
indexnext	|aPLib	1.1.1	documentation	»

Welcome	to	the	aPLib
documentation!
aPLib	 is	 a	 compression	 library	 based	 on	 the	 algorithm	 used	 in
aPACK	 (my	 16-bit	 executable	 packer).	 aPLib	 is	 an	 easy-to-use
alternative	 to	 many	 of	 the	 heavy-weight	 compression	 libraries
available.

The	compression	ratios	achieved	by	aPLib	combined	with	the	speed
and	tiny	footprint	of	the	decompressors	(as	low	as	169	bytes!)	makes
it	the	ideal	choice	for	many	products.

Contents:

License
General	Information

Introduction
Compatibility
Thread-safety
Using	aPLib
Safe	Wrapper	Functions
Contact	Information

Compression
Compression	Functions
Safe	Wrapper	Functions
Example

Decompression
Decompression	Functions
Safe	Wrapper	Functions
Example

Acknowledgements
Version	History

indexnext	|aPLib	1.1.1	documentation	»

©	Copyright	1998-2014,	Joergen	Ibsen.	Created	using	Sphinx	1.2.2.

http://sphinx-doc.org/

indexnext	|previous	|aPLib	1.1.1	documentation	»

License
aPLib	 is	 freeware.	 If	 you	 use	 aPLib	 in	 a	 product,	 an
acknowledgement	would	be	appreciated,	 e.g.	 by	adding	 something
like	the	following	to	the	documentation:

This	product	uses	the	aPLib	compression	library,
Copyright	©	1998-2014	Joergen	Ibsen,	All	Rights	Reserved.
For	more	information,	please	visit:
http://www.ibsensoftware.com/

You	may	not	redistribute	aPLib	without	all	of	the	files.

You	may	 not	 edit	 or	 reverse	 engineer	 any	 of	 the	 files	 (except	 the
header	 files	 and	 the	 decompression	 code,	 which	 you	may	 edit	 as
long	as	you	do	not	remove	the	copyright	notice).

You	 may	 not	 sell	 aPLib,	 or	 any	 part	 of	 it,	 for	 money	 (except	 for
charging	for	the	media).

#ifndef	COMMON_SENSE

This	software	is	provided	“as	is”.	In	no	event	shall	I,	the	author,
be	 liable	for	any	kind	of	 loss	or	damage	arising	out	of	 the	use,
abuse	or	the	inability	to	use	this	software.	USE	IT	ENTIRELY	AT
YOUR	OWN	RISK!

This	 software	 comes	 without	 any	 kind	 of	 warranty,	 either
expressed	 or	 implied,	 including,	 but	 not	 limited	 to	 the	 implied
warranties	 of	 merchantability	 or	 fitness	 for	 any	 particular
purpose.

If	you	do	not	agree	with	these	terms	or	if	your	jurisdiction	does
not	allow	the	exclusion	of	warranty	and	liability	as	stated	above
you	are	NOT	allowed	to	use	this	software	at	all.

http://www.ibsensoftware.com/

#else

Bla	bla	bla	..	the	usual	stuff	-	you	know	it	anyway:

If	anything	goes	even	remotely	wrong	-	blame	_yourself_,	NOT
me!

#endif

indexnext	|previous	|aPLib	1.1.1	documentation	»

©	Copyright	1998-2014,	Joergen	Ibsen.	Created	using	Sphinx	1.2.2.

http://sphinx-doc.org/

indexnext	|previous	|aPLib	1.1.1	documentation	»

General	Information

Introduction
aPLib	 is	 a	 compression	 library	 based	 on	 the	 algorithm	 used	 in
aPACK	 (my	 16-bit	 executable	 packer).	 aPLib	 is	 an	 easy-to-use
alternative	 to	 many	 of	 the	 heavy-weight	 compression	 libraries
available.

The	compression	ratios	achieved	by	aPLib	combined	with	the	speed
and	tiny	footprint	of	the	decompressors	(as	low	as	169	bytes!)	makes
it	the	ideal	choice	for	many	products.

Since	the	first	public	release	in	1998,	aPLib	has	been	one	of	the	top
pure	LZ-based	compression	 libraries	available.	 It	 is	used	 in	a	wide
range	of	products	 including	executable	compression	and	protection
software,	 archivers,	 games,	 embedded	 systems,	 and	 handheld
devices.

Compatibility
The	 aPLib	 package	 includes	 pre-compiled	 libraries	 in	 a	 number	 of
formats	(COFF,	ELF,	OMF).

