
	
Xtreme3D	is	a	3D	engine	for	Game	Maker,	a	popular	game	creation	tool.	As	we
know,	GM	is	mainly	focused	on	2D	games,	and	provides	only	basic	3D	graphics
functionality	that	is	not	very	suitable	for	serious	use.	Fortunately,	GM	supports
plugging	 in	 dynamic	 links	 libraries	 (DLLs)	 that	 can	 greatly	 expand	 its
capabilities.	Xtreme3D	is	such	a	library.	Using	it	you	can	render	3D	graphics	of
any	 complexity	 in	 GM.	 Xtreme3D	 supports	 many	 advanced	 graphics
technologies	such	as	shaders	and	frame	buffers,	and	allows	you	to	create	games
with	 high	 quality	 graphics.	 Nowadays	 it	 is	 the	 only	 actively	 developed	 3D
engine	for	classic	Game	Maker.

This	guide	was	created	to	help	beginners,	providing	comprehensive	material	on
using	 Xtreme3D:	 step-by-step	 tutorials	 with	 code	 examples,	 a	 list	 of	 engine's
functions	 with	 detailed	 explanations,	 computer	 graphics	 glossary	 and	 much
more.	We	hope	that	this	will	help	learning	Xtreme3D,	making	the	process	easy,
interesting	and	fascinating.	

Authors	and	contributors:

Gecko	-	initiator,	chief	editor	and	article	writer;	
Rutraple	aka	Hacker	-	technical	editor	and	proofreader;	
Bill	Collins	aka	williac0374	-	creator	of	an	English	version.

Kudos	 also	go	 to	Xception,	Bami	 and	 all	 others	who,	 in	 one	way	 or	 another,
kindly	provided	any	useful	information	for	the	guide.

Visit	our	website:	http://xtreme3d.tk.	There	you	will	 find	Xtreme3D	examples,
games,	 useful	 utilities,	 a	 collection	 of	 current	 and	 historical	 DLLs	 for	 Game
Maker	and	much	more.	

For	support,	please	refer	to	our	forum:	http://offtop.ru/xtreme3d	

You	 can	 find	 Xtreme3D	 releases	 and	 source	 code	 in	 the	 project's	 GitHub
repository:	https://github.com/xtreme3d/xtreme3d.	

Good	Luck!

http://xtreme3d.tk
http://offtop.ru/xtreme3d
https://github.com/xtreme3d/xtreme3d

Xtreme3D	version	history
Xtreme3D	0.x	to	2.x	(2003-2006)	

Xtreme3D	project	was	launched	in	2003.	The	engine	was	written	in	Delphi	using
GLScene,	 de	 facto	 standard	 3D	 engine	 for	 Object	 Pascal,	 by	 German
programmer	known	as	Xception.	Unfortunately,	we	don't	know	his	real	name.	

The	first	stable	version	of	Xtreme3D	(0.9)	was	released	in	2003.	Its	possibilities
were	 quite	 modest:	 it	 supported	 only	MD2	 and	MD3	 animated	models,	 3DS,
MS3D,	and	OBJ	static	models,	a	number	of	built-in	primitives,	sprites,	2D	and
3D	 text,	 lensflare,	 particles	 and	 skydome.	 Its	 API	 resembled	 native	 GML
function	syntax.

The	main	 goal	 of	 the	 project	was	 creating	 an	 engine	 suitable	 for	 an	RPG	 like
Dungeon	 Master.	 While	 originally	 the	 author	 haven't	 planned	 any	 further
development	of	Xtreme3D,	in	later	versions	its	functionality	quickly	evolved	to
exceed	the	needs	of	a	specific	game	genre.	

For	 example,	 version	 1.7	 (2004)	 featured	 dynamic	 water.	 However,	 the	much
more	serious	breakthrough	was	version	2.0	(2006):	it	featured	total	API	revision,
material	 library	 and	 lightmaps	 support,	 dynamic	 cubemaps,	 whole	 lot	 of	 new
models	 formats	 support,	 render-to-texture,	 loading	 assets	 from	 PAK	 archive,
built-in	shaders	like	bump	mapping	and	cel	shading,	multitexturing,	octrees	and
quadtrees,	DDS	support,	and,	importantly,	an	integrated	physics	engine	-	ODE.	

The	 latest	 release	 from	 Xception	 (2.0.2.0),	 in	 addition	 to	 numerous	 bugfixes,
featured	 two	 major	 innovations:	 terrain	 renderer	 and	 DCE,	 an	 engine	 for
collision	detection	and	responce.	Functionality	of	the	engine	equaled	the	level	of
1997-2003	 commercial	 games.	 Xtreme3D	 2.0	 allowed	 to	 create	 something
similar	 in	 terms	 of	 graphics	 to	 Quake	 2	 and	 3,	 Half-Life,	 GTA	 3,	 The	 Elder
Scrolls:	Morrowind,	and	so	on	(i.e.,	everything	from	pre-shader	era).	

Unfortunately,	Xception	 abandoned	 his	 project.	 The	 engine	was	 closed	 source
and	 therefore	 haven't	 been	 developed	 for	 a	 long	 time.	 Technology,	meantime,
moved	forward.	

Xtreme3D	3.0	(25.08.16)	

Since	2009	Russian-speaking	Xtreme3D	community	constantly	nurtured	an	idea
to	 recreate	 the	 engine	 from	 scratch,	 fixing	 bugs	 and	 adding	 the	 missing
functionality.	Bearing	in	mind	that	Xtreme3D	is	a	thin	wrapper	of	GLScene,	this
task	seemed	simple	and	purely	technical.	However,	unforeseen	problems	arose,
and	 the	 project	 had	 been	 delayed.	 Ultimately	 this	 work,	 begun	 in	 2009	 and
experienced	 a	 long	 period	 of	 stagnation	 and	 a	 few	 flashes	 of	 activity,	 was
completed	only	in	2016.	This	is	how	Xtreme3D	3.0	appeared.	

This	version	of	Xtreme3D,	 like	 its	ancestor,	 is	written	 in	Delphi	using	popular
GLScene	 library	 -	 in	 fact,	 the	 engine	 can	 be	 seen	 as	 almost	 full	 GLScene
wrapper	 for	 Game	Maker.	 Xtreme3D	 3.0	 is	 based	 on	 modified	 and	 extended
GLScene	1.0.0.0714.	

The	following	is	a	brief	list	of	new	features	in	Xtreme3D	3.0:	

-	GLSL	shaders	support	(GLSL	version	1.1	and	1.2)	
-	Shadow	maps	
-	MSAA	anti-aliasing	2x	and	4x	with	NVIDIA	Quincunx	support	
-	Fast	offscreen	rendering	using	p-buffers	
-	Proxy	objects	
-	LOD	(LODka	3D)	and	B3D	(Blitz3D)	model	formats	support	
-	MD3	tags	support	
-	Animation	blending	
-	Material	scripts	
-	TexCombine	shader	
-	Phong	shader	
-	Procedural	textures	based	on	Perlin	noise	
-	Linear	waves	support	for	the	water	
-	New	geometric	primitives	including	frustum,	dodecahedron,	icosahedron,	and
teapot	
-	Improved	explosion	effect	for	meshes	(in	particular,	now	it	is	possible	to	return
exploded	mesh	into	its	original	state)	
-	Rendering	of	grids	
-	Debug	rendering	of	Dummycube	objects	
-	Many	new	functions	for	Camera	objects	
-	 An	 ability	 to	 copy	 the	 transformation	 matrix	 (local	 and	 absolute)	 from	 one

object	 to	another.	You	can	also	attach	objects	 to	skeleton	bones	and	update	 the
local	 matrix	 of	 an	 object	 manually,	 which	 allows	 to	 use	 any	 transformation
model	without	restriction	to	Euler	angles	
-	An	ability	 to	apply	 impulses	 (instant	velocity	changes)	 to	dynamic	objects	 in
DCE.	Also	DCE	now	supports	terrain	
-	 Improved	ODE	 physics.	 Better	 support	 for	 Freeform	 objects	 (both	 for	 static
and	 dynamic	 bodies),	 as	 well	 as	 terrain.	 In	 addition,	 it	 is	 now	 possible	 to	 set
position	when	creating	a	geometry.
Xtreme3D	3.1	(30.09.16)	

The	first	update	of	the	new	Xtreme3D	branch.	Most	important	changes	include:	

-	 Improved	API	 for	Freeform	objects.	 It	 is	now	possible	 to	assemble	Freeform
manually	from	vertices	and	triangles.	There	are	functions	to	transform	individual
meshes,	as	well	as	to	save	Freeform	to	file	
-	New	 file	 formats	 support:	CSM	and	LMTS	 (which	where	 absent	 in	 3.0),	X,
ASE,	DXS	
-	Ragdoll	support	for	ODE	
-	 Movement	 object,	 which	 allows	 to	 define	 movement	 trajectories	 with	 line
segments,	Bezier	curves,	cubic	splines	and	NURBS	
-	 Improved	 BumpShader,	 which	 now	 supports	 shadow	 maps	 and	 automatic
tangent	space	calculation	
-	Improved	PhongShader,	which	now	supports	textures	
-	HUDShape	objects	 -	 2D	shapes	 including	 rectangle,	 circle,	 line	 segment	 and
polygon	
-	Improved	API	for	sprites	-	now	they	support	texture	atlases	(i.e.,	using	only	a
portion	of	the	texture	-	to	make	an	animated	sprite,	for	example),	as	well	as	user-
defined	origin	for	sprite	rotation	
-	Transparency	support	for	PNG	
-	Functions	for	querying	texture	size.	

Xtreme3D	3.2	(21.10.16)	

-	FBO	support.	With	FBOs	you	can	effectively	 implement	multipass	 rendering
and	various	complex	postprocessing	effects	
-	New,	shader-compatible	multitexturing	mechanism	for	materials.	Now	material
can	have	up	to	8	textures,	and	GLSL	shaders	can	automatically	accept	them	as
parameters	
-	 ViewerRenderObject	 function	 for	 rendering	 individual	 objects	 and	 their

children	
-	MaterialLoadTexture	function	
-	Fixed	a	bug	in	ObjectSetParent	function.	

Xtreme3D	3.3	(26.11.16)	

-	 New	 Freeform	 functions	 that	 allow	 to	 read	 and	 modify	 geometry	 (vertices,
normal,	indices,	etc.)	
-	Material	overriding	 for	ordinary	viewers	 and	FBOs.	This	 allows	 to	 specify	a
single	material	which	should	be	applied	to	objects	when	rendering,	ignoring	their
own	materials	
-	Different	color	formats	support	for	FBO,	including	16	and	32-bit	floating	point	
-	FBORenderObjectEx	function	
-	Optional	rendering	shadows	to	user-specified	FBO	instead	of	internal	one	
-	ViewerGetSize,	ViewerGetPosition,	ViewerIsOpenGLExtensionSupported.	

Xtreme3D	3.4	(30.12.16)	

-	TTF	fonts	support	via	Freetype	library	and	rendering	UTF-8	text	
-	ObjectHash	functions	(hash	table	for	storing	any	Xtreme3D	objects)	
-	 Better	 FBORenderObjectEx	 -	 new	 arguments	 allow	 you	 to	 selectively	 clean
color	 buffer	 and	 depth	 buffer,	 and	 copy	 the	 contents	 of	 the	 FBO	 in	 the	main
framebuffer	
-	 Passing	 view	 and	 inverse	 view	 matrices	 to	 GLSL	 shader,	 and	 a	 special
parameter	that	allows	the	shader	to	know	whether	there	is	a	texture	in	a	specified
texture	unit	
-	For	performance	reasons	the	engine	now	doesn't	automatically	generate	octree
and	 tangents/binormals	when	 loading	Freeform	 from	 file.	This	 should	be	done
manually,	 if	 necessary,	 with	 FreeformGenTangents	 and	 FreeformBuildOctree
functions	
-	 Fixed	 a	 bug	 in	 MaterialCubeMapLoadImage.	 Also	 in	 GLSL	 shaders	 now
support	 seamless	 cubemapping	 for	 arbitrary	 mip	 levels	 of	 a	 cubemap	 (if
GL_ARB_seamless_cubemap	is	supported).	

Xtreme3D	3.5	(04.02.17)	

-	ClipPlane	object	
-	Improved	PhongShader	and	BumpShader,	they	now	support	lsSpot	type	lights,
fog,	transparency,	and	shadeless	rendering	(if	lighting	is	turned	off	in	the	viewer

settings).	 Transparency	 is	 set	 via	 the	 alpha	 channel	 of	 the	 diffuse	 texture,	 or,
alternatively,	 through	 the	 alpha	 value	 of	 material's	 diffuse	 color	 (only	 for
PhongShader)	
-	New	material	functions:	MaterialCullFrontFaces,	MaterialSetZWrite	
-	New	ODE	functions	to	manually	set	velocity,	position	and	rotation	for	dynamic
bodies.	

Xtreme3D	3.6	(17.12.17)	

This	 is	 one	 of	 the	 biggest	 releases	 in	 3.x	 branch,	 development	 of	 this	 version
lasted	for	more	than	six	months.	

-	 Support	 for	Windows	 encoding	 for	 TTF	 fonts,	 as	 well	 as	 any	 custom	 8-bit
encoding	
-	 New	 material	 functions:	 MaterialSetTextureExFromLibrary,
MaterialGetNameFromLibrary	
-	 New	 Freeform	 functions:	 FreeformSetMaterialLibraries,
FreeformMeshFaceGroupSetLightmapIndex,
FreeformMeshFaceGroupGetLightmapIndex	
-	Special	proxy	object	for	Actors	(ActorProxy)	
-	 ActorMoveBone	 and	ActorRotateBone	 are	 back.	 Also	 there	 is	 a	 function	 to
switch	visibility	of	Actor	meshes	(ActorMeshSetVisible)	
-	ObjectInFrustrum	is	back	
-	Functions	for	getting	mouse	and	keyboard	input	
-	Functions	for	window	creation	and	management	
-	Functions	for	RGB	color	packing	
-	Experimental	functions	to	save	the	scene	to	file	and	load	from	file	
-	GLSL	shaders	now	don't	show	an	empty	error	message	is	there	are	no	errors	
-	Fixed	bug	with	incorrect	specular	highlights	in	PhongShader	and	BumpShader.	

Lesson	1	
Basics	of	Xtreme3D.	The	theory	of
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

So,	what	is	Xtreme3D?	
First	of	all,	 this	scene.	The	stage	on	which	 the	play	"actors"	 -	 the	objects.	The
object	-	the	main	concept	in	the	Xtreme3D.	This	is	not	the	same	as	the	object	of
Game	Maker.	Objects	of	Xtreme3D	created	and	managed	solely	in	the	software
code.	 The	 three-dimensional	 models,	 entities,	 special	 effects,	 the	 sky	 in	 the
background,	pictures	and	text	on	the	screen	-	all	this	objects.	The	objects	of	any
type	are	controlled,	in	most	cases,	by	the	same	means.	

One	 of	 them	 is	 the	 hierarchy.	 Any	 object	 can	 have	 one	 or	 more	 subordinate
objects	 -	 "the	 descendants".	 Is	 it	 becomes	 their	 "parent"	 (without	 the	 quotes).
The	descendants,	 in	 turn,	may	have	 their	own	descendants,	 and	 so	on.	On	 this
principle	and	builds	the	whole	scene.	What	are	the	benefits?	For	example,	if	you
disable	any	object	 (it	will	be	 invisible	on	 the	screen),	all	his	descendants	 (and,
accordingly,	 the	 descendants	 of	 the	 descendants	 of	 the	 default)	 will	 also	 be
disabled.	In	this	case,	you	can	include	any	of	the	descendants,	and	this	will	not
affect	the	parent.	This	"inheritance"	-	the	most	obvious	from	the	features	of	the
hierarchy.	But	 this	 is	only	 the	 tip	of	 the	 iceberg.	The	descendants	of	 the	object
can	inherit	not	only	his	condition,	but	also	a	number	of	other	characteristics.	For
example,	 the	object	becomes	 tied	 to	 its	parent	 -	where	a	parent,	offspring.	The
descendant	 can	move	 at	 any	 distance,	 but	 only	 concerning	 the	 location	 of	 its
parent.	 It	 is	 easier	 to	 understand,	 imagine	 a	 steamship:	 passengers	 can	 move
freely	 on	 the	 deck	 or	 stand	 on	 the	 spot,	 but	 all	 of	 them,	 as	 a	 matter	 of	 fact,
moving	along	with	the	steamship.	

Thus,	 we	 gradually	 come	 to	 the	 displacement.	 In	 computer	 graphics	 any
movements,	 rotation,	 and	 scale	 are	 combined	 under	 the	 general	 term
"transformation".	 The	 transformation	 of	 the	 Xtreme3D	 is	 carried	 out	 by	 three
mutually	 perpendicular	 to	 the	 coordinate	 axes:	 X,	 Y,	 and	 Z.	 The	 X	 axis	 is

directed	 to	 the	 right,	 the	 Y	 axis	 is	 up,	 and	 the	 Z-axis	 -	 "in	 depth".	 This	 is	 a
coordinate	 system	 is	 called	 the	Cartesian	 rectangular,	 on	 behalf	 of	 the	 French
mathematician	 Rene	 Descartes.	 The	 location	 of	 any	 point	 in	 the	 coordinate
system	 is	 defined	 by	 three	 of	 its	 projections	 on	 the	 axle.	 For	 example,	 points
(-1.0,-1),	(-1,0,1),	(1,0,1)	and	(1,0,-1)	form	a	square	2x2,	which	lies	on	the	XY
plane.	Thus,	any	object	of	Xtreme3D	has	three	coordinates,	describing	the	point
of	his	position	in	space.	Usually	this	point	coincides	with	its	own	center	of	 the
object.	The	position	of	the	object	in	space	can	be	transferred	on	the	absolute	start
coordinates	scene	(0,0,0),	or	on	the	coordinates	of	 its	parent,	 if	 there	is	one.	In
the	second	case	referred	to	the	so-called	local	coordinates	of	an	object	in	which
the	 point	 (0,0,0)	 the	 descendant	 is	 always	 the	 point	 of	 the	 provisions	 of	 the
parent.	

Moving	an	object	 is	carried	out	by	means	of	 the	vector.	Vector	 -	 this	 segment,
directed	 from	 the	 point	 (0,0,0),	 in	 local	 or	 absolute	 coordinates,	 to	 any	 other
arbitrary	 point	 in	 the	 same	 coordinates	 and	 describes	 the	 coordinates	 of	 the
point.	 The	 object	 can	 be	moved	 to	 any	 distance	 to	 the	 side,	which	 shows	 the
vector.	For	example,	vector	(0,10,0)	moves	the	object	on	the	ten	units	of	up.	
But,	since	it	was	not	always	easy	to	manually	calculate	the	vector	for	the	desired
direction	 of	 travel,	 used	 in	 the	 corners	 of	 the	 Eulerian	 model	 (named	 by	 the
name	of	Leonard	Euler,	the	Swiss	scholar).	They	define	the	angle	of	rotation	of
the	object	around	its	local	axes	X,	Y	and	Z.	The	zero	angle	is	perpendicular	 to
the	 axis.	Rotate	 around	 the	X-axis	 is	 called	 the	 pitch,	 around	 the	Y-axis,	Turn
around	the	axis	of	Z	-	Roll.	It	is	not	difficult	to	guess	that,	for	example,	the	angle
(90,0,0)	tips	the	object	back	to	90	degrees.	
Received	as	a	result	of	these	turns	of	the	Transformation	determines	the	direction
of	the	object	(Direction),	which	also	describes	a	single	vector.	The	unit	vector	is
different	from	the	normal	that	its	length	equals	one	(for	the	vector	describing	the
direction,	 the	 length	 does	 not	 matter).	 For	 example,	 vector	 directions	 (0,1,0)
corresponds	to	the	corner	(90,0,0).	
Thus,	we	get	another	characteristic	of	the	object	-	its	direction.	

Moving	an	object	in	his	direction	is	accomplished	by	multiplying	the	vector	of
the	direction	at	a	distance	of	displacement:	

(0,	0,	1)	*	10	=	(0,	0,	10)	
(1,	-1,	1)	*	10	=	(10,	10,	10)	

And,	as	a	result,	we	get	a	new	object	coordinates	(relative	to	the	previous).	

In	addition	to	the	vector	of	Direction,	an	object	is	also	automatically	calculated
vectors	Up	and	Left,	indicating,	respectively,	up	and	to	the	left	on	the	direction.
These	three	mutually	perpendicular	vectors	form	a	new	coordinate	system	(Left
=	X,	Up	=	Y	Direction	=	Z),	which	they	inherit	all	descendants	of	the	object.	For
the	descendant,	it	becomes	the	local	and	all	of	its	transformation	are	specified	in
it.	Is	the	following:	if	we	create	a	descendant	of	the	object	and	move	it	to	some
distance	 away,	when	 the	 parent	 of	 the	 descendant	will	 rotate	 around	 it,	 as	 the
earth	 revolves	 around	 the	 sun!	 This	 is	 an	 incredibly	 useful	 property	 of	 the
hierarchy.	As	you	will	soon	make	sure	that	 it	 is	used	in	 the	Xtreme3D	literally
every	step	of	the	way.	

The	third	is	the	transformation	-	scale.	It	changes	the	size	of	the	object	on	three
axes	(the	width,	height,	length).	You	can	scale	on	the	current	value	of	the	scale
or	 completely	 (to	 set	 a	 specific	 size	 in	 absolute	 units).	 Also	 scaled	 and
coordinate	 system,	 The	�����������	 descendants	 of	 the	 object.
That	is,	the	descendant	will	not	only	be	reduced,	but	also	close	to	the	parent,	as
if	 we	 reduce	 the	 whole	 system	 of	 objects.	 Strictly	 speaking,	 the
parent+descendants	-	this	is	the	system	objects.	It	can	be	considered	as	one	big
object,	consisting	of	separate	logically	grouped	items.	

Thus,	all	of	the	objects	in	our	scene,	there	are	certain	mathematical	patterns.	If
you	are	aware	of	these	patterns,	explore	the	Xtreme3D	will	be	easy.

Lesson	2	
The	creation	of	a	simple	scene
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

Before	starting	 the	practical	 lessons,	 let	 something	be	clarified.	Xtreme3D	 is	a
dynamic-link	library	(DLL).	A	DLL	is	nothing	but	a	compiled	set	of	instructions
written	in	any	programming	language,	with	a	view	to	using	the	programs	in	any
other	language	that	supports	dlls.	Xtreme3D,	for	example,	written	in	Delphi,	and
it	contains	 about	 580	 such	 instructions.	Call	 from	 for	 ease	of	 functions.	Using
the	Game	Maker	we	can	create	scripts,	each	of	which	will	call	a	function	from
the	library.	This	will	cause	the	function	through	the	GML	code	under	names	of
scripts.	 This	 is	 a	 typical	 example	 of	 the	 functions	 of	 the	 Xtreme3D:
ObjectSetMaterial(object,'material').	 Some	 of	 the	 functions	 return	 different
numeric	 and	 string	 values.	 For	 example,	 when	 an	 object	 is	 returned	 to	 its
identifier	 (ID),	which	must	be	 recorded	 in	a	variable	 for	 further	work	with	 the
object.	

The	next	important	point:	the	constant.	Many	of	the	features	used	as	arguments
to	 the	 numerical	 codes,	 and	 it	 is	 not	 always	 easy	 to	 remember,	 what	 code	 is
needed	 to	 achieve	 the	 desired	 effect	 or	 the	 desired	 mode.	 So	 you	 can	 code
instead	of	entering	the	names	of	constants	(the	list	of	constants	and	their	numeric
values	can	be	seen	in	the	Global	Game	Settings	tab,	the	constants).	The	TACIT
tradition	 constants	 Xtreme3D	 look	 like:	 tmmCubeMapReflection.	 Lowercase
letters	 at	 the	 beginning	 (TMM)	 indicate	 the	 property,	 which	 includes	 the
constant.	 In	 this	 case,	 The	 TextureMappingMode	 and	 function,	 feeding	 it	 -
MaterialSetTextureMappingMode('material',tmm),	 where	 instead	 of	 tmm
populates	the	desired	tmm-constant.	
Remember	 that	 constants	 are	 part	 of	 the	 Game	 Maker/GML	 and	 to	 the
Xtreme3D.dll	files	they	have.	

To	start	you	will	need	a	file	*.gm6	(or	*.gmk	for	Game	Maker	7),	with	a	ready
set	of	functions	and	constants	Xtreme3D.	The	file	you	can	take	from	the	official

distribution	engine.	In	preparation	for	the	work	of	the	sufficiently	removed	from
all	 objects.	Let's	 call	 it	 conditionally	 project.gm6.	Copy	 it	 to	 a	 separate	 folder
and	add	to	the	same	xtreme	files3d.dll	and	ode.dll.	

Open	 the	 project.gm6.	 Create	 a	 new	 object	 of	 Game	 Maker	 and	 name	 it	 o
engine.	Add	an	event	Create	and	drag	the	action	Execute	a	piece	of	code	with	the
tab	 Control.	 If	 you	 have	 already	 worked	 with	 GML,	 no	 problems.	 If	 not,	 we
strongly	recommend	you	to	leave	until	the	Xtreme3D	and	explore	the	language
on	the	built-in	graphics	Game	Maker.	

The	 following	 code	 loads	 the	 functions	 from	 the	 library	 of	 xtreme3d.dll	 into
memory	and	starts	the	operation	of	the	engine:	

Dll_init('xtreme3d.dll');	
EngineCreate();	

We	go	further:	

View	=	ViewerCreate(window	handle,	0,	0,	640,	480);	
ViewerSetLighting(view,	1);	

In	order	to	observe	anything	in	the	window	with	the	game,	you	will	need	a	View
(Viewer).	A	view	is	a	rectangle,	where	the	scene	rendering	Xtreme3D.	All	 that
outside	this	rectangle,	"belongs"	built-in	graphics	Game	Maker.	We	have	created
a	 kind	 of	 resolution	 of	 640x480,	 the	 size	 of	 the	window,	 so	 that	 the	Graphics
Game	Maker	and	will	not	be	seen.	The	position	of	our	species	on	screen	-	(0.0).
This	is	essentially	a	coordinate	of	the	upper	left	corner	of	the	view,	on	the	upper-
left	corner	of	the	window.	
Also	 in	 the	 function	of	 the	ViewerCreate	 transmitted	window	 handle()function
GML,	 which	 returns	 the	 id	 of	 the	 main	 window	 of	 the	 game.	 Thus,	 the
appearance	will	be	"tied"	to	the	window	of	the	game	Game	Maker	that	we	need.	
Strangely	 enough,	 the	 view	 -	 it	 is	 also	 an	 object,	 so	 when	 creating	 we
�������	its	id	in	the	variable,	in	our	case,	the	view.	We	can	use	the	ID
of	the	Kind	to	change	its	properties.	At	the	moment	we	are	interested	only	in	one
thing	 -	 the	 use	 of	 light	 (ViewerSetLighting).	 If	 you	 turn	 off	 the	 lights	 (0),	 all
objects	will	look	flat	and	�����������.	Therefore,	we	include	(1).
However,	in	order	that	the	lights	worked,	you	have	to	create	the	light	sources:	

Light	=	LightCreate(lsOmni,	0);	

ObjectSetPosition(light,	0,	18,	0);	

LightCreate	function	creates	a	light	source	and	returns	its	id	as	the	light	is	also
an	object.	In	the	Xtreme3D	there	are	three	types	of	light	sources	-	spot	(constant
lsOmni)	 aimed	 (lsSpot)	 and	 parallel	 (lsParallel).	 Dot	 emits	 light	 equally	 in	 all
directions	 (as,	 for	 example,	 the	 lamp),	 aimed	 shines	 within	 the	 cone	 (as	 a
flashlight),	parallel	emits	parallel	beams	in	the	direction	of	one	axis	(simulation
of	sunlight).	We	can	assign	to	the	light	source	of	the	parent,	but,	since	there	is	no
scenic	sites	we	 have	 not	 yet,	�����������	 instead	 of	 parents	 0.
Creating	 a	 point	 light	 source,	 you	 can	 clarify	 its	 position	 in	 space	 -	 the	 point
(0,18,0).	

We	still	do	not	see	that	as	the	light	had	nothing	to	cover.	Create	a	simple	visible
object.	But	before	that	you	need	to	create	the	root	objects	in	our	scene:	

Global.back	=	DummycubeCreate(0);	
Global.scene	=	DummycubeCreate(0);	
Global.front	=	DummycubeCreate(0);	

DummycubeCreate	function	creates	a	mannequin	(Dummycube)	and	returns	its
ID.	The	object,	 this	 fun	name,	 plays	 an	 important	 role	 in	 the	 formation	of	 the
hierarchy.	The	dummy	is	not	visible,	it	is	the	object	of	a	Ghost.	But,	at	the	same
time,	 it	 has	 all	 the	 usual	 properties	 of	 objects,	 which	 we	 considered	 in	 the
previous	chapter	-	coordinates	in	space,	 the	Direction	vectors,	Up,	Left,	and	so
on.	You	 can	 freely	move,	 rotate	 and	 scale.	 The	 dummy	 can	 have	 parents	 and
descendants.	In	this	case,	we	created	three	dummy	root.	The	root	-	because	it	is
above	them	in	the	hierarchy	of	the	nothing	will	be.	All	of	the	other	scenic	objects
will	be	the	descendants	of	these	three	Mannequins:	
Global.back	-	a	parent	for	objects	in	the	background	(sky,	background,	etc.)	
Global.scene	-	a	parent	for	objects	in	the	scenic	plan	(all	3D	objects)	
Global.front	-	a	parent	for	objects	on	the	screen	(sprites,	text,	etc.)	
It	is	important	to	keep	this	to	create	mannequins	-	first,	then	the	scene,	then	the
screen.	This	is	necessary	so	that	the	engine	can	render	the	objects	in	the	correct
order.	This	procedure	 is	called	 sorting:	 all	 of	 the	objects	 in	 the	 redrawn	 in	 the
order	in	which	have	been	established,	they	themselves	or	their	parents.	

Create	the	first	object	of	scenic	plan	-	plane:	

Plane	=	PlaneCreate(0,64,64,8,8,global.scene);	

ObjectPitch(plane,90);	

The	 plane	 is	 one	 of	 the	 entities	 of	 simple	 geometrical	 bodies,	 which	 are
generated	by	the	engine.	PlaneCreate	function	creates	a	plane	and	returns	its	ID.
Let's	look	at	the	arguments:	
0	 -	 Determines	 whether	 to	 submit	 to	 the	 plane	 of	 one	 square	 (abbreviated	 -
������),	 or	 split	 into	 several;	 us	 for	 the	 beautiful	 lights	 just	 a	 few,	 so
point	0;	
64,64	-	the	size	of	the	plane;	
8.8	-	the	number	of	������.	In	total,	the	plane	will	be	broken	up	into	8	*
8	=	64	������;	
Global.scene	-	parent.	
We	have	created	a	plane	by	default,	vertical,	therefore	have	to	rotate	90	degrees
on	 the	X-axis.	 If	 you	 remember,	 turn	 on	 the	X-axis	 is	 called	 the	 pitch,	 so	we
need	the	function	ObjectPitch.	

