;g- ; Features overview

Introduction

Virtual Treeview is a tree view control built from ground up.
More than 3 years of development made it one of the most
flexible and advanced tree controls available today. Virtual
Treeview starts off with the claim to improve many aspects of
existing solutions and introduces some new technologies and
priniciples which were not available before.

As the name already indicates, this control uses a different
paradigm for tree management than other controls of this kind.
It does not know anything about the data it manages (except
its size), not even the captions of a node. Everything is
retrieved from the application via events (or descendants via
overridden methods).

Virtual Treeview has been carefully designed and thoroughly
tested. The control proved its concept as well as everyday
fithess already in many commercial products and freeware
projects.

Fils name T
1) Deshiop mjmmm @mwm . @wmm.
+ JM\" Eigen ,3 Arabic 1exs ,3 Greek vext pan 1 ,3
= E'J.. Dioge
= e Arahic bext 0 A Exhoyi oo boparh A1 X
: g : | Arabic text 1 [Amefivoe o Midweg S . ozl DY
o B o e | Arahic bext 2 A Merapdoygouon yepiod o ol adlalh s A
= &c B : 5 : .
¥ =W A Arahic text 3 A Zdpmo, khbou, pam il 3 x|
= (= 542 | Hebrew texts A Groek text part 2 ™
a | Habeew text (] A sompdda ng ovangt; 10w Y 1
E 3 Hisbiw 1&x1 1 3 Eva wigpym aypeastal Bl A1ED N e = ,3
L& L ik fed 2 A To Népro Ardyps wakel : s B
—
et | Epacn Siyhus COLOR BO0E... 0 Fis
29 HP Officelet G Series 0 Fie
& HP Officelet G Series Fa 0 Fis
4] Engabehilen 0 Fis
3, Energiecphionen 0 Fie
Bl Fau n__Fa i
| | _bl-l
54 viskie fle objects MEINSTEIN\E pson Sttus COLOR BODESC/P 2

Virtual Treeview can be characterized by the following core
capabilities:

Extremely fast and designed for high speed access.

Memory sparing which is the premise for speed and capacity.

A high capacity control.

Highly customizable.

Designed for professionals, implements a virtual paradigm with

a new serialization concept.

e Newest technologies and platforms are supported (e.g.
Windows XP).

¢ Unique features like Unicode, right-to-left directionality and

layout, alpha blending and OLE drag'n drop and clipboard

operations.

Homepage: www.soft-gems.net

E-Mail: support@soft-gems.net

Support center: support.soft-gems.net

News group: delphi-gems.support.virtualtreeview
Web based forums: support.soft-gems.net/forums

Issue Tracker: support.soft-gems.net/mantis

What do you think about this topic? Send feedback!

http://www.soft-gems.net
mailto:support@soft-gems.net
http://support.soft-gems.net
news://news.soft-gems.net/delphi-gems.support.virtualtreeview
http://support.soft-gems.net/forums
http://support.soft-gems.net/mantis

{5 Introduction | Installation

Features overview

m
| TCustomVirtualDrawTree | | TCustomVirtualstringTree | | TCustomStringTreeOptions | | TvirtualTreeOptions |
\ \ \
| TvirtualbrawTree | | TvirtualstringTree | | TstringTreeOptions |
Virtual Treeview base hierarchy Virtual Tree Options hierarchy

Virtual Treeview is "pure VCL" which means it is not based on
any of the system controls but was written from scratch. As
the name already indicates, this control uses a different
paradigm for tree management than other controls of this kind.
It does not know anything about the data it manages (except
its size), not even the captions of a node. Everything is
retrieved from the application via events (or descendants via
overridden methods). Virtual Treeview has been carefully
designed and thoroughly tested. The control proved its
concept as well as everyday fithess already in many
commercial products and freeware projects.The following list
summarizes in categories the most important features:

o General

Virtual Treeview is extremely fast. Adding one million nodes takes
only 700 milliseconds* ! This makes it currently the fastest treeview
publicly available on the Delphi/BCB market.

Virtual Treeview has a very small memory foot print. By only
allocating about 60 bytes per node (in the string tree, the base tree
uses only 56 bytes) it is well prepared to hold a million of them.
Virtual Treeview is optimized for high speed access. It takes as
few as 0.5 seconds to traverse one million nodes* depending on
needed validation and node validation states.

Multiselection is supported, including constrained selection so
that only nodes of a certain initial level can be selected. A lot of
effort has been put into the development of effective algorithms
e.g. to allow for modifying an already large selection set still
interactively.

Drawing the entire tree to a bitmap or the printer is supported by
the central PaintTree method. The messages WM_PRINT and
WM_PRINTCLIENT are handled correctly which allow things like
drawing a tree into a bitmap (e.g. for layered windows or to
implement animated drop down of controls which use VT as drop
down control).

There is an OnHint event to display node specific hints.

There is an OnGetHelpContext event to retrieve node specific
help context IDs. This includes automatic tree and window parent
control traversal as is invoked when the user pressed F1

There is an OnGetPopupMenu event to retrieve node specific
popup menus, includes automatic tree traversal.

Middle and right mouse buttons can be used in addition to the
left button and support everything which is possible with the left
button (dragging, selection etc.). These alternative buttons can be
switched, of course.

A fixed background image can be used in the tree and can be
given a certain offset, e.g. to simulate shared backgrounds.

Hot style for nodes is supported (just like links in a browser

window). A special cursor can be assigned for this task.

String trees support so called static text which appears after a
node's caption (in every column) and which can be formatted
differently to the caption but cannot be edited, selected etc.

An auto span column mode is supported which allows a column
to take up more space for its caption if there are empty columns to
its right. This avoids clipping of long captions but still allows using
multiple columns.

A node can be selected in every column (this is switchable) as
well as edited, making Virtual Treeview some kind of a grid too.
The tabulator key can be used to switch the focus between cells. A
special option (toGridExtensions) exist to support grid specific
tasks.

Nodes can have individual heights and the vertical alignment of
a node's images and lines can be adjusted individually.

Virtual Treeview exposes its internal states like pending drag or
edit events, multi selection or expanding in progress. Using this
information an application can optimize its code execution (state
updates etc.).

Sorting a node is supported via an application defined compare
call back. Additionally, a tree can be set to auto sort.

Hints can contain multiple lines of text and mirror the alignment
and directionality of the node or column they are displayed for.
For their animation sliding and alpha blending is available.
Incremental search with various options and directions is
available too.

Auto scrolling of the client area happens when the mouse is near
the borders while dragging and draw selecting (multi selection).
Default node height and default node text for string trees can
be used to avoid setting many nodes explicitly to the same start
value.

& Newest
technologies

e For smooth animations (e.g. hint fading) Virtual Treeview uses
hand optimized MMX assembler routines. This code is also used
to draw the translucent selection rectangle in multi selection mode.
This is very much like what Windows 2000 and Windows XP
support but works also on Windows 95/98/Me.

e An alpha blended image of the tree window is shown while doing
drag and drop. On Windows 2000 and Windows XP

and interfaces are
supported which allow for some very neat effects (as used by
Explorer). On older consumer Windows versions the drag image is
simulated by the tree but underlies there some minor limitations.

e Virtual Treeview supports Windows XP themes. It acts properly on
theme changes and uses for all visual elements which are themed
the correct image by using native APIs. Under other Windows
systems these styles are supported by separate legacy code.
Theme awareness can be switched.

o Unicode

. is implemented using Unicodel/wide strings
exclusively.

e The tree saves and reads all Unicode properties (e.g. column
captions, default node text and the like) correctly to/from DFM.

e All Unicode drawing fully supports bidirectionality (i.e. right-to-
left drawing), column alignment (left, center, right) and correctly
aligned hints. Of course also this feature is available on Windows
95/98/Me.

e On Windows NT/2000/XP multiline captions are fully supported (on
Win9x/Me there is limited support).

¢ In order to have also Unicode editing capabilities Virtual
Treeview supports the TNT controls written by Troy Wolbrink. This

support can be enabled via a compiler switch named TntSupport.
You must download and install the TNT package first, however.

& Drag'n drop and clipboard
support

e OLE drag and drop and OLE clipboard transfers are supported
with the tree as source and target. Alternatively, VCL drag'n drop
can still be used for compatibility.

These formats are support by the standard implementation:

¢ Native serialized format (and

), which is a compact form to exchange data
between Virtual Treeviews (also between applications). Two
storage formats are available: HGlobal and IStream.
Plain ANSI text string format.
Plain Unicode text string format.
Rich Text (RTF) string format (with Unicode text).
HTML text string format (UTF-8). This is the preferred clipboard
format for Word 2000 etc. and allows copy and paste tree content
to a word document with nearly no application code.

There is a registration scheme which allows descendants to
specify and implement their own clipboard formats. Via a drop
handler the application can accept any OLE format without
deriving an own tree class. In order to aid processing of the

native tree data specialized methods are implemented. See
also: ProcessOLEData and ProcessDrop.Dropmarks show
during drag'n drop where data will be inserted. This works
also with VCL drag'n drop. The drop target model has been
extended to allow drop actions above, below or on a node.
Meanwhile vendors of other treeview controls have started
using this little but powerfull idea too.Auto expand of nodes
which are the drop target for more than an adjustable time
interval is performed if enabled.

@ Header and
columns

e Multiple columns are supported by an own header
implementation. This header takes up space in the non-client area
of the tree control and supports various buttons styles (standard
listview thick buttons, flat buttons, plates, Windows XP style and
owner draw).

e Columns can appear in every order in the tree window.

e Each column can be hidden including the main column which
holds the actual tree.

e Each column can become the main column.

e Columns can be shown also without the header.

e Columns can have various options (visible, clickable, resizable,
draggable etc.).

e You can set individual alignments for each column as well as
right-to-left or left-to-right directionality (again: available also on
non-middle-east and older Windows consumer systems).

e Each column can have an own color.

e The header as well as the columns collection class and the actual
column classes support streaming. This is independant from the

treeview streaming.

Each column can individually be customized by the application. An
advance custom draw handling is implemented, which allows for
very sophisticated effects, including animations.

. Check support

Each node in the tree can have its own check type. This can
either be check box (also tristate), radio button or node button.
These types can freely be mixed so you can for instance have a
node with 10 nodes of which 5 comprise a radio group (where only
one of these 5 nodes can be checked) and the other 5 nodes can
have a check box (or no check type at all).

Mixed (tri-state) check boxes with proper handling for partial
checking of child nodes are supported (as often used in install and
backup programs).

Automatic state change propagation for mixed check button
type is possible (if enabled).

Check events OnChecking and OnCheck events are supplied too.
For special purposes a small flat button can be used, which is
called a node button.

7 different kinds of check images are possible. Dark and light
check marks, dark and light tick marks, flat check images,
Windows XP style check images and application defined check
images. For an overview see property ChecklmageKind.

. Design time

Virtual Treeview's properties and methods are registered with

Delphi categories (Delphi 5 and BCB 5 or higher).

e A special property editor for the clipboard formats is included
which allows a simple format choice. This is particularly important
since the available clipboard formats must be given as strings and
it is also quite handy to have a list of available formats, even if they
are not enabled yet (to know what can be enabled).

& Customization

e Custom draw and paint cycles are supported via paint events
(for the entire tree and for each node)

e Apart from the built-in check types a user defined check image
can be used which is supported by a separate image list.

e Each button in the header can be drawn individually.

e Three different lines styles are available: dotted lines, solid lines
and application defined lines.

e Applications and descendants can provide their own node editor
(which has not necessarily to be a single control) by handling the
OnCreateEditor event or overriding DoCreateEditor. This allows to
completely replace node editing by own (business) rules.

e Applications and descendants can provide their own drag
manager interface by handling the

e OnCreateDragManager event or overriding
DoCreateDragManager. This allows to customize the entire OLE
drag handling of the

e tree. Note: VCL drag'n drop is managed by the VCL so this cannot

be customized.

Applications and descendants can provide their own data object
interface by handling the OnCreateDataObject event or overriding
DoCreateDataObject. This allows to provide own clipboard
formats.

There is registration function () which
allows to register tree descendants with own clipboard and/or
storage formats. Applications get provide own clipboard formats
(without deriving new tree classes) by handling the
GetUserClipboardFormats event.

Applications and descendants can completely modify the tree's
key handling by handling the OnKeyAction event or overriding
DoKeyAction. This works also for incremental search.
Applications and descendants can customize the tree's
background which is not covered by nodes by handling the
OnPaintBackground event or overriding DoPaintBackground. For
nodes there are further events for customization.

Applications and descendants can customize how the string tree
shortens too long captions by handling the OnShortenString
event or overriding DoShortenString.

. Scrolling

Flat scroll bars are supported. But since they conflict with
Windows XP this support is switched off by a compiler symbol
(UseFlatScrollbars). Enable this symbol if you really want to use
flat scroll bars before compiling the tree unit.

Every scroll operation triggers an OnScroll event. This allows to
synchronize trees with other controls.

There are properties (e.g. OffsetXY) which allow to scroll the tree
content to any postion in code without sending messages around.

. Streaming

Sophisticated tree content serialization has been implemented
to allow saving and restoring a tree to/from streams. This includes
also user data as long as it can be written to a stream.

Virtual Treeview allows also to add data from stream instead
replacing the entire content.

The internal format of the stream is chunk based which makes it
very flexible for future enhancements but still keeps compatibility
with older implementations.

There is a user chunk which takes data written to the stream in the
OnSaveNode event. The data of this user chunk is can be read in
OnLoadNode.

& Developer
support

Special care has been taken to format the source code of Virtual
Treeview consistently.

A large part of the entire implementation are comments which
describe the inner workings.

Methods and properties are consequently ordered
alphabetically within their scope (private, protected, public,
published). The only exception are the constructors and
destructors which always appear at the top of the public section in
the class declaration and are always the first methods in the class
implementation.

For every event there is a virtual method which calls the event
handler. This allows descendants to get notice of every event
without assigning a handler. The names of these methods

correspond directly to the events by using the pattern:
DoEventName.

¢ Many measures have been taken to ensure Borland C++ Builder
compatibility. This is particularly difficult because the automatic
translation from Delphi to C++ code in BCB is buggy.

e There is an easy and powerfull mechanism for descendants
writers to allocate their own data on a per node basis. Simply call
AllocatelnternalData to register your needs. This will not influence
existing or future application code if it consequently uses
GetNodeData for user data access.

¥ Editing

e Application defined editors are supported via an edit link
interface. A generic (non-Unicode) editor implementation is
available too.

e Every column in the tree is editable if enabled (see
toExtendedFocus).

e By supporting the TNT controls library (see chapter Unicode
above) it is also possible to have full Unicode editing capabilities.

&% Utilities

For your convenience some of the internally used functions
which are of general interest are exposed.

J : a general purpose procedure to blend a source onto
a target bitmap using several different modes.

J : a partial implementation of the DrawText APl which
supports Unicode. This method is not used on Windows
NT/2000/XP machines.

J : a general purpose function which makes a given
WideString fitting into a given space. This is partially implemented
by the Windows DrawText API but takes additionally care for right-
to-left alignment and works with Unicode also on Windows
95/98/Me.

* Times given here are taken on a Windws XP professional system
running on an Athlon 650 MHz with 256MB RAM. All possible
optimization were applied.

What do you think about this topic?

¢ Features overview | Version
_ history

Installation

Virtual Treeview is designed for Delphi 4 and higher and can
also be used with Borland C++ Builder 4 and up. It is however
not designed to work directly with Kylix or Delphi for .NET. You
will have to use a special descendant written by Dmitri
Dimitrienko for Kylix support. Currently there is no .NET
version available.

The initial core source files are:
FCompilers.inc

Include file which contains various compiler switches which
determine the target compiler and the target operating
system.

FVTConfig.inc

Include file which contains version neutral compiler switches
which control certain things that can be compiled into the tree
view (e.g. Windows XP theme support, Unicode controls, a
specialized node memory manager etc.).

#StrEditD4.dfm
Form file for the Delphi 4 TStrings property editor.

£StrEditD4.pas

Delphi 4 TStrings property editor.
FVirtualTrees.dcr

Component image for the tree components.
FVirtualTrees.pas

The actual implementation of Virtual Treeview and its
descendants and support classes.

FVirtualTrees.res

Resource file containing some check and miscellaneous
images used for all Virtual Treeviews.

FVirtualTreesD4.*

Run time package for Delphi 4.
FVirtualTreesD4D.*

Design time package for Delphi 4.
FVirtualTreesD5.*

Run time package for Delphi 5.
FVirtualTreesD5D.*

Design time package for Delphi 5.

... similar for all other Delphi versions except Delphi 8.
Package files for Delphi 2005 are using number 9 as version
identifier. For Borland C++ Builder there are similar files (e.qg.

VirtualTreesC4.bpk, VirtualTreesC4.cpp, VirtualTreesC4.res).

FVirtualTreesReg.pas

Registration unit for some property editors and categories.

FVTHeaderPopup.pas

Unit containing a TPopupMenu descendant which provides a
convenient way to implement a header popup used to switch

visibility of columns.

Installation

The main Virtual Treeview distribution comes with an
installation program and installs the components automatically
into the selected and available target IDEs.

What do you think about this topic? Send feedback!

Version history

Version 4.3.0 - 4.4.2 (December 2004 - November
2005)

Improvement: fixed column implementation completed (code
donation by Igor Savkic)

Improvement: ShowScrollbar calls with conditional defines
extracted into a new method. Added event that can be hooked by
the application to get notified if a scrollbar is about to show or hide.
Introduced OnShowScrollbar event.

Improvement: OnGetimageEx event to allow specifying a custom
imagelist.

Improvement: GetFirstChecked, GetNextChecked, ClearChecked
helper methods (code donation by Azza).

Bug fix: Reselection of a node in multi selection node did not
refresh its visual selection appearance.

Bug fix: root node total count not updated during load of streamed
nodes.

Bug fix: When loading a node from stream the initial total height is
always set to the current default height of the tree, not the height of
the node that is being loaded.

Bug fix: Mantis #260, has applied
total height of loaded nodes multiple times.

Change: Moved DoCancelEdit and DoEndEdit to the protected
section. Don't know it ever could end up in the public section. Use
CancelEditNode and EndEditNode instead.

Improvement: Hint window class dynamically assignable.

Change: A few GetPrevious* methods were still testing for an
initialized parameter.

Change: OnMouseWheel published.

Improvement: Painting of normal, selected, state and overlay

image is now done using standard image list access. This allows to
use specialized image lists (e.g. with full alpha channel support).

Version 4.0.16 - 4.3.0 (December 2003 -
December 2004)

Improvement: Delphi 2005 compatibility.

Bug fix: InternalData may return nil, so its result must be checked
before accessing it.

Bug fix: WM_CURSOR in used the
screen standard cursors as default instead that of the tree.
Change: If the hot tracking cursor is crDefault when hot tracking is
enabled then that of the tree is used instead.

Bug fix: TVirtualTreeColumn.Setindex removed as it caused
reindexing of the position array (which is wrong).

Bug fix: check for existing window handle before posting a
message for the node editor.

Change: published events OnAdvancedHeaderDraw and
OnHeaderDrawQueryElements in

Improvement: tree state tsCheckPropagation is now only reset
after a tristate check operation has finished (before the final
OnChecked event). Therefore the tree state will include
tsCheckPropagation while child nodes are checked or unchecked.
Change: ExecuteAction fixed (incorrect conditional definitions)
Change: DoBeforeltemErase was in the wrong place.

Bug fix in InternalDisconnectNode: When an invisble node is
removed from its parent the height of this parent node no longer is
changed.

Bug fix: Char handling for incremental search killed the dead char
due to a problem with ToASCII.

Improvement: Removed ParentBackground property (also for D7),
it is useless because of the own background handling of VT
Improvement: (better multimonitor support) Checks for true screen
location for the hint.

Bug fix: TVirtualTreeColumn.SetOptions + : Check for a valid

window handle of the tree before doing invalidation.
Improvement: In VT.WMKeyDown additional checks for page
up/down, to scroll not more than what fits in one page under all
conditions.

Bug fix: In VT.HandleMouseDown check for assigned hit node
before doing selection with alt key.

Bug fix: VST.DoNewText, inserted call to
UpdateHorizontalScrollbar to account for edited nodes, which now
have a significant other length.

Change: Moved some methods to higher visibility.

Improvement: non-tiled background images (code donation by
Richard Pringle).

Improvement: Configuration compiler switches are now located in
an additional file (VTConfig.inc).

Improvement: Reset of all global objects to nil on finalization.
Explicit initialization of and because of
trouble when VT is used in dynamically loaded packages.

Bug fix: Dragging did not work with full row selection and
toFullRowDrag switched on while drag mode is dmManual.
Improvement: Mouse button flags are now passed through
OnDragOver and OnDragDrop.

Bug fix: The internal node edit now uses clWindowText instead of
clBlack as text color to work properly on high contrast color
schemes.

Improvement: Introduction of toDisableAutoscrollOnEdit. It
prevents a node with a large caption to scroll horizontally when is
edited.

Change: Added test for HandleAllocated to
TVirtualTreeHintWindow.AnimationCallback.

Improvement: Update edit bounds when a node's height is
changed and editing is active.

Change: Partly took back the change for overlay images. VT still
must support overlay indices the old way (e.g. for system image
lists). Overlay indices >= 15 now use the new mechanism and are
drawn without the need to set TCustomimagelist.Overlay.

Bug fix: Insertion order of nodes was wrong in MoveTo for
amAddChildLast.

Change: removed change lock from worker thread. It isn't used any
longer.

Bug fixes: Mantis bug entries #158, 162-172, 174-191, 192-196,
199, 202, 204, 205, 208, 212, 215, 216, 218, 220, 221, 228.

Other small improvements.

Version 3.8.3 - 4.0.15 (May - November 2003)

Bug fix: Initial draw selection with the mouse at the end of large
trees (1+ million nodes) started with a huge delay.

Improvement: Better synchronization of tree windows and the
worker thread.

Change: WM_RELEASEEDITLINK removed. It is sometimes
problematic to release the link asynchroniously. Another
mechanism is used instead.

Improvement: check images are now public, to allow to use them
for own drawing code.

Bug fix: using Tree.CheckState[Node] in OnInitNode caused an
infinite recursion.

Improvement: toFullRowDrag introduced

Improvement: tsCheckPropagation introduced

Improvement: node selection change with the mouse and modifier
keys is now more consistent to Windows standard controls.
Improvement: new event OnGetCelllsEmpty

Improvement: introduced, default
value is cIBtnShadow as it was hard wired before.

Improvement: Auto spring feature. Size changes of the header are
evenly spread over all columns, which are enabled for this feature.
New options introduced: coAutoSpring, hoAutoSpring.

Change: Header stream version increased to 3. This was
necessary because the new coAutoSpring options increased a
column's option size from byte to word (now there are 9 options).

Improvement: Edit property of promoted to public.
Improvement: better takes right-to-left contexts into
account.

Improvement: toAlwaysHideSelection introduced. Allows to hide

node selections entirely.
Improvement: toUseBlendedSelection introduced. Allows to have
translucent node selections.
Bug fix: Mantis bug entries #140, 144, 125, 122, 129, 147, 148,
149, 152 - 157.
Improvement: Mantis feature request #113, toSimpleDrawSelection
introduced.
Improvement: ComputeNodeHeight introduced. Helper method to
delegate node height calculation to the tree.
Improvement: Alt key might be pressed when clicking in the tree.
This allows to start drawing the selection rectangle also on node
captions and images (which would otherwise start dragging).
Bug fix: ValidateCache was not always called in ToggleNode when
InvalidateCache was used.
Bug fix: FLastHintRect was sometimes not reset preventing so a
new hint to appear.
Bug fix: Redundant ChangeCheckState in HandleMouseDown
removed.
Bug fix: OnHeaderDblClick was triggered even if the column was
set to be unclickable.
Bug fix: Wheel panning and scrolling was not possible if
toAutoScroll was not set. This option has another meaning and
should not impact wheel handling.
Bug fix: VT control could not be set as ActiveControl at design
time.
Bug fix: In method ContentToText it could be that the text contained
the separator char as regular character, so it was necessary to
wrap the text with quotation marks then.
Bug fix: Bidi mode and aligment was not correctly considered in
UpdateEditBounds when grid extensions were enabled.
Improvement: Check for nil hint data in

just to be on the safe side.
Improvement: iS now
virtual to allow descendants to change the layout.
Improvement: toFullVertGridLines, vertical grid lines can be drawn
over the full client area height.
Improvement: flickering on column resizing is gone.

Improvement: System conformal border width calculation for
certain tasks.
Improvement: Animation parameter for

to avoid the size animation (default:
True).
Improvement: ParentFont property for the header. Default is False
to stay compatible with older tree versions.
Bug fix: cursor rectangle for spanned columns in normal hint mode
was too small.
Feature: the implementation is now more than 30.000 lines in size.
Bug fix: Access violation fixed, which was sometimes caused by
setting VT to edit mode if the old edit link was not freed yet
(because it was still handling a message).
Improvement: Hint animation now does no longer stop quick
switches to new hints.
Improvement: ParentBackground property published.
Bug fix: vsAllChildrenHidden and vsExpanded are now removed
from a node's state if there are no child nodes anymore
Improvement: column width limit to 10000 is now only applied on
non-NT systems (Win9x/Me).
Improvement: single letter mode in incremental search is not used
if the current node also fits the repeated character.
Bug fix: correct theme change handling when switching to classic
mode.
Improvement: new event OnMeasureltem, new handling for
application driven node heights.

implementation to

easy node height computation for multi line nodes.
Improvement: Header is nil'ed when the tree is destroyed and
checked before used in in order to
avoid potential problems accessing an invalid address.
Bug fix: The cut and copy pending states in the tree and
participating nodes were not removed.
Bug fix: csPaintCopy was not considered when painting (used for
TWinControl.PaintTo, e.g. in Form.Print).
Bug fix: DT_NOPREFIX added for header text output.
Bug fix: Thread safe check for current tree reference in the worker

thread, as it can be reset before it was used.

Bug fix: Color change for non-standard background colors after all
columns were hidden.

Improvement: new node background erase action (eaNone).

Version 3.6.3 - 3.8.2 (February - April 2003)

Bug fix: Local tree reference in worker thread is erased when a
tree removes itself from the waiter list.

Improvement: public methods are now virtual.
Change: A couple more methods in the header and columns are
virtual now.

Improvement: Introduction of and
GetColumnsClass in . This allows for more
customization.

Improvement: DetermineHiddenChildrenFlagAlINodes,
tsUpdateHiddenChildrenNeeded, Optimized flag determination to
speed up mass changes of the visiblity state of nodes.
Improvement: Unicode support for inplace editing by utilizing the
TNT controls package. This support is by default disabled and can
be made active by enabling the compiler symbol TntSupport.
Improvement: MoveTo is now allowed with Source and Target
being the same node, but only for aminsertBefore/After and child
nodes only.

Bug fix: Mantis bug entry #112, #108, #100, #103, #119
Improvement: All public images properties changed from
TlmagelList to TCustomlmageList. (Mantis entry #110)

Bug fix: Handling for manipulating columns via index and manual
deletion.

Improvement: Some small additions to aid customizations by
descendants.

Bug fix: GetMaxColumnWidth did not consider if there were vertical
tree lines.

Improvement: The internally used edit control in the tree edit link

can be changed now by assigning a new control to the Edit
property. The edit link will take over the ownership of the new
control then!

Improvement: Header paint info in advanced custom draw events
is now changable (declared as var instead const).

Bug fix: The number of visible nodes was not updated correctly
under certain circumstances.

Bug fix: Invalid tree data in was
used under rare conditions.

Bug fix: Exception in FindInPositionCache due to invalid position
cache data.

Improvement: VT may optionally use a local node memory
manager for node allocations. This will increase allocation speed
by about 200% for large trees (so node creation and destruction is
about 3 times faster). Small trees do not benefit that much from it,
so the node memory manager is disabled by default. See
UseLocalMemoryManager for more information.

Bug fix: State change management used in the worker thread
sometimes caused a deadlock.

Improvement: UpdateScrollBars is now virtual.

Bug fix: The structure change event was not triggered during
ProcessOLEData when nodes were copied.

Bug fix: Failure to initialize the OLE subsystem does no longer
throw an exception. It is a non-critical problem if it fails, only OLE
drag'n drop and clipboard operations do not work then.

Bug fix: Check state changing did not consider the permission of
the OnChecking event. Fixing this has the wanted side effect that
you cannot change a node's check state if it has a tristate
checkbox and none of its child nodes are initialized yet.

Bug fix: DT_NOPREFIX was not used for single line nodes.
Improvement: speed up for column erasing

Improvement: Advanced header custom drawing with the ability to
schedule element drawing either by the application or the tree.
Bug fix: Node rectangle calculation in ClearSelection is wrong.
Bug fix: all remaining (and fixable) Mantis bug entries fixed.
Improvement: OnStateChange, DoStateChange, centralized state
change method with notification for event sink.

Improvement: DeleteSelectedNodes is now virtual

Version 3.5.8 - 3.6.2 (December 2002, January

2003)
e Improvement: hint flickering on key press is gone.
e Improvement: Position cache filling is now more fail save.
e Bug fix: Mantis bug entry #75.
e Bug fix: Mantis bug entry #74.
e Bug fix: Mantis bug entry #77.
e Bug fix: Mantis bug entry #82.
e Bug fix: system check images size does not fit.
e Optimization: minimal change in HandlelncrementalSearch.
¢ Improvement: Full boolean evaluation is permanently switched off

as VT heauvily relies on that setting.

Improvement: The buffer for incremental search is now public.

Bug fix: Column additions now set a column's default properties
first before doing default notification handling in order to have them
available when updating the header/tree as result of the
TCollection.Changed event.

Improvement: The header font is adjusted according to the system
font settings.

Improvement: Exit code for internal node editor does no longer
prevent focus switch to other controls.

Improvement: Multiline support for node captions. New node state
vsMultiline (default: off). Note: This support requires Windows NT
(4.0/2000/XP and up) for word breaking. The word breaking feature
Is not available on Windows 95/98/Me systems.

Version 3.5.1 - 3.5.7 (November 2002)

Improvement: CanFocus is not virtual in Delphi 4 (-> conditional
defination of the override keyword).

Improvement: Most of the properties for the internal edit control are
now public.

Improvement: Edit control in the standard edit link is now
accessible via a protected read only property.

Improvement: Initialization of global structures is now delayed until
the first tree is created. This allows use of VT also in special
applications like property sheet extensions.

Improvement: Updating/Updated pair included in VT.Loaded to
avoid design time modification state changes.

Work around: introduced to decouple edit
window notification and resizing for Win9x/Me systems.
Improvement: Reintroduction of automatic exit handling for the
internal node editor.

Improvement: System check and flat check images introduced.
Improvement: Exchanged 'x' for ' ' as the dummy hint string to
avoid showing up a 'x' when using TAppliction.Hint.
Improvement: The virtual string tree does incremental search
independently. Use OnincrementalSearch if you want to override
the default behavior.

Improvement: VK_BACK can be used in incremental search to
return to the previous pattern (deletes the last char in the current
pattern and search temporarily backwards).

Version 3.4.10 - 3.5.0 (October 2002)

License: Virtual Treeview is now released under a double license:
MPL or LGPL.

Bug fix: hit test in other than the main column sometimes returned
a check box hit.

Improvement: new property SelectionBlendFactor. Can be used to

adjust the blend effect of the selection rectangle (if it is used).
Improvement: Painting of node images improved to have it exactly
as used in standard controls.

Bug fix: pressed state for a checked node is now reset if another
key than VK_SAPCE is pressed.

Bug fix: font handling in Print caused wrong output on screen after
print.

Improvement: Ability to link Troy Wolbrink's Unicode aware popup
menu added. See VTHeaderPopup.pas for more details.

Bug fix: vsAllChildrenHidden is now removed from the parent node
in AddChild.

Work around: focus changes between VT and wrapped non-VCL
controls like TWebBrowser should be accompanied by resetting
the ActiveControl property of the tree's owner form.

Improvement: Consideration of drag objects not derived from the
base control drag object.

Improvement: Keyboard handling for expand/collapse extended to
main keyboard (formerly only numpad).

Improvement: Consideration of the parent form when checking if
focusing of a tree is allowed (the VCL doesn't this).

Work around: When used in a package the special hint window is
not freed correctly by the VCL, which causes an access violation
on shut down.

Bug fix: Clipboard format enumeration should be sorted by priority.
Improvement: introduced to allow
descendants to avoid writing columns to the DFM.

Renamed Canvas to TargetCanvas in

(for consistency).

Support for application defined drag objects (VCL drag'n drop
only).

Bug fix: NC border painting considers now client edge too (if border
width is > 0 and border style = bsSingle).

ChangeScale implementation / toAutoChangeScale, This is used
for big fonts to scale the default node height automatically.

Text alignment is preserved in

WM_THEMECHANGED also wrapped W|th ifdef ThemeSupport.
More default values added.

» Tree states property is now writable. Writing to it will not trigger any
action, but can be used by descendants.

Version 3.4.1 - 3.4.9 (August - September 2002)

e Bug fix: Delphi Gems Issue Tracker #41.

e Bug fix: Delphi Gems Issue Tracker # 38, The MDI problem work
around code in TBaseVirtualTree.WMKIillFocus was removed as
the problem it was to fix does no longer appear but another
problem was created by it.

e Bug fix: The tree options were freed in the tree's destructor but
used again afterwards (in Clear).

e Bug fix: inherited call in included.

e Selection with Ctrl-klick is handle the same way as Explorer does it
(selection on mouse up instead down).

e Added reset for last searched node (incrementals search) when
the search timer is deactivated.

e Work around problems with keypresses while doing hint animation
in IsHintMsg

e Change in Animate, use Cardinal instead Integer.

e Bug fix in ScrollintoView, scrollbar visibility was not correctly tested.

e Bug fix in WMKIillFocus, if toGhostedIfUnfocused is used then the
focused node should be redrawn too.

e Bug fix in CopyTo, if user canceled node copy then result is nil
now.

e Correction, NewParent in and

iIs now Target, because the attach
operation might have been a sibling action, where NewParent
would be inappropriate.

e Added all possible default values to

e Drop effect support for VCL drag'n drop.