No	standard	library	functions	are	used,	so	the	libraries	can	work	with
most	x86/x64	compilers,	as	long	as	the	name	decoration	and	calling
conventions	match.

The	ELF	folders	contain	a	version	of	aPLib	which	uses	PIC	to	allow	it
to	be	linked	into	shared	libraries	on	linux.

Thread-safety
All	compression	and	decompression	functions	are	thread-safe.

Using	aPLib
For	C/C++	you	simply	include	aplib.h	and	link	with	the	appropriate
library	 for	your	compiler.	 If	you	only	need	to	decompress	data,	or	 if
you	modify	 the	decompression	code,	you	can	compile	and	 link	with
one	of	the	decompression	implementations	in	the	src	folder.

For	 other	 languages	 you	 can	 either	 check	 if	 there	 is	 a	 useable
example,	 or	 use	 the	 DLL	 version.	 Most	 linkers	 allow	 calling	 C
functions	in	an	external	library,	so	usually	there	is	a	way	to	use	one
of	the	libraries.

aPLib	 performs	 memory-to-memory	 compression	 and
decompression,	so	getting	data	into	an	input	buffer	and	allocating	an
output	buffer	is	your	responsibility.

All	functions	return	APLIB_ERROR	(which	is	-1)	if	an	error	occurs.

Attempting	to	compress	incompressible	data	can	lead	to	expansion.
You	can	get	the	maximum	possible	coded	size	by	passing	the	size	of
the	input	to	the	function	aP_max_packed_size().

When	calling	 aP_pack()	 you	have	 to	supply	a	work	buffer.	You	can
get	the	required	size	of	this	buffer	by	passing	the	size	of	the	input	to
the	 function	 aP_workmem_size()	 (in	 the	 current	 version	 this	 function
always	returns	640k).

If	you	do	not	have	a	callback	for	aP_pack(),	you	can	pass	NULL	 (i.e.
0)	 instead.	 The	 callback	 functionality	 allows	 your	 program	 to	 keep
track	 of	 the	 compression	 progress,	 and	 if	 required	 to	 stop	 the
compression.

aP_depack(),	 aP_depack_asm(),	 and	 aP_depack_asm_fast()	 assume

that	 they	 are	 given	 valid	 compressed	 data	 –	 if	 not	 they	 will	 most
likely	crash.	This	is	to	ensure	that	the	basic	decompression	code	is
as	 small,	 fast	 and	 easy	 to	 understand	 as	 possible.	 You	 can	 use
aP_depack_safe()	 or	 aP_depack_asm_safe()	 if	 you	 need	 to	 catch
decompression	 errors.	 Also	 the	 safe	 wrapper	 functions	 provide	 a
nice	interface	that	helps	prevent	potential	crashes.

Safe	Wrapper	Functions
Starting	 with	 aPLib	 v0.34,	 there	 are	 additional	 functions	 included
which	provide	a	better	way	of	handling	 the	compressed	data	 in	 the
example,	and	also	serve	as	an	example	of	how	to	add	functionality
through	function	wrappers.

The	 aPsafe_pack()	and	 aPsafe_depack()	 functions	are	wrappers	 for
their	 regular	 aP_	 counterparts,	 which	 add	 a	 header	 to	 the
compressed	data.	This	header	includes	a	tag,	information	about	the
compressed	and	decompressed	size	of	the	data,	and	CRC32	values
for	the	compressed	and	decompressed	data.

The	example	folder	contains	a	simple	command	line	packer	that	uses
aPLib	to	compress	and	decompress	data.	The	aPsafe_	functions	are
used	 in	 this	 example,	 because	 they	 provide	 extra	 functionality	 like
retrieving	the	original	size	of	compressed	data.

Contact	Information
If	you	have	any	questions,	suggestions	or	bug-reports	about	aPLib,
please	feel	free	to	contact	me	by	e-mail	at:

contact@ibsensoftware.com

You	can	get	the	latest	version	of	aPLib	and	my	other	software	at:

http://www.ibsensoftware.com/

indexnext	|previous	|aPLib	1.1.1	documentation	»

©	Copyright	1998-2014,	Joergen	Ibsen.	Created	using	Sphinx	1.2.2.

mailto:contact%40ibsensoftware.com
http://www.ibsensoftware.com/
http://sphinx-doc.org/

indexnext	|previous	|aPLib	1.1.1	documentation	»

Compression
The	following	is	a	description	of	the	aPLib	compression	functionality.

