
Introduction	to	WiX

What	is	WiX?
The	Windows	Installer	XML	(WiX)	platform	is	a	set	of	tools	and
specifications	that	allow	you	to	easily	create	Windows	Installer	database
files	(MSI	and	MSM).	The	WiX	tools	model	the	traditional	compile	and
link	model	used	to	create	executables	from	source	code.	For	WiX,	source
code	is	written	in	xml	files.	These	files	are	validated	against	a	schema,
wix.xsd,	then	processed	by	a	preprocessor,	compiler,	and	linker	to	create
the	desired	result.	The	WiX	platform	has	been	designed	to	allow	for	the
easy	creation	of	multiple	Windows	Installer	databases	from	a	small	set	of
source	files.

Schema
Overview
Authoring
Tools
WiX	Files
Building	WiX
Blogs
Getting	Help



Windows	Installer	XML	Overview

Introduction
Windows	Installer	XML,	or	WiX,	provides	a	schema	that	describes	a
Windows	Installer	database	(MSI	or	MSM),	as	well	as	tools	to	convert	the
XML	description	files	into	a	usable	database.	The	second	version	of	the
schema,	wix.xsd,	adds	extra	content	to	ease	the	creation	of	multiple
Windows	Installer	databases	from	a	single	set	of	XML	documents.	The
WiX	tools	model	the	traditional	compile	and	link	model	used	to	create
executables	from	source	code.	This	document	provides	a	brief
introduction	how	to	use	the	tools	to	compile	and	link	WiX	source	code
into	Windows	Installer	databases.

Note:	This	document	assumes	you	have	a	working	knowledge	of	the
Windows	Installer	database	format.



.wxs	&	.wixobj	–	Windows	Installer	Xml	Files
A	.wxs	file	is	the	extension	used	by	all	source	files	in	the	Windows
Installer	XML	system.	These	.wxs	files	are	analogous	to	.cpp	files	for	C++
or	.cs	files	for	C#.	The	.wxs	files	are	preprocessed	then	compiled	into
WiX	object	files	which	use	the	extension	.wixobj.	When	all	of	the	source
files	have	been	compiled	into	object	files,	the	linker	is	used	to	collect	the
object	files	together	and	create	a	Windows	Installer	database.	More
details	on	the	compiler	and	linker	are	provided	later	in	this	document.



Structure	of	.wxs	files
All	.wxs	files	are	well-formed	XML	documents	that	contain	a	single	root
element	named	<Wix/>.	The	rest	of	the	source	file	may	or	may	not
adhere	to	the	WiX	schema	before	preprocessing.	However,	after	being
preprocessed	all	source	files	must	conform	to	the	WiX	schema	or	they
will	fail	to	compile.

The	root	<Wix/>	element	can	contain	at	most	one	of	the	following	two
elements	as	children:	<Product/>,	<Module/>.	However,	there	can	be	an
unbounded	number	<Fragment/>	elements	as	children	of	the	root	<Wix/>
element.	When	a	source	file	is	compiled	into	an	object	file,	each	instance
of	these	elements	creates	a	new	section	in	the	object	file.	Therefore,
these	three	elements	are	often	referred	to	as	section	elements.

It	is	important	to	note,	that	there	can	be	only	one	<Product/>	or
<Module/>	section	element	per	source	file	because	they	are	compiled
into	special	sections	called	entry	sections.	Entry	sections	are	used	as
starting	points	in	the	linking	process.	Sections,	entry	sections,	and	the
entire	linking	process	are	described	in	greater	detail	later	in	this
document.

The	children	of	the	section	elements	define	the	contents	of	the	Windows
Installer	database.	You’ll	recognize	<Property/>	elements	that	map	to
entries	in	the	Property	table	and	a	hierarchy	of	<Directory/>	elements	that
build	up	the	Directory	table.	Most	elements	contain	an	“Id”	attribute	that
will	act	as	the	primary	key	for	the	resulting	row	in	the	Windows	Installer
database.	Note,	in	the	first	release	of	the	WiX	schema	the	primary	key
was	represented	by	the	text	of	the	element.	This	location	for	the	primary
key	was	undesirable	for	several	reasons	and	has	been	moved	to	the	“Id”
attribute.	In	most	cases,	the	“Id”	attribute	also	defines	a	symbol	when	the
source	file	is	compiled	into	an	object	file.



Symbols	and	references
Every	symbol	in	an	object	file	is	composed	of	the	element	name	plus	the
unique	identifier	from	the	“Id”	attribute.	Symbols	are	important	because
they	can	be	referenced	by	other	sections	from	any	source	file.	For
example,	a	<Directory/>	structure	can	be	defined	in	a	<Fragment/>	in	one
source	file	and	a	<Component/>	can	be	defined	under	a	different	source
file’s	<Fragment/>.	By	making	the	<DirectoryRef/>	element	a	parent	of
the	<Component/>	an	explicit	reference	is	created	that	references	the
symbol	defined	by	a	<Directory/>	in	the	first	source	file.	The	linker	is	then
responsible	for	stitching	the	symbol	and	the	reference	together	in	a	single
Windows	Installer	database.	In	some	cases,	implicit	references	are
generated	by	the	compiler	while	processing	a	source	file.	These	implicit
references	behave	identically	to	explicit	references.

In	addition	to	the	simple	references	described	above,	WiX	supports
specific	complex	references.	Complex	references	are	used	in	cases
where	the	linker	must	generate	extra	information	to	link	the	symbol	and
reference	together.	The	perfect	example	of	a	complex	reference	is	in	the
Windows	Installer’s	Feature/Component	relationship.	When	a
<Component/>	is	referenced	explicitly	by	a	<Feature/>	through	a
<ComponentRef/>	element,	the	linker	must	take	the	<Feature/>’s	symbol
and	the	<Component/>’s	symbol	and	add	an	entry	to	the
FeatureComponents	table.

This	Feature/Component	relationship	is	even	more	complex	because
certain	elements	in	a	<Component/>,	for	example	<Shortcut/>,	have
references	back	to	the	primary	Feature	associated	with	the	Component.
These	references	from	a	child	element	of	a	<Component/>	are	called
reverse	references	or	sometimes	feature	backlinks.	Processing	complex
references	and	reverse	references	is	probably	the	most	difficult	work	the
linker	has	to	do.

Note	the	process	of	defining	and	referencing	symbols	is	new	to	the
second	version	of	the	WiX	toolset.	Previously,	it	was	necessary	to
package	Components	into	Merge	Modules	and	use	the	merge	process	to
do	rudimentary	symbol	linking.	This	new	system	for	defining	symbols	is
more	flexible,	and	avoids	the	overhead	of	ensuring	each	Merge	Module’s



tokens	are	unique.



Structure	of	the	.wixobj	file
A	.wixobj	file	is	created	by	the	compiler	for	each	source	file	compiled.	The
.wixobj	file	is	an	XML	document	that	follows	the	objects.xsd	schema
defined	in	the	WiX	project.	As	stated	above	the	.wixobj	file	contains	one
or	more	sections	that,	in	turn,	contain	symbols	and	references	to	other
symbols.

While	the	symbols	and	references	are	arguably	the	most	important
pieces	of	data	in	the	.wixobj	file,	they	are	rarely	the	bulk	of	the
information.	Instead,	the	majority	of	most	.wixobj	files	are	composed	of
<table/>,	<row/>	and	<field/>	elements	that	provide	the	raw	data	to	be
placed	in	the	Windows	Installer	database.	In	many	cases,	the	linker	will
not	only	process	the	symbols	and	references	but	also	use	and	update	the
raw	data	from	the	.wixobj	file.

It	is	interesting	to	note	that	the	object	file	schema,	objects.xsd,	uses
camel	casing	where	the	source	file	schema,	wix.xsd,	uses	Pascal	casing.
This	was	a	conscious	choice	to	indicate	that	the	object	files	are	not
intended	to	be	edited	by	the	user.	In	fact,	all	schemas	that	defines	data	to
be	processed	only	by	the	WiX	tools	use	camel	casing.



candle	–	Windows	Installer	XML	Compiler
Windows	Installer	XML	compiler	is	exposed	by	candle.exe.	candle	is
responsible	for	preprocessing	the	input	.wxs	files	into	valid	well-formed
XML	documents	against	the	WiX	schema,	wix.xsd.	Then,	each	post-
processed	source	file	is	compiled	into	a	.wixobj	file.

The	compilation	process	is	relatively	straight	forward.	The	WiX	schema
lends	itself	to	a	simple	recursive	descent	parser.	The	compiler	processes
each	element	in	turn	creating	new	symbols,	calculating	the	necessary
references	and	generating	the	raw	data	for	the	.wixobj	file.

The	second	version	of	candle	is	not	significantly	different	from	the	first
implementation.	Any	changes	were	either	made	to	enable	the	new
symbol/reference	linking	or	based	on	feedback	from	customers.	Some	of
the	differences	between	versions	include:	the	new	object	file	format	is
XML	instead	of	MSI,	modularization	of	primary	keys	now	happens	at	link
time,	and	binary	streams	are	imported	at	link	time.



light	–	Windows	Installer	XML	Linker
The	Windows	Installer	XML	linker	is	exposed	by	light.exe.	light	is
responsible	for	processing	one	or	more	.wixobj	files,	retrieving	metadata
from	various	external	files	and	creating	a	Windows	Installer	database
(MSI	or	MSM).	When	necessary,	light	will	also	create	cabinets	and
embed	streams	in	the	created	Windows	Installer	database.

The	linker	begins	by	searching	the	set	of	object	files	provided	on	the
command	line	to	find	the	entry	section.	If	more	than	one	entry	section	is
found,	light	fails	with	an	error.	This	failure	is	necessary	because	the	entry
section	defines	what	type	of	Windows	Installer	database	is	being	created,
a	MSI	(<Product/>)	or	MSM	(<Module/>).	It	is	not	possible	to	create	two
databases	from	a	single	link	operation.

While	the	linker	was	determining	the	entry	section,	the	symbols	defined	in
each	object	file	are	stored	in	a	symbol	table.	After	the	entry	section	is
found,	the	linker	attempts	to	resolve	all	of	the	references	in	the	section	by
finding	symbols	in	the	symbol	table.	When	a	symbol	is	found	in	a	different
section,	the	linker	recursively	attempts	to	resolve	references	in	the	new
section.	This	process	of	gathering	the	sections	necessary	to	resolve	all	of
the	references	continues	until	all	references	are	satisfied.	If	a	symbol
cannot	be	found	in	any	of	the	provided	object	files,	the	linker	aborts
processing	with	an	error	indicating	the	undefined	symbol.

After	all	of	the	sections	have	been	found,	complex	and	reverse
references	are	processed.	This	processing	is	where	Components	and
Merge	Modules	are	hooked	to	their	parent	Features	or,	in	the	case	of
Merge	Modules,	Components	are	added	to	the	ModuleComponents
table.	The	reverse	reference	processing	adds	the	appropriate	Feature
identifier	to	the	necessary	fields	for	elements	like,	Shortcut,	Class,	and
TypeLib.

Once	all	of	the	references	are	resolved,	the	linker	processes	all	of	the
rows	retrieving	the	language,	version,	and	hash	for	referenced	files,
calculating	the	media	layout,	and	including	the	necessary	standard
actions	to	ensure	a	successful	installation	sequence.	This	part	of	the
processing	typically	ends	up	generating	additional	rows	that	get	added



associated	with	the	entry	section	to	ensure	they	are	included	in	the	final
Windows	Installer	database.

Finally,	light	works	through	the	mechanics	of	generating	IDT	files	and
importing	them	into	the	Windows	Installer	database.	After	the	database	is
fully	created,	the	final	post	processing	is	done	to	merge	in	any	Merge
Modules	and	create	a	cabinet	if	necessary.	The	result	is	a	fully	functional
Windows	Installer	database.



Authoring
Authoring	is	the	process	of	writing	the	WiX	source	files	necessary	to
create	a	Windows	Installer	database.	The	source	files,	which	usually
have	the	extension	.wxs,	are	XML	documents	that	must	conform	to	the
WiX	schema	(found	in	wix.xsd).

Getting	Started
WiX	Standard	CustomActions
WiX	Online	Tutorial
Extensions
Patch	Building
Using	the	WixUI	dialog	library
WiX	Schema	Reference
PubCA	Schema	Reference



Getting	Started
WiX	can	create	Windows	Installer	databases	which	include:	Windows
Installer	packages,	MSI	files,	and	Merge	Modules,	MSM	files.	We’ll	start
by	creating	a	Windows	Installer	package	so	that	you’ll	have	something
that	you	can	install	and	uninstall	quickly.	Then,	we’ll	create	a	Merge
Module	and	merge	it	into	our	example	Windows	Installer	package.
Finally,	I’ll	cover	a	few	more	advanced	topics	such	as	how	to	define
CustomActions	and	a	deeper	look	into	symbols	and	references.

Topics:
1.	 Your	first	.wxs	file
2.	 Creating	Merge	Modules
3.	 Adding	Custom	Actions
4.	 Msi	Tables	to	WiX	Schema	Translation	Guide



Authoring	Your	First	.wxs	File
Pick	your	favorite	XML	editor—for	all	of	the	examples,	I’ll	use	notepad--
and	create	a	new	file	called	“product.wxs”.	Nothing	about	that	name	is
special,	but	the	.wxs	extension	lets	us	know	that	this	is	a	Windows
Installer	Xml	Source	File.	Now,	let’s	add	the	three	lines	of	text	all	.wxs
files	have:

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

</Wix>

That	forms	the	outer	skeleton	for	our	source	file	and,	honestly,	any	other
source	file	we	ever	want	to	get	compiled.	You	can	feed	this	empty	source
file	to	candle.exe	and	get	out	an	empty	object	file.	Tell	you	what,	let's	do
that.	Follow	the	following	steps	and	you	should	see	very	similar	output:

C:\test>	candle	product.wxs

Microsoft	(R)	Windows	Installer	Xml	Compiler	version	1.0.1220.15022

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved

C:\test>	type	product.wixobj

<?xml	version="1.0"	encoding="utf-8"?><wixObject	

xmlns="http://schemas.microsoft.com/wix/2003/04/objects"

src="C:\test\product.wxs"	/>

C:\test>

Let's	notice	a	couple	things	before	continuing.	First,	notice	that	when
there	is	no	error	candle	doesn't	print	any	text	other	than	its	header.	In
fact,	you	can	even	suppress	the	header	output	by	specifying	"-nologo"	on
the	command	line.	In	that	case,	candle	will	print	nothing	unless	there	is	a
failure.	Second,	notice	that	the	path	to	the	original	source	file	is	stored	in
the	.wixobj	file.	This	can	be	useful	when	tracking	down	where	an	error	is
coming	from.	In	fact,	the	linker	uses	that	"src"	attribute	to	print	more
informative	error	messages	when	it	encounters	a	problem.

Okay,	now	that	we've	seen	an	empty	source	file	create	an	empty	object
file,	let's	create	an	installable	Windows	Installer	package.	Add	the
following	content	to	your	product.wxs	file:



<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Product	Id='12345678-1234-1234-1234-123456789012'	Name='Test	Package'	Language='1033'	

												Version='1.0.0.0'	Manufacturer='Microsoft	Corporation'>

						<Package	Id='12345678-1234-1234-1234-123456789012'

															Description='My	first	Windows	Installer	package'

															Comments='This	is	my	first	attempt	at	creating	a	Windows	Installer	database'

															Manufacturer='Microsoft	Corporation'	InstallerVersion='200'	Compressed='yes'	/>

						<Directory	Id='TARGETDIR'	Name='SourceDir'>

									<Component	Id='MyComponent'	Guid='12345678-1234-1234-1234-123456789012'	/>

						</Directory>

						<Feature	Id='MyFeature'	Title='My	1st	Feature'	Level='1'>

									<ComponentRef	Id='MyComponent'	/>

						</Feature>

			</Product>

</Wix>

This	should	allow	us	to	create	a	MSI	with	a	ProductCode	of	"{12345678-
1234-1234-1234-123456789012}"	with	ProductLanguage	of	"1033"	and	a
ProductVersion	of	"1.0.0.0".	All	of	that	information	is	taken	from	the
<Product/>	element.	The	<Package/>	element	defines	all	of	the
information	that	goes	in	our	MSI's	summary	information	stream.	Finally,	a
simple	<Directory/>	and	<Feature/>	tree	is	created	with	a	single
<Component/>.	This	is	enough	to	get	our	MSI	registered	on	the	machine.

So	let's	compile,	link,	and	install	then	take	a	look	at	the	registered
packages	for	our	MSI.	Follow	the	instructions:

Note:	This	MSI	requires	admin	privileges	and	will	silently	fail	if	you	are
not	installing	as	an	Administrator.

C:\test>	candle	product.wxs

Microsoft	(R)	Windows	Installer	Xml	Compiler	version	1.0.1220.15022

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved

	

product.wxs

	

C:\test>	light	product.wixobj

Microsoft	(R)	Windows	Installer	Xml	Linker	version	1.0.1220.15022

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved

	

C:\test>	msiexec	/i	product.msi

	



C:\test>	\\delivery\tools\msiconfig.exe

.

.

.

{12345678-1234-1234-1234-123456789012}	Test	Package

.

.

.

You	should	see	your	"Test	Package"	listed	with	all	the	other	Windows
Installer	packages	installed	on	your	machine.	You	can	also	go	to
Add/Remove	Programs	in	the	Control	Panel	and	see	"Test	Package"
registered	there.	Go	ahead	and	remove	the	package	now,	so	we	don't
forget	it	later.

Great!	Now	that	we	have	a	package	that	installs	and	uninstalls	properly,
let's	actually	install	something.	So,	create	a	new	text	file	called
"readme.txt"	next	to	your	"product.wxs"	file	and	type	a	message	to
yourself	in	there.	"Hello,	World!"	is	a	favorite.	Then,	we	need	to	modify
the	product.wxs	to	tell	it	about	the	file:

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Product	Id='12345678-1234-1234-1234-123456789012'	Name='Test	Package'	Language='1033'

												Version='1.0.0.0'	Manufacturer='Microsoft	Corporation'>

						<Package	Id='12345678-1234-1234-1234-123456789012'

																Description='My	first	Windows	Installer	package'

																Comments='This	is	my	first	attempt	at	creating	a	Windows	Installer	database'

																Manufacturer='Microsoft	Corporation'	InstallerVersion='200'	Compressed='yes'	/>

	

						<Media	Id='1'	Cabinet='product.cab'	EmbedCab='yes'	/>

	

						<Directory	Id='TARGETDIR'	Name='SourceDir'>

									<Directory	Id='ProgramFilesFolder'	Name='PFiles'>

												<Directory	Id='MyDir'	Name='TestProg'	LongName='Test	Program'>

															<Component	Id='MyComponent'	Guid='12345678-1234-1234-1234-123456789012'>

																		<File	Id='readme'	Name='readme.txt'	DiskId='1'	src='readme.txt'	/>

															</Component>

												</Directory>

									</Directory>

						</Directory>

	

						<Feature	Id='MyFeature'	Title='My	1st	Feature'	Level='1'>

									<ComponentRef	Id='MyComponent'	/>

						</Feature>

			</Product>

</Wix>



You	should	be	able	to	compile,	link,	and	install	that	MSI	and	see	that	you
do	get	a	directory	called	"Test	Program"	in	your	system's	"Program	Files"
folder.	In	that	"Test	Program"	directory	should	be	the	"readme.txt"	file	you
created	with	the	message	to	yourself.	Spiffy,	eh?	Again,	remember	to
uninstall	the	MSI	so	you	can	rebuild	and	install	it	again	later.

Believe	it	or	not,	that's	all	there	is	to	creating	a	Windows	Installer
package.	Sure,	you	can	add	UI	and	things	like	that	now,	but	we've
covered	the	basics.	Everything	just	comes	down	to	filling	in	the	right	XML
elements.	So,	let's	move	on	and	look	at	creating	a	Merge	Module	we	can
incorporate	into	our	spiffy	new	package.



Creating	Merge	Modules
Creating	a	Merge	Module	is	very	much	like	creating	a	Windows	Installer
package.	So,	let's	create	a	new	text	file	called	"module.wxs"	and	put	the
standard	skeleton	in	it,	as	so:

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

</Wix>

Then	to	create	a	Merge	Module,	we	add	the	<Module/>	element	and	add
the	required	attributes:

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Module	Id='TestModule'	Guid='87654321-4321-4321-4321-210987654321'	Language='1033'	Version='1.0.0.0'>

						<Package	Id='87654321-4321-4321-4321-210987654321'	Description='My	first	Merge	Module'

																Comments='This	is	my	first	attempt	at	creating	a	Windows	Installer	Merge	Module'

																Manufacturer='Microsoft	Corporation'	InstallerVersion='200'	Compressed='yes'	/>

			</Module>

</Wix>

You	can,	if	you	wish,	compile	and	link	that	code.	You'll	get	a	very	small
and	not	very	interesting	.msm	file	from	light.	So,	let's	add	a	text	file	to	this
Merge	Module	like	we	did	to	the	Windows	Installer	package	above.	First,
create	a	text	file	called	"readme2.txt"	and	put	a	different	message	to
yourself	in	there.	Then,	update	the	source	code	to	include	the	new	file:

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Module	Id='TestModule'	Guid='87654321-4321-4321-4321-210987654321'	Language='1033'	Version='1.0.0.0'>

						<Package	Id='87654321-4321-4321-4321-210987654321'	Description='My	first	Merge	Module'

																Comments='This	is	my	first	attempt	at	creating	a	Windows	Installer	Merge	Module'

																Manufacturer='Microsoft	Corporation'	InstallerVersion='200'	Compressed='yes'	/>

	

						<Directory	Id='TARGETDIR'	Name='SourceDir'>

									<Directory	Id='MyModuleDirectory'	Name='.'>

												<Component	Id='MyModuleComponent'	Guid='87654321-4321-4321-4321-110987654321'>

															<File	Id='readme2'	Name='readme2.txt'	src='readme2.txt'	/>

												</Component>

									</Directory>

						</Directory>

			</Module>



</Wix>

That's	it!	You	now	have	a	Merge	Module	that	can	be	shared	with	other
teams	to	install	your	"readme2.txt"	file.	Now	that	we	have	a	Merge
Module,	let's	actually	use	it	in	a	Windows	Installer	package.



Incorporating	a	Merge	Module	into	a	.wxs	file
Merge	Modules	can	only	be	merged	into	Windows	Installer	package.
Fortunately,	we	have	a	.wxs	file	that	creates	a	Windows	Installer	package
from	our	first	experiments	with	WiX.	So,	let's	add	the	two	lines	(yes,	only
two	lines	are	necessary)	to	merge	in	your	new	Module.	Open	your
"product.wxs"	source	file	again,	and	add:

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Product	Id='12345678-1234-1234-1234-123456789012'	Name='Test	Package'	Language='1033'

													Version='1.0.0.0'	Manufacturer='Microsoft	Corporation'>

						<Package	Id='12345678-1234-1234-1234-123456789012'	Description='My	first	Windows	Installer	package'

															Comments='This	is	my	first	attempt	at	creating	a	Windows	Installer	database'

															Manufacturer='Microsoft	Corporation'	InstallerVersion='200'	Compressed='yes'	/>

	

						<Media	Id='1'	Cabinet='product.cab'	EmbedCab='yes'	/>

	

						<Directory	Id='TARGETDIR'	Name='SourceDir'>

									<Directory	Id='ProgramFilesFolder'	Name='PFiles'>

												<Directory	Id='MyDir'	Name='TestProg'	LongName='Test	Program'>

															<Component	Id='MyComponent'	Guid='12345678-1234-1234-1234-123456789012'>

																		<File	Id='readme'	Name='readme.txt'	DiskId='1'	src='readme.txt'	/>

															</Component>

	

															<Merge	Id='MyModule'	Language='1033'	src='module.msm'	DiskId='1'	/>

												</Directory>

									</Directory>

						</Directory>

	

						<Feature	Id='MyFeature'	Title='My	1st	Feature'	Level='1'>

									<ComponentRef	Id='MyComponent'	/>

									<MergeRef	Id='MyModule'	/>

						</Feature>

			</Product>

</Wix>

Now	when	you	compile	your	Windows	Installer	package	source	file,	it	will
include	the	installation	logic	and	files	from	the	Merge	Module.	The	next
time	you	install	the	"product.msi",	you	should	see	two	text	files	in	the
"Test	Program"	directory	instead	of	one.



Adding	Custom	Actions
Now	that	you’re	comfortable	with	the	basics	for	creating	Windows
Installer	packages,	let’s	take	it	to	the	next	level	and	add	a	CustomAction.
Since	every	release	of	the	Windows	Installer	XML	toolset	comes	with	a
drop	of	the	WiX	Server	CustomActions,	we’ll	use	those	for	our	example.
So	go	now	to	the	wix\bin\ca	directory	and	copy	the	"sca*.dll"	to	the	same
directory	as	your	"product.wxs"	and	“readme.txt”	files.	You	should	have
"scasched.dll"	and	"scaexec.dll".

Rather	than	put	the	CustomAction	definitions	in	the	same	source	file	as
our	product	definition,	let's	exercise	a	little	modularity	and	create	a	new
source	file	to	define	the	CustomActions	called	"sca.wxs".	Let's	begin	by
adding	the	immediate	CustomAction	that	reads	the	custom	server	tables
and	schedules	the	deferred	actions.

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Fragment	Id="ServerCustomActions">

						<CustomAction	Id='ConfigureIIs'	BinaryKey='ScaSchedule'	DllEntry='ConfigureIIs'	Execute='immediate'

																				Return='check'/>

						<CustomAction	Id='ConfigureSql'	BinaryKey='ScaSchedule'	DllEntry='ConfigureSql'	Execute='immediate'

																				Return='check'/>

	

						<Binary	Id='ScaSchedule'	src='scasched.dll'/>

			</Fragment>

</Wix>

That	little	bit	of	code	should	compile	but	it	will	not	link.	Remember	linking
requires	that	you	have	an	entry	section	and	a	<Fragment/>	alone	is	not
an	entry	section.	We	would	need	to	link	this	source	file	along	with	a
source	file	that	contained	<Product/>	or	<Module/>	to	successfully
complete.	Before	we	bother	getting	everything	to	link	properly,	let's	add
the	deferred	CustomActions	to	this	source	file	since	they	are	as	important
as	the	immediate	CustomActions	you	already	added.

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Fragment	Id="ServerCustomActions">

						<CustomAction	Id='ConfigureIIs'	BinaryKey='ScaSchedule'	DllEntry='ConfigureIIs'	Execute='immediate'

																				Return='check'/>

						<CustomAction	Id='ConfigureSql'	BinaryKey='ScaSchedule'	DllEntry='ConfigureSql'	Execute='immediate'



																				Return='check'/>

						<CustomAction	Id='ErrorOut'	BinaryKey='ScaExecute'	DllEntry='ErrorOut'	Execute='deferred'

																				Return='check'/>

	

						<CustomAction	Id='StartMetabaseTransaction'	BinaryKey='ScaExecute'	

																				DllEntry='StartMetabaseTransaction'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='RollbackMetabaseTransaction'	BinaryKey='ScaExecute'	

																				DllEntry='RollbackMetabaseTransaction'	Execute='rollback'	Return='check'/>

						<CustomAction	Id='CommitMetabaseTransaction'	BinaryKey='ScaExecute'	

																				DllEntry='CommitMetabaseTransaction'	Execute='commit'	Return='check'/>

	

						<CustomAction	Id='CreateMetabaseKey'	BinaryKey='ScaExecute'	

																				DllEntry='CreateMetabaseKey'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='DeleteMetabaseKey'	BinaryKey='ScaExecute'	

																				DllEntry='DeleteMetabaseKey'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='CreateAspApp'	BinaryKey='ScaExecute'	

																				DllEntry='CreateAspApp'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='WriteMetabaseValue'	BinaryKey='ScaExecute'	

																				DllEntry='WriteMetabaseValue'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='WriteMetabaseMultiString'	BinaryKey='ScaExecute'	

																				DllEntry='WriteMetabaseMultiString'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='DeleteMetabaseMultiString'	BinaryKey='ScaExecute'	

																				DllEntry='DeleteMetabaseMultiString'	Execute='deferred'	Return='check'/>

	

						<CustomAction	Id='CreateDatabase'	BinaryKey='ScaExecute'	

																				DllEntry='CreateDatabase'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='DropDatabase'	BinaryKey='ScaExecute'	

																				DllEntry='DropDatabase'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='ExecuteSqlStrings'	BinaryKey='ScaExecute'	

																				DllEntry='ExecuteSqlStrings'	Execute='deferred'	Return='check'/>

						<CustomAction	Id='RollbackExecuteSqlStrings'	BinaryKey='ScaExecute'	

																				DllEntry='ExecuteSqlStrings'	Execute='rollback'	Return='check'/>

						<Binary	Id='ScaSchedule'	src='scasched.dll'/>

						<Binary	Id='ScaExecute'	src='scaexec.dll'/>

			</Fragment>

</Wix>

Okay,	that's	it.	We're	done	with	editing	the	"sca.wxs"	source	file.	You
have	successfully	defined	all	of	the	entry	points	into	the	WiX	Server
CustomActions.	Now,	how	about	we	add	a	call	to	the	WiX	Server
CustomActions	to	the	example	product.wxs	source	file	you've	been
working	with	so	far.	Instead	of	configuring	IIS	or	SQL	Server	(and
requiring	you	to	have	one	of	them	installed),	let's	just	add	a	call	to	the
CustomAction	I	use	to	inject	errors	into	the	installation	process	for	testing
purposes.	That's	the	"ErrorOut"	CustomAction.



<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Product	Id='12345678-1234-1234-1234-123456789012'	Name='Test	Package'	Language='1033'	

												Version='1.0.0.0'	Manufacturer='Microsoft	Corporation'>

						<Package	Id='12345678-1234-1234-1234-123456789012'

												Description='My	first	Windows	Installer	package'

												Comments='This	is	my	first	attempt	at	creating	a	Windows	Installer	database'	

												Manufacturer='Microsoft	Corporation'	InstallerVersion='200'	Compressed='yes'	/>

	

						<Media	Id='1'	Cabinet='product.cab'	EmbedCab='yes'	/>

	

						<Directory	Id='TARGETDIR'	Name='SourceDir'>

									<Directory	Id='ProgramFilesFolder'	Name='PFiles'>

												<Directory	Id='MyDir'	Name='TestProg'	LongName='Test	Program'>

															<Component	Id='MyComponent'	Guid='12345678-1234-1234-1234-123456789012'>

																		<File	Id='readme'	Name='readme.txt'	DiskId='1'	src='readme.txt'	/>

															</Component>

	

															<Merge	Id='MyModule'	Language='1033'	src='module.msm'	DiskId='1'	/>

												</Directory>

									</Directory>

						</Directory>

	

						<Feature	Id='MyFeature'	Title='My	1st	Feature'	Level='1'>

									<ComponentRef	Id='MyComponent'	/>

									<MergeRef	Id='MyModule'	/>

						</Feature>

						<InstallExecuteSequence>

									<Custom	Action='ErrorOut'	After='InstallFiles'/>

						</InstallExecuteSequence>

			</Product>

</Wix>

Those	three	lines	are	all	you	need	to	add	to	your	Windows	Installer
package	source	file	to	call	the	"ErrorOut"	CustomAction.	Now	that	we
have	two	files	to	link	together	our	call	to	light.exe	gets	a	little	more
complicated.	Here	are	the	compile,	link,	and	installation	steps.

C:\test>	candle	product.wxs	module.wxs	sca.wxs

Microsoft	(R)	Windows	Installer	Xml	Compiler	version	1.0.1256.19889

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

	

product.wxs

module.wxs

sca.wxs

	



C:\test>	light	module.wixobj

Microsoft	(R)	Windows	Installer	Xml	Linker	version	1.0.1256.19889

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

	

C:\test>	light	product.wixobj	sca.wixobj	–out	product.msi

Microsoft	(R)	Windows	Installer	Xml	Linker	version	1.0.1220.15022

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved

	

C:\test>	msiexec	/i	product.msi

Don't	be	alarmed	when	the	MSI	mysteriously	starts	rolling	back	the
installation.	Remember	after	installing	the	files	the	"ErrorOut"
CustomAction	is	called	and	that	forces	the	installation	to	fail.	MSI	then
rolls	back	the	files	and	silently	returns.	Adding	a	success	and	an	error
dialog	are	excercises	left	to	the	interested	reader.



Msi	Tables	to	WiX	Schema
In	the	WiX	schema,	its	not	always	entirely	obvious	how	the	tables	from
the	Windows	Installer	schema	map	to	the	WiX	schema.	Below	are	some
helpful	hints	on	how	to	figure	out	the	relationships	between	the	two
schemas.



DuplicateFile	Table
This	is	authored	using	a	CopyFile	node	nested	under	a	File	node.	You
only	need	to	set	the	Id,	DestinationFolder,	and	DestinationName
attributes.



LaunchCondition	Table
This	is	authored	using	a	Condition	node	authored	under	Fragment	or
Product.	You	only	need	to	set	the	Message	attribute.



LockPermissions	Table
This	is	authored	using	Permission.



MoveFile	Table
This	is	authored	using	a	CopyFile	node	nested	under	a	Component	node.
You	will	need	to	set	all	attributes	except	Delete.	Set	Delete	to	'yes'	in
order	to	use	the	msidbMoveFileOptionsMove	option.



PublishComponent	Table
The	PublishComponent	functionality	is	available	in	WiX	by	using	a
Category.	Here	is	a	small	sample	of	what	a	PublishComponent	record
would	look	like	in	MSI,	then	in	WiX	notation.

MSI

ComponentId Qualifier Component_ AppData Feature_
{11111111-2222-3333-
4444-
5555555555555}

1033 MyComponent Random
Data

MyFeature

WiX

<Component	Id='MyComponent'	Guid='87654321-4321-4321-4321-110987654321'>

					<Category	Id='11111111-2222-3333-4444-5555555555555'	AppData='Random	Data'	

															Qualifier='1033'/>

</Component>

.

.

.

<Feature	Id='MyFeature'	Level='1'>

					<ComponentRef	Id='MyComponent'/>

</Feature>



RemoveIniFile
This	is	authored	using	IniFile.	Just	set	the	Action	attribute	to	'removeLine'
or	'removeTag'	as	appropriate.



RemoveRegistry	Table
This	is	authored	using	Registry.	Simply	set	the	Action	attribute	to
'remove'	or	'removeKey'	(as	appropriate)	in	order	to	get	an	entry	in	the
RemoveRegistry	table.



Windows	Installer	XML	Online	Tutorials
Gabor	Deak	Jahn	maintains	an	impressive	online	tutorial	about	the
Windows	Installer	XML	toolset.	That	tutorial	is	great	way	to	ramp	up	on
the	WiX	toolset	if	you	are	new	or	looking	for	answers	to	common
authoring	task.

http://wix.sourceforge.net/tutorial
http://wix.sourceforge.net


Additional	Resources
Rob	Mensching	has	written	an	excellent	MSDN	article	on	using	Votive	to
get	started	in	WiX.

http://msdn.microsoft.com/smartclient/default.aspx?pull=/library/en-us/dnwingen/html/wixsetup.asp


Windows	Installer	XML	Standard
CustomActions
The	WiX	toolset	contains	several	CustomActions	to	handle	configuring
resources	such	as	Internet	Information	Services	web	sites	and	virtual
directories,	SQL	Server	databases	and	scripts,	user	accounts,	file
shares,	and	more.	These	CustomActions	are	provided	in	two	separate
.wixlibs:	sca.wixlib	and	wixca.wixlib.	The	former	contain	"Server
CustomActions"	while	the	latter	has	more	general	installation
CustomActions.	In	the	future,	these	.wixlib's	may	merge	together	but	for
now	(for	mostly	historical	reasons)	they	are	separate.



sca.wixlib	-	Server	CustomActions
Internet	Information	Services	(IIS)	CustomAction	-	create	and	configure
web	sites,	virtual	directories,	web	applications,	etc.
SQL	Server	CustomAction	-	create	databases	and	execute	SQL	scripts
and	statements.
User	CustomAction	-	create	and	configure	new	users.
FileShare	CustomAction	-	create	and	configure	file	shares	(SMB).
Performance	Counter	CustomAction	-	install	and	uninstall	performance
counters.



wixca.wixlib	-	General	CustomActions
Secure	Objects	CustomAction	-	secure	(using	ACLs)	objects	that
standard	LockPermission	table	cannot.	For	further	information	see	the
Extended	attribut	in	<Permission/>.
Service	Configuration	CustomAction	-	configure	attributes	of	a	Windows
Service	that	the	ServiceInstall	table	cannot.
Quiet	Execution	CustomAction	-	launch	console	executables	without
displaying	a	window.
XmlFile	CustomAction	-	allows	you	to	configure	XML	files	as	part	of	your
installation	package.	For	further	information	see	<XmlFile/>.

New	CustomActions	are	always	under	development.	Our	goal	is	to	one
day	have	standard	CustomActions	for	just	about	any	need.	Feel	free	to
open	a	Feature	Request	if	you	have	a	CustomAction	need.

http://sourceforge.net/tracker/?atid=642717&group_id=105970&func=browse


Using	the	Server	Custom	Actions
The	wix	toolset	contains	a	library	of	custom	actions.	The	centerpiece
of	this	library	is	the	server	custom	action	set.	The	server	custom
actions	extend	the	set	of	resources	that	an	MSI	can	install	to	include
things	such	as	web	sites,	file	shares,	user	accounts,	and	many	others.
These	custom	actions	properly	associate	these	resources	with
components,	and	follow	all	the	rules	to	properly	install,	uninstall	and
rollback	the	installation	or	uninstallation	of	these	resources	as	part	of
their	associated	components.	This	document	will	outline	their	use	with
some	examples.

This	document	assumes	that	the	reader	has	an	understanding	of	MSI
custom	action	types,	and	has	read	"WiX	Overview"	and	"Writing	in
WiX".



Server	Custom	Action	building	blocks

With	each	release	of	the	wix	toolset,	the	files	scasched.dll,	scaexec.dll
and	sca.wixlib	are	released.	The	two	dll	files	are	the	custom	action
dlls	which	export	the	custom	action	entry	points	for	all	of	the	server
custom	actions.	When	you	build	an	MSI	that	makes	use	of	the	server
custom	actions,	they	end	up	in	the	Binary	table	of	the	MSI.	The
sca.wixlib	contains	a	system	of	wix	fragments	that	you	can	link
against	to	ensure	that	all	of	the	proper	error	messages,	custom	action
records,	and	binary	records	get	linked	into	your	final	MSI.

The	simplest	way	to	incorporate	the	server	custom	actions	into	your
MSIs	is	to	copy	the	sca.wixlib	and	the	two	custom	action	dlls
(scasched.dll	and	scaexec.dll)	into	a	folder	in	your	build	environment.
It	is	not	important	where	this	directory	is,	it	is	only	important	that	the
wixlib	and	the	dlls	are	in	the	same	directory.	When	you	link	your	MSI
using	light.exe,	you	simply	need	to	include	the	full	path	to	sca.wixlib
in	the	list	of	wixobjs	and	wixlibs	you're	linking.



Basic	Example

First	lets	try	an	example	that	creates	a	user	account	when	the	MSI	is
installed.

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

				<Product	Id='PutGuidHere'	Name='TestUserProduct'	Language='1033'	Version='0.0.0.0'>

								<Package	Id='PUT-GUID-HERE'	Description='Test	User	Package'	InstallerVersion='200'	Compressed='yes'	/>

												<Directory	Id='TARGETDIR'	Name='SourceDir'>

																<Component	Id='TestUserProductComponent'	Guid='PutGuidHere'>

																				<User	Id='TEST_USER1'	Name='testName1'	Password='pa$$word'/>

																</Component>

								</Directory>

								<Feature	Id='TestUserProductFeature'	Title='Test	User	Product	Feature'	Level='1'>

												<ComponentRef	Id='TestUserProductComponent'	/>

								</Feature>

				</Product>

</Wix>

This	is	a	simple	example	that	will	create	a	new	user	on	the	machine
called	"testName1"	with	the	password	"pa$$word".	To	build	the	MSI
from	this	wix	authoring	first	put	the	above	code	in	a	file	(remember	to
replace	the	"PUT-GUID-HERE"	attributes	with	real	GUIDs),	run
'candle.exe	yourfile.wxs',	and	then	run	'light.exe	–out	yourfile.msi
yourfile.wixout	sca.wixlib'	(replacing	sca.wixlib	with	the	full	path	to
sca.wixlib).	Now	use	Orca	to	open	up	the	resulting	msi	and	take	a
look	at	the	Error	table,	the	CustomAction	table,	and	the	Binary	table.
You	will	notice	that	all	of	the	relevant	data	for	managing	users	has
been	"linked"	into	the	MSI.	This	happened	because	you	have	done
two	key	things.	First,	you	made	use	of	a	<User/>	element	under	a
<Component/>	element	which	indicates	that	a	user	is	to	be	installed	as
part	of	the	MSI	package,	and	second,	you	linked	with	the	sca.wixlib.
Compiler	support,	along	with	the	system	of	fragments	that	exist	in	the
sca.wixlib	ensure	that	only	the	data	associated	with	the	elements	you



used	in	your	wxs	file	are	"linked"	into	the	MSI.



The	server	custom	action	elements

In	the	previous	example	you	learned	that	by	using	the	<User/>
element	in	your	WiX	authoring	and	then	linking	with	the	sca.wixlib
that	all	of	the	relevant	custom	actions,	error	messages,	and	binary
table	rows	were	brought	in	automatically.	The	wix	compiler	contains
support	for	automatically	referencing	the	appropriate	symbols	in	the
sca.wixlib	when	you	make	use	of	specific	elements	such	as	<User/>.
As	stated	in	the	introduction	the	server	custom	actions	add	the	ability
to	install	many	new	types	of	resources.	Each	of	these	resource	types
has	one	or	more	elements	that	allow	you	to	install	them	with	your
MSI	package.	If	you're	using	the	sca.wixlib,	the	only	things	you	need
to	know	are	the	appropriate	elements	for	the	resources	you	want	to
install.	Here	is	a	listing	of	the	different	resource	types	that	the	server
custom	actions	are	able	to	install	and	the	elements	that	control	their
installation:

Web	Sites	-	<WebSite/>
Web	Applications	-	<WebApplication/>
Certificates	-	<Certificate/>
SQL	databases	-	<SqlDatabase/>
SQL	scripts	-	<SqlScript/>
SQL	strings	-	<SqlString/>
Users	-	<User/>
FileShares	-	<FileShare/>
Perfmon	Counter	registration	-	<PerfCounter/>

By	using	the	appropriate	elements	from	this	table	in	your	wix
authoring	and	by	linking	with	sca.wixlib,	you	will	ensure	that	you	are
properly	using	the	wix	server	custom	actions.



Performance	Counter	CustomActions
The	PerfCounter	element	allows	you	to	register	your	performance
counters	with	the	Windows	API.	There	are	several	pieces	that	all	work
together	to	successfully	register:

Your	performance	DLL	-	The	DLL	must	export	Open,	Collect,	and	Close
methods.	See	MSDN	for	more	detail.
Performance	registry	values	-	The	registry	must	contain	keys	pointing	to
your	DLL	and	its	Open,	Collect,	and	Close	methods.	These	are	created
using	the	Registry	element.
Perfmon	INI	and	H	text	files	-	These	contain	the	text	descriptions	to
display	in	the	UI.	See	MSDN	for	lodctr	documentation.	This	MSDN
documentation	is	a	good	place	to	start.	See	below	for	samples	re-
purposed	from	MSDN.
The	RegisterPerfmon	custom	action	-	You	can	link	with	sca.wixlib	to
ensure	that	the	custom	actions	are	included	in	your	final	MSI.	See	server
custom	action	documentation.	The	custom	action	calls
(Un)LoadPerfCounterTextStrings	to	register	your	counters	with	Windows’
Perfmon	API.	To	invoke	the	custom	action,	you	create	a	PerfCounter
element	nested	within	the	File	element	for	the	Perfmon.INI	file.	The
PerfCounter	element	contains	a	single	attribute:	Name.	The	Name
attribute	should	match	the	name	in	the	Registry	and	in	the	.INI	file.	See
below	for	sample	WIX	usage	of	the	<PerfCounter>	element.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/perfmon/base/adding_counter_names_and_descriptions_to_the_registry.asp


Sample	WIX	source	fragment	and
PerfCounter.ini
<?xml	version="1.0"?>

<Wix	xmlns="http://schemas.microsoft.com/wix/2003/01/wi">

		<Fragment>

				<DirectoryRef	Id="BinDir">

						<Component	Id="SharedNative"	DiskId="1">

	

								<Registry	Id="Shared_r1"	Root="HKLM"	Key="SYSTEM\CurrentControlSet\Services\MyApplication\Performance"	Name="Open"	Value="OpenPerformanceData"	Type="string"	/>

								<Registry	Id="Shared_r2"	Root="HKLM"	Key="SYSTEM\CurrentControlSet\Services\MyApplication\Performance"	Name="Collect"	Value="CollectPerformanceData"	Type="string"	/>

								<Registry	Id="Shared_r3"	Root="HKLM"	Key="SYSTEM\CurrentControlSet\Services\MyApplication\Performance"	Name="Close"	Value="ClosePerformanceData"	Type="string"	/>

								<Registry	Id="Shared_r4"	Root="HKLM"	Key="SYSTEM\CurrentControlSet\Services\MyApplication\Performance"	Name="Library"	Value="[!PERFDLL.DLL]"	Type="string"	/>

	

							<File	Id="PERFDLL.DLL"	Name="MYPERFDLL.DLL"	LongName="MyPerfDll.dll"	src="x86\debug\0\myperfdll.dll"	/>

	

							<File	Id="PERFCOUNTERS.H"	Name="PERF.H"	LongName="PerfCounters.h"	src="x86\debug\0\perfcounters.h"	/>

							<File	Id="PERFCOUNTERS.INI"	Name="PERF.INI"	LongName="PerfCounters.ini"	src="x86\debug\0\perfcounters.ini"	>

										<PerfCounter	Name="MyApplication"	/>

							</File>

	

						</Component>

				</DirectoryRef>

		</Fragment>

</Wix>

Sample	PerfCounters.ini:

[info]

drivername=MyApplication

symbolfile=PerfCounters.h

	

[languages]	

009=English

004=Chinese

	

[objects]

PERF_OBJECT_1_009_NAME=Performance	object	name

PERF_OBJECT_1_004_NAME=Performance	object	name	in	Chinese

	

[text]		

OBJECT_1_009_NAME=Name	of	the	device

OBJECT_1_009_HELP=Displays	performance	statistics	of	the	device

OBJECT_1_004_NAME=Name	of	the	device	in	Chinese



OBJECT_1_004_HELP=Displays	performance	statistics	of	the	device	in	Chinese

	

DEVICE_COUNTER_1_009_NAME=Name	of	first	counter

DEVICE_COUNTER_1_009_HELP=Displays	the	current	value	of	the	first	counter

DEVICE_COUNTER_1_004_NAME=Name	of	the	first	counter	in	Chinese

DEVICE_COUNTER_1_004_HELP=Displays	the	value	of	the	first	counter	in	Chinese

	

DEVICE_COUNTER_2_009_NAME=Name	of	the	second	counter

DEVICE_COUNTER_2_009_HELP=Displays	the	current	rate	of	the	second	counter

DEVICE_COUNTER_2_004_NAME=Name	of	the	second	counter	in	Chinese

DEVICE_COUNTER_2_004_HELP=Displays	the	rate	of	the	second	counter	in	Chinese

	

PERF_OBJECT_1_009_NAME=Name	of	the	third	counter

PERF_OBJECT_1_009_HELP=Displays	the	current	rate	of	the	third	counter

PERF_OBJECT_1_004_NAME=Name	of	the	third	counter	in	Chinese

PERF_OBJECT_1_004_HELP=Displays	the	rate	of	the	third	counter	in	Chinese

Sample	PerfCounters.h:

#define	OBJECT_1				0

#define	DEVICE_COUNTER_1				2

#define	DEVICE_COUNTER_2				4

#define	PERF_OBJECT_1				8



Quiet	Execution	CustomAction
There	is	a	qtexec	custom	action	that	is	part	of	the	wixca	that	can	run
arbitrary	command	lines.



Immediate	execution
<Property	Id="QtExecCmdLine"	Value="command	line	to	run"/>

<CustomAction	Id="QtExec"	BinaryKey="wixca"	DllEntry="CAQuietExec"	Execute="immediate"	Return="check"/>

<Binary	Id="wixca"	src="wixca.dll"/>

.

.

.

<InstallExecuteSequence>

				<Custom	Action="QtExec"	After="TheActionYouWantItAfter"/>

</InstallExecuteSequence>

This	will	result	in	running	the	command	line	in	the	immediate	sequence.	If
the	exit	code	of	the	command	line	is	an	error	(not	0)	then	because	Return
is	set	to	“check"	it	will	cause	the	install	to	fail.	You	can	change	this	value
to	“ignore"	if	you	don’t	want	it	to	cause	an	install	failure	(it	will	be	logged
still).

If	you	want	to	run	more	than	one	command	line	in	the	immediate
sequence	then	you’ll	need	schedule	QtExec	multiple	times	and	set	the
QtExecCmdLine	property	(using	a	type	51	custom	action)	right	before
you	want	each	of	them	executed.



Deferred	execution
You	can	also	run	command	lines	in	the	differed	script	using	this	tool	by
setting	the	custom	action	data	property.	If	the	code	is	running	in
immediate	mode	it	will	try	to	execute	the	value	of	the	QtExecCmdLine	if	it
is	running	in	deferred	(or	rollback)	mode	it	will	try	to	execute	the	value	of
the	custom	action	data.	The	custom	action	data	is	a	property	that	is
named	the	same	as	the	custom	action.	Here’s	an	example	of	authoring
deferred	command	line	execution:

<Property	Id="QtExecDeferred"	Value="command	line	to	run"/>

<CustomAction	Id="QtExecDeferred"	BinaryKey="wixca"	DllEntry="CAQuietExec"	Execute="deferred"	Return="check"/>

<Binary	Id="wixca"	src="wixca.dll"/>

.

.

.

<InstallExecuteSequence>

				<Custom	Action="QtExecDeferred"	After="TheActionYouWantItAfter"/>

</InstallExecuteSequence>



Extensions
WiX	has	support	for	three	classes	of	extensions



Introduction
Preprocessor	Extensions	allow	clients	to	modify	authoring	files	before
they	are	processed	by	the	compiler.
Compiler	Extensions	allow	clients	to	custom	compile	authored	XML	into
internal	table	representation	before	it's	written	to	binary	form.
Binder	Extensions	allow	clients	to	the	feed	the	interlace	image
processing	and	data	finalization.
Through	these	extensions	one	can	extend	WiX	to	support	custom
preprocessing,	XML	syntax	compilation,	or	binding	semantics	for	ones
particular	layout	generation	process.



Common	Requirements
How	to	use	each	should	start	in	the	source	code	but	they	all	have	a	few
things	in	common
Implemented	in	same	version	of	.NET	1.1	as	the	rest	of	WiX
Build	a	subclass	of	the	appropriate	extension	object	giving	it	a	easily
distinguishable	name.
Build	a	schema	of	the	appropriate	syntax	to	provide	validation	checking
where	possible.
Build	internal	table	definitions	and	register	them	with	the	compiler.
Build	overrides	for	extendable	methods	and	virtual	members	which	will
get	invoked	at	the	approriate	location	during	the	single	pass	compile.
Build	extension	into	a	DLL.
Place	extension	DLL	next	to	WiX	EXEs.
Registered	with	WiX	via	command	line	argument	to	the	compiler



Considerations
Before	investing	in	an	extension,	one	should	evaluate	whether	an
external	tool	and	the	?include	syntax	(from	the	preprocessor)	will	provide
the	needed	flexability	for	your	technical	needs.	Multiple	extensions	and
extension	types	are	supported	but	there	is	no	guarentee	of	the	order	a
particular	class	of	extensions	will	be	processes	so	there	should	be	no
sequencing	dependencies	between	extensions	within	the	same	extension
class.



Patch	Building
Creating	a	Patch	with	Wix
Note:	You	must	have	Windows	Installer	3.0	installed\

1.	 Do	an	administrative	install	of	the	RTM	version	(Target	Image).
2.	 Update	Package	Id	in	Main.wxs.
3.	 Make	new	Installer.msi
4.	 Do	an	administrative	install	of	the	latest	version	(Update	Image

with	new	files	you	want	to	patch).
5.	 Create	a	patch	creation	properties	(.pcp)	file.
6.	 Create	the	patch.
7.	 Run	the	patch



1.	Administrative	install	of	RTM	version
With	the	RTM	installer.msi,	run

md	c:\patchdir

md	c:\patchdir\rtm

msiexec	/a	installer.msi	TARGETDIR=c:\patchdir\rtm



2.	Update	Package	Id	in	source	.wxs	file.
Make	a	new	Guid	for	the	Id=	attribute	under	the	%lt;Package>	tag	in	the
wxs	files.



3.	Make	new	installer.msi

4.	Administrative	install	of	latest	version
With	the	new	installer.msi,	run

md	c:\patchdir\latest

msiexec	/a	installer.msi	TARGETDIR=c:\patchdir\latest



5.	Create	a	Patch	Creation	Properties	(.pcp)	file
<?xml	version="1.0"	encoding="utf-8"?>

<Wix	xmlns="http://schemas.microsoft.com/wix/2003/01/wi">

		<?define	WixDir	=	.	?>

		<?define	Proj1	=	"rtm"	?>

		<?define	Proj2	=	"latest"	?>	

		<PatchCreation	

					Id="put-guid-here"

							CleanWorkingFolder="yes"

							OutputPath="patch.pcp"

							WholeFilesOnly="yes"

							>

								<PatchInformation

														Description="Patches	the	andmagichappens.cmd	file"

														Comments="Patch	for	new	dll"

														ShortNames="no"

														Languages="1033"

														Compressed="yes"

														Manufacturer="insert-organization-name-here"/>

								<PatchMetadata

														AllowRemoval="yes"

														Description="Patches	the	andmagichappens.cmd	file"

														ManufacturerName="insert-organization-name-here"

														TargetProductName="insert-product-name-here"

														MoreInfoURL="insert-info-url-here"

														Classification="Hotfix"

														DisplayName="insert-product-abbreviaiton-here	Patch	1.

								<Family	DiskId="2"	MediaSrcProp="insert-product-abbreviaiton-here

															Name="insert-organization-name-here	and	insert-product-abbreviaiton-here

															<UpgradeImage	src="$(var.Proj2)\Installer.msi"	Id="insert-product-abbreviaiton-here

																						<TargetImage	src="$(var.Proj1)\Installer.msi"	Order="2"						

																																		Id="insert-product-abbreviaiton-here

															</UpgradeImage>

								</Family>

									<PatchSequence

													PatchFamily="insert-organization-name-here	and	insert-product-abbreviaiton-here

																	Target="insert-product-abbreviaiton-hereTarget"	/>



				</PatchCreation>

</Wix>

Notes:

The	01	in	red	in	the	above	file	is	a	patch	id.	It	should	be	incremented	by
1	with	each	patch.	Also,	the	Id=	under	<PatchCreation>	should	be	set	to
a	new	Guid	for	each	patch	created.
The	SequenceStart	value	is	influenced	by	the	number	of	files	that	the
previous	patch	delivered,	as	well	as	the	number	of	files	that	this	patch	will
deliver.	This	tells	PatchWiz.dll	to	start	assigning	File	sequence	numbers
from	this	number.	So	if	this	patch	ships	11	files,	and	the	next	patch	uses
a	SequenceStart	of	1020,	it	will	step	on	the	11th	file’s	assigned	sequence
number.	In	this	case	the	next	patch	would	use	a	SequenceStart	of	1030,
and	03	as	the	patch	id	to	avoid	conflicts	with	this	patch.	This	scheme
helps	prevent	this	by	coordinating	the	SequenceStart	(file	sequence
numbers)	with	the	patch	sequence	number.	Also,	note	that	the
SequenceStart	of	the	first	patch	must	be	greater	than	the	number	of	files
in	the	original	installation.	If	the	original	installation	contained	more	than
1000	files(rare),	then	the	SequenceStart	for	the	first	patch	must	be	set	to
a	higher	value	(e.g	2010.)



6.	Create	the	patch	msp	file
candle	patch.wxs

light	patch.wixobj	-out	patch.pcp

msimsp	-s	patch.pcp	-p	patch.msp	-l	msimsp.log



7.Run	the	patch
msiexec	/update	patch.msp	REINSTALL=ALL	/L*v	patch.log



Using	the	WixUI	dialog	library
The	WixUI	dialog	library	contains	a	set	of	"stock"	dialogs	providing	the
familiar	wizard-style	setup	user	interface.	Several	stock	dialog	sets	are
supported	--	use	one	UIRef	to	add	a	user	interface	to	your	setup.	WixUI
is	also	customizable,	from	the	bitmaps	shown	in	the	UI	to	adding	and
removing	custom	dialogs.

Note:	The	WixUI	dialog	library	is	currently	at	technical	preview	status.
Please	provide	feedback	on	the	WiX-devs	mailing	list.	Are	the	provided
stock	dialog	sets	useful?	Do	you	have	suggestions	for	others?	Hate	the
UI?	Need	another	dialog?	Based	on	feedback,	the	WixUI	library	might
change	in	incompatible	ways.

http://lists.sourceforge.net/lists/listinfo/wix-devs


Using	the	stock	dialog	sets
The	WixUI	stock	dialog	sets	support	several	common	dialog	sequences:

WixUI_Mondo	includes	the	full	set	of	dialogs	(hence	"Mondo"):	welcome,
license	agreement,	setup	type	(typical,	custom,	and	complete),	feature
customization,	directory	browse,	and	disk	cost.	Maintenance-mode
dialogs	are	also	included.	Use	WixUI_Mondo	when	you	have	some	of
your	product's	features	aren't	installed	by	default	and	there's	a
meaningful	difference	between	typical	and	complete	installs.

Note:	WixUI_Mondo	uses	SetInstallLevel	control	events	to	set	the	install
level	when	the	user	chooses	Typical	or	Complete.	For	Typical,	the	install
level	is	set	to	3;	for	Complete,	1000.	For	details	about	feature	levels	and
install	levels,	see	INSTALLLEVEL	Property.

WixUI_FeatureTree	is	a	simpler	version	of	WixUI_Mondo	that	omits	the
setup	type	dialog.	Instead,	the	user	goes	directly	from	the	license
agreement	dialog	to	the	feature	customization	dialog.	WixUI_FeatureTree
is	more	appropriate	than	WixUI_Mondo	when	your	product	installs	all
features	by	default.
WixUI_InstallDir	doesn't	allow	the	user	to	choose	features	but	adds	a
dialog	to	let	the	user	choose	a	directory	where	the	product	will	be
installed.

