider	when	inside	a
transaction.

When	a	disallowed	statement	is	encountered,	the	statement	returns	an	error
message	and	the	user	transaction,	if	any,	terminates	execution.

See	Also

Transactions

Accessing	and	Changing	Relational	Data

Data	Type	Mapping
An	OLE	DB	provider	exposes	the	data	types	of	its	data	in	terms	of	OLE	DB	type
identifiers	called	DBTYPEs.	Data	types	are	converted	between	OLE	DB	data
types	and	native	Microsoft®	SQL	Server™	data	types	by	mapping	data:

From	OLE	DB	data	types	to	SQL	Server	native	data	types.	This
conversion	occurs	when	SQL	Server	reads	data	from	the	OLE	DB	data
source,	either	in	SELECT	statements	or	in	the	reading	side	of	UPDATE,
INSERT,	or	in	DELETE	statements.	

From	SQL	Server	native	data	types	to	OLE	DB	data	types.	This
conversion	occurs	when	SQL	Server	writes	data,	mostly	in	INSERT	or
UPDATE	statements,	into	the	OLE	DB	data	source	in	which	the
modified	table	is	a	remote	table.

Data	Type	Mapping	from	the	OLE	DB	Provider	to	SQL	Server

Data	type	mapping	from	the	OLE	DB	provider	to	SQL	Server	defines	the
allowed	comparisons	and	expressions,	and	the	valid	explicit	conversions
involving	remote	data.	The	data	type	of	remote_column	corresponds	to	the
mapped	local	data	type	as	shown	in	the	Data	Type	Mapping	table.

The	type	rules	for	remote	table	columns	in	expressions	can	be	described	by	this
rule:	a	given	remote	column	value	is	legal	in	a	Transact-SQL	expression	if	the
corresponding	mapped	SQL	Server	data	type	in	the	following	table	is	legal	in	the
same	context.	For	example,	consider	the	expression:

local_column	operator	remote_column

local_column	is	a	local	table	column	and	remote_column	is	a	remote	table
column.	This	is	a	valid	expression	if	operator	is	a	valid	operator	for	the	local
column's	data	type	and	for	the	data	type	to	which	the	DBTYPE	of
remote_column	maps.

Similarly,	CAST(remote_column	AS	data_type_1)	is	allowed	if	the	DBTYPE	of
remote_column	maps	to	the	SQL	Server	native	data_type_2	and	explicit

conversion	from	data_type_2	to	data_type_1	is	allowed.	For	example,	a	column
of	data	type	DBTYPE_DATE	on	the	provider	side	can	be	converted	to	a
datetime	column	in	SQL	Server.	However,	the	DBTYPE_DATE	data	cannot	be
converted	directly	to	varchar.

The	mapping	to	a	SQL	Server	type	is	determined	by	the	DBTYPE	and	the
DBCOLUMNFLAGS	values	describing	the	column.	This	information	comes
from	the	provider	through	either	the	COLUMNS	schema	rowset	or	through	the
IColumnsInfo	interface.	In	the	case	of	the	COLUMNS	schema	rowset,	the
DATA_TYPE	and	COLUMN_FLAGS	columns	represent	these	values.	In	the
case	of	the	IColumnsInfo::GetColumnInfo	interface,	the	wType	and	dwFlags
members	of	the	DBCOLUMNINFO	structure	represent	this	information.

The	Data	Type	Mapping	table	shows	data	type	mappings	from	the	OLE	DB
provider	to	SQL	Server.	For	a	given	column,	given	its	DBTYPE	and	its
DBCOLUMNFLAG	value,	the	corresponding	SQL	Server	data	type	can	be
found.

DBTYPE DBCOLUMNFLAGS
SQL	Server
data	type

DBTYPE_I1 numeric(3,	0)
DBTYPE_I2 smallint
DBTYPE_I4 Int
DBTYPE_I8 bigint
DBTYPE_UI1 tinyint
DBTYPE_UI2 numeric(5,0)
DBTYPE_UI4 numeric(10,0)
DBTYPE_UI8 numeric(20,0)
DBTYPE_R4 Float
DBTYPE_R8 Real
DBTYPE_NUMERIC numeric
DBTYPE_DECIMAL decimal
DBTYPE_CY money
DBTYPE_BSTR DBCOLUMNFLAGS_ISLONG	=	true ntext
DBTYPE_BSTR DBCOLUMNFLAGS_ISFIXEDLENGTH

=	true
nchar

DBTYPE_BSTR DBCOLUMNFLAGS_ISFIXEDLENGTH
=	false

nvarchar

DBTYPE_IDISPATCH Error
DBTYPE_ERROR Error
DBTYPE_BOOL Bit
DBTYPE_VARIANT nvarchar(4000)
DBTYPE_IUNKNOWN Error
DBTYPE_GUID uniqueidentifier
DBTYPE_BYTES DBCOLUMNFLAGS_ISLONG	=	true	or

Maximum	column	size	>	8,000	bytes
image

DBTYPE_BYTES DBCOLUMNFLAGS_ISROWVER	=
true,
DBCOLUMNFLAGS_ISFIXEDLENGTH
=	true,
Column	size	=	8

timestamp

DBTYPE_BYTES DBCOLUMNFLAGS_ISFIXEDLENGTH
=	true

binary

DBTYPE_BYTES DBCOLUMNFLAGS_ISFIXEDLENGTH
=	false

varbinary

DBTYPE_STR DBCOLUMNFLAGS_ISFIXEDLENGTH
=	true

char

DBTYPE_	STR DBCOLUMNFLAGS_ISFIXEDLENGTH
=	false

varchar

DBTYPE_STR DBCOLUMNFLAGS_ISLONG	=	true	or
Maximum	column	size	>	4,000	characters

text

DBTYPE_WSTR DBCOLUMNFLAGS_ISFIXED nchar
DBTYPE_WSTR DBCOLUMNFLAGS_ISFIXEDLENGTH

=	false
nvarchar

DBTYPE_WSTR DBCOLUMNFLAGS_ISLONG	=	true	or
Maximum	column	size	>	4,000	characters

ntext

DBTYPE_UDT Error
DBTYPE_DATE datetime
DBTYPE_DBDATE Error
DBTYPE_DBTIME Error

DBTYPE_DBTIMESTAMP datetime
DBTYPE_ARRAY Error
DBTYPE_BYREF Ignored
DBTYPE_VECTOR Error
DBTYPE_RESERVED Error
1	numeric(p,s)	indicates	the	SQL	Server	data	type	numeric	with	precision	p	and	scale	s.

Note		If	the	data	must	be	converted	to	a	native	data	type	different	from	the
shown	default,	an	explicit	conversion	(using	either	the	CAST	or	CONVERT
function)	is	required.	For	more	information,	see	CAST	and	CONVERT.

Data	Type	Mapping	from	SQL	Server	to	the	OLE	DB	Provider
Native	SQL	Server	data	types	map	to	OLE	DB	types	using	the	same	table	name.
A	mapping	from	a	SQL	Server	type	S1	to	a	given	OLE	DB	type	T	is	allowed	if
either	of	these	conditions	exist:

The	corresponding	mapping	can	be	found	in	Table	1.

There	is	an	allowed	implicit	conversion	of	the	data	type	S1	to	another
SQL	Server	data	type	S2	and	a	mapping	from	S2	to	T	is	defined	in	Table
1.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Collations	in	Distributed	Queries
In	Microsoft®	SQL	Server™	version	7.0,	the	local	SQL	Server	always	had	only
one	server-wide	collation	(code	page	and	sort	order).	All	character	data	from
remote	data	sources	were	interpreted	using	the	local	server-wide	collation.
However,	Microsoft	SQL	Server	2000	supports	multiple	collations,	which	can	be
different	for	each	column;	each	character	value	has	an	associated	collation
property.	SQL	Server	2000	interprets	the	collation	property	of	character	data
from	a	remote	data	source	and	treats	it	accordingly.

SQL	Server	2000	uses	the	collation	of	remote	data	for	comparison	and	ordering
operations	on	character	data	(both	Unicode	and	non-Unicode).	The	collation
information	for	remote	character	data	is	determined	differently	depending	on
whether	or	not	the	data	source	corresponds	to	a	SQL	Server:

The	SQL	Server	data	OLE	DB	provider	automatically	reports	the
collation	for	each	column	it	returns.

For	remote	tables	that	are	not	in	SQL	Server,	but	for	which	the	collation
is	known	to	be	the	same	as	one	of	the	collations	supported	by	SQL
Server,	the	administrator	can	specify	the	default	collation	of	the	OLE
DB	data	source	as	part	of	the	linked	server	definition.	SQL	Server	can
then	use	the	default	collation	as	the	collation	for	all	columns	returned
from	that	linked	server.

After	SQL	Server	determines	the	collation	of	a	remote	character	column,	it
follows	the	same	rules	for	converting,	comparing,	and	operating	on	remote	table
columns	as	it	does	for	local	columns.	For	more	information	about	the	rules	SQL
Server	applies	to	collations	and	the	collation	names	supported	by	SQL	Server,
see	SQL	Server	Collation	Fundamentals.

The	linked	server	options	defined	by	using	sp_serveroption	control	if	and	how
SQL	Server	uses	collations	from	linked	servers:

UseRemoteCollation	specifies	whether	the	collation	of	a	remote
column	or	of	a	local	server	will	be	used.	When	TRUE,	the	collation	of
remote	columns	is	used	for	SQL	Server	data	sources,	and	the	collation

JavaScript:hhobj_1.Click()

specified	in	CollationName	is	used	for	data	sources	other	than	SQL
Server.	When	FALSE,	distributed	queries	always	use	the	default
collation	of	the	local	server	instance,	and	CollationName	and	the
collation	of	remote	columns	are	ignored.

CollationName	specifies	the	name	of	the	collation	used	by	the	remote
data	source	if	UseRemoteCollation	is	TRUE	and	the	data	source	is	not
a	SQL	Server	data	source.	The	name	must	be	one	of	the	collations
supported	by	SQL	Server.	Use	this	option	when	accessing	an	OLE	DB
data	source	other	than	SQL	Server,	but	whose	collation	matches	one	of
the	SQL	Server	collations.	SQL	Server	data	sources	report	their	column
collations,	and	CollationName	is	ignored	for	linked	servers	that
reference	SQL	Server	data	sources.

Note		The	only	way	to	enable	using	remote	collations	is	through	the
linked	server	options,	therefore,	queries	constructed	using	ad	hoc	names
such	as	OPENROWSET	and	OPENDATASOURCE	cannot	use
collation	information	of	remote	character	data.	In	addition,	all	linked
servers	in	SQL	Server	7.0	that	are	upgraded	to	SQL	Server	2000	are	set
to	UseRemoteCollation	=	False.

The	following	table	summarizes	how	SQL	Server	determines	the	collation	used
for	each	column.

	 Use	Remote	Collation	=	ON
Use	Remote	Collation	=
OFF

Linked	server
type

Collation
name
Not	set

Collation
name	
Set	(to	CollX)

Collation
name	
Not	set

Collation
name
Set	(to	CollX)

SQL	Server Remote
column's
actual
collation

Remote
column's
actual
collation

Default
collation	of
local	SQL
Server
instance

Collation	of
local	SQL
Server
instance

Others Default
collation	of

CollX Default
collation	of

Default
collation	of

local	SQL
Server
instance

local	SQL
Server
instance

local	SQL
Server
instance

Accessing	and	Changing	Relational	Data

Obtaining	Meta	Data	from	Linked	Servers
OLE	DB	providers	expose	meta	data	about	their	data	through	the
IDBSchemaRowset	interface,	which	can	be	used	to	retrieve	information	in	the
form	of	OLE	DB	rowset	objects.	Microsoft®	SQL	Server™	2000	uses	this
interface	to	get	meta	data	about	remote	tables.	This	meta	data	is	exposed	to	the
user	through	these	interfaces:

Driver-specific	functions	from	the	SQL	Server	ODBC	driver.	For	more
information,	see	SQLLinkedServers	and	SQLLinkedCatalogs.	

Provider-specific	rowsets	from	the	SQL	Server	OLE	DB	provider.	For
more	information,	see	Schema	Rowsets.	

Several	ODBC	catalog	functions	accept	two-part	names	referencing
objects	on	linked	servers.

System	stored	procedures	similar	to	the	existing	catalog	stored
procedures	that	return	meta	data	on	linked	servers.

These	system	stored	procedures	can	be	used	to	retrieve	meta	data	from	linked
servers.

sp_linkedservers sp_primarykeys
sp_catalogs sp_indexes
sp_column_privileges sp_table_privileges
sp_columns_ex sp_tables_ex
sp_foreignkeys 	

Note		SQL	Server	is	the	only	data	source	against	which	stored	procedures	are
supported	in	distributed	queries.

SQL	Server	uses	the	IDBSchemaRowset	interface	of	the	OLE	DB	provider	to
implement	these	meta	data	extensions.	Because	this	interface	is	an	optional

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

interface,	a	provider	may	not	implement	this	interface.	Meta	data	is	not	available
on	linked	servers	defined	against	such	providers.

See	Also

System	Stored	Procedures

Upgrading	the	Catalog	Stored	Procedures

JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

Accessing	and	Changing	Relational	Data

OLE	DB	Providers	Tested	with	SQL	Server
Microsoft®	SQL	Server™	2000	distributed	queries	have	been	tested	with
several	OLE	DB	providers.	Some	of	the	tested	OLE	DB	providers	are	installed
with	SQL	Server	2000:

Microsoft	OLE	DB	Provider	for	SQL	Server

Microsoft	OLE	DB	Provider	for	ODBC

Microsoft	OLE	DB	Provider	for	Jet

Microsoft	OLE	DB	Provider	for	DTS	Packages

Microsoft	OLE	DB	Provider	for	Oracle

The	other	tested	providers	are	available	through	Microsoft	Windows®	2000
(Microsoft	OLE	DB	Provider	for	Microsoft	Directory	Services	and	the	Microsoft
OLE	DB	Provider	for	Microsoft	Indexing	Service),	and	the	Microsoft	Host
Integration	Server	(Microsoft	OLE	DB	Provider	for	DB2).

This	table	shows	the	OLE	DB	providers	that	have	been	tested	with	SQL	Server
distributed	queries.	All	of	these	providers	support	being	referenced	in	a	SELECT
statement	by	specifying	a	pass-through	query	in	the	OPENQUERY	and
OPENROWSET	functions.

Data	source
Provider
name

Use	in
four-
part
names

Use	in
pass-
through
queries

Use	in
INSERT,
UPDATE,
or
DELETE

Use	in
distributed
transactions

SQL	Server
6.5	or	later

Microsoft
OLE	DB
Provider

Yes Yes Yes Yes

for	SQL
Server

ODBC	Data
Sources

Microsoft
OLE	DB
Provider
for	ODBC

Yes* Yes Yes* Yes*

Microsoft
Access	(Jet)
databases

Microsoft
OLE	DB
Provider
for	Jet
version
4.00

Yes Yes Yes	(No	if
the
database
was
created
with
Microsoft
Jet	version
4.0	or
earlier)

No

Microsoft
Excel
spreadsheets

Microsoft
OLE	DB
Provider
for	Jet
version
4.00

Yes Yes Yes No

Data
Transformation
Service
Package	Data
Source	Object

Microsoft
OLE	DB
Provider
for	DTS
Packages

Yes Yes No No

Oracle
databases

Microsoft
OLE	DB
Provider
for	Oracle
version	2.6

Yes Yes Yes Yes

Microsoft
Windows®
2000	Directory

Microsoft
OLE	DB
Provider
for

No Yes No No

Microsoft
Directory
Services

Local	file
system
(through
Indexing
Services)

Microsoft
OLE	DB
Provider
for
Microsoft
Indexing
Service
(Requires
Microsoft
Windows
NT®	4.0
Service
Pack	4	or
later)

No Yes No No

IBM	DB2
databases

Microsoft
OLE	DB
Provider
for	DB2

Yes Yes Yes No

*	The	capabilities	of	the	Microsoft	OLE	DB	Provider	for	ODBC	depend	on	the	ODBC	driver	being	used.
The	provider	may	not	support	all	these	capabilities	with	some	ODBC	drivers.

Although	Microsoft	supports	only	distributed	queries	that	reference	the
providers	tested	by	Microsoft,	distributed	queries	should	work	with	any	OLE	DB
provider	that	meets	the	requirements	documented	in	the	OLE	DB	Provider
Reference	for	Distributed	Queries.

If	a	provider	does	not	support	being	used	in	a	four-part	name,	it	can	be
referenced	in	an	OPENQUERY	or	OPENROWSET	function	using	a	pass-
through	query.

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	SQL	Server
The	Microsoft	OLE	DB	Provider	for	SQL	Server	provides	an	OLE	DB	interface
to	Microsoft®	SQL	Server™	2000	databases.	Using	the	OLE	DB	Provider	for
SQL	Server,	SQL	Server	distributed	queries	can	query	data	in	remote	instances
of	SQL	Server.

To	create	a	linked	server	to	access	a	SQL	Server	database

1.	 Execute	sp_addlinkedserver	to	create	the	linked	server,	specifying
SQLOLEDB	as	provider_name,	and	the	network	name	of	the	server
running	the	remote	instance	of	SQL	Server	as	data_source.

For	example,	to	create	a	linked	server	named	LinkSQLSrvr	that
operates	against	the	instance	of	SQL	Server	running	on	the	server
whose	network	name	is	NetSQLSrvr,	execute:

sp_addlinkedserver	N'LinkSQLSrvr',	'	',	N'SQLOLEDB',	N'NetSQLSrvr'

2.	 Map	each	local	SQL	Server	login	that	needs	access	to	the	linked	server
to	a	SQL	Server	Authentication	login	on	the	linked	server.

This	example	maps	access	for	the	local	login	Joe	to	the	SQL
Server	Authentication	login	Visitor	on	the	linked	server	named
LinkedSQLSrvr.

sp_addlinkedsrvlogin	N'LinkSQLSrvr',	false,	N'Joe',	N'Visitor',	N'VisitorPwd'

When	distributed	queries	are	executed	against	a	server	running	SQL	Server
version	7.0	or	earlier,	the	catalog	stored	procedures	on	the	earlier	version	must
be	upgraded	to	ensure	the	proper	operation	of	the	distributed	queries.	For
example,	if	a	server	is	running	an	instance	of	SQL	Server	7.0,	the	catalog	stored
procedures	on	the	server	must	be	upgraded	to	SQL	Server	2000	before	it	can	be
referenced	in	a	distributed	query	from	a	server	running	an	instance	of	SQL
Server	2000.	For	more	information,	see	Upgrading	the	Catalog	Stored
Procedures	(OLE	DB).

When	a	remote	SQL	Server	table	is	updated,	the	local	server	or	client	will	not
receive	any	result	sets	or	messages	resulting	from	triggers	fired	for	that	update.

JavaScript:hhobj_1.Click()

When	using	four-part	names,	always	specify	the	schema	name.	Not	specifying	a
schema	name	in	a	distributed	query	prevents	OLE	DB	from	finding	tables.	When
referencing	local	tables,	SQL	Server	uses	defaults	if	an	owner	name	is	not
specified.	The	following	SELECT	statement	would	generate	a	7314	error,	even
if	the	linked	server	login	mapped	to	a	dbo	user	in	the	Northwind	database	on
the	linked	server:

sp_addlinkedserver	@server	=	N'LinkServer',
				@srvproduct	=	N'	',
				@provider	=	N'SQLOLEDB',	
				@datasrc	=	N'ServerNetName',	
				@catalog	=	N'Northwind'
GO
SELECT	*
FROM	LinkServer.Northwind..Shippers

This	example	defines	both	a	linked	server	and	a	remote	server	that	both	access
the	same	computer	whose	network	name	is	othersite.	The	linked	server
definition	uses	the	same	name	as	the	network	name	of	the	remote	server;	the
remote	server	definition	uses	another	name.

/*	Create	a	linked	server	definition	to	othersite.	*/
EXEC	sp_addlinkedserver	'othersite',	N'SQL	Server'

/*	Create	a	remote	server	definition	using	a
			fictitious	name.	*/
EXEC	sp_addserver	'RPCothersite'

/*	Set	the	fictitious	nameto	the	network	name	faraway.	*/
EXEC	sp_setnetname	'RPCothersite',	'othersite'

These	names	can	be	referenced	in	distributed	queries	or	remote	procedure	calls.

/*	A	distributed	query	referencing	othersite.	*/
SELECT	*
FROM	othersite.Northwind.dbo.Employees

/*	A	remote	procedure	call	to	the	same	server.	*/
EXEC	RPCothersite.master.dbo.sp_who
/*	Distributed	queries	can	be	used	to	execute
			stored	procedures	on	the	other	server.	*/
EXEC	othersite.master.dbo.sp_who

There	are	differences	in	the	login	mapping	mechanism	between	stored
procedures	executed	through	linked	server	and	stored	procedures	executed
through	remote	servers.

Transaction	Considerations	With	Linked	SQL	Servers
The	Microsoft	OLE	DB	Provider	for	SQL	Server	does	not	support	nested
transactions.	Therefore,	XACT_ABORT	should	be	set	to	ON	for	data
modification	operations	inside	implicit	or	explicit	transactions	and	for	data
modification	operations	against	distributed	partitioned	views.

