
Oracle	VM	VirtualBox®

User	Manual

Version	5.2.4	Edition

Oracle	Corporation

http://www.virtualbox.org

Copyright	©	2004-2017	Oracle	Corporation

Table	of	Contents

1.	First	steps
1.1.	Why	is	virtualization	useful?
1.2.	Some	terminology
1.3.	Features	overview
1.4.	Supported	host	operating	systems
1.5.	Installing	VirtualBox	and	extension	packs
1.6.	Starting	VirtualBox
1.7.	Creating	your	first	virtual	machine
1.8.	Running	your	virtual	machine

1.8.1.	Starting	a	new	VM	for	the	first	time
1.8.2.	Capturing	and	releasing	keyboard	and	mouse
1.8.3.	Typing	special	characters
1.8.4.	Changing	removable	media
1.8.5.	Resizing	the	machine's	window
1.8.6.	Saving	the	state	of	the	machine

1.9.	Using	VM	groups
1.10.	Snapshots

1.10.1.	Taking,	restoring	and	deleting	snapshots
1.10.2.	Snapshot	contents

1.11.	Virtual	machine	configuration
1.12.	Removing	virtual	machines
1.13.	Cloning	virtual	machines
1.14.	Importing	and	exporting	virtual	machines
1.15.	Global	Settings
1.16.	Alternative	front-ends

2.	Installation	details
2.1.	Installing	on	Windows	hosts

2.1.1.	Prerequisites
2.1.2.	Performing	the	installation
2.1.3.	Uninstallation
2.1.4.	Unattended	installation
2.1.5.	Public	properties

2.2.	Installing	on	Mac	OS	X	hosts
2.2.1.	Performing	the	installation
2.2.2.	Uninstallation
2.2.3.	Unattended	installation

2.3.	Installing	on	Linux	hosts
2.3.1.	Prerequisites
2.3.2.	The	VirtualBox	driver	modules
2.3.3.	Performing	the	installation
2.3.4.	The	vboxusers	group
2.3.5.	Starting	VirtualBox	on	Linux

2.4.	Installing	on	Solaris	hosts
2.4.1.	Performing	the	installation
2.4.2.	The	vboxuser	group
2.4.3.	Starting	VirtualBox	on	Solaris
2.4.4.	Uninstallation
2.4.5.	Unattended	installation
2.4.6.	Configuring	a	zone	for	running	VirtualBox

3.	Configuring	virtual	machines
3.1.	Supported	guest	operating	systems

3.1.1.	Mac	OS	X	guests
3.1.2.	64-bit	guests

3.2.	Unattended	guest	installation
3.3.	Emulated	hardware
3.4.	General	settings

3.4.1.	"Basic"	tab
3.4.2.	"Advanced"	tab
3.4.3.	"Description"	tab

3.5.	System	settings
3.5.1.	"Motherboard"	tab
3.5.2.	"Processor"	tab
3.5.3.	"Acceleration"	tab

3.6.	Display	settings
3.7.	Storage	settings
3.8.	Audio	settings
3.9.	Network	settings
3.10.	Serial	ports
3.11.	USB	support

3.11.1.	USB	settings
3.11.2.	Implementation	notes	for	Windows	and	Linux	hosts

3.12.	Shared	folders
3.13.	User	Interface
3.14.	Alternative	firmware	(EFI)

3.14.1.	Video	modes	in	EFI
3.14.2.	Specifying	boot	arguments

4.	Guest	Additions
4.1.	Introduction
4.2.	Installing	and	Maintaining	Guest	Additions

4.2.1.	Guest	Additions	for	Windows
4.2.2.	Guest	Additions	for	Linux
4.2.3.	Guest	Additions	for	Solaris
4.2.4.	Guest	Additions	for	OS/2

4.3.	Shared	folders
4.3.1.	Manual	mounting
4.3.2.	Automatic	mounting

4.4.	Drag	and	Drop
4.4.1.	Supported	formats
4.4.2.	Known	limitations

4.5.	Hardware-accelerated	graphics
4.5.1.	Hardware	3D	acceleration	(OpenGL	and	Direct3D	8/9)
4.5.2.	Hardware	2D	video	acceleration	for	Windows	guests

4.6.	Seamless	windows
4.7.	Guest	properties
4.8.	Guest	control
4.9.	Memory	overcommitment

4.9.1.	Memory	ballooning
4.9.2.	Page	Fusion

5.	Virtual	storage
5.1.	Hard	disk	controllers:	IDE,	SATA	(AHCI),	SCSI,	SAS,	USB	MSD,
NVMe
5.2.	Disk	image	files	(VDI,	VMDK,	VHD,	HDD)
5.3.	The	Virtual	Media	Manager
5.4.	Special	image	write	modes
5.5.	Differencing	images
5.6.	Cloning	disk	images
5.7.	Host	I/O	caching
5.8.	Limiting	bandwidth	for	disk	images
5.9.	CD/DVD	support
5.10.	iSCSI	servers

6.	Virtual	networking
6.1.	Virtual	networking	hardware
6.2.	Introduction	to	networking	modes
6.3.	Network	Address	Translation	(NAT)

6.3.1.	Configuring	port	forwarding	with	NAT
6.3.2.	PXE	booting	with	NAT
6.3.3.	NAT	limitations

6.4.	Network	Address	Translation	Service
6.5.	Bridged	networking
6.6.	Internal	networking
6.7.	Host-only	networking
6.8.	UDP	Tunnel	networking
6.9.	VDE	networking
6.10.	Limiting	bandwidth	for	network	I/O
6.11.	Improving	network	performance

7.	Remote	virtual	machines
7.1.	Remote	display	(VRDP	support)

7.1.1.	Common	third-party	RDP	viewers
7.1.2.	VBoxHeadless,	the	remote	desktop	server
7.1.3.	Step	by	step:	creating	a	virtual	machine	on	a	headless	server
7.1.4.	Remote	USB
7.1.5.	RDP	authentication
7.1.6.	RDP	encryption
7.1.7.	Multiple	connections	to	the	VRDP	server
7.1.8.	Multiple	remote	monitors
7.1.9.	VRDP	video	redirection
7.1.10.	VRDP	customization

7.2.	Teleporting

8.	VBoxManage
8.1.	Introduction
8.2.	Commands	overview
8.3.	General	options
8.4.	VBoxManage	list
8.5.	VBoxManage	showvminfo
8.6.	VBoxManage	registervm	/	unregistervm
8.7.	VBoxManage	createvm
8.8.	VBoxManage	modifyvm

8.8.1.	General	settings
8.8.2.	Networking	settings
8.8.3.	Miscellaneous	settings
8.8.4.	Video	Capture	settings
8.8.5.	Remote	machine	settings
8.8.6.	Teleporting	settings
8.8.7.	Debugging	settings
8.8.8.	USB	card	reader	settings
8.8.9.	Auto	starting	VMs	during	host	system	boot

8.9.	VBoxManage	clonevm
8.10.	VBoxManage	import
8.11.	VBoxManage	export
8.12.	VBoxManage	startvm
8.13.	VBoxManage	controlvm
8.14.	VBoxManage	discardstate
8.15.	VBoxManage	adoptstate
8.16.	VBoxManage	snapshot
8.17.	VBoxManage	closemedium
8.18.	VBoxManage	storageattach
8.19.	VBoxManage	storagectl
8.20.	VBoxManage	bandwidthctl
8.21.	VBoxManage	showmediuminfo
8.22.	VBoxManage	createmedium
8.23.	VBoxManage	modifymedium
8.24.	VBoxManage	clonemedium
8.25.	VBoxManage	mediumproperty
8.26.	VBoxManage	encryptmedium
8.27.	VBoxManage	checkmediumpwd
8.28.	VBoxManage	convertfromraw

8.29.	VBoxManage	getextradata/setextradata
8.30.	VBoxManage	setproperty
8.31.	VBoxManage	usbfilter	add/modify/remove
8.32.	VBoxManage	sharedfolder	add/remove
8.33.	VBoxManage	guestproperty
8.34.	VBoxManage	guestcontrol
8.35.	VBoxManage	metrics
8.36.	VBoxManage	natnetwork
8.37.	VBoxManage	hostonlyif
8.38.	VBoxManage	dhcpserver
8.39.	VBoxManage	usbdevsource
8.40.	VBoxManage	debugvm
8.41.	VBoxManage	extpack
8.42.	VBoxManage	unattended

9.	Advanced	topics
9.1.	VBoxSDL,	the	simplified	VM	displayer

9.1.1.	Introduction
9.1.2.	Secure	labeling	with	VBoxSDL
9.1.3.	Releasing	modifiers	with	VBoxSDL	on	Linux

9.2.	Automated	guest	logons
9.2.1.	Automated	Windows	guest	logons
9.2.2.	Automated	Linux/Unix	guest	logons

9.3.	Advanced	configuration	for	Windows	guests
9.3.1.	Automated	Windows	system	preparation

9.4.	Advanced	configuration	for	Linux	and	Solaris	guests
9.4.1.	Manual	setup	of	selected	guest	services	on	Linux
9.4.2.	Guest	graphics	and	mouse	driver	setup	in	depth

9.5.	CPU	hot-plugging
9.6.	PCI	passthrough
9.7.	Webcam	passthrough

9.7.1.	Using	a	host	webcam	in	the	guest
9.7.2.	Windows	hosts
9.7.3.	Mac	OS	X	hosts
9.7.4.	Linux	and	Solaris	hosts

9.8.	Advanced	display	configuration
9.8.1.	Custom	VESA	resolutions
9.8.2.	Configuring	the	maximum	resolution	of	guests	when	using	the
graphical	frontend

9.9.	Advanced	storage	configuration
9.9.1.	Using	a	raw	host	hard	disk	from	a	guest
9.9.2.	Configuring	the	hard	disk	vendor	product	data	(VPD)
9.9.3.	Access	iSCSI	targets	via	Internal	Networking

9.10.	Legacy	commands	for	using	serial	ports
9.11.	Fine-tuning	the	VirtualBox	NAT	engine

9.11.1.	Configuring	the	address	of	a	NAT	network	interface
9.11.2.	Configuring	the	boot	server	(next	server)	of	a	NAT	network
interface
9.11.3.	Tuning	TCP/IP	buffers	for	NAT
9.11.4.	Binding	NAT	sockets	to	a	specific	interface
9.11.5.	Enabling	DNS	proxy	in	NAT	mode
9.11.6.	Using	the	host's	resolver	as	a	DNS	proxy	in	NAT	mode
9.11.7.	Configuring	aliasing	of	the	NAT	engine

9.12.	Configuring	the	BIOS	DMI	information
9.13.	Configuring	the	custom	ACPI	table
9.14.	Fine-tuning	timers	and	time	synchronization

9.14.1.	Configuring	the	guest	time	stamp	counter	(TSC)	to	reflect
guest	execution
9.14.2.	Accelerate	or	slow	down	the	guest	clock
9.14.3.	Tuning	the	Guest	Additions	time	synchronization	parameters
9.14.4.	Disabling	the	Guest	Additions	time	synchronization

9.15.	Installing	the	alternate	bridged	networking	driver	on	Solaris	11	hosts
9.16.	VirtualBox	VNIC	templates	for	VLANs	on	Solaris	11	hosts
9.17.	Configuring	multiple	host-only	network	interfaces	on	Solaris	hosts
9.18.	Configuring	the	VirtualBox	CoreDumper	on	Solaris	hosts
9.19.	VirtualBox	and	Solaris	kernel	zones
9.20.	Locking	down	the	VirtualBox	GUI

9.20.1.	Customizing	the	VM	manager
9.20.2.	VM	selector	customization
9.20.3.	Configure	VM	selector	menu	entries
9.20.4.	Configure	VM	window	menu	entries
9.20.5.	Configure	VM	window	status	bar	entries
9.20.6.	Configure	VM	window	visual	modes
9.20.7.	Host	Key	customization
9.20.8.	Action	when	terminating	the	VM
9.20.9.	Default	action	when	terminating	the	VM
9.20.10.	Action	for	handling	a	Guru	Meditation
9.20.11.	Configuring	automatic	mouse	capturing
9.20.12.	Configuring	automatic	mouse	capturing
9.20.13.	Requesting	legacy	full-screen	mode

9.21.	Starting	the	VirtualBox	web	service	automatically
9.21.1.	Linux:	starting	the	webservice	via	init
9.21.2.	Solaris:	starting	the	web	service	via	SMF
9.21.3.	Mac	OS	X:	starting	the	webservice	via	launchd

9.22.	VirtualBox	Watchdog
9.22.1.	Memory	ballooning	control
9.22.2.	Host	isolation	detection
9.22.3.	More	information
9.22.4.	Linux:	starting	the	watchdog	service	via	init
9.22.5.	Solaris:	starting	the	watchdog	service	via	SMF

9.23.	Other	extension	packs
9.24.	Starting	virtual	machines	during	system	boot

9.24.1.	Linux:	starting	the	autostart	service	via	init
9.24.2.	Solaris:	starting	the	autostart	service	via	SMF
9.24.3.	Mac	OS	X:	starting	the	autostart	service	via	launchd

9.25.	VirtualBox	expert	storage	management
9.26.	Handling	of	host	power	management	events
9.27.	Experimental	support	for	passing	through	SSE4.1	/	SSE4.2
instructions
9.28.	Support	for	keyboard	indicators	synchronization
9.29.	Capturing	USB	traffic	for	selected	devices
9.30.	Configuring	the	heartbeat	service
9.31.	Encryption	of	disk	images

9.31.1.	Limitations
9.31.2.	Encrypting	disk	images
9.31.3.	Starting	a	VM	with	encrypted	images
9.31.4.	Decrypting	encrypted	images

9.32.	Paravirtualized	debugging
9.32.1.	Hyper-V	debug	options

9.33.	PC	speaker	passthrough
9.34.	Accessing	USB	devices	exposed	over	the	network	with	USB/IP

9.34.1.	Setting	up	USB/IP	support	on	a	Linux	system
9.34.2.	Security	considerations

9.35.	VISO	file	format	/	RTIsoMaker

10.	Technical	background
10.1.	Where	VirtualBox	stores	its	files

10.1.1.	Machines	created	by	VirtualBox	version	4.0	or	later
10.1.2.	Machines	created	by	VirtualBox	versions	before	4.0
10.1.3.	Global	configuration	data
10.1.4.	Summary	of	4.0	configuration	changes
10.1.5.	VirtualBox	XML	files

10.2.	VirtualBox	executables	and	components
10.3.	Hardware	vs.	software	virtualization
10.4.	Paravirtualization	providers
10.5.	Details	about	software	virtualization
10.6.	Details	about	hardware	virtualization
10.7.	Nested	paging	and	VPIDs

11.	VirtualBox	programming	interfaces

12.	Troubleshooting
12.1.	Procedures	and	tools

12.1.1.	Categorizing	and	isolating	problems
12.1.2.	Collecting	debugging	information
12.1.3.	The	built-in	VM	debugger
12.1.4.	VM	core	format

12.2.	General
12.2.1.	Guest	shows	IDE/SATA	errors	for	file-based	images	on	slow
host	file	system
12.2.2.	Responding	to	guest	IDE/SATA	flush	requests
12.2.3.	Performance	variation	with	frequency	boosting
12.2.4.	Frequency	scaling	effect	on	CPU	usage
12.2.5.	Inaccurate	Windows	CPU	usage	reporting
12.2.6.	Poor	performance	caused	by	host	power	management
12.2.7.	GUI:	2D	Video	Acceleration	option	is	grayed	out

12.3.	Windows	guests
12.3.1.	No	USB	3.0	support	in	Windows	7	guests
12.3.2.	Windows	bluescreens	after	changing	VM	configuration
12.3.3.	Windows	0x101	bluescreens	with	SMP	enabled	(IPI	timeout)
12.3.4.	Windows	2000	installation	failures
12.3.5.	How	to	record	bluescreen	information	from	Windows	guests
12.3.6.	PCnet	driver	failure	in	32-bit	Windows	Server	2003	guests
12.3.7.	No	networking	in	Windows	Vista	guests
12.3.8.	Windows	guests	may	cause	a	high	CPU	load
12.3.9.	Long	delays	when	accessing	shared	folders
12.3.10.	USB	tablet	coordinates	wrong	in	Windows	98	guests
12.3.11.	Windows	guests	are	removed	from	an	Active	Directory
domain	after	restoring	a	snapshot
12.3.12.	Restoring	d3d8.dll	and	d3d9.dll
12.3.13.	Windows	3.x	limited	to	64	MB	RAM

12.4.	Linux	and	X11	guests
12.4.1.	Linux	guests	may	cause	a	high	CPU	load
12.4.2.	AMD	Barcelona	CPUs
12.4.3.	Buggy	Linux	2.6	kernel	versions
12.4.4.	Shared	clipboard,	auto-resizing	and	seamless	desktop	in	X11
guests

12.5.	Solaris	guests
12.5.1.	Older	Solaris	10	releases	crash	in	64-bit	mode

12.5.2.	Certain	Solaris	10	releases	may	take	long	to	boot	with	SMP
12.5.3.	Solaris	8	5/01	and	earlier	may	crash	on	startup

12.6.	FreeBSD	guests
12.6.1.	FreeBSD	10.0	may	hang	with	xHCI

12.7.	Windows	hosts
12.7.1.	VBoxSVC	out-of-process	COM	server	issues
12.7.2.	CD/DVD	changes	not	recognized
12.7.3.	Sluggish	response	when	using	Microsoft	RDP	client
12.7.4.	Running	an	iSCSI	initiator	and	target	on	a	single	system
12.7.5.	Bridged	networking	adapters	missing
12.7.6.	Host-only	networking	adapters	cannot	be	created

12.8.	Linux	hosts
12.8.1.	Linux	kernel	module	refuses	to	load
12.8.2.	Linux	host	CD/DVD	drive	not	found
12.8.3.	Linux	host	CD/DVD	drive	not	found	(older	distributions)
12.8.4.	Linux	host	floppy	not	found
12.8.5.	Strange	guest	IDE	error	messages	when	writing	to	CD/DVD
12.8.6.	VBoxSVC	IPC	issues
12.8.7.	USB	not	working
12.8.8.	PAX/grsec	kernels
12.8.9.	Linux	kernel	vmalloc	pool	exhausted

12.9.	Solaris	hosts
12.9.1.	Cannot	start	VM,	not	enough	contiguous	memory
12.9.2.	VM	aborts	with	out	of	memory	errors	on	Solaris	10	hosts

13.	Security	guide
13.1.	General	Security	Principles
13.2.	Secure	Installation	and	Configuration

13.2.1.	Installation	Overview
13.2.2.	Post	Installation	Configuration

13.3.	Security	Features
13.3.1.	The	Security	Model
13.3.2.	Secure	Configuration	of	Virtual	Machines
13.3.3.	Configuring	and	Using	Authentication
13.3.4.	Potentially	insecure	operations
13.3.5.	Encryption

14.	Known	limitations
14.1.	Experimental	Features
14.2.	Known	Issues

15.	Change	log
15.1.	Version	5.2.4	(2017-12-19)
15.2.	Version	5.2.2	(2017-11-22)
15.3.	Version	5.2.0	(2017-10-17)
15.4.	Version	5.1.30	(2017-10-16)
15.5.	Version	5.1.28	(2017-09-13)
15.6.	Version	5.1.30	(2017-10-16)
15.7.	Version	5.1.28	(2017-09-13)
15.8.	Version	5.1.26	(2017-07-27)
15.9.	Version	5.1.24	(2017-07-18)
15.10.	Version	5.1.22	(2017-04-28)
15.11.	Version	5.1.20	(2017-04-18)
15.12.	Version	5.1.18	(2017-03-15)
15.13.	Version	5.1.16	(2017-03-08)
15.14.	Version	5.1.14	(2017-01-16)
15.15.	Version	5.1.12	(2016-12-20)
15.16.	Version	5.1.10	(2016-11-21)
15.17.	Version	5.1.8	(2016-10-18)
15.18.	Version	5.1.6	(2016-09-12)
15.19.	Version	5.1.4	(2016-08-16)
15.20.	Version	5.1.2	(2016-07-21)
15.21.	Version	5.1.0	(2016-07-12)
15.22.	Version	5.0.24	(2016-06-28)
15.23.	Version	5.0.22	(2016-06-16)
15.24.	Version	5.0.20	(2016-04-28)
15.25.	Version	5.0.18	(2016-04-18)
15.26.	Version	5.0.16	(2016-03-04)
15.27.	Version	5.0.14	(2016-01-19)
15.28.	Version	5.0.12	(2015-12-18)
15.29.	Version	5.0.10	(2015-11-10)
15.30.	Version	5.0.8	(2015-10-20)
15.31.	Version	5.0.6	(2015-10-02)
15.32.	Version	5.0.4	(2015-09-08)
15.33.	Version	5.0.2	(2015-08-13)
15.34.	Version	5.0.0	(2015-07-09)
15.35.	Version	4.3.28	(2015-05-13)
15.36.	Version	4.3.26	(2015-03-16)
15.37.	Version	4.3.24	(2015-03-02)

15.38.	Version	4.3.22	(2015-02-12)
15.39.	Version	4.3.20	(2014-11-21)
15.40.	Version	4.3.18	(2014-10-10)
15.41.	Version	4.3.16	(2014-09-09)
15.42.	Version	4.3.14	(2014-07-15)
15.43.	Version	4.3.12	(2014-05-16)
15.44.	Version	4.3.10	(2014-03-26)
15.45.	Version	4.3.8	(2014-02-25)
15.46.	Version	4.3.6	(2013-12-18)
15.47.	Version	4.3.4	(2013-11-29)
15.48.	Version	4.3.2	(2013-11-01)
15.49.	Version	4.3.0	(2013-10-15)
15.50.	Older	Change	log	details

A.	Third-party	materials	and	licenses
A.1.	Materials
A.2.	Licenses

A.2.1.	GNU	General	Public	License	(GPL)
A.2.2.	GNU	Lesser	General	Public	License	(LGPL)
A.2.3.	Mozilla	Public	License	(MPL)
A.2.4.	MIT	License
A.2.5.	X	Consortium	License	(X11)
A.2.6.	zlib	license
A.2.7.	OpenSSL	license
A.2.8.	Slirp	license
A.2.9.	liblzf	license
A.2.10.	libpng	license
A.2.11.	lwIP	license
A.2.12.	libxml	license
A.2.13.	libxslt	licenses
A.2.14.	gSOAP	Public	License	Version	1.3a
A.2.15.	Chromium	licenses
A.2.16.	curl	license
A.2.17.	libgd	license
A.2.18.	BSD	license	from	Intel
A.2.19.	libjpeg	License
A.2.20.	x86	SIMD	extension	for	IJG	JPEG	library	license
A.2.21.	FreeBSD	license
A.2.22.	NetBSD	license
A.2.23.	PCRE	license

A.2.24.	libffi	license
A.2.25.	FLTK	license
A.2.26.	Expat	license
A.2.27.	Fontconfig	license
A.2.28.	Freetype	license
A.2.29.	VPX	License
A.2.30.	Opus	License

B.	VirtualBox	privacy	information
Glossary

List	of	Tables

6.1.	Overview
9.1.	Host	Key	customization
9.2.	Web	service	configuration	parameters
9.3.	VirtualBox	watchdog	configuration	parameters
9.4.	PC	speaker	configuration	options
10.1.	Configuration	changes	in	version	4.0	or	above

Chapter	1.	First	steps

Table	of	Contents

1.1.	Why	is	virtualization	useful?
1.2.	Some	terminology
1.3.	Features	overview
1.4.	Supported	host	operating	systems
1.5.	Installing	VirtualBox	and	extension	packs
1.6.	Starting	VirtualBox
1.7.	Creating	your	first	virtual	machine
1.8.	Running	your	virtual	machine

1.8.1.	Starting	a	new	VM	for	the	first	time
1.8.2.	Capturing	and	releasing	keyboard	and	mouse
1.8.3.	Typing	special	characters
1.8.4.	Changing	removable	media
1.8.5.	Resizing	the	machine's	window
1.8.6.	Saving	the	state	of	the	machine

1.9.	Using	VM	groups
1.10.	Snapshots

1.10.1.	Taking,	restoring	and	deleting	snapshots
1.10.2.	Snapshot	contents

1.11.	Virtual	machine	configuration
1.12.	Removing	virtual	machines
1.13.	Cloning	virtual	machines
1.14.	Importing	and	exporting	virtual	machines
1.15.	Global	Settings
1.16.	Alternative	front-ends

Welcome	to	Oracle	VM	VirtualBox!