Note:	To	use	WixUI_InstallDir,	you	must	set	a	property	named
WIXUI_INSTALLDIR	with	a	value	of	the	ID	of	the	directory	you	want	the
user	to	be	able	to	specify	the	location	of.	For	example:

<Directory	Id="TARGETDIR"	Name="SourceDir">

		<Directory	Id="ProgramFilesFolder"	Name="PFiles">

				<Directory	Id="TESTFILEPRODUCTDIR"	ShortName="WIXTEST"	Name="Test	File">

						...

				</Directory>

			</Directory>

</Directory>

...

<Property	Id="WIXUI_INSTALLDIR"	Value="TESTFILEPRODUCTDIR"	/>

<UIRef	Id="WixUI_InstallDir"	/>

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/setinstalllevel_controlevent.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/installlevel.asp


WixUI_Minimal	is	the	most	spartan	of	the	WixUI	stock	dialog	sets.	Its
sole	dialog	combines	the	welcome	and	license-agreement	dialogs	and
omits	the	feature	customization	dialog.	WixUI_Minimal	is	appropriate
when	your	product	has	no	optional	features.

How	to	add	a	WixUI	stock	dialog	set	to	a	product	installer

Assuming	you	have	an	existing	installer	that's	functional	but	just	lacking	a
user	interface,	here	are	the	steps	you	need	to	follow	to	use	a	WixUI	stock
dialog	set:

1.	 Add	a	UIRef	element	to	your	installer	source	code,	using	an	Id
attribute	of	one	of	the	above	dialog	sets.	For	example:

<Product	...>

		<UIRef	Id="WixUI_InstallDir"	/>

</Product>

2.	 Add	wixui.wixlib	and	the	appropriate	WixUI	localization	file	to
your	light	command	line.	For	example:

light	Mondo.wixobj	%WIXUI_PATH%\WixUI.wixlib	-loc	%WIXUI_PATH%\WixUI_en-us.wxl	-out	Mondo.msi

For	examples,	see	the	.wxs	files	in	the	doc/examples/wixui	directory.



Specifying	a	license	file
The	stock	dialog	sets	have	a	dialog	that	displays	an	end-user	license
agreement	(EULA).	To	specify	your	product's	license,	include	a
License.rtf	file	in	the	current	directory	when	you	run	light.	If	there	isn't
such	a	file,	light	uses	the	License.rtf	file	in	the	ui	directory.



Using	translated	error	and	progress	text
By	default,	WixUI	doesn't	include	any	translated	Error	or	ProgressText
elements	by	default.	You	can	include	them	by	referencing	the
WixUI_ErrorProgressText	UI	element:

<UIRef	Id="WixUI_Minimal"	/>

<UIRef	Id="WixUI_ErrorProgressText"	/>



Customizing	dialog	sets
You	can	most	easily	add	and	remove	dialogs	from	the	stock	dialog	sets
by	copying	one	of	the	existing	sets	and	modifying	it.	For	an	example,	see
the	project	in	the	doc/examples/wixui/custom	directory.	The	following
table	describes	the	files:

File	name Description
CustomDialogSet.build NAnt	build	file	to	build	the	custom	dialog	set.

Builds	the	WixUI	common	dialog	elements	if
needed,	then	builds	CustomDialogSet.wxs	and
CustomDlg.wxs	to	create
CustomDialogSet.wixlib.

CustomDialogSet.wxs Custom	dialog	set	definition.	Copied	from
WixUI_FeatureTree	set	and	modified	to	add
CustomDlg	after	the	initial	WelcomeDlg.

CustomDlg.wxs Simple	custom	dialog.
TestCustom.wxs WiX	source	code	that	consumes

CustomDialogSet.wixlib.



Replacing	the	stock	bitmaps
The	WixUI	dialog	library	includes	stock	bitmaps	for	the	background	of	the
welcome	and	installation-complete	dialogs	and	the	top	banner	of	the
other	dialogs.	You	can	"override"	those	graphics	with	your	own	for
product-branding	purposes.	To	replace	stock	bitmaps,	add	the	files	from
the	table	below	to	a	subdirectory	named	Bitmaps	under	your	WiX	source
file.

File	name Description Dimensions
bannrbmp.bmp Top	banner 500	×	63
dlgbmp.bmp Background	bitmap	used	on	welcome	and

install-complete	dialogs
503	×	314

exclamic.ico Exclamation	icon	on	the	wait-for-costing
dialog

32	×	32

info.ico Information	icon	on	the	cancel	and	error
dialogs

32	×	32

New.ico Button	glyph	on	directory-browse	dialog 16	×	16
Up.ico Button	glyph	on	directory-browse	dialog 16	×	16



Wix	Schema

Copyright	(c)	Microsoft	Corporation.	All	rights	reserved.	The	use	and
distribution	terms	for	this	software	are	covered	by	the	Common	Public
License	1.0	(http://opensource.org/licenses/cpl.php)	which	can	be	found
in	the	file	CPL.TXT	at	the	root	of	this	distribution.	By	using	this	software
in	any	fashion,	you	are	agreeing	to	be	bound	by	the	terms	of	this	license.
You	must	not	remove	this	notice,	or	any	other,	from	this	software.

Schema	for	describing	Windows	Installer	database	files	(.msi/.msm/.pcp).

Root	Elements
Include
Wix

Target	Namespace
http://schemas.microsoft.com/wix/2003/01/wi

Document	Should	Look	Like
<?xml	version="1.0"?>
<Include	xmlns="http://schemas.microsoft.com/wix/2003/01/wi">
.
.
.
</Include>
<?xml	version="1.0"?>
<Wix	xmlns="http://schemas.microsoft.com/wix/2003/01/wi">
.
.
.
</Wix>

All	Elements
AdminExecuteSequence
AdminUISequence
AdvertiseExecuteSequence



AllocateRegistrySpace
AppData
AppId
AppSearch
AssemblyName
Billboard
BillboardAction
Binary
BindImage
Category
CCPSearch
Certificate
CertificateRef
Class
Column
ComboBox
ComplianceCheck
ComplianceDrive
Component
ComponentGroup
ComponentGroupRef
ComponentRef
ComponentSearch
Condition
Configuration
ConfigurationData
Control
CopyFile
CostFinalize
CostInitialize
CreateFolder
CreateFolders
CreateShortcuts



Custom
CustomAction
CustomActionRef
CustomProperty
CustomTable
Data
DeleteServices
Dependency
Dialog
DialogRef
DigitalCertificate
DigitalSignature
Directory
DirectoryRef
DirectorySearch
DirectorySearchRef
DisableRollback
DuplicateFiles
EnsureTable
Environment
Error
Exclusion
ExecuteAction
Extension
ExternalFile
Family
Feature
FeatureRef
File
FileCost
FileSearch
FileSearchRef
FileShare



FileTypeMask
FindRelatedProducts
ForceReboot
Fragment
FragmentRef
Group
GroupRef
HttpHeader
Icon
IgnoreModularization
IgnoreRange
Include
IniFile
IniFileSearch
InstallAdminPackage
InstallExecute
InstallExecuteAgain
InstallExecuteSequence
InstallFiles
InstallFinalize
InstallInitialize
InstallODBC
InstallServices
InstallUISequence
InstallValidate
Interface
IsolateComponent
IsolateComponents
LaunchConditions
ListBox
ListItem
ListView
Media



Merge
MergeRef
MigrateFeatureStates
MIME
MimeMap
Module
MoveFiles
MsiPublishAssemblies
MsiUnpublishAssemblies
ODBCDataSource
ODBCDriver
ODBCTranslator
Package
Patch
PatchCertificates
PatchCreation
PatchFiles
PatchInformation
PatchMetadata
PatchPackage
PatchProperty
PatchSequence
PerfCounter
Permission
ProcessComponents
Product
ProgId
ProgressText
Property
PropertyRef
ProtectFile
ProtectRange
Publish



PublishComponents
PublishFeatures
PublishProduct
RadioButton
RadioButtonGroup
RecycleTime
RegisterClassInfo
RegisterComPlus
RegisterExtensionInfo
RegisterFonts
RegisterMIMEInfo
RegisterProduct
RegisterProgIdInfo
RegisterTypeLibraries
RegisterUser
Registry
RegistrySearch
RegistrySearchRef
RegistryValue
RemoveDuplicateFiles
RemoveEnvironmentStrings
RemoveExistingProducts
RemoveFile
RemoveFiles
RemoveFolder
RemoveFolders
RemoveIniValues
RemoveODBC
RemoveRegistryValues
RemoveShortcuts
ReplacePatch
ReserveCost
ResolveSource



RMCCPSearch
Row
ScheduleReboot
SelfRegModules
SelfUnregModules
ServiceArgument
ServiceConfig
ServiceControl
ServiceDependency
ServiceInstall
SetODBCFolders
SFPCatalog
SFPFile
Shortcut
Show
SqlDatabase
SqlFileSpec
SqlLogFileSpec
SqlScript
SqlString
StartServices
StopServices
Subscribe
Substitution
SymbolPath
TargetFile
TargetImage
TargetProductCode
Text
TextStyle
TypeLib
UI
UIRef



UIText
UnpublishComponents
UnpublishFeatures
UnregisterClassInfo
UnregisterComPlus
UnregisterExtensionInfo
UnregisterFonts
UnregisterMIMEInfo
UnregisterProgIdInfo
UnregisterTypeLibraries
Upgrade
UpgradeFile
UpgradeImage
UpgradeVersion
User
ValidateProductID
Verb
WebAddress
WebApplication
WebApplicationExtension
WebAppPool
WebDir
WebDirProperties
WebError
WebFilter
WebLog
WebProperty
WebServiceExtension
WebSite
WebVirtualDir
Wix
WriteEnvironmentStrings
WriteIniValues



WriteRegistryValues
XmlFile



AdminExecuteSequence	Element

Description

None

Windows	Installer	references
AdminExecuteSequence	Table

Parents
Fragment,	Include,	Module,	Product

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
Choice	of	elements	(min:	0,	max:	unbounded)
CostFinalize	(min:	0,	max:	unbounded):	Ends	the	internal	installation
costing	process	begun	by	the	CostInitialize	action.
CostInitialize	(min:	0,	max:	unbounded):	Initiates	the	internal
installation	costing	process.
Custom	(min:	0,	max:	unbounded):	Use	to	sequence	a	custom
action.
FileCost	(min:	0,	max:	unbounded):	Initiates	dynamic	costing	of
standard	installation	actions.
InstallAdminPackage	(min:	0,	max:	unbounded):	Copies	the	product
database	to	the	administrative	installation	point.
InstallFiles	(min:	0,	max:	unbounded):	Copies	files	specified	in	the
File	table	from	the	source	directory	to	the	destination	directory.
InstallFinalize	(min:	0,	max:	unbounded):	Marks	the	end	of	a
sequence	of	actions	that	change	the	system.
InstallInitialize	(min:	0,	max:	unbounded):	Marks	the	beginning	of	a
sequence	of	actions	that	change	the	system.
InstallValidate	(min:	0,	max:	unbounded):	Verifies	that	all	costed
volumes	have	enough	space	for	the	installation.
LaunchConditions	(min:	0,	max:	unbounded):	Queries	the

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/adminexecutesequence_table.asp?frame=true&hidetoc=true


LaunchCondition	table	and	evaluates	each	conditional	statement
recorded	there.
ResolveSource	(min:	0,	max:	unbounded):	Determines	the	location
of	the	source	and	sets	the	SourceDir	property	if	the	source	has	not
been	resolved	yet.

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



AdminUISequence	Element

Description

None

Windows	Installer	references
AdminUISequence	Table

Parents
Fragment,	Include,	Module,	Product,	UI

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
Choice	of	elements	(min:	0,	max:	unbounded)
CostFinalize	(min:	0,	max:	unbounded):	Ends	the	internal	installation
costing	process	begun	by	the	CostInitialize	action.
CostInitialize	(min:	0,	max:	unbounded):	Initiates	the	internal
installation	costing	process.
Custom	(min:	0,	max:	unbounded):	Use	to	sequence	a	custom
action.
ExecuteAction	(min:	0,	max:	unbounded):	Initiates	the	execution
sequence.
FileCost	(min:	0,	max:	unbounded):	Initiates	dynamic	costing	of
standard	installation	actions.
InstallAdminPackage	(min:	0,	max:	unbounded):	Copies	the	product
database	to	the	administrative	installation	point.
InstallFiles	(min:	0,	max:	unbounded):	Copies	files	specified	in	the
File	table	from	the	source	directory	to	the	destination	directory.
InstallFinalize	(min:	0,	max:	unbounded):	Marks	the	end	of	a
sequence	of	actions	that	change	the	system.
InstallInitialize	(min:	0,	max:	unbounded):	Marks	the	beginning	of	a
sequence	of	actions	that	change	the	system.
InstallValidate	(min:	0,	max:	unbounded):	Verifies	that	all	costed

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/adminuisequence_table.asp?frame=true&hidetoc=true


volumes	have	enough	space	for	the	installation.
LaunchConditions	(min:	0,	max:	unbounded):	Queries	the
LaunchCondition	table	and	evaluates	each	conditional	statement
recorded	there.
Show	(min:	0,	max:	unbounded)

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



AdvertiseExecuteSequence	Element

Description

None

Windows	Installer	references
AdvtExecuteSequence	Table

Parents
Fragment,	Include,	Module,	Product

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
Choice	of	elements	(min:	0,	max:	unbounded)
CostFinalize	(min:	0,	max:	unbounded):	Ends	the	internal	installation
costing	process	begun	by	the	CostInitialize	action.
CostInitialize	(min:	0,	max:	unbounded):	Initiates	the	internal
installation	costing	process.
CreateShortcuts	(min:	0,	max:	unbounded):	Manages	the	creation	of
shortcuts.
Custom	(min:	0,	max:	unbounded):	Use	to	sequence	a	custom
action.	The	only	custom	actions	that	are	allowed	in	the
AdvtExecuteSequence	are	type	19	(0x013)	type	35	(0x023)	and	type
51	(0x033).
InstallFinalize	(min:	0,	max:	unbounded):	Marks	the	end	of	a
sequence	of	actions	that	change	the	system.
InstallInitialize	(min:	0,	max:	unbounded):	Marks	the	beginning	of	a
sequence	of	actions	that	change	the	system.
InstallValidate	(min:	0,	max:	unbounded):	Verifies	that	all	costed
volumes	have	enough	space	for	the	installation.
MsiPublishAssemblies	(min:	0,	max:	unbounded):	Manages	the
advertisement	of	CLR	and	Win32	assemblies.
PublishComponents	(min:	0,	max:	unbounded):	Manages	the
advertisement	of	the	components	from	the	PublishComponent	table.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/advtexecutesequence_table.asp?frame=true&hidetoc=true


PublishFeatures	(min:	0,	max:	unbounded):	Writes	each	feature's
state	into	the	system	registry.
PublishProduct	(min:	0,	max:	unbounded):	Manages	the
advertisement	of	the	product	information	with	the	system.
RegisterClassInfo	(min:	0,	max:	unbounded):	Manages	the
registration	of	COM	class	information	with	the	system.
RegisterExtensionInfo	(min:	0,	max:	unbounded):	Manages	the
registration	of	extension	related	information	with	the	system.
RegisterMIMEInfo	(min:	0,	max:	unbounded):	Registers	MIME-
related	registry	information	with	the	system.
RegisterProgIdInfo	(min:	0,	max:	unbounded):	Manages	the
registration	of	OLE	ProgId	information	with	the	system.

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



AllocateRegistrySpace	Element

Description

Ensures	the	needed	amount	of	space	exists	in	the	registry.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



AppData	Element

Description

Optional	way	for	defining	AppData,	generally	used	for	complex
CDATA.

Windows	Installer	references
None

Parents
Category

See	Also
Wix	Schema

Version	2.0.4820.0



AppId	Element

Description

Application	ID	containing	DCOM	information	for	the	associated
application	GUID.	If	this	element	is	nested	under	a	Fragment,
Module,	or	Product	element,	it	must	be	advertised.

Windows	Installer	references
AppId	Table,	Registry	Table

Parents
Component,	File,	Fragment,	Include,	Module,	Product,	TypeLib

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
Class	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id Uuid Set	this	value	to	the

AppID	GUID	that
corresponds	to	the
named	executable.

Yes

ActivateAtStorage YesNoType Set	this	value	to	'yes'
to	configure	the	client
to	activate	on	the	same
system	as	persistent
storage.

	

Advertise YesNoType Set	this	value	to	'yes'	in
order	to	create	a
normal	AppId	table
row.	Set	this	value	to
'no'	in	order	to

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/appid_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true


generate	Registry	rows
that	perform	similar
registration	(without	the
often	problematic
Windows	Installer
advertising	behavior).

Description String Set	this	value	to	the
description	of	the
AppId.	It	can	only	be
specified	when	the
AppId	is	not	being
advertised.

	

DllSurrogate String Set	this	value	to
specify	that	the	class	is
a	DLL	that	is	to	be
activated	in	a	surrogate
EXE	process,	and	the
surrogate	process	to
be	used	is	the	path	of	a
surrogate	EXE	file
specified	by	the	value.

	

LocalService String Set	this	value	to	the
name	of	a	service	to
allow	the	object	to	be
installed	as	a	Win32
service.

	

RemoteServerName String Set	this	value	to	the
name	of	the	remote
server	to	configure	the
client	to	request	the
object	be	run	at	a
particular	machine
whenever	an	activation
function	is	called	for
which	a
COSERVERINFO
structure	is	not
specified.

	



RunAsInteractiveUser YesNoType Set	this	value	to	'yes'
to	configure	a	class	to
run	under	the	identity
of	the	user	currently
logged	on	and
connected	to	the
interactive	desktop
when	activated	by	a
remote	client	without
being	written	as	a
Win32	service.

	

ServiceParameters String Set	this	value	to	the
parameters	to	be
passed	to	a
LocalService	on
invocation.

	

Remarks
When	being	used	in	unadvertised	mode,	the	attributes	in	the	AppId
element	correspond	to	registry	keys	as	follows	(values	that	can	be
specified	in	authoring	are	in	bold):
Id

In	General
[HKCR\AppID\{Id}]

Specific	Example
[HKCR\AppID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]

ActivateAtStorage
In	General

[HKCR\AppID\{Id}]
ActivateAtStorage="ActivateAtStorage"

Specific	Example
[HKCR\AppID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
ActivateAtStorage="Y"

Description
In	General



[HKCR\AppID\{Id}]
@="Description"

Specific	Example
[HKCR\AppID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
@="My	AppId	Description"

DllSurrogate
In	General

[HKCR\AppID\{Id}]
DllSurrogate="DllSurrogate"

Specific	Example
[HKCR\AppID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
DllSurrogate="C:\surrogate.exe"

LocalService
In	General

[HKCR\AppID\{Id}]
LocalService="LocalService"

Specific	Example
[HKCR\AppID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
LocalService="MyServiceName"

RemoteServerName
In	General

[HKCR\AppID\{Id}]
RemoteServerName="RemoteServerName"

Specific	Example
[HKCR\AppID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
RemoteServerName="MyRemoteServer"

RunAsInteractiveUser
In	General

[HKCR\AppID\{Id}]
RunAs="RunAsInteractiveUser"



Specific	Example
[HKCR\AppID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
RunAs="Interactive	User"

ServiceParameters
In	General

[HKCR\AppID\{Id}]
ServiceParameters="ServiceParameters"

Specific	Example
[HKCR\AppID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
ServiceParameters="-param"

See	Also
Wix	Schema

Version	2.0.4820.0



AppSearch	Element

Description

Uses	file	signatures	to	search	for	existing	versions	of	products.	The
AppSearch	action	may	use	this	information	to	determine	where
upgrades	are	to	be	installed.	The	AppSearch	action	can	also	be
used	to	set	a	property	to	the	existing	value	of	an	registry	or	.ini	file
entry.	AppSearch	should	be	authored	into	the	InstallUISequence
table	and	InstallExecuteSequence	table.	The	installer	prevents	The
AppSearch	action	from	running	in	the	InstallExecuteSequence
sequence	if	the	action	has	already	run	in	InstallUISequence
sequence.	The	AppSearch	action	searches	for	file	signatures	using
the	CompLocator	table	first,	the	RegLocator	table	next,	then	the
IniLocator	table,	and	finally	the	DrLocator	table.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a

	



sequence.
Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	ComponentSearch,	FileSearch,	IniFileSearch,
RegistrySearch

Version	2.0.4820.0



AssemblyName	Element

Description

The	MsiAssemblyName	table	specifies	the	schema	for	the	elements
of	a	strong	assembly	cache	name	for	a	.NET	Framework	or	Win32
assembly.	Consider	using	the	Assembly	attribute	on	File	element	to
have	the	toolset	populate	these	entries	automatically.

Windows	Installer	references
MsiAssemblyName	Table

Parents
File

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Name	of	the	attribute	associated	with

the	value	specified	in	the	Value
column.

Yes

Value String Value	associated	with	the	name
specified	in	the	Name	column.

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiassemblyname_table.asp?frame=true&hidetoc=true


Billboard	Element

Description

Billboard	to	display	during	install	of	a	Feature

Windows	Installer	references
Billboard	Table,	BBControl	Table

Parents
BillboardAction

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Control	(min:	0,	max:	unbounded):	Only	controls	of	static
type	such	as:	Text,	Bitmap,	Icon,	or	custom	control	can	be
placed	on	a	billboard.

Attributes

Name Type Description Required
Id String Unique	identifier	for	the	Billboard. Yes
Feature String Feature	whose	state	determines	if	the

Billboard	is	shown.
	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/billboard_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/bbcontrol_table.asp?frame=true&hidetoc=true


BillboardAction	Element

Description

Billboard	action	during	which	child	Billboards	are	displayed

Windows	Installer	references
Billboard	Table,	BBControl	Table

Parents
UI

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Billboard	(min:	1,	max:	unbounded):	Order	of	Billboard
elements	determines	order	of	display

Attributes

Name Type Description Required
Id String Action	name	that	determines	when	the

Billboard	should	be	shown.
Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/billboard_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/bbcontrol_table.asp?frame=true&hidetoc=true


Binary	Element

Description

Binary	data	used	for	CustomAction	elements	and	UI	controls.

Windows	Installer	references
Binary	Table

Parents
Control,	Fragment,	Include,	Module,	Product,	SqlScript,	UI

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	Id	cannot	by	longer	than	55

characters.	In	order	to	prevent	errors
in	cases	where	the	Id	is	modularized,
it	should	not	be	longer	than	18
characters.

Yes

SourceFile String Path	to	the	binary	file. 	
src String This	attribute	has	been	deprecated;

please	use	the	SourceFile	attribute
instead.

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/binary_table.asp?frame=true&hidetoc=true


BindImage	Element

Description

Binds	each	executable	or	DLL	that	must	be	bound	to	the	DLLs
imported	by	it.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Category	Element

Description

Qualified	published	component	for	parent	Component

Windows	Installer	references
PublishComponent	Table

Parents
Component,	Include

Inner	Text
None

Children
Sequence	(min:	0,	max:	unbounded)

1.	 AppData	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id Uuid A	string	GUID	that	represents	the

category	of	components	being
grouped	together.

Yes

AppData String An	optional	localizable	text	describing
the	category.	The	string	is	commonly
parsed	by	the	application	and	can	be
displayed	to	the	user.	It	should
describe	the	category.

	

Feature String Feature	that	controls	the
advertisement	of	the	category.
Defaults	to	the	primary	Feature	for	the
parent	Component	.

	

Qualifier String A	text	string	that	qualifies	the	value	in
the	Id	attribute.	A	qualifier	is	used	to
distinguish	multiple	forms	of	the	same
Component,	such	as	a	Component

Yes

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/publishcomponent_table.asp?frame=true&hidetoc=true


that	is	implemented	in	multiple
languages.

See	Also
Wix	Schema

Version	2.0.4820.0



CCPSearch	Element

Description

Uses	file	signatures	to	validate	that	qualifying	products	are	installed
on	a	system	before	an	upgrade	installation	is	performed.	The
CCPSearch	action	should	be	authored	into	the	InstallUISequence
table	and	InstallExecuteSequence	table.	The	installer	prevents	the
CCPSearch	action	from	running	in	the	InstallExecuteSequence
sequence	if	the	action	has	already	run	in	InstallUISequence
sequence.	The	CCPSearch	action	must	come	before	the
RMCCPSearch	action.	The	condition	for	this	action	may	be	specified
in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also



Wix	Schema,	RMCCPSearch,	ComplianceCheck
Version	2.0.4820.0



Certificate	Element

Description

Used	to	install	and	unintall	certificates.

Windows	Installer	references
None

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Unique	identifier	for	this

certificate	in	the	installation
package.

Yes

BinaryKey String Reference	to	a	Binary
element	that	will	store	the
certificate	as	a	stream	inside
the	package.	This	attribute
cannot	be	specified	with	the
CertificatePath	attribute.

	

CertificatePath String If	the	Request	attribute	is
"no"	then	this	attribute	is	the
path	to	the	certificate	file
outside	of	the	package.	If	the
Request	attribute	is	"yes"
then	this	atribute	is	the
certificate	authority	to
request	the	certificate	from.

	



This	attribute	may	be	set	via
a	formatted	Property	(e.g.
[MyProperty]).

Name String Name	of	the	certificate	that
will	be	installed	or	uninstalled
in	the	specified	store.	This
attribute	may	be	set	via	a
formatted	Property	(e.g.
[MyProperty]).

Yes

Overwrite YesNoType 	 	
PFXPassword String If	the	Binary	stream	or	path

to	the	file	outside	of	the
package	is	a	password
protected	PFX	file,	the
password	for	that	PFX	must
be	specified	here.	This
attribute	may	be	set	via	a
formatted	Property	(e.g.
[MyProperty]).

	

Request YesNoType This	attribute	controls
whether	the	CertificatePath
attribute	is	a	path	to	a
certificate	file	(Request='no')
or	the	certificate	authority	to
request	the	certificate	from
(Request='yes').

	

StoreLocation Enumeration This	attribute's	value	should
be	one	of	the	following:
currentUser

localMachine

Yes

StoreName Enumeration This	attribute's	value	should
be	one	of	the	following:
ca

Contains	the	certificates
of	certificate	authorities
that	the	user	trusts	to

Yes



issue	certificates	to
others.	Certificates	in
these	stores	are
normally	supplied	with
the	operating	system	or
by	the	user's	network
administrator.

my
Use	the	"personal"	value
instead.

personal
Contains	personal
certificates.	These
certificates	will	usually
have	an	associated
private	key.	This	store	is
often	referred	to	as	the
"MY"	certificate	store.

request

root
Contains	the	certificates
of	certificate	authorities
that	the	user	trusts	to
issue	certificates	to
others.	Certificates	in
these	stores	are
normally	supplied	with
the	operating	system	or
by	the	user's	network
administrator.
Certificates	in	this	store
are	typically	self-signed.

otherPeople
Contains	the	certificates
of	those	that	the	user
normally	sends



enveloped	messages	to
or	receives	signed
messages	from.	See
MSDN	documentation
for	more	information.

See	Also
Wix	Schema,	CertificateRef

Version	2.0.4820.0

http://msdn2.microsoft.com/en-us/library/aa388160.aspx


CertificateRef	Element

Description

Associates	a	certificate	with	the	parent	WebSite.	The	Certificate
element	should	be	in	the	same	Component	as	the	parent	WebSite.

Windows	Installer	references
None

Parents
WebSite

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	identifier	of	the	referenced

Certificate.
Yes

See	Also
Wix	Schema,	Certificate

Version	2.0.4820.0



Class	Element

Description

COM	Class	registration	for	parent	Component.

Windows	Installer	references
Class	Table,	ProgId	Table,	Registry	Table,	AppId	Table

Parents
AppId,	Component,	File,	Include,	TypeLib

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
FileTypeMask	(min:	0,	max:	unbounded)
Interface	(min:	0,	max:	unbounded):	These	Interfaces	will	be
registered	with	the	parent	Class	and	TypeLib	(if	present).
ProgId	(min:	0,	max:	unbounded):	A	ProgId	associated	with	Class
must	be	a	child	element	of	the	Class	element

Attributes

Name Type Description
Id Uuid The	Class	identifier	(CLSID)	of	a	COM

server.
Advertise YesNoType Set	this	value	to	"yes"	in	order	to	create	a

normal	Class	table	row.	Set	this	value	to	
in	order	to	generate	Registry	rows	that
perform	similar	registration	(without	the	
problematic	Windows	Installer	advertising
behavior).

AppId Uuid This	attribute	is	only	allowed	when	a	Class	is
advertised.	Using	this	attribute	will	reference
an	Application	ID	containing	DCOM
information	for	the	associated	application

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/class_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/progid_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/appid_table.asp?frame=true&hidetoc=true


GUID.	The	value	must	correspond	to	an
AppId/@Id	of	an	AppId	element	nested	under
a	Fragment,	Module,	or	Product	element.	
associate	an	AppId	with	a	non-advertised
class,	nest	the	class	within	a	parent	AppId
element.

Argument String This	column	is	optional	only	when	the
Context	column	is	set	to	"LocalServer"	
"LocalServer32"	server	context.	The	text	is
registered	as	the	argument	against	the	OLE
server	and	is	used	by	OLE	for	invoking	the
server.	Note	that	the	resolution	of	properties
in	the	Argument	field	is	limited.	A	property
formatted	as	[Property]	in	this	field	can	only
be	resolved	if	the	property	already	has	the
intended	value	when	the	component	owning
the	class	is	installed.	For	example,	for	the
argument	"[#MyDoc.doc]"	to	resolve	to	the
correct	value,	the	same	process	must	be
installing	the	file	MyDoc.doc	and	the
component	that	owns	the	class.

Context List The	server	context(s)	for	this	server.	This
attribute's	value	should	be	a	space-delimited
list	containg	one	or	more	of	the	following:
LocalServer

A	16-bit	local	server	application.

LocalServer32
A	32-bit	local	server	application.

InprocServer
A	16-bit	in-process	server	DLL.

InprocServer32
A	32-bit	in-process	server	DLL.

Control YesNoType Set	this	attribute's	value	to	'yes'	to	identify	an
object	as	an	ActiveX	Control.	The	default
value	is	'no'.	See
http://msdn.microsoft.com/library/default.asp?

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/com/htm/reg_2fn0.asp


url=/library/en-us/com/htm/reg_2fn0.asp
more	information.

Description String Localized	description	associated	with	the
Class	ID	and	Program	ID.

Handler String The	default	inproc	handler.	May	be	optionally
provided	only	for	Context	=	LocalServer	or
LocalServer32.	Value	of	"1"	creates	a	16-bit
InprocHandler	(appearing	as	the
InprocHandler	value).	Value	of	"2"	creates	a
32-bit	InprocHandler	(appearing	as	the
InprocHandler32	value).	Value	of	"3"	creates
16-bit	as	well	as	32-bit	InprocHandlers.	
non-numeric	value	is	treated	as	a	system	file
that	serves	as	the	32-bit	InprocHandler
(appearing	as	the	InprocHandler32	value).

Icon String The	file	providing	the	icon	associated	with
this	CLSID.	Reference	to	an	Icon	element
(should	match	the	Id	attribute	of	an	Icon
element).	This	is	currently	not	supported	if
the	value	of	the	Advertise	attribute	is	"no".

IconIndex Integer Icon	index	into	the	icon	file.
Insertable YesNoType Specifies	the	CLISD	may	be	insertable.
Programmable YesNoType Specifies	the	CLSID	may	be	programmable.
RelativePath YesNoType When	the	value	is	"yes",	the	bare	file	name

can	be	used	for	COM	servers.	The	installer
registers	the	file	name	only	instead	of	the
complete	path.	This	enables	the	server	in	
current	directory	to	take	precedence	and
allows	multiple	copies	of	the	same
component.

SafeForInitializing YesNoType May	only	be	specified	if	the	value	of	the
Advertise	attribute	is	"no".

SafeForScripting YesNoType May	only	be	specified	if	the	value	of	the
Advertise	attribute	is	"no".

Server String May	only	be	specified	if	the	value	of	the
Advertise	attribute	is	"no".	File	Id	of	the	



server	file.	If	this	element	is	nested	under	a
File	element,	this	value	defaults	to	the	value
of	the	parent	File/@Id.

ThreadingModel Enumeration Threading	model	for	the	CLSID.	This
attribute's	value	should	be	one	of	the
following:
apartment

free

both

neutral

single

rental

Version String Version	for	the	CLSID.

Remarks
When	being	used	in	unadvertised	mode,	the	attributes	in	the	Class
element	correspond	to	registry	keys	as	follows	(values	that	can	be
specified	in	authoring	are	in	bold):
Id/Context/Server

In	General
[HKCR\CLSID\{Id}\Context1]
@="[!Server]"
[HKCR\CLSID\{Id}\Context2]
@="[!Server]"

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\LocalServer]
@="[!comserv.dll]"
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\LocalServer32]
@="[!comserv.dll]"

AppId
In	General

[HKCR\CLSID\{Id}]



AppId="{AppId}"

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
AppId="{00000000-89AB-0000-0123-000000000000}"

Argument
In	General

[HKCR\CLSID\{Id}\Context]
@="[!Server]	Argument"

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\LocalServer32]
@="[!comserv.dll]	/arg1	/arg2	/arg3"

Control
In	General

Value	"yes"	specified:
[HKCR\CLSID\{Id}\Control]

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\Control]

Description
In	General

[HKCR\CLSID\{Id}]
@="Description"

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}]
@="Description	of	Example	COM	Component"

Handler
In	General

Value	"1"	specified:
[HKCR\CLSID\{Id}\InprocHandler]
@="ole.dll"
Value	"2"	specified:



[HKCR\CLSID\{Id}\InprocHandler32]
@="ole32.dll"
Value	"3"	specified:
[HKCR\CLSID\{Id}\InprocHandler]
@="ole.dll"
[HKCR\CLSID\{Id}\InprocHandler32]
@="ole32.dll"
Other	value	specified:
[HKCR\CLSID\{Id}\InprocHandler32]
@="Handler"

Specific	Example	(for	other	value)
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\InprocHandler32]
@="handler.dll"

Icon/IconIndex
This	is	not	currently	handled	properly.

Insertable
In	General

Value	"no"	specified:
[HKCR\CLSID\{Id}\NotInsertable]
Value	"yes"	specified:
[HKCR\CLSID\{Id}\Insertable]

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\Insertable]

Programmable
In	General

Value	"yes"	specified:
[HKCR\CLSID\{Id}\Programmable]

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\Programmable]

RelativePath
Unsupported.	Please	contribute	this	back	to	WiX	if	you	know.



SafeForInitializing
In	General

Value	"yes"	specified:
[HKCR\CLSID\{Id}\Implemented	Categories\{7DD95802-
9882-11CF-9FA9-00AA006C42C4}]

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\Implemented	Categories\{7DD95802-
9882-11CF-9FA9-00AA006C42C4}]

SafeForScripting
In	General

Value	"yes"	specified:
[HKCR\CLSID\{Id}\Implemented	Categories\{7DD95801-
9882-11CF-9FA9-00AA006C42C4}]

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\Implemented	Categories\{7DD95801-
9882-11CF-9FA9-00AA006C42C4}]

ThreadingModel
In	General

[HKCR\CLSID\{Id}\Context]
ThreadingModel="ThreadingModel"

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\LocalServer32]
ThreadingModel="Apartment"

TypeLibId	(from	parent	TypeLib/@Id)
In	General

[HKCR\CLSID\{Id}\TypeLib]
@="{TypeLibId}"

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\TypeLib]
@="{11111111-89AB-1111-0123-111111111111}"



Version
In	General

[HKCR\CLSID\{Id}\Version]
@="Version"

Specific	Example
[HKCR\CLSID\{01234567-89AB-CDEF-0123-
456789ABCDEF}\Version]
@="1.0.0.0"

See	Also
Wix	Schema,	AppId

Version	2.0.4820.0



Column	Element

Description

Column	definition	for	a	Custom	Table

Windows	Installer	references
None

Parents
CustomTable

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	column. Yes
Category Enumeration Category	of	this	column.	This

attribute's	value	should	be
one	of	the	following:
Text

UpperCase

LowerCase

Integer

DoubleInteger

TimeDate

Identifier

Property

Filename

	



WildCardFilename

Path

Paths

AnyPath

DefaultDir

RegPath

Formatted

Template

Condition

Guid

Version

Language

Binary

CustomSource

Cabinet

Shortcut

Description String Description	of	this	column. 	
KeyColumn Integer Column	in	the	table	in

KeyTable	attribute.
	

KeyTable String Table	in	which	this	column	is
an	external	key.	Can	be
semicolon	delimited.

	

Localizable YesNoType Whether	this	column	can	be
localized.

	

MaxValue Integer Maximum	value	for	a
numeric	value,	date	or
version	in	this	column.

	

MinValue Integer Minimum	value	for	a	numeric
value,	date	or	version	in	this

	



column.

Modularize ModularizeType How	this	column	should	be
modularized,	if	at	all.

	

Nullable YesNoType Whether	this	column	can	be
left	null.

	

PrimaryKey YesNoType Whether	this	column	is	a
primary	key.

	

Set String Semicolon	delimited	list	of
permissible	values.

	

Type Enumeration The	type	of	this	column.	This
attribute's	value	should	be
one	of	the	following:
binary

int

string

Yes

Width Integer Width	of	this	column. 	

See	Also
Wix	Schema

Version	2.0.4820.0



ComboBox	Element

Description

Set	of	items	for	a	particular	ComboBox	control	tied	to	an	install
Property

Windows	Installer	references
ComboBox	Table,	Control	Table,	Dialog	Table

Parents
Control,	UI

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 ListItem	(min:	0,	max:	unbounded):	entry	for	ComboBox
table

Attributes

Name Type Description Required
Property String Property	tied	to	this	group Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/combobox_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp?frame=true&hidetoc=true


ComplianceCheck	Element

Description

Adds	a	row	to	the	CCPSearch	table.

Windows	Installer	references
CCPSearch	Table,	Signature	Table

Parents
Fragment,	Include,	Product

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 ComplianceDrive	(min:	0,	max:	1):	Starts	searches	from	the
CCP_DRIVE.

2.	 ComponentSearch	(min:	0,	max:	unbounded)
3.	 RegistrySearch	(min:	0,	max:	unbounded)
4.	 IniFileSearch	(min:	0,	max:	unbounded)
5.	 DirectorySearch	(min:	0,	max:	unbounded)
6.	 FileSearch	(min:	0,	max:	unbounded)

Attributes
None

See	Also
Wix	Schema,	Property

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/ccpsearch_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/signature_table.asp?frame=true&hidetoc=true


ComplianceDrive	Element

Description

Sets	the	parent	of	a	nested	DirectorySearch	element	to
CCP_DRIVE.

Windows	Installer	references
None

Parents
ComplianceCheck,	Property

Inner	Text
None

Children
Choice	of	elements	(min:	1,	max:	1)
DirectorySearch	(min:	1,	max:	1)
DirectorySearchRef	(min:	1,	max:	1)

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



Component	Element

Description

Component	for	parent	Directory

Windows	Installer	references
Component	Table,	Condition	Table,	Directory	Table

Parents
Directory,	DirectoryRef

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
AppId	(min:	0,	max:	unbounded)
Category	(min:	0,	max:	unbounded)
Certificate	(min:	0,	max:	unbounded)
Class	(min:	0,	max:	unbounded)
Condition	(min:	0,	max:	unbounded)
CopyFile	(min:	0,	max:	unbounded)
CreateFolder	(min:	0,	max:	unbounded)
Environment	(min:	0,	max:	unbounded)
Extension	(min:	0,	max:	unbounded)
File	(min:	0,	max:	unbounded)
FileShare	(min:	0,	max:	unbounded)
IniFile	(min:	0,	max:	unbounded)
Interface	(min:	0,	max:	unbounded)
IsolateComponent	(min:	0,	max:	unbounded)
ODBCDataSource	(min:	0,	max:	unbounded)
ODBCDriver	(min:	0,	max:	unbounded)
ODBCTranslator	(min:	0,	max:	unbounded)
ProgId	(min:	0,	max:	unbounded)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/component_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/condition_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/directory_table.asp?frame=true&hidetoc=true


Registry	(min:	0,	max:	unbounded)
RemoveFile	(min:	0,	max:	unbounded)
RemoveFolder	(min:	0,	max:	unbounded)
ReserveCost	(min:	0,	max:	unbounded)
ServiceConfig	(min:	0,	max:	unbounded)
ServiceControl	(min:	0,	max:	unbounded)
ServiceInstall	(min:	0,	max:	unbounded)
Shortcut	(min:	0,	max:	unbounded)
SqlDatabase	(min:	0,	max:	unbounded)
SqlScript	(min:	0,	max:	unbounded)
SqlString	(min:	0,	max:	unbounded)
TypeLib	(min:	0,	max:	unbounded)
User	(min:	0,	max:	unbounded)
WebAppPool	(min:	0,	max:	unbounded)
WebDir	(min:	0,	max:	unbounded)
WebFilter	(min:	0,	max:	unbounded)
WebProperty	(min:	0,	max:	unbounded)
WebServiceExtension	(min:	0,	max:	unbounded)
WebSite	(min:	0,	max:	unbounded)
WebVirtualDir	(min:	0,	max:	unbounded)
XmlFile	(min:	0,	max:	unbounded)
Any	Element	namespace='##other'	processContents='Lax'

Attributes

Name Type Description
Id String Component	identifier;	this	is	the	primary	key	for	identifying

components.
ComPlusFlags Integer Set	this	attribute	to	create	a	ComPlus	entry.	

should	be	the	export	flags	used	
the	.msi	file.	For	more	information	see	the	COM+
documentation	in	the	Platform	SDK.

DisableRegistryReflection YesNoType Set	this	attribute	to	'yes'	in	order	to	disable	registry
reflection	on	all	existing	and	
this	component.	When	set	to	'yes',	the	Windows	Installer



calls	the	RegDisableReflectionKey	on	each	key	
accessed	by	the	component.	
Windows	Installer	version	4.0	and	is	ignored	on	32-bit
systems.

DiskId String This	attribute	must	be	set	either	on	a	Component	element
or	all	of	its	children	File	
attribute	should	correspond	to	the	Id	attribute	of	a	
element	authored	elsewhere.	
between	a	component	(or	
packaging	options	to	the	values	specified	in	the	Media
element	(values	such	as	compression	level,	cab
embedding,	etc...).

DriverAddRemovePrograms YesNoType Specifies	that	the	DIFxApp	CustomActions	should	add	an
entry	in	the	Add/Remove	Programs	Control	
The	default	is	'yes'.

DriverDeleteFiles YesNoType If	set	to	"yes",	configures	DIFxApp	to	delete	binary	files
that	were	copied	to	the	system	from	the	driver	
a	driver	package	was	installed.	If	this	attribute	is	set	to
"no"	or	not	present,	DIFxApp	does	not	
from	a	system.	Note	that	configuring	DIFxApp	to	delete
these	files	is	controlled	by	the	
component	that	represents	the	driver	package	in	the
MsiDriverPackages	custom	table.	
DriverDeleteFiles	to	"yes"	sets	the	corresponding	bit	in	the
Flags	entry	value.	Setting	DriverLegacy	
corresponding	bit	in	the	Flags	entry	value.	If	this	attribute
is	not	present,	DIFxApp	uses	

DriverForceInstall YesNoType Specifies	that	the	DIFxApp	CustomActions	should	force
the	installation	of	a	new	Plug	and	Play	driver	
even	if	the	currently	installed	driver	on	the	device	is	a
better	match	than	the	new	driver.	
excellent	way	to	ensure	the	DIFxApp	CustomActions
recognize	the	Component	contains	
The	default	is	null	which	means	the	Component	does	not
install	a	driver	via	DIFxApp	CustomActions.	See
http://www.microsoft.com/whdc/driver/install/difxtools.mspx
for	more	information.

DriverLegacy YesNoType If	set	to	"yes",	configures	DIFxApp	to	install	unsigned

http://www.microsoft.com/whdc/driver/install/difxtools.mspx


driver	packages	and	driver	packages	with	missing	
For	more	information,	see	"Installing	Unsigned	Driver
Packages	in	Legacy	Mode"	earlier	in	this	paper.	
attribute	is	set	to	"no"	or	not	present,	DIFxApp	will	install
only	signed	driver	packages.	Note	
DIFxApp	to	install	unsigned	drivers	is	controlled	by	the
Flags	entry	value	of	the	component	
driver	package	in	the	MsiDriverPackages	custom	table.
Setting	DriverLegacy	to	"yes"	sets	
the	Flags	entry	value.	Setting	DriverLegacy	to	"no"	clears
the	bit	in	the	Flags	entry	value	that	configures	DIFxApp	to
install	unsigned	driver	packages.	If	this	attribute	is	not
present,	DIFxApp	uses	a	default	value	of	"no".

DriverPlugAndPlayPrompt YesNoType Specifies	that	the	DIFxApp	CustomActions	should	prompt
the	user	to	connect	the	Plug	and	Play	
connected.	The	default	is	'yes'.

DriverSequence Integer Specifies	an	optional	installation	sequence	number.
DIFxApp	CustomActions	install	the	driver	packages	in	
installation	package	in	the	order	of	increasing	sequence
numbers.	The	same	sequence	number	can	be	used	
more	than	one	driver;	however,	the	order	in	which
packages	with	the	same	sequence	number	are	actually
installed	cannot	be	determined.

Guid ComponentGuid This	value	should	be	a	guid	that	uniquely	identifies	this
component's	contents,	language,	platform,	and	version.
It's	also	possible	to	set	the	value	to	an	empty	string	to
specify	an	unmanaged	component.	
components	are	a	security	vulnerability	because	the
component	cannot	be	removed	or	repaired	
Installer	(it	is	essentially	an	unpatchable,	permanent
component).	Therefore,	a	guid	should	
for	any	component	which	contains	resources	that	may
need	to	be	patched	in	the	future.

KeyPath YesNoType If	this	attribute's	value	is	set	to	'yes',	then	the	Directory	of
this	Component	is	used	
key	or	File	as	the	KeyPath	of	a	component,	set	the
KeyPath	attribute	to	'yes'	on	one	of	those	child	elements.

Location Enumeration This	attribute's	value	should	be	one	of	the	following:



local
Prevents	the	component	from	running	from	the	source
or	the	network	(this	is	the	default	behavior	if	this
attribute	is	not	set).

source
Enforces	that	the	component	can	only	be	run	from	the
source	(it	cannot	be	run	from	the	user's	computer).

either
Allows	the	component	to	run	from	source	or	locally.

NeverOverwrite YesNoType If	this	attribute	is	set	to	'yes',	the	installer	does	not	install
or	reinstall	the	component	if	a	key	path	file	or	a	key	path
registry	entry	for	the	component	already	
application	does	register	itself	as	a	client	of	the
component.	Use	this	flag	only	for	components	that	are
being	registered	by	the	Registry	table.	
for	components	registered	by	the	AppId,	Class,	Extension,
ProgId,	MIME,	and	Verb	tables.

Permanent YesNoType If	this	attribute	is	set	to	'yes',	the	installer	does	not	remove
the	component	during	an	uninstall.	The	installer	registers
an	extra	system	client	for	the	component	in	
Installer	registry	settings	(which	basically	just	means	that
at	least	one	product	is	always	referencing	this
component).	Note	that	this	option	differs	from	the	
of	not	setting	a	guid	because	although	the	component	is
permanent,	it	is	still	patchable	(because	Windows	Installer
still	tracks	it),	it's	just	not	uninstallable.

SharedDllRefCount YesNoType If	this	attribute's	value	is	set	to	'yes',	the	installer
increments	the	reference	count	
of	the	component's	key	file.	
installer	increments	the	reference	count	only	if	the
reference	count	already	exists.

Transitive YesNoType If	this	attribute	is	set	to	'yes',	the	installer	reevaluates	the
value	of	the	statement	in	the	Condition	upon	a	reinstall.	
the	value	was	previously	False	and	has	changed	to	
the	installer	installs	the	component.	
previously	True	and	has	



removes	the	component	even	if	the	component	has	other
products	as	clients.

Win64 YesNoType Set	this	attribute	to	'yes'	to	mark	this	as	a	64-bit
component.	This	attribute	facilitates	
packages	that	include	both	32-bit	and	64-bit	components.
If	this	bit	is	not	set,	the	component	is	registered	as	a	32-bit
component.	If	this	is	a	64-bit	
component,	set	this	bit	and	assign	a	new	GUID	in	the	Guid
attribute.

Any	attribute	namespace='##other'	processContents='lax'

See	Also
Wix	Schema,	ComponentRef,	Media

Version	2.0.4820.0



ComponentGroup	Element

Description

Groups	together	multiple	components	to	be	used	in	other	locations.

Windows	Installer	references
None

Parents
Fragment

Inner	Text
None

Children
Choice	of	elements	(min:	1,	max:	unbounded)
ComponentRef	(min:	1,	max:	unbounded)
Any	Element	namespace='##other'	processContents='Lax'

Attributes

Name Type Description Required
Id String Identifier	for	the	ComponentGroup. Yes
Any	attribute	namespace='##other'	processContents='lax'

See	Also
Wix	Schema,	ComponentGroupRef

Version	2.0.4820.0



ComponentGroupRef	Element

Description

Create	a	reference	to	a	ComponentGroup	in	another	Fragment.

Windows	Installer	references
None

Parents
Feature,	FeatureRef,	Module

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	identifier	of	the

ComponentGroup	to	reference.
Yes

Primary YesNoType Set	this	attribute	to	'yes'	in	order	to
make	the	parent	feature	of	this
component	the	primary	feature	for
this	component.	Components	may
belong	to	multiple	features.	By
designating	a	feature	as	the	primary
feature	of	a	component,	you	ensure
that	whenever	a	component	is
selected	for	install-on-demand
(IOD),	the	primary	feature	will	be
the	one	to	install	it.	This	attribute
should	only	be	set	if	a	component
actually	nests	under	multiple
features.	If	a	component	nests
under	only	one	feature,	that	feature
is	the	primary	feature	for	the

	



component.	You	cannot	set	more
than	one	feature	as	the	primary
feature	of	a	given	component.

See	Also
Wix	Schema,	ComponentGroup

Version	2.0.4820.0



ComponentRef	Element

Description

Create	a	reference	to	a	Feature	element	in	another	Fragment.

Windows	Installer	references
None

Parents
ComponentGroup,	Feature,	FeatureRef,	Module

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	identifier	of	the	Component

element	to	reference.
Yes

Primary YesNoType Set	this	attribute	to	'yes'	in	order	to
make	the	parent	feature	of	this
component	the	primary	feature	for
this	component.	Components	may
belong	to	multiple	features.	By
designating	a	feature	as	the	primary
feature	of	a	component,	you	ensure
that	whenever	a	component	is
selected	for	install-on-demand
(IOD),	the	primary	feature	will	be
the	one	to	install	it.	This	attribute
should	only	be	set	if	a	component
actually	nests	under	multiple
features.	If	a	component	nests
under	only	one	feature,	that	feature
is	the	primary	feature	for	the

	



component.	You	cannot	set	more
than	one	feature	as	the	primary
feature	of	a	given	component.

See	Also
Wix	Schema,	Component

Version	2.0.4820.0



ComponentSearch	Element

Description

Searches	for	file	or	directory	and	assigns	to	value	of	parent	Property.

Windows	Installer	references
CompLocator	Table,	Signature	Table

Parents
ComplianceCheck,	Property

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	1)
DirectorySearch	(min:	0,	max:	1)
DirectorySearchRef	(min:	0,	max:	1)
FileSearch	(min:	0,	max:	1)
FileSearchRef	(min:	0,	max:	1)

Attributes

Name Type Description Required
Id String 	 Yes
Guid Uuid The	component	ID	of	the

component	whose	key	path	is	to	be
used	for	the	search.

	

Type Enumeration Must	be	file	if	last	child	is
FileSearch	element	and	must	be
directory	if	last	child	is
DirectorySearch	element.	This
attribute's	value	should	be	one	of
the	following:
directory

file

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/complocator_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/signature_table.asp?frame=true&hidetoc=true


See	Also
Wix	Schema,	IniFileSearch,	RegistrySearch

Version	2.0.4820.0



Condition	Element

Description

Conditions	for	components,	controls,	features,	and	products.	The
condition	is	specified	in	the	inner	text	of	the	element.

Windows	Installer	references
Component	Table,	ControlCondition	Table,	Condition	Table,
LaunchCondition	Table

Parents
Component,	Control,	Feature,	Fragment,	Include,	Product

Inner	Text	(xs:string)
Under	a	Component	element,	the	condition	becomes	the	condition	of
the	component.	Under	a	Control	element,	the	condition	becomes	a
ControlCondition	entry.	Under	a	Feature	element,	the	condition
becomes	a	Condition	entry.	Under	a	Fragment	or	Product	element,
the	condition	becomes	a	LaunchCondition	entry.

Children
None

Attributes

Name Type Description Required
Action Enumeration Used	only	under	Control	elements

and	is	required.	Allows	specific
actions	to	be	applied	to	a	control
based	on	the	result	of	this
condition.	This	attribute's	value
should	be	one	of	the	following:
default

enable

disable

hide

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/component_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlcondition_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/condition_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/launchcondition_table.asp?frame=true&hidetoc=true


show

Level String Used	only	under	Feature
elements	and	is	required.	Allows
modifying	the	level	of	a	Feature
based	on	the	result	of	this
condition.

	

Message String Used	only	under	Fragment	or
Product	elements	and	is	required.
Set	the	value	to	the	text	to	display
when	the	condition	fails	and	the
installation	must	be	terminated.

	

See	Also
Wix	Schema

Version	2.0.4820.0



Configuration	Element

Description

Defines	the	configurable	attributes	of	merge	module.

Windows	Installer	references
None

Parents
Module

Inner	Text
None

Children
None

Attributes

Name Type Description Required
ContextData String Specifies	a	semantic	context

for	the	requested	data.
	

DefaultValue String Specifies	a	default	value	for
the	item	in	this	record	if	the
merge	tool	declines	to
provide	a	value.

	

Description String Description	for	authoring. 	
DisplayName String Display	name	for	authoring. 	
Format Enumeration Specifies	the	format	of	the

data	being	changed.	This
attribute's	value	should	be
one	of	the	following:
Text

Key

Integer

Yes



Bitfield

HelpKeyword String Keyword	into	chm	file	for
authoring.

	

HelpLocation String Location	of	chm	file	for
authoring.

	

KeyNoOrphan YesNoType Does	not	merge	rule
according	to	rules	in	MSI
SDK.

	

Name String Defines	the	name	of	the
configurable	item.

Yes

NonNullable YesNoType If	yes,	null	is	not	a	valid	entry. 	
Type String Specifies	the	type	of	the	data

being	changed.
	

See	Also
Wix	Schema

Version	2.0.4820.0



ConfigurationData	Element

Description

Data	to	use	as	input	to	a	configurable	merge	module.

Windows	Installer	references
None

Parents
Merge

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Name String Key	into	the	ModuleConfiguration

table.
Yes

Value String Value	to	be	passed	to	configurable
merge	module.

Yes

See	Also
Wix	Schema

Version	2.0.4820.0



Control	Element

Description

None

Windows	Installer	references
Control	Table,	ComboBox	Table,	Dialog	Table,	ListBox	Table,
ListView	Table,	RadioButton	Table

Parents
Billboard,	Dialog

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Text	(min:	0,	max:	1):	alternative	to	Text	attribute	when
CDATA	is	needed	to	escape	XML	delimiters

2.	 ComboBox	(min:	0,	max:	1):	ComboBox	table	with	ListItem
children

3.	 ListBox	(min:	0,	max:	1):	ListBox	table	with	ListItem	children
4.	 ListView	(min:	0,	max:	1):	ListView	table	with	ListItem

children
5.	 RadioButtonGroup	(min:	0,	max:	1):	RadioButton	table	with

RadioButton	children
6.	 Property	(min:	0,	max:	1):	Property	table	entry	for	the

Property	table	column	associated	with	this	control
7.	 Binary	(min:	0,	max:	1):	Icon	referenced	in	icon	column	of

row
8.	 Choice	of	elements	(min:	0,	max:	unbounded)

Condition	(min:	0,	max:	unbounded):	Condition	to	specify
actions	for	this	control	based	on	the	outcome	of	the
condition.
Publish	(min:	0,	max:	unbounded)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/combobox_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/listbox_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/listview_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp?frame=true&hidetoc=true


Subscribe	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String 	 Yes
Bitmap YesNoType only	valid	for

RadioButton	and
PushButton
Controls

	

Cancel YesNoType yes	if	this	is	the
control	invoked	on
cancel	of	dialog

	

CDROM YesNoType only	valid	for
Volume	and
Directory	Controls

	

CheckBoxValue String Only	for	CheckBox
control	to	set
Property	to	a	value
on	check

	

ComboList YesNoType only	valid	for
ComboBox
Controls

	

Default YesNoType yes	if	this	control
invoked	by	the
return	key

	

Disabled YesNoType 	 	
ElevationShield YesNoType Only	valid	for

PushButton
controls.	This
attribute	adds	the
User	Account
Control	(UAC)
elevation	icon
(shield	icon)	to	the
PushButton
control.	If	this
attribute's	value	is

	



'yes'	and	the
installation	is	not
yet	running	with
elevated	privileges,
the	pushbutton
control	is	created
using	the	User
Account	Control
(UAC)	elevation
icon	(shield	icon).	If
this	attribute's
value	is	'yes'	and
the	installation	is
already	running
with	elevated
privileges,	the
pushbutton	control
is	created	using	the
other	icon
attributes.
Otherwise,	the
pushbutton	control
is	created	using	the
other	icon
attributes.