Compression	Functions

size_t	aP_pack(const	void	*source,	void	*destination,	size_t	length,
void	*workmem,	int	(*callback)(size_t,	size_t,	size_t,	void	*),
void	*cbparam)

Compress	length	bytes	of	data	from	source	to	destination,	using
workmem	as	temporary	storage.

The	 destination	 buffer	 should	 be	 large	 enough	 to	 hold
aP_max_packed_size(length)	bytes.

The	workmem	 buffer	 should	 be	 aP_workmem_size(length)	 bytes
large.

The	callback	 function,	callback,	must	 take	 four	parameters.	The
first	 is	 length,	 the	second	 is	 the	number	of	 input	bytes	 that	has
been	compressed,	the	third	is	how	many	output	bytes	they	have
been	 compressed	 to,	 and	 the	 fourth	 is	 cbparam.	 If	 you	 do	 not
have	a	callback,	use	NULL	 instead.	If	 the	callback	returns	a	non-
zero	value	then	aP_pack()	will	continue	compressing	–	if	it	returns
zero,	aP_pack()	will	stop	and	return	APLIB_ERROR.

Parameters:

source	–	pointer	to	data	to	be	compressed
destination	 –	 pointer	 to	 where	 compressed
data	should	be	stored
length	–	length	of	uncompressed	data	in	bytes
workmem	 –	 pointer	 to	 work	 memory	 used
during	compression
callback	 –	 pointer	 to	 callback	 function	 (or
NULL)
cbparam	–	callback	argument

Returns: length	 of	 compressed	 data,	 or	 APLIB_ERROR	 on
error

size_t	aP_workmem_size(size_t	input_size)
Compute	required	size	of	workmem	buffer	used	by	aP_pack()	 for
compressing	input_size	bytes	of	data.

The	current	code	always	returns	640k	(640*1024).

Parameters: input_size	 –	 length	 of	 uncompressed	 data	 in
bytes

Returns: required	length	of	work	buffer

size_t	aP_max_packed_size(size_t	input_size)
Compute	maximum	possible	compressed	size	when	compressing
input_size	bytes	of	incompressible	data.

The	current	code	returns	(input_size	+	(input_size	/	8)	+	64).

Parameters: input_size	 –	 length	 of	 uncompressed	 data	 in
bytes

Returns: maximum	possible	size	of	compressed	data

Safe	Wrapper	Functions

size_t	aPsafe_pack(const	void	*source,	void	*destination,
size_t	length,	void	*workmem,	int	(*callback)(size_t,	size_t,	size_t,
void	*),	void	*cbparam)

Wrapper	 function	 for	 aP_pack(),	 which	 adds	 a	 header	 to	 the
compressed	data	containing	 the	 length	of	 the	original	data,	and
CRC32	checksums	of	the	original	and	compressed	data.

Parameters:

source	–	pointer	to	data	to	be	compressed
destination	 –	 pointer	 to	 where	 compressed
data	should	be	stored
length	–	length	of	uncompressed	data	in	bytes
workmem	 –	 pointer	 to	 work	 memory	 used
during	compression
callback	 –	 pointer	 to	 callback	 function	 (or
NULL)
cbparam	–	callback	argument

Returns:
length	 of	 compressed	 data,	 or	 APLIB_ERROR	 on
error

See	also: 	aP_pack()

Example
/*	allocate	workmem	and	destination	memory	*/

char	*workmem				=	malloc(aP_workmem_size(length));

char	*compressed	=	malloc(aP_max_packed_size(length));

/*	compress	data[]	to	compressed[]	*/

size_t	outlength	=	aPsafe_pack(data,	compressed,	length,	workmem,	

/*	if	APLIB_ERROR	is	returned,	and	error	occured	*/

if	(outlength	==	APLIB_ERROR)	{

								printf("An	error	occured!\n");

}

else	{

								printf("Compressed	%u	bytes	to	%u	bytes\n",	length,	outlength

}

indexnext	|previous	|aPLib	1.1.1	documentation	»

©	Copyright	1998-2014,	Joergen	Ibsen.	Created	using	Sphinx	1.2.2.

http://sphinx-doc.org/

indexnext	|previous	|aPLib	1.1.1	documentation	»

Decompression
The	 following	 is	 a	 description	 of	 the	 aPLib	 decompression
functionality.

Decompression	Functions

size_t	aP_depack(const	void	*source,	void	*destination)
Decompress	compressed	data	from	source	to	destination.

