
VirtualDub	help

Welcome	to	the	new	helpfile	for	VirtualDub	1.5+.

The	old	help	file	used	to	have	some	general	tips	on	how	to	create	video,
but	I've	come	to	the	conclusion	that	such	a	help	file	is	too	much	effort	to
maintain	and	that	my	efforts	in	this	area	are	better	spent	explaining	what
the	options	do	rather	than	how	to	use	them.	So,	currently,	this	help	file
currently	consists	of	comprehensive	explanations	of	what	various	settings
dialogs	in	VirtualDub	do.

VirtualDub	help	-	Processing:	Main	UI

Display	panes

Two	rectangular	panes	occupy	most	of	VirtualDub's	interface;	the	left
one	is	the	input	pane	and	the	right	one	is	the	output	pane.	As	the
current	position	is	moved	through	the	video,	the	panes	will	update
with	the	original	and	filtered	result	of	that	frame.	This	allows
convenient	before-and-after	comparisons	of	the	video.

The	positioning	and	size	of	the	display	panes	can	be	modified	in	a
number	of	ways;	see	Display	panes	for	more	information.

Position	slider

Drag	the	slider	below	the	panes	to	change	the	current	position	within
the	video.	If	enabled,	the	display	panes	will	update	to	show	the
selected	frame.	Holding	Shift	while	dragging	forces	the	current
position	to	be	placed	only	on	key	frames.	Using	the	right	mouse
button	to	drag	the	slider	instead	of	the	left	causes	the	drag	to	occur
at	a	much	slower	rate	for	more	precise	positioning.

Each	position	on	the	position	slider	corresponds	to	the	start	of	each
frame	in	the	video	timeline.	As	a	result,	there	is	one	additional
position	at	the	end	corresponding	to	the	end	of	the	video.	For
instance,	with	a	2280	frame	video	the	slider	may	be	positioned	from

0	to	2280.

Playback	controls	()
Starts	and	stops	preview	playback	of	the	video.	The	play	button	with
the	small	"I"	only	plays	the	input	video;	the	one	with	the	small	"O"
previews	both	the	input	and	the	filtered	output	video.	Previewing	the
output	video	requires	a	lot	more	CPU	power	and	may	not	be	able	to
occur	in	real-time	if	the	video	frame	is	large	or	complex	video	filters
are	in	use.

Frame	step	controls	()
Jumps	to	the	beginning,	previous	frame,	next	frame,	and	end	of	the
video,	respectively.	These	actions	can	also	be	performed	through	the
keyboard	using	Ctrl+Left-arrow,	Left-arrow,	Right-arrow,	and
Ctrl+Right-arrow.

Key	frame	step	controls	()

Jumps	to	the	previous	or	next	key	frame	in	the	video.	A	key	frame	is
a	frame	that	is	stored	fully-contained	in	the	video	file	and	doesn't
depend	on	any	other	frames	for	decoding;	these	are	the	fastest	seek
points	in	the	video	and	often	of	slightly	higher	quality	as	well.
Stepping	by	key	frame	is	often	significantly	faster	and	is	handy	when
browsing	through	the	video.	In	addition,	the	key	frames	represent
appropriate	cut	points	when	editing	in	Direct	mode.

The	key	frame	step	controls	can	also	be	activated	through	the
keyboard	using	Shift+Left-arrow	and	Shift+Right-arrow.

When	the	video	source	is	an	MPEG-1	file,	the	key	frame	step
controls	jump	between	I-frames.

Scene	step	controls	()

Jumps	to	the	previous	or	next	scene	in	the	video.	Scene	detection	is
done	by	image	analysis	heuristics,	by	looking	for	large	picture
changes	that	indicate	possible	cuts	or	fades	in	the	video.	The

thresholds	for	determining	a	fade	or	a	cut	can	be	controlled	in	the
Preferences	dialog.

When	scanning	through	a	large	amount	of	video,	the	display	panes
will	begin	to	update	at	a	slower	rate.	This	is	normal.	The	pane
updates	are	reduced	after	a	short	period	in	order	to	reduce	their
CPU	usage	and	speed	up	the	scan.

Mark-in	and	mark-out	controls	()

Sets	the	starting	and	ending	points	for	the	selection	to	the	current
position.	The	selection	is	used	by	the	commands	in	the	Edit	menu	to
modify	the	portions	of	video	to	be	rendered.	Also,	if	a	portion	of	video
is	selected	when	a	save	command	is	used,	only	that	portion	of	video
is	processed.

The	Home	and	End	keys	can	also	be	used	to	select	video.

Note Since	the	position	slider	moves	to	the	beginning	of	frames,
the	mark-out	point	must	be	placed	one	frame	after	the	last
frame	to	be	selected.	This	means	that	if	300	frames	are	to
be	deleted	starting	at	frame	100,	the	selection	should	be
started	(mark-in)	at	frame	100	and	ended	(mark-out)	at
frame	100+300	=	400,	not	at	frame	399.	This	is	referred	to
as	end-point	exclusive	selection.

Timestamp	display	()

Displays	the	current	frame	number,	timestamp,	and	frame	type	at	the
current	position.	Frame	types	are	as	follows:

[K]:	A	key	frame.	(AVI)
[]:	A	delta	frame	—	stored	as	a	difference	from	the	previous
frame.	(AVI)
[D]:	A	drop	or	null	frame,	which	repeats	the	previous	frame.
These	are	most	often	found	in	capture	files.	(AVI)
[I]:	An	I-frame;	similar	to	a	key	frame.	(MPEG-1)
[P]:	A	P-frame,	or	forward	predicted	frame.	These	are	stored	as

a	difference	from	an	earlier	frame.	(MPEG-1)
[B]:	A	B-frame,	or	bidirectionally	predicted	frame.	These	are
stored	as	a	difference	from	both	an	earlier	frame	and	a	future
frame.	(MPEG-1)
[M]:	A	masked	frame.	These	are	frames	that	have	been	tagged
in	VirtualDub's	timeline	as	not	to	be	processed;	instead,	the
previous	frame	should	be	used.	This	is	most	often	used	to
bypass	errors	in	the	source.	The	end	frame	will	also	show	up	as
one	of	these.

The	format	of	the	timestamp	display	can	be	customized	in
Preferences.

VirtualDub	help	-	Processing:	Editing	the	source
video

Although	VirtualDub	is	not	a	full	non-linear	editing	(NLE)	application,	it
does	have	some	limited	functionality	for	editing	source	video.	Unwanted
portions	of	video	can	thus	be	trimmed	off	from	a	video	before	it	is
processed,	saving	disk	space	and	time.

Selecting	and	editing	portions	of	the	timeline

Use	the	Edit	>	Set	selection	start	and	Edit	>	Set	selection	end	commands
to	select	a	portion	of	video.	This	can	also	be	done	through	the	Home	and
End	keys	on	the	keyboard,	or	through	the	mark-in	and	mark-out	buttons
below	the	position	slider.	The	current	selection	is	then	indicated	by	a	sky-
blue	area	on	the	position	slider.

Once	a	portion	of	video	has	been	selected,	the	Delete	command
(keyboard	shortcut:	Delete	key)	can	be	used	to	remove	that	video	from
the	timeline.	The	Cut,	Copy,	and	Paste	commands	can	also	be	used	to
reorder	video	(they	cannot	be	used	to	splice	or	combine	video	files
together,	however).	The	Undo/Redo	commands	can	be	used	to	reverse
mistakes,	and	the	Reset	timeline	command	undoes	all	edits	entirely,
restoring	the	timeline	to	the	entirety	of	the	source	video.

Editing	the	timeline	only	creates	an	edit	list	within	VirtualDub	for	later	use;
it	never	modifies	the	source	file	in	any	way.	In	particular,	deleting	a
section	of	the	timeline	does	not	delete	anything	from	the	source	file,	and
the	edited	result	must	be	saved	to	a	new	file.	Editing	a	video	file	thus
requires	disk	space	to	hold	both	the	original	and	the	edited	clip.

As	a	shortcut,	the	selection	mark-in/mark-out	commands	also	modify	the
range	selection	that	is	exposed	via	the	Video	>	Select	range...	menu
command.	Thus,	selecting	a	portion	of	video	prior	to	a	save	command
causes	only	that	selection	to	be	rendered	to	disk.	If	this	is	undesired,
clear	the	selection	using	the	Edit	>	Clear	selection	(Ctrl+D)	command.

Caveats	when	editing

VirtualDub	does	not	have	support	for	transitions,	so	any	edits	will	be
abrupt	unless	the	edit	points	are	located	at	places	in	the	source	video
that	hide	the	seam.	Silent	fades	to	black	are	a	good	place	to	remove
selections	of	video.

Editing	can	be	performed	in	any	video	or	audio	mode,	including	Direct
mode,	which	causes	the	render-to-disk	to	be	extremely	fast	and	without
quality	loss	in	most	cases.	However,	there	are	serious	limitations	with
editing	in	this	mode	that	restrict	where	edits	can	be	performed;	also,
advanced	audio	and	video	compression	can	impede	VirtualDub's	ability
to	edit	cleanly.	For	more	information,	see	Direct	mode.

Masking	frames

A	single	frame	or	section	of	frames	can	be	masked;	this	prevents	the
imagery	from	those	frames	from	being	used	and	instead	forces	reuse	of
the	image	of	the	last	unmasked	frame.	In	Direct	mode,	the	masked	frame
data	is	deleted	entirely	and	empty	padding	frames	are	written	instead.
However,	in	either	case	the	audio	is	untouched,	so	the	video	simply
appears	to	freeze	for	the	duration	of	the	masked	range.	This	can	be	used
either	to	remove	single-frame	glitches	or	to	remove	compressed	frames
that	are	damaged.

Note	that	similar	restrictions	apply	to	masked	frames	as	to	deleted
frames	with	regard	to	masking	frames	that	are	not	key	frames,	and
VirtualDub	will	similarly	fix	masked	ranges	that	cannot	be	supported	in
Direct	mode.

VirtualDub	help	-	Processing:	Filtering	video

The	ability	to	apply	video	filters	to	a	video	is	one	of	VirtualDub's	more
powerful	features.	This	allows	application	of	a	number	of	algorithms	to
improve	the	quality	of	a	video,	including	noise	reduction,	blurring,
sharpening,	brightness/contrast,	and	gamma	correction.

Using	video	filters

The	Video	>	Filters...	menu	command	is	the	entry	point	into	using	the
video	filter	system.	Video	filters	in	VirtualDub	are	arranged	in	a	linear
chain,	such	that	the	output	of	the	first	filter	becomes	the	input	of	the
second,	the	output	of	the	second	becomes	the	input	of	the	third,	and	so
on.	Therefore,	the	order	in	which	the	video	filters	are	listed	is	the	order	in
which	they	are	applied.	By	default,	no	filters	are	in	this	list,	meaning	that
the	video	filter	system	is	skipped	entirely.

The	video	processing	mode	must	be	set	to	Full	processing	mode	for	the
video	filter	system	to	be	enabled.	If	the	video	processing	mode	is	set	to
anything	else,	the	Filters...	menu	option	is	grayed	and	the	video	filter
chain	is	disabled.

For	more	information,	see	the	documentation	for	the	video	filters	dialog.

Common	video	processing	operations

VirtualDub	contains	a	number	of	internal	video	filters	that	assist	in	a
number	of	common	video	processing	tasks.	Consult	the	video	filter
reference	for	full	details,	but	here	are	some	useful	filter	techniques:

The	resize	filter	will	change	video	to	a	different	resolution	(size),	in
pixels.	It	can	also	be	used	to	letterbox	a	video	by	adding	borders.
Levels	is	useful	to	adjust	brightness	and	contrast	in	a	video,
particularly	when	blacks	are	not	truly	black,	or	whites	are	not	truly
white.
You	can	crop	at	the	beginning	of	any	filter	by	selecting	it	and	then
the	Crop	button.	If	you	don't	have	any	filters,	though,	just	add	null
transform	to	give	you	a	place	to	crop.
Temporal	smoother	can	be	effective	at	denoising	a	video.	You	will
need	to	adjust	the	threshold	to	set	a	balance	between	less	noise	and
motion	artifacts,	however.
Use	chroma	smoother	to	correct	for	blocky	color	produced	by	video
codecs	that	do	not	interpolate	color	information	properly.
Rotate	a	video	by	90°	increments	until	it	is	upright,	or	use	the	slower
but	more	powerful	rotate2	if	the	rotation	is	arbitrary.
When	video	shows	keystoning	from	being	displayed	or	shot	off-
center,	try	perspective	to	map	it	back	parallel	to	the	screen.
Stamp	a	logo	on	video	to	mark	it	as	yours.

The	order	in	which	filters	are	applied	can	make	a	significant	difference	in
performance	and	quality.	In	terms	of	performance,	a	smaller	video	frame
is	faster	to	process,	so	when	down,	try	putting	filters	after	the	reduction,
and	when	resizing	up,	prefer	placing	them	before	the	enlargement.	In
terms	of	quality,	blurring	reduces	noise,	and	sharpening	amplifies	it	—	so
do	your	noise	reduction	early	and	your	enhancement	transforms	late.

External	video	filters

VirtualDub	exposes	an	application	programming	interface	(API)	that
allows	video	filters	to	be	written	as	plugins,	extending	the	video	filtering
capabilities	of	the	program.	Such	plugins	can	include	effect	plugins	that
render	on	top	of	the	video,	such	as	adding	an	animated	logo	or	titles,	or
add	noise	reduction,	motion	compensation,	and	deinterlacing	capabilities.

Video	filters	can	be	loaded	on	the	spot	by	using	the	Load...	button	on	the
Add	Filters	dialog,	but	for	filters	that	you	use	frequently,	an	easier	way	is
to	place	them	in	the	plugins	folder	inside	the	VirtualDub	program
directory.	Any	.vdf	files	in	this	folder	are	automatically	loaded	on	startup,
and	the	plugins	within	added	to	the	available	list.	Note	that	VirtualDub
does	not	currently	support	video	filters	written	to	a	standard	other	than	its
own	API.

Check	the	VirtualDub	website	for	downloadable	documentation	and	C++
header	files	for	writing	your	own	video	filter.

http://www.virtualdub.org/

VirtualDub	help	-	Processing:	Video	filter	curves

Video	filter	curves	allow	you	to	fade	a	video	filter's	output	with	its	input,
thus	allowing	filter	strength	to	vary	over	the	course	of	a	video.

Attaching	an	opacity	curve	to	a	video	filter

In	the	video	filters	dialog,	select	the	filter	instance	whose	output	you	wish
to	fade,	and	activate	the	Blend	button.	The	mark	[B]	will	appear	before
the	filter's	name,	indicating	that	an	opacity	curve	has	been	attached.
Then	close	the	video	filters	dialog.

In	the	main	editor,	select	View	>	Curve	editor	from	the	menu,	and	select
the	video	filter	instance	from	the	combo	box	that	appears.	The	curve
editor	will	then	be	displayed	for	that	filter	instance's	opacity	curve.

Editing	curves

Select	View	>	Curve	Editor	to	bring	up	the	curve	editor.	The	combo	box
drop-down	at	the	top	of	the	editor	allows	any	of	the	opacity	curves	of
blended	filters	to	be	selected.	The	curve	being	edited	is	displayed	in	the
pane,	with	the	horizontal	axis	representing	frames	and	the	vertical	axis
representing	opacity.

To	create	or	add	points	to	the	curve,	hold	down	the	Shift	key	and
click	with	the	left	mouse	button	to	create	points	in	the	editor.
To	edit	the	curve,	click	with	the	left	mouse	button	on	a	point	and
drag	to	the	desired	location.	Raise	points	higher	to	make	the	filter's
output	more	opaque,	and	lower	to	make	it	more	translucent.
To	delete	curve	points,	hold	down	the	Control	(Ctrl)	key,	and	left-
click	on	the	points	to	be	deleted.
To	make	a	curve	segment	into	a	line,	or	vice	versa,	hold	down
the	Shift	key	and	click	on	the	segment	with	the	right	mouse	button.

Effects	of	using	opacity	curves

Using	an	opacity	curve	will	slow	down	video	processing	slightly	for	any
transition	regions	where	the	curve	value	is	midway	between	zero
(transparent)	and	one	(opaque),	thus	requiring	a	blend.	VirtualDub
optimizes	processing	for	the	cases	where	the	curve	specifies	either	fully
transparent	or	opaque	operation,	however,	in	which	case	the	blend
operation	is	omitted	or	the	filter	is	skipped	entirely.

Opacity	curves	are	essential	when	using	video	filters	with	smart
rendering.	VirtualDub	can	only	copy	video	frames	wherever	the	opacity
curve	completely	fades	out	the	video	filter's	output;	anywhere	the	curve
partially	or	fully	blends	in	the	video	filter,	smart	rendering	is	disabled	and
video	frames	must	be	processed	and	recompressed.	By	using	the	opacity
curve	to	narrow	the	video	filter's	operation,	however,	it	is	possible	to	filter
only	a	select	set	of	video	frames	and	leave	the	rest	untouched.

VirtualDub	help	-	Video	filter	reference
2:1	reduction Shrink	video	to	half-size	using	a	non-overlapping	2x2

kernel.
2:1	reduction	(high
quality)

Shrink	video	to	half-size	using	an	overlapping	3x3
kernel.

blur Apply	a	radius-1	Gaussian	blur	to	video.
blur	more Apply	a	radius-2	Gaussian	blur	to	video.
bob	doubler Interpolate	interlaced	video	to	field	rate.
box	blur Apply	fast	approximated	blurs	to	video.
brightness/contrast Perform	fast	linear	luminance	adjustments.
chroma	smoother Re-interpolate	color	information	in	an	image	without

affecting	brightness.
convert	format Convert	video	to	a	different	image	format.
deinterlace Split,	unsplit,	discard,	and	duplicate	fields.
emboss Apply	psuedo-3D	edge	detection	matrices.
field	bob Resamples	alternating	frames	to	remove	jittering

when	splitting	fields	to	frames.
field	swap Swaps	even	and	odd	fields	to	fix	mistakes.
fill Fills	a	rectangle	in	the	video	with	a	solid	color.
flip	horizontally Flips	video	frame	horizontally.
flip	vertically Flips	video	frame	vertically.
general
convolution

Apply	an	arbitrary	3x3	filtering	matrix.

grayscale Convert	a	color	video	to	grayscale.
HSV	adjust Adjust	hue,	saturation,	and	value.
invert Create	or	undo	negatives.
levels Apply	non-linear	ramp	adjustments.
logo Plop	your	very	own	bug	into	the	frame.
motion	blur Blur	video	in	time	to	create	motion	trails.
null	transform Does	nothing,	but	can	be	used	to	crop.
resize Convert	video	to	a	different	size.
rotate Rotate	video	by	right	angles.

rotate2 Rotate	video	by	arbitrary	angles.
sharpen Make	video	crisper.
smoother Adaptively	blur	a	video	while	trying	to	preserve

edges.
temporal	smoother Adaptively	noise-reduce	video	across	frames.
threshold Convert	video	to	black	and	while	by	comparing

against	a	threshold.
TV Blur	or	resample	video	in	luma/chroma	space.
warp	resize Resize	video	using	an	edge-sensitive	algorithm.

2:1	reduction

Shrink	video	to	half-size	using	a	non-overlapping	2x2	kernel.

This	filter	is	equivalent	to	applying	a	2x2	box	filter	(average	4	pixels)	and
then	doing	a	point-sampled	resize	by	half.	It	gives	sharper	results	than
2:1	reduction	(high	quality),	at	the	cost	of	some	sparkling	(aliasing).
Where	better	quality	is	required,	the	resize	filter	should	be	used	in
precise	bicubic	or	Lanczos3	mode	instead.

Note This	filter	is	deprecated	and	will	be	removed	in	a	later	version.

2:1	reduction	(high	quality)

Shrink	video	to	half-size	using	an	overlapping	3x3	kernel.

This	filter	is	equivalent	to	applying	a	radius-1	Gaussian	blur	and	then
doing	a	point-sampled	resize	by	half.	It	is	marginally	better	than	2:1
reduction	in	avoiding	aliasing	(sparkling),	at	the	cost	of	a	blurrier	output.
Where	better	quality	is	required,	the	resize	filter	should	be	used	in
precise	bicubic	or	Lanczos3	mode	instead.

Note This	filter	is	deprecated	and	will	be	removed	in	a	later	version.

blur

Apply	a	radius-1	Gaussian	blur	to	video.

blur	more

Apply	a	radius-2	Gaussian	blur	to	video.

bob	doubler

Interpolate	interlaced	video	to	field	rate.

This	filter	converts	interlaced	video	at	frame	rate	to	progressive	video	at
field	rate.	For	instance,	30	fps	interlaced	video	is	converted	to	60	fps
without	interlacing.	Field	order	and	interpolation	algorithm	can	be	chosen.

box	blur

Apply	fast	approximated	blurs	to	video.

Box	blur	is	so	named	because	it	uses	"box"	filters	--	it	averages	blocks	of
pixels	together.	Two	passes	gives	a	triangle	filter,	three	gives	a	quadratic,
and	four	gives	a	cubic.	The	advantage	of	box	blur	is	that	it	can	do	very
large	blurs	very	quickly,	such	as	radius-50	cubic	blur.	The	main
disadvantage	is	that	it	cannot	do	small	or	intermediate	(radius-5.2)	blurs.

brightness/contrast

Perform	fast	linear	luminance	adjustments.

Brightness/contrast	provides	quick	and	dirty	adjustments	--	one	of	the
side	effects	that	saturation	is	affected	by	contrast,	and	hues	can	shift	if
clamping	at	white	or	black	occurs.	Consider	using	levels	or	HSV	adjust
for	non-subtle	adjustments.

chroma	smoother

Re-interpolate	color	information	in	an	image	without	affecting
brightness.

Video	compression	algorithms	often	store	color	(chroma)	information	at	a
lower	resolution	than	grayscale	brightness	information,	since	the	eye	is
less	sensitive	to	detail	in	color;	however,	some	video	codecs	don't
interpolate	chroma	well	on	decompression,	resulting	in	blockiness	around
sharp	color	transitions.	The	chroma	smoother	filter	attempts	to	apply	a
blur	solely	in	the	color	channels	to	correct	this	situation.

Each	chroma	option	in	chroma	smoother's	configuration	corresponds	to	a
blur	that	is	tuned	for	a	particular	type	of	chroma	subsampling;	assuming
that	the	video	decoder	did	not	interpolate	chroma	at	all,	choosing	the
correct	setting	will	produce	a	result	approximating	bilinear	interpolation.
Of	course,	stronger	or	weaker	options	can	be	picked	to	taste.

convert	format

Convert	video	to	a	different	image	format.

Use	this	filter	to	force	video	to	be	converted	to	a	different	image	format.
This	is	mainly	useful	for	diagnostic	purposes,	although	it	is	also	useful	in
capture	mode	to	force	a	specific	output	format.

deinterlace

Split,	unsplit,	discard,	and	duplicate	fields.

This	filter	applies	quick-and-dirty	field	operations	--	discarding	one	field	is
a	brutal,	but	quick-and-dirty	way	to	remove	combing	from	the	image.	For
better	quality	an	adaptive	deinterlacer	should	be	used	instead.	The	fold
and	unfold	modes	allow	you	to	temporarily	split	a	video	into	a	double-
width	video,	with	even	fields	on	the	left	and	odd	fields	on	the	right.	This
essentially	allows	any	filter	to	be	applied	on	a	field	basis	rather	than	a
frame	basis,	avoiding	blurring	between	fields	which	shows	up	as	ghosting
in	interlaced	output.

emboss

Apply	psuedo-3D	edge	detection	matrices.

Emboss	gives	a	3D-like	effect	by	"lighting"	the	video	from	a	particular
direction.	This	highlights	edges	in	the	image.	It	can	also	be	used	to
amplify	a	video	in	order	to	look	for	low-level	noise.

All	forms	of	the	emboss	filter	can	also	be	done	manually	by	the	general
convolution	filter.

field	bob

Resamples	alternating	frames	to	remove	jittering	when	splitting	fields
to	frames.

field	swap

Swaps	even	and	odd	fields	to	fix	mistakes.

fill

Fills	a	rectangle	in	the	video	with	a	solid	color.

If	you	need	a	translucent	(alpha-blended)	fill,	use	the	logo	filter	with	a
solid	color	as	the	logo.

flip	horizontally

Flips	video	frame	horizontally.

flip	vertically

Flips	video	frame	vertically.

general	convolution

Apply	an	arbitrary	3x3	filtering	matrix.

A	convolution	filter	is	a	filter	that	uses	a	local	area	of	pixels	to	compute	a
new	pixel.	It	can	be	thought	of	as	either	taking	a	weighted	sum	of	an	area
of	source	pixels,	or	adding	a	weighted	area	to	the	output	scaled	by	the
source	pixel	(the	two	are	equivalent).	Filters	that	can	be	performed	using
convolution	include	blurs,	sharpens,	and	edge	detectors.

The	general	convolution	filter	allows	a	3x3	filter	to	be	specified.	Each
value	in	the	filter	is	specified	as	a	value	from	a	scale	to	0-256,	where	256
means	a	value	of	1.0	(yes,	this	is	a	programmerism).	Values	can	be
specified	outside	this	somewhat,	including	negative	numbers,	although
large	values	like	10,000	are	inadvisable.	Each	value	then	specifies	either
the	amount	of	source	to	include	in	the	result,	or	the	amount	of	result	to
produce	from	the	center	source	pixel	(again,	depending	on	your
perspective).

The	clipping	option	should	almost	always	be	enabled;	if	it	is	not,	the
result	will	be	incorrect	when	the	result	of	the	filter	is	below	black	or	above
white.

Bias	is	a	value	to	add	to	the	result,	again	in	the	range	0-255.	It	is	useful
when	both	positive	and	negative	values	need	to	be	visualized,	such	as
error	values.	It	acts	much	like	a	brightness	adjustment.

Some	hints	regarding	design	of	convolution	filters:

The	sum	of	all	of	the	values	in	the	matrix	is	the	gain	of	the	filter,
which	determines	the	change	in	contrast	produced	by	the	filter.	A
sum	of	256	results	in	unity	gain,	i.e.	no	change.	Higher	sums	amplify
the	image	and	lower	sums	mute	it.	A	zero	sum	completely	removes
the	image,	and	a	negative	sum	inverts	it.
Filter	matrices	that	consist	of	all	positive	elements	are	blurs.	For
instance,	here	is	a	blur	matrix:

28	28	28

28	32	28

28	28	28

Matrices	that	aren't	symmetrical	—	those	that	are	lopsided	in	a
direction	—	will	have	edge	detection	effects.
A	bright	pixel	in	the	image	will	take	on	the	shape	of	the	filter	matrix.

grayscale

Convert	a	color	video	to	grayscale.

The	formula	used	for	conversion	is	Y	=	0.211R	+	0.715G	+	0.074B.

HSV	adjust

Adjust	hue,	saturation,	and	value.

You	can	rotate	hues,	control	the	strength	of	color	(saturation),	or	modify
brightness	(value)	using	this	filter.	HSV	adjust	does	not	allow	value
adjustments	to	affect	hue	--	if	a	pixel	becomes	too	bright	or	dark,	its
saturation	is	reduced	accordingly	to	avoid	clamping.	This	prevents
orange,	for	instance,	from	becoming	hot	yellow	when	the	image	is
amplified.

invert

Create	or	undo	negatives.

levels

Apply	non-linear	ramp	adjustments.

Levels	does	contrast,	brightness,	and	gamma	adjustments.	It	actually
consists	of	three	steps:

1.	 Scale	input	range	up	to	full	range.	The	black	level	and	white	levels
are	the	first	and	third	parameters	on	the	top;	anything	lower	than	the
black	level	becomes	black,	and	anything	above	the	white	level
becomes	white.

2.	 Apply	gamma	correction	(middle	top	parameter).	You	can	either	type
in	the	gamma	correction	power,	or	you	can	move	the	slider,	which
controls	which	level	in	the	source	image	becomes	middle	gray
(50%).	Black	and	white	always	stay	black	and	white	through	this
correction	step.

3.	 Scale	to	output	range	(bottom	parameters)	--	the	image	levels	are
finally	scaled	down	to	the	black	and	white	levels	indicated	here.

You	also	have	the	option	of	working	in	luma	(Y)	space.	This	causes
levels	to	work	in	brightness	(luma)	only,	leaving	color	information	alone.
This	preserves	hue	and	saturation	in	the	image,	except	for	possible
clipping	at	black	and	white.

Note Levels	always	works	with	full	scale	levels	--	black	and	white	are
0	and	255,	not	16	and	235	as	in	YCbCr	space.

logo

Plop	your	very	own	bug	into	the	frame.

Enable	per-pixel	blending	using	the	alpha	channel
An	image	can	be	augmented	using	an	additional	monochrome	map
called	an	alpha	channel.	This	map	contains	a	single	value	per	pixel
indicating	how	opaque	or	translucent	that	pixel	should	be;	it	allows
logos	to	be	created	that	have	shaded	areas.	Most	photographic
image	editing	packages	have	options	to	edit	an	alpha,	mask,	or
opacity	layer	on	an	image	for	this	purpose.	For	use	with	this	filter,	it
is	best	to	save	such	images	in	TARGA	(.tga)	format	with	32-bit
pixels.

Use	premultiplied	alpha
Affects	the	interpretation	of	the	alpha	channel.	Normally	alpha
channels	simply	control	blending	of	an	image,	but	when	creating	an
image	from	scratch	that	has	soft	edges,	creating	such	an	alpha
channel	may	be	difficult.	Premultiplied	alpha	refers	to	a	method	of
blending	where	the	image	itself	is	expected	to	be	pre-darkened
where	it	is	not	fully	opaque,	to	the	point	of	being	black	where	alpha
indicates	transparent	areas.	In	a	painting	package,	you	may	find	this
more	convenient	to	create,	as	you	can	simply	draw	on	top	of
"transparent	black."

Use	gray	channel	of	secondary	image	for	alpha	channel
When	it	is	inconvenient	to	create	a	single	image	with	an	alpha
channel,	enabling	this	option	will	allow	the	alpha	to	be	supplied	using
the	brightness	of	a	second	image.	This	image	should	have	the	same
size	as	the	main	logo	image,	although	it	need	not	be	of	the	same
format.

Opacity
Global	translucency	control;	0%	will	hide	the	logo,	100%	shows	the
logo	at	full	opacity,	and	intermediate	values	will	fade	it	out
somewhat.	When	per-pixel	blending	is	enabled,	this	option	will	scale

down	all	of	the	alpha	values.

Justification,	X/Y	offset
Specifies	the	position	of	the	image.	If	justification	is	something	other
than	TL	(top-left),	the	positioning	will	be	relative	to	another	point
within	the	image,	which	is	useful	for	consistently	placing	logos	in	the
bottom-right	corner	when	working	with	videos	of	different	sizes.

motion	blur

Blur	video	in	time	to	create	motion	trails.

null	transform

Does	nothing,	but	can	be	used	to	crop.

resize

Convert	video	to	a	different	size.

