
Main	Page

Wwise	Unreal	Integration

Requirements

Unreal	Engine

Each	release	of	the	Unreal	Wwise	plug-in	is	customized	for	certain
versions	of	the	Unreal	Engine.	Be	sure	to	use	one	of	the	supported
versions	of	the	Unreal	Engine,	as	indicated	in	What's	New?

The	latest	supported	Unreal	version	for	this	plug-in	is	Unreal	Engine	4.18.

Wwise
This	plug-in	is	based	on	Wwise	2017.2.1	build	6524.;	while	it	is	possible
to	use	an	alternate	version	of	the	Wwise	SDK,	modifications	to	the	plug-
in	code	may	be	necessary.

Platforms
This	plug-in	has	been	tested	on	Windows,	Mac,	Linux	(SteamOS),	Xbox
One,	PlayStation	4,	Android,	and	iOS.	Modifications	may	be	required	to
target	other	platforms.

Development	Environment	Setup
Please	refer	to	the	UE4	documentation:

"Downloading	Unreal	Engine	Source	Code"
"Setting	Up	Visual	Studio	for	UE4"
"Building	Unreal	Engine	from	Source"

Generated	by		 	1.6.3

https://docs.unrealengine.com/latest/INT/GettingStarted/DownloadingUnrealEngine/index.html
https://docs.unrealengine.com/latest/INT/Programming/Development/VisualStudioSetup/index.html
https://docs.unrealengine.com/latest/INT/Programming/Development/BuildingUnrealEngine/index.html
http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration

Installation
Before	proceeding,	review	the	Requirements	page	and	make	sure	the
appropriate	versions	of	the	Unreal	Engine,	Unreal	Wwise	plug-in,	and
Wwise	are	used.

This	UE4	integration	package	contains	files	related	to	the	Wwise	plug-in
only;	it	does	not	contain	the	entire	Unreal	Engine	source	code,	nor	the
Wwise	SDK.

Installation	Procedure
There	are	two	ways	of	installing	the	Unreal	Wwise	plug-in:	either	as	a
game	plug-in	or	as	an	engine	plug-in	-	not	both.

Note:
For	more	information	on	the	difference	between	engine	and	game
plug-ins	(sometimes	referred	to	as	"installed"	plug-ins),	please	refer
to	the	Unreal	Engine	Wiki.

Installing	the	Wwise	Unreal	Plug-in	as	a	Game	Plug-in

Installing	as	a	game	plug-in	is	handled	by	the	Wwise	Launcher.	Please
open	the	Launcher	to	the	UNREAL	ENGINE	tab	and	find	your	Unreal
project.	If	it's	not	there,	then	click	Browse	for	project...	to	find	the
UPROJECT	file	and	add	the	project	to	the	Launcher.	Once	it's	listed,	click
Integrate	Wwise	into	Project...	for	the	Unreal	project.	The	Launcher	will
guide	you	to	specify	all	the	necessary	information	to	successfully
integrate	the	Wwise	plug-in	into	your	project.	Alternatively,	you	can
accomplish	the	same	thing	using	offline	integration	files,	which	are
downloaded	via	the	UNREAL	ENGINE	tab	menu.

Managing	Wwise	Plug-ins

There	are	various	plug-ins	available	for	Wwise,	which	need	to	be
installed	correctly	in	order	to	be	used	in	the	Unreal	Wwise	plug-in.	Plug-
ins	for	Wwise	are	managed	via	the	Wwise	Launcher.	For	more
information	on	managing	plug-ins	for	Wwise,	refer	to	the	PLUG-INS
section	of	the	Installation	and	Migration	Guide.

Note:
If	there	are	plug-ins	missing	from	your	Wwise	installation	when	you
use	the	Wwise	Unreal	plug-in,	you	will	see	the	following	error:
LogAkAudio:	Error:	Could	not	find	plugin	dynamic	library.

Installing	the	Wwise	Unreal	Plug-in	as	an	Engine	Plug-in

https://wiki.unrealengine.com/An_Introduction_to_UE4_Plugins#Engine_vs._Installed
https://www.audiokinetic.com/library/edge/?source=InstallGuide&id=plugins

Note:
Installing	the	Wwise	plug-in	for	Unreal	as	an	engine	plug-in	is
intended	for	expert	users	only.

To	install	as	an	engine	plug-in,	you	must	first	download	the	integration
from	the	Launcher.	Go	to	the	UNREAL	ENGINE	tab	and	select	the
Download	Wwise	Integration	to	use	as	an	engine	plug-in...	option
from	the	tab's	menu.

Then,	follow	these	steps:

1.	 Copy	the	"Wwise"	UE4	Integration	folder	to	the	"Plugins"	folder.
Copy	the	"Wwise"	UE4	Integration	folder	to	…/<UE4	installation
directory>/Engine/Plugins.

2.	 Since	the	Wwise	UE4	integration	may	need	to	be	rebuilt	on	the	fly	by
the	Unreal	Editor	during	the	packaging	process,	several	folders	from
the	Wwise	SDK	installation	folder	must	be	copied	into	the	"Wwise"
plug-in	folder	hierarchy.	The	following	folders	are	required:

Source:	C:\Program	Files	(x86)\Audiokinetic\Wwise	2017.2.1
build	6524.\SDK\include*.*

Destination:	.../Plugins/Wwise/ThirdParty/include

Source:	C:\Program	Files	(x86)\Audiokinetic\Wwise	2017.2.1
build	6524.\SDK\Win32_**.*

Destination:	.../Plugins/Wwise/ThirdParty/Win32_*

Source:	C:\Program	Files	(x86)\Audiokinetic\Wwise	2017.2.1
build	6524.\SDK\x64_**.*

Destination:	.../Plugins/Wwise/ThirdParty/x64_*

Source:	C:\Program	Files	(x86)\Audiokinetic\Wwise	2017.2.1

build	6524.\SDK\Mac*.*

Destination:	.../Plugins/Wwise/ThirdParty/Mac
3.	 You	then	need	to	open	your	project	and	go	to	Edit	>	Plugins	>

Audio	and	select	the	Enable	check	box	under	"Wwise	Unreal
Engine	4	integration".

For	Android,	iOS,	Linux,	PlayStation	4,	and	Xbox	One,	the	libraries	must
also	be	copied:

Source:	C:\Program	Files	(x86)\Audiokinetic\Wwise	2017.2.1
build	6524.\SDK\<Your	Platform>*.*

Destination:	.../Plugins/Wwise/ThirdParty/<Your	Platform>

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration

Building	the	plug-in

Preprocessor	Defines

The	following	preprocessor	defines	are	introduced	to	control	the
integration	features:

AK_USE_UNREAL_IO	Located	in	…
\Plugins\Wwise\Source\AkAudio\AkAudio.Build.cs.
This	setting,	which	is	enabled	by	default,	causes	all	IO	requests	from
the	Wwise	sound	engine	to	be	routed	in	the	Unreal	IO	system.	When
not	enabled,	the	standard	Wwise	low-level	I/O	is	used.

AK_SOUNDFRAME	
Located	in	…\Plugins\Wwise\Source\AkAudio\AkAudio.Build.cs.
This	setting	provides	basic	SoundFrame	support	to	activate	Unreal
Editor	features,	such	as	Radius	display,	that	require	communication
with	the	Wwise	Authoring	Application.	Enabled	by	default,	except	in
the	Ship	configuration.	This	option	is	not	available	on	Mac	OS	X.

Building	the	Unreal	Wwise	plug-in	from	source
If	the	installation	steps	outlined	in	Installation	have	been	followed
correctly,	rebuilding	the	Unreal	Wwise	plug-in	is	done	the	same	way	as
rebuilding	the	Unreal	Engine.	For	a	more	detailed	description	of	this
process,	please	consult	the	Unreal	Engine	documentation.

For	more	information	on	plugins	with	source	code,	please	refer	to	the
Unreal	Engine	documentation.

Generated	by		 	1.6.3

https://docs.unrealengine.com/latest/INT/Programming/Development/BuildingUnrealEngine/index.html
https://docs.unrealengine.com/latest/INT/Programming/Plugins/index.html#codeinplugins
http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration

Using	the	Integration
Initial	Setup	How	to	set	up	using	Wwise	after	building	Unreal	with
the	integration.

Workflow	
A	basic	workflow	to	get	started.

UE4	C++	projects	
A	quick	overview	to	get	started	using	a	C++	project.

Sample	Game	
A	quick	overview	of	the	UnrealWwiseDemo	game	demonstrating	the
integration	features.

Features	
Survey	of	the	features	introduced	by	the	integration.

Frequently	Asked	Questions	
Answers	to	the	most	frequently	asked	questions.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration

Initial	Setup

Initialization	settings

Note:	All	settings	related	to	the	Wwise	Integration	can	be
found	in	the	Unreal	Project	Settings,	under	the	Wwise	section
of	the	plug-ins	section.

Max	Simultaneous	Reverb	Volumes	
The	maximum	number	of	Ak	Reverb	Volumes	that	can	affect	a
sound.	Setting	this	to	zero	disables	all	Ak	Reverb	Volumes	in	game.

Wwise	Windows	Installation	Path	
The	location	of	the	Wwise	Authoring	Application	on	your	Windows
development	machine.	This	option	will	need	to	be	updated	when	a
new	version	of	the	Wwise	Authoring	Application	is	required	by	the
integration	changes.

Wwise	Mac	Installation	Path	
The	location	of	the	Wwise	Authoring	Application	on	your	Mac	OS	X
development	machine.	This	option	will	need	to	be	updated	when	a
new	version	of	the	Wwise	Authoring	Application	is	required	by	the
integration	changes.

Wwise	Project	Path	
The	location	of	the	Wwise	project	for	the	UE4	game.	The	Wwise
integration	requires	this	path	to	create	the	Wwise	assets	required	for
the	game	using	the	Generate	SoundBanks	function	within	the
Unreal	Content	Browser	(or	Build	menu).	This	path	is	relative	to	the
editor's	executable	directory	(usually
<UE4_installation_directory>/Engine/Binaries/Win64),	as	given	by
FPlatformProcess::BaseDir()	in	the	Unreal	Engine.

If	these	paths	are	not	correctly	set,	Unreal	will	fail	to	generate	the	Wwise
SoundBanks	required	for	the	game.

Initializing	the	SoundEngine
The	SoundEngine	initialization	steps	are	performed	in	the
FAkAudioDevice::EnsureInitialized()	method.	In	this	method,	the
memory,	streaming,	IO,	sound	engine,	platform,	music	engine,	and
communication	settings	can	be	configured.

Plug-ins	can	be	registered	by	including	their	associated	plug-in	factory
header	file	in
.../Plugins/Wwise/Source/AkAudio/Private/AkAudioDevice.cpp	under	the
line	saying:	//	Add	additional	plug-ins	here.

Linking	against	a	plug-in's	library	can	be	done	by	adding	a	call	to	the
AddWwiseLib()	function	for	the	plug-in	in
.../Plugins/Wwise/Source/AkAudio/AkAudio.Build.cs,	near	the	other
plug-ins.	Once	this	is	complete,	the	UE4	game	project	will	have	to	be
rebuilt	from	its	Visual	Studio	solution	or	Xcode	workspace.

Please	note	that	a	limitation	in	Unreal	Engine	4	prevents	rebuilding	an
Unreal	plug-in	from	a	Content-only	(Blueprint)	project.	Therefore,	third-
party	Wwise	DSP	plug-ins	are	not	available	in	a	Content-only	(Blueprint)
project,	as	this	method	requires	rebuilding	the	Wwise	Unreal	plug-in.

For	more	information	on	SoundEngine	initialization,	refer	to	the	Initialize
the	Different	Modules	of	the	Sound	Engine	section	in	the	Wwise	SDK
documentation.

Generated	by		 	1.6.3

https://www.audiokinetic.com/library/?source=SDK&id=workingwithsdks__initialization.html
http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration

Workflow
Here	is	a	sample	workflow	using	the	integration:

1)	Create	a	Wwise	project
Create	a	Wwise	project	for	this	game	using	the	Wwise	Authoring
Application.	Some	Events	are	created,	but	no	SoundBanks	need	to	be
created	yet.

2)	Add	AkAudioEvent	objects	to	Unreal
packages
In	the	Unreal	Content	Browser,	add	AkAudioEvent	objects	to	packages.

3)	Reference	AkAudioEvent	objects	in	a	level
AkAudioEvent	objects	can	now	be	referenced	in	a	level,	such	as	in
using	Wwise-specific	Blueprint	Functions	or	AkAmbientSound
objects.

4)	Add	AkAudioBank	objects
The	Wwise	assets	associated	with	AkAudioEvent	object	can	be
distributed	across	any	number	of	AkAudioBank	objects.	Using	the
Unreal	Content	Browser,	add	AkAudioBank	objects	as	required.

5)	Set	the	RequiredBank	property	for	each
AkAudioEvent
The	RequiredBank	property	of	each	AkAudioEvent	determines	which
AkAudioBank	its	content	will	be	stored	in.	This	property	must	be	set	for
each	AkAudioEvent	used	in	the	game.

6)	Generate	SoundBanks	(for	play-in-editor)
From	the	Build	menu,	select	the	Generate	SoundBanks	option,	and
then	select	all	banks	to	be	generated,	and	click	OK.	The	required
SoundBanks	are	generated.	After	the	banks	are	generated	at	least	once,
it	is	possible	to	play	sounds	in	the	editor.

Note:	The	first	time	banks	are	generated,	you	need	to	click
Refresh	All	Banks	by	right-clicking	on	one	of	the	AkAudioBank
objects.

Banks	generated	from	the	Unreal	Editor	can	then	be	added	to	source
control.	This	allow	individuals	without	the	Wwise	application	and	project
on	their	machine	to	still	be	able	to	work	in	the	Unreal	editor	using	existing
BNK	files	from	the	game's	Content	folder.	They	could	hook	the
AkAudioEvent	objects	at	different	places	in	the	level,	and	they	would	be
able	to	run	the	game.

When	new	banks	are	generated,	click	Refresh	All	Banks	in	the	Content
Browser's	AkAudioBank	to	load	the	newly	created	banks.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration

UE4	C++	projects

Linking	with	the	AkAudio	Module

The	AkAudio	module	must	be	linked	with	to	use	Wwise's	functionality
within	a	C++	project.	This	must	be	done	within	your	project's	module	file
(.build.cs).

For	example:

public	class	MyModule	:	ModuleRules

{

				public	MyModule(ReadOnlyTargetRules	Target)	:	base(Target)

				{

								PublicDependencyModuleNames.AddRange(new	string

								

								//	Other	settings

				}

}

Note:	All	AK::SoundEngine	calls	are	currently	made	from
AkAudioDevice	and	must	be	made	from	within	the	AkAudio	module.
Users	must	extend	the	functionality	within	the	AkAudio	module	to
expose	required	Wwise	functionality.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration

Sample	Game
A	sample	game	containing	the	Wwise	UE4	Integration	is	available	to
download	in	the	Wwise	Launcher.	Please	refer	to	the	Launcher.

The	game's	map	provides	several	demonstration	stations.

Generation	of	the	SoundBanks

Note:	Generate	SoundBanks	for	this	project	from	the
WwiseDemoGame	Unreal	Editor.

1.	 Open	the	WwiseDemoGame	in	the	Unreal	Editor.
2.	 From	the	toolbar,	click	the	arrow	next	to	Build	and	select	Generate

SoundBanks...	from	the	Audiokinetic	category.
3.	 Select	all	the	SoundBanks	and	the	desired	platforms	and	click	OK.

On	completion,	the	resulting	content	is	visible	in
.../WwiseDemoGame/Content/WwiseAudio.

Map	Contents

AkEvent	Animation	Notify

An	Animation	Notify	can	be	used	to	post	AkEvents	to	the	SoundEngine.	A
demonstration	of	its	use	can	be	seen	in	the	FPP_Fire	animation.

Ambient	Demo

This	area	of	the	map	demonstrates	the	use	of	the	AkAmbientSound
actor.	The	AmbientNoise_Spatialized	ambient	emitter	in	the	level	is
started	by	a	Start	All	Ambient	Sounds	node	in	the	Level	Blueprint.	To
help	locate	the	actor,	its	attenuation	sphere	is	drawn	in	yellow	when
playing	the	game.

The	Event	used	by	this	emitter	is	part	of	the	AmbientBank	SoundBank,
which	is	automatically	loaded	thanks	to	the	Auto	Load	flag	set	on	its
AkAudioBank	asset.

This	area	also	helps	to	demonstrate	the	occlusion	feature.	By	navigating
the	player	pawn	behind	the	wall	situated	close	to	the	ambient	sound
(making	sure	to	stay	within	the	yellow	zone),	or	behind	the	big	box	in	the
sphere,	the	effects	of	occlusion	on	the	sound	can	be	heard.	Occlusion	is
enabled	on	the	sound	by	setting	it	in	the	in	the	"Ambient	Sound	handling"
(red)	section	of	the	Blueprint	level.

Sequencer	Demo

This	section	of	the	map	demonstrates	the	use	of	Event	and	RTPC	tracks
in	the	WwiseDemoSequence	asset.	Opening	the	level	sequence	in	the
Sequencer	editor	shows	that	the	Event	track	plays	a	drum	beat	targeting
the	moving	cube,	while	the	DrumKitModulation	game	parameter	is	driven
by	the	RTPC	track.

RTPC	Demo

This	section	of	the	map	demonstrates	use	of	the	Set	RTPCValue	node

targeting	an	actor,	in	the	Level	Blueprint	(in	the	green	comment	sections).
The	mouse	scroll	wheel	(the	up	and	down	D-pad	buttons	on	a	gamepad,
and	a	two-finger	swipe	on	a	touch	screen)	is	tied	to	a	variable	that	is	fed
as	the	"Velocity"	Game	Parameter,	which	controls	the	pitch	of	the
VelocityLoop	sound	in	the	Wwise	project.

The	"Create	RTPC	button	Event	dispatchers"	section	of	the	level
Blueprint	also	shows	how	to	manually	load	and	unload	the	VelocityBank
(whose	Auto-Load	is	unselected),	using	the	Load	Bank	and	Unload
Bank	Blueprint	nodes.	It	also	demonstrates	how	to	post	an	Event	that
targets	an	actor,	using	the	Post	Event	node.

Reverb	Demo

This	section	of	the	map	demonstrates	use	of	AkReverbVolume.	Inside	the
spherical	cave,	an	AkReverbVolume	is	used	to	add	a	Reverb	Effect	to	the
weapon	sound.	Note	that	the	actor	emitting	the	sound	can	be	set	to
ignore	the	reverb	volumes	feature.	This	is	done	in	the	"Variable
initializations"	section	of	the	Blueprint	level.