Loopback	connections	to	the	same	instance	of	SQL	Server	are	not	supported
when	inside	an	implicit	or	explicit	transaction	or	distributed	partitioned	view.

See	Also

Distributed	Queries	and	Distributed	Transactions

Accessing	and	Changing	Relational	Data

Linked	Server	Considerations	in	a	Clustered	SQL
Server
When	linked	servers	are	configured	in	a	clustered	SQL	Server	against	OLE	DB
providers	not	shipped	with	Microsoft®	SQL	Server™	2000,	make	sure	that	the
OLE	DB	providers	are	installed	in	all	nodes	of	the	cluster.	In	addition,	any
properties	that	define	the	linked	server	should	be	location	transparent;	they
should	not	contain	information	that	assumes	SQL	Server	is	always	running	on	a
given	node	of	the	cluster.

This	example	defines	a	linked	server	against	a	server	running	SQL	Server	and
references	one	of	the	remote	tables	using	a	four-part	name	in	a	SELECT
statement.

sp_addlinkedserver	@server	=	N'LinkServer',
				@srvproduct	=	N'	',
				@provider	=	N'SQLOLEDB',	
				@datasrc	=	N'ServerNetName',	
				@catalog	=	N'Northwind'
GO
SELECT	*
FROM	LinkServer.Northwind.dbo.Shippers
GO

Loopback	Linked	Servers
Linked	servers	can	be	defined	to	point	back	(loop	back)	to	the	server	on	which
they	are	defined.	Loopback	servers	are	most	useful	when	testing	an	application
that	uses	distributed	queries	on	a	single	server	network.

For	example,	executing	the	sp_addlinkedserver	stored	procedure	on	a	server
named	MyServer	defines	a	loopback	linked	server:

sp_addlinkedserver	@server	=	N'MyLink',
				@srvproduct	=	N'	',

				@provider	=	N'SQLOLEDB',	
				@datasrc	=	N'MyServer',	
				@catalog	=	N'Northwind'
GO

Transact-SQL	statements	that	use	MyLink	as	the	server	name	loop	through	the
SQLOLEDB	provider	and	back	to	the	local	server.

Loopback	linked	servers	cannot	be	used	in	a	distributed	transaction.	Attempting
a	distributed	query	against	a	loopback	linked	server	from	within	a	distributed
transaction	causes	an	error:

Msg:	3910	Level:	16	State:	1
[Microsoft][ODBC	SQL	Server	Driver][SQL	Server]Transaction	context	in	use	by	another	session.

Accessing	and	Changing	Relational	Data

Distributed	Queries	on	Multiple	Instances	
of	SQL	Server
Specifying	an	instance	of	Microsoft®	SQL	Server™	2000	on	a	server	running
multiple	instances	of	SQL	Server	requires	no	syntax	changes	to	the	Transact-
SQL	elements	used	in	distributed	queries.	Instances	can	be	specified	in
distributed	queries	using	one	of	these	methods:

Specify	a	server	name	using	the	syntax	'server_name/instance_name'	in
the	@datasrc	parameter	of	sp_addlinkedserver.

Specify	Server=server_name;	INSTANCENAME=instance_name	in	a
connection	string.

If	an	instance	is	not	specified,	the	distributed	query	connects	to	the	default
instance	of	SQL	Server	2000	on	the	specified	server.

Examples	of	specifying	a	specific	instance	named	Payroll	on	a	server	named
London	are:

--	Define	a	linked	server	on	an	instance	of	SQL	Server	using	@datasrc.
sp_addlinkedserver
				@server	=	'LondonPayroll1',
				@provider	=	'SQLOLEDB',
				@datasource	=	'London/Payroll'

--	Define	a	linked	server	on	an	instance	of	SQL	Server	using
--	INSTANCENAME	in	a	provider	string.
sp_addlinkedserver
				@server	=	'LondonPayroll2',
				@provider	=	'SQLOLEDB',
				@provstr	=	'Server=London;INSTANCENAME=Payroll'

--	Specify	an	instance	of	SQL	Server	in	OPENDATASOURCE

--	using	Data	Source.
SELECT	*
FROM	OPENDATASOURCE(
										'SQLOLEDB',
										'Data	Source=London/Payroll;User	ID=MyUID;Password=MyPass'
).Northwind.dbo.Categories

--	Specify	an	instance	of	SQL	Server	in	OPENROWSET
--	using	a	provider	string.
SELECT	a.*
FROM	OPENROWSET(
										'SQLOLEDB',
										'Data	Source=London;INSTANCENAME=Payroll;
											User	ID=MyUID;Password=MyPass',
											Northwind.dbo.Categories
)	AS	a

--	Specify	an	instance	of	SQL	Server	in	OPENROWSET
--	using	a	the	datasource	parameter.
SELECT	a.*
FROM	OPENROWSET(
										'SQLOLEDB','London/Payroll','MyUID','MyPass',
										'SELECT	*	FROM	Northwind.dbo.Categories'
)	AS	a

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	ODBC
The	OLE	DB	Provider	for	ODBC	provides	an	OLE	DB	interface	to	ODBC	data
sources.	Using	the	OLE	DB	Provider	for	ODBC,	Microsoft®	SQL	Server™
distributed	queries	can	access	all	ODBC	data.

Note		For	SQL	Server	2000	data	sources,	use	the	OLE	DB	Provider	for	SQL
Server.	Do	not	use	the	OLE	DB	Provider	for	ODBC.

To	create	a	linked	server	to	access	an	ODBC	database	when	using	an	ODBC
data	source:

1.	 Create	a	System	data	source	on	the	computer	on	which	SQL	Server	is
installed.	

2.	 Execute	sp_addlinkedserver	to	create	the	linked	server,	specifying
MSDASQL	or	NULL	as	provider_name,	and	the	name	of	an	ODBC
system	data	source	as	data_source.

ODBC	user	data	sources	cannot	be	used	for	distributed	queries
because	SQL	Server	runs	as	a	service	on	Microsoft	Windows	NT®,
and	services	do	not	always	have	access	to	user	data	sources.	For
example,	a	system	data	source	with	a	name	of	SystemDSN	references
a	server	that	is	running	SQL	Server	and	that	has	pubs	as	the	default
database:

sp_addlinkedserver	'SQLPubs',	'	',	'MSDASQL',	'SystemDSN'

Linked	servers	can	use	the	OLE	DB	Provider	for	ODBC	without	using	an
ODBC	data	source.	The	linked	server	is	defined	in	one	step.	All	the	information
the	OLE	DB	Provider	for	ODBC	needs	to	locate	an	ODBC	driver	and	connect	to
a	source	of	ODBC	data	must	be	defined	in	provider_string.

This	example	creates	a	linked	server	named	SQLPubs	on	the	pubs	database	of
the	SQL	Server	named	SalesSvr	through	ODBC	by	specifying	provider_string.

sp_addlinkedserver	'SQLPubs',	'	',	'MSDASQL',	NULL,	NULL,
'Driver={SQL	Server};Database=pubs;Server=SalesSvr;UID=sa;PWD=;'

These	restrictions	exist	if	a	linked	server	is	defined	using	the	OLE	DB	Provider
for	ODBC	and	accesses	a	SQL	Server	database:

Tables	cannot	be	referenced	if	they	have	one	or	more	timestamp
columns.

Tables	cannot	be	referenced	if	they	have	nullable	char,	varchar,	nchar,
nvarchar,	binary,	or	varbinary	columns	and	the	ANSI_PADDING
option	was	set	OFF	when	the	table	was	created.

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	Jet
The	Microsoft®	OLE	DB	Provider	for	Jet	provides	an	OLE	DB	interface	to
Microsoft	Access	databases,	and	allows	Microsoft	SQL	Server™	2000
distributed	queries	to	query	Access	databases.

To	create	a	linked	server	to	access	an	Access	database

1.	 Execute	sp_addlinkedserver	to	create	the	linked	server,	specifying
Microsoft.Jet.OLEDB.4.0	as	provider_name,	and	the	full	path	name	of
the	Access	.mdb	database	file	as	data_source.	The	.mdb	database	file
must	reside	on	the	server.	data_source	is	evaluated	on	the	server,	not
the	client,	and	the	path	must	be	valid	on	the	server.

For	example,	to	create	a	linked	server	named	Nwind	that	operates
against	the	Access	database	named	Nwind.mdb	in	the	C:\Mydata
directory,	execute:

sp_addlinkedserver	'Nwind',	'Access	97',	'Microsoft.Jet.OLEDB.4.0',	
				'c:\mydata\Nwind.mdb'

2.	 To	access	an	unsecured	Access	database,	SQL	Server	logins
attempting	to	access	an	Access	database	should	have	a	login	mapping
defined	to	the	username	Admin	with	no	password.

This	example	enables	access	for	the	local	user	Joe	to	the	linked	server
named	Nwind.

sp_addlinkedsrvlogin	'Nwind',	false,	'Joe',	'Admin',	NULL

To	access	a	secured	Access	database,	configure	the	registry	(using	the
Registry	Editor)	to	use	the	correct	Workgroup	Information	file	used	by
Access.	Use	the	Registry	Editor	to	add	the	full	path	name	of	the
Workgroup	Information	file	used	by	Access	to	this	registry	entry:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Jet\4.0\Engines\SystemDB

After	the	registry	entry	is	configured,	use	sp_addlinkedsrvlogin	to
create	login	mappings	from	local	logins	to	Access	logins:

sp_addlinkedsrvlogin	'Nwind',	false,	'Joe',
																								'AccessUser',	'AccessPwd'

Access	databases	do	not	have	catalog	and	schema	names.	Therefore,	tables	in	an
Access-based	linked	server	can	be	referenced	in	distributed	queries	using	a	four-
part	name	of	the	form	linked_server...table_name.

This	example	retrieves	all	rows	from	the	Employees	table	in	the	linked	server
named	Nwind.

SELECT	*	
FROM	Nwind...Employees

To	create	a	linked	server	against	an	Excel	spreadsheet:

The	Microsoft	OLE	DB	Provider	for	Jet	4.0	can	be	used	to	access	Microsoft
Excel	spreadsheets.

To	create	a	linked	server	that	accesses	an	Excel	spreadsheet,	use	the
format	of	this	example.
sp_addlinkedserver	N'Excel',	N'Jet	4.0',
																			N'Microsoft.Jet.OLEDB.4.0',
																			N'c:\data\MySheet.xls',	NULL,	N'Excel	5.0'
GO
sp_addlinkedsrvlogin	N'Excel',	false,	sa,	N'ADMIN',	NULL
GO

To	access	data	from	an	Excel	spreadsheet,	associate	a	range	of	cells
with	a	name.	A	named	range	can	be	accessed	by	using	the	name	of	the
range	as	the	table	name.	The	following	query	can	be	used	to	access	a
named	range	called	SalesData	using	the	linked	server	set	up	in	the
previous	example.
SELECT	*
FROM	EXCEL...SalesData
GO

When	you	insert	a	row	into	a	named	range	of	cells,	the	row	will	be

added	after	the	last	row	that	is	part	of	the	named	range	of	cells.	Thus,	if
you	want	to	insert	row	rA	after	the	column	heading,	associate	the
column	heading	cells	with	a	name	and	use	that	name	as	the	table	name.
The	range	of	cells	will	grow	automatically	as	rows	are	inserted.

To	set	up	a	linked	server	against	a	formatted	text	file:

Microsoft	OLE	DB	Provider	for	Jet	can	be	used	to	access	and	query	text	files.

To	create	a	linked	server	for	accessing	text	files	directly	without	linking
the	files	as	tables	in	an	Access	.mdb	file,	execute	sp_addlinkedserver,
as	in	this	example.

The	provider	is	Microsoft.Jet.OLEDB.4.0	and	the	provider	string	is
'Text'.	The	data	source	is	the	full	path	name	of	the	directory	that
contains	the	text	files.	A	schema.ini	file,	which	describes	the	structure
of	the	text	files,	must	exist	in	the	same	directory	as	the	text	files.	For
more	information	about	creating	a	schema.ini	file,	see	the	Jet	Database
Engine	documentation.

--Create	a	linked	server.
EXEC	sp_addlinkedserver	txtsrv,	'Jet	4.0',	
				'Microsoft.Jet.OLEDB.4.0',
				'c:\data\distqry',
				NULL,
				'Text'
GO

--Set	up	login	mappings.
EXEC	sp_addlinkedsrvlogin	txtsrv,	FALSE,	NULL,	Admin,	NULL
GO

--List	the	tables	in	the	linked	server.
EXEC	sp_tables_ex	txtsrv
GO

--Query	one	of	the	tables:	file1#txt

--using	a	4-part	name.	
SELECT	*	
FROM	txtsrv...[file1#txt]

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	DTS	Packages
The	Microsoft	OLE	DB	Provider	for	DTS	Packages	is	a	read-only	provider	that
exposes	Data	Transformation	Services	Package	Data	Source	Objects.	The
provider	can	be	used	to	expose	the	rowset	from	a	package	using	either
OPENROWSET	or	referencing	the	package	using	a	four-part	name	in	a
Transact-SQL	statement.	OPENQUERY	can	also	be	used	to	send	a	command	to
the	provider	using	its	command	language.	For	more	information	about	using	the
Microsoft	OLE	DB	Provider	for	DTS	Packages,	see	DTS	Driver	Support	for
Heterogeneous	Data	Types.

To	define	a	linked	server	to	access	a	DTS	package	data	source	object	after
the	data	source	object	has	been	defined	in	DTS

Execute	sp_addlinkedserver	to	create	the	linked	server,	specifying
DTSPackageDSO	as	provider_name,	the	package	name	as
product_name,	and	switches	for	the	dtsrun	command	prompt	utility	as
data_source.

For	example,	to	create	a	linked	server	named	MyDTSPackage	that
accesses	a	DTS	package	saved	to	the	file	C:\Dts\DTSFilePackage.dts,
execute:

sp_addlinkedserver	MyDTSPackage,	'PackageName',	'DTSPackageDSO',	'/FC:\Dts\DTSFilePackage.dts'

Then,	the	rowset	exposed	by	this	DTS	package	can	be	referenced	using
either	the	name	of	the	DTS	package	or	the	name	of	a	step	in	the	DTS
package:

SELECT	*	FROM	MyDTSPackage...DTSStep1

The	package	name	or	step	name	are	defined	in	DTS.

In	addition,	DTS	packages	can	be	referenced	using	the	OPENROWSET
function.	For	more	information,	see	Querying	a	DTS	Package	from	External
Sources.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	Oracle
The	Microsoft	OLE	DB	Provider	for	Oracle	allows	distributed	queries	to	query
data	in	Oracle	databases.

Note		Oracle	client	software	does	not	support	distributed	queries	using	Microsoft
OLE	DB	Provider	for	Oracle	when	the	distributed	transactions	are	executed
from	an	instance	of	SQL	Server	installed	on	Microsoft	Windows®	98.

To	create	a	linked	server	to	access	an	Oracle	database	instance

1.	 Ensure	the	Oracle	client	software	on	the	server	running	SQL	Server	is
at	the	level	required	by	the	provider.	The	Microsoft	OLE	DB	Provider
for	Oracle	requires	Oracle	Client	Software	Support	File	version
7.3.3.4.0	or	later,	and	SQL*Net	version	2.3.3.0.4.

2.	 Create	an	SQL*Net	alias	name	on	the	server	running	SQL	Server	that
points	to	an	Oracle	database	instance.	For	more	information,	see	the
Oracle	documentation.

3.	 Execute	sp_addlinkedserver	to	create	the	linked	server,	specifying
MSDAORA	as	provider_name,	and	the	SQL*Net	alias	name	for	the
Oracle	database	instance	as	data_	source.

This	example	assumes	that	an	SQL*Net	alias	name	has	been	defined
as	OracleDB.

sp_addlinkedserver	'OrclDB',	'Oracle',	'MSDAORA',	'OracleDB'

4.	 Use	sp_addlinkedsrvlogin	to	create	login	mappings	from	SQL	Server
logins	to	Oracle	logins.

This	example	maps	the	SQL	Server	login	Joe	to	the	linked	server
defined	in	Step	3	using	the	Oracle	login	and	password	OrclUsr	and
OrclPwd:

sp_addlinkedsrvlogin	'OrclDB',	false,	'Joe',	'OrclUsr',	'OrclPwd'

Each	Oracle	database	instance	has	only	one	catalog	with	an	empty	name.	Tables
in	an	Oracle	linked	server	must	be	referenced	using	a	four-part	name	of	the	form
OracleLinkedServerName..OwnerUserName.TableName.	For	example,	this
SELECT	statement	references	the	table	SALES	owned	by	the	Oracle	user
MARY	in	the	server	mapped	by	the	OrclDB	linked	server:

SELECT	*
FROM	OrclDB..MARY.SALES

Use	these	rules	when	referencing	tables	in	an	Oracle	linked	server:

If	the	table	and	column	names	were	created	in	Oracle	without	quoted
identifiers,	use	all	uppercase	names.

If	the	table	and	column	names	were	created	in	Oracle	with	quoted
identifiers,	use	the	same	case	for	all	letters	of	the	names	as	was	used
when	the	names	were	created	in	Oracle.

INSERT	statements	should	supply	values	for	all	columns	in	a	table	even
if	certain	columns	in	the	table	can	be	NULL	or	have	default	values.

Registry	Entries

To	enable	the	OLE	DB	Provider	for	Oracle	to	work	with	your	Oracle	client
software,	the	client's	registry	must	be	modified	by	running	a	registry	file	from	a
command	line.	Multiple	instances	of	the	client	software	should	not	run
concurrently.	These	files	are	listed	in	the	following	table	and	are	located	within
the	same	directory	structure	that	contains	your	Microsoft	Data	Access
Component	(MDAC)	installation,	which	typically	is	in	C:\Program
Files\Common	Files\System	Files\OLE	DB.

Oracle	client Windows	NT	or	9x Windows	2000
7.x mtxoci7x_winnt.reg mtxoci7x_win2k.reg
8.0 mtxoci80x_winnt.reg mtxoci80x_win2k.reg
8.1 mtxoci81x_winnt.reg mtxoci81x_win2k.reg

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	Microsoft	Directory	Services
The	Microsoft	OLE	DB	Provider	for	Microsoft	Directory	Services	provides
access	to	information	in	the	Microsoft®	Windows®	2000	Directory	Service.
This	OLE	DB	Provider	supports	two	command	dialects,	LDAP	and	SQL,	to
access	the	directory	service	and	return	results	in	a	tabular	form	that	can	be
queried	using	SQL	Server	distributed	queries.

To	create	a	linked	server	against	Windows	2000	Directory	Service

Create	a	linked	server	using	ADSDSOObject	as	the	provider_name	and
adsdatasource	as	the	data_source	argument	of	the	sp_addlinkedserver
system	stored	procedure.
EXEC	sp_addlinkedserver	'ADSI',	'Active	Directory	Services	2.5',	
'ADSDSOObject',	'adsdatasource'
GO

For	Windows	authenticated	logins,	the	self-mapping	is	sufficient	to	access	the
directory	using	SQL	Server	Security	Delegation.	Because	the	self-mapping	is
created	by	default	for	linked	servers	created	through	sp_addlinkedserver,	no
other	login	mapping	is	necessary.

For	SQL	Server	authenticated	logins,	suitable	login/passwords	can	be	configured
for	connecting	to	the	directory	service	using	the	sp_addlinkedsrvlogin	system
stored	procedure.

Querying	the	Directory	Service
The	Microsoft	OLE	DB	Provider	for	Microsoft	Directory	Services	supports	two
command	dialects,	LDAP	and	SQL,	to	query	the	Directory	Service.	The
OPENQUERY	function	can	be	used	to	send	a	command	to	the	Directory	Service
and	consume	its	results	in	a	SELECT	statement.

The	following	example	shows	creating	a	view	that	uses	OPENQUERY	to	return
information	from	the	directory	at	the	server	ADSISrv	whose	domain	address	is
sales.northwind.com.	The	command	inside	the	OPENQUERY	function	is	an
SQL	query	against	the	directory	to	return	the	Name,	SN,	and	ST	attributes	of

objects	belonging	to	Class	Contact	at	a	specified	hierarchical	location
(OU=Sales)	in	the	directory.	The	view	then	can	be	used	in	any	SQL	Server
queries.

CREATE	VIEW	viewADContacts	
AS
SELECT	[Name],	SN	[Last	Name],	ST	State
FROM	OPENQUERY(ADSI,	
			'SELECT	Name,	SN,	ST
			FROM	''LDAP://ADSISrv/	OU=Sales,DC=sales,DC=northwind,DC=com''
			WHERE	objectCategory	=	''Person''	AND
						objectClass	=	''contact''')
GO
SELECT	*	FROM	viewADContacts

For	more	information	about	the	LDAP	and	SQL	dialects,	see	Microsoft	Active
Directory	Services	documentation.