Fixed YesNoType only	valid	for
Volume	and
Directory	Controls

	

FixedSize YesNoType only	valid	for
RadioButton,
PushButton,	and
Icon	Controls

	

Floppy YesNoType only	valid	for
Volume	and
Directory	Controls

	

FormatSize YesNoType only	valid	for	Text
Controls

	



HasBorder YesNoType only	valid	for
RadioButton
Controls

	

Height LocalizableInteger 	 Yes
Help String 	 	
Hidden YesNoType 	 	
Icon YesNoType only	valid	for

RadioButton	and
PushButton
Controls

	

IconSize Enumeration only	valid	for
RadioButton,
PushButton,	and
Icon	Controls	This
attribute's	value
should	be	one	of
the	following:
16

32

48

	

Image YesNoType only	valid	for
RadioButton,
PushButton,	and
Icon	Controls

	

Indirect YesNoType 	 	
Integer YesNoType 	 	
LeftScroll YesNoType 	 	
Multiline YesNoType only	valid	for	Edit

Controls
	

NoPrefix YesNoType only	valid	for	Text
Controls

	

NoWrap YesNoType only	valid	for	Text
Controls

	

Password YesNoType only	valid	for	Edit 	



Controls
ProgressBlocks YesNoType only	valid	for

ProgressBar
Controls

	

Property String 	 	
PushLike YesNoType only	valid	for

RadioButton	and
Checkbox	Controls

	

RAMDisk YesNoType only	valid	for
Volume	and
Directory	Controls

	

Remote YesNoType only	valid	for
Volume	and
Directory	Controls

	

Removable YesNoType only	valid	for
Volume	and
Directory	Controls

	

RightAligned YesNoType 	 	
RightToLeft YesNoType 	 	
ShowRollbackCost YesNoType only	valid	for

VolumeCostList
Controls

	

Sorted YesNoType This	attribute	is
only	valid	for
Listbox,	ListView,
and	ComboBox
Controls.	Set	the
value	of	this
attribute	to	"yes"	to
have	entries
appear	in	the	order
specified	under	the
Control.	If	the
attribute	value	is
"no"	or	absent	the
entries	in	the

	



control	will	appear
in	alphabetical
order.

Sunken YesNoType 	 	
TabSkip YesNoType yes	if	this	control	is

skipped	in	the	tab
sequence

	

Text String 	 	
ToolTip String 	 	
Transparent YesNoType only	valid	for	Text

Controls
	

Type String 	 Yes
UserLanguage YesNoType only	valid	for	Text

Controls
	

Width LocalizableInteger 	 Yes
X LocalizableInteger 	 Yes
Y LocalizableInteger 	 Yes

See	Also
Wix	Schema

Version	2.0.4820.0



CopyFile	Element

Description

Copy	or	move	an	existing	file	on	the	target	machine,	or	copy	a	file
that	is	being	installed,	to	another	destination.	When	this	element	is
nested	under	a	File	element,	the	parent	file	will	be	installed,	then
copied	to	the	specified	destination	if	the	parent	component	of	the	file
is	selected	for	installation	or	removal.	When	this	element	is	nested
under	a	Component	element	and	no	FileId	attribute	is	specified,	the
file	to	copy	or	move	must	already	be	on	the	target	machine.	When
this	element	is	nested	under	a	Component	element	and	the	FileId
attribute	is	specified,	the	specified	file	is	installed,	then	copied	to	the
specified	destination	if	the	parent	component	is	selected	for
installation	or	removal	(use	this	option	to	control	the	copy	of	a	file	in
a	different	component	by	the	parent	component's	installation	state).
If	the	specified	destination	directory	is	the	same	as	the	directory
containing	the	original	file	and	the	name	for	the	proposed	source	file
is	the	same	as	the	original,	then	no	action	takes	place.

Windows	Installer	references
DuplicateFile	Table,	MoveFile	Table

Parents
Component,	File,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description
Id String Primary	key	used	to

identify	this
particular	entry.

Delete YesNoType This	attribute	cannot

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/duplicatefile_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/movefile_table.asp?frame=true&hidetoc=true


be	specified	if	the
element	is	nested
under	a	File	element
or	the	FileId	attribute
is	specified.	In	other
cases,	if	the
attribute	is	not
specified,	the	default
value	is	"no"	and	the
file	is	copied,	not
moved.	Set	the
value	to	"yes"	in
order	to	move	the
file	(thus	deleting
the	source	file)
instead	of	copying	it.

DestinationDirectory String Set	this	value	to	the
destination	directory
where	an	existing
file	on	the	target
machine	should	be
moved	or	copied	to.
This	Directory	must
exist	in	the	installer
database	at	creation
time.	This	attribute
cannot	be	specified
in	conjunction	with
DestinationProperty.

DestinationLongName LongFileNameType If	the	destination
name	of	the	file
needs	to	be	longer
than	8.3	format,
then	this	attribute
should	be	specified
with	the	long	file
name	(in	addition	to
the	Name	attribute



which	is	always
required	for	target
systems	that	might
not	support	long	file
names).

DestinationName ShortFileNameType Set	this	value	to	the
localizable	name	to
be	given	to	the
original	file	after	it	is
moved	or	copied.	
this	attribute	is	not
specified,	then	the
destination	file	is
given	the	same
name	as	the	source
file.

DestinationProperty String Set	this	value	to	a
property	that	will
have	a	value	that
resolves	to	the	full
path	of	the
destination	directory.
The	property	does
not	have	to	exist	in
the	installer
database	at	creation
time;	it	could	be
created	at
installation	time	by	a
custom	action,	on
the	command	line,
etc.	This	attribute
cannot	be	specified
in	conjunction	with
DestinationDirectory.

FileId String This	attribute	cannot
be	specified	if	the
element	is	nested



under	a	File
element.	Set	this
attribute's	value	to
the	identifier	of	a	file
from	a	different
component	to	copy
it	based	on	the
install	state	of	the
parent	component.

SourceDirectory String This	attribute	cannot
be	specified	if	the
element	is	nested
under	a	File	element
or	the	FileId	attribute
is	specified.	Set	
value	to	the	source
directory	from	which
to	copy	or	move	an
existing	file	on	the
target	machine.	This
Directory	must	exist
in	the	installer
database	at	creation
time.	This	attribute
cannot	be	specified
in	conjunction	with
SourceProperty.

SourceName WildCardLongFileNameType This	attribute	cannot
be	specified	if	the
element	is	nested
under	a	File	element
or	the	FileId	attribute
is	specified.	Set	
value	to	the
localizable	name	of
the	file(s)	to	be
copied	or	moved.	
of	the	files	that



match	the	wild	card
will	be	removed
from	the	specified
directory.	The	value
is	a	filename	that
may	also	contain	the
wild	card	characters
"?"	for	any	single
character	or	"*"	for
zero	or	more
occurrences	of	any
character.	If	this
attribute	is	not
specified	(and	this
element	is	not
nested	under	a	File
element	or	specify	a
FileId	attribute)	then
the	SourceProperty
attribute	should	be
set	to	the	name	of	a
property	that	will
resolve	to	the	full
path	of	the	source
filename.	If	the
value	of	this
attribute	contains	a
"*"	wildcard	and	the
DestinationName
attribute	is	specified,
all	moved	or	copied
files	retain	the	file
names	from	their
sources.

SourceProperty String This	attribute	cannot
be	specified	if	the
element	is	nested
under	a	File	element



or	the	FileId	attribute
is	specified.	Set	
value	to	a	property
that	will	have	a
value	that	resolves
to	the	full	path	of	the
source	directory	(or
full	path	including
file	name	if
SourceName	is	not
specified).	The
property	does	not
have	to	exist	in	the
installer	database	at
creation	time;	it
could	be	created	at
installation	time	by	a
custom	action,	on
the	command	line,
etc.	This	attribute
cannot	be	specified
in	conjunction	with
SourceDirectory.

See	Also
Wix	Schema,	RemoveFile

Version	2.0.4820.0



CostFinalize	Element

Description

Ends	the	internal	installation	costing	process	begun	by	the
CostInitialize	action.	Any	standard	or	custom	actions	that	affect
costing	should	be	sequenced	before	the	CostInitialize	action.	Call
the	FileCost	action	immediately	following	the	CostInitialize	action
and	then	call	the	CostFinalize	action	to	make	all	final	cost
calculations	available	to	the	installer	through	the	Component	table.
The	CostFinalize	action	must	be	executed	before	starting	any	user
interface	sequence	which	allows	the	user	to	view	or	modify	Feature
table	selections	or	directories.	The	CostFinalize	action	queries	the
Condition	table	to	determine	which	features	are	scheduled	to	be
installed.	Costing	is	done	for	each	component	in	the	Component
table.	The	CostFinalize	action	also	verifies	that	all	the	target
directories	are	writable	before	allowing	the	installation	to	continue.
The	condition	for	this	action	may	be	specified	in	the	element's	inner
text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
AdvertiseExecuteSequence,	InstallExecuteSequence,
InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
	



sequence.
Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	CostInitialize,	FileCost

Version	2.0.4820.0



CostInitialize	Element

Description

Initiates	the	internal	installation	costing	process.	Any	standard	or
custom	actions	that	affect	costing	should	be	sequenced	before	the
CostInitialize	action.	Call	the	FileCost	action	immediately	following
the	CostInitialize	action.	Then	call	the	CostFinalize	action	following
the	CostInitialize	action	to	make	all	final	cost	calculations	available	to
the	installer	through	the	Component	table.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
AdvertiseExecuteSequence,	InstallExecuteSequence,
InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	FileCost,	CostFinalize

Version	2.0.4820.0



CreateFolder	Element

Description

Create	folder	as	part	of	parent	Component.

Windows	Installer	references
CreateFolder	Table

Parents
Component,	Include

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
Permission	(min:	0,	max:	unbounded):	ACL	permission
Shortcut	(min:	0,	max:	unbounded):	Non-advertised	shortcut	to	this
folder,	Shortcut	Target	is	preset	to	the	folder

Attributes

Name Type Description Required
Directory String Identifier	of	Directory	to	create.

Defaults	to	Directory	of	parent
Component.

	

See	Also
Wix	Schema,	RemoveFolder

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/createfolder_table.asp?frame=true&hidetoc=true


CreateFolders	Element

Description

Creates	empty	folders	for	components	that	are	set	to	be	installed.
The	condition	for	this	action	may	be	specified	in	the	element's	inner
text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



CreateShortcuts	Element

Description

Manages	the	creation	of	shortcuts.	The	condition	for	this	action	may
be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Custom	Element

Description

Use	to	sequence	a	custom	action.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
AdvertiseExecuteSequence,	InstallExecuteSequence,
InstallUISequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
Action String 	 Yes
After String 	 	
Before String 	 	
OnExit Enumeration mutually	exclusive	with	Before,

After,	and	Sequence	attributes
This	attribute's	value	should	be
one	of	the	following:
success

cancel

error

suspend

	

Sequence Integer 	 	



See	Also
Wix	Schema,	CustomAction

Version	2.0.4820.0



CustomAction	Element

Description

Specifies	a	custom	action	to	be	added	to	the	MSI	CustomAction
table.	Various	combinations	of	the	attributes	for	this	element
correspond	to	different	custom	action	types.	For	more	information
about	custom	actions	see	the	MSDN	documentation
http://msdn.microsoft.com/library/en-
us/msi/setup/summary_list_of_all_custom_action_types.asp	for	a
"Summary	List	of	All	Custom	Action	Types".

Windows	Installer	references
CustomAction	Table

Parents
Fragment,	Include,	Module,	Product

Inner	Text	(xs:string)
The	text	node	is	only	valid	if	the	Script	attribute	is	specified.	In	that
case,	the	text	node	contains	the	script	to	embed.

Children
None

Attributes

Name Type Description
BinaryKey String This	attribute	is	a	reference	to	a	Binary	element	with	matching	Id	attribute.	

stream	contains	the	custom	action	for	use	during	install.	
installed	into	a	target	directory.	This	attribute	is	
specify	the	custom	action	DLL	to	use	for	a	type	1	custom	action,	with	the	ExeCommand
attribute	to	specify	a	type	17	custom	action	that	runs	an	embedded	executable,	or	with
the	VBScriptCall	or	JScriptCall	attributes	

Directory String This	attribute	specifies	a	reference	to	a	Directory	element	with	matching	Id	attribute
containing	a	directory	path.	This	attribute	is	typically	used	with	the	ExeCommand
attribute	to	specify	the	source	executable	for	a	type	34	
attribute	to	specify	a	formatted	string	to	place	in	the	specified	Directory	
type	35	custom	action.

http://msdn.microsoft.com/library/en-us/msi/setup/summary_list_of_all_custom_action_types.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/customaction_table.asp?frame=true&hidetoc=true


DllEntry String This	attribute	specifies	the	name	of	a	function	in	a	custom	action	to	execute.	
attribute	is	used	with	the	BinaryKey	attribute	to	create	a	type	1	custom	
FileKey	attribute	to	create	a	type	17	custom	action.

Error String This	attribute	specifies	an	index	in	the	MSI	Error	table	to	use	as	an	error	message	for	a
type	19	custom	action	that	displays	the	error	message	and	aborts	a	product's	installation.

ExeCommand String This	attribute	specifies	the	command	line	parameters	to	supply	to	an	externally	
executable.	This	attribute	is	typically	used	with	the	BinaryKey	attribute	for	a	type	2
custom	action,	the	FileKey	attribute	for	a	type	18	custom	action,	the	Property	attribute	for
a	type	50	custom	action,	or	the	Directory	attribute	for	a	type	34	custom	action	that	specify
the	executable	to	run.

Execute Enumeration This	attribute	indicates	the	scheduling	of	the	custom	action.	
be	one	of	the	following:
commit

Indicates	that	the	custom	action	will	run	after	successful	completion	of	the
installation	script	(at	the	end	of	the	installation).

deferred
Indicates	that	the	custom	action	runs	in-script	(possibly	with	elevated	privileges).

firstSequence
Indicates	that	the	custom	action	will	only	run	in	the	first	sequence	that	runs	it.

immediate
Indicates	that	the	custom	action	will	run	during	normal	processing	time	with	user
privileges.	This	is	the	default.

oncePerProcess
Indicates	that	the	custom	action	will	only	run	in	the	first	sequence	that	runs	it	in	the
same	process.

rollback
Indicates	that	a	custom	action	will	run	in	the	rollback	sequence	when	a	failure	
during	installation,	usually	to	undo	changes	made	by	a	deferred	custom	action.

secondSequence
Indicates	that	a	custom	action	should	be	run	a	second	time	if	it	was	previously	run	in
an	earlier	sequence.

FileKey String This	attribute	specifies	a	reference	to	a	File	element	with	matching	Id	attribute	that	
execute	the	custom	action	code	in	the	file	after	the	file	is	installed.	
typically	used	with	the	ExeCommand	attribute	to	specify	a	type	18	custom	action	



runs	an	installed	executable,	with	the	DllEntry	attribute	to	specify	an	installed	custom
action	DLL	to	use	for	a	type	17	custom	action,	or	with	the	VBScriptCall	or	JScriptCall
attributes	to	specify	a	type	21	or	22	custom	action.

HideTarget YesNoType Ensures	the	installer	does	not	log	the	CustomActionData	for	the	deferred	custom	action.
Id String The	identifier	of	the	custom	action.
Impersonate YesNoType This	attribute	specifies	whether	the	Windows	Installer,	which	executes	as	LocalSystem,

should	impersonate	the	user	context	of	the	installing	user	when	executing	this	custom
action.	Typically	the	value	should	be	'yes',	except	when	the	custom	action	needs
elevated	privileges	to	apply	changes	to	the	machine.

JScriptCall String This	attribute	specifies	the	name	of	the	JScript	function	to	execute	in	a	script.	The	script
must	be	provided	in	a	Binary	element	identified	by	the	BinaryKey	attribute	described
above.	In	other	words,	this	attribute	must	be	specified	in	conjunction	with	the	BinaryKey
attribute.

Property String This	attribute	specifies	a	reference	to	a	Property	element	with	matching	Id	attribute	that
specifies	the	Property	to	be	used	or	updated	on	execution	of	this	custom	action.	This
attribute	is	typically	used	with	the	Value	attribute	to	create	a	type	51	custom	action	that
parses	the	text	in	Value	and	places	it	into	the	specified	Property.	
used	with	the	ExeCommand	attribute	to	create	a	type	50	custom	action	that	uses	the
value	of	the	given	property	to	specify	the	path	to	the	executable.	Type	51	custom	actions
are	often	useful	to	pass	values	to	a	deferred	custom	action.	
http://msdn.microsoft.com/library/en-
us/msi/setup/obtaining_context_information_for_deferred_execution_custom_actions.asp
for	more	information.

Return Enumeration Set	this	attribute	to	set	the	return	behavior	of	the	custom	action.	
should	be	one	of	the	following:
asyncNoWait

Indicates	that	the	custom	action	will	run	asyncronously	and	execution	may	continue
after	the	installer	terminates.

asyncWait
Indicates	that	the	custom	action	will	run	asynchronously	but	the	installer	will	wait	for
the	return	code	at	sequence	end.

check
Indicates	that	the	custom	action	will	run	synchronously	and	the	return	code	will	be
checked	for	success.	This	is	the	default.

ignore
Indicates	that	the	custom	action	will	run	synchronously	and	the	return	code	will	not

http://msdn.microsoft.com/library/en-us/msi/setup/obtaining_context_information_for_deferred_execution_custom_actions.asp


be	checked.

Script Enumeration Creates	a	type	37	or	38	custom	action.	
to	be	embedded	in	the	package.	This	attribute's	value	should	be	one	of	the	following:
jscript

vbscript

TerminalServerAware YesNoType This	attribute	specifies	controls	whether	the	custom	action	will	impersonate	the	
user	during	per-machine	installs	on	Terminal	Server	machines.	
custom	actions	that	do	not	specify	this	attribute,	or	explicitly	set	it	'no',	
user	impersonation	on	Terminal	Server	machines	during	
attribute	is	only	applicable	when	installing	on	the	

Value String This	attribute	specifies	a	string	value	to	use	in	the	custom	action.	This	attribute	
used	with	the	Property	attribute	to	set	the	property	as	part	of	a	
with	the	Directory	attribute	to	set	a	directory	path	in	that	
The	value	can	be	a	literal	value	or	derived	from	a	
syntax.

VBScriptCall String This	attribute	specifies	the	name	of	the	VBScript	Subroutine	to	execute	in	a	script.	The
script	must	be	provided	in	a	Binary	element	identified	by	the	BinaryKey	attribute
described	above.	In	other	words,	this	
BinaryKey	attribute.

Win64 YesNoType Specifies	that	a	script	custom	action	targets	a	64-bit	platform.	Valid	only	when	used	with
the	Script,	VBScriptCall,	and	JScriptCall	attributes.

See	Also
Wix	Schema,	Custom,	CustomActionRef

Version	2.0.4820.0

http://msdn.microsoft.com/library/en-us/msi/setup/formatted.asp


CustomActionRef	Element

Description

This	will	cause	the	entire	contents	of	the	Fragment	containing	the
referenced	CustomAction	to	be	included	in	the	installer	database.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	identifier	of	the	CustomAction	to

reference.
Yes

Any	attribute	namespace='##other'	processContents='lax'

See	Also
Wix	Schema,	CustomAction

Version	2.0.4820.0



CustomProperty	Element

Description

A	custom	property	for	the	PatchMetadata	table.

Windows	Installer	references
None

Parents
PatchMetadata

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Company String The	name	of	the	company. Yes
Property String The	name	of	the	metadata	property. Yes
Value String Value	of	the	metadata	property. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



CustomTable	Element

Description

Defines	a	custom	table	for	use	from	a	custom	action.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Column	(min:	0,	max:	unbounded):	Column	definition	for	the
custom	table.

2.	 Row	(min:	0,	max:	unbounded):	Row	definition	for	the
custom	table.

Attributes

Name Type Description Required
Id String Identifier	for	the	custom	table. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



Data	Element

Description

Data	item	for	a	row	of	a	Custom	Table

Windows	Installer	references
None

Parents
Row

Inner	Text	(xs:string)
Element	value	is	data	the	data	value

Children
None

Attributes

Name Type Description Required
Column String 	 Yes

See	Also
Wix	Schema

Version	2.0.4820.0



DeleteServices	Element

Description

Stops	a	service	and	removes	its	registration	from	the	system.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Dependency	Element

Description

Declares	a	dependency	on	another	merge	module.

Windows	Installer	references
None

Parents
Module

Inner	Text
None

Children
None

Attributes

Name Type Description Required
RequiredId String Identifier	of	the	merge

module	required	by	the
merge	module.

Yes

RequiredLanguage Integer Numeric	language	ID	of	the
merge	module	in
RequiredID.

Yes

RequiredVersion String Version	of	the	merge	module
in	RequiredID.

	

See	Also
Wix	Schema

Version	2.0.4820.0



Dialog	Element

Description

None

Windows	Installer	references
Control	Table,	ComboBox	Table,	Dialog	Table,	ListBox	Table,
ListView	Table,	RadioButton	Table

Parents
UI

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Control	(min:	0,	max:	unbounded):	Control	elements
belonging	to	this	dialog

Attributes

Name Type Description Required
Id String 	 Yes
CustomPalette YesNoType 	 	
ErrorDialog YesNoType 	 	
Height Integer in	dialog	units Yes
Hidden YesNoType 	 	
KeepModeless YesNoType 	 	
LeftScroll YesNoType 	 	
Modeless YesNoType 	 	
NoMinimize YesNoType 	 	
RightAligned YesNoType 	 	
RightToLeft YesNoType 	 	
SystemModal YesNoType 	 	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/combobox_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/listbox_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/listview_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp?frame=true&hidetoc=true


Title String 	 	
TrackDiskSpace YesNoType 	 	
Width Integer in	dialog	units Yes
X Integer in	%,	defaults	to	centered	on

screen	(50)
	

Y Integer in	%,	defaults	to	centered	on
screen	(50)

	

See	Also
Wix	Schema

Version	2.0.4820.0



DialogRef	Element

Description

Reference	to	a	Dialog.	This	will	cause	the	entire	referenced	section's
contents	to	be	included	in	the	installer	database.

Windows	Installer	references
None

Parents
UI

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	identifier	of	the	Dialog	to

reference.
Yes

See	Also
Wix	Schema,	Dialog

Version	2.0.4820.0



DigitalCertificate	Element

Description

Adds	a	digital	certificate.

Windows	Installer	references
MsiDigitalCertificate	Table

Parents
DigitalSignature,	PatchCertificates

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	a	certificate	file. Yes
SourceFile String The	path	to	the	certificate	file. Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidigitalcertificate_table.asp?frame=true&hidetoc=true


DigitalSignature	Element

Description

Adds	a	digital	signature

Windows	Installer	references
MsiDigitalSignature	Table

Parents
Media

Inner	Text	(xs:string)
Element	value	can	be	hex-encoded	hash	value

Children
Choice	of	elements	(min:	0,	max:	unbounded)
DigitalCertificate	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
SourceFile String The	path	to	signature's	optional	hash

file.
	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidigitalsignature_table.asp?frame=true&hidetoc=true


Directory	Element

Description

Directory	layout	for	the	product.	Also	specifies	the	mappings
between	source	and	target	directories.

Windows	Installer	references
Directory	Table

Parents
Directory,	DirectoryRef,	Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
Component	(min:	0,	max:	unbounded)
Directory	(min:	0,	max:	unbounded)
Merge	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String This	value	is	the	unique

identifier	of	the
directory	entry.

Yes

FileSource String Used	to	set	the	file
system	source	for	this
directory's	child
elements.

	

LongName LongFileNameType Set	this	value	to	the
non-8.3	name	for	the
directory.	This	attribute
cannot	be	specified
unless	the	Name
attribute	is	used	to	set

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/directory_table.asp?frame=true&hidetoc=true


the	short	name	for	this
directory.

LongSource LongFileNameType Set	this	value	to	the
non-8.3	name	of	the
directory	on	the	source
media	for	systems
supporting	long	names.
This	attribute	cannot	be
specified	unless	the
SourceName	attribute
sets	the	short	source
name	for	this	directory.

	

Name String The	8.3	name	of	the
directory.	Do	not
specify	this	attribute	(or
the	LongName
attribute)	if	this
directory	represents	the
same	directory	as	the
parent	(see	the
Windows	Installer
SDK's	Directory	table
topic	for	more
information	about	the
"."	operator).

	

SourceName ShortFileNameType The	8.3	name	of	the
directory	on	the	source
media.	If	this	attribute	is
note	specified,	the
Windows	Installer	will
default	to	the	Name
attribute.

	

src String This	attribute	has	been
deprecated;	please	use
the	FileSource	attribute
instead.

	

http://msdn.microsoft.com/library/en-us/msi/setup/directory_table.asp


See	Also
Wix	Schema,	DirectoryRef

Version	2.0.4820.0



DirectoryRef	Element

Description

Create	a	reference	to	a	Directory	element	in	another	Fragment.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
Component	(min:	0,	max:	unbounded)
Directory	(min:	0,	max:	unbounded)
Merge	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String The	identifier	of	the	Directory

element	to	reference.
Yes

FileSource String Used	to	set	the	file	system	source	for
this	directory	ref's	child	elements.

	

src String This	attribute	has	been	deprecated;
please	use	the	FileSource	attribute
instead.

	

See	Also
Wix	Schema,	Directory

Version	2.0.4820.0



DirectorySearch	Element

Description

Searches	for	directory	and	assigns	to	value	of	parent	Property.

Windows	Installer	references
DrLocator	Table,	Signature	Table

Parents
ComplianceCheck,	ComplianceDrive,	ComponentSearch,
DirectorySearch,	DirectorySearchRef,	IniFileSearch,	Property,
RegistrySearch

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	1)
DirectorySearch	(min:	0,	max:	1)
DirectorySearchRef	(min:	0,	max:	1)
FileSearch	(min:	0,	max:	1)
FileSearchRef	(min:	0,	max:	1)

Attributes

Name Type Description Required
Id String External	key	into	Signature	table.	If

not	in	Signature	table,	search	is	for	a
directory	defined	with	DirectorySearch
elements.

Yes

Depth Integer Depth	below	the	path	that	the	installer
searches	for	the	file	or	directory
specified	by	the	search.

	

Path String Path	on	the	user's	system.	Either
absolute,	or	relative	to	containing
directories.

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/drlocator_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/signature_table.asp?frame=true&hidetoc=true


See	Also
Wix	Schema,	ComponentSearch,	IniFileSearch,	RegistrySearch

Version	2.0.4820.0



DirectorySearchRef	Element

Description

References	an	existing	DirectorySearch	element.

Windows	Installer	references
None

Parents
ComplianceDrive,	ComponentSearch,	DirectorySearch,
DirectorySearchRef,	IniFileSearch,	Property,	RegistrySearch

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	1)
DirectorySearch	(min:	0,	max:	1)
DirectorySearchRef	(min:	0,	max:	1)
FileSearch	(min:	0,	max:	1)
FileSearchRef	(min:	0,	max:	1)

Attributes

Name Type Description Required
Id String Id	of	the	search	being	referred	to. Yes
Parent String This	attribute	is	the	signature	of	the

parent	directory	of	the	file	or	directory
in	the	Signature_	column.	If	this	field
is	null,	and	the	Path	column	does	not
expand	to	a	full	path,	then	all	the	fixed
drives	of	the	user's	system	are
searched	by	using	the	Path.	This	field
is	a	key	into	one	of	the	following
tables:	the	RegLocator,	the	IniLocator,
the	CompLocator,	or	the	DrLocator
tables.

	



Path String Path	on	the	user's	system.	Either
absolute,	or	relative	to	containing
directories.

	

See	Also
Wix	Schema,	ComponentSearch,	IniFileSearch,	RegistrySearch

Version	2.0.4820.0



DisableRollback	Element

Description

Disables	rollback	for	the	remainder	of	the	installation.	Special	actions
don't	have	a	built-in	sequence	number	and	thus	must	appear	relative
to	another	action.	The	suggested	way	to	do	this	is	by	using	the
Before	or	After	attribute.	InstallExecute	and	InstallExecuteAgain	can
optionally	appear	anywhere	between	InstallInitialize	and
InstallFinalize.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



DuplicateFiles	Element

Description

Duplicates	files	installed	by	the	InstallFiles	action.	The	condition	for
this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



EnsureTable	Element

Description

Use	this	element	to	ensure	that	a	table	appears	in	the	installer
database,	even	if	its	empty.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	name	of	the	table. Yes

Remarks
This	element	is	particularly	useful	for	two	problems	that	may	occur
while	merging	merge	modules:

1.	 The	first	likely	problem	is	that	in	order	to	properly	merge
you	need	to	have	certain	tables	present	prior	to	merging.
Using	this	element	is	one	way	to	ensure	those	tables	are
present	prior	to	the	merging.

2.	 The	other	common	problem	is	that	a	merge	module	has
incorrect	validation	information	about	some	tables.	By
ensuring	these	tables	prior	to	merging,	you	can	avoid	this
problem	because	the	correct	validation	information	will	go
into	the	installer	database	before	the	merge	module	has	a
chance	to	set	it	incorrectly.

See	Also



Wix	Schema
Version	2.0.4820.0



Environment	Element

Description

Environment	variables	added	or	removed	for	parent	Component

Windows	Installer	references
Environment	Table

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Unique	identifier	for	environment

entry.
Yes

Action Enumeration Specfies	whether	the
environmental	variable	should
be	created,	set	or	removed	when
the	parent	component	is
installed.	This	attribute's	value
should	be	one	of	the	following:
create

Creates	the	environment
variable	if	it	does	not	exist,
then	set	it	during
installation.	This	has	no
effect	on	the	value	of	the
environment	variable	if	it
already	exists.

set

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/environment_table.asp?frame=true&hidetoc=true


Creates	the	environment
variable	if	it	does	not	exist,
and	then	set	it	during
installation.	If	the
environment	variable	exists,
set	it	during	the	installation.

remove
Removes	the	environment
variable	during	an
installation.	The	installer
only	removes	an
environment	variable	during
an	installation	if	the	name
and	value	of	the	variable
match	the	entries	in	the
Name	and	Value	fields	of
the	Environment	table.	If
you	want	to	remove	an
environment	variable,
regardless	of	its	value,	use
the	'!'	syntax,	and	leave	the
Value	field	empty.

Name String Name	of	the	environment
variable.

Yes

Part Enumeration This	attribute's	value	should	be
one	of	the	following:
all

This	value	is	the	entire
environmental	variable.

first
This	value	is	prefixed.

last
This	value	is	appended.

	

Permanent YesNoType Specifies	that	the	environment
variable	should	not	be	removed

	



on	uninstall.
Separator String Optional	attribute	to	change	the

separator	used	between	values.
By	default	a	semi-colon	is	used.

	

System YesNoType Specifies	that	the	environment
variable	should	be	added	to	the
system	environment	space.	The
default	is	'no'	which	indicates	the
environment	variable	is	added	to
the	user	environment	space.

	

Value String Value	to	set	into	the	environment
variable.

	

See	Also
Wix	Schema

Version	2.0.4820.0



Error	Element

Description

None

Windows	Installer	references
Error	Table

Parents
UI

Inner	Text	(xs:string)
Element	value	is	Message,	use	CDATA	if	message	contains	delimiter
characters

Children
None

Attributes

Name Type Description Required
Id Integer Number	of	the	error	for	which	a

message	is	being	provided.	See	MSI
SDK	for	error	definitions.

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/error_table.asp?frame=true&hidetoc=true


Exclusion	Element

Description

Declares	a	merge	module	with	which	this	merge	module	is
incompatible.

Windows	Installer	references
None

Parents
Module

Inner	Text
None

Children
None

Attributes

Name Type Description Required
ExcludedId String Identifier	of	the	merge

module	that	is
incompatible.

Yes

ExcludedMaxVersion String Maximum	version
excluded	from	a	range.	If
not	set,	all	versions	after
min	are	excluded.	If
neither	max	nor	min,	no
exclusion	based	on
version.

	

ExcludedMinVersion String Minimum	version
excluded	from	a	range.	If
not	set,	all	versions
before	max	are
excluded.	If	neither	max
nor	min,	no	exclusion

	



based	on	version.
ExcludeExceptLanguage Integer Numeric	language	ID	of

the	merge	module	in
ExcludedID.	All	except
this	language	will	be
excluded.	Only	one	of
ExcludeExceptLanguage
and	ExcludeLanguage
may	be	specified.

	

ExcludeLanguage Integer Numeric	language	ID	of
the	merge	module	in
ExcludedID.	The
specified	language	will
be	excluded.	Only	one	of
ExcludeExceptLanguage
and	ExcludeLanguage
may	be	specified.

	

See	Also
Wix	Schema

Version	2.0.4820.0



ExecuteAction	Element

Description

Initiates	the	execution	sequence.	The	condition	for	this	action	may
be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdminUISequence,	InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Extension	Element

Description

Extension	for	a	Component

Windows	Installer	references
MIME	Table,	Verb	Table,	Registry	Table

Parents
Component,	Include,	ProgId

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
MIME	(min:	0,	max:	unbounded)
Verb	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String This	is	simply	the	file	extension,

like	"doc"	or	"xml".	Do	not
include	the	preceding	period.

Yes

Advertise YesNoType Whether	this	extension	is	to	be
advertised.	The	default	is	"no".

	

ContentType String The	MIME	type	that	is	to	be
written.

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/mime_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/verb_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true


ExternalFile	Element

Description

Contains	information	about	specific	files	that	are	not	part	of	a	regular
target	image.

Windows	Installer	references
None

Parents
Family

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 ProtectRange	(min:	1,	max:	unbounded)
2.	 SymbolPath	(min:	1,	max:	unbounded)
3.	 Choice	of	elements	(min:	0,	max:	unbounded)

IgnoreRange	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
File String Foreign	key	into	the	File	table. Yes
Order Int Specifies	the	order	of	the	external	files

to	use	when	creating	the	patch.
Yes

Source String Full	path	of	the	external	file. 	
src String This	attribute	has	been	deprecated;

please	use	the	Source	attribute
instead.

	

See	Also
Wix	Schema

Version	2.0.4820.0



Family	Element

Description

Group	of	one	or	more	upgraded	images	of	a	product.

Windows	Installer	references
None

Parents
PatchCreation

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 UpgradeImage	(min:	1,	max:	unbounded)
2.	 Choice	of	elements	(min:	0,	max:	unbounded)

ExternalFile	(min:	0,	max:	unbounded)
ProtectFile	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
DiskId Int Entered	into	the	DiskId	field	of

the	new	Media	table	record.
	

DiskPrompt String Value	to	display	in	the	"[1]"	of	the
DiskPrompt	Property.	Using	this
attribute	will	require	you	to	define
a	DiskPrompt	Property.

	

MediaSrcProp String Entered	into	the	Source	field	of
the	new	Media	table	entry	of	the
upgraded	image.

	

Name String Identifier	for	the	family. Yes
SequenceStart Int Sequence	number	for	the

starting	file.
	



VolumeLabel String Entered	into	the	VolumeLabel
field	of	the	new	Media	table
record.

	

See	Also
Wix	Schema

Version	2.0.4820.0



Feature	Element

Description

A	feature	for	the	Feature	table.	Features	are	the	smallest	installable
unit.	See	msi.chm	for	more	detailed	information	on	the	myriad
installation	options	for	a	feature.

Windows	Installer	references
Feature	Table

Parents
Feature,	FeatureRef,	Fragment,	Include,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
ComponentGroupRef	(min:	0,	max:	unbounded)
ComponentRef	(min:	0,	max:	unbounded)
Condition	(min:	0,	max:	unbounded)
Feature	(min:	0,	max:	unbounded)
FeatureRef	(min:	0,	max:	unbounded)
MergeRef	(min:	0,	max:	unbounded)
Any	Element	namespace='##other'	processContents='Lax'

Attributes

Name Type Description
Id String Unique	identifier	of	the	feature.
Absent Enumeration This	attribute	determines	if	a	user	will	have	the

option	to	set	a	feature	to	absent	in	the	user	interface.
This	attribute's	value	should	be	one	of	the	following:
allow

Allows	the	user	interface	to	display	an	option	to
change	the	feature	state	to	Absent.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/feature_table.asp?frame=true&hidetoc=true


disallow
Prevents	the	user	interface	from	displaying	an
option	to	change	the	feature	state	
setting	the
msidbFeatureAttributesUIDisallowAbsent
attribute.	This	will	force	the	feature	
installation	state,	whether	or	not	the	feature	is
visible	in	the	UI.

AllowAdvertise Enumeration This	attribute	determins	the	possible	advertise	states
for	this	feature.	This	attribute's	value	should	be	one
of	the	following:
no

Prevents	this	feature	from	being	advertised	by
settting	the
msidbFeatureAttributesDisallowAdvertise
attribute.

system
Prevents	advertising	for	this	feature	if	the
operating	system	shell	does	not	support
Windows	Installer	descriptors	by	setting	the
msidbFeatureAttributesNoUnsupportedAdvertise
attribute.

yes
Allows	the	feature	to	be	advertised.

ConfigurableDirectory String Specify	the	Id	of	a	Directory	that	can	be	configured
by	the	user	at	installation	time.	This	identifier	
be	a	public	property	and	therefore	completely
uppercase.

Description String Longer	string	of	text	describing	the	feature.	
localizable	string	is	displayed	by	the	
the	Selection	Dialog.

Display String Determines	the	initial	display	of	this	feature	in	the
feature	tree.	This	attribute's	value	should	be	one	of
the	following:
collapse

Initially	shows	the	feature	collapsed.	



default	value.

expand
Initially	shows	the	feature	expanded.

hidden
Prevents	the	feature	from	displaying	in	the	user
interface.

<an	explicit	integer	value>
For	advanced	users	only,	it	is	possible	to	directly
set	the	integer	value	of	the	display	value	that	will
appear	in	the	Feature	row.

InstallDefault Enumeration This	attribute	determines	the	default	install/run
location	of	a	feature.	This	attribute	cannot	be
specified	if	the	value	of	the	FollowParent	attribute	is
'yes'	since	that	would	ask	the	installer	to	force	this
feature	to	follow	the	parent	installation	state	and
simultaneously	favor	a	particular	installation	state
just	for	this	feature.	This	attribute's	value	should	be
one	of	the	following:
followParent

Forces	the	feature	to	follow	the	same	installation
state	as	its	parent	feature.

local
Favors	installing	this	feature	locally	by	setting
the	msidbFeatureAttributesFavorLocal	attribute.

source
Favors	running	this	feature	from	source	by
setting	the	msidbFeatureAttributesFavorSource
attribute.

Level Integer Sets	the	install	level	of	this	feature.	
disable	the	feature.	Processing	the	
can	modify	the	level	value	(this	is	set	via	the
Condition	child	element).

Title String Short	string	of	text	identifying	the	feature.	
is	listed	as	an	item	by	the	SelectionTree	control	of



the	Selection	Dialog.
TypicalDefault Enumeration This	attribute	determines	the	default	advertise	state

of	the	feature.	This	attribute's	value	should	be	one	of
the	following:
advertise

Sets	the	feature	to	be	advertised	by	setting	the
msidbFeatureAttributesFavorAdvertise	attribute.
This	value	cannot	be	set	if	the	value	of	the
AllowAdvertise	attribute	is	'no'	since	that	would
ask	the	installer	to	disallow	the	advertised	state
for	this	feature	while	at	the	same	time	favoring	it.

install
Sets	the	feature	to	the	default	non-advertised
installation	option.

Any	attribute	namespace='##other'	processContents='lax'

See	Also
Wix	Schema,	FeatureRef

Version	2.0.4820.0



FeatureRef	Element

Description

Create	a	reference	to	a	Feature	element	in	another	Fragment.

Windows	Installer	references
None

Parents
Feature,	FeatureRef,	Fragment,	Include,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
ComponentGroupRef	(min:	0,	max:	unbounded)
ComponentRef	(min:	0,	max:	unbounded)
Feature	(min:	0,	max:	unbounded)
FeatureRef	(min:	0,	max:	unbounded)
MergeRef	(min:	0,	max:	unbounded)
Any	Element	namespace='##other'	processContents='Lax'

Attributes

Name Type Description Required
Id String The	identifier	of	the	Feature	element

to	reference.
Yes

See	Also
Wix	Schema,	Feature

Version	2.0.4820.0



File	Element

Description

File	specification	for	File	table,	must	be	child	node	of	Component

Windows	Installer	references
File	Table

Parents
Component,	Include

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
AppId	(min:	0,	max:	unbounded)
AssemblyName	(min:	0,	max:	unbounded)
Class	(min:	0,	max:	unbounded)
CopyFile	(min:	0,	max:	unbounded):	to	DuplicateFile	table
ODBCDriver	(min:	0,	max:	unbounded)
ODBCTranslator	(min:	0,	max:	unbounded)
Patch	(min:	0,	max:	unbounded):	to	Patch	table
PerfCounter	(min:	0,	max:	unbounded)
Permission	(min:	0,	max:	unbounded)
Shortcut	(min:	0,	max:	unbounded):	Target	is	preset	to	this	file
TypeLib	(min:	0,	max:	unbounded)
Any	Element	namespace='##other'	processContents='Lax'
HelpCollection
HelpFile
NativeImage
SnapIn

Attributes

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/file_table.asp?frame=true&hidetoc=true


Name Type Description Required
Id String 	 Yes
Assembly Enumeration Specifies	if	this

File	is	a	Win32
Assembly	or
.NET	Assembly;
the	default	is
neither.	If	the
value	is	'.net'	or
'win32',	this	file
must	also	be
the	key	path	of
the	Component.
This	attribute's
value	should	be
one	of	the
following:
.net

no

win32

	

AssemblyApplication String Specifies	the
file	identifier	of
the	application
file.	This
assembly	will
be	isolated	to
the	same
directory	as	the
application	file.
If	this	attribute
is	absent,	the
assembly	will
be	installed	to
the	Global
Assembly
Cache.	This

	



attribute	may
only	be
specified	if	the
Assembly
attribute	is	set
to	'.net'	or
'win32'.

AssemblyManifest String Specifies	the
file	identifier	of
the	manifest	file
that	describes
this	assembly.
The	manifest
file	should	be	in
the	same
component	as
the	assembly	it
describes.	This
attribute	may
only	be
specified	if	the
Assembly
attribute	is	set
to	'.net'	or
'win32'.

	

BindPath String generates
BindImage
table	row,	value
my	be	empty
string

	

Checksum YesNoType This	attribute
should	be	set	to
"yes"	for	every
executable	file
in	the
installation	that
has	a	valid
checksum

	



stored	in	the
Portable
Executable
(PE)	file
header.	Only
those	files	that
have	this
attribute	set	will
be	verified	for
valid	checksum
during	a
reinstall.

CompanionFile String Set	this
attribute	to
make	this	file	a
companion
child	of	another
file.	The
installation
state	of	a
companion	file
depends	not	on
its	own	file
versioning
information,	but
on	the
versioning	of	its
companion
parent.	A	file
that	is	the	key
path	for	its
component	can
not	be	a
companion	file
(that	means	this
attribute	cannot
be	set	if
KeyPath="yes"

	



for	this	file).
The	Version
attribute	cannot
be	set	along
with	this
attribute	since
companion	files
are	not	installed
based	on	their
own	version.

Compressed YesNoDefaultType Sets	the	file's
source	type
compression.	A
setting	of	"yes"
or	"no"	will
override	the
setting	in	the
Word	Count
Summary
Property.

	

DefaultLanguage String This	is	the
default
language	of	this
file.	The	linker
will	replace	this
value	from	the
value	in	the	file
if	the	suppress
files	option	is
not	used.

	

DefaultSize Integer This	is	the
default	size	of
this	file.	The
linker	will
replace	this
value	from	the
value	in	the	file
if	the	suppress

	



files	option	is
not	used.

DefaultVersion String This	is	the
default	version
of	this	file.	The
linker	will
replace	this
value	from	the
value	in	the	file
if	the	suppress
files	option	is
not	used.

	

DiskId String Specifies	the
Media	this	File
should	be
sourced	on.
This	attribute
must	be	set	on
this	File
element	or	its
parent
Component.

	

FontTitle String generates
entries	in	Font
table	with	the
FontTitle

	

Hidden YesNoType Set	to	yes	in
order	to	have
the	file's	hidden
attribute	set
when	it	is
installed	on	the
target	machine.

	

KeyPath YesNoType Set	yes	to	force
this	File	to	be
key	path	for
parent
Component.

	



LongName LongFileNameType Long	file	name;
set	this	attribute
if	preferred
name	is	not	in
8.3	format.

	

Name ShortFileNameType File	name	of
the	file	in	8.3
format,	required
for	backwards
compatibility.

Yes

PatchGroup Integer This	attribute
must	be	set	for
patch-added
files.	Each
patch	should	be
assigned	a
different	patch
group	number.
Patch	groups
numbers	must
be	greater	0
and	should	be
assigned
consecutively.
For	example,
the	first	patch
should	use
PatchGroup='1',
the	second
patch	will	have
PatchGroup='2',
etc...

	

ProcessorArchitecture Enumeration Specifies	the
architecture	for
this	assembly.
This	attribute
should	only	be
used	on	.NET

	



Assemblies	for
the	CLR	2.0.
This	attribute's
value	should	be
one	of	the
following:
msil

x86

x64

ia64

ReadOnly YesNoType Set	to	yes	in
order	to	have
the	file's	read-
only	attribute
set	when	it	is
installed	on	the
target	machine.

	

SelfRegCost Integer generates
SelfReg	table
row

	

Source String Specifies	the
path	to	the	File
in	the	build
process.	This
attribute	must
be	set	if	no
source
information	can
be	gathered
from	parent
directories.

	

src String This	attribute
has	been
deprecated;
please	use	the
Source	attribute

	



instead.
System YesNoType Set	to	yes	in

order	to	have
the	file's	system
attribute	set
when	it	is
installed	on	the
target	machine.

	

TrueType YesNoType generates
entries	in	Font
table	with	no
FontTitle

	

Vital YesNoType If	a	file	is	vital,
then	installation
cannot	proceed
unless	the	file	is
successfully
installed.	The
user	will	have
no	option	to
ignore	an	error
installing	this
file.	If	an	error
occurs,	they
can	merely
retry	to	install
the	file	or	abort
the	installation.

	

Any	attribute	namespace='##other'	processContents='lax'

See	Also
Wix	Schema

Version	2.0.4820.0



FileCost	Element

Description

Initiates	dynamic	costing	of	standard	installation	actions.	Any
standard	or	custom	actions	that	affect	costing	should	sequenced
before	the	CostInitialize	action.	Call	the	FileCost	action	immediately
following	the	CostInitialize	action.	Then	call	the	CostFinalize	action
following	the	FileCost	action	to	make	all	final	cost	calculations
available	to	the	installer	through	the	Component	table.	The
CostInitialize	action	must	be	executed	before	the	FileCost	action.
The	installer	then	determines	the	disk-space	cost	of	every	file	in	the
File	table,	on	a	per-component	basis,	taking	both	volume	clustering
and	the	presence	of	existing	files	that	may	need	to	be	overwritten
into	account.	All	actions	that	consume	or	release	disk	space	are	also
considered.	If	an	existing	file	is	found,	a	file	version	check	is
performed	to	determine	whether	the	new	file	actually	needs	to	be
installed	or	not.	If	the	existing	file	is	of	an	equal	or	greater	version
number,	the	existing	file	is	not	overwritten	and	no	disk-space	cost	is
incurred.	In	all	cases,	the	installer	uses	the	results	of	version	number
checking	to	set	the	installation	state	of	each	file.	The	FileCost	action
initializes	cost	calculation	with	the	installer.	Actual	dynamic	costing
does	not	occur	until	the	CostFinalize	action	is	executed.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes



Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	CostInitialize,	CostFinalize

Version	2.0.4820.0



FileSearch	Element

Description

Searches	for	file	and	assigns	to	fullpath	value	of	parent	Property

Windows	Installer	references
DrLocator	Table,	Signature	Table

Parents
ComplianceCheck,	ComponentSearch,	DirectorySearch,
DirectorySearchRef,	IniFileSearch,	Property,	RegistrySearch

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Specify	the	Id	when	you

want	to	find	the	path	to	a
file.	Leave	the	Id	absent
if	you	want	to	find	the
parent	directory	of	a	file.

	

Languages String The	languages
supported	by	the	file.

	

LongName LongFileNameType Long	file	name;	set	this
attribute	if	preferred
name	is	not	in	8.3
format.	Either	this
attribute	or	the	Name
attribute	is	required.
When	using	only	the
LongName	attribute,
ICE03	should	be	ignored

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/drlocator_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/signature_table.asp?frame=true&hidetoc=true


for	the	Signature	table's
FileName	column.

MaxDate DateTime The	maximum
modification	date	and
time	of	the	file.
Formatted	as	YYYY-MM-
DDTHH:mm:ss,	where
YYYY	is	the	year,	MM	is
month,	DD	is	day,	'T'	is
literal,	HH	is	hour,	mm	is
minute	and	ss	is	second.

	

MaxSize Int The	maximum	size	of
the	file.

	

MaxVersion String The	maximum	version	of
the	file.

	

MinDate DateTime The	minimum
modification	date	and
time	of	the	file.
Formatted	as	YYYY-MM-
DDTHH:mm:ss,	where
YYYY	is	the	year,	MM	is
month,	DD	is	day,	'T'	is
literal,	HH	is	hour,	mm	is
minute	and	ss	is	second.

	

MinSize Int The	minimum	size	of	the
file.

	

MinVersion String The	minimum	version	of
the	file.

	

Name ShortFileNameType File	name	of	the	file	in
8.3	format.	Please	note
that	due	to	a	Windows
Installer	bug,	this
attribute	is	not	required	if
the	preferred	file	name	is
not	in	8.3	format.	This
attribute	should	only	be
set	if	the	file	to	find	is	in

	



8.3	format.	Either	this
attribute	or	the
LongName	is	required.

See	Also
Wix	Schema,	ComponentSearch,	DirectorySearch,
DirectorySearchRef,	FileSearchRef,	IniFileSearch,	RegistrySearch

Version	2.0.4820.0



FileSearchRef	Element

Description

References	an	existing	FileSearch	element.

Windows	Installer	references
None

Parents
ComponentSearch,	DirectorySearch,	DirectorySearchRef,
IniFileSearch,	RegistrySearch

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Specify	the	Id	to	the	FileSearch	to

reference.
Yes

See	Also
Wix	Schema,	FileSearch

Version	2.0.4820.0



FileShare	Element

Description

Creates	a	file	share	out	of	the	component's	directory.

Windows	Installer	references
None

Parents
Component,	Include

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Permission	(min:	1,	max:	unbounded):	ACL	permission

Attributes

Name Type Description Required
Id String Identifier	for	the	file	share	(primary

key).
Yes

Description String Description	of	the	file	share. 	
Name String Name	of	the	file	share. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



FileTypeMask	Element

Description

FileType	data	for	class	Id	registration.

Windows	Installer	references
None

Parents
Class

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Mask HexType Hex	value	that	is	AND'd	against	the

bytes	in	the	file	at	Offset.
Yes

Offset Integer Offset	into	file.	If	positive,	offset	is
from	the	beginning;	if	negative,	offset
is	from	the	end.

Yes

Value HexType If	the	result	of	the	AND'ing	of	Mask
with	the	bytes	in	the	file	is	Value,	the
file	is	a	match	for	this	File	Type.

Yes

See	Also
Wix	Schema

Version	2.0.4820.0



FindRelatedProducts	Element

Description

Runs	through	each	record	of	the	Upgrade	table	in	sequence	and
compares	the	upgrade	code,	product	version,	and	language	in	each
row	to	products	installed	on	the	system.	When	FindRelatedProducts
detects	a	correspondence	between	the	upgrade	information	and	an
installed	product,	it	appends	the	product	code	to	the	property
specified	in	the	ActionProperty	column	of	the	UpgradeTable.	The
FindRelatedProducts	action	only	runs	the	first	time	the	product	is
installed.	The	FindRelatedProducts	action	does	not	run	during
maintenance	mode	or	uninstallation.	FindRelatedProducts	should	be
authored	into	the	InstallUISequence	table	and
InstallExecuteSequence	tables.	The	installer	prevents	FindRelated
Products	from	running	in	InstallExecuteSequence	if	the	action	has
already	run	in	InstallUISequence.	The	FindRelatedProducts	action
must	come	before	the	MigrateFeatureStates	action	and	the
RemoveExistingProducts	action.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	



Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	Upgrade

Version	2.0.4820.0



ForceReboot	Element

Description

Prompts	the	user	for	a	restart	of	the	system	during	the	installation.
Special	actions	don't	have	a	built-in	sequence	number	and	thus	must
appear	relative	to	another	action.	The	suggested	way	to	do	this	is	by
using	the	Before	or	After	attribute.	InstallExecute	and
InstallExecuteAgain	can	optionally	appear	anywhere	between
InstallInitialize	and	InstallFinalize.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Fragment	Element

Description

The	Fragment	element	is	the	building	block	of	creating	an	installer
database	in	WiX.	Once	defined,	the	Fragment	becomes	an
immutable,	atomic	unit	which	can	either	be	completely	included	or
excluded	from	a	product.	The	contents	of	a	Fragment	element	can
be	linked	into	a	product	by	utilizing	one	of	the	many	*Ref	elements.
When	linking	in	a	Fragment,	it	will	be	necessary	to	link	in	all	of	its
individual	units.	For	instance,	if	a	given	Fragment	contains	two
Component	elements,	you	must	link	both	under	features	using
ComponentRef	for	each	linked	Component.	Otherwise,	you	will	get	a
linker	warning	and	have	a	floating	Component	that	does	not	appear
under	any	Feature.

Windows	Installer	references
None

Parents
Wix

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	unbounded)
AppId	(min:	0,	max:	unbounded)
Binary	(min:	0,	max:	unbounded)
ComplianceCheck	(min:	0,	max:	unbounded)
ComponentGroup	(min:	0,	max:	unbounded)
Condition	(min:	0,	max:	unbounded)
CustomAction	(min:	0,	max:	unbounded)
CustomActionRef	(min:	0,	max:	unbounded)
CustomTable	(min:	0,	max:	unbounded)



Directory	(min:	0,	max:	unbounded)
DirectoryRef	(min:	0,	max:	unbounded)
EnsureTable	(min:	0,	max:	unbounded)
Feature	(min:	0,	max:	unbounded)
FeatureRef	(min:	0,	max:	unbounded)
FragmentRef	(min:	0,	max:	unbounded)
Group	(min:	0,	max:	unbounded)
Icon	(min:	0,	max:	unbounded)
IgnoreModularization	(min:	0,	max:	unbounded)
Media	(min:	0,	max:	unbounded)
PatchCertificates	(min:	0,	max:	unbounded)
Property	(min:	0,	max:	unbounded)
PropertyRef	(min:	0,	max:	unbounded)
SFPCatalog	(min:	0,	max:	unbounded)
SqlDatabase	(min:	0,	max:	unbounded)
UI	(min:	0,	max:	unbounded)
UIRef	(min:	0,	max:	unbounded)
Upgrade	(min:	0,	max:	unbounded)
User	(min:	0,	max:	unbounded)
WebApplication	(min:	0,	max:	unbounded)
WebAppPool	(min:	0,	max:	unbounded)
WebDirProperties	(min:	0,	max:	unbounded)
WebLog	(min:	0,	max:	unbounded)
WebSite	(min:	0,	max:	unbounded)
Sequence	(min:	1,	max:	1)

1.	 InstallExecuteSequence	(min:	0,	max:	1)
2.	 InstallUISequence	(min:	0,	max:	1)
3.	 AdminExecuteSequence	(min:	0,	max:	1)
4.	 AdminUISequence	(min:	0,	max:	1)
5.	 AdvertiseExecuteSequence	(min:	0,	max:	1)

Any	Element	namespace='##other'	processContents='Lax'
HelpCollectionRef
HelpFilter



Attributes

Name Type Description Required
Id String Optional	identifier	for	a	Fragment.

Should	only	be	used	if	you	plan	to
refer	to	this	Fragment	via	a
FragmentRef	element	elsewhere.

	

See	Also
Wix	Schema,	FragmentRef

Version	2.0.4820.0



FragmentRef	Element

Description

Reference	to	a	Fragment.	This	will	force	the	entire	referenced
Fragment's	contents	to	be	included	in	the	installer	database.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	identifier	of	the	Fragment	to

reference.
Yes

See	Also
Wix	Schema,	Fragment

Version	2.0.4820.0



Group	Element

Description

Group	for	all	kinds	of	things

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
Domain String 	 	
Name String 	 Yes

See	Also
Wix	Schema

Version	2.0.4820.0



GroupRef	Element

Description

Used	to	join	a	user	to	a	group

Windows	Installer	references
None

Parents
User

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes

See	Also
Wix	Schema

Version	2.0.4820.0



HttpHeader	Element

Description

Custom	HTTP	Header	definition	for	IIS	resources	such	as	WebSite
and	WebVirtualDir.

Windows	Installer	references
None

Parents
WebSite,	WebVirtualDir

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Name String Name	of	the	custom	HTTP	Header. Yes
Value String Value	for	the	custom	HTTP	Header.

This	attribute	may	be	set	via	a
formatted	Property	(e.g.	[MyProperty]).

	

See	Also
Wix	Schema

Version	2.0.4820.0



Icon	Element

Description

Icon	used	for	Shortcut,	ProgId,	or	Class	elements	(but	not	UI
controls)

Windows	Installer	references
Icon	Table

Parents
Fragment,	Include,	Module,	Product,	Shortcut

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	Id	cannot	by	longer	than	55

characters.	In	order	to	prevent	errors
in	cases	where	the	Id	is	modularized,
it	should	not	be	longer	than	18
characters.

Yes

SourceFile String Path	to	the	icon	file. 	
src String This	attribute	has	been	deprecated;

please	use	the	SourceFile	attribute
instead.

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/icon_table.asp?frame=true&hidetoc=true


IgnoreModularization	Element

Description

Use	this	to	Ignore	Modularization	of	particular	values.	This	feature	is
intended	to	be	used	in	very	rare	situations.	Before	using	this	feature,
contact	your	support	alias	to	verify	your	use	is	supported.

Windows	Installer	references
None

Parents
Fragment,	Module

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Name String 	 Yes
Type Enumeration This	attribute's	value	should	be

one	of	the	following:
Action

Property

Directory

	

See	Also
Wix	Schema

Version	2.0.4820.0



IgnoreRange	Element

Description

Specifies	part	of	a	file	that	is	to	be	ignored	during	patching.

Windows	Installer	references
None

Parents
ExternalFile,	TargetFile

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Length Int Length	of	the	range. Yes
Offset Int Offset	of	the	start	of	the	range. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



Include	Element

Description

This	is	the	top-level	container	element	for	every	wxi	file.

