
XashXT	0.62
Last	revised	March	10,	2013



What	Is	XashXT?

XashXT	is	an	extension	mod	that	brings	lots	of	new	functionality	for	mod
authors	working	with	Xash3D.	Xash3D	is	an	independent	game	engine	that	is
fully	compatible	with	GoldSource	(Half-Life)	and	has	a	number	of	advantages
over	it.	In	particular,	these	are	extended	interfaces	that	make	it	possible	to
implement	realistic	physics	and	graphics.	XashXT,	also	known	as	the	Xash	mod,
is	an	add-on	that	showcases	the	engine's	capabilities	in	action.	Despite	its
primary	purpose	(engine	tech	demo),	the	Xash	mod	is	a	stable,	thoroughly
debugged	product	with	tons	of	exciting	possibilities,	which	tear	down	the
constraints	that	mappers	routinely	face.

The	Xash	mod	gets	updates	and	new	features	on	a	regular	basis.	Bugs	are	fixed
shortly	after	they	are	found.	This	means	that	no	long-standing	bugs	will	be
carried	over	from	one	version	to	another	while	the	developer	is	busy	adding	new
functionality—which	incidentally	many	modern	products	are	notorious	for.	Also
worth	mentioning	is	that	the	development	kit	is	fully	compatible	with	the
original	Half-Life	(the	same	map,	model	and	sprite	editors	are	supported,	the
same	entities	are	provided)	and	partly	compatible	with	the	Spirit	of	Half-Life
mod	(some	global	entity	options	and	entities	are	the	same).



Who	This	Help	Is	For

This	documentation	assumes	an	audience	who	know	the	terms	related	to
working	with	the	GoldSource	engine,	are	familiar	with	the	Xash3D	engine	and
have	some	experience	in	making	levels	for	these	engines.	If	you	have	not	yet
reached	that	stage,	then	before	consulting	this	help,	please	familiarise	yourself
with	any	of	the	Half-Life	mapping	how-tos	available	on	the	appropriate	forums.
Otherwise,	reading	this	documentation	will	be	pointless.



XashXT	Features
Full	compatibility	with	the	original	Half-Life	entity	set
Support	for	forming	complex	hierarchies	of	entities	(Parent	System)
Mirrors	that	can	skip	reflection	of	any	specified	object	or,	conversely,	show
ordinarily	invisible	objects
Surveillance	monitors	(colour	and	monochrome)
Portals	that	can	take	you	from	one	point	to	another	(as	in	Portal,	but	more
basic)
Weather	effects	(rain	and	snow)
A	powerful	particle	system	with	a	standalone	visual	editor
A	system	of	prefixes	for	making	complex	scripted	scenes
An	extended	decal	projection	system	that	works	on	both	level	geometry	and
characters	(players	and	NPCs)
Realistic	lasers	that	can	be	reflected	off	mirror	surfaces	(used	in	gameplay)
A	large	set	of	logical	entities	for	implementing	any	conditions	in	scripted
scenes	or	complex	arrangements
A	camera	with	flexible	settings	for	cutscenes,	letting	you	switch	to	any
character's	point	of	view	(including	inanimate	ones)
Configuration	options	for	setting	the	attitude	of	any	NPC	towards	others
and	towards	the	player
Dynamic	coloured	lighting	that	can	project	and	play	an	animated	texture	as
a	light	source
Playback	of	AVI	files	on	level	polygons	and	brush	objects
A	3D	skybox	for	simulating	expansive	areas
Bloom	effects
Supports	for	HD	textures	(up	to	4096x4096)
Background	maps	in	the	game	menu	(as	in	Source)
Support	for	large	game	levels	(32768x32768x32768	units)
Shadow	maps	for	dynamic	shadows
More	believable	lighting
Realistic	rigid	body	physics	powered	by	a	third-party	engine	(PhysX)
Realistic	water
Dynamic	day	and	night	cycles



Setup
Before	setting	up	the	mod,	make	sure	you	have	Xash3D	build	1905	or	higher
installed,	and	the	valve	game	folder	exists.	Technically,	Xash3D	has	no
dependency	on	the	valve	folder	(you	can	copy	the	necessary	resources	to	the
xash	folder	instead),	but	such	decisions	are	up	to	mod	authors.	You	will	also
need	the	Valve	Hammer	Editor	or	QuArK	to	build	game	levels.	Editor	setup	is
covered	by	the	documentation	for	particular	editors,	so	it	will	not	be	described
here.	An	up-to-date	entity	definition	file	for	Valve	Hammer	Editor	is	located	in
the	xash\devkit	folder.

The	following	are	mandatory	resources	required	for	correct	operation	of	the
toolkit:

sprites\640_train.spr
sprites\decimal.spr
sprites\null.spr
sprites\raindrop.spr
sprites\snowflake.spr
sprites\waterring.spr
cl_dlls\client.dll
cl_dlls\server.dll
delta.lst

All	other	resources	are	required	only	for	demo	maps	to	work	correctly	and	do
not	affect	the	program	code	in	any	way.	This	is	an	important	point	for	users	who
want	to	make	their	own	game	based	on	the	Xash	mod.	In	addition,	make	sure	the
Nvidia	PhysX	driver	is	installed.	Without	this	driver,	all	physics	objects	will	just
hang	there.

The	devkit	folder	contains,	in	addition	to	the	entity	definition	files	for	map
editors:

An	improved	and	extended	studio	model	compiler:	bugs	of	the	original
Valve	version	have	been	fixed,	and	new	features	have	been	added
A	custom	build	of	the	VHLT	map	compiler	by	vluzacn	(differences	from
the	original	are	minimal:	QuArK's	console	output	has	been	corrected	and



support	for	the	XashXT's	func_light	entity	has	been	added)
A	visual	editor	for	the	Aurora	particle	system
The	complete	source	code	for	server.dll,	client.dll	and	xash.exe



Running	the	Mod

You	can	run	the	mod	using	the	following	methods:

From	the	command	line,	for	example:
hl.exe	-game	xash

Using	the	standalone	xash.exe	launcher



Global	Systems	and	Common
Settings
Global	systems	are	entity	parameters	that	can	be	applied	either	to	all	objects
without	exception	or	to	the	majority	of	them,	except	the	ones	where	applying
them	is	pointless	(for	example,	drawing	options	for	entities	without	a	visible
model).

Parent	System	Reflection	Types
Prefixes	and	Postfixes	for	Switching	Target	Object	States
States	and	Masters
Mirrors
Water
Environment	Variables
Custom	Sounds
Monster	Classes	and	Behaviour



Parent	System
The	parent	system	in	XashXT,	similarly	to	its	counterpart	in	Half-Life	2,	lets	you
attach	an	arbitrary	number	of	objects	to	any	object.	The	focus	is	on	kinematic
objects	such	as	doors,	buttons,	trains,	lifts	and	so	on.	Unique	to	XashXT	is	the
ability	of	a	hierarchy	to	get	from	one	game	level	to	another	without	losing
functionality	or	coming	apart	(which	happens	in	Half-Life	2).	You	can	also	force
object	attachment	on	the	client	side	(disregarding	physics).	The	latter	feature	lets
mappers	use	NPCs'	attachments	to	directly	link	point-based	objects:	sprites,
lights,	laser	beams	and	in	certain	cases	models.

The	system	also	supports	detaching	a	group	of	objects	(while	preserving	the
hierarchy	of	course)	and	reattaching	it	to	another	arbitrary	object.	The	parenting
is	done	by	using	the	special	parent	field	where	the	level	designer	specifies	the
targetname	of	the	parent.	If	the	name	is	followed	by	a	dot	followed	by	a	number,
this	switches	to	the	client	parent	system,	and	the	number	is	treated	as	the
attachment	number	on	the	parent	model.

The	client	parent	system	works	only	for	studio	models.	This	means	that	only
models	of	this	type	can	act	as	parents,	but	brush	and	sprite	models	cannot.	To
make	porting	of	Spirit	of	Half-Life	maps	easier,	the	parent	field	has	the	alias
movewith,	which	works	identically.



System	Limitations

Not	all	objects	can	be	linked	correctly	using	this	system.	For	example,
linking	NPCs	with	it	is	discouraged,	because	this	may	cause	interpolation
issues	and	will	eventually	fail	to	work	as	expected	by	the	level	designer.
Attaching	the	player	is	also	disallowed,	but	you	can	attach	objects	to	the
player	through	the	trigger_changeparent	entity	by	specifying	one	of	the
following	in	the	m_iszNewParent	field:

The	*locus	keyword,	provided	that	trigger_changeparent	was
activated	using	a	trigger_once,	trigger_multiple	or	trigger_inout
touched	by	the	player	(who	thereby	activated	it)
The	*player	keyword

The	*player	keyword	should	not	be	entered	directly	in	the	parent	field,
because	the	player	joins	the	server	last,	after	all	the	other	objects	have	been
interlinked.
Static	lights	(precalculated	at	compile	time)	has	no	effect	when	attached
somewhere.	However,	you	can	use	dynamic	lights,	which	will	move	along
with	your	objects.
Some	objects	that	have	an	effect	only	on	the	client	will	not	work	correctly
either.	Such	are	env_bubbles,	env_rain,	env_static,	env_funnel	and
possibly	func_mortar_field.



Reflection	Types
For	any	visible	entity,	you	can	configure	the	way	it	is	reflected	in	mirrors.	Use
the	reflection	parameter,	which	is	found	in	all	objects.	Three	values	are	possible:

0	—	default;	the	entity	is	always	visible
1	—	the	entity	is	not	reflected	in	mirrors;	if	there	are	no	mirrors	in	the	level,
the	effect	of	this	setting	is	wasted
2	—	the	entity	is	visible	only	in	mirrors	but,	unless	it	is	made	intangible
through	its	options,	it	remains	solid

Note	that	this	parameter	has	no	effect	on	monitors	and	portals,	just	mirrors.



System	Limitations

Obviously,	the	parameter	does	not	affect	entities	that	have	no	visible	model,
such	as	logic	objects.
The	parameter	does	not	affect	the	player	and	objects	that	act	only	on	the
client,	such	as	env_bubbles,	env_rain,	env_static,	env_funnel,
env_particle,	env_projector	and	env_dynlight.
In	addition,	the	parameter	may	be	ignored	by	entity	emitters,	such	as
gibshooter	and	env_warpball.



Prefixes	and	Postfixes	for	Switching
Target	Object	States
An	early	implementation	of	this	system	was	available	in	the	Spirit	of	Half-Life
mod.	The	purpose	is	to	introduce	a	way	to	explicitly	define	the	behaviour	of	a
controllable	target.	This	means	that	objects	with	two	or	more	possible	states	can
be	explicitly	forced	to	switch	to	any	of	these	states.	The	classic	example	involves
a	door:	func_door.	If	a	door	is	in	“toggle”	mode,	then	subsequent	activations
open	and	close	it	intermittently,	but	the	mapper	has	no	way	to	activate	the	door
so	that	it	opens	every	time	and,	by	extension,	to	ignore	the	open	request	if	the
door	is	already	open.

The	prefix	system	addresses	this	precise	issue	and	gives	the	mapper	ample
possibilities.	In	addition,	it	makes	scripts	more	stable	and	less	dependent	on	the
actions	of	the	player,	who	might	block	objects	in	such	a	way	as	to	break	the
predefined	script	behaviour.	The	object	activation	field	(usually	named	target)
can	contain	the	following	prefixes:

+ Activate	target,	turn	on

- Deactivate	target,	turn	off

< Set	a	numeric	parameter	for	the	object	further	on	in	the	postfix	(what
parameter	is	affected	depends	on	the	object)

> Reset	the	object	parameter	that	was	set	using	the	previous	method	or
perform	a	custom	action	(depends	on	the	object)

! Remove	the	object	from	the	map

The	+	and	-	prefixes	work	identically	for	all	entities	except	those	that	are	not
supposed	to	ever	be	activated,	such	as	worldspawn	or	player.	The	!	prefix
works	likewise,	and	it	removes	all	objects	except	those	that	are	protected	by	the
engine	from	inadvertent	removal.	Such	are	players	and	worldspawn.

The	<	and	>	prefixes,	however,	are	tailored	for	each	entity,	because	the	current
implementation	does	not	support	configuring	arbitrary	parameters	of	arbitrary



objects.	Therefore,	only	the	highest-priority	parameter	(if	any)	is	configured	for
each	entity.	For	example,	in	a	func_rotating	entity	these	prefixes	let	you	change
the	rotation	speed	and	motion	direction;	in	a	func_screenmovie	entity	they	make
playback	start	from	a	specific	time	in	the	video	file,	and	so	on.

For	details	about	the	use	of	prefixes,	refer	to	the	descriptions	of	particular
entities.	A	postfixed	numeric	value	usually	complements	a	prefix,	but	some	logic
entities	can	pass	this	numeric	value	on	intact,	without	using	or	changing	it.	Such
specifics	are	also	detailed	in	the	descriptions	of	particular	objects.



System	Limitations

The	primary	limitation	is	that	the	effect	of	some	prefixes	is	unpredictable.	This
detracts	from	the	usefulness	of	the	technique	as	a	global	system.



States	and	Masters
This	system	has	been	borrowed	virtually	unchanged	from	the	Spirit	of	Half-Life
mod.	In	a	nutshell,	it	enables	any	entity	to	be	the	master	of	another	entity.	Being
a	master	means	blocking	activation	or	deactivation.	Entity	states	take	into
account	each	entity's	specifics	and	purpose.	The	following	states	are	available:

State The	object	is...

STATE_ON Turned	on	and	working

STATE_TURN_ON Turning	on	(for	example,	func_rotating	spinning
up)

STATE_TURN_OFF Turning	off	(for	example,	func_rotating	spinning
down)

STATE_OFF Turned	off

STATE_DEAD Broken	(applicable	to	inanimate	objects),	doesn't
respond	to	activation	attempts	any	more

STATE_IN_USE Being	used	by	the	player	or	an	NPC

All	of	these	states	can	be	monitored	using	the	specialised	multi_watcher	entity.
Alternatively,	you	can	use	the	multisource	entity	with	its	simplistic	treatment	of
states:	STATE_ON	means	the	object	is	on,	and	any	other	state	means	it	is	off.
XashXT	lets	you	block	the	same	object	with	multiple	masters	just	by	giving
these	would-be	masters	the	same	name	and	specifying	the	name	in	the	master
field	of	the	entity	you	want	to	block.	For	more	details	about	this	technique,	see
the	description	of	the	multisource	entity.

For	this	system,	the	master	field	has	been	added	to	almost	all	objects	that
support	activation.	Importantly,	all	objects	that	have	the	item_	prefix	can	be
made	masters	to	disallow	picking	them	up.



System	Limitations

Some	objects	cannot	be	made	masters	of	other	objects	or	of	themselves,	because
that	would	break	compatibility	with	Half-Life.	Such	are	all	light	entities	and	the
multi_manager	entity.	However,	you	can	still	monitor	their	states	using	the
multi_watcher	entity	and	use	it	as	a	master.



Mirrors
In	the	Xash	mod,	mirrors	are	placed	on	a	map	by	applying	a	texture	named
REFLECT	to	brush	entities	or	world	polygons.	On	brush	entities,	you	can	also
change	the	drawing	type,	set	the	transparency	or	make	the	mirror	breakable—
that	is,	you	can	use	the	texture	as	a	regular	(non-reflecting)	texture.



System	Limitations

Mirrors	cannot	reflect	one	another.



Water
Water	with	Fresnel	reflection	and	refraction	is	rendered	on	world	brushes	or	on	a
func_water	entity	if	you	use	a	texture	named	!REFLECT.

Note	that	proper	waves	are	possible	only	if	the	normal	of	the	water	surface
points	straight	up.	You	can	also	change	the	intensity	of	ripples	using	the
WaveHeight	parameter	for	func_water	or	for	worldspawn.	A	func_water
entity	can	be	correctly	attached	to	any	other	brush	entity	and	keep	its	physical
properties.



System	Limitations

Water	works	correctly	only	with	flat	surfaces	whose	normals	point	straight
up.
Water	cannot	reflect	other	water	or	mirrors.	However,	it	does	reflect	3D	sky,
portals	and	monitors.



Environment	Variables
The	following	parameters	affect	the	configuration	of	sky	and	water	throughout
the	game	for	all	players	(in	multiplayer)	and	stored	in	savegames	if	they	are
changed	(in	singleplayer).	They	are	console	variables	that	can	be	modified	in
game—for	example,	using	the	trigger_command	entity	or	a	custom-written
entity.

Variable Details

sv_wateramp Controls	wave	height	for	world	water.

sv_skyname Skybox	name	without	a	path	or	extension.	Can	be
modified	dynamically	in	game.

sv_skydir_x,
sv_skydir_y,
sv_skydir_z

Vector	that	sets	the	sky	rotation	axis.	Should	be
normalised	and	positive.

sv_skyangle Current	skybox	rotation	angle	about	the	rotation	axis
from	the	previous	parameter.

sv_skyspeed Skybox	rotation	speed.

sv_wateralpha World	water	transparency	(requires	a	special	type	of
compiler	with	support	for	translucent	water).

