
About	Win32++
This	documentation	describes	the	features	of	Win32++,	version	7.8.		To	download	a	copy	of		Win32++
proceed	to	the	project's	hosting	at	SourceForge	here.		

Win32++	is	a	C++	library	used	to	build	windows	applications.	Win32++	is	a	free	alternative	to	MFC.	It	has
the	added	advantage	of	being	able	to	run	on	a	wide	range	of	free	compilers,	including	Visual	Studio
Express,	and	the	MinGW	compiler	provided	with	CodeBlocks	and	Dev-C++.

Win32++	provides	a	thin	layer	over	the	Windows	API	and	is	similar	to	MFC.	There	are	several	differences
to	MFC	however.	Win32++	uses	very	few	macros,	and	doesn't	use	macros	for	message	maps.	All	the	code
for	Win32++	is	provided	in	a	set	of	header	files.	There	is	no	need	for	any	additional	DLLs	or	libraries	apart
from	those	DLLs	that	are	part	of	the	window	operating	system.	Win32++	has	view	windows	but	doesn't
impose	a	Doc/View	architecture	on	users.	User	are	free	to	employ	a	a	Doc/View	architecture	if	they	choose.

Win32++	supports	all	Windows	operating	systems,	from	Windows	95	through	to	Windows	10	and	Windows
Server	2012.	It	also	supports	the	Windows	CE	operating	system	which	runs	on	runs	on	the	various	Pocket
PCs,	Smartphones,	as	well	as	industrial	devices	and	embedded	systems.

This	documentation	is	intended	to	be	used	along	side	the	documentation	for	the	Windows	Application	User
Interface	(API).	The	Windows	API	documentation	ships	as	part	of	the	Microsoft	Platform	SDK	and	also	the
Microsoft	Windows	SDK.	The	Platform	SDK	is	targeted	at	Windows	XP	and	earlier.	The	Windows	API	is
targeted	at	the	more	modern	versions	of	Windows.

Microsoft	Platform	SDK
Microsoft	Windows	SDK

	

https://sourceforge.net/projects/win32-framework/
http://www.microsoft.com/en-us/download/details.aspx?id=6510
http://www.microsoft.com/download/en/details.aspx?id=8279


Win32++	Overview

Introduction

Win32++	consists	of	a	C++	library	used	to	create	window	applications.	It	is	a	free	alternative	to	MFC,	and
can	be	used	on	a	larger	range	of	compilers	including	those	from	Borland,	Microsoft	and	MinGW.	The
library	can	be	used	to	create	a	variety	of	programs,	including	simple	windows,	dialogs,	property	sheets,	as
well	as	frame	and	MDI	frame	applications.		Information	on	how	to	use	these	classes	to	build	your	own
Win32	applications	is	available	in	the	Tutorial	section.

Frame	based	applications	usually	have	an	outer	frame	window	which	looks	after	the	menu,	toolbar	and
status	bar,	and	a	separate	window	(sometimes	referred	to	as	a	view	window)	over	the	client	area.		Many	of
the	windows	applications	you	are	familiar	with	are	likely	to	be	frame	based	applications.		You	can	use	this
library	to	produce	not	just	simple	windows	and	dialogs,	but	also	professional	looking	frame	based
applications,	complete	with	a	menu,	toolbar,	status	bar,	and	tooltips.	

About	the	Downloads

To	download	a	copy	of		Win32++	proceed	to	the	Download	section	of	the	projects	listing	at	SourceForge.
The	Downloads	section	provides	a	number	of	sample	applications	which	use	Win32++,	including:

Browser
CustomControl
DateTime
Dialog
DialogBars
DialogDemo
DialogResizing
DialogTab
DirectX
DLL
Dock
DockContainer
DockTabbedMDI
Explorer
Fast	GDI
FormDocView
Frame
GDIPlus
MDI	Frame
MDI	Frame	Demo
MDI	Frame	Splitter
Networking

https://sourceforge.net/projects/win32-framework/files/
https://sourceforge.net/projects/win32-framework/files/


Notepad
Performance
Picture
PropertySheet
RebarDemo
RibbonFrame
RibbonSimple
Scribble
Simple	Window
Splitter
StatusBar
Tab	Demo
TaskDialog
Themes
Threads	Demo
ToolBar	Demo
Tray	Demo

Features

Win32++	provides	a	library	for	developing	applications,	using	the	Windows	API	directly.	It	supports	all	MS
operating	systems	which	run	32bit	and	64bit	Windows,	from	Windows	95	through	to	Windows	10	and
Server	2012.		Win32++	is	designed	to	produce	programs	with	a	similar	look	and	feel	to	those	created	using
MFC.	This	library	can	develop	applications	based	on	simple	windows,	dialogs,	frames	and	MDI	frames.	
The	frames	produced	by	Win32++	have	the	following	features:

Rebar	control
MenuBar		(a	menu	housed	inside	the	rebar	control).
ToolBar
Status	bar
Tool	tips
Docking	

Win32++	also	brings	an	object	oriented	approach	to	programming	directly	with	the	Windows	API.	Each
window	created	is	a	C++	class	object	capable	of	having	its	own	window	procedure	for	routing	messages.

A	summary	of	the	features	of	Win32++	are	as	follows:

Support	for	both	Win32	and	Windows	CE	operating	systems.	It	supports	all	Win32	operating
systems,	from	Windows	95	through	to	Windows	10.	The	Windows	CE	operating	systems	supported
range	from	WCE400	(Windows	mobile	2003)	to	WCE600	(Windows	mobile	6).
Supports	a	wide	range	of	C++	compilers,	including	those	from	Borland	and	Microsoft,	as	well	as	the
GNU	compiler	used	in	Dev-C++.
Supports	applications	based	on	simple	windows,	dialogs,	forms,	property	sheets,	SDI	frames	and
MDI	frames.	The	SDI	and	MDI	frames	include	rebars,	status	bars,	menu	bars,	toolbars	and	tooltips.
The	frames	use	a	separate	window,	often	referred	to	as	a	view	window,	for	the	frame's	client	area.
Support	for	docking,	tabbed	containers	and	TabbedMDIs.
Message	routing.	The	messages	for	each	window	are	routed	to	the	WndProc	function	of	the
associated	CWnd	object.	All	messages	are	passed	to	the	WndProc	function,	including	all	those
associated	with	window	creation.	
Automatic	Subclassing.	When	creating	a	window	using	a	predefined	class	type,	Win32++
automatically	subclasses	the	window	so	that	messages	can	be	routed	via	WndProc.	Predefined	class



types	include	all	the	common	controls,	such	as	the	toolbar,	status	bar,	tree-view	etc.
Existing	windows	can	be	attached	to	CWnd	objects.	This	is	particularly	useful	for	controls	in	dialogs.
These	can	be	attached	to	to	CWnd	objects	with	the	AttachDlgItem	function.
Notification	reflection.	When	a	notification	(WM_NOTIFY	message)	is	received	from	a	child
window,	OnNotifyReflect	is	called	for	the	CWnd	object	associated	with	the	child	window.
Message	reflection.	Older	common	controls	pass	messages	other	than	WM_NOTIFY	to	notify	the
parent	window	of	events.	The	OnMessageReflect	is	called	to	pass	these	messages	back	to	the	CWnd
object	associated	with	the	child	window.
Network	support.	Win32++	provides	a	CSocket	class	which	is	a	thin	wrapper	for	much	of	the
Winsock	SPI.	This	class	also	provides	notification	of	network	events.	Supports	IPv4	and	IPv6.
Tracing.	Trace	output	is	sent	to	the	Output	pane	of	the	IDE	when	the	program	is	compiled	with
debugging	enabled.
Multi-Thread	support.	Win32++	is	thread	safe,	and	windows	can	be	created	in	separate	threads.
64	bit	support.	Win32++	can	be	used	to	create	64bit	applications.
Multilingual	support.	SetResourceHandle	can	be	used	to	load	resources	from	a	resource	dll	to
provide	support	for	different	languages.
Support	for	Task	Dialogs	available	on	the	Windows	Vista	and	later	operating	systems.	
Support	for	the	Ribbon	Framework	available	on	Windows	7.

Requirements	for	using	the	Win32++

In	order	to	use	Win32++,	you	will	need	the	following:

A	C++	compiler.
Some	knowledge	of	C++,	including	how	to	use	classes
Some	knowledge	of	the	Windows	API

You	should	also	have	a	copy	of	the	Microsoft	Platform	Software	Development	Kit,	as	this	includes	the
documentation	for	programming	with	the	Windows	API.	You	will	find	this,	as	well	as	a	selection	of	free	C+
compilers	and	Windows	API	tutorials	on	the	links	page.

Getting	Started

The	library	itself	can	be	downloaded	here.	Simply	start	with	one	of	the	samples	provided.	The	samples
include	the	project	files	for	Visual	Studio	6,	Visual	Studio.Net	2003,	VS2005	Express,	VS2008	Express,
VS2010	Express,	VS2013	Express,	Dev-C++	and	CodeBlocks.		If	you're	using	one	of	these,	the	samples	are
pre-configured,	and	ready	to	compile.

If	you're	new	to	C++	programming	and	looking	for	a	free	compiler	to	use,	I	recommend	Microsoft's	Visual
C++	Express.	I	found	this	compiler	to	be	the	easiest	free	compiler	to	set	up	and	use.	If	you	are	using	an
older	Microsoft's	Visual	Studio	6.0	compiler	you	may	also	need	to	install	and	incorporate	the	Platform
SDK.	Information	on	how	to	do	this	is	provided	by	Microsoft	here.	To	compile	the	DirectX	sample	you	will
need	to	install	the	DirectX	SDK.

https://sourceforge.net/projects/win32-framework/files/
http://msdn.microsoft.com/vstudio/express/visualc/usingpsdk/


Using	Win32++



This	section	describes	how	to	use	Win32++	to	build	window	applications.	

Getting	Started
Simple	Windows
Dialogs
Frames
MDI	Frames
Graphics	Device	Interface	(GDI)
Docking
Text	Conversion	Functions
CString



Getting	Started

Before	we	begin

In	order	to	use	Win32++	you	will	need	a	C++	compiler.	If	you	don't	already	have	one,	there	are	several	free
C++	compilers	available	for	download	from	the	internet.	Some	of	the	more	popular	choices	are:

Microsoft's	Visual	C++	Express
Code::Blocks
Dev-C++

Different	compilers	have	their	various	strengths	and	weaknesses.	My	personal	favourite	is	Microsoft's
Visual	C++	2008	Express.	If	you	use	Visual	Studio	2010	Express,	be	sure	to	enable	the	"Expert	Settings"	to
access	features	such	as	the	Class	View,	and	the	ability	to	clean	and	rebuild	a	project.

You	should	also	download	and	install	a	copy	of	the	Windows	Software	Development	Kit	(SDK).	The
Windows	SDK	includes	the	documentation	of	the	Windows	API,	which	is	the	primary	reference	document
for	windows	programming.	This	is	a	free	download	available	from	Microsoft.	The	Windows	SDK	can	be
downloaded	at:	http://msdn.microsoft.com/en-us/windows/bb980924.aspx

Finally	if	you	are	planning	to	develop	dialog	applications	or	work	with	resources,	you	will	need	a	resource
editor.	The	commercial	compilers	generally	include	a	resource	a	resource	editor,	but	the	free	ones	don't.
Fortunately	there	are	some	free	resource	editors	available.	One	such	resource	editor	is	ResEdit,	available	for
download	at:	http://www.resedit.net/

Installing	Win32++

Win32++	is	available	for	download	as	a	zip	archive	from	SourceForge	at
http://sourceforge.net/projects/win32-framework/.	Extract	the	files	into	a	directory	of	your	choosing,
perhaps	a	subdirectory	of	your	documents	folder.	When	extracting	the	files,	be	sure	to	retain	Win32++'s
directory	structure.

The	Win32++	zip	archive	contains	the	Win32++	library	files	in	the	"include"	directory,	as	well	as	a	number
of	program	samples	which	demonstrate	the	various	type	of	applications	that	Win32++	can	be	used	to	create.
Each	sample	contains	a	"ProjectFiles"	directory,	which	contains	a	collection	of	project	files	matching	a
range	of	commonly	used	compilers.	To	compile	the	sample	code,	run	the	project	which	matches	your
compiler.

Creating	a	new	project

Perhaps	the	simplest	way	to	create	a	new	project	is	to	take	one	of	the	samples,	and	copy	it	to	a	new
directory	within	the	same	parent	directory	as	the	samples.	Alternatively	you	could	use	one	of	the	project
files	from	the	"Win32++\new	projects"	directory	which	are	provided	for	this	purpose.

If	you	are	looking	to	create	your	own	project	from	scratch,	you	will	typically	need	to	do	the	following:

Start	with	a	Win32	GUI	application
Add	"..\..\include"	to	the	C++	Additional	Include	Directories.

http://msdn.microsoft.com/en-us/visualc/default.aspx
http://www.codeblocks.org/
http://www.bloodshed.net/dev/
http://msdn.microsoft.com/en-us/windows/bb980924.aspx
http://www.resedit.net/
http://sourceforge.net/projects/win32-framework/


Add	"..\..\include"	to	the	Resources	Additional	Include	Directories.
Add	additional	libraries	to	the	Linker	Additional	Dependencies	(usually	comctl32.lib).

You	can	use	the	existing	project	files	as	a	guide	as	to	how	this	should	be	done.

A	Simple	Window	Application

The	following	code	is	a	complete	program	for	creating	and	displaying	a	window	using	Win32++.	This
program	creates	a	simple	window,	and	ends	the	application	when	the	window	is	closed.

///////////////////////////////////
//	main.cpp

//	Add	the	Win32++\include		directory	to	project's	additional	include	directories

#include	"wincore.h"

class	CView	:	public	CWnd
{
public:
				CView()	{}
				virtual	~CView()	{}
				virtual	void	OnDestroy()	{	PostQuitMessage(0);	}	 //	Ends	the	application
};

int	APIENTRY	WinMain(HINSTANCE,	HINSTANCE,	LPSTR,	int)
{
				//	Start	Win32++
				CWinApp	MyApp;
	
				//	Create	our	view	window
				CView	m_View;
				m_View.Create();

				//	Run	the	application
				return	MyApp.Run();
}

In	this	code	we	inherit	the	CView	class	from	CWnd	to	represent	our	view	window.	CView	overrides	the
OnDestroy	function	which	is	called	when	the	window	is	destroyed.	There	we	call	PostQuitMessage	which
ends	the	application.

The	Tutorials

The	tutorials	contain	a	step	by	step	guide	to	building	a	windows	application	using	Win32++.		The
description	of	the	each	tutorial	is	contained	within	this	help	document,	and	the	code	is	provided	in	the
"tutorials"	folder.



Simple	Window

Description

A	window	typically	occupies	a	rectangular	portion	of	the	screen.	It	is	managed	by	the	Windows	operating
system,	and	is	capable	of	responding	to	events	and	redrawing	itself.	A	window	has	a	handle	(often	referred
to	as	a	HWND)	through	which	a	program	can	control	the	window	or	send	it	messages.

There	are	many	different	types	of	windows.	In	this	section	we	will	focus	on	a	simple	application	window.
The	following	sections	will	focus	on	more	specialized	widows,	such	as	dialogs,	toolbars,	status	bars,	edit
controls	and	so	forth.

In	Win32++,	the	CWnd	class	is	used	to	create	and	control	windows.	We	inherit	a	class	from	CWnd	and
override	OnPaint	to	control	the	way	our	window	looks,	and	override	WndProc	to	control	how	it	responds	to
messages.	Refer	to	the	description	of	CWnd	in	the	Class	Library	section	of	this	documentation	for	a
description	of	the	functions	which	can	be	overridden.

Components

The	following	diagram	illustrates	the	components	of	a	typical	application	window.

Typically	an	application	will	draw	over	the	client	area	of	the	window,	but	leave	the	drawing	of	the	non-
client	area	to	the	operating	system.	Note	that	a	child	window	(a	window	contained	within	another	window)
might	not	have	a	visible	non-client	area.

This	diagram	was	created	from	an	image	capture	of	the	window	created	by	the	"Simple"	sample	(one	of	the
samples	that	ship	with	Win32++).

Creating	a	Window



Its	important	to	note	that	the	CWnd's	window	isn't	created	when	the	CWnd	is	constructed.	The	window	is
created	some	time	later,	when	either	the	Create	or	the	CreateEx	function	is	called.

Normally	the	Create	function	is	used	to	create	the	window.	This	function	allows	us	to	specify	the	parent
window,	if	any.		It	also	calls	PreRegisterClass	to	set	the	window	class	parameters,	and	PreCreate	to	set	the
creation	parameters	before	creating	the	window.		The	PreRegisterClass	and	PreCreate	can	be	overridden	to
set	these	parameters	prior	to	window	creation,	as	shown	below.

void	CView::PreRegisterClass(WNDCLASS	&wc)
{
		//	Set	the	background	brush,	class	name	and	cursor
		wc.hbrBackground	=	m_hBrush;
		wc.lpszClassName	=	_T("Scribble	Window");
		wc.hCursor	=	::LoadCursor(GetApp()->GetResourceHandle(),	MAKEINTRESOURCE(IDC_CURSOR1));
}

Additional	notes	for	PreRegisterClass:

The	lpszClassName	must	be	set	for	this	function	to	take	effect.
The	lpfnWndProc	is	always	CWnd::StaticWindowProc.
The	styles	that	can	be	set	here	are	"class"	styles.	These	are	a	different	set	of	styles	to	those	set	by
CREATESTRUCT	(used	in	PreCreate).
Default	class	creation	parameters	are	not	set	when	PreRegisterClass	is	used,	so	the	following	settings
might	prove	useful:

wc.hCursor	=	::LoadCursor(NULL,	IDC_ARROW);
wc.hbrBackground	=	(HBRUSH)::GetStockObject(WHITE_BRUSH);
wc.hIcon	=	::LoadIcon(NULL,	IDI_APPLICATION);

void	CView::PreCreate(CREATESTRUCT	&cs)
{
		//	Set	the	extra	style	to	provide	a	sunken	effect
		cs.dwExStyle	=	WS_EX_CLIENTEDGE;
}

Additional	notes	for	PreCreate:

The	cs.lpszClass	defaults	to	the	class	name	specified	in	PreRegisterClass,	or	"Win32++	Window"
otherwise.
The	styles	that	can	be	set	here	are	"window"	styles.	These	are	a	different	to	the	set	of	"class"	styles
used	in	PreRegisterClass.
A	default	style	of	WS_VISIBLE	and	possibly	WS_OVERLAPPEDWINDOW	is	used	if	no	style	is
specified.	Be	sure	to	add	these	styles	if	required	when	specifying	the	window	style.

Create	is	the	function	which	would	normally	be	used	to	create	a	window,	but	sometimes	it	is	more
convenient	to	take	more	direct	control	over	the	various	window	creation	parameters.		CreateEx	is	the
function	which	allows	the	various	window	parameters	to	be	set	directly	when	the	window	is	created.

The	OnCreate	function	is	called	during	window	creation.	This	function	can	be	overridden	to	perform
addition	tasks	during	window	creation,	such	as	creating	child	windows.		The	OnInitialUpdate	function	is
called	once	window	creation	is	complete,	so	this	function	can	be	overridden	to	perform	tasks	after	the
window	has	been	successfully	created.

Painting	the	Window



In	order	to	paint	on	the	window,	we	override	OnDraw	and	put	our	drawing	code	there.	OnDraw	is	called
automatically	whenever	all,	or	a	part	of	the	window	needs	to	be	redrawn.	OnDraw	provides	us	with	a
pointer	to	the	client	area's	device	context.	All	normal	drawing	for	a	window	is	done	via	a	device	context.

The	following	code	loads	a	text	string	from	a	string	resource	and	centers	it	on	the	client	area	of	the	window.

void	CView::OnDraw(CDC*	pDC)
{
		//	OnDraw	is	called	automatically	whenever	a	part	of	the	window	needs	to	be	redrawn.

		//	Centre	some	text	in	our	view	window
		CRect	rc	=	GetClientRect();
		pDC->DrawText(LoadString(IDW_MAIN),	rc,	DT_CENTER|DT_VCENTER|DT_SINGLELINE);
}

Handling	Messages

Each	CWnd	handles	the	messages	for	its	window.		Override	WndProc	to	specify	how	the	CWnd	should
handle	messages.		Any	unhandled	messages	are	passed	on	to	the	default	window	procedure.

A	WndProc	function	could	look	something	like	this:

LRESULT	CView::WndProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)
{
		//	This	function	is	our	message	procedure.	We	process	the	messages	for
		//	the	view	window	here.		Unprocessed	messages	are	passed	on	for
		//		default	processing.

		switch(uMsg)
		{
		case	WM_DESTROY:
				OnDestroy();
				return	0;	 //	return	a	value.	No	default	processing

		case	WM_SIZE:
				OnSize();
				break;	 //	and	also	do	default	processing	for	this	message
		}

		//	pass	unhandled	messages	on	for	default	processing
		return	WndProcDefault(uMsg,	wParam,	lParam);
}



Dialogs

Description

A	dialog	or	dialog	box	is	a	specialised	window,	designed	to	host	other	controls,	such	as	buttons,	toolbars,
tree-views,	list-views	and	so	forth.	A	dialog	is	typically	used	to	gather	information	from	or	present
information	to	the	user.

In	Win32++,	the	CDialog	class	is	used	to	create	and	control	dialogs.	We	inherit	a	class	from	CDialog	and
override	functions	to	control	the	way	the	dialog	interacts	with	its	controls.	Refer	to	the	description	of
CDialog	in	the	Class	Library	section	of	this	documentation	for	a	description	of	the	functions	which	can	be
overridden.

Dialog	Components

The	following	picture	shows	a	dialog	with	several	controls,	namely:	a	slider	control;	a	scrollbar	control;	a
progress	bar	control,	a	static	control	(for	text);	and	a	button	control.	These	controls	are	actually	specialised
windows,	and	they	are	child	windows	of	the	dialog.

	

Modal	and	Modeless	Dialogs

The	behaviour	of	dialog	boxes	vary,	depending	on	whether	the	dialog	box	is	modal	or	modeless.	A	modal
dialog	box	requires	the	user	to	close	the	dialog	box	before	activating	another	window	in	the	application.	A
modeless	dialog	box	does	not	require	an	immediate	response	from	the	user.	It	is	similar	to	a	main	window
containing	controls.

Working	with	resources

The	resources	used	in	an	application	are	defined	in	a	resource	script.	In	the	Win32++	samples	this	file	is



called	Resource.rc.	The	resource	script	can	be	used	to	define	the	following	types	of	resources.

Accelerator
Bitmap
Cursor
Dialog
Icon
Manifest
Menu
String	table
User	defined
Version	Information

Typically	a	resource	editor	is	used	to	create	the	resource	script.	The	commercial	compilers	generally	include
a	resource	a	resource	editor,	but	the	free	ones	don't.	Fortunately	there	are	some	free	resource	editors
available.	One	such	resource	editor	is	ResEdit,	available	for	download	at:	http://www.resedit.net/.

When	resources	are	defined,	they	will	have	an	associated	resource	ID.	These	resource	IDs	are	defined	in	a
header	file	(typically	resource.h).	The	resource	script	and	its	associated	header	file	should	be	added	to	your
project.	When	building	your	project,	the	resource	script	is	compiled	and	linked	to	your	executable	or	dll.

Its	important	to	note	that	the	resources	defined	in	the	resource	script	are	actually	embedded	in	your
program.	A	very	large	resource,	(a	large	bitmap	for	example)	can	increase	the	size	of	the	executable
considerably.	If	the	size	of	the	executable	is	an	important	consideration,	large	bitmaps	and	icons	could	be
loaded	from	files	during	runtime	rather	than	defined	in	the	resource	script.	

Creating	the	dialog

The	first	step	in	creating	the	dialog	is	to	define	the	dialog	resource	using	a	resource	editor.	The	resource	ID
defined	in	this	process	is	then	used	to	construct	the	object	inherited	from	CDialog.

This	is	an	example	of	how	a	dialog	would	be	constructed	for	a	simple	dialog	application.	The	CDialogApp
is	inherited	from	CWinApp,	and	would	be	instanciated	in	WinMain.	CDialogApp's	constructor	initialization
list	provides	the	resource	ID	of	the	dialog	to	CMyDialog's	constructor.	When	the	application	runs,
InitInstance	is	called	which	creates	a	modal	dialog.

//	Declaration	of	the	CDialogApp	class
class	CDialogApp	:	public	CWinApp
{
public:
		CDialogApp()	:	m_MyDialog(IDD_DIALOG1)	{}
		virtual	~CDialogApp()	{}
		virtual	BOOL	InitInstance();
		{
				//Display	the	Modal	Dialog
				m_MyDialog.DoModal();

				//End	the	program
				::PostQuitMessage(0);

				return	TRUE;	
		}

http://www.resedit.net/


		CMyDialog&	GetDialog()	{return	m_MyDialog;}

private:
		CMyDialog	m_MyDialog;
};

Working	with	controls

The	OnInitDialog	function	is	called	when	the	dialog	is	created.	We	can	override	this	function	to	determine
what	happens	when	the	dialog	starts.	In	this	example	the	dialog's	icon	is	set,	and	one	of	the	dialog's	controls
(a	button)	is	attached	to	a	class	inherited	from	CButton.

BOOL	CMyDialog::OnInitDialog()
{
		//	Set	the	Icon
		SetIconLarge(IDW_MAIN);
		SetIconSmall(IDW_MAIN);

		//	Attach	the	dialog	controls
		AttachItem(IDC_BUTTON1,	m_Button);
				
		return	true;
}

Attaching	the	button	control	to	m_Button	like	this	allows	us	to	intercept	the	messages	for	the	button,	and
handle	them	in	m_Button's	WndProc	function.

LRESULT	CMyButton::WndProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)
{
		switch	(uMsg)
		{
				case	WM_MOUSEMOVE:						OnMouseMove(wParam,	lParam);	 break;
				case	WM_NCHITTEST:						OnNCHitTest(wParam,	lParam);	 break;
				case	WM_SETCURSOR:						OnSetCursor(wParam,	lParam);	 break;
				case	WM_LBUTTONDOWN:				OnLButtonDown(wParam,	lParam);	 break;
				case	WM_LBUTTONUP:						OnLButtonUp(wParam,	lParam);	 break;
				case	WM_RBUTTONDOWN:				OnRButtonDown(wParam,	lParam);	 break;
				default:
						TRACE("CMyButton::WndProc	-	Unspecified	Message\n");
						break;
		}

		//	Pass	all	other	messages	on	for	default	processing	
		return	WndProcDefault(uMsg,	wParam,	lParam);
}

Responding	to	Events



When	a	button	is	pressed	on	a	dialog,	a	WM_COMMAND	message	is	sent	to	the	dialog	window.	Override
OnCommand	to	respond	to	these	commands	as	demonstrated	in	the	following	code.

BOOL	CMyDialog::OnCommand(WPARAM	wParam,	LPARAM	/*lParam*/)
{
		switch	(LOWORD(wParam))
		{
				case	IDC_BUTTON1:				OnButton();				return	TRUE;
				case	IDC_RADIO1:					OnRadio1();				return	TRUE;
				case	IDC_RADIO2:					OnRadio2();				return	TRUE;
				case	IDC_RADIO3:					OnRadio3();				return	TRUE;
				case	IDC_CHECK1:					OnCheck1();				return	TRUE;
				case	IDC_CHECK2:					OnCheck2();				return	TRUE;
				case	IDC_CHECK3:					OnCheck3();				return	TRUE;
		}

		return	FALSE;
}

The	Ok	and	Cancel	buttons	call	the	OnOK	and	OnCancel	functions	when	pressed.	The	default	behaviour	of
these	functions	is	to	close	the	dialog.	Override	these	functions	to	perform	other	tasks.

Handling	Notifications

Common	controls	(for	example	an	Edit	control)	send	notification	messages	to	their	parent	window	to	notify
them	of	events,	usually	by	way	of	a	WM_NOTIFY	message.		The	CDialog's	OnNotify	function	is	called	in
response	to	a	WM_NOTIFY	message.		It	can	be	overridden	to	handle	these	notification	events.	

OnNotify	is	used	to	handle	notification	messages	in	the	class	inherited	from	CDialog.	However,	we	can	use
the	OnNotifyReflect	to	handle	the	notification	in	the	CWnd	of	the	child	window	that	generated	the
notification	instead.	It	is	a	matter	of	personal	preference	whether	to	use	OnNotify	to	handle	the	notification
in	the	parent	(dialog)	or	OnNotifyReflect	to	handle	it	in	the	child	control	that	created	it.	If	we	are	handling
notifications	from	several	controls,	OnNotifyReflect	can	prove	simpler.

When	overriding	the	OnNotifyReflect	function,	it	could	look	something	like	this:

LRESULT	CMyTreeView::OnNotifyReflect(WPARAM,	LPARAM	lParam)
{
		LPNMHDR		lpnmh	=	(LPNMHDR)	lParam;

		switch(lpnmh->code)
		{
		case	NM_RCLICK:
				//	Handle	the	mouse	right	button	click	notification
				{
						CPoint	ptScreen	=	GetCursorPos();
						DoContextMenu(ptScreen);
				}
				break;
	
		}	//switch	LPNMHDR



		return	0L;
}

Likewise,	OnMessage	and	OnMessageReflect	can	also	be	used	to	handle	a	small	set	of	older	messages	that
behave	like	notifications.	The	set	of	messages	which	are	handled	by	OnMessage	and	OnMessageReflect	are
as	follows:

	 WM_CTLCOLORBTN
	WM_CTLCOLOREDIT
	WM_CTLCOLORDLG	
	 WM_CTLCOLORLISTBOX
	WM_CTLCOLORSCROLLBAR
	WM_CTLCOLORSTATIC
	WM_DRAWITEM
	WM_MEASUREITEM
	WM_DELETEITEM
	WM_COMPAREITEM
	WM_CHARTOITEM
	WM_VKEYTOITEM
	WM_HSCROLL
	WM_VSCROLL
	WM_PARENTNOTIFY

When	overriding	OnMessageReflect,	it	might	look	something	like	this:

LRESULT	CMySlider::OnMessageReflect(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)
{
		UNREFERENCED_PARAMETER(wParam);
		UNREFERENCED_PARAMETER(lParam);

		switch	(uMsg)
		{
		case	WM_HSCROLL:
				{
						//	Get	the	slider	bar	position
						int	nPos	=	GetPos();

						//	Get	a	pointer	to	the	MyDialog	object
						CMyDialog*	pDialog	=	(CMyDialog*)GetParent();

						pDialog->SetProgress(nPos);	 	 //	Set	the	progress	bar	position
						pDialog->SetScroll(nPos);		 //	Set	the	scroll	bar	position



						pDialog->SetStatic(TRUE,	nPos);	 //	Set	the	static	text
						
						break;
				}
		}

		return	0;
}

Handling	the	Dialog's	Messages

The	dialog	itself	is	a	window.	It	is	the	parent	window	for	each	of	the	controls.	Sometimes	we	need	to	handle
the	dialog's	messages	too.	When	we	need	to	handle	the	dialog	window's	messages,	we	override	DialogProc
to	specify	how	the	messages	should	be	handled.		Any	unhandled	messages	are	passed	on	to	the	default
dialog	procedure.

When	overriding	the	DialogProc	function,	it	could	look	something	like	this:

BOOL	CMyDialog::DialogProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)
{
//		switch	(uMsg)
//		{
//						//Additional	messages	to	be	handled	go	here
//		}

				//	Pass	unhandled	messages	on	to	parent	DialogProc
				return	DialogProcDefault(uMsg,	wParam,	lParam);	
}



Frames

Description

Frames	provides	application	developers	with	a	standard	way	of	presenting	their	applications	to	users.
Frames	usually	display	a	menu,	and	often	also	display	a	toolbar	and	status	bar.

There	are	two	styles	of	frames	used	in	Microsoft	Windows.	The	Single	Document	Interface	(SDI)	frame
allows	the	application	to	display	a	single	view	window.	The	Multiple	Document	Interface	(MDI)	frame
allows	the	application	to	manage	and	display	multiple	view	windows	at	the	same	time.	The	frames
described	in	this	section	are	SDI	frames.

Refer	to	CFrame	in	the	Class	library	section	for	a	description	of	its	member	functions.

Frame	components

The	following	diagram	illustrates	a	typical	frame	application.

The	toolbar	and	menubar	are	used	to	accept	input	from	the	user.	The	status	bar	is	used	to	display	status
information.	The	view	window	is	a	child	window	of	the	frame,	positioned	over	the	area	that	is	not	occupied
by	the	menu,	toolbar	and	status	bar.

Defining	the	Frame

To	create	a	CMainFrame	class,	override	Win32++'s	CFrame	class	as	follows:

//	Declaration	of	the	CMainFrame	class
class	CMainFrame	:	public	CFrame
{
public:



		CMainFrame(void);
		virtual	~CMainFrame();

protected:
		virtual	BOOL	OnCommand(WPARAM	wParam,	LPARAM	lParam);
		virtual	void	OnCreate();
		virtual	void	OnInitialUpdate();
		virtual	LRESULT	OnNotify(WPARAM	wParam,	LPARAM	lParam);
		virtual	void	SetupToolBar();
		virtual	LRESULT	WndProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

private:
		CView	m_View;		//	The	view	window
};

The	View	Window

Every	frame	must	be	provided	with	a	view	window.	The	view	window	can	be	any	sort	of	window,
providing	it	is	a	child	window,	and	it	is	capable	of	being	resized.	The	types	of	windows	that	might	be	used
as	view	windows	include	simple	windows,	rich	edit	controls,	tree	view	controls,	list	view	controls,	tab
controls,	modeless	dialogs,	Win32++	dockers,	etc.

The	view	is	a	window	class	inherited	from	CWnd.	The	view	window	must	be	set	before	the	frame	window
is	created.	This	is	usually	done	in	the	constructor	as	follows:

CMainFrame::CMainFrame()
{
		//Set	m_View	as	the	view	window	of	the	frame
		SetView(m_View);
}

Incidentally,	other	parts	of	Win32++	use	view	windows	as	well.	View	windows	are	used	in:

Frames
MDI	children
Tab	controls
TabbedMDIs
Dockers
Dock	containers

Each	of	these	use	view	windows	in	the	same	way.

Customising	the	Frame's	Creation

The	OnCreate	function	determines	how	the	frame	will	be	created.		It	is	this	function	which	creates	the
various	child	windows	used	by	the	frame,	namely	the	status	bar,	toolbar,	rebar,	menu	bar,	and	the	view
window.		Override	OnCreate	if	you	wish	to	modify	the	creation	of	the	various	child	windows.

There	are	several	member	variables	used	in	OnCreate	that	affect	the	appearance	of	the	frame.		The
following	code	is	part	of	the	generic	starter	for	a	frame	application.	The	appearance	of	the	frame	can	be
altered	by	removing	the	comment	from	in	front	of	one	or	more	of	the	member	variables	listed.



void	CMainFrame::OnCreate()
{
		//	OnCreate	controls	the	way	the	frame	is	created.
		//	Overriding	CFrame::Oncreate	is	optional.
		//	The	default	for	the	following	variables	is	TRUE

		//	m_ShowIndicatorStatus	=	FALSE;		//	Don't	show	statusbar	indicators
		//	m_ShowMenuStatus	=	FALSE;							//	Don't	show	toolbar	or	menu	status
		//	m_UseReBar	=	FALSE;													//	Don't	use	rebars
		//	m_UseThemes	=	FALSE;												//	Don't	use	themes

		//	call	the	base	class	function
		CFrame::OnCreate();
}

Defining	the	Toolbar	Buttons

The	bitmap	image	(or	images)	associated	with	the	toolbar	buttons	is	specified	in	the	resource	script	file
(Resource.rc).		To	modify	the	images	displayed	on	the	toolbar	buttons,	the	bitmaps	associated	with	the
toolbar	will	need	to	be	edited	accordingly.	If	the	programming	environment	doesn't	include	a	resource
editor	for	this	purpose,	a	free	resource	editor	such	as	ResEdit	might	prove	useful.	By	default,	the	frame	uses
the	bitmap	resource	associated	with	IDW_MAIN	when	displaying	the	toolbar.		The	entry	in	Resource.rc
that	associates	the	bitmap	with	the	resource	ID	looks	like	this.

IDW_MAIN																	BITMAP																		"res\\toolbar.bmp"

The	following	code	demonstrates	how	configure	the	commands	issued	by	the	toolbar	when	the	button	is
pressed.		This	code	should	be	placed	in	CMainFrame::SetupToolBar.		This	is	an	typical	exanple
SetupToolBar.

void	CMainFrame::SetupToolBar()
{
		//	Set	the	Resource	IDs	for	the	toolbar	buttons
		AddToolBarButton(	IDM_FILE_NEW			);
		AddToolBarButton(	IDM_FILE_OPEN		);
		AddToolBarButton(	IDM_FILE_SAVE		);
	
		AddToolBarButton(	0	);																						//	Separator
		AddToolBarButton(	IDM_EDIT_CUT,			FALSE	);		//	disabled	button
		AddToolBarButton(	IDM_EDIT_COPY,		FALSE	);		//	disabled	button
		AddToolBarButton(	IDM_EDIT_PASTE,	FALSE	);		//	disabled	button
	
		AddToolBarButton(	0	);																						//	Separator
		AddToolBarButton(	IDM_FILE_PRINT	);
	
		AddToolBarButton(	0	);																						//	Separator
		AddToolBarButton(	IDM_HELP_ABOUT	);	
}

Refer	to	the	tutorial	for	a	demonstration	of	customising	the	toolbar	buttons.

http://www.resedit.net/


Responding	to	Menu	and	Toolbar	Input

When	a	menu	item	is	selected	or	a	toolbar	button	is	pressed,	a	WM_COMMAND	message	is	sent	to	the
frame	window.	Override	OnCommand	to	respond	to	these	commands	as	demonstrated	in	the	following
code.

BOOL	CMainFrame::OnCommand(WPARAM	wParam,	LPARAM	/*lParam*/)
{
		//	OnCommand	responds	to	menu	and	and	toolbar	input

		switch(LOWORD(wParam))
		{
		case	IDM_FILE_EXIT:
				//	End	the	application	when	exit	is	selected	from	the	menu
				PostQuitMessage(0);
				return	TRUE;
		case	IDM_HELP_ABOUT:
				//	Display	the	help	dialog
				OnHelp();
				return	TRUE;
		}
		return	FALSE;
}

Customising	the	Toolbar

Various	aspects	of	the	toolbar	can	be	configured.		The	image	list	associated	with	normal,	hot,	and	disabled
toolbar	buttons	are	set	by	the	SetToolBarImages	function.		The	following	code	demonstrates	the	use	of	the
SetToolBarImages	function,	and	shows	how	to	add	text	to	toolbar	buttons.

void	CMainFrame::SetupToolBar()
{
		//	Set	the	Resource	IDs	for	the	toolbar	buttons
		AddToolBarButton(	IDM_FILE_NEW			);
		AddToolBarButton(	IDM_FILE_OPEN		);
		AddToolBarButton(	IDM_FILE_SAVE		);
	
		AddToolBarButton(	0	);																						//	Separator
		AddToolBarButton(	IDM_EDIT_CUT,			FALSE	);		//	disabled	button
		AddToolBarButton(	IDM_EDIT_COPY,		FALSE	);		//	disabled	button
		AddToolBarButton(	IDM_EDIT_PASTE,	FALSE	);		//	disabled	button
	
		AddToolBarButton(	0	);																						//	Separator
		AddToolBarButton(	IDM_FILE_PRINT	);
	
		AddToolBarButton(	0	);																						//	Separator
		AddToolBarButton(	IDM_HELP_ABOUT	);
		
		//	Use	larger	buttons
		SetToolBarImages(RGB(192,192,192),	IDB_TOOLBAR_NORM,	IDB_TOOLBAR_HOT,	IDB_TOOLBAR_DIS);	



		//	Add	some	text	to	the	buttons
		CToolBar&	TB	=	GetToolBar();
		TB.SetButtonText(IDM_FILE_NEW,			_T("New"));
		TB.SetButtonText(IDM_FILE_OPEN,		_T("Open"));
		TB.SetButtonText(IDM_FILE_SAVE,		_T("Save"));
		TB.SetButtonText(IDM_EDIT_CUT,			_T("Cut"));
		TB.SetButtonText(IDM_EDIT_COPY,		_T("Copy"));
		TB.SetButtonText(IDM_EDIT_PASTE,	_T("Paste"));
		TB.SetButtonText(IDM_FILE_PRINT,	_T("Print"));
		TB.SetButtonText(IDM_VIEWMENU,			_T("View	Menu"));
		TB.SetButtonText(IDM_HELP_ABOUT,	_T("About"));
}

Customising	Menu	Items

Menus	are	typically	defined	in	the	program's	resource	script	(resource.rc).	A	menu	definition	might	look
like	this:.	

IDW_MAIN	MENU
BEGIN
				POPUP	"&File;"
				BEGIN
								MENUITEM	"New...",																						IDM_FILE_NEW
								MENUITEM	"&Open...;",																				IDM_FILE_OPEN
								MENUITEM	"&Save;",																							IDM_FILE_SAVE
								MENUITEM	"Save	&As...;",																	IDM_FILE_SAVEAS
								MENUITEM	SEPARATOR
								MENUITEM	"&Print;",																						IDM_FILE_PRINT
								MENUITEM	SEPARATOR
								MENUITEM	"E&xit;",																							IDM_FILE_EXIT
				END
				POPUP	"&Edit;"
				BEGIN
								MENUITEM	"Undo\tCtrl+Z",																IDM_EDIT_UNDO,	GRAYED
								MENUITEM	"Redo\tShift+Ctrl+Z",										IDM_EDIT_REDO,	GRAYED
								MENUITEM	SEPARATOR
								MENUITEM	"Cut\tCtrl+X",																	IDM_EDIT_CUT,	GRAYED
								MENUITEM	"Copy\tCtrl+C",																IDM_EDIT_COPY,	GRAYED
								MENUITEM	"Paste\tCtrl+V",															IDM_EDIT_PASTE,	GRAYED
								MENUITEM	"Delete\tDel",																	IDM_EDIT_DELETE,	GRAYED
				END
				POPUP	"&View;"
				BEGIN
								MENUITEM	"&Tool;	Bar",																			IDW_VIEW_TOOLBAR,	CHECKED
								MENUITEM	"&Status;	Bar",																	IDW_VIEW_STATUSBAR,	CHECKED
				END
				POPUP	"&Help;"
				BEGIN
								MENUITEM	"&About;",																						IDM_HELP_ABOUT



				END
END

Menu	items	defined	with	the	"GRAYED"	flag	are	initially	disabled.	Menu	items	defined	with	the
"CHECKED"	flag	are	displayed	with	a	check	box.

Menu	items	can	also	be	displayed	with	an	image.	The	framework	will	automatically	add	images	for	those
menu	items	defined	with	the	same	command	ID	as	those	used	in	the	Toolbar.	We	can	add	icons	for	other
menu	items	as	well.	The	AddMenuIcons	function	adds	a	group	of	icons	for	menu	items,	and	the
AddMenuIcon	function	adds	icons	for	individual	menu	items.	Code	like	this	can	be	added	to
CMainFrame::SetupToolBar	to	add	icons	for	menu	items.

		//	Add	some	extra	icons	for	menu	items
		AddMenuIcon(IDM_FILE_NEWSIMPLE,	GetApp()->LoadIcon(IDI_SIMPLE));
		AddMenuIcon(IDM_FILE_NEWRECT,	GetApp()->LoadIcon(IDI_RECT));
		AddMenuIcon(IDM_FILE_NEWTEXT,	GetApp()->LoadIcon(IDI_TEXT));
		AddMenuIcon(IDM_FILE_NEWLIST,	GetApp()->LoadIcon(IDI_FILEVIEW));
		AddMenuIcon(IDM_FILE_NEWTREE,	GetApp()->LoadIcon(IDI_CLASSVIEW));

Themes

Themes	provide	an	opportunity	to	set	the	colour	and	styles	of	various	parts	of	the	frame,	namely	the	menu,
the	toolbar	and	the	rebar.		By	default,	the	frame	will	call	the	SetTheme	function	from	inside	OnCreate	to	set
these	various	colours	and	styles.	SetTheme		can	be	overridden	to	modify	these.	This	is	example	shows	how
set	the	theme	to	grey.	

void	CMainFrame::SetTheme()
{
		BOOL	T	=	TRUE;
		BOOL	F	=	FALSE;

		MenuTheme	mt	=	{T,	RGB(182,	189,	210),	RGB(	182,	189,	210),	RGB(200,	196,	190),	RGB(200,	196,	190),	RGB(100,	100,	100)};
		ReBarTheme	rbt	=	{T,	RGB(212,	208,	200),	RGB(212,	208,	200),	RGB(230,	226,	222),	RGB(220,	218,	208),	F,	F,	T,	T,	T,	F};
		StatusBarTheme	sbt	=	{T,	RGB(212,	208,	200),	RGB(212,	208,	200)};
		ToolBarTheme	tbt	=	{T,	RGB(182,	189,	210),	RGB(182,	189,	210),	RGB(133,	146,	181),	RGB(133,	146,	181),	RGB(10,	36,	106)};

		SetMenuTheme(&mt;);	 //	Sets	the	theme	for	popup	menus	and	MenuBar
		SetReBarTheme(&rbt;);
		SetStatusBarTheme(&sbt;);
		SetToolBarTheme(&tbt;);
}

The	definition	of	the	various	theme	structures	are	as	follows:

struct	ReBarTheme
{
		BOOL	UseThemes;						//	TRUE	if	themes	are	used
		COLORREF	clrBkgnd1;		//	Colour	1	for	rebar	background
		COLORREF	clrBkgnd2;		//	Colour	2	for	rebar	background
		COLORREF	clrBand1;			//	Colour	1	for	rebar	band	background.	Use	NULL	if	not	required
		COLORREF	clrBand2;			//	Colour	2	for	rebar	band	background.	Use	NULL	if	not	required



		BOOL	FlatStyle;						//	Bands	are	rendered	with	flat	rather	than	raised	style
		BOOL	KeepBandsLeft;		//	TRUE	if	we	always	keep	bands	left
		BOOL	LockMenuBand;			//	Lock	MenuBar's	band	up	top,	without	gripper
		BOOL	RoundBorders;			//	Use	rounded	band	borders
		BOOL	ShortBands;					//	Allows	bands	to	be	shorter	than	maximum	available	width
		BOOL	UseLines;							//	Displays	horizontal	lines	between	bands
};
				
struct	MenuTheme
{
		BOOL	UseThemes;							//	TRUE	if	themes	are	used
		COLORREF	clrHot1;					//	Colour	1	for	hot	button
		COLORREF	clrHot2;					//	Colour	2	for	hot	button
		COLORREF	clrPressed1;	//	Colour	1	for	pressed	button
		COLORREF	clrPressed2;	//	Colour	2	for	pressed	button
		COLORREF	clrOutline;		//	Colour	for	border	outline
};

struct	StatusBarTheme
{
		BOOL	UseThemes;							//	TRUE	if	themes	are	used
		COLORREF	clrBkgnd1;			//	Colour	1	for	statusbar	background
		COLORREF	clrBkgnd2;			//	Colour	2	for	statusbar	background
};
	
struct	ToolBarTheme
{
		BOOL	UseThemes;							//	TRUE	if	themes	are	used
		COLORREF	clrHot1;					//	Colour	1	for	hot	button
		COLORREF	clrHot2;					//	Colour	2	for	hot	button
		COLORREF	clrPressed1;	//	Colour	1	for	pressed	button
		COLORREF	clrPressed2;	//	Colour	2	for	pressed	button
		COLORREF	clrOutline;		//	Colour	for	border	outline
};

Refer	to	the	themes	sample	application	for	a	demonstration	of	the	different	sorts	of	effects	that	can	be
achieved	by	altering	a	frame's	theme.

Using	the	Registry

Modern	applications	are	expected	to	save	their	settings	in	the	registry.	To	enable	the	loading	and	saving	of
program	settings	use	the	LoadRegistrySettings	function	in	CMainFrame's	constructor.	If	you	also	wish	to
load	and	save	a	list	of	Most	Recently	Used	(MRU)	files,	call	the	LoadRegistryMRU	function	settings	as
well.

CMainFrame::CMainFrame()
{
		//	Set	m_View	as	the	view	window	of	the	frame
		SetView(m_View);



		//	Set	the	registry	key	name,	and	load	the	initial	window	position
		//	Use	a	registry	key	name	like	"CompanyName\\Application"
		LoadRegistrySettings(_T("Win32++\\Scribble	Sample"));

		//	Load	the	settings	from	the	registry	with	4	MRU	entries
		LoadRegistryMRUSettings(4);
}

By	default	CFrame	saves	the	frame	size	and	position	in	the	registry.	To	load	and	save	other	settings,
override	the	LoadRegistyrSettings	and	SaveRegistrySettings	functions	in	CMainFrame.



MDI	Frames

Description

Multiple	Document	Interface	(MDI)	frames	are	capable	of	managing	and	displaying	a	number	of	MDI
children.	These	MDI	Children	have	their	own	view	window.

Refer	to	the	MDIFrame	and	MDIFrameDemo	samples	for	demonstration	of	how	to	CMDIFrame	and
CMDIChild	to	create	MDI	applications.
MDI	Frame	Components

The	following	diagram	illustrates	a	typical	MDI	frame	application.

The	toolbar	and	menubar	are	used	to	accept	input	from	the	user.	The	status	bar	is	used	to	display	status
information.

Defining	the	MDI	Frame

To	define	a	MDI	frame,	inherit	a	class	from	CMDIFrame	as	shown	below.

//	MDI	frames	are	inherrited	from	CMDIFrame
class	CMainMDIFrame	:	public	CMDIFrame
{
public:
		CMainMDIFrame(void);
		virtual	~CMainMDIFrame();

protected:
		virtual	BOOL	OnCommand(WPARAM	wParam,	LPARAM	lParam);
		virtual	int		OnCreate(LPCREATESTRUCT	pcs);
		virtual	void	OnInitialUpdate();



		virtual	void	SetupToolBar();
		virtual	LRESULT	WndProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);
};

Unlike	SDI	frames,	we	do	not	need	to	specify	a	view	window	for	the	frame.	The	Win32++	framework
automatically	assigns	the	MDI	client	window	as	the	view	window	for	the	frame.	The	constructor	for	our
MDI	frame	could	look	like	this.

CMainMDIFrame::CMainMDIFrame()
{
		//	Set	the	registry	key	name,	and	load	the	initial	window	position
		//	Use	a	registry	key	name	like	"CompanyName\\Application"
		LoadRegistrySettings(_T("Win32++\\MDI	Frame"));
}

Defining	a	MDI	Child

To	define	a	MDI	child,	inherit	a	class	from	CMDIChild	as	shown	below.

//	Declaration	of	CSimpleMDIChild
class	CSimpleMDIChild	:	public	CMDIChild
{
public:
		CSimpleMDIChild();
		virtual	~CSimpleMDIChild();

protected:
		virtual	BOOL	OnCommand(WPARAM	wParam,	LPARAM	lParam);
		virtual	void	OnInitialUpdate();
		virtual	LRESULT	WndProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

private:
		CSimpleView	m_View;
};

The	MDI	Child's	Menu	and	View

Normally	each	different	type	of	MDI	child	has	a	different	menu.	The	MDI	Frame's	menu	is	changed	to	the
MDI	child's	menu	when	the	MDI	child	becomes	the	active	window.	The	menu	for	each	MDI	child	is	usually
defined	in	the	resource	script	file	(resource.rc).

The	view	window	for	the	MDI	child	is	set	in	the	same	way	we	would	set	the	view	window	for	a	SDI	frame.
The	constructor	for	the	class	inherited	from	CMDIChild	would	typically	look	something	like	this.

CMDIChildSimple::CMDIChildSimple()
{
		SetView(m_View);
		HINSTANCE	hResource	=	GetApp()->GetResourceHandle();
		HMENU	hChildMenu	=	LoadMenu(hResource,	_T("MdiMenuSimple"));
		SetHandles(hChildMenu,	NULL);



}

Adding	a	MDI	child	window

The	AddMDIChild	function	is	used	to	add	a	MDI	child	window.		The	following	code	demonstrates	how	to
create	a	new	MDI	child	window	in	response	to	a	selection	from	the	frame's	menu	or	toolbar.

BOOL	CMainMDIFrame::OnCommand(WPARAM	wParam,	LPARAM	/*lParam*/)
{
		switch	(LOWORD(wParam))
		{
		case	IDM_FILE_NEW:
				AddMDIChild(new	CMDIChildView);	//	CMDIFrame	deletes	this	pointer
				return	TRUE;
		}
		return	FALSE;
}

Note	that	the	pointer	created	by	"new"	is	deleted	automatically	by	CMDIFrame	when	the	MDI	child
window	is	destroyed.

	



Graphics	Device	Interface	(GDI)

About	the	GDI

The	Graphics	Device	Interface	(GDI)	is	part	of	the	Windows	operating	system.	It	provides	applications	with
a	means	of	sending	graphics	information	to	devices	such	as	the	video	display	and	printer.

When	using	the	GDI,	the	graphics	device	is	represented	as	a	device	context	(DC).	All	drawing	calls	are
made	through	a	device-context	object,	which	encapsulates	the	Windows	APIs	for	drawing	lines,	shapes,	and
text.	Device	contexts	allow	device-independent	drawing	in	Windows.	GDI	objects	such	as	bitmaps,	brushes,
palettes	and	pens	are	selected	into	the	device	context	before	they	can	be	used	to	display	the	graphic
information.	Fonts	can	also	be	selected	into	the	device	context	to	manage	the	rendering	of	text.

The	GDI	classes	in	Win32++

The	set	of	GDI	classes	provided	by	Win32++	are	as	follows:

CDC
CClientDC
CMemDC
CMetaFileDC
CPaintDC
CWindowDC
CGDIObject
CBitmap
CBrush
CFont
CPalette
CPen
CRgn

The	CDC	classes	(CDC,	ClientDC,	CMemDC,	CMetaFileDC,	CPaintDC,	CWindowDC)	provides	a	GDI
device	context.	The	CDC	classes	can	also	be	used	to	create	the	other	GDI	resources	such	as	Bitmaps,
Brushes,	Fonts	etc.	These	are	automatically	selected	into	the	device	context	when	they	are	created.	These
are	also	deleted	when	the	CDC	goes	out	of	scope.

With	their	ability	to	create	device	contexts	as	well	as	other	GDI	resources,	the	CDC	classes	are	sufficient
for	most	GDI	programming	needs.	Sometimes	however,	we	need	to	have	the	GDI	resources	separated	from
the	device	context.	Wrapper	classes	for	GDI	resources	are	provided	for	this	purpose.	These	classes	are
CBitmap,	CBrush,	CFont,	CPalette,	CPen	and	CRgn.

Using	the	GDI	classes

Using	the	Windows	API	without	CDC

This	code	demonstrates	how	to	use	the	Windows	API	functions	directly	to	draw	a	line	with	the	GDI.



void	DrawLine()
{
		HDC	hdcClient	=	::GetDC(m_hWnd);
		HDC	hdcMem	=	::CreateCompatibleDC(hdcClient);
		HBITMAP	hBitmap	=	::CreateCompatibleBitmap(hdcClient,	cx,	cy);
		HBITMAP	hOldBitmap	=	(HBITMAP)::SelectObject(hdcMem,	hBitmap);
		HPEN	hPen	=	::CreatePen(PS_SOLID,	1,	RGB(255,0,0);
		HPEN	hOldPen	=	(HPEN)::SelectObject(hdcMem,	hPen);
		::MoveToEx(hdcMem,	0,	0,	NULL);
		::LineTo(hdcMem,	50,	50);
		::BitBlt(hdcClient,	0,	0,	cx,	cy,	hdcMem,	0,	0);
		::SelectObject(hdcMem,	hOldPen);
		::DeleteObject(hPen);
		::SelectObject(hdcMem,	hOldBitmap);
		::DeleteObject(hBitmap);
		::DeleteDC(hdcMem);
		::ReleaseDC(m_hWnd,	hdcClient);
}

Using	CDC	classes	alone

This	code	performs	the	same	task	as	shown	above	using	the	CDC	class.

void	DrawLine()
{
		CClientDC	dcClient(this)
		CMemDC	dcMem(&dcClient;);
		dcMem.CreateCompatibleBitmap(&dcClient;,	cx,	cy);
		CMemDC.CreatePen(PS_SOLID,	1,	RGB(255,0,0);
		CMemDC.MoveTo(0,	0);
		CMemDC.LineTo(50,	50);
		dcClient.BitBlt(0,	0,	cx,	cy,	&CMemDC;,	0,	0);
}

Using	CDC	classes	with	CPen

This	code	uses	a	CDC	and	a	separate	CPen	to	draw	the	line.

void	DrawLine()
{
		CClientDC	dcClient(this)
		CMemDC	dcMem(&dcClient;);
		dcMem.CreateCompatibleBitmap(&dcClient;,	cx,	cy);
		CPen	MyPen(PS_SOLID,	1,	RGB(255,0,0));
		CPen*	pOldPen	=	dcMem.SelectObject(&MyPen;);
		dcMem.MoveTo(0,	0);
		dcMem.LineTo(50,	50);
		dcClient.BitBlt(0,	0,	cx,	cy,	&dcMem;,	0,	0);



}

Notes:

When	the	CDC	object	drops	out	of	scope,	it's	destructor	is	called,	cleaning	up	any	GDI	resources	it
created,	as	well	as	the	device	context.
The	device	context	is	returned	to	its	initial	state	before	deletion,	removing	the	need	to	select	the
OldPen	back	into	the	device	context.
When	the	CPen	object	drops	out	of	scope,	it's	destructor	is	called,	deleting	its	associated	GDI	object
(HPEN).

Creating	a	Window	DC

A	window	DC	is	a	device	context	which	represents	the	entire	window,	including	the	non-client	area.	We	can
create	a	window	DC	as	follows:

CWindowDC	dcWindow(this);

Creating	a	Window	Client	DC

The	following	code	creates	a	device	context	for	the	client	area	of	the	window.	The	following	code	shows
how	we	can	create	a	DC	for	the	window's	client	area.

CClientDC	dcClient(this);

Creating	a	Memory	DC

As	the	name	suggests,	a	memory	DC	is	created	in	memory.	Memory	DCs	are	typically	used	for	double
buffering.	With	this	programming	technique	we	perform	the	drawing	tasks	to	a	memory	DC,	and	then	copy
the	bitmap	to	our	window.

When	creating	a	memory	DC	we	provide	a	pointer	to	the	CWindowDC	or	CClientDC	that	the	memory	DC
is	compatible	with.	We	then	create	the	compatible	bitmap	that	the	memory	DC	will	draw	to.	The	following
code	demonstrates	how	this	is	done.

//	Create	our	memory	client	DC
CRect	rc	=	GetClientRect();
CClientDC	dcClient(this);

//	Create	our	memory	DC	and	compatible	bitmap
CMemDC	dcMem(&dcClient);
dcMem.CreateCompatibleBitmap(&dcClient,	rc.Width(),	rc.Height());

//	Draw	some	stuff	on	the	memory	DC
dcMemC.CreatePen(PS_SOLID,	1,	RGB(255,0,0);
dcMem.MoveTo(0,	0);
dcMem.LineTo(50,	50);

//	Copy	the	Memory	DC's	bitmap	to	the	window's	client	DC



dcClient.BitBlt(0,	0,	rc.Width(),	rc.Height(),	&dcMem,	0,	0,	SRCCOPY);

The	use	of	a	memory	DC	doesn't	necessarily	make	the	graphics	any	faster,	but	can	reduce	or	even	eliminate
annoying	flicker.

Handling	OnDraw	and	OnEraseBkgnd

The	OnDraw	and	OnEraseBkgnd	functions	provide	a	pointer	to	the	CDC	for	us	to	use.	The	following	code
demonstrates	how	these	functions	can	be	used.

void	CView::OnDraw(CDC*	pDC)
{
		CRect	rc	=	GetClientRect();

		//	Centre	some	text	in	our	view	window
		pDC->DrawText(_T("View	Window"),	-1,	rc,	DT_CENTER	|	DT_VCENTER	|	DT_SINGLELINE);
}

BOOL	CView::OnEraseBkgnd(CDC*	pDC)
{
		CBrush	MyBrush(RGB(255,255,230));	//	this	could	also	be	a	member	variable
		CRect	rc	=	GetClientRect();
		FillRect(rc,	MyBrush);
}

Notes:

A	device	context	assigned	to	a	CDC	object	will	be	released	or	deleted	when	the	CDC	is	destroyed,
unless	it	is	detached.
A	GDI	resource	created	by	one	of	the	CDC	member	functions	will	be	deleted	when	the	CDC	object
is	destroyed.
The	GDI	resources	selected	into	the	CDC	with	SelectObject	are	not	deleted	when	the	CDC	goes	out
of	scope.	Only	GDI	resources	created	by	the	CDC	are	automatically	deleted.
GDI	resources	belonging	to	the	various	GDI	wrapper	classes	(eg.	CPen)	are	automatically	deleted
when	the	class	object	is	destroyed,	unless	they	are	detached	.
A	bitmap	GDI	object	can	only	be	selected	into	one	device	context	at	a	time.
Set	the	region's	shape	before	selecting	it	into	a	DC.

	

	



Docking

Description

The	CDocker	class	adds	both	splitter	windows	and	docking	to	the	Win32++	framework.	CFrame	is
inherited	from	CDocker,	so	frames	and	MDI	frames	supportd	docking	directly.

Splitter	windows	have	a	moveable	splitter	bar	between	the	windows.	Windows	which	have	docking	enabled
have	the	moveable	splitter	bar	too,	but	they	can	also	be	dragged	away	from	the	view,	or	undocked.
Undocked	docking	windows	can	be	dragged	over	the	view	window	and	docked.

The	CDocker	class	creates	specialized	windows	called	"Dockers"	capable	of	allowing	other	Dockers	to
dock	to	and	undock	from	them.	When	docking,	the	undocked	Docker	is	dragged	over	another	Docker.
Various	visual	clues	such	has	the	dock	targeting	(small	arrow-like	images),	and	the	dock	hinting	(where	a
portion	of	the	destination	window	turns	blue)	provide	a	hint	as	to	where	the	Docker	will	be	docked.	To
facilitate	undocking,	the	caption	of	the	docked	window	is	dragged	and	dropped.

Every	Docker	has	a	view	window.	These	views	can	be	any	resizable	child	window,	and	are	set	in	the	same
way	as	views	for	Frames	and	MDI	children.	DockContainers	(provided	by	the	CDockContainer	class)	are	a
specialized	view	which	add	additional	docking	features	when	used	as	the	view	window	for	a	Docker.
DockContainers	are	decribed	in	more	detail	below.

A	Docker	which	is	docked	within	another	Docker	is	said	to	be	a	"dock	child"	of	that	Docker.	There	is	no
theoretical	limit	to	how	many	dock	children	a	Docker	may	have.	There	is	also	no	theoretical	limit	as	to	the
depth	of	the	child/parent	relationship.	That's	to	say	there	can	be	any	number	of	dock	children	within	dock



children	within	dock	children	etc.

The	primary	or	first	Docker	is	referred	to	as	the	Dock	Ancestor.	This	would	typically	be	the	frame	or	MDI
frame	window.	Other	Dockers	are	added	to	this	dock	hierarchy	using	the	AddDockedChild	or
AddUndockedChild	functions.	This	group	of	Dockers	is	said	to	be	"related"	or	in	the	same	docking	group.
These	Dockers	can	dock	and	undock	from	each	other.

A	Docker	will	dock	to	any	one	of	the	four	sides	of	another	related	Docker	(left,	right,	top	or	bottom).	When
a	Docker	is	docked	within	a	child	Docker,	this	is	referred	to	as	"inner	docking".	When	a	Docker	is	docked
to	the	side	of	the	Dock	Ancestor,	this	is	referred	to	as	"outer	docking".	Outer	docking	and	inner	docking
have	different	dock	targeting	visual	cues.

Docker	Components

The	following	image	illustrates	some	of	the	components	of	Docker	windows.	In	this	case	the	window	being
docked	is	dragged	over	a	Docker	with	a	Container	view.	Hence	we	see	the	center	target	option	within	the
Inner	Dock	Targets	for	Container	within	Container	docking.

	

Setting	the	Docker's	view

The	following	code	shows	how	the	Docker's	view	is	assigned,	and	how	to	set	the	width	of	the	splitter	bar.

CDockClasses::CDockClasses()	
{	
		SetView(m_Classes);



		
		//	Set	the	width	of	the	splitter	bar
		SetBarWidth(8);	
}

Dockers	can	have	a	number	of	styles.		These	styles	can	determine	where	the	Docker	is	docked,	whether	or
not	it	can	be	undocked,	and	where	dock	children	are	permitted	to	dock.	The	dock	style	is	initially	specified
when	the	Docker	is	added	to	the	docking	hierarchy	.	The	complete	set	of	dock	styles	are	as	follows:

DS_DOCKED_LEFT Dock	the	child	left
DS_DOCKED_RIGHT Dock	the	child	right
DS_DOCKED_TOP	 Dock	the	child	top	
DS_DOCKED_BOTTOM Dock	the	child	bottom
DS_NO_DOCKCHILD_LEFT Prevent	a	child	docking	left
DS_NO_DOCKCHILD_RIGHT Prevent	a	child	docking	right
DS_NO_DOCKCHILD_TOP Prevent	a	child	docking	at	the	top
DS_NO_DOCKCHILD_BOTTOM Prevent	a	child	docking	at	the	bottom
DS_NO_RESIZE Prevent	resizing
DS_NO_CAPTION Prevent	display	of	caption	when	docked
DS_NO_CLOSE Prevent	closing	of	a	docker	while	docked
DS_NO_UNDOCK Prevent	undocking	of	the	docker
DS_CLIENTEDGE Has	a	3D	border	when	docked

DS_NO_FIXED_RESIZE
Resize	dock	children	proportionally.	Unless
set,	dock	children	have	a	fixed	size	when
the	dock	parent	is	resized.

DS_DOCKED_CONTAINER Dock	a	container	within	a	container
DS_DOCKED_LEFTMOST Leftmost	outer	docking
DS_DOCKED_RIGHTMOST Rightmost	outer	docking
DS_DOCKED_TOPMOST Topmost	outer	docking
DS_DOCKED_BOTTOMMOST Bottommost	outer	docking

Adding	Dock	Children

The	following	code	shows	how	to	add	dock	children.		Note	that	the	newly	added	Docker	can	be	a	dock
child	of	the	dock	ancestor	or	a	dock	child	of	any	other	Docker	descendant	of	the	to	the	dock	ancestor.

void	CMainFrame::LoadDefaultDockers()
{
		//	Note:	The		DockIDs	are	used	for	saving/restoring	the	dockers	state	in	the	registry



		DWORD	dwStyle	=	DS_CLIENTEDGE;	//	The	style	added	to	each	docker
	
		//	Add	the	parent	dockers
		CDocker*	pDockRight		=	AddDockedChild(new	CDockClasses,	DS_DOCKED_RIGHT	|	dwStyle,	200,	ID_DOCK_CLASSES1);	
		CDocker*	pDockBottom	=	AddDockedChild(new	CDockText,	DS_DOCKED_BOTTOM	|	dwStyle,	100,	ID_DOCK_TEXT1);

		//	Add	the	remaining	dockers
		pDockRight->AddDockedChild(new	CDockFiles,	DS_DOCKED_CONTAINER	|	dwStyle,	200,	ID_DOCK_FILES1);
		pDockRight->AddDockedChild(new	CDockClasses,	DS_DOCKED_CONTAINER	|	dwStyle,	200,	ID_DOCK_CLASSES2);
		pDockRight->AddDockedChild(new	CDockFiles,	DS_DOCKED_CONTAINER	|	dwStyle,	200,	ID_DOCK_FILES2);

		pDockBottom->AddDockedChild(new	CDockOutput,	DS_DOCKED_CONTAINER	|	dwStyle,	100,	ID_DOCK_OUTPUT1);
		pDockBottom->AddDockedChild(new	CDockText,	DS_DOCKED_CONTAINER	|	dwStyle,	100,	ID_DOCK_TEXT2);
		pDockBottom->AddDockedChild(new	CDockOutput,	DS_DOCKED_CONTAINER	|	dwStyle,	100,	ID_DOCK_OUTPUT2);
}

Saving	the	Dockers	in	the	Registry

CDocker	provides	built	in	support	for	saving	the	Dockers	in	the	registry.		The	functions	which	perform	this
task	are	CDocker::LoadDockRegistrySettings	and	CDocker::SaveDockRegistrySettings.	

The	first	step	in	using	these	functions	is	to	override	CDocker::NewDockerFromID	for	the	Dock	Ancestor.
This	function	can	create	a	new	Docker	from	the	specified	Docker	ID.		In	this	case	CDockSimple	is	the
CDocker	class	for	our	Dock	Ancestor,	so	the	NewDockerFromID	function	looks	like	this:

CDocker*	CMainFrame::NewDockerFromID(int	nID)
{
		CDocker*	pDock	=	NULL;
		switch(nID)
		{
		case	ID_DOCK_CLASSES1:
				pDock	=	new	CDockClasses;
				break;
		case	ID_DOCK_CLASSES2:
				pDock	=	new	CDockClasses;	 	 	 	 	
				break;
		case	ID_DOCK_FILES1:
				pDock	=	new	CDockFiles;
				break;
		case	ID_DOCK_FILES2:
				pDock	=	new	CDockFiles;
				break;
		case	ID_DOCK_OUTPUT1:
				pDock	=	new	CDockOutput;
				break;
		case	ID_DOCK_OUTPUT2:
				pDock	=	new	CDockOutput;
				break;
		case	ID_DOCK_TEXT1:



				pDock	=	new	CDockText;
				break;
		case	ID_DOCK_TEXT2:
				pDock	=	new	CDockText;
				break;
		default:
				TRACE(_T("Unknown	Dock	ID\n"));
				break;
		}

		return	pDock;
}

All	that	remains	now	is	to	use	the	CDocker's	LoadDockRegistrySettings	and	SaveDockRegistrySettings	in
CMainFrame.		The	following	code	demonstrates	how	this	might	be	done.

void	CMainFrame::OnInitialUpdate()
{
		m_DockView.SetDockStyle(DS_CLIENTEDGE);

		//	Load	dock	settings
		if	(!LoadDockRegistrySettings(GetRegistryKeyName()))
				LoadDefaultDockers();

		//	PreCreate	initially	set	the	window	as	invisible,	so	show	it	now.
		ShowWindow();
}

void	CMainFrame::SaveRegistrySettings()
{
		CFrame::SaveRegistrySettings();
		SaveDockRegistrySettings(GetRegistryKeyName());
}

Refer	to	the	DockSimple,	DockContainer	and	DockTabbedMDI	samples	for	a	demonstration	of	docking.

Dock	Containers

DockContainers	are	a	specialized	view	window	for	Dockers.		It	is	a	tab	control	which	has	been	designed	to
co-operate	with	docking.		While	Dockers	allows	any	child	window	to	be	used	as	the	view	window,
DockContainers	add	additional	features	when	used	as	the	view	window	for	Dockers.		These	additional
features	include	container	within	container	docking	(where	the	newly	docked	DockContainer	adds	another
tab),	as	well	as	additions	to	the	dock	targeting	and	dock	hinting	visual	cues.		DockContainers	can	also	have
a	toolbar.	The	use	of	a	toolbar	is	optional,	but	when	used	they	are	set	up	in	the	same	way	as	toolbars	for
Frames.

The	CDockContainer	class	adds	DockContainers	to	the	Win32++	framework.	Each	DockContainer	has	a
single	view	window	of	its	own.		This	view	window	can	be	any	child	window,	and	is	set	in	the	same	way	as
views	for	Frames	and	MDI	children.



The	various	attributes	of	the	DockContainer	are	typically	set	in	its	constructor.	The	following	code
demonstrates	how	to	specify	a	DockContainer's	tab	text,	tab	icon,	view	window,	and	the	text	which	will	be
displayed	in	the	docked	caption.

CContainClasses::CContainClasses()	
{
		//	Note:	CContainClasses	inherits	from	CDockContainer
		
		SetTabText(_T("ClassView"));
		SetTabIcon(IDI_CLASSVIEW);
		SetDockCaption	(_T("Class	View	-	Docking	container"));
		SetView(m_ViewClasses);
}

If	the	DockContainer	has	a	toolbar,	it	is	set	up	in	the	same	way	as	the	toolbar	for	a	Frame.	The	following
code	demonstrates	how	the	SetupToolBar	function	is	used	to	specify	the	ToolBar's	bitmap	and	resource	IDs,
as	well	as	how	to	configure	the	toolbar	themes	to	match	those	of	the	Frame.

void	CContainClasses::SetupToolBar()
{
		//	Set	the	Bitmap	resource	for	the	toolbar
		GetToolBar().SetImages(RGB(192,192,192),	IDW_MAIN,	0,	0);

		//	Set	the	Resource	IDs	for	the	toolbar	buttons
		AddToolBarButton(	IDM_FILE_NEW									);
		AddToolBarButton(	IDM_FILE_OPEN,	FALSE	);
	
		AddToolBarButton(	0	);	 //	Separator
		AddToolBarButton(	IDM_FILE_SAVE,	FALSE	);



	
		AddToolBarButton(	0	);	 //	Separator
		AddToolBarButton(	IDM_EDIT_CUT									);
		AddToolBarButton(	IDM_EDIT_COPY								);
		AddToolBarButton(	IDM_EDIT_PASTE							);
	
		AddToolBarButton(	0	);	 //	Separator
		AddToolBarButton(	IDM_FILE_PRINT,	FALSE	);
	
		AddToolBarButton(	0	);	 //	Separator
		AddToolBarButton(	IDM_HELP_ABOUT							);

		//	Add	the	ComboBarEx	control	to	the	toolbar
		AddCombo();
}

The	following	example	demonstrates	how	to	add	DockContainers	to	an	exiting	Docker.		Note	that	the
DS_DOCKED_CONTAINER	style	is	used	to	dock	a	container	within	a	container.		Only	DockContainers
support	this	style.

void	CMainFrame::LoadDefaultDockers()
{
		//	Note:	The		DockIDs	are	used	for	saving/restoring	the	dockers	state	in	the	registry
		//	Note:	CDockClasses,	CDockFiles,	CDockOutput	and	CDockText	inherit	from	CDocker,	and
											have	a	view	which	inherits	from	CDockContainer.