We	 still	 do	 not	 see	 that	 as	 not	 created	 a	 camera.	 The	 camera	 is	 also	 object,
invisible,	as	well	as	the	dummy.	Used	for	the	projection	of	the	3d	scene	on	the
plane	of	the	screen,	rather,	on	the	plane	of	the	view.	The	projection	is	carried	out
from	the	standpoint	of	camera	position	in	the	direction	of	the	vector	Direction	of
the	camera.	Simply	put,	which	looks	at	the	camera,	we	see,	as	in	real	life.	

CamPos	=	DummycubeCreate(global.scene);	
ObjectSetPosition(camPos,	0,	10,	0);	
Camera=CameraCreate(camPos);	
ViewerSetCamera(view	camera);	

Before	 the	 creation	 of	 the	 cameras	 we	 created	 for	 her	 parents	 -	 one	 of	 the
dummy.	 This	 is	 to	 ensure	 that	 the	 camera	 itself	 can	 rotate	 freely,	 and	 its
movement	controlled	through	this	mannequin.	
ViewerSetCamera	 function	 indicates	 the	 mean,	 what	 kind	 of	 camera	 used	 to
transfer	images.	

As	you	can	see,	until	all	is	simple	enough.	Only	the	last:	

Set_automatic_draw(0);	

This	function	we	disable	the	automatic	graphics	drawing	Game	Maker	-	all	 the
same	kind	of	it	completely	closes,	it	makes	no	sense	to	spend	system	resources

on	its	processing.	

The	 scene	 we	 created	 is	 to	 make	 it	 work.	 Add	 an	 event	 Step	 and	 add	 the
following	code:	

If	the	keyboard_check(vk_left)	ObjectTurn(camPos,-2);	
If	the	keyboard_check(vk_right)	ObjectTurn(camPos,2);	
If	the	keyboard_check(vk_up)	ObjectMove(camPos,-1);	
If	the	keyboard_check(vk_down)	ObjectMove(camPos,1);	

Now,	 when	 the	 user	 presses,	 say,	 "Up",	 the	 camera	 will	 move	 forward
(respectively,	and	for	the	key	"Back").	To	swivel	the	camera	uses	the	keys	"Left"
and	 "right".	Rotate	 the	Y-axis	 (Turn),	 and	 therefore	 uses	 the	ObjectTurn.	Note
that	the	transformation	we	use	not	the	camera,	and	its	parent.	Thanks	to	this	then
we	will	be	able	to	rotate	the	camera	using	the	mouse.	

Update(1.0/room_speed);	
ViewerRender(view);	

These	two	functions	should	be	cause,	otherwise	the	engine	will	be	"paralyzed".
Update	updates	the	status	of	the	objects	in	the	scene,	ViewerRender	commits	the
drawing	of	the	specified	type.	In	the	function	of	the	Update	should	be	referred	to
the	step	time	to	update	the	animation.	It	is	measured	in	seconds	and	can	be	equal
to	 the	 time	between	 two	 frames	of	 the	 rendering.	Usually	 in	 the	Game	Maker
this	 time	 is	 limited	 in	 the	 settings	 of	 rooms	 -	 is	 set	 by	 the	 so-called	 "speed
rooms",	the	maximum	manpower	frequency,	measured	in	frames	per	second.	It's
usually	 set	 The	�����	 60	 -	 This	 value	 corresponds	 to	 the	 frequency	 of
updating	 the	 monitor.	 We	 can	 calculate	 the	 time	 interval	 between	 frames,
dividing	the	unit	(1	second)	on	this	value.	

That	is	all!	You	can	now	put	our	object	o	engine	in	the	room	and	run.	

	

Congratulations,	you	have	created	its	first	working	program	Xtreme3D!	Here	is
the	complete	source	code:	

In	the	event	Create:	

Dll_init();	
EngineCreate(window	handle());	
View	ViewerCreate	=(0,	0,	640,	480);	
ViewerSetLighting(view,	1);	
Light=LightCreate(lsOmni,	0);	
ObjectSetPosition(light,	0,	18,	0);	
Global.back	=	DummycubeCreate(0);	
Global.scene	=	DummycubeCreate(0);	
Global.front	=	DummycubeCreate(0);	
Plane	PlaneCreate	=(0,	64,	64,	8,	8,	global.scene);	
ObjectPitch(plane,	90);	
CamPos	=	DummycubeCreate(global.scene);	
ObjectSetPosition(camPos,	0,	10,	0);	
Camera	=	CameraCreate(camPos);	
ViewerSetCamera(view	camera);	
Set_automatic_draw(0);	

In	the	event	of	the	Step:	

If	the	keyboard_check(vk_left)	ObjectTurn(camPos,	-2);	
If	the	keyboard_check(vk_right)	ObjectTurn(camPos,	2);	
If	the	keyboard_check(vk_up)	ObjectMove(camPos,	-1);	

If	the	keyboard_check(vk_down)	ObjectMove(camPos,	1);	
Update();	
ViewerRender(view);

Lesson	3	
The	hierarchy	of	objects
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

The	 concept	 of	 hierarchy	 we	 have	 already	 met,	 but	 until	 now	 we	 have	 not
viewed	 it	 in	 practice.	 Many	 who	 are	 not	 familiar	 with	 the	 approach	 of	 the
objects,	 and	 do	 not	 know	 what	 a	 huge	 savings	 of	 time	 and	 effort	 here.	 The
hierarchy	allows	without	any	work	to	do	that	too	difficult	or	impossible	without
its	 use.	 It	 comes	 to	 the	 specifics	 of	 the	movements	 of	 objects	 in	 some	 special
cases.	

Imagine,	for	example,	a	situation:	it	is	necessary	to	simulate	a	simple	star	system
-	 the	sun	and	rotating	around	 the	planet.	Around	 the	world,	 in	 turn,	 rotates	 the
satellite.	For	simplicity,	we	will	still	think	in	two-dimensional	space.	How	can	I
do?	

Let	 the	Sun	-	 the	sun,	 the	Planet	-	 the	planet,	Moon	-	 the	satellite.	Each	object
has	two	coordinates	are	X	and	Y,	as	well	as	the	angle	of	rotation	around	its	axis	-
A.	Then	(in	the	����������)	

Sun.X	=	0	
Sun.Y	=	0	
Planet.X	=	Sun.X	+	cos(Sun.A)	*	10	
Planet.Y	=	Sun.Y	+	sin(Sun.A)	*	10	

Taking	 into	 account	 that	 the	 distance	 between	 the	 sun	 and	 the	 planet	 is	 10
conditional	 units.	When	 turning	 the	 sun	 around	 its	 axis,	 the	 planet	 will	 rotate
around	it,	moving	the	coordinates	calculated	from	the	rotation	angle	of	 the	sun
and	 the	 distances	 to	 be	 searched.	 Now	 it	 is	 easy	 to	 likewise	 calculate	 and
coordinates	of	the	Satellite:	

Moon.X	=	Planet.X	+	cos(Planet.A)	*2	

Moon.Y	=	Planet.Y	+	sin(Planet.A)	*2	

Manually	But	this	is	not	always	convenient.	Especially,	if	the	system	is	not	three
object	as	well,	for	example,	all	ten.	Or	the	location	of	objects	varies	periodically
(for	example,	the	satellite	is	lifting	from	one	planet	and	goes	to	the	other).	Wise
will	 automate	 the	 process	 by	 entering	 for	 each	 object	 in	 the	 property	 of	 the
parent	(Parent):	

Planet.Parent	=	Sun	
Moon.Parent	=	Planet	

And	update	the	coordinates	of	the	objects	the	same	for	all	formula:	

Object.X	=	Object.Parent.X	+	cos(object.Parent.A)	*2	
Object.Y	=	Object.Parent.Y	+	sin(object.Parent.A)	*2	

And	is	the	simplest	hierarchy.	

With	 2D	 graphics	 all	 is	 relatively	 simple.	 But	 what	 about	 the	 3d?	 In	 the	 3D
graphics	in	addition	to	the	sinuses	and	���������	used	vectors	and
matrices.	Operations	with	them	quite	�����������	and	extremely
difficult	 for	 understanding	 a	 newcomer.	 In	 addition,	 all	 too	 often,	 to	 carry	 out
such	operations	at	 the	level	of	the	GML	irrational:	for	the	storage	arrays	under
the	matrix	would	require	more	memory	and	mathematical	operations	with	them
will	 reduce	 the	FPS.	But	not	 all	 so	 terribly.	Xtreme3D	assumes	all	 demanding
computing,	executing	them	at	the	level	of	the	machine	code,	so	its	hierarchy	will
work	much	faster	and	more	accurately	than	the	written	manually	on	the	GML.	

When	using	 the	built-in	hierarchy	of	 the	Xtreme3D	all	work	 is	directed	by	 the
parents	to	objects.	The	trick	is	that	the	descendant	inherits	the	coordinate	system
of	 the	 parent.	 For	 example,	 the	 coordinates	 of	 the	 parent	 (X,	 Y,	 Z)	 are	 the
coordinates	 of	 the	 Center,	 on	 which	 the	 count	 their	 own	 coordinates	 its
descendant	(X+x,	y+Y,	Z+z).	The	descendant,	in	turn,	sends	its	own	coordinates
to	their	descendants,	and	so	on.	Own	object	coordinates	are	called	local.	

The	 coordinate	 system	 may	 be	 transformed	 displacement,	 rotation,	 or	 scale.
Turning	the	Local	coordinate	system	of	the	parent	causes	change	of	direction	of
the	axes	in	the	inherited	coordinate	system,	the	descendant,	which	automatically
leads	to	its	rotation	in	space.	If,	at	the	time	of	the	rotation	of	a	descendant	was	at

some	distance	 from	 the	 center	 of	 the	 inherited	 them	 coordinate	 system,	 it	will
look	 like	 the	 rotation	 of	 the	 descendant	 of	 around	 its	 parent.	 Just	 as	 in	 our
example!	

To	 establish	 a	 system	 of	 sun	 and	 planets	 in	 our	 case	 it	 is	 sufficient	 to	 write
something	like	this:	

Sun=SphereCreate(4,	24,	24,	global.scene);	
ObjectSetPosition(sun,	0,	0,	0).	
Planet=SphereCreate(1,	24,	24,	sun);	
ObjectSetPosition(planet,	0,	0,	10);	
Moon=SphereCreate(0.5,	24,	24,	planet);	
ObjectSetPosition(moon,	0,	0,	2);	

SphereCreate	 function	creates	a	sphere.	You	must	specify	 its	 radius,	as	well	as
the	number	of	meridian	and	parallels.	Our	Sun	radius	is	equal	to	4,	the	planet	-	1,
the	satellites	-	0.5.	The	meridians	and	parallels	(slices,	stacks)	divide	the	sphere
into	squares,	 the	number	of	which	determines	 the	quality	of	 the	appearance	of
the	sphere.	Usually	it	is	sufficient	to	point	24	of	the	meridian	and	24	parallel.	
Now	you	can	in	the	event	Step	turn,	the	sun	and	the	planet:	

ObjectTurn(sun,	2);	
ObjectTurn(planet	,6);	

...And	observe	the	manifestation	of	one	of	the	most	important	properties	of	the
object	 hierarchy.	A	proper	 use	 of	 these	 properties	 is	 the	main	 task	of	working
with	 the	 Xtreme3D.	 This	 kind	 of	 manifestations	 can	 be	 observed	 not	 only	 in
space,	 but	 at	 every	 step,	 so	 it	 is	 important	 to	 have	 an	 effective	 means	 of
modeling.

Lesson	4	
The	camera	from	the	first	person
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

In	 Lesson	 3	 we	 considered	 the	 simplest	 version	 of	 the	 camera	 from	 the	 first
person	 -	 it	 was	 managed	 by	 the	 arrow.	 In	 the	 meantime,	 the	 absolute	 most
modern	 games	 in	 this	 case	management	 is	 used	with	 the	mouse.	 Let's	 look	 at
how	to	implement	his	means	Xtreme3D.	

To	begin	with,	we	create	the	parent	of	the	dummy	for	the	camera	-	camPos.	We
will	be	moving,	not	the	camera	as	well.	

CamPos	=	DummycubeCreate(global.scene);	
ObjectSetPosition(camPos,	0,	2,	0);	
Camera	=	CameraCreate(camPos);	
ViewerSetCamera(view1,	the	camera);	

The	fact	 is	 that	 the	camera	should	only	move	in	 the	xz	plane	-	 in	other	words,
should	not	"fly"	 through	 the	air.	We	will	 rotate	 the	object	of	camPos	 in	 the	Y-
axis,	when	the	user	will	unseat	the	mouse	horizontally	-	thus,	it	will	be	possible
to	manage	the	direction	of	movement.	Click	on	the	offset	in	the	vertical	direction
will	cause	the	local	turn	the	camera	object	on	the	X-axis	-	this	way,	the	user	will
be	able	to	look	up	and	down,	but	this	does	not	affect	the	direction	of	movement,
because	the	camera	inherits	the	movement	from	camPos.	

Declare	the	following	variables:	

CenterX	=	display_get_width()/2;	
CenterY	=	display_get_height()/2;	

It	is	the	coordinates	of	the	center	of	the	screen.	We	will	read	the	offset	click	on
this	point	and	then	return	it	to	the	cursor.	

You	 can	 also	 immediately	 put	 the	 cursor	 in	 the	 center	 of	 the	 screen,	 to	 the
beginning	of	the	game	camera	watched	strictly	forward:	

Display_mouse_set(centerX	and	centerY);	

Now	 go	 to	 the	 event	 Step.	 The	 following	 code	 calculates	 the	 offset	 of	mouse
cursor	 on	 the	 center	 of	 the	 screen	 and	 turns	 the	 camPos	 and	 camera	 on	 the
corners,	deltaX	and	deltaY:	

DeltaX	=	(centerX	-	display_mouse_get_x())	/	3;	
DeltaY	=	(centerY	-	display_mouse_get_y())	/	3;	
ObjectRotate(camera,	DeltaY,	0,	0).	
ObjectRotate(camPos,	0,	-deltaX,	0);	
Display_mouse_set(centerX	and	centerY);	

Left	to	realize	the	movement.	We	will	use	the	standard	for	games	from	the	first
person	the	layout	of	the	WASD:	

Dt	=	1.0	/	room_speed;	
If	the	keyboard_check(ord('W')	ObjectMove(camPos,	-10	*	dt);	
If	the	keyboard_check(ord('A')	ObjectStrafe(camPos,	10	*	dt);	
If	the	keyboard_check(ord('D')	ObjectStrafe(camPos,	-10	*	dt);	
If	the	keyboard_check(ord('S')	ObjectMove(camPos,	10	*	dt);	

The	meaning	of	the	multiplying	by	dt	in	the	following.	If	moving	objects	with	a
fixed	 speed,	 their	 actual	 speed	will	 be	 tied	 to	human	 frequency	of	 application.
That	is,	for	example,	if	we	move	the	selected	object	10	units	for	the	frame,	the
speed	at	60	FPS	will	be	equal	 to	10	*	60	=	600	units	per	second.	At	120	FPS,
respectively	-	10	*	120	=	1200.	In	the	end,	the	object	will	move	faster	or	slower,
depending	on	the	FPS.	This	is	not	what	we	need,	so	you	need	to	set	the	speed	of
the	 other	 values,	 and	 not	 attached	 to	 frame.	 For	 example,	 in	 units	 per	 second.
Consequently,	the	manpower	speed	will	be	equal	to	the	V	/	FPS,	where	V	is	the
speed.	We	simply	explore	how	an	object	should	move	in	one	shot,	if	the	second
it	moves	to	the	V	units.	Thus,	the	object	will	move	with	the	correct	speed	when
any	personnel	frequency.	

Not	to	clutter	the	code	ticks	(division,	as	it	is	known,	relatively	slow	operation),
we	 instead,	multiply	 the	 speed	of	 1	 /	 FPS	 -	This	 value	 can	be	 calculated	 only

once.	 It	 is	 also	 referred	 to	 as	 the	 step	 time	 (this	 step	 time	 should	 refer	 to	 the
function	of	the	Update,	as	mentioned	in	lesson	2).	In	the	Game	Maker	8	hr	speed
(FPS)	usually	is	fixed	and	is	set	in	the	settings	of	the	room	(Room	speed).	It	can
be	set	equal	to	60	or	120.

Lesson	5	
The	materials	library
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

One	of	the	most	remarkable	features	of	Xtreme3D	-	use	of	library	materials.	The
material	is	a	set	of	parameters	that	define	the	appearance	of	the	object.	This	set
consists	of	the	values	of	color,	clarity,	texture,	the	type	of	mixing,	and	so	on.	The
concept	 of	 the	 material	 in	 the	 Xtreme3D	 is	 much	 more	 fundamental	 than	 in
many	 other	 cursors.	 Very	 often	 under	 the	 material	 means	 the	 texture,	 but
Xtreme3D	material	may	not	have	texture.	In	other	cases,	the	system	of	materials
is	poor	or	incomplete,	which	cannot	be	said	about	the	Xtreme3D.	

The	 material	 is	 created	 once	 and	 can	 be	 applied	 to	 any	 number	 of	 objects,
supporting	materials.	Change	the	settings	of	the	material	touches	all	the	objects
using	 this	material.	 The	 principle	 gives	 tangible	 benefits	 (saving	memory,	 the
amount	 of	 code,	 time	 and	 labor	 programr),	 although	 it	 may	 cause	 some
inconvenience	 (for	 example,	 if	 you	 want	 to	 change	 the	 parameters	 of	 the
material	 referred	 to	only	one	particular	 object).	 The	material	 in	 the	Xtreme3D
has	 a	 unique	 name,	 on	 which	 the	 change	 settings.	 The	 name	 of	 the	 specified
string	value,	for	example	"mGround".	

The	library	material	(Material	Library)	is	called	the	special	design	that	contains	a
list	 of	 the	materials.	The	 library	 can	 be	 active	 or	 inactive.	 In	 the	 first	 case,	 to
which	 you	 can	 add	 content,	 configure	 it	 ,	 and	 applied	 to	 the	 objects.	 In	 the
second	case,	it	is	impossible.	Since	different	libraries	can	contain	materials	with
the	same	name,	cannot	be	made	active,	 two	or	more	of	 the	 library	at	 the	 same
time.	

The	 meaning	 in	 the	 use	 of	 multiple	 libraries	 of	 materials	 is	 the	 ability	 to
determine	 for	 them	 the	 individual	 path	 to	���������.	 These	 paths
are	taken	into	account	when	loading	models,	using	the	external	texture	files.	By
default,	the	libraries	are	looking	for	texture	in	the	working	directory	of	the	game.

Of	 course,	 store	 them	 there	 -	 not	 the	 best	 idea.	 Undoubtedly,	 it	 is	 better	 to
organize	 them	 in	 separate	 folders.	For	 example,	 if	 you	have	 three	 folders	with
three	different	models	of	levels,	it	will	be	possible	to	create	for	each	of	them	the
library	 materials	 and	 assign	 them	 the	 path	 to	 ���������
corresponding	to	the	desired	folders.	

There	 is	 a	 huge	 amount	 and	 variety	 of	 settings	 of	 materials.	 In	 addition,
materials	allow	to	apply	to	them	shaders,	"photograph"	in	them	pictures	from	the
screen	or	with	 the	 camera,	 as	well	 as	 store	 data	 although,	 for	 example,	masks
and	maps	of	 the	heights.	Cover	 in	one	article	all	 the	opportunities	available	 to
the	 system	Xtreme3D,	 is	 unreal.	 Therefore,	 we	 consider	 only	 the	 most	 basic:
color,	texture	and	a	few	others.	

Is	First	created	and	activated	the	materials	library:	

Matlib=MaterialLibraryCreate();	
MaterialLibraryActivate(matlib);	

Now	you	can	create	the	materials:	

MaterialCreate('mTexture',	'texture.jpg');	

This	 function	 at	 the	 same	 time,	 creates	 the	material	 and	 assigns	 it	 the	 texture
from	 the	 file.	 Xtreme3D	 supports	 BMP,	 JPG,	 PNG,	 TGA,	 DDS.	 It	 is
recommended	to	use	the	textures	with	the	party	equal	to	128,	256,	512	and	other
degrees	of	deuce.	The	texture	does	not	necessarily	have	to	be	a	square.	

You	 can	 create	 a	material	without	 texture,	 just	 leaving	 the	 name	 of	 the	 file	 is
empty:	

MaterialCreate('mColor',	'');	

In	this	case,	you	can	specify	the	color	of	the	material.	The	easiest	way	to	do	this
is	the	function	of	

MaterialSetDiffuseColor('mColor',	c_red,	1);	

The	 color	 you	 can	pass	 the	built-in	 constants	GML	(_red,	c_yellow,	 c_green	 ,
etc.),	 the	 functions	 make_color_rgb(r,	 g,	 b)	 or	 make_color_hsv(h,	 s,	 v)	 for

models	 of	 color	 RGB	 and	 HSV,	 respectively,	 as	 well	 as	 in	 the	 reverse
hexadecimal	format,	for	example,	$0000FF	means	red.	

In	 addition	 to	 the	 colors,	 The	 MaterialSetDiffuseColor	 sets	 the	 value	 of
transparency	-	Alpha	-	lies	in	the	range	from	0	to	1.	Alpha	in	our	case	is	equal	to
1	(Full	Opacity).	

Strictly	 speaking,	 The	 MaterialSetDiffuseColor	 specifies	 only	 one	 of	 the
components	 of	 the	 color	 of	 the	 material	 as	 well	 as	 all	 their	 four	 -	 Ambient,
diffuse,	specular	and	Emission.	This	separation	is	due	to	the	fact	that	the	surface
areas	 with	 different	 levels	 of	 ambient	 light	 can	 have	 different	 color.	Ambient
determines	the	overall	shade	of	material	that	is	independent	of	the	Lighting	(the
color	of	the	shadow	side),	Diffuse	-	the	color	of	the	lit	side,	Specular	-	the	color
of	 the	 �����,	 Emission	 -	 the	 color	 of	 the	 simulation	 of	 luminous.
Moreover,	the	light	sources	also	have	their	own	components	of	ambient,	diffuse
and	 Specular,	 and	 this	 makes	 the	 color	 of	 objects	 even	 more	 complex	 and
diverse.	

You	can	disable	for	material	lighting	(and,	at	the	same	time,	the	influence	of	the
mist,	which	will	be	discussed	later):	

MaterialSetOptions('mColor',	1,	0);	

The	first	parameter,	 in	 this	case	equal	 to	1,	 is	 responsible	for	 the	effect	of	 fog,
the	second	-	for	the	impact	of	lighting.	

Apply	the	created	material	to	an	object	is	very	simple:	

ObjectSetMaterial(object,	'mTexture');	

By	the	way,	back	to	the	material	with	a	texture.	With	this	texture	can	do	amazing
things!	For	example,	changing	the	mode	of	projection	on	the	sphere	will	make	a
material	similar	to	reflection	on	the	metal:	

MaterialSetTextureMappingMode('mTexture',	tmmSphere);	

And	 to	 repeat	many	 times	 the	 texture	 on	 the	 surface	 of	 the	 object,	 change	 its
size:	

MaterialSetTextureScale('mTexture',	10,	10).	

This	texture	is	repeated	ten	times.	

As	an	independent	work	try	to	create	and	apply	the	materials	on	the	planet	from
the	previous	 lesson	 about	 the	hierarchy.	As	 the	 textures	 can	use	 real	maps	 the
surface	of	the	Earth	and	the	Moon.	And	the	sun	can	be	left	without	textures	and
do	a	simple	yellow.	Remember	as	well	as	creates	a	light	source	and	make	it	the
child	of	the	sun	that	it	radiated	light	(in	this	case,	it	is	worth	to	disable	lighting
for	his	material).

Lesson	6	
The	entities
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

Primitives	are	commonly	referred	to	as	either	the	simplest	objects	that	can	draw
a	GPU	(point,	segment,	triangle),	or	geometric	body,	embedded	in	the	graphical
engine.	 In	 the	 Xtreme3D	 uses	 the	 second	 meaning	 of	 this	 term.	 The	 solids-
����������	include	plane	(plane),	cube	(cube),	the	sphere	(sphere),
the	 cylinder	 (cylinder),	 cone	 (cone),	 a	hollow	cylinder	 (annulus),	Thor	 (torus),
the	disk	(disk),	a	truncated	pyramid	(frustrum),	the	dodecahedron	dodecahedron
(),	 ��������	 (icosahedron)	 and	 the	 kettle	 Utah	 (teapot).	 In	 the
previous	 lessons	 we	 have	 already	 created	 some	 of	 them.	 Let's	 get	 acquainted
with	primitives	closer.	

Plane.	The	rectangular	 plane.	 In	 the	Xtreme3D	 a	 plane	 can	 be	 represented	 by
one	 rectangle	 (������),	 or	 divided	 into	 a	 grid	 of	������.	 The
second	option	is	preferable,	if	you	create	a	great	plane	of	Earth,	as	in	this	case,	it
turns	out	a	better	vertex	lighting	(however,	when	using	pixel-by-pixel	detail	light
plane	of	special	significance,	as	a	rule,	does	not	have).	Note	that	the	number	of
������	affects	the	recurrence	of	 the	textures	on	the	plane	(One	quad	is
one	����	textures).	The	plane	creates	a	function	of	PlaneCreate.	

Cube.	 The	 cube.	 Strictly	 speaking,	 this	 is	 not	 necessarily	 a	 cube	 and	 any
rectangular	parallelepiped.	A	function	of	the	CubeCreate.	

Sphere.	The	scope.	A	function	of	the	SphereCreate.	

Cylinder.	The	cylinder.	A	function	of	the	CylinderCreate.	

Cone.	The	cone.	A	function	of	the	ConeCreate.	

Annulus.	A	hollow	cylinder	(ring).	A	function	of	the	AnnulusCreate.	

Torus.	Thor	(the	body	which	resembles	a	donut).	A	function	of	the	TorusCreate.	

Disk.	The	disc.	A	function	of	the	DiskCreate.	

Frustum.	A	truncated	pyramid.	A	function	of	the	FrustrumCreate.	

Dodecahedron.	 A	 dodecahedron	 -	 a	 polyhedron,	 compiled	 from	 12	 correct
��������������.	A	function	of	the	DodecahedronCreate.	

Icosahedron.	 ��������	 -	 a	 polyhedron,	 compiled	 from	 20
��������������	 triangles.	 A	 function	 of	 the
IcosahedronCreate.	

Teapot.	The	kettle	Utah.	You	can	read	more	about	this	model	in	the	glossary.	A
function	of	the	TeapotCreate.

Lesson	7	
Download	the	file	from	the
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

The	entities	is,	of	course,	is	good,	but	to	create	a	full-fledged	games	their	is	not
enough.	The	most	favorite	occupation	of	everyone	who	starts	to	get	acquainted
with	 the	 3D-��������	 -	 clearly,	 loading	 the	 engine	 own	 models
produced	in	third-party	editor.	Xtreme3D	supports	loading	of	models	of	formats
3DS	 (3D	 Studio),	 OBJ	 (Maya),	 (LWO	 Lightwave),	 BSP	 (Quake),	 MS3D
(Milkshape),	B3D	(Blitz3D),	the	LOD	LODka	(3D)	and	many	others.	
Static	(i.e.,	The	���������������)	model	 in	 the	Xtreme3D
is	loaded	in	a	special	object	-	Freeform:	

Model	=	FreeformCreate('model.3ds',	matlib,	matlib,	global.scene);	

The	 second	 and	 third	 parameters	 of	 this	 function	 are	 responsible	 for	 library
materials,	which	should	be	used,	respectively,	for	the	usual	textures	and	lighting
card	model.	A	 good	 form	 is	 the	 creation	 of	 a	 separate	 library	 of	materials	 for
each	object	in	the	Freeform	to	guaranteed	to	avoid	conflict	names	of	materials.
In	this	case,	for	ease	of	use	the	same	library.	
If	a	file	with	the	model	includes	information	about	the	textures,	Xtreme3D	will
automatically	attempt	to	download	them.	The	only	question	is	exactly	where	the
engine	will	search	for	these	textures.	By	default	-	in	a	working	directory	of	the
game.	But	to	keep	them	there	-	not	the	best	idea.	It	is	much	more	convenient	to
put	texture	in	any	folder	�������,	the	textures.	Then	we	have	to	specify
the	active	library	of	materials	that	the	textures	to	be	found	there:	

MaterialLibrarySetTexturePaths(matlib,	'textures');	

The	materials	 will	 be	 uploaded	 to	 the	 library	 under	 those	 names,	which	 have
been	 specified	 in	 the	 3D	 editor.	 Using	 these	 names,	 you	 can	 adjust	 the
characteristics	 of	 the	 material.	 This	 makes	 it	 possible	 to	 partially	 change	 the

appearance	of	 the	model.	For	example,	 imagine	 that	you	have	downloaded	 the
model	 of	 the	 vehicle.	 You	 can	 change	 the	 color	 of	 the	 housing	 or	 the	 salon,
without	affecting	other	parts	to	make	transparent	windows	tinted,	add	the	effects
of	reflections	on	wheels	and	so	on.	

However,	as	soon	as	you	want	to	go,	you	will	find	that	it	is	impossible	to	turn	the
wheel.	This	is	not	surprising:	they	are	part	of	the	same	Freeform.	Therefore,	in
such	a	situation,	it	should	be	split	model	for	its	constituents	-	the	dwelling	was:	

Car	=	DummycubeCreate(global.scene);	
FreeformToFreeforms(model,	car);	

We	create	a	dummy,	which	will	be	a	parent	for	all	parts	of	the	vehicle,	and	we
break	the	model	into	separate	independent	Freeform.	Note	that	this	operation	is
possible	only	 if	 the	parts	of	 the	vehicle	 (bodywork,	wheels,	 doors,	 trunk,	 etc.)
constitute	 a	 separate	 dwelling	 was	 -	 not	 all	 formats	 supported	models	 such	 a
division.	
The	original	Freeform	we	have	already	is	not	needed,	and	we	delete:	

ObjectDestroy(model);	

To	manage	the	created	objects,	we	need	to	get	their	ids.	You	can	do	this	function
of	 the	 ObjectGetChild.	 This	 does	 not	 superfluous	 will	 know	 how	 many	 total
�����	was	in	the	original	model.	Suppose	that	the	five	-	four	wheels	and
bodywork:	

Car_body	=	ObjectGetChild(map,	0);	
Car	wheel_1	=	ObjectGetChild(map,	1);	
Car	wheel_2	=	ObjectGetChild(map,	(2);	
Car	wheel_3	=	ObjectGetChild(map,	3);	
Car	wheel_4	=	ObjectGetChild(map,	4);	

Remember	that	the	count	is	zero,	so	that	the	first	descendant	-	zero.	
Thus,	we	have	received	a	new	hierarchy,	the	structure	is	completely	identical	 to
the	original	model.	You	can	now	rotate	the	wheel:	

ObjectPitch(car_wheel1,	3);	
ObjectPitch(car_wheel2,	3);	
ObjectPitch(car_wheel3,	3);	

ObjectPitch(car_wheel4,	3);	

ObjectPitch	 instead,	you	can	use	 the	ObjectRoll	 -	 depending	on	where	 "looks"
the	vehicle	bodywork:	along	the	Z-axis	or	X.	