There	are	also	the	following	new	options	for	the	worldspawn	entity:

Variable Range Default Details

gravity 0–800 800 Global	gravity	factor.

fog
0–255
for	each
parameter

0
for	each
parameter

Global,	always-enabled,	exponential	fog
throughout	the	map.	Has	four	integer
parameters	for	the	fog	field:	colour	in
RGB	format	followed	by	fog	density	(10
is	thin,	255	is	super	dense).	The	global
fog	can	change	its	settings	temporarily
while	the	player	is	under	water.



Custom	Sounds
Nearly	all	brush	objects	that	emit	any	kind	of	sound	have	settings	for
replacement	of	those	sounds.	In	classic	Half-Life,	the	level	designer	could	only
choose	a	preset	that	was	the	closest	thing	to	the	required	sound,	and	the	path	to
the	sound	resource	was	hardcoded	in	the	engine.	XashXT	lets	you	specify	the
path	to	the	sound	in	the	same	field	that	you	normally	use	for	specifying	preset
numbers.	For	that,	turn	off	Smart	Edit	in	your	Valve	Hammer	Editor	and	enter
the	new	sound	in	the	field	(usually	the	movesnd	and	stopsnd	fields	for	most
brush	entities).

For	talking	monsters,	you	can	specify	the	common	sentence	prefix	in	the	special
SpeakAs	field,	which	you	may	remember	from	Spirit	of	Half-Life.	The	common
prefix	is	the	prefix	that	all	sentences	of	a	particular	monster	start	with.	For
example,	for	Barney	the	prefix	is	BA,	for	a	scientist	it	is	SC.



System	Limitations

You	cannot	redefine	sentences	for	doors	and	buttons	in	the
unlocked_sentence	and	locked_sentence	fields.	However,	you	can	enter
sentence	names	directly	in	the	unlocked_sound	and	locked_sound	fields.
You	cannot	redefine	the	error	sound	for	func_trackchange	and
func_trackautochange.



Monster	Classes	and	Behaviour
This	system	originated	in	the	Spirit	of	Half-Life	mod.	The	purpose	was	to
flexibly	configure	the	behaviour	of	any	monster	regardless	of	its	class.	This	lets
you	have	a	good	and	an	evil	Barney	at	once,	a	friendly	soldier	and	a	hostile	one,
and	so	on.	The	behaviour	of	a	monster	is	determined	by	the	m_iClass	parameter,
which	is	available	in	all	entities	with	the	monster_	prefix.



Class	Details

0 The	monster's	regular	(default)	behaviour

1 Machine	(for	example,	a	turret)

2 Player

3 Scientist

4 Soldier

5 Alien	soldier	(for	example,	monster_alien_grunt)

6 Xen	fauna	(oblivious	of	the	environment,	and	vice	versa)

7 Regular	alien	(for	example,	monster_islave)

8 Headcrab

9 Bullsquid

10 Cockroach,	rat

11 Barney

12 Hornet	gun	projectiles	fired	by	the	player

13 Hornet	gun	projectiles	fired	by	a	monster_alien_grunt

14 Class	A	(hostile	to	everyone	except	its	own	class)

15 Class	B	(hostile	to	everyone	except	its	own	class)

16 Class	C	(hostile	to	everyone	except	its	own	class)



New	Entities
ambient_music	env_counter
env_customize
env_dynlight
env_local
env_model
env_particle
env_projector
env_rain
env_rainmodify
env_sky
env_spritetrain
env_static
env_warpball
func_clock
func_light
func_monitor
func_physbox
func_platform
func_portal
func_screenmovie
func_traindoor
generator
hud_sprite
info_compile_parameters
info_portal_destination
info_texlights
item_generic
momentary_rot_door
monster_target
multi_switcher
multi_watcher
physboxmaker
player_keycatcher
pushablemaker



scripted_trainsequence
train_setspeed
trigger_bounce
trigger_changeparent
trigger_command
trigger_gravity_field
trigger_impulse
trigger_inout
trigger_lightstyle
trigger_onsight
trigger_playerfreeze
trigger_sound
trigger_startpatrol



ambient_music	(Deprecated)
Turns	the	music	for	the	map	on	and	off.	The	following	format	for	music	tracks
are	supported:	mp3,	wma,	ogg,	xm,	it	and	s3m.



Spawnflags

SF_START_ON 1	(initially	turned	on)

SF_LOOP 2	(the	track	is	looped)



Option

message Path	to	the	sound	file.



Usage	Details

This	entity	uses	the	third-party	fmod.dll	library	for	file	playback.
Therefore,	savegames	are	not	aware	of	the	files	it	plays,	and	playback	does
not	continue	after	a	game	load.
The	Xash	mod	is	designed	to	work	whether	or	not	this	library	is	available,
so	using	the	library	is	not	recommended.	Instead,	use	target_cdaudio	or
trigger_cdaudio.



env_counter
A	range-aware	counter	that	can	assume	special	“key”	states,	carry	a	value	to
another	counter	in	a	chain	and	so	on.



Options

maxframe Sets	the	upper	bound	of	the	counter's	range.	For	example,	in	a
clock	that	counts	up	to	12	hours,	59	minutes	and	so	on.

keyframe Number	of	the	frame	where	the	entity	switches	to	the	ON	state.

type

Condition	for	switching	to	the	ON	state:

0—equals
1—is	greater	than	or	equal	to
2—is	less	than	or	equal	to

model Path	to	a	custom	model.	By	default,	sprites\decimal.spr	is
used.



Usage	Details

Activation	with	the	+	prefix	increments	the	counter	value	by	1;	activation
with	the	-	prefix	decrements	it	by	1.
Activation	with	the	<	prefix	makes	the	counter's	displayed	value	appear	and
disappear	intermittently,	which	can	be	used	for	indicating	the	current
numeric	input.	This	does	not	affect	the	internal	state	of	the	counter	in	any
way—the	effect	is	purely	visual.
Activation	with	a	number	sets	the	counter	to	that	number.	If	the	counter	is
part	of	a	chain	of	counters,	the	more	significant	counters	will	also	get	the
set	command.	In	addition,	this	causes	the	number	to	be	displayed	if	the
previous	activation	hid	it	(good	for	a	flashing	effect).
You	can	reset	the	counter	to	zero	using	the	<	prefix	and	-1	as	a	parameter.
Activation	with	the	>	prefix	resets	the	counter	to	zero.	The	reset	affects	the
other	counters	in	the	chain.
This	entity	can	be	used	for	creating	floor	indicators	in	lifts,	digital	clocks,
keypads,	puzzles,	arcade	cabinets	and	so	on.



env_customize
Faithful	recreation	of	the	identically	named	entity	from	Spirit	of	Half-Life.	Lets
you	change	a	variety	of	parameters	for	NPCs.



Spawnflags

SF_CUSTOM_AFFECTDEAD 1	(allows	applying	settings	to	dead
monsters)

SF_CUSTOM_ONCE 2	(delete	the	object	after	use)

SF_CUSTOM_DEBUG 4	(output	debugging	messages	about	the
object	in	the	console)



Options

m_iVisible Show	or	hide	the	visible	model.	Works	for	all	objects
that	have	a	model,	not	just	for	NPCs.

m_iSolid

Make	the	model	solid	or	intangible.	Works	for	most
objects.	Note	that	if	a	model	is	originally	intangible,	you
cannot	make	it	solid.	You	can	only	switch	between	solid
and	non-solid	in	a	model	that	is	originally	solid.

m_iszModel

The	parameter	is	the	path	to	a	new	model.	Lets	you
dynamically	change	the	model	for	any	object.	Mind	that
the	object	with	a	new	model	can	get	stuck	in	the	level
architecture.	Besides,	the	physics	hull	will	not	be
recalculated	for	it.	Use	with	caution.

m_voicePitch Range:	75–120.	The	pitch	of	a	talking	monster's	voice.
Has	no	effect	on	other	types	of	object.

m_iPrisoner
Makes	the	monster	stop	attacking	its	adversaries.	Has
the	same	meaning	as	the	PRISONER	spawnflag	in
monster	properties.

m_iMonsterClip Makes	the	monster	unaware	of	invisible	barriers	called
func_monsterclip	or	aware	of	them	again.

m_iClass
New	monster	class.	Determines	the	attitude	towards	all
other	monsters	and	the	player.	For	details,	see	Monster
Classes	and	Behaviour.

m_iPlayerReact

The	monster's	reaction	to	the	player:

0—class-specific
1—totally	oblivious	of	the	player
2—friendly	until	hurt
3—friendly	if	hurt	inadvertently,	meaning	that	the
player	hit	it	with	a	stray	bullet	rather	than	placed	an
aimed	shot;	whether	or	not	the	shot	was	aimed	is
determined	by	the	hit	spot
4—unconditionally	hostile



m_iProvoked

Makes	the	NPC	remember	or	forget	who	it	was	that	hurt
them.	In	other	words,	makes	a	friendly	monster	hostile
without	changing	its	other	parameters.	Shooting	a
monster	with	the	player's	weapon	does	the	same.

m_iBloodColor
Colour	of	the	NPC's	blood.	The	colour	is	a	number	in	the
range	from	0	to	255	that	corresponds	to	an	index	in	the
palette.	Red	is	247.	Yellow	is	195.

m_fFramerate

Lets	you	change	the	framerate	for	an	arbitrary	entity	that
uses	the	pev->framerate	variable.	Whether	or	not	a
particular	entity	will	behave	as	expected	is	strictly	a
matter	of	trial	and	error,	because	this	has	not	been
carefully	tested.

m_fController0 Changes	the	position	of	bone	controller	0	for	an	NPC	or
env_model.

m_fController1 Changes	the	position	of	bone	controller	1	for	an	NPC	or
env_model.

m_fController2 Changes	the	position	of	bone	controller	2	for	an	NPC	or
env_model.

m_fController3 Changes	the	position	of	bone	controller	3	for	an	NPC	or
env_model.

skin Sets	the	skin	number	for	a	model	or	the	type	of	contents
for	a	brush.	For	example,	water	or	lava.

body Changes	the	model	body.	Works	for	all	entities	that	have
models.

m_iReflection

Lets	you	change	mirror	reflection	settings:

0—default
1—not	reflected	in	mirrors
2—visible	only	in	mirror	reflections



Usage	Details

For	parameters	where	you	can	perform	an	explicit	switch	(turn	on	or	off),
response	to	activation	types	is	highly	configurable.
This	parameter	is	specified	next	to	the	corresponding	option:
CUSTOM_FLAG_NOCHANGE 0	(do	not	change	this	parameter)

CUSTOM_FLAG_ON 1	(apply	this	parameter	regardless
of	the	activation	type)

CUSTOM_FLAG_OFF 2	(disable	this	parameter
regardless	of	the	activation	type)

CUSTOM_FLAG_TOGGLE 3	(invert	the	state	of	the
parameter)

CUSTOM_FLAG_USETYPE

4	(take	into	account	the	activation
type—for	example,	USE_ON	will
result	in	turning	on,	USE_OFF	in
turning	off	and	USE_TOGGLE	in
toggling)

CUSTOM_FLAG_INVUSETYPE

5	(the	same	as
CUSTOM_FLAG_USETYPE,
but	the	effects	of	USE_ON	and
USE_OFF	are	inverted)

For	objects	with	multiple	possible	values,	such	as	body,	skin	or	m_iClass,
use	the	reserved	value	of	-1	to	ignore	parameter	application.
The	entity	also	supports	the	*locus	keyword	in	the	target	field	for	applying
settings	to	the	activator	of	the	entity.



env_dynlight
A	dynamic	omnidirectional	light	source	without	support	for	shadows.



Spawnflags

SF_DYNLIGHT_START_ON 1	(initially	turned	on)

SF_PROJECTOR_NO_ATTEN

2	(turns	off	the	falloff	texture;
the	light	is	distributed	without
attenuation	as	far	as	you	can
see)

SF_DYNLIGHT_NOLIGHT_IN_SOLID 4	(the	light	is	turned	off	when
inside	a	solid	object)



Options

radius Radius	within	which	the	light	intensity	falls	off	to	zero.

lightstyle Applies	a	standard	light	style	effect	(1–12)	to	the	dynamic	light.



Usage	Details

This	light	source	is	not	designed	to	be	customisable,	unlike	env_projector.
Its	main	purpose	is	to	provide	a	similar	light	source	to	the	one	in	Spirit	of
Half-Life.
You	can	set	the	light	colour	using	rendercolor.



env_local
One	of	the	objects	of	the	logic	system.	Can	be	turned	on	and	off	after	a
configurable	delay.	The	entity	state	can	be	read	by	other	entities.	In	addition,	it
can	activate	and	deactivate	objects	after	a	delay.



Spawnflag

SF_LOCAL_START_ON 1	(initially	turned	on	and	in	the	ON	state)



Options

delay Delay	(in	seconds)	before	turning	on.

wait Delay	(in	seconds)	before	turning	on.

scale Preset	value	that	can	be	passed	on	to	another	objects	during
activation	or	deactivation.



Usage	Details

The	object	activates	or	deactivates	its	target	after	a	delay	that	you	set.
You	can	use	it	as	a	master	for	other	objects.
It	can	be	a	state	source	for	multi_watcher.
The	object	is	fully	controllable	in	any	of	its	states	and	can	be	turned	on	and
off	regardless	of	the	state	it	is	in.	To	force	the	ON	state,	use
the	<	prefix	and	the	value	1.	To	force	the	OFF	state,	use	the	<	prefix	and	the
value	0.	In	other	situations,	use	the	+	or	-	prefixes	or	none	at	all.	This	will
make	the	entity	reverse	its	state	on	every	activation.



env_model
Similar	to	env_sprite,	but	for	models.	A	faithful	recreation	of	the	entity	from
Spirit	of	Half-Life.



Spawnflags

SF_ENVMODEL_OFF

1	(switches	between	the	two
animations	specified	in
m_iszSequence_On	and
m_iszSequence_Off)

SF_ENVMODEL_DROPTOFLOOR 2	(put	the	model	down	on	the
ground	at	start)

SF_ENVMODEL_SOLID 4	(the	model	is	solid)



Options

m_iszSequence_On Animation	that	is	played	in	an	active	state:	name	or
number.

m_iszSequence_Off Animation	that	is	played	in	an	inactive	(idle)	state:name	or	number.

m_iAction_On

What	happens	after	the	animation	has	been	played	in
an	active	state:

0—stop
1—replay
2—switch	to	the	OFF	state

m_iAction_Off

What	happens	after	the	animation	has	been	played	in
an	inactive	state:

0—stop
1—replay
2—switch	to	the	ON	state



Usage	Details

Remember	that	although	activating	and	deactivating	the	model	is
essentially	switching	between	the	ON	and	OFF	states,	effectively	this	is
switching	between	two	animations	with	flexible	post-playback
configuration.



env_particle
A	particle	emitter	whose	behaviour	is	defined	in	an	external	script	file	with	the
recommended	extension	.aur.



Spawnflag

SF_PARTICLE_START_ON 1	(initially	turned	on)



Options

aurora Path	to	the	particle	system	configuration	file.

attachment Number	of	the	attachment	(overrides	the	number	specified	inthe	script	file).



Usage	Details

All	particle	system	settings	are	located	in	an	external	script	file.	A	visual
editor	is	available	for	editing	these	files.	The	editor	facilitates	particle
system	creation	considerably.	For	details	about	particle	system
configuration,	see	Aurora	Particle	System	Settings.
It	is	safe	to	use	the	parent	system	to	attach	the	emitter	to	objects,	and	the
emitter's	current	orientation	(and	consequently,	the	particle	motion
direction)	is	preserved.



env_projector
A	dynamic	projectional	light	source	with	flexible	settings	and	support	for	video
texture	projection.



Spawnflags

SF_PROJECTOR_START_ON 1	(initially	turned	on)

SF_PROJECTOR_NO_ATTEN
2	(turns	off	the	falloff	texture;	the
light	is	distributed	without
attenuation	as	far	as	you	can	see)

SF_PROJECTOR_ASPECT4X3 4	(use	a	rectangular	rather	than	a
square	beam)

SF_PROJECTOR_ASPECT3X4 8	(use	an	“upright”	rectangular
rather	than	a	square	beam)

SF_PROJECTOR_NOWORLDLIGHT
32	(ignore	world	polygons	and
shine	only	on	brush	and	studio
model)

SF_PROJECTOR_NOSHADOWS 64	(disable	shadows	for	this	light
source)

SF_PROJECTOR_FLIPTEXTURE
128	(flip	the	projected	texture
horizontally;	this	can	provide
some	interesting	effects)



Options

fov The	beam's	“field	of	view”,	the	cone	angle.

radius Radius	within	which	the	light	intensity	falls	off	to	zero.

texture Name	of	the	texture:	a	TGA	file,	a	texture	from	a	WAD	file
(with	the	.mip	extension),	an	AVI	file	or	a	sprite.

falloff

Light	falloff	pattern	within	the	radius:

0—automatic,	based	on	the	radius
1—fast	(abrupt)
2—regular
3—slow	(gradual)

lightstyle Applies	a	standard	light	style	effect	(1–12)	to	the	dynamic	light.

framerate Only	for	sprites:	determines	the	framerate.



