Binomial lattice model for stock prices


 Noel Paul
 5 years ago
 Views:
Transcription
1 Copyright c 2007 by Karl Sigman Binomial lattice model for stock prices Here we model the price of a stock in discrete time by a Markov chain of the recursive form S n+ S n Y n+, n 0, where the {Y i } are iid with distribution P (Y u) p, P (Y d) p. Here 0 < d < + r < u are constants with r the riskfree interest rate (( + r)x is the payoff you would receive one unit of time later if you bought $x worth of the riskfree asset (a bond for example, or placed money in a savings account at that fixed rate) at time n 0). Given the value of S n, { usn, w.p. p; S n+ n 0, ds n, w.p. p, independent of the past. Thus the stock either goes up ( u ) or down ( d ) in each time period, and the randomness is due to iid Bernoulli (p) rvs (flips of a coin so to speak) where we can view upsuccess, and downfailure. Expanding the recursion yields S n S 0 Y Y n, n, () where S 0 is the initial price per share and S n is the price per share at time n. It follows from () that for a given n, S n u i d n i S 0 for some i {0,... n}, meaning that the stock went up i times and down n i times during the first n time periods (i successes and n i failures out of n independent Bernoulli (p) trials). The corresponding probabilities are thus determined by the binomial(n, p) distribution; P (S n u i d n i S 0 ) ( ) n p i ( p) n i, 0 i n, i which is why we refer to this model as the binomial lattice model (BLM). The lattice is the set of points {u i d n i S 0 : 0 i n < }, which is the state space for this Markov chain. Note that this lattice depends on the initial price S 0 and the values of u, d. Portfolios of stock and a riskfree asset In addition to our stock there is a riskfree asset (money) with fixed interest rate 0 < r < that costs $.00 per share; x shares bought now (at time t 0) would be worth the deterministic amount x( + r) n at time t n, n (interest is compounded each time unit). Buying this asset is lending money. Selling this asset is borrowing money (shorting this asset). We must have + r < u for otherwise there would be no reason to invest in the stock: you could instead obtain a riskless payoff of S 0 (+r) S 0 u at time t by buying S 0 shares of the This model is meant to approximate the continuoustime geometric Brownian motion (GBM) S(t) S 0e X(t) model for stock, where X(t) σb(t)+µt is Brownian motion (BM) with drift µ and variance term σ 2. The idea is to break up the time interval (0, t] into n small subintervals of length h t/n, (0, h], (h, 2h],... ((n )h, nh t], and rewrite S(t) S(0) H H n, where H i S(ih)/S((i )h), i are the succesive price ratios, and are in fact iid (due to the stationary and independent increments of the BM X(t)). Then we find an appropriate p, u, d so that the distribution of H is well approximated by the twopoint distribution of Y (typically done by fitting the first two moments of H with those of Y ). As h 0 the approximation becomes exact.
2 riskfree asset at time t 0 and selling them at time t, thus earning at least as much, with certainty, than is ever possible from the stock. Similarly we have d < + r for otherwise there would be no reason to invest in the riskfree asset. (Inherent in our argument is the economic assumption of nonarbitrage, meaning that it is not possible, with certainty, for people to make a profit from nothing.) A portfolio of stock and riskfree asset is a pair (α, β) describing our total investment at a given time; α shares of stock and β shares of the riskfree asset. We allow the values of α and β to be positive or negative or zero and they do not have to be integers. Negative values refer to shorting (borrowing). For example (2.3, 7.4) means that we bought 2.3 shares of stock, and shorted 7.4 shares of the risk free asset (meaning we borrowed 7 dollars and 40 cents at interest rate r.) Observe that a portfolio of stock and riskfree asset always has a welldefined price: a portfolio s price (cost) at time t 0 is its worth, αs 0 + β, and its price at time t n, n 0 is its worth at that time, αs n + β( + r) n. For example at time t our (2.3, 7.4) portfolio is worth 2.3S 7.4( + r) meaning that we now have 2.3S dollars worth of stock and owe 7.4( + r) dollars. 0. Pricing the European call option when the expiration date is t Now consider a European call option for one share of the stock, with strike price K, and expiration date t. The payoff to the holder of this option at time t is a random variable given by C (S K) + ; the buyer of such an option is thus betting that the stock price will be above K at the expiration date. This random payoff has only two possible values: C C u (us 0 K) + if the stock goes up, and C C d (ds 0 K) + if the stock moves down. Both of these values are known since they depend only on the known values u, d, S 0, and K. We next proceed to determine what a fair price should be for this option and denote this price by C 0. Clearly C 0 S 0 because the payoff is less: C (S K) + S. That is why people buy options, they are cheaper than the stock itself, but potentially can yield high payoffs. Unlike a portfolio of stock and riskfree asset, however, it is not immediate what this price should be, but we can use a portfolio to figure it out. To this end we will construct a portfolio (α, β) of stock and risk free asset, which if bought at time t 0, then goes on to replicate, at time t, the option payoff C : a portfolio that at time t yields payoff C u if the stock goes up and C d if it goes down. But the payoff of the portfolio at time t is αs + β( + r), so we simply need to find the values α and β such that αs + β( + r) C : find α and β such that αus 0 + β( + r) C u and αds 0 + β( + r) C d. Once we do this, since the two investments yield the same payoff at time t they must have the same price at time t 0: C 0 the price of the replicating portfolio αs 0 + β. (2) The point is that, in effect, they are the same investment, and thus must cost the same. The solution to the two equations with two unknowns, αus 0 + β( + r) C u and αds 0 + β( + r) C d, is Plugging this solution into (2) yields α C u C d (3) S 0 (u d) uc d dc u β ( + r)(u d). (4) C 0 C u C d (u d) + uc d dc u ( + r)(u d), 2