Switch	Demo

This	section	of	the	map	demonstrates	how	to	set	a	Switch	using
blueprints	(in	the	"Switch	Logic"	section	of	the	Blueprint	level).	Using	the
button	(see	instructions	on	the	wall	in	front	of	the	button)	posts	the	Event
to	the	SoundEngine.	Pressing	L	or	H	on	the	keyboard	(D-Pad	left	and
right	on	a	gamepad,	three	and	four	finger	taps	on	a	touch	screen)
changes	the	switch	value.

WAAPI	Widgets	Demo

This	section	of	the	map	demonstrates	how	to	use	the	WAAPI	UMG
Widgets	to	control	Wwise	directly	from	your	game.

The	demo	on	the	left	wall	illustrates	how	to	use	Unreal	Engine's	built-in
widgets	along	with	Blueprint	scripting	to	control	Wwise.	The	keyboard	in
step	1	changes	the	text	in	the	Editable	Text	Box.	When	that	text	is
changed,	a	WAAPI	Call	is	made	using	WAAPI	Blueprint	Functions	to
search	for	items	in	Wwise	matching	the	entered	text	(as	can	be	seen	in

step	2),	as	is	shown	in	the	"Search	for	an	item"	section	in	the	Widget's
Graph.	WAAPI	returns	the	list	of	matching	items	in	a	JSON	objects,
which	is	then	parsed	to	populate	the	combo	box	found	in	step	3.	Once	an
item	is	selected,	it	is	possible	to	play	or	stop	it	using	the	buttons.	The
Blueprint	script	to	control	this	behaviour	is	found	in	the	"Play/Stop"	the
selected	item	section	of	the	Widget's	Graph.

Note:
Due	to	an	Unreal	Engine	known	issue	on	the	Mac	platform,
updating	ComboBox	values	in	a	3D	widget	does	not	work.	You	can
still	experience	the	demo	using	the	2D	version	of	these	widgets,
available	by	pressing	"P"	in	game.

The	demo	on	the	back	wall	demonstrates	how	the	Ak	Wwise	Tree	and
Ak	Item	Bool	Properties	widgets	can	be	used	to	control	a	Ak	Check
Box.	The	tree	can	be	used	to	find	a	Wwise	object	to	control.	That	item
can	be	dragged	&	dropped	onto	the	UE	Checkbox	or	the	Ak	Checkbox	to
set	the	item	the	checkbox	controls.	The	same	has	to	be	done	with	the
Bool	Properties	picker.	Once	the	item	and	the	property	have	been	set	on
the	checkboxes,	you	may	use	them	to	enable	or	disable	the	property
directly	in	Wwise.	Changing	the	property	in	Wwise	will	also	be	reflected
on	both	checkboxes.	The	UE	Checkbox	showcases	how	you	can	use	the
built-in	Checkbox	widget	and	Blueprint	scripting	to	accomplish	this.	The
Ak	Checkbox	shows	that	the	exact	same	behaviour	can	be	accomplished
without	any	Blueprint	scripting.

The	demo	on	the	right	wall	is	very	similar	to	the	previous	Checkbox
demo,	but	shows	how	to	use	a	Ak	Wwise	Tree	and	a	Ak	Item
Properties	to	control	a	Ak	Slider.

Note	that	all	three	demos	are	also	available	in	normal	2d	UMG	widgets
by	pressing	the	"P"	key	on	your	keyboard	during	gameplay.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration

Features
The	following	sections	give	an	overview	of	the	elements	that	the
integration	brings	to	Unreal.

Unreal	Objects	Unreal	Objects	introduced	to	expose	base	Wwise
concepts.

Editor	Integration	
WAAPI-enabled	workflow	enhancements	to	the	Editor.

Blueprint	Functions	
Blueprint	functions	available	in	visual	scripting.

Animation	
Animation	Notify	for	Events.

Level	Sequencer	
Sequencer	Tracks	for	Events	and	RTPC.

Matinee	
Matinee	Tracks	for	Events	and	RTPC.

Occlusion	
Occlusion	support.

Wwise	Authoring	API	(WAAPI)	
Wwise	Authoring	API	(WAAPI)

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration	»	Features

Unreal	Objects
Spatial	Audio	Objects	WAAPI	Widgets

AkAudioEvent
Unreal	object	representing	a	Wwise	Event.	Can	be	created	either	by
drag-and-drop	from	the	Wwise	Picker	or	by	right-clicking	in	the	Unreal
Content	Browser.	Its	name	should	exactly	match	the	name	of	an	Event	in
the	Wwise	Project.

Properties
Required	Bank:	Specifies	the	SoundBank	that	contains	this
Event	along	with	its	structures	and	media.

Unreal	Content	Browser	Context	Menu	Options
Play	Event:	Posts	the	Event.
Stop	Event:	Stops	all	currently	playing	Events.

AkAuxBus
Unreal	object	representing	a	Wwise	Auxiliary	Bus.	Can	be	created	either
by	drag-and-drop	from	the	Wwise	Picker,	or	by	right-clicking	in	the
Unreal	Content	Browser.	Its	name	should	exactly	match	the	name	of	an
Auxiliary	Bus	in	the	Wwise	Project.	This	allows	to	add	plug-in	media	to	a
SoundBank	from	within	the	Unreal	Editor.

Properties
Required	Bank:	Specifies	the	SoundBank	that	contains	this
Auxiliary	Bus	along	with	its	associated	plug-in	media.

AkAudioBank
Unreal	object	representing	a	Wwise	SoundBank.	Can	be	created	by	right-
clicking	in	the	Unreal	Content	Browser.

Properties
Auto	Load:	When	enabled,	automatically	loads	and	unloads	the
SoundBank	along	with	the	package	referencing	it.	Note:
Enabling	this	flag	does	not	instantly	load	the	bank	in	the	editor;	it
is	only	applied	on	the	next	package	load.

Unreal	Content	Browser	Context	Menu	Options
Generate	Selected	SoundBank(s)...:	Launches	a	dialog
window	where	a	SoundBank	Generation	operation	can	be
performed	on	a	list	of	SoundBanks.
Load	Bank:	Loads	this	SoundBank.
Unload	Bank:	Unloads	this	SoundBank.
Clear	Banks:	Unloads	all	currently	loaded	SoundBanks,
including	the	Init	bank.
Load	Init	Bank:	Loads	the	Init	Bank.	This	Bank	must	be	loaded
prior	to	any	other	SoundBank.
Refresh	All	Banks:	Stops	all	sounds;	unloads	and	then	loads
all	currently	loaded	SoundBanks.

AkAmbientSound
AkAmbientSound	is	an	AActor	class	used	in	the	same	way	as	the
AAmbientSound	object	that	is	supplied	with	the	default	Unreal	Audio
system.	Its	playback	is	controlled	either	via	its	own	object	Blueprint
functions,	or	by	using	the	global	helper	functions	Start	All	Ambient
Sounds	and	Stop	All	Ambient	Sounds.	An	AkAmbientSound	also
contains	an	AkComponent,	which	has	its	own	properties.

Properties
Stop	When	Owner	Is	Destroyed:	When	enabled,	the	Event	is
stopped	automatically	when	the	AkAmbientSound	is	destroyed.
Auto	Post:	Automatically	post	the	associated	AkAudioEvent
on	BeginPlay.

Blueprint	Functions
Start	All	Ambient	Sound:	Starts	the	playback	of	all	ambient
sounds.
Start	Ambient	Sound:	Starts	the	playback	of	the	selected
ambient	sound.
Stop	All	Ambient	Sound:	Stops	the	playback	of	all	ambient
sounds.
Stop	Ambient	Sound:	Stops	the	playback	of	the	selected
ambient	sound.

AkReverbVolume
AkReverbVolume	is	an	AVolume	class	used	in	a	similar	way	to	the
AReverbVolume	object	that	is	supplied	with	the	default	Unreal	Audio
system.	It	can	be	spawned	from	any	Brush	in	the	Editor.	The	reverb	effect
is	obtained	via	an	AkLateReverbComponent.

AkLateReverbComponent
This	component	can	be	added	to	any	volume,	allowing	to	create	a	reverb
zone	from	it.	The	reverb	effect	is	obtained	by	assigning	a	Wwise	Auxiliary
Bus	to	the	component,	and	routing	all	AkComponents	entering	this	volume
to	the	associated	Wwise	Auxiliary	Bus.	If	there	is	volume	overlap,	a
Priority	property	is	used	to	determine	which	Auxiliary	Buses	the	target
AkComponent	is	routed	to.	A	temporal	fade	in/out	Effect	is	applied	to	the
level	of	the	Auxiliary	Bus	when	entering/exiting	a	AkReverbVolume.

Properties
Enable	Late	Reverb:	Enables	or	disables	this	component.
Aux	Bus:	AkAuxBus	assigned	to	this	volume.	This	aux	bus
should	enable	game-defined	auxiliary	sends.	If	you	are	using
Late	Reverb	with	AkRoomComponent	and	AkAcousticPortal,
it	also	needs	to	enable	positioning	set	to	3D.
Send	Level:	Maximum	Send	Level	associated	with	the	Wwise
Auxiliary	Bus.
Fade	Rate:	Rate	at	which	to	fade	in/out	the	SendLevel	of	the
current	Late	Reverb	Component	when	entering/exiting	it,	in
percentage	per	second	(0.2	will	make	the	fade	time	5	seconds).
Priority:	The	precedence	in	which	the	Late	Reverb	Components
will	be	applied.	In	the	case	of	overlapping	volumes,	only	the
ones	with	the	highest	priority	are	chosen	(the	number	of
simultaneous	Late	Reverb	Components	is	configurable	in	the
Unreal	Editor	Project	Settings	under	Plugins	>	Wwise).	If	two	or
more	overlapping	Late	Reverb	Components	have	the	same
priority,	the	chosen	Late	Reverb	Components	is	unpredictable.

AkComponent
AkComponent	is	derived	from	USceneComponent	and	represents	an	active
Wwise	event.

Properties
Attenuation	Scaling	Factor:	If	the	Ambient	Sound	uses	3D
attenuation	in	Wwise,	this	property	allows	modifying	the
attenuation	computations	on	this	ambient	sound	to	simulate
sounds	with	a	larger	or	smaller	area	of	effect.
Occlusion	Refresh	Interval:
Ak	Audio	Event:	The	AkAudioEvent	that	is	posted	when	the
AkAmbientSound	object	is	instructed	to	start	playing.	If	you
want	to	use	Spatial	Audio	features,	the	sound	effect	of	the	event
should	enable	game-defined	auxiliary	sends.
Spatial	Audio	Properties:

Early	Reflection	Aux	Bus:	AkAuxBus	with	the	AkReflect
plug-in.	Set	to	None	to	disable	geometric	reflections.	This
aux	bus	should	enable	game-defined	auxiliary	sends	with
enable	positioning	set	to	2D.
Early	Reflection	Aux	Bus	Name:	If	no	AkAuxBus	is
entered	in	Early	Reflection	Aux	Bus,	Early	Reflection
Aux	Bus	Name	will	be	used.	Set	to	AK_INVALID_UNIQUE_ID
to	disable	geometric	reflections.
Early	Reflection	Order:	Maximum	number	of	reflections
that	will	be	processed	when	computing	indirect	paths	via
the	geometric	reflections	API.	Reflection	processing	grows
exponentially	with	the	order	of	reflections,	so	this	number
should	be	kept	low.	Valid	range:	1-4.
Early	Reflection	Bus	Send	Gain:	Send	gain	(0.f-1.f)	that	is
applied	when	sending	to	the	bus	that	has	the	AkReflect
plug-in.
Early	Reflection	Max	Path	Length:	A	heuristic	to	stop	the
computation	of	reflections.	Should	be	no	longer	(and
possibly	shorter	for	less	CPU	usage)	than	the	maximum
attenuation	of	the	sound	emitter.
Enable	Spot	Reflectors:	Enable	reflections	on

AkSpotReflector.
Debug	Draw	options:	This	allows	you	to	visualize	the
raycasts	performed	by	the	Spatial	Audio	Engine,	as	well	as
the	triangles	hit	by	these	raycasts,	allowing	you	to	easily
debug	what	is	going	on	in	the	Spatial	Audio	Engine.	This
only	works	on	one	component	at	a	time.

Blueprint	Functions
Post	Ak	Event:	Starts	playback	of	the	specified	Event.
Post	Trigger:	Posts	a	Trigger	to	the	Event	associated	with	the
component.
Set	Listeners:	Sets	the	listeners	of	this	UAkComponent.
Set	Occlusion	Refresh	Interval:	Sets	the	time	interval	at	which
the	UAkComponent	performs	occlusion	calculations.	Set	to	0	to
turn	off	occlusion	on	the	component.
Set	RTPC	Value:	Sets	the	value	of	the	RTPC	of	the	Event
associated	with	the	component.
Set	Stop	when	Owner	Destroyed:	Sets	the
StopWhenOwnerDestroyed	value	on	the	component.
Set	Switch:	Sets	a	Switch	of	the	Event	associated	with	the
component.
Stop:	Stops	playback	of	the	Event	associated	with	the
component.
Use	Reverb	Volumes:	Sets	whether	the	component	is
influenced	by	AAkReverbVolumes	or	not.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the
Integration	»	Features	»	Unreal	Objects

Spatial	Audio	Objects

AkAcousticTexture

Unreal	object	representing	a	Wwise	Acoustic	Texture.	Can	be	created
either	by	drag-and-drop	from	the	Wwise	Picker	or	by	right-clicking	in	the
Unreal	Content	Browser.	Once	created,	it	can	be	applied	on	a
AkSurfaceReflectorSetComponent's	polygons	or	on	a
AkSpotReflector.

Properties
Edit	Color:	Editor-only	property	defining	the	color	to	be	used
when	colorizing	AkSurfaceReflectorSetComponent	polygons
that	have	an	AkAcousticTexture	assigned.

AkSpotReflector
The	Spot	Reflector	actor	is	an	experimental	feature.	It	allows	to	place	an
omnidirectional	point	reflector	in	the	3D	world.	Spot	reflectors	make
sense	when	they	are	placed	on	far	away	objects	that	have	a	large	radius;
like	a	distant	mountain.

Spot	Reflectors	will	reflect	any	sound	coming	from	an	AkComponent
that	has	Enable	Spot	Reflectors	enabled	and	that	is	positioned	in	the
same	area.	An	AkComponent	will	feed	to	spot	reflectors	if	they	both	are
outside	rooms.	If	the	AkComponent	is	in	a	room,	it	will	only	feed	to	spot
reflectors	inside	the	same	room.	Rooms	can	be	created	with	a	volume
that	has	an	AkRoomComponent	attached.

Calls	AK::SpatialAudio::AddImageSource()	from	the	Spatial	Audio	API	on
BeginPlay.

Properties:
Aux	Bus:	AkAuxBus	that	has	the	AkReflect	plug-in	for	early
reflection	DSP.	This	aux	bus	should	enable	game-defined
auxiliary	sends	with	enable	positioning	set	to	2D.
Acoustic	Texture:	AkAcousticTexture	used	to	filter	sounds
reflected	by	this	image	source.
Distance	Scaling	Factor:	Image	source	distance	scaling.	This
number	effectively	scales	the	sourcePosition	vector	with	respect
to	the	listener	and,	consequently,	scales	distance	and	preserves
orientation.
Level:	Game-controlled	linear	level	for	this	source.

AkSurfaceReflectorSetComponent
Representation	of	a	Geometry	Set	in	Unreal	Engine	4.	This	component
needs	to	be	attached	on	a	AVolume	actor.	On	BeginPlay,	all	of	the
volume's	enabled	polygons	will	be	sent	to	the	SpatialAudio	engine.

Properties
Enable	Surface	Reflector	Set:	Enables	or	disables	this
component
Acoustic	Surfaces:	Array	defining	the	AkAcousticTexture
associated	with	each	polygon.	The	index	in	the	array	is
represented	in	the	Game	Viewport	when	the	parent	volume	is
selected.	Once	a	texture	is	assigned	to	a	polygon,	the	polygon
is	colorized	using	the	texture's	Edit	Color,	and	the	Acoustic
Texture's	name	is	printed	on	the	polygon	in	the	Game	Viewport.
Assigning	None	as	an	acoustic	texture	will	make	the	surface
completely	reflectible,	no	additional	texture	filter	will	be	applied.
Each	polygon	can	also	be	enabled	or	disabled	with	the	Enable
Surface	checkbox.

AkRoomComponent
This	component	can	be	added	to	any	volume,	and	then	creates	a	Spatial
Audio	Room.	Rooms	have	two	purposes:

Allow	for	oriented	reverb.	All	auxiliary	buses	applied	on	a	game
object	within	a	room	will	be	oriented	towards	the	volume's	front
vector.
Used	in	conjunction	with	AkAcousticPortal,	allows	routing	the	wet
signal	from	one	room	through	a	portal,	to	another	room.

In	both	cases,	the	auxiliary	bus	used	should	have	its	positioning	options
set	to	3D,	with	positioning	enabled,	and	have	an	attenuation	assigned.

Properties
Enable	Room:	Enables	or	disables	this	component
Priority:	The	precedence	in	which	the	rooms	will	be	applied.	In
the	case	of	overlapping	rooms,	the	one	with	the	highest	priority
is	chosen.	If	two	or	more	overlapping	rooms	have	the	same
priority,	the	chosen	room	is	unpredictable.
Wall	Occlusion:	Used	to	set	the	Wwise	occlusion	value	on
emitters	in	the	Room,	when	no	audio	paths	to	the	listener	are
found	via	sound	propagation	in	Wwise	Spatial	Audio.	This	value
can	be	thought	of	as	'thickness',	because	it	relates	to	how	much
sound	energy	is	transmitted	through	the	wall.	The	valid	range	is
0.0f-1.0f,	and	is	mapped	to	the	occlusion	curve	as	defined	in	the
Wwise	project.

AkSpatialAudioVolume
For	your	convenience,	an	AkSpatialAudio	volume	is	included	in	the
integration.	It	consists	of	a	simple	volume	with	a
AkSurfaceReflectorSetComponent,	a	AkRoomComponent	and	a
AkLateReverbComponent	attached.

AkAcousticPortal
Representation	of	a	Portal	in	Unreal	Engine	4.	Allows	for	sounds
contained	in	a	volume	with	AkRoomComponent	attached	to	leak	into
other	volumes	with	AkRoomComponent	attached.	Such	volumes
overlapping	with	Portals	are	detected	at	initialization	time.	Both	2D	and
3D	sounds	can	be	routed	through	a	portal.