Usage	Details

Playback	of	animated	textures	and	AVI	files	is	looped.	The	entity	has	no
options	to	control	this.	When	the	object	is	turned	off	and	on	again,	playback
resumes	from	the	frame	where	it	stopped,	for	both	sprites	and	AVI	files.
This	parameter	is	written	to	savegames.
You	can	specify	the	path	to	a	TGA	or	.mip	texture	that	is	not	a	single	image
but	a	cubemap.	For	that,	omit	the	view	direction	suffixes	but	include	the	file
extension.	Although	the	resulting	file	name	does	not	exist,	it	will	be	treated
correctly	by	the	engine	as	long	as	the	textures	that	it	stands	for	really	exist.
Note	however	that	specifying	a	cubemap	will	make	the	light	source
omnidirectional,	and	the	fov	option	will	become	meaningless.
The	light	source	can	be	attached	using	the	parent	system	both	on	the	server
side	and	on	the	client	side.
You	can	set	the	light	colour	using	rendercolor.



Limitations

The	number	of	lights	in	a	map	is	not	explicitly	limited.	However,	the
player's	PVS	can	contain	no	more	than	64	light	sources	at	a	time.
The	current	implementation	being	relatively	simple,	it	may	shite	through
walls.	However,	this	problem	is	also	found	in	the	original	Half-Life,	where
light	sources	are	non-projective.



env_rain
Creates	a	rain	or	snow	effect	in	the	map.	Used	only	in	conjunction	with
env_rainmodify.



Options

m_flDistance Radius	within	which	it	rains	or	snows.	The	recommended
value	is	1000.

m_iMode

Precipitation	type:

0—rain
1—snow



Usage	Details

The	altitude	of	the	entity	determines	the	altitude	from	which	the
precipitation	falls.



env_rainmodify
Sets	the	initial	parameters	for	rain.	By	placing	multiple	env_rainmodify	enitites
in	a	map,	you	can	start	and	stop	rain,	and	change	its	settings.



Spawnflag

SF_RAIN_CONSTANT
1	(it	rains	constantly	and	always	the	same	way;
other	env_rainmodify	entities	cannot	affect	this
rain)



Options

m_iDripsPerSecond Number	of	drops	per	second.	The	recommended
values	are	4000–8000	for	rain	and	500–800	for	snow.

m_flWindX Wind	strength	on	the	X	axis.

m_flWindY Wind	strength	on	the	Y	axis.

m_flRandX Randomisation	on	the	X	axis.

m_flRandY Randomisation	on	the	Y	axis.

m_flTime How	many	seconds	it	takes	to	apply	the	settings
(0	means	immediately).



Usage	Details

To	make	rain	that	can	be	started	and	stopped,	you	need	two
env_rainmodify	entities:	one	with	the	“it's	raining”	parameters	and	the
other	with	the	number	of	drops	set	to	0.	In	both	of	them,	you	should	apply
parameters	over	time	for	smooth	transitions.
Similar	entities	can	be	added	for	wind	strength	control,	rain	intensity	and
randomisation.
Activation	occurs	through	the	trigger_auto	entity	or	by	other	means;	this	is
up	to	the	mapper.



env_sky
Fakes	detailed	environments	by	projecting	actual	in-game	objects	on	a	SKY
texture	with	configurable	scale	settings.



Spawnflag

SF_ENVSKY_START_OFF 1	(skybox	initially	turned	off)



Options

fov Sky	field-of-view	angle.	Changing	the	value	distorts	the	projection.

scale Scale	relative	to	the	game	level.	If	left	blank,	causes	the	sky	to	act
like	a	painted	skybox.



Usage	Details

To	create	a	3D	skybox,	use	a	separate	enclosed	area.	The	contents	of	this
area	will	be	projected	onto	the	map's	main	boundaries	covered	with	the
“sky”	texture.	Using	the	“sky”	texture	in	the	skybox	is	discouraged,	even
though	it	should	not	cause	any	problems.	If	you	encounter	skybox	entities
at	their	original	scale	“peeking”	through	the	sky	texture,	try	moving	the
skybox	elsewhere	so	it	is	not	in	the	line	of	sight	from	anywhere	in	the	map.
For	example,	place	it	below	the	bottom	of	the	level	or	use	the	trick	from	the
demo_1	map.
The	3D	skybox	is	projected	onto	a	regular	SKY	texture,	unlike	Spirit	of
Half-Life,	where	a	NULL	texture	or,	in	later	versions,	a	3DSKY	texture	was
required.
In	theory,	you	can	attach	the	entity	using	the	parent	system	to	create
interesting	effects.	However,	in	practice	its	motion	should	take	into	account
the	scale	of	the	skybox	relative	to	the	level—this	means	the	motions	should
be	slight.
The	default	scale	(scale	1)	is	taken	to	be	1/100.	That	is,	the	sky	is	100	times
bigger	than	the	level;	at	a	scale	of	1.5	it	is	150	bigger,	at	a	scale	of
0.8	80	times	bigger	and	so	on.	Note	that	when	scaling	is	used,	the	level's
total	size	takes	into	account	the	size	and	position	of	the	skybox	(which	can
affect	the	level	size).	The	scale	can	change	as	a	result,	and	this	can	throw
off	the	alignment	of	the	world	borders	with	the	skybox	borders.	Therefore,
make	sure	you	set	up	the	skybox	no	sooner	than	the	map	is	completed.
Otherwise,	you	will	need	to	repeatedly	adjust	the	scale	as	you	go	along.
Since	version	0.62,	you	can	turn	skyboxes	off.	This	allows	you	to	have
multiple	skyboxes	and	substitute	them;	for	example,	you	can	simulate	a	day
and	night	cycle	this	way.
Note:	If	multiple	skyboxes	are	turned	on	at	once,	then	only	the	one	listed
first	in	the	entity	list	will	be	drawn.



Limitations

Using	fog,	mirrors	and	portals	inside	a	skybox	is	not	recommended.	Skybox
behaviour	has	never	been	tested	in	such	situations,	and	the	result	is
undefined.	However,	the	skybox	itself	is	reflected	in	mirrors	and	visible	in
portals	and	monitors.



env_spritetrain
A	sprite	or	model	that	travels	on	a	path	whose	corner	points	are	set	using
path_corner.	This	is	a	counterpart	of	the	entity	from	Opposing	Force.



Spawnflag

SF_SPRITE_STARTON 1	(initially	turned	on	and	in	motion)



Options

target Name	of	the	first	path_corner	that	the	sprite	snaps	to	when
activated.

framerate Sprite	animation	framerate.

speed Speed	of	movement	until	the	next	path_corner	(path_corner
can	irreversibly	change	the	sprite's	speed).



Usage	Details

The	entity	respects	all	path_corner	settings,	as	a	real	func_train	does.
When	the	sprite	reaches	a	path_corner	that	has	a	non-zero	delay	value	or
has	the	SF_WAIT_FOR_RETRIGGER	spawnflag	set,	the	entity	stops
moving	accordingly	but	keeps	animating	the	sprite.
Deactivation	stops	the	motion	and	hides	the	model.



env_static
A	static	intangible	object	that	does	not	interact	with	anything	and	exists	only	on
the	client	without	wasting	a	server	entity.



Spawnflags

SF_STATIC_SOLID
1	(makes	the	object	intangible	and	creates
a	precise	physics	hull	for	it	based	on	the
visible	hull)

SF_STATIC_DROPTOFLOOR 2	(put	the	model	down	on	the	ground	at
start)



Options

sequence Number	of	the	animation.

frame Number	of	the	frame.

colormap Colours	of	the	model's	custom	textures.	For	details	about	the
format,	see	the	description	of	this	option	in	Global	Parameters.

skin Skin.



Usage	Details

Models	can	play	looped	animations.
The	entity	is	written	to	client-side	savegames	but	is	not	transferred	between
levels.
It	is	not	affected	by	the	parent	system.
Entities	with	the	SF_STATIC_SOLID	flag	set	are	not	transferred	to	the
client	and	cannot	play	back	animations.



env_warpball
A	prefab	object	that	consists	of	a	sprite	and	twenty	beams,	and	simulates	the
effect	of	a	teleporter	that	releases	hostile	NPCs.

The	settings	are	identical	to	those	in	the	Blue	Shift	counterpart.



Spawnflags

SF_REMOVE_ON_FIRE 1	(delete	after	activation—for	one-off	uses)

SF_KILL_CENTER 2	(destroy	the	teleported	object)



Options

radius Beam	reach	radius.

warp_target Name	of	the	object	where	the	effect	appears;	by	default,	it
is	the	entity	itself.

damage_delay Delay	before	damage	is	dealt	if	spawnflag	2	is	set.



func_clock
This	object	lets	you	implement	the	hour,	minute	or	sweep	hand	in	a	clock.	By
using	three	such	objects	at	once	you	can	make	a	fully	functional	clock	face.



Spawnflags

SF_DOOR_ROTATE_Z 64	(rotation	about	the	Z	axis,	similarly	to
func_door_rotating)

SF_DOOR_ROTATE_X 64	(rotation	about	the	X	axis,	similarly	to
func_door_rotating)



Options

type

Hand	type:

0—sweep
1—minute
2—hour

curtime

Applies	only	to	the	hour	hand.	Format:	XX	XX	XX	(vector).
Hours	(0–12),	minutes	(0–59),	seconds	(0–59).	The	hour	hand
sets	the	time	for	the	minute	and	sweep	hands	automatically	after
it	finds	them	within	the	radius	that	equals	its	length.

event

Target	for	activation.	Applies	only	the	hour	hand.	When	the	hour
changes,	two	activations	are	done:	first	the	number	of	hours	is
communicated	through	USE_SET,	and	then	the	target	is	activated
through	USE_ON.	This	behaviour	is	handled	well	by	the
generator	entity,	and	you	can	use	it	to	strike	the	correct	number
every	hour.	If	you	specify	an	ambient_generic	as	a	target,	then
there	will	be	one	strike	(sound)	for	every	hour.



Usage	Details

A	clock	cannot	be	activated	or	deactivated,	its	state	is	always	ON.
The	hands	are	totally	independent	from	one	another,	and	are	synchronised
only	once	at	map	start	if	the	current	time	is	set	for	the	hour	hand.
For	correct	operation	all	hands	should	be	oriented	to	point	at	12.00.00.
Do	not	try	to	set	the	hour	using	angles.	This	will	be	ignored.



func_light
A	light	source.



Spawnflag

SF_LIGHT_START_ON 1	(initially	turned	on)



Options

health Controls	the	lamp	toughness	and	whether	it	is	breakable.	0	means
unbreakable.

delay How	many	seconds	it	takes	the	lamp	to	fully	turn	on.	During	this
time	it	will	flicker,	simulating	a	fluorescent	lamp.



Usage	Details

This	light	source	is	static	and	precompiled.	It	will	not	follow	your	lamp
about	the	level.	Make	sure	the	light-emitting	texture	is	included	in	the
global	lights.rad	file	or	in	the	info_texlights	entity.
A	lamp	will	not	sustain	any	damage	unless	the	name	of	your	texture	starts
with	the	~	character	or	the	+0~	sequence.
The	<	prefix	lets	you	break	a	lamp	with	a	script	even	if	its	health	option	is
set	to	zero.
A	broken	lamp	cannot	be	turned	on	again.	When	broken,	a	lamp	can	flicker
randomly	for	some	time.
Note	that	for	a	light-emitting	texture	it	is	best	to	use	a	combination	of	+0~
and	+A~	textures,	where	the	+A~	is	a	copy	of	the	texture	in	a	turned-off
state.	The	reverse	combination	will	not	work,	because	the	compiler	gets
information	about	a	texture's	emission	from	the	one	that	is	specified
explicitly.
A	lamp	takes	the	delay	and	activation	type	into	account	when	activating
what	is	in	the	target	field.	This	means	that	the	+	prefix	is	passed	for	a	turn-
on	activation,	and	the	-	prefix	for	a	turn-off	activation.	If	a	lamp	gets
broken,	the	-	prefix	is	also	passed.



Limitations

Do	not	place	more	than	3	lamps	close	together,	because	this	would	exceed
the	light	style	limit	in	the	map	and	some	light	sources	would	look	wrong	in
certain	combinations.	The	compiler	shows	a	message	like	the	following	in
this	situation:	“Too	many	light	styles	on	a	face”.
This	entity	works	correctly	only	with	those	compilers	that	are	shipped	with
the	Xash	mod	and	located	in	the	devkit	folder.



func_monitor
An	implementation	of	a	real-time	surveillance	monitor	that	displays	video	from
a	camera.	The	monitor	can	be	black-and-white.



Spawnflags

SF_MONITOR_START_ON 1	(initially	turned	on)

SF_MONITOR_PASSABLE 2	(intangible)

SF_MONITOR_USEABLE 4	(pressing	+use	toggles	fullscreen
mode,	as	in	Duke	Nukem	3D)

SF_MONITOR_NOASPECT
8	(use	the	horizontal	FOV	value	for
both	sides;	produces	a	square	camera
feed)

SF_MONITOR_MONOCHROME 16	(black-and-white	screen)



Options

camera Name	of	the	camera.	The	camera	can	be	an	info_target	entity
with	spawnflag	1	set.

fov Field	of	view.



Usage	Details

Monitors	can	show	themselves	through	the	camera,	but	you	should	avoid
abusing	this	feature,	because	it	affects	performance.
Note	that	a	black-and-white	monitor	will	display	colour	video	in	fullscreen
mode.
The	surveillance	camera	can	be	switched	in-game	using
trigger_changetarget.	A	monitor	shines	in	the	dark	when	it	is	on	and	does
not	shine	when	it	is	off.
Monitors	should	be	assigned	a	special	kind	of	texture,	whose	name	starts
with	monitor.
If	video	from	the	monitor	is	upside	down,	simply	turn	the	texture	around	in
the	map	editor.



func_physbox
An	object	that	simulates	rigid	body	physics.	Can	interact	with	other	objects	and
with	the	player.



Spawnflags

SF_PHYS_BREAKABLE 128	(make	the	object	breakable)

SF_PHYS_CROWBAR 256	(the	object	breaks	from	one	crowbar	hit
regardless	of	the	specified	toughness)

SF_PHYS_HOLDABLE 512	(the	player	can	pick	the	object	up,	carry	it
and	drop	it	with	the	Use	key)



Options

material Material,	as	in	func_breakable	and	func_pushable.
Determines	the	damage	sounds,	debris	type,	sparks	and	so	on.

gibmodel Path	to	the	custom	debris	model	in	case	the	object	is	destroyed.

model Path	to	the	primary	physics	object	model.	This	can	be	an	mdl	or
brush	model.

health Object	toughness.



Usage	Details

Brush	entities	cannot	be	transferred	from	one	level	to	another,	but	entities
with	a	regular	model	are	transferable	by	default.
The	physics	hull	of	an	object	is	built	automatically	at	game	start.	However,
because	the	hull	is	convex	and	PhysX	imposes	a	limit	of	256	independent
vertices,	the	hull	can	be	calculated	incorrectly	for	some	objects.	XashXT
produces	a	corresponding	message	in	the	console	if	it	fails	to	build	a	hull.
For	complex	concave	objects,	an	approximated	best-fitting	convex	shape
will	be	generated.	To	view	the	physics	hull,	use	the	following	console
command:	phys_debug	1.
Stable	operation	of	movers	(such	as	lifts,	trains	and	doors)	is	not	guaranteed
due	to	the	way	collisions	are	calculated	for	the	HLBSP	format,	where	4
approximate	hulls	are	used	in	collision	testing.	Therefore,	you	will	get	the
best	results	from	using	cube-shaped	objects	whose	sizes	match	the	sizes	of
the	hulls.	Hull	sizes	are	described	in	gameinfo.txt.



func_platform
A	special	mover	that	facilitates	construction	of	multi-storey	lifts.



Options

netname Target	for	env_counter	to	indicate	the	current	floor.

height Height	of	a	single	storey	(they	must	all	be	the	same	height).

target Target	that	is	activated	on	arrival	at	the	specified	floor	(even	if
the	current	floor	is	specified).

dmg If	blocked,	deal	this	much	damage	to	the	blocking	entity.

volume Volume	of	motion	and	stop	sounds	(0–1).

movesnd Motion	sound	(0–13).

stopsnd Stop	sound	(0–8).



Usage	Details

The	algorithm	is	based	on	the	notion	that	given	the	height	of	a	single	storey
(this	is	either	the	height	value	or	the	height	of	the	lift	itself),	the	current
position	of	the	lift	and	the	location	of	the	first	storey	(this	is	always	the	lift
spawn	point),	you	can	easily	calculate	where	the	lift	should	go	by	simply
specifying	the	floor	number	using	the	<	prefix	and	the	floor	number	as	the
value.
Note	that	this	is	the	only	way	you	can	use	the	object.	It	does	not	respond	to
other	types	of	activation.
The	object	moves	only	vertically,	but	this	limitation	can	be	worked	around
by	rotating	its	parent	as	necessary.	Generally,	you	can	think	of	this	lift	as	a
discrete	mover—an	object	that	can	move	the	requested	number	of	steps,
where	the	step	size	is	known.



func_portal
An	implementation	of	a	portal,	similar	to	those	in	Portal	but	less	realistic.



Spawnflag

SF_PORTAL_START_OFF 1	(initially	turned	on	and	invisible)



Options

target Name	for	info_portal_destination.

firetarget Target	that	is	activated	when	the	portal	is	passed	through.