3 which when algabraically simplified (details left to the reader) yields: C 0 + r (p C u + ( p )C d ) (5) + r (p (us 0 K) + + ( p )(ds 0 K) + ), where (6) p def + r d u d (7) p u ( + r). u d (8) Since + r < u (by assumption), we see that 0 < p < is a probability, and C 0 as given in (5) is expressed elegantly as the discounted expected payoff of the option if p p for the underlying up probability p for the stock; C 0 + r E (C ), (9) where E denotes expected value when p p for the stock price. p is called the riskneutral probability, for reasons we shall take up in the next section. The point here is that the real expected payoff is given by E(C ) pc u + ( p)c d, where p is the underlying up probability for the stock. But when pricing the option, it is not the real p that ends up being used in the pricing formula, it is the riskneutral p instead. Noticing that p in (7) only depends on r, u and d, we conclude that the price of the option does not depend at all on p, only on S 0, u, d and r. So to price the option we never need to know the real p. 2. This irrelevancy of p will later, when we study stock models in continous time, express itself in the famous BlackScholes pricing formula which does not depend on the mean µ of the underlying Brownian motion, but only on the variance σ Pricing other European call options when the expiration date is t The option pricing method of the previous section goes thru for any option in which the payoff (denoted by C ) occurs at the expiration date t ; C 0 + r E (C ) + r (p C u + ( p )C d ). (0) It is only required that the payoff values C u and C d, whatever they are, are known; C C u if the stock goes up, C C d if the stock goes down. Examples include a put option, with payoff (K S ) +, in which the holder has the option to sell a share of the stock at price K at the expiration date t ; C u (K us 0 ) +, C d (K ds 0 ) +. In words, the option pricing formula says The price of the option is equal to the present value of the expected payoff of the option under the riskneutral probability. 2 But hidden in here is the economic fact that a stock with a higher p would have a higher S 0 3
4 0.2. Riskneutral measure We saw that the price of the European call option can be expressed as an expected value (9) if we use the riskneutral probability p defined in (7). Moreover, p only depends on r, u and d, but not on the real value of p underlying the stock s randomness. We conclude that we never need to know what the real p is to compute C 0. We need to know the values of the payoff outcomes, C u and C d, but not their probabilities of ocurrence. p has a nice interpretation as the unique probability p making the stock price move in a fair way, meaning that given the initial price S 0, the present value of the expected price at time t is yet again S 0 : on average, the stock (when discounted) neither goes up nor down in price, it is riskneutral; ( + r) E(S S 0 ) S 0, if p p. () To see that this is so, expanding the expected value in () yields the equation or simply with unique solution ( + r) (pus 0 + ( p)ds 0 ) S 0, ( + r) (pu + ( p)d), p p + r d u d. Thus by imagining that the stock price evolves fairly (that is, p p ), the price of the option can be realized as the expected discounted payoff of the option at time t. Changing from p to p is sometimes referred to as a change of measure, since we have changed the way that the probabilities of stock outcomes are measured; P (S us 0 ) has been changed from p to p, and P (S ds 0 ) has been changed from p to p. We thus sometimes say that the stock pricing is being considered under the riskneutral measure, meaning that we are using p. Since {S n : n 0} is a Markov process, () and the analysis that followed imply that ( + r) (n+) E (S n+ S n, S n,..., S 0 ) ( + r) n S n, n 0, (2) which means that under the riskneutral measure, the stochastic process {( + r) n S n : n 0} of discounted prices is a martingale 3. Thus p is the unique probability making the discounted stock prices form a martingale. In particular, ( + r) n E (S n ) E (S 0 ), n 0, so if we buy the stock now at time t 0 at price S 0, then ( + r) n E (S n ) S 0, meaning that under p the PV of the expected value of the stock at any time is the same as the initial price we paid. 0.3 Pricing the European options when the expiration date is t 2 If the expiration date of a European style option is t T, then we denote the payoff at time T by the random variable C T. For example, C T (S T K) + for the European call option. The various payoff values at time T depend on the outcomes over the T time units. For example 3 A martingale is a stochastic process {X n : n 0} with the fundamental property that E(X n+ X 0,..., X n) X n, n 0. Martingales capture the notion of a fair game in the context of gambling: Letting X n denote your total fortune right after your n th gamble, the martingale property states that regardless of your past gambles, the next gamble will, on average, neither give you a gain or a loss; each gamble is fair. It immediately follows that E(X n) E(X 0), n 0: when you finish gambling, your expected total fortune is the same as what you started with. 4
5 if T 2, then there are the four values C 2,uu, C 2,ud, C 2,du, C 2,dd reflecting the up and down outcomes over the two time periods. The probabilities of these are p 2, p( p), ( p)p, ( p) 2 respectively, and so the expected payoff is given by E(C 2 ) p 2 C 2,uu + p( p)c 2,ud + ( p)pc 2,du + ( p) 2 C 2,dd. For the European call option, order does not matter; C 2,ud C 2,du (uds 0 K) +, but in general, order will matter. More generally, for the European call option, the payoff at time T is always of the form (u i d T i S 0 K) + and does not depend on the order in which the ups and downs occurred; for other options order may matter; they are called pathdependent options. Examples include an Asian call option with payoff ( T Tn S n K) +.) The following is a beautiful generalization of (0): Theorem 0. Under the Binomial lattice model for stock pricing, the price of a European style option with expiration date t T is given by C 0 ( + r) T E (C T ). (3) E denotes expected value under the riskneutral probability p for stock price (defined in (7)). In words: the price of the option is equal to the present value of the expected payoff of the option under the riskneutral measure. Applying Theorem 0. to a European call option where the order of the ups and downs is irrelevant yields the discretetime analog of the famous BlackScholesMerton pricing formula (for European call options): Corollary 0. Under the Binomial lattice model for stock pricing, the price of a European call option with strike price K and expiration date t T is given by C 0 ( + r) T E (C T ) (4) ( + r) T E (S T K) + (5) ( ) T T ( + r) T (p ) i ( p ) T i (u i d T i S 0 K) +. i (6) i0 We will prove Theorem 0. for T 2, since the T > 2 case is analogous. To this end we must show that C 0 ( + r) 2 E (C 2 ) (7) [ ( + r) 2 C 2,uu (p 2 ) + C 2,ud (p ( p )) + C 2,du (p ( p )) + (8) C 2,dd ( p ) 2]. (9) The key idea: Although we can t exercise the option at the earlier time t, we can sell it, so it does have a price at that time which we can view as a potential payoff. At time t, we would know what the new price of the stock is, S, and we thus could sell the option which then would have an expiration date of T. For example, if S us 0, then we use 5
6 the T price formula in (0) with outcomes C u C 2,u,u and C d C 2,ud yielding the price (denoted by C,u, the price if the stock went up at t ) Similarly, if S ds 0, then C,u + r [p C 2,u,u + ( p )C 2,ud ]. C,d + r [p C 2,du + ( p )C 2,dd ]. But now we can go one more time step back to t 0: We have these known payoff values at time t of C,u and C,d, which we just computed, and thus we can now use them in the T formula (0) again to obtain C 0 + r [p C,u + ( p )C,d ] (20) [ ( + r) 2 C 2,uu (p 2 ) + C 2,ud (p ( p )) + C 2,du (p ( p )) + (2) C 2,dd ( p ) 2]. (22) In general, the proof proceeds by starting at time T and moving back in time stepbystep to each node on the lattice until finally reaching time t 0. This procedure yields not only C 0 but all the intermediary prices as well. 0.4 Pricing options that allow early exercise Some options (other than European) allow one to exercise early. For example, in a American put option with expiration date T, the holder has the right to exercise the option at any time t T. If exercised at time t, the payoff is (K S t ) +. Although the pricing formula in Theorem 0. is no longer valid, the same method used in its proof yields a method for pricing here too, and also yields the optimal time at which the holder should exercise. We will illustrate here for the put option when T 2. Pricing an American put option with expiration date T 2 At time t we need to decide wether to exercise or not. Suppose that the stock went up. Then if we exercise we receive payoff (K us 0 ) +. On the other hand the pricing formula (0) yields the price if we hold on to it: V,u + r [p (K u 2 S 0 ) + + ( p )(K uds 0 ) + ]. Thus we need to compare and choose the one that is larger, C,u max{v,u, (K us 0 ) + }. Only if (K us 0 ) + > V,u would we exercise early. C,u is how much the option is worth at time t if the stock went up. Similarly, if the stock goes down at time t, we have V,d + r [p (K uds 0 ) + + ( p )(K d 2 S 0 ) + ], 6
7 and C,d max{v,d, (K ds 0 ) + } is how much the option is worth. Only if (K ds 0 ) + > V,d would we exercise early. The two values C,u and C,d are then the prices at time t, and finally the price C 0 is then given by applying (0) to the two values C 0 + r [p C,u + ( p )C,d ]. In general, when the expiration date is T, one computes all the prices at all the intermediary points stepbystep in an analogous way. The optimal time to exercise is then determined as follows: at time t, when the new value of the stock is known, one checks to see if the payoff from exercising exceeds the computed V value (using (0)) at that node. If it does then exercise, otherwise wait one more unit of time and check again, and so on until (if at all) finding the first time for which it is optimal to exercise. It is never optimal to exercise early for an American call option For the American call option with T 2, V,u + r [p (Ku 2 S 0 K) + + ( p )(uds 0 K) + ], and it is easily seen that V,u (us 0 K) +. Similarly V,d + r [p (KudS 0 K) + + ( p )(d 2 S 0 K) + ], and V,d (ds 0 K) +. So it is always optimal to wait until the end at time T 2. One can generalize easily to see that this is so for any expiration date T. This means that the two call options (European, American) are really identical, and have the same price. 0.5 Monte Carlo simulation for pricing options As a motivating example, suppose we wish to compute the expected payoff of some option E (C T ) (using the riskfree measure), so as to get the price C 0 ( + r) T E (C T ). C T is a random variable and under the binomial lattice model, S n S 0 Y Y n, it is some function h of S 0 and Y,..., Y T ; C T h(s 0, Y,..., Y T ). For example, if C T (S T K) +, the payoff for the European call, then h(s 0, Y,..., Y T ) (S 0 Y Y T K) +. Note that if U is uniformly distributed over the continuous interval (0, ), then Y defined by Y ui{u p } + di{u > p } has the correct distribution of the iid Y i ; P (Y u) p, P (Y d) p. Thus we can ask our computer to hand us T iid uniforms U,..., U T ; construct the iid Y i ui{u i p } + di{u i > p }, and then compute a first sample X h(s 0, Y,..., Y T ). Then, independently, we do this again to obtain a second sample, X 2, and keep on doing so a total of n times where n is large, obtaining n iid copies X,..., X n. Then we use the estimate E (C T ) n X i, (23) n i which is justified via the strong law of large numbers which asserts that wp, the approximation becomes exact as n. We illustrate with some simple examples: 7