		DWORD	dwStyle	=	DS_CLIENTEDGE;	//	The	style	added	to	each	docker
	
		//	Add	the	parent	dockers
		CDocker*	pDockRight		=	AddDockedChild(new	CDockClasses,	DS_DOCKED_RIGHT	|	dwStyle,	200,	ID_DOCK_CLASSES1);	
		CDocker*	pDockBottom	=	AddDockedChild(new	CDockText,	DS_DOCKED_BOTTOM	|	dwStyle,	100,	ID_DOCK_TEXT1);

		//	Add	the	remaining	dockers
		pDockRight->AddDockedChild(new	CDockFiles,	DS_DOCKED_CONTAINER	|	dwStyle,	200,	ID_DOCK_FILES1);
		pDockRight->AddDockedChild(new	CDockClasses,	DS_DOCKED_CONTAINER	|	dwStyle,	200,	ID_DOCK_CLASSES2);
		pDockRight->AddDockedChild(new	CDockFiles,	DS_DOCKED_CONTAINER	|	dwStyle,	200,	ID_DOCK_FILES2);

		pDockBottom->AddDockedChild(new	CDockOutput,	DS_DOCKED_CONTAINER	|	dwStyle,	100,	ID_DOCK_OUTPUT1);
		pDockBottom->AddDockedChild(new	CDockText,	DS_DOCKED_CONTAINER	|	dwStyle,	100,	ID_DOCK_TEXT2);
		pDockBottom->AddDockedChild(new	CDockOutput,	DS_DOCKED_CONTAINER	|	dwStyle,	100,	ID_DOCK_OUTPUT2);
}

	



Text	Conversion

Introduction

There	are	several	different	types	of	text	strings	used	in	windows	programming.	These	include:

ANSI

ANSI	is	an	acronym	for	the	American	National	Standards	Institute.	In	windows	programming,	the	term
ANSI	usually	refers	to	single-byte	ISO-8859	encodings.	ANSI	text	strings	are	stored	as	an	array	of	single
byte	char	(or	CHAR).

BSTR

BSTR	is	an	abbreviation	of	Basic	String	(or	perhaps	Binary	String).	It	was	originally	used	in	Visual	Basic,
and	is	often	used	in	COM	programming	today.	A	BSTR	string	is	a	specialized	Unicode	string.	It	begins	with
a	length	field,	which	is	followed	by	a	string	of	Unicode	characters.	A	BSTR	is	always	NULL	terminated,
but	can	also	contain	NULL	characters	within	the	string.

OLE

Microsoft	introduced	a	number	of	macros	with	"OLE"	in	the	name,	such	as	LPOLESTR.	The	term	as	it
relates	to	text	strings	is	largely	superseded	by	Unicode	(i.e.	Wide)	strings,	however	there	are	still	a	few
Windows	API	functions	that	take	LPOLESTR	arguments.	In	modern	Windows	programming,	OLE	strings
are	Unicode	strings.

TCHAR

TCHAR	text	strings	are	Unicode	if	the	UNICODE	macro	is	defined,	otherwise	they	are	ANSI.	TCHAR	is
the	type	of	text	string	used	in	most	Windows	API	functions.	It	helps	developers	to	produce	code	capable	of
supporting	both	ANSI	and	Unicode	text	strings.

Wide	or	Unicode

Unicode	is	an	international	standard	for	the	representation	of	text	characters.	Unlike	ANSI	which	uses	a
single	byte	for	each	character,	Unicode	(in	Windows)	uses	two	bytes	for	each	character.	Unicode	text	strings
are	stored	as	an	array	of	wchar	(or	WCHAR).	Modern	Microsoft	Windows	operating	systems	(since
Windows	ME)	have	standardised	on	Unicode.

String	Conversion	Functions	in	Win32++

Win32++	contains	the	following	functions	to	convert	from	one	string	type	to	another.

A2BSTR Convert	from	ANSI	to	BSTR
A2OLE Convert	from	ANSI	to	OLE
A2T Convert	from	ANSI	to	TCHAR
A2W Convert	from	ANSI	to	WCHAR



OLE2A Convert	from	OLE	to	ANSI
OLE2T Convert	from	OLE	to	TCHAR
OLE2W	Convert	from	OLE	to	WCHAR	T2A	Convert	from	TCHAR	to	ANSI	T2BSTR	Convert	from
TCHAR	to	BSTR	T2OLE	Convert	from	TCHAR	to	OLE	T2W	Convert	from	TCHAR	to	WCHAR	W2A
Convert	from	WCHAR	to	ANSI	W2BSTR	Convert	from	WCHAR	to	BSTR	W2OLE	Convert	from
WCHAR	to	OLE	W2OLE	Convert	from	WCHAR	to	OLE

Using	the	Text	Conversion	Functions

Each	of	the	text	conversion	functions	described	above	are	actually	typedefs	of
text	conversion	classes	such	as	CA2W	and	CW2A.	They	each	return	a	pointer	to
the	appropriate	text	string	type.	These	text	conversions	can	be	used	as	either
classes	or	functions.	When	using	them	as	functions	it	is	important	to	remember
that	the	returned	pointer	goes	out	of	scope	immediately.	This	means	the	returned
pointer	cannot	be	saved	for	later	use.	The	following	examples	illustrate	this.

Example	1	-	Using	the	text	converter	as	a	class

In	this	example	W2A	is	used	as	a	class.		A	W2A	object	is	created	using	its
constructor,	and	this	object	remains	in	scope	until	the	example	function	ends.

void	ExampleFunctionW(	LPCWSTR	pWide	)
{
		//	Use	the	converion	class	as	a	class.
		W2A	MyAnsiString(	pWide	);
		
		//	MyAnsiString	works	like	an	LPCSTR	(pointer	to	const	CHAR),	and	can	be	used	like	this:
		SetWindowTextA(	MyAnsiString	);	 //	The	ANSI	version	of	SetWindowText
		
		//	Note:	MyAnsiString	remains	in	scope	until	the	function	ends.
}

	

Example	2	-	Using	the	text	converter	as	as	a	function.

In	this	example	the	result	of	the	W2A	text	conversion	is	used	immediately.	The	destructor	of	W2A	is	called
after	the	call	to	SetWindowTextA.

void	ExampleFunctionW(	LPCWSTR	pWide)
{
		//	Convert	from	Wide	(Unicode)	to	ANSI	and	use	the	result.
		SetWindowTextA(	W2A(	pWide	)	);				//	The	ANSI	version	of	SetWindowText



}

	

Example	3	-	Storing	a	result	for	later	use.

This	examples	demonstrates	some	correct	techniques	for	storing	our	text	conversion	result	for	later	use.
Note	that	we	cannot	simply	store	the	pointer	because	it	goes	out	of	scope	immediately.

void	ExampleFunctionW(	LPCWSTR	pWide	)
{
		//	Store	the	result	in	a	std::string
		std::string	str	=	W2A(	pWide	);	//	or	std::string	str	=	(LPCTSTR)W2A(	pWide	);	for	some	compilers

		//	Store	the	result	in	an	array
		char	szArray[80];
		strcpy(	szArray,	W2A(	pWide	)	);

		//	Store	the	result	in	a	vector
		std::vector<char>	MyAnsiVector(strlen(W2A(pWide))+1,	'\0');
		strcpy(&MyAnsiVector.front(),	W2A(pWide);
		
		//	Do	something	with	our	stored	string	conversion
		//	...
}

	

Example	4	-	Incorrect	use	of	the	text	conversion	function.

In	this	example	the	destructor	for	W2A	is	called	before	the	call	to	SetWindowTextA.	As	a	result,	the
contents	of	pAnsi	are	destroyed	and	the	pointer	no	longer	points	to	a	valid	character	array.

void	ExampleFunctionW(	LPCWSTR	pWide	)
{
		//	THIS	IS	INCORRECT!
		LPCSTR	pAnsi	=	W2A(	pWide	);
		
		//	W2A's	destructor	has	already	been	called,	so	pAnsi	is	no	longer	points	to	a	valid	value.
		SetWindowTextA(	pAnsi	);	//	Behaviour	of	this	line	is	undefined!
}



CString

Introduction

CStrings	are	used	for	text	strings.	They	can	prove	easier	and	safer	to	use	than	TCHAR	arrays.	CStrings	are
easily	copied	and	modified,	and	handle	null	termination	automatically.

The	CString	class	provided	with	Win32++	is	designed	to	behave	in	much	the	same	way	as	CStrings
provided	with	other	frameworks	like	MFC	and	ATL.

Assigning	CStrings

There	are	several	ways	to	assign	a	CString.	These	include:

CString	str1	=	_T("Text	string");
CString	str2(_T("Text	string"));

TCHAR	szText[80]	=	_T("Text	String");
CString	str3	=	szText;
CString	str4	=	_T('T');	//	a	single	character
CString	str5	=	str1;	//	copy	a	CString
CString	str6	=	str1	+	str2;	//	Concatenate	two	strings

//	Assign	a	string	like	a	c-style	printf
CString	str7;
str7.Format(_T("There	are	%d	apples"),	5);

Modifying	CStrings

The	CString	class	has	several	member	functions	for	modifying	the	contents	of	a	CString.	These	include:

	Insert	can	be	used	to	insert	characters	into	the	string.
	Delete	can	be	used	to	remove	characters	from	the	string.
	MakeUpper	and	MakeLower	converts	the	string	to	upper	or	lower	case.
	Trim,	TrimLeft	and	TrimRight	can	trim	characters	from	the	CString.
	Remove	the	specified	character	from	the	string.
	Replace	an	old	sub-string	with	a	new	one.
	SetAt	changes	the	character	at	the	specified	index.
	Truncate	reduces	the	length	of	the	string	to	the	specified	amount.

Coding	Example:

//	insert	the	word	"sat"	into	the	string
CString	str("The	cat	on	the	mat");
str.Insert(8,	_T("sat	"));



//	Convert	the	string	to	upper	case
str.MakeUpper();

Accessing	elements	of	a	CString

Parts	of	a	CString	can	be	accessed	in	several	different	ways:

	Left,	Mid	and	Right	can	be	used	to	extract	characters	from	the	string.
	GetAt	retrieves	the	character	at	the	specified	location.

Coding	Example:

CString	str1("The	cat	sat	on	the	mat");

//	Copy	3	characters,	beginning	at	index	4	to	str2
CString	str2	=	str1.Mid(4,	3);
assert(str2	==	_T("cat");

Finding	elements	in	the	CString

The	following	functions	can	be	used	to	find	the	index	of	elements	in	the	CString:

	Find	and	ReverseFind
	FindOneOf

Coding	Example:

CString	str(	"The	cat	sat	on	the	mat"	);
int	i	=	str.Find(_T("cat"));
assert(i	==	4);

Using	GetBuffer	and	ReleaseBuffer

CString	can	provide	a	pointer	to	an	internal	buffer.	This	allows	a	CString	to	be	used	in	places	where	we
would	write	to	a	character	array.

Coding	Example:

Here	we	use	GetBuffer	to	allocate	a	buffer	for	use	by	the	GetWindowText	function.

int	nLength	=	::GetWindowTextLength(m_hWnd);
CString	str;
::GetWindowText(m_hWnd,	str.GetBuffer(nLength),	nLength+1);

str.ReleaseBuffer();

Note:	We	must	call	ReleaseBuffer	when	we	have	finished	writing	to	the	buffer.	This	copies	the	contents	of
the	buffer	into	the	CString	and	frees	the	allocated	buffer.



Library	Reference

Classes

CAnimation A	class	used	to	create	an	animation	control.



CBitmap	A	class	used	to	create	a	bitmap	resource.	CBitmapInfoPtr	A	class	used	to	create	the
BITMAPINFO	structure.	CBrush	A	class	used	to	create	a	brush	resource.	CButton	A	class	used	to	create	a
button	control.	CClientDC	The	class	used	to	device	contect	for	the	client	area	of	the	window.	CCmdBar
The	class	used	to	create	a	command	bar	control.	(Windows	CE	only).	CComboBox	A	class	used	to	create	a
combo	box	control.	CComboBoxEx	A	class	used	to	create	a	ComboBoxEx	control.	CContainer	A	class
used	for	docking	tabbed	window.	CCriticalSection	The	class	used	for	thread	synchronisation.	CDateTime
This	class	is	used	to	create	a	date	and	time	picker	control.	CDC	This	class	is	used	to	simplify	working	with
device	contexts	and	GDI	graphics.	CDialog	The	class	responsible	for	creating	modal	and	modeless	dialogs.
It	can	also	be	used	to	create	dialog	applications.	CDockContainer	The	class	is	used	to	create	docking
containers.	CDocker	The	class	used	for	a	docking	window.	Docking	windows	can	also	be	used	as	splitter
windows.	CEdit	A	class	used	to	create	an	edit	control.	CFile	A	class	used	to	read	from	and	write	to	files.
CFont	A	class	used	to	create	a	font	resource.	CFrame	The	class	used	to	create	a	frame	window.	The	frame
window	has	a	menu,	toolbar,	and	a	status	bar.	The	client	area	of	the	frame	window	is	occupied	by	a	separate
CWnd	window,	often	called	the	view	window.	CGDIObject	The	base	class	for	GDI	objects	including
CBitmap,	CBrush,	CFont,	CPalette,	CPen,	and	CRgn.	CHeader	A	class	used	to	create	a	header	control.
CHotKey	A	class	used	to	create	a	hot	key	control.	CImageList	A	class	used	to	create	and	manage	Image
Lists.	CIPAddress	The	class	used	to	create	an	IP	address	control.	CListBox	A	class	used	to	create	a	list-box
control.	CListView	A	class	that	is	used	to	create	a	List-View	control.	CMDIChild	The	class	for	MDI	child
windows.	All	MDI	children	should	be	inherited	from	this	class.	CMDIFrame	The	class	for	MDI	frames.
CMemDC	The	class	used	to	create	memory	device	context.	CMenu	The	class	used	to	create	and	modify
menus.	CMenuBar	The	class	used	to	create	the	menubar.	A	menubar	is	a	specialized	toolbar	which	mimics
the	behaviour	of	a	menu.	It	is	usually	used	within	a	rebar	control.	CMetaFileDC	A	class	used	to	create
metafile	device	context.	CMonthCalendar	A	class	used	to	create	a	month	calendar	control.	CPaintDC	A
class	used	to	create	device	context	for	the	WM_PAINT	message.	CPalette	A	class	used	to	create	a	palette
resource.	CPen	A	class	used	to	create	a	pen	resource.	CPoint	A	class	that	can	be	used	in	place	of	a	POINT
structure.	CProgressBar	A	class	used	to	create	a	progress	bar	control.	CPropertyPage	The	class	used	to
create	a	property	page.	A	property	sheet	has	one	or	more	property	pages.	CPropertySheet	The	class	used	to
create	a	property	sheet.	CReBar	The	class	used	to	create	a	rebar	control.	CRect	A	class	that	can	be	used	in
place	of	a	RECT	structure.	CRgn	A	class	used	to	create	a	region.	CRibbon	The	class	used	to	add	a	Window
7	ribbon	framework	to	a	window.	CRibbonFrame	The	class	used	to	create	a	frame	window	with	a	Window
7	ribbon	framework.	A	menu	and	toolbar	will	be	used	if	the	operating	system	doesn't	support	the	ribbon.
CRichEdit	A	class	used	to	create	a	rich	edit	control.	CScrollBar	A	class	used	to	create	a	scroll	bar	control.
CSize	A	class	that	can	be	used	in	place	of	a	SIZE	structure.	CSlider	The	class	used	to	create	a	slider	control
(sometimes	referred	to	as	a	track	bar	control).	CSocket	The	class	used	for	networking.	CSpinButton	The



class	used	to	create	a	spin	button	control	(sometimes	referred	to	as	an	up	down	control).	CStatic	The	class
used	to	create	a	static	control.	CStatusBar	The	class	used	to	create	a	status	bar.	CString	The	class	used	to
create	and	modify	character	strings.	CTab	The	class	used	to	create	a	Tab	control.	CTabbedMDI	The	class
used	for	Tabbed	MDI	window.	CTaskDialog	The	class	used	for	to	create	a	Task	Dialog.	CToolBar	The
class	used	to	create	a	rebar	control.	CToolTip	The	class	used	to	create	a	tool	tip	control.	CTreeView	A	class
used	to	create	a	Tree-View	control.	CWceFrame	The	class	used	to	create	a	frame	window	on	Pocket	PCs.
(Windows	CE	only).	CWebBrowser	The	class	used	to	create	a	web	browser	in	a	window.	CWinApp	The
class	responsible	for	initializing	Win32++,	and	also	provides	the	message	loop.	You		inherit	from	this	class
to	start	the	application.	CWindowDC	The	class	used	to	create	a	device	context	for	the	entire	window,
including	the	non-client	area.	CWinException	A	class	which	handles	exceptions.	CWinThread	The	class
used	to	to	create	worker	threads	and	GUI	threads.	A	window	can	run	in	a	GUI	thread.	CWnd	The	CWnd
class	represents	a	window.	CWnd	handles	such	things	as	window	creation	and	window	destruction,	as	well
as	determining	how	the	window	messages	are	handled.	Shared_Ptr	A	smart	pointer	that	can	be	used	in	a
STL	container	such	as	a	vector.

	

Global	Functions

Defined	in	winutils.h

GetApp CWinApp*	GetApp();

Returns	a	pointer	to	the	CWinApp	derrived	class.

GetCursorPos CPoint	GetCursorPos();

Returns	a	CPoint	containing	the	cursor	position.

GetComCtlVersion int	GetComCtlVersion();

Returns	an	integer	which	indicates	the	version	of	of	the	ComCtl32.dll	used.

GetSizeofMenuItemInfo UINT	GetSizeofMenuItemInfo();

Returns	the	correct	size	of	the	MENUITEMINFO	structure	for	all	versions	of	windows.

GetSizeofNonClientMetrics UINT	GetSizeofNonClientMetrics();

Returns	the	correct	size	of	the	NONCLIENTMETRICS	structure	for	all	versions	of	windows.

GetWinVersion int	GetWinVersion();

Returns	an	integer	indicating	the	version	of	windows	running.

IsAeroThemed BOOL	IsAeroThemed();



Returns	TRUE	if	Aero	themes	are	being	used.

IsXPThemed BOOL	IsXPThemed();

Returns	TRUE	if	XP	themes	are	being	used.

IsLeftButtonDown BOOL	IsLeftButtonDown();

Returns	TRUE	if	the	left	mouse	button	is	pressed.

lstrcpyn LPTSTR	lstrcpyn(LPTSTR	lpstrDest,	LPCTSTR	lpstrSrc,	int	nLength);

Copies	a	specified	number	of	characters	from	a	source	string	to	a	destination	string.

LoadCommonControls void	LoadCommonControls();

Registers	and	initializes	certain	common	control	window	classes.

TRACE
void	TRACE(LPCSTR	str);

void	TRACE(LPCWSTR	str);

Sends	a	string	to	the	debug/output	pane,	or	an	external	debugger.

	
String	Conversion	Functions
A2BSTR Converts	an	ANSI	string	to	a	BSTR	string.
A2OLE Converts	an	ANSI	string	to	an	OLE	string.
A2T Converts	an	ANSI	string	to	a	TCHAR	string.
A2W Converts	an	ANSI	string	to	a	WCHAR	string.
OLE2A Converts	an	OLE	string	to	an	ANSI	string.
OLE2T Converts	an	OLE	string	to	a	TCHAR	string.
OLE2W Converts	an	OLE	string	to	a	WCHAR	string.
T2A Converts	a	TCHAR	string	to	an	ANSI	string.
T2BSTR Converts	a	TCHAR	string	to	a	BSTR	string.
T2OLE Converts	a	TCHAR	string	to	an	OLE	string.
T2W Converts	a	TCHAR	string	to	a	WCHAR	string.
W2A Converts	a	WCHAR	string	to	an	ANSI	string.
W2BSTR Converts	a	WCHAR	string	to	a	BSTR	string.
W2OLE Converts	a	WCHAR	string	to	an	OLE	string.
W2T Converts	a	WCHAR	string	to	a	TCHAR	string.
	
Defined	in	cstring.h

LoadString CString	LoadString(UINT	nID);

Retrieves	a	string	resource	and	returns	the	result	as	a	CString.
	
Defined	in	webbrowser.h



GetPidlLength UINT	GetPidlLength(LPITEMIDLIST	pidl);

Returns	the	length	of	the	Item	Identifier	List.	Item	Identifier	Lists	identify	the	names	of	files	and
folders	within	the	shell	namespace.

Macros

GET_X_LPARAM Retrieves	the	signed	x-coordinate	from	the	given	LPARAM	value.
GET_Y_LPARAM Retrieves	the	signed	y-coordinate	from	the	given	LPARAM	value.
MAX Returns	the	higher	of	two	values.
MIN Returns	the	lower	of	two	values.
NO_USING_NAMESPACE Define	this	macro	to	suppress	using	the	Win32xx	namespace.

Type	declarations

tString typedef	std::basic_string<TCHAR>	tString;
tStringStream typedef	std::basic_stringstream<TCHAR>	tStringStream;
BitmapPtr typedef	Shared_Ptr<CBitmap>	BitmapPtr;
BrushPtr typedef	Shared_Ptr<CBrush>	BrushPtr;
DCPtr typedef	Shared_Ptr<CDC>	DCPtr;
GDIPtr typedef	Shared_Ptr<CGDIObject>	GDIPtr;
FontPtr typedef	Shared_Ptr<CFont>	FontPtr;
ImageListPtr typedef	Shared_Ptr<CImageList>	ImageListPtr;
MenuPtr typedef	Shared_Ptr<CMenu>	MenuPtr;
PalettePtr typedef	Shared_Ptr<CPalette>	PalettePtr;
PenPtr typedef	Shared_Ptr<CPen>	PenPtr;
RgnPtr typedef	Shared_Ptr<CRgn>	RgnPtr;
WndPtr typedef	Shared_Ptr<CWnd>	WndPtr;

Messages

UWM_CLEANUPTEMPS const	UINT	UWM_CLEANUPTEMPS	=	RegisterWindowMessage(_T("UWM_CLEANUPTEMPS"));

Message	-	posted	to	cleanup	temporary	CDCs,	CWnds	etc.

UWM_DOCKACTIVATE #define	UWM_DOCKACTIVATE	(WM_APP	+	0x3F01)

Message	-	sent	to	dock	ancestor	when	a	docker	is	activated	or	deactivated.

UWM_DOCKDESTROYED #define	UWM_DOCKDESTROYED	(WM_APP	+	0x3F02)

Message	-	posted	when	docker	is	destroyed.

UWM_DRAWRBBKGND #define	UWM_DRAWRBBKGND	(WM_APP	+	0x3F03)



Message	-	sent	by	rebar	to	parent	to	perform	background	drawing.	Return	TRUE	if	handled.

UWM_DRAWSBBKGND #define	UWM_DRAWSBBKGND	(WM_APP	+	0x3F04)

Message	-	sent	by	statusbar	to	parent	to	perform	background	drawing.	Return	TRUE	if	handled.

UWM_GETFRAMEVIEW
#define	UWM_GETFRAMEVIEW	(WM_APP	+	0x3F05)

Message	-	returns	the	HWND	of	the	frame's	view	window.

UWM_GETMBTHEME #define	UWM_GETMBTHEME	(WM_APP	+	0x3F06)

Message	-	returns	a	pointer	to	MenuBarTheme.

UWM_GETRBTHEME #define	UWM_GETRBTHEME	(WM_APP	+	0x3F07)

Message	-	returns	a	pointer	to	ReBarTheme.

UWM_GETSBTHEME #define	UWM_GETSBTHEME	(WM_APP	+	0x3F08)

Message	-	returns	a	pointer	to	StatusBarTheme.

UWM_GETTBTHEME #define	UWM_GETTBTHEME	(WM_APP	+	0x3F09)

Message	-	returns	a	pointer	to	ToolBarTheme.

UWM_POPUPMENU
#define	UWM_POPUPMENU	(WM_APP	+	0x3F0A)

Message	-	creates	the	menubar	popup	menu.

UWM_TBRESIZE #define	UWM_TBRESIZE	(WM_APP	+	0x3F0B)

Message	-	sent	by	toolbar	to	parent.	Used	by	the	rebar.

UWM_TBWINPOSCHANGING #define	UWM_TBWINPOSCHANGING	(WM_APP	+	0x3F0C)

Message	-	sent	to	parent.	Toolbar	is	resizing.

UWM_UPDATECOMMAND #define	UWM_UPDATECOMMAND	(WM_APP	+	0x3F0D)

Message	-	sent	before	a	menu	is	displayed.	Used	by	OnUpdate.

UWM_WINDOWCREATED const	UINT	UWM_WINDOWCREATED	=	RegisterWindowMessage(_T("UWM_WINDOWCREATED"));

Message	-	posted	when	a	window	is	created	or	attached.

UWN_BARSTART #define	UWN_BARSTART	(WM_APP	+	0x3F0E)

Notification	-	docker	bar	selected	for	move.

UWN_BARMOVE #define	UWN_BARMOVE	(WM_APP	+	0x3F0F)



Notification	-	docker	bar	moved.

UWN_BAREND #define	UWN_BAREND	(WM_APP	+	0x3F10)

Notification	-	end	of	docker	bar	move.

UWN_DOCKSTART #define	UWN_DOCKSTART	(WM_APP	+	0x3F11)

Notification	-	about	to	start	undocking.

UWN_DOCKMOVE
#define	UWN_DOCKMOVE	(WM_APP	+	0x3F12)

Notification	-	undocked	docker	is	being	moved.

UWN_DOCKEND #define	UWN_DOCKEND	(WM_APP	+	0x3F13)

Notification	-	docker	has	been	docked.

UWN_TABCHANGED #define	UWN_TABCHANGED	(WM_APP	+	0x3F14)

Notification	-	tab	size	or	position	changed.

UWN_TABDRAGGED #define	UWN_TABDRAGGED	(WM_APP	+	0x3F15)

Notification	-	tab	is	being	dragged.

UWN_UNDOCKED define	UWN_UNDOCKED	(WM_APP	+	0x3F16)

Notification	-	sent	by	docker	when	undocked.

	

	



CAnimation	Class

Description

The	CAnimation	class	adds	support	for	the	Animation	control.	An	animation	control	is	a	rectangular
window	that	displays	an	AVI	(Audio	Video	Interleaved)	format.	An	AVI	clip	is	a	series	of	bitmap	frames,
like	a	movie.	Animation	controls	can	only	display	AVI	clips	that	do	not	contain	audio.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	animation	controls.	

CAnimation	Members

CAnimationCAnimation();

Constructs	a	CAnimation	control.
Close
BOOL	Close()	const;

Closes	an	AVI	clip.	Open
BOOL	Open(LPTSTR	lpszName)	const;

Opens	an	AVI	clip	and	displays	its	first	frame	in	an	animation	control.	Play
BOOL	Play(UINT	uFrom,	UINT	uTo,	UINT	cRepeat)	const;

Plays	an	AVI	clip	in	an	animation	control.	The	control	plays	the	clip	in	the	background	while	the	thread

continues	executing.	Seek
BOOL	Seek(UINT	uFrame)	const;

Directs	an	animation	control	to	display	a	particular	frame	of	an	AVI	clip.	The	control	displays	the	clip	in	the

background	while	the	thread	continues	executing.	Stop
BOOL	Stop()	const;

Stops	playing	an	AVI	clip	in	an	animation	control.			Overridables	PreRegisterClass



virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

The	AVI	clip	can	be	added	to	the	application	as	a	resource,	or	it	can	be	separate
file.		Only	simple	AVI	files	supported	by	the	Windows	API	animation	control
can	be	played.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CBitmap	Class

Description

The	class	responsible	for	creating	and	managing	bitmap	resources.

CBitmap	Members

Initialization	and	Assignment

CBitmap

CBitmap();

CBitmap(HBITMAP	hBitmap);

CBitmap(LPCTSTR	lpstr);

CBitmap(int	nID);

Constructs	a	CBitmap	object.
FromHandle
static	CBitmap*	FromHandle(HBITMAP	hBitmap);

Returns	the	CBitmap	associated	with	the	specified	bitmap	handle.	If	a	CBitmap	object	doesn't	already	exist,
a	temporary	CBitmap	object	is	created.	This	temporary	CBitmap	will	be	deleted	sometime	after	the

processing	of	the	current	message	is	complete.	operator	HBITMAP()
operator	HBITMAP()	const;

Allows	a	CBitmap	object	to	be	used	as	a	bitmap	handle	(HBITMAP).			Attributes
GetBitmapData
BITMAP	GetBitmapData()	const;

Retrieves	the	BITMAP	structure	of	the	attached	bitmap.	GetBitmapDimensionEx
CSize	GetBitmapDimensionEx()	const;

Retrieves	the	dimensions	of	a	compatible	bitmap.	The	retrieved	dimensions	must	have	been	set	by	the



SetBitmapDimensionEx	function.	GetDIBits
int	GetDIBits(CDC*	pDC,	UINT	uStartScan,	UINT	cScanLines,	
														LPVOID	lpvBits,	LPBITMAPINFO	lpbmi,	UINT	uColorUse)	const;

Retrieves	the	bits	of	the	specified	compatible	bitmap	and	copies	them	into	a	buffer	as	a	DIB	using	the

specified	format.	SetBitmapDimensionEx
CSize	SetBitmapDimensionEx(int	nWidth,	int	nHeight);

Assigns	preferred	dimensions	to	a	bitmap.	These	dimensions	can	be	used	by	applications;	however,	they	are

not	used	by	the	system.	SetDIBits
int	SetDIBits(CDC*	pDC,	UINT	uStartScan,	UINT	cScanLines,	
														CONST	VOID*	lpvBits,	CONST	BITMAPINFO*	lpbmi,	UINT	uColorUse);

Sets	the	pixels	in	a	compatible	bitmap	(DDB)	using	the	color	data	found	in	the	specified	DIB.			Operations
CreateBitmap
HBITMAP	CreateBitmap(int	nWidth,	int	nHeight,	UINT	nPlanes,	
																						UINT	nBitsPerPixel,	LPCVOID	lpBits);

Creates	a	bitmap	with	the	specified	width,	height,	and	color	format	(color	planes	and	bits-per-pixel).

CreateBitmapIndirect
HBITMAP	CreateBitmapIndirect(LPBITMAP	lpBitmap);

Creates	a	bitmap	with	the	width,	height,	and	color	format	specified	in	the	BITMAP	structure.

CreateCompatibleBitmap
HBITMAP	CreateCompatibleBitmap(CDC*	pDC,	int	nWidth,	int	nHeight);

Creates	a	bitmap	compatible	with	the	device	that	is	associated	with	the	specified	device	context.

CreateDIBitmap
HBITMAP	CreateDIBitmap(CDC*	pDC,	CONST	BITMAPINFOHEADER*	lpbmih,	DWORD	dwInit,
																							LPCVOID	lpbInit,	CONST	BITMAPINFO*	lpbmi,	UINT	uColorUse);

Creates	a	compatible	bitmap	(DDB)	from	a	DIB	and,	optionally,	sets	the	bitmap	bits.

CreateDIBSection
HBITMAP	CreateDIBSection(CDC*	pDC,	CONST	BITMAPINFO*	lpbmi,	UINT	uColorUse,
																									LPVOID*	ppvBits,	HANDLE	hSection,	DWORD	dwOffset);

Creates	a	DIB	that	applications	can	write	to	directly.	The	function	gives	you	a	pointer	to	the	location	of	the

bitmap	bit	values.	CreateMappedBitmap



HBITMAP	CreateMappedBitmap(UINT	nIDBitmap,	UINT	nFlags	=	0,
																										LPCOLORMAP	lpColorMap	=	NULL,	int	nMapSize	=	0);

Creates	a	new	bitmap	using	the	bitmap	data	and	colors	specified	by	the	bitmap	resource	and	the	color
mapping	information.	GrayScaleBitmap

void	GrayScaleBitmap(HBITMAP	hbmSource);

Creates	a	gray	scale	bitmap	from	the	specified	bitmap.	LoadBitmap
BOOL	LoadBitmap(LPCTSTR	lpszName);

BOOL	LoadBitmap(int	nID);

Loads	a	bitmap	from	a	resource	using	the	resource	string.	LoadImage
BOOL	LoadImage(LPCTSTR	lpszName,	int	cxDesired,	int	cyDesired,	UINT	fuLoad);

BOOL	LoadImage(UINT	nID,	int	cxDesired,	int	cyDesired,	UINT	fuLoad);

Loads	a	bitmap	from	a	resource	using	the	resource	ID.	LoadOEMBitmap
BOOL	LoadOEMBitmap(UINT	nIDBitmap);

Loads	a	predefined	bitmap.	TintBitmap

HIMAGELIST	CreateDisabledImageList(	HIMAGELIST	himlNormal	);

Modifies	the	colour	of	the	supplied	Device	Dependant	Bitmap,	by	the	colour	correction	values	specified.
The	correction	values	can	range	from	-255	to	+255.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CGDIObject.

Remarks

CBitmap	objects	can	be	used	anywhere	a	a	handle	to	a	bitmap	(HBITMAP)	might	be	used.		They	can	be
substituted	for	the	HBITMAP	in	any	of	the	Windows	API	functions	which	use	a	HBITMAP	as	a	function
argument.		The	benefit	of	using	a	CBitmap	object	is	that	it	automatically	deletes	the	bitmap	when	it	is
destroyed.

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information



Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CBitmapInfoPtr	Class

Description

The	CBitmapInfoPtr	class	simplifies	the	creation	and	use	of	the	BITMAPINFO	structure.	The
BITMAPINFO	structure	is	used		in	the	GetDIBits	and	SetDIBits	Window	API	functions.

Remarks

The	traditional	BITMAPINFO	structure	is	defined	like	this.

typedef	struct	tagBITMAPINFO	{	
		BITMAPINFOHEADER	bmiHeader;	
		RGBQUAD									bmiColors[1];	
}	BITMAPINFO,	*PBITMAPINFO;

The	thing	that	makes	the	traditional	BITMAPINFO	structure	difficult	to	use	is	that	the	bmiColors	member
is	an	array.		This	array	has	a	different	number	of	elements	depending	on	the	color	depth	of	the	Bitmap.	As	a
result	the	bmiColors	member	needs	to	be	created	dynamically	on	the	heap	before	the	structure	can	be
declared.	CBitmapInfoPtr	takes	care	of	these	details	for	for	us.

To	use	CBitmapInfoPtr,	simply	construct	its	object	by	providing	a	handle	(HBITMAP)	to	the	bitmap	in	its
constructor.		The	CBitmapInfoPtr	object	can	then	be	used	anywhere	in	place	of	a	pointer	to	BITMAPINFO.
The	following	example	demonstrates	the	use	of	CBitmapInfoPtr.

//	Create	our	LPBITMAPINFO	object
CBitmapInfoPtr	pbmi(hbmSource);

//	Create	the	DC	for	GetDIBits	to	use
CDC	MemDC	=	CreateCompatibleDC(NULL);

//	Use	GetDIBits	to	create	a	DIB	from	our	DDB,	and	extract	the	colour	data
MemDC.GetDIBits(hbmSource,	0,	pbmi->bmiHeader.biHeight,	NULL,	pbmi,	DIB_RGB_COLORS);

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE
support Yes



CBrush	Class

Description

The	class	responsible	for	creating	and	managing	brush	resources.

CBrush	Members

Initialization	and	Assignment

CBrush

CBrush();

CBrush(HBRUSH	hBrush);

CBrush(COLORREF	crColor);

Constructs	a	CBrush	object.
FromHandle
static	CBrush*	FromHandle(HBRUSH	hBrush);

Returns	the	CBrush	associated	with	the	specified	brush	handle.	If	a	CBrush	object	doesn't	already	exist,	a
temporary	CBrush	object	is	created.	This	temporary	CBrush	will	be	deleted	sometime	after	the	processing

of	the	current	message	is	complete.	operator	HBRUSH()
operator	HBRUSH()	const;

Allows	a	CBrush	object	to	be	used	as	a	brush	handle	(HBRUSH).			Attributes	GetLogBrush
LOGBRUSH	GetLogBrush()	const;

Retrieves	the	LOGBRUSH	structure	that	defines	the	style,	color,	and	pattern	of	a	physical	brush.		
Operations	CreateBrushIndirect
HBRUSH	CreateBrushIndirect(LPLOGBRUSH	lpLogBrush);

Creates	a	logical	brush	from	style,	color,	and	pattern	specified	in	the	LOGPRUSH	struct.

CreateDIBPatternBrush



HBRUSH	CreateDIBPatternBrush(HGLOBAL	hglbDIBPacked,	UINT	fuColorSpec);

Creates	a	logical	brush	that	has	the	pattern	specified	by	the	device-independent	bitmap	(DIB).

CreateDIBPatternBrushPt
HBRUSH	CreateDIBPatternBrushPt(LPCVOID	lpPackedDIB,	UINT	nUsage);

Creates	a	logical	brush	that	has	the	pattern	specified	by	the	device-independent	bitmap	(DIB).

CreateHatchBrush
HBRUSH	CreateHatchBrush(int	nIndex,	COLORREF	crColor);

Creates	a	logical	brush	that	has	the	specified	hatch	pattern	and	color.	CreatePatternBrush
HBRUSH	CreatePatternBrush(CBitmap*	pBitmap);

Creates	a	logical	brush	with	the	specified	bitmap	pattern.	The	bitmap	can	be	a	DIB	section	bitmap,	which	is
created	by	the	CreateDIBSection	function,	or	it	can	be	a	device-dependent	bitmap.

CreateSolidBrush
HBRUSH	CreateSolidBrush(COLORREF	crColor);

Creates	a	logical	brush	that	has	the	specified	solid	color.	

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CGDIObject.

Remarks

CBrush	objects	can	be	used	anywhere	a	a	handle	to	a	brush	(HBRUSH)	might	be	used.		They	can	be
substituted	for	the	HBRUSH	in	any	of	the	Windows	API	functions	which	use	a	HBRUSH	as	a	function
argument.		The	benefit	of	using	a	CBrush	object	is	that	it	automatically	deletes	the	brush	when	it	is
destroyed.

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CButton	Class

Description

A	button	is	a	control	the	user	can	click	to	provide	input	to	an	application.		The	button	control	provides
several	types	of	buttons,	including	Push	Buttons,	Check	Boxes	and	Radio	Buttons.

CButton	is	the	class	responsible	for	creating	a	button	control.		It	is	typically	used	in	a	Dialog,	but	could	also
by	a	child	of	another	window.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	button	controls.			

CButton	Members

Construction

CButton CButton();

Constructor	for	CButton.

Attributes

GetBitmap HBITMAP	GetBitmap()	const;

Returns	a	handle	to	the	bitmap	associated	with	the	button.

GetButtonStyle UINT	GetButtonStyle()	const;

Returns	the	button	style.		This	can	be	a	combination	of	possible	button	styles.

GetCheck int	GetCheck()	const;

Returns	the	check	state	of	the	a	radio	button	or	check	box.

GetCursor HCURSOR	GetCursor()	const;



Returns	a	handle	to	the	cursor	associated	with	the	button.

GetIcon HICON	GetIcon()	const;

Returns	a	handle	to	the	Icon	associated	with	the	button.

GetState UINT	GetState()	const;

Returns	the	state	of	the	button	(pushed,	checked	focused	etc).

SetBitmap HBITMAP	SetBitmap(HBITMAP	hBitmap)	const;

Sets	the	bitmap	associated	with	the	button.

SetButtonStyle void	SetButtonStyle(DWORD	dwStyle,	BOOL	bRedraw)

Sets	the	style	of	the	button.

SetCheck void	SetCheck(int	nCheckState)	const;

Sets	the	check	state	of	the	a	radio	button	or	check	box.

SetCursor HCURSOR	SetCursor(HCURSOR	hCursor)	const;

Sets	the	cursor	associated	with	the	button.

SetIcon HICON	SetIcon(HICON	hIcon)	const;

Sets	the	Icon	associated	with	the	button.

SetState void	SetState(BOOL	bHighlight)	const;

Sets	the	state	of	the	button.

Overridables

PreRegisterClassvirtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.



Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	button	control	requires	a	parent	window.	This	parent	window	is	often	a
dialog,	but	simple	windows	can	also	be	the	parent	window	for	a	button	control.

Refer	to	the	DialogDemo	sample	to	see	a	demonstration	of	the	CButton	class.

Summary	Information

Header	file stdcontrols.h
Win32/64
support Yes

WinCE
support Yes

Library
required Comctl32.lib



CClientDC	Class

Description

The	class	responsible	for	creating	a	device	context	for	the	client	area	of	a	window.

CClientDC	Members

Initialization	and	Assignment

Initialization	and	Assignment

CClientDC CClientDC(const	CWnd*	pWnd);

Constructs	a	CClientDC	object.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CDC.

Remarks

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CCmdBar	Class

Description

The	class	responsible	for	creating	a	Commandbar	control.		A	Commandbar	control	is	supported	on	the
Windows	CE	operating	system.		It	is	not	supported	on	the	Win32/64	operating	systems.

The	command	bar	is	unique	to	Windows	CE.		It	combines	a	menu	bar,	toolbar,	and	an	optional	address	bar.
Windows	CE	supports	multiple	command	bars,	each	containing	gripper	controls	that	enable	users	to	hide
buttons	and	menus.	Command	bars	can	contain	combo	boxes,	edit	boxes,	and	buttons,	as	well	as	other	types
of	controls.	They	also	can	include	the	Close	(X)	button,	the	Help	(?)	button,	and	the	OK	button.

CCmdBar	Members

CCmdBar CCmdBar();

Constructor	for	CCmdBar.

AddAdornments BOOL	AddAdornments(DWORD	dwFlags);

Adds	a	button,	and	optionally,	Help	and	OK	buttons,	to	the	command	bar.

AddBitmap int	AddBitmap(int	idBitmap,	int	iNumImages,	int	iImageWidth,	int	iImageHeight);

Adds	one	or	more	images	to	the	list	of	button	images	available	in	the	command	

AddButtons BOOL	AddButtons(int	nButtons,	TBBUTTON*	pTBButton);

Adds	one	or	more	toolbar	buttons	to	a	command	bar	control.

GetHeight int	GetHeight()	const;

Retrieves	the	height	of	the	command	bar	in	pixels.

InsertComboBoxHWND	InsertComboBox(int	iWidth,	UINT	dwStyle,	WORD	idComboBox,	WORD	iButton);

Inserts	a	combo	box	into	the	command	bar.



IsVisible
BOOL	IsVisible();

Retrieves	the	visibility	state	of	the	command	bar.

Show BOOL	Show(BOOL	fShow);

Shows	or	hides	the	command	bar.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Summary	Information

Header	file wceframe.h
Win32/64
support No

WinCE
support Yes



CComboBox	Class

Description

The	CComboBox	class	is	used	to	create	and	manage	a	ComboBox	control.	A	ComboBox	control	displays	a
drop-down	list	of	predefined	values	and	an	edit	field	into	which	the	user	can	enter	a	value.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	combo	box	controls.

CComboBox	Members

CComboBox CComboBox();

Constructor	for	the	CComboBox.

AddString int	AddString(LPCTSTR	lpszString)	const;

Adds	a	string	to	the	list.

Clear void	Clear()	const;

Deletes	the	edit	selection.

Copy void	Copy()	const;

Copies	the	edit	selection	to	the	clipboard.

Cut void	Cut()	const;

Deletes	the	edit	selection	and	places	it	on	the	clipboard.

DeleteString int	DeleteString(int	nIndex)	const;

Deletes	a	string	from	the	list.



Dir int	Dir(UINT	attr,	LPCTSTR	lpszWildCard	)	const;

Adds	the	file	names	matching	the	specified	attributes	and	path	to	the	list.

FindString
int	FindString(int	nIndexStart,	LPCTSTR	lpszString)	const;

Searches	the	list	box	of	the	combo	box	for	an	item	beginning	with	the	characters	in	a	specified
string.

FindStringExact int	FindStringExact(int	nIndexStart,	LPCTSTR	lpszString)	const;

Returns	the	index	of	the	first	list	item	exactly	matching	the	specified	string.

GetCount int	GetCount()	const;

Returns	the	number	of	list	items.

GetCurSel int	GetCurSel()	const;

Returns	the	index	of	the	currently	selected	item,	if	any.

GetDroppedControlRectCRect	GetDroppedControlRect()	const;

Fills	the	specified	rectangle	structure	with	the	screen	coordinates	of	a	drop-down	list.

GetDroppedState BOOL	GetDroppedState()	const;

Returns	TRUE	if	a	drop-down	list	is	open,	otherwise	it	returns	FALSE.

GetDroppedWidth int	GetDroppedWidth()	const;

Returns	the	minimum	allowable	width,	in	pixels,	of	the	drop-down	list.

GetEditSel DWORD	GetEditSel()	const;

Returns	the	starting	and	ending	position	of	the	current	selection.

GetExtendedUI
BOOL	GetExtendedUI()	const;

Returns	TRUE	if	the	combo	box	is	a	drop-down	combo	box	or	drop-down	list	box	and	the



user-interface	flag	is	set,	otherwise	it	returns	FALSE.

GetHorizontalExtent int	GetHorizontalExtent()	const;

Returns	the	scrollable	width,	in	pixels,	of	the	drop-down	list.

GetItemData DWORD	GetItemData(int	nIndex)	const;

Returns	the	value	associated	with	the	specified	list	item.

GetItemHeight int	GetItemHeight(int	nIndex)	const;

Returns	the	height,	in	pixels,	of	the	specified	owner-drawn	list	item.

GetLBText int	GetLBText(int	nIndex,	LPTSTR	lpszText)	const;

Copies	the	specified	list	text	to	the	specified	buffer.

GetLBTextLen int	GetLBTextLen(int	nIndex)	const;

Returns	the	length,	in	TCHARs,	of	the	specified	list	text.

GetLocale LCID	GetLocale()	const;

Returns	the	current	locale	for	the	list.

GetTopIndex int	GetTopIndex()	const;

Returns	the	index	of	the	first	visible	item	in	the	drop-down	list.

InitStorage
int	InitStorage(int	nItems,	int	nBytes)	const;

Initializes	space	for	the	specified	number	of	items	and	the	specified	number	of	bytes	for	item
strings.

InsertString int	InsertString(int	nIndex,	LPCTSTR	lpszString)	const;

Inserts	a	list	item	at	the	specified	position.



LimitText void	LimitText(int	nMaxChars)	const;

Sets	the	maximum	number	of	characters	a	user	can	enter	in	the	edit	control.

Paste void	Paste()	const;

Replaces	the	edit	selection	with	the	contents	of	the	clipboard.

ResetContent void	ResetContent()	const;

Removes	the	contents	of	the	list.

SelectString int	SelectString(int	nStartAfter,	LPCTSTR	lpszString)	const;

Selects	the	first	list	item,	if	any,	that	begins	with	the	characters	in	the	specified	text.

SetCurSel int	SetCurSel(int	nIndex)	const;

Sets	the	current	selection.

SetDroppedWidth int	SetDroppedWidth(int	nWidth)	const;

Sets	the	minimum	allowable	width,	in	pixels,	of	the	drop-down	list.

SetEditSel BOOL	SetEditSel(int	nStartChar,	int	nEndChar)	const;

Selects	the	specified	range	of	text.

SetExtendedUI
int	SetExtendedUI(BOOL	bExtended	=	TRUE)	const;

Sets	or	clears	the	extended	user-interface	flag.	This	flag	changes	the	keys	that	open	and	close
the	list	in	a	drop-down	list.

SetHorizontalExtent void	SetHorizontalExtent(UINT	nExtent	)	const;

Sets	the	scrollable	width,	in	pixels,	of	the	drop-down	list.

SetItemData int	SetItemData(int	nIndex,	DWORD	dwItemData)	const;

Associates	the	specified	value	with	a	list	item.



SetItemHeight int	SetItemHeight(int	nIndex,	UINT	cyItemHeight)	const;

Sets	the	height	of	the	specified	owner-drawn	list	item	or	the	selection	field.

SetLocale LCID	SetLocale(	LCID	NewLocale	)	const;

Sets	the	current	local	for	the	list.

SetTopIndex SetTopIndex(int	nIndex)	const;

Scroll	the	drop-down	list	so	the	specified	item	is	at	the	top	of	the	visible	range.

ShowDropDown void	ShowDropDown(BOOL	bShow	=	TRUE)	const;

Shows	or	hide	the	drop-down	list.

Overridables

PreRegisterClassvirtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the		combobox	control	requires	a	parent	window.	This	parent	window	is	often	a
dialog,	but	simple	windows	can	also	be	the	parent	window	for	an	combobox	control.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE
support Yes



CComboBoxEx	Class

Description

The	CComboBoxEx	class	is	used	to	create	and	manage	a	ComboBoxEx	control.	ComboBoxEx	controls	are
an	extension	of	the	combo	box	control	that	provides	native	support	for	item	images.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	ComboBoxEx	controls.

CComboBoxEx	Members

CComboBoxEx CComboBoxEx();

Constructor	for	the	ComboBoxEx.

DeleteItem int	DeleteItem(int	nIndex	)	const;

Removes	an	item.

GetComboBoxCtrl HWND	GetComboBoxCtrl()	const;

Retrieves	the	handle	to	the	child	combo	box	control.

GetEditCtrl HWND	GetEditCtrl()	const;

Retrieves	the	handle	to	the	edit	control	portion	of	a	ComboBoxEx	control.

GetExtendedStyle DWORD	GetExtendedStyle()	const;

Retrieves	the	extended	style	that	are	in	use	for	a	ComboBoxEx	control.

GetImageList CImageList*	GetImageList()	const;

Retrieves	the	handle	to	the	image	list	assigned	to	the	ComboBoxEx	control.



GetItem BOOL	GetItem(COMBOBOXEXITEM*	pCBItem)	const;

Retrieves	item	information	for	a	given	ComboBoxEx	item.

HasEditChanged BOOL	HasEditChanged	()	const;

Returns	TRUE	if	the	user	has	changed	text	of	the	ComboBoxEx	edit	control.

InsertItem int	InsertItem(COMBOBOXEXITEM*	lpcCBItem)	const;

Inserts	a	new	item	in	the	ComboBoxEx	control.

SetExtendedStyle DWORD	SetExtendedStyle(DWORD	dwExMask,	DWORD	dwExStyles	)	const;

Sets	the	extend	styles	for	the	ComboBoxEx	controls.

SetImageList CImageList*	SetImageList(CImageList*	pNew)	const;

Sets	the	image	list	for	the	ComboBoxEx	control.

SetItem BOOL	SetItem(PCOMBOBOXEXITEM	lpcCBItem)	const;

Sets	the	attributes	for	an	item	of	the	ComboBoxEx	control.

Overridables

PreRegisterClassvirtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	ComboBoxEx	control	requires	a	parent	window.	This	parent	window	is	often
a	dialog,	but	simple	windows	can	also	be	the	parent	window	for	a	ComboBoxEx	control.



Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE
support Yes



CCriticalSection	Class

Description

Critical	sections	are	a	feature	of	the	Windows	API.		They	are	used	to	prevent	a	section	of	code	from	being
executed	by	more	than	one	thread	at	a	time.		Once	a	thread	has	locked	a	critical	section,	any	other	thread
wishing	to	execute	that	code	must	wait	until	the	critical	section	is	released	so	it	can	lock	the	critical	section.

For	example,	we	might	wish	to	prevent	a	situation	where	one	thread	is	changing	a	global	variable	while
another	thread	is	using	it.	The	CCriticalSection	class	provides	a	convenient	and	object	orientated	approach
to	using	critical	sections.	It	is	used	internally	by	the	Win32++	library,	but	will	also	be	useful	to	developers
when	coding	their	own	multi-threaded	applications.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	critical	sections	to	assist	with	synchronisation	in	multi-threaded	applications.		

CCriticalSection	Members

CCriticalSection CCriticalSection();

Constructor	for	CCriticalSection.

Lock
void	Lock();

Enter	a	critical	section.	Only	one	thread	at	a	time	runs	code
protected	by	a	critical	section.

Release void	Release();

Leave	a	critical	section.
		

Remarks

The	following	example	demonstrates	the	use	of	CCriticalSection.

//	m_csVar	is	a	class	member	variable	of	type	CCriticalSection

//	Lock	the	critical	section	while	we	change	its	value				



m_csVar.Lock();

//	Modify	the	global	variable
g_Var	=	10;

//	Release	the	critical	section
m_csVar.Release();

//	Note:	we	would	also	protect	any	reads	from	the	global	
//	variable	with	the	same	m_csVar	CCriticalSection

Summary	Information

Header	file wincore.h
Win32/64
support Yes

WinCE
support Yes



CDateTime	Class

Description

The	CDateTime	class	adds	support	for	the	date	and	time	picker	control.	A	date	and	time	picker	(DTP)
control	provides	a	simple	and	intuitive	interface	through	which	to	exchange	date	and	time	information	with
a	user.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	date	and	time	picker	controls.	

CDateTime	Members

Construction
CDateTime
CDateTime();

Constructs	the	date	and	time	picker	control.			Attributes			GetMonthCalColor
COLORREF	GetMonthCalColor(int	iColor)	const;

Gets	the	color	for	a	given	portion	of	the	month	calendar	within	a	date	and	time	picker	(DTP)	control.

GetMonthCalCtrl
HWND	GetMonthCalCtrl()	const;

Gets	the	handle	to	a	date	and	time	picker's	(DTP)	child	month	calendar	control.

GetMonthCalFont
CFont*	GetMonthCalFont()	const;

Gets	the	font	that	the	date	and	time	picker	(DTP)	control's	child	month	calendar	control	is	currently	using.

GetRange
DWORD	GetRange(LPSYSTEMTIME	lpSysTimeArray)	const;

Gets	the	current	minimum	and	maximum	allowable	system	times	for	the	date	and	time	picker	(DTP)

control.	GetTime
DWORD	GetTime(LPSYSTEMTIME	pTimeDest)	const;



Gets	the	currently	selected	time	from	a	date	and	time	picker	(DTP)	control	and	places	it	in	a	specified

SYSTEMTIME	structure.	SetMonthCalColor
COLORREF	SetMonthCalColor(int	iColor,	COLORREF	ref);

Sets	the	color	for	a	given	portion	of	the	month	calendar	within	a	date	and	time	picker	(DTP)	control.

SetFormat
BOOL	SetFormat(LPCTSTR	pstrFormat);

Sets	the	display	of	a	date	and	time	picker	(DTP)	control	based	on	a	given	format	string.

SetMonthCalFont
void	SetMonthCalFont(HFONT	hFont,	BOOL	bRedraw	=	TRUE);

Sets	the	font	to	be	used	by	the	date	and	time	picker	(DTP)	control's	child	month	calendar	control.

SetRange
BOOL	SetRange(DWORD	flags,	LPSYSTEMTIME	lpSysTimeArray);

Sets	the	minimum	and	maximum	allowable	system	times	for	the	date	and	time	picker	(DTP)	control.

SetTime
BOOL	SetTime(DWORD	flag,	LPSYSTEMTIME	pTimeNew	=	NULL);

Sets	the	date	and	time	picker	(DTP)	control	to	a	given	date	and	time.			Overridables
PreRegisterClass
virtual	void	PreRegisterClass(WNDCLASS	&wc);

Sets	a	date	and	time	picker	(DTP)	control	to	a	given	date	and	time.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Date	and	time	picker	(DTP)	controls	have	several	Date	and	Time	Picker	Control
Styles	that	determine	a	control's	appearance	and	behavior.	Specify	the	style	when
creating	the	control	with	the	dwStyle	parameter	of	CreateWindowEx.	To	retrieve
or	change	the	window	style	after	you	have	created	the	control,	use
GetWindowLongPtr	and	SetWindowLongPtr.



Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CDC	Class

Description

A	device	context	is	a	Windows	data	structure	containing	information	about	the	drawing	attributes	of	a
device	such	as	a	display	or	a	printer.	All	drawing	calls	are	made	through	a	device-context	object,	which
encapsulates	the	Windows	APIs	for	drawing	lines,	shapes,	and	text.	Device	contexts	allow	device-
independent	drawing	in	Windows.

The	CDC	class	provides	a	GDI	device	context,	along	with	a	set	of	member	functions	to	perform	the	various
tasks	with	the	device	context.	Member	functions	can	also	be	used	to	create	the	various	GDI	objects,	such	as
brushes	and	pens.	Alternatively,	GDI	objects	can	be	attached	to	the	device	context	using	SelectObject.

CDC	Members

Initialisation	and	Assignment
CDC
CDC();

CDC(HDC	hDC,	HWND	hWnd	=	0);

Constructor	for	CDC.	Attach
void	Attach(HDC	hDC);

Attach	an	existing	device	context	to	the	CDC	object.	Detach
HDC	Detach();

Detach	a	device	context	from	the	CDC	object.	The	device	context	will	be	destroyed	when	the	CDC	is

destroyed,	unless	it	is	detached.	FromHandle
static	CDC*	FromHandle(HDC	hDC);

Returns	the	CDC	associated	with	the	specified	device	context	handle.	If	a	CDC	object	doesn't	already	exist,
a	temporary	CDC	object	is	created.	This	temporary	CDC	will	be	deleted	sometime	after	the	processing	of

the	current	message	is	complete.	GetHDC
HDC	GetHDC()	const;

Returns	the	Device	Context	handle	associated	with	this	CDC	object.	RestoreDC



BOOL	RestoreDC(int	nSavedDC)	const;

Restores	the	DC	to	the	specified	state.	The	state	includes	selected	objects	and	mapping	modes.

SaveDC
int	SaveDC()	const;

Saves	the	state	of	the	device	context.	operator	HDC	()
operator	HDC()	const;

Allow	a	CDC	object	to	be	used	as	a	handle	to	a	device	context	(HDC).	operator	HDC	=
void	operator	=	(const	HDC	hDC);

Used	to	assign	a	HDC	to	a	CDC	when	it	is	created.	Create	and	Select	Bitmaps
CreateBitmap
void	CreateBitmap(int	cx,	int	cy,	UINT	Planes,	UINT	BitsPerPixel,	LPCVOID	pvColors);

Creates	a	bitmap	with	the	specified	width,	height,	and	color	format	(color	planes	and	bits-per-pixel).

CreateBitmapIndirect
void	CreateBitmapIndirect(LPBITMAP	pBitmap);

Creates	a	bitmap	with	the	specified	width,	height,	and	color	format	(color	planes	and	bits-per-pixel),

specified	in	the	BITMAP	struct.	CreateCompatibleBitmap
void	CreateCompatibleBitmap(CDC*	pDC,	int	cx,	int	cy);

Creates	a	bitmap	compatible	with	the	device	that	is	associated	with	the	specified	device	context.

CreateDIBSection
void	CreateDIBSection(CDC*	pDC,	const	BITMAPINFO&	bmi,	UINT	iUsage,
																	LPVOID	*ppvBits,	HANDLE	hSection,	DWORD	dwOffset);

Creates	a	DIB	that	applications	can	write	to	directly.	The	function	gives	you	a	pointer	to	the	location	of	the
bitmap	bit	values.	You	can	supply	a	handle	to	a	file-mapping	object	that	the	function	will	use	to	create	the

bitmap,	or	you	can	let	the	system	allocate	the	memory	for	the	bitmap.	CreateDIBitmap
void	CreateDIBitmap(CDC*	pDC,	const	BITMAPINFOHEADER&	bmih,
											DWORD	fdwInit,	LPCVOID	lpbInit,	BITMAPINFO&	bmi,	UINT	fuUsage);

Creates	a	compatible	bitmap	(DDB)	from	a	DIB	and,	optionally,	sets	the	bitmap	bits.

CreateMappedBitmap



void	CreateMappedBitmap(UINT	nIDBitmap,	UINT	nFlags	/*=	0*/,	
																							LPCOLORMAP	lpColorMap	/*=	NULL*/,	int	nMapSize	/*=	0*/);

Creates	a	bitmap	for	use	in	a	toolbar.	DetachBitmap
CBitmap	DetachBitmap();

Provides	a	convenient	method	of	detaching	a	bitmap	from	a	memory	device	context.

GetBitmapData
BITMAP	GetBitmapData()	const;

Retrieves	the	current	bitmap	information.	GetCurrentBitmap
CBitmap*	GetCurrentBitmap()	const;

Retrieves	a	pointer	to	the	currently	selected	bitmap.	LoadBitmap
BOOL	LoadBitmap(UINT	nID);

BOOL	LoadBitmap(LPCTSTR	lpszName);

Loads	the	specified	bitmap	resource	from	a	module's	executable	file.	LoadImage
BOOL	LoadImage(UINT	nID,	int	cxDesired,	int	cyDesired,	UINT	fuLoad);

BOOL	LoadImage(LPCTSTR	lpszName,	int	cxDesired,	int	cyDesired,	UINT	fuLoad);

Loads	the	specified	bitmap	resource	from	a	module's	executable	file.	LoadOEMBitmap
BOOL	LoadOEMBitmap(UINT	nIDBitmap);

Loads	a	predefined	bitmap	used	by	Windows.	SelectObject
CBitmap*	SelectObject(const	CBitmap*	pBitmap);

Attach	an	existing	bitmap	to	the	CDC.	Create	and	Select	Brushes
CreateBrushIndirect
void	CreateBrushIndirect(LPLOGBRUSH	pLogBrush);

Creates	a	logical	brush	that	has	the	specified	style,	color,	and	pattern.

CreateDIBPatternBrush
void	CreatePatternBrush(HBITMAP	hbmp);

Creates	a	logical	brush	that	has	the	pattern	specified	by	the	specified	device-independent	bitmap	(DIB).



CreateDIBPatternBrushPt
void	CreateDIBPatternBrushPt(LPCVOID	lpPackedDIB,	UINT	iUsage);

Creates	a	logical	brush	that	has	the	pattern	specified	by	the	device-independent	bitmap	(DIB).

CreateHatchBrush
void	CreateHatchBrush(int	fnStyle,	COLORREF	rgb);

Creates	a	logical	brush	that	has	the	specified	hatch	pattern	and	color.	CreatePatternBrush
void	CreatePatternBrush(CBitmap*	pBitmap);

Creates	a	logical	brush	with	the	specified	bitmap	pattern.	CreateSolidBrush
void	CreateSolidBrush(COLORREF	rbg);

Creates	a	logical	brush	that	has	the	specified	solid	color.	GetCurrentBrush
CBrush*	GetCurrentBrush()	const;

Retrieves	a	pointer	to	the	currently	selected	brush.	GetLogBrush
LOGBRUSH	GetLogBrush()	const;

Retrieves	the	current	brush	information.	SelectObject
CBrush*	SelectObject(const	CBrush*	pBrush);

Attach	an	existing	brush	to	the	CDC.	Create	and	Select	Fonts	CreateFont
void	CreateFont(int	nHeight,	int	nWidth,	int	nEscapement,	int	nOrientation,	int	fnWeight,
										DWORD	fdwItalic,	DWORD	fdwUnderline,	DWORD	fdwStrikeOut,	DWORD	fdwCharSet,
										DWORD	fdwOutputPrecision,	DWORD	fdwClipPrecision,	DWORD	fdwQuality,
										DWORD	fdwPitchAndFamily,	LPCTSTR	lpszFace);

Creates	a	logical	font	with	the	specified	characteristics.	CreateFontIndirect
void	CreateFontIndirect(LPLOGFONT	plf);

Creates	a	logical	font	that	has	the	specified	characteristics.	GetCurrentFont
CFont*	GetCurrentFont()	const;

Retrieves	a	pointer	to	the	currently	selected	font.	GetLogFont



LOGFONT	GetLogFont()	const;

Retrieves	the	current	font	information.	SelectObject
CFont*	SelectObject(const	CFont*	pFont);

Attach	an	existing	font	to	the	CDC.	Create	and	Select	Palettes
CreateHalftonePalette
void	CreateHalftonePalette();

Creates	and	selects	a	half	tone	palette	into	the	CDC.	CreatePalette
void	CreatePalette(LPLOGPALETTE	pLogPalette);

Creates	and	selects	a	paletted	into	the	CDC.	SelectPalette
CPalette*	SelectPalette(const	CPalette*	pPalette,	BOOL	bForceBkgnd);

Attach	an	existing	palette	to	the	CDC.	Create	and	Select	Pens	CreatePen
void	CreatePen(int	nStyle,	int	nWidth,	COLORREF	rgb);

Creates	a	logical	pen	that	has	the	specified	style,	width,	and	color.	CreatePenIndirect
void	CreatePenIndirect(LPLOGPEN	pLogPen);

Creates	a	logical	pen	that	has	the	style,	width,	and	color	specified	in	a	structure.	GetCurrentPen
CPen*	GetCurrentPen()	const;

Retrieves	a	pointer	to	the	currently	selected	pen.	GetLogPen
LOGPEN	GetLogPen();

Retrieves	the	current	pen	information.	SelectObject
CPen*	SelectObject(const	CPen*	pPen);

Attach	an	existing	pen	to	the	CDC.	Retrieve	and	Select	Stock	Objects
GetStockObject
HGDIOBJ	GetStockObject(int	nIndex)	const;

Retrieves	a	stock	brush,	pen,	or	font	into	the	device	context.



Possible	nIndex	values:	BLACK_BRUSH,	DKGRAY_BRUSH,	DC_BRUSH,	HOLLOW_BRUSH,
LTGRAY_BRUSH,	NULL_BRUSH,	WHITE_BRUSH,	BLACK_PEN,	DC_PEN,	ANSI_FIXED_FONT,
ANSI_VAR_FONT,	DEVICE_DEFAULT_FONT,	DEFAULT_GUI_FONT,	OEM_FIXED_FONT,

SYSTEM_FONT,	or	SYSTEM_FIXED_FONT.	SelectStockObject
HGDIOBJ	SelectStockObject(int	nIndex);

Selects	a	stock	brush,	pen,	or	font	into	the	device	context.
Possible	nIndex	values:	BLACK_BRUSH,	DKGRAY_BRUSH,	DC_BRUSH,	HOLLOW_BRUSH,
LTGRAY_BRUSH,	NULL_BRUSH,	WHITE_BRUSH,	BLACK_PEN,	DC_PEN,	ANSI_FIXED_FONT,
ANSI_VAR_FONT,	DEVICE_DEFAULT_FONT,	DEFAULT_GUI_FONT,	OEM_FIXED_FONT,

SYSTEM_FONT,	or	SYSTEM_FIXED_FONT.	Create	Regions
CreateEllipticRgn
int	CreateEllipticRgn(int	left,	int	top,	int	right,	int	bottom);

Creates	an	elliptical	region	from	the	specified	rectangle	co-ordinates.

CreateEllipticRgnIndirect
int	CreateEllipticRgnIndirect(const	RECT&	rc);

Creates	an	elliptical	region	from	the	specified	RECT.	CreatePolygonRgn
int	CreatePolygonRgn(LPPOINT	ppt,	int	cPoints,	int	fnPolyFillMode);

Creates	a	polygonal	region	from	an	array	of	points.	CreatePolyPolygonRgn
int	CreatePolyPolygonRgn(LPPOINT	ppt,	LPINT	pPolyCounts,	
																									int	nCount,	int	fnPolyFillMode);

Creates	the	polygon	region	from	a	series	of	polygons.The	polygons	can	overlap.	CreateRectRgn
int	CreateRectRgn(int	left,	int	top,	int	right,	int	bottom);

Creates	a	rectangular	region	from	the	specified	rectangle	co-ordinates.

CreateRectRgnIndirect
int	CreateRectRgnIndirect(const	RECT&	rc);

Creates	a	rectangular	region	from	a	specified	RECT.

Wrappers	for	Window	API	functions

Initialization



CreateCompatibleDC BOOL	CreateCompatibleDC(CDC*	pDC);

Creates	a	memory	device	context	(DC)	compatible	with	the	specified	device.

CreateDC
BOOL	CreateDC(LPCTSTR	lpszDriver,	LPCTSTR	lpszDevice,	
								LPCTSTR	lpszOutput,	const	DEVMODE*	pInitData);

Creates	a	device	context	(DC)	for	a	device	using	the	specified	name.

CreateIC

BOOL	CreateIC(LPCTSTR	lpszDriver,	LPCTSTR	lpszDevice,
									LPCTSTR	lpszOutput,	const	DEVMODE*	pInitData);

Creates	an	information	context	for	the	specified	device.	The	information	context	provides	a	fast	way	to	get	information	about	the
device	without	creating	a	device	context	(DC).

EnumObjects
int	EnumObjects(int	nObjectType,	GOBJENUMPROC	lpObjectFunc,	LPARAM	lParam)	const;

Enumerates	the	pens	or	brushes	available	for	the	device	context.	This	function	calls	the	application-defined	callback	function	once	
each	available	object,	supplying	data	describing	that	object.

GetDeviceCaps int	GetDeviceCaps(int	nIndex)	const;

Retrieves	device-specific	information	for	the	specified	device.

	
Point	and	Line	Drawing	Functions

AngleArc

BOOL	AngleArc(int	x,	int	y,	int	nRadius,	float	fStartAngle,
														float	fSweepAngle)	const;

Draws	a	line	segment	and	an	arc.	The	line	segment	is	drawn	from	the	current	position	to	the	beginning	of	the	arc.	The	arc	is	
along	the	perimeter	of	a	circle	with	the	given	radius	and	center.	The	length	of	the	arc	is	defined	by	the	given	start	and	sweep	

Arc

BOOL	Arc(int	x1,	int	y1,	int	x2,	int	y2,	int	x3,	
									int	y3,	int	x4,	int	y4)	const;

BOOL	Arc(RECT&	rc,	POINT	ptStart,	POINT	ptEnd)	const;

Draws	an	elliptical	arc.

ArcTo

BOOL	ArcTo(int	x1,	int	y1,	int	x2,	int	y2,	
								int	x3,	int	y3,	int	x4,	int	y4)	const;

BOOL	ArcTo(RECT&	rc,	POINT	ptStart,	POINT	ptEnd)	const;

Draws	an	elliptical	arc.

CloseFigure BOOL	CloseFigure()	const;

Closes	the	figure	by	drawing	a	line	from	the	current	position	to	the	first	point	of	the	figure.



GetArcDirection int	GetArcDirection()	const;

Retrieves	the	current	arc	direction	for	the	specified	device	context.	Arc	and	rectangle	functions	use	the	arc	direction.

GetCurrentPositition CPoint	GetCurrentPosition()	const;

Returns	the	current	drawing	position.

GetMiterLimit BOOL	GetMiterLimit(PFLOAT	peLimit)	const;

Retrieves	the	miter	limit	for	the	device	context.	The	miter	limit	is	used	when	drawing	geometric	lines	that	have	miter	joins.

GetPixel
COLORREF	GetPixel(int	x,	int	y)	const;

COLORREF	GetPixel(POINT	pt)	const;

Retrieves	the	red,	green,	blue	(RGB)	color	value	of	the	pixel	at	the	specified	coordinates.

GetROP2
int	GetROP2()	const;

Retrieves	the	foreground	mix	mode	of	the	specified	device	context.	The	mix	mode	specifies	how	the	pen	or	interior	color	and	the	color
already	on	the	screen	are	combined	to	yield	a	new	color.

LineTo
BOOL	LineTo(int	x,	int	y)	const;

BOOL	LineTo(POINT	pt)	const;

Draws	a	line	from	the	current	position	up	to,	but	not	including,	the	specified	point.

MoveTo
CPoint	MoveTo(int	x,	int	y)	const;

CPoint	MoveTo(POINT	pt)	const;

Updates	the	current	position	to	the	specified	point.

PolyBezier BOOL	PolyBezier(const	POINT*	lpPoints,	int	nCount)	const;

Draws	one	or	more	Bezier	curves.

PolyBezierTo BOOL	PolyBezierTo(const	POINT*	lpPoints,	int	nCount)	const;

Draws	one	or	more	Bezier	curves.

PolyDraw BOOL	PolyDraw(const	POINT*	lpPoints,	const	BYTE*	lpTypes,	int	nCount)	const;

Draws	a	set	of	line	segments	and	Bezier	curves.

Polyline BOOL	Polyline(LPPOINT	lpPoints,	int	nCount)	const;

Draws	a	series	of	line	segments	by	connecting	the	points	in	the	specified	array.

PolylineTo BOOL	PolylineTo(const	POINT*	lpPoints,	int	nCount)	const;



Draws	one	or	more	straight	lines.

PolyPolyline
BOOL	PolyPolyline(const	POINT*	lpPoints,	const	DWORD*	lpPolyPoints,
																	int	nCount)	const;

Draws	multiple	series	of	connected	line	segments.

SetArcDirection int	SetArcDirection(int	nArcDirection)	const;

Sets	the	drawing	direction	to	be	used	for	arc	and	rectangle	functions.