Usage	Details

All	portals	must	have	origin	brushes.	Portals	without	one	will	be	deleted
from	the	map.
Portals	use	a	special	texture	whose	name	starts	with	portal.	The	texture
must	be	precisely	aligned	to	the	brush	edges,	otherwise	rendering	artifacts
are	possible.
A	portal	must	always	face	the	player's	zeroed-out	YAW	angle.	In	other
words,	the	portal	texture	must	be	applied	in	such	a	way	as	to	face	the	gaze
of	the	info_player_start	whose	orientation	is	0	0	0.	Failing	to	meet	this
requirement	will	cause	the	image	in	the	portal	to	distort	in	uncontrollable
ways.	To	orient	the	portal	in-game	as	necessary,	change	its	angles.
Portal	width	also	affects	image	distortion.	The	distortion	is	minimal	at	a
width	of	1	or	2	units.
When	passing	through	a	portal,	the	player	or	any	other	object	keeps	the
motion	direction,	acceleration	and	view	angle,	but	the	latter	is	affected	by
the	angles	of	the	info_portal_destination.
You	can	safely	attach	a	portal	using	the	parent	system.	However,	be	careful
with	ROLL	rotations.
If	anything	is	obstructing	passage	through	the	portal	at	the	spawn	point	(for
example,	the	exit	is	blocked	by	crates),	then	the	passage	will	not	happen
until	the	blocking	object	is	gone.	This	ensures	that	teleportation	never
results	in	things	getting	stuck.
For	double-sided	portals	(as	in	the	qstyle	map,	for	example),	player	motion
tracking	and	portal	reorientation	is	implemented	so	that	the	portal	cannot	be
entered	from	behind.
Passage	through	a	portal	looks	fairly	seamless	if	you	disregard	the	sides.
A	portal	can	be	turned	on	and	off.	A	turned-off	portal	is	invisible	and
intangible.



func_screenmovie
A	brush	model	that	plays	back	a	video	(AVI)	file	without	sound	on	its	surface.



Spawnflags

SF_SCREENMOVIE_START_ON 1	(initially	turned	on)

SF_SCREENMOVIE_PASSABLE 2	(intangible)

SF_SCREENMOVIE_LOOPED 4	(the	video	is	looped)

SF_SCREENMOVIE_MONOCRHOME 8	(black-and-white	movie)



Option

movie Path	to	the	AVI	file	in	the	media	folder.



Usage	Details

The	brush	side	where	the	“movie”	is	played	back	must	be	assigned	a	texture
whose	name	starts	with	movie.
The	AVI	file	can	have	an	arbitrary	duration,	but	make	sure	it	uses	no	rare
codecs	that	are	avaialble	only	on	your	system.
Activation	with	the	<	prefix	(without	a	parameter)	pauses	playback.	A
subsequent	activation	resumes	it.	Activation	with	the	<	prefix	and	a
parameter	instantly	skips	to	the	specified	frame.	The	parameter	stands	for
the	number	of	frames	from	the	start	of	the	video	file.
Activation	with	the	>	prefix	rewinds	to	the	beginning.
Regular	activation	with	the	+	and	-	prefixes	either	disables	the	screen	and
stops	playback	or	enables	them	again.



func_traindoor
A	door	that	works	in	conjunction	with	func_tracktrain.	It	originated	in	Spirit	of
Half-Life	1.9,	where	it	was	introduced	as	an	attempt	to	make	up	for	the
limitations	of	the	Spirit	parent	system.	In	the	Xash	mod,	it	is	far	less	significant
but	has	been	kept	for	compatibility.



Spawnflags

SF_TRAINDOOR_INVERSE
1	(change	which	way	the	door
slides	in	a	left-	or	right-door
train	car,	as	in	Half-Life)

SF_TRAINDOOR_OPEN_IN_MOVING

2	(lets	you	open	the	door	while
the	train,	func_trackchange	or
func_trackautochange	is	in
motion)

SF_TRAINDOOR_ONOFF_MODE

3	(enables	the	correct	response
to	the	+	и	-	prefixes;	if	this	is
omitted,	then	the	regular
func_door	behaviour	is
reproduced:	switching)



Options

movesnd Sound	that	the	door	makes	when	it	moves	(as	in	func_door).

stopsnd Sound	that	the	door	makes	when	it	stops	(as	in	func_door).

speed Movement	speed.

train Name	of	the	train	that	the	door	is	linked	to.



Usage	Details

A	door	cannot	slide	up	or	down,	but	only	left	and	then	backwards	or	right
and	then	backwards.
You	can	adjust	the	direction	using	angles,	but	that	is	pretty	much	a	trick.
A	door	that	is	open	will	automatically	close	when	its	parent	train	is
activated.	If	the	player	or	anything	else	is	blocking	the	door	at	that	moment,
the	train	will	not	start.	However,	this	does	not	happen	if	the
SF_TRAINDOOR_OPEN_IN_MOVING	spawnflag	is	set—it	makes	the
train	stop	minding	the	door	state	and	lose	control	over	it.



generator
Generator	of	a	specified	number	of	target	activation	impulses.	The	number	of
activations	can	be	changed	dynamically	in-game.



Spawnflag

SF_GENERATOR_START_ON 1	(initially	turned	on)



Options

maxcount
Maximum	number	of	impulses	(with	randomisation	accounted
for)	that	the	generator	can	produce	before	it	turns	off	(0	means
indefinite).

mode

Operation	mode:

0—regular
1—random
2—random	with	generation	slowdown,	as	in	a	“one-armed
bandit”

delay Delay	between	activations.



Usage	Details

For	random	operation	modes,	maxcount	is	mandatory.	If	it	is	omitted,	the
entity	will	set	it	automatically	in	the	range	from	100	to	200.
For	operation	mode	2,	the	delay	option	is	ignored.
Activation	with	the	<	prefix	and	a	value	sets	a	new	maxcount.
Activation	with	the	>	prefix	resets	the	current	impulse	counter	to	zero.
Activation	with	both	the	<	and	>	prefixes	does	not	change	the	generator
state.
Activation	with	the	<	prefix	and	a	value	is	used	by	the	func_clock	entity	to
convert	the	number	of	hours	into	the	number	of	target	activations.



hud_sprite
Faithful	recreation	of	the	entity	from	Spirit	of	Half-Life.	Shows	and	hides	icons
on	the	left	of	the	screen.



Spawnflag

SF_HUDSPR_ACTIVE 1	(initially	turned	on)



Options

model
Name	of	the	icon	to	display,	according	to	hud.txt.	For
example,	dmg_bio,	number_0,	d_skull	or	anything	else.	Of
course,	you	can	add	your	own	icons	by	editing	hud.txt.

rendercolor Icon	colour.



Usage	Details

Icons	are	shown	whether	or	not	the	player	is	wearing	the	suit.
Potentially,	icons	are	capable	of	following	the	player	from	level	to	level,	but
consider	attaching	them	using	the	parent	system	to	be	on	the	safe	side.
The	entity	can	be	used	for	indicating	possession	of	custom	items.



info_compile_parameters
(Deprecated)
ZHLT	compiler	options	that	override	those	specified	at	the	command	line.
Options	change	from	version	to	version,	so	using	this	entity	is	discouraged.



info_portal_destination
An	alias	for	info_target	with	spawnflag	1	set.	Can	be	used	by	func_monitor
as	a	camera.



info_texlights
The	local	version	of	light-emitting	texture	definitions	in	addition	to	lights.rad.



Option

A
key-
value
pair

The	key	is	the	name	of	the	light-emitting	texture.	The	value	is	the
RGB	colour	and	brightness	specified	as	a	series	of	four	integers	in
the	range	from	0	to	255.



item_generic
A	universal	item.	Plays	back	a	custom	sound	and	activates	a	target	when	picked
up.	Can	be	used	for	creating	items	in	a	map	editor.



Spawnflag

SF_ONLY_IF_IN_SUIT 1	(allow	pickup	only	if	the	player	is	wearing	the
suit)



Options

model Model	of	the	item.

noise Sound	or	sentence	that	is	played	back	on	pickup.

netname Name	of	the	icon	that	shows	up	on	pickup,	as	for	a	regular	item
(see	the	description	in	hud.txt).



Usage	Details

The	item	itself	does	not	modify	the	player's	inventory	in	any	way.	You	can
use	it	to	activate	a	target	in	the	map	so	that	the	pickup	is	associated	with	a
specific	event.	This	lets	you	update	the	player	with	keys,	access	cards	and
so	on.
The	player	can	also	carry	the	item,	as	they	can	other	items.



momentary_rot_door
An	alias	for	the	momentary_rot_button	entit	with	the	Door	Hack	flag	set.
Provided	merely	for	mappers'	convenience.	The	other	settings	are	also	identical.



monster_target
A	faithful	recreation	of	the	entity	from	Spirit	of	Half-Life.	Creates	an	invisible
point-based	monster	that	the	AIs	of	regular	monsters	are	aware	of.



Spawnflag

SF_MONSTERTARGET_OFF 1	(initially	turned	off,	dead)



Option

frags class	of	the	monster	(see	Monster	Classes	and	Behaviour).



Usage	Details

This	monster	cannot	be	destroyed	in	the	usual	way,	because	it	is	intangible
and	invisible.	However,	you	can	turn	it	on	and	off,	which	to	AIs	looks	like
it	dies.	You	can	also	attach	this	monster	using	the	parent	system.
The	main	purpose	is	to	provide	a	target	(which	can	be	inanimate)	for	NPCs
without	interfering	with	the	AI	operation	and	interrupting	it	with	a
scripted_sequence.	For	example,	you	can	make	friendly	NPCs	destroy
some	inanimate	strategic	barriers	set	up	by	the	enemy	(such	as
func_breakable).	For	that,	simply	place	the	entity	in	front	of	the	barrier.
The	NPCs	will	try	to	hit	the	monster_target,	but	since	it	is	intangible,	they
will	hit	the	object	behind	it	instead.
Likewise,	you	can	set	these	monsters	up	in	front	of	targets	in	a	shooting
gallery	and	turn	them	off	when	the	targets	are	hit.



multi_switcher
A	target	switcher	that	can	shuffle	targets	randomly.



Spawnflag

SF_SWITCHER_START_ON 1	(the	switcher	is	turned	on	and	changing
targets	as	specified	by	the	mode	option)



Options

mode

How	targets	are	changed:

0—next
1—previous
2—shuffle

delay Interval	between	target	changes	in	automatic	mode.



Usage	Details

Regular	activations	must	pass	unchanged	to	the	target	through	the	switcher.
The	switcher	itself	responds	only	to	the	<	and	>	prefixes,	which	can	be	used
for	controlling	its	behaviour	in-game.
The	<	prefix	without	a	value	turns	on	an	inactive	switcher	that	has	the
SF_SWITCHER_START_ON	spawnflag	set.	If	the
SF_SWITCHER_START_ON	spawnflag	is	not	set,	then	each	subsequent
activation	with	the	<	prefix	but	without	a	value	will	initiate	the	target
change	in	the	order	specified	in	the	mode	field.	That	is,	in	mode	0	a	single
activation	with	the	<	prefix	causes	a	switch	to	the	next	target	(without
activating	it);	in	mode	1	it	causes	a	switch	to	the	previous	target	(without
activating	it);	in	mode	2	the	target	will	be	chosen	randomly	(without	being
activated).	Activation	with	the	<	prefix	and	a	value	causes	a	switch	to	the
target	whose	number	the	value	indicates.
Activation	with	the	>	prefix	resets	the	current	target	to	the	first	one	and
disables	automatic	target	change	mode	for	a	switcher	with	the
SF_SWITCHER_START_ON	spawnflag	set.	To	enable	automatic
switching	again,	activate	the	switcher	with	the	<	prefix	without	a	value,	as
mentioned	above.
All	other	kinds	of	activation	are	passed	on	unchanged	directly	to	the	target.



multi_watcher
An	entity	that	implements	the	“if-else”	logical	condition.	Turns	on	if	specified
entities	are	in	specified	states.



Options

logic Operation	logic	(AND,	OR,	NAND,	NOR,	XOR,	XNOR).	The
words	in	parentheses	should	be	entered	directly	in	the	logic	field.

state

Global	state	that	the	multi_watcher	watches	for	in	all	specified
entities.	If	you	want	to	monitor	individual	states	for	specific
entities,	leave	this	field	empty.	The	following	values	are
accepted:	ON,	OFF,	TURN	ON,	TURN	OFF,	IN	USE,	DEAD.
These	words	should	be	entered	either	directly	in	the	state	field
or	next	to	the	individual	target	names	that	you	specify.

target Target	that	is	activated	when	all	conditions	are	met.

offtarget Target	that	is	activated	when	the	multi_watcher	goes	from	theON	(valid)	state	to	the	OFF	(invalid)	state.

The	other	fields	are	filled	in	as	in	multi_manager,	where	the	key	is	the	target
name	to	watch	and	the	value	is	either	the	state	to	watch	for	or,	if	a	global	state	is
specified,	0.



Usage	Details

This	is	a	modified	version	of	the	object	from	Spirit	of	Half-Life	with
extended	functionality.	This	object	can	implement	virtually	any	logical
condition	that	is	based	on	objects'	internal	states.	The	states	of	objects	are
closely	related	to	their	purposes.	In	other	words,	for	each	object	a	change	of
state	causes	object-specific	transitions.	Some	objects	are	always	turned	off
—for	example,	logical	objects	such	as	trigger_relay	or	trigger_auto.
Other	objects	may	be	in	the	IN	USE	state	while	the	player	is	using	them.
Lifts	are	in	the	ON	state	while	in	motion	and	so	on.
Overview	of	operation	logic	for	those	unfamiliar	with	Boolean	algebra:

AND—The	condition	is	met	if	all	monitored	objects	assume	the	state
specified	in	the	multi_watcher	configuration.
OR—The	condition	is	met	if	one	or	more	of	the	monitored	objects
assume	the	state	specified	in	the	multi_watcher	configuration.
NAND—The	AND	condition,	inverted.	Effectively	swaps	target	and
offtarget.
NOR—The	OR	condition,	inverted.	Effectively	swaps	target	and
offtarget.
XOR—Exclusive	“or”.	The	condition	is	met	if	only	one	of	the
monitored	objects	assumes	the	specified	state,	whereas	all	the	others
have	non-matching	states.
XNOR—The	XOR	condition,	inverted.

This	entity	is	multifunctional	and	can	be	used	anywhere,	from	keypads	to
complex	interactive	scripted	scenes	that	require	player	participation.
The	object	works	well	as	a	master.



physboxmaker
A	fusion	of	func_physbox	and	monstermaker.	Inherits	options	from	both
entities.



Spawnflags

SF_PHYSBOXMAKER_START_ON 1	(initially	turned	on)

SF_PHYSBOXMAKER_CYCLIC

4	(each	activation	creates	a	new
physics	object;	otherwise,	each
activation	enables	and	disables
their	generation)



Options

boxcount
Maximum	number	of	physics	objects	that	the	object
can	generate	before	it	is	deleted	from	the	map	(0	means
indefinite).

m_imaxliveboxes How	many	boxes	the	entity	can	generate	at	a	time	(0
means	indefinite).

The	other	options	are	the	same	as	for	func_physbox.



player_keycatcher
This	entity	is	the	logical	extension	of	the	functionality	of	trigger_impulse.
Captures	player	keypresses	for	activating	events	in	the	map.



Options

m_iszKeyToCatch
Name	of	the	key	to	listen	for.	A	single
player_keycatcher	can	listen	for	only	a	single
(arbitrary)	key.

m_iszKeyPressed Target	to	activate	once	when	the	player	presses	the
specified	key.

m_iszKeyHoldDown Target	to	activate	at	every	frame	as	long	as	the
player	holds	the	specified	key.

m_iszKeyReleased Target	to	activate	once	when	the	player	releases	the
specified	key.

master Master	that	blocks	the	entity.	A	blocked
player_keycatcher	does	not	activate	its	targets.



Usage	Details

A	map	can	have	no	more	than	64	instances	of	the	entity.
You	can	have	multiple	player_keycatcher	entities	listening	for	the	same
key.	Their	state	can	be	tracked	(STATE_ON	means	the	key	is	pressed,
STATE_OFF	means	it	is	released).
The	following	table	lists	the	virtual	keys:
attack Primary	attack

jump Jump

duck Duck/Crouch

forward Move	forward

back Move	backwards

use Use/Activate

left Turn	left

right Turn	right

moveleft Move	left

moveright Move	right

attack2 Secondary	attack

run Run

reload Reload

alt1 Unassigned	key;	to	bind	it,	use	the	following	command:
bind	<key	to	listen	for>	+alt1

score Unassigned	key	(Xash	mod-specific);	to	bind	it,	use	the
following	command:	bind	<key	to	listen	for>	+score

It	doesn't	matter	where	in	the	map	a	player_keycatcher	is	located.
In	multiplayer,	use	the	entity	with	caution,	because	it	watches	keypresses	by
all	players	on	the	server.
The	entity	does	not	work	if	the	player	is	frozen	by	a	trigger_playerfreeze
or	by	the	Freeze	Player	flag	in	a	trigger_camera,	because	keypresses	are
bypassed	by	the	engine	in	these	cases,	and	there	is	no	way	to	capture	them.



pushablemaker
A	fusion	of	func_pushable	and	monstermaker.	Inherits	options	from	both
entities.



Spawnflags

SF_PUSHABLEMAKER_START_ON 1	(initially	turned	on)

SF_PUSHABLEMAKER_CYCLIC

4	(each	activation	creates	a	new
box;	otherwise,	each	activation
enables	and	disables	their
generation)



Options

boxcount Maximum	number	of	boxes	that	the	object	can	generate
before	it	is	deleted	from	the	map	(0	means	indefinite).

m_imaxliveboxes How	many	boxes	the	entity	can	generate	at	a	time	(0
means	indefinite).