Version 3.3.3 - 3.4.0 (July 2002)

Delphi 7 compatibility.
Bug fix for clipboard formats. The internal clipboard formats array
was erronously never used.
Bug fix for freeing image lists if they can get destroyed before the
tree.
Bug fix for ChildrenOnly in IterateSubtree, if the given node has no
child nodes.
Introduced NodeParent property in Virtual Treeview to ease
navigation and manipulations.
Improved client area invalidation check.
New paint option introduced (toGhostedlfUnfocused).
New option toDisableAutoscrollOnFocus introduced, to prevent a
tree from scrolling horizontally after a column received the focus,
but was not fully visible.
GetTotalCount does not use BeginUpdate/EndUpdate but simple
increment/decrement of FUpdateCount to avoid recursion
problems.
DetermineHitPositionLTR and DetermineHitPositionRTL are now
virtual.
PaintChecklmage, Paintimage, PaintNodeButton and
PaintTreeLines are now protected (instead private) and also virtual.
This will allow for even further customizations of VT.
Check for FSelectionCount > 0 in RemoveFromSelection to
improve stability.
toReadOnly introduced.
SetltemHeight renamed to SetDefaultNodeHeight.

promoted to public.
Update lock for DeleteChildren operations to avoid access to
invalid pointers under certain circumstances.

Version 3.2.0 - 3.3.2 (May - June 2002)

Fixed hit determination bug (appeared when using margins in the
tree).

Support for Visual Form Inheritance (VFI) for the header.

Bug fix for loading nodes from stream which are invisible but their
parent is expanded.

Improved theme support. Now TThemeServices from the Windows
XP Theme Services (another free software from Delphi Gems) is
used. You must now explicitely add a manifest to your application!
This is no longer done automatically by the tree.

Bug fix: autoscroll in VCL drag mode.

Bug fix: shifted characters for incremental search.

VST lets now first the ancestor/application render to clipboard
before it tries itself.

Application might modify TargetCanvas.TextFlags in OnPaintText to
control the output of normal and static text (currently background
only).

Correct bidi mode window styles.

Bug fix regarding vsAllIChildrenHidden node state
(DetermineHiddenChildrenFlag).

Bug fix in NC painting (removed child window clipping).

Bug fix horizontal scrolling (ScrollintoView). Improved horizontal
scroll into view.

InternalConnectNode and InternalDisconnectNode are protected
now.

InitNode in GetHitTestInfoAt to avoid access to uninitialized nodes
under certain circumstances.

Default node text is only stored if it differs from 'Node'.

Printer font assignment fixed.

Bug PaintTree for OnPaintBackground fixed. The owner draw
mode is now called with the correct window origin set.

New event OnHeaderDraggedOut.

Switch to minor version 3.2.

Hide selection in full row selection mode.

bug fixes

other small changes

Version 3.0 - 3.1.9 (January - April 2002)

First public beta version of the Virtual Treeview CLX version.
DetermineNextCheckState is now protected and virtual.

Tree printing.

UpdateAction only if tree is focused.

Consideration of the user setting for wheel scroll lines.

Limit drag over node hits for report mode (like listview).

All column indexes are now consistently using

(instead Integer).

Minor changes to make custom implementations of auto column
resize possible.

Wheel panning and auto scrolling, option toWwheelPanning.
vsClearing node state for optimizations.

Update*Scrollbar methods are now public.
toAutoAcceptEditChange.

MoveTo within a tree now keeps focused node instead resetting it.
WMContextMenu cancels now also drag operations.

PaintTree is now public.

WM _CANCELMODE included.

Bug fix: IStream storage format does not work with
OLEFlushClipboard -> had to remove it (HGlobal is still available).
Other bug fixes.

Version 2.7. build 2-6 (December 2001)

child controls are now correctly scrolled too if there is a
background image

tree cursor is now only applied when there is no global cursor
(Screen.Cursor) is set

prevented resize of the edit when grid extensions are active

selection anchor setting when the first selected node is set in code

compiler switch ReverseFullExpandHotKey introduced

Renamed CreateEditor to DoCreateEditor to be consistent with

similar methods (DoCreateDataObject

e drastically simplified auto expand code, it also works now as in
Explorer

e space handling limited to nodes which have a check box/radio
button and if check support is enabled, otherwise space characters
are used for incremental search

e change events rework

e ScrollintoView allows now for vertical centering, option
toCenterScrollintoView

» help contexts for exceptions, now in interface
section to allow testing for it in apps.

e ResetRangeAnchor

e VT allows now two storage formats for drag'n drop and clipboard
transfers (HGlobal and IStream). Default format is IStream as it
does not need as much memory during construction as HGlobal. It
is also a faster in usage.

¢ implementation of events in IDataObject (advise/unadvise sinks
etc.) using IDataAdviseHolder

e overloaded GetNodeAt variant which only takes X and Y (in client
coordinates)

o |ILC_COLORS32 for image lists is only used for Windows NT
systems, this will help avoiding GDI trouble on Win9x/Me

e small changes

e bug fixes

Version 2.6, build 3-14, Version 2.7.1 (November
2001)

e F2 alone makes the tree going into edit mode, no longer any

modifier key allowed

added Canvas.Lock/Unlock in PaintTree

added TDragControlObject assignment in CMDrag

further small changes for BCB compatiblity

drag imager helper interface support included thank Jim
Kueneman's excellent preparatory work

structure change event trigger in AddChild

some minor optimizations

initial check state setting when changing a check box type
fmTransparent (button fill mode)

correct tree window border for themes (still flickers a bit, need any
documentation for this)

theme style is cached now to speed up frequent checks

improved editing (default editor behavior), correct frame for themed
application

custom checkimages work now also with a themed tree
OnGetCursor, OnGetHeaderCursor,

, DoGetCursor, DoGetHeaderCursor
changed coMovable to coDraggabIe, (it was never used so far) and
made it actually working
published Action property
categorisation of properties for the IDE
toAutoDeleteMovedNodes
visible count bug fix
improved header rect determination and usage
reset of hot node if focused node is changed
check button improvement for XP styles
small tree painting rework

(to utilize better type checking)
overloaded CqumnFromPosmon variant to get a column index
from a position index

, hew parameter in
OnHeaderDraggedEvent
scrollbar reset when hiding it
Ctrl-A now considers selection constraints
no image blending if the tree is unfocused
improved VCL drag handling

HasPopupMenu
other small changes
bug fixes

Version 2.5, build 39-40; 2.6, build 0-2 (October
2001)

Release candidate 2 for the beta testers and early adopters
Full Windows XP theme support
Legacy code included for XP style support on non-XP systems

(

, DrawXPButton, node buttons)
Node height bug fix for loading trees from stream
VCL drag handling improved
Update blocker in AddChild
Property DragCursor published
ILC_COLOR32 is now used for image list creation (instead
ILC_COLOR16) to allow for XP alpha blending
ContentToXXX routines consider now hidden columns
toFullRepaintOnResize
Header drop mark is not shown if the column being dragged is also
the current drop target

(allows creating an own header
class)
Correct space distribution for centered column headers showing
also the sort indicator
Reset of FRangeAnchor when node is deleted
Conditional compilation of flat scroll bars (see symbol
UseFlatScrollbars)
Synchronous update mode (BeginSynch, EndSynch,
tsSynchMode, usBeginSynch, usSynch, useEndSynch)
toReportMode in TreeOptions.MiscOptions, to even better simulate
TListView

for header custom draw
Other small changes
Bug fixes

Version 2.5, build 23-38 (September 2001)

Windows XP style check images

more available check images

MDI child parent form problem work around in
TBaseVirtualTree. WMKIillFocus

check for destruction of the header popup

published OnContextPopup

stop draw selection mode before inherited mouse button up
handler opens a popup menu

corrected some spelling errors

SetVisible improvements

FullCollapse changed again, it does not initialize nodes anymore
CanShowDraglmage is now virtual

changes to provide a drag image of the tree without showing it (for
descendants which have own image handling)

conditional focus setting

GetFirstVisibleChild(Nolnit), GetNextVisibleSibling(Nolnit),
GetPreviousVisibleSibling(Nolnit)

VisiblePath now checks for vsVisible style and sets it if VisiblePath
is set to True

bug fixes in visibility setting

toAutoHideButtons auto option

vsAllChildrenHidden node flag

VCL drag image bug fix (external drag images)

small improvement in

bug fixes background painting

bug fixes VCL drag image painting (for external drag images)
changed OnDrawHeader to OnHeaderDraw to fit it closer to the
other header events

shadows for hints and tooltips
Windows XP style header drawing
, ButtonFillMode
alpha blended selection rectangle
properties DrawSelectionMode, SelectionRectangleBlendColor and
SelectionRectangleBorderColor
OnHeaderDragged published
removed TVTEdit. WMKIillFocus

adjustments so that TCustom... trees only use and return
TCustom... options versions

other small changes

bug fixes

Version 2.5, build 1-22 (August 2001)

removed TVTEdit. WMKIillFocus

adjustments so that TCustom... trees only use and return
TCustom... options versions

hint positioning

tree options are now really overrideable and extendable
IsVisible[Node] := True now makes a node really visible (expands
all parent nodes)

significant speed improvements for ContentToXXX routines
better Delphi 6 compliance

EndUpdate does nothing if the tree is being destroyed

double click on state icon does toggle node too

InvalidateNode checks now for allocated handle
GetMaxRightExtend now correctly includes FMargin in entire width
DoCanEdit, Getimagelndex (separated from DoGetimagelndex),
DoGetText called by GetText

improved key conversion for incremental search

support for standard actions

e options splitted into sub-options, property Options is now a class
instead of a set

e new options toUseBlendedimages and toAutoScrollOnExpand

e DoBeforeCellPaint is now called in PrepareCell to allow
customization after column color application

e consolidated DoDrag* and Drag* methods, DoDrag* methods only
call their appropriate events

e AddChild and InsertNode can now take a pointer to user data
which is placed into the first four bytes of a node's user data area
(there must of course at least be 4 bytes user data).

¢ vslnitialUserData to indicate a node needs OnFreeNode even if it
is not "officially” initialized

e FDragSelection is now also a protected property

e LineMode

e ContentToRTF improvements for correct table building

e ContentToHTML improvments and bug fixes

e changed CF_RTF* to * to avoid identifier conflicts

e internal data handling improved, method AllocatelnternalDataArea,

method InternalData

improved text painting

rounded selection rectangles, property SelectionCurveRadius

selection border colors

hatSystemDefault, DoGetAnimationType

small changes

bug fixes

Version 2.4, build 1-34 (May to June 2001)

e introduced build numbers

e Delphi 6 compatibility

e brush alignment bug for dotted lines fixed

o test for TYMED_HGLOBAL is now done using a mask instead of
direct comparation

e tree column classes can now be changed by descendants, see

, property OnRenderOLEData,
DoRenderOLEData TVTGetUserClipboardFormats,
DoGetUserClipboardFormats, property
OnGetUserClipboardFormats
removed ScrollintoView from AddChild and InsertNode
property OnPaintBackground, DoPaintBackground
adjustments for the new

header stream version
BeginDrag is again public, TControl already has this method in the
public section
GetFirstSelected and GetNextSelected iterate now through the tree
as every other of those methods returning so the nodes in logical
order
GetFirstCutCopy, GetNextCutCopy
ContentToRTF, ...HTML, ...CSV, ContentToClipboard
GetFirstinitialized, GetNextinitialized, GetPreviousinitialized,
GetLastlnitialized
on expanding scroll child nodes into view
new property editor for clipboard formats
procedures etc. added
property ClipboardFormats added
IDataObject handling and customization added
trees render their clipboard formats now on their own behalf,
IDataObject does only dispatch calls
OLEFormats property removed
clipboard handling reworked

, to have two instances (one for dragging, one for
clipboard)
IDataObject is no longer implemented by the drag manager
renamed TVTMoveRestriction to
correct background erasing for animated toggle
Incremental search included in WM_KEYDOWN handling instead
WM_CHAR with proper ANSI to Unicode char conversion.
OnUpdating event, DoUpdating method
improved FullExpand, FullCollapse
improved AutoFitColumns

header stream version increase

Color, coParentColor, poColumnColor for columns (streaming and
assignment updated accordingly)

no scrollbar updates anymore in AdjustTotalHeight to avoid
unwanted side effects

Editors can now prevent node edit stop. CancelEditNode,
EndEditNode, DoCancelEdit and DoEndEdit are now functions and
return True if editing was stopped.

small changes in ReinitNode/Children

workaround for an unwanted drop action when dropping while auto
scrolling

tsNeedRootCountUpdate
WM_NCRBUTTONDOWN in header
change of focused column with hot keys in grid mode is now
limited to not-full-row-select mode
checks for update count in ToggleNode
CM_FONTCHANGED
SetChildCount/property ChildCount accepts now nil to change the
top level node count
improved GetHasChildren
incremental search improvements
GetLastVisible, GetLastVisibleNolnit
Changed semantic for GetLastChild, GetLastVisibleChild,
GetLastChildNolnit and GetLastVisibleChildNolnit. They do not
iterate the entire child and grand child list but only the child list of
the given node.
Deeper iteration to grand children is done via GetLast,
GetLastNolnit, GetLastVisible and GetLastVisibleNolnit
customizable line styles
DoGetPopupMenu
OnDragDrop event has a changed parameter list (no open array as
parameter to avoid trouble with BCB)
public property Image of to have access to the
internal drag image bitmap

, property NodeAlignment
incremental search

e key handling for non-grid mode improved
e small improvements
e bug fixes

Version 2.4 (April to May 2001)

¢ key handling for non-grid mode improved

o voDisableDrawSelection (32 bits are now used for options, can't
add any more)

o voHideSelection

o GetlLast, GetLastNolnit

¢ incremental search (: :

, event OnincrementalSearch, DolncrementalSearch,

IncrementalSearchStart)

e improved header timer handling

e improved key navigation in grid mode

e Virtual Explorer Tree (VET) written by Jim Kueneman is now part of
the package

e VK_HOME and VK_END set now first and last column correctly

e removed ivsVisible style because of unpredictable interferences
with other code

e columns store their last width and can restore it

¢ restore last column widths

e workaround for bad implementation of disabled images in
TImageList

e brush alignment for drawing of nodes with odd height

e dotted lines implementation improved, tree lines are now dotted
drawn too

e Column parameter in

e flat check images, ckFlat

¢ InvalidateChildren

arrow key navigation limited to grid extension, otherwise (extended

focus) normal behavior

VK_TAB handling, WantTabs property

published OnShortenString in the string tree
introduced a build number in the main version number
toggle animation only if not the last visible node to be expanded
CharCode in OnKeyAction is now a variable to allow changing it
nodes in SelectAll are now initialized

Position in TVTPopupMenu event

tsVCLDragging, tsOLEDragPending, tsOLEDragging
limited auto scroll to draw selection and dragging
AutoFitColumns

public property EditLink

ProcessMessage in

improved change handling

InvalidateColumn

draw selection is now also possible with full row select
OnScroll, DoOnScroll, TVTONnScrollEvent

scrolling if scrollbar is not visible

UnselectNodes

deselection with Ctrl+Shift if last focused node is not selected
node toggle improvements

background image offsets as properties

more BCB adjustments

animated hints improved

animated toggle improved

method Animate (general animation support)

initial range anchor setting if there was not yet a focused node
animation duration

Paintimage improvements for transparent images and full row
selection

function Path

other small changes

bug fixes

Version 2.3 (March to April 2001)

tslterating state (checks in DeleteNode and DeleteChildren)
paint optimizations
selected images are dimmed now
, DoShortenString, OnShortenString event
OnKeyAction
scroll bar improvements
application defined check image list
internal data handling
drag image implementation finished (finally, this was really tough
stuff because of the alpha blended image and updates in non client
area)
FormatEtcList in the drag manager is now accessible through a
property
clipboard handling
GetFirstNolnit (renamed GetFirstNode to GetFirst as it is more
consistent)
small changes in ;
restructuring of node checking
high color format for internal image lists
NewParent in OnNodeCopying
other small changes
bug fixes

Version 2.2 (March 2001)

MMX feature check

property OffsetXY

drag image

improved dragging

general drag management improvements

alpha blending
(critical section) introduced
MMX implementation
improved image painting (ghosted, overlay etc.)
hoDbIClickResize

column resize on double click

GetMaxColumnWidth

poDrawFocusRect, poDrawSelection in paint options
ChildNodesOnly in IterateSubtree

OnColumnClick, OnColumnDbIClick
HandleMouseDblClick, WM_RBUTTONDBLCLK,
WM_MBUTTONDBLCLK
TVTDragDropManager.SetOLEFormats is now overridable
hint positioning

reset of node widths on main column switch

optimized tree and header painting

edit mode for item clicks beside the label when grid extensions are
set

tsPainting state

simple implementation (works also on Win9x)
improved selection rect painting

tsValidationNeeded

check event rework

PrepareGridExtensions

CM_ENABLEDCHANGED for desgin time

public header click index

draw selection improvement for all text alignments and bidi modes
more header mouse events (OnHeaderDDbIClick,
OnHeaderMouseDown, OnHeaderMouseMove,
OnHeaderMouseUp)

virtual event trigger methods for those mouse events
multiline hints

other small changes

bug fixes

Version 2.0 to 2.1 (January to February 2001)

improved hinting (accounts now for alignment and directionality)
improved GetDisplayRect
FNodeCache removed
BidiMode in OnDrawNode
DetermineHitPositionLTR, DetermineHitPositionRTL
improved GetHitTestInfoAt
improved GetNodeAt method
FindinPositionCache
made the header the sender in all events related to the header
(e.g. OnHeaderClick)
WM_PRINT, WM_PRINTCLIENT
Text property for
corrected header painting for various border style combinations
(WS_BORDER, WS_THICKFRAME, WS_EX_CLIENTEDGE)
check for recursive hint animation loop entrance
voPopupMode
Tree.Assign
Ctrl-A handling (select all)
context menu key handling (popup menu)
DoPopupMenu
right-to-left drawing
some more adjustments for C++ Builder
improved column auto sizing and recover for zero-sized columns
columns can now be used even if the header is invisible
column autosizing and hints while editing
GetNodeAt can now take absolute and relative coordinates
declaration for Delphi 4
for OnStructureChange
hint window improvements for RTL columns and user defined fonts
drag manager referencing redesigned, no explicit reference count

modifications necessary anymore
e complete paint restructuring, now there is only one method to paint
the tree: PaintTree, which can be used for normal paint, printing,
drag image etc.
. changed to show a column's
name in the property inspector if it only contains ANSI characters
e column alignment and bidi consideration, added general property
in
properties IsVisible (changed semantic), VisiblePath, FullyVisible
filtered IterateSubtree
WM_CONTEXTMENU
vsVisible, full visibility implementation for individual nodes (see also
GetVisibleParent, GetNextVisibleNolnit etc.)
included FlatSB.pas in uses list to use the flat scrollbar wrapper in
case there is a system not providing flat scrollbars
speed improvements
introduced stream version for header
OnCreateDragManager event
EditDelay property
dropmark can now be switched off (voShowDropmark)
tree colors class which unites all customizable colors into one tree
property
sort enhancements (auto sort option, sort column, sort direction
and sort glyph in header)
new tree states for left, middle and right mouse button presses
VCL drag'n drop is now also possible (left mouse button only)
many minor changes
bug fixes

Versions 1.30 to 1.31 (December 2000 to January
2001)

e adjustments for C++ Builder (some type declarations moved)

voSiblingSelectConstraint

full MainColumn implementation, the column containing the tree
can now freely be chosen

DragOperations property

AutoExpandDelay

header image list

canvas font change tracking during paint cycles

WM_ENABLE

Tag property for a column

OnAfterCellPaint, OnBeforeCellPaint

item customization reworked, TDrawlnfo as well as OnGetDrawlInfo
Is no longer needed

InitNode in DoGetText

BeginDrag is now protected and should no longer be used by
applications

many minor changes

bug fixes

Versions 1.22 to 1.29 (November 2000)

many other minor adjustments

OnDragAllowed for selective drag start

edit improvements

VK_MULTIPLY handling

TScreen. replacement and Rectangle() version for Delphi
4

column options

bug fixes

Version 1.21 (Oktober 2000)

header drag mark improvements

utility images (internal use, e.g. for header drag mark)
node focus change events

column options

collapse/expand animations

hint animations

paint improvements

splitted stream and tree versions

property IsDisabled

bug fixes

Versions 1.17 to 1.20 (September 2000 to
Oktober 2000)

e single scroll bar properties class

e property IsDisabled

e separate tree and stream versions
e bug fixes

Versions 1.5 to 1.16 (August 2000 to September
2000)

e small improvments
InternalAddFromStream, AddFromStream
grid and tree line colors

improved constrained selection

bug fixes

Versions 1.8 to 1.14 (June 2000 to August 2000)

e header streaming

¢ header hints

e header drag events

¢ node button

e wide string streaming support

e margins

e gridline color

e improved drag image handling

e generic editing

e non-client area clipping

e worker thread improvements (for use in DLLS, services etc.)
e initial help file and preparation for first public release
e hit test for spanned columns

e clipboard and drag'n drop improvements

e header owner draw

e node sorting (merge sort)

e bug fixes

Versions 1.6 to 1.7 (May 2000)

initial expand state (ivsExpanded)

node sort

MarkCutCopyNodes

InitChildren, ValidateChildren

improved clipboard handling (WM_CUT, WM_COPY, WM_PASTE
and more)

volnitOnSave

overlay images

no width cache anymore, GetMaxRightExtend instead

column resize event

header popup menus, custom draw, dragging, switchable images
new tree states (expanding, collapsing, updating)

header options
auto span coulumns
bug fixes

Version 1.5 (April 2000)

own implementation for scroll bars

background image

improved NC painting

improved hit test

new events and methods (OnNodeCopying, ReinitNode etc.)
generic node edit improved

property vsHasChildren for nodes, properties ChildCount,
Childrenlnitialized and HasChildren in tree

header painting improved (is now also double buffered)

node hint improvements

improved/extended column handling (hit test, FocusedColumn,
voExtendedFocus, GetNext(Visible)Column,
GetPrevious(Visible)Column, improved autoexpand,
voAutoSpanColumns)

custom draw (paint cycles introduced: On(Before/After)[ltem]Paint)
many other small improvements and bug fixes

Version 1.4 (February 2000 to March 2000)

node editing, , WM_RELEASEEDITLINK, application
defined node editor

streaming, tree virtualization, application driven save and restore
nodes

OLE clipboard support

OLE support by the tree to simplify the work the app. must do
(ProcessDrop, ProcessOLEData)

switchable OLE formats the tree should provide

tooltips, node hints

GetSortedSelection, GetSortedCutCopySet

improved accessibility like: TopNode, auto expand/collapes on
node focuse change, DeleteSelectedNodes, SelectAll,
InvertSelection, GetNext(Previous)Sibling

splitted change event into two, one for node focus change and one
for structure change (Add, Delete etc.)

disabled nodes, disabled tree, cutted nodes (with proper visual
feedback)

column images

hideable columns, columns auto sizing and reordering

normal and static text for captions

general optimizations

application driven help and popup menu

compatibility for Delphi 4

bug fixes

Versions 1.2 to 1.3 (January 2000)

various new navigation functions (GetFirstSelected etc.)

VCL and OLE drag'n drop united (accept only) plus some support
routines (e.g. MoveTo, ConvertSubTree)

new options (auto tristate, auto focus etc.), constrained selection
header and columns (plus support functions)

crossed 10.000 code lines boundary on 31. January

bug fixes

Version 1.1 (December 1999)

e OLE drag'n drop

e check support

e multi selection and other optimizations
e bug fixes

Version 1.0 (July 1999 to November 1999)

e base implementation (buttons, lines, general window handling,
base mouse handling)

caching for optimal speed

multi selection

OLE drag'n drop

common tree functions and properties (InvalidateNode,
GetNodeData, Visible, Selected, Expanded...)

What do you think about this topic?

18 Inner fundamentals | Paint cycles
A and stages

The virtual paradigm

Inner fundamentals

Interested in the story of Virtual Treeview? Well, here is a part
of it.

Description

The History

Years ago | wrote a treeview implementation called TreeNT
(see also TreeNT at the Delphi Gems homepage). This control
IS a wrapper around the system tree control provided by
ComCitl32.dll. Over the time while | developed the control |
encountered many limitations, either introduced by the Delphi
VCL or "intended" by the underlying system control. The most
annoying problems were the dependency on specific
ComCitl32.dll versions and the slow behavior of the control
when more than a couple of nodes had to be managed. In fact
Microsoft's tree view has been designed to ease life for small
node sets only.

The problems

Despite the problems with the system tree control TreeNT
worked quite well and has meanwhile been downloaded
several thousands of times from my web site and those many
other Delphi sites around the world. When | started working

http://www.delphi-gems.com

for a software house in Munich I quickly included TreeNT into
the company's inhouse library. But then the problems which
were formerly only annoying started to make the tree nearly
unusable. | realized how much the requirements in the private
and professional/commercial environment actually differ.

Aside many other problems one was especially annoying:
How can adding some 5000-6000 nodes take a minute or so
to finish? This question was the reason that | created the very
first version of Virtual Treeview. What | actually did was to
recall my studies where | learned my trade. Why, on earth,
must everything be wrapped into an object? In Java and the
like even simple data types like strings are objects. While this
kind of abstraction provides some additional conveniences it
costs quite a lot in terms of CPU power and memory,
particularly if it comes to many instances of such simple type
pretenders.

The nodes

These thoughts inspired the idea of using small records as
nodes only and putting them into a doubly linked list (see also
TVirtualNode). Well, this idea is not very new (in fact | used to
write many code parts using linked lists), but together with
other principles it got a new quality. The key points are

e node minimalism and
e pull over push.

Pull over push means here that the tree asks for the data it
must display instead of having the application to push it into
the tree during creation. A node stays uninitialized and
dataless until it is touched the first time. Only its existence and
place in the tree is known. The assumption that this would be
much better in terms of speed and responsiveness was based
on the thought that only very few nodes need really to be
accessed usually (mainly to display a handful of nodes in the
tree window). Tests confirmed quickly that this was indeed the
case.

The node minimalism lead to the approach to leave out
everything from the node structure which can be determined
dynamically and/or is used very rarely. One example is the
owner tree of the node. There are only very few cases where
the knowledge about it is necessary. So a standalone method
(TreeFromNode) has been created to allow retrieval of the
owner tree. Another omitted member was the absolute
position of a node which is needed e.g. for invalidation of a
certain node or start of tree window painting. For this decision
however another fact was more relevant: inserting, deleting,
collapsing, expanding and hiding nodes makes all following
positions obsolete and requires a rescan and update of the
tree. Since this would be much too expensive a node cache
has been introduced. This cache is a simple one-dimensional
array which holds node references in increasing absolute
position order. A separate thread (which is shared between all
Virtual Treeview instances in a program) is used to collect the
references in the background. Well, one could say that all
these updates are still necessary (even with a cache because
it must be held coherent) and the thread could well work

directly in the node records. The most valuable advantage of
the array like cache is however that you can query it for a
node at a particular position by using binary search which is
not possible with linked lists.

The paradigm

Being virtual is more than requesting data on demand.
Although this is an important aspect some additional things
are considered in Virtual Tree. The pull over push principle
for data can be extended for the structure as well. It means
then to create nodes or entire branches only on demand (e.g.
when expanding a node or iterating through its child nodes for
incremental search etc.). This allows to fill a tree view with
only the top nodes and initialize only those of them which are
currently in view. Clearly this increases start up times a lot for
large trees.

The core sequence for filling the tree is an iteration, which
runs over initializing a node (to tell if it has children at all, see
OnInitNode) and initializing its children (see OnInitChildren),
which only means to tell the tree how many child nodes
should be there. The tree will automatically allocate memory
and set up the structure in the most efficient way but does not
yet query for data. This will then again be done in OnlInitNode
for each of the newly created child nodes as soon as they are
touched the first time. For compatibility reasons also AddChild
and InsertNode have been implemented but are not as
efficient as the iterative approach just explained. For obvious
reasons these compatibility methods have to trigger some

updates for the tree implicitly unless updates are locked. It is
therefore strongly recommended to put calls to AddChild and
InsertNode always into a BeginUpdate/EndUpdate frame (if
there is more than one call).

Records instead classes

Basically, the idea of virtualizing the tree control and using
records instead of classes were two ideas which are born
nearly at the same time. It was quite clear from the very first
moment that classes can never be as effective as a simple
record structures (in terms of size, access speed and
management). Sure, a TPersistent only needs 4 bytes more
than a record (the pointer to the class' VMT), but these are still
too many extra bytes if you consider that | have wrestled quite
a while with myself about every byte in a tree node (and want
the minimalism principle). Another point you should not
underestimate is that classes as nodes would of course also
mean to put node specific methods into this class too, which
will be overridden at times (this is the main argument to use a
class after all). This will require additional CPU cycles just to
lookup access methods, to dereference etc. which in turn will
cost extra time. Trees with only some 1000 nodes will never
see a large difference but for big trees this is significant and
Virtual Treeview has mainly been created to address high
capacity tree views.

With choosing records | also gave up the VCL concept of
having a tree nodes class which is responsible to manage tree
nodes and is secondary to the control itself. In Virtual

Treeview every access to the tree content is done via
methods and properties provided by the tree control. Keep
also in mind that nobody prevents you from using classes and
store their references in the node's data area. It is only just so
that the node (as internal management structure) is as small
as possible, opening so all possibilities: from smallest memory
footprint to highest comfort.

19.09.2003

Times are changing

With the advent of .NET and C# things outlined in the previous
paragraphs need rethinking. The software world is changing
and so must Virtual Treeview if it wants to stay. Don't get me
wrong, all the nice principles in the control have proved their
usefulness and fitness for the purpose they were designed.
However one could see that there are still flaws and probably
will ever be, regardless of the actual design. Still, nothing is so
good that it couldn't get better and the approach using
records/structs instead of classes not only made it sometimes
hard to get used to Virtual Treeview but it makes the control
as a whole incompatible to the intrinsic values of Microsoft's
new concept. And here lies the next natural step for it: Virtual
Treeview must go .NET. So stay tuned for the things to
come...

Group
Inner fundamentals

Links

Inner fundamentals

What do you think about this topic? Send feedback!

_ Inner fundamentals | The virtual
. paradigm | Tree image and tree
N window

Paint cycles and stages

Inner fundamentals

The most complex process in Virtual Treeview is without
doubts its painting. Read here what stages Virtual Treeview
enters during paint and how you can customize this process.

Description
Similar to the system tree view Virtual Treeview defines so
called paint cycles. A paint cycle is one run of the paint code
which draws a part or the entire window. In Virtual Treeview
this task is accomplished by the method PaintTree which
centralizes the paint management into one place and is called
for various tasks like window painting, drag image painting,
WM_PRINTCLIENT handling and so on.

This paint method is able to draw the entire tree regardless of
its window to the target canvas and optimizes painting by
considering the update/clipping rectangle, which is passed in
via the Window parameter (see also PaintTree).

Usually the following paint stages are executed during a paint
cycle:

before paint (OnBeforePaint)

before item paint (OnBeforeltemPaint)
before item erase (OnBeforeltemErase)
after item erase (OnAfterltemErase)

before cell draw (OnBeforeCellPaint)

on paint text (string trees only, OnPaintText)
after cell draw (OnAfterCellPaint)

after item paint (OnAfterltemPaint) after paint (OnAfterPaint)

The cell and node events are of course not executed if there is
no node to be drawn. A special flag (tsPainting) in TreeStates
indicates when a paint cycle is in progress. Using this flag an
application can for instance determine whether a node is
initialized because it is about to be drawn or for other

reasons.

Every of the stages above is accompanied by a specific event
which allows the application to customize a particular aspect
in the painting. The following list discusses tasks which can be
done during the various stages.

Stage Description Comments

This stage is typically used to do any furt
setup of the target canvas of the paint
operation (e.g. the window or a printer
canvas), like changing the mapping modt

This stage is
entered only
once per paint
cycle. After

before
paint

before
item
paint

before
item
erase

after

setting the
vsPainting state
it is the very first
instruction in a
cycle.

This stage is
entered once
per node to be
drawn and
allows directly
to control the
path which is
the taken to
paint the node.

This stage is
also entered
only once per
node and allows
to customize
the node's
background.

This stage is
also entered

setting another clipping region. Since the
passed canvas is not directly used to do-
actual painting setting its font or colors he
no effect. Basically only properties which
affect blitting a bitmap to the target canve
have an effect at alll.

In the event for this stage you can tell the
tree whether you want to paint the node
entirely on your own or let the tree paint i
this happens on a per node basis it is the
perfect place to maintain a special layout
without doing everything in the paint cycl
Note: setting the CustomDraw parameter
the event to True will skip the node entire
without painting anything of the standard
things like tree lines, button, images or
erasing the background. Hence to displa
any useful information for the node do it i
the OnBeforeltemPaint event.

This is the first stage which gets the doul
buffer canvas which is used to draw a no
so if you want to set special properties th
a good opportunity. Keep in mind though
in particular the colors are set by the tree
according to specific rules (focus, selecti
etc.).

This stage and its associated event is usi
used to give the node a different backgro
color or erase the background with a spe
pattern which is different to what the tree
would draw.

This stage and its associated event is us:

item
erase

before
cell
paint

on paint
text

only once per
node.

This paint stage
is the first of the
cell specific
stages used to
customize a
single cell of a
node and is
called several
times per node,
depending on
the number of
columns. If no
columns are
used then it is
called once.