Properties
Initial	state:	Whether	this	Portal	should	be	initialized	in	an	open
(enabled)	or	closed	(disabled)	state.
Obstruction	Refresh	Interval:	Time	interval	between
occlusion/obstruction	checks.	Set	to	0	to	disable	occlusion	on
this	component.
Obstruction	Collision	Channel:	The	object	collision	channel
used	for	creating	the	collision	of	the	obstruction	ray-casts
(between	the	Portal	and	the	listener)	with	the	desired	geometry.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the
Integration	»	Features	»	Unreal	Objects

WAAPI	Widgets

WAAPI	UMG	Widgets

Ak	Check	Box

This	WAAPI-enabled	check	box	allows	you	to	control	a	boolean	property
in	Wwise.

Properties:

Property	to	control:	Name	of	the	boolean	property	to	control	in
Wwise.
Item	to	control:	Item	to	control	in	Wwise.
On	Check	State	Changed:	Event	called	when	the	check	box's	state
changes.
On	Item	Dropped:	Event	called	when	an	item	is	dropped	on	the
check	box.
On	Property	Dropped:	Event	called	when	a	property	name	is
dropped	on	the	check	box.

Blueprint	methods:

IsPressed:	Returns	true	if	this	button	is	currently	pressed.
IsChecked:	Returns	true	if	the	check	box	is	currently	checked.
GetCheckedState:	Returns	the	full	current	checked	state.
SetIsChecked:	Sets	the	checked	state.
SetCheckedState(ECheckBoxState	InCheckedState):	Sets	the
checked	state.
SetAkItemId:	Sets	the	item	ID	this	check	box	controls.
GetAkItemId:	Returns	the	ID	of	the	currently	controlled	item.
SetAkBoolProperty:	Sets	the	property	name	this	check	box
controls.
GetAkProperty:	Returns	the	current	item	property.

Ak	Item	Bool	Properties

Pre-made	picker	for	Bool	properties.	Useful	for	drag	&	drop	use	with	Ak
Check	Box	or	Ak	Slider.

Ak	Item	Properties

Pre-made	picker	for	float	properties.	Useful	for	drag	&	drop	use	with	Ak
Check	Box	or	Ak	Slider.

Ak	Slider

This	WAAPI-enabled	slider	is	able	to	control	any	float	property	in	Wwise.
When	the	controlled	property	is	changed,	the	range	for	the	slider's	values
will	automatically	be	adjusted	to	the	same	range	as	in	Wwise.

Properties:

Property	to	control:	Name	of	the	boolean	property	to	control	in
Wwise
Item	to	control:	Item	to	control	in	Wwise
Value:	The	slider's	value
On	Value	Changed:	Event	called	when	the	slider's	value	changes
On	Item	Dropped:	Event	called	when	an	item	is	dropped	on	the
slider
On	Property	Dropped:	Event	called	when	a	property	name	is
dropped	on	the	slider

Blueprint	methods:

GetValue:	Returns	the	current	value.
SetValue:	Sets	the	current	value.
SetCheckedState(ECheckBoxState	InCheckedState):	Sets	the
checked	state.
SetAkSliderItemId:	Sets	the	item	ID	this	slider	controls.

GetAkSliderItemId:	Returns	the	ID	of	the	item	currently	controlled.
SetAkSliderItemProperty:	Sets	the	property	name	this	slider
controls.
GetAkSliderItemProperty:	Returns	the	property	name	this	slider
controls.

Ak	Wwise	Tree

This	widget	is	an	exact	copy	of	The	WAAPI	Picker,	available	in-game.	It
allows	to	assign	items	to	Ak	Check	Box	and	Ak	Slider	via	drag	&	drop.

Properties:

On	Selection	Changed:	Event	called	when	the	tree's	current
selection	changes.

On	Item	Dragged:	Event	called	when	an	item	is	dragged	from	the
tree.

Blueprint	methods:

GetSelectedItem:	Returns	the	item	currently	selected	in	the	tree.
GetSearchText:	Returns	the	current	text	in	the	search	box.
SetSearchText:	Sets	the	current	text	of	the	search	box.

Ak	Wwise	Tree	Selector

More	compact	version	of	the	Ak	Wwise	Tree,	which	pops	a	separate
window	to	select	the	item.

Properties:

On	Selection	Changed:	Event	called	when	the	tree's	current
selection	changes.
On	Item	Dragged:	Event	called	when	an	item	is	dragged	from	the
tree.

Slate	Widgets

FWwiseTreeItem

Structure	containing	everything	needed	to	represent	a	Wwise	item.

Members:

DisplayName:	The	item's	name
FolderPath:	The	path	of	the	tree	item	in	Wwise,	including	the	name
ItemType:	The	type	of	item
ItemId:	The	ID	of	the	item

FWwisePropertyDragDropOp

Handles	drag	&	drop	of	a	property	name.	Simply	pass	the	property	name
to	FWwisePropertyDragDropOp::New	to	create	the	drag	&	drop	operation.

FWwiseUmgDragDropOp

Handles	drag	&	drop	of	a	Wwise	item.	Simply	pass	a	shared	pointer	to	a
FWwiseTreeItem	to	FWwisePropertyDragDropOp::New,	in	order	to	create	the
drag	&	drop	operation.

Ak	Slider

This	WAAPI-enabled	slider	is	able	to	control	any	float	property	in	Wwise.
Is	able	to	handle	drag	&	drop	via	FWwisePropertyDragDropOp	and
FWwiseUmgDragDropOp.

Public	methods:

GetAkSliderValue:	Gets	the	current	value	of	the	slider,	as	displayed
in	the	Wwise	Authoring	application.
GetAkSliderProperty:	Gets	the	name	of	the	controlled	property.
GetAkSliderItemControlled:	Gets	the	name	of	the	item	being
controlled	by	the	slider.

SetAkSliderItemProperty:	Sets	the	property	to	be	controlled	by	the
slider.
SetAkSliderItemId:	Sets	the	ID	of	the	item	to	be	controlled	(GUID
string,	using	the	"Digits	with	Hyphens	in	Braces"	GUID	format).
SetAkSliderRangeMin:	Sets	the	slider's	minimum	value.
SetAkSliderRangeMax:	Sets	the	slider's	maximum	value.
GetAkSliderRangeMin:	Gets	the	slider's	minimum	value.
GetAkSliderRangeMax:	Gets	the	slider's	maximum	value.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration	»	Features

Editor	Integration

Event	Drag-and-Drop

Events	and	Auxiliary	Busses	can	be	dragged	directly	from	the	Wwise
Picker	into	the	Unreal	Content	Browser	to	create	corresponding
AkAudioEvent	and	AkAuxBus	objects:

1.	 In	the	Unreal	Editor,	navigate	to	the	Event	or	Auxiliary	Bus	using	the
Wwise	Picker.

2.	 In	the	Unreal	Editor,	select	the	target	Package	in	the	Unreal	Content
Browser.

3.	 Drag	the	Event	or	Auxiliary	Bus	into	the	Unreal	Content	Browser:	a
corresponding	AkAudioEvent	or	AkAuxBus	object	is	created.

The	WAAPI	Picker
The	Wwise	Unreal	integration	makes	extensive	use	of	the	Wwise
Authoring	API	in	the	WAAPI-enabled	Wwise	Picker.

Note:	If	you	do	not	wish	to	enable	WAAPI	on	your	machine,	the	old
Wwise	Picker	will	still	be	available.	If	a	WAAPI	connection	is
unavailable,	the	WAAPI	picker	will	be	disabled.	If	a	WAAPI
connection	is	available,	the	old	Wwise	Picker	will	be	disabled.

Please	refer	to	Wwise	Authoring	API	(WAAPI)	for	instructions	on	how	to
enable	WAAPI	on	your	machine.

The	WAAPI	picker	is	populated	in	real-time	from	the	running	Wwise
Authoring	application.	All	changes	made	in	Wwise	are	immediately
reflected	in	the	WAAPI	picker,	whether	the	Wwise	project	is	saved	or	not.

The	WAAPI	Picker	allows	to	do	much	more	than	the	Wwise	Picker.	Here
is	an	overview	of	all	of	its	features.

https://www.audiokinetic.com/library/edge/?source=SDK&id=waapi.html

Sound	Preview

The	WAAPI	picker	allows	to	preview	sounds	directly	from	Wwise,	without
having	to	generate	SoundBanks.	To	do	so,	select	an	Event	or	an	Actor-

Mixer	from	your	project,	and	press	the	space	bar.	Alternatively,	you	can
right-click	on	an	Event	or	Actor-Mixer	and	select	Play/Stop.	To	stop	a
playing	sound,	press	space	bar	again,	or	right-click	and	select	Stop	All.

Renaming	Wwise	Objects

You	may	rename	elements	directly	in	your	Wwise	project.	To	do	so,
select	the	element	you	wish	to	rename	in	the	WAAPI	picker	window,	and
press	F2.	Alternatively,	you	may	right-click	on	the	element	and	select
Rename.	You	may	then	rename	the	object	and	press	Enter	to	commit	the
changes.	The	name	change	will	then	immediately	be	reflected	in	the
Wwise	Authoring	application.

Deleting	Wwise	Objects

You	may	delete	elements	directly	in	your	Wwise	project.	To	do	so,	select
the	element	you	wish	to	rename	in	the	WAAPI	picker	window,	and	press
Delete	on	your	keyboard.	Alternatively,	you	may	right-click	on	the
element,	and	select	"Delete".	The	deletion	will	then	immediately	be
reflected	in	the	Wwise	Authoring	application.

Finding	the	associated	WorkUnit	on	disk

You	may	locate	the	associated	WorkUnit	to	an	object	in	a	file	explorer
using	the	WAAPI	picker	by	right-clicking	the	element,	and	selecting
"Show	in	Folder".

Finding	the	associated	object	in	Wwise

You	may	focus	a	Wwise	object	directly	in	Wwise.	To	do	so,	select	the
element	you	wish	to	focus	in	Wwise,	and	press	Ctrl+Shift+1on	your
keyboard.	Alternatively,	you	may	right-click	on	the	element,	and	select
"Find	in	the	Project	Explorer".	The	element	will	then	be	focused	in	the
currently	running	Wwise	Authoring	application.

Radius	Visualization
Some	workflow	enhancements	in	the	Unreal	Editor	are	enabled	through
SoundFrame	when	running	the	Wwise	Authoring	Application	alongside
the	Unreal	Editor	on	the	same	machine.

With	SoundFrame	enabled	and	the	Wwise	Authoring	Application	running,
the	radius	of	the	relevant	assets	are	drawn	when	an	AkAmbientSound
is	selected.	If	changes	are	made	in	Wwise	Authoring,	the	radius	is
updated	in	real	time:

1.	 Select	an	AkAmbientSound	in	the	Actor	Browser.
2.	 In	the	Wwise	Authoring	Application,	make	changes	to	any	object

associated	with	the	Event	assigned	to	the	AkAmbientSound.
3.	 The	corresponding	sphere	in	the	Unreal	Editor	resizes	at	the	same

time.

If	the	Wwise	Authoring	Application	is	not	running	on	your	machine,	it	is
still	possible	to	see	the	attenuation	sphere	in	Unreal.	In	your	Wwise
project	settings,	under	the	SoundBanks	tab,	make	sure	to	select
Generate	Per	Bank	Metadata	File,	Generate	JSON	Metadata,	and	Max
Attenuation.	The	next	time	the	SoundBanks	are	generated	in	the	Unreal
Editor,	the	Max	Attenuation	information	will	be	added	to	all
UAkAudioEvents,	and	the	attenuation	spheres	will	be	visible	in	your	level
viewport.

Editor	Listener
Starting	with	Wwise	2017.2.0,	one	listener	is	now	activated	when	in	edit
mode.	This	allows,	for	instance,	to	properly	preview	Level	Sequences
containing	positioned	audio.	This	listener's	position	is	determined	by	the
camera	position	of	the	focused	viewport.	Clicking	between	multiple
viewports	will	make	the	editor	listener	"jump"	from	one	position	to
another.

This	listener	is	also	used	in	the	Animation	Editor	viewport.	This	allows	all
3D-positioned	sounds	to	properly	be	previewed	while	working	on
animations.

Note	that	when	starting	a	Play	in	Editor	(PIE)	session,	this	listener	is
deactivated,	and	the	traditional	listener	on	the	Camera	is	enabled.	When
ejecting	from	a	PIE	session	to	start	a	Simulatie	in	Editor	(SIE)	session,
both	the	Editor	listener	and	the	Camera	listener	are	active	at	the	same
time.	Switching	back	to	PIE	mode	will	disable	the	Editor	listener	again.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration	»	Features

Blueprint	Functions
Several	Wwise-specific	global	functions	are	exposed	to	scripting;	the
following	are	available	in	the	Audiokinetic	category:

Get	Ak	Component
Obtains	an	AkComponent	that	is	attached	to	and	follows	a	specified
component.	Several	methods	are	available	directly	on	the
AkComponent	:	see	AkComponent	Blueprint	Functions.

Post	Event	At	Location
Posts	a	Wwise	Event	at	a	specified	location.	This	is	a	fire-and-forget
sound,	created	on	a	temporary	Wwise	Game	Object	with	no
corresponding	AkComponent.

Set	RTPC	Value
Sets	the	value	of	a	Game	Parameter,	optionally	targeting	the	root
component	of	a	specified	actor.

Set	State
Sets	the	active	State	for	a	given	State	Group.

Spawn	Ak	Component	at	Location
Creates	a	new	AkComponent	at	the	specified	location.	By	default,	the
component	will	automatically	be	destroyed	once	the	Event	it	is	playing	is
done.	Parameter	Auto	Post	controls	whether	to	post	the	event
immediately	upon	the	component's	creation	(Default	value	is	false).
Advanced	parameter	Auto	Destroy	controls	whether	to	destroy	the
component	when	the	first	Event	posted	on	this	component	is	done
(Default	value	is	true).

This	Blueprint	node	is	especially	useful	if	you	wish	to	set	a	Switch	on	a
fire-and-forget	sound.	This	behavior	can	be	accomplished	by	disabling
Auto	Post,	setting	a	Switch	on	the	spawned	Ak	Component,	and	then
posting	the	Event,	like	so:

Stop	All
Stops	all	currently	playing	sounds.

Set	Multiple	Positions
Sets	multiple	positions	to	a	single	game	object.	Setting	multiple	positions
on	a	single	game	object	is	a	way	to	simulate	multiple	emission	sources
while	using	the	resources	of	only	one	voice.	This	can	be	used	to	simulate
wall	openings,	area	sounds,	or	multiple	objects	emitting	the	same	sound
in	the	same	area.	Note:	Calling	SetMultiplePositions()	with	only	one
position	is	the	same	as	calling	SetPosition().	Parameter
GameObjectAkComponent	is	the	AkComponent	of	the	game	object	on	which
to	set	positions.	Positions	is	an	Array	of	transforms	to	apply.
MultiPositionType	is	the	Position	type.	For	more	information	on	the
different	position	types,	refer	to:	MultiPositionType.

https://www.audiokinetic.com/library/edge/?source=SDK&id=namespace_a_k_1_1_sound_engine_ad76a973ff449dc34f0078c8341b0fd65.html

Set	Multiple	Channel	Emitter	Positions
Sets	multiple	positions	to	a	single	game	object,	with	flexible	assignment
of	input	channels.	Parameter	GameObjectAkComponent	is	the	AkComponent
of	the	game	object	on	which	to	set	positions.	ChannelMasks	is	an	Array	of
channel	masks	to	apply	for	each	position.	Positions	is	an	Array	of
transforms	to	apply.	MultiPositionType	is	the	Position	type.

Other
Other	functions	are	available	in	sub-categories:

Actor	Blueprint	Functions
AkAmbientSound	Blueprint	Functions
AkComponent	Blueprint	Functions
SoundBank	Blueprint	Functions
Debug	Blueprint	Functions
WAAPI	Blueprint	Functions

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the
Integration	»	Features	»	Blueprint	Functions

Actor	Blueprint	Functions
These	Blueprint	functions	target	the	root	component	of	an	Actor.	If	no
AkComponent	is	attached	to	the	Actor's	root	component,	one	is	created.

Post	Event
Posts	a	Wwise	Event	attached	to	and	following	the	root	component	of	the
specified	Actor.

Post	Trigger
Posts	a	Trigger	to	Wwise,	targeting	the	root	component	of	a	specified
Actor.

Set	Occlusion	Refresh	Interval
Sets	the	time	interval	at	which	the	AkComponent	attached	to	the	root
component	performs	occlusion	calculations.	Set	to	0	to	turn	off	occlusion
on	the	component.

Set	Switch
Sets	the	active	Switch	for	a	given	Switch	Group,	targeting	the	root
component	of	a	specified	Actor.

Set	Output	Bus	Volume
Set	the	output	bus	volume	(direct)	to	be	used	for	the	specified	game
object.	The	Bus	Volume	value	is	a	number	ranging	from	0.0f	to	1.0f.

Stop	Actor
Stops	all	sounds	on	the	given	Actor.

Use	Reverb	Volumes
Sets	whether	the	AkComponent	attached	to	the	root	component	is
influenced	by	AkReverbVolume	or	not.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the
Integration	»	Features	»	Blueprint	Functions

AkAmbientSound	Blueprint	Functions
Several	Wwise-specific	actions	can	be	executed	on	AkAmbientSound
actors;	these	are	available	in	the	Ambient	Sound	category.

Start	All	Ambient	Sounds
Starts	playback	of	all	AkAmbientSound	present	in	the	map.

Start	Ambient	Sound
Starts	playback	of	the	AkAmbientSound.

Stop	All	Ambient	Sounds
Stops	playback	of	all	AkAmbientSound	present	in	the	map.

Stop	Ambient	Sound
Stops	playback	of	the	AkAmbientSound.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the
Integration	»	Features	»	Blueprint	Functions

AkComponent	Blueprint	Functions
Several	Wwise-specific	actions	can	be	executed	on	AkComponent
scene	components;	these	are	available	in	the	Ak	Component	category.

Get	Attenuation	Radius
Returns	this	AkComponent's	effective	attenuation	radius	(ScalingFactor
*	MaxAttenuation).

Post	Ak	Event
Posts	the	specified	AkAudioEvent	in	Wwise.

Post	Associated	Ak	Event
Posts	this	AkComponent's	internal	AkAudioEvent	in	Wwise.

Post	Trigger
Posts	a	trigger	on	the	associated	AkComponent.