The	 destination	 buffer	 must	 be	 large	 enough	 to	 hold	 the
decompressed	data.

Parameters:
source	–	pointer	to	compressed	data
destination	–	pointer	to	where	decompressed
data	should	be	stored

Returns:
length	of	decompressed	data,	or	APLIB_ERROR	on
error

Note: 	 This	 function	 is	 not	 included	 in	 the	 libraries,	 but	 is
available	in	src/c/depack.c.	aP_depack_asm_fast()	can	be	used
instead.

size_t	aP_depack_safe(const	void	*source,	size_t	srclen,
void	*destination,	size_t	dstlen)

Decompress	compressed	data	from	source	to	destination.

This	function	reads	at	most	srclen	bytes	from	source,	and	writes
at	most	dstlen	bytes	to	destination.	If	there	is	not	enough	source
or	 destination	 space,	 or	 a	 decoding	 error	 occurs,	 the	 function
returns	APLIB_ERROR.

Parameters:

source	–	pointer	to	compressed	data
srclen	–	size	of	source	buffer	in	bytes
destination	–	pointer	to	where	decompressed
data	should	be	stored
dstlen	–	size	of	destination	buffer	in	bytes

length	of	decompressed	data,	or	APLIB_ERROR	on

Returns: error

Note: 	 This	 function	 is	 not	 included	 in	 the	 libraries,	 but	 is
available	 in	 src/c/depacks.c.	 aP_depack_asm_safe()	 can	 be
used	instead.

size_t	aP_depack_asm(const	void	*source,	void	*destination)
Decompress	compressed	data	from	source	to	destination.

The	 destination	 buffer	 must	 be	 large	 enough	 to	 hold	 the
decompressed	data.

Optimised	for	size.

Parameters:
source	–	pointer	to	compressed	data
destination	–	pointer	to	where	decompressed
data	should	be	stored

Returns:
length	of	decompressed	data,	or	APLIB_ERROR	on
error

size_t	aP_depack_asm_fast(const	void	*source,	void	*destination)
Decompress	compressed	data	from	source	to	destination.

The	 destination	 buffer	 must	 be	 large	 enough	 to	 hold	 the
decompressed	data.

Optimised	for	speed.

Parameters:
source	–	pointer	to	compressed	data
destination	–	pointer	to	where	decompressed
data	should	be	stored

Returns:
length	of	decompressed	data,	or	APLIB_ERROR	on
error

size_t	aP_depack_asm_safe(const	void	*source,	size_t	srclen,
void	*destination,	size_t	dstlen)

Decompress	compressed	data	from	source	to	destination.

This	function	reads	at	most	srclen	bytes	from	source,	and	writes
at	most	dstlen	bytes	to	destination.	If	there	is	not	enough	source
or	 destination	 space,	 or	 a	 decoding	 error	 occurs,	 the	 function
returns	APLIB_ERROR.

Parameters:

source	–	pointer	to	compressed	data
srclen	–	size	of	source	buffer	in	bytes
destination	–	pointer	to	where	decompressed
data	should	be	stored
dstlen	–	size	of	destination	buffer	in	bytes

Returns:
length	of	decompressed	data,	or	APLIB_ERROR	on
error

See	also: 	aPsafe_depack()

unsigned	int	aP_crc32(const	void	*source,	size_t	length)
Compute	CRC32	value	of	length	bytes	of	data	from	source.

Parameters: source	–	pointer	to	data	to	process
length	–	size	in	bytes	of	data

Returns: CRC32	value

Safe	Wrapper	Functions

size_t	aPsafe_check(const	void	*source)
Compute	 CRC32	 of	 compressed	 data	 in	 source	 and	 check	 it
against	 value	 stored	 in	 header.	Return	 length	 of	 decompressed
data	stored	in	header.

Parameters: source	–	compressed	data	to	process

Returns:
length	of	decompressed	data,	or	APLIB_ERROR	on
error

size_t	aPsafe_get_orig_size(const	void	*source)
Return	 length	 of	 decompressed	 data	 stored	 in	 header	 of
compressed	data	in	source.

Parameters: source	–	compressed	data	to	process

Returns:
length	of	decompressed	data,	or	APLIB_ERROR	on
error

size_t	aPsafe_depack(const	void	*source,	size_t	srclen,
void	*destination,	size_t	dstlen)

Wrapper	 function	 for	 aP_depack_asm_safe(),	 which	 checks	 the
CRC32	of	the	compressed	data,	decompresses,	and	checks	the
CRC32	of	the	decompressed	data.