After default
stuff like lines
and images has
been painted
the paint
node/paint text
stage is
entered.

to do additional drawings after the
background has been erased.

While internally a full setup for this node

happened before the stage is entered (if

the first run) the only noticeable effect for
application which has changed comparec
after item erase is that the painting is lin
to the current column. There are still no li
or images painted yet.

Because Virtual Treeview does not know
to draw the content of a node it delegates
this drawing to a virtual method called
DoPaintNode. Descendants override this
method and do whatever is appropriate. |
instance simply trigger.
OnDrawNode event while the

prepares the target
canvas and allows the application to ovel
some or all canvas settings (font etc.) by
triggering OnPaintText. After this event
returned the text/caption of the node is
drawn. Changed font properties are takel
into account when aligning and painting t
text.
Note: The string tree triggers the OnGet
event two times if toShowStaticText is
enabled in the
TVirtualStringTree.TreeOptions.StringOp

after
cell
paint

after
item
paint

after
paint

Group

Links

This stage is
entered
immediately
after the cell is
drawn.

This stage is
entered after all
cells of an item
are drawn.

The after paint
stage is the last
stage in the
long chain of
paint stages
and is entered
after when paint
cycle is
complete.

property. Once for the normal text and on
for the static text. Use the event's params
to find out what is required.

This stage can be used to add whatever"
like to a single cell after everything has b
painted there and is triggered once per
column.

The after item paint stage is used to add
node specific stuff like frames and the liki
which concern all columns of that node a
Is called once per node.

In this stage everything of the tree (relate
the current update area) has been drawn
including the selection rectangle.

What do you think about this topic?

18 Inner fundamentals | Paint cycles
A and stages | Data handling

Tree image and tree window

Inner fundamentals

If you are one of those developers who want to create tree
descendants, which perhaps involve visual changes in Virtual
Treeview then you need to know how the control paints itself
(as outlined in Paint cycles and stages). What happens with
the resulting image and how it can be used for certain tasks
like printing? Some answers are in this topic.

Description
Some methods in Virtual Treeview work with an internal tree
image, e.g. painting or hit determination. This tree image does
not really exist but is rather an imagination of the entire tree
drawn to an infinitely sized sheet. In this picture the tree is
always drawn at position (0, 0) and advances to positive
horizontal and vertical values which reach out to the right and
down, respectively. This also means that coordinates given in
this fictional image are always positive.

A display function like the WM _PAINT handler can now take a
rectangle of this full image (in PaintTree this is called the
window) and let it draw to any location in a target canvas. This
allows to draw a part of the entire image even if the tree
window is scrolled or needs otherwise to be moved (e.g. when
dragging or printing). In order to get the full dimension of the
tree image call GetTreeRect, which returns a rectangle always
starting at (0, 0) and extending at least to client area size but

usually much further (determined by the private variables
FRangeX and FRangeY which also determine the scroll bar
values).

In order to maintain the visual portion of the tree image two
offset values are maintained which specify the horizontal and
vertical distance relative to the client area of the tree control.
These offsets (OffsetX, OffsetY and OffsetXY) are therefore
negative. This means 0 means no offset at all and -100 means
the tree is scrolled by 100 pixels. Values > 0 are always made
to O.

How does this now fit together when you want, say, to print a
part of the tree to a memory or printer canvas? Have a look at
the image below:

WA e
I S
R St

(LT pre—

AIFS10

ST T S
WA e

FLIIWE i A

202,58 MB

LA e

0 S|

272,92 MB

ATATHME Sy |

LAY

E71.E5 ME

LU

NeEIME

TR Sy

161. 74 MB By o R s..-q) o LR S
}“MM HRAS A S|]“MM T

ﬂl;uq. T] m—i 3;”. WE

372,23 MB
é Mgt LI e ﬂ Mot LTI e

425,67 ME R T

R T

.llIIIr T S| .IIIII\- i SillI-'I:

g2.01 Mg

Lovmiims ama s

f_.‘u-nau AT S

—————— UGl MOPLILAA

474.7aME

«—— Window width ——»

On the left pane you can see a typical tree view of which only
a specific part is visible. This situation is visualized by the non-
shaded rectangular region. The right pane shows the
reproduction of the visible part to different locations. The
entire tree image size corresponds to the internal FRangeX
and FRangeY variables of the tree view. When drawing a part
of the window the method PaintTree needs to know the size
and position of the part to draw. This is given by a TRect
structure passed in the Window parameter. For normal
screen display this rectangle structure consists of the current
scroll offsets (properties OffsetX and OffsetY or OffsetXY for
both together given as TPoint) and the size of the client area
of the tree control. This rectangle is usually also intersected
with the current clipping region to avoid painting parts of the
tree which are not invalid.

The place where the image is to be painted is given in the
parameter Target. This point specifies the physical location in
the target canvas where to draw the content of the region
specified by Window. Note that these coordinates are usually
(but wrongly) considered as being physical pixels. This might
be true for screen or bitmap output but is not for the printer
where a single pixel would be much too small. Hence another
term is used here: logical coordinates. The actual size of one
unit of these coordinates can either be a single pixel but also a
millimeter, inch or even some other odd size. The
interpretation is determined by the mapping mode of the target
canvas (device context, DC) and its window and viewport
extents. For more information about mapping modes see the
online help or MSDN under SetMapMode and for DC extents
under SetWindowEXxtEx as well as SetViewportExtEx. With

the help of mapping modes and window/viewport extents you
can greatly customize the outcome of PaintTree. These APIs
are usually also used to provide a print preview.

Group
Inner fundamentals

Links
Inner fundamentals

What do you think about this topic? Send feedback!

_ Inner fundamentals | Tree image
. and tree window | Editors and
N editing

Data handling

Inner fundamentals

An important aspect of the tree is the handling of data for each
node. Read here how Virtual Treeview manages your data.

Description

Usually single items (as in TTreeview and TListView) only
have a simple data member which can take a pointer to the
actual data an application maintains for this item in an external
structure. This principle can be used with Virtual Treeview too.
But the control goes a step further by letting the application
decide how much data per node is nheeded and providing this
space implicitly. This way the application is freed from
maintaining an extra structure sometimes.

Application view

The core point behind this technique is that the tree has to
allocate and deallocate memory for each node anyway. The
amount to allocate does not matter with respect to node
handling. So it is easy for the tree to allocate some more bytes
for the application. To know how much memory is to be
allocated there are several ways to tell. Firstly there is the
property NodeDataSize which can be set already at design
time and describes the required user memory per node in

bytes. If you don't know this size (because it depends on a
structure which you want to be examined by SizeOf) then
simply assign your size in the form creation process to the
tree via the NodeDataSize property.

Secondly, use the event OnGetNodeDataSize. This event may
occasionally be useful for values which are neither known at
design time nor can they be determined at compile time (as
the size of a record). The event is triggered when the
NodeDataSize property is -1 (which is by default the case).
This value will be replaced by the actual data size returned in
the event.

Note: If you want to store application data in a node (e.g. the
caption) then you must allocate node data as outlined above. If you
get an access violation in OLE32.dll then you have likely forgotten
to allocate this node data and tried to assign a string.

The allocated bytes per node are an inherent part of the node
record and follow the last internal member in the TVirtualNode
structure (symbolized by the Data member). In order for the
application to access this memory it needs to map its node
data structure to this tree internal memory. To simplify this task
the application can use GetNodeData. This method returns
the address of the data area in a node record. This address
can then be assigned to a local pointer variable (or can be
type casted) as shown in the chapter code repository. |
strongly recommend that you always use the GetNodeData

method to get the data address instead of simply using
@Node.Data because a tree class may add internal data to
this area which starts then at this address while the actual
application data begins a few bytes later.

Tree Control view

Depending on its tasks a tree may need to store data on a per
node basis (e.g. TCustomVirtualStringTree keeps the width of
a node to allow quick response on DoGetNodeWidth which is
used for various tasks including draw selection). Particularly
multi selection with the mouse (draw selection) depends on
very quick width determination to allow interactivity even with
100,000 selected nodes.

In order to avoid access conflicts between the tree and the
application a simple mechanism has been implemented to
allow flexible internal node data handling (in addition to the
normal node record and application data handling). Following
functions have been added to the base tree:

e [nternalData
e AllocatelnternalDataArea

Note: A tree descendant which requires additional internal data
must call AllocatelnternalDataArea to register its need.

InternalData is a virtual function which does nothing in the
base tree class (returns nil). | recommend to override this
method in descendants however and return the address of the
internal data for that tree. This address can easily be
determined by adding the offset returned from
AllocatelnternalDataArea to the start of the node record. To
make this work you have of course to keep the offset
somewhere, just like TVirtualStringTree does.

AllocatelnternalDataArea is the function which sums up all
requests for internal data and keeps this sum which must be
added to each node data offset to return the correct address
for user data. Note: call this method only once (e.g. during
tree creation) to register the data area you need.

Group
Inner fundamentals

Links
Inner fundamentals

What do you think about this topic? Send feedback!

‘ Inner fundamentals | Data
. handling | Keyboard, hotkeys and
N incremental search

Editors and editing

Inner fundamentals

Because of the virtual nature of Virtual Treeview editing
becomes a difficult issue. Read here what needs to be
considered and where you can hook in to allow any editor for
a node.

Description
Generally it cannot be said what data a user will edit when he
or she edits a node. In the case of the string tree it becomes a
lot easier to decide because we have, as the name implies,
strings and captions to edit. But this is only a special case and
the underlaying edit principle must be flexible to allow editing
various different data of a node, including several items
instead of only single ones.

Since you cannot generally tell what will be edited the used
solution does not assume anything. Instead it delegates the
entire process to the application or derived trees via the
IVTEditLink class. This interface defines some necessary
methods which allow interaction between the tree and the
editor but the actual editor implementation is up to the edit link
(which can of course delegate this task to even another
instance like the application). The edit link is responsible for
everything including to hide and show the editor, reading the
old values of a node and setting the new values etc. The tree
only signals some general states like the edit start, end or

cancellation.

Editing starts with the protected DoEdit method which may be
triggered by the edit timer (which in turn is triggered by
clicking again on the focused node), by pressing F2 or by
calling EditNode. DoEdit creates an editor (actually only the
edit link) via the virtual CreateEditor method which should be
overridden by descendant trees to return a valid edit link (as
TVirtualStringTree does). Otherwise the method will query the
application for an editor link. Actual editing starts only if
CreateEditor returns a valid edit link.

After the tree received a valid edit link it initiates
communication by calling PrepareEdit which can be used by
the link to retrieve the values to be edited using the given
node and column. If the edit link returns True in this call
another call is initiated by the tree telling the link where to
place the editor using the SetBounds method. Finally the tree
calls BeginEdit to actually start the edit operation. From now
on the edit link is responsible for any further action including
passing on key presses like VK_UP and VK_DOWN to select
a new node to edit etc. The link must also be aware that
editing might be stopped at any time by EndEdit or
CancelEdit. Otherwise however the edit link (and its editor(s))
is completely autonomous and can use whatever it considers
as being appropriate for the editing task. It isn't even limited to
use an in-place editor.

With the class TStringEditLink you will find a sample
implementation used in the string tree to edit single node

captions. By examining the used editor (a normal TEdit
control) you will find some things which should be handled the
same or in a similar way to make editing smooth.

Starting with version 3.8 Virtual Treeview allows to use the
TNT controls suite from Troy Wolbrink, which allow to edit
node captions with Unicode content. Download the latest
package and add its path after installation to your project.
Enable the TntSupport compiler switch by changing it from
{.$define TntSupport} to {$define TntSupport} and
recompile.

Group
Inner fundamentals

Links
Inner fundamentals

What do you think about this topic? Send feedback!

' Inner fundamentals | Editors and
-.\' editing | Drag'n drop and clipboard

handling

Keyboard, hotkeys and incremental
search

Inner fundamentals

Virtual Treeview handles most of the important keyboard
actions on its own. Also here you can inject your own handling
to modify the control's behavior. Read also about incremental
search and how it is implemented.

Description

Particularly key navigation is implicitly handled in various
ways. A full list of hot keys currently supported by the tree
view is shown below. Note that the control key has
precedence over the shift key if both are pressed at the same
time. This means that in this case the shift key has no
meaning.

The tree view supports the same hot keys as the Windows
system tree control and allows to customize key messages to
change the meaning of the particular key (see also
OnKeyAction). Generally speaking all navigation keys change
the current selection if no modifier key (like control or shift) is
pressed together with the navigator key. Like the system tree
control Virtual Treeview allows to modify the current selection
by holding down the shift key and pressing home, page up or
any other of those keys at the same time. The control key
neither changes the selection nor the focused node but can be

used to scroll the tree window.

For special handling a grid mode is supported (see
toGridExtensions in Options) which changes (among other
things) some key semantics. These changes are explicitly
marked in the table below.

Key

Home

End

Modifier

none

shift

control

none

Function

Selects the first visible node (the focused
column does not change). This node also
receives the input focus.

Modifications in grid mode: The focused
node does not change but the first visible
column is focused instead.

Moves the focus to the first visible node (the
focused column does not change) and
includes every visible node, from the
previously focused to the newly focused one,
into the current selection.

Modifications in grid mode: Not the
focused node is changed but the first visible
column is focused instead. The selection
does not change (note: you cannot select
several columns of the same node).

Scrolls the tree to the top left corner without
change of any selection or focused state.

Selects the last visible node (the focused
column does not change). This node also
receives the input focus.

Modifications in grid mode: The focused

Prior
(page
up)

Next

(page
down)

Up

Down

shift

control

none

shift

control

none

shift

control

none

shift

control

none

node does not change but the last visible
column is focused.

Moves the focus to the last visible node (the
focused column does not change) and
includes every visible node, from the
previously focused to the newly focused one,
into the current selection.

Modifications in grid mode: Not the
focused node is changed but the last visible
column is focused instead. The selection
does not change.

Scrolls the tree to the bottom right corner
without change of selection or focused node.

Scrolls the tree window and single selects a
node one page up. This node receive also
the current focus.

Like without modifier key but includes a page
of nodes into the current selection.

Scrolls the tree window one page up without
change of selection or focused node.

Same as prior but one page down instead.

Same as prior but one page down instead.
Same as prior but one page down instead.

Advances the focus from the currently
focused node to the previous visible node.

Advances the focus and adds the newly
focused node to the current selection.

Scrolls the tree window one line up. One line
Is defined as the DefaultNodeHeight.

Same as up but one line down instead.

Left

Right

shift

control

none

shift

control

none

Same as up but one line down instead.
Same as up but one line down instead.

Moves the focus to the parent of the currently
focused node and selects it if the current
node does not have children or is already
collapsed. Otherwise the focus is not
changed but the node will be collapsed. In
both cases the focused node will be the only
selected node afterwards.

Modifications in grid mode: If extended
focus is enabled (see toExtendedFocus in
Options) then the behavior changes to a
simple navigation to the previous visible
column.

In opposition to the none-modifier case the
expand state of the node does not matter nor
is it changed. The focus is advanced in any
case and sibling nodes as well as the parent
node are added to the current selection.

The tree window is scrolled to the left by the
amount pixel given in the indent property.

Moves the focus to the first child node of the
currently focused node and selects it if the
current node has children and is already
expanded. Otherwise the focus is not
changed but the node will be expanded. In
both cases the focused node will be the only
selected node afterwards.

Modifications in grid mode: If extended
focus is enabled (see toExtendedFocus in
Options) then the behavior changes to a
simple navigation to the next visible column.

Same as the none-modifier case but the

Back

Tabulator

F1

F2

shift

control

none

shift

control

none

shift

control

none

shift

control

none

shift

control

selection is extended with the first child
node.

Same as left but the tree window is scrolled
to the right.

Moves the focus to the parent of the currently
focused node and selects it as only node.

Modifier keys have no meaning for this case.
Modifier keys have no meaning for this case.

The tabulator key is a bit special because it is
only used with grid extensions to advance
from cell to cell. Without modifier the focus
changes from left to right and from top to
bottom. It is necessary that you enable TAB
support by setting property WantTabs to
True.

Same as without modifier key but the focus
advances backwards, from right to left and
bottom to top.

This modifier has no effect.

This function key triggers node specific help
support. Via the OnGetHelp event the
application is queried for a help context to
show.

This modifier has no effect.
This modifier has no effect.

This function key turns the tree view into edit
mode if there is a focused node, the tree is
editable and the application allows to edit the
node.

This modifier has no effect.

This modifier has no effect.

(add)

(subtract)

*

(multiply)

/
(divide)

Escape

none

shift

control

none

shift

control

none

shift

control

none

shift

control

none

shift

control

Expands the currently focused node.
This modifier alone has no effect, but see the
following comment.

Pressing the control key together with + will
start auto sizing all columns in the tree. If the
shift key is also pressed then the whole tree
Is expanded instead.

Collapses the currently focused node.
This modifier alone has no effect, but see the

following comment.

Pressing the control key together with - will
restore all columns to their previous widths. If
the shift key is also pressed then the whole
tree is collapsed instead.

Expands the currently focused node and all
its children and grand children.

This modifier has no effect.
This modifier has no effect.

Collapses the currently focused node and all
its children and grand children.

This modifier has no effect.
This modifier has no effect.

Stops actions which require a specific state in
the tree like editing, mouse selecting, drag'n
drop etc.

This modifier has no effect.

This modifier has no effect.

Used only if check support is enabled (see
Space none toCheckSupport in Options) and the currently
P focused node has got a check type other than
ctNone. In this case the space key switches
the check state.
shift This modifier has no effect.
control | This modifier has no effect.
Similar to F1 triggers the apps key popup
Apps .
menus on a node by node basis. For more
(menu none : :
key) information see also the event
OnGetPopupMenu.
shift This modifier has no effect.
control | This modifier has no effect.
This is the only "normal” character used as
A none hotkey so far. It has only an effect together
with the control key.
shift This modifier has no effect.
Pressing 'A' together with the control key will
control | select all currently visible nodes in the tree
view.

Incremental search
Incremental search is a commonly used term to describe the

effect that the user types some letters while the tree view has
the focus and the control will try to locate a node whose
caption matches the letters. Because Virtual Treeview does
not know what caption a node has it cannot compare the
incoming letters and uses therefore again an event to ask the
application to do the comparison. By using the lesser of both
string lengths and a partial comparison in this event the tree

will be able to select also partial matches. Note: Virtual
Treeview tries to mimic the Ul of the system list view and
system tree view as close as possible and uses therefore two
modes when searching. One is used when there is no key or
only one key pressed and the new key is the same as the
already recorded one. In this case the search always starts
with the next node and only nodes which match the single
new key will be found. This allows to quickly cycle through a
number of nodes all matching/beginning with the same letter.
The other mode is normal linear search where all key presses
are recorded and compared with the nodes in the tree.
Whenever the application considers a node as match (it even
hasn't to have a caption the same as the search string) this
node is returned as new target and focused.

Group
Inner fundamentals

Links
Inner fundamentals

What do you think about this topic? Send feedback!

' Inner fundamentals | Keyboard,
-.\' hotkeys and incremental search |

Additional information

Drag'n drop and clipboard handling

Inner fundamentals

Virtual Treeview behaves also well when it comes to data
exchange with other applications or structural manipulations
using the mouse. In both cases the prerred method is using
OLE. Read here why and what's behind it.

Description

One important aspect for system integration under Windows is
the ability to use OLE (object linking and embedding) to
transfer data from and to other applications. Unfortunately this
is a dark chapter in Delphi's feature list because there has
never been support for either OLE drag'n drop or OLE
clipboard handling (until Delphi 6 at least). Instead a
proprietary mechanism had been invented which is not at all
compatible with the rest of the system.

Drag'n drop

Virtual Treeview supports both kinds of drag'n drop (VCL and
OLE) and tries to present a single interface to the application.
This means that those (already existing) events which can be
reused are used in the process (like OnStartDrag and
OnEndDrag). Other events however differ significantly from
the VCL variants because of the additional information

available during OLE drag'n drop. These events are
OnDragOver and OnDragDrop. Read there for a detail
description of the parameters. Since in a VCL drag'n drop
operation the source is always known as being a VCL control
it is relatively easy to determine the participants. This however
IS not very data-oriented and OLE drag'n drop focuses exactly
on this issue. In such an operation a so called data object is
passed to the receiver which is a COM interface (IDataObject)
and can be used to retrieve the dragged data in various
formats.

To accept OLE drag'n drop an application has basically the
same steps to perform as always used for VCL drag'n drop
plus some extra work to handle the different data coming in
during the drop event. Usually there is an event handler for
OnDragOver which tells not only whether dropping is allowed
on a particular position but also which effect should then take
place. Allowed effects are copy, move and link. This is the first
new aspect which is not possible with VCL drag'n drop. As
always the real work must be done in the drop event and
Virtual Treeview supports processing its own native data
format (which is a stream of chunks to represent the tree
structure) by a special method called ProcessDrop. Note that
this method can only be used for the internal format and does
not process other formats like text or images. From this
information you can easily conclude that a lot of other formats
can be passed around with the mighty OLE drag'n drop
mechanism. It is however out of the scope of this help to
describe how this mechanism works or to give an overview of
possible data formats. Please read the Win32 SDK
documentation as it comes with your Delphi copy or browse
the MSDN online documents at MSDN online for a detailed
description. The only interesting aspect you should keep in

mind at the moment is that the data object used in a drag'n
drop operation is the same as used for OLE clipboard data.
Hence you can share code for handling of both and you don't
have to learn different ways or data structures.

Step by step
The typical approach to determine how to handle data during
the drop event in Virtual Treeview is as follows:

e If the given data object is nil then the source of the drag operation
is the VCL and you have to figure out yourself what and how to
process the drop. The other parameters contain also mostly useful
data (Effects is set to default values however). Read more details
at OnDragDrop.

e With a valid data object you know OLE data is being passed.
Check the source parameter to learn whether a Virtual Treeview is
the source or something else. Although further processing can
successfully be done without this information it is still useful if you
want to optimize data transition and source as well as target tree
are in the same process (in which case source memory can be
accessed from the target tree).

e Loop through the given formats list to find a format you can handle.
Since it is recommended to sort this list so that preferred formats
come first you can simply accept the first format you find in the
array which you are able to handle. With a Virtual Treeview as
source usually already the second entry represents the native
format (the first is a special reference format which is not useful for
an application) and can be passed to ProcessDrop. The native
format is registered as while other typical
formats include CF_TEXT or CF_HDROP. Note that, because

Virtual Treeview is already OLE drag'n drop aware, you do not
need to register its window for accepting file drops. If the user
drops files onto a Virtual Treeview window you will get the
CF_HDROP format in the format list passed to OnDragDrop.

e Depending on the data formats you might want to take various
actions. For the native tree format you will likely want
ProcessDrop to handle the data. If you made sure source and
target tree are in the same application (process) you can even omit
the entire handling and simply call MoveTo or CopyTo.

e If you do not call any tree method or handle the dropped data
somehow yourself nothing will happen. No data will be added.

Group

Links

What do you think about this topic?

Additional information

This chapter collects everything else which is important or
very helpful to know but which does not justify an own chapter.

Description

e Special care has been taken to wrap every event call by a DoXXX
method (e.g. for OnBeforeltem paint there is a protected
DoBeforeltemPaint method) which is always virtual to allow
descendants to override it and intercept so calls to events
regardless whether there is actually an event handler assigned or
not.

e During a locked update stage (entered by BeginUpdate) there will
be no updates of the tree nor the selection. If you change the
selection in such a stage then it is temporarily accumulated and
applied if, during an EndUpdate call, the inner update counter
reaches zero.

Borland C++ Builder:

e Define the constant NO_WIN32_LEAN_AND_MEAN in your
environment/project options to avoid problems with undefined
interfaces.

e The automatic conversion process from Delphi source code to C++
code has unfortunately some bugs. Most of them could be solved

by rearranging the Delphi code, but one problem still remains and
must be solved manually. The translator does not automatically
consider default parameters in functions. The parameters are
correctly converted but without the default value. Usually the
problem will appear when you try to compile and there is a call of
the function with fewer than expected parameters.

Group

Links

What do you think about this topic?

18 Inner fundamentals | A little code
A repository by John Knipper

Virtual Treeview step by step

Often a simple step by step tutorial gets you much faster
started than a long list of features and possibilities. This topic
describes the basic usage on the basis of a simple project.

Description
Written by Sven H. (h.sven@gmx.at), Revision and translation by Mike

At the time when this description was created | had not much
Delphi knowledge and had not yet read through any of my two
Delphi books. But | was quite impatient and wanted to try out
what is possible. Although | have some knowledge about
object oriented programming and C++ (I have learned
something about it during my studies), this project was my first
attempt to program in Delphi. It could be that | have not
provided the most elegant solutions und | am always open for
improvement suggestions. But all principles | demonstrated
here do work (at least for me J). | have implemented them in
my first project this way. This guidance is made in the first
place for programmers who are not yet familiar with Virtual
Treeview and will so perhaps have an easier start. If you have
guestions or suggestions regarding this guidance please
forward them to h.sven@gmx.at. For other questions you can
contact Mike and use the dedicated newsgroup, respectively.

| am neither a Virtual Treeview nor a Delphi expert and have

mailto:h.sven@gmx.at
mailto:h.sven@gmx.at

collected all the answers (with the help of Mike) with quite
some effort. In order to avoid the afterwards relatively simple
things to become problematic | have written this short
guidance. The real problems will appear later.

€ 2001 The parts in this guidance beyond the text from the
online help are copyrighted. Every publication requires my
admission.

Have fun with it, Sven.

Preparations
Before we start some preparations are necessary.

e Place a Virtual Treeview component on a form.
e Change the properties as you like.
e Arecord for node data must be defined.

In order to store the own node data some musing is important.
How shall the record look like?

a) All nodes in the tree are equal

In this case a simple record defines the necessary data
structure, e.g.:

mailto:public@delphi-gems.com

type
rTreeData = record
Text: wWideString;
URL: string[255];
CRC: LongInt;
1sOpened: Boolean;
ImageIndex: Integer;

end;

b) There are different nodes in the tree (e.g. folders that
can have sub nodes)

| will follow this case because my tree will hold folders, which
can in turn get own nodes. Since | intent to store created trees
in a file in order to restore them later further deliberations are
necessary. Suppose a folder node has only a name and a leaf
node has a name and a text info field. Potentially, | also want
to store a second kind of leaf node, which will for instance
have a number instead of the text field. The problem in the
context of reading data form a stream is that | must know
which data is stored in which order in the stream, because |
have to read it in exactly the same order again. Hence | have
to determine from the very first information in the stream what
information will follow. For instance there is a node name, but
then? Is there nothing more or another text information (string)
or even an integer value? | think the point is clear. The first
data, which | read, has to carry this information.

These deliberations have leaded me to the following solution: |

save now in the stream [label]->[name]->[following data]

0 -> 'Folder’
1 ->'Info node' -> 'Blabla’

2 -> 'Number node' -> 123

| know from the stream | always read an integer value first.
Depending whether this is 0, 1 or 2 | have to read - now
known - following values. Now let us consider the record.

type
rTreeData = record
Typ: Integer;
Name: string[255];
pNodeData: Pointer;
end;

Hey, there is suddenly a pointer in the record. Well, here are
some additional comments:

1. Typis an integer value, from which I can determine what kind of
node this is, in my example 1, 2 or 3.

2. Name is the name of the node. This will be needed relatively often
because it is also seen as part of the tree and | want to access this

information easily (man, | am lazy).
3. The pointer allows (similar to the data property of the tree) a record
or even better a class instance to connect.

Now | still have the freedom to define a base class of node. It
contains all properties and methods, which all classes will
share. And from this | can derive proper sub classes (e.g. text
nodes, value nodes etc.). An additional advantage of this
record is its fixed size. Hence you can always return the same
size in case the tree asks for it (see also property
NodeDataSize), but more about that later.

Just one remark: If you don't want to use classes you can also
simply define 3 records, which define as first element, a type
and which react differently depending on this type.

Alternative solution:

Okay, | admit it. It would of course also be possible to write the
type into the stream and read it from the stream separately
without saving it as part of the record. The type of the node
class is indirectly known because you can ask a class which
class name it has (see e.g. class function ClassName) and the
class knows it too. So | shall store a node, okay. | pass on the
stream to the Node.SaveToFile(Stream) method, which writes,
depending on which node class we actually have,
automatically the value 1, 2 or 3 into the stream.

During load from stream | read first the value 1, 2 or 3 and
decide what class is meant. Then | create an instance of this
class and call its LoadFromFile method. Well, this solution is
my most preferred and before another one enters my brain |
will implement it (Note: in step 5 | will change something).

So | do following:

As you can see from the declaration of the internal node of
Virtual Tree

TVirtualNode = packed record
Index, // index of node with regard to its parent
ChildCount: Cardinal; // number of child nodes

LastChild: PVirtualNode; // link to the node's la
Data: record end; // this is a placeholder, each
// data determined by NodeDataSize

end;

there is another record at the end of the record structure.
Which exact structure this is will be determined indirectly.

type

rTreeData = record
Name: string[255]; // the identifier of the nod
ImageIndex: Integer; // the image index of the
pNodeData: Pointer;

end;

Let the above record be the structure. The Virtual Treeview
does not really know this structure, but it knows how much
space must be reserved. We tell it by

myVirtualTree.NodeDataSize := SizeOf(rTreeData);

Note, even if you want to store only one value, e.g. a pointer
as node data, simply return the size, which should be
reserved.

Implementation

An empty tree

| begin with an empty tree (no top level nodes are created at
design time):

e Either an existing tree is read from a file or

o Atop-level node is created.

Before a node can be created you have to determine the size
of the actual node data. According to the docs there are three

opportunities:

¢ In the object inspector
¢ |In the OnGetNodeDataSize - event or
e During creation of the form

| decide to use the last variant and will now do the following

during form creation:

procedure TMyForm.FormCreate(Sender: TObject);

var
Node: PVirtualNode;

begin

// create tree
MyTree.NodeDataSize := SizeOf(TTreeData);

// create tree with top level node

end
else

if MyForm.filename = '' then begin // if there 1is

Node := BookmarkForm.BookmarkTree.AddChild(nil)

begin
// load tree

end;

end;

Data for the node

After the call of AddChild data can be assigned. For this a
pointer to the self-defined record will be declared and via the
function GetNodeData connected with the correct address. By

using this pointer we can now access the elements of the
record and assign them values.

var
NééeData: ArTreeData;
begin
}}.determine data for node
NodeData := BookmarkForm.BookmarkTree.GetNodeData

NodeData.Name := 'new project';
NodeData.ImageIndex := 0;

Show the node name

The name of the node shall now appear as node identification
in the tree. All data about the node as well as the name are
unknown to the treeview and it has to query for them.

Every time the identification of the node is needed an event
OnGetText will be triggered. In the event handler we return the
name of the node in the variable Text. Nothing more is
needed.

procedure TBookmarkForm.BookmarkTreeGetText (Sender:
Node: PVirtualNode; Column: Integer; TextType: TV

var
NodeData: ArTreeData;

begin
NodeData := Sender.GetNodeData(Node);
// return identifier of the node
Text := NodeData.Name;

end;

The icon for the node

Because | like it colorful | want also to provide an icon for the
top-level node. Following steps are necessary to accomplish
that:

e A TlmageList must be placed onto the form and filled with images

e The property Images of the VirtualTreeview gets assigned this
image list

o Implement an OnGetimagelndex event handler.

In the event OnGetimagelndex you can the index be
determine which determines in turn which image form the list
must be shown.

Because the method is also called for the state icons but | do
not want yet to state icons (but | already have assigned and
image list to the property Statelmages) the value for this case
(Kind € ikState) is -1.

procedure TBookmarkForm.BookmarkTreeGetImageIndex(S
Node: PVirtualNode; Kind: TVTImageKind; Column: I

var
NodeData: ArTreeData;

begin
NodeData := Sender.GetNodeData(Node);
case Kind of
ikState: // for the case the state icon has bee

Index := -1;
ikNormal, ikSelected: // normal or the selected
Index := NodeData.ImageIndex;
end;
end;

Depending on whether a node is selected or not, different
icons shall be shown (see step 6).

Only one node class in the record

Since | want to avoid mixing data in the record and later then
data in the node class | decided to change this record

type
TTreeData = record
Name: string[255]; // the identifier of the nod
ImageIndex: Integer; // the image index of the
pNodeData: Pointer;
end;

into a record which contains only one pointer to a node class. |
declare therefore first a node class

TBasicNodeData = class

end;

and then a structure of the form:

rTreeData = record
BasicND: TBasicNodeData;
end;

This record always needs 4 bytes for the pointer to the class.

Particular attention is to direct to the event OnGetText. This
event will already be called during creation of the node with
Tree.AddChild(nil) in order to determine the space the new
node's caption will need (but only if no columns were created).
At this point however the node class could not yet be
initialised (no constructor call yet). Hence for this case

if NodeD.BasicND = nil then
Text = "'

must be returned or you wrap the entire initialization into a
BeginUpdate/EndUpdate block and initialized the nodes

before EndUpdate is called (e.g. by ValidateNode(Node)).*

Without this provision an access violation would be the result.

Example class declaration

unit TreeData;

interface

type
// declare common node class
TBasicNodeData = class
protected
cName: ShortString;
cImageIndex: Integer;
public
constructor Create; overload;
constructor Create(vName: ShortString; vIIndex:

property Name: ShortString read cName write cNa
property ImageIndex: Integer read cImageIndex w
end;

// declare new structure for node data
rTreeData = record
BasicND: TBasicNodeData;

end;
implementation

constructor TBasicNodeData.Create;
begin

{ not necessary

cName := '';

cImageIndex := 0;

}

end;

constructor TBasicNodeData.Create(vName: ShortStrin

begin
cName := vName;
cImageIndex := vIIndex;
end;
end.