Windows	Installer	references
None

Parents
None

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
AppId	(min:	0,	max:	unbounded)
Binary	(min:	0,	max:	unbounded)
Category	(min:	0,	max:	unbounded)
Certificate	(min:	0,	max:	unbounded)
Class	(min:	0,	max:	unbounded)
ComplianceCheck	(min:	0,	max:	unbounded)
Condition	(min:	0,	max:	unbounded)
CopyFile	(min:	0,	max:	unbounded)
CreateFolder	(min:	0,	max:	unbounded)
CustomAction	(min:	0,	max:	unbounded)
CustomActionRef	(min:	0,	max:	unbounded)
CustomTable	(min:	0,	max:	unbounded)
Directory	(min:	0,	max:	unbounded)
DirectoryRef	(min:	0,	max:	unbounded)
EnsureTable	(min:	0,	max:	unbounded)
Environment	(min:	0,	max:	unbounded)
Extension	(min:	0,	max:	unbounded)
Feature	(min:	0,	max:	unbounded)



FeatureRef	(min:	0,	max:	unbounded)
File	(min:	0,	max:	unbounded)
FileShare	(min:	0,	max:	unbounded)
FragmentRef	(min:	0,	max:	unbounded)
Group	(min:	0,	max:	unbounded)
Icon	(min:	0,	max:	unbounded)
IniFile	(min:	0,	max:	unbounded)
Interface	(min:	0,	max:	unbounded)
IsolateComponent	(min:	0,	max:	unbounded)
Media	(min:	0,	max:	unbounded)
ODBCDataSource	(min:	0,	max:	unbounded)
ODBCDriver	(min:	0,	max:	unbounded)
ODBCTranslator	(min:	0,	max:	unbounded)
ProgId	(min:	0,	max:	unbounded)
Property	(min:	0,	max:	unbounded)
PropertyRef	(min:	0,	max:	unbounded)
Registry	(min:	0,	max:	unbounded)
RemoveFile	(min:	0,	max:	unbounded)
RemoveFolder	(min:	0,	max:	unbounded)
ReserveCost	(min:	0,	max:	unbounded)
ServiceConfig	(min:	0,	max:	unbounded)
ServiceControl	(min:	0,	max:	unbounded)
ServiceInstall	(min:	0,	max:	unbounded)
SFPCatalog	(min:	0,	max:	unbounded)
Shortcut	(min:	0,	max:	unbounded)
SqlDatabase	(min:	0,	max:	unbounded)
SqlScript	(min:	0,	max:	unbounded)
SqlString	(min:	0,	max:	unbounded)
TypeLib	(min:	0,	max:	unbounded)
UI	(min:	0,	max:	unbounded)
UIRef	(min:	0,	max:	unbounded)
Upgrade	(min:	0,	max:	unbounded)
User	(min:	0,	max:	unbounded)



WebApplication	(min:	0,	max:	unbounded)
WebAppPool	(min:	0,	max:	unbounded)
WebDir	(min:	0,	max:	unbounded)
WebDirProperties	(min:	0,	max:	unbounded)
WebFilter	(min:	0,	max:	unbounded)
WebLog	(min:	0,	max:	unbounded)
WebProperty	(min:	0,	max:	unbounded)
WebServiceExtension	(min:	0,	max:	unbounded)
WebSite	(min:	0,	max:	unbounded)
WebVirtualDir	(min:	0,	max:	unbounded)
Sequence	(min:	1,	max:	1)

1.	 InstallExecuteSequence	(min:	0,	max:	1)
2.	 InstallUISequence	(min:	0,	max:	1)
3.	 AdminExecuteSequence	(min:	0,	max:	1)
4.	 AdminUISequence	(min:	0,	max:	1)
5.	 AdvertiseExecuteSequence	(min:	0,	max:	1)

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



IniFile	Element

Description

Adds	or	removes	.ini	file	entries.

Windows	Installer	references
IniFile	Table,	RemoveIniFile	Table

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	ini	file. Yes
Action Enumeration The	type	of	modification

to	be	made.	This
attribute's	value	should
be	one	of	the	following:
addLine

Creates	or	updates
an	.ini	entry.

addTag
Creates	a	new	entry
or	appends	a	new
comma-separated
value	to	an	existing
entry.

createLine
Creates	an	.ini	entry
only	if	the	entry	does

Yes

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/inifile_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/removeinifile_table.asp?frame=true&hidetoc=true


no	already	exist.

removeLine
Removes	an	.ini
entry.

removeTag
Removes	a	tag	from
an	.ini	entry.

Directory String Name	of	a	property,	the
value	of	which	is	the	full
path	of	the	folder
containing	the	.ini	file.
Can	be	name	of	a
directory	in	the	Directory
table,	a	property	set	by
the	AppSearch	table,	or
any	other	property
representing	a	full	path.

	

Key String The	localizable	.ini	file
key	within	the	section.

Yes

LongName LongFileNameType Long	file	name;	set	this
attribute	if	preferred	name
is	not	in	8.3	format.

	

Name ShortFileNameType File	name	of	the	file	in	8.3
format,	required	for
backwards	compatibility.

Yes

Section String The	localizable	.ini	file
section.

Yes

Value String The	localizable	value	to
be	written	or	deleted.	This
attribute	must	be	set	if	the
Action	attribute's	value	is
"addLine",	"addTag",	or
"createLine".

	

See	Also
Wix	Schema



Version	2.0.4820.0



IniFileSearch	Element

Description

Searches	for	file,	directory	or	registry	key	and	assigns	to	value	of
parent	Property

Windows	Installer	references
IniLocator	Table,	Signature	Table

Parents
ComplianceCheck,	Property

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	1)
DirectorySearch	(min:	0,	max:	1)
DirectorySearchRef	(min:	0,	max:	1)
FileSearch	(min:	0,	max:	1)
FileSearchRef	(min:	0,	max:	1)

Attributes

Name Type Description Required
Id String External	key	into	the

Signature	table.
Yes

Field Integer The	field	in	the	.ini	line.	If
field	is	Null	or	0,	the
entire	line	is	read.

	

Key String The	key	value	within	the
section.

Yes

LongName LongFileNameType Long	file	name;	set	this
attribute	if	preferred	name
is	not	in	8.3	format.

	

Name ShortFileNameType File	name	of	the	file	in	8.3 	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/inilocator_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/signature_table.asp?frame=true&hidetoc=true


format,	required	for
backwards	compatibility.

Section String The	section	name	within
the	.ini	file.

Yes

Type Enumeration Must	be	file	if	last	child	is
FileSearch	element	and
must	be	directory	if	last
child	is	DirectorySearch
element.	This	attribute's
value	should	be	one	of
the	following:
directory

A	directory	location.

file
A	file	location.

raw
A	raw	.ini	value.

	

See	Also
Wix	Schema,	ComponentSearch,	RegistrySearch

Version	2.0.4820.0



InstallAdminPackage	Element

Description

Copies	the	product	database	to	the	administrative	installation	point.
The	condition	for	this	action	may	be	specified	in	the	element's	inner
text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



InstallExecute	Element

Description

Runs	a	script	containing	all	operations	spooled	since	either	the	start
of	the	installation	or	the	last	InstallExecute	action,	or
InstallExecuteAgain	action.	Special	actions	don't	have	a	built-in
sequence	number	and	thus	must	appear	relative	to	another	action.
The	suggested	way	to	do	this	is	by	using	the	Before	or	After
attribute.	InstallExecute	and	InstallExecuteAgain	can	optionally
appear	anywhere	between	InstallInitialize	and	InstallFinalize.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema



Version	2.0.4820.0



InstallExecuteAgain	Element

Description

Runs	a	script	containing	all	operations	spooled	since	either	the	start
of	the	installation	or	the	last	InstallExecute	action,	or
InstallExecuteAgain	action.	Should	only	be	used	after	InstallExecute.
Special	actions	don't	have	a	built-in	sequence	number	and	thus	must
appear	relative	to	another	action.	The	suggested	way	to	do	this	is	by
using	the	Before	or	After	attribute.	InstallExecute	and
InstallExecuteAgain	can	optionally	appear	anywhere	between
InstallInitialize	and	InstallFinalize.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema



Version	2.0.4820.0



InstallExecuteSequence	Element

Description

None

Windows	Installer	references
InstallExecuteSequence	Table

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
AllocateRegistrySpace	(min:	0,	max:	unbounded):	Ensures	the
needed	amount	of	space	exists	in	the	registry.
AppSearch	(min:	0,	max:	unbounded):	Uses	file	signatures	to	search
for	existing	versions	of	products.
BindImage	(min:	0,	max:	unbounded):	Binds	each	executable	or	DLL
that	must	be	bound	to	the	DLLs	imported	by	it.
CCPSearch	(min:	0,	max:	unbounded):	Uses	file	signatures	to
validate	that	qualifying	products	are	installed	on	a	system	before	an
upgrade	installation	is	performed.
CostFinalize	(min:	0,	max:	unbounded):	Ends	the	internal	installation
costing	process	begun	by	the	CostInitialize	action.
CostInitialize	(min:	0,	max:	unbounded):	Initiates	the	internal
installation	costing	process.
CreateFolders	(min:	0,	max:	unbounded):	Creates	empty	folders	for
components	that	are	set	to	be	installed.
CreateShortcuts	(min:	0,	max:	unbounded):	Manages	the	creation	of
shortcuts.
Custom	(min:	0,	max:	unbounded):	Use	to	sequence	a	custom
action.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/installexecutesequence_table.asp?frame=true&hidetoc=true


DeleteServices	(min:	0,	max:	unbounded):	Stops	a	service	and
removes	its	registration	from	the	system.
DisableRollback	(min:	0,	max:	unbounded):	Disables	rollback	for	the
remainder	of	the	installation.
DuplicateFiles	(min:	0,	max:	unbounded):	Duplicates	files	installed	by
the	InstallFiles	action.
FileCost	(min:	0,	max:	unbounded):	Initiates	dynamic	costing	of
standard	installation	actions.
FindRelatedProducts	(min:	0,	max:	unbounded):	Runs	through	each
record	of	the	Upgrade	table	in	sequence	and	compares	the	upgrade
code,	product	version,	and	language	in	each	row	to	products
installed	on	the	system.
ForceReboot	(min:	0,	max:	unbounded):	Prompts	the	user	for	a
restart	of	the	system	during	the	installation.	Not	fixed	sequence.
InstallExecute	(min:	0,	max:	unbounded):	Runs	a	script	containing	all
operations	spooled	since	either	the	start	of	the	installation	or	the	last
InstallExecute	action,	or	InstallExecuteAgain	action.
InstallExecuteAgain	(min:	0,	max:	unbounded):	Runs	a	script
containing	all	operations	spooled	since	either	the	start	of	the
installation	or	the	last	InstallExecute	action,	or	InstallExecuteAgain
action.
InstallFiles	(min:	0,	max:	unbounded):	Copies	files	specified	in	the
File	table	from	the	source	directory	to	the	destination	directory.
InstallFinalize	(min:	0,	max:	unbounded):	Marks	the	end	of	a
sequence	of	actions	that	change	the	system.
InstallInitialize	(min:	0,	max:	unbounded):	Marks	the	beginning	of	a
sequence	of	actions	that	change	the	system.
InstallODBC	(min:	0,	max:	unbounded):	Installs	the	drivers,
translators,	and	data	sources	in	the	ODBCDriver	table,
ODBCTranslator	table,	and	ODBCDataSource	table.
InstallServices	(min:	0,	max:	unbounded):	Registers	a	service	for	the
system.
InstallValidate	(min:	0,	max:	unbounded):	Verifies	that	all	costed
volumes	have	enough	space	for	the	installation.
IsolateComponents	(min:	0,	max:	unbounded):	Installs	a	copy	of	a
component	(commonly	a	shared	DLL)	into	a	private	location	for	use



by	a	specific	application	(typically	an	.exe).
LaunchConditions	(min:	0,	max:	unbounded):	Queries	the
LaunchCondition	table	and	evaluates	each	conditional	statement
recorded	there.
MigrateFeatureStates	(min:	0,	max:	unbounded):	Used	for	upgrading
or	installing	over	an	existing	application.
MoveFiles	(min:	0,	max:	unbounded):	Locates	existing	files	on	the
system	and	moves	or	copies	those	files	to	a	new	location.
MsiPublishAssemblies	(min:	0,	max:	unbounded):	Manages	the
advertisement	of	CLR	and	Win32	assemblies.
MsiUnpublishAssemblies	(min:	0,	max:	unbounded):	Manages	the
unadvertisement	of	CLR	and	Win32	assemblies	that	are	being
removed.
PatchFiles	(min:	0,	max:	unbounded):	Queries	the	Patch	table	to
determine	which	patches	are	to	be	applied.
ProcessComponents	(min:	0,	max:	unbounded):	Registers	and
unregisters	components,	their	key	paths,	and	the	component	clients.
PublishComponents	(min:	0,	max:	unbounded):	Manages	the
advertisement	of	the	components	from	the	PublishComponent	table.
PublishFeatures	(min:	0,	max:	unbounded):	Writes	each	feature's
state	into	the	system	registry.
PublishProduct	(min:	0,	max:	unbounded):	Manages	the
advertisement	of	the	product	information	with	the	system.
RegisterClassInfo	(min:	0,	max:	unbounded):	Manages	the
registration	of	COM	class	information	with	the	system.
RegisterComPlus	(min:	0,	max:	unbounded):	Registers	COM+
applications.
RegisterExtensionInfo	(min:	0,	max:	unbounded):	Manages	the
registration	of	extension	related	information	with	the	system.
RegisterFonts	(min:	0,	max:	unbounded):	Registers	installed	fonts
with	the	system.
RegisterMIMEInfo	(min:	0,	max:	unbounded):	Registers	MIME-
related	registry	information	with	the	system.
RegisterProduct	(min:	0,	max:	unbounded):	Registers	the	product
information	with	the	installer.
RegisterProgIdInfo	(min:	0,	max:	unbounded):	Manages	the



registration	of	OLE	ProgId	information	with	the	system.
RegisterTypeLibraries	(min:	0,	max:	unbounded):	Registers	type
libraries	with	the	system.
RegisterUser	(min:	0,	max:	unbounded):	Registers	the	user
information	with	the	installer	to	identify	the	user	of	a	product.
RemoveDuplicateFiles	(min:	0,	max:	unbounded):	Deletes	files
installed	by	the	DuplicateFiles	action.
RemoveEnvironmentStrings	(min:	0,	max:	unbounded):	Modifies	the
values	of	environment	variables.
RemoveExistingProducts	(min:	0,	max:	unbounded):	Goes	through
the	product	codes	listed	in	the	ActionProperty	column	of	the	Upgrade
table	and	removes	the	products	in	sequence.
RemoveFiles	(min:	0,	max:	unbounded):	Removes	files	previously
installed	by	the	InstallFiles	action.
RemoveFolders	(min:	0,	max:	unbounded):	Removes	any	folders
linked	to	components	set	to	be	removed	or	run	from	source.
RemoveIniValues	(min:	0,	max:	unbounded):	Removes	.ini	file
information	specified	for	removal	in	the	RemoveIniFile	table	if	the
component	is	set	to	be	installed	locally	or	run	from	source.
RemoveODBC	(min:	0,	max:	unbounded):	Removes	the	data
sources,	translators,	and	drivers	listed	for	removal	during	the
installation.
RemoveRegistryValues	(min:	0,	max:	unbounded):	Removes	a
registry	value	that	has	been	authored	into	the	registry	table	if	the
associated	component	was	installed	locally	or	as	run	from	source,
and	is	now	set	to	be	uninstalled.
RemoveShortcuts	(min:	0,	max:	unbounded):	Manages	the	removal
of	an	advertised	shortcut	whose	feature	is	selected	for	uninstallation
or	a	nonadvertised	shortcut	whose	component	is	selected	for
uninstallation.
ResolveSource	(min:	0,	max:	unbounded):	Determines	the	location
of	the	source	and	sets	the	SourceDir	property	if	the	source	has	not
been	resolved	yet.	Not	fixed	sequence.
RMCCPSearch	(min:	0,	max:	unbounded):	Uses	file	signatures	to
validate	that	qualifying	products	are	installed	on	a	system	before	an
upgrade	installation	is	performed.



ScheduleReboot	(min:	0,	max:	unbounded):	Prompts	the	user	to
restart	the	system	at	the	end	of	installation.	Not	fixed	sequence.
SelfRegModules	(min:	0,	max:	unbounded):	Processes	all	modules
listed	in	the	SelfReg	table	and	registers	all	installed	modules	with	the
system.
SelfUnregModules	(min:	0,	max:	unbounded):	Unregisters	all
modules	listed	in	the	SelfReg	table	that	are	scheduled	to	be
uninstalled.
SetODBCFolders	(min:	0,	max:	unbounded):	Checks	for	existing
ODBC	drivers	and	sets	the	target	directory	for	each	new	driver	to	the
location	of	an	existing	driver.
StartServices	(min:	0,	max:	unbounded):	Starts	system	services.
StopServices	(min:	0,	max:	unbounded):	Stops	system	services.
UnpublishComponents	(min:	0,	max:	unbounded):	Manages	the
unadvertisement	of	components	listed	in	the	PublishComponent
table.
UnpublishFeatures	(min:	0,	max:	unbounded):	Removes	selection-
state	and	feature-component	mapping	information	from	the	registry.
UnregisterClassInfo	(min:	0,	max:	unbounded):	Manages	the
removal	of	COM	class	information	from	the	system	registry.
UnregisterComPlus	(min:	0,	max:	unbounded):	Removes	COM+
applications	from	the	registry.
UnregisterExtensionInfo	(min:	0,	max:	unbounded):	Manages	the
removal	of	extension-related	information	from	the	system	registry.
UnregisterFonts	(min:	0,	max:	unbounded):	Removes	registration
information	about	installed	fonts	from	the	system.
UnregisterMIMEInfo	(min:	0,	max:	unbounded):	Unregisters	MIME-
related	registry	information	from	the	system.
UnregisterProgIdInfo	(min:	0,	max:	unbounded):	Manages	the
unregistration	of	OLE	ProgId	information	with	the	system.
UnregisterTypeLibraries	(min:	0,	max:	unbounded):	Unregisters	type
libraries	from	the	system.
ValidateProductID	(min:	0,	max:	unbounded):	Sets	the	ProductID
property	to	the	full	product	identifier.
WriteEnvironmentStrings	(min:	0,	max:	unbounded):	Modifies	the
values	of	environment	variables.



WriteIniValues	(min:	0,	max:	unbounded):	Writes	the	.ini	file
information	that	the	application	needs	written	to	its	.ini	files.
WriteRegistryValues	(min:	0,	max:	unbounded):	Sets	up	an
application's	registry	information.

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



InstallFiles	Element

Description

Copies	files	specified	in	the	File	table	from	the	source	directory	to
the	destination	directory.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



InstallFinalize	Element

Description

Marks	the	end	of	a	sequence	of	actions	that	change	the	system.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	InstallInitialize

Version	2.0.4820.0



InstallInitialize	Element

Description

Marks	the	beginning	of	a	sequence	of	actions	that	change	the
system.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	InstallFinalize

Version	2.0.4820.0



InstallODBC	Element

Description

Installs	the	drivers,	translators,	and	data	sources	in	the	ODBCDriver
table,	ODBCTranslator	table,	and	ODBCDataSource	table.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



InstallServices	Element

Description

Registers	a	service	for	the	system.	The	condition	for	this	action	may
be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



InstallUISequence	Element

Description

None

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product,	UI

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
Choice	of	elements	(min:	0,	max:	unbounded)
AppSearch	(min:	0,	max:	unbounded):	Uses	file	signatures	to	search
for	existing	versions	of	products.
CCPSearch	(min:	0,	max:	unbounded):	Uses	file	signatures	to
validate	that	qualifying	products	are	installed	on	a	system	before	an
upgrade	installation	is	performed.
CostFinalize	(min:	0,	max:	unbounded):	Ends	the	internal	installation
costing	process	begun	by	the	CostInitialize	action.
CostInitialize	(min:	0,	max:	unbounded):	Initiates	the	internal
installation	costing	process.
Custom	(min:	0,	max:	unbounded):	Use	to	sequence	a	custom
action.
ExecuteAction	(min:	0,	max:	unbounded):	Initiates	the	execution
sequence.
FileCost	(min:	0,	max:	unbounded):	Initiates	dynamic	costing	of
standard	installation	actions.
FindRelatedProducts	(min:	0,	max:	unbounded):	Runs	through	each
record	of	the	Upgrade	table	in	sequence	and	compares	the	upgrade
code,	product	version,	and	language	in	each	row	to	products
installed	on	the	system.
IsolateComponents	(min:	0,	max:	unbounded):	Installs	a	copy	of	a



component	(commonly	a	shared	DLL)	into	a	private	location	for	use
by	a	specific	application	(typically	an	.exe).
LaunchConditions	(min:	0,	max:	unbounded):	Queries	the
LaunchCondition	table	and	evaluates	each	conditional	statement
recorded	there.
MigrateFeatureStates	(min:	0,	max:	unbounded):	Used	for	upgrading
or	installing	over	an	existing	application.
ResolveSource	(min:	0,	max:	unbounded):	Determines	the	location
of	the	source	and	sets	the	SourceDir	property	if	the	source	has	not
been	resolved	yet.
RMCCPSearch	(min:	0,	max:	unbounded):	Uses	file	signatures	to
validate	that	qualifying	products	are	installed	on	a	system	before	an
upgrade	installation	is	performed.
ScheduleReboot	(min:	0,	max:	unbounded):	Prompts	the	user	to
restart	the	system	at	the	end	of	installation.	Not	fixed	sequence.
Show	(min:	0,	max:	unbounded)
ValidateProductID	(min:	0,	max:	unbounded):	Sets	the	ProductID
property	to	the	full	product	identifier.

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



InstallValidate	Element

Description

Verifies	that	all	costed	volumes	have	enough	space	for	the
installation.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Interface	Element

Description

COM	Interface	registration	for	parent	Typelib.

Windows	Installer	references
Registry	Table

Parents
Class,	Component,	Include,	TypeLib

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id Uuid GUID	identifier	for	COM

Interface.
Yes

Name String Name	for	COM
Interface.

Yes

NumMethods Integer Number	of	methods
implemented	on	COM
Interface.

	

ProxyStubClassId Uuid GUID	CLSID	for	proxy
stub	to	COM	Interface.

	

ProxyStubClassId32 Uuid GUID	CLSID	for	32-bit
proxy	stub	to	COM
Interface.

	

Versioned YesNoType Determines	whether	a
Typelib	version	entry
should	be	created	with
the	other	COM	Interface
registry	keys.	Default	is

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true


'yes'.

See	Also
Wix	Schema

Version	2.0.4820.0



IsolateComponent	Element

Description

Shared	Component	to	be	privately	replicated	in	folder	of	parent
Component

Windows	Installer	references
IsolateComponent	Table

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Shared String Shared	Component	for	this	application

Component
Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/isolatecomponent_table.asp?frame=true&hidetoc=true


IsolateComponents	Element

Description

Installs	a	copy	of	a	component	(commonly	a	shared	DLL)	into	a
private	location	for	use	by	a	specific	application	(typically	an	.exe).
This	isolates	the	application	from	other	copies	of	the	component	that
may	be	installed	to	a	shared	location	on	the	computer.	The	action
refers	to	each	record	of	the	IsolatedComponent	table	and	associates
the	files	of	the	component	listed	in	the	Component_Shared	field	with
the	component	listed	in	the	Component_Application	field.	The
installer	installs	the	files	of	Component_Shared	into	the	same
directory	as	Component_Application.	The	installer	generates	a	file	in
this	directory,	zero	bytes	in	length,	having	the	short	filename	name	of
the	key	file	for	Component_Application	(typically	this	is	the	same	file
name	as	the	.exe)	appended	with	.local.	The	IsolatedComponent
action	does	not	affect	the	installation	of	Component_Application.
Uninstalling	Component_Application	also	removes	the
Component_Shared	files	and	the	.local	file	from	the	directory.	The
IsolateComponents	action	can	be	used	only	in	the	InstallUISequence
table	and	the	InstallExecuteSequence	table.	This	action	must	come
after	the	CostInitialize	action	and	before	the	CostFinalize	action.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required



Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	IsolateComponent

Version	2.0.4820.0



LaunchConditions	Element

Description

Queries	the	LaunchCondition	table	and	evaluates	each	conditional
statement	recorded	there.	If	any	of	these	conditional	statements	fail,
an	error	message	is	displayed	to	the	user	and	the	installation	is
terminated.	The	LaunchConditions	action	is	optional.	This	action	is
normally	the	first	in	the	sequence,	but	the	AppSearch	Action	may	be
sequenced	before	the	LaunchConditions	action.	If	there	are	launch
conditions	that	do	not	apply	to	all	installation	modes,	the	appropriate
installation	mode	property	should	be	used	in	a	conditional
expression	in	the	appropriate	sequence	table.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	AdminUISequence,
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	



Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	Condition

Version	2.0.4820.0



ListBox	Element

Description

Set	of	items	for	a	particular	ListBox	control	tied	to	an	install	Property

Windows	Installer	references
Control	Table,	Dialog	Table,	ListView	Table

Parents
Control,	UI

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 ListItem	(min:	0,	max:	unbounded):	entry	for	ListBox	table

Attributes

Name Type Description Required
Property String Property	tied	to	this	group Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/listview_table.asp?frame=true&hidetoc=true


ListItem	Element

Description

Text	and	value	associated	with	Property	with	Control	set	to	ListBox,
ListView,	ComboBox

Windows	Installer	references
Control	Table,	ComboBox	Table,	Dialog	Table,	ListBox	Table,
ListView	Table

Parents
ComboBox,	ListBox,	ListView

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Text	(min:	0,	max:	1):	Alternative	to	Text	attribute	when
CDATA	is	needed	to	escape	XML	delimiters.

Attributes

Name Type Description Required
Icon String Only	valid	in	ListView	Properties 	
Text String Defaults	to	ListItem's	value 	
Value String Value	assigned	to	the	associated

control	Property.
Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/combobox_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/listbox_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/listview_table.asp?frame=true&hidetoc=true


ListView	Element

Description

Set	of	items	for	a	particular	ListView	control	tied	to	an	install	Property

Windows	Installer	references
ListView	Table,	Control	Table,	Dialog	Table

Parents
Control,	UI

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 ListItem	(min:	0,	max:	unbounded):	entry	for	ListView	table

Attributes

Name Type Description Required
Property String Property	tied	to	this	group Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/listview_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp?frame=true&hidetoc=true


Media	Element

Description

Media	element	describes	a	disk	that	makes	up	the	source	media	for
the	installation.

Windows	Installer	references
Media	Table

Parents
Fragment,	Include,	Product

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 DigitalSignature	(min:	0,	max:	1)
2.	 PatchPackage	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id Integer Disk	identifier	for	Media

table.	This	number	must
be	equal	to	or	greater
than	1.

Yes

Cabinet String The	name	of	the	cabinet
if	some	or	all	of	the	files
stored	on	the	media	are
compressed	into	a
cabinet	file.	If	no
cabinets	are	used,	this
attribute	must	be	blank.

	

CompressionLevel Enumeration Indicates	the
compression	level	for	the
Media's	cabinet.	This

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/media_table.asp?frame=true&hidetoc=true


attribute	can	only	be
used	in	conjunction	with
the	Cabinet	attribute.
The	default	is	'mszip'.
This	attribute's	value
should	be	one	of	the
following:
high

low

medium

mszip

none

DiskPrompt String The	disk	name,	which	is
usually	the	visible	text
printed	on	the	disk.	This
localizable	text	is	used	to
prompt	the	user	when
this	disk	needs	to	be
inserted.	This	value	will
be	used	in	the	"[1]"	of	the
DiskPrompt	Property.
Using	this	attribute	will
require	you	to	define	a
DiskPrompt	Property.

	

EmbedCab YesNoType Instructs	the	binder	to
embed	the	cabinet	in	the
product	if	'yes'.	This
attribute	can	only	be
specified	in	conjunction
with	the	Cabinet
attribute.

	

Layout String This	attribute	specifies
the	root	directory	for	the
uncompressed	files	that
are	a	part	of	this	Media

	



element.	By	default,	the
src	will	be	the	output
directory	for	the	final
image.	The	default	value
ensures	the	binder
generates	an	installable
image.	If	a	relative	path
is	specified	in	the	src
attribute,	the	value	will
be	appended	to	the
image's	output	directory.
If	an	absolute	path	is
provided,	that	path	will
be	used	without
modification.	The	latter
two	options	are	provided
to	ease	the	layout	of	an
image	onto	multiple
medias	(CDs/DVDs).

src String This	attribute	has	been
deprecated;	please	use
the	Layout	attribute
instead.

	

VolumeLabel String The	label	attributed	to
the	volume.	This	is	the
volume	label	returned	by
the
GetVolumeInformation
function.	If	the	SourceDir
property	refers	to	a
removable	(floppy	or	CD-
ROM)	volume,	then	this
volume	label	is	used	to
verify	that	the	proper	disk
is	in	the	drive	before
attempting	to	install	files.
The	entry	in	this	column
must	match	the	volume

	



label	of	the	physical
media.

See	Also
Wix	Schema

Version	2.0.4820.0



Merge	Element

Description

Merge	directive	to	bring	in	a	Merge	Module	to	be	redirected	to	parent
Directory

Windows	Installer	references
None

Parents
Directory,	DirectoryRef

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
ConfigurationData	(min:	0,	max:	unbounded):	Data	to	use	as	input	to
a	configurable	merge	module.

Attributes

Name Type Description Required
Id String The	unique	identifier	for	the

Merge	element	in	the
source	code.	Referenced	by
the	MergeRef/@Id.

Yes

DiskId String The	value	of	this	attribute
should	correspond	to	the	Id
attribute	of	a	Media	element
authored	elsewhere.	By
creating	this	connection
between	the	Merge	Module
and	Media	element,	you	set
the	packaging	options	to	the
values	specified	in	the
Media	element	(values	such

Yes



as	compression	level,	cab
embedding,	etc...).

FileCompression YesNoType 	 	
Language Integer Specifies	the	decimal	LCID

for	the	language	to	merge
the	Module	in	as.

Yes

SourceFile String 	 	
src String This	attribute	has	been

deprecated;	please	use	the
SourceFile	attribute	instead.

	

See	Also
Wix	Schema,	MergeRef

Version	2.0.4820.0



MergeRef	Element

Description

Merge	reference	to	connect	a	Merge	Module	to	parent	Feature

Windows	Installer	references
None

Parents
Feature,	FeatureRef

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	unique	identifier	for	the	Merge

element	to	be	referenced.
Yes

Primary YesNoType Specifies	whether	the	feature
containing	this	MergeRef	is	the
primary	feature	for	advertising	the
merge	module's	components.

	

See	Also
Wix	Schema,	Merge

Version	2.0.4820.0



MigrateFeatureStates	Element

Description

Used	for	upgrading	or	installing	over	an	existing	application.	Reads
feature	states	from	existing	application	and	sets	these	feature	states
for	the	pending	installation.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



MIME	Element

Description

MIME	content-type	for	an	Extension

Windows	Installer	references
MIME	Table

Parents
Extension

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Class Uuid Class	ID	for	the	COM	server

that	is	to	be	associated	with	the
MIME	content.

	

ContentType String This	is	the	identifier	for	the
MIME	content.	It	is	commonly
written	in	the	form	of
type/format.

Yes

Default YesNoType If	'yes',	become	the	content	type
for	the	parent	Extension.	The
default	value	is	'no'.

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/mime_table.asp?frame=true&hidetoc=true


MimeMap	Element

Description

MimeMap	definition	for	IIS	resources.

Windows	Installer	references
None

Parents
WebVirtualDir

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Id	for	the	MimeMap. Yes
Extension String Extension	covered	by	the	MimeMap.

Must	begin	with	a	dot.
Yes

Type String Mime-type	covered	by	the	MimeMap. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



Module	Element

Description

The	Module	element	is	analogous	to	the	main	function	in	a	C
program.	When	linking,	only	one	Module	section	can	be	given	to	the
linker	to	produce	a	successful	result.	Using	this	element	creates	an
msm	file.

Windows	Installer	references
None

Parents
Wix

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Package	(min:	1,	max:	1)
2.	 Choice	of	elements	(min:	0,	max:	unbounded)

AppId	(min:	0,	max:	unbounded)
Binary	(min:	0,	max:	unbounded)
ComponentGroupRef	(min:	0,	max:	unbounded)
ComponentRef	(min:	0,	max:	unbounded)
Configuration	(min:	0,	max:	unbounded)
CustomAction	(min:	0,	max:	unbounded)
CustomActionRef	(min:	0,	max:	unbounded)
CustomTable	(min:	0,	max:	unbounded)
Dependency	(min:	0,	max:	unbounded)
Directory	(min:	0,	max:	unbounded)
DirectoryRef	(min:	0,	max:	unbounded)
EnsureTable	(min:	0,	max:	unbounded)
Exclusion	(min:	0,	max:	unbounded)



FragmentRef	(min:	0,	max:	unbounded)
Group	(min:	0,	max:	unbounded)
Icon	(min:	0,	max:	unbounded)
IgnoreModularization	(min:	0,	max:	unbounded)
Property	(min:	0,	max:	unbounded)
PropertyRef	(min:	0,	max:	unbounded)
SFPCatalog	(min:	0,	max:	unbounded)
SqlDatabase	(min:	0,	max:	unbounded)
Substitution	(min:	0,	max:	unbounded)
UI	(min:	0,	max:	unbounded)
UIRef	(min:	0,	max:	unbounded)
User	(min:	0,	max:	unbounded)
WebApplication	(min:	0,	max:	unbounded)
WebAppPool	(min:	0,	max:	unbounded)
WebDirProperties	(min:	0,	max:	unbounded)
WebLog	(min:	0,	max:	unbounded)
WebSite	(min:	0,	max:	unbounded)
Sequence	(min:	1,	max:	1)

1.	 InstallExecuteSequence	(min:	0,	max:	1)
2.	 InstallUISequence	(min:	0,	max:	1)
3.	 AdminExecuteSequence	(min:	0,	max:	1)
4.	 AdminUISequence	(min:	0,	max:	1)
5.	 AdvertiseExecuteSequence	(min:	0,	max:	1)

Any	Element	namespace='##other'	processContents='Lax'

Attributes

Name Type Description Required
Id String The	name	of	the	merge

module	(not	the	file	name).
Yes

Codepage Integer The	codepage	of	the	merge
module.

	

Guid Uuid The	product	code	GUID	of
the	merge	module.

Yes

Language LocalizableInteger The	decimal	language	ID Yes



(LCID)	of	the	merge
module.

Version String The	product	version	string
of	the	merge	module.

Yes

See	Also
Wix	Schema

Version	2.0.4820.0



MoveFiles	Element

Description

Locates	existing	files	on	the	system	and	moves	or	copies	those	files
to	a	new	location.	The	condition	for	this	action	may	be	specified	in
the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



MsiPublishAssemblies	Element

Description

Manages	the	advertisement	of	CLR	and	Win32	assemblies.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



MsiUnpublishAssemblies	Element

Description

Manages	the	unadvertisement	of	CLR	and	Win32	assemblies	that
are	being	removed.	The	condition	for	this	action	may	be	specified	in
the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



ODBCDataSource	Element

Description

ODBCDataSource	for	a	Component

Windows	Installer	references
ODBCDataSource	Table

Parents
Component,	Include,	ODBCDriver

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Property	(min:	0,	max:	unbounded):	Translates	into
ODBCSourceAttributes

Attributes

Name Type Description Required
Id String Identifier	of	the	data	source. Yes
DriverName String Required	if	not	found	as	child	of

ODBCDriver	element
	

KeyPath YesNoType Set	'yes'	to	force	this	file	to	be
key	path	for	parent	Component

	

Name String Name	for	the	data	source. Yes
Registration Enumeration Scope	for	which	the	data

source	should	be	registered.
This	attribute's	value	should	be
one	of	the	following:
machine

user

Yes

See	Also

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/odbcdatasource_table.asp?frame=true&hidetoc=true


Wix	Schema
Version	2.0.4820.0



ODBCDriver	Element

Description

ODBCDriver	for	a	Component

Windows	Installer	references
ODBCDriver	Table

Parents
Component,	File,	Include

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Property	(min:	0,	max:	unbounded):	Translates	into
ODBCSourceAttributes

2.	 ODBCDataSource	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the	driver. Yes
File String Required	if	not	found	as	child	of	File

element
	

Name String Name	for	the	driver. Yes
SetupFile String Required	if	not	found	as	child	of	File

element	or	different	from	File	attribute
above

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/odbcdriver_table.asp?frame=true&hidetoc=true


ODBCTranslator	Element

Description

ODBCTranslator	for	a	Component

Windows	Installer	references
ODBCTranslator	Table

Parents
Component,	File,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	translator. Yes
File String Required	if	not	found	as	child	of	File

element
	

Name String Name	for	the	translator. Yes
SetupFile String Required	if	not	found	as	child	of	File

element	or	different	from	File	attribute
above

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/odbctranslator_table.asp?frame=true&hidetoc=true


Package	Element

Description

Properties	about	the	package	to	be	placed	in	the	Summary
Information	Stream.	These	are	visible	from	COM	through	the
IStream	interface,	and	these	properties	can	be	seen	on	the	package
in	Explorer.

Windows	Installer	references
None

Parents
Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id Autogenuuid Package	code

GUID	for	SKU.
Yes

AdminImage YesNoType Set	to	'yes'	if	the
source	is	an
admin	image.

	

Comments String Optional
comments	for
browsing.

	

Compressed YesNoType Set	to	'yes'	to
have	compressed
files	in	the	source.

	

Description String The	product	full
name	or
description.

	



InstallerVersion Integer The	minimum
installer	version
(major*100	+
minor).

	

InstallPrivileges Enumeration Use	this	attribute
to	specify	the
priviliges	required
to	install	the
package	on
Windows	Vista
and	above.	This
attribute's	value
should	be	one	of
the	following:
limited

Set	this	value
to	declare
that	the
package
does	not
require
elevated
privileges	to
install.

elevated
Set	this	value
to	declare
that	the
package
requires
elevated
privileges	to
install.	This	is
the	default
value.

	

Keywords String Optional
keywords	for

	



browsing.
Languages String The	list	of

language	IDs
(LCIDs)
supported	in	the
package.

	

Manufacturer String The	vendor
releasing	the
package.

	

Platforms String The	list	of
platforms
supported	in	the
package.

	

ReadOnly YesNoDefaultType The	value	of	this
attribute	conveys
whether	the
package	should
be	opened	as
read-only.	A
database	editing
tool	should	not
modify	a	read-
only	enforced
database	and
should	issue	a
warning	at
attempts	to
modify	a	read-
only
recommended
database.

	

ShortNames YesNoType Set	to	'yes'	to
have	short
filenames	in	the
source.

	

SummaryCodepage LocalizableInteger The	codepage	for
summary	info

	



strings	only.	The
language	neutral
codepage,	zero,
is	not	a	valid
value.

See	Also
Wix	Schema

Version	2.0.4820.0



Patch	Element

Description

Patch	information	for	parent	File	element

Windows	Installer	references
Patch	Table

Parents
File

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Header String stream	in	Binary	table Yes
PatchSize Integer may	be	defaulted	if	build	tools

supply	actual	size
	

Sequence Integer may	be	defaulted	if	not	in	cabinet	if
build	tools	supply	sequence

	

Vital YesNoType 	 	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/patch_table.asp?frame=true&hidetoc=true


PatchCertificates	Element

Description

Identifies	the	possible	signer	certificates	used	to	digitally	sign
patches.

Windows	Installer	references
MsiPatchCertificate	Table

Parents
Fragment,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	1,	max:	unbounded)
DigitalCertificate	(min:	1,	max:	unbounded)

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msipatchcertificate_table.asp?frame=true&hidetoc=true


PatchCreation	Element

Description

The	PatchCreation	element	is	analogous	to	the	main	function	in	a	C
program.	When	linking,	only	one	PatchCreation	section	can	be	given
to	the	linker	to	produce	a	successful	result.	Using	this	element
creates	a	pcp	file.

Windows	Installer	references
None

Parents
Wix

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 PatchInformation	(min:	1,	max:	1)
2.	 PatchMetadata	(min:	0,	max:	1)
3.	 Family	(min:	1,	max:	unbounded)
4.	 Choice	of	elements	(min:	0,	max:	unbounded)

PatchProperty	(min:	0,	max:	unbounded)
PatchSequence	(min:	0,	max:	unbounded)
ReplacePatch	(min:	0,	max:	unbounded)
TargetProductCode	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id Uuid Guid	for	this

patch.
Yes

AllowMajorVersionMismatches YesNoType True	if
ProductVersion
property	may

	



differ	by	a	major
version.

AllowProductCodeMismatches YesNoType ProductCode
property	may
differ	between
UpgradedImages
table	and
TargetImages
table.

	

CleanWorkingFolder YesNoType Whether
patchwiz	should
clean	the	temp
folder	when
finished.

	

Codepage Integer The	codepage
for	the	resulting
PCP.

	

OutputPath String Output	patch	for
patchwiz.

	

SourceList String Used	to	locate
the	.msp	file	for
the	patch	if	the
cached	copy	is
unavailable.

	

SymbolFlags Int Symbol	flags. 	
WholeFilesOnly YesNoType Changing	files

should	be
included	in	their
entirety.

	

See	Also
Wix	Schema

Version	2.0.4820.0



PatchFiles	Element

Description

Queries	the	Patch	table	to	determine	which	patches	are	to	be
applied.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



PatchInformation	Element

Description

Properties	about	the	patch	to	be	placed	in	the	Summary	Information
Stream.	These	are	visible	from	COM	through	the	IStream	interface,
and	these	properties	can	be	seen	on	the	package	in	Explorer.

Windows	Installer	references
None

Parents
PatchCreation

Inner	Text
None

Children
None

Attributes

Name Type Description Required
AdminImage YesNoType Source	is	an

admin	image
	

Comments String Optional
comments	for
browsing

	

Compressed YesNoType Compressed	files
on	source

	

Description String Product	full	name
or	description

	

Keywords String Optional
keywords	for
browsing

	

Languages String List	of	language
IDs	supported	in
package

	



Manufacturer String Vendor	releasing
the	package

	

Platforms String List	of	platforms
supported	in
package

	

ReadOnly YesNoDefaultType The	value	of	this
attribute	conveys
whether	the
package	should
be	opened	as
read-only.	A
database	editing
tool	should	not
modify	a	read-
only	enforced
database	and
should	issue	a
warning	at
attempts	to
modify	a	read-
only
recommended
database.

	

ShortNames YesNoType Short	filenames
on	source

	

SummaryCodepage LocalizableInteger The	codepage	for
summary	info
strings	only.	The
language	neutral
codepage,	zero,
is	not	a	valid
value.

	

See	Also
Wix	Schema

Version	2.0.4820.0



PatchMetadata	Element

Description

Properties	about	the	patch	to	be	placed	in	the	PatchMetadata	table.

Windows	Installer	references
None

Parents
PatchCreation

Inner	Text
None

Children
Choice	of	elements	(min:	1,	max:	1)
CustomProperty	(min:	0,	max:	1):	A	custom	property	that	extends	the
standard	set.

Attributes

Name Type Description Required
AllowRemoval YesNoType Whether	this	is	an

uninstallable	patch.
Yes

Classification Enumeration Category	of
updates.	This
attribute's	value
should	be	one	of
the	following:
Critical	Update

Hotfix

Security	Rollup

Service	Pack

Update

Update	Rollup

Yes



CreationTimeUTC String Creation	time	of	the
.msp	file	in	the	form
mm:dd:yy:HH:MM
(month:	day	:	year	:
hour	:	minute).

	

Description String Description	of	the
patch.

Yes

DisplayName String A	title	for	the	patch
that	is	suitable	for
public	display.	In
Add/Remove
Programs	from	XP
SP2	on.

Yes

ManufacturerName String Name	of	the
manufacturer.

Yes

MinorUpdateTargetRTM String Indicates	that	the
patch	targets	the
RTM	version	of	the
product	or	the	most
recent	major
upgrade	patch.
Author	this	optional
property	in	minor
update	patches	that
contain	sequencing
information	to
indicate	that	the
patch	removes	all
patches	up	to	the
RTM	version	of	the
product,	or	up	to
the	most	recent
major	upgrade
patch.	This	property
is	available
beginning	with
Windows	Installer

	



3.1.

MoreInfoURL String A	URL	that	provides
information	specific
to	this	patch.	In
Add/Remove
Programs	from	XP
SP2	on.

	

OptimizedInstallMode YesNoType If	this	attribute	is	set
to	'yes'	in	all	the
patches	to	be
applied	in	a
transaction,	the
application	of	the
patch	is	optimized	if
possible.	Available
beginning	with
Windows	Installer
3.1.

	

TargetProductName String Name	of	the
application	or	target
product	suite.

Yes

See	Also
Wix	Schema

Version	2.0.4820.0



PatchPackage	Element

Description

PatchPackage	found	on	parent	Media	element

Windows	Installer	references
None

Parents
Media

Inner	Text	(uuid)
Element	value	is	PatchId	GUID.

Children
None

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



PatchProperty	Element

Description

A	property	for	this	patch	database.

Windows	Installer	references
None

Parents
PatchCreation

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Name String Name	of	the	patch	creation	property. Yes
Value String Value	of	the	patch	creation	property. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



PatchSequence	Element

Description

Sequence	information	for	this	patch	database.	Sequence	information
is	generated	automatically	in	most	cases,	and	rarely	needs	to	be	set
explicitly.

Windows	Installer	references
None

Parents
PatchCreation

Inner	Text
None

Children
None

Attributes

Name Type Description Required
PatchFamily String Identifier	which	indicates	one	of	the

sequence	families	to	which	this
patch	belongs.

Yes

Sequence String Used	to	populate	the	sequence
column	of	the	MsiPatchSequence
table	in	the	final	MSP	file.	Specified
in	x.x.x.x	format.	See
documentation	for	Sequence
column	of	MsiPatchSequence	table
in	MSI	SDK.

	

Supersede Integer Non-NULL	value	indicates	that	this
patch	supersedes	earlier	patches	in
this	family.	See	documentation	for
Attributes	column	of
MsiPatchSequence	table	in	MSI

	



SDK.
Target String Used	to	determine	the	product

code	filtering	for	the	patch	family.
	

See	Also
Wix	Schema

Version	2.0.4820.0



PerfCounter	Element

Description

Used	to	install	Perfmon	counters.

Windows	Installer	references
None

Parents
File

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Name String 	 	

See	Also
Wix	Schema

Version	2.0.4820.0



Permission	Element

Description

Sets	ACLs	on	File,	Registry,	or	CreateFolder.	When	under	a	Registry
element,	this	cannot	be	used	if	the	Action	attribute's	value	is	remove
or	removeKeyOnInstall.	This	element	has	no	Id	attribute.	The	table
and	key	are	taken	from	the	parent	element.

Windows	Installer	references
LockPermissions	Table

Parents
CreateFolder,	File,	FileShare,	Registry,	ServiceInstall

Inner	Text
None

Children
None

Attributes

Name Type Description
Append YesNoType 	
ChangePermission YesNoType 	
CreateChild YesNoType For	a	directory,	the	right	to	create	a

subdirectory.	Only	valid	under	a
'CreateFolder'	parent.

CreateFile YesNoType For	a	directory,	the	right	to	create	a
file	in	the	directory.	Only	valid
under	a	'CreateFolder'	parent.

CreateLink YesNoType 	
CreateSubkeys YesNoType 	
Delete YesNoType 	
DeleteChild YesNoType For	a	directory,	the	right	to	delete	a

directory	and	all	the	files	it

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/lockpermissions_table.asp?frame=true&hidetoc=true


contains,	including	read-only	files.
Only	valid	under	a	'CreateFolder'
parent.

Domain String 	
EnumerateSubkeys YesNoType 	
Execute YesNoType 	
Extended YesNoType Specifies	whether	or	not	to	use	the

LockPermissions	table	when	the
Permission	element	is	nested
under	a	Registry,	File,	or
CreateFolder	element.	If	Extended
is	set	to	'yes'	then	the	WiX
SecureObject	custom	action	will	be
used	to	lock	down	the	resource
instead	of	the	"legacy"
LockPermissions	table.	Specifying
'yes'	for	this	attribute	will	require
you	to	link	your	MSI	with	the
wixca.wixlib.	By	using	the
SecureObject	custom	action	you
can	apply	permissions	for	many
more	well	known	user	SIDs	as	well
as	for	user	accounts	that	are
created	as	part	of	the	install.

GenericAll YesNoType 	
GenericExecute YesNoType 	
GenericRead YesNoType specifying	this	will	fail	to	grant	read

access
GenericWrite YesNoType 	
Notify YesNoType 	
Read YesNoType 	
ReadAttributes YesNoType 	
ReadExtendedAttributes YesNoType 	
ReadPermission YesNoType 	
ServiceChangeConfig YesNoType Required	to	call	the

ChangeServiceConfig	or



ChangeServiceConfig2	function	to
change	the	service	configuration.
Only	valid	under	a	'ServiceInstall'
parent.

ServiceEnumerateDependents YesNoType Required	to	call	the
EnumDependentServices	function
to	enumerate	all	the	services
dependent	on	the	service.	
valid	under	a	'ServiceInstall'
parent.

ServiceInterrogate YesNoType Required	to	call	the	ControlService
function	to	ask	the	service	to	report
its	status	immediately.	Only	valid
under	a	'ServiceInstall'	parent.

ServicePauseContinue YesNoType Required	to	call	the	ControlService
function	to	pause	or	continue	the
service.	Only	valid	under	a
'ServiceInstall'	parent.

ServiceQueryConfig YesNoType Required	to	call	the
QueryServiceConfig	and
QueryServiceConfig2	functions	to
query	the	service	configuration.
Only	valid	under	a	'ServiceInstall'
parent.

ServiceQueryStatus YesNoType Required	to	call	the
QueryServiceStatus	function	to	ask
the	service	control	manager	about
the	status	of	the	service.	Only	valid
under	a	'ServiceInstall'	parent.

ServiceStart YesNoType Required	to	call	the	StartService
function	to	start	the	service.	
valid	under	a	'ServiceInstall'
parent.

ServiceStop YesNoType Required	to	call	the	ControlService
function	to	stop	the	service.	
valid	under	a	'ServiceInstall'
parent.



ServiceUserDefinedControl YesNoType Required	to	call	the	ControlService
function	to	specify	a	user-defined
control	code.	Only	valid	under	a
'ServiceInstall'	parent.

Synchronize YesNoType 	
TakeOwnership YesNoType 	
Traverse YesNoType For	a	directory,	the	right	to	traverse

the	directory.	By	default,	users	are
assigned	the
BYPASS_TRAVERSE_CHECKING
privilege,	which	ignores	the
FILE_TRAVERSE	access	right.
Only	valid	under	a	'CreateFolder'
parent.

User String 	
Write YesNoType 	
WriteAttributes YesNoType 	
WriteExtendedAttributes YesNoType 	

See	Also
Wix	Schema

Version	2.0.4820.0



ProcessComponents	Element

Description

Registers	and	unregisters	components,	their	key	paths,	and	the
component	clients.	The	condition	for	this	action	may	be	specified	in
the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Product	Element

Description

The	Product	element	is	analogous	to	the	main	function	in	a	C
program.	When	linking,	only	one	Product	section	can	be	given	to	the
linker	to	produce	a	successful	result.	Using	this	element	creates	an
msi	file.

Windows	Installer	references
None

Parents
Wix

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Package	(min:	1,	max:	1)
2.	 Choice	of	elements	(min:	0,	max:	unbounded)

AppId	(min:	0,	max:	unbounded)
Binary	(min:	0,	max:	unbounded)
ComplianceCheck	(min:	0,	max:	unbounded)
Condition	(min:	0,	max:	unbounded)
CustomAction	(min:	0,	max:	unbounded)
CustomActionRef	(min:	0,	max:	unbounded)
CustomTable	(min:	0,	max:	unbounded)
Directory	(min:	0,	max:	unbounded)
DirectoryRef	(min:	0,	max:	unbounded)
EnsureTable	(min:	0,	max:	unbounded)
Feature	(min:	0,	max:	unbounded)
FeatureRef	(min:	0,	max:	unbounded)
FragmentRef	(min:	0,	max:	unbounded)



Group	(min:	0,	max:	unbounded)
Icon	(min:	0,	max:	unbounded)
Media	(min:	0,	max:	unbounded)
PatchCertificates	(min:	0,	max:	unbounded)
Property	(min:	0,	max:	unbounded)
PropertyRef	(min:	0,	max:	unbounded)
SFPCatalog	(min:	0,	max:	unbounded)
SqlDatabase	(min:	0,	max:	unbounded)
UI	(min:	0,	max:	unbounded)
UIRef	(min:	0,	max:	unbounded)
Upgrade	(min:	0,	max:	unbounded)
User	(min:	0,	max:	unbounded)
WebApplication	(min:	0,	max:	unbounded)
WebAppPool	(min:	0,	max:	unbounded)
WebDirProperties	(min:	0,	max:	unbounded)
WebLog	(min:	0,	max:	unbounded)
WebSite	(min:	0,	max:	unbounded)
Sequence	(min:	1,	max:	1)

1.	 InstallExecuteSequence	(min:	0,	max:	1)
2.	 InstallUISequence	(min:	0,	max:	1)
3.	 AdminExecuteSequence	(min:	0,	max:	1)
4.	 AdminUISequence	(min:	0,	max:	1)
5.	 AdvertiseExecuteSequence	(min:	0,	max:	1)

Any	Element	namespace='##other'	processContents='Lax'
HelpCollectionRef
HelpFilter

Attributes

Name Type Description Required
Id Autogenuuid The	product	code	GUID

for	the	product.
Yes

Codepage Integer The	codepage	for	the
resulting	MSI.

	

Language LocalizableInteger The	decimal	language Yes



ID	(LCID)	for	the
product.

Manufacturer String The	manufacturer	of	the
product.

Yes

Name String The	descriptive	name	of
the	product.

Yes

UpgradeCode Uuid The	upgrade	code
GUID	for	the	product.

	

Version String The	product's	version
string.

Yes

Any	attribute	namespace='##other'	processContents='lax'

See	Also
Wix	Schema

Version	2.0.4820.0



ProgId	Element

Description

ProgId	registration	for	parent	Component.	If	ProgId	has	an
associated	Class,	it	must	be	a	child	of	that	element.

Windows	Installer	references
ProgId	Table,	Class	Table,	Registry	Table,	Icon	Table

Parents
Class,	Component,	Include,	ProgId

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 ProgId	(min:	0,	max:	1):	Version-independent	ProgId	must
be	child	element	of	actual	ProgId.	Nesting	further	ProgId
elements	within	the	Version-independent	ProgId	is
disallowed.

2.	 Extension	(min:	0,	max:	unbounded):	extensions	that	refer
to	this	ProgId

Attributes

Name Type Description Required
Id String 	 Yes
Advertise YesNoType 	 	
Description String 	 	
Icon String reference	to	Icon	element 	
IconIndex Integer 	 	
NoOpen String Specifies	that	the	associated

ProgId	should	not	be	opened	by
users.	The	value	is	presented	as
a	warning	to	users.	An	empty

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/progid_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/class_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/icon_table.asp?frame=true&hidetoc=true


string	is	also	valid	for	this
attribute.	See	the	MSDN
documentation	for	more
information.

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/en-us/dnwue/html/ch11c.asp


ProgressText	Element

Description

None

Windows	Installer	references
ActionText	Table

Parents
UI

Inner	Text	(xs:string)
Element	value	is	progress	message	text	for	action

Children
None

Attributes

Name Type Description Required
Action String 	 Yes
Template String used	to	format	ActionData	messages

from	action	processing
	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/actiontext_table.asp?frame=true&hidetoc=true


Property	Element

Description

Property	value	for	a	Product	or	Module.

Windows	Installer	references
Property	Table

Parents
Control,	Fragment,	Include,	Module,	ODBCDataSource,
ODBCDriver,	Product,	UI,	Upgrade

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
Sequence	(min:	1,	max:	1)

1.	 ComplianceDrive	(min:	0,	max:	1):	Starts	searches	from	the
CCP_DRIVE.

2.	 ComponentSearch	(min:	0,	max:	unbounded)
3.	 RegistrySearch	(min:	0,	max:	unbounded)
4.	 RegistrySearchRef	(min:	0,	max:	unbounded)
5.	 IniFileSearch	(min:	0,	max:	unbounded)
6.	 DirectorySearch	(min:	0,	max:	unbounded)
7.	 DirectorySearchRef	(min:	0,	max:	unbounded)
8.	 FileSearch	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Unique	identifier	for

Property.
Yes

Admin YesNoType Denotes	that	the	Property
is	saved	during
admininistrative
installation.	See	the

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/property_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/en-us/msi/setup/administrative_installation.asp


AdminProperties	Property
for	more	information.

ComplianceCheck YesNoType Adds	a	row	to	the
CCPSearch	table.	This
attribute	is	only	valid	when
this	Property	contains	a
search	element.

	

Hidden YesNoType Denotes	that	the	Property
is	not	logged	during
installation.	See	the
MsiHiddenProperties
Property	for	more
information.

	

Secure YesNoType Denotes	that	the	Property
can	be	passed	to	the
server	side	when	doing	a
managed	installation	with
elevated	privileges.	See
the
SecureCustomProperties
Property	for	more
information.

	

Value String Sets	a	default	value	for	the
property.	The	value	will	be
overwritten	if	the	Property
is	used	for	a	search.

	

See	Also
Wix	Schema,	PropertyRef

Version	2.0.4820.0

http://msdn.microsoft.com/library/en-us/msi/setup/adminproperties.asp
http://msdn.microsoft.com/library/en-us/msi/setup/msihiddenproperties_property.asp
http://msdn.microsoft.com/library/en-us/msi/setup/securecustomproperties_property.asp


PropertyRef	Element

Description

Reference	to	a	Property	value.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	of	Property	to	reference. Yes

See	Also
Wix	Schema,	Property

Version	2.0.4820.0



ProtectFile	Element

Description

Specifies	a	file	to	be	protected.

Windows	Installer	references
None

Parents
Family

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
ProtectRange	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
File String Foreign	key	into	the	File	table. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



ProtectRange	Element

Description

Specifies	part	of	a	file	that	cannot	be	overwritten	during	patching.

Windows	Installer	references
None

Parents
ExternalFile,	ProtectFile,	TargetFile

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Length Int Length	of	the	range. Yes
Offset Int Offset	of	the	start	of	the	range. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



Publish	Element

Description

None

Windows	Installer	references
ControlEvent	Table

Parents
Control

Inner	Text	(xs:string)
The	element	value	is	the	optional	Condition	expression.

Children
None

Attributes

Name Type Description Required
Event String Set	this	attribute's	value	to	one	of	the

standard	control	events	to	trigger	that
event.	Either	this	attribute	or	the
Property	attribute	must	be	set,	but	not
both	at	the	same	time.

	

Property String Set	this	attribute's	value	to	a	property
name	to	set	that	property.	Either	this
attribute	or	the	Event	attribute	must
be	set,	but	not	both	at	the	same	time.