When	resampling	video	from	one	size	to	another,	pixels	in	the	new	frame
size	don't	necessarily	map	exactly	to	pixels	in	the	source.	A	resampling
filter	is	used	to	compute	the	intermediate	pixels	from	the	pixels	in	the
source.	VirtualDub's	resize	filter	gives	you	a	number	of	choices	for	the
resampling	filter:

Nearest	neighbor	(point	sampling)
Choose	the	nearest	source	pixel.	This	results	in	the	crispest	video,
but	has	sparkling	and	"chunkiness"	problems.	It	is	the	fastest
resampling	mode	and	is	useful	for	previews.

Bilinear	(triangle	interpolation	filter)
Compute	the	desired	pixel	by	linearly	averaging	the	closest	four
source	pixels.	This	gives	a	considerably	better	result	than	nearest
neighbor,	but	results	in	a	lot	of	blurring	and	gives	diamond-shaped
artifacts	when	enlarging.	This	is	the	resampling	mode	for	most	3D
texture	mappers	and	interpolating	video	hardware	overlays.	High-
ratio	shrink	operations	(<~60%	or	so)	will	give	aliasing	with	this
mode	and	for	those	the	precise	bilinear	mode	should	be	used
instead.

Bicubic	(cubic	spline	interpolation	filter)
Compute	the	desired	pixel	by	fitting	cubic	spline	curves	to	the	closest
16	source	pixels.	This	gives	a	sharper	result	than	the	bilinear	filter,
although	when	enlarging	it	results	in	a	slight	halo	(ringing)	around
edges.	High-ratio	shrink	operations	(<~60%	or	so)	will	give	aliasing
with	this	mode	and	for	those	the	precise	bicubic	mode	should	be
used	instead.

Precise	bilinear	(triangle	decimation	filter)
Compute	the	desired	pixel	by	applying	a	triangle	filter	to	the	closest
N	source	pixels,	where	N=4	for	enlarging	and	N>4	for	shrinking.	This

mode	is	the	same	as	bilinear	for	enlargement	but	gives	better	results
when	shrinking.

Precise	bicubic	(cubic	spline	decimation	filter)
Compute	the	desired	pixel	by	applying	a	triangle	filter	to	the	closest
N	source	pixels,	where	N=16	for	enlarging	and	N>16	for	shrinking.
This	mode	is	the	same	as	bicubic	for	enlargement	but	gives	better
results	when	shrinking.	Three	different	modes	are	given,	A=-1.0,
A=-.75,	and	A=-0.6.	These	vary	the	"stiffness"	of	the	cubic	spline	and
control	the	peaking	of	the	filter,	which	perceptually	alters	the
sharpness	of	the	output.	A=-0.6	gives	the	most	consistent	results
mathematically,	but	the	other	modes	may	produce	more	visually
pleasing	results.

Lanczos3	(three-lobed	decimation	filter)
Compute	the	desired	pixel	by	applying	a	three-lobed	sinc	filter	to	the
closest	N	source	pixels,	where	N=64	for	enlarging	and	N>64	for
shrinking.	This	produces	slightly	better	results	than	the	precise
bicubic	mode,	at	the	expense	of	slower	speed	and	more	haloing
(ringing).	However,	for	a	single	pass	the	difference	is	very	small	and
you	should	consider	using	precise	bicubic	instead.

The	resize	filter	uses	OpenGL	conventions	for	pixel	mapping,	mapping
the	entire	source	texture	onto	the	entire	destination	rect.	Areas	in	the
image	are	proportionally	enlarged	or	shrunk	with	the	picture	frame:
enlarging	the	frame	2x	results	in	all	features	in	the	image	being	twice	as
large.	This	means	that	high	enlargement	ratios	will	result	in	some
duplicated	pixels	around	the	border	of	the	destination	image	(U/V
clamping).

Note The	new	width	and	new	height	fields	do	not	have	to	be	integers
—	they	can	be	fractional.	VirtualDub	will	resize	the	video	to	that
fractional	size	and	then	extend	the	borders	to	hit	the	next	highest
integer	size	in	pixels.	The	means	that	exact	aspect	ratios	can	be
maintained	in	the	image	content	of	a	video	even	though	the
frame	size	is	slightly	off	due	to	integral	rounding.

rotate

Rotate	video	by	right	angles.

rotate2

Rotate	video	by	arbitrary	angles.

While	rotate2	can	be	used	for	right-angle	rotations,	that	job	should	be	left
to	rotate,	which	can	do	them	faster	and	more	accurately.

rotate2	is	equivalent	to	a	1:1	texture-mapped	quad,	rotated	around	the
center	point	of	the	quad	by	the	designated	angle,	with	linear	or	cubic
spline	interpolation	filters	applied	to	the	texture	mapping.

sharpen

Make	video	crisper.

Sharpen	cannot	distinguish	between	artifacts,	noise,	and	edges	--	so
sharpening	edges	with	this	filter	will	also	make	blocking	and	noise	worse.
Thus,	there	is	a	limit	to	how	much	video	can	be	improved	with
sharpening,	particularly	highly-compressed	or	noisy	video.

smoother

Adaptively	blur	a	video	while	trying	to	preserve	edges.

temporal	smoother

Adaptively	noise-reduce	video	across	frames.

A	temporal	filter	is	one	that	works	along	time	--	temporal	smoother
doesn't	compare	pixels	within	a	frame,	but	across	a	7-frame	window.	It	is
effective	at	reducing	noise,	but	for	best	effect,	it	should	be	combined	with
a	filter	that	works	within	a	frame	(spatial	filter).	Raising	the	power	of	the
filter	increases	the	amount	of	noise	reduction	but	can	also	result	in
smearing	of	details	when	motion	occurs	as	well	as	sparkling	during
transitions.	It	works	best	with	a	setting	of	3-5.

threshold

Convert	video	to	black	and	while	by	comparing	against	a	threshold.

TV

Blur	or	resample	video	in	luma/chroma	space.

Due	to	the	way	that	analog	video	encoding	works,	the	color	information	in
the	video	(chroma)	typically	has	lower	resolution	and	more	noise	than	the
brightness	information	(luma).	This	problem	is	especially	severe	with
videotape.	The	TV	filter	can	reduce	chroma	noise	by	averaging	only	the
chroma,	while	leaving	the	luma	alone.	This	can	reduce	color	flickering	in
a	video,	but	should	be	used	carefully	as	too	much	chroma	blurring	will
lead	to	bleeding.

warp	resize

Resize	video	using	an	edge-sensitive	algorithm.

Warp	resize	attempts	to	resize	video	more	intelligently	by	detecting
edges	in	the	video	and	warping	areas	to	sharpen	edges.	It	works	better
with	computer-generated	video	or	animations	than	with	natural	video.

VirtualDub	help	-	Processing:	Compression

Using	video	compression

Raw	video	is	very	large	and	consumes	a	lot	of	disk	space,	so	usually
video	compression	is	used	to	decrease	the	size	of	the	video.	To	enable
video	compression,	the	video	mode	must	be	set	to	a	mode	other	than
direct	stream	copy,	and	a	codec	must	be	chosen	in	the	Video
Compression	dialog.	This	codec	is	then	used	to	compress	the	video.

There	are	two	types	of	video	compression,	lossy	and	lossless.	Lossless
compression	means	that	the	compressed	video	is	exactly	the	same
quality	as	the	original,	whereas	lossy	compression	discards	less
important	portions	of	the	video	to	reduce	size.	The	advantage	of	lossless
compression	is	that	it	preserves	the	video	exactly;	lossy	compression
lowers	the	quality	a	bit,	but	typically	gets	much	better	compression.
Typically	a	lossless	codec	will	only	compress	video	up	to	around	3:1,
whereas	a	lossy	codec	can	get	as	much	as	100:1.

When	creating	intermediate	video,	prefer	using	either	lossless	video
compression	or	video	compression	that	is	amenable	to	editing,	i.e.	key
frame	only	and	higher	quality	over	compression	ratio.	It	is	best	to	work
with	higher	quality	video	and	wait	until	the	very	end	to	apply	the	final
video	codec	with	the	desired	compression	ratio.	For	instance,	you	might
use	720x480	video	compressed	with	DV	during	production,	and	in	the
final	pass,	reduce	to	320x240	and	encode	with	an	MPEG-4	based	codec.

Remember	that	for	anyone	to	play	the	videos	that	you	create,	they	must
have	a	video	codec	which	can	decompress	the	video.	For	instance,	if	you
use	Huffyuv	to	encode,	the	recipient	of	the	video	needs	to	have	Huffyuv
or	another	compatible	codec	installed	to	play	it.	For	this	reason,	it	is	best
to	stick	with	video	codecs	that	are	installed	on	most	systems	or	are	easily
obtained.	You	can	also	use	an	external	tool	to	encode	to	MPEG,	which	is
playable	on	most	modern	systems,	even	those	not	running	Microsoft
Windows.

If	you	have	video	hardware	installed	that	also	comes	with	a	video	codec,
videos	created	by	it	will	most	likely	not	be	playable	by	anyone	who
doesn't	have	the	same	hardware.	For	instance,	if	you	use	a	FooBar	video

card	to	capture	in	FooBar	Motion	format,	probably	only	those	who	have
FooBar	video	cards	will	be	able	to	play	it.	Occasionally,	the	hardware
vendor	will	have	a	software	decoder	available	for	download	on	their
website	that	can	be	used	to	play	the	video	on	systems	that	lack	the
hardware.

Multithreaded	video	compression

By	accessing	the	Preferences	dialog	via	Options	>	Preferences,	you	can
access	the	Threading	section.	In	the	Threading	section,	you	can	control
the	number	of	threads	used	for	video	compression.	Using	threads	for
video	compression	allows	the	compression	to	run	in	parallel	with	other
stages	of	the	pipeline,	which	can	increase	performance	with	systems	that
have	multiple	CPUs	or	CPUs	with	multiple	cores.

The	default	is	zero,	which	runs	the	video	compression	inline	with	the	rest
of	the	video	stages.	Changing	this	to	1	creates	a	separate	thread	to	run
the	video	compressor.	Values	greater	than	one	are	not	yet	supported.

Multithreaded	video	compression	with	one	thread	should	be	compatible
with	most	video	codecs,	but	if	you	have	problems,	you	may	need	to
disable	threaded	compression.	It's	also	not	always	guaranteed	that	it	is
faster	overall;	you	can	open	the	real-time	profiler	in	the	View	menu	before
starting	the	operation	to	profile	the	rendering	pipeline	and	determine	if	the
video	codec	is	actually	running	in	parallel	with	other	operations	or	if	some
other	stage	is	the	bottleneck.

Using	audio	compression

You	can	also	reduce	the	size	of	the	audio	as	well	by	using	an	audio
codec	to	apply	compression.	Use	the	Audio	Compression	dialog	to	select
an	audio	codec	and	a	compression	format.	Audio	compression	ratios
typically	vary	from	around	3:1	to	10:1.

Similar	cautions	apply	to	audio	compression	as	for	video	compression.
When	producing	final	compressed	audio,	try	to	choose	widely
decodeable	formats	where	the	audio	codecs	are	either	easy	to	get	or
often	already	installed.	Such	formats	include	adaptive	pulse-code
modulation	(ADPCM)	and	MPEG	audio	layer	III	(MP3).

Because	audio	is	much	smaller	than	video,	and	because	compressed
audio	edits	even	more	poorly	than	compressed	video,	it	is	best	to	capture
and	do	intermediate	processing	with	uncompressed	audio	(PCM).	Wait
until	the	very	last	step	to	compress	the	audio,	and	try	to	avoid
recompressing	audio	when	possible.

VirtualDub	help	-	Processing:	Rendering	and
saving	the	processed	output

Once	the	source	video	has	been	edited	as	necessary	and	appropriate
processing	parameters	set,	the	video	can	be	rendered	to	generate	the
final	result.	This	can	either	be	previewed	live	or	saved	to	a	file	on	disk.

Previewing	the	edited	result

The	File	>	Preview	output	from	start...	command	begins	rendering	the
timeline	to	the	video	display	so	that	it	can	be	previewed.	Most	video	and
audio	processing	operations	are	active	in	this	mode,	with	the	notable
exception	of	audio	and	video	compression,	which	are	disabled.	The	result
that	is	seen	in	the	output	display	pane	and	heard	from	the	system
speakers	is	thus	representative	of	the	output	of	the	video	and	audio	filter
systems,	but	may	be	of	higher	quality	than	what	would	be	stored	in
compressed	form.

Rendering	filtered	audio	and	video	in	real-time	consumes	a	lot	of	CPU
power	and	in	many	cases	VirtualDub	will	have	difficulty	attaining	full
frame	rate	given	a	complex	filter	chain.	When	this	occurs,	the	audio	may
lose	sync	and	begin	to	stutter	as	the	video	frame	rate	drops	below	real-
time,	since	all	video	frames	are	still	displayed.	The	Option	>	Drop	video
frames	when	behind	option	can	help	here	by	allowing	VirtualDub	to
process	only	a	portion	of	the	video	frames	in	order	to	maintain	real-time
performance.	This	only	affects	preview	and	does	not	remove	frames
during	any	save-to-disk	operation.	Note	that	this	may	not	be	sufficient	in
extreme	cases	where	the	audio	chain	or	the	hard	disk	is	unable	to	attain
real-time	either.

The	Sync	to	audio	option	also	affects	preview	by	changing	the	way	that
VirtualDub	synchronizes	audio	and	video	playback;	it	should	normally	be
left	on,	but	if	there	are	problems	with	audio	timing	that	prevent
synchronized	playback	from	occurring,	disabling	this	option	may	allow
preview	to	proceed.	Like	the	option	to	drop	frames,	this	option	too	only
pertains	to	previewing	and	does	not	affect	renders	to	disk.

Saving	the	processed	result	to	disk

File	>	Save	AVI...	starts	a	render	process	to	disk.	A	new	AVI	file	is	then
generated	containing	the	processed	video	and	audio.

VirtualDub	is	normally	able	to	write	AVI	files	larger	than	2GB	using	a
extension	to	the	AVI	file	format	called	the	OpenDML	hierarchical	index.
This	is	done	in	such	a	way	that	older	applications	that	do	not	understand
the	hierarchical	index	can	still	open	the	first	2GB	of	the	file.	However,
occasionally	an	application	cannot	open	such	AVI	files	at	all.	The	File	>
Save	old	format	AVI	command	disables	VirtualDub's	use	of	that
extension	so	that	only	an	original-format	AVI	is	written.	Note	that	this
format	does	not	support	AVI	files	larger	than	2GB,	so	care	must	be	taken
to	appropriately	trim	or	compress	the	video	to	fit	below	this	threshold.

If	only	the	audio	is	desired,	the	File	>	Save	WAV...	menu	option	produces
an	audio	file	on	disk	using	the	WAV	format.	All	audio	options	are	active,
except	for	the	interleaving	interval,	which	does	not	apply	since	no	video	is
being	written.	Video	is	not	processed	in	this	mode.	Note	that	audio
compression	is	active	since	WAV	files	can	either	be	compressed	or
uncompressed,	so	be	sure	to	disable	audio	compression	if	an
uncompressed	WAV	file	is	desired.

Although	VirtualDub	can	read	MPEG-1	files,	it	is	not	currently	able	to
write	them,	even	in	Direct	mode.

Analysis	passes

Some	video	filters	and	video	codecs	may	require	analysis	passes	in
order	to	effectively	filter	or	compress	video.	In	the	analysis	passes,	the
video	is	scanned	to	determine	difficult	areas	of	motion	or	other	features;
knowledge	of	the	entire	video	can	then	be	used	to	optimize	the	final
output.	This	is	known	as	multi-pass	processing.

For	various	reasons,	VirtualDub	does	not	know	that	a	multi-pass
operation	is	required	by	a	video	filter	or	codec	and	cannot	automate	the
process.	However,	the	File	>	Run	video	analysis	pass	assists	in	running
analysis	passes	by	running	the	video	pipeline	without	writing	a	dummy
file	to	disk.	The	audio	pipeline	is	disabled	as	well	for	additional	speed.

VirtualDub	help	-	Processing:	Video	artifacts

Artifacts,	or	undesirable	errors,	invariably	creep	into	video.	If	you	are
working	with	analog	video	or	with	video	compression,	some	artifacting	is
inevitable.	Knowing	different	types	of	artifacts	and	their	causes	can	help
you	determine	which	are	due	to	shortcomings	in	hardware	and	software,
deficiencies	in	your	video	process,	or	even	software	(or	hardware!)	bugs.

A	few	artifacts	and	their	causes	are	listed	below.	This	is	not	meant	to	be
an	exhaustive	list	of	artifacts	you	may	encounter,	but	it	should	cover	the
common	ones.

Quilting	(Compression	artifacts)

	

Quilting	results	from	high	levels	of	compression	on	an	image	that	cause
warbling	and	edge	artifacts	to	appear	in	the	output.	The	term	"quilting"
refers	to	the	fact	that	video	compression	is	usually	done	in	blocks	of	8x8
or	16x16	pixels,	so	if	the	compression	factor	is	set	very	high	such	that	the
blocks	don't	match	well,	the	result	looks	like	a	quilt.	The	warbles	around
sharp	edges	are	result	of	discarding	detail	from	the	image	for	higher
compression.	In	other	words,	it's	not	that	warbles	were	added,	but	that
the	detail	which	would	sharpen	the	edge	and	flatten	the	area	around	it
has	been	dropped.

Advanced	video	compression	algorithms,	particularly	those	based	on	the
MPEG-4	video	standard,	have	post-processing	filters	designed	to	reduce
these	artifacts,	which	can	give	the	video	a	smeared	and	cartoony	look
that	is	less	objectionable.

To	reduce	quilting	artifacts:

Use	more	advanced	video	compression	formats.
Compress	less	—	use	more	bitrate	and	produce	larger	video	files.
Use	multi-pass	compression	if	available,	to	better	distribute	bits	to
where	they	are	needed.

Combing	(interlacing	artifacts)

	

Analog	video	is	delivered	using	a	mechanism	known	as	interlacing	to
reduce	flicker.	Instead	of	sending	entire	frames	at	29.97	frames	per
second	(25	for	PAL/SECAM),	the	video	is	sent	in	halves	called	fields,	at
59.94	fields	per	second	(50	for	PAL/SECAM).	These	fields	are	interlaced
together	such	that	a	frame	is	composed	of	alternating	lines	from	each
field;	the	even	lines	make	up	the	even	field	and	the	odd	lines	make	up
the	odd	field.	The	result	is	high	resolution	in	static	scenes	and	smoother
motion	in	fast-moving	scenes,	with	less	flicker	and	without	requiring	more
bandwidth.

The	catch	with	interlacing	is	that	you	can't	have	both	higher	resolution
and	smoother	motion	at	the	same	time,	so	artifacts	appear	whenever	you
try	to	extract	both.	The	process	of	removing	the	interlacing	and	displaying
the	result	non-interlaced	is	known	as	deinterlacing.	Displaying	each	field
by	itself	gives	smoother	motion	at	the	cost	of	resolution	and	is	known	as
bob	deinterlacing.	Pairing	fields	up	and	displaying	them	together	as
frames	gives	higher	resolution	in	exchange	for	smeared	motion	and
combing	artifacts	and	is	called	weave	deinterlacing.	Both	produce	frames
at	field	rate	(59.94	or	50	fps).	Trying	to	switch	between	the	two	on	a	per-
frame	or	even	per-area	basis	depending	on	the	amount	of	local	motion	is
adaptive	deinterlacing	and	can	produce	an	even	higher	quality	image.

Most	video	capture	devices	do	not	attempt	to	deinterlace	and	simply	pair
fields	together,	which	is	similar	to	weave	deinterlacing	except	that	it	gives
half	the	field	rate	(29.97	or	25).	If	the	video	was	produced	originally	from
full	frames	at	that	rate,	this	has	a	50/50	chance	of	producing	whole
frames	instead	of	a	combed	mess.	There	is	no	requirement	that	this	be
the	case,	though,	and	since	the	alternating	fields	are	evenly	staggered	in

time	they	usually	aren't.	In	that	case	there	is	no	"correct"	way	to
deinterlace	the	video,	and	different	deinterlacing	techniques	must	be	tried
to	produce	the	best	quality	non-interlaced	video.

Material	derived	from	24	fps	film	is	a	special	case	in	that	the	video	is
sourced	from	whole	frames	and	split	into	fields	in	a	specific	pattern;	this
is	called	telecine.	In	NTSC,	this	is	done	by	slowing	the	video	down	very
slightly	and	combining	fields	in	a	3:2	pattern;	VirtualDub's	inverse	telecine
feature,	accessible	in	the	video	frame	rate	control	dialog,	can	sometimes
undo	this	pattern.	In	the	case	of	PAL,	the	video	is	usually	just	sped	up	by
4%	from	24	fps	to	25	fps,	so	the	most	that	is	usually	required	is	a	single-
field	delay	to	pair	up	the	fields	correctly.

Banding	(quantization	artifacts)

	

Banding	occurs	when	the	bit	depth	used	to	represent	pixels	in	an	image
is	too	low;	the	result	is	stairstepping	in	the	image	as	pixels	are	forced	to
hop	between	colors	that	are	far	enough	apart	to	distinguish	visually.	This
is	most	visible	in	large,	shallow	gradients,	which	become	bands	of	solid
color.

When	banding	is	observed,	you	should	first	check	the	display	settings	for
your	system	to	ensure	that	the	display	is	set	to	24-bit	color	or	32-bit	color,
which	will	produce	the	least	banding.	In	particular,	selecting	a	15-bit	or
16-bit	display	mode	will	introduce	banding	on	screen	that	may	not	be
present	in	the	actual	video.

Selecting	15-bit	RGB	or	16-bit	RGB	as	a	processing	format	will	introduce
noticeable	banding	into	an	image,	so	these	formats	should	generally	be
avoided.	It	is	still	possible	to	see	banding	with	YCbCr	formats	or	24/32-bit
RGB	if	the	gradient	is	very	shallow	and	over	a	large	area;	using	higher-
precision	formats	or	dithering	can	alleviate	this.	Note	that	VirtualDub
does	not	currently	support	a	format	that	has	greater	than	8	bits	of
precision	per	channel	(256	levels).

Scaling	artifacts

	

Rough	and	slightly	blocky	edges	may	be	indicative	of	a	poor	scaling
algorithm	being	used	to	resize	video.	In	particular,	use	of	a	nearest
neighbor	or	point	sampling	algorithm	can	give	a	blocky	look	to	video	due
to	the	lack	of	interpolation	("smooth"	stretching)	during	the	resize,	which
means	that	rows	and	columns	are	just	duplicated	or	deleted	instead	of
being	blended	to	modify	the	video's	size.	The	result	is	that	thin	creases
appear	in	the	image.

A	bad	resize	operation	is	difficult	to	undo	after	the	fact	if	you	no	longer
have	the	source,	but	if	you	can	redo	the	bad	operation,	try	moving	any
scaling	operations	later	in	the	process	so	they	can	be	done	using
VirtualDub's	high-quality	resize	filter,	with	a	bilinear	or	bicubic	filter.	For
instance,	if	you	are	attempting	to	capture	analog	video	at	a	480x360
resolution,	try	using	640x480	or	640x576	—	something	closer	to	the
native	resolution	—	and	then	scaling	in	post-processing.	This	will	often
take	more	CPU	power	and	storage,	however.

Rainbows	(pitch/stride	errors)

	

A	regular	slant	to	a	decoded	image	with	rainbows	across	scanlines	is
usually	indicative	of	a	buggy	video	codec	that	does	not	compute	pitch	or
stride	correctly.	The	technical	reason	for	this	is	that	padding	at	the	end	of
each	horizontal	row	is	not	being	accounted	for	correctly,	resulting	in	each
row	being	progressively	further	off.	This	isn't	that	important	to	diagnose
the	problem,	though.

The	key	to	fixing	the	problem	is	that	multiples	of	four	pixels	in	width
usually	work	around	this	bug,	because	in	that	case	the	row-end
correction	is	unnecessary.	If	attempting	to	compress	with	a	video	codec
gives	striped	results	when	using	widths	like	321,	639,	etc.	but	316,	320,
324,	636,	640,	644...	work,	then	you	are	experiencing	this	issue.

VirtualDub	help	-	Processing:	The	pipeline

VirtualDub's	processing	of	audio	and	video	during	a	render-to-disk
operation	is	split	into	several	pipeline	stages.	Some	of	these	stages	are
enabled	or	disabled	depending	on	the	current	audio/video	mode
selected.

Video	pipeline

The	video	pipeline	can	be	run	in	one	of	four	different	modes:

Direct	stream	copy:	In	this	mode,	video	frames	are	copied	directly
from	input	to	output.	No	recompression	takes	place,	and	thus	no
quality	loss	can	occur.	This	is	the	fastest	possible	mode	for	editing
video	in	VirtualDub.

Because	the	video	is	not	recompressed,	video	compression	imposes
restrictions	on	how	the	video	can	be	edited.

Fast	recompress:	Video	is	decompressed	and	then	recompressed
using	the	desired	output	codec.	VirtualDub	automatically	chooses	a
intermediate	video	format	to	use	between	the	codecs	for	quality	and
speed.

An	output	video	codec	must	be	chosen	in	this	mode.

Normal	recompress:	Video	is	decompressed	and	then	recompressed
using	the	desired	output	codec.	This	is	similar	to	Fast	Recompress
except	that	the	input	and	output	formats	can	be	chosen	in	the	Video
color	depth	dialog,	and	the	two	can	be	different,	requiring	a
conversion	in	between.

If	no	output	video	codec	is	chosen,	the	video	is	written	to	disk
uncompressed	in	the	output	format.

Full	processing	mode:	All	pipeline	stages	and	features	are	enabled.

Here's	what	the	video	pipeline	looks	like:

Direct Recompress Full
Frame	sequencing
Read	frame

Decompress	frame
Inverse	telecine

Convert	to	32-bit	RGB
Run	video	filters

Convert	to	target	format
Compress	frame

Write	video

Here's	what	the	various	stages	do:

Frame	sequencing

Video	frames	are	selected	from	sources	and	ordered.	This	is	where
any	edits	done	to	the	timeline	take	place,	along	with	the	frame	rate
options,	including	rate	adjustment,	conversion,	and	decimation.

If	Direct	mode	is	selected,	there	are	some	restrictions	as	to	how
frames	can	be	inserted	or	dropped.	Any	edits	to	the	timeline	that
violate	these	restrictions	are	adjusted	here	to	comply.

Read	frame

Video	frames	are	read	from	disk.

Decompress	frame

Compressed	video	frames	are	run	through	a	video	codec	to	produce
uncompressed	video	frames.	The	format	is	selected	in	the	Video
color	depth	dialog.

In	Fast	Recompress	mode,	the	format	is	automatically	selected
based	on	compatibility	between	the	input	and	output	video	codecs.

By	default,	any	empty	("dropped")	frames	in	the	input	are	simply
duplicated	here.	This	behavior	can	be	changed	through	the	Video	>
Preserve	empty	frames	option,	which	causes	each	empty	frame	to
be	copied	straight	to	the	output,	regardless	of	the	video	filter	chain	or
output	codec.	This	can	be	useful	if	the	video	stream	has	been
upsampled	to	a	higher	frame	rate	using	empty	frames.

Inverse	telecine

If	inverse	telecine	(3:2	pulldown	removal)	is	enabled	in	Video	frame
rate	control,	fields	are	reordered	and	the	video	stream	frame	rate	is
reduced	by	25%	at	this	point.

Convert	to	32-bit	RGB

Video	filters	in	VirtualDub	currently	only	run	in	32-bit	RGB,	so	the
video	frames	are	converted	to	32-bit	RGB	at	this	point.

Note In	previous	versions	of	VirtualDub,	enabling	full	processing
mode	would	always	force	a	conversion	to	32-bit	RGB.	This
is	no	longer	the	case	—	if	no	video	filters	are	used,	this
conversion	step	is	omitted	and	the	video	is	directly
converted	to	the	output	format	as	in	Normal	Recompress
mode.

Run	video	filters

All	video	filters	are	run	at	this	point.

Convert	to	output	format

The	video	frames	are	converted	from	their	current	format	to	the
output	format	specified	in	the	Video	color	depth	dialog.	If	the	formats
are	the	same,	no	conversion	takes	place.

Conversions	between	YCbCr	formats	are	done	directly	in	YCbCr
space	without	an	RGB	intermediate	step.	Chroma	is	subsampled	or
supersampled	as	necessary	using	bilinear	filtering.

Compress	frame

If	a	video	compression	codec	is	selected,	it	is	now	used	to	compress
the	video	frame.

Write	video

The	video	frame	is	now	written	to	disk.

Audio	pipeline

The	audio	pipeline	has	three	modes:	Direct,	Full	without	audio	filters,	and
Full	with	audio	filters.	Enabling	audio	filters	replaces	other	types	of	audio
processing	in	the	pipeline,	thus	the	parallel	path.

Direct Full
Sequencing
Read	audio

Decompress	audio
Format	conversion Filter	graph
Resampling
Volume	adjustment
Compression

Write	audio

Sequencing
Any	audio	edits	take	place	here.	These	are	basically	the	same	in
time	as	the	video	edits.

Read	audio
Source	audio	is	read	from	disk.

Decompress	audio
Audio	is	decompressed	using	an	audio	codec,	if	necessary,
producing	uncompressed	PCM	audio.	This	is	usually	in	16-bit	mono
or	16-bit	stereo	format.

Format	conversion
Precision	and	channel	changes	requested	under	audio	conversion
now	take	place,	including	switching	between	8-bit	and	16-bit
samples,	as	well	as	mixing	down	to	mono	or	cloning	channels	to
produce	stereo.

Resampling

Changes	in	sampling	rate	requested	in	the	audio	conversion	dialog
now	take	place.	If	high	quality	mode	is	off,	point	sampling	is	used,
otherwise	linear	interpolation	is	used.

If	higher	quality	resampling	is	required,	the	resample	audio	filter
should	be	used	instead,	which	uses	a	multi-tap	windowed	sinc	filter.

Volume	adjustment

If	volume	adjustment	is	enabled,	the	audio	is	now	attenuated	or
amplified	using	a	linear	multiplication	with	clamping.

Compression

The	audio	is	now	recompressed	using	the	selected	output	audio
codec.	If	no	audio	codec	is	selected,	the	audio	is	simply	written	out
using	its	current	format.

Write	audio

The	finished	audio	is	written	to	disk.

VirtualDub	help	-	Processing:	Direct	mode

VirtualDub	allows	audio	and	video	streams	to	be	processed	in	direct
mode.	In	this	mode,	data	is	simply	copied	from	input	and	output.	This	has
the	advantage	of	much	faster	rendering	and	no	quality	loss,	while	still
allowing	a	limited	amount	of	editing.

Because	of	the	way	that	audio	and	video	compression	works,	there	are
some	limitations	imposed	on	the	types	and	locations	of	edits	that	can	be
done	in	direct	mode.	However,	because	audio	and	video	modes	are
independent,	it	is	possible	to	have	only	one	pipeline	run	in	direct	mode,
and	not	incur	the	limitations	that	would	be	imposed	by	the	other.

Limitations	on	editing	compressed	video	streams

Video	compression	imposes	severe	restrictions	on	where	edits	can	occur
in	the	video	stream	in	direct	mode.	Most	compression	occurs	by
removing	redundant	data	between	adjacent	frames,	which	results	in	a
delta	frame	that	is	dependant	on	the	previous	frame	to	be	decoded
properly.	The	result	is	that	the	previous	frame	can't	be	removed	without
making	that	delta	frame	undecodable.	Frames	which	aren't	dependant	on
the	previous	frame	are	known	as	key	frames	and	serve	as	anchor	points
in	the	stream	for	seeking	and	editing	purposes.