VirtualBox	is	a	cross-platform	virtualization	application.	What	does	that	mean?
For	one	thing,	it	installs	on	your	existing	Intel	or	AMD-based	computers,
whether	they	are	running	Windows,	Mac,	Linux	or	Solaris	operating	systems.
Secondly,	it	extends	the	capabilities	of	your	existing	computer	so	that	it	can	run
multiple	operating	systems	(inside	multiple	virtual	machines)	at	the	same	time.
So,	for	example,	you	can	run	Windows	and	Linux	on	your	Mac,	run	Windows
Server	2008	on	your	Linux	server,	run	Linux	on	your	Windows	PC,	and	so	on,

all	alongside	your	existing	applications.	You	can	install	and	run	as	many	virtual
machines	as	you	like	--	the	only	practical	limits	are	disk	space	and	memory.

VirtualBox	is	deceptively	simple	yet	also	very	powerful.	It	can	run	everywhere
from	small	embedded	systems	or	desktop	class	machines	all	the	way	up	to
datacenter	deployments	and	even	Cloud	environments.

The	following	screenshot	shows	you	how	VirtualBox,	installed	on	a	Mac
computer,	is	running	Windows	8	in	a	virtual	machine	window:

In	this	User	Manual,	we'll	begin	simply	with	a	quick	introduction	to
virtualization	and	how	to	get	your	first	virtual	machine	running	with	the	easy-to-
use	VirtualBox	graphical	user	interface.	Subsequent	chapters	will	go	into	much
more	detail	covering	more	powerful	tools	and	features,	but	fortunately,	it	is	not
necessary	to	read	the	entire	User	Manual	before	you	can	use	VirtualBox.

You	can	find	a	summary	of	VirtualBox's	capabilities	in	Section	1.3,	“Features
overview”.	For	existing	VirtualBox	users	who	just	want	to	see	what's	new	in	this
release,	there	is	a	detailed	list	in	Chapter	15,	Change	log.

1.1.	Why	is	virtualization	useful?

The	techniques	and	features	that	VirtualBox	provides	are	useful	for	several
scenarios:

Running	multiple	operating	systems	simultaneously.	VirtualBox	allows
you	to	run	more	than	one	operating	system	at	a	time.	This	way,	you	can	run
software	written	for	one	operating	system	on	another	(for	example,
Windows	software	on	Linux	or	a	Mac)	without	having	to	reboot	to	use	it.
Since	you	can	configure	what	kinds	of	"virtual"	hardware	should	be
presented	to	each	such	operating	system,	you	can	install	an	old	operating
system	such	as	DOS	or	OS/2	even	if	your	real	computer's	hardware	is	no
longer	supported	by	that	operating	system.

Easier	software	installations.	Software	vendors	can	use	virtual	machines
to	ship	entire	software	configurations.	For	example,	installing	a	complete
mail	server	solution	on	a	real	machine	can	be	a	tedious	task.	With
VirtualBox,	such	a	complex	setup	(then	often	called	an	"appliance")	can	be
packed	into	a	virtual	machine.	Installing	and	running	a	mail	server	becomes
as	easy	as	importing	such	an	appliance	into	VirtualBox.

Testing	and	disaster	recovery.	Once	installed,	a	virtual	machine	and	its
virtual	hard	disks	can	be	considered	a	"container"	that	can	be	arbitrarily
frozen,	woken	up,	copied,	backed	up,	and	transported	between	hosts.

On	top	of	that,	with	the	use	of	another	VirtualBox	feature	called
"snapshots",	one	can	save	a	particular	state	of	a	virtual	machine	and	revert
back	to	that	state,	if	necessary.	This	way,	one	can	freely	experiment	with	a
computing	environment.	If	something	goes	wrong	(e.g.	after	installing
misbehaving	software	or	infecting	the	guest	with	a	virus),	one	can	easily
switch	back	to	a	previous	snapshot	and	avoid	the	need	of	frequent	backups
and	restores.

Any	number	of	snapshots	can	be	created,	allowing	you	to	travel	back	and
forward	in	virtual	machine	time.	You	can	delete	snapshots	while	a	VM	is
running	to	reclaim	disk	space.

Infrastructure	consolidation.	Virtualization	can	significantly	reduce

hardware	and	electricity	costs.	Most	of	the	time,	computers	today	only	use	a
fraction	of	their	potential	power	and	run	with	low	average	system	loads.	A
lot	of	hardware	resources	as	well	as	electricity	is	thereby	wasted.	So,
instead	of	running	many	such	physical	computers	that	are	only	partially
used,	one	can	pack	many	virtual	machines	onto	a	few	powerful	hosts	and
balance	the	loads	between	them.

1.2.	Some	terminology

When	dealing	with	virtualization	(and	also	for	understanding	the	following
chapters	of	this	documentation),	it	helps	to	acquaint	oneself	with	a	bit	of	crucial
terminology,	especially	the	following	terms:

Host	operating	system	(host	OS).

This	is	the	operating	system	of	the	physical	computer	on	which	VirtualBox
was	installed.	There	are	versions	of	VirtualBox	for	Windows,	Mac	OS	X,
Linux	and	Solaris	hosts;	for	details,	please	see	Section	1.4,	“Supported	host
operating	systems”.

Most	of	the	time,	this	User	Manual	discusses	all	VirtualBox	versions
together.	There	may	be	platform-specific	differences	which	we	will	point
out	where	appropriate.

Guest	operating	system	(guest	OS).

This	is	the	operating	system	that	is	running	inside	the	virtual	machine.
Theoretically,	VirtualBox	can	run	any	x86	operating	system	(DOS,
Windows,	OS/2,	FreeBSD,	OpenBSD),	but	to	achieve	near-native
performance	of	the	guest	code	on	your	machine,	we	had	to	go	through	a	lot
of	optimizations	that	are	specific	to	certain	operating	systems.	So	while
your	favorite	operating	system	may	run	as	a	guest,	we	officially	support	and
optimize	for	a	select	few	(which,	however,	include	the	most	common	ones).

See	Section	3.1,	“Supported	guest	operating	systems”	for	details.

Virtual	machine	(VM).

This	is	the	special	environment	that	VirtualBox	creates	for	your	guest
operating	system	while	it	is	running.	In	other	words,	you	run	your	guest
operating	system	"in"	a	VM.	Normally,	a	VM	will	be	shown	as	a	window
on	your	computer's	desktop,	but	depending	on	which	of	the	various
frontends	of	VirtualBox	you	use,	it	can	be	displayed	in	full	screen	mode	or
remotely	on	another	computer.

In	a	more	abstract	way,	internally,	VirtualBox	thinks	of	a	VM	as	a	set	of
parameters	that	determine	its	behavior.	They	include	hardware	settings
(how	much	memory	the	VM	should	have,	what	hard	disks	VirtualBox
should	virtualize	through	which	container	files,	what	CDs	are	mounted	etc.)
as	well	as	state	information	(whether	the	VM	is	currently	running,	saved,	its
snapshots	etc.).	These	settings	are	mirrored	in	the	VirtualBox	Manager
window	as	well	as	the	VBoxManage	command	line	program;	see	Chapter	8,
VBoxManage.	In	other	words,	a	VM	is	also	what	you	can	see	in	its	settings
dialog.

Guest	Additions.

This	refers	to	special	software	packages	which	are	shipped	with	VirtualBox
but	designed	to	be	installed	inside	a	VM	to	improve	performance	of	the
guest	OS	and	to	add	extra	features.	This	is	described	in	detail	in	Chapter	4,
Guest	Additions.

1.3.	Features	overview

Here's	a	brief	outline	of	VirtualBox's	main	features:

Portability.	VirtualBox	runs	on	a	large	number	of	32-bit	and	64-bit	host
operating	systems	(again,	see	Section	1.4,	“Supported	host	operating
systems”	for	details).

VirtualBox	is	a	so-called	"hosted"	hypervisor	(sometimes	referred	to	as	a
"type	2"	hypervisor).	Whereas	a	"bare-metal"	or	"type	1"	hypervisor	would
run	directly	on	the	hardware,	VirtualBox	requires	an	existing	operating
system	to	be	installed.	It	can	thus	run	alongside	existing	applications	on	that
host.

To	a	very	large	degree,	VirtualBox	is	functionally	identical	on	all	of	the	host
platforms,	and	the	same	file	and	image	formats	are	used.	This	allows	you	to
run	virtual	machines	created	on	one	host	on	another	host	with	a	different
host	operating	system;	for	example,	you	can	create	a	virtual	machine	on
Windows	and	then	run	it	under	Linux.

In	addition,	virtual	machines	can	easily	be	imported	and	exported	using	the
Open	Virtualization	Format	(OVF,	see	Section	1.14,	“Importing	and
exporting	virtual	machines”),	an	industry	standard	created	for	this	purpose.
You	can	even	import	OVFs	that	were	created	with	a	different	virtualization
software.

No	hardware	virtualization	required.	For	many	scenarios,	VirtualBox
does	not	require	the	processor	features	built	into	newer	hardware	like	Intel
VT-x	or	AMD-V.	As	opposed	to	many	other	virtualization	solutions,	you
can	therefore	use	VirtualBox	even	on	older	hardware	where	these	features
are	not	present.	The	technical	details	are	explained	in	Section	10.3,
“Hardware	vs.	software	virtualization”.

Guest	Additions:	shared	folders,	seamless	windows,	3D	virtualization.
The	VirtualBox	Guest	Additions	are	software	packages	which	can	be
installed	inside	of	supported	guest	systems	to	improve	their	performance
and	to	provide	additional	integration	and	communication	with	the	host
system.	After	installing	the	Guest	Additions,	a	virtual	machine	will	support

automatic	adjustment	of	video	resolutions,	seamless	windows,	accelerated
3D	graphics	and	more.	The	Guest	Additions	are	described	in	detail	in
Chapter	4,	Guest	Additions.

In	particular,	Guest	Additions	provide	for	"shared	folders",	which	let	you
access	files	from	the	host	system	from	within	a	guest	machine.	Shared
folders	are	described	in	Section	4.3,	“Shared	folders”.

Great	hardware	support.	Among	others,	VirtualBox	supports:

Guest	multiprocessing	(SMP).	VirtualBox	can	present	up	to	32
virtual	CPUs	to	each	virtual	machine,	irrespective	of	how	many	CPU
cores	are	physically	present	on	your	host.

USB	device	support.	VirtualBox	implements	a	virtual	USB	controller
and	allows	you	to	connect	arbitrary	USB	devices	to	your	virtual
machines	without	having	to	install	device-specific	drivers	on	the	host.
USB	support	is	not	limited	to	certain	device	categories.	For	details,	see
Section	3.11.1,	“USB	settings”.

Hardware	compatibility.	VirtualBox	virtualizes	a	vast	array	of	virtual
devices,	among	them	many	devices	that	are	typically	provided	by
other	virtualization	platforms.	That	includes	IDE,	SCSI	and	SATA	hard
disk	controllers,	several	virtual	network	cards	and	sound	cards,	virtual
serial	and	parallel	ports	and	an	Input/Output	Advanced	Programmable
Interrupt	Controller	(I/O	APIC),	which	is	found	in	many	modern	PC
systems.	This	eases	cloning	of	PC	images	from	real	machines	and
importing	of	third-party	virtual	machines	into	VirtualBox.

Full	ACPI	support.	The	Advanced	Configuration	and	Power
Interface	(ACPI)	is	fully	supported	by	VirtualBox.	This	eases	cloning
of	PC	images	from	real	machines	or	third-party	virtual	machines	into
VirtualBox.	With	its	unique	ACPI	power	status	support,	VirtualBox
can	even	report	to	ACPI-aware	guest	operating	systems	the	power
status	of	the	host.	For	mobile	systems	running	on	battery,	the	guest	can
thus	enable	energy	saving	and	notify	the	user	of	the	remaining	power
(e.g.	in	full	screen	modes).

Multiscreen	resolutions.	VirtualBox	virtual	machines	support	screen
resolutions	many	times	that	of	a	physical	screen,	allowing	them	to	be

spread	over	a	large	number	of	screens	attached	to	the	host	system.

Built-in	iSCSI	support.	This	unique	feature	allows	you	to	connect	a
virtual	machine	directly	to	an	iSCSI	storage	server	without	going
through	the	host	system.	The	VM	accesses	the	iSCSI	target	directly
without	the	extra	overhead	that	is	required	for	virtualizing	hard	disks
in	container	files.	For	details,	see	Section	5.10,	“iSCSI	servers”.

PXE	Network	boot.	The	integrated	virtual	network	cards	of
VirtualBox	fully	support	remote	booting	via	the	Preboot	Execution
Environment	(PXE).

Multigeneration	branched	snapshots.	VirtualBox	can	save	arbitrary
snapshots	of	the	state	of	the	virtual	machine.	You	can	go	back	in	time	and
revert	the	virtual	machine	to	any	such	snapshot	and	start	an	alternative	VM
configuration	from	there,	effectively	creating	a	whole	snapshot	tree.	For
details,	see	Section	1.10,	“Snapshots”.	You	can	create	and	delete	snapshots
while	the	virtual	machine	is	running.

VM	groups.	VirtualBox	provides	a	groups	feature	that	enables	the	user	to
organize	and	control	virtual	machines	collectively,	as	well	as	individually.
In	addition	to	basic	groups,	it	is	also	possible	for	any	VM	to	be	in	more
than	one	group,	and	for	groups	to	be	nested	in	a	hierarchy	--	i.e.	groups	of
groups.	In	general,	the	operations	that	can	be	performed	on	groups	are	the
same	as	those	that	can	be	applied	to	individual	VMs	i.e.	Start,	Pause,	Reset,
Close	(Save	state,	Send	Shutdown,	Poweroff),	Discard	Saved	State,	Show
in	fileSystem,	Sort.

Clean	architecture;	unprecedented	modularity.	VirtualBox	has	an
extremely	modular	design	with	well-defined	internal	programming
interfaces	and	a	clean	separation	of	client	and	server	code.	This	makes	it
easy	to	control	it	from	several	interfaces	at	once:	for	example,	you	can	start
a	VM	simply	by	clicking	on	a	button	in	the	VirtualBox	graphical	user
interface	and	then	control	that	machine	from	the	command	line,	or	even
remotely.	See	Section	1.16,	“Alternative	front-ends”	for	details.

Due	to	its	modular	architecture,	VirtualBox	can	also	expose	its	full
functionality	and	configurability	through	a	comprehensive	software
development	kit	(SDK),	which	allows	for	integrating	every	aspect	of

VirtualBox	with	other	software	systems.	Please	see	Chapter	11,	VirtualBox
programming	interfaces	for	details.

Remote	machine	display.	The	VirtualBox	Remote	Desktop	Extension
(VRDE)	allows	for	high-performance	remote	access	to	any	running	virtual
machine.	This	extension	supports	the	Remote	Desktop	Protocol	(RDP)
originally	built	into	Microsoft	Windows,	with	special	additions	for	full
client	USB	support.

The	VRDE	does	not	rely	on	the	RDP	server	that	is	built	into	Microsoft
Windows;	instead,	it	is	plugged	directly	into	the	virtualization	layer.	As	a
result,	it	works	with	guest	operating	systems	other	than	Windows	(even	in
text	mode)	and	does	not	require	application	support	in	the	virtual	machine
either.	The	VRDE	is	described	in	detail	in	Section	7.1,	“Remote	display
(VRDP	support)”.

On	top	of	this	special	capacity,	VirtualBox	offers	you	more	unique	features:

Extensible	RDP	authentication.	VirtualBox	already	supports
Winlogon	on	Windows	and	PAM	on	Linux	for	RDP	authentication.	In
addition,	it	includes	an	easy-to-use	SDK	which	allows	you	to	create
arbitrary	interfaces	for	other	methods	of	authentication;	see
Section	7.1.5,	“RDP	authentication”	for	details.

USB	over	RDP.	Via	RDP	virtual	channel	support,	VirtualBox	also
allows	you	to	connect	arbitrary	USB	devices	locally	to	a	virtual
machine	which	is	running	remotely	on	a	VirtualBox	RDP	server;	see
Section	7.1.4,	“Remote	USB”	for	details.

1.4.	Supported	host	operating	systems

Currently,	VirtualBox	runs	on	the	following	host	operating	systems:

Windows	hosts:[1]

Windows	Server	2008	(64-bit)

Windows	Server	2008	R2	(64-bit)

Windows	7	(32-bit	and	64-bit)

Windows	8	(32-bit	and	64-bit)

Windows	8.1	(32-bit	and	64-bit)

Windows	10	RTM	build	10240	(32-bit	and	64-bit)

Windows	Server	2012	(64-bit)

Windows	Server	2012	R2	(64-bit)

Windows	Server	2016	(64-bit)

Mac	OS	X	hosts	(64-bit):[2]

10.10	(Yosemite)

10.11	(El	Capitan)

10.12	(Sierra)

10.13	(High	Sierra)

Intel	hardware	is	required;	please	see	Chapter	14,	Known	limitations	also.

Linux	hosts	(32-bit	and	64-bit[3]).	Among	others,	this	includes:

Ubuntu	14.04	LTS,	16.04	LTS,	and	17.04

Debian	GNU/Linux	7	("Wheezy"),	8	("Jessie")	and	9	("Stretch")

Oracle	Enterprise	Linux	5,	Oracle	Linux	6	and	7

Redhat	Enterprise	Linux	5,	6	and	7

Fedora	25	and	26

Gentoo	Linux

openSUSE	13.2

It	should	be	possible	to	use	VirtualBox	on	most	systems	based	on	Linux
kernel	2.6	or	3.x	using	either	the	VirtualBox	installer	or	by	doing	a	manual
installation;	see	Section	2.3,	“Installing	on	Linux	hosts”.	However,	the
formally	tested	and	supported	Linux	distributions	are	those	for	which	we
offer	a	dedicated	package.

Note	that	starting	with	VirtualBox	2.1,	Linux	2.4-based	host	operating
systems	are	no	longer	supported.

Solaris	hosts	(64-bit	only)	are	supported	with	the	restrictions	listed	in
Chapter	14,	Known	limitations:

Solaris	11

Solaris	10	(U10	and	higher)

Note	that	the	above	list	is	informal.	Oracle	support	for	customers	who	have	a
support	contract	is	limited	to	a	subset	of	the	listed	host	operating	systems.	Also,
any	feature	which	is	marked	as	experimental	is	not	supported.	Feedback	and
suggestions	about	such	features	are	welcome.

[1]	Support	for	64-bit	Windows	was	added	with	VirtualBox	1.5.	Support	for
Windows	XP	was	removed	with	VirtualBox	5.0.	Support	for	Windows	Vista	was
removed	with	VirtualBox	5.2.

[2]	Preliminary	Mac	OS	X	support	(beta	stage)	was	added	with	VirtualBox	1.4,
full	support	with	1.6.	Mac	OS	X	10.4	(Tiger)	support	was	removed	with

VirtualBox	3.1.	Support	for	Mac	OS	X	10.7	(Lion)	and	earlier	was	removed	with
VirtualBox	5.0.	Support	for	Mac	OS	X	10.8	(Mountain	Lion)	was	removed	with
VirtualBox	5.1.	Support	for	Mac	OS	X	10.9	(Mavericks)	was	removed	with
VirtualBox	5.2.

[3]	Support	for	64-bit	Linux	was	added	with	VirtualBox	1.4.

1.5.	Installing	VirtualBox	and	extension	packs

VirtualBox	comes	in	many	different	packages,	and	installation	depends	on	your
host	operating	system.	If	you	have	installed	software	before,	installation	should
be	straightforward:	on	each	host	platform,	VirtualBox	uses	the	installation
method	that	is	most	common	and	easy	to	use.	If	you	run	into	trouble	or	have
special	requirements,	please	refer	to	Chapter	2,	Installation	details	for	details
about	the	various	installation	methods.

Starting	with	version	4.0,	VirtualBox	is	split	into	several	components.

1.	 The	base	package	consists	of	all	open-source	components	and	is	licensed
under	the	GNU	General	Public	License	V2.

2.	 Additional	extension	packs	can	be	downloaded	which	extend	the
functionality	of	the	VirtualBox	base	package.	Currently,	Oracle	provides	the
one	extension	pack,	which	can	be	found	at	http://www.virtualbox.org	and
provides	the	following	added	functionality:

a.	 The	virtual	USB	2.0	(EHCI)	device;	see	Section	3.11.1,	“USB
settings”.

b.	 The	virtual	USB	3.0	(xHCI)	device;	see	Section	3.11.1,	“USB
settings”.

c.	 VirtualBox	Remote	Desktop	Protocol	(VRDP)	support;	see
Section	7.1,	“Remote	display	(VRDP	support)”.

d.	 Host	webcam	passthrough;	see	chapter	Section	9.7.1,	“Using	a	host
webcam	in	the	guest”.

e.	 Intel	PXE	boot	ROM.

f.	 Experimental	support	for	PCI	passthrough	on	Linux	hosts;	see
Section	9.6,	“PCI	passthrough”.

g.	 Disk	image	encryption	with	AES	algorithm;	see	Section	9.31,
“Encryption	of	disk	images”.

http://www.virtualbox.org

VirtualBox	extension	packages	have	a	.vbox-extpack	file	name	extension.
To	install	an	extension,	simply	double-click	on	the	package	file	and	a
Network	Operations	Manager	window	will	appear,	guiding	you	through	the
required	steps.