Set	Attenuation	Scaling	Factor
Sets	the	attenuation	sclaing	factor,	which	modifies	the	attenuation
computations	on	the	game	object	to	simulate	sounds	with	a	larger	or
smaller	area	of	effection.

Set	Listeners
Sets	the	listeners	on	the	AkComponent.

Set	Occlusion	Refresh	Interval
Sets	the	time	interval	at	which	the	AkComponent	performs	occlusion
calculations.	Set	to	0	to	turn	off	occlusion	on	the	component.

Set	Output	Bus	Volume
Set	the	output	bus	volume	(direct)	to	be	used	for	the	specified	game
object.	The	Bus	Volume	value	is	a	number	ranging	from	0.0f	to	1.0f.

Set	RTPC	Value
Sets	the	value	of	a	Game	Parameter	for	the	associated	AkComponent.

Set	Stop	when	Owner	Destroyed
Sets	the	StopWhenOwnerDestroyed	value	on	the	corresponding
AkComponent.

Set	Switch
Sets	a	Switch	Group	to	a	given	Switch	on	the	associated	AkComponent.

Stop
Stops	the	AkAudioEvent	associated	with	the	AkComponent	from
playing.

Use	Early	Reflections
Enables	(or	disables)	early	refelction	for	this	Ak	Component.

Use	Reverb	Volumes
Sets	whether	the	AkComponent	is	influenced	by	AkReverbVolume	or
not.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the
Integration	»	Features	»	Blueprint	Functions

SoundBank	Blueprint	Functions
Several	Wwise-specific	actions	can	be	executed	on	AkAudioBank	scene
components;	these	are	available	in	the	SoundBanks	category.

Clear	Banks
Results	in	all	currently	loaded	AkAudioBank	being	unloaded
synchronously,	including	the	init	SoundBank.

Load	Bank
Loads	a	specified	SoundBank.

Load	Banks
Loads	a	specified	list	of	SoundBanks.	If	SynchronizeSoundBanks	is	set	to
true,	only	the	SoundBanks	in	Banks	will	remain	loaded	in	the
SoundEngine.	This	means	that	any	SoundBank	that	was	previously
loaded,	and	that	is	not	found	in	the	Banks	array,	will	be	unloaded.

Load	Init	Bank
Loads	the	Init	SoundBank.

Unload	Bank
Unloads	a	specified	SoundBank.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the
Integration	»	Features	»	Blueprint	Functions

Debug	Blueprint	Functions
These	Blueprint	functions	are	used	to	help	debug	your	game.

Start	Output	Capture
Starts	a	Wwise	output	capture.	The	output	file	will	be	located	in	the	same
folder	as	the	SoundBanks.

Add	Output	Capture	Marker
Adds	a	text	marker	in	the	output	capture	file.

Stop	Output	Capture
Stops	a	Wwise	output	capture.	The	output	file	will	be	located	in	the	same
folder	as	the	SoundBanks.

Start	Profiler	Capture
Starts	a	Wwise	Profiler	capture.	The	output	file	will	be	located	in	the
same	folder	as	the	SoundBanks.

Stop	Profiler	Capture
Stops	a	Wwise	Profiler	capture.	The	output	file	will	be	located	in	the
same	folder	as	the	SoundBanks.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the
Integration	»	Features	»	Blueprint	Functions

WAAPI	Blueprint	Functions
These	Blueprint	functions	are	used	to	connect	to	the	Wwise	Authoring
application	using	the	Wwise	Authoring	API.

For	more	information	on	WAAPI	and	its	features,	refer	to
https://www.audiokinetic.com/library/edge/?source=SDK&id=waapi.html.

https://www.audiokinetic.com/library/edge/?source=SDK&id=waapi.html

JSON	objects
Since	WAAPI	makes	extensive	use	of	JSON,	a	Blueprint	wrapper	was
written	for	the	Unreal	FJsonObject.	For	more	information	related	to	nodes
found	under	"WAAPI	Json	Manager",	please	refer	to	the	Unreal	Engine
documentation	on	FJsonObject.

https://docs.unrealengine.com/latest/INT/API/Runtime/Json/Dom/FJsonObject/

Call	Waapi
Call	WAAPI	and	get/set	information/parameters	according	to	the	chosen
URI.

Parameters:

WaapiUri:	The	function	that	will	be	called	when	an	event	that	we
would	be	aware	of	occurs.
WaapiArgs:	The	arguments	referenced	by	the	in_uri	function.
WaapiOptions:	Optional	flag	to	get	more	information	about	the
event	that	occurred.

Return	Value:	A	JSON	object	that	contains	useful	information	about	the
call	process	to	a	specific	Event.	It	returns	error	info	if	the	call	fails.

Register	WAAPI	Connection	Lost	Callback
Subscribe	to	WAAPI	connection	lost	event.	This	event	will	be	broadcast
when	the	WAAPI	connection	is	lost.	This	should	be	used	to	clean	up	any
resources	that	use	Waapi.

Parameters:

Callback:	The	event	to	call	when	the	connection	is	lost.

Register	WAAPI	Project	Loaded	Callback
Subscribe	to	WAAPI	project	loaded	event.	This	event	will	be	broadcast
whenever	the	correct	Wwise	project	is	loaded	(as	defined	by	the	Wwise
Project	Path	in	the	Wwise	Plugin	Settings).	This	should	be	used	to
initialize	any	resources	that	use	Waapi.

Parameters:

Callback:	The	event	to	call	when	a	connection	is	established.

Subscribe	To	Waapi
Allows	clients	to	subscribe	to	notifications	according	to	the	event.

Parameters:

WaapiUri:	The	reference	to	the	event	that	we	would	be	aware	of
when	it	occurs.
WaapiOptions:	Optional	flag	to	get	more	information	about	the
event	that	occurred.
Callback:	A	delegate	to	be	executed	during	the	subscription	event.

Return	Values:

SubscriptionId:	The	ID	of	this	subscription.
Result:	A	boolean	to	ensure	that	the	subscription	was	successfully
done.
Return	Value:	A	JSON	object	that	contains	useful	information	about
the	subscription	process	to	a	specific	event.	It	returns	error	info	if	the
subscription	failed.

Unsubscribe
Unsubscribe	from	an	event.

Parameters:

SubscriptionId:	ID	of	the	current	subscription	to	the	event	from
which	we	want	to	be	unsubscribed.

Return	Values:

UnsubscriptionDone:	A	boolean	to	ensure	that	the	unsubscription
was	successfully	done.
Return	Value	:	A	JSON	object	that	contains	useful	informations
about	the	unsubscription	process	from	a	specific	event,	gets	an	error
infos	in	case	the	unsubscription	failed.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration	»	Features

Animation
An	Animation	Notify	is	used	to	trigger	Wwise	Events	in	animation
sequences.

The	Blueprint	for	the	Animation	Notify	is	located	here:
…/Plugins/Wwise/Content/AnimNotify_AkEvent.uasset.

To	add	an	Animation	Notify:
1.	 In	the	Unreal	Content	Browser,	open	an	animation	sequence

asset.
2.	 Right-click	the	Notifies	track	in	the	animation	sequence	editor

and	select	Add	notify	>	AkEvent	or	AkEventByName.

The	animation	notification	has	the	following	properties:
Event	or	Event	Name:	The	AkAudioEvent	to	be	posted.
Attach	Name:	Name	of	the	socket	that	emits	the
AkAudioEvent;	if	not	defined,	the	AkAudioEvent	is	emitted	from
the	animation	owner.
Follow:	Whether	the	Event	should	either	follow	the	mesh	or	be
posted	at	a	specific	location.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration	»	Features

Level	Sequencer
The	Sequence	Editor	within	Unreal	Engine	4	is	a	cinematic	editing	tool
similar	to	Matinee.	It	allows	users	to	add	Tracks	that	can	modify	certain
properties	of	Actors	in	a	level.

For	instructions	on	how	to:

create	a	Level	Sequence,	refer	to
https://docs.unrealengine.com/latest/INT/Engine/Sequencer/Overview/index.html#creatinglevelsequences
add	Tracks	to	a	Level	Sequence,	refer	to
https://docs.unrealengine.com/latest/INT/Engine/Sequencer/Overview/index.html#addingtrackstosequencer

https://docs.unrealengine.com/latest/INT/Engine/Sequencer/Overview/index.html#creatinglevelsequences
https://docs.unrealengine.com/latest/INT/Engine/Sequencer/Overview/index.html#addingtrackstosequencer

Wwise	Level	Sequencer	Tracks
The	Wwise	Unreal	Engine	4	Integration	adds	two	Tracks:	AkAudioRTPC
and	AkAudioEvent.	The	AkAudioRTPC	Track	is	used	to	set	Game
Parameter	values,	and	the	AkAudioEvent	Track	is	used	to	post	Wwise
Events.

Both	of	these	Tracks	can	be	added	as	Master	Tracks	or	associated	to	an
Actor.	When	associated	with	an	Actor,	they	perform	their	Wwise	related
functions	on	the	UAkComponent	attached	to	this	Actor.	When	created	as	a
Master	Track,	the	AkAudioRTPC	Track	sets	global	RTPC	values,	and
the	AkAudioEvent	Track	posts	Events	on	a	"dummy"	game	object.

For	AkAudioRTPC	Tracks,	Game	Parameter	curves	can	be	modified
using	the	built-in	curve	editor.	Key	frames	can	be	added	by	placing	the
cursor	at	the	appropriate	location	and	pressing	the	Add	New	Key	button
(found	on	the	right	side	of	the	listed	Track).

An	AkAudioRTPC	track	in	the	Curve	Editor	view

For	AkAudioEvent	Tracks,	an	AkAudioEvent	section	can	be	added	by
placing	the	cursor	at	the	appropriate	location	and	pressing	the
AkAudioEvent	button	(found	on	the	right	side	of	the	listed	Track).

Alternatively,	AkAudioEvent	assets	can	be	dragged	from	the	Content
Browser	directly	onto	an	AkAudioEvent	Track.

Adding	an	AkAudioEvent	section	to	an	AkAudioEvent	Track

Sequencer	WAAPI-Enabled	Features
The	Unreal	integration	uses	the	Wwise	Authoring	API	(WAAPI)	to	extend
the	Sequencer	functionality.	For	more	information	on	WAAPI	and	its	use
in	the	Unreal	integration,	refer	to	the	Wwise	Authoring	API	(WAAPI)
page.	When	Unreal	is	connected	to	the	Wwise	Authoring	tool	via	WAAPI,
AkAudioEvent	sections	are	able	to	display	waveforms	for	Wwise	events.
When	the	Wwise	Authoring	application	is	not	running,	or	the	Unreal
integration	is	not	connected	to	WAAPI,	the	AkAudioEvent	sections	will
only	display	the	Event	name.

AkAudioEvent	Section	Waveform	Displays

AkAudioEvent	sections	display	audio	waveforms	for	Events	that	contain
Audio	Sources.	The	waveform	in	an	AkAudioEvent	section	shows	the
audio	data	for	the	longest	Audio	Source	that	is	contained	in	the	Wwise
Event.	For	example,	consider	a	Wwise	Event	called	"Play_Sound"	with
three	Audio	Sources,	"Layer_1",	"Layer_2",	and	"Layer_3".

Example	Wwise	Event	with	three	Audio	Sources

If	an	AkAudioEvent	section	is	added	that	has	its	Event	property	set	to
"Play_Sound",	then	the	longest	of	the	three	Audio	Sources	will	be
displayed	within	the	section.	Note	that	the	waveform	displayed	in	the
section	may	be	followed	by	empty	space	if	the	Wwise	Event	lasts	longer
than	the	longest	Audio	Source	that	it	contains.	In	this	example,	since	the
"Play_Sound"	Event	has	two	play	actions	(for	"Layer_2"	and	"Layer_3")
that	are	delayed,	it	will	last	longer	than	the	"Layer_1"	audio	source	that	it
contains.	The	empty	space	after	the	waveform	indicates	the	maximum
estimated	duration	of	the	Wwise	event,	as	calculated	during	soundbank

generation	(see	Wwise	Project	Setup).

Example	AkAudioEvent	Section	in	Sequencer

If	the	length	of	the	AkAudioEvent	section	is	increased	beyond	the
maximum	estimated	duration	of	the	Wwise	Event,	the	section	will	contain
either	a	flat	white	line,	or	repeating	diagonal	lines.	The	flat	white	line
indicates	that	the	Retrigger	property	is	disabled.	The	repeating	diagonal
lines	indicate	that	the	Retrigger	property	is	enabled.	The	Retrigger
property	determines	whether	Wwise	events	are	retriggered	in	the
Sequencer,	after	they	have	finished	(see	AkAudioEvent	Section
Properties).

Two	AkAudioEvent	Sections	in	Sequencer.	The	'Retrigger'	section
has	Retrigger	enabled.	The	'No_Retrigger'	section	has	Retrigger

disabled.

"Out	of	Sync"	Waveforms

If	changes	have	been	made	to	an	Event's	workunit	in	the	Wwise	project
that	are	not	reflected	in	the	generated	soundbanks,	any	AkAudioEvent
sections	for	that	event	will	be	marked	as	"out	of	sync".	The	waveform	will
be	displayed	in	red,	and	an	asterisk	will	be	appended	to	the	name	of	the
AkAudioEvent	section.	There	will	also	be	a	warning	printed	to	the	output
log	when	Events	are	triggered	from	"out	of	sync"	sections.

Example	'Out	of	Sync'	AkAudioEvent	Section

In	order	to	keep	AkAudioEvent	sections	in	sync	with	the	Wwise	project,
there	are	options	to	save	the	project	and	regenerate	soundbanks,	directly
from	the	Sequencer.	In	order	to	synchronise	an	AkAudioEvent	section,
open	the	section's	context	menu	(right	click)	and	select	"Save	Wwise
project	and	refresh"	(see	AkAudioEvent	Section	Properties).	In	order
to	synchronise	all	of	the	sections	in	an	AkAudioEvent	track,	open	the
track's	context	menu	(right	click)	and	select	"Save	Wwise	project	and
refresh	all	sections"	(see	AkAudioEvent	Track	Context	Menu	Options).
Note	that	for	these	options	to	be	available,	the	AkAudioEvent	asset	must
have	its	Required	Soundbank	set	to	a	valid	Audiokinetic	Bank	asset.	For
more	information	on	AkAudioEvent	assets	and	their	Required	Bank
property,	refer	to	the	AkAudioEvent	page.

Scrubbing
The	Sequencer	integration	supports	scrubbing	forwards	and	backwards
over	AkAudioEvent	tracks.	By	dragging	the	Sequencer	playhead	over
AkAudioEvent	sections,	scrub	snippets	can	be	heard.	The	length	of
these	scrub	snippets	can	be	varied	using	the	Scrub	Tail	Length	Ms
property,	accessible	from	the	AkAudioEvent	section's	context	menu
(right	click).	Refer	to	AkAudioEvent	Section	Properties	for	further
details.

AkAudioEvent	Track	Context	Menu	Options
From	the	AkAudioEvent	track,	a	context	menu	can	be	opened	(right-
click)	which	includes	the	following	Audiokinetic-specific	options:

Save	Wwise	project	and	refresh	all	sections:	This	will	save	the
Wwise	project	in	the	Authoring	application,	via	WAAPI,	and	then	re-
generate	the	required	soundbanks	for	all	AkAudioEvent	sections	in
the	sequencer	track.	The	sections	will	then	update	their	waveform
displays.

AkAudioEvent	Section	Context	Menu	Options
From	the	AkAudioEvent	section	on	the	track,	a	context	menu	can	be
opened	(right-click)	which	includes	the	following	Audiokinetic-specific
options:

Save	Wwise	project	and	refresh:	This	will	save	the	Wwise	project
in	the	Authoring	application,	via	WAAPI,	and	then	re-generate	the
required	soundbank	for	this	AkAudioEvent	section.	The	waveform
display	will	then	be	updated.
Match	section	length	to	Wwise	event	length:	This	will	match	the
length	of	the	section	in	the	Sequencer	track	to	the	duration	of	the
Wwise	Event.

AkAudioEvent	Section	Properties

The	properties	list	in	the	context	menu	includes	the	following	Wwise-
specific	properties	for	the	section:

Ak	Audio	Event:	Lists	the	following	editable	properties	of	the
AkAudioEvent	for	the	selected	section:

Event:	Event	icon:	Hover	over	the	Audiokinetic	Event	icon	to	get
the	path	to	the	Event.	Double-click	the	icon	to	open	the	Event	in
the	editor.
Event:	Audiokinetic	Event:	Open	this	list	to	create	a	new
Audiokinetic	Event,	edit	or	copy	the	currently	selected	Event,	or
browse	to	another	existing	Audiokinetic	Event.
Retrigger	Event:	When	this	box	is	checked,	the	Wwise	event	in
the	Section	will	be	retriggered	when	the	Sequence	plays	beyond
the	end	of	the	event	(off	by	default).
Scrub	Tail	Length	Ms:	This	defines	the	duration	in	milliseconds
of	the	scrub	snippets	that	are	played	when	scrubbing	over	the
sequence	(default	=	100ms).
Max	Source	Duration:	Displays	the	duration	of	the	longest
Audio	Source	contained	in	the	Wwise	Event	(read	only).
Advanced:

Event	Name:	Enter	the	exact	name	of	the	desired	Event.

This	field	is	ignored	if	an	Event	is	already	selected	in	the
Audiokinetic	Event	list.

Movie	Scene	Ak	Audio	Event	Section:
Stop	at	Section	End:	Uncheck	this	box	to	keep	the	Event
playing	when	the	end	of	the	section	is	reached	(on	by	default).

Known	Issues	and	Constraints
Generally	it	is	recommended	to	use	very	simple	AkAudioEvent	sections
in	the	Level	Sequencer,	such	as	a	simple	Play	action	on	a	Sound	SFX.
More	complex	Wwise	Events,	such	as	those	containing	delayed	actions,
Seek	actions,	or	which	reference	Random	Containers,	Sequence
Containers	and	other	non-deterministic	objects	should	be	avoided	or
broken	down	into	simpler	events	for	optimal	use	in	the	Level	Sequencer.

Scrubbing	and	playing	from	cursor	will	not	work	as	expected	on	Events
with	delayed	actions	or	which	contain	infinitely	looping	sounds.

Play	In	Editor	Limitations

If	a	level	sequence	is	played	from	the	Sequencer	editor	window	while
Unreal	is	running	in	Play	in	Editor	(PIE)	mode,	any	AkAudioEvent	tracks
that	are	associated	to	game	objects	will	not	trigger	events.	In	order	to
hear	AkAudioEvent	tracks	that	are	bound	to	game	objects,	the	level
sequence	must	be	triggered	from	the	Game	World.