You	can	also	replace	some	of	the	models	on	the	other.	For	example,	if	you	create
a	model	with	two	wheels,	you	can	hide	some	of	the	wheel,	leaving	the	other,	and
vice	 versa.	 Or	 make	 several	 versions	 of	 the	 body	 with	 varying	 degrees	 of
damage	 to	 dynamically	 switch	 between	 them,	 when	 the	 vehicle	 runs	 in	 an
obstacle.	And	yet,	you	can	use	the	coordinates	of	parts	in	the	space,	to	create	in
them	a	variety	of	special	effects	-	smoke	or	flame.	Or,	for	example,	if	you	have
created	 a	 tank,	 you	 can	 rotate	 the	 tower	 and	 shoot	 from	 the	 muzzles	 of
projectiles	in	the	appropriate	direction.	Xtreme3D	allows	you	to	do	with	models
of	anything!

8.	Вершинная	animationLesson	8	
���������	animation
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

The	Object	Freeform	 is	 intended	mainly	 for	 inanimate	 objects.	This	 is	 usually
the	elements	of	decoration,	vehicles,	various	interactive	objects,	and	so	on.	If	we
want	to	populate	our	virtual	world	of	living	creatures,	we	cannot	do	without	the
Actor	objects.	The	name	speaks	for	 itself:	 the	actor	is	a	 living	character.	In	the
Xtreme3D	actors	 represent	 the	 animated	model.	And	 the	 animation,	 as	 is	well
known,	 is	of	 two	 types	 -	����������	 and	 skeletal.	 In	 this	 lesson,
we	look	at	The	����������	animation.	
����������	(or	���������)	Animation	is	characterized
by	the	fact	that	for	the	formation	of	an	animation	sequence	of	the	slider	moves
each	vertex	of	 the	model	 from	one	position	 to	another.	This	 type	of	animation
was	first	applied	in	the	Quake,	and	since	then	the	formats	of	 the	models	 in	the
Quake	 (MD2,	 MD3)	 have	 become	 a	 standard	 in	 all	���������
cursors.	 Xtreme3D	 provides	 full	 support	 for	 MD2	 and	 MD3.	 The	 difference
between	them	lies	in	the	fact	that	the	MD2	stores	all	model	entirely	in	one	file,
and	the	MD3	-	in	three	(Head,	torso	and	legs).	With	the	help	of	special	matrices
the	torso	is	synchronized	with	the	feet,	and	the	head	-	with	the	torso.	This	was
done	in	order	to	animate	the	torso	and	legs	separately.	For	example,	during	the
shooting	character	can	both	run	and	walk	slowly,	and	even	simply	stand	in	place.

In	 this	 lesson,	 we	 look	 at	 The	����������	 animation	 with	 the
format	of	the	MD2.	The	actor	from	the	MD2	is	created	as	follows:	

Actor	=	ActorCreate('model.md2',	matlib,	matlib,	global.scene);	

Sometimes	after	loading	the	model	is	that	it	incorrectly	rotated.	This	is	because
different	 editors	 axis	direction	 is	 interpreted	 in	different	ways.	Usually	 "swap"
the	Y	axis	and	Z	model	peaks	are	 recorded	so	 that	 its	vector	of	Up	 is	directed
along	 the	 Z	 axis	 (in	 DirectX	 applications,	 this	 means	 "up"),	 and,	 since	 the

direction	of	the	"up"	in	Xtreme3D	meets	the	Y	axis,	but	not	Z,	it	turns	out	that
the	model	rotated	90	degrees	on	the	X-axis.	We	can	fix	this	misunderstanding	in
several	ways.	The	most	simple	-	just	turn	her	back:	

ObjectPitch(actor,	90);	

But	in	some	cases	this	is	not	enough.	Turning	the	model,	we	also	turn	its	Local
coordinate	system.	This	means	that	the	vector	Direction	now	indicates	along	the
Y-axis	 and	 Z	 is	 not	 as	 it	 should	 be.	 If	 we	 now	 move	 the	 model	 using
ObjectMove,	she	will	move	up	and	not	forward.	You	can,	of	course,	 instead	of
ObjectMove	 ObjectStrafe	 use,	 but	 this	 will	 make	 the	 program	 less	 neat	 and
tangle	so	long.	Much	better	than	the	first	place	the	actor	in	the	descendants	of	the
dummy	and	 then	 rotate.	And,	 accordingly,	 to	move	 to	 use	 the	dummy,	not	 the
actor.	The	code	will	be	as	follows:	

Player	=	DummycubeCreate(global.scene);	
Actor	=	ActorCreate('model.md2',	matlib,	matlib,	player);	
ObjectPitch(actor,	90);	

The	format	of	the	MD2	provides	for	the	separation	of	all	frames	of	animation	in
separate	 groups.	This	 is	 done	 in	 order	 to	 separate	 the,	 say,	 the	 animation	 runs
from	animation	 jump.	By	default,	 the	Xtreme3D	plays	all	 frames	one	 after	 the
other,	not	paying	attention	to	this	division.	But	we	can	at	any	time	switch	to	the
desired	animation:	

ActorSwitchToAnimation(actor,	1,	false);	

And	 then	 will	 be	 played	 only	 group	 training	 under	 number	 1.	 The	 third
parameter	of	this	function	is	responsible	for	the	smooth	change	of	animation:	if
set	to	true,	the	change	will	be	gradual.	
Approximately	the	same	makes	the	function,	 indicating	the	range	of	frames	for
playback:	

ActorSetAnimationRange(actor,	10,	20);	

It	is	not	difficult	to	guess	that	will	be	lost	only	the	period	between	the	tenth	and
twentieth	frames.	However,	these	two	functions	have	one	important	distinction.
ActorSwitchToAnimation	every	time	the	call	switches	to	play	the	first	frame	of
the	target	group,	and	ActorSetAnimationRange	does	not	do	this	(if	 the	range	is

already	playing).	ActorSetAnimationRange	 therefore	can	be	called	repeatedly	-
for	example,	inside	the	loop	that	in	some	situations	turns	out	to	be	very	useful.	

By	default,	 the	animation	is	reproduced	cycle	-	that	is,	when	it	reaches	the	last
frame,	play	starts	again.	 In	most	cases	 this	 is	what	you	need	 (for	example,	 the
animation	of	walking	or	jogging	is	always	fixated).	But	we	can	specify	and	other
playback	mode:	

ActorSetAnimationMode(actor,	aam);	

Instead	of	the	AAM	uses	one	of	the	following	constants:	

AamNone	-	Animation	cannot	be	reproduced;	
AamPlayOnce	-	Animation	is	reproduced	once	and	stops	when	it	reaches	the	end
frame.	This	mode	is	sometimes	referred	to	as	the	"one	shot";	
AamLoop	-	Animation	is	repeated	cyclically	(default);	
AamBounceForward	 -	Animation	 is	 repeated	 cyclically	 forward	 until	 the	 final
frame,	and	then	in	the	opposite	direction	to	the	initial	frame,	then	again	forward,
and	so	on.	This	mode	is	sometimes	referred	to	as	the	"ping-pong".	
AamBounceBackward	-	the	same	thing,	but	in	the	opposite	direction.	
AamLoopBackward	-	animation	cycle	is	repeated	in	the	opposite	direction.	

Finally,	 there	 is	 also	 the	 possibility	 to	 disable	 the	 linear	 interpolation	 between
frames:	

ActorSetFrameInterpolation(actor,false);	

The	frames	will	be	Ousting	each	other	abruptly,	without	a	smooth	"spill".	This
can	 be	 useful,	 for	 example,	 in	 the	 races,	 where	 the	 vehicle	 bodywork	 can	 be
deformed	-	in	different	frames	topmost	animations	can	store	different	variants	of
damage.

Lesson	9	
Basics	of	the	skeletal	animation
Level:	Beginner	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

Sometimes	 opportunities	 ����������	 animation	 is	 not	 enough.
This	is	the	case,	basically,	games	of	the	genre	of	action.	For	example,	you	may
want	to	"give"	their	hero	into	the	hands	of	the	weapons	or	"wear"	armor.	When
using	the	topmost	animations	it	is	impossible	(with	rare	exceptions).	In	addition,
the	���������	animation	can	require	too	much	memory	for	storage
of	 frames.	 Therefore,	 if	 you	 are	 using	 the	 model	 with	 a	 large	 number	 of
polygons,	wise	will	select	the	skeletal	animation.	
Instead	of	storing	the	key	frames	(as	in	the	case	of	The	����������
animations)	for	each	of	the	poses	of	the	character,	the	use	of	skeletal	animation
implies	 one	 model	 in	 the	 neutral	 position	 and	 a	 large	 set	 of	 matrices	 that
transform	 the	 various	 parts	 of	 the	 model.	 These	 matrices	 conditionally	 called
bones.	To	each	of	the	Bones	tied	group	of	vertices.	One	vertex	can	"belong"	to
multiple	 bones	 immediately,	with	 varying	 degrees	 of	 influence	 that	makes	 the
animation	 more	 natural	 (This	 property	 is	 called	 the	 bone
�����������).	
For	 the	 first	 time,	 this	 technology	 has	 been	 used	 in	 the	 game	 Half-Life,	 and
Xtreme3D	 supports	 the	 format	 of	 the	 models	 of	 Half-Life	 -	 SMD.	 As	 an
alternative	to	the	SMD,	also	supported	by	the	format	of	the	models	of	Doom	III	-
the	MD5.	

To	 download	 the	models	 with	 the	 skeletal	 animation	 is	 used,	 the	 same	 object
Actor.	You	do	not	need	to	also	specify,	Xtreme3D	is	able	to	recognize	the	type	of
models	and	tune	to	the	correct	type	of	animation:	

Actor	=	ActorCreate('model.smd',	matlib,	matlib,	global.scene);	

The	 peculiarity	 of	 the	 SMD	 format	 is	 that	 the	 animation	model	 is	 stored	 in	 a
separate	 file,	which	also	has	 an	 extension	*.smd.	Such	 files	 can	be	 several.	 In

theory,	 this	 method	 allows	 you	 to	 use	 the	 same	 animation	 files	 for	 different
models	(if	they	have	the	same	skeleton).	
After	the	creation	of	the	actor	should	add	these	files:	

ActorAddObject(actor,	'animation1.smd');	
ActorAddObject(actor,	'animation2.smd');	
ActorAddObject(actor,	'animation3.smd');	

When	you	add	the	next	smd	file,	to	the	animations	of	the	actor	adds	a	new	group
training,	which	is	assigned	a	sequence	number.	The	count	is	1.	That	is,	if	we	now
������������	to	Group	2:	

ActorSwitchToAnimation(actor,	2,	false);	

...It	will	be	lost	animation	loaded	from	a	file	animation2.smd.	

The	skeletal	animation	apply	all	the	features	that	we	considered	in	the	previous
lesson.

Lesson	10	
The	camera	from	a	third	person
Level:	medium	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

Many	 games	 use	 the	 view	 from	 a	 third	 person,	 where	 the	 camera	 shows	 the
character	"from	the	back"	is,	for	example,	many	game	genres	Action	and	RPG,
3D-type	 �����������	 Spyro	 or	 Crash	 Bandicoot,	 Sports
simulators,	and	so	on.	In	this	case,	as	a	rule,	the	camera	is	not	rigidly	fixed	at	a
certain	distance	from	the	character	-	it	usually	moves	smoothly,	with	some	delay
that	adds	realism	and	�������������������.	

The	Xtreme3D	similar	to	the	operator	to	realize	only	slightly	more	complicated
than	the	view	from	first	person.	The	following	code	creates	a	hierarchy	from	the
character,	which	the	player	will	manage,	and	cameras,	which	will	be	for	him	to
follow.	As	a	symbol	of	the	Character	uses	a	simple	cubic	meters.	

The	code	in	the	event	Create:	

Camera	=	CameraCreate(global.scene);	
CameraSetViewDepth(Camera,	800);	
CameraSetFocal(camera,	80);	
ViewerSetCamera(view1,	the	camera);	

Actor	CubeCreate	=(1,	1,	1,	global.scene);	

Target	=	DummycubeCreate(actor);	
ObjectSetPosition(target,	0,	1,	-4);	
CameraSetTargetObject(camera,	actor);	

Code	in	the	event	of	the	Step:	

If	the	keyboard_check(vk_up)	ObjectMove(actor,	10	*	dt);	

If	the	keyboard_check(vk_down)	ObjectMove(actor,	-10	*	dt);	
If	the	keyboard_check(vk_left)	ObjectTurn(actor,	-200	*	dt);	
If	the	keyboard_check(vk_right)	ObjectTurn(actor,	200	*	dt);	

Cx	=	ObjectGetAbsolutePosition(camera,	0);	
Cy	=	ObjectGetAbsolutePosition(camera,	1);	
Cz	=	ObjectGetAbsolutePosition(camera,	2);	
Tx	=	ObjectGetAbsolutePosition(target,	0);	
Ty	=	ObjectGetAbsolutePosition(target,	1);	
The	TZ	=	ObjectGetAbsolutePosition(target,	2);	
Dx	=	tx	-	cx;	
Dy	=	ty	-	cy;	
Dz	=	the	tz	-	cz;	
ObjectTranslate(camera,	dx	*0.05,	dy	*	0.05,	dz	*	0.05);	

The	logic	of	the	chamber	is	arranged	so	that	its	most	long	distance	the	distance
from	 the	 character	 -	when	driving	 forward	 (so	 you	 can	 see	what	 is	 happening
around),	and	 the	closest	 -	when	driving	 in	 reverse.	When	 turning	 the	character
the	camera	allows	to	consider	it	on	the	side.	Approximately	the	same	admission
is	used	in	racing	simulations,	so	 that,	on	 the	basis	of	 this	Code,	 it	can	be	done
and	the	engine	races.

Lesson	11	
Collision	test
Level:	medium	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

In	the	games	very	often,	it	is	required	to	define	the	fact	of	collision	between	two
objects.	 They	 can	 be,	 for	 example,	 the	 character	 and	 the	 Platform,	 shell	 and
purpose,	 and	 so	 on.	 The	 collision	 detection	 is	 based	 logic,	 the	 shooters
������������,	simulations,	role-playing	games	and	some	of	the
Strategies.	 If	 this	 does	 not	 always	 want	 to	 find	 the	 exact	 intersection	 of	 two
polygon	�����	 -	 enough	 to	 test	 the	 intersection	 of	 limiting	 their	 scope
(Bounding	 Sphere)	 or	���������������	 (Bounding	 Box).
Xtreme3D	includes	easy-to-use	tools	that	allow	you	to	do	this.	

Function	 test	 collisions	 in	 the	 Xtreme3D	 begin	 with	 "ObjectCheck..."	 and
operate	 on	 restricting	 the	 spheres	 and
�����������������	 objects,	 which	 are	 calculated	 using
the	 engine	 automatically,	 depending	 on	 the	 volume,	 which	 is	 their	 geometry.
Restricting	 the	���������������	 (which	 in	 these	 functions
are	called	the	Cube)	aligned	to	 the	 local	coordinate	axes	of	 the	object	-	 that	 is,
can	rotate	with	him.	Such	���������������	 is	often	called
Oriented	 Bounding	 Box,	 or	 abbreviated	 OBB.	 Functions	 return	 true	 (1)	 If	 a
crossing,	and	lie	(0)	otherwise.	

Xtreme3D	 includes	 the	 following	 function	 test	 collisions:
ObjectCheckSphereVsSphere,	 ObjectCheckSphereVsCube,
ObjectCheckCubeVsCube,	ObjectCheckCubeVsFace,	ObjectCheckFaceVsFace.
The	 last	 two	 of	 them	 operate	 on	 the	 objects	 of	 the	 type	 of	 Freeform	 -
accordingly,	 can	 detect	 the	 crossing	 of	 the	 parallelepiped	 bounding	 one	 object
with	 the	 polygon	 model	 of	 the	 other,	 as	 well	 as	 the	 intersection	 of	 the	 two
models.	This	test	is	rather	slow,	therefore,	it	is	recommended	to	optimize	its	use	-
for	 example,	 to	 carry	 out	 an	 accurate	 test	 between	 the	 models	 only	 if	 the
collision	was	detected	between	their	limiting	areas:	

If	ObjectCheckSphereVsSphere(obj1,	obj2)	
{	
		If	ObjectCheckFaceVsFace(obj1,	obj2)	
		{	
				//	Do	something	
		}	
}	

These	 functions	 are	 useful	when	 you	 need	 to	 perform	 a	 discrete	 test	 -	 that	 is,
when	it	can	be	argued	that	the	objects	are	moving	with	small	speeds.	If	the	speed
of	high,	and	 the	object	 in	one	step	of	game	time	flies	 the	distance	greater	 than
the	 size	 of	 another	 object,	 the	 discrete	 checking	 can	 easily	 fail.	 A	 universal
solution	to	this	problem	so	far,	no,	but	there	are	a	variety	of	simplified	methods.
The	 easiest	 method	 -	 "throwing	 rays"	 (Ray	 Casting).	 In	 the	 Xtreme3D	 have
enough	effective	 implementation	of	 this	method.	From	the	center	of	 the	 object
beam	 is	 produced	 in	 the	 direction	 of	 the	 Direction	 of	 the	 object.	 Then	 the
intersection	 with	 this	 ray	 checked	 the	 target	 object,	 one	 or	 a	 few.	 Thus,	 it	 is
possible	to	simulate	the	movement	of	the	bullets	(under	the	assumption	that	it	is
moving	with	infinite	speed)	-	instantly	find	the	point	at	which	it	enters.	Using	the
"throwing	 rays"	 can	 be	 used	 to	 determine	 the	 height	 of	 the	 land	 under	 the
character	that	is	necessary	for	realization	of	the	jumps.	In	addition,	this	method
is	 indispensable	 for	 the	building	of	 the	 logic	of	 the	 interaction	of	 the	character
with	interactive	objects	and	triggers	-	Imagine,	for	example,	the	shooter,	RPG	or
a	quest	from	the	first	person,	where	the	player	can	pick	up	objects	and	to	press
on	the	levers,	by	clicking	on	them	with	the	mouse.	To	do	this,	you	can	estimate
the	distance	between	the	player	and	the	object,	and	then	apply	"throwing	rays":	

If	ObjectGetDistance(player	item)	<=	1.0	
{	
		If	ObjectRaycast(player	item)	
		{	
				Hit	x	=	ObjectGetCollisionPosition(0);	
				Hit_y	=	ObjectGetCollisionPosition(1);	
				Hit_z	=	ObjectGetCollisionPosition(2);	
		}	
}	

What	is	the	most	pleasant,	"throwing	rays"	in	the	Xtreme3D	is	fully	compatible

with	 the	objects	of	Freeform	and	gives	correct	 results	 in	any	 transformation	of
the	objects.	

12.	2D	graphicsLesson	12	
2D	graphics
Level:	medium	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

Xtreme3D	allows	you	to	draw	not	only	3D	objects,	but	2d	 is	a	screen	 text	and
sprites	 on	 screen.	 On-screen	 text	 is	 displayed	 on	 top	 of	 the
�������������	images	and	applies	for	the	submission	of	some
textual	 information	 in	 the	 game:	 the	 number	 of	 lives	 or	 cartridges,	 different
messages,	 debug	data	 and	 etc.	The	on-screen	 sprites	 is	 simply	 2D	 images	 that
can	 be	 used	 to	 display	 user	 interface	 elements	 -	 the	 sight,	 icons,	 the	 scale	 of
energy,	 etc.	Also	 you	 can	make	 the	 game	menu	with	 the	 background	 is	more
preferable	than	the	Create	menu	via	the	built-in	graphics	Game	Maker,	as	in	this
case,	you	can	draw	the	menu	on	top	of	the	3D-scenes	that	looks	very	stylish.	

Text	 objects	 use	 special	 font	 objects,	 storing	 images	of	 text	 characters,	 letters,
numbers,	 and	 punctuation.	 These	 images	 can	 be	 set	 in	 two	 ways:	 to	 generate
from	 the	 system	 of	 vector	 fonts	 in	Windows	 or	 download	 from	 the	 file.	 The
second	 is	more	preferable	 as	you	can	draw	 in	 the	graphical	 editor	 font	 size	of
any	color	and	complexity,	with	any	symbols	and	in	any	language,	while	support
for	 system	 fonts,	 severely	 limited	 (supported	 only	 latin).	But	 the	 vector	 fonts,
there	is	one	indisputable	advantage	is	the	scalability	without	loss	of	quality:	that
is,	you	can	from	one	and	the	same	font	system	to	generate	symbols	of	different
sizes.	

The	code	for	the	creation	of	the	font	and	the	on-screen	text	is	as	follows:	

Font	=	WindowsBitmapfontCreate('Arial',	14,	32,	95);	
Text	=	HUDTextCreate(font,	'Hello,	World!',	the	global.front);	

Please	note	that	we	specify	the	root	object	of	global.front	as	a	parent	object	text
-	This	ensures	that	the	text	will	���������	after	the	3d	scene.	

Created	by	the	text	can	be	modified	-	ask	him	the	color	and	transparency,	as	well
as	the	position	and	rotation:	

HUDTextSetColor(text,	c_red,	0.5);	
ObjectSetPosition(text,	100,	100,	0);	
HUDTextSetRotation(text,	30.0);	

The	 type	 fonts	WindowsBitmapfont	 is	 a	 serious	disadvantage:	 it	 only	 supports
ANSI	encoding.	This	means	 that	 in	one	application	cannot	use	 the	 symbols	 of
several	 different	 alphabets.	To	 solve	 this	 problem	 in	 the	Xtreme3D	was	 added
support	 for	 the	 library	 and	 FreeType	 UTF-8	 encoding,	 which	 allows	 you	 to
display	 any	 characters	 without	 restrictions.	 Using	 the	 FreeType	 you	 can
download	ttf-fonts	from	the	files,	which	is	very	convenient	-	you	do	not	have	to
worry	about	whether	the	desired	font	on	the	user's	system:	all	the	necessary	fonts
may	have	shipped	with	the	game.	

The	 creation	 of	 the	 font	 and	 the	 on-screen	 text	 using	 the	 FreeType	 looks	 as
follows:	

Font	=	TTFontCreate('data/font.ttf',	14);	
Text	=	HUDTextCreate(font,	'Hello,	World!',	the	global.front);	

The	 text	 string	 you	 pass	 to	 the	 HUDTextCreate,	 must	 be	 encoded	 in	 UTF-8.
Unfortunately,	the	Game	Maker	8	does	not	support	UTF-8	in	the	built-in	editor
code,	 therefore	 the	 text	 containing	 the	 symbols	 of	 national	 alphabets	 should
either	 download	 the	 file	 from	 the	 function	 of	 the	 TextReador	 convert	 the
TextConvertANSIToUTF8.	
To	 use	 the	 TTFontCreate	 place	 in	 the	 folder	 with	 the	 game	 of	 the	 freetype
library.dll	(look	for	it	in	the	SDK).

Lesson	13	
Shadows	in	real	time
Level:	medium	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

Xtreme3D	 supports	 several	 ways	 to	 render	 shadows.	 Firstly,	 the	 shade	 (and
lighting	 in	 general)	 can	 be	 ��������������	 and
"��������"	 in	 the	 texture	 -	 this	 technique	 is	 called	 the	 map	 light
(Lightmapping).	 It	allows	you	 to	get	very	beautiful	and	 realistic	 result,	but	 the
resulting	 shade	will	be	 static.	Accordingly,	 this	 technique	 is	only	applicable	 to
the	 stationary	objects	 -	 for	 example,	 the	 interiors	 and	architecture.	 In	 addition,
far	not	all	 formats	of	3D	models	support	 the	 light	maps,	and	not	all	of	 the	3D
editors	they	can	create.	

Secondly,	there	is	the	object	of	the	shadow	plane	(shadow	plane).	It	all	looks	like
a	 normal	 entity	 plane,	 except	 that	 the	 other	 objects	 can	 throw	 at	 him	 the
shadows.	The	 result	 is	 a	very	beautiful,	 but,	 unfortunately,	 the	 flat	 shadows	of
the	applicable	far	not	in	all	situations.	For	example,	they	are	of	little	use	if	your
game	 level	 consists	 of	 the	 platforms	 at	 different	 heights,	 or	 there	 is	 no	 ideal
planes	(for	example,	in	the	case	of	a	realistic	landscape).	There	are,	however,	a
number	of	genres,	where	 the	 shadow	plane	 is	 justified	 is,	 for	 example,	 a	wide
variety	 of	 sports	 simulators	 (football,	 athletics,	 mini-golf,	 bowling,	 billiards,
etc.),	 flat	������������,	 as	 well	 as	 some	 of	 the	 logical	 and
casual	games.	

There	are	also	two	technology	rendering	shadow	volumes	-	volume	shadow	and
shadow	mapping.	The	first	is	an	object	that	defines	the	volume,	inside	of	which
points	 are	 in	 the	 shade.	 This	 method	 gives	 a	 very	 accurate	 shadows	 on	 any
distance,	but	works	quite	slowly.	More	promising	is	the	new	technique,	appeared
in	 Xtreme3D	 3.0	 -	 shadow	 maps	 (shadow	 mapping).	 You	 can	 very	 quickly
render	soft	shadows	-	but,	the	truth,	at	a	limited	distance	from	the	camera.	

We	turn	first	to	the	shadow	plane.	Create	it	very	simply:	

ShadowTarget	=	DummycubeCreate(global.scene);	
ShadowPlane	 =	 ShadowplaneCreate(20,	 20,	 10,	 10,	 shadowTarget,	 light,
c_black,	0.5,	global.scene);	

Now	 all	 I	 have	 to	 do	 is	 add	 those	 objects,	 which	 should	 drop	 shadow,	 in	 the
descendants	to	The	shadowTarget.	

To	work	with	the	shadow	volume	slightly	more	difficult:	

Sv	=	ShadowvolumeCreate(global.scene);	
ShadowvolumeAddLight(sv,	light);	

Add	the	objects	to	be	drop	shadow,	in	the	descendants	of	the	sv.	Those	objects,
which	should	drop	shadow	added	as	follows:	

ShadowvolumeAddOccluder(sv,	Obj);	

Lesson	14	
The	establishment	of	the	Sky
Level:	medium	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

Many	games	an	important	part	of	the	graphics	and	gameplay	is	smooth	change
of	day	and	night	(for	example,	in	the	RPG	and	games	in	the	GTA	style).	In	the
Xtreme3D	This	functionality	provides	an	object	Skydome,	the	literal	translation
means	"heavenly	dome",	"a	firmament."	This	is	a	spherical	form,	the	stage	and
changes	color	depending	on	the	time	of	day.	On	the	dome	in	the	literal	sense	of
the	"suspended"	The	sun	and	stars.	The	sun	goes	smoothly	across	the	sky:	when
it	is	lowered	 toward	 the	horizon,	we	are	witnessing	a	sunset.	And	 then	 the	sky
darkens	and	 there	 comes	 the	 night.	 Sparkling	 stars	 as	 the	 real	 thing.	The	 only
minus	 -	 no	 clouds.	 They	 would	 have	 to	 do	 on	 their	 own.	 It	 probably	 was
assumed	 not	 to	 deprive	 the	 developer	 to	 make,	 for	 example,	 The
�������������:	so	that	you	can	as	fall	to	the	ground	and	climb
to	the	clouds	and	see	them	from	a	close	distance.	

The	 color	of	 the	 sky	 in	 the	 skydome	 is	 composed	of	 three	 components:	Deep,
Haze,	the	Night	and	the	Sky.	
Deep	-	the	color	of	the	so-called	nadir	-	the	point	opposite	the	������;	it
is	located	under	our	feet.	Usually	in	real	life	to	see	nadir	is	impossible,	the	earth
obstructs	 :)	But	 the	color	of	 this	point	 is	 important	as	 it	determines	how	shade
mixes	up	the	color	of	the	sky	as	the	care	of	the	horizon	line.	
Haze	-	the	color	of	the	horizon.	Usually	corresponds	to	the	color	of	the	mist.	
Sky	is	the	color	of	the	zenith.	In	this	color	painted	the	entire	heavenly	bubble	up
to	the	line	of	the	horizon.	
Night	-	the	color	of	the	night.	When	the	sun	goes	below	the	horizon,	this	color	is
gradually	filled	in	all	the	components	of	the	sky,	in	addition	to	the	Deep.	This	is
most	often	black	or	dark	blue,	although	there	may	be	other	options.	

	

Below	is	the	code	that	creates	the	sky:	

Sky	=	SkydomeCreate(24,	48,	global.back);	
SkydomeSetOptions(sky,	true,	true);	
ObjectRotate(sky,	90,	0,	0).	
SkydomeSetNightColor(sky,	make	color_rgb(0,	0,	180);	
Angle	=	0;	
SkydomeSetSunElevation(sky,	angle);	
SkydomeAddRandomStars(sky,	50,	c_white);	

The	sun	moved	across	the	sky,	you	need	every	step	of	time	to	change	the	angle	at
which	it	is	on	the	horizon.	The	angle	of	90	degrees,	������	-90	-	Nader.	

SkydomeSetSunElevation(sky,	angle);	
Angle	=	angle	of	+	1.0	*	dt;	

You	 can	 also	 create	 a	 realistic	 starry	 sky	 with	 the	 familiar	 us	 constellations,
although	this	is	not	as	simple	as	it	may	seem.	To	do	this	you	need	to	understand
the	celestial	coordinates.	In	the	Xtreme3D	the	position	of	the	stars	in	the	sky	is
set	during	the	second	equatorial	coordinate	system,	which	includes	two	values	-
direct	ascent	(right	ascension)	and	declination	(declination).	The	two	values	are
in	degrees,	although	the	Astronomy	of	the	direct	ascent	traditionally	measured	in
hours,	 minutes,	 and	 seconds	 (1	 hour	 is	 equal	 to	 360	 /	 24	 =	 15	 degrees).	 To
simplify	the	translation	of	these	units	in	degrees,	in	the	Xtreme3D	SDK	is	The
RightAscension	 script(hours,	 minutes,	 seconds).	 There	 is	 also	 a
script(Declination	 degrees,	 minutes,	 seconds),	 with	 which	 you	 can	 get	 a	 float
value	from	the	degrees	of	angular	minutes	and	angular	seconds.	

Here	is	an	example	of	the	creation	of	the	well-known	of	the	bucket	-	the	seven
major	stars	of	the	Big	Dipper	(coordinates	i	took	from	Wikipedia):	

SkydomeAddStar(sky,	 RightAscension(11,	 3,	 44),	 the	 Declination(61,	 45,	 0),
1.79,	c_white);	//	�����	
SkydomeAddStar(sky,	RightAscension(11,	1,	50),	Declination(56,	22,	57),	2.37,
c_white);	//	�����	
SkydomeAddStar(sky,	 RightAscension(11,	 53,	 50),	 Declination(53,	 41,	 41),
2.44,	c_white);	//	�����	
SkydomeAddStar(sky,	RightAscension(12,	15,	25),	 the	Declination(57,	01,	57),
3.31,	c_white);	//	������	

SkydomeAddStar(sky,	 RightAscension(12,	 54,	 0),	 the	Declination(55,	 57,	 35),
1.77,	c_white);	//	Suites	
SkydomeAddStar(sky,	RightAscension(13,	23,	55),	 the	Declination(54,	55,	31),
2.27,	c_white);	//	The	�����	
SkydomeAddStar(sky,	RightAscension(13,	47,	32),	 the	Declination(49,	18,	48),
1.86,	c_white);	//	�������	

It	 will	 be	 more	 convenient	 to,	 of	 course,	 to	 create	 something	 like	 the	 star
directory	in	the	file	and	read	it	when	loading,	creating	the	stars	procedurally.