	

Value String If	the	Property	attribute	is	specified,
set	the	value	of	this	attribute	to	the
new	value	for	the	property.	To	set	a
property	to	null,	do	not	set	this
attribute	(the	ControlEvent	Argument
column	will	be	set	to	'{}').	Otherwise,
this	attribute's	value	should	be	the
argument	for	the	event	specified	in

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlevent_table.asp?frame=true&hidetoc=true


the	Event	attribute.

See	Also
Wix	Schema

Version	2.0.4820.0



PublishComponents	Element

Description

Manages	the	advertisement	of	the	components	from	the
PublishComponent	table.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



PublishFeatures	Element

Description

Writes	each	feature's	state	into	the	system	registry.	The	condition	for
this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



PublishProduct	Element

Description

Manages	the	advertisement	of	the	product	information	with	the
system.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RadioButton	Element

Description

Text	or	Icon	plus	Value	that	is	assigned	to	the	Property	of	the	parent
Control	(RadioButtonGroup).

Windows	Installer	references
RadioButton	Table,	Control	Table,	Dialog	Table

Parents
RadioButtonGroup

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Bitmap String This	attribute	defines	the

bitmap	displayed	with	the
radio	button.	The	value	of	the
attribute	creates	a	reference
to	a	Binary	element	that
represents	the	bitmap.	This
attribute	is	mutually	exclusive
with	the	Icon	and	Text
attributes.

	

Height LocalizableInteger 	 Yes
Help String 	 	
Icon String This	attribute	defines	the	icon

displayed	with	the	radio
button.	The	value	of	the
attribute	creates	a	reference
to	a	Binary	element	that

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp?frame=true&hidetoc=true


represents	the	icon.	This
attribute	is	mutually	exclusive
with	the	Bitmap	and	Text
attributes.

Text String Text	displayed	with	the	radio
button.	This	attribute	is
mutually	exclusive	with	the
Bitmap	and	Icon	attributes.

	

ToolTip String 	 	
Value String Value	assigned	to	the

associated	control	Property
when	this	radio	button	is
selected.

Yes

Width LocalizableInteger 	 Yes
X LocalizableInteger 	 Yes
Y LocalizableInteger 	 Yes

See	Also
Wix	Schema,	RadioButtonGroup

Version	2.0.4820.0



RadioButtonGroup	Element

Description

Set	of	radio	buttons	tied	to	the	specified	Property

Windows	Installer	references
RadioButton	Table,	Control	Table,	Dialog	Table

Parents
Control,	UI

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 RadioButton	(min:	1,	max:	unbounded)

Attributes

Name Type Description Required
Property String Property	tied	to	this	group. Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp?frame=true&hidetoc=true


RecycleTime	Element

Description

IIS6	Application	Pool	Recycle	Times	on	24	hour	clock.

Windows	Installer	references
None

Parents
WebAppPool

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Value String Pattern:	'\d{1,2}:\d{2}'. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterClassInfo	Element

Description

Manages	the	registration	of	COM	class	information	with	the	system.
The	condition	for	this	action	may	be	specified	in	the	element's	inner
text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterComPlus	Element

Description

Registers	COM+	applications.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterExtensionInfo	Element

Description

Manages	the	registration	of	extension	related	information	with	the
system.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterFonts	Element

Description

Registers	installed	fonts	with	the	system.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterMIMEInfo	Element

Description

Registers	MIME-related	registry	information	with	the	system.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterProduct	Element

Description

Registers	the	product	information	with	the	installer.	The	condition	for
this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterProgIdInfo	Element

Description

Manages	the	registration	of	OLE	ProgId	information	with	the	system.
The	condition	for	this	action	may	be	specified	in	the	element's	inner
text.

Windows	Installer	references
None

Parents
AdvertiseExecuteSequence,	InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterTypeLibraries	Element

Description

Registers	type	libraries	with	the	system.	The	condition	for	this	action
may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RegisterUser	Element

Description

Registers	the	user	information	with	the	installer	to	identify	the	user	of
a	product.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Registry	Element

Description

This	element	allows	you	to	add	or	remove	registry	keys	(depending
upon	the	value	of	the	action	attribute).	Please	note	that	for	removal,
there	are	4	options:	you	can	remove	a	particular	registry	name,	an
entire	registry	key	when	the	parent	component	is	installed,	an	entire
registry	key	when	the	parent	component	is	uninstalled,	or	create	a
key	when	the	parent	component	is	installed,	then	remove	it	when	the
parent	component	is	uninstalled.

Windows	Installer	references
Registry	Table

Parents
Component,	Include,	Registry

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
Permission	(min:	0,	max:	unbounded)
Registry	(min:	0,	max:	unbounded)
RegistryValue	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Action Enumeration This	is	the	action	that	will	be	taken	for

this	registry	key.	This	attribute's	value
should	be	one	of	the	following:
append

Appends	the	specified	value(s)	to
a	multiString	registry	key.

createKey
Creates	the	key,	if	absent,	when

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true


the	parent	component	is
installed.

createKeyAndRemoveKeyOnUninstall
Creates	the	key,	if	absent,	when
the	parent	component	is	installed
then	remove	the	key	with	all	its
values	and	subkeys	when	the
parent	component	is	uninstalled.

prepend
Prepends	the	specified	value(s)
to	a	multiString	registry	key.

remove
Removes	a	registry	name	when
the	parent	component	in
installed.

removeKeyOnInstall
Removes	a	key	with	all	its	values
and	subkeys	when	the	parent
component	is	installed.

removeKeyOnUninstall
Removes	a	key	with	all	its	values
and	subkeys	when	the	parent
component	is	uninstalled.

write
Writes	a	registry	value.

Id String Primary	key	used	to	identify	this
particular	entry.	If	this	attribute	is	not
specified,	an	identifier	will	be
generated	by	hashing	the	parent
Component	identifier,	Root,	Key,	and
Name.

	

Key String The	localizable	key	for	the	registry
value.

	

KeyPath YesNoType Set	this	attribute	to	'yes'	to	make	this 	



registry	key	the	KeyPath	of	the	parent
component.	Only	one	resource
(registry,	file,	etc)	can	be	the	KeyPath
of	a	component.

Name String The	localizable	registry	value	name.	If
this	attribute	is	not	provided	the
default	value	for	the	registry	key	will
be	set	instead.	The	Windows	Installer
allows	several	special	values	to	be
set	for	this	attribute.	You	should	not
use	them	in	WiX.	Instead	use
appropriate	values	in	the	Action
attribute	to	get	the	desired	behavior.

	

Root Enumeration The	predefined	root	key	for	the
registry	value.	This	attribute's	value
should	be	one	of	the	following:
HKMU

A	per-user	installation	will	make
the	operation	occur	under
HKEY_CURRENT_USER.	A	per-
machine	installation	will	make	the
operation	occur	under
HKEY_LOCAL_MACHINE.

HKCR
Operation	occurs	under
HKEY_CLASSES_ROOT.	When
using	Windows	2000	or	later,	the
installer	writes	or	removes	the
value	from	the
HKCU\Software\Classes	hive
during	per-user	installations.
When	using	Windows	2000	or
later	operating	systems,	the
installer	writes	or	removes	the
value	from	the
HKLM\Software\Classes	hive
during	per-machine	installations.

	



HKCU
Operation	occurs	under
HKEY_CURRENT_USER.	It	is
recommended	to	set	the
KeyPath='yes'	attribute	when
setting	this	value	in	order	to
ensure	that	the	installer	writes
the	necessary	registry	entries
when	there	are	multiple	users	on
the	same	computer.

HKLM
Operation	occurs	under
HKEY_LOCAL_MACHINE.

HKU
Operation	occurs	under
HKEY_USERS.

Type Enumeration Set	this	attribute	to	the	type	of	the
desired	registry	key.	This	attribute
must	be	specified	whenever	the	Value
attribute	or	a	child	RegistryValue
element	is	specified.	This	attribute
should	only	be	set	when	the	value	of
the	Action	attribute	does	not	include
the	word	'remove'.	This	attribute's
value	should	be	one	of	the	following:
string

The	value	is	interpreted	and
stored	as	a	string	(REG_SZ).

integer
The	value	is	interpreted	and
stored	as	an	integer
(REG_DWORD).

binary
The	value	is	interpreted	and
stored	as	a	hexadecimal	value
(REG_BINARY).

	



expandable
The	value	is	interpreted	and
stored	as	an	expandable	string
(REG_EXPAND_SZ).

multiString
The	value	is	interpreted	and
stored	as	a	multiple	strings
(REG_MULTI_SZ).	Please	note
that	this	value	will	only	result	in	a
multi-string	value	if	there	is	more
than	one	registry	value	or	the
Action	attribute's	value	is
'append'	or	'prepend'.	Otherwise
a	string	value	will	be	created.

Value String Set	this	attribute	to	the	localizable
registry	value.	This	value	is	formatted.
The	Windows	Installer	allows	several
special	values	to	be	set	for	this
attribute.	You	should	not	use	them	in
WiX.	Instead	use	appropriate	values
in	the	Type	attribute	to	get	the	desired
behavior.	This	attribute	cannot	be
specified	if	the	Action	attribute's	value
contains	the	word	'remove'.

	

See	Also
Wix	Schema

Version	2.0.4820.0



RegistrySearch	Element

Description

Searches	for	file,	directory	or	registry	key	and	assigns	to	value	of
parent	Property

Windows	Installer	references
RegLocator	Table,	Signature	Table

Parents
ComplianceCheck,	Property

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	1)
DirectorySearch	(min:	0,	max:	1)
DirectorySearchRef	(min:	0,	max:	1)
FileSearch	(min:	0,	max:	1)
FileSearchRef	(min:	0,	max:	1)

Attributes

Name Type Description Required
Id String Signature	to	be	used	for	the	file,

directory	or	registry	key	being
search	for.

Yes

Key String Key	for	the	registry	value. Yes
Name String Registry	value	name. 	
Root Enumeration Root	key	for	the	registry	value.	This

attribute's	value	should	be	one	of
the	following:
HKCR

HKCU

Yes

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/reglocator_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/signature_table.asp?frame=true&hidetoc=true


HKLM

HKU

Type Enumeration The	value	must	be	'file'	if	the	last
child	is	a	FileSearch	element	and
must	be	'directory'	if	last	child	is	a
DirectorySearch	element.	This
attribute's	value	should	be	one	of
the	following:
directory

Sets	a	directory	path	from	the
registry	value.

file
Sets	a	file	path	from	the
registry	value.

raw
Sets	the	raw	value	from	the
registry	value.	Please	note	that
this	value	will	contain	a	prefix
as	follows:
DWORD:	Starts	with	'#'
optionally	followed	by	'+'	or	'-'.
REG_BINARY:	Starts	with	'#x'
and	the	installer	converts	and
saves	each	hexadecimal	digit
(nibble)	as	an	ASCII	character
prefixed	by	'#x'.
REG_EXPAND_SZ:	Starts	with
'#%'.
REG_MULTI_SZ:	Starts	with
'[~]'	and	ends	with	'[~]'.
REG_SZ:	No	prefix,	but	if	the
first	character	of	the	registry
value	is	'#',	the	installer
escapes	the	character	by
prefixing	it	with	another	'#'.

Yes

Win64 YesNoType Instructs	the	search	to	look	in	the 	



64-bit	registry	when	the	value	is
'yes'.	Default	is	'no'	and	search
looks	in	the	32-bit	registry.

See	Also
Wix	Schema,	ComponentSearch,	IniFileSearch

Version	2.0.4820.0



RegistrySearchRef	Element

Description

References	an	existing	RegistrySearch	element.

Windows	Installer	references
None

Parents
Property

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Specify	the	Id	of	the	RegistrySearch	to

reference.
Yes

See	Also
Wix	Schema,	RegistrySearch

Version	2.0.4820.0



RegistryValue	Element

Description

Use	several	of	these	elements	to	specify	each	registry	value	in	a
multiString	registry	value.	This	element	cannot	be	used	if	the	Value
attribute	is	specified	unless	the	Type	attribute	is	set	to	'multiString'.
The	values	should	go	in	the	text	area	of	the	RegistryValue	element.

Windows	Installer	references
Registry	Table

Parents
Registry

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true


RemoveDuplicateFiles	Element

Description

Deletes	files	installed	by	the	DuplicateFiles	action.	The	condition	for
this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RemoveEnvironmentStrings	Element

Description

Modifies	the	values	of	environment	variables.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RemoveExistingProducts	Element

Description

Goes	through	the	product	codes	listed	in	the	ActionProperty	column
of	the	Upgrade	table	and	removes	the	products	in	sequence.	Special
actions	don't	have	a	built-in	sequence	number	and	thus	must	appear
relative	to	another	action.	The	suggested	way	to	do	this	is	by	using
the	Before	or	After	attribute.	InstallExecute	and	InstallExecuteAgain
can	optionally	appear	anywhere	between	InstallInitialize	and
InstallFinalize.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema



Version	2.0.4820.0



RemoveFile	Element

Description

Remove	a	file(s)	if	the	parent	component	is	selected	for	installation
or	removal.	Multiple	files	can	be	removed	by	specifying	a	wildcard	for
the	value	of	the	Name	attribute.	By	default,	the	source	directory	of
the	file	is	the	directory	of	the	parent	component.	This	can	be
overridden	by	specifying	the	Directory	attribute	with	a	value
corresponding	to	the	Id	of	the	source	directory,	or	by	specifying	the
Property	attribute	with	a	value	corresponding	to	a	property	that	will
have	a	value	that	resolves	to	the	full	path	to	the	source	directory.

Windows	Installer	references
RemoveFile	Table

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description
Id String Primary	key	used	to	identify

this	particular	entry.
Directory String Overrides	the	directory	of

the	parent	component	with
a	specific	Directory.	This
Directory	must	exist	in	the
installer	database	at
creation	time.	This	attribute
cannot	be	specified	in
conjunction	with	the
Property	attribute.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/removefile_table.asp?frame=true&hidetoc=true


LongNameWildCardLongFileNameType If	the	name	of	the	file(s)	to
be	removed	need	to	be
longer	than	8.3	format,	then
this	attribute	should	be
specified	with	the	long	file
name	(in	addition	to	the
Name	attribute	which	is
always	required	for	target
systems	that	might	not
support	long	file	names).	All
of	the	files	that	match	the
wild	card	will	be	removed
from	the	specified	directory.
The	value	is	a	filename	that
may	also	contain	the	wild
card	characters	"?"	for	any
single	character	or	"*"	for
zero	or	more	occurrences	of
any	character.

Name WildCardShortFileNameType This	value	should	be	set	to
the	localizable	name	of	the
file(s)	to	be	removed.	All	of
the	files	that	match	the	wild
card	will	be	removed	from
the	specified	directory.	The
value	is	a	filename	that	may
also	contain	the	wild	card
characters	"?"	for	any	single
character	or	"*"	for	zero	or
more	occurrences	of	any
character.

On Enumeration This	value	determines	the
time	at	which	the	file(s)	may
be	removed.	This	attribute's
value	should	be	one	of	the
following:
install

Removes	the	file	only



when	the	parent
component	is	being
installed
(msiInstallStateLocal	or
msiInstallStateSource).

uninstall
Removes	the	file	only
when	the	parent
component	is	being
removed
(msiInstallStateAbsent).

both
Removes	the	file	when
the	parent	component
is	being	installed	or
removed.

Property String Overrides	the	directory	of
the	parent	component	with
the	value	of	the	specified
property.	The	property
should	have	a	value	that
resolves	to	the	full	path	of
the	source	directory.	The
property	does	not	have	to
exist	in	the	installer
database	at	creation	time;	it
could	be	created	at
installation	time	by	a	custom
action,	on	the	command
line,	etc.	This	attribute
cannot	be	specified	in
conjunction	with	the
Directory	attribute.

See	Also
Wix	Schema,	CopyFile

Version	2.0.4820.0



RemoveFiles	Element

Description

Removes	files	previously	installed	by	the	InstallFiles	action.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RemoveFolder	Element

Description

Remove	an	empty	folder	if	the	parent	component	is	selected	for
installation	or	removal.	By	default,	the	folder	is	the	directory	of	the
parent	component.	This	can	be	overridden	by	specifying	the
Directory	attribute	with	a	value	corresponding	to	the	Id	of	the
directory,	or	by	specifying	the	Property	attribute	with	a	value
corresponding	to	a	property	that	will	have	a	value	that	resolves	to	the
full	path	of	the	folder.

Windows	Installer	references
RemoveFile	Table

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Primary	key	used	to	identify	this

particular	entry.
Yes

Directory String Overrides	the	directory	of	the
parent	component	with	a	specific
Directory.	This	Directory	must
exist	in	the	installer	database	at
creation	time.	This	attribute	cannot
be	specified	in	conjunction	with
the	Property	attribute.

	

On Enumeration This	value	determines	the	time	at
which	the	folder	may	be	removed.

Yes

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/removefile_table.asp?frame=true&hidetoc=true


This	attribute's	value	should	be
one	of	the	following:
install

Removes	the	folder	only
when	the	parent	component	is
being	installed
(msiInstallStateLocal	or
msiInstallStateSource).

uninstall
Removes	the	folder	only
when	the	parent	component	is
being	removed
(msiInstallStateAbsent).

both
Removes	the	folder	when	the
parent	component	is	being
installed	or	removed.

Property String Overrides	the	directory	of	the
parent	component	with	the	value
of	the	specified	property.	The
property	should	have	a	value	that
resolves	to	the	full	path	of	the
source	directory.	The	property
does	not	have	to	exist	in	the
installer	database	at	creation	time;
it	could	be	created	at	installation
time	by	a	custom	action,	on	the
command	line,	etc.	This	attribute
cannot	be	specified	in	conjunction
with	the	Directory	attribute.

	

See	Also
Wix	Schema,	CreateFolder

Version	2.0.4820.0



RemoveFolders	Element

Description

Removes	any	folders	linked	to	components	set	to	be	removed	or	run
from	source.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RemoveIniValues	Element

Description

Removes	.ini	file	information	specified	for	removal	in	the
RemoveIniFile	table	if	the	component	is	set	to	be	installed	locally	or
run	from	source.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RemoveODBC	Element

Description

Removes	the	data	sources,	translators,	and	drivers	listed	for	removal
during	the	installation.	The	condition	for	this	action	may	be	specified
in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RemoveRegistryValues	Element

Description

Removes	a	registry	value	that	has	been	authored	into	the	registry
table	if	the	associated	component	was	installed	locally	or	as	run	from
source,	and	is	now	set	to	be	uninstalled.	The	condition	for	this	action
may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



RemoveShortcuts	Element

Description

Manages	the	removal	of	an	advertised	shortcut	whose	feature	is
selected	for	uninstallation	or	a	nonadvertised	shortcut	whose
component	is	selected	for	uninstallation.	The	condition	for	this	action
may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



ReplacePatch	Element

Description

A	patch	that	is	deprecated	by	this	patch.

Windows	Installer	references
None

Parents
PatchCreation

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id Uuid Patch	GUID	to	be	unregistered	if	it

exists	on	the	machine	targeted	by	this
patch.

Yes

See	Also
Wix	Schema

Version	2.0.4820.0



ReserveCost	Element

Description

Disk	cost	to	reserve	in	a	folder	for	running	locally	and/or	from	source

Windows	Installer	references
ReserveCost	Table

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
Directory String Defaults	to	Directory	of	parent

Component.
	

RunFromSource Integer The	number	of	bytes	of	disk
space	to	reserve	if	the
component	is	installed	to	run
from	source.

Yes

RunLocal Integer The	number	of	bytes	of	disk
space	to	reserve	if	the
component	is	installed	to	run
locally.

Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/reservecost_table.asp?frame=true&hidetoc=true


ResolveSource	Element

Description

Determines	the	location	of	the	source	and	sets	the	SourceDir
property	if	the	source	has	not	been	resolved	yet.	Special	actions
don't	have	a	built-in	sequence	number	and	thus	must	appear	relative
to	another	action.	The	suggested	way	to	do	this	is	by	using	the
Before	or	After	attribute.	InstallExecute	and	InstallExecuteAgain	can
optionally	appear	anywhere	between	InstallInitialize	and
InstallFinalize.

Windows	Installer	references
None

Parents
AdminExecuteSequence,	InstallExecuteSequence,
InstallUISequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema



Version	2.0.4820.0



RMCCPSearch	Element

Description

Uses	file	signatures	to	validate	that	qualifying	products	are	installed
on	a	system	before	an	upgrade	installation	is	performed.	The
RMCCPSearch	action	should	be	authored	into	the
InstallUISequence	table	and	InstallExecuteSequence	table.	The
installer	prevents	RMCCPSearch	from	running	in	the
InstallExecuteSequence	sequence	if	the	action	has	already	run	in
InstallUISequence	sequence.	The	RMCCPSearch	action	requires
the	CCP_DRIVE	property	to	be	set	to	the	root	path	on	the	removable
volume	that	has	the	installation	for	any	of	the	qualifying	products.
The	condition	for	this	action	may	be	specified	in	the	element's	inner
text.

Windows	Installer	references
None

Parents
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	



Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema,	CCPSearch,	ComplianceCheck

Version	2.0.4820.0



Row	Element

Description

Row	data	for	a	Custom	Table

Windows	Installer	references
None

Parents
CustomTable

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Data	(min:	1,	max:	unbounded)

Attributes
None

See	Also
Wix	Schema

Version	2.0.4820.0



ScheduleReboot	Element

Description

Prompts	the	user	to	restart	the	system	at	the	end	of	installation.
Special	actions	don't	have	a	built-in	sequence	number	and	thus	must
appear	relative	to	another	action.	The	suggested	way	to	do	this	is	by
using	the	Before	or	After	attribute.	InstallExecute	and
InstallExecuteAgain	can	optionally	appear	anywhere	between
InstallInitialize	and	InstallFinalize.

Windows	Installer	references
None

Parents
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
Text	node	specifies	the	condition	of	the	action.

Children
None

Attributes

Name Type Description Required
After String The	name	of	an	action	that	this

action	should	come	after.
	

Before String The	name	of	an	action	that	this
action	should	come	before.

	

Sequence Integer A	value	used	to	indicate	the
position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



SelfRegModules	Element

Description

Processes	all	modules	listed	in	the	SelfReg	table	and	registers	all
installed	modules	with	the	system.	The	condition	for	this	action	may
be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



SelfUnregModules	Element

Description

Unregisters	all	modules	listed	in	the	SelfReg	table	that	are
scheduled	to	be	uninstalled.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



ServiceArgument	Element

Description

Argument	used	in	ServiceControl	parent

Windows	Installer	references
ServiceControl	Table

Parents
ServiceControl

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/servicecontrol_table.asp?frame=true&hidetoc=true


ServiceConfig	Element

Description

Service	configuration	information	for	failure	actions.

Windows	Installer	references
None

Parents
Component,	Include,	ServiceInstall

Inner	Text
None

Children
None

Attributes

Name Type Description Required
FirstFailureActionType Enumeration Action	to	take

on	the	first
failure	of	the
service.	This
attribute's	value
should	be	one
of	the	following:
none

reboot

restart

runCommand

Yes

ProgramCommandLine String If	any	of	the
three
*ActionType
attributes	is
"runCommand",

	



this	specifies
the	command
to	run	when
doing	so.

RebootMessage String If	any	of	the
three
*ActionType
attributes	is
"reboot",	this
specifies	the
message	to
broadcast	to
server	users
before	doing
so.

	

ResetPeriodInDays Integer Number	of
days	after
which	to	reset
the	failure
count	to	zero	if
there	are	no
failures.

	

RestartServiceDelayInSeconds Integer If	any	of	the
three
*ActionType
attributes	is
"restart",	this
specifies	the
number	of
seconds	to	wait
before	doing
so.

	

SecondFailureActionType Enumeration Action	to	take
on	the	second
failure	of	the
service.	This
attribute's	value
should	be	one

Yes



of	the	following:
none

reboot

restart

runCommand

ServiceName String Required	if	not
under	a
ServiceInstall
element.

	

ThirdFailureActionType Enumeration Action	to	take
on	the	third
failure	of	the
service.	This
attribute's	value
should	be	one
of	the	following:
none

reboot

restart

runCommand

Yes

Remarks
Nesting	a	ServiceConfig	element	under	a	ServiceInstall	element
will	result	in	the	service	being	installed	to	be	configured.

Nesting	a	ServiceConfig	element	under	a	component	element
will	result	in	an	already	installed	service	to	be	configured.	If	the
service	does	not	exist	prior	to	the	install	of	the	MSI	package,	the
install	will	fail.

See	Also
Wix	Schema

Version	2.0.4820.0



ServiceControl	Element

Description

Starts,	stops,	and	removes	services	for	parent	Component.	This
element	is	used	to	control	the	state	of	a	service	installed	by	the	MSI
or	MSM	file	by	using	the	start,	stop	and	remove	attributes.	For
example,	Start='install'	Stop='both'	Remove='uninstall'	would	mean:
start	the	service	on	install,	remove	the	service	when	the	product	is
uninstalled,	and	stop	the	service	both	on	install	and	uninstall.

Windows	Installer	references
ServiceControl	Table

Parents
Component,	Include

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 ServiceArgument	(min:	0,	max:	unbounded):	Ordered	list	of
arguments	used	when	modifying	services.

Attributes

Name Type Description Required
Id String 	 Yes
Name String Name	of	the	service. Yes
Remove Enumeration Specifies	whether	the	service

should	be	removed	on	install,
uninstall	or	both.	This	attribute's
value	should	be	one	of	the
following:
install

uninstall

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/servicecontrol_table.asp?frame=true&hidetoc=true


both

Start Enumeration Specifies	whether	the	service
should	be	started	on	install,
uninstall	or	both.	This	attribute's
value	should	be	one	of	the
following:
install

uninstall

both

	

Stop Enumeration Specifies	whether	the	service
should	be	stopped	on	install,
uninstall	or	both.	This	attribute's
value	should	be	one	of	the
following:
install

uninstall

both

	

Wait YesNoType Specifies	whether	or	not	to	wait	for
the	service	to	complete	before
continuing.

	

See	Also
Wix	Schema

Version	2.0.4820.0



ServiceDependency	Element

Description

Service	or	group	of	services	that	must	start	before	the	parent
service.

Windows	Installer	references
ServiceInstall	Table

Parents
ServiceInstall

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	value	of	this	attribute	should	be

one	of	the	following:
1.	 The	name	(not	the	display

name)	of	a	previously
installed	service.

2.	 A	foreign	key	referring	to
another	ServiceInstall/@Id.

3.	 A	group	of	services	(in
which	case	the	Group
attribute	should	be	set	to
'yes').

Yes

Group YesNoType Set	to	'yes'	to	indicate	that	the	value
in	the	Id	attribute	is	the	name	of	a
group	of	services.

	

See	Also

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/serviceinstall_table.asp?frame=true&hidetoc=true


Wix	Schema
Version	2.0.4820.0



ServiceInstall	Element

Description

Adds	and	removes	services	for	parent	Component.

Windows	Installer	references
ServiceInstall	Table

Parents
Component,	Include

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Permission	(min:	0,	max:	unbounded):	Permissions	for	this
service.

2.	 ServiceConfig	(min:	0,	max:	1):	Service	Config:	failure
actions	for	service

3.	 ServiceDependency	(min:	0,	max:	unbounded):	ordered	list
of	dependencies	when	installing	services

Attributes

Name Type Description Required
Id String Unique	identifier	for	this

service.
Yes

Account String The	acount	under	which	to
start	the	service.	Valid	only
when	ServiceType	is
ownProcess.

	

Arguments String Contains	any	command
line	arguments	or
properties	required	to	run
the	service.

	

Description String Sets	the	description	of	the 	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/serviceinstall_table.asp?frame=true&hidetoc=true


service.
DisplayName String This	column	is	the

localizable	string	that	user
interface	programs	use	to
identify	the	service.

	

EraseDescription YesNoType Determines	whether	the
existing	service
description	will	be	ignored.
If	'yes',	the	service
description	will	be	null,
even	if	the	Description
attribute	is	set.

	

ErrorControl Enumeration Determines	what	action
should	be	taken	on	an
error.	This	attribute's	value
should	be	one	of	the
following:
ignore

normal

critical

Yes

Interactive YesNoType Whether	or	not	the	service
interacts	with	the	desktop.

	

LoadOrderGroup String The	load	ordering	group
that	this	service	should	be
a	part	of.

	

Name String This	column	is	the	string
that	gives	the	service
name	to	install.

Yes

Password String The	password	for	the
account.	Valid	only	when
the	account	has	a
password.

	

Start Enumeration Determines	when	the
service	should	be	started.
The	Windows	Installer

Yes



does	not	support	boot	or
system.	This	attribute's
value	should	be	one	of	the
following:
auto

demand

disabled

boot

system

Type Enumeration The	Windows	Installer
does	not	currently	support
kernelDriver	or
systemDriver	This
attribute's	value	should	be
one	of	the	following:
ownProcess

shareProcess

kernelDriver

systemDriver

Yes

Vital YesNoType The	overall	install	should
fail	if	this	service	fails	to
install.

	

Remarks
The	service	executable	installed	will	point	to	the	KeyPath	for	the
Component.	Therefore,	you	must	ensure	that	the	correct	executable
is	either	the	first	child	File	element	under	this	Component	or	explicitly
mark	the	appropriate	File	element	as	KeyPath='yes'.

See	Also
Wix	Schema

Version	2.0.4820.0



SetODBCFolders	Element

Description

Checks	for	existing	ODBC	drivers	and	sets	the	target	directory	for
each	new	driver	to	the	location	of	an	existing	driver.	The	condition	for
this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



SFPCatalog	Element

Description

Adds	a	system	file	protection	update	catalog	file

Windows	Installer	references
SFPCatalog	Table

Parents
Fragment,	Include,	Module,	Product,	SFPCatalog

Inner	Text	(xs:string)
Element	value	can	be	hex-encoded	hash	value

Children
Choice	of	elements	(min:	0,	max:	unbounded)
SFPCatalog	(min:	0,	max:	unbounded)
SFPFile	(min:	0,	max:	unbounded):	Primary	Key	to	File	Table.

Attributes

Name Type Description Required
Dependency String Used	to	define	dependency	outside

of	the	package.
	

Name String Filename	for	catalog	file	when
installed.

	

SourceFile String Path	to	catalog	file	in	binary. 	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/sfpcatalog_table.asp?frame=true&hidetoc=true


SFPFile	Element

Description

Provides	a	many-to-many	mapping	from	the	SFPCatalog	table	to	the
File	table

Windows	Installer	references
FileSFPCatalog	Table

Parents
SFPCatalog

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Primary	Key	to	File	Table. Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/filesfpcatalog_table.asp?frame=true&hidetoc=true


Shortcut	Element

Description

Shortcut,	default	target	is	parent	File,	CreateFolder,	or	Component's
Directory

Windows	Installer	references
Shortcut	Table

Parents
Component,	CreateFolder,	File,	Include

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Icon	(min:	0,	max:	1)

Attributes

Name Type Description
Id String Unique	identifier	for	the

shortcut.	This	value	will
serve	as	the	primary
key	for	the	row.

Advertise YesNoType Specifies	if	the	shortcut
should	be	advertised	or
not.	Note	that
advertised	shortcuts
always	point	at	a
particular	application,
identified	by	a
ProductCode,	and
should	not	be	shared
between	applications.
Advertised	shortcuts

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/shortcut_table.asp?frame=true&hidetoc=true


only	work	for	the	most
recently	installed
application,	and	are
removed	when	that
application	is	removed.

Arguments String The	command-line
arguments	for	the
shortcut.	Note	that	the
resolution	of	properties
in	the	Arguments	field
is	limited.	A	property
formatted	as	[Property]
in	this	field	can	only	be
resolved	if	the	property
already	has	the
intended	value	when
the	component	owning
the	shortcut	is	installed.
For	example,	for	the
argument	"
[#MyDoc.doc]"	to
resolve	to	the	correct
value,	the	same
process	must	be
installing	the	file
MyDoc.doc	and	the
component	that	owns
the	shortcut.

Description String The	localizable
description	for	the
shortcut.

DescriptionResourceDll String The	Formatted	string
providing	the	full	path
to	the	language	neutral
file	containing	the	MUI
Manifest.	Generally
authored	using
[#filekey]	form.	When



this	attribute	is
specified,	the
DescriptionResourceId
attribute	must	also	be
provided.

This	attribute	is	only
used	on	Windows	Vista
and	above.	If	this
attribute	is	not
specified	and	the	install
is	running	on	Vista	and
above,	the	value	in	the
Name	attribute	is	used.
If	this	attribute	is
provided	and	the	install
is	running	on	Vista	and
above,	the	value	in	the
Name	attribute	is
ignored.

DescriptionResourceId Integer The	description	name
index	for	the	shortcut.
This	must	be	a	non-
negative	number.
When	this	attribute	is
specified,	the
DescriptionResourceDll
attribute	must	also	be
populated.

This	attribute	is	only
used	on	Windows	Vista
and	above.	If	this
attribute	is	not
specified	and	the	install
is	running	on	Vista	and
above,	the	value	in	the
Name	attribute	is	used.
If	this	attribute	is



populated	and	the
install	is	running	on
Vista	and	above,	the
value	in	the	Name
attribute	is	ignored.

Directory String Identifier	reference	to
Directory	element
where	shortcut	is	to	be
created.

DisplayResourceDll String The	Formatted	string
providing	the	full	path
to	the	language	neutral
file	containing	the	MUI
Manifest.	Generally
authored	using
[#filekey]	form.	When
this	attribute	is
specified,	the
DisplayResourceId
attribute	must	also	be
provided.

This	attribute	is	only
used	on	Windows	Vista
and	above.	If	this
attribute	is	not
populated	and	the
install	is	running	on
Vista	and	above,	the
value	in	the	Name
attribute	is	used.	If	this
attribute	is	populated
and	the	install	is
running	on	Vista	and
above,	the	value	in	the
Name	attribute	is
ignored.



DisplayResourceId Integer The	display	name
index	for	the	shortcut.
This	must	be	a	non-
negative	number.
When	this	attribute	is
specified,	the
DisplayResourceDll
attribute	must	also	be
proviced.

This	attribute	is	only
used	on	Windows	Vista
and	above.	If	this
attribute	is	not
specified	and	the	install
is	running	on	Vista	and
above,	the	value	in	the
Name	attribute	is	used.
If	this	attribute	is
specified	and	the	install
is	running	on	Vista	and
above,	the	value	in	the
Name	attribute	is
ignored.

Hotkey Integer The	hotkey	for	the
shortcut.	The	low-order
byte	contains	the
virtual-key	code	for	the
key,	and	the	high-order
byte	contains	modifier
flags.	This	must	be	a
non-negative	number.
Authors	of	installation
packages	are	generally
recommend	not	to	set
this	option,	because
this	can	add	duplicate
hotkeys	to	a	users



desktop.	In	addition,
the	practice	of
assigning	hotkeys	to
shortcuts	can	be
problematic	for	users
using	hotkeys	for
accessibility.

Icon String Identifier	reference	to
Icon	element.	The	Icon
identifier	should	have
the	same	extension	as
the	file	that	it	points	at.
For	example,	a
shortcut	to	an
executable	(e.g.
"my.exe")	should
reference	an	Icon	with
identifier	like
"MyIcon.exe"

IconIndex Integer Identifier	reference	to
Icon	element.

LongName LongFileNameType Localizable	long	name
for	shortcut	if	a	name
longer	than	8.3	format
is	desired.

Name ShortFileNameType Localizable	short	name
for	the	shortcut.	Must
be	an	8.3	file	name.

Show Enumeration This	attribute's	value
should	be	one	of	the
following:
normal

minimized

maximized

Target String The	target	for	a	non-
Advertised	shortcut.



This	attribute	is	not
valid	for	Advertised
shortcuts.	The	value
will	be	defaulted	to	the
parent	File	when
nested	under	a	File
element.	If	you	specify
this	value	then	use	a
formatted	file	identifier,
for	example:
[!TargetFileId].

WorkingDirectory String Directory	identifier	(or
Property	identifier	that
resolves	to	a	directory)
that	resolves	to	the
path	of	the	working
directory	for	the
shortcut.

See	Also
Wix	Schema

Version	2.0.4820.0



Show	Element

Description

None

Windows	Installer	references
None

Parents
AdminUISequence,	InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
After String 	 	
Before String 	 	
Dialog String 	 Yes
OnExit Enumeration mutually	exclusive	with	Before,

After,	and	Sequence	attributes
This	attribute's	value	should	be
one	of	the	following:
success

cancel

error

suspend

	

Sequence Integer 	 	

See	Also
Wix	Schema



Version	2.0.4820.0



SqlDatabase	Element

Description

SQL	Database

Windows	Installer	references
None

Parents
Component,	Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
SqlFileSpec	(min:	0,	max:	unbounded)
SqlLogFileSpec	(min:	0,	max:	unbounded)
SqlScript	(min:	0,	max:	unbounded)
SqlString	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String 	 Yes
ConfirmOverwrite YesNoType 	 	
ContinueOnError YesNoType 	 	
CreateOnInstall YesNoType 	 	
CreateOnReinstall YesNoType Specifies	whether	to

create	the	database	when
the	associated	component
is	reinstalled.	Setting
CreateOnInstall	to	yes
does	not	imply
CreateOnReinstall	is	set	to
yes.	CreateOnReinstall

	



must	be	set	in	addition	to
CreateOnInstall	for	it	to	be
created	during	both	install
and	reinstall.

CreateOnUninstall YesNoType 	 	
Database String The	name	of	the	database.

If	the	name	does	not	follow
the	SQL	server	"Rules	for
Regular	Identifiers"	(see
MSDN)	it	must	be
surrounded	by	quotes	or
square	brackets.	Since
this	value	can	be
formatted	text,	this	means
that	if	you	choose	to	use
square	brackets	you	must
use	the	MSI	method	for
escaping	square	brackets,
for	example:	[\[]blah[\]].

Yes

DropOnInstall YesNoType 	 	
DropOnReinstall YesNoType Specifies	whether	to	drop

the	database	when	the
associated	component	is
reinstalled.	Setting
DropOnInstall	to	yes	does
not	imply	DropOnReinstall
is	set	to	yes.
DropOnReinstall	must	be
set	in	addition	to
DropOnInstall	for	it	to	be
dropped	during	both	install
and	reinstall.

	

DropOnUninstall YesNoType 	 	
Instance String 	 	
Server String 	 Yes
User String 	 	

http://msdn.microsoft.com/library/en-us/acdata/ac_8_con_03_6e9e.asp


Remarks
Nesting	SqlDatabase	under	a	Component	element	will	result	in
a	SqlDatabase	being	installed	to	the	machine	as	the	package	is
installed.

Nesting	SqlDatabase	under	Product,	Fragment,	or	Module
results	in	a	database	"locator"	record	being	created	in	the
SqlDatabase	table.	This	means	that	the	database	itself	is
neither	installed	nor	uninstalled	by	the	MSI	package.	It	does
make	the	database	available	for	referencing	from	a	SqlString	or
SqlScript	record.	This	allows	MSI	to	install	SqlScripts	or
SqlStrings	to	already	existing	databases	on	the	machine.	The
install	will	fail	if	the	database	does	not	exist	in	these	cases.

The	User	attribute	references	cridentials	specified	in	a	User
element.	If	a	user	is	not	specified	then	Windows	Authentication
will	be	used	by	default	using	the	cridentials	of	the	user
performing	the	install	to	execute	sql	strings,	etc.

See	Also
Wix	Schema,	User

Version	2.0.4820.0



SqlFileSpec	Element

Description

File	specification	for	a	Sql	database.

Windows	Installer	references
None

Parents
SqlDatabase

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String ID	of	the	file	specification. Yes
Filename String Specifies	the	operating-system	file

name	for	the	database	file.
Yes

GrowthSize String Specifies	the	growth	increment	of
the	database	file.	The	GrowthSize
setting	for	a	file	cannot	exceed	the
MaxSize	setting.

	

MaxSize String Specifies	the	maximum	size	to
which	the	database	file	can	grow.

	

Name String Specifies	the	logical	name	for	the
database	file.

	

Size String Specifies	the	size	of	the	database
file.	When	a	Size	is	not	supplied	for
a	database	file,	SQL	Server	uses
the	size	of	the	primary	file	in	the
model	database.

	



See	Also
Wix	Schema

Version	2.0.4820.0



SqlLogFileSpec	Element

Description

File	specification	for	a	Sql	database.

Windows	Installer	references
None

Parents
SqlDatabase

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Filename String Specifies	the	operating-system	file

name	for	the	log	file.
	

GrowthSize String Specifies	the	growth	increment	of
the	log	file.	The	GrowthSize	setting
for	a	file	cannot	exceed	the
MaxSize	setting.

	

Id String ID	of	the	log	file	specification. 	
MaxSize String Specifies	the	maximum	size	to

which	the	log	file	can	grow.
	

Name String Specifies	the	logical	name	for	the
log	file.

	

Size String Specifies	the	size	of	the	log	file.
When	a	Size	parameter	is	not
specified	for	a	log	file,	SQL	Server
makes	the	file	1	MB.

	

See	Also



Wix	Schema
Version	2.0.4820.0



SqlScript	Element

Description

SQL	Script

Windows	Installer	references
None

Parents
Component,	Include,	SqlDatabase

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Binary	(min:	0,	max:	1)

Attributes

Name Type Description Required
Id String 	 Yes
BinaryKey String Reference	to	Binary

stream	that	contains	the
SQL	script	to	execute.
Only	valid	if	no	Binary
child	element.

	

ContinueOnError YesNoType Continue	executing
scripts	even	if	this	one
fails.

	

ExecuteOnInstall YesNoType Specifies	to	execute	the
script	when	the
associated	component	is
installed.

	

ExecuteOnReinstall YesNoType Specifies	whether	to
execute	the	script	when
the	associated

	



component	is	reinstalled.
Setting	ExecuteOnInstall
to	yes	does	not	imply
ExecuteOnReinstall	is
set	to	yes.
ExecuteOnReinstall
must	be	set	in	addition	to
ExecuteOnInstall	for	it	to
be	executed	during	both
install	and	reinstall.

ExecuteOnReInstall YesNoType This	attribute	has	been
deprecated;	please	use
the	ExecuteOnReinstall
attribute	instead.

	

ExecuteOnUninstall YesNoType Specifies	to	execute	the
script	when	the
associated	component	is
uninstalled.

	

RollbackOnInstall YesNoType Specifies	whether	to
execute	the	script	on
rollback	if	an	attempt	is
made	to	install	the
associated	component.

	

RollbackOnReinstall YesNoType Specifies	whether	to
execute	the	script	on
rollback	if	an	attempt	is
made	to	reinstall	the
associated	component.

	

RollbackOnUninstall YesNoType Specifies	whether	to
execute	the	script	on
rollback	if	an	attempt	is
made	to	uninstall	the
associated	component.

	

Sequence Integer Specifes	the	order	to	run
the	SQL	Scripts.	It	is
recommended	that
rollback	scripts	be

	



scheduled	before	their
complementary
execution	script.	This
order	is	also	relative
across	the	SqlString
element.

SqlDb String Required	when	not	child
of	SqlDatabase.

	

User String 	 	

See	Also
Wix	Schema

Version	2.0.4820.0



SqlString	Element

Description

SQL	String

Windows	Installer	references
None

Parents
Component,	Include,	SqlDatabase

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
ContinueOnError YesNoType Continue	executing

strings	even	if	this	one
fails.

	

ExecuteOnInstall YesNoType Specifies	to	execute	the
string	when	the
associated	component	is
installed.

	

ExecuteOnReinstall YesNoType Specifies	whether	to
execute	the	string	when
the	associated
component	is	reinstalled.
Setting	ExecuteOnInstall
to	yes	does	not	imply
ExecuteOnReinstall	is
set	to	yes.
ExecuteOnReinstall

	



must	be	set	in	addition	to
ExecuteOnInstall	for	it	to
be	executed	during	both
install	and	reinstall.

ExecuteOnReInstall YesNoType This	attribute	has	been
deprecated;	please	use
the	ExecuteOnReinstall
attribute	instead.

	

ExecuteOnUninstall YesNoType Specifies	to	execute	the
string	when	the
associated	component	is
uninstalled.

	

RollbackOnInstall YesNoType Specifies	whether	to
execute	the	string	on
rollback	if	an	attempt	is
made	to	install	the
associated	component.

	

RollbackOnReinstall YesNoType Specifies	whether	to
execute	the	string	on
rollback	if	an	attempt	is
made	to	reinstall	the
associated	component.

	

RollbackOnUninstall YesNoType Specifies	whether	to
execute	the	string	on
rollback	if	an	attempt	is
made	to	uninstall	the
associated	component.

	

Sequence Integer Specifes	the	order	to	run
the	SQL	Strings.	It	is
recommended	that
rollback	strings	be
scheduled	before	their
complementary
execution	string.	This
order	is	also	relative
across	the	SqlScript
element.

	



SQL String 	 Yes
SqlDb String 	 	
User String 	 	

See	Also
Wix	Schema

Version	2.0.4820.0



StartServices	Element

Description

Starts	system	services.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



StopServices	Element

Description

Stops	system	services.	The	condition	for	this	action	may	be	specified
in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Subscribe	Element

Description

Sets	attributes	for	events	in	the	EventMapping	table

Windows	Installer	references
EventMapping	Table

Parents
Control

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Attribute String if	not	present	can	only	handle	enable,

disable,	hide,	unhide	events
	

Event String must	be	one	of	the	standard	control
events'

	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/eventmapping_table.asp?frame=true&hidetoc=true


Substitution	Element

Description

Specifies	the	configurable	fields	of	a	module	database	and	provides
a	template	for	the	configuration	of	each	field.

Windows	Installer	references
None

Parents
Module

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Column String Specifies	the	target	column	in	the	row

named	in	the	Row	column.
Yes

Row String Specifies	the	primary	keys	of	the
target	row	in	the	table	named	in	the
Table	column.	If	multiple	keys,
separated	by	semicolons.

Yes

Table String Specifies	the	name	of	the	table	being
modified	in	the	module	database.

Yes

Value String Provides	a	formatting	template	for	the
data	being	substituted	into	the	target
field	specified	by	Table,	Row,	and
Column.

	

See	Also
Wix	Schema

Version	2.0.4820.0



SymbolPath	Element

Description

A	path	to	symbols.

Windows	Installer	references
None

Parents
ExternalFile,	TargetFile,	TargetImage,	UpgradeFile,	UpgradeImage

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Path String The	path. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



TargetFile	Element

Description

Information	about	specific	files	in	a	target	image.

Windows	Installer	references
None

Parents
TargetImage

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 SymbolPath	(min:	0,	max:	1)
2.	 Choice	of	elements	(min:	0,	max:	unbounded)

IgnoreRange	(min:	0,	max:	unbounded)
ProtectRange	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Foreign	key	into	the	File	table. Yes

See	Also
Wix	Schema

Version	2.0.4820.0



TargetImage	Element

Description

Contains	information	about	the	target	images	of	the	product.

Windows	Installer	references
None

Parents
UpgradeImage

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
SymbolPath	(min:	0,	max:	unbounded)
TargetFile	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the	target

image.
Yes

IgnoreMissingFiles YesNoType Files	missing	from	the
target	image	are	ignored
by	the	installer.

	

Order Int Relative	order	of	the
target	image.

Yes

SourceFile String Full	path	to	the	location	of
the	msi	file	for	the	target
image.

	

src String This	attribute	has	been
deprecated;	please	use
the	SourceFile	attribute
instead.

	



Validation String Product	checking	to	avoid
applying	irrelevant
transforms.

	

See	Also
Wix	Schema

Version	2.0.4820.0



TargetProductCode	Element

Description

A	product	code	for	a	product	that	may	receive	this	patch	(or	'*'	for	all
products).

Windows	Installer	references
None

Parents
PatchCreation

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	product	code	for	a	product	that

can	receive	this	patch	(or	'*'	for	all
products).

Yes

See	Also
Wix	Schema

Version	2.0.4820.0



Text	Element

Description

Alternative	to	Text	attributes	when	CDATA	is	needed	to	escape	XML
delimiters.

Windows	Installer	references
None

Parents
Control,	ListItem

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
SourceFile String Instructs	the	text	to	be	imported	from

a	file	instead	of	the	element	value
during	the	binding	process.

	

src String This	attribute	has	been	deprecated;
please	use	the	SourceFile	attribute
instead.

	

See	Also
Wix	Schema

Version	2.0.4820.0



TextStyle	Element

Description

None

Windows	Installer	references
TextStyle	Table

Parents
UI

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
Blue Integer 0	to	255 	
Bold YesNoType 	 	
FaceName String 	 Yes
Green Integer 0	to	255 	
Italic YesNoType 	 	
Red Integer 0	to	255 	
Size Integer 	 Yes
Strike YesNoType 	 	
Underline YesNoType 	 	

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/textstyle_table.asp?frame=true&hidetoc=true


TypeLib	Element

Description

Register	a	type	library	(TypeLib).	Please	note	that	in	order	to
properly	use	this	non-advertised,	you	will	need	use	this	element	with
Advertise='no'	and	also	author	the	appropriate	child	Interface
elements	by	extracting	them	from	the	type	library	itself.

Windows	Installer	references
TypeLib	Table,	Registry	Table

Parents
Component,	File,	Include

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
AppId	(min:	0,	max:	unbounded)
Class	(min:	0,	max:	unbounded)
Interface	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id Uuid The	GUID	that	identifes	the

type	library.
Yes

Advertise YesNoType Value	of	'yes'	will	create	a	row
in	the	TypeLib	table.	Value	of
'no'	will	create	rows	in	the
Registry	table.

	

Control YesNoType Value	of	'yes'	means	the	type
library	describes	controls,	and
should	not	be	displayed	in
type	browsers	intended	for
nonvisual	objects.	This

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/typelib_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true


attribute	can	only	be	set	if
Advertise='no'.

Cost Int The	cost	associated	with	the
registration	of	the	type	library
in	bytes.	This	attribute	cannot
be	set	if	Advertise='no'.

	

Description String The	localizable	description	of
the	type	library.

	

HasDiskImage YesNoType Value	of	'yes'	means	the	type
library	exists	in	a	persisted
form	on	disk.	This	attribute
can	only	be	set	if
Advertise='no'.

	

HelpDirectory String The	identifier	of	the	Directory
element	for	the	help	directory.

	

Hidden YesNoType Value	of	'yes'	means	the	type
library	should	not	be	displayed
to	users,	although	its	use	is
not	restricted.	Should	be	used
by	controls.	Hosts	should
create	a	new	type	library	that
wraps	the	control	with
extended	properties.	This
attribute	can	only	be	set	if
Advertise='no'.

	

Language Integer The	language	of	the	type
library.	This	must	be	a	non-
negative	integer.

Yes

MajorVersion String The	major	version	of	the	type
library.	The	value	should	be	an
integer	from	0	-	255.

	

MinorVersion String The	minor	version	of	the	type
library.	The	value	should	be	an
integer	from	0	-	255.

	

ResourceId Integer The	resource	id	of	a	typelib.
The	value	is	appended	to	the
end	of	the	typelib	path	in	the

	



registry.

Restricted YesNoType Value	of	'yes'	means	the	type
library	is	restricted,	and	should
not	be	displayed	to	users.	This
attribute	can	only	be	set	if
Advertise='no'.

	

See	Also
Wix	Schema

Version	2.0.4820.0



UI	Element

Description

Enclosing	element	to	compartmentalize	UI	specifications.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
BillboardAction	(min:	0,	max:	unbounded):	Billboard	table	item	with
child	Controls
Binary	(min:	0,	max:	unbounded)
ComboBox	(min:	0,	max:	unbounded):	ComboBox	table	with	ListItem
children
Dialog	(min:	0,	max:	unbounded):	Dialog	specification,	called	from
Sequence
DialogRef	(min:	0,	max:	unbounded):	Reference	to	a	Dialog
specification.
Error	(min:	0,	max:	unbounded):	Error	text	associated	with	install
error
ListBox	(min:	0,	max:	unbounded):	ListBox	table	with	ListItem
children
ListView	(min:	0,	max:	unbounded):	ListView	table	with	ListItem
children
ProgressText	(min:	0,	max:	unbounded):	ActionText	entry	associated
with	an	action
Property	(min:	0,	max:	unbounded)
RadioButtonGroup	(min:	0,	max:	unbounded):	RadioButton	table	with



RadioButton	children
TextStyle	(min:	0,	max:	unbounded):	TextStyle	entry	for	use	in	control
text
UIText	(min:	0,	max:	unbounded):	values	for	UIText	property,	not
installer	Property
Sequence	(min:	1,	max:	1)

1.	 AdminUISequence	(min:	0,	max:	1)
2.	 InstallUISequence	(min:	0,	max:	1)

Attributes

Name Type Description Required
Id String 	 	

See	Also
Wix	Schema,	UIRef

Version	2.0.4820.0



UIRef	Element

Description

Reference	to	a	UI	element.	This	will	force	the	entire	referenced
Fragment's	contents	to	be	included	in	the	installer	database.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes

See	Also
Wix	Schema,	UI

Version	2.0.4820.0



UIText	Element

Description

Text	associated	with	certain	controls

Windows	Installer	references
UIText	Table

Parents
UI

Inner	Text	(xs:string)
Element	value	is	text,	may	use	CDATA	if	needed	to	escape	XML
delimiters

Children
None

Attributes

Name Type Description Required
Id String 	 Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/uitext_table.asp?frame=true&hidetoc=true


UnpublishComponents	Element

Description

Manages	the	unadvertisement	of	components	listed	in	the
PublishComponent	table.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



UnpublishFeatures	Element

Description

Removes	selection-state	and	feature-component	mapping
information	from	the	registry.	The	condition	for	this	action	may	be
specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



UnregisterClassInfo	Element

Description

Manages	the	removal	of	COM	class	information	from	the	system
registry.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



UnregisterComPlus	Element

Description

Removes	COM+	applications	from	the	registry.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



UnregisterExtensionInfo	Element

Description

Manages	the	removal	of	extension-related	information	from	the
system	registry.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



UnregisterFonts	Element

Description

Removes	registration	information	about	installed	fonts	from	the
system.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



UnregisterMIMEInfo	Element

Description

Unregisters	MIME-related	registry	information	from	the	system.	The
condition	for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



UnregisterProgIdInfo	Element

Description

Manages	the	unregistration	of	OLE	ProgId	information	with	the
system.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



UnregisterTypeLibraries	Element

Description

Unregisters	type	libraries	from	the	system.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Upgrade	Element

Description

Upgrade	info	for	a	particular	UpgradeCode

Windows	Installer	references
Upgrade	Table

Parents
Fragment,	Include,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
Property	(min:	0,	max:	unbounded):	Property	table	entry	for	the
ActionProperty	column	associated	with	this	Upgrade	row
UpgradeVersion	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id Uuid This	value	specifies	the	upgrade	code

for	the	products	that	are	to	be	detected
by	the	FindRelatedProducts	action.

Yes

See	Also
Wix	Schema

Version	2.0.4820.0

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/upgrade_table.asp?frame=true&hidetoc=true


UpgradeFile	Element

Description

Specifies	files	to	either	ignore	or	to	specify	optional	data	about	a	file.

Windows	Installer	references
None

Parents
UpgradeImage

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
SymbolPath	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
AllowIgnoreOnError YesNoType Specifies	whether

patching	this	file	is	vital.
	

File String Foreign	key	into	the	File
table.

Yes

Ignore YesNoType If	yes,	the	file	is	ignored
during	patching,	and	the
next	two	attributes	are
ignored.

Yes

WholeFile YesNoType Whether	the	whole	file
should	be	installed,
rather	than	creating	a
binary	patch.

	

See	Also
Wix	Schema

Version	2.0.4820.0



UpgradeImage	Element

Description

Contains	information	about	the	upgraded	images	of	the	product.

Windows	Installer	references
None

Parents
Family

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 TargetImage	(min:	1,	max:	unbounded)
2.	 Choice	of	elements	(min:	0,	max:	unbounded)

SymbolPath	(min:	0,	max:	unbounded)
UpgradeFile	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	to	connect	target	images

with	upgraded	image.
Yes

SourceFile String Full	path	to	location	of	msi	file	for
upgraded	image.

	

SourcePatch String Modified	copy	of	the	upgraded
installation	database	that	contains
additional	authoring	specific	to
patching.

	

src String This	attribute	has	been
deprecated;	please	use	the
SourceFile	attribute	instead.

	

srcPatch String This	attribute	has	been 	



deprecated;	please	use	the
SourcePatch	attribute	instead.

See	Also
Wix	Schema

Version	2.0.4820.0



UpgradeVersion	Element

Description

None

Windows	Installer	references
Upgrade	Table

Parents
Upgrade

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
ExcludeLanguages YesNoType Set	to	"yes"	to	detect	all

languages,	excluding	the
languages	listed	in	the
Language	attribute.

	

IgnoreRemoveFailure YesNoType Set	to	"yes"	to	continue
installation	upon	failure
to	remove	a	product	or
application.

	

IncludeMaximum YesNoType Set	to	"yes"	to	make	the
range	of	versions
detected	include	the
value	specified	in
Maximum.

	

IncludeMinimum YesNoType Set	to	"yes"	to	make	the
range	of	versions
detected	include	the
value	specified	in

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/upgrade_table.asp?frame=true&hidetoc=true


Minimum.	This	attribute
is	"yes"	by	default.

Language String Specifies	the	set	of
languages	detected	by
FindRelatedProducts.
Enter	a	list	of	numeric
language	identifiers
(LANGID)	separated	by
commas	(,).	Leave	this
value	null	to	specify	all
languages.	Set
ExcludeLanguages	to
"yes"	in	order	detect	all
languages,	excluding	the
languages	listed	in	this
value.

	

Maximum String Specifies	the	upper
boundary	of	the	range	of
product	versions
detected	by
FindRelatedProducts.

	

MigrateFeatures YesNoType Set	to	"yes"	to	migrate
feature	states	from
upgraded	products	by
enabling	the	logic	in	the
MigrateFeatureStates
action.

	

Minimum String Specifies	the	lower
bound	on	the	range	of
product	versions	to	be
detected	by
FindRelatedProducts.

	

OnlyDetect YesNoType Set	to	"yes"	to	detect
products	and
applications	but	do	not
uninstall.

	

Property String When	the 	



FindRelatedProducts
action	detects	a	related
product	installed	on	the
system,	it	appends	the
product	code	to	the
property	specified	in	this
field.	The	property
specified	in	this	field
must	be	a	public
property	and	the
package	author	must
add	the	property	to	the
SecureCustomProperties
Property.	Each
UpgradeVersion	must
have	a	unique	Property
value.	After
FindRelatedProducts	the
value	of	this	property	is	a
list	product	codes,
separated	by	semicolons
(;),	detected	on	the
system.