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	Microsoft	Indexing	Service
Microsoft®	Windows	2000	includes	Microsoft	Internet	Information	Services
(IIS)	and	Microsoft	Indexing	Service	version	3.0.	These	services	enable	filtering
files	based	on	their	properties	and	performing	full-text	indexing	and	retrieval	of
file	data.	(For	Microsoft	Windows	NT®	4.0	systems,	the	Windows	NT	4.0
Option	Pack	includes	IIS	4.0	and	Microsoft	Indexing	Service	2.0.)

Indexing	Service	also	includes	the	Microsoft	OLE	DB	Provider	for	Microsoft
Indexing	Service.	This	provider	can	be	used	to	perform	full-text	or	property
value	searches	on	nondatabase	files.	A	linked	server	definition	can	be	made
using	sp_addlinkedserver,	and	security	can	be	set	up	using	SQL	Server
Enterprise	Manager.	Distributed	queries	can	then	reference	the	provider	to
retrieve	indexing	information.

To	create	a	linked	server	to	access	an	Indexing	Service	full-text	index

1.	 Create	the	full-text	index	using	Indexing	Service.	By	default,	Indexing
Service	installs	a	catalog	named	default.	For	more	information,	see	the
Indexing	Service	documentation.

2.	 Execute	sp_addlinkedserver	to	create	the	linked	server,	specifying
MSIDXS	as	provider_name,	and	the	name	of	the	full-text	index	as
data_source.

For	example,	to	create	a	linked	server	named	FTIndexWeb	that
accesses	a	full-text	index	named	Web,	execute:

sp_addlinkedserver	FTIndexWeb,	'Index	Server',	'MSIDXS',	'Web'

3.	 The	security	authorization	of	Indexing	Service	clients	is	based	on	the
Windows	account	of	the	process	consuming	the	OLE	DB	Provider	for
Microsoft	Index	Service.	Distributed	queries	are	run	in	the	context	of
the	Microsoft	SQL	Server™	2000	process.	Because	SQL	Server
typically	runs	under	an	account	that	has	a	high	level	of	authorization,
some	SQL	Server	users	use	an	Indexing	Service	linked	server	to	access
information	that	they	are	not	authorized	to	access.	Members	of	the

sysadmin	fixed	server	role	address	this	problem	by	strictly	controlling
the	SQL	Server	logins	that	are	authorized	to	perform	distributed
queries	using	an	Indexing	Service	linked	server.

The	administrator	first	uses	sp_droplinkedsrvlogin	to	remove	all
login	mappings	to	the	Indexing	Service	linked	server,	for	example:

sp_droplinkedsrvlogin	FTIndexWeb,	NULL

The	administrator	then	uses	sp_addlinkedsrvlogin	to	authorize
individual	logins	to	access	the	linked	server,	for	example:

sp_addlinkedsrvlogin	FTIndexWeb,	true,	'SomeLogin'

To	perform	these	actions,	right-click	the	linked	server	in	SQL	Server
Enterprise	Manager,	click	Properties,	and	then	select	the	Security	tab.

In	addition,	ad	hoc	access	to	the	OLE	DB	Provider	for	Microsoft
Indexing	Service	using	OPENQUERY	can	be	disabled	by	setting	the
provider	option	DisallowAdhocAccess.	For	more	information,	see
Configuring	OLE	DB	Providers	for	Distributed	Queries.

Transact-SQL	statements	can	use	the	OPENQUERY	function	to	send	commands
to	Indexing	Service	using	an	SQL	syntax	that	is	consistent	with	the	full-text
query	syntax	supported	in	SQL	Server	for	full-text	searches	of	data	stored	in	the
database.	The	SQL	full-text	syntax	supported	by	Indexing	Service	is	defined	in
the	Index	Server	Programmer's	Guide	found	either	on	the	Microsoft
Development	Network	or	in	the	Indexing	Service	documentation	in	the	Windows
NT	4.0	Option	Pack.	For	more	information	about	using	the	OLE	DB	Provider	for
Microsoft	Indexing	Service	in	Transact-SQL	statements,	see	Full-text	Querying
of	File	Data.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	DB2
The	Microsoft	OLE	DB	Provider	for	DB2,	distributed	with	Microsoft®	Host
Integration	Server	2000,	allows	Microsoft	SQL	Server™	2000	distributed
queries	to	query	data	in	DB2	databases.

To	create	a	linked	server	to	access	a	DB2	database

1.	 Install	the	Windows	NT	Client	for	Host	Integration	Server	2000	or	the
Windows	9x	Client	for	Host	Integration	Server	2000	on	a	computer
running	an	instance	of	SQL	Server.	Select	the	options	to	install	the
OLE	DB	Provider	for	DB2	and	the	network	components	needed	to
communicate	with	an	IBM	computer	running	in	an	SNA	network.

2.	 Determine	the	connection	string	the	OLE	DB	Provider	for	DB2	needs
to	access	the	DB2	data	source	you	want	to	query.	The	best	way	to
determine	a	connection	string	is	to	build	a	Data	Link	file	using	the
Host	Integration	Server	New	OLE	DB	Data	Source	application.	For
more	information,	see	the	Microsoft	Host	Integration	Server	2000
documentation.

3.	 Execute	sp_addlinkedserver	to	create	a	linked	server,	specifying
DB2OLEDB	as	the	provider_name,	the	name	of	the	DB2	catalog
containing	the	data	you	want	to	access	as	catalog,	and	the	connection
string	from	Step	2	as	provider_string.

This	example	shows	how	to	use	sp_addlinkedserver	to	create	a	linked
server	definition	accessing	a	DB2	database:

EXEC	sp_addlinkedserver	@server	=	'DB2SRV',
			@srvproduct	=	'Microsoft	OLE	DB	Provider	for	DB2',
			@catalog	=	'SEATTLE',
			@provider	=	'DB2OLEDB',
			@provstr	=
					'NetLib=SNA;NetAddr=;NetPort=;RemoteLU=SEATTLE;LocalLU=LOCAL;
						ModeName=QPCSUPP;InitCat=SEATTLE;

						Default	Schema=WNW3XX;PkgCol=WNW3XX;TPName=;Commit=YES;
						IsoLvl=NC;AccMode=;CCSID=37;PCCodePage=1252;BinAsChar=NO;
						Data	Source=Seattle_WNW3XX'

4.	 Execute	sp_addlinkedsrvlogin	to	create	login	mappings	from	SQL
Server	2000	logins	to	DB2	logins.

This	example	maps	the	SQL	Server	2000	login	SQLJoe	to	DB2	login
DB2Joe:

EXEC	sp_addlinkedsrvlogin	'DB2SRV',	false,	'SQLJoe',	'DB2Joe',	'JoePwd'

After	completing	these	steps,	you	can	use	the	linked	server	name	DB2SRV	as	the
server	name	in	four	part	names	and	as	linked_server	in	the	OPENQUERY
function.	For	example:

SELECT	*
FROM	DB2SRV.SEATTLE.WNW3XX.DEPARTMENT

Or

SELECT	*
FROM	OPENQUERY(DB2SRV,	'SELECT	*	FROM	SEATTLE.WNW3XX.EMP_ACT')

When	the	distributed	queries	against	DB2	data	sources	involve	NULL
comparisons,	use	IS	NULL	or	IS	NOT	NULL	rather	than	comparison	operators,
such	as	=,	<,	or	>.	In	addition,	INSERT	statements	should	supply	values	for	all
columns	in	a	table	even	if	certain	columns	in	the	table	can	be	NULL	or	have
default	values.

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	for	Exchange
The	Microsoft®	OLE	DB	Provider	for	Exchange	exposes	data	stored	in	a
Microsoft	Exchange	2000	Web	Store	in	tabular	form.	This	data	can	be	queried
using	an	SQL-like	language	that	is	very	similar	to	the	SQL	subset	supported	by
the	OLE	DB	Provider	for	Microsoft	Indexing	Service.

Microsoft	SQL	Server™	2000	distributed	queries	can	be	used	to	query	data	from
the	Exchange	Web	Store	through	this	OLE	DB	Provider	and	can	be	joined	with
tables	in	SQL	Server.	The	Exchange	Web	Store	should	be	located	in	the	same
computer	as	SQL	Server.	Web	Stores	located	in	other	computers	cannot	be
accessed	using	the	OLE	DB	Provider	for	Exchange.

The	OLE	DB	Provider	for	Exchange	is	available	as	part	of	Microsoft	Exchange
2000.

To	create	a	linked	server	against	an	Exchange	Web	Store

Use	'exoledb.datasource.1'	as	the	provider_name	argument,	and	the
URL	corresponding	to	the	root	folder	of	the	Web	Store	as	the
data_source	argument	of	the	sp_addlinkedserver	system	stored
procedure.
EXEC	sp_addlinkedserver	'exchange',	
'Exchange	OLE	DB	provider',	
'exoledb.DataSource.1',
'file:\\.\backofficestorage\localhost\public	folders'

For	Windows	NT	Authenticated	logins,	there	are	no	login	mappings
necessary.	They	are	impersonated	by	SQL	Server	when	it	connects	to
the	OLE	DB	Provider	for	Exchange.	For	SQL	Authenticated	logins,	set
up	login	mappings	by	supplying	the	user	name	and	password,	as
necessary.

The	following	restrictions	are	applicable	when	querying	data	from	the	OLE	DB
Provider	for	Exchange:

Only	pass-through	queries	are	supported.	Four-part	names	cannot	be
used	against	the	Exchange	OLE	DB	provider.

All	character	columns	from	the	OLE	DB	Provider	for	Exchange	are
exposed	to	SQL	Server	as	ntext	columns.	In	order	to	perform
comparisons	against	these	columns,	they	have	to	be	converted	explicitly
to	nvarchar	using	the	CONVERT	function.

Multi-valued	columns	from	the	Exchange	provider	with	OLE	DB
DBTYPE	DBTYPE_VECTOR	are	not	supported	from	SQL	Server
Distributed	Queries.

To	access	data	in	the	Exchange	Web	Store	from	SQL	Server,	through	a
linked	server	established	as	above

Create	views	that	retrieve	the	required	properties	as	columns	from	the
Web	Store	folder	of	interest.	The	view	definition	converts	string
columns	to	nvarchar	so	that	they	can	be	filtered	through	conditions	in
the	WHERE	clause.

For	example,	let	the	Web	Store	contain	a	folder	called	Contacts	that
contains	a	list	of	contacts.	The	following	script	creates	a	view	against
the	Contacts	folder	while	retrieving	the	Contact's	first	name,	last	name,
company	name,	and	date	of	birth.

CREATE	VIEW	Contacts
AS
SELECT	convert(nvarchar(30),"urn:schemas:contacts:sn")	LastName,
Convert(nvarchar(30),"urn:schemas:contacts:givenname")	
FirstName,
				Convert(nvarchar(30),	"urn:schemas:contacts:o")	Company,
				Convert(nvarchar(50),	"urn:schemas:contacts:email1")	Email,
				"urn:schemas:contacts:bday"	BirthDay
FROM	OpenQuery(Exchange,	
		'SELECT	"urn:schemas:contact:sn",	
											"urn:schema:contacts:givenname",	
										"urn:schemas:contacts:o",
								"urn:schemas:contacts:email1"

								"urn:schemas:contacts:bday"
			FROM	SCOPE(''.\contacts'')'

Now	the	views	can	be	queried	and	joined	with	local	SQL	Server	tables
like	regular	tables.	For	example,	the	Contacts	view	can	be	joined	with	a
local	Suppliers	table	to	determine	Contact	information	for	the	list	of
Supplier	companies.

SELECT	FirstName,	LastName,	Email,	Company
FROM				Suppliers	S,	Contacts	C
WHERE	S.Company	=	C.CompanyName

For	information	on	the	SQL	language	supported	by	the	Exchange	OLE	DB
provider	see	Microsoft	Exchange	2000	documentation.

Accessing	and	Changing	Relational	Data

OLE	DB	Provider	Reference	for	Distributed	Queries
The	behavior	of	distributed	queries	against	a	remote	table	depends	on	the
functionality	of	the	OLE	DB	provider	used	to	access	the	table.	The	OLE	DB
specification	defines	a	set	of	objects	for	OLE	DB	providers.	Each	object	has	a
set	of	interfaces.	Many	of	these	objects	and	interfaces	are	optional	and	may	not
be	supported	by	a	provider.	If	an	OLE	DB	provider	does	not	support	some	of
these	objects	and	interfaces,	distributed	query	functionality	that	depends	on	these
components	will	not	work	with	remote	tables	accessed	through	that	provider.

Accessing	and	Changing	Relational	Data

OLE	DB	Objects	Consumed	by	Distributed	Queries
The	following	table	shows	the	OLE	DB	objects	and	interfaces	consumed	by
Transact-SQL	distributed	queries.	An	OLE	DB	provider	must	support	at	least	a
minimal	set	of	objects	and	interfaces	before	it	can	be	used	in	any	Transact-SQL
distributed	queries.	These	objects	and	interfaces	are	marked	with	a	Yes	in	the
Required	column	of	the	table.	The	objects	and	interfaces	with	a	No	in	the
Required	column	are	needed	only	to	support	advanced	distributed	query
functionality.	If	the	interface	is	not	supported	by	the	provider,	related	Transact-
SQL	functionality	is	not	supported.	For	example,	if	the	IRowsetLocate	and
IRowsetChange	interfaces	are	not	supported,	UPDATE	or	DELETE	statements
do	not	function	on	remote	tables.

Object Interface Required Description
Data
Source

IDBInitialize Yes Initialize	and	set	up	data
and	security	context.

	 IDBCreateSession Yes Create	a	DB	Session	object.
	 IDBProperties Yes Get	information	about	the

capabilities	of	provider	and
set	initialization	properties.

	 IDBInfo No Get	information	about	the
SQL	syntax	supported	by
the	provider.

DB	Session IDBSchemaRowset No Get	table	and/or	column
meta	data.	Rowsets	needed
are	TABLES	and
COLUMNS.	Other	rowsets
used,	if	available,	are
TABLES_INFO,
CATALOGS,	INDEXES,
STATISTICS,
TABLE_STATISTICS,
VIEWS,
PRIMARY_KEYS,
TABLE_PRIVILEGES,	and

COLUMN_PRIVILEGES.
	 IopenRowset Yes Open	a	rowset	on	a	table,

index,	or	histogram.
	 IGetDataSource Yes Return	to	the	data	source

object	from	a	DB	Session
object.

	 IDBCreateCommand No Create	a	command	object
(query).

	 ITransactionLocal No Use	to	start	a	transaction	on
the	provider.

	 ITransactionJoin No Use	for	distributed
transaction	support.	If	this
interface	is	not	supported,
updates	against	a	remote
provider	are	not	allowed	in
a	user	transaction.

Rowset	(on
a	table)

Irowset Yes Scan	rows.

	 Iaccessor Yes Bind	to	columns	in	a
rowset.

	 IcolumnsInfo Yes Get	information	about
columns	in	a	rowset.

	 IrowsetInfo Yes Get	information	about
rowset	properties.

	 IRowsetLocate No Required	for	UPDATE	or
DELETE	operations	and
index-based	lookups.

	 IRowsetChange No Required	for	INSERT,
UPDATE,	or	DELETE
operations	on	a	table.
Rowsets	against	base	tables
should	support	this	interface
for	supporting	INSERT,
UPDATE,	or	DELETE
statements.

	 IconvertType Yes Verify	if	a	rowset	supports
specific	data	type
conversions	on	its	columns.

Rowset	(on
an	index)

Irowset Yes Scan	rows.

	 Iaccessor Yes Bind	to	columns	in	a
rowset.

	 IcolumnsInfo Yes Get	information	about
columns	in	a	rowset.

	 IrowsetInfo Yes Get	information	about
rowset	properties.

	 IrowsetIndex Yes Required	for	rowsets	on	an
index;	used	for	indexing
functionality	(set	range,
seek).

	 IconvertType Yes Verify	if	the	rowset	supports
specific	data	type
conversions	on	its	columns.

Command
(optional)

Icommand Yes Use	for	executing	queries.

	 ICommandText Yes Use	for	defining	the	query
text.

	 ICommandPropertiesYes Specify	required	properties
on	rowsets	returned	by	the
command.

	 ICommandWith
Parameters

No Use	for	parameterized	query
execution.

	 ICommandPrepare No Use	for	preparing	a
command	to	get	meta	data.

Error
(optional)

IerrorRecords Yes Get	a	pointer	to	an
IErrorInfo	interface	for	an
error	record.

	 IerrorInfo Yes Get	a	text	description	of	an
error	record.

Any ISupportErrorInfo No Determine	if	a	given

Object
(optional)

interface	supports	error
objects.

Accessing	and	Changing	Relational	Data

Four-Part	Name	Requirements	for	OLE	DB	Providers
Distributed	queries	can	use	four-part	names	only	if	the	OLE	DB	provider
supports:

The	IDBSchemaRowset	interface.

Restrictions	on	all	the	name	parts	that	it	supports	in	the
IDBSchemaRowset	interface.	Restrictions	are	a	mechanism	defined	in
OLE	DB	for	specifying	the	search	criteria	for	meta	data	queries	using
the	OLE	DB	schema	rowsets.

The	literals	DBLITERAL_CATALOG_SEPARATOR,
DBLITERAL_SCHEMA_SEPARATOR,	and	DBLITERAL_QUOTE	in
the	IDBInfo	interface.	Microsoft®	SQL	Server™	2000	uses	defaults,
which	may	not	work	with	providers	that	do	not	support	these	literals.

If	an	OLE	DB	provider	does	not	meet	these	requirements,	it	can	be	referenced
only	using	pass-through	queries	in	the	OPENDATASOURCE	or
OPENROWSET	function.

Accessing	and	Changing	Relational	Data

UPDATE	and	DELETE	Requirements	for	OLE	DB
Providers
Transact-SQL	UPDATE	and	DELETE	statements	can	reference	remote	tables
only	if	the	following	conditions	are	met	by	the	OLE	DB	provider	that	is	used	to
access	the	remote	table:

The	provider	must	support	bookmarks	on	the	rowset	opened	through
IOpenRowset	on	the	table	being	updated	or	deleted.

The	provider	must	support	the	IRowsetLocate	and	IRowsetChange
interfaces	on	the	rowset	opened	through	IOpenRowset	on	the	table
being	updated	or	deleted.

The	IRowsetChange	interface	must	support	update	(SetData)	and
delete	(DeleteRows)	methods.

The	Microsoft	OLE	DB	Provider	for	SQL	Server	supports	these	interfaces	only
on	a	table	that	has	a	unique	index.	Consequently,	UPDATE	or	DELETE
statements	are	permitted	against	a	remote	table	in	another	instance	of
Microsoft®	SQL	Server™	only	if	the	table	has	a	unique	index.

Accessing	and	Changing	Relational	Data

INSERT	Requirements	for	OLE	DB	Providers
Transact-SQL	INSERT	statements	can	reference	remote	tables	only	if	the
following	conditions	are	met	by	the	OLE	DB	provider	that	is	used	to	access	the
remote	table:

The	provider	must	support	the	IRowsetChange	interface	on	the	rowset
opened	through	IOpenRowset	on	the	table	having	data	inserted	into	it.

The	IRowsetChange	interface	on	the	base	table	being	inserted	into
must	support	the	insert	(InsertRow)	method.

Accessing	and	Changing	Relational	Data

Keyset-Driven	Cursors	Requirements	for	OLE	DB
Providers
Transact-SQL	keyset-driven	cursors	can	reference	remote	tables	only	if	the
following	conditions	are	met:

The	distributed	query	must	meet	the	requirements	for	SELECT
statements	used	in	a	DECLARE	CURSOR	statement	that	declares	the
keyset-driven	cursor.	For	more	information	about	the	Transact-SQL
conditions	for	keyset-driven	cursor	support,	see	DECLARE	CURSOR.

All	local	tables	in	the	query	must	have	a	unique	index.	The	index	of	the
remote	table	should	be	exposed	through	the	INDEXES	rowset	of	the
IDBSchemaRowset	interface.

Index	Requirements	on	OLE	DB	Providers

SQL	Server	can	use	indexes	on	tables	from	an	OLE	DB	provider	to	evaluate
certain	queries.	For	this,	the	provider	should	expose	OLE	DB	interfaces	that
allow	scanning	an	index	rowset	and	seek	into	the	base	table	rowset	using
bookmarks	obtained	from	the	index	rowset.

Using	the	OLE	DB	provider's	indexes	has	performance	benefits	only	when	the
index	and	table	rowsets	are	on	the	same	computer	as	the	instance	of	Microsoft®
SQL	Server™.	Thus,	the	Index	AS	Access	Path	option	should	be	set	only	if	the
data	source	is	on	the	same	computer	as	SQL	Server.

SQL	Server	can	use	an	OLE	DB	provider's	indexes	only	if	the	following
conditions	are	met:

The	provider	must	support	the	IDBSchemaRowset	interface	with	the
TABLES,	COLUMNS,	and	INDEXES	schema	rowsets.

The	provider	must	support	opening	a	rowset	on	an	index	through
IOpenRowset	by	specifying	the	index	name	and	the	corresponding
base	table	name.