The	rule	that	must	be	heeded	when	editing	a	direct	mode	stream	in
VirtualDub	is	that	a	portion	of	video	to	be	removed	must	end	on	a
keyframe.

Key	frames	are	denoted	by	[K]	next	to	the	timestamp	below	the	seek	bar
in	VirtualDub;	delta	frames	are	denoted	by	[]	instead.	Because
selections	in	VirtualDub	are	endpoint	exclusive	—	meaning	that	the	frame
you	end	the	selection	on	is	not	included	in	the	selection	—	you	want	to
end	the	selection	on	a	key	frame.

As	an	example,	assume	that	you	have	a	set	of	frames	like	this:

K 	 	 	 	 K 	 	 	 	 K 	 	 	 	

This	cut	is	kosher:

K 	 	 	 	 K 	 	 	 	 K 	 	 	 	

This	cut,	however,	is	not,	because	it	leaves	a	delta	frame	that	is	missing
its	predecessor:

K 	 	 	 	 K 	 	 	 	 K 	 	 	 	

When	such	a	cut	is	made,	VirtualDub	automatically	adjusts	the	cut
ranges	until	the	restrictions	of	delta	frame	compression	are	satisfied.
Thus,	the	above	cut	would	actually	give	the	following:

K 	 	 	 	 K 	 	 	 	 K 	 	 	 	

The	rules	for	such	automatic	corrections:

VirtualDub	will	not	let	you	write	a	video	stream	with	dangling	delta
frames.
Frames	are	always	added	back	in,	but	never	removed,	duplicated	or
reordered.

Thus,	if	you	make	a	mistake,	you	can	always	load	in	the	edited	file	and
re-edit	in	direct	mode,	making	a	larger	cut	that	satisfies	the	rules.

The	same	restrictions	apply	to	masking	frames	as	to	deleting	frames;	if
an	unmasked	delta	frame	exists	after	a	masked	frame,	the	masked	frame
will	be	converted	to	unmasked	before	the	operation	begins.

A	null	frame	or	drop	frame,	which	is	a	zero-byte	frame	that	simply
duplicates	the	previous	frame,	has	special	handling	in	VirtualDub's
pipeline.	These	are	denoted	by	[D]	next	to	the	timestamp	indicator	and
are	occasionally	produced	during	video	capture.	Such	frames	are
dependant	upon	the	previous	frame,	but	can	still	be	removed	without
affecting	decoding.	Note	that	these	frames	occupy	time	in	the	stream,
however,	and	so	deleting	them	will	remove	the	corresponding	audio
segment	as	well.

It	is	sometimes	possible	to	bypass	the	restrictions	on	cut	positions	by
using	smart	rendering.

Video	frame	decimation/conversion	in	direct	mode

The	frame	rate	decimation	and	conversion	modes	resample	a	video
stream	by	inserting	or	removing	frames.	This	essentially	involves	micro-
editing	of	the	stream	at	the	frame	level	and	suffers	from	similar	limitations
with	compressed	streams.	Here	are	the	frame	rate	limitations	when	using
direct	mode:

Frame	rate	adjustment	simply	tweaks	the	frame	rate	of	the	video
stream	and	can	be	used	without	limitation.
Conversion	to	a	higher	rate	works	by	inserting	zero-byte	null	frames
into	the	output	stream,	and	can	also	be	used	without	limitation.	(This
means	you	can	convert	a	30fps	stream	to	120fps	with	no	loss	and
with	almost	no	size	increase.)
Conversion	to	a	lower	rate	has	to	delete	frames,	but	suffers	from	the
limitation	on	dependant	frame	removal.	If	used	on	a	compressed
stream,	the	option	is	only	able	to	remove	frames	immediately	before
a	key	frame,	which	means	that	sequences	of	delta	frames	are	longer
than	a	few	frames,	the	video	will	stutter	and	audio	sync	will	be
affected.	Conversion	to	a	lower	rate	is	thus	only	usable	with	a	stream
that	has	few	or	no	delta	frames.
Decimation	is	equivalent	to	conversion	to	a	1/N	frame	rate	and	has
the	same	issues.

As	with	edits,	null	frames	also	receive	special	treatment	here,	so	if	a
video	has	been	upsampled	from	30fps	to	120fps	by	inserting	null	frames,
conversion	can	be	used	to	discard	the	null	frames	and	drop	the	stream
back	to	30fps.

Video	streams	that	are	direct-mode	friendly

A	video	stream	using	a	format	that	only	uses	key	frames	imposes	no
limitations	on	the	location	of	cuts	in	direct	mode.	Such	formats	include:

Any	uncompresed	RGB	or	paletted	format
Any	uncompressed	YCbCr	format	(UYVY,	YUY2,	YV12,	I420,	etc.)
Video	compression	that	only	uses	key	frames,	such	as	Huffyuv,
Motion	JPEG,	or	DV.

These	formats	are	thus	very	friendly	to	direct-mode	editing	and	are	good
choices	for	capture	or	intermediate	video	files.

Limitations	on	direct-mode	imposed	by	source	format

MPEG-1	video	streams	cannot	be	copied	in	direct	mode,	because
MPEG-1	video	compression	is	incompatible	with	the	AVI	file	format.	Also,
MPEG-1	audio	streams	are	always	decompressed	to	raw	PCM
regardless	of	the	audio	mode	setting.

DV	files	that	use	interleaved	storage	(type-1	DV	AVI)	may	have	their
audio	streams	slightly	modified	when	processing	the	audio	stream	in
direct	mode,	because	VirtualDub	has	to	resample	the	audio	stream	in
some	cases	to	force	a	consistent	audio	sample	rate.	This	is	not	a
problem	for	AVIs	that	have	the	DV	data	split	into	traditional	audio	and
video	streams	(type-2).

Limitations	on	editing	imposed	by	audio	compression

Audio	compression	works	by	processing	blocks	of	audio	as	individual
units.	In	direct	mode,	VirtualDub	copies	these	blocks	as	atomic	units,	so
the	length	of	time	corresponding	to	the	block	sets	the	minimum
granularity	for	edits,	and	thus	the	accuracy	of	edits	that	can	be
performed.[1]

For	some	formats	that	simply	translate	samples	1:1,	such	as	A-law	and
μ-law,	the	block	size	is	one	sample	and	no	restrictions	are	necessary.
Other	formats,	such	as	ADPCM,	can	have	a	block	size	as	large	as	2048
samples	(0.18s	at	11KHz).	The	audio	compression	dialog	indicates	the
block	size	for	each	selectable	format.

VirtualDub	does	not	attempt	to	adjust	edits	to	match	audio	granularity
because	the	audio	block	size	rarely	corresponds	to	an	integral	number	of
video	frames	in	time,	which	would	require	fractional	edits.	The	difference
between	the	ideal	cut	point	and	the	cut	point	imposed	by	audio
compression	appears	as	sync	error	and	thus	editing	a	compressed	audio
stream	should	be	avoided	if	possible.

Some	compressed	formats,	particularly	MPEG	audio	layer	III,	have
additional	decoding	restrictions	that	are	not	described	adequately	in	the
audio	format	structure,	such	as	dependencies	on	previous	frames,	or
even	specify	a	block	size	that	is	blatantly	false	(namely,	one	byte).
Because	VirtualDub	is	not	able	to	detect	or	correct	for	such	limitations,
editing	streams	in	such	formats	can	result	in	audible	decoding	errors	due
to	block	fragments	at	the	cut	point	and	is	not	recommended.

[1]	The	size	of	the	block	is	set,	in	bytes,	by	the	nBlockAlign	field	in	the	WAVEFORMATEX	structure	that
describes	the	audio	format.

VirtualDub	help	-	Processing:	Smart	rendering

What	smart	rendering	does

Smart	rendering	attempts	to	identify	which	portions	of	a	video	stream
must	be	re-encoded	and	which	can	be	copied	verbatim	from	the	source
file.	This	can	save	a	lot	of	time,	as	typically	only	the	regions	around	an
edit	must	be	re-encoded.	It	also	preserves	the	quality	of	most	of	the	non-
edited	video.

As	an	example,	take	this	edit:

K 	 	 	 	 K 	 	 	 	 K 	 	 	 	 K 	 	 	 	

The	red	frames	indicate	frames	which	are	meant	to	be	kept,	but	cannot
be	preserved	in	their	original	form	because	their	dependencies	have
been	removed.	Without	the	prior	frames,	it	is	not	possible	to	decode
those	dangling	frames	before	the	next	key	frame.	Ordinarily	when	direct
stream	copy	mode	is	used,	VirtualDub	would	add	the	previous	two
frames	back	into	the	output	file	to	satisfy	video	compression	restrictions.

Smart	rendering	re-encodes	the	affected	frames	instead.	The	result	is
that,	in	exchange	for	a	little	degredation	in	those	three	frames,	the	edit
occurs	in	the	exact	desired	location	and	the	rest	of	the	frames	are	left
intact.

Requirements	for	smart	rendering

To	use	smart	rendering,	the	following	are	required:

The	video	must	be	compressed.
A	video	codec	must	be	installed	which	can	produce	the	same	format
as	the	source.	Note	that	some	video	codecs	can	decode	more
formats	than	they	can	encode,	which	means	you	may	be	able	to
open	a	video	file	using	a	codec,	and	encode	with	that	codec,	but	not
encode	to	the	same	format	as	the	source.
Inverse	telecine	must	be	disabled.

In	addition,	the	video	codec	must	be	configured	to	match	the	source.
There	are	often	parameters	in	the	video	codec's	configuration	dialog	that
VirtualDub	cannot	programmatically	access,	and	which	may	affect	the
encoding	in	incompatible	ways.	When	in	doubt,	try	to	match	the	source;
this	includes	parameters	such	as	B-frame	encoding,	packed	bitstream,
and	color	space.	For	instance,	with	Huffyuv,	the	prediction	mode	must
match.

If	the	video	codec	in	use	has	an	option	for	multi-pass	rendering,	it	must
be	disabled	for	smart	rendering.

Filtering	video	while	smart	rendering

In	order	to	use	video	filters	while	smart	rendering	is	active,	all	video	filters
must	be	appropriately	scoped	using	opacity	curves.	Any	frames	for	which
any	filters	have	an	opacity	above	zero	will	be	forced	to	re-render.

Any	video	filter	instance	which	does	not	have	an	opacity	curve	attached
will	force	all	frames	to	render,	since	it	must	process	all	frames.	Since
filters	which	change	the	frame	size	cannot	have	opacity	curves	attached,
any	size-changing	in	the	filter	list	will	defeat	smart	rendering.

Caveats	of	smart	rendering

Not	all	video	codecs	will	work	with	smart	rendering,	even	if	they	normally
work	for	regular	encoding.	If	you	can	encode	two	videos	with	the	same
video	codec,	join	them	together,	and	play	back	the	result,	then	smart
rendering	is	more	likely	to	work.	This	is	usually	not	a	problem	with	video
compression	algorithms	that	do	not	use	delta	frames;	Motion	JPEG,	for
instance,	should	work	without	problems.

Quality	at	the	join	point	may	be	an	issue.	The	video	codec	is	not	aware
that	VirtualDub	is	using	it	to	smart-render	transitions,	so	it	may	not	be
able	to	match	quality	very	well	with	the	frames	that	are	copied.	This	is
especially	an	issue	with	short	runs,	since	the	codec	may	require	a	few
frames	to	"ramp	up"	in	bitrate.	If	this	occurs,	consider	increasing	bitrate
when	using	smart	rendering.

Technical	details

When	smart	rendering	is	active,	VirtualDub	tries	to	copy	all	the	frames
verbatim;	whenever	it	detects	a	violation	in	frame	dependencies,	it	drops
to	recompressing	frames,	and	continues	to	do	so	until	the	next	key	frame,
at	which	direct	copying	resumes.	The	recompression	of	the	necessary
segments	is	done	by	"hot-starting"	the	video	codec	for	each	segment;
from	the	video	codec's	standpoint,	each	range	to	be	recompressed	is	a
separate	video.	The	copied	and	re-encoded	sections	are	then	seamlessly
joined	during	the	output	process.

VirtualDub	help	-	Processing:	Display	panes

The	display	panes	are	the	rectangular	displays	in	which	the	input	and
output	video	are	shown	when	scrubbing	over	the	timeline,	previewing	the
output,	or	rendering	to	disk.

Adjusting	the	display	panes

Right-click	on	a	display	pane	to	bring	up	a	context	menu.

This	menu	allows	the	adjustment	of	the	size,	aspect	ratio,	and	filtering
mode	of	each	display	pane.	All	of	these	settings	are	purely	for	display
purposes	—	none	have	any	effect	on	the	video	written	to	disk.	This
means	that	a	video	pane	can	be	stretched	2:1	vertically	to	display	a	field-
split	video	at	the	correct	aspect	ratio	without	ill	effects.

The	size	and	aspect	ratio	can	also	be	adjusted	by	dragging	the	bottom
and	right	borders	of	the	display	pane.	If	the	aspect	ratio	is	anything	other
than	free	adjust,	the	pane	dimensions	are	constrained	to	that	aspect	ratio
during	resizing;	otherwise,	both	aspect	ratio	and	size	are	adjusted	during
the	drag.

Reset	to	exact	size	sets	the	size	and	aspect	ratio	of	the	display	pane	so
that	each	pixel	in	the	display	pane	corresponds	to	exactly	one	pixel	in	the
video.

Preferred	filter	allows	different	stretch	filters	to	be	selected	for	aesthetic
and	performance	reasons.	Point	makes	it	easiest	to	spot	individual	pixels;
bicubic	is	generally	the	filter	with	the	highest	perceptual	quality.	The
default	display	mode	does	not	expose	this	option;	one	of	the	3D	display
drivers	must	be	enabled	in	Options	>	Preferences	>	Display.	Enabling	the

OpenGL	driver	allows	selection	between	point	and	bilinear,	while	the
Direct3D9	driver	also	allows	selection	of	bicubic	if	the	3D	video	hardware
is	powerful	enough.

Display	pane	placement	and	enable/disable

By	default,	the	input	(source)	pane	is	on	the	left,	while	the	output	(filtered)
pane	is	on	the	right.	This	ordering	can	be	swapped	through	the	Options	>
Swap	input/output	panes	menu	option.	A	vertical	formation	can	be	used
in	place	of	the	horizontal	one	by	enabling	Options	>	Vertical	display.

The	Options	>	Display	input	video	and	Options	>	Display	output	video
menu	commands	temporarily	disable	updating	of	either	of	the	display
panes,	which	can	be	advantageous	for	performance.	In	particular,	if	the
video	filter	chain	contains	filters	which	are	expensive	to	run,	disabling	the
output	pane	can	significantly	speed	up	navigation	through	the	timeline.

Auto-fallback	and	auto-sparse

Whenever	VirtualDub	loses	focus	to	another	application,	it	automatically
disables	accelerated	preview	for	its	display	panes,	falling	back	to
Windows	GDI	for	video	display,	in	order	to	release	system	resources.
This	results	in	a	blockier	display	if	VirtualDub	needs	to	redraw	itself.	Also,
display	updates	are	slower	when	GDI	is	in	use,	although	this	is	not
ordinarily	a	problem	unless	a	preview	is	running.

During	a	render-to-disk	operation,	VirtualDub	intentionally	sparses
display	updates	so	that	they	do	not	occur	faster	than	once	per	processed
frame,	or	every	half	second,	whichever	is	less	frequent.	This	keeps	the
display	updates	from	consuming	a	significant	amount	of	CPU	power.	As	a
result,	unless	the	video	frame	is	very	large	and	the	processing	rate
relatively	low,	it	does	not	usually	make	much	difference	in	render	times
whether	the	panes	are	enabled	or	not.

Interlaced	display

Selecting	a	field	mode	from	Options	>	Preview	field	mode	in	the	menu
switches	the	display	mode	for	preview	from	frames	to	fields.	This	causes
each	frame	to	be	updated	twice	on	screen,	one	field	at	a	time,	at	twice
the	frame	rate.	Displaying	a	field	at	a	time	more	closely	mimics	the	way
that	analog	video	is	actually	displayed	and	delivers	smoother	motion	for
video	that	was	originally	delivered	in	analog	format.

Field	order	A	causes	the	top	field	(even	scanlines)	to	be	displayed	first.
Field	order	B	displays	the	bottom	field	(odd	scanlines)	to	be	displayed
first.	It	is	more	common	for	capture	devices	to	use	field	order	B.	Also,	fo
interlaced	display	to	be	effective,	the	video	must	be	captured	at	full	frame
rate;	capturing	at	less	than	full	frame	rate	will	result	in	an	uneven
sampling	of	fields	in	time.

No	adaptive	deinterlacing	is	attempted	during	interlaced	display,	so	a	thin
comb	of	scanlines	will	be	visible	in	scenes	with	fast	motion.	Also,	each
field	is	scaled	independently,	so	some	artifacts	will	be	seen	when
stretching	the	display	panes	vertically,	and	bilinear	filtering	will	not	be
effective	along	that	axis.

Tearing

During	times	of	smooth	motion,	it	may	be	possible	to	see	a	momentary
rip	in	the	video,	where	the	top	and	bottom	portions	of	the	video	do	not
update	together.	This	happens	when	VirtualDub	attempts	to	update	the
displayed	frame	while	the	screen	itself	is	updating	that	portion,	and	is
known	as	tearing.	This	effect	is	purely	a	display	effect	and	does	not	imply
a	problem	with	the	source	video	or	any	rendered	output.	It	also	only
happens	on	video	that	is	moving	or	changing;	it	is	not	visible	on	a	static
frame.

Tearing	can	be	mitigated	or	avoided	under	Options	>	Preferences	>
Displays	>	Avoid	tearing	(enable	vsync).	This	will	cause	VirtualDub	to
schedule	display	updates	to	be	non-visible	if	possible.	However,	it	only
works	with	the	DirectX	(DirectDraw)	and	Direct3D	display	minidrivers,
and	can	consume	additional	CPU	when	enabled.	The	anti-tearing	code	is
automatically	disabled	during	video	capture	and	during	renders	to	avoid
consuming	CPU	during	these	lengthy	operations.

VirtualDub	help	-	Processing:	Audio	display

The	audio	display	in	VirtualDub	displays	a	visualization	of	the	audio	track
for	spotting	errant	sounds	and	good	editing	points.

Note Currently,	compressed	audio	streams	cannot	be	displayed	—
only	uncompressed	(PCM)	audio	can	be	shown.	An	error	will	be
displayed	if	the	display	is	opened	with	a	compressed	audio
stream.

Opening	the	audio	display

Select	View	>	Audio	Display	from	the	menu	to	open	the	audio	display.	By
default,	the	display	opens	in	waveform	mode,	showing	the	sound	wave
from	the	audio	track.

A	waveform	is	shown	for	each	channel	in	the	audio	track.	The	red	line
indicates	the	speaker	position	for	each	channel	over	time;	it	oscillates
back	and	forth	across	the	green	centerline	for	normal	sound,	and	a
steady	line	that	doesn't	oscillate	indicates	quiet.	The	frame	numbers	are
displayed	at	the	bottom,	and	the	gray	lines	next	to	them	indicate	the	start
of	the	video	frame	in	time.	The	area	highlighted	in	dark	blue	corresponds
to	the	time	during	which	the	video	frame	is	displayed.

The	horizontal	time	scale	can	be	changed	by	right-clicking	on	the	display
and	selecting	the	Zoom	in	or	Zoom	out	option	from	the	resulting	context
menu.	Zoom	in	to	see	the	waveform	in	greater	time	resolution,	and	zoom
out	to	see	more	of	the	waveform	over	time	in	the	display.

Spectrogram	mode

Right-click	on	the	audio	display	to	access	the	context	menu,	and	you	can
switch	the	audio	display	to	spectrogram	mode.	Although	spectogram
mode	is	slower	to	update	than	waveform	mode,	it	is	generally	a	more
useful	way	to	visualize	a	sound	track.

Spectrogram	mode	is	different	from	waveform	mode	in	that	it	shows
frequency	over	time	instead	of	amplitude.	The	frequency	scale	is	shown
on	the	left	side,	and	the	graph	indicates	the	intensity	of	sound	at	each
frequency.	The	higher	the	mark,	the	higher	the	frequency,	and	the
brighter	the	mark,	the	louder	the	sound.

Keep	in	mind	that	a	sound	rarely	shows	up	as	a	single,	sharp	blip	—	in
practice,	you	will	see	a	set	of	lines	moving	in	parallel	due	to	the
harmonics	of	the	sound,	and	for	noise-like	sounds,	the	image	will	show
static.	Constant	horizontal	lines	indicate	pure	tones;	if	you	see	one	low	in
the	graph,	it	may	be	50Hz	or	60Hz	power	line	hum	leaking	into	the	audio
signal,	indicating	a	possible	grounding	problem	in	your	audio	setup	(a
common	problem).

If	the	sound	track	is	low	in	volume,	the	graph	may	be	somewhat	dim	and
difficult	to	see.	The	Spectral	Boost	option	in	the	right-click	context	menu
allows	the	signal	to	be	amplified,	increasing	the	brightness	of	the	graph.

Selecting	frames

You	can	select	video	frames	in	the	audio	display	by	clicking	with	the	left
mouse	button,	similarly	to	how	you	can	select	a	range	by	using	the	mark-
in/out	buttons	on	the	position	control.

Hold	down	the	Shift	key	and	drag	with	the	left	mouse	button	to	set
the	selection.
The	selection	is	displayed	in	light	blue	at	the	bottom	of	the	display.
To	avoid	clicks	and	pops	when	editing,	choose	endpoints	where	the
sound	is	quietest.	It	is	usually	best	to	get	as	close	as	possible	to	a
zero	crossing	where	the	waveform	crosses	the	centerline.	This	is
often	difficult	with	multiple	channels	and	only	being	able	to	cut	on
frame	boundaries,	but	fortunately,	you	don't	need	a	perfect	cut	for
the	jump	to	be	inaudible.

Shifting	audio

You	can	also	shift	the	audio	track	back	and	forth	from	the	audio	display	to
fix	audio	sync	errors.

Identify	a	portion	of	the	video	clip	where	both	the	video	frame	and
the	audio	waveform/spectrogram	are	distinctive.
Hold	down	the	Control	key	and	click	with	the	left	mouse	button	on	a
portion	of	audio.
Drag	horizontally	to	when	the	audio	should	play.
The	audio	display	will	now	update	with	the	new	offset.

This	changes	the	same	setting	as	the	audio	displacement	field	of	the
Audio	interleaving	dialog.

VirtualDub	help	-	Processing:	Frameserver

The	frameserver	feature	allows	other	programs	to	pull	video	directly	from
VirtualDub's	rendering	pipeline.	This	allows	video	to	be	filtered	through
VirtualDub	and	then	processed	by	another	application	without	the	need	to
write	an	intermediate	file	to	disk.

Starting	the	frameserver

The	frameserver	is	built	into	VirtualDub	and	is	accessible	through	the	File
>	Start	frameserver	menu	command.	This	command	starts	a	frameserver
in	the	system	with	the	currently	loaded	video	and	filtering	settings.	After
the	frameserver	is	started,	other	applications	can	connect	to	it.

Not	all	features	in	VirtualDub	work	while	the	frameserver	is	active.	The
following	processing	features	do	work:

Most	video	filters.
Video	frame	rate	adjustment.
Video	frame	rate	conversion.
Range	selection	and	the	edit	list.

The	following	features	are	disabled	when	the	frameserver	is	active:

Video	filters	that	have	a	lag	—	most	notably	the	temporal	smoother.
The	filter	will	function,	but	there	will	be	a	delay	in	the	video.
Video	compression.
Inverse	telecine	(3:2	pulldown	removal).
Audio	compression.
Audio	filters.
Audio	conversion.
Audio	volume	adjustment.
Audio	interleaving	(most	are	not	applicable).

Video	is	always	sent	from	the	frameserver	in	24-bit	RGB	format	for
maximum	compatibility.

When	the	frameserver	is	started,	VirtualDub	will	ask	you	for	a	name	to
use	for	the	new	frameserver,	as	well	as	to	save	a	signpost	file.	The	name
is	used	to	distinguish	frameservers	on	the	system;	the	signpost	file	tells
the	client	driver	which	frameserver	to	connect	to.	The	signpost	file,	which
normally	uses	the	.vdr	filename	extension,	is	used	as	input	to	the	client
application	and	contains	the	frameserver	name.

Note Although	the	frameserver	name	contains	the	name	of	the
computer,	connections	across	the	network	are	not	currently
supported.

Connecting	a	client	application	through	the	AVIFile	driver

The	best	way	to	connect	a	client	to	VirtualDub's	frameserver	is	through
the	AVIFile	driver.	AVIFile	is	a	older	programming	API	in	Windows	that
allows	programs	to	extract	audio	and	video	from	media	files,	such	as	AVI.
As	it	is	extensible,	VirtualDub	ships	with	an	AVIFile	driver	that	extends
such	programs	to	read	their	data	directly	from	the	frameserver	rather
than	from	a	file	on	disk.

Note It	can	often	be	difficult	or	impossible	to	tell	whether	an	application
uses	the	AVIFile	APIs	to	read	media	files,	and	is	thus	compatible
with	this	connection	method;	often	the	only	way	to	tell	is	to	try.
However,	this	method	is	very	similar	to	the	connection	method
used	by	the	Avisynth	scriptable	video	processor,	so	applications
which	are	Avisynth	compatible	will	usually	work	with	VirtualDub's
frameserver	as	well.

To	install	the	frameserver,	use	the	auxsetup	program	that	comes	with
VirtualDub.	This	will	copy	the	driver	to	Windows'	system	folder	and	add
entries	to	the	Windows	Registry	to	enable	its	use	in	AVIFile.	This	tool	can
also	be	used	to	remove	the	driver.	On	Windows	NT/2000/XP,	you	must
be	running	as	a	local	administrator	to	install	or	uninstall	the	AVIFile	driver.

Once	the	AVIFile	driver	is	installed,	AVIFile-based	applications	should	be
able	to	connect	to	the	frameserver	simply	by	opening	the	.vdr	file	that
was	created	when	the	frameserver	was	started.	VirtualDub	is	itself
capable	of	doing	this,	so	opening	a	second	instance	is	a	way	to	test	the
frameserver	connection.

After	an	application	is	connected	and	has	started	pulling	audio	and	video
data,	the	activity	totals	on	the	frameserver	dialog	will	increment	as	data	is
transferred.

Installing	the	AVIFile	driver	in	proxy	mode

Some	applications	use	the	AVIFile	API	are	still	not	able	to	use	the
frameserver	because	they	require	the	.avi	filename	extension	or
otherwise	prevent	non-AVI	drivers	from	being	used.	In	this	case,	enabling
a	special	mode	of	the	VirtualDub	AVIFile	driver	called	proxy	mode	can
help.	To	do	this,	install	the	proxyon.reg	file	that	comes	with	VirtualDub;
this	adds	additional	entries	in	the	Windows	Registry	to	remap	the	AVI
entry	as	well.	Use	the	proxyoff.reg	file	to	undo	this.

Note Proxy	mode	works	by	forcing	all	AVI	files	through	VirtualDub's
driver,	which	then	attempts	to	proxy	through	all	real	AVI	files	to
the	regular	Windows	driver.	Although	attempts	have	been	made
to	ensure	this	is	as	compatible	as	possible,	there	may
occasionally	be	applications	that	do	not	work	properly	when
proxy	mode	is	enabled.	It	is	recommended	that	proxy	mode	be
enabled	only	when	required	to	use	the	frameserver,	and	disabled
in	all	other	cases.

Once	proxy	mode	has	been	enabled,	renaming	the	.vdr	signpost	file	to
use	the	.avi	filename	extension	will	allow	additional	applications	to
function.

As	an	additional	bonus,	when	proxy	mode	is	enabled,	the	AVIFile	driver
will	tunnel	through	any	file	that	begins	with	the	nine	characters	#avisynth
through	to	the	Avisynth	scriptable	video	processing	tool.	The	additional
compatibility	unlocked	by	proxy	mode	is	thus	also	extended	to	Avisynth.

Installing	and	using	the	64-bit	frameserver	and	frameclient

Use	of	the	frameserver	and	frameclient	with	64-bit	programs,	including
the	64-bit	version	of	VirtualDub,	requires	special	procedures.

The	32-bit	version	of	VirtualDub,	and	the	32-bit	frameserver/frameclient
libraries,	will	work	without	modification	under	Windows	x64	Edition.
However,	frameserving	with	64-bit	programs	involved	requires	the	64-bit
versions	of	the	frameserver/frameclient	libraries	to	be	installed.	Doing	this
currently	requires	manual	steps:

Copy	vdsvrlnk64.dll	and	vdremote64.dll	to	the	Windows\System32
folder.
Install	the	frameserver64.reg	patch	into	the	Registry.

Once	this	is	done,	the	64-bit	programs	can	interact	with	the	frameserver
system.	This	includes	crossing	data	between	32-bit	and	64-bit
applications.	In	addition	to	frameserving	between	64-bit	applications,	it	is
also	possible	to	frameserve	from	64-bit	VirtualDub	to	a	32-bit	application,
as	well	as	from	32-bit	VirtualDub	to	a	64-bit	application.

VirtualDub	help	-	Processing:	External	encoder
support

External	encoder	support	allows	VirtualDub	to	interface	to	encoding
programs	that	don't	support	a	full-fledged	encoding	API,	but	instead	use
a	simple	pipe	interface	called	stdin.

Requirements

The	external	encoding	mode	uses	three	types	of	applications:

Video	encoders
Audio	encoders
Multiplexers

Video	encoders	and	audio	encoders	take	video	and	audio	streams	and
compress	them,	respectively.	The	multiplexer	then	takes	the	output	files
from	the	encoders	and	combines	them	to	form	a	single	combined
audio/video	file.	For	AVI	files,	VirtualDub	uses	codecs	installed	in
Windows	to	do	the	encoding,	and	then	handles	the	multiplexing
internally;	these	are	all	separate	programs	when	using	external	encoding.

Operation

Rendering	through	a	set	of	external	encoders	works	similarly	to	a	normal
render	operation.	During	the	main	portion	of	the	render,	both	the	video
and	audio	encoders	are	active	in	parallel,	so	they	can	benefit	from
multiple	CPU	cores	in	the	system.	For	instance,	the	video	encoder	could
use	two	cores,	and	the	audio	encoder	could	use	another	cores.	This	is	in
addition	to	the	threading	done	within	VirtualDub	itself,	so	audio/video
decompression	and	filtering	can	use	even	more	cores	to	make	the	most
use	of	multi-core	systems.

Configuring	an	external	encoder	set

An	external	encoder	set	is	a	collection	of	external	encoders	that	can	be
used	to	render	a	video.	An	external	encoder	set	includes	one	or	more	of:

Video	encoder
Audio	encoder
Multiplexer

All	three	of	these	are	chosen	from	encoder	profiles	to	allow	encoder
settings	to	be	reused.	For	instance,	the	same	multiplexer	settings	could
be	reused	whenever	an	AVI	or	MPEG-4	file	is	being	produced,	even	if	the
encoders	use	different	settings.