8 . (Down and out call option) Suppose that we start with a European call option but we also introduce a level 0 < b < S 0 and some prespecified times 0 < n < n 2 < < n k < T at which it must hold that S ni > b, i {,..., k}. If at any one such time n i is holds that S ni b, then the option becomes worthless. Thus the payoff at time T is given by C T (S T K) + I{S n > b, S n2 > b,..., S nk > b}. Computing exactly the expected value of this payoff is not possible in general, so we will estimate it via Monte Carlo. For concreteness, let s assume that T 0, and there are three checking times n 2, n 2 4, n 3 7. First we generate Y and Y 2 so as to simulate the first needed value, S 2 S 0 Y Y 2. If S 2 b, stop and set C T 0; otherwise generate (independently) Y 3, Y 4, to obtain S 4 S 2 Y 3 Y 4. If S 4 b, stop and set C T 0; otherwise generate (independently) Y 5, Y 6, Y 7, to obtain S 7 S 4 Y 5 Y 6 Y 7. If S 7 b, stop and set C T 0; otherwise generate (independently) Y 8, Y 9, Y 0, to obtain S 0 S 7 Y 8, Y 9, Y 0 and set C T (S 0 K) +. This would give us our first copy of C T, denote by X. Now repeat this procedure independently again and again until finally obtaining n such copies X,..., X n, finally using (23) as our estimate of the desired expected value. 2. (Asian call option) Here the payoff involves the entire average over all T time periods instead of only S T : C T ( T T S i K) +. i In this case we need to sequentially generate all T of the Y i and use them to construct the sum T Ti S i, and our copy of C T ( T Ti S i K) +. Then we repeat this n times and so on. 8
Numerical Methods for Option Pricing
Chapter 9 Numerical Methods for Option Pricing Equation (8.26) provides a way to evaluate option prices. For some simple options, such as the European call and put options, one can integrate (8.26) directly
More information7: The CRR Market Model
Ben Goldys and Marek Rutkowski School of Mathematics and Statistics University of Sydney MATH3075/3975 Financial Mathematics Semester 2, 2015 Outline We will examine the following issues: 1 The CoxRossRubinstein
More information1 Interest rates, and riskfree investments
Interest rates, and riskfree investments Copyright c 2005 by Karl Sigman. Interest and compounded interest Suppose that you place x 0 ($) in an account that offers a fixed (never to change over time)
More informationOne Period Binomial Model
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 One Period Binomial Model These notes consider the one period binomial model to exactly price an option. We will consider three different methods of pricing
More informationOn BlackScholes Equation, Black Scholes Formula and Binary Option Price
On BlackScholes Equation, Black Scholes Formula and Binary Option Price Abstract: Chi Gao 12/15/2013 I. BlackScholes Equation is derived using two methods: (1) riskneutral measure; (2)  hedge. II.
More information1. (First passage/hitting times/gambler s ruin problem:) Suppose that X has a discrete state space and let i be a fixed state. Let
Copyright c 2009 by Karl Sigman 1 Stopping Times 1.1 Stopping Times: Definition Given a stochastic process X = {X n : n 0}, a random time τ is a discrete random variable on the same probability space as
More informationThe BlackScholes Formula
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 The BlackScholes Formula These notes examine the BlackScholes formula for European options. The BlackScholes formula are complex as they are based on the
More informationCS 522 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options
CS 5 Computational Tools and Methods in Finance Robert Jarrow Lecture 1: Equity Options 1. Definitions Equity. The common stock of a corporation. Traded on organized exchanges (NYSE, AMEX, NASDAQ). A common
More information1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM)
Copyright c 2013 by Karl Sigman 1 Simulating Brownian motion (BM) and geometric Brownian motion (GBM) For an introduction to how one can construct BM, see the Appendix at the end of these notes A stochastic
More informationChapter 2: Binomial Methods and the BlackScholes Formula
Chapter 2: Binomial Methods and the BlackScholes Formula 2.1 Binomial Trees We consider a financial market consisting of a bond B t = B(t), a stock S t = S(t), and a calloption C t = C(t), where the
More informationMoreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
More informationChapter 11 Options. Main Issues. Introduction to Options. Use of Options. Properties of Option Prices. Valuation Models of Options.
Chapter 11 Options Road Map Part A Introduction to finance. Part B Valuation of assets, given discount rates. Part C Determination of riskadjusted discount rate. Part D Introduction to derivatives. Forwards
More informationLecture 21 Options Pricing
Lecture 21 Options Pricing Readings BM, chapter 20 Reader, Lecture 21 M. Spiegel and R. Stanton, 2000 1 Outline Last lecture: Examples of options Derivatives and risk (mis)management Replication and Putcall
More informationMartingale Pricing Applied to Options, Forwards and Futures
IEOR E4706: Financial Engineering: DiscreteTime Asset Pricing Fall 2005 c 2005 by Martin Haugh Martingale Pricing Applied to Options, Forwards and Futures We now apply martingale pricing theory to the
More informationFINANCIAL OPTION ANALYSIS HANDOUTS
FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any
More informationInstitutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs. Binomial Option Pricing: Basics (Chapter 10 of McDonald)
Copyright 2003 Pearson Education, Inc. Slide 081 Institutional Finance 08: Dynamic Arbitrage to Replicate Nonlinear Payoffs Binomial Option Pricing: Basics (Chapter 10 of McDonald) Originally prepared
More information2. Exercising the option  buying or selling asset by using option. 3. Strike (or exercise) price  price at which asset may be bought or sold
Chapter 21 : Options1 CHAPTER 21. OPTIONS Contents I. INTRODUCTION BASIC TERMS II. VALUATION OF OPTIONS A. Minimum Values of Options B. Maximum Values of Options C. Determinants of Call Value D. BlackScholes
More informationEC3070 FINANCIAL DERIVATIVES
BINOMIAL OPTION PRICING MODEL A OneStep Binomial Model The Binomial Option Pricing Model is a simple device that is used for determining the price c τ 0 that should be attributed initially to a call option
More informationTwoState Option Pricing
Rendleman and Bartter [1] present a simple twostate model of option pricing. The states of the world evolve like the branches of a tree. Given the current state, there are two possible states next period.