Wwise	Project	Setup
To	ensure	that	Event	lengths	are	properly	represented	in	the
AkAudioEvent	Tracks,	the	Wwise	project	needs	to	be	set	up	to	estimate
the	duration	of	its	audio	Events	and	JSON	metadata	must	be	generated.
To	enable	these	project-wide	settings,	go	to	the	Project	Settings'
SoundBanks	tab.	Enable	the	Estimated	duration	check	box	within	the
Metadata	Options	group	box	and	enable	the	Generate	JSON	Metadata
check	box	within	the	SoundBank	Settings	group	box,	as	seen	below.

Required	Project	Settings	for	AkAudioEvent	Tracks

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration	»	Features

Matinee
Two	Wwise-specific	Track	types	are	introduced	to	Matinee:

AkAudioEvent	Track
The	AkEvent	Track	triggers	Wwise	Events	at	particular	points	in	the
sequence.	When	placing	a	new	key,	the	AkAudioEvent	currently
selected	in	the	Unreal	Content	Browser	is	used.

AkRTPC	Track
The	AkRTPC	Track	lets	you	control	a	Wwise	Game	Parameter	using	a
curve	in	the	sequence.

Properties
Param:	The	name	of	the	Game	Parameter	to	control.	This	name
should	exactly	match	the	name	of	a	Game	Parameter	in	the
Wwise	Project.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration	»	Features

Occlusion
Basic	occlusion	is	exposed	in	UAkComponent::SetOcclusion().	To	enable
occlusion	on	an	Actor,	use	the	Set	Occlusion	Refresh	Interval	function
in	the	Blueprint	Editor.	A	version	for	a	UAkComponent	is	also	available.	If
the	refresh	interval	is	set	to	0,	the	occlusion	check	will	never	be
performed.

Determining	whether	a	listener	is	occluded	from	a	source	is	done	with	a
simple	line-of-sight	check,	using	the	line	trace	channel	set	in	the
AkComponent's	properties	(OcclusionCollisionChannel).	If	the	line	of
sight	is	blocked,	the	occlusion	level	calculation	is	started.	This	calculation
maps	the	hit	point	on	the	obstacle	to	its	bounding	box,	creating	twelve
points	around	the	obstacle.	To	see	if	these	"secondary	paths"	are	also
blocked,	other	line-of-sight	tests	are	done.	The	occlusion	sent	to	the
SoundEngine	is	modulated	from	the	number	of	"secondary	paths"	that
are	blocked.

A	temporal	fade	method	is	also	added	to	allow	smooth	transition	between
occlusion	levels.	To	change	the	fade	speed,	change	the
OCCLUSION_FADE_RATE	constant.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration	»	Features

Wwise	Authoring	API	(WAAPI)
The	Wwise	Authoring	API	is	used	to	communicate	with	the	Wwise
authoring	application.	WAAPI	allows	the	Unreal	integration	to	request
and	alter	information	about	the	Wwise	project	during	a	session,	provided
that	both	Unreal	and	Wwise	Authoring	are	running,	and	Unreal	is
connected	to	WAAPI.

For	more	information	on	WAAPI	and	its	features,	refer	to
https://www.audiokinetic.com/library/edge/?source=SDK&id=waapi.html.

Note:	WAAPI	is	available	only	on	the	Windows	and	Mac	platforms,
both	in	Editor	and	in	Game.

https://www.audiokinetic.com/library/edge/?source=SDK&id=waapi.html

Connecting	to	WAAPI
The	Audiokinetic	Unreal	integration	is	set	to	automatically	connect	to
WAAPI.	In	order	to	disable	this	functionality,	the	"Auto	Connect	to
WAAPI"	check	box	should	be	unchecked	in	the	Wwise	Plugin	Settings
menu.	This	menu	is	accessible	from	the	Unreal	project	settings	menu
(Edit->Project	Settings...).	In	the	left	panel,	scroll	down	to	the	Plugins
section	and	click	on	Wwise.

For	WAAPI-enabled	features	to	run,	the	Wwise	project	opened	in	the
Wwise	Authoring	application	must	match	the	project	defined	by	the
Wwise	Project	Path	in	the	Wwise	Plugin	Settings.

Wwise	Plugin	Settings

Using	WAAPI	from	C++
An	Unreal	wrapper	class	for	the	WAAPI	C++	sample	client	is	provided	as
part	of	the	AkAudio	module.

In	order	to	be	able	to	use	it,	you	first	must	add	the	AkAudio	module	as	a
dependency	to	your	game,	by	following	the	steps	outlined	in	UE4	C++
projects.	Once	this	is	done,	the	FAkWaapiClient	class	will	be	available.

Generated	by		 	1.6.3

https://www.audiokinetic.com/library/edge/?source=SDK&id=waa__cpp__sample.html
http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	Using	the	Integration

Frequently	Asked	Questions
Q:	Where	are	banks	generated	when	I	generate	them	from	the	Unreal
editor	or	when	cooking?
A:	By	default,	they	are	generated	in	the	following	location:

UE4/[GameName]/Content/WwiseAudio/[Platform]

Some	banks	containing	language	assets	may	be	in	language-specific
folders.

Q:	I	am	using	the	new	custom	platforms	feature	in	Wwise	2015.1,	and	my
SoundBanks	are	not	loading.	Why?
A:	With	the	custom	platforms	feature,	the	SoundBanks	are	generated	in
a	sub-folder	with	the	same	name	as	your	custom	platform.	You	will	need
to	modify	the	integration	code	to	point	to	that	folder.	Open	the	file
…/Wwise/Source/AkAudio/Private/AkAudioDevice.cpp,	and	search	for	the
FAkAudioDevice::SetBankDirectory	method.	In	this	method,	you	will	see
the	various	default	sub-folders	for	the	supported	platforms.	Modify	the
one	corresponding	to	your	custom	platform,	and	recompile	the
integration.

Q:	When	I	generate	banks	from	the	Wwise	application,	I	noticed	that
fewer	banks	are	generated	than	when	generating	banks	from	the	Unreal
Editor.	Why?
A:	When	importing	a	SoundBank	definition	file,	Unreal	may	ask	Wwise	to
generate	banks	that	do	not	exist	in	the	Wwise	project.	If	you	want	the
Unreal-generated	bank	to	persist	in	the	Wwise	project,	you	can	add	the
command-line	argument	-Save	when	importing	the	SoundBank	definition
file.

Q:	When	I	try	to	use	a	plug-in	in	Unreal	Engine	4,	I	get	the	following
error:	LogAkAudio:Error:	Plug-in	not	registered:	4163.	How	do	I	use
plug-ins?
A:	In	order	for	your	plug-in	to	register	itself	with	the	SoundEngine,	you
need	to	include	the	plug-in's	factory	header	(.h)	file.	See	Initializing	the
SoundEngine	to	learn	about	this.

Q:	Can	I	debug	my	code	using	the	Wwise	SoundEngine	debug	libraries?
A:	By	default,	the	Unreal	Engine	does	not	use	the	debug	C	Runtime
Libraries,	but	Wwise	uses	them.	When	building	in	debug,	this	would
cause	linking	errors.	This	is	why,	by	default,	the	Wwise	Unreal	integration
uses	the	profile	libraries.	If	you	wish	to	link	against	the	debug	Wwise
libraries,	simply	set	the	bDebugBuildsActuallyUseDebugCRT	variable	to	true
in	the	following	file:
<UE4_ROOT>/Engine/Source/Programs/UnrealBuildTool/Configuration/BuildConfiguration.cs

Q:	I	can't	connect	to	my	game	running	on	an	Xbox	One,	and	I	get	the
following	error	in	the	log:	"Could	not	find	Wwise	network	ports	in
AppxManifest.	Network	communication	will	not	be	available."	How	can	I
connect	the	Wwise	Authoring	Application	to	my	game?
A:	You	should	make	sure	to	add	the	required	Wwise	network	ports	to
your	game's	AppxManifest.xml.	To	do	so,	ensure	the	following	Xbox	One
platform	settings	are	filled	in	your	project	settings	(Edit	>	Project
Settings):

Use	these	Xbox	One	platform	settings	for	the	Secure	Socket
Descriptions

Use	these	Xbox	One	platform	settings	for	the	Secure	Device
Associations

As	a	result,	your	<GAME>/Config/XboxOne/XboxOneEngine.ini	should
contain	the	following	lines:

+SecureSocketDescriptions=(SecureSocketName="WwiseDiscoverySocket"

+SecureSocketDescriptions=(SecureSocketName="WwiseCommandSocket"

+SecureSocketDescriptions=(SecureSocketName="WwiseNotificationSocket"

+SecureDeviceAssociations=(SecureDeviceAssociationName=

+SecureDeviceAssociations=(SecureDeviceAssociationName=

+SecureDeviceAssociations=(SecureDeviceAssociationName=

For	more	information	on	how	to	modify	the	Xbox	One	AppxManifest,
please	refer	to	the	Unreal	Engine	documentation.

Q:	My	game	freezes	when	I	deploy	it	to	an	iOS,	XboxOne,	or	Switch
device.	Why?	
A:	The	Unreal	Engine	built-in	audio	system	needs	to	be	disabled.	To	do
so,	please	follow	the	appropriate	instructions	for	your	platform:

Platform Instruction

iOS

In	<UE4_ROOT>/Engine/Config/iOS/IOSEngine.ini,	replace
AudioDeviceModuleName=IOSAudio

with
AudioDeviceModuleName=

XboxOne

In	<UE4_ROOT>/Engine/Config/XboxOne/XboxOneEngine.ini,
replace
AudioDeviceModuleName=XAudio2

with
AudioDeviceModuleName=

In	<UE4_ROOT>/Engine/Config/switch/BaseSwitchEngine.ini,
replace

Switch AudioDeviceModuleName=SwitchAudio

with
AudioDeviceModuleName=

Q:	When	I	try	to	use	the	Wwise	Convolution	Reverb	plug-in	in	Unreal
Engine	4,	why	do	I	get	the	following	error:	LogAkAudio:Error:	Plug-in
media	unavailable:	MediaID?
A:	For	Unreal	Engine	4.10	and	earlier,	plug-ins	that	require	media	(like
the	Impulse	Response	for	Wwise	Convolution	Reverb)	require	that	the
SoundBank	be	edited	in	the	Wwise	application	as	documented	on	the
AudioKinetic	website.	In	Unreal	Engine	4.11	and	later,	you	can	assign	a
SoundBank	an	Auxiliary	Bus	via	the	Required	Bank	field	in	the
UAkAuxBus	properties.	This	will	add	necessary	plug-in	media	to	the
SoundBank.

Q:	When	running	a	packaged	game,	some	or	all	of	my	sound	are	not
playing.	Why?
A:	The	Wwise	plug-in	generates	the	SoundBanks	in	the	WwiseAudio
folder	in	your	game's	content	folder.	Since	.bnk	files	are	not	recognized
by	Unreal,	the	WwiseAudio	folder	is	added	as	an	"Additional	non-asset
directory	to	package"	in	your	game's	packaging	settings.	For	this	reason,
Unreal	.uasset	files	(including	AkAudioEvent	and	AkAudioBank)	should
not	be	placed	in	the	WwiseAudio	folder,	as	they	will	be	incorrectly
packaged	twice.

Generated	by		 	1.6.3

https://www.audiokinetic.com/library/?source=Help&id=including_plug_in_media_in_soundbank
http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration

Using	Wwise	Spatial	Audio	in	Unreal
This	tutorial	presents	new	functionalities	introduced	by	Wwise	2017.1	and
the	new	Spatial	Audio	features	introduced	in	the	Unreal	plug-in.	It
explains	the	workflow	to	integrate	spatial	audio	components	in	a	game,
and	provides	technical	information	about	initializing	spatial	audio	features
(such	as	3D	busses,	3D	positioned	Sound	SFX,	or	the	Reflect	Effect
plug-in)	in	the	Wwise	Authoring	Tool	and	importing	the	Spatial	Audio
component	in	a	game	using	the	Unreal	Engine.

It	is	assumed	that	the	reader	has	a	basic	working	knowledge	of	Wwise
and	the	Unreal	Engine.	However,	the	content	of	this	document	is	detailed
enough	for	users	of	any	level	of	expertise	to	complete	this	tutorial.
Further	information	can	be	obtained	from	the	Unreal	Documentation.

Throughout	this	tutorial,	four	different	virtual	acoustic	zones	will	be
created,	each	of	these	virtual	acoustic	zones	demonstrates	one	capability
of	the	new	Spatial	Audio	plug-in.	Each	area	has	an	ambient	sound	placed
at	its	center	that	acts	as	an	emitter.	The	listener	is	left	as	the	default	and
corresponds	in	this	case	to	the	camera,	which	can	be	moved	around	to
explore	the	different	acoustic	environments.

Sections	A,	B,	and	C	are	required	steps	to	build	a	proper	working
environment	and	are	expected	to	be	completed	in	this	specific	order.	Any
of	the	following	sections	(namely	D,	E,	F,	and	G)	can	be	completed
separately	and	independently	in	any	order,	once	the	three	first	sections
are	completed.

Note:	Completion	of	sections	using	the	Reflect	plug-in	require	the
appropriate	license.

A	-	Setting	Up	The	Project
B	-	Preparation
C	-	Add	Reference	Sound	in	Unreal
D	-	Add	Late	Reverb
E	-	Add	Surface	Reflector
F	-	Add	Rooms	and	Portals
G	-	Add	Spot	Reflector

A	-	Setting	Up	The	Project
Using	the	latest	version	of	Wwise	and	Unreal,	follow	the	steps	below	in
order	to	build	your	working	environment.

1.	 Launch	Unreal	from	the	Epic	launcher
2.	 Create	a	new	Unreal	Project	C++	Blank	project	(without	starter

content)	called	TestSpatialAudio.
3.	 Close	Unreal.
4.	 Start	the	Wwise	Launcher.
5.	 Install	Wwise.
6.	 Select	the	Unreal	Engine	tab.
7.	 Click	the	Integrate	Wwise	into	Project...	button.
8.	 Launch	Wwise	using	the	Open	in	Wwise	button.
9.	 Launch	Unreal	using	the	Open	in	Unreal	button.

B	-	Preparation
In	this	section,	we	are	scaling	the	floor	and	setting	up	walls	and	portals	to
delimit	four	different	areas	that	will	correspond	to	the	different	acoustic
environments	in	which	we	will	put	the	spatial	audio	components.

1.	 Select	the	floor	and	set	a	new	Transform.
Set	Location	to	(x=0.0,	y=0.0,	z=0.0).
Set	Scale	to	(x=2.0,	y=2.0,	z=1.0).

2.	 Create	walls	using	8	cubes	with	the	following	dimensions	and
locations:

Location	(x=775.0,	y=0.0,	z=100.0)	Scale	(x=4.5,	y=0.25,
z=2.0).
Location	(x=225.0,	y=0.0,	z=100.0)	Scale	(x=4.5,	y=0.25,
z=2.0).
Location	(x=-225.0,	y=0.0,	z=100.0)	Scale	(x=4.5,	y=0.25,
z=2.0).
Location	(x=-775.0,	y=0.0,	z=100.0)	Scale	(x=4.5,	y=0.25,
z=2.0).
Location	(x=0.0,	y=-775.0,	z=100.0)	Scale	(x=4.5,	y=0.25,
z=2.0)	Rotation	(x=0.0,	y=0.0,	z=90.0).
Location	(x=0.0,	y=-225.0,	z=100.0)	Scale	(x=4.5,	y=0.25,
z=2.0)	Rotation	(x=0.0,	y=0.0,	z=90.0).
Location	(x=0.0,	y=225.0,	z=100.0)	Scale	(x=4.5,	y=0.25,	z=2.0)
Rotation	(x=0.0,	y=0.0,	z=90.0).
Location	(x=0.0,	y=775.0,	z=100.0)	Scale	(x=4.5,	y=0.25,	z=2.0)
Rotation	(x=0.0,	y=0.0,	z=90.0).

3.	 Move	Player	start	to:
Location	(x=-500.0,	y=-500.0,	z=100.0).

4.	 In	order	to	help	differentiate	the	rooms,	add	the	following	PointLights
at	the	specified	locations	with	Intensity	set	to	50,000:

Red,	Location	(x=-500.0,	y=-500.0,	z=500.0).
Blue,	Location	(x=500.0,	y=-500.0,	z=500.0).
Green,	Location	(x=500.0,	y=500.0,	z=500.0).
Yellow,	Location	(x=-500.0,	y=500.0,	z=500.0).

5.	 Save	as	"NewMap".

Build	working	environment

C	-	Add	Reference	Sound	in	Unreal
The	first	zone	introduces	a	3D	positioned	sound	which	should	be	panned
and	occluded/obstructed	accordingly	as	the	listener	is	moving	around	the
source.	Occlusion/obstruction	occurs	when	the	listener	(namely,	the	main
camera)	moves	outside	the	area	and	hides	behind	opaque	components
such	as	a	wall,	a	floor,	or	a	ceiling.

1.	 In	the	Wwise	project,	create	a	new	Sound	SFX	in	the	Default	Work
Unit	of	the	Actor-Mixer	Hierarchy,	name	it	ReferenceSound,	and
import	an	impulse	sound.

Create	Sound	SFX

2.	 Make	sure	to	enable	Use	game-defined	auxiliary	sends	with
positioning	enabled	and	type	set	to	3D.

Select	positioning	type

3.	 Create	the	associated	Event	"PlayReferenceSoundTest",	and	drag
and	drop	the	"ReferenceSound"	voice	into	it.

Create	sound	Event

4.	 Save	the	project.
5.	 In	Unreal,	open	Window	>	Wwise	Picker	and	drag	the

"PlayReferenceSoundTest"	Event	into	the	Content	Browser.

Drag	from	Wwise	Picker	to	the	Content	Browser

6.	 Double	click	the	"PlayReferenceSoundTest"	and	create	a	new
SoundBank	called	"TestSpatialAudioBank"	directly	from	the
SoundBank	list.

Create	SoundBank

Select	SoundBank

7.	 Drag	the	"PlayReferenceSoundTest"	Event	into	the	scene	to	create	a
new	AkAmbientSound.

Set	Location	to	(x=-500.0,	y=-500.0,	z=100.0).