RemoveFeatures String The	installer	sets	the
REMOVE	property	to
features	specified	in	this
column.	The	features	to
be	removed	can	be
determined	at	run	time.
The	Formatted	string
entered	in	this	field	must
evaluate	to	a	comma-
delimited	list	of	feature
names.	For	example:
[Feature1],[Feature2],
[Feature3].	No	features
are	removed	if	the	field
contains	formatted	text

	



that	evaluates	to	an
empty	string.	The
installer	sets
REMOVE=ALL	only	if
the	Remove	field	is
empty.

Any	attribute	namespace='##other'	processContents='lax'

See	Also
Wix	Schema

Version	2.0.4820.0



User	Element

Description

User	for	all	kinds	of	things.	When	it	is	not	nested	under	a	component
it	is	included	in	the	MSI	so	it	can	be	referenced	by	other	elements
such	as	the	User	attribute	in	the	AppPool	element.	When	it	is	nested
under	a	Component	element,	the	User	will	be	created	on	install	and
can	also	be	used	for	reference.

Windows	Installer	references
None

Parents
Component,	Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 GroupRef	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String 	 Yes
CanNotChangePassword YesNoType 	 	
CreateUser YesNoType Indicates	whether

or	not	to	create	the
user.	User	creation
can	be	skipped	if	all
that	is	desired	is	to
join	a	user	to
groups.

	

Disabled YesNoType 	 	
Domain String 	 	
FailIfExists YesNoType Indicates	if	the 	



install	should	fail	if
the	user	already
exists.

Name String 	 Yes
Password String Usually	a	Property

that	is	passed	in	on
the	command-line
to	keep	it	more
secure.

	

PasswordExpired YesNoType Indicates	whether
the	user	must
change	their
password	on	their
first	login.

	

PasswordNeverExpires YesNoType 	 	
RemoveOnUninstall YesNoType Indicates	whether

the	user	account
should	be	left
behind	on	uninstall.

	

UpdateIfExists YesNoType Indicates	if	the	user
account	properties
should	be	updated
if	the	user	already
exists.

	

See	Also
Wix	Schema,	Group,	GroupRef

Version	2.0.4820.0



ValidateProductID	Element

Description

Sets	the	ProductID	property	to	the	full	product	identifier.	This	action
must	be	sequenced	before	the	user	interface	wizard	in	the
InstallUISequence	table	and	before	the	RegisterUser	action	in	the
InstallExecuteSequence	table.	If	the	product	identifier	has	already
been	validated	successfully,	the	ValidateProductID	action	does
nothing.	The	ValidateProductID	action	always	returns	a	success,
whether	or	not	the	product	identifier	is	valid,	so	that	the	product
identifier	can	be	entered	on	the	command	line	the	first	time	the
product	is	run.	The	product	identifier	can	be	validated	without	having
the	user	reenter	this	information	by	setting	the	PIDKEY	property	on
the	command	line	or	by	using	a	transform.	The	display	of	the	dialog
box	requesting	the	user	to	enter	the	product	identifier	can	then	be
made	conditional	upon	the	presence	of	the	ProductID	property,
which	is	set	when	the	PIDKEY	property	is	validated.	The	condition
for	this	action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence,	InstallUISequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	



See	Also
Wix	Schema

Version	2.0.4820.0



Verb	Element

Description

Verb	definition	for	an	Extension.	When	advertised,	this	element
creates	a	row	in	the	Verb	table.	When	not	advertised,	this	element
creates	the	appropriate	rows	in	Registry	table.

Windows	Installer	references
Verb	Table,	Registry	Table

Parents
Extension

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	verb	for	the	command. Yes
Argument String Value	for	the	command	arguments.

Note	that	the	resolution	of	properties
in	the	Argument	field	is	limited.	A
property	formatted	as	[Property]	in
this	field	can	only	be	resolved	if	the
property	already	has	the	intended
value	when	the	component	owning
the	verb	is	installed.	For	example,	for
the	argument	"[#MyDoc.doc]"	to
resolve	to	the	correct	value,	the
same	process	must	be	installing	the
file	MyDoc.doc	and	the	component
that	owns	the	verb.

	

Command String The	localized	text	displayed	on	the 	

http://msdn.microsoft.com/library/en-us/msi/setup/verb_table.asp
http://msdn.microsoft.com/library/en-us/msi/setup/registry_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/verb_table.asp?frame=true&hidetoc=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/registry_table.asp?frame=true&hidetoc=true


context	menu.
Sequence Integer The	sequence	of	the	commands.

Only	verbs	for	which	the	Sequence	is
specified	are	used	to	prepare	an
ordered	list	for	the	default	value	of
the	shell	key.	The	Verb	with	the
lowest	value	in	this	column	becomes
the	default	verb.	Used	only	for
Advertised	verbs.

	

Target String Target	file	to	be	executed	for	the
verb.	The	value	should	be	a
formatted	Property	to	refer	to	the
short	path	to	the	file,	for	example:
[!TargetFileId].	Only	valid	for	non-
Advertised	verbs.

	

See	Also
Wix	Schema

Version	2.0.4820.0



WebAddress	Element

Description

WebAddress	for	WebSite

Windows	Installer	references
None

Parents
WebSite

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
Header String 	 	
IP String For	IP	address	"All	Unassigned",	do

not	specify	this	attribute	or	specify
its	value	as	"*".

	

KeyPath YesNoType 	 	
Port String 	 Yes
Secure YesNoType 	 	

See	Also
Wix	Schema

Version	2.0.4820.0



WebApplication	Element

Description

Defines	properties	for	a	web	application.	These	properties	can	be
used	for	more	than	one	application	defined	in	a	web	site,	directory,
or	vroot,	by	defining	this	element	in	a	common	location	and	referring
to	it	by	setting	the	WebApplication	attribute	of	the	WebSite,	WebDir,
and	WebVirtualDir	elements.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product,	WebSite,	WebVirtualDir

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 WebApplicationExtension	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String 	 Yes
AllowSessions YesNoDefaultType Sets	the	Enable

Session	State
option.	When
enabled,	you	can
set	the	session
timeout	using	the
SessionTimeout
attribute.

	

Buffer YesNoDefaultType Sets	the	option	that
enables	response
buffering	in	the

	



application,	which
allows	ASP	script	to
set	response
headers	anywhere
in	the	script.

ClientDebugging YesNoDefaultType Enable	ASP	client-
side	script
debugging.

	

DefaultScript Enumeration Sets	the	default
script	language	for
the	site.	This
attribute's	value
should	be	one	of	the
following:
VBScript

JScript

	

Isolation Enumeration Sets	the	application
isolation	level	for
this	application	for
pre-IIS	6
applications.	This
attribute's	value
should	be	one	of	the
following:
low

Means	the
application
executes	within
the	IIS	process.

medium
Executes
pooled	in	a
separate
process.

high
Means

	



execution	alone
in	a	separate
process.

Name String Sets	the	name	of
this	application.

Yes

ParentPaths YesNoDefaultType Sets	the	parent
paths	option,	which
allows	a	client	to
use	relative	paths	to
reach	parent
directories	from	this
application.

	

ScriptTimeout Integer Sets	the	timeout
value	for	executing
ASP	scripts.

	

ServerDebugging YesNoDefaultType Enable	ASP	server-
side	script
debugging.

	

SessionTimeout Integer Sets	the	timeout
value	for	sessions	in
minutes.

	

WebAppPool String References	the	Id
attribute	of	a
WebAppPool
element	to	use	as
the	application	pool
for	this	application	in
IIS	6	applications.

	

See	Also
Wix	Schema

Version	2.0.4820.0



WebApplicationExtension	Element

Description

Extension	for	WebApplication

Windows	Installer	references
None

Parents
WebApplication

Inner	Text
None

Children
None

Attributes

Name Type Description Required
CheckPath YesNoType 	 	
Executable String usually	a	Property	that	resolves	to

short	file	name	path
Yes

Extension String Extension	being	registered.	Do
not	prefix	with	a	'.'	(e.g.	you
should	use	"html",	not	".html").	To
register	for	all	extensions,	use
Extension="*".	To	register	a
wildcard	application	map	(which
handles	all	requests,	even	those
for	directories	or	files	with	no
extension)	omit	the	Extension
attribute	completely.

	

Script YesNoType 	 	
Verbs String 	 	

See	Also



Wix	Schema
Version	2.0.4820.0



WebAppPool	Element

Description

IIS6	Application	Pool

Windows	Installer	references
None

Parents
Component,	Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 RecycleTime	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Id	of	the	AppPool. Yes
CpuAction Enumeration Action	taken	when

CPU	exceeds
maximum	CPU	use
(as	defined	with
MaxCpuUsage	and
RefreshCpu).	This
attribute's	value
should	be	one	of	the
following:
none

shutdown

	

Identity Enumeration Identity	you	want	the
AppPool	to	run	under.
Use	the	'other'	value

	



in	conjunction	with
the	User	attribute	to
specify	non-standard
user.	This	attribute's
value	should	be	one
of	the	following:
networkService

localService

localSystem

other

IdleTimeout Integer Shutdown	worker
process	after	being
idle	for	(time	in
minutes).

	

MaxCpuUsage PercentType Maximum	CPU	usage
(percent).

	

MaxWorkerProcesses Integer Maximum	number	of
worker	processes.

	

Name String Name	of	the	AppPool
to	be	shown	in	IIs.

Yes

PrivateMemory Integer Specifies	the	amount
of	private	memory	(in
KB)	that	a	worker
process	can	use
before	the	worker
process	recycles.	The
maximum	value
supported	for	this
attribute	is	4,294,967
KB.

	

QueueLimit Integer Limit	the	kernel
request	queue
(number	of	requests).

	

RecycleMinutes Integer How	often,	in
minutes,	you	want	the

	



AppPool	to	be
recycled.

RecycleRequests Integer How	often,	in
requests,	you	want
the	AppPool	to	be
recycled.

	

RefreshCpu Integer Refresh	CPU	usage
numbers	(in	minutes).

	

User String User	account	to	run
the	AppPool	as.	To
use	this,	you	must	set
the	Identity	attribute
to	'other'.

	

VirtualMemory Integer Specifies	the	amount
of	virtual	memory	(in
KB)	that	a	worker
process	can	use
before	the	worker
process	recycles.	The
maximum	value
supported	for	this
attribute	is	4,294,967
KB.

	

See	Also
Wix	Schema

Version	2.0.4820.0



WebDir	Element

Description

Defines	a	subdirectory	within	an	IIS	web	site.	When	this	element	is	a
child	of	WebSite,	the	web	directory	is	defined	within	that	web	site.
Otherwise	the	web	directory	must	reference	a	WebSite	element	via
the	WebSite	attribute.

Windows	Installer	references
None

Parents
Component,	Include,	WebSite

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
DirProperties String References	the	Id	attribute	for	a

WebDirProperties	element	that
specifies	the	security	and	access
properties	for	this	web	directory.

Yes

Path String Specifies	the	name	of	this	web
directory.

Yes

WebSite String References	the	Id	attribute	for	a
WebSite	element	in	which	this
directory	belongs.	Required	when
this	element	is	not	a	child	of	a
WebSite	element.

	

See	Also
Wix	Schema



Version	2.0.4820.0



WebDirProperties	Element

Description

WebDirProperites	used	by	one	or	more	WebSites.	Lists	properties
common	to	IIS	web	sites	and	vroots.	Corresponding	properties	can
be	viewed	through	the	IIS	Manager	snap-in.	One	property	entry	can
be	reused	by	multiple	sites	or	vroots	using	the	Id	field	as	a	reference,
using	WebVirtualDir.DirProperties,	WebSite.DirProperties,	or
WebDir.DirProperties.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
AccessSSL YesNoType A	value	of	true	indicates

that	file	access	requires
SSL	file	permission
processing,	with	or
without	a	client
certificate.	This
corresponds	to
AccessSSL	flag	for
AccessSSLFlags	IIS
metabase	property.

	

AccessSSL128 YesNoType A	value	of	true	indicates 	



that	file	access	requires
SSL	file	permission
processing	with	a
minimum	key	size	of	128
bits,	with	or	without	a
client	certificate.	This
corresponds	to
AccessSSL128	flag	for
AccessSSLFlags	IIS
metabase	property.

AccessSSLMapCert YesNoType This	corresponds	to
AccessSSLMapCert	flag
for	AccessSSLFlags	IIS
metabase	property.

	

AccessSSLNegotiateCert YesNoType This	corresponds	to
AccessSSLNegotiateCert
flag	for	AccessSSLFlags
IIS	metabase	property.

	

AccessSSLRequireCert YesNoType This	corresponds	to
AccessSSLRequireCert
flag	for	AccessSSLFlags
IIS	metabase	property.

	

AnonymousAccess YesNoType Sets	the	Enable
Anonymous	Access
checkbox,	which	maps
anonymous	users	to	a
Windows	user	account.
When	setting	this	to	'yes'
you	should	also	provide
the	user	account	using
the	AnonymousUser
attribute,	and	determine
what	setting	to	use	for
the
IIsControlledPassword
attribute.	Defaults	to	'no.'

	

AnonymousUser String Reference	to	the	Id
attribute	on	the	User

	



element	to	be	used	as
the	anonymous	user	for
the	directory.	See	the
User	element	for	more
information.

AspDetailedError YesNoType Sets	the	option	for
whether	to	send	detailed
ASP	errors	back	to	the
client	on	script	error.
Default	is	'no.'

	

AuthenticationProviders String Comma	delimited	list,	in
order	of	precedence,	of
Windows	authentication
providers	that	IIS	will
attempt	to	use:	NTLM,
Kerberos,	Negotiate,	and
others.

	

BasicAuthentication YesNoType Sets	the	Basic
Authentication	option,
which	allows	clients	to
provide	credentials	in
plaintext	over	the	wire.
Defaults	to	'no.'

	

CacheControlCustom String Custom	HTTP	1.1	cache
control	directives.

	

CacheControlMaxAge Integer Integer	value	specifying
the	cache	control
maximum	age	value.

	

ClearCustomError YesNoType Specifies	whether	IIs	will
return	custom	errors	for
this	directory.

	

DefaultDocuments String The	list	of	default
documents	to	set	for	this
web	directory,	in	comma-
delimited	format.

	

DigestAuthentication YesNoType Sets	the	Digest
Authentication	option,

	



which	allows	using	digest
authentication	with
domain	user	accounts.
Defaults	to	'no.'

Execute YesNoType 	 	
HttpExpires String Value	to	set	the

HttpExpires	attribute	to
for	a	Web	Dir	in	the
metabase.

	

IIsControlledPassword YesNoType Sets	whether	IIS	should
control	the	password
used	for	the	Windows
account	specified	in	the
AnonymousUser
attribute.	Defaults	to	'no.'

	

Index YesNoType Sets	the	Index	Resource
option,	which	specifies
whether	this	web
directory	should	be
indexed.	Defaults	to	'no.'

	

LogVisits YesNoType Sets	whether	visits	to	this
site	should	be	logged.
Defaults	to	'no.'

	

PassportAuthentication YesNoType Sets	the	Passport
Authentication	option,
which	allows	clients	to
provide	credentials	via	a
.Net	Passport	account.
Defaults	to	'no.'

	

Read YesNoType 	 	
Script YesNoType 	 	
WindowsAuthentication YesNoType Sets	the	Windows

Authentication	option,
which	enables	integrated
Windows	authentication
to	be	used	on	the	site.
Defaults	to	'no.'

	



Write YesNoType 	 	

See	Also
Wix	Schema

Version	2.0.4820.0



WebError	Element

Description

Custom	Web	Errors	used	by	WebSites	and	Virtual	Directories.

Windows	Installer	references
None

Parents
WebSite,	WebVirtualDir

Inner	Text
None

Children
None

Attributes

Name Type Description Required
ErrorCode Integer HTTP	1.1	error	code. Yes
File String File	to	be	sent	to	the	client	for	this

error	code	and	sub	code.	This	can
be	formatted.	For	example:	[#FileId].

	

SubCode Integer Error	sub	code.	Set	to	0	to	get	the
wild	card	"*".

Yes

URL String URL	to	be	sent	to	the	client	for	this
error	code	and	sub	code.	This	can
be	formatted.

	

Remarks
You	can	only	use	error	code	and	sub	code	combinations	which	are
supported	by	IIS.	Attempting	to	set	a	custom	error	for	an	error	code
and	sub	code	combination	that	is	not	supported	by	IIS	(in	the	default
list	of	error	codes)	will	result	in	an	installation	failure.

See	Also
Wix	Schema



Version	2.0.4820.0



WebFilter	Element

Description

IIs	Filter	for	a	Component

Windows	Installer	references
None

Parents
Component,	Include,	WebSite

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	unique	Id	for	the	web	filter. Yes
Description String Description	of	the	filter. 	
Flags Integer Sets	the	MD_FILTER_FLAGS

metabase	key	for	the	filter.	This
must	be	an	integer.	See	MSDN
'FilterFlags'	documentation	for	more
details.

	

LoadOrder String Allowed	values:	"first",	"last",
number

	

Name String The	name	of	the	filter	to	be	used	in
IIS.

Yes

Path String Usually	a	Property	that	resolves	to
short	file	name	path

Yes

WebSite String Required	if	not	found	as	child	of
WebSite	element

	

See	Also



Wix	Schema
Version	2.0.4820.0



WebLog	Element

Description

WebLog	definition.

Windows	Installer	references
None

Parents
Fragment,	Include,	Module,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	WebLog. Yes
Type Enumeration This	attribute's	value	should	be

one	of	the	following:
IIS

Microsoft	IIS	Log	File	Format

NCSA
NCSA	Common	Log	File
Format

none
Disables	logging.

ODBC
ODBC	Logging

W3C
W3C	Extended	Log	File
Format

Yes



See	Also
Wix	Schema

Version	2.0.4820.0



WebProperty	Element

Description

IIS	Properties

Windows	Installer	references
None

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id Enumeration This	attribute's	value	should	be	one

of	the	following:
ETagChangeNumber

IIs5IsolationMode

MaxGlobalBandwidth

LogInUTF8

	

Value String The	value	to	be	used	for	the
WebProperty	specified	in	the	Id
attribute.	See	the	remarks	section
for	information	on	acceptable
values	for	each	Id.

	

Remarks
Here	is	an	explanation	of	the	acceptable	values	for	each	property
and	their	meaning:
For	the	Ids	IIs5IsolationMode	and	LogInUTF8,	no	value	should	be



specified	since	the	presence	of	this	property	indicates	that	the
setting	should	be	set.
For	the	MaxGlobalBandwidth	Id,	the	value	should	be	specified	in
kilobytes.	The	value	should	be	a	base	10	number.
ETagChangeNumber	sets	the	machine-specific	portion	of	ETag	as	a
number.	This	value,	when	synchronized	across	servers	in	a	web
farm,	allows	the	web	farm	to	return	an	identical	ETag	for	a	given
resource	regardless	of	the	server	that	handled	the	request.	The
value	should	be	a	base	10	number.

See	Also
Wix	Schema

Version	2.0.4820.0



WebServiceExtension	Element

Description

The	WebServiceExtension	property	is	used	by	the	Web	server	to
determine	whether	a	Web	service	extension	is	permitted	to	run.

Windows	Installer	references
None

Parents
Component,	Include

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
Allow YesNoType Indicates	if	the	extension	is

allowed	or	denied.
Yes

Description String Description	of	the	extension. 	
File String Usually	a	Property	that	resolves

to	short	file	name	path
Yes

Group String String	used	to	identify	groups	of
extensions.

	

UIDeletable YesNoType Indicates	if	the	UI	is	allowed	to
delete	the	extension	from	the	list
of	not.	Default:	Not	deletable.

	

See	Also
Wix	Schema

Version	2.0.4820.0



WebSite	Element

Description

IIs	Web	Site

Windows	Installer	references
None

Parents
Component,	Fragment,	Include,	Module,	Product

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 WebAddress	(min:	1,	max:	unbounded)
2.	 WebApplication	(min:	0,	max:	1)
3.	 Choice	of	elements	(min:	0,	max:	unbounded)

CertificateRef	(min:	0,	max:	unbounded)
HttpHeader	(min:	0,	max:	unbounded)
WebDir	(min:	0,	max:	unbounded)
WebError	(min:	0,	max:	unbounded)
WebFilter	(min:	0,	max:	unbounded)
WebVirtualDir	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the

WebSite.	Used
within	the	MSI
package	only.

Yes

AutoStart YesNoType Specifies	whether
to	automatically
start	the	web	site.

	



ConfigureIfExists YesNoType Specifies	whether
to	configure	the
web	site	if	it
already	exists.
Note:	This	will	not
affect	uninstall
behavior.	If	the
web	site	exists	on
uninstall,	it	will	be
removed.

	

ConnectionTimeout NonNegativeInteger Sets	the	timeout
value	for
connections	in
seconds.

	

Description String This	is	the	name
of	the	web	site
that	will	show	up
in	the	IIS
management
console.

Yes

Directory String Root	directory	of
the	web	site.
Resolved	to	a
directory	in	the
Directory	table	at
install	time	by	the
server	custom
actions.

	

DirProperties String Reference	to
WebDirProperties
element.

	

Sequence Integer Sequence	that
the	web	site	is	to
be	created	in.

	

StartOnInstall YesNoType Specifies	whether
to	start	the	web
site	on	install.

	



WebApplication String Reference	to	a
WebApplication
that	is	to	be
installed	as	part
of	this	web	site.

	

WebLog String Reference	to
WebLog
definition.

	

Remarks
Nesting	WebSite	under	a	Component	element	will	result	in	a
WebSite	being	installed	to	the	machine	as	the	package	is
installed.

Nesting	WebSite	under	Product,	Fragment,	or	Module	results	in
a	web	site	"locator"	record	being	created	in	the	IIsWebSite	table.
This	means	that	the	web	site	itself	is	neither	installed	nor
uninstalled	by	the	MSI	package.	It	does	make	the	database
available	for	referencing	from	a	WebApplication,	WebVirtualDir
or	WebDir	record.	This	allows	an	MSI	to	install	WebApplications,
WebVirtualDirs	or	WebDirs	to	already	existing	web	sites	on	the
machine.	The	install	will	fail	if	the	web	site	does	not	exist	in
these	cases.

See	Also
Wix	Schema

Version	2.0.4820.0



WebVirtualDir	Element

Description

Defines	an	IIS	virtual	directory.	When	this	element	is	a	child	of
WebSite	element,	the	virtual	directory	is	defined	within	that	web	site.
Otherwise	this	virtual	directory	must	reference	a	WebSite	element
via	the	WebSite	attribute

Windows	Installer	references
None

Parents
Component,	Include,	WebSite,	WebVirtualDir

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 WebApplication	(min:	0,	max:	1)
2.	 WebError	(min:	0,	max:	unbounded)
3.	 WebVirtualDir	(min:	0,	max:	unbounded)
4.	 HttpHeader	(min:	0,	max:	unbounded)
5.	 MimeMap	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String 	 Yes
Alias String Sets	the	application	name,	which

is	the	URL	relative	path	used	to
access	this	virtual	directory

Yes

Directory String References	the	Id	attribute	for	a
Directory	element	that	points	to
the	content	for	this	virtual
directory.

Yes



DirProperties String References	the	Id	attribute	for	a
WebDirProperties	element	that
specifies	the	security	and	access
properties	for	this	virtual
directory.

	

WebApplication String References	the	Id	attribute	for	a
WebApplication	element	that
specifies	web	application
settings	for	this	virtual	directory.
If	a	WebApplication	child	is	not
specified,	the	virtual	directory
does	not	host	web	applications.

	

WebSite String References	the	Id	attribute	for	a
WebSite	in	which	this	virtual
directory	belongs.	Required
when	this	element	is	not	a	child
of	WebSite	element.

	

See	Also
Wix	Schema

Version	2.0.4820.0



Wix	Element

Description

This	is	the	top-level	container	element	for	every	wxs	file.	Amongst
the	possible	children,	the	Product,	Module,	and	PatchCreation
elements	are	analogous	to	the	main	function	in	a	C	program.	There
can	only	be	one	of	these	present	when	linking	occurs.	Product
compiles	into	an	msi	file,	Module	compiles	into	an	msm	file,
PatchCreation	compiles	into	a	pcp	file.	The	Fragment	element	is	an
atomic	unit	which	ultimately	links	into	either	a	Product,	Module,	or
PatchCreation.	The	Fragment	can	either	be	completely	included	or
excluded	during	linking.

Windows	Installer	references
None

Parents
None

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	1)
PatchCreation	(min:	0,	max:	1)
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	1)
Module	(min:	0,	max:	1)
Product	(min:	0,	max:	1)

2.	 Fragment	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
RequiredVersion VersionType Required	version	of	the

WiX	toolset	to	compile	this
input	file.

	



See	Also
Wix	Schema

Version	2.0.4820.0



WriteEnvironmentStrings	Element

Description

Modifies	the	values	of	environment	variables.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



WriteIniValues	Element

Description

Writes	the	.ini	file	information	that	the	application	needs	written	to	its
.ini	files.	The	condition	for	this	action	may	be	specified	in	the
element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



WriteRegistryValues	Element

Description

Sets	up	an	application's	registry	information.	The	condition	for	this
action	may	be	specified	in	the	element's	inner	text.

Windows	Installer	references
None

Parents
InstallExecuteSequence

Inner	Text	(xs:string)
This	element	may	have	inner	text.

Children
None

Attributes

Name Type Description Required
Sequence Integer A	value	used	to	indicate	the

position	of	this	action	in	a
sequence.

	

Suppress YesNoType If	yes,	this	action	will	not	occur. 	

See	Also
Wix	Schema

Version	2.0.4820.0



XmlFile	Element

Description

Adds	or	removes	.xml	file	entries.	If	you	use	the	XmlFile	element	you
must	link	with	wixca.wixlib	because	it	requires	the	XmlFile	custom
actions.

Windows	Installer	references
None

Parents
Component

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	xml	file

modification.
Yes

Action Enumeration The	type	of	modification	to
be	made	to	the	XML	file
when	the	component	is
installed.	This	attribute's
value	should	be	one	of	the
following:
createElement

Creates	a	new	element
under	the	element
specified	in
ElementPath.	The
Name	attribute	is
required	in	this	case
and	specifies	the	name

Yes



of	the	new	element.	The
Value	attribute	is	not
necessary	when
createElement	is
specified	as	the	action.
If	the	Value	attribute	is
set,	it	will	cause	the	new
element's	text	value	to
be	set.

deleteValue
Deletes	a	value	from	the
element	specified	in	the
ElementPath.	If	Name	is
specified,	the	attribute
with	that	name	is
deleted.	If	Name	is	not
specified,	the	text	value
of	the	element	specified
in	the	ElementPath	is
deleted.	The	Value
attribute	is	ignored	if
deleteValue	is	the	action
specified.

setValue
Sets	a	value	in	the
element	specified	in	the
ElementPath.	If	Name	is
specified,	and	attribute
with	that	name	is	set	to
the	value	specified	in
Value.	If	Name	is	not
specified,	the	text	value
of	the	element	is	set.
Value	is	a	required
attribute	if	setValue	is
the	action	specified.

CreateElement YesNoType Specifies	whether	or	not	to 	



create	an	Element	with	the
name	specified	in	the	Name
attribute.

ElementPath String The	XPath	of	the	element	to
be	modified.	Note	that	this	is
a	formatted	field	and
therefore,	square	brackets	in
the	XPath	must	be	escapted.

Yes

File String Path	of	the	.xml	file	to
configure.

Yes

Name String Name	of	XML	node	to
set/add	to	the	specified
element.	Not	setting	this
attribute	causes	the
element's	text	value	to	be
set.	Otherwise	this	specified
the	attribute	name	that	is
set.

	

Permanent YesNoType Specifies	whether	or	not	the
modification	should	be
removed	on	uninstall.	This
has	no	effect	on	uninstall	if
the	action	was	deleteValue.

	

Sequence Integer Specifies	the	order	in	which
the	modification	is	to	be
attempted	on	the	XML	file.	It
is	important	to	ensure	that
new	elements	are	created
before	you	attempt	to	add	an
attribute	to	them.

	

Value String The	value	to	be	written. 	

See	Also
Wix	Schema

Version	2.0.4820.0



Mmc	Schema

Copyright	(c)	Microsoft	Corporation.	All	rights	reserved.	The	use	and
distribution	terms	for	this	software	are	covered	by	the	Common	Public
License	1.0	(http://opensource.org/licenses/cpl.php)	which	can	be	found
in	the	file	CPL.TXT	at	the	root	of	this	distribution.	By	using	this	software
in	any	fashion,	you	are	agreeing	to	be	bound	by	the	terms	of	this	license.
You	must	not	remove	this	notice,	or	any	other,	from	this	software.

The	source	code	schema	for	the	Windows	Installer	XML	Toolset	MMC
Extension.

Target	Namespace
http://schemas.microsoft.com/wix/MmcExtension

All	Elements
ExtendedNodeType
PublishedNodeType
Resources
SnapIn



ExtendedNodeType	Element

Description

Published	node	type	that	is	extended	by	this	snap-in.

Windows	Installer	references
None

Parents
SnapIn

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id Uuid The	guid	representing	the	extended

node.
Yes

Description String The	description	of	the	extension. 	

See	Also
Mmc	Schema

Version	2.0.4820.0



PublishedNodeType	Element

Description

Published	node	type	that	can	be	extended	by	extension	snap-ins.

Windows	Installer	references
None

Parents
SnapIn

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id Uuid The	guid	representing	the	extensible

node.
Yes

Description String The	description	of	the	extensible
node.

	

See	Also
Mmc	Schema

Version	2.0.4820.0



Resources	Element

Description

Element	describing	the	localized	resources	for	this	snap-in.

Windows	Installer	references
None

Parents
SnapIn

Inner	Text
None

Children
None

Attributes

Name Type Description Required
DescriptionId Integer The	resource	ID	for

the	description	of
the	snap-in	in	the
resources	DLL.

	

DisplayNameId Integer The	resource	ID	for
the	display	name
of	the	snap-in	in
the	resources	DLL.

	

DllName String The	name	of	the
DLL	containing	the
embedded
resources	for	this
snap-in.

Yes

FolderBitmapsColorMask Integer The	color	mask	for
transparency	in
folder	bitmaps.

	



IconId Integer The	resource	ID	for
the	icon	of	the
snap-in	in	the
resources	DLL.
Used	for	the	icon
of	a	saved	MSC
file,	and	the	icon	in
the	top	left	of	the
MMC	window,	not
for	the	snap-in
selection	dialog.

	

LargeFolderBitmapId Integer The	resource	ID	for
the	large	folder
bitmap	of	the	snap-
in	in	the	resources
DLL.	Used	for	the
snap-in	selection
dialog	when
Add/Remove
Snap-ins	is
chosen.

	

SmallFolderBitmapId Integer The	resource	ID	for
the	small	folder
bitmap	of	the	snap-
in	in	the	resources
DLL.	Used	for	the
snap-in	selection
dialog	when
Add/Remove
Snap-ins	is
chosen.

	

SmallFolderSelectedBitmapId Integer The	resource	ID	for
the	small	selected
folder	bitmap	of	the
snap-in	in	the
resources	DLL.
Used	for	the	snap-
in	selection	dialog

	



when	Add/Remove
Snap-ins	is
chosen.

VendorId Integer The	resource	ID	for
the	vendor	of	the
snap-in	in	the
resources	DLL.

	

VersionId Integer The	resource	ID	for
the	version	of	the
snap-in	in	the
resources	DLL.

	

See	Also
Mmc	Schema

Version	2.0.4820.0



SnapIn	Element

Description

A	managed	MMC	snap-in,	with	optional	published	extendible	nodes.

Windows	Installer	references
None

Parents
File

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
ExtendedNodeType	(min:	0,	max:	unbounded):	Node	type	of	another
snap-in	that	is	extended	by	this	snap-in.
PublishedNodeType	(min:	0,	max:	unbounded):	Published	node
types	that	can	be	extended	by	extension	snap-ins.
Resources	(min:	0,	max:	unbounded):	Element	describing	the
localized	resources	for	this	snap-in.

Attributes

Name Type Description Required
Id Uuid The	guid

representing	the
snap-in's	identity.

Yes

About Uuid The	guid
representing	the
snap-in's	help	topic.
Defaults	to
{00000000-0000-
0000-0000-
000000000000}.

	

AssemblyName String The	name	of	the 	



assembly	in	which
the	snap-in	is
defined.

ClassType String The	fully-qualified
type	name	of	the
snap-in.

Yes

DefaultCulture String The	culture	of	the
snap-in	assembly.
Defaults	to	neutral.

	

DefaultPublicKeyToken String The	public	key	token
of	the	snap-in.
Defaults	to	null.

	

DefaultVersion String The	version	of	the
snap-in	assembly.
Defaults	to	1.0.0.0.

	

Description String The	description	of
the	snap-in,	which
will	be	shown	to
users	in	the
Add/Remove	snap-
in	dialog.

	

ExtensionType Enumeration Specifies	the	type	of
the	extension.	This
attribute's	value
should	be	one	of	the
following:
ContextMenu

NameSpace

PropertySheet

Task

ToolBar

View

	

MmcVersion String The	version	of	MMC
that	this	snap-in	was

	



compiled	to.
Defaults	to	3.0.0.0.

Name String The	name	of	the
snap-in	as	shown	to
users	in	the
Add/Remove	snap-
in	dialog.

Yes

Provider String The	provider	of	the
snap-in	as	shown	to
users	in	the
Add/Remove	snap-
in	dialog.

	

RuntimeVersion String The	version	of	the
CLR	that	this	snap-
in	was	compiled	to.
Defaults	to
2.0.50727.

	

See	Also
Mmc	Schema

Version	2.0.4820.0



Netfx	Schema

Copyright	(c)	Microsoft	Corporation.	All	rights	reserved.	The	use	and
distribution	terms	for	this	software	are	covered	by	the	Common	Public
License	1.0	(http://opensource.org/licenses/cpl.php)	which	can	be	found
in	the	file	CPL.TXT	at	the	root	of	this	distribution.	By	using	this	software
in	any	fashion,	you	are	agreeing	to	be	bound	by	the	terms	of	this	license.
You	must	not	remove	this	notice,	or	any	other,	from	this	software.

The	source	code	schema	for	the	Windows	Installer	XML	Toolset	.NET
Framework	Extension.

Target	Namespace
http://schemas.microsoft.com/wix/NetFxExtension

All	Elements
NativeImage



NativeImage	Element

Description

Improves	the	performance	of	managed	applications	by	creating
native	images.	Requires	the	.NET	Framework	2.0	to	be	installed	on
the	target	machine	since	it	runs	NGen.

Windows	Installer	references
None

Parents
File

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String The	identifier	for	this

NativeImage.
Yes

AppBaseDirectory String The	identifier	of	the
directory	to	use	for	locating
dependent	assemblies.	For
DLL	assemblies	and
assemblies	installed	to	the
GAC,	this	attribute	should
be	set	to	the	directory	of
the	application	which	loads
this	assembly.	For	EXE
assemblies,	this	attribute
does	not	need	to	be	set
because	NGen	will	use	the
directory	of	the	assembly
file	by	default.

	

http://msdn2.microsoft.com/en-us/library/6t9t5wcf.aspx


AssemblyApplication String The	identifier	of	the
application	which	will	load
this	assembly.	For	DLL
assemblies	which	are
loaded	via	reflection,	this
attribute	should	be	set	to
indicate	the	application
which	will	load	this
assembly.	The
configuration	of	the
application	(usually
specified	via	an	exe.config
file)	will	be	used	to
determine	how	to	resolve
dependencies	for	this
assembly.	When	a	shared
component	is	loaded	at	run
time,	using	the	Load
method,	the	application's
configuration	file
determines	the
dependencies	that	are
loaded	for	the	shared
component	—	for	example,
the	version	of	a
dependency	that	is	loaded.
This	attribute	gives
guidance	on	which
dependencies	would	be
loaded	at	run	time	in	order
to	figure	out	which
dependency	assemblies
will	also	need	to	have
native	images	generated
(assuming	the
Dependency	attribute	is
not	set	to	"no").	This
attribute	cannot	be	set	if
the	AssemblyApplication

	



attribute	is	set	on	the
parent	File	element	(please
note	that	these	attributes
both	refer	to	the	same
application	assembly	but
do	very	different	things:
specifiying
File/@AssemblyApplication
will	force	an	assembly	to
install	to	a	private	location
next	to	the	indicated
application,	whereas	this
AssemblyApplication
attribute	will	be	used	to
help	resolve	dependent
assemblies	while
generating	native	images
for	this	assembly).

Debug YesNoType Set	to	"yes"	to	generate
native	images	that	can	be
used	under	a	debugger.
The	default	value	is	"no".

	

Dependencies YesNoType Set	to	"no"	to	generate	the
minimum	number	of	native
images.	The	default	value
is	"yes".

	

Platform Enumeration Sets	the	platform(s)	for
which	native	images	will	be
generated.	This	attribute's
value	should	be	one	of	the
following:
32bit

Generate	native
images	only	for	the
32-bit	version	of	the
.NET	Framework	on
the	target	machine.
This	is	the	default

	



value.

64bit
Generate	native
images	only	for	the
ia64	or	x86	version	of
the	.NET	Framework
on	the	target	machine.
If	no	64-bit	.NET
Framework	is
available	on	the	target
machine,	attempting	to
generate	native
images	will	fail.

all
Generate	native
images	for	all
platforms	of	the	.NET
Framework	available
on	the	target	machine.

Priority Enumeration Sets	the	priority	of
generating	the	native
images	for	this	assembly.
This	attribute's	value
should	be	one	of	the
following:
0

This	is	the	highest
priority,	it	means	that
image	generation
occurs	syncronously
during	the	setup
process.	This	option
will	slow	down	setup
performance.

1
This	will	queue	image

	



generation	to	the
NGen	service	to	occur
immediately.	This
option	will	slow	down
setup	performance.

2
This	will	queue	image
generation	to	the
NGen	service	to	occur
after	all	priority	1
assemblies	have
completed.	This	option
will	slow	down	setup
performance.

3
This	is	the	lowest
priority,	it	will	queue
image	generation	to
occur	when	the
machine	is	idle.	This
option	should	not	slow
down	setup
performance.	This	is
the	default	value.

Profile YesNoType Set	to	"yes"	to	generate
native	images	that	can	be
used	under	a	profiler.	The
default	value	is	"no".

	

Remarks
Native	images	are	files	containing	compiled	processor-specific
machine	code,	which	are	installed	into	the	native	image	cache	on	the
local	computer.	The	runtime	can	use	native	images	from	the	cache
instead	using	the	just-in-time	(JIT)	compiler	to	compile	the	original
assembly.

See	Also
Netfx	Schema



Version	2.0.4820.0



Vs	Schema

Copyright	(c)	Microsoft	Corporation.	All	rights	reserved.	The	use	and
distribution	terms	for	this	software	are	covered	by	the	Common	Public
License	1.0	(http://opensource.org/licenses/cpl.php)	which	can	be	found
in	the	file	CPL.TXT	at	the	root	of	this	distribution.	By	using	this	software
in	any	fashion,	you	are	agreeing	to	be	bound	by	the	terms	of	this	license.
You	must	not	remove	this	notice,	or	any	other,	from	this	software.

The	source	code	schema	for	the	Windows	Installer	XML	Toolset	Visual
Studio	Extension.

Target	Namespace
http://schemas.microsoft.com/wix/VSExtension

All	Elements
HelpCollection
HelpCollectionRef
HelpFile
HelpFileRef
HelpFilter
HelpFilterRef
PlugCollectionInto



HelpCollection	Element

Description

Help	Namespace	for	a	help	collection.	The	parent	file	is	the	key	for
the	HxC	(Collection)	file.

Windows	Installer	references
None

Parents
File

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
HelpFileRef	(min:	0,	max:	unbounded)
HelpFilterRef	(min:	0,	max:	unbounded)
PlugCollectionInto	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Primary	Key	for	HelpNamespace. Yes
Description String Friendly	name	for	Namespace. 	
Name String Internal	Microsoft	Help	ID	for	this

Namespace.
Yes

See	Also
Vs	Schema

Version	2.0.4820.0



HelpCollectionRef	Element

Description

Create	a	reference	to	a	HelpCollection	element	in	another	Fragment.

Windows	Installer	references
None

Parents
Fragment,	Product

Inner	Text
None

Children
Choice	of	elements	(min:	0,	max:	unbounded)
HelpFileRef	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Primary	Key	for	HelpNamespace

Table.
Yes

See	Also
Vs	Schema

Version	2.0.4820.0



HelpFile	Element

Description

File	for	Help	Namespace.	The	parent	file	is	the	key	for	HxS	(Title)
file.

Windows	Installer	references
None

Parents
File

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Primary	Key	for	HelpFile	Table. Yes
AttributeIndex String Key	for	HxR	(Attributes)	file. 	
Index String Key	for	HxI	(Index)	file. 	
Language Integer Language	ID	for	content	file. 	
Name String Internal	Microsoft	Help	ID	for

this	HelpFile.
Yes

SampleLocation String Key	for	a	file	that	is	in	the	"root"
of	the	samples	directory	for	this
HelpFile.

	

Search String Key	for	HxQ	(Query)	file. 	

See	Also
Vs	Schema

Version	2.0.4820.0



HelpFileRef	Element

Description

Create	a	reference	to	a	HelpFile	element	in	another	Fragment.

Windows	Installer	references
None

Parents
HelpCollection,	HelpCollectionRef

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Primary	Key	for	HelpFile	Table. Yes

See	Also
Vs	Schema

Version	2.0.4820.0



HelpFilter	Element

Description

Filter	for	Help	Namespace.

Windows	Installer	references
None

Parents
Fragment,	Product

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Primary	Key	for	HelpFilter. Yes
FilterDefinition String Query	String	for	Help	Filter. 	
Name String Friendly	name	for	Filter. Yes

See	Also
Vs	Schema

Version	2.0.4820.0



HelpFilterRef	Element

Description

Create	a	reference	to	a	HelpFile	element	in	another	Fragment.

Windows	Installer	references
None

Parents
HelpCollection

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Primary	Key	for	HelpFilter. Yes

See	Also
Vs	Schema

Version	2.0.4820.0



PlugCollectionInto	Element

Description

Plugin	for	Help	Namespace.

Windows	Installer	references
None

Parents
HelpCollection

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Attributes String Key	for	HxA	(Attributes)

file	of	child	namespace.
	

TableOfContents String Key	for	HxT	file	of	child
namespace.

	

TargetCollection String Foriegn	Key	into
HelpNamespace	table	for
the	parent	namespace
into	which	the	child	will	be
inserted.

Yes

TargetTableOfContents String Key	for	HxT	file	of	parent
namespace	that	now
includes	the	new	child
namespace.

	

See	Also
Vs	Schema

Version	2.0.4820.0



Pubca	Schema

Copyright	(c)	Microsoft	Corporation.	All	rights	reserved.

The	use	and	distribution	terms	for	this	software	are	covered	by	the
Common	Public	License	1.0	(http://opensource.org/licenses/cpl.php)
which	can	be	found	in	the	file	CPL.TXT	at	the	root	of	this	distribution.	By
using	this	software	in	any	fashion,	you	are	agreeing	to	be	bound	by	the
terms	of	this	license.

You	must	not	remove	this	notice,	or	any	other,	from	this	software.

Schema	for	describing	standard	actions	in	the	Windows	Installer.

Root	Elements
ComPlusPartition
MessageQueue

Target	Namespace
http://schemas.microsoft.com/wix/2005/02/pubca

Document	Should	Look	Like
<?xml	version="1.0"?>
<ComPlusPartition
xmlns="http://schemas.microsoft.com/wix/2005/02/pubca">
.
.
.
</ComPlusPartition>
<?xml	version="1.0"?>
<MessageQueue
xmlns="http://schemas.microsoft.com/wix/2005/02/pubca">
.
.
.
</MessageQueue>

All	Elements



ComPlusApplication
ComPlusApplicationRole
ComPlusAssembly
ComPlusAssemblyDependency
ComPlusComponent
ComPlusGroupInApplicationRole
ComPlusGroupInPartitionRole
ComPlusInterface
ComPlusMethod
ComPlusPartition
ComPlusPartitionRole
ComPlusPartitionUser
ComPlusRoleForComponent
ComPlusRoleForInterface
ComPlusRoleForMethod
ComPlusSubscription
ComPlusUserInApplicationRole
ComPlusUserInPartitionRole
MessageQueue
MessageQueuePermission



ComPlusApplication	Element

Description

Defines	a	COM+	application.	If	this	element	is	a	descendent	of	a
Component	element,	the	application	will	be	created	in	association
with	this	component.	If	the	element	is	a	child	of	any	of	the	Fragment,
Module	or	Product	elements	it	is	considered	to	be	a	locater,
referencing	an	existing	application.

If	the	element	is	a	child	of	a	ComPlusPartition	element,	or	have	its
Partition	attribute	set,	the	application	will	be	installed	under	the
referenced	partition.

Windows	Installer	references
None

Parents
ComPlusPartition

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	unbounded)
ComPlusApplicationRole	(min:	0,	max:	unbounded)
ComPlusAssembly	(min:	0,	max:	unbounded)

Attributes

Name Type Description
Id String Identifier	for	the	element.
AccessChecksLevel Enumeration This	attribute's	value

should	be	one	of	the
following:
applicationLevel

applicationComponentLevel



Activation Enumeration This	attribute's	value
should	be	one	of	the
following:
inproc

local

ApplicationAccessChecksEnabled YesNoType 	
ApplicationDirectory String 	
ApplicationId String Id	for	the	application.	This

attribute	can	be	omitted,	in
which	case	an	id	will	be
generated	on	install.	If	the
element	is	a	locater,	this
attribute	can	be	omitted	if	a
value	is	provided	for	the
Name	attribute.

Authentication Enumeration This	attribute's	value
should	be	one	of	the
following:
default

none

connect

call

packet

integrity

privacy

AuthenticationCapability Enumeration This	attribute's	value
should	be	one	of	the
following:
none

secureReference

staticCloaking



dynamicCloaking

Changeable YesNoType 	
CommandLine String 	
ConcurrentApps Int 	
CreatedBy String 	
CRMEnabled YesNoType 	
CRMLogFile String 	
Deleteable YesNoType 	
Description String 	
DumpEnabled YesNoType 	
DumpOnException YesNoType 	
DumpOnFailfast YesNoType 	
DumpPath String 	
EventsEnabled YesNoType 	
Identity String 	
ImpersonationLevel Enumeration This	attribute's	value

should	be	one	of	the
following:
anonymous

identify

impersonate

delegate

IsEnabled YesNoType 	
MaxDumpCount Int 	
Name String Name	of	the	application.

This	attribute	can	be
omitted	if	the	element	is	a
locater,	and	a	value	is
provided	for	the	PartitionId
attribute.

Partition String If	the	element	is	not	a	child
of	a	ComPlusPartition



element,	this	attribute	can
be	provided	with	the	id	of	a
ComPlusPartition	element
representing	the	partition
the	application	belongs	to.

Password String 	
QCAuthenticateMsgs Enumeration This	attribute's	value

should	be	one	of	the
following:
secureApps

off

on

QCListenerMaxThreads Int 	
QueueListenerEnabled YesNoType 	
QueuingEnabled YesNoType 	
RecycleActivationLimit Int 	
RecycleCallLimit Int 	
RecycleExpirationTimeout Int 	
RecycleLifetimeLimit Int 	
RecycleMemoryLimit Int 	
Replicable YesNoType 	
RunForever YesNoType 	
ShutdownAfter Int 	
SoapActivated YesNoType 	
SoapBaseUrl String 	
SoapMailTo String 	
SoapVRoot String 	
SRPEnabled YesNoType 	
SRPTrustLevel Enumeration This	attribute's	value

should	be	one	of	the
following:
disallowed



fullyTrusted

ThreeGigSupportEnabled String 	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusApplicationRole	Element

Description

Defines	an	application	role.	If	this	element	is	a	descendent	of	a
Component	element,	the	application	role	will	be	created	in
association	with	this	component.	If	the	element	is	a	child	of	any	of
the	Fragment,	Module	or	Product	elements	it	is	considered	to	be	a
locater,	referencing	an	existing	application	role.

Windows	Installer	references
None

Parents
ComPlusApplication

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	unbounded)
ComPlusGroupInApplicationRole	(min:	0,	max:	unbounded)
ComPlusUserInApplicationRole	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
Application String If	the	element	is	not	a	child	of	a

ComPlusApplication	element,	this
attribute	should	be	provided	with	the
id	of	a	ComPlusApplication	element
representing	the	application	the	role
belongs	to.

	

Description String 	 	
Name String Name	of	the	application	role. Yes



See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusAssembly	Element

Description

Represents	a	DLL	or	assembly	to	be	registered	with	COM+.	If	this
element	is	a	child	of	a	ComPlusApplication	element,	the	assembly
will	be	registered	in	this	application.	Other	ways	the	Application
attribute	must	be	set	to	an	application.	The	element	must	be	a
descendent	of	a	Component	element,	it	can	not	be	a	child	of	a
ComPlusApplication	locator	element.

Windows	Installer	references
None

Parents
ComPlusApplication

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	unbounded)
ComPlusAssemblyDependency	(min:	0,	max:	unbounded)
ComPlusComponent	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
Application String If	the	element	is	not	a

child	of	a
ComPlusApplication
element,	this	attribute
should	be	provided	with
the	id	of	a
ComPlusApplication
element	representing	the

	



application	the	assembly
is	to	be	registered	in.	This
attribute	can	be	omitted
for	a	.NET	assembly	even
if	the	application	is	not	a
child	of	a
ComPlusApplication
element.

AssemblyName String The	name	of	the
assembly	used	to	identify
the	assembly	in	the	GAC.
This	attribute	can	be
provided	only	if
DllPathFromGAC	is	set	to
“yes”.

	

DllPath String The	path	to	locate	the
assembly	DLL	during
registration.	This	attribute
should	be	provided	if
DllPathFromGAC	is	not
set	to	“yes”.

	

DllPathFromGAC YesNoType Indicates	that	the	DLL
path	should	be	extracted
from	the	GAC	instead	for
being	provided	in	the
DllPath	attribute.	If	this
attribute	is	set	to	“yes”,
the	name	of	the	assembly
can	be	provided	using	the
AssemblyName	attribute.
Or,	if	this	AssemblyName
attribute	is	missing,	the
name	will	be	extracted
from	the
MsiAssemblyName	table
using	the	id	of	the	parent
Component	element.

	

EventClass YesNoType Indicates	that	the 	



assembly	is	to	be
installed	as	an	event
class	DLL.	This	attribute
is	only	valid	for	native
assemblies.	The
assembly	will	be	installed
with	the	COM+	catalog’s
InstallEventClass()
function.

PSDllPath String An	optional	path	to	an
external	proxy/stub	DLL
for	the	assembly.

	

RegisterInCommit YesNoType Indicates	that	the
assembly	should	be
installed	in	the	commit
custom	action	instead	of
the	normal	deferred
custom	action.	This	is
necessary	when	installing
.NET	assemblies	to	the
GAC	in	the	same
installation,	as	the
assemblies	are	not	visible
in	the	GAC	until	after	the
InstallFinalize	action	has
run.

	

TlbPath String An	optional	path	to	an
external	type	lib	for	the
assembly.	This	attribute
must	be	provided	if	the
Type	attribute	is	set	to
“.net”.

	

Type Enumeration This	attribute's	value
should	be	one	of	the
following:
native

.net

Yes



Remarks

When	installing	a	native	assembly,	all	components	contained	in	the
assembly	must	be	represented	as	ComPlusComponent	elements
under	this	element.	Any	component	not	listed	will	not	be	removed
during	uninstall.

The	fields	DllPath,	TlbPath	and	PSDllPath	are	formatted	fields	that
should	contain	file	paths	to	there	respective	file	types.	A	typical	value
for	DllPath	for	example,	should	be	something	like
“[#MyAssembly_dll]”,	where	“MyAssembly_dll”	is	the	key	of	the	dll
file	in	the	File	table.

Warning:	The	assembly	name	provided	in	the	AssemblyName
attribute	must	be	a	fully	specified	assembly	name,	if	a	partial	name	is
provided	a	random	assembly	matching	the	partial	name	will	be
selected.

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusAssemblyDependency	Element

Description

Defines	a	dependency	between	two	assemblies.	This	element
affects	the	order	in	which	assembles	are	registered.	Any	assemblies
referenced	by	this	element	are	guarantied	to	be	registered	before,
and	unregistered	after,	the	assembly	referenced	by	the	parent
ComPlusAssembly	element.

Windows	Installer	references
None

Parents
ComPlusAssembly

Inner	Text
None

Children
None

Attributes

Name Type Description Required
RequiredAssembly String Reference	to	the	id	of	the

assembly	required	by	the
parent	ComPlusAssembly
element.

Yes

Remarks
It	is	only	necessary	to	explicitly	specify	dependencies	between
assemblies	contained	in	the	same	package	(MSI	or	MSM).
Assemblies	merged	in	to	a	package	from	a	merge	module	will
always	be	installed	before	any	assemblies	specified	in	the	base
package.	Assemblies	merged	in	from	different	merge	modules	are
sequenced	using	the	ModuleDependency	MSI	table.	It	is	not
possible	to	have	cross	dependencies	between	merge	modules	or
have	an	assembly	in	a	merge	module	depend	on	an	assembly	in	the



base	package.

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusComponent	Element

Description

Represents	a	COM+	component	in	an	assembly.

Windows	Installer	references
None

Parents
ComPlusAssembly

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	unbounded)
ComPlusInterface	(min:	0,	max:	unbounded)
ComPlusRoleForComponent	(min:	0,	max:	unbounded)
ComPlusSubscription	(min:	0,	max:	unbounded)

Attributes

Name Type Description
Id String Identifier	for	the

element.
AllowInprocSubscribers YesNoType 	
CLSID Uuid CLSID	of	the

component.
ComponentAccessChecksEnabled YesNoType 	
ComponentTransactionTimeout YesNoType 	
ComponentTransactionTimeoutEnabled YesNoType 	
COMTIIntrinsics YesNoType 	
ConstructionEnabled YesNoType 	
ConstructorString String 	



CreationTimeout Int 	
Description String 	
EventTrackingEnabled YesNoType 	
ExceptionClass String 	
FireInParallel YesNoType 	
IISIntrinsics YesNoType 	
InitializesServerApplication YesNoType 	
IsEnabled YesNoType 	
IsPrivateComponent YesNoType 	
JustInTimeActivation YesNoType 	
LoadBalancingSupported YesNoType 	
MaxPoolSize Int 	
MinPoolSize Int 	
MultiInterfacePublisherFilterCLSID String 	
MustRunInClientContext YesNoType 	
MustRunInDefaultContext YesNoType 	
ObjectPoolingEnabled YesNoType 	
PublisherID String 	
SoapAssemblyName String 	
SoapTypeName String 	
Synchronization Enumeration This	attribute's

value	should	be
one	of	the
following:
ignored

none

supported

required

requiresNew

Transaction Enumeration This	attribute's
value	should	be



one	of	the
following:
ignored

none

supported

required

requiresNew

TxIsolationLevel Enumeration This	attribute's
value	should	be
one	of	the
following:
any

readUnCommitted

readCommitted

repeatableRead

serializable

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusGroupInApplicationRole
Element

Description

This	element	represents	a	security	group	membership	in	an
application	role.	When	the	parent	component	of	this	element	is
installed,	the	user	will	be	added	to	the	associated	application	role.
This	element	must	be	a	descendent	of	a	Component	element;	it	can
not	be	a	child	of	a	ComPlusApplicationRole	locater	element.	To
reference	a	locater	element	use	the	ApplicationRole	attribute.

Windows	Installer	references
None

Parents
ComPlusApplicationRole

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
ApplicationRole String If	the	element	is	not	a	child	of	a

ComPlusApplicationRole
element,	this	attribute	should	be
provided	with	the	id	of	a
ComPlusApplicationRole	element
representing	the	application	role
the	user	is	to	be	added	to.

	

Group String Foreign	key	into	the	Group	table. Yes

See	Also



Pubca	Schema
Version	2.0.4820.0



ComPlusGroupInPartitionRole	Element

Description

This	element	represents	a	security	group	membership	in	a	partition
role.	When	the	parent	component	of	this	element	is	installed,	the
security	group	will	be	added	to	the	associated	partition	role.

Windows	Installer	references
None

Parents
ComPlusPartitionRole

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
Group String Foreign	key	into	the	Group	table. Yes
PartitionRole String The	id	of	a	ComPlusPartitionRole

element	representing	the	partition
the	user	should	be	added	to.

	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusInterface	Element

Description

Represents	an	interface	for	a	COM+	component.

Windows	Installer	references
None

Parents
ComPlusComponent

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	unbounded)
ComPlusMethod	(min:	0,	max:	unbounded)
ComPlusRoleForInterface	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
Description String 	 	
IID Uuid IID	of	the	interface. Yes
QueuingEnabled YesNoType 	 	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusMethod	Element

Description

Represents	a	method	for	an	interface.

Windows	Installer	references
None

Parents
ComPlusInterface

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 ComPlusRoleForMethod	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
AutoComplete YesNoType 	 	
Description String 	 	
Index Int Dispatch	id	of	the	method.	If

this	attribute	is	not	set	a	value
must	be	provided	for	the	Name
attribute.

	

Name String Name	of	the	method.	If	this
attribute	is	not	set	a	value
must	be	provided	for	the	Index
attribute.

	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusPartition	Element

Description

Defines	a	COM+	partition.	If	this	element	is	a	child	of	a	Component
element,	the	partition	will	be	created	in	association	with	this
component.	If	the	element	is	a	child	of	any	of	the	Fragment,	Module
or	Product	elements	it	is	considered	to	be	a	locater,	referencing	an
existing	partition.

Windows	Installer	references
None

Parents
None

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	unbounded)
ComPlusApplication	(min:	0,	max:	unbounded)
ComPlusPartitionRole	(min:	0,	max:	unbounded)
ComPlusPartitionUser	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
Changeable YesNoType 	 	
Deleteable YesNoType 	 	
Description String 	 	
Name String Name	of	the	partition.	This

attribute	can	be	omitted	if	the
element	is	a	locater,	and	a	value
is	provided	for	the	PartitionId

	



attribute.
PartitionId String Id	for	the	partition.	This	attribute

can	be	omitted,	in	which	case	an
id	will	be	generated	on	install.	If
the	element	is	a	locater,	this
attribute	can	be	omitted	if	a	value
is	provided	for	the	Name
attribute.

	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusPartitionRole	Element

Description

Defines	a	COM+	partition	role.	Partition	roles	can	not	be	created;
this	element	can	only	be	used	as	a	locater	to	reference	an	existing
role.