More informationOptions. + Concepts and Buzzwords. Readings. PutCall Parity Volatility Effects
+ Options + Concepts and Buzzwords PutCall Parity Volatility Effects Call, put, European, American, underlying asset, strike price, expiration date Readings Tuckman, Chapter 19 Veronesi, Chapter 6 Options
More informationForward Price. The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow.
Forward Price The payoff of a forward contract at maturity is S T X. Forward contracts do not involve any initial cash flow. The forward price is the delivery price which makes the forward contract zero
More informationOption Valuation. Chapter 21
Option Valuation Chapter 21 Intrinsic and Time Value intrinsic value of inthemoney options = the payoff that could be obtained from the immediate exercise of the option for a call option: stock price
More informationOption Basics. c 2012 Prof. YuhDauh Lyuu, National Taiwan University Page 153
Option Basics c 2012 Prof. YuhDauh Lyuu, National Taiwan University Page 153 The shift toward options as the center of gravity of finance [... ] Merton H. Miller (1923 2000) c 2012 Prof. YuhDauh Lyuu,
More information1 IEOR 4700: Introduction to stochastic integration
Copyright c 7 by Karl Sigman 1 IEOR 47: Introduction to stochastic integration 1.1 RiemannStieltjes integration Recall from calculus how the Riemann integral b a h(t)dt is defined for a continuous function
More informationLecture 12: The BlackScholes Model Steven Skiena. http://www.cs.sunysb.edu/ skiena
Lecture 12: The BlackScholes Model Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena The BlackScholesMerton Model
More informationLecture 3: Put Options and DistributionFree Results
OPTIONS and FUTURES Lecture 3: Put Options and DistributionFree Results Philip H. Dybvig Washington University in Saint Louis put options binomial valuation what are distributionfree results? option
More informationMonte Carlo Methods in Finance
Author: Yiyang Yang Advisor: Pr. Xiaolin Li, Pr. Zari Rachev Department of Applied Mathematics and Statistics State University of New York at Stony Brook October 2, 2012 Outline Introduction 1 Introduction
More information1 Portfolio mean and variance
Copyright c 2005 by Karl Sigman Portfolio mean and variance Here we study the performance of a oneperiod investment X 0 > 0 (dollars) shared among several different assets. Our criterion for measuring
More information1 The BlackScholes model: extensions and hedging
1 The BlackScholes model: extensions and hedging 1.1 Dividends Since we are now in a continuous time framework the dividend paid out at time t (or t ) is given by dd t = D t D t, where as before D denotes
More informationConsider a European call option maturing at time T
Lecture 10: Multiperiod Model Options BlackScholesMerton model Prof. Markus K. Brunnermeier 1 Binomial Option Pricing Consider a European call option maturing at time T with ihstrike K: C T =max(s T
More informationOverview of Monte Carlo Simulation, Probability Review and Introduction to Matlab
Monte Carlo Simulation: IEOR E4703 Fall 2004 c 2004 by Martin Haugh Overview of Monte Carlo Simulation, Probability Review and Introduction to Matlab 1 Overview of Monte Carlo Simulation 1.1 Why use simulation?