Options

File	description:	The	name	of	the	output	format,	as	shown	in	the	file
dialog	UI.	This	is	used	as	descriptive	text	for	the	file	format	produced
by	the	encoding	set.
File	extension:	The	default	filename	extension	to	use	in	the	file
dialog	UI.	The	leading	period	is	optional	but	not	necessary.
Process	partial	output	when	render	is	aborted:	Causes	the
multiplexer	is	run	at	the	end	of	a	process	even	if	an	error	occurs
during	encoding	or	the	Abort	button	is	pressed.
Replace	temp	audio/video	paths	with	output	path:	If	set,	then	the
temporary	output	path	setting	for	the	audio	or	video	encoder	is
ignored,	and	the	primary	output	path	is	substituted	instead.	Use	this
setting	if	the	encoder	set	only	includes	an	audio	or	video	encoder	to
have	the	encoder	write	directly	to	the	output	path.

Configuring	an	external	encoder

In	order	to	use	an	encoding	program,	an	encoder	profile	has	to	be
created	for	it.	The	encoder	profile	tells	VirtualDub	how	to	run	the	encoder.

Command-line	tokens

The	command	line	specifies	the	location	of	the	encoder	program	and	the
arguments	passed	to	it	from	VirtualDub.	Tokens	are	special	strings
placed	in	the	command	line	to	specify	that	values	from	the	encoding
process	should	be	passed	to	the	encoder.	All	tokens	are	of	the	form	%
(name).	The	available	tokens	are:

%(width):	The	width	of	a	video	frame,	in	pixels.
%(height):	The	height	of	a	video	frame,	in	pixels.
%(fps):	The	frame	rate	of	the	video	stream,	as	a	real	number.	This
number	includes	the	fractional	portion,	i.e.	29.97.	The	decimal
separator	is	always	a	period	regardless	of	locale.
%(fpsnum):	The	numerator	of	the	video	stream	frame	rate,	when
represented	as	a	fraction,	in	decimal.	The	valid	range	is	1-
4294967295.
%(fpsden):	The	denominator	of	the	video	stream	frame	rate,	when
represented	as	a	fraction.	The	valid	range	is	1-4294967295.
%(outputname):	The	filename	and	extension	of	the	final	output	file.
This	does	not	include	the	drive	specifier	or	directory.
%(outputfile):	The	path	to	the	final	output	file,	including	possible
drive	specifiers	and	directories.
%(tempvideofile):	The	path	and	filename	of	a	temporary	file
produced	by	the	video	encoder.	This	file	does	not	exist	unless
produced	by	the	video	encoder;	it	is	used	as	a	temporary	file	to	hold
compressed	video	data	that	is	eventually	processed	by	the
multiplexer.
%(tempaudiofile):	Same	as	%(tempvideofile),	but	for	the	audio
encoder.
%(samplingrate):	The	sampling	rate	of	the	audio	stream,	in	Hz.	For
compressed	streams,	this	refers	to	the	decoded	sampling	rate,	e.g.

48000	Hz.	The	sampling	rate	is	always	an	integer.
%(samplingratekhz):	The	sampling	rate	of	the	audio	stream,	in
KHz.	This	value	is	always	an	integer;	any	fractional	values	are
rounded.
%(channels):	The	number	of	channels	in	the	audio	stream:	1	for
mono,	2	for	stereo,	6	for	5.1.
%(audioprecision):	The	number	of	bits	per	sample	in	the	audio
stream,	e.g.	8	or	16.
%(hostdir):	The	path	to	the	VirtualDub	program	directory.	The	path
does	not	end	in	a	slash.
%(programdir):	The	path	to	the	encoder	program	directory.	The
path	does	not	end	in	a	slash.
%(systemdir):	The	path	to	the	Windows	system	directory.	In	64-bit
versions	of	Windows,	this	refers	to	the	system32	directory	for	32-bit
versions	of	VirtualDub,	and	the	SysWOW64	directory	for	64-bit
versions.	The	path	does	not	end	in	a	slash.

Options

Interpret	non-zero	return	code	as	error:	This	option	causes
VirtualDub	to	abort	the	rendering	operation	and	report	a	failed	render
if	an	encoder	or	multiplexer	program	exits	with	a	non-zero	return
value.	This	option	should	be	enabled	by	default,	and	disabled	only	if
the	program	does	not	follow	standard	return	code	conventions.	The
downside	of	disabling	this	option	is	that	failed	encodes	will	not	be
detected	properly.
Redirect	standard	output	to	log:	Traps	any	output	from	the
program	to	the	standard	output	(stdout)	channel	and	puts	it	into	the
log.	This	is	useful	for	diagnostic	purposes.	Normally	this	should	be
enabled	unless	the	program	only	outputs	non-useful	information	to
standard	output,	such	as	a	startup	banner.
Redirect	standard	error	to	log:	Traps	any	output	from	the	program
to	the	standard	error	(stderr)	channel	and	puts	it	into	the	log.	This	is
useful	for	catching	error	messages	and	should	normally	be	enabled.
However,	sometimes	programs	output	a	lot	of	spammy	status
messages	to	stderr,	and	if	those	can't	be	disabled	via	a	“quiet”	option
then	stderr	redirection	should	be	disabled.

Delete	output	file	before	starting:	If	set,	the	output	file	for	the
program	is	deleted	if	present	prior	to	running	the	program.	Enable
this	if	the	program	refuses	to	overwrite	an	existing	file.

Audio	encoder	specific	options

Raw	audio	data:	Send	audio	data	to	the	external	encoder	as	raw
audio	data.
WAV	file:	Send	audio	data	to	the	external	encoder	as	an	open-
ended	Microsoft	WAVE	file.
Bypass	compression:	Causes	the	audio	compression	setting	in
VirtualDub	to	be	ignored,	disabling	any	compression.	If	the	source
audio	data	is	compressed,	it	is	decompressed	prior	to	being	passed
to	the	external	encoder.

Importing	and	exporting	profiles

External	encoder	profiles	and	sets	are	normally	stored	as	part	of
VirtualDub's	settings.	You	can	also	export	them	to	a	file	to	save	them	for
another	installation	or	to	share	them	with	other	users.

Exporting	profiles

To	export	profiles,	click	the	Export	button	on	the	Configure	External
Encoders	dialog	and	then	specify	a	filename.	All	external	encoders	and
encoding	sets	are	written	to	the	file.

Importing	profiles

To	import	profiles,	click	the	Import	button	on	the	Configure	External
Encoders	dialog	and	then	specify	a	profile	file.	All	encoders	and	sets	in
the	file	are	imported.

Note:	The	imported	profiles	are	added	to	the	ones	already	created.	You
cannot	import	from	a	file	if	there	are	name	conflicts	between	the	names	in
the	file	and	the	names	of	existing	profiles	or	sets.

Customizing	profiles

You	can	manually	edit	the	.vdprof	file	to	remove	unwanted	profiles	and
sets,	making	a	tailored	file	for	a	specific	encoding	use.	The	.vdprof	file
uses	JSON	formatting	and	can	be	edited	in	a	text	editor.

If	an	encoder	program	name	in	a	.vdprof	file	is	a	relative	path,	it	is
resolved	during	import	as	being	relative	to	the	.vdprof	file	itself.	This
allows	.vdprof	files	to	be	deployed	next	to	an	encoder	such	that	when
imported,	the	external	program	path	is	automatically	correct	regardless	of
the	install	location	of	the	encoder.

Writing	your	own	external	encoder

An	external	encoder	must	satisfy	the	following	conditions:

Must	accept	raw	audio	or	video	data	through	standard	input.
Must	write	output	data	to	a	file.
Must	not	spawn	blocking	(modal)	UI.
Should	exit	with	a	zero	return	code	for	success	or	a	non-zero	return
code	for	failure.
Should	accept	filenames	on	the	command	line	with	spaces.

These	are	easy	to	satisfy	with	a	simple	C/C++	program.

Accepting	video	data

Video	encoders	receive	video	frames	as	a	series	of	YCbCr	encoded
frames.	The	frames	are	encoded	from	in	left-to-right	and	then	top-to-
bottom	(reading)	order;	the	plane	order	is	Y,	then	Cb,	then	Cr.	There	is	no
padding	within	scanlines	or	between	planes	or	frames.	The	width	and
height	of	the	frame	are	always	even	to	ensure	that	the	chroma	planes	are
an	integral	number	of	pixels.

The	color	space	is	4:2:0	YCbCr	using	Rec.	601	limited-range,	8-bit	per
channel	encoding.	The	normal	excursions	are	16-235	for	luma	and	16-
240	for	chroma,	but	values	from	0-255	may	be	encoded.	Chroma
positioning	is	per	MPEG-2	conventions,	with	chroma	samples	coaligned
with	luma	samples	horizontally	and	centered	vertically.	Frames	are
always	encoded	as	progressive	scan.

Accepting	audio	in	.wav	format

Audio	encoders	have	the	option	of	receiving	data	in	the	form	of	a
Microsoft	waveform	(.wav)	container	file	instead	of	raw	data.	The
advantage	is	that	the	.wav	file	contains	the	format	of	the	data,	so	the
encoding	application	does	not	need	to	receive	format	information	on	the
command	line,	allowing	for	easy	and	automatic	configuration.

In	order	to	accept	data	in	.wav	format	in	a	single	pass	(streamed)
scenario,	some	format	parsing	restrictions	must	be	relaxed.	When
receiving	.wav	data,	an	external	encoder	should	ignore	the	length	fields
on	the	outer	RIFF	container	and	the	inner	data	chunk,	and	parse	all	data
from	the	beginning	of	the	data	chunk	to	the	end	of	the	stream.	Also,	the
fact	chunk	should	not	be	expected	and	be	ignored	if	present,	even	for	a
compressed	stream.

Changing	the	stdin	data	mode	(Visual	C++	Specific)

For	encoding	programs	written	using	Microsoft	Visual	C++,	an	additional
step	is	required	in	order	to	receive	data	correctly.	By	default,	the	VC++
runtime	library	applies	a	text	mode	translation	to	standard	input,	which	in
particular	will	cause	truncation	of	the	input	stream	on	a	control-Z
character	(hex	1A).	To	avoid	this	problem,	reset	the	handling	mode	for
stdin	to	binary	mode:

#include	<io.h>

#include	<fcntl.h>

_setmode(_fileno(stdin),	_O_BINARY);

	 	

VirtualDub	help	-	Video	display	shader	support

VirtualDub	has	a	special	video	display	driver	called	the	D3D	FX	driver
that	allows	the	power	of	a	3D	accelerator	to	be	unleashed	when
displaying	video.	This	is	only	for	display	purposes	—	the	result	can't	be
saved	to	disk	—	but	it	is	useful	for	improving	display	quality	as	well	as
experimenting	with	different	image	processing	algorithms.	The	power	and
ease	of	programming	for	modern	GPUs	makes	it	possible	to	prototype	a
shader	for	an	algorithm	in	minutes	that	runs	in	real-time.

Requirements	and	enabling	the	driver

A	3D	accelerator	with	hardware	support	for	vertex	and	pixel	shaders	is
required	to	use	the	Direct3D	FX	display	driver	in	VirtualDub.	A	video	card
which	supports	at	least	pixel	shader	2.0	is	highly	recommended,	as	pixel
shader	models	1.1-1.4	are	very	restricted	in	the	amount	of	computation
and	texture	fetches	that	can	be	performed	in	a	single	pass.

In	addition,	you	must	have	d3dx9_25.dll,	the	D3DX	DLL	from	the	DirectX
9.0c	April	2005	release,	installed.	This	DLL	does	not	come	with
VirtualDub	and	must	be	installed	from	the	DirectX	redistributable;
currently	it	is	not	installed	by	the	standard	DirectX	9.0c	install	on
Windows	Update.	As	of	July	3,	2006,	the	April	2005	D3DX	dll
redistributable	is	available	as	directx_9c_Apr05sdk_redist.exe	at	the
following	URL:

http://www.microsoft.com/downloads/details.aspx?
FamilyId=402111C4-6478-46C1-BBD9-1BF9FCCE52F4&
displaylang=en

Note	that	d3dx9_25.dll	is	a	system	DLL	—	it	is	intended	to	be	installed
only	by	the	DirectX	Setup	installer	into	the	Windows\System32	directory.

To	enable	the	FX	driver,	go	to	Options	>	Preferences	>	Display.	DirectX
support,	Direct3D	support,	and	the	FX	driver	should	all	be	enabled.	The
filename	of	an	.fx	file	must	be	supplied	to	use;	if	a	full	path	is	not	given,
the	file	is	assumed	to	come	from	VirtualDub's	program	directory.

For	detailed	documentation	on	the	.fx	file	format,	consult	the	Microsoft
DirectX	9.0c	SDK.

http://www.microsoft.com/downloads/details.aspx?FamilyId=402111C4-6478-46C1-BBD9-1BF9FCCE52F4&displaylang=en

Available	surfaces	and	textures

A	total	of	three	textures	and	one	surface	are	available	for	use:

The	output	render	target,	sized	to	the	output	frame.
The	source	texture,	which	holds	the	current	video	frame.
The	previous	source	texture,	which	holds	the	last	video	frame.
Two	temporary	render	target	textures,	which	are	at	least	as	large	as
the	desktop.

Declaring	variables	with	specific	names	will	automatically	cause	them	to
be	bound	to	the	textures:

texture	vd_srctexture;

texture	vd_prevsrctexture;			//	new	-	1.7.1

texture	vd_prevsrc2texture;		//	new	-	1.7.3

texture	vd_temptexture;

texture	vd_temptexture2;

The	output	render	target	is	at	least	X8R8G8B8.	The	temporary	render
targets	are	of	format	A8R8G8B8;	in	addition,	they	are	guaranteed	to	be
powers	of	two	as	long	as	the	device	does	not	support	full	non-power-of-
two	textures;	in	particular,	the	restrictions	of	the	NONPOW2CONDITIONAL	caps
bit	do	not	have	to	be	followed	when	using	them.

The	vd_srctexture	variable	can	take	a	single	annotation:

bool	vd_forceframeupload	=	force_flag;	//	new	-	1.7.1
If	true,	this	annotation	changes	the	behavior	of	image	upload	when
operating	in	field	mode.	Normally,	when	field	display	mode	is
enabled,	the	even	and	odd	fields	of	the	source	texture	are	alternately
updated;	this	effectively	applies	weave	deinterlacing	to	the	input.
When	vd_forceframeupload	is	set	to	true,	both	fields	are	uploaded
on	the	first	field	of	every	frame.

Technique	selection	and	execution

A	technique	must	be	named	either	point,	bilinear,	or	bicubic	for	it	to	be
used.	Each	of	these	names	maps	to	one	of	the	filtering	modes	in	the
right-click	context	menu	of	the	video	pane;	this	allows	up	to	three
techniques	to	be	selected	from	the	.fx	file.	If	a	technique	is	not	available,
a	nearby	available	technique	from	the	three	is	used	instead.

When	a	video	frame	is	displayed,	VirtualDub	sequentially	executes	each
of	the	passes	in	the	file.	If	interlaced	display	mode	is	enabled,	the
technique	is	executed	twice	per	frame,	after	each	field	is	updated.	This
allows	field-savvy	shaders	to	do	adaptive	deinterlacing	on	the	video
input.

Each	pass	is	executed	with	a	quad	(four	vertex	rectangular	mesh).	The
components	of	the	vertex	declaration	accessible	from	the	vertex	shader
are	(all	are	two	component):

POSITION:	The	four	corners	of	the	output	viewport.	These	are
already	corrected	for	the	Direct3D	half-pixel	offset	so	that	they
exactly	encompass	the	screen.
TEXCOORD0:	The	four	corners	of	the	source	image	subrect	within
the	source	texture.
TEXCOORD1:	Full-texture	analogs	of	the	first	texcoord	set	—	(0,0),
(0,1),	(1,0),	and	(1,1).

Thus,	passing	POSITION	and	TEXCOORD0	through	is	enough	to	do	a
straight	blit	using	point	or	bilinear	sampling.

Pass	annotations

Passes	within	a	rendering	technique	can	be	annotated	to	instruct
VirtualDub	to	take	certain	actions	prior	to	executing	that	pass.

float4	vd_clear	=	{	red,	green,	blue,	alpha	};
Clears	the	render	target	to	the	given	color.	All	channel	values	are
normalized	and	range	from	0-1.

string	vd_target	=	"temp";
string	vd_target	=	"temp2";

Selects	the	render	target	texture	to	use	for	rendering.	If	this	is	not
specified,	the	output	render	target	is	used	instead.	The	viewport	is
automatically	set	to	the	entire	texture.

int	vd_fieldmask	=	mask;	//	new	-	1.7.1
Restricts	a	pass	to	running	in	only	certain	fields	during	field
playback:

1	-	run	during	even	field	only
2	-	run	during	odd	field	only
3	-	run	during	either	field

If	this	annotation	is	absent,	the	pass	always	runs.

This	is	an	example	of	a	pass	with	annotations:

pass	p0

<

	 string	vd_target	=	"temp";

	 float4	vd_clear	=	{	0,	0,	0,	0	};

>

{

	 VertexShader	=	compile	vs_2_0	VS();

	 PixelShader	=	compile	ps_2_0	PS();

}

	

Exported	variables

Declaring	global	variables	with	specific	names	will	cause	those	variables
to	automatically	be	filled	in	by	VirtualDub	with	data	useful	for	rendering.
These	values	are	constant	throughout	the	technique	execution,	as	the
source	values	do	not	change	between	passes.

Here	are	the	supported	variables:

float4	vd_vpsize;
Viewport	size	and	inverse	viewport	size.	This	is	the	size	of	the	output
window,	in	pixels.	vd_vpsize.xy	gives	the	width	and	height	of	the
viewport;	vd_vpsize.wz	gives	1/width	and	1/height.

float4	vd_texsize;
Texture	size	and	inverse	texture	size	for	the	source	texture.	This	is
the	size	of	the	input	source	image	texture,	in	texels	(it	is	not	the
source	image	size).	vd_texsize.xy	gives	the	width	and	height	of	the
texture;	vd_texsize.wz	gives	1/width	and	1/height.	This	is	useful	for
computing	UV	coordinates.

float4	vd_srcsize;
Size	and	inverse	size	of	the	source	image.	This	is	the	size	of	the
video	frame,	which	is	in	the	top-left	subrect	of	the	source	texture.
vd_srcsize.xy	gives	the	size	of	the	video	frame,	and	vd_srcsize.wz
gives	1/width	and	1/height.

float4	vd_tempsize;
float4	vd_temp2size;

Texture	size	and	inverse	texture	size	for	the	primary	and	secondary
render	target	textures,	respectively.

float4	vd_vpcorrect;

Screen	space	mapping	and	correction	for	the	viewport.	pos	*
vd_vpcorrect.xy	+	vd_vpcorrect.wz	transforms	pos	from	screen
space	coordinates,	where	(0,0)	is	the	bottom-left	corner	and

vd_vpsize.xy	is	the	top-right	corner,	to	the	correct	normalized	display
coordinates	(NDC)	for	the	output	render	target.

The	annoying	half-pixel	shift	imposed	by	Direct3D	is	taken	care	of	in
the	translation	—	the	screen	space	coordinates	established	by	this
transform	use	OpenGL-style	pixel	placement,	with	pixel	centers	at
half-integers.

float4	vd_vpcorrect2;

This	is	the	same	as	vd_vpcorrect,	except	that	the	coordinate
mapping	is	inverted	so	that	(0,0)	is	the	top-left.

float4	vd_tvpcorrect;
float4	vd_tvpcorrect2;
float4	vd_t2vpcorrect;
float4	vd_t2vpcorrect2;

These	are	the	analogous	screen	space	mappings	for	the	primary
and	secondary	render	target	textures,	respectively.

Custom	textures	(1.7.3+)

Annotations	can	be	used	to	control	the	dimensions	of	a	texture:

string	ResourceType;
Specifies	the	Direct3D	resource	type	of	the	texture.	Can	be	1D,	2D,
3D,	or	cube.	The	default	is	2D.

float2/3	Dimensions;
Specifies	the	width,	height,	and	depth	of	a	texture,	in	texels.	The
texture	size	is	automatically	adjusted	to	powers	of	two	as	needed.

string	Format;
Specifies	the	Direct3D	format	of	a	texture.	The	format	name	is	the
same	as	the	D3DFORMAT	constant	name,	without	the	D3DFMT_	prefix,	i.e.
A8R8G8B8.

string	Function;
Specifies	the	name	of	a	function	to	use	as	a	texture	shader	for
initializing	the	texture.

int	MIPLevels;
Specifies	the	number	of	mip	map	levels	to	allocate.	A	value	of	zero
means	to	allocate	a	full	mip	chain.

float2	ViewportRatio;
Specifies	a	pair	of	ratios	so	that	the	size	of	the	texture	is	proportional
to	the	viewport	size.	If	a	texture	shader	is	specified,	it	is	re-evaluated
every	time	the	texture	size	is	updated.

int	width;
Specifies	the	width	of	the	texture,	in	texels.	This	is	used	only	if	the
Dimensions	annotation	is	not	present.

int	height;
Specifies	the	height	of	the	texture,	in	texels.	This	is	used	only	if	the
Dimensions	annotation	is	not	present.

The	type	of	a	texture	can	also	be	specified	by	semantic:

RenderColorTarget
Specifies	that	the	texture	should	be	allocated	with	Direct3D
RENDERTARGET	usage.

RenderDepthStencilTarget
Specifies	that	the	texture	should	be	allocated	with	Direct3D
DEPTHSTENCIL	usage.

Whenever	a	custom	texture	is	created,	a	mirror	variable	with	the	suffix
_size	with	type	float	or	vector	is	checked	for.	If	this	variable	is	present,	its
x	and	y	components	are	filled	with	the	width	and	height	in	texels,	and	w
and	z	with	the	reciprocal	width	and	height	(note	that	the	order	is	w	and	z,
not	z	and	w).

Texture	shaders

D3DX	texture	shaders	can	be	used	to	precalculate	a	texture	prior	to
video	display.	These	shaders	are	only	run	once	when	the	.fx	file	is
loaded,	and	the	result	then	reused	for	each	video	frame.	As	they	run	on
the	CPU,	they	can	use	shader	features	not	necessarily	supported	by	the
GPU,	and	are	thus	useful	for	computing	lookup	tables	to	work	around	the
feeble	calculation	abilities	of	lower	shader	models.

VirtualDub	uses	a	set	of	annotations	on	the	texture	object	to	control
texture	shader	execution.	These	annotations	are	compatible	with	those
used	by	the	EffectEdit	tool.	The	generated	texture	is	always	of	the	format
A8R8G8B8.

float	width;
float	height;

Sets	the	width	and	height	of	the	texture.	These	are	not	adjusted	to
device	requirements,	so	it	is	safest	to	use	powers	of	two.

string	target;
The	profile	to	use	when	compiling	the	texture	shader.	It	defaults	to
tx_1_0	if	absent.

string	function;
The	name	of	the	HLSL	function	to	use	for	the	texture	shader.

Here	is	an	example	of	a	texture	shader	in	use:

texture	proceduraltex

<

	 string	function	=	"gen";

	 int	width	=	16;

	 int	height	=	256;

>;

float4	gen(float2	texcoord	:	POSITION,

											float2	texelSize	:	PSIZE)	:	color0

{

	 return	texcoord.xyxy;

}

	

Starting	with	1.7.3,	texture	shaders	can	be	applied	to	volume	and	cube
textures.

Caveats

VirtualDub	does	not	(cannot)	do	emulation	of	pixel	shader	models	that
are	not	supported	by	the	GPU.	This	is	particularly	important	for	older
video	cards	only	supporting	pixel	shader	1.1-1.4,	which	are	much	more
restrictive	than	pixel	shader	2.0	or	3.0.	Some	restrictions	to	watch	out	for:

ps_1_x	does	not	have	a	way	to	normalize	a	vector	or	retrieve	its
length.
ps_1_1	through	ps_1_3	can't	do	dependant	texture	reads	except
through	the	special	texture	addressing	operations,	which	can	only	be
accessed	from	shader	assembly.	A	dependant	texture	read	is	a
texture	read	based	on	a	calculated	texture	coordinate,	i.e.	not	from	a
texture	coordinate	set.
ps_1_4	can	do	dependant	texture	reads,	but	only	one	layer	deep,
and	with	limited	precision.

This	is	not	to	say	that	interesting	and	useful	display	shaders	can't	be
written	in	downlevel	shader	models,	but	it	requires	some	careful	thought
and	coding.	ps_1_4	is	pretty	rare	as	it	was	only	introduced	in	the	ATI
RADEON	8xxx	series;	ps_1_1	was	introduced	with	the	NVIDIA	GeForce
3	and	ps_1_2/ps_1_3	with	the	GeForce	4,	however.	All	cards	with	given
shader	model	support	can	run	all	downlevel	shaders,	however,	so	a
GeForce	FX	5800	can	run	ps_1_4	shaders	even	though	its	highest
supported	model	is	ps_2_a.

An	example	shader

This	effect	file	produces	an	emboss	effect	on	the	displayed	video.	It
should	work	on	any	video	card	with	pixel	shader	support.

texture	vd_srctexture;

float4	vd_texsize;

sampler	src	=	sampler_state	{

	 Texture	=	<vd_srctexture>;

	 AddressU	=	clamp;

	 AddressV	=	clamp;

	 MinFilter	=	linear;

	 MagFilter	=	linear;

	 MipFilter	=	linear;

};

void	VS(

	 float4	pos	:	POSITION,

	 float2	uv	:	TEXCOORD0,

	 out	float4	hPos	:	POSITION,

	 out	float2	uv0	:	TEXCOORD0,

	 out	float2	uv1	:	TEXCOORD1)

{

	 hPos	=	pos;

	 uv0	=	uv	-	vd_texsize.wz;

	 uv1	=	uv	+	vd_texsize.wz;

}

float4	PS(float2	uv0	:	TEXCOORD0,	float2	uv1	:	TEXCOORD1)	:	COLOR0	{

	 return	tex2D(src,	uv1)	-	(tex2D(src,	uv0)	-	0.5);

}

technique	point	{

	 pass	{

	 	 VertexShader	=	compile	vs_1_1	VS();

	 	 PixelShader	=	compile	ps_1_1	PS();

	 }

}

VirtualDub	help	-	Video	capture

Video	capture	is	the	process	of	taking	video	from	an	external	hardware
source,	such	as	analog	video,	and	digitizing	it	into	a	form	that	can	be
used	on	a	computer.	VirtualDub	allows	use	of	several	classes	of	video
capture	hardware	to	do	this	conversion,	depositing	the	result	as	an	.avi
file	on	disk.

What	you	need	to	use	capture	mode

In	order	to	use	VirtualDub's	video	capture	mode,	you	need:

A	video	capture	device.
An	external	video	source.

Video	capture	mode	cannot	be	used	to	capture	streaming	video	over	a
network	or	graphics	on	your	own	local	machine	(unless	you	loop-back	TV
out	into	a	video	capture	device).

VirtualDub	help	-	Capture:	Hardware	setup

Here	are	some	of	the	connectors	you	should	have	on	your	system:

Capture	card	coaxial	input:	A	round,	threaded	connector	with	a	small
hole	in	the	middle	that	accepts	modulated	signals	with	audio
(multiple	channels).
Capture	card	composite	input:	A	smooth,	non-threaded	(RCA)
connector	with	a	large	hole	in	the	middle.	This	connector	accepts	a
single	video	input	without	audio.	The	composite	video	cable,	or	the
composite	video	portion	of	an	octopus	cable,	usually	has	a	yellow
connector.
Capture	card	S-Video	input:	A	rounded	socket	with	four	pin	holes
and	a	small	rectangular	slot	(DIN-4).	This	connector	accepts	a	single
video	input	without	audio,	but	with	brightness	and	color	information
separated.	The	result	is	higher	video	quality	than	composite	input.	S-
Video	cables	usually	have	a	black	connector.
Capture	card	line	input:	A	mini-mono	or	mini-stereo	socket	about
1/8"	in	size,	this	is	the	audio	input	for	the	composite	video	and	S-
Video	inputs.
Capture	card	line	output:	Also	a	mini-phone	socket	about	1/8"	in
size,	this	is	the	audio	output	from	the	capture	card.
Sound	card	line	input:	A	third	mini-phone	socket,	this	is	the	input	to
the	sound	card	for	recording.	On	sound	cards	with	color-coded
inputs,	this	should	be	blue	in	color.

If	you	have	an	all-in-one	style	capture	device	that	does	both	video	and
audio,	especially	one	over	USB,	then	hooking	it	up	is	a	no-brainer:	just
connect	everything	to	the	capture	device.	You	don't	have	a	choice
anyway.	If	you	have	a	"TV	tuner"	style	device,	though,	then	some	of	the
capture	work	is	also	being	done	by	the	sound	card,	and	you	have	to	hook
up	a	couple	of	cables	to	get	everything	working.

Capturing	from	cable	(coaxial	input)

In	this	scenario,	you	have	a	TV	tuner	type	capture	card	and	want	to
capture	from	a	TV	channel.

Connect	the	round	coaxial	cable	to	the	capture	card.
Connect	the	line-out	from	the	capture	card	to	the	sound	card	line-in.

The	TV	tuner	card	accepts	the	cable	input,	selects	and	decodes	the
desired	channel,	captures	the	video,	and	splits	off	the	audio	for	your
sound	card	to	capture.

Capturing	from	audio/video	outputs

In	this	scenario,	you	have	a	TV	tuner	type	capture	card	and	want	to
capture	from	another	device	that	has	separate	audio	and	video	outputs,
such	as	a	VCR	or	video	game	console.

Connect	the	composite	video	or	S-Video	output	to	the	same	video
input	on	the	capture	card.
Connect	the	audio	output	from	the	output	device	to	the	capture	card
line-in.
Connect	the	line-out	from	the	capture	card	to	the	sound	card	line-in.

The	problem	you	will	often	encounter	here	is	that	the	output	device	will
have	a	pair	of	round	RCA	connectors,	one	for	each	of	the	left/right	stereo
channels	(red	and	white),	while	the	capture	and	sound	cards	will	have
1/8"	mini-stereo	inputs.	A	cable	with	a	male	1/8"	on	one	end	with	stereo
RCA	male	connectors	on	the	other	end,	along	with	a	pair	of	RCA	female-
female	adaptors,	will	help	you	hook	everything	up	here.

This	assumes	that	you	have	a	capture	card	that	has	integrated	audio
capture.	If	your	capture	card	simply	passes	through	the	audio,	it's	better
just	to	connect	the	audio	output	directly	to	the	sound	card:

Connect	the	composite	video	or	S-Video	output	to	the	same	video
input	on	the	capture	card.
Connect	the	audio	output	from	the	output	device	directly	to	the
sound	card	line-in.

This	shortens	the	audio	path	for	better	quality,	and	you	won't	have	to
worry	about	whether	the	capture	card's	audio	mixer	is	set	to	the	right
level	or	the	correct	input.