JavaScript:hhobj_1.Click()

The	Index	object	must	support	all	its	mandatory	interfaces:	IRowset,
IRowsetIndex,	IAccessor,	IColumnsInfo,	IRowsetInfo,	and
IConvertTypes.

Rowsets	opened	against	the	indexed	base	table	(through	IOpenRowset)
must	support	the	IRowsetLocate	interface	for	positioning	on	a	row
based	off	a	bookmark.

If	the	OLE	DB	provider	meets	these	requirements,	the	SQL	Server	administrator
can	set	the	Index	As	Access	Path	provider	option	to	enable	SQL	Server	to	use
the	provider's	indexes	to	evaluate	the	queries.	By	default,	SQL	Server	does	not
attempt	to	use	the	provider's	indexes	unless	this	option	is	set.

Updatable	Keyset	Cursor	Requirements
A	remote	table	can	be	updated	or	deleted	through	a	keyset	cursor	defined	on	a
distributed	query.	For	example:

UPDATE	|	DELETE	remote_table	WHERE	CURRENT	OF	cursor_name.	

Here	are	the	conditions	under	which	updatable	cursors	against	distributed
queries	are	allowed:

The	provider	should	meet	the	conditions	for	updates	and	deletes	on	the
remote	table.	For	more	information,	see	UPDATE	and	DELETE
Requirements	for	OLE	DB	Providers.

All	the	cursor	operations	must	be	in	an	explicit	user	transaction	(or
multi-statement	transaction)	with	read-repeatable	isolation	level	or
serializable	isolation	level.

The	provider	must	support	distributed	transactions	with	the	ITransactionJoin
interface.

Accessing	and	Changing	Relational	Data

Distribution	Statistics	Requirements	for	OLE	DB
Providers
Microsoft®	SQL	Server™	2000	defines	extensions	to	the	OLE	DB	specification
that	allow	OLE	DB	providers	to	report	statistics	on	numbers	of	rows	and	ranges
of	key	values	in	the	data	they	provide.	SQL	Server	can	use	this	information	to
increase	the	performance	of	distributed	queries.

SQL	is	a	nonprocedural	language.	SQL	statements	do	not	specify	the	steps
needed	to	accomplish	the	result	you	want.	The	statements	define	the	format	of
the	result	set	and	the	conditions	rows	in	base	tables	must	meet	to	be	used	in
building	the	result	set.	The	database	engine	must	analyze	each	SQL	statement
and	determine	the	most	efficient	way	to	access	the	base	tables.	The	part	of	the
database	engine	that	performs	this	task	is	called	the	optimizer.

The	results	of	the	optimization	process	is	improved	if	the	optimizer	has	access	to
statistics	describing	the	distribution	of	the	values	in	base	table	columns
referenced	in	WHERE	clause	predicates.	The	distribution	statistics	used	by	the
optimizer	include:

The	number	of	rows	in	a	table,	also	called	the	cardinality	of	the	table.

The	number	of	distinct	values	stored	in	a	column,	also	called	the
cardinality	of	the	column.

Information	about	how	the	distinct	values	in	a	column	are	distributed
across	the	rows	of	the	table.

To	improve	the	optimization	of	distributed	queries,	SQL	Server	defines
extensions	to	the	OLE	DB	specification	that	OLE	DB	providers	can	use	to	report
distribution	statistics	on	the	rowsets,	or	tables,	they	expose.	While	these
extensions	are	defined	in	the	SQL	Server	documentation,	individual	OLE	DB
provider	developers	must	code	support	for	the	extensions	in	their	providers	if
they	want	to	make	the	information	available	to	SQL	Server.	If	a	provider	has
code	that	supports	the	extensions,	SQL	Server	can	use	the	extensions	to	optimize
the	performance	of	distributed	queries.	If	a	provider	does	not	support	the

extensions,	SQL	Server	uses	simple	estimates	of	the	distribution	statistics.

Note		The	Microsoft	OLE	DB	Provider	for	SQL	Server	and	the	Microsoft	OLE
DB	Provider	for	Oracle	support	distribution	statistics.

The	distribution	statistics	extensions	are	built	around	a	unit	called	a	statistic.
Each	table	can	have	zero	or	more	statistics,	and	each	statistic	reports	data	for	one
or	more	columns.	A	statistic	records:

The	cardinality	of	the	values,	or	the	number	of	unique	values,	in	each
individual	column	covered	by	the	statistic.

The	cardinality	of	the	concatenated	values	of	all	the	columns	covered
by	the	statistic.

Optionally,	a	histogram	reporting	information	about	different	ranges	of
key	values	in	the	first	column	covered	by	the	statistic.	The	values
reported	can	include	the	number	of	rows	in	each	key	range,	the	number
of	unique	values	in	each	key	range,	or	the	number	of	rows	in	the	table
whose	key	values	are	less	than	or	equal	to	the	highest	key	value	in	the
range.

Here	is	an	example	table.

ColumnA ColumnB
'abc' 'xyz'
'abc' 'xyz'
'def' 'xyz'
'mno' 'xyz'
'mno' 'mmm'
'tuv' 'xyz'

If	a	statistic	covers	ColumnA	and	ColumnB,	the	cardinality	of	the	combined
values	of	the	two	columns	is	5	because	the	first	two	rows	have	the	same	value
('abc'	+	'xyz')	for	the	combination	of	ColumnA	and	ColumnB.	The	cardinality
of	ColumnA	is	4	and	the	cardinality	of	ColumnB	is	2.	A	simple,	4-step

histogram	on	ColumnA	could	report.

Value	range Percentage	of	table	rows	in	the	range
'aaa'	to	'hzz' 50%
'iaa'	to	'nzz' 33%
'oaa'	to	'rzz' 00%
'taa'	to	'zzz' 17%

Different	OLE	DB	data	sources	record	distribution	statistics	on	different
combinations	of	columns,	and	the	set	of	statistics	reported	by	an	OLE	DB
provider	is	implementation	defined.	For	example,	SQL	Server	versions	6.5	or
earlier	build	distribution	statistics	only	for	columns	covered	by	indexes	and	have
one	statistic	for	each	index	defined	on	a	table.	SQL	Server	version	7.0	and	later
builds	these	statistics:

One	statistic	for	each	index	defined	on	a	table.

One	statistic	for	each	CREATE	STATISTIC	statement.

One	statistic	for	each	statistic	generated	automatically.	For	more
information,	see	Statistical	Information.

A	column	has	a	high	degree	of	selectivity	if	it	is	likely	to	return	a	small	number
of	rows	for	a	given	value	specified	in	a	predicate	argument.	The	distribution
statistics	can	be	used	to	estimate	the	degree	of	selectivity:

Columns	with	high	cardinality	have	more	data	values,	and	each	data
value	is	likely	to	match	a	smaller	number	of	rows	than	a	column	with
low	cardinality.

If	an	OLE	DB	provider	provides	a	histogram	reporting	how	the	values
are	distributed	in	a	column,	the	SQL	Server	optimizer	can	also	estimate
if	the	specific	value	in	a	predicate	argument	is	in	a	range	that	has	good
or	poor	selectivity.

JavaScript:hhobj_1.Click()

Having	good	distribution	statistics	for	a	linked	server	can	also	help	the	optimizer
build	an	efficient	execution	plan	for	the	local	part	of	a	distributed	query.

The	SQL	Server	optimizer	uses	the	distribution	statistics	in	an	attempt	to	reduce
the	amount	of	data	that	must	be	communicated	between	the	OLE	DB	provider
and	SQL	Server.	For	example,	when	performing	a	distributed	join	between
TableA	on	the	local	server	and	TableB	on	a	linked	server,	SQL	Server	can	use
the	distribution	statistics	to	determine	which	of	these	processes	is	most	efficient:

Send	the	rows	from	TableA	that	match	non-join	predicates	to	the	linked
server	and	have	the	linked	server	perform	the	join.

Retrieve	the	rows	from	TableB	that	match	non-join	predicates	to	the
local	server	and	perform	the	join	on	the	local	server.

If	an	OLE	DB	provider	does	not	report	cardinality	information	about	a	column,
the	SQL	Server	optimizer	estimates	a	low	cardinality.	If	a	provider	does	not
report	a	distribution	histogram	for	a	statistic,	the	optimizer	operates	as	if	the
values	are	evenly	distributed	in	the	rows	of	the	table.

SQL	Server	uses	the	following	extensions	from	OLE	DB	providers	to	report
distribution	statistics:

A	new	data	source	property,	DBPROP_TABLESTATISTICS,	indicates
if	the	provider	reports	distribution	statistics.

A	new	IDBSchemaRowset,	TABLE_STATISTICS,	lists	the	statistics
available	for	a	given	base	table,	including	column	and	row	cardinality.

IOpenRowset::OpenRowset	is	enhanced	to	accept	new	arguments
identifying	a	statistic.	When	a	statistic	is	specified,	OpenRowset
returns	a	histogram	rowset	showing	the	distribution	of	values	in	the	first
column	covered	by	the	statistic	specified	in	StatisticID.

These	extensions	to	OLE	DB	are	included	in	OLE	DB	version	2.6.	For
information	about	these	extensions	regarding	distribution	statistics,	see	the	OLE
DB	2.6	specification.

An	OLE	DB	provider	can	choose	to	implement	a	performance	enhancement	of
sampling	only	a	part	of	the	rows	in	a	base	table	to	determine	the	distribution
statistics	and	histograms.	These	providers	should	scale	their	cardinality	and
histogram	data	to	reflect	the	total	values	for	the	table	before	reporting	them	in
the	TABLE_STATISTICS	and	histogram	rowsets.

Whether	or	not	an	OLE	DB	provider	keeps	the	data	in	the	TABLE_STATISTICS
and	the	histogram	rowset	up-to-date	with	the	current	contents	of	the	base	table	is
implementation	defined.

Accessing	and	Changing	Relational	Data

SQL	Dialect	Requirements	for	OLE	DB	Providers
The	level	of	SQL	supported	by	an	OLE	DB	provider	determines	how	effectively
Microsoft®	SQL	Server™	2000	delegates	distributed	query	operations	to	the
OLE	DB	provider.	If	a	provider	does	not	support	SQL,	but	opens	only	rowsets,
SQL	Server	must	retrieve	the	entire	rowset	and	perform	all	logical	operations,
even	if	the	distributed	query	only	needs	a	subset	of	the	rows	in	the	source
rowset.	If	an	OLE	DB	provider	supports	many	SQL	syntax	elements,	SQL
Server	generates	more	sophisticated	queries	that	let	the	source	provider	filter
unnecessary	rows	before	returning	the	rowset	to	SQL	Server.

The	OLE	DB	specification	defines	a	DBPROP_SQLSUPPORT	property	through
which	providers	can	report	the	level	of	SQL	syntax	they	support.	The	minimum
level	of	SQL	support	that	SQL	Server	versions	require	in	distributed	queries	are:

SQL	Server	2000:	DBPROPVAL_SQL_SUBMINIMUM

SQL	Server	7.0:	DBPROPVAL_SQL_ANSI92_ENTRY	or
DBPROPVAL_SQL_ODBC_CORE

In	addition	to	supporting	a	lower	level	of	SQL	syntax	from	underlying	OLE	DB
providers,	SQL	Server	2000	defines	a	new	SQLPROPSET_OPTHINTS	property
set	that	providers	can	use	to	specify	that	they	support	individual	SQL	syntax
elements	that	are	beyond	those	defined	for
DBPROPVAL_SQL_SUBMINIMUM.	If	a	provider	supports	one	or	two	features
that	can	be	used	to	optimize	distributed	queries,	but	does	not	support	the	full
DBPROPVAL_SQL_ANSI92_ENTRY	or	DBPROPVAL_SQL_ODBC_CORE
syntax,	the	provider	can	use	the	SQLPROPSET_OPTHINTS	properties	to	notify
SQL	Server	of	the	optimization	features	it	does	support.

Accessing	and	Changing	Relational	Data

DBPROPVAL_SQL_SUBMINIMUM	Syntax
The	requirements	for	DBPROPVAL_SQL_SUBMINIMUM	are	that	the	provider
supports	the	features	of	DBPROPVAL_SQL_ODBC_MINIMUM,	with	these
differences:

Features	in	DBPROPVAL_SQL_ODBC_MINIMUM,	but	not	in
DBPROPVAL_SQL_SUBMINIMUM:

DDL	statements.
INSERT,	UPDATE,	and	DELETE	statements.
Dynamic	parameter	markers.
Multiple	tables	in	the	FROM	clause.

Features	in	DBPROPVAL_SQL_SUBMINIMUM,	but	not	in
DBPROPVAL_SQL_ODBC_MINIMUM:

Column	aliases	in	the	select	list.
Integer	and	exact	numeric	constants
IS	[NOT]	NULL	predicate.

Although	the	DBPROPVAL_SQL_SUBMINIMUM	grammar	is	defined	in
relation	to	DBPROPVAL_SQL_ODBC_MINIMUM,	the	SQL	Server	distributed
query	optimizer	never	tests	for	DBPROPVAL_SQL_ODBC_MINIMUM.

The	DBPROPVAL_SQL_SUBMINIMUM	grammar	uses	these	conventions.

Convention Used	for
UPPERCASE SQL	keywords.
italic User-supplied	parameters	in	SQL	syntax.
|	(vertical	bar) Separating	syntax	items	within	brackets	or	braces.	You

can	choose	only	one	of	the	items.
[]	(brackets) Optional	syntax	items.	Do	not	type	the	brackets.
{}	(braces) Required	syntax	items.	Do	not	type	the	braces.
[,...n] Indicating	that	the	preceding	item	can	be	repeated	n

number	of	times.	Commas	separate	the	occurrences.

[...n] Indicating	that	the	preceding	item	can	be	repeated	n
number	of	times.	The	occurrences	are	separated	by
blanks.

<label>	::= The	name	for	a	block	of	syntax.	This	convention	is
used	to	group	and	label	portions	of	lengthy	syntax	or	a
unit	of	syntax	that	can	be	used	in	more	than	one	place
within	a	statement.	Each	location	in	which	the	block	of
syntax	can	be	used	is	indicated	with	the	label	enclosed
in	chevrons:	<label>.

This	is	the	syntax	grammar	for	DBPROPVAL_SQL_SUBMINIMUM,	as
expected	by	SQL	Server:

<select_statement>	::=

																				SELECT	[ALL	|	DISTINCT]	<select_list>

																				FROM	<table_reference_list>

																				[WHERE	<search_condition>]

																				[<order_by_clause>]

SELECT	clause

<select_list>	::=				*	|	<select_sublist>[,...n]

<select_sublist>	::=

																				expression	[<alias>]

<alias>	::=								<user_defined_name>

FROM	clause

<table_reference_list>	::=

																				<table_reference>

<table_reference>	::=

																				<table_name>

<table_name>	::=

																				<table_identifier>

<table_identifier>	::=

																				<user_defined_name>

WHERE	clause

<search_condition>	::=

																				<boolean_term>	[OR	<search_condition>]

<boolean_term>	::=

																				<boolean_factor>	[AND	<boolean_term>]

<boolean_factor>	::=

																				[NOT]	<boolean_primary>

<boolean_primary>	::=

																				<comparison_predicate>	|	<search_condition>

<comparison_predicate>	::=

																				<expression>	<comparison_operator>	<expression>

																				|	<expression>	IS	[NOT]	NULL

<comparison_operator>	::=

																				<	|	>	|	<=	|	>=	|	=	|	<>

ORDER	BY	clause

<order_by_clause>	::=

																				ORDER	BY	<sort_specification>[,...n]

<sort_specification>	::=

																				{	|	<column_name>	}	[ASC	|	DESC]

Common	Syntactic	Elements

<expression>	::=

																				<term>	|	<expression>	{+|_}	<term>

<term>	::=								<factor>	|	<term>	{*|/}	<factor>

<factor>::=								[+|-]	<primary>

<primary>	::=				<column_name>	|	<literal>	|	(<expression>)

<column_name>	::=

																				[<table_name>].<column_identifier>

<literal>	::=								<character_string_literal>

																				|	<integer_literal>

																				|	<exact_numeric_literal>

<character_string_literal>	::=

																				'{character}[...n]'

Character	is	any	character	in	the	character	set	of	the	provider	or	data	source.	Use
two	single	quotation	marks	('')	to	represent	a	single	quotation	mark	(apostrophe)
in	the	literal	string.

<integer_literal>	::=

																				[+|-]	<unsigned_integer>

<exact_numeric_literal>::=

																				[+|-]	<unsigned_integer>	[<period><unsigned_integer]

																				|	<period><unsigned_integer>

<column_identifier>	::=

																				<user_defined_name>

<user_defined_name>	::=

																				<letter>[<digit>|<letter>|_][...n]

<unsigned_integer>	::=

																				{<digit>}[...n]

<digit>	::=								0|1|2|3|4|5|6|7|8|9

<letter>	::=								<lower_case_letter>|<upper_case_letter>

<lower_case_letter>	::=

																				a|b|c|d|e|f|g|h|I|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|z

<upper_case_letter>	::=

																				A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|X|Y|Z

<period>	::=								.

Accessing	and	Changing	Relational	Data

Programming	the	SQLPROPSET_OPTHINTS
Property	Set
Individual	OLE	DB	providers	can	support	some	SQL	functionality	beyond	that
defined	in	DBPROPVAL_SQL_SUBMINIMUM,	but	not	all	of	the	functionality
in	DBPROPVAL_SQL_ODBC_CORE	or
DBPROPVAL_SQL_ANSI92_ENTRY.	The	Microsoft®	SQL	Server™	2000
query	optimizer	can	use	some	of	the	functionality	supported	by	these	drivers	to
increase	the	performance	of	distributed	queries.	These	providers	can	use	the
SQLPROPSET_OPTHINTS	property	set	to	inform	SQL	Server	of	the	features
they	support	that	can	speed	distributed	queries.

Although	the	SQLPROPSET_OPTHINTS	property	set	is	defined	in	the	SQL
Server	documentation,	individual	OLE	DB	provider	developers	must	code
support	for	the	property	set	in	their	providers.	After	support	for	this	property	set
is	coded	into	the	provider,	SQL	Server	uses	it	to	optimize	the	performance	of
distributed	queries.

OLE	DB	providers	that	support	DBPROPVAL_SQL_ANSI92_ENTRY	or
DBPROPVAL_SQL_ODBC_CORE	do	not	need	any	of	the
SQLPROPSET_OPTHINTS	properties,	except	for
SQLPROP_DATELITERALS.	These	providers	must	support	all	of	the
functionality	covered	by	the	SQLPROPSET_OPTHINTS	property	set	(except
for	SQLPROP_DATELITERALS)	to	qualify	for
DBPROPVAL_SQL_ANSI92_ENTRY	or	DBPROPVAL_SQL_ODBC_CORE
support.

These	are	the	properties	reported	through	SQLPROPSET_OPTHINTS.

Property Description
SQLPROP_ANSILIKE Specifies	the	LIKE	clause	is	supported	as

defined	in	the	SQL-92	Entry	Level,	with
the	%	and	_	wildcards.

SQLPROP_DATELITERALS Specifies	the	provider	supports	datetime
literals,	or	constants	as	per	Transact-SQL
syntax.

SQLPROP_DYNAMICSQL Specifies	the	provider	supports	the	ODBC
parameter	marker	syntax	using	question
marks:	?.

SQLPROP_INNERJOIN Specifies	the	provider	supports	references
to	multiple	tables	in	the	WHERE	clause,
as	long	as	they	are	not	outer	join
references.

SQLPROP_GROUPBY Specifies	the	provider	supports	the
GROUP	BY	and	HAVING	clauses	in	a
SELECT	statement.	The	property	also
specifies	the	provider	supports	the	AVG,
COUNT,	MIN,	MAX,	and	SUM	aggregate
functions,	as	long	as	DISTINCT	is	not
specified	as	an	aggregate	argument.

SQLPROP_NESTEDQUERIESSpecifies	the	provider	supports	nested
SELECT	statements	in	the	FROM	clause.

SQLPROP_SUBQUERIES Specifies	the	provider	supports	subqueries
as	defined	in	the	SQL-92	Entry	Level.

These	are	the	constants	used	to	define	the	SQLPROPSET_OPTHINTS	property
set	in	the	code	of	OLE	DB	providers:

Extern	const	GUID	SQLPROPSET_OPTHINTS	=

{	0x2344480c,	0x33a7,	0x11d1,

				{	0x9b,	0x1a,	0x0,	0x60,	0x8,	0x26,	0x8b,	0x9e	}

};

enum	SQLPROPERTIES

{

				SQLPROP_NESTEDQUERIES	=	0x4,

				SQLPROP_DYNAMICSQL	=	0x5,

				SQLPROP_GROUPBY	=	0x6,

				SQLPROP_DATELITERALS	=	0x7,

				SQLPROP_ANSILIKE	=	0x8,

				SQLPROP_INNERJOIN	=	0x9,

				SQLPROP_SUBQUERIES	=	0x10,

}

Accessing	and	Changing	Relational	Data

Full-text	Search
Traditionally,	retrieving	specific	text	data	from	database	columns	or	file	systems
has	been	a	cumbersome	and	expensive	process,	often	requiring	third-party	tools.