SetMiterLimit BOOL	SetMiterLimit(FLOAT	eNewLimit,	PFLOAT	peOldLimit)	const;

Sets	the	miter	limit	for	the	device	context.	The	miter	limit	is	used	when	drawing	geometric	lines	that	have	miter	joins.

SetPixel
COLORREF	SetPixel(int	x,	int	y,	COLORREF	crColor)	const;

COLORREF	SetPixel(POINT	pt,	COLORREF	crColor)	const;

Sets	the	pixel	at	the	specified	coordinates	to	the	specified	color.

SetPixelV
BOOL	SetPixelV(int	x,	int	y,	COLORREF	crColor)	const;

BOOL	SetPixelV(POINT	pt,	COLORREF	crColor)	const;

Sets	the	pixel	at	the	specified	coordinates	to	the	closest	approximation	of	the	specified	

SetROP2
int	SetROP2(int	iDrawMode)	const;

Sets	the	current	foreground	mix	mode.	GDI	uses	the	foreground	mix	mode	to	combine	pens	and	interiors	of	filled	objects	with	the
colors	already	on	the	screen.

	
Shape	Drawing	Functions

Chord

BOOL	Chord(int	x1,	int	y1,	int	x2,	int	y2,
											int	x3,	int	y3,	int	x4,	int	y4)	const;

BOOL	Chord(const	RECT&	rc,	POINT	ptStart,	POINT	ptEnd)	const;

Draws	a	chord	(a	region	bounded	by	the	intersection	of	an	ellipse	and	a	line	segment,	called	a	secant).	The	chord	is	outlined	by	
the	current	pen	and	filled	by	using	the	current	brush..

DrawFocusRect void	DrawFocusRect(const	RECT&	rc)	const;

Draws	a	rectangle	in	the	style	used	to	indicate	that	the	rectangle	has	the	focus.

Ellipse

BOOL	Ellipse(	int	x1,	int	y1,	int	x2,	int	y2	)	const;

BOOL	Ellipse(const	RECT&	rc)	const;

Draws	an	ellipse.	The	center	of	the	ellipse	is	the	center	of	the	specified	bounding	rectangle.	The	ellipse	is	outlined	by	using	the	current
pen	and	is	filled	by	using	the	current	brush.



Pie

BOOL	Pie(int	x1,	int	y1,	int	x2,	int	y2,	int	x3,	int	y3,	int	x4,	int	y4)	const;

BOOL	Pie(const	RECT&	rc,	POINT	ptStart,	POINT	ptEnd)	const;

Draws	a	pie-shaped	wedge	bounded	by	the	intersection	of	an	ellipse	and	two	radials.	The	pie	is	outlined	by	using	the	
filled	by	using	the	current	brush.

Polygon
BOOL	Polygon(LPPOINT	lpPoints,	int	nCount)	const;

Draws	a	polygon	consisting	of	two	or	more	vertices	connected	by	straight	lines.	The	polygon	is	outlined	by	using	the	current	
filled	by	using	the	current	brush	and	polygon	fill	mode.

PolyPolygon
BOOL	PolyPolygon(LPPOINT	lpPoints,	LPINT	lpPolyCounts,	int	nCount)	const;

Draws	a	series	of	closed	polygons.	Each	polygon	is	outlined	by	using	the	current	pen	and	filled	by	using	the	current	brush	and	polygon
fill	mode.	The	polygons	drawn	by	this	function	can	overlap.

Rectangle
BOOL	Rectangle(int	x1,	int	y1,	int	x2,	int	y2)	const;

BOOL	Rectangle(	const	RECT&	rc	)	const;

Draws	a	rectangle.	The	rectangle	is	outlined	by	using	the	current	pen	and	filled	by	using	the	current	brush.

RoundRect
BOOL	RoundRect(int	x1,	int	y1,	int	x2,	int	y2,	int	nWidth,	int	nHeight)	const;

BOOL	RoundRect(const	RECT&	rc,	int	nWidth,	int	nHeight)	const;

Draws	a	rectangle	with	rounded	corners.	The	rectangle	is	outlined	by	using	the	current	pen	and	filled	by	using	the	current	brush.

	
Fill	and	Image	Drawing	functions

DrawEdge BOOL	DrawEdge(const	RECT&	rc,	UINT	nEdge,	UINT	nFlags)	const;

Draws	one	or	more	edges	of	the	specified	rectangle.

DrawFrameControl BOOL	DrawFrameControl(const	RECT&	rc,	UINT	nType,	UINT	nState)	const;

Draws	a	frame	control	of	the	specified	type	and	style.

DrawIcon
BOOL	DrawIcon(int	x,	int	y,	HICON	hIcon)	const;

BOOL	DrawIcon(POINT	point,	HICON	hIcon)	const;

Draws	an	icon	or	cursor	into	the	specified	device	context.

DrawIconEx

BOOL	DrawIconEx(int	xLeft,	int	yTop,	HICON	hIcon,	int	cxWidth,	int	cyWidth,	
													INT	istepIfAniCur,	CBrush*	pFlickerFreeDraw,	UINT	diFlags)	const;

Draws	an	icon	or	cursor	into	the	specified	device	context,	performing	the	specified	raster	operations,	and	stretching	or	compressing	
icon	or	cursor	as	specified.



FillRect BOOL	FillRect(const	RECT&	rc,	CBrush*	pBrushr)	const;

Fills	a	rectangle	by	using	the	specified	brush.	This	function	includes	the	left	and	top	borders,	but	excludes	the	right	and	
of	the	rectangle.

FillRgn BOOL	FillRgn(CRgn*	pRgn,	CBrush*	pBrush)	const;

Fills	a	region	by	using	the	specified	brush.

FrameRect
BOOL	FrameRect(const	RECT&	rc,	CBrush*	pBrush)	const;

Draws	a	border	around	the	specified	rectangle	by	using	the	specified	brush.	The	width	and	height	of	the	border	are	always	one	logical
unit.

FrameRgn BOOL	FrameRgn(CRgn*	pRgn,	CBrush*	pBrush,	int	nWidth,	int	nHeight)	const;

Draws	a	border	around	the	specified	region	by	using	the	specified	brush.

GetPolyFillMode int	GetPolyFillMode()	const;

Retrieves	the	current	polygon	fill	mode.

GradientFill void	GradientFill(COLORREF	Color1,	COLORREF	Color2,	const	RECT&	rc,	BOOL	bVertical)	const;

Fills	the	specified	rectangle	with	a	color	gradient.

InvertRect BOOL	InvertRect(const	RECT&	rc)	const;

Inverts	a	rectangle	in	a	window	by	performing	a	logical	NOT	operation	on	the	color	values	for	each	pixel	in	the	rectangle's	interior.

PaintRgn BOOL	PaintRgn(CRgn*	pRgn)	const;

Paints	the	specified	region	by	using	the	brush	currently	selected	into	the	device	context.

SetPolyFillMode int	SetPolyFillMode(int	iPolyFillMode)	const;

Sets	the	polygon	fill	mode	for	functions	that	fill	polygons.

SolidFill void	SolidFill(COLORREF	Color,	const	RECT&	rc)	const;

Fills	a	rectangle	with	a	solid	color.

	
Bitmap	Functions

BitBlt
BOOL	BitBlt(int	x,	int	y,	int	nWidth,	int	nHeight,	CDC*	pSrcDC,	
																																					int	xSrc,	int	ySrc,	DWORD	dwRop)	const;

Performs	a	bit-block	transfer	of	the	color	data	corresponding	to	a	rectangle	of	pixels	from	the	specified	source	device	

DrawBitmap
void	DrawBitmap(int	x,	int	y,	int	cx,	int	cy,	HBITMAP	hbmImage,	COLORREF	clrMask)	const;

Draws	the	specified	bitmap	to	the	specified	DC	using	the	mask	colour	provided	as	the	transparent	colour.	Suitable	for	use	with	a



Window	DC	or	a	memory	DC.

ExtFloodFill BOOL	ExtFloodFill(int	x,	int	y,	COLORREF	crColor,	UINT	nFillType)	const;

Fills	an	area	of	the	display	surface	with	the	current	brush.

FloodFill BOOL	FloodFill(int	x,	int	y,	COLORREF	crColor)	const;

Fills	an	area	of	the	display	surface	with	the	current	brush.	The	area	is	assumed	to	be	bounded	as	specified	by	the	

GetDIBits
int	GetDIBits(CBitmap*	pBitmap,	UINT	uStartScan,	UINT	cScanLines,	
														LPVOID	lpvBits,	LPBITMAPINFO	lpbi,	UINT	uUsage)	const;

Retrieves	the	bits	of	the	specified	compatible	bitmap	and	copies	them	into	a	buffer	as	a	DIB	using	the	specified	

GetStretchBltMode
int	GetStretchBltMode()	const;

Retrieves	the	current	stretching	mode.	The	stretching	mode	defines	how	color	data	is	added	to	or	removed	from	bitmaps	that	are
stretched	or	compressed	when	the	StretchBlt	function	is	called.

MaskBlt

BOOL	MaskBlt(int	nXDest,	int	nYDest,	int	nWidth,	int	nHeight,	CDC*	pSrc,	
														int	nXSrc,	int	nYSrc,	CBitmap*	pMask,	int	xMask,	int	yMask,
														DWORD	dwRop)	const;

Combines	the	color	data	for	the	source	and	destination	bitmaps	using	the	specified	mask	and	raster	operation.
	Parameters:
	nXDest				x-coord	of	destination	upper-left	corner
	nYDest			y-coord	of	destination	upper-left	corner
	nWidth				width	of	source	and	destination
	nHeight			height	of	source	and	destination
	pSrc							pointer	to	source	DC
	nXSrc					x-coord	of	upper-left	corner	of	source
	nYSrc				y-coord	of	upper-left	corner	of	source
	pMask			pointer	to	monochrome	bit	mask
	xMask			horizontal	offset	into	mask	bitmap
	yMask			vertical	offset	into	mask	bitmap
	dwRop			raster	operation	code

PatBlt
BOOL	PatBlt(int	x,	int	y,	int	nWidth,	int	nHeight,	DWORD	dwRop)	const;

Paints	the	specified	rectangle	using	the	brush	that	is	currently	selected	into	the	device	context.	The	brush	color	and	the	
colors	are	combined	by	using	the	specified	raster	operation.

SetDIBits
int	SetDIBits(CBitmap*	pBitmap,	UINT	uStartScan,	UINT	cScanLines,	
														CONST	VOID	*lpvBits,	LPBITMAPINFO	lpbi,	UINT	fuColorUse)	const;

Sets	the	pixels	in	a	compatible	bitmap	(DDB)	using	the	color	data	found	in	the	specified	DIB	.

SetStretchBltMode int	SetStretchBltMode(int	iStretchMode)	const;

Sets	the	bitmap	stretching	mode	in	the	device	context.



StretchBlt

BOOL	StretchBlt(int	x,	int	y,	int	nWidth,	int	nHeight,	CDC*	pSrcDC,	int	xSrc,
																int	ySrc,	int	nSrcWidth,	int	nSrcHeight,	DWORD	dwRop)	const;

Copies	a	bitmap	from	a	source	rectangle	into	a	destination	rectangle,	stretching	or	compressing	the	bitmap	to	fit	the	
destination	rectangle,	if	necessary.
	Parameters:
	x																x-coord	of	destination	upper-left	corner
	y																y-coord	of	destination	upper-left	corner
	nWidth							width	of	destination	rectangle
	nHeight							height	of	destination	rectangle
	pSrcDC							handle	to	source	DC
	xSrc											x-coord	of	source	upper-left	corner
	ySrc											y-coord	of	source	upper-left	corner
	nSrcWidth			width	of	source	rectangle
	nSrcHeight		height	of	source	rectangle
	dwRop								raster	operation	code

StretchDIBits

int	StretchDIBits(int	XDest,	int	YDest,	int	nDestWidth,	int	nDestHeight,	int	XSrc,	
																		int	YSrc,	int	nSrcWidth,	int	nSrcHeight,	CONST	VOID	*lpBits,	
																		BITMAPINFO&	bi,	UINT	iUsage,	DWORD	dwRop)	const;

Copies	the	color	data	for	a	rectangle	of	pixels	in	a	DIB	to	the	specified	destination	rectangle.	If	the	destination	rectangle	is	
the	source	rectangle,	this	function	stretches	the	rows	and	columns	of	color	data	to	fit	the	destination	rectangle.	If	the	destination
rectangle	is	smaller	than	the	source	rectangle,	this	function	compresses	the	rows	and	columns	by	using	the	specified	raster	operation.

TransparentBlt

BOOL	TransparentBlt(int	x,	int	y,	int	nWidth,	int	hHeight,	CDC*	pSrcDC,
																					int	xSrc,	int	ySrc,	int	nWidthSrc,	int	nHeightSrc,
																					UINT	crTransparent)	const;

Performs	a	bit-block	transfer	of	the	color	data	corresponding	to	a	rectangle	of	pixels	from	the	specified	source	device	
destination	device	context.
	Parameters:
	x																				x-coord	of	destination	upper-left	corner
	y																				y-coord	of	destination	upper-left	corner
	nWidth											width	of	destination	rectangle
	hHeight										height	of	destination	rectangle
	pSrcDC										pointer	to	source	DC
	xSrc															x-coord	of	source	upper-left	corner
	ySrc															y-coord	of	source	upper-left	corner
	nWidthSrc							width	of	source	rectangle
	nHeightSrc						height	of	source	rectangle
	crTransparent		color	to	make	transparent

	
Palette	and	color	Functions

GetColorAdjustment BOOL	GetColorAdjustment(LPCOLORADJUSTMENT	pCA)	const;

Retrieves	the	color	adjustment	values	for	the	device	context.

GetCurrentPalette CPalette*	GetCurrentPalette()	const;

Retrieves	a	pointer	to	the	currently	selected	palette



GetNearestColor COLORREF	GetNearestColor(COLORREF	crColor)	const;

Retrieves	a	color	value	identifying	a	color	from	the	system	palette	that	will	be	displayed	when	the	specified	color	value	is	

RealizePalette void	RealizePalette()	const;

Use	this	to	realize	changes	to	the	device	context	palette.

SetColorAdjustment BOOL	SetColorAdjustment(CONST	COLORADJUSTMENT*	pCA)	const;

Sets	the	color	adjustment	values	for	the	device	context.

UpdateColors
BOOL	UpdateColors()	const;

Updates	the	client	area	of	the	specified	device	context	by	remapping	the	current	colors	in	the	client	area	to	the	currently	realized
logical	palette.

	
Clipping	and	Region	Functions

BeginPath BOOL	BeginPath()	const;

Opens	a	path	bracket	in	the	device	context.

EndPath BOOL	EndPath()	const;

Combines	the	specified	region	with	the	current	clipping	region	using	the	specified	mode.

ExcludeClipRect
int	ExcludeClipRect(int	Left,	int	Top,	int	Right,	int	BottomRect)	const;

int	ExcludeClipRect(const	RECT&	rc)	const;

Creates	a	new	clipping	region	that	consists	of	the	existing	clipping	region	minus	the	specified	rectangle.

ExtSelectClipRgn int	ExtSelectClipRgn(CRgn*	pRgn,	int	fnMode)	const;

Combines	the	specified	region	with	the	current	clipping	region	using	the	specified	mode.

FlattenPath BOOL	FlattenPath()	const;

Transforms	any	curves	in	the	path	that	is	selected	into	the	device	context,	turning	each	curve	into	a	sequence	of	lines.

GetClipBox
int	GetClipBox(RECT&	rc)	const;

Retrieves	the	dimensions	of	the	tightest	bounding	rectangle	that	can	be	drawn	around	the	current	visible	area	on	the	device.	
area	is	defined	by	the	current	clipping	region	or	clip	path,	as	well	as	any	overlapping	windows.

GetClipPath

int	GetPath(POINT*	pPoints,	BYTE*	pTypes,	int	nCount)	const;

Retrieves	the	coordinates	defining	the	endpoints	of	lines	and	the	control	points	of	curves	found	in	the	path	that	is	selected	into	the
device	context.
pPoints:	An	array	of	POINT	structures	that	receives	the	line	endpoints	and	curve	control	points,	in	logical	coordinates.



pTypes:	Pointer	to	an	array	of	bytes	that	receives	the	vertex	types	(PT_MOVETO,	PT_LINETO	or	
nCount:	The	total	number	of	POINT	structures	that	can	be	stored	in	the	array	pointed	to	by	pPoints.

GetClipRgn int	GetClipRgn(HRGN	hrgn)	const;

Retrieves	a	handle	identifying	the	current	application-defined	clipping	region	for	the	specified	device	context.

IntersectClipRect
int	IntersectClipRect(int	Left,	int	Top,	int	Right,	int	Bottom)	const;

int	IntersectClipRect(const	RECT&	rc)	const;

Creates	a	new	clipping	region	from	the	intersection	of	the	current	clipping	region	and	

OffsetClipRgn int	OffsetClipRgn(int	nXOffset,	int	nYOffset)	const;

Moves	the	clipping	region	of	the	device	context	by	the	specified	offsets.

PtVisible BOOL	PtVisible(int	X,	int	Y)	const;

Determines	whether	the	specified	point	is	within	the	clipping	region	of	a	device	context.

RectVisible BOOL	RectVisible(const	RECT&	rc)	const;

Determines	whether	any	part	of	the	specified	rectangle	lies	within	the	clipping	region	of	a	device	context.

SelectClipPath
BOOL	SelectClipPath(int	nMode)	const;

Selects	the	current	path	as	a	clipping	region	for	the	device	context,	combining	the	new	region	with	any	existing	clipping	region	
the	specified	mode.

SelectClipRgn int	SelectClipRgn(CRgn*	pRgn)	const;

Selects	a	region	as	the	current	clipping	region	for	the	device	context.

WidenPath
BOOL	WidenPath()	const;

Redefines	the	current	path	as	the	area	that	would	be	painted	if	the	path	were	stroked	using	the	pen	currently	selected	into	the	
context.

	
Co-ordinate	Functions

DPtoLP

BOOL	DPtoLP(LPPOINT	lpPoints,	int	nCount)	const;

BOOL	DPtoLP(LPRECT	lpRect)	const;

Converts	device	coordinates	into	logical	coordinates.	The	conversion	depends	on	the	mapping	mode	of	the	device	context,	the	settings
of	the	origins	and	extents	for	the	window	and	viewport,	and	the	world	transformation.

LPtoDP

BOOL	LPtoDP(LPPOINT	lpPoints,	int	nCount)	const;

BOOL	LPtoDP(LPRECT	lpRect)	const;



Converts	logical	coordinates	into	device	coordinates.	The	conversion	depends	on	the	mapping	mode	of	the	device	context,	the	settings
of	the	origins	and	extents	for	the	window	and	viewport,	and	the	world	transformation.

	
Layout	Functions

GetLayout DWORD	GetLayout()	const;

Returns	the	layout	of	a	device	context	(DC).	Can	be	used	to	retrieve	the	LAYOUT_RTL	

SetLayout DWORD	SetLayout(DWORD	dwLayout)	const;

Changes	the	layout	of	a	device	context	(DC).		Can	be	used	to	set	the	LAYOUT_RTL	style	(for	Win2000	and	

	
Mapping	Functions

GetMapMode int	GetMapMode()	const;

Retrieves	the	current	mapping	mode.

GetViewportExtEx BOOL	GetViewportExtEx(LPSIZE	lpSize)	const;

Retrieves	the	x-extent	and	y-extent	of	the	current	viewport	for	the	specified	device	context.

GetViewportOrgEx BOOL	GetViewportOrgEx(LPPOINT	lpPoint)	const;

Retrieves	the	x-coordinates	and	y-coordinates	of	the	window	origin	for	the	specified	device	context.

GetWindowExtEx BOOL	GetWindowExtEx(LPSIZE	lpSize)	const;

Retrieves	the	x-extent	and	y-extent	of	the	window	for	the	specified	device	context.

GetWindowOrgEx BOOL	GetWindowOrgEx(LPPOINT	lpPoint)	const;

Retrieves	the	x-coordinates	and	y-coordinates	of	the	window	origin	for	the	specified	device	context.

OffsetViewportOrgEx BOOL	OffsetViewportOrgEx(int	nWidth,	int	nHeight,	LPPOINT	lpPoint)	const;

Modifies	the	viewport	origin	for	a	device	context	using	the	specified	horizontal	and	vertical	offsets.

OffsetWindowOrg BOOL	OffsetWindowOrg(int	nWidth,	int	nHeight,	LPPOINT	lpPoint)	const;

Modifies	the	viewport	for	a	device	context	using	the	ratios	formed	by	the	specified	multiplicands	and	divisors.

OffsetWindowOrgEx BOOL	OffsetWindowOrgEx(int	nWidth,	int	nHeight,	LPPOINT	lpPoint)	const;

Modifies	the	window	origin	for	a	device	context	using	the	specified	horizontal	and	vertical	offsets.

ScaleViewportExtEx
BOOL	ScaleViewportExtEx(int	xNum,	int	xDenom,	int	yNum,	
																								int	yDenom,	LPSIZE	lpSize)	const;

Modifies	the	viewport	for	a	device	context	using	the	ratios	formed	by	the	specified	multiplicands	and	



ScaleWindowExtEx
BOOL	ScaleWindowExtEx(int	xNum,	int	xDenom,	int	yNum,	int	yDenom,	LPSIZE	lpSize)	const;

Modifies	the	window	for	a	device	context	using	the	ratios	formed	by	the	specified	multiplicands	and	divisors.

SetMapMode
int	SetMapMode(int	nMapMode)	const;

Sets	the	mapping	mode	of	the	specified	device	context.	The	mapping	mode	defines	
units	into	device-space	units,	and	also	defines	the	orientation	of	the	device's	x	and	y	

SetViewportExtEx
BOOL	SetViewportExtEx(int	x,	int	y,	LPSIZE	lpSize)	const;

BOOL	SetViewportExtEx(SIZE	size,	LPSIZE	lpSizeRet)	const;

Sets	the	horizontal	and	vertical	extents	of	the	viewport	for	a	device	context	by	using	the	specified	values.

SetViewportOrgEx
BOOL	SetViewportOrgEx(int	x,	int	y,	LPPOINT	lpPoint)	const;

BOOL	SetViewportOrgEx(POINT	point,	LPPOINT	lpPointRet)	const;

Specifies	which	window	point	maps	to	the	viewport	origin	(0,0).

SetWindowExtEx
BOOL	SetWindowExtEx(int	x,	int	y,	LPSIZE	lpSize)	const;

BOOL	SetWindowExtEx(SIZE	size,	LPSIZE	lpSizeRet)	const;

Sets	the	horizontal	and	vertical	extents	of	the	window	for	a	device	context	by	using	the	specified	values.

SetWindowOrgEx
BOOL	SetWindowOrgEx(int	x,	int	y,	LPPOINT	lpPoint)	const;

BOOL	SetWindowOrgEx(POINT	point,	LPPOINT	lpPointRet)	const;

Specifies	which	window	point	maps	to	the	viewport	origin	(0,0).

	
Printer	Functions

AbortDoc int	AbortDoc()	const;

Stops	the	current	print	job	and	erases	everything	drawn	since	the	last	call	to	the	StartDoc

EndDoc int	EndDoc()	const;

Ends	a	print	job.

EndPage
int	EndPage()	const;

Notifies	the	device	that	the	application	has	finished	writing	to	a	page.	This	function	
advance	to	a	new	page.

SetAbortProc int	SetAbortProc(	BOOL	(CALLBACK*	lpfn)(HDC,	int)	)	const;

Sets	the	application-defined	abort	function	that	allows	a	print	job	to	be	cancelled	during	spooling.



StartDoc int	StartDoc(LPDOCINFO	lpDocInfo)	const;

Starts	a	print	job.

StartPage int	StartPage()	const;

Prepares	the	printer	driver	to	accept	data.

	
Font	and	Text	Functions

DrawText
int	DrawText(LPCTSTR	lpszString,	int	nCount,	const	RECT&	rc,	UINT	nFormat)	const;

Draws	formatted	text	in	the	specified	rectangle.	It	formats	the	text	according	to	the	specified	method	(expanding	tabs,	
characters,	breaking	lines,	and	so	forth).

DrawTextEx
int	DrawTextEx(LPTSTR	lpszString,	int	nCount,	const	RECT&	rc,	UINT	nFormat,	
															LPDRAWTEXTPARAMS	lpDTParams)	const;

Draws	formatted	text	in	the	specified	rectangle.

ExtTextOut

BOOL	ExtTextOut(int	x,	int	y,	UINT	nOptions,	const	RECT&	rc,	LPCTSTR	lpszString,	
																UINT	nCount,	LPINT	lpDxWidths)	const;

Draws	text	using	the	currently	selected	font,	background	color,	and	text	color.	You	can	optionally	provide	dimensions	to	be	used	for
clipping,	opaquing,	or	both.

GetBkColor COLORREF	GetBkColor()	const;

Returns	the	current	background	color	for	the	specified	device	context.

GetBkMode
int	GetBkMode()	const;

Returns	the	current	background	mix	mode	for	a	specified	device	context.	The	background	
hatched	brushes,	and	pen	styles	that	are	not	solid	lines.

GetCharABCWidths
BOOL	GetCharABCWidths(UINT	uFirstChar,	UINT	uLastChar,	LPABC	pABC)	const;

Retrieves	the	widths,	in	logical	units,	of	consecutive	characters	in	a	specified	range	from	the	current	TrueType	font.	This	
succeeds	only	with	TrueType	fonts.

GetCharABCWidthsI
BOOL	GetCharABCWidthsI(UINT	giFirst,	UINT	cgi,	LPWORD	pgi,	LPABC	pABC)	const;

Retrieves	the	widths,	in	logical	units,	of	consecutive	glyph	indices	in	a	specified	range	from	the	current	TrueType	font.	This	
succeeds	only	with	TrueType	fonts.

GetCharacterPlacement

DWORD	GetCharacterPlacement(LPCTSTR	pString,	int	nCount,	int	nMaxExtent,	
																												LPGCP_RESULTS	pResults,	DWORD	dwFlags)	const;

Retrieves	information	about	a	character	string,	such	as	character	widths,	caret	positioning,	ordering	within	the	string,	and	glyph
rendering



GetCharWidth BOOL	GetCharWidth(UINT	iFirstChar,	UINT	iLastChar,	float*	pBuffer)	const;

Retrieves	the	fractional	widths	of	consecutive	characters	in	a	specified	range	from	the	current	font.

GetCharWidthI BOOL	GetCharWidthI(UINT	giFirst,	UINT	cgi,	LPWORD	pgi,	int*	pBuffer)	const;

Retrieves	the	widths,	in	logical	coordinates,	of	consecutive	glyph	indices	in	a	specified	range	from	the	current	font.

GetFontData DWORD	GetFontData(DWORD	dwTable,	DWORD	dwOffset,	LPVOID	pvBuffer,	DWORD	cbData)	const;

Retrieves	font	metric	data	for	a	TrueType	font.

GetFontLanguageInfo DWORD	GetFontLanguageInfo()	const;

Returns	information	about	the	currently	selected	font	for	the	display	context.

GetGlyphOutline
DWORD	GetGlyphOutline(UINT	uChar,	UINT	uFormat,	LPGLYPHMETRICS	pgm,	DWORD	cbBuffer,	
																							LPVOID	pvBuffer,	CONST	MAT2	*lpmat2)	const;	

Retrieves	the	outline	or	bitmap	for	a	character	in	the	TrueType	font	that	is	selected	into	the	device	

GetKerningPairs DWORD	GetKerningPairs(DWORD	nNumPairs,	LPKERNINGPAIR	pkrnpair)	const;

Retrieves	the	widths,	in	logical	coordinates,	of	consecutive	glyph	indices	in	a	specified	range	from	the	current	font.

GetTabbedTextExtent

CSize	GetTabbedTextExtent(LPCTSTR	lpszString,	int	nCount,	int	nTabPositions,	
																										LPINT	lpnTabStopPositions)	const;

Computes	the	width	and	height	of	a	character	string.	If	the	string	contains	one	or	more	tab	characters,	the	width	of	the	string	is	
upon	the	specified	tab	stops.	The	GetTabbedTextExtent	function	uses	the	currently	selected	font	to	compute	the	dimensions	of	the
string.

GetTextAlign UINT	GetTextAlign()	const;

Retrieves	the	text-alignment	setting	for	the	specified	device	context.

GetTextCharacterExtra int	GetTextCharacterExtra()	const;

Retrieves	the	current	intercharacter	spacing	for	the	specified	device	context.

GetTextColor COLORREF	GetTextColor()	const;

Retrieves	the	current	text	color	for	the	specified	device	context.

GetTextExtentPoint32 CSize	GetTextExtentPoint32(LPCTSTR	lpszString,	int	nCount)	const;

Computes	the	width	and	height	of	the	specified	string	of	text.

GetTextFace int	GetTextFace(int	nCount,	LPTSTR	lpszFacename)	const;

Retrieves	the	typeface	name	of	the	font	that	is	selected	into	the	specified	device	context.



GetTextMetrics BOOL	GetTextMetrics(TEXTMETRIC&	Metrics)	const;

Fills	the	specified	buffer	with	the	metrics	for	the	currently	selected	font.

GrayString

BOOL	GrayString(HBRUSH	hBrush,	GRAYSTRINGPROC	lpOutputFunc,	LPARAM	lpData,	
																int	nCount,	int	x,	int	y,	int	nWidth,	int	nHeight)	const;

Draws	gray	text	at	the	specified	location.	The	function	draws	the	text	by	copying	it	into	a	memory	bitmap,	graying	the	bitmap,	and
then	copying	the	bitmap	to	the	screen.	The	function	grays	the	text	regardless	of	the	selected	brush	and	background.	GrayString	uses	the
currently	selected	font.

SetBkColor
COLORREF	SetBkColor(COLORREF	crColor)	const;

Sets	the	current	background	color	to	the	specified	color	value,	or	to	the	nearest	physical	if	the	device	cannot	represent	the	specified
color	value.

SetBkMode
int	SetBkMode(int	iBkMode)	const;

Sets	the	background	mix	mode	of	the	specified	device	context.	The	background	mix	mode	is	used	with	text,	hatched	brushes,	and	pen
styles	that	are	not	solid	lines.

SetMapperFlags DWORD	SetMapperFlags(DWORD	dwFlag)	const;

Alters	the	algorithm	the	font	mapper	uses	when	it	maps	logical	fonts	to	physical	fonts.

SetTextAlign UINT	SetTextAlign(UINT	nFlags)	const;

Sets	the	text-alignment	flags	for	the	specified	device	context.

SetTextCharacterExtra
int	SetTextCharacterExtra(int	nCharExtra)	const;

Sets	the	inter-character	spacing.	Inter-character	spacing	is	added	to	each	character,	including	break	characters,	when	the	system	writes
a	line	of	text.

SetTextColor COLORREF	SetTextColor(COLORREF	crColor)	const;

Sets	the	text	color	for	the	specified	device	context	to	the	specified	color.

SetTextJustification
int	SetTextJustification(int	nBreakExtra,	int	nBreakCount)	const;

Specifies	the	amount	of	space	the	system	should	add	to	the	break	characters	in	a	string	of	text.	The	space	is	added	when	an	
calls	the	TextOut	or	ExtTextOut	functions.

TabbedTextOut

CSize	TabbedTextOut(int	x,	int	y,	LPCTSTR	lpszString,	int	nCount,	int	nTabPositions,	
																				LPINT	lpnTabStopPositions,	int	nTabOrigin)	const;

Writes	a	character	string	at	a	specified	location,	expanding	tabs	to	the	values	specified	in	an	array	of	tab-stop	positions.	
in	the	currently	selected	font,	background	color,	and	text	color.

TextOut BOOL	TextOut(int	x,	int	y,	LPCTSTR	lpszString,	int	nCount)	const;

Writes	a	character	string	at	the	specified	location,	using	the	currently	selected	font,	background	color,	and	text	



Remarks

CDC	objects	can	be	used	anywhere	a	a	handle	to	a	device	context	(a	HDC)
might	be	used.		They	can	be	substituted	for	the	HDC	in	any	of	the	Windows	API
functions	which	use	a	HDC	as	a	function	argument.		The	benefit	of	using	a	CDC
object	is	that	it	automatically	deletes	the	device	context	when	it	is	destroyed,
along	with	any	GDI	objects	created	by	the	CDC.

There	are	a	number	of	classes	inherited	from	CDC,	namely	CClientDC,
CMemDC,	CMetaFileDC,	CPaintDC,	and	CWindowDC.	Typically	one	of	these
more	specialized	classes	would	be	used	to	create	the	device	context.	

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional
information	on	using	this	class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CDialog	Class

Description

CDialog	adds	support	for	dialogs	to	Win32++.	Dialogs	are	specialised	windows	which	are	a	parent	window
for	common	controls.	Common	controls	are	special	window	types	such	as	buttons,	edit	controls,	tree	views,
list	views,	static	text	etc.

The	layout	of	a	dialog	is	typically	defined	in	a	resource	script	file	(often	Resource.rc).	While	this	script	file
can	be	constructed	manually,	it	is	often	created	using	a	resource	editor.	If	your	compiler	doesn't	include	a
resource	editor,	you	might	find	ResEdit	useful.	It	is	a	free	resource	editor	available	for	download	at:
http://www.resedit.net/

CDialog	supports	modal	and	modeless	dialogs.	It	supports	the	creation	of	dialogs	defined	in	a	resource
script	file,	as	well	as	those	defined	in	a	dialog	template.

The	Dialog	sample	program	can	be	used	as	the	starting	point	for	your	own	dialog	applications.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	dialogs.	

CDialog	Members

Construction

CDialog

CDialog(UINT	nResID);

CDialog(LPCTSTR	lpszResName);

CDialog(LPCDLGTEMPLATE	lpTemplate);

Constructor	for	CDialog.	There	are	three	forms	of	the	CDialog
constructor,	one	each	for	dialogs	based	on	a	resource	ID,	a	resource
string,	and	a	dialog	template.

Overridables

virtual	BOOL	DialogProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

http://www.resedit.net/


DialogProc The	window	procedure	for	this	CDialog	object.	Override	this	function	to	specify	how	the
messages	for	this	window	are	to	be	handled.	Return	all	unhandled	messages	to
DialogProcDefault.

EndDialog virtual	void	EndDialog(INT_PTR	nResult);

Ends	a	modal	or	modeless	dialog.

OnCancel virtual	void	OnCancel();

Called	when	the	Cancel	button	is	pressed.

OnInitDialog
virtual	BOOL	OnInitDialog();

Called	when	the	dialog	starts,	before	it	is	displayed.		Override	the	function	to	specify	what
happens	when	the	dialog	is	created.

OnOK
virtual	void	OnOK();

Called	when	the	OK	button	is	pressed.		The	default	behavior	is	to	end	the	dialog	when	the	OK
button	is	pressed.

PreTranslateMessage
virtual	BOOL	PreTranslateMessage(MSG*	pMsg);

Override	this	function	to	filter	mouse	and	keyboard	messages	prior	to	being	passed	to	the
message	loop.

Operations

AttachItem virtual	void	AttachItem(int	nID,	CWnd&	Wnd);

Attach	a	dialog	item	to	a	CWnd.

Create virtual	HWND	Create(CWnd*	pParent	=	NULL);

Creates	a	modeless	dialog.

DialogProcDefault virtual	BOOL	DialogProcDefault(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

The	default	dialog	procedure.	All	unhandled	messages	should	be	passed	to	this	function.

DoModal virtual	INT_PTR	DoModal(CWnd*	pParent	=	NULL);

Create	a	modal	dialog.	A	modal	dialog	must	be	closed	before	the	owner	window	can	be	made	active.

DoModeless virtual	HWND	DoModeless(CWnd*	pParent	=	NULL);

Create	a	modeless	dialog.



GetDefID DWORD	GetDefID()	const;

Retrieves	the	identifier	of	the	default	push	button	control	for	the	dialog.

GotoDlgCtrl void	GotoDlgCtrl(CWnd*	pWndCtrl);

Sets	the	keyboard	focus	to	the	specified	control.

MapDialogRect BOOL	MapDialogRect(LPRECT	pRect)	const;

Converts	the	dialog	box	units	to	screen	units	(pixels).

NextDlgCtrl void	NextDlgCtrl()	const;

Sets	the	keyboard	focus	to	the	next	dialog	control.

PrevDlgCtrl void	PrevDlgCtrl()	const;

Sets	the	keyboard	focus	to	the	previous	dialog	control.

SetDefID void	SetDefID(UINT	nID);

Changes	the	identifier	of	the	default	push	button	for	a	dialog	box.

State	functions

IsModal BOOL	IsModal()	const;

Returns	TRUE	of	the	dialog	is	modal.

IsIndirect BOOL	IsIndirect()	const;

Returns	TRUE	of	the	dialog	is	created	from	a	dialog	box	template	in	memory.

	

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Modal	dialogs	are	always	the	application's	active	window.	While	it	is	are
running,	the	modal	dialog	is	the	only	window	that	can	accept	user	input	for	the
application.	Modeless	dialogs,	on	the	other	hand,	allow	other	windows	to



become	active	and	accept	user	input	while	they	are	running.

Modal	dialogs	run	their	own	internal	message	loop,	whereas	modeless	dialogs
run	the	message	loop	provided	by	CWinApp.	While	the	modal	dialog	is	running,
its	internal	message	loop	processes	all	messages	for	the	thread	the	dialog	runs	in,
including	those	of	other	windows.

Dialogs	are	used	to	display	various	controls,	such	as	buttons,	TreeViews,
ListViews,	static	text	and	so	forth.	Each	of	these	controls	is	actually	a	child
window	of	the	dialog.	The	following	function	are	often	used	to	manage	dialog
controls:

AttachDlgItem
CheckDlgButton
GetDlgItem
GetDlgItemInt
GetDlgItemText
SendDlgMessage
SetDlgItemInt
SetDlgItemText

The	AttachDlgItem	function	is	used	to	attach	a	dialog	control	to	CWnd	derived	object.	This	allows	the
CWnd	derived	object	to	handle	the	control's	messages	in	WndProc,	and	the	control's	notifications	in
OnNotifyReflect.

A	modeless	dialog	can	be	used	as	a	view	window	for	a	frame,	MDIChild,	docker
etc.	The	FormDemo	sample	demonstrate	how	to	use	a	dialog	as	a	view	window
in	a	CFrame.	This	sample	also	demonstrates	how	to	use	CResizer	to
automatically	reposition	the	dialog's	controls	when	the	frame	is	resized.

Refer	to	the	Dialog	section	for	more	information	on	how	to	use	CDialog	to
create	dialogs.

Summary	Information

Header	file dialog.h
Win32/64
support Yes

WinCE	support Yes



CDocker	Class

Description

The	CDocker	class	adds	both	docking	and	splitter	windows	to	the	Win32++	framework.	Splitter	windows
have	a	subset	of	the	functionality	of	docking	windows.	Splitter	windows	are	child	windows	that	can	be
dynamically	re-sized.	Docking	windows	have	this	feature	too,	but	they	also	allow	windows	to	be	docked
and	undocked.

CDocker	Members

CDocker CDocker();

Constructor	for	CDocker.
AddDockedChild
virtual	CDocker*	AddDockedChild(CDocker*	pDocker,	DWORD	dwDockStyle,	
																																int	DockWidth,	int	nDockID	=	0);

Adds	the	specified	Docker	as	a	docked	child.	AddUndockedChild
virtual	CDocker*	AddUndockedChild(CDocker*	pDocker,	DWORD	dwDockStyle,	
																																		int	DockWidth,	RECT	rc,	int	nDockID	=	0);

Adds	the	specified	Docker	as	an	undocked	member	of	this	docking	group.	Close
virtual	void	Close();

Closes	the	Docker.	CloseAllDockers
virtual	void	CloseAllDockers();

Closes	all	Dock	children.	Dock
virtual	void	Dock(CDocker*	pDocker,	UINT	uDockSide);

Docks	the	Docker	to	the	side	of	another	Docker.	DockInContainer
virtual	void	DockInContainer(CDocker*	pDock,	DWORD	dwDockStyle);



Docks	the	Container	inside	another	Container	(by	adding	a	tab).	GetActiveDocker
virtual	CDocker*	GetActiveDocker()	const;

Returns	the	docker	whose	child	window	has	focus.	GetAllDockers
std::vector	<CDocker*>	*	GetAllDockers()	const;

Returns	a	pointer	to	the	vector	containing	pointers	to	all	Dockers	in	this	docking	group.

GetBarWidth
int	GetBarWidth()	const;

Returns	the	width	of	the	Docker's	splitter	bar.	GetCaption
CString&	GetCaption()	const;

Returns	the	Docker's	caption	text.	GetContainer
virtual	CDockContainer*	GetContainer()	const;

Returns	a	pointer	to	the	container	used	as	the	Docker's	view.		If	the	view	is	not	a	container,	this	function

returns	NULL.	GetDockAncestor
virtual	CDocker*	GetDockAncestor()	const;

Returns	a	pointer	to	the	Dock	Ancestor	of	this	docking	group.	GetDockBar
virtual	CDockBar*	GetDockBar()	const;

Returns	a	pointer	to	this	docker's	splitter	bar.	GetDockChildren
std::vector	<CDocker*>	*	GetDockChildren()	const;

Returns	a	pointer	to	the	vector	containing	pointers	to	all	of	this	docker's	dock	children.

GetDockClient
virtual	CDockClient*	GetDockClient()	const;

Returns	a	pointer	to	the	Window	of	this	docker's	client	area.	The	dock	caption	an	view	window	are	child

windows	of	the	dock	client.	GetDockFromID
virtual	CDocker*	GetDockFromID(int	n_DockID)	const;

Returns	a	pointer	to	the	docker,	given	its	ID.	GetDockFromPoint



virtual	CDocker*	GetDockFromPoint(POINT	pt)	const;

Returns	a	pointer	to	the	Docker	whose	Dock	client	area	includes	the	specified	point	.

GetDockFromView
virtual	CDocker*	GetDockFromView(CWnd*	pView)	const;

Returns	a	pointer	to	the	Docker	which	has	the	the	specified	view	window.	GetDockHint
virtual	CDockHint*	GetDockHint()	const;

Returns	a	pointer	to	the	Docker's	hint	window.	The	hint	window	as	a	blue	tint	and	is	displayed	during	dock

dragging.		GetDockID
int	GetDockID()	const;

Return	the	ID	of	this	Docker.	GetDockParent
CDocker*	GetDockParent()	const;

Returns	the	Dock	Parent	of	this	Docker.	GetDockStyle
DWORD	GetDockStyle()	const;

Returns	the	dock	style	of	this	Docker.	GetDockWidth
virtual	int	GetDockWidth()	const;

Returns	the	width	of	a	docker	which	is	dock	to	the	left	or	right	of	another	docker,	or	its	height	if	docked	to

the	top	or	bottom.	GetTabbedMDI
virtual	CTabbedMDI*	GetTabbedMDI()	const;

Returns	a	TabbedMDI	pointer	to	the	view	window	of	this	docker,	or	NULL	if	the	view	window	is	not	a

TabbedMDI.	GetTopmostDocker
virtual	CDocker*	GetTopmostDocker()	const;

Returns	the	top	level	Dock	parent	of	this	Docker.		Any	undocked	Docker	(not	just	the	Dock	Ancestor)	can

be	a	top	level	Dock	parent.	GetView
CWnd*	GetView()	const;

Returns	a	pointer	to	the	view	window	of	this	docker.	GetViewRect
virtual	CRect	GetViewRect()	const;



Returns	a	CRect	containing	the	dimensions	of	the	view	window.	Hide
virtual	void	Hide();

Undocks	the	Docker	(if	necessary)	and	hides	it.	IsChildOfDocker
BOOL	IsChildOfDocker(HWND	hwnd)	const;

Returns	TRUE	if	the	specified	window	handle	is	a	decendant	of	this	docker.	IsDocked
BOOL	IsDocked()	const;

Returns	TRUE	if	this	Docker	is	docked	within	another	Docker.	IsDragAutoResize
BOOL	IsDragAutoResize()	const;

Returns	the	TRUE	of	the	dockers	will	be	automatically	re-arrange	as	the	splitter	bar	is	moved.

IsRelated
BOOL	IsRelated(HWND	hWnd)	const;

Returns	TRUE	if	the	specified	Docker	is	in	this	docker	family.	Dockers	in	the	same	dock	family	share	the

one	dock	ancestor.	IsUndocked
BOOL	IsUndocked()	const;

Returns	TRUE	if	the	docker	is	Undocked.	The	dock	ancestor	is	always	undocked,	but	other	dockers	can

dock	within	it.	LoadDockRegistrySettings
virtual	BOOL	LoadDockRegistrySettings(LPCTSTR	szRegistryKeyName);

Adds	dockers	to	the	dock	ancestor	according	to	the	docking	information	stored	in	the	registry.

RecalcDockLayout
virtual	void	RecalcDockLayout();

Recalculates	and	repositions	all	dockers	which	are	dock	decendants	of	this	docker's	top	level	dock	parent.

SaveDockRegistrySettings
virtual	BOOL	SaveDockRegistrySettings(LPCTSTR	szRegistryKeyName);

Saves	the	docking	styles,	state	and	position	in	the	registry.	SetBarColor
void	SetBarColor(COLORREF	color);

Sets	the	color	of	the	splitter	bar.	SetBarWidth



void	SetBarWidth(int	nWidth);

Sets	the	width	of	the	splitter.	SetCaption
void	SetCaption(LPCTSTR	szCaption);

Sets	the	dock	caption	text.	SetCaptionColors
vvoid	SetCaptionColors(COLORREF	Foregnd1,	COLORREF	Backgnd1,	COLORREF	ForeGnd2,	COLORREF	BackGnd2);

Sets	the	caption's	foreground	and	background	colours.	SetCaptionHeight
void	SetCaptionHeight(int	nHeight);

Sets	the	caption's	height.	SetDockStyle
void	SetDockStyle(DWORD	dwDockStyle);

Set	the	dock	style.	SetDockWidth
void	SetDockWidth(int	DockWidth);

Sets	the	width	of	a	docker	docked	to	the	left	or	right	of	its	parent,	or	the	height	of	the	docker	docked	to	the

top	or	bottom.	SetDragAutoResize
void	SetDragAutoResize(BOOL	bAutoResize);

Set	the	DragAutoSize	mode.	When	TRUE,	dockers	will	be	automatically	re-arranged	as	the	splitter	bar	is
moved.	When	FALSE	the	dockers	will	be	re-arranged	when	the	splitter	bar	dragging	is	complete.

SetView
void	SetView(CWnd&	wndView);

Sets	the	view	window	for	the	docker.	Undock
virtual	void	Undock(CPoint	pt,	BOOL	bShowUndocked	=	TRUE);

Undocks	the	Docker	and	positions	it	at	the	specified	point.	UndockContainer
virtual	void	UndockContainer(CDockContainer*	pContainer,	
																													CPoint	pt,	BOOL	bShowUndocked);

Undocks	the	Container	and	positions	it	at	the	specified	point.	VerifyDockers
virtual	BOOL	VerifyDockers();

A	built	in	diagnostic	which	verifies	the	integrity	of	the	docking	hierarchy.



Overridables

NewDockerFromID virtual	CDocker*	NewDockerFromID(int	idDock);

Override	this	function	to	create	a	new	Docker	given	its	docker	ID.

OnActivate virtual	void	OnActivate(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	window	is	activated	or	deactivated.

OnBarEnd virtual	LRESULT	OnBarEnd(LPDRAGPOS	pdp);

Called	when	the	repositioning	of	the	splitter	bar	is	complete.

OnBarMove virtual	LRESULT	OnBarMove(LPDRAGPOS	pdp);

Called	when	the	splitter	bar	is	moved.

OnBarStart virtual	LRESULT	OnBarStart(LPDRAGPOS	pdp);

Called	when	the	splitter	bar	is	about	to	be	repositioned.

OnCreate virtual	void	OnCreate();

Called	when	the	window	is	created.

OnDestroy virtual	void	OnDestroy(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	window	is	destroyed.

OnDockActivated virtual	LRESULT	OnDockActivated(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	docker	is	activated	or	deactivated.

OnDockDestroyed virtual	void	OnDockDestroyed(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	docker	is	destroyed.

OnDockEnd virtual	LRESULT	OnDockEnd(LPDRAGPOS	pdp);

Called	when	docker	has	been	docked.

OnDockMove virtual	LRESULT	OnDockMove(LPDRAGPOS	pdp);

Called	when	an	undocked	docker	is	being	moved.

OnDockSetFocus virtual	LRESULT	OnDockSetFocus();

Called	when	a	child	docker	gets	focus.

virtual	LRESULT	OnDockStart(LPDRAGPOS	pdp);



OnDockStart Called	when	undocking	is	about	to	start.

OnExitSizeMove virtual	void	OnExitSizeMove(WPARAM	wParam,	LPARAM	lParam);

Called	after	the	window	has	completed	a	resize	or	move.

OnNotify virtual	LRESULT	OnNotify(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	window	receives	a	notification.

OnNCLButtonDblClk virtual	LRESULT	OnNCLButtonDblClk(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	non-client	area	recieves	a	left	button	double	click.

OnSysColorChange virtual	void	OnSysColorChange(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	change	is	made	to	a	system	color	setting.

OnSysCommand virtual	LRESULT	OnSysCommand(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	window	is	minimized,	maximized,	restored	or	closed.

OnTimer virtual	LRESULT	OnTimer(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	timer	has	expired.

OnWindowPosChanged virtual	void	OnWindowPosChanged(WPARAM	wParam,	LPARAM	lParam);

Called	after	the	window	position	has	changed.

OnWindowPosChanging virtual	LRESULT	OnWindowPosChanging(WPARAM	wParam,	LPARAM	lParam);

Called	before	the	window	position	has	changed.

PreCreate virtual	void	PreCreate(CREATESTRUCT	&cs);

Sets	the	window	creation	parameters.

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Sets	the	window	class	parameters.

PreTranslateMessage
virtual	BOOL	PreTranslateMessage(MSG	Msg);

This	functions	is	called	by	the	MessageLoop.	It	processes	the	keyboard	accelerator	keys	and	calls
CWnd::PreTranslateMessage	for	keyboard	and	mouse	events.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.



Remarks

Refer	to	the	Docking	section	for	information	on	how	to	use	CDocker	to	create
splitter	windows	and	docking	windows.

Summary	Information

Header	file docking.h
Win32/64
support Yes

WinCE	support Yes



CDockContainer	Class

Description

The	CDockContainer	class	adds	"Containers"	to	the	Win32++	framework.	A	Container	is	a	tab	control
which	has	been	designed	to	co-operate	with	docking.		While	Dockers	allows	any	child	window	to	be	used
as	the	view	window,	Containers	add	additional	features	when	used	as	the	view	window	for	Dockers.		These
additional	features	include	Container	within	Container	docking	(where	the	newly	docked	Container	adds
another	tab),	as	well	as	additions	to	the	dock	targeting	and	dock	hinting	visual	cues.		Containers	can	also
have	a	toolbar.	The	use	of	a	toolbar	is	optional,	but	when	used	they	are	set	up	in	the	same	way	as	toolbars
for	Frames.

CDockContainers	have	views	of	their	own.		These	views	can	be	any	child	window,	and	are	set	in	the	same
way	as	views	for	Frames	and	MDI	children.

CDockContainer	Members

CDockContainerCDockContainer();

Constructor	for	CDockContainer.
AddContainer
virtual	void	AddContainer(CDockContainer*	pContainer,	BOOL	bInsert	=	FALSE);

Adds	the	specified	container	as	a	child	to	this	container.	Set	bInsert	to	TRUE	to	insert	the	container	as	the

first	tab,	or	FALSE	to	add	it	as	the	last	tab.	AddToolBarButton
virtual	void	AddToolBarButton(UINT	nID,	BOOL	bEnabled	=	TRUE);

Adds	a	resource	ID	to	the	container's	toolbar.	GetActiveContainer
CDockContainer*	GetActiveContainer()	const;

Returns	a	pointer	to	the	currently	active	container.	GetActiveView
CWnd*	GetActiveView()	const;

Returns	a	pointer	to	the	view	window	for	the	currently	active	container.	GetAllContainers
std::vector<ContainerInfo>*	GetAllContainers()	const;



Returns	a	reference	to	the	vector	of	container	information.	GetContainerFromIndex
virtual	CDockContainer*	GetContainerFromIndex(UINT	nPage);

Returns	a	pointer	to	the	container	at	the	specified	tab	number.	GetContainerFromView
virtual	CDockContainer*	GetContainerFromView(CWnd*	pView)	const;

Returns	a	pointer	to	the	container	with	the	specified	view.	GetContainerIndex
virtual	int	GetContainerIndex(CDockContainer*	pContainer);

Returns	the	tab	index	of	the	specified	container.	GetContainerParent
CDockContainer*	GetContainerParent()	const;

Returns	a	pointer	to	the	container	which	is	the	parent	of	this	container	group.	GetDockCaption
CString&	GetDockCaption()	const;

Returns	the	CString	which	contains	the	text	displayed	in	the	caption	of	a	docked	container.

GetMaxTabTextSize
virtual	SIZE	GetMaxTabTextSize();

Returns	the	size	(width	and	height)	of	the	caption	text.	GetTabIcon
HICON	GetTabIcon()	const;

Returns	the	icon	handle	for	this	container's	tab.	GetTabText
LPCTSTR	GetTabText()	const;

Returns	the	text	for	this	container's	tab.	GetToolBar
virtual	CToolBar*	GetToolBar()	const;

Returns	a	pointer	to	the	container's	toolbar.	GetView
CWnd*	GetView()	const;

Returns	a	pointer	to	the	view	window	for	this	container.	GetViewPage
virtual	CViewPage*	GetViewPage()	const;

Returns	a	pointer	to	the	container's	page.	The	container's	page	holds	the	toolbar	and	view	window.



RecalcLayout
virtual	void	RecalcLayout();

Recalculates	the	positions	of	the	child	windows	for	the	container,	and	repositions	them.

RemoveContainer
virtual	void	RemoveContainer(CDockContainer*	pWnd);

Removes	the	specified	child	container	from	this	container	group.	SelectPage
virtual	void	SelectPage(int	nPage);

Activates	the	specified	page	number.	SetActiveContainer
void	SetActiveContainer(CDockContainer*	pContainer);

Sets	the	active	container.	SetDockCaption
void	SetDockCaption(LPCTSTR	szCaption);

Sets	the	text	associated	with	a	docked	container.	SetHideSingleTab
void	SetHideSingleTab(BOOL	bHide);

Shows	or	hides	the	tab	if	it	has	only	one	page.	SetTabIcon
void	SetTabIcon(HICON	hTabIcon);

void	SetTabIcon(UINT	nID_Icon);

Sets	the	icon	for	this	container's	tab.	SetTabText
void	SetTabText(LPCTSTR	szText);

void	SetTabText(UINT	nTab,	LPCTSTR	szText);

Sets	the	text	for	this	container's	tab.	SetToolBarImages
virtual	void	SetToolBarImages(COLORREF	crMask,	UINT	ToolBarID,	UINT	ToolBarHotID,	UINT	ToolBarDisabledID);

Sets	the	normal,	hot	and	disabled	images	for	the	ToolBar	SetupToolBar
virtual	void	SetupToolBar();

Override	this	function	to	specify	the	container's	toolbar's	bitmap	and	resource	IDs.	SetView



void	SetView(CWnd&	Wnd);

Sets	the	view	window	for	this	container.	SwapTabs
virtual	void	SwapTabs(UINT	nTab1,	UINT	nTab2);

Swaps	the	position	of	two	tabs.

Overridables

OnLButtonDown OnLButtonDown(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	left	mouse	button	is	pressed.

OnLButtonUp OnLButtonUp(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	left	mouse	button	is	released.

OnMouseLeave virtual	LRESULT	OnMouseLeave(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	mouse	cursor	leaves	the	window.

OnMouseMove virtual	LRESULT	OnMouseMove(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	mouse	cursor	is	moved	over	the	window.

OnSetFocus
virtual	LRESULT	OnSetFocus(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	window	gets	keyboard	focus.	We	set	the	keyboard	focus	to	the	active
view	window.

OnSize virtual	LRESULT	OnSize(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	window	is	resized.

OnTCNSelChange virtual	LRESULT	OnTCNSelChange(LPNMHDR	pNMHDR);

Called	when	the	currently	selected	tab	has	changed.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CTab.

Remarks

The	CDockContainer	could	be	also	used	as	a	view	window	for	other	window
types,	such	as	Frames	and	MDI	children,	although	using	a	CTab	for	these	other



views	is	more	common.

Summary	Information

Header	file docking.h
Win32/64
support Yes

WinCE	support No
Library	required Comctl32.lib



CEdit	Class

Description

An	edit	control	is	a	rectangular	control	window	typically	used	in	a	dialog	box	to	permit	the	user	to	enter	and
edit	text	by	typing	on	the	keyboard.Edit	controls	are	typically	used	in	dialog	boxes,	but	you	can	use	them	in
the	client	area	of	a	standard	window	as	well.	Single-line	edit	controls	are	useful	for	retrieving	a	single	string
from	the	user.	Multiline	edit	controls	make	it	easy	for	your	application	to	implement	most	of	the	features	of
a	simple	word	processor.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	edit	controls.

CEdit	Members

Construction

CEdit CEdit();

Constructor	for	CEdit.

Attributes

GetFirstVisibleLine
int	GetFirstVisibleLine()	const;

Returns	the	zero-based	index	of	the	first	visible	character	in	a	single-line	edit	control	or	the	zero-
based	index	of	the	uppermost	visible	line	in	a	multiline	edit	control.

GetHandle
HLOCAL	GetHandle()	const;

Returns	a	handle	identifying	the	buffer	containing	the	multiline	edit	control's	text.	It	is	not
processed	by	single-line	edit	controls.

GetLimitText UINT	GetLimitText()	const;

Returns	the	current	text	limit,	in	characters.

GetLine

int	GetLine(int	nIndex,	LPTSTR	lpszBuffer)	const;

int	GetLine(int	nIndex,	LPTSTR	lpszBuffer,	int	nMaxLength)	const;



Copies	characters	in	a	single-line	edit	control	to	a	buffer	and	returns	the	number	of	characters
copied.	In	a	multiline	edit	control,	retrieves	a	line	of	text	from	the	control	and	returns	the	number
of	characters	copied.

GetLineCount int	GetLineCount()	const;

Returns	the	number	of	lines	in	the	edit	control.

GetMargins DWORD	GetMargins()	const;

Returns	the	widths	of	the	left	and	right	margins.

GetModify BOOL	GetModify()	const;

Returns	a	flag	indicating	whether	the	content	of	an	edit	control	has	been	modified.

GetPasswordChar TCHAR	GetPasswordChar()	const;

Returns	the	character	that	edit	controls	use	in	conjunction	with	the	ES_PASSWORD	style.

GetRect void	GetRect(LPRECT	lpRect)	const;

Returns	the	coordinates	of	the	formatting	rectangle	in	an	edit	control.

GetSel void	GetSel(int&	nStartChar,	int&	nEndChar)	const;

Returns	the	starting	and	ending	character	positions	of	the	current	selection	in	the	edit	control.

SetHandle
void	SetHandle(HLOCAL	hBuffer)	const;

Sets	a	handle	to	the	memory	used	as	a	text	buffer,	empties	the	undo	buffer,	resets	the	scroll
positions	to	zero,	and	redraws	the	window.

SetLimitText void	SetLimitText(UINT	nMax)	const;

Sets	the	maximum	number	of	characters	the	user	may	enter	in	the	edit	control.

SetMargins
void	SetMargins(UINT	nLeft,	UINT	nRight)	const;

Sets	the	widths	of	the	left	and	right	margins,	and	redraws	the	edit	control	to	reflect	the	new
margins.

SetModify void	SetModify(BOOL	bModified	=	TRUE)	const;

Sets	or	clears	the	modification	flag	to	indicate	whether	the	edit	control	has	been	modified.

SetPasswordChar void	SetPasswordChar(TCHAR	ch)	const;

Defines	the	character	that	edit	controls	use	in	conjunction	with	the	ES_PASSWORD	style.

SetReadOnly BOOL	SetReadOnly(BOOL	bReadOnly	=	TRUE)	const;



Sets	or	removes	the	read-only	style	(ES_READONLY)	in	an	edit	control.

SetRect
void	SetRect(LPCRECT	lpRect)	const;

Sets	the	formatting	rectangle	for	the	multiline	edit	control	and	redraws	the	window.	It	is	not
processed	by	single-line	edit	controls.

SetRectNP
void	SetRectNP(LPCRECT	lpRect)	const;

Sets	the	formatting	rectangle	for	the	multiline	edit	control	but	does	not	redraw	the	window.	It	is
not	processed	by	single-line	edit	controls.

SetSel

void	SetSel(DWORD	dwSelection,	BOOL	bNoScroll)	const;

void	SetSel(int	nStartChar,	int	nEndChar,	BOOL	bNoScroll)	const;

Selects	a	range	of	characters	in	the	edit	control	by	setting	the	starting	and	ending	positions	to	be
selected.

SetTabStops

BOOL	SetTabStops(int	nTabStops,	LPINT	rgTabStops)	const;

BOOL	SetTabStops(const	int&	cxEachStop)	const;

BOOL	SetTabStops()	const;

Sets	tab-stop	positions	in	the	multiline	edit	control.	It	is	not	processed	by	single-line	edit	controls.

Operations

CanUndo BOOL	CanUndo()	const;

Returns	TRUE	if	the	edit	control	operation	can	be	undone.

CharFromPos int	CharFromPos(CPoint	pt)	const;

Returns	the	character	index	and	line	index	of	the	character	nearest	the	specified	point.

Clear
void	Clear()	const;

Clears	the	current	selection,	if	any,	in	an	edit	control.	If	there	is	no	current	selection,
deletes	the	character	to	the	right	of	the	caret.

Copy
void	Copy()	const;

Copies	text	to	the	clipboard	unless	the	style	is	ES_PASSWORD,	in	which	case	the
message	returns	zero.

Cut
void	Cut()	const;

Cuts	the	selection	to	the	clipboard,	or	deletes	the	character	to	the	left	of	the	cursor	if



there	is	no	selection.

EmptyUndoBuffer

void	EmptyUndoBuffer()	const;

Empties	the	undo	buffer	and	sets	the	undo	flag	retrieved	by	the	EM_CANUNDO
message	to	FALSE.	The	system	automatically	clears	the	undo	flag	whenever	the	edit
control	receives	a	WM_SETTEXT	or	EM_SETHANDLE	message.

FmtLines

BOOL	FmtLines(BOOL	bAddEOL)	const;

Adds	or	removes	soft	line-break	characters	(two	carriage	returns	and	a	line	feed)	to	the
ends	of	wrapped	lines	in	a	multiline	edit	control.	It	is	not	processed	by	single-line	edit
controls.

LimitText
void	LimitText(int	nChars	=	0)	const;

Sets	the	text	limit	of	an	edit	control.	The	text	limit	is	the	maximum	amount	of	text,	in
TCHARs,	that	the	user	can	type	into	the	edit	control.

LineFromChar

int	LineFromChar(int	nIndex	=	-1)	const;

Returns	the	zero-based	number	of	the	line	in	a	multiline	edit	control	that	contains	a
specified	character	index.	This	message	is	the	reverse	of	the	EM_LINEINDEX
message.	It	is	not	processed	by	single-line	edit	controls.

LineIndex
int	LineIndex(int	nLine	=	-1)	const;

Returns	the	character	of	a	line	in	a	multiline	edit	control.	This	message	is	the	reverse	of
the	EM_LINEFROMCHAR	message.	It	is	not	processed	by	single-line	edit	controls.

LineLength
int	LineLength(int	nLine	=	-1)	const;

Returns	the	length,	in	characters,	of	a	single-line	edit	control.	In	a	multiline	edit	control,
returns	the	length,	in	characters,	of	a	specified	line.

LineScroll

void	LineScroll(int	nLines,	int	nChars	=	0)	const;

Scrolls	the	text	vertically	in	a	single-line	edit	control	or	horizontally	in	a	multiline	edit
control	(when	the	control	has	the	ES_LEFT	style).	The	lParam	parameter	specifies	the
number	of	lines	to	scroll	vertically,	starting	from	the	current	line.	The	wParam
parameter	specifies	the	number	of	characters	to	scroll	horizontally,	starting	from	the
current	character.

Paste void	Paste()	const;

Pastes	text	from	the	clipboard	into	the	edit	control	window	at	the	caret	position.

PosFromChar CPoint	PosFromChar(UINT	nChar)	const;

Returns	the	client	coordinates	of	the	specified	character.

void	ReplaceSel(LPCTSTR	lpszNewText,	BOOL	bCanUndo)	const;



ReplaceSel Replaces	the	current	selection	with	the	text	in	an	application-supplied	buffer,	sends	the
parent	window	EN_UPDATE	and	EN_CHANGE	messages,	and	updates	the	undo
buffer.

Undo

void	Undo()	const;

Removes	any	text	that	was	just	inserted	or	inserts	any	deleted	characters	and	sets	the
selection	to	the	inserted	text.	If	necessary,	sends	the	EN_UPDATE	and	EN_CHANGE
notification	messages	to	the	parent	window.

Overidables

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	edit	control	requires	a	parent	window.	This	parent
window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent	window	for
an	edit	control.

Summary	Information

Header	file stdcontrols.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CFile	Class

Description

This	class	manages	the	reading	from	and	writing	to	files.

CFile	Members

Initialisation	and	Assignment

CFile

CFile();

CFile(HANDLE	hFile);

CFile(LPCTSTR	pszFileName,	UINT	nOpenFlags);

Constructor	for	CFile.
Attributes	GetFileName

virtual	const	CString&	GetFileName()	const;

Returns	the	filename	of	the	file	associated	with	this	object.	GetFilePath

virtual	const	CString&	GetFilePath()	const;

Returns	the	full	filename	including	the	directory	of	the	file	associated	with	this	object.	GetFileTitle

virtual	const	CString&	GetFileTitle()	const;

Returns	the	filename	of	the	file	associated	with	this	object,	excluding	the	path	and	the	file	extension.
GetHandle

HANDLE	GetHandle()	const;

Converts	the	CFile	to	a	HANDLE.	GetPosition

virtual	ULONGLONG	GetPosition()	const;

Returns	the	current	value	of	the	file	pointer,	which	can	be	used	in	subsequent	calls	to	Seek.	operator
HANDLE

operator	HANDLE()	const;



Converts	the	CFile	to	a	HANDLE.	Operations	Close

virtual	BOOL	Close();

Closes	the	file	associated	with	this	object.	Closed	file	can	no	longer	be	read	or	written	to..	Flush

virtual	BOOL	Flush();

Causes	any	remaining	data	in	the	file	buffer	to	be	written	to	the	file.	LockRange

virtual	BOOL	LockRange(ULONGLONG	Pos,	ULONGLONG	Count);

Locks	a	range	of	bytes	in	and	open	file.	Open

virtual	int	CollateNoCase(LPCTSTR	pszText)	const;

Prepares	a	file	to	be	written	to	or	read	from.	OpenFileDialog

virtual	CString	OpenFileDialog(LPCTSTR	pszFilePathName	=	NULL,
			DWORD	dwFlags	=	OFN_HIDEREADONLY	|	OFN_OVERWRITEPROMPT,	LPCTSTR	pszTitle	=	NULL,	
			LPCTSTR	pszFilter	=	NULL,	CWnd*	pOwnerWnd	=	NULL);

Displays	the	file	open	dialog.	Returns	a	CString	containing	either	the	selected	file	name	or	an	empty
CString.	Read

virtual	UINT	Read(void*	pBuf,	UINT	nCount);

Reads	from	the	file,	storing	the	contents	in	the	specified	buffer.	Remove

static	BOOL	Remove(LPCTSTR	pszFileName);

Deletes	the	specified	file.	Rename

static	BOOL	Rename(LPCTSTR	pszOldName,	LPCTSTR	pszNewName);

Renames	the	specified	file.	SaveFileDialog

virtual	CString	SaveFileDialog(LPCTSTR	pszFilePathName	=	NULL,
			DWORD	dwFlags	=	OFN_HIDEREADONLY	|	OFN_OVERWRITEPROMPT,	LPCTSTR	pszTitle	=	NULL,
			LPCSTR	pszFilter	=	NULL,	LPCTSTR	pszDefExt	=	NULL,	CWnd*	pOwnerWnd	=	NULL);

Displays	the	SaveFileDialog.	Returns	a	CString	containing	either	the	selected	file	name	or	an	empty
CString.	Seek

virtual	ULONGLONG	Seek(LONGLONG	lOff,	UINT	nFrom);

Positions	the	current	file	pointer.	Permitted	values	for	nFrom	are:	FILE_BEGIN,	FILE_CURRENT,	or
FILE_END.	SeekToBegin



virtual	void	SeekToBegin();

Sets	the	current	file	pointer	to	the	beginning	of	the	file.	SeekToEnd

virtual	ULONGLONG	SeekToEnd();

Sets	the	current	file	pointer	to	the	end	of	the	file.	SetFilePath

virtual	void	SetFilePath(LPCTSTR	pszNewName);

Specifies	the	full	file	name,	including	its	path	SetLength

virtual	BOOL	SetLength(ULONGLONG	NewLen);

Changes	the	length	of	the	file	to	the	specified	value.	UnlockRange

virtual	BOOL	UnlockRange(ULONGLONG	Pos,	ULONGLONG	Count);

Unlocks	a	range	of	bytes	in	an	open	file.	Write

virtual	BOOL	Write(const	void*	pBuf,	UINT	nCount);

Writes	the	specified	buffer	to	the	file.

Remarks

The	following	code	demonstrates	how	to	use	OpenDileDialog	to	retrieve	the
name	of	the	file	to	open.

void	CMainFrame::OnFileOpen()
{
		CFile	File;
		CString	str	=	File.OpenFileDialog(0,	OFN_FILEMUSTEXIST,	_T("Scribble	Files	(*.dat)\0*.dat\0\0"),	this);

		if	(!str.IsEmpty())
		{
				//	Retrieve	the	PlotPoint	data
				m_View.FileOpen(str);
		}
}

The	following	code	demonstrates	how	to	open	a	file	for	reading,	and	read	its
contents.

BOOL	CView::FileOpen(LPCTSTR	szFilename)
{
		DWORD	nBytesRead;
		BOOL	bResult	=	FALSE;



		//	Create	a	handle	to	the	file
		CFile	File;
		if	(File.Open(szFilename,	OPEN_EXISTING))
		{
				do
				{
						nBytesRead	=	0;
						PlotPoint	pp;

						nBytesRead	=	File.Read(&pp;,	sizeof(PlotPoint));
						if	(nBytesRead	==	sizeof(PlotPoint))
								m_points.push_back(pp);
								
				}	while	(nBytesRead	==	sizeof(PlotPoint));
		}
}	

Summary	Information

Header	file file.h
Win32/64
support Yes

WinCE	support Yes



CFont	Class

Description

The	class	responsible	for	creating	and	managing	font	resources.

CFont	Members

Initialization	and	Assignment

CFont

CFont();

CFont(HFONT	hFont);

CFont(const	LOGFONT*	lpLogFont);

Constructs	a	CFont	object.
FromHandle
static	CFont*	FromHandle(HFONT	hFont);

Returns	the	CFont	associated	with	the	specified	font	handle.	If	a	CFont	object	doesn't	already	exist,	a
temporary	CFont	object	is	created.	This	temporary	CFont	will	be	deleted	sometime	after	the	processing	of

the	current	message	is	complete.	operator	HFONT()
operator	HFONT()	const;

Allows	a	CFont	object	to	be	used	as	a	font	handle	(HFONT).	Attributes	GetLogFont
LOGFONT	GetLogFont()	const;

Retrieves	the	LOGFONT	structure	that	contains	font	attributes.	Operations	CreateFont
HFONT	CreateFont(int	nHeight,	int	nWidth,	int	nEscapement,	
																int	nOrientation,	int	nWeight,	DWORD	dwItalic,	
																DWORD	dwUnderline,	DWORD	dwStrikeOut,	DWORD	dwCharSet,	
																DWORD	dwOutPrecision,	DWORD	dwClipPrecision,	DWORD	dwQuality,	
																DWORD	dwPitchAndFamily,	LPCTSTR	lpszFacename);



Creates	a	logical	font	with	the	specified	characteristics.	CreateFontIndirect
HFONT	CreateFontIndirect(const	LOGFONT*	lpLogFont);

Creates	a	logical	font	that	has	the	characteristics	specified	in	the	LOGFONT	struct.

CreatePointFont
HFONT	CreatePointFont(int	nPointSize,	LPCTSTR	lpszFaceName,	CDC*	pDC	=	NULL,	
																					BOOL	bBold	=	FALSE,	BOOL	bItalic	=	FALSE);

Creates	a	font	of	a	specified	typeface	and	point	size.	CreatePointFontIndirect
HFONT	CreatePointFontIndirect(const	LOGFONT*	lpLogFont,	CDC*	pDC	=	NULL);

Creates	a	font	of	a	specified	typeface	and	point	size.	This	function	automatically	converts	the	height	in	the
LOGFONT's	lfHeight	to	logical	units	using	the	specified	device	context.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CGDIObject.

Remarks

CFont	objects	can	be	used	anywhere	a	a	handle	to	a	font	(HFONT)	might	be	used.		They	can	be	substituted
for	the	HFONT	in	any	of	the	Windows	API	functions	which	use	a	HFONT	as	a	function	argument.		The
benefit	of	using	a	CFont	object	is	that	it	automatically	deletes	the	font	when	it	is	destroyed.