Example creation of the tree

// Tree will be created when the form is created.
procedure TMyForm.FormCreate(Sender: TObject);

var
Node: ;
NodeD: ArTreeData;

begin

// create tree
MyTree.NodeDataSize := SizeOf(rTreeData);

if MainControlForm.filename = '' then
begin
// create tree with top level node
Node := MyTree.AddChild(nil); // adds a node to
// assign data for this node
NodeD := MyTree.GetNodeData(Node);
NodeD.BasicND := TBasicNodeData.Create('new pro
end
else
begin
// load tree
end;

end;

// returns the text (the identification) of the nod
procedure TMyForm.MyTreeGetText(Sender:
TextType: ; var Text: wWideString);

var
NodeD: ArTreeData;

begin
NodeD := Sender.GetNodeData(Node);

// return the identifier of the node
if NodeD.BasicND = nil then
Text = "'
else
Text := NodeD.BasicND.Name;
end;

// returns the index for image display
procedure TMyForm.MyTreeGetImageIndex(Sender:
Node: ; Kind: ; Column:

var

NodeD: ArTreeData;

begin
NodeD := Sender.GetNodeData(Node);

case Kind of
ikState: // for the case the state index has be

Index := -1;

ikNormal, ikSelected: // normal icon case
Index := NodeD.BasicND.ImageIndex;

end;

end;

Icons for selected nodes

If a node is selected a different symbol shall be shown.
Therefore | implement a new method

function GetImageIndex(focus: Boolean): Integer;

which gets the normal image index or the index for focused
nodes depending on whether the node has the focus or not.

Call:

Index := NodeD.BasicND.GetImageIndex(Node = Send

Implementation of the method:

function TBasicNodeData.GetImageIndex(focus: Boolea

begin
if focus then

Result := cImageIndexFocus
else

Result := cImageIndex;
end;

where clmagelndex has always the normal index and
clmagelndex Focus the index for focused nodes. | assume in
this case that the selected index is always one more than the

normal index. To ensure this, the constructor is changed this
way:

constructor TBasicNodeData.Create(vName: ShortStrin
begin

cName := vName;

cImageIndex := vIIndex;

cImageIndexFocus := vIIndex + 1;
end;

Adding and deleting nodes
In order to implement and test more functions | want finally an

opportunity to create the tree. By using a context menu is shall
be possible to add and remove nodes.

Hence | define a popup menu with two entries: [Add] and
[Remove]. To have the clicked node getting the focus the
option voRightClickSelect must be set to True.

So if Add has been chosen a child node will be created for the
focused node:

procedure TMyForm.addClick (Sender: TObject);

var
Node: PVirtualNode;
NodeD: ArTreeData;

begin
// 0k, a node must be added.
Node := MyTree.AddChild(MyTree.FocusedNode); // a
// determine data of node
NodeD := MyTree.GetNodeData(Node);
NodeD.BasicND := TBasicNodeData.Create('Child");
end;

Caution: What must be done if no node has the focus?

-> e.g. insert the new node as child of a top level nodes.

if BookmarkTree.FocusedNode = nil then
begin
// insert as child of the first top level node
Node := BookmarkTree.AddChild(BookmarkTree.Root
// determine data for node
NodeD := BookmarkTree.GetNodeData(Node);
NodeD.BasicND := TFolderNodeData.Create('new fo
end
else
begin
// 0k, a new node must be added.
Node := BookmarkTree.AddChild(BookmarkTree.Focu
// determine data of the node
NodeD := BookmarkTree.GetNodeData(Node);
NodeD.BasicND := TFolderNodeData.Create('new fo
end;

If the node with the focus must be deleted the following
happens:

procedure TMyForm.delClick (Sender: TObject);

begin
// The focused node should be removed. The top le
if MyTree.FocusedNode = nil then
MessageDlg('There was no node selected.', mtInf
else
// Note: RootNode is the internal (hidden) root

// level nodes. To determine whether a node is
// GetNodeLevel which returns 0@ for top level n
if MyTree.FocusedNode.Parent = MyTree.RootNode th
MessageDlg('The project node must not be delete
else
MyTree.DeleteNode(MyTree.FocusedNode);
end;

| want to prevent, however, that the top-level node gets
deleted. Hence | check with the comparison
MyTree.FocusedNode.Parent = MyTree.RootNode whether
the focused node is not a top-level node. Here you have to
consider that the property RootNode returns the (hidden)
internal root node, which is the common parent of all top-level
nodes.

While we are at deleting nodes:

Every data of the record is automatically free as soon as this
IS required. In this case it is not enough, however, to free the
memory, which holds the pointer to the class (object instance),
but it is also necessary to free the memory, which is allocated
by the class itself. This happens by calling the destructor of
the class in the OnFreeNode event:

procedure TMyForm.MyTreeFreeNode(Sender: TBaseVirtu

begin
// Free here the node data (Note: type PtreeData

PTreeData(Sender.GetNodeData(Node)).BasicND.Free;
end;

Adding folder and leafs

Now | am ready to add folders to the tree as well as final
nodes, which do not have children. For this | derive two new
node classes from the base class.

TFolderNodeData = class(TBasicNodeData)
TItemNodeData = class(TBasicNodeData)

Depending on which kind of node the user wants to create
using the context menu | store a particular class in the node
record.

NodeD.BasicND :
NodeD.BasicND :

TFolderNodeData.Create('new folder
TItemNodeData.Create('new node');

These classes contain a new property ChildrenAllowed.
Based on this property you can now distinct whether the node
with the focus may get children (folder) or not (items).

Storing the tree

Now | can finally implement storing the tree. | have already
thought a lot about this step. Let us see if this was
worthwhile.

Again a quote from Preparations:

| want to store a node, okay. | hand over the stream to the
MyNodeClass.SaveToFile method and this method writes
depending upon which node class it actually is automatically
the value 1, 2 or 3 as a kind of class ID into the stream
(alternatively you can use an enumeration type).

During load | read first the value 1, 2 or 3 from the stream and
decide based on it which class we deal with. Then | create an
instance of this class and call its method LoadFromFile.

Hint:

It would also be possible to store the class name instead of
the ID for the class. During read and creation of the class one
could use class references and virtual constructors and save
so the case-statement as | did in the OnLoadNode event, to
decide which class instance must be created (example see
Delphi 5, written by Elmar Warken, Addison-Wesley, chapter
4.3.3, page 439).

Before you can read something it must be written first. Hence |
will first implement the necessary procedures to store the tree.
Since we care ourselves that the identification of the node
gets saved the option toSaveCaption can be removed from
StringOptions. This way data is not stored twice.

For saving the tree the procedure

procedure TBaseVirtualTree.SaveToFile(const FileNam

is called. Thereby the structure of the tree is automatically
stored. In order to save our additional data there is an event
OnSaveNode where we can simply store our data into the
provided stream.

property OnSaveNode: TVTSaveNodeEvent read FOnSaveN

If OnSaveNode is triggered then the method SaveNode of the
particular node class will be called:

procedure TMyForm.MyTreeSaveNode(Sender: TBaseVirt

begin

PTreeData(Sender.GetNodeData(Node)).BasicND.SaveT
end;

In the SaveNode method of the class fields like node name,
image index etc. are stored in the tree:

procedure TBasicNodeData.SaveNode(Stream: TStream);

var
size: Integer;

begin
// save type of the node
Stream.Write(Art, SizeOf(Art));

// store cName

Size := Length(cName) + 1; // include terminating
Stream.Write(Size, SizeOf(Size)); // store length
Stream.Write(PChar(cName)”, Size); // now the str

// store cImageIndex
Stream.Write(cImageIndex, SizeOf(cImageIndex));

// store cImageIndexFocus
Stream.Write(cImageIndexFocus, SizeOf(cImageIndexX

// store cChildrenAllowed
Stream.Write(cChildrenAllowed, SizeOf(cChildrenAl
end;

Now we can the tree we save also load again. This p

try

// load tree
MyTree.LoadFromFile(MainControlForm.Filename);
except
on E: Exception do
begin
Application.MessageBox(PChar (E.Message), PChar(
MainControlForm.Filename := '';
// create tree with top level node (since loadi
Node := MyTree.AddChild(nil);
NodeD := MyTree.GetNodeData(Node);
NodeD.BasicND := TBasicNodeData.Create('new pro
end;
end;

By the call of LoadFromFile the event OnLoadNode will be
triggered and consequently the method LoadNode:

procedure TBasicNodeData.LoadNode(Stream: TStream);

var
Size: Integer;
StrBuffer: PChar;

begin
// load cName
Stream.Read(Size, SizeOf(Size)); // length of the

StrBuffer := AllocMem(Size); // get temporary mem
Stream.Read(StrBuffern, Size); // read the string
cName := StrBuffer;

FreeMem(StrBuffer);

// Alternatively you can simply use:

// SetLength(cName, Size);
// Stream.Read(PChar(cName)/, Size);

// load cImageIndex
Stream.Read(cImageIndex, SizeOf(cImageIndex));

// load cImageIndexFocus
Stream.Read(cImageIndexFocus, SizeOf(cImageIndexF

// load cChildrenAllowed
Stream.Read(cChildrenAllowed, SizeOf(cChildrenAll
end;

Two columns in the treeview

Now | want to show two columns in the treeview. Therefore |
set the new properties of the tree in the object inspector.

By using Header.Columns you can create the desired
columns. After that, you only have to set
Header.Options.hoVisible to True and the columns will appear
in the treeview.

After you have set all necessary options you can give now the
text and the icon for the particular column, respectively. This
happens in the already existing event handlers OnGetText and
OnGetlmagelndex where now also the given column index
must be taken into account.

procedure TMyForm.MyTreeGetText (Sender:
Column: Integer; TextType: ; var Text

var
NodeD: ArTreeData;

begin
NodeD := Sender.GetNodeData(Node);

// return the the identifier of the node
if NodeD.BasicND = nil then

Text := "'
else
begin
case Column of
-1,
©: // main column, -1 if columns are hidden,
Text := NodeD.BasicND.Name;
1:
Text := 'This text appears in column 2.';
end;
end;

end;

procedure TMyForm.MyTreeGetImageIndex(Sender:
Kind: ; Column: Integer; var Index: I

var
NodeD: ArTreeData;

begin
NodeD := Sender.GetNodeData(Node);

if Column = 0@ then // icons only in the first col
case Kind of
ikState:
Index := -1;

ikNormal, ikSelected:
Index := NodeD.BasicND.GetImageIndex(Node =
ikOverlay: // e.g. to mark a node whose conte
// Note: don't forget to call ImagelList.Ove
if NodeD.BasicND.ImageIndex = 4 then
Index := 6;
end;
end;

Accessing the columns

| want to demonstrate the access to the columns of a
TVirtualStringTrees based on an example. In order to store
global options, as in Point 2.12 | want to know the width of a
column. This information is updated every time an
OnColumnResize event is triggered:

procedure TBookmarkForm.BookmarkTreeColumnResize(Se

var
NodeD: PTreeData;

begin
NodeD := Sender.GetNodeData(Sender.RootNode.First

// Keep the new size of the column in the project
TProjectNodeData(NodeD.BasicND) .SetHColumnswidth(
TVirtualStringTree(Sender).Header.Columns.Items
end;

The exciting part is the type casting of the sender object. In

TBaseVirtualTree the header property is protected and only
after conversion (casting) to TVirtualTree it becomes
accessible.

Global tree options

Global options like the sizes of the columns, which are
adjusted in the project, will be stored as properties of the top-
level node. It contains so all project related options.

In order to avoid that all derived classes inherit these fields the
top-level node class will be build from a new project node
class, which will be derived from the base node class.

The new hierarchy looks now so:
€ Base node class... unites the properties of all nodes

€ Project node class... enriches the base with management
of project related options

€ Folder node classes... enriches the base with default
properties for all leaf nodes

@ Leaf node class... the actual node class (special
properties)

Since this involves already very application specific program
details | want only make some notes.

The base node class has the ability to store node data. These
methods must be declared as virtual and will be overridden in
the project node class to allow saving the project data.

Well, now | am ready to work with VirtualTreeview. It will
become interesting later again when | will try to drag data from
other applications to the tree. But this is a different story...

What do you think about this topic? Send feedback!

18 Virtual Treeview step by step |
N Questions and Answers

A little code repository by John Knipper

This is just written by me John Knipper. Don't bother Mike if
something is wrong here. | am not related to Mikes company
in any way. I'm just doing that because | believe so much in
his component, that | would not give you the possibility to miss
the opportunity to use it. You won't regret it. I'm not going to
enumerate all the nice advantage it has on it's competitors.
Because it has so many. The biggest | see is the speed
improvement, the multi columns, the automatic allocation of
node data and so many more.

You will see that the strong points of the Virtual tree view are
not obvious. But you can believe me, this is the best Treeview
ever. You will be kinda lost at the beginning, but it's only a
matter of forgetting what you know about trees. This is the
right way to do it. You will ask yourself why it has not be done
like that at the beginning.

Q: How to initially fill the tree?

A: The only information VT needs at startup is the number of
root nodes. All other information is queried from the
application when they are needed (text, node height etc.).
Hence all to do is to set property RootNodeCount to the

number of nodes required.

E:

VirtualStringTreel.RootNodeCount := 5; // is adding

To initialize the nodes, use the OnlInitNode event

Q: How to add a node to the tree?

A: The technique is very similar to the one you used with the
standard tree view. The only difference is that you fill the
node's data after the insertion of the node

E:

var
Node: PVirtualNode;

Node := VirtualStringTreel.AddChild(nil); // Adds
Node := VirtualStringTreel.AddChild(ParentNode);
Node := VirtualStringTreel.InsertNode(Node, amIns

Alternatively you can use the OnlInitChildren event. This event
is used when a node is marked as having child nodes and
these child nodes are somehow about to be accessed (like
iteration, expanding, display etc.).

Q: Where is gone all the information about my node, like text
for example ?

A: The text property is gone. You don't need it anymore. The
basic idea behind Virtual Treeview is to leave all data
management to the application which knows much better how
to do this than the tree (see also Related Topics). Every node
knows which is its parent and which are their children.
Information like the text property, the new hint property, the
Imagelndex property and everything else should be stored in
the node's data. The tree will ask for it on demand, e.g. when
it needs to show a certain node etc.

E:

TTreeData = record
Text: wWideString;
URL: String[255];
CRC: LongInt;
1sOpened: Boolean;
ImageIndex: Integer;
end;
PTreeData = ATTreeData; // This is a node example.

Q: When should | allocate memory for the node data?

A: Never, the VT does it for you. The only thing you have to do
is to tell the VT how much memory you need for your node
data.

VirtualStringTreel.NodeDataSize := SizeOf(TTreeData

If you know how much memory it will take, you can use the
NodeDataSize property of the VT and initialize it directly at
design time.

Q: When should I fill my nodes data?
A: The ideal place for this is the OnInitNode event.

E:

procedure TMainForm.VTInitNode(Sender: TBaseVirtual

var
Level: Integer;
Data,
ParentData: PMyNodeData;
Count: Integer,

begin
with Sender do
begin
Data := GetNodeData(Node);
ParentData := GetNodeData(ParentNode);
if Assigned(ParentData) then Level := ParentDat
else Level := 0;

case FFillMode of
©: // fill tree with a specific amount of nod
begin
// determine new node level
if Level < (LevelsUpDown.Position - 1) th
end;
1: // fill tree with one million root nodes (

2: // fill tree with a certain amount of root

begin

Data.FixedText := True;

Data.NewText := Format('Node: %d', [Node.
end;

3: // fill tree with a certain amount of root
// up to an absolute amount of ~1 million
begin
if Assigned(ParentNode) then Count := Par
else Count :=
if (Level < 15) and
(Random(Count) < (Count div 2)) and
(FCurrentCount < 1000000) then Include
end;
end;

Data.Level := Level;
Node.CheckType := ctTriStateCheckBox;
case Level of
1:
if Random(5) < 2 then Include(InitialStates
end;

end;

end;

Q: How do | access a node's data?

A: Use GetNodeData(Node) to get a pointer on your nodes
data

E: Either use

with PTreeData(VirtualStringTreel.GetNodeData(Node)
begin
Text:= ChangeFileExt(ExtractFileName(FileName), '
ImageIndex:= 1; //it's an example ;)
end;

Or in that case you can use

var
NodeData: PTreeData;

begin
NodeData := VirtualStringTreel.GetNodeData(Node);
NodeData.Text := 'a test';

NodeData.ImageIndex := 1;

Q: What else can | do with that nodes data pointer?

A: Usually you already have all data in your own structure
(database, file etc.) so you need only to supply an identifier or
a pointer into your own structure. This prevents your
application from doubling the data just for display which in turn
saves a remarkable amount of memory.

E: You could connect a TBookmark to the data. To display the
name of your customer in a VT :

procedure TFRM_WWW_main.vFavTreeGetText(Sender: TBa

begin
// Column is -1 if the header is hidden or no col
if Column < 0 then Exit;
if TvVirtualStringTree(Sender).Header.Columns[Colu
begin
Table.GotoBookmark(TBookmark(Sender.GetNodeData
Text := Table.FieldByName('Name').asString;
end;
end;

Q: A move of a scrollbar's thumb doesn't directly scroll the
tree. What to do?

A:

VirtualStringTreel.VertScrollBar.Track := True;

Q: How can | display text for other columns?
A: In the OnGetText event, check the column index.

E:

procedure TFRM_WwWW_main.vFavTreeGetText(Sender: TBﬂ

begin
case Column of
-1, // main column, -1 if columns are hidden, ©
0:
Text := 'Text of column 1';
1:
Text := 'Text of column 2';
2.
Text := 'Text of column 3';
end;
end;

Q: When do | tell which icon to use?

A: It's the same principle as for the OnGetText event. With the
exception that you must tell which icon to use in 3 cases: the
normal icon, the selected icon and the state icon.

E:

procedure TFRM_WWW_main.vFavTreeGetImageIndex(Sende

begin
if Kind = ikState then
begin
Index := 2;
end
else
if (Kind
begin
Index := 1;
end;
end;

ikNormal) or (Kind = ikSelected) the

or just use

procedure TFRM_WWW_main.vFavTreeGetImageIndex(Sende

begin
case Kind of
ikState:
Index := 2;
ikNormal,
ikSelected:
Index := 1;
end;
end;

Ok, here we are. This is only a small introduction to help you
begin with Virtual Treeview. There are many more useful
functions. Nearly everything was done for you. Thank you very
much for your work Mike.

What do you think about this topic? Send feedback!

¢ A little code repository by John
A Knipper | Licensing

Questions and Answers

Got some basic questions and need an answer - look here:

Q: How to initially fill the tree?

A: The only information VT needs at startup is the number of
root nodes. All other information is queried from the
application when they are needed (text, child count etc.).
Hence all to do is to set property RootNodeCount to the
number of nodes required.

Q: When | change the text of a node in code then often the
display is not updated. What must | do to make selection etc.
working again?

A: The Virtual String Tree class keeps the caption's width for
each node to allow quick hit tests. But since the captions are
not stored in the tree they might get out of synch with the
cached width. So if you change a node's text or only its width
somehow (e.g. making it bold in OnPaintText) then you have
to tell the tree about this event. You can do this by calling
InvalidateNode. For changes in an event, though, you should
not call InvaldiateNode all the time but rather store the text
attributes somewhere and force recalculation only once.

Q: Why doesn't the horizontal scroll bar stay constant while
scrolling vertically and columns are unused?

A: VT holds (except a few important things for the overall
structure) no information about a node to save memory and
provide high speed access. This implies, though, that it only
knows the width of the items currently displayed in the client
area. Hence the horizontal scroll bar reflects only the width of
the largest node currently in view. When columns are used
then the width is determined by the overall width of the
header.

Q: Why is the horizontal scroll bar not updated when scrolling
vertically using the scroll thumb?

A: To avoid unnecessary flickering and to keep high speed
response the horizontal scroll bar is updated after the scroll
thumb has been released. You cannot scroll horizontally while
scrolling vertically, so the horizontal scroll bar doesn't need to
be updated while thumb tracking. When columns are used
then the width is constant anyway and the horizontal scrollbar
does not need an update.

Q: How to assign and access my own data to/on a node?

A: VT does not hide any information about the internal
structure of the node from the application. And the best place
to hold data specific to a node is the node itself. So there's a
user definable area at the end of each node record which can
be used to store application data. Usually you already have all

data in your own structure (database, file etc.) so you need
only to supply an identifier or a pointer (link) into your own
structure. This prevents your application from doubling the
data just for display which in turn can save a remarkable
amount of memory. As the space requirements may vary from
application to application the amount of user data space can
be globally adjusted by the property NodeDataSize. In order to
avoid ugly pointer math there's a function GetNodeData which
returns a pointer which directly corresponds to the user data
area (it points to the first byte in that area). | strongly
recommend to use GetNodeData only (instead directly
accessing a node's data area) because specific tree classes
may additionally allocate data in the user data area and these
parts needs to be taken into account. Assign the returned
pointer to your own variable of the correct type (or just cast
the pointer) and access your own data as usual. Note: Setting
NodeDataSize will clear the entire tree and build it from
scratch using this new size as all node records have to be
reallocated.

Q: Do | need to check if a node's data is successfully
allocated?

A: No, user data is allocated with the node (actually it is part of
a node) so the memory allocation function takes care of
initialization.

Q: How to get the currently focused node and the target node
during a drag'n drop operation?

A: Just query property FocusedNode and DropTargetNode,
respectively.

Q: When to free my own node specific data?

A: Use OnFreeNode as central routine to release/disconnect
all your data (just like as you should use OnNodelnit to
allocate/attach your data to the node).

Q: How can | know which node am | working on?

A: You might want to access the currently FocusedNode to
add child nodes to etc. or you might want to use the drop
target to act on during a drag'n drop operation etc. But usually
you are working on the selection. You have two opportunities
to get a list of currently selected nodes. One is the
GetFirstSelected/GetNextSelected pair which is really fast but
returns the nodes precisely as they are in the internal
selection array (which is ordered by memory locations, not
logically). Or you can use GetSortedSelection which fills a
dynamic array with node references in logical (structural)
order.

Q: Is user data saved while doing drag'n drop or
saving/restoring nodes?

A: This question implies another question, which | want to
answer first: Yes, the same mechanism to save and load
nodes is used for drag'n drop as for streaming to/from a file.
Because of potentially large node data and/or many nodes the
user data is not saved by default with a node. There are the

OnSaveNode and OnLoadNode events which provide the
application with a stream to store its node data in.

Q: Where should | update my external resources (like a
database) involved by any node manipulation?

A: There are several events which could be used. First there
is the set of edit events (OnEditCancelled, OnEditing,
TBaseVirtualTree) which indicate the cancellation, start and
successful finish of an edit event, respectively. These events
are used to generally indicate editing of a node. Especially for
the node's text in a TVirtualStringTree another event might
ease your life. It's the OnNewText event. This is a good place
to set a record's description/caption in a database etc.

When it comes to structure changes then usually much more
work is involved to keep external data in sync. For general
notifications of such a change you might want to use
OnStructureChange. This event might often be enough, in
particular when also OninitNode, OnlInitChildren and
OnFreeNode are considered. But for cut, copy and paste as
well as drag'n drop even more care must be taken, since a
node might move within the tree what then involves a move of
a database record or a file etc. For this kind of action the
event pairs OnNodeCopying/OnNodeCopied and
OnNodeMoving/TBaseVirtualTree have been introduced. As
with all those pairs you can reject copying or moving a node.

Note: These events do only appear for the top node which
represents a sub tree! For example if the user drags the
second and the third top level node of a tree to a Word
document then you'll get only two events, one for each

selected node, but not for any child node even if they are
selected too. You can still walk through the child nodes if you
need to by using e.g. lterateSubTree, but usually a tree
represents a hierarchical structure which is recursively defined
which avoids the need to update each and every of probably
many child nodes.

What do you think about this topic? Send feedback!

¢ Questions and Answers | Virtual
| Treeview

Licensing

Virtual Treeview License Agreement

The contents of this file are subject to the Mozilla Public
License Version 1.1 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy
of the License at www.mozilla.org/MPL.

Alternatively, you may redistribute this library, use and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later
version. You may obtain a copy of the LGPL at
www.gnu.org/copyletft.

Software distributed under the License is distributed on an
"AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either
express or implied. See the License for the specific language
governing rights and limitations under the License.

The original code is VirtualTrees.pas, released September 30,
2000.

http://www.mozilla.org/MPL
http://www.gnu.org/copyleft

The initial developer of the original code is digital publishing
AG (www.digitalpublishing.de).

Virtual Treeview is written, published and maintaned by

Mike Lischke (public@soft-gems.net, www.soft-gems.net).

What do you think about this topic? Send feedback!

Virtual Treeview | Functions

Classes

Classes | Virtual Treeview | Legend

These are all classes that are contained in this
documentation.

Classes

® EVirtualTreeError

® TBaseVirtualTree
TBaseVirtualTree is the main and base class for all other Virtual
Treeview descendants.

® TBufferedString

® TClipboardFormatList
Not documented.

® TClipboardFormats
List of strings describing clipboard formats.

@® TCriticalSection
Not documented.
® TCustomStringTreeOptions
Enhanced options class for string trees.
@® TCustomVirtualDrawTree
Simple owner draw descendant of the base tree.

® TCustomVirtualStringTree
Descendant of TBaseVirtualTree, which is able to manage node
captions on its own

® TCustomVirtualTreeOptions
Organizes all tree options into subproperties for easier managment.

® TEnumFormatEtc
® TScrollBarOptions

&
TStringEditLink is the standard node editor of a
&
Options class used in the string tree and its descentants.
&
Descendant of , Which passes node paint events
through to the application (similar to a draw grid)
&
Descentant of which is able to manage node captions
on its own.
&
Represents a column in a Virtual Treeview.
&
Collection class, which holds the columns for the tree.
&
Internally used hint window class to support Unicode hints.
&
Collects all binary options of the tree control into one place for easier
access.
&
Collects all color related options for the tree control.
&
Implementation of an IDataObject interface.
&
Not documented.
&
Not documented.
&
Not documented.
&
Not documented.
&
Not documented.
&
Not documented.

® TWorkerThread
Not documented.

® TWriterHack
Not documented.

Group
Virtual Treeview

Legend

®
Class

Links
Classes, Virtual Treeview, Legend

What do you think about this topic? Send feedback!

{vi Classes | TBaseVirtualTree Class

EVirtualTreeError Class

Classes

EVirtualTreeError = class(Exception);

Description

EVirtualTreeError is a normal exception derivation especially
for Virtual Treeview. This class does not add much value to its
parent class but is rather there to better tell when an exception
particularly from Virtual Treeview was raised.

Group
Classes

Class Hierarchy

| Bxception —#| EvimuslTresEmo |
File
VirtualTrees

Links
Classes

What do you think about this topic? Send feedback!

4 ; Classes | EVirtualTreeError Class |
TBufferedString Class

TBaseVirtualTree Class

Events | Classes | Methods | Properties | Legend

TBaseVirtualTree is the main and base class for all other
Virtual Treeview descendants.

Pascal

TBaseVirtualTree = class(TCustomControl);

Description

This class implements most of the base features and abilities
and can be used to derive new classes, which want to hide
most of the details of the tree, which other descendants like
TVirtualStringTree publish. Do not use the base treeview as
object. It is not meant to be instantiated directly, instead via an
descendant.

Group
Classes

Members

Properties

®@ Alignment
Determines the horizontal alignment of text if no columns are defined.
®& AnimationDuration
Determines the maximum duration the tree can use to play an
animation.
®@ AutoExpandDelay
Time delay after which a node gets expanded if it is the current drop

target.
L%
Time which determines when auto scrolling should start.
L%
Time interval between scroll events when doing auto scroll.
L%
Holds a background image for the tree.
L%
Horizontal offset of the background image.
L%
Vertical offset of the background image.
L%
Same as TForm.BorderStyle.
L%
Determines how to fill the background of the node buttons.
L%
Determines the look of node buttons.
L%
Time which determines when the event should be
triggered after the actual change event.
L%
Determines which images should be used for checkboxes and radio
buttons.
LI
Not documented.
LR
Read or set the check state of a node.
LR
Read or set the check type of a node.
LR
Read or set the number of child nodes of a node.
LI
Read whether a node's child count has been initialized already.
L%
Special class to keep a list of clipboard format descriptions.

0
A collection of colors used in the tree.
0
Assign your own image list to get the check images you like most.
0
Read or set the height new nodes get as initial value.
0
Read or set the value, which determines where to add pasted nodes
to.
0
Read or set the vertical limit of the internal drag image.
®8
Holds the instance of the internal drag image.
0
Read or set what should be shown in the drag image.
®8
Holds the reference to the internal drag manager.
0
Read or set which drag operations may be allowed in the tree.
®8
Keeps a temporary list of nodes during drag'n drop.
0
Read or set which subsystem should be used for
0
Read or set the horizontal limit of the internal drag image.
0
Read or set how multiselection with the mouse is to be visualized.
®8
Contains the current drop target node if the tree is currently the target
of a drag'n drop operation.
0
Not documented.
0
Read or set the maximum time between two single clicks on the same
node, which should start node editing.

LI
Keeps a reference to the internal edit link during a node edit
operation.
LR
Read or set the expanded state of a particular node.
LR
Read or set the currently focused collumn.
LR
Read or set the currently focused node.
LR
Same as TWinControl.Font.
LR
Read or set whether a node is fully visible or not.
LR
Read or set whether a node has got children.
L%
Provides access to the header instance.
eu8
Returns the non-client-area rectangle used for the header.
L%
Read or set the current hint animation type.
L%
Read or set what type of hint you want for the tree view.
L%
Read or set which cursor should be used for hot nodes.
LI
Read, which node is currently the hot node.
L%
Read or set the tree's normal image list.
L%
Read or set the current incremental search mode.
L%
Read or set the direction to be used for incremental search.
L%
Read or set where to start incremental search.

L%
Read or set the maximum time, which is allowed between two
consecutive key strokes so that incremental search stays active.

0

Read or set the indentation amount for node levels.
L2

Read or set the enabled state of the given node.
L2

Read or set the visibility state of the given node.
0

Used for retained drag start and wheel mouse scrolling.
0

Read how the last drop operation finished.
0

Read or set the mode of the tree lines.
0

Read or set the mode of the tree lines.
0

Read or set the tree's node margin.
L2

Read or toggle the multiline feature for a given node.
[_J*
Read or set the node alignment value.
[_J*
Read or set the extra data size for each node.
-
Read or set a node's height.
-
Read or set a node's parent node.
-
Read or set the tree's current horizontal and vertical scroll offsets.
-
Read or set the tree's current horizontal and vertical scroll offsets.
-
Read or set the tree's current horizontal and vertical scroll offsets.

o8
Reference to the internal root node which is the anchor of the entire
tree node hierarchy.
0
Read or set the number of nodes on the top level.
0
Reference to the scroll bar options class.
o8
Current input string for incremental search.
L2
Property to modify or determine the selection state of a node.
o8
Contains the number of selected nodes.
0
Read or set the current blend factor for the multi selection rectangle
and the node selection rectangle.
0
Read or set the current corner radius for node selection rectangles.
0
Reference to the images list which is used for the state images.
0
Read or set the distance of the node caption to its borders.
L2
The top node is the node which is currently at the top border of the
client area.
o8
Returns the number of nodes in the tree.
eu8
Keeps the currently accumulated data size for one node.
0
Reference to the tree's options.
L2
Property which keeps a set of flags which indicate current operation
and states of the tree.
o8

Not documented.
L2
Used to set a node's vertical button aligment with regard to the entire
node rectangle.
o8
Number of currently visible nodes.
L2
Property to set or determine a node parent's expand states.
0
Read or set whether the tree wants to process tabs on its own.

Events

L »

Header paint support event.
L »

Paint support event.
L »

Paint support event.
L »

Paint support event.
L »

Paint support event.
L »

Paint support event.
L »

Paint support event.
L »

Paint support event.
L »

Paint support event.
L »

Navigation support event.
L »

Check support event.

L
Check support event.
L
Miscellaneous event.
L
Miscellaneous event.
L
Header and column support event.
L
Header and column support event.
L
Header and column support routine.
L
Sort and search support event.
L
Drag'n drop support event.
L
Drag'n drop support event.
L
Editing support event.
L
Drag'n drop support event.
L
Drag'n drop support event.
L
Drag'n drop support event.
L
Editing support event.
L
Editing support event.
L
Editing support event.
L
Misscellaneous event.
L

Miscellaneous event.
L
Navigation support event.
L
Navigation support event.
L
Data management node.
L
Triggered when the tree control needs to know whether a given
column is empty.

L »

Miscellaneous event.
L »

Header and column support event.
L »

Miscellaneous event.
L »

Display management event.
L »

Not documented.
L »

Display management event.
L »

Data management event.
L »

Miscellaneous event.
L »

Drag'n drop and clipboard support event.
L »

Header & column support event.
L »

Header & column support event.
L »

Header & column support event.
L

Header & column support event.
.

Header & column support event.
.

Header & column support event.
.

Header & column support event.
.

Header & column support event.
.

Header & column support event.
.

Header & column support event.
.

Navigation support event.
.

Miscellaneous event.
.

Node management event.
.

Node management event.
.

Miscellaneous event.
.

Streaming support event.
.

Miscellaneous event.
.

Miscellaneous event.
.

Miscellaneous event.
.

Miscellaneous event.
.

Miscellaneous event.

L »
Paint support event.

.

Drag'n drop and clipboard support event.
.

Node management event.
.

Streaming support event.
.

Miscellaneous event.
.

Not documented.
.

Miscellaneous event.
.

Miscellaneous event.
.

Miscellaneous event.

Methods

@)

Reads the overall index of a node.

@)

Creates and adds a new child node to given node.

@)

Adds the content from the given stream to the given node.

@)

Adds one or more nodes to the current selection.

@)

Used in descentants to modify the clip rectangle of the current column
while painting a certain node.

@)

Loads the proper cursor which indicates into which direction scrolling

is done.