To	view	the	extension	packs	that	are	currently	installed,	please	start	the
VirtualBox	Manager	(see	the	next	section).	From	the	"File"	menu,	please
select	"Preferences".	In	the	window	that	shows	up,	go	to	the	"Extensions"
category	which	shows	you	the	extensions	which	are	currently	installed	and
allows	you	to	remove	a	package	or	add	a	new	one.

Alternatively	you	can	use	VBoxManage	on	the	command	line:	see
Section	8.41,	“VBoxManage	extpack”	for	details.

1.6.	Starting	VirtualBox

After	installation,	you	can	start	VirtualBox	as	follows:

On	a	Windows	host,	in	the	standard	"Programs"	menu,	click	on	the	item	in
the	"VirtualBox"	group.	On	Vista	or	Windows	7,	you	can	also	type
"VirtualBox"	in	the	search	box	of	the	"Start"	menu.

On	a	Mac	OS	X	host,	in	the	Finder,	double-click	on	the	"VirtualBox"	item
in	the	"Applications"	folder.	(You	may	want	to	drag	this	item	onto	your
Dock.)

On	a	Linux	or	Solaris	host,	depending	on	your	desktop	environment,	a
"VirtualBox"	item	may	have	been	placed	in	either	the	"System"	or	"System
Tools"	group	of	your	"Applications"	menu.	Alternatively,	you	can	type
VirtualBox	in	a	terminal.

When	you	start	VirtualBox	for	the	first	time,	a	window	like	the	following	should
come	up:

This	window	is	called	the	"VirtualBox	Manager".	On	the	left,	you	can	see	a
pane	that	will	later	list	all	your	virtual	machines.	Since	you	have	not	created	any,
the	list	is	empty.	A	row	of	buttons	above	it	allows	you	to	create	new	VMs	and
work	on	existing	VMs,	once	you	have	some.	The	pane	on	the	right	displays	the
properties	of	the	virtual	machine	currently	selected,	if	any.	Again,	since	you
don't	have	any	machines	yet,	the	pane	displays	a	welcome	message.

To	give	you	an	idea	what	VirtualBox	might	look	like	later,	after	you	have	created
many	machines,	here's	another	example:

1.7.	Creating	your	first	virtual	machine

Click	on	the	"New"	button	at	the	top	of	the	VirtualBox	Manager	window.	A
wizard	will	pop	up	to	guide	you	through	setting	up	a	new	virtual	machine	(VM):

On	the	following	pages,	the	wizard	will	ask	you	for	the	bare	minimum	of
information	that	is	needed	to	create	a	VM,	in	particular:

1.	 The	VM	name	will	later	be	shown	in	the	VM	list	of	the	VirtualBox
Manager	window,	and	it	will	be	used	for	the	VM's	files	on	disk.	Even
though	any	name	could	be	used,	keep	in	mind	that	once	you	have	created	a
few	VMs,	you	will	appreciate	if	you	have	given	your	VMs	rather
informative	names;	"My	VM"	would	thus	be	less	useful	than	"Windows	XP
SP2	with	OpenOffice".

2.	 For	"Operating	System	Type",	select	the	operating	system	that	you	want
to	install	later.	The	supported	operating	systems	are	grouped;	if	you	want	to
install	something	very	unusual	that	is	not	listed,	select	"Other".	Depending
on	your	selection,	VirtualBox	will	enable	or	disable	certain	VM	settings
that	your	guest	operating	system	may	require.	This	is	particularly	important
for	64-bit	guests	(see	Section	3.1.2,	“64-bit	guests”).	It	is	therefore
recommended	to	always	set	it	to	the	correct	value.

3.	 On	the	next	page,	select	the	memory	(RAM)	that	VirtualBox	should
allocate	every	time	the	virtual	machine	is	started.	The	amount	of	memory
given	here	will	be	taken	away	from	your	host	machine	and	presented	to	the
guest	operating	system,	which	will	report	this	size	as	the	(virtual)

computer's	installed	RAM.

Note

Choose	this	setting	carefully!	The	memory	you	give	to	the	VM
will	not	be	available	to	your	host	OS	while	the	VM	is	running,
so	do	not	specify	more	than	you	can	spare.	For	example,	if	your
host	machine	has	1	GB	of	RAM	and	you	enter	512	MB	as	the
amount	of	RAM	for	a	particular	virtual	machine,	while	that	VM
is	running,	you	will	only	have	512	MB	left	for	all	the	other
software	on	your	host.	If	you	run	two	VMs	at	the	same	time,
even	more	memory	will	be	allocated	for	the	second	VM	(which
may	not	even	be	able	to	start	if	that	memory	is	not	available).
On	the	other	hand,	you	should	specify	as	much	as	your	guest
OS	(and	your	applications)	will	require	to	run	properly.

A	Windows	XP	guest	will	require	at	least	a	few	hundred	MB	RAM	to	run
properly,	and	Windows	Vista	will	even	refuse	to	install	with	less	than	512
MB.	Of	course,	if	you	want	to	run	graphics-intensive	applications	in	your
VM,	you	may	require	even	more	RAM.

So,	as	a	rule	of	thumb,	if	you	have	1	GB	of	RAM	or	more	in	your	host
computer,	it	is	usually	safe	to	allocate	512	MB	to	each	VM.	But,	in	any
case,	make	sure	you	always	have	at	least	256	to	512	MB	of	RAM	left	on
your	host	operating	system.	Otherwise	you	may	cause	your	host	OS	to
excessively	swap	out	memory	to	your	hard	disk,	effectively	bringing	your
host	system	to	a	standstill.

As	with	the	other	settings,	you	can	change	this	setting	later,	after	you	have
created	the	VM.

4.	 Next,	you	must	specify	a	virtual	hard	disk	for	your	VM.

There	are	many	and	potentially	complicated	ways	in	which	VirtualBox	can
provide	hard	disk	space	to	a	VM	(see	Chapter	5,	Virtual	storage	for	details),
but	the	most	common	way	is	to	use	a	large	image	file	on	your	"real"	hard
disk,	whose	contents	VirtualBox	presents	to	your	VM	as	if	it	were	a
complete	hard	disk.	This	file	represents	an	entire	hard	disk	then,	so	you	can
even	copy	it	to	another	host	and	use	it	with	another	VirtualBox	installation.

The	wizard	shows	you	the	following	window:

Here	you	have	the	following	options:

To	create	a	new,	empty	virtual	hard	disk,	press	the	"New"	button.

You	can	pick	an	existing	disk	image	file.

The	drop-down	list	presented	in	the	window	contains	all	disk	images
which	are	currently	remembered	by	VirtualBox,	probably	because	they
are	currently	attached	to	a	virtual	machine	(or	have	been	in	the	past).

Alternatively,	you	can	click	on	the	small	folder	button	next	to	the
drop-down	list	to	bring	up	a	standard	file	dialog,	which	allows	you	to
pick	any	disk	image	file	on	your	host	disk.

Most	probably,	if	you	are	using	VirtualBox	for	the	first	time,	you	will	want
to	create	a	new	disk	image.	Hence,	press	the	"New"	button.

This	brings	up	another	window,	the	"Create	New	Virtual	Disk	Wizard",
which	helps	you	create	a	new	disk	image	file	in	the	new	virtual	machine's
folder.

VirtualBox	supports	two	types	of	image	files:

A	dynamically	allocated	file	will	only	grow	in	size	when	the	guest
actually	stores	data	on	its	virtual	hard	disk.	It	will	therefore	initially	be
small	on	the	host	hard	drive	and	only	later	grow	to	the	size	specified	as
it	is	filled	with	data.

A	fixed-size	file	will	immediately	occupy	the	file	specified,	even	if
only	a	fraction	of	the	virtual	hard	disk	space	is	actually	in	use.	While
occupying	much	more	space,	a	fixed-size	file	incurs	less	overhead	and
is	therefore	slightly	faster	than	a	dynamically	allocated	file.

For	details	about	the	differences,	please	refer	to	Section	5.2,	“Disk	image
files	(VDI,	VMDK,	VHD,	HDD)”.

To	prevent	your	physical	hard	disk	from	running	full,	VirtualBox	limits	the
size	of	the	image	file.	Still,	it	needs	to	be	large	enough	to	hold	the	contents
of	your	operating	system	and	the	applications	you	want	to	install	--	for	a
modern	Windows	or	Linux	guest,	you	will	probably	need	several	gigabytes
for	any	serious	use.	The	limit	of	the	image	file	size	can	be	changed	later
(see	Section	8.23,	“VBoxManage	modifymedium”	for	details).

After	having	selected	or	created	your	image	file,	again	press	"Next"	to	go
to	the	next	page.

5.	 After	clicking	on	"Finish",	your	new	virtual	machine	will	be	created.	You
will	then	see	it	in	the	list	on	the	left	side	of	the	Manager	window,	with	the
name	you	entered	initially.

Note

After	becoming	familiar	with	the	use	of	wizards,	consider	using	the
Expert	Mode	available	in	some	wizards.	Where	available,	this	is
selectable	using	a	button,	and	speeds	up	user	processes	using
wizards.

1.8.	Running	your	virtual	machine

To	start	a	virtual	machine,	you	have	several	options:

Double-click	on	its	entry	in	the	list	within	the	Manager	window	or

select	its	entry	in	the	list	in	the	Manager	window	it	and	press	the	"Start"
button	at	the	top	or

for	virtual	machines	created	with	VirtualBox	4.0	or	later,	navigate	to	the
"VirtualBox	VMs"	folder	in	your	system	user's	home	directory,	find	the
subdirectory	of	the	machine	you	want	to	start	and	double-click	on	the
machine	settings	file	(with	a	.vbox	file	extension).

This	opens	up	a	new	window,	and	the	virtual	machine	which	you	selected	will
boot	up.	Everything	which	would	normally	be	seen	on	the	virtual	system's
monitor	is	shown	in	the	window,	as	can	be	seen	with	the	image	in	Section	1.2,
“Some	terminology”.

In	general,	you	can	use	the	virtual	machine	much	like	you	would	use	a	real
computer.	There	are	couple	of	points	worth	mentioning	however.

1.8.1.	Starting	a	new	VM	for	the	first	time

When	a	VM	gets	started	for	the	first	time,	another	wizard	--	the	"First	Start
Wizard"	--	will	pop	up	to	help	you	select	an	installation	medium.	Since	the
VM	is	created	empty,	it	would	otherwise	behave	just	like	a	real	computer	with
no	operating	system	installed:	it	will	do	nothing	and	display	an	error	message
that	no	bootable	operating	system	was	found.

For	this	reason,	the	wizard	helps	you	select	a	medium	to	install	an	operating
system	from.

If	you	have	physical	CD	or	DVD	media	from	which	you	want	to	install
your	guest	operating	system	(e.g.	in	the	case	of	a	Windows	installation	CD
or	DVD),	put	the	media	into	your	host's	CD	or	DVD	drive.

Then,	in	the	wizard's	drop-down	list	of	installation	media,	select	"Host

drive"	with	the	correct	drive	letter	(or,	in	the	case	of	a	Linux	host,	device
file).	This	will	allow	your	VM	to	access	the	media	in	your	host	drive,	and
you	can	proceed	to	install	from	there.

If	you	have	downloaded	installation	media	from	the	Internet	in	the	form	of
an	ISO	image	file	(most	probably	in	the	case	of	a	Linux	distribution),	you
would	normally	burn	this	file	to	an	empty	CD	or	DVD	and	proceed	as	just
described.	With	VirtualBox	however,	you	can	skip	this	step	and	mount	the
ISO	file	directly.	VirtualBox	will	then	present	this	file	as	a	CD	or	DVD-
ROM	drive	to	the	virtual	machine,	much	like	it	does	with	virtual	hard	disk
images.

For	this	case,	the	wizard's	drop-down	list	contains	a	list	of	installation
media	that	were	previously	used	with	VirtualBox.

If	your	medium	is	not	in	the	list	(especially	if	you	are	using	VirtualBox	for
the	first	time),	select	the	small	folder	icon	next	to	the	drop-down	list	to
bring	up	a	standard	file	dialog,	with	which	you	can	pick	the	image	file	on
your	host	disks.

In	both	cases,	after	making	the	choices	in	the	wizard,	you	will	be	able	to	install
your	operating	system.

1.8.2.	Capturing	and	releasing	keyboard	and	mouse

As	of	version	3.2,	VirtualBox	provides	a	virtual	USB	tablet	device	to	new	virtual
machines	through	which	mouse	events	are	communicated	to	the	guest	operating
system.	As	a	result,	if	you	are	running	a	modern	guest	operating	system	that	can
handle	such	devices,	mouse	support	may	work	out	of	the	box	without	the	mouse
being	"captured"	as	described	below;	see	Section	3.5.1,	“"Motherboard"	tab”	for
more	information.

Otherwise,	if	the	virtual	machine	only	sees	standard	PS/2	mouse	and	keyboard
devices,	since	the	operating	system	in	the	virtual	machine	does	not	"know"	that
it	is	not	running	on	a	real	computer,	it	expects	to	have	exclusive	control	over
your	keyboard	and	mouse.	This	is,	however,	not	the	case	since,	unless	you	are
running	the	VM	in	full	screen	mode,	your	VM	needs	to	share	keyboard	and
mouse	with	other	applications	and	possibly	other	VMs	on	your	host.

As	a	result,	initially	after	installing	a	guest	operating	system	and	before	you
install	the	Guest	Additions	(we	will	explain	this	in	a	minute),	only	one	of	the	two
--	your	VM	or	the	rest	of	your	computer	--	can	"own"	the	keyboard	and	the
mouse.	You	will	see	a	second	mouse	pointer	which	will	always	be	confined	to
the	limits	of	the	VM	window.	Basically,	you	activate	the	VM	by	clicking	inside
it.

To	return	ownership	of	keyboard	and	mouse	to	your	host	operating	system,
VirtualBox	reserves	a	special	key	on	your	keyboard	for	itself:	the	"host	key".
By	default,	this	is	the	right	Control	key	on	your	keyboard;	on	a	Mac	host,	the
default	host	key	is	the	left	Command	key.	You	can	change	this	default	in	the
VirtualBox	Global	Settings,	see	Section	1.15,	“Global	Settings”.	In	any	case,	the
current	setting	for	the	host	key	is	always	displayed	at	the	bottom	right	of	your
VM	window,	should	you	have	forgotten	about	it:

In	detail,	all	this	translates	into	the	following:

Your	keyboard	is	owned	by	the	VM	if	the	VM	window	on	your	host
desktop	has	the	keyboard	focus	(and	then,	if	you	have	many	windows	open
in	your	guest	operating	system	as	well,	the	window	that	has	the	focus	in
your	VM).	This	means	that	if	you	want	to	type	within	your	VM,	click	on
the	title	bar	of	your	VM	window	first.

To	release	keyboard	ownership,	press	the	Host	key	(as	explained	above,
typically	the	right	Control	key).

Note	that	while	the	VM	owns	the	keyboard,	some	key	sequences	(like	Alt-
Tab	for	example)	will	no	longer	be	seen	by	the	host,	but	will	go	to	the	guest
instead.	After	you	press	the	host	key	to	re-enable	the	host	keyboard,	all	key
presses	will	go	through	the	host	again,	so	that	sequences	like	Alt-Tab	will
no	longer	reach	the	guest.	For	technical	reasons	it	may	not	be	possible	for
the	VM	to	get	all	keyboard	input	even	when	it	does	own	the	keyboard.
Examples	of	this	are	the	Ctrl-Alt-Del	sequence	on	Windows	hosts	or	single
keys	grabbed	by	other	applications	on	X11	hosts	like	the	GNOME	desktop's
"Control	key	highlights	mouse	pointer"	functionality.

Your	mouse	is	owned	by	the	VM	only	after	you	have	clicked	in	the	VM
window.	The	host	mouse	pointer	will	disappear,	and	your	mouse	will	drive
the	guest's	pointer	instead	of	your	normal	mouse	pointer.

Note	that	mouse	ownership	is	independent	of	that	of	the	keyboard:	even
after	you	have	clicked	on	a	titlebar	to	be	able	to	type	into	the	VM	window,
your	mouse	is	not	necessarily	owned	by	the	VM	yet.

To	release	ownership	of	your	mouse	by	the	VM,	also	press	the	Host	key.

As	this	behavior	can	be	inconvenient,	VirtualBox	provides	a	set	of	tools	and
device	drivers	for	guest	systems	called	the	"VirtualBox	Guest	Additions"	which
make	VM	keyboard	and	mouse	operation	a	lot	more	seamless.	Most	importantly,
the	Additions	will	get	rid	of	the	second	"guest"	mouse	pointer	and	make	your
host	mouse	pointer	work	directly	in	the	guest.

This	will	be	described	later	in	Chapter	4,	Guest	Additions.

1.8.3.	Typing	special	characters

Operating	systems	expect	certain	key	combinations	to	initiate	certain	procedures.
Some	of	these	key	combinations	may	be	difficult	to	enter	into	a	virtual	machine,
as	there	are	three	candidates	as	to	who	receives	keyboard	input:	the	host
operating	system,	VirtualBox,	or	the	guest	operating	system.	Who	of	these	three
receives	keypresses	depends	on	a	number	of	factors,	including	the	key	itself.

Host	operating	systems	reserve	certain	key	combinations	for	themselves.
For	example,	it	is	impossible	to	enter	the	Ctrl+Alt+Delete	combination	if
you	want	to	reboot	the	guest	operating	system	in	your	virtual	machine,
because	this	key	combination	is	usually	hard-wired	into	the	host	OS	(both
Windows	and	Linux	intercept	this),	and	pressing	this	key	combination	will
therefore	reboot	your	host.

Also,	on	Linux	and	Solaris	hosts,	which	use	the	X	Window	System,	the	key
combination	Ctrl+Alt+Backspace	normally	resets	the	X	server	(to	restart
the	entire	graphical	user	interface	in	case	it	got	stuck).	As	the	X	server
intercepts	this	combination,	pressing	it	will	usually	restart	your	host
graphical	user	interface	(and	kill	all	running	programs,	including
VirtualBox,	in	the	process).

Third,	on	Linux	hosts	supporting	virtual	terminals,	the	key	combination
Ctrl+Alt+Fx	(where	Fx	is	one	of	the	function	keys	from	F1	to	F12)
normally	allows	to	switch	between	virtual	terminals.	As	with
Ctrl+Alt+Delete,	these	combinations	are	intercepted	by	the	host	operating
system	and	therefore	always	switch	terminals	on	the	host.

If,	instead,	you	want	to	send	these	key	combinations	to	the	guest	operating
system	in	the	virtual	machine,	you	will	need	to	use	one	of	the	following
methods:

Use	the	items	in	the	"Input"	→	"Keyboard"	menu	of	the	virtual
machine	window.	There	you	will	find	"Insert	Ctrl+Alt+Delete"	and
"Ctrl+Alt+Backspace";	the	latter	will	only	have	an	effect	with	Linux
or	Solaris	guests,	however.

Press	special	key	combinations	with	the	Host	key	(normally	the	right
Control	key),	which	VirtualBox	will	then	translate	for	the	virtual
machine:

Host	key	+	Del	to	send	Ctrl+Alt+Del	(to	reboot	the	guest);

Host	key	+	Backspace	to	send	Ctrl+Alt+Backspace	(to	restart	the
graphical	user	interface	of	a	Linux	or	Solaris	guest);

Host	key	+	F1	(or	other	function	keys)	to	simulate	Ctrl+Alt+F1
(or	other	function	keys,	i.e.	to	switch	between	virtual	terminals	in
a	Linux	guest).

For	some	other	keyboard	combinations	such	as	Alt-Tab	(to	switch	between
open	windows),	VirtualBox	allows	you	to	configure	whether	these
combinations	will	affect	the	host	or	the	guest,	if	a	virtual	machine	currently
has	the	focus.	This	is	a	global	setting	for	all	virtual	machines	and	can	be
found	under	"File"	→	"Preferences"	→	"Input"	→	"Auto-capture
keyboard".

1.8.4.	Changing	removable	media

While	a	virtual	machine	is	running,	you	can	change	removable	media	in	the
"Devices"	menu	of	the	VM's	window.	Here	you	can	select	in	detail	what

VirtualBox	presents	to	your	VM	as	a	CD,	DVD,	or	floppy.

The	settings	are	the	same	as	would	be	available	for	the	VM	in	the	"Settings"
dialog	of	the	VirtualBox	main	window,	but	since	that	dialog	is	disabled	while	the
VM	is	in	the	"running"	or	"saved"	state,	this	extra	menu	saves	you	from	having
to	shut	down	and	restart	the	VM	every	time	you	want	to	change	media.

Hence,	in	the	"Devices"	menu,	VirtualBox	allows	you	to	attach	the	host	drive	to
the	guest	or	select	a	floppy	or	DVD	image	using	the	Disk	Image	Manager,	all	as
described	in	Section	1.11,	“Virtual	machine	configuration”.

1.8.5.	Resizing	the	machine's	window

You	can	resize	the	virtual	machine's	window	when	it	is	running.	In	that	case,	one
of	three	things	will	happen:

1.	 If	you	have	"scale	mode"	enabled,	then	the	virtual	machine's	screen	will	be
scaled	to	the	size	of	the	window.	This	can	be	useful	if	you	have	many
machines	running	and	want	to	have	a	look	at	one	of	them	while	it	is	running
in	the	background.	Alternatively,	it	might	be	useful	to	enlarge	a	window	if
the	VM's	output	screen	is	very	small,	for	example	because	you	are	running
an	old	operating	system	in	it.

To	enable	scale	mode,	press	the	host	key	+	C,	or	select	"Scale	mode"	from
the	"Machine"	menu	in	the	VM	window.	To	leave	scale	mode,	press	the
host	key	+	C	again.

The	aspect	ratio	of	the	guest	screen	is	preserved	when	resizing	the	window.
To	ignore	the	aspect	ratio,	press	Shift	during	the	resize	operation.

Please	see	Chapter	14,	Known	limitations	for	additional	remarks.