VirtualDub	help	-	Capture:	Driver	types	and	driver
selection

In	order	to	use	a	video	capture	hardware	device,	you	need	a	capture
driver	to	interface	VirtualDub	to	the	hardware.	This	software	should	come
with	your	hardware	device	and	should	be	installed	in	Windows	as	part	of
the	software	package	that	came	with	it.	If	you	are	missing	the	driver
software,	check	the	vendor's	website	or	contact	the	vector	for	a
replacement	as	otherwise	you	will	not	be	able	to	use	the	hardware	with
VirtualDub.

All	capture	devices	detected	by	VirtualDub	are	displayed	at	the	end	of	the
Devices	menu.	Selecting	a	driver	entry	causes	the	current	capture	driver
to	be	stopped	and	the	new	capture	driver	to	be	started.

There	are	two	types	of	video	capture	drivers	in	Windows,	which	behave
differently	in	their	capabilities.	It	is	important	to	know	the	type	of	video
capture	driver	you	have	installed	as	the	distinction	affects	which	features
of	VirtualDub's	capture	mode	can	be	used.	VirtualDub	can	use	drivers
that	are	written	to	either	driver	model.

Video	for	Windows	(VFW)	capture	drivers

Video	for	Windows	is	the	original	video	API	for	Windows,	and	is	the	older
driver	type	of	the	two.	These	drivers	can	sometimes	be	found	for	versions
of	Windows	as	old	as	Windows	95,	and	it	is	even	possible	to	use	a
capture	driver	written	for	Windows	3.1	(which	is	very	much	not
recommended).	These	drivers	have	several	limitations:

Audio	capture	is	always	done	through	the	sound	card,	or	a	driver
that	makes	the	capture	device's	audio	path	look	like	a	sound	card.
VFW-model	drivers	expose	few	settings	programmatically;	settings
such	as	audio	control,	channel	selection,	video	standard,	video
image	settings,	etc.	are	only	exposed	through	the	driver's	own
dialogs.	These	are	accessible	through	the	Video	display,	Video
format,	and	Video	settings	commands	in	the	Video	menu.
Unfortunately,	this	means	that	VirtualDub	cannot	save	or	restore
these	settings,	or	control	them	directly.

One	advantage	of	VFW-model	drivers	is	that	they	are	often	mature	and
well-debugged,	and	thus	reliable.	Another	is	that	VFW	drivers	are
supported	by	both	the	VFW	and	DirectShow	capture	APIs	in	Windows,
making	them	usable	across	a	wide	variety	of	capture	applications.

VFW	drivers	can	be	found	for	all	versions	of	Windows,	from	Windows	95
to	Windows	XP.	However,	starting	with	Windows	2000	more
manufacturers	have	started	shipping	WDM-model	drivers	instead.	A	few
video	capture	devices	have	support	for	both.

A	VFW-model	driver	can	be	identified	by	the	(VFW)	tag	after	the	entry	in
the	Device	menu.

Windows	Driver	Model	(WDM)	capture	drivers	(DirectShow-
based)

The	newer	type	of	video	capture	driver	in	Windows	uses	the	Windows
Driver	Model	(WDM),	which	was	introduced	in	Windows	98	and	2000.
The	Microsoft	DirectShow	API	is	the	primary	API	to	use	these	drivers.
Because	the	DirectShow	API	supports	a	larger	variety	of	commands	and
settings	than	VFW,	the	functionality	set	of	a	WDM	driver	is	significantly
improved:

WDM	devices	can	expose	integrated	audio	capture	directly.
Nearly	all	settings	exposed	in	UI,	such	as	video	saturation,	are	also
exposed	programmatically	for	unattended	control.
If	available,	VirtualDub	can	directly	control	the	TV	tuner	channel,	as
well	as	audio/video	source	selection.

DirectShow	is	a	much	more	complex	API	than	VFW,	however,	and	WDM-
model	drivers	historically	have	been	a	lot	less	stable	than	their	VFW
counterparts.	It	is	not	unusual	to	see	problems	such	as	capture
applications	that	cannot	be	closed,	because	their	program	execution	is
stuck	in	the	capture	driver.	WDM	is	the	proscribed	driver	model	going
forward,	however,	so	the	situation	should	improve	over	time.

A	WDM	driver	that	requires	use	of	DirectShow	will	have	a	(DirectShow)
tag	besides	its	entry	in	the	Device	menu.

The	Video	display,	Video	format,	and	Video	settings	dialogs	will	not
normally	be	available	when	DirectShow	is	in	use.	The	settings	in	those
dialogs	are	usually	available	on	the	driver's	Capture	pin	and	Capture	filter
dialogs	instead.	The	exception	is	if	a	Video	for	Windows	(VFW)	driver	is
being	used	through	DirectShow;	these	drivers	are	indicated	by	(VFW	>
Directshow)	next	to	their	name	in	the	Device	menu.	Using	a	driver	in	this
manner	piles	the	limitations	of	DirectShow	on	top	of	the	limitations	of
VFW,	so	it	is	usually	better	to	use	those	drivers	directly	with	VFW
instead.

The	Microsoft	WDM	Image	Capture	(Win32)	driver

If	you	have	a	Windows	Driver	Model	(WDM)	driver	installed,	you	may
also	have	an	entry	in	the	device	list	called	Microsoft	WDM	Image	Capture
(Win32)	(VFW).	This	entry	comes	from	a	Microsoft	driver	called	VFWWDM32
and	is	a	wrapper	that	allows	WDM-model	drivers	to	be	used	through	the
older	Video	for	Windows	(VFW)	API.	The	WDM	driver	that	is	adapted	can
be	selected	through	the	Video	Source	driver	dialog.

There	are	unfortunately	some	quirks	in	the	way	this	adapter	works,	and
some	video	capture	devices	will	work	erratically	or	not	at	all	through	this
wrapper.	Device	settings	not	accessible	through	VFW	will	also	still	not	be
available	when	using	it.	If	possible,	use	the	capture	device	directly	in
DirectShow	mode	rather	than	using	the	VFWWDM32	driver.

Custom	drivers

A	few	manufacturers	had	difficulty	migrating	their	capture	drivers	from	the
relatively	lenient	Windows	95/98/ME	versions	to	the	newer,	stricter
versions	of	Windows	based	on	the	NT	kernel.	Instead	of	shipping	a
proper	VFW	or	WDM	driver	—	both	of	which	are	possible	on	NT/2000/XP
—	these	manufacturers	shipped	a	custom	driver	along	with	a	custom,
hardware-specific	capture	application.	These	capture	devices	are
unfortunately	not	usable	with	VirtualDub	because	they	use	a	proprietary
programming	interface	(API).

The	video	emulation	driver

The	Video	emulation	capture	driver	is	not	a	real	capture	driver	installed	in
Windows,	but	rather	an	internal	video	capture	minidriver	in	VirtualDub
used	for	testing.	It	accepts	a	video	file,	selected	using	the	Video	source
menu	command,	and	plays	that	video,	pretending	to	be	a	live	video
source	pushing	audio	and	video	data	from	that	file.	Although	primarily
useful	for	VirtualDub	program	development,	it	is	also	sometimes	useful
for	diagnosing	compatibility	problems	and	determining	if	problems	lie	in
VirtualDub	or	in	a	video	capture	driver.

Note	that	additional	load	is	placed	on	the	hard	disk	and	on	the	CPU	by
the	video	decoding,	so	this	driver	isn't	necessarily	useful	for	performance
testing.

VirtualDub	help	-	Capture:	Audio	setup

Using	Windows	Volume	Control	to	adjust	recording	levels

If	your	video	capture	device	relies	on	the	installed	sound	card	to	capture
audio,	you	will	need	to	adjust	the	recording	levels	on	the	sound	card
through	the	Volume	Control	tool	in	Windows.	Double-click	on	the	speaker
icon	in	the	notification	area	of	the	taskbar,	or	in	Windows	XP,	launch	it
through	Start	>	Programs	>	Accessories	>	Entertainment	>	Volume
Control.	You	can	also	launch	it	from	VirtualDub	using	the	Audio	>
Windows	mixer...	menu	command.

Once	Volume	Control	is	open,	select	Options	>	Properties	from	the
menu:

The	display	on	your	system	will	differ	slightly.	Change	the	current	control
set	from	Playback	to	Recording,	and	make	sure	the	appropriate	input	in
checked	in	the	list	of	controls	to	show,	depending	on	which	sound	card
input	the	capture	device's	audio	output	is	plugged	into	(usually	Line-In	or
Aux-In).

Check	that	the	correct	inputs	are	selected	for	recording.	If	not,	first	check
if	it	can	be	changed	in	VirtualDub	using	the	Audio	>	Audio	input
submenu;	the	Volume	Control	should	automatically	update	as	VirtualDub
changes	inputs.	Otherwise,	the	correct	input	should	be	manually
selected.	Now	use	the	volume	slider	for	the	input	to	adjust	the	volume	of
the	captured	audio.

Checking	levels	with	the	volume	meter

To	check	volume	levels,	display	the	volume	meter	in	VirtualDub	by
selecting	Audio	>	Volume	meter	from	the	menu,	or	press	the	V	key.

The	volume	meter	samples	incoming	audio	from	the	recording	input	and
displays	the	current	and	long-term	peaks	in	blue	and	red,	respectively.	It
measures	sound	power	in	decibels	(dB);	-6	dB	is	one-quarter	maximum
power,	or	one-half	maximum	amplitude.	Lower	peak	values	mean	quieter
audio.

Audio	should	be	adjusted	so	that	it	is	reasonably	loud	without	clipping
(bars	go	all	the	way	to	the	right	end)	—	once	this	happens	audio	is
distorted.	It	is	usually	safer	for	the	audio	to	be	on	the	quieter	side,
although	if	it	is	really	quiet	quality	will	be	lost	due	to	limited	precision,
even	after	amplification	in	post-processing.

VirtualDub	help	-	Capture:	Pipeline

Like	during	a	render-to-disk,	captured	audio	and	video	flows	through	a
series	of	processing	stages	before	written	to	disk.	This	is	what
VirtualDub's	capture	pipeline	looks	like:

Video	path Audio	path
Video	callback Audio	callback

Statistics	layer
Resynchronizer

Capture	filters

Audio	compression
Video	filters
Video	display

Video	compression
Spill	synchronizer

Disk	write

Video/audio	callback
This	is	the	entry	point	at	which	the	capture	API	(VFW/DirectShow)
notifies	VirtualDub	that	audio	or	video	data	has	been	captured.

Statistics	layer
Most	of	the	statistics	in	the	information	sidebar	are	collected	at	this
point.	Additional	information	not	available	from	the	capture	layer,
such	as	the	timestamp	of	audio	capture,	is	added	at	this	point.

Resynchronizer
Audio/video	resynchronization	occurs	at	this	point,	both	adjusting	the
video	timing	and	resampling	audio.	The	exact	operations	performed
here	are	controlled	by	the	settings	in	the	Timing	dialog.

Capture	video	filters
Capture-specific	video	filters	such	as	field	swap,	2:1	vertical
reduction,	and	level	compression	occur	here.	Unlike	the	regular
video	filters,	capture	filters	run	directly	in	the	capture	format,	either
YCbCr	or	RGB	—	if	the	capture	filter	can't	run	in	the	current	format,

an	error	is	displayed	instead	of	a	conversion	being	performed.

Video	filters
Any	standard	video	filters	execute	now;	the	video	may	be	converted
to	a	different	YCbCr	format	or	to	32-bit	RGB	before	entering	the
video	filter	chain.	If	the	video	filter	chain	is	not	enabled,	no
conversion	occurs.

Video	display
If	the	display	mode	is	set	to	Preview,	the	video	stream	is	tapped	off
at	this	point	for	display	purposes.

Video/audio	compression
The	selected	video	and	audio	compression	codecs	now	apply	data
compression.

Spill	synchronizer
If	spill	mode	is	enabled	for	multi-file	capture,	the	spill	synchronization
code	now	determines	which	file	the	audio	and	video	streams	write
into,	to	ensure	that	each	file	is	cleanly	cut	with	the	same	audio	and
video	durations.

Video/audio	write,	disk	write
Audio	and	video	data	is	buffered	and	eventually	written	to	disk.

VirtualDub	help	-	Capture:	Filtering

VirtualDub	allows	the	incoming	video	to	be	filtered	before	it	is
compressed	and	written	to	disk.	This	requires	a	lot	of	CPU	power	to	do
reliably,	but	correcting,	shrinking,	and	cleaning	up	the	video	before	it	is
compressed	can	result	in	higher	quality	captures	without	requiring	an
additional	post-process	pass.

All	capture	filters	are	accessible	through	the	Video	menu.	If	the	video
display	mode	is	set	to	Preview	and	preview	acceleration	is	enabled,	the
post-filtered	result	can	be	seen	on	the	preview	display.

Capture	format	compatibility

Unlike	the	normal	filter	system,	the	capture	filter	system	does	not	attempt
to	automatically	convert	video	filters	to	accommodate	filter	stages.	Care
must	be	taken	to	choose	a	video	format	which	is	compatible	with	all	of
the	filters	you	wish	to	use:

Format Crop Swap
fields

Noise
reduction

Vertical
reduction

Extend
luma

Filter
chain

15-bit
RGB Yes Yes Yes

16-bit
RGB Yes Yes Yes

24-bit
RGB Yes Yes Yes Yes Yes

32-bit
RGB Yes Yes Yes Yes Yes

UYVY Yes Yes Yes Yes Yes Yes
YUY2 Yes Yes Yes Yes Yes Yes
YV16 Yes Yes Yes Yes Yes
YV12 Yes Yes Yes Yes
I420 Yes Yes Yes Yes
IYUV Yes Yes Yes Yes
YVU9 Yes Yes Yes Yes
Y41P Yes Yes Yes Yes
Y8 Yes Yes Yes Yes

If	a	capture	video	filter	is	not	compatible	with	the	input	format,	it	is
automatically	disabled.	Note	that	compressed	video	formats	are	not
supported	at	all	—	if	the	capture	device	outputs	compressed	data,	no
video	filtering	is	possible	at	all.

Detailed	description	of	capture	filters

Cropping

Discards	borders	of	the	video,	resulting	in	a	smaller	output	video.	If
the	video	is	letterboxed,	applying	cropping	can	improve	performance
as	well	as	reduce	output	file	sizes.	It	is	nearly	free	if	vertical
reduction	or	RGB	filtering	is	enabled.

The	video	format	imposes	restrictions	on	the	alignment	of	the
cropping	boundaries.	RGB	formats	can	be	cropped	to	pixel
accuracy;	YUY2/UYVY	can	only	be	cropped	to	the	nearest	even
pixel	boundary	horizontally,	and	YV12/I420	to	the	nearest	2x2	pixel
block.

Swap	fields

Swaps	even	and	odd	scanlines	within	the	image	to	correct	for	a
video	capture	device	that	is	assembling	fields	in	reverse	order.	This
affliction	looks	like	a	"raspy"	effect	in	the	image.	Field	swapping	is	a
relatively	fast	operation.

Noise	reduction

Applies	a	quick,	first-order	recursive	filter	to	reduce	the	amount	of
noise	within	the	image.	This	is	a	primitive	noise	reduction	filter,	but
can	be	effective,	particularly	for	light	noise	or	videos	with	low	motion.
The	amount	of	noise	reduction	is	adjustable;	higher	thresholds
produce	more	noise	reduction	at	the	cost	of	higher	motion	artifacts.

Vertical	reduction

Reduces	the	vertical	height	of	the	captured	video	by	one-half	using
either	bilinear	or	bicubic	resampling.	This	is	useful	if	the	additional
vertical	resolution	is	not	required,	but	better	image	quality	is	desired
than	would	be	obtained	by	using	the	capture	device's	scaler,	which
often	handles	such	a	request	by	simply	throwing	away	one	of	the

fields	(every	other	scanline).	This	option	consumes	a	decent	amount
of	CPU	power	and	should	be	used	with	care;	however,	it	can	also
significantly	speed	up	subsequent	video	compression	due	to	the
smaller	output	image.

Note	that	vertical	reduction	causes	fields	to	be	blended	together,
which	can	cause	ghosting	artifacts	due	to	motion	within	the	image.

Extend	luma	black	point

Compresses	the	luminance	range	of	an	image	so	that	"superblack"
levels	from	0-15	are	scaled	to	within	the	valid	luminance	range	of	16-
235,	out	of	0-255.	These	levels	are	ordinarily	shown	as	red	at	the
lower	end	of	the	histogram	scale	and	would	be	clamped	to	black
without	this	option.	This	is	only	useful	if	the	capture	format	uses	the
YCbCr	color	space,	as	these	values	are	already	lost	if	RGB	is	used.

The	transform	is	a	straightforward	linear	mapping	of	the	luminance
values	from	[0,	235]	to	[16,	235],	if	extend	luma	white	point	is
disabled,	or	[0,	255]	to	[16,	235]	if	that	option	is	also	enabled.

Extend	luma	white	point

Compresses	the	luminance	range	of	an	image	so	that	"superwhite"
levels	from	0-15	are	scaled	to	within	the	valid	luminance	range	of	16-
235,	out	of	0-255.	These	levels	are	ordinarily	shown	as	red	at	the
upper	end	of	the	histogram	scale	and	would	be	clamped	to	white
without	this	option.	This	is	only	useful	if	the	capture	format	uses	the
YCbCr	color	space,	as	these	values	are	already	lost	if	RGB	is	used.
However,	it	can	allow	for	recovery	of	very	bright	colors	that	would
ordinarily	white-out	or	become	garish	yellows	due	to	signal
overamplification.

The	transform	is	a	straightforward	linear	mapping	of	the	luminance
values	from	[16,	255]	to	[16,	235],	if	extend	luma	black	point	is
disabled,	or	[0,	255]	to	[16,	235]	if	that	option	is	also	enabled.

Filters	/	Enable	RGB	Filtering

Pushes	video	through	the	normal	VirtualDub	video	processing	filter
chain.	Nearly	all	video	filters	can	be	used	here;	however,	the
temporal	smoother	should	be	avoided	as	it	has	a	frame	lag,	which	is
not	supported	in	capture	mode.

Normal	video	filters	can	consume	significant	CPU	power	and	should
be	used	carefully.	In	particular,	if	the	incoming	video	format	is	not
supported	by	a	filter,	VirtualDub	may	be	forced	to	convert	to	a
different	format	before	running	the	filter.

By	default,	the	output	of	the	filter	chain	is	converted	to	24-bit	RGB
before	being	written	to	disk	or	passed	through	the	video	compressor.
Enabling	the	Skip	24-bit	Conversion	option	causes	the	output	of	the
last	filter	to	be	used	directly,	avoiding	this	conversion.

VirtualDub	help	-	Capture:	Information	panel

The	information	panel	shows	current	disk,	video,	and	audio	status	during
a	video	capture.	It	is	toggled	through	the	Option	>	Show	information
panel	menu	command.	Not	all	entries	are	always	shown;	the	subset	that
is	displayed	can	be	changed	in	Preferences.

Frames	captured
The	total	number	of	video	frames	captured.

Total	time
The	amount	of	time	the	capture	has	been	running,	in
days:hours:minutes:seconds.

Time	left
The	estimated	amount	of	time	the	capture	can	continue,	based	on

available	disk	space,	video	frame	rate,	and	current	compression
ratios.

Total	file	size
The	total	amount	of	data	written	to	disk	in	the	current	capture
session.

Disk	space	free
How	much	disk	space	is	left	on	the	capture	drive(s).

CPU	usage
Estimated	CPU	utilization	during	the	video	capture.	This	includes
CPU	usage	by	processes	other	than	VirtualDub.

Note On	a	system	with	multiple	logical	CPUs	(SMP,	dual	core,	or
hyperthreading),	this	value	may	rise	above	100%,	up	to
100%	times	the	number	of	CPUs.	Video	capture	is	mostly
single-threaded,	so	approaching	100%	in	these	situations
may	still	indicate	CPU	overload.

Spill	status
Current	status	of	a	multi-segment	capture	operation.	Normally	this
will	indicate	which	segment	number	is	currently	being	written;	it	will
also	indicate	when	the	capture	engine	is	in	the	process	of	spilling
over	from	one	segment	to	the	next.	If	the	spill	takes	a	long	time	or
never	completes,	this	can	prevent	VirtualDub	from	switching	files
and	may	be	indicative	of	a	bad	audio/video	timing	problem.

Video:	Size
Total	amount	of	video	data	written	to	disk.

Video:	Average	rate
The	overall	rate	at	which	video	frames	are	arriving	from	the	video
capture	device.	The	more	this	diverges	from	nominal,	the	more	likely
sync	and	frame	drop	problems	are	to	appear.

Video:	Data	rate
The	overall	rate	at	which	video	data	is	being	written	to	disk,	in

bytes/kilobytes/megabytes	per	second.	When	video	compression	is
in	use,	this	statistic	refers	to	compressed	video	data.

Video:	Compression
The	overall	video	compression	ratio.	Ratios	greater	than	1.0:1
indicate	shrinkage	in	video	size,	whereas	less	than	1.0:1	means
enlargement	(i.e.	the	"compression"	is	making	the	video	bigger).
Lossless	algorithms	typically	range	from	1:1	to	3:1,	whereas	lossy
compression	can	go	much	higher.

Video:	Avg	frame	size
The	average	size,	in	bytes,	of	each	video	frame	written	to	disk.
When	video	compression	is	in	use,	this	statistic	refers	to
compressed	video	frames.

Video:	Frames	dropped
This	refers	to	the	number	of	aberrations	in	the	video	stream	which
caused	VirtualDub	to	drop	a	frame	in	the	video	stream	due	to	them
being	crowded	too	close	together	(too	fast).	Fewer	is	better,	although
it	is	normal	for	frame	drops	to	occur	where	there	are	disruptions	in
the	video	stream,	such	as	the	start	of	a	new	recording	on	a	tape.

Video:	Frames	inserted
This	refers	to	the	number	of	aberrations	in	the	video	stream	which
caused	VirtualDub	to	insert	a	placeholder	frame	into	the	video
stream	due	to	there	being	too	few	frames	in	that	area	(too	slow).
Fewer	is	better,	although	it	is	normal	for	frame	inserts	to	occur	where
there	are	disruptions	in	the	video	stream,	such	as	the	start	of	a	new
recording	on	a	tape.

Video:	Resampling	factor
When	video	timing	correction	is	enabled,	this	indicates	the	factor	by
which	"video	time"	is	being	accelerated	or	slowed	to	match	the
expected	output	rate.	This	is	only	active	if	video	timing	correction	is
enabled.	Unlike	audio	resampling,	video	resampling	only	affects	the
assignment	of	frame	numbers	to	incoming	video	frames;	a	number
other	than	1x	does	not	mean	that	video	frames	are	being

interpolated.

Audio:	Size
Total	amount	of	audio	data	written	to	disk.

Audio:	Average	rate
The	average	rate	of	the	raw	PCM	data	in	the	audio	stream,	relative
to	real	time.	This	is	the	estimated	actual	frequency	of	the	incoming
audio	data.	Small	discrepancies	in	this	value	from	expected	are
normal,	as	all	clocks	have	some	error;	however,	large	discrepancies
in	this	value	from	the	specified	sampling	rate	may	indicate	that	the
sound	card	has	an	audio	clock	with	poor	accuracy.	Audio	resampling
can	be	used	to	stretch	the	audio	to	compensate.

Audio:	Relative	rate
The	average	rate	of	the	raw	PCM	data	in	the	audio	stream,	relative
to	the	corrected	video	stream.	This	is	thus	the	frequency	of	the	audio
if	the	video	stream	were	perfectly	timed,	as	it	is	assumed	in	the	on-
disk	video.	Discrepancies	between	this	value	and	the	ideal	frequency
indicate	overall	sync	error.	Small	errors	are	expected	due	to
measurement	issues.

Audio:	Data	rate
Average	bandwidth	of	audio	data	written	to	disk.	When	audio
compression	is	active,	this	refers	to	the	compressed	result.

Audio:	Compression
The	overall	audio	compression	ratio;	larger	ratios	mean	smaller
audio	on	disk.

Audio:	Resample
Stretch	factor	applied	to	the	audio	stream,	in	semitones,	in	order	to
correct	for	speed	errors	relative	to	the	video	stream.	This	is	only
active	if	the	timing	setting	is	"sync	audio	to	video."	A	semitone	is	a
step	between	minor	notes	on	the	musical	scale,	such	as	between	the
notes	C	and	C#;	a	factor	of	+/-12.000	is	a	full	octave	(half	or	double
speed).	Positive	values	indicate	the	audio	is	being	sped	up	(higher
pitch),	negative	values	indicate	slowing	(lower	pitch),	and	zero

means	no	change	to	the	audio	speed.

This	value	is	an	instantaneous	measurement,	not	an	average,	so	a
varying	adjustment	means	varying	speeds	in	the	written	audio	track.

An	adjustment	within	about	0.030	semitones	is	not	usually
noticeable,	and	slow,	gradual	drifts	or	oscillations	in	this	value	are
normal.	However,	factors	above	+/-0.100	semitones	and	rapid
changes	in	this	value	indicate	warbling	in	the	resampler's	output,
which	may	indicate	timing	problems.

Sync:	Video	timing	adjust
Amount	of	adjustment,	in	milliseconds,	applied	to	the	video	stream
caused	by	detected	differences	from	audio	timing.	This	is	only
pertinent	if	the	timing	setting	is	"sync	video	to	audio."	Positive	values
mean	the	video	stream	is	being	sped	up;	negative	values	mean	it	is
being	slowed	down.	It	is	normal	for	this	value	to	increment	or
decrement	occasionally	over	the	course	of	a	video	capture	session.

Sync:	Relative	latency
Estimated	difference	in	arrival	time,	in	milliseconds,	between	the
audio	and	video	streams.	This	is	the	difference	between	when
VirtualDub	sees	a	video	frame	and	the	audio	that	corresponds	to	that
frame,	not	necessarily	a	sync	error	in	the	output.	Positive	values
indicate	the	audio	is	arriving	later,	whereas	negative	values	indicate
it	is	arriving	earlier.	This	value	will	typically	be	in	to	10-100ms	range
for	"TV	tuner"	style	devices	and	possibly	as	high	as	+/-300ms	for
devices	with	integrated	compression.

An	abnormally	large	value	here,	particularly	in	the	range	of	seconds
or	more,	likely	indicates	a	timing	problem.

Sync:	Current	error
Estimated	sync	error	between	the	audio	and	video	streams;	zero
means	that	the	audio	and	video	streams	are	in	sync.	This	is	only
calculated	if	the	sync	mode	is	"sync	audio	to	video."	The	audio
resync	controller	continually	adjusts	the	audio	resampling	rate	in	an

attempt	to	drive	this	error	as	close	to	zero	as	possible.

VirtualDub	help	-	Capture:	Multi-segment	mode

Spill	mode	allows	a	video	capture	operation	to	be	split	across	multiple
files.	This	allows	file	size	limits	to	be	bypassed	and	also	permits	use	of
multiple	partitions.

Selecting	spill	drives	for	capture

Select	the	Capture	>	Capture	drives	to	set	up	the	drive	array	for	spill
mode:

Add/remove	spill	drive

Add	a	new	spill	drive,	or	remove	the	currently	selected	drive.	When
adding	a	new	drive,	click	on	the	threshold	or	path	portion	of	the	entry
to	edit	it.

Capture	drives	can	be	on	the	same	physical	hard	drive,	but	should
not	share	the	same	logical	hard	drive	(volume).	It	is	a	bad	idea	to
add	two	entries	for	the	same	volume,	as	the	two	will	have	the	same
free	space	totals.	For	instance,	C:\	and	C:\Capture	should	not	both
be	added	to	the	list	unless	a	different	partition	is	mounted	at
C:\Capture.

Threshold

The	threshold	controls	the	minimum	amount	of	disk	space,	in
megabytes,	that	must	be	free	on	the	drive	for	VirtualDub	to	use	it.
For	instance,	if	the	threshold	is	set	to	50MB	and	the	minimum
capture	file	size	is	100MB,	VirtualDub	will	not	start	a	new	file	on	that

drive	unless	there	is	at	least	50MB	+	100MB	=	150MB	free	space,
and	will	stop	writing	to	a	file	being	generated	there	once	free	space
drops	below	50MB.

Try	not	to	create	AVI	files	smaller	than...	MB
Sets	the	minimum	file	size	that	should	be	creatable	above	a	spill
drive's	threshold	before	a	file	should	be	started	on	it.	This	prevents
VirtualDub	from	switching	to	a	spill	drive	that	only	has	14MB	above
its	threshold;	not	only	is	this	annoying,	but	it	can	result	in	back-to-
back	file	switches,	which	can	cause	problems.

Try	not	to	create	AVI	files	larger	than...	MB
Sets	the	maximum	file	size	that	VirtualDub	should	aim	for	before
switching	to	a	new	file.	The	maximum	value	for	this	file	is	2048MB,
because	VirtualDub	disables	its	large	AVI	file	support	when	writing
spill	files.	It	should	be	set	some	amount	below	that	to	provide	a
buffer	to	account	for	latency	during	the	video	capture,	which	is	why
the	default	is	1900MB.

Using	multi-segment	capture

Enable	Capture	>	Enable	multisegment	capture	to	allow	use	of	spill
drives.	The	capture	filename	will	then	be	used	to	generate	the	prefix	for
sequentially	numbered	files,	so	that	a	base	name	of	capture.avi
produces	capture.00.avi,	capture.01.avi,	capture.02.avi,	etc.	Then
begin	capture	as	usual	to	start	capturing	to	a	series	of	sequential	files.

Note Make	sure	the	capture	path	is	on	one	of	the	spill	drives,	or
VirtualDub	will	switch	to	one	of	the	drives	shortly	after	the	start	of
the	capture,	leaving	a	~50MB	runt	as	the	first	file.

Caveats	with	multi-segment	capture

As	when	editing,	audio	and	video	compression	can	impact	the	ability	of
VirtualDub	to	produce	clean	cuts	between	segments.	In	the	interest	of
speed,	VirtualDub	is	a	bit	sloppy	when	writing	capture	segments.	Issues
include:

If	video	compression	with	delta	frames	is	being	used,	a	segment	can
start	on	a	delta	frame.	This	is	OK	if	VirtualDub	is	loading	the	capture
segment,	but	can	be	a	problem	if	you	are	trying	to	load	individual
segments	into	a	program	that	doesn't	expect	raw	stream	slices,
because	the	delta	frame	is	undecodable	without	the	previous
segment.
Audio	compression	can	cause	a	segment's	audio	to	be	slightly
desynchronized	from	the	video,	subject	to	the	block	size	of	the	audio
compression.	This	isn't	a	problem	when	joining	all	of	the	segments
together,	though.
There	may	be	one	additional	segment	that	has	a	video	stream	with
no	video	frames	in	it;	this	can	occur	when	writing	out	the	final	audio
during	a	capture,	more	audio	has	been	captured	than	video,	and	the
audio	spills	over	into	a	new	segment	but	the	video	doesn't.

If	you	will	attempt	to	load	individual	segments	or	load	the	files	into	a
different	program,	it	is	recommended	that	you	use	video	compression
that	does	not	use	delta	frames,	and	disable	audio	compression.