More informationBinomial trees and risk neutral valuation
Binomial trees and risk neutral valuation Moty Katzman September 19, 2014 Derivatives in a simple world A derivative is an asset whose value depends on the value of another asset. Call/Put European/American
More informationIEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem
IEOR 6711: Stochastic Models I Fall 2012, Professor Whitt, Tuesday, September 11 Normal Approximations and the Central Limit Theorem Time on my hands: Coin tosses. Problem Formulation: Suppose that I have
More informationCHAPTER 20: OPTIONS MARKETS: INTRODUCTION
CHAPTER 20: OPTIONS MARKETS: INTRODUCTION 1. Cost Profit Call option, X = 95 12.20 10 2.20 Put option, X = 95 1.65 0 1.65 Call option, X = 105 4.70 0 4.70 Put option, X = 105 4.40 0 4.40 Call option, X
More informationLogNormal stockprice models in Exams MFE/3 and C/4
Making sense of... LogNormal stockprice models in Exams MFE/3 and C/4 James W. Daniel Austin Actuarial Seminars http://www.actuarialseminars.com June 26, 2008 c Copyright 2007 by James W. Daniel; reproduction
More informationConvenient Conventions
C: call value. P : put value. X: strike price. S: stock price. D: dividend. Convenient Conventions c 2015 Prof. YuhDauh Lyuu, National Taiwan University Page 168 Payoff, Mathematically Speaking The payoff
More information1 Gambler s Ruin Problem
Coyright c 2009 by Karl Sigman 1 Gambler s Ruin Problem Let N 2 be an integer and let 1 i N 1. Consider a gambler who starts with an initial fortune of $i and then on each successive gamble either wins
More informationExam MFE Spring 2007 FINAL ANSWER KEY 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D
Exam MFE Spring 2007 FINAL ANSWER KEY Question # Answer 1 B 2 A 3 C 4 E 5 D 6 C 7 E 8 C 9 A 10 B 11 D 12 A 13 E 14 E 15 C 16 D 17 B 18 A 19 D **BEGINNING OF EXAMINATION** ACTUARIAL MODELS FINANCIAL ECONOMICS
More informationCaput Derivatives: October 30, 2003
Caput Derivatives: October 30, 2003 Exam + Answers Total time: 2 hours and 30 minutes. Note 1: You are allowed to use books, course notes, and a calculator. Question 1. [20 points] Consider an investor
More informationAmerican and European. Put Option
American and European Put Option Analytical Finance I Kinda Sumlaji 1 Table of Contents: 1. Introduction... 3 2. Option Style... 4 3. Put Option 4 3.1 Definition 4 3.2 Payoff at Maturity... 4 3.3 Example
More informationThe Binomial Option Pricing Model André Farber
1 Solvay Business School Université Libre de Bruxelles The Binomial Option Pricing Model André Farber January 2002 Consider a nondividend paying stock whose price is initially S 0. Divide time into small
More informationFinancial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2
Financial Mathematics and Simulation MATH 6740 1 Spring 2011 Homework 2 Due Date: Friday, March 11 at 5:00 PM This homework has 170 points plus 20 bonus points available but, as always, homeworks are graded
More information1 Introduction to Option Pricing
ESTM 60202: Financial Mathematics Alex Himonas 03 Lecture Notes 1 October 7, 2009 1 Introduction to Option Pricing We begin by defining the needed finance terms. Stock is a certificate of ownership of
More informationCHAPTER 21: OPTION VALUATION
CHAPTER 21: OPTION VALUATION PROBLEM SETS 1. The value of a put option also increases with the volatility of the stock. We see this from the putcall parity theorem as follows: P = C S + PV(X) + PV(Dividends)
More informationMath 319 Problem Set #3 Solution 21 February 2002
Math 319 Problem Set #3 Solution 21 February 2002 1. ( 2.1, problem 15) Find integers a 1, a 2, a 3, a 4, a 5 such that every integer x satisfies at least one of the congruences x a 1 (mod 2), x a 2 (mod
More informationLECTURE 15: AMERICAN OPTIONS
LECTURE 15: AMERICAN OPTIONS 1. Introduction All of the options that we have considered thus far have been of the European variety: exercise is permitted only at the termination of the contract. These
More informationComputational Finance Options
1 Options 1 1 Options Computational Finance Options An option gives the holder of the option the right, but not the obligation to do something. Conversely, if you sell an option, you may be obliged to
More informationThe Discrete Binomial Model for Option Pricing
The Discrete Binomial Model for Option Pricing Rebecca Stockbridge Program in Applied Mathematics University of Arizona May 4, 2008 Abstract This paper introduces the notion of option pricing in the context
More informationOPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options
OPTIONS and FUTURES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis binomial model replicating portfolio single period artificial (riskneutral)
More informationDERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options
DERIVATIVE SECURITIES Lecture 2: Binomial Option Pricing and Call Options Philip H. Dybvig Washington University in Saint Louis review of pricing formulas assets versus futures practical issues call options
More informationLecture 11. Sergei Fedotov. 20912  Introduction to Financial Mathematics. Sergei Fedotov (University of Manchester) 20912 2010 1 / 7
Lecture 11 Sergei Fedotov 20912  Introduction to Financial Mathematics Sergei Fedotov (University of Manchester) 20912 2010 1 / 7 Lecture 11 1 American Put Option Pricing on Binomial Tree 2 Replicating
More informationOptions 1 OPTIONS. Introduction
Options 1 OPTIONS Introduction A derivative is a financial instrument whose value is derived from the value of some underlying asset. A call option gives one the right to buy an asset at the exercise or
More informationOther variables as arguments besides S. Want those other variables to be observables.
Valuation of options before expiration Need to distinguish between American and European options. Consider European options with time t until expiration. Value now of receiving c T at expiration? (Value
More informationTABLE OF CONTENTS. A. PutCall Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13
TABLE OF CONTENTS 1. McDonald 9: "Parity and Other Option Relationships" A. PutCall Parity 1 B. Comparing Options with Respect to Style, Maturity, and Strike 13 2. McDonald 10: "Binomial Option Pricing:
More informationPractice Set #7: Binomial option pricing & Delta hedging. What to do with this practice set?
Derivatives (3 credits) Professor Michel Robe Practice Set #7: Binomial option pricing & Delta hedging. What to do with this practice set? To help students with the material, eight practice sets with solutions
More informationThe Exponential Distribution
21 The Exponential Distribution From DiscreteTime to ContinuousTime: In Chapter 6 of the text we will be considering Markov processes in continuous time. In a sense, we already have a very good understanding
More informationBuy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later.