@)
Used to register a delayed change event.
@)
Registration method to allocate tree internal data per node.
@)
Support method for animated actions in the tree view.
ele
Used to copy properties from another Virtual Treeview.
@)
Starts an OLE drag'n drop operation.
@)
Enters the tree into a special synchronized mode.
@)
Locks the tree view to perform several update operations.
@)
Support method for draw selection.
@)
Determines whether the tree can currently auto scroll its window.
@)
Canceles any pending cut or copy clipboard operation.
@)
Cancel the current edit operation, if there is any.
@)
Determines whether a node can be edited or not.
@)
Support method to determine whether the tree window can receive
the input focus.
@)
Determines whether a drag image should be shown.
@)
Central method called when a node's selection state changes.
@)
Helper method called by the VCL when control resizing is due.
@)
Helper method for recursive check state changes.

@0)es
Clears the tree and removes all nodes.

@)
Not documented.
@)
Removes all nodes from the current selection.
187
Helper method to the internal temporary node cache.
@)

Used to determine if a cell is considered as being empty.

@)

Copies Source and all its child nodes to Target.

ele

Copies all currently selected nodes to the clipboard.

@)

Determines the level difference of two nodes.

@)

Determines the number of visible child nodes of the given node.
ele

Constructor of the control

@)

Prepares the creation of the controls window handle.

@)

Initializes data, which depends on the window handle.

ele

Copies the currently selected nodes to the clipboard and removes
them once a consumer has taken the data.

@)

Helper method to customize loading and saving persistent tree data.
@)

Removes all child nodes from the given node.

@)

Removes the given node from the tree.

ele

Removes all currently selected nodes form the tree.

®{le Destroy
Destructor of the control.
®(2e DetermineHiddenChildrenFlag
Determines whether all children of a given node are hidden.
®(le DetermineHiddenChildrenFlagAllNodes
Determines whether all children of all nodes are hidden.
@{)e DetermineHitPositionLTR
Determines the hit position within a node with left-to-right and right-to-
left orientation.
®@{J)e DetermineHitPositionRTL
Determines the hit position within a node with left-to-right and right-to-
left orientation.
@& DetermineNextCheckState
Not documented.
®@{Je DetermineScrollDirections
Not documented.
®{Je DoAdvancedHeaderDraw
Not documented.
@& DoAfterCellPaint
Not documented.
@& DoAfterltemErase
Not documented.
@& DoAfterltemPaint
Not documented.
®{le DoAfterPaint
Not documented.
®{le DoAutoScroll
Enables or disables the auto scroll timer.
@(Je DoBeforeCellPaint
Not documented.
®(2e DoBeforeDrag
Not documented.
®{)e DoBeforeltemErase
Not documented.
@(Je DoBeforeltemPaint

Not documented.

®{)e DoBeforePaint
Not documented.

®{le DoCancelEdit
Called when the tree should stop editing without accepting changed
values.

®{le DoCanEdit
Not documented.

®¢le DoChange
Not documented.

®{le DoCheckClick
Not documented.

®{le DoChecked
Not documented.

@3¢ DoChecking
Not documented.

®(¢2e DoCollapsed
Not documented.

®(¢2e DoCollapsing
Not documented.

®{le DoColumnClick
Not documented.

@{)e DoColumnDblClick
Not documented.

®{le DoColumnResize
Not documented.

®(le DoCompare
Not documented.

®(2e DoCreateDataObject
Not documented.

®(2e DoCreateDragManager
Not documented.

®(le DoCreateEditor
Not documented.

®¢2e DoDragDrop

Not documented.
@)
Not documented.
@)
Internal method which handles drag' drop.
@)
Not documented.
@)
Initiates editing of the currently set focused column and edit node.
@)
Not documented.
@)
Stops the current edit operation and takes over the new content.
@)
Not documented.
@)
Not documented.
@)
Not documented.
@)
Not documented.
@)
Internal method to set the focused node.
@)
Not documented.
@)
Determines the type of animation to be used.
@)
Not documented.
@)
Not documented.
@)
Not documented.
@)
Not documented.

@()e DoGetNodeHint
Not documented.
@{)e DoGetNodeTooltip
Not documented.
@(le DoGetNodeWidth
Overridable method which always retuns 0.
@{de DoGetPopupMenu
Overridable method which triggers the OnGetPopup event.
@& DoGetUserClipboardFormats
Not documented.
@) DoHeaderClick
Not documented.
@3¢ DoHeaderDbIClick
Not documented.
@& DoHeaderDragged
Not documented.
@& DoHeaderDraggedOut
Not documented.
@& DoHeaderDragging
Not documented.
@) DoHeaderDraw
Not documented.
@& DoHeaderDrawQueryElements
Not documented.
®@(le DoHeaderMouseDown
Not documented.
@(le DoHeaderMouseMove
Not documented.
@{)e DoHeaderMouseUp
Not documented.
@& DoHotChange
Not documented.
®@(de DolncrementalSearch
Not documented.
@(¢de DolnitChildren

Not documented.

@)

Not documented.

@)

Not documented.

@)

Not documented.

@)

Not documented.

@)

Not documented.

@)

Not documented.

@)

Not documented.

@)

Not documented.

@)

Not documented.

@)

Overridable method which draws the small line on top of a nodes
image depending on the current drop state.

@)

Overridable method which does nothing.

@)

Overridable method which shows the popup menu for the given node.
@)

Not documented.

@)

Not documented.

@)

Not documented.

@)
Overridable method which triggers the event.
@)

Internal core routine to set the tree's scroll position.

@il

Not documented.

@il

Not documented.

@il

Not documented.

@il

Not documented.

@il

Callback method which is triggered whenever the scroll timer fires.

@il

Not documented.

@il

Not documented.

@il

Called by the VCL when a drag'n drop operation was canceled by the
user.

Lo

Helper method, which is used when a drag operation is finished.

@il

Not documented.

@il

Called when a drag operation is finished (accepted or cancelled).

@)

Returns true if a drag'n drop operation is in progress.

@il

Not documented.

@il

Not documented.

@il

Not documented.

@il

Not documented.

@()e

Starts editing the given node if allowed to.
@)
Stops node editing if it was started before.
@)

Counterpart to

@)
Resets the update lock set by

@()e

Not documented.

@il

Helper method to find the given node in the current selection.
@il

Not documented.

@)

Stops any pending cut or copy clipboard operation.

@)

Renders all pending clipboard data.

@il

Not documented.

@()e

Collapses all nodes in the tree.

@()e

Expands all nodes in the tree.

@il

Not documented.

@il

Not documented.

@il

Not documented.

@il

Returns the class to be used to manage columns in the tree.
@()e

Not documented.

@)

Returns the visible region used by the given node in client

coordinates.
1o
Group of node navigation functions.
1o
Not documented.
1o
Group of node navigation functions.
1o
Group of node navigation functions.
1o
Group of node navigation functions.
1o
Group of node navigation functions.
1o
Group of node navigation functions.
1o
Group of node navigation functions.
1o
Group of node navigation functions.
1o
Group of node navigation functions.
1o
Group of node navigation functions.
Qe
Returns the header class to be used by the tree.
Qe
Not documented.
1o
Returns information about the node at the given position.
Qe
Not documented.
1o
Group of node navigation functions.
1o
Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Returns the width of the largest node in the given column.

@)

Determines the maximum with of the currently visible part of the tree.

@)

Used to let descendants and the application add their own supported
clipboard formats.

@)

Group of node navigation functions.

@)

Not documented.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Not documented.

@)

Returns the address of the user data area of the given node.

@)

Returns the indentation level of the given node.

@)

Customization helper to determine which options class the tree should
use.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Group of node navigation functions.

@)

Returns a sorted list of nodes, which are marked for s cut or copy

clipboard operation.
@)
Returns a sorted list of all currently selected nodes.
CTe
Helper method for node editors, hints etc.
@il
OLE drag'n drop and clipboard support method.
@)
Returns the size of the virtual tree image.
@)
Returns the first (nearest) parent node, which is visible.
@il
Not documented.
@il
Not documented.
@il
Not documented.
@il
Not documented.
@il
Not documented.
@)
Determines if the given node has got another node as one of its
parents.
@il
Not documented.
@il
Determines whether there is a pop up menu assigned to the tree.
@il
Not documented.
@il
Not documented.
@)
Inserts a new node and returns it to the caller.
@il

Not documented.
L1
Not documented.
@)
Not documented.
@)
Not documented.
@il
Not documented.
L1
Returns the address of the internal data for a tree class.
@il
Not documented.
@il
Not documented.
L1
Empties the internal node cache and marks it as invalid.
@)
Invalidates all children of the given node.
@)
Invalidates the client area part of a column.
@()e
Invalidates the given node.
@)
Invalidates the client area starting with the top position of the given
node.
@)
Inverts the current selection.
@)
Tells the caller whether the tree is currently in edit mode.
@)
Tell the caller whether the tree is currently in draw selection mode.
@)
Iterator method to go through all nodes of a given sub tree.
@il

Not documented.
@()e
Loads previously streamed out tree data back in again.
@()e
Loads previously streamed out tree data back in again.
@C)e
Not documented.
@C)e
Not documented.
@)
Not documented.
@C)e
Not documented.
@)
Moves Source and all its child nodes to Target.
@C)e
Not documented.
@C)e
Not documented.
@C)e
TControl's Paint method used here to display the tree.
@C)e
Not documented.
@C)e
Not documented.
@C)e
Not documented.
@C)e
Not documented.
@)
Main paint routine for the tree image.
@C)e
Not documented.
@C)e
Not documented.

@()e

Inserts the content of the clipboard into the tree.

@)

Not documented.

@)

Not documented.

@)

Helper method to ease OLE drag'n drop operations.

@)

Takes serialized OLE tree data and reconstructs the former structure.
@il

Not documented.

@il

Not documented.

@il

Not documented.

@()e

Forces all child nodes of Node to be reinitialized.

@()e

Forces a reinitialization of the given node.

@il

Removes the given node from the current selection.

@il
Renders pending OLE data.

@)

Causes the treeview to repaint the given node.
@()e

Resets the given node to uninitialized.

@il

Not documented.

@il

Not documented.

@)

Saves the entire content of the tree into a file or stream.
@()e

Saves the entire content of the tree into a file or stream.
@)
Scrolls the tree so that the given node comes in the client area.
@)
Selects all nodes in the tree.
Cler
Selects a range of nodes.
Cler
Not documented.
Cler
Not documented.
Cler
Not documented.
CTe
Sorts the given node.
@)
Sorts the entire tree view.
@0
Not documented.
Cler
Not documented.
Cler
Not documented.
Cler
Not documented.
@)
Changes a node's expand state to the opposite state.
Cler
Toggles the selection state of a range of nodes.
Cler
Deselects a range of nodes.
CTe
Not documented.
Cler
Not documented.

@0
Not documented.
@0
Not documented.
@)
Applies changes to the horizontal and vertical scrollbars.
®(e
Applies changes to the horizontal and vertical scrollbars.
@)
Applies changes to the horizontal and vertical scrollbars.
@0
Not documented.
@)
Helper method for right-to-left layout.
@0
Initiates the validation of the internal node cache.
@)
Validates all children of a given node.
@)
Validates a given node.
@0
Helper method for node data size initalization.
@0
Redirected window procedure to do some special processing.
@0
Writes the core chunks for the given node to the given stream.
@0
Writes the cover (envelop) chunk for the given node to the given
stream.

Legend

.
protected
i

Property

L
public
&
read only
$
Event
¢
Method

virtual

Class Hierarchy

| TCustomControl |—]_ TBaseVimualTres |
File
VirtualTrees

Links
Events, Classes, Methods, Properties, Legend

What do you think about this topic? Send feedback!

' TBaseVirtualTree Class |
™ TBaseVirtualTree.AnimationDuration
N .

Property

TBaseVirtualTree.Alignment Property

TBaseVirtualTree Class

Determines the horizontal alignment of text if no columns are
defined.

Pascal

property Alignment: TAlignment;

Description

This property is only used if there are no columns defined and
applies only to the node captions. Right alignment means here
the right client area border and left aligned means the node
buttons/lines etc. (both less the text margin).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.Alignment
._\- Property |

TBaseVirtualTree.AutoExpandDelay
Property

TBaseVirtualTree.AnimationDuration
Property

TBaseVirtualTree Class

Determines the maximum duration the tree can use to play an
animation.

Pascal

property AnimationDuration: Cardinal;

Description

The value is specified in milliseconds and per default there are
200 ms as time frame, which is the recommended duration for
such operations. On older systems (particularly Windows 95
and Windows 98) the animation process might not get enough
CPU time to avoid expensive animations to finish properly.

Still the animation loop tries to stay as close as possible to the
given time.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Property |
o TBaseVirtualTree.AutoScrollDelay
Property

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.AnimationDuration
>

TBaseVirtualTree.AutoExpandDelay
Property

TBaseVirtualTree Class

Time delay after which a node gets expanded if it is the
current drop target.

Pascal

property AutoExpandDelay: Cardinal;

Description

This value is specified in milliseconds and determines when to
expand a node if it is the current drop target. This value is only
used if voAutoDropExpand in Options is set.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.AutoExpandDelay
._\- Property |

TBaseVirtualTree.AutoScrollinterval
Property

TBaseVirtualTree.AutoScrollDelay
Property

TBaseVirtualTree Class

Time which determines when auto scrolling should start.

Pascal

property AutoScrollDelay: Cardinal;

Description

Once the mouse pointer has been moved near to a border a
timer is started using the interval specified by AutoScrollDelay.
When the timer has fired auto scrolling starts provided it is
enabled (see also TreeOptions). The value is specified in
milliseconds.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.AutoScrollDelay
Property |
TBaseVirtualTree.Background
Property

TBaseVirtualTree.AutoScrollinterval
Property

TBaseVirtualTree Class

Time interval between scroll events when doing auto scroll.

Pascal

property AutoScrolllInterval: TAutoScrollInterval;

Description

This property determines the speed how the tree is scrolled
vertically or horizontally when auto scrolling is in progress.
The value is given in milliseconds.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.AutoScrollinterval
._\- Property |

TBaseVirtualTree.BackgroundOffsetX
Property

TBaseVirtualTree.Background Property

TBaseVirtualTree Class

Holds a background image for the tree.

Pascal

property Background: TPicture;

Description

Virtual Treeview supports a fixed background image which
does not scroll but can be adjusted by BackgroundOffsetX
and BackgroundOffsetY.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.Background
" Property |
N

i TBaseVirtualTree.BackgroundOffsetY
Property

TBaseVirtualTree.BackgroundOffsetX
Property

TBaseVirtualTree Class

Horizontal offset of the background image.

Pascal

property BackgroundOffsetX: Integer;

Description

Determines the horizontal offset of the left border of the
background image. This value is relative to the target canvas
where the tree is painted to (usually the tree window).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Property |
- TBaseVirtualTree.BorderStyle
Property

TBaseVirtualTree.BackgroundOffsetY
Property

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.BackgroundOffsetX
N

Vertical offset of the background image.

Pascal

property BackgroundOffsetY: Integer;

Description

Determines the vertical offset of the top border of the
background image. This value is relative to the target canvas
where the tree is painted to (usually the tree window).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

._ Property |
e TBaseVirtualTree.ButtonFillMode
Property

TBaseVirtualTree.BorderStyle Property

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.BackgroundOffsetY
b

Same as TForm.BorderStyle.

Pascal

property BorderStyle: TBorderStyle;

Description
See TForm.BorderStyle.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.BorderStyle
. Property |
N .

TBaseVirtualTree.ButtonStyle
Property

TBaseVirtualTree.ButtonFillIMode
Property

TBaseVirtualTree Class

Determines how to fill the background of the node buttons.

Pascal

property ButtonFillMode: TVTButtonkFillMode;

Description

This property is used to specify how the interior of the little
plus and minus node buttons should be drawn, if ButtonStyle
is bsTriangle.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Property |
o TBaseVirtualTree.ChangeDelay
Property

TBaseVirtualTree.ButtonStyle Property

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.ButtonFillMode
\

Determines the look of node buttons.

Pascal

property ButtonStyle: TVTButtonStyle;

Description
Determines the look of node buttons.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

: TBaseVirtualTree.ButtonStyle
.,\' Property |

TBaseVirtualTree.ChecklmageKind
Property

TBaseVirtualTree.ChangeDelay Property

TBaseVirtualTree Class

Time which determines when the OnChange event should be
triggered after the actual change event.

Pascal

property ChangeDelay: Cardinal;

Description

In order to accumulate many quick changes in the tree you
can use this delay value to specify after which wait time the
OnChange event should occur. A value of 0 means to trigger
OnChange immediately after the change (usually a selection
or focus change) happend. Any value > 0 will start a timer
which then triggers OnChange.

Note that there is the synchronous mode (started by
BeginSynch) which effectively circumvents the change delay
for the duration of the synchronous mode (stopped by
EndSynch) regardless of the ChangeDelay setting.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.ChangeDelay
.,\' Property |

TBaseVirtualTree.Checklmages
Property

TBaseVirtualTree.CheckimageKind
Property

TBaseVirtualTree Class

Determines which images should be used for checkboxes and
radio buttons.

Pascal

property CheckImageKind: TCheckImageKind;

Description
ChecklmageKind can be used to switch the image set, which
should be used for the tree. Read the description about
TChecklmageKind for a list of all images, which can be used.
ChecklmageKind can also be set to ckCustom, which allows
to supply a customized set of images to the tree. In order to
have that working you must assign an image list
(TCustomlmagelList) to the CustomChecklmages property.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

._ Property |
e TBaseVirtualTree.CheckState
Property

TBaseVirtualTree.Checkimages Property

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.ChecklmageKind
b

Not documented.

Pascal

property CheckImages: TCustomImagelList;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.Checklmages
._\- Property |

TBaseVirtualTree.CheckType
Property

TBaseVirtualTree.CheckState Property

TBaseVirtualTree Class

Read or set the check state of a node.

Pascal

property CheckState [Node: PVirtualNode]: TCheckStat

Description

The CheckState property can be used to read the current
check state of a node or to set a new one. Virtual Treeview
ensures that invalid check states (e.g. csMixedPressed for
radio buttons) do not cause an error.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.CheckState
._\- Property |

TBaseVirtualTree.ChildCount
Property

TBaseVirtualTree.CheckType Property

TBaseVirtualTree Class

Read or set the check type of a node.

Pascal

property CheckType [Node: PVirtualNode]: TCheckType;

Description

The CheckType property can be used to read the current
check type of a node or to set a new one. Setting a new check
type will reset a the node's check state to
csUncheckedNormal.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

TBaseVirtualTree.CheckType

‘s Property |
N TBaseVirtualTree.Childrenlnitialized
Property

TBaseVirtualTree.ChildCount Property

TBaseVirtualTree Class

Read or set the number of child nodes of a node.

Pascal

property ChildCount [Node: PVirtualNode]: Cardinal;

Description
ChildCount can be used to read the current number of child
nodes or to change it. Assigning a lower value than there was
before will automatically delete as many child nodes (starting
from the last child) as there are more than what was set.
Increasing the value will add new child nodes. Note: code
behind this property is very effective, so it using ChildCount is
highly recommended over manipulating the child count using
AddChild, InsertNode and DeleteNode.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.ChildCount
" Property |
N\

o TBaseVirtualTree.ClipboardFormats
Property

TBaseVirtualTree.Childreninitialized
Property

TBaseVirtualTree Class

Read whether a node's child count has been initialized
already.

Pascal

property ChildrenInitialized [Node: PVirtualNode]: B

Description

This read only property is used to determine whether a node's
child count has been set. Alternatively, the child count value is
not considered if vsHasChildren is not in the node states.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
4 ; TBaseVirtualTree.Childrenlnitialized
., ; Property | TBaseVirtualTree.Colors

Property

TBaseVirtualTree.ClipboardFormats
Property

TBaseVirtualTree Class

Special class to keep a list of clipboard format descriptions.

Pascal

property ClipboardFormats: TClipboardFormats;

Description

This TStringList descendant is used to keep a number of
clipboard format descriptions, which are usually used to
register clipboard formats with the system. Using a string list
for this task allows to store enabled clipboard formats in the
DFM.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.ClipboardFormats
Property |
TBaseVirtualTree.CustomChecklmages
Property

TBaseVirtualTree.Colors Property

TBaseVirtualTree Class

A collection of colors used in the tree.

Pascal

property Colors: TViColors;

Description

This property holds an instance of the TVTColors class, which
IS used to customize many of the colors used in a tree.
Placing them all in a specialized class helps organizing the
colors in the object inspector and improves general
management.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.Colors Property |
\ TBaseVirtualTree.DefaultNodeHeight
Property

TBaseVirtualTree.CustomChecklimages
Property

TBaseVirtualTree Class | See Also

e

Assign your own image list to get the check images you like
most.

Pascal

property CustomCheckImages: TCustomImagelList;

Description

The CustomChecklmages property is used when custom
check images are enabled (see also ckCustom in
TCheckimageKind).

See Also
TCheckimageKind

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

Property |
s TBaseVirtualTree.DefaultPasteMode
Property

TBaseVirtualTree.DefaultNodeHeight
Property

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.CustomChecklmages
N

Read or set the height new nodes get as initial value.

Pascal

property DefaultNodeHeight: Cardinal;

Description

This property allows to read the current initial height for new
nodes and to set a new value. Note that changing the property
value does not change the height of existing nodes. Only new
nodes are affected.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DefaultNodeHeight
._\' Property |

TBaseVirtualTree.DragHeight
Property

TBaseVirtualTree.DefaultPasteMode
Property

TBaseVirtualTree Class | See Also

Read or set the value, which determines where to add pasted
nodes to.

Pascal

property DefaultPasteMode: TVTNodeAttachMode;

Description

The default paste mode is an attach mode, which is used
when pasting data from the clipboard into the tree. Usually,
you will want new nodes to be added as child nodes to the
currently focused node (and this is also the default value), but
you can also specify to add nodes only as siblings.

See Also
TVTNodeAttachMode

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic?

TBaseVirtualTree Class |

? - TBaseVirtualTree.DefaultPasteMode
.,\' Property |

TBaseVirtualTree.Draglmage
Property

TBaseVirtualTree.DragHeight Property

TBaseVirtualTree Class

Read or set the vertical limit of the internal drag image.

Pascal

property DragHeight: Integer;

Description
The DragHeight property (as well as the DragWidth property)
are only for compatibility reason in the tree. If a platform does
not support the IDropTargetHelper interface (Windows 9x/Me,
Windows NT 4.0) then Virtual Treeview uses its own
implementation of a Draglmage. Since displaying a
translucent drag image is performance hungry you should limit
the image size shown for the drag operation.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

TBaseVirtualTree.DragHeight

‘s Property |
N TBaseVirtualTree.DragimageKind
Property

TBaseVirtualTree.Dragimage Property

TBaseVirtualTree Class

Holds the instance of the internal drag image.

Pascal

property DragImage: TVTDraglmage;

Description

For older systems where the IDropTargetHelper interface is
not supported Virtual Treeview simulates the translucent drag
image during drag'n drop. The property Dragimage makes the
internal drag image instance accessible for special handling.
The class itself is always created but is usually not visible
when the IDropTargetHelper interface is supported.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.Draglmage
" Property |
N

- TBaseVirtualTree.DragManager
Property

TBaseVirtualTree.DragimageKind
Property

TBaseVirtualTree Class

Read or set what should be shown in the drag image.

Pascal

property DragImageKind: TVTDragImageKind;

Description

DraglmageKind allows to switch parts of the drag image off
and on.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DragimageKind
._\' Property |

TBaseVirtualTree.DragOperations
Property

TBaseVirtualTree.DragManager Property

TBaseVirtualTree Class | See Also

Holds the reference to the internal drag manager.

Pascal

property DragManager: IVIiDragManager;

Description

The drag manager is the central point for the drag'n drop
support in Virtual Treeview. Usually you do not need to access
it but sometimes it might be necessary so the reference is
accessible through this property.

See Also
TVTDragManager

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DragManager
.,\' Property |

TBaseVirtualTree.DragSelection
Property

TBaseVirtualTree.DragOperations
Property

TBaseVirtualTree Class

Read or set which drag operations may be allowed in the tree.

Pascal

property DragOperations: TDragOperations;

Description

Using this property you can determine, which actions may be
performed when a drag operation is finished. The default
value includes move, copy and link, where link is rather an
esoteric value and only there because it is supported by OLE.
The values used directly determine which image is shown for
the drag cursor. The specified drag operations do not tell
which actions will actually be performed but only, which
actions are allowed. They still can be modified during drag'n
drop by using a modifier key like the control, shift or alt key or
can entirely be ignored by the drop handler.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Property |
o TBaseVirtualTree.DragType
Property

TBaseVirtualTree.DragSelection Property

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DragOperations
N

Keeps a temporary list of nodes during drag'n drop.

Pascal

property DragSelection: TNodeArray;

Description

This list is a local copy of the current selection array and is
only used during a drag operation.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
TBaseVirtualTree.DragSelection
.,\' Property |

TBaseVirtualTree.DragWidth
Property

TBaseVirtualTree.DragType Property

TBaseVirtualTree Class

Read or set which subsystem should be used for dragging.

Pascal

property DragType: TVIDragType;

Description

Traditionally, Delphi only supports its own drag mechanism,
which is not compatible with the rest of the system. This VCL
dragging also does not support to transport random data nor
does it support drag operations between applications. Thus
Virtual Treeview also supports the generally used OLE
dragging, which in turn is incompatible with VCL dragging.
Depending on your needs you can enable either VCL or OLE
dragging as both together cannot be started. However, Virtual
Treeview is able to act as drop target for both kind of data,
independant of what is set in DragType.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 TBaseVirtualTree.DragType Property |
A TBaseVirtualTree.DrawSelectionMode

Property

TBaseVirtualTree.DragWidth Property

TBaseVirtualTree Class

Read or set the horizontal limit of the internal drag image.

Pascal

property Dragwidth: Integer;

Description

The DragWidth property (as well as the DragHeight property)
are only for compatibility reason in the tree. If a platform does
not support the IDropTargetHelper interface (Windows 9x/Me,
Windows NT 4.0) then Virtual Treeview uses its own
implementation of a Draglmage. Since displaying a
translucent drag image is performance hungry you should limit
the image size shown for the drag operation.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DragWidth
._\- Property |

TBaseVirtualTree.DropTargetNode
Property

TBaseVirtualTree.DrawSelectionMode
Property

TBaseVirtualTree Class

Read or set how multiselection with the mouse is to be
visualized.

Pascal

property DrawSelectionMode: TVIDrawSelectionMode;

Description

Virtuall Treeview allows to display two different selection
rectangles when doing multiselection with the mouse. One is
the traditiional dotted focus rectangle and the other one is a
translucent color rectangle. The latter is the preferred one but
the former is set as default (for compatibility reasons).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

? - TBaseVirtualTree.DrawSelectionMode
._\- Property |

TBaseVirtualTree.EditColumn
Property

TBaseVirtualTree.DropTargetNode
Property

TBaseVirtualTree Class

Contains the current drop target node if the tree is currently
the target of a drag'n drop operation.

Pascal

property DropTargetNode: PVirtualNode;

Description

The drop target node has no meaning except during drag'n
drop and only if the tree it belongs to is itself the current drop
target. But even then DropTargetNode might be nil,
particularly when the mouse hovers over an area in the tree,
which is not covered by a node.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Property |
o TBaseVirtualTree.EditDelay
Property

TBaseVirtualTree.EditColumn Property

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.DropTargetNode
N

Not documented.

Pascal

property EditColumn: TColumnIndex;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.EditColumn
._\' Property |

TBaseVirtualTree.EditLink
Property

TBaseVirtualTree.EditDelay Property

TBaseVirtualTree Class | See Also

Read or set the maximum time between two single clicks on
the same node, which should start node editing.

Pascal

property EditDelay: Cardinal;

Description

A node edit operation can be started using the keyboard (F2
key), in code using EditNode or by clicking twice on the same
node (but not doing a double click). EditDelay is the
maxmimum time distance between both clicks in which the
edit operation is started.

See Also
Editors and editing

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

? TBaseVirtualTree.EditDelay
k" Property |
N TBaseVirtualTree.Expanded

Property

TBaseVirtualTree.EditLink Property

TBaseVirtualTree Class

Keeps a reference to the internal edit link during a node edit
operation.

Pascal

property EditLink: IVTEditLink;

Description

During an edit operation a link is established between the tree
and the editor for the current node. By default a simple TEdit
control is used as editor but due to the great customization
possibilities there can be any node editor you may want. In
order to communicate with this potentially unknown node
editor the edit link is used. The EditLink property holds this link
during the edit operation, so you can manipulate the interface.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.EditLink
. Property |
N .

TBaseVirtualTree.FocusedColumn
Property

TBaseVirtualTree.Expanded Property

TBaseVirtualTree Class

Read or set the expanded state of a particular node.

Pascal

property Expanded [Node: PVirtualNode]: Boolean;

Description

Using this property you can expand or collapse the given
node. This method uses the central ToggleNode method.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.Expanded
.,\' Property |

TBaseVirtualTree.FocusedNode
Property

TBaseVirtualTree.FocusedColumn
Property

TBaseVirtualTree Class | See Also

Read or set the currently focused collumn.

Pascal

property FocusedColumn: TColumnIndex;

Description

When toExtendedFocus in TVTSelectionOptions is enabled
then the user can select node cells in others than the main
column (the column with the tree structure). In order to keep

track, which column is currently selected FocusedColumn is
used (similar to FocusedNode).

See Also
FocusedNode, TVTSelectionOptions

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 TBaseVirtualTree.FocusedColumn
A Property | TBaseVirtualTree.Font

Property
TBaseVirtualTree.FocusedNode Property

TBaseVirtualTree Class | See Also

Read or set the currently focused node.

Pascal

property FocusedNode: PVirtualNode;

Description

One node (and only one) in the tree view can have the current
input focus, marked as dotted rectangle around the node's
caption. Having the input focus means this node can be edited
by pressing F2 or clicking on it and user keyboard input is
interpreted with respect to the focused node (e.g. tree
navigation, expansion/collapsing etc.). If extended focus is
enabled then also the FocusedColumn property is taken into
account. Read there for more info about column focus.

See Also
FocusedColumn, TVTSelectionOptions

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic?

TBaseVirtualTree Class |
TBaseVirtualTree.FocusedNode
Property |
TBaseVirtualTree.FullyVisible
Property

TBaseVirtualTree.Font Property

TBaseVirtualTree Class

Same as TWinControl.Font.

Pascal

property Font;

Description
See TWinControl.Font.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 TBaseVirtualTree.Font Property |
A TBaseVirtualTree.HasChildren

Property

TBaseVirtualTree.FullyVisible Property

TBaseVirtualTree Class | See Also

Read or set whether a node is fully visible or not.

Pascal

property FullyVisible [Node: PVirtualNode]: Boolean;

Description

Beside the fact that a node can be out of the client area there
are two possibilities for it to be hidden. One is the vsVisible
state in TVirtualNodeState, which hides the node regardles of
the current state of another node, if not specified. The other
one is that one or more parent nodes might be collapsed,
hiding so their entire child nodes structure. The visibility flag
itself can be checked using the IsVisible property, while the
expansion state of parents nodes can be examined via the
VisiblePath property. If both are true then the node is said to
be fully visible.

See Also
IsVisible, VisiblePath, vsVisible, TVirtualINodeStates

Class
TBaseVirtualTree Class

Links

TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 5 TBaseVirtualTree.FullyVisible
A _ Property |

TBaseVirtualTree.Header Property

TBaseVirtualTree.HasChildren Property

TBaseVirtualTree Class | See Also

Read or set whether a node has got children.

Pascal

property HasChildren [Node: PVirtualNode]: Boolean;

Description

A node can be set to have children by assigning true to this
property. Internally this will add the vsHasChildren state to the
node but not add any child nodes. This state in turn will cause
the node to be drawn with a plus sign in front of its caption,
denoting so it can be expanded and will show child nodes. As
long as the child nodes are not touch in any way (e.g. by
expanding the parent node or by navigatin or
searching/sorting the tree) there will be no actual child nodes.
They simply do not exist yet. However they will be created as
soon as an access is done.

Setting the HasChildren property to false will delete any
existing child node.

See Also
vsHasChildren, TVirtualNodeStates

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.HasChildren
Property |
TBaseVirtualTree.HeaderRect
Property

TBaseVirtualTree.Header Property

TBaseVirtualTree Class | See Also

Provides access to the header instance.

Pascal

property Header: TVIHeader;

Description

This property is used to allow access to the header instance,
which manages all aspects of the tree's header image as well
as the column settings.

See Also
TVTHeader

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.Header Property
b | TBaseVirtualTree.HintAnimation
Property

TBaseVirtualTree.HeaderRect Property

TBaseVirtualTree Class

e

Returns the non-client-area rectangle used for the header.

Pascal

property HeaderRect: TRect;

Description

Use this property to determine the extents used by the header
of Virtual Treeview.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

v - TBaseVirtualTree.HeaderRect
"«\' Property |

TBaseVirtualTree.HintMode
Property

TBaseVirtualTree.HintAnimation Property

TBaseVirtualTree Class

Read or set the current hint animation type.

Pascal

property HintAnimation: THintAnimationType;

Description

With this property you can specify what animation you would
like to play when displaying a hint. For some applications it
might not be good to animate hints, hence you can entirely
switch them off. Usually however you will leave the system
standard. This way the user can decide whether and which
hint animation he or she likes.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.HintAnimation
._\- Property |

TBaseVirtualTree.HotCursor
Property

TBaseVirtualTree.HintMode Property

TBaseVirtualTree Class

Read or set what type of hint you want for the tree view.

Pascal

property HintMode: TVTHintMode;

Description

Virtual Treeview supports several hints modes. This includes
the normal hint used for any other TControl class as well as a
node specific hint, which is individual for each node or even
each cell.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

TBaseVirtualTree.HintMode

‘s Property |
N TBaseVirtualTree.HotNode
Property

TBaseVirtualTree.HotCursor Property

TBaseVirtualTree Class | See Also

Read or set which cursor should be used for hot nodes.