Parameters:

source	–	pointer	to	compressed	data
srclen	–	size	of	source	buffer	in	bytes
destination	–	pointer	to	where	decompressed
data	should	be	stored
dstlen	–	size	of	destination	buffer	in	bytes

Returns:
length	of	decompressed	data,	or	APLIB_ERROR	on
error

See	also: 	aP_depack_asm_safe()

Example
/*	get	original	size	*/

size_t	orig_size	=	aPsafe_get_orig_size(compressed);

/*	allocate	memory	for	decompressed	data	*/

char	*data	=	malloc(orig_size);

/*	decompress	compressed[]	to	data[]	*/

size_t	outlength	=	aPsafe_depack(compressed,	compressed_size,	data

/*	check	decompressed	length	*/

if	(outlength	!=	orig_size)	{

								printf("An	error	occured!\n");

}

else	{

								printf("Decompressed	%u	bytes\n",	outlength);

}

indexnext	|previous	|aPLib	1.1.1	documentation	»

©	Copyright	1998-2014,	Joergen	Ibsen.	Created	using	Sphinx	1.2.2.

http://sphinx-doc.org/

indexnext	|previous	|aPLib	1.1.1	documentation	»

Acknowledgements
Greetings	and	thanks	to:

d’b	for	our	continuous	discussions	of	compression	techniques	:)
TAD	for	all	the	great	ideas	and	the	good	discussions
The	people	who	made	the	Epsilon	Compression	Page
Pasi	‘Albert’	Ojala	for	his	info	on	PuCrunch
RIT	Research	Labs	for	making	Dos	Navigator	..	it’s	the	BEST!
LiuTaoTao	for	making	TR	..	one	of	the	best	debuggers	around!
Eugene	Suslikov	(SEN)	for	making	HIEW	..	it	ROCKS!
Oleg	for	his	work	on	the	TMT	Pascal	code
Veit	Kannegieser	for	his	work	on	the	VPascal	code
METALBRAIN	for	his	work	on	the	16bit	depackers
Gautier	for	his	work	on	the	Ada	code
Alexey	Solodovnikov	for	his	work	on	the	Delphi	code
Steve	Hutchesson	for	his	work	on	the	MASM32	code
Agner	Fog	for	objconv	and	his	great	info	on	calling	conventions
All	 other	 people	 who	 make	 good	 software	 freely	 available	 for
non-commercial	use!

A	special	thanks	to	the	beta-testers:

x-otic	(thx	mate	;)
Oleg	Prokhorov	(great	optimisations	and	bug	reports!)
Lawrence	E.	Boothby
METALBRAIN	(believe	in	miracles,	my	friend	;)
eL	PuSHeR
Elli
Veit	Kannegieser
Gautier

indexnext	|previous	|aPLib	1.1.1	documentation	»

©	Copyright	1998-2014,	Joergen	Ibsen.	Created	using	Sphinx	1.2.2.

http://sphinx-doc.org/

indexprevious	|aPLib	1.1.1	documentation	»

Version	History
v1.1.1	*

Add	VERSIONINFO	resource	to	dll	files,	and	fix	subsystem	in	32-bit
dll	for	Win95	compatibility,	thanks	to	Richard	Russell.

Add	Apple	II	example,	thanks	to	Peter	Ferrie.

Add	PowerBASIC	example,	thanks	to	Wayne	Diamond.

Use	Sphinx	to	generate	docs.

v1.1.0	*
Added	Linux	ELF	shared	library	support,	thanks	to	Vov	Pov.

Added	a	Python	example,	thx	to	Marco	Fabbricatore.

Fixed	a	bug	in	64-bit	aPsafe_check().

Cleaned	up	compression	code.

Changed	to	semver	version	numbering.

v1.01	*
Added	undecorated	names	to	32-bit	dll	again,	thanks	to	James	C.
Fuller.

v1.00	*
Changed	the	license	so	aPLib	can	now	be	used	free	of	charge	for
commercial	use	as	well.

Added	support	for	64-bit	compression	and	decompression.	Since
I	 do	not	 have	a	 running	64-bit	 system	myself,	 any	 feedback	on
how	it	works	would	be	great.

Removed	 support	 for	 a	 number	 of	 old	 compilers/assemblers.	 If

http://sphinx-doc.org/

you	still	need	 these,	please	use	 the	previous	 release	or	contact
me	 (if	 you	need	object	 files	 for	Delphi,	 simply	unpack	 the	OMF
library).