2.	 If	you	have	the	Guest	Additions	installed	and	they	support	automatic
resizing,	the	Guest	Additions	will	automatically	adjust	the	screen	resolution
of	the	guest	operating	system.	For	example,	if	you	are	running	a	Windows
guest	with	a	resolution	of	1024x768	pixels	and	you	then	resize	the	VM
window	to	make	it	100	pixels	wider,	the	Guest	Additions	will	change	the
Windows	display	resolution	to	1124x768.

Please	see	Chapter	4,	Guest	Additions	for	more	information	about	the	Guest

Additions.

3.	 Otherwise,	if	the	window	is	bigger	than	the	VM's	screen,	the	screen	will	be
centered.	If	it	is	smaller,	then	scroll	bars	will	be	added	to	the	machine
window.

1.8.6.	Saving	the	state	of	the	machine

When	you	click	on	the	"Close"	button	of	your	virtual	machine	window	(at	the
top	right	of	the	window,	just	like	you	would	close	any	other	window	on	your
system),	VirtualBox	asks	you	whether	you	want	to	"save"	or	"power	off"	the
VM.	(As	a	shortcut,	you	can	also	press	the	Host	key	together	with	"Q".)

The	difference	between	these	three	options	is	crucial.	They	mean:

Save	the	machine	state:	With	this	option,	VirtualBox	"freezes"	the	virtual
machine	by	completely	saving	its	state	to	your	local	disk.

When	you	start	the	VM	again	later,	you	will	find	that	the	VM	continues
exactly	where	it	was	left	off.	All	your	programs	will	still	be	open,	and	your
computer	resumes	operation.	Saving	the	state	of	a	virtual	machine	is	thus	in
some	ways	similar	to	suspending	a	laptop	computer	(e.g.	by	closing	its	lid).

Send	the	shutdown	signal.	This	will	send	an	ACPI	shutdown	signal	to	the
virtual	machine,	which	has	the	same	effect	as	if	you	had	pressed	the	power
button	on	a	real	computer.	So	long	as	the	VM	is	running	a	fairly	modern
operating	system,	this	should	trigger	a	proper	shutdown	mechanism	from
within	the	VM.

Power	off	the	machine:	With	this	option,	VirtualBox	also	stops	running
the	virtual	machine,	but	without	saving	its	state.

Warning

This	is	equivalent	to	pulling	the	power	plug	on	a	real	computer
without	shutting	it	down	properly.	If	you	start	the	machine
again	after	powering	it	off,	your	operating	system	will	have	to
reboot	completely	and	may	begin	a	lengthy	check	of	its
(virtual)	system	disks.	As	a	result,	this	should	not	normally	be
done,	since	it	can	potentially	cause	data	loss	or	an	inconsistent
state	of	the	guest	system	on	disk.

As	an	exception,	if	your	virtual	machine	has	any	snapshots	(see	the	next
chapter),	you	can	use	this	option	to	quickly	restore	the	current	snapshot
of	the	virtual	machine.	In	that	case,	powering	off	the	machine	will	not
disrupt	its	state,	but	any	changes	made	since	that	snapshot	was	taken	will	be
lost.

The	"Discard"	button	in	the	VirtualBox	Manager	window	discards	a	virtual
machine's	saved	state.	This	has	the	same	effect	as	powering	it	off,	and	the	same
warnings	apply.

1.9.	Using	VM	groups

VM	groups	enable	the	user	to	create	ad	hoc	groups	of	VMs,	and	to	manage	and
perform	functions	on	them	collectively,	as	well	as	individually.	There	are	a
number	of	features	relating	to	groups:

1.	 Create	a	group	using	GUI	option	1)	Drag	one	VM	on	top	of	another	VM.

Create	a	group	using	GUI	option	2)	Select	multiple	VMs	and	select
"Group"	on	the	right	click	menu,	as	follows:

2.	 Command	line	option	1)	Create	a	group	and	assign	a	VM:

VBoxManage	modifyvm	"Fred"	--groups	"/TestGroup"

creates	a	group	"TestGroup"	and	attaches	the	VM	"Fred"	to	that	group.

Command	line	option	2)	Detach	a	VM	from	the	group,	and	delete	the	group
if	empty:

VBoxManage	modifyvm	"Fred"	--groups	""

It	detaches	all	groups	from	the	VM	"Fred"	and	deletes	the	empty	group.

3.	 Multiple	groups	e.g.:

VBoxManage	modifyvm	"Fred"	--groups	"/TestGroup,/TestGroup2"

It	creates	the	groups	"TestGroup"	and	"TestGroup2"	(if	they	don't	exist	yet)

and	attaches	the	VM	"Fred"	to	both	of	them.

4.	 Nested	groups	--	hierarchy	of	groups	e.g.:

VBoxManage	modifyvm	"Fred"	--groups	"/TestGroup/TestGroup2"

It	attaches	the	VM	"Fred"	to	the	subgroup	"TestGroup2"	of	the	"TestGroup"
group.

5.	 Summary	of	group	commands:	Start,	Pause,	Reset,	Close	(save	state,	send
shutdown	signal,	poweroff),	Discard	Saved	State,	Show	in	File	System,
Sort.

1.10.	Snapshots

With	snapshots,	you	can	save	a	particular	state	of	a	virtual	machine	for	later	use.
At	any	later	time,	you	can	revert	to	that	state,	even	though	you	may	have
changed	the	VM	considerably	since	then.	A	snapshot	of	a	virtual	machine	is	thus
similar	to	a	machine	in	"saved"	state,	as	described	above,	but	there	can	be	many
of	them,	and	these	saved	states	are	preserved.

You	can	see	the	snapshots	of	a	virtual	machine	by	first	selecting	a	machine	in	the
VirtualBox	Manager	and	then	clicking	on	the	"Snapshots"	button	at	the	top	right.
Until	you	take	a	snapshot	of	the	machine,	the	list	of	snapshots	will	be	empty
except	for	the	"Current	state"	item,	which	represents	the	"Now"	point	in	the
lifetime	of	the	virtual	machine.

1.10.1.	Taking,	restoring	and	deleting	snapshots

There	are	three	operations	related	to	snapshots:

1.	 You	can	take	a	snapshot.	This	makes	a	copy	of	the	machine's	current	state,
to	which	you	can	go	back	at	any	given	time	later.

If	your	VM	is	currently	running,	select	"Take	snapshot"	from	the
"Machine"	pull-down	menu	of	the	VM	window.

If	your	VM	is	currently	in	either	the	"saved"	or	the	"powered	off"	state
(as	displayed	next	to	the	VM	in	the	VirtualBox	main	window),	click
on	the	"Snapshots"	tab	on	the	top	right	of	the	main	window,	and	then

either	on	the	small	camera	icon	(for	"Take	snapshot")	or

right-click	on	the	"Current	State"	item	in	the	list	and	select	"Take
snapshot"	from	the	menu.

In	any	case,	a	window	will	pop	up	and	ask	you	for	a	snapshot	name.	This
name	is	purely	for	reference	purposes	to	help	you	remember	the	state	of	the
snapshot.	For	example,	a	useful	name	would	be	"Fresh	installation	from
scratch,	no	Guest	Additions",	or	"Service	Pack	3	just	installed".	You	can
also	add	a	longer	text	in	the	"Description"	field	if	you	want.

Your	new	snapshot	will	then	appear	in	the	snapshots	list.	Underneath	your
new	snapshot,	you	will	see	an	item	called	"Current	state",	signifying	that
the	current	state	of	your	VM	is	a	variation	based	on	the	snapshot	you	took
earlier.	If	you	later	take	another	snapshot,	you	will	see	that	they	will	be
displayed	in	sequence,	and	each	subsequent	snapshot	is	derived	from	an
earlier	one:

VirtualBox	imposes	no	limits	on	the	number	of	snapshots	you	can	take.	The
only	practical	limitation	is	disk	space	on	your	host:	each	snapshot	stores	the
state	of	the	virtual	machine	and	thus	occupies	some	disk	space.	(See	the
next	section	for	details	on	what	exactly	is	stored	in	a	snapshot.)

2.	 You	can	restore	a	snapshot	by	right-clicking	on	any	snapshot	you	have
taken	in	the	list	of	snapshots.	By	restoring	a	snapshot,	you	go	back	(or
forward)	in	time:	the	current	state	of	the	machine	is	lost,	and	the	machine	is
restored	to	the	exact	state	it	was	in	when	the	snapshot	was	taken.[4]

Note

Restoring	a	snapshot	will	affect	the	virtual	hard	drives	that	are
connected	to	your	VM,	as	the	entire	state	of	the	virtual	hard
drive	will	be	reverted	as	well.	This	means	also	that	all	files	that
have	been	created	since	the	snapshot	and	all	other	file	changes
will	be	lost.	In	order	to	prevent	such	data	loss	while	still	making

use	of	the	snapshot	feature,	it	is	possible	to	add	a	second	hard
drive	in	"write-through"	mode	using	the	VBoxManage	interface
and	use	it	to	store	your	data.	As	write-through	hard	drives	are
not	included	in	snapshots,	they	remain	unaltered	when	a
machine	is	reverted.	See	Section	5.4,	“Special	image	write
modes”	for	details.

To	avoid	losing	the	current	state	when	restoring	a	snapshot,	you	can	create	a
new	snapshot	before	the	restore.

By	restoring	an	earlier	snapshot	and	taking	more	snapshots	from	there,	it	is
even	possible	to	create	a	kind	of	alternate	reality	and	to	switch	between
these	different	histories	of	the	virtual	machine.	This	can	result	in	a	whole
tree	of	virtual	machine	snapshots,	as	shown	in	the	screenshot	above.

3.	 You	can	also	delete	a	snapshot,	which	will	not	affect	the	state	of	the	virtual
machine,	but	only	release	the	files	on	disk	that	VirtualBox	used	to	store	the
snapshot	data,	thus	freeing	disk	space.	To	delete	a	snapshot,	right-click	on	it
in	the	snapshots	tree	and	select	"Delete".	As	of	VirtualBox	3.2,	snapshots
can	be	deleted	even	while	a	machine	is	running.

Note

Whereas	taking	and	restoring	snapshots	are	fairly	quick
operations,	deleting	a	snapshot	can	take	a	considerable	amount
of	time	since	large	amounts	of	data	may	need	to	be	copied
between	several	disk	image	files.	Temporary	disk	files	may	also
need	large	amounts	of	disk	space	while	the	operation	is	in
progress.

There	are	some	situations	which	cannot	be	handled	while	a	VM	is	running,
and	you	will	get	an	appropriate	message	that	you	need	to	perform	this
snapshot	deletion	when	the	VM	is	shut	down.

1.10.2.	Snapshot	contents

Think	of	a	snapshot	as	a	point	in	time	that	you	have	preserved.	More	formally,	a
snapshot	consists	of	three	things:

It	contains	a	complete	copy	of	the	VM	settings,	including	the	hardware
configuration,	so	that	when	you	restore	a	snapshot,	the	VM	settings	are
restored	as	well.	(For	example,	if	you	changed	the	hard	disk	configuration
or	the	VM's	system	settings,	that	change	is	undone	when	you	restore	the
snapshot.)

The	copy	of	the	settings	is	stored	in	the	machine	configuration,	an	XML
text	file,	and	thus	occupies	very	little	space.

The	complete	state	of	all	the	virtual	disks	attached	to	the	machine	is
preserved.	Going	back	to	a	snapshot	means	that	all	changes	that	had	been
made	to	the	machine's	disks	--	file	by	file,	bit	by	bit	--	will	be	undone	as
well.	Files	that	were	since	created	will	disappear,	files	that	were	deleted	will
be	restored,	changes	to	files	will	be	reverted.

(Strictly	speaking,	this	is	only	true	for	virtual	hard	disks	in	"normal"	mode.
As	mentioned	above,	you	can	configure	disks	to	behave	differently	with
snapshots;	see	Section	5.4,	“Special	image	write	modes”.	Even	more
formally	and	technically	correct,	it	is	not	the	virtual	disk	itself	that	is
restored	when	a	snapshot	is	restored.	Instead,	when	a	snapshot	is	taken,
VirtualBox	creates	differencing	images	which	contain	only	the	changes
since	the	snapshot	were	taken,	and	when	the	snapshot	is	restored,
VirtualBox	throws	away	that	differencing	image,	thus	going	back	to	the
previous	state.	This	is	both	faster	and	uses	less	disk	space.	For	the	details,
which	can	be	complex,	please	see	Section	5.5,	“Differencing	images”.)

Creating	the	differencing	image	as	such	does	not	occupy	much	space	on	the
host	disk	initially,	since	the	differencing	image	will	initially	be	empty	(and
grow	dynamically	later	with	each	write	operation	to	the	disk).	The	longer
you	use	the	machine	after	having	created	the	snapshot,	however,	the	more
the	differencing	image	will	grow	in	size.

Finally,	if	you	took	a	snapshot	while	the	machine	was	running,	the	memory
state	of	the	machine	is	also	saved	in	the	snapshot	(the	same	way	the
memory	can	be	saved	when	you	close	the	VM	window).	When	you	restore
such	a	snapshot,	execution	resumes	at	exactly	the	point	when	the	snapshot
was	taken.

The	memory	state	file	can	be	as	large	as	the	memory	size	of	the	virtual

machine	and	will	therefore	occupy	quite	some	disk	space	as	well.

[4]	Both	the	terminology	and	the	functionality	of	restoring	snapshots	has	changed
with	VirtualBox	3.1.	Before	that	version,	it	was	only	possible	to	go	back	to	the
very	last	snapshot	taken	--	not	earlier	ones,	and	the	operation	was	called
"Discard	current	state"	instead	of	"Restore	last	snapshot".	The	limitation	has
been	lifted	with	version	3.1.	It	is	now	possible	to	restore	any	snapshot,	going
backward	and	forward	in	time.

1.11.	Virtual	machine	configuration

When	you	select	a	virtual	machine	from	the	list	in	the	Manager	window,	you	will
see	a	summary	of	that	machine's	settings	on	the	right.

Clicking	on	the	"Settings"	button	in	the	toolbar	at	the	top	brings	up	a	detailed
window	where	you	can	configure	many	of	the	properties	of	the	selected	VM.	But
be	careful:	even	though	it	is	possible	to	change	all	VM	settings	after	installing	a
guest	operating	system,	certain	changes	might	prevent	a	guest	operating	system
from	functioning	correctly	if	done	after	installation.

Note

The	"Settings"	button	is	disabled	while	a	VM	is	either	in	the
"running"	or	"saved"	state.	This	is	simply	because	the	settings	dialog
allows	you	to	change	fundamental	characteristics	of	the	virtual
computer	that	is	created	for	your	guest	operating	system,	and	this
operating	system	may	not	take	it	well	when,	for	example,	half	of	its
memory	is	taken	away	from	under	its	feet.	As	a	result,	if	the
"Settings"	button	is	disabled,	shut	down	the	current	VM	first.

VirtualBox	provides	a	plethora	of	parameters	that	can	be	changed	for	a	virtual
machine.	The	various	settings	that	can	be	changed	in	the	"Settings"	window	are
described	in	detail	in	Chapter	3,	Configuring	virtual	machines.	Even	more
parameters	are	available	with	the	VirtualBox	command	line	interface;	see
Chapter	8,	VBoxManage.

1.12.	Removing	virtual	machines

To	remove	a	virtual	machine	which	you	no	longer	need,	right-click	on	it	in	the
Manager's	VM	list	select	"Remove"	from	the	context	menu	that	comes	up.

A	confirmation	window	will	come	up	that	allows	you	to	select	whether	the
machine	should	only	be	removed	from	the	list	of	machines	or	whether	the	files
associated	with	it	should	also	be	deleted.

The	"Remove"	menu	item	is	disabled	while	a	machine	is	running.

1.13.	Cloning	virtual	machines

To	experiment	with	a	VM	configuration,	test	different	guest	OS	levels	or	to
simply	backup	a	VM,	VirtualBox	can	create	a	full	or	a	linked	copy	of	an	existing
VM.[5]

A	wizard	will	guide	you	through	the	clone	process:

This	wizard	can	be	invoked	from	the	context	menu	of	the	Manager's	VM	list
(select	"Clone")	or	the	"Snapshots"	view	of	the	selected	VM.	First	choose	a	new
name	for	the	clone.	When	you	select	Reinitialize	the	MAC	address	of	all
network	cards	every	network	card	get	a	new	MAC	address	assigned.	This	is
useful	when	both,	the	source	VM	and	the	cloned	VM,	have	to	operate	on	the
same	network.	If	you	leave	this	unchanged,	all	network	cards	have	the	same
MAC	address	like	the	one	in	the	source	VM.	Depending	on	how	you	invoke	the
wizard	you	have	different	choices	for	the	cloning	operation.	First	you	need	to
decide	if	the	clone	should	be	linked	to	the	source	VM	or	a	fully	independent
clone	should	be	created:

Full	clone:	In	this	mode	all	depending	disk	images	are	copied	to	the	new
VM	folder.	The	clone	can	fully	operate	without	the	source	VM.

Linked	clone:	In	this	mode	new	differencing	disk	images	are	created	where
the	parent	disk	images	are	the	source	disk	images.	If	you	selected	the
current	state	of	the	source	VM	as	clone	point,	a	new	snapshot	will	be
created	implicitly.

After	selecting	the	clone	mode,	you	need	to	decide	about	what	exactly	should	be
cloned.	You	can	always	create	a	clone	of	the	current	state	only	or	all.	When	you

select	all,	the	current	state	and	in	addition	all	snapshots	are	cloned.	Have	you
started	from	a	snapshot	which	has	additional	children,	you	can	also	clone	the
current	state	and	all	children.	This	creates	a	clone	starting	with	this	snapshot	and
includes	all	child	snapshots.

The	clone	operation	itself	can	be	a	lengthy	operation	depending	on	the	size	and
count	of	the	attached	disk	images.	Also	keep	in	mind	that	every	snapshot	has
differencing	disk	images	attached,	which	need	to	be	cloned	as	well.

The	"Clone"	menu	item	is	disabled	while	a	machine	is	running.

For	how	to	clone	a	VM	at	the	command	line,	please	see	Section	8.9,
“VBoxManage	clonevm”.

[5]	Cloning	support	was	introduced	with	VirtualBox	4.1.

1.14.	Importing	and	exporting	virtual	machines

VirtualBox	can	import	and	export	virtual	machines	in	the	industry-standard
Open	Virtualization	Format	(OVF).[6]

OVF	is	a	cross-platform	standard	supported	by	many	virtualization	products
which	allows	for	creating	ready-made	virtual	machines	that	can	then	be	imported
into	a	virtualizer	such	as	VirtualBox.	VirtualBox	makes	OVF	import	and	export
easy	to	access	and	supports	it	from	the	Manager	window	as	well	as	its
command-line	interface.	This	allows	for	packaging	so-called	virtual	appliances:
disk	images	together	with	configuration	settings	that	can	be	distributed	easily.
This	way	one	can	offer	complete	ready-to-use	software	packages	(operating
systems	with	applications)	that	need	no	configuration	or	installation	except	for
importing	into	VirtualBox.

Note

The	OVF	standard	is	complex,	and	support	in	VirtualBox	is	an
ongoing	process.	In	particular,	no	guarantee	is	made	that	VirtualBox
supports	all	appliances	created	by	other	virtualization	software.	For	a
list	of	known	limitations,	please	see	Chapter	14,	Known	limitations.

Appliances	in	OVF	format	can	appear	in	two	variants:

1.	 They	can	come	in	several	files,	as	one	or	several	disk	images,	typically	in
the	widely-used	VMDK	format	(see	Section	5.2,	“Disk	image	files	(VDI,
VMDK,	VHD,	HDD)”)	and	a	textual	description	file	in	an	XML	dialect
with	an	.ovf	extension.	These	files	must	then	reside	in	the	same	directory
for	VirtualBox	to	be	able	to	import	them.

2.	 Alternatively,	the	above	files	can	be	packed	together	into	a	single	archive
file,	typically	with	an	.ova	extension.	(Such	archive	files	use	a	variant	of
the	TAR	archive	format	and	can	therefore	be	unpacked	outside	of
VirtualBox	with	any	utility	that	can	unpack	standard	TAR	files.)

To	import	an	appliance	in	one	of	the	above	formats,	simply	double-click	on	the
OVF/OVA	file.[7]	Alternatively,	select	"File"	→	"Import	appliance"	from	the

Manager	window.	In	the	file	dialog	that	comes	up,	navigate	to	the	file	with	either
the	.ovf	or	the	.ova	file	extension.

If	VirtualBox	can	handle	the	file,	a	dialog	similar	to	the	following	will	appear:

This	presents	the	virtual	machines	described	in	the	OVF	file	and	allows	you	to
change	the	virtual	machine	settings	by	double-clicking	on	the	description	items.
Once	you	click	on	"Import",	VirtualBox	will	copy	the	disk	images	and	create
local	virtual	machines	with	the	settings	described	in	the	dialog.	These	will	then
show	up	in	the	Manager's	list	of	virtual	machines.

Note	that	since	disk	images	tend	to	be	big,	and	VMDK	images	that	come	with
virtual	appliances	are	typically	shipped	in	a	special	compressed	format	that	is
unsuitable	for	being	used	by	virtual	machines	directly,	the	images	will	need	to	be
unpacked	and	copied	first,	which	can	take	a	few	minutes.

For	how	to	import	an	image	at	the	command	line,	please	see	Section	8.10,
“VBoxManage	import”.

Conversely,	to	export	virtual	machines	that	you	already	have	in	VirtualBox,
select	"File"	→	"Export	appliance".	A	different	dialog	window	shows	up	that
allows	you	to	combine	several	virtual	machines	into	an	OVF	appliance.	Then,
select	the	target	location	where	the	target	files	should	be	stored,	and	the
conversion	process	begins.	This	can	again	take	a	while.

For	how	to	export	an	image	at	the	command	line,	please	see	Section	8.11,
“VBoxManage	export”.

Note

OVF	cannot	describe	snapshots	that	were	taken	for	a	virtual
machine.	As	a	result,	when	you	export	a	virtual	machine	that	has
snapshots,	only	the	current	state	of	the	machine	will	be	exported,	and
the	disk	images	in	the	export	will	have	a	"flattened"	state	identical	to
the	current	state	of	the	virtual	machine.

[6]	OVF	support	was	originally	introduced	with	VirtualBox	2.2	and	has	seen
major	improvements	with	every	version	since.

[7]	Starting	with	version	4.0,	VirtualBox	creates	file	type	associations	for	OVF
and	OVA	files	on	your	host	operating	system.