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CFrame	Class

Description

CFrame	is	responsible	for	creating	a	window	which	includes	a	menu	and	toolbar	(usually	hosted	within	a
rebar),	and	a	status	bar,	and	the	"view"	window.	The	"view"	window	is	a	separate	CWnd	object	assigned	to
the	frame	with	the	SetView	function.		This	view	window	can	be	any	sort	of	window,	as	long	as	it	can	be	a
child	window	of	the	frame.		CFrame	positions	the	view	window	over	the	part	of	the	frame's	client	client
area	that	remains	after	the	toolbar	and	statusbar	have	been	displayed.

To	create	a	frame	application,	inherit	a	CMainFrame	class	from	CFrame.	Use	the	Frame	sample	as	the
starting	point	for	your	own	frame	applications.	Refer	to	the	Notepad	and	Scribble	samples	for	examples	on
how	to	use	these	classes	to	create	a	frame	application.

CFrame	provides	support	for	a	single	"view"	window.		This	type	of	frame	application	is	called	a	Single
Document	Interface	or	SDI.		A	Multiple	Document	Interface	(or	MDI)	application	allows	several	view
windows	to	be	displayed	concurrently.		Refer	to	the	CMDIFrame	class	if	your	application	requires	several
view	windows	to	be	displayed.

CFrame	Members

Construction

CFrame CFrame();

Constructs	a	CFrame	object.

Attributes

GetFrameAccel HACCEL	GetFrameAccel()	const;

Returns	the	accelerator	handle	for	the	frame.

GetFrameMenu HMENU	GetFrameMenu()	const;

Returns	the	menu	handle	for	the	frame.

GetMenuItemPos virtual	int	GetMenuItemPos(HMENU	hMenu,	LPCTSTR	szItem);

Returns	the	position	of	the	menu	item,	given	it's	name.



GetMenuBar
virtual	CMenuBar*	GetMenuBar()	const;

Returns	a	pointer	to	the	MenuBar.		The	MenuBar's	window	is	a	child	of	the	rebar,
which	in	turn	is	a	child	of	the	frame.	The	MenuBar	displays	a	menu	inside	the	rebar.

GetMenuBarTheme MenuTheme*	GetMenuBarTheme()	const;

Returns	a	pointer	to	the	MenuTheme	structure	used	by	the	frame.

GetMRUEntry CString	GetMRUEntry(UINT	nIndex);

Returns	a	the	MRU	string	at	the	specified	index.

GetReBar virtual	CReBar*	GetReBar()	const;

Returns	a	pointer	to	the	ReBar.	The	ReBar's	window	is	a	child	of	the	frame.

GetReBarTheme ReBarTheme*	GetReBarTheme()	const;

Returns	a	pointer	to	the	ReBarTheme	structure	used	by	the	frame.

GetRegistryKeyName CString	GetRegistryKeyName()	const;

Returns	the	name	of	the	registry	key	used	by	the	applications	to	save	its	setting.

GetStatusBar virtual	CStatusBar*	GetStatusBar()	const;

Returns	a	pointer	to	the	StatusBar.	The	StatusBar's	window	is	a	child	of	the	frame.

GetStatusBarTheme StatusBarTheme*	GetStatusBarTheme()	const;

Returns	a	pointer	to	the	StatusBarTheme	structure	used	by	the	frame.

GetStatusText CString	GetStatusText()	const

Returns	the	text	displayed	in	the	status	bar.

GetThemeName virtual	CString	GetThemeName()	const;

Returns	the	name	of	the	current	XP	theme	name.

GetTitle CString	GetTitle()	const;

Returns	the	caption	(window	tiltle)	of	the	frame	window.

GetToolBar
virtual	CToolBar*	GetToolBar()	const;

Returns	a	pointer	to	the	ToolBar.		The	ToolBar's	window	is	a	child	of	either	the
rebar	or	the	frame.

GetToolBarTheme
ToolBarTheme*	GetToolBarTheme()	const;



Returns	a	pointer	to	the	ToolBarTheme	structure	used	by	the	frame.

GetView
CWnd*	GetView()	const;

Returns	a	pointer	to	the	CWnd	object	positioned	over	the	client	area	of	the	frame,
commonly	referred	to	as	the	View	window.

GetViewRect

virtual	CRect	GetViewRect()	const;

Returns	the	coordinates	of	the	View	window.		The	View	window	is	positioned	over
the	part	of	the	client	area	of	the	frame	that	remains	after	the	toolbar	and	statusbar
have	been	displayed.

SetFrameMenu
void	SetFrameMenu(INT	ID_MENU);

void	SetFrameMenu(HMENU	hMenu);

Sets	the	menu	handle	for	the	frame.

SetMenuTheme void	SetMenuTheme(MenuTheme*	pMBT);

Sets	the	theme	colors	used	when	menu	items	are	selected.

SetReBarTheme void	SetReBarTheme(ReBarTheme*	pRBT);

Sets	the	theme	colors	used	for	the	ReBar.

SetStatusBarTheme void	SetStatusBarTheme(StatusBarTheme*	pSBT);

Sets	the	theme	colors	used	for	the	StatusBar.

SetStatusText void	SetStatusText(LPCTSTR	szText);

Sets	the	text	to	be	displayed	in	the	status	bar.

SetTitle void	SetTitle(LPCTSTR	szText)

Sets	the	title	(caption)	of	the	frame	window.

SetToolBarTheme void	SetToolBarTheme(ToolBarTheme*	pTBT);

Sets	the	theme	colors	used	for	the	ToolBar.

SetView
void	SetView(CWnd&	wndView);

Sets	the	CWnd	object	which	will	be	positioned	over	the	client	area	of	the	frame.
This	is	CWnd	object	is	referred	to	as	the	view	window.

State	functions



IsMenuBarUsed BOOL	IsMenuBarUsed()	const;

Returns	TRUE	if	the	frame	is	using	a	menubar.

IsMDIFrame virtual	BOOL	IsMDIFrame()	const;

Returns	TRUE	if	the	frame	is	a	MDI	Frame.	Refer	to	CMDIFrame.

IsReBarSupported BOOL	IsReBarSupported()	const;

Returns	TRUE	if	the	rebar	can	be	used.

IsReBarUsed BOOL	IsReBarUsed()	const;

Returns	TRUE	if	the	frame	is	using	a	rebar	control.

Overridables

These	functions	should	not	be	called	directly.		The	framework	will	call	these
functions	as	required.

CustomDrawToolBar virtual	LRESULT	CustomDrawToolBar(NMHDR*	pNMHDR);

Draws	the	ToolBar.

DrawReBarBkgnd
virtual	BOOL	DrawReBarBkgnd(CDC*	pDC,	CReBar*	pReBar);

Draws	the	ReBar	background	when	ReBar	themes	are	enabled.	Returns	TRUE	when	the	default
background	drawing	is	suppressed.

DrawStatusBarBkgnd
virtual	BOOL	DrawStatusBarBkgnd(CDC*	pDC,	CStatusBar*	pStatusBar);

Draws	the	StatusBar	background	when	StatusBar	themes	are	enabled.	Returns	TRUE	when	the
default	background	drawing	is	suppressed.

LoadRegistrySettings

virtual	BOOL	LoadRegistrySettings(LPCTSTR	szKeyName);

Loads	settings	for	the	application	from	the	registry.	By	default	this	loads
the	size	and	position	of	the	frame	window,	and	the	view	state	of	the
StatusBar	and	ToolBar.	Override	this	function	to	load	other	settings	from
the	registry.

OnActivate virtual	void	OnActivate(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	frame	window	is	activated.

OnClose virtual	void	OnClose();



Called	when	the	frame	window	is	closed.

OnCreate
virtual	void	OnCreate();

Called	when	the	frame	window	is	created.		This	creates	the	toolbar	and	status	bar.	Override	this
function	in	the	derived	class	to	customise	the	frame's	creation.

OnCustromDraw virtual	LRESULT	OnCustomDraw(LPNMHDR	pNMHDR);

Called	when	the	frame	receives	a	Custom	Draw	notification.

OnDestroy virtual	void	OnDestroy();

Called	when	the	frame	window	is	about	to	be	destroyed.

OnDrawItem virtual	LRESULT	OnDrawItem(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	frame	performs	owner-drawing	of	controls	or	menus.

OnExitMenuLoop virtual	void	OnExitMenuLoop();

Called	then	a	popup	menu	modal	loop	has	exited.

OnHelp virtual	LRESULT	OnHelp();

Called	when	the	F1	key	is	pressed.	It	displays	the	help	dialog.

OnInitMenuPopup virtual	void	OnInitMenuPopup(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	popup	menu	belonging	to	the	frame	is	about	to	be	displayed.

OnInitialUpdate
virtual	void	OnInitialUpdate();

Override	this	function	to	specify	what	happens	after	the	frame	window	and	all	child	windows	are
created.

OnMeasureItem virtual	LRESULT	OnMeasureItem(WPARAM	wParam,	LPARAM	lParam);

Called	when	when	the	size	of	an	owner	drawn	control	or	menu	is	required.

OnMenuChar
virtual	LRESULT	OnMenuChar(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	menu	mnemonic	character	that	doesn’t	match	any	of	the	predefined	mnemonics	in
the	current	menu	is	pressed.

OnMenuSelect virtual	void	OnMenuSelect(WPARAM	wParam,	LPARAM	lParam);

Updates	the	status	bar	when	a	menu	item	is	selected.

OnNotify virtual	LRESULT	OnNotify(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	frame	receives	a	notification	by	way	of	a	WM_NOTIFY	message.



OnSetFocus
virtual	void	OnSetFocus();

Called	when	the	frame	gets	keyboard	focus.

OnRBNHeightChange virtual	LRESULT	OnRBNHeightChange(LPNMHDR	pNMHDR);

Called	when	the	height	of	the	ReBar	has	changed.

OnRBNLayoutChanged virtual	LRESULT	OnRBNLayoutChanged(LPNMHDR	pNMHDR);

Called	when	the	layout	of	the	ReBar	has	changed.

OnRBNMinMax virtual	LRESULT	OnRBNMinMax(LPNMHDR	pNMHDR);

Called	when	a	ReBar	band	is	about	to	be	maximized	or	minimized.

OnSysColorChange virtual	void	OnSysColorChange();

Called	when	the	system	colours	are	changed,	perhaps	in	response	to	changing	the	system's	theme.

OnSysCommand

virtual	void	OnSysCommand();

Called	when	the	user	chooses	a	command	from	the	Window	menu	(formerly	known	as	the	system
or	control	menu)	or	when	the	user	chooses	the	maximize	button,	minimize	button,	restore	button,
or	close	button.

OnTimer virtual	void	OnTimer(WPARAM	wParam);

Called	at	regular	intervals	to	update	the	status	bar.

OnTBNDropDown virtual	LRESULT	OnTBNDropDown(LPNMTOOLBAR	pNMTB);

Called	when	the	user	clicks	a	drop	down	button	on	a	ToolBar

OnTTNGetDispInfo virtual	LRESULT	OnTTNGetDispInfo(LPNMTTDISPINFO	pNMTDI);

Called	when	a	ToolTip	notification	is	recieved.

OnUndocked virtual	LRESULT	OnUndocked();

Called	when	a	child	window	has	been	undocked.

OnViewStatusBar virtual	void	OnViewStatusBar();

Called	when	the	StatusBar	is	to	be	displayed	or	hidden.

OnViewToolBar virtual	void	OnViewToolBar();

Called	when	the	toolbar	is	to	be	displayed	or	hidden.

PreCreate virtual	void	PreCreate(CREATESTRUCT&	cs);



Sets	the	window	parameters	specified	in	CREATESTRUCT	prior	to	window	creation.

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Sets	the	window	class	parameters	specified	in	WNDCLASS	prior	to	window	creation.

PreTranslateMessage
virtual	BOOL	PreTranslateMessage(MSG*	pMsg);

Used	to	translate	window	messages	before	they	are	dispatched	to	the	TranslateMessage	and
DispatchMessage	Windows	functions.

SaveRegistrySettings
virtual	BOOL	SaveRegistrySettings();

Saves	settings	for	the	application	to	the	registry.	By	default	this	saves	the	size	and	position	of	the
frame	window.	Override	this	function	to	save	other	settings	to	the	registry.

SetupToolBar
virtual	void	SetupToolBar();

Override	this	function	to	assign	resource	IDs	to	toolbar	buttons	using	the	AddToolBarButton
function.	All	other	toolbar	configuration	can	be	specified	in	this	function	as	well.

SetTheme virtual	void	SetTheme();

Sets	the	theme	used	when	menu	items	are	selected.

Operations

AddMenuBarBand virtual	void	AddMenuBarBand();

Adds	a	menubar	to	the	rebar.

AddMenuIcon virtual	BOOL	AddMenuIcon(int	nID_MenuItem,	HICON	hIcon);

Adds	an	icon	to	be	used	on	drop	down	menu	items	from	the	supplied	icon.

AddMenuIcons AddMenuIcons(const	std::vector<UINT>&	MenuData,	COLORREF	crMask,	UINT	ToolBarID,	UINT	ToolBarDisabledID);

Adds	a	set	of	icons	to	be	used	on	drop	down	menu	items	from	the	supplied	bitmap	IDs.

AddMRUEntry virtual	void	AddMRUEntry(LPCTSTR	szMRUEntry);

Adds	the	specified	text	to	the	Most	Recently	Used	list.

AddToolBarBand virtual	void	AddToolBarBand(CToolBar*	pTB,	DWORD	dwStyle,	UINT	nID);

Adds	a	toolbar	to	the	rebar.

AddToolBarButton virtual	void	AddToolBarButton(UINT	nID,	BOOL	bEnabled	=	TRUE,	LPCTSTR	szText	=	0,	int	iImage	=	-1);

Adds	a	button	to	the	ToolBar.



AdjustFrameRect
virtual	void	AdjustFrameRect(RECT	rcView)	const;

Adds	a	resource	ID	to	the	set	used	by	the	toolbar,	and	specifies	if	the	button	is	initially	disabled.

CreateToolBar virtual	void	CreateToolBar();

Create's	the	frame's	ToolBar.

DrawMenuItem virtual	void	DrawMenuItem(LPDRAWITEMSTRUCT	pdis);

Draws	the	icon	on	drop	down	menu	items.

DrawMenuItemBkgnd virtual	void	DrawMenuItemBkgnd(LPDRAWITEMSTRUCT	pdis);

Draws	the	icon	on	drop	down	menu	items.

DrawMenuItemCheckmark virtual	void	DrawMenuItemCheckmark(LPDRAWITEMSTRUCT	pdis);

Draws	the	check	marks	on	drop	down	menu	items.

DrawMenuItemIcon virtual	void	DrawMenuItemIcon(LPDRAWITEMSTRUCT	pdis);

Draws	the	icon	on	drop	down	menu	items.

DrawMenuItemText DrawMenuItemText(LPDRAWITEMSTRUCT	pdis);

Draws	the	text	on	drop	down	menu	items.

LoadRegistryMRUSettings virtual	BOOL	LoadRegistryMRUSettings(UINT	nMaxMRU	=	0);

Loads	a	list	of	Most	Recently	Used	files	from	the	registry.

MeasureMenuItem virtual	void	MeasureMenuItem(MEASUREITEMSTRUCT	*pmis);

Calculates	the	required	size	of	the	menu	item	when	performing	owner	drawing.

RecalcLayout virtual	void	RecalcLayout();

Repositions	the	child	windows	of	the	frame,	such	as	the	toolbar,	status	bar	and	view	window.

RemoveMRUEntry virtual	void	RemoveMRUEntry(LPCTSTR	szMRUEntry);

Removes	the	specified	text	from	the	Most	Recently	Used	list.

SetMenuBarBandSize virtual	void	SetMenuBarBandSize();

Adjusts	the	size	of	the	MenuBar	when	the	frame	is	resized.

SetMenuIcons virtual	UINT	SetMenuIcons(const	std::vector<UINT>&	MenuData,	COLORREF	crMask,	UINT	ToolBarID,	UINT	ToolBarDisabledID);

Replaces	the	set	of	icons	to	be	used	on	drop	down	menu	icons	from	the	supplied	bitmap	IDs.



SetStatusIndicators virtual	void	SetStatusIndicators();

Updates	the	status	bar	with	changes	to	the	CAPS,	NUM	LOCK,	and	SCRL	indicators.

SetStatusText virtual	void	SetStatusText();

Sets	the	text	of	the	status	bar.

SetTBImageList virtual	void	SetTBImageList(CToolBar*	pToolBar,	CImageList*	pImageList,	UINT	nID,	COLORREF	crMask);

Sets	the	image	list	for	the	specified	ToolBar.

SetTBImageListDis virtual	void	SetTBImageListDis(CToolBar*	pToolBar,	CImageList*	pImageList,	UINT	nID,	COLORREF	crMask);

Sets	the	disabled	image	list	for	the	specified	ToolBar.

SetTBImageListHot virtual	void	SetTBImageListHot(CToolBar*	pToolBar,	CImageList*	pImageList,	UINT	nID,	COLORREF	crMask);	

Sets	the	hot	disabled	image	list	for	the	specified	ToolBar.

SetToolBarImages virtual	void	SetToolBarImages(COLORREF	crMask,	UINT	ToolBarID,	UINT	ToolBarHotID,	UINT	ToolBarDisabledID);

Sets	the	image	lists	for	the	toolbar	from	the	specified	bitmap	IDs.

ShowMenu virtual	void	ShowMenu(BOOL	bShow);

Show	or	hide	the	menu.

ShowStatusBar virtual	void	ShowStatusBar(BOOL	bShow);

Show	or	hide	the	statusbar.

ShowToolBar virtual	void	ShowToolBar(BOOL	bShow);

Show	or	hide	the	toolbar.

UpdateMRUMenu virtual	void	UpdateMRUMenu();

Updates	the	menu	to	display	the	MRU	entries	added	by	the	AddMRUEntry	function.

Member	Variables

m_ShowCmd
DWORD	m_ShowCmd;	

The	initial	show	state	of	the	frame,	loaded	from	the	registry.	It	is	set	to	either
SW_MAXIMIZE	or	SW_SHOW.

m_UseIndicatorStatus BOOL	m_UseIndicatorStatus;	

Set	to	TRUE	to	see	indicators	in	status	bar



m_UseMenuStatus
BOOL	m_UseMenuStatus;

Set	to	TRUE	to	see	menu	and	toolbar	updates	in	status	bar.

m_UseReBar BOOL	m_UseReBar;

Set	to	TRUE	if	ReBars	are	to	be	used.

m_UseThemes BOOL	m_UseThemes;

Set	to	TRUE	if	themes	are	to	be	used.

m_UseToolBar BOOL	m_UseToolBar;

Set	to	TRUE	if	the	toolbar	is	used

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CDocker.

Remarks

Refer	to	the	Frames	section	for	information	on	how	to	use	this	class	to	create
frames.

Summary	Information

Header	file frame.h
Win32/64
support Yes

WinCE	support No
Library	required Comctl32.lib



CGDIObject	Class

Description

This	is	the	class	that	CBitmap,	CBrush,	CFont,	CPalette,	CPen,	and	CRgn	inherit	from.

CGDIObject	Members

Initialisation	and	Assignment

CGDIObject CGDIObject();

Constructor	for	CGDIObject.
CGDIObject
CGDIObject(const	CGDIObject&	rhs);

Constructor	for	CGDIObject	that	creates	a	copy.	CGDIObjects	are	reference	counted,	and	each	copy

manages	the	same	underlying	HGDIOBJ.	Attach
void	Attach(HGDIOBJ	hObject);

Attaches	a	GDI	HANDLE	to	the	CGDIObject.	The	HGDIOBJ	will	be	automatically	deleted	when	the

destructor	is	called	unless	it	is	detached.	Detach
HGDIOBJ	Detach();

Detaches	the	HGDIOBJ	from	this	object.	GetHandle

HGDIOBJ	GetHandle()	const;

Returns	the	GDI	handle	(HGDIOBJ)	associated	with	this	object.	GetObject

int	GetObject(int	nCount,	LPVOID	pObject)	const;

Retrieves	information	for	the	specified	graphics	object.	operator	=
void	operator	=	(HGDIOBJ	hObject);

Assigns	a	HGDIOBJ	to	the	CGDIObject.	operator	=



CGDIObject&	operator	=	(	const	CGDIObject&	rhs	);

Creates	a	copy	of	the	CGDIObject.	CGDIObjects	are	reference	counted,	and	each	copy	manages	the	same
underlying	HGDIOBJ.

Remarks

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file file.h
Win32/64
support Yes

WinCE	support Yes



CHeader	Class

Description

The	CHeader	class	adds	support	for	the	header	control.	A	header	control	is	a	window	that	is	usually
positioned	above	columns	of	text	or	numbers.	It	contains	a	title	for	each	column,	and	it	can	be	divided	into
parts.	The	user	can	drag	the	dividers	that	separate	the	parts	to	set	the	width	of	each	column.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	animation	controls.	

CHeader	Members

Construction

CHeader
CHeader();

Constructs	a	header	control.			Attributes	GetBitmapMargin
int	GetBitmapMargin()	const;

Gets	the	width	of	the	bitmap	margin	for	a	header	control.	GetImageList
HIMAGELIST	GetImageList()	const;

Gets	the	handle	to	the	image	list	that	has	been	set	for	the	header	control.	GetItem
BOOL	GetItem(int	nPos,	HDITEM*	pHeaderItem)	const;

Gets	information	about	an	item	in	a	header	control.	GetItemCount
int	GetItemCount()	const;

Gets	a	count	of	the	items	in	a	header	control.	GetItemRect
CRect	GetItemRect(int	nIndex)	const;

Gets	the	bounding	rectangle	for	a	given	item	in	a	header	control.	GetOrderArray



BOOL	GetOrderArray(LPINT	piArray,	int	iCount);

Gets	the	current	left-to-right	order	of	items	in	a	header	control.	OrderToIndex
int	OrderToIndex(int	nOrder)	const;

Retrieves	an	index	value	for	an	item	based	on	its	order	in	the	header	control.	SetBitmapMargin
int	SetBitmapMargin(int	nWidth);

Sets	the	width	of	the	margin,	specified	in	pixels,	of	a	bitmap	in	the	header	control.	SetImageList
HIMAGELIST	SetImageList(HIMAGELIST	himl);

Assigns	an	image	list	to	the	header	control.	SetItem
BOOL	SetItem(int	nPos,	HDITEM*	pHeaderItem);

Sets	the	attributes	of	the	specified	item	in	a	header	control..	SetOrderArray
BOOL	SetOrderArray(int	iCount,	LPINT	piArray);

Sets	the	left-to-right	order	of	header	items.			Operations	ClearAllFilters
int	ClearAllFilters();

Clears	all	of	the	filters	for	the	header	control.	ClearFilter
int	ClearFilter(int	nColumn);

Clears	the	filter	for	the	header	control	CreateDragImage
HIMAGELIST	CreateDragImage(int	nIndex);

Creates	a	transparent	version	of	an	item	image	within	the	header	control.	DeleteItem
BOOL	DeleteItem(int	nPos);

Deletes	an	item	from	the	header	control.	EditFilter
int	EditFilter(int	nColumn,	BOOL	bDiscardChanges);

Moves	the	input	focus	to	the	edit	box	when	a	filter	button	has	the	focus.	InsertItem
int	InsertItem(int	nPos,	HDITEM*	phdi);



Inserts	a	new	item	into	the	header	control.	Layout
BOOL	Layout(HDLAYOUT*	pHeaderLayout);

Retrieves	the	correct	size	and	position	of	the	header	control	within	the	parent	window.

SetFilterChangeTimeout
int	SetFilterChangeTimeout(DWORD	dwTimeOut);

Sets	the	timeout	interval	between	the	time	a	change	takes	place	in	the	filter	attributes	and	the	posting	of	an

HDN_FILTERCHANGE	notification.	SetHotDivider
int	SetHotDivider(CPoint	pt);

int	SetHotDivider(int	nIndex);

Changes	the	color	of	a	divider	between	header	items	to	indicate	the	destination	of	an	external	drag-and-drop

operation.			Overridables	PreRegisterClass
virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

A	header	control	can	be	created	as	a	child	window	of	another	control,	such	as	a
list	box.	However,	the	parent	control	is	not	aware	of	the	header	control	and	does
not	allow	for	the	space	taken	up	by	the	header,	with	the	result	that	list	items	will
appear	behind	the	header.	If	you	wish	to	use	a	header	control	in	a	list	box	or
other	control,	the	parent	control	must	be	owner-drawn	so	that	all	items	are
displayed	in	the	correct	position.

List	view	controls	already	have	header	controls.	Instead	of	creating	a	header
control	for	a	list	view,	you	use	LVM_GETHEADER	or	ListView_GetHeader	to
retrieve	the	existing	control.

Summary	Information

Header	file controls.h



Win32/64
support

Yes

WinCE	support Yes
Library	required Comctl32.lib



CHotKey	Class

Description

The	CHotKey	class	adds	support	for	the	hot	key	control.	A	hot	key	control	is	a	window	that	enables	the	user
to	enter	a	combination	of	keystrokes	to	be	used	as	a	hot	key.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	animation	controls.	

CHotKey	Members

CHotKey CHotKey();

Constructs	a	hot	key	control.
GetHotKey
DWORD	GetHotKey()	const;

Gets	the	virtual	key	code	and	modifier	flags	of	a	hot	key	from	the	hot	key	control.	GetKeyName
CString	GetKeyName(UINT	vk,	BOOL	fExtended)	const;

Translates	the	virtual-key	code	to	a	scan	code.	SetHotKey
void	SetHotKey(DWORD	dwKey);

PSets	the	hot	key	combination	for	a	hot	key	control.	SetRules
void	SetRules(WORD	wInvalidComb,	WORD	wModifiers);

Defines	the	invalid	combinations	and	the	default	modifier	combination	for	a	hot	key	control.		
Overridables	PreRegisterClass
virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members



For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

A	hot	key	is	a	key	combination	that	the	user	can	press	to	perform	an	action	quickly.	For	example,	a	user	can
create	a	hot	key	that	activates	a	given	window	and	brings	it	to	the	top	of	the	z-order.	The	hot	key	control
displays	the	user's	choices	and	ensures	that	the	user	selects	a	valid	key	combination.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CImageList	Class

Description

The	CImageList	class	adds	support	for	the	image	lists.	An	image	list	is	a	collection	of	images	of	the	same
size,	each	of	which	can	be	referred	to	by	its	index.	Image	lists	are	used	to	efficiently	manage	large	sets	of
icons	or	bitmaps.	All	images	in	an	image	list	are	contained	in	a	single,	wide	bitmap	in	screen	device	format.
An	image	list	can	also	include	a	monochrome	bitmap	that	contains	masks	that	are	used	to	draw	images
transparently.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	image	lists.	

CImageList	Members

CImageList CImageList();

Constructs	a	CImageList.
Add
int	Add(CBitmap*	pbmImage,	CBitmap*	pbmMask)	;

int	Add(CBitmap*	pbmImage,	COLORREF	crMask);

int	Add(HICON	hIcon);

Adds	an	image	or	images	to	an	image	list.	Attach
void	Attach(HIMAGELIST	hImageList);

Attaches	an	existing	image	list	to	this	CImageList.	BeginDrag

int	Add(CBitmap*	BOOL	BeginDrag(int	nImage,	CPoint	ptHotSpot)	const;,	CBitmap*	pbmMask)	;

Begins	dragging	an	image.	Create
BOOL	Create(int	cx,	int	cy,	UINT	nFlags,	int	nInitial,	int	nGrow);

BOOL	Create(UINT	nBitmapID,	int	cx,	int	nGrow,	COLORREF	crMask);

BOOL	Create(LPCTSTR	lpszBitmapID,	int	cx,	int	nGrow,	COLORREF	crMask);



BOOL	Create(CImageList*	pImageList);

Creates	the	image	list	and	assigns	it	to	the	CImageList.	CreateDisabledImageList

HIMAGELIST	CreateDisabledImageList(	HIMAGELIST	himlNormal	);

Creates	a	gray	scale	image	list	from	the	specified	color	image	list.	DeleteImageList
void	DeleteImageList();

Destroys	the	image	list.	Detach
HIMAGELIST	Detach();

Detaches	the	HIMAGELIST	from	this	CImageList.	If	the	HIMAGELIST	is	not	detached	it	will	be

destroyed	when	this	CImageList	is	deconstructed.	DragEnter
BOOL	DragEnter(CWnd*	pWndLock,	CPoint	point)	const;

Displays	the	drag	image	at	the	specified	position	within	the	window.	DragLeave
BOOL	DragLeave(CWnd*	pWndLock)	const;

Unlocks	the	specified	window	and	hides	the	drag	image,	allowing	the	window	to	be	updated.

DragMove
BOOL	DragMove(CPoint	pt)	const;

Moves	the	image	that	is	being	dragged	during	a	drag-and-drop	operation.	This	function	is	typically	called	in

response	to	a	WM_MOUSEMOVE	message.	DragShowNolock
BOOL	DragShowNolock(BOOL	bShow)	const;

Shows	or	hides	the	drag	image	during	a	drag	operation,	without	locking	the	window.	Draw
BOOL	Draw(CDC*	pDC,	int	nImage,	POINT	pt,	UINT	nStyle)	const;

Draws	an	image	list	item	in	the	specified	device	context.	DrawEx
BOOL	DrawEx(CDC*	pDC,	int	nImage,	POINT	pt,	SIZE	sz,	COLORREF	clrBk,	COLORREF	clrFg,	UINT	nStyle)	const;

Draws	an	image	list	item	in	the	specified	device	context.	The	function	uses	the	specified	drawing	style	and

blends	the	image	with	the	specified	color.	DrawIndirect
BOOL	DrawIndirect(IMAGELISTDRAWPARAMS*	pimldp);



Draws	an	image	list	image	based	on	an	IMAGELISTDRAWPARAMS	structure.	FromHandle
static	CImageList*	FromHandle(HIMAGELIST	hImageList);

Returns	the	CImageList	associated	with	the	specified	image	list	handle.	If	a	CImageList	object	doesn't
already	exist,	a	temporary	CImageList	object	is	created.	This	temporary	CImageList	will	be	deleted

sometime	after	the	processing	of	the	current	message	is	complete..	GetIcon
HICON	GetIcon(int	iImage,	UINT	nFlags)	const;

Creates	an	icon	from	an	image	and	mask	in	an	image	list.	GetIcon
HICON	GetIcon(int	iImage,	UINT	nFlags)	const;

Creates	an	icon	from	an	image	and	mask	in	an	image	list.	GetIconSize
BOOL	GetIconSize(int*	cx,	int*	cy)	const;

Retrieves	the	dimensions	of	images	in	an	image	list.	GetImageCount
int	GetImageCount()	const;

Retrieves	the	number	of	images	in	an	image	list.	GetImageInfo
BOOL	GetImageInfo(int	nImage,	IMAGEINFO*	pImageInfo)	const;

Retrieves	information	about	an	image.	Remove
BOOL	Remove(int	nImage)	const;

Removes	an	image	from	an	image	list.	Replace
BOOL	Replace(int	nImage,	CBitmap*	pbmImage,	CBitmap*	pbmMask)	const;

int	Replace(int	nImage,	HICON	hIcon)	const;

Replaces	an	image	in	an	image	list	with	a	new	image.	operator	HIMAGELIST
operator	HIMAGELIST	()	const;

Retrieves	the	image	list's	handle.

Remarks

A	CImageList	object	will	automatically	destroy	the	image	list	associated	with	it



when	its	destructor	is	called.	Detach	the	HIMAGELIST	if	you	don't	want	it
destroyed	when	the	CImageList	object	goes	out	of	scope.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CIPAddress	Class

Description

The	CIPAddress	class	adds	support	for	the	IP	Address	control.	An	Internet	Protocol	(IP)	address	control
allows	the	user	to	enter	an	IP	address	in	an	easily	understood	format.	This	control	also	allows	the
application	to	obtain	the	address	in	numeric	form	rather	than	in	text	form.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	IP	Address	controls.	

CIPAddress	Members

CIPAddressCIPAddress();

Constructs	the	IP	address	control.
ClearAddress
void	ClearAddress();

Clears	the	contents	of	the	IP	address	control.	GetAddress
int	GetAddress(BYTE&	nField0,	BYTE&	nField1,	BYTE&	nField2,	BYTE&	nField3);

int	GetAddress(DWORD*	dwAddress);

Gets	the	address	values	for	all	four	fields	in	the	IP	address	control.	IsBlank
BOOL	IsBlank()	const;

Determines	if	all	fields	in	the	IP	address	control	are	blank.	SetAddress
void	SetAddress(BYTE	nField0,	BYTE	nField1,	BYTE	nField2,	BYTE	nField3);

void	SetAddress(DWORD	dwAddress);

Sets	the	address	values	for	all	four	fields	in	the	IP	address	control.	SetFieldFocus
void	SetFieldFocus(WORD	nField);

Sets	the	keyboard	focus	to	the	specified	field	in	the	IP	address	control.	All	of	the	text	in	that	field	will	be



selected.	SetFieldRange
void	SetFieldRange(int	nField,	BYTE	nLower,	BYTE	nUpper);

Sets	the	valid	range	for	the	specified	field	in	the	IP	address	control.			Overridables
PreRegisterClass
virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

An	IP	address	control	is	not	an	edit	control	and	it	will	not	respond	to	EM_
messages.	It	will,	however,	send	the	owner	window	the	following	edit	control
notifications	through	the	WM_COMMAND	message.	Note	that	the	IP	address
control	will	also	send	private	IPN_	notifications	through	the	WM_NOTIFY
message.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CListBox	Class

Description

The	ListBox	control	displays	a	list	of	text	or	iconic	items.	One	or	multiple	items	can	be	selected	from	the
list.

CListBox	is	the	class	responsible	for	creating	a	list-box	control.		It	is	typically	used	in	a	dialog.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	list	box	controls.

CListBox	Members

Construction

CListBox CListBox();

Constructor	for	CListBox.

Attributes

GetAnchorIndex int	GetAnchorIndex()	const;

Returns	the	index	of	the	item	that	the	mouse	last	selected.

GetCaretIndex int	GetCaretIndex()	const;

Returns	the	index	of	the	item	that	has	the	focus	rectangle.

GetCount int	GetCount()	const;

Returns	the	number	of	items	in	the	list	box.

GetCurSel int	GetCurSel()	const;

Returns	the	index	of	the	currently	selected	item.

GetHorizontalExtent int	GetHorizontalExtent()	const;

Returns	the	scrollable	width,	in	pixels,	of	a	list	box.



GetItemData
DWORD	GetItemData(int	nIndex)	const;

Returns	the	value	associated	with	the	specified	item.

GetItemDataPtr void*	GetItemDataPtr(int	nIndex)	const;

Returns	the	value	associated	with	the	specified	item.

GetItemHeight int	GetItemHeight(int	nIndex)	const;

Returns	the	height,	in	pixels,	of	an	item	in	a	list	box.

GetItemRect int	GetItemRect(int	nIndex,	LPRECT	lpRect)	const;

Retrieves	the	client	coordinates	of	the	specified	list	box	item.

GetLocale
LCID	GetLocale()	const;

Retrieves	the	locale	of	the	list	box.	The	high-order	word	contains	the	country/region
code	and	the	low-order	word	contains	the	language	identifier.

GetSel int	GetSel(int	nIndex)	const;

Returns	the	selection	state	of	a	list	box	item.

GetSelCount int	GetSelCount()	const;

Returns	the	number	of	selected	items	in	a	multiple-selection	list	box.

GetSelItems
int	GetSelItems(int	nMaxItems,	LPINT	rgIndex)	const;

Creates	an	array	of	the	indexes	of	all	selected	items	in	a	multiple-selection	list	box
and	returns	the	total	number	of	selected	items.

GetText int	GetText(int	nIndex,	LPTSTR	lpszBuffer)	const;

Retrieves	the	string	associated	with	a	specified	item	and	the	length	of	the	string.

GetTextLen int	GetTextLen(int	nIndex)	const;

Returns	the	length,	in	characters,	of	the	string	associated	with	a	specified	item.

GetTopIndex int	GetTopIndex()	const;

Returns	the	index	of	the	first	visible	item	in	a	list	box.

SetAnchorIndex void	SetAnchorIndex(int	nIndex)	const;

Sets	the	item	that	the	mouse	last	selected	to	a	specified	item.

SetCaretIndex
int	SetCaretIndex(int	nIndex,	BOOL	bScroll)	const;



Sets	the	focus	rectangle	to	a	specified	list	box	item.

SetColumnWidth void	SetColumnWidth(int	cxWidth)	const;

Sets	the	width,	in	pixels,	of	all	columns	in	a	list	box.

SetCurSel int	SetCurSel(int	nSelect)	const;

Selects	a	specified	list	box	item.

SetHorizontalExtent void	SetHorizontalExtent(int	cxExtent)	const;

Sets	the	scrollable	width,	in	pixels,	of	a	list	box.

SetItemData int	SetItemData(int	nIndex,	DWORD	dwItemData)	const;

Associates	a	value	with	a	list	box	item.

SetItemDataPtr
int	SetItemDataPtr(int	nIndex,	void*	pData)	const;

Sets	the	32-bit	value	associated	with	the	specified	item	in	a	list	box	to	be	the	specified
pointer.

SetItemHeight int	SetItemHeight(int	nIndex,	UINT	cyItemHeight)	const;

Sets	the	height,	in	pixels,	of	an	item	or	items	in	a	list	box.

SetLocale LCID	SetLocale(LCID	nNewLocale)	const;

Sets	the	locale	of	a	list	box	and	returns	the	previous	locale	identifier.

SetSel int	SetSel(int	nIndex,	BOOL	bSelect)	const;

Selects	an	item	in	a	multiple-selection	list	box.

SetTabStops

SetTabStops(int	nTabStops,	LPINT	rgTabStops)	const;

BOOL	SetTabStops(const	int&	cxEachStop)	const;

BOOL	SetTabStops()	const;

Sets	the	tab	stops	to	those	specified	in	a	specified	array.

SetTopIndex int	SetTopIndex(int	nIndex)	const;

Scrolls	the	list	box	so	the	specified	item	is	at	the	top	of	the	visible	range.

Operations

int	AddString(LPCTSTR	lpszItem)	const;



AddString Adds	a	string	to	a	list	box	and	returns	its	index.

DeleteString int	DeleteString(UINT	nIndex)	const;

Removes	a	string	from	a	list	box	and	returns	the	number	of	strings	remaining	in	the	list.

Dir int	Dir(UINT	attr,	LPCTSTR	lpszWildCard)	const;

Adds	a	list	of	filenames	to	a	list	box	and	returns	the	index	of	the	last	filename	added.

FindString int	FindString(int	nStartAfter,	LPCTSTR	lpszItem)	const;

Returns	the	index	of	the	first	string	in	the	list	box	that	begins	with	a	specified	string.

FindStringExact int	FindStringExact(int	nIndexStart,	LPCTSTR	lpszFind)	const;

Returns	the	index	of	the	string	in	the	list	box	that	is	equal	to	a	specified	string.

InsertString int	InsertString(int	nIndex,	LPCTSTR	lpszItem)	const;

Inserts	a	string	at	a	specified	index	in	a	list	box.

ItemFromPoint UINT	ItemFromPoint(CPoint	pt,	BOOL&	bOutside	)	const;

Retrieves	the	zero-based	index	of	the	item	nearest	the	specified	point	in	a	list	box.

ResetContent void	ResetContent()	const;

Removes	all	items	from	a	list	box.

SelectString int	SelectString(int	nStartAfter,	LPCTSTR	lpszItem)	const;

Selects	the	first	string	it	finds	that	matches	a	specified	prefix.

SelItemRange int	SelItemRange(BOOL	bSelect,	int	nFirstItem,	int	nLastItem)	const;

Selects	a	specified	range	of	items	in	a	list	box.

Overidables

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.



Remarks

Like	all	common	controls,	the	ListBox	control	requires	a	parent	window.	This	parent	window	is	often	a
dialog,	but	simple	windows	can	also	be	the	parent	window	for	a	ListBox	control.

List	box	items	can	be	represented	by	text	strings,	bitmaps,	or	both.	If	the	list	box
is	not	large	enough	to	display	all	the	list	box	items	at	once,	the	list	box	provides
a	scroll	bar.	The	user	scrolls	through	the	list	box	items,	and	applies	or	removes
selection	status	as	necessary.	Selecting	a	list	box	item	changes	its	visual
appearance,	usually	by	changing	the	text	and	background	colors	to	those
specified	by	the	relevant	operating	system	metrics.	When	the	user	selects	or
deselects	an	item,	the	system	sends	a	notification	message	to	the	parent	window
of	the	list	box.

Summary	Information

Header	file stdcontrols.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CListView	Class

Description

A	list-view	control	is	a	window	that	displays	a	collection	of	items.	Each	item	consists	of	an	icon	and	a	label.
List-view	controls	provide	several	ways	to	arrange	and	display	items.	For	example,	additional	information
about	each	item	can	be	displayed	in	columns	to	the	right	of	the	icon	and	label.

CListView	is	the	class	responsible	for	creating	a	list-view	control.		It	can	be	used	as	a	control	in	a	Dialog,	or
as	the	View	window	in	a	Frame,	Docker,	or	MDI	child.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	list	view	controls.

CListView	Members

Construction

CListView CListView()	const;

Constructor	for	CListView.

Attributes

ApproximateViewRect CSize	ApproximateViewRect(CSize	sz	=	CSize(-1,	-1),	int	iCount	=	-1)	const;

Calculates	the	approximate	width	and	height	required	to	display	a	given	number	of	items.

GetBkColor COLORREF	GetBkColor(	)	const;

Retrieves	the	background	color	of	a	list-view	control.

GetBkImage BOOL	GetBkImage(	LVBKIMAGE&	lvbkImage	)	const;

Retrieves	the	background	image	in	a	list-view	control.

GetCallbackMask UINT	GetCallbackMask(	)	const;

Retrieves	the	callback	mask	for	a	list-view	control.

BOOL	GetCheckState(	UINT	nItem	)	const;



GetCheckState Determines	if	an	item	in	a	list-view	control	is	selected.

GetColumn BOOL	GetColumn(	int	iCol,	LVCOLUMN&	Column	)	const;

Retrieves	the	attributes	of	a	list-view	control's	column.

GetColumnOrderArray BOOL	GetColumnOrderArray(	LPINT	piArray,	int	iCount	=	-1	);

Retrieves	the	current	left-to-right	order	of	columns	in	a	list-view	control.

GetColumnWidth int	GetColumnWidth(	int	iCol	)	const;

Retrieves	the	width	of	a	column	in	report	or	list-view.

GetCountPerPage
int	GetCountPerPage(	)	const;

Calculates	the	number	of	items	that	can	fit	vertically	in	the	visible	area	of	a	list-view	control	when	in	
Only	fully	visible	items	are	counted.

GetEditControl HWND	GetEditControl(	)	const;

Retrieves	the	handle	to	the	edit	control	being	used	to	edit	a	list-view	item's	text.

GetExtendedStyle DWORD	GetExtendedStyle(	)	const;

Retrieves	the	extended	styles	that	are	currently	in	use	for	a	given	list-view	control.

GetHeader HWND	GetHeader(	)	const;

Retrieves	the	handle	to	the	header	control	used	by	a	list-view	control.

GetHotCursor HCURSOR	GetHotCursor(	);

Retrieves	the	HCURSOR	used	when	the	pointer	is	over	an	item	while	hot	tracking	is	enabled.

GetHotItem int	GetHotItem(	)	const;

Retrieves	the	index	of	the	hot	item.

GetHoverTime DWORD	GetHoverTime(	)	const;

Retrieves	the	amount	of	time	that	the	mouse	cursor	must	hover	over	an	item	before	it	is	

GetImageList CImageList*	GetImageList(	int	nImageType	)	const;

Retrieves	the	handle	to	an	image	list	used	for	drawing	list-view	items.

GetItem BOOL	GetItem(	LVITEM&	lvItem	)	const;

Retrieves	some	or	all	of	a	list-view	item's	attributes.



GetItemCount int	GetItemCount(	)	const;

Retrieves	the	number	of	items	in	a	list-view	control.

GetItemData DWORD_PTR	GetItemData(	int	iItem	)	const;

Retrieves	the	application	data	from	a	list-view's	item.

GetItemPosition BOOL	GetItemPosition(	int	iItem,	CPoint&	pt	)	const;

Retrieves	the	position	of	a	list-view	item.

GetItemRect BOOL	GetItemRect(	int	iItem,	CRect&	rc,	UINT	nCode	)	const;

Retrieves	the	bounding	rectangle	for	all	or	part	of	an	item	in	the	current	view.

GetItemState UINT	GetItemState(	int	iItem,	UINT	nMask	)	const;

Retrieves	the	state	of	a	list-view	item.

GetItemText CString	GetItemText(	int	iItem,	int	iSubItem,	UINT	nTextMax	=	260	)	const;

Retrieves	the	text	of	a	list-view	item	or	subitem.

GetNextItem int	GetNextItem(	int	iItem,	int	iFlags	)	const;

Searches	for	a	list-view	item	that	has	the	specified	properties	and	bears	the	specified	relationship	to	a	specified	item.

GetNumberOfWorkAreas UINT	GetNumberOfWorkAreas(	)	const;

Retrieves	the	number	of	working	areas	in	a	list-view	control.

GetOrigin BOOL	GetOrigin(	CPoint&	pt	)	const;

Retrieves	the	current	view	origin	for	a	list-view	control.

GetSelectedCount UINT	GetSelectedCount(	)	const;

Determines	the	number	of	selected	items	in	a	list-view	control.

GetSelectionMark int	GetSelectionMark(	);

Retrieves	the	selection	mark	from	a	list-view	control.

GetStringWidth int	GetStringWidth(	LPCTSTR	pszString	)	const;

Determines	the	width	of	a	specified	string	using	the	specified	list-view	control's	current	

GetSubItemRect
BOOL	GetSubItemRect(	int	iItem,	int	iSubItem,	int	iCode,	CRect&	rc	);

Retrieves	information	about	the	rectangle	that	surrounds	a	subitem	in	a	list-view	control.		This	
used	only	on	list-view	controls	that	use	the	LVS_REPORT	style.



GetTextBkColor COLORREF	GetTextBkColor(	)	const;

Retrieves	the	text	background	color	of	a	list-view	control.

GetTextColor COLORREF	GetTextColor(	)	const;

Retrieves	the	text	color	of	a	list-view	control.

GetToolTips CToolTip*	GetToolTips(	)	const;

Retrieves	the	ToolTip	control	that	the	list-view	control	uses	to	display	ToolTips.

GetTopIndex int	GetTopIndex(	)	const;

Retrieves	the	index	of	the	topmost	visible	item	when	in	list	or	report	view.

GetViewRect BOOL	GetViewRect(	CRect&	rc	)	const;

Retrieves	the	bounding	rectangle	of	all	items	in	the	list-view	control.

GetWorkAreas void	GetWorkAreas(	int	iWorkAreas,	LPRECT	pRectArray	)	const;

Retrieves	the	working	areas	from	a	list-view	control.

SetBkColor BOOL	SetBkColor(	COLORREF	clrBk	);

Sets	the	background	color	of	a	list-view	control.

SetBkImage BOOL	SetBkImage(	LVBKIMAGE&	plvbkImage	);

Sets	the	background	image	in	a	list-view	control.

SetCallbackMask BOOL	SetCallbackMask(	UINT	nMask	);

Changes	the	callback	mask	for	a	list-view	control.

SetCheckState void	SetCheckState(	int	iItem,	BOOL	fCheck	=	TRUE	);

Used	to	select	or	deselect	an	item	in	a	list-view	control.

SetColumn BOOL	SetColumn(	int	iCol,	const	LVCOLUMN&	pColumn	);

Sets	the	attributes	of	a	list-view	column.

SetColumnOrderArray BOOL	SetColumnOrderArray(	int	iCount,	LPINT	piArray	);

Sets	the	left-to-right	order	of	columns	in	a	list-view	control.

SetColumnWidth BOOL	SetColumnWidth(	int	iCol,	int	cx	);

Used	to	change	the	width	of	a	column	in	report	view	or	the	width	of	all	columns	in	list-view	



SetExtendedStyle DWORD	SetExtendedStyle(	DWORD	dwNewStyle	);

Sets	extended	styles	for	list-view	controls.

SetHotCursor
HCURSOR	SetHotCursor(	HCURSOR	hCursor	);

Sets	the	HCURSOR	that	the	list-view	control	uses	when	the	pointer	is	over	an	item	while	hot	tracking	
check	whether	or	not	hot	tracking	is	enabled,	call	SystemParametersInfo.

SetHotItem int	SetHotItem(	int	nIndex	);

Sets	the	hot	item	in	a	list-view	control.

SetHoverTime DWORD	SetHoverTime(	DWORD	dwHoverTime	=	(DWORD)-1	);

Sets	the	amount	of	time	that	the	mouse	cursor	must	hover	over	an	item	before	it	is	selected.

SetIconSpacing
CSize	SetIconSpacing(	int	cx,	int	cy	)	const;

CSize	SetIconSpacing(	CSize	sz	)	const;

Sets	the	spacing	between	icons	in	list-view	controls	set	to	the	LVS_ICON	style.

SetImageList CImageList*	SetImageList(	CImageList*	pNew,	int	iImageListType	)	const;

Assigns	an	image	list	to	a	list-view	control,	and	returns	the	old	image	list	(if	any).

SetItem

BOOL	SetItem(	LVITEM&	pItem	)	const;

BOOL	SetItem(	int	iItem,	int	iSubItem,	UINT	nMask,	LPCTSTR	pszText,	int	iImage,
														UINT	nState,	UINT	nStateMask,	LPARAM	lParam,	int	iIndent	)	const;

Sets	some	or	all	of	a	list-view	item's	attributes.

SetItemCount void	SetItemCount(	int	iCount	)	const;

Causes	the	list-view	control	to	allocate	memory	for	the	specified	number	of	items.

SetItemCountEx void	SetItemCountEx(	int	iCount,	DWORD	dwFlags	=	LVSICF_NOINVALIDATEALL	)	const;

Sets	the	virtual	number	of	items	in	a	virtual	list	view.

SetItemData BOOL	SetItemData(	int	iItem,	DWORD_PTR	dwData	)	const;

Sets	the	application	data	for	a	list-view's	item.

SetItemPosition BOOL	SetItemPosition(	int	iItem,	CPoint&	pt	)	const;

Moves	an	item	to	a	specified	position	in	a	list-view	control	(in	icon	or	small	icon	view).

SetItemState
BOOL	SetItemState(	int	iItem,	LVITEM&	Item	)	const;

void	SetItemState(	int	iItem,	UINT	nState,	UINT	nMask	)	const;



Changes	the	state	of	an	item	in	a	list-view	control.

SetItemText void	SetItemText(	int	iItem,	int	iSubItem,	LPCTSTR	pszText	)	const;

Changes	the	text	of	a	list-view	item	or	subitem.

SetSelectionMark int	SetSelectionMark(	int	iIndex	)	const;

Sets	the	selection	mark	in	a	list-view	control.

SetTextBkColor BOOL	SetTextBkColor(	COLORREF	clrBkText	)	const;

Sets	the	background	color	of	text	in	a	list-view	control.

SetTextColor BOOL	SetTextColor(	COLORREF	clrText	)	const;

Sets	the	text	color	of	a	list-view	control.

SetToolTips CToolTip*	SetToolTips	(	CToolTip*	pToolTip	)	const;

Sets	the	ToolTip	control	that	the	list-view	control	will	use	to	display	ToolTips.

SetWorkAreas void	SetWorkAreas(	int	nWorkAreas,	CRect&	pRectArray	)	const;

Sets	the	working	area	within	a	list-view	control.

SubItemHitTest int	SubItemHitTest(	LVHITTESTINFO&	htInfo	)	const;

Determines	which	list-view	item	or	subitem	is	located	at	a	given	position.

Operations

Arrange BOOL	Arrange(	UINT	nCode	)	const;

Arranges	items	in	icon	view.

CreateDragImage CImageList*	CreateDragImage(	int	iItem,	CPoint&	pt	)	const;

Creates	a	drag	image	list	for	the	specified	item.

DeleteAllItems BOOL	DeleteAllItems(	)	const;

Removes	all	items	from	a	list-view	control.

DeleteColumn BOOL	DeleteColumn(	int	iCol	)	const;

Removes	a	column	from	a	list-view	control.

BOOL	DeleteItem(	int	iItem	)	const;



DeleteItem Removes	an	item	from	a	list-view	control.

EditLabel HWnd	EditLabel(	int	iItem	)	const;

Begins	in-place	editing	of	the	specified	list-view	item's	text.	This	implicitly	selects	and	focuses	the	

EnsureVisible BOOL	EnsureVisible(	int	iItem,	BOOL	fPartialOK	)	const;

Ensures	that	a	list-view	item	is	either	entirely	or	partially	visible,	scrolling	the	list-view	control	if	

FindItem int	FindItem(	LVFINDINFO&	FindInfo,	int	iStart	=	-1	)	const;

Searches	for	a	list-view	item	with	the	specified	characteristics.

HitTest
int	HitTest(	LVHITTESTINFO&	HitTestInfo	)	const;

int	HitTest(	CPoint	pt,	UINT*	pFlags	=	NULL	)	const;

Determines	which	list-view	item,	if	any,	is	at	a	specified	position.

InsertColumn

int	InsertColumn(	int	iCol,	const	LVCOLUMN&	pColumn	)	const;

int	InsertColumn(	int	iCol,	LPCTSTR	pszColumnHeading,	int	iFormat	=	LVCFMT_LEFT,
																		int	iWidth	=	-1,	int	iSubItem	=	-1	)	const;

Inserts	a	new	column	in	a	list-view	control.

InsertItem

int	InsertItem(	const	LVITEM&	pItem	)	const;

int	InsertItem(	int	iItem,	LPCTSTR	pszText	)	const;

int	InsertItem(	int	iItem,	LPCTSTR	pszText,	int	iImage	)	const;

Inserts	a	new	item	in	a	list-view	control.

RedrawItems BOOL	RedrawItems(	int	iFirst,	int	iLast	)	const;

Forces	a	list-view	control	to	redraw	a	range	of	items.

Scroll BOOL	Scroll(	CSize	sz	)	const;

Scrolls	the	content	of	a	list-view	control.

SortItems
BOOL	SortItems(	PFNLVCOMPARE	pfnCompare,	DWORD_PTR	dwData	)	const;

Uses	an	application-defined	comparison	function	to	sort	the	items	of	a	list-view	control.	The	index	of	
to	reflect	the	new	sequence.

Update
BOOL	Update(	int	iItem	)	const;

Updates	a	list-view	item.	If	the	list-view	control	has	the	LVS_AUTOARRANGE	style,	this	macro	causes	the	list-view



control	to	be	arranged.

Overidables

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	list-view	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	list-view	control.

Refer	to	the	explorer	sample	to	see	a	demonstration	of	the	CListView	and
CTreeView	classes.

Summary	Information

Header	file listview.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CMDIChild	Class

Description

This	class	provides	a	child	window	for	MDI	(Multi	Document	Interface)	applications.		MDI	applications
are	capable	of	hosting	several	child	windows	within	a	frame.	

The	CMDIChild	class	inherits	much	of	its	default	implementation	from	CWnd,	and	adds	the	additional
functionality	required	for	MDI	applications.

CMDIChild	Members

CMDIChildCMDIChild();

Constructor	for	CMDIChild.
GetMDIFrame
CMDIFrame*	GetMDIFrame()	const;

Returns	a	pointer	to	the	MDI	Frame.	GetView
virtual	CWnd*	GetView()	const	{return	m_pView;}

Returns	a	pointer	to	the	MDI	Child's	view	window.

MDIActivate

void	MDIActivate()	const;

Activates	this	MDI	child.	MDIDestroy
void	MDIDestroy()	const;

Destroys	this	MDI	child.	MDIMaximize
void	MDIMaximize()	const;

Maximizes	this	MDI	Child.	MDIRestore
void	MDIRestore()	const;



Restores	this	MDI	child	from	a	maximized	or	minimized	state.	RecalcLayout
virtual	void	RecalcLayout();

Repositions	the	view	window	when	the	MDI	child	is	restored.	SetChildMenu
virtual	void	SetChildMenu(LPCTSTR	MenuName);

Sets	the	MDI	child	menu,	given	its	Resource	ID.	SetHandles
void	SetHandles(HMENU	MenuName,	HACCEL	AccelName);

Sets	the	MDI	child's	menu	and	accelerator	table.	SetView
virtual	void	SetView(CWnd&	pwndView);

Sets	the	view	window	for	the	MDI	child.

Overridables

Create virtual	HWND	Create(HWND	hWndParent	=	NULL);

Creates	the	MDI	child	window.

OnClose
virtual	void	OnClose();

Called	when	the	MDI	child	window	is	about	to	be	closed.	Override	this	to	prevent	the	MDI	child
window	from	being	closed.

OnCreate virtual	void	OnCreate();

Called	when	the	MDI	child	window	is	created.

OnMDIActivate virtual	LRESULT	OnMDIActivate(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	MDI	child	window	is	activated.

OnWindowPosChanged virtual	LRESULT	OnWindowPosChanged(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	MDI	child	window	is	moved.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.



Remarks

Setting	the	MDI	Child's	View	window	and	Menu

Each	type	of	MDI	child	will	have	a	view	window	and	will	usually	have	a	unique
menu.	The	menu	which	is	displayed	in	the	MDI	frame	will	belong	the	the	MDI
child	that	has	keyboard	focus,	or	the	MDI	frame's	menu	if	no	MDI	child	is
active.		The	SetView	function	sets	the	view	window,	and	the	SetChildMenu	seta
the	menu	of	a	MDI	child,	as	follows.

CSimpleMDIChild::CSimpleMDIChild()
{
		//	Set	m_View	as	the	view	window	of	the	MDI	child
		SetView(m_View);
	
		//	Set	the	menu	for	this	MDI	child
		SetChildMenu(_T("MdiMenuView"));
}

The	MDI	child's	menu	would	be	defined	in	the	resource	script	file	(usually
Resource.rc)	as	follows.

MDIMENU	MENU
BEGIN
				POPUP	"&File"
				BEGIN
								MENUITEM	"New	&View\tCtrl+N",											IDM_FILE_NEW
								MENUITEM	"&Close",																						IDM_FILE_CLOSE
								MENUITEM	SEPARATOR
								MENUITEM	"E&xit",																							IDM_FILE_EXIT
				END
				POPUP	"&View"
				BEGIN
								MENUITEM	"&Tool	Bar",																			IDW_VIEW_TOOLBAR,	CHECKED
								MENUITEM	"&Status	Bar",																	IDW_VIEW_STATUSBAR,	CHECKED
				END
				POPUP	"&Window"
				BEGIN
								MENUITEM	"&Cascade\tShift+F5",										IDW_WINDOW_CASCADE
								MENUITEM	"&Tile\tShift+F4",													IDW_WINDOW_TILE
								MENUITEM	"Arrange	&Icons",														IDW_WINDOW_ARRANGE
								MENUITEM	"Close	&All",																		IDW_WINDOW_CLOSEALL
				END
				POPUP	"&Help"
				BEGIN



								MENUITEM	"&About",																						IDM_HELP_ABOUT
				END
END

Setting	the	MDI	Child's	Title	and	Icon

Each	type	of	MDI	child	usually	has	an	icon.	The	MDI	child's	icon	and	title	are	is
set	as	follows.

void	CMDIChildView::OnInitialUpdate()
{
		::SetWindowText(m_hWnd,	_T("MDI	Child	Window"));
		SetIconLarge(IDI_VIEW);
		SetIconSmall(IDI_VIEW);
}

Refer	to	the	MDI	Frames	section	for	information	on	how	to	use	CMDIChild	with	CMDIFrame.

Summary	Information

Header	file mdi.h
Win32/64
support Yes

WinCE	support No



CMDIFrame	Class

Description

This	class	provides	a	frame	for	MDI	(Multi	Document	Interface)	applications.		MDI	applications	are
capable	of	hosting	several	child	windows	within	a	frame.	

The	CMDIFrame	class	inherits	much	of	its	default	implementation	from	CFrame,	and	adds	the	additional
functionality	required	for	MDI	frames.		The	CWnd	classes	for	the	MDI	child	windows	should		be	inherited
from	CMDIChild.

CMDIFrame	Members

Constructor

CMDIFrame CMDIFrame();

Constructor	for	CMDIFrame.

Attributes

GetActiveMDIChildCMDIChild*	GetActiveMDIChild()	const;

Returns	the	CMDIChild	pointer	to	the	active	MDI	child.
GetActiveMenu
CMenu*	GetActiveMenu()	const;

Returns	a	pointer	to	the	menu	of	the	active	MDI	child,	or	the	MDI	Frame's	menu	if	no	MDI	child	is	active.

GetAllMDIChildren
std::vector	<MDIChildPtr>&	GetAllMDIChildren();

Returns	the	vector	containing	the	MDI	child	handles.	GetMDIClient
virtual	CMDIClient*	GetMDIClient()	const;

Returns	a	pointer	to	the	MDI	client	window.	SetActiveMDIChild



void	SetActiveMDIChild(CMDIChild*	pChild);

Activates	the	specified	MDI	child.

State	functions

IsMDIChildMaxed BOOL	IsMDIChildMaxed()	const;

Returns	TRUE	if	the	MDI	child	is	maximised.

IsMDIFrame virtual	BOOL	IsMDIFrame()	const;

Overrides	CFrame::IsMDIFrame,	and	returns	TRUE.

Operations

AddMDIChild virtual	CMDIChild*	AddMDIChild(MDIChildPtr	pMDIChild);

Adds	a	MDI	child	window.

MDICascade void	MDICascade(int	nType	=	0)	const;

Arrange	all	MDI	child	windows	in	a	cascade	format.

MDIIconArrange void	MDIIconArrange()	const;

Arrange	all	minimized	MDI	child	windows.

MDIMaximize void	MDIMaximize()	const;

Maximize	a	MDI	child	window.

MDINext void	MDINext()	const;

Activate	the	next	MDI	child.

MDIPrev void	MDIPrev()	const;

Activate	the	previous	MDI	child.

MDIRestore void	MDIRestore()	const;

Restores	a	MDI	child	window	from	maximized	or	minimized	size.

MDITile void	MDITile(int	nType	=	0)	const;

Arrange	all	MDI	child	windows	in	a	tile	format.



RemoveAllMDIChildren virtual	BOOL	RemoveAllMDIChildren();

Removes	all	MDI	child	windows.

RemoveMDIChild virtual	void	RemoveMDIChild(HWND	hWnd);

Removes	a	MDI	child,	given	its	window	handle.

Overridables

OnClose virtual	void	OnClose();

Called	when	the	frame	window	is	closed.

OnViewStatusBar virtual	void	OnViewStatusBar();

Called	when	the	StatusBar	is	shown.

OnViewToolBar virtual	void	OnViewToolBar();

Called	when	the	ToolBar	window	is	shown.

OnWindowPosChanged virtual	void	OnWindowPosChanged();

Called	when	the	size,	position,	or	Z-order	of	the	frame	window	has	changed

PreTranslateMessage
virtual	BOOL	PreTranslateMessage(MSG*	pMsg);

Used	to	translate	window	messages	before	they	are	dispatched	to	the
TranslateMessage	and	DispatchMessage	Windows	functions.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CFrame.

Remarks

Refer	to	the	MDI	Frames	section	for	information	on	how	to	create	MDI	Frames
and	MDI	Children.

Summary	Information

Header	file mdi.h
Win32/64
support Yes



WinCE	support No
Library	required Comctl32.lib



CMemDC	Class

Description

The	class	responsible	for	creating	a	memory	device	context.

CMemDC	Members

Initialization	and	Assignment

Initialization	and	Assignment

CMemDC CMemDC(const	CDC*	pDC);

Constructs	a	CMemDC	object.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CDC.

Remarks

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CMenu	Class

Description

CMenu	adds	support	for	menus	to	Win32++.	A	menu	is	a	list	of	items	that	specify	options	or	groups	of
options	(a	submenu)	for	an	application.	Clicking	a	menu	item	opens	a	submenu	or	causes	the	application	to
carry	out	a	command.

A	menu	is	arranged	in	a	hierarchy.	At	the	top	level	of	the	hierarchy	is	the	menu	bar	which	contains	a	list	of
menus,	which	in	turn	can	contain	submenus.	A	menu	bar	is	sometimes	called	a	top-level	menu,	and	the	and
submenus	are	also	known	as	pop-up	menus.

A	menu	item	can	either	carry	out	a	command	or	open	a	submenu.	An	item	that	carries	out	a	command	is
called	a	command	item	or	a	command.

CMenu	Members

Initialisation	and	Assignment

CMenu

CMenu();

CMenu(UINT	nID);

Constructor	for	CMenu.
Attach
void	Attach(HMENU	hMenu);

Attaches	an	existing	menu	to	this	CMenu.	CreateMenu
void	CreateMenu();

Creates	an	empty	menu.	CreatePopupMenu
void	CreatePopupMenu();

Creates	a	drop-down	menu,	submenu,	or	shortcut	menu.	The	menu	is	initially	empty..

DestroyMenu
void	DestroyMenu();



Destroys	the	menu.	Detach
HMENU	Detach();

Detaches	the	HMENU	from	this	CMenu.	If	the	HMENU	is	not	detached	it	will	be	destroyed	when	this

CMenu	is	deconstructed.	FromHandle
static	CMenu*	FromHandle(HMENU	hMenu);

Returns	the	CMenu	associated	with	the	specified	menu	handle.	If	a	CMenu	object	doesn't	already	exist,	a
temporary	CMenu	object	is	created.	This	temporary	CMenu	will	be	deleted	sometime	after	the	processing
of	the	current	message	is	complete.	GetHandle

HMENU	GetHandle()	const;

Returns	the	HMENU	assigned	to	this	CMenu.	LoadMenu

BOOL	LoadMenu(LPCTSTR	lpszResourceName);

BOOL	LoadMenu(UINT	uIDResource);

BOOL	LoadMenuIndirect(const	void*	lpMenuTemplate);

Loads	the	menu	from	the	specified	windows	resource	or	template.	TrackPopupMenu

BOOL	TrackPopupMenu(UINT	uFlags,	int	x,	int	y,	CWnd*	pWnd,	LPCRECT	lpRect	=	0);

Displays	a	shortcut	menu	at	the	specified	location	and	tracks	the	selection	of	items	on	the	menu..
TrackPopupMenuEx

BOOL	TrackPopupMenuEx(UINT	uFlags,	int	x,	int	y,	CWnd*	pWnd,	LPTPMPARAMS	lptpm);

Displays	a	shortcut	menu	at	the	specified	location	and	tracks	the	selection	of	items	on	the	shortcut	menu.

Menu	Item	Operations	AppendMenu

BOOL	AppendMenu(UINT	uFlags,	UINT_PTR	uIDNewItem	=	0,	LPCTSTR	lpszNewItem	=	NULL);

BOOL	AppendMenu(UINT	uFlags,	UINT_PTR	uIDNewItem,	const	CBitmap*	pBmp);

Appends	a	new	item	to	the	end	of	the	specified	menu	bar,	drop-down	menu,	submenu,	or	shortcut	menu.
CheckMenuItem

UINT	CheckMenuItem(UINT	uIDCheckItem,	UINT	uCheck);

Sets	the	state	of	the	specified	menu	item's	check-mark	attribute	to	either	selected	or	clear.
CheckMenuRadioItem

BOOL	CheckMenuRadioItem(UINT	uIDFirst,	UINT	uIDLast,	UINT	uIDItem,	UINT	uFlags);

Checks	a	specified	menu	item	and	makes	it	a	radio	item.	At	the	same	time,	the	function	clears	all	other



menu	items	in	the	associated	group	and	clears	the	radio-item	type	flag	for	those	items.	DeleteMenu

BOOL	DeleteMenu(UINT	uPosition,	UINT	uFlags);

Deletes	an	item	from	the	specified	menu.	EnableMenuItem

UINT	EnableMenuItem(UINT	uIDEnableItem,	UINT	uEnable);

Enables,	disables,	or	grays	the	specified	menu	item.	The	uEnable	parameter	must	be	a	combination	of	either
MF_BYCOMMAND	or	MF_BYPOSITION	and	MF_ENABLED,	MF_DISABLED,	or	MF_GRAYED.
GetDefaultItem

UINT	GetDefaultItem(UINT	gmdiFlags,	BOOL	fByPos	=	FALSE);

Determines	the	default	menu	item.	The	gmdiFlags	parameter	specifies	how	the	function	searches	for	menu
items.	This	parameter	can	be	zero	or	more	of	the	following	values:	GMDI_GOINTOPOPUPS;
GMDI_USEDISABLED.	GetMenuContextHelpId

DWORD	GetMenuContextHelpId()	const;

Retrieves	the	Help	context	identifier	associated	with	the	menu.	GetMenuInfo

BOOL	GetMenuInfo(LPMENUINFO	lpcmi)	const;

Retrieves	the	menu	information.	GetMenuItemCount

UINT	GetMenuItemCount()	const;

Retrieves	the	number	of	menu	items.	GetMenuItemID

UINT	GetMenuItemID(int	nPos)	const;

Retrieves	the	menu	item	identifier	of	a	menu	item	located	at	the	specified	position	GetMenuItemInfo

BOOL	GetMenuItemInfo(UINT	uItem,	LPMENUITEMINFO	lpMenuItemInfo,	BOOL	fByPos	=	FALSE);

Retrieves	information	about	the	specified	menu	item.	GetMenuState

UINT	GetMenuState(UINT	uID,	UINT	uFlags)	const;

Retrieves	the	menu	flags	associated	with	the	specified	menu	item.	Possible	values	for	uFlags	are:
MF_BYCOMMAND	(default)	or	MF_BYPOSITION.	GetMenuString

int	GetMenuString(UINT	uIDItem,	LPTSTR	lpString,	int	nMaxCount,	UINT	uFlags)	const;

int	GetMenuString(UINT	uIDItem,	CString&	rString,	UINT	uFlags)	const;

Copies	the	text	string	of	the	specified	menu	item	into	the	specified	buffer.	GetSubMenu

CMenu*	GetSubMenu(int	nPos);



Retrieves	the	CMenu	object	of	a	pop-up	menu.	InsertMenu

BOOL	InsertMenu(UINT	uPosition,	UINT	uFlags,	UINT_PTR	uIDNewItem	=	0,	LPCTSTR	lpszNewItem	=	NULL);

BOOL	InsertMenu(UINT	uPosition,	UINT	uFlags,	UINT_PTR	uIDNewItem,	const	CBitmap*	pBmp);

Inserts	a	new	menu	item	into	a	menu,	moving	other	items	down	the	menu.	InsertMenuItem

BOOL	InsertMenuItem(UINT	uItem,	LPMENUITEMINFO	lpMenuItemInfo,	BOOL	fByPos	=	FALSE);

Inserts	a	new	menu	item	at	the	specified	position	in	a	menu.	ModifyMenu

BOOL	ModifyMenu(UINT	uPosition,	UINT	uFlags,	UINT_PTR	uIDNewItem	=	0,	LPCTSTR	lpszNewItem	=	NULL);

BOOL	ModifyMenu(UINT	uPosition,	UINT	uFlags,	UINT_PTR	uIDNewItem,	const	CBitmap*	pBmp);

Changes	an	existing	menu	item.	This	function	is	used	to	specify	the	content,	appearance,	and	behavior	of
the	menu	item.	RemoveMenu

BOOL	RemoveMenu(UINT	uPosition,	UINT	uFlags);

Deletes	a	menu	item	or	detaches	a	submenu	from	the	menu.	SetDefaultItem

BOOL	SetDefaultItem(UINT	uItem,	BOOL	fByPos	=	FALSE);

Sets	the	default	menu	item	for	the	menu.	SetMenuContextHelpId

BOOL	SetMenuContextHelpId(DWORD	dwContextHelpId);

Associates	a	Help	context	identifier	with	the	menu.	SetMenuInfo

BOOL	SetMenuInfo(LPCMENUINFO	lpcmi);

Writes	the	specified	buffer	to	the	file.	SetMenuItemBitmaps

BOOL	SetMenuItemBitmaps(UINT	uPosition,	UINT	uFlags,	const	CBitmap*	pBmpUnchecked,	const	CBitmap*	pBmpChecked);

Associates	the	specified	bitmap	with	a	menu	item.	SetMenuItemInfo

BOOL	SetMenuItemInfo(UINT	uItem,	LPMENUITEMINFO	lpMenuItemInfo,	BOOL	fByPos	=	FALSE);

Changes	information	about	a	menu	item.	Operators	operator	HMENU	()

operator	HMENU	()	const;

Retrieves	the	menu's	handle.

Remarks



CMenu	objects	can	be	used	anywhere	a	a	handle	to	a	menu	(HMENU)	might	be	used.		They	can	be
substituted	for	the	HMENU	in	any	of	the	Windows	API	functions	which	use	a	HMENU	as	a	function
argument.		The	benefit	of	using	a	CMenu	object	is	that	it	automatically	deletes	the	menu	when	it	is
destroyed.

Summary	Information

Header	file file.h
Win32/64
support Yes

WinCE	support Yes



CMetaFileDC	Class

Description

The	class	responsible	for	creating	a	metafile	device	context.

A	metafile,	also	called	a	vector	image,	is	an	image	that	is	stored	as	a	sequence	of	drawing	commands	and
settings.	The	commands	and	settings	recorded	in	a	Metafile	object	can	be	stored	in	memory	or	saved	to	a
file	or	stream.