Microsoft®	SQL	Server™	provides	a	rich	text	data	retrieval	system.	SQL	Server
2000	offers	an	enhanced	full-text	search	service	that	allows	you	to:

Update	indexes	in	the	background.

Populating	or	updating	an	index	does	not	have	to	interfere	with	other
tasks.	Full-text	index	updates	can	be	scheduled	in	the	background	using
the	Full-text	Indexing	wizard,	SQL	Server	Enterprise	Manager,	or	the
SQL	Server	Agent	job	scheduler.

Choose	among	three	methods	of	maintaining	a	full-text	index.

Depending	on	your	data	and	resources,	you	can	choose	among	the	full
rebuild,	the	timestamp-based	incremental	rebuild,	and	the	change
tracking	methods	to	maintain	your	full-text	indexes.	The	full	rebuild
method	involves	rescanning	all	rows.	The	timestamp-based	incremental
rebuild	method	only	rescans	those	rows	that	have	changed	since	the	last
rebuild	(full	or	incremental)	of	the	index.	With	the	change	tracking
method,	SQL	Server	maintains	a	list	of	all	changes	to	the	indexed	data
and	you	can	use	this	list	to	update	the	full-text	index.	For	more
information,	see	Maintaining	Full-text	Indexes.

Index	and	search	certain	types	of	data	stored	in	image	columns.

Using	full-text	search,	you	can	index	and	query	certain	types	of	data
stored	in	image	columns.	Full-text	search	uses	one	of	several	supported
filters	to	interpret	the	data	and	extract	the	text	data	for	indexing	and
querying.	SQL	Server	provides	filters	for	the	.doc,	.xls,	.ppt,	.txt,	and
.htm	file	extensions.	For	more	information,	see	Filtering	Supported	File
Types.

Once	the	image	column	is	indexed,	you	can	search	the	column	using
the	search	predicates	CONTAINS	and	FREETEXT.	For	more
information,	see	Using	Full-text	Predicates	to	Query	Image	Columns.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Limit	the	number	of	matches	returned.

When	you	use	the	optional	top_n_by_rank	argument	of	the
CONTAINSTABLE	or	FREETEXTTABLE	rowset	function	in	your
query,	SQL	Server	will	only	return	the	top	ranked	matches,	up	to	the	n
number	specified.	For	more	information,	see	Limiting	Result	Sets	in	the
Using	the	CONTAINSTABLE	and	FREETEXTTABLE	Rowset-valued
Functions.

See	Also

CONTAINS

CONTAINSTABLE

FREETEXT

FREETEXTTABLE

sp_fulltext_columns

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Full-text	Querying	SQL	Server	Data
Digital	information	is	stored	in	both	database	columns	and	in	the	file	system	as
unstructured	data,	primarily	text.	Some	text	data	is	stored	in	database	character-
type	columns	as	well.	For	example,	in	Microsoft®	SQL	Server™,	such	data	can
be	stored	in	database	columns	with	the	char,	varchar,	text,	ntext,	nchar,	or
nvarchar	data	types.

Consequently,	a	method	for	retrieving	this	text	data	from	the	database	is	needed.
Relational	database	management	systems	traditionally	have	had	limited
capabilities	for	finding	patterns	in	textual	data.	For	example,	a	system	may	be
able	to	retrieve	text	based	on	pattern	matching,	but	cannot	handle	searches	that
look	up	words	and	phrases	in	close	proximity	to	one	another.

Previously,	corporate	users	of	relational	database	management	systems	had	to
buy	expensive	third-party	offerings	to	retrieve	or	query	data	stored	in	these
character-based	database	columns.	These	solutions	typically	involved	a	two-step
process:

1.	 Pull	data	out	of	the	database	through	a	bridge	or	gateway.

2.	 Store	the	data	as	character-based	operating-system	files	so	that	full-
text	indexing	can	be	applied.

Using	this	two-step	process	meant	that	there	was	no	seamless	way	for	combining
a	full-text	query	with	a	regular,	structured	relational	query.	SQL	Server	solves
this	problem	by	allowing	full-text	queries	to	be	issued	against	plain	character-
based	data	in	SQL	Server	tables,	including	words	and	phrases,	or	multiple	forms
of	a	word	or	phrase.

To	enable	a	database	for	full-text	indexing

Accessing	and	Changing	Relational	Data

Full-text	Index	and	Querying	Concepts
The	principal	design	requirement	for	full-text	indexing,	querying,	and
synchronization	is	the	presence	of	a	full-text	unique	key	column	(or	single-
column	primary	key)	on	all	tables	that	are	registered	for	full-text	search.	A	full-
text	index	keeps	track	of	which	significant	words	are	used	and	where	they	are
located.

For	example,	consider	a	full-text	index	for	a	DevTools	table.	A	full-text	index
may	indicate	that	the	word	Microsoft	is	found	at	word	number	423	and	word
number	982	in	the	Abstract	column	for	the	row	associated	with	a	ProductID	of
6.	This	index	structure	supports	an	efficient	search	for	all	items	containing
indexed	words	and	advanced	search	operations,	such	as	phrase	searches	and
proximity	searches.

To	prevent	the	full-text	index	from	becoming	bloated	with	words	that	do	not	help
the	search,	extra	words	such	as	a,	and,	is,	or	the	are	ignored.	For	example,
specifying	the	phrase	"the	products	ordered	during	these	summer	months"	is	the
same	as	specifying	the	phrase	"products	ordered	during	summer	months."	Rows
with	either	string	are	returned.

Noise-word	lists	for	many	languages	are	provided	in	the	directory
\Mssql\Ftdata\Sqlserver\Config.	This	directory	is	created,	and	the	noise-word
files	are	installed	when	you	set	up	Microsoft®	SQL	Server™	with	the	full-text
search	support.	The	noise-word	files	can	be	edited.	For	example,	system
administrators	at	high-tech	companies	might	add	the	word	computer	to	their
noise-word	list.	(If	you	edit	a	noise-word	file,	you	must	repopulate	the	full-text
catalogs	before	the	changes	will	take	effect.)	The	table	shows	the	noise-word
files	and	their	respective	languages.

Noise-word	file Language
Noise.chs Simplified	Chinese
Noise.cht Traditional	Chinese
Noise.dat Language	Neutral
Noise.deu German
Noise.eng English	UK

Noise.enu English	US
Noise.esn Spanish
Noise.fra French
Noise.ita Italian
Noise.jpn Japanese
Noise.kor Korean
Noise.nld Dutch
Noise.sve Swedish

When	processing	a	full-text	query,	the	search	engine	returns	the	key	values	of
the	rows	that	match	the	search	criteria	to	Microsoft	SQL	Server.	Consider	a
SciFi	table	in	which	the	Book_No	column	is	the	primary	key	column.

Book_No Writer Title
A025 Asimov Foundation's	Edge
A027 Asimov Foundation	and	Empire
C011 Clarke Childhood's	End
V109 Verne Mysterious	Island

If	you	want	to	use	a	full-text	retrieval	query	to	find	the	book	titles	that	include
the	word	Foundation.	In	this	case,	the	values	of	A025	and	A027	are	obtained
from	the	full-text	index.	SQL	Server	then	uses	these	keys	and	other	field
information	to	respond	to	the	query.

This	table	shows	the	language	in	which	the	full-text	index	data	is	stored.	The
language	is	based	on	the	Unicode	collation	locale	identifier	selected	during	SQL
Server	Setup.

Unicode	collation	locale
identifier Language	for	full-text	data	storage
Chinese	Bopomofo	(Taiwan) Traditional	Chinese
Chinese	Punctuation Simplified	Chinese
Chinese	Stroke	Count Simplified	Chinese
Chinese	Stroke	Count	(Taiwan) Traditional	Chinese
Dutch Dutch

English	UK English	UK
French French
General	Unicode English	US
German German
German	Phonebook German
Italian Italian
Japanese Japanese
Japanese	Unicode Japanese
Korean Korean
Korean	Unicode Korean
Spanish	Modern Spanish
Swedish/Finnish Swedish

All	other	Unicode	collation	locale	identifier	values	that	are	not	in	this	list	get
mapped	to	the	neutral	language	word-breaker	and	-stemmer,	which	uses	white
spaces	to	delimit	words.

Note		The	Unicode	collation	locale	identifier	setting	is	used	against	all	data
types	eligible	for	full-text	indexing	(such	as	char,	nchar,	and	so	on).	If	you	have
the	sort	order	of	a	char,	varchar,	or	text	type	column	set	to	a	language	setting
different	from	the	Unicode	collation	locale	identifier	language,	the	Unicode
collation	locale	identifier	is	still	used	during	full-text	indexing	and	querying	of
the	char,	varchar,	and	text	type	columns.

Accessing	and	Changing	Relational	Data

Implementation	of	Full-text	Search
With	a	full-text	query,	you	can	perform	a	linguistic	search	of	character	data	in
tables	enabled	for	full-text	search.	A	linguistic	search	operates	on	words	and
phrases,	unlike	the	LIKE	predicate,	which	is	used	to	search	character	patterns.
Also,	the	Full-Text	Search	feature	can	weigh	query	terms	and	report	how	well	a
match	scored	or	ranked	against	the	original	search	term.

Implementing	a	full-text	search	in	a	given	database	involves	these	tasks:

1.	 Identify	the	tables	and	columns	that	are	to	be	registered	for	full-text
search.	

2.	 Index	the	data	in	the	registered	columns	and	populate	full-text	indexes
with	the	nonextraneous	words.

3.	 Issue	queries	against	the	registered	columns	for	populated	full-text
indexes.

4.	 Ensure	that	subsequent	changes	to	the	data	in	registered	columns	get
propagated	to	the	index,	thus	keeping	the	full-text	index	synchronized
with	the	data.

Tasks	1,	2,	and	4	are	accomplished	using	graphical	tools	and	wizards,	available
through	SQL	Server	Enterprise	Manager	or	built-in	procedures.	For	more
information	about	administering	full-text	indexes,	see	Maintaining	Full-Text
Indexes.

Note		SQL	Server	does	not	support	full-text	search	over	linked	servers.

Information	about	issuing	queries	against	registered	columns	for	populated	full-
text	indexes	(task	3)	is	the	primary	subject	of	the	full-text	topics	in	Accessing
and	Changing	Data.

Unlike	standard	relational	database	indexes,	full-text	indexes	are	not	instantly
modified	when	values	in	full-text	registered	columns	are	updated,	when	rows	are
added	to	full-text	registered	tables,	or	when	rows	are	deleted	from	full-text

JavaScript:hhobj_1.Click()

registered	tables.	Rather,	full-text	indexes	are	repopulated	asynchronously
because:

It	typically	takes	significantly	more	time	to	update	a	full-text	index	than
a	standard	index.

Full-text	searches	are	usually	less	precise	than	standard	searches	in	that
the	search	result	is	a	set	of	rows	that	contain	the	word	or	phrase	being
searched	no	matter	where	they	appear	in	the	character	stream.	For
example,	using	a	standard	index,	a	search	returns	a	precise	character
pattern	or	number	that	exactly	matched	the	original	query.	For	full-text
search,	you	can	retrieve	close	approximations	of	the	data,	such	as	the
plural	forms	of	a	noun,	the	various	forms	that	a	verb	may	take,	or	the
uppercase	or	lowercase	forms	of	the	original	search	condition.

Full-text	indexes	are	used	for	a	different	purpose	than	regular	indexes,
which	must	be	updated	immediately	when	data	in	its	associated	table
changes.	Full-text	indexes	can	be	synchronized	with	its	table	data.
Although	full-text	index	population	can	take	time,	these	updates	need
not	be	disruptive.	They	can	be	scheduled	in	the	background	using	the
SQL	Server	Agent	job	scheduler,	the	sp_add_job	stored	procedures,	or
the	Full-text	Indexing	Wizard.

When	you	repopulate	an	index,	after	changes	to	data	have	been	made,	the	unique
key	column	values	are	passed	to	the	index	engine	to	identify	those	items	that
need	to	be	reindexed.

Accessing	and	Changing	Relational	Data

Full-text	Query	Transact-SQL	Components
Microsoft®	SQL	Server™	provides	these	Transact-SQL	components	for	full-text
querying.

Transact-SQL	predicates
These	predicates	can	be	used	in	any	search	condition	(including	a	WHERE
clause)	of	a	SELECT	statement.

CONTAINS

FREETEXT

Transact-SQL	rowset-valued	functions

These	functions	can	be	used	in	the	FROM	clause	of	a	SELECT	statement.

CONTAINSTABLE

FREETEXTTABLE

Transact-SQL	full-text	properties

These	Transact-SQL	functions	return	information	about	the	full-text	properties
of	database	objects.

SERVERPROPERTY

IsFullTextInstalled	indicates	that	the	full-text	component	is	installed
with	the	current	instance	of	SQL	Server.	This	property	is	the	counterpart
of	the	FULLTEXTSERVICEPROPERTY	function	property	with	the
same	name.

DATABASEPROPERTYEX	and	DATABASEPROPERTY

IsFullTextEnabled	indicates	whether	a	database	has	been	enabled	for

full-text	indexing.

COLUMNPROPERTY

IsFullTextIndexed	indicates	whether	a	column	has	been	enabled	for
full-text	indexing.

OBJECTPROPERTY

TableFullTextBackgroundUpdateIndexOn	indicates	whether	a	table
has	full-text	background	update	indexing.

TableFullTextCatalogId	provides	the	full-text	catalog	ID	in	which	the
full-text	index	data	for	the	table	resides.

TableFullTextChangeTrackingOn	indicates	whether	full-text	change-
tracking	is	enabled	on	the	table.

TableFullTextKeyColumn	provides	the	column	ID	of	the	full-text
unique	key	column.

TableFullTextPopulateStatus	indicate	the	population	status	of	a	full-
text	table.

TableHasActiveFulltextIndex	indicates	whether	a	table	has	an	active
full-text	index.

INDEXPROPERTY

IsFulltextKey	indicates	whether	the	index	is	the	full-text	key	for	a
table.

Transact-SQL	has	functions	that	specifically	return	full-text	properties.

FULLTEXTCATALOGPROPERTY	returns	information	about	full-text	catalog
properties:	PopulateStatus,	ItemCount,	IndexSize,	UniqueKeyCount,
LogSize,	and	PopulateCompletionAge.	For	more	information,	see

FULLTEXTCATALOGPROPERTY.

FULLTEXTSERVICEPROPERTY	returns	information	about	the	full-text
service-level	properties:	ResourceUsage,	ConnectTimeout,	and
IsFulltextInstalled.	IsFulltextInstalled	returns	the	same	information	as	the
SERVERPROPERTY	property	of	the	same	name.	For	more	information,	see
FULLTEXTSERVICEPROPERTY.

Transact-SQL	full-text	system	stored	procedures
These	stored	procedures	can	be	used	in	conjunction	with	writing	a	query.	For
example,	you	can	use	them	to	find	the	names	of	the	full-text	indexed	columns
for	a	table	and	the	column	ID	of	a	full-text	unique	key	column	before	specifying
a	query.

sp_fulltext_database	is	a	stored	procedure	that	enables	or	removes
full-text	indexing	from	the	current	database.

sp_fulltext_catalog,	sp_fulltext_table,	and	sp_fulltext_column	are
stored	procedures	used	in	defining	full-text	indexes	and	initiating	full-
text	index	population.

sp_help_fulltext_catalogs,	sp_help_fulltext_tables,
sp_help_fulltext_columns,	and	a	variation	of	these	stored	procedures
are	used	to	query	the	full-text	index	meta	data	defined	by	the	system
stored	procedures	identified	earlier.

Note		The	full-text	system	stored	procedures	cannot	be	used	in	a	transaction.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	the	CONTAINS	Predicate
You	can	use	the	CONTAINS	predicate	to	search	a	database	for	a	specific	phrase.
Of	course,	such	a	query	can	be	written	using	the	LIKE	predicate.	However,
many	forms	of	CONTAINS	provide	far	more	text	query	capabilities	than	can	be
obtained	with	LIKE.	Additionally,	unlike	using	the	LIKE	predicate,	a
CONTAINS	search	is	always	case	insensitive.

Note		The	full-text	search	queries	behave	in	a	case-insensitive	manner	for	those
languages	(mostly	Latin-based)	for	which	case	sensitivity	is	meaningful.
However,	in	Japanese,	there	are	multiple	phonetic	orthographies	in	which	the
concept	of	orthographic	normalization	is	akin	to	case	insensitivity	(for	example,
kana	=	insensitivity).	This	type	of	orthographic	normalization	is	not	supported.

Assume	that	you	want	to	search	within	the	Northwind	database	to	find	the
phrase	"bean	curd".	If	you	use	the	CONTAINS	predicate,	this	is	a	fairly	easy
query.

USE	Northwind	
GO
SELECT	Description
FROM	Categories
WHERE	Description	LIKE	'%bean	curd%'
GO

Or,	using	CONTAINS:

USE	Northwind
GO
SELECT	Description
FROM	Categories
WHERE	CONTAINS(Description,	'	"bean	curd"	')
GO

The	CONTAINS	predicate	uses	functional	notation	in	which	the	first	parameter
is	the	name	of	the	column	being	searched	and	the	second	parameter	is	a	full-text

search	condition.	The	search	condition,	in	this	case	"bean	curd",	can	be	quite
complex	and	is	made	up	of	one	or	more	terms,	which	are	described	later.

The	CONTAINS	predicate	supports	complex	syntax	to	search	character-based
columns	for:

One	or	more	specific	words	and/or	phrases	(simple	term).

A	word	is	one	or	more	characters	without	spaces	or	punctuation.	A	valid
phrase	can	consist	of	multiple	words	with	spaces	with	or	without
punctuation	between	them.	For	example,	croissant	is	a	word,	and	café
au	lait	is	a	phrase.	Words	and	phrases	such	as	these	are	called	simple
terms.

Inflectional	form	of	a	specific	word	(generation	term).

For	example,	search	for	the	inflectional	form	of	the	word	drive.	If
various	rows	in	the	table	include	the	words	drive,	drives,	drove,	driving,
and	driven,	all	would	be	in	the	result	set	because	each	of	these	can	be
inflectionally	generated	from	the	word	drive.

A	word	or	a	phrase	where	the	words	begin	with	specified	text	(prefix
term).

In	case	of	a	phrase,	each	word	within	the	phrase	is	considered	to	be	a
prefix.	For	example,	the	term	auto	tran*	matches	automatic
transmission	and	automobile	transducer.

Words	or	phrases	using	weighted	values	(weighted	term).

For	example,	you	want	to	find	a	word	that	has	a	higher	designated
weighting	than	another	word.	It	returns	ranked	query	results.

A	word	or	phrase	close	to	another	word	or	phrase	(proximity	term).

For	example,	you	want	to	find	the	rows	in	which	the	word	ice	is	near
the	word	hockey	or	in	which	the	phrase	ice	skating	is	near	the	phrase	ice
hockey.

A	CONTAINS	predicate	can	combine	several	of	these	terms	by	using	AND	and
OR,	for	example,	to	find	all	rows	with	latte	and	New	York-style	bagel	in	the
same	full-text	enabled	database	column.	Furthermore,	terms	can	be	negated	by

the	use	of	AND	NOT,	for	example	bagel	and	not	cream	cheese.

When	you	use	CONTAINS,	remember	SQL	Server	discards	noise	words	from
the	search	criteria.	Noise	words	are	those	words	such	as	a,	and,	is,	or	the,	which
can	occur	frequently	but	do	not	really	help	when	searching	for	specific	text.

Accessing	and	Changing	Relational	Data

Searching	for	Specific	Words	or	Phrases	(Simple
Term)
In	Latin-based	and	other	single-byte	languages,	a	group	of	characters	is	typically
interpreted	as	a	word	if	it	is	framed	by	spaces	or	punctuation,	and	a	phrase	if	it
consists	of	multiple	words	with	spaces,	and	with	(or	without)	punctuation
between	them.	For	example,	in	the	English	language,	a	word	such	as	clock	or
calendar	consists	of	one	or	more	characters	without	spaces	or	punctuation.	In
most	languages,	a	phrase	consists	of	multiple	words	with	spaces,	and	with	(or
without)	punctuation	between	them,	such	as	cheese,	crackers,	and	apple	juice.

Asian	languages	are	different	in	that	an	Asian	language	character	can	also	be	a
word,	and	a	phrase	is	a	group	of	words	that	do	not	necessarily	have	to	have
spaces	or	punctuation	between	them.

The	following	query	searches	for	the	word	business	in	the	notes	column	of	the
titles	table.

USE	pubs
GO
SELECT	title_id,	title,	notes
FROM	titles
WHERE	CONTAINS(notes,	'business')
GO

This	query	searches	for	the	phrase	"common	business	applications"	in	the	notes
column	of	the	titles	table.

USE	pubs
GO
SELECT	title_id,	title,	notes
FROM	titles
WHERE	CONTAINS(notes,	'	"common	business	applications"	')
GO

A	CONTAINS	predicate,	can	only	be	used	with	tables	that	have	columns	enabled
for	full-text	querying.	For	more	information	about	enabling	one	or	more	columns
for	full-text	querying,	see	sp_fulltext_table	and	sp_fulltext_column	and	Full-text
Indexes.