Lesson	15	
The	creation	of	the	Landscape
Level:	medium	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

The	 Landscape	 (Terrain)	 is	 an	 important	 part	 of	 the	 games	 many	 genres,
modeling	the	situation	in	the	real	world	is	Racing,	Strategy,	many	of	the	shooter
and	 the	 various	 games	 with	 the	 open	 world.	 Usually	 the	 landscape	 is	 not
modeled	manually	and	is	generated	from	the	so-called	card	heights	-	the	image,
where	the	dark	areas	indicate	lower	height	and	bright	-	increase.	The	generation
of	the	landscape	can	occur	both	in	the	program	of	the	3D	modeling	as	well	as	in
the	game	-	 in	 the	 latter	case,	 there	 is	a	possibility	 to	optimize	 the	 rendering	of
landscape,	dynamically	changing	the	detail	depending	on	the	distance	from	the
camera	(dynamic	LOD).	In	the	Xtreme3D	also	has	support	for	such	technology.	
In	order	to	render	the	landscape,	you	must	first	download	the	map	heights,	in	the
terminology	 of	 the	Xtreme3D	 -	HDS	 (Height	Data	 Source,	 the	 source	 of	 data
about	the	height):	

The	Hds	BmpHDSCreate	=('heightmap.bmp');	
BmpHDSSetInfiniteWarp(hds,	0);	

BmpHDSSetInfiniteWarp	function	can	make	the	map	heights	endlessly	 looping
in	all	four	sides	-	very	handy	if	you	want	to	make	a	limitless	world.	

Now	create	the	landscape	is	the	object	of	the	Terrain:	

The	terrain	=	TerrainCreate(global.scene);	
TerrainSetHeightData(terrain,	hds);	
TerrainSetTileSize(terrain,	32);	
TerrainSetTilesPerTexture(terrain,	8);	
TerrainSetQualityDistance(terrain,	100);	
TerrainSetQualityStyle(terrain,	hrsFullGeometry);	
TerrainSetMaxCLodTriangles(terrain,	10000);	

TerrainSetCLodPrecision(terrain,	50);	
TerrainSetOcclusionFrameSkip(terrain,	0);	
TerrainSetOcclusionTesselate(terrain,	totTesselateIfVisible);	

If	 you	 run	 the	 game	 at	 this	 stage,	 the	 landscape	 is	 likely	 to	 be	 too	 high	 and
rotated	90	degrees.	This	is	easy	to	fix	by	installing	the	desired	scale	in	the	Z	axis
and	Rotating	an	object	on	the	X-axis:	

ObjectSetScale(terrain,	1,	1,	0.1);	
ObjectRotate(terrain,	90,	0,	0).	

Separate	the	words	deserved	the	overlay	textures	on	the	landscape.	This	can	be
done	 in	many	 different	ways,	 I	 propose	 the	 following:	 first,	 the	 texture	 of	 the
material	 (diffuse)	 will	 be	 tight	 on	 the	 whole	 landscape,	 and	 the	 second	 (the
texture	 of	 detail)	 will	 be	 repeated	 many	 times	 with	 the	 magnitude	 of	 the
overlying	 the	 first	 in	 the	 modulate	 (i.e.,	 by	 changing	 the	 brightness	 of	 the
previous).	Thus,	there	is	an	illusion	that	the	landscape	uses	huge	detailed	texture.

MaterialCreate('mTerrain',	'the	terrain-diffuse.jpg');	
MaterialSetOptions('mTerrain',	false,	true);	
MaterialCreate('detmap',	'the	terrain	detail.jpg');	
MaterialSetTextureScale('detmap',	100,	100);	
MaterialSetSecondTexture('mTerrain',	'detmap');	
ObjectSetMaterial(terrain,	'mTerrain');	

Please	note	that	we	switched	lighting	for	landscape	material	-	the	fact	is	that	the
dynamic	LOD	does	not	allows	you	 to	define	normal	 for	 the	vertices	 (since	 the
sets	of	vertices	are	constantly	changing),	which	is	necessary	for	the	correct	lights
polygons.	Therefore,	for	the	landscape	should	use	static	lighting	-	the	map	light,
combined	with	the	diffuse	texture.	

Still	 another	 challenge:	 movement	 of	 the	 character	 on	 the	 landscape.	 This	 is
easily	 done	 with	 the	 help	 of	 the	 designated	 functions	 -
TerrainGetHeightAtObjectPosition,	which	 returns	 the	 height	 of	 the	 land	 in	 the
point,	which	coincides	with	the	absolute	position	of	the	object:	

ObjectSetPositionY(camPos,	 TerrainGetHeightAtObjectPosition(terrain,
camPos)	+	1);	

Lesson	16	
The	creation	of	water
Level:	medium	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

The	 realistic	 animated	 water	 is	 a	 kind	 of	 hallmark	 Xtreme3D.	 This	 is	 really
beautiful,	 special	 allows	you	 to	achieve	a	high	degree	of	 realism	of	 the	 scene.
However,	the	use	of	water	must	be	carefully,	because	the	calculations	associated
with	it,	quite	�����������.	

The	water	 in	 the	Xtreme3D	 is	 a	 flat	 surface,	 divided	 into	 a	 certain	 number	 of
squares,	on	which	there	are	concentric	wave	disturbances	-	you	get	the	effect	of
"rain".	 Also	 supported	 are	 linear	 waves,	 as	 in	 the	 ocean	 -	 they	 are	 parallel,
calculated	on	the	sinusoid	and	uniformly	moving	across	the	surface	of	the	water.
In	and	of	itself	the	water	-	only	the	geometry	and	any	properties	of	the	fluid,	in
addition	to	the	waves,	do	not	possess.	Therefore,	all	other	effects,	enhancing	the
impression	 of	 water	 (reflection,	 sprays,	 physics	 of	 floating	 objects,	 etc.)	 you
have	to	write	on	their	own.	

The	Code	creation	of	water	looks	as	follows:	

Water	=	WaterCreate(global.scene);	
WaterSetResolution(water,	128);	
WaterSetRainTimeInterval(water,	1000);	
WaterSetRainForce(water,	1000);	
WaterSetViscosity(water,	0.95);	
WaterSetElastic(water,	10);	
ObjectSetPosition(water,	0,	2.5,	0);	
ObjectSetScale(water,	1000,	1000,	1000);	

The	Object	Water	has	several	important	properties:	

Resolution	(resolution)	

The	number	of	polygons	on	 the	side	of	 the	grid.	The	geometry	of	 the	water	 is
constructed	of	squares	on	the	grid,	so	the	total	number	of	polygons	is	R2,	where
R	is	the	value	of	the	Resolution.	It	is	clear	that	the	higher	the	value,	the	higher
the	quality	of	water,	and,	accordingly,	the	speed	of	its	work.	The	default	value	is:
64.	

Rain	time	interval	(the	time	interval	of	rain)	
The	 effect	 of	 "Rain",	 when	 the	 surface	 of	 the	 �����������,
creating	 in	 random	 places	 mesh	 wave	 disturbances.	 This	 option	 specifies	 the
length	of	the	pause	in	milliseconds	between	two	disturbances.	The	default	value
is	500.	The	maximum	value:	1000000.	The	minimum	value	is	0	(no	rain).	

Rain	Force	(force	of	rain)	
The	 intensity	 of	 the	 disturbances;	 less	 than	 this	 value,	 the	 faster	 the	waves	 of
"fade".	The	default	value	is	5000.	The	maximum	value:	1000000.	The	minimum
value:	0.	

Viscosity	(viscosity)	
The	 amplitude	 of	 the	 perturbation	 theory;	 in	 fact,	 the	maximum	 height	 of	 the
waves:	the	less	the	value,	The	������������	liquid.	The	default
value	is	0.99.	The	maximum	value:	1.	The	minimum	value:	0.	

Elastic	(elasticity)	
Speed	of	the	perturbations.	In	the	real	world	this	property	depends	on	the	density
of	 the	substance	 (for	 example,	 the	density	of	 the	mercury	 is	much	higher	 than
that	of	water,	so	waves	spread	faster).	The	default	value	is:	10.	

Another	point:	for	the	creation	of	water	requires	a	mask	that	defines	the	shape	of
the	surface.	The	Mask	in	this	case	-	material	with	a	monochrome	image,	where
the	 black	 dots	 indicate	 lack	 of	 water,	 white	 -	 the	 presence	 of.	 Thus,	 we	 can
create,	for	example,	round	the	pool.	

MaterialCreate('mMask',	'watermask.bmp');	
WaterSetMask(water,	'mMask');	

Lesson	17	
A	system	of	particles
Level:	medium	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

Particles	(particles)	is	a	small,	simple	in	form	of	moving	objects,	a	lot	of	which
simulates	 various	 complex	 dynamic	 substance,	 for	 example,	 fire,	 smoke,
fireworks,	etc.	As	the	particles	in	the	game	engines	are	typically	used	billboards
-	 toward	 the	camera	with	 the	rectangle	 texture.	 In	 the	Xtreme3D	 there	are	 two
different	 systems	 of	 particles	 -	 FireFX	 and	 ThorFX.	 FireFX	 -	 the	 system	 of
particles,	modeling	 fire	 (although	 you	 can	 use	 it	 to	 recreate	 and	 various	 other
effects).	ThorFX	is	designed	for	the	simulation	of	lightning	and	various	kinds	of
electric	discharges.	

In	the	games	is	typically	used	many	similar	systems	of	particles.	For	example,	in
a	cave	on	the	walls	can	hang	torches,	and	each	will	burn	the	fire,	made	with	the
help	of	particles.	In	this	case,	the	easier	it	is	not	to	create	a	separate	system	for
each	 of	 the	 spray,	 and	 just	 draw	 a	 one	 and	 the	 same	 system	 several	 times	 in
different	positions.	Specifically	 for	such	a	situation,	a	manager	of	The	 FireFX.
Manager	-	this	is	something	like	"server"	running	all	the	calculations	related	to
the	effect.	A	separate	system	of	FireFX	is	"customers",	using	settings	specified
for	the	manager.	You	simply	create	a	manager,	configure	it	as	you	want,	and	then
add	any	number	of	systems	in	all	the	right	places	you	in	the	scene.	The	changes
made	 to	 the	 manager	 settings	 will	 automatically	 affect	 all	 their	 reporting
systems.	

First,	create	The	FireFX	manager:	

Firefx	FireFXManagerCreate	=();	
FireFXSetParticleSize(firefx,	0.3);	
FireFXSetRadius(firefx,	0.1);	
FireFXSetBurst(firefx,	2.0);	
FireFXSetDensity(firefx,	1);	

FireFXSetLife(firefx,	1);	
FireFXSetColor(firefx,	c_yellow,	1.0,	c_red,	0.0);	

You	will	now	add	the	effect	of	fire	any	objects	in	any	quantity:	

Fireobj1	=	DummycubeCreate(global.scene1);	
ObjectSetPosition(fireobj1,	2,	0,	0).	
FireFXCreate(firefx,	fireobj1);	

Fireobj2	=	DummycubeCreate(global.scene1);	
ObjectSetPosition(fireobj2,	2,	0,	0).	
FireFXCreate(firefx,	fireobj2);	

18.	ShadersLesson	18	
Shaders
Level:	experienced	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

One	 of	 the	 most	 interesting	 features	 Xtreme3D	 is	 a	 shader.	 The	 notion	 of
"shader"	here	is	wider	than	the	other	engines.	Usually	this	term	is	used	to	refer
the	program	to	the	GPU	that	are	performed	for	each	top	model,	or	for	each	pixel
of	the	model	on	the	screen.	Such	shaders	in	the	Xtreme3D	also	has	a	(see	next
chapter),	 but	 in	 a	 general	 sense,	 shader	 special	 called,	 or	 modifies	 computer
software	replaces	a	material	to	which	it	is	attached.	Some	of	these	special	effects
work,	and	on	the	old	graphics	cards	 that	do	not	support	���������
program,	and	some	are	based	on	the	built-in	engine	programs.	

Using	 shaders	can	be	 superimposed	on	 the	object	 several	materials,	 render	 the
contours	of	the	object,	make	the	object	embossed	or	give	it	the	"effect	of	comic
books."	Consider	all	possibilities	of	built-in	 shaders	Xtreme3D	within	 a	 single
lesson	 is	 impossible,	 so	 we	 stop	 at	 the	 one-�������	 relief	 (Bump
Shader).	

The	 effect	 of	 relief	 greatly	 increases	 the	 realism	 of	models	 -	 it	 is	 used	 in	 the
games	for	more	than	10	years	of	age	and	over	the	years	has	become	the	de-facto
standard.	�����������	is	usually	achieved	by	using	the	method	of
normal	mapping	(Normal	projection).	This	method	is	based	and	Bump	Shader	in
the	Xtreme3D.	The	essence	of	the	normal	mapping	in	that	normal	is	set	for	each
point	of	the	surface	(in	contrast	to	the	normal	vertex	lighting,	where	the	normal
set	 for	 each	of	 the	peaks,	 and	 then	 simply	 interpolated	over	 the	 surface	of	 the
polygon.	This	 is	 done	 using	 normal	maps	 normal	map)	 -	A	 special	 texture,	 in
which	the	color	of	pixels	compared	to	the	normal	vectors	(RGB	=	XYZ).	Normal
Map	 can	 be	 generated	 from	 the	 map	 heights	 or	 from
�������������������	 geometry	 by	 tracing	 -	 This
function	is	virtually	all	professional	packages	of	3D-modeling.	

	

The	 normal	 map	 was	 relatively	 invariant	 speed	 and	 transfer	 model	 (i.e.,
remained	unchanged	 in	 these	 transformations),	 its	set	 in	a	special	space,	called
the	space	of	 the	 tangent	 (tangent	space).	 In	 this	space,	 the	coordinate	axis	Z	 is
perpendicular	 to	 the	 surface,	 and	 the	X	and	Y	axes,	 respectively,	 are	mutually
perpendicular	 to	 the	 tangents	 to	 the	surface.	The	 lighting	also	calculated	 in	 the
space	 of	 the	 tangent	 -	 direction	 of	 light	 is	 transformed	 in	 this	 space	 using	 a
special	matrix,	which	 is	called	TBN	on	 the	first	 letters	of	 its	components	 -	 the
tangent	 and	 BINORMAL,	 Normal	�������,	���������,
normal).	Normal	 here	 -	 the	 usual	 normal	 tops,	 and	 the	�������	 and
���������	-	vectors,	perpendicular	to	the	normal	and	perpendicular
to	 each	 other.	 These	 vectors	 calculates	 the	 Xtreme3D.	 Currently,	 they	 are
supported	only	for	objects	of	type	Freeform.	

Despite	the	quite	complicated	for	beginners	the	theoretical	base,	use	the	terrain
effect	in	the	Xtreme3D	is	very	easy	-	all	the	complexity	of	the	realization	of	the
hidden	under	the	convenient	API.	

First,	create	materials	with	the	necessary	textures:	
MaterialCreate('mBumpDiffuse',	'diffuse.png');	
MaterialCreate('mBumpNormal',	'normal.png');</A	

Now	create	the	terrain	shader	and	convey	to	him	the	textures:	

Bump	BumpShaderCreate	=();	
BumpShaderSetDiffuseTexture(bump,	'mBumpDiffuse');	
BumpShaderSetNormalTexture(bump,	'mBumpNormal');	
BumpShaderSetMaxLights(bump,	3);	

BumpShaderSetMaxLights	function	defines	 the	number	of	 light	sources,	which
should	take	into	account	the	shader.	Recall	that	the	Xtreme3D	supports	up	to	8
light	sources	-	the	same	applies	to	the	terrain	shader.	

Now	you	can	create	material	and	attach	to	him	our	shader:	

MaterialCreate('mBump',	'');	
MaterialSetAmbientColor('mBump',	c_black,	1);	
MaterialSetDiffuseColor('mBump',	c_white,	1);	

MaterialSetSpecularColor('mBump',	c_ltgray,	1);	
MaterialSetShininess('mBump',	32);	
MaterialSetShader('mBump,	bump);	

Lesson	19	
GLSL	basics
Level:	experienced	
Version	of	the	Xtreme3D:	3.0.x	
Author:	Gecko	

GLSL	 (OpenGL	 Shading	 Language)	 is	 a	 high-level	 language	 description	 of
shaders.	 With	 it	 you	 can	 program	 the	 graphics	 pipeline	 -	 in	 other	 words,	 to
manage	 the	rendering	of	objects	on	 the	���������	 and	pixel	 level.
For	 the	 processing	 of	 peaks	 is	 responsible	 ���������	 GLSL
program,	for	processing	pixels	-	�����������.	
Work	 with	 the	 GLSL	 implies	 knowledge	 of	 the	 principles	 of	 the	 dither	 and
graphics	OpenGL	pipeline,	as	well	as	 linear	algebra.	Since	 the	Xtreme3D	does
not	require	such	knowledge,	 the	use	of	GLSL	can	be	a	very	difficult	 task	for	a
novice,	therefore,	it	is	recommended	to	pre-read	books	or	manuals	on	the	topic.
A	very	useful	will	be	acquaintance	with	the	principles	of	the	work	in	OpenGL,
as	well	as	at	least	a	basic	knowledge	of	C/C++.	

The	types	of	data	GLSL

GLSL	is	strictly	��������������	 language	-	any	variable,	 it
has	a	certain	type.	The	language	supports	the	following	basic	types:	

Bool	-	boolean	value	
Int	-	integer	
Uint	-	�����������	integer	
Float	-	a	floating	point	number	single	precision	
Double	-	a	floating	point	number	double-precision	
Bvec2,	bvec3,	bvec4	is	a	vector	of	boolean	values	dimension	(2,	3,	and	4)	
Ivec2,	ivec3,	ivec4	is	a	vector	of	integers	
Uvec2,	uvec3,	uvec4	is	a	vector	of	Unsigned	integers	
The	vec2,	the	vec3,	the	vec4	is	a	vector	of	numbers	with	a	floating	point	
Dvecn2,	dvecn3,	 dvecn4	 is	 a	 vector	 of	 numbers	with	 a	 floating	 point	 double-
precision	
Mat2,	mat3,	mat4	is	a	matrix	of	2x2,	3x3,	4x4	
Sampler2D	-	the	texture	of	the	
Sampler2DCube	-	cubic	texture	
Sampler2DShadow	-	Shadow	Texture	
Void	-	keyword	that	indicates	the	absence	of	the	type	(for	functions	without	the
returned	results).	

Vertex	Shader

���������	accepts	the	coordinates	of	the	vertices	and	their	attributes
(such	 as	 normal	 the	moment	 and)	 and,	 as	 a	 rule,	 puts	 them	 out	 of	 the	 object
space	into	the	amputation	in	the	world	or	in	species	space.	

-	The	Object	space	 (object	space)	 is	a	 local	space	of	object.	The	center	of	 the
coordinate	system	is	the	center	of	the	object	-	top	models	are	defined	relative	to
the	center.	
-	The	world	 space	 (world	 space)	 is	 another	 name	 for	 the	 absolute	 space.	 The
center	of	the	coordinate	system,	it	is	the	point	(0,	0,	0).	The	total	transformation
of	the	object	(Transferring,	rotation	and	scaling)	puts	the	tops	from	the	local	to
the	global	space.	This	 transformation	 is	 typically	 stored	 and	 transmitted	 in	 the
shader	in	the	form	of	a	matrix	4x4	-	the	so-called	matrix	model	(model	matrix).	
-	Species	space	(eye	space	-	a	space	in	which	the	Center	coordinate	system	is	the
position	of	the	camera.	Translation	of	the	peaks	of	the	world	in	species	space	 is
controlled	by	the	reverse	conversion	Matrix	-	the	so-called	species	matrix	(view
matrix).	In	OpenGL,	as	a	rule,	the	model	matrix	and	generic	are	combined	in	one
��������-�������	(modelview	matrix).	
-	Space	amputation	(clip	space	-	a	space	in	which	the	vertices	are	translated	a
matrix	projection	(projection	matrix).	
It	 should	 be	 noted	 that	 the	 tops	 of	 the	 GLSL	 is	 stored	 in	 the	 so-called
homogeneous	 coordinates	 (homogeneous	 coordinates)	 -	 that	 is,	 have	 an
additional	fourth	coordinate	W.	Such	coordinates,	you	can	express	the	infinitely
distant	point	where	W	is	equal	to	zero.	Conventional	terms	have	the	W	is	equal
to	1.	
Peaks	 in	 the	 space	 of	 amputation	 is	 the	main	 result	 of	 the	work	 of	 the	 vertex
shader.	The	simplest	vertex	shader	 that	performs	only	 translation	of	vertices	of
the	object	space	into	the	amputation,	is	as	follows:	

Void	main()	
{	
		Gl_Position	=	gl_ModelViewProjectionMatrix	*	gl_Vertex;	
}	

Gl_Vertex	-	input	the	coordinates	of	vertices	
Gl_Position	-	The	output	coordinates	of	the	vertices	
Gl_ModelViewProjectionMatrix	 -	 integrated	matrix	of	4x4,	 the	combination	of
The	��������-species	and	projection	matrices	of	OpenGL.	
For	this	procedure,	by	the	way,	in	the	GLSL	has	a	built-in	function	to	ftransform:

Gl_Position	=	ftransform();	

Vertex	Shader	are	also	available	from	other	attributes	of	the	peak	-	normal,	color
and	texture	coordinates:	gl_Normal,	gl_Color,	gl_MultiTexCoordN	(where	N	is
a	number	from	0	to	7).	Usually	these	attributes	of	 the	 interpolated	between	the
three	 vertices	 of	 triangle,	 and	 then	 come	 in	 the	�����������
shader.	To	 transfer	any	value	 to	 the	 interpolation,	used	 in	varying	 intermediate
variables.	For	example,	here	is	the	shader	communicating	to	interpolate	normal:	

Varying	the	vec3	normal;	

Void	main()	
{	
		Normal	=	gl_NormalMatrix	*	gl_Normal;	
		Gl_Position	=	ftransform();	
}	

Please	note	that	we	translate	normal	vertices	of	the	object	space	for	species	with
a	special	built-in	a	matrix	of	3x3	gl_NormalMatrix.	This	is	necessary	so	that	the
best	way	to	count	 lights	 in	pixel	�������	 -	 this	 is	done	in	the	species
space:	 the	 fact	 that	 the	 camera	 is	 at	 (0,0,0),	 greatly	 facilitates	 the	 calculations
related	to	the	��������	component	of	the	light.	
With	the	transfer	of	texture	coordinates	of	the	shader	will	look	like	this:	

Varying	the	vec3	normal;	

Void	main()	
{	
		Normal	=	gl_NormalMatrix	*	gl_Normal;	
		Gl_TexCoord[0]	=	gl_MultiTexCoord0;	
		Gl_Position	=	ftransform();	
}	

Gl_TexCoord	-	this	is	a	built	in	varying-variable,	array,	through	which	you	can
transfer	any	data,	not	only	the	texture	coordinates.	

�����������	Shader

�����������	 accepts	 the	 interpolated	 varying	 variables	 (as	well
as	the	various	options	for	the	status	of	the	OpenGL)	and	displays	as	a	result	of
the	color	pixel.	It	is	performed	for	each	visible	on	the	screen	pixels	of	the	object.
Please	note	that	checking	visibility	(Z-test)	for	pixel	graphics	is	carried	out	prior
to	the	completed	�����������	program	-	if	a	pixel	is	discarded	as
an	invisible,	the	program	is	not	performed.	
The	 simplest	�����������	 shader,	 the	 painter's	 object	 a	 solid
color,	looks	like	this:	

Void	main()	
{	
		Gl_FragColor	=	the	vec4(1.0,	0.0,	0.0,	1.0);	
}	

Gl_FragColor	-	output	color	pixel.	
In	this	case,	the	vec4(1.0,	0.0,	0.0,	1.0)	refers	to	the	red	color	with	transparency
1.0	(Full	Opacity).	

The	use	of	shaders	in	the	Xtreme3D

Create	GLSL	shaders	and	connect	them	to	the	content	is	very	simple:	

Vp	=	TextRead('my_vertex	shader.glsl');	
Fp	=	TextRead('my_fragment_shader.glsl');	
Shader	=	GLSLShaderCreate(vp,	fp);	
MaterialSetShader('myMaterial',	shader);	

Lighting	on	the	GLSL

To	realize	the	simplest	lighting	according	to	the	formula	of	Lambert,	we	need	the
coordinates	of	the	Point	surface	normal	at	this	point,	as	well	as	the	coordinates
of	the	source	of	light.	Thus,	we	need	at	least	two	varying	variables	-	normal	and
interpolated	vertex	coordinates.	
Vertex	Shader:	

Varying	the	vec3	normal;	
Varying	the	vec3	position;	

Void	main()	
{	
		Normal	=	gl_NormalMatrix	*	gl_Normal;	
		Position	=	(gl_ModelViewMatrix	*	gl_Vertex).xyz;	
		Gl_Position	=	ftransform();	
}

Gl_ModelViewMatrix	 is	 a	 built-in	 matrix	 of	 4x4,	 The	 ��������
generic	matrix	 of	OpenGL.	 It	 converts	 the	 coordinates	 of	 the	 object	 space	 for
species	in	which	we	will	calculate	the	lighting.	As	the	result	of	this	translation	-
a	 homogeneous	 vector	 of	 the	 vec4,	we	�����������	 coordinate
W	and	charge	only	the	vector	of	XYZ.	
�����������	shader:	

Varying	the	vec3	normal;	
Varying	the	vec3	position;	

Void	main()	
{	
		The	vec3	N	=	normalize(normal);	
		The	vec3	L	=	normalize(gl_LightSource[0].position.xyz	-	position);	
		Float	diffuse	=	clamp(dot(N,	L),	0.0,	1.0);	
		The	vec4	color	=	gl_FrontMaterial.diffuse	*	diffuse;	
		Color.a	=	1.0;	

		Gl_FragColor	=	color;	
}	

Please	note	that	transfer	in	the	����������	������	singular
vectors	 (such	 as	 normal)	 after	 the	 interpolation	 is	 necessary
�����������	 -	 the	 graphics	 card	 does	 not	make	 it	 for	 you.	 For
this	in	the	GLSL	is	a	function	normalize.	
Access	 to	 the	 coordinates	 of	 the	 source	 of	 light	 is	 controlled	 by	 the	 position
attribute	the	embedded	object	of	gl_LightSource	(array	of	8	elements,	according
to	 the	 number	 of	 light	 sources	 OpenGL).	 These	 coordinates	 in	 the
�����������	�������	is	automatically	transferred	to	the
species	space,	which	is	very	convenient	-	you	do	not	need	to	do	it	manually.	But
if	you	are,	for	one	reason	or	another,	you	need	to	calculate	the	lighting	in	another
space	-	for	example,	in	the	space	of	the	tangent	-	do	not	forget	to	transform	them.
These	coordinates	as	a	peer:	point	source	of	light,	as	a	rule,	has	the	coordinate	of
the	W	is	equal	to	1,	aiming	to	equal	0.	
The	operation	dot(N,	L)	-	this	is	the	calculation	of	the	light	sensor	according	to
the	 formula:	Lambert	 illumination	at	 the	point	 is	determined	by	 the	density	 of
the	light,	and	it	is	linearly	dependent	on	the	cosine	of	angle	of	incidence	of	the
light.	 The	 cosine	 of	 the	 angle	 between	 two	 singular	 vectors	 is	 equal	 to	 the
product	of	The	����������	(dot	product).	
Because	the	result	of	this	operation	-	a	scalar	(float),	for	transfer	to	gl_FragColor
���������	 need	 this	 value	 to	 any	 color.	 It	 is	 better	 to	 use	Diffuse
Color	of	material	 -	gl_FrontMaterial.diffuse:	 thus,	you	can	control	 the	color	of
the	object	out	of	the	shader,	the	function	of	the	MaterialSetDiffuseColor.	

The	textures

In	 The	�����������	�������	 can	 read	 color	 from	 the
textures	-	for	this	is	the	function	of	the	texture2D:	

The	uniform	sampler2D	diffuseTexture;	

Void	main()	
{	
		The	vec4	texColor	=	texture2D(diffuseTexture,	gl_TexCoord[0].xy);	
		Gl_FragColor	=	texColor;	
}	

The	textures	are	declared	as	uniform	objects	-	that	is,	the	modifiable	parameters
are	transferred	to	the	shader	core	program.	This	may	be	not	only	the	texture,	but
also	any	other	data	types.	
The	transfer	of	the	textures	in	the	shader	is	done	as	follows:	

Param	GLSLShaderCreateParameter(shader,	'diffuseTexture');	
GLSLShaderSetParameterTexture(param,	'myMaterial',	0);	

In	the	function	of	the	GLSLShaderCreateParameter	is	transferred	to	the	name	of
the	 uniform	 object.	 In	 the	 function	 of	 the	GLSLShaderSetParameterTexture	 is
transferred	to	the	name	of	the	material,	from	which	you	want	to	read	the	texture,
as	well	as	the	texture	unit,	 through	which	you	want	to	transfer	the	texture.	The
OpenGL	standard	guarantees	8	available	texture	units	(0-7)	-	 the	modern	video
cards	they	can	be	and	more	(up	to	16	or	even	32),	but	for	the	best	compatibility	it
is	 recommended	 not	 to	 use	 more	 than	 8.	 In	 one	�������	 cannot
transmit	two	different	textures	through	one	and	the	same	texture	unit	-	that	is,	if
you	 submit	multiple	 textures	 in	 different	 uniform-parameters,	 use	 the	 different
blocks.	

About	the	versions	of	the	GLSL

Xtreme3D	is	based	on	the	OpenGL	1.x	and	some	of	the	functions	of	the	OpenGL
2.x,	which	are	connected	 through	 the	 expansion	of	 the	ARB.	Thus,	 the	 engine
supports	GLSL	versions	1.1	and	1.2	-	 later	versions	of	 the	 language	defined	in
the	OpenGL	specification	3.0.	
The	default	is	GLSL	1.1.	To	switch	to	1.2,	use	the	preprocessor	directive	(on	the
first	line	of	the	shader):	

#Version	120	

Version	 1.2	 is	 built-in	 support	 for	 transposition	 of	 matrices	 (the	 function
transpose),	������������	matrices,	as	well	as	arrays.

From	the	Editors
In	computer	graphics	have	historically	developed	extensive	specific	terminology
-	this	and	the	names	of	algorithms,	and	indicate	the	standards,	and	different	kinds
of	 abbreviations,	 which	 is	 quite	 complicated	 to	 sort	 out	 those	 who	 have	 just
started	 to	 get	 acquainted	 with	 3D	 graphics.	 We	 have	 compiled	 a	 glossary	 is
intended	to	educate	the	beginners	in	this	area,	as	well	as	to	provide	the	necessary
information	on	mathematical	apparatus	and	technologies	used	in	the	Xtreme3D
and	other	similar	engines.

Engine
Engine	|	Engine,	the	engine

A	central	component	of	the	program,	designed	to	solve	a	specific	problem.	As	a
rule,	the	slider	is	formalized	in	the	form	of	an	independent	module	(for	example,
a	dynamic	library)	for	use	in	several	projects.	

The	 game	 engine	 is	 a	 universal	 or	 specialized	 software	 designed	 for	 the
development	 of	 computer	 games.	 As	 a	 rule,	 contains	 a	 set	 of	 components	 for
modeling	of	game	situations,	the	withdrawal	of	the	graphics	and	sound,	as	well
as	user	interaction	via	the	input	device.	
The	 graphics	 engine	 (2D,	 3d	 or	 hybrid)	 is	 one	 of	 the	 key	 parts	 of	 the	 game
engine,	which	 is	 responsible	 for	 the	output	of	graphics.	Currently,	 the	graphics
engines	are	 typically	created	on	 the	basis	of	 system	of	graphics	API	(DirectX,
OpenGL,	etc.).	