Moved	 most	 of	 the	 examples	 to	 the	 contrib	 folder	 since	 I	 no
longer	 have	 the	 old	 development	 tools	 installed	 to	 check	 they
work.

All	the	assembly	source	files	included	are	now	FASM	syntax.

Simplified	the	build	process	using	objconv	by	Agner	Fog.

Jumped	the	version	number	to	v1.00	to	signify	the	code	is	stable.

v0.44	*
Made	a	few	updates	to	the	documentation.

Fixed	a	rare	crash,	thx	to	Rafael	Ahucha!

v0.43	*
Added	Visual	Basic	6	wrapper,	thx	to	Jon	Johnson!

Added	PowerBuilder	9.0	objects,	thx	to	James	Sheekey!

Fixed	a	rare	crash,	thx	to	cyberbob!

v0.42	*
Added	C	and	assembler	implementations	of	a	new	safe	depacker
aP_depack_safe()	and	aP_depack_asm_safe().

Updated	the	aPsafe_	wrapper	functions.

Renamed	 lib/vc	 to	 lib/mscoff	 and	 lib/watcom	 to	 lib/omf	 to
better	reflect	that	they	are	not	limited	to	those	specific	compilers.

Updated	examples	and	documentation.

v0.41
Added	a	Borland	C++	Builder	example,	thx	to	mouser!

Fixed	vc	library	compatibility	with	Pelles	C.

v0.40
The	 documentation	 was	 rewritten	 in	 html,	 and	 moved	 to	 a
separate	folder.

All	 examples	 were	 updated.	 The	 dll_asm,	 dos32	 and	 tlink32
examples	were	removed,	and	a	small	.NET	example	was	added.

v0.39
All	aPLib	functions	now	return	-1	on	error	instead	of	0.	Added	a
macro	APLIB_ERROR	for	this	value	to	all	include	files.

v0.38
The	 aPLib	 compression	 functions	 should	 now	 be	 fully	 thread-
safe.	Updated	the	C	decompression	code	for	thread-safety.

v0.37
Changed	the	parameters	for	the	callback	function.	It	is	now	called
with	the	input	size,	input	bytes	processed,	output	bytes	produced,
and	a	user-supplied	callback	parameter.	Thx	to	f0dder!

v0.36	*
Fixed	a	bug	which	could	cause	a	match	to	be	found	in	the	area
before	the	input	buffer	under	certain	conditions,	thx	to	Veit!

Changed	the	extension	of	the	C	example	files	from	cpp	to	c.

The	ELF32	version	was	tested	under	FreeBSD,	thx	to	Oleg!

v0.35
Worked	with	a	number	of	‘issues’	in	the	build	process.

Fixed	the	C	depacker	so	it	no	longer	modifies	the	input	buffer,	thx

http://www.borland.com/
http://www.smorgasbordet.com/pellesc/

to	Trevor	Mensah!

v0.34	*
Updated	 the	16bit,	Ada,	Delphi,	C/C++,	TMT	Pascal	and	Virtual
Pascal	examples,	thx	to	METALBRAIN,	Gautier,	Oleg	and	Veit!

Added	a	MASM32	example	program,	thx	to	Steve	Hutchesson!

Fixed	another	bug	which	could	cause	aP_pack()	to	read	one	byte
past	the	input	buffer,	thx	to	Reiner	Proels!

NOTE!!	 the	dll	version	now	expects	 the	callback	 function	 to	use
the	stdcall	calling	convention.

The	 libraries	 now	 include	 the	 function	 aP_max_packed_size(),
which	 given	 the	 input	 size	 returns	 the	 maximum	 possible	 size
aP_pack()	may	produce	(i.e.	the	worst	case	output	size	of	totally
incompressible	data).	At	 the	moment	the	function	simply	returns
(inputsize	+	(inputsize	/	8)	+	64).

v0.33
Added	 ELF32	 version	 of	 aPLib,	 which	 has	 been	 tested	 with
Linux,	 BeOS	 and	QNX.	Modified	 the	C	 example	 to	work	 under
these	operating	systems	too.

v0.32
Discovered	 some	 mixups	 between	 different	 versions	 of	 the
examples	 ..	 started	 rewriting	 some	of	 them.	Added	a	header	 to
the	files	created	by	most	of	the	examples.

v0.31
Improved	compression	ratio	a	little.

v0.30
Fixed	a	bug	in	one	of	the	16bit	depackers,	thx	to	Peter	Hegel!