Create	AkAmbientSound

8.	 Open	Level	Blueprint	from	the	Blueprints	menu	and	remove	"Event
BeginPlay"	and	"Event	Tick".

9.	 Drag	the	newly	created	"PlayReferenceSoundTest"	item	from	the

World	Outliner	into	the	blueprint.
10.	 Right-click	the	blueprint	background	and	search	for	"Left	Mouse

Button".
11.	 	Right-click	the	blueprint	background	again	and	search	for	"Post

Event".
12.	 Connect	the	Pressed	outlet	to	the	Post	Event	Exec	and	the

"PlayReferenceSoundTest"	component	to	the	Actor	inlet.
13.	 	Select	the	"PlayReferenceSoundTest"	AkEvent	in	the	Post	Event.

Add	user	input	to	trigger	ambient	sound

14.	 In	the	upper	menu,	select	Build	>	Generate	SoundBanks....	to
generate	the	SoundBanks	for	Windows.

Generate	SoundBanks	from	build	menu

15.	 	Make	sure	the	banks	are	successfully	generated	in	the	Ouput	Log.

Output	Log	for	SoundBank	generation

16.	 Start	the	scene.	You	should	now	hear	the	sound	play,	spatialized	in
3D,	when	pressing	the	Left	Mouse	Button.

D	-	Add	Late	Reverb
The	second	area	is	a	demonstration	of	using	an	AkSpatialAudioVolume	to
include	a	Late	Reverb	applied	to	an	AkAmbientSound	inside	a	contained
area.

1.	 In	the	Wwise	project,	create	an	Auxiliary	Bus	called
"TestReverbAuxBus"	under	the	Master	Audio	Bus.

Create	an	Auxiliary	Bus	for	reverb

2.	 Add	a	Wwise	RoomVerb	Effect	and	use	the	Cathedrals	>	Holy
predefined	ShareSet.

3.	 Create	a	second	Event	called	"PlayLateReverbTest"	and	drag	the
"ReferenceSound"	Sound	SFX	on	it.

Create	Play	Event

4.	 Save	the	project.
5.	 In	Unreal,	drag	an	AkSpatialAudioVolume	volume	in	the	scene	from

the	Volumes	selection.
Set	Location	to	(x=500.0,	y=-500.0,	z=100.0).
Set	Scale	to	(x=5.0,	y=5.0,	z=1.0).

Create	new	spatial	audio	volume

6.	 Make	sure	only	Enable	Late	Reverb	is	enabled	and	that	Enable

Surface	Reflectors	and	Enable	Room	remain	disabled	for	this
AkSpatialAudioVolume.

Select	'Enable	Late	Reverb'

7.	 Drag	the	new	TestReverbAuxBus	and	PlayLateReverbTest	from	the
Wwise	Picker	into	the	Content	Browser.

From	Wwise	Picker,	drag	Auxiliary	Bus	and	Event

8.	 Double-click	the	PlayLateReverbTest	and	assign	it	to

TestSpatialAudioBank.

Adding	bus	and	Event	to	bank

9.	 Select	the	new	AkSpatialAudioVolume	and	set	the	aux	bus	to
TestReverbAuxBus	in	the	Late	Reverb	section

Select	late	reverb	aux	bus

10.	 Drag	the	"PlayLateReverbTest"	Event	into	the	scene	to	create	an
AkAmbientSound.

Set	Location	to	(x=500.0,	y=-500.0,	z=100.0).

Add	Event	into	the	scene

11.	 Reproduce	steps	C-11	to	C-13	for	PlayLateReverbTest	to	trigger	the

sound.	(You	can	map	a	keyboard	key	instead	of	a	mouse	button.)
12.	 Regenerate	the	SoundBanks.
13.	 Start	the	scene	and	go	inside	the	volume.	Triggering

PlayReferenceSoundTest	should	result	in	a	sound	with	reverb
applied	on	it.

Note:
If	Enable	Room	is	checked	for	the	AkSpatialAudioVolume,	the
Auxiliary	Bus	containing	the	reverb	must	have	3D	positioning
enabled	as	well.

E	-	Add	Surface	Reflector
The	third	area	demonstrates	surface	reflectors	that	are	used	to	simulate
the	early	reflection	implied	by	the	propagation	of	sound	in	an	acoustic
environment.	The	wave	propagation	is	modeled	using	the	image-source
method	which	derives	from	the	game	geometry	the	appropriate	time
delay	(distance),	amplitude,	and	filter	parameters	in	order	to	recreate	a
realistic	acoustic	environment.	Real	time	computation	evaluates	the
different	paths	acoustic	waves	take	to	reach	the	relative	position	of
listeners	in	reference	to	sound	emitters.	The	resulting	effect	provides	a
strong	sensation	of	space	of	the	acoustic	environment.	One	can	actually
see	the	reflection	through	the	Wwise	Reflect	Effect	Editor,	which	displays
a	distance/amplitude	representation	of	each	reflection.

1.	 In	Wwise,	create	a	third	Event	called	"PlayReflectTest"	and	drag	the
"ReferenceSound"	Sound	SFX	on	it.

Create	new	Event	in	Wwise

2.	 Create	an	aux	bus	Called	"TestReflectAuxBus"	on	the	Master	Audio
Bus	and	put	a	Reflect	plug-in	on	it.

Create	new	Event	in	Wwise

3.	 Make	sure	to	select	Use	game-defined	auxiliary	sends	and	enable
2D	positioning	for	this	bus.

Enable	2D	positioning	for	Auxiliary	Bus

4.	 Set	Reflect's	Max	Distance	to	10,000	and	Speed	of	Sound	to	34,500.

Set	Reflect	Speed	of	Sound	and	Max	Distance

5.	 Save	Project
6.	 In	Unreal,	drag	and	drop	the	PlayReflectTest	and	TestReflectAuxBus

from	the	Wwise	Picker	into	the	Content	Browser
7.	 Double-click	the	PlayReflectTest	Event	and	assign	it	to	the

TestSpatialAudioBank.
8.	 Drag	and	Drop	the	PlayReflectTest	into	the	scene	to	create	an

AkAmbientSound:
Set	Location	to	(x=500.0,	y=500.0,	z=100.0).

9.	 Drag	n	drop	a	AkSpatialAudioVolume	into	the	scene
Set	Location	to	(x=500.0,	y=500.0,	z=100.0).
Set	relative	scale	to	(x=5.0,	y=5.0,	z=1.0).

10.	 Make	sure	that	"Enable	Surface	Reflectors"	is	enabled,	and	that
"Enable	Late	Reverb"	and	"Enable	Room"	remain	disabled	for	this
AkSpatialAudioVolume.

Add	spatial	audio	volume	to	scene

11.	 The	PlayReflectTest	AkAmbientSound	should	be	inside	the
AkSpatialAudioVolume.

12.	 Select	the	PlayReflectTest	AkAmbientSound,	go	to	the	Spatial	Audio
option	and	set	"Early	Reflection	Aux	bus"	to	"TestReflectAuxBus".

13.	 You	can	also	enable	Debug	Draw	and	display	1st	order	reflections
for	this	AkAmbientSound	(in	Ak	Component	>	Spatial	Audio	>
Debug	Draw).

Debug	draw	option	for	reflections

14.	 Reproduce	steps	C-11	to	C-15	for	PlayReflectTest	to	trigger	the
sound.	(You	can	map	a	keyboard	key,	instead	of	a	mouse	button.)

User	input	to	trigger	the	sound

15.	 Regenerate	the	SoundBanks.
16.	 Start	the	scene	and	go	inside	the	volume.	You	should	see	reflections

being	drawn	and	your	sound	being	routed	to	an	aux	bus	that	uses
the	Reflect	plug-in	when	triggering	PlayReflectTest.

F	-	Add	Rooms	and	Portals
In	a	realistic	acoustic	environment,	portals	(such	as	windows	or	any	other
opening)	will	act	as	new	sources	for	any	listener	outside	the	acoustic
volume	in	which	a	sound	is	emitted.	AkAcousticPortals	are	useful	to
model	this	situation	using	an	Auxiliary	Bus	to	route	the	audible	content	of
a	volume	and	expose	it	as	a	new	3	dimensional	source	in	an	adjacent
acoustic	space.

1.	 	In	the	Wwise	project,	create	a	new	Auxiliary	Bus	called
"TestPortalAuxBus".

2.	 Make	sure	to	select	Use	game-defined	auxiliary	sends	and	to
enable	3D	positioning.

Create	new	Auxiliary	Bus	with	3D	positioning

3.	 Add	a	Wwise	RoomVerb	Effect	with	Room_Medium	parameters.

Add	reverb	to	Auxiliary	Bus

4.	 Create	a	fourth	Event	called	"PlayPortalTest"	and	drag	the
"ReferenceSound"	Sound	SFX	on	it.

Add	new	Play	Event

5.	 Save	the	project.
6.	 In	Unreal,	drag	and	drop	the	PlayPortalTest	from	the	Wwise	Picker

into	the	Content	Browser.
7.	 	Drag	and	drop	the	TestPortalAuxBus	into	the	Content	Browser.

Add	Event	and	Auxiliary	Bus	to	the	Content	Browser

8.	 Double	click	the	"PlayPortalTest"	Event	and	assign	it	to	the
TestSpatialAudioBank.

Select	SoundBanks	for	the	Event

9.	 Add	a	new	AkSpatialAudioVolume.
Set	Location	to	(x=-500.0,	y=500.0,	z=100.0).
Set	Absolute	Scale	to	(x=5.0,	y=5.0,	z=1.0).

10.	 Select	the	"TestPortalAuxBus"	as	an	aux	bus	in	the	Late	Reverb

section.

Add	the	spatial	audio	volume	to	scene	and	select	late	reverb
auxiliary	bus

11.	 Make	sure	the	Enable	Late	Reverb	and	Enable	Room	are	both
enabled	and	Enable	Surface	Reflectors	remains	disabled	for	this
AkSpatialAudioVolume.

Make	sure	the	room	is	enabled

12.	 Reproduce	steps	F-1	to	F-7	to	add	another	late	reverb	aux	bus	(with
any	RoomVerb	preset)	called	"TestReferenceAuxBus".

Create	new	Auxiliary	Bus	with	3D	positioning

Add	reverb	to	Auxiliary	Bus

13.	 Add	another	AkSpatialAudioVolume.
Set	Location	to	(x=-500.0,	y=-500.0,	z=100.0).
Set	Absolute	Scale	to	(x=5.0,	y=5.0,	z=1.0).

14.	 Make	sure	Enable	Late	Reverb	and	Enable	Room	are	both
enabled	and	Enable	Surface	Reflectors	remains	disabled	for	this
AkSpatialAudioVolume.

Add	a	second	audio	volume	and	enable	room

15.	 Select	the	"TestReferenceAuxBus"	as	an	aux	bus	in	the	Late	Reverb
section.

Select	late	reverb	auxiliary	bus

16.	 Add	three	AkAcousticPortal.
Location	(x=-500.0,	y=0.0,	z=100.0)	Scale	(x=0.5,	y=0.5,	z=1.0).
Location	(x=0.0,	y=-500.0,	z=100.0)	Scale	(x=0.5,	y=0.5,	z=1.0)
Rotation	(x=0.0,	y=0.0,	z=90.0).
Location	(x=-500.0,	y=0.0,	z=100.0)	Scale	(x=0.5,	y=0.5,	z=1.0)
Rotation	(x=0.0,	y=0.0,	z=90.0).

Drag	a	new	acoustic	portal	into	the	scene

17.	 Select	the	new	Portal	and	set	the	initial	state	to	Open	in	the	"Ak
Acoustic	Portal"	section.

Make	sure	the	portal	is	opened

18.	 Drag	and	drop	the	PlayPortalTest	into	the	scene.
Set	Location	to	(x=-500.0,	y=500.0,	z=100.0).

Drag	new	Event	into	the	scene

19.	 Reproduce	steps	C-11	to	C-13	for	PlayPortalTest	to	trigger	the
sound.	(You	can	map	a	keyboard	key,	instead	of	a	mouse	button.)

20.	 Regenerate	the	SoundBanks	for	Windows.

21.	 Start	the	scene	and	stay	at	the	start	location.	You	should	hear	the
sound	from	the	portal	when	triggering	PlayPortalTest.

Note:
An	AkAcousticPortal	must	be	oriented	in	a	way	that	the	rooms	it
will	link	between	are	positioned	on	its	local	Y	axis.	When	selecting
a	portal,	a	yellow	ribbon	appears	around	the	portal	to	help	visualize
that.	The	yellow	line	represents	the	separation	between	the	front
and	back	areas.	The	highest	priority	room	will	be	chosen	in	case	of
overlapping	rooms.
Note:
If	the	world	contains	one	or	more	spatial	audio	rooms,	then	the
behavior	of	the	occlusion/obstruction	algorithm	changes	to	utilize
the	additional	information	that	spatial	audio	rooms	provide.	If	the
line-of-sight	test	between	the	emitter	and	listener	fails:

1.	 When	the	listener	and	emitter	are	in	the	same	room,	the
Wwise	obstruction	filter	(dry	path	only)	is	set.

2.	 When	the	emitter	and	listener	are	in	different	rooms,	the
Wwise	obstruction	filter	(both	wet	and	dry	path)	is	set.

3.	 In	the	absence	of	spatial	audio	rooms,	the	algorithm	assumes
that	all	sounds	that	do	not	have	a	line	of	sight	to	the	listener
are	occluded,	and	the	Wwise	occlusion	filter	(both	wet	and	dry
path)	is	set.

Note:
Having	added	a	room	for	section	F,	you	will	now	notice	that	the
sounds	created	in	previous	sections	that	lie	outside	the	new	rooms
are	occluded	when	the	listener	is	inside	the	room.	Similarly,	the
sounds	inside	the	rooms	are	occluded	while	the	listener	is	outside
the	room.

In	Wwise,	you	can	fine	tune	the	filter	response	of	portal	shadow	region
under	the	Obstruction/Occlusion	tab	in	Project	Settings.

Obstruction	volume	curve

Obstruction	LPF	curve

Occlusion	volume	curve

Occlusion	LPF	curve

G	-	Add	Spot	Reflector
Spot	reflectors	are	the	last	feature	introduced	in	this	tutorial	and	are
mainly	used	to	model	singular	acoustic	reflections.	They	can	be	used	to
model	distant	virtual	man-made	or	naturally	created	geographic	features
which	create	a	singular	distinctive	acoustic	echo.	For	example,
mountains	or	large	walls.	They	work	best	when	the	emitter	is	the	listener.
A	spot	reflector	can	simply	be	dropped	inside	the	environment	for	the
engine	to	compute	the	appropriate	acoustic	delay	between	the	emitter
and	the	listener,	based	on	the	physical	distance	between	their	respective
location	and	the	point	reflection.

1.	 In	the	Wwise	project,	create	a	new	Auxiliary	Bus	called
"TestSpotReflectorAuxBus"	and	apply	a	Reflect	plug-in	to	it.

Add	new	Auxiliary	Bus	with	Reflect

2.	 Make	sure	to	enable	Use	game-defined	auxiliary	sends	and
enable	2D	positioning.

Make	sure	to	enable	2D	positioning

3.	 Set	Reflect's	Max	Distance	to	10,000	and	Speed	of	Sound	to	34,500.

Make	sure	to	set	Reflect's	Speed	of	Sound	and	Max	Distance

4.	 Save	the	project.
5.	 In	Unreal,	from	the	Wwise	Picker,	drag	and	drop	the

TestSpotReflectorAuxBus	into	the	Content	Browser.
6.	 Open	the	Level	Blueprint	to:

Enable	Spot	Reflectors	on	the	player	emitter.
Post	the	"PlayReferenceSoundTest"	Event	from	the	player
emitter.	(You	can	map	a	keyboard	key	instead	of	a	mouse
button.)

Enable	Spot	Reflectors	on	the	player	component	and	Post
PlayReferenceSoundTest	from	it

7.	 Drag	a	new	AkSpotReflector	object	into	the	scene.
Set	Location	to	(x=-150.0,	y=-150.0,	z=100.0).

8.	 On	the	AkSpotReflector	Object,	set	the	option	Aux	Bus	to	your
"TestSpotReflectorAuxBus".

Drag	new	spot	reflector	into	the	scene

9.	 Regenerate	the	SoundBanks.
10.	 Start	the	scene.	When	triggering	the	new	Event	from	the	player

emitter,	you	should	hear	reflections	from	the	spot	reflector	when	both
the	emitter	and	the	spot	reflector	are	in	the	same	room.	Opening	the
Reflect	plug-in	Effect	Editor	on	the	"TestSpotReflectorAuxBus"
Auxiliary	Bus,	you	should	see	the	reflection	appear	in	the	list	and	the
graph.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration

What's	New?
Each	version	of	this	integration	matches	a	specific	build	of	Unreal	Engine
4.	Here	is	what	has	changed	in	each	release	of	the	integration	(in
addition	to	upgrading	to	the	new	Unreal	build).

Note:	This	integration	does	not	support	experimental	Unreal
Engine	4	features.