Pascal

property HotCursor: TCursor;

Description

When you enable toHotTrack in TreeOptions.PaintOptions
then the node, which is currently under the mouse pointer
becomes the hot node. This is a special state, which can be
used for certain effects. Hot nodes have by default an
underlined caption and may cause the cursor to change to
what ever you like. The HotCursor property is used to specify,
which cursor is to be used.

See Also
HotNode, TVTPaintOptions

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic?

: TBaseVirtualTree Class |
18 5 TBaseVirtualTree.HotCursor
A _ Property |

TBaseVirtualTree.Images Property

TBaseVirtualTree.HotNode Property

TBaseVirtualTree Class | See Also

Read, which node is currently the hot node.

Pascal

property HotNode: PVirtualNode;

Description

When you enable toHotTrack in TreeOptions.PaintOptions
then the node, which is currently under the mouse pointer
becomes the hot node. The property HotNode can be used to
access this node for special handling.

See Also
HotCursor, toHotTrack, TVTPaintOptions

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.HotNode Property
3 |

TBaseVirtualTree.IncrementalSearch
Property

TBaseVirtualTree.Images Property

TBaseVirtualTree Class | See Also

Read or set the tree's normal image list.

Pascal

property Images: TCustomImagelList;

Description

Just like with TListView and TTreeview also Virtual Treeview
can take an image list for its normal images. Additionally,
there are image lists for state images and check images.

See Also
Statelmages, Checklmages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.Images Property |
TBaseVirtualTree.IncrementalSearchDirection
Property

TBaseVirtualTree.IncrementalSearch
Property

TBaseVirtualTree Class | See Also

Read or set the current incremental search mode.

Pascal

property IncrementalSearch: TVTiIncrementalSearch;

Description

Virtual Treeview can do an incremental search by calling back
the application when comparing node captions. The
IncrementalSearch property determines whether incremental
search is enabled and which nodes should be searched
through.

See Also

IncrementalSearchDirection, IncrementalSearchStart,
IncrementalSearchTimeout

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.IncrementalSearch
Property |
TBaseVirtualTree.IncrementalSearchStart
Property

TBaseVirtualTree.IncrementalSearchDirec
Property

TBaseVirtualTree Class | See Also

Read or set the direction to be used for incremental search.

Pascal

property IncrementalSearchDirection: TVIiSearchDirect

Description

When incremental search is enabled then Virtual Treeview
can search forward and backward from the start point given by
IncrementalSearchStart.

See Also

IncrementalSearch, IncrementalSearchStart,
IncrementalSearchTimel23out

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.IncrementalSearchDirection
Property |
TBaseVirtualTree.IncrementalSearchTimeout
Property

TBaseVirtualTree.IncrementalSearchStart
Property

TBaseVirtualTree Class | See Also

Read or set where to start incremental search.

Pascal

property IncrementalSearchStart: TViSearchStart;

Description

When incremental search is enabled in the tree view then you
can specify here, where to start the next incremental search
operation from.

See Also

IncrementalSearch, IncrementalSearchDirection,
IncrementalSearchTimeout

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
© 5 TBaseVirtualTree.IncrementalSearchStart
., Property | TBaseVirtualTree.Indent

Property

TBaseVirtualTree.IncrementalSearchTime
Property

TBaseVirtualTree Class | See Also

Read or set the maximum time, which is allowed between two

consecutive key strokes so that incremental search stays
active.

Pascal

property IncrementalSearchTimeout: Cardinal;

Description

When incremental search is enabled in Virtual Treeview then
you can specify here after what time incremental search
should stop when no keyboard input is encountered any
longer. This property so determines also the speed at which

users have to type letters to keep the incremental search
rolling.

See Also

IncrementalSearch, IncrementalSearchDirection,
IncrementalSearchStart

Class
TBaseVirtualTree Class

Links

TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 5 TBaseVirtualTree.IncrementalSearchTimeout
"\ Property | TBaseVirtualTree.lsDisabled
Property

TBaseVirtualTree.Indent Property

TBaseVirtualTree Class

Read or set the indentation amount for node levels.

Pascal

property Indent: Cardinal;

Description

Each new level in the tree (child nodes of a parent node) are
visually shifted to distinguish betwenn them and their parent
node (that's the tree layout after all). The Indent property
determines the shift distance in pixels.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
© 5 TBaseVirtualTree.Indent Property |
N ; TBaseVirtualTree.IsVisible

Property

TBaseVirtualTree.IsDisabled Property

TBaseVirtualTree Class

Read or set the enabled state of the given node.

Pascal

property IsDisabled [Node: PVirtualNode]: Boolean;

Description

A node can have many different states. One of them is its
enabled state, which can be set via this property. Enabling a
node means it can be focused and selected, so it can take

part in clipboard and drag'n drop operations, and can be
edited.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.lsDisabled
._\' Property |

TBaseVirtualTree.LastClickPos
Property

TBaseVirtualTree.IsVisible Property

TBaseVirtualTree Class

Read or set the visibility state of the given node.

Pascal

property IsVisible [Node: PVirtualNode]: Boolean;

Description

A node can be made invisible using this property. That means,
even if its parent nodes all are expanded the node is not
shown and the visual image is as would the node not exist.
However it still can be searched or take part in certain other
operations.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.IsVisible
" Property |
N\

o TBaseVirtualTree.LastDropMode
Property

TBaseVirtualTree.LastClickPos Property

TBaseVirtualTree Class

Used for retained drag start and wheel mouse scrolling.

Pascal

property LastClickPos: TPoint;

Description

This internal positions is made public to allow descendants to
modify mainly the right click behavior of the tree control.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.LastClickPos
._\- Property |

TBaseVirtualTree.LineMode
Property

TBaseVirtualTree.LastDropMode
Property

TBaseVirtualTree Class

Read how the last drop operation finished.

Pascal

property LastDropMode: TDropMode;

Description

In the case you don't handle drag'n drop operations directly in
OnDragDrop it might be necessary to know how the last drag
operation finshed. Read more in the drag mode enumeration

about what is possible.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.LastDropMode
Property |
TBaseVirtualTree.LineStyle
Property

TBaseVirtualTree.LineMode Property

TBaseVirtualTree Class

Read or set the mode of the tree lines.

Pascal

property LineMode: TVTLineMode;

Description

Apart from the usual lines Virtual Treeview also supports a
special draw mode named bands. This allows for neat visual
effects.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
© 5 TBaseVirtualTree.LineMode
N : Property |

TBaseVirtualTree.Margin Property

TBaseVirtualTree.LineStyle Property

TBaseVirtualTree Class

Read or set the mode of the tree lines.

Pascal

property LineStyle: TVTLineStyle;

Description

Virtual Treeview allows to customize the lines used to display
the node hierarchy. The default style is a dotted pattern, but
you can also make solid lines or specify your own line pattern.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.LineStyle
.,\' Property |

TBaseVirtualTree.MultiLine
Property

TBaseVirtualTree.Margin Property

TBaseVirtualTree Class | See Also

Read or set the tree's node margin.

Pascal

property Margin: Integer;

Description

The node margin is the distance between the cell bounds and
its content like the lines, images, check box and so on.
However this border is only applied to the left and right side of
the node cell.

Note: there is also a TextMargin property in
TVirtualStringTree, which is an additional border for the cell
text only.

See Also
TVirtualStringTree. TextMargin

Class
TBaseVirtualTree Class

Links

TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 TBaseVirtualTree.Margin Property
A | TBaseVirtualTree.NodeAlignment

Property

TBaseVirtualTree.MultiLine Property

TBaseVirtualTree Class

Read or toggle the multiline feature for a given node.

Pascal

property MultilLine [Node: PVirtualNode]: Boolean;

Description

Since multiline support for nodes requires extra processing
this behavior is switchable. When switched on the node is
wrapped into the available space until the node height is
exhausted. By including carriage return/line feed pairs you can
explicitely specify where to start new lines. The node's height
IS not automatically adjusted to the given text. Instead there is
an event (OnMeasureltem), which can be used to compute a
node's height before it is displayed the first time. In addition an
application can use the ComputeNodeHeight method to
compute the height of the node depending on its caption text.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.MultiLine
-.\' Property |

TBaseVirtualTree.NodeDataSize
Property

TBaseVirtualTree.NodeAlignment
Property

TBaseVirtualTree Class | See Also

Read or set the node alignment value.

Pascal

property NodeAlignment: TVTNodeAlignment;

Description

Nodes have got an align member, which is used to determine
the vertical position of the node's images and tree lines. The
NodeAlignment property specifies how to interpret the value in
the align member.

See Also
TVirtualNode

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.NodeAlignment
._\' Property |

TBaseVirtualTree.NodeHeight
Property

TBaseVirtualTree.NodeDataSize Property

TBaseVirtualTree Class | See Also

Read or set the extra data size for each node.

Pascal

property NodeDataSize: Integer;

Description

A node can have an area for user data, which can be used to
store application defined, node specific data in. Use
GetNodeData to get the address of this area. In addition to
assigning a value here you can also use the
OnGetNodeDataSize event, which is called when
NodeDataSize is -1.

See Also
Data handling

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.NodeDataSize
-.\' Property |

TBaseVirtualTree.NodeParent
Property

TBaseVirtualTree.NodeHeight Property

TBaseVirtualTree Class

Read or set a node's height.

Pascal

property NodeHeight [Node: PVirtualNode]: Cardinal;

Description

Each node can have its individual height, which is stored in
the node's record. You could directly assign a value to this
member but | strongly discourage this as it does not update
certain other structures in the tree. Instead use the
NodeHeight property here to modify a node's height.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.NodeHeight
._\' Property |

TBaseVirtualTree.OffsetXY
Property

TBaseVirtualTree.NodeParent Property

TBaseVirtualTree Class | See Also

Read or set a node's parent node.

Pascal

property NodeParent [Node: PVirtualNode]: PVirtualNo

Description

When reading this property then either the node's real parent
node is returned or nil if the parent node is the internal, hidden
root node. When writing to this property you will effectively
move a node to a new location.

See Also
MoveTo, CopyTo

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.NodeParent Property |
N ; TBaseVirtualTree.OnAdvancedHeaderDraw
Event

TBaseVirtualTree.OffsetXY Property

TBaseVirtualTree Class

Read or set the tree's current horizontal and vertical scroll
offsets.

Pascal

property OffsetX: Integer;
property OffsetXY: TPoint;
property OffsetY: Integer;

Description

Virtual Treeview allows to retrieve or set the internal scroll
offset directly, without sending
WM_HSCROLL/WM_VSCROLL message around. This allows
also to link two or more trees together. This scroll offset is
given in pixels and is always less or equal O.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OffsetXY
.,\' Property |

TBaseVirtualTree.OnAfterCellPaint
Event

TBaseVirtualTree.OnAdvancedHeaderDra
Event

TBaseVirtualTree Class | See Also

Header paint support event.

Pascal

property OnAdvancedHeaderDraw: TVTAdvancedHeaderPain

Description

The OnAdvancedHeaderDraw event is used when owner
draw is enabled for the header and a column is set to owner
draw mode. It can be used to custom draw only certain parts
of the header instead the whole thing. A good example for this
event is customizing the background of the header for only
one column. With the standard custom draw method
(OnHeaderDraw) you are in an all-or-nothing situation and
have to paint everything in the header including the text,
images and sort direction indicator. OnAdvancedHeaderDraw
however uses OnHeaderDrawQueryElements to ask for the
elements the application wants to draw and acts accordingly.

See Also
OnHeaderDrawQueryElements, OnHeaderDraw

Class

TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnAdvancedHeaderDraw
Event | TBaseVirtualTree.OnAfterltemErase

Event

TBaseVirtualTree.OnAfterCellPaint Event

TBaseVirtualTree Class | See Also

Paint support event.

Pascal

property OnAfterCellPaint: TVTAfterCellPaintEvent;

Description

This event is called whenever a cell has been painted. A cell is
defined as being one part of a node bound to a certain
column. This event is called several times per node (the

amount is determined by visible columns and size of the part
to draw).

See Also
Paint cycles and stages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnAfterCellPaint
Event |
TBaseVirtualTree.OnAfterltemPaint
Event

TBaseVirtualTree.OnAfterltemErase
Event

TBaseVirtualTree Class | See Also

Paint support event.

Pascal

property OnAfterItemErase: TVTAfterItemErasebvent;

Description

Called after the background of a node has been erased
(erasing can also be filling with a background image). This
event is called once per node in a paint cycle.

See Also
Paint cycles and stages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnAfterltemErase
Event |
TBaseVirtualTree.OnAfterPaint
Event

TBaseVirtualTree.OnAfterltemPaint Event

TBaseVirtualTree Class | See Also

Paint support event.

Pascal

property OnAfterItemPaint: TVTAfterItemPaintEvent;

Description

Called after a node has been drawn. This event is called once
per node.

See Also
Paint cycles and stages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnAfterltemPaint
Event |
TBaseVirtualTree.OnBeforeCellPaint
Event

TBaseVirtualTree.OnAfterPaint Event

TBaseVirtualTree Class | See Also

Paint support event.

Pascal

property OnAfterPaint: TVIPaintEvent;

Description

Called after all nodes which needed an update have been
drawn. This event is called once per paint cycle.

See Also
Paint cycles and stages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

s TBaseVirtualTree.OnBeforeltemErase
Event

TBaseVirtualTree.OnBeforeCellPaint
Event

TBaseVirtualTree Class | See Also

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.OnAfterPaint Event
>

Paint support event.

Pascal

property OnBeforeCellPaint: TVTBeforeCellPaintEvent;

Description
This event is called immediately before a cell is painted.

See Also
Paint cycles and stages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

Event |
s TBaseVirtualTree.OnBeforeltemPaint
Event

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.OnBeforeCellPaint
>

TBaseVirtualTree.OnBeforeltemErase
Event

TBaseVirtualTree Class | See Also

Paint support event.

Pascal

property OnBeforeltemErase: TVIiBeforeltembErasebEvent;

Description
Called when the background of a node is about to be erased.

See Also
Paint cycles and stages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnBeforeltemErase
-.\' Event |

TBaseVirtualTree.OnBeforePaint
Event

TBaseVirtualTree.OnBeforeltemPaint
Event

TBaseVirtualTree Class | See Also

Paint support event.

Pascal

property OnBeforelItemPaint: TVIiBeforeltemPaintEvent;

14

Description

Called after the background of a node has been drawn and
just before the node itself is painted. In this event the
application gets the opportunity to decide whether a node
should be drawn normally or should be skipped. The

application can draw the node itself if necessary or leave the
node area blank.

See Also
Paint cycles and stages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 5 TBaseVirtualTree.OnBeforeltemPaint
A\ ; Event | TBaseVirtualTree.OnChange

Event

TBaseVirtualTree.OnBeforePaint Event

TBaseVirtualTree Class | See Also

Paint support event.

Pascal

property OnBeforePaint: TViPaintEvent;

Description

Called as very first event in a paint cycle. In this event has the
application the opportunity to do some special preparation of
the canvas onto which the tree is painted, e.g. setting a
special viewport and origin or a different mapping mode.

See Also
Paint cycles and stages

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnBeforePaint
Event |
TBaseVirtualTree.OnChecked
Event

TBaseVirtualTree.OnChange Event

TBaseVirtualTree Class

Navigation support event.

Pascal

property OnChange: TVTChangeEvent;

Description
Called when a node's selection state has changed.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnChange
" Event |
N

o TBaseVirtualTree.OnChecking
Event

TBaseVirtualTree.OnChecked Event

TBaseVirtualTree Class

Check support event.

Pascal

property OnChecked: TVIiChangeEvent;

Description
Triggered when a node's check state has changed.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnChecked
Event |
TBaseVirtualTree.OnCollapsed
Event

TBaseVirtualTree.OnChecking Event

TBaseVirtualTree Class

Check support event.

Pascal

property OnChecking: TVTCheckChangingEvent;

Description

Triggered when a node's check state is about to change and
allows to prevent the change.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnChecking
" Event |
N

o TBaseVirtualTree.OnCollapsing
Event

TBaseVirtualTree.OnCollapsed Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnCollapsed: TViChangeEvent;

Description

Triggered after a node has been collapsed, that is, its child
nodes are no longer displayed.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnCollapsed
Event |
TBaseVirtualTree.OnColumnClick
Event

TBaseVirtualTree.OnCollapsing Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnCollapsing: TVIChangingEvent;

Description

Triggered when a node is about to be collapsed and allows to
prevent collapsing the node by setting Allowed to false.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnCollapsing
Event |
TBaseVirtualTree.OnColumnDbIClick
Event

TBaseVirtualTree.OnColumnClick Event

TBaseVirtualTree Class | See Also

Header and column support event.

Pascal

property OnColumnClick: TViColumnClickEvent;

Description

Triggered when the user released a mouse button over the
same column in the client area on which the button was
pressed previously.

See Also
OnHeaderClick

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnColumnClick
Event |
TBaseVirtualTree.OnColumnResize
Event

TBaseVirtualTree.OnColumnDDbIClick
Event

TBaseVirtualTree Class | See Also

Header and column support event.

Pascal

property OnColumnDblClick: TVTColumnDblClickEvent;

Description
Same as OnColumnClick but for double clicks.

See Also
OnColumnClick, OnHeaderDblClick

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnColumnDbIClick

Event |
TBaseVirtualTree.OnCompareNodes

Event

TBaseVirtualTree.OnColumnResize
Event

TBaseVirtualTree Class

Header and column support routine.

Pascal

property OnColumnResize: TVTHeaderNotifyEvent;

Description

Triggered when a column is being resized. During resize
OnColumnResize is frequently hence you should make any
code in the associated event handle a short and fast as
possible.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

? - TBaseVirtualTree.OnColumnResize
-.\' Event |

TBaseVirtualTree.OnCreateDataObject
Event

TBaseVirtualTree.OnCompareNodes
Event

TBaseVirtualTree Class | See Also

Sort and search support event.

Pascal

property OnCompareNodes: TVIiCompareEvent;

Description
This event is the core event for all comparations between
nodes. It is important that you write a handler for this event if
you want to sort nodes!

Result must be set to less than O if Nodel is considered as
being before Node2, equal to O if both a considered being the
same and greater than O if the first node is considered as
being after node 2. Keep in mind that you don't need to take
sort direction into account. This is automatically handled by
the tree. Simply return a comparation result as would there be
an ascending sort order.

Below is some sample code taken from the Advanced Demo:

procedure TMainForm.VDT1CompareNodes(Sender:
var Result: Integer);

// used to sort the image draw tree

var
Datal,
Data2: PImageData,

begin
Datal := Sender.GetNodeData(Nodel);
Data2 := Sender.GetNodeData(Node2);
// folder are always before files
if Datal.IsFolder <> Data2.IsFolder then
begin
// one of both is a folder the other a file
if Datal.IsFolder then
Result := -1
else
Result := 1;
end
else // both are of same type (folder or file)
Result := CompareText(Datal.FullPath, Data2.Ful
end;

See Also
. Sort

Class

Links

What do you think about this topic?

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnCompareNodes
-.\' Event |

TBaseVirtualTree.OnCreateDragManager
Event

TBaseVirtualTree.OnCreateDataObject
Event

TBaseVirtualTree Class

Drag'n drop support event.

Pascal

property OnCreateDataObject: TViCreateDataObjectEven

Description

This event is called when the tree's drag manager needs a
data object interface to start a drag'n drop operation.
Descentants (which override DoGetDataObiject) or the
application can return an own IDataObject implementation to
support special formats.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
s TBaseVirtualTree.OnCreateEditor
Event

TBaseVirtualTree.OnCreateDragManager
Event

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.OnCreateDataObject
N

Drag'n drop support event.

Pascal

property OnCreateDragManager: T[ViCreatebDragManagerkv

Description

This event is usually not used but allows power users to
create their own drag manager to have different actions and/or
formats than the internal drag manager.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.OnCreateDragManager
3 Event | TBaseVirtualTree.OnDragAllowed
Event

TBaseVirtualTree.OnCreateEditor Event

TBaseVirtualTree Class | See Also

Editing support event.

Pascal

property OnCreateEditor: TVIiCreateEditorEvent;

Description

Allows to supply a customized node editor without changing
the tree. TBaseVirtualTree triggers this event and raises an
exception if there no editor is returned. If you don't want this
then disable edit support for nodes in
TreeOptions.MiscOptions. Descentants like

TCustomVirtualStringTree supply a generic and simple string
editor.

See Also
Editors and editing

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnCreateEditor
-.\' Event |

TBaseVirtualTree.OnDragDrop
Event

TBaseVirtualTree.OnDragAllowed Event

TBaseVirtualTree Class

Drag'n drop support event.

Pascal

property OnDragAllowed: TViDragAllowedEvent;

Description

This event is called in the mouse button down handler to
determine whether the application allows to start a drag
operation. Since this check is done in sync with the other code
it is much prefered over doing a manual BeginDrag.

Notes

The OnDragAllowed event is called only if the current
DragMode is dmManual.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Event |
- TBaseVirtualTree.OnDragOver
Event

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.OnDragAllowed
b

TBaseVirtualTree.OnDragDrop Event

TBaseVirtualTree Class

Drag'n drop support event.

Pascal

property OnDragDrop: TVTDragbDropEvent;

Description

Triggered when either a VCL or a OLE drop action occured.
Accepting drag and drop actions is not trivial. In order to
maintain a minimum compatibility with the VCL drag'n drop
system Virtual Tree accepts not only OLE drop actions but
also those issued by the Delphi VCL (which is totally different
to the OLE way, unfortunately), provided toAcceptOLEDrop is
set in TreeOptions.MiscOptions. The code snippet below is
taken from a sample project provided with Virtual Tree. It
shows a general way to deal with dropped data. The following
check list can be used as orientation and additional comment
to the code:

1. Determine what kind of drop data is passed. If DataObject is nil or
Formats is empty then the drag source is a VCL control. The event
Is not triggered for OLE drag'n drop if there is no OLE format is
available (which should never occur).

. If the event is triggered by a VCL control then use Source to
access either the control or the drag object, depending on the
circumstances of the action.

. For OLE drag'n drop iterate through the Formats list to find a
format you can handle.

. If you find then the source of the drag
operation is a Virtual Treeview. Since this is the native tree format
you can pass it to the Sender's method which will
take care to retrieve the data and act depending on Effect and
Mode. No further action by the application is usually required in
this case.

. If you do not find then the operation has been
initiated by another application, e.g. the Explorer (then you will find
CF_HDROP or CF_SHELLIDLIST in formats) or Notepad (then you
will get CF_TEXT and perhaps CF_UNICODETEXT) etc.,
depending on the data which is actually dropped.

. Use the provided DataObject to get the drop data via
IDataObject.GetData and act depending on the format you get.

. Finally set Effect to either DROPEFFECT_COPY,
DROPEFFECT_MOVE or DROPEFFECT_NONE to indicate which
operation needs to be finished in Sender when the event returns. If
you return DROPEFFECT _MOVE then all marked nodes in the
source tree will be deleted, otherwise they stay where they are.

procedure TMainForm.VTDragDrop(Sender:
const Formats: array of Word; Shift: TShiftState;

var

I: Integer;
AttachMode: ;

begin
if Length(Formats) > 0 then
begin

// OLE drag'n drop

// If the native tree format is listed then use
// It is recommend by Microsoft to order availa
// the first best format which we can accept 1is
for I := 0 to High(Formats) do

if Formats[I] = then
begin
case Mode of
dmAbove:
AttachMode := amInsertBefore;
dmOnNode:
AttachMode := amAddChildLast;
dmBelow:
AttachMode := amInsertAfter;
else
if Assigned(Source) and (Source 1is
AttachMode := amInsertBefore
else
AttachMode := amNowhere;
end;

// in the case the drop target does an opti
// to indicate this also to the drag source
Sender .ProcessDrop(DataObject, Sender.DropT
Break;
end;
end
else
begin
// VCL drag'n drop, Effects contains by default
// as usual the application has to find out wha
Beep;
end;
end;

Class

Links

TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnDragDrop
-.\' Event |

TBaseVirtualTree.OnEditCancelled
Event

TBaseVirtualTree.OnDragOver Event

TBaseVirtualTree Class | See Also

Drag'n drop support event.

Pascal

property OnDragOver: TVTDragOverEvent;

Description

Triggered when Sender is the potential target of a drag'n drop
operation. You can use this event to allow or deny a drop
operation by setting Allowed to True or False, respectively. For
conditions of OLE or VCL drag source see OnDragDrop.

See Also
OnDragDrop

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
4 ; TBaseVirtualTree.OnDragOver
N

Event |
— TBaseVirtualTree.OnEdited Event

TBaseVirtualTree.OnEditCancelled Event

TBaseVirtualTree Class | See Also

Editing support event.

Pascal

property OnEditCancelled: TViEditCancelEvent;

Description
Triggered when an edit action has been cancelled.

See Also
Editors and editing

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnEditCancelled
Event |
TBaseVirtualTree.OnEditing Event

TBaseVirtualTree.OnEdited Event

TBaseVirtualTree Class | See Also

Editing support event.

Pascal

property OnEdited: TVTEditChangeEvent;

Description
Triggered when an edit action has successfully been finished.

See Also
Editors and editing

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
© 5 TBaseVirtualTree.OnEdited Event
., ; | TBaseVirtualTree.OnExpanded

Event

TBaseVirtualTree.OnEditing Event

TBaseVirtualTree Class | See Also

Editing support event.

Pascal

property OnEditing: TVTEditChangingEvent;

Description

Triggered when a node is about to be edited. Use Allowed to
allow or deny this action.

See Also
Editors and editing

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.OnEditing Event
\ | TBaseVirtualTree.OnExpanding
Event

e

TBaseVirtualTree.OnExpanded Event

TBaseVirtualTree Class

Misscellaneous event.

Pascal

property OnExpanded: TVTChangeEvent;

Description
Triggered after a node has been expanded.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
o TBaseVirtualTree.OnFocusChanged
Event

TBaseVirtualTree.OnExpanding Event

TBaseVirtualTree Class

: TBaseVirtualTree Class |
T ; TBaseVirtualTree.OnExpanded
j::

Miscellaneous event.

Pascal

property OnExpanding: TVTChangingEvent;

Description

Triggered just before a node is expanded. Use Allowed to
allow or deny this action.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
o TBaseVirtualTree.OnFocusChanging
Event

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.OnExpanding
N

TBaseVirtualTree.OnFocusChanged
Event

TBaseVirtualTree Class

Navigation support event.

Pascal

property OnFocusChanged: TVTFocusChangeEvent;

Description

Triggered after the focused node changed. When examining
Node keep in mind that it can be nil, meaning there is no
focused node.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnFocusChanged
X Event |
N .

TBaseVirtualTree.OnFreeNode
Event

TBaseVirtualTree.OnFocusChanging
Event

TBaseVirtualTree Class

Navigation support event.

Pascal

property OnFocusChanging: TVTFocusChangingEvent;

Description

Triggered when the node focus is about to change. You can
use Allowed to allow or deny a focus change. Keep in mind
that either the old or the new node can be nil.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

TBaseVirtualTree.OnFocusChanging

N~ Event |
N TBaseVirtualTree.OnGetCelllsEmpty
Event

TBaseVirtualTree.OnFreeNode Event

TBaseVirtualTree Class

Data management node.

Pascal

property OnFreeNode: TVTiFreeNodeEvent;

Description
Triggered when a node is about to be freed. This is the ideal
place to free/disconnect your own data you associated with
Node. Keep in mind, that data which is stored directly in the
node does not need to be free by the application. This is part
of the node record and will be freed when the node is freed.
You should however finalize the data in such a case if it
contains references to external memory objects (e.g. variants,
strings, interfaces).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnFreeNode
\. Event |

TBaseVirtualTree.OnGetCursor
Event

TBaseVirtualTree.OnGetCelllsEmpty
Event

TBaseVirtualTree Class

Triggered when the tree control needs to know whether a
given column is empty.

Pascal

property OnGetCellIsEmpty: TViGetCellIsEmptyEvent;

Description

Virtual Treeview supports the concept of column spanning
where one cell with too much text to fit into its own space can
expand to the right cell neighbors if they are empty. To make
this work it is necessary to know if a cell is considered as
being empty, whatever this means to an application. The
string tree descendant simply checks the text for the given cell
and calls back its ancestor if there is no text to further refine if
the cell must stay as if it contained something. The ancestor
(TBaseVirtualTree) now triggers OnGetCelllsEmpty to let the
application decide.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic?

TBaseVirtualTree Class |
TBaseVirtualTree.OnGetCelllsEmpty
Event |
TBaseVirtualTree.OnGetHeaderCursor
Event

TBaseVirtualTree.OnGetCursor Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnGetCursor: TVIiGetCursorkEvent,

Description

This event is triggered from the WM_SETCURSOR message
to allow the application use several individual cursors for a
tree. The Cursor property allows to set one cursor for the
whole control but not to use separate cursors for different tree
parts.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
o TBaseVirtualTree.OnGetHelpContext
Event

TBaseVirtualTree.OnGetHeaderCursor
Event

TBaseVirtualTree Class

: TBaseVirtualTree Class |
v ; TBaseVirtualTree.OnGetCursor
;::

Header and column support event.

Pascal

property OnGetHeaderCursor: TVIiGetHeaderCursorkEvent;

Description

This event is triggered from the WM_SETCURSOR message
to allow the application to define individual cursors for the
header part of the tree control.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
TBaseVirtualTree.OnGetlmagelndex

Event

: TBaseVirtualTree Class |
{5 TBaseVirtualTree.OnGetHeaderCursor
\

TBaseVirtualTree.OnGetHelpContext
Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnGetHelpContext: TVTHelpContextEvent;

Description

This event is usually triggered when the user pressed F1 while
the tree has the focus. The tree is iteratively traversed all the
way up to the top level parent of the given node until a valid
help context index is returned (via this event). When the loop
reaches the top level without getting a help index then the tree
control's help index is used. If the tree itself does not have a
help context index then a further traversal is initiated going up
parent by parent of each control in the current window

hierarchy until either a valid index is found or there is no more
window parent.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnGetHelpContext
\. Event |

TBaseVirtualTree.OnGetlimagelndexEx
Event

TBaseVirtualTree.OnGetimagelndex
Event

TBaseVirtualTree Class

Display management event.

Pascal

property OnGetImageIndex: TViGetImageEvent;

Description

This event is triggered whenever the tree needs the index of
an image, be it the normal, the selected or the state image.
The event should be as fast as possible because it is at times
frequently called when the layout of the node must be
determined, e.g. while doing draw selection with the mouse or
painting the tree. Kind determines which image is needed and
Column determines for which column of the node the image
is needed. This value can be -1 to indicate there is no column
used. The parameter Ghosted can be set to true to blend the
image 50% against the tree background and can be used for
instance in explorer trees to mark hidden file system objects.
Additionally nodes are also drawn with a ghosted icon if the
are part of a cut set during a pending cut-to-clipboard
operation. In this case changing the ghosted parameter has
no effect.

Notes
Blending nodes can be switched by using toUseBlendimages

in TreeOptions.PaintOptions.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
- TBaseVirtualTree.OnGetLineStyle
Event

TBaseVirtualTree.OnGetimagelndexEX
Event

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.OnGetimagelndex
N

Not documented.

Pascal

property OnGetImageIndexEx: TVIGetImageExEvent;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnGetlimagelndexEx
\. Event |

TBaseVirtualTree.OnGetNodeDataSize
Event

TBaseVirtualTree.OnGetLineStyle Event

TBaseVirtualTree Class | See Also

Display management event.

Pascal

property OnGetLineStyle: TVIiGetLineStyleEvent;

Description
This event is used to customize the appearance of the tree
and grid lines and is only triggered if the LineStyle property is
set to IsCustomStyle. The event must return a pointer to an
array containing bits for an 8 x 8 pixel image with word aligned
entries. For more info see PrepareBitmaps and the Windows
APIs CreateBitmap and CreatePatternBrush.

Notes

It is important that you do not use dynamically allocated
memory in this event (also no local variables on the stack). If

you do so then either the memory is not valid on return of the
event (if allocated on stack) or will never be freed (if

allocated with a memory manager). Instead use a constant
array and return its address.

See Also
PrepareBitmaps

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

: TBaseVirtualTree.OnGetLineStyle
N~ Event |
N TBaseVirtualTree.OnGetPopupMenu
Event
TBaseVirtualTree.OnGetNodeDataSize
Event

TBaseVirtualTree Class | See Also

Data management event.

Pascal

property OnGetNodeDataSize: TVIiGetNodeDataSizeEvent;

Description

Triggered when access to a node's data happens the first time
but the actual data size is not yet set. Usually you would
specify the size of the data you want to have added to each
node by NodeDataSize, e.g. SizeOf(TMyRecord) is quite
usual there (where TMyRecord is the structure you want to
have stored in the node). Sometimes, however it is not
possible to determine the node size in advance, so you can
leave NodeDataSize being -1 (the default value) and the
OnGetNodeDataSize event is triggered as soon as the first
regular node is created (the hidden root node does not have
user data but internal data which is determined by other
means).

See Also
NodeDataSize, Data handling

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

18 5 TBaseVirtualTree.OnGetNodeDataSize Event |
A\ TBaseVirtualTree.OnGetUserClipboardFormats
Event

TBaseVirtualTree.OnGetPopupMenu
Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnGetPopupMenu: TVIPopupEvent;

Description
This event allows the application to return a popup menu
which is specific to a certain node. The tree does an automatic
traversal all the way up to the top level node which is the
parent of a given node to get a popup menu. If Menu is set
then the traversal stops. Otherwise it continues until either a

menu is set, AskParent is set to False or the top level parent
has been reached.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnGetPopupMenu
\. Event |

TBaseVirtualTree.OnHeaderClick
Event

TBaseVirtualTree.OnGetUserClipboardFo
Event

TBaseVirtualTree Class

Drag'n drop and clipboard support event.