The	other	options	are	the	same	as	for	func_pushable.



Usage	Details

Since	the	generated	objects	use	the	same	model,	which	is	built	into	the	map,
they	all	have	the	same	lighting	and	decals.	In	other	words,	a	decal	applied
to	one	of	the	boxes	will	be	reproduced	on	all	boxes	made	by	the	same
pushablemaker.	This	limitation	is	by	design,	and	it	cannot	be	lifted.



scripted_trainsequence
A	faithful	recreation	of	the	entity	from	Spirit	of	Half-Life.	Flexibly	controls	the
movement	of	a	func_train.



Spawnflags

SF_TRAINSEQ_REMOVE 1	(remove	when	the	sequence	ends)

SF_TRAINSEQ_DIRECT 2	(move	towards	the	object	specified	by	the
m_iszDestination	option)

SF_TRAINSEQ_DEBUG 4	(debug	mode	with	console	messages)



Options

m_iDirection

Train	movement	direction:

0—no	movement
1—forward
2—backward
3—stop	the	train
4—as	specified	by	m_iszDestination

m_iszEntity Name	of	the	train	to	control.

m_iszDestination Name	of	the	entity	that	the	train	will	move	towards
when	the	scripted_trainsequence	is	activated.

m_iszTerminate Target	activated	when	the	entity	has	completed	its
operation.



train_setspeed
Changes	the	speed	and	direction	of	a	func_tracktrain	dynamically.



Spawnflags

SF_ACTIVATE_TRAIN 1	(activate	the	func_tracktrain	on	start)

SF_TRAINSPEED_DEBUG 2	(output	debugging	information	about	train
starts	and	stops,	and	its	current	speed)



Options

time How	many	seconds	it	takes	the	train	to	reach	the	set	speed.

mode

How	the	speed	setting	is	applied:

0—instantly
1—over	the	specified	time	interval

train Name	of	the	train	that	the	new	speed	is	applied	to.

speed New	speed.



Usage	Details

The	primary	purpose	of	this	entity	is	to	slow	down	a	train	that	approaches	a
station	and	speed	up	a	train	that	departs;	using	specially	placed	path_track
entities	with	fine-tuned	speed	settings	is	clunky.	However,	you	can	use	the
object	to	better	control	trains	in	other	ways,	because	it	lets	you	activate	a
train,	stop	it	and	change	its	direction.



trigger_bounce
A	faithful	recreation	of	the	entity	from	Spirit	of	Half-Life.	Lets	you	set	bounce
options	for	standard	objects	that	use	Half-Life	physics	(except	physics	objects).



Spawnflags

SF_TRIGGER_ALLOWMONSTERS 1	(makes	the	trigger	respond	to
NPCs)

SF_TRIGGER_NOCLIENTS 2	(prevents	the	trigger	from
responding	to	the	player)

SF_TRIGGER_PUSHABLES 4	(makes	the	trigger	respond	to
func_pushable)

SF_TRIGGER_CHECKANGLES

8	(borrowed	from	Quake;	the
trigger	works	only	if	its	angles	and
the	angles	of	the	object	are
pointing	in	the	same	general
direction	on	YAW)

SF_BOUNCE_CUTOFF
16	(decrease	the	bounce	speed	to
the	minimum	specified	in	the
armorvalue	field)



Options

netname Filter	for	activating	only	objects	of	a	specific	class
(classname)	or	with	a	specific	name	(targetname).

armorvalue Minimum	bounce	speed.

frags

How	hard	the	bounce	is:

0—halt
1—100%	bounce

angles Bounce	direction.



Usage	Details

The	object	ignores	physics	objects	and	affects	only	the	player,
func_pushable	and	various	projectiles	such	as	rockets,	grenades	and
snarks.



trigger_changeparent
An	entity	for	dynamically	changing	an	object's	parent	or	unparenting	an	object.



Options

target Entity	for	which	parenting	should	be	changed	or	broken.

m_iszNewParent Name	of	the	new	parent	(leave	empty	to	unparent).



Usage	Details

You	can	specify	the	*locus	keyword	in	the	m_iszNewParent	field.	This
causes	the	entity	in	the	target	field	to	become	a	child	of	the	entity	that
activated	the	trigger_changeparent.
Because	the	pointer	to	the	activator	is	usually	passed	on	unchanged	by	most
entities,	an	arrangement	like	the	following	is	possible:	an	entity	passes	a
trigger_multiple	or	trigger_once,	which	activates	a
trigger_changeparent,	which	makes	the	object	in	its	target	field	a	child	of
the	entity	that	passed	the	trigger.	This	makes	it	possible	to	implement	a
magnetic	crane,	for	example.	However,	this	is	by	far	not	the	only	use	for	the
technique.



trigger_command	(Deprecated)
Runs	a	console	command	on	activation.



Option

netname Name	and	parameters	of	the	console	command.



Usage	Details

Be	careful,	because	not	all	commands	that	you	use	for	debugging	will	work
correctly	in	user	mode	(think	cheats)	or	some	local	commands	will	not
work	in	muliplayer.	Generally,	use	of	this	entity	is	strongly	discouraged.



trigger_gravity_field
Creates	an	area	with	modified	gravity	in	the	map.	Unlike	trigger_gravity,
returns	gravity	to	normal	when	the	area	is	exited.

The	object	works	correctly	only	with	the	player.



Option

gravity

Gravity	factor—a	factor	of	the	global	sv_gravity	option	in	the
range	from	0	to	1.
Example:	If	sv_gravity	is	800,	a	factor	of	0.5	produces	gravity
400,	a	factor	of	0.25	produces	gravity	200	and	so	on.



Usage	Details

In	theory,	this	entity	has	the	complete	set	of	options	found	in	trigger_inout.
In	practice,	however,	you	may	run	into	problems	while	changing	gravity	for
NPCs,	because	most	of	them	rarely	leave	the	ground.	What's	more,	the
parameter	will	have	absolutely	no	effect	on	physics	objects,	because	PhysX
does	not	support	local	gravity	for	arbitrary	objects,	but	only	for	the	entire
scene.



trigger_impulse
This	entity	implements	a	feature	that	was	sorely	missed	by	many	mappers:	an
out-of-the-box	way	to	activate	an	object	on	a	map	when	a	key	is	pressed.



Options

targetname Name	of	the	object	(used	during	activation	and	can	be	left
empty	by	default).

master Name	of	the	blocking	entity.

target Target	on	the	map.

impulse Filter	for	impulses.



Usage	Details

The	steps	to	set	up	activation	are	as	follows.	The	user	binds	the	desired	key
to	generation	of	an	impulse	in	the	range	from	1	to	50,	for	example:
bind	b	"impulse	1"

Subsequently,	when	the	B	key	is	pressed,	this	impulse	is	sent	to	the	server
from	the	player	code	and	activates	the	universal	target	named
game_firetarget.	The	activation	contains	a	value	that	specifies	the	number
of	the	impulse.	The	trigger_impulse	entity	takes	over	in	this	chain	of
operations	and	is	set	up	in	advance	to	use	game_firetarget.
Specifying	an	impulse	number	lets	you	make	sure	that	only	this	impulse	is
caught.	Omitting	the	number	makes	the	trigger	react	to	any	impulse	it
receives.
The	master	option	lets	you	explicitly	block	the	effects	of	user	keypresses.



trigger_inout
A	recreation	of	the	entity	from	Spirit	of	Half-Life.	Triggers	twice:	activates	what
is	in	the	target	field	when	the	trigger	area	is	entered	and	activates	the
m_iszAltTarget	field	when	the	area	is	exited.



Spawnflags

SF_TRIGGER_ALLOWMONSTERS 1	(makes	the	trigger	respond	to
NPCs)

SF_TRIGGER_NOCLIENTS 2	(prevents	the	trigger	from
responding	to	the	player)

SF_TRIGGER_PUSHABLES 4	(makes	the	trigger	respond	to
func_pushable)

SF_TRIGGER_CHECKANGLES

8	(borrowed	from	Quake;	the
trigger	works	only	if	its	angles	and
the	angles	of	the	object	are
pointing	in	the	same	general
direction	on	YAW)

SF_TRIGGER_ALLOWPHYSICS
16	(makes	the	trigger	respond	to
any	physics	objects,	not
necessarily	func_physbox)



Options

netname Filter	for	activating	only	objects	of	a	specific	class
(classname)	or	with	a	specific	name	(targetname).

target Target	that	is	activated	when	the	trigger	area	is	entered.

m_iszAltTarget Target	that	is	activated	when	the	trigger	area	is	exited.

m_iszBothTarget Target	that	is	activated	when	the	trigger	area	is	enteredand	exited.



Usage	Details

If	you	delete	a	trigger_inout	from	the	map,	it	activates	the	targets	in
m_iszAltTarget	and	m_iszBothTarget	before	it	disappears.	This	happens
only	in	XashXT,	but	not	in	Spirit	of	Half-Life.



trigger_lightstyle
A	trigger	for	controlling	light	styles	for	a	static	light.	A	faithful	recreation	of	the
entity	from	Spirit	of	Half-Life.



Options

pattern Custom	flickering	style	that	is	applied	to	the	target	object	(and
consequently,	to	all	light	sources	that	use	the	same	light	style).

m_iFade Makes	the	light	fade	smoothly.

m_iWait How	many	seconds	pass	before	the	light	style	in	the	style	field	is
applied.

style Light	style	that	is	set	after	the	timeout	in	the	m_iWait	field	(if
specified)	or	immediately	(if	not	specified).



Usage	Details

Remember	that	control	of	static	lighting	has	a	number	of	limitations.	In
particular,	lighting	is	applied	to	a	specific	light	style	rather	than	a	specific
lamp,	and	the	light	style	can	be	shared	by	multiple	light	sources.	For
example,	changing	light	style	0	is	strongly	discouraged,	because	it	will
modify	lighting	for	the	entire	map.	However,	you	can	assign	a	special	style
to	light_environment	and	thereby	create	a	rudimentary	day	and	night
cycle.



trigger_onsight
A	faithful	recreation	of	the	entity	from	Spirit	of	Half-Life.	It	is	triggered	when	an
NPC	or	scientist	is	“looking”	at	it.	This	is	an	evolution	of	Quake's
SF_TRIGGER_CHECKANGLES	spawnflag.



Spawnflags

SF_ONSIGHT_NOLOS 1	(skip	checking	for	objects	in	the	way	of	the
looker's	gaze	at	the	trigger)

SF_ONSIGHT_NOGLASS 2	(ignore	glass	when	checking	for	objects	in
the	way	of	the	looker's	gaze	at	the	trigger)



Options

max_health Field-of-view	angle	within	which	the	trigger	is	considered
visible.	Use	-1	for	monsters.

frags Minimal	distance	between	the	objects	at	which	visibility
testing	occurs.	0	turns	off	distance-based	testing.

message
Classname	or	targetname	of	the	object	that	must	be	looked	at
instead	of	the	trigger_onsight	(this	has	little	significance	in
XashXT,	because	a	trigger_onsight	can	be	easily	parented).

netname
Targetname	of	the	object	that	looks	at	the	trigger_onsight.
To	specify	the	player,	leave	blank	or	enter	the	*player
keyword.

target Target	that	is	activated	when	the	looker's	gaze	meets	the
trigger_onsight.

noise Target	that	is	activated	when	the	looker's	gaze	leaves	the
trigger_onsight	after	meeting	it.

noise1
Target	that	is	activated	to	go	into	USE_ON	when	the	gaze
meets	the	trigger	and	then	to	go	into	USE_OFF	when	it
leaves	the	trigger.



Usage	Details

In	the	classic	Spirit	of	Half-Life	demo	this	object	was	used	for	creating	a
realistic	retinal	scanner,	but	more	interesting	uses	can	be	invented	for	it.	For
example,	you	can	unfreeze	still	monsters	as	soon	as	the	player	turns	away
from	them	only	to	see	them	in	a	mirror.	Tricks	of	this	sort	are	standard
horror	fare.



trigger_playerfreeze
Classic	trigger	from	Blue	Shift	and	Opposing	Force	that	freezes	the	player	until
the	next	activation.	The	frozen	player	can	do	nothing	but	look	around.



Usage	Details

If	the	object	was	activated	by	something	other	than	a	player,	then	the	first
player	will	be	frozen.	Mind	this	if	you	want	to	use	the	entity	in	multiplayer.



trigger_sound
A	substitute	for	env_sound	that	lets	you	define	a	DSP	effect	change	area
precisely	rather	than	approximately.



Option

roomtype DSP	preset	(0–29).



Usage	Details

A	single	trigger_sound,	can	change	settings	only	for	one	effect,	similarly
to	an	env_sound.
To	reset	a	DSP	effect	to	zero,	you	will	need	a	second	object.
The	trigger	cannot	be	activated	by	targetname,	but	only	by	the	player
touching	it.



trigger_startpatrol
A	faithful	recreation	of	the	entity	from	Spirit	of	Half-Life.	Makes	monsters	start
patrolling	interconnected	path_corner	entities.



Options

m_iszPath
Targetname	of	the	first	path_corner	where	patrolling	starts.
Make	sure	it	is	within	the	monster's	line	of	sight.	Also	note
that	the	monster	will	stop	patrolling	when	it	sees	an	enemy.

target Targetname	of	the	monster	that	patrols	the	area.



Usage	Details

The	technique	whereby	monsters	follow	path_corner	entities	originated	in
Quake	and	has	not	really	changed	in	the	meantime.	Therefore,	if	a	monster
refuses	to	start	patrolling,	this	means	that	it	is	in	combat	or	that	it	cannot
find	the	path	to	the	path_corner	where	patrolling	should	start.



New	Options	for	Existing	Entities
Global	Options	New	in	Existing	Half-Life	Entities



Global	Parameters
Global	parameters	apply	to	most	entities	or	all	entities.	Exceptions	are	cases
where	applying	the	parameter	makes	no	sense	(for	example,	rendering	options
for	an	object	without	a	model)	or	there	is	a	limitation	introduced	out	of	necessity.
Such	limitations	are	documented	in	the	usage	notes	for	individual	entities.	Note
that	this	section	mentions	not	only	new	but	also	customary	Half-Life	global
parameters.	The	new	ones	are	marked	“(new)”.

targetname

Found	in	most	entities	that	have	multiple	states	(normally
they	are	two	states:	“on”	and	“off”)	and	for	objects	that
cannot	be	controlled	directly	but	can	have	their	internal
state	read,	for	example	through	the	use	of
multi_watcher.

target

Contains	the	name	of	the	target	that	the	object	can
control.	Controlling	means	not	only	state	change,	but	also
smooth	analogue	adjustment	for	some	entities	(such	as
momentary_door).

classname

Class	of	the	object.	The	class	cannot	be	changed	by	the
mapper	and	is	used	as	a	key	name	with	some	code
attached	to	it	for	controlling	this	class	of	object.	For
example,	the	code	attached	to	the	name	func_door
simulates	door	behaviour,	the	code	attached	to	the	name
monster_barney	acts	like	a	regular	Black	Mesa	security
guard,	and	so	on.

globalname

The	object's	global	name	used	for	unconditional	transfer
of	the	object	to	a	new	level	if	object	transfer	is	not
implied	by	default.	For	example,	there	is	no	point	in
setting	this	name	for	NPCs,	because	they	are	transferred
to	new	levels	anyway.	The	main	purpose	of	globalname
is	to	carry	over	logical	objects	and	objects	with	brush
models	that	are	part	of	the	current	map.	For	successful
transfer,	set	the	same	name	for	the	necessary	objects	on
all	the	maps	you	need.
Note:	The	decals	on	the	object	will	be	transferred	along



with	it.

rendermode

Defines	the	object's	drawing	mode.	Not	all	modes	are
applicable	to	all	types	of	entities	and	all	models.	This	is
what	GoldSource	does,	and	this	behaviour	was	kept	in
XashXT.