One	or	more	table	columns	can	be	enabled	for	full-text	querying.	A	given	full-
text	predicate	against	that	table	can	either	access	a	single,	enabled	column	or	all
of	the	enabled	columns	in	a	table.	Assuming	that	both	the	title	and	notes
columns	in	the	titles	table	in	the	pubs	database	are	full-text	enabled,	then	the
following	query	returns	the	title	ID,	title,	and	price	for	all	rows	in	which	the
phrase	"French	gourmet"	is	present	in	either	of	the	full-text	enabled	columns:

USE	pubs
GO
SELECT	title_id,	title,	price
FROM	titles
WHERE	CONTAINS(*,	'	"French	gourmet"	')
GO

The	asterisk	(*),	used	in	place	of	a	column	name,	indicates	all	full-text	enabled
columns	for	the	table.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Combining	Full-text	Search	Operators	Using	AND,
OR,	and	AND	NOT
You	can	use	parentheses	and	the	Boolean	operators	(AND,	AND	NOT,	and	OR)
between	search	conditions	in	a	CONTAINS	predicate.	Assume	one	or	more	rows
in	the	titles	table	contains	information	about	favorite	recipes	and	gourmet
recipes.	To	retrieve	rows	that	contain	text	for	either	type	of	recipe,	use	an	OR
between	the	"favorite	recipes"	and	"gourmet	recipes"	phrases.

USE	pubs
GO
SELECT	title,	notes
FROM	titles
WHERE	CONTAINS(notes,	'	"favorite	recipes"	OR	"gourmet	recipes"	')
GO

This	example	searches	for	all	rows	in	the	titles	table	in	which	the	title	contains
cooking,	but	neither	computers	nor	computer.

USE	pubs
GO
SELECT	title_id,	title,	ytd_sales
FROM	titles
WHERE	CONTAINS(title,	'	cooking	AND	NOT	("computer*")')
GO

This	example	obtains	a	list	of	product	category	descriptions	in	which	the
description	mentions	both	words	beers	and	ales.

USE	Northwind
GO
SELECT	CategoryName,	Description
FROM	Categories
WHERE	CONTAINS(Description,	'	beers	AND	ales	')

GO

Phrases	and	predicates	can	be	combined	to	search	for	combinations	of	words	and
phrases.	For	example,	you	can	search	for	all	rows	that	contain	either	ice	skating
or	hockey	but	not	references	to	the	Olympics.	The	WHERE	clause	for	using	the
CONTAINS	predicate	looks	like	this:

WHERE	CONTAINS	(*,	'("ice	skating"	or	hockey)	AND	NOT	olympics')

Accessing	and	Changing	Relational	Data

Searching	for	Multiple	Forms	of	Words	or	Phrases
(Prefix	Term)
You	can	search	columns	for	text	that	begin	with	a	specified	word	or	phrase.	The
specified	text	used	for	the	search	is	called	a	prefix	term.

When	the	prefix	term	is	a	word,	all	entries	in	the	column	that	begin	with	the
word	will	be	returned.	For	example,	to	search	for	all	rows	that	contain	the	word
ice,	as	in	ice,	ice	cream,	or	ice-shaved	drinks,	the	query	looks	like	this:

USE	Northwind
GO
SELECT	Description,	CategoryName
FROM	Categories
WHERE	CONTAINS	(Description,	'	"ice*"	')
GO

All	text	that	matches	the	text	specified	before	the	asterisk	(*)	is	returned.	If	the
text	and	asterisk	are	not	delimited	by	double	quotation	marks,	as	in
CONTAINS	(DESCRIPTION,	'ice*'),	full-text	search	considers	the	asterisk
as	a	character	and	will	search	for	exact	matches	to	ice*.
When	the	prefix	term	is	a	phrase,	each	word	making	up	the	phrase	is	considered
a	separate	prefix	term.	All	rows	that	have	words	beginning	with	the	prefix	terms
will	be	returned.	For	example,	the	prefix	term	"light	bread*"	will	find	rows	with
text	of	either	"light	breaded",	"lightly	breaded",	or	"light	bread."

USE	Northwind
GO
SELECT	Description,	CategoryName
FROM	Categories
WHERE	CONTAINS	(Description,	'	"light	bread*"	')
GO

Accessing	and	Changing	Relational	Data

Searching	for	Any	Form	of	a	Specific	Word
(Generation	Term)
You	can	search	for	all	the	different	tenses	of	a	verb	or	both	the	singular	and
plural	forms	of	a	noun.	For	example,	this	query	searches	for	any	form	of	dry
(dry,	dried,	drying,	and	so	on)	in	the	Description	column	of	the	Categories
table.

USE	Northwind
GO
SELECT	Description,	CategoryName
FROM	Categories
WHERE	CONTAINS	(Description,	'FORMSOF(INFLECTIONAL,	"dry")')
GO

Note	that	a	single	term	cannot	be	used	to	match	both	nouns	and	verbs	in	the
same	query.

Accessing	and	Changing	Relational	Data

Searching	for	Words	or	Phrases	Using	Weighted
Values	(Weighted	Term)
You	can	search	for	words	or	phrases	and	specify	a	weighting	value.	Weight,	a
number	from	0.0	through	1.0,	indicates	the	degree	of	importance	for	each	word
and	phrase	within	a	set	of	words	and	phrases.	A	weight	value	of	0.0	is	the	lowest
value	available,	and	a	weight	value	of	1.0	is	the	highest	available	value.	For
example,	this	query	searches	for	all	customer	addresses,	using	weight	values,	in
which	any	text	beginning	with	the	string	"des"	is	near	either	Rue	or	Bouchers.
Microsoft®	SQL	Server™	gives	a	higher	rank	to	those	rows	with	more	of	the
words	specified.	Therefore,	SQL	Server	gives	a	higher	rank	to	a	row	with	des
Rue	Bouchers	than	to	a	row	with	des	Rue.

USE	Northwind
GO
SELECT	CompanyName,	ContactName,	Address			
FROM	Customers
WHERE	CONTAINS(Address,	'ISABOUT	("*des*",	
									Rue	WEIGHT(0.5),	
									Bouchers	WEIGHT(0.9)
)	')
GO

A	weighted	term	can	be	used	in	conjunction	with	any	of	the	other	four	types	of
terms.

Accessing	and	Changing	Relational	Data

Searching	for	Words	or	Phrases	Close	to	Another
Word	or	Phrase	(Proximity	Term)
You	can	search	for	words	or	phrases	in	close	proximity	to	another	word	or
phrase.	In	addition,	you	can	specify	two	words	or	phrases	in	any	order	and	get
the	same	result.	This	example	searches	for	the	word	user	close	to	the	word
computers.

USE	pubs
GO
SELECT	title,	notes
FROM	titles
WHERE	CONTAINS	(notes,	'user	NEAR	computers')
GO

However,	you	can	also	reverse	the	words	in	the	WHERE	clause	to	get	the	same
result:

WHERE	CONTAINS	(notes,	'computers	NEAR	user')

You	can	specify	the	tilde	(~)	in	place	of	the	NEAR	keyword	in	the	earlier
queries,	and	get	the	same	results:

WHERE	CONTAINS	(notes,	'computers	~	user')

More	than	two	words	or	phase	can	be	specified	in	the	search	conditions.	For
example,	it	is	possible	to	say:

WHERE	CONTAINS	(notes,	'	hardware	~	softward	~	computer	')

This	means	that	hardware	should	be	in	close	proximity	to	software,	and
software	should	be	in	close	proximity	to	computer.

In	addition,	matching	the	prefix	of	a	word	can	be	combined	with	searching	for	a
word	or	phrase	in	close	proximity	to	another	word	or	phrase.	This	example
searches	for	all	descriptions	in	which	the	description	has	sauces	in	close

proximity	to	any	form	of	mix,	such	as	mixing,	or	mixed.

WHERE	CONTAINS(Description,	'	sauces	~	"mix*"	')

To	find	wheat	bread	mix	and	also	wheatberry	bread	mix,	you	could	use	this
type	of	search:

WHERE	CONTAINS(Description,	'	"wheat*"	~	"bread	mix"	')

See	Also

CONTAINS

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	the	FREETEXT	Predicate
With	a	FREETEXT	predicate,	you	can	enter	any	set	of	words	or	phrases,	or	even
a	complete	sentence.	The	full-text	query	engine	examines	this	text,	identifies	all
the	significant	words	and	noun	phrases,	and	internally	constructs	a	query	with
those	terms.	This	example	uses	a	FREETEXT	predicate	against	a	column	named
description.

FREETEXT	(description,	'	"The	Fulton	County	Grand	Jury	said	Friday	an	investigation	of	Atlanta's	recent	primary	election	produced	no	evidence	that	any	irregularities	took	place."	')	

The	search	engine	identifies	words	and	noun	phrases	such	as	the	following:

Words

Fulton,	county,	grand,	jury,	Friday,	investigation,	Atlanta,	recent,	primary,
election,	produce,	evidence,	irregularities

Phrases

Fulton	county	grand	jury,	primary	election,	grand	jury,	Atlanta's	recent
primary	election

The	words	and	phrases	in	the	FREETEXT	string	(and	their	inflectionally
generated	variations)	are	internally	combined	into	a	query,	weighted	for	proper
ranking,	and	then	the	actual	search	is	performed.

See	Also

FREETEXT

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Using	Full-text	Predicates	to	Query	image	Columns
CONTAINS	and	FREETEXT	predicates	may	be	used	to	search	indexed	image
columns.

Many	document	types	can	be	stored	in	a	single	image	column.	Microsoft®	SQL
Server™	supports	certain	document	types	and	provides	a	filter	for	these	types.
This	release	provides	filters	for	Office	documents,	text	files,	and	HTML	files.

When	an	image	column	participates	in	a	full-text	index,	the	full-text	service
looks	at	the	extensions	of	the	documents	in	the	image	column	and	applies	a
corresponding	filter	to	interpret	the	binary	data	and	extract	the	textual
information	needed	for	indexing	and	querying.

Thus,	when	you	set	up	full-text	indexing	on	an	image	column	in	a	table,	you
must	create	a	separate	column	to	hold	information	about	the	document.	This	type
column	can	be	of	any	character-based	data	type	and	contains	the	document	file
extension,	such	as	doc	for	a	Microsoft	Word	document.	If	the	type	column	is
NULL,	the	full-text	service	will	assume	the	document	is	a	text	file.

In	the	Full-Text	Indexing	Wizard,	if	you	select	an	image	column	for
indexing,	you	must	also	specify	a	Binding	column	to	hold	the
document	type.

The	sp_fulltext_column	stored	procedure	also	accepts	an	argument	for
the	column	to	contain	the	document	types.

The	sp_help_fulltext_columns	stored	procedure	also	returns	column
name	and	column	id	of	the	document	type	column.

For	more	information	about	setting	up	full-text	indexes	and	searches	on	image
columns,	see	Filtering	Supported	File	Types.

Once	indexed,	the	image	column	can	be	queried	like	any	other	column	in	a
table,	using	the	predicates	CONTAINS	and	FREETEXT.

JavaScript:hhobj_1.Click()

Accessing	and	Changing	Relational	Data

Combining	Full-text	Predicates	with	Other	Transact-
SQL	Predicates
The	CONTAINS	and	FREETEXT	predicates	can	be	combined	with	any	of	the
other	Transact-SQL	predicates,	such	as	LIKE	and	BETWEEN;	they	can	also	be
used	in	a	subquery.	This	example	searches	for	descriptions	in	which	the	category
is	not	Seafood,	and	in	which	the	description	contains	the	word	sauces	and	the
word	seasonings.

USE	Northwind
GO
SELECT	Description
FROM	Categories
WHERE	CategoryName	<>	'Seafood'	AND
			CONTAINS(Description,	'	sauces	AND	seasonings	')
GO

The	following	query	uses	CONTAINS	within	a	subquery.	Using	the	pubs
database,	the	query	obtains	the	title	value	of	all	the	books	in	the	titles	table	for
the	publisher	that	is	located	close	to	the	flying	saucer	in	Moonbeam,	Ontario.
(This	information	about	the	publisher	is	in	the	pr_info	column	in	the	pub_info
table,	and	there	is	only	one	such	publisher.)

USE	pubs
GO
--	Add	some	interesting	rows	to	some	tables.
INSERT	INTO	publishers	
		VALUES	('9970',
										'Penumbra	Press',
										'Moonbeam',
										'ON',
										'Canada')
INSERT	INTO	pub_info	(pub_id,	pr_info)
		VALUES	('9970',

										'Penumbra	press	is	located	in	the	small	village	of	Moonbeam.		Moonbeam	is	well	known	as	the	flying	saucer	capital	of	Ontario.		You	will	often	find	one	or	more	flying	saucers	docked	close	to	the	tourist	information	centre	on	the	north	side	of	highway	11.')
INSERT	INTO	titles
		VALUES	('FP0001',
										'Games	of	the	World',
										'crafts',
										'9970',
										9.85,
										0.00,
										20,
										213,
										'A	crafts	book!		A	sports	book!		A	history	book!		The	fun	and	excitement	of	a	world	at	play	-	beautifully	described	and	lavishly	illustrated',
										'1977/09/15')
GO
--	Given	the	full-text	catalog	for	these	tables	is	pubs_ft_ctlg,	
--	repopulate	it	so	new	rows	are	included	in	the	full-text	indexes.
sp_fulltext_catalog	'pubs_ft_ctlg',	'start_full'
WAITFOR	DELAY	'00:00:30'			--	Wait	30	seconds	for	population.
GO
--	Issue	the	query.
SELECT	T.title,	P.pub_name
FROM	publishers	P,
					titles	T
WHERE	P.pub_id	=	T.pub_id
		AND	P.pub_id	=	(SELECT	pub_id	
																		FROM	pub_info
																		WHERE	CONTAINS	(pr_info,	
																																	'	moonbeam	AND	
																																			ontario	AND	
																																			"flying	saucer"	'))
GO

See	Also

CONTAINS

FREETEXT

WHERE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	the	CONTAINSTABLE	and
FREETEXTTABLE	Rowset-valued	Functions
The	CONTAINSTABLE	and	FREETEXTTABLE	functions	are	used	to	specify
full-text	queries	that	return	relevance	rankings	for	each	row.	These	functions	are
very	similar	but	used	differently	from	the	full-text	predicates,	CONTAINS	and
FREETEXT.

Differentiating	the	full-text	predicates	from	the	functions
Although	both	the	full-text	predicates	and	the	full-text	rowset-valued	functions
are	used	for	full-text	queries,	and	the	Transact-SQL	statement	used	to	specify	the
full-text	search	condition	is	the	same	in	both	the	predicates	and	the	functions,
there	are	major	differences	in	the	way	that	these	are	used:

CONTAINS	and	FREETEXT	both	return	a	TRUE	or	FALSE	value,	so
they	are	typically	specified	in	the	WHERE	clause	of	a	SELECT
statement.

CONTAINSTABLE	and	FREETEXTTABLE	both	return	a	table	of
zero,	one,	or	more	rows,	so	they	must	always	be	specified	in	the	FROM
clause.

CONTAINS	and	FREETEXT	can	only	be	used	to	specify	selection
criteria,	which	Microsoft®	SQL	Server™	uses	to	determine	the
membership	of	the	result	set.

CONTAINSTABLE	and	FREETEXTTABLE	are	also	used	to	specify
selection	criteria.	The	table	returned	has	a	column	named	KEY	that
contains	full-text	key	values.	Each	full-text	registered	table	has	a
column	whose	values	are	guaranteed	to	be	unique.	The	values	returned
in	the	KEY	column	of	CONTAINSTABLE	or	FREETEXTTABLE	are
the	unique	values,	from	the	full-text	registered	table,	of	the	rows	that
match	the	selection	criteria	specified	in	the	full-text	search	condition.

Furthermore,	the	table	produced	by	CONTAINSTABLE	and
FREETEXTTABLE	has	a	column	named	RANK,	which	contains	values
from	0	through	1000.	These	values	are	used	to	rank	the	rows	returned

according	to	how	well	they	met	the	selection	criteria.

Queries	that	use	the	CONTAINSTABLE	and	FREETEXTTABLE	functions	are
more	complex	than	those	that	use	the	CONTAINS	and	FREETEXT	predicates
because	qualifying	rows	returned	by	the	functions	must	be	explicitly	joined	with
the	rows	in	the	original	SQL	Server	table.

This	example	returns	the	description	and	category	name	of	all	food	categories
for	which	the	Description	column	contains	the	words	"sweet	and	savory"	near
either	the	word	"sauces"	or	the	word	"candies."	All	rows	with	a	category	name
"Seafood"	are	disregarded.	Only	rows	with	a	rank	value	of	2	or	higher	are
returned.

USE	Northwind
GO
SELECT	FT_TBL.Description,	
			FT_TBL.CategoryName,	
			KEY_TBL.RANK
FROM	Categories	AS	FT_TBL	INNER	JOIN
			CONTAINSTABLE	(Categories,	Description,	
						'("sweet	and	savory"	NEAR	sauces)	OR
						("sweet	and	savory"	NEAR	candies)'
)	AS	KEY_TBL
			ON	FT_TBL.CategoryID	=	KEY_TBL.[KEY]
WHERE	KEY_TBL.RANK	>	2
			AND	FT_TBL.CategoryName	<>	'Seafood'
ORDER	BY	KEY_TBL.RANK	DESC

This	example	returns	the	description	and	category	name	of	the	top	10	food
categories	where	the	Description	column	contains	the	words	"sweet	and	savory"
near	either	the	word	"sauces"	or	the	word	"candies."

SELECT	FT_TBL.Description,	
			FT_TBL.CategoryName,	
			KEY_TBL.RANK
FROM	Categories	AS	FT_TBL	INNER	JOIN

			CONTAINSTABLE	(Categories,	Description,	
						'("sweet	and	savory"	NEAR	sauces)	OR
						("sweet	and	savory"	NEAR	candies)'
						,	10
)	AS	KEY_TBL
			ON	FT_TBL.CategoryID	=	KEY_TBL.[KEY]

Comparison	between	CONTAINSTABLE	and	CONTAINS
The	CONTAINSTABLE	function	and	the	CONTAINS	predicate	use	similar
search	conditions.

However,	in	CONTAINSTABLE	you	specify	the	table	that	will	be	full-text
searched,	the	column	(or	all	the	columns)	in	the	table	to	be	searched,	and	the
search	condition.	A	fourth	parameter,	an	optional	one,	makes	it	possible	for	the
user	to	indicate	that	only	the	highest	specified	number	of	matches	be	returned.
For	more	information,	see	the	Limiting	Result	Sets	section.

CONTAINSTABLE	returns	a	table	that	includes	a	column	named	RANK.	This
RANK	column	contains	a	value	for	each	row	that	indicates	how	well	a	row
matched	the	selection	criteria.

This	query	specifies	using	CONTAINSTABLE	to	return	a	rank	value	for	each
row.

USE	Northwind
GO
SELECT	K.RANK,	CompanyName,	ContactName,	Address
FROM	Customers	AS	C
					INNER	JOIN
					CONTAINSTABLE(Customers,Address,	'ISABOUT	("des*",				
																																																Rue	WEIGHT(0.5),	
																																																Bouchers	WEIGHT(0.9)
)
																																						'	
)	AS	K
					ON	C.CustomerID	=	K.[KEY]

Here	is	the	result	set:

RANK	CompanyName										ContactName							address												
----	------------									-----------							-------												
123		Bon	app'													Laurence	Lebihan		12,	rue	des	Bouchers	
65			Du	monde	entier						Janine	Labrune				67,	rue	des	Cinquante	Otages	
15			France	restauration		Carine	Schmitt				54,	rue	Royale					
15			La	maison	d'Asie					Annette	Roulet				1	rue	Alsace-Lorraine		
15			Maison	Dewey									Catherine	Dewey			Rue	Joseph-Bens	532	
15			Mère	Paillarde							Jean	Fresnière				43	rue	St.	Laurent		
15			Spécialités	du	monde	Dominique	Perrier	25,	rue	Lauriston					
15			Vins	et	alcools						Paul	Henriot						59	rue	de	l'Abbaye
					Chevalier																																														
15			Victuailles	en	stock	Mary	Saveley						2,	rue	du	Commerce		

Comparison	between	FREETEXTTABLE	and	FREETEXT
The	following	query	extends	a	FREETEXTTABLE	query	to	return	the	highest
ranked	rows	first	and	to	add	the	ranking	of	each	row	to	the	select	list.	To	specify
the	query,	you	must	know	that	CategoryID	is	the	unique	key	column	for	the
Categories	table.

USE	Northwind
GO
SELECT	KEY_TBL.RANK,	FT_TBL.Description
FROM	Categories	AS	FT_TBL	
					INNER	JOIN
					FREETEXTTABLE(Categories,	Description,
																				'How	can	I	make	my	own	beers	and	ales?')	AS	KEY_TBL
					ON	FT_TBL.CategoryID	=	KEY_TBL.[KEY]
ORDER	BY	KEY_TBL.RANK	DESC
GO

The	only	difference	in	the	syntax	of	FREETEXTTABLE	and	FREETEXT	is	the
insertion	of	the	table	name	as	the	first	parameter.