See	also	Physics	Engine.

Environment	Mapping
Environment	Mapping	|	map	projection	environment

One	of	the	forms	of	ibl	is	a	method	of	texture	overlay	that	simulates	the	effect	of
mirror	reflections	on	the	surface.	As	a	result	of	the	use	of	the	environment	map
rendering	 on	 the	 reflections	 it	 takes	much	 less	 time	 than	 when	 using	 a	 "fair"
tracing.	
Environment	Mapping	involves	the	use	of	one	or	more	of	the	textures	with	The
�����������������	 or
�������������������	 reflections.	 The	 projection	 of
the	 textures	 on	 the	 surface	 of	 the	model	 occurs	 by	 the	 specific	 transformation
texture	coordinates.	There	are	several	methods	of	projection	environment	maps:	
Sphere	Mapping	 (spherical	 projection)	 -	 as	 the	 environment	map	 is	 used	 the
only	 texture,	 forming	 the	 surface	of	 the	 imaginary	of	 a	hemisphere,	 the	object
from	the	viewer.	This	is	the	easiest	and	most	effective	method,	but	not	realistic,
as	with	any	angle	the	viewer	sees	the	same	reflection.	This	method	is	also	known
as	the	Mirror	Ball	("mirror	ball").	
Cube	Mapping	 (cubic	 projection)	 -	 as	 a	 reader	����������	 uses
six	 projection,	 forming	 the	 six	 sides	 of	 the	 imaginary	 cube	 surrounding	 the
object.	As	a	result,	the	effect	is	fully	reflected	from	any	point	of	the	surface.	The
original	images	obtained	by	the	preliminary	or	dynamic	rendering.	This	method
allows	you	 to	get	 the	most	 realistic	 result	 at	 the	cost	of	 the	high	cost	of	video
memory.	
Equirectangular	 Mapping	 (������������������
projection	-	a	method	of	projection	used	in	cartography.	As	the	environment	map
is	used	only	the	texture	covering	the	imaginary	sphere	around	the	object.	Allows
you	 to	 get	 a	 realistic	 result	 at	 minimum	 cost	 of	 video	 memory	 (artifacts	 of
projection	are	the	"poles",	but	they	are	usually	not	very	visible).	In	the	rendering
of	real	time,	this	method	has	been	widely	only	with	the	advent	of	shaders,	as	on
a	fixed	line	it	is	not	maintained.	
Dual-Paraboloid	 Mapping	 (the	 projection	 of	 dual	 paraboloid)	 is	 one	 of	 the
most	 modern	 methods.	 Displays	 the	 top	 and	 bottom	 of	 the	 hemisphere	 of
environment	in	two	textures.	This	method	has	little	artifacts	(if	not	take	a	small
deviation	 along	 the	 equator")	 and	 is	 the	 best	 compromise	 between	 memory
consumption	and	the	quality	of	the	result.	

See	also	Reflection	Mapping.

ERP
Error	Reduction	Parameter	|	The	Coefficient	of	correction	of	an	error

The	 coefficient,	 responsible	 for	 the	 restoration	 of	 the
������������	 ties	in	the	physical	cursor	 (usually	 in	 the	ODE),
and	 showing	 what	 part	 of	 the	 ������	 will	 attempt	 to	 correct	 the
������������	 link.	 So,	 for	 example,	 when	 the	 ERP	 =	 1
������	 tries	 for	 one	 iteration	 of	 the	 restore	 link	 in	 "Normal"	 position
(minimize	to	each	other	the	two	ends	of	the	�������������	of
articulation,	 or	 push	 out	 entirely	 a	 couple	 of
���������������	Tel).	
See	also	Physics	Engine	ODE.

Fillrate
Fillrate	|	fill	speed

The	rendering	speed	of	pixels	on	the	screen.	The	higher	the	fill	rate,	the	better.
The	speed	of	modern	video	cards	is	measured	in	millions	and	billions	of	pixels
per	second.

Focal	Length
Focal	Length	|	Focus	Distance

The	distance	 in	millimeters	 from	 the	 center	 of	 the	 lens	 to	 the	 image,	which	 is
part	of	the	entity	(presumably	the	infinite	distance	in	front	of	the	lens).	Focused
lenses	 short	 radius	 of	 action	 necessary	 for	 the	 formation	 of	 the	 wide	 angle
images,	while	 the	 distant	 focus	 distance	 is	 used	 for	 shooting	with	 a	 telephoto
lens.

Fog
Fog	Mist	|

The	effect	of	gradual	touching	up	model	of	a	solid	color	(usually	the	background
color)	depending	on	the	depth.	The	Fog	attaches	to	the	stage	of	realism,	as	well
as	allows	you	to	hide	unneeded	geometry.

Forward	Kinematics
Forward	Kinematics	|	Direct	kinematics

The	movement	of	bones	in	the	skeletal	animation	in	the	forward	direction	from
the	parent	object	to	������������.	For	example,	Turning	Torso
is	the	turn	of	the	head,	but	the	head	can	be	rotated	and	regardless	of	the	torso.	
See	also	the	Inverse	Kinematics,	Skeletal	Animation.

The	FOV
Field	of	View	|	The	Field	of	View

The	angle	(horizontal	or	vertical),	which	covers	the	projection	of	the	3d	scene.	In
the	 frame	 buffer	 gets	 only	 some	 of	 the	 area	 of	 the	 scene	 -	 we	 look	 at	 the
truncated	 pyramid	 visibility	 (view	 frustrum),	 the	 angle	 between	 the	 two
opposing	sides	which	forms	a	field	of	view.	
In	most	2D	games	it	is	impossible	to	speak	about	the	angle	of	view	-	it	is	zero,
and	the	pyramid	is	a	rectangular	tube.	
The	FOV	seriously	affects	the	perspective:	when	large	values	of	the	field	of	view
(more	 than	 90)	 visible	 object	 size	 decreases	 rapidly	 with	 distance.	 At	 small
values,	 on	 the	 contrary,	 the	visible	 size	 of	 an	object	 is	weakly	depends	on	 the
distance	 (and	 it	 does	 not	 depend	 in	 the	 case	 of
����������������	 of	 projection,	 i.e.	 in	 the	 absence	 of
prospects	-	when	the	field	vision	is	zero).	
For	 understanding	 the	 term	 an	 analogy	 might	 be	 with	 a	 focal	 length	 of	 the
camera,	which	directly	affects	its	field	of	view.	
In	real	life	the	horizontal	angle	of	vision	is	approximately	140	degrees.

FPS
Frames	Per	Second	|	The	number	of	frames	per	second

The	number	of	 frames	per	 second,	which	������������	game.
Than	this	number,	the	smoother	will	be	animations	in	the	game.	
FPS	is	a	crucial	measure	to	evaluate	the	performance	of	graphics	applications,	as
well	as	the	graphics	systems	(the	graphics	card	+	driver).	However,	this	is	only
possible	 when	 the	 vertical	 synchronization	 (VSync).	 When	 the	 vertical
synchronization	number	of	FPS	may	not	be	greater	 than	 the	vertical	 frequency
monitor	 (typically	 60	 Hz),	 so	 testing	 with	 vertical
��������������	always	correctly.	

See	also	the	VSync,	Fillrate.

First	Person	Shooter	|	First	Person	Shooter

The	 popular	 game	 genre	 that	 kind	 of	 action,	 in	which	 the	 player	 observes	 the
scene	 from	 "eye"	 of	 the	 character	 of	 the	 game.	 In	 the	 FPS	 distributed	mainly
battle	 themes,	 fight	 with	monsters	 and	 space	 aliens.	 Classic	 examples:	 games
series	of	Doom,	Quake	and	Half-Life.

Frame	Buffer
Frame	Buffer	|	Frame	Buffer

The	memory	for	storing	data	about	pixels	required	 to	display	one	frame	image
on	the	monitor	screen.	Capacity	of	the	frame	buffer	is	determined	by	the	number
of	bits	used	to	define	each	pixel.	
See	also	the	Buffer.

Framework
Framework	|	Web	Framework

The	frame	software	system	(or	subsystem).	May	include	support	programs,	 the
library	 code,	 scripting	 language	 and	 other,	 facilitating	 the	 development	 and
consolidation	 of	 the	 different	 components	 of	 large	 software	 project.	 Usually
association	is	due	to	the	use	of	a	single	API.	

Frame	Buffer
Frame	Buffer	|	Frame	Buffer

The	memory	for	storing	data	about	pixels	required	 to	display	one	frame	image
on	the	monitor	screen.	Capacity	of	the	frame	buffer	is	determined	by	the	number
of	bits	used	to	define	each	pixel.	
See	also	the	Buffer.

Frustum	Culling
Frustum	Culling	|	Selection	of	the	pyramid	of	visibility

The	 method	 of	 selection	 of	 the	 invisible	 geometry,	 used	 for	 large	 polygonal
objects	 (for	 example,	 landscape	or	 interior	 scene).	Redrawn	only	 those	objects
that	are	fully	or	partially	located	inside	of	the	truncated	pyramid	visibility	(view
frustum).	All	that	is	outside	the	pyramid,	located	outside	of	the	screen.

Geometry
Geometry	The	Geometry	|

A	set	of	reference	points,	defining	the	shape	of	the	object.	For	example,	a	cube	is
determined	by	eight	points.

Global	Coordinates
Global	Coordinates	|	Global	coordinates

The	coordinate	system,	which	defines	the	position	of	the	object	in	space	relative
to	the	absolute	coordinates.

GLScene
GLScene

Free	 outdoor	 graphics	 library	 based	 on	 the	 OpenGL	 for	 Delphi	 and	 Lazarus,
originally	developed	in	1999,	Mike	�����.	With	version	0.5	Development
of	 the	GLScene	was	 continued	by	Eric	�������,	 and	 since	 2006,	 the
library	is	supported	by	a	community	of	programrs,	including	Russia.	
GLScene	 is	 continuously	 evolving,	 adapting	 to	 modern	 technology	 of	 3D
graphics.	 In	 addition	 to	 the	 graphics	 classes	 and	 components,	 the	 library
provides	tools	for	working	with	sound,	I/O,	the	game	logic	and	physics.	
The	high-level	structure	of	 the	GLScene	allows	beginners	 to	create	games,	not
knowing	 any	OpenGL	commands,	 not	 presenting,	 as	 the	matrix	 are	multiplied
together	and	how	to	write	shaders.	At	 the	same	 time,	professionals	offering	all
the	 possibilities	 for	 the	 use	 of	 pure	OpenGL,	 where	 necessary,	 modifying	 the
source	code	under	themselves	and	create	professional	applications.	
On	the	basis	of	the	modified	the	source	code	GLScene	is	built	Xtreme3D.	
Official	site:	http://www.glscene.org.	

See	also	Engine,	OpenGL.

http://www.glscene.org

The	GPU
Graphics	Processing	Unit	|	The	Gpu

The	processor,	designed	for	graphics	rendering.	From	the	central	processing	unit
(CPU)	is	a	special	parallel	architecture,	which	allows	to	solve	some	tasks	much
faster.	Condition	only	one	task	must	be	observed	parallelism.	
The	term	was	GPU	���������������	by	NVIDIA,	which	in
1999	released	a	GeForce	256,	and	called	it	"the	first	GPU	in	history",	although
the	 Hardware	 dithering	 and	 relevant	 core	 appeared	 much	 earlier.	 So,	 the	 first
arcade	game	machines	with	hardware	T&L	appeared	in	1993	(Sega	Model	2	and
Namco	Magic	Edge	Hornet	Simulator).	In	consumer	computer	systems	The	first
gpu	appeared	on	the	Sega	Saturn,	PlayStation	and	Nintendo	64	(1994-1996).	On
personal	computers	was	one	of	the	first	dedicated	graphics	3D-rendering	was	S3
Virge	(1995),	then	the	market	leader	has	become	the	company	3Dfx	Interactive
was	established,	in	1996	and	2000,	the	Voodoo	accelerator	Graphics.	Since	2000,
the	GPU	market	is	divided	between	the	NVIDIA,	ATI	(now	absorbed	by	AMD)
and	Intel.	
The	GPU	is	designed	for	processing	large	arrays	of	similar	data,	such	as	points,
vectors	and	pixels.	Initially,	the	types	of	data	that	can	be	processed	GPU	(and	the
video	 processing	 algorithms)	 were	 strictly	 defined,	 but	 modern	 graphics
processors	 are	 fully	 programmable	 -	 this	 means	 that	 the	 programr	 can	 send
arbitrary	data	and	perform	any	algorithms.	This	has	led	to	the	introduction	of	the
term	GPGPU	-	General	Purpose	GPU	(GPU).	

HDR
High	Dynamic	Range	|	wide	dynamic	range

Description	of	the	color	of	the	real	physical	quantities.	

The	 familiar	 model	 description	 of	 the	 image	 is	 RGB,	 when	 all	 colors	 are
presented	 in	 the	 form	of	 the	 amount	 of	 the	Basic	 colors:	 red,	 green,	 and	blue,
with	different	intensity	in	the	form	of	a	possible	integer	values	from	0	to	255	for
each,	the	encoded	eight	bits	of	 the	color.	Attitude	of	 the	maximum	intensity	 to
the	 minimum	 available	 to	 display	 a	 particular	 model	 or	 device	 is	 called	 the
dynamic	range.	Thus,	 the	dynamic	 range	of	 the	RGB	model	 is	256:1	or	100:1
cd/m2	(2).	This	model	describe	 the	color	and	 intensity	 is	generally	accepted	 is
called	Low	Dynamic	Range	(LDR).	

The	possible	values	of	the	LDR	in	all	cases	is	not	enough,	a	person	is	able	to	see
a	much	greater	range,	especially	at	low	light	intensity,	and	the	RGB	model	is	too
limited	 in	 such	 cases	 (yes,	 and	when	 large	��������������
too).	 The	 dynamic	 range	 of	 vision	 from	 10-6	 up	 to	 108	 cd/m2,	 that	 is,
100000000000000:1	 (14	 orders).	 At	 the	 same	 time,	 the	 entire	 range	 we	 see
cannot,	 but	 the	 range,	 visible	 eye	 at	 a	 time,	 approximately	 equal	 10000:1	 (4).
The	vision	adapts	to	the	values	from	another	part	of	the	range	of	light	conditions
gradually,	with	the	help	of	the	so-called	adaptation,	you	can	easily	describe	 the
situation	with	the	light	off	in	the	room	at	night	-	first	the	eyes	see	very	little,	but
over	 time,	 adapt	 to	 changing	 light	 conditions	 and	 see	 the	 already	much	more.
The	same	thing	happens	and	when	back	to	change	the	dark	environment	 in	 the
light.	

So,	the	dynamic	range	of	the	RGB	descriptions	is	not	enough	for	the	submission
of	 images	 that	 people	 can	 see	 in	 reality,	 this	 model	 significantly	 reduces	 the
possible	values	of	 light	 intensity	at	 the	 top	and	bottom	of	 the	 range.	The	most
common	example,	driven	in	HDR,	-	the	image	of	������������
spaces	with	window	 to	 the	 bright	 street	 on	 a	 sunny	 day.	With	 the	RGB	 color
model	can	be	obtained	or	normal	display	that	is	located	outside	the	window,	or
just	the	fact	that	inside	the	premises.	Values	greater	than	100	cd/m	2	in	the	LDR
is	 truncated,	 this	 is	 the	 reason	 that	 the	 3D-rendering	 it	 is	 difficult	 to	 correctly

display	the	bright	light	sources	aimed	directly	in	the	camera.	

The	display	device	until	that	seriously	cannot	be	improved,	but	the	failure	of	the
LDR	in	the	calculations	of	makes	sense.	You	can	use	the	actual	physical	value	of
intensity	 and	 color	 (or	 linearly	 proportional),	 and	 on	 the	 monitor	 display
maximum	 that	 it	 can.	 The	 essence	 of	 the	 submission	 of	 HDR	 in	 the	 use	 of
intensity	values	and	colors	in	real	physical	terms	or	linearly	proportional	to	use
integers	and	floating-point	numbers	with	great	accuracy	(for	example,	16	or	32
bits).	 This	 removes	 restrictions	 on	 the	 RGB,	 and	 the	 dynamic	 range	 images
seriously	 increase.	 Then	 any	 HDR	 image	 can	 be	 displayed	 on	 any	 vehicle
display	(the	same	RGB	monitor),	with	the	highest	quality	possible	for	him	with
the	help	of	special	algorithms	for	tone	mapping.	

HDR	 rendering	 allows	 you	 to	 change	 the	 exposure	 after	 we
�����������	image,	gives	an	opportunity	to	simulate	the	effect	of
the	 adaptation	 of	 human	 vision	 (movement	 of	 bright	 open	 spaces	 in	 the	 dark
spaces	 and	 vice	 versa),	 allows	 you	 to	 physically	 correct	 lighting,	 as	well	 as	 a
unified	 solution	 for	 the	 application	 of	 the	 postprocessing	 effects	 (glare,	 flares,
bloom,	motion	blur).	Algorithms	of	image	processing,	color	correction,	gamma
correction,	 motion	 blur,	 bloom	 and	 other	 methods	 of	 qualitative	 processing
performed	in	HDR	view.	

In	the	annexs	3D	rendering	Real	Time	Gaming,	mostly)	HDR	rendering	began	to
use	 relatively	 recently,	 because	 it	 requires	 computing	 and	 render	 target	 in	 the
formats	 of	 floating	 point	 operations,	which	 first	 became	 available	 only	 on	 the
����������	 with	 support	 for	 DirectX	 9.	 The	 usual	 route	 HDR
rendering	in	games	is	as	follows:	the	rendering	of	the	scene	in	the	buffer	format
of	 floating-point	 image	 postprocessing	 in	 the	 expanded	 color	 range	 (changing
the	contrast	and	brightness,	color	balance,	 the	effects	of	glare	and	motion	blur,
lens	flare	and	such),	 the	application	of	 tone	mapping	for	 the	withdrawal	of	 the
final	HDR	 images	 on	 the	 LDR	 screen.	 Sometimes	 the	map	 used	 environment
(environment	maps)	in	the	HDR	formats,	for	the	static	reflections	on	objects,	a
very	 interesting	 application	 of	 HDR	 in	 the	 simulation	 of	 dynamic
�����������	and	reflections,	this	can	also	be	used	dynamic	maps
in	formats	with	a	floating	point.	To	this	add	another	��������	(light
maps),	pre-calculated	and	stored	in	the	HDR	format.	Much	of	the	above	made,
for	example,	in	the	Half-Life	2:	Lost	Coast.	

HDR	 rendering	 is	 very	 useful	 for	 post-processing	 complex	 of	 higher	 quality,

compared	with	conventional	methods.	The	same	bloom	will	look	realistic	in	the
calculations	to	HDR	model	of	submission.	

Unfortunately,	in	some	cases,	game	developers	can	hide	under	the	name	of	HDR
filter	simply	bloom,	calculated	in	the	usual	LDR	range.	Although	a	large	part	of
that	now	make	 the	games	with	HDR	 rendering,	 and	 there	 is	 a	bloom	of	better
quality,	 benefit	 from	 the	 HDR	 rendering	 is	 not	 limited	 to	 one	 these
������������,	simply	to	make	it	easier.	

Hidden	Surface	Removal
Hidden	Surface	Removal	|	Remove	hidden	surfaces

Method	 of	 determining	 the	 visible	 to	 the	 observer	 of	 surfaces.	 Allows	 not	 to
display	invisible	from	the	point	of	the	surface	of	the	object.

Hierarchy
Hierarchy	the	Hierarchy	|

The	system	of	relationships	between	objects,	in	which	some	of	the	objects	("the
descendants")	 are	 subordinate	 to	 other	 ("parents").	A	number	 of	 parameters	 of
the	descendants	of,	for	example,	movement,	rotation	and	scaling,	dependent	on
their	parents.	At	the	same	time,	direct	change	the	descendants	will	not	affect	the
status	of	the	parent.

The	HUD
Head-Up	Display

Part	 of	 the	GUI,	which	displays	 the	most	 important	 information	on	 the	 screen
during	 the	game.	For	example,	 the	standard	of	 living,	glasses,	ammunition,	 the
mini-card	 and	 others.	 The	 information	 can	 be	 displayed	 as	 both	 a	 digital
(symbols)	and	the	analog	form	(scale).

Interpolation
Interpolation	Interpolation	|

The	mathematical	method	 to	 restore	 the	missing	 (intermediate)	 information	on
the	 existing	 set	 of	 known	 values.	 The	 simplest	 type	 of	 interpolation	method	 -
linear:	if	there	are	two	values	A	and	B,	the	range	of	intermediate	values	between
them	is	obtained	by	the	formula	A	*	(1	-	t)	+	B	*	t,	where	t	is	a	number	from	0	to
1.	Linearly	 interpolate	can	not	only	be	 real	numbers,	but	also	 the	vectors.	The
result	of	linear	interpolation	of	two	colors	is	a	linear	gradient.	

Inverse	Kinematics
Inverse	Kinematics	|	Inverse	Kinematics

The	movement	of	bones	in	 the	skeletal	animation	in	 the	reverse	direction	from
the	object	generated	by	 the	parent.	 In	 this	case,	 for	example,	 the	movement	of
the	hands	causes	the	movement	of	the	shoulder.

Keyframing
Keyframing	|	Creating	key	frames

The	 process	 of	 animation	 values	 in	 time.	 Each	 key	 point	 is	 the	 value	 of	 the
parameter	 in	 a	 certain	 frame.	 Values	 between	 key	 frames	 are	 calculated	 by
interpolation.	To	create	the	key	frames	can	practically	for	all	parameters,	which
are	determined	by	numerical	values.

Lensflare
Lensflare	|	glare	on	the	lenses

Light	effect	caused	by	scattering	and	refraction	of	light	in	the	system	of	lenses,	if
within	the	camera's	field	of	view	gets	a	bright	glowing	object.	This	effect	is	often
imitated	 in	 computer	 gaming	 from	 a	 third	 person	 to	 make	 the	 graph
�������������������.

Light	Source
Light	Source	|	Light	Source

An	 element	 of	 the	 scene,	 which	 creates	 the	 light.	 Light	 sources	 can	 be	 of
different	 types	 and	 have	 different	 characteristics.	 The	 analogues	 of	 lighting
devices	 in	 the	 real	 world,	 which	 offer	 additional	 features,	 inaccessible	 real
sources.	

	

Typically,	there	are	three	main	types	of	light	sources:	
Point	Light	 (point)	 is	 the	 source	of	 light	which	 shines	equally	 in	all	directions
from	 one	 point	 (for	 example,	 the	 light	 in	 the	 room).	 Also	 there	 is	 the	 omni
designation	(omnidirectional)	light.	
Spot	Light	(spot)	-	a	light	source	shining	in	all	directions,	and	within	some	of	the
cone.	Highlights	the	only	objects	that	fall	into	this	cone.	A	simple	example	is	the
flashlight.	
Parallel	Light	 (parallel	 light)	 -	 simulates	 the	 remote	 light	 sources,	 such	 as	 the
sun.	The	light	is	emitted	in	the	direction	of	the	only	one	axis,	from	the	source,	of
the	infinitely	great	distance	from	the	viewer,	and	all	light	rays	are	parallel.	The
synonyms	of	the	term:	distant	light,	directional	light.	

Point	 and	 directed	 light	 sources	 are	 the	 parameters	 affecting	 the	 lighting,	 for
example,	 attenuation	 (attenuation).	 This	 setting	 affects	 the	 decrease	 of	 light
intensity	with	distance.	In	the	quadratic	equation	that	determines	the	intensity	of
the	 light,	 composed	 of	 three	 parameters,	 called	 constant,	 linear	 and	 quadratic
components	(constant,	linear,	quadratic).	By	default,	they	are	assigned	a	value	of
1,	 0	 and	 0	 respectively	 -	 the	 intensity	 of	 the	 light	 from	 the	 source	 does	 not
decrease	with	distance.	
The	equation	is	as	follows:	

	

Where	 a	 is	 the	 value	 of	 the	 attenuation;	 -	 constant	 component;	 l	 is	 a	 linear
component;	d	is	the	distance	from	the	light	source,	a	q	-	quadratic	component.

Lightmap
Lightmap	|	Map	Light

The	 outdated,	 but	 still	 applied	 because	 of	 its	 simplicity,	 the	 method	 of	 static
lighting	surfaces.	The	principle	is	as	follows:	at	the	base	texture	impose	another
map	 light,	 the	 light	 and	 dark	 places	 which	 alter	 the	 light	 intensity	 baseline,
blending	in	the	modulate.	To	overlay	the	light	card	model,	as	a	rule,	provides	an
additional	set	of	texture	coordinates.	
This	method	is	applicable	only	for	static	models	and	fixed	light	sources.

Line	Buffer
Line	Buffer	|	Inline	buffer

The	memory	buffer	used	to	store	one	line	in	the	video.	If	the	horizontal	display
resolution	 is	 set	 to	 640	 and	 to	 encode	 color,	 use	 the	RGB	 diagram,	 the	 linear
buffer	 will	 be	 the	 size	 of	 640x3	 bytes.	 The	 Linear	 buffer	 is	 typically	 used	 in
algorithms	of	filters.	

LOD
Level	of	Detail	|	degree	of	detail

Optimization	 method	 of	 rendering	 in	 graphic	 engines,	 based	 on	 reducing	 the
detail	of	the	models	as	their	distance	from	the	camera.	There	are	a	discrete	LOD,
providing	for	storage	of	several	models	in	memory	and	switching	between	them,
and	 dynamic	 (or	 continuous),	 based	 on	 the	 ����������
�����	 in	 real-time.	 Dynamic	 LOD	 is	 typically	 used	 for	 rendering
landscapes.

Model
Model	|	Model

One	 of	 the	 ways	 of	 objects	 in	 the	 scene.	 The	 model	 can	 contain	 not	 only
information	 about	 the	geometry,	 but	 also	 functional	 curves,	 tenders,	 and	many
other	properties	that	define	the	included	in	the	elements.	This	term	can	also	be
attributed	to	the	objects	and	characters.

Map
Map	|	Site	Map

The	scanned	or	drawn	a	 raster	 image,	 representing	 those	or	other	properties	of
the	surface	 in	each	of	 its	point	 -	 for	example,	 the	color	or	normal.	The	card	 is
also	 referred	 to	 as	 textures,	while	 the	 texture	more	 accurate	 to	 call	 the	 image
stored	 in	 the	memory.	 For	 rendering	 the	models	 use	 the	 color	 (diffuse)	maps,
normal,	the	lightmap,	maps	of	heights,	��������	maps,	environment,
a	 luminous,	 and	 so	 on.	 In	 modern	 physically	 sound	 rendering	 also	 applied
�������������	 cards	 and	 roughness.	 The	 process	 of	 map
overlay	 on	 the	 surface	 of	 the	 model	 (which	 is	 the	 display	 of	 the	 spatial
coordinates	 in	 the	 texture)	 is	 called	 The	 ���������	 or
��������������.	
See	also	the	texture.

Material
Material	|	Material

The	 totality	of	 the	surface	parameters	 that	define	 the	appearance	of	 the	object.
These	 parameters	 are	 usually	 include	 color	 components,	 the	 importance	 of
transparency,	one	or	more	of	the	diffuse	texture,	normal	map,	a	map	of	the	light
and	 etc.	 It	 should	 be	 borne	 in	 mind	 that	 in	 game	 3D	 cursors	 the	 concept	 of
"material"	refers	to	the	surface,	and	not	to	the	volume	of	the	object,	because	the
dither	is	subject	to	only	the	surface.

Matrix
Matrix	|	The	Matrix

The	 two-dimensional	 table.	The	matrix	 are	 identified	 as	NxM,	where	N	 is	 the
number	of	 rows	 in	 the	 table,	M	 is	 the	number	of	columns.	 In	 linear	algebra	 is
typically	used	 in	 the	square	matrix	 (where	 the	number	of	columns	and	rows	 is
the	same).	In	the	3D	graph	square	matrices	are	used	for	the	linear	transformation
vectors	and	points	from	one	space	to	another.	
The	 matrix	 can	 be	 multiply,	 invert	 (calculate	 the	 inverse	 matrix),	 as	 well	 as
transposing	 -	 that	 is,	 to	 swap	 rows	and	columns	 (the	 line	becomes	 the	column
and	vice	versa).	A	special	kind	of	a	square	matrix	-	a	single.	In	a	single	matrix	of
all	 elements,	 in	 addition	 to	 the	 main	 diagonal	 equal	 to	 zero,	 and	 the	 main
diagonal	(from	the	top	left	corner	to	the	lower	right)	contains	the	units.	A	single
matrix	 is	 equal	 to	 its	 inverse	 and	�����������������
matrices.	Multiplication	 of	 the	 matrix	 on	 hop	 count	 will	 result	 in	 exactly	 the
same	matrix.	
Matrix	multiplication	is	performed	on	the	columns	and	rows	for	each	element	of
the	resulting	matrix	corresponding	to	this	element	of	the	string	one	scalar	matrix
is	 multiplied	 by	 the	 appropriate	 column	 on	 the	 other.	 The	 multiplication	 of
matrices	��������������	-	that	is,	the	matrices	A	and	B	work
A	*	B	does	not	necessarily	equal	to	B	*	A.	
You	 can	 also	�����������	 matrix	 and	 vector,	 if	 adhered	 to	 a
certain	conformity	to	their	dimensions.	There	are	two	types	of	such	multiplying	-
left	 and	 right.	 The	 left	 multiplies	 the	 NxM	 matrix	 to	 a	 vector-column	 in	 the
dimension	of	M,	 and	 the	 result	 is	 a	vector	of	 dimension	N.	Right	multiplies	 a
vector-string	 dimension	 N	 of	 the	 matrix	 NxM,	 and	 the	 result	 is	 a	 vector	 of
dimension	of	M.	Vector-string	is	a	vector	of	dimension	n,	recorded	in	a	matrix	of
1xN,	vector-column	is	a	vector	of	dimension	M,	recorded	in	the	form	of	a	matrix
Mx1.	 In	 the	 rest	 of	 the	multiplication	 rules	 are	 the	 same	 as	 for	 matrices	 is	 a
string	 in	 the	 column.	 The	 right	 multiplication	 corresponds	 to	 the	 left	 with
�����������������	 matrix	 (and	 vice	 versa),	 and	 this
property	is	often	used	in	computer	calculations	for	the	various	optimizations.	

See	also	the	Transformation,	the	Vector.

Mesh
Mesh,	Polygonal	Mesh	|	The	polygon	feature	mesh

The	 final	 lists	 of	 vertices,	 edges	 and	 faces	 are	 called	 the	 polygon	mesh,	 if	 its
components	meet	the	following	conditions:	
-	Each	vertex	must	have	at	least	one	rib	
-	Each	edge	must	be	at	least	one	facet	of	the	
-	If	 the	two	facets	of	intersect,	 top	or	ridge,	which	turned	out	as	a	result	of	the
intersection	 should	 be	 components	 of	 the	 polygon	mesh.	 If	 all	 the	 flats	 in	 the
grid	-	triangles,	the	object	is	called	a	triangle	mesh	(triangle	mesh	or	abbreviated
trimesh).