0	—	normal.	Opaque	objects.	Applies	to	brushes,
models	and	sprites.
1	—	color.	Translucent	objects	without	textures.	The
rendercolor	parameter	controls	object	colour.
Applies	to	brushes.
2	—	texture.	Translucent	objects	with	textures.	The
renderamt	parameter	controls	transparency.
Applies	to	models,	brushes	and	sprites.	Ignores
rendercolor.
3	—	glow.	Glow	sprites	with	depth	testing	disabled.
The	sprite	size	increases	in	proportion	with	distance.
The	sprites	observe	the	rendercolor	and	renderamt
parameters.	Applies	only	to	sprites.
4	—	solid.	Textures	with	transparent	areas	in	them,
as	in	grates	and	bars.	The	rendercolor	и	renderamt
are	ignored.	Applies	only	to	brushes.
Note:	Models	and	sprites	have	an	internal	flag	that
enables	this	rendermode,	overriding	the	user	setting.
5	—	additive.	Contrary	to	its	name,	doesn't	support
applying	an	arbitrary	colour	to	entities	(except
sprites).	Models	in	this	mode	observe	lighting.
6	—	world	glow.	Additional	mode	from	Half-Life	2.
Used	only	for	sprites.	The	difference	from	glow	is
that	the	size	of	the	sprite	in	world	space	is	fixed,
rather	than	in	screen	space	(which	really	means
scaling	the	sprite	to	compensate	for	the	distance
from	the	observer).

rendercolor

Colour	in	RGB	format	in	the	range	0–255.	The	default
value	is	255	255	255	(set	in	the	game	engine).	Works
together	with	rendermode	color	(for	models,	sprites	and
brushes)	and	rendermode	glow,	worldglow	(only	for



sprites).

renderamt
Object	transparency	in	the	range	0–255.	Works	in	the
following	rendermodes:	color,	texture,	glow,	additive,
world	glow.

renderfx

A	set	of	predefined	effects,	mainly	for	models.	Normally
used	for	changing	model	transparency	by	a	preset
function.
Includes	flickering,	smooth	fade,	holographic	effect,
glow	shell	and	a	few	special	modes	for	internal	use.

colormap

Specified	as	run-together	literals	of	two	numbers	in	the
range	from	0	to	255:	topcolor	and	bottomcolor	(from	the
palette).	For	example,	for	colours	48	and	132	specify
48132.
When	the	value	is	ambiguous	(for	example,	colours	11
and	12),	consider	using	a	hexadecimal	value	instead	of	a
decimal	one—this	ensures	that	each	colour	gets	exactly
two	places	in	a	four-digit	number	(for	example,	11	and	12
will	be	represented	by	0x0B0C).
In	practice,	only	the	topcolor	is	often	specified,	and
bottomcolor	omitted.
Works	only	for	models	that	contain	so	called	remap
textures,	where	part	of	the	palette	can	be	replaced	by
custom	values.
This	feature	is	normally	used	for	colouring	the	players	on
different	teams,	but	it	can	be	used	in	singleplayer	as	long
as	the	model	contains	remap	textures.	The	textures	have
special	naming	conventions	and	distribute	the	palette	in	a
particular	way;	for	details,	see	the	appropriate
documentation.
Remember	also	that	this	parameter	increases	map	loading
times,	because	the	engine	takes	some	time	to	create
texture	copies.

spawnflags

A	set	of	option	flags	individual	to	entities.	This	is	where
you	should	put	the	values	documented	in	the	Spawnflags
sections	of	entity	description	pages.	Most	editors
represents	these	flags	as	a	group	of	check	boxes	for	the
convenience	of	mappers.



m_iClass	(new)

Found	in	all	objects	whose	names	begin	with	monster_
and	for	func_tank.	Lets	you	set	the	attitude	towards	the
player	and	other	monsters.
For	a	detailed	description	of	classes,	see	Monster	Classes
and	Behaviour.

m_iPlayerReact
(new)

Found	in	all	objects	whose	names	begin	with	monster_.
Lets	you	set	the	monster's	attitude	towards	the	player.	For
a	detailed	description,	see	the	description	of	the
env_customize	entity.

parent	(new)
Name	of	the	parent	entity	to	attach	the	object	to.	The
objects	will	be	attaches	exactly	as	arranged	by	the	level
designer	on	the	map.

movewith
(new)

Alias	for	the	parent	field.	Introduced	for	compatibility
with	the	Spirit	of	Half-Life	mod.

reflection
(new)

How	the	entity	is	reflected	in	mirrors:

0	—	default
1	—	do	not	draw	in	mirrors
2	—	draw	only	in	mirrors

master Name	of	the	blocking	entity.	Applies	to	nearly	all	objects
that	can	be	enabled	and	disabled.



New	in	Regular	Half-Life	Entities
To	keep	it	brief,	only	the	new	options	are	documented;	the	existing	options	are
omitted.

Naturally,	the	purposes	of	the	entities	will	not	be	mentioned,	because	the	entities
are	familiar	to	all	Half-Life	and	Counter-Strike	1.6	mappers.

env_beam	env_fade
env_funnel
env_laser
env_render
env_shooter
func_button
func_conveyor
func_door	(func_door_rotating,	func_water)
func_plat	(func_platrot)
func_pushable
func_rotating
func_tank	(func_tankrocket,	func_tankmortar,	func_tanklaser)
func_tankcontrols
func_trackautochange
func_trackchange	(func_trackautochange)
func_tracktrain
func_train
gibshooter
info_player_start
info_target
light	(light_spot,	light_environment)
momentary_door
momentary_rot_button	(momentary_rot_door)
monster_alien_grunt
monster_barney
monster_generic
monster_human_grunt
multisource



multi_manager
path_track
player_weaponstrip
scripted_sequence
trigger_auto
trigger_camera
trigger_changetarget
trigger_multiple
trigger_once
trigger_push
trigger_relay
trigger_teleport
weapon_cycler
worldspawn



env_beam
Spawnflag

SF_BEAM_SOLID 512	(sets	rendermode	to	normal)



Options

target Target	object	that	is	activated	when	the	beam	is	crossed	by	the
player	or	a	monster,	or	an	object	specified	in	the	netname	field.

netname Classname	or	targetname	of	the	object	that	activates	the	object	in
the	target	field	by	crossing	the	beam.



Usage	Details

A	negative	value	in	the	dmg	field	heals	the	object	that	crosses	the	beam.



env_fade
Spawnflag

SF_FADE_PERMANENT 8	(leaves	the	screen	permanently	faded	after	it
reaches	the	specified	dimness)



env_funnel
Option

netname Path	to	the	custom	model	used	by	the	effect.



env_laser
Spawnflag

SF_BEAM_SOLID 512	(sets	rendermode	to	normal)



Options

m_iProjection

Laser	projection	type:

0—no	projection
1—depends	on	the	angle	relationship
2—like	1,	but	mirror	reflections	are	taken	into
account

m_iStoppedBy

Filter	for	objects	that	can	obstruct	the	laser:

0—glass	and	monsters
1—only	monsters	(traced	by	their	hitboxes)
2—glass	and	monster	hulls
3—only	monster	hulls
4—only	glass
5—ignore	all	except	world	geometry



Usage	Details

The	laser	implementation	has	a	limitation	whereby	crossing	the	beam	and
subsequent	activation	of	the	object	in	the	target	field	do	not	work	for
projection	type	2.
The	EndSprite	option	accepts	either	a	path	to	the	sprite	or	the	name	of	an
existing	env_sprite	in	the	scene	for	more	flexible	sprite	configuration.



env_render
Options

m_fScale New	scale	for	the	target	object.

netname
Activates	what	is	in	the	target	field	after	the	transformation	is
complete	(the	object	that	activated	env_render	is	treated	as
the	activator).

frags How	long	(in	seconds)	it	takes	to	apply	the	effect	(relevant	to
rendercolor,	renderamt	and	scale).

armorvalue In	how	many	steps	to	apply	fading.	The	default	value	of	0	is
recommended.



env_shooter
Options

m_iszTargetName Name	that	is	set	for	each	gib.

m_iszSpawnTarget Target	that	is	activated	on	each	gib	spawn;	the	gibitself	acts	as	the	activator.

m_iBloodColor Gib	blood	colour.	Red	is	number	247.	Yellow	is	195.

m_iszTouch Target	that	is	activated	when	a	gib	collides	with	an
object	or	the	world	(the	gib	itself	acts	as	the	activator).

m_iszTouchOther
Target	that	is	activated	when	a	gib	collides	with	any
object	but	not	the	world	(the	gib	itself	acts	as	the
activator).

m_iPhysics

Type	of	physics	to	simulate:

0	—	regular	gib	physics
1	—	stickygibs;	sticks	to	the	first	thing	it	touches,
including	moving	objects
2	—	noclip;	no	collisions	at	all
3	—	FLYMISSILE;	ignores	gravity	and	uses	a
special	hull	for	collision	testing
4	—	BOUNCEMISSILE;	bounces	off	walls,
ignores	gravity	and	uses	a	special	hull	for
collision	testing
5	—	TOSS;	does	not	use	extra	bouncing,	but
simply	slides	on	the	floor,	respecting	gravity
6	—	PHYSIC;	uses	the	physics	engine	for	rigid
body	simulation

skin Particle	skin.	-1	is	random	skin.

body Particle	body.	-1	is	random	body.

framerate Gib	animation	speed	(for	sprite	models).



scale Scale	(for	models	and	sprites).

frame Frame	number	(for	models	and	sprites).

m_fFriction

Friction	magnitude.	Be	careful	when	setting	this	for
physiscs	types	that	don't	respect	gravity,	because	they
are	friction-aware,	and	your	particle	will	decelerate
very	rapidly.

m_vecSize Particle	size	(deprecated).



Usage	Details

Currently,	the	particles	that	are	simulated	by	the	physics	engine	perform
testing	for	collision	with	the	player.	Because	they	are	small,	this	can	cause
them	to	be	pushed	outside	the	level.	Be	careful.



func_button
Spawnflags

SF_BUTTON_ONLYDIRECT

16	(the	button	cannot	be	used
through	thin	walls,	which	was	a
known	issue	in	the	original	Half-
Life)

SF_BUTTON_DAMAGED_AT_LASER
128	(the	button	will	be	activated
when	hit	by	an
env_laser	beam;	see	the	demo	maps)



Usage	Details

There	is	an	undocumented	feature	that	makes	a	button	with	the
SF_BUTTON_DAMAGED_AT_LASER	spawnflag	set	respond	to	a
weapon_egon	beam	in	addition	to	an	env_laser	beam.	Consider	using	this
quirk	to	arrange	alternative	quest	routes.



func_conveyor
Spawnflag

SF_CONVEYOR_STARTOFF 4	(the	conveyor	is	initially	deactivated)



Usage	Details

In	XashXT,	a	conveyor	can	be	flexibly	controlled	using	prefixes.	The	<
prefix	changes	the	conveyor's	current	speed,	multiplying	it	by	a	number	in
the	range	from	-1	to	1.	For	example	a	conveyor	travelling	at	500	with	the
speed	change	factor	set	to	-1	will	be	given	a	negative	speed	of	-500;	a	factor
of	0.5	will	result	in	a	speed	of	250,	and	so	on.	Speed	change	configuration
example:
"target"	"<conveyorname.0.15"
Note	that	this	kind	of	activation	will	only	queue	the	new	speed	for	the
conveyor	but	will	not	change	it	immediately	if	the	conveyor	is	in	an	active
state.	You	should	either	change	the	speed	for	an	inactive	conveyor	(the
speed	will	be	applied	automatically	when	it	starts)	or	confirm	the	speed
change	with	a	subsequent	activation	that	uses	the	>	prefix.	Speed	change
configuration	and	confirmation	example:
"target"	"<conveyorname.0.15"
"target"	">conveyorname"
To	perform	double	activation,	you	will	need	two	trigger_relay	entities	or	a
multi_manager.	As	an	added	bonus,	you	can	achieve	smooth	speed	change
using	a	momentary_rot_button	entity	(an	example	is	available	in	the
demo	maps).
Activation	with	the	<	prefix	but	without	the	current	value	will	cause	the
conveyor	to	stop.
Note:	As	illogical	as	this	control	scheme	is,	it	is	necessary	for	compatibility
with	the	original	Half-Life	and	its	maps.



func_door	(func_door_rotating,
func_water)
Spawnflag

SF_DOOR_ONOFF_MODE
4	(formerly	in	Quake,	“Door	don't	link”;
makes	the	door	respond	to	being	activated
with	the	+	and	-	prefixes)



Options

chaintarget Name	of	the	next	door	in	a	chain	of	activations	(deprecated).

message Activates	the	specified	target	as	soon	as	the	door	is	completely
open.



func_plat	(func_platrot)
Option

width Makes	the	platform	slide	not	only	up	and	down	but	also	sideways.
Used	together	with	height,	it	also	makes	it	slide	diagonally.

angles Used	together	with	the	width	option	to	set	the	motion	direction	for
the	func_plat.



func_pushable
Spawnflags

SF_PUSH_HOLDABLE 512	(the	player	can	pick	up	and	carry	the
object,	as	in	Half-Life	2)

SF_PUSH_BSPCOLLISION

1024	(use	the	object's	precise	shape	instead
of	a	bounding	box	for	collision	testing;	a
good	choice	for	making	a	boat,	for
example)



Usage	Details

The	SF_PUSH_BSPCOLLISION	spawnflag	not	only	used	the	object's
visible	physical	shape,	but	also	lets	a	func_pushable	move	other	objects
placed	on	top	of	it.	Examples	can	be	found	in	demo	maps.



func_rotating
Spawnflag

SF_ROTATING_STOP_AT_START_POS
1024	(the	brush	will	stop	at	the
exact	position	it	was	launched
from;	good	for	rotating	lifts)



Option

target Target	to	activate	when	the	object	is	blocked.	Activation	is	repeatedevery	half-second	until	the	blocking	object	is	removed.



Usage	Details

The	<	prefix,	followed	by	a	dot	and	a	number,	lets	you	flexibly	control	the
object	speed,	multiplying	it	by	a	number	in	the	range	from	-1	to	1,	as	in
func_conveyor.
If	the	Acc/Dec	flag	is	turned	on	for	the	entity,	then	the	speed	will	be	applied
over	time	rather	than	immediately.
Activating	a	stopped	object	with	the	<	prefix	will	cause	it	to	start.
Activating	an	object	with	the	<	prefix	but	without	a	numeric	value	will
cause	it	to	stop.
Whether	an	object	stops	smoothly	also	depends	on	the	state	of	the	Acc/Dec
flag	(this	is	a	standard	flag	in	a	func_rotating).
Activation	with	the	>	prefix	and	a	value	of	0	lets	you	reverse	the	rotation	of
a	ventilator	and	give	it	maximum	speed.
Activation	with	the	>	prefix	and	any	non-zero	value	gives	the	object	an
angular	impulse	whose	magnitude	is	determined	by	the	value	you	specify.
The	object	must	be	in	the	STATE_OFF	state	when	this	happens.	The
impulse	itself	does	not	change	the	state	of	the	ventilator,	which	remains
turned	off.	This	effect	can	be	used,	for	example,	to	fake	equipment
malfunctions.



func_tank	(func_tankrocket,
func_tankmortar,	func_tanklaser)
Spawnflags

SF_TANK_LINEOFSIGHT
16	(this	flag	is	present	in	the	original	SDK
but	not	documented	anywhere;	the	tank
shoots	only	if	the	enemy	is	directly	visible)

SF_TANK_CANCONTROL
32	(unlike	the	original	implementation,
here	this	flag	prevents	the	machine	gun
from	working	in	automatic	mode)

SF_TANK_MATCHTARGET
128	(in	manual	control	mode,	the	tank's
main	gun	aims	where	the	player	is	looking;
good	for	controlling	multiple	guns)



Options

firemaster Master	that	blocks	shooting	but	allows	control	and	aiming.	Can
be	used	for	simulating	depleted	ammunition.

firetarget Target	that	the	tank	fires	at	in	automatic	mode.	Accepts	a
classname	or	a	targetname.

m_iClass Class	of	the	tank—really	an	NPC	class.	For	more	details	about
classes,	see	Monster	Classes	and	Behaviour.



Usage	Details

If	firetarget	and	m_iClass	are	not	used,	the	func_tank	fires	only	at	the
player.
Note	that	the	IN	USE	state	is	achieved	whenever	the	tank	attempts	to	fire,
whether	or	not	shooting	is	blocked	by	a	master.	This	state	can	be	set	both
manually	and	automatically.



func_tankcontrols
Usage	Details

The	object	supports	up	to	48	controllable	tanks	at	once,	with	identical	or
different	names.
To	specify	tanks	with	identical	names,	use	the	target	field.	For	tanks	with
different	names,	use	the	multi_manager	technique,	where	the	tank	name	is
a	key,	and	the	value	is	0.
Technically,	the	number	of	controllable	tanks	can	be	higher,	but	in	practice
you	run	out	of	fields	in	the	Valve	Hammer	Editor.



func_trackautochange
Options

message Activates	the	target	when	the	object	has	reached	its	low	point.

netname Activates	the	target	when	the	object	has	reached	its	high	point.

width
Makes	the	platform	slide	not	only	up	and	down	but	also
sideways.	Used	together	with	height,	it	also	makes	it	slide
diagonally.

angles Used	together	with	the	width	option	to	set	the	motion	direction
for	the	entity.



Usage	Details

Leave	the	trainname	field	empty	if	you	want	the	entity	to	work	only	with
the	train	that	activated	it.	In	this	case,	activation	by	objects	that	are	not
trains	will	have	no	effect,	because	the	train	will	not	be	found.



func_trackchange
(func_trackautochange)
Spawnflag

SF_TRACK_ONOFF_MODE
32	(similarly	to	the	flag	in	func_door,
enables	explicit	activation	using
the	-	and	+	prefixes)



Options

radius Custom	radius	for	detecting	the	train	that	needs	to	have	its	track
changed.

message Activates	the	target	when	the	object	has	reached	its	low	point.

netname Activates	the	target	when	the	object	has	reached	its	high	point.

width
>Makes	the	platform	slide	not	only	up	and	down	but	also
sideways.	Used	together	with	height,	it	also	makes	it	slide
diagonally.

angles Used	together	with	the	width	option	to	set	the	motion	direction
for	the	entity.



Usage	Details

Leave	the	trainname	field	empty	if	you	want	the	entity	to	look	for	the
eligible	train	within	the	radius	of	the	largest	dimension	of	its	physical	size,
or	within	the	custom	radius	if	its	own	size	is	too	large	(for	example,	in	a
long	func_trackchange).



func_tracktrain
Spawnflag

SF_TRACKTRAIN_NO_FIRE_ON_PASS

16	(ignore	target	activation
for	path_track	entities
specified	in	the	message
field)



Options

soundstart Path	to	the	custom	train	start	sound.

soundstop Path	to	the	custom	train	stop	sound.

master Blocks	train	control.