Windows	Installer	references
None

Parents
ComPlusPartition

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 Choice	of	elements	(min:	0,	max:	unbounded)
ComPlusGroupInPartitionRole	(min:	0,	max:	unbounded)
ComPlusUserInPartitionRole	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
Name String Name	of	the	partition	role. Yes
Partition String The	id	of	a	ComPlusPartition	element

representing	the	partition	the	role
belongs	to.

	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusPartitionUser	Element

Description

Represents	a	default	partition	definition	for	a	user.	When	the	parent
component	of	this	element	is	installed,	the	default	partition	of	the
user	will	be	set	to	the	referenced	partition.

Windows	Installer	references
None

Parents
ComPlusPartition

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
Partition String The	id	of	a	ComPlusPartition	element

representing	the	partition	that	will	be
the	default	partition	for	the	user.

	

User String Foreign	key	into	the	User	table. Yes

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusRoleForComponent	Element

Description

Represents	a	role	assignment	to	a	COM+	component.

Windows	Installer	references
None

Parents
ComPlusComponent

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
ApplicationRole String Id	of	the

ComPlusApplicationRole	element
representing	the	role	that	shall	be
granted	access	to	the
component.

Yes

Component String If	the	element	is	not	a	child	of	a
ComPlusComponent	element,
this	attribute	should	be	provided
with	the	id	of	a
ComPlusComponent	element
representing	the	component	the
role	is	to	be	added	to.

	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusRoleForInterface	Element

Description

Represents	a	role	assignment	to	an	interface.

Windows	Installer	references
None

Parents
ComPlusInterface

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
ApplicationRole String Id	of	the

ComPlusApplicationRole	element
representing	the	role	that	shall	be
granted	access	to	the	interface.

Yes

Interface String If	the	element	is	not	a	child	of	a
ComPlusInterface	element,	this
attribute	should	be	provided	with
the	id	of	a	ComPlusInterface
element	representing	the
interface	the	role	is	to	be	added
to.

	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusRoleForMethod	Element

Description

Represents	a	role	assignment	to	a	COM+	method.

Windows	Installer	references
None

Parents
ComPlusMethod

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
ApplicationRole String Id	of	the

ComPlusApplicationRole	element
representing	the	role	that	shall	be
granted	access	to	the	method.

Yes

Method String If	the	element	is	not	a	child	of	a
ComPlusMethod	element,	this
attribute	should	be	provided	with
the	id	of	a	ComPlusMethod
element	representing	the	method
the	role	is	to	be	added	to.

	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusSubscription	Element

Description

Defines	an	event	subscription	for	a	COM+	component.

Windows	Installer	references
None

Parents
ComPlusComponent

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the

element.
Yes

Component String If	the	element	is	not	a
child	of	a
ComPlusComponent
element,	this	attribute
should	be	provided
with	the	id	of	a
ComPlusComponent
element	representing
the	component	the
subscription	is	to	be
created	for.

	

Description String 	 	
Enabled YesNoType 	 	
EventClassPartitionID String 	 	
EventCLSID String CLSID	of	the	event 	



class	for	the
subscription.	If	a	value
for	this	attribute	is	not
provided,	a	value	for
the	PublisherID
attribute	must	be
provided.

FilterCriteria String 	 	
InterfaceID String 	 	
MachineName String 	 	
MethodName String 	 	
Name String Name	of	the

subscription.
Yes

PerUser YesNoType 	 	
PublisherID String Publisher	id	for	the

subscription.	If	a	value
for	this	attribute	is	not
provided,	a	value	for
the	EventCLSID
attribute	must	be
provided.

	

Queued YesNoType 	 	
SubscriberMoniker String 	 	
SubscriptionId String Id	of	the	subscription.	If

a	value	is	not	provided
for	this	attribute,	an	id
will	be	generated
during	installation.

	

UserName String 	 	

See	Also
Pubca	Schema

Version	2.0.4820.0



ComPlusUserInApplicationRole
Element

Description

This	element	represents	a	user	membership	in	an	application	role.
When	the	parent	component	of	this	element	is	installed,	the	user	will
be	added	to	the	associated	application	role.	This	element	must	be	a
descendent	of	a	Component	element;	it	can	not	be	a	child	of	a
ComPlusApplicationRole	locater	element.	To	reference	a	locater
element	use	the	ApplicationRole	attribute.

Windows	Installer	references
None

Parents
ComPlusApplicationRole

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
ApplicationRole String If	the	element	is	not	a	child	of	a

ComPlusApplicationRole
element,	this	attribute	should	be
provided	with	the	id	of	a
ComPlusApplicationRole	element
representing	the	application	role
the	user	is	to	be	added	to.

	

User String Foreign	key	into	the	User	table. Yes

See	Also



Pubca	Schema
Version	2.0.4820.0



ComPlusUserInPartitionRole	Element

Description

This	element	represents	a	user	membership	in	a	partition	role.	When
the	parent	component	of	this	element	is	installed,	the	user	will	be
added	to	the	associated	partition	role.

Windows	Installer	references
None

Parents
ComPlusPartitionRole

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String Identifier	for	the	element. Yes
PartitionRole String The	id	of	a	ComPlusPartitionRole

element	representing	the	partition
the	user	should	be	added	to.

	

User String Foreign	key	into	the	User	table. Yes

See	Also
Pubca	Schema

Version	2.0.4820.0



MessageQueue	Element

Description

None

Windows	Installer	references
None

Parents
None

Inner	Text
None

Children
Sequence	(min:	1,	max:	1)

1.	 MessageQueuePermission	(min:	0,	max:	unbounded)

Attributes

Name Type Description Required
Id String 	 Yes
Authenticate YesNoType Default:	No. 	
BasePriority Integer 	 	
Component String 	 	
Journal YesNoType Default:	No. 	
JournalQuota Integer 	 	
Label String 	 Yes
MulticastAddress String 	 	
PathName String 	 Yes
PrivLevel Enumeration This	attribute's	value

should	be	one	of	the
following:
none

body

	



optional

Quota Integer 	 	
ServiceTypeGuid String 	 	
Transactional YesNoType Default:	No. 	

See	Also
Pubca	Schema

Version	2.0.4820.0



MessageQueuePermission	Element

Description

None

Windows	Installer	references
None

Parents
MessageQueue

Inner	Text
None

Children
None

Attributes

Name Type Description Required
Id String 	 Yes
ChangeQueuePermissions YesNoType 	 	
DeleteJournalMessage YesNoType 	 	
DeleteMessage YesNoType 	 	
DeleteQueue YesNoType 	 	
GetQueuePermissions YesNoType 	 	
GetQueueProperties YesNoType 	 	
Group String 	 	
MessageQueue String 	 	
PeekMessage YesNoType 	 	
QueueGenericAll YesNoType 	 	
QueueGenericExecute YesNoType 	 	
QueueGenericRead YesNoType 	 	
QueueGenericWrite YesNoType 	 	
ReceiveJournalMessage YesNoType 	 	



ReceiveMessage YesNoType 	 	
SetQueueProperties YesNoType 	 	
TakeQueueOwnership YesNoType 	 	
User String 	 	
WriteMessage YesNoType 	 	

See	Also
Pubca	Schema

Version	2.0.4820.0



Tools
Preprocessor
Compiler	(candle)
Linker	(light)
Decompiler	(dark)



Preprocessor

Introduction
Often	you	will	need	to	add	different	pieces	of	your	setup	during	build	time
depending	on	many	factors	such	as	the	SKU	being	built.	This	is	done	by
using	conditional	statements	that	will	filter	the	xml	before	it	is	sent	to	the
WiX	compiler	(candle).	If	the	statement	evaluates	to	true,	the	block	of	xml
will	be	sent	to	candle.	If	the	statement	evaluates	to	false,	candle	will
never	see	that	section	of	xml.

The	conditional	statements	are	Boolean	expressions	based	on
environment	variables,	variables	defined	in	the	xml,	literal	values,	and
more.

Example

Let’s	start	with	an	example.	Say	you	want	to	include	a	file	if	you’re
building	the	“Enterprise	SKU.”	Your	build	uses	an	environment	variable
%MySku%=Enterprise	to	specify	this	sku.

When	you	build	the	enterprise	sku,	this	file	will	be	included	in	the	xml
passed	on	to	candle.	When	you	build	a	different	sku,	the	xml	from
EnterpriseFeature.wxs	will	be	ignored.

<?if	$(env.MySku)	=	Enterprise	?>

		<?include	EnterpriseFeature.wxs	?>

<?endif	?>



Include	Files	<?include?>
As	shown	in	the	example	above,	files	can	be	included	by	using	the
include	tag.	The	filename	referenced	in	the	tag	will	be	processed	as	if	it
were	part	of	this	file.

The	root	element	of	the	include	file	must	be	<Include>.	There	are	no
other	requirements	beyond	the	expected	wix	schema.	For	example,

<Include>

			<Feature	Id='MyFeature'	Title='My	1st	Feature'	Level='1'>

						<ComponentRef	Id='MyComponent'	/>

			</Feature>

</Include>



Variables
Any	variable	can	be	tested	for	its	value	or	simply	its	existence.	Custom
variables	can	also	be	defined	in	your	xml.

Three	types	of	variables	are	supported:

$(env._NtPostBld)
Gets	the	environment	variable	%_NtPostBld%

$(sys.CurrentDir)
Gets	the	system	variable	for	the	current	directory

$(var.A)
Gets	the	variable	A	that	was	defined	in	this	xml

The	preprocessor	evaluates	variables	throughout	the	entire	document,
including	in	<?if?>	expressions	and	attribute	values.

Environment	Variables

Any	environment	variable	can	be	referenced	with	the	syntax
$(env.VarName).	For	example,	if	you	want	to	retrieve	the	environment
variable	%_BuildArch%,	you	would	use	$(env._BuildArch).	Environment
variable	names	are	case-insensitive.

System	Variables

WiX	has	some	built-in	variables.	They	are	referenced	with	the	syntax
$(sys.VARNAME)	and	are	always	in	upper	case.

CURRENTDIR	-	the	current	directory	where	the	build	process	is	running
SOURCEFILEPATH	–	the	full	path	to	the	file	being	processed
SOURCEFILEDIR	–	the	directory	containing	the	file	being	processed
NOTE:	All	built-in	directory	variables	are	“\”	terminated.

Custom	variables	<?	define	?>

If	you	want	to	define	custom	variables,	you	need	to	use	the	<?define?>



statement.	Later,	the	variables	are	referred	to	in	the	<?if?>	statements
with	the	syntax	$(var.VarName).	Variable	names	are	case-sensitive.

How	to	define	the	existence	of	a	variable:
<?define	MyVariable	?>

How	to	define	the	value	of	a	variable	(Quotes	are	only	required	if	it
contains	spaces):
<?define	MyVariable	=	“Hello	World”	?>

The	right	side	of	the	definition	can	also	refer	to	another	variable:
<?define	MyVariable	=	$(var.BuildPath)\x86\bin\	?>

How	to	undefine	a	variable:
<?undef	MyVariable	?>



Conditional	Statements
There	are	several	conditional	statements,	they	include:
<?if	?>
<?ifdef	?>
<?ifndef	?>
<?else?>
<?elseif	?>
<?endif?>

The	purpose	of	the	conditional	statement	is	to	allow	you	to	include	or
exclude	a	segment	of	xml	at	build	time.	If	the	expression	evaluates	to
true,	it	will	be	included.	If	it	evaluates	to	false,	it	will	be	ignored.

The	conditional	statements	always	begin	with	either	the	<?if	?>,	<?ifdef	?
>,	or	<?ifndef	?>	tags.	They	are	followed	by	an	xml	block,	an	optional	<?
else?>	or	<?elseif	?>	tag,	and	must	end	with	an	<?endif?>	tag.

Expressions	(used	in	<?if	?>	and	<?elseif	?>)

For	example:	<?if	[expression]?>

The	expression	found	inside	the	<?if	?>	and	<?elseif	?>	tags	is	a
Boolean	expression.	It	adheres	to	a	simple	grammar	that	follows	these
rules:

The	expression	is	evaluated	left	to	right
Expressions	are	case-sensitive	with	the	following	exceptions:

Environmental	variable	names
These	keywords:	and,	or,	not

All	variables	must	use	the	$()	syntax	or	else	they	will	be	considered	a
literal	value.
If	you	want	to	use	a	literal	$(,	escape	the	dollar	sign	with	a	second	one.
For	example,	$$(
Variables	can	be	used	to	check	for	existence
Variables	can	be	compared	to	a	literal	or	another	variable



Comparisons	with	=	and	!=	are	string	comparisons.
Comparisons	with	inequality	operators	(<,	<=,	>,	>=)	must	be	done
on	integers.
If	the	variable	doesn't	exist,	evaluation	will	fail	and	an	error	will	be
raised.

The	operator	precedence	is	as	follows.	Note	that	“and”	and	“or”	have	the
same	precedence:

""
(),	$(	)
<,	>,	<=,	>=,	=,	!=
Not
And,	Or

Nested	parenthesis	are	allowed.
Literals	can	be	surrounded	by	quotes,	although	quotes	are	not	required.
Quotes,	leading,	and	trailing	white	space	are	stripped	off	literal	values.
Invalid	expressions	will	cause	an	exception	to	be	thrown.

Variables	(used	in	<ifdef	?>	and	<ifndef	?>)

For	example:	<?ifdef	[variable]	?>

For	<ifdef	?>,	if	the	variable	has	been	defined,	this	statement	will	be	true.
<ifndef	?>	works	in	the	exact	opposite	way.

More	Examples
Note	that	these	examples	will	actually	each	be	a	no-op	because	there
aren’t	any	tags	between	the	if	and	endif	tags.

			<?define	myValue		=	"3"?>

			<?define	system32=$(env.windir)\system32		?>

			<?define	B	=	"good	var"	?>

			<?define	C	=3	?>

			<?define	IExist	?>

	

			<?if	$(var.Iexist)							?><?endif?>	<!--	true	-->

			<?if	$(var.myValue)	=	6		?><?endif?>	<!--	false	-->

			<?if	$(var.myValue)!=3			?><?endif?>	<!--	false	-->

			<?if	not	"x"=	"y"?>														<?endif?>	<!--	true	-->

			<?if	$(env.systemdrive)=a?><?endif?>	<!--	false	-->

			<?if	3	<	$(var.myValue)?>			<?endif?>	<!--	false	-->



			<?if	$(var.B)	=	"good	VAR"?>	<?endif?>	<!--	false	-->

			<?if	$(var.A)	and	not	$(env.MyEnvVariable)						?>	<?endif?>	<!--	false	-->

			<?if	$(var.A)	Or	($(var.B)	And	$(var.myValue)	>=3)?><?endif?>	<!--	true	-->

			<?ifdef	IExist	?>	<!--	true	-->

					<?else?>	<!--	false	-->

			<?endif?>



Iteration	Statements
There	is	a	single	iteration	statement,	<?foreach	variable-name	in	semi-
colon-delimited-list	?>	<?endforeach?>.		When	this	occurs	the
preprocessor	will
create	a	private	copy	of	the	variable	context
set	the	variable	in	the	foreach	statement	to	an	iteration	on	the	semicolon
delimited	list
generate	a	fragment	with	the	variable	substituted
The	affect	of	this	process	is	that	the	fragment	authored	is	just	template
forwhich	the	preprocessor	will	do	the	iteration	to	generate	the	literal	of
fragments.	WiX	natively	only	supports	using	LCID	as	a	variable	name	in
the	?foreach	statement	however,	one	can	use	the	preprocessor
extensions	(more	below)	to	provide	custom	support.		The	variable	name
in	the	?foreach	statement	can	be	proceeded	with	a	"var.".		When	the
variable	is	used	in	the	fragment,	it	must	be	proceeded	with	a	"var."

An	few	examples:

<?foreach	LCID	in	"1033;1041;1055"?>

	 <Fragment	Id='Fragment.$(var.LCID)'>

	 	 <DirectoryRef	Id='TARGETDIR'>

	 	 	 <Component	Id='MyComponent.$(var.LCID)'	/>

	 	 </DirectoryRef>

	 </Fragment>

<?endforeach?>

or

<?define	LcidList=1033;1041;1055?>

<?foreach	LCID	in	$(var.LcidList)?>

	 <Fragment	Id='Fragment.$(var.LCID)'>

	 	 <DirectoryRef	Id='TARGETDIR'>

	 	 	 <Component	Id='MyComponent.$(var.LCID)'	/>

	 	 </DirectoryRef>

	 </Fragment>

<?endforeach?>

or



filename:	ExtentOfLocalization.wxi

<Include>

	 <?define	LcidList=1033;1041;1055?>

</Include>

and

<?include	ExtentOfLocalization.wxi	?>

<?foreach	LCID	in	$(var.LcidList)?>

	 <Fragment	Id='Fragment.$(var.LCID)'>

	 	 <DirectoryRef	Id='TARGETDIR'>

	 	 	 <Component	Id='MyComponent.$(var.LCID)'	/>

	 	 </DirectoryRef>

	 </Fragment>

<?endforeach?>

An	alternative	to	the	foreach	process	would	be	to	write	the	template	WiX
fragment	into	a	separate	file	and	have	another	process	generate	the
authoring	that	will	be	passed	to	WiX.	The	greatest	merit	of	this	alternative
is	that	it's	easier	to	debug.



Extensions
WiX	has	support	for	preprocessor	extensions	via	the
PreprocessorExtension	class.	The	PreprocessorExtension	can	provide
callbacks	with	context	at	foreach	initialization,	variable	evaluation,	and
the	last	call	before	invoking	the	compiler	(for	full	custom	preprocessing).
See	the	preprocessor.cs	source	file	and	the	preprocessorextension.cs
source	file	for	more	information.



Compiler	(candle)
The	Windows	Installer	XML	compiler	is	exposed	by	candle.exe.	candle	is
responsible	for	preprocessing	the	input	.wxs	files	into	valid	well-formed
XML	documents	against	the	WiX	schema,	wix.xsd.	Then,	each	post-
processed	source	file	is	compiled	into	a	.wixobj	file.

The	compilation	process	is	relatively	straight	forward.	The	WiX	schema
lends	itself	to	a	simple	recursive	descent	parser.	The	compiler	processes
each	element	in	turn	creating	new	symbols,	calculating	the	necessary
references	and	generating	the	raw	data	for	the	.wixobj	file.

The	second	version	of	candle	is	not	significantly	different	from	the	first
implementation.	Any	changes	were	either	made	to	enable	the	new
symbol/reference	linking	or	based	on	feedback	from	customers.	Some	of
the	differences	between	versions	include:	the	new	object	file	format	is
XML	instead	of	MSI,	modularization	of	primary	keys	now	happens	at	link
time,	and	binary	streams	are	imported	at	link	time.



Linker	(light)
The	Windows	Installer	XML	linker	is	exposed	by	light.exe.	light	is
responsible	for	processing	one	or	more	.wixobj	files,	retrieving	metadata
from	various	external	files	and	creating	a	Windows	Installer	database
(MSI	or	MSM).	When	necessary,	light	will	also	create	cabinets	and
embed	streams	in	the	created	Windows	Installer	database.

The	linker	begins	by	searching	the	set	of	object	files	provided	on	the
command	line	to	find	the	entry	section.	If	more	than	one	entry	section	is
found,	light	fails	with	an	error.	This	failure	is	necessary	because	the	entry
section	defines	what	type	of	Windows	Installer	database	is	being	created,
a	MSI	(<Product/>)	or	MSM	(</Module/>).	It	is	not	possible	to	create	two
databases	from	a	single	link	operation.

While	the	linker	was	determining	the	entry	section,	the	symbols	defined	in
each	object	file	are	stored	in	a	symbol	table.	After	the	entry	section	is
found,	the	linker	attempts	to	resolve	all	of	the	references	in	the	section	by
finding	symbols	in	the	symbol	table.	When	a	symbol	is	found	in	a	different
section,	the	linker	recursively	attempts	to	resolve	references	in	the	new
section.	This	process	of	gathering	the	sections	necessary	to	resolve	all	of
the	references	continues	until	all	references	are	satisfied.	If	a	symbol
cannot	be	found	in	any	of	the	provided	object	files,	the	linker	aborts
processing	with	an	error	indicating	the	undefined	symbol.

After	all	of	the	sections	have	been	found,	complex	and	reverse
references	are	processed.	This	processing	is	where	Components	and
Merge	Modules	are	hooked	to	their	parent	Features	or,	in	the	case	of
Merge	Modules,	Components	are	added	to	the	ModuleComponents
table.	The	reverse	reference	processing	adds	the	appropriate	Feature
identifier	to	the	necessary	fields	for	elements	like,	Shortcut,	Class,	and
TypeLib.

Once	all	of	the	references	are	resolved,	the	linker	processes	all	of	the
rows	retrieving	the	language,	version,	and	hash	for	referenced	files,
calculating	the	media	layout,	and	including	the	necessary	standard
actions	to	ensure	a	successful	installation	sequence.	This	part	of	the
processing	typically	ends	up	generating	additional	rows	that	get	added
associated	with	the	entry	section	to	ensure	they	are	included	in	the	final
Windows	Installer	database.



Finally,	light	works	through	the	mechanics	of	generating	IDT	files	and
importing	them	into	the	Windows	Installer	database.	After	the	database	is
fully	created,	the	final	post	processing	is	done	to	merge	in	any	Merge
Modules	and	create	a	cabinet	if	necessary.	The	result	is	a	fully	functional
Windows	Installer	database.



Dark
Dark	is	a	tool	for	converting	an	MSI	or	MSM	file	into	a	WiX	source	file.
This	tool	is	very	useful	for	getting	all	your	authoring	into	a	WiX	source	file
when	you	have	an	existing	MSI	or	MSM.	However,	you	will	then	need	to
tweak	this	file	to	accomodate	different	languages	and	breaking	things	into
fragments.



Visual	Studio	Package	(Votive)
Votive	is	the	code	name	for	the	WiX	Visual	Studio	package	that	allows
you	to	easily	create	WiX	projects,	edit	WiX	files	using	IntelliSense,	and
compile/link	your	project.



Installation
To	install	the	package	you	must	run	Votive.msi,	which	comes	bundled
with	the	WiX	binaries	and	gets	built	as	part	of	the	WiX	source.

If	you	have	the	VSIP	SDK	installed,	you	can	build	the	the	debug	version
of	Votive.msi,	which	will	install	Votive	into	the	Experimental	Hive	of	Visual
Studio.	This	will	allow	your	retail	version	of	Visual	Studio	to	continue	to
work	as	before	(see	the	"Developing	for	Votive"	topic	for	an	explanation
of	the	experimental	hive).



Developing	for	Votive
If	you	want	to	contribute	code	to	the	Votive	project	or	debug	Votive,	you
must	download	and	install	the	VSIP	SDK,	available	at
http://www.vsipdev.com/downloads/.	You	will	need	the	VSIP	SDK	2003
and	the	VSIP	SDK	2003	Extras,	installed	in	that	order.	The	SDK	is	fairly
non-invasive	and	will	create	an	"Experimental	Hive"	in	the	registry	that
will	keep	your	retail	version	of	Visual	Studio	2003	unaffected.

To	start	debugging	Votive,	set	your	breakpoints	then	just	hit	"F5"	in	the
Wix.sln	for	Visual	Studio.	The	custom	build	actions	in	the	Votive	project
will	set	up	and	register	Votive	on	the	experimental	hive,	so	running	the
Votive.msi	is	not	required,	nor	suggested.

http://www.vsipdev.com/downloads/


Getting	Started
Rob	Mensching	has	written	an	excellent	MSDN	article	on	using	Votive	to
get	started	in	WiX.

http://msdn.microsoft.com/smartclient/default.aspx?pull=/library/en-us/dnwingen/html/wixsetup.asp


WiX	Files
All	input	files	and	intermediate	files	for	WiX	are	xml	files.	Output	is	in	the
form	of	standard	Windows	Installer	database	files.

Source	files	(.wxs	and	.wxi)	are	compiled,	producing	object	files	(.wixobj).
These	objects	files	are	then	consumed	by	the	linker	which	produces
Windows	Installer	database	files	(.msi	or	.msm).	This	is	analogous	to	the
C++	model	of	compiling	source	code	to	object	files,	then	linking	to
produce	executables.

Input	Files
Include	Files	(.wxs)
Source	Files	(.wxs)
Intermediate	Files
Object	Files	(.wixobj)
Output	Files
Installer	Database	(.msi)
Merge	Module	(.msm)



Include	Files	(.wxi)
A	.wxi	file	is	analogous	to	.h	files	for	C++.	The	root	element	of	this	file	is
<Include/>.	Everything	under	the	root	element	will	be	inserted	when	this
file	is	included	in	another	source	or	include	file.



Source	Files	(.wxs)
All	.wxs	files	are	well-formed	XML	documents	that	contain	a	single	root
element	named	<Wix/>.	The	rest	of	the	source	file	may	or	may	not
adhere	to	the	WiX	schema	before	preprocessing.	However,	after	being
preprocessed	all	source	files	must	conform	to	the	WiX	schema	or	they
will	fail	to	compile.

The	root	<Wix/>	element	can	contain	at	most	one	of	the	following	two
elements	as	children:	<Product/>,	<Module/>.	However,	there	can	be	an
unbounded	number	<Fragment/>	elements	as	children	of	the	root	<Wix/>
element.	When	a	source	file	is	compiled	into	an	object	file,	each	instance
of	these	elements	creates	a	new	section	in	the	object	file.	Therefore,
these	three	elements	are	often	referred	to	as	section	elements.

It	is	important	to	note,	that	there	can	be	only	one	<Product/>	or
<Module/>	section	element	per	source	file	because	they	are	compiled
into	special	sections	called	entry	sections.	Entry	sections	are	used	as
starting	points	in	the	linking	process.	Sections,	entry	sections,	and	the
entire	linking	process	are	described	in	greater	detail	later	in	this
document.

The	children	of	the	section	elements	define	the	contents	of	the	Windows
Installer	database.	You’ll	recognize	<Property/>	elements	that	map	to
entries	in	the	Property	table	and	a	hierarchy	of	<Directory/>	elements	that
build	up	the	Directory	table.	Most	elements	contain	an	“Id”	attribute	that
will	act	as	the	primary	key	for	the	resulting	row	in	the	Windows	Installer
database.	Note,	in	the	first	release	of	the	WiX	schema	the	primary	key
was	represented	by	the	text	of	the	element.	This	location	for	the	primary
key	was	undesirable	for	several	reasons	and	has	been	moved	to	the	“Id”
attribute.	In	most	cases,	the	“Id”	attribute	also	defines	a	symbol	when	the
source	file	is	compiled	into	an	object	file.



Object	Files	(.wixobj)
A	.wixobj	file	is	created	by	the	compiler	for	each	source	file	compiled.	The
.wixobj	file	is	an	XML	document	that	follows	the	objects.xsd	schema
defined	in	the	WiX	project.	As	stated	above	the	.wixobj	file	contains	one
or	more	sections	that,	in	turn,	contain	symbols	and	references	to	other
symbols.

While	the	symbols	and	references	are	arguably	the	most	important
pieces	of	data	in	the	.wixobj	file,	they	are	rarely	the	bulk	of	the
information.	Instead,	the	majority	of	most	.wixobj	files	are	composed	of	,
and	elements	that	provide	the	raw	data	to	be	placed	in	the	Windows
Installer	database.	In	many	cases,	the	linker	will	not	only	process	the
symbols	and	references	but	also	use	and	update	the	raw	data	from	the
.wixobj	file.

It	is	interesting	to	note	that	the	object	file	schema,	objects.xsd,	uses
camel	casing	where	the	source	file	schema,	wix.xsd,	uses	Pascal	casing.
This	was	a	conscious	choice	to	indicate	that	the	object	files	are	not
intended	to	be	edited	by	the	user.	In	fact,	all	schemas	that	defines	data	to
be	processed	only	by	the	WiX	tools	use	camel	casing.



Windows	Installer	Installation	Packages
The	installation	package	file	(.msi)	is	the	basis	for	vehicle	for	delivering
setup	logic	to	the	Windows	Installer.	For	more	information	on	msi	files,
please	see	the	Windows	Installer	help	file	(msi.chm)	or	visit	online	at
MSDN.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/windows_installer_start_page.asp


Windows	Installer	Merge	Modules
The	merge	module	file	(.msm)	is	used	for	sharing	setup	logic	amongst
different	groups.	Basically,	a	merge	module	can	be	created	by	one	group,
then	merged	into	another	group's	installation	package.	For	more
information	on	msi	files,	please	see	the	Windows	Installer	help	file
(msi.chm)	or	visit	online	at	MSDN.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/windows_installer_start_page.asp


Building	WiX
Simply	run	"make.bat"	in	the	root	of	the	WiX	project.	This	will	build	into	a
release\debug	directory	by	default.	Specifying	"make.bat	ship"	will	create
ship	binaries	in	release\ship.	If	you	installed	VS.NET	to	a	non	standard
directory,	specify	"make.bat	debug	fullpathto\devenv.com"	to	build.

In	order	to	fully	build	WiX,	you	must	have	the	following	Frameworks	and
SDKs	installed:

NAnt	version	0.85	rc3	or	higher
.NET	Framework	1.1	and	SDK
.NET	Framework	2.0	(SDK	is	optional)
PlatformSDK	(version	3790.1830	or	higher)

Core	SDK
Web	Workshop	(IE)	SDK
Internet	Information	Server	(IIS)	SDK
Microsoft	Data	Access	Services	(MDAC)	SDK
Microsoft	Windows	Installer	SDK

One	of	the	following	Visual	Studio	2005	Editions:
Visual	C++	Express	Edition
Professional	or	higher	with	Visual	C++	installed

HTML	Help	SDK	1.4	or	higher

To	build	Sconce	and	Votive,	you	must	have	the	following	SDKs	installed:

Visual	Studio	Partner	Integration	Program	(VSIP)	SDK	2003
VSIP	SDK	2003	Extras
Both	are	available	at
http://msdn.microsoft.com/vstudio/partners/default.aspx

To	install	Votive	on	Visual	Studio	2005,	you	must	have	the	Standard
edition	or	higher.

To	successfully	build	the	WiX	MSBuild	tasks,	you	need	to	modify
NAnt.exe.config	file	to	support	the	release	version	of	the	.NET
Framework	(instead	of	the	beta	1	release	supported	in	NAnt	0.85	rc3).
Make	a	backup	copy	of	Nant.exe.config	and	search	for	the	following

http://msdn.microsoft.com/vstudio/partners/default.aspx


<framework>	element:

<framework

		name="net-2.0"

		...

Replace	it	with	the	following	element:

<framework	

		name="net-2.0"	

		family="net"	

		version="2.0"	

		description="Microsoft	.NET	Framework	2.0"	

		runtimeengine=""

		sdkdirectory="${path::combine(sdkInstallRoot,	'bin')}"	

		frameworkdirectory="${path::combine(installRoot,	'v2.0.50727')}"	

		frameworkassemblydirectory="${path::combine(installRoot,	'v2.0.50727')}"

		clrversion="2.0.50727"

>



Blogs

Rob	Mensching's	"when	setup	isn't	just	xcopy"
Rob	Mensching	is	the	"benevolent	dictator"	for	the	Windows	Installer
XML	toolset.	He	maintains	a	blog	called	"when	setup	isn't	just	xcopy".
Selected	blog	entries	are	reprinted	here	with	his	permission.

http://blogs.msdn.com/robmen


Rob	Mensching's	"when	setup	isn't	just
xcopy"
Rob	Mensching	is	the	"benevolent	dictator"	for	the	Windows	Installer
XML	toolset.	He	maintains	a	blog	called	"when	setup	isn't	just	xcopy".
Selected	blog	entries	are	reprinted	here	with	his	permission.

2004/04/05	-	Windows	Installer	XML	(WiX)	toolset	has	released	as	Open
Source	on	SourceForge.net.
2004/04/14	-	So	you	want	to	be	a	Windows	Installer	XML	developer?
2004/05/11	-	Sections,	Symbols	and	References	in	the	Windows	Installer
XML	(WiX)	toolset.
2004/05/16	-	My	philsophical	musings	about	building	setup	for	software.
2004/05/20	-	VBScript	(and	Jscript)	MSI	CustomActions	suck.
2004/11/22	-	Localization	and	your	MSI	file.
2004/11/30	-	Creating	localized	MSI	files	using	WiX	toolset	and	.wxl	files.

http://blogs.msdn.com/robmen


Windows	Installer	XML	(WiX)	toolset	has
released	as	Open	Source	on
SourceForge.net
The	Windows	Installer	Xml	(WiX)	toolset	(pronounced	“wicks	toolset”)
appears	to	have	finished	propagating	around	the	SourceForge.net	CVS
servers,	so	I	can	finally	start	writing	this	blog	entry.		As	promised	in	my
blog	here,	here,	here,	here,	and	here	the	WiX	toolset	and	all	of	its	source
code	has	been	released	so	that	you	can	build	Windows	Installer
databases	(MSI	and	MSM	files)	the	same	way	most	groups	inside
Microsoft	do.		However,	a	funny	thing	happened	on	the	way	to	the	forum.	
WiX	became	the	first	project	from	Microsoft	to	be	released	under	an	OSS
approved	license,	namely	the	Common	Public	License.

Before	everyone	gets	sidetracked	by	the	Open	Source	implications,	let’s
talk	about	exactly	what	WiX	is.		WiX	is	a	toolset	composed	of	a	compiler,
a	linker,	a	lib	tool	and	a	decompiler.		The	compiler,	called	candle,	is	used
to	compile	XML	source	code	into	object	files	that	contain	symbols	and
references	to	symbols.		The	linker,	called	light,	is	fed	one	or	more	object
files	and	links	the	references	in	the	object	files	to	the	appropriate	symbols
in	other	object	files.		Light	is	also	responsible	for	collecting	all	of	the
binaries,	packaging	them	appropriately,	and	generating	the	final	MSI	or
MSM	file.		The	lib	tool,	called	lit,	is	an	optional	tool	that	can	be	used	to
combine	multiple	object	files	into	libraries	that	can	be	consumed	by	light.	
Finally,	the	decompiler,	called	dark,	can	take	existing	MSI	and	MSM	files
and	generate	XML	source	code	that	represents	the	package.

So,	let	me	step	through	a	real	quick	example	before	sending	you	off	to
the	SourceForge	project	to	get	the	binaries	and	source	code.		First,	the
below	is	a	complete	source	file	that	will	create	a	MSI	file	that	installs	a
test	.NET	Assembly	into	the	“Program	Files\Test	Assembly”	directory.

<?xml	version='1.0'?>

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Product	Id='000C1109-0000-0000-C000-000000000046'	Name='TestAssemblyProduct'	Language='1033'	Version='0.0.0.0'	Manufacturer='Microsoft	Corporation'>

						<Package	Id='000C1109-0000-0000-C000-000000000046'	Description='Test	Assembly	in	a	Product'	Comments='Test	from:	wix\examples\test\assembly\product.wxs'	InstallerVersion='200'	Compressed='yes'	/>

						<Media	Id='1'	Cabinet='product.cab'	EmbedCab='yes'	/>

http://blogs.msdn.com/robmen/archive/2004/04/05/107709.aspx
http://sourceforge.net/projects/wix
http://sourceforge.net/
http://blogs.msdn.com/robmen/archive/2003/12/23/56517.aspx
http://blogs.msdn.com/robmen/archive/2004/02/03/66535.aspx
http://blogs.msdn.com/robmen/archive/2004/02/05/68303.aspx
http://blogs.msdn.com/robmen/archive/2004/03/06/85072.aspx
http://blogs.msdn.com/robmen/archive/2004/03/16/90307.aspx
http://www.microsoft.com/
http://www.imdb.com/Title?0060438
http://www.gotdotnet.com/
http://opensource.org/licenses/
http://opensource.org/licenses/cpl.php
http://sourceforge.net/projects/wix


						<Directory	Id='TARGETDIR'	Name='SourceDir'>

									<Directory	Id='ProgramFilesFolder'	Name='PFiles'>

												<Directory	Id='TestAssemblyProductDirectory'	Name='testassm'	LongName='Test	Assembly'>

															<Component	Id='TestAssemblyProductComponent'	Guid='00030829-0000-0000-C000-000000000046'>

																		<File	Id='TestAssemblyProductFile'	Name='assembly.dll'	essembly='.net'	KeyPath='yes'	DiskId='1'	src='$(env.WIX)\examples\data\assembly.dll'/>

															</Component>

												</Directory>

									</Directory>

						</Directory>

						<Feature	Id='TestAssemblyProductFeature'	Title='Test	"ssembly	Product	Feature'	Level='1'>

									<ComponentRef	Id='TestAssemblyProductComponent'	/>

						</Feature>

			</Product>

</Wix>

Now,	to	build	the	MSI	file	we	compile	and	link	the	source	code	like	so:

E:\wix\examples\test\assembly>	candle.exe	product.wxs

Microsoft	(R)	Windows	Installer	Xml	Compiler	version	2.0.1510.0

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

product.wxs

E:\wix\examples\test\assembly>	light.exe	product.wixobj

Microsoft	(R)	Windows	Installer	Xml	Linker	version	2.0.1510.0

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

E:\wix\examples\test\assembly>	dir

Volume	in	drive	E	is	New	Volume

Volume	Serial	Number	is	8AC4-6AD2

Directory	of	E:\wix\examples\test\assembly

04/05/2004	05:04	<DIR>								.

04/05/2004	05:04	<DIR>								..

02/23/2004	09:55																891	module.wxs

04/05/2004	05:04													52,736	product.msi

04/05/2004	05:04														4,976	product.wixobj

02/23/2004	09:55														1,281	product.wxs

														4	File(s)	59,884	bytes

														2	Dir(s)	90,014,191,616	bytes	free

E:\wix\examples\test\assembly>

I’ll	discuss	more	complicated	examples	in	future	blog	entries	and	update
the	documentation	(WiX.chm)	by	distilling	any	discussions	here.		While
we’re	on	the	topic	of	documentation,	let’s	discuss	where	WiX	is	in	its



product	life-cycle.

First	of	all,	I	would	say	that	the	WiX	toolset	is	pretty	close	to	Beta2
quality.		That	means	core	scenarios	(compiling/linking)	are	very	solid,
less	core	scenarios	(lib’ing/decompiling)	still	have	some	bugs,	and	the
documentation	leaves	much	to	be	desired.		Part	of	my	motivation	for
pushing	the	toolset	external	to	Microsoft	is	to	encourage	me	(and	maybe
find	others)	to	update	the	documentation.		I’ll	talk	more	about	that	in
future	blog	entries.

That	said	production	quality	MSI	and	MSM	files	can	be	produced	from
the	WiX	toolset	today.		Internally,	teams	such	as	Office,	SQL	Server,
BizTalk,	Virtual	PC,	Instant	Messenger,	several	msn.com	properties,	and
many	others	use	WiX	to	build	their	MSI	and	MSM	files	today.		When
someone	encounters	a	bug,	the	community	tracks	the	issue	down	and
fixes	it.		Now,	via	SourceForge.net,	you	have	an	opportunity	to	be	a	part
of	the	community	as	well.

Now,	let’s	talk	about	why	WiX	was	released	as	Open	Source.		First,
working	on	WiX	has	never	been	a	part	of	my	job	description	or	review
goals.		I	work	on	the	project	in	my	free	time.		Second,	WiX	is	a	very
developer	oriented	project	and	thus	providing	source	code	access
increases	the	pool	of	available	developers.		Today,	there	are	five	core
developers	(Robert,	K,	Reid,	and	Derek,	thank	you!)	regularly	working	on
WiX	in	their	free	time	with	another	ten	submitting	fixes	occasionally.	
Finally,	many	parts	of	the	Open	Source	development	process	appeal	to
me.		Back	in	1999	and	2000,	I	did	not	feel	that	many	people	inside
Microsoft	understood	what	the	Open	Source	community	was	really	about
and	I	wanted	to	improve	that	understanding	by	providing	an	example.

After	four	and	a	half	years	of	part-time	development,	the	WiX	design	(and
most	of	the	code)	matured	to	a	point	where	I	was	comfortable	trying	to
release	it	externally.		So,	last	October	I	started	looking	for	a	means	to
release	not	only	the	tools	but	the	source	code	as	well.		I	thought
GotDotNet	was	the	place.		However,	at	that	time,	none	of	the	existing
Shared	Source	licenses	were	flexible	enough	to	accept	contributions
from	the	community.		Then,	in	February,	I	was	introduced	to	Stephen
Walli	who	was	also	working	to	improve	Microsoft’s	relationship	with	the
Open	Source	community.		Fortunately,	Stephen	was	much	farther	along
than	I	and	had	the	step-by-step	plan	how	to	release	an	Open	Source
project	from	Microsoft	using	an	approved	OSS	license.

http://office.microsoft.com/
http://www.microsoft.com/sql/
http://www.microsoft.com/biztalk/
http://www.microsoft.com/windowsxp/virtualpc/
http://messenger.msn.com/Default.aspx
http://www.msn.com/
http://sourceforge.net/
http://www.gotdotnet.com/
http://www.microsoft.com/resources/sharedsource/Licensing/default.mspx
http://www.osbc2004.com/speakers_stephen_walli.html


Today,	via	WiX	on	SourceForge,	you	get	to	see	the	results	of	many
people’s	efforts	to	improve	Microsoft	from	the	inside	out.		I’m	not	exactly
sure	what	is	going	to	happen	next	but	I’m	sure	there	are	quite	a	few
people	who	are	interested	to	see	where	this	leads.		Personally,	all	I	hope
is	that	if	you	find	the	WiX	toolset	useful	then	you’ll	join	the	community	and
help	us	improve	the	toolset.

Copyright	©	Rob	Mensching

http://sourceforge.net/projects/wix


So	you	want	to	be	a	Windows	Installer
XML	developer?
People	have	started	expressing	interest	in	joining	the	Windows	Installer
XML	toolset	development	community	so	I	figured	I	should	get	some
administrative	details	out	of	the	way.		If	you	are	interested	in	contributing
code	to	the	Windows	Installer	XML	toolset,	it	is	very	important	to	read
through	all	four	of	these	topics.

1)		The	Windows	Installer	XML	toolset	copyright	is	held	by
Microsoft.

I	want	to	be	very	up	front	about	the	copyright	of	the	Windows	Installer
XML	toolset	and	how	it	affects	us	as	developers.		Microsoft	is	the	sponsor
of	the	Windows	Installer	XML	project.		Before	a	contribution	can	be
accepted	into	the	WiX	project,	the	lawyers	have	asked	that	we	assign	our
rights	to	those	contributions	to	Microsoft.		By	having	developers	sign	a
copyright	assignment	agreement,	Microsoft	can	maintain	single	legal
control	of	the	project.		That	single	legal	control	enables	Microsoft	to	best
defend	the	project	in	the	future	if	there	was	ever	any	sort	of	legal
challenge.

Before	jumping	to	any	conspiracy	theories,	please	note	that	this	copyright
assignment	is	exactly	the	same	process	the	Free	Software	Foundation
has	you	go	through	if	you	work	on	a	project	they	sponsor.		Also,	in
Clause	5	of	the	Windows	Installer	XML	assignment	agreement	your
rights	to	your	contribution	are	explicitly	granted	back	to	you.		If	you	would
like	a	copy	of	the	assignment	agreement,	please	contact
wixadmin@microsoft.com.

2)		The	Windows	Installer	XML	project	is	a	benevolent	dictatorship.

In	order	to	ensure	consistency	in	the	schema	and	maintain	the	quality	of
the	tools,	the	Windows	Installer	XML	project’s	CVS	tree	is	locked	down.	
In	other	words,	commits	to	the	code-base	by	the	general	populace	are
prevented.		If	you	attempt	commit	changes,	CVS	will	inform	you	that	you
have	"Insufficient	Karma	to	complete	the	task."

To	have	your	contribution	submitted	to	the	project,	please	submit	an
assignment	agreement	as	described	above	(you	only	need	to	do	so

http://blogs.msdn.com/robmen/archive/2004/04/14/112970.aspx
http://sourceforge.net/projects/wix
http://www.microsoft.com/
http://www.gnu.org/fsf/fsf.html
mailto:wixadmin@microsoft.com
http://www.usemod.com/cgi-bin/mb.pl?BenevolentDictator


once)	then	send	your	code	diff	to	WiX-devs@lists.sourceforge.net.		The
developers	there	will	review	the	changes	and	someone	will	apply	them	to
CVS	as	quickly	as	possible.

3)		The	Windows	Installer	XML	community	is	a	meritocracy.

Those	individuals	in	the	community	who	demonstrate	an	understanding
of	the	code	base	by	actively	participating	on	the	Windows	Installer	XML
mailing	lists	and	consistently	submitting	high	quality	diffs	will	be	given	a
“Karma	boost”.		With	enough	Karma	you	will	earn	the	ability	to	commit
changes	directly	to	the	Windows	Installer	XML	project’s	CVS	tree.

Commit	privileges	should	not	be	taken	lightly.		It	is	very	important	that	the
WiX	toolset	maintain	a	high	quality	bar	because	many	people	depend	on
the	tools	working	properly.		Very	few	developers	earn	these	privileges.		In
fact,	in	over	four	years	of	development,	only	five	developers	have	earned
commit	privileges	to	the	internal	Windows	Installer	XML	project.

4)		The	Windows	Installer	XML	developers	are	all	volunteers.

Everyone	(to	the	best	of	my	knowledge)	that	works	on	the	Windows
Installer	XML	toolset	does	so	in	his	or	her	free	time.		Please	keep	that
fact	in	mind	when	asking	for	help,	submitting	code	diffs,	or	interacting
with	any	members	of	the	project.		We	all	want	to	help	to	make	the
Windows	Installer	XML	toolset	as	solid	a	tool	as	possible,	but	sometimes
“real	jobs”	and	“significant	others”	have	to	take	a	higher	precedence.

If	worse	comes	to	worse,	you	have	access	to	the	source	code.		Try
reading	for	a	while.	:)

Copyright	©	Rob	Mensching

mailto:WiX-devs@lists.sourceforge.net
http://encarta.msn.com/dictionary_/meritocracy.html
mailto:WiX_users@lists.sourceforge.net
http://everything2.com/index.pl?node_id=15112&lastnode_id=357933


Sections,	Symbols	and	References	in	the
Windows	Installer	XML	(WiX)	toolset.
Thus	far,	it	seems	everyone	has	been	creating	one	single	.wxs	source	file
for	their	entire	MSI	or	MSM	file.		This	is	understandable,	since	the
"Getting	Started"	topic	in	the	WiX.chm	only	shows	one	.wxs	file	per	MSI
and	MSM.		And	if	you	started	learning	WiX	by	trying	to	decompile	an
existing	MSI	or	MSM,	dark	will	only	generate	a	single	.wxs	source	file	for
your	MSI	or	MSM	file.		But	the	real	power	of	the	WiX	toolset	only
becomes	apparent	when	you	break	up	your	setup	into	different	sections
then	let	the	symbols	and	references	tie	your	source	files	back	into	a
cohesive	package.

I'll	start	by	showing	you	the	WiX	source	code	then	I'll	try	to	explain	what	it
does.		Let's	assume	we	have	a	file	called	"product.wxs"	that	looks	like
this:

<?xml	version='1.0'?>	

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>	

			<Product	Id='00000000-0000-0000-0000-000000000000'	Name='MyProduct'	Language='1033'

												Version='0.0.0.0'	Manufacturer='My	Corporation'>	

						<Package	Description='My	Product'	Comments='My	Product	That	Is	Just	An	Example'

															InstallerVersion='200'	Compressed='yes'	/>	

						<Media	Id='1'	Cabinet='product.cab'	EmbedCab='yes'	/>	

						<Directory	Id='TARGETDIR'	Name='SourceDir'>	

									<Directory	Id='ProgramFilesFolder'	Name='PFiles'>	

												<Directory	Id='MyDirectory'	Name='MyDir'	LongName='My	Directory'	/>	

									</Directory>	

						</Directory>	

						<Feature	Id='MyFeature'	Title='My	Product	Feature'	Level='1'>	

									<ComponentRef	Id='MyComponent'	/>	

						</Feature>	

			</Product>	

</Wix>	

What	I've	defined	above	is	the	skeleton	of	a	MSI	product.		At	the	top	is
the	required	<Product/>	and	<Package/>	elements	that	provide	the
identification	information	for	this	package	to	the	Windows	Installer.		Then
I	provide	the	<Media/>	element	that	defines	how	any	file	Resources	that

http://blogs.msdn.com/robmen/archive/2004/05/11/129613.aspx


are	a	part	of	this	package	should	be	laid	out.		In	this	case,	I	want	all	the
files	compressed	into	a	single	cabinet	and	that	cabinet	stored	as	a
stream	inside	the	MSI	file.		Next,	I	provide	my	bare	bones	Directory	tree.	
Finally,	this	package	is	finished	off	with	a	very	simple	Feature	tree	with
one	Feature	containing	one	Component.

"Hey,	wait!		Where's	the	Component	definition	for	'MyComponent'?"	you
might	ask.		Before	I	can	answer	that	very	important	question	I	need	to
add	a	couple	more	examples	files.		First,	let's	add	another	WiX	source
file	called	"fragment.wxs"	that	looks	like	this:

<?xml	version="1.0"?>	

<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>	

			<Fragment	Id='MyFragment'>	

						<DirectoryRef	Id='MyDirectory'>	

									<Component	Id='MyComponent'	Guid='00000000-0000-0000-0000-00000000000'	DiskId='1'>	

												<File	Id='MyFile'	Name='myfile.txt'	LongName='My	File.txt'	src='present.txt'/>	

									</Component>	

						</DirectoryRef>	

			</Fragment>	

</Wix>	

If	we	skip	the	<Fragment/>	element	the	rest	of	the	WiX	code	should	look
pretty	familiar.		I've	defined	a	Component	named	"MyComponent"	(with	a
bogus	GUID)	in	the	"MyDirectory"	Directory	and	noted	that	any	files
contained	by	this	Component	will	be	a	part	of	the	Media	with	Disk	Id
labeled	1.		Then	I	declare	that	the	Component	contains	a	single	text	file.	
For	good	measure,	let's	say	that	there	is	a	file	called	"present.txt"	that
looks	a	lot	like	this:

Each	day	is	a	gift.		That's	why	we	call	it	the	present.	

Before	(finally)	explaining	in	detail	how	this	all	works,	let's	first	prove	that
it	works.		Here	is	the	output	from	my	compilation	and	linking.

C:\example>candle.exe	product.wxs	fragment.wxs	

Microsoft	(R)	Windows	Installer	Xml	Compiler	version	2.0.1621.0	

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.	

product.wxs	

fragment.wxs	

C:\example>light.exe	product.wixobj	fragment.wixobj	-o	product.msi	

Microsoft	(R)	Windows	Installer	Xml	Linker	version	2.0.1621.0	

Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.	



C:\example>	

No	output	from	the	light	means	there	were	no	errors	so	you	should	now
have	a	"product.msi"	file	sitting	in	the	same	directory	with	all	your	other
files.		You	can	install	that	MSI	and	see	it	show	up	in	your	Add/Remove
Programs	if	you	like,	but	trust	me	this	all	works.

"But	how	did	it	work?"

Well,	when	candle	compiles	your	source	code	it	creates	an	object	file
(.wixobj)	that	has	zero	or	more	sections	in	it.		The	elements	that	are
children	of	the	<Wix/>	element	(namely:	<Product/>,	<Module/>,	and
<Fragment/>)	define	a	new	section.		So	in	the	example	above,
product.wxs	defines	one	section	and	fragment.wxs	defines	another.

Sections	contain	data	and	references.		Most	of	the	data	in	the	section	is
information	that	will	end	up	in	the	final	package	(MSI	file).		Some	of	the
data	is	just	information	needed	by	the	linker	or	binder	to	build	the
package.		For	example,	the	<File/>	element	shown	above	contains	the
necessary	information	to	define	a	file	Resource	in	the	package	as	well	as
the	"src"	attribute	that	tells	the	binder	where	to	find	the	physical	file	on
disk	so	that	the	file	can	be	put	into	a	cabinet	and	inserted	into	the
package.		Finally,	the	data	in	the	section	is	used	to	define	all	of	the
symbols	for	the	section.

A	symbol	is	the	unique	identifier	for	a	WiX	element	in	your	.wxs	source
file.		In	general,	the	symbol	for	an	element	maps	to	the	primary	key
columns	of	the	MSI	table	the	WiX	element	represents.		For	example,	the
<File/>	element's	"Id"	attribute	in	WiX	maps	to	the	MSI	File	table's	File
column	which	is	the	primary	key	column.		It	is	pretty	safe	to	assume	that
all	"Id"	attributes	in	the	WiX	schema	represent	symbols.		If	I	was	to	take	a
stab	at	the	symbols	defined	in	the	example	source	files	above,	I	think	this
would	be	the	list:

product.wxs

Product:00000000-0000-0000-0000-000000000000	

Media:1	

Directory:TARGETDIR	

Directory:ProgramFilesFolder	

Directory:MyDirectory	

Feature:MyFeature	



fragment.wxs

Fragment:MyFragment	

Componet:MyComponent	

File:MyFile	

Of	course,	I	might	be	missing	one	or	two,	but	hopefully	you	get	the	idea
of	what	the	compiler	thinks	is	a	symbol.		If	you	really	want	to	know	for
sure,	take	a	look	at	the	tables.xml	file	for	the	columns	marked
"symbol='yes'".

Symbols	exist	to	be	referenced.		References,	the	only	thing	other	than
data	in	a	section,	point	at	symbols	in	the	current	section	or	other
sections.		The	compiler	creates	references	to	symbols	when	necessary
and	stores	the	references	at	the	top	of	the	section	in	the	object	file.	
Obviously	elements	like	<ComponentRef/>	or	<DirectoryRef/>	create
references	to	Components	and	Directories	respectively,	but	the	compiler
will	create	references	in	other	cases	as	well.		For	example,	the
<Component/>	element's	"DiskId"	attribute	creates	reference	to	a
<Media/>	element's	"Id"	attribute.		Since,	the	.wixobj	file	contains	the
references	I	can	easily	list	them	here	for	you:

product.wixobj

<reference	table="Component"	symbol="MyComponent"	/>

fragment.wixobj

<reference	table="Directory"	symbol="MyDirectory"	/>	

<reference	table="Media"	symbol="1"	/>	

Note:	I	have	purposely	skipped	over	the	complex	reference	discussion
here,	but	I'll	come	back	to	that	in	some	future	blog	entry.

Thus	far,	I've	only	talked	about	the	compiler.		Now	that	we	know	the
basics	behind	sections,	symbols	and	references	we	can	talk	about	the
details	of	the	linker.		This	is	where	the	real	power	of	the	WiX	toolset	kicks
in.		I	also	believe	the	linker	differentiates	the	WiX	toolset	from	the	other
tools	I	have	seen	and/or	heard	of	that	can	build	MSI	files	today.

The	linker	starts	by	processing	all	of	the	sections	in	the	provided	object
files	looking	for	an	entry	section.		Today	there	are	two	types	of	entry
sections:	products	and	modules.		As	you	would	expect,	when	the	linker
encounters	a	product	entry	section	it	knows	it	is	generating	a	MSI.		If	the
linker	encounters	a	module	entry	section	the	linker	knows	it	is	creating	a



MSM	file.		If	the	linker	comes	across	two	entry	sections	in	the	object	files,
it	gives	up	with	an	error	since	the	linker	cannot	generate	two	outputs	at
the	same	time.		Consider	the	entry	section	to	be	like	the	"main()"	function
in	a	C	or	C++	program.		That's	where	the	linker	starts	the	programs
execution.

While	the	entry	section	is	being	located,	the	linker	is	also	building	up	the
table	of	symbols	from	every	section	from	the	provided	object	files.		If	any
symbols	are	found	to	be	duplicated,	the	linker	will	give	up	with	an	error.	
In	the	C/C++	linker,	this	error	condition	is	very	similar	to	the	case	where
you	define	the	same	variable	in	the	same	scope.		Once	all	of	the	sections
have	been	processed	and	a	single	entry	section	is	found,	the	linker	starts
resolving	references	starting	at	the	entry	section.

When	the	current	section	has	a	reference	that	resolves	to	a	symbol	in
another	section	the	other	new	section's	references	are	added	to	the	list	to
be	resolved.		The	process	continues	until	all	references	are	resolved.		If	a
reference	cannot	be	resolved	it	causs	the	linker	to	bail	with	an	error.		This
error	case	is	similar	to	the	C/C++	linker	cannot	find	a	matching	function
implementation	for	one	of	your	calls.		Also,	any	sections	that	are	not
referenced	are	ignored.

It	is	important	to	note	that	sections	are	the	atomic	unit	of	linking.		In	other
words,	either	all	of	the	information	in	a	section	is	included	in	your	final
output	or	none	of	it	is	included.		This	fact	is	important	to	keep	in	mind
when	splitting	your	source	code	into	Fragments.		You	only	need	one
symbol	in	a	Fragment	to	be	referenced	and	the	entire	contents	of	the
Fragment	will	be	a	part	of	your	final	output.

Before	wrapping	up	this	blog	entry,	let's	step	through	the	example	we've
used	so	far.		Remember,	up	above,	we	provided	light	the	fragment.wixobj
and	the	product.wixobj	object	files	to	link.		The	linker	would	load	all	of	the
symbols	in	those	two	object	files	(getting	a	list	much	like	I	described
above)	and	figure	out	that	the	section	created	by	the	<Product/>	element
is	our	entry	section.

The	linker	would	then	take	the	only	reference	in	that	section	(as	shown
above)	and	start	looking	for	the	symbol	"MyComponent"	in	the
Component	table.		Of	course,	that	reference	resolves	into	our
fragment.wixobj.		Then	the	two	references	from	the	fragment.wixobj
would	be	resolved.		Remember,	references	from	each	section	must	be



resolved.		In	this	case,	the	"MyDirectory"	in	the	Directory	table	and	"1"	in
the	Media	table	references	are	resolved	by	symbols	from	the	entry
section.		The	linker	now	happily	goes	along	its	merry	way	finishing	the
linking	process	using	those	two	sections	to	build	the	final	MSI	file.

Hopefully	this	blog	entry	helps	explain	some	of	the	inner	workings	of	the
WiX	toolset	so	that	you	can	take	better	advantage	of	the	tools.		This	write
up	(or	something	like	it)	will	be	making	its	way	into	the	WiX
documentation	so	I	would	appreciate	any	feedback	that	makes	sections,
symbols,	and	references	in	the	Windows	Installer	XML	toolset	make
sense.