1.15.	Global	Settings

The	global	settings	dialog	can	be	reached	through	the	File	menu,	selecting	the
Preferences...	item.	It	offers	a	selection	of	settings	which	apply	to	all	virtual
machines	of	the	current	user	or	in	the	case	of	Extensions	to	the	entire	system:

1.	 General	Enables	the	user	to	specify	the	default	folder/directory	for	VM
files,	and	the	VRDP	Authentication	Library.

2.	 Input	Enables	the	user	to	specify	the	Host	Key.	It	identifies	the	key	that
toggles	whether	the	cursor	is	in	the	focus	of	the	VM	or	the	Host	operating
system	windows	(see	Section	1.8.2,	“Capturing	and	releasing	keyboard	and
mouse”)	and	which	is	also	used	to	trigger	certain	VM	actions	(see
Section	1.8.3,	“Typing	special	characters”)

3.	 Update	Enables	the	user	to	specify	various	settings	for	Automatic	Updates.

4.	 Language	Enables	the	user	to	specify	the	GUI	language.

5.	 Display	Enables	the	user	to	specify	the	screen	resolution,	and	its	width	and
height.

6.	 Network	Enables	the	user	to	configure	the	details	of	Host	Only	Networks.

7.	 Extensions	Enables	the	user	to	list	and	manage	the	installed	extension
packages.

8.	 Proxy	Enables	the	user	to	configure	a	HTTP	Proxy	Server.

1.16.	Alternative	front-ends

As	briefly	mentioned	in	Section	1.3,	“Features	overview”,	VirtualBox	has	a	very
flexible	internal	design	that	allows	for	using	multiple	interfaces	to	control	the
same	virtual	machines.	To	illustrate,	you	can,	for	example,	start	a	virtual
machine	with	the	VirtualBox	Manager	window	and	then	stop	it	from	the
command	line.	With	VirtualBox's	support	for	the	Remote	Desktop	Protocol
(RDP),	you	can	even	run	virtual	machines	remotely	on	a	headless	server	and
have	all	the	graphical	output	redirected	over	the	network.

In	detail,	the	following	front-ends	are	shipped	in	the	standard	VirtualBox
package:

1.	 VirtualBox	is	the	VirtualBox	Manager.	This	graphical	user	interface	uses
the	Qt	toolkit;	most	of	this	User	Manual	is	dedicated	to	describing	it.	While
this	is	the	easiest	to	use,	some	of	the	more	advanced	VirtualBox	features	are
kept	away	from	it	to	keep	it	simple.

2.	 VBoxManage	is	our	command-line	interface	for	automated	and	very	detailed
control	of	every	aspect	of	VirtualBox.	It	is	described	in	Chapter	8,
VBoxManage.

3.	 VBoxSDL	is	an	alternative,	simple	graphical	front-end	with	an	intentionally
limited	feature	set,	designed	to	only	display	virtual	machines	that	are
controlled	in	detail	with	VBoxManage.	This	is	interesting	for	business
environments	where	displaying	all	the	bells	and	whistles	of	the	full	GUI	is
not	feasible.	VBoxSDL	is	described	in	Section	9.1,	“VBoxSDL,	the
simplified	VM	displayer”.

4.	 Finally,	VBoxHeadless	is	yet	another	front-end	that	produces	no	visible
output	on	the	host	at	all,	but	can	act	as	a	RDP	server	if	the	VirtualBox
Remote	Desktop	Extension	(VRDE)	is	installed	and	enabled	for	the	VM.
As	opposed	to	the	other	graphical	interfaces,	the	headless	front-end	requires
no	graphics	support.	This	is	useful,	for	example,	if	you	want	to	host	your
virtual	machines	on	a	headless	Linux	server	that	has	no	X	Window	system
installed.	For	details,	see	Section	7.1.2,	“VBoxHeadless,	the	remote	desktop
server”.

If	the	above	front-ends	still	do	not	satisfy	your	particular	needs,	it	is	possible	to
create	yet	another	front-end	to	the	complex	virtualization	engine	that	is	the	core
of	VirtualBox,	as	the	VirtualBox	core	neatly	exposes	all	of	its	features	in	a	clean
API;	please	refer	to	Chapter	11,	VirtualBox	programming	interfaces.

Chapter	2.	Installation	details

Table	of	Contents

2.1.	Installing	on	Windows	hosts
2.1.1.	Prerequisites
2.1.2.	Performing	the	installation
2.1.3.	Uninstallation
2.1.4.	Unattended	installation
2.1.5.	Public	properties

2.2.	Installing	on	Mac	OS	X	hosts
2.2.1.	Performing	the	installation
2.2.2.	Uninstallation
2.2.3.	Unattended	installation

2.3.	Installing	on	Linux	hosts
2.3.1.	Prerequisites
2.3.2.	The	VirtualBox	driver	modules
2.3.3.	Performing	the	installation
2.3.4.	The	vboxusers	group
2.3.5.	Starting	VirtualBox	on	Linux

2.4.	Installing	on	Solaris	hosts
2.4.1.	Performing	the	installation
2.4.2.	The	vboxuser	group
2.4.3.	Starting	VirtualBox	on	Solaris
2.4.4.	Uninstallation
2.4.5.	Unattended	installation
2.4.6.	Configuring	a	zone	for	running	VirtualBox

As	installation	of	VirtualBox	varies	depending	on	your	host	operating	system,
we	provide	installation	instructions	in	four	separate	chapters	for	Windows,	Mac
OS	X,	Linux	and	Solaris,	respectively.

2.1.	Installing	on	Windows	hosts

2.1.1.	Prerequisites

For	the	various	versions	of	Windows	that	we	support	as	host	operating	systems,
please	refer	to	Section	1.4,	“Supported	host	operating	systems”.

In	addition,	Windows	Installer	1.1	or	higher	must	be	present	on	your	system.
This	should	be	the	case	if	you	have	all	recent	Windows	updates	installed.

2.1.2.	Performing	the	installation

The	VirtualBox	installation	can	be	started

either	by	double-clicking	on	its	executable	file	(contains	both	32-	and	64-bit
architectures)

or	by	entering

VirtualBox-<version>-<revision>-Win.exe	-extract

on	the	command	line.	This	will	extract	both	installers	into	a	temporary
directory	in	which	you'll	then	find	the	usual	.MSI	files.	Then	you	can	do	a

msiexec	/i	VirtualBox-<version>-<revision>-MultiArch_<x86|amd64>.msi

to	perform	the	installation.

In	either	case,	this	will	display	the	installation	welcome	dialog	and	allow	you	to
choose	where	to	install	VirtualBox	to	and	which	components	to	install.	In
addition	to	the	VirtualBox	application,	the	following	components	are	available:

USB	support

This	package	contains	special	drivers	for	your	Windows	host	that
VirtualBox	requires	to	fully	support	USB	devices	inside	your	virtual
machines.

Networking

This	package	contains	extra	networking	drivers	for	your	Windows	host	that
VirtualBox	needs	to	support	Bridged	Networking	(to	make	your	VM's
virtual	network	cards	accessible	from	other	machines	on	your	physical
network).

Python	Support

This	package	contains	Python	scripting	support	for	the	VirtualBox	API	(see
Chapter	11,	VirtualBox	programming	interfaces).	For	this	to	work,	an
already	working	Windows	Python	installation	on	the	system	is	required.

Note

Python	version	≥	2.6	is	required.	Since	VirtualBox	5.1	Python	3
is	also	supported.

[8]

Depending	on	your	Windows	configuration,	you	may	see	warnings	about
"unsigned	drivers"	or	similar.	Please	select	"Continue"	on	these	warnings	as
otherwise	VirtualBox	might	not	function	correctly	after	installation.

The	installer	will	create	a	"VirtualBox"	group	in	the	Windows	"Start"	menu
which	allows	you	to	launch	the	application	and	access	its	documentation.

With	standard	settings,	VirtualBox	will	be	installed	for	all	users	on	the	local
system.	In	case	this	is	not	wanted,	you	have	to	invoke	the	installer	by	first
extracting	it	by	using

VirtualBox.exe	-extract

and	then	do	as	follows:

VirtualBox.exe	-msiparams	ALLUSERS=2

or

msiexec	/i	VirtualBox-<version>-MultiArch_<x86|amd64>.msi	ALLUSERS=2

on	the	extracted	.MSI	files.	This	will	install	VirtualBox	only	for	the	current	user.

If	you	do	not	want	to	install	all	features	of	VirtualBox,	you	can	set	the	optional
ADDLOCAL	parameter	to	explicitly	name	the	features	to	be	installed.	The	following
features	are	available:

VBoxApplication

Main	binaries	of	VirtualBox.

Note

This	feature	must	not	be	absent	since	it	contains	the	minimum
set	of	files	to	have	working	VirtualBox	installation.

VBoxUSB

USB	support.

VBoxNetwork

All	networking	support;	includes	the	VBoxNetworkFlt	and
VBoxNetworkAdp	features	(see	below).

VBoxNetworkFlt

Bridged	networking	support.

VBoxNetworkAdp

Host-only	networking	support.

VBoxPython

Python	support.

Note

Python	version	≥	2.6	is	required.	Since	VirtualBox	5.1	Python	3
is	also	supported.

For	example,	to	only	install	USB	support	along	with	the	main	binaries,	do	a:

VirtualBox.exe	-msiparams	ADDLOCAL=VBoxApplication,VBoxUSB

or

msiexec	/i	VirtualBox-<version>-MultiArch_<x86|amd64>.msi	ADDLOCAL=VBoxApplication,VBoxUSB

The	user	is	able	to	choose	between	NDIS5	and	NDIS6	host	network	filters
drivers	during	the	installation.	This	is	realized	via	a	command	line	parameter
NETWORKTYPE.	The	NDIS6	driver	is	default	for	Windows	Vista	and	later.	For
older	Windows	versions,	the	installer	will	automatically	select	the	NDIS5	driver
and	this	cannot	be	changed.	For	Windows	Vista	and	later	the	user	can	force	to
install	the	(legacy)	NDIS5	host	network	filter	driver	using	NETWORKTYPE=NDIS5.
For	example,	to	install	the	NDIS5	driver	on	Windows	7,	do

VirtualBox.exe	-msiparams	NETWORKTYPE=NDIS5

or

msiexec	/i	VirtualBox-<version>-MultiArch_<x86|amd64>.msi	NETWORKTYPE=NDIS5

2.1.3.	Uninstallation

As	VirtualBox	uses	the	standard	Microsoft	Windows	installer,	VirtualBox	can	be
safely	uninstalled	at	any	time	by	choosing	the	program	entry	in	the
"Add/Remove	Programs"	applet	in	the	Windows	Control	Panel.

2.1.4.	Unattended	installation

Unattended	installations	can	be	performed	using	the	standard	MSI	support.

2.1.5.	Public	properties

The	following	public	properties	can	be	specified	via	MSI	API,

VirtualBox.exe	-msiparams	NAME=VALUE	[...]

or

msiexec	/i	VirtualBox-<version>-MultiArch_<x86|amd64>.msi	NAME=VALUE	[...]

to	control	additional	behavior	and/or	features	of	the	Windows	host	installer:

VBOX_INSTALLDESKTOPSHORTCUT

Specifies	whether	or	not	a	VirtualBox	icon	on	the	desktop	should	be
created.

Set	to	1	to	enable,	0	to	disable.	Default	is	1.

VBOX_INSTALLQUICKLAUNCHSHORTCUT

Specifies	whether	or	not	a	VirtualBox	icon	in	the	Quick	Launch	Bar	should
be	created.

Set	to	1	to	enable,	0	to	disable.	Default	is	1.

VBOX_REGISTERFILEEXTENSIONS

Specifies	whether	or	not	the	file	extensions	.vbox,	.vbox-extpack,	.ovf,	.ova,
.vdi,	.vmdk,	.vhd	and	.vdd	should	be	associated	with	VirtualBox.	Files	of
these	types	then	will	be	opened	with	VirtualBox.

Set	to	1	to	enable,	0	to	disable.	Default	is	1.

VBOX_START

Specifies	whether	or	not	VirtualBox	should	be	started	right	after	successful
installation.

Set	to	1	to	enable,	0	to	disable.	Default	is	1.

[8]	See,	for	example,	http://www.python.org/download/windows/.

http://www.python.org/download/windows/

2.2.	Installing	on	Mac	OS	X	hosts

2.2.1.	Performing	the	installation

For	Mac	OS	X	hosts,	VirtualBox	ships	in	a	disk	image	(dmg)	file.	Perform	the
following	steps:

1.	 Double-click	on	that	file	to	have	its	contents	mounted.

2.	 A	window	will	open	telling	you	to	double	click	on	the	VirtualBox.mpkg
installer	file	displayed	in	that	window.

3.	 This	will	start	the	installer,	which	will	allow	you	to	select	where	to	install
VirtualBox	to.

After	installation,	you	can	find	a	VirtualBox	icon	in	the	"Applications"	folder	in
the	Finder.

2.2.2.	Uninstallation

To	uninstall	VirtualBox,	open	the	disk	image	(dmg)	file	again	and	double-click
on	the	uninstall	icon	contained	therein.

2.2.3.	Unattended	installation

To	perform	a	non-interactive	installation	of	VirtualBox	you	can	use	the
command	line	version	of	the	installer	application.

Mount	the	disk	image	(dmg)	file	as	described	in	the	normal	installation	or	use
the	following	command	line:

hdiutil	attach	/path/to/VirtualBox-xyz.dmg

Then	open	a	terminal	session	and	execute:

sudo	installer	-pkg	/Volumes/VirtualBox/VirtualBox.pkg	-target	/Volumes/Macintosh\	HD

2.3.	Installing	on	Linux	hosts

2.3.1.	Prerequisites

For	the	various	versions	of	Linux	that	we	support	as	host	operating	systems,
please	refer	to	Section	1.4,	“Supported	host	operating	systems”.

You	will	need	to	install	the	following	packages	on	your	Linux	system	before
starting	the	installation	(some	systems	will	do	this	for	you	automatically	when
you	install	VirtualBox):

Qt	5.3.2	or	higher	(Qt	5.6.2	or	higher	recommended);

SDL	1.2.7	or	higher	(this	graphics	library	is	typically	called	libsdl	or
similar).

Note

To	be	precise,	these	packages	are	only	required	if	you	want	to	run
the	VirtualBox	graphical	user	interfaces.	In	particular,	VirtualBox,
the	graphical	VirtualBox	manager,	requires	both	Qt	and	SDL;
VBoxSDL,	our	simplified	GUI,	requires	only	SDL.	By	contrast,	if	you
only	want	to	run	VBoxHeadless,	neither	Qt	nor	SDL	are	required.

2.3.2.	The	VirtualBox	driver	modules

In	order	to	run	other	operating	systems	in	virtual	machines	alongside	your	main
operating	system,	VirtualBox	needs	to	integrate	very	tightly	into	the	system.	To
do	this	it	installs	a	"driver"	module	called	vboxdrv	which	does	a	lot	of	that	work
into	the	system	kernel,	which	is	the	part	of	the	operating	system	which	controls
your	processor	and	physical	hardware.	Without	this	kernel	module,	you	can	still
use	the	VirtualBox	manager	to	configure	virtual	machines,	but	they	will	not	start.
It	also	installs	network	drivers	called	vboxnetflt	and	vboxnetadp	which	let
virtual	machines	make	more	use	of	your	computer's	network	capabilities	and	are
needed	for	any	virtual	machine	networking	beyond	the	basic	"NAT"	mode.

Since	distributing	driver	modules	separately	from	the	kernel	is	not	something

which	Linux	supports	well,	we	create	the	modules	on	the	system	where	they	will
be	used.	This	usually	means	first	installing	software	packages	from	the
distribution	which	are	needed	for	the	"build"	process.	Normally,	these	will	be	the
GNU	compiler	(GCC),	GNU	Make	(make)	and	packages	containing	"header
files"	for	your	kernel	-	and	making	sure	that	all	system	updates	are	installed	and
that	the	system	is	running	the	most	up-to-date	kernel	included	in	the	distribution.
The	running	kernel	and	the	header	files	must	be	updated	to	matching	versions.
We	will	give	some	instructions	for	common	distributions.	For	most	of	them	you
will	want	to	start	by	finding	the	version	name	of	your	kernel	using	the	command
uname	-r	in	a	terminal.	They	assume	that	you	have	not	changed	too	much	from
the	original	installation,	particularly	not	installed	a	different	kernel	type.	If	you
have	then	you	will	need	to	determine	yourself	what	to	set	up.

With	Debian	and	Ubuntu-based	distributions,	you	must	install	the	right
version	of	the	linux-headers,	usually	whichever	of	linux-headers-
generic	,	linux-headers-amd64	,	linux-headers-i686	or	linux-
headers-i686-pae	best	matches	the	kernel	version	name;	and	if	it	exists
the	linux-kbuild	package.	Basic	Ubuntu	releases	should	have	the	right
packages	installed	by	default.

On	Fedora,	Redhat,	Oracle	Linux	and	many	other	RPM-based	systems,	the
kernel	version	sometimes	has	a	code	of	letters	or	a	word	close	to	the	end	of
the	version	name,	for	example	"uek"	for	the	Oracle	Enterprise	kernel	or
"default"	or	"desktop"	for	the	standard	SUSE	kernels.	In	this	case	the
package	name	is	kernel-uek-devel	or	equivalent.	If	there	is	no	such	code,
it	is	usually	kernel-devel.

On	older	SUSE	and	openSUSE	Linux,	you	must	install	the	kernel-source
and	kernel-syms	packages.

If	you	suspect	that	something	has	gone	wrong	with	module	installation,	check
that	your	system	is	set	up	as	described	above	and	try	running	(as	root)	the
following	command:

rcvboxdrv	setup

2.3.3.	Performing	the	installation

VirtualBox	is	available	in	a	number	of	package	formats	native	to	various

common	Linux	distributions	(see	Section	1.4,	“Supported	host	operating
systems”	for	details).	In	addition,	there	is	an	alternative	generic	installer	(.run)
which	should	work	on	most	Linux	distributions.	The	generic	installer	packages
are	built	on	EL5	systems	and	thus	require	reasonable	old	versions	of	glibc
(version	2.5)	and	other	system	libraries.

2.3.3.1.	Installing	VirtualBox	from	a	Debian/Ubuntu	package

First,	download	the	appropriate	package	for	your	distribution.	The	following
examples	assume	that	you	are	installing	to	a	32-bit	Ubuntu	Wily	system.	Use
dpkg	to	install	the	Debian	package:

sudo	dpkg	-i	virtualbox-5.0_5.2.4_Ubuntu_wily_i386.deb

The	installer	will	also	try	to	build	kernel	modules	suitable	for	the	current	running
kernel.	If	the	build	process	is	not	successful	you	will	be	shown	a	warning	and	the
package	will	be	left	unconfigured.	Please	have	a	look	at	/var/log/vbox-
install.log	to	find	out	why	the	compilation	failed.	You	may	have	to	install	the
appropriate	Linux	kernel	headers	(see	Section	2.3.2,	“The	VirtualBox	driver
modules”).	After	correcting	any	problems,	do

sudo	rcvboxdrv	setup

This	will	start	a	second	attempt	to	build	the	module.

If	a	suitable	kernel	module	was	found	in	the	package	or	the	module	was
successfully	built,	the	installation	script	will	attempt	to	load	that	module.	If	this
fails,	please	see	Section	12.8.1,	“Linux	kernel	module	refuses	to	load”	for	further
information.

Once	VirtualBox	has	been	successfully	installed	and	configured,	you	can	start	it
by	selecting	"VirtualBox"	in	your	start	menu	or	from	the	command	line	(see
Section	2.3.5,	“Starting	VirtualBox	on	Linux”).

2.3.3.2.	Using	the	alternative	generic	installer	(VirtualBox.run)

The	alternative	generic	installer	performs	the	following	steps:

It	unpacks	the	application	files	to	the	target	directory,

/opt/VirtualBox/

which	cannot	be	changed.

It	builds	the	VirtualBox	kernel	modules	(vboxdrv,	vboxnetflt	and
vboxnetadp)	and	installs	them.

It	creates	/sbin/rcvboxdrv,	an	init	script	to	start	the	VirtualBox	kernel
module.

It	creates	a	new	system	group	called	vboxusers.

It	creates	symbolic	links	in	/usr/bin	to	the	a	shell	script
(/opt/VirtualBox/VBox)	which	does	some	sanity	checks	and	dispatches	to
the	actual	executables,	VirtualBox,	VBoxSDL,	VBoxVRDP,	VBoxHeadless	and
VBoxManage

It	creates	/etc/udev/rules.d/60-vboxdrv.rules,	a	description	file	for
udev,	if	that	is	present,	which	makes	the	USB	devices	accessible	to	all	users
in	the	vboxusers	group.

It	writes	the	installation	directory	to	/etc/vbox/vbox.cfg.

The	installer	must	be	executed	as	root	with	either	install	or	uninstall	as	the
first	parameter.

sudo	./VirtualBox.run	install

Or	if	you	do	not	have	the	"sudo"	command	available,	run	the	following	as	root
instead:

./VirtualBox.run	install

After	that	you	need	to	put	every	user	which	should	be	able	to	access	USB
devices	from	VirtualBox	guests	in	the	group	vboxusers,	either	through	the	GUI
user	management	tools	or	by	running	the	following	command	as	root:

sudo	usermod	-a	-G	vboxusers	username

Note

The	usermod	command	of	some	older	Linux	distributions	does	not
support	the	-a	option	(which	adds	the	user	to	the	given	group
without	affecting	membership	of	other	groups).	In	this	case,	find	out
the	current	group	memberships	with	the	groups	command	and	add
all	these	groups	in	a	comma-separated	list	to	the	command	line	after
the	-G	option,	e.g.	like	this:	usermod	-G	group1,group2,vboxusers
username.

2.3.3.3.	Performing	a	manual	installation

If,	for	any	reason,	you	cannot	use	the	shell	script	installer	described	previously,
you	can	also	perform	a	manual	installation.	Invoke	the	installer	like	this:

./VirtualBox.run	--keep	--noexec

This	will	unpack	all	the	files	needed	for	installation	in	the	directory	install
under	the	current	directory.	The	VirtualBox	application	files	are	contained	in
VirtualBox.tar.bz2	which	you	can	unpack	to	any	directory	on	your	system.
For	example:

sudo	mkdir	/opt/VirtualBox

sudo	tar	jxf	./install/VirtualBox.tar.bz2	-C	/opt/VirtualBox

or	as	root:

mkdir	/opt/VirtualBox

tar	jxf	./install/VirtualBox.tar.bz2	-C	/opt/VirtualBox

The	sources	for	VirtualBox's	kernel	module	are	provided	in	the	src	directory.	To
build	the	module,	change	to	the	directory	and	issue

make

If	everything	builds	correctly,	issue	the	following	command	to	install	the	module
to	the	appropriate	module	directory:

sudo	make	install

In	case	you	do	not	have	sudo,	switch	the	user	account	to	root	and	perform

make	install

The	VirtualBox	kernel	module	needs	a	device	node	to	operate.	The	above	make
command	will	tell	you	how	to	create	the	device	node,	depending	on	your	Linux
system.	The	procedure	is	slightly	different	for	a	classical	Linux	setup	with	a
/dev	directory,	a	system	with	the	now	deprecated	devfs	and	a	modern	Linux
system	with	udev.