Reading	multi-segment	capture	files

Each	capture	segment	written	by	VirtualDub	contains	a	record	in	it	that
indicates	the	location	of	the	next	segment.	This	makes	it	possible	for
VirtualDub	to	follow	the	sequence	of	capture	files	without	knowing	the	list
of	spill	drives,	even	if	the	sequence	hops	between	drives.	The	algorithm
for	following	the	chain	is	as	follows:

Try	the	same	directory	as	the	previous	segment.
If	that	doesn't	work,	try	the	directory	indicated	by	the	segment	hint	in
the	AVI	file.
If	that	still	doesn't	work,	ask	the	user	to	locate	the	next	segment.

It	is	thus	not	a	good	idea	to	mix	segments	from	different	captures,	as
VirtualDub	may	get	confused	if	it	sees	a	capture.06.avi	that	is	actually
from	a	different	sequence	than	capture.05.avi	in	the	same	location.

The	format	of	the	segment	hint	is	a	chunk	with	the	FOURCC	segm	within
the	AVI	header	block.	It	consists	of	a	single	byte	which	is	00	if	no	further
segments	are	present,	or	01	if	more	segments	should	be	loaded,	followed
by	the	filename	of	the	next	segment,	null	terminated.	(Regrettably,	this	is
8-bit	ANSI	encoded,	not	16-bit	Unicode.)	The	full	filename	is	encoded,
although	only	the	path	is	used,	and	the	filename	should	still	follow	the
basename.nn.avi	convention.

VirtualDub	help	-	Capture:	Timing	dialog

The	Capture	timing	dialog	allows	control	of	the	way	VirtualDub	matches
video	to	audio	during	a	capture	operation.	Video	frames	can	arrive	from
the	video	capture	driver	with	non-regular	timestamps	due	to	timing
accuracy	issues	and	interference	with	background	tasks	in	the	system;
timing	disturbances	can	also	occur	due	to	irregularities	in	the	source
video	signal.	During	the	video	capture	process,	the	varying	timestamps
have	to	be	matched	to	regular	frame	slots	in	the	output	video	stream.

Drop	frames	when	captured	frames	are	too	close	together

If	enabled,	VirtualDub	discards	frames	that	are	spaced	too	close
together	for	the	output	frame	rate.	For	instance,	three	frames	with
timestamps	10ms	apart	(100	fps)	cannot	fit	into	a	29.97	fps	stream.	If
this	option	is	disabled,	all	captured	frames	are	written	to	the	output
stream.

Unless	the	audio	resampler	is	enabled	(see	below),	disabling	this
option	can	result	in	desynchronization	of	the	audio	and	video
streams.

This	option	is	enabled	by	default.

Insert	null	frames	when	captured	frames	are	too	far	apart

If	enabled,	VirtualDub	inserts	dummy	frames	into	the	output	video
whenever	captured	frames	are	spaced	too	far	apart	for	the	output
frame	rate.	For	example,	two	captured	frames	spaced	66ms	apart
would	have	a	dummy	frame	between	them	in	a	29.97	fps	stream.
This	dummy	frame	is	identifiable	in	the	video	stream	as	a	zero-byte
frame	and	displays	the	same	image	as	the	previous	non-dummy
frame.

Unless	the	audio	resampler	is	enabled	(see	below),	disabling	this
option	can	result	in	desynchronization	of	the	audio	and	video
streams.

This	option	is	enabled	by	default.

Null	frame	burst	limit

Controls	the	maximum	number	of	dummy	frames	in	a	row	that
VirtualDub	will	insert	when	captured	frames	are	too	far	apart.	This
limits	the	amount	of	damage	that	occurs	if	timestamps	in	the	video
stream	are	wildly	incorrect	for	a	moment,	such	as	a	full	day	ahead.

The	default	for	this	option	is	10.

Resync	mode:	Do	not	resync	between	audio	and	video	streams

In	this	mode,	auto-resync	is	disabled:	VirtualDub	will	not	monitor	the
audio	and	video	streams	for	timing	discrepancies.	This	means	that
the	quality	of	synchronization	in	the	output	video	is	dependant	on	the
accuracy	of	the	audio	and	video	clocks;	for	example,	if	the	sound
device	is	recording	slightly	slower	than	the	requested	sampling	rate,
or	the	video	capture	device	reports	timestamps	that	are	0.1%	too
fast,	the	output	video	will	be	accordingly	desynchronized.

It	is	highly	recommended	that	you	enable	auto-resync,	as	the	audio
and	video	clocks	are	never	exactly	identical	unless	both	are	being

captured	on	the	same	device.

Resync	mode:	Sync	video	to	audio	by	adjusting	video	timing

VirtualDub	will	speed	up	or	slow	down	the	video	clock	to	match	the
audio	clock.	This	will	affect	the	number	of	frame	drops	and	inserts	in
the	video	stream.	If	the	audio	clock	is	more	inaccurate	this	will	result
in	more	drops/inserts;	if	the	video	clock	is	the	worse	one,	this	can
sometimes	reduce	the	number	of	drops	and	inserts.

The	amount	of	adjustment	to	the	video	clock	is	reported	on	the
information	side	bar	as	the	VT	adjust	field.

Resync	mode:	Sync	audio	to	video	by	resampling	the	audio	to	a	faster	or
slower	rate

The	audio	will	be	stretched	or	compressed	to	match	the	video	clock.
The	video	stream	is	not	affected,	but	the	audio	stream	will	have	a
slightly	higher	or	lower	pitch	and	speed.	As	the	discrepancy	in	clocks
is	typically	very	small,	this	change	is	not	normally	noticeable.	This
mode	is	only	usable	if	the	audio	device	is	capturing	in	an
uncompressed	(PCM)	format;	if	a	compressed	format	is	in	use	and
this	mode	is	selected,	the	sync	video	to	audio	mode	is	used	instead.
Note	that	this	only	applies	to	the	raw	audio	capture	format;	any	audio
codec	can	still	be	used.

The	amount	of	adjustment	to	the	audio	stream	is	noted	in	the
information	side	bar	as	the	Resample	field.

This	mode	is	selected	by	default.

The	behavior	of	the	audio	resampler	was	significantly	changed	for
1.6.12.

Correct	video	timing	rate	errors

If	enabled,	VirtualDub	will	attempt	to	adjust	video	timing	to
compensate	for	frames	arriving	slightly	faster	or	slower	than
expected.	This	can	reduce	the	number	of	frame	drops	or	inserts

incurred	during	video	capture,	at	the	expense	of	making	the	video
clip	play	slightly	faster	or	slower	than	real-time.	This	option	is	meant
to	be	used	with	the	sync	audio	to	video	resync	mode,	or	when	audio
is	not	being	captured.

Video	timing	correction	is	automatically	disabled	if	the	resync	mode
is	set	to	sync	video	to	audio	or	if	the	resync	mode	is	automatically
forced	to	that	mode	because	sync	audio	to	video	can't	be	used	due
to	compressed	audio.	It	is	also	automatically	disabled	if	integrated
A/V	capture	is	detected	and	resync	disabling	is	enabled	(see	below).

The	behavior	of	the	video	timing	corrector	was	significantly	changed
for	1.6.12.

Automatically	disable	resync	when	integrated	audio/video	capture	is
detected

Capture	devices	that	have	both	audio	and	video	capture	integrated
usually	use	a	shared	clock	to	avoid	sync	errors	between	the
streams.	When	enabled,	this	option	causes	VirtualDub	to
automatically	disable	auto-resync	when	such	a	situation	is	detected.

Note	that	VirtualDub	must	see	both	audio	and	video	devices	on	the
same	capture	driver	for	this	option	to	take	effect.	If	you	are	using	a
capture	device	which	exposes	its	audio	capture	as	a	separate	sound
driver	in	Windows,	VirtualDub	will	not	see	it	as	integrated.

VirtualDub	help	-	Capture:	Performance

Capturing	live	video	is	a	real-time	operation	and	places	high	demands	on
your	system.	Here	are	some	steps	you	can	take	to	improve	video	capture
performance.

Shut	down	background	tasks	and	applications

Interruptions	by	background	programs	can	interfere	with	video	capture
and	cause	dropped	frames.	Applications	you	should	watch	out	for,	and
temporarily	disable,	include:

virus	scanners
disk	defragmenters
search	indexers,	especially	the	Microsoft	Indexing	Service	(formerly
Microsoft	Office	Fast	Find	Indexer)
task	schedulers
on-screen	tickers	and	status	readers	—	particularly	anything	that
flashes	or	scrolls	on-screen

CPU	usage	is	a	problem	here,	but	competition	for	the	hard	disk	is	usually
a	much	worse	problem:	any	attempts	to	access	the	disk	by	another
application	will	cause	the	disk	to	seek	back	and	forth,	which	seriously
cuts	available	write	bandwidth.

Absolutely	avoid	using	the	CD-ROM	drive	during	video	capture,	as	the
access	traffic	during	the	spin-up	of	the	CD-ROM	drive	can	cause	the	hard
drive	to	go	off-line	for	more	than	a	second.

It	is	not	recommended	to	use	other	applications	during	video	capture.
Even	if	the	other	applications	are	light	in	disk	and	CPU	usage,	they	may
cause	momentary	hiccups	that	result	in	dropped	frames	or	timing
anomalies	during	the	capture.	The	less	that	is	going	on	in	the	system,	the
more	accurate	VirtualDub's	timing	statistics	are	and	the	better	it	can	keep
audio	and	video	streams	in	synchronization.

Note When	in	capture	mode,	VirtualDub	temporarily	sets	its	process
priority	to	High	and	disables	both	the	screensaver	and	power
saving	mode	on	the	display	device.	It	isn't	necessary	to	change
these	manually.

Keep	the	disk	clean

Hard	drives	reach	peak	write	performance	when	writing	sequentially	on
disk	—	the	more	they	have	to	seek	around	to	different	regions,	the	lower
the	available	bandwidth.	When	files	are	scattered	throughout	a	disk,	free
space	is	broken	into	a	lot	of	small	chunks,	which	is	called	fragmentation.
This	means	that	it	is	important	to	have	large	areas	of	contiguous	free
space	on	a	drive.	Here	are	some	tips	to	improve	disk	write	performance:

Run	Disk	Defragmenter	and	check	that	free	space	is	not	overly
fragmented	on	the	target	drive.	The	fragmentation	of	existing	files
doesn't	matter,	just	the	free	space.	It's	OK	if	the	free	space	is	split
into	a	few	dozen	chunks,	as	a	seek	every	minute	isn't	a	problem.	If
it's	really	swiss-cheesed,	though,	consider	defragmenting.
Have	extra	free	space	on	the	drive.	VirtualDub	allocates	large	blocks
of	space	a	time	to	give	Windows	a	chance	to	find	clear	areas	on	the
drive;	however,	this	becomes	more	difficult	as	the	drive	gets	full	and
Windows	scavenges	for	the	last	free	space	on	the	disk.
Fragmentation	becomes	much	worse	once	you	start	filling	the	last	5-
10%	of	a	drive.
Use	a	different	partition	or	disk	than	the	one	that	holds	Windows
system	files,	as	that	partition	typically	has	a	large	number	of	small,
volatile	files	and	fragments	very	quickly.

Use	appropriate	video	compression	and	video	formats

Uncompressed	video	capture	dumps	a	lot	of	data	onto	the	disk	—
720x480	in	16-bit	YUY2	at	29.97	fps	produces	approximately	20
megabytes	per	second.	Modern	computers	have	much	more	CPU	power
and	thus	you	can	reduce	the	strain	on	the	disk	by	storing	the	video	in	a
more	efficient	format.

Start	by	choosing	an	efficient	raw	video	format	for	your	capture	device	to
produce:

32-bit	RGB:	Avoid	this	format,	as	it	wastes	33%	of	the	space	used.
24-bit	RGB:	This	is	the	baseline,	most	compatible	format.	Start	here.
15/16-bit	RGB:	Avoid,	as	it	introduces	serious	banding	(quantization)
artifacts.
16-bit	YCbCr	(UYVY	or	YUY2):	Try	this	format.	It	is	closer	to	the
format	produced	internally	by	most	hardware	video	decoders	and
used	internally	by	many	video	codecs,	but	it	is	33%	smaller	than	24-
bit	RGB.	Using	this	format	will	often	significantly	improve
performance.

Apply	video	compression	on	top	of	this	to	further	reduce	data	bandwidth.
Because	the	raw	video	capture	will	likely	need	some	post-editing	to	be
useful,	avoid	formats	that	overly	degrade	video	or	are	difficult	to	edit.

The	Huffyuv	video	codec	by	Ben	Rudiak-Gould	is	an	excellent
capture	codec	to	use,	as	it	is	lossless,	typically	achieves	around	a
2:1	compression	ratio,	and	can	work	directly	with	YCbCr	video.	It	is
very	fast	and	should	work	in	real-time	on	a	500MHz	or	faster	CPU.
Motion-JPEG	(MJPEG)	codecs	are	also	an	excellent	choice.	They
are	lossy	and	thus	will	reduce	video	quality	very	slightly,	but	the
compression	ratio	is	significantly	better	than	lossless	codecs	like
Huffyuv,	at	least	4:1	with	little	or	no	perceptible	quality	loss.	The
Motion	JPEG	format	is	also	field-savvy	and	will	store	interlaced	video
without	screwing	up	the	fields.
Digital	Video	(DV)	is	another	format	to	consider.	Like	Motion	JPEG,
DV	is	also	a	slightly-lossy	format	that	is	friendly	to	interlaced	video.	It

does	take	a	bit	more	CPU	to	compress	and	decompress,	however.
Also,	unlike	Motion	JPEG,	DV	is	always	constant	in	data	rate	—
3.6MB/sec	—	so	it	is	easy	to	predict	how	much	disk	space	is
required	for	a	given	amount	of	time.
MPEG-4	and	other	high-compression	video	formats	should	be
avoided,	as	they	require	significant	CPU	power	to	compress	and
may	not	be	able	to	keep	up	with	the	incoming	video	at	adequate
quality.	Also,	their	extremely	long	delta	frame	chains	can	make	the
resulting	video	difficult	or	impossible	to	edit.

Note	that	if	you	have	a	capture	device	that	has	hardware	video
compression,	your	options	here	are	likely	very	limited.	In	that	case,
browse	the	capture	driver's	configuration	dialogs,	usually	Video	>	Video
Source	or	Video	>	Capture	Filter,	and	select	a	format	with	relatively	light
compression.

Disable	audio	compression

Uncompressed	audio	requires	much	less	bandwidth	than	uncompressed
video	and	reasonable	audio	compression	usually	requires	a	lot	of	CPU
power.	This	is	particularly	true	of	modern	audio	compression	formats
such	as	MPEG	audio	layer	III	(MP3).	It	is	highly	recommended	that	you
not	use	audio	compression	during	video	capture,	as	it	can	consume	a	lot
of	CPU	and	make	video	capturing	less	reliable.

VirtualDub	help	-	Capture:	Troubleshooting

Fireworks	on	entering	capture	mode	or	selecting	a	particular
capture	driver

VirtualDub	tries	to	change	settings	in	such	a	way	that	if	the	settings
cause	the	driver	to	blow	up,	that	the	modified	settings	aren't	saved	—	but
occasionally	the	failure	occurs	later,	in	the	form	of	a	hang,	crash,	blue-
screen,	etc.	The	result	is	that	you	can't	use	the	capture	device	any	more,
because	as	soon	as	you	try	entering	capture	mode	VirtualDub	auto-
selects	the	last	capture	driver,	and	then	restores	the	saved	settings,
and...	well,	you	get	the	point.

Fortunately,	there	is	an	escape	hatch.

Holding	down	a	Shift	key	when	entering	capture	mode	will	prevent
VirtualDub	from	automatically	selecting	the	last	used	capture	driver.	The
easiest	way	to	do	this	is	to	hold	Shift	when	selecting	Capture	AVI...	from
the	menu.	Similarly,	holding	down	Shift	when	selecting	a	capture	driver
will	prevent	any	saved	settings	that	were	recorded	for	that	driver	from
being	restored.	The	errant	settings	can	then	be	changed	and	re-saved	to
correct	the	problem.

Note	that	this	doesn't	help	for	any	settings	that	the	capture	driver	itself
saves	and	that	VirtualDub	doesn't	know	about.	In	that	case,	you	can
either	attempt	to	reinstall	the	driver,	or	find	the	location	in	the	Registry
where	it	saves	those	settings,	and	try	to	change	them.

System-wide	hang,	blue-screen,	or	instant	reboot	when	using
the	"overlay"	display	mode

The	"overlay"	display	mode	on	most	capture	devices	causes	the	capture
hardware	to	stream	the	video	image	directly	into	the	display	memory	of
the	video	card.	Sometimes	the	capture	device	and	video	card	don't
cooperate	well	and	the	result	is	a	lockup	or	blowup	when	overlay	display
mode	is	chosen.	In	most	cases	it	is	better	to	choose	the	Preview	mode
instead,	as	then	VirtualDub	can	directly	control	the	video	display,	but
sometimes	it	is	possible	to	switch	a	Video	for	Windows	capture	driver's
method	of	overlay	display	to	a	more	compatible	mode.

If	this	is	occurring,	check	if	the	capture	driver	has	an	options	screen.	In
Windows	XP,	navigate	as	follows:

Start	Menu,	Settings,	Control	Panel,	Sounds	and	Audio	Devices
Hardware	tab,	Legacy	Video	Capture	Devices	entry,	Properties
button
Select	the	Properties	tab,	find	the	video	capture	driver,	and	then	the
Properties	button.

If	the	Settings...	button	is	not	disabled	(grayed	out),	select	it	and	browse
through	the	driver's	configuration	dialog.	Look	for	an	option	called
"overlay	mode"	or	"use	DrawDib";	this	will	switch	the	driver	to	a	slower,
but	more	compatible	method	of	display.

No	color,	rainbow	coloring,	or	simply	bad	color

First,	check	that	you	are	using	the	correct	video	input	and	that	the
capture	device	is	configured	to	use	the	right	one.	On	some	devices	the
composite	video	input	is	simply	the	S-Video	input	with	an	adapter,	so	it	is
possible	to	set	the	video	input	to	S-Video	and	still	see	a	grayscale
version	of	a	composite	video	input.

If	you	have	both	S-Video	as	well	as	an	"external"	or	"camera"	input,
sometimes	the	external/camera	input	works	better,	inexplicably.

Check	the	video	standard	in	use.	Attempting	to	capture	an	NTSC	stream
as	PAL,	PAL	as	SECAM,	etc.	will	result	in	scrambled	color.	The	video
standard	is	normally	controlled	in	Video	settings	for	VFW	drivers	and
Capture	filter	for	WDM	drivers,	although	the	location	may	vary.

Video	capture	mysteriously	stops

Check	Capture	>	Stop	Conditions	and	make	sure	no	conditions	have
been	inadvertently	enabled.

Interruptions	in	video	sources,	causing	a	loss	of	video	signal,	can
occasionally	cause	this	problem.

On	Windows	NT-based	platforms,	locking	the	workstation	with
Ctrl+Alt+Del	can	cause	a	capture	operation	to	stop.	In	general,	it	is	best
to	avoid	doing	anything	that	might	change	desktops	or	the	video	display
mode.

VirtualDub	help	-	Capture:	Screen	capture

The	screen	capture	entry	is	a	special	capture	"driver"	within	VirtualDub
that	allows	the	video	screen	to	be	used	as	the	capture	source	instead	of
an	external	source.

Selecting	the	region	to	capture

Use	the	Video	>	Set	Custom	Format...	menu	option	to	choose	the	size	of
image	to	capture.	Use	32-bit	RGB	as	the	format.

By	default,	the	image	capture	will	occur	at	the	top-left	corner	of	the
screen.	The	Video	>	Source...	menu	option	exposes	a	couple	of
additional	options	to	control	the	origin:	it	can	be	centered	on	the	mouse
cursor,	to	the	current	active	top-level	window,	or	both.	When	both	options
are	active,	VirtualDub	will	pan	around	the	bounds	of	the	active	window
according	to	the	cursor	position.

Starting	the	capture	and	performance	implications

You	will	usually	want	to	set	hotkey	shortcuts	for	starting	and	stopping	the
capture	via	Capture	>	Preferences,	so	as	to	avoid	capturing	the
VirtualDub	window	itself.

Capturing	from	the	screen	is	very	CPU-intensive	and	depends	greatly	on
the	speed	of	your	CPU	and	video	card.	The	size	of	the	region	captured
greatly	influences	the	CPU	usage,	so	if	you	have	problems,	consider
capturing	a	smaller	size.	More	modern	video	cards	and	video	drivers	also
tend	to	be	more	efficient	at	screen	capture.

Enabling	OpenGL	acceleration

If	you	have	a	video	card	with	3D	acceleration,	you	may	be	able	to	enable
OpenGL	acceleration	mode,	which	enables	additional	features	and	also
speeds	up	the	screen	capture	process.

The	amount	of	acceleration	possible	depends	on	your	video	card's
features.

Basic	OpenGL	support	allows	32-bit	capture	with	hardware
accelerated	resizing.
Advanced	blending	support	permits	hardware	accelerated
conversion	to	YCbCr	formats,	including	YUY2,	UYVY,	and	YV12.	For
cases	where	some	color	bleeding	can	be	tolerated,	this	drops	the
raw	data	bandwidth	requirements	by	50-60%,	and	also	speeds	up
real-time	video	compression	if	used.	You	need	at	least	an	NVIDIA
GeForce	video	card	(NV_register_combiners	OpenGL	extension)	for
hardware	YCbCr	conversion.
Pixel	(fragment)	shader	support	lowers	the	load	on	the	video	card.
To	take	advantage	of	pixel	shader	support,	you	need	at	least	an
NVIDIA	GeForce	3	(NV_register_combiners2	extension)	or	an	ATI
RADEON	8500	(ATI_fragment_shader	extension).
Occlusion	query	support	allows	duplicate	frames	to	be	removed	on
the	video	card	with	neglegible	CPU	load.	Occlusion	query	support
requires	the	NV_occlusion_query	OpenGL	extension	(this	is	generally
supported	on	3D	accelerators	from	both	NVIDIA	and	ATI).

Note As	of	this	writing,	some	video	card	drivers	for	Windows	Vista	are
not	compatible	with	the	methods	used	here	to	capture	the	screen
through	OpenGL.	If	this	is	the	case	on	your	system,	you	will
need	to	disable	OpenGL	acceleration	so	that	the	slower,	more
compatible	GDI-based	method	is	used.

VirtualDub	help	-	Dialogs:	Video	filters

Video	filter	reference

Video	filters	transform	video	frames	sequentially,	such	as	blurring	the
image,	resizing	the	image	frame,	or	applying	noise	reduction.
VirtualDub's	video	filter	system	takes	chains	of	filters,	which	are	set	up
through	the	Video	Filters	dialog.

Filter	name	and	parameters
Each	filter	entry	has	the	name	of	the	filter	beside	the	frame	sizes,	as
well	as	a	parameter	list	for	the	filter.	The	parameter	list	is	filter-
specific	and	is	only	shown	to	aid	in	scanning	the	filter	chain.

Enable/disable
The	checkbox	at	the	left	side	of	each	entry	in	the	filter	list	allows
individual	entries	to	be	toggled	on	and	off.	When	a	filter	is	disabled,	it
neither	affects	the	video	nor	influences	other	filters	in	the	list.	This	is
useful	for	quickly	switching	between	different	configurations	for
testing.

Frame	sizes

Each	video	filter	in	the	list	is	shown	with	the	size	of	the	video	frame
entering	the	filter	and	the	video	frame	size	produced	by	that	filter.
Video	filter	chains	may	be	created	without	a	video	loaded,	and	when
the	video	is	changed,	the	input	and	output	frame	sizes	for	each
frame	will	change	accordingly.

Note If	no	video	is	loaded,	VirtualDub	will	compute	frame	sizes	as
if	a	320x240	input	were	present.

Frame	formats
If	show	formats	is	checked,	the	filter	list	will	also	show	the	image
formats	of	the	input	and	output	frames	of	each	filter.	This	clearly
shows	which	portions	of	the	video	filter	pipeline	are	running	in
different	RGB	or	YCbCr	color	spaces.

Cropping
Cropping	can	be	applied	at	the	beginning	of	any	filter	by	selecting
the	entry	and	selecting	the	Cropping...	button.	Once	cropping
borders	are	set,	the	cropped	frame	is	reflected	in	the	input	frame
size	for	that	filter	entry.
The	crop	dialog	gives	a	choice	between	precise	and	fast	cropping
mode	when	YCbCr	formats	are	involved.	When	the	crop	parameters
can't	be	exactly	supported	with	the	given	format,	the	filter	pipeline
chooses	between	either	converting	formats	to	one	that	can	support
the	exact	requested	crop,	or	adjusting	the	crop	parameters;	precise
converts,	and	fast	adjusts.	For	instance,	attempting	to	crop	to	odd
pixel	boundaries	in	4:2:0	YCbCr	(YV12)	will	cause	a	conversion	to
4:4:4	YCbCr	(YV24)	in	precise	mode	and	rounding	to	even	pixel
coordinates	in	fast	mode.	The	default	is	precise.	The	RGB32	and
4:4:4	YCbCr	(YV24)	formats	are	the	top-level	formats	that	can
support	any	crop	for	their	respective	color	spaces.

Filter	order
Filters	are	executed	from	top	to	bottom;	use	the	Move	Up	and	Move
Down	buttons	move	the	currently	selected	filter	up	or	down	one	slot.
Frame	sizes	are	automatically	recomputed	as	filters	are	moved.

Loading	filters

The	Add	Filters	sub-dialog	has	a	Load...	button	for	loading	third-party
video	filters.	These	video	filters	need	to	be	written	specifically	for
VirtualDub	and	have	a	.vdf	file	extension.

Note Video	filters	loaded	from	this	dialog	are	loaded	only	for	the
current	session.	If	you	want	filters	loaded	all	the	time,	move
them	under	plugins\	in	VirtualDub's	program	directory.

Alignment	marker
A	[A]	marker	appears	beside	a	filter	when	VirtualDub	has	to	perform
memory	realignment	on	entry	to	the	filter.	This	doesn't	change
quality	in	any	way,	but	does	lower	performance	a	tiny	bit.

Conversion	marker
A	[C]	marker	appears	beside	a	filter	when	VirtualDub	has	to	perform
a	conversion	on	entry	to	the	filter.	The	most	common	conversion
needed	is	a	color	space	conversion.	This	can	happen	because	the
filter	does	not	support	the	output	from	the	previous	filter,	or	because
the	cropping	parameters	for	the	filter	are	not	possible	with	the
original	image	format.	Reconfiguring	the	pipeline	to	avoid
conversions	can	result	in	slight	quality	and/or	speed	boosts.

Blending
A	[B]	marker	means	that	a	filter	is	being	blended.	When	blending	is
active,	the	Curve	Editor	in	the	main	view	can	be	used	to	blend	the
result	of	the	filter	in	and	out	over	time.
Blending	is	only	permitted	when	the	input	and	output	frames	on	the
filter	are	the	same	size;	otherwise,	an	error	will	result.	For	instance,
you	can't	blend	a	resize	filter	that	is	taking	a	320x240	frame	and
producing	640x480	output.

VirtualDub	help	-	Dialogs:	Video	frame	rate	control

The	Video	frame	rate	control	dialog	allows	you	to	alter	the	frame	rate	of
video,	reduce	the	number	of	frames,	or	remove	3:2	pulldown.

Adjusting	frame	rate
If	the	source	video	has	the	wrong	frame	rate	or	doesn't	natively	have
a	frame	rate	(image	sequence),	you	can	specify	one	in	the	source
correction	portion	of	the	dialog.	You	can	either	type	in	a	rate,	or	have
VirtualDub	automatically	choose	a	"same	length"	setting,	such	that
the	video	and	audio	tracks	end	at	the	same	time.

Note No	frames	are	added	or	deleted	by	this	setting,	so	if	the
video	is	synchronized	with	the	audio	beforehand	it	won't	be
after	you	change	the	frame	rate.	Similarly,	if	the	video	isn't
synchronized,	you	may	be	able	to	fix	it	with	this	setting.

Note Manually	entered	frame	rates	are	rounded	to	the	nearest
microsecond	period.	In	particular,	you	cannot	enter	an	exact
NTSC	fraction	(30000/1001).

Frame	rate	decimation
Decimation	pulls	frames	from	a	source	at	regular	intervals.	This	is
useful	for	producing	"thumbnail"	videos	with	small	sizes,	and	for
dropping	the	rate	of	a	video	without	introducing	jerkiness	due	to
uneven	frame	rate.	The	decimation	interval	must	be	a	positive
integer.

Inverse	telecine	(3:2	pulldown)

3:2	pulldown,	or	telecine,	is	the	process	by	which	film-rate	material
(24	fps)	is	converted	to	NTSC	rate	(29.97	fps).	This	is	done	by
splitting	the	film	frames	into	fields,	and	then	"pulling"	fields	down	in
an	alternating	3,2,3,2...	pattern.	This	produces	five	output	frames	for
every	four	input	frames,	in	a	characteristic	pattern	of	three
progressive	frames,	followed	by	two	interlaced	frames.	The	resultant
30	fps	stream	is	then	slowed	down	slightly	to	the	target	29.97	fps.

Inverse	telecine	(IVTC)	attempts	to	recover	the	original	24	fps
stream	by	analyzing	the	input	frames	and	removing	the	duplicate
fields.	In	adaptive	mode,	VirtualDub	attempts	to	guess	the	position	of
the	3:2	pattern,	while	in	manual	mode,	you	specify	the	offset	and
polarity.	In	both	cases,	the	input	frame	rate	is	dropped	by	20%,
changing	a	29.97	fps	input	to	23.976	fps.

The	third	mode,	reconstruct	from	blurred	fields,	handles	the	case
where	a	video	has	been	telecined,	and	then	the	fields	blurred
together,	usually	by	shrinking	the	video	size.	In	this	case	the	original
frames	cannot	be	recovered	by	matching	fields,	but	can	be
recovered	through	simple	frame	algebra.	The	reconstructed	frames
will	have	more	noise	and	possibly	ghosting	where	clipping	at	black	or
white	has	occurred,	but	if	successful	the	result	is	a	smooth
progressive	video.

Note All	of	VirtualDub's	IVTC	modes	assume	a	regular	3-2
pattern.	More	complex	telecine	patterns	are	possible	which
cannot	be	removed	through	this	system.

VirtualDub	help	-	Dialogs:	Video	color	depth

Selects	the	desired	image	formats	for	video	decompression	and	video
compression.

Decompression	format

Selects	a	color	format	to	target	when	decompressing	the	input	video.

For	a	compressed	source,	this	format	is	requested	directly	from	the
video	codec.	"Autoselect"	will	choose	a	common,	safe	RGB	format,
such	as	24-bit,	32-bit,	or	15-bit	RGB.

For	an	uncompressed	source	(or	Avisynth	script),	the	desired	format
is	produced	through	image	conversion	if	it	is	not	the	same	as	the
source.	YCbCr-to-YCbCr	conversions	do	not	round-trip	through
RGB.	"Autoselect"	chooses	the	source	format	so	that	no	conversion
is	necessary.

If	the	video	codec	cannot	produce	the	format	you	have	selected,
VirtualDub	will	automatically	attempt	to	degrade	the	video	format	to	a
similar	format	that	is	supported.	For	instance,	if	16-bit	RGB	fails,	24-
bit	RGB	will	be	tried.	The	fallback	code	avoids	color	space
conversions	if	possible;	if	a	YCbCr	format	fails,	other	YCbCr	formats
will	be	tested	before	resorting	to	RGB.