Migration	Notes	
Known	Issues

Versions:

Unreal	Engine	4.17/4.18	-	Wwise	2017.2.1.6524.866
Unreal	Engine	4.17/4.18	-	Wwise	2017.2.0.6500.836
Unreal	Engine	4.15/4.16/4.17/4.18	-	Wwise	2017.1.4.6407.760
Unreal	Engine	4.15/4.16/4.17/4.18	-	Wwise	2017.1.3.6377.732
Unreal	Engine	4.15/4.16/4.17	-	Wwise	2017.1.3.6377.715
Unreal	Engine	4.15/4.16/4.17	-	Wwise	2017.1.2.6361.696
Unreal	Engine	4.15/4.16/4.17	-	Wwise	2017.1.1.6340.673
Unreal	Engine	4.15/4.16	-	Wwise	2017.1.0.6302.628
Unreal	Engine	4.12/4.13/4.14/4.15/4.16	-	Wwise	2016.2.4.6098.451
Unreal	Engine	4.12/4.13/4.14/4.15	-	Wwise	2016.2.3.6077.435
Unreal	Engine	4.12/4.13/4.14/4.15	-	Wwise	2016.2.3.6077.422
Unreal	Engine	4.12/4.13/4.14/4.15	-	Wwise	2016.2.2.6022.371
Unreal	Engine	4.12/4.13/4.14/4.15	-	Wwise	2016.2.2.6022.359
Unreal	Engine	4.12/4.13/4.14	-	Wwise	2016.2.1.5995.317
Unreal	Engine	4.12/4.13/4.14	-	Wwise	2016.2.0.5972.301
Unreal	Engine	4.12/4.13	-	Wwise	2016.2.0.5972.274
Unreal	Engine	4.11/4.12/4.13	-	Wwise	2016.1.3
Unreal	Engine	4.11/4.12	-	Wwise	2016.1.2
Unreal	Engine	4.11/4.12	-	Wwise	2016.1.1
Unreal	Engine	4.11.2	-	Wwise	2016.1
Unreal	Engine	4.11	-	Wwise	2015.1.7
Unreal	Engine	4.11	-	Wwise	2015.1.6
Unreal	Engine	4.10	-	Wwise	v2015.1.4
Unreal	Engine	4.9	-	Wwise	v2015.1.2

Unreal	Engine	4.8	-	Wwise	v2015.1
Unreal	Engine	4.8	-	Wwise	v2014.1.5
Unreal	Engine	4.7	-	Wwise	v2014.1.3
Unreal	Engine	4.6	-	Wwise	v2014.1.1
Unreal	Engine	4.5	-	Wwise	v2014.1
August	2014	-	Wwise	v2014.1
August	2014	-	Wwise	v2013.2.9
July	2014	-	Wwise	v2013.2.9
June	2014	-	Wwise	v2013.2.8
April	2014	-	Wwise	v2013.2.7
March	2014	-	Wwise	v2013.2.6
January	2014	-	Wwise	v2013.2.5
December	2013	-	Wwise	v2013.2.4
October	2013	-	Wwise	v2013.2.1
September	2013	-	Wwise	v2013.2.1
August	2013	-	Wwise	v2013.2
July	2013	-	Wwise	v2013.1.1
June	2013	-	Wwise	v2013.1.1
May	2013	-	Wwise	v2013.1.1
March	2013	-	Wwise	v2013.1

Unreal	Engine	4.17/4.18	-	Wwise
2017.2.1.6524.866

WG-34960	Removed	min	and	max	properties	in	AkSlider	widget,
which	are	now	automatically	set	via	WAAPI.
WG-35238	Fixed:	All	open	AkEvent	Sequencer	segments	update	to
dirty	when	changes	are	detected	in	their	Work	Units.
WG-35773	Added	bounds	to	theUAkComponent::UseEarlyReflections
order	parameter.
WG-35949	Added	ability	to	generate	a	single	SoundBank	containing
only	an	Auxiliary	Bus.
WG-36083	Removed	WAAPI	log	spam	when	generating
SoundBanks	while	the	Sequencer	window	is	open.
WG-36200	Fixed	crash	when	running	editor	with	-game	flag.
WG-36357	Changed	Launcher	to	now	copy	Visual	Studio	2017
dependencies	to	ThirdParty	folder.
WG-36415	Fixed	crash	in	Unreal	when	adding	new	AkSlider	in	UMG

Unreal	Engine	4.17/4.18	-	Wwise
2017.2.0.6500.836

Improved	listener	handling	while	in	the	Editor.	See	Editor	Listener
for	more	information.
Added	a	new	WAAPI-enabled	Wwise	picker.	See	The	WAAPI
Picker	for	more	information.
Improved	Sequencer	integration	with	scrubbing	and	'play	from
anywhere'	support.	See	Level	Sequencer	for	more	information.
Added	WAAPI-enabled	waveform	rendering	to	AkAudioEventSection
Sequencer	sections.	See	Level	Sequencer	for	more	information.
Exposed	WAAPI	to	Blueprint.	See	WAAPI	Blueprint	Functions	for
more	information.
Added	WAAPI-enabled	widgets	for	use	in	UMG.	See	WAAPI
Widgets	for	more	information.
WG-30009	Fixed:	Added	support	for	multiple	listeners	via	Blueprint.
WG-30010	SetMultiplePositions	is	now	exposed	in	Blueprint.
WG-33932	Removed	the	experimental	alternate	occlusion	feature.
WG-35307	Added	more	configurations	to	the	Set	Bus	Config
Blueprint	node.

https://www.audiokinetic.com/library/?source=SDK&id=namespace_a_k_1_1_sound_engine_a2346059fd713b8393b60879362ca1efc.html#a2346059fd713b8393b60879362ca1efc

Unreal	Engine	4.15/4.16/4.17/4.18	-	Wwise
2017.1.4.6407.760

WG-33333	Removed	obsolete	code	that	tried	to	handle	global	focus.
WG-34745	Reduced	Lower	Engine	memory	pool	size	on	mobile
platforms.
WG-34879	Exposed	the	collision	channel	used	for	occlusion	line
trace	in	AkComponent's	properties.
WG-35035	Ensured	setting	the	occlusion	refresh	interval	to	0	from
Blueprint	correctly	disables	the	feature.
WG-35104	In	a	multiplayer	scenario,	listeners	are	now	properly
handled.
WG-35463	Fixed:	Portals	not	working	on	32-bit	platforms.
WG-35473	Now	register	game	objects	only	when	the	world	is	valid.
WG-35614	Removed	coordinates	conversion.	See
migration_to_2017_1_4	for	more	information.

Unreal	Engine	4.15/4.16/4.17/4.18	-	Wwise
2017.1.3.6377.732

Added	support	for	Unreal	4.18.
WG-35104	Fixed:	Do	not	create	a	listener	on	a	dedicated	server.
WG-35272	Fixed:	Added	support	for	Android	64-bit	builds.
WG-35286	Fixed:	Avoid	crash	when	having	a	Add	Surface	Reflector
Set	Component	Blueprint	node	connected	to	nothing.

Unreal	Engine	4.15/4.16/4.17	-	Wwise
2017.1.3.6377.715

WG-34797	Undoing	a	surface	deletion	on	a	Spatial	Audio	Volume
properly	refreshes	its	details	panel.
WG-34810	Late	Reverb	Component	properties	are	now	properly
serialized.
WG-34878,	WG-34906	Sounds	are	now	properly	spatialized	in	a
Play	in	Editor	session.
WG-34907	Performance	improvement	for	FAkAudioDevice::Get().

Unreal	Engine	4.15/4.16/4.17	-	Wwise
2017.1.2.6361.696

WG-32413	Fixed:	Cannot	hear	sounds	in	the	Content	Browser	and
the	Animation	Editor.
WG-33970	Fixed:	(Mac)	Crash	when	running	game	with	PAK	files.
WG-34030	Fixed:	Properly	update	the	details	panel	when	a	surface
is	removed	from	an	AkSpatialAudioVolume.
WG-34083	Fixed:	Refresh	issue	when	changing	a	Spatial	Audio
Volume's	geometry	properties.
WG-34213	Fixed:	Sounds	can	now	be	heard	from	the	Content
Browser	and	the	Animation	Editor.
WG-34222	Virtual	Acoustics	factory	ShareSets	now	appear	in	the
Wwise	Picker.
WG-34276	Added	ability	to	allow	posted	Events	to	continue	playing
past	their	associated	sections	within	Level	Sequences.
WG-34605	Fixed:	Portals	are	not	pushed	to	Wwise	Spatial	Audio
when	starting	a	game,	in	some	circumstances.
WG-34630	Fixed:	Crash	when	-nosound	option	is	enabled.
WG-34703	Fixed:	Prevent	crash	when	modifying	multiple
SpatialAudioVolumes	at	the	same	time.
WG-34704	Fixed:	Prevent	crash	when	unregistering	an
AkComponent	that	is	a	default	listener.
WG-34745	Fixed:	Reduced	lower	engine	memory	pool	size.

Unreal	Engine	4.15/4.16/4.17	-	Wwise
2017.1.1.6340.673

Added	support	for	Unreal	Engine	4.17
Since	Unreal	4.17,	the	Unreal	audio	system	needs	to	be	disabled	on
the	Xbox	One	and	Switch	platforms.	Please	refer	to	Frequently
Asked	Questions	for	more	information.
WG-34098	(Mac)	An	AkComponent	located	at	exactly	the	same
position	as	a	volume	with	an	AkRoomComponent	will	be	properly
assigned	to	that	room.
WG-34119	Fixed:	Uninitialized	listener	ID	value	sent	to	SpatialAudio
API	via	SetEmitterAuxSendValues.
WG-34368	Fixed:	FAkAudioDevice::PostEventAtLocation	does	not
register	game	object.
WG-34388	Fixed:	Crash	in	Editor	when	resetting	RTPC	sequence
name	to	default	in	Level	Sequencer.

Unreal	Engine	4.15/4.16	-	Wwise
2017.1.0.6302.628

Added	Spatial	Audio	components.	See	Spatial	Audio	Objects	for
more	information.
WG-32095:	Added	support	for	Visual	Studio	2017
WG-32388	Fixed:	Properly	parse	Max	attenuation	radius	when
generating	SoundBanks.

Unreal	Engine	4.12/4.13/4.14/4.15/4.16	-	Wwise
2016.2.4.6098.451

Added	support	for	Unreal	Engine	4.16
WG-31942	Fixed:	Added	support	for	Wwise	file	packages.
WG-33251	Fixed:	Added	missing	include	files	when	building	non-
Unity	builds.

Unreal	Engine	4.12/4.13/4.14/4.15	-	Wwise
2016.2.3.6077.435

WG-32914	Fixed:	Avoid	potential	deadlocks	and	crashes	in	the	AK
Unreal	IO	code	in	a	packaged	game.

Unreal	Engine	4.12/4.13/4.14/4.15	-	Wwise
2016.2.3.6077.422

WG-30020	Fixed:	Allow	possibility	to	dismiss	the	warning	about
missing	Wwise	project	on	editor	startup.
WG-30695	Added	support	for	the	Switch	platform.
WG-31076	Fixed:	Marked	all	of	the	Wwise	Blueprint	nodes	as
BlueprintCosmetic	to	avoid	running	them	on	a	dedicated	server.
WG-31455	Added	AkComponentCallbackManager.	This	allows
better	handling	of	required	callbacks	for	an	AkComponent,	reducing
concurrency	risks.
WG-32046	Fixed:	Add	possibility	to	automatically	start	an
AkAmbientSound	on	BeginPlay
WG-32490	Fixed:	Deprecated	level	sequencer	code
WG-32763	Fixed:	Discontinued	use	of	monolithic	engine	header
files,	like	"Engine.h".
WG-32768	Fixed:	Crash	when	loading	large	banks	using	EDL.
WG-32799	Fixed:	Increased	number	of	concurrent	IO	transfers	in
editor	to	speed	up	SoundBank	loading.

Unreal	Engine	4.12/4.13/4.14/4.15	-	Wwise
2016.2.2.6022.371

WG-32464	Allow	opening	an	existing	project	in	UE4.15	on	the	Mac
platform.

Unreal	Engine	4.12/4.13/4.14/4.15	-	Wwise
2016.2.2.6022.359

WG-31087	Added	Level	Sequence	support.
WG-31687	Added	Event	Driven	Loader	support.
WG-31816	Added	migration	of	Matinee	tracks	to	Sequencer	tracks.
WG-31924	Fixed:	Editor	crash	when	trying	to	post	an	Event	on	an
AkComponent	that	is	being	auto-destroyed.
WG-32259	Fixed:	Made	AkComponent	a	Blueprintable	component.
Blueprint	components	can	now	use	AkComponent	as	a	base	class.

Unreal	Engine	4.12/4.13/4.14	-	Wwise
2016.2.1.5995.317

WG-31588	Fixed:	Make	sure	no	sound	is	played	on	a	dying	actor.
WG-31590	Improved	low-memory	conditions	related	to	callbacks.
WG-31860	Fixed:	Remove	warnings	found	by	clang	static	code
analysis.
WG-31876	Fixed:	Allow	relative	paths	for	the	Wwise	install	path.
WG-31888	Fixed:	Potential	crash	on	exit	due	to	accessing	deleted
FString.

Unreal	Engine	4.12/4.13/4.14	-	Wwise
2016.2.0.5972.301

WG-31589	Fixed:	Do	not	destroy	a	spawned	component	that	is	not
set	to	auto-destroy	and	is	failing	to	post	an	event.
WG-31678	Fixed:	Streaming	files	can	now	be	opened	correctly.
WG-31771	Fixed:	Avoid	a	crash	when	adding	an
AnimNotify_AkEvent	to	a	playing	animation.

Unreal	Engine	4.12/4.13	-	Wwise
2016.2.0.5972.274

WG-29980	Language-specific	folders	are	now	parsed	to	retrieve
max	attenuation	values	for	Events.
WG-30448	Improved	logging	of	AkComponent	when	attempting	to
post	an	invalid	AkEvent.
WG-30491	Fixed:	Make	sure	to	stop	sounds	when	ending	a	PIE
session.
WG-31030	Fixed:	Optimized	FAkAudioDevice::Get().
WG-31040	Fixed:	Memory	leak	in	AkComponent	when	attempting	to
post	an	invalid	AkEvent.
WG-31075	Fixed:	Removed	call	to	FAkAudioDevice::Get()	from	bank
load	callbacks	in	order	to	prevent	crash	in	module	manager.
WG-31186	Fixed:	Prevent	crash	in	AkComponentCallback	by	canceling
Event	callbacks	when	AkComponent	gets	destroyed.
WG-31204	Fixed:	Memory	leak	when	a	spawned	AkComponent
failed	to	post	its	associated	Event.
WG-31277	Fixed:	Crash	in	editor	when	attempting	to	post	an	Event
on	a	destroyed	actor.

Unreal	Engine	4.11/4.12/4.13	-	Wwise	2016.1.3
WG-30993	Fixed:	Remove	explicit	LoadLibrary	on	XAudio	2.7.
WG-31015	Fixed:	Link	with	the	Recorder	plug-in.

Unreal	Engine	4.11/4.12	-	Wwise	2016.1.2
WG-30304	Fixed:	"Unload	stream	level"	no	longer	posts	a	global
"Stop	All"	to	the	SoundEngine.
WG-30754	Fixed:	FAkAudioDevice::PostEvent	now	always	returns
the	playing	ID.
WG-30804	Fixed:	Removed	dependencies	on	the	Wwise	SDK
samples.	The	new	IO	system	now	uses	Unreal	IO	utilities	only.

Unreal	Engine	4.11/4.12	-	Wwise	2016.1.1
WG-29972	Fixed:	Multiple	potential	threading	issues	with	the	auto-
destroy	behavior	of	the	AkComponent.
WG-29979	Fixed:	EndOfEvent	callbacks	are	now	always	called.
WG-30004	Fixed:	SetGameObjectOutputBusVolume	is	now	exposed
in	Blueprints	and	AkAudioDevice.
WG-30404	Fixed:	The	attenuation	scaling	factor	now	properly	works
on	AkComponents.
WG-30409	Fixed:	It	is	now	possible	to	decode	Vorbis-encoded	files.

Unreal	Engine	4.12	-	Wwise	2016.1
WG-29991	Added	AkEvent	String	Input	Field	to	AkAmbientSound.
WG-29997	Suppressed	duplicate	"LogAkAudio:	StopAll	API	called"
entries	in	the	output	log.
WG-30218	Fixed:	Crash	when	connecting	the	Wwise	Profiler	to	the
Android	platform.
WG-30255	Fixed:	UE4	crash	when	adding	key	to	Ak	Event	Track	in
Matinee.
WG-29991	Added	AkEvent	String	Input	Field	to	AkAmbientSound.
WG-29997	Suppressed	duplicate	"LogAkAudio:	StopAll	API	called"
entries	in	the	output	log.

Unreal	Engine	4.11.2	-	Wwise	2016.1
WG-29917	Fixed:	Fixed	a	case	where	the	attenuation	radius	of
AkAmbientSounds	did	not	show	up	in	the	Editor	window.
WG-30000	Fixed:	Changed	meta	properties	of
StartAllAmbientSounds	and	StopAllAmbientSounds.
WG-30012	Fixed:	Integrated	GitHub	pull	request	#5.	Show	project
supported	platforms	as	"Available	Platforms"	in	the	"Generate	Sound
Banks"	window.
WG-30014	Fixed:	Fixed	a	crash	when	starting	a	Play	in	Editor
session	that	uses	a	dedicated	server.
WG-30031	Fixed:	Removed	usage	of	the	World	global	pointer.
WG-30205	Fixed:	On	the	Mac	platform,	the	Wwise.app	path	may
now	contain	spaces.

https://github.com/audiokinetic/WwiseUE4Plugin/pull/5

Unreal	Engine	4.11	-	Wwise	2015.1.7
UI-316	Fixed:	Prevent	a	crash	when	starting	a	Play	in	Editor	session
with	a	dedicated	server.
WG-29917	Fixed:	Make	sure	the	attenuation	radius	is	visible	in	the
Editor.
WG-29944	Fixed:	Stop	ambient	sounds	when	stopping	PIE	session.

Unreal	Engine	4.11	-	Wwise	2015.1.6
The	Wwise	Unreal	integration	is	now	a	plug-in.	Please	see
Migrating	from	the	UE4	Wwise	integration	source	code	to	the
plug-in	version	for	migration	notes.
UI-273	Fixed:	Create	a	new	uasset	type	for	Auxiliary	Busses.	This
allows	to	assign	an	AuxBus	to	a	SoundBank.	See	AkAuxBus	for
more	information.
UI-280	Fixed:	Deprecated	"...by	name"	methods,	and	replaced	then
with	a	string	field	in	the	relevant	methods.	See	Migrating	"...by
name"	methods	for	more	information.
UI-309	Fixed:	Made	the	Wwise	project	path	relative	to	the	game
folder,	instead	of	relative	to	the	UE4Editor.exe	file.	See	Migrating
the	Wwise	project	path	for	more	information.

Unreal	Engine	4.10	-	Wwise	v2015.1.4
UI-265	Fixed:	In	the	AnimNotifies,	test	the	AkComponent's	validity
before	using	it.	This	reduces	log	spam	when	using	UE	with	the	-
nosound	option.
UI-270	Fixed:	It	is	now	possible	to	build	in	non-Unity	mode.

Unreal	Engine	4.9	-	Wwise	v2015.1.2
UI-249	Fixed:	Avoid	crashing	when	no	Audio	Playback	device	is
available	on	Windows.
Added	a	"Spawn	AkComponent	at	location"	Blueprint	node.	See
Spawn	Ak	Component	at	Location	for	more	information.
Added	support	for	the	Mac	Editor.
Added	support	for	the	Mac	platform.
Added	support	for	the	iOS	platform.
Added	support	for	the	Linux	platform.

Unreal	Engine	4.8	-	Wwise	v2015.1
Migrated	the	UE4.8	integration	to	Wwise	2015.1
Fixed	a	crash	on	Xbox	One	if	the	app	manifest	did	not	contain	a
definition	for	Wwise	communication	ports.