On	certain	Linux	distributions,	you	might	experience	difficulties	building	the
module.	You	will	have	to	analyze	the	error	messages	from	the	build	system	to
diagnose	the	cause	of	the	problems.	In	general,	make	sure	that	the	correct	Linux
kernel	sources	are	used	for	the	build	process.

Note	that	the	/dev/vboxdrv	kernel	module	device	node	must	be	owned	by
root:root	and	must	be	read/writable	only	for	the	user.

Next,	you	will	have	to	install	the	system	initialization	script	for	the	kernel
module:

cp	/opt/VirtualBox/vboxdrv.sh	/sbin/rcvboxdrv

(assuming	you	installed	VirtualBox	to	the	/opt/VirtualBox	directory)	and
activate	the	initialization	script	using	the	right	method	for	your	distribution.	You
should	create	VirtualBox's	configuration	file:

mkdir	/etc/vbox

echo	INSTALL_DIR=/opt/VirtualBox	>	/etc/vbox/vbox.cfg

and,	for	convenience,	create	the	following	symbolic	links:

ln	-sf	/opt/VirtualBox/VBox.sh	/usr/bin/VirtualBox

ln	-sf	/opt/VirtualBox/VBox.sh	/usr/bin/VBoxManage

ln	-sf	/opt/VirtualBox/VBox.sh	/usr/bin/VBoxHeadless

ln	-sf	/opt/VirtualBox/VBox.sh	/usr/bin/VBoxSDL

2.3.3.4.	Updating	and	uninstalling	VirtualBox

Before	updating	or	uninstalling	VirtualBox,	you	must	terminate	any	virtual
machines	which	are	currently	running	and	exit	the	VirtualBox	or	VBoxSVC
applications.	To	update	VirtualBox,	simply	run	the	installer	of	the	updated
version.	To	uninstall	VirtualBox,	invoke	the	installer	like	this:

sudo	./VirtualBox.run	uninstall

or	as	root

./VirtualBox.run	uninstall

.	Starting	with	version	2.2.2,	you	can	uninstall	the	.run	package	by	invoking

/opt/VirtualBox/uninstall.sh

To	manually	uninstall	VirtualBox,	simply	undo	the	steps	in	the	manual
installation	in	reverse	order.

2.3.3.5.	Automatic	installation	of	Debian	packages

The	Debian	packages	will	request	some	user	feedback	when	installed	for	the	first
time.	The	debconf	system	is	used	to	perform	this	task.	To	prevent	any	user
interaction	during	installation,	default	values	can	be	defined.	A	file	vboxconf	can
contain	the	following	debconf	settings:

virtualbox	virtualbox/module-compilation-allowed	boolean	true

virtualbox	virtualbox/delete-old-modules	boolean	true

The	first	line	allows	compilation	of	the	vboxdrv	kernel	module	if	no	module	was
found	for	the	current	kernel.	The	second	line	allows	the	package	to	delete	any
old	vboxdrv	kernel	modules	compiled	by	previous	installations.

These	default	settings	can	be	applied	with

debconf-set-selections	vboxconf

prior	to	the	installation	of	the	VirtualBox	Debian	package.

In	addition	there	are	some	common	configuration	options	that	can	be	set	prior	to
the	installation,	described	in	Section	2.3.3.7,	“Automatic	installation	options”.

2.3.3.6.	Automatic	installation	of	.rpm	packages

The	.rpm	format	does	not	provide	a	configuration	system	comparable	to	the
debconf	system.	See	Section	2.3.3.7,	“Automatic	installation	options”	for	how	to
set	some	common	installation	options	provided	by	VirtualBox.

2.3.3.7.	Automatic	installation	options

To	configure	the	installation	process	of	our	.deb	and	.rpm	packages,	you	can
create	a	response	file	named	/etc/default/virtualbox.	The	automatic
generation	of	the	udev	rule	can	be	prevented	by	the	following	setting:

INSTALL_NO_UDEV=1

The	creation	of	the	group	vboxusers	can	be	prevented	by

INSTALL_NO_GROUP=1

If	the	line

INSTALL_NO_VBOXDRV=1

is	specified,	the	package	installer	will	not	try	to	build	the	vboxdrv	kernel	module
if	no	module	fitting	the	current	kernel	was	found.

2.3.4.	The	vboxusers	group

The	Linux	installers	create	the	system	user	group	vboxusers	during	installation.
Any	system	user	who	is	going	to	use	USB	devices	from	VirtualBox	guests	must
be	a	member	of	that	group.	A	user	can	be	made	a	member	of	the	group
vboxusers	through	the	GUI	user/group	management	or	at	the	command	line
with

sudo	usermod	-a	-G	vboxusers	username

2.3.5.	Starting	VirtualBox	on	Linux

The	easiest	way	to	start	a	VirtualBox	program	is	by	running	the	program	of	your
choice	(VirtualBox,	VBoxManage,	VBoxSDL	or	VBoxHeadless)	from	a	terminal.
These	are	symbolic	links	to	VBox.sh	that	start	the	required	program	for	you.

The	following	detailed	instructions	should	only	be	of	interest	if	you	wish	to
execute	VirtualBox	without	installing	it	first.	You	should	start	by	compiling	the
vboxdrv	kernel	module	(see	above)	and	inserting	it	into	the	Linux	kernel.
VirtualBox	consists	of	a	service	daemon	(VBoxSVC)	and	several	application
programs.	The	daemon	is	automatically	started	if	necessary.	All	VirtualBox

applications	will	communicate	with	the	daemon	through	Unix	local	domain
sockets.	There	can	be	multiple	daemon	instances	under	different	user	accounts
and	applications	can	only	communicate	with	the	daemon	running	under	the	user
account	as	the	application.	The	local	domain	socket	resides	in	a	subdirectory	of
your	system's	directory	for	temporary	files	called	.vbox-<username>-ipc.	In
case	of	communication	problems	or	server	startup	problems,	you	may	try	to
remove	this	directory.

All	VirtualBox	applications	(VirtualBox,	VBoxSDL,	VBoxManage	and
VBoxHeadless)	require	the	VirtualBox	directory	to	be	in	the	library	path:

LD_LIBRARY_PATH=.	./VBoxManage	showvminfo	"Windows	XP"

2.4.	Installing	on	Solaris	hosts

For	the	specific	versions	of	Solaris	that	we	support	as	host	operating	systems,
please	refer	to	Section	1.4,	“Supported	host	operating	systems”.

If	you	have	a	previously	installed	instance	of	VirtualBox	on	your	Solaris	host,
please	uninstall	it	first	before	installing	a	new	instance.	Refer	to	Section	2.4.4,
“Uninstallation”	for	uninstall	instructions.

2.4.1.	Performing	the	installation

VirtualBox	is	available	as	a	standard	Solaris	package.	Download	the	VirtualBox
SunOS	package	which	includes	the	64-bit	versions	of	VirtualBox.	The
installation	must	be	performed	as	root	and	from	the	global	zone	as	the
VirtualBox	installer	loads	kernel	drivers	which	cannot	be	done	from	non-global
zones.	To	verify	which	zone	you	are	currently	in,	execute	the	zonename
command.	Execute	the	following	commands:

gunzip	-cd	VirtualBox-5.2.4-SunOS.tar.gz	|	tar	xvf	-

Starting	with	VirtualBox	3.1	the	VirtualBox	kernel	package	is	no	longer	a
separate	package	and	has	been	integrated	into	the	main	package.	Install	the
VirtualBox	package	using:

pkgadd	-d	VirtualBox-5.2.4-SunOS.pkg

The	installer	will	then	prompt	you	to	enter	the	package	you	wish	to	install.
Choose	"1"	or	"all"	and	proceed.	Next	the	installer	will	ask	you	if	you	want	to
allow	the	postinstall	script	to	be	executed.	Choose	"y"	and	proceed	as	it	is
essential	to	execute	this	script	which	installs	the	VirtualBox	kernel	module.
Following	this	confirmation	the	installer	will	install	VirtualBox	and	execute	the
postinstall	setup	script.

Once	the	postinstall	script	has	been	executed	your	installation	is	now	complete.
You	may	now	safely	delete	the	uncompressed	package	and	autoresponse	files
from	your	system.	VirtualBox	would	be	installed	in	/opt/VirtualBox.

Note

If	you	need	to	use	VirtualBox	from	non-global	zones,	please	read
Section	2.4.6,	“Configuring	a	zone	for	running	VirtualBox”.

2.4.2.	The	vboxuser	group

Starting	with	VirtualBox	4.1,	the	installer	creates	the	system	user	group
vboxuser	during	installation	for	Solaris	hosts	that	support	the	USB	features
required	by	VirtualBox.	Any	system	user	who	is	going	to	use	USB	devices	from
VirtualBox	guests	must	be	a	member	of	this	group.	A	user	can	be	made	a
member	of	this	group	through	the	GUI	user/group	management	or	at	the
command	line	by	executing	as	root:

usermod	-G	vboxuser	username

Note	that	adding	an	active	user	to	that	group	will	require	that	user	to	log	out	and
back	in	again.	This	should	be	done	manually	after	successful	installation	of	the
package.

2.4.3.	Starting	VirtualBox	on	Solaris

The	easiest	way	to	start	a	VirtualBox	program	is	by	running	the	program	of	your
choice	(VirtualBox,	VBoxManage,	VBoxSDL	or	VBoxHeadless)	from	a	terminal.
These	are	symbolic	links	to	VBox.sh	that	start	the	required	program	for	you.

Alternatively,	you	can	directly	invoke	the	required	programs	from
/opt/VirtualBox.	Using	the	links	provided	is	easier	as	you	do	not	have	to	type
the	full	path.

You	can	configure	some	elements	of	the	VirtualBox	Qt	GUI	such	as	fonts	and
colours	by	executing	VBoxQtconfig	from	the	terminal.

2.4.4.	Uninstallation

Uninstallation	of	VirtualBox	on	Solaris	requires	root	permissions.	To	perform
the	uninstallation,	start	a	root	terminal	session	and	execute:

pkgrm	SUNWvbox

After	confirmation,	this	will	remove	VirtualBox	from	your	system.

If	you	are	uninstalling	VirtualBox	version	3.0	or	lower,	you	need	to	remove	the
VirtualBox	kernel	interface	package,	execute:

pkgrm	SUNWvboxkern

2.4.5.	Unattended	installation

To	perform	a	non-interactive	installation	of	VirtualBox	we	have	provided	a
response	file	named	autoresponse	that	the	installer	will	use	for	responses	to
inputs	rather	than	ask	them	from	you.

Extract	the	tar.gz	package	as	described	in	the	normal	installation.	Then	open	a
root	terminal	session	and	execute:

pkgadd	-d	VirtualBox-5.2.4-SunOS-x86	-n	-a	autoresponse	SUNWvbox

To	perform	a	non-interactive	uninstallation,	open	a	root	terminal	session	and
execute:

pkgrm	-n	-a	/opt/VirtualBox/autoresponse	SUNWvbox

2.4.6.	Configuring	a	zone	for	running	VirtualBox

Assuming	that	VirtualBox	has	already	been	installed	into	your	zone,	you	need	to
give	the	zone	access	to	VirtualBox's	device	node.	This	is	done	by	performing	the
following	steps.	Start	a	root	terminal	and	execute:

zonecfg	-z	vboxzone

Replace	"vboxzone"	with	the	name	of	the	zone	in	which	you	intend	to	run
VirtualBox.

Inside	the	zonecfg	prompt	add	the	device	resource	and	match	properties	to	the
zone.	Here's	how	it	can	be	done:

zonecfg:vboxzone>add	device

zonecfg:vboxzone:device>set	match=/dev/vboxdrv

zonecfg:vboxzone:device>end

zonecfg:vboxzone>add	device

zonecfg:vboxzone:device>set	match=/dev/vboxdrvu

zonecfg:vboxzone:device>end

zonecfg:vboxzone>exit

If	you	are	running	VirtualBox	2.2.0	or	above	on	Solaris	11	or	above,	you	may
add	a	device	for	/dev/vboxusbmon	too,	similar	to	what	was	shown	above.	This
does	not	apply	to	Solaris	10	hosts	due	to	lack	of	USB	support.

If	you	are	not	using	sparse	root	zones,	you	will	need	to	loopback	mount
/opt/VirtualBox	from	the	global	zone	(specified	below	using	the	dir	attribute)
into	the	non-global	zone	at	the	same	path	(specified	using	the	special	attribute).
For	example:

zonecfg:vboxzone>add	fs

zonecfg:vboxzone:device>set	dir=/opt/VirtualBox

zonecfg:vboxzone:device>set	special=/opt/VirtualBox

zonecfg:vboxzone:device>set	type=lofs

zonecfg:vboxzone:device>end

zonecfg:vboxzone>exit

Next	reboot	the	zone	using	zoneadm	and	you	should	be	able	to	run	VirtualBox
from	within	the	configured	zone.

Chapter	3.	Configuring	virtual	machines

Table	of	Contents

3.1.	Supported	guest	operating	systems
3.1.1.	Mac	OS	X	guests
3.1.2.	64-bit	guests

3.2.	Unattended	guest	installation
3.3.	Emulated	hardware
3.4.	General	settings

3.4.1.	"Basic"	tab
3.4.2.	"Advanced"	tab
3.4.3.	"Description"	tab

3.5.	System	settings
3.5.1.	"Motherboard"	tab
3.5.2.	"Processor"	tab
3.5.3.	"Acceleration"	tab

3.6.	Display	settings
3.7.	Storage	settings
3.8.	Audio	settings
3.9.	Network	settings
3.10.	Serial	ports
3.11.	USB	support

3.11.1.	USB	settings
3.11.2.	Implementation	notes	for	Windows	and	Linux	hosts

3.12.	Shared	folders
3.13.	User	Interface
3.14.	Alternative	firmware	(EFI)

3.14.1.	Video	modes	in	EFI
3.14.2.	Specifying	boot	arguments

Whereas	Chapter	1,	First	steps	gave	you	a	quick	introduction	to	VirtualBox	and
how	to	get	your	first	virtual	machine	running,	the	following	chapter	describes	in
detail	how	to	configure	virtual	machines.

You	have	considerable	latitude	in	deciding	what	virtual	hardware	will	be
provided	to	the	guest.	The	virtual	hardware	can	be	used	for	communicating	with
the	host	system	or	with	other	guests.	For	instance,	if	you	provide	VirtualBox

with	the	image	of	a	CD-ROM	in	an	ISO	file,	VirtualBox	can	present	this	image
to	a	guest	system	as	if	it	were	a	physical	CD-ROM.	Similarly,	you	can	give	a
guest	system	access	to	the	real	network	via	its	virtual	network	card,	and,	if	you
so	choose,	give	the	host	system,	other	guests,	or	computers	on	the	Internet	access
to	the	guest	system.

3.1.	Supported	guest	operating	systems

Since	VirtualBox	is	designed	to	provide	a	generic	virtualization	environment	for
x86	systems,	it	may	run	operating	systems	of	any	kind,	even	those	not	listed
here.	However,	the	focus	is	to	optimize	VirtualBox	for	the	following	guest
systems:

Windows	NT	4.0

All	versions,	editions	and	service	packs	are	fully	supported;	however,	there
are	some	issues	with	older	service	packs.	We	recommend	to	install	service
pack	6a.	Guest	Additions	are	available	with	a	limited	feature	set.

Windows	2000	/	XP	/	Server	2003	/	Vista	/	Server	2008	/	7	/	8	/	8.1	/	10	RTM
10240	/	Server	2012

All	versions,	editions	and	service	packs	are	fully	supported	(including	64-
bit	versions,	under	the	preconditions	listed	below).	Guest	Additions	are
available.	Windows	8	and	later	requires	hardware	virtualization	to	be
enabled.

DOS	/	Windows	3.x	/	95	/	98	/	ME

Limited	testing	has	been	performed.	Use	beyond	legacy	installation
mechanisms	not	recommended.	No	Guest	Additions	available.

Linux	2.4

Limited	support.

Linux	2.6

All	versions/editions	are	fully	supported	(32	bits	and	64	bits).	Guest
Additions	are	available.

We	strongly	recommend	using	a	Linux	kernel	version	2.6.13	or	higher	for
better	performance.

Note

Certain	Linux	kernel	releases	have	bugs	that	prevent	them	from
executing	in	a	virtual	environment;	please	see	Section	12.4.3,
“Buggy	Linux	2.6	kernel	versions”	for	details.

Linux	3.x	and	later

All	versions/editions	are	fully	supported	(32	bits	and	64	bits).	Guest
Additions	are	available.

Solaris	10	(u6	and	higher),	Solaris	11	(including	Solaris	11	Express)

Fully	supported	(64	bits,	prior	to	Solaris	11	11/11	also	32	bits).	Guest
Additions	are	available.

FreeBSD

Requires	hardware	virtualization	to	be	enabled.	Limited	support.	Guest
Additions	are	not	available	yet.

OpenBSD

Requires	hardware	virtualization	to	be	enabled.	Versions	3.7	and	later	are
supported.	Guest	Additions	are	not	available	yet.

OS/2	Warp	4.5

Requires	hardware	virtualization	to	be	enabled.	We	officially	support	MCP2
only;	other	OS/2	versions	may	or	may	not	work.	Guest	Additions	are
available	with	a	limited	feature	set.[9]

Mac	OS	X

VirtualBox	3.2	added	experimental	support	for	Mac	OS	X	guests,	but	this
comes	with	restrictions.	Please	see	the	following	section	as	well	as
Chapter	14,	Known	limitations.

3.1.1.	Mac	OS	X	guests

Starting	with	version	3.2,	VirtualBox	has	experimental	support	for	Mac	OS	X
guests.	This	allows	you	to	install	and	execute	unmodified	versions	of	Mac	OS	X
on	supported	host	hardware.

Whereas	competing	solutions	perform	modifications	to	the	Mac	OS	X	install
DVDs	(e.g.	different	boot	loader	and	replaced	files),	VirtualBox	is	the	first
product	to	provide	the	modern	PC	architecture	expected	by	OS	X	without
requiring	any	"hacks".

You	should	be	aware	of	a	number	of	important	issues	before	attempting	to
install	a	Mac	OS	X	guest:

1.	 Mac	OS	X	is	commercial,	licensed	software	and	contains	both	license	and
technical	restrictions	that	limit	its	use	to	certain	hardware	and	usage
scenarios.	It	is	important	that	you	understand	and	obey	these	restrictions.

In	particular,	for	most	versions	of	Mac	OS	X,	Apple	prohibits	installing
them	on	non-Apple	hardware.

These	license	restrictions	are	also	enforced	on	a	technical	level.	Mac	OS	X
verifies	whether	it	is	running	on	Apple	hardware,	and	most	DVDs	that
come	with	Apple	hardware	even	check	for	an	exact	model.	These
restrictions	are	not	circumvented	by	VirtualBox	and	continue	to	apply.

2.	 Only	CPUs	known	and	tested	by	Apple	are	supported.	As	a	result,	if	your
Intel	CPU	is	newer	than	the	build	of	Mac	OS	X,	or	if	you	have	a	non-Intel
CPU,	it	will	most	likely	panic	during	bootup	with	an	"Unsupported	CPU"
exception.	It	is	generally	best	to	use	the	Mac	OS	X	DVD	that	came	with
your	Apple	hardware.

3.	 The	Mac	OS	X	installer	expects	the	harddisk	to	be	partitioned	so	when	it
does	not	offer	a	selection,	you	have	to	launch	the	Disk	Utility	from	the
"Tools"	menu	and	partition	the	hard	disk.	Then	close	the	Disk	Utility	and
proceed	with	the	installation.

4.	 In	addition,	as	Mac	OS	X	support	in	VirtualBox	is	currently	still
experimental,	please	refer	also	to	Chapter	14,	Known	limitations.

3.1.2.	64-bit	guests

VirtualBox	supports	64-bit	guest	operating	systems,	even	on	32-bit	host
operating	systems,[10]	provided	that	the	following	conditions	are	met:

1.	 You	need	a	64-bit	processor	with	hardware	virtualization	support	(see
Section	10.3,	“Hardware	vs.	software	virtualization”).

2.	 You	must	enable	hardware	virtualization	for	the	particular	VM	for	which
you	want	64-bit	support;	software	virtualization	is	not	supported	for	64-bit
VMs.

3.	 If	you	want	to	use	64-bit	guest	support	on	a	32-bit	host	operating	system,
you	must	also	select	a	64-bit	operating	system	for	the	particular	VM.	Since
supporting	64	bits	on	32-bit	hosts	incurs	additional	overhead,	VirtualBox
only	enables	this	support	upon	explicit	request.

On	64-bit	hosts	(which	typically	come	with	hardware	virtualization
support),	64-bit	guest	operating	systems	are	always	supported	regardless	of
settings,	so	you	can	simply	install	a	64-bit	operating	system	in	the	guest.

Warning

On	any	host,	you	should	enable	the	I/O	APIC	for	virtual	machines
that	you	intend	to	use	in	64-bit	mode.	This	is	especially	true	for	64-
bit	Windows	VMs.	See	Section	3.4.2,	“"Advanced"	tab”.	In	addition,
for	64-bit	Windows	guests,	you	should	make	sure	that	the	VM	uses
the	Intel	networking	device,	since	there	is	no	64-bit	driver	support
for	the	AMD	PCNet	card;	see	Section	6.1,	“Virtual	networking
hardware”.

If	you	use	the	"Create	VM"	wizard	of	the	VirtualBox	graphical	user	interface
(see	Section	1.7,	“Creating	your	first	virtual	machine”),	VirtualBox	will
automatically	use	the	correct	settings	for	each	selected	64-bit	operating	system
type.

[9]	See	Chapter	14,	Known	limitations.

[10]	64-bit	guest	support	was	added	with	VirtualBox	2.0;	support	for	64-bit	guests
on	32-bit	hosts	was	added	with	VirtualBox	2.1.

3.2.	Unattended	guest	installation

VirtualBox	is	able	to	automatically	install	a	guest	by	providing	the	installation
medium	as	well	as	a	few	parameters	like	the	name	of	the	default	user.