Here	is	an	extension	of	the	same	query	that	only	returns	rows	with	a	rank	value
of	10	or	greater:

USE	Northwind
GO
SELECT	KEY_TBL.RANK,	FT_TBL.Description
FROM	Categories	FT_TBL	
					INNER	JOIN
					FREETEXTTABLE	(Categories,	Description,
																				'How	can	I	make	my	own	beers	and	ales?')	AS	KEY_TBL
					ON	FT_TBL.CategoryID	=	KEY_TBL.[KEY]
WHERE	KEY_TBL.RANK	>=	10
ORDER	BY	KEY_TBL.RANK	DESC
GO

Identifying	the	Unique	Key	Column	Name
Queries	that	use	rowset-valued	functions	are	complicated	because	it	is	necessary
to	know	the	name	of	the	unique	key	column.	Each	full-text	enabled	table	has	the
TableFulltextKeyColumn	property	that	contains	the	column	ID	number	of	the
column	that	has	been	selected	for	enforcing	unique	rows	for	the	table.	This
example	shows	how	the	name	of	the	key	column	can	be	obtained	and	used
programmatically.

USE	Northwind
GO
DECLARE	@key_column	sysname
SET	@key_column	=	Col_Name(Object_Id('Categories'),
																											ObjectProperty(Object_id('Categories'),
																																										'TableFulltextKeyColumn')	
)
print	@key_column
EXECUTE	('SELECT	Description,	KEY_TBL.RANK
										FROM	Categories	FT_TBL	
															INNER	JOIN

															FreetextTable	(Categories,	Description,
																				''How	can	I	make	my	own	beers	and	ales?'')	AS	KEY_TBL										
															ON	FT_TBL.'
									+
																									@key_column
									+
									'																												=	KEY_TBL.[KEY]
											WHERE	KEY_TBL.RANK	>=	10
											ORDER	BY	KEY_TBL.RANK	DESC
									')
GO

You	can	avoid	the	complexity	of	using	CONTAINSTABLE	and
FREETEXTTABLE	by	writing	stored	procedures	that	accept	a	few	facts	about
the	query	and	then	create	and	execute	the	appropriate	query.	A	simplified
procedure	that	submits	a	FREETEXTTABLE	query	follows.	The	table	shows	the
procedure	parameters	(all	input).

Parameter Required Description
@additional_predicates Optional If	there	are	any,	these	get	added	with

AND	after	the	FREETEXT
predicate.	KEY_TBL.RANK	can
be	used	within	expressions.

@freetext_column Yes
@freetext_search Yes Search	condition.
@from_table Yes
@order_by_list Optional KEY_TBL.RANK	can	be	one	of

the	columns	specified.
@select_list Yes KEY_TBL.RANK	can	be	one	of

the	columns	specified.

The	code	for	the	procedure	is:

CREATE	PROCEDURE	freetext_rank_proc
							@select_list													nvarchar(1000),
							@from_table														nvarchar(517),

							@freetext_column									sysname,
							@freetext_search									nvarchar(1000),
							@additional_predicates		nvarchar(500)						=	'',
							@order_by_list											nvarchar(500)						=	''
AS	
BEGIN
			DECLARE	@table_id														integer,
											@unique_key_col_name			sysname,
											@add_pred_var										nvarchar(510),
											@order_by_var										nvarchar(510)	

			--	Get	the	name	of	the	unique	key	column	for	this	table.
			SET	@table_id	=	Object_Id(@from_table)
			SET	@unique_key_col_name	=	
			Col_Name(@table_id,	
			ObjectProperty(@table_id,	'TableFullTextKeyColumn'))					

			--	If	there	is	an	additional_predicate,	put	AND()	around	it.
			IF	@additional_predicates	<>	''
						SET	@add_pred_var	=	'AND	('	+	@additional_predicates	+	')'
			ELSE
						SET	@add_pred_var	=	''

			--	Insert	ORDER	BY,	if	needed.
			IF	@order_by_list	<>	''
						SET	@order_by_var	=	'ORDER	BY	'	+	@order_by_var
			ELSE
						SET	@order_by_var	=	''

			--	Execute	the	SELECT	statement.
			EXECUTE	('SELECT	'	
													+	@select_list
													+	'	FROM	'

													+	@from_table
													+	'	AS	FT_TBL,	FreetextTable('
													+	@from_table
													+	','
													+	@freetext_column
													+	','''
													+	@freetext_search
													+	''')	AS	KEY_TBL	'
													+	'WHERE	FT_TBL.'
													+	@unique_key_col_name
													+	'	=	KEY_TBL.[KEY]	'	
													+	@add_pred_var
													+	'	'
													+	@order_by_var
)
END

This	procedure	can	be	used	to	submit	the	query:

USE	Northwind
GO
EXECUTE	freetext_rank_proc	
					'Description,	KEY_TBL.RANK',																--	Select	list
					'Categories',																															--	From
					'Description',																														--	Column
					'How	can	I	make	my	own	beers	and	ales?',				--	Freetext	search
					'KEY_TBL.RANK	>=	10',																							--	Additional	predicate
					'KEY_TBL.RANK	DESC'																									--	Order	by
GO

Limiting	Result	Sets
In	many	full-text	queries,	the	number	of	items	matching	the	search	condition	is
very	large.	To	prevent	queries	from	returning	too	many	matches,	use	the	optional
argument,	top_n_by_rank,	in	CONTAINSTABLE	and	FREETEXTTABLE	to

specify	the	number	of	matches	according	to	rank	you	want	returned.

With	this	information,	Microsoft®	SQL	Server™	orders	the	matches	by	rank	and
returns	only	up	to	the	specified	number.	This	choice	can	result	in	a	dramatic
increase	in	performance.	For	example,	a	query	that	would	normally	return
100,000	rows	from	a	table	of	one	million	rows	will	be	processed	more	quickly	if
only	the	top	100	rows	are	requested.

If	you	want	only	the	top	3	matches	returned	on	an	earlier	example	using
CONTAINSTABLE,	here's	how	the	query	looks:

USE			Northwind
GO
SELECT			K.RANK,	CompanyName,	ContactName,	Address
FROM						Customers	AS	C
									INNER	JOIN
									CONTAINSTABLE(Customers,Address,	'ISABOUT	("des*",
												Rue	WEIGHT(0.5),
												Bouchers	WEIGHT(0.9))',	3)	AS	K
									ON	C.CustomerID	=	K.[KEY]

Here	is	the	result	set:

RANK	CompanyName										ContactName							address												
----	------------									-----------							-------												
123		Bon	app'													Laurence	Lebihan		12,	rue	des	Bouchers	
65			Du	monde	entier						Janine	Labrune				67,	rue	des	Cinquante	Otages	
15			France	restauration		Carine	Schmitt				54,	rue	Royale					

See	Also

CONTAINSTABLE

FREETEXTTABLE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Accessing	and	Changing	Relational	Data

Using	Transact-SQL	Functions	to	Obtain	Full-text
Property	Values
Several	Transact-SQL	functions	can	be	used	to	obtain	the	values	of	full-text
properties.	For	example,	the	TableFulltextKeyColumn	property	can	be	used	to
programmatically	obtain	the	identity	of	a	unique	key	column	for	a	table.	Also,
the	IsFullTextEnabled	property	can	be	used	to	check	whether	full-text	querying
is	enabled	for	a	database.	This	example	checks	to	see	whether	full-text	querying
is	enabled	for	the	Northwind	database.

USE	Northwind
GO
SELECT	DATABASEPROPERTY('Northwind',	'IsFullTextEnabled')

If	a	value	of	1	is	returned,	the	Northwind	database	has	been	enabled	for	full-text
querying.	A	value	of	0	indicates	that	the	Northwind	database	has	not	been
enabled	for	full-text	querying.

The	table	contains	a	complete	list	of	properties.	It	should	be	noted	that	many	of
these	properties	are	useful	only	for	full-text	administration.

Function Property
COLUMNPROPERTY IsFulltextIndexed
DATABASEPROPERTY IsFulltextEnabled
DATABASEPROPERTYEX IsFulltextEnabled
INDEXPROPERTY IsFulltextKey
OBJECTPROPERTY TableFulltextBackgroundUpdateIndexOn
	 TableFulltextCatalogId
	 TableFulltextChangeTrackingOn
	 TableFulltextKeyColumn
	 TableFulltextPopulateStatus
	 TableHasActiveFulltextIndex
FULLTEXTCATALOGPROPERTYPopulateStatus
	 ItemCount

	 IndexSize
	 UniqueKeyCount
	 LogSize
	 PopulateCompletionAge
FULLTEXTSERVICEPROPERTY ResourceUsage
	 ConnectTimeout
	 IsFullTextInstalled

See	Also

COLUMNPROPERTY

DATABASEPROPERTY

DATABASEPROPERTYEX

FULLTEXTCATALOGPROPERTY

FULLTEXTSERVICEPROPERTY

INDEXPROPERTY

OBJECTPROPERTY

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

Accessing	and	Changing	Relational	Data

Example	of	Combining	Full-text	Administration	and
Full-text	Query
Full-text	indexes	can	be	administered	using	either	SQL	Server	Enterprise
Manager	or	stored	procedures.	Sometimes	it	is	convenient	to	combine	full-text
administrative	stored	procedures	in	the	same	script	as	the	queries.	The	following
example	script	combines	these	tasks:

Create	and	populate	a	table.

Enable	the	pubs	database	for	full-text	searching.

Create	a	full-text	catalog.

Register	the	new	table	and	certain	columns	in	it	for	full-text	search.

Populate	the	new	full-text	catalog	with	full-text	index	information	from
the	new	table.

Execute	a	full-text	query	against	the	new	table.

USE	pubs
--	Create	and	populate	a	table.
IF	EXISTS	(SELECT	TABLE_NAME	FROM	INFORMATION_SCHEMA.TABLES
						WHERE	TABLE_NAME	=	'FulltextTest')
			DROP	TABLE	FulltextTest
GO
CREATE	TABLE	FulltextTest	
													(article_id	int	IDENTITY(100,1)	
																													CONSTRAINT	PK_title_id	PRIMARY	KEY,
															article_title	nvarchar(200)
)

GO
INSERT	FulltextTest	(article_title)	VALUES	(N'Steven	Buchanan	has	always	enjoyed	ice	skating.')
INSERT	FulltextTest	(article_title)	VALUES	(N'Elvis	Stoiko:	The	best	male	figure	skater')
INSERT	FulltextTest	(article_title)	VALUES	(N'Steven	Buchanan	On	Ice:	Skating	Reaches	Tops	in	Public	Opinion	Poll')
INSERT	FulltextTest	(article_title)	VALUES	(N'Last	night,	Steven	Buchanan	skated	on	the	ice!!	Skating	fans	cheer!')
INSERT	FulltextTest	(article_title)	VALUES	(N'Ice-skating	brings	out	the	best	in	Steven.	Buchanan	exults	in	first	victory...')
GO

--	Enable	full-text	searching	in	the	database.
EXEC	sp_fulltext_database	'enable'
GO

--	Create	a	new	full-text	catalog.
EXEC	sp_fulltext_catalog	'StevenBCatalog',	
																									'create'	
GO

--	Register	the	new	table	and	column	within	it	for	full-text	querying,	
--	then	activate	the	table.
EXEC	sp_fulltext_table	'FulltextTest',	
																							'create',	
																							'StevenBCatalog',	
																							'PK_title_id'
EXEC	sp_fulltext_column	'FulltextTest',	
																								'article_title',	
																								'add'
EXEC	sp_fulltext_table	'FulltextTest',	
																							'activate'
GO

--	Start	full	population	of	the	full-text	catalog.	Note	that	it	is
--	asynchronous,	so	delay	must	be	built	in	if	populating	a
--	large	index.

EXEC	sp_fulltext_catalog	'StevenBCatalog',	
																									'start_full'
WHILE	(SELECT	fulltextcatalogproperty('StevenBCatalog',
'populatestatus'))	<>	0
			BEGIN
						WAITFOR	DELAY	'00:00:02'					--	Check
						every	2	seconds	to	see	if	full-text	index	population	is	complete.
			CONTINUE
END

GO

--	Execute	a	full-text	query	against	the	new	table.
SELECT	article_title
FROM	FulltextTest
WHERE	CONTAINS(article_title,	'	"Steven	Buchanan"	AND	"ice	skating"	')

Here	is	the	result	set:

article_title																																													
--	
Steven	Buchanan	has	always	enjoyed	ice	skating.
Last	night,	Steven	Buchanan	skated	on	the	ice!!	Skating	fans	cheer!
Steven	Buchanan	On	Ice:	Skating	Reaches	Tops	in	Public	Opinion	Poll
Ice-skating	brings	out	the	best	in	Steven.	Buchanan	exults	in	first	victory...
(4	row(s)	affected)

Accessing	and	Changing	Relational	Data

Full-text	Querying	of	File	Data
Microsoft®	SQL	Server™	supports	textual	queries	against	data	residing	in	the
file	system,	as	well	as	SQL	Server	data.	Products	and	features	that	support	this
capability	include	SQL	Server	distributed	queries,	Microsoft	Internet
Information	Services	4.0,	and	Microsoft	Indexing	Service	version	2.0.

A	large	portion	of	digitally	stored	information	is	still	in	the	form	of	unstructured
data,	primarily	text,	stored	in	the	file	system.	This	information	is	often	related	to
data	within	the	database,	which	requires	that	queries	be	run	against	both	sources.
However,	it	is	often	inappropriate	to	import	this	data	from	the	file	system.
Distributed	queries	coupled	with	extensions	to	the	SQL	language	make	it
possible	to	write	such	queries	without	the	data.	This	is	known	as	file	content
search.

There	are	two	major	types	of	textual	queries:

Property	search

Applies	filters	to	documents	to	extract	properties,	such	as	author,	subject,
type,	word	count,	printed	page	count,	and	time	last	written,	and	then	issues
queries	against	those	properties.

Full-text	search

Creates	indexes	of	all	nonnoise	words	in	the	documents,	and	then	uses	these
indexes	to	support	linguistic	searches	and	proximity	searches.

For	example,	the	following	query	selects	the	names,	sizes,	and	authors	of	all
Microsoft	Word	files	on	the	D	drive	that	contains	the	phrase	"SQL	Server"	in
close	proximity	to	text.	It	then	joins	this	with	the	writers	table	to	obtain	the
author's	citizenship.

SELECT	Q.FileName,	Q.Size,	Q.DocAuthor,	W.Citizenship	
FROM	OpenQuery(MyLinkedServer,	
															'SELECT	FileName,	Size,	DocAuthor
																FROM	SCOPE(''	"D:\"	'')
																WHERE	CONTAINS(''"SQL	Server"
																																	NEAR()	text'')

																AND	FileName	LIKE	''%.doc%''	'
)	>	0	AS	Q,
					writers	AS	W
WHERE	Q.DocAuthor	=	W.writer_name

File	content	search	relies	upon	the	Microsoft	OLE	DB	Provider	for	Microsoft
Indexing	Service	2.0.	It	also	relies	upon	Indexing	Service	for	the	support	of	the
underlying	filters	and	full-text	indexes.

The	OLE	DB	Provider	for	Indexing	Service	2.0	supports	the	ability	to	support
SQL	queries	against	data	in	the	file	system	independent	of	SQL	Server.	The	core
extensions	to	the	SQL	language	to	support	such	queries	are	the	same	in	both
products.	However,	there	are	certain	extensions	that	are	not	relevant	to	Indexing
Service	2.0.	For	more	information	about	the	syntax	of	full-text	queries	against
data	in	SQL	Server,	see	Full-text	Querying	SQL	Server	Data.

See	Also

CONTAINS

WHERE

FREETEXT

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

Accessing	and	Changing	Relational	Data

Using	Microsoft	Internet	Information	Services	and
Indexing	Service	for	File	Content	Searches
Microsoft®	Internet	Information	Services	(IIS)	4.0	and	Indexing	Service	version
2.0	(both	part	of	Microsoft	Windows	NT®	4.0	Option	Pack)	combine	to	provide
property	filtering	and	searching	as	well	as	full-text	indexing	and	searching	of	file
data.	Text	query	support	against	file	data	has	an	advantage	over	text	query
support	against	database	data	because,	in	Microsoft	SQL	Server™	the	latter	is
limited	to	queries	against	character-based	columns.	These	file	content	search
capabilities	are	independent	of	SQL	Server,	and	support	SQL-based	queries
within	ADO	(ActiveX®	Data	Objects).	The	SQL	used	in	ADO	queries	is
consistent	with	the	SQL	extensions	explained	here.

Format	Filters
Indexing	Service	provides	filters	for	several	popular	file	formats	including
Microsoft	Word,	Microsoft	PowerPoint®,	Microsoft	Excel,	and	HTML.	Filters
are	also	available	for	plain-text.	Filters	can	be	written	by	customers	and	third-
party	vendors	for	other	formats	as	well.	One	purpose	of	a	filter	is	to	provide
support	for	nonplain-text	documents.	The	other	purpose	is	to	capture	property
values	both	from	the	file	content	and	about	the	files.	Assuming	that	each	file	is	a
document,	examples	of	properties	include	each	document's	title,	the	number	of
pages	with	notes	in	each	PowerPoint	document,	the	number	of	paragraphs	in
each	document,	the	last	date	and	time	each	file	was	accessed,	and	the	physical
path	to	each	file.	For	a	list	of	properties,	see	Using	File	Properties	for	File
Content	Searches.	For	a	complete	list,	the	Indexing	Service	documentation.

Phrase	and	Proximity	Searches
Full-text	indexes	for	file	system	searches	are	created	by	scanning	the	content	of
files.	The	process	consists	of	keeping	track	of	the	significant	words	that	are	used
and	where	they	are	located.	For	example,	a	full-text	index	may	indicate	that	the
word	Canada	is	found	at	word	number	227,	word	473,	and	word	number	1017	in
a	given	file.	This	index	structure	supports	an	efficient	search	for	all	items
containing	indexed	words,	and	advanced	search	operations	such	as	phrase
searches	and	proximity	searches.	An	example	of	a	phrase	search	is	looking	for

"white	elephant",	where	white	is	followed	by	elephant.	An	example	of	a
proximity	search	is	looking	for	phrases	in	which	big	occurs	near	house.	To
prevent	the	full-text	index	from	becoming	bloated	with	words	that	do	not	help
the	search,	noise-words,	such	as	a,	and,	and	the,	are	ignored.

Noise	Words
Noise-word	lists	for	many	languages	are	provided	and	the	set	of	supported
languages	is	growing.	The	choice	of	a	particular	noise-word	list	is	based	on	the
language	of	the	material	which	is	file-format-dependent	during	the	filtering
process:	Some	files	have	the	language	setting	by	section	(for	example,	by
paragraph),	whereas	some	specify	the	language	setting	as	a	property	of	the
document.	These	noise-word	lists	should	be	sufficient	for	most	normal
operations,	but	can	be	modified	for	specific	environments	with	a	text	editor.	For
more	information,	see	the	Indexing	Service	2.0	documentation	in	the	Windows
NT	4.0	Option	Pack.

Text-search	Catalog
Indexing	Service	stores	indexes	and	property	values	in	a	text-search	catalog.	By
default,	a	text-search	catalog	named	Web	is	created	when	Indexing	Service	is
installed.	A	given	text-search	catalog	references	one	or	more	IIS	virtual
directories	(also	known	as	virtual	roots).	A	virtual	directory	references	one	or
more	physical	directories	and,	optionally,	other	virtual	directories.	After	a	real
file	is	linked	to	the	text	catalog	through	a	virtual	directory,	Indexing	Service	is
notified	of	the	new	files	that	must	be	indexed	and	begins	the	filtering	and
indexing	of	the	properties	and	content	associated	with	these	files.	Indexing
Service	is	also	notified	of	any	subsequent	changes	to	these	files	and	will	refilter
and	reindex	the	updated	files.

Accessing	and	Changing	Relational	Data

Using	Virtual	Tables	for	File	Content	Queries
Every	SQL	query	must	have	at	least	one	defined	table	specified,	which	means
the	number	and	types	of	columns	is	either	known	in	advance	or	specified	as	part
of	the	query.	A	relational	database	usually	contains	a	number	of	predefined
tables	and	the	meta	data	about	the	columns	of	these	tables	is	stored	in	a	schema.

The	collection	of	files	in	a	file	system,	however,	does	not	generally	have	such	a
predefined	structure.	The	properties	of	a	file	are	perhaps	similar	to	columns,	but
there	is	no	deterministic	set	of	properties	for	files.	A	file	itself	may	be	similar	to
a	row,	but	files	are	usually	not	grouped	into	a	homogeneous	collection	akin	to
the	rows	in	a	table.	Thus,	the	table	concept	is	unclear,	SELECT	*	is	meaningless,
and	both	the	rows	and	the	columns	are	unbounded.	Another	way	of	looking	at
this	is	that	a	file	system	effectively	has	a	universal	schema	consisting	of	every
possible	file	property,	both	already	known	and	as	yet	unknown.