CMetaFileDC	Members

Initialization	and	Assignment

Initialization	and	Assignment

CMetaFileDC CMetaFileDC();

Constructs	a	CMetaFileDC	object.
Operations	Create
void	Create(LPCTSTR	lpszFilename	=	NULL);

Creates	a	metafile	and	attaches	it	to	the	device	context.	CreateEnhanced
void	CreateEnhanced(CDC*	pDCRef,	LPCTSTR	lpszFileName,	LPCRECT	lpBounds,	LPCTSTR	lpszDescription);

Creates	an	enhanced	metafile	and	attaches	it	to	the	device	context.	Close
HMETAFILE	Close();

Closes	the	metafile.	CloseEnhanced
HENHMETAFILE	CloseEnhanced();

Closes	the	enhanced	metafile.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CDC.



Remarks

To	use	the	CMetaFileDC,	create	the	CMetafileDC	object,	and	then	create	the
metafile	or	enhanced	metafile.	Enhanced	metafiles	are	supported	by	all	32-bit
and	64-bit	Windows	operating	systems.	These	should	be	the	default	metafiles
used	by	all	modern	windows	applications.

Once	the	Metafile	is	closed	the	HMETAFILE	or	HENHMETADILE	handle	can
be	used	to	play	the	metafile.	The	handle	returned	by	Close	or	CloesEnhanced
should	be	deleted	when	it	no	longer	required.

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional
information	on	using	this	class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CMonthCalendar	Class

Description

The	CMonthCalendar	class	adds	support	for	the	month	calendar	control.	The	month	calendar	control
provides	the	user	with	an	intuitive	and	recognizable	method	of	entering	or	selecting	a	date.	The	control	also
provides	the	application	with	the	means	to	obtain	and	set	the	date	information	in	the	control	using	existing
data	types.

CMonthCalendar	Members

Construction

CMonthCalendarCMonthCalendar();

Constructs	a	month	calendar	control.
		Attributes	GetColor
COLORREF	GetColor(int	nRegion)	const;

Retrieves	the	color	for	a	given	portion	of	the	month	calendar	control.	GetFirstDayOfWeek
int	GetFirstDayOfWeek(BOOL*	pbLocal	=	NULL)	const;

Retrieves	the	first	day	of	the	week	for	the	month	calendar	control.	GetMinReqRect
CRect	GetMinReqRect()	const;

Retrieves	the	minimum	size	required	to	display	a	full	month	in	the	month	calendar	control.

GetMonthDelta
int	GetMonthDelta()	const;

Retrieves	the	scroll	rate	for	the	month	calendar	control.	The	scroll	rate	is	the	number	of	months	that	the

control	moves	its	display	when	the	user	clicks	a	scroll	button.	SetColor
COLORREF	SetColor(int	nRegion,	COLORREF	ref);

Sets	the	color	for	a	given	portion	of	the	month	calendar	control.	SetFirstDayOfWeek



BOOL	SetFirstDayOfWeek(int	iDay,	int*	lpnOld	=	NULL);

Sets	the	first	day	of	the	week	for	the	month	calendar	control.	SetMonthDelta
int	SetMonthDelta(int	iDelta);

Sets	the	scroll	rate	for	the	month	calendar	control.	The	scroll	rate	is	the	number	of	months	that	the	control

moves	its	display	when	the	user	clicks	a	scroll	button.			Operations	GetCurSel
BOOL	GetCurSel(LPSYSTEMTIME	pDateTime)	const;

Retrieves	the	currently	selected	date.	GetMaxSelCount
int	GetMaxSelCount()	const;

Retrieves	the	maximum	date	range	that	can	be	selected	in	a	month	calendar	control.

GetMonthRange
int	GetMonthRange(LPSYSTEMTIME	pMinRange,	LPSYSTEMTIME	pMaxRange,	DWORD	dwFlags)	const;

Retrieves	date	information	(using	SYSTEMTIME	structures)	that	represents	the	high	and	low	limits	of	the

month	calendar	control's	display.	GetSelRange
DWORD	GetRange(LPSYSTEMTIME	pMinRange,	LPSYSTEMTIME	pMaxRange)	const;

Retrieves	date	information	that	represents	the	upper	and	lower	limits	of	the	date	range	currently	selected	by

the	user.	GetToday
BOOL	GetToday(LPSYSTEMTIME	pDateTime)	const;

Retrieves	the	date	information	for	the	date	specified	as	"today"	for	the	month	calendar	control.	HitTest
DWORD	HitTest(PMCHITTESTINFO	pMCHitTest);

Determines	which	portion	of	the	month	calendar	control	is	at	a	given	point	on	the	screen.	SetCurSel
BOOL	SetCurSel(const	LPSYSTEMTIME	pDateTime);

Sets	the	currently	selected	date	for	the	month	calendar	control.	If	the	specified	date	is	not	in	view,	the

control	updates	the	display	to	bring	it	into	view.	SetDayState
BOOL	SetDayState(int	nMonths,	LPMONTHDAYSTATE	pStates);

Sets	the	day	states	for	all	months	that	are	currently	visible	within	the	month	calendar	control.

SetMaxSelCount
BOOL	SetMaxSelCount(int	nMax);



Sets	the	maximum	number	of	days	that	can	be	selected	in	the	month	calendar	control.	SetRange
BOOL	SetRange(const	LPSYSTEMTIME	pMinRange,	const	LPSYSTEMTIME	pMaxRange);

Sets	the	minimum	and	maximum	allowable	dates	for	the	month	calendar	control.	SetSelRange
BOOL	SetSelRange(const	LPSYSTEMTIME	pMinRange,	const	LPSYSTEMTIME	pMaxRange);

Sets	the	selection	for	a	month	calendar	control	to	the	given	date	range.	SetToday
void	SetToday(const	LPSYSTEMTIME	pDateTime);

Sets	the	"today"	selection	for	a	month	calendar	control.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

	

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes



CPaintDC	Class

Description

This	class	is	responsible	for	creating	a	device	context	for	drawing	to	a	window	during	the	handling	of	the
WM_PAINT	message.	This	device	context	is	used	by	CWnd::OnDraw.

CPaintDC	Members

Initialization	and	Assignment

Initialization	and	Assignment

CPaintDC CPaintDC(const	CWnd*	pWnd);

Constructs	a	CPaintDC	object.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CDC.

Remarks

This	class	automatically	calls	CWnd::BeginPaint	when	it	is	constructed,	and
automatically	calls	CWnd::EndPaint	when	it	is	destroyed.

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional
information	on	using	this	class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CPalette	Class

Description

The	class	responsible	for	creating	and	managing	palette	resources.

CPalette	Members

Initialization	and	Assignment

Initialization	and	Assignment

CPalette

CPalette();

CPalette(HPALETTE	hPalette);

Constructs	a	CPaletteBrush	object.
FromHandle
static	CPalette*	FromHandle(HPALETTE	hPalette);

Returns	the	CPalette	associated	with	the	specified	palette	handle.	If	a	CPalette	object	doesn't	already	exist,	a
temporary	CPalette	object	is	created.	This	temporary	CPalette	will	be	deleted	sometime	after	the	processing

of	the	current	message	is	complete.	operator	HPALETTE()
operator	HPALETTE()	const;

Allows	a	CPalette	object	to	be	used	as	a	palette	handle	(HPALETTE).			Attributes
GetEntryCount
int	GetEntryCount()	const;

Retrieve	the	number	of	entries	in	the	palette.	GetNearestPaletteIndex
UINT	GetNearestPaletteIndex	(COLORREF	crColor)	const;

Retrieves	the	index	for	the	entry	in	the	palette	most	closely	matching	a	specified	color	value.

GetPaletteEntries
UINT	GetPaletteEntries(UINT	nStartIndex,	UINT	nNumEntries,	



																							LPPALETTEENTRY	lpPaletteColors)	const;

Retrieves	a	specified	range	of	palette	entries	from	the	palette.	SetPaletteEntries
UINT	SetPaletteEntries(UINT	nStartIndex,	UINT	nNumEntries,	
																							LPPALETTEENTRY	lpPaletteColors);

Sets	RGB	(red,	green,	blue)	color	values	and	flags	in	a	range	of	entries	in	the	palette.			Operations
AnimatePalette
void	AnimatePalette(UINT	nStartIndex,	UINT	nNumEntries,	
															LPPALETTEENTRY	lpPaletteColors);

Replaces	entries	in	the	palette.	CreateHalftonePalette
HPALETTE	CreateHalftonePalette(CDC*	pDC);

Creates	a	halftone	palette	for	the	specified	device	context	(DC).	CreatePalette
HPALETTE	CreatePalette(LPLOGPALETTE	lpLogPalette);

Creates	a	logical	palette	from	the	information	in	the	specified	LOGPALETTE	structure.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CGDIObject.

Remarks

CPalette	objects	can	be	used	anywhere	a	a	handle	to	a	palette	(HPALETTE)	might	be	used.		They	can	be
substituted	for	the	HPALETTE	in	any	of	the	Windows	API	functions	which	use	a	HPALETTE	as	a	function
argument.		The	benefit	of	using	a	CPalette	object	is	that	it	automatically	deletes	the	brush	when	it	is
destroyed.

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CPen	Class

Description

The	class	responsible	for	creating	and	managing	pen	resources.

CPen	Members

Initialization	and	Assignment

CPen

CPen();

CPen(HPEN	hPen);

CPen(int	nPenStyle,	int	nWidth,	COLORREF	crColor);

CPen(int	nPenStyle,	int	nWidth,	const	LOGBRUSH*	pLogBrush,	
	 											int	nStyleCount	=	0,	const	DWORD*	lpStyle	=	NULL);

Constructs	a	CPen	object.
FromHandle
static	CPen*	FromHandle(HPEN	hPen);

Returns	the	CPen	associated	with	the	specified	pen	handle.	If	a	CPen	object	doesn't	already	exist,	a
temporary	CPen	object	is	created.	This	temporary	CPen	will	be	deleted	sometime	after	the	processing	of	the

current	message	is	complete.	operator	HPEN()
operator	HPEN()	const;

Allows	a	CPen	object	to	be	used	as	a	pen	handle	(HPEN).			Attributes	GetExtLogPen
EXTLOGPEN	GetExtLogPen()	const;

Retrieves	the	EXTLOGPEN	struct	that	specifies	the	pen's	style,	width,	color	and	brush	attributes.

GetLogPen
LOGPEN	GetLogPen()	const;



Retrieves	the	LOGPEN	struct	that	specifies	the	pen's	style,	width,	and	color.			Operations
CreatePen
HPEN	CreatePen(int	nPenStyle,	int	nWidth,	COLORREF	crColor);

Creates	a	logical	pen	that	has	the	specified	style,	width,	and	color.	CreatePenIndirect
HPEN	CreatePenIndirect(LPLOGPEN	lpLogPen);

Creates	a	logical	pen	that	has	the	style,	width,	and	color	specified	in	a	structure.	ExtCreatePen
HPEN	ExtCreatePen(int	nPenStyle,	int	nWidth,	const	LOGBRUSH*	pLogBrush,	
																		int	nStyleCount	=	0,	const	DWORD*	lpStyle	=	NULL);

Creates	a	logical	cosmetic	or	geometric	pen	that	has	the	specified	style,	width,	and	brush	attributes.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CGDIObject.

Remarks

CPen	objects	can	be	used	anywhere	a	a	handle	to	a	pen	(HPEN)	might	be	used.		They	can	be	substituted	for
the	HPEN	in	any	of	the	Windows	API	functions	which	use	a	HPEN	as	a	function	argument.		The	benefit	of
using	a	CPen	object	is	that	it	automatically	deletes	the	pen	when	it	is	destroyed.

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CPoint	Class

Description

A	CPoint	can	be	used	anywhere	that	a	POINT	structure	could	be	used.

CPoint	Members

CPoint

CPoint();

CPoint(int	X,	int	Y);

CPoint(SIZE	sz);

CPoint(POINT	pt);

CPoint(DWORD	dw);

Various	methods	of	constructing	a	CPoint.
operator	LPPOINT()
operator	LPPOINT();

Returns	a	pointer	to	the	POINT	associated	with	this	object.	operator	==
BOOL	operator	==	(POINT	pt)	const;

Returns	TRUE	if	the	co-ordinates	of	the	source	point	and	the	CPoint	are	equal.	operator	!=
BOOL	operator	!=	(POINT	pt)	const;

Returns	TRUE	if	the	of	the	source	point	and	the	CPoint	are	not	equal.	operator	+=
void	operator	+=	(SIZE	sz);

void	operator	+=	(POINT	pt);

Adds	the	specified	point.	operator	-=



void	operator	-=	(SIZE	sz);

void	operator	-=	(POINT	pt);

Subtracts	the	specified	point.	operator	-
CPoint	operator	-	()	const;

Returns	the	unary	minus	(additive	inverse).	operator	+
CPoint	operator	+	(SIZE	sz)	const;

CPoint	operator	+	(POINT	pt)	const;

CRect	operator	+	(LPCRECT	prc)	const;

Adds	the	point	and	returns	the	value.	operator	-
CPoint	operator	-	(SIZE	sz)	const;

CPoint	operator	-	(POINT	pt)	const;

CRect	operator	-	(LPCRECT	prc)	const;

Subtracts	the	point	and	returns	the	value.	Offset
void	Offset(int	dx,	int	dy);

void	Offset(POINT	pt);

void	Offset(SIZE	sz);

Moves	the	CPoint	by	the	specified	offsets.	SetPoint
void	SetPoint(int	X,	int	Y);

Sets	the	coordinates	of	the	CPoint.

Remarks

By	default,	the	constructor	sets	all	the	size	coordinates	zero,	but	the	CPoint	can
also	be	constructed	from	two	integers,	a	size,	a	point,	or	a	dword.

The	CPoint	class	inherits	from	the	POINT	structure.		As	a	result,	the	data
members	of	the	underlying	POINT	struct	are	also	accessible	as	data	members.



Summary	Information

Header	file winutils.h
Win32/64
support Yes

WinCE	support Yes



CProgressBar	Class

Description

The	CProgressBar	class	is	used	to	create	and	manage	a	progress	bar	control.	A	progress	bar	is	a	window
that	an	application	can	use	to	indicate	the	progress	of	a	lengthy	operation.	It	consists	of	a	rectangle	that	is
gradually	filled	with	the	system	highlight	color	as	an	operation	progresses.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	progress	bar	controls.

CProgressBar	Members

CProgressBar CProgressBar();

Constructor	for	the	CProgressBar.
GetPos
int	GetPos()	const;

Retrieves	the	current	position	of	the	progress	bar.	GetRange
int	GetRange(BOOL	fWhichLimit,	PPBRANGE	ppBRange)	const;

Retrieves	the	information	about	the	current	high	and	low	limits	of	the	progress	bar.	OffsetPos
int	OffsetPos(int	nIncrement)	const;

Advances	the	current	position	of	a	progress	bar	bt	the	specified	increment	and	redraws	the	bar	to	reflect	the

new	position.	SetPos
int	SetPos(int	nNewPos)	const;

Sets	the	current	position	of	the	progress	bar	and	redraws	the	bar	to	reflect	the	new	position.

SetRange
int	SetRange(short	nMinRange,	short	nMaxRange)	const;

Sets	the	minimum	and	maximum	values	for	the	progress	bar	and	redraws	the	bar	to	reflect	the	new	range.

SetStep



int	SetStep(int	nStepInc)	const;

Specifies	the	step	increment	for	the	progress	bar,	used	by	StepIt.	The	default	value	is	10.	StepIt
int	StepIt()	const;

Advances	the	current	position	of	the	progress	bar	by	the	step	increment	and	redraws	the	progress	bar	to
reflect	the	new	position.

Overridables

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	progress	bar	control	requires	a	parent	window.
This	parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	progress	bar	control.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes



CPropertyPage	Class

Description

This	class	is	used	to	create	and	manage	a	property	page	A	property	sheet	will	have	one	or	more	property
pages.	These	pages	are	much	like	dialogs	which	are	presented	within	a	tabbed	dialog	or	within	a	wizard.
The	data	on	a	property	page	can	be	validated	before	the	next	page	is	presented.	

Refer	to	the	PropertySheet	demo	program	for	an	example	of	how	property	pages	can	be	used.

CPropertyPage	Members

Construction

CPropertyPage CPropertyPage	(UINT	nIDTemplate,	LPCTSTR	szTitle	=	NULL);

The	constructor	for	CPropertyPage.

Attributes	and	State	functions

GetPSP PROPSHEETPAGE	GetPSP()	const	{return	m_PSP;}

Retrieves	the	PROPSHEETPAGE	struct	for	this	property	page.

IsButtonEnabled BOOL	IsButtonEnabled(int	iButton)	const;

Returns	TRUE	if	the	specified	button	is	active.

SetModified void	SetModified(BOOL	bChanged)	const;

Flags	a	property	page	as	modified	or	unmodified.

Overridables

DialogProc virtual	BOOL	DialogProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);;

Override	this	function	to	handle	messages	received	by	the	property	page.



OnApply virtual	int	OnApply();

Called	when	the	Apply	button	is	pressed.

OnCancel virtual	void	OnCancel();

Called	when	the	Cancel	button	is	pressed.

OnHelp virtual	void	OnHelp();

Called	when	the	Help	button	is	pressed.

OnInitDialog virtual	BOOL	OnInitDialog();

Called	when	the	property	page	is	created.

OnKillActive virtual	BOOL	OnKillActive();

Called	when	the	property	page	becomes	inactive	in	response	to	an	OK	or	Apply	button	press.

OnNotify virtual	LRESULT	OnNotify(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	notification	from	a	child	control	is	received.

OnOK virtual	int	OnOK();

Called	when	the	OK	button	is	pressed.

OnQueryCancel virtual	BOOL	OnQueryCancel();

Called	when	the	Cancel	button	is	press,	before	the	cancel	has	taken	place.

OnQuerySiblings
virtual	BOOL	OnQuerySiblings(WPARAM	wParam,	LPARAM	lParam);

Called	in	response	to	a	query	from	the	property	sheet.	Return	zero	to	indicate	passed,	or	nonzero	
indicated	failed.

OnSetActive virtual	int	OnSetActive();

Called	when	the	property	page	becomes	active.

OnWizardBack virtual	int	OnWizardBack();

Called	when	the	Back	button	is	pressed	on	a	wizard.

OnWizardFinish virtual	BOOL	OnWizardFinish();

Called	when	the	Finish	button	is	pressed	on	a	wizard.

OnWizardNext virtual	int	OnWizardNext();

Called	when	the	Next	button	is	pressed	on	a	wizard.



PretranslateMessage
virtual	BOOL	PreTranslateMessage(MSG*	pMsg);

Called	allow	the	tab	control	to	translate	keyboard	input	before	the	message	is	passed	on	to	the
message	loop.

Operations

CancelToClose void	CancelToClose()	const;

Disables	the	Cancel	button	and	changes	the	text	of	the	OK	button	to	"Close."

QuerySiblings LRESULT	QuerySiblings(WPARAM	wParam,	LPARAM	lParam)	const;

Used	to	query	other	property	pages	belonging	to	this	property	sheet.

SetTitle void	SetTitle(LPCTSTR	szTitle);

Sets	the	property	sheet's	title.

SetWizardButtons void	SetWizardButtons(DWORD	dwFlags)	const;

Sets	the	wizard	buttons.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Summary	Information

Header	file propertysheet.h
Win32/64
support Yes

WinCE	support Yes



CPropertySheet	Class

Description

This	class	is	used	to	create	and	manage	a	property	sheet.	A	property	sheet	will	have	one	or	more	property
pages.	These	pages	are	much	like	dialogs	which	are	presented	within	a	tabbed	dialog	or	within	a	wizard.
The	data	on	a	property	page	can	be	validated	before	the	next	page	is	presented.	Property	sheets	have	three
modes	of	use:	Modal,	Modeless,	and	Wizard.

Refer	to	the	PropertySheet	demo	program	for	an	example	of	how	property	sheets	can	be	used.

CPropertySheet	Members:

Construction

CPropertySheet

CPropertySheet(UINT	nIDCaption,	HWND	hwndParent	=	NULL);

CPropertySheet(LPCTSTR	pszCaption	=	NULL,	HWND	hwndParent	=	NULL);

Constructs	a		CPropertySheet	object.

Attributes

GetActivePage CPropertyPage*	GetActivePage()	const;

Retrieves	the	active	CPropertyPage.

GetPageCount int	GetPageCount()	const;

Retrieves	the	number	of	pages	in	the	property	sheet.

GetPageIndex int	GetPageIndex(CPropertyPage*	pPage)	const;

Retrieves	the	index	of	the	specified	page

GetTabControl HWND	GetTabControl()	const;

Retrieves	the	window	handle	of	the	property	sheet's	tab	control.

virtual	BOOL	SetActivePage(int	nPage);



SetActivePage virtual	BOOL	SetActivePage(CPropertyPage*	pPage);

Sets	the	active	property	page.

SetWizardMode virtual	void	SetWizardMode(BOOL	bWizard);

Set	to	TRUE	if	the	property	sheet	is	a	wizard.

State	functions

IsModeless BOOL	IsModeless()	const;

Returns	TRUE	if	the	property	sheet	is	modeless.

IsWizard BOOL	IsWizard()	const;

Returns	TRUE	if	the	property	sheet	is	a	wizard.

Overridables

Destroy virtual	void	Destroy();

Called	when	CPropertySheet	is	about	to	be	deconstructed.

PreTranslateMessage
virtual	BOOL	PreTranslateMessage(MSG*	pMsg);

Translates	keyboard	and	mouse	messages	before	they	are	passed	to
TranslateMessage.

Operations

AddPage virtual	CPropertyPage*	AddPage(CPropertyPage*	pPage);

Adds	a	property	page	to	the	property	sheet.

Create virtual	HWND	Create(HWND	hWndParent	=	0);

Creates	a	modeless	property	sheet.

CreatePropertySheet virtual	INT_PTR	CreatePropertySheet(LPCPROPSHEETHEADER	ppsph);

Creates	a	property	sheet.

DestroyButton virtual	void	DestroyButton(int	iButton);



Removes	a	button.

DoModal virtual	int	DoModal();

Creates	a	modal	property	sheet.

RemovePage virtual	void	RemovePage(CPropertyPage*	pPage);

Remove	a	property	page.

SetTitle virtual	void	SetTitle(LPCTSTR	szTitle);

Sets	the	title	of	the	property	sheet.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Summary	Information

Header	file propertysheet.h
Win32/64
support Yes

WinCE	support Yes



CRect	Class

Description

A	CRect	can	be	used	anywhere	that	a	RECT	structure	could	be	used.

CRect	Members

CRect

CRect();

CRect(int	Left,	int	Top,	int	Right,	int	Bottom);

CRect(const	RECT&	rc);

CRect(POINT	pt,	SIZE	sz);

CRect(POINT	topLeft,	POINT	bottomRight);

Constructs	the	CRect.
operator	=
void	operator=(const	RECT&	srcRect);

Assigns	a	RECT	to	this	CRect.	operator	()
operator	LPRECT();

Returns	a	pointer	to	the	RECT	associated	with	this	CRect.	operator	()
operator	LPCRECT()	const;

Returns	a	const	pointer	to	the	RECT	associated	with	this	CRect.	operator	==
BOOL	operator	==	(const	RECT&	rc)	const;

Returns	TRUE	if	the	co-ordinates	of	the	source	rectangle	and	the	CRect	are	equal.	operator	!=
BOOL	operator	!=	(const	RECT&	rc)	const;



Returns	TRUE	if	the	of	the	source	rectangle	and	the	CRect	are	not	equal.	operator	+=
void	operator	+=	(POINT	pt);

void	operator	+=	(SIZE	size);

void	operator	+=	(LPCRECT	prc);

Adds	the	specified	values	to	the	CRect.	operator	-=
void	operator	-=	(POINT	pt);

void	operator	-=	(SIZE	sz);

void	operator	-=	(LPCRECT	prc);

Subtracts	the	specified	values	from	the	CRect.	operator	&=
void	operator	&=	(const	RECT&	rc);

Determines	the	intersection	with	the	specified	RECT.	operator	|=
void	operator	|=	(const	RECT&	rc);

Determines	the	union	with	the	specified	RECT.	operator	+
CRect	operator	+	(POINT	pt)	const;

CRect	operator	+	(SIZE	sz)	const;

CRect	operator	+	(LPRECT	prc)	const;

Offsets	the	CRect	and	returns	the	result.	operator	-
CRect	operator	-	(POINT	pt)	const;

CRect	operator	-	(SIZE	sz)	const;

CRect	operator	-	(LPRECT	prc)	const;

Offsets	the	CRect	and	returns	the	result.	operator	&
CRect	operator	&	(const	RECT&	rc)	const;

Returns	the	intersection	with	the	specified	RECT.	operator	|
CRect	operator	|	(const	RECT&	rc)	const;



Returns	the	union	with	the	specified	RECT.	CopyRect
BOOL	CopyRect(LPCRECT	prc);

Copies	the	coordinates	of	the	source	rectangle	to	the	CRect.	DeflateRect
BOOL	DeflateRect(int	x,	int	y);

BOOL	DeflateRect(SIZE	size);

void	DeflateRect(LPCRECT	prc);

void	DeflateRect(int	l,	int	t,	int	r,	int	b);

Decreases	the	width	and	height	of	the	CRect.	EqualRect
BOOL	EqualRect(LPRECT	prc);

Determines	whether	the	source	rectangle	and	the	CRect	are	equal	by	comparing	the	coordinates	of	their

upper-left	and	lower-right	corners.	InflateRect
BOOL	InflateRect(int	dx,	int	dy);

BOOL	InflateRect(SIZE	sz);

void	InflateRect(LPCRECT	prc);

void	InflateRect(int	l,	int	t,	int	r,	int	b);

Increases	the	width	and	height	of	the	CRect.	IntersectRect
BOOL	IntersectRect(LPCRECT	prc1,	LPCRECT	prc2);

Calculates	the	intersection	of	two	source	rectangles	and	places	the	coordinates	of	the	intersection	rectange

into	the	CRect.	IsRectEmpty
BOOL	IsRectEmpty()	const;

Determines	whether	the	CRect	is	empty.	IsRectNull
BOOL	IsRectNull()	const;

Determines	whether	the	CRect	is	NULL.	MoveToX
void	MoveToX	(int	x);

Moves	the	rect	to	the	specified	left	position.	MoveToY



void	MoveToY	(int	y);

Moves	the	rect	to	the	specified	top	position.	MoveToXY
void	MoveToXY	(int	x,	int	y);

void	MoveToXY	(POINT	pt);

Moves	to	rect	to	the	specified	left	and	top	positions.	MulDiv
CRect	MulDiv(int	nMult,	int	nDiv)	const;

Multiplies	the	CRect	values	by	nMult,	and	then	divides	the	result	by	nDiv.	NormalizeRect
void	NormalizeRect()

Normalizes	CRect	so	that	both	the	height	and	width	are	positive.	OffsetRect
BOOL	OffsetRect(int	dx,	int	dy);

BOOL	OffsetRect(POINT	pt);

BOOL	OffsetRect(SIZE	size);

Moves	the	CRect	by	the	specified	offsets.	PtInRect
BOOL	PtInRect(POINT	pt)	const;

Determines	whether	the	specified	point	lies	within	the	CRect.	SetRect
BOOL	SetRect(int	left,	int	top,	int	right,	int	bottom);

BOOL	SetRect(POINT	TopLeft,	POINT	BtmRight);

Sets	the	coordinates	of	the	CRect.	SetRectEmpty
BOOL	SetRectEmpty();

Sets	all	the	coordinates	of	the	CRect	to	zero.	SubtractRect
BOOL	SubtractRect(LPCRECT	prc1,	LPCRECT	prc2);

Sets	the	coordinates	of	the	CRect	to	those	formed	by	subtracting	one	rectangle	from	another.

UnionRect
BOOL	UnionRect(LPCRECT	prc1,	LPCRECT	prc2);



Creates	the	union	of	two	rectangles.	Height
int	Height()	const;

Returns	the	height	of	the	CRect.	Width
int	Width()	const;

Returns	the	width	of	the	CRect.	Size
CSize	Size()	const;

Determines	the	size	(width	and	height)	of	the	CRect.	CenterPoint
CPoint	CenterPoint()	const;

Returns	the	point	at	the	center	of	the	CRect.	TopLeft
CPoint	TopLeft()	const;

Returns	the	top	left	point	of	the	CRect.	BottomRight
CPoint	BottomRight()	const;

Returns	the	bottom	left	point	of	the	CRect.

Remarks

By	default,	the	constructor	sets	all	the	rectangle	coordinates	zero,	but	the	CRect
can	also	be	constructed	from	four	integers,	a	rectangle,	a	point	and	size,	or	two
points.

The	CRect	class	inherits	from	the	RECT	structure.		As	a	result,	the	data
members	of	the	underlying	RECT	struct	are	also	accessible	as	data	members
(left,	top,	right	and	bottom).

Summary	Information

Header	file winutils.h
Win32/64
support Yes

WinCE	support Yes



CResizer	Class

Description

The	CResizer	class	can	be	used	to	automatically	rearrange	the	position	of	child	windows	when	the	parent
window	is	resized.	Typically	this	is	used	to	reposition	the	controls	for	a	dialog.

CResizer	Members

CResizer CResizer();

Constructor	for	the	CResizer.
AddChild
virtual	void	AddChild(CWnd*	pWnd,	Alignment	corner,	DWORD	dwStyle);

virtual	void	AddChild(HWND	hWnd,	Alignment	corner,	DWORD	dwStyle);

Adds	a	child	window	to	be	managed	by	the	CResizer.	GetMinRect
CRect	GetMinRect()	const;

Returns	the	minimum	allowed	rectangle.	GetMaxRect
CRect	GetMaxRect()	const;

Returns	the	maximum	allowed	rectangle.	HandleMessage
virtual	void	HandleMessage(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

Performs	the	resizing	and	scrolling.	Call	this	function	from	within	the	window's	DialogProc.

Initialize
virtual	void	Initialize(CWnd*	pParent,	RECT	rcMin,	RECT	rcMax	=	CRect(0,0,0,0));

Specifies	the	parent	window,	as	well	as	its	minimum	and	maximum	size.	RecalcLayout
virtual	void	RecalcLayout();

Repositions	the	child	windows.



Remarks

To	use	the	CResizer	class	to	manage	the	position	of	child	windows,	perform	the
following	steps.

Use	Initialize	to	specify	the	parent	window,	along	with	the	minimum	and
maximum	permitted	sizes.
Use	AddChild	for	each	child	window	we	wish	to	manage.
Call	HandleMessage	from	within	DialogProc	or	WndProc	to	pass	messages
on	to	CResizer

The	following	code	demonstrates	how	to	initialize	CResizer	for	a	dialog.

BOOL	CMyDialog::OnInitDialog()
{
				//	Perform	other	tasks	...

				//	Initialize	dialog	resizing
				m_Resizer.Initialize(	this,	CRect(0,	0,	300,	200)	);	
				m_Resizer.AddChild(m_RadioA,			topleft,	0);
				m_Resizer.AddChild(m_RadioB,			topleft,	0);
				m_Resizer.AddChild(m_RadioC,			topleft,	0);
				m_Resizer.AddChild(m_Button,			topleft,	0);
				m_Resizer.AddChild(m_CheckA,			bottomright,	0);
				m_Resizer.AddChild(m_CheckB,			bottomright,	0);
				m_Resizer.AddChild(m_CheckC,			bottomright,	0);
				m_Resizer.AddChild(m_RichEdit1,	topright,	RD_STRETCH_WIDTH);
				m_Resizer.AddChild(m_RichEdit2,	bottomleft,	RD_STRETCH_WIDTH|	RD_STRETCH_HEIGHT);
	
				return	true;
}

The	following	code	shows	how	to	add	the	CResizer	message	handling.

INT_PTR	CMyDialog::DialogProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)
{
				//	Pass	resizing	messages	on	to	the	resizer
				m_Resizer.HandleMessage(uMsg,	wParam,	lParam);

//		switch	(uMsg)
//		{
//						Additional	messages	to	be	handled	go	here
//		}

				//	Pass	unhandled	messages	on	to	parent	DialogProc
				return	DialogProcDefault(uMsg,	wParam,	lParam);



}

Summary	Information

Header	file dialog.h
Win32/64
support Yes

WinCE	support Yes



CRgn	Class

Description

The	class	responsible	for	creating	and	managing	regions.

CRgn	Members

Initialization	and	Assignment

CRgn

CRgn();

CRgn(HRGN	hRgn);

Constructs	a	CRgn	object.
FromHandle
static	CRgn*	FromHandle(HRGN	hRgn);

Returns	the	CRgn	associated	with	the	specified	region	handle.	If	a	CRgn	object	doesn't	already	exist,	a
temporary	CRgn	object	is	created.	This	temporary	CRgn	will	be	deleted	sometime	after	the	processing	of

the	current	message	is	complete.	operator	HRGN()
operator	HRGN()	const;

Allows	a	CRgn	object	to	be	used	as	a	region	handle	(HRGN).	Attributes	GetRegionData
int	GetRegionData(LPRGNDATA	lpRgnData,	int	nDataSize)	const;

Fills	the	specified	buffer	with	data	describing	a	region.	GetRgnBox
int	GetRgnBox(RECT&	rc)	const;

Retrieves	the	bounding	rectangle	of	the	region,	and	stores	it	in	the	specified	RECT.	The	return	value
indicates	the	region's	complexity:	NULLREGION;SIMPLEREGION;	or	COMPLEXREGION.	Operations
CombineRgn
int	CombineRgn(HRGN	hRgnSrc1,	HRGN	hRgnSrc2,	int	nCombineMode);

int	CombineRgn(HRGN	hRgnSrc,	int	nCombineMode);



Combines	two	sepcified	regions	and	stores	the	result.	CopyRgn
int	CopyRgn(HRGN	hRgnSrc);

Assigns	the	specified	region	to	the	current	region.	CreateEllipticRgn
HRGN	CreateEllipticRgn(int	x1,	int	y1,	int	x2,	int	y2);

Creates	an	elliptical	region.	CreateEllipticRgnIndirect
HRGN	CreateEllipticRgnIndirect(const	RECT&	rc);

Creates	an	elliptical	region.	CreateFromData
HRGN	CreateFromData(const	XFORM*	lpXForm,	int	nCount,	
																				const	RGNDATA*	pRgnData);

Creates	a	region	from	the	specified	region	and	transformation	data.	CreateFromPath
HRGN	CreateFromPath(HDC	hDC);

Creates	a	region	from	the	path	that	is	selected	into	the	specified	device	context.	The	resulting	region	uses

device	coordinates.	CreatePolygonRgn
HRGN	CreatePolygonRgn(LPPOINT	lpPoints,	int	nCount,	int	nMode);

Creates	a	polygonal	region.	CreatePolyPolygonRgn
HRGN	CreatePolyPolygonRgn(LPPOINT	lpPoints,	LPINT	lpPolyCounts,	
																										int	nCount,	int	nPolyFillMode);

Creates	a	region	consisting	of	a	series	of	polygons.	EqualRgn
BOOL	EqualRgn(HRGN	hRgn)	const;

Creates	a	region	consisting	of	a	series	of	polygons.	The	polygons	can	overlap.	OffsetRgn
int	OffsetRgn(int	x,	int	y);

int	OffsetRgn(POINT&	pt);

Moves	a	region	by	the	specified	offsets.	PtInRegion
BOOL	PtInRegion(int	x,	int	y)	const;

BOOL	PtInRegion(POINT&	pt)	const;



Determines	whether	the	specified	point	is	inside	the	specified	region.	RectInRegion
BOOL	RectInRegion(const	RECT&	rc)	const;

Determines	whether	the	specified	rect	is	inside	the	specified	region.	SetRectRgn
void	SetRectRgn(int	x1,	int	y1,	int	x2,	int	y2);

void	SetRectRgn(const	RECT&	rc);

Converts	the	region	into	a	rectangular	region	with	the	specified	coordinates.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CGDIObject.

Remarks

CRgn	objects	can	be	used	anywhere	a	a	handle	to	a	region	(HRGN)	might	be	used.		They	can	be	substituted
for	the	HRGN	in	any	of	the	Windows	API	functions	which	use	a	HRGN	as	a	function	argument.		The
benefit	of	using	a	CRgn	object	is	that	it	automatically	deletes	the	palette	when	it	is	destroyed.

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CRibbon	Class

Description

CRibbon	allows	a	ribbon	to	be	added	to	a	windows.	Only	Windows	7	(and	above)	supports	the	ribbon
framework.	

CRibbon	Members

CRibbon CRibbon();

Constructs	a	CRibbon	object.
CreateRibbon
bool	virtual	CreateRibbon(CWnd*	pWnd);

Creates	the	ribbon	DestroyRibbon
void	virtual	DestroyRibbon();

Destroys	the	ribbon	GetRibbonFramework
IUIFramework*	GetRibbonFramework()	const;

Returns	the	pointer	to	IUIFramwork,	assigned	when	the	ribbon	is	created.	GetRibbonHeight
UINT	GetRibbonHeight()	const;

Returns	the	height	of	the	ribbon.

IUnknown	Methods

AddRef STDMETHOD_(ULONG,	AddRef());

Increments	the	reference	count	for	the	interface	on	the	object.

Release STDMETHOD_(ULONG,	Release());

Decrements	the	reference	count	for	the	interface	on	the	object.



QueryInterface STDMETHOD(QueryInterface(REFIID	iid,	void**	ppv));

Retrieves	pointers	to	the	supported	interfaces	on	the	object.

IUIApplication	Methods

OnCreateUICommand

STDMETHOD(OnCreateUICommand)(UINT	nCmdID,	__in	UI_COMMANDTYPE	typeID,	
												__deref_out	IUICommandHandler**	ppCommandHandler);

Called	by	the	Ribbon	framework	for	each	command	specified	in	the	Ribbon	markup	to	bind	the	Command	to	an
IUICommandHandler.

OnDestroyUICommand

STDMETHOD(OnDestroyUICommand)(UINT32	commandId,	__in	UI_COMMANDTYPE	typeID,
											__in_opt	IUICommandHandler*	commandHandler);

Called	for	each	Command	specified	in	the	Ribbon	markup	when	the	Ribbon	host	application	window	is
destroyed.

OnViewChanged
STDMETHOD(OnViewChanged)(UINT	viewId,	__in	UI_VIEWTYPE	typeId,	
												__in	IUnknown*	pView,	UI_VIEWVERB	verb,	INT	uReasonCode);

Called	when	the	state	of	the	Ribbon	changes,	for	example,	created,	destroyed,	or	resized.

IUICommandHandle	methods

Execute

STDMETHODIMP	Execute(UINT	nCmdID,	UI_EXECUTIONVERB	verb,	__in_opt	const	PROPERTYKEY*	key,
																					__in_opt	const	PROPVARIANT*	ppropvarValue,	
																					__in_opt	IUISimplePropertySet*	pCommandExecutionProperties);

Executes	or	previews	the	Commands	bound	to	the	Command	handler.

UpdateProperty

STDMETHODIMP	UpdateProperty(UINT	nCmdID,	__in	REFPROPERTYKEY	key,	
																												__in_opt	const	PROPVARIANT*	ppropvarCurrentValue,	
																												__out	PROPVARIANT*	ppropvarNewValue);

Called	by	the	Ribbon	framework	when	a	command	property	(PKEY)	needs	to	be	updated.

Remarks

Microsoft's	RibbonUI	framework	uses	COM	to	implement	the	ribbon.	The	COM
interfaces	involved	are	IUIApplication	and	IUICommandHandler.	The	CRibbon
class	inherits	from	both	IUIApplication	and	IUICommandHandler.



To	create	and	interact	with	the	ribbon,	we	override	the	relevant	functions	from
both	IUIApplication	and	IUICommandHandler.

The	functions	you	may	wish	to	override	are:

IUIApplication::OnCreateUICommand	-	Called	for	each	Command
specified	in	the	Ribbon	markup	to	bind	the	Command	to	an
IUICommandHandler.
IUIApplication::OnDestroyUICommand	-	Called	for	each	Command
specified	in	the	Ribbon	markup	when	the	Ribbon	host	application	window
is	destroyed.
IUIApplication::OnViewChanged	-	Called	when	the	state	of	a	View
changes.
IUICommandHandler::Execute	-	Executes	or	previews	the	Commands
bound	to	the	Command	handler.
IUICommandHandler::UpdateProperty	-	Sets	a	property	value	for	a	bound
Command,	for	example,	setting	a	Command	to	enabled	or	disabled
depending	on	the	state	of	a	View.

Refer	to	the	RibbonSimple	sample	for	a	demonstration	of	how	to	add	a	ribbon	to
a	simple	window.

Summary	Information

Header	file ribbon.h
Win32/64
support Yes

WinCE	support No

Library	required Comctl32.lib,	
Shlwapi.lib



CRibbonFrame	Class

Description

CRibbonFrame	provides	a	Frame	window	with	a	Ribbon	in	place	of	the	traditional	MenuBar	and	ToolBar.
Only	Windows	7	(and	above)	supports	the	ribbon	framework.		By	default,	a	ToolBar	and	MenuBar	is
displayed	instead	of	the	ribbon	if	the	ribbon	framework	is	not	supported	by	the	Operating	System.	

CRibbonFrame	Members

CRibbonFrame CRibbonFrame();

Constructs	a	CRibbonFrame	object.
GetViewRect
virtual	CRect	GetViewRect()	const;

Returns	a	CRect	containing	the	dimensions	of	the	view	window.	OnCreate
virtual	void	OnCreate();

Called	when	the	frame	window	is	created.	OnDestroy
virtual	void	OnDestroy();

Called	when	the	frame	window	is	destroyed.	OnViewChanged
virtual	STDMETHODIMP	OnViewChanged(UINT32	viewId,	UI_VIEWTYPE	typeId,	
																						IUnknown*	pView,	UI_VIEWVERB	verb,	INT32	uReasonCode);

Called	when	the	state	of	the	view	changes.	PopulateRibbonRecentItems
virtual	HRESULT	PopulateRibbonRecentItems(__deref_out	PROPVARIANT*	pvarValue);

Populates	the	list	of	Most	Recently	Used	files.	UpdateMRUMenu
virtual	void	UpdateMRUMenu();

Updates	the	frame	with	the	MRU	list.



Base	class	Members

For	base	class	members,	refer	to	the	members	of	CFrame	and	CRibbon.

Remarks

Microsoft's	RibbonUI	framework	uses	COM	to	implement	the	ribbon.	The	COM
interfaces	involved	are	IUIApplication	and	IUICommandHandler.	The	Win32++
CRibbon	class	inherits	from	both	IUIApplication	and	IUICommandHandler.
CRibbonFrame	inherits	from	both	CFrame	and	and	CRibbon.

To	add	a	ribbon	to	your	frame,	inherit	CMainFrame	from	CRibbonFrame,	and
add	the	Ribbon.xml	file	containing	the	definitions	for	your	ribbon	to	the	project.	
The	Ribbon.xml	is	compiled	to	produce	the	RibbonUI.h	and	Ribbon.rc	before
the	files	C++	files	are	compiled.	To	compile	Ribbon.xml,	specify	it's	custom
build	properties	in	the	IDE	as	follows:

Command	Line:-		uicc.exe	..\src\Ribbon.xml	..\src\Ribbon.bml
/header:..\src\RibbonUI.h	/res:..\src\RibbonUI.rc
Outputs:-		Ribbon.bml;RibbonUI.rc;RibbonUI.h

To	create	and	interact	with	the	ribbon,	we	override	the	relevant	functions	from
both	IUIApplication	and	IUICommandHandler.	The	functions	you	may	wish	to
override	are:

IUIApplication::OnCreateUICommand	-	Called	for	each	Command
specified	in	the	Ribbon	markup	to	bind	the	Command	to	an
IUICommandHandler.
IUIApplication::OnDestroyUICommand	-	Called	for	each	Command
specified	in	the	Ribbon	markup	when	the	Ribbon	host	application	window
is	destroyed.
IUIApplication::OnViewChanged	-	Called	when	the	state	of	a	View
changes.
IUICommandHandler::Execute	-	Executes	or	previews	the	Commands
bound	to	the	Command	handler.
IUICommandHandler::UpdateProperty	-	Sets	a	property	value	for	a	bound
Command,	for	example,	setting	a	Command	to	enabled	or	disabled
depending	on	the	state	of	a	View.



Refer	to	the	RibbonFrame	sample	for	a	demonstration	of	how	to	create	an
application	with	a	ribbon	frame.

Summary	Information

Header	file ribbon.h
Win32/64
support Yes

WinCE	support No

Library	required Comctl32.lib,	
Shlwapi.lib



CRichEdit	Class

Description

A	rich	edit	control	enables	the	user	to	enter,	edit,	print,	and	save	text.	The	text	can	be	assigned	character	and
paragraph	formatting,	and	can	include	embedded	Component	Object	Model	(COM)	objects.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	rich	edit	controls.

CRichEdit	Members

Construction

CRichEdit CRichEdit();

Constructor	for	CRichEdit.

Attributes

GetCharPos CPoint	GetCharPos(long	lChar)	const;

Retrieves	the	client	area	coordinates	of	a	specified	character.

GetDefaultCharFormat
DWORD	GetDefaultCharFormat(CHARFORMAT&	cf)	const;

GetDefaultCharFormat(CHARFORMAT2&	cf)	const;

Retrieves	the	current	default	character	formatting	attributes.

GetEventMask
GetEventMask()	const;

Retrieves	the	event	mask.	The	event	mask	specifies	which	notification	messages	the
control	sends	to	its	parent	window.

GetFirstVisibleLine int	GetFirstVisibleLine()	const;

Gets	the	zero-based	index	of	the	uppermost	visible	line.

GetIRichEditOle
IRichEditOle*	GetIRichEditOle()	const;



Retrieves	an	IRichEditOle	object	that	a	client	can	use	to	access	the	rich	edit	control's
Component	Object	Model	(COM)	functionality.

GetFirstVisibleLine
int	GetFirstVisibleLine()	const;

Returns	the	zero-based	index	of	the	first	visible	character	in	a	single-line	edit	control
or	the	zero-based	index	of	the	uppermost	visible	line	in	a	multiline	edit	control.

GetLimitText long	GetLimitText()	const;

Gets	the	current	text	limit	for	the	edit	control.

GetLine

int	GetLine(int	nIndex,	LPTSTR	lpszBuffer)	const;

int	GetLine(int	nIndex,	LPTSTR	lpszBuffer,	int	nMaxLength)	const;

Copies	a	line	of	text	from	the	rich	edit	control	and	places	it	in	the	specified	buffer.	lpszBuffer	is	a
pointer	to	the	buffer	that	receives	a	copy	of	the	line.	Either	specify	nMaxLength,	or	set	the	first
word	of	lpszBuffer	to	the	size	of	the	buffer	in	TCHARs.

GetLineCount int	GetLineCount()	const;

Gets	the	number	of	lines	in	a	multiline	edit	control.

GetModify
BOOL	GetModify()	const;

Retrieves	a	flag	than	indicates	whether	the	contents	of	the	edit	control	have	been
modified..

GetOptions UINT	GetOptions()	const;

Retrieves	the	rich	edit	control	options.

GetParaFormat
DWORD	GetParaFormat(PARAFORMAT&	pf)	const;

DWORD	GetParaFormat(PARAFORMAT2&	pf)	const;

Retrieves	the	paragraph	formatting	of	the	current	selection.

GetRect
void	GetRect(LPRECT	lpRect)	const;

Retrieves	the	formatting	rectangle.	The	formatting	rectangle	is	the	limiting	rectangle	into
which	text	can	be	drawn.

GetRedoName UNDONAMEID	GetRedoName()	const;

Retrieves	the	type	of	the	next	action,	if	any,	in	the	control's	redo	queue.

GetSel

void	GetSel(CHARRANGE&	cr)	const;

void	GetSel(long&	nStartChar,	long&	nEndChar)	const;



Retrieves	the	starting	and	ending	character	positions	of	the	selection..

GetSelectionCharFormat
DWORD	GetSelectionCharFormat(CHARFORMAT&	cf)	const;

DWORD	GetSelectionCharFormat(CHARFORMAT2&	cf)	const;

Retrieves	the	character	formatting	attributes	in	the	current	selection.

GetSelectionType WORD	CRichEdit::GetSelectionType()	const

Retrieves	the	type	of	contents	in	the	current	selection.

GetSelText
long	GetSelText(LPSTR	lpBuf)	const;

CString	GetSelText()	const;

Gets	the	text	of	the	current	selection.

GetTextLength
long	GetTextLength()	const;

Retrieves	the	length	of	the	text,	in	characters.	Does	not	include	the	terminating	null
character.

GetTextLengthEx long	GetTextLengthEx(DWORD	dwFlags,	UINT	uCodePage	=	-1)	const;

Returns	the	number	of	TCHARs	in	the	rich	edit	control,	depending	on	the	flags	specified.

GetTextMode UINT	GetTextMode()	const;

Retrieves	the	current	text	mode	and	undo	level.

GetTextRange int	GetTextRange(int	nFirst,	int	nLast,	CString&	refString)	const;

Retrieves	the	specified	range	of	text.

GetUndoName UNDONAMEID	GetUndoName()	const;

Returns.

SetAutoURLDetect BOOL	SetAutoURLDetect(BOOL	bEnable	=	TRUE)	const;

Indicates	if	the	auto	URL	detection	is	active.

SetBackgroundColor COLORREF	SetBackgroundColor(BOOL	bSysColor,	COLORREF	cr)	const;

Sets	the	background	color.

SetDefaultCharFormat
BOOL	SetDefaultCharFormat(CHARFORMAT&	cf)	const;

BOOL	SetDefaultCharFormat(CHARFORMAT2&	cf)	const;

Sets	the	current	default	character	formatting	attributes.



SetEventMask
DWORD	SetEventMask(DWORD	dwEventMask)	const;

Sets	the	event	mask.	The	event	mask	specifies	which	notification	messages	the	control
sends	to	its	parent	window.

SetModify
void	SetModify(BOOL	bModified	=	TRUE)	const;

Sets	or	clears	the	modification	flag.	The	modification	flag	indicates	whether	the	text	has
been	modified.

SetOLECallback BOOL	SetOLECallback(IRichEditOleCallback*	pCallback)	const;

Sets	the	IRichEditOleCallback	COM	object.

SetOptions

void	SetOptions(WORD	wOp,	DWORD	dwFlags)	const;

Sets	the	options.
Possible	wOp	values:	ECOOP_SET,	ECOOP_OR,	ECOOP_AND,	ECOOP_XOR
Possible	dwFlags:	ECO_AUTOWORDSELECTION,	ECO_AUTOVSCROLL,
ECO_AUTOHSCROLL,	ECO_NOHIDESEL	ECO_READONLY,	ECO_WANTRETURN,
ECO_SELECTIONBAR,	ECO_VERTICAL

SetParaFormat
BOOL	SetParaFormat(PARAFORMAT&	pf)	const;

BOOL	SetParaFormat(PARAFORMAT2&	pf)	const;

Sets	the	paragraph	formatting	attributes	in	the	current	selection.

SetReadOnly BOOL	SetReadOnly(BOOL	bReadOnly	=	TRUE)	const;

Sets	or	removes	the	read-only	style.

SetRect
void	SetRect(LPCRECT	lpRect)	const;

Sets	the	formatting	rectangle.	The	formatting	rectangle	is	the	limiting	rectangle	into	which
the	control	draws	the	text.

SetSel
void	SetSel(long	nStartChar,	long	nEndChar)	const;

void	SetSel(CHARRANGE&	cr)	const;

Selects	a	range	of	characters.

SetSelectionCharFormat
BOOL	SetSelectionCharFormat(CHARFORMAT&	cf)	const;

BOOL	SetSelectionCharFormat(CHARFORMAT2&	cf)	const;

Sets	the	character	formatting	attributes	in	the	current	selection.

SetTargetDevice

BOOL	SetTargetDevice(HDC	hDC,	long	lLineWidth)	const;

BOOL	SetTargetDevice(CDC&	dc,	long	lLineWidth)	const;



Sets	the	target	output	device	and	line	width	used	for	"what	you	see	is	what	you	get"
(WYSIWYG)	formatting.

SetTextMode
BOOL	SetTextMode(UINT	fMode)	const;

Sets	the	text	mode	or	undo	level	of	the	rich	edit	control.	The	message	fails	if	the	control
contains	text.

SetUndoLimit
UINT	SetUndoLimit(UINT	nLimit)	const;

Sets	the	maximum	number	of	actions	that	can	stored	in	the	undo	queue.	This	member
function	fails	if	the	control	contains	text.

SetWordCharFormat
BOOL	SetWordCharFormat(CHARFORMAT&	cf)	const;

BOOL	SetWordCharFormat(CHARFORMAT2&	cf)	const;

Sets	the	character	formatting	attributes	in	the	current	word.

Operations

CanPaste BOOL	CanPaste(UINT	nFormat	=	0)	const;

Determines	whether	a	rich	edit	control	can	paste	a	specified	clipboard	format.

CanRedo BOOL	CanRedo()	const;

Determines	whether	there	are	any	actions	in	the	control	redo	queue.

CanUndo BOOL	CanUndo()	const;

Determines	whether	there	are	any	actions	in	an	edit	control's	undo	queue.

CharFromPos int	CharFromPos(CPoint	pt)	const;

Gets	information	about	the	character	closest	to	a	specified	point	in	the	client	area	of	an	edit	control.

Clear void	Clear()	const;

Delete	(clear)	the	current	selection

Copy void	Copy()	const;

Copy	the	current	selection	to	the	clipboard	in	CF_TEXT	format.

Cut
void	Cut()	const;

Delete	(cut)	the	current	selection,	if	any,	in	the	edit	control	and	copy	the	deleted	text	to	the	clipboard	in	CF_TEXT
format.



DisplayBand
BOOL	DisplayBand(LPRECT	pDisplayRect)	const;

Displays	a	portion	of	the	contents	of	a	rich	edit	control,	as	previously	formatted	for	a	device	using	the
EM_FORMATRANGE	message.

EmptyUndoBuffer
void	EmptyUndoBuffer()	const;

Resets	the	undo	flag	of	the	rich	edit	control.	The	undo	flag	is	set	whenever	an	operation	within	the	edit	control	can	be
undone.

FindText long	FindText(DWORD	dwFlags,	FINDTEXTEX*	pFindTextEx)	const;

Finds	text	within	the	rich	edit	control.

FindWordBreak
DWORD	FindWordBreak(UINT	nCode,	DWORD	nStart)	const;

Finds	the	next	word	break	before	or	after	the	specified	character	position	or	retrieves	information	about	the	character	at
that	position.

FormatRange long	FormatRange(FORMATRANGE*	pfr,	BOOL	bDisplay	=	TRUE)	const;

Formats	a	range	of	text	in	a	rich	edit	control	for	a	specific	device	(e.g.	printer).

HideSelection void	HideSelection(BOOL	bHide,	BOOL	bPerm)	const;

Shows	or	hides	the	current	selection.

LimitText void	LimitText(int	nChars	=	0)	const;

Limits	the	amount	of	text	a	user	can	enter.

LineFromChar long	LineFromChar(long	nIndex)	const;

Determines	which	line	contains	the	given	character.

LineIndex int	LineIndex(int	nLine	=	-1)	const;

Retrieves	the	character	index	of	a	given	line.

LineLength int	LineLength(int	nLine	=	-1)	const;

Retrieves	the	length	of	a	given	line.

LineScroll void	LineScroll(int	nLines,	int	nChars	=	0)	const;

Scrolls	the	text.

Paste void	Paste()	const;

Inserts	the	contents	of	the	Clipboard.

PasteSpecial void	PasteSpecial(UINT	nClipFormat,	DWORD	dwAspect	=	0,	HMETAFILE	hMF	=	0)	const;



Inserts	the	contents	of	the	Clipboard	in	the	specified	data	format.

PosFromChar CPoint	PosFromChar(UINT	nChar)	const;

Retrieves	the	client	area	coordinates	of	a	specified	character.

Redo BOOL	Redo()	const;

Redoes	the	next	action	in	the	control's	redo	queue.

ReplaceSel void	ReplaceSel(LPCTSTR	lpszNewText,	BOOL	bCanUndo)	const;

Replaces	the	current	selection	with	specified	text.

RequestResize void	RequestResize()	const;

Forces	the	sending	of	a	request	resize	notifications.

StopGroupTyping
void	StopGroupTyping()	const;

Stops	the	control	from	collecting	additional	typing	actions	into	the	current	undo	action.	The	control	stores	the	next	
action,	if	any,	into	a	new	action	in	the	undo	queue.

StreamIn long	StreamIn(int	nFormat,	EDITSTREAM&	es)	const;

Replaces	text	with	text	from	the	specified	input	stream.

StreamOut long	StreamOut(int	nFormat,	EDITSTREAM&	es)	const;

Stores	text	into	an	output	stream.

Undo void	Undo()	const;

Reverses	the	last	editing	operation.

Overidables

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks



Like	all	common	controls,	the	rich	edit	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	an	edit	control.

Summary	Information

Header	file rich_edit.h
Win32/64
support Yes

WinCE	support No
Library	required Comctl32.lib



CSize	Class

Description

A	CSize	can	be	used	anywhere	that	a	SIZE	structure	could	be	used.

CSize	Members

CSize

CSize();

CSize(int	CX,	int	CY);

CSize(SIZE	sz);

CSize(POINT	pt);

CSize(DWORD	dw)

Various	methods	of	constructing	the	CSize	object.
operator	LPSIZE()
operator	LPSIZE();

Returns	the	pointer	to	the	SIZE	object	associated	with	this	CSize.	operator	==
BOOL	operator	==	(SIZE	sz)	const;

Returns	TRUE	if	the	co-ordinates	of	the	source	size	and	the	CSize	are	equal.	operator	!=
BOOL	operator	!=	(SIZE	sz)	const;

Returns	TRUE	if	the	of	the	source	size	and	the	CSize	are	not	equal.	operator	+=
void	operator	+=	(SIZE	sz);

Adds	the	specified	SIZE.	operator	-=
void	operator	-=	(SIZE	sz);



Subtracts	the	specified	SIZE.	operator	-
CSize	operator	-	()	const;

Returns	the	unary	minus	(additive	inverse).	operator	+
CSize	operator	+	(SIZE	sz)	const;

CPoint	operator	+	(POINT	point)	const;

CRect	operator	+	(LPCRECT	prc)	const;

Adds	the	point	and	returns	the	value.	operator	-
CSize	operator	-	(SIZE	sz)	const;

CPoint	operator	-	(POINT	point)	const;

CRect	operator	-	(LPCRECT	prc)	const;

Subtracts	the	point	and	returns	the	value.	SetSize
void	SetSize(int	CX,	int	CY);

Sets	the	coordinates	of	the	CSize.

Remarks

By	default,	the	constructor	sets	all	the	size	coordinates	zero,	but	the	CSize	can
also	be	constructed	from	two	integers,	a	size,	a	point,	or	a	dword.

The	CSize	class	inherits	from	the	SIZE	structure.		As	a	result,	the	data	members
of	the	underlying	SIZE	struct	are	also	accessible	as	data	members.

Summary	Information

Header	file winutils.h
Win32/64
support Yes

WinCE	support Yes



CSlider	Class

Description

The	CSlider	class	is	used	to	create	and	manage	a	slider	control.

CSlider	Members

CSlider CSlider();

Constructor	for	the	CSlider.
ClearSel
void	ClearSel()	const;

Clears	the	current	selection	range	ClearTics
void	ClearTics(BOOL	bRedraw	=	FALSE	)	const;

Removes	the	current	tick	marks	GetBuddy
HWND	GetBuddy(BOOL	fLocation	=	TRUE	)	const;

Retrieves	the	handle	to	the	trackbar	control	buddy	window	at	the	given	location.

GetChannelRect
CRect	GetChannelRect()	const;

Retrieves	the	size	and	position	of	the	bounding	rectangle	fro	the	trackbar's	channel.	GetLineSize
int	GetLineSize()	const;

Retrieves	the	number	of	logical	positions	the	trackbar's	slide	moves	in	response	to	keyboard	input	from	the

arrow	keys.	GetNumTics
int	GetNumTics()	const;

Retrieves	the	number	of	tick	marks	in	the	trackbar.	GetPageSize



int	GetPageSize()	const;

Retrieve	the	number	of	logical	positions	the	trackbar's	slider	move	in	response	to	keyboard	input,	or	mouse

input	such	as	clicks	in	the	trackbar's	channel.	GetPos
int	GetPos()	const;

Retrieves	the	current	logical	position	of	the	slider	in	the	trackbar.	GetRangeMax
int	GetRangeMax()	const;

Retrieves	the	maximum	position	for	the	slider	in	the	trackbar.	GetRangeMin
int	GetRangeMin()	const;

Retrieves	the	minimum	position	for	the	slider	in	the	trackbar.	GetSelEnd
int	GetSelEnd()	const;

Retrieves	the	ending	position	of	the	current	selection	range	in	the	trackbar.	GetSetStart
int	GetSelStart()	const;

Retrieves	the	starting	position	of	the	current	selection	range	in	the	trackbar.	GetThumbLength
int	GetThumbLength()	const;

Retrieves	the	length	of	the	slider	in	the	trackbar.	GetThumbRect
CRect	GetThumbRect()	const;

Retrieve	the	size	and	position	of	the	bounding	rectangle	for	the	slider	in	the	trackbar.	GetTic
int	GetTic(int	nTic	)	const;

Retrieves	the	logical	position	of	a	tick	mark	in	the	trackbar.	GetTicPos
int	GetTicPos(int	nTic)	const;

Retrieves	the	current	physical	position	of	a	tick	mark	in	the	trackbar.	GetToolTips
HWND	GetToolTips()	const;

Retrieves	the	handle	to	the	ToolTip	control	assigned	to	the	trackbar,	if	any.	SetBuddy
HWND	SetBuddy(HWND	hwndBuddy,	BOOL	fLocation	=	TRUE	)	const;



Assigns	a	window	as	the	buddy	window	for	the	trackbar	control.	SetLineSize
int	SetLineSize(int	nSize)	const;

Sets	the	number	of	logical	positions	the	trackbar's	slider	moves	in	response	to	keyboard	input	from	arrow

keys.	SetPageSize
int	SetPageSize(int	nSize)	const;

Sets	the	number	of	logical	positions	the	trackbar's	slider	moves	in	response	to	keyboard	input,	or	mouse

input	such	as	clicks	in	the	trackbar's	channel.	SetPos
void	SetPos(int	nPos,	BOOL	bRedraw	=	FALSE)	const;

Sets	the	current	logical	position	of	the	slider	in	the	trackbar.	SetRangeMax
void	SetRangeMax(int	nMax,	BOOL	bRedraw	=	FALSE)	const;

Set	the	maximum	logical	position	for	the	slider	in	the	trackbar.	SetRangeMin
void	SetRangeMin(int	nMax,	BOOL	bRedraw	=	FALSE)	const;

Sets	the	minimum	logical	position	for	the	slider	in	the	trackbar.	SetSelection
void	SetSelection(int	nMin,	int	nMax,	BOOL	bRedraw	=	FALSE)	const;

Sets	the	starting	and	ending	positions	for	the	available	selection	range	in	the	trackbar.	SetTic
BOOL	SetTic(int	nTic)	const;

Sets	a	tick	mark	in	the	trackbar	at	the	specified	logical	position.	SetTicFreq
void	SetTicFreq(int	nFreq)	const;

Sets	the	interval	frequency	for	tick	marks	in	the	trackbar.	SetTipSide
int	SetTipSide(int	nLocation)	const;

Positions	the	ToolTip	control	used	by	the	trackbar	control.	SetToolTips
void	SetToolTips(HWND	hwndTip)	const;

Assigns	a	ToolTip	control	to	the	trackbar	control.

Base	class	Members



For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	slider	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	slider	control.

A	slider	control	is	often	referred	to	as	a	trackbar	control.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes



CSocket	Class

Description

The	CSocket	class	represents	a	network	socket.	It	encapsualtes	many	of	the	Windows	Socket	SPI	fuctions,
providing	an	object-oriented	approach	to	network	programming.	After	StartEvents	is	called,	CSocket
monitors	the	socket	and	responds	automatically	to	network	events.	This	event	monitoring,	for	example,
automatically	calls	OnReceive	when	there	is	data	on	the	socket	to	be	read,	and	OnAccept	when	a	server
should	accept	a	connection	from	a	client.

Users	of	this	class	should	be	aware	that	functions	like	OnReceive,	OnAccept,	etc.	are	called	on	a	different
thread	from	the	one	CSocket	is	instanciated	on.	The	thread	for	these	functions	needs	to	respond	quickly	to
other	network	events,	so	it	shouldn't	be	delayed.	It	also	doesn't	run	a	message	loop,	so	it	can't	be	used	to
create	windows.	For	these	reasons	it	might	be	best	to	use	PostMessage	in	response	to	these	functions	in	a
windows	environment.

Refer	to	the	network	samples	for	an	example	of	how	to	use	this	class	to	create	a	TCP	client	&	server,	and	a
UDP	client	and	server.

To	compile	programs	with	CSocket,	link	with	ws2_32.lib	for	Win32/64,	and	ws2.lib	for	Windows	CE.
Windows	95	systems	will	need	to	install	the	"Windows	Sockets	2.0	for	Windows	95".	It's	available	from:	
http://support.microsoft.com/kb/182108/EN-US/

CSocket	Members:

Construction

CSocket
CSocket();

Constructs	a	CSocket	object.	A	CWinException	will	be	thrown	if
CSocket	can't	be	constructed	properly.

Operations

Accept virtual	void	Accept(CSocket&	rClientSock,	struct	sockaddr*	addr,	int*	addrlen);

Constructs	a	CSocket	object.

Bind
virtual	int	Bind(LPCTSTR	addr,	UINT	port);

http://support.microsoft.com/kb/182108/EN-US/


virtual	int	Bind(const	struct	sockaddr*	name,	int	namelen);

Associates	a	local	address	with	the	socket.

Connect
virtual	int	Connect(LPCTSTR	addr,	UINT	port);

virtual	int	Connect(const	struct	sockaddr*	name,	int	namelen);

Establishes	a	connection	to	a	peer	socket.

Create virtual	bool	Create(	int	family,	int	type,	int	protocol	=	IPPROTO_IP);

Creates	a	socket.

Disconnect virtual	void	Disconnect();

Ends	any	event	notification	for	the	socket,	shuts	the	socket	down,	and	removes	it	from	CSocket.

FreeAddrInfo virtual	void	FreeAddrInfo(	struct	addrinfo*	ai	);

Frees	address	information	that	the	getaddrinfo	function	dynamically	allocates	in	its	addrinfo	structures.

GetAddrInfo virtual	int	GetAddrInfo(	LPCTSTR	nodename,	LPCTSTR	servname,	const	struct	addrinfo*	hints,	struct	addrinfo**	res);

Provides	a	protocol-independent	translation	from	host	name	to	address.

ioCtlSocket virtual	int	ioCtlSocket(long	cmd,	u_long*	argp);

Controls	the	I/O	mode	of	the	socket.

Listen virtual	int	Listen(int	backlog	=	SOMAXCONN);

Establishes	a	socket	to	listen	for	incoming	connection	requests.

Receive virtual	int	Receive(char*	buf,	int	len,	int	flags);

Receives	data	from	the	socket.

ReceiveFrom ReceiveFrom(char*	buf,	int	len,	int	flags,	struct	sockaddr*	from,	int*	fromlen);

Receives	a	datagram	and	stores	the	source	address.

Send virtual	int	Send(LPCTSTR	buf,	int	len,	int	flags);

Sends	data	to	a	connected	socket.

SendTo
virtual	int	SendTo(const	char*	send,	int	len,	int	flags,	LPCTSTR	addr,	UINT	port);

virtual	int	SendTo(const	char*	buf,	int	len,	int	flags,	const	struct	sockaddr*	to,	int	tolen);

Sends	data	to	a	specific	destination.

virtual	void	StartEvents();



StartEvents Starts	the	thread	which	produces	the	notification	of	network	events.

StopEvents virtual	void	StopEvents();

Stops	the	thread	which	produces	the	notification	of	network	events.

Attributes

GetLastError virtual	LPCTSTR	GetLastError();

Retrieves	the	calling	thread's	last-error	code	value.

GetPeerName virtual	int	GetPeerName(struct	sockaddr*	name,	int*	namelen);

Gets	the	address	of	the	peer	socket	connected	to	socket.

GetSocket SOCKET&	GetSocket();

Gets	the	SOCKET	associated	with	this	CSocket.

GetSockName virtual	int	GetSockName(struct	sockaddr*	name,	int*	namelen);

Gets	the	local	name	of	a	socket.

GetSockOpt virtual	int	GetSockOpt(int	level,	int	optname,	char*	optval,	int*	optlen);

Gets	a	socket	option.

IsIPV6Supported virtual	bool	IsIPV6Supported();

Returns	TRUE	if	the	operating	system	supports	IP	version	6.

SetSockOpt virtual	int	SetSockOpt(int	level,	int	optname,	const	char*	optval,	int	optlen);

Sets	a	socket	option.

Overridables

OnAccept
virtual	void	OnAccept();

Notifies	a	listening	socket	that	it	can	accept	pending	connection	requests	by	calling
Accept.

OnAddressListChange virtual	void	OnAddresListChange();

Notifies	a	socket	that	there	has	been	a	local	address	list	change.



OnConnect
virtual	void	OnDisconnect();

Notifies	a	connecting	socket	that	the	connection	attempt	is	complete.

OnDisconnect virtual	void	OnConnect();

Notifies	a	socket	that	the	socket	connected	to	it	has	closed.

OnOutOfBand
virtual	void	OnOutOfBand();

Notifies	a	receiving	socket	that	there	is	out-of-band	data	to	be	read	on	the	socket,
usually	an	urgent	message.

OnQualityOfService virtual	void	OnQualityOfService();

Notifies	a	socket	that	there	has	been	a	QOS	change.

OnReceive virtual	void	OnReceive();

Notifies	a	listening	socket	that	there	is	data	to	be	retrieved	by	calling	Receive.

OnRoutingChange virtual	void	OnRoutingChange();

Notifies	a	socket	that	there	has	been	routing	interface	change.

OnSend virtual	void	OnSend();

Notifies	a	socket	that	it	can	send	data	by	calling	Send.

Remarks

CSocket's	constructor	will	throw	a	CWinException	if	WSAStartup	fails	or	if	the
WS2_32.dll	DLL	fails	to	load.	You	can	catch	this	exception	if	you	wish	to
handle	this	rather	unlikely	situation	gracefully.	Note	that	windows	95	may	not
have	WS2_32.dll.

IP	version	6	support

IP	version	6	is	not	supported	on	all	operating	systems	or	all	development
environments.	Keep	the	following	in	mind	when	offering	support	for	IP	version
6	in	your	applications.

IPv6	is	supported	on	Windows	Vista	and	above.	Windows	XP	with	SP2	provides	"experimental"
support,	which	can	be	enabled	by	entering	"ipv6	install"	at	a	command	prompt.
IPv6	is	not	supported	by	all	compilers	and	development	environments.	In	particular,	it	is	not
supported	by	Dev-C++	or	Borland	5.5.	A	modern	Platform	SDK	needs	to	be	added	to	Visual	Studio	6



for	it	to	support	IPv6.
The	IsIPV6Supported	function	returns	false	if	either	the	operating	system	or	the	development
environment	fails	to	support	IPv6.

Network	client	code

The	following	code	segments	are	complete	programs	which	demonstrate	how	to	write	a	simple	network
client	and	server.

#include	
#include	
#include	"winsock2.h"
#include	"../../Win32++/socket.h"

using	namespace	std;
using	namespace	Win32xx;

class	CClientSocket	:	public	CSocket
{
public:
		CClientSocket()	{}
		virtual	void	OnReceive()
		{
				//	This	function	is	called	automatically	when	there	is	data	to	receive
				TCHAR	str[1024]	=	{0};
				int	i	=	Receive(str,	1024,	0);

				cout	<<	i	<<	"	chars	received:	"	<<	str	<<	endl;
		}
};

int	main()
{
		CClientSocket	Client;

		//	Create	the	socket	to	communicate	with	the	Server
		if	(!Client.Create(SOCK_STREAM))
		{
				cout	<<	"Failed	to	create	socket\n"	;
				return	0;
		}

		//	Connect	to	the	server
		if	(SOCKET_ERROR	==	Client.Connect(_T("127.0.0.1",	3000)))
		{
				cout	<<	"Failed	to	connect	to	server.	Was	it	running?\n";
				return	0;



		}
		cout	<<	"Connected	to	server.\n";
		cout	<<	"Type	data	to	send,	type	quit	to	exit\n";

		//	Monitor	the	client	socket	for	network	events,	such	as	data	ready	to	receive
		Client.StartEvents();

		//	Send	data	to	the	server
		string	s;
		for	(;;)	 //	Infinite	loop
		{
				getline(cin,	s);
				if	(s	==	"quit")	break;
				int	i	=	Client.Send(s.c_str(),	(int)s.length(),	0);
				cout	<<	"Sending		"	<<	i	<<	"	characters\n";
		}

		return	0;
}

Network	server	code

#include	
#include	
#include	"winsock2.h"
#include	"../../Win32++/socket.h"

using	namespace	std;
using	namespace	Win32xx;

class	CServerSocket	:	public	CSocket
{
public:
		CServerSocket()	{}
		virtual	~CServerSocket()	{}
		virtual	void	OnReceive()
		{
				//	This	function	is	called	automatically	when	there	is	data	to	receive
				TCHAR	str[1024]	=	{0};
				int	i	=	Receive(str,	1024,	0);
				cout	<<	i	<<"	chars	received:	"	<<	str	<<	endl;
		}
};

int	main()
{
		//	Create	the	main	server	socket.
		//	It	is	used	to	listen	for	clients



		CServerSocket	Server;
		if	(!Server.Create(SOCK_STREAM))
		{
				cout	<<	"Failed	to	create	socket\n"	;
				return	0;
		}

		//	Bind	the	IP	address	and	port#	to	the	main	socket
		if	(SOCKET_ERROR	==	Server.Bind(_T("127.0.0.1",	3000)))
		{
				cout	<<	"Failed	to	bind	IP	address	to	socket\n"	;
				return	0;
		}

		//	Listen	on	the	socket	for	clients	to	connect
		if	(SOCKET_ERROR	==	Server.Listen())
		{
				cout	<<	"Listen	on	socket	failed\n";
				return	0;
		}

		//	Create	the	socket	to	communicate	with	the	Client
		CServerSocket	Client;
		cout	<<	"Waiting	for	the	client	to	connect\n";
		do
		{
				Server.Accept(Client,	NULL,	NULL);
		}
		while	(SOCKET_ERROR	==	Client.GetSocket());

		cout	<<	"Client	connected\n";

		//	Monitor	the	client	socket	for	network	events,	such	as	data	ready	to	receive
		Client.StartEvents();

		//	Send	data	to	the	client
		cout	<<	"Type	data	to	send,	type	quit	to	exit\n";
		string	s;
		for	(;;)			//	infinite	loop
		{
				getline(cin,	s);
				if	(s	==	"quit")	break;
				int	i	=	Client.Send(s.c_str(),	(int)s.length(),	0);
				cout	<<	"Sending		"	<<	i	<<	"	characters\n";
		}

		return	0;
}



Refer	to	the	Networking	ClientDlg	and	ServerDlg	sample	for	a	more
comprehensive	demonstration	of	the	features	of	CSocket.