Pascal

property OnGetUserClipboardFormats: TViGetUserClipbo

Description

Whenever the tree needs to specify the available clipboard
formats for a clipboard or drag'n drop operation it calls this
event too, to allow the application or descentants (which
would override DoGetUserClipboardFormats) to specify own
formats which can be rendered. Since the build-in data object
does not know how to render formats which are specified here
you have to supply a handler for the OnRenderOLEData event
or an own IDataObject implementation to fully support your
own formats.

Use the Formats parameter which is an open array and add
the identifiers of your formats (which you got when you
registered the format).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnGetUserClipboardFormats
Event | TBaseVirtualTree.OnHeaderDbIClick
Event

TBaseVirtualTree.OnHeaderClick Event

TBaseVirtualTree Class | See Also

Header & column support event.

Pascal

property OnHeaderClick: TVTHeaderClickEvent;

Description

This event is triggered when the user clicks on a header
button and is usually a good place to set the current
SortColumn and SortDirection.

See Also
SortColumn, SortDirection

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnHeaderClick
-.\' Event |

TBaseVirtualTree.OnHeaderDragged
Event

TBaseVirtualTree.OnHeaderDDbIClick
Event

TBaseVirtualTree Class | See Also

Header & column support event.

Pascal

property OnHeaderDblClick: TVTHeaderClickEvent;

Description

Unlike OnHeaderClick this event is triggered for double clicks
on any part of the header and comes with more detailed
information like shift state, which mouse button caused the
event and the mouse position.

See Also
OnHeaderClick

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnHeaderDbIClick
-.\' Event |

TBaseVirtualTree.OnHeaderDraggedOut
Event

TBaseVirtualTree.OnHeaderDragged
Event

TBaseVirtualTree Class

Header & column support event.

Pascal

property OnHeaderDragged: TViHeaderDraggedEvent;

Description

Triggered after the user has released the left mouse button
when a header drag operation was active. Column contains
the index of the column which was dragged. Use this index for
the Columns property of the header to find out the current
position. OldPosition is the position which Column occupied
before it was dragged around.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
TBaseVirtualTree.OnHeaderDragging
Event

TBaseVirtualTree.OnHeaderDraggedOut
Event

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{3 TBaseVirtualTree.OnHeaderDragged
N

Header & column support event.

Pascal

property OnHeaderDraggedOut: TVTHeaderDraggedOutEven

Description

When during a header drag operation the mouse moves out of
the header rectangle and the mouse button is released then
an OnHeaderDraggedOut event will be fired with the target
mouse position in screen coordinates.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.OnHeaderDraggedOut
N : Event |
TBaseVirtualTree.OnHeaderDraw Event

TBaseVirtualTree.OnHeaderDragging
Event

TBaseVirtualTree Class

Header & column support event.

Pascal

property OnHeaderDragging: TVTiHeaderDraggingEvent;

Description

Triggered just before dragging of a header button starts. Set
Allowed to False if you want to prevent the drag operation of
the given column.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnHeaderDragging Event |
TBaseVirtualTree.OnHeaderDrawQueryElements
Event

TBaseVirtualTree.OnHeaderDraw Event

TBaseVirtualTree Class

Header & column support event.

Pascal

property OnHeaderDraw: TVIHeaderPaintEvent;

Description

If you set the hoOwnerDraw style in TVTHeader.Options and
a column has been set to vsOwnerDraw (see also
TVirtualTreeColumn.Style) then OnDrawHeader is called
whenever a column needs painting.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

s TBaseVirtualTree.OnHeaderMouseDown
Event

TBaseVirtualTree.OnHeaderDrawQueryEl¢
Event

TBaseVirtualTree Class | See Also

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.OnHeaderDraw Event
>

Header & column support event.

Pascal

property OnHeaderDrawQueryElements: TVTHeaderPaintQu

Description

Used for advanced header painting to query the application for
the elements, which are drawn by it and which should be
drawn by the tree.

See Also
OnAdvancedHeaderDraw

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnHeaderDrawQueryElements
Event | TBaseVirtualTree.OnHeaderMouseMove
Event

TBaseVirtualTree.OnHeaderMouseDown
Event

TBaseVirtualTree Class

Header & column support event.

Pascal

property OnHeaderMouseDown: TVTHeaderMouseEvent;

Description

This event is similar to OnHeaderClick but comes with more
detailed information like shift state, which mouse button
caused the event and the mouse position.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
- TBaseVirtualTree.OnHeaderMouseUp
Event

TBaseVirtualTree.OnHeaderMouseMove
Event

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.OnHeaderMouseDown
>

Header & column support event.

Pascal

property OnHeaderMouseMove: TVTHeaderMouseMoveEvent;

Description

This event is triggered when the mouse pointer is moved over
the header area.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnHeaderMouseMove
Event | TBaseVirtualTree.OnHotChange
Event

TBaseVirtualTree.OnHeaderMouseUp
Event

TBaseVirtualTree Class

Header & column support event.

Pascal

property OnHeaderMouseUp: TVIiHeaderMouseEvent;

Description

This event is very much like OnHeaderMouseDown but is
triggered when a mouse button is released.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Event |
TBaseVirtualTree.OnlncrementalSearch

Event

TBaseVirtualTree.OnHotChange Event

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{5 TBaseVirtualTree.OnHeaderMouseUp
K

Navigation support event.

Pascal

property OnHotChange: TVTHotNodeChangeEvent;

Description

This event is triggered if hot tracking is enabled (see also
TreeOptions.PaintOptions) and when the mouse pointer
moves from one node caption to another. In full row select

mode most parts of a node are considered as being part of the
caption.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

x Event |
- TBaseVirtualTree.OnlnitChildren

Event

TBaseVirtualTree.OnincrementalSearch
Event

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.OnHotChange

Miscellaneous event.

Pascal

property OnIncrementalSearch: TVTIncrementalSearchEv

Description

This event is integral part of the incremental search
functionality (see also Keyboard, hotkeys and incremental
search). It is triggered during search for a node which
matches the given string. Similar to other compare routines
return a value < 0 if the node's caption is considered as being
before the given text, = 0 if it is the same and > 0 if it is
considered being after the given text.

procedure TfrmProperties.VST3IncrementalSearch(Send
var Result: Integer);

var

S, PropText: string;

begin
// Note: This code requires a proper Unicode/Wide

// size and clarity reasons. For now strings are
// Search 1is not case sensitive.
S := Text,;
if Node.Parent = Sender.RootNode then
begin
// root nodes
if Node.Index = 0 then

PropText := 'Description’
else
PropText := 'Origin';
end
else
begin
PropText := PropertyTexts[Node.Parent.Index, No
end;

// By using StrLIComp we can specify a maximum le

// which match only partially.

Result := StrLIComp(PChar(S), PChar(PropText), Mi
end;

Notes

Usually incremental search allows to match also partially.
Hence it is recommended to do comparison only up to the
length

of the shorter string.

Class

Links

What do you think about this topic?

: TBaseVirtualTree Class |
18 TBaseVirtualTree.OnIncrementalSearch
A Event | TBaseVirtualTree.OnlInitNode

Event

TBaseVirtualTree.OnlInitChildren Event

TBaseVirtualTree Class | See Also

Node management event.

Pascal

property OnInitChildren: TVTInitChildrenEvent;

Description

In order to allow the tree only to fill content where needed it is
possible to set the vsHasChildren style in a node's initializaton
whithout really adding any child nodes. These child nodes
must be initialized first when they are about to be displayed or
another access (like search, iteration etc.) occurs.

The application usually prepares data needed to fill child
nodes when they are initialized and retrieves the actual
number. Set ChildCount to the number of children you want,

See Also
The virtual paradigm

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnlInitChildren
Event |
TBaseVirtualTree.OnKeyAction
Event

TBaseVirtualTree.OnlnitNode Event

TBaseVirtualTree Class | See Also

Node management event.

Pascal

property OnInitNode: TVTInitNodeEvent;

Description

This event is important to connect the tree to your internal
data. It is the ideal place to put references or whatever you
need into a node's data area. You can set some initial states
like selection, expansion state or that a node has child nodes.

See Also
The virtual paradigm

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnlInitNode
-.\' Event |

TBaseVirtualTree.OnLoadNode
Event

TBaseVirtualTree.OnKeyAction Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnKeyAction: TVTKeyActionEvent;

Description
This event is a convinient way for the application or
descentant trees to change the semantic of a certain key
stroke. It is triggered when the user presses a key and allows
either to process that key normally (leave DoDefault being
True) or change it to another key instead (set DoDefault to
False then). This way a key press can change its meaning or
entirely be ignored (if CharCode is set to 0).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

i TBaseVirtualTree Class |
TBaseVirtualTree.OnKeyAction
K' Event |

TBaseVirtualTree.OnMeasureltem
Event

TBaseVirtualTree.OnLoadNode Event

TBaseVirtualTree Class | See Also

Streaming support event.

Pascal

property OnLoadNode: TViSaveNodeEvent;

Description
This event is typically triggered when serialized tree data must
be restored, e.g. when loading the tree from file or stream or
during a clipboard/drag'n drop operation. You should only read
in what you wrote out in OnSaveNode. For safety there is a
check in the loader code which tries to keep the internal
serialization structure intact in case the application does not
read correctly.

See Also

OnSaveNode, LoadFromStream, SaveToStream,
AddFromStream, VT TreeStreamVersion,
TVTHeader.LoadFromStream, TVTHeader.SaveToStream

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic?

: TBaseVirtualTree Class |
TBaseVirtualTree.OnLoadNode

- Event |
N TBaseVirtualTree.OnNodeCopied
Event

TBaseVirtualTree.OnMeasureltem Event

TBaseVirtualTree Class | See Also

Miscellaneous event.

Pascal

property OnMeasureltem: TVIiMeasureltembEvent;

Description
Virtual Treeview supports individual node heights. However it
might sometimes unpractical to set this height in advance (e.g.
during OnInitNode). Another scenario might be that multi line
nodes must size themselves to accomodate the entire node
text without clipping. For such and similar cases the event
OnMeasureltem is for. It is queried once for each node and
allows to specify the node's future height. If you later want to
have a new height applied (e.g. because the node's text
changed) then call InvalidateNode for it and its
vsHeightMeasured state is reset causing so the tree to trigger
the OnMeasureltem event again when the node is painted the
next time.

See Also
InvalidateNode, vsHeightMeasured

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnMeasureltem
X Event |
> :

TBaseVirtualTree.OnNodeCopying
Event

TBaseVirtualTree.OnNodeCopied Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnNodeCopied: TVINodeCopiedEvent;

Description

This event is triggered during drag'n drop after a node has
been copied to a new location. Sender is the target tree where
the copy operation took place.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnNodeCopied
X Event |
N .

TBaseVirtualTree.OnNodeMoved
Event

TBaseVirtualTree.OnNodeCopying Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnNodeCopying: TVTNodeCopyingEvent;

Description

This event is triggered when a node is about to be copied to a
new location. Use Allowed to allow or deny the action.
Sender is the target tree where the copy operation will take
place.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnNodeCopying
Event |
TBaseVirtualTree.OnNodeMoving
Event

TBaseVirtualTree.OnNodeMoved Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnNodeMoved: TVTNodeMovedEvent;

Description

This event is very much like OnNodeCopied but used for
moving nodes instead.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnNodeMoved
Event |
TBaseVirtualTree.OnPaintBackground
Event

TBaseVirtualTree.OnNodeMoving Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnNodeMoving: TVTNodeMovingEvent;

Description

This event is very much like OnNodeCopying but used for
moving nodes instead.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnNodeMoving
X Event |
N .

TBaseVirtualTree.OnRenderOLEData
Event

TBaseVirtualTree.OnPaintBackground
Event

TBaseVirtualTree Class

Paint support event.

Pascal

property OnPaintBackground: TVTBackgroundPaintEvent;

Description

This event is triggered when the tree has finished its painting
and there is an area which is not covered by nodes. For nodes
there are various events to allow background customizaton.
For the free area in the tree window there is this event.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

? : TBaseVirtualTree.OnPaintBackground
-.\' Event |

TBaseVirtualTree.OnResetNode
Event

TBaseVirtualTree.OnRenderOLEData
Event

TBaseVirtualTree Class

Drag'n drop and clipboard support event.

Pascal

property OnRenderOLEData: TVTRenderOLEDataEvent;

Description

This event is triggered when the data in a clipboard or drag'n
drop operation must be rendered but the built-in data object
does not know the requested format. This is usually the case
when the application (or descentants) have specified their own
formats in OnGetUserClipboardFormats.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnRenderOLEData
Event |
TBaseVirtualTree.OnSaveNode
Event

TBaseVirtualTree.OnResetNode Event

TBaseVirtualTree Class | See Also

Node management event.

Pascal

property OnResetNode: TVTiChangeEvent;

Description

For large trees or simply because the content changed it is

sometimes necessary to discard a certain node and release
all its children. This can be done with ResetNode which will
trigger this event.

See Also
ResetNode

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 TBaseVirtualTree.OnResetNode
A Event | TBaseVirtualTree.OnScroll

Event

TBaseVirtualTree.OnSaveNode Event

TBaseVirtualTree Class | See Also

Streaming support event.

Pascal

property OnSaveNode: TViSaveNodeEvent;

Description

This event is triggered whenever a certain node must be
serialized into a stream, e.g. for saving to file or for copying to
another tree/node during a clipboard or drag'n drop operation.
Make sure you only store non-transient data into the stream.
Pointers (including long/wide string references) are transient
and the application cannot assume to find the data a pointer
references on saving at the same place when the node is
loaded (see also OnLoadNode). This is even more essential
for nodes which are moved or copied between different trees
in different processes (applications). Storing strings however
is easily done by writing the strings as a whole into the
stream.

Notes

For exchanging data between different trees and for general
stability improvement | strongly recommend that you insert a

kind of identifier as first stream entry when saving a node.
This identifier can then be used to determine what data will

follow when loading the node later and does normally not

required to be stored in the node data.

See Also

OnLoadNode, LoadFromStream, SaveToStream,
AddFromStream, VT TreeStreamVersion,
TVTHeader.LoadFromStream, TVTHeader.SaveToStream

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.OnSaveNode
Event |
TBaseVirtualTree.OnShowScrollbar
Event

TBaseVirtualTree.OnScroll Event

TBaseVirtualTree Class | See Also

Miscellaneous event.

Pascal

property OnScroll: TViScrollEvent;

Description

This event is triggered when the tree is scrolled horizontally or
vertically. You can use it to synchronize scrolling of several
trees or other controls.

See Also
OffsetXY

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.OnScroll Event |
\ TBaseVirtualTree.OnStateChange
Event

e

TBaseVirtualTree.OnShowScrollbar
Event

TBaseVirtualTree Class

Not documented.

Pascal

property OnShowScrollbar: TViScrollbarShowEvent;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

? - TBaseVirtualTree.OnShowScrollbar
-.\' Event |

TBaseVirtualTree.OnStructureChange
Event

TBaseVirtualTree.OnStateChange Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnStateChange: TViStateChangeEvent;

Description

For special effects or in order to increase performance it is
sometimes useful to know when the tree changes one of its
internal states like tsincrementalSearching or tsOLEDragging.
The OnStateChange event is triggered each time such a
change occurs letting so the application take measures for it.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnStateChange
X Event |
N .

TBaseVirtualTree.OnUpdating
Event

TBaseVirtualTree.OnStructureChange
Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnStructureChange: TVIStructureChangeEvent;

Description

This event is triggered when a change in the tree structure is
made. That means whenever a node is created or destroyed
or a node's child list is change (because a child node was
moved, copied etc.) then OnStructureChange is executed.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 5 TBaseVirtualTree.OnStructureChange
3 ; Event | TBaseVirtualTree.RootNode
Property

TBaseVirtualTree.OnUpdating Event

TBaseVirtualTree Class

Miscellaneous event.

Pascal

property OnUpdating: TVTUpdatingEvent;

Description

This event is triggered when the application or the tree call
BeginUpdate or EndUpdate and indicate so when a larger
update operation takes place. This can for instance be used to
show a hour glass wait cursor.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.OnUpdating
-.\' Event |

TBaseVirtualTree.RootNodeCount
Property

TBaseVirtualTree.RootNode Property

TBaseVirtualTree Class

Reference to the internal root node which is the anchor of the
entire tree node hierarchy.

Pascal

property RootNode: PVirtualNode;

Description

For anchoring the tree hierarchy an internal tree node is
maintained which is mostly just like any other tree node but
has sometimes differently handled. The root node is always
expanded and initialized. Its parent member points to the
treeview to which the node belongs to and its PreviousSibling
and NextSibling members point to the root node itself to make
it possible to actually recognize this node.

Notes

You should not use the root node to iterate through the tree. It
is only publicly accessible because it is the parent of

all top level nodes and can be used to test a node whether it is
a top level node or not.

Class
TBaseVirtualTree Class

Links

TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.RootNode
._\- Property |

TBaseVirtualTree.ScrollBarOptions
Property

TBaseVirtualTree.RootNodeCount
Property

TBaseVirtualTree Class

Read or set the number of nodes on the top level.

Pascal

property RootNodeCount: Cardinal;

Description

Usually setting RootNodeCount is all what is needed to initially
fill the tree. When one of the top level nodes is initialized you
can set its ivsHasChildren style. This will then cause to ask to
initialize the child nodes. Recursively applied, you can use this
principle to create tree nodes on demand (e.g. when their
parent is expanded).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Property |
s TBaseVirtualTree.SearchBuffer
Property

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.RootNodeCount
>

TBaseVirtualTree.ScrollBarOptions
Property

TBaseVirtualTree Class

Reference to the scroll bar options class.

Pascal

property ScrollBarOptions: TScrollBarOptions;

Description

Like many other aspects in Virtual Treeview also scrollbars
can be customized. See the class itself for further
descriptions.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.ScrollBarOptions
. Property |
N .

TBaseVirtualTree.Selected
Property

TBaseVirtualTree.SearchBuffer Property

TBaseVirtualTree Class | See Also

Current input string for incremental search.

Pascal

property SearchBuffer: WideString;

Description

When incremental search is active you can use SearchBuffer
to get the input string typed by the user, which created the last
match.

See Also
IncrementalSearch

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.SearchBuffer
.,\' Property |

TBaseVirtualTree.SelectedCount
Property

TBaseVirtualTree.Selected Property

TBaseVirtualTree Class

Property to modify or determine the selection state of a node.

Pascal

property Selected [Node: PVirtualNode]: Boolean;

Description

This array property is used to test whether a given node is
selected or to switch its selection state. Note that the selection
state has nothing to do with the focused state. Only one node
can be focused while any number of nodes can be selected
(read: can be marked with the selection flag to paint their
caption differently). Selection is mainly used to mark nodes for
clipboard and drag'n drop operations.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 5 TBaseVirtualTree.Selected Property |
3 ; TBaseVirtualTree.SelectionBlendFactor
Property

TBaseVirtualTree.SelectedCount
Property

TBaseVirtualTree Class

Contains the number of selected nodes.

Pascal

property SelectedCount: Integer;

Description

If multiselection is enabled (toMultiSelect) then SelectedCount
will contain the actual number of selected nodes. In order to
change the selection state of a node use Selected or
AddToSelection/RemoveFromSelection.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

? - TBaseVirtualTree.SelectedCount
.,\' Property |

TBaseVirtualTree.SelectionCurveRadius
Property

TBaseVirtualTree.SelectionBlendFactor
Property

TBaseVirtualTree Class | See Also

Read or set the current blend factor for the multi selection
rectangle and the node selection rectangle.

Pascal

property SelectionBlendFactor: Byte;

Description
For a visually appealing tree some operations use alpha
blending. One of these operations is multi selection using the
mouse. Another one is the rectangle drawn around the caption
of selected nodes. Both rectangles use the
SelectionBlendFactor to determine how much of the
underlying tree image and how much of the rectangles should
be seen. The factor can be in the range of [0..255] where O
means the rectangle is fully transparent and 255 it is fully
opaque.

If you don't like to use blended node selection rectangles then
switch them off by removing toUseBlendedSelection from
TVTPaintOptions. For selecting a certain multi selection
rectangle style use DrawSelectionMode.

Notes

Alpha blending is only enabled when the current processor
supports MMX instructions. If MMX is not supported then a

dotted draw selection rectangle and an opaque node selection
rectangle is used.

See Also
DrawSelectionMode, TVTPaintOptions

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

Property |
TBaseVirtualTree.Statelmages
Property

TBaseVirtualTree.SelectionCurveRadius
Property

TBaseVirtualTree Class | See Also

: TBaseVirtualTree Class |
{5 TBaseVirtualTree.SelectionBlendFactor
._\

Read or set the current corner radius for node selection
rectangles.

Pascal

property SelectionCurveRadius: Cardinal;

Description

This is a special property to determine the radius of the
corners of the selection rectangle for a node caption. Virtual
Treeview supports not only simple rectangular selection marks
but also such with rounded corners. This feature, however, is
only available if blended node selection rectangles are
disabled.

See Also
SelectionBlendFactor, DrawSelectionMode, TVTPaintOptions

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 5 TBaseVirtualTree.SelectionCurveRadius
"\ Property | TBaseVirtualTree.TextMargin
Property

TBaseVirtualTree.Statelmages Property

TBaseVirtualTree Class | See Also

Reference to the images list which is used for the state
images.

Pascal

property StateImages: TCustomImageList;

Description

Each node can (in each column) have several images. One is
the check image which is supplied by internal image lists or a
special external list (see also CustomChecklmages). Another
one is the state image and yet another one the
normal/selected image.

See Also
Checklmages, Images

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.Statelmages
.,\' Property |

TBaseVirtualTree.TopNode
Property

TBaseVirtualTree.TextMargin Property

TBaseVirtualTree Class | See Also

Read or set the distance of the node caption to its borders.

Pascal

property TextMargin: Integer;

Description

TextMargin is used to define a border like area within the
content rectangle of a node. This rectangle is the area of the
node less the space used for indentation, images, lines and
node margins and usually contains the text of a node. In order
to support finer adjustment there is another margin, which only
applies to the left and right border in the content rectangle.
This is the text margin.

See Also
Margin

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic?

: TBaseVirtualTree Class |
? TBaseVirtualTree. TextMargin
._\- Property |

TBaseVirtualTree.TotalCount
Property

TBaseVirtualTree.TopNode Property

TBaseVirtualTree Class

The top node is the node which is currently at the top border
of the client area.

Pascal

property TopNode: PVirtualNode;

Description

This property is a reference to the node which is the first node
which is at least partially visible in the client area.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 5 TBaseVirtualTree.TopNode Property |
A\ ; TBaseVirtualTree.TotallnternalDataSize

Property

TBaseVirtualTree.TotalCount Property

TBaseVirtualTree Class

Returns the number of nodes in the tree.

Pascal

property TotalCount: Cardinal;

Description

Use this property to get the overall number of nodes currently
in the tree. This will validate all nodes in the control so that
also not yet created child nodes are counted.

Notes

This property is quite counter productive as it causes the
entire tree to be validated when queried. This means that
each

node is initialized, including its children and grandchildren etc.
creating so a full blown treeview (if not already

done) which might keep much memory allocated (not counted
the time necessary to validate all nodes). Therefore |

discourage the use of the property unless it is really
necessary.

Class

TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

v - TBaseVirtualTree.TotalCount
- Property |
N :

TBaseVirtualTree.TreeOptions
Property

TBaseVirtualTree.TotalinternalDataSize
Property

TBaseVirtualTree Class | See Also

Keeps the currently accumulated data size for one node.

Pascal

property TotalInternalDataSize: Cardinal;

Description
Each node in the tree not only supports user data but also an
interal area where TVirtualBaseTree descentants can store
their own data per node. This internal data area must be
allocated by a tree class, that means it must register its need
for internal data. The internal data size registered by each
descendant is accumulated in the TotallnternalDataSize
member and is used to compute the user data offset in the
node record.

See Also
Data handling

Class
TBaseVirtualTree Class

Links

TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
18 TBaseVirtualTree.TotallnternalDataSize
A Property | TBaseVirtualTree.TreeStates

Property

TBaseVirtualTree.TreeOptions Property

TBaseVirtualTree Class

Reference to the tree's options.

Pascal

property TreeOptions: TCustomVirtualTreeOptions;

Description
The tree options are one of the main switchs to modify a
treeview's behavior. Virtual Treeview supports customizing
tree options by descentants. This allows very fine adjustments
for derived tree classes, including the decision which
properties should be published. For more information about

the base options see TCustomVirtualTreeOptions and its
descentants.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
TBaseVirtualTree.TreeOptions
.,\' Property |

TBaseVirtualTree.UpdateCount
Property

TBaseVirtualTree.TreeStates Property

TBaseVirtualTree Class | See Also

Property which keeps a set of flags which indicate current
operation and states of the tree.

Pascal

property TreeStates: TVirtualTreeStates;

Description

Often it is extremly helpful to know what action is currently
happening in the tree. TreeStates gives you this information,
be it that the caches are currently validated, a drag operation
IS in progress, the tree has delayed data on the clipboard or a
large update operation is under work. You can greatly
optimize your code with this knowledge.

See Also
OnStateChange

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic?

: TBaseVirtualTree Class |
? TBaseVirtualTree.TreeStates
" Property |
N\

i TBaseVirtualTree.VerticalAlignment
Property

TBaseVirtualTree.UpdateCount Property

TBaseVirtualTree Class

Not documented.

Pascal

property UpdateCount: Cardinal;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.UpdateCount
._\- Property |

TBaseVirtualTree.VisibleCount
Property

TBaseVirtualTree.VerticalAlignment
Property

TBaseVirtualTree Class

Used to set a node's vertical button aligment with regard to
the entire node rectangle.

Pascal

property VerticalAlignment [Node: PVirtualNode]: Byt

Description

The given value is interpreted differently depending on the
value of NodeAlignment. By default the alignment used
relatively with regard to the top bound. In this case a range of
0 through 100 must be used which denotes the relative pixel
amount in percent. The other variants work with absolute pixel
values from top or bottom bound.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Property |
- TBaseVirtualTree.VisiblePath
Property

TBaseVirtualTree.VisibleCount Property

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.VerticalAlignment
N

Number of currently visible nodes.

Pascal

property VisibleCount: Cardinal;

Description

Visible nodes are those nodes which have the vsVisible flag
set in their states.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.VisibleCount
. Property |
N .

TBaseVirtualTree.WantTabs
Property

TBaseVirtualTree.VisiblePath Property

TBaseVirtualTree Class | See Also

Property to set or determine a node parent's expand states.

Pascal

property VisiblePath [Node: PVirtualNode]: Boolean;

Description

A node has a visible path when all of its parent nodes are
expanded. Setting this property to True will expand all parent
nodes of Node if not yet done.

See Also
Visible

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

v - TBaseVirtualTree.VisiblePath
"«\' Property |

TBaseVirtualTree.Absolutelndex
Method

TBaseVirtualTree.WantTabs Property

TBaseVirtualTree Class

Read or set whether the tree wants to process tabs on its
own.

Pascal

property WantTabs: Boolean;

Description

Usually tab kex strokes advance the input focus from one
control to another on a form. For special processing however
it is necessary to let the control decide what to do with the
given tabulator character. Virtual Treeview needs this
character mainly for its grid emulation.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.WantTabs
._\- Property |

TBaseVirtualTree.AddChild
Method

TBaseVirtualTree.Absoluteindex Method

TBaseVirtualTree Class

Reads the overall index of a node.

Pascal

function AbsoluteIndex(Node: PVirtualNode): Cardinal

Description

Indicates the index of the tree node relative to the first tree
node in a tree.

Notes

Similar to TotalCount also with Absolutelndex the entire tree
will be validated, with all consequences like high memory

usage etc. And since Virtual Treeview is a highly changing
environment there is not much sense to use the absolute
index.

You cannot use it in any method or property of the control.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
TBaseVirtualTree.Absolutelndex

N~ Method |
N TBaseVirtualTree.AddFromStream
Method

TBaseVirtualTree.AddChild Method

TBaseVirtualTree Class | See Also

Creates and adds a new child node to given node.

Pascal

function AddChild(Parent: PVirtualNode; UserData: Po

Description

The new node will be created as last child of Parent and is
returned as resuilt.

Notes

Using AddChild is not recommended. The method is merely
there for easier migration from TTreeview. The reason is that
the

method has to validate the node and does some other
processing, which prevents the tree from utilizings its virtual

paradigm. Important advantages will so disappear. If possible
you should restructure your design and try to use the right

way: via OnlnitNode and OnlInitChildren.

See Also
InsertNode, OnlnitNode, OnlnitChildren

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

5 ; TBaseVirtualTree.AddChild Method |
\ TBaseVirtualTree.AdjustPaintCellRect
‘-' Method

TBaseVirtualTree. AddFromStream
Method

TBaseVirtualTree Class | See Also

Adds the content from the given stream to the given node.

Pascal

procedure AddFromStream(Stream: TStream; TargetNode:

Description

AddFromStream restores the subtree stored in Stream and
adds it to TargetNode. The content of the stream must have
been saved previously with SaveToStream.

See Also
SaveToStream

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.AddToSelection
., ; Method (TNodeArray, Integer,
Boolean)

TBaseVirtualTree.AddToSelection
Method (PVirtualNode)

TBaseVirtualTree Class

Adds one or more nodes to the current selection.

Pascal

procedure AddToSelection(Node: PVirtualNode); wvirtua

Description
AddToSelection either takes a single node or an array of
nodes and adds them to the current seletion in the tree. In this
process also the vsSelected state of the node is set.
NewLength is the amount of nodes to add (necessary to
allow Newltems to be larger than the actual used entries).
Forcelnsert is true if nodes must be inserted without
consideration of level select constraint or already set selected
flags (e.g. when loading from stream).

Notes

In the case Forcelnsert is true the caller is responsible for
making sure the new nodes aren't already in the

selection array!

Class
TBaseVirtualTree Class

Links

TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree.AddToSelection
Method (TNodeArray, Integer, Boolean)

procedure AddToSelection(const NewItems:
procedure AddToSelection(const NewItems:

Class

Links

What do you think about this topic?

Method |
o TBaseVirtualTree.AdjustPanningCursor

Method

TBaseVirtualTree.AdjustPaintCellRect
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree. AddFromStream
>

Used in descentants to modify the clip rectangle of the current
column while painting a certain node.

Pascal

procedure AdjustPaintCellRect(var PaintInfo: TVTPain

Description

The rectangle for the given cell (node, column pair in
Paintinfo) can be adjusted by descendants to make room for
special drawings, if necessary.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

? : TBaseVirtualTree.AdjustPaintCellRect
-.\' Method |

TBaseVirtualTree.AdviseChangeEvent
Method

TBaseVirtualTree.AdjustPanningCursor
Method

TBaseVirtualTree Class

Loads the proper cursor which indicates into which direction
scrolling is done.

Pascal

procedure AdjustPanningCursor(X: Integer; Y: Integer

Description

Wheel mice support a special mode for their wheel, which is
used in many applications. By pressing the wheel (which is
also a button) you can start so called wheell panning. In this
mode the tree window is smoothly scrolled in the direction to
which the mouse pointer is moved. As soon as you release
the wheel button wheel panning is stopped. A second form of
this feature is referred to as wheel scrolling. 1t is basically the
same as wheel panning but is entered when you release the
wheel button before you moved the mouse. In this mode you
can move the mouse and do the tree scrolling without holding
the wheel all the time. To stop this mode simple turn the
wheel, or click any mouse button. Also pressing ESC will
cause to leave the wheel scrolling mode.

Depending on the direction the tree content is scroll also the

mouse cursor must be adjusted to indicate this direction.
AdjustPanningCursor does this.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
TBaseVirtualTree.AdjustPanningCursor
-.\' Method |

TBaseVirtualTree.AllocatelnternalDataArea
Method

TBaseVirtualTree.AdviseChangeEvent
Method

TBaseVirtualTree Class

Used to register a delayed change event.

Pascal

procedure AdviseChangeEvent(StructureChange: Boolean

Description

Often there can be many change events in a row and calling
the application for each of them might be too time costly. So
they are by default accumulated until a certain time has
elapsed (ChangeDelay) or, if BeginUpdate was called, until
EndUpdate is executed. If StructureChange is False then we
have a selection change event (without a specific reason)
otherwise it is a structure change.

There are two possibilities to avoid delayed change events.
One is the permanent way by setting ChangeDelay to 0O, the
other one is to enter the synchronous mode by calling
BeginSynch.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 5 TBaseVirtualTree.AdviseChangeEvent
3 Method | TBaseVirtualTree.Animate
Method

TBaseVirtualTree.AllocatelnternalDataAre
Method

TBaseVirtualTree Class | See Also

Registration method to allocate tree internal data per node.

Pascal

function AllocateInternalDataArea(Size: Cardinal): C

Description

This method is used for descentants to specify their need for
internal data. Each node contains some extra reserved bytes
between the node's normal members and the user data area.
This internal area can be used to cache additional information,
e.g. the string tree keeps here the width of the node's caption
in the main column for quick hit tests when doing draw
selection with the mouse.

A tree implementation must call this method only once and
before any node is created (except the hidden root node
which is handled accordingly). The result value is the offset
from the start of the node to the internal data area of the node
for this tree class. | recommend to implement an access
method called InternalData (as shown in
TCustomVirtualStringTree) which does the pointer
mathematic.

See Also
Data handling, TotalinternalDataSize

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

' TBaseVirtualTree Class |
(TBaseVirtualTree.AllocatelnternalDataArea

Method | TBaseVirtualTree.Assign Method

TBaseVirtualTree.Animate Method

TBaseVirtualTree Class

Support method for animated actions in the tree view.