Usage	Details

Do	not	attach	func_traincontrols	using	the	parent	system,	because	this	is
not	needed.
Note	that	train_setspeed	supports	the	*locus	keyword	for	changing	the
speed	of	the	train	that	crosses	a	specific	path_track.



func_train
Spawnflag

SF_TRAIN_SETORIGIN
2	(align	the	func_train	over	a	path_corner
using	the	origin	brush	instead	of	the	model's
actual	centre



Option

netname Target	to	activate	when	the	train	crosses	a	path_corner.



gibshooter
Options

m_iszTargetName Name	that	is	set	for	each	gib.

m_iszSpawnTarget Target	that	is	activated	on	each	gib	spawn;	the	gibitself	acts	as	the	activator.

m_iBloodColor Gib	blood	colour.	Red	is	number	247.	Yellow	is	195.



info_player_start
Spawnflag

SF_START_WITH_SUIT 1	(start	the	game	with	the	suit	on;	applies	only
to	singleplayer)



info_target
Spawnflag

SF_HACK_VISIBLE 1	(forces	the	transfer	of	the	object	to	the	client
while	keeping	it	invisible)



light	(light_spot,	light_environment)
Options

m_iOnStyle Light	style	number	used	when	the	light	is	on.

m_iOffStyle Light	style	number	used	when	the	light	is	off.

m_iTurnOnStyle Light	style	number	used	while	the	light	is	being	turned
on	over	time.

m_iTurnOffStyle Light	style	number	used	while	the	light	is	being	turned
off	over	time.

m_iTurnOnTime
How	many	seconds	(an	integer,	not	a	fraction)	it	takes
to	turn	on	the	light	with	the	light	style	in
m_iTurnOnStyle	applied.

m_iTurnOffTime
How	many	seconds	(an	integer,	not	a	fraction)	it	takes
to	turn	on	the	light	with	the	light	style	in
m_iTurnOffStyle	applied.

firetarget Target	that	will	be	activated	when	the	light	switches	to
the	“On”	or	“Off”	state.



Usage	Details

As	before,	you	can	use	pattern	only	for	lights	that	are	on,	and	light	styles
for	lights	that	are	being	turned	on	or	off	are	limited	to	the	standard	set
numbered	from	1	to	19.	This	technique	can	be	used	for	faking	luminescent
lamps,	which	flicker	while	turning	on.



momentary_door
Spawnflags

SF_DOOR_CONSTANT_SPEED
2	(accepts	an	explicitly	set	speed	rather
than	the	delta	which	depends	on	the
distance	to	travel)

SF_DOOR_ONOFF_MODE
4	(formerly	in	Quake,	“Door	don't
link”;	makes	the	door	respond	to	being
activated	with	the	+	and	-	prefixes)



Options

movesnd Name	of	the	door	motion	sound	(the	same	field	as	in
func_door).

speed Used	in	conjunction	with	the	SF_DOOR_CONSTANT_SPEED
flag.

distance
The	same	field	as	in	momentary_rot_button,	but	here	map
units	are	specified	instead	of	degrees	(by	default,	this	is	the	door
size	minus	the	“lip”).



momentary_rot_button
(momentary_rot_door)
Option

m_flStartPos Sets	the	initial	state	of	the	button.	Ranges	from	0	(default)	to
1.



Usage	Details

Unlike	the	original	Half-Life,	momentary_rot_button	lets	you	change	the
output	value	smoothly	within	the	range	from	0	to	1	not	only	for
momentary_	objects,	but	also	for	any	others	that	may	benefit	from	such	a
change—for	example,	func_rotating	or	func_conveyor.
The	object	responds	to	the	>	prefix	accompanied	by	a	dot-preceded	value	in
the	range	from	0	to	1.	This	lets	you	instantly	set	the	rotation	angle	you	need
when	a	specific	event	occurs.
When	the	<	prefix	is	accompanied	by	a	dot-preceded	value	in	the	range
from	0	to	1,	the	entity	sets	the	requested	angle	at	the	speed	that	is	specified
in	the	button	settings,	rather	than	instantly.



monster_alien_grunt
Spawnflag

SF_MONSTER_WPN_DROP 1024	(on	death,	drop	weapon_hgun)



monster_barney
Spawnflag

SF_MONSTER_NO_WPN_DROP 1024	(on	death,	hold	on	to	the
weapon)



Options

frags Set	to	1	to	equip	Barney	with	a	Magnum.

SpeakAs Initial	prefix	for	all	sentences	that	the	monster	uses	(for
example,	BA	for	Barney,	SC	for	a	scientist).

RefusalSentence Sentence	spoken	by	the	NPC	when	it	refuses	to	follow
the	player.



monster_generic
Spawnflag

SF_HEAD_CONTROLLER 8	(makes	the	monster	turn	its	head	in	search
of	someone	to	talk	to,	usually	the	player)



Option

m_bloodColor Blood	colour	(also	determines	the	gib	type).



monster_human_grunt
Spawnflag

SF_MONSTER_NO_WPN_DROP 1024	(on	death,	hold	on	to	the
weapon)



multisource
Option

offtarget Activated	during	reverse	state	changes—that	is,	when	the	master
blocks	an	object	again.



Usage	Details

The	multisource	implementation	has	been	corrected	for	proper	handling	of
NPCs'	TriggerTarget	field.	In	the	original	the	names	of	entities	specified	in
these	fields	were	plainly	ignored.	An	example	of	a	script	running	into	this
kind	of	problem	can	be	found	in	map	c2a4a	in	Half-Life.	Two
monster_headcrab	entities	have	the	name	multisource	specified	in	their
TriggerTarget	fields,	but	the	multisource	cannot	process	them	correctly.	In
the	end,	the	script	does	work,	but	only	thanks	to	monster	AIs	and	a	radius
configured	for	the	scripted_sequence.



multi_manager
Spawnflags

SF_MULTIMAN_LOOP 4	(target	activations	occur	in	cycles)

SF_MULTIMAN_ONLYONCE 8	(remove	the	object	from	the	map	after
all	targets	have	been	activated)

SF_MULTIMAN_START_ON 16	(the	entity	is	initially	activated	at	map
start)



Option

delay Global	delay	before	all	target	activations.



Usage	Details

While	the	global	delay	is	in	effect,	the	entity	is	in	the	STATE_TURN_ON
state.	During	target	activations,	it	is	in	the	STATE_ON	state.	You	can
enable	and	disable	target	activation	using	the	-	and	+	prefixes.	A	new
activation	will	start	the	cycle	over.
The	>	prefix	causes	the	object	to	reset	the	cycle	without	turning	off.
However,	this	same	prefix	causes	the	object	to	turn	on	if	it	is	off.
The	<	prefix	activates	all	targets	at	once.



path_track
Spawnflag

SF_PATH_TELEPORT 16	(like	path_corner,	allows	teleporting	of	a
func_tracktrain	and	all	objects	attached	to	it)



Options

m_iszFireFow Target	that	is	activated	only	when	the	train	passes	the
path_track	in	the	regular	direction.

m_iszFireRev Target	that	is	activated	only	when	the	train	passes	the
path_track	in	the	reverse	direction.



Usage	Details

If	no	alternative	path	is	specified,	then	activating	a	path_track	causes	it	to
turn	off,	simulating	a	broken	track.	If	an	alternative	path	is	specified,
activation	causes	switching	to	it	or	switching	back.	That	said,	this	is	regular
behaviour	for	the	object,	and	it	does	the	same	in	Half-Life.



player_weaponstrip
Spawnflags

SF_REMOVE_SUIT 1	(takes	the	suit	away	from	the	player)

SF_REMOVE_CYCLER 2	(takes	the	weapon_cycler	away	from	the
player)



Usage	Details

All	other	weapons	are	taken	away	independently	of	the	cycler	and	the	suit.



scripted_sequence
Option

m_iszFireOnBegin Activates	the	target	as	soon	as	the	monster	starts
running	the	sequence.



trigger_auto
Spawnflag

SF_FIRE_ON_XASH 2	(activate	the	target	only	if	XashXT	is	running	on
the	Xash3D	engine,	not	GoldSource)



trigger_camera
Option

m_iszViewEntity Name	of	the	entity	whose	point	of	view	the	camera
assumes.



trigger_changetarget
Usage	Details

The	entity	accepts	the	*locus	keyword,	which	switches	the	target	to	the
activator	of	this	entity.
It	can	help	change	the	target	for	area-patrolling	monsters	using
path_corner	and	func_monitor	entities	(or	func_portal	entities)	to	switch
the	camera	(or	the	portal's	destination).



trigger_multiple
Spawnflags

SF_TRIGGER_CHECKANGLES

8	(borrowed	from	Quake;	the	trigger
works	only	if	its	angles	and	the
angles	of	the	object	are	pointing	in
the	same	general	direction	on	YAW)

SF_TRIGGER_ALLOWPHYSICS
16	(tells	the	trigger	to	respond	to	all
physical	objects,	not	necessarily
func_physbox)



Option

netname Filter	for	activating	only	objects	of	a	specific	class	(classname)
or	with	a	specific	name	(targetname).



trigger_once
Spawnflags

SF_TRIGGER_CHECKANGLES

8	(borrowed	from	Quake;	the	trigger
works	only	if	its	angles	and	the
angles	of	the	object	are	pointing	in
the	same	general	direction	on	YAW)

SF_TRIGGER_ALLOWPHYSICS
16	(tells	the	trigger	to	respond	to	all
physical	objects,	not	necessarily
func_physbox)



Option

netname Filter	for	activating	only	objects	of	a	specific	class	(classname)
or	with	a	specific	name	(targetname).



trigger_push
Option

target

Target	(for	example,	an	info_target)	that	will	switch	the	entity	to
Quake	3	Arena-like	mode	on	activation.	This	means	the	location	of
the	target	will	mark	the	place	towards	which	the	trigger	will	launch
the	player	or	an	object.



trigger_relay
Options

m_iszAltTarget Target	that	is	activated	if	the	object	is	blocked	by	amaster.

value Lets	you	override	the	dot-preceded	value	in	the	object
activation	field	(deprecated).



trigger_teleport
Spawnflags

SF_TRIGGER_CHECKANGLES

8	(borrowed	from	Quake;	the	trigger
works	only	if	its	angles	and	the
angles	of	the	object	are	pointing	in
the	same	general	direction	on	YAW)

SF_TRIGGER_ALLOWPHYSICS
16	(tells	the	trigger	to	respond	to	all
physical	objects,	not	necessarily
func_physbox)



Option

netname Filter	for	activating	only	objects	of	a	specific	class	(classname)
or	with	a	specific	name	(targetname).



weapon_cycler
Options

deploy Ordinal	number	of	the	animation	played	when	the	weapon	is
equipped.

holster Ordinal	number	of	the	animation	played	when	the	weapon	is
holstered.

primary Ordinal	number	of	the	animation	played	during	primary	fire.

secondary Ordinal	number	of	the	animation	played	during	secondary	fire.



Usage	Details

Unlike	the	original,	this	entity	now	occupies	a	slot,	shows	up	in	the	HUD	as
weapon_question	and	can	play	animations	when	the	weapon	is	fired,
equipped	or	holstered.
In	addition,	player_weaponstrip	has	a	special	flag	to	make	it	possible	to
take	this	entity	away	from	the	player.



worldspawn
See	Environment	Variables.



Additional	Debugging	Facilities
XashXT	provides	a	number	of	debugging	facilities	intended	for	making	a	level
designer's	job	easier.	Most	of	these	features	are	enabled	through	console
variables	or	commands,	but	sometimes	debugging	is	turned	on	for	specific
entities	using	special	spawn	flags	(see	the	descriptions	of	new	entities	or
revisions	of	existing	entities)	for	details.

Listed	below	are	console	variables	and	commands,	with	usage	details.

Note:	Do	not	try	to	use	these	commands	and	variables	as	part	of	gameplay.	Most
of	them	will	not	work	in	user	mode.



Console	Variables

phys_debug Enables	collision	rendering	for	the	PhysX	engine.

phys_qdebug The	current	implementation	only	draws	centres	on
func_door_rotating	entities.

p_speeds Outputs	information	about	the	current	state	of	the	PhysX
engine	and	objects	in	the	scene.

r_speeds Takes	values	in	the	range	from	1	to	9.	Outputs
miscellaneous	information	about	the	renderer	state.

r_showtextures Takes	values	in	the	range	from	1	to	14.	Displays	loaded
textures	grouped	by	specified	criteria.

sv_novis Disables	PVS	culling	of	entities	on	the	server	so	that	you
can	distinguish	it	from	client-side	culling.

r_novis
Disables	PVS	culling	of	entities	on	the	client.	This
normally	affects	only	world	polygons,	because	entities	are
culled	on	the	server.

r_lockpvs Prevents	PVS	refreshing	so	that	you	can	see	the	drawing
distance.

r_lightmap Draws	lightmaps	without	diffuse	textures.

gl_wireframe Enables	edge	drawing,	showing	how	faces	are	split.

r_drawentities The	default	value	is	1.	Modes	2	to	6	draw	bones,	hitboxes
etc.

gl_renderer The	default	value	is	1.	Setting	this	to	0	switches	to	the
pure	engine	renderer	and	lets	you	compare	the	graphics.

showtriggers Shows	triggers	on	the	map.	Works	only	after	a	map
restart.



Console	Commands

edicts_info Outputs	brief	information	about	edicts.

entity_info Outputs	detailed	information	about	entities.

entpatch
Dumps	a	script	file	with	entity	definitions.	The	file
can	be	edited	manually.	Subsequently,	the	engine
loads	this	file	instead	of	built-in	entities.

fire
Enables	activation	of	entities	that	the	player	is
looking	at	or	activation	of	the	entity	that	is	specified
as	an	argument	of	the	command.

impulse	103 Outputs	information	about	the	state	of	a	monster	AI.

impulse	104 Outputs	information	about	the	state	of	global	entities
(their	state	can	be	modified	using	env_global).

impulse	106 Outputs	information	about	the	state	of	regular
entities	(name,	global	name,	model,	parent).

impulse	107 Outputs	the	name	of	the	texture	that	the	player	is
looking	at.

impulse	203 Removes	an	object	from	the	map	(except	world	and
players,	of	course).

showtriggers_toggle

An	alternative	to	the	showtriggers	console	variable.
The	difference	is	that	it	shows	triggers	without
requiring	a	map	restart.	However,	most
contemporary	compilers	(ZHLT,	VHLT)	perform	an
optimisation	that	deletes	all	triggers	with	the
AAATRIGGER	assigned	and	leave	only	the	physics
hull	without	a	visible	hull.	To	disable	this	behaviour,
compile	your	map	with	the	-nonullifytrigger
command-line	parameter	using	hlcsg.	Alternatively,
use	a	texture	with	a	different	name	for	triggers.



Aurora	Particle	System	Settings
The	Aurora	particle	system	first	appeared	in	Spirit	of	Half-Life	1.2,	but	was
severely	limited.	In	particular,	the	way	it	was	attached	to	objects	was	fairly
buggy.	Because	of	that,	the	system	could	not	be	used	to	its	full	potential.

In	XashXT,	most	of	the	system's	bugs	have	been	fixed,	which	has	made	possible
the	creation	of	new	interesting	effects.	A	visual	editor
(xash\devkit\tools\AuroraEditor.exe)	has	also	been	added,	making	it	a	lot
easier	to	create	particle	systems.

You	can	test	the	effects	of	changes	to	most	parameters	directly	in	the	particle
editor,	so	I	will	not	go	into	further	detail.	Only	the	mandatory	essentials	will	be
described.



Adding	a	Particle	System	to	a	Map

To	put	a	particle	system	in	a	map,	use	the	env_particle	entity.	Remember	that
linking	to	the	attachments	on	models	cannot	be	done	using	mapping	techniques,
because	a	particle	system	is	aware	of	the	attachment	number	only	on	the	model
of	the	entity	that	it	is	linked	to.	Since	env_particle	contains	no	model,	this
linking	method	makes	no	sense.	However,	it	can	be	useful	for	developing	a	new
mod	based	on	XashXT,	where	you	can	make,	for	example,	new	rocket	jets,
smoke	trails	etc.

Note	that	it	takes	the	object	some	time	to	restore	particles	on	savegame	load.	As
a	rule,	such	behaviour	is	common	to	most	particle	system	implementations	in
mods	and	game	engines,	so	this	is	nothing	out	of	the	ordinary.

The	path	to	the	script	file	must	be	full	and	include	the	extension.	This	lets	mod
authors	store	particle	system	definitions	in	folders	of	their	own	choice.	The
extension	does	not	matter—instead	of	aur,	it	can	be	txt	or	anything	else.

For	examples	of	script	files,	see	the	xash\aurora	folder.