Updated	the	C/C++	example.

v0.29
Updated	the	Ada	example,	thx	to	Gautier!

I	have	removed	the	‘b’	from	the	version	number.

v0.28b
Updated	the	16bit	depacker	examples,	thx	to	METALBRAIN!

Renamed	the	SRC/C	depacker	files.

v0.27b
Fixed	a	bug	which	could	cause	aP_pack()	 to	read	one	byte	past
the	input	buffer.

v0.26b	*
Added	Visual	C++	and	Borland	C	examples.

Rewrote	 the	example	program,	so	 there	 is	only	a	single	source
file,	which	works	with	BCC32,	DJGPP,	VC++	and	Watcom.

Added	 an	 import	 library	 for	 Visual	 C++	 in	 lib/dll,	 and	 an
example	of	how	to	use	it	(examples/c/make_dll.bat).

The	 libraries	now	 include	 the	 function	 aP_workmem_size(),	which
given	 the	 input	 size	 returns	 the	amount	 of	memory	 required	 for
the	work	buffer	(you	still	have	to	allocate	it	yourself).	This	should
make	upgrading	easier	in	case	I	change	the	memory	requirement
in	 a	 later	 version.	 At	 the	 moment	 the	 function	 simply	 returns
640k.

v0.25b
Added	a	TMT	Pascal	example,	thx	to	Oleg	Prokhorov!

Moved	the	Ada	and	VPascal	examples	to	the	example	dir.

Updated	the	documentation.

v0.24b
Updated	the	16bit	depacker	examples,	thx	to	METALBRAIN!

Made	 all	 assembler	 depackers	 smaller,	 thx	 to	 TAD	 and
METALBRAIN!

v0.23b
Recompiled	with	the	latest	VC++	and	DJGPP	versions.

Did	a	few	speed	optimisations	–	most	versions	should	be	a	little
faster.

v0.22b	*
Improved	the	compression	speed	a	little	more.

Cleaned	up	the	code,	which	made	the	library	somewhat	smaller.

Added	a	C	depacker.

Silent	 update:	 Updated	 the	 16bit	 depackers	 -	 thx	 to
METALBRAIN.	There	is	still	one	problem	with	the	16bit	example
depackers,	but	it	will	be	fixed	for	the	next	release.

v0.21b
Improved	compression	ratio	and	speed.

Added	Ada	support	by	Gautier	-	thx!

Reduced	 the	 memory	 requirement	 from	 1mb	 to	 640k	 –	 which
should	be	enough	for	anybody	;).

v0.20b	*
Added	Delphi	support	and	example	by	Alexey	Solodovnikov	-	thx!

Rewrote	the	aPPack	example,	removing	some	errors,	and	added
16bit	depackers	-	thx	to	METALBRAIN!

Removed	a	lot	of	unneeded	information	from	the	object	files.

Rearranged	all	the	folders	–	hope	it’s	not	too	confusing	;).

Removed	all	the	example	binaries	from	this	file,	and	made	them
available	in	a	separate	file	instead.

Added	 the	 real	 aPACK	 /	 aPLib	 homepage	 URL,	 since
home.ml.org	was	down	for	a	period.

v0.19b	*
Fixed	a	little	mem	bug	(hopefully),	thx	to	ANAKiN!

Ratio	improved	a	little	on	large	files.

Finally	got	around	to	updating	my	DJGPP	installation	:)

NOTE!!	 I	 have	 revised	 the	 license	 conditions	 –	 please	 read
APLIB.DOC.

v0.18b	*
Added	the	new	VPascal	interfacing	code	by	Veit	Kannegieser.

Added	a	library	compiled	for	VC.

Worked	a	little	on	the	depackers.

v0.17b	*
NOTE!!	the	callback	function	now	has	to	return	a	value.	This	is	to
make	 it	 possible	 for	 the	 callback	 function	 to	 abort	 the	 packing
without	exiting	 the	program.	 If	 the	callback	 returns	 1,	 aP_pack()
will	continue	–	if	it	returns	0,	aP_pack()	will	stop	and	return	0.