To	perform	an	unattended	guest	installation,	a	VM	has	to	be	prepared.	A	VM	can
be	created	using	the	GUI	as	described	in	Section	1.7,	“Creating	your	first	virtual
machine”	or	by	using	VBoxManage	as	described	in	Section	8.7,	“VBoxManage
createvm”.	In	general	it's	sufficient	to	chose	the	type	of	the	guest	operating
system	and	to	use	the	proposed	defaults	for	that	operating	system.	See	the
following	sections	on	how	to	change	the	VM	settings	for	certain	needs.

After	the	VM	was	created,	the	VM	has	to	be	prepared	for	unattended	guest
execution	use	VBoxManage,	see	Section	8.42,	“VBoxManage	unattended”.
During	this	step	VirtualBox	scans	the	installation	medium	and	changes	certain
parameters	for	a	seamless	installation	as	a	guest	running	on	VirtualBox.

Once	the	preparation	phase	was	successfully	finished,	the	VM	can	be	started
either	from	the	GUI	or	from	VBoxManage,	see	Section	8.12,	“VBoxManage
startvm”.	The	VM	will	now	perform	the	automatic	installation.	Please	note	that
the	boot	order	was	changed	during	the	preparation	phase	by	giving	the	virtual
hard	disk	the	highest	priority.	As	the	disk	is	normally	empty	before	an	automatic
installation	is	started,	the	VM	will	boot	from	the	virtual	DVD	drive	as	next
available	boot	medium	and	the	installation	will	start.	If,	for	some	reason,	the
virtual	hard	disk	contains	a	bootable	operating	system	then	the	installation	will
not	start	unless	the	boot	order	was	manually	changed	by	pressing	F12	during	the
BIOS	splash	screen.

3.3.	Emulated	hardware

VirtualBox	virtualizes	nearly	all	hardware	of	the	host.	Depending	on	a	VM's
configuration,	the	guest	will	see	the	following	virtual	hardware:

Input	devices.	By	default,	VirtualBox	emulates	a	standard	PS/2	keyboard
and	mouse.	These	devices	are	supported	by	almost	all	past	and	present
operating	systems.

In	addition,	VirtualBox	can	provide	virtual	USB	input	devices	to	avoid
having	to	capture	mouse	and	keyboard,	as	described	in	Section	1.8.2,
“Capturing	and	releasing	keyboard	and	mouse”.

Graphics.	The	VirtualBox	graphics	device	(sometimes	referred	to	as	VGA
device)	is,	unlike	nearly	all	other	emulated	devices,	not	based	on	any
physical	counterpart.	It	is	a	simple,	synthetic	device	which	provides
compatibility	with	standard	VGA	and	several	extended	registers	used	by	the
VESA	BIOS	Extensions	(VBE).

Storage.	VirtualBox	currently	emulates	the	standard	ATA	interface	found
on	Intel	PIIX3/PIIX4	chips,	the	SATA	(AHCI)	interface,	and	two	SCSI
adapters	(LSI	Logic	and	BusLogic);	see	Section	5.1,	“Hard	disk	controllers:
IDE,	SATA	(AHCI),	SCSI,	SAS,	USB	MSD,	NVMe”	for	details.	Whereas
providing	one	of	these	would	be	enough	for	VirtualBox	by	itself,	this
multitude	of	storage	adapters	is	required	for	compatibility	with	other
hypervisors.	Windows	is	particularly	picky	about	its	boot	devices,	and
migrating	VMs	between	hypervisors	is	very	difficult	or	impossible	if	the
storage	controllers	are	different.

Networking.	See	Section	6.1,	“Virtual	networking	hardware”.

USB.	VirtualBox	emulates	three	USB	host	controllers:	xHCI,	EHCI,	and
OHCI.	While	xHCI	handles	all	USB	transfer	speeds,	only	guest	operating
systems	released	approximately	after	2011	support	xHCI.	Note	that	for
Windows	7	guests,	3rd	party	drivers	must	be	installed	for	xHCI	support.

Older	operating	systems	typically	support	OHCI	and	EHCI.	The	two
controllers	are	needed	because	OHCI	only	handles	USB	low-	and	full-speed

devices	(both	USB	1.x	and	2.0),	while	EHCI	only	handles	high-speed
devices	(USB	2.0	only).

The	emulated	USB	controllers	do	not	communicate	directly	with	devices	on
the	host	but	rather	with	a	virtual	USB	layer	which	abstracts	the	USB
protocol	and	allows	the	use	of	remote	USB	devices.

Audio.	See	Section	3.8,	“Audio	settings”.

3.4.	General	settings

In	the	Settings	window,	under	"General",	you	can	configure	the	most
fundamental	aspects	of	the	virtual	machine	such	as	memory	and	essential
hardware.	There	are	three	tabs,	"Basic",	"Advanced"	and	"Description".

3.4.1.	"Basic"	tab

Under	the	"Basic"	tab	of	the	"General"	settings	category,	you	can	find	these
settings:

Name

The	name	under	which	the	VM	is	shown	in	the	list	of	VMs	in	the	main
window.	Under	this	name,	VirtualBox	also	saves	the	VM's	configuration
files.	By	changing	the	name,	VirtualBox	renames	these	files	as	well.	As	a
result,	you	can	only	use	characters	which	are	allowed	in	your	host	operating
system's	file	names.

Note	that	internally,	VirtualBox	uses	unique	identifiers	(UUIDs)	to	identify
virtual	machines.	You	can	display	these	with	VBoxManage.

Operating	system	/	version

The	type	of	the	guest	operating	system	that	is	(or	will	be)	installed	in	the
VM.	This	is	the	same	setting	that	was	specified	in	the	"New	Virtual
Machine"	wizard,	as	described	in	Section	1.7,	“Creating	your	first	virtual
machine”.

Whereas	the	default	settings	of	a	newly	created	VM	depend	on	the	selected
operating	system	type,	changing	the	type	later	has	no	effect	on	VM	settings;
this	value	is	then	purely	informational	and	decorative.

3.4.2.	"Advanced"	tab

Snapshot	Folder

By	default,	VirtualBox	saves	snapshot	data	together	with	your	other

VirtualBox	configuration	data;	see	Section	10.1,	“Where	VirtualBox	stores
its	files”.	With	this	setting,	you	can	specify	any	other	folder	for	each	VM.

Shared	Clipboard

You	can	select	here	whether	the	clipboard	of	the	guest	operating	system
should	be	shared	with	that	of	your	host.	If	you	select	"Bidirectional",	then
VirtualBox	will	always	make	sure	that	both	clipboards	contain	the	same
data.	If	you	select	"Host	to	guest"	or	"Guest	to	host",	then	VirtualBox	will
only	ever	copy	clipboard	data	in	one	direction.

Clipboard	sharing	requires	that	the	VirtualBox	Guest	Additions	be	installed.
As	a	result,	this	setting	has	no	effect	otherwise;	see	Chapter	4,	Guest
Additions	for	details.

The	shared	clipboard	is	disabled	by	default.	See	Section	13.3.2.3,
“Clipboard”	for	an	explanation.	This	setting	can	be	changed	at	any	time
using	the	"Shared	Clipboard"	menu	item	in	the	"Devices"	menu	of	the
virtual	machine.

Drag	and	Drop

This	setting	allows	to	enable	support	for	drag	and	drop:	Select	an	object
(e.g.	a	file)	from	the	host	or	guest	and	directly	copy	or	open	it	on	the	guest
or	host.	Multiple	per-VM	drag	and	drop	modes	allow	restricting	access	in
either	direction.

For	drag	and	drop	to	work	the	Guest	Additions	need	to	be	installed	on	the
guest.

Note

Drag	and	drop	is	disabled	by	default.	This	setting	can	be
changed	at	any	time	using	the	"Drag	and	Drop"	menu	item	in
the	"Devices"	menu	of	the	virtual	machine.

See	Section	4.4,	“Drag	and	Drop”	for	more	information.	[11]

3.4.3.	"Description"	tab

Here	you	can	enter	any	description	for	your	virtual	machine,	if	you	want.	This
has	no	effect	on	the	functionality	of	the	machine,	but	you	may	find	this	space
useful	to	note	down	things	like	the	configuration	of	a	virtual	machine	and	the
software	that	has	been	installed	into	it.

To	insert	a	line	break	into	the	description	text	field,	press	Shift+Enter.

[11]	Experimental	support	for	drag	and	drop	was	added	with	VirtualBox	4.2.

3.5.	System	settings

The	"System"	category	groups	various	settings	that	are	related	to	the	basic
hardware	that	is	presented	to	the	virtual	machine.

Note

As	the	activation	mechanism	of	Microsoft	Windows	is	sensitive	to
hardware	changes,	if	you	are	changing	hardware	settings	for	a
Windows	guest,	some	of	these	changes	may	trigger	a	request	for
another	activation	with	Microsoft.

3.5.1.	"Motherboard"	tab

On	the	"Motherboard"	tab,	you	can	influence	virtual	hardware	that	would
normally	be	on	the	motherboard	of	a	real	computer.

Base	memory

This	sets	the	amount	of	RAM	that	is	allocated	and	given	to	the	VM	when	it
is	running.	The	specified	amount	of	memory	will	be	requested	from	the
host	operating	system,	so	it	must	be	available	or	made	available	as	free
memory	on	the	host	when	attempting	to	start	the	VM	and	will	not	be
available	to	the	host	while	the	VM	is	running.	This	is	the	same	setting	that
was	specified	in	the	"New	Virtual	Machine"	wizard,	as	described	with
guidelines	under	Section	1.7,	“Creating	your	first	virtual	machine”	above.

Generally,	it	is	possible	to	change	the	memory	size	after	installing	the	guest
operating	system	(provided	you	do	not	reduce	the	memory	to	an	amount
where	the	operating	system	would	no	longer	boot).

Boot	order

This	setting	determines	the	order	in	which	the	guest	operating	system	will
attempt	to	boot	from	the	various	virtual	boot	devices.	Analogous	to	a	real
PC's	BIOS	setting,	VirtualBox	can	tell	a	guest	OS	to	start	from	the	virtual
floppy,	the	virtual	CD/DVD	drive,	the	virtual	hard	drive	(each	of	these	as
defined	by	the	other	VM	settings),	the	network,	or	none	of	these.

If	you	select	"Network",	the	VM	will	attempt	to	boot	from	a	network	via
the	PXE	mechanism.	This	needs	to	be	configured	in	detail	on	the	command
line;	please	see	Section	8.8,	“VBoxManage	modifyvm”.

Chipset

Here	you	can	select	which	chipset	will	be	presented	to	the	virtual	machine.
Before	VirtualBox	4.0,	PIIX3	was	the	only	available	option	here.	For
modern	guest	operating	systems	such	as	Mac	OS	X,	that	old	chipset	is	no
longer	well	supported.	As	a	result,	VirtualBox	4.0	introduced	an	emulation
of	the	more	modern	ICH9	chipset,	which	supports	PCI	express,	three	PCI
buses,	PCI-to-PCI	bridges	and	Message	Signaled	Interrupts	(MSI).	This
allows	modern	operating	systems	to	address	more	PCI	devices	and	no
longer	requires	IRQ	sharing.	Using	the	ICH9	chipset	it	is	also	possible	to
configure	up	to	36	network	cards	(up	to	8	network	adapters	with	PIIX3).
Note	that	the	ICH9	support	is	experimental	and	not	recommended	for	guest
operating	systems	which	do	not	require	it.

Pointing	Device

The	default	virtual	pointing	devices	for	older	guests	is	the	traditional	PS/2
mouse.	If	set	to	USB	tablet,	VirtualBox	reports	to	the	virtual	machine	that	a
USB	tablet	device	is	present	and	communicates	mouse	events	to	the	virtual
machine	through	this	device.	The	third	setting	is	a	USB	Multi-Touch	Tablet
which	is	suited	for	recent	Windows	guests.

Using	the	virtual	USB	tablet	has	the	advantage	that	movements	are	reported
in	absolute	coordinates	(instead	of	as	relative	position	changes),	which
allows	VirtualBox	to	translate	mouse	events	over	the	VM	window	into
tablet	events	without	having	to	"capture"	the	mouse	in	the	guest	as
described	in	Section	1.8.2,	“Capturing	and	releasing	keyboard	and	mouse”.
This	makes	using	the	VM	less	tedious	even	if	Guest	Additions	are	not
installed.[12]

Enable	I/O	APIC

Advanced	Programmable	Interrupt	Controllers	(APICs)	are	a	newer	x86
hardware	feature	that	have	replaced	old-style	Programmable	Interrupt
Controllers	(PICs)	in	recent	years.	With	an	I/O	APIC,	operating	systems

can	use	more	than	16	interrupt	requests	(IRQs)	and	therefore	avoid	IRQ
sharing	for	improved	reliability.

Note

Enabling	the	I/O	APIC	is	required	for	64-bit	guest	operating
systems,	especially	Windows	Vista;	it	is	also	required	if	you
want	to	use	more	than	one	virtual	CPU	in	a	virtual	machine.

However,	software	support	for	I/O	APICs	has	been	unreliable	with	some
operating	systems	other	than	Windows.	Also,	the	use	of	an	I/O	APIC
slightly	increases	the	overhead	of	virtualization	and	therefore	slows	down
the	guest	OS	a	little.

Warning

All	Windows	operating	systems	starting	with	Windows	2000
install	different	kernels	depending	on	whether	an	I/O	APIC	is
available.	As	with	ACPI,	the	I/O	APIC	therefore	must	not	be
turned	off	after	installation	of	a	Windows	guest	OS.	Turning	it
on	after	installation	will	have	no	effect	however.

Enable	EFI

This	enables	Extensible	Firmware	Interface	(EFI),	which	replaces	the
legacy	BIOS	and	may	be	useful	for	certain	advanced	use	cases.	Please	refer
to	Section	3.14,	“Alternative	firmware	(EFI)”	for	details.

Hardware	clock	in	UTC	time

If	checked,	VirtualBox	will	report	the	system	time	in	UTC	format	to	the
guest	instead	of	local	(host)	time.	This	affects	how	the	virtual	real-time
clock	(RTC)	operates	and	may	be	useful	for	Unix-like	guest	operating
systems,	which	typically	expect	the	hardware	clock	to	be	set	to	UTC.

In	addition,	you	can	turn	off	the	Advanced	Configuration	and	Power
Interface	(ACPI)	which	VirtualBox	presents	to	the	guest	operating	system	by
default.	ACPI	is	the	current	industry	standard	to	allow	operating	systems	to
recognize	hardware,	configure	motherboards	and	other	devices	and	manage

power.	As	all	modern	PCs	contain	this	feature	and	Windows	and	Linux	have
been	supporting	it	for	years,	it	is	also	enabled	by	default	in	VirtualBox.	It	can
only	be	turned	off	on	the	command	line;	see	Section	8.8,	“VBoxManage
modifyvm”.

Warning

All	Windows	operating	systems	starting	with	Windows	2000	install
different	kernels	depending	on	whether	ACPI	is	available,	so	ACPI
must	not	be	turned	off	after	installation	of	a	Windows	guest	OS.
Turning	it	on	after	installation	will	have	no	effect	however.

3.5.2.	"Processor"	tab

On	the	"Processor"	tab,	you	can	set	how	many	virtual	CPU	cores	the	guest
operating	systems	should	see.	Starting	with	version	3.0,	VirtualBox	supports
symmetrical	multiprocessing	(SMP)	and	can	present	up	to	32	virtual	CPU	cores
to	each	virtual	machine.

You	should	not,	however,	configure	virtual	machines	to	use	more	CPU	cores
than	you	have	available	physically	(real	cores,	no	hyperthreads).

On	this	tab	you	can	also	set	the	"CPU	execution	cap".	This	setting	limits	the
amount	of	time	a	host	CPU	spends	to	emulate	a	virtual	CPU.	The	default	setting
is	100%	meaning	that	there	is	no	limitation.	A	setting	of	50%	implies	a	single
virtual	CPU	can	use	up	to	50%	of	a	single	host	CPU.	Note	that	limiting	the
execution	time	of	the	virtual	CPUs	may	induce	guest	timing	problems.

In	addition,	the	"Enable	PAE/NX"	setting	determines	whether	the	PAE	and	NX
capabilities	of	the	host	CPU	will	be	exposed	to	the	virtual	machine.	PAE	stands
for	"Physical	Address	Extension".	Normally,	if	enabled	and	supported	by	the
operating	system,	then	even	a	32-bit	x86	CPU	can	access	more	than	4	GB	of
RAM.	This	is	made	possible	by	adding	another	4	bits	to	memory	addresses,	so
that	with	36	bits,	up	to	64	GB	can	be	addressed.	Some	operating	systems	(such
as	Ubuntu	Server)	require	PAE	support	from	the	CPU	and	cannot	be	run	in	a
virtual	machine	without	it.

With	virtual	machines	running	modern	server	operating	systems,	VirtualBox	also
supports	CPU	hot-plugging.	For	details	about	this,	please	refer	to	Section	9.5,

“CPU	hot-plugging”.

3.5.3.	"Acceleration"	tab

On	this	page,	you	can	determine	whether	and	how	VirtualBox	should	use
hardware	virtualization	extensions	that	your	host	CPU	may	support.	This	is	the
case	with	most	CPUs	built	after	2006.

You	can	select	for	each	virtual	machine	individually	whether	VirtualBox	should
use	software	or	hardware	virtualization.[13]

In	most	cases,	the	default	settings	will	be	fine;	VirtualBox	will	have	picked
sensible	defaults	depending	on	the	operating	system	that	you	selected	when	you
created	the	virtual	machine.	In	certain	situations,	however,	you	may	want	to
change	these	preconfigured	defaults.

Advanced	users	may	be	interested	in	technical	details	about	software	vs.
hardware	virtualization;	please	see	Section	10.3,	“Hardware	vs.	software
virtualization”.

If	your	host's	CPU	supports	the	nested	paging	(AMD-V)	or	EPT	(Intel	VT-x)
features,	then	you	can	expect	a	significant	performance	increase	by	enabling
nested	paging	in	addition	to	hardware	virtualization.	For	technical	details,	see
Section	10.7,	“Nested	paging	and	VPIDs”.

Starting	with	version	5.0,	VirtualBox	provides	paravirtualization	interfaces	to
improve	time-keeping	accuracy	and	performance	of	guest	operating	systems.
The	options	available	are	documented	under	the	paravirtprovider	option	in
Section	8.8,	“VBoxManage	modifyvm”.	For	further	details	on	the
paravirtualization	providers,	please	refer	to	Section	10.4,	“Paravirtualization
providers”.

[12]	The	virtual	USB	tablet	was	added	with	VirtualBox	3.2.	Depending	on	the
guest	operating	system	selected,	this	is	now	enabled	by	default	for	new	virtual
machines.

[13]	Prior	to	VirtualBox	version	2.2,	software	virtualization	was	the	default;
starting	with	version	2.2,	VirtualBox	will	enable	hardware	virtualization	by

default	for	new	virtual	machines	that	you	create.	(Existing	virtual	machines	are
not	automatically	changed	for	compatibility	reasons,	and	the	default	can	of
course	be	changed	for	each	virtual	machine.)

3.6.	Display	settings

Video	memory	size

This	sets	the	size	of	the	memory	provided	by	the	virtual	graphics	card
available	to	the	guest,	in	MB.	As	with	the	main	memory,	the	specified
amount	will	be	allocated	from	the	host's	resident	memory.	Based	on	the
amount	of	video	memory,	higher	resolutions	and	color	depths	may	be
available.

The	GUI	will	show	a	warning	if	the	amount	of	video	memory	is	too	small
to	be	able	to	switch	the	VM	into	full	screen	mode.	The	minimum	value
depends	on	the	number	of	virtual	monitors,	the	screen	resolution	and	the
color	depth	of	the	host	display	as	well	as	of	the	activation	of	3D
acceleration	and	2D	video	acceleration.	A	rough	estimate	is	(color	depth	/
8)	x	vertical	pixels	x	horizontal	pixels	x	number	of	screens	=	number	of
bytes.	Like	said	above,	there	might	be	extra	memory	required	for	any
activated	display	acceleration	setting.

Monitor	count

With	this	setting	VirtualBox	can	provide	more	than	one	virtual	monitor	to	a
virtual	machine.	If	a	guest	operating	system	(such	as	Windows)	supports
multiple	attached	monitors,	VirtualBox	can	pretend	that	multiple	virtual
monitors	are	present.[14]	Up	to	8	such	virtual	monitors	are	supported.

The	output	of	the	multiple	monitors	will	be	displayed	on	the	host	in
multiple	VM	windows	which	are	running	side	by	side.

However,	in	full	screen	and	seamless	mode,	they	will	use	the	available
physical	monitors	attached	to	the	host.	As	a	result,	for	full	screen	and
seamless	modes	to	work	with	multiple	monitors,	you	will	need	at	least	as
many	physical	monitors	as	you	have	virtual	monitors	configured,	or
VirtualBox	will	report	an	error.	You	can	configure	the	relationship	between
guest	and	host	monitors	using	the	view	menu	by	pressing	Host	key	+	Home
when	you	are	in	full	screen	or	seamless	mode.

Please	see	Chapter	14,	Known	limitations	also.

Enable	3D	acceleration

If	a	virtual	machine	has	Guest	Additions	installed,	you	can	select	here
whether	the	guest	should	support	accelerated	3D	graphics.	Please	refer	to
Section	4.5.1,	“Hardware	3D	acceleration	(OpenGL	and	Direct3D	8/9)”	for
details.

Enable	2D	video	acceleration

If	a	virtual	machine	with	Microsoft	Windows	has	Guest	Additions	installed,
you	can	select	here	whether	the	guest	should	support	accelerated	2D	video
graphics.	Please	refer	to	Section	4.5.2,	“Hardware	2D	video	acceleration	for
Windows	guests”	for	details.

Remote	display

Under	the	"Remote	display"	tab,	if	the	VirtualBox	Remote	Display
Extension	(VRDE)	is	installed,	you	can	enable	the	VRDP	server	that	is	built
into	VirtualBox.	This	allows	you	to	connect	to	the	console	of	the	virtual
machine	remotely	with	any	standard	RDP	viewer,	such	as	mstsc.exe	that
comes	with	Microsoft	Windows.	On	Linux	and	Solaris	systems	you	can	use
the	standard	open-source	rdesktop	program.	These	features	are	described
in	detail	in	Section	7.1,	“Remote	display	(VRDP	support)”.

Video	Capture

Under	the	"Video	Capture"	tab	you	can	enable	video	capturing	for	this	VM.
Note	that	this	feature	can	also	be	enabled/disabled	while	the	VM	is
executed.