Output	format

Selects	a	color	format	for	output.	During	preview,	this	is	the	format
sent	to	the	display	panes.	When	video	compression	is	active,	this
selects	the	format	received	by	the	video	compressor.

The	output	format	is	produced	by	conversion	from	the	input	format.
When	video	filters	are	in	use,	the	input	format	is	converted	to	32-bit
RGB,	processed,	and	the	result	converted	to	the	output	format.	If
video	filters	are	not	being	used,	the	input	format	is	converted	directly
to	the	output	format.

Note As	is	standard	in	GDI	bitmaps,	the	32-bit	format	has	a
dummy	alpha	channel,	used	only	for	padding.	VirtualDub
cannot	currently	target	a	32-bit	format	with	meaningful
alpha.

Note The	size	of	the	output	format	doesn't	necessarily	relate	to
how	well	the	output	compresses	through	a	video	codec.	For
instance,	converting	from	24-bit	RGB	to	16-bit	RGB	can
hinder	compression,	because	it	increases	quantization	noise
(banding)	in	the	image.

Format	descriptions

16-bit	RGB	(555)
This	is	a	format	with	five	bits	per	channel	(32	levels)	for	each	of	red,
green,	and	blue.	It	is	a	relatively	low-precision	format	that	is	prone	to
some	banding	artifacts	but	is	common	on	older	video	display
hardware,	as	it	is	faster	and	consumes	less	memory	than	24-bit
RGB.	This	format	is	sometimes	known	as	HiColor.

16-bit	RGB	(565)
This	is	a	slightly	improved	version	of	16-bit	RGB	(555),	as	it	uses	the
unused	bit	to	improve	precision	in	green.

24-bit	RGB	(888)
This	is	a	format	with	eight	bits	per	channel	(256	levels)	for	each	of
red,	green,	and	blue.	It	is	common	for	photographic	images	and	is
often	known	as	TrueColor.	This	is	the	safest	and	most	reliable	format
to	use	for	video	interchange.

32-bit	RGB	(8888)	(dummy	alpha	channel)
This	is	similar	to	24-bit	RGB,	except	that	it	has	an	additional	unused
eight	bits	per	pixel.	Picture	quality	is	identical	to	24-bit,	but	the
additional	padding	makes	the	pixels	a	more	convenient	size	for
computation.	This	format	is	sometimes	slightly	faster	than	24-bit	for
processing,	but	should	be	avoided	for	storage	as	it	wastes	one-third
more	space.

4:2:2	YCbCr	(UYVY)
This	is	a	format	which	uses	the	YCbCr	color	space	(luma,	chroma-
blue,	chroma-red),	which	is	closer	to	the	way	color	images	are
perceived	by	the	human	brain.	It	averages	only	16	bits	per	pixel	with
similar	perceptual	quality	to	24-bit	RGB	by	only	storing	color
information	at	half	horizontal	resolution,	producing	slight	color
bleeding	but	only	taking	two-thirds	as	much	space.

This	format,	as	do	all	other	YCbCr	formats	listed	below,	encodes

luminance	(Y)	with	a	range	of	[16,	235]	and	chroma	(Cb/Cr,	or	U/V),
with	a	range	of	[16,	240].

UYVY	is	accepted	directly	by	many	video	codecs.	Since	many	video
codecs	internally	use	color	spaces	similar	to	YCbCr,	using	this
format	with	video	codecs	can	speed	up	rendering.

4:2:2	YCbCr	(YUY2)
This	is	the	same	as	4:2:2	YCbCr	(UYVY),	except	for	a	shuffling	of
data	bytes.	It	has	the	same	quality	and	performance	advantages	as
UYVY.

4:2:0	planar	YCbCr	(YV12)
This	is	a	YCbCr	format	with	an	average	of	12	bits	per	pixel	and	half
resolution	both	horizontally	and	vertically	in	color	information.	It	thus
takes	25%	less	space	than	UYVY	or	YUY2,	but	with	some	vertical
bleeding.	"Planar"	refers	to	the	organization	of	data	in	the	format,
where	luma,	chroma-blue,	and	chroma-red	are	stored	separately.

Some	codecs	accept	this	format	directly	for	further	increases	in
performance	over	the	4:2:2	formats.	However,	it	should	be	avoided
for	interlaced	video,	where	the	loss	of	vertical	color	resolution	can
cause	motion	artifacts	between	fields.

Note Although	4:2:0	YCbCr	formats	exist	that	accommodate
interlacing,	the	YV12	four-character	code	(FOURCC)
denotes	a	specific	4:2:0	encoding	that	is	non-interlaced.

4:2:2	planar	YCbCr	(YV16)
This	is	a	YCbCr	format	with	an	average	of	16	bits	per	pixel	and	half
horizontal	resolution	in	color	information.

The	YV16	format	is	rare	and	not	well	supported	by	video	codecs	and
playback	applications,	but	is	supported	here	for	completeness.

4:1:0	planar	YCbCr	(YVU9)
This	is	a	YCbCr	format	with	an	average	of	9	bits	per	pixel	and

quarter	resolution	both	horizontally	and	vertically	in	color	information.
YVU9	thus	takes	43%	less	space	than	UYVY/YUY2	and	62%	less
space	than	24-bit	RGB,	but	at	the	cost	of	significant	color	bleeding.

Luminance	only	(Y8)
Y8	is	a	monochrome	format,	and	thus	selecting	it	will	cause	video	to
be	converted	to	grayscale.	However,	it	only	requires	half	of	the
space	of	UYVY	or	YUY2	at	8	bits	per	pixel.

Y8	uses	the	same	luma	scale	as	YCbCr,	16-240,	so	there	is	a	very
slight	loss	of	luma	precision	compared	to	24-bit	RGB.	However,
conversion	between	Y8	and	YCbCr	formats	is	lossless	in	luma	and
extremely	fast.

VirtualDub	help	-	Dialogs:	Video	range

Selects	a	subset	of	the	input	to	use.

Input	range
Controls	how	much	video	at	the	beginning	and	ends	of	the	source	is
skipped	during	processing,	so	that	only	a	portion	in	the	middle	is
used.	All	offsets	can	be	set	in	either	frames	or	milliseconds	(ms).

Note Offsets	persist	even	if	you	load	a	new	file.

Note The	end	offset	is	the	number	of	milliseconds	from	the	end,
not	from	the	beginning.	It	is	usually	easier	to	set	start/end
points	from	the	position	control	(HOME/END).

Note You	can	only	select	a	single	range	with	this	dialog;	use	the
delete	frames	feature	to	extract	multiple	segments	in	a
single	pass.

Offset	audio	to	maintain	a/v	sync
Controls	whether	the	start	offset	applies	to	the	audio	stream.	If
unchecked,	the	start	offset	deletes	frames	only	from	the	video
stream,	advancing	it	that	many	frames	ahead	of	the	audio	stream.
This	will	alter	audio/video	synchronization	accordingly.

Cut	off	audio	when	video	stream	ends
If	the	audio	stream	is	longer	than	the	video	stream,	this	controls

whether	the	extra	audio	is	used	or	not.	Generally,	players	continue	to
show	the	last	video	frame	while	the	remaining	audio	plays.

VirtualDub	help	-	Dialogs:	Video	compression

VirtualDub	can	use	video	codecs	installed	in	Windows	to	compress
video.

Note Video	codecs	are	external	drivers	created	by	third	parties	and
are	not	part	of	VirtualDub.	VirtualDub	does	not	install	codecs	by
itself	and	does	not	provide	any	video	compression	technology	of
its	own.

Selecting	a	video	codec
Currently	installed	video	codecs	are	listed	in	the	top	left	pane;	select
a	codec	to	use	or	choose	"uncompressed	RGB"	to	disable	video
compression.	Once	a	codec	is	selected,	diagnostic	information
appears	on	the	right	side.	Every	codec	has	a	unique	fourcc,	or	four
character	code,	associated	with	it.

Note Not	all	codecs	are	usable	--	sometimes	programs	install
versions	of	a	codec	designed	only	to	decompress	video,	not
to	compress	it.	Also,	sometimes	the	codecs	are	keyed	to	a
particular	program	due	to	licensing	concerns,	and	thus	won't
work	in	VirtualDub.

Note For	performance	reasons,	many	codecs	split	the	video
frame	into	equal-size	tiles	and	thus	require	the	frame	width
and	height	to	be	specific	multiples	of	the	tile	size.	Requiring
the	width	to	be	a	multiple	of	four	pixels	is	very	common.
VirtualDub	attempts	to	detect	such	limitations	and	displays
any	such	information	in	the	right	pane.	In	some	rare	cases
with	broken	codecs	this	check	fails,	and	the	result	may	be	a
"bad	format"	error	when	you	attempt	to	begin	compression.

Configuring	the	codec
Some	codecs	accept	quality,	data	rate,	and	key	frame	interval
parameters.	The	higher	the	quality,	generally	the	slower	the	codec
runs	and	the	larger	the	output,	but	the	better	the	video	looks	after
compression.	By	setting	a	data	rate,	you	request	that	the	codec
attempt	to	produce	output	at	a	fixed	size-per-time	ratio,	set	in
kilobytes/second.	And	by	setting	a	key	frame	interval,	you	are
enforcing	that	seek	points	are	placed	at	regular	intervals	in	the	video
in	order	to	reduce	wait	time	when	seeking.	Nearly	all	codecs	support
additional	parameters,	which	can	be	set	by	pressing	the	Configure
button.	The	dialog	that	appears	is	codec-specific;	please	consult	the
documentation	for	each	codec	for	further	details.

Note Codecs	are	designed	for	a	particular	range	of	frame	sizes
and	compression	ratios	and	perform	inefficiently	outside	that
range.	In	particular,	for	most	codecs,	setting	Quality	to	100
is	likely	to	produce	ridiculous	file	sizes	and	may	not	even
produce	perfect-looking	video.	Small	file	size	and	perfect-
quality	video	are	mutually	exclusive.	If	you	need	perfect
quality	and	are	willing	to	put	up	with	large	file	sizes,	lossless
codecs	exist	that	are	created	specifically	for	this	purpose.

Note If	the	codec	allows	you	to	enter	a	key	frame	interval	but	you
don't	enter	one,	you	may	get	a	video	with	a	single	key	frame
at	the	beginning.	This	means	that	every	time	you	seek
backwards	in	the	video	the	player	will	have	to	decompress
the	entire	video	from	the	start	up	to	that	point,	which	is	a	tad
slow.	Key	frames	generally	have	lower	compression	ratios,

so	the	interval	determines	a	tradeoff	between	seek	latency
and	compression	efficacy.

Note Data	rates	specified	here	only	pertain	to	video.	Make	sure	to
allow	for	audio	and	for	file	structure	overhead.

Note Many	modern	codecs	do	adaptive	key	frame	placement	and
more	complex	data	rate	regulation,	and	place	all	their
settings	in	their	configuration	dialog.	Although	the	data	rate
entry	in	VirtualDub's	configuration	dialog	is	specified	in	units
of	kilobytes	per	second,	or	1024	bytes/sec,	codec	dialogs
generally	use	kilobits	per	second	(Kbits/sec),	or	1000
bits/sec	(125	bytes/sec).

VirtualDub	help	-	Dialogs:	Audio	filters

Audio	filter	reference

VirtualDub's	advanced	audio	filter	mode	supports	a	filter	graph	model,
where	you	can	chain	filters	in	complex,	branching	configurations.	Filters
are	represented	by	rectangular	nodes	on	the	graph;	each	node	may	have
input	pins	on	the	left	and	output	pins	on	the	right.

Adding	and	removing	filter	nodes
To	add	filters,	click	the	Add...	button.	This	displays	the	Add	filter
subdialog,	which	displays	a	list	of	available	filters.	In	that	subdialog,
click	a	filter	entry	and	then	Add	to	add	the	filter	to	the	graph,	or
alternatively,	double-click	the	filter	entry.	The	subdialog	stays	up	until
you	are	done	adding	filters	and	close	it.	Filter	nodes	added	by
mistake	can	be	removed	by	clicking	on	them	and	pressing	the	Delete
key	or	button.

Connecting	filter	nodes

To	connect	filters	together,	drag	from	an	input	pin	of	one	node	to	the
output	pin	of	another.	(You	cannot	connect	two	input	pins	or	two
output	pins.)	An	arrow	will	be	displayed	showing	the	connection.	As
with	nodes,	connections	may	be	selected	and	deleted.	Since	this
process	is	rather	tedious,	by	default	the	auto-connect	option	is
enabled.	Auto-connect	ties	the	first	unused	output	pin	of	the	currently
selected	filter	to	the	first	input	pin	of	the	newly	added	filter,	and	then
selects	the	new	filter.	Simple	chains	can	then	be	established	just	by
adding	the	filters	sequentially.

Filter	graph	restrictions
The	following	rules	apply	to	audio	filter	graphs:

There	must	be	exactly	one	"input"	node.
There	must	be	exactly	one	"output"	node.
All	pins	must	be	connected.
No	cycles	are	allowed,	although	parallel	branching	is	permitted.
Parallel	paths	must	run	at	the	same	speed.

The	last	rule	means	you	can't	take	a	stream,	slow	it	down	with
"stretch",	and	then	mix	it	back	with	itself.

VirtualDub	help	-	Dialogs:	Audio	interleaving

Although	video	clips	have	simultaneous	audio	and	video	streams	that
play	at	the	same	time,	the	files	that	contain	them	are	a	single	stream.
Interleaving	fakes	having	two	streams	by	slicing	the	audio	and	video
streams	into	chunks	and	mixing	them	together	in	chunks	by	time.	A
player	reading	an	interleaved	file	receives	a	little	bit	of	audio,	then	a	bit	of
video,	and	then	more	audio,	etc.,	buffering	them	in	memory	for	a	short
time	before	playing	the	two	together.	VirtualDub's	audio	interleaving
dialog	controls	how	interleaving	is	performed.

Note Audio	interleaving	has	absolutely	zero	impact	on	when	audio
plays	--	regardless	of	how	audio	and	video	frames	are	scattered
in	an	AVI	file,	they	still	maintain	the	same	timing	relationship,
because	the	index	block	sequences	them	properly.

Note Interleaving	audio	and	video	is	not	necessary	unless	the	file	is
stored	on	a	medium	that	streams	much	more	efficiently	than	it
handles	random	access,	such	as	a	CD-ROM	drive	or
transmission	over	the	Internet.	High-speed	devices	such	as	hard
disks	can	handle	playback	from	non-interleaved	files	without
problem,	which	is	a	consideration	as	interleaving	isn't	free	--	it
costs	a	small	amount	of	overhead	in	the	file	size.

Enable	audio/video	interleaving
If	this	option	is	selected,	audio	blocks	are	interleaved	between	video
frames	throughout	the	file.	If	not,	all	of	the	audio	is	placed	at	the	end.

Preload
Players	require	a	certain	amount	of	audio	to	be	buffered	ahead	of
time	before	starting	video	playback.	The	preload	option	controls	how
much	audio	is	placed	at	the	beginning	of	the	file	before	the	first	video
frame,	in	milliseconds.	Usual	values	for	this	are	500ms	(half	second)
or	1000ms	(full	second).	If	this	setting	is	improperly	adjusted,	the	file
may	not	play	optimally	on	slow	computers	or	slow	devices,	although
with	modern	video	players	this	is	less	of	a	concern.

Interleave	interval
Controls	how	often	audio	blocks	are	scattered	throughout	the	file	--
the	shorter	the	interval,	the	less	buffering	required	by	the	player,	but
the	more	overhead	in	the	output	file.	If	the	interleaving	interval	is	too
large,	players	will	have	to	seek	back	in	forth	in	the	file,	which	has	the
worst	of	both	worlds	since	the	interleaving	won't	allow	the	player	to
do	large,	contiguous	reads	in	the	file.	Usual	values	for	this	option	are
either	interleave	once	per	frame	(1	frame)	or	every	half	second
(500ms).

Audio	skew	correction
This	isn't	really	an	interleaving	option,	and	is	the	only	option	here
that	actually	does	affect	audio	sync	--	but	it	is	here	for	lack	of	a	better
place.	Audio	delay	basically	shifts	the	audio	track	back	and	forth,
either	by	dropping	samples	from	the	beginning	or	adding	samples	at
the	start	(zero	for	PCM,	duplicated	first	sample	for	compressed
audio).	Use	this	option	to	shift	an	audio	track	into	place	if	it	seems	a
bit	off.

Note Audio	compression	may	impede	use	of	delays.	Some
formats,	particularly,	ADPCM,	use	large	block	sizes	that	will
limit	the	granularity	of	adjustments.	The	MP3	format	used	in
AVI,	on	the	other	hand,	has	a	hack	in	its	format	that	prevents
applications	from	seeing	the	"true"	block	size	of	the	format.

The	result	is	generally	junk	produced	at	the	beginning	of	the
MP3	stream,	which	may	not	produce	the	desired	delay
depending	on	the	player.	An	audio	editor	specifically
designed	to	edit	MPEG	audio	streams	is	required	in	these
cases.

VirtualDub	help	-	Dialogs:	Audio	compression

VirtualDub	can	use	audio	codecs	installed	in	Windows	to	compress
video.

Note Audio	codecs	are	external	drivers	created	by	third	parties	and
are	not	part	of	VirtualDub.	VirtualDub	does	not	install	codecs	by
itself	and	does	not	provide	any	audio	compression	technology	of
its	own.

Selecting	a	audio	codec
Currently	installed	audio	codecs	are	listed	on	the	left.	Select	No
compression	(PCM)	to	disable	audio	compression,	or	choose	a
codec.	Once	a	codec	is	chosen,	the	available	compression	formats
produced	by	the	codec	are	shown	on	the	right.	By	default,	VirtualDub
only	displays	those	formats	that	can	be	produced	by	the	codec	from
the	current	audio	source	and	filtering	settings.	Uncheck	show	all
formats	to	display	all	formats	allowed	by	the	codec,	but	note	that
attempting	a	conversion	unsupported	by	the	codec	will	generally

result	in	an	error.

Note Not	all	codecs	are	usable	--	sometimes	programs	install
versions	of	a	codec	designed	only	to	decompress	audio,	not
to	compress	it.	Also,	sometimes	the	codecs	are	keyed	to	a
particular	program	due	to	licensing	concerns,	and	thus	won't
work	in	VirtualDub.	In	particular,	codecs	installed	by	some
versions	of	Windows	Media	are	not	licensed	for	general	use
and	won't	work	except	for	in	an	ASF	file	under	Windows
Media	Player.

Note Installing	two	codecs	that	compress	and	decompress	the
same	format	may	confuse	VirtualDub.	This	includes	having
more	than	one	MP3	codec,	or	having	both	Windows	Media
Audio	and	"DivX	Audio"	installed.

Note There	are	four	common	versions	of	the	MPEG	Layer-3
codec	that	appear	the	same,	except	for	the	compression
formats	supported:

L3CODECX.ACM	-	no	compression	supported
L3CODECA.ACM	(Advanced)	-	up	to	56Kbps
L3CODECP.ACM	(Professional)	-	up	to	128Kbps
L3CODECP.ACM	(Radium	warez	version)	-	up	to	256Kbps

All	four	of	these	codecs	are	very	similar	and	have	the	same
ID	in	the	Windows	Audio	Compression	Manager,	so	two
programs	that	come	with	different	versions	sometimes
overwrite	each	others'	codecs	when	installing.	If	you	used	to
have	certain	MP3	compression	options	and	no	longer	have
them,	it's	possible	a	program	you	recently	installed	has	done
this.

VirtualDub	help	-	Dialogs:	Audio	conversion

The	audio	conversion	dialog	allows	for	conversion	between	different
PCM	audio	formats,	including	changes	in	sampling	frequency,	sample
precision,	and	channels.

Note Audio	conversion	is	only	permitted	if	advanced	filtering	is	off	--	if
advanced	audio	filtering	is	on,	use	the	resample	filter.

Sampling	rate	conversions
Allows	changes	in	the	sampling	rate	of	the	audio	stream,	without
changing	the	pitch	of	the	audio	itself	(resampling).	You	can	select
one	of	the	common	sampling	rates,	or	custom	to	resample	to	any
other	rate.	Higher	sampling	rates	represent	higher	frequencies	better
and	give	"brighter"	audio,	but	consume	more	space.

Integral	conversion
Forces	the	conversion	to	operate	by	integral	multiplies	(one-half,
one-third,	twice,	three	times,	etc).	Use	this	if	you	want	to	convert
to	a	integral	factor	of	the	original	rate	that's	close	but	not	exactly
the	same	as	one	of	the	listed	values,	i.e.	22047.5Hz.	If	the
frequency	you	select	is	exactly	what	you	want	then	this	option
should	be	unchecked.

High	quality
Switches	the	resampling	filter	from	point	sampling	to	a	triangle
filter	for	better	quality.	This	reduces	aliasing,	which	sounds	like
noise	or	halo	in	the	output.

Note The	sampling	rate	converter	controlled	by	this	dialog	is
rather	antiquated	and	not	very	high-quality	by	today's
standards.	The	resample	filter	introduced	in	VirtualDub	1.5
uses	a	65-point	windowed-sinc	filter	and	produces	better
quality	than	the	triangle	filter	allowed	here.	It	is	slated	to
replace	this	resampler	as	the	primary	resampler	in	a	later
version.

Precision
Controls	the	accuracy	of	audio	samples	--	8-bit	samples	only	take
half	as	much	space	as	16-bit,	but	can't	represent	soft	sounds	as
accurately	and	have	a	higher	noise	floor.

Note 8-bit	should	really	only	be	used	if	you	are	outputting
uncompressed	PCM	to	another	program	that	needs	it,	or
aren't	changing	existing	8-bit	PCM.	Otherwise,	instinctually
choose	16-bit.	Modern	audio	codecs	work	in	different	audio
representations,	such	as	subbands	or	cosines,	and	thus
don't	get	better	compression	with	8-bit	source	than	with	16-
bit.

Channels

Allows	conversion	of	stereo	audio	to	mono	or	mono	to	stereo.	For
stereo-to-mono	conversions,	the	two	channels	are	summed	at	half
amplitude	((l+r)/2).	For	mono-to-stereo	conversions,	the	single
channel	is	replicated	into	the	left	and	right	outputs.

The	left	and	right	options	convert	a	stereo	stream	to	mono	by
discarding	the	unwanted	channel.	This	is	particularly	useful	for	some
dual-language	or	karaoke	produced,	where	two	mono	streams	are
stored	as	the	left	and	right	channels	of	a	stereo	track.

Note For	simple	audio	encodings	such	as	PCM	or	ADPCM,
dropping	a	stereo	stream	to	mono	halves	the	size	of	the
audio	stream.	More	complex	encodings	such	as	MP3,
however,	can	encode	a	stereo	stream	as	"center"	and	"side"
tracks	or	volume	differentials	(mid/side	and	intensity	modes
of	joint	stereo).	Such	methods	take	advantage	of	similarities
between	the	stereo	channels	and	can	make	stereo	relatively
cheap	to	encode	over	mono.

Bandwidth	required
Shows	how	much	space	would	be	required	per	second	of	audio
without	compression	(uncompressed	PCM),	in	kilobytes	per	second
(KB/s).	CD-quality	audio,	for	instance,	requires	172KB/sec	(176,400
bytes	per	second).

VirtualDub	help	-	Dialogs:	Audio	volume

Permits	volume	adjustments	to	audio,	to	make	the	audio	louder	or	softer.

Note VirtualDub	hard	clips	when	amplifying	audio,	so	boosting	the
volume	too	much	will	result	in	distortion.

Note It	is	easier	to	make	soft	audio	louder	than	to	make	loud	audio
softer	--	if	the	source	audio	was	so	loud	that	it	clipped	during
recording,	introducing	distortion,	reducing	volume	after	the	fact
won't	remove	the	distortion.	On	the	other	hand,	amplifying	soft
audio	also	amplifies	quantization	noise,	which	is	particularly	bad
with	8-bit	source.	Try	not	to	adjust	volume	more	than	you	need
to;	it	is	better	to	record	audio	at	the	right	volume	in	the	first	place.

VirtualDub	help	-	Dialogs:	Capture	settings

Controls	basic	video	capture	settings.

Wait	for	OK	to	capture
If	checked,	a	dialog	is	displayed	after	capture	is	initialized.	This
minimizes	click-to-capture	delay.

Frame	rate
Controls	how	fast	video	frames	are	captured.

Note Frame	rates	are	rounded	to	the	nearest	microsecond	period.

Round	to	nearest	millisecond
Some	capture	drivers	only	allow	frame	rates	corresponding	to
integer	periods	in	milliseconds.	With	such	a	driver,	for	instance,	the
two	closest	rates	to	15	fps	are	14.925	fps	(67	ms)	and	15.152	fps	(66
ms).	This	button	allows	you	to	see	the	actual	rate	that	would	occur.

Obsolete	settings

Many	settings	that	used	to	be	in	this	dialog	have	been	obsoleted	or
moved:

Capture	audio
Now	an	option	on	the	Audio	menu.

Abort	hotkey	and	button
The	abort	hotkey	is	now	always	Esc.	Also,	it	is	program-local
(VirtualDub	must	have	focus	for	it	to	work).

Audio	and	video	buffer	limits,	audio	buffer	size
Set	automatically.

Drop	%	limit,	maximum	index	entries,	lock	video	stream	to	audio
These	options	applied	only	to	AVICap	(compatibility	mode)	capture,
which	is	no	longer	supported.

VirtualDub	help	-	Dialogs:	Preferences

Sets	application	preferences.

Main	tab:

Output	color	depth
Selects	the	default	color	precision	for	video	display	--	24-bit	looks
better,	but	16-bit	is	generally	faster.	This	does	not	affect	file	output.

Process	priority
Force	VirtualDub	to	be	at	a	higher	or	lower	priority	than	other
applications	when	processing	files.	VirtualDub	will	always	use	CPU
time	that	goes	unused	by	other	programs,	but	you	can	use	this
setting	to	force	it	to	use	more	or	less	CPU	when	other	applications
need	it	as	well.

Automatically	add	extension	to	filenames	when	saving
Controls	whether	file	extensions	(.avi)	are	automatically	added
when	you	type	a	filename	without	one	in	a	save	dialog.

Display	tab	(none	of	these	options	affect	file	output):

Enable	16-bit	dithering
If	enabled,	24-bit	images	are	dithered	when	displaying	in	16-bit	to
reduce	banding,	at	the	cost	of	a	little	speed.

Use	DirectX	for	display	panes
Enables	accelerated	video	display	for	the	display	panes.	This	usually
results	in	much	better	display	performance	as	well	as	a	better
looking,	smoother	(interpolated)	image.	Disabling	this	option	forces
use	of	the	safest	but	slowest	display	mechanism,	which	uses
Windows	GDI	to	render	video	images.

Use	DirectX	when	Terminal	Services	is	active
Enables	accelerated	video	display	over	a	remote	session	using
Windows	Terminal	Services	or	Remote	Desktop.	Due	to	apparent
bugs	in	the	Terminal	Server	implementation,	allowing	DirectX
acceleration	in	this	mode	can	cause	video	to	always	display	in	the
upper-left	corner	of	the	desktop,	so	by	default	VirtualDub	disables
acceleration	when	it	detects	a	remote	session.	This	is	often	faster
anyway.

Use	Direct3D
Enables	use	of	the	Direct3D	9.0c	accelerated	3D	graphics	API	to
display	video.	This	enables	use	of	the	filtering	options	in	the	display
panes	to	select	between	point	sampling	and	bilinear	filtering,	and	if
the	3D	device	is	powerful	enough,	bicubic	filtering.

Use	effect	file
Enables	use	of	a	D3DX	effect	file	(.fx)	to	specify	custom	Direct3D
vertex	and	pixel	shaders	to	display	video.	This	requires	an	additional
DirectX	system	DLL	to	be	installed	and	knowledge	of	the	effect	file
format	to	create	the	appropriate	effects.	Consult	the	video	shader
reference	for	details.

Use	OpenGL
Enables	use	of	the	OpenGL	accelerated	3D	graphics	API	to	display

video.	This	enables	use	of	the	filtering	options	in	the	display	panes	to
select	between	point	sampling	and	bilinear	filtering.	Note	that	use	of
OpenGL	when	an	accelerated	3D	device	is	not	present	may	result	in
substantial	performance	degredation.

Scene	tab:

Interframe	(cut)	and	intraframe	(fade)	thresholds
Controls	the	sensitivity	of	the	scene	forward/backward	buttons	on	the
position	bar.	A	"scene	change"	is	detected	whenever	there	is	a
significant	change	in	the	image	(cut),	or	scene	details	drop	below	a
threshold	(fade).

CPU	tab:

Use	default	optimizations,	or	force	specific	optimizations
By	default,	VirtualDub	automatically	detects	your	CPU	and	chooses
appropriately	optimized	code	paths.	If	you	experience	problems	due
to	incorrect	detection,	you	can	force	specific	codepaths	on	or	off	in
this	tab.	Note	that	enabling	an	optimization	not	supported	by	your
CPU	will	result	in	a	crash	or	incorrect	execution.

Note Video	and	audio	codecs	do	their	own	CPU-specific	dispatch,
and	are	not	controllable	by	these	settings.	If	you	experience
problems	with	a	codec	that	is	not	detecting	your	CPU
correctly,	you	must	contact	the	codec	manufacturer	for	help.

AVI	tab:

Restrict	legacy	AVI	support	to	1	gigabyte
Extended	AVI	files	(AVI	2.0	or	OpenDML	AVI)	are	composed	of	two
parts:	a	legacy	AVI	portion,	and	extended	AVI	blocks.	This	option
drops	the	limit	for	the	legacy	portion	from	2GB	to	1GB,	for
applications	that	cannot	handle	AVI	files	between	1-2GB,	and	may
be	helpful	if	you	have	running	applications	that	scan	AVI	files	and
choke	on	large	ones.	It	has	no	effect	on	programs	that	handle
extended	AVI	files.

Do	not	correct	MPEG	layer	III	audio	streams
Some	MP3	codecs	do	not	generate	MP3	streams	at	exactly	the
same	rate	as	specified	in	their	audio	format	when	44.1KHz	sampling
rates	are	used	--	this	causes	a	small	discrepancy	in	audio	sync	of
around	0.5%.	By	default,	VirtualDub	recomputes	the	data	rate	and
automatically	corrects	the	audio	header	when	MP3	compression	is
active.	This	option	allows	you	to	disable	correction	if	it	is	causing
problems,	such	as	an	MP3	stream	being	generated	in	a	format	that
VirtualDub	cannot	parse	correctly.

Directly	decode	YCbCr	(YUV)	sources
By	default,	VirtualDub	will	directly	decode	AVI	video	streams	with
uncompressed	YCbCr	formats	that	it	recognizes,	including	UYVY,
YUY2,	YV16,	YV12,	I420,	IYUV,	Y41P,	YVU9,	Y8,	and	Y800,	even	if
an	external	video	codec	would	otherwise	be	used.	This	can	result	in
better	quality	as	VirtualDub	uses	bilinear	interpolation	when
upsampling	chroma.	Disabling	this	option	will	disable	YCbCr	decode
support	and	allow	use	of	video	codecs	to	handle	such	data.