Microsoft®	Indexing	Service	solves	this	problem	by	providing	the	SCOPE
function	which	defines	the	set	of	rows	that	makes	up	a	virtual	table	and	provides
file	properties	that	substitute	for	columns.

Accessing	and	Changing	Relational	Data

Using	SCOPE	Function	for	File	System	Queries
SCOPE	is	specified	in	the	FROM	clause	of	the	Indexing	Service	query	and	is
used	to	specify	the	set	of	files	that	makes	up	a	virtual	table.	Here	is	the	syntax.

The	table	shows	the	syntax	elements	and	their	descriptions.

Syntax	element Description
() The	virtual	table	consists	of	all	the	files

registered	in	the	text	catalog	and	data	source	for
the	linked	server	specified	in	the	OPENQUERY()
function.

DEEP	TRAVERSAL	OF The	virtual	table	consists	of	all	the	files	in	the
directory	at	the	specified	path	or	virtual	directory
as	well	as	all	the	files	in	all	subdirectories	(to	any
level)	are	considered	to	be	part	of	the	virtual
table.	If	neither	DEEP	nor	SHALLOW	is
specified,	DEEP	is	the	default.

SHALLOW
TRAVERSAL	OF

The	virtual	table	consists	of	only	of	the	files	in
the	top-level	directory	at	the	specified	path	or
virtual	directory	are	considered	to	be	part	of	the
virtual	table.	

physical_path This	is	a	path	to	a	real	directory.	If	a	real
directory	is	specified,	the	filtering	and	indexing	is
done	as	part	of	the	processing	of	the	query.	This

can	be	time-consuming.
virtual_directory This	is	the	alias	(or	chains	of	aliases)	assigned	to

a	virtual	directory	that	has	been	registered	in	the
text	catalog	and	data	source	for	the	linked	server
specified	in	the	OPENQUERY()	function.	In	this
case,	the	filtering	and	indexing	probably	has	been
done	and,	thus,	the	query	is	much	faster	than
when	a	physical_path	is	specified.

Accessing	and	Changing	Relational	Data

Using	File	Properties	for	File	Content	Searches
Microsoft®	Indexing	Service	filters	and	maintains	in	excess	of	50	file	properties.
All	of	these	can	be	specified	in	text	file	search	queries.	From	the	perspective	of
writing	a	SELECT	statement,	there	are	3	types	of	properties:

Those	that	can	only	be	specified	in	a	WHERE	clause.

Those	that	can	be	specified	in	a	WHERE	clause	and,	in	addition,	can	be
specified	in	the	ORDER	BY	clause.

Those	that	can	be	specified	in	a	WHERE	clause	and,	in	addition,	can	be
specified	in	a	select	list.

The	table	shows	a	list	of	the	properties.

Property	name Data	type Description

Use	in
ORDER
BY

Use	in
select	list

Access datetime Most	recent	date
and	time	that	the
file	was	accessed.

Yes Yes

Characterization nvarchar	or
ntext

Abstract	of	the
contents	of	the
file.	Note	that,	in
this	version	of
Indexing	Service
this	is	usually	the
first	paragraph	or
first	section	of	a
document.	In	a
future	version,	it
will	be	an	actual
summary.

	 Yes

Contents nvarchar	or
ntext

Main	contents	of
the	file.

	 	

Create datetime Date	and	time	that
the	file	was
created.

Yes Yes

Directory nvarchar Physical	path	to
the	file,	not
including	the	file
name.

Yes Yes

DocAuthor nvarchar Document	author. Yes Yes
DocComments nvarchar Comments	about

the	document.
Yes Yes

DocLastAuthor nvarchar Most	recent	user
that	edited	the
document.

Yes Yes

DocLastPrinted datetime Date	and	time	that
the	document	was
last	printed.

Yes 	

DocPageCount integer Number	of	pages
in	the	document.

Yes 	

DocPartTitles array	of
varchar

Names	of
document	parts:
Slide	titles	in
Microsoft
PowerPoint®
Spreadsheets	in
Microsoft	Excel
Documents	in
Microsoft	Word.

	 	

DocSubject nvarchar Subject	of	the
document.

Yes Yes

DocTitle nvarchar Title	of	the
document.

Yes Yes

DocWordCount integer Number	of	words
in	the	document.

Yes -

FileIndex decimal(19,0)Unique	identifier
of	the	file.

Yes Yes

FileName nvarchar Name	of	the	file. Yes Yes
HitCount integer Number	of	words

matching	query.
Yes Yes

Path nvarchar Full	physical	path
to	the	file,
including	file
name.

Yes Yes

Rank integer Value	from	0	to
1000	indicating
how	closely	this
row	matches	the
selection	criteria.

Yes Yes

Size decimal(19,0)Size	of	file,	in
bytes.

Yes Yes

Customers	and	third-party	vendors	can	write	filters	to	add	to	this	set	of
properties.		They	can	also	add	properties,	for	example,	by	adding	their	own	tags
to	an	HTML	document.	In	addition,	to	permit	the	query	and	retrieval	of	such
user-defined	properties,	the	Transact-SQL	extensions	to	Indexing	Service
include	support	for	a	SET	statement	that	allows	the	specification	of	new	property
names	and	their	associated	types.

Accessing	and	Changing	Relational	Data

Sample	Full-text	Query	Using	File	Content	and
Database	Data
The	first	query	returns	the	title	and	publication	year	of	qualifying	books	that	are
represented	by	files	in	the	virtual	directory	with	the	alias	/pubs.	To	satisfy	the
query,	a	book	must	cost	less	than	$20.00	and	text	in	the	Characterization
property	must	indicate	that	the	book	is	about	ice	hockey.	It	is	known	that	the
year	portion	of	the	Create	property	is	always	the	publication	year	of	the	book.
The	customer	has	defined	the	BookCost	property	(of	type	money),	which	filters
out	the	cost	of	each	book.

SELECT	Q.DocTitle,	DATEPART(YEAR,	Q.Create)	
FROM	OPENQUERY(FileSystem,
															'SELECT	DocTitle,	Create
																FROM	SCOPE(''	"/pubs"	'')
																WHERE	BookCost	<=	20.00
																		AND	CONTAINS(Characterization,	''	"ice	hockey"	'')
															')	AS	Q		

The	table	alias	value	Q	has	been	assigned	to	the	table	returned	by	the
OPENQUERY	function.	This	alias	is	then	used	to	qualify	the	items	in	the	outer
select	list.	Here,	the	SQL	Server	DATEPART()	function	is	used	to	pass	on	only
the	year	portion	of	the	create	datetime	value.

This	second	query	returns	the	same	information	as	the	previous	one.	The
difference	is	that	the	price	of	a	book	is	obtained	from	the	document_cost
column	in	the	BookCost	table	in	the	database,	rather	than	from	a	property	in	the
file	system.	The	primary	key	of	the	BookCost	table	is	the	combination	of
document_author	and	document_title.

SELECT	Q.DocTitle,	DATEPART(YEAR,	Q.Create)	
FROM	OPENQUERY(FileSystem,
															'SELECT	DocTitle,	Create,	DocAuthor,	DocTitle	
																FROM	SCOPE(''	"/pubs"	'')
																		AND	CONTAINS(Characterization,	''	"ice	hockey"	'')

															')	AS	Q,	
					BookCost	as	B
WHERE	Q.DocAuthor	=	B.document_author
		AND	Q.DocTitle	=	B.document_title
		AND	B.document_cost	<=	20.00	

The	table	returned	by	the	OPENQUERY	function	is	joined	to	the	real	BookCost
table	in	the	database,	then	rows	with	a	suitable	cost	are	filtered	out	for	inclusion
in	the	outer	SELECT.

This	last	query	also	joins	data	from	the	file	system	and	the	database	and,	this
time,	data	from	both	appears	in	the	outer	select	list.	Furthermore,	the	Rank
property,	which	indicates	how	well	the	selected	rows	met	the	selection	criteria,
appears	in	the	select	list	and	is	used	to	ensure	that	higher-ranking	rows	appear
before	lower-ranking	rows	in	the	outer	SELECT.	In	this	example,	the	wording	on
the	plaques	in	the	Hockey	Hall	of	Fame	is	recorded	on	files.	There	is	a	file	for
each	plaque,	and	the	plaque	number	can	be	obtained	with	the	DocSubject
property.	The	HockeyHall	table	contains	PlaqueNo,	PlayerName,	StartYear,
and	LastYear	columns	with	the	primary	key	being	PlaqueNo.	The	query	returns
the	PlayerName	and	PlaqueNo	from	the	table	and	the	Rank	and	DocComments
properties	from	the	file.	Only	players	who	might	have	played	for	the	Canadian	or
U.S.	teams	in	the	early	1900s	are	returned.

SELECT	HH.PlayerName,	HH.PlaqueNo,	Q.Rank,	Q.DocComments
FROM	OPENQUERY(FileSystem,
															'SELECT	DocSubject,	DocComments,	Rank	
																FROM	SCOPE(''	"/hall_of_fame"	'')
																WHERE	CONTAINS(Contents,	''	Canada	OR	"United	States"	'')
															')	AS	Q,	
					HockeyHall	as	HH
WHERE	Q.DocSubject	=	HH.PlaqueNo
		AND	HH.StartYear	<	1915	AND	HH.EndYear	<	1899
ORDER	BY	Q.Rank	DESC	

	Accessing and Changing Relational Data Overview
	Query Tools and Programming Interfaces
	Query Tools
	SQL Server Tools
	Using SQL Query Analyzer
	Using SQL Server Enterprise Manager
	Using the osql Utility
	Using the bcp Utility

	Programming Interfaces
	Microsoft Programming Environments
	Application Programming Interfaces
	Connecting to and Disconnecting from an Instance
	Preparing and Executing Statements
	Processing Results

	Transact-SQL Syntax Elements
	Using Identifiers
	Using Identifiers as Object Names
	Object Visibility and Qualification Rules
	Delimited Identifiers

	Using Data Types
	Using Binary Data
	Using char and varchar Data
	Using Date and Time Data
	Alphabetic Date Format
	Numeric Date Format
	Unseparated String Format
	Time Formats
	ODBC Datetime Format

	Using Integer Data
	Using bigint Data

	Using decimal, float, and real Data
	Using Monetary Data
	Using text and image Data
	Using uniqueidentifier Data
	Using Special Data
	Using sql_variant Data

	Using Unicode Data
	Data Type Conversion
	Moving Data to Program Variables
	Converting binary and varbinary Data
	Converting bit Data
	Converting Character Data
	Converting datetime and smalldatetime Data
	Converting float and real Data
	Converting money Data
	Converting decimal and numeric Data
	Data Type Conversions Using OLE Automation Stored Procedures

	Using Constants
	Using Functions
	Using System Functions
	Using String Functions
	Using SUBSTRING
	Comparing CHARINDEX and PATINDEX
	Using STR
	Using STUFF
	Comparing SOUNDEX and DIFFERENCE

	Using text, ntext, and image Functions
	Using Mathematical Functions
	Using Trigonometric Functions
	Comparing CEILING and FLOOR
	Comparing LOG and LOG10
	Using the POWER and EXP Exponential Functions
	Using RAND

	Date Functions
	Using GETDATE
	Comparing DATEPART and DATENAME
	Comparing DATEADD and DATEDIFF

	Functions That Return User Names and User IDs
	Conversion Functions
	Invoking User-Defined Functions
	Invoking User-Defined Functions That Return a Scalar Value
	Invoking User-Defined Functions That Return a Table Data Type
	Invoking Built-in User-Defined Functions

	Expressions
	Using Operators in Expressions
	Arithmetic Operators
	Bitwise Operators
	Comparison Operators
	String Concatenation Operator

	Null Values

	Using Comments
	Using Reserved Keywords

	Accessing and Changing Data Fundamentals
	Choosing a Database
	Using Multiple Statements
	Batches
	Specifying Batches
	Batch Examples

	Stored Procedures and Triggers
	Transact-SQL Scripts
	Using Variables and Parameters
	Transact-SQL Variables
	Parameters
	Application Variables
	Parameter Markers

	Control-of-Flow
	Using BEGIN...END
	Using GOTO
	Using IF...ELSE
	Using RETURN
	Using WAITFOR
	Using WHILE...BREAK or CONTINUE
	Using CASE

	Building Statements at Run Time
	Using sp_executesql

	Permissions
	Using Options in SQL Server
	SET Options
	Database Options
	Server Options
	Hints
	Database Compatibility Level Option
	Behavior if Both ARITHABORT and ARITHIGNORE Are Set ON

	Query Fundamentals
	Parts of a SELECT Statement
	Using the Select List
	Choosing All Columns
	Choosing Specific Columns
	Constants in Query Result Sets
	Computed Values in the Select List
	Assigning Result Set Column Names
	Delimiting Result Set Column Names
	Eliminating Duplicates with DISTINCT
	Limiting Result Sets Using TOP and PERCENT

	Using the FROM Clause
	Using Table Aliases

	Filtering Rows with WHERE and HAVING
	Comparison Search Conditions
	Range Search Conditions
	List Search Conditions
	Pattern Matching in Search Conditions
	NULL Comparison Search Conditions
	Logical Operators
	Logical Operator Precedence

	Transact-SQL Joins

	Sorting Rows with ORDER BY
	Join Fundamentals
	Using Joins
	Using Inner Joins
	Using Outer Joins
	Using Cross Joins
	Using Self-Joins
	Joining Three or More Tables

	Null Values and Joins
	Specifying Joins in FROM or WHERE Clauses

	Advanced Query Concepts
	Using Aggregate Functions in the Select List
	Using COUNT(*)
	Using DISTINCT
	Null Values

	Grouping Rows with GROUP BY
	GROUP BY Components
	GROUP BY and the WHERE Clause
	Choosing Rows with the HAVING Clause
	GROUP BY and ALL
	GROUP BY and Null Values

	Combining Results with UNION
	Guidelines when Using UNION
	Using UNION with Other Transact-SQL Statements

	Using Partitioned Views
	Designing Applications to Use Federated Database Servers

	Subquery Fundamentals
	Subquery Rules
	Qualifying Column Names in Subqueries
	Subquery Types
	Subqueries with Aliases
	Subqueries with IN
	Subqueries with NOT IN
	Subqueries in UPDATE, DELETE, and INSERT Statements
	Subqueries with Comparison Operators
	Comparison Operators Modified by ANY, SOME, or ALL
	Subqueries with EXISTS
	Subqueries with NOT EXISTS
	Using EXISTS and NOT EXISTS to Find Intersection and Difference
	Subqueries Used in Place of an Expression

	Multiple Levels of Nesting
	Correlated Subqueries
	Correlated Subqueries with Aliases
	Correlated Subqueries with Comparison Operators
	Correlated Subqueries in a HAVING Clause

	Conditional Data Processing Using CASE
	Summarizing Data
	Summarizing Data Using CUBE
	Summarizing Data Using ROLLUP
	Summarizing Data Using COMPUTE and COMPUTE BY

	Error Handling
	Handling Errors and Messages in Applications
	Using @@ERROR
	Using PRINT
	Using RAISERROR

	Querying SQL Server System Catalogs
	Managing ntext, text, and image Data
	Retrieving ntext, text, or image Values
	Modifying ntext, text, or image Values

	OLE Automation Objects in Transact-SQL
	OLE Automation Return Codes and Error Information
	OLE Automation Result Sets
	Diagnosing OLE Automation Objects in Transact-SQL
	OLE Automation Sample Script

	Transact-SQL Tips
	Cross-Tab Reports
	Expanding Hierarchies
	Expanding Networks
	Writing International Transact-SQL Statements
	Writing Readable Code

	Modifying Data
	Adding Data
	Adding Rows with INSERT
	Inserting a Row Using INSERT�Values
	Inserting Rows Using INSERT�SELECT
	Inserting Rows Using SELECT INTO

	Adding a Row Using a Result Set Position
	Adding ntext, text, or image Data to Inserted Rows
	Adding Rows Using Bulk Copy Operations

	Changing Data
	Changing Data with UPDATE
	Changing Data Using the SET Clause
	Changing Data Using the WHERE Clause
	Changing Data Using the FROM Clause

	Changing Data with a Cursor
	Changing ntext, text or image Data

	Deleting Data
	Deleting Rows with DELETE
	Deleting Rows in Result Sets
	Deleting All Rows Using TRUNCATE TABLE

	Transactions
	Controlling Transactions
	Explicit Transactions
	Autocommit Transactions
	Implicit Transactions
	Transact-SQL Implicit Transactions
	API Implicit Transactions

	Distributed Transactions
	Transact-SQL Distributed Transactions
	MS DTC Distributed Transactions
	Distributed Queries and Distributed Transactions

	Advanced Topics
	Nesting Transactions
	Transaction Savepoints
	Using Bound Connections
	Adjusting Transaction Isolation Levels
	Rollbacks in Stored Procedures and Triggers
	Transact-SQL Statements Allowed in Transactions
	Coding Efficient Transactions

	Locking
	Concurrency Problems
	Optimistic and Pessimistic Concurrency
	Isolation Levels
	Understanding Locking in SQL Server
	Lock Compatibility
	Key-Range Locking
	Lock Escalation
	Dynamic Locking

	Displaying Locking Information
	Customizing Locking with SQL Server
	Deadlocking
	Detecting and Ending Deadlocks
	Handling Deadlocks
	Minimizing Deadlocks

	Customizing the Lock Time-out
	Customizing Transaction Isolation Level
	Locking Hints
	Customizing Locking for an Index

	Cursors
	Default Result Sets
	Cursor Implementations
	Specifying Cursors
	Transact-SQL Cursors
	API Server Cursors
	Client Cursors

	Fetching and Scrolling
	Controlling Cursor Behavior
	Cursor Types
	Forward-only Cursors
	Fast Forward-only Cursors

	Static Cursors
	Keyset-driven Cursors
	Dynamic Cursors

	Cursor Behaviors
	Scrollable
	Sensitivity

	Cursor Locking
	Cursors and Transactions
	Cursor Concurrency
	Cursor Transaction Isolation Levels

	Changing Rows with Positioned Operations
	Cursor Programming Details
	Choosing a Cursor Type
	Block Cursors
	Implicit Cursor Conversions
	Asynchronous Population
	Scope of Transact-SQL Cursor Names
	Getting Server Cursor Metadata
	Using Cursors with Distributed Queries

	Distributed Queries
	Accessing External Data
	Identifying a Data Source Using a Linked Server Name
	Identifying a Data Source Using the Ad Hoc Name
	Using Pass-Through Queries as Tables

	External Data and Transact-SQL
	Setting SQL-92 Options for Distributed Queries
	Using Transactions with Distributed Queries
	Data Type Mapping

	Collations in Distributed Queries
	Obtaining Meta Data from Linked Servers
	OLE DB Providers Tested with SQL Server
	OLE DB Provider for SQL Server
	Linked Server Considerations in a Clustered SQL Server
	Distributed Queries on Multiple Instances of SQL Server

	OLE DB Provider for ODBC
	OLE DB Provider for Jet
	OLE DB Provider for DTS Packages
	OLE DB Provider for Oracle
	OLE DB Provider for Microsoft Directory Services
	OLE DB Provider for Microsoft Indexing Service
	OLE DB Provider for DB2
	OLE DB Provider for Exchange

	OLE DB Provider Reference for Distributed Queries
	OLE DB Objects Consumed by Distributed Queries
	Four-Part Name Requirements for OLE DB providers
	UPDATE and DELETE Requirements for OLE DB Providers
	INSERT Requirements for OLE DB Providers
	Keyset-Driven Cursors Requirements for OLE DB Providers
	Distribution Statistics Requirements for OLE DB Providers
	SQL Dialect Requirements for OLE DB Providers
	DBPROPVAL_SQL_SUBMINIMUM Syntax
	Programming the SQLPROPSET_OPTHINTS Property Set

	Full-text Search
	Full-text Querying SQL Server Data
	Full-text Index and Querying Concepts
	Implementation of Full-text Search
	Full-text Query Transact-SQL Components
	Using the CONTAINS Predicate
	Searching for Specific Words or Phrases (Simple Term)
	Combining Full-text Search Operators Using AND, OR, and AND NOT
	Searching for Multiple Forms of Words or Phrases (Prefix Term)
	Searching for Any Form of a Specific Word (Generation Term)
	Searching for Words or Phrases Using Weighted Values (Weighted Term)
	Searching for Words or Phrases Close to Another Word or Phrase (Proximity Term)

	Using the FREETEXT Predicate
	Using Full-text Predicates to Query image Columns
	Combining Full-text Predicates with Other Transact-SQL Predicates
	Using the CONTAINSTABLE and FREETEXTTABLE Rowset-valued Functions
	Using Transact-SQL Functions to Obtain Full-text Property Values
	Example of Combining Full-text Administration and Full-text Query

	Full-text Querying of File Data
	Using Microsoft Internet Information Services and Indexing Service for File Content Searches
	Using Virtual Tables for File Content Queries
	Using SCOPE Function for File System Queries
	Using File Properties for File Content Searches

	Sample Full-text Query Using File Content and Database Data