Metaball	Modeling
Metaball	Modeling

The	process	of	creating	3D	models	of	individual	spheres	(or,	in	rare	cases,	from
other	geometrical	Tel),	which	 interact	with	 each	other	 as	 the	distance	between
them.	 Such	 technology	 is	 applied,	 in	 particular,	 in	 the	 re-establishment	 of
organic	objects.

Mipmapping
Mipmapping	����������	|

The	��������-mip	(multum	in	parvum)	means	"done	in	one".	
���������������	 optimized	 set	 of	 images	 associated	with
one	 texture	 and	 is	 designed	 to	 increase	 the	 speed	 of	 rendering	 and	 improve
image	quality.	
Each	image	in	the	set	of	less	than	half	the	����������.	I.e.	the	first
has	a	size	equal	 to	 the	size	of	 the	 texture,	 the	second	half	 less,	 the	 third	-	 four
times,	etc.	up	to	size	1x1	texel.	
The	meaning	 of	 the	����������������	 sets	 is	 that	when
texturing	 will	���������	 image	 with	 the	 most	 suitable	 size.	 For
example,	when	rendering	remote	surfaces	or	surfaces	under	a	small	angle	to	the
camera	is	preferable	to	choose	the	texture	size	smaller	to	eliminate	the	effect	of
the	���������.

Model
Model	|	Model

One	 of	 the	 ways	 of	 objects	 in	 the	 scene.	 The	 model	 can	 contain	 not	 only
information	 about	 the	geometry,	 but	 also	 functional	 curves,	 tenders,	 and	many
other	properties	that	define	the	included	in	the	elements.	This	term	can	also	be
attributed	to	the	objects	and	characters.

Motion	Blur
Motion	Blur	|	blur	when	driving

The	 effect	 of	 �����������	 ("���������"),	 arising
during	the	photo	and	the	houses	of	the	movement	of	objects	in	the	scene	during
the	 exposure	 time	 frame.	 In	 the	 3d	 animation	 virtual	 camera	 has	 an	 infinitely
small	exposure,	 therefore,	 lubrication,	 such	acquired	camera	and	human	eye	at
the	 sight	 of	 the	 fast-moving	 objects,	missing	 -	 it	 is	 usually	 imitate	 artificially
using	directional	blur	(directional	blur).	

The	blur	when	driving	is	used	in	almost	all	racing	games	(to	create	the	effect	of
high-speed	drive),	Sports	 simulations	 (for	 fast	moving	 objects,	 like	 the	 ball	 or
washers),	 as	well	 as	The	���������	 (fast	movement	of	 cold	arms,
hands	 and	 legs).	 The	 blur	 sometimes	when	 driving	 is	 used	 in	 games	 from	 the
first	 person	 when	 quickly	 turning	 the	 camera	 -	 to	 make	 the	 picture
�������������������.

Motion	Capture
Motion	Capture	|	Gripper	movements

The	Synchronization	Technology	movements	alive	actor	and	a	virtual	character
in	 real-time	 using	 special	 hardware	 and	 software	 complex.	 Used	 to	 write
complex	movements	(for	example,	sports)	for	use	in	3D	animation	and	computer
games.

Multitexturing
Multitexturing	|	���������������������

The	process	of	imposing	of	two	or	more	textures	to	the	object.

Normal
Normal	|	Normal

Vector	value,	 indicating	 the	direction	perpendicular	 to	 the	 surface.	The	normal
triangle	 is	 defined	 as	 a	 vector	 product	 of	 two	 edges	 of	 the	 triangle.	 In
programming,	a	normal	graphics	can	be	set	for	each	triangle,	describing	a	certain
surface,	and	for	each	of	the	peaks	depending	on	the	desired	result.	The	length	of
the	 normal	 equal	 to	 1.	Bringing	 the	 vector	 length	 to	 one	with	 its	 directions	 is
called	normalization.

Normal	Map
Normal	Map	|	Map	of	normal

Map	that	defines	a	vector	normal	at	each	point	of	the	surface.	Used	to	generate
surfaces	 and	 bumpmapping'a	 and	 other	 algorithms.	 Normal	 Map	 usually
presented	texture,	in	which	the	data	is	written	in	such	a	way	that	the	RGB	values
into	the	XYZ	Company,	where	Z	is	perpendicular	to	the	surface	of	the	vector.

NURBS
Non-Uniform	Rational	B-Spline	|	Mixed	rational	B-spline

The	common	way	of	specifying	the	parametric	curves	and	surfaces.

OBB
Oriented	Bounding	Box	|	oriented	bounding	parallelepiped

The	 area	 in	 the	 space	 surrounding	 a	 certain	 object,	 in	 the	 form	 of	 rectangular
parallelepiped,	 which	 rotates	 with	 the	 object.	 Used	 in	 various	 geometric
operations,	 replacing	 the	 object	 itself	 in	 order	 to	 simplify	 and	 accelerate	 the
computing	 -	 for	 example,	 if	 the	 clashes,	 the	 layout	 of	 the	 rays	 and	 the
partitioning	of	space.	Has	the	advantage	over	the	AABB,	consisting	of	the	same
degree	of	approximation	in	any	rotating	object.	

See	also	,	The	AABB	Collision	Detection.

Object
Object	The	object	|

The	 general	 term	 used	 to	 denote	 the	 informational	 nature.	 The	 object	 is	 a
fundamental	 concept	 in	 object-oriented	 programming	 and	 appropriate	 policy
environments	where	under	it	refers	to	the	special	structure	of	the	data.	
The	object	is	often	the	information	model	of	any	object	or	phenomena	in	the	real
world.	Operate	the	information	at	the	level	of	the	objects	significantly	easier	and
more	clearly	than	at	the	level	of	the	data,	so	information	systems	on	the	basis	of
the	objects	distributed	everywhere.

Occlusion
Occlusion

An	overlap	of	three-dimensional	space	of	one	object	to	others.

Octree
Octree	|	��������	Tree

The	 structure	 of	 the	 data	 representing	 the	 Euclidean	 space	 in	 the	 form	 of	 a
���������	 tree,	 in	 which	 each	 element	 is	 Aabb.	 Each	 cube	 is
divided	in	three	planes	at	8	(usually	a	mutually	equal)	cubes.	Octree	are	typically
used	 to	partition	 large	open	���������	 spaces.	Note	 that	under	 the
"flat"	�������������	refers	to	the	space,	in	which	the	camera
movement	 is	 limited	 mainly	 some	 plane:	 An	 example	 may	 be	 a
�������������.	For	the	"flat"	spaces	more	suited	quadtree.	
Like	 many	 other	 methods	 of	 splitting,	 The	 Octree	 is	 used	 to	 optimize	 the
collision	detection	and	the	frustum	culling.

ODE
Open	Dynamics	Engine

Free	 outdoor	 library	 of	 industrial	 quality	 for	 modeling	 the	 physics	 of	 solids.
Suitable	for	 the	simulation	of	vehicles,	creatures	with	feet	and	moving	objects.
ODE	 Fast,	 flexible	 and	 reliable,	 has	 a	 built-in	 system	 of	 collisions.	 ODE	 a
physicist	Russell	Smith	,	together	with	a	team	of	volunteers.

OpenGL
Open	Graphics	Library

Graphics	Library	approved	by	 the	 industrial	 standard,	developed	 in	1992,	nine
leading	 IT-companies:	 Digital	 Equipment,	 Evans	 &	 Sutherland,	 Hewlett-
Packard,	IBM,	Intel,	Intergraph,	Silicon	Graphics	Corp.,	Sun	Microsystems	and
Microsoft.	The	iso	is	The	���������	IRIS	GL,	developed	by	Silicon
Graphics.	 The	OpenGL	 library	 is	 quite	 simple	 to	 use	 and	 training,	 has	 a	 very
wide	range	of	opportunities.	Here	are	some	of	its	advantages:	
The	stability	of	the	OpenGL	is	an	entrenched	standard.	All	changes	made	to	it,
������������	 ahead	 and	 implemented	 so	 that	 the	 already
existing	is	not	������	on	new	maps.	
Reliability	-	all	applications	that	use	OpenGL,	guarantee	the	same	visual	result,
regardless	of	the	hardware	and	operating	system.	
�������������	 -	 applications	 using	 OpenGL,	 can	 run	 on
different	 architectures	 and	 different	 operating	 systems	 (OpenGL	 provides
portability	at	the	source	code).	
The	main	 feature	 of	 OpenGL	 -	 his	 client-server	 architecture	 that	 theoretically
allows	 you	 to	 place	 the	 client	 (application	 using	OpenGL)	 and	 the	 server	 (the
executive	part	of	the	OpenGL)	on	different	machines.	
OpenGL	 develops	 with	 the	 help	 of	 the	 mechanism	 of	 "extensions"	 -	 special
modifications	 to	 the	 basic	 version	 of	 the	API,	which	 add	 new	 features	 and/or
expand	 existing	 ones.	 When	 the	 accumulated	 solid	 luggage	 such	 changes
(extensions),	a	consortium	of	the	OpenGL	specification	releases	a	new	version	of
OpenGL.	At	the	moment,	the	latest	version	of	the	specification	-	4.0.

The	Parallax	Mapping
The	Parallax	Mapping

M����	 of	 terrain	 visibility	 on	 the	 surface.	 Represents	 a	 superior	Normal
mapping.	Improvement	is	that	the	normal	map	not	only	affects	the	illumination
of	surfaces,	but	also	on	the	offset	of	the	texture	coordinates.	That	is,	the	terrain
becomes	��������������	 and	different	 looks	 from	different
angles.	
See	also	the	Normal	Map,	Bump	Mapping,	Displacement	Mapping.

Particle	System
Particle	System	|	The	particle	system

Animation	 System,	 consisting	 of	 a	 large	 number	 of	 very	 small	 objects	 whose
behavior	 is	 defined	 mathematically.	 The	 particle	 system	 usually	 consists	 of
��������	 (which	 may	 be	 point,	 surface	 or	 volume,	 and	 can	 emit
particles	or	sent	in	all	directions)	and	a	number	of	areas	that	define	the	behavior
of	 the	 particles	 (attractors,	 the	 deflectors,	 and	 changers
����������).	 Each	 particle	 has	 the	 ultimate	 life	 expectancy,	 and
can	have	their	attributes	(color,	radius,	transparency),	which	change	during	this
lifetime.	 The	 particles	 are	 usually	 used	 for	 the	 simulation	 of	 fire,	 smoke	 and
other	effects.

Physics	Engine
Physics	Engine	|	Physics	Engine

Under	 the	 concept	 of	 "Physics	 Engine"	 in	 programming	 decided	 to	 imply	 the
program	(or	program),	The	������������	a	physical	process.	A
classic	example	is	engine,	simulating	the	physics	of	solid	bodies	on	the	basis	of
the	pulses.

Pipeline
Pipeline	|	Conveyor

Step-by-step	method	of	rendering	3D	graphics	(rasterization).	Its	name	was	due
to	the	fact	that	the	output	of	each	step	(stage)	are	the	input	for	the	next.	

1.	Transformation.	This	 stage	begins	 to	vertex	 conveyor,	where	 the	processing
unit	is	the	top	of	the	(point	in	the	��������	space).	A	set	of	vertices,
forming	a	three-dimensional	object	is	transferred	from	model	space	in	the	world,
and	then	in	the	species,	where	the	beginning	of	the	coordinates	is	the	position	of
the	camera	(these	two	conversions	are	usually	combined	into	one).	The	peaks	of
the	 transferred	 promising	 matrix	 into	 the	 space	 of	 amputation.	 In	 the
programmable	 pipeline	 stage	 of	 transformation	 is	 made	 in	 the
���������	�������.	
2.	Amputation.	The	invisible	top	(outside	the	pyramid	of	Visibility)	is	discarded
and	not	transferred	further.	
3.	Normalization.	 From	 the	 amputation	 of	 the	 vertices	 into	 normalized	 device
coordinates	 (NDC)	-	 that	 is,	 in	 fact,	 in	 the	 two-dimensional	coordinates	on	 the
on-screen	a	plane	+	Z	coordinate,	indicating	the	depth	of	the	screen	on	the	plane.
4.	Dithering.	The	 set	 of	points	 is	 used	 to	 rasterize	polygons	 (usually	 triangles)
according	 to	 the	 rules	of	building	 the	 ribs.	 In	 the	programmable	pipeline	 these
rules	 can	be	configured	 in	 a	 geometrical	�������.	Also	 at	 this	 stage,
the	interpolation	of	the	vertex	attributes	(color,	normal,	texture	coordinates,	etc.)
on	 the	 surface	 of	 the	 polygon.	 Is	 perspective	 correction	 texture	 coordinates.
From	this	moment	begins	the	pixel	pipeline	-	the	data	is	processed	pixel.	
5.	 Calculation	 of	 the	 color.	 In	 the	 programmable	 pipeline	 the	 resulting	 pixel
color	is	calculated	in	the	�����������	�������.	At	this
stage,	 the	 calculated	 the	 pixelwise	 lighting,	 texturing,	 terrain,	 reflection,
shadows,	 transparency	 and	 other	 effects.	 As	 input	 used	 interpolated	 vertex
attributes,	as	well	as	the	texture.	
6.	Checking	the	depth.	Before	you	write	a	pixel	in	the	frame	buffer	may	be	depth
(depth	 test).	The	Z	coordinate	of	 the	pixel	 is	compared	with	 the	corresponding
depth	 in	 the	 Z-buffer.	 If	 it	 is	 less	 than,	 the	 pixel	 should	 be
���������,	if	not	-	has	been	ignored.	
7.	Mixing.	 The	 color	 of	 the	 pixels	 can	 according	 to	 the	 specified	 rules	mixed

with	the	already	present	color	in	a	buffer	frame.	The	total	value	is	written	to	the
buffer.	

It	 should	 also	 be	 taken	 into	 account	 that	 your	 conveyor,	 there	 are	 the	 second
most	common	method	of	3D-rendering	-	tracing.	It	is	more	simple	and	intuitive
and	 operates	 mainly	 rays.	 Sets	 of	 vertices	 are	 only	 used	 for	 determining	 the
beam,	 the	 depth	 buffer	 no,	 and	 perspective	 projection	 is	 performed	 by
calculating	 the	starting	direction	of	 rays	 for	 each	pixel	of	 the	 image.	The	 final
pixel	 color	 is	 calculated	 similar	 to	 the	 shader	 �����������
manner.

Pixel
Picture	Element	|	Pixel

The	 combined	 term	 that	 refers	 to	 the	 smallest	 image	 element	 or	 the	 monitor
screen.	 The	 image	 on	 the	 screen	 is	 composed	 of	 hundreds	 of	 thousands	 of
luminous	points,	united	to	form	the	image.	A	pixel	 is	 the	minimum	segment	of
the	raster	line,	which	is	controlled	by	the	discrete	system,	forming	the	image.

Polygon
Polygon	Polygon	|

The	 polygon,	 which	 is	 a	 constituent	 part	 of	 any	 3D	 object.	 In	 modern	 3D-
graphics	under	the	polygon	often	imply	the	triangle,	described	by	the	coordinates
of	the	vertices	in	space.

Post	Processing
Post	Processing	|	Post-processing

Series	 of	 transactions	 over	 an	 image	 obtained	 as	 a	 result	 of	 rendering,	 which
includes	the	correction	of	brightness,	contrast,	saturation,	as	well	as	the	use	of	a
variety	of	effects	and	filters.

Primitive
Geometric	primitive	|	Geometry

The	point,	segment	or	polygon.	

Procedural	Texture
Procedural	Texture	|	Procedural	Texture

Texture	is	described	by	mathematical	formulas.	Such	textures	do	not	occupy	the
memory	 locations,	 they	 are	 created	 pixel	 shader	 "on	 the	 fly",	 each	 element
(Texel)	 is	 obtained	 as	 a	 result	 of	 the	 execution	 of	 the	 commands	 shader.	 The
most	 common	 procedural	 textures:	 there	 are	 different	 types	 of	 noise	 (for
example,	the	fractal	noise),	wood,	water,	lava,	smoke,	marble,	fire,	etc.,	that	is,
those	that	are	relatively	easy	to	describe	mathematically.	
Unfortunately,	the	procedural	textures	not	received	until	the	proper	application	in
games.

Projection
Projection	Projection	|

Displays	 the	 three-dimensional	 space	 on	 a	 plane	 by	 building	 a
������������	 lines.	 In	 computer	 graphics	 distributed	 three
types	of	projection:	
Orthographic	(orthogonal)	-	the	location	of	the	spectator	is	infinitely	 removed
from	 the	 scene,	 so	 all	 the	 lines	 along	 the	 same	 axes	 are	 parallel.	 The
���������������	projection	is	isometric.	
Parallel	 (parallel)	 is	a	 type	of	orthogonal	projection,	parallel	 to	 the	coordinate
axes.	Parallel	 to	 the	projection	may	 include	 types	of	Front	 (Front	View),	Thor
(top	view)	and	Right	(Right	Side).	
Perspective	 (prospective)	 -	 Parallel	 Lines	 visually	 converge	 at	 one	 point.	 The
prospect	is	the	most	famous	projection	type	and,	as	a	rule,	used	most	often.

Projection	Matrix
Projection	Matrix	|	projection	Matrix

The	 matrix	 size	 of	 4x4,	 is	 used	 for	 the	 transformation	 of	 the	 entities	 of	 the
species	space	into	the	amputation.

Quad
Quadrilateral	|	Quad

The	Spatial	quadrilateral	(including	composed	of	two	triangles).

Quadtree
Quadtree	|	Wood	quadrants

The	 structure	 of	 the	 data	 representing	 the	 Euclidean	 space	 in	 the	 form	 of	 a
quadratic	 tree,	 in	 which	 each	 element	 is	 Aabb.	 Each	 square	 is	 divided	 into	 4
(usually	a	mutually	equal)	squares.	Quadtree	are	typically	used	to	partition	large
flat	 spaces,	 in	which	 the	 camera	movement	 is	 limited	mainly	 some	 plane:	An
example	may	be	a	�������������.	
Like	 many	 other	 methods	 of	 splitting,	 The	 Quadtree	 is	 used	 to	 optimize	 the
collision	detection	and	the	frustum	culling.

Ragdoll
Ragdoll	|	Rag	Doll

The	 method	 used	 to	 create	 the	 physical	 model	 of	 the	 behavior	 of	 the	 human
body.	
In	most	cases,	the	rag	doll	is	used	in	conjunction	with	the	skeletal	animation,	as
the	 principle	 of	 their	 work	 in	 many	 respects	 similar.	 And	 in	 the	 skeletal
animation,	 and	 in	 the	 rag	 doll	 is	 a	 special	 hierarchy	of	 "Bones"	 for	 the	vertex
shadowing	model.	However,	unlike	 the	 skeletal	 animation,	 tops	are	moved	not
by	 predefined	 rules,	 and	 on	 the	 basis	 of	 the	 physical	 model	 of	 solids.	 For
example,	 one	 bone	 of	 the	 skeleton	 rag	 dolls	 can	 be	 represented	 by	 a	 triangle
mesh	 (or	 ����������������	 or	 LOD'57	 in	 order	 to
accelerate	the	computing),	and	then	all	vertices	move,	as	well	as	in	the	skeletal
animation.

Also	known	as
Also	known	as	|	Dithering

The	rendering	method	in	which	a	raster	image	is	obtained	by	finding	the	pixels
belonging	 to	 the	 specified	 ���������.
�������������,	 as	 a	 rule,	 segments	 and	 polygons	 (usually
triangles).	In	generalized	sense	dithering	is	the	process	of	translation	vector	data
to	raster	image.	
Dithering	is	by	far	the	most	common	method	of	rendering	3D	graphics	because
of	 its	 simplicity	 and	 efficiency.	 Dithering
������������������	 easily,	 so	 for	 rendering	 in	 real
time	 were	 created	 dedicated	 multi-core	 processors,	 graphics
������������	 (GPU),	 which	 are	 capable	 of
���������������	 millions	 of	 triangles	 per	 second.	 It	 is
DITHERING	lies	at	the	basis	of	virtually	all	modern	3D	games.	

See	also	GPU,	Pipeline,	primitive,	Rendering.

Raycasting
Raycasting	|	throwing	rays

Limited	������	tracing	without	tracking	the	reflected	and	refracted	rays.
Used	to	determine	the	visibility	and	collision	detection.	Along	some	directions	is
available	 beam,	 are	 all	 the	 crossings	 of	 the	 beam	 with	 objects	 and	 select	 the
nearest.

Ray	Tracing
Ray	Tracing	|	Ray	Tracing

The	rendering	method	in	which	a	raster	image	is	obtained	by	tracking	rays	and
their	intersections	with	three-dimensional	objects.	Ray	tracing	in	many	respects
is	similar	 to	how	it	 turns	out	photographic	 image	 in	 the	real	world,	and	allows
you	 to	 receive	 images,	 the	 approximate	 on	 the	 reliability	 of	 the	 photographs
(sometimes	up	to	�������������).	
The	trace	algorithm	is	as	follows:	for	each	pixel	of	 the	 image	from	the	camera
position	 is	 available	 beam,	 which	 is	 then	 checked	 for	 intersection	 with	 the
objects	 in	 the	 scene.	On	 the	 basis	 of	 points	 and	 normal	 border,	 as	well	 as	 the
characteristics	of	the	surface	and	a	set	of	known	sources	of	light,	the	color	of	the
calculated	surface	at	this	point,	which	is	assigned	to	the	pixel.	
The	 algorithm	 naturally	 supports	 the	 forward-looking	 projection	 (the	 rays
diverge	 as	 the	 distance	 from	 the	 camera),	 the	 selection	 of	 the	Depth	 (only	 the
nearest	to	the	screen	plane	intersection)	and	the	building	of	shadows	(to	check	if
the	point	in	the	shadow,	is	yet	another	beam	in	the	direction	of	the	light	source	-
if	 it	 crosses	 the	 surface	 before	 it	 reaches	 the	 source,	 the	 point	 is	 shaded).	The
introduction	of	additional	 rays	 traced	 is	expanded	 to	support	 the	soft	 shadows,
reflections,	 �����������,	 indirect	 lighting	 and	 other	 optical
phenomena	in	the	real	world.	
Lack	of	tracing,	which	is	preventing	the	full	use	of	the	method	for	rendering	in
real	time,	is	the	huge	amount	of	����������	computing.	In	recent
years,	the	opportunity	to	trace	the	parallelization	using	GPU's	general	purpose	-
it	 allows	 to	 hope	 for	 changing	 the	 situation	 in	 the	 future.	Now	possibilities	 of
modern	video	cards	allow	you	to	organize	a	hybrid	rendering	-	rasterization	with
elements	of	the	trace	for	some	complex	effects	like	reflections.	

See	also	the	rendering.

Real-Time
Real-Time	|	Real	Time	Mode

The	 time	 scale	 at	 which	 data	 processing	 flows	 with	 the	 same	 speed	 as	 the
simulated	events.

Reflection	Mapping
Reflection	Mapping	|	map	projection	reflect	the

See	Environment	Mapping.

Rendering
Rendering	|	Rendering,	visualization	of	the

The	process	of	 formation	of	a	 flat	 image	on	 the	basis	of	mathematical	models.
Most	often	this	term	is	used	3D-visualization	-	building	a	virtual	images	of	3D
objects	 and	 scenes.	 The	 program	 performs	 rendering,	 is	 called	 the	 rendering
engine	or	the	rendering	engine	(rendering	engine).	
Rendering	 can	 be	 carried	 out	 both	 in	 real	 time	 (that	 is,	 the	 rendering	 of
animation	with	 the	 immediate	withdrawal	of	 the	received	frames	on	 the	screen
and	a	sufficiently	high	frame	rate	is	30	frames	per	second	and	above)	and	in	the
offline	 mode	 (i.e.,	 without	 restrictions	 on	 the	 time	 frame).	 Of	 course,	 that	 in
order	 to	 achieve	 high	 speed	 to	 render	 sacrifice	 volume	 calculations	 and	 use	 a
simplified	mathematical	apparatus,	so	the	engines	offline	rendering	and	produce
much	higher	quality	and	realistic	images.	The	rendering	in	real	time	-	the	basis
of	 all	modern	Games,	 offline	 rendering	 is	 used	 in	 film	 and	 animation,	 design,
advertising,	industrial	and	scientific	field.	
There	 are	 two	 basic	 methods	 of	 3D-rendering	 -	 rendering	 and	 ray	 tracing.
Dithering	 is	more	often	used	 in	 the	 rendering	of	 real	 time,	a	 trace	 is	 in	offline
rendering,	although	it	is	not	uncommon,	and	exceptions:	for	example,	 there	are
popular	offline	rendering	engines	that	use	the	rasterization.	There	are	also	hybrid
engines	rendering,	combining	the	rasterization	and	ray	tracing.	

See	also	Also	Known	As,	Ray	Tracing.

Resolution
Resolution	|

The	number	of	pixels	per	unit	length	or	area.

RGB
Red,	Green,	Blue

����������������	 system,	 in	 which	 the	 end	 color	 is
obtained	by	mixing	with	varying	intensity	of	three	basic	colors:	red	(Red),	green
(Green)	and	blue	(Blue).	The	most	well	known	device	that	uses	the	RGB,	it	is	a
color	monitor.	

ROAM
Realtime	Optimally-Adapting	Meshes	|	optimum	adaptation	of	the	polygon	mesh
in	real	time

The	algorithm	of	adaptive	approximation	of	complex	surfaces,	used	mainly	for
optimization	of	the	drawing	of	landscapes.	

Scene
|	The	Scene	The	Scene

The	 totality	 of	 objects	 in	 three-dimensional	 space,	 modeling	 a	 limited
environment:	 interior,	 exterior,	 landscape,	 part	 of	 outer	 space,	 and	 so	 on.	 The
scene	can	contain	both	static	objects	and	dynamic.

Seamless
The	Seamless	Seamless	|

This	term	is	used	to	denote	the	type	of	texture.	The	texture	is	made	in	such	a	way
as	 to	 any	 side	 could	 dock	 another	 the	 same	 without	 clearly	 visible	 seams
docking.	 This	 is	 the	 effect	 of	 the	 opposite	 side	 of	 the	 images	 have	 the	 same
figure.	 Seamless	 textures	 used	 mainly	 for	 landscapes,	 as	 well	 as	 for	 the
��������������	 large	 static	 objects	 (buildings,	 roads,	water
surface,	etc.)	
Sometimes	 used	 animated	 seamless	 texture,	 consisting	 of	 a	 few	 consistently
displayed	 frames	 -	 usually	 to	 simulate	 fluids	 or	 moving	 objects	 -	 the	 water
surface,	lava,	clouds,	etc.	

Shader
Shader	|	Shader

The	firmware	for	one	of	the	stages	of	the	graphics	conveyor,	used	to	determine
the	final	parameters	of	an	object	or	image.	It	may	include	arbitrary	complexity	of
the	 description	 of	 the	 absorption	 and	 scattering	 of	 light,	 texture	 overlay,
reflection	 and	 refraction,	 shading,	 offset	 surfaces	 and	 the	 effects	 of	 post-
processing.	

Currently,	 shaders	 are	 divided	 into	 four	 types:	 Vertex,	 geometry,	 The
�����������	(pixel)	and	computing.	

Vertex	Shaders	(Vertex	Shader)	
Vertex	Shader	operates	with	the	data,	with	vms	with	vertices	polyhedra.	To	such
data,	 in	particular,	 the	coordinates	of	 the	vertices	 in	space,	 texture	coordinates,
the	tangent-vector,	normal	vectors	and	���������.	Vertex	shader	can
be	 used	 for	 species	 and	 future	 transformation	 of	 vertices,	 generate	 texture
coordinates,	a	simple	calculation	of	lighting,	etc.	

The	geometry	shaders	Geometry	shader)	
The	Geometry	 shader,	 in	contrast	 to	 the	vertex,	 is	 able	 to	handle	not	only	one
peak,	 but	 also	 the	 whole	 entity.	 This	 can	 be	 a	 piece	 of	 (two	 peaks)	 and	 the
triangle	 (three	 tops),	 and	 if	 the	 information	 about	 the	 related	 tops	 (adjacency)
can	be	processed	up	to	six	vertices	of	the	triangle	for	the	entity.	In	addition	the
geometry	 shader	 can	 generate	 entities	 "on	 the	 fly",	 without	 using	 the	 central
processor.	

�����������	(pixel)	shaders	(Fragment	Shader)	
�����������	 shader	 works	 with	 the	 fragments	 of	 the	 image.
Under	 the	 image	 fragment	 in	 this	 case	 refers	 to	 the	 pixel,	which	 put	 in	 a	 line
some	 set	 of	 attributes,	 such	 as	 color,	 depth,	 texture	 coordinates.
�����������	 shader	 used	 on	 the	 last	 stage	 of	 the	 graphics
pipeline	for	the	formation	of	the	pixel	of	the	image.	

The	Compute	shaders	(Compute	Shader)	

Fully	universal	shader	by	which	it	is	possible	to	carry	out	arbitrary	computations
on	 the	GPU	not	 related	directly	 to	 the	 rastering	polygons.	��������
computing	are	available	for	reading	and	writing	data	into	the	memory,	which	can
then	be	used	in	the	process	of	rendering.	

There	are	three	main	groups	of	programming	languages	for	the	GPU.	
The	 first	 group	 includes	 the	 languages	 used	 when	 rendering	 images	 and
animation	 in	 areas	 such	 as	 film,	 television,	 industrial	 design	 and	 architectural
rendering:	

RenderMan	 Shading	 Language	 (RSL)	 -	 developed	 and	 used	 by	 the	 studio
Pixar.	Is	the	de	facto	standard	in	professional	rendering.	

Open	 Shading	 Language	 (OSL)	 -	 designed	 Sony	 Pictures	 Imageworks	 for
rendering	engine	Arnold,	however,	supported	and	in	many	other	render	engines.
Focuses	on	 the	rendering	using	ray	 tracing,	 is	 intended	to	describe	the	BSDF	-
����������	functions	of	surface	scattering	the.	

Gelato	-	developed	by	nVidia.	Represents	a	hybrid	system	image	rendering	and
animation	 that	 uses	 for	 the	 calculation	 of	 the	 central	 processors	 and	 hardware
capabilities	of	professional	series	graphics	cards	Quadro	FX.	

Vector	 Expressions	 (VEX)	 -	 developed	 Side	 Effects	 Software	 as	 part	 of	 a
package	of	Houdini.	Is	the	analogue	of	RenderMan.	

The	 second	 group	 includes	 the	 languages,	 providing	 access	 to	 the	 computing
capabilities	of	 the	graphics	 card	when	 rendering	 in	 real	 time.	They	 are	widely
used	in	the	development	of	computer	games	and	other	multimedia	applications.	

Low-level	 language	���������	OpenGL	 (ARB)	 -	 the	 syntax	 is
similar	to	the	�����������.	Is	available	in	the	form	of	extensions
of	 ARB_vertex_program,	 ARB_fragment_program.	 Is	 the	 approved	 industry
standard.	

The	 OpenGL	 Shading	 Language	 (GLSL)	 -	 a	 high-level	 language
���������	 OpenGL.	 Based	 on	 the	 syntax	 of	 the	 ANSI	 C.	 The
Majority	of	C	has	been	saved,	 the	added	vector	 and	matrix	data	 types	 that	 are
often	used	when	working	with	3D	graphics.	In	the	context	of	the	GLSL	shader	is
called	regardless	�������������	unit,	written	in	this	language.