Summary	Information

Header	file socket.h
Win32/64	support Yes
WinCE	support Yes

Library	required ws2_32.lib,	or	ws2.lib	for
WinCE



CSpinButton	Class

Description

The	CSpinButton	class	is	used	to	create	and	manage	a	spin	button	control.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	spin	button	controls.

CSpinButton	Members

CSpinButtonCSpinButton();

Constructor	for	the	CSpinButton.
GetAccel
int	GetAccel(int	cAccels,	LPUDACCEL	paAccels)	const;

Retrieves	acceleration	information	for	the	up-down	control.	GetBase
int	GetBase()	const;

Retrieves	the	current	radix	base	(either	base	10	or	16)	for	the	up-down	control.	GetBuddy
HWND	GetBuddy()	const;

Retrieves	the	handle	to	the	current	buddy	window.	GetPos
int	GetPos()	const;

Retrieves	the	current	position	of	the	upd-down	control	with	16-bit	precision.	GetRange
DWORD	GetRange()	const;

Retrieves	the	minimum	and	maximum	positions	(range)	for	the	up-down	control.	SetAccel
BOOL	SetAccel(int	cAccels,	LPUDACCEL	paAccels)	const;

Sets	the	acceleration	for	the	up-down	control.	SetBase



int	SetBase(int	nBase)	const;

Sets	the	radix	base	(either	10	or	16)	for	the	up-down	control.	SetBuddy
HWND	SetBuddy(HWND	hwndBuddy)	const;

Sets	the	buddy	window	for	the	up-down	control.	SetPos
int	SetPos(int	nBase)	const;

Sets	the	current	position	for	the	up-down	control	with	16-bit	precision.	SetRange
void	SetRange(int	nLower,	int	nUpper)	const;

Sets	the	minimum	and	maximum	positions	(range)	for	the	up-down	control.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	spin	button	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	spin	button	control.

A	spin	button	control	is	often	referred	to	as	an	up-down	control.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes



CStatic	Class

Description

Applications	often	use	static	controls	to	label	other	controls	or	to	separate	a	group	of	controls.	Although
static	controls	are	child	windows,	they	cannot	be	selected.	Therefore,	they	cannot	receive	the	keyboard
focus	and	cannot	have	a	keyboard	interface.	A	static	control	that	has	the	SS_NOTIFY	style	receives	mouse
input,	notifying	the	parent	window	when	the	user	clicks	or	double	clicks	the	control.	Static	controls	belong
to	the	STATIC	window	class.

CStatic	is	the	class	responsible	for	creating	a	static	control.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	static	controls.

CStatic	Members

Construction

CStatic CStatic();

Constructs	a	CStatic

Attributes

GetBitmap
HBITMAP	GetBitmap()	const;

Returns	the	handle	of	the	bitmap	associated	with	the	static	control	set	by
CStatic::SetBitmap.

GetCursor
HCURSOR	GetCursor()	const;

Returns	the	handle	of	the	cursor	associated	with	the	static	control	set	by
CStatic::SetCursor.

GetEnhMetaFile
HENHMETAFILE	GetEnhMetaFile()	const;

Returns	the	handle	of	the	enhanced	metafile	associated	with	the	static	control	set	by
CStatic::SetEnhMetaFile.

GetIcon HICON	GetIcon()	const;



Returns	a	handle	to	the	icon	associated	with	the	static	control	set	by	CStatic::SetIcon.

SetBitmap

HBITMAP	SetBitmap(HBITMAP	hBitmap)	const;

Associates	a	new	bitmap	with	the	static	control.	The	bitmap	will	be	drawn	in	the	upper-
left	corner.	The	static	control	will	be	resized	to	the	size	of	the	bitmap.	This	function
requires	the	SS_BITMAP	style.

SetCursor

HCURSOR	SetCursor(HCURSOR	hCursor)	const;

Associates	a	new	cursor	image	with	static	control.	The	cursor	will	be	drawn	in	the	upper-
left	corner.	The	static	control	will	be	resized	to	the	size	of	the	cursor.	This	function
requires	the	SS_ICON	style.

SetEnhMetaFile

HENHMETAFILE	SetEnhMetaFile(HENHMETAFILE	hMetaFile)	const;

Associates	a	new	enhanced	metafile	image	with	static	control.	The	image	will	be	drawn	in
the	upper-left	corner.	The	static	control	will	be	resized	to	the	size	of	the	metafile	image.
This	function	requires	the	SS_ENHMETAFILE	style.

SetIcon

HICON	SetIcon(HICON	hIcon)	const;

Associates	a	new	icon	image	with	the	static	control.	The	icon	will	be	drawn	in	the	upper
left	of	the	static	control.	The	static	control	will	be	resized	to	the	size	of	the	icon.	This
function	requires	the	SS_ICON	style.

Overidables

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	static	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	static	control.

Although	static	controls	can	be	used	in	overlapped,	pop-up,	and	child	windows,
they	are	designed	for	use	in	dialog	boxes,	where	the	system	standardizes	their
behavior.	By	using	static	controls	outside	dialog	boxes,	a	developer	increases	the



risk	that	the	application	might	behave	in	a	nonstandard	fashion.	Typically,	a
developer	either	uses	static	controls	in	dialog	boxes	or	uses	the
SS_OWNERDRAW	style	to	create	customized	static	controls.

Summary	Information

Header	file stdcontrols.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CString	Class

Description

This	class	is	intended	to	provide	much	the	same	functionality	of	the	MFC/ATL	CString	class	that	ships	with
Microsoft	compilers.	The	CString	class	specified	here	is	compatible	with	other	compilers	such	as	Borland
5.5	and	MinGW.

CString	Members

Initialisation	and	Assignment

CString

CString();

CString(LPCSTR	pszText);

CString(LPCWSTR	pszText);

CString(TCHAR	ch,	int	nLength	=	1);

CString(LPCTSTR	pszText,	int	nLength);

Constructor	for	CString.
operator	=
CString&	operator	=	(const	CString&	str);

CString&	operator	=	(const	TCHAR	ch);

CString&	operator	=	(LPCSTR	pszText);

CString&	operator	=	(LPCWSTR	pszText);

Assigns	a	value	to	the	CString.	Attributes	c_str
LPCTSTR	c_str()	const;

Converts	the	CString	to	a	LPCTSTR.	GetString
tString&	GetString();



Returns	a	reference	to	the	underlying	std::basic_string<TCHAR>.	GetLength
int	GetLength()	const;

Returns	the	length	in	characters.	operator	LPCTSTR
operator	LPCTSTR()	const;

Converts	the	CString	to	a	LPCTSTR.	operator	BSTR
operator	BSTR()	const;

Converts	the	CString	to	a	BSTR.	Operations	AllocSysString
BSTR	AllocSysString()	const;

Allocates	a	BSTR	from	the	CString	content.	AppendFormat
void	AppendFormat(LPCTSTR	pszFormat,...);

void	AppendFormat(UINT	nFormatID,	...);

Appends	formatted	data	to	an	the	CString	content.	Collate
int	Collate(LPCTSTR	pszText)	const;

Performs	a	case	sensitive	comparison	of	the	two	strings	using	locale-specific	information.

CollateNoCase
int	CollateNoCase(LPCTSTR	pszText)	const;

Performs	a	case	insensitive	comparison	of	the	two	strings	using	locale-specific	information.

Compare
int	Compare(LPCTSTR	pszText)	const;

Performs	a	case	sensitive	comparison	of	the	two	strings.	CompareNoCase
int	CompareNoCase(LPCTSTR	pszText)	const;

Performs	a	case	insensitive	comparison	of	the	two	strings.	Delete
int	Delete(int	nIndex,	int	nCount	=	1);

Deletes	a	character	or	characters	from	the	string.	Empty



void	Empty();

Erases	the	contents	of	the	string.	Find
int	Find(TCHAR	ch,	int	nIndex	=	0	)	const;

int	Find(LPCTSTR	pszText,	int	nStart	=	0)	const;

Finds	a	character	in	the	string.	FindOneOf
int	FindOneOf(LPCTSTR	pszText)	const;

Finds	the	first	matching	character	from	a	set.	Format
void	Format(UINT	nID,	...);

void	Format(LPCTSTR	pszFormat,...);

Formats	the	string	as	sprintf	does.	FormatV
void	FormatV(LPCTSTR	pszFormat,	va_list	args);

Formats	the	string	using	a	variable	list	of	arguments.	FormatMessage
void	FormatMessage(LPCTSTR	pszFormat,...);

Formats	a	message	string.	FormatMessageV
void	FormatMessageV(LPCTSTR	pszFormat,	va_list	args);

Formats	a	message	string	using	a	variable	argument	list.	GetAt
TCHAR	GetAt(int	nIndex)	const;

Returns	the	character	at	the	specified	location	within	the	string.	GetBuffer
LPTSTR	GetBuffer(int	nMinBufLength);

Creates	a	buffer	of	nMinBufLength	charaters	(+1	extra	for	NULL	termination)	and	returns	a	pointer	to	this
buffer.	This	buffer	can	be	used	by	any	function	which	accepts	a	LPTSTR.	Care	must	be	taken	not	to	exceed
the	length	of	the	buffer.	Use	ReleaseBuffer	to	copy	this	buffer	back	to	the	CString	object.

GetEnvironmentVariable
BOOL	GetEnvironmentVariable(LPCTSTR	pszVar);

Sets	the	string	to	the	value	of	the	specified	environment	variable.	GetErrorString



void	GetErrorString(DWORD	dwError);

Returns	the	error	string	for	the	specified	System	Error	Code	(e.g	from	GetLastErrror).	Insert
int	Insert(int	nIndex,	TCHAR	ch);

int	Insert(int	nIndex,	const	CString&	str);

Inserts	a	single	character	or	a	substring	at	the	given	index	within	the	string.	IsEmpty
BOOL	IsEmpty()	const;

Returns	TRUE	if	the	string	is	empty.	Left
CString	Left(int	nCount)	const;

Extracts	the	left	part	of	a	string.	LoadString
BOOL	LoadString(UINT	nID);

Loads	the	string	from	a	Windows	resource.	MakeLower
void	MakeLower();

Converts	all	the	characters	in	this	string	to	lowercase	characters.	MakeReverse
void	MakeReverse();

Reverses	the	string.	MakeUpper
void	MakeUpper();

Converts	all	the	characters	in	this	string	to	uppercase	characters.	Mid
CString	Mid(int	nFirst)	const;

CString	Mid(int	nFirst,	int	nCount)	const;

Extracts	the	middle	part	of	a	string.	ReleaseBuffer
void	ReleaseBuffer(	int	nNewLength	=	-1	);

This	copies	the	contents	of	the	buffer	(acquired	by	GetBuffer)	to	this	CString,	and	releases	the	contents	of
the	buffer.	The	default	length	of	-1	copies	from	the	buffer	until	a	null	terminator	is	reached.	If	the	buffer

doesn't	contain	a	null	terminator,	you	must	specify	the	buffer's	length.	Remove
int	Remove(LPCTSTR	pszText);



Removes	each	occurrence	of	the	specified	substring	from	the	string.	Replace
int	Replace(TCHAR	chOld,	TCHAR	chNew);

int	Replace(const	LPCTSTR	pszOld,	LPCTSTR	pszNew);

Replaces	each	occurance	of	the	old	character	with	the	new	character.	ReverseFind
int	ReverseFind(LPCTSTR	pszText,	int	nStart	=	-1)	const;

Search	for	a	substring	within	the	string,	starting	from	the	end.	Right
CString	Right(int	nCount)	const;

Extracts	the	right	part	of	a	string.	SetAt
void	SetAt(int	nIndex,	TCHAR	ch);

Sets	the	character	at	the	specified	position	to	the	specified	value.	SetSysString
BSTR	SetSysString(BSTR*	pBstr)	const;

Sets	an	existing	BSTR	object	to	the	string.	SpanExcluding
CString	SpanExcluding(LPCTSTR	pszText)	const;

Extracts	characters	from	the	string,	starting	with	the	first	character,	that	are	not	in	the	set	of	characters

identified	by	pszCharSet.	SpanIncluding
CString	SpanIncluding(LPCTSTR	pszText)	const;

Extracts	a	substring	that	contains	only	the	characters	in	a	set.	Tokenize
CString	Tokenize(LPCTSTR	pszTokens,	int&	iStart)	const;

Extracts	specified	tokens	in	a	target	string.	Trim
void	Trim();

Trims	all	leading	and	trailing	whitespace	characters	from	the	string.	TrimLeft
void	TrimLeft();

void	TrimLeft(TCHAR	chTarget);

void	TrimLeft(LPCTSTR	pszTargets);



Trims	white	space	characters	or	the	specified	set	of	characters	from	the	beginning	of	the	string.

TrimRight
TrimRight();

void	TrimRight(TCHAR	chTarget);

void	TrimRight(LPCTSTR	pszTargets);

Trims	trailing	whitespace	characters	or	the	specified	set	of	characters	from	the	string.	Truncate
void	Truncate(int	nNewLength);

Reduces	the	length	of	the	string	to	the	specified	amount.	operator	+
friend	CString	operator	+	(const	CString&	string1,	const	CString&	string2);

friend	CString	operator	+	(const	CString&	string,	LPCTSTR	pszText);

friend	CString	operator	+	(const	CString&	string,	TCHAR	ch);

friend	CString	operator	+	(LPCTSTR	pszText,	const	CString&	string);

friend	CString	operator	+	(TCHAR	ch,	const	CString&	string);

Appends	the	specified	characters	to	the	string.	operator	+=
CString&	operator	+=	(const	CString&	str);

CString&	operator	+=	(LPCSTR	szText);

CString&	operator	+=	(LPCWSTR	szText);

CString&	operator	+=	(const	TCHAR	ch);

Appends	and	then	assigns	the	specified	characters	to	the	string.	operator	[]
TCHAR&	operator	[]	(int	nIndex);

Returns	the	character	at	the	specified	index.	Comparisons	operator	==
bool	operator	==	(LPCTSTR	pszText)	const;

Performs	a	case	sensitive	comparison	of	the	two	strings.	Returns	true	of	the	two	strings	are	the	same.

operator	!=
bool	operator	!=	(LPCTSTR	pszText)	const;

Performs	a	case	sensitive	comparison	of	the	two	strings.	Returns	true	if	the	two	strings	are	not	the	same.



operator	<
friend	bool	operator	<	(const	CString&	string1,	const	CString&	string2);

friend	bool	operator	<	(const	CString&	string1,	LPCTSTR	pszText);

Performs	a	case	sensitive	comparison	of	the	two	strings.	operator	>
friend	bool	operator	>	(const	CString&	string1,	const	CString&	string2);

friend	bool	operator	>	(const	CString&	string1,	LPCTSTR	pszText);

Performs	a	case	sensitive	comparison	of	the	two	strings.	operator	<=
friend	bool	operator	<=	(const	CString&	string1,	const	CString&	string2);

friend	bool	operator	<=	(const	CString&	string1,	LPCTSTR	pszText);

Performs	a	case	sensitive	comparison	of	the	two	strings.	operator	>=
friend	bool	operator	>=	(const	CString&	string1,	const	CString&	string2);

friend	bool	operator	>=	(const	CString&	string1,	LPCTSTR	pszText);

Performs	a	case	sensitive	comparison	of	the	two	strings.

Remarks

Using	the	CString	class

The	following	code	demonstrates	how	to	assign	strings	to	a	CString.

//	Assign	some	text	to	CString
CString	str1	=	_T("Hello	World.");
CString	str2	=	_T("	I	like	strings.");
CString	str3	=	str1	+	str2;
SetWindowText(str3);

//	How	to	use	GetBuffer	and	SetBuffer	with	functions	expecting	a	TCHAR	array
CString	str;
int	nLength	=	::GetWindowTextLength(m_hWnd);
::GetWindowText(m_hWnd,	str.GetBuffer(nLength),	nLength	+	1);
str.ReleaseBuffer();

Differences	between	this	class	and	the	MFC/ATL	CString	class



	The	constructors	for	this	class	accepts	only	TCHARs.	The	various	text
conversion	functions	can	be	used	to	convert	from	other	character	types	to
TCHARs.
	This	class	is	not	reference	counted,	so	these	CStrings	should	be	passed	as
references	or	const	references	when	used	as	function	arguments.	As	a	result
there	
is	no	need	for	functions	like	LockBuffer	and	UnLockBuffer.
The	Format	functions	only	accepts	POD	(Plain	Old	Data)	arguments.	It
does	not	accept	arguments	which	are	class	or	struct	objects.	In	particular	it
does	not	accept	CString	objects,	unless	these	are	cast	to	LPCTSTR.	This	is
demonstrates	valid	and	invalid	usage:

CString	string1(_T("Hello	World"));
CString	string2;
	
//	This	is	invalid,	and	produces	undefined	behaviour.
string2.Format(_T("String1	is:	%s"),	string1);	//	No!	you	can't	do	this
	
//	This	is	ok
string2.Format(_T("String1	is:	%s"),	(LPCTSTR)string1);	//	Yes,	this	is	correct

This	class	provides	a	few	additional	functions:
c_str																	Returns	a	const	TCHAR	string.	This	is	an	alternative
for	casting	to	LPCTSTR.
GetErrorString				Assigns	CString	to	the	error	string	for	the	specified
System	Error	Code.
GetString											Returns	a	reference	to	the	underlying
std::basic_string<TCHAR>.

Summary	Information

Header	file c_string.h
Win32/64
support Yes

WinCE	support Yes



CTab	Class

Description

A	tab	control	is	window	that	displays	one	or	more	tabs,	and	a	window	page.		It	is	somewhat	analogous	to
the	dividers	in	a	notebook	or	the	labels	in	a	file	cabinet.	By	using	a	tab	control,	an	application	can	define
multiple	pages	for	the	same	area	of	a	window	or	dialog	box.

CTab	is	the	class	which	creates	a	tab	control.		The	tabs	typically	have	an	icon,	and	some	text.	The	tabs	can
be	displayed	either	at	the	top	or	bottom	of	the	window.	Additional	buttons	to	allow	the	tabs	to	be	listed	or
closed	can	also	be	displayed.

The	AddTabPage	function	is	used	to	add	new	tabs	to	the	control.		This	function	provides	an	opportunity	to
specify	the	tab's	icon	and	text,	as	well	as	the	window	which	will	be	used	as	this	tab's	page.	

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	tab	controls.

CTab	Members

Operations

CTab CTab();

Constructor	for	CTab
AddTabPage
virtual	int	AddTabPage(ViewPtr	pView,	LPCTSTR	szTabText,	HICON	hIcon,	UINT	idTab);

virtual	int	AddTabPage(ViewPtr	pView,	LPCTSTR	szTabText,	UINT	nID_Icon,	UINT	idTab	=	0);

virtual	int	AddTabPage(ViewPtr	pView,	LPCTSTR	szTabText);

Adds	a	tab	page	from	the	specified	view	window,	tab	text	and	tab	icon.	AdjustRect
void	AdjustRect(BOOL	fLarger,	RECT	*prc)	const;

Calculates	a	tab	control's	display	area	given	a	window	rectangle,	or	calculates	the	window	rectangle	that

would	correspond	to	a	specified	display	area.	DeleteAllItems
BOOL	DeleteAllItems()	const;



Removes	all	items	from	a	tab	control.	DeleteItem
BOOL	DeleteItem(int	iItem)	const;

Removes	an	item	from	a	tab	control.	DeselectAll
void	DeselectAll(UINT	fExcludeFocus)	const;

Resets	items	in	a	tab	control,	clearing	any	that	were	set	to	the	TCIS_BUTTONPRESSED	state.

GetActiveView
CWnd*	GetActiveView()	const;

Returns	a	pointer	to	the	currently	active	view	window	GetAllTabs
std::vector	<TabPageInfo>*	GetAllTabs()	const;

Returns	a	pointer	to	the	vector	of	tab	page	information	for	all	tabs.	GetCloseRect
virtual	CRect	GetCloseRect()	const;

Returns	the	dimensions	of	the	bounding	rectangle	of	the	close	button.	GetCurFocus
int	GetCurFocus()	const;

Returns	the	index	of	the	item	that	has	the	focus	in	a	tab	control.	GetCurSel
int	GetCurSel()	const;

Determines	the	currently	selected	tab	in	a	tab	control.	GetExtendedStyle
DWORD	GetExtendedStyle()	const;

Retrieves	the	extended	styles	that	are	currently	in	use	for	the	tab	control.	GetImageList
CImageList*	GetImageList()const;

Returns	a	pointer	to	the	tab	control's	image	list.	GetItem
BOOL	GetItem(int	iItem,	LPTCITEM	pitem)	const;

Retrieves	information	about	a	tab	in	a	tab	control.	GetItemCount
int	GetItemCount()	const;



Retrieves	the	number	of	tabs	in	the	tab	control.	GetItemRect
BOOL	GetItemRect(int	iItem,	LPRECT	prc)	const;

Retrieves	the	bounding	rectangle	for	the	specified	tab	in	a	tab	control.	GetListMenu
virtual	CMenu*	GetListMenu();

Returns	a	pointer	to	the	list	menu.	GetODImageList
CImageList*	GetODImageList()	const

Returns	the	image	list	for	owner	drawn	tabs.	GetListRect
virtual	CRect	GetListRect()	const;

Returns	the	dimensions	of	the	bounding	rectangle	of	the	list	button.	GetRowCount
int	GetRowCount()	const;

Retrieves	the	current	number	of	rows	of	tabs	in	a	tab	control.	GetShowButtons
BOOL	GetShowButtons()	const;

Returns	TRUE	if	the	list	and	close	buttons	are	displayed.	GetTabFont
CFont*	GetTabFont()	const;

Returns	the	CFont	used	to	set	the	tab's	font.	GetTabHeight
int	GetTabHeight()	const;

Returns	the	height	of	the	tabs.	GetTabImageID
virtual	int	GetTabImageID(UINT	nTab)	const;

Returns	the	image	ID	for	the	specified	tab.	GetTabIndex
virtual	int	GetTabIndex(CWnd*	pWnd)	const;

Returns	the	index	of	the	tab	given	its	view	window.	GetTabPageInfo
virtual	TabPageInfo	GetTabPageInfo(UINT	nTab)	const;

Returns	the	tab	page	info	struct	for	the	specified	tab.	GetTabText



virtual	CString	GetTabText(UINT	nTab)	const;

Returns	the	text	for	the	specified	tab.	GetTabsAtTop
virtual	BOOL	GetTabsAtTop()	const;

Returns	TRUE	if	the	tabs	are	displayed	at	the	top	of	the	control,	and	FALSE	if	they	are	displayed	at	the

bottom.	GetToolTips
CToolTip*	GetToolTips()	const;

Retrieves	a	pointer	to	the	ToolTip	control	associated	with	a	tab	control.	HighlightItem
BOOL	HighlightItem(INT	idItem,	WORD	fHighlight)	const;

Sets	the	highlight	state	of	a	tab	item.	HitTest
int	HitTest(TCHITTESTINFO&	info)	const;

Determines	which	tab,	if	any,	is	at	a	specified	screen	position.	InsertItem
int	InsertItem(int	iItem,	const	LPTCITEM	pItem)	const;

Inserts	a	new	tab	in	a	tab	control.	RecalcLayout
virtual	void	RecalcLayout();

Repositions	the	child	windows	of	the	tab	control.	RemoveImage
void	RemoveImage(int	iImage)	const;

Removes	an	image	from	a	tab	control's	image	list.	RemoveTabPage
virtual	void	RemoveTabPage(int	nPage);

Removes	a	tab	page	from	the	control.	SelectPage
virtual	void	SelectPage(int	nPage);

Makes	the	specified	tab	index	the	selected	tab	page.	SetCurFocus
void	SetCurFocus(int	iItem)	const;

Sets	the	focus	to	a	specified	tab	in	a	tab	control.	SetCurSel
int	SetCurSel(int	iItem)	const;



Selects	a	tab	in	a	tab	control.	SetExtendedStyle
DWORD	SetExtendedStyle(DWORD	dwExStyle)	const;

Sets	the	extended	styles	that	the	tab	control	will	use.	SetFixedWidth
virtual	void	SetFixedWidth(BOOL	bEnabled);

Enable	or	disable	fixed	tab	width.	SetFont
virtual	void	SetFont(CFont*	pFont,	BOOL	bRedraw	=	1);

Sets	the	font	and	adjusts	the	tab	height	to	match.	SetImageList
CImageList*	SetImageList(CImageList*	pImageList)	const;

Assigns	an	image	list	to	a	tab	control.	SetItem
BOOL	SetItem(int	iItem,	LPTCITEM	pitem)	const;

Sets	some	or	all	of	a	tab's	attributes.	SetItemExtra
BOOL	SetItemExtra(int	cb)	const;

Sets	the	number	of	bytes	per	tab	reserved	for	application-defined	data	in	a	tab	control.	SetItemSize
DWORD	SetItemSize(int	cx,	int	cy)	const;

Sets	the	width	and	height	of	tabs.	SetMinTabWidth
int	SetMinTabWidth(int	cx)	const;

Sets	the	minimum	width	of	items	in	a	tab	control.	SetOwnerDraw
virtual	void	SetOwnerDraw(BOOL	bEnabled);

Enable	or	disable	owner	draw.	Set	owner	draw	to	TRUE	to	display	the	tab	icons.	SetPadding
void	SetPadding(int	cx,	int	cy)	const;

Sets	the	amount	of	space	(padding)	around	each	tab's	icon	and	label	in	a	tab	control.

SetShowButtons
virtual	void	SetShowButtons(BOOL	bShow);



Allows	the	list	and	close	buttons	to	be	shown	or	hidden.	SetTabHeight
void	SetTabHeight(int	nTabHeight);

Sets	the	height	of	the	tabs.	SetTabIcon
virtual	void	SetTabIcon(int	i,	HICON	hIcon);

Change	the	tab's	existing	icon,	or	assigns	a	new	icon	if	one	didn't	previously	exist.	SetTabsAtTop
virtual	void	SetTabsAtTop(BOOL	bTop);

Positions	the	tabs	at	the	top	or	bottom	of	the	control.	SetTabText
virtual	void	SetTabText(UINT	nTab,	LPCTSTR	szText);

Sets	the	text	of	the	specified	tab	SwapTabs
virtual	void	SwapTabs(UINT	nTab1,	UINT	nTab2);

Swaps	the	two	specified	tabs.	SetToopTips
void	SetToolTips(CToolTip*	pToolTip)	const;

Assigns	a	ToolTip	control	to	a	tab	control.

Overridables

DrawCloseButton virtual	void	DrawCloseButton(CDC&	DrawDC);

Draws	the	close	button.

DrawListButton virtual	void	DrawListButton(CDC&	DrawDC);

Draws	the	list	button.

DrawTabs virtual	void	DrawTabs(CDC&	dcMem);

Draws	the	tabs.

DrawTabBorders virtual	void	DrawTabBorders(CDC&	dcMem,	CRect&	rcTab);

Draws	the	tab	borders.

OnCreate virtual	void	OnCreate();



Called	when	the	tab	control	is	created.

OnEraseBkgnd virtual	LRESULT	OnEraseBkgnd(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	tab	control's	background	is	redrawn.

OnKillFocus virtual	LRESULT	OnKillFocus(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	tab	control	loses	focus.

OnLButtonDblClk virtual	LRESULT	OnLButtonDblClk(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	left	mouse	button	is	double	clicked.

OnLButtonDown virtual	LRESULT	OnLButtonDown(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	left	mouse	button	is	clicked.

OnLButtonUp virtual	void	OnLButtonUp(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	left	mouse	button	is	released.

OnMouseLeave virtual	void	OnMouseLeave(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	mouse	leaves	the	tab	control.

OnMouseMove virtual	void	OnMouseMove(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	mouse	moves	over	the	tab	control.

OnNCHitTest
virtual	LRESULT	OnNCHitTest(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	mouse	moves,	or	when	a	mouse	button	is	pressed	or	released	over	the	tab	control
(non-client	hit	test).

OnNotifyReflect virtual	LRESULT	OnNotifyReflect(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	tab	control	sends	a	notification.

OnSetFocus
virtual	LRESULT	OnSetFocus(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	tab	control	gets	keyboard	focus.	We	set	the	keyboard	focus	to	the	active	view
window.

OnTCNSelChange virtual	LRESULT	OnTCNSelChange(LPNMHDR	pNMHDR);

Called	when	the	currently	selected	tab	has	changed

OnWindowPosChanged virtual	LRESULT	OnWindowPosChanged(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	window's	position	has	changed.



OnWindowPosChanging virtual	LRESULT	OnWindowPosChanging(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	window's	position	is	changing.

Paint virtual	void	Paint();

Paints	the	tab	control.

PreCreate virtual	void	PreCreate(CREATESTRUCT&	cs);

Specifies	the	window	creation	parameters	before	the	window	is	created.

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created

SetTabSize virtual	void	SetTabSize();

Sets	the	size	of	the	tabs.

ShowListDialog virtual	void	ShowListDialog();

Displays	the	list	of	windows	in	a	dialog.

ShowListMenu virtual	void	ShowListMenu();

Displays	the	list	of	windows	in	a	popup	menu.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	tab	control	requires	a	parent	window.	This	parent
window	is	often	a	dialog,	but	other	windows,	such	as	simple	windows	or
Frames,	can	also	be	the	parent	window	for	a	tab	control.

The	following	example	shows	how	to	add	pages	to	a	tab	control.

void	CMainFrame::OnInitialUpdate()
{		
		//	Add	some	tabs	to	the	tab	control
		SetOwnerDraw(TRUE);
		SetFixedWidth(TRUE);
		m_View.AddTabPage(new	CViewClasses,	_T("Classes"),	IDI_CLASSVIEW);
		m_View.AddTabPage(new	CViewFiles,	_T("Files"),	IDI_FILEVIEW);
		m_View.AddTabPage(new	CViewClasses,	_T("Classes"),	IDI_CLASSVIEW);



		m_View.AddTabPage(new	CViewFiles,	_T("Files"),	IDI_FILEVIEW);
		m_View.SelectPage(0);
}

SetOwnerDraw	disables	or	enables	owner	drawing	for	the	tab	control.	When
owner	drawing	is	enabled,	flickering	in	the	tab's	view	window	is	reduced	and
tabs	at	the	bottom	of	the	tab	control	are	drawn	properly.	When	owner	drawing	is
disabled,	the	tab	control	reverts	back	to	its	default	drawing	and	tab	rendering.

Refer	to	the	TabDemo	for	a	demonstration	of	using	CTab	as	the	view	window
within	a	Frame,	and	TabDialogDemo	for	a	demonstration	of	using	CTab	in	a
dialog.

Other	Win32++	class	that	use	Tab	controls	include	CTabbedMDI	and
CDockContainer.	CTabbedMDI	combines	many	of	the	features	of	a	Tab	Control
and	a	MDI	Frame.	CDockContainer	is	a	specialized	Tab	control	intend	for	use
with	Dockers.

Summary	Information

Header	file tab.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CTabbedMDI	Class

Description

CTabbedMDI	class	combines	many	of	the	features	of	a	MDI	Frame	and	a	tab	control.		Each	MDI	child	is
displayed	as	a	separate	tab	page.		Buttons	which	allow	the	MDI	children	to	be	listed	or	closed	are	displayed
to	the	right	of	the	tabs.		The	tabs	can	be	displayed	either	at	the	top	or	bottom	of	the	window.

CTabbedMDI	Members

Operations

CTabbedMDICTabbedMDI();

Constructor	for	CTabbedMDI
AddMDIChild
virtual	CWnd*	AddMDIChild(WndPtr	pView,	LPCTSTR	szTabText,	int	idMDIChild	=	0);

Adds	a	MDI	tab,	given	a	pointer	to	the	view	window,	and	the	tab's	text.	CloseActiveMDI
virtual	void	CloseActiveMDI();

Closes	the	active	MDI	child	CloseAllMDIChildren
virtual	void	CloseAllMDIChildren();

Closes	all	MDI	children	CloseMDIChild
virtual	void	CloseMDIChild(int	nTab);

Closes	the	MDI	child,	given	the	tab's	index.	GetActiveMDIChild
virtual	CWnd*	GetActiveMDIChild()	const;

Retrieves	a	pointer	to	the	active	MDI	child's	view	window.	GetActiveMDITab
virtual	int	GetActiveMDITab()	const;



Retrieves	the	index	of	the	current	active	MDI	tab.	GetListMenu
virtual	HMENU	GetListMenu()	const

Retrieves	a	pointer	to	the	MDI	child's	view	window,	give	the	tab's	index.	GetMDIChild
virtual	CWnd*	GetMDIChild(int	nTab)	const;

Retrieves	a	pointer	to	the	MDI	child's	view	window,	give	the	tab's	index.

GetMDIChildCount
virtual	int	GetMDIChildCount()	const;

Retrieves	the	number	of	MDI	children.	GetMDIChildID
virtual	int	GetMDIChildID(int	nTab)	const;

Retrieves	the	MDI	child's	ID,	given	the	tab's	index.	GetMDIChildTitle
virtual	LPCTSTR	GetMDIChildTitle(int	nTab)	const;

Retrieves	the	MDI	child's	text,	given	the	tab's	index	GetTab
virtual	CTab*	GetTab()	const;

Returns	a	pointer	to	the	TabbedMDI's	tab	control.	LoadRegistrySettings
virtual	BOOL	LoadRegistrySettings(CString	strRegistryKeyName);

Loads	the	TabbedMDI	information	from	the	registry.	RecalcLayout
virtual	void	RecalcLayout();

Repositions	the	child	windows	of	the	TabbedMDI	window.	SaveRegistrySettings
virtual	BOOL	SaveRegistrySettings(CString	strRegistryKeyName);

Saves	the	TabbedMDI	information	in	the	registry	SetActiveMDIChild
virtual	void	SetActiveMDIChild(CWnd*	pWnd);

Sets	the	active	MDI	child,	given	its	view	window.	SetActiveMDITab
virtual	void	SetActiveMDITab(int	nTab);

Sets	the	active	MDI	child	given	its	tab	index.



Overridables

NewMDIChildFromID virtual	CWnd*	NewMDIChildFromID(int	idMDIChild);

Override	this	function	to	create	a	new	Docker	given	its	TabbedMDI	ID.

OnCreate virtual	void	OnCreate()	;

Called	when	the	TabbedMDI	window	is	created.

OnDestroy virtual	void	OnDestroy(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	TabbedMDI	window	is	destroyed.

OnNotify virtual	LRESULT	OnNotify(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	TabbedMDI	recieves	a	notification.

OnWindowPosChanged virtual	void	OnWindowPosChanged(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	TabbedMDI	window	is	resized	or	repositioned.

Remarks

The	following	example	demonstrates	how	to	toggle	the	MDI	tab	position
between	the	top	and	bottom	of	the	window.

void	CMainFrame::OnMDITabsAtTop()
//	Toggle	the	TabbedMDI's	tabs	between	the	top	to	bottom	of	window
{
		CTabbedMDI*	pTabbedMDI	=	m_DockTabbedMDI.GetTabbedMDI();

		BOOL	bTop	=	pTabbedMDI->GetTab().GetTabsAtTop();
		pTabbedMDI->GetTab().SetTabsAtTop(!bTop);
	
		//	Set	the	menu	checkmark
		UINT	uCheck	=	(bTop)?	MF_UNCHECKED	:	MF_CHECKED;
		::CheckMenuItem(GetFrameMenu(),	IDM_TABBEDMDI_TOP,	uCheck);
}

The	following	example	demonstrates	how	to	add	MDI	children	to	the
TabbedMDI	control.

void	CMainFrame::LoadDefaultMDIs()
{
		//	Add	some	MDI	tabs



		CTabbedMDI*	pTabbedMDI	=	(CTabbedMDI*)m_DockTabbedMDI.GetView();
		pTabbedMDI->AddMDIChild(new	CViewSimple,	_T("Simple	View"),	ID_MDI_SIMPLE);
		pTabbedMDI->AddMDIChild(new	CViewRect,	_T("Rectangles"),	ID_MDI_RECT);
		pTabbedMDI->AddMDIChild(new	CViewText,	_T("TextView"),	ID_MDI_TEXT);
		pTabbedMDI->AddMDIChild(new	CViewClasses,	_T("Classes"),	ID_MDI_CLASSES);
		pTabbedMDI->AddMDIChild(new	CViewFiles,	_T("Files"),	ID_MDI_FILES);
		pTabbedMDI->SetActiveMDITab(0);
}

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Refer	to	the	DockTabbedMDI	sample	for	a	demonstration	of	the	use	of
CTabbedMDI.

Summary	Information

Header	file tab.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CTaskDialog	Class

Description

The	CTaskDialog	class	is	used	to	create	Task	Dialogs.A	task	dialog	is	a	dialog	box	that	can	be	used	to
display	information	and	receive	simple	input	from	the	user.	Like	a	message	box,	it	is	formatted	by	the
operating	system	according	to	parameters	you	set.	However,	a	task	dialog	has	many	more	features	than	a
message	box.

CTaskDialog	Members

Construction
CTaskDialog
CTaskDialog();

Constructor	for	the	CTaskDialog.	Attributes	GetConfig
TASKDIALOGCONFIG	GetConfig()	const;

Returns	the	TASKDIALOGCONFIG	structure	for	the	Task	Dialog.	GetOptions
TASKDIALOG_FLAGS	GetOptions()	const;

Returns	the	Task	Dialog's	options.	GetSelectedButtonID
int	GetSelectedButtonID()	const;

Returns	the	ID	of	the	selected	button.	GetSelectedRadioButtonID
int	GetSelectedRadioButtonID()	const;

Returns	the	ID	of	the	selected	radio	button.	GetVerificationCheckboxState
BOOL	GetVerificationCheckboxState()	const;

Returns	the	state	of	the	verification	check	box.	IsSupported
static	BOOL	IsSupported();



Returns	true	if	TaskDialogs	are	supported	on	this	system.	SetCommonButtons
void	SetCommonButtons(TASKDIALOG_COMMON_BUTTON_FLAGS	dwCommonButtons);

Sets	the	common	buttons	for	the	task	dialog.	SetContent
void	SetContent(LPCTSTR	pszContent);

Sets	the	task	dialog's	primary	content.	SetDefaultButton
void	SetDefaultButton(int	nButtonID);

Sets	the	task	dialog's	default	button.	SetDefaultRadioButton
void	SetDefaultRadioButton(int	nRadioButtonID);

Sets	the	default	radio	button.	SetDialogWidth
void	SetDialogWidth(UINT	nWidth	=	0);

The	width	of	the	task	dialog's	client	area.	If	0,	the	task	dialog	manager	will	calculate	the	ideal	width.

SetExpansionArea
void	SetExpansionArea(LPCTSTR	pszExpandedInfo,	LPCTSTR	pszExpandedLabel	=	_T(""),	
																						LPCTSTR	pszCollapsedLabel	=	_T(""));

Sets	the	text	in	the	expandable	area	of	the	Task	Dialog.	SetFooterIcon
void	SetFooterIcon(HICON	hFooterIcon);

void	SetFooterIcon(LPCTSTR	lpszFooterIcon);

Sets	the	icon	that	will	be	displayed	in	the	Task	Dialog's	footer.	SetFooterText
void	SetFooterText(LPCTSTR	pszFooter);

Sets	the	text	that	will	be	displayed	in	the	Task	Dialog's	footer.	SetMainIcon
void	SetMainIcon(HICON	hMainIcon);

void	SetMainIcon(LPCTSTR	lpszMainIcon);

Sets	Task	Dialog's	main	icon.	SetMainInstruction
void	SetMainInstruction(LPCTSTR	pszMainInstruction);



Sets	the	Task	Dialog's	main	instruction	text.	SetOptions
void	SetOptions(TASKDIALOG_FLAGS	dwFlags);

Sets	the	Task	Dialog's	options.	SetProgressBarMarquee
void	SetProgressBarMarquee(BOOL	bEnabled	=	TRUE,	int	nMarqueeSpeed	=	0);

Starts	and	stops	the	marquee	display	of	the	progress	bar,	and	sets	the	speed	of	the	marquee.

SetProgressBarPosition
void	SetProgressBarPosition(int	nProgressPos);

Sets	the	current	position	for	a	progress	bar.	SetProgressBarRange
void	SetProgressBarRange(int	nMinRange,	int	nMaxRange);

Sets	the	minimum	and	maximum	values	for	the	hosted	progress	bar.	SetProgressBarState
void	SetProgressBarState(int	nNewState	=	PBST_NORMAL);

Sets	the	current	state	of	the	progress	bar.	SetVerificationCheckbox
void	SetVerificationCheckbox(BOOL	bChecked);

Simulates	a	click	on	the	verification	checkbox	of	the	Task	Dialog,	if	it	exists.

SetVerificationCheckboxText
void	SetVerificationCheckboxText(LPCTSTR	pszVerificationText);

Sets	the	text	for	the	verification	check	box.	SetWindowTitle
void	SetWindowTitle(LPCTSTR	pszWindowTitle);

Sets	the	Task	Dialog's	window	title.	Operations	AddCommandControl
void	AddCommandControl(int	nButtonID,	LPCTSTR	pszCaption);

Adds	a	command	control	or	push	button	to	the	Task	Dialog.	AddRadioButton
void	AddRadioButton(int	nRadioButtonID,	LPCTSTR	pszCaption);

Adds	a	radio	button	to	the	Task	Dialog.	AddRadioButtonGroup
void	AddRadioButtonGroup(int	nIDRadioButtonsFirst,	int	nIDRadioButtonsLast);



Adds	a	range	of	radio	buttons	to	the	Task	Dialog.	The	resource	ID	of	the	button	and	it's	string	must	match.

ClickButton
void	ClickButton(int	nButtonID)	const;

Simulates	the	action	of	a	button	click	in	the	Task	Dialog.	ClickRadioButton
void	ClickRadioButton(int	nRadioButtonID)	const;

Simulates	the	action	of	a	radio	button	click	in	the	TaskDialog.	DoModal
LRESULT	DoModal(CWnd*	pParent	=	NULL);

Creates	and	displays	the	Task	Dialog.	ElevateButton
void	ElevateButton(int	nButtonID,	BOOL	bElevated);

Adds	a	shield	icon	to	indicate	that	the	button's	action	requires	elevated	privilages.	EnableButton
void	EnableButton(int	nButtonID,	BOOL	bEnabled);

Enables	or	disables	a	push	button	in	the	TaskDialog.	EnableRadioButton
void	EnableRadioButton(int	nButtonID,	BOOL	bEnabled);

Enables	or	disables	a	radio	button	in	the	TaskDialog.	NavigateTo
void	NavigateTo(CTaskDialog&	TaskDialog)	const;

Replaces	the	information	displayed	by	the	task	dialog.	RemoveAllButtons
void	RemoveAllButtons();

Removes	all	push	buttons	from	the	task	dialog.	RemoveAllRadioButtons
void	RemoveAllRadioButtons();

Removes	all	radio	buttons	from	the	task	dialog.	Reset
void	Reset();

Returns	the	dialog	to	its	default	state.	UpdateElementText
void	UpdateElementText(TASKDIALOG_ELEMENTS	eElement,	LPCTSTR	pszNewText);



Updates	a	text	element	on	the	Task	Dialog.	Overridables	OnTDButtonClicked
virtual	BOOL	OnTDButtonClicked(int	nButtonID);

Called	when	the	user	selects	a	button	or	command	link.	OnTDConstructed
virtual	void	OnTDConstructed();

Called	when	the	task	dialog	is	constructed,	before	it	is	displayed.	OnTDCreated
virtual	void	OnTDCreated();

Called	when	the	task	dialog	is	displayed.	OnTDDestroyed
virtual	void	OnTDDestroyed();

Called	when	the	task	dialog	is	destroyed.	OnTDExpandButtonClicked
virtual	void	OnTDExpandButtonClicked(BOOL	bExpanded);

Called	when	the	expand	button	is	clicked.	OnTDHelp
virtual	void	OnTDHelp();

Called	when	the	user	presses	F1	on	the	keyboard.	OnTDHyperlinkClicked
virtual	void	OnTDHyperlinkClicked(LPCTSTR	pszHref);

Called	when	the	user	clicks	on	a	hyperlink.	OnTDNavigatePage
virtual	void	OnTDNavigatePage();

Called	when	a	navigation	has	occurred.	OnTDRadioButtonClicked
virtual	BOOL	OnTDRadioButtonClicked(int	nRadioButtonID);

Called	when	the	user	selects	a	radio	button.	OnTDTimer
virtual	void	OnTDTimer(DWORD	dwTickCount);

Called	every	200	milliseconds	(aproximately)	when	the	TDF_CALLBACK_TIMER	flag	is	set.

OnTDVerificationCheckboxClicked
virtual	void	OnTDVerificationCheckboxClicked(BOOL	bChecked);



Called	when	the	user	clicks	the	Task	Dialog	verification	check	box.	TaskDialogProc
virtual	LRESULT	TaskDialogProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

Override	this	function	to	specify	how	the	messages	for	this	window	are	to	be	handled.	Return	all	unhandled
messages	to	TaskDialogProcDefault.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Task	dialogs	require	Windows	Vista	or	above.	They	are	not	supported	on
Windows	XP.	The	IsSupported	function	can	be	used	to	test	if	the	operating
system	is	capable	of	supporting	task	dialogs.

The	following	diagram	illustrates	the	various	components	of	a	task	dialog.



Summary	Information

Header	file taskdialog.h
Win32/64
support Yes

WinCE	support No



CToolTip	Class

Description

The	CToolTip	class	adds	support	for	the	tool	tip	control.	ToolTips	appear	automatically,	or	pop	up,	when	the
user	pauses	the	mouse	pointer	over	a	tool	or	some	other	UI	element.	The	ToolTip	appears	near	the	pointer
and	disappears	when	the	user	clicks	a	mouse	button,	moves	the	pointer	away	from	the	tool,	or	simply	waits
for	a	few	seconds.

CToolTip	Members

Construction

CToolTip CToolTip();

Constructs	a	tool	tip	control.
		Attributes	GetBubbleSize
CSize	GetBubbleSize(LPTOOLINFO	lpToolInfo)	const;

Returns	the	width	and	height	of	the	ToolTip	control.	GetDelayTime
int	GetDelayTime(DWORD	dwDuration)	const;

Retrieves	the	initial,	pop-up,	and	reshow	durations	currently	set	for	the	ToolTip	control.	GetMargin
void	GetMargin(LPRECT	lprc)	const;

Retrieves	the	top,	left,	bottom,	and	right	margins	set	for	the	ToolTip	window.

GetMaxTipWidth
int	GetMaxTipWidth()	const;

Retrieves	the	maximum	width	for	the	ToolTip	window.	GetText
void	GetText(CString&	str,	CWnd*	pWnd,	UINT_PTR	nIDTool	=	0)	const;

Retrieves	the	text	from	the	tool	tip	control.	GetTipBkColor
COLORREF	GetTipBkColor()	const;



Retrieves	the	background	color	in	the	ToolTip	window.	GetTipTextColor
COLORREF	GetTipTextColor()	const;

Retrieves	the	text	color	in	a	ToolTip	window.	GetToolCount
int	GetToolCount()	const;

Retrieves	a	count	of	the	tools	maintained	by	the	ToolTip	control.	GetToolInfo
BOOL	GetToolInfo(TOOLINFO&	ToolInfo,	CWnd*	pWnd,	UINT_PTR	nIDTool	=	0)	const;

Retrieves	the	information	that	a	ToolTip	control	maintains	about	the	tool.	SetDelayTime
void	SetDelayTime(UINT	nDelay);

void	SetDelayTime(DWORD	dwDuration,	int	iTime);

Sets	the	initial,	pop-up,	and	reshow	durations	for	the	ToolTip	control	SetMargin
void	SetMargin(LPRECT	lprc);

Sets	the	top,	left,	bottom,	and	right	margins	for	the	ToolTip	window.	SetMaxTipWidth
int	SetMaxTipWidth(int	iWidth);

Sets	the	maximum	width	for	the	ToolTip	window.	SetTipBkColor
void	SetTipBkColor(COLORREF	clr);

Sets	the	background	color	in	the	ToolTip	window.	SetTipTextColor
void	SetTipTextColor(COLORREF	clr);

Sets	the	text	color	in	the	ToolTip	window.	SetToolInfo
void	SetToolInfo(LPTOOLINFO	lpToolInfo);

Sets	the	information	that	the	ToolTip	control	maintains	for	a	tool.			Operations	Activate
void	Activate(BOOL	bActivate);

Activates	or	deactivates	the	ToolTip	control.	AddTool
BOOL	AddTool(CWnd*	pWnd,	UINT	nIDText,	LPCRECT	lpRectTool	=	NULL,	UINT_PTR	nIDTool	=	0);



BOOL	AddTool(CWnd*	pWnd,	LPCTSTR	lpszText	=	LPSTR_TEXTCALLBACK,	LPCRECT	lpRectTool	=	NULL,	UINT_PTR	nIDTool	=	0);

Registers	a	tool	with	a	ToolTip	control.	AdjustRect
BOOL	AdjustRect(LPRECT	lprc,	BOOL	bLarger	=	TRUE);

Calculates	a	ToolTip	control's	text	display	rectangle	from	its	window	rectangle,	or	the	ToolTip	window

rectangle	needed	to	display	a	specified	text	display	rectangle.	DelTool
void	DelTool(CWnd*	pWnd,	UINT_PTR	nIDTool	=	0);

Removes	a	tool	from	the	ToolTip	control.	HitTest
BOOL	HitTest(CWnd*	pWnd,	CPoint	pt,	LPTOOLINFO	lpToolInfo)	const;

Tests	a	point	to	determine	whether	it	is	within	the	bounding	rectangle	of	the	specified	tool	and,	if	it	is,

retrieves	information	about	the	tool.	Pop
void	Pop();

Removes	a	displayed	ToolTip	window	from	view.	RelayEvent
void	RelayEvent(LPMSG	lpMsg);

Passes	a	mouse	message	to	a	ToolTip	control	for	processing.	SetTitle
BOOL	SetTitle(UINT	uIcon,	LPCTSTR	lpstrTitle);

Adds	a	standard	icon	and	title	string	to	a	ToolTip.	SetToolRect
void	SetToolRect(CWnd*	pWnd,	UINT_PTR	nIDTool,	LPCRECT	lpRect);

Sets	a	new	bounding	rectangle	for	the	tool.	SetWindowTheme
void	SetWindowTheme(LPCWSTR	lpstrTheme);

Sets	the	visual	style	of	a	ToolTip	control.	Update
void	Update();

Forces	the	current	tool	to	be	redrawn.	UpdateTipText
void	UpdateTipText(LPCTSTR	lpszText,	CWnd*	pWnd,	UINT_PTR	nIDTool	=	0);

void	UpdateTipText(UINT	nIDText,	CWnd*	pWnd,	UINT_PTR	nIDTool	=	0);

Sets	the	ToolTip	text	for	a	tool.



Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

ToolTip	controls	can	display	a	single	line	of	text	or	multiple	lines.	Their	corners
can	be	rounded	or	square.	They	might	or	might	not	have	a	stem	that	points	to	the
tools	like	a	cartoon	speech	balloon.	ToolTip	text	can	be	stationary	or	can	move
with	the	mouse	pointer,	called	tracking.	Stationary	text	can	be	displayed	adjacent
to	a	tool	or	it	can	be	displayed	over	a	tool,	which	is	referred	to	as	in-place.
Standard	ToolTips	are	stationary,	display	a	single	line	of	text,	have	square
corners,	and	have	no	stem	pointing	to	the	tool.

Summary	Information

Header	file controls.h
Win32/64
support Yes

WinCE	support Yes



CTreeView	Class

Description

A	tree-view	control	is	a	window	that	displays	a	hierarchical	list	of	items,	such	as	the	headings	in	a
document,	the	entries	in	an	index,	or	the	files	and	directories	on	a	disk.	Each	item	consists	of	a	label	and	an
optional	bitmapped	image,	and	each	item	can	have	a	list	of	subitems	associated	with	it.	By	clicking	an	item,
the	user	can	expand	or	collapse	the	associated	list	of	subitems.

CTreeView	is	the	class	which	creates	a	tree-view	control.		It	can	be	used	as	a	control	in	a	Dialog,	or	as	the
View	window	in	a	Frame,	Docker,	MDI	child.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	tree	view	controls.

CTreeView	Members

Constructor

CTreeView CTreeView();

Constructs	a	CTreeView.

Attributes

GetBkColor COLORREF	GetBkColor()	const;

Retrieves	the	current	background	color	of	the	control.

GetChild HTREEITEM	GetChild(HTREEITEM	hItem)	const;

Retrieves	the	first	child	item	of	the	specified	tree-view	item.

GetCount UINT	GetCount()	const;

Retrieves	a	count	of	the	items	in	a	tree-view	control.

GetDropHiLightItem HTREEITEM	GetDropHiLightItem()	const;

Retrieves	the	tree-view	item	that	is	the	target	of	a	drag-and-drop	operation.



GetEditControl CEdit*	GetEditControl()	const;

Retrieves	the	handle	to	the	edit	control	being	used	to	edit	a	tree-view	item's	text.

GetFirstVisible HTREEITEM	GetFirstVisible()	const;

Retrieves	the	first	visible	item	in	a	tree-view	control	window.

GetImageList CImageList*	GetImageList(int	iImageType)	const;

Retrieves	the	normal	or	state	image	list	associated	with	a	tree-view	control.

GetIndent UINT	GetIndent()	const;

Retrieves	the	amount,	in	pixels,	that	child	items	are	indented	relative	to	their	parent	items.

GetInsertMarkColor COLORREF	GetInsertMarkColor()	const;

Retrieves	the	color	used	to	draw	the	insertion	mark	for	the	tree-view.

GetItem BOOL	GetItem(TVITEM&	Item)	const;

Retrieves	some	or	all	of	a	tree-view	item's	attributes.

GetItemData DWORD_PTR	GetItemData(HTREEITEM	hItem)	const;

Retrieves	the	application	data	from	a	tree-view	item.

GetItemHeight int	GetItemHeight()	const;

Retrieves	the	current	height	of	the	tree-view	items.

GetItemImage BOOL	GetItemImage(HTREEITEM	hItem,	int&	nImage,	int&	nSelectedImage)	const;

Retrieves	the	index	of	the	normal	image	and	the	selected	image.

GetItemRect BOOL	GetItemRect(HTREEITEM	hItem,	CRect&	rc,	BOOL	bTextOnly)	const;

Retrieves	the	bounding	rectangle	for	a	tree-view	item	and	indicates	whether	the	item	is	

GetItemText CString	GetItemText(HTREEITEM	hItem,	UINT	nTextMax	/*	=	260	*/)	const;

Retrieves	the	text	from	a	tree-view	item.

GetLastVisible
HTREEITEM	GetLastVisible()	const;

Retrieves	the	last	expanded	item	in	a	tree-view	control.	This	does	not	retrieve	the	last	item	visible	in	
window.

GetNextItem HTREEITEM	GetNextItem(HTREEITEM	hItem,	UINT	nCode)	const;

Retrieves	the	tree-view	item	that	bears	the	specified	relationship	to	a	specified	item.



GetNextSibling HTREEITEM	GetNextSibling(HTREEITEM	hItem)	const;

Retrieves	the	next	sibling	item	of	a	specified	item	in	a	tree-view	control.

GetNextVisible HTREEITEM	GetNextVisible(HTREEITEM	hItem)	const;

Retrieves	the	next	visible	item	that	follows	a	specified	item	in	a	tree-view	control.

GetParentItem HTREEITEM	GetParentItem(HTREEITEM	hItem)	const;

Retrieves	the	parent	item	of	the	specified	tree-view	item.

GetPrevSibling HTREEITEM	GetPrevSibling(HTREEITEM	hItem)	const;

Retrieves	the	previous	sibling	item	of	a	specified	item	in	a	tree-view	control.

GetPrevVisible HTREEITEM	GetPrevVisible(HTREEITEM	hItem)	const;

Retrieves	the	first	visible	item	that	precedes	a	specified	item	in	a	tree-view	control.

GetRootItem HTREEITEM	GetRootItem()	const;

Retrieves	the	topmost	or	very	first	item	of	the	tree-view	control.

GetScrollTime int	GetScrollTime()	const;

Retrieves	the	maximum	scroll	time	for	the	tree-view	control.

GetSelection HTREEITEM	GetSelection()	const;

Retrieves	the	currently	selected	item	in	a	tree-view	control.

GetTextColor COLORREF	GetTextColor()	const;

Retrieves	the	current	text	color	of	the	control.

GetToolTips CToolTip*	GetToolTips()	const;

Retrieves	the	handle	to	the	child	ToolTip	control	used	by	a	tree-view	control.

GetVisibleCount UINT	GetVisibleCount()	const;

Obtains	the	number	of	items	that	can	be	fully	visible	in	the	client	window	of	a	tree-view	

ItemHasChildren BOOL	ItemHasChildren(HTREEITEM	hItem)	const;

Returns	TRUE	if	the	item	has	children.

SetBkColor COLORREF	SetBkColor(COLORREF	clrBk)	const;

Sets	the	background	color	of	the	control.



SetImageList BOOL	SetItemImage(HTREEITEM	hItem,	int	nImage,	int	nSelectedImage)	const;

Sets	the	normal	or	state	image	list	for	a	tree-view	control	and	redraws	the	control	using	the	new	

SetIndent void	SetIndent(int	indent)	const;

Sets	the	width	of	indentation	for	a	tree-view	control	and	redraws	the	control	to	reflect	the	new	

SetInsertMark BOOL	SetInsertMark(HTREEITEM	hItem,	BOOL	fAfter	=	TRUE)	const;

Sets	the	insertion	mark	in	a	tree-view	control.

SetInsertMarkColor COLORREF	SetInsertMarkColor(COLORREF	clrInsertMark)	const;

Sets	the	color	used	to	draw	the	insertion	mark	for	the	tree	view.

SetItem

BOOL	SetItem(TVITEM&	Item)	const;

BOOL	SetItem(HTREEITEM	hItem,	UINT	nMask,	LPCTSTR	szText,	int	nImage,
	 int	nSelectedImage,	UINT	nState,	UINT	nStateMask,	LPARAM	lParam)	const;

Sets	some	or	all	of	a	tree-view	item's	attributes.

SetItemData BOOL	SetItemData(HTREEITEM	hItem,	DWORD_PTR	dwData)	const;

Sets	the	application	data	for	a	tree-view	item.

SetItemHeight int	SetItemHeight(SHORT	cyItem)	const;

Sets	the	height	of	the	tree-view	items.

SetItemImage BOOL	SetItemImage(HTREEITEM	hItem,	int	nImage,	int	nSelectedImage)	const;

Sets	the	index	of	the	normal	image	and	the	selected	image.

SetItemText BOOL	SetItemText(HTREEITEM	hItem,	LPCTSTR	szText)	const;

Sets	the	text	of	a	tree-view	item.

SetScrollTime UINT	SetScrollTime(UINT	uScrollTime)	const;

Sets	the	maximum	scroll	time	for	the	tree-view	control.

SetTextColor COLORREF	SetTextColor(COLORREF	clrText)	const;

Sets	the	text	color	of	the	control.

SetToolTips CToolTip*	SetToolTips(CToolTip*	pToolTip)	const;

Sets	a	tree-view	control's	child	ToolTip	control.

Operations



CreateDragImage

CImageList*	CreateDragImage(HTREEITEM	hItem)	const;

Creates	a	dragging	bitmap	for	the	specified	item	in	a	tree-view	control.		An
application	can	display	the	image	when	dragging	the	item	by	using	the	image	list
functions.

DeleteAllItems BOOL	DeleteAllItems()	const;

Deletes	all	items	from	a	tree-view	control.

DeleteItem BOOL	DeleteItem(HTREEITEM	hItem)	const;

Removes	an	item	and	all	its	children	from	a	tree-view	control.

EditLabel

HWND	EditLabel(HTREEITEM	hItem)	const;

Begins	in-place	editing	of	the	specified	item's	text,	replacing	the	text	of	the	item	with
a	single-line	edit	control	containing	the	text.	This	function	implicitly	selects	and
focuses	the	specified	item.

EndEditLabelNow BOOL	EndEditLabelNow(BOOL	fCancel)	const;

Ends	the	editing	of	a	tree-view	item's	label.

EnsureVisible
BOOL	EnsureVisible(HTREEITEM	hItem)	const;

Ensures	that	a	tree-view	item	is	visible,	expanding	the	parent	item	or	scrolling	the
tree-view	control,	if	necessary.

Expand
BOOL	Expand(HTREEITEM	hItem,	UINT	nCode)	const;

The	TreeView_Expand	macro	expands	or	collapses	the	list	of	child	items	associated
with	the	specified	parent	item,	if	any.

HitTest
HTREEITEM	HitTest(TVHITTESTINFO&	ht)	const;

Determines	the	location	of	the	specified	point	relative	to	the	client	area	of	a	tree-view
control.

InsertItem HTREEITEM	InsertItem(TVINSERTSTRUCT&	tvIS)	const;

Inserts	a	new	item	in	a	tree-view	control.

Select
BOOL	Select(HTREEITEM	hitem,	UINT	flag)	const;

Selects	the	specified	tree-view	item,	scrolls	the	item	into	view,	or	redraws	the	item	in
the	style	used	to	indicate	the	target	of	a	drag-and-drop	operation.

SelectDropTarget
BOOL	SelectDropTarget(HTREEITEM	hItem)	const;

Redraws	a	specified	tree-view	control	item	in	the	style	used	to	indicate	the	target	of	a
drag-and-drop	operation.



SelectItem BOOL	SelectItem(HTREEITEM	hItem)	const;

Selects	the	specified	tree-view	item.

SelectSetFirstVisible

BOOL	SelectSetFirstVisible(HTREEITEM	hItem)	const;

Scrolls	the	tree-view	control	vertically	to	ensure	that	the	specified	item	is	visible.	If
possible,	the	specified	item	becomes	the	first	visible	item	at	the	top	of	the	control's
window.

SortChildren BOOL	SortChildren(HTREEITEM	hItem,	BOOL	fRecurse)	const;

Sorts	the	child	items	of	the	specified	parent	item	in	a	tree-view	control.

SortChildrenCB
BOOL	SortChildrenCB(TVSORTCB&	sort,	BOOL	fRecurse)	const;

Sorts	tree-view	items	using	an	application-defined	callback	function	that	compares
the	items.

Overridables

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	Tree-VIew	control	requires	a	parent	window.	This	parent	window	is	often	a
dialog,	but	simple	windows	can	also	be	the	parent	window	for	a	Tree-View	control.

Refer	to	the	explorer	sample	to	see	a	demonstration	of	the	CListView	and
CTreeView	classes.

Summary	Information

Header	file treeview.h
Win32/64
support Yes

WinCE	support Yes



Library	required Comctl32.lib



CWceFrame	Class

Description

The	WceFrame	class	provides	a	simple	frame	for	the	Windows	CE	operating	system.		It	uses	a	command
bar	to	provide	the	menu	and	toolbar	buttons.

Use	the	PocketPCFrame	sample	as	the	starting	point	for	your	own	frame	based	application	for	Windows
CE.

CWceFrame	Members

CWceFrame CWceFrame();

Constructor	for	CWceFrame.
AddToolBarButton
virtual	void	AddToolBarButton(UINT	nID);

Adds	a	button	to	the	toolbar.	GetViewRect
CRect	GetViewRect()	const;

Returns	a	RECT	structure	which	contains	the	dimensions	of	the	client	area	of	the	frame.

GetMenuBar
CCmdBar&	GetMenuBar()	const;

Returns	a	reference	to	the	frame's	CCmdBar	object,	which	manages	the	frame's	command	bar.

RecalcLayout
virtual	void	RecalcLayout();

Repositions	the	client	area	of	the	frame.	SetButtons
virtual	void	SetButtons(const	std::vector<UINT>	ToolBarData);

Sets	the	toolbar	buttons	of	the	command	bar.

Overridables



OnActivate virtual	void	OnActivate(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	frame	is	activated.

OnCreate
virtual	void	OnCreate();

Called	during	window	creation.	Override	this	function	to	perform	tasks	such	as
creating	child	windows.

PreCreate
virtual	void	PreCreate(CREATESTRUCT	&cs);

Called	before	the	window	is	created.	Override	this	function	to	set	the	window
creation	parameters.

PreTranslateMessage
virtual	BOOL	PreTranslateMessage(MSG*	pMsg);

Override	this	function	to	filter	mouse	and	keyboard	messages	prior	to	being	passed	to
the	message	loop.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Summary	Information

Header	file wceframe.h
Win32/64
support No

WinCE	support Yes

	



CWebBrowser	Class

Description

This	class	provides	a	web	browser	in	a	window.		It	can	be	used	to	provide	a	web	browser	in	any	place	a
view	window	is	used.

CWebBrowser	Members

Construction
CWebBrowser
CWebBrowser();

Constructs	a	CWebBrowser	object.			Attributes	GetApplication
LPDISPATCH	GetApplication()	const;

Retrieves	the	automation	object	for	the	application	that	is	hosting	the	WebBrowser	Control.

GetAXWindow
CAXWindow&	GetAXWindow()	const;

Returns	a	reference	to	the	ActiveX	container	window.	GetBusy
BOOL	GetBusy()	const;

Retrieves	a	value	that	indicates	whether	the	object	is	engaged	in	a	navigation	or	downloading	operation.

GetContainer
LPDISPATCH	GetContainer()	const;

Retrieves	an	object	reference	to	a	container.	GetFullScreen
BOOL	GetFullScreen()	const;

Retrieves	a	value	that	indicates	whether	Internet	Explorer	is	in	full-screen	mode	or	normal	window	mode.

GetHeight
long	GetHeight()	const;



Retrieves	the	height	of	the	object.	GetIWebBrowser2
IWebBrowser2*	GetIWebBrowser2();

Returns	the	pointer	to	the	IWebBrowser	interface.	GetLeft
long	GetLeft()	const;

Retrieves	the	coordinate	of	the	left	edge	of	the	object.	GetLocateName
CString	GetLocationName()	const;

Retrieves	the	path	or	title	of	the	resource	that	is	currently	displayed.	GetLocationURL
CString	GetLocationURL()	const;

Retrieves	the	URL	of	the	resource	that	is	currently	displayed.	GetOffline
BOOL	GetOffline()	const;

Retrieves	a	value	that	indicates	whether	the	object	is	operating	in	offline	mode.	GetReadyState
READYSTATE	GetReadyState()	const;

Retrieves	the	ready	state	of	the	object.	GetRegisterAsBrowser
BOOL	GetRegisterAsBrowser()	const;

Retrieves	a	value	that	indicates	whether	the	object	is	registered	as	a	top-level	browser	window.

GetTheaterMode
BOOL	GetTheaterMode()	const;

Retrieves	the	theater	mode	state	of	the	object.	GetTop
long	GetTop()	const;

Retrieves	the	coordinate	of	the	top	edge	of	the	object.	GetTopLevelContainer
BOOL	GetTopLevelContainer()	const;

Retrieves	a	value	that	indicates	whether	the	object	is	a	top-level	container.	GetType
CString	GetType()	const;



Retrieves	the	user	type	name	of	the	contained	document	object.	GetVisible
BOOL	GetVisible()	const;

Retrieves	a	value	that	indicates	whether	the	object	is	visible	or	hidden.	GetWidth
long	GetWidth()	const;

Retrieves	the	width	of	the	object.	SetFullScreen
void	SetFullScreen(BOOL	bNewValue);

Sets	a	value	that	indicates	whether	Internet	Explorer	is	in	full-screen	mode	or	normal	window	mode.

SetHeight
void	SetHeight(long	nNewValue);

Sets	the	height	of	the	object.	SetLeft
void	SetLeft(long	nNewValue);

Sets	the	coordinate	of	the	left	edge	of	the	object.e.	SetOffline
void	SetOffline(BOOL	bNewValue);

Sets	a	value	that	indicates	whether	the	object	is	operating	in	offline	mode.

SetRegisterAsBrowser
void	SetRegisterAsBrowser(BOOL	bNewValue);

Sets	a	value	that	indicates	whether	the	object	is	registered	as	a	top-level	browser	window.

SetTheaterMode
void	SetTheaterMode(BOOL	bNewValue);

Sets	the	theatre	mode	state	of	the	object.	SetTop
void	SetTop(long	nNewValue);

Sets	the	coordinate	of	the	top	edge	of	the	object.	SetVisible
void	SetVisible(BOOL	bNewValue);

Sets	a	value	that	indicates	whether	the	object	is	visible	or	hidden.	SetWidth
void	SetWidth(long	nNewValue);



Sets	the	width	of	the	object.	Operations							AddWebBrowserControl
void	AddWebBrowserControl(void);

Adds	the	IWebBrowser	interface	to	the	ActiveX	container	window.	Exec
void	ExecWB(OLECMDID	cmdID,	OLECMDEXECOPT	cmdexecopt,	VARIANT*	pvaIn,	VARIANT*	pvaOut);

Executes	a	command	using	the	IOleCommandTarget	interface.	GetProperty
BOOL	GetProperty(LPCTSTR	pszProperty,	CString&	strValue);

VARIANT	GetProperty(	LPCTSTR	pszProperty);

Gets	the	value	associated	with	the	specified	property	name.	GoBack
void	GoBack();

Navigates	backward	one	item	in	the	history	list.	GoForward
void	GoForward();

Navigates	forward	one	item	in	the	history	list.	GoHome
void	GoHome();

Navigates	to	the	current	home	or	start	page.	GoSearch
void	GoSearch();

Navigates	to	the	current	search	page.	Navigate
void	Navigate(LPCTSTR	pszURL,	DWORD	dwFlags	=	0,	LPCTSTR	pszTargetFrameName	=	NULL,
					LPCTSTR	pszHeaders	=	NULL,	LPVOID	pvPostData	=	NULL,	DWORD	dwPostDataLen	=	0);

Navigates	to	a	resource	identified	by	a	URL	or	to	a	file	identified	by	a	full	path.	Navigate2
void	Navigate2(LPITEMIDLIST	pIDL,	DWORD	dwFlags	=	0,	LPCTSTR	pszTargetFrameName	=	NULL);

void	Navigate2(LPCTSTR	pszURL,	DWORD	dwFlags	=	0,	LPCTSTR	pszTargetFrameName	=	NULL,
					LPCTSTR	pszHeaders	=	NULL,	LPVOID	lpvPostData	=	NULL,	DWORD	dwPostDataLen	=	0);

Navigates	the	browser	to	a	location	specified	by	a	pointer	to	an	item	identifier	list	(PIDL)	for	an	entity	in

the	Microsoft	Windows	Shell	namespace,	or	a	URL.	PutProperty
void	PutProperty(LPCTSTR	pszPropertyName,	const	VARIANT&	vtValue);



void	PutProperty(LPCTSTR	pszPropertyName,	double	dValue);

void	PutProperty(LPCTSTR	pszPropertyName,	long	lValue);

void	PutProperty(LPCTSTR	pszPropertyName,	LPCTSTR	lpszValue);

void	PutProperty(LPCTSTR	pszPropertyName,	short	nValue);

Sets	the	value	of	a	property	associated	with	the	object.	Refresh
void	Refresh();

Reloads	the	file	that	is	currently	displayed	in	the	object.	Refresh2
void	Refresh2(int	nLevel);

Reloads	the	file	that	is	currently	displayed	with	the	specified	refresh	level.	Stop
void	Stop();

Cancels	a	pending	navigation	or	download,	and	stops	dynamic	page	elements,	such	as	background	sounds

and	animations.					Overridables			OnCreate
virtual	void	OnCreate();

Called	when	the	window	is	created.	OnSize
virtual	void	OnSize(int	width,	int	height);

Called	when	the	window	is	resized.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Refer	to	the	Browser	sample	for	a	demonstration	of	how	to	use	CWebBrowser	to
implement	a	simple	web	browser.

Summary	Information

Header	file webbrowser.h
Win32/64
support Yes



WinCE	support No
Library	required 	



CWinApp	Class

Description

The	class	responsible	for	initializing	Win32++.	You		inherit	from	this	class	to	start	the	application.

CWinApp	Members

Construction

CWinApp CWinApp();

Constructs	a	CWinApp	object.