Unreal	Engine	4.8	-	Wwise	v2014.1.5
UI-206	Fixed:	Sounds	with	an	attenuation	can	now	be	heard	when
an	animation	window	is	opened.
UI-212	Fixed:	Added	a	"Load	Init	Bank"	Blueprint	node.
UI-213	Fixed:	Added	null	checks	in	Blueprint	nodes,	preventing
crashes.
UI-214	Fixed:	No	crash	when	saving	an	output	capture	to	disk.
UI-215	Fixed:	No	issue	with	the	Attenuation	Scaling	Factor	of	an
AkComponent	not	being	set	when	attached	to	an	actor.
UI-217	Fixed:	Made	AkReverbVolume's	collision	settings	visible	in
the	details	panel.
UI-220	Fixed:	Fixed	the	occlusion	fade	behavior	for	sounds	that	a
spawn	occluded.
UI-223	Fixed:	The	gathering	of	the	max	attenuations	for	AkEvent
does	not	halt	when	the	parsing	of	one	SoundBank	fails.
UI-226	Fixed:	SoundBank	generation	is	now	performed	by	the	32-bit
WwiseCLI.exe	when	the	64-bit	WwiseCLI.exe	is	missing.
UI-230	Fixed:	Now	using	OnComponentDestroyed	instead	of
FinishDestroy	to	unregister	Wwise	Game	Objects,	which	had
caused	some	Game	Objects	to	be	registered	for	too	long.
UI-233	Fixed:	Added	validity	checks	on	actors	in	the
GetGameObjectID	function.
UI-234	Fixed:	Multiple	viewports	in	the	SetListener	function	are
properly	handled.	This	fixes	a	crash	in	AkAudioDevice.cpp.
UI-236	Fixed:	The	Location	Type	given	to	the	GetAkComponent
Blueprint	node	is	properly	handled.
UI-239	Fixed:	No	crash	at	engine	shutdown	as	a	result	of	the	Bank
Manager	unloading	SoundBanks	that	might	already	have	been
destroyed.
Added	a	"Follow"	check	box	to	the	AnimNotify_AkEvent.	Leaving	it
unchecked	will	post	the	AkEvent	at	a	specific	location,	instead	of
attaching	to	the	parent.
Added	a	new	AnimNotify:	AnimNotify_AkEventByName,	allowing	to
post	events	using	their	name	as	a	string.
Added	Debugging	tools	to	Blueprints.	For	more	information,	see
Debug	Blueprint	Functions

Unreal	Engine	4.7	-	Wwise	v2014.1.3
Added	support	for	the	Android	platform.
Now	including	a	new	demonstration	game,	based	on	Epic's	First
Person	Template.	For	more	information,	see	Sample	Game.
All	Wwise	Integration	settings	now	have	their	page	in	the	Unreal
Project	Settings	window.	No	need	to	manually	edit	INI	files	anymore!
UI-157	Fixed:	When	generating	the	SoundBanks,	add	the	Max
Attenuation	information	to	AkEvents.	It	can	be	retrieved	via
Blueprints.
UI-187	Fixed:	Allow	the	preview	of	AkEvents	from	the	Content
Browser	by	pressing	the	space	bar.
UI-188	Fixed:	When	an	AkAmbientSound	is	about	to	be	destroyed,
cancel	its	event	callback	to	avoid	using	a	destroyed	object	in	the
callback.
UI-189	Fixed:	Added	an	attenuation	scaling	factor	to	AkComponent,
allowing	to	make	each	actor's	attenuation	radius	unique.
UI-190	Fixed:	Added	a	new	Blueprint	node	that	allows	setting	the
exact	list	of	loaded	SoundBanks.	For	more	information,	see	Load
Banks
UI-193	Fixed:	Get	the	UAkAudioEventFactory	directly	when	creating
UAkAudioEvents	by	Drag	&	Drop.
UI-194	Fixed:	Optimized	the	finding	of	AkReverbVolumes	at	a	location.
UI-195	Fixed:	Added	blueprint_actor_posteventbyname,
features_blueprintcsoundbanks_loadbyname,	and	Unload	Bank
Blueprint	nodes.
UI-196	Fixed:	Added	a	configuration	parameter	for	the	maximum
number	of	concurrent	Reverb	Volumes	applied	on	a	sound.
UI-201	Fixed:	Added	an	UAkAudioEvent	to	AkComponent,	to	bring	it
in	sync	with	Unreal's	AudioComponent.	An	AkComponent	can	by
added	in	a	Blueprint	via	drag	&	drop	of	a	UAkAudioEvent.	An	actor
with	an	attached	AkComponent	will	also	show	its	attenuation	radius
in	the	Editor.
UI-204	Fixed:	Added	code	to	unload	auto-loaded	SoundBanks.
UI-205	Fixed:	Don't	post	events	in	a	world	that	does	not	allow	audio
playback.
UI-208	Fixed:	Fixed	a	potential	crash	when	generating	SoundBanks.

Unreal	Engine	4.6	-	Wwise	v2014.1.1
UI-183	Fixed:	Use	the	debug	SoundEngine	libraries	when
UnrealBuildTool	is	configured	to	use	the	debug	CRT	libraries
(bDebugBuildsActuallyUseDebugCRT	=	true).
UI-184	Fixed:	Added	a	billboard	component	to	AkComponent	to
make	them	visible	in	the	Editor.
UI-186	Fixed:	Allow	drag	&	drop	of	.bnk	files	in	the	Content	Browser
to	create	UAkAudioBank	assets.

Unreal	Engine	4.5	-	Wwise	v2014.1
UI-172	Fixed:	Resolved	assert	created	by	the
AkReverbVolumeChannel	collision	channel.
UI-174	Fixed:	Optimized	the	"Generate	SoundBanks"	window.
UI-175	Fixed:	Added	preprocessor	guards	to	remove	compilation
errors	on	platforms	not	supported	by	this	integration.

August	2014	-	Wwise	v2014.1
UI-166	Fixed:	Auxiliary	Bus	properties	are	now	applied	on	Ambient
Sounds	contained	within	Reverb	Volumes.
Updated	Wwise	version	to	2014.1.	If	you	wish	to	keep	on	using
2013.2.x,	see	Frequently	Asked	Questions.

August	2014	-	Wwise	v2013.2.9
Added	Japanese	documentation.

July	2014	-	Wwise	v2013.2.9
Added	a	SwitchDemo	map	to	the	UnrealWwiseDemo	sample	game,
demonstrating	the	use	of	switches.
UI-161	Fixed:	Removed	the	duplicate	AkComponent	created	when
starting	an	ambient	sound.	This	prevented	the	Stop	Ambient	Sound
method	from	working.

June	2014	-	Wwise	v2013.2.8
UI-152	Fixed:	Add	SoundBanks	and	streamed	files	to	the	packaging
process.

April	2014	-	Wwise	v2013.2.7
UI-149	Fixed:	Set	proper	default	values	for	AkReverbVolumes.

March	2014	-	Wwise	v2013.2.6
Visual	Studio	2013	is	now	used	by	default.	Please	refer	to	the
Requirements	page	for	more	details.
UI-146	Fixed:	Fixed	non-unity	build	compilation	errors.
UI-147	Fixed:

Verify	the	SoundEngine	is	initialized	in	the	AkComponent	tick
function;
Properly	set	the	collision	channel	name	for	AkReverbVolumes;
Avoid	loading	banks	in	a	commandlet;
Removed	the	automatic	bank	creation	mechanism.

UI-148	Fixed:	Use	"Get	Player	Controller"	in	the	RTPCDemo
Blueprint	to	ensure	sound	keeps	playing	when	transitioning	between
"Simulate"	and	"Possess"	modes	in	Editor.

January	2014	-	Wwise	v2013.2.5
Added	an	example	of	AkAnimNotify	in	ShooterGame.	It	is	located	in
the	FPP_RifleReload	animation.
UI-131	Fixed:	Spatialized	sounds	are	now	audible	in	the	Animation
Editor:	Added	a	second	listener	for	the	Animation	Editor	window,	and
routed	game	objects	created	in	this	window	to	the	new	listener.

Warning:
This	fix	changes	the	AnimNotify_AkEvent	Blueprint.	If	you
have	made	modifications	to	it,	be	sure	to	keep	a	backup
before	merging	this	integration.

UI-134	Fixed:	Removed	the	input	flag	StopWhenOwnerDestroyed	to
GetAkComponent.	It	was	unused	and	could	create	confusion.	Added
a	SetStopWhenOwnerDestroyed	method	to	the	AkComponent.
UI-136	Fixed:	Allow	Wwise	Authoring	to	communicate	with	an	Xbox
One	application.
UI-137	Fixed:	Make	sure	a	temporary	game	object	(created	by	"Post
Event	at	Location")	is	subject	to	AAkReverbVolumes.
UI-138	Fixed:	Prevent	the	Sound	Engine	from	creating	UE	errors
while	running	in	a	commandlet.	This	is	a	workaround.	Maybe	the
Sound	Engine	should	not	be	initialized	at	all.
UI-139	Fixed:	Removed	FMath::Abs	on	Z	projection	when	setting
listener	position	in	SoundEngine	(Unreal	code	has	been	left
untouched).	This	allows	upside	down	listeners.
UI-145	Fixed:	Fixed	an	error	in	the	AkComponent::SetRTPCValue
method	that	prevented	RTPCs	from	being	properly	applied.

December	2013	-	Wwise	v2013.2.4
Unreal	Wwise	integration	now	officially	supports	PS4	and	Xbox	One
platforms!
Added	platform	selection	to	bank	generation	dialog	box.
Added	bank	generation	dialog	box	to	build	menu.
LinkedProject	configuration	parameter	has	been	moved	from
Engine/Config/BaseEditor.ini	to	<Your
Game>/Config/DefaultGame.ini.
Added	simple	occlusion	support.
Fixed	a	crash	when	getting	the	UAkComponent	from	another
component	which	has	no	owner.
UI-130	Fixed:	Fixed	performance	issues	with	the
UAkComponent::UpdateAkReverbVolumeList	method.
UI-130	Fixed:	Added	a	flag	to	the	UAkComponent	specifying	if	it	is
influenced	by	reverb	volumes.
UI-132	Fixed:	Prevent	UAkComponents	from	ticking	on	server
configurations.
UI-135	Fixed:	Expose	RTPC	interpolation	time.

October	2013	-	Wwise	v2013.2.1
Added	bank	generation	for	PlayStation4	and	Xbox	One.
Added	AkReverbVolume,	allowing	for	mapping	a	volume	in	space	to
a	Wwise	auxiliary	bus.
UI-128	Fixed:	Implemented	asynchronous	IO	access.

September	2013	-	Wwise	v2013.2.1
Fixed	build	settings	for	Visual	Studio	2012.
Fixed	UEngine::UseSound()	returning	false	when	only
AkAudioDevice	is	present.
Fixed	crash	in	UAkComponent::PostAkEvent	with	null	event.
Fixed	game	object	position	with	static	actor.

August	2013	-	Wwise	v2013.2
Fixed	confusion	between	Actor,	AkComponent,	the	Wwise	game
object	and	their	respective	lifespans:

AkComponent	follows	attachment	semantics	of	Epic's
AudioComponent.	AkComponents	are	re-used	when	all
attachment	parameters	match.
AkGameplayStatics	contains	global	helpers	targetting	Actors	for
easy	use	in	blueprints.

Fixed	missing	Events	and	Banks	in	SoundBank	Definition	File.
Fixed	game	object	names	in	Wwise	Profiler.
Generating	SoundBanks	now	triggers	a	refresh	of	loaded	banks.
Set	RTPC	Value	global	helper	now	supports	setting	a	Game
Parameter	at	global	scope	(no	Actor	target).

July	2013	-	Wwise	v2013.1.1
Added	message	box	in	case	of	error	during	SoundBank	Generation.
New,	distinct	colors	for	Audiokinetic	Event	and	Audiokinetic	Bank
asset	types	in	the	Content	Browser.
Fixed	compilation	on	Xbox	One	and	PS4	platforms.
Fixed	issue	with	AnimNotify_AkEvent	using	the	wrong	type.
Fixed	update	of	AkComponent	Game	Object	position.

June	2013	-	Wwise	v2013.1.1
Added	DebugGame	build	configuration	support.
Partial	Wwise	SDK	now	included	to	help	setting	up	the	integration.
Fixed	xaudio2/mmdev	DLL	unload	issues	in	Windows	64-bit	build.
Stopped	matinee	movie	from	playing	in	demomap	-	was	preventing
user	input	from	working.
Fixed	AkAudioDevice	listener	position	update	in
FLevelEditorViewportClient::UpdateAudioListener.
Changed	the	AudioDeviceModuleName	default	value	to	XAudio2	on
the	windows	platform.

May	2013	-	Wwise	v2013.1.1
Introduced	doxygen	documentation.
Now	building	using	Wwise	2013.1.1	build	4677.

March	2013	-	Wwise	v2013.1
Now	building	using	Wwise	2013.1	beta	build	4609.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	What's	New?

Migration	Notes

Migrating	to	the	UE4.17/4.18	Wwise	2017.2.0
integration

A	coordinate	system	conversion	has	been	removed	from	the	2017.2.0
integration.	This	conversion	was	put	in	place	to	convert	from	the	left-hand
axis	system	used	in	Unreal	Engine	4	(with	the	X	and	Y	axes	being	the
floor)	to	the	default	left-hand	system	used	in	Wwise	Game	Object	3D
Viewer	(with	the	X	and	Z	axes	being	the	floor).	In	order	for	the	Wwise
Game	Object	3D	Viewer	to	properly	display	Game	Objects	from	Unreal,
please	go	to	the	Game	Object	3D	Viewer	settings	and	set	the	Floor	Plane
to	X-Y:

Migrating	Ak	Acoustic	Portal	objects
Please	note	that	in	Wwise	2017.2.0,	Spatial	Audio	Portals	have	a	distinct
orientation.	The	Portal's	local	Y-axis	is	the	axis	along	which	two	adjacent
Rooms	are	linked.	It	will	be	necessary	to	examine	all	existing	Portals,	and
rotate	(by	90	degrees,	along	the	Z-axis)	those	that	are	not	properly
aligned	in	order	to	link	Rooms	along	the	Y-axis.	A	new	visualization
component	has	been	added	to	the	Portals	to	make	the	orientation	of	the
Portal	immediately	apparent	to	the	user.	Portals	that	are	incorrectly
aligned	may	behave	unexpectedly	or	return	errors	when	sent	to	Wwise
Spatial	Audio.

Migrating	to	the	UE4.11/4.12	Wwise	2016.1.1
integration
As	part	of	the	fix	for	WG-30404,	the	AttenuationScalingFactor	UPROPERTY
of	AkComponent	has	been	made	read-only	in	Blueprints.	To	set	its	value,
you	now	need	to	call	the	SetAttenuationScalingFactor	method	on
AkComponent.

Migrating	from	the	UE4	Wwise	integration
source	code	to	the	plug-in	version
Starting	from	Unreal	Engine	4.11,	the	Wwise	UE4	integration	will	now	be
distributed	as	a	plug-in.

Note:	Events	can	no	longer	be	dragged	from	Wwise	and	dropped
in	the	Unreal	Content	Browser	to	create	corresponding
AkAudioEvent	objects.	They	can	now	be	dragged	directly	from	the
Wwise	Picker	into	the	Unreal	Content	Browser	to	create	their
corresponding	objects.

To	update	a	UE4	project	from	UE	4.10	(or	older)	to	UE	4.11	(or	newer):

1.	 Back	up	your	game	project.
2.	 Install	Unreal	Engine	from	the	Epic	Games	Launcher	or	compile	your

own	Unreal	Engine	from	source	code.
3.	 Install	the	Wwise	Unreal	plug-in	as	an	Engine	or	a	Game	plug-in,	as

outlined	in	Installation.	Make	sure	that	you	use	the	SDK	files	you
built	when	doing	so.

4.	 Load	your	game	project	in	the	Unreal	Editor.
5.	 If	you	installed	the	Wwise	Unreal	plug-in	as	an	Engine	plug-in,

enable	the	Wwise	plug-in	by	going	to	Edit	>	Plugins	>	Audio	and
selecting	the	"enable"	option	under	the	Wwise	Unreal	Engine	4
Integration	section.	You	will	need	to	reload	your	project	to	enable	the
plug-in.

6.	 If	your	project	uses	the	AkEvent	or	the	AkEventByName	AnimNotify,
you	will	be	prompted	to	reload	your	project	as	some	assets	were
modified	to	support	the	new	plug-in	model.

The	last	step	is	necessary	because	the	AnimNotifies	provided	with	the
plug-in	had	to	be	moved	from	the	Engine	content	folder	to	the	plug-in's
own	content	folder.	Moving	the	references	requires	a	project	reload.

Once	all	the	steps	have	been	completed,	you	are	ready	to	use	the	Wwise
Unreal	plug-in.

Migrating	"...by	name"	methods
Starting	with	the	4.11	version	of	the	Wwise	Unreal	plug-in,	all	"...by
Name"	methods	(for	example,	PostEventByName	or	LoadBankByName)
are	deprecated.	It	is	still	possible	to	use	strings	to	post	Events	or	load
SoundBanks	by	using	the	advanced	fields	in	the	Blueprint	nodes.	For
example,	if	you	wish	to	post	an	Event	by	name,	you	should	now	use	the
"Event	Name"	field	of	the	"PostEvent"	Blueprint	node:

Migrating	the	Wwise	project	path
Starting	with	the	4.11	version	of	the	Wwise	Unreal	plug-in,	the	Wwise
project	path,	found	in	the	Wwise	settings,	is	now	relative	to	the	game
folder,	instead	of	the	UE4Editor.exe	file.	The	change	should	be
automatically	done	the	first	time	you	run	the	4.11	Wwise	Unreal	plug-in.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

Main	Page

Wwise	Unreal	Integration	»	What's	New?

Known	Issues
WG-29964	It	is	not	possible	to	connect	the	Wwise	Profiler	to	a	Linux
game.
WG-29968	Freeze	on	iOS	platform.	Make	sure	to	disable	the	Unreal
Engine	audio	device.	See	Frequently	Asked	Questions	for	more
information.
WG-29981	Support	for	multiple	independent	Viewports.
WG-29982	Use	Reverb	Volumes	flag	doesn't	work	in	real	time:	The
Blueprint	box	"Set	use	reverb	volumes"	does	not	work	as	expected.
WG-30900	Add	support	for	listener	positioning	within	Animation
editor.
WG-33970	Crash	when	deploying	a	packaged	game	using	PAK	files
on	Mac	or	iOS.

Generated	by		 	1.6.3

http://www.doxygen.org/index.html