The	program	is	a	set	of	compiled	shaders	are	associated	together.	
Initially,	 GLSL	 1.10	 was	 available	 in	 the	 form	 of	 a	 set	 of	 extensions	 of
GL_ARB_shading_language_100,	 GL_ARB_shader_objects.	 Starting	 with	 the
OpenGL	2.0,	became	part	of	the	standard.	
With	 the	 release	 of	OpenGL	 3.3,	 the	GLSL	 is	 changing	 the	 numbering	 of	 the
versions.	Now,	 the	version	number	of	 the	GLSL	corresponds	 to	 the	version	of
OpenGL.	

With	 the	 for	 graphics	 (CG)	 -	 a	 high-level	���������	 language,
developed	by	nVidia	,	jointly	with	Microsoft	(a	similar	language	from	Microsoft
-	The	Hlsl	is	part	of	DirectX	9	and	10).	Works	with	both	OpenGL	and	DirectX
supports	various	software	and	hardware	platform.	
Based	on	C,	uses	 similar	data	 types.	Supported	by	 the	 functions	and	structure.
Includes	 a	 kind	of	 optimization	 in	 the	 form	 of	 packed	 arrays	 (packed	 arrays	 -
The	 announcement	 of	 the	 "float	 a[4]"	 and	 "float4"	 in	 it	 correspond	 to	 the
different	types.	The	second	announcement,	and	there	is	a	packed	array,	which	are
faster	than	normal.	
Currently,	 Cg	 has	 already	 practically	 is	 not	 used,	 fully
�����������	HLSL	and	the	GLSL.	

Low-level	 language	���������	 DirectX	 DirectX	 (ASM),	 the
syntax	is	similar	to	the	�����������.	There	are	several	versions,
differing	on	a	set	of	commands,	as	well	as	on	the	required	equipment.	

High	 Level	 Shader	 Language	 (HLSL)	 -	 a	 high-level	 language
���������	DirectX	(also	supported	by	the	game	consoles	Xbox	and
Xbox	360).	Is	the	superstructure	over	DirectX	ASM.	The	syntax	is	similar	to	C,
allows	the	use	of	the	structure	and	function.	

The	 third	 group	 of	 languages	 of	 broad	 specialization,	 intended	 mainly	 for
scientific	computing.	They	effectively	use	multi-core	CPU	and	GPGPU	Support
to	expedite	the	processing	of	large	data	sets.	

Sh	 -	 a	high-level	 programming	 language	 for	GPU,	 included	 in	 a	 subset	 of	 the
language	C++.	 It	 was	 initially	 developed	 by	 a	 group	 RapidMind	 (which	 later
became	 part	 of	 Intel),	 currently	 is	 licensed	 under	 the	 GNU	 LGPL	 and	 is
supported	by	the	community.	

Compute	Unified	Device	Architecture	(CUDA)	is	a	technology	developed	by

NVIDIA	 for	 parallel	 computing	 on	 graphics	 cards	 GeForce	 (8	 and	 older),
Quadro	 and	 Tesla.	 CUDA	 uses	 specialized	 language	 version	 C	 with	 a	 set	 of
instructions	for	the	GPU.	

OpenCL	(Open	Computing	Language)	is	a	cross-platform	equivalent	CUDA,
independent	 of	 hardware	 computing	 API	 with	 your	 own	 C-like	 programming
language.	OpenCL	specification	is	currently	being	developed	by	a	consortium	of
Kronos	Group	 in	 parallel	with	OpenGL	 -	 there	 is	 the	possibility	 of	 interaction
between	the	����	two	API.	

BrookGPU	 -	project	 at	Stanford	University.	Originally	 emerged	as	 a	 language
for	programming	streaming	architectures.	Is	a	C-like	language,	which	added	the
data	 type	 is	 an	 array	 of	 special	 form	 ("Thread"	 in	 the	 terminology	 of	 the
language).	In	2004,	got	his	realization	for	graphics	processors.	

Shading	Components
Shading	Components	|	Lighting

In	 the	 light	 of	 the	 surface	 is	 calculated	 as	 the	 sum	 of	 the	 components	 of	 the
ambient,	diffuse	and	specular	from	all	light	sources	in	the	scene	(ideally	from	all,
often	neglected	by	many).	Impact	on	the	value	of	each	source	of	light	depends
on	the	distance	between	the	light	source	and	a	point	on	the	surface.	
Uniform	 component	 of	 light	 (ambient)	 -	 the	 approximation	 of	 the	 global
lighting,	"initial"	lighting	for	each	point	of	the	scene,	in	which	all	points	covered
equally	and	illumination	does	not	depend	on	other	factors.	
The	diffuse	component	of	the	light	(diffuse)	depends	on	the	position	of	the	light
source	and	from	normal	surface.	This	component	of	lighting	is	different	for	each
of	the	peaks	of	the	object	that	gives	them	the	volume.	The	light	is	no	longer	fills
in	the	surface	of	the	same	shade.	
��������	component	of	 light	 (specular)	 is	manifested	 in	 the	 specks
of	reflected	rays	of	light	from	the	surface.	For	its	calculation,	in	addition	to	the
vector	of	 the	source	of	 light	and	normal,	used	 two	of	 the	Vector:	vector	of	 the
Direction	sight	and	the	vector	of	reflection.	��������	component	first
proposed	 Fong.	 These	 glare	 significantly	 increase	 the	 realism	 of	 the	 image,
because	rare	real	surface,	do	not	reflect	light,	so	the	specular	component	is	very
important,	 especially	 when	 driving,	 because	 the	 lens	 flare	 i	 can	 change	 the
position	 of	 the	 camera	 or	 the	 object	 itself.	 In	 the	 future,	 researchers	 have
invented	 different	 ways	 to	 calculate	 this	 component,	 the	 more	 complicated
(�����,	Cook	Torrance,	Ward),	taking	into	account	the	energy	distribution
of	 light,	 his	 absorption	 of	 the	 materials	 and	 dissipate	 in	 the	 form	 of	 diffuse
component.	

Shading	model
Shading	model	|	Lighting	Model

The	 method	 of	 calculating	 light	 polygons.	 In	 the	 real	 time	 most	 prevalent
received	three	lighting	models:	
-	Flat	(flat)	
-	On	the	����	(Gouraud)	
-	The	�����	(Phong)	
When	the	light	flat	polygons	as	a	stand	(this	is	due	to	the	calculation	of	the	same
color	for	each	pixel	on	the	edge),	so	when	applying	the	fill	a	polygon	will	appear
to	be	continuous.	
The	����	and	�����	give	a	smooth	gradation	of	chiaroscuro.	In	the
model	of	����	 lighting	����������	 is	 calculated,	 the	model
�����	-	pixel.	
There	 is	 also	 a	 variety	 of	 other	 models	 of	 light,	 which	 in	 recent	 years	 have
become	widespread	in	3D	games	and	offline	rendering:	�����-Phong,	the
Cook	Torrance,	Ward,	Torrance-�������,	lafortune,	etc.	Many	of	them
are	quite	accurate	approximation	to	the	real	physics	of	light.	In	the	terminology
of	 optics	 the	 most	 close	 to	 the	 lighting	 model	 concept	 -	 BRDF	 (dual	 beam
function	of	reflectivity).	

Shadow	Map
Shadow	Map	|	shadow	map

One	of	the	methods	of	construction	of	shadows,	namely,	 the	use	of	Z-buffer	 to
determine	 the	 pixel,	 whether	 the	 target	 point	 in	 the	 shadows.	 The	 method	 of
shadow	maps	based	on	 the	 idea	 that	 the	 lit	 terms	are	 those	 terms	that	"visible"
light	 source.	 "Appearance"	 in	 this	 case	means	 that	 this	 point	 has	 successfully
passes	the	test	depth	when	rendering	from	the	source	of	light	-	that	is,	they	are
not	 superseded	 by	 other	 objects.	 Therefore,	 all	 the	 points	 that	 are	 "invisible"
from	the	position	of	the	light	source,	are	in	the	shade.	
The	method	works	in	two	passes:	first	is	the	rendering	of	the	source	of	light	-	the
depth	 values	 are	 recorded	 in	 a	 special	 buffer.	 And	 then	 done	 the	 normal
rendering,	during	which	the	buffer	is	used	to	check	if	a	pixel	in	the	shade	(this
test	is	carried	out	in	the	�����������	�������).	
Usually	the	shadow	cards	are	used	with	light	source	(such	as	the	sun),	to	render
the	 depth	 buffer	 is	 used	 orthogonal	 projection.	 However,	 the	 method	 is
compatible	with	point	light	sources	-	for	this	instead	of	a	depth	buffer	rendering
is	cubic	maps	(6	depth	buffers	on	 the	 sides	of	 the	Cuba,	 ambient	 light	 source)
from	 the	 perspective	 projection.	 When	 a	 large	 number	 of	 light	 sources,	 this
technique	 greatly	 increases	 the	 load	 on	 the	 GPU,	 so	 in	 practice	 the	 shadow
����������	usually	only	for	a	few	of	the	most	important	sources	of
light,	depending	on	the	nature	of	the	������������	scene.	
Shadow	maps	are	very	effective	-	they	are	much	faster	than	the	shadow	volume.
But	they	have	and	the	lack	of	-	a	strong	aliasing:	In	other	words,	if	you	do	not
use	 a	 giant	 depth	 buffer,	 the	 shadows	 are	 much
�����������������.	This	artifact	is	usually	eliminate	the
filtering	(blurring)	of	a	sample	of	the	depth	buffer	core	3x3	or	5x5	-	as	a	result	of
which	 are	 soft	 shadows	 without	 The	 ������������.	 This
extension	 method	 of	 the	 shadow	 maps	 has	 received	 the	 name	 of	 the	 PCF
(Percentage	Closer	Filtering).	
The	classic	shadow	cards	have	a	limited	area	coverage.	That	is,	it	is	impossible
to	make	 all	 visible	objects	 in	 the	 scene	�����������	 qualitative
shadow	 -	 increasing	 the	 size	 of	 the	 projection	 of	 the	 reduced	 detail	 and,
consequently,	 increased	 aliasing.	 When	 decreasing,	 respectively,	 the	 remote
objects	fall	out	of	the	field	of	view"	of	the	light	source	and	do	not	cast	shadows

of	the	most	popular	technique	that	solves	this	problem	-	cascading	shadow	maps
(Cascaded	Shadow	Maps,	CSM).	 It	 is	 the	 rendering	of	 several	 shadow	buffers
instead	 of	 one,	 with	 different	 sizes	 of	 projections	 -	 they	 are	 called	 shadow
cascades.	 Typically	 used	 3-4	 cascade.	 Then	 The	�����������
�������	desired	buffer	is	selected	depending	on	the	coordinates	of	the
current	 pixel	 -	 usually	 a	 sample	 �������������	 between
neighboring	cascades	 to	get	smooth	 transitions.	As	a	 result	of	 the	shadow	map
covers	almost	all	the	visible	scene:	are	qualitative	shadows	in	the	vicinity	of	the
camera	 and	 �����������������	 -	 away.
������������	distant	shadows	practically	not	noticeable	 to	 the
audience	-	he	sees	only	that	distant	objects	also	cast	shadows,	and	this	is	enough.
The	main	difficulty	of	the	CSM	method	is	the	effective	location	of	the	cascades
on	the	pyramid	of	visibility.	The	most	simple	solution	-	align	with	the	center	at
the	position	of	the	camera,	but	in	this	case,	the	effective	area	of	the	cascades	will
be	only	about	a	 third	of	 their	real	size,	since	each	time	the	viewer	sees	not	the
entire	 cascade,	 the	 only	 part	 of	 it,	 the	 corresponding	 horizontal	 angle	 of	 view
camera.	In	modern	implementations	of	CSM	position	and	size	of	the	projections
of	 the	 cascades	 is	 usually	 picked	 up	 so	 that	 they	 completely	 fell	 inside	 the
pyramid	of	visibility	and	covered	it	as	soon	as	more	tightly.	
There	is	also	a	popular	method	of	expansion	of	shadow	maps	-	Variance	Shadow
Map	(VSM).	It	depth	buffer	stores	two	values	for	each	pixel	-	actually	the	depth
and	 its	 square,	 this	 uses	 the	 buffer	 values	 with	 a	 floating	 point.	 To	 obtain	 a
sample	 of	 the	 used	 buffer	 Chebyshev	 inequality.	 The	 advantage	 is	 that	 of	 the
VSM-buffer	can	be	pre-filter	once,	and	then	use	for	further	without	rendering	the
PCF,	greatly	increasing	the	productivity.	However,	the	VSM	brings	its	artifacts,
the	most	 serious	 of	which	 is	 the	 so-called	 light-bleeding,	when	 in	 the	 zone	of
shadows	appear	bright	spots.	There	are	several	ways	to	fix	the	problem,	but	they
either	require	more	memory,	or	make	the	shadows	not	as	soft	as	we	would	like.	

See	also	the	Shadow	Volume,	the	Z-Buffer.

Shadow	Plane
Shadow	Plane	|	The	Shadow	plane

The	method	of	the	shadows,	������������	geometry	on	a	plane
using	a	special	matrix	of	transformation.	The	projection	and	then	drawing	a	solid
color,	on	the	need	to	���������	on	the	Limits	of	the	surface	with	the
help	of	������������	buffer.	
This	 is	 the	 easiest	 and	 fastest	 way	 to	 rendering	 of	 shadows,	 but	 not	 the	most
versatile	-	it	only	applies	in	specific	cases	where	objects	have	a	limited	area	of
movement	and	do	not	cast	shadows	on	each	other.	

The	Volume	Shadow
Shadow	Volume	|	Volume	Shadow

One	 of	 the	 methods	 of	 construction	 of	 shadows,	 namely,	 the	 creation	 of	 the
object,	 determining	 the	 volume,	 inside	 of	 which	 points	 are	 in	 the	 shade.	 The
result	 is	 accurate,	 the	 detailed	 shadows	 at	 any	 distance	 from	 the	 camera.	 This
method	of	building	shadows	requires	large	drawing	speed	and	very	"heavy"	for
The	�������������������	 models.	 Besides,	 there	 is
no	 effective	 way	 to	 render	 thus	 has	 now	 been	 practically	 is	 not	 used,	 as	 the
�����������	method	of	shadow	maps	(Shadow	Map).	

See	also	the	Shadow	Map.

Skeletal	Animation
Skeletal	Animation	|	skeletal	animation

For	the	first	time,	this	technology	has	been	used	in	the	game	Half-Life	and	later
received	a	large	spread	in	computer	games.	
Instead	of	storing	the	key	frames	(as	in	the	case	of	The	����������
animations)	for	each	of	the	poses	of	the	character,	the	use	of	skeletal	animation
implies	 one	 model	 in	 the	 neutral	 position	 and	 a	 large	 set	 of	 matrices	 that
transform	 the	 various	 parts	 of	 the	 model.	 These	 matrices	 conditionally	 called
bones.	
In	 comparison	 with	 the	 more	 simple,	 ����������	 animation,
skeletal	has	the	following	advantages:	
-	Reducing	the	amount	of	data	stored	for	the	animation,	because	it	does	not	need
to	keep	all	options	geometry	for	each	frame	of	animation,	 it	 is	enough	to	store
only	 the	 position	of	 the	 bones	 of	 the	 skeleton.	This	 becomes	more	 relevant	 in
connection	with	the	increase	in	the	number	of	polygons	in	the	models.	
-	The	ability	to	use	one	set	of	animation	for	different	models.	
-	 So	 you	 can	 manage	 your	 bones	 directly,	 which	 allows	 to	 realize	 the
���������	kinematics	and	the	technology	of	ragdoll.	
-	Allows	more	flexibility	 in	mixing	different	animations	and	interpolate	frames
that,	as	a	result	gives	a	smooth	and	realistic	animation.	
-	The	animation	requires	less	computing	resources	of	the	processor	and	RAM.	
-	On	the	skeleton,	you	can	construct	a	dwelling	was	composite.	For	example,	on
the	skeleton,	you	can	"hang"	at	the	same	time,	and	the	body	of	the	character,	and
his	clothing,	weapons	and	various	objects,	 then	all	of	 this	change	 in	dynamics.
Disadvantages	 are	 that	 using	 skeletal	 animation	 can	 be	 done	 high-quality
animations	of	 flexible	material	 such	as	cloth	or	hair,	as	well	as	 the	 inability	 to
complex	geometry	morphing	objects	(for	example,	 transformation	in	the	cube),
but	for	such	purposes,	you	can	just	use	the	����������	animation.	

Snapping
Snapping

Automatic	precise	alignment	for	any	object	of	a	control	structure	along	a	straight
line	or	a	curve,	grid,	etc.

Sprite
Sprite	|	Sprite

Two-dimensional	image	of	something	in	a	3D	scene	or	on	the	screen.

Teapot
The	Utah	Teapot	Kettle	|	Utah

Kettle	of	Utah,	or	kettle	Newell	-	a	computer	model,	which	has	become	one	of
the	 reference	 objects	 in	 the	 community	 of	 3D	 computer	 graphics.	 This	 is	 a
simple,	 rounded,	 solid	 and	 partially	 concave	 mathematical	 model	 of	 the
conventional	заварного	kettle.	

The	 kettle	 was	 established	 in	 1975,	 the	 researcher	 in	 the	 field	 of	 computer
graphics	 Martin	 Ньюэллом,	 participant	 of	 the	 program	 research	 in	 computer
graphics	 at	 the	University	 of	Utah.	Newell	 needed	 for	 its	work	 in	moderately
simple	 mathematical	 model	 of	 a	 familiar	 object.	 His	 wife	 Sandra	 Newell
suggested	to	simulate	their	tea	set,	because	at	this	moment	they	drank	tea.	Martin
took	The	миллиметровку	and	pencil	and	зарисовал	the	entire	set	by	eye,	then
returned	to	the	laboratory,	he	manually	introduced	checkpoints	of	beziers	on	the
handset	memory	of	the	Tektronix.	
Although	 together	 with	 the	 famous	 kettle	 were	 digitized	 cup,	 saucer	 and	 the
teaspoon,	one	only	the	kettle	has	achieved	widespread	use.	It	is	considered,	that
also	was	modeled	milkman,	but	data	about	it	were	lost.	

The	 kettle	 is	 composed	 of	 32	 portions	 of	 the	 bicubic	 surface	 of	 Beziers,	 the
coordinates	 of	 control	 points	 which	 are	 the	 original	 description	 of	 the	model.
Points	form	an	array	of	306	elements	numbered	from	1	to	306.	Most	of	the	kettle
(housing)	formed	from	12	portions,	handle	-	from	the	following	four,	following
four	 portions	 form	 the	 spout,	 cover	 the	 kettle	 elaborated	 best	 -	 it	 took	 eight
portions	of	the	bicubic	Bezier	surfaces.	And	the	remaining	four	form	the	bottom.
These	data	have	been	widely	distributed	among	professionals	on	3D	computer
graphics	and	are	widely	used	to	demonstrate	and	when	checking	algorithms.	

Tesselation
Tesselation	Tessellation	|

Process	 approximation	 of	 complex	 surfaces	 on	 the	 elementary	 forms.	 For	 the
description	 of	 the	 nature	 of	 the	 surface	 of	 the	 object	 it	 is	 divided	 into	 various
polygons.	The	most	frequently	when	the	graphical	object	is	divided	by	triangles
and	 четырехугольники,	 as	 they	 are	 most	 easily	 calculated	 and	 easily
manipulated.	

Texel
Texel	Texel	|

Abbreviation	of	two	words:	Texture	and	Element	-	"texture"	and	"element",	i.e.
the	element	of	texture.	

Texture
Texture	Texture	|

Two-dimensional	image	stored	in	the	memory	of	a	computer	or	graphics	card	in
one	 of	 the	 pixel	 formats.	 Usually	 the	 texture	 is	 stored	 in	 the	 memory	 of	 the
uncompressed,	 but	 modern	 graphics	 accelerators	 support	 and	 various
compression	algorithms	with	декомпрессией	"on	the	fly".	

Texture	Filtering
Texture	Filtering	|	Texture	Filtering

One	of	the	most	important	methods	to	improve	image	quality.	It	happens	several
types:	
1.	Pt	sample	-	rather	than	type	of	filtration,	and	its	absence.	The	texture	is	split
up	into	boxes	-	not	the	most	pleasant	sight.	
2.	Bilinear	Filtering	 is	 used	 to	 suppress	 the	 effect	 of	 the	 squares.	Color	 of	 the
four	neighboring	pixels	are	averaged,	then	two	of	the	current	unit	and	two	of	the
neighboring,	and	so	on.	The	squares	disappear,	but	the	picture	blurred.	
3.	 Trilinear	 Filtering	 is	 designed	 to	 improve	 the	 image	 sharpness	 and	 smooth
transitions	between	mip-levels,	working	on	their	borders.	
4.	 Anisotropic	 Filtering	 -	 removes	 the	 effect	 of	 motion	 blur	 caused	 by	 the
bilinear	 filtration,	 returns	 the	 texture	 acutance.	 Requires	 large	 computational
cost,	but	the	effect	is	very	noticeable.	
the	 best	 effect	 is	 achieved	 by	 the	 simultaneous	 operation	 of	 all	 three	 types	 of
filtration.	

Technique
Technique	|	Technology

in	computer	graphics,	the	term	"technique"	is	usually	the	technique	of	rendering"
-	 the	established	program	 is	 a	 simulation	of	 the	computer	graphics	of	 those	or
other	physical	or	optical	phenomena	 in	 the	real	world.	Technique	usually	 is	an
extension	of	one	of	the	two	main	methods	of	rendering	-	The	dither	or	tracing.
Sometimes	these	methods	of	rendering	is	also	referred	to	as	technicians.	
Popular	 rendering	 technology	 include	 construction	of	 shadows,	 reflections	 and
преломлений,	 direct	 and	 indirect	 lighting,	 shading	 environment	 (ambient
occlusion),	the	simulation	of	relief	on	surfaces	(bump	mapping),	the	effect	of	the
расфокусированности	(depth	of	field)	and	смазанности	(motion	blur),	etc.	
Sometimes	 in	 the	 rendering	 engines	 under	 "Equipment"	 means	 a	 series	 of
transactions	carried	out	over	the	graphical	data	for	the	final	image	-	building	the
buffers,	 препроцессинг,	 minimizing	 and	 постпроцессинг.	 To	 respect	 the
balance	 between	 quality	 and	 performance,	 as	well	 as	 for	 compatibility	with	 a
wide	 range	 of	 system	 configurations,	 the	 engine	 can	 support	 different	 sets	 of
such	 operations.	 For	 example,	 two	 common	 techniques	 in	 this	 sense	 are	 the
direct	rendering	(direct	render)	and	deferred	rendering	(deferred	render),	which
have	fundamental	differences	in	the	calculation	of	the	lighting.	

Tiling
Tiling	|	Тайлинг,	замощение

Multiple	repetition	of	the	textures	on	the	surface	of	the	object.

1
Transformation	|	Transforming

Linear	operation	on	geometry	(usually	a	set	of	vertices).	
Under	 the	 conversion	 in	 graphics	 engines	 is	 generally	 implied	 an	 affine
transformation	 -	 that	 is,	 conversion,	 the	 event	 straight	 lines	 straight	 and	 flat
surface	is	flat.	Such	changes	include	the	shift,	rotate,	scale,	offset	and	mirroring,
as	 well	 as	 their	 combination	 in	 any	 order.	 But	 to	 change	 also	 applies,	 for
example,	the	Perspective	projection,	which	is	not	an	affine	transformation.	
for	submission	of	an	affine	transformation	use,	as	a	rule,	Matrix	4x4,	where	the
upper	left	подматрица	specifies	the	rotation	and	scale,	the	right-hand	column	is
offset,	and	the	bottom	line	is	always	equal	to	[0,	0,	0,	1].	The	multiplication	of
matrices	transformation	gives	a	matrix	in	which	these	two	conversions	combined
(in	 the	 order	 in	 which	 produced	 multiplication).	 In	 game	 graphics	 engines
typically	 use	 the	 following	 procedure	 for	 the	 перемножений:	 Transfer	 *	 *
rotation	scaling.	The	resulting	matrix	(also	referred	to	as	its	model)	is	transferred
to	the	graphics	conveyor.	The	аффинную	matrix	can	be	inverted,	i.e.,	calculate
its	 inverse	matrix	 -	 it	will	 represent	 the	 inverse	 transform,	which	 is	very	often
used	 in	computer	graphics.	Some	of	 the	properties	of	affine	matrices,	 they	can
invert	very	efficiently.	
Say	 that	 model	 the	 matrix	 moves	 the	 top	 of	 the	 model	 space	 (where	 the
coordinates	of	 the	vertices	are	defined	 relative	 to	 the	center	of	 the	model)	 into
the	world	space	(where	the	coordinates	are	defined	relative	to	the	absolute	center
of	 the	scene).	This	process	 is	 the	 first	 stage	of	 the	graphics	pipeline	and	 is	 the
vertex	processor	graphics	card.	When	using	shaders	programr	has	the	ability	to
program	 this	 stage	 in	вершинном	шейдере.	 In	addition	 to	 the	matrices,	affine
transformation	is	also	possible	using	the	кватернионов	and	dual	кватернионов.
Кватернионы	 are	 used	 for	 storage	 of	 rotation	 (including	 drawn),	 dual
кватернионы	-	for	simultaneous	storage	of	rotation	and	transfer.	
The	main	advantages	of	the	кватернионов	-	computational	efficiency	and	save
memory	(4	numbers	instead	of	16	matrices)	and	the	possibility	of	interpolation.
Кватернионы	are	widely	used	in	the	skeletal	animation,	kinematics	and	physics,
but	the	graphics	pipeline,	they	usually	are	not	transferred	-	all	conversion	for	this
translated	into	a	matrix.	

See	also	Matrix,	Vector.

Tree
Tree	|	Wood

Coherent	 graph	 without	 cycles.	 A	 tree	 with	 n	 vertices	 always	 has	 n-1	 edges.
Between	any	two	vertices	of	the	tree	there	is	a	single	route.	Therefore,	the	tree	is
sometimes	defined	 as	 the	minimum	coherence	graph.	Top	of	 the	 tree	which	 is
connected	to	the	rib	with	only	one	top,	called	the	sheet.	
oriented	wood	 is	 a	 graph	with	 a	 dedicated	 top	 (root),	which	between	 root	 and
any	top	there	is	the	only	way.	
Trees	are	used	in	various	mathematical	models:	in	the	theory	of	formal	systems,
describing	and	designing	hierarchical	structures	(in	particular,	in	the	information
systems,	including	databases),	scheduling,	etc.

Triangle	Strip/Fan
Triangle	Strip/Fan

If	 adjacent	 triangles,	 describing	 the	 surface	 of	 the	 figures,	 is	 not	 required	 to
transmit	 information	 about	 all	 three	 vertices	 of	 each	 of	 them,	 but	 simply
transferred	 as	 soon	 as	 the	 sequence	 of	 triangles,	 each	 of	 which	 shall	 be
determined	by	the	only	one	top.	As	a	result	of	 the	reduced	requirements	 to	 the
width	of	the	bandwidth.	

Triangulation
Triangulation	Triangulation	|

partitioning	method	complicated	polygons	on	the	components	of	their	triangles.
Used	to	need	to	create	polygons	with	more	than	three	peaks.

Tweening
Tweening	|	Твининг

Process	of	interpolation	of	key	personnel	in	the	вертексной	animation.	Твининг
implies	 that	 for	 this	 model	 order	 of	 vertices	 in	 different	 frames,	 one	 and	 the
same.	

UV	Coordinates
UV	Coordinates	|	texture	coordinates

In	cases	where	a	model	 is	superimposed	image	(texture),	 the	description	of	 the
vertices	are	added	texture	coordinates.	Designated	as	a	rule,	they	pair	of	U	and
V.	The	U	Coordinate	 sets	 in	 the	 image	 pixel	 on	 the	 horizontal	 coordinate	V	 -
vertically.	 The	 value	 (0.0)	 corresponds	 to	 the	 upper-left	 corner	 of	 the	 texture,
value	(1.1)	-	lower	right.	

Vector
Vector	|	Vector

element	 of	 the	 linear	 space.	Describes	 one	 or	more	 numbers	 (vector	 from	one
number	 is	 a	 scalar).	 In	 computer	 graphics	 are	 commonly	used	vectors	 of	 2,	 3,
and	 4	 numbers.	 The	 vector	 has	 a	 length,	 which	 is	 calculated	 using	 the
Pythagorean	theorem	(the	square	root	of	the	sum	of	the	squares	of	all	elements
of	the	vector).	Vectors	are	all	basic	arithmetic	operations	(Addition,	subtraction,
multiplication,	division).	The	section	of	mathematics,	studying	the	operations	on
vectors	 is	 called	 the	 vector	 algebra	 (she,	 in	 turn,	 is	 a	 special	 case	 of	 a	 more
general	directions	-	linear	algebra).	
Using	 a	 vector	 can	 be	 described	 as	 a	 point	 in	 the	 Euclidean	 space	 and	 the
direction	 corresponding	 to	 the	 "look"	 at	 this	 point	 from	 the	 beginning	 of	 the
coordinates.	The	direction	is	typically	set	to	a	specified,	or	a	single	vector	(i.e.,	a
vector	with	 the	 length	 equal	 to	 1).	Any	 non-zero	 vector	 can	 be	 нормировать,
separating	 the	покомпонентно	on	 its	 length.	The	direction	 is	not	equivalent	 to
the	 turn	 -	 to	get	a	 full	 rotation,	 there	are	 three	mutually	perpendicular	vectors,
forming	 the	 so-called	 basis.	 The	 basis	 is	 an	 integral	 part	 of	 the	 affine
transformation	matrix.	
affine	 transformation	 are	 carried	 out	 over	 the	 space	 of	 affine	 vectors.
Аффинный	vector	is	a	vector	of	4	numbers,	as	symbolised	by	the	XYZW,	where
XYZ	-	normal	евклидовый	vector,	and	the	additional	coordinate	W	allows	you
to	express	 infinitely	 remote	point	 (where	W	is	equal	 to	0).	Conventional	 terms
have	the	W	is	equal	to	1.	

See	also	Matrix,	1.

Vertex
Vertex	|	Top	Of	The

Traditionally	in	computer	graphics	under	the	top	refers	to	the	point	of	the	2D	or
3D	space.	Set	of	three	peaks	forms	a	triangle	-	the	most	common	entity	used	to
build	 in	 -plane	 or	 spatial	 objects.	 Each	 vertex	 describes	 a	 particular	 set	 of
parameters,	 such	 as	 the	 coordinates	 in	 the	 space,	 normal,	 тангент,	 битангент,
color,	 texture	 coordinates	 and	 etc.	 Of	 these	 attributes	 are	 mandatory	 only	 the
coordinates	in	space,	the	rest	are	optional.	If	the	triangle	drawing	defined	peaks,
each	of	them	is	projected	onto	the	screen	plane.	Further	there	is	the	interpolation
of	various	parameters	(the	reconfigured	position,	color,	texture	coordinates,	etc.),
the	results	of	which	we	actually	see	on	screen.	