Attributes

GetInstanceHandle HINSTANCE	GetInstanceHandle()	const;

Returns	the	instance	handle	(HINSTANCE)	of	the	application

GetResourceHandle
HINSTANCE	GetResourceHandle()	const;

Returns	the	instance	handle	of	resources.	This	can	the	the	HINSTANCE	of	the
application	or	the	HINSTANCE	of	a	resource	dll.

SetResourceHandle void	SetResourceHandle(HINSTANCE	hResource);

Sets	the	instance	handle	of	resources.

Operations

LoadCursor
LoadCursor(LPCTSTR	lpszResourceName)	const;

LoadCursor(int	nIDCursor)	const;

Loads	the	specified	cursor.	The	cursor	is	defined	in	the	resource	script	(resource.rc).

HCURSOR	LoadStandardCursor(LPCTSTR	lpszCursorName)	const;



LoadStandardCursor Returns	the	handle	of	a	standard	cursor.	Standard	cursors	include:
IDC_APPSTARTING,	IDC_ARROW,	IDC_CROSS,	IDC_HAND,	IDC_HELP,
IDC_IBEAM,	IDC_NO,	IDC_SIZEALL,	IDC_SIZENESW,	IDC_SIZENS,
IDC_SIZENWSE,	IDC_SIZEWE,	IDC_UPARROW,	IDC_WAIT.

LoadIcon

HICON	LoadIcon(LPCTSTR	lpszResourceName)	const;

HICON	LoadIcon(int	nIDIcon)	const;

Loads	the	icon	resource	whose	size	conforms	to	the	SM_CXICON	and	SM_CYICON
system	metric	values.	For	other	icon	sizes,	use	the	LoadImage	windows	API	function.

LoadImage

HANDLE	LoadImage(LPCTSTR	lpszResourceName,	UINT	uType,	int	cx,	int	cy,	UINT	fuLoad	=	LR_DEFAULTCOLOR)	const;

HANDLE	LoadImage(int	nIDImage,	UINT	uType,	int	cx,	int	cy,	UINT	fuLoad	=	LR_DEFAULTCOLOR)	const;

Loads	an	icon,	cursor,	animated	cursor	or	bitmap	image.	uType	can	be	IMAGE_BITMAP,	IMAGE_CURSOR	or	IMAGE_ICON.	cx	and	cy	are	the	desired	
and	height	in	pixels.	fuLoad	can	be	LR_DEFAULTCOLOR,	LR_CREATEDIBSECTION,	LR_DEFAULTSIZE,	LR_LOADFROMFILE,
LR_LOADMAP3DCOLORS,	R_LOADTRANSPARENT,	LR_MONOCHROME,	LR_SHARED,	LR_VGACOLOR.

LoadStandardIcon

HICON	LoadStandardIcon(LPCTSTR	lpszIconName)	const;

Returns	the	handle	of	a	standard	Icon.	Standard	Icons	include:
IDI_APPLICATION,	IDI_ASTERISK,	IDI_ERROR,	IDI_EXCLAMATION,
IDI_HAND,	IDI_INFORMATION,	IDI_QUESTION,	IDI_WARNING

SetCursor

HCURSOR	SetCursor(HCURSOR	hCursor)	const;

Sets	the	current	cursor	and	returns	the	previous	one.
Note:	The	cursor	will	be	set	to	the	window's	class	cursor	(if	one	is	set)	each	time	the	mouse
is	moved	over	the	window.	You	can	specify	different	cursors	for	different	conditions	while
processing	WM_SETCURSOR.

Overridables

InitInstance
virtual	BOOL	InitInstance();

This	function	is	called	when	the	application	starts.	Override	this	to	perform	tasks	such	as
creating	a	window.

Run virtual	int	Run();

Calls	InitInstance	and	runs	the	message	loop.	Use	this	in	WinMain	to	run	the	application.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWinThread.htm

.



Remarks

Starting	a	Win32++	application

CWinApp	(or	a	class	inherited	from	CWinApp)	must	be	used	to	run	a	Win32++
application.		Here	we	see	a	simple	example	of	a	class	inherited	from	CWinApp.

////////////////////////////////////////////////////////
//	The	class	inherited	from	CWinApp	which	starts	Win32++
class	CSimpleApp	:	public	CWinApp
{
public:
		CSimpleApp()	{}
		virtual	~CSimpleApp()	{}
		virtual	BOOL	InitInstance();

private:
		CView	m_View;
};

BOOL	CSimpleApp::InitInstance()
{
		//	This	function	is	called	by	Run

		m_View.Create();	//	Create	the	Window
		return	TRUE;
}

Notice	that	InitInstance	is	used	to	specify	what	happens	when	we	use	the	Run
function.		In	this	case	it	is	used	to	create	the	CView	window.

Running	a	Win32++	application

Once	we	have	our	CWinApp	derived	class,	we	use	it	in	WinMain	start	our
application.		The	following	code	demonstrates	a	typical	use	of	the	class	inherited
from	CWinApp.

//////////////////////////////////////////////
//	The	entry	point	for	our	windows	application
INT	WINAPI	WinMain(HINSTANCE,	HINSTANCE,	LPTSTR,	int)
{
		//	Start	Win32++
		CSimpleApp	MyApp;



		//	Run	the	application	until	the	window	is	destroyed
		return	MyApp.Run();
}

Note	that	this	simple	program	has	two	key	steps

Constructs	MyApp,	which	is	a	CSimpleApp	object.	CSimpleApp	is
inherited	from	WinApp.
Uses	the	Run	function	to	call	MyApp's	InitInstance,	and	run	the	message
loop.

Separating	the	construction	and	the	running	of	CWinApp	like	this	allows	the
CWinApp	derived	class	(including	all	member	objects)	to	be	fully	constructed,
before	attempting	to	do	things	which	could	generate	exceptions,	such	as	creating
windows.

A	complete	simple	application

Sometimes	it	is	easier	to	fit	the	pieces	together	when	we	see	a	complete
application	rather	than	a	collection	of	code	snippets.	The	following	code	sample
is	a	complete	simple	windows	application.		It	creates	an	ordinary	window,	and
ends	the	application	when	the	window	is	destroyed.

#include	"../Win32++/Wincore.h"

/////////////////////////////////////////////
//	A	class	inherited	from	CWnd	for	the	window
class	CView	:	public	CWnd
{
public:
		CView()	{}
		virtual	~CView()	{}
		virtual	LRESULT	WndProc(HWND	hWnd,	UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);
};

LRESULT	CView::WndProc(HWND	hWnd,	UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)
{
		//	Handle	the	messages	for	this	window
		switch	(uMsg)
		{
		case	WM_DESTROY:
				//End	the	program	when	window	is	destroyed
				::PostQuitMessage(0);
				break;



		}

		//Use	the	default	message	handling	for	remaining	messages
		return	WndProcDefault(hWnd,	uMsg,	wParam,	lParam);
}

////////////////////////////////////////////////////////
//	The	class	inherited	from	CWinApp	which	starts	Win32++
class	CSimpleApp	:	public	CWinApp
{
public:
		CSimpleApp()	{}
		virtual	~CSimpleApp()	{}
		virtual	BOOL	InitInstance();

private:
		CView	m_View;
};

BOOL	CSimpleApp::InitInstance()
{
		//	This	function	is	called	by	Run

		m_View.Create();	//	Create	the	Window
		return	TRUE;
}

//////////////////////////////////////////////
//	The	entry	point	for	our	windows	application
INT	WINAPI	WinMain(HINSTANCE,	HINSTANCE,	LPTSTR,	int)
{
		//	Start	Win32++
		CSimpleApp	MyApp;

		//	Run	the	application	until	the	window	is	destroyed
		return	MyApp.Run();
}

Summary	Information

Header	file wincore.h
Win32/64
support Yes

WinCE	support Yes



CWindowDC	Class

Description

The	class	responsible	for	creating	a	device	context	for	the	entire	area	of	a	window,	including	the	non-client
area.

CWindowDC	Members

Initialization	and	Assignment

Initialization	and	Assignment

CWindowDC CWindowDC(const	CWnd*	pWnd);

Constructs	a	CWindowDC	object.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CDC.

Remarks

Refer	to	the	Graphics	Device	Interface	section	of	Using	Win32++	for	additional	information	on	using	this
class.

Summary	Information

Header	file gdi.h
Win32/64
support Yes

WinCE	support Yes



CWinException	Class

Description

A	class	which	handles	exceptions.		Exceptions	should	only	be	used	to	handle	errors	which	might	arise	from
exceptional	circumstances.		In	Win32++,	exceptions	are	typically	used	to	handle	the	unexpected	failure	of
Windows	API	functions,	like,	for	example,	CreateWindowEx.

It	is	not	normal	for	a	program	to	routinely	throw	exceptions.		A	thrown	exception	often	indicates	a
programming	error,	but	they	could	also	be	thrown	when	a	system	is	so	starved	of	resources	that	the
operating	system	cannot	successfully	allocate	the	resources	needed	to	complete	the	task.

CWinException	Members

CWinExceptionCWinException	(LPCTSTR	msg);

Constructor	for	CWinException
GetError
DWORD	GetError()	const	throw	();

Retrieves	the	last	error	code	value.	GetErrorString
LPCTSTR	GetErrorString()	const;

Retrieves	the	error	string	from	GetLastError.	what
const	char	*	what	()	const	throw	();

Sends	the	exception	message	and	error	string	to	the	debug	window.

Remarks

Exceptions	should	be	caught	by	constant	reference	to	avoid	the	creation	of	a
temporary	copy	of	the	CWinException	object.		Since	an	exception	could	be
thrown	when	the	operating	system	is	already	starved	of	resources,	consuming
additional	resources	to	create	this	copy	to	catch	the	exception	would	by	very
undesirable.



void	SomeFunction()
{
		try
		{
				if(IsValid())
				{
						//	Do	the	normal	stuff
						.
						.
						.
				}
				else
						throw	CWinException(_T("Not	Valid"));

		}
		
		catch	(const	CWinException	&e)
		{
				//	Send	the	exception	information	to	the	debug	window
				e.what();
		}
		
}

The	what	function	reports	the	text	message	associated	with	the	exception	and
sends	this	information	to	the	IDE's	debug	window.	It	also	reports	the	text
associated	with	the	GetLastError	function.

Summary	Information

Header	file wincore.h
Win32/64
support Yes

WinCE	support Yes



CWinThread	Class

Description

A	program	or	process	can	contain	one	or	more	threads.		Threads	run	independantly	of	each	other,	and	can
run	concurrently.	When	used	wisely,	the	use	of	multiple	threads	can	make	better	use	of	the	computer's
resources,	particularly	multiple	CPUs,	allowing	an	application	to	be	more	responsive.	The	CWinThread
class	simplifies	the	use	of	threads	with	Win32++.

CWinThread	Members

Operations

CWinThread

CWinThread();

CWinThread(PFNTHREADPROC	pfnThreadProc,	LPVOID	pParam);

Constructs	the	CWinThread.	GUI	threads	should	use	the	first	constructor.	Worker
threads	should	be	created	with	the	constructor	which	allows	the	ThreadProc	and
LPVOID	to	be	specified.

CreateThread
void	CreateThread(unsigned	initflag	=	0,	unsigned	stack_size	=	0,	LPSECURITY_ATTRIBUTES	pSecurityAttributes	=	NULL);

Creates	the	thread.	Valid	argument	values:
initflag	-	Either	CREATE_SUSPENDED	or	0
stack_size	-	Either	the	stack	size	or	0

pSecurityAttributes	-	Either	a	pointer	to	SECURITY_ATTRIBUTES	or	0	GetAccelerators
HACCEL	GetAccelerators()	const;

Returns	the	handle	to	the	accelerator	table.	GetAcceleratorsWindow
CWnd*	GetAcceleratorsWindow()	const;

Returns	a	pointer	to	the	window	for	accelerator	keys.	GetThread
HANDLE	GetThread()	const;



Returns	the	thread	handle.	GetThreadID
int	GetThreadID()	const;

Returns	the	thread	ID.	GetThreadPriority
int	GetThreadPriority()	const;

Returns	the	thread's	priority.	ResumeThread
DWORD	ResumeThread()	const;

Resumes	the	execution	of	the	thread.	By	default,	the	thread	is	created	in	a	suspended	state,	and	should	be

resumed	when	the	application	is	ready	to	have	the	thread	run.	SetAccelerators
void	SetAccelerators(HACCEL	hAccel,	CWnd*	pWndAccel)	const;

Sets	handle	of	the	accelerator	table,	and	a	pointer	to	the	window	used	for	accelerator	keys.

SetThreadPriority
BOOL	SetThreadPriority(int	nPriority)	const;

Sets	the	thread's	priority.	SuspendThread
DWORD	SuspendThread()	const;

Suspends	the	execution	of	the	thread.

Overridables

InitInstance

virtual	BOOL	InitInstance();

The	function	which	runs	when	a	GUI	thread	starts.	Override	this	function	to	specify
what	the	thread	does	when	it	starts.	Return	TRUE	if	the	message	loop	should	run,
otherwise	return	FALSE.

MessageLoop
virtual	int	MessageLoop();

The	MessageLoop	function	is	called	if	InitInstance	returns	TRUE.	Override	this
function	if	you	wish	to	customise	the	message	loop	run	by	this	thread.

OnIdle

virtual	BOOL	OnIdle(LONG	lCount);

OnIdle	is	called	to	perform	idle	processing.	The	lCount	is	incremented	each	time
OnIdle	is	called	while	the	message	queue	is	empty.	Override	OnIdle	to	perform	small
tasks.	Larger	tasks	can	be	split	up	into	pieces	which	are	processed	when	lCount



reaches	specific	values.	Return	TRUE	to	perform	additional	idle	tasks,	and	return
FALSE	when	there	are	no	more	tasks	to	perform.

PreTranslateMessage
virtual	BOOL	PreTranslateMessage(MSG	Msg);

PreTranslateMessage	processes	the	keyboard	accelerator	keys	and	calls
CWnd::PreTranslateMessage	for	keyboard	and	mouse	events.

Remarks

CWinThread	supports	the	creation	of	both	worker	threads	and	GUI	(Graphic
User	Interface)	threads.

GUI	Threads:

GUI	threads	(i.e.	threads	that	have	windows)	should	inherit	from	this	class,	use
the	first	constuctor,	and	override	InitInstance	to	specify	what	the	thread	does
when	it	starts.	If	your	thread	is	used	to	run	one	or	more	windows,	InitInstance
should	return	TRUE	to	start	the	MessageLoop.

Worker	Threads:

Worker	threads	don't	have	windows	and	don't	need	a	message	loop.	Worker
threads	don't	need	to	inherit	from	this	class.	They	can	simply	use	the	constructor
which	allows	the	ThreadProc	and	LPVOID	to	be	specified.

Note:

Creating	an	instance	of	CWinThread	doesn't	create	the	thread.	The	CreateThread
member	function	is	used	to	create	the	thread.

It	is	your	job	to	end	the	thread	before	CWinThread	ends!		To	end	a	thread	with	a
message	loop,	post	a	WM_QUIT	message	to	the	thread.	To	end	a	thread	without
a	message	loop,	set	an	event,	and	end	the	thread		when	the	event	is	received.

Programming	Hints:		

It	is	never	a	good	idea	to	use	things	like	TerminateThread	or	ExitThread	to
end	your	thread.	These	represent	poor	programming	techniques,	and	are
likely	to	leak	memory	and	resources.
Avoid	using	SendMessage	between	threads,	as	this	will	cause	one	thread	to	wait	for	the	other	to
respond.	Use	PostMessage	between	threads	to	avoid	this	problem.



Access	to	variables	and	resources	shared	between	threads	need	to	be	made	thread	safe.	Having	one
thread	modify	a	resource	or	variable	while	another	thread	is	accessing	it	is	a	recipe	for	disaster.
Thread	Local	Storage	(TLS)	can	be	used	to	replace	global	variables	to	make	them	thread	safe.	With
TLS,	each	thread	gets	its	own	copy	of	the	variable.
Critical	Sections	can	be	used	to	make	shared	resources	thread	safe.
Window	messages	(including	user	defined	messages)	can	be	posted	between	GUI	threads	to
communicate	information	between	them.
Events	(created	by	CreateEvent)	can	be	used	to	communicate	information	between	threads	(both	GUI
and	worker	threads).
Avoid	using	sleep	to	synchronise	threads.	The	various	wait	functions	(e.g.	WaitForSingleObject)	will
be	better	for	thread	synchronisation.

About	Threads:
Each	program	that	executes	has	a	"process"	allocated	to	it.	A	process	has	one	or	more	threads.	Threads	run
independently	of	each	other.	It	is	the	job	of	the	operating	system	to	manage	the	running	of	the	threads,	and
do	the	task	switching	between	threads	as	required.	Systems	with	multiple	CPUs	will	be	able	to	run	as	many
threads	simultaneously	as	there	are	CPUs.

Threads	behave	like	a	program	within	a	program.	When	the	main	thread	starts,
the	application	runs	the	WinMain	function	and	ends	when	WinMain	ends.	When
another	thread	starts,	it	too	will	run	the	function	provided	to	it,	and	end	when
that	function	ends.

Summary	Information

Header	file wincore.h
Win32/64
support Yes

WinCE	support Yes



CWnd	Class

Description

The	CWnd	class	represents	a	window.	CWnd	handles	such	things	as	window	creation	and	window
destruction,	as	well	as	determining	how	the	window	messages	are	handled.		Each	window	created	by
Win32++		is	a	CWnd	object,	or	an	object	derived	from	CWnd.	Many	of	the	classes	in	Win32++	are
inherited	from	CWnd,	including	CFrame,	CMDIChild,	CMDIFrame,	CMenuBar,	CReBar,	CStatusBar,	and
CToolBar.

Inherit	from	this	class	in	your	own	application	to	create	windows.	The	WndProc	member	function	is	called
whenever	the	window	associated	with	the	CWnd	object	receives	a	Window	message.	Override	WndProc	to
handle	window	messages,	and	pass	all	unhandled	messages	on	to	WndProcDefault.
	

CWnd	Members:

Construction

CWnd CWnd();

Constructs	a	CWnd	object

Operations

operator	HWND operator	HWND()	const;

Returns	the	HWND	belonging	to	this	CWnd.

Attach virtual	BOOL	Attach(HWND	hWnd);

Attaches	a	CWnd	object	to	an	existing	window.

AttachDlgItem virtual	BOOL	AttachDlgItem(UINT	nID,	CWnd*	pParent);

Attaches	a	CWnd	object	to	a	dialog	item.

CenterWindow virtual	void	CenterWindow()	const;

Positions	the	window	over	the	center	of	its	parent.



Create virtual	HWND	Create(CWnd*	pParent	=	NULL);

Creates	the	window	with	default	parameters.	Use	PreCreate	to	set	the	default	parameters.

CreateEx

virtual	HWND	CreateEx(DWORD	dwExStyle,	LPCTSTR	lpszClassName,	
																						LPCTSTR	lpszWindowName,	DWORD	dwStyle,	
																						int	x,	int	y,	int	nWidth,	int	nHeight,	
																						HWND	hwndParent,	HMENU	nIDorHMenu,	LPVOID	lpParam	=	NULL);

virtual	HWND	CreateEx(DWORD	dwExStyle,	LPCTSTR	lpszClassName,	
	 													LPCTSTR	lpszWindowName,	DWORD	dwStyle,	const	RECT&	rc,	
	 													CWnd*	pParent,	UINT	nID,	LPVOID	lpParam	=	NULL);

Creates	the	window	by	specifying	each	parameter.

Destroy virtual	void	Destroy();

Destroys	the	window	associated	with	the	CWnd,	and	returns	the	CWnd	to	its	default	state.

Detach virtual	HWND	Detach();

Detaches	a	window	from	a	CWnd	object.	It	reverses	an	attach.

FromHandle

static	CWnd*	FromHandle(HWND	hWnd);

Returns	the	CWnd	associated	with	the	specified	window	handle.	If	a	CWnd	object	doesn't	already	exist	for	this	HWND,
a	temporary	CWnd	object	is	created.	This	temporary	CWnd	will	be	deleted	sometime	after	the	processing	of	the	current
message	is	complete.

FromHandlePermanent
static	CWnd*	FromHandlePermanent(HWND	hWnd);

Returns	the	CWnd	associated	with	the	specified	window	handle.	If	a	CWnd	object	doesn't	already	exist	for	this	HWND,
this	function	returns	NULL.

FinalWindowProc
virtual	LRESULT	FinalWindowProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

Passes	messages	on	to	the	appropriate	default	window	procedure.	When	a	message	is	handled,	the	function	should
either	return	FinalWindowProc	or	a	specific	value	recommended	in	the	Windows	API	

Invalidate virtual	void	Invalidate(BOOL	bErase	=	TRUE)	const;

Invalidates	the	entire	window.	The	window	will	be	redrawn	when	the	next	WM_PAINT	message	is	

SetIconLarge virtual	HICON	SetIconLarge(int	nIcon);

Loads	the	large	icon	from	the	specified	resource,	and	assigns	it	to	the	window.

SetIconSmall virtual	HICON	SetIconSmall(int	nIcon);

Loads	the	small	icon	from	the	specified	resource,	and	assigns	it	to	to	the	window.

WndProcDefault virtual	LRESULT	WndProcDefault(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);



Don't	override	this	function.	Pass	all	unhandled	messages	to	WndProcDefault	when	overriding	WndProc.

Overridables

OnAttach
virtual	void	OnAttach();

Called	when	a	window	is	attached	to	the	CWnd.	Note	that	window	controls	are	subclassed	after	they	are
created,	and	call	OnAttach.

OnCommand virtual	BOOL	OnCommand(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	user	selects	a	command,	typically	in	response	to	a	menu	or	toolbar	button.

OnClose
virtual	void	OnClose();

Called	in	response	to	WM_CLOSE.	Override	to	suppress	destroying	the	window.	A	WM_CLOSE	is	sent	by
SendMessage(WM_SYSCOMMAND,	SC_CLOSE,	0)	or	by	clicking	the	X	to	close	the	window.

OnCreate
virtual	void	OnCreate();

Called	during	window	creation.	Override	this	function	to	perform	tasks	such	as	creating	child	
that	window	controls	are	attached	after	they	are	created,	and	don't	call	OnCreate.

OnDestroy
virtual	void	OnDestroy();

This	function	is	called	when	a	window	is	destroyed.	Override	it	to	do	additional	tasks,	such	as	ending	the
application	with	PostQuitMessage..

OnDraw
virtual	void	OnDraw(CDC*	pDC);

Called	when	part	of	the	window	is	about	to	be	redrawn.	Override	this	function	to	specify	how	the	window
should	be	drawn.

OnEraseBkGnd
virtual	BOOL	OnEraseBkgnd(CDC*	pDC);

Called	when	part	of	the	window	background	is	erased.	Override	this	function	to	specify	how	the	window's
background	should	be	drawn.

OnInitialUpdate virtual	void	OnInitialUpdate();

Called	after	the	window	is	created.	Override	this	function	to	perform	tasks	once	the	window	is	

OnMenuUpdate
virtual	void	OnMenuUpdate(UINT	nID);

Called	when	a	popup	menu	is	about	to	be	displayed.	Override	this	function	to	set	or	clear	the	check	box	or
radio	button	to	menu	items.

OnMessageReflect
virtual	LRESULT	OnMessageReflect(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

Called	when	a	notification	message	is	sent	to	the	parent.		Override	this	function	to	handle	these	



messages	in	the	CWnd	that	generated	them.

OnNotify
virtual	LRESULT	OnNotify(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	WM_NOTIFY	message	is	received	from	a	child	window.	Override	this	function	to	handle
notifications	in	the	parent's	CWnd.

OnNotifyReflect
virtual	LRESULT	OnNotifyReflect(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	WM_NOTIFY	message	is	sent	to	the	parent.	Override	this	function	to	handle	notifications	in
the	CWnd	that	generated	them.

PreCreate virtual	void	PreCreate(CREATESTRUCT&	cs);

Override	this	function	to	set	the	window	creation	parameters	used	by	Create.

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS&	wc);

Override	the	function	to	set	the	window	class	parameters	used	by	Create.

PreTranslateMessage virtual	BOOL	PreTranslateMessage(MSG*	pMsg);

Override	this	function	to	filter	mouse	and	keyboard	messages	prior	to	being	passed	to	the	message	

WndProc
virtual	LRESULT	WndProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

Override	this	function	to	specify	how	the	messages	for	this	window	are	to	be	handled.	Return	all	unhandled
messages	to	WndProcDefault.

Attributes

FromHandle static	CWnd*	FromHandle(HWND	hWnd);

Returns	a	pointer	to	the	CWnd	object,	given	the	window	handle	(HWND).

GetHwnd HWND	GetHwnd()	const;

Returns	the	handle	of	the	window	associated	with	CWnd.

GetPrevWindowProc WNDPROC	GetPrevWindowProc()	const;

Pointer	to	the	Window	Procedure	prior	to	it	being	subclassed.

Member	Variables

m_hWnd
HWND	m_hWnd;



Handle	to	the	CWnd's	window.

Wrappers	for	Window	API	functions	and	messages	(don't	override	these).

BeginPaint
CDC*	BeginPaint(PAINTSTRUCT&	ps)	const;

Prepares	the	specified	window	for	painting	and	fills	a	PAINTSTRUCT	structure	with	information	about	the
painting.

BringWindowToTop
BOOL	BringWindowToTop()	const;

Brings	the	window	to	the	top	of	the	Z	order.	If	the	window	is	a	top-level	window,	it	is	activated.	If	the	
a	child	window,	the	top-level	parent	window	associated	with	the	child	window	is	activated.

CallWindowProc
LRESULT	CallWindowProc(WNDPROC	lpPrevWndFunc,	UINT	Msg,	
																							WPARAM	wParam,	LPARAM	lParam)	const;

Passes	message	information	to	the	specified	window	procedure.

CheckDlgButton BOOL	CheckDlgButton(int	nIDButton,	UINT	uCheck)	const;

Changes	the	check	state	of	a	button	control.

CheckRadioButton

BOOL	CheckRadioButton(int	nIDFirstButton,	int	nIDLastButton,	
																						int	nIDCheckButton)	const;

Adds	a	check	mark	to	(checks)	a	specified	radio	button	in	a	group	and	removes	a	check	mark	from	(clears)	all
other	radio	buttons	in	the	group.

ChildWindowFromPoint

CWnd*	ChildWindowFromPoint(POINT	pt)	const;

Determines	which,	if	any,	of	the	child	windows	belonging	to	a	parent	window	contains	the	specified	point.	The
search	is	restricted	to	immediate	child	windows.	Grandchildren,	and	deeper	descendant	
searched.

ClientToScreen
BOOL	ClientToScreen(POINT&	pt)	const;

BOOL	ClientToScreen(RECT&	rc)	const;

Converts	the	client-area	coordinates	of	a	specified	point	to	screen	coordinates..

CloseWindow BOOL	CloseWindow()	const;

Minimizes	(but	does	not	destroy)	the	window.	This	function	is	not	supported	on	WinCE.

DefWindowProc
LRESULT	DefWindowProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)	const;

Calls	the	default	window	procedure	to	provide	default	processing	for	any	window	messages	that	an	application
does	not	process.



DeferWindowPos

HDWP	DeferWindowPos(HDWP	hWinPosInfo,	const	CWnd*	pInsertAfter,	
																				int	x,	int	y,	int	cx,	int	cy,	UINT	uFlags)	const;

HDWP	DeferWindowPos(HDWP	hWinPosInfo,	const	CWnd*	pInsertAfter,	
	 											const	RECT&	rc,	UINT	uFlags)	const;

Updates	the	multiple	window	position	structure	for	the	window.	The	function	then	returns	a	handle	to	
updated	structure.

DlgDirList

int	DlgDirList(LPTSTR	lpPathSpec,	int	nIDListBox,	
															int	nIDStaticPath,	UINT	uFileType)	const;

Replaces	the	contents	of	a	list	box	with	the	names	of	the	subdirectories	and	files	in	a	specified	directory.	You
can	filter	the	list	of	names	by	specifying	a	set	of	file	attributes.	This	function	is	not	

DlgDirListComboBox

int	DlgDirListComboBox(LPTSTR	lpPathSpec,	int	nIDComboBox,	
																							int	nIDStaticPath,	UINT	uFiletype)	const;

Replaces	the	contents	of	a	combo	box	with	the	names	of	the	subdirectories	and	files	in	a	specified	
can	filter	the	list	of	names	by	specifying	a	set	of	file	attributes.	This	function	is	not	supported	on	WinCE.

DlgDirSelectEx

BOOL	DlgDirSelectEx(LPTSTR	lpString,	int	nCount,	int	nIDListBox)	const;

Retrieves	the	current	selection	from	a	single-selection	list	box.	It	assumes	that	the	list	box	has	
DlgDirList	function	and	that	the	selection	is	a	drive	letter,	filename,	or	directory	name.
supported	on	WinCE.

DlgDirSelectComboBoxEx

BOOL	DlgDirSelectComboBoxEx(LPTSTR	lpString,	int	nCount,	
																												int	nIDComboBox)	const;

Retrieves	the	current	selection	from	a	combo	box	filled	by	using	the	DlgDirListComboBox	function.	
selection	is	interpreted	as	a	drive	letter,	a	file,	or	a	directory	name.	This	function	is	not	supported	on	WinCE.

DrawAnimatedRects
BOOL	DrawAnimatedRects(int	idAni,	RECT&	rcFrom,	RECT&	rcTo)	const;

Draws	a	wire-frame	rectangle	and	animates	it	to	indicate	the	opening	of	an	icon	or	the	minimizing	or
maximizing	of	a	window.	This	function	is	not	supported	on	WinCE.

DrawCaption BOOL	DrawCaption(CDC*	pDC,	RECT&	rc,	UINT	uFlags)	const;

Draws	a	window	caption.	This	function	is	not	supported	on	WinCE.

DrawMenuBar
BOOL	DrawMenuBar()	const;

Redraws	the	menu	bar	of	the	window.	If	the	menu	bar	changes	after	the	system	has	created	the	window,	
function	must	be	called	to	draw	the	changed	menu	bar.

EnableScrollBar BOOL	EnableScrollBar(UINT	uSBflags,	UINT	uArrows)	const;

Enables	or	disables	one	or	both	scroll	bar	arrows.		This	function	is	not	supported	on	

BOOL	EnableWindow(BOOL	bEnable	=	TRUE)	const;



EnableWindow The	EnableWindow	function	enables	or	disables	mouse	and	keyboard	input	to	the	specified	window	or	control.
When	input	is	disabled,	the	window	does	not	receive	input	such	as	mouse	clicks	and	key	presses.	When	input	is
enabled,	the	window	receives	all	input.

EndPaint
BOOL	EndPaint(PAINTSTRUCT&	ps)	const;

Marks	the	end	of	painting	in	the	specified	window.	This	function	is	required	for	each	call	to	the	BeginPaint
function,	but	only	after	painting	is	complete.

GetActiveWindow CWnd*	GetActiveWindow()	const;

Returns	the	pointer	to	the	active	window.	This	pointer	might	be	temporary,	so	don't	save	it	for	later	use.

GetAncestor CWnd*	GetAncestor(UINT	gaFlag	=	3	/*=	GA_ROOTOWNER*/)	const;

Returns	the	pointer	to	the	ancestor	window.	This	pointer	might	be	temporary,	so	don't	save	it	for	later	use.

GetCapture
CWnd*	GetCapture()	const;

Returns	the	pointer	to	the	window	(if	any)	that	has	captured	the	mouse.	This	pointer	might	be	
don't	save	it	for	later	use.

GetClassLongPtr ULONG_PTR	GetClassLongPtr(int	nIndex)	const;

Retrieves	the	specified	value	from	the	WNDCLASSEX	structure	associated	with	the	window.

GetClassName LPCTSTR	GetClassName()	const;

Returns	a	pointer	to	a	TCHAR	array	containing	the	class	name	of	the	window.

GetClientRect

CRect	GetClientRect()	const;

Retrieves	the	coordinates	of	a	window's	client	area.	The	client	coordinates	specify	the	upper-left	and	
corners	of	the	client	area.	Because	client	coordinates	are	relative	to	the	upper-left	corner	of	a	window's	client
area,	the	coordinates	of	the	upper-left	corner	are	(0,0).

GetDC CDC*	GetDC()	const;

Retrieves	a	pointer	to	the	display	device	context	(CDC)	for	the	client	area	of	the	window.

GetDCEx

CDC*	GetDCEx(HRGN	hrgnClip,	DWORD	flags)	const;

Retrieves	a	pointer	to	a	display	device	context	(CDC)	for	the	client	area	of	the	window.	This	
extension	to	the	GedDC	function,	which	gives	an	application	more	control	over	how	and	whether	clipping
occurs	in	the	client	area.

GetDesktopWindow CWnd*	GetDesktopWindow()	const;

Retrieves	a	pointer	to	the	desktop	window.	This	pointer	might	be	temporary,	so	don't	save	it	for	later	use.

GetDlgCtrlID int	GetDlgCtrlID()	const;



Retrieves	the	control	ID	value	for	any	child	window.

GetDlgItem CWnd*	GetDlgItem(int	nIDDlgItem)	const;

Retrieves	a	pointer	to	a	control	in	the	dialog	box.	This	pointer	might	be	temporary,	so	don't	save	it	for	

GetDlgItemInt UINT	GetDlgItemInt(int	nIDDlgItem,	BOOL*	lpTranslated,	BOOL	bSigned)	const;

Translates	the	text	of	a	specified	control	in	a	dialog	box	into	an	integer	value.	

GetDlgItemText LPCTSTR	GetDlgItemText(int	nIDDlgItem)	const;

Retrieves	the	title	or	text	associated	with	a	control	in	a	dialog.	

GetFont CFont*	GetFont()	const;

Retrieves	a	handle	to	the	font	assigned	to	the	window.

GetIcon HICON	GetIcon(BOOL	bBigIcon)	const;

Retrieves	a	handle	to	the	icon	assigned	to	the	window.

GetLastActivePopup
CWnd*	GetLastActivePopup()	const;

Retrieves	the	pointer	to	the	pop-up	window	owned	by	the	window	which	was	most	recently	active.	This	pointer
might	be	temporary,	so	don't	save	it	for	later	use.

GetMenu CMenu*	GetMenu()	const;

Retrieves	a	handle	to	the	menu	assigned	to	the	window.	This	function	is	not	supported	on	

GetNextDlgGroupItem
CWnd*	GetNextDlgGroupItem(CWnd*	pCtl,	BOOL	bPrevious)	const;

Retrieves	a	handle	to	the	first	control	in	a	group	of	controls	that	precedes	(or	follows)	the	specified	control	in	a
dialog	box.

GetNextDlgTabItem
CWnd*	GetNextDlgTabItem(CWnd*	pCtl,	BOOL	bPrevious)	const;

Retrieves	a	handle	to	the	first	control	that	has	the	WS_TABSTOP	style	that	precedes	(or	follows)	the	specified
control.

GetParent
CWnd*	GetParent()	const;

Retrieves	a	pointer	to	the	window's	parent	or	owner	(if	any).	This	pointer	might	be	temporary,	so	don't	save	
for	later	use.

GetScrollInfo
BOOL	GetScrollInfo(int	fnBar,	SCROLLINFO&	si)	const;

Retrieves	the	parameters	of	a	scroll	bar,	including	the	minimum	and	maximum	scrolling	positions,	the	
and	the	position	of	the	scroll	box	(thumb).

int	GetScrollPos(int	nBar)	const;



GetScrollPos Retrieves	the	current	position	of	the	scroll	box	(thumb)	in	the	specified	scroll	bar.	The	current	position	
relative	value	that	depends	on	the	current	scrolling	range.	For	example,	if	the	scrolling	range	is	0	through	100
and	the	scroll	box	is	in	the	middle	of	the	bar,	the	current	position	is	50.	This	function	is	
WinCE.		New	applications	should	use	the	GetScrollInfo	function.

GetScrollRange
BOOL	GetScrollRange(int	nBar,	int&	MinPos,	int&	MaxPos)	const;

Retrieves	the	current	minimum	and	maximum	scroll	box	(thumb)	positions	for	the	specified	scroll	bar.	This
function	is	not	supported	on	WinCE.		New	applications	should	use	the	GetScrollInfo

GetSystemMenu
CMenu*	GetSystemMenu(BOOL	bRevert)	const;

Allows	the	application	to	access	the	window	menu	(also	known	as	the	system	menu	or	the	control	menu)	for
copying	and	modifying.	This	function	is	not	supported	on	WinCE.

GetTopWindow
CWnd*	GetTopWindow()	const;

Retrieves	a	pointer	to	the	child	window	at	the	top	of	the	Z	order.	This	pointer	might	be	temporary,	so	
it	for	later	use.

GetUpdateRect
CRect	GetUpdateRect(BOOL	bErase)	const;

Retrieves	the	coordinates	of	the	smallest	rectangle	that	completely	encloses	the	update	region	of	the	
window.

GetUpdateRgn int	GetUpdateRgn(CRgn*	pRgn,	BOOL	bErase)	const;

Retrieves	the	update	region	of	a	window	by	copying	it	into	the	specified	region.

GetWindow
CWnd*	GetWindow(UINT	uCmd)	const;

Retrieves	a	pointer	to	a	window	that	has	the	specified	relationship	(Z-Order	or	owner)	to	the	window.	This
pointer	might	be	temporary,	so	don't	save	it	for	later	use.

GetWindowDC

CDC*	GetWindowDC()	const;

Retrieves	the	device	context	(DC)	for	the	entire	window,	including	title	bar,	menus,	and	scroll	bars.	A	
device	context	permits	painting	anywhere	in	a	window,	because	the	origin	of	the	device	context	is	the	upper-left
corner	of	the	window	instead	of	the	client	area.

GetWindowLongPtr
LONG_PTR	GetWindowLongPtr(int	nIndex)	const;

Retrieves	information	about	the	window.	The	function	also	retrieves	the	value	at	a	specified	offset	into	
window	memory.

GetWindowPlacement
BOOL	GetWindowPlacement(WINDOWPLACEMENT&	pWndpl)	const;

Retrieves	the	show	state	and	the	restored,	minimized,	and	maximized	positions	of	the	window.	This	function	
not	supported	on	WinCE.

GetWindowRect
CRect	GetWindowRect()	const;



Retrieves	the	dimensions	of	the	bounding	rectangle	of	the	specified	window.	The	dimensions	are	given	in	
coordinates	that	are	relative	to	the	upper-left	corner	of	the	screen.

GetWindowText LPCTSTR	GetWindowText()	const;

Retrieves	the	title	or	text	associated	with	the	window.

GetWindowTextLength int	GetWindowTextLength()	const;

Retrieves	the	length,	in	characters,	of	the	specified	window's	text.

HiliteMenuItem BOOL	HiliteMenuItem(CMenu*	pMenu,	UINT	uItemHilite,	UINT	uHilite)	const;

Highlights	or	removes	the	highlighting	from	an	item	in	a	menu	bar.	This	function	is	not	supported	on	WinCE.

InvalidateRect
BOOL	InvalidateRect(LPCRECT	lpRect,	BOOL	bErase	=	TRUE)	const;

The	InvalidateRect	function	adds	a	rectangle	to	the	window's	update	region.	The	update	region	represents	the
portion	of	the	window's	client	area	that	must	be	redrawn.

InvalidateRgn

BOOL	InvalidateRgn(CRgn*	pRgn,	BOOL	bErase	=	TRUE)	const;

The	InvalidateRgn	function	invalidates	the	client	area	within	the	specified	region	by	adding	it	to	
update	region	of	a	window.	The	invalidated	region,	along	with	all	other	areas	in	the	update	region,	is	marked	for
painting	when	the	next	WM_PAINT	message	occurs.

IsChild

BOOL	IsChild(CWnd*	pChild)	const;

Tests	whether	a	window	is	a	child	window	or	descendant	window	of	a	specified	parent	window.	A	child	window
is	the	direct	descendant	of	a	specified	parent	window	if	that	parent	window	is	in	the	chain	of	parent	windows;
the	chain	of	parent	windows	leads	from	the	original	overlapped	or	pop-up	window	to	the	child	

IsDialogMessage BOOL	IsDialogMessage(LPMSG	lpMsg)	const;

Determines	whether	a	message	is	intended	for	the	specified	dialog	box	and,	if	it	is,	processes	the	message.

IsDlgButtonChecked
UINT	IsDlgButtonChecked(int	nIDButton)	const;

Determines	whether	a	button	control	has	a	check	mark	next	to	it	or	whether	a	three-state	button	control	is
grayed,	checked,	or	neither.

IsIconic BOOL	IsIconic()	const;

Determines	whether	the	window	is	minimized	(iconic).	This	function	is	not	supported	on	WinCE.

IsWindow BOOL	IsWindow()	const;

Determines	whether	the	window	handle	identifies	an	existing	window.

IsWindowEnabled BOOL	IsWindowEnabled()	const;

Determines	whether	the	window	is	enabled	for	mouse	and	keyboard	input.



IsWindowVisible
BOOL	IsWindowVisible()	const;

Retrieves	the	visibility	state	of	the	window.

IsZoomed BOOL	IsZoomed()	const;

Determines	whether	the	window	is	maximized.		This	function	is	not	supported	on	WinCE.

KillTimer BOOL	KillTimer(UINT_PTR	uIDEvent)	const;

Destroys	the	specified	timer.

LockWindowUpdate
BOOL	LockWindowUpdate()	const;

Disables	or	enables	drawing	in	the	window.	Only	one	window	can	be	locked	at	a	time.This	function	is	not
supported	on	WinCE.

MapWindowPoints

void	MapWindowPoints(CWnd*	pWndTo,	POINT&	pt)	const;

void	MapWindowPoints(CWnd*	pWndTo,	RECT&	rc)	const;

void	MapWindowPoints(CWnd*	pWndTo,	LPPOINT	ptArray,	UINT	nCount)	const;

Converts	(maps)	a	set	of	points	from	a	coordinate	space	relative	to	one	window	to	a	coordinate	space	relative	to
another	window.

MessageBox
int	MessageBox(LPCTSTR	lpText,	LPCTSTR	lpCaption,	UINT	uType)	const;

Creates,	displays,	and	operates	a	message	box.	The	message	box	contains	an	application-defined	message	and
title,	plus	any	combination	of	predefined	icons	and	push	buttons.

MoveWindow

BOOL	MoveWindow(int	x,	int	y,	int	nWidth,	int	nHeight,	
																BOOL	bRepaint	=	TRUE)	const;

BOOL	MoveWindow(const	RECT&	rc,	BOOL	bRepaint	=	TRUE)	const;

The	MoveWindow	function	changes	the	position	and	dimensions	of	the	window.

OpenIcon BOOL	OpenIcon()	const;

Restores	a	minimized	(iconic)	window	to	its	previous	size	and	position,	and	then	activates	the	window.

PostMessage

BOOL	PostMessage(UINT	uMsg,	WPARAM	wParam	=	0L,	LPARAM	lParam	=	0L)	const;

BOOL	PostMessage(HWND	hWnd,	UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)	const;

The	PostMessage	function	places	(posts)	a	message	in	the	message	queue	associated	with	the	thread	that	
the	window	and	returns	without	waiting	for	the	thread	to	process	the	message.

Print
void	Print(CDC*	pDC,	DWORD	dwFlags)	const;

Requests	that	the	window	draw	itself	in	the	specified	device	context,	most	commonly	in	a	printer	device	context.
This	function	is	not	supported	on	WinCE.



RedrawWindow

BOOL	RedrawWindow(LPCRECT	lpRectUpdate	=	NULL,	CRgn*	pRgn	=	NULL,	
																		UINT	flags	=	RDW_INVALIDATE	|	RDW_UPDATENOW	|	
																		RDW_ERASE	|	RDW_ALLCHILDREN)	const;

This	function	updates	the	specified	rectangle	or	region	in	a	window's	client	area.

ReleaseDC int	ReleaseDC(CDC*	pDC)	const;

Releases	a	device	context	(DC),	freeing	it	for	use	by	other	applications.

ScreenToClient
BOOL	ScreenToClient(POINT&	Point)	const;

BOOL	ScreenToClient(RECT&	rc)	const;

Converts	the	screen	coordinates	of	a	specified	RECT	or	points	on	the	screen	to	client-area	coordinates.

ScrollWindow

BOOL	ScrollWindow(int	XAmount,	int	YAmount,	LPCRECT	prcScroll,	
																		LPCRECT	prcClip)	const;

Scrolls	the	contents	of	the	specified	window's	client	area.	This	function	is	not	supported	on	WinCE.	
applications	should	use	the	ScrollWindowEx	function.

ScrollWindowEx
int	ScrollWindowEx(int	dx,	int	dy,	LPCRECT	prcScroll,	LPCRECT	prcClip,	
																			CRgn*	prgnUpdate,	LPRECT	prcUpdate,	UINT	flags)	const;

Scrolls	the	contents	of	the	specified	window's	client	area.	This	function	is	not	supported	on	

SendDlgItemMessage
LRESULT	SendDlgItemMessage(int	nIDDlgItem,	UINT	Msg,	
																											WPARAM	wParam,	LPARAM	lParam)	const;

Sends	a	message	to	the	specified	control	in	a	dialog	box.

SendMessage

LRESULT	SendMessage(UINT	uMsg,	WPARAM	wParam	=	0L,	
																				LPARAM	lParam	=	0L)	const;

LRESULT	SendMessage(HWND	hWnd,	UINT	uMsg,	WPARAM	wParam,	
	 											LPARAM	lParam)	const;

The	SendMessage	function	sends	the	specified	message	to	a	window	or	windows.	It	calls	the	window	procedure
for	the	window	and	does	not	return	until	the	window	procedure	has	processed	the	message.

SendNotifyMessage

BOOL	SendNotifyMessage(UINT	Msg,	WPARAM	wParam,	LPARAM	lParam)	const;

Sends	the	specified	message	to	a	window	or	windows.	If	the	window	was	created	by	the	calling	thread,
SendNotifyMessage	calls	the	window	procedure	for	the	window	and	does	not	return	until	the	window	
has	processed	the	message.	If	the	window	was	created	by	a	different	thread,	SendNotifyMessage	passes	the
message	to	the	window	procedure	and	returns	immediately;	it	does	not	wait	for	the	window	procedure	
processing	the	message.

SetActiveWindow
CWnd*	SetActiveWindow()	const;



Activates	a	window.		The	window	will	be	brought	into	the	foreground	(top	of	Z-Order
foreground	when	the	system	activates	the	window.

SetCapture

CWnd*	SetCapture()	const;

Sets	the	mouse	capture	to	the	window	belonging	to	the	current	thread.	SetCapture	captures	mouse	input	
when	the	mouse	is	over	the	capturing	window,	or	when	the	mouse	button	was	pressed	while	the	mouse	was	over
the	capturing	window	and	the	button	is	still	down.	Only	one	window	at	a	time	can	capture	the	

SetClassLongPtr
ULONG_PTR	SetClassLongPtr(int	nIndex,	LONG_PTR	dwNewLong)	const;

Replaces	the	specified	value	at	the	specified	offset	in	the	extra	class	memory	or	the	
for	the	class	to	which	the	window	belongs.

SetDlgItemInt BOOL	SetDlgItemInt(int	nIDDlgItem,	UINT	uValue,	BOOL	bSigned)	const;

Sets	the	text	of	a	control	in	a	dialog	box	to	the	string	representation	of	a	specified	integer	

SetDlgItemText BOOL	SetDlgItemText(int	nIDDlgItem,	LPCTSTR	lpString)	const;

Sets	the	title	or	text	of	a	control	in	a	dialog	box.

SetFocus CWnd*	SetFocus()	const;

Sets	the	keyboard	focus	to	the	window.

SetFont void	SetFont(CFont	pFont,	BOOL	bRedraw)	const;;

Specifies	the	font	that	a	window	will	use	when	drawing	text.

SetForegroundWindow

BOOL	SetForegroundWindow()	const;

Puts	the	thread	that	created	the	window	into	the	foreground	and	activates	the	window.	Keyboard	input	is
directed	to	the	window,	and	various	visual	cues	are	changed	for	the	user.	The	system	assigns	a	slightly	higher
priority	to	the	thread	that	created	the	foreground	window	than	it	does	to	other	threads.

SetIcon HICON	SetIcon(HICON	hIcon,	BOOL	bBigIcon)	const;

Associates	a	new	large	or	small	icon	with	the	window..

SetMenu BOOL	SetMenu(CMenu*	pMenu)	const;

Assigns	a	new	menu	to	the	window.	This	function	is	not	supported	on	WinCE.

SetParent CWnd*	SetParent(CWnd*	pWndParent)	const;

Changes	the	parent	window	of	the	specified	child	window.

SetRedraw
BOOL	SetRedraw(BOOL	bRedraw	=	TRUE)	const;

This	function	allows	changes	in	the	window	to	be	redrawn	or	prevents	changes	in	the	window	from	being
redrawn,	by	sending	a	WM_SETREDRAW	message.



SetScrollInfo
int	SetScrollInfo(int	fnBar,	const	SCROLLINFO&	si,	BOOL	fRedraw)	const;

Sets	the	parameters	of	a	scroll	bar,	including	the	minimum	and	maximum	scrolling	positions,	the	page	size,	
the	position	of	the	scroll	box	(thumb).	The	function	also	redraws	the	scroll	bar,	if	requested.

SetScrollPos

int	SetScrollPos(int	nBar,	int	nPos,	BOOL	bRedraw)	const;

Sets	the	position	of	the	scroll	box	(thumb)	in	the	specified	scroll	bar	and,	if	requested,	redraws	the	
reflect	the	new	position	of	the	scroll	box.	New	applications	should	use	the	SetScrollInfo
is	not	supported	on	WinCE.

SetScrollRange

BOOL	SetScrollRange(int	nBar,	int	nMinPos,	int	nMaxPos,	
																				BOOL	bRedraw)	const;

Sets	the	minimum	and	maximum	scroll	box	positions	for	the	specified	scroll	bar.	New	applications	should	
the	SetScrollInfo	function.		This	function	is	not	supported	on	WinCE.

SetTimer
UINT_PTR	SetTimer(UINT_PTR	nIDEvent,	UINT	uElapse,	
																		TIMERPROC	lpTimerFunc)	const;

Creates	a	timer	with	the	specified	time-out	value.

SetWindowLongPtr
LONG_PTR	SetWindowLongPtr(int	nIndex,	LONG_PTR	dwNewLong)	const;

Changes	an	attribute	of	the	window.	The	function	also	sets	a	value	at	the	specified	offset	in	the	
memory.

SetWindowPlacement
BOOL	SetWindowPlacement(const	WINDOWPLACEMENT&	wndpl)	const;

Sets	the	show	state	and	the	restored,	minimized,	and	maximized	positions	of	the	window.	This	function	
supported	on	WinCE.

SetWindowPos

BOOL	SetWindowPos(const	CWnd*	pInsertAfter,	int	x,	int	y,
																		int	cx,	int	cy,	UINT	uFlags)	const;

BOOL	SetWindowPos(const	CWnd*	pInsertAfter,	const	RECT&	rc,	
	 									UINT	uFlags)	const;

Changes	the	size,	position,	and	Z	order	of	a	child,	pop-up,	or	top-level	window.	Child,	pop-up,	and	
windows	are	ordered	according	to	their	appearance	on	the	screen.	The	topmost	window	receives	the	highest	rank
and	is	the	first	window	in	the	Z	order.	
The	pInsertAfter	can	one	of:	&wndTop,	&wndTopMost,	&wndBottom,	or	&wndNoTopMost.

SetWindowRgn

int	SetWindowRgn(CRgn*	pRgn,	BOOL	bRedraw	=	TRUE)	const;

Sets	the	window	region	of	a	window.	The	window	region	determines	the	area	within	the	window	where	the
system	permits	drawing.	The	system	does	not	display	any	portion	of	a	window	that	lies	outside	of	the	window
region.	The	system	owns	the	region	after	a	successful	call	to	SetWindowRgn.

SetWindowText
BOOL	SetWindowText(LPCTSTR	lpString)	const;

Changes	the	text	of	the	window's	title	bar	(if	it	has	one).	If	the	window	is	a	control,	the	text	of	the	



changed.

SetWindowTheme HRESULT	SetWindowTheme(LPCWSTR	pszSubAppName,	LPCWSTR	pszSubIdList)	const;

Causes	a	window	to	use	a	different	set	of	visual	style	information	(XP	Theme)	than	its	class	normally	uses.

ShowOwnedPopups BOOL	ShowOwnedPopups(BOOL	fShow)	const;

Shows	or	hides	the	all	the	pop-up	windows	owned	by	this	window.

ShowScrollBar BOOL	ShowScrollBar(int	nBar,	BOOL	bShow)	const;

Shows	or	hides	the	specified	scroll	bar.	This	function	is	not	supported	on	WinCE.

ShowWindow BOOL	ShowWindow(int	nCmdShow	=	SW_SHOWNORMAL)	const;

Sets	the	window's	show	state.

ShowWindowAsync BOOL	ShowWindowAsync(int	nCmdShow)	const;

The	ShowWindow	function	sets	the	window's	show	state	created	in	a	different	thread.

UpdateWindow
BOOL	UpdateWindow()	const;

Updates	the	client	area	of	the	window	by	sending	a	WM_PAINT	message	to	the	window	
region	is	not	empty.	If	the	update	region	is	empty,	no	message	is	sent.

ValidateRect BOOL	ValidateRect(LPCRECT	prc)	const;

Validates	the	client	area	within	a	rectangle	by	removing	the	rectangle	from	the	update	region	of	the	window.

ValidateRgn BOOL	ValidateRgn(CRgn*	pRgn)	const;

Validates	the	client	area	within	a	region	by	removing	the	region	from	the	current	

WindowFromDC
CWnd*	WindowFromDC(CDC*	pDC)	const;

Retrieves	a	pointer	to	the	window	associated	with	the	specified	device	context.		This	pointer	might	be
temporary,	so	don't	save	it	for	later	use.

WindowFromPoint static	CWnd*	WindowFromPoint(POINT	pt);

Retrieves	the	window	that	contains	the	specified	point	(in	screen	coordinates).

Remarks

Refer	to	the	Simple	Window	section	for	information	on	how	to	use	this	class	to
create	a	window	and	handle	its	messages.



Summary	Information

Header	file wincore.h
Win32/64
support Yes

WinCE	support Yes



Shared_Ptr	Class

Description

A	Shared_Ptr	is	a	smart	pointer	that	can	be	used	in	a	STL	container,	such	as	vector.	It	mimics	the	behaviour
of	"share_ptr"	which	will	be	included	in	the	next	standard	of	C++.

Shared_Ptr	Members

Shared_Ptr Constructor	for	the	Shared_Ptr.
get Returns	the	stored	pointer.
swap Exchanges	the	contents	of	two	smart	pointers.
unique	Returns	true	if	the	use_count	equals	1.	use_count	Returns	the	number	of	Shared_Ptr
objects.	operator	=	Assigns	a	pointer	to	the	Shared_Ptr.	operator	->
Returns	the	stored	pointer.	operator	*	Returns	the	dereferenced	stored	pointer.	operator	==
Compares	the	dereferenced	stored	pointers.	Returns	true	if	lhs	==	rhs.	operator	!=	Compares	the
dereferenced	stored	pointers.	Returns	true	if	lhs	!=	rhs.	operator	<	Compares	the	dereferenced	stored
pointers.	Returns	true	if	lhs	<	rhs.	operator	>	Compares	the	dereferenced	stored	pointers.	Returns	true	if
lhs	>	rhs.

Remarks

Shared_Ptr	wraps	a	reference-counted	smart	pointer	around	a	dynamically	allocated	object.	Unlike
auto_ptr,	the	Shared_Ptr	can	be	used	as	a	smart	pointer	for	objects	stored	in
containers	like	std::vector.	Do	not	use	Shared_Ptr	(or	shared_ptr	or	auto_ptr)	for
dynamically	allocated	arrays.	See	below	for	advice	on	how	to	wrap	dynamically
allocated	arrays	in	a	vector.

The	next	standard	of	C++	will	also	contain	a	shared_ptr.	Some	modern	compilers	already	have	a	shared_ptr
available	as	std::tr1::shared_ptr.	If	your	compiler	already	provides	a	shared_ptr,	or	if	you	have	Boost,	you
should	use	that	smart	pointer	instead.	This	class	has	been	provided	for	those	users	who	don't	have	easy
access	to	an	"official"	shared_ptr.	Note	that	this	class	is	"Shared_Ptr",	a	slightly	different	name	to	the	future
"shared_ptr"	to	avoid	naming	conflicts.

Advantages	of	Shared_Ptr	(or	shared_ptr	where	available):

Shared_Ptr	can	be	safely	copied.	This	makes	them	suitable	for	containers.



Shared_Ptr	automatically	calls	delete	for	the	wrapped	pointer	when	its	last
copy	goes	out	of	scope.
Shared_Ptr	simplifies	execution	safety.

Without	smart	pointers,	it	can	be	quite	challenging	to	ensure	that	every	dynamically	allocated	pointer	(i.e.
use	of	new)	is	deleted	in	the	event	of	all	possible	exceptions.	In	addition	to	the	exceptions	we	throw
ourselves,	"new"	itself	will	throw	an	exception	it	it	fails,	as	does	the	STL	(Standard	Template	Library	which
includes	vector	and	string).	Without	smart	pointers	we	often	need	to	resort	to	additional	try/catch	blocks
simply	to	avoid	memory	leaks	when	exception	occur.

Examples	of	declaring	a	Shared_Ptr:

Shared_Ptr<CWnd>	w1(new	CWnd);

Shared_Ptr<CWnd>	w1	=	new	CWnd;

typedef	Shared_Ptr<CWnd>	CWndPtr;
CWndPtr	w1	=	new	CWnd;

typedef	Shared_Ptr<CWnd>	CWndPtr;
CWndPtr	w1(new	CWnd);

Examples	using	a	Shared_Ptr	in	a	vector:

typedef	Shared_Ptr<CWnd>	CWndPtr;
std::vector<CWndPtr>	MyVector;
MyVector.push_back(new	CWnd);

typedef	Shared_Ptr<CWnd>	CWndPtr;
CWnd*	pWnd	=	new	CWnd;
std::vector<CWndPtr>	MyVector;
MyVector.push_back(pWnd);

Summary	Information

Header	file shared_ptr.h
Win32/64
support Yes

WinCE	support Yes



Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

This	set	of	tutorials	will	demonstrate	how	to	create	a	scribble	application,	capable	of	drawing	on	a	window
using	a	mouse.	It	starts	with	a	simple	window	and	ends	with	a	frame	based	scribble	application	which
supports	the	loading	and	saving	saving	its	data	to	a	file,	and	printing	the	contents	of	the	window.	The	code
for	these	tutorials	can	be	found	in	the	tutorials	directory.

The	application	produced	by	completing	the	tutorial	looks	like	this.

	

Choose	from	the	set	of	links	in	the	Menu	of	Tutorials	to	start.



Frequently	Asked	Questions	(FAQ)
How	do	I	install	Win32++?	How	do	I	start	a	project	of	my	own?
Why	does	Win32++	use	a	map	for	HWNDs	and	CWnd*s?
Why	does	Win32++	use	TLS	(Thread	Local	Storage)	during	window	creation?
How	do	I	create	a	window	that	is	initially	hidden?
How	do	I	create	a	window	that	is	initially	minimised	or	maximised?
How	should	I	end	an	application?
How	do	I	access	one	CWnd	from	within	another?
How	do	I	avoid	automatically	adding	the	Win32++	namespace	to	the	global	namespace?
How	can	I	tell	what	type	of	window	a	CWnd	or	HWND	is?
Should	I	use	PostMessage	or	SendMessage,	and	what	is	the	difference?
How	do	I	get	a	WM_LBUTTONDBLCLK	message	for	left	button	double	clicks?
How	do	add	icons	to	menu	items?
How	do	I	theme	my	popup	menu?
How	do	I	create	a	Wizard?
How	do	I	avoid	memory	leaks?
How	do	I	test	for	memory	leaks?
How	do	I	avoid	GDI	resource	leaks?
How	do	I	check	if	my	program	is	leaking	memory	or	GDI	resources?
Why	does	my	program	assert?
Why	does	my	program	throw	an	exception?
Why	are	none	of	my	resources	working?
How	do	I	avoid	flicker	in	my	program?
Why	does	the	desktop	flicker	when	I	run	my	program?
How	do	I	get	the	Desktop's	window	handle?
When	are	pointers	from	FromHandle	deleted,	and	how	do	I	use	them	safely?
How	do	I	do	Idle	processing?
When	do	I	need	to	use	detach	for	a	CDC?
How	do	I	use	XP	themes?
How	do	I	override	the	CToolBar	or	CStatusBar	class	for	frames?
How	do	I	implement	a	wait	cursor?
How	do	I	create	a	vertical	ToolBar?

How	do	I	install	Win32++	?

Obtain	a	copy	of	Win32++	from	sourceforge,	and	extract	the	zip	file	into	a	directory	of	your	choosing.	The
directory	you	choose	might	be	within	your	documents	folder.	Be	sure	to	retain	the	directory	structure	of
Win32++	when	extracting	files	from	the	zip	archive.	To	download	a	copy	of		Win32++	proceed	to	the
project's	hosting	at	SourceForge	here.

How	do	I	start	a	project	of	my	own?

Win32++	contains	a	set	of	"NewProject"	files	in	the	"new	projects"	folder	for	this	purpose.	It	might	prove
easier	though	to	make	a	copy	of	one	of	the	samples	that	ship	with	Win32++,	and	use	that	as	your	starting
point.

Why	does	Win32++	use	a	map	for	HWNDs	and	CWnd*s	rather	than	CreateWindow's	lpParam	when
creating	the	window?

https://sourceforge.net/projects/win32-framework/


It	would	be	possible	to	store	the	CWnd	pointer	in	the	lpParam	during	window	creation,	but	this	has	its
limitations.	MDI	windows,	for	example,	use	lpParam	for	its	own	purpose	during	window	creation.

Using	a	map	to	store	the	CWnd	pointer	and	HWND	also	support	the	framework's	use	of	FromHandle	to
retrieve	the	CWnd	pointer	associated	with	a	HWND.

Why	does	Win32++	use	TLS	(Thread	Local	Storage)	during	window	creation?

Win32++	supports	the	creation	of	windows	in	different	threads.	When	several	windows	are	created	in
different	threads	simultaneously,	TLS	keeps	the	code	thread	safe.

How	do	I	create	a	window	that	is	initially	hidden?

Windows	created	by	Win32++	are	visible	by	default.	To	create	a	window	that	is	initially	hidden,	override
PreCreate	and	specify	a	windows	style	that	does	not	include	WS_VISIBLE	style	as	follows:

void	CMyWin::PreCreate(CREATESTRUCT	&cs)
{
		//	Sets	the	CREATESTRUCT	parameters	prior	to	window	creation
		cs.style	=	0;	//	No	WS_VISIBLE	style	is	set
}

Use	ShowWindow	when	you	are	ready	to	display	the	window.

How	do	I	create	a	window	that	is	initially	minimised	or	maximised?

Create	a	window	that	is	initially	hidden,	and	then	use	ShowWindow	to	display	it	as	minimised	or
maximised	by	specifying	the	appropriate	value	for	nCmdShow	e.g	SW_SHOWMAXIMIZED	or
SW_SHOWMINIMIZED.

There	are	window	styles	called	WS_MAXIMIZE	and	WS_ICONIC	which	can	be	specified	when	creating
windows,	but	these	don't	apply	to	top	level	windows.	They	can	be	used	for	MDI	child	windows.

How	should	I	end	an	application?

In	general,	the	best	way	to	end	an	application	is	to	post	a	WM_CLOSE	to	the	top	level	window.	This	gives
the	application	an	opportunity	to	save	any	settings	and	clean	up	objects	before	destroying	the	main	window
and	ending	the	program.	The	main	window	should	then	issue	a	PostQuitMessage	when	its	window	is
destroyed.	Win32++	issues	the	PostQuitMessage	for	us	when	a	window	inherited	from	CFrame	is
destroyed.

How	do	I	access	one	CWnd	object	from	within	another?

Child	windows	for	the	CWnd	are	normally	Class	members	of	the	CWnd.	We	should	access	the	CWnd	of
child	windows	through	these	class	members.

If	the	HWND	of	the	window	is	known,	we	can	use	FromHandle	to	get	the	CWnd	associated	with	it.	If	the
relationship	between	the	windows	are	known,	we	can	use	functions	like	GetParent	and	GetAncestor	to
access	other	windows.

Finally,	we	can	use	GetApp	to	get	a	pointer	to	our	CWinApp	class.	The	class	you	inherit	from	CWinApp
could	have	a	member	that	returns	a	pointer	to	the	top	level	window	it	created.	You	could	use	that	to	step	to
the	window	you	need.



For	example.
Suppose	CFrameApp	inherits	from	CWinApp,	and	has	CMainFrame	as	one	of	its	class	members.
CFrameApp	could	have	a	member	function	that	returns	a	pointer	to	CMainFrame.	To	access	the	frames
status	bar	from	anywhere	we	could	use:

CFrameApp*	pApp	=	(CFrameApp*)GetApp();
CStatusBar*	pStatus	=	pApp->GetMainFrame()->GetStatusBar();

Note	that	a	child	window	wouldn't	normally	call	the	functions	of	a	parent	CWnd	directly.	In	most
circumstance	this	represents	poor	program	design.	It	is	usually	more	appropriate	for	the	child	CWnd	to	send
a	message	or	notification	to	the	parent	and	let	the	parent	decide	what	to	do	with	it.	The	message	could	be	a
user	defined	message	or	notification.

How	do	I	avoid	automatically	adding	the	Win32xx	namespace	to	the	global	namespace?

If	the	NO_USING_NAMESPACE	macro	is	defined,	the	Win32xx	namespace	will	not	be	added	to	the
global	namespace.

How	can	I	tell	what	type	of	window	a	CWnd	or	HWND	is?

We	can	use	dynamic	cast	to	identify	the	type	of	CWnd	our	CWnd*	points	to.	For	example:

if	(	dynamic_cast<CToolBar*>(pWnd)	)
{
		TRACE(	_T("pWnd	is	a	CToolBar*\n")	);
}

We	can	also	look	at	the	class	name	of	the	window	to	identify	its	type.

if	(lstrcmp(GetParent()->GetClassName(),	_T("ReBarWindow32"))	==	0)
{
		TRACE(	_T("The	Parent	window	is	a	ReBar	control\n")	);
}

Should	I	use	PostMessage	or	SendMessage,	and	what	is	the	difference?

The	SendMessage	function	calls	the	window	procedure	for	the	specified	window	and	does	not	return	until
the	window	procedure	has	processed	the	message.	The	PostMessage	function	places	(posts)	a	message	in
the	message	queue	associated	with	the	thread	that	created	the	window	and	returns	without	waiting	for	the
thread	to	process	the	message.

Normally	we	would	use	SendMessage	for	windows	in	the	current	thread,	and	PostMessage	for	windows	in	a
different	thread.	In	multi-threaded	applications	it	is	usually	undesirable	to	hold	up	a	thread	with	a	window,
waiting	for	a	window	in	a	different	thread	to	respond.

How	do	I	get	a	WM_LBUTTONDBLCLK	message	for	left	button	double	clicks?

The	CS_DBLCLKS	class	style	allows	the	window	to	send	the	WM_LBUTTONDBLCLK	message	in	response	to	a	double	left	button
click.	Use	the	PreRegisterClass	to	register	a	window	class	with	the	CS_DBLCLKS	style.

How	do	I	add	icons	to	menu	items?



There	are	two	functions	used	to	add	icons	to	menu	items.	The	AddMenuIcons	functions	adds	a	group	of	icons	to	menu	items	from	a
bitmap,	and	AddMenuIcon	adds	an	individual	icon.

How	do	I	theme	my	popup	menu?

The	CWnd	we	specify	in	TrackPopupMenu	or	TrackPopupMenuEx	receives	notifications	from	the	menu.	When	we	specify	CFrame's
CWnd	in	these	functions,	CFrame	will	perform	the	drawing	of	the	menu	for	us.

How	do	I	create	a	Wizard?

A	wizard	is	a	type	of	property	sheet.	Wizards	are	designed	to	present	pages	one	at	a	time	in	a	sequence	that	is	controlled	by	the
application.	Refer	to	the	propertysheet	sample	for	a	demonstration	of	how	to	create	a	wizard..

How	do	I	avoid	memory	leaks?

Memory	leaks	are	generated	when	memory	is	allocated	from	the	heap,	and	not	returned	properly.	C++	code	we	should	always	allocate
dynamic	memory	by	using	new,	and	delete	it	with	delete,	or	delete[]	for	arrays.

It	is	wise	to	store	the	pointer	returned	by	new	in	a	smart	pointer.	Shared_Ptr	is	a	smart	pointer	provided	by	the	Win32++	framework	for
this	purpose.	It	can	be	safely	stored	in	a	vector.	Storing	the	pointer	in	a	smart	pointer	like	Shared_Ptr	eliminates	the	need	for	delete.
The	Shared_Ptr	deletes	the	pointer	for	us	when	it	goes	out	of	scope.	Storing	the	pointer	in	a	smart	pointer	also	helps	ensure	the	code
doesn't	leak	memory	in	the	event	of	an	exception,	without	additional	of	try	catch	blocks.

How	do	I	test	for	memory	leaks?

If	you	are	using	a	Microsoft	compiler,	Visual	Leak	Detector	can	be	used	to
identify	memory	leaks.	Visual	Leak	Detector	is	a	free	utility.	It	can	be
downloaded	from	https://vld.codeplex.com/.

How	do	I	avoid	GDI	resource	leaks?

GDI	resources	are	limited.	If	the	code	leaks	GDI	resources,	it	will	ultimately	fail	when	no	more	GDI	resources	are	available.	The	best
way	to	avoid	GDI	leaks	is	to	use	the	CDC	and	GDI	object	classes	provided	with	Win32++.	These	automatically	release	the	device
contexts	and	GDI	resources.

How	do	I	check	if	my	program	is	leaking	memory	or	GDI	resources?

The	window's	taskmgr.exe	is	a	very	useful	tool	for	identifying	memory	leaks	and	GDI	resource	leaks.	It	ships	with	windows	and	can	be
configured	to	display	extra	columns	including	GDI	objects	and	working	set	memory.

If	the	amount	of	memory	used	or	number	of	GDI	objects	increase	without	limit	when	we	do	things	like	resize	the	window,	we	have	a
leak.

Why	does	my	program	assert?

Asserts	are	only	triggered	in	debug	mode.	They	are	always	caused	by	programming	errors,	so	the	cause	of	the	assert	should	be
identified	and	fixed.

Win32++	will	assert	to	warn	that	the	library	has	been	used	improperly.	The	following	sorts	of	things	will	cause	Win32++	to	assert.

A	CWnd	creating	a	window,	when	it	already	has	a	window	assigned	to	it.	If
this	is	intended,	the	current	window	should	be	destroyed	first.
A	CWnd	performing	a	window	operation	(such	as	ShowWindow)	before	the
window	is	created.



Attaching	a	GDI	handle	(e.g.	a	HPEN)	to	a	CGDIObject	when	it	already
has	a	handle	attached.	If	this	is	intended,	the	current	handle	should	be
deleted	or	detached	first.

Remember	asserts	our	our	friend.	They	give	us	early	warning	of	bugs	that	might	otherwise	go	unnoticed	or	be	difficult	to	track	down.
They	help	us	build	robust,	reliable	code.	For	this	reason,	they	should	be	used	liberally	in	the	code	we	write.

Why	does	my	program	throw	an	exception?

Exceptions	should	indicate	that	an	unexpected	error	occurred.	They	may	not	necessarily	indicate	a	programming	error,	but
programming	errors	can	certainly	cause	exceptions.	If	the	exception	is	"handled",	the	program	will	continue	to	run.	If	the	exception	is
unhandled,	the	program	will	abort.	For	example,	C++	will	generate	an	exception	if	an	attempt	to	allocate	memory	dynamically	using
"new"	fails.

Win32++	generates	an	exception	when	an	attempt	to	create	a	window	fails	(in	which	case	it	will	attempt	to	indicate	why).	It	will	also
generate	and	handle	an	exception	if	an	attempt	to	save	values	in	the	registry	fails.

You	may	choose	to	generate	and	handle	exceptions	in	your	own	code.	As	the	name	suggests	though,	the	generation	of	exceptions
should	be	the	exception,	not	the	rule.

Why	are	none	of	my	resources	working?

Resources	are	defined	in	a	resource	script	file,	often	called	"resource.rc"	This	file	needs	to	be	added	to	the	set	of	files	compiled	by	our
compiler.

How	do	I	avoid	flicker	in	my	program?

Flicker	is	an	annoying	visual	effect	caused	when	a	window	is	rapidly	redrawn	differently.	It	may	show	up	when	we	resize	the	window.
Depending	on	the	cause	of	the	flicker,	these	techniques	might	help.

Use	double	buffering.	With	this	technique	we	do	all	the	drawing	on	a
memory	device	context.	When	the	drawing	is	complete,	copy	this	to	the
window	with	BitBlt	so	we	only	draw	to	the	window	once.
Suppress	the	redrawing	of	the	window	background	by	handling
OnEraseBkgnd.
Use	DeferWindowPos	to	reposition	a	set	of	windows	simultaneously.
Avoid	invalidating	the	window	unnecessarily.
Use	of	SetRedraw	to	turn	window	drawing	off	and	on.

Why	does	the	desktop	flicker	when	I	run	my	program?

Some	functions,	including	InvalidateRect	can	use	NULL	as	the	handle	for	the	desktop's	window.	If	we	perform	an	InvalidateRect	on	a
NULL	HWND,	this	will	invalidate	the	desktop,	forcing	it	to	redraw.