Copyright	©	Rob	Mensching



My	philsophical	musings	about	building
setup	for	software.
Mike	Gunderloy,	who	has	written	a	couple	articles	about	the	WiX	toolset,
posted	a	comment	on	a	previous	blog	entry.		In	the	comment,	he
suggests	that	splitting	a	setup	project	into	fragments	only	moves	the
problem	but	doesn't	solve	it.		Thus,	he	argued	that	adding	a	tool	to
generate	the	fragments	has	value.		I	still	didn't	agree.		Then	I	realized
that	I	disagreed	because	I	have	some	philosophies	about	how	to	build
software	and	setup	for	software	that	I've	never	posted	here.		So,	I
thought	I'd	share	those	philosophies	today.		Please	note	that	these	are
guidelines	that	I	use	when	discussing	setup	build	processes	with	other
people	not	hard	rules.	

The	developer	that	wrote	the	feature	knows	best	what	needs	to	be
authored	into	setup.

This	part	of	my	philosophy	is	based	on	the	fact	that	the	person	that
knows	the	most	about	a	particular	resource	is	the	developer	that	wrote
the	resource.		Seriously,	if	the	developer	who	wrote	the	code	doesn't
know	where	his	or	her	files	need	to	be	installed	or	doesn't	know	what
registry	keys	are	necessary	to	make	the	feature	work	(or	whatever	other
resources	are	necessary)	who	does?

Yes,	there	have	been	(too	many)	cases	in	my	career	where	the	developer
who	wrote	the	code	said,	"Uhh,	I	don't	know	what	my	code	depends	on."
	However,	in	those	cases	it	was	pretty	easy	to	look	at	him	or	her	(or	his	or
her	manager)	and	ask,	"Well,	uhh,	shouldn't	you?"		In	every	case,	they
went	off	and	figured	out	what	was	necessary	to	get	their	software	"in	the
box".

Fundamentally,	if	developers	don't	know	what	their	dependencies	are
there	is	very	little	chance	their	project	will	have	a	solid	security,
performance,	or	deployment	story.		Area	experts	may	be	necessary	to
help	developers	work	through	complicated	issues	but,	in	general,
developers	must	be	aware	of	what	their	software	is	doing.

Setup	authoring	is	a	part	of	the	development	process.

Every	team	I	have	interacted	with	(the	grand	majority	of	Microsoft	and

http://blogs.msdn.com/robmen/archive/2004/05/16/132928.aspx
http://www.larkware.com/
http://www.adtmag.com/article.asp?id=9359
http://www.ondotnet.com/pub/a/dotnet/2004/04/19/wix.html
http://wix.sourceforge.net/
http://blogs.msdn.com/robmen/archive/2004/05/13/131692.aspx#131892
http://blogs.msdn.com/robmen/archive/2004/05/13/131692.aspx
http://blogs.msdn.com/michael_Howard
http://blogs.msdn.com/ricom
http://blogs.msdn.com/robmen


some	smaller	companies),	the	developers	on	the	team	are	expected	to
add	their	source	files	to	the	makefile	before	checking	in	new	files	to	the
project.		Yet,	many	of	those	teams	have	people	who	are	solely
responsible	for	adding	new	files	to	the	setup	project.		In	many	cases,	one
set	of	developers	write	registry	keys	into	the	code	for	SelfReg	(this	is	evil,
and	I'll	explain	why	one	day)	and	the	setup	developers	have	to	reverse
engineer	the	registry	keys	out	of	the	built	executables	to	author	setup.	
Why	didn't	the	original	developer	just	author	the	registry	key	into	setup	in
the	first	place?

There	was	a	point	in	time	where	it	was	arguably	difficult	to	distribute	the
authoring	to	all	developers	when	you	had	to	buy	custom	tools	that	didn't
fit	well	into	the	development	process.		However,	today	there	are	a	few
alternatives	out	there	(like	the	WiX	toolset)	that	allow	setup	to	be	treated
like	source	code.		Now	there	are	no	excuses	I've	heard	that	hold	water
why	setup	authoring	for	the	majority	of	the	resources	in	setup	cannot	be
distributed	across	the	developers	in	the	organization.		Doing	that
distribution	leaves	only	the	"look	and	feel"	and	integration	between	the
individual	pieces	of	setup	to	the	core	setup	developers.		All	other	excuses
have	always	been	just	whinging	(as	Peter	might	say).

This	part	of	my	philosophy	and	the	one	above	are	the	reasons	I	disagree
when	Mike	says	that	"breaking	up	the	package	into	multiple	source
fragments	pushes	the	problem	back	one	level,	but	doesn't	necessarily
solve	it."		Breaking	up	your	setup	in	to	multiple	text	files	enables
developers	to	maintain	setup	authoring	the	same	way	they	maintain	all
the	other	code	that	is	part	of	a	project.		And	that	brings	me	to	my	final
point.

Text	files	should	be	the	only	inputs	into	the	build	process.

Over	the	years,	developers	have	created	fairly	significant	processes	for
tracking,	merging,	and	reverting	changes	to	text	files.		For	example,
Concurrent	Version	System	(better	known	as	CVS)	is	used	heavily	by
SourceForge.net	can	show	you	the	individual	lines	changed	in	a	text	file
over	time.		For	a	demonstration,	take	a	look	at	Compiler.cs	from	v1.6	to
v1.7	in	CVS	at	SourceForge.net	for	WiX.		It	is	not	generally	possible	to
visualize	the	differences	between	two	revisions	of	a	binary	file.

Every	input	into	the	build	process	that	is	manipulated	by	a	human	will
eventually	hose	the	process	at	least	once.		Being	able	to	text	search

http://msdn.microsoft.com/library/en-us/msi/setup/selfreg_table.asp
http://wix.sourceforge.net/
http://infosecuritymag.techtarget.com/2003/jan/curmudgeon.shtml
http://blogs.msdn.com/ptorr
http://www.cvshome.org/
http://sourceforge.net/
http://cvs.sourceforge.net/viewcvs.py/wix/wix/src/wix/Compiler.cs?r1=1.6&r2=1.7


(using	even	the	simplest	tools	like	grep)	for	the	exact	change	that	caused
the	problem	significantly	improves	build	throughput.		Binary	files	usually
hide	the	information	by	requiring	custom	tools	to	be	opened	and	queried
to	find	the	break.

Of	course,	once	you	find	the	break	it	is	really	nice	to	be	able	to	fix	the
problem	by	launching	your	favorite	text	editor	and	tweaking	the	line(s)	of
code	with	the	fault.		Requiring	a	tool	to	be	installed	on	the	build	machines
increases	your	impedance	to	fixing	the	issue.

Ultimately,	keeping	binary	files	out	of	your	build	process	simplifies	your
life.		That	fact	is	why	I	disagree	with	Mike	when	he	suggests	it	makes
sense	to	"put	one	more	tool	into	the	chain,	something	with	a	friendly
interface	that	could	spit	out	the	source	fragments	as	needed?	I	could	see
doing	that	with	Access/Excel,	among	other	things."

Note	I	do	think	it	is	reasonable	for	developers	to	use	tools	that	help
generate	text	files.		Those	text	files	then	can	get	checked	into	source
control	and	built	as	part	of	the	standard	process.		However,	the	tools
need	to	generate	human	friendly	text	files.		Text	files	that	can	only	be
modified	with	a	custom	tool	are	only	half	a	step	better	than	raw	binary
files.

This	is	the	philosophy	that	I	developed	during	my	tenure	in	Office	and
have	promoted	across	the	company	for	a	couple	years	now.		Many	teams
have	had	an	incredible	amount	of	success	with	their	setup	processes
when	following	these	guidelines.		There	have	been	many	cases	where	I
was	asked	by	other	teams	to	talk	about	the	philosophy.		At	the	end	of	my
talk	I	always	left	them	with,	"If	you	have	someone	resisting	change,	have
them	contact	me.		I'll	be	happy	to	talk	to	him	or	her	to	discuss	how
successful	other	teams	have	been	with	this	process	and	see	if	there	isn't
some	way	to	address	their	concerns."		I'd	be	happy	to	do	the	same	for
you.

PS:		This	philosophy	has	worked	out	extremely	well	for	me,	but	if	you
have	a	unique	situation	that	you	think	wouldn't	work	using	these
guidelines,	I'd	be	very	interested	to	hear	about	them.		I'm	always	looking
for	alternative	views	(as	long	as	people	aren't	just	whinging	<smile/>).

Copyright	©	Rob	Mensching

http://www.gnu.org/software/grep/grep.html
http://office.microsoft.com/


VBScript	(and	Jscript)	MSI
CustomActions	suck.
Today	was	one	of	those	days	where	you	finally	get	around	to	looking	at
the	time	and	wonder	where	the	heck	the	hours	went.		It	wasn't	even	like	I
really	got	a	lot	done.		I	think	my	context	switch	costs	have	been	really
high	lately.		It	feels	good	to	finally	be	home	chilling	out	to	the	Perfecto
Chills	albums.		I	thought	I'd	relate	a	short	story	to	you	why	VBScript	(and
Jscript	for	that	matter)	should	not	be	used	for	CustomActions	in	an	MSI.

Today,	I	realized	it	was	15:39	when	a	fellow	developer,	we'll	call	him	Joe,
called	me	at	work.		My	first	thought	was,	"Jeez,	it's	almost	4	o'clock	and	I
haven't	got	anything	done!"		My	second	thought	was,	"I	bet	Joe	is
screwed."		Joe	only	calls	me	when	the	WiX	toolset	has	completely	failed
or	he	has	hit	the	wall	with	the	Windows	Installer.		Today,	Joe	had	hit	the
wall.

"Rob,	have	you	been	tracking	the	email	thread	about	the	CustomAction
of	mine	that	is	failing?"		I	had	seen	this	thread	earlier	in	the	day	and
remembered	Joe	mentioning	something	about	a	VBScript	CustomAction.	
"A	little	bit,	you're	not	really	using	VBScript	for	your	CustomAction,	are
you?"

That	was	it.		Joe	was	attempting	to	debug	some	rather	complex	issues
with	a	VBScript	CustomAction	interacting	with	some	COM	components
during	an	install.		Everything	seemed	to	work	fine	if	he	ran	the	VBScript
(slightly	modified)	in	the	cscript.exe	or	wscript.exe	hosts.		However,	when
the	script	executed	in	the	Windows	Installers	ActiveScript	engine	it	failed
in	rather	mysterious	ways.

Interestingly	enough,	a	Windows	Installer	developer	attached	one	of	the
many	emails	that	I	send	to	people	when	they	are	having	problems	using
VBScript	for	CustomActions.		In	those	emails,	I	always	suggest	that	script
never	be	used	for	CustomActions	in	MSI.		So,	Joe	called	me	and	asked,
"So	what	can	I	do,	Rob?"

My	answer	was	simple,	"Joe,	there	is	a	reason	I	recommend	never	using
VBScript	for	CustomActions.		It's	because	there	isn't	really	a	whole	lot
you	can	do	when	you	get	into	this	kind	of	situation."		Then	I	provided	him

http://blogs.msdn.com/robmen/archive/2004/05/20/136530.aspx
http://www.google.com/search?hl=en&ie=UTF-8&q=define%3Acontext+switch
http://www.discogs.com/release/238907
http://wix.sourceforge.net/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/html/scripting.asp


a	few	ideas	that	started	with	attempting	to	get	the	script	debugger	to
somehow	attach	and	try	to	then	debug	over	to	the	COM	component	and
ended	up	suggesting	getting	the	command-line	debugger	attached	to	the
COM	component	on	load.		None	of	which	is	trivial.

What	I	don't	understand	is	why	people	completely	disregard	dire
warnings	that	certain	technologies	should	not	be	used	in	certain
circumstances.		Yes,	I	understand	it	is	extremely	easy	to	write
CustomActions	in	VBScript.		No,	that	doesn't	make	it	a	good	thing	to	use
in	your	install.

So,	I'm	blogging	here	tonight	at	the	end	of	a	very	long	day	to	share	with
you	three	reasons,	I	recommend	you	not	use	VBScript	or	Jscript	for
CustomActions:

1.		Robust	code	is	difficult	write	in	script.		Setup	code	must	operate
on	machines	that	are	in	an	unknown	state.		In	such	hostile	environments,
there	are	many	different	ways	that	code	can	fail.		Properly	recovering
from	error	conditions	is	very	important	(even	if	it	just	results	in	rollback).	
"On	Error	Resume	Next"	is	not	conducive	to	proper	error	handling	in
code.		For	this	reason	alone,	Microsoft	Office	banned	all	script
CustomActions	from	their	MSI	files.		I	am	admittedly	biased	but	I	believe
Office	has	one	of	the	most	impressive,	smooth,	and	stable	setup
programs	for	the	Windows	platform,	especially	considering	its	complexity.

2.		Debugging	script	in	the	Windows	Installer	is	difficult.		Some	might
even	argue	it	is	impossible	to	debug	script	CustomActions.		As	Joe	is
going	to	find	out	for	the	next	few	days,	debugging	the	interactions
between	the	Windows	Installer,	the	scripting	engine,	and	any	other
objects	is	a	non-trivial	task	because	the	tools	are	so	primitive.		There	are
many	tools	for	C/C++	code	that	can	have	very	low	impact	on	the	machine
if	you	are	tracking	a	particularly	skittish	bug.		Maybe	I'm	only	called	in
when	bugs	are	really	hard,	but	there	have	been	many	times	I	was
thankful	for	ntsd	and	pageheap.exe.

3.		Anti-virus	products	kill	them.		This	one	just	killed	me.		A	couple
years	after	Office	banned	the	use	of	scripting	for	CustomActions,	Visual
Studio	shipped	their	first	MSI	setup.		They	decided	it	would	be	okay	if
there	were	a	few	script	CustomActions.		When	customers	got	the
product,	PSS	started	getting	reports	of	the	Visual	Studio	setup
mysteriously	failing	and	rollingback.		After	some	very	long	calls,	PSS

http://office.microsoft.com/
http://msdn.microsoft.com/library/en-us/ddtools/hh/ddtools/dbgblurb_25bn.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q286470
http://msdn.microsoft.com/vstudio/
http://support.microsoft.com/directory/


discovered	that	if	the	users'	anti-virus	programs	were	disabled	the
installations	would	succeed.		Turns	out	many	of	the	top	name	anti-virus
programs	considered	the	scripts	hosted	by	the	Windows	Installer	to	be
virus	and	would	kill	the	scripts	off	failing	the	Visual	Studio	install.

Anyway,	hope	you	enjoyed	the	stories	and	remember,	"VBScript	and
Jscript	suck	for	CustomActions."

Copyright	©	Rob	Mensching



Localization	and	your	MSI	file.
Jenny	signed	off	on	my	Monday	night	blog	hours	so	I'm	curled	up	in	my
big	comfy	chair	with	my	laptop	ready	to	discuss	some	details	of	the
Windows	Installer.		Honestly,	every	time	I	sit	in	this	big	chair	I	consider
writing	that	book	again.		But	not	tonight.		For	tonight	we	talk	about
localization	and	the	Windows	Installer.

Before	I	get	started,	I	want	to	throw	out	a	very	important	disclaimer	up
front.		I	am	not	a	localization	expert	and	I	personally	have	never	fully-
localized	a	product.		Most	of	what	I'm	presenting	here	is	information	that
I've	gleaned	from	talking	to	or	just	watching	localizers.		The	rest	of	it	I
stole	from	the	Windows	Installer	SDK.

For	those	of	you	who	have	not	been	indoctrinated	in	building	global
software,	know	that	"localization"	is	the	process	of	making	your	software
available	for	other	"locations"	(or	locales).		"Localizers"	are	the	individuals
responsible	for	localizing	your	software.		Obviously	most	"localizers"
speak	or	read	or	comprehend	more	than	one	culture.		This	particular
talent	is	one	of	the	major	reasons	I	make	a	really	lousy	localizer.		I	only
really	understand	American	English,	C/C++,	C#,	VBScript	and	a	bit	of
Australian	English	(from	living	with	Peter	for	a	few	years).		But	I	digress.

Most	people	think	localization	is	all	about	translating	the	text	in	their
program	from	one	language	to	another.		While	this	is	an	important	part	of
the	process,	there	are	many	other	facets	of	localization.		For	example,
directly	related	to	the	text	translation	process	but	often	neglected	is	the
planning	for	translated	text	to	take	more	(or	less)	space	in	dialog	boxes
than	the	first	language	did.		I	remember	a	localizer	mentioning	to	me
once	that--in	general--a	dialog	box	for	German	text	needs	to	be
somewhere	around	1.5	times	larger	than	a	dialog	box	with	the	same	text
in	English.		Another	important	facet	of	localization	is	adjusting	text	and
images	to	be	geopolitically	appropriate.		Words	and	images	accepted	in
one	part	of	the	world	are	not	always	appropriate	for	other	parts	of	the
world.		Thus	it	is	important	to	understand	the	cultures	not	just	the
languages	when	localizing	software.

Okay,	so	that	is	probably	enough	to	cover	the	"Localization"	part	of	this
blog	entry's	title,	now	let's	move	on	"your	MSI	file".		For	the	remainder	of
this	blog	entry,	unless	I	specifically	mention	it,	the	term	"MSI	file"	will	be

http://blogs.msdn.com/robmen/archive/2004/11/22/268343.aspx
http://blogs.msdn.com/robmen/archive/2004/11/20/267320.aspx
http://www.google.com/url?sa=U&start=1&q=http://blogs.msdn.com/robmen/archive/2004/07/09/178938.aspx&e=747
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/windows_installer_start_page.asp
http://blogs.msdn.com/ptorr


synonymous	with	"Windows	Installer	database"	(which	includes	not	only
MSI	files	but	Merge	Modules	[.msm	files]	as	well).		So	what	we're	really
talking	about	here	is	localizing	your	<Products/>	and	<Modules/>	if	you
use	the	WiX	toolset.

As	promised	in	the	beginning,	much	of	what	I'm	covering	here	is	covered
in	what	I	consider	the	"Windows	Installer	Bible",	the	Windows	Installer
SDK.		When	I	have	questions	about	the	way	the	Window	Installer	works,
I	go	back	and	refer	to	that	documentation.		Fortunately,	for	me	and	this
blog,	the	Windows	Installer	SDK	can	get	kinda'	cryptic	at	times.		So	I'm
here	to	add	more	words	to	what	already	exists.

In	particular,	the	Localization	Overview	in	the	Windows	Installer	SDK	is	a
great	place	to	start	(and	I	expect	I	will	refer	to	it	several	times	in	this	blog
entry).		That	help	topic	does	a	pretty	good	job	providing	a	check-list	of
things	to	do	when	localizing	your	MSI	file.		I	particularly	like	the	first	step,
plan	for	localization.

I	am	fully	aware	that	many	people	save	setup	for	the	end	of	the	product
cycle.		I	personally	believe	this	practice	is	very	reckless	and	ill-advised
(especially	consider	there	are	now	tools	like	the	WiX	toolset	that	can
integrate	directly	into	your	build	process).		However,	I've	also	noticed	that
localization	is	often	considered	after	setup!		That	doubles	down	the
trouble	because	right	when	you	need	to	lock-in	the	Componentization
your	product	you're	going	to	be	adding	more	files.		Bad	planning	can
make	this	a	horrible	chore.

So,	here's	my	standard	template	for	success	with	localization.		First,
break	out	all	of	the	localizable	text	in	your	product	into	a	separate
resource-only	DLL.		Second,	put	that	resource-only	DLL	in	a	sub-
directory	named	for	the	language	of	the	resource-only	DLL.		Keep	the
name	of	the	resource-only	DLL	the	same	though.		Since	I'm	an	old	Office
guy,	I	usually	use	the	LCID	(1033	is	American	English)	for	the	directory
name	but	I've	seen	the	trend	towards	using	the	ISO	locale	names	(en-us
is	American	English)	since	the	Common	Language	Runtime	goes	that
way.		Third,	store	the	default	installation's	language	in	your	per-
application	data	store.		For	example,	an	HKLM	registry	key	is	an	okay
store	if	your	product	was	installed	per-machine	and	an	HKU	registry	key
would	be	okay	if	your	product	was	installed	per-user.		The
Registry/@Root="HKMU"	value	in	Windows	Installer	XML	syntax	was
designed	for	this	type	of	scenario.		Fourth,	store	the	user's	current

http://wix.sourceforge.net/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/localizing_a_windows_installer_package.asp
http://www.google.com/url?sa=U&start=1&q=http://blogs.msdn.com/robmen/archive/2003/10/18/56497.aspx&e=747
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/_core_Create_a_Resource.2d.Only_DLL.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/intl/nls_8sj7.asp


language	preference	in	a	per-user	data	store	(a	per-user	registry	key
works	okay)	when	it	differs	from	the	installed	value.		Finally,	when	you
boot	your	application	load	the	resource-only	DLL	from	the	appropriate
sub-directory	based	on	the	per-user	key	if	it	exists	and	the	per-application
key	if	it	does	not	exist.	

You	can	also	do	more	interesting	scenarios	if	you	want	to	take	the
system's	current	language	into	account,	but	that's	for	people	that	know
more	about	localization	that	I	do.		Of	course,	you	should	also	have	some
fallback	plan	if	your	registry	keys	are	all	busted.		For	example,	if	the	per-
application	registry	key	was	deleted	you	could	repair	a	portion	of	your
product.		I'll	try	tossing	more	advanced	scenarios	in	a	later	blog	entry.

Now	that	you	have	a	plan	for	your	product's	organization,	you	can	go
back	to	thinking	about	your	MSI	file.		First	of	all,	you'll	want	to	think	about
the	codepage	for	your	MSI	file.		Remember	MSI	files	are	not	Unicode.	
That	means	if	you	pick	the	wrong	codepage	for	your	MSI	file	that	you'll
get	square	boxes	or	question	marks	showing	up	in	your	database.		The
Windows	Installer	SDK	talks	about	setting	the	codepage	but	if	you	use
the	WiX	toolset	you	only	need	to	specify	your	codepage	LCID	in	the
Product/@Codepage	or	Module/@Codepage	attribute	for	your	MSI	or
MSM	file	respectively.		If	you're	curious,	you	can	see	that	the	WiX	toolset
does	exactly	what	the	Windows	installer	SDK	says	in	Binder.cs	in	the
Binder's	SetDatabaseCodepage()	method.	

Also	note	that	because	the	MSI	files	are	not	Unicode	files	they	cannot	be
truly	multi-lingual.		This	is	okay	because	if	we	skip	over	the	Overview's
steps	3	and	4	(I'll	discuss	those	more	later),	we	see	in	step	5	that	the	MSI
file	has	a	ProductLanguage	Property	that	must	be	set	to	the	LCID	of	the
product.		That	ProductLanguage	Property	maps	to	the
Product/@Language	or	Module/@Language	attributes.		One	of	the	bugs
I	discussed	in	my	previous	blog	entry	is	enabling	the	localization	of	those
attributes.	

I'm	going	to	lump	in	the	Overview's	steps	5,	6,	7,	and	8	under	the
heading	"Things	That	Identify	Your	Product	as	a	Unique	Identity	in	the
World."		The	world	is	a	scary	place	out	there	with	lots	of	other	products	to
collide	and	otherwise	get	lost	in.		Make	sure	you	follow	all	of	these	steps
to	ensure	that	you	can	find	your	product	when	it	comes	time	to	patch	or
upgrade.		I've	seen	a	few	cases	where	setup	developers	were	being
particularly	lazy	and	thought	they	could	skip	over	some	of	these	steps.	

http://en.wikipedia.org/wiki/Codepage
http://blogs.msdn.com/robmen/archive/2003/11/25/56510.aspx
http://msdn.microsoft.com/library/en-us/msi/setup/setting_the_code_page_of_a_database.asp
http://msdn.microsoft.com/library/en-us/msi/setup/productlanguage_property.asp
http://blogs.msdn.com/robmen/archive/2004/11/20/267320.aspx


They	showed	up	a	few	months	after	their	products	shipped	asking	how
they	can	target	the	appropriate	localized	version	of	their	MSI	file.	

In	one	particular	case,	a	product	had	some	geo-political	issue	preventing
the	product	from	being	allowed	across	the	border	of	some	country.		I
don't	remember	all	of	the	finer	details	but	I	believe	the	final
recommendation	was	to	build	a	new	"politically	correct"	MSI	package,
send	that	off	for	manufacturing	and	eat	the	cost	of	the	thousands	of	CDs
that	had	already	been	stamped.		I	can	only	imagine	how	much	fun	they
had	creating	coasters	in	their	microwave	(or	how	much	explaining	they
had	to	do	with	their	"higher-ups").

I	was	originally	going	to	toss	the	Overview's	step	9	in	with	the	above,	but
(as	many	of	you	know)	the	Component	Rules	are	very	near	and	dear	to
my	heart.		Follow	my	standard	template	for	organizing	your	product	and
you'll	naturally	have	to	put	each	resource-only	DLL	in	its	own
Component.		More	importantly	you	will	only	need	to	put	the	non-localized
executables	in	their	own	Components.		If	you	had	localized	text	in	the
executables,	you'd	be	in	the	unfortunate	position	of	needing	to	create
different	Components	to	install	the	different	language	versions	of	the	file
even	though	they	would	all	get	installed	to	the	same	location	(a
Component	Rule	violation).		Also,	as	mentioned	above,	with	this	product
layout	I'll	be	able	to	demonstrate	some	interesting	advanced	install	tricks.

Finally,	all	that	is	left	now	is	the	real	localization	work	(steps	3	and	4	from
the	Overview).		I	know	this	is	something	of	a	let	down	after	such	a	long
blog	entry,	but	I'm	going	to	save	the	details	of	how	the	WiX	toolset	can
help	with	the	localization	process	for	later.		My	hope	is	to	re-finish	(er,
"un-break")	the	localization	features	in	the	WiX	toolset	tomorrow	night.	
Then	I	will	try	to	write	the	step-by-step	process	using	the	WiX	toolset
using	a	really	simple	example.		Some	time	after	that,	I'll	create	a	more
complicated	example	that	takes	advantage	of	some	of	those	advanced
tricks	I	was	talking	about.

Until	next	time,	take	a	look	at	this	localization	example	from	the	Windows
Installer	SDK,	and	keep	coding.		You	know	I	am.

Copyright	©	Rob	Mensching

http://apache.airnet.com.au/~fastinfo/microwave/cd/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/checking_the_installation_database_code_page.asp


Creating	localized	MSI	files	using	WiX
toolset	and	.wxl	files.
Tonight	we	pick	up	where	I	left	off	last	week	and	continue	with	the	topic	of
localizing	your	MSI	file.		If	you	haven't	read	last	week's	blog	entry,	you
should	do	that	now.		Yes,	it's	pretty	long.		Don't	worry	I'll	wait.		There's
lots	of	good	background	information	in	there.

Great,	I	want	to	cover	a	couple	more	things	before	we	really	get	started.	
First,	just	like	in	my	previous	blog	entry	all	of	the	information	presented
here	works	equally	well	for	Merge	Modules	(MSM	files)	as	it	does	for	MSI
files.		I'll	be	using	an	MSI	file	in	my	example	and	I'll	use	the	words	"MSI
file"	a	lot	(that's	how	I	get	such	a	high	page	rank	for	Windows	Installer
stuff...	just	kidding)	because	I'm	lazy	and	get	tired	of	writing	MSI/MSM
file.		Second,	I	am	using	the	latest	build	of	the	WiX	toolset	v2.0.2328.0	in
my	examples.		This	is	important	because,	as	you'll	note	in	the	release
notes,	I	fixed	many	localization	issues	with	this	release	of	the	toolset.		If
you	want	to	follow	along,	be	sure	you	have	a	recent	version	of	the	WiX
toolset.

Today	there	are	really	two	ways	to	localize	your	MSI	file.		Step	3	and	step
4	of	the	Localization	Example	in	the	Windows	Installer	SDK	that	I	pointed
at	last	week	demonstrate	those	two	methods.		First,	you	can	export	your
MSI	file's	tables	to	IDT	file	format,	localize	that	text	file	then	import	the
IDT	file	back	into	your	MSI.		This	method	is	the	fastest	way	to	update
information	in	your	MSI	file.		However,	it	also	requires	the	most	care
because	you	must	ensure	the	codepage	of	the	IDT	file	matches	the
codepage	of	the	MSI	file	or	the	import	will	fail	with	terribly	helpful	error
messages	like,	"Failed	to	import	your	IDT	file	for	some	reason.		Have	a
nice	day"	(note:	::MsiGetLastErrorRecord()	will	give	you	more	information
about	the	error	but	it	rarely	gives	you	the	exact	answer	to	the	issue).		It	is
interesting	to	note	that	the	remarks	in	::MsiDatabaseImport()	function
discourage	using	this	method	for	updating	your	MSI	file	because	of	the
codepage	and	other	IDT	encoding	issues	(like	tabs	and	carriage	returns).

The	second	way	to	localize	data	in	your	MSI	file	is	to	use	the	Windows
Installer	SQL	Syntax	to	update	the	appropriate	columns.		This	method	is
arguably	easier	than	the	previous	method	because	you	don't	have	to

http://blogs.msdn.com/robmen/archive/2004/11/30/272141.aspx
http://blogs.msdn.com/robmen/archive/2004/11/22/268343.aspx
http://wix.sourceforge.net/
http://sourceforge.net/project/showfiles.php?group_id=105970&package_id=114109&release_id=286109
http://sourceforge.net/project/shownotes.php?release_id=286109
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/importing_localized_error_and_actiontext_tables.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/localizing_database_columns.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/a_localization_example.asp
http://msdn.microsoft.com/library/en-us/msi/setup/msigetlasterrorrecord.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabaseimport.asp
http://msdn.microsoft.com/library/en-us/msi/setup/sql_syntax.asp


worry	about	encoding	tabs	or	carriage	returns	and	the	APIs	will	attempt
to	encode	your	text	the	best	it	can	to	match	the	MSI	file's	current
codepage.		Unfortunately,	this	method	is	also	slower	than	the	previous
method	because	the	Windows	Installer	SQL	processor	is	not	particularly
speedy.

So	how	about	a	solution	that	provides	you,	the	setup	developer,	with	the
fastest	method	to	create	localized	MSI	files	without	needing	to	worry	too
much	about	encoding	all	of	your	data	in	IDT	files	correctly?		What	if	all
you	needed	to	do	was	to	provide	the	localized	data	and	the	codepage	for
that	data	(codepage	is	still	necessary	because	I	don't	know	how	to	look
at	several	random	strings	of	text	and	accurately	reverse	engineer	the
codepage	from	them)?		What	if	you	could	actually	compile	all	of	your
source	code	files	once	then	only	link	the	object	files	together	once	for
each	language?		How?		Well	with	the	WiX	toolset,	of	course.

Admittedly,	the	WiX	toolset's	localization	features	are	some	of	the	least
documented	features	in	the	WiX	toolset.		In	fact,	the	only	documentation
is	WiX	Localization	file,	.wxl	files,	schema	(wixloc.xsd)	and	the	code	in
light.cs	that	processes	the	.wxl	files.		So	I'm	here	now	to	turn	that	all
around	with	a	step-by-step	example.

Let's	look	at	a	small	example	source	file	that	installs	a	simple	file	with	a
shortcut.		Let's	call	this	source	file	"example.wxs":

	<?xml	version='1.0'?>

	<Wix	xmlns='http:/	/	schemas.microsoft.com/wix/2003/01/wi'>

			<Product	Id='????????-????-????-????-????????????'	Name='ExampleProduct'	

												Language='1033'	Version='1.0.0.0'	Manufacturer='Microsoft	Corporation'>

						<Package	Id='????????-????-????-????-????????????'	

															Description='Example	Description	for	Product'	

															Comments='Example	Product	to	demonstrate	localized	Data'	

															InstallerVersion='200'	Compressed='yes'	/>

						<Media	Id='1'	Cabinet='product.cab'	EmbedCab='yes'	/>

						<Directory	Id='TARGETDIR'	Name='SourceDir'>

									<Directory	Id='ProgramFilesFolder'	Name='PFiles'>

												<Directory	Id='EXAMPLEDIR'	Name='example'	LongName='Example	Directory'>

															<Directory	Id='LangDir'	Name='1033'>

																		<Component	Id='ExampleComponent'	Guid='PUT-GUID-HERE'	DiskId='1'>

																					<File	Id='ExampleFile'	Name='example.txt'	src='example.txt'>

																								<Shortcut	Id='ExampleShortcut'	

																																		Directory='ProgramMenuFolder'

																																		Name='Example'	LongName='Example	Shortcut'

																																		Description='Shortcut	to	example.txt'/>

http://wix.sourceforge.net/


																					</File>

																		</Component>

															</Directory>

												</Directory>

									</Directory>

									<Directory	Id='ProgramMenuFolder'	Name='ProgMenu'/>

						</Directory>

						<Feature	Id='ExampleFeature'	Title='Example	Feature	for	Product'	Level='1'>

									<ComponentRef	Id='ExampleComponent'	/>

						</Feature>

			</Product>

	</Wix>

	

Note,	to	compile	the	code	above	with	candle.exe,	you'll	need	to	replace
"PUT-GUID-HERE"	with	your	own	GUID.		I	don't	provide	GUIDs	in	my
examples	because	people	like	to	copy	the	examples	then	forget	to
change	the	GUID	before	shipping.		Of	course,	that	would	be	an
immediate	Component	Rule	violation	and	I	don't	want	to	be	responsible
for	that.		Also,	before	we	can	link	that	code	with	light.exe,	we'll	need	to
create	a	text	file	called,	"example.txt".		Here's	what	my	example.txt	file
looks	like:

	Each	day	is	a	gift,	that's	why	we	call	it	the	present.

	

Okay,	after	creating	example.wxs	(and	adding	your	own	GUID)	and
creating	example.txt,	you	should	be	able	to	create	an	"example.msi"	file
by	compiling	and	linking	the	files	like	so:

	C:\wix>candle	example.wxs

	Microsoft	(R)	Windows	Installer	Xml	Compiler	version	2.0.2328.0

	Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

	

	example.wxs

	

	C:\wix>light	example.wixobj

	Microsoft	(R)	Windows	Installer	Xml	Linker	version	2.0.2328.0

	Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

	

	C:\wix>

	

As	always,	no	news	from	light.exe	is	good	news.		You	can	install	the
newly	created	MSI	file	using	"msiexec	/i	example.msi"	and	should	notice

http://blogs.msdn.com/robmen/archive/2003/10/18/56497.aspx


a	new	shortcut	in	your	ProgramMenuFolder	("Start"	->	"All	Programs"	on
Windows	XP).		But	I'm	sure	for	you	old	WiX	toolset	hacks	out	there	this
example	is	boring.		So,	let's	get	to	localizing.	

If	you	used	the	preprocessor,	you	are	already	familiar	with	$(var.VAR)	for
defined	variables	and	$(env.VAR)	for	environment	variables.		Localization
in	the	WiX	toolset	is	done	by	inserting	"localization	variables".	
Localization	variables	look	like	$(loc.VAR).		Let's	look	at	our	modified
source	file:

	<?xml	version='1.0'?>

	<Wix	xmlns='http://schemas.microsoft.com/wix/2003/01/wi'>

			<Product	Id='????????-????-????-????-????????????'	Name='ExampleProduct'	

												Language='$(loc.LANG)'	Version='1.0.0.0'	Manufacturer='Microsoft	Corporation'>

						<Package	Id='????????-????-????-????-????????????'	

															Description='$(loc.Description)'	

															Comments='$(loc.Comments)'	

															InstallerVersion='200'	Compressed='yes'	/>

						<Media	Id='1'	Cabinet='product.cab'	EmbedCab='yes'	/>

						<Directory	Id='TARGETDIR'	Name='SourceDir'>

									<Directory	Id='ProgramFilesFolder'	Name='PFiles'>

												<Directory	Id='EXAMPLEDIR'	Name='$(loc.ShortDirName)'	LongName='$(loc.LongDirName)'>

															<Directory	Id='LangDir'	Name='$(loc.LANG)'>

																		<Component	Id='ExampleComponent'	Guid='PUT-GUID-HERE'	DiskId='1'>

																					<File	Id='ExampleFile'	Name='$(loc.FileName)'	src='example.txt'>

																								<Shortcut	Id='ExampleShortcut'	

																																		Directory='ProgramMenuFolder'

																																		Name='Example'	LongName='$(loc.ShortShortcutName)'

																																		Description='$(loc.LongShortcutName)'/>

																					</File>

																		</Component>

															</Directory>

												</Directory>

									</Directory>

									<Directory	Id='ProgramMenuFolder'	Name='ProgMenu'/>

						</Directory>

						<Feature	Id='ExampleFeature'	Title='$(loc.FeatureTitle)'	Level='1'>

									<ComponentRef	Id='ExampleComponent'	/>

						</Feature>

			</Product>

	</Wix>

	

You	should	again	be	able	to	compile	that	file	but	if	you	try	to	link	you
should	see	error	messages	such	as,	"light.exe	:	fatal	error	LGHT0023:
Localization	string		'FeatureTitle'	unknown.		Ensure	that	the



$(loc.FeatureTitle)	is	defined."		That	error	message	basically	means	we
did	not	provide	a	Localization	file	with	all	of	the	localizable	identifiers	and
text.		So,	now	we	need	to	create	our	first	.wxl	file.		I've	called	mine
example1033.wxl	and	it	goes	a	little	like	this:

	<?xml	version='1.0'?>

	<WixLocalization	xmlns='http://schemas.microsoft.com/wix/2003/01/localization'	Codepage='1252'>

			<String	Id='LANG'>1033</String>

			<String	Id='Description'>Example	Description	for	Product</String>

			<String	Id='Comments'>Example	Product	to	demonstrate	localized	Data</String>

			<String	Id='ShortDirName'>example</String>

			<String	Id='LongDirName'>Example	Directory</String>

			<String	Id='Filename'>example.txt</String>

			<String	Id='ShortShortcutName'>Example</String>

			<String	Id='LongShortcutName'>Shortcut	to	example.txt</String>

			<String	Id='FeatureTitle'>Example	Feature	for	Product</String>

	</WixLocalization>

	

Now,	to	get	our	MSI	file	back.
	

	C:\wix>candle	example.wxs

	Microsoft	(R)	Windows	Installer	Xml	Compiler	version	2.0.2328.0

	Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

	

	example.wxs

	

	C:\wix>light	example.wixobj	-loc	example1033.wxl

	Microsoft	(R)	Windows	Installer	Xml	Linker	version	2.0.2328.0

	Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

	

	C:\wix>

	

I	want	to	note	that	(barring	any	typos)	this	MSI	file	should	be	identical	to
the	first	MSI	file	we	created.		I	also	want	to	note	that	this	will	be	the	last
time	we	compile	the	example.wxs.		Since	we	have	specified	all	of	our
localization	variables	we	no	longer	need	to	compile	to	get	changes	in	our
MSI	file.		All	we	need	to	do	localize	our	example1033.wxl	file	into	other
languages.		Since,	I	don't	know	any	other	languages,	I'm	going	to	localize
our	example1033.wxl	file	into	the	"Foo	language"	and	use	the	Japanese
LCID,	1041,	since	I	happen	to	remember	that	one.		Here's	the
example1041.wxl	file	localized	into	the	"Foo	language":



	<?xml	version='1.0'?>

	<WixLocalization	xmlns='http://schemas.microsoft.com/wix/2003/01/localization'	Codepage='932'>

			<String	Id='LANGID'>1041</String>

			<String	Id='Description'>Foo	Foo	foo	Foo</String>

			<String	Id='Comments'>Foo	Foo	foo	foo	foo	Foo</String>

			<String	Id='ShortDirName'>Foo</String>

			<String	Id='LongDirName'>Foo	Foo</String>

			<String	Id='Filename'>foo.txt</String>

			<String	Id='ShortShortcutName'>Foo</String>

			<String	Id='LongShortcutName'>Foo	foo	foo.txt</String>

			<String	Id='FeatureTitle'>Foo	Foo	foo	Foo</String>

	</WixLocalization>

	

Notice	how	elegant	the	"Foo	language"	is.		The	elegance	really	is	lost	in
text	format.		So	much	of	the	"Foo	language"	is	transmitted	via	the	pitch
and	duration	of	each	word.		But	I	digress.		Let's	build	our	"Foo	language"
example.msi	file.		This	will	just	stomp	over	our	previous	example.msi	so
make	sure	you	uninstall	the	previous	example.msi	file	using	"msiexec	/x
example.msi"	(or	you'll	have	to	go	to	Control	Panel	->	Add/Remove
Programs).		Let's	link	(and	only	link)	our	MSI	file:

	C:\wix>light	example.wixobj	-loc	example1041.wxl

	Microsoft	(R)	Windows	Installer	Xml	Linker	version	2.0.2328.0

	Copyright	(C)	Microsoft	Corporation	2003.	All	rights	reserved.

	

	C:\wix>

	

Now	if	you	install	the	MSI	file	you	are	likely	to	see	square	boxes	for	the
ActionText	during	the	progress	dialog	box.		I	believe	this	occurs	when	you
don't	have	the	Japanese	fonts	necessary	to	display	the	Windows
Installer's	default	text	messages.		In	any	case,	I	don't	have	Japanese
fonts	installed	on	my	machine	so	I	see	square	boxes.		However,	square
boxes	or	no	square	boxes	everything	should	install	just	fine.		After
installing,	you	too	should	see	a	"Foo"	shortcut	in	your
ProgramMenuFolder.

That's	all	there	is	to	.wxl	files.		Hopefully,	you	can	see	how	the
Localization	files	can	greatly	simplify	the	relationship	between	you,	your
localizers,	and	your	setup.		I	would	also	like	to	note	that	.wxl	files	are
relatively	new	constructs	in	the	WiX	toolset	so	if	you	have	suggestions
how	to	improve	them	please	feel	free	to	send	your	feedback	to	the	"wix-



devs	at	sourceforge.net"	mailing	list.

And	that	brings	me	to	my	final	point.		There	is	one	very	fatal	flaw	in	the
code	above.		I	debated	delaying	this	blog	entry	to	fix	the	issue	but
decided	the	content	here	was	valuable	even	with	the	mistake.		Have	you
found	it	yet?		Look	closely	at	the	Component/@Guid	attribute.		Did	that
value	change	each	time	you	created	a	completely	different	Component
like	the	step	9	in	the	Localization	Overview	suggests?		Probably	not
because	you	can't	currently	localize	GUID	values	as	described	by	this
bug	on	SourceForge.		However,	the	value	should	change	because	you
have	very	different	Shortcuts	in	the	two	Components	(and	the
example.txt	file	is	installed	to	different	locations	so	there	is	no	overlap).	
So,	I	apologize	profusely	for	creating	an	example	that	violates	the
Component	Rules	and	I	will	fix	the	bug	ASAP.

In	the	meantime,	have	fun	playing	with	your	.wxl	files	and	keep	coding.

Copyright	©	Rob	Mensching

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/localizing_a_windows_installer_package.asp
http://sourceforge.net/tracker/index.php?func=detail&aid=1075824&group_id=105970&atid=642714
http://blogs.msdn.com/robmen/archive/2003/10/18/56497.aspx


Getting	Help
Please	see	sourceforge.net/projects/wix	for	more	information.

http://sourceforge.net/projects/wix


YesNoType	(Simple	Type)

Description

Values	of	this	type	will	either	be	"yes"	or	"no".

Enumeration	Type
Possible	values:	{no,	yes}

See	Also
Wix	Schema



uuid	(Simple	Type)

Description

Values	of	this	type	will	look	like:	"01234567-89AB-CDEF-0123-
456789ABCDEF"	or	"{01234567-89AB-CDEF-0123-
456789ABCDEF}".

Pattern	Type
Must	match	the	regular	expression:	'[{(]?[0-9A-Fa-f]{8}\-?[0-9A-Fa-f]
{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{12}[})]?'.

See	Also
Wix	Schema



ModularizeType	(Simple	Type)

Description

None

Enumeration	Type
Possible	values:	{None,	Column,	Property,	Condition,
CompanionFile,	SemicolonDelimited}

See	Also
Wix	Schema



ComponentGuid	(Simple	Type)

Description

Values	of	this	type	will	look	like:	"01234567-89AB-CDEF-0123-
456789ABCDEF"	or	"{01234567-89AB-CDEF-0123-
456789ABCDEF}",	but	also	allows	"PUT-GUID-HERE"	for	use	in
examples.	It's	also	possible	to	have	an	empty	value	"".

Pattern	Type
Must	match	the	regular	expression:	'[{(]?[0-9A-Fa-f]{8}\-?[0-9A-Fa-f]
{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{12}[})]?|PUT\-
GUID\-HERE|'.

See	Also
Wix	Schema



LocalizableInteger	(Simple	Type)

Description

Values	of	this	type	must	be	an	integer	or	the	value	can	be	a
localization	variable	with	the	format	$(loc.VARIABLE).

Pattern	Type
Must	match	the	regular	expression:	'[0-9][0-9]*|\$\(loc\.[_A-Za-z][0-
9A-Za-z_]*\)'.

See	Also
Wix	Schema



LongFileNameType	(Simple	Type)

Description

Values	of	this	type	will	look	like:	"Long	File	Name.extension".	The
following	characters	are	not	allowed:	\	?	|	>	:	/	*	"	or	less-than.	The
name	must	be	shorter	than	260	characters.	The	value	could	also	be
a	localization	variable	with	the	format	$(loc.VARIABLE).

Pattern	Type
Must	match	the	regular	expression:	'[^\\\?|><:/\*"]{1,259}|\$\(loc\.[_A-
Za-z][0-9A-Za-z_.]*\)'.

See	Also
Wix	Schema



ShortFileNameType	(Simple	Type)

Description

Values	of	this	type	will	look	like:	"FileName.ext".	The	following
characters	are	not	allowed:	\	?	|	>	:	/	*	"	+	,	;	=	[	]	less-than,	or
whitespace.	The	name	cannot	be	longer	than	8	characters	and	the
extension	cannot	exceed	3	characters.	The	value	could	also	be	a
localization	variable	with	the	format	$(loc.VARIABLE).

Pattern	Type
Must	match	the	regular	expression:	'[^\\\?|><:/\*"\+,;=\[\]	]{1,8}(\.[^\\\?
|><:/\*"\+,;=\[\]	]{0,3})?|\$\(loc\.[_A-Za-z][0-9A-Za-z_.]*\)'.

See	Also
Wix	Schema



WildCardLongFileNameType	(Simple
Type)

Description

Values	of	this	type	will	look	like:	"Long	File	N?me.extension*".	The
following	characters	are	not	allowed:	\	|	>	:	/	"	or	less-than.	The	name
must	be	shorter	than	260	characters.	The	value	could	also	be	a
localization	variable	with	the	format	$(loc.VARIABLE).

Pattern	Type
Must	match	the	regular	expression:	'[^\\\|><:/"]{1,259}|\$\(loc\.[_A-Za-
z][0-9A-Za-z_.]*\)'.

See	Also
Wix	Schema



YesNoDefaultType	(Simple	Type)

Description

Values	of	this	type	will	either	be	"default",	"yes",	or	"no".

Enumeration	Type
Possible	values:	{default,	no,	yes}

See	Also
Wix	Schema



HexType	(Simple	Type)

Description

This	type	supports	any	hexadecimal	number.	Both	upper	and	lower
case	is	acceptable	for	letters	appearing	in	the	number.	This	type	also
includes	the	empty	string:	"".

Pattern	Type
Must	match	the	regular	expression:	'[0-9A-Fa-f]*'.

See	Also
Wix	Schema



autogenuuid	(Simple	Type)

Description

Values	of	this	type	will	look	like:	"01234567-89AB-CDEF-0123-
456789ABCDEF"	or	"{01234567-89AB-CDEF-0123-
456789ABCDEF}".	A	GUID	can	be	auto-generated	by	writing	all
question	marks	like	this:	"????????-????-????-????-
????????????".	Also	allows	"PUT-GUID-HERE"	for	use	in
examples.

Pattern	Type
Must	match	the	regular	expression:	'[{(]?[0-9A-Fa-f]{8}\-?[0-9A-Fa-f]
{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{12}[})]?|[{(]?\?{8}\-
\?{4}\-\?{4}\-\?{4}\-\?{12}[})]?|PUT\-GUID\-HERE'.

See	Also
Wix	Schema



WildCardShortFileNameType	(Simple
Type)

Description

Values	of	this	type	will	look	like:	"File?.*".	The	following	characters
are	not	allowed:	\	|	>	:	/	"	+	,	;	=	[	]	less-than,	or	whitespace.	The
name	cannot	be	longer	than	8	characters	and	the	extension	cannot
exceed	3	characters.	The	value	could	also	be	a	localization	variable
with	the	format	$(loc.VARIABLE).

Pattern	Type
Must	match	the	regular	expression:	'[^\\\|><:/"\+,;=\[\]	]{1,8}(\.[^\\\|>
<:/"\+,;=\[\]	]{0,3})?|\$\(loc\.[_A-Za-z][0-9A-Za-z_.]*\)'.

See	Also
Wix	Schema



PercentType	(Simple	Type)

Description

Values	of	this	type	are	any	integers	between	0	and	100,	inclusive.

xs:nonNegativeInteger	Type
xs:maxInclusive	value='100'

See	Also
Wix	Schema



VersionType	(Simple	Type)

Description

Values	of	this	type	will	look	like:	"x.x.x.x"	where	x	is	an	integer	from	0
to	65534.

Pattern	Type
Must	match	the	regular	expression:	'(\d{1,5}\.){3}\d{1,5}'.

See	Also
Wix	Schema



uuid	(Simple	Type)

Description

Values	of	this	type	will	look	like:	"01234567-89AB-CDEF-0123-
456789ABCDEF"	or	"{01234567-89AB-CDEF-0123-
456789ABCDEF}".

Pattern	Type
Must	match	the	regular	expression:	'[{(]?[0-9A-Fa-f]{8}\-?[0-9A-Fa-f]
{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{12}[})]?'.

See	Also
Mmc	Schema



YesNoType	(Simple	Type)

Description

Values	of	this	type	will	either	be	"yes"	or	"no".

Enumeration	Type
Possible	values:	{no,	yes}

See	Also
Netfx	Schema



YesNoType	(Simple	Type)

Description

Values	of	this	type	will	either	be	"yes"	or	"no".

Enumeration	Type
Possible	values:	{no,	yes}

See	Also
Pubca	Schema



uuid	(Simple	Type)

Description

Values	of	this	type	will	look	like:	"01234567-89AB-CDEF-0123-
456789ABCDEF".

Pattern	Type
Must	match	the	regular	expression:	'[0-9A-Fa-f]{8}\-?[0-9A-Fa-f]{4}\-?
[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{4}\-?[0-9A-Fa-f]{12}'.

See	Also
Pubca	Schema


	WiX Help
	Overview
	Authoring
	Getting Started
	First wxs File
	Creating Merge Modules
	Adding Custom Actions
	Msi Tables to WiX Schema
	WiX Online Tutorials

	WiX Standard CustomActions
	Using Server CustomActions
	Performance Counter CustomAction
	Quiet Execution CustomAction

	Extensions
	Patch Building
	Using the WixUI dialog library
	Wix Schema
	AdminExecuteSequence Element
	AdminUISequence Element
	AdvertiseExecuteSequence Element
	AllocateRegistrySpace Element
	AppData Element
	AppId Element
	AppSearch Element
	AssemblyName Element
	Billboard Element
	BillboardAction Element
	Binary Element
	BindImage Element
	Category Element
	CCPSearch Element
	Certificate Element
	CertificateRef Element
	Class Element
	Column Element
	ComboBox Element
	ComplianceCheck Element
	ComplianceDrive Element
	Component Element
	ComponentGroup Element
	ComponentGroupRef Element
	ComponentRef Element
	ComponentSearch Element
	Condition Element
	Configuration Element
	ConfigurationData Element
	Control Element
	CopyFile Element
	CostFinalize Element
	CostInitialize Element
	CreateFolder Element
	CreateFolders Element
	CreateShortcuts Element
	Custom Element
	CustomAction Element
	CustomActionRef Element
	CustomProperty Element
	CustomTable Element
	Data Element
	DeleteServices Element
	Dependency Element
	Dialog Element
	DialogRef Element
	DigitalCertificate Element
	DigitalSignature Element
	Directory Element
	DirectoryRef Element
	DirectorySearch Element
	DirectorySearchRef Element
	DisableRollback Element
	DuplicateFiles Element
	EnsureTable Element
	Environment Element
	Error Element
	Exclusion Element
	ExecuteAction Element
	Extension Element
	ExternalFile Element
	Family Element
	Feature Element
	FeatureRef Element
	File Element
	FileCost Element
	FileSearch Element
	FileSearchRef Element
	FileShare Element
	FileTypeMask Element
	FindRelatedProducts Element
	ForceReboot Element
	Fragment Element
	FragmentRef Element
	Group Element
	GroupRef Element
	HttpHeader Element
	Icon Element
	IgnoreModularization Element
	IgnoreRange Element
	Include Element
	IniFile Element
	IniFileSearch Element
	InstallAdminPackage Element
	InstallExecute Element
	InstallExecuteAgain Element
	InstallExecuteSequence Element
	InstallFiles Element
	InstallFinalize Element
	InstallInitialize Element
	InstallODBC Element
	InstallServices Element
	InstallUISequence Element
	InstallValidate Element
	Interface Element
	IsolateComponent Element
	IsolateComponents Element
	LaunchConditions Element
	ListBox Element
	ListItem Element
	ListView Element
	Media Element
	Merge Element
	MergeRef Element
	MigrateFeatureStates Element
	MIME Element
	MimeMap Element
	Module Element
	MoveFiles Element
	MsiPublishAssemblies Element
	MsiUnpublishAssemblies Element
	ODBCDataSource Element
	ODBCDriver Element
	ODBCTranslator Element
	Package Element
	Patch Element
	PatchCertificates Element
	PatchCreation Element
	PatchFiles Element
	PatchInformation Element
	PatchMetadata Element
	PatchPackage Element
	PatchProperty Element
	PatchSequence Element
	PerfCounter Element
	Permission Element
	ProcessComponents Element
	Product Element
	ProgId Element
	ProgressText Element
	Property Element
	PropertyRef Element
	ProtectFile Element
	ProtectRange Element
	Publish Element
	PublishComponents Element
	PublishFeatures Element
	PublishProduct Element
	RadioButton Element
	RadioButtonGroup Element
	RecycleTime Element
	RegisterClassInfo Element
	RegisterComPlus Element
	RegisterExtensionInfo Element
	RegisterFonts Element
	RegisterMIMEInfo Element
	RegisterProduct Element
	RegisterProgIdInfo Element
	RegisterTypeLibraries Element
	RegisterUser Element
	Registry Element
	RegistrySearch Element
	RegistrySearchRef Element
	RegistryValue Element
	RemoveDuplicateFiles Element
	RemoveEnvironmentStrings Element
	RemoveExistingProducts Element
	RemoveFile Element
	RemoveFiles Element
	RemoveFolder Element
	RemoveFolders Element
	RemoveIniValues Element
	RemoveODBC Element
	RemoveRegistryValues Element
	RemoveShortcuts Element
	ReplacePatch Element
	ReserveCost Element
	ResolveSource Element
	RMCCPSearch Element
	Row Element
	ScheduleReboot Element
	SelfRegModules Element
	SelfUnregModules Element
	ServiceArgument Element
	ServiceConfig Element
	ServiceControl Element
	ServiceDependency Element
	ServiceInstall Element
	SetODBCFolders Element
	SFPCatalog Element
	SFPFile Element
	Shortcut Element
	Show Element
	SqlDatabase Element
	SqlFileSpec Element
	SqlLogFileSpec Element
	SqlScript Element
	SqlString Element
	StartServices Element
	StopServices Element
	Subscribe Element
	Substitution Element
	SymbolPath Element
	TargetFile Element
	TargetImage Element
	TargetProductCode Element
	Text Element
	TextStyle Element
	TypeLib Element
	UI Element
	UIRef Element
	UIText Element
	UnpublishComponents Element
	UnpublishFeatures Element
	UnregisterClassInfo Element
	UnregisterComPlus Element
	UnregisterExtensionInfo Element
	UnregisterFonts Element
	UnregisterMIMEInfo Element
	UnregisterProgIdInfo Element
	UnregisterTypeLibraries Element
	Upgrade Element
	UpgradeFile Element
	UpgradeImage Element
	UpgradeVersion Element
	User Element
	ValidateProductID Element
	Verb Element
	WebAddress Element
	WebApplication Element
	WebApplicationExtension Element
	WebAppPool Element
	WebDir Element
	WebDirProperties Element
	WebError Element
	WebFilter Element
	WebLog Element
	WebProperty Element
	WebServiceExtension Element
	WebSite Element
	WebVirtualDir Element
	Wix Element
	WriteEnvironmentStrings Element
	WriteIniValues Element
	WriteRegistryValues Element
	XmlFile Element

	Mmc Schema
	ExtendedNodeType Element
	PublishedNodeType Element
	Resources Element
	SnapIn Element

	Netfx Schema
	NativeImage Element

	Vs Schema
	HelpCollection Element
	HelpCollectionRef Element
	HelpFile Element
	HelpFileRef Element
	HelpFilter Element
	HelpFilterRef Element
	PlugCollectionInto Element

	Pubca Schema
	ComPlusApplication Element
	ComPlusApplicationRole Element
	ComPlusAssembly Element
	ComPlusAssemblyDependency Element
	ComPlusComponent Element
	ComPlusGroupInApplicationRole Element
	ComPlusGroupInPartitionRole Element
	ComPlusInterface Element
	ComPlusMethod Element
	ComPlusPartition Element
	ComPlusPartitionRole Element
	ComPlusPartitionUser Element
	ComPlusRoleForComponent Element
	ComPlusRoleForInterface Element
	ComPlusRoleForMethod Element
	ComPlusSubscription Element
	ComPlusUserInApplicationRole Element
	ComPlusUserInPartitionRole Element
	MessageQueue Element
	MessageQueuePermission Element


	Tools
	Preprocessor
	Compiler (candle)
	Linker (light)
	Decompiler (dark)
	Visual Studio Package (votive)

	Files
	Include Files (.wxi)
	Source Files (.wxs)
	Object Files (.wixobj)
	Installation Packages (.msi)
	Merge Modules (.msm)

	Blogs
	Rob Mensching - when setup isn't just xcopy
	2004/04/05 - Windows Installer XML (WiX) toolset has released as Open Source on SourceForge.net.
	2004/04/14 - So you want to be a Windows Installer XML developer?
	2004/05/11 - Sections, Symbols and References in the Windows Installer XML (WiX) toolset.
	2004/05/16 - My philsophical musings about building setup for software.
	2004/05/20 - VBScript (and Jscript) MSI CustomActions suck.
	2004/11/22 - Localization and your MSI file.
	2004/11/30 - Creating localized MSI files using WiX toolset and .wxl files.


	Getting Help