Vertex	Animation
Vertex	 Animation	 (Per-vertex	 Animation	 Morph	 Target	 Animation)	 |
Вершинная	(вертексная)	Animation

animation	method,	 in	which	 a	 sequence	 of	 key	 frames	 is	 a	 series	 of	modified
positions	 of	 the	 vertices	 of	 the	 polygon	 mesh.	 When	 playing	 tops	 simply
interpolated	from	one	state	to	another.	
Вершинная	 animation	 received	 distribution	 in	 the	 Games	 Quake	 series	 and
today	 is	 an	 alternative	 to	 the	 skeletal	 animation,	 due	 to	 some	 advantages.	 In
particular,	 the	 animator	 has	 the	 ability	 to	 control	 any	 top	 separately,	 it	 is
impossible	 when	 using	 skeletal	 animation.	 This	 allows,	 for	 example,	 the
Animate	 clothing,	 face,	 etc.	 the	 elements	of	models,	which	 are	 too	difficult	 or
even	impossible	to	bind	to	the	bones.	
Вершинная	 animation	 has	 its	 disadvantages.	 The	 main	 of	 them:	 memory
consumption,	the	cost	of	computing	resources	on	the	Calculation	интерполяций.
This	 makes	 the	 irrational	 use	 of	 the	 topmost	 animation	 in
высокополигональных	models.	

Voxel
Volume	Pixel	|	Воксель

Volume	point.	 Is	 actually	 a	 cube	 in	 space;	The	 воксельная	 printing	 surface	 is
constructed	of	such	cubes.

VSync
Vertical	Synchronization	|	Vertical	sync

Optional	 parameter	 behavior	 of	 the	 driver	 for	 the	 video	 card.	 Complimentary
vertical	synchronization	means	that	after	drawing	the	next	frame,	while	shifting
the	buffers,	the	driver	will	be	waiting	for	the	next	retrace	the	monitor,	and	only
then	will	shift	the	screen	buffers.	
Image	on	monitors	with	 cathode	 ray	 tube	drawing	 a	 beam	of	 electrons,	which
consistently	отрисовывает	row	from	left	to	right,	then	returns	to	the	beginning
of	 the	 next	 line	 (the	 delay	 of	 the	 horizontal	 sync),	 then	 отрисовывает	 the
following	 line,	 etc.	 After	 the	 beam	 has	 got	 in	 the	 bottom	 right	 corner	 of	 the
screen,	he	returns	to	the	upper	left	corner	(the	time	for	which	he	returns,	is	called
the	latency	of	the	vertical	sync).	
Why	 Do	 I	 need	 a	 vertical	 synchronization?	 The	 fact	 is	 that	 the	 delay	 time
synchronization	of	the	vertical	retrace	is	ideal	for	switching	screen	buffers.	If	the
switch	buffers	at	any	other	time,	the	part	of	the	image	on	the	screen	will	belong
to	the	old	frame,	and	part	 is	new.	Because	of	 this,	 the	artifacts	appear	between
frames	 -	 may	 become	 noticeable	 unpleasant	 jitter,	 and	 even	 at	 high	 FPS
animation	visually	will	not	look	smooth.	
However,	 as	 in	 the	 vertical	 synchronization	 delay	 is	 done,	 the	 FPS	 will
inevitably	be	less	than	a	similar	scene,	but	with	the	VSync	off.	This	is	sometimes
unacceptable,	for	example,	in	a	variety	of	graphic	tests.	

Weighting
Weighting	Развесовка	|

in	 the	 skeletal	 animation	 -	 the	 distribution	 of	 supplies	 the	 part	 of	 the	 surface
model	 to	 this	 or	 that	 the	 bones	 of	 the	 skeleton.	Развесовка	helps	 improve	 the
quality	 of	 the	 deformation	 of	 the	 анимируемой	 surface,	 bringing	 it	 to	 the
natural.

Wireframe
Wireframe

frame	displays	the	surface	of	a	3D	object.	

Z-Buffer
Z-Buffer	|	The	Z-buffer

part	of	the	graphics	memory,	which	stores	the	distance	from	a	point	in	space	up
to	 the	 screen	 plane	 (Z	 value).	 The	 Z-buffer	 determines	 which	 of	 the	 many
overlapping	dots	 closest	 to	 the	plane	of	 the	observation.	As	well	 as	 increasing
the	number	of	bits	per	pixel	for	color	in	the	frame	buffer	corresponds	to	a	greater
number	of	colors,	available	in	the	system	image,	and	the	number	of	bits	per	pixel
in	 the	 Z-buffer	 corresponds	 to	 a	 greater	 number	 of	 elements.	 Usually,	 the	 Z-
buffer	has	no	less	than	16	bits	per	pixel	for	submission	to	the	color	depth.	Some
of	the	realization	of	the	Z-buffer	is	used	for	storing	is	not	an	integer	value	depth,
and	a	floating	point	value	from	0	to	1.	

Z-Buffering
Z-Buffering	|	Z-buffering

Process	of	removing	hidden	surfaces,	uses	the	values	of	depth,	stored	in	the	Z-
buffer.	Before	displaying	a	new	frame,	the	buffer	is	cleared,	and	the	variables	Z
are	 set	 to	 large	 values.	When	 rendering	 the	 object	 sets	 the	 Z	 values	 for	 each
pixel:	the	closer	the	pixel	is	located,	the	less	the	value	of	Z.	For	each	new	pixel
depth	 value	 is	 compared	 with	 the	 value	 stored	 in	 the	 buffer,	 and	 the	 pixel	 is
recorded	in	the	frame	only	if	the	depth	is	less	than	the	stored	value.	

Z-Sorting
Z-Sorting	|	Z-sorting

Process	 of	 removing	 invisible	 surfaces	 using	 the	 sort	 the	 polygons	 in	 order	 of
"bottom-up"	 before	 rendering.	 Thus,	 when	 rendering	 the	 upper	 surface	 of	 the
processed	last.	The	results	of	rendering	are	true	only	if	objects	are	close	together
and	do	not	intersect.	The	advantage	of	this	method	is	no	need	to	store	values	of
depth.	 Disadvantage	 is	 the	 high	 CPU	 utilization	 and	 restriction	 on	 the
overlapping	objects.	

The	License	Agreement:	Xtreme3D
Xtreme3D,	Copyright	©	2016-2017,	Timur	Gafarov.	
GLScene,	Copyright	©	2000-2016,	The	GLSTeam.	
All	rights	reserved.

Library	Xtreme3D	and	 required	 for	 its	compilation	of	modified	code	GLScene
(hereinafter	referred	to	as	the	"Draft	Xtreme3D")	are	licensed	under	the	Mozilla
Public	License	(MPL)	1.1.	You	can	get	a	copy	of	the	full	text	of	this	license	at
https://www.mozilla.org/MPL.	
This	 license	 grants	 you	 the	 right	 to	 freely	 and	 безводмездно	 Use	 Draft
Xtreme3D	as	in	the	non-profit	and	for	commercial	purposes,	as	well	as	copy	and
modify	its	source	code	under	the	following	conditions:	
-	 When	 using	 the	 source	 code	 of	 the	 Project	 Xtreme3D	 in	 the	 closed
проприетарном	product,	the	product	documentation	should	be	placed	the	notice
on	 the	 use	 of	 the	 Xtreme3D	 with	 reference	 to	 the	 site	 of	 the	 project:
http://xtreme3d.narod.ru;	
-	 in	 the	 case	 of	modification	 of	 the	 source	 code	 of	 the	Project	Xtreme3D,	 the
modified	source	files	should	be	available	under	the	terms	of	the	license	Mozilla
Public	License	1.1.	
Using	 the	 original	 (unmodified)	 Xtreme3D	 in	 the	 form	 of	 compiled	 dlls
(xtreme3d.dll)	to	dynamically	link	with	other	programs	does	not	entail	the	need
to	fulfill	the	above	conditions.	

DRAFT	XTREME3D	 IS	 DISTRIBUTED	ON	AN	 "AS	 IS"	WITHOUT	ANY
EXPRESS	AND/OR	IMPLIED	WARRANTIES	OF	VALUE	OR	FITNESS	FOR
A	 PARTICULAR	 PURPOSE.	 The	 COPYRIGHT	 HOLDERS	 ARE	 NOT
LIABLE	 FOR	 ANY	 CONSEQUENCES	 RESULTING	 FROM	 THE	 USE	 OF
THIS	SOFTWARE.	

Draft	 Xtreme3D	 includes	 a	 modified	 project	 code	 GLScene
http://glscene.sourceforge.net),	(which	is	also	available	on	the	MPL	license.	The
project	 also	 includes	 third-party	 code	 libraries	 that	 are	not	 subject	 to	 the	MPL
license:	
-	Simple	Dictionary	(https://github.com/martinusso/simple-dictionary)	
-	Hash	Library	of	Ciaran	McCreesh	

-	Decoder	files	in	a	LOD	(http://lodka3d.narod.ru)	
-	A	modified	version	of	 the	FreeType	mapping	from	The	Anti-Grain	Geometry
(http://www.antigrain.com)	
-	CrystalLUA	(https://github.com/d-mozulyov/CrystalLUA)	
Information	About	The	правообладателях	and	distribution	terms	of	code	these
projects	you	can	find	in	the	corresponding	source	files.	

Xtreme3D,	Copyright	©	2016-2017,	Timur	Gafarov.	
GLScene,	Copyright	©	2000-2016,	The	GLSTeam.	
All	rights	reserved

"Xtreme3D	Project"	 refers	 to	Xtreme3D	 library	 and	GLScene	modified	 that	 it
depends	on.	
Xtreme3D	 Project	 is	 distributed	 under	 the	Mozilla	 Public	 License	 (MPL)	 1.1.
You	can	obtain	a	full	 text	of	 this	 license	at	https://www.mozilla.org/MPL.	This
license	grants	you	a	right	 to	freely	use	Xtreme3D	Project	both	in	freeware	and
commercial	products,	and	to	copy	and	modify	its	source	code,	at	 the	following
conditions:	
-	 In	 case	 of	 using	 Xtreme3D	 source	 code	 in	 a	 closed-source	 product,	 an
acknowledgment	must	be	provided	that	the	product	uses	Xtreme3D	with	a	link
to	Http://xtreme3d.narod.ru;	
-	modifications	made	 to	Xtreme3D	Project	must	be	released	under	 the	MPL	as
well.	
These	 requirements	 are	 only	 applied	 to	 the	Xtreme3D	 Project	 source	 code.	 If
you	 are	 using	 the	 original	 (unmodified)	Xtreme3D	 in	 the	 form	 of	 a	 compiled
dynamic	 library	 (xtreme3d.dll)	 for	 linking	 with	 an	 application,	 you	 are	 not
required	to	fulfill	conditions	above.	

THE	XTREME3D	PROJECT	IS	PROVIDED	'AS	IS'	WITHOUT	WARRANTY
OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED,	INCLUDING,	BUT	NOT
LIMITED	 TO,	 WARRANTIES	 OF	 MERCHANTABILITY	 AND	 FITNESS
FOR	 A	 PARTICULAR	 PURPOSE.	 IN	 NO	 EVENT	 WILL	 ANY	 OF	 THE
AUTHORS	 OR	 COPYRIGHT	 MY	 ACCOUNT	 CUSTOMER	 SERVICE	 BE
LIABLE	 FOR	 ANY	 DAMAGES	 CAUSED	 BY	 THE	 USE	 OR	 THE
INABILITY	TO	USE	OF	THE	XTREME3D	PROJECT.	

Xtreme3D	 Project	 includes	 modified	 code	 of	 GLScene
http://glscene.sourceforge.net)	 (which	 is	 also	 available	 under	 the	 MPL.
Xtreme3D	 also	 includes	 some	 third-party	 source	 code	 files	 that	 use	 different
licenses:	
-	Simple	Dictionary	(https://github.com/martinusso/simple-dictionary)	
-	Ciaran	McCreesh's	Hash	Library	
-	LOD	file	decoder	(http://lodka3d.narod.ru)	
-	 Modified	 FreeType	 binding	 from	 Anti-Grain	 Geometry	 project
(http://www.antigrain.com).	
-	CrystalLUA	(https://github.com/d-mozulyov/CrystalLUA)	
Such	files	have	an	explicit	copyright	and	licensing	notices	attached	to	them.

The	License	Agreement:	ODE
Open	Dynamics	Engine	(ODE)	
Copyright	©	2001-2010,	Russell	L.	Smith	
All	rights	reserved.

the	 dissemination	 and	 use	 of	 the	 software,	 ODE	 ("Software")	 in	 the	 form	 of
source	 code	 and/or	 in	 binary	 form	 is	 permitted	 provided	 that	 the	 following
conditions	are	met:	
-	Distribution	of	the	Software	in	source	code	form	must	contain	the	text	of	this
license.	
-	Distribution	of	the	software	in	binary	form	must	contain	the	text	of	this	license
in	the	documentation	and/or	other	materials	provided	with	dissemination.	
-	The	names	of	 the	owner	and	his	volunteers	(hereinafter	"owner")	may	not	be
used	 for	 advertising	 the	 products	 and/or	 services	 without	 the	 prior	 written
permission.	

THIS	 SOFTWARE	 extends	 the	 franchisor	ON	AN	 "AS	 IS"	WITHOUT	ANY
EXPRESS	AND/OR	IMPLIED	WARRANTIES	OF	VALUE	OR	FITNESS	FOR
A	PARTICULAR	PURPOSE.	The	RIGHTHOLDER	SHALL	NOT	BE	LIABLE
FOR	 ANY	 CONSEQUENCES,	 DIRECT	 OR	 INDIRECT	 DAMAGES
CAUSED	 BY	 THIS	 SOFTWARE,	 INCLUDING,	 WITHOUT	 LIMITATION,
DAMAGES	 FOR	 LOSS	 OF	 PROFITS,	 BUSINESS	 INTERRUPTION,	 LOSS
OF	BUSINESS	INFORMATION,	OR	OTHER	FINANCIAL	LOSSES).	

Open	Dynamics	Engine	(ODE)	
Copyright	©	2001-2010,	Russell	L.	Smith.	
All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:	
-	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list
of	conditions	and	the	following	disclaimer.	
-	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this

list	of	conditions	and	the	following	disclaimer	in	the	documentation	and/or	other
materials	provided	with	the	distribution.	
-	Neither	the	names	of	ODE's	copyright	owner	nor	the	names	of	its	contributors
may	be	used	to	endorse	or	promote	products	derived	from	this	software	without
specific	prior	written	permission.	

THIS	 SOFTWARE	 IS	 PROVIDED	 BY	 THE	 MY	 ACCOUNT	 CUSTOMER
SERVICE	 COPYRIGHT	 AND	 CONTRIBUTORS	 "AS	 IS"	 AND	 ANY
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED
TO,	 THE	 IMPLIED	 WARRANTIES	 OF	 MERCHANTABILITY	 AND
FITNESS	 FOR	 A	 PARTICULAR	 PURPOSE	 ARE	 DISCLAIMED.	 IN	 NO
EVENT	 SHALL	 THE	 COPYRIGHT	 OWNER	 OR	 CONTRIBUTORS	 BE
LIABLE	 FOR	 ANY	 DIRECT,	 INDIRECT,	 INCIDENTAL,	 SPECIAL,
EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT
LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;
LOSS	 OF	 USE,	 DATA,	 OR	 PROFITS;	 OR	 BUSINESS	 INTERRUPTION)
HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER
IN	 CONTRACT,	 STRICT	 LIABILITY,	 OR	 TORT	 (INCLUDING
NEGLIGENCE	 OR	 OTHERWISE)	 ARISING	 IN	 ANY	WAY	 OUT	 OF	 THE
USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF
SUCH	DAMAGE.

The	 License	 Agreement:	 The
FreeType
The	FreeType	Project	
Copyright	 ©	 1996-2002,	 2006,	 David	 Turner,	 Robert	 Wilhelm,	 Werner
Lemberg.	
All	rights	reserved.	

Introduction	

The	FreeType	Project	is	distributed	in	several	archival	bags;	some	of	them	may
contain,	in	addition	to	the	шрифтовому	The	FreeType	engine,	various	tools	and
code,	on	which	it	is	based,	or	related	to	the	FreeType.	This	License	applies	to	all
files	 in	 these	 packages	 and	 is,	 thus,	 Font	 Engine	 FreeType,	 test	 programs,
documentation,	and	make-files.	
This	license	was	based	on	the	model	of	the	BSD	license,	the	artistic	and	the	IJG
(the	Independent	JPEG	Group),	each	of	which	endorses	the	use	of	licensed	free
software	in	commercial	and	free	software	products.	As	a	consequence,	its	main
provisions	are	as	follows:	

-	 We	 do	 not	 warrant	 that	 the	 software	 is	 running	 (spread	 on	 an	 "as	 is").
Nevertheless,	we	are	interested	in	any	of	the	records	error	messages.	
-	 You	 can	 use	 this	 software	 for	 any	 purpose,	 partially	 or	 completely,	 without
money	payments	in	favor	of	the	owners.	
-	 You	 cannot	 arrogate	 to	 itself	 the	 authorship	 of	 this	 software.	 If	 you	 use	 it,
partially	 or	 completely,	 with	 or	 without	 modification,	 you	 must	 provide	 the
notice	 somewhere	 in	 the	 documentation	 for	 your	 program	 that	 you	 used	 the
project	code	of	the	FreeType.	

We	 allow	 and	 endorse	 the	 inclusion	 of	 this	 software,	 with	 or	 without
modification,	in	the	composition	of	the	commercial	products.	We	do	not	provide
any	 guarantees	 on	 the	 Code	 relating	 to	 the	 draft	 FreeType,	 and	 disclaim	 any
liability	for	consequences	resulting	from	the	use	of	this	Code.	
Finally,	 many	 people	 ask	 us	 about	 the	 preferred	 form	 of	 notification	 of
sponsorship	that	meets	the	requirements	of	this	license.	We	recommend	that	you

use	the	following	text:	

This	 software	 contains	 code	 FreeType.	 Copyright	 ©	 (year)	 Draft	 FreeType
(www.freetype.org).	All	rights	reserved.	

Note:	(year)	should	be	replaced	by	the	year	of	release	versions	of	FreeType,	you
are	using.	

0.	Determine	

In	 this	 license,	 the	 terms	 "package",	 "Draft	 FreeType"	 and	 "Archive	 of
FreeType"	refers	to	the	set	of	files,	распространяемому	holders	(David	Turner,
Robert	Wilhelm,	Werner	Lemberg),	whether	it	is	alpha,	beta	or	final	release.	
Under	the	term	"you"	means	the	licensee	(licensee),	a	person	or	organization	that
uses	 the	 FreeType,	 where	 "use"	 refers	 to	 the	 compilation	 of	 the	 source	 code
FreeType,	 as	 well	 as	 linking	 programs	 with	 the	 FreeType	 library	 through	 the
layout.	The	program,	which	contains	the	source	code	of	the	FreeType	or	related
to	 the	 FreeType	 through	 layout,	 is	 referred	 to	 as	 "the	 program	 that	 uses	 the
FreeType".	
This	License	applies	to	all	files	of	the	Project	FreeType,	including	all	the	source
code,	binaries	 and	documentation	unless	 explicitly	 stated	otherwise.	 If	you	are
not	sure	whether	this	license	to	a	project	file	FreeType,	contact	us.	
Holders	 Freetype	 Project	 are	 David	 Turner,	 Robert	 Wilhelm,	 and	 Werner
Lemberg.	All	rights,	except	as	indicated	below,	the	reserved.	

1.	No	warranty	

The	 FREETYPE	 project	 extends	 the	 franchisor	 ON	 AN	 "AS	 IS"	WITHOUT
ANY	 EXPRESS	 AND/OR	 IMPLIED	 WARRANTIES	 OF	 VALUE	 OR
FITNESS	 FOR	 A	 PARTICULAR	 PURPOSE.	 The	 RIGHTHOLDER	 SHALL
NOT	 BE	 LIABLE	 FOR	 ANY	 CONSEQUENCES	 RESULTING	 FROM	 THE
USE	OF	THIS	SOFTWARE.	

2.	Dissemination	of	the	

This	 license	 provides	 global,	 free,	 unlimited	 and	 irrevocable	 right	 to	 use,
compile,	perform,	display,	copy,	modify,	distribute	and	sublicense	The	FreeType
Project	(as	in	the	original,	and	in	binary	form)	and	any	derivative	works	from	it,
as	well	as	to	provide	these	rights,	partially	or	completely,	to	third	parties,	subject

to	the	following	conditions:	

-	Distribution	 of	 the	 original	 or	modified	 the	 source	 code	FreeType	 should	 be
accompanied	by	 the	 unchanged	 text	 of	 this	 license.	Any	 additions,	 delete,	 and
modify	 the	 source	 code	 FreeType	 should	 be	 described	 in	 the	 accompanying
documentation.	 The	 copyright	 notice	 must	 appear	 in	 all	 copies	 of	 the	 source
code	FreeType.	
-	 Dissemination	 of	 the	 FreeType	 in	 binary	 form	 must	 contain	 a	 notice	 that
product	includes	FreeType.	We	welcome	the	reference	to	the	URL	address	of	the
web	site	of	the	Project	FreeType,	but	this	is	not	a	mandatory	requirement.	

These	terms	apply	to	any	software	that	uses	the	FreeType	or	is	a	derivative	work
based	 on	 the	 FreeType	 code.	 If	 you	 are	 using	 the	 FreeType,	 please	 notify	 us.
Remuneration	in	our	favor	is	not	required.	

3.	Advertising	

the	names	of	the	sponsors	of	the	Freetype,	as	well	as	his,	see	may	not	be	used	for
commercial	advertising	without	their	written	permission.	
We	recommend	(but	do	not	require),	use	one	of	the	following	phrases	to	refer	to
this	 software	 in	 the	 documentation	 or	 promotional	 materials:	 "The	 Project
FreeType,	 The	 FreeType	 Engine",	 "The	 Library	 FreeType"	 or	 "The	 FreeType
Package".	

Because	you	do	not	sign	up	under	this	license,	you	are	not	required	to	accept	its
terms	 and	 conditions.	 However,	 since	 the	 project	 is	 the	 FreeType	masterpiece
that	is	protected	by	copyright	law,	only	the	license	(or	the	other,	concluded	with
right	 holders)	 gives	 you	 the	 right	 to	 use,	 distribute	 and	modify	 the	 FreeType.
Thus,	using,	distributing	or	modifying	the	FreeType,	you	acknowledge	and	agree
with	the	terms	of	this	license.	

4.	Contact	Information	

There	are	two	mailing	list	related	to	the	FreeType:	
-	freetype@nongnu.org.	On	the	overall	use	of	FreeType,	as	well	as	innovations
in	 the	 library	and	distribution.	 If	you	need	 technical	support,	and	you	have	not
found	help	in	the	documentation,	ask	a	question	in	this	list	of	mailing	lists.	
-	 freetype-devel@nongnu.org.	 Devoted	 to	 the	 elaboration	 of	 FreeType,
discussion	of	errors,	the	engine	porting	to	other	platforms,	design,	license,	etc.	

Site	FreeType	is	located	at	http://www.freetype.org.	

The	FreeType	Project	
Copyright	 ©	 1996-2002,	 2006,	 David	 Turner,	 Robert	 Wilhelm,	 Werner
Lemberg.	
All	rights	reserved.	

Introduction	

The	FreeType	Project	 is	distributed	 in	 several	archive	packages;	 some	of	 them
may	 contain,	 in	 addition	 to	 the	 FreeType	 font	 engine,	 various	 tools	 and
contributions	which	rely	on,	or	relate	to,	the	FreeType	Project.	
This	License	applies	 to	all	 files	 found	 in	such	packages,	and	which	do	not	 fall
under	 their	 own	 explicit	 license.	 The	 license	 affects	 thus	 the	 FreeType	 font
engine,	the	test	programs,	documentation	and	makefiles,	at	the	very	least.	
This	 license	was	 inspired	by	 the	BSD,	 artistic,	 and	 ijg	 (the	 Independent	 JPEG
Group)	 licenses,	 which	 all	 encourage	 inclusion	 and	 use	 of	 free	 software	 in
commercial	and	freeware	products	alike.	As	a	consequence,	its	main	points	are
that:	

-	We	don't	promise	that	 this	software	works.	However,	we	will	be	interested	in
any	kind	of	bug	reports.	('As	is'	distribution)	
-	You	can	use	this	software	for	whatever	you	want,	in	parts	or	full	form,	without
having	to	pay	us.	('Royalty-free'	usage)	
-	You	may	not	pretend	that	you	wrote	this	software.	If	you	use	it,	or	only	parts	of
it,	in	a	program,	you	must	acknowledge	somewhere	in	your	documentation	that
you	have	used	the	FreeType	code.	('Credits')	

We	 specifically	 permit	 and	 encourage	 the	 inclusion	 of	 this	 software,	 with	 or
without	 modifications,	 in	 commercial	 products.	 We	 disclaim	 all	 warranties
covering	The	FreeType	Project	and	assume	no	liability	related	to	The	FreeType
Project.	
Finally,	many	people	asked	us	for	a	preferred	form	for	a	credit/disclaimer	to	use
in	compliance	with	this	license.	We	thus	encourage	you	to	use	the	following	text:

Portions	 of	 this	 software	 are	 copyright	 ©	 (year)	 of	 The	 FreeType	 Project
(www.freetype.org).	All	rights	reserved.	

Please	replace	(year)	with	the	value	from	the	FreeType	version	you	actually	use.	

0.	Definitions	

Throughout	 this	 license,	 the	 terms	 'package',	 'The	 FreeType	 Project',	 and	 'The
FreeType	archive'	 refers	 to	 the	 set	of	 files	originally	distributed	by	 the	authors
(David	Turner,	Robert	Wilhelm,	and	Werner	Lemberg)	as	the	'FreeType	Project',
be	they	named	as	alpha,	beta	or	final	release.	
'You'	refers	to	the	licensee,	or	person	using	the	project,	where	'using'	is	a	generic
term	including	compiling	the	project's	source	code	as	well	as	linking	it	to	form	a
'program'	 or	 'executable'.	 This	 program	 is	 referred	 to	 as	 'a	 program	 using	 the
FreeType	engine'.	
This	 License	 applies	 to	 all	 files	 distributed	 in	 the	 original	 FreeType	 Project,
including	all	source	code,	binaries	and	documentation,	unless	otherwise	stated	in
the	file	in	its	original,	unmodified	form	as	distributed	in	the	original	archive.	If
you	 are	 unsure	whether	 or	 not	 a	 particular	 file	 is	 covered	 by	 this	 license,	 you
must	contact	us	to	verify	this.	
The	 FreeType	 Project	 is	 copyright	 (C)	 1996-2000	 by	 David	 Turner,	 Robert
Wilhelm,	and	Werner	Lemberg.	All	rights	reserved	except	as	specified	below.	

1.	No	Warranty	

THE	FREETYPE	PROJECT	IS	PROVIDED	'AS	IS'	WITHOUT	WARRANTY
OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED,	INCLUDING,	BUT	NOT
LIMITED	 TO,	 WARRANTIES	 OF	 MERCHANTABILITY	 AND	 FITNESS
FOR	 A	 PARTICULAR	 PURPOSE.	 IN	 NO	 EVENT	 WILL	 ANY	 OF	 THE
AUTHORS	 OR	 COPYRIGHT	 MY	 ACCOUNT	 CUSTOMER	 SERVICE	 BE
LIABLE	 FOR	 ANY	 DAMAGES	 CAUSED	 BY	 THE	 USE	 OR	 THE
INABILITY	TO	USE,	OF	THE	FREETYPE	PROJECT.	

2.	Redistribution	

This	license	grants	a	worldwide,	royalty-free,	perpetual	and	irrevocable	right	and
license	to	use,	execute,	perform,	compile,	display,	copy,	create	derivative	works
of,	 distribute	 and	 sublicense	 the	 FreeType	 Project	 (in	 both	 source	 and	 object
code	 forms)	 and	 derivative	 works	 thereof	 for	 any	 purpose;	 and	 to	 authorize
others	 to	 exercise	 some	 or	 all	 of	 the	 rights	 granted	 herein,	 subject	 to	 the
following	conditions:	

-	Redistribution	of	source	code	must	retain	this	license	file	('FTL.txt')	unaltered;
any	additions,	deletions	or	changes	to	the	original	files	must	be	clearly	indicated
in	accompanying	documentation.	The	copyright	notices	of	the	unaltered	original
files	must	be	preserved	in	all	copies	of	source	files.	
-	 Redistribution	 in	 binary	 form	must	 provide	 a	 disclaimer	 that	 states	 that	 the
software	is	based	in	part	of	 the	work	of	 the	FreeType	Team,	in	the	distribution
documentation.	We	also	encourage	you	to	put	an	URL	to	the	FreeType	web	page
in	your	documentation,	though	this	isn't	mandatory.	

These	 terms	 apply	 to	 any	 software	 derived	 from	 or	 based	 on	 the	 FreeType
Project,	 not	 just	 the	 unmodified	 files.	 If	 you	 use	 our	 work,	 you	 must
acknowledge	us.	However,	no	fee	need	be	paid	to	us.	

3.	Advertising	

Neither	the	FreeType	authors	and	contributors	nor	you	shall	use	the	name	of	the
other	 for	 commercial,	 advertising,	 or	 promotional	 purposes	 without	 specific
prior	written	permission.	
We	 suggest,	 but	 do	 not	 require,	 that	 you	 use	 one	 or	 more	 of	 the	 following
phrases	to	refer	to	this	software	in	your	documentation	or	advertising	materials:
`FreeType	 Project',	 `FreeType	 Engine',	 `FreeType	 library',	 or	 `FreeType
Distribution'.	
As	you	have	not	signed	this	license,	you	are	not	required	to	accept	it.	However,
as	the	FreeType	Project	is	copyrighted	material,	only	this	license,	or	another	one
contracted	with	the	authors,	grants	you	the	right	to	use,	distribute,	and	modify	it.
Therefore,	 by	 using,	 distributing,	 or	 modifying	 the	 FreeType	 Project,	 you
indicate	that	you	understand	and	accept	all	the	terms	of	this	license.	

4.	Contacts	

There	are	two	mailing	lists	related	to	FreeType:	
-	freetype@nongnu.org.	Discusses	general	use	and	applications	of	FreeType,	as
well	 as	 future	 and	wanted	 additions	 to	 the	 library	 and	 distribution.	 If	 you	 are
looking	for	support,	start	in	this	list	if	you	haven't	found	anything	to	help	you	in
the	documentation.	
-	 freetype-devel@nongnu.org.	 Discusses	 bugs,	 as	 well	 as	 engine	 internals,
design	issues,	specific	licenses,	porting,	etc.	
Our	home	page	can	be	found	at	http://www.freetype.org.

Links

Xtreme3D:
http://xtreme3d.narod.ru	 -	 site	 Xtreme3D	 http://offtop.ru/xtreme3d	 -	 the
accompanying	forum	
https://github.com/xtreme3d	-	The	Xtreme3D	on	GitHub	

http://xtreme3d.narod.ru
http://offtop.ru/xtreme3d
https://github.com/xtreme3d

GLScene:
http://glscene.sourceforge.net	-	official	site	of	The	GLScene	

http://glscene.sourceforge.net

OpenGL:
http://www.opengl.org	-	official	site	of	the	OpenGL	
http://pmg.org.ru/nehe	 -	 English	 translation	 of	 lessons	 on	 OpenGL	 from	 the
famous	Neon	Helium	(NeHe)	

http://www.opengl.org/
http://pmg.org.ru/nehe/

And	more...
Editorial	expresses	its	gratitude	to	the	following	resources:	

http://www.gamedev.ru	
http://gcup.ru

http://www.gamedev.ru
http://gcup.ru

	About Xtreme3D
	Version history
	Links