How	do	I	get	the	Desktop's	window	handle?

There	are	a	few	functions,	such	as	GetDC	and	InvalidateRect	that	can	use	NULL	as	the	HWND	for	the	desktop.	NULL	isn't	a	real
window	handle	however,	and	IsWindow(NULL)	will	return	FALSE.	The	Windows	API	function	::GetDesktopWindow	returns	the
handle	to	the	desktop	window,	and	Win32++'s	GetDesktopWindow	function	returns	a	CWnd	pointer	to	the	desktop	window.

When	are	the	pointers	from	FromHandle	deleted,	and	how	do	I	use	these	function	safely?

The	FromHandle	functions	can	return	pointers	to	CWnd,	CMenu,	CDC,	CImageList	and	CGDIObject	when	provided	with	the	handle.
If	we	use	FromHandle	to	get	the	CWnd*	from	a	HWND,	for	example,	the	framework	checks	the	CWnd	map	to	see	if	a	CWnd	for	the
HWND	already	exists.	If	the	CWnd	already	exists,	its	pointer	is	returned.	If	the	CWnd	doesn't	already	exist,	a	temporary	CWnd	is
created	and	its	pointer	is	returned.	Pointers	for	other	types	of	objects	behave	in	the	same	way.

The	pointer	returned	by	FromHandle	might	point	to	a	temporary	object.	Temporary	objects	are	deleted	automatically	some	time	after



this	current	message	is	processed,	and	shouldn't	be	saved	for	later	use.	We	should	assume	the	pointer	will	be	deleted	when	the
framework	fetches	the	next	message	from	the	message	queue	and	processes	it.

In	practical	terms,	it	is	quite	safe	to	copy	the	pointer	returned	by	FromHandle	and	store	it	in	a	local	variable	in	a	function	and	use	it
there.	The	pointer	will	not	be	deleted	until	after	the	function	completes.	It	would	NOT	be	safe	to	store	the	pointer	returned	by
FromHandle	in	a	global	variable,	or	a	class	member	variable	and	expect	to	be	able	to	use	it	sometime	later.

How	do	I	do	Idle	processing?

OnIdle	will	be	called	repetitively	until	it	returns	FALSE	while	there	are	no	messages	queued,	incrementing	lcount	each	time	it	is	called.
To	implement	idle	processing,	override	CWinApp::OnIdle.	Larger	tasks	will	need	to	be	split	into	chunks	to	allow	the	application	to
respond	promptly	to	keyboard	and	mouse	input.	For	tasks	that	have	been	split	into	chunks,	do	the	first	chunk	when	lcount	is	0	and
return	TRUE,	the	second	when	lcount	is	1	and	return	TRUE	etc.	When	all	chunks	are	done,	OnIdle	should	return	FALSE.	The
framework	doesn't	use	OnIdle	internally,	so	there	is	no	need	to	call	CWinApp::OnIdle	when	when	overriding	OnIdle.

OnIdle	is	not	suitable	for	tasks	that	need	to	be	performed	at	regular	intervals.	Use	a	timer	for	those.

Its	important	to	remember	that	idle	processing	was	introduced	for	16	bit	windows	because	it	wasn't	capable	of	running	multiple
threads.	In	32	bit	and	64	bit	windows,	worker	threads	provide	a	better	way	of	performing	background	tasks	without	affecting	the	user's
interaction	with	the	application.	Having	said	that,	idle	processing	can	prove	simpler	than	threads	for	very	small	tasks.	While	larger	idle
tasks	can	be	split	up	into	chunks	and	performed	during	different	cycles	of	the	OnIdle	processing,	a	worker	thread	would	do	this	more
efficiently,	and	would	probably	be	simpler	to	implement.

When	do	I	need	to	use	detach	for	a	CDC?

There	are	some	HDCs	we	shouldn't	destroy.	These	are	the	HDCs	that	windows	operating	creates	for	us,	and	provides	them	in	messages
such	as	WM_PAINT,	WM_ERASEBKGND,	NM_CUSTOMDRAW	etc.	If	we	choose	to	attach	those	HDCs	to	one	of	our	CDCs	we
need	to	detach	them	before	the	CDC	goes	out	of	scope.	In	general,	if	we	create	the	HDC,	we	are	responsible	for	destroying	it,	but	if	the
operating	system	creates	the	HDC	for	us,	it	is	responsible	for	destroying	it.

It	can	be	be	more	convenient	to	use	FromHandle	to	assign	a	temporary	CDC	for	those	HDCs	provided	to	us	by	the	operating	system.
Temporary	CDCs	don't	destroy	the	HDC	they	manage	when	their	destructor	is	called,	so	this	eliminates	the	need	to	detach	the	HDC.
For	example,	the	Win32++	framework	uses	FromHandle	to	assign	a	temporary	CDC	to	the	HDC	provided	by	the
NM_CUSTOMDRAW	notification	when	performing	custom	drawing.

How	do	I	use	XP	themes?

In	order	to	use	XP	themes,	our	application	must	contain	a	manifest.	We	can	specify	a	manifest	section	in	our	resource	script
(resource.rc)	as	follows:

/////////////////////////////////////////////////////////////////////////////
//
//	RT_MANIFEST
//

1																							RT_MANIFEST													"res/Win32++.manifest"

The	manifest	file	supplied	with	the	samples	is	compatible	with	both	32	bit	and	64	bit	windows.

Older	compilers	such	as	visual	studio	6	and	Borlands	C++	compiler	version	5.5	may	not	have	a	definition	for	RT_MANIFEST.
RT_MANIFEST	is	defined	as	MAKEINTRESOURCE(24).

How	do	I	override	the	CToolBar	or	CStatusBar	class	for	frames?

If	you	should	need	to	modify	the	CToolBar	class	that	CFrame	uses,	you	can	do	the	following.

1)	Inherit	your	new	ToolBar	from	the	CToolBar	class.	We	will	call	the	new	ToolBar	class	CMyToolBar.
2)	Add	a	CMyToolBar	member	variable	to	CMainFrame	called	MyToolBar.
3)	Override	CFrame's	GetToolBar	function	in	CMainFrame	as	follows:

virtual	CToolBar*	GetToolBar()	const
{
		return	const_cast<CMyToolBar*>(&m;_MyToolBar);



}

CMainFrame	will	now	use	your	CMyToolBar	class	in	place	of	CToolBar.	You	could	use	the	same	technique	for	overriding	CStatusBar.

How	do	I	implement	a	wait	cursor?

SetCurser	is	the	Windows	API	function	which	sets	the	cursor.	By	default,	windows	will	set	the	cursor	back	to	the	one	defined	in	the
window	class	each	time	the	mouse	is	moved.	We	can	handle	the	WM_SETCURSOR	message	to	determine	which	cursor	should	be
displayed	when	the	mouse	is	moved.

We	can	implement	a	wait	cursor	like	this:

void	CView::DoWaitCursor(BOOL	bWait)
{
		m_bWait	=	bWait;	 //	m_bWait	is	a	member	variable

		if	(m_bWait)
				SetCursor(LoadCursor(NULL,	IDC_WAIT));
		else
				SetCursor(LoadCursor(NULL,	IDC_ARROW));
}

	
LRESULT	CView::WndProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)
{
		switch	(uMsg)
		{
		case	WM_SETCURSOR:
				if	(m_bWait)
				{
								SetCursor(LoadCursor(NULL,	IDC_WAIT));
	 	 	
								//	Prevent	setting	the	cursor	back	to	default
								return	0L;
				}
				else
						SetCursor(LoadCursor(NULL,	IDC_ARROW));
	 	
				break;
		}
	
		//	Do	default	processing	for	other	messages
		return	WndProcDefault(uMsg,	wParam,	lParam);
}

How	do	I	create	a	vertical	ToolBar?

There	are	two	rather	similar	methods	for	achieving	this:

Method	1:

Define	a	toolbar	as	you	would	for	a	horizontal	toolbar
Add	the	CCS_LEFT	(or	CCS_VERT	or	CCS_RIGHT	styles)



Add	the	TBSTATE_WRAP	style	to	each	ToolBar	button.

The	ToolBar	will	be	automatically	placed	on	the	side	of	the	parent	window,	specified	by	the	style	(e.g	CCS_LEFT).

Method	2:

Define	a	toolbar	as	you	would	for	a	horizontal	toolbar
Add	the	CCS_LEFT	(or	CCS_VERT	or	CCS_RIGHT	styles)
Add	the	TBSTATE_WRAP	style	to	each	ToolBar	button.
Position	the	ToolBar	manually	using	SetWindowPos

Note:

Method	2	is	required	for	vertical	ToolBars	within	ReBars
CCS_NODIVIDER	can	be	added	to	suppress	the	drawing	of	the	ToolBar's
divider
Use	DeferWindowPos	to	reposition	a	group	of	windows	simultaneously.

	



Contacting	the	Author
Anyone	with	a	question	or	comment	relating	to	Win32++	are	encouraged	to	post	these	in	one	of	the	forums
here	at	SourceForge.	You	will	find	forums	for	support	requests,	feature	requests,	bug	reports	and	general
comments.	I	monitor	the	forums	regularly,	and	am	normally	able	to	post	a	reply	the	next	day.

If	you	would	prefer	to	send	me	a	direct	email,	you	can	contact	me	on	dnash@bigpond.net.au

	

	

	

https://sourceforge.net/forum/?group_id=174700
mailto:dnash@bigpond.net.au


Some	Useful	Links

Free	Compilers	and	Tools

Dev-C++
Dev-C++	is	a	Integrated	Development	Environment
(IDE)	for		C/C++.	It	includes	the	MinGW	port	of	GCC
as	it's	compiler.

Code::Blocks

Code::Blocks	is	an	IDE	for	C/C++.		It	includes	the
MinGW	port	of	GCC,	and	also	supports	the	MS	Visual
Toolkit,	and	the	free	command	line	compiler	from
Borland.

Microsoft	Visual	C++
2013	Express A	free	C++	Win32	compiler	and	IDE	from	Microsoft.

Borland	C++	Builder A	free	C++	Win32	compiler	from	Borland.		You	will
need	to	register	before	downloading.

ResEdit A	free	Resource	Editor	for	Win32	programs.

GDIView A	utility	that	displays	list	a	of	GDI	handles	used	by
each	process.	It's	useful	for	spotting	GDI	leaks.

Visual	Leak	Detector An	open-source	memory	leak	detection	system	for
Visual	C++.

Tutorials	and	References

MSDN The	Microsoft	Developers	Network.		Microsoft's
online	reference.

MS	Platform	SDK
Provides	the	documentation,	samples,	header	files,
libraries,	and	tools	designed	to	help	you	develop
Windows	applications	(XP	and	below).

MS	Windows	SDK
Provides	the	documentation,	samples,	header	files,
libraries,	and	tools	designed	to	help	you	develop
Windows	applications	(Vista	and	above).

MS	DirectX	SDK Contains	the	additional	header	files	and	libraries	for
DirectX	programming.
SourceForge	hosts	a	large	collection	of	open	source

http://www.bloodshed.net/devcpp.html
http://sourceforge.net/projects/codeblocks/
http://www.microsoft.com/express/
http://cc.codegear.com/free/cppbuilder
http://www.resedit.net/
http://www.nirsoft.net/utils/gdi_handles.html
https://vld.codeplex.com/
http://msdn.microsoft.com/default.aspx
http://www.microsoft.com/en-us/download/details.aspx?id=6510
http://www.microsoft.com/download/en/details.aspx?id=8279
http://msdn.microsoft.com/en-us/directx


SourceForge projects.
Code	Project Forums	and	Code	samples	for	software	developers.
Cfanatic	A	forum	for	C,	Win32,	C++,	MFC,	C#	developers.	Reliable	Software	A
Win32	tutorial	for	advanced	C++	users.
the	Forger	A	Win32	tutorial	for	C++.
FunctionX	A	Win32	programming	reference,	by	FunctionX.
Dev-C++	Resource	Site	API	references,	tutorials,	online	resources,
documentation	downloads,	etc.	about	C/C++	and	Win32	programming.	Thinking
in	C++	Thinking	in	C++	2nd	Edition.	An	excellent	book	on	C++	by	Bruce
Eckel.	Available	Online.	Google	Internet	Search	Engine.	Wikipedia	Web	based
encyclopedia.	C++	FAQ	C++	Frequently	Asked	Questions

http://sourceforge.net
http://www.codeproject.com/
http://www.cfanatic.com/
http://www.relisoft.com/win32/index.htm
http://www.winprog.org/tutorial/
http://www.functionx.com/win32/
http://www.bloodshed.net/dev/doc/
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://www.google.com
http://en.wikipedia.org/wiki/Main_Page
http://www.parashift.com/c++-faq-lite/


CMenuBar	Class

Description

The	CMenuBar	class	provides	a	menu	inside	a	rebar	control.		This	menu	is	based	on	a	toolbar	control,	and
CMenuBar	inherits	from	CToolBar.

Member	functions

CMenuBar CMenuBar();

Constructor	for	CMenuBar.
GetMenu
HMENU	GetMenu()	const;

Returns	the	handle	to	the	menu	displayed	by	the	menubar.	SetMenu
virtual	void	SetMenu(HMENU	hMenu);

Sets	the	menu	for	the	MenuBar.

Overridables

OnCreate virtual	void	OnCreate();

Called	when	the	window	is	created.

OnCustomDraw virtual	LRESULT	OnCustomDraw(NMHDR*	pNMHDR);

Called	to	perform	custom	drawing.

OnKeyDown virtual	void	OnKeyDown(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	key	is	pressed.

OnLButtonDown virtual	void	OnLButtonDown(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	left	mouse	button	is	pressed.



OnLButtonUp virtual	void	OnLButtonUp(WPARAM	wParam,	LPARAM	lParam);

Called	when	a	key	is	released.

OnMenuChar
virtual	void	OnMenuChar(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	user	presses	a	menu	mnemonic	character	that	doesn't	match	any	of	the	predefined
mnemonics	in	the	current	menu.

OnMenuInput virtual	BOOL	OnMenuInput(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam);

Called	to	process	menu	input.

OnMouseLeave virtual	void	OnMouseLeave();

Called	when	the	cursor	leave	the	client	area	of	the	window.

OnMouseMove virtual	void	OnMouseMove(WPARAM	wParam,	LPARAM	lParam);

Called	when	the	cursor	moves.

OnNotifyReflect virtual	LRESULT	OnNotifyReflect(WPARAM	wParam,	LPARAM	lParam);

Called	in	response	to	a	notification	from	the	menubar.

OnSysCommand virtual	void	OnSysCommand(WPARAM	wParam,	LPARAM	lParam);

Called	to	processes	keys	when	the	Alt	or	F10	key	is	pressed.

OnWindowPosChanged virtual	void	OnWindowPosChanged();

Called	when	the	windows	size	or	position	has	changed.

PreCreate virtual	void	PreCreate(CREATESTRUCT	&cs);

Sets	the	window	creating	parameters.

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Sets	the	window	class	parameters.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CToolBar.

Remarks

CMenuBar	is	used	by	CFrame	and	CMDIFrame	to	provide	the	menu.	



Summary	Information

Header	file frame.h
Win32/64
support Yes

WinCE	support No
Library	required Comctl32.lib



CReBar	Class

Description

The	class	responsible	for	creating	a	ReBar	control.		ReBar	controls	act	as	containers	for	child	windows.		An
application	assigns	child	windows,	which	are	often	other	controls,	to	a	rebar	control	band.		ReBar	controls
contain	one	or	more	bands,	and	each	band	can	have	any	combination	of	a	gripper	bar,	a	bitmap,	a	text	label,
and	a	child	window.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	rebar	controls.

CReBar	Members

CReBar CReBar();

Constructor	for	CReBar.
DeleteBand
BOOL	DeleteBand(const	int	nBand)	const;

Deletes	a	band	from	the	rebar	control.	GetBand
int	GetBand(const	HWND	hWnd)	const;

Returns	the	band	number	given	the	band's	window	handle.	GetBandBorders
CRect	GetBandBorders(int	nBand)	const;

Retrieves	the	borders	of	a	band.	The	result	of	this	message	can	be	used	to	calculate	the	usable	area	in	a

band.	GetBandCount
int	GetBandCount()	const;

Retrieves	the	count	of	bands	currently	in	the	rebar	control.	GetBandInfo
BOOL	GetBandInfo(const	int	nBand,	REBARBANDINFO&	rbbi)	const;

Retrieves	information	about	a	specified	band	in	a	rebar	control.	GetBandRect



CRect	GetBandRect(int	i)	const;

Retrieves	the	bounding	rectangle	for	a	given	band	in	a	rebar	control.	GetBarHeight
UINT	GetBarHeight()	const;

Retrieves	the	height	of	the	rebar	control.	GetRowCount
UINT	GetRowCount()	const;

Retrieves	the	number	of	rows	of	bands	in	a	rebar	control.	GetRowHeight
int	GetRowHeight(int	nRow)	const;

Retrieves	the	height	of	a	specified	row	in	a	rebar	control.	GetSizeofRBBI
UINT	GetSizeofRBBI()	const;

Returns	the	correct	value	for	sizeof(REBARBANDINFO).	GetToolTips
CToolTip*	GetToolTips()	const;

Retrieves	the	handle	to	any	ToolTip	control	associated	with	the	rebar	control.	HitTest
int	HitTest(RBHITTESTINFO&	rbht);

HWND	HitTest(POINT	pt);

Determines	which	portion	of	a	rebar	band	is	at	a	given	point	on	the	screen,	if	a	rebar	band	exists	at	that

point.	IDToIndex
int	IDToIndex(UINT	uBandID)	const;

Converts	a	band	identifier	to	a	band	index	in	a	rebar	control.	InsertBand
BOOL	InsertBand(const	int	nBand,	REBARBANDINFO&	rbbi)	const;

Inserts	a	new	band	in	a	rebar	control.	IsBandVisible
BOOL	IsBandVisible(int	nBand)	const;

Returns	TRUE	if	band	is	visible,	otherwise	FALSE	MaximizeBand
void	MaximizeBand(UINT	uBand,	BOOL	fIdeal	=	FALSE);

Resizes	a	band	in	a	rebar	control	to	either	its	ideal	or	largest	size.	MinimizeBand



void	MinimizeBand(UINT	uBand);

Resizes	a	band	in	a	rebar	control	to	its	smallest	size.	MoveBand
BOOL	MoveBand(UINT	uFrom,	UINT	uTo);

Moves	a	band	from	one	index	to	another.	MoveBandsLeft
void	MoveBandsLeft();

Repositions	the	bands	so	that	they	are	moved	to	the	left.	ResizeBand
BOOL	ResizeBand(const	int	nBand,	const	CSize&	sz)	const;

Changes	the	size	of	a	rebar	band.	SetBandBitmap
BOOL	SetBandBitmap(const	int	nBand,	const	HBITMAP	hBackground)	const;

Sets	a	bitmap	to	the	ReBar	control	SetBandColor
BOOL	SetBandColor(const	int	nBand,	const	COLORREF	clrFore,
																		const	COLORREF	clrBack)	const;

Sets	the	colour	of	a	ReBar	band	SetBandInfo
BOOL	SetBandInfo(const	int	nBand,	REBARBANDINFO&	rbbi)	const;

Sets	characteristics	of	an	existing	band	in	the	rebar	control.	SetBarInfo
BOOL	SetBarInfo(REBARINFO&	rbi)	const;

Sets	the	characteristics	of	a	rebar	control.	ShowBand
BOOL	ShowGripper(int	nBand,	BOOL	fShow)	const;

Shows	or	hides	a	band	ShowGripper
BOOL	ShowBand(int	nBand,	BOOL	fShow)	const;

Shows	or	hides	a	band's	gripper.	SizeToRect
BOOL	SizeToRect(CRect&	rect)	const;

Finds	the	best	layout	of	the	bands	from	the	given	rectangle.

Base	class	Members



For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	rebar	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	rebar	control.

The	following	code	creates	a	ComboBox	and	adds	it	to	the	rebar.

void	CMainFrame::AddListboxBand(int	Listbox_Height)
{
		//	Get	the	reference	to	the	rebar	object
		CReBar&	RB	=	GetReBar();
		ThemeReBar	RBTheme	=	RB.GetReBarTheme();

		//	Create	the	ComboboxEx	window
		CREATESTRUCT	cs	=	{0};
		cs.lpszClass	=	_T("COMBOBOXEX32");
		cs.style	=	WS_VISIBLE	|	WS_CHILD	|	CBS_DROPDOWN;
		cs.cy	=	100;	 //	required	to	display	list
		cs.hMenu	=	(HMENU)IDC_COMBOBOXEX;
		m_ComboboxEx.PreCreate(cs);
		m_ComboboxEx.Create(GetReBar().GetHwnd());

		//	Put	the	window	in	a	new	rebar	band
		REBARBANDINFO	rbbi	=	{0};
		rbbi.cbSize					=	GetSizeofRBBI();
		rbbi.fMask						=	RBBIM_COLORS	|	RBBIM_CHILDSIZE	|	RBBIM_STYLE	|	RBBIM_CHILD	|	RBBIM_TEXT;
		rbbi.cyMinChild	=	Listbox_Height;
		rbbi.cyMaxChild	=	Listbox_Height;
		rbbi.cxMinChild	=	200;
		rbbi.fStyle					=	RBBS_BREAK	|	RBBS_VARIABLEHEIGHT	|	RBBS_GRIPPERALWAYS;
		rbbi.clrFore				=	GetSysColor(COLOR_BTNTEXT);
		rbbi.clrBack				=	RBTheme.clrBand1;
		rbbi.hwndChild		=	m_ComboboxEx.GetHwnd();
		rbbi.lpText					=	_T("Address");

		RB.InsertBand(-1,	rbbi);
}

CRebar	is	used	by	CFrame	to	contain	a	CMenuBar	and	a	CToolBar.

Summary	Information



Header	file rebar.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CScrollBar	Class

Description

The	CScrollBar	class	is	used	to	create	and	manage	a	scroll	bar	control.	Scroll	bars	are	used	when	the
window	isn't	large	enough	to	display	all	of	its	content,	such	as	a	bitmap	or	a	document.	Scroll	bars	can	be
used	to	bring	into	view	the	portions	of	the	content	that	extend	beyond	the	borders	of	the	window.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	scroll	bar	controls.

CScrollBar	Members

CScrollBar CScrollBar();

Constructor	for	the	CScrollBar.
EnableScrollbar
BOOL	EnableScrollBar(	UINT	nArrowFlags	=	ESB_ENABLE_BOTH	)	const;

Enables	or	disables	one	or	both	scroll	bar	arrows.	GetScrollInfo
BOOL	GetScrollInfo(LPSCROLLINFO	lpsi)	const;

Retrieves	information	that	the	SCROLLINFO	structure	maintains	about	the	scroll	bar.

GetScrollPos
int	GetScrollPos()	const;

Retrieves	the	current	position	of	the	scroll	box.	GetScrollRange
BOOL	GetScrollRange(LPINT	lpMinPos,	LPINT	lpMaxPos	)	const;

Retrieves	the	current	minimum	and	maximum	scroll	box	positions.	SetScrollInfo
BOOL	SetScrollInfo(LPSCROLLINFO	lpsi,	BOOL	bRedraw	=	TRUE	)	const;

Sets	the	information	that	the	SCROLLINFO	structure	maintains	about	the	scroll	bar.	SetScrollPos
int	SetScrollPos(int	nPos,	BOOL	bRedraw)	const;



Sets	the	position	of	the	scroll	box	and,	if	requested,	refraws	the	scroll	bar	to	reflect	the	new	position	of	the

scroll	box.	SetScrollRange
BOOL	SetScrollRange(	int	nMinPos,	int	nMaxPos,	BOOL	bRedraw	=	TRUE	)	const;

Sets	the	minimum	and	maximum	scroll	box	positions	for	the	scroll	bar.	ShowScrollBar
BOOL	ShowScrollBar(BOOL	bShow)	const;

Shows	or	hides	the	scroll	bar.

Overridables

PreRegisterClass virtual	void	PreRegisterClass(WNDCLASS	&wc);

Set	the	window	class	parameters	before	the	window	is	created.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	scroll	bar	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	scroll	bar	control.

There	are	two	ways	to	add	scroll	bars	to	a	window.

Create	the	window	with	the	WS_HSCROLL	and/or	WS_VSCROLL	styles.
Create	a	horizontal	and/or	vertical	scroll	bar	control	as	a	child	window	we
wish	to	scroll.

Use	the	SBS_HORZ	style	to	create	a	horizontal	scroll	bar	control,	and	the
SBS_VERT	style	to	create	a	vertical	scroll	bar	control.

Summary	Information

Header	file controls.h
Win32/64
support Yes



WinCE	support Yes



CStatusBar	Class

Description

The	class	responsible	for	creating	and	managing	a	status	bar.		Status	bars	display	status	information	in	a
horizontal	window	at	the	bottom	of	an	application	window.		Status	bars	are	often	divided	into	parts,	and
each	part	displays	different	status	information.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	status	bar	controls.

CStatusBar	Members:

CStatusBar CStatusBar();

Constructor	for	CStatusBar.
CreateParts
BOOL	CreateParts(int	iParts,	const	int	iPaneWidths[])	const;

Creates	one	or	more	status	bar	parts.	GetPartIcon
HICON	GetPartIcon(int	iPart);

Retrieves	the	icon	for	a	part	in	the	status	bar.	GetPartRect
CRect	GetPartRect(int	iPart);

Retrieves	the	bounding	rectangle	of	a	part	in	the	status	bar.	GetParts
int	GetParts();

Retrieves	a	count	of	the	parts	in	the	status	bar.	GetPartText
CString	GetPartText(int	iPart)	const;

Retrieves	the	text	from	a	part	in	the	status	bar.	SetPartIcon
BOOL	SetPartIcon(int	iPart,	HICON	hIcon);



Sets	the	icon	for	a	part	in	the	status	bar.	SetPartText
BOOL	SetPartText(int	iPart,	LPCTSTR	szText,	UINT	Style	=	0)	const;

Sets	the	text	for	a	part	in	the	status	bar.	SetPartWidth
BOOL	SetPartWidth(int	iPart,	int	iWidth)	const;

Sets	the	width	of	an	existing	status	bar	pane,	or	creates	a	new	pane	with	the	specified	width.

SetSimple
void	SetSimple(BOOL	fSimple	=	TRUE);

Specifies	whether	a	status	window	displays	simple	text	or	displays	all	window	parts	set	by	a	previous
SB_SETPARTS	message.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	status	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	status	control.

The	following	code	segment	demonstrates	how	to	create	four	panes	in	a	status
bar,	and	add	some	text.

void	CMainFrame::SetStatusText()
{
		if	(::IsWindow(GetStatusBar()))
		{
				//	Get	the	coordinates	of	the	frame	window's	client	area.
				CRect	rcClient	=	GetClientRect();

				//	width	=	max(300,	rcClient.right)
				int	width	=	(300	>	rcClient.right)	?	300	:	rcClient.right;
				int	iPaneWidths[]	=	{width	-	110,	width	-	80,	width	-	50,	width	-	20};

				if	(m_bShowIndicatorStatus)
				{
						//	Create	4	panes
						GetStatusBar().CreateParts(4,	iPaneWidths);



						//	Or	you	could	create	the	4	panes	this	way
						//		GetStatusBar().SetPartWidth(0,	width	-	110);
						//		GetStatusBar().SetPartWidth(1,	30);
						//		GetStatusBar().SetPartWidth(2,	30);
						//		GetStatusBar().SetPartWidth(3,	30);

						SetStatusIndicators();
				}

				//	Place	text	in	the	1st	pane
				GetStatusBar().SetPartText(0,	_T("Some	Text"));
		}
}

Summary	Information

Header	file statusbar.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



CToolBar	Class

Description

This	is	the	class	responsible	for	creating	and	managing	a	toolbar.		A	toolbar	is	a	control	window	that
contains	one	or	more	buttons.	Each	button,	when	clicked	by	a	user,	sends	a	command	message	to	the	parent
window.	Typically,	the	buttons	in	a	toolbar	correspond	to	items	in	the	application's	menu,	providing	an
additional	and	more	direct	way	for	the	user	to	access	an	application's	commands.

Refer	to	the	documentation	that	ships	with	the	Microsoft	Windows	Software	Development	Kit	for	more
information	on	the	use	of	toolbar	controls.

CToolBar	Members

CToolBar CToolBar();

Constructor	for	CToolBar.
AddBitmap
virtual	int	AddBitmap(UINT	ToolBarID);

Adds	a	bitmap	to	the	toolbar.		See	also	SetImages.	AddButton
virtual	BOOL	AddButton(UINT	nID,	BOOL	bEnabled	=	TRUE);

Adds	one	button	to	the	toolbar.	AddButtons
BOOL	AddButtons(UINT	uNumButtons,	LPTBBUTTON	lpButtons)	const;

Adds	one	or	more	buttons	to	the	toolbar.	AddString
int	AddString(UINT	nStringID)	const;

Adds	resource	IDs	to	toolbar	buttons.	AddStrings
int	AddStrings(LPCTSTR	lpszStrings)	const;

Adds	strings	to	the	toolbar's	string	pool.	AutoSize
void	Autosize()	const;



Resizes	the	toolbar.	CheckButton
void	CheckButton(int	idButton,	BOOL	fCheck)	const;

Checks	or	unchecks	a	given	button	in	a	toolbar.	CommandToIndex
int	CommandToIndex(int	idButton)	const;

Returns	the	button	index,	given	the	command	ID.	Customize
void	Customize()	const;

Displays	the	Customize	Toolbar	dialog	box.	The	parent	must	handle	the	TBN_QUERYINSERT	and
TBN_QUERYDELETE	notifications	for	the	Customize	Toolbar	dialog	box	to	appear.

DeleteButton
BOOL	DeleteButton(int	iButton)	const;

Deletes	a	button	from	the	toolbar	DisableButton
BOOL	DisableButton(int	idButton)	const;

Disables	a	toolbar	button.	EnableButton
BOOL	EnableButton(int	idButton)	const;

Enables	a	toolbar	button.	GetButton
BOOL	GetButton(int	iButton,	LPTBBUTTON	lpButton)	const;

Retrieves	information	about	the	specified	button	in	the	toolbar.	GetButtonCount
int	GetButtonCount()	const;

Returns	the	number	of	buttons	in	the	toolbar	control.	GetButtonSize
DWORD	GetButtonSize()	const;

Retrieves	the	current	width	and	height	of	toolbar	buttons,	in	pixels.	GetButtonState
UINT	GetButtonState(int	idButton)	const;

Returns	the	state	of	a	toolbar	button.	GetButtonStyle
BYTE	GetButtonStyle(int	idButton)	const



Returns	the	style	of	toolbar	button.	GetButtonText
LPCTSTR	GetButtonText(int	idButton)	const;

Retrieves	the	display	text	of	a	button	on	the	toolbar.	GetCommandID
int	GetCommandID(int	iIndex)	const;

Returns	the	command	ID	given	the	button	index.	GetDisabledImageList
HIMAGELIST	GetDisabledImageList()	const;

Retrieves	the	image	list	that	the	toolbar	uses	to	display	inactive	buttons.	GetHotImageList
HIMAGELIST	GetImageList()	const;

Retrieves	the	image	list	that	the	toolbar	uses	to	display	hot	buttons.	GetHotItem
int	GetHotItem()	const;

Retrieves	the	index	of	the	hot	button.	GetImageList
HIMAGELIST	GetImageList()	const;

Retrieves	the	image	list	that	the	toolbar	uses	to	display	buttons	in	their	default	state.	GetItemRect
CRect	GetItemRect(int	iIndex)	const;

Returns	the	bounding	rectangle	of	a	button	in	a	toolbar.	GetMaxSize
CSize	GetMaxSize()	const;

Returns	the	SIZE	required	to	contain	the	toolbar's	buttons.	GetPadding
DWORD	GetPadding()	const;

Retrieves	the	padding	for	the	toolbar.	GetRect
CRect	GetRect(int	idButton)	const;

Retrieves	the	bounding	rectangle	for	a	specified	toolbar	button.	GetRows
int	GetRows()	const;

Retrieves	the	number	of	rows	of	buttons	in	the	toolbar.	GetTextRows



int	GetTextRows()	const;

Retrieves	the	maximum	number	of	text	rows	that	can	be	displayed	on	a	toolbar	button.

GetToolBarData
std::vector<UINT>&	GetToolBarData()	const

Returns	a	reference	to	the	vector	of	resource	IDs	for	toolbar	buttons.	GetToolTips
CToolTip*	GetToolTips()	const;

Retrieves	the	handle	to	the	TooTip	control,	if	any,	associated	with	the	toolbar.	HasText
BOOL	HasText()	const;

Returns	TRUE	if	the	button	has	text.	HideButton
BOOL	HideButton(int	idButton,	BOOL	fShow)	const;

Hides	or	shows	the	specified	toolbar	button.	HitTest
int	HitTest()	const;

Determines	which	button	a	point	lies	in	a	toolbar	control.	Indeterminate
BOOL	Indeterminate(int	idButton,	BOOL	fIndeterminate)	const;

Sets	or	clears	the	indeterminate	state	of	the	specified	toolbar	button.	InsertButton
BOOL	InsetButton(int	iButton,	LPTBBUTTON	lpButton)	const;

Inserts	a	button	in	the	toolbar.	IsButtonHidden
BOOL	IsButtonHidden(int	idButton)	const;

Determines	whether	the	specified	toolbar	button	is	hidden.	IsButtonHighlighted
BOOL	IsButtonHighlighted(int	idButton)	const;

Checks	the	highlight	state	of	the	toolbar	button.	IsButtonIndeterminate
BOOL	IsButtonIndeterminate(int	idButton)	const;

Determines	whether	the	specified	toolbar	button	is	indeterminate.	IsButtonPressed
BOOL	IsButtonPressed(int	idButton)	const;



Determines	whether	the	specified	toolbar	button	is	pressed.	MapAccelerator
int	MapAccelerator(TCHAR	chAccel)	const;

Determines	the	ID	of	the	button	that	corresponds	to	the	specified	accelerator	character.

MarkButton
BOOL	MarkButton(int	idButton)	const;

Sets	the	highlight	state	of	a	given	button	in	a	toolbar	control.	MoveButton
BOOL	MoveButton(UINT	uOldPos,	UINT	uNewPos)	const;

Moves	a	button	from	one	index	to	another.	PressButton
BOOL	PressButton(int	idButton,	BOOL	fPress)	const;

Presses	or	releases	the	specified	toolbar	button.	ReplaceBitmap
virtual	BOOL	ReplaceBitmap(UINT	NewToolBarID);

Replaces	a	toolbar's	bitmap.	See	also	SetImages.	SaveRestore
void	SaveRestore(BOOL	fSave,	TBSAVEPARAMS*	ptbsp)	const;

Initiates	saving	or	restoring	the	toolbar's	state.	SetBitmap
virtual	BOOL	SetBitmap(UINT	nID);

Sets	a	toolbar's	bitmap.		See	also	SetImages.	SetBitmapSize
BOOL	SetBitmapSize(int	cx,	int	cy)	const;

Sets	the	size	of	the	bitmapped	images	to	be	added	to	a	toolbar.		Use	this	before	adding	the	bitmap.

SetButtonInfo
void	SetButtonInfo(int	idButton,	int	idButtonNew,	int	iImage,	BYTE	Style	=	0,	BYTE	State	=	0)	const;

Use	this	to	change	the	buttons	image	and	ID.	The	ID	must	be	changed	for	the	image	to	be	changed.

SetButtonSize
BOOL	SetBitmapSize(int	cx,	int	cy)	const;

Sets	the	size	of	the	buttons	to	be	added	to	a	toolbar.	SetButtonState
BOOL	SetButtonState(int	idButton,	UINT	State)	const;



Sets	the	state	of	a	toolbar	button.	SetButtonStyle
BOOL	SetButtonStyle(int	idButton,	BYTE	Style)	const;

Sets	the	style	of	a	toolbar	button.	SetButtonText
virtual	BOOL	SetButtonText(int	idButton,	LPCTSTR	szText);

Sets	the	text	for	a	toolbar	button.	SetButtonWidth
BOOL	SetButtonWidth(int	idButton,	int	nWidth)	const;

Adjusts	the	width	of	a	toolbar	button	after	it	is	created.	This	is	useful	when	replacing	a	button	with	a

ComboBox	or	other	control.	SetCommandID
BOOL	SetCommandID(int	iIndex,	int	idButton)	const;

Sets	the	Command	ID	of	a	toolbar	button.	SetDisabledImageList
HIMAGELIST	SetDisableImageList(HIMAGELIST	himlNewDisabled)	const;

Sets	the	image	list	that	the	toolbar	will	use	to	display	disabled	buttons.	SetDrawTextFlags
DWORD	SetDrawTextFlags(DWORD	dwMask,	DWORD	dwDTFlags)	const;

Sets	the	text	drawing	flags	for	the	toolbar.	SetExtendedStyle
DWORD	SetExtendedStyle(DWORD	dwExStyle)	const;

Sets	the	extended	styles	for	the	toolbar.	SetHotImageList
HIMAGELIST	SetHotImageList(HIMAGELIST	himlNewHot)	const;

Sets	the	image	list	that	the	toolbar	will	use	to	display	hot	buttons.	SetHotItem
int	SetHotItem(int	iHot);

Sets	the	hot	item	in	the	toolbar.	This	message	is	ignored	for	toolbars	that	do	not	have	the	TBSTYLE_FLAT

style.	SetImageList
HIMAGELIST	SetImageList(HIMAGELIST	himlNew)	const;

Sets	the	image	list	that	the	toolbar	will	use	to	display	buttons	that	are	in	their	default	state.	SetIndent
BOOL	SetIndent(int	iIndent)	const;



Sets	the	indentation	for	the	first	toolbar	button.	SetMaxTextRows
BOOL	SetMaxTextRows(int	iMaxRows)	const;

Sets	the	maximum	number	of	text	rows	displayed	on	a	toolbar	button.	SetPadding
BOOL	SetPadding(int	cx,	int	cy)	const;

Sets	the	padding	for	the	toolbar.	SetToolTips
void	SetToolTips(CToolTip*	pToolTip)	const;

Associates	a	ToolTip	control	with	a	toolbar.

Base	class	Members

For	base	class	members,	refer	to	the	members	of	CWnd.

Remarks

Like	all	common	controls,	the	toolbar	control	requires	a	parent	window.	This
parent	window	is	often	a	dialog,	but	simple	windows	can	also	be	the	parent
window	for	a	toolbar	control.

The	following	code	demonstrates	how	to	display	a	ComboBoxEx	control	in	a
toolbar.		Before	displaying	the	control	over	the	'File	Save'	button,		the	button's
width	is	adjusted,	and	the	button	is	converted	to	a	separator.	

void	CMainFrame::AddCombo()
{
		//	We'll	be	placing	the	ComboBoxEx	control	over	the	'File	Save'	toolbar	button
		int	nComboWidth	=	120;
		CToolBar&	TB	=	GetToolBar();
		if	(TB.CommandToIndex(IDM_FILE_SAVE)	<	0)	return;

		TB.SetButtonStyle(IDM_FILE_SAVE,	TBSTYLE_SEP);	 //	Convert	the	button	to	a	separator
		TB.SetButtonWidth(IDM_FILE_SAVE,	nComboWidth);

		//	Determine	the	size	and	position	of	the	ComboBox
		int	nIndex	=	TB.CommandToIndex(IDM_FILE_SAVE);
		CRect	rc	=	TB.GetItemRect(nIndex);

		//	Create	and	position	the	ComboboxEx	window
		m_ComboBoxEx.Create(TB.GetHwnd());
		m_ComboBoxEx.SetWindowPos(NULL,	rc,	SWP_NOACTIVATE);



		//	Set	ComboBox	Height
		m_ComboBoxEx.SendMessage(CB_SETITEMHEIGHT,	(WPARAM)-1,	(LPARAM)rc.Height()-6);

		m_ComboBoxEx.AddItems();
		RecalcLayout();
}

Refer	to	the	remarks	section	in	the	documentation	for	CFrame	for	an	illustration
on	how	to	define	an	configure	the	toolbar.

Summary	Information

Header	file toolbar.h
Win32/64
support Yes

WinCE	support Yes
Library	required Comctl32.lib



Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	1:			The	Simplest	Window

The	following	code	uses	Win32++	to	create	a	window.		This	is	all	the	code	you	need	(in	combination	with
Win32++)	to	create	and	display	a	simple	window.		Note	that	in	order	to	add	the	Win32++	code	to	our
program,	we	use	an	#include	statement	as	shown	below.	

#include	"wincore.h"

//	Note:		
//		*	Add	the	Win32++\include		directory	to	project's	additional	include	directories

//	A	class	that	inherits	from	CWnd.	It	is	used	to	create	the	window.
class	CMyWindow	:	public	CWnd
{
public:
				CMyWindow()	{}
				virtual	void	OnDestroy()	{	PostQuitMessage(0);	}	 //	Ends	the	program
				virtual	~CMyWindow()	{}
};

int	APIENTRY	WinMain(HINSTANCE,	HINSTANCE,	LPSTR,	int)
{
				//	Start	Win32++
				CWinApp	MyApp;

				//	Create	a	CMyWindow	object
				CMyWindow	MyWindow;

				//	Create	(and	display)	the	window
				MyWindow.Create();



				//	Run	the	application's	message	loop
				return	MyApp.Run();
}

This	program	has	four	key	steps:

Start	Win32++.		We	do	this	here	by	creating	a	CWinApp	object	called	MyApp.
Create	a	CMyWindow	object	called	MyWindow.
Create	a	default	window	by	calling	the	Create	function.
Start	the	message	loop,	by	calling	the	Run	function.

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

The	CMyWindow	class	inherits	from	CWnd.	CWnd	is	the	base	class	for	all	objects	used	to	create	windows.
We	override	the	OnDestroy	function	of	CWnd	to	end	the	program	when	the	window	is	closed.

http://sourceforge.net/projects/win32-framework/


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	2:		Using	Classes	and	Inheritance

The	program	in	the	previous	tutorial	calls	the	CWinApp	class	directly.		Normally,	however,	we	would
inherit	from	this	class	to	have	more	control	over	the	type	of		CWinApp	objects	we	create.

This	is	an	example	of	how	we	would	derive	a	class	from	CWinApp.

//	A	class	that	inherits	from	CWinApp.	
//	It	is	used	to	run	the	application's	message	loop.
class	CSimpleApp	:	public	CWinApp
{
public:
				CSimpleApp()	{}
				virtual	~CSimpleApp()	{}
				virtual	BOOL	InitInstance();

private:
				CView	m_View;
};

BOOL	CSimpleApp::InitInstance()
{
				//	Create	the	Window
				m_View.Create();

				return	TRUE;
}

Notice	that	we	override	InitInstance	to	determine	what	happens	when	the	application	is	started.	In	this
instance	we	create	the	window	for	the	m_View	member	variable.	The	m_View	member	variable	is	a	CView
object	inherited	from	CWnd.	The	code	for	CView	is	shown	below.

//		*	Add	the	Win32++\include		directory	to	project's	additional	include	directories



#include	"wincore.h"

//	A	class	that	inherits	from	CWnd.	It	is	used	to	create	the	window.
class	CView	:	public	CWnd
{
public:
				CView()	{}
				virtual	void	OnDestroy()	{	PostQuitMessage(0);	}	//	Ends	the	program
				virtual	~CView()	{}
};

The	CSimpleApp	and	CView	classes	are	used	in	WinMain	as	follows.

int	APIENTRY	WinMain(HINSTANCE,	HINSTANCE,	LPSTR,	int)
{
				//	Start	Win32++
				CSimpleApp	MyApp;

				//	Run	the	application
				return	MyApp.Run();
}

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

	

http://sourceforge.net/projects/win32-framework/


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	3:		Using	Messages	to	create	a	Scribble	Application

Each	external	event	that	a	window	might	need	to	respond	to	is	sent	to	the	window	by	way	of	a	message.		Its
now	time	to	control	the	way	our	window	behaves	by	handling	some	of	these	messages.	Each	CWnd	object
handles	its	own	messages	in	the	WndProc	function.		In	this	example	we	will	create	a	simple	scribble
program	by	handling	the	left	mouse	button	messages.	We	allow	the	user	to	draw	on	the	window	by
responding	to	the	mouse	messages.	A	line	is	drawn	on	the	window	when	the	user	moves	the	mouse	while
pressing	the	left	mouse	button	down.

The	WM_LBUTTONDOWN	message	is	sent	to	the	window	when	the	left	button	is	clicked,	and	the	cursor
is	over	the	window's	client	area.	We	capture	the	mouse	input	and	store	the	current	mouse	position	in	the
m_OldPt	member	variable.

The	WM_MOUSEMOVE	message	is	posted	to	a	window	when	the	cursor	moves.	If	the	mouse	is	not
captured,	the	message	is	posted	to	the	window	that	contains	the	cursor.	Otherwise,	the	message	is	posted	to
the	window	that	has	captured	the	mouse.		We	check	that	the	left	button	is	also	down,	and	call	DrawLine	to
draw	the	line	in	the	view	window.

The	WM_LBUTTTONUP	message	is	sent	to	the	window	when	the	left	mouse	button	changed	from	down
to	up	during	mouse	capture.

A	window	receives	messages	through	its	window	procedure.	We	intercept	these	messages	and	take	our	own
actions	by	overriding	the	WndProc	function.

LRESULT	CView::WndProc(UINT	uMsg,	WPARAM	wParam,	LPARAM	lParam)
{
				switch	(uMsg)
				{
				case	WM_LBUTTONDOWN:
								OnLButtonDown(lParam);
								break;

				case	WM_MOUSEMOVE:



								OnMouseMove(wParam,	lParam);
								break;

				case	WM_LBUTTONUP:
								OnLButtonUp(lParam);
								break;
				}

				//Use	the	default	message	handling	for	remaining	messages
				return	WndProcDefault(uMsg,	wParam,	lParam);
}

These	are	the	definitions	of	the	functions	used	in	WndProc.	When	the	WM_LBUTTONDOWN	message	is
received,	we	use	SetCapture	to	capture	the	mouse	input.	This	allows	our	window	to	receive	the	mouse
messages	even	if	the	mouse	cursor	is	moved	outside	our	window.	We	stop	capturing	the	mouse	input	with
ReleaseCapture	when	the	left	mouse	button	is	released.

void	CView::OnLButtonDown(LPARAM	lParam)
{
		//	Capture	mouse	input.
		SetCapture();

		m_OldPt.x	=	GET_X_LPARAM(lParam);
		m_OldPt.y	=	GET_Y_LPARAM(lParam);
}

void	CView::OnLButtonUp(LPARAM	lParam)
{
		{
				//Release	the	capture	on	the	mouse
				ReleaseCapture();
		}
}

void	CView::OnMouseMove(WPARAM	wParam,	LPARAM	lParam)
{
		//	hold	down	the	left	mouse	button	and	move	mouse	to	draw	lines.
		if	(wParam	&	MK_LBUTTON)
		{
				DrawLine(LOWORD(lParam),	HIWORD(lParam));
				m_OldPt.x	=	GET_X_LPARAM(lParam);
				m_OldPt.y	=	GET_Y_LPARAM(lParam);
		}
}

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

	

http://sourceforge.net/projects/win32-framework


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	4:		Repainting	the	Window

The	previous	example	fails	to	repaint	the	window.	Repainting	the	window	is	required	whenever	the	window
is	resized,	restored	from	minimized,	or	when	part	of	the	window	is	revealed	after	being	covered	by	another
window.

The	Windows	API	handles	repainting	automatically.	When	part	of	a	window	needs	repainting,	windows
sends	a	WM_PAINT	message	to	the	application.	Typically	you	would	respond	to	this	message	with	the	code
to	redraw	the	entire	client	area	of	the	window.	You	don't	need	to	concern	yourself	with	which	parts	of	the
client	area	need	to	be	redrawn,	as	windows	handles	this	part	for	you	automatically.

Win32++	already	contains	the	code	to	handle	the	WM_PAINT	message	in	CWnd::WndProc.	All	we	need	to
do	is	write	the	OnDraw	function.		For	our	application	here,	we	can	store	the	various	points	in	a	vector,	and
have	the	OnDraw	function	draw	the	lines	again.		The	function	to	store	the	points	looks	like	this.

void	CView::StorePoint(int	x,	int	y,	bool	PenDown)
{
		PlotPoint	P1;
		P1.x	=	x;
		P1.y	=	y;
		P1.PenDown	=	PenDown;

		m_points.push_back(P1);	//Add	the	point	to	the	vector
}

Our	OnDraw	function	looks	like	this.

void	CView::OnDraw(CDC*	pDC)
{
		if	(m_points.size()	>	0)
		{
				bool	bDraw	=	false;		//Start	with	the	pen	up



				for	(unsigned	int	i	=	0	;	i	<	m_points.size();	i++)
				{
						if	(bDraw)	
								pDC->LineTo(m_points[i].x,	m_points[i].y);
						else	
								pDC->MoveTo(m_points[i].x,	m_points[i].y);
						
						bDraw	=	m_points[i].PenDown;
				}
		}
}

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

http://sourceforge.net/projects/win32-framework/


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	5:		Wrapping	a	Frame	around	our	Scribble	Application

This	is	the	code	we	use	to	produce	a	simple	frame	application.		We	inherit	a	class	called	CMainframe
from	the	CFrame	class	in	Win32++.	Notice	how	we	use	the	SetView	function	to	specify	the	"view"
window	of	our	frame.	This	"view"	window	happens	to	be	the	same	code	as	the	simple	scribble	application
shown	in	the	previous	tutorial.		In	this	way,	we	wrap	a	frame	around	our	previous	scribble	application.

The	CMainFrame	class	inherits	OnCommand	from	CFrame.		This	function	responds	to	input	from	the
frame's	menu	and	toolbar.	We	haven't	implemented	many	of	these	inputs	yet,	so	at	this	stage	most	of	them
simply	display	a	simple	message	box.

CMainFrame::CMainFrame()
{
		//Set	m_View	as	the	view	window	of	the	frame
		SetView(m_View);
}

BOOL	CMainFrame::OnCommand(WPARAM	wParam,	LPARAM	lParam)
{
		//	Process	the	messages	from	the	Menu	and	Tool	Bar
		switch	(LOWORD(wParam))
		{
		case	IDM_FILE_EXIT:
				//	End	the	application
				::PostMessage(m_hWnd,	WM_CLOSE,	0,	0);
				return	TRUE;
		case	IDM_HELP_ABOUT:
				//	Display	the	help	dialog
				OnHelp();
				return	TRUE;
		case	IDM_FILE_NEW:
				::MessageBox(NULL,	_T("File	New		...	Implemented	later"),	_T("Menu"),	MB_OK);



				return	TRUE;
		case	IDM_FILE_OPEN:
				::MessageBox(NULL,	_T("File	Open		...	Implemented	later"),	_T("Menu"),	MB_OK);
				return	TRUE;
		case	IDM_FILE_SAVE:
				::MessageBox(NULL,	_T("File	Save		...	Implemented	later"),	_T("Menu"),	MB_OK);
				return	TRUE;
		case	IDM_FILE_SAVEAS:
				::MessageBox(NULL,	_T("File	SaveAs		...	Implemented	later"),	_T("Menu"),	MB_OK);
				return	TRUE;
		case	IDM_FILE_PRINT:
				::MessageBox(NULL,	_T("File	Print		...	Implemented	later"),	_T("Menu"),	MB_OK);
				return	TRUE;
		}

		return	FALSE;
}

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

http://sourceforge.net/projects/win32-framework/


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	6:		Customising	Window	Creation

Up	until	now	we	have	used	the	default	parameters	supplied	by	Win32++	to	create	the	view	window.		Here
we	use	the	PreRegisterClass	to	specify	the	Window	Class	(not	to	be	confused	with	a	C++	class)	parameters
prior	to	window	creation.		This	will	allow	us	to	create	a	window	with	a	coloured	background	and	set	it's
cursor.

void	CView::PreRegisterClass(WNDCLASS	&wc)
{
		//	Set	the	background	brush	and	cursor
		wc.hbrBackground	=	m_Brush;
		wc.lpszClassName	=	"Scribble	Window";
		wc.hCursor	=	GetApp()->LoadCursor(IDC_CURSOR1);
}

We	also	use	PreCreate	to	give	the	window	a	3D	look	by	giving	it's	border	a	sunken	edge.

void	CView::PreCreate(CREATESTRUCT	&cs)
{
		//	Set	the	extra	style	to	provide	a	sunken	edge
		cs.dwExStyle	=	WS_EX_CLIENTEDGE;
}

The	cursor	IDC_CURSOR1	used	in	PreRegisterClass	is	specified	in	resource.rc.	The	resource.rc	file	is	our
resource	script	and	contains	the	specifications	for	various	window	resources	such	as	bitmaps,	dialogs,
cursors,	icons,	menus	etc.	The	resources	specified	in	resource.rc	are	compiled	and	linked	into	our
application.	This	is	the	specification	for	the	cursor	in	the	resource.rc	file.

/////////////////////////////////////////////////////////////////////////////
//
//	Cursor
//



IDC_CURSOR1													CURSOR																		"res/Cursor.cur"

We	create	the	background	brush	in	CView's	constructor.	The	brush	is	a	CBrush	object	which	automatically
deletes	its	brush	when	its	destructor	is	called.	This	is	how	the	brush	is	created.

//	Constructor
CView::CView()	:	m_PenColor(RGB(0,0,0))
{
					m_Brush.CreateSolidBrush(RGB(255,255,230));
}

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

http://sourceforge.net/projects/win32-framework/


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	7:		Customising	the	ToolBar

Our	frame	window	has	both	a	menu	and	a	toolbar	at	the	top.		Customising	the	menu	is	relatively	straight
forward,	since	we	can	use	a	resource	editor	to	perform	that	task.	Customising	the	toolbar	however	is	another
matter.	While	its	true	that	the	resource	editor	which	ships	Microsoft's	Visual	Studio	can	edit	the	toolbar
resource,	this	is	not	standard,	and	we	so	need	to	come	up	with	a	standards	compliant	way	of	modifying	the
toolbar.	

To	set	your	own	toolbar	for	your	applications,	you	will	need	to	perform	the	following	steps:

Modify	the	toolbar	bitmap.
Add	the	toolbar	resource	IDs	to	to	the	string	table.
Assign	resource	IDs	to	the	toolbar	buttons,	as	shown	below.

void	CMainFrame::SetupToolBar()
{
		//	Define	the	resource	IDs	for	the	toolbar
		AddToolBarButton(	IDM_FILE_NEW			);
		AddToolBarButton(	IDM_FILE_OPEN		);
		AddToolBarButton(	IDM_FILE_SAVE		);
		AddToolBarButton(	0	);	 	 	 	 //	Separator
		AddToolBarButton(	IDM_EDIT_CUT,			FALSE	);
		AddToolBarButton(	IDM_EDIT_COPY,		FALSE	);
		AddToolBarButton(	IDM_EDIT_PASTE,	FALSE	);
		AddToolBarButton(	0	);	 	 	 	 //	Separator
		AddToolBarButton(	IDM_FILE_PRINT	);
		AddToolBarButton(	0	);	 	 	 	 //	Separator
		AddToolBarButton(	IDM_HELP_ABOUT	);
}

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

http://sourceforge.net/projects/win32-framework/


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	8:		Loading	and	Saving	Files

In	this	tutorial	we	will	demonstrate	how	to	save	our	data	to	a	file,	and	load	it	back	again.

Saving	Data

To	save	the	data	we	perform	the	following	steps:

Use	CFile::SaveFileDialog	to	open	a	dialog	and	choose	the	filename	to	save	the	data	to.
Use	CFile::Open	to	open	the	file	for	writing.
Use	CFile::Write	to	write	the	data	to	the	file.

This	code	segment	shows	how	to	use	the	SaveFileDialog	function	to	choose	the	file	to	write	to.

void	CMainFrame::OnFileSaveAs()
{
		CFile	File;
		CString	str	=	

			
		File.SaveFileDialog(0,	OFN_OVERWRITEPROMPT,	_T("Save	File"),	_T("Scribble	Files	(*.dat)\0*.dat\0\0"),	_T("dat"),	this);

		//	Store	the	PlotPoint	data	in	the	file
		if	(!str.IsEmpty())
		{
				m_PathName	=	str;

				//	Save	the	file	name
				m_View.FileSave(str);
				AddMRUEntry(str);
		}
}



This	next	code	segment	demonstrates	how	to	open	a	file	for	writing,	and	write	data	to	it.	The	data	written	in
this	case	is	the	contents	of	the	m_points	vector.	Error	checking	has	been	omitted	from	the	code	segment
displayed	here	for	clarity,	but	is	included	in	the	code	for	this	tutorial.		

BOOL	CView::FileSave(LPCTSTR	szFilename)
{
		BOOL	bResult	=	TRUE;
		CFile	hFile;
		hFile.Open(szFilename,	CREATE_ALWAYS))

		//	Write	the	file
for
		(size_t	i	=	
			
			

					
				0;		i	<		m_points.size();	++i)
		{
				hFile.Write(&m_points[i],	sizeof(PlotPoint));
		}

		return	bResult;
}

Loading	Data

Reading	data	back	from	a	file	follows	a	rather	similar	process.	The	steps	involved	are	as	follows:

Use	CFile::OpenFileDialog	to	open	a	dialog	and	choose	the	file	to	load.
Use	CFile::Open	to	open	the	file	for	reading.
Use	CFile::Read	to	retrieve	the	data	from	the	file.

The	following	code	segment	demonstrates	how	to	use	OpenFileDialog	to	choose	the	file	to	load.

void	CMainFrame::OnFileOpen()
{
		CFile	File;
		CString	str	=	

			
		File.OpenFileDialog(0,	OFN_FILEMUSTEXIST,	_T("Open	File"),	_T("Scribble	Files	(*.dat)\0*.dat\0\0"),	this);

		if	(!str.IsEmpty())
		{
				//	Retrieve	the	PlotPoint	data
				if	(m_View.FileOpen(str))
				{
						//	Save	the	filename
						m_PathName	=	str;
						AddMRUEntry(str);



				}
				else
						m_PathName=_T("");
		}
}

This	is	the	code	which	loads	our	PlotPoint	vector	from	the	contents	of	the	chosen	file.	Once	again,	the	error
checking	has	been	omitted	from	the	code	displayed	here	for	clarity,	but	is	present	in	the	source	code.	

BOOL	CView::FileOpen(LPCTSTR	szFilename)
{
		//	empty	the	PlotPoint	vector
		m_points.clear();
		DWORD	nBytesRead;
		BOOL	bResult	=	FALSE;

		//	Create	a	handle	to	the	file
		CFile	File;
		if	(File.Open(szFilename,	OPEN_EXISTING))
		{
				do
				{
						nBytesRead	=	0;
						PlotPoint	pp;

						nBytesRead	=	File.Read(&pp,	sizeof(PlotPoint));
						if	(nBytesRead	==	sizeof(PlotPoint))
								m_points.push_back(pp);	

				}	while	(nBytesRead	==	sizeof(PlotPoint));

				bResult	=	TRUE;
		}

		Invalidate();
		return	bResult;
}

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

http://sourceforge.net/projects/win32-framework/


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	9:		Printing

In	this	tutorial	we	will	demonstrate	how	to	send	a	bitmap	to	a	printer.	The	bitmap	in	this	case	will	be	the	one
we've	been	drawing	on	in	the	view	window.	The	resulting	printout	will	be	resized	to	match	the	size	of	the
original	drawing.	This	task	can	be	broken	down	into	several	steps:

Extract	the	bitmap	from	the	view	window
Choose	the	printer
Start	the	print	job
Extract	the	bitmap	image	data	from	the	bitmap
Copy	the	resized	image	data	to	the	printer's	device	context
End	the	print	job

Extract	the	bitmap	from	the	view	window	

When	we	draw	on	the	view	window,	we	are	actually	drawing	on	to	a	bitmap	attached	to	view	window's
device	context.	Here	we	will	copy	this	bitmap	to	a	compatible	bitmap.

//	Copy	the	bitmap	from	the	View	window
CClientDC	dcView(&m;_View);
CMemDC	MemDC(&dcView;);
CBitmap	bmView;
bmView.CreateCompatibleBitmap(&dcView,	Width,	Height);
MemDC.SelectObject(&bmView;);
MemDC.BitBlt(0,	0,	Width,	Height,	&dcView;,	0,	0,	SRCCOPY);

Choose	a	printer

This	step	is	fairly	straight	forward.	We	declare	a	PRINTDLG	struct	and	use	this	in	the	PrintDlg	function.
The	PrintDlg	function	brings	up	a	dialog,	allowing	us	to	choose	the	printer,	and	stores	its	device	context	in
the	PRINTDLG	struct.

//	Bring	up	a	dialog	to	choose	the	printer
PRINTDLG	pd	=	{0};



pd.lStructSize	=	sizeof(pd);
pd.Flags	=	PD_RETURNDC;
pd.hwndOwner	=	m_hWnd;

//	Retrieve	the	printer	DC
PrintDlg(&pd);

Start	the	Print	Job

The	StartDoc	function	should	be	called	before	sending	output	to	a	printer.	This	function	ensures	that
multipage	documents	are	not	interspersed	with	other	print	jobs.	StartPage	(and	a	corresponding	EndPage)	is
then	called	for	each	page	of	printout.

//	Zero	and	then	initialize	the	members	of	a	DOCINFO	structure.
DOCINFO	di	=	{0};
di.cbSize	=	sizeof(DOCINFO);
di.lpszDocName	=	_T("Scribble	Printout");
di.lpszOutput	=	(LPTSTR)	NULL;
di.lpszDatatype	=	(LPTSTR)	NULL;
di.fwType	=	0;

//	Begin	a	print	job	by	calling	the	StartDoc	function.
StartDoc(pd.hDC,	&di);

//	Inform	the	driver	that	the	application	is	about	to	begin	sending	data.
StartPage(pd.hDC);

Extract	the	bitmap	image	data	from	the	bitmap

In	order	to	use	StretchDIBits	we	first	need	the	bitmap	image	data.	This	is	retrieved	by	using	the	GetDIBits.
It	is	called	twice	in	the	following	code	sample,	the	first	time	to	get	the	size	byte	array	to	hold	the	data,	and
the	second	to	fill	the	byte	array.	

//	Get	the	dimensions	of	the	View	window
RECT	rcView;
GetClientRect	(m_View.GetHwnd(),	&rcView);
int	Width	=	rcView.right	-	rcView.left;
int	Height	=	rcView.bottom	-	rcView.top;

//	Fill	the	BITMAPINFOHEADER	structure
BITMAPINFOHEADER	bi	=	{0};
bi.biSize	=	sizeof(BITMAPINFOHEADER);
bi.biHeight	=	Height;
bi.biWidth	=	Width;
bi.biPlanes	=	1;
bi.biBitCount	=		24;
bi.biCompression	=	BI_RGB;

//	Note:	BITMAPINFO	and	BITMAPINFOHEADER	are	the	same	for	24	bit	bitmaps
//	Get	the	size	of	the	image	data
MemDC.GetDIBits(&bmView,	0,	Height,	NULL,	(BITMAPINFO*)&bi,	DIB_RGB_COLORS);



//	Retrieve	the	image	data
byte*	pBits	=	new	byte[bi.biSizeImage];
MemDC.GetDIBits(&bmView,	0,	Height,	pBits,	(BITMAPINFO*)&bi,	DIB_RGB_COLORS);
	

Copy	the	resized	bitmap	to	the	printer's	device	context

StretchDIBits	is	the	function	used	here	to	copy	the	bitmap	information	to	the	printer's	device	context
because	the	bitmap	needs	to	be	resized	in	order	to	retain	the	same	dimensions	on	the	printed	page	as	the
original.		The	following	code	segment	shows	how	the	scaling	factors	are	calculated	and	the	StretchDIBits	
function	is	called.

//	Determine	the	scaling	factors	required	retain	the	bitmap's	original	proportions.
float	fLogPelsX1	=	(float)	GetDeviceCaps(ViewDC,	LOGPIXELSX);
float	fLogPelsY1	=	(float)	GetDeviceCaps(ViewDC,	LOGPIXELSY);
float	fLogPelsX2	=	(float)	GetDeviceCaps(pd.hDC,	LOGPIXELSX);
float	fLogPelsY2	=	(float)	GetDeviceCaps(pd.hDC,	LOGPIXELSY);
float	fScaleX	=	MAX(fLogPelsX1,	fLogPelsX2)	/	min(fLogPelsX1,	fLogPelsX2);
float	fScaleY	=	MAX(fLogPelsY1,	fLogPelsY2)	/	min(fLogPelsY1,	fLogPelsY2);

//	Compute	the	coordinates	of	the	upper	left	corner	of	the	centered	bitmap.
int	cWidthPels	=	GetDeviceCaps(pd.hDC,	HORZRES);
int	xLeft	=	((cWidthPels	/	2)	-	((int)	(((float)	Width)	*	fScaleX))	/	2);
int	cHeightPels	=	GetDeviceCaps(pd.hDC,	VERTRES);
int	yTop	=	((cHeightPels	/	2)	-	((int)	(((float)	Height)	*	fScaleY))	/	2);

//	Use	StretchDIBits	to	scale	the	bitmap	and	maintain	its	original	proportions
StretchDIBits(pd.hDC,	xLeft,	yTop,	(int)	((float)	Width	*	fScaleX),	
															(int)	((float)	Height	*	fScaleY),	0,	0,	Width,	Height,	pBits,	
															(BITMAPINFO*)&bi,	DIB_RGB_COLORS,	SRCCOPY);

End	the	print	job

To	finish	the	print	job,	EndPage	is	called	to	indicate	that	printing	to	this	page	is	complete,	then	EndDoc	is
called	the	end	the	print	job.

//	Inform	the	driver	that	the	page	is	finished.
EndPage(pd.hDC);
	 	
//	Inform	the	driver	that	document	has	ended.
EndDoc(pd.hDC);

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

http://sourceforge.net/projects/win32-framework/


Tutorials

Menu	of	tutorials

Tutorial	1:			The	Simplest	WindowTutorial	2:			Using	Classes	and	Inheritance
Tutorial	3:			Using	Messages	to	Create	a	Scribble	Window
Tutorial	4:			Repainting	the	Window
Tutorial	5:			Wrapping	a	Frame	around	our	Scribble	Window
Tutorial	6:			Customising	Window	Creation
Tutorial	7:			Customising	the	ToolBar
Tutorial	8:			Loading	and	Saving	Files
Tutorial	9:			Printing
Tutorial	10:	Finishing	Touches

Tutorial	10:		Finishing	Touches

In	this	final	tutorial	we	will	show	how	to	store	the	application's	settings	in	the	registry,	and	implement
tracing.		The	code	for	this	final	tutorial	is	the	scribble	demo	application.

Saving	the	Window	Position

Users	will	expect	modern	applications	to	save	their	settings,	such	as	the	position	and	size	of	the	frame
window.		These	settings	are	stored	in	the	registry.	LoadRegistrySettings	is	used	to	set	the	name	of	the
registry	key.		Typically	the	name	takes	the	form	of		"CompanyName\\ApplicationName"	as	demonstrated
below.

CMainFrame::CMainFrame()
{
		.
		.
		.

		//	Set	the	registry	key	name,	and	load	the	initial	window	position
		//	Use	a	registry	key	name	like	"CompanyName\\Application"
		LoadRegistrySettings(_T("Win32++\\Scribble	Sample"));
}

If	a	registry	key	name	has	been	set	using	the	LoadRegistrySetting	function,	the	registry	settings	will
be	loaded	from	the	registry	when	the	application	starts,	and	stored	in	the	registry	when	the	application	ends.
Override	the	LoadRegistrySettings	and	SaveRegistrySettings	functions	in	CMainFrame	if
you	wish	to	store	other	settings	in	the	registry.

Saving	the	Most	Recently	Used	(MRU)	List

Applications	which	load	and	store	files	typically	allow	the	user	to	choose	from	a	list	of	recently	used	file
names	to	load	from.	This	MRU	list	is	also	stored	in	the	registry.	To	add	this	capability	to	your	Win32++



application,	use	the	LoadRegistryMRUSettings	function	to	specify	the	number	of	entries	in	the
MRU	list	(up	to	a	maximum	of	16)	as	shown	below.

CMainFrame::CMainFrame()
{
		.
		.
		.

		//	Set	the	registry	key	name,	and	load	the	initial	window	position
		//	Use	a	registry	key	name	like	"CompanyName\\Application"
		LoadRegistrySettings(_T("Win32++\\Scribble	Sample"));

		//	Load	the	settings	from	the	registry	with	4	MRU	entries
		LoadRegistryMRUSettings(4);
}

To	see	the	MRU	entries	listed	in	the	menu,	add	"Recent	Files"	menu	item	to	the	menu	definitions	in
Resource.rc.	as	follows:

MENUITEM	"Recent	Files",																IDW_FILE_MRU_FILE1,	GRAYED

MRU	entries	are	added	with	AddMRUEntry,	and	removed	with	RemoveMRUEntry.

Command	Line	Arguments

Command	line	arguments	are	passed	to	the	program	when	it	is	started.	The	GetCommandLine	function	is
used	to	retrieve	the	the	command	line	string.	The	CommandLineToArgvW	can	parse	this	string	and
convert	it	to	an	array	of	LPWSTR	pointers.

The	following	code	demonstrates	how	to	load	a	file	when	the	filename	is	supplied	as	a	command	line
argument.

void	CMainFrame::OnInitialUpdate()
{
		int	argCount	=	0;
		LPWSTR*	lpArgv	=	::CommandLineToArgvW(::GetCommandLineW(),	&argCount;);

		//	The	second	argument	(if	any)	contains	our	file	name.
		if	(argCount	>=	2)
		{
				m_View.FileOpen((W2T(lpArgv[1])));
		}
}

This	allows	the	application	to	start	and	load	the	file	when	it	is	selected	and	opened	from	within	Windows
Explorer.

Debugging	your	Application	with	Tracing

One	important	debugging	technique	is	to	trace	what	is	happening	with	the	application	while	it	is	running.	



The	tracing	allows	you	to	display	messages	or	the	contents	of	variables	in	the	output	pane	of	Visual	Studio
(or	whichever	Integrated	Development	Environment	you	use).

In	order	to	take	advantage	of	this,	you	will	need	do	the	following

Use	Version	6.0	(or	later)	of	Win32++
Run	your	application	in	debug	mode	(see	below)
Use	the	TRACE	function	to	display	the	messages.

To	run	the	application	in	debug	mode,	you	need	to	have	the	_DEBUG	variable	defined.		Microsoft's	Visual
Studio	products	define	this	variable	for	you	when	you	compile	in	debug	mode.		For	other	compilers	you
should	use	the	appropriate	compiler	option	to	set	this	variable.		The	source	code	for	this	example,	as	well	as
the	samples	in	the	download	section,	include	project	files	for	debug	modes	for	both	DevC++	and
CodeBlocks		to	make	this	task	easier.

If	you	are	not	running	in	debug	mode,	TRACE	statements	have	no	effect.		You	can	leave	them	in	place	for
Release	mode	if	you	wish.

In	the	sample	code	for	this	section	we	add	tracing	to	our	scribble	application	to	display	the	position	of	the
mouse	for	the	lines	we	draw.

This	is	the	code	added	to	CView::WndProc	for	tracing.

char	str[80];
::wsprintf(str,	"Draw	Point:	%hd,	%hd\n",	GET_X_LPARAM(lParam),
													GET_Y_LPARAM(lParam));
TRACE(str);

These	are	the	lines	of	code	added	to	CMainFrame::WndProc

TRACE("Red	pen	selected\n");

TRACE("Blue	pen	selected\n");

TRACE("Green	pen	selected\n");

TRACE("Black	pen	selected\n");

The	source	code	for	this	tutorial	is	located	within	the	Tutorial	folder	of	the	software	available	from
SourceForge	at	http://sourceforge.net/projects/win32-framework.

http://sourceforge.net/projects/win32-framework/

	About Win32++
	Overview
	Using Win32++
	Getting Started
	Simple Window
	Dialogs
	Frames
	MDI Frames
	Graphics Device Interface (GDI)
	Docking
	Text Conversions
	CString

	Library Reference
	CAnimation
	CBitmap
	CBitmapInfoPtr
	CBrush
	CButton
	CClientDC
	CCmdBar
	CComboBox
	CComboBoxEx
	CCriticalSection
	CDateTime
	CDC
	CDialog
	CDocker
	CDockContainer
	CEdit
	CFile
	CFont
	CFrame
	CGDIObject
	CHeader
	CHotKey
	CImageList
	CIPAddress
	CListBox
	CListView
	CMDIChild
	CMDIFrame
	CMemDC
	CMenu
	CMetaFileDC
	CMonthCalendar
	CPaintDC
	CPalette
	CPen
	CPoint
	CProgressBar
	CPropertyPage
	CPropertySheet
	CRect
	CResizer
	CRgn
	CRibbon
	CRibbonFrame
	CRichEdit
	CSize
	CSlider
	CSocket
	CSpinButton
	CStatic
	CString
	CTab
	CTabbedMDI
	CTaskDialog
	CToolTip
	CTreeView
	CWceFrame
	CWebBrowser
	CWinApp
	CWindowDC
	CWinException
	CWinThread
	CWnd
	Shared_Ptr

	Scribble Tutorial
	1: The Simplest Window
	2: Using Classes and Inheritance
	3: Using Messages
	4: Repainting the Window
	5: Adding a Frame
	6: Customising Window Creation
	7: Customising the Toolbar
	8: Loading and Saving Files
	9: Printing
	10: Finishing Touches

	FAQ
	Contact