Replicating portfolios Buy a number of shares,, and invest B in bonds. Outlay for portfolio today is S + B. Tree shows possible values one period later. S + B p 1 p us + e r B ds + e r B Choose, B so that
More informationOptions Markets: Introduction
Options Markets: Introduction Chapter 20 Option Contracts call option = contract that gives the holder the right to purchase an asset at a specified price, on or before a certain date put option = contract
More informationReview of Basic Options Concepts and Terminology
Review of Basic Options Concepts and Terminology March 24, 2005 1 Introduction The purchase of an options contract gives the buyer the right to buy call options contract or sell put options contract some
More information1 Sufficient statistics
1 Sufficient statistics A statistic is a function T = rx 1, X 2,, X n of the random sample X 1, X 2,, X n. Examples are X n = 1 n s 2 = = X i, 1 n 1 the sample mean X i X n 2, the sample variance T 1 =
More informationBlackScholes Option Pricing Model
BlackScholes Option Pricing Model Nathan Coelen June 6, 22 1 Introduction Finance is one of the most rapidly changing and fastest growing areas in the corporate business world. Because of this rapid change,
More informationLecture 17/18/19 Options II
1 Lecture 17/18/19 Options II Alexander K. Koch Department of Economics, Royal Holloway, University of London February 25, February 29, and March 10 2008 In addition to learning the material covered in
More informationLecture 5: Put  Call Parity
Lecture 5: Put  Call Parity Reading: J.C.Hull, Chapter 9 Reminder: basic assumptions 1. There are no arbitrage opportunities, i.e. no party can get a riskless profit. 2. Borrowing and lending are possible
More informationProbability Generating Functions
page 39 Chapter 3 Probability Generating Functions 3 Preamble: Generating Functions Generating functions are widely used in mathematics, and play an important role in probability theory Consider a sequence
More informationPricing Options: Pricing Options: The Binomial Way FINC 456. The important slide. Pricing options really boils down to three key concepts
Pricing Options: The Binomial Way FINC 456 Pricing Options: The important slide Pricing options really boils down to three key concepts Two portfolios that have the same payoff cost the same. Why? A perfectly
More informationExample 1. Consider the following two portfolios: 2. Buy one c(s(t), 20, τ, r) and sell one c(s(t), 10, τ, r).
Chapter 4 PutCall Parity 1 Bull and Bear Financial analysts use words such as bull and bear to describe the trend in stock markets. Generally speaking, a bull market is characterized by rising prices.
More informationOption Pricing. 1 Introduction. Mrinal K. Ghosh
Option Pricing Mrinal K. Ghosh 1 Introduction We first introduce the basic terminology in option pricing. Option: An option is the right, but not the obligation to buy (or sell) an asset under specified
More information10 Binomial Trees. 10.1 Onestep model. 1. Model structure. ECG590I Asset Pricing. Lecture 10: Binomial Trees 1
ECG590I Asset Pricing. Lecture 10: Binomial Trees 1 10 Binomial Trees 10.1 Onestep model 1. Model structure ECG590I Asset Pricing. Lecture 10: Binomial Trees 2 There is only one time interval (t 0, t
More informationa. What is the portfolio of the stock and the bond that replicates the option?
Practice problems for Lecture 2. Answers. 1. A Simple Option Pricing Problem in One Period Riskless bond (interest rate is 5%): 1 15 Stock: 5 125 5 Derivative security (call option with a strike of 8):?
More informationAmerican Options. An Undergraduate Introduction to Financial Mathematics. J. Robert Buchanan. J. Robert Buchanan American Options
American Options An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Early Exercise Since American style options give the holder the same rights as European style options plus
More informationMore Exotic Options. 1 Barrier Options. 2 Compound Options. 3 Gap Options
More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options More Exotic Options 1 Barrier Options 2 Compound Options 3 Gap Options Definition; Some types The payoff of a Barrier option is path
More informationFour Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com
Four Derivations of the Black Scholes PDE by Fabrice Douglas Rouah www.frouah.com www.volopta.com In this Note we derive the Black Scholes PDE for an option V, given by @t + 1 + rs @S2 @S We derive the
More informationOption pricing. Vinod Kothari
Option pricing Vinod Kothari Notation we use this Chapter will be as follows: S o : Price of the share at time 0 S T : Price of the share at time T T : time to maturity of the option r : risk free rate
More informationIntroduction to Options. Derivatives
Introduction to Options Econ 422: Investment, Capital & Finance University of Washington Summer 2010 August 18, 2010 Derivatives A derivative is a security whose payoff or value depends on (is derived
More informationA Tutorial Introduction to Financial Engineering
A Tutorial Introduction to Financial Engineering M. Vidyasagar Tata Consultancy Services Ltd. No. 1, Software Units Layout, Madhapur Hyderabad 500081, INDIA sagar@atc.tcs.com Abstract In this paper we
More informationMathematical Finance
Mathematical Finance Option Pricing under the RiskNeutral Measure Cory Barnes Department of Mathematics University of Washington June 11, 2013 Outline 1 Probability Background 2 Black Scholes for European
More informationS 1 S 2. Options and Other Derivatives
Options and Other Derivatives The OnePeriod Model The previous chapter introduced the following two methods: Replicate the option payoffs with known securities, and calculate the price of the replicating
More informationBetting on Volatility: A Delta Hedging Approach. Liang Zhong
Betting on Volatility: A Delta Hedging Approach Liang Zhong Department of Mathematics, KTH, Stockholm, Sweden April, 211 Abstract In the financial market, investors prefer to estimate the stock price