	

Main	Section	Options	Auxiliary	(Emitter)	Section	Options



Main	Section	Options
This	section	is	not	enclosed	in	braces,	and	its	parameters	can	occur	only	once	per
definition.

particles

The	total	number	of	particles	that	the	system	can	handle.
The	number	of	particles	consumed	does	not	depend	on	this
parameter—it	is	determined	by	several	other	factors:	mean
particle	lifetime,	particle	deletion	method	and	so	on.	If	the
number	of	particles	is	set	too	high,	some	portion	of	them
may	never	come	to	be	used.	Conversely,	if	the	number	is	too
low,	the	effect	will	be	“diluted”.

maintype Name	of	the	primary	particle	emitter;	its	definition	follows
the	main	parameters	in	the	first	section.

attachment
Attachment	number	on	the	model	of	the	entity	that	the
system	is	attached	to.	As	mentioned	elsewhere,	this
parameter	has	no	effect	in	the	current	implementation.

lightmodel

Particle	lighting	type:

0	—	regular
1	—	sample	the	environment	lights
2	—	sample	the	environment	lights	and	blend	in	the
env_projector	projection

killcondition

Type	of	medium	that	disables	the	particle	emitter	on	contact.
There	are	three	types:

empty	—	doesn't	work	in	the	open	air
water	—	extinuished	by	water
solid	—	extinguished	by	the	level	architecture



Auxiliary	(Emitter)	Section	Options
These	options	are	enclosed	in	braces	and	define	particle	emitters,	including
drawing	settings	and	physics.

name
Name	specified	in	the	maintype	field	in	the	main	section,
in	the	spraytype	field	in	the	emitter	section	or	in	the
overlaytype	field	in	the	overlay	definition	section.

gravity

Rate	of	gravity	influence	on	particles.	Note	that	the	rate
should	be	negative	if	you	want	your	particles	to	travel
towards	the	ground.	The	parameter	can	take	a	random
value	from	a	range	specified	using	a	double	dot.	Example:
-300..-280.

windyaw

Direction	of	the	virtual	wind	(which	affects	only	this
particle	system)—the	YAW	angle	in	the	range	from	0	to
360	degrees.	The	parameter	can	take	a	random	value	from
a	range	specified	using	a	double	dot.

windstrength Strength	of	the	virtual	wind.	The	parameter	can	take	a
random	value	from	a	range	specified	using	a	double	dot.

sprite Path	to	the	sprite	to	use	as	the	particle	texture	for	this
emitter.

startalpha
Transparency	value	that	a	particle	is	assigned	at	birth.	The
value	can	range	from	zero	to	one.	The	parameter	can	take
a	random	value	from	a	range	specified	using	a	double	dot.

endalpha

Transparency	value	that	a	particle	is	supposed	to	have
when	it	dies.	The	value	can	range	from	zero	to	one.	The
parameter	can	take	a	random	value	from	a	range	specified
using	a	double	dot.

startred
Red	colour	value	that	a	particle	is	assigned	at	birth.	The
value	can	range	from	zero	to	one.	The	parameter	can	take
a	random	value	from	a	range	specified	using	a	double	dot.

Red	colour	value	that	a	particle	is	supposed	to	have	when
it	dies.	The	value	can	range	from	zero	to	one.	The



endred parameter	can	take	a	random	value	from	a	range	specified
using	a	double	dot.

startgreen
Green	colour	value	that	a	particle	is	assigned	at	birth.	The
value	can	range	from	zero	to	one.	The	parameter	can	take
a	random	value	from	a	range	specified	using	a	double	dot.

endgreen

Green	colour	value	that	a	particle	is	supposed	to	have
when	it	dies.	The	value	can	range	from	zero	to	one.	The
parameter	can	take	a	random	value	from	a	range	specified
using	a	double	dot.

startblue
Blue	colour	value	that	a	particle	is	assigned	at	birth.	The
value	can	range	from	zero	to	one.	The	parameter	can	take
a	random	value	from	a	range	specified	using	a	double	dot.

endblue

Blue	colour	value	that	a	particle	is	supposed	to	have	when
it	dies.	The	value	can	range	from	zero	to	one.	The
parameter	can	take	a	random	value	from	a	range	specified
using	a	double	dot.

startsize

Scale	of	a	particle	at	birth.	The	value	must	be	greater	than
zero;	otherwise,	the	particle	will	not	be	drawn.	The
parameter	can	take	a	random	value	from	a	range	specified
using	a	double	dot.

endsize

Scale	of	the	particle	when	it	dies.	The	value	must	be
greater	than	zero;	otherwise,	the	particle	will	not	be	drawn.
The	parameter	can	take	a	random	value	from	a	range
specified	using	a	double	dot.

sizedelta

Mean	random	scale	of	a	particle	(for	situations	where
smooth	size	changes	throughout	a	particle's	lifetime	are
not	needed).	The	parameter	can	take	a	random	value	from
a	range	specified	using	a	double	dot.

startangle
Tilt	angle	of	a	particle	at	birth.	The	angle	can	be	in	the
range	0–360.	The	parameter	can	take	a	random	value	from
a	range	specified	using	a	double	dot.

angledelta

Change	to	the	tilt	angle	of	a	particle	per	frame.	The	angle
can	be	in	the	range	0–360.	The	less	the	value,	the	slower
the	particle	sprite	rotates.	The	parameter	can	take	a



random	value	from	a	range	specified	using	a	double	dot.

startframe

Start	frame	set	for	a	particle	at	birth.	The	value	cannot	be
greater	than	the	total	number	of	frames	in	the	sprite	used.
The	parameter	can	take	a	random	value	from	a	range
specified	using	a	double	dot.

endframe

Used	as	an	alternative	to	framerate.	End	frame	set	for
when	a	particle	dies.	The	value	cannot	be	greater	than	the
total	number	of	frames	in	the	sprite	used.	The	parameter
can	take	a	random	value	from	a	range	specified	using	a
double	dot.

framerate

Used	as	an	alternative	to	endframe.	Sets	how	many
frames	the	particle	sprite	plays	back	per	second.	The
parameter	can	take	a	random	value	from	a	range	specified
using	a	double	dot.

lifetime Lifetime	of	a	particle	in	seconds.	The	parameter	can	take	a
random	value	from	a	range	specified	using	a	double	dot.

spraytype Name	of	a	new	particle	emitter	that	is	a	child	of	this
particle	emitter.

overlaytype Name	of	a	new	overlay	particle	emitter	that	is	a	child	of
this	particle	emitter.

sprayrate

Spray	intensity.	Directly	affects	how	the	number	of
particles	allocated	to	the	system	is	consumed.	The
parameter	can	take	a	random	value	from	a	range	specified
using	a	double	dot.

sprayforce
Particle	acceleration	rate	for	this	emitter	(added	to	that	of
the	parent	emitter).	The	parameter	can	take	a	random	value
from	a	range	specified	using	a	double	dot.

spraypitch

Local	PITCH	angle	component	of	the	particle	spray
orientation.	A	local	angle	is	used	because	the	global	angle
is	assumed	to	come	from	the	orientation	of	the
env_particle	entity—that	angle	may	be	local	if
env_particle	is	attached	to	some	entity	on	the	server.	The
angle	can	be	in	the	range	from	0	to	360.	The	parameter	can
take	a	random	value	from	a	range	specified	using	a	double
dot.



sprayyaw

Local	YAW	angle	component	of	the	particle	spray
orientation.	A	local	angle	is	used	because	the	global	angle
is	assumed	to	come	from	the	orientation	of	the
env_particle	entity—that	angle	may	be	local	if
env_particle	is	attached	to	some	entity	on	the	server.	The
angle	can	be	in	the	range	from	0	to	360.	The	parameter	can
take	a	random	value	from	a	range	specified	using	a	double
dot.

drag

Drag	coefficient	(generalised,	not	skin	friction)	that
decreases	the	speed	of	a	particle	throughout	its	lifefime.
The	parameter	can	take	a	random	value	from	a	range
specified	using	a	double	dot.

bounce

Coefficient	for	particles	bouncing	off	solid	surfaces.	At	0,
the	particle	sticks;	greater	values	make	it	bounce	off
harder.	Ranges	from	zero	to	two.	The	parameter	can	take	a
random	value	from	a	range	specified	using	a	double	dot.

bouncefriction
Friction	coefficient	for	slowing	down	a	particle	on	bounce.
The	parameter	can	take	a	random	value	from	a	range
specified	using	a	double	dot.

rendermode Drawing	mode	for	all	particles	of	the	emitter.	Can	have	the
following	values:	additive,	solid,	texture,	color.

drawcondition

Type	of	medium	where	a	particle	can	be	drawn.	When	it
hits	a	different	medium,	it	is	not	drawn	any	more.	By
default,	it	is	drawn	everywhere.
The	parameter	can	have	the	following	values:

empty	—	drawn	in	the	air
solid	—	drawn	only	inside	architecture
special1,	special2,	special3	—	custom	medium	types
that	you	can	set	for	func_illusionary	to	prevent
particle	rendering	outside	that	medium
spotlight	—	virtual	env_projector	frustum	inside
which	a	particle	is	drawn	(only	drawn;	the
lightmodel	parameter	is	not	affected	in	any	way)—
this	is	a	good	way	to	fake	dust	specks	in	a	cone	of
light



Note:	Emitter	definitions	must	be	enclosed	in	curly	braces	and	given	names.	The
main	parameters	must	not	be	enclosed	in	braces.



Frequently	Asked	Questions
To	what	extent	is	XashXT	compatible	with	standard	Half-Life	entities?
To	what	extent	is	XashXT	compatible	with	standard	Spirit	of	Half-Life
entities?
What's	the	current	released	XashXT	version?
What	version	of	the	Xash3D	engine	is	required	for	XashXT	0.6	to	work
correctly?
Will	it	work	on	the	original	GoldSource?
Does	XashXT	work	in	multiplayer?
This	is	a	great	project;	how	can	I	help?
I'd	like	to	continue	the	development	of	the	toolkit	on	my	own.	How	should	I
go	about	it?
I've	downloaded	it,	and	now	it	won't	install/crashes/hangs	up;	what	do	I	do?
Bloody	hell!	Can	you	believe	this	shit?!

	

To	what	extent	is	XashXT	compatible	with	standard	Half-Life	entities?

Compatibility	approaches	100%	with	regard	to	entity	settings	and	rendering
results.	Many	graphics	enhancement	mods	for	Half-Life	are	known	to	change	the
look	of	the	game	dramatically,	even	if	none	of	the	enhancements	are	enabled.
During	XashXT	development,	extra	care	was	taken	to	maintain	the
compatibility.	You	can	compare	the	visuals	rendered	by	XashXT's	custom
renderer	with	the	engine	renderer	by	toggling	the	gl_renderer	console	variable.
As	regards	entity	compatibility,	I	should	note	that	Half-Life	can	be	completed
under	XashXT	without	issues.	In	theory	there	may	be	discrepancies	affecting
user	maps,	but	examples	of	this	have	not	yet	cropped	up.

	

To	what	extent	is	XashXT	compatible	with	standard	Spirit	of	Half-Life
entities?

In	this	area,	compatibility	is	much	lower,	because	the	mod	never	aimed	at	full
compatibility	with	Spirit.	Wherever	entities	or	options	are	borrowed	from	Spirit,



this	is	mentioned	in	the	documentation.	Still,	some	entities	should	work	well,
and	this	has	confirmed	by	some	of	the	Spirit	demo	maps	running	successfully.

	

What's	the	current	released	XashXT	version?

The	current	final	version	of	XashXT	is	0.61.	This	is	a	stable	and	thoroughly
debugged	version	with	detailed	documentation.	You	can	use	it	for	your	mods	as
it	is	or	with	your	custom	modifications,	which	is	possible	due	to	its	sources
being	open.	If	I	the	author	of	XashXT	find	that	the	mod	is	popular	and	used	for
games	or	interesting	demo	maps	that	give	the	project	good	publicity,	then	I	may
resume	development	and	release	version	0.7	that	would	use	bump	and	parallax
mapping,	and	a	lot	of	other	exciting	stuff	widely	used	in	modern	games.	Sadly,	at
this	point	I	simply	don't	have	the	time.	Generally	speaking,	if	some	kind	of
community	emerges,	this	will	increase	the	chances	of	the	project's	continued
development.

	

What	version	of	the	Xash3D	engine	is	required	for	XashXT	0.6	to	work
correctly?

The	recommended	version	is	Xash3D	0.95	build	2009	or	higher.	However,	the
mod	also	works	on	older	builds,	all	the	way	down	to	and	including	build	1905,
although	some	features	become	disabled.	It	is	not	guaranteed	to	work	on	builds
prior	to	1905.

	

Will	it	work	on	the	original	GoldSource?

Unfortunately	not.	The	main	goal	of	XashXT	has	been	to	advertise	the	Xash3D
engine	and	its	new	interfaces,	which	make	it	possible	to	add	lots	of	exciting
features	that	are	either	unavailable	for	GoldSource	by	definition	or	available
through	hacks	and	prone	to	cause	instability	and	resource	hogging	(most	custom
renderers	for	GoldSource	keep	multiple	texture	copies	in	video	RAM,	because
this	is	the	only	way	to	handle	them).	Thus,	XashXT	showcases	the	new	features
that	are	there	precisely	because	of	the	extended	interfaces,	so	naturally	it	will	not
work	on	GoldSource.	You	can	actually	run	XashXT	on	GoldSource,	but	most



objects	will	be	dead	and	will	not	budge.	And	the	custom	renderer	will	be
disabled	altogether.

	

Does	XashXT	work	in	multiplayer?

Yes	it	does,	but	its	main	purpose	is	singleplayer.	Besides,	the	player	prediction
system	is	incomplete	in	Xash3D,	so	you	will	experience	noticeable	lagging
while	playing	over	the	Internet.	Some	problems	with	physics	objects	may	also
occur	for	remote	players,	but	this	has	not	yet	been	carefully	tested.

	

This	is	a	great	project;	how	can	I	help?

You	can	make	a	donation—the	wallet	number	is
410011011597633
in	the	Yandex.Money	system.
There	is	also	the	WebMoney	wallet
R921161786039

	

I'd	like	to	continue	the	development	of	the	toolkit	on	my	own.	How	should	I	go
about	it?

If	you	are	serious	about	implementing	my	ideas	independently,	I	recommend
naming	the	project	XashXT:	Custom	Build	so	that	there	is	no	confusion.
Personally,	I	don't	mind	a	project	like	that	at	all	as	long	as	the	quality	stays	high.

	

I've	downloaded	it,	and	now	it	won't	install/crashes/hangs	up;	what	do	I	do?

Technical	support	in	case	of	problems	is	available	at	our	forum	in	this	section
(link	opens	in	a	new	window).

Register	an	account	at	the	forum	and	ask	your	question	in	English	or	Russian.	It
will	be	answered	for	sure.

http://www.hlfx.ru/forum/forumdisplay.php?s=&forumid=30


	

Bloody	hell!	Can	you	believe	this	shit?!

And	how!



Credits
Main	developer

Unkle	Mike

	

Additional	coding

n00b

	

Art

Chorus
Small	Link

	

Demo	maps

Unkle	Mike
thambs
Scrama

	

Project	hosting	and	technical	support

XaeroX

	

Beta	testers

Qwertyus



FiEctro
thambs
Raid
Flash_AD

	

Documentation	and	translation

nemyax


	XashXT 0.62
	XashXT Features
	Setup
	Global Systems and Common Settings
	Parent System
	Reflection Types
	Prefixes and Postfixes for Switching Target Object States
	States and Masters
	Mirrors
	Water
	Environment Variables
	Custom Sounds
	Monster Classes and Behaviour

	New Entities
	ambient_music
	env_counter
	env_customize
	env_dynlight
	env_local
	env_model
	env_particle
	env_projector
	env_rain
	env_rainmodify
	env_sky
	env_spritetrain
	env_static
	env_warpball
	func_clock
	func_light
	func_monitor
	func_physbox
	func_platform
	func_portal
	func_screenmovie
	func_traindoor
	generator
	hud_sprite
	info_compile_parameters
	info_portal_destination
	info_texlights
	item_generic
	momentary_rot_door
	monster_target
	multi_switcher
	multi_watcher
	physboxmaker
	player_keycatcher
	pushablemaker
	scripted_trainsequence
	train_setspeed
	trigger_bounce
	trigger_changeparent
	trigger_command
	trigger_gravity_field
	trigger_impulse
	trigger_inout
	trigger_lightstyle
	trigger_onsight
	trigger_playerfreeze
	trigger_sound
	trigger_startpatrol

	New Options for Existing Entities
	Global Parameters
	New in Regular Half-Life Entities
	env_beam
	env_fade
	env_funnel
	env_laser
	env_render
	env_shooter
	func_button
	func_conveyor
	func_door (func_door_rotating, func_water)
	func_plat (func_platrot)
	func_pushable
	func_rotating
	func_tank (func_tankrocket, func_tankmortar, func_tanklaser)
	func_tankcontrols
	func_trackautochange
	func_trackchange (func_trackautochange)
	func_tracktrain
	func_train
	gibshooter
	info_player_start
	info_target
	light (light_spot, light_environment)
	momentary_door
	momentary_rot_button (momentary_rot_door)
	monster_alien_grunt
	monster_barney
	monster_generic
	monster_human_grunt
	multisource
	multi_manager
	path_track
	player_weaponstrip
	scripted_sequence
	trigger_auto
	trigger_camera
	trigger_changetarget
	trigger_multiple
	trigger_once
	trigger_push
	trigger_relay
	trigger_teleport
	weapon_cycler
	worldspawn


	Additional Debugging Facilities
	Aurora Particle System Settings
	Main Section Options
	Auxiliary (Emitter) Section Options

	Frequently Asked Questions
	Credits