Pascal

procedure Animate(Steps: Cardinal; Duration: Cardina

Description

This method is a general purpose helper to do an animation
and is used for hint fading, animated node toggling etc. The
method automatically takes care that the animation is done
within the specified time interval. For each step in the
animation loop the provided callback is called which gets Data
passed as parameter.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

- 5 TBaseVirtualTree.Animate Method
3 ; | TBaseVirtualTree.BeginDrag
Method

TBaseVirtualTree.Assign Method

TBaseVirtualTree Class

Used to copy properties from another Virtual Treeview.

Pascal

procedure Assign(Source: TPersistent); override;

Description

Although this method assignes most tree properties it does
not assign the header and the nodes to the new tree. There is
an own method (TVTHeader.Assign) for the header
assignment. In order to copy the nodes you must save them to
a stream and restore them in the other control

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
© 5 TBaseVirtualTree.Assign Method |
., ; TBaseVirtualTree.BeginSynch

Method

TBaseVirtualTree.BeginDrag Method

TBaseVirtualTree Class

Starts an OLE drag'n drop operation.

Pascal

procedure BeginDrag(Immediate: Boolean; Threshold: I

Description
This method is called within the mouse down handler when
DragMode is set to dmAutomatic. Manual start of a drag
operation is not recommended as it confuses the correct
mouse down handling which is quite complex in Virtual
Treevew. If you selectively want to allow to start a drag
operation then use the OnDragAllowed event which is called
when DragMode is dmManual.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

T - TBaseVirtualTree.BeginDrag
K Method |

TBaseVirtualTree.BeginUpdate
Method

TBaseVirtualTree.BeginSynch Method

TBaseVirtualTree Class

Enters the tree into a special synchronized mode.

Pascal

procedure BeginSynch;

Description

Similar to BeginUpdate does BeginSynch provide a
mechanism to bring certain events into a common line. That
means, whenever you need to make sure change events are
called before a modification in the tree is finished (e.g. when
changing the focus or selection) then use the synchronous
mode started with BeginSynch (and stopped with EndSynch).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.BeginSynch Method |
\ TBaseVirtualTree.CalculateSelectionRect
‘-' Method

TBaseVirtualTree.BeginUpdate Method

TBaseVirtualTree Class

Locks the tree view to perform several update operations.

Pascal

procedure BeginUpdate;

Description

Call this method when a long lasting operation begins which
might involve manipulation of many nodes.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.CanAutoScroll
Method

TBaseVirtualTree.CalculateSelectionRect
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.BeginUpdate

Support method for draw selection.

Pascal

function CalculateSelectionRect(X: Integer; Y: Integ

Description

Recalculates old and new selection rectangle given that X, Y
are new mouse coordinates. The function returns true if there
was a change since the last call.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.CancelCutOrCopy

Method

TBaseVirtualTree.CanAutoScroll Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{5 TBaseVirtualTree.CalculateSelectionRect
._\

Determines whether the tree can currently auto scroll its
window.

Pascal

function CanAutoScroll: Boolean; virtual;

Description

This method was created because the conditions when the
tree may automatically scroll its content are quite complex.
Additionally, tree descendants might want to add further
limitations. Thus the determination has been put into an own
method which returns true if the tree is allowed to scroll,
otherwise False.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.CanAutoScroll
>

Method |
s TBaseVirtualTree.CancelEditNode
Method
TBaseVirtualTree.CancelCutOrCopy
Method

TBaseVirtualTree Class

Canceles any pending cut or copy clipboard operation.

Pascal

procedure CancelCutOrCopy;

Description

This method is used to stop any pending clipboard operation.
No data is transfered nor are nodes deleted.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.CancelCutOrCopy
N Method | TBaseVirtualTree.CanEdit
'“’ Method

TBaseVirtualTree.CancelEditNode
Method

TBaseVirtualTree Class

Cancel the current edit operation, if there is any.

Pascal

function CancelEditNode: Boolean;

Description

Used to stop the current edit operation.The node editor will get
a CancelEdit call so that the node is not changed.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.CancelEditNode
Method |
TBaseVirtualTree.CanFocus
Method

TBaseVirtualTree.CanEdit Method

TBaseVirtualTree Class

Determines whether a node can be edited or not.

Pascal

function CanEdit(Node: PVirtualNode; Column: TColumn

Description

The method is called when the tree is about to start a node
edit operation. Returns true if editing is allowed, otherwise
false.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
5 ; TBaseVirtualTree.CanEdit Method |
., ; TBaseVirtualTree.CanShowDraglmage
Method

TBaseVirtualTree.CanFocus Method

TBaseVirtualTree Class

Support method to determine whether the tree window can
receive the input focus.

Pascal

function CanFocus: Boolean;

Description
The method adds a check for the parent form of the control.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
¢ ; TBaseVirtualTree.CanFocus
Method |

— TBaseVirtualTree.Change Method

TBaseVirtualTree.CanShowDraglmage
Method

TBaseVirtualTree Class

Determines whether a drag image should be shown.

Pascal

function CanShowDragImage: Boolean; virtual;

Description

This overridable method is used to determine whether a drag
image can be shown or not.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
TBaseVirtualTree.CanShowDraglmage
-.\' Method |

TBaseVirtualTree.ChangeScale
Method

TBaseVirtualTree.Change Method

TBaseVirtualTree Class | See Also

Central method called when a node's selection state changes.

Pascal

procedure Change(Node: PVirtualNode); wvirtual;

Description

The Change method is called to trigger the change notifcation
chain. Depending on the sync and the update states of the
tree as well as the ChangeDelay value either the application is
directly notified about the change or a timer is started to
accumulate several change events into one.

See Also

BeginSynch, EndSynch, BeginUpdate, EndUpdate,
ChangeDelay

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
© 5 TBaseVirtualTree.Change Method |
N ; TBaseVirtualTree.CheckParentCheckState

Method

TBaseVirtualTree.ChangeScale Method

TBaseVirtualTree Class | See Also

Helper method called by the VCL when control resizing is due.

Pascal

procedure ChangeScale(M: Integer; D: Integer); overr

Description

ChangeScale is a method introduced by TControl. In Virtual
Treeview it is responsible to change the tree's and the
header's fonts as well as to compute the new default node
height.

See Also
TVTHeader.ChangeScale, DefaultNodeHeight

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

L ; TBaseVirtualTree.ChangeScale
Method | TBaseVirtualTree.Clear
— Method

TBaseVirtualTree.CheckParentCheckState
Method

TBaseVirtualTree Class

Helper method for recursive check state changes.

Pascal

function CheckParentCheckState(Node: PVirtualNode; N

Description

Checks all siblings of node to determine which check state
Node's parent must get.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.CheckParentCheckState
Method | TBaseVirtualTree.ClearChecked
Method

TBaseVirtualTree.Clear Method

TBaseVirtualTree Class

Clears the tree and removes all nodes.

Pascal

procedure Clear; virtual;

Description

All pending operations are stopped and the tree is ready to
receive new nodes.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.Clear Method |
\ TBaseVirtualTree.ClearSelection
'“’ Method

TBaseVirtualTree.ClearChecked Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure ClearChecked;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
o TBaseVirtualTree.ClearTempCache
Method

TBaseVirtualTree.ClearSelection Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.ClearChecked
>

Removes all nodes from the current selection.

Pascal

procedure ClearSelection;

Description

ClearSelection empties the internal selection cache and resets
the vsSelected state from all nodes, which were in this array.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
o TBaseVirtualTree.ColumnIsEmpty
Method

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.ClearSelection
>

TBaseVirtualTree.ClearTempCache
Method

TBaseVirtualTree Class

Helper method to clear the internal temporary node cache.

Pascal

procedure ClearTempCache; virtual;

Description

The internal node cache is used when more than one node is
involved in certain operations (e.g. including a range of nodes
into the current selection).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

? : TBaseVirtualTree.ClearTempCache
X Method |
N .

TBaseVirtualTree.CopyToClipBoard
Method

TBaseVirtualTree.ColumnisEmpty
Method

TBaseVirtualTree Class | See Also

Used to determine if a cell is considered as being empty.

Pascal

function ColumnIsEmpty(Node: PVirtualNode; Column: T

Description

An empty cell might be used for the automatic column
spanning feature. Descentants can override this method to
modify the tree's behavior.

See Also
toAutoSpanColumns

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

{vi TBaseVirtualTree Class

TBaseVirtualTree.CopyTo Method
(PVirtualNode, PVirtualNode,
TVTNodeAttachMode, Boolean)

TBaseVirtualTree Class

Copies Source and all its child nodes to Target.

Pascal

function CopyTo(Source: PVirtualNode; Tree: TBaseVir
function CopyTo(Source: PVirtualNode; Target: PVirtu

Description

Mode is used to specify further where to add the new node
actually (as sibling of Target or as child of Target). Result is
the newly created node to which source has been copied if
ChildrenOnly is False or just contains Target in the other
case. ChildrenOnly determines whether to copy also the
source node or only its child nodes.

The variant taking a tree reference as target can be used to
transfer nodes to a different tree, without determining its root
node first. However one can also pass in any virtual tree node
as target, as long as it belongs to a tree. The owning tree is
automatically determined.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.ColumnIsEmpty
-.\' Method |

TBaseVirtualTree.CountLevelDifference
Method

TBaseVirtualTree.CopyToClipBoard
Method

TBaseVirtualTree Class

Copies all currently selected nodes to the clipboard.

Pascal

procedure CopyToClipBoard; virtual;

Description

CopyToClipboard causes the tree to copy the currently
selected nodes to the clipboard. Actually, Virtual Treeview
maintains socalled delayed rendering. This means the
participating nodes are marked as being in the current
clipboard set (see vsCutOrCopy in TVirtualNodeStates) and
only an IDataObject interface is placed onto the clipboard but
no data yet. This avoids not only possibly huge memory
requirements but it also avoids rendering data in a format
which is not necessary. The application which pastes the
clipboard content later will get the IDataObject interface and
requests the format it can handle. The actual data is then
rendered when the target application calls
IDataObject.GetData, which results in a call to
RenderOLEData.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.CountVisibleChildren
Method

TBaseVirtualTree.CountLevelDifference
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{5 TBaseVirtualTree.CopyToClipBoard
K

Determines the level difference of two nodes.

Pascal

function CountLevelDifference(Nodel: PVirtualNode; N

Description

This method counts how many indentation levels the given
nodes are apart. If both nodes have the same parent then the
difference is O otherwise the result is basically
GetNodelLevel(Node2) - GetNodelLevel(Nodel), but with sign.
If the result is negative then Node2 is less intended than
Nodel.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.CountLevelDifference
b Method | TBaseVirtualTree.Create
Constructor

TBaseVirtualTree.CountVisibleChildren
Method

TBaseVirtualTree Class

e

Determines the number of visible child nodes of the given
node.

Pascal

function CountVisibleChildren(Node: PVirtualNode): C

Description

CountVisibleChildren iterates through all child nodes of Node
and counts how many of them have the vsVisible state set.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.CreateParams
Method

TBaseVirtualTree.Create Constructor

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.CountVisibleChildren
>

Constructor of the control

Pascal

constructor Create(AOwner: TComponent); override;

Description

The constructor initializes certain properties to their default
values.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.Create
X Constructor |
»

e TBaseVirtualTree.CreateWnd
Method

TBaseVirtualTree.CreateParams Method

TBaseVirtualTree Class

Prepares the creation of the controls window handle.

Pascal

procedure CreateParams(var Params: TCreateParams); o

Description

CreateParams is overriden to allow to set certain window
styles for the control.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
o TBaseVirtualTree.CutToClipBoard
Method

TBaseVirtualTree.CreateWnd Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.CreateParams
>

Initializes data, which depends on the window handle.

Pascal

procedure CreateWnd; override;

Description

Some properties must be preset first after the window handle
was created. CreateWnd is the perfect place for this.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.CreateWnd
k" Method |
N

o TBaseVirtualTree.DefineProperties
Method

TBaseVirtualTree.CutToClipBoard
Method

TBaseVirtualTree Class

Copies the currently selected nodes to the clipboard and
removes them once a consumer has taken the data.

Pascal

procedure CutToClipBoard; virtual;

Description

Similar to CopyToClipboard only the nodes are deleted after
they have been pasted into the target.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.CutToClipBoard
-.\' Method |

TBaseVirtualTree.DeleteChildren
Method

TBaseVirtualTree.DefineProperties
Method

TBaseVirtualTree Class

Helper method to customize loading and saving persistent
tree data.

Pascal

procedure DefineProperties(Filer: TFiler); override;

Description

There were heavy changes in some properties during
development of VT. This method helps to make migration
easier by reading old properties manually and put them into
the new properties as appropriate. These old properties are
never written again and silently disappear.

Another task of this method is to work around the problem that
TCollection is not streamed correctly when using Visual Form
Inheritance (VFI).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DeleteNode
Method

TBaseVirtualTree.DeleteChildren Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DefineProperties
N

Removes all child nodes from the given node.

Pascal

procedure DeleteChildren(Node: PVirtualNode; ResetHa

Description

The method works recursively: all grandchildren and their
children are removed as well.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DeleteChildren
-.\' Method |

TBaseVirtualTree.DeleteSelectedNodes
Method

TBaseVirtualTree.DeleteNode Method

TBaseVirtualTree Class

Removes the given node from the tree.

Pascal

procedure DeleteNode(Node: PVirtualNode; Reindex: Bo

Description

This method deletes the given node. If the node was initialized
or had gotten initial data via the AddChild or InsertNode then
the event OnFreeNode is called to allow the application to free
any user data attached to a node.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DeleteNode
! Method |

- TBaseVirtualTree.Destroy
Destructor

TBaseVirtualTree.DeleteSelectedNodes
Method

TBaseVirtualTree Class

Removes all currently selected nodes form the tree.

Pascal

procedure DeleteSelectedNodes; virtual;

Description
All nodes in the current selection are affected.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.DeleteSelectedNodes Method

TBaseVirtualTree.DetermineHiddenChildrenFlag
Method

TBaseVirtualTree.Destroy Destructor

TBaseVirtualTree Class

Destructor of the control.

Pascal

destructor Destroy; override;

Description

Frees any allocated data in the tree. All pending operations
will be stopped and any remaining node is freed.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class | TBaseVirtualTree.Destroy
5 ; Destructor |
N

TBaseVirtualTree.DetermineHiddenChildrenFlagAlINodes
Method

TBaseVirtualTree.DetermineHiddenChildr:
Method

TBaseVirtualTree Class | See Also

Determines whether all children of a given node are hidden.

Pascal

procedure DetermineHiddenChildrenFlag(Node: PVirtual

Description

Virtual Treeview supports a feature, which is called node
button auto hide. What happens is that when all children of a
node are hidden then the expand button for this node is
automatically removed. In order to know about the visibility
state of the child nodes an internal flag is maintained, which
allows to quickly decide about the button display.
DetermineHidenChildren is the update method for cases
where more than one child node changed.

See Also
vsVisible, toAutoHideButtons

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DetermineHitPositionLTR

Method

TBaseVirtualTree.DetermineHiddenChildr:
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DetermineHiddenChildrenFlag
N

Determines whether all children of all nodes are hidden.

Pascal

procedure DetermineHiddenChildrenFlagAllNodes; virtu

Description

As extension to DeterminHiddenChildren this method
iteratively determines the hidden children flag for all existing
nodes in the tree. This is only used for large updates. No node
will be initialized in this process.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
. ; TBaseVirtualTree.DetermineHiddenChildrenFlagAllINodes
3

_ Method | TBaseVirtualTree.DetermineNextCheckState
— Method

TBaseVirtualTree.DetermineHitPositionLT
Method

TBaseVirtualTree Class

Determines the hit position within a node with left-to-right and
right-to-left orientation.

Pascal

procedure DetermineHitPositionLTR(var HitInfo: THitI
procedure DetermineHitPositionRTL(var HitInfo: THitI

Description

This method, together with its counter part
DetermineHitPositionRTL, is used in the process of figuring
out where the a given position is located in relation to a node.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DetermineScrollDirections
Method

TBaseVirtualTree.DetermineNextCheckSt:
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DetermineHitPositionLTR
b

e

Not documented.

Pascal

function DetermineNextCheckState(CheckType: TCheckTy

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DoAdvancedHeaderDraw
Method

TBaseVirtualTree.DetermineScrollDirectio
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.DetermineNextCheckState

Not documented.

Pascal

function DetermineScrollDirections(X: Integer; Y: In

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DetermineScrollDirections
Method | TBaseVirtualTree.DoAfterCellPaint
— Method

TBaseVirtualTree.DoAdvancedHeaderDra
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoAdvancedHeaderDraw(var PaintInfo: THeade

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
e TBaseVirtualTree.DoAfterltemErase
Method

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.DoAdvancedHeaderDraw
b

TBaseVirtualTree.DoAfterCellPaint
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoAfterCellPaint(Canvas: TCanvas; Node: PV

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

_x Method |
- TBaseVirtualTree.DoAfterltemPaint

Method

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoAfterCellPaint

TBaseVirtualTree.DoAfterltemErase
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoAfterItemErase(Canvas: TCanvas; Node: PV

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DoAfterPaint
Method

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoAfterltemErase

TBaseVirtualTree.DoAfterltemPaint
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoAfterItemPaint(Canvas: TCanvas; Node: PV

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
e TBaseVirtualTree.DoAutoScroll
Method

TBaseVirtualTree.DoAfterPaint Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoAfterltemPaint
b

Not documented.

Pascal

procedure DoAfterPaint(Canvas: TCanvas); virtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoAfterPaint
X Method |
\ .

TBaseVirtualTree.DoBeforeCellPaint
Method

TBaseVirtualTree.DoAutoScroll Method

TBaseVirtualTree Class

Enables or disables the auto scroll timer.

Pascal

procedure DoAutoScroll(X: Integer; Y: Integer); virt

Description

This method determines whether the tree needs to be scrolled
(the mouse is near the borders) and enables or disables the
internal scroll timer which triggers the DoTimerScroll method.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DoBeforeDrag
Method

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.DoAutoScroll

TBaseVirtualTree.DoBeforeCellPaint
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoBeforeCellPaint(Canvas: TCanvas; Node: P

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DoBeforeltemErase
Method

TBaseVirtualTree.DoBeforeDrag Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoBeforeCellPaint
>

Not documented.

Pascal

function DoBeforeDrag(Node: PVirtualNode; Column: TC

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DoBeforeltemPaint
Method

TBaseVirtualTree.DoBeforeltemErase
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoBeforeDrag

Not documented.

Pascal

procedure DoBeforelItemErase(Canvas: TCanvas; Node: P

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoBeforeltemErase

Method |
aa. TBaseVirtualTree.DoBeforePaint
Method
TBaseVirtualTree.DoBeforeltemPaint
Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoBeforeltemPaint(Canvas: TCanvas; Node: PV

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
e TBaseVirtualTree.DoCancelEdit
Method

TBaseVirtualTree.DoBeforePaint Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoBeforeltemPaint
b

Not documented.

Pascal

procedure DoBeforePaint(Canvas: TCanvas); virtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoBeforePaint
-.\' Method |

TBaseVirtualTree.DoCanEdit
Method

TBaseVirtualTree.DoCancelEdit Method

TBaseVirtualTree Class

Called when the tree should stop editing without accepting
changed values.

Pascal

function DoCancelEdit: Boolean; virtual;

Description

This method calls the edit link's IEditLink.CancelEdit method
and stops the edit mode if this call returns True. If stopping is
allowed then the event OnEditCancelled is triggered and a
message is sent to release the edit link asynchronously.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
o TBaseVirtualTree.DoChange
Method

TBaseVirtualTree.DoCanEdit Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoCancelEdit
N

Not documented.

Pascal

procedure DoCanEdit(Node: PVirtualNode; Column: TCol

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoCanEdit
k" Method |
N

s TBaseVirtualTree.DoCheckClick
Method

TBaseVirtualTree.DoChange Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoChange(Node: PVirtualNode); virtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoChange
" Method |
N

- TBaseVirtualTree.DoChecked
Method

TBaseVirtualTree.DoCheckClick Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoCheckClick(Node: PVirtualNode; NewCheckS

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DoChecking
Method

TBaseVirtualTree.DoChecked Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoCheckClick
\

Not documented.

Pascal

procedure DoChecked(Node: PVirtualNode); wvirtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoChecked
" Method |
N

i TBaseVirtualTree.DoCollapsed
Method

TBaseVirtualTree.DoChecking Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoChecking(Node: PVirtualNode; var NewCheck

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoChecking
" Method |
N

- TBaseVirtualTree.DoCollapsing
Method

TBaseVirtualTree.DoCollapsed Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoCollapsed(Node: PVirtualNode); wvirtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoCollapsed
" Method |
N

- TBaseVirtualTree.DoColumnClick
Method

TBaseVirtualTree.DoCollapsing Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoCollapsing(Node: PVirtualNode): Boolean;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DoColumnDbIClick
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoCollapsing
N

TBaseVirtualTree.DoColumnClick
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoColumnClick(Column: TColumnIndex; Shift:

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
e TBaseVirtualTree.DoColumnResize
Method

TBaseVirtualTree.DoColumnDDbIClick
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoColumnClick
b

Not documented.

Pascal

procedure DoColumnDblClick(Column: TColumnIndex; Shi

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
- TBaseVirtualTree.DoCompare
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoColumnDbIClick
b

TBaseVirtualTree.DoColumnResize
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoColumnResize(Column: TColumnIndex); virt

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |
TBaseVirtualTree.DoColumnResize
Method |
TBaseVirtualTree.DoCreateDataObject
Method

TBaseVirtualTree.DoCompare Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoCompare(Nodel: PVirtualNode; Node2: PVirt

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
¢ ; TBaseVirtualTree.DoCompare Method |
TBaseVirtualTree.DoCreateDragManager

S Method

TBaseVirtualTree.DoCreateDataObject
Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoCreateDataObject: IDataObject; virtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

_x Method |
- TBaseVirtualTree.DoCreateEditor

Method

TBaseVirtualTree.DoCreateDragManager
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoCreateDataObject

Not documented.

Pascal

function DoCreateDragManager: IVTDragManager; virtua

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DoCreateDragManager
\ Method | TBaseVirtualTree.DoDragDrop
'“’ Method

TBaseVirtualTree.DoCreateEditor Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoCreateEditor(Node: PVirtualNode; Column:

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
- TBaseVirtualTree.DoDragExpand
Method

TBaseVirtualTree.DoDragDrop Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoCreateEditor
b

Not documented.

Pascal

procedure DoDragDrop(Source: TObject; DataObject: ID

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

_ Method |
- TBaseVirtualTree.DoDragging
Method

TBaseVirtualTree.DoDragExpand Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoDragDrop
N

Not documented.

Pascal

procedure DoDragExpand; virtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
i TBaseVirtualTree.DoDragOver
Method

TBaseVirtualTree.DoDragging Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoDragExpand
N

Internal method which handles drag' drop.

Pascal

procedure DoDragging(P: TPoint); virtual;

Description

This method starts the OLE drag'n drop operation and returns
after this operation is finished.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DoDragging
N Method | TBaseVirtualTree.DoEdit
S Method

TBaseVirtualTree.DoDragOver Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoDragOver(Source: TObject; Shift: TShiftSt

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

T | TBaseVirtualTree.DoDragOver
K Method |

TBaseVirtualTree.DoEndDrag
Method

TBaseVirtualTree.DoEdit Method

TBaseVirtualTree Class | See Also

Initiates editing of the currently set focused column and edit
node.

Pascal

procedure DoEdit; virtual;

Description

This method takes care for editor creation and initialization.
You can look for tsEditing in TreeStates to know whether
editing is currently active.

See Also
tsEditing, OnCreateEditor, IVTEditLink

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

5 ; TBaseVirtualTree.DoEdit Method |
\ TBaseVirtualTree.DoEndEdit
— Method

TBaseVirtualTree.DoEndDrag Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoEndDrag(Target: TObject; X: Integer; Y:

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

T - TBaseVirtualTree.DoEndDrag
K Method |

TBaseVirtualTree.DoExpanded
Method

TBaseVirtualTree.DoEndEdit Method

TBaseVirtualTree Class | See Also

Stops the current edit operation and takes over the new
content.

Pascal

function DoEndEdit: Boolean; virtual;

Description

The method also sends a message to the tree window to
asynchronously release the edit link which communicates to
the actual editor. The edit link is responsible to propagate any
changes made in its node editor to the tree.

Notes

TVirtualStringTree overrides this method to tell the application
about the new caption by calling OnNewText.

See Also
DoEdit, OnNewText, EditNode

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class, See Also

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoEndEdit
" Method |
N

- TBaseVirtualTree.DoExpanding
Method

TBaseVirtualTree.DoExpanded Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoExpanded(Node: PVirtualNode); wvirtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DoFocusChange
Method

TBaseVirtualTree.DoExpanding Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
T ; TBaseVirtualTree.DoExpanded
‘\:

Not documented.

Pascal

function DoExpanding(Node: PVirtualNode): Boolean; v

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DoFocusChanging
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoExpanding
N

TBaseVirtualTree.DoFocusChange
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoFocusChange(Node: PVirtualNode; Column:

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoFocusChange
b

\ Method |
e TBaseVirtualTree.DoFocusNode
Method
TBaseVirtualTree.DoFocusChanging
Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoFocusChanging(0ldNode: PVirtualNode; NewN

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DoFocusChanging
-.\' Method |

TBaseVirtualTree.DoFreeNode
Method

TBaseVirtualTree.DoFocusNode Method

TBaseVirtualTree Class

Internal method to set the focused node.

Pascal

procedure DoFocusNode(Node: PVirtualNode; Ask: Boole

Description

This methods is called by the property setter for the focused
node as well as from other places to do the actual change. It
takes the parameter Ask to optionally switch off (Ask = False)
triggering the OnFocusChanging event.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
o TBaseVirtualTree.DoGetAnimationType
Method

TBaseVirtualTree.DoFreeNode Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
v ; TBaseVirtualTree.DoFocusNode
\;’

Not documented.

Pascal

procedure DoFreeNode(Node: PVirtualNode); wvirtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

TBaseVirtualTree Class |

v - TBaseVirtualTree.DoFreeNode
K Method |

TBaseVirtualTree.DoGetCursor
Method

TBaseVirtualTree.DoGetAnimationType
Method

TBaseVirtualTree Class

Determines the type of animation to be used.

Pascal

function DoGetAnimationType: THintAnimationType; vir

Description

Windows 98 and Windows 2000 introduced two ways of
animating hints when they appear: a sliding window and a
fading window. Virtual Treeview implements both animation
types and also supports system dependent animations. This
allows to use the animation type enabled in the particular
system on which the tree currently runs. Additonally, there is a
check for MMX to do a fallback if fade animation is specified
but no MMX available. In this case sliding is used. Starting
with Windows 2000 and Windows ME the hint animation can
even be be switched off entirely. Also this case is handled by
this method.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic?

Method |
- TBaseVirtualTree.DoGetHeaderCursor
Method

TBaseVirtualTree.DoGetCursor Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoGetAnimationType
N

Not documented.

Pascal

procedure DoGetCursor(var Cursor: TCursor); virtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

_x Method |
— TBaseVirtualTree.DoGetlmagelndex
Method

TBaseVirtualTree.DoGetHeaderCursor
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
g ; TBaseVirtualTree.DoGetCursor

Not documented.

Pascal

procedure DoGetHeaderCursor(var Cursor: HCURSOR); vi

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
- TBaseVirtualTree.DoGetLineStyle
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoGetHeaderCursor
b

TBaseVirtualTree.DoGetimagelndex
Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoGetImageIndex(Node: PVirtualNode; Kind: T

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
e TBaseVirtualTree.DoGetNodeHint
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoGetlmagelndex
b

TBaseVirtualTree.DoGetLineStyle
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoGetLineStyle(var Bits: Pointer); virtual

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DoGetNodeTooltip
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoGetLineStyle
N

TBaseVirtualTree.DoGetNodeHint
Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoGetNodeHint(Node: PVirtualNode; Column: T

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
e TBaseVirtualTree.DoGetNodeWidth
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoGetNodeHint
b

TBaseVirtualTree.DoGetNodeTooltip
Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoGetNodeTooltip(Node: PVirtualNode; Column

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DoGetPopupMenu
Method

: TBaseVirtualTree Class |
{3 TBaseVirtualTree.DoGetNodeTooltip
N

TBaseVirtualTree.DoGetNodeW.idth
Method

TBaseVirtualTree Class

Overridable method which always retuns 0.

Pascal

function DoGetNodewWidth(Node: PVirtualNode; Column:

Description

Descentants override this method to return a value which
describes the width of a node. This is the inner width of the
node excluding tree lines etc. So TVirtualStringTree returns
the width of the node caption (plus text margin).

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DoGetNodeWidth Method |
\ TBaseVirtualTree.DoGetUserClipboardFormats
‘-' Method

TBaseVirtualTree.DoGetPopupMenu
Method

TBaseVirtualTree Class

Overridable method which triggers the OnGetPopup event.

Pascal

function DoGetPopupMenu(Node: PVirtualNode; Column:

Description

This method does an automatic parent traversal in the tree
hierarchy to find a matching popup menu.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DoHeaderClick
Method

TBaseVirtualTree.DoGetUserClipboardFol
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoGetPopupMenu

Not documented.

Pascal

procedure DoGetUserClipboardFormats(var Formats: TFo

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DoGetUserClipboardFormats
b Method | TBaseVirtualTree.DoHeaderDbIClick
‘-' Method

TBaseVirtualTree.DoHeaderClick Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoHeaderClick(Column: TColumnIndex; Button

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
- TBaseVirtualTree.DoHeaderDragged
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoHeaderClick
b

TBaseVirtualTree.DoHeaderDbIClick
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoHeaderDblClick(Column: TColumnIndex; But

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
- TBaseVirtualTree.DoHeaderDraggedOut

Method

TBaseVirtualTree.DoHeaderDragged
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoHeaderDDbIClick
b

Not documented.

Pascal

procedure DoHeaderDragged(Column: TColumnIndex; O0ldP

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DoHeaderDragging
Method

TBaseVirtualTree.DoHeaderDraggedOut
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoHeaderDragged

Not documented.

Pascal

procedure DoHeaderDraggedOut(Column: TColumnIndex; D

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
e TBaseVirtualTree.DoHeaderDraw

Method

TBaseVirtualTree.DoHeaderDragging
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoHeaderDraggedOut
N

Not documented.

Pascal

function DoHeaderDragging(Column: TColumnIndex): Boo

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DoHeaderDragging Method |
\ TBaseVirtualTree.DoHeaderDrawQueryElements
'“’ Method

TBaseVirtualTree.DoHeaderDraw Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoHeaderDraw(Canvas: TCanvas; Column: TVir

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DoHeaderMouseDown
Method

TBaseVirtualTree.DoHeaderDrawQueryEle
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoHeaderDraw

Not documented.

Pascal

procedure DoHeaderDrawQueryElements(var PaintInfo: T

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DoHeaderDrawQueryElements
Method |
— TBaseVirtualTree.DoHeaderMouseMove Method

TBaseVirtualTree.DoHeaderMouseDown
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoHeaderMouseDown(Button: TMouseButton; Sh

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoHeaderMouseDown

TBaseVirtualTree.DoHeaderMouseUp

Method

TBaseVirtualTree.DoHeaderMouseMove
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoHeaderMouseMove(Shift: TShiftState; X:

I

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DoHeaderMouseMove
Method |
— TBaseVirtualTree.DoHotChange Method

TBaseVirtualTree.DoHeaderMouseUp
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoHeaderMouseUp(Button: TMouseButton; Shif

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
s TBaseVirtualTree.DolncrementalSearch
Method

TBaseVirtualTree.DoHotChange Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoHeaderMouseUp
N

Not documented.

Pascal

procedure DoHotChange(0ld: PVirtualNode; New: PVirtu

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
TBaseVirtualTree.DolnitChildren
Method

TBaseVirtualTree.DolncrementalSearch
Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DoHotChange

Not documented.

Pascal

function DoIncrementalSearch(Node: PVirtualNode; con

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |

4 ; TBaseVirtualTree.DolncrementalSearch
b Method | TBaseVirtualTree.DolnitNode
'“’ Method

TBaseVirtualTree.DolnitChildren Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoInitChildren(Node: PVirtualNode; wvar Chi

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
o TBaseVirtualTree.DoKeyAction
Method

TBaseVirtualTree.DolnitNode Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vi TBaseVirtualTree.DolnitChildren
N

Not documented.

Pascal

procedure DoInitNode(Parent: PVirtualNode; Node: PVi

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

: TBaseVirtualTree Class |
? TBaseVirtualTree.DolnitNode
X Method |
»

e TBaseVirtualTree.DoLoadUserData
Method

TBaseVirtualTree.DoKeyAction Method

TBaseVirtualTree Class

Not documented.

Pascal

function DoKeyAction(var CharCode: Word; var Shift:

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
e TBaseVirtualTree.DoMeasureltem
Method

: TBaseVirtualTree Class |
{v ; TBaseVirtualTree.DoKeyAction
b

TBaseVirtualTree.DoLoadUserData
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DolLoadUserData(Node: PVirtualNode; Stream:

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
- TBaseVirtualTree.DoNodeCopied
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoLoadUserData
b

TBaseVirtualTree.DoMeasureltem
Method

TBaseVirtualTree Class

Not documented.

Pascal

procedure DoMeasureltem(TargetCanvas: TCanvas; Node:

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

Method |
- TBaseVirtualTree.DoNodeCopying
Method

TBaseVirtualTree.DoNodeCopied Method

TBaseVirtualTree Class

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoMeasureltem
>

Not documented.

Pascal

procedure DoNodeCopied(Node: PVirtualNode); virtual;

Description

Use other resources like the news group or the Delphi Gems
message board to find a description.

Class
TBaseVirtualTree Class

Links
TBaseVirtualTree Class

What do you think about this topic? Send feedback!

\ Method |
e TBaseVirtualTree.DoNodeMoved
Method

: TBaseVirtualTree Class |
{vﬁ TBaseVirtualTree.DoNodeCopied
b

TBaseVirtualTree.DoNodeCopying
Method

TBaseVirtualTree