More informationParameter Estimation for BlackScholes Equation. Peter Gross Advisor: Dr. Jialing Dai. Final Report URA Spring 2006
Parameter Estimation for BlackScholes Equation Peter Gross Advisor: Dr. Jialing Dai Final Report URA Spring 2006 Abstract The BlackScholes equation is a hallmark of mathematical finance, and any study
More informationBINOMIAL OPTION PRICING
Darden Graduate School of Business Administration University of Virginia BINOMIAL OPTION PRICING Binomial option pricing is a simple but powerful technique that can be used to solve many complex optionpricing
More informationLecture 6: Option Pricing Using a Onestep Binomial Tree. Friday, September 14, 12
Lecture 6: Option Pricing Using a Onestep Binomial Tree An oversimplified model with surprisingly general extensions a single time step from 0 to T two types of traded securities: stock S and a bond
More informationECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2015
ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2015 These notes have been used before. If you can still spot any errors or have any suggestions for improvement, please let me know. 1
More informationLectures. Sergei Fedotov. 20912  Introduction to Financial Mathematics. No tutorials in the first week
Lectures Sergei Fedotov 20912  Introduction to Financial Mathematics No tutorials in the first week Sergei Fedotov (University of Manchester) 20912 2010 1 / 1 Lecture 1 1 Introduction Elementary economics
More informationFIN40008 FINANCIAL INSTRUMENTS SPRING 2008
FIN40008 FINANCIAL INSTRUMENTS SPRING 2008 Options These notes consider the way put and call options and the underlying can be combined to create hedges, spreads and combinations. We will consider the
More informationIntroduction to Binomial Trees
11 C H A P T E R Introduction to Binomial Trees A useful and very popular technique for pricing an option involves constructing a binomial tree. This is a diagram that represents di erent possible paths
More information第 9 讲 : 股 票 期 权 定 价 : BS 模 型 Valuing Stock Options: The BlackScholes Model
1 第 9 讲 : 股 票 期 权 定 价 : BS 模 型 Valuing Stock Options: The BlackScholes Model Outline 有 关 股 价 的 假 设 The BS Model 隐 性 波 动 性 Implied Volatility 红 利 与 期 权 定 价 Dividends and Option Pricing 美 式 期 权 定 价 American
More informationONE PERIOD MODELS t = TIME = 0 or 1
BASIC INSTRUMENTS: * S t : STOCK * B t : RISKLESS BOND ONE PERIOD MODELS t = TIME = 0 or 1 B 0 = 1 B 1 = 1 + r or e r * FORWARD CONTRACT: AGREEMENT TO SWAP $$ FOR STOCK  AGREEMENT TIME: t = 0  AGREEMENT
More informationAn Introduction to Modeling Stock Price Returns With a View Towards Option Pricing
An Introduction to Modeling Stock Price Returns With a View Towards Option Pricing Kyle Chauvin August 21, 2006 This work is the product of a summer research project at the University of Kansas, conducted
More informationExam Introduction Mathematical Finance and Insurance
Exam Introduction Mathematical Finance and Insurance Date: January 8, 2013. Duration: 3 hours. This is a closedbook exam. The exam does not use scrap cards. Simple calculators are allowed. The questions
More informationUCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014. MFE Midterm. February 2014. Date:
UCLA Anderson School of Management Daniel Andrei, Derivative Markets 237D, Winter 2014 MFE Midterm February 2014 Date: Your Name: Your Equiz.me email address: Your Signature: 1 This exam is open book,
More informationValuation of the Surrender Option Embedded in EquityLinked Life Insurance. Brennan Schwartz (1976,1979) Brennan Schwartz
Valuation of the Surrender Option Embedded in EquityLinked Life Insurance Brennan Schwartz (976,979) Brennan Schwartz 04 2005 6. Introduction Compared to traditional insurance products, one distinguishing
More informationwhere N is the standard normal distribution function,
The BlackScholesMerton formula (Hull 13.5 13.8) Assume S t is a geometric Brownian motion w/drift. Want market value at t = 0 of call option. European call option with expiration at time T. Payout at
More informationOptions pricing in discrete systems
UNIVERZA V LJUBLJANI, FAKULTETA ZA MATEMATIKO IN FIZIKO Options pricing in discrete systems Seminar II Mentor: prof. Dr. Mihael Perman Author: Gorazd Gotovac //2008 Abstract This paper is a basic introduction
More informationLecture 8. Confidence intervals and the central limit theorem
Lecture 8. Confidence intervals and the central limit theorem Mathematical Statistics and Discrete Mathematics November 25th, 2015 1 / 15 Central limit theorem Let X 1, X 2,... X n be a random sample of
More informationPart V: Option Pricing Basics
erivatives & Risk Management First Week: Part A: Option Fundamentals payoffs market microstructure Next 2 Weeks: Part B: Option Pricing fundamentals: intrinsic vs. time value, putcall parity introduction
More informationJorge Cruz Lopez  Bus 316: Derivative Securities. Week 9. Binomial Trees : Hull, Ch. 12.
Week 9 Binomial Trees : Hull, Ch. 12. 1 Binomial Trees Objective: To explain how the binomial model can be used to price options. 2 Binomial Trees 1. Introduction. 2. One Step Binomial Model. 3. Risk Neutral
More informationChapter 21 Valuing Options
Chapter 21 Valuing Options Multiple Choice Questions 1. Relative to the underlying stock, a call option always has: A) A higher beta and a higher standard deviation of return B) A lower beta and a higher
More informationGoal Problems in Gambling and Game Theory. Bill Sudderth. School of Statistics University of Minnesota
Goal Problems in Gambling and Game Theory Bill Sudderth School of Statistics University of Minnesota 1 Three problems Maximizing the probability of reaching a goal. Maximizing the probability of reaching
More informationChapter 5 Financial Forwards and Futures
Chapter 5 Financial Forwards and Futures Question 5.1. Four different ways to sell a share of stock that has a price S(0) at time 0. Question 5.2. Description Get Paid at Lose Ownership of Receive Payment
More information