Align	large	uncompressed	frames	to	sector	boundary
Some	self-contained,	professional-level	hardware	playback	devices
attain	higher	performance	when	working	with	AVIs	that	have	video
frames	aligned	to	sector	boundaries	on	the	disk	rather	than	the
simple	two-byte	alignment	required	by	AVI.	Enabling	this	option
causes	sector	alignment	to	be	used,	at	the	cost	of	slightly	larger	AVI
files.	The	additional	alignment	is	only	in	effect	when	a	recognized
uncompressed	video	format	is	used	and	the	size	of	the	video	frame
exceeds	the	specified	threshold	size.

Timeline	page:

Timeline	format
This	option	allows	customization	of	the	timestamp	indicator	on
VirtualDub's	main	UI.	Formatting	specifiers	—	a	percent	sign
followed	by	a	letter	—	cause	various	pieces	of	information	to	be
substituted	into	the	given	string.	The	permitted	formatting	specifiers
are	listed	below	the	editable	string.

Render	options:

Confirm	when	abort	button	is	pressed
When	enabled,	attempts	to	abort	a	preview	or	save	operation	will
cause	a	confirmation	dialog	to	be	displayed	before	actually	aborting.

Threading	options:

Video	compression	threads
Controls	the	number	of	threads	used	for	video	compression;	zero
disables	multithreaded	video	compression.	See	compression	for
more	details.

VirtualDub	help	-	Batch	operation:	Distributed
mode

Introduction

Distributed	mode	allows	you	to	farm	out	jobs	to	multiple	instances	of
VirtualDub,	either	on	the	same	machine	or	on	a	local	network.	This
permits	greater	throughput	and	also	better	flexibility	in	running	jobs,	as
the	instance(s)	that	create	the	jobs	need	not	be	the	same	ones	that	run
them.	On	a	single	machine,	this	allows	setting	up	one	job	interactively
while	other	jobs	are	proceeding	in	the	background,	or	taking	advantage
of	multiple	CPU	cores	than	a	single	instance	of	VirtualDub	can	use;	on
multiple	machines,	this	allows	automation	of	parallel	video	processing	on
a	farm	of	machines.

Setting	up	distributed	mode

In	order	to	run	VirtualDub's	batch	system	in	distributed	mode,	all
instances	of	VirtualDub	need	read/write	access	to	the	location	that	holds
the	VirtualDub	job	file.	This	file	is	shared	and	modified	by	all	running
copies	of	VirtualDub.	If	multiple	computers	are	participating,	the	file
needs	to	be	located	on	a	file	share	with	read/write	access.	The	file	can	be
named	anything	and	can	be	different	paths	on	different	machines;	each
instance	is	pointed	to	the	file	by	either	the	File	>	Use	shared	job	list...
command	in	the	Job	Control	dialog.

Security	warning		Anyone	with	write	access	to	the	job	file	can	add	jobs
to	it	and	cause	any	attached	instances	of	VirtualDub	to	create	or
overwrite	arbitrary	files	with	arbitrary	data.	This	could	potentially	lead	to
files	being	damaged	or	the	machine	being	compromised	if	unwanted
intruders	are	allowed	to	tamper	with	the	job	queue.	When	the	job	file	is
exposed	on	a	file	share,	make	sure	it	is	secured	appropriately	so	that
only	computers	and	users	under	your	control	have	access	to	the	file.
Running	distributed	mode	with	the	job	file	exposed	on	the	Internet	is	not
recommended.

The	instances	also	need	access	to	the	source	and	output	file	paths.	For
instance,	if	a	job	specifies	an	input	of	c:\sources\foo.avi	and	an	output
of	d:\outputs\bar.avi,	both	paths	need	to	be	valid	on	all	machines.	This
can	obviously	pose	problems	when	paths	are	poorly	chosen,	so	it	is	best
to	use	a	unified	path.	This	can	be	done	by	mounting	a	network	path	with
the	same	driver	or	mount	point	on	all	machines,	or	by	using	UNC	paths
(\\server\share).	Local	remapping	can	also	be	done	by	the	subst
command.

If	third	party	codecs	and	filters	are	involved,	which	they	invariably	are,
you	need	to	ensure	that	those	are	present	on	all	instances	of	VirtualDub.
Video	filters	and	input	driver	plugins,	in	particular,	should	be	auto-loaded
via	the	plugin	directories	as	the	job	script	will	not	load	them	manually.
Codecs	that	use	auxiliary	files	like	stats	files	need	to	be	configured	such
that	the	temporary	files	land	in	valid	locations	on	all	machines,	as	well.

Running	jobs	from	the	distributed	queue

Once	all	computers	are	set	up	to	use	the	distributed	queue,	any	changes
to	the	job	queue	on	one	machine	will	be	reflected	to	the	rest.	You	can
start	the	job	queue	manually	on	each	instance	via	the	Run	button	as
usual,	but	it	is	better	to	check	the	Autostart	checkbox	instead,	which
causes	VirtualDub	to	automatically	run	any	job	that	appears	in	the	queue
in	the	Waiting	state.	Jobs	are	assigned	to	instances	only	when	they
become	idle,	so	load	balancing	occurs	automatically	—	an	instance	will
only	hold	onto	one	job	at	a	time,	the	one	it	is	currently	working	on.

When	jobs	are	started	or	completed	by	other	machines,	they	will	appear
in	the	job	queue	with	the	name	of	the	computer	and	the	process	ID	(PID)
of	the	instance	of	VirtualDub.	This	tag	persists	even	if	the	job	fails.	If	a
particular	instance	is	malfunctioning	and	not	completing	jobs	properly,	the
computer	name	and	PID	can	be	used	to	identify	the	bad	instance	and
remove	it	from	the	pool.

The	job	queue	can	be	modified	from	one	instance	while	others	are	active,
such	as	adding,	removing,	postponing,	or	reordering	jobs.	These
changes	will	automatically	be	reflected	and	merged	on	other	machines,
so	you	can	even	reorder	jobs	that	are	in	progress.	You	cannot	directly
delete	a	job	that	is	in	progress,	but	you	can	remotely	request	an	abort	by
selecting	the	job	entry	and	clicking	Abort,	or	by	double-clicking	on	it.	This
will	change	the	job	status	to	Aborting,	and	assuming	that	the	instance	is
still	running,	i.e.	it	hasn't	crashed	or	hung,	it	will	abort	as	soon	as	the
change	propagates	and	is	noticed.

While	a	job	is	in	progress,	no	other	instances	of	VirtualDub	will	attempt	to
run	it.	If	the	instance	that	was	handling	that	job	fails,	the	job	may	be	stuck
in	the	queue	in	either	In	Progress	or	Aborting	status.	If	this	occurs,	make
sure	that	the	instance	is	killed	on	the	remote	machine	first,	and	then
Abort	the	job	again.	This	will	take	two	tries	if	it	is	In	Progress,	one	to
change	it	to	Aborting,	and	another	to	reset	it	to	Waiting.	Note	that
VirtualDub	will	issue	a	warning	before	forcing	a	job	from	Aborting	state	to
Waiting,	because	if	another	instance	is	actually	still	running	that	job,
resetting	it	may	cause	two	instances	to	run	the	same	job,	leading	to

problems.

Command-line	automation

You	can	automatically	launch	VirtualDub	in	distributed	job	queue	mode
via	the	command-line.	The	/master	switch	takes	the	path	and	filename	of
the	job	file	as	an	argument	and	automatically	sets	it	as	the	distributed	job
queue	file;	the	/slave	switch	also	enables	the	autostart	option.	If	you
have	a	remote	launch	mechanism,	you	can	remotely	launch	VirtualDub
on	worker	machines	with	the	/slave	option,	and	then	launch	a	local	copy
as	/master	in	order	to	manipulate	the	job	queue.

Note	that	other	than	the	initial	state	of	the	autostart	option,	there	is	no
difference	otherwise	between	instances	of	VirtualDub	started	in	master	or
slave	mode,	or	than	just	setting	the	job	file	and	autostart	option	manually.

Transferring	jobs	between	distributed	and	local	mode

You	can	take	the	VirtualDub.jobs	file	and	copy	it	to	a	new	location,	or
save	a	copy	using	the	File	>	Save	job	list...	command,	and	use	that	as	a
distributed	job	queue.	This	is	handy	for	preparing	jobs	without	having	to
first	set	up	distributed	mode	or	for	transferring	locally	set	up	to	jobs	to	a
distributed	queue.	If	you	disconnect	all	instances	from	a	distributed	job
file,	you	can	also	reload	that	job	file	as	a	local	queue.

Warning		The	default	virtualdub.jobs	file	itself	is	used	as	the	local	job
queue	and	should	not	be	used	directly	as	a	distributed	job	queue.	The
distributed	job	queue	will	be	corrupted	if	an	instance	of	VirtualDub	is
using	the	queue	file	in	local	mode,	as	the	instance	in	local	mode	will	not
attempt	to	merge	changes,	and	VirtualDub	will	issue	a	warning	if	you
attempt	to	do	so.	You	can	copy	the	local	job	file	or	save	it	under	a
different	name	or	path	and	use	that	file	as	the	distributed	job	queue	file,
but	you	must	not	use	the	local	job	file	itself.

Caveats

The	distributed	job	file	is	managed	via	a	revision-based	diff	and	merge
system.	While	the	merge	algorithm	is	designed	to	avoid	traditional
merging	problems	that	would	destroy	the	job	queue,	notably	duplication
or	deletion	errors,	it	can	sometimes	resolve	conflicts	in	unexpected	ways.
It	is	generally	safe	to	modify	individual	jobs	by	postponing	or	restarting
them.	However,	if	two	instances	try	to	reorder	the	job	list	at	exactly	the
same	time,	one	of	them	will	win	and	force	its	ordering	on	the	other.	This
is	safe	in	that	the	job	queue	will	still	be	correct,	but	the	reordering	on	the
losing	instance	will	have	to	be	redone.	Therefore,	it	is	recommended	that
you	modify	the	job	queue	from	only	one	instance	of	VirtualDub	at	a	time.

There	is	a	delay	between	the	time	that	a	change	is	made	locally	and
when	it	is	committed	to	the	shared	file,	and	another	delay	before	other
instance	notice	the	change	and	pick	it	up.	This	can	lead	to	some	slightly
odd	behavior	when	conflicts	occur,	such	as	if	a	job	finishes	on	a	remote
machine	right	when	you	try	to	abort	it.	The	job	system	tries	to	resolve
such	conflicts	in	the	most	sensible	manner;	for	instance,	in	the	abort-
done	case,	the	"done"	status	overrides	the	"aborting"	status,	since	the	file
is	already	complete.	If	the	resolution	is	unsatisfactory,	simply	reapply	the
change.

VirtualDub	help	-	AMD64	version

VirtualDub	comes	in	two	versions,	the	regular	32-bit	x86	version,	and	a
64-bit	version	for	processors	that	support	the	AMD64	architecture.	The
AMD64	version	has	some	differences	from	the	32-bit	version.

There	is	currently	no	version	for	the	64-bit	Intel	Itanium	architecture.

System	requirements	of	VirtualDub	for	AMD64

In	addition	to	the	regular	system	requirements,	the	AMD64	version	of
VirtualDub	also	requires:

A	CPU	that	supports	executing	AMD64	code.	As	of	this	writing,	this
includes	the	AMD	Athlon	64,	AMD	Opteron,	and	Intel	Xeons	with
EM64T.
Windows	XP	x64	Edition,	Vista	x64	Edition,	or	another	version	of
Windows	which	natively	runs	in	AMD64	long	mode.

It	is	not	possible	to	run	the	AMD64	version	of	VirtualDub	on	a	32-bit
version	of	Windows	even	if	the	CPU	is	64-bit	capable.

Differences	between	the	x86	and	AMD64	versions

Not	all	functionality	has	been	ported	to	64-bit,	so	the	selection	of	video
filters	is	reduced	compared	to	the	32-bit	version.	In	addition,	some
functionality	which	is	supported	is	not	fully	optimized	compared	to	the	32-
bit	equivalent,	so	the	64-bit	version	may	or	may	not	be	faster	than	the	32-
bit	version	for	your	scenario.

Due	to	an	OS	limitation,	64-bit	programs	cannot	load	32-bit	DLLs,	and
vice-versa.	As	a	result,	use	of	the	64-bit	version	of	VirtualDub	requires
64-bit	video	codecs	and	64-bit	video	filters;	32-bit	video	codecs	will	not
show	up	in	the	video	codec	list	or	be	available	for	opening	AVI	files,	and
32-bit	video	filters	will	not	load.	In	addition,	AVIFile	drivers	must	be	64-bit
to	be	used	on	load;	in	particular,	VirtualDub	for	AMD64	cannot	be	used
with	the	regular	32-bit	version	of	Avisynth.

VirtualDub	help	-	Command-line	operation

It	is	possible	to	invoke	VirtualDub	in	the	background	and	control	it	in	a
limited	fashion	from	other	programs.

VirtualDub	command-line	options

First,	specifying	a	filename	on	the	command	line	causes	VirtualDub	to
load	it	as	a	video	file	on	startup.	This	is	the	same	as	loading	it	using	File
>	Open	video	file...,	with	the	default	autodetect-format	mode.

virtualdub	"My	video.avi"

The	/s	flag	runs	a	script;	its	one	argument	is	the	filename	of	the	script	to
run.	Configuration	files	(.vcf)	are	scripts.	Note	that	the	order	of	arguments
is	significant;	some	settings,	such	as	the	edit	list,	are	reset	when	a	video
file	is	opened.

virtualdub	/s	mySettings.vcf	myVideo.avi

When	/x	is	used,	VirtualDub	exits	when	it	runs	through	the	whole
command	line.	Its	position	relative	to	other	options	does	not	matter.

virtualdub	myVideo.avi	/s	reprocess.script	/x

The	/p	flag	tells	VirtualDub	to	add	a	batch	job	using	the	current	settings
and	the	given	source	and	destination	filenames.	The	/b	flag	adds	jobs	to
process	an	entire	directory	into	another.

virtualdub	/s	mySettings.vcf	/p	source.avi	dest.avi	/x

/r	causes	VirtualDub	to	process	the	job	queue;	/c	tells	VirtualDub	to	clear
it.

virtualdub	/s	mySettings.vcf	/c	/b	source	dest	/r	/x

/i	invokes	a	script	with	arguments.	All	arguments	following	the	script
filename	until	the	next	switch	are	passed	to	the	script	in	the
VirtualDub.params[]	array.

virtualdub	/i	process.script	from.avi	to.avi	/x

Finally,	the	/queryVersion	flag	causes	VirtualDub	to	exit	with	its	build
number	as	the	return	code.	This	can	be	used	to	programmatically	adapt

to	multiple	versions.

virtualdub	/queryVersion

For	the	full	list	of	supported	command-line	switches,	run	virtualdub	/?.

Invoking	VirtualDub

The	start	command	can	be	used	to	launch	VirtualDub	with	lower	priority
than	usual	for	background	operation.

start	/low	virtualdub.exe

Because	virtualdub.exe	and	veedub64.exe	are	GUI	programs,	the
command	interpreter	in	Windows	will	not	wait	for	them	to	exit	before
returning.	In	addition,	its	main	window	will	appear	as	usual.	This	can	be
changed	by	using	the	vdub.exe	or	vdub64.exe	front	ends,	which	launch
the	main	application	in	a	special	command-line	mode.

vdub	/i	GetVideoLength.script	foo.avi

When	the	command	line	front	end	is	used,	VirtualDub	automatically	starts
with	its	main	window	minimized	(but	not	hidden),	and	automatically	exits
when	it	has	completed	processing	(implicit	/x).	In	addition,	log	output	is
diverted	to	standard	output.

Caveat:	Using	VirtualDub	in	unattended	processes

If	you	integrate	VirtualDub	as	part	of	an	unattended	process	and	need	to
track	processes,	you	should	remember	that	vdub.exe	and	vdub64.exe	are
just	front	ends	for	VirtualDub.exe	and	Veedub64.exe.	This	has
implications	for	monitoring	the	VirtualDub	process	or	forcibly	killing	it.	If
you	send	a	Ctrl+C	event	to	the	command-line	driver,	it	will	attempt	to	soft-
stop	the	main	process	via	a	WM_QUIT	event.	However,	if	you	kill	the
command-line	driver	process	outright,	the	main	process	will	continue	to
run.	If	you	need	to	forcibly	kill	the	VirtualDub	process,	you	must	kill	the
main	GUI	process;	killing	the	command-line	driver	process	is	optional	as
it	will	automatically	exit	anyway	whenever	the	GUI	child	terminates.

VirtualDub	help	-	Running	VirtualDub	as	non-
administrator

VirtualDub	can	be	run	from	a	Windows	user	account	with	limited
privileges,	but	there	are	some	limitations	to	be	aware	of.

File	layout

Currently,	VirtualDub	stores	batch	queue	information	in	a	writable	file
called	VirtualDub.jobs,	placed	next	to	the	program	file	(VirtualDub.exe).	If
VirtualDub	is	located	in	a	folder	that	is	not	writable	by	the	current	user,
the	job	queue	will	not	be	saved	between	sessions.

Operations	that	require	elevated	privileges

The	"shutdown	when	finished"	option	in	the	Job	Control	dialog	requires
shutdown	privileges.

Preallocating	disk	space	in	capture	mode	works	differently	depending	on
whether	the	"Manage	Volume"	privilege	is	available,	which	is	normally
granted	only	to	administrators.	If	this	privilege	is	available,	VirtualDub
preallocates	space	very	quickly;	if	it	is	not	available,	then	capture	files
can	still	be	preallocated,	but	Windows	will	zero	the	entire	file,	which	can
take	some	time.

Note The	turbo	preallocation	mode	causes	the	capture	file	to	contain
whatever	was	previously	on	the	disk,	which	may	cause	the
contents	of	previously	deleted	files	to	reappear	until	the	capture
finishes	and	the	unused	space	is	re-deleted.	If	you	are	on	a
shared	system,	you	may	want	to	protect	the	directory	with	the
capture	file	so	that	non-administrators	cannot	read	the	old	data
in	the	capture	file.

VirtualDub	help

So,	you	managed	to	crash	VirtualDub....

VirtualDub	attempts	to	diagnose	the	immediate	cause	for	your	crash	in
the	initial	crash	dialog	that	is	displayed;	this	is	usually	helpful	in
determining	the	cause	of	your	crash.	While	reading	the	context	dump,
please	note	the	following:

The	analysis	is	not	always	correct.	Sometimes	a	failure	causes	the
CPU	to	go	off	into	nowhere	and	the	analyzer	reports	misleading
information.
VirtualDub	reports	the	immediate	cause	of	the	crash,	but	that	may
not	always	indicate	the	true	cause,	if	the	failure	is	delayed.
Third-party	drivers	can	cause	VirtualDub	to	crash.	This	includes
capture	drivers,	video	codecs,	and	audio	codecs.

VirtualDub	produces	a	crash	dump	file	(crashinfo.txt)	that	can	be	of
help	to	the	program	author	when	diagnosing	a	crash,	as	noted	in	the
crash	dialog.	However,	before	submitting	a	crash	dump,	please	attempt
the	following	diagnosis	steps:

Upgrade	to	the	latest	version	of	VirtualDub	if	one	is	available.	Newer
versions	almost	always	fix	bugs.	The	Help	|	Change	Log...	menu
option	will	tell	you	what	fixes	have	been	applied.
Try	to	reproduce	it.	Crashes	that	only	happen	once	aren't	fixable.
Remove	third-party	drivers.	If	you	are	using	audio	and	video	codecs,
try	using	no	codec	at	all	and	see	if	it	makes	a	difference.	Third-party
codecs	are	the	#1	cause	of	crashes	within	VirtualDub	and	it	is	very
helpful	if	you	can	identify	the	codec	as	a	trigger,	so	that	the	root
cause	of	the	problem	is	more	easily	found.	Also,	please	attempt	to
update	to	the	latest	version	of	any	drivers,	as	the	bug	you	are
experiencing	may	already	have	been	fixed.

Note If	VirtualDub's	context	info	tells	you	that	an	instruction	not
supported	by	your	CPU	was	executed	in	a	particular	codec,
while	that	codec	was	being	used,	99.9%	of	the	time	the

cause	is	the	codec	not	properly	checking	your	CPU	before
executing	optimized	code.	VirtualDub	does	not	have	control
over	this	and	you	must	consult	the	codec	manufacturer	for
technical	support	in	this	case.	Make	sure	your	CPU	meets
the	stated	minimum	requirements	for	that	codec.

Determine	if	a	particular	setting	is	implicated.	If	a	particular	filter	is
needed	to	trigger	the	crash,	I	need	to	know	that.
Check	your	input.	Many	crashes	in	codecs	are	caused	by	AVI	files
being	damaged	during	transmission	over	the	Internet.	Suspect	this
has	occurred	if	you	are	consistently	getting	crashes	on	a	particular
video	frame.
Un-overclock	and	check	system	temperature.	A	rare,	but	nasty,	case
of	crashes	is	an	overclocked	CPU,	or	worse,	an	overheated	CPU
(frozen	fans	are	not	unheard	of).	If	you	are	overclocking,	please
attempt	to	downclock	to	the	correct	speeds	for	your	CPU	and
motherboard	before	reporting	a	crash.

VirtualDub	help	-	Audio	filter	reference
butterfly Converts	between	left/right	and	mid/side	stereo	channels.
center	cut Extract	a	center	channel	from	stereo	audio.
center	mix Mix	a	mono	stream	with	a	stereo	stream.
discard Dump	unwanted	audio.
gain Modify	the	volume	of	audio.
highpass Cut	out	sounds	below	a	given	frequency.
input Pull	audio	from	AVI	or	WAV	source.
lowpass Cut	out	sounds	above	a	given	frequency.
mix Add	together	audio	streams.
output Sink	from	graph	into	output	file.
pitch	shift Modify	the	pitch	of	audio	without	changing	speed.
ratty	pitch
shift

Modify	the	pitch	of	audio	without	changing	speed	(old
algorithm).

resample Convert	audio	to	a	different	sampling	frequency.
split Split	an	audio	stream	into	two	identical	copies.
stereo
chorus

Add	a	chorus	effect.

stereo
merge

Merge	two	mono	streams	into	a	stereo	stream.

stereo	split Split	a	stereo	stream	into	two	mono	streams.
stretch Stretch	or	contract	audio,	modifying	length	and	pitch.
time	stretch Stretch	or	contract	audio,	modifying	length	without

changing	pitch.

butterfly

Converts	between	left/right	and	mid/side	stereo	channels.

Butterfly	computes	the	sum	and	differences	between	the	left	and	right
channels.	This	allows	stereo	algorithms	to	be	applied	in	mid/side	mode	--
for	instance,	butterfly	and	gain	can	be	used	to	increase	or	decrease
stereo	separation.	Bufferfly	is	its	own	inverse	and	can	be	used	to	switch
to	or	from	mid/side	representation.

center	cut

Extract	a	center	channel	from	stereo	audio.

Center	cut	uses	FFT	phase	analysis	to	guess	the	sounds	of	the	center
channel,	then	subtracts	the	channel	to	produce	left/right	and	center
outputs.	Because	downmixing	three	arbitrary	channels	down	to	two	is
irreversible,	this	separation	is	not	perfect	and	some	artifacts	may	result
from	the	algorithm.

center	mix

Mix	a	mono	stream	with	a	stereo	stream.

The	first	input	must	be	the	stereo	stream,	the	second	the	mono.	Both
must	have	the	same	sampling	rate.

discard

Dump	unwanted	audio.

Since	all	pins	in	an	audio	filter	graph	must	be	connected,	use	the	discard
filter	to	sink	any	outputs	you	do	not	want.

gain

Modify	the	volume	of	audio.

The	amplified	or	attenuated	output	is	hard	clipped,	so	boosting	the	gain
on	an	audio	stream	that	is	already	hits	full	volume	at	peak	will	cause
clipping	distortion.

highpass

Cut	out	sounds	below	a	given	frequency.

High	pass	filters	are	good	for	simulating	tinny	transmission	media,	such
as	two-way	radio.	This	particular	filter	uses	a	129-point	FIR	filter;	the
transition	band,	the	area	where	the	filter	tapers	off	from	zero	gain	to	full
gain,	is	about	1.4KHz	at	a	sampling	rate	of	44KHz.	This	places	some
limits	on	how	effective	the	high	pass	filter	is	in	some	extreme	situations.
For	instance,	an	ideal	high	pass	filter	passes	all	audio	with	a	cutoff	of
zero,	but	this	filter	will	mute	some	sound	up	to	about	700Hz	at	44KHz
sample	rate.

input

Pull	audio	from	AVI	or	WAV	source.

lowpass

Cut	out	sounds	above	a	given	frequency.

Low	pass	filters	are	good	for	eliminating	hiss	and	other	high-frequency
noises.	This	particular	filter	uses	a	129-point	FIR	filter;	the	transition
band,	the	area	where	the	filter	tapers	off	from	full	gain	to	zero	gain,	is
about	1.4KHz	at	a	sampling	rate	of	44KHz.	This	places	some	limits	on
how	effective	the	low	pass	filter	is	in	some	extreme	situations.	For
instance,	an	ideal	low	pass	filter	kills	all	audio	with	a	cutoff	of	zero,	but
this	filter	will	give	you	muted	sound	up	to	about	700Hz	at	44KHz	sample
rate.

mix

Add	together	audio	streams.

The	mix	is	simple	addition	with	hard	clipping,	so	if	you	combine	the	mix
with	an	attenuating	gain	filter	to	reduce	the	post-mix	volume,	the	gain
filter	should	be	first.	If	one	input	has	fewer	channels	than	the	other,	the
lowest	N	channels	common	between	the	two	are	mixed,	and	the
remaining	channels	are	passed	through.

You	cannot	mix	two	streams	that	have	different	sampling	rates	--
resample	one	to	match	the	other	to	do	this.

output

Sink	from	graph	into	output	file.

You	need	one	of	these	in	any	audio	filter	graph.	It	automagically	morphs
into	the	file	output	or	audio	playback	filter	as	appropriate.

pitch	shift

Modify	the	pitch	of	audio	without	changing	speed.

Pitch	shift	works	by	stretching	or	contracting	its	input,	slicing	it	into	small
sections,	and	then	overlapping	and	mixing	them.	This	alters	the	pitch	of
the	audio	without	changing	its	speed;	since	the	frequency	spectrum	is
scaled,	harmonics	are	preserved.	When	raising	pitch,	some	portions	of
audio	are	duplicated,	and	when	lowering	pitch,	some	audio	portions	are
dropped.	Pitch	shift	tries	to	shift	the	segments	around	to	reduce	artifacts,
but	occasionally	you	may	hear	some	hiccups,	or	duplicated/missing
beats.	That's	why	it's	ratty,	but	it's	fun	to	play	with.	The	filter	is	most
effective	within	about	+/-10%.

If	you	combine	pitch	shift	with	stretch	and	use	the	same	ratios	for	both,
you	get	a	time	stretcher,	which	alters	the	speed	of	audio	without	changing
its	pitch.

ratty	pitch	shift

Modify	the	pitch	of	audio	without	changing	speed	(old	algorithm).

Ratty	pitch	shift	works	by	stretching	or	contracting	its	input,	slicing	it	into
small	sections,	and	then	overlapping	and	mixing	them.	This	alters	the
pitch	of	the	audio	without	changing	its	speed;	since	the	frequency
spectrum	is	scaled,	harmonics	are	preserved.	When	raising	pitch,	some
portions	of	audio	are	duplicated,	and	when	lowering	pitch,	some	audio
portions	are	dropped.	Ratty	pitch	shift	tries	to	shift	the	segments	around
to	reduce	artifacts,	but	occasionally	you	may	hear	some	hiccups,	or
duplicated/missing	beats.	That's	why	it's	ratty,	but	it's	fun	to	play	with.	The
filter	is	most	effective	within	about	+/-10%.

If	you	combine	ratty	pitch	shift	with	stretch	and	use	the	same	ratios	for
both,	you	get	a	time	stretcher,	which	alters	the	speed	of	audio	without
changing	its	pitch.

resample

Convert	audio	to	a	different	sampling	frequency.

This	filter	uses	a	32-phase,	129-tap	filter	bank	to	resample	audio	--	it	is
higher	quality	than	the	Audio	|	Conversion...	option	and	should	be
preferred	for	converting	between	sampling	rates.	The	transition	band	is
~1.4KHz	at	44KHz	sampling	rate,	and	as	a	result,	very	sharp
downsampling,	such	as	44KHz	to	8KHz,	may	result	in	some	aliasing.
This	sounds	a	bit	like	a	halo.	You	can	reduce	the	aliasing	by	applying	a
low	pass	filter	with	a	cutoff	~700Hz	lower	than	half	the	source	or	half	the
target	sampling	rate,	whichever	is	lower.	However,	this	will	muffle	the
sound	somewhat.

split

Split	an	audio	stream	into	two	identical	copies.

stereo	chorus

Add	a	chorus	effect.

Stereo	chorus	mixes	audio	back	into	itself	with	a	varying	delay	of	24-26
ms,	controlled	by	two	LFOs	at	3.3Hz	that	are	offset	by	90°.	This	adds	a
bit	of	stereo	separation	to	sound.

You	use	either	mono	or	stereo	sound	as	input	to	stereo	chorus;	when
mono	is	used,	it	is	first	duplicated	to	stereo	channels	before	chorus	is
added.

stereo	merge

Merge	two	mono	streams	into	a	stereo	stream.

Both	streams	must	have	the	same	sampling	rate.

stereo	split

Split	a	stereo	stream	into	two	mono	streams.

stretch

Stretch	or	contract	audio,	modifying	length	and	pitch.

This	effect	is	the	same	that	you	would	get	by	running	an	audio	tape	too
fast	or	too	slow	--	the	audio	speeds	up	and	raises	pitch,	or	slows	down
and	becomes	grumpy.	Stretch	uses	polyphase	resampling	and	thus
doesn't	introduce	transient	artifacts;	if	you	only	need	to	make	small
adjustments	to	the	length	of	the	audio	track,	this	is	a	good	way	to	do	it.

Note Stretch	feeds	its	output	at	a	different	rate	than	it	consumes	its
input,	since	it	changes	the	speed	of	audio	streams.	Audio	filter
graphs	must	never	combine	two	branches	that	run	at	different
speeds	--	the	result	is	either	unstable	seeking	or	the	filter	graph
freezing	up.	Be	particularly	careful	of	this	when	creating	parallel
branches	that	later	merge.

time	stretch

Stretch	or	contract	audio,	modifying	length	without	changing	pitch.

Use	time	stretch	to	make	an	audio	track	run	slightly	faster	or	slower,
without	causing	chipmuck	or	ogre	effects.	Typically	this	is	matched	with	a
corresponding	change	in	video	speed,	keeping	the	two	in	sync.	This	is
equivalent	to	combining	pitch	shift	and	stretch	filters,	but	with	slightly
higher	quality	and	ease	of	use.

	Introduction
	Video capture
	Hardware setup
	Driver selection
	Audio setup
	Pipeline
	Filtering
	Info panel
	Multi-segment mode
	Timing dialog
	Performance
	Troubleshooting
	Screen capture

	On a crash...