The	aPACK	/	aPLib	homepage	is	now	up	on:	apack.home.ml.org

I	have	not	gotten	the	new	VPascal	interfacing	code	from	Veit	yet,
so	I	will	add	it	again	in	the	next	version	:)

Since	 I	 have	 added	 so	 much	 new	 stuff,	 I	 am	 releasing	 this
version	to	get	some	feedback	(hint!),	to	find	out	where	to	go	from
here.	If	you	have	Visual	C++,	Borland	C++,	Borland	C++	Builder,
Visual	Basic,	Delphi	 or	 other	 32-bit	 compilers/linkers,	 I	 am	 very
interested	 in	 any	 problems	 you	 might	 have	 using	 aPLib
(especially	the	DLL	version).

v0.16b
NOTE!!	 aP_pack()	NO	LONGER	allocates	 the	memory	 it	 needs
itself.	 This	was	 changed	because	otherwise	 you	would	 need	 to
supply	malloc	and	free	functions	to	the	packer.	Now	you	just	call
aP_pack()	with	a	pointer	to	1mb	of	mem.	This	is	also	faster	if	you
compress	 multiple	 sets	 of	 data,	 because	 mem	 is	 not	 allocated
and	deallocated	every	time.

Added	new	VPascal	interfacing	code	by	Veit	Kannegieser	-	thx!

Added	 DOS32	 and	 TLINK32	 (Win32	 PE)	 example	 code	 and
executables.

Also	added	a	DLL	version	of	aPLib,	and	some	example	code	for
it.	 By	 the	 way	 –	 the	 DLL	 version	 works	 fine	 as	 a	 wdl	 file	 for
WDOSX!

Speeded	up	the	fast	depackers	a	tiny	bit.

v0.15b
Quite	a	few	people	have	pointed	out	 to	me	that	AR	was	not	the
cleverest	 library	 format	 to	 use,	 so	 I	 changed	 to	 OMF	 format,
which	 works	 with	 (at	 least)	 Watcom,	 DOS32	 and
TASM32/TLINK32.

Added	 assembler	 depackers	 for	 TASM	 and	WASM,	 and	 added
the	fast	assembler	depacker	for	NASM.

The	 Watcom	 and	 DJGPP	 libraries	 now	 also	 contain	 compiled

versions	of	 aP_depack_asm()	and	 aP_depack_asm_fast(),	and	 the
APDEPACK.H	 files	 with	 the	 inline	 assembler	 versions	 have	 been
removed.

v0.14b	*
Made	some	minor	enhancements	 to	 the	packer	 -	 ratio	 is	a	 little
better.

Added	 depacking	 code	 for	 NASM,	 converted	 by
Archee/CoNTRACT	-	thx!

v0.13b
Added	depacking	code	for	Pascal	 (Virtual	Pascal),	converted	by
Veit	Kannegieser	-	thx!

Switched	to	AR	format	for	the	Watcom	library.

v0.12b	*
Changed	the	libraries	to	make	them	C-compatible.

v0.11b
aP_depack_asm_fast()	is	a	little	faster.

v0.10b	*
Compression	is	a	little	faster	:)

v0.09b
Compression	is	a	little	better	:)

v0.08b	*
First	release	version	of	aPLib	:)

v0.07b
Fixed	a	bug	that	gave	errors	when	compressing	multiple	sets	of
data	(thx	x-otic!).

Cleaned	up	the	code	a	little.

v0.06b

Changed	the	packer,	so	it	uses	a	fixed	amount	of	mem	(about	1
meg).

A	few	bugs	fixed.

v0.05b
First	version	of	the	aPLib	library	included.

v0.04b
Added	the	DJGPP	fast	asm	unpacker.

v0.03b
Optimised	the	depacker	a	little.

v0.02b
Second	try	;-P

v0.01b
First	try!

Project	started	March	5th	1998.

indexprevious	|aPLib	1.1.1	documentation	»

©	Copyright	1998-2014,	Joergen	Ibsen.	Created	using	Sphinx	1.2.2.

http://sphinx-doc.org/

indexaPLib	1.1.1	documentation	»

Index
A

A
aP_crc32	(C	function)
aP_depack	(C	function)
aP_depack_asm	(C	function)
aP_depack_asm_fast	(C
function)
aP_depack_asm_safe	(C
function)
aP_depack_safe	(C	function)
aP_max_packed_size	(C
function)

aP_pack	(C	function)
aP_workmem_size	(C	function)
aPsafe_check	(C	function)
aPsafe_depack	(C	function)
aPsafe_get_orig_size	(C
function)
aPsafe_pack	(C	function)

indexaPLib	1.1.1	documentation	»

©	Copyright	1998-2014,	Joergen	Ibsen.	Created	using	Sphinx	1.2.2.

http://sphinx-doc.org/

	aPLib 1.1.1 documentation
	License
	General Information
	Compression
	Decompression
	Acknowledgements
	Version History