[14]	Multiple	monitor	support	was	added	with	VirtualBox	3.2.

3.7.	Storage	settings

The	"Storage"	category	in	the	VM	settings	allows	you	to	connect	virtual	hard
disk,	CD/DVD	and	floppy	images	and	drives	to	your	virtual	machine.

In	a	real	PC,	so-called	"storage	controllers"	connect	physical	disk	drives	to	the
rest	of	the	computer.	Similarly,	VirtualBox	presents	virtual	storage	controllers	to
a	virtual	machine.	Under	each	controller,	the	virtual	devices	(hard	disks,
CD/DVD	or	floppy	drives)	attached	to	the	controller	are	shown.

Note

This	section	can	only	give	you	a	quick	introduction	to	the
VirtualBox	storage	settings.	Since	VirtualBox	gives	you	an
enormous	wealth	of	options	in	this	area,	we	have	dedicated	an	entire
chapter	of	this	User	Manual	to	explaining	all	the	details:	please	see
Chapter	5,	Virtual	storage.

If	you	have	used	the	"Create	VM"	wizard	to	create	a	machine,	you	will	normally
see	something	like	the	following:

Depending	on	the	guest	operating	system	type	that	you	selected	when	you
created	the	VM,	the	typical	layout	of	storage	devices	in	a	new	VM	is	as	follows:

You	will	see	an	IDE	controller,	to	which	a	virtual	CD/DVD	drive	has	been
attached	(to	the	"secondary	master"	port	of	the	IDE	controller).

You	will	also	see	a	SATA	controller,	which	is	a	more	modern	type	of
storage	controller	for	higher	hard	disk	data	throughput,	to	which	the	virtual
hard	disks	are	attached.	Initially	you	will	normally	have	one	such	virtual
disk,	but	as	you	can	see	in	the	above	screenshot,	you	can	have	more	than
one,	each	represented	by	a	disk	image	file	(VDI	files,	in	this	case).

If	you	created	your	VM	with	an	older	version	of	VirtualBox,	the	default	storage
layout	may	differ.	You	might	then	only	have	an	IDE	controller	to	which	both	the
CD/DVD	drive	and	the	hard	disks	have	been	attached.	This	might	also	apply	if
you	selected	an	older	operating	system	type	when	you	created	the	VM.	Since
older	operating	systems	do	not	support	SATA	without	additional	drivers,
VirtualBox	will	make	sure	that	no	such	devices	are	present	initially.	Please	see
Section	5.1,	“Hard	disk	controllers:	IDE,	SATA	(AHCI),	SCSI,	SAS,	USB	MSD,
NVMe”	for	additional	information.

VirtualBox	also	provides	a	floppy	controller,	which	is	special:	you	cannot	add
devices	other	than	floppy	drives	to	it.	Virtual	floppy	drives,	like	virtual	CD/DVD
drives,	can	be	connected	to	either	a	host	floppy	drive	(if	you	have	one)	or	a	disk
image,	which	in	this	case	must	be	in	RAW	format.

You	can	modify	these	media	attachments	freely.	For	example,	if	you	wish	to
copy	some	files	from	another	virtual	disk	that	you	created,	you	can	connect	that
disk	as	a	second	hard	disk,	as	in	the	above	screenshot.	You	could	also	add	a
second	virtual	CD/DVD	drive,	or	change	where	these	items	are	attached.	The
following	options	are	available:

To	add	another	virtual	hard	disk,	or	a	CD/DVD	or	floppy	drive,	select
the	storage	controller	to	which	it	should	be	added	(IDE,	SATA,	SCSI,	SAS,
floppy	controller)	and	then	click	on	the	"add	disk"	button	below	the	tree.
You	can	then	either	select	"Add	CD/DVD	device"	or	"Add	Hard	Disk".	(If
you	clicked	on	a	floppy	controller,	you	can	add	a	floppy	drive	instead.)
Alternatively,	right-click	on	the	storage	controller	and	select	a	menu	item
there.

On	the	right	part	of	the	window,	you	can	then	set	the	following:

1.	 You	can	then	select	to	which	device	slot	of	the	controller	the	virtual

disk	should	be	connected	to.	IDE	controllers	have	four	slots	which
have	traditionally	been	called	"primary	master",	"primary	slave",
"secondary	master"	and	"secondary	slave".	By	contrast,	SATA	and
SCSI	controllers	offer	you	up	to	30	slots	to	which	virtual	devices	can
be	attached.

2.	 You	can	select	which	image	file	to	use.

For	virtual	hard	disks,	a	button	with	a	drop-down	list	appears	on
the	right,	offering	you	to	either	select	a	virtual	hard	disk	file
using	a	standard	file	dialog	or	to	create	a	new	hard	disk	(image
file),	which	will	bring	up	the	"Create	new	disk"	wizard,	which
was	described	in	Section	1.7,	“Creating	your	first	virtual
machine”.

For	details	on	the	image	file	types	that	are	supported,	please	see
Section	5.2,	“Disk	image	files	(VDI,	VMDK,	VHD,	HDD)”.

For	virtual	CD/DVD	drives,	the	image	files	will	typically	be	in
the	standard	ISO	format	instead.	Most	commonly,	you	will	select
this	option	when	installing	an	operating	system	from	an	ISO	file
that	you	have	obtained	from	the	Internet.	For	example,	most
Linux	distributions	are	available	in	this	way.

For	virtual	CD/DVD	drives,	the	following	additional	options	are
available:

If	you	select	"Host	drive"	from	the	list,	then	the	physical
device	of	the	host	computer	is	connected	to	the	VM,	so	that
the	guest	operating	system	can	read	from	and	write	to	your
physical	device.	This	is,	for	instance,	useful	if	you	want	to
install	Windows	from	a	real	installation	CD.	In	this	case,
select	your	host	drive	from	the	drop-down	list	presented.

If	you	want	to	write	(burn)	CDs	or	DVDs	using	the	host
drive,	you	need	to	also	enable	the	"Passthrough"	option;
see	Section	5.9,	“CD/DVD	support”.

If	you	select	"Remove	disk	from	virtual	drive",
VirtualBox	will	present	an	empty	CD/DVD	drive	to	the

guest	into	which	no	media	has	been	inserted.

To	remove	an	attachment,	select	it	and	click	on	the	"remove"	icon	at	the
bottom	(or	right-click	on	it	and	select	the	menu	item).

Removable	media	(CD/DVDs	and	floppies)	can	be	changed	while	the	guest	is
running.	Since	the	"Settings"	dialog	is	not	available	at	that	time,	you	can	also
access	these	settings	from	the	"Devices"	menu	of	your	virtual	machine	window.

3.8.	Audio	settings

The	"Audio"	section	in	a	virtual	machine's	Settings	window	determines	whether
the	VM	will	see	a	sound	card	connected,	and	whether	the	audio	output	should	be
heard	on	the	host	system.

If	audio	is	enabled	for	a	guest,	you	can	choose	between	the	emulation	of	an	Intel
AC'97	controller,	an	Intel	HD	Audio	controller[15]	or	a	SoundBlaster	16	card.	In
any	case,	you	can	select	what	audio	driver	VirtualBox	will	use	on	the	host.

On	a	Linux	host,	depending	on	your	host	configuration,	you	can	also	select
between	the	OSS,	ALSA	or	the	PulseAudio	subsystem.	On	newer	Linux
distributions,	the	PulseAudio	subsystem	should	be	preferred.

Since	VirtualBox	5.0	only	OSS	is	supported	on	Solaris	hosts	-	the	"Solaris
Audio"	audio	backend	is	no	longer	supported	on	Solaris	hosts.

[15]	Intel	HD	Audio	support	was	added	with	VirtualBox	4.0	because	Windows	7
and	later	(as	well	as	64-bit	Windows	Vista)	do	not	support	the	Intel	AC'97
controller	out	of	the	box.

3.9.	Network	settings

The	"Network"	section	in	a	virtual	machine's	Settings	window	allows	you	to
configure	how	VirtualBox	presents	virtual	network	cards	to	your	VM,	and	how
they	operate.

When	you	first	create	a	virtual	machine,	VirtualBox	by	default	enables	one
virtual	network	card	and	selects	the	"Network	Address	Translation"	(NAT)	mode
for	it.	This	way	the	guest	can	connect	to	the	outside	world	using	the	host's
networking	and	the	outside	world	can	connect	to	services	on	the	guest	which	you
choose	to	make	visible	outside	of	the	virtual	machine.

This	default	setup	is	good	for	probably	95%	of	VirtualBox	users.	However,
VirtualBox	is	extremely	flexible	in	how	it	can	virtualize	networking.	It	supports
many	virtual	network	cards	per	virtual	machine,	the	first	four	of	which	can	be
configured	in	detail	in	the	Manager	window.	Additional	network	cards	can	be
configured	on	the	command	line	with	VBoxManage.

Because	of	the	vast	array	of	options	available,	we	have	dedicated	an	entire
chapter	of	this	manual	to	discussing	networking	configuration;	please	see
Chapter	6,	Virtual	networking.

3.10.	Serial	ports

VirtualBox	fully	supports	virtual	serial	ports	in	a	virtual	machine	in	an	easy-to-
use	manner.[16]

Ever	since	the	original	IBM	PC,	personal	computers	have	been	equipped	with
one	or	two	serial	ports	(also	called	COM	ports	by	DOS	and	Windows).	Serial
ports	were	commonly	used	with	modems,	and	some	computer	mice	used	to	be
connected	to	serial	ports	before	USB	became	commonplace.

While	serial	ports	are	no	longer	as	ubiquitous	as	they	used	to	be,	there	are	still
some	important	uses	left	for	them.	For	example,	serial	ports	can	be	used	to	set	up
a	primitive	network	over	a	null-modem	cable,	in	case	Ethernet	is	not	available.
Also,	serial	ports	are	indispensable	for	system	programmers	needing	to	do	kernel
debugging,	since	kernel	debugging	software	usually	interacts	with	developers
over	a	serial	port.	With	virtual	serial	ports,	system	programmers	can	do	kernel
debugging	on	a	virtual	machine	instead	of	needing	a	real	computer	to	connect	to.

If	a	virtual	serial	port	is	enabled,	the	guest	operating	system	sees	a	standard
16550A	compatible	UART	device.	Both	receiving	and	transmitting	data	is
supported.	How	this	virtual	serial	port	is	then	connected	to	the	host	is
configurable,	and	the	details	depend	on	your	host	operating	system.

You	can	use	either	the	graphical	user	interface	or	the	command-line	VBoxManage
tool	to	set	up	virtual	serial	ports.	For	the	latter,	please	refer	to	Section	8.8,
“VBoxManage	modifyvm”;	in	that	section,	look	for	the	--uart	and	--uartmode
options.

In	either	case,	you	can	configure	up	to	four	virtual	serial	ports	per	virtual
machine.	For	each	such	device,	you	will	need	to	determine

1.	 what	kind	of	serial	port	the	virtual	machine	should	see	by	selecting	an	I/O
base	address	and	interrupt	(IRQ).	For	these,	we	recommend	to	use	the
traditional	values[17],	which	are:

a.	 COM1:	I/O	base	0x3F8,	IRQ	4

b.	 COM2:	I/O	base	0x2F8,	IRQ	3

c.	 COM3:	I/O	base	0x3E8,	IRQ	4

d.	 COM4:	I/O	base	0x2E8,	IRQ	3

2.	 Then,	you	will	need	to	determine	what	this	virtual	port	should	be	connected
to.	For	each	virtual	serial	port,	you	have	the	following	options:

You	can	elect	to	have	the	virtual	serial	port	"disconnected",	which
means	that	the	guest	will	see	the	device,	but	it	will	behave	as	if	no
cable	had	been	connected	to	it.

You	can	connect	the	virtual	serial	port	to	a	physical	serial	port	on	your
host.	(On	a	Windows	host,	this	will	be	a	name	like	COM1;	on	Linux	or
Solaris	hosts,	it	will	be	a	device	node	like	/dev/ttyS0).	VirtualBox
will	then	simply	redirect	all	data	received	from	and	sent	to	the	virtual
serial	port	to	the	physical	device.

You	can	tell	VirtualBox	to	connect	the	virtual	serial	port	to	a	software
pipe	on	the	host.	This	depends	on	your	host	operating	system:

On	a	Windows	host,	data	will	be	sent	and	received	through	a
named	pipe.	The	pipe	name	must	be	in	the	format	\\.\pipe\
<name>	where	<name>	should	identify	the	virtual	machine	but	may
be	freely	chosen.

On	a	Mac,	Linux	or	Solaris	host,	a	local	domain	socket	is	used
instead.	The	socket	filename	must	be	chosen	such	that	the	user
running	VirtualBox	has	sufficient	privileges	to	create	and	write	to
it.	The	/tmp	directory	is	often	a	good	candidate.

On	Linux	there	are	various	tools	which	can	connect	to	a	local
domain	socket	or	create	one	in	server	mode.	The	most	flexible
tool	is	socat	and	is	available	as	part	of	many	distributions.

In	this	case,	you	can	configure	whether	VirtualBox	should	create	the
named	pipe	(or,	on	non-Windows	hosts,	the	local	domain	socket)	itself
or	whether	VirtualBox	should	assume	that	the	pipe	(or	socket)	exists
already.	With	the	VBoxManage	command-line	options,	this	is	referred	to
as	"server"	or	"client"	mode,	respectively.

For	a	direct	connection	between	two	virtual	machines	(corresponding
to	a	null-modem	cable),	simply	configure	one	VM	to	create	a
pipe/socket	and	another	to	attach	to	it.

You	can	send	the	virtual	serial	port	output	to	a	file.	This	option	is	very
useful	for	capturing	diagnostic	output	from	a	guest.	Any	file	may	be
used	for	this	purpose,	as	long	as	the	user	running	VirtualBox	has
sufficient	privileges	to	create	and	write	to	the	file.

TCP	Socket:	Useful	for	forwarding	serial	traffic	over	TCP/IP,	acting	as
a	server,	or	it	can	act	as	a	TCP	client	connecting	to	other	servers.	It
allows	a	remote	machine	to	directly	connect	to	the	guest's	serial	port
via	TCP.

TCP	Server:	Uncheck	the	Connect	to	existing	pipe/socket
checkbox	and	specify	the	port	number.	Typically	23	or	2023.
Note	that	on	UNIX-like	systems	you	will	have	to	use	a	port	a
number	greater	than	1024	for	regular	users.

The	client	can	use	software	such	as	PuTTY	or	the	telnet
command	line	tool	to	access	the	TCP	Server.

TCP	Client:	To	create	a	virtual	null-modem	cable	over	the
Internet	or	LAN,	the	other	side	can	connect	via	TCP	by
specifying	hostname:port.	The	TCP	socket	will	act	in	client
mode	if	check	the	Connect	to	existing	pipe/socket	checkbox.

Up	to	four	serial	ports	can	be	configured	per	virtual	machine,	but	you	can	pick
any	port	numbers	out	of	the	above.	However,	serial	ports	cannot	reliably	share
interrupts;	if	both	ports	are	to	be	used	at	the	same	time,	they	must	use	different
interrupt	levels,	for	example	COM1	and	COM2,	but	not	COM1	and	COM3.

[16]	Serial	port	support	was	added	with	VirtualBox	1.5.

[17]	See,	for	example,	http://en.wikipedia.org/wiki/COM_(hardware_interface).

http://en.wikipedia.org/wiki/COM_(hardware_interface)

3.11.	USB	support

3.11.1.	USB	settings

The	"USB"	section	in	a	virtual	machine's	Settings	window	allows	you	to
configure	VirtualBox's	sophisticated	USB	support.

VirtualBox	can	allow	virtual	machines	to	access	the	USB	devices	on	your	host
directly.	To	achieve	this,	VirtualBox	presents	the	guest	operating	system	with	a
virtual	USB	controller.	As	soon	as	the	guest	system	starts	using	a	USB	device,	it
will	appear	as	unavailable	on	the	host.

Note

1.	 Be	careful	with	USB	devices	that	are	currently	in	use	on	the
host!	For	example,	if	you	allow	your	guest	to	connect	to	your
USB	hard	disk	that	is	currently	mounted	on	the	host,	when	the
guest	is	activated,	it	will	be	disconnected	from	the	host	without
a	proper	shutdown.	This	may	cause	data	loss.

2.	 Solaris	hosts	have	a	few	known	limitations	regarding	USB
support;	please	see	Chapter	14,	Known	limitations.

In	addition	to	allowing	a	guest	access	to	your	local	USB	devices,	VirtualBox
even	allows	your	guests	to	connect	to	remote	USB	devices	by	use	of	the
VirtualBox	Remote	Desktop	Extension	(VRDE).	For	details	about	this,	see
Section	7.1.4,	“Remote	USB”.

In	the	Settings	dialog,	you	can	first	configure	whether	USB	is	available	in	the
guest	at	all,	and	then	choose	the	level	of	USB	support:	OHCI	for	USB	1.1,	EHCI
(which	will	also	enable	OHCI)	for	USB	2.0,	or	xHCI	for	all	USB	speeds.

Note

The	xHCI	and	EHCI	controllers	are	shipped	as	a	VirtualBox
extension	package,	which	must	be	installed	separately.	See
Section	1.5,	“Installing	VirtualBox	and	extension	packs”	for	more

information.

When	USB	support	is	enabled	for	a	VM,	you	can	determine	in	detail	which
devices	will	be	automatically	attached	to	the	guest.	For	this,	you	can	create	so-
called	"filters"	by	specifying	certain	properties	of	the	USB	device.	USB	devices
with	a	matching	filter	will	be	automatically	passed	to	the	guest	once	they	are
attached	to	the	host.	USB	devices	without	a	matching	filter	can	be	passed
manually	to	the	guest,	for	example	by	using	the	Devices	/	USB	devices	menu.

Clicking	on	the	"+"	button	to	the	right	of	the	"USB	Device	Filters"	window
creates	a	new	filter.	You	can	give	the	filter	a	name	(for	referencing	it	later)	and
specify	the	filter	criteria.	The	more	criteria	you	specify,	the	more	precisely
devices	will	be	selected.	For	instance,	if	you	specify	only	a	vendor	ID	of	046d,
all	devices	produced	by	Logitech	will	be	available	to	the	guest.	If	you	fill	in	all
fields,	on	the	other	hand,	the	filter	will	only	apply	to	a	particular	device	model
from	a	particular	vendor,	and	not	even	to	other	devices	of	the	same	type	with	a
different	revision	and	serial	number.

In	detail,	the	following	criteria	are	available:

1.	 Vendor	and	product	ID.	With	USB,	each	vendor	of	USB	products	carries
an	identification	number	that	is	unique	world-wide,	the	"vendor	ID".
Similarly,	each	line	of	products	is	assigned	a	"product	ID"	number.	Both
numbers	are	commonly	written	in	hexadecimal	(that	is,	they	are	composed
of	the	numbers	0-9	and	the	letters	A-F),	and	a	colon	separates	the	vendor
from	the	product	ID.	For	example,	046d:c016	stands	for	Logitech	as	a
vendor,	and	the	"M-UV69a	Optical	Wheel	Mouse"	product.

Alternatively,	you	can	also	specify	"Manufacturer"	and	"Product"	by
name.

To	list	all	the	USB	devices	that	are	connected	to	your	host	machine	with
their	respective	vendor	and	product	IDs,	you	can	use	the	following
command	(see	Chapter	8,	VBoxManage):

VBoxManage	list	usbhost

On	Windows,	you	can	also	see	all	USB	devices	that	are	attached	to	your
system	in	the	Device	Manager.	On	Linux,	you	can	use	the	lsusb	command.

2.	 Serial	number.	While	vendor	and	product	ID	are	already	quite	specific	to
identify	USB	devices,	if	you	have	two	identical	devices	of	the	same	brand
and	product	line,	you	will	also	need	their	serial	numbers	to	filter	them	out
correctly.

3.	 Remote.	This	setting	specifies	whether	the	device	will	be	local	only,	or
remote	only	(over	VRDP),	or	either.

On	a	Windows	host,	you	will	need	to	unplug	and	reconnect	a	USB	device	to	use
it	after	creating	a	filter	for	it.

As	an	example,	you	could	create	a	new	USB	filter	and	specify	a	vendor	ID	of
046d	(Logitech,	Inc),	a	manufacturer	index	of	1,	and	"not	remote".	Then	any
USB	devices	on	the	host	system	produced	by	Logitech,	Inc	with	a	manufacturer
index	of	1	will	be	visible	to	the	guest	system.

Several	filters	can	select	a	single	device	--	for	example,	a	filter	which	selects	all
Logitech	devices,	and	one	which	selects	a	particular	webcam.

You	can	deactivate	filters	without	deleting	them	by	clicking	in	the	checkbox
next	to	the	filter	name.

3.11.2.	Implementation	notes	for	Windows	and	Linux	hosts

On	Windows	hosts,	a	kernel	mode	device	driver	provides	USB	proxy	support.	It
implements	both	a	USB	monitor,	which	allows	VirtualBox	to	capture	devices
when	they	are	plugged	in,	and	a	USB	device	driver	to	claim	USB	devices	for	a
particular	virtual	machine.	As	opposed	to	VirtualBox	versions	before	1.4.0,
system	reboots	are	no	longer	necessary	after	installing	the	driver.	Also,	you	no
longer	need	to	replug	devices	for	VirtualBox	to	claim	them.

On	newer	Linux	hosts,	VirtualBox	accesses	USB	devices	through	special	files	in
the	file	system.	When	VirtualBox	is	installed,	these	are	made	available	to	all
users	in	the	vboxusers	system	group.	In	order	to	be	able	to	access	USB	from
guest	systems,	make	sure	that	you	are	a	member	of	this	group.

On	older	Linux	hosts,	USB	devices	are	accessed	using	the	usbfs	file	system.
Therefore,	the	user	executing	VirtualBox	needs	read	and	write	permission	to	the
USB	file	system.	Most	distributions	provide	a	group	(e.g.	usbusers)	which	the

VirtualBox	user	needs	to	be	added	to.	Also,	VirtualBox	can	only	proxy	to	virtual
machines	USB	devices	which	are	not	claimed	by	a	Linux	host	USB	driver.	The
Driver=	entry	in	/proc/bus/usb/devices	will	show	you	which	devices	are
currently	claimed.	Please	refer	to	Section	12.8.7,	“USB	not	working”	also	for
details	about	usbfs.

3.12.	Shared	folders

Shared	folders	allow	you	to	easily	exchange	data	between	a	virtual	machine	and
your	host.	This	feature	requires	that	the	VirtualBox	Guest	Additions	be	installed
in	a	virtual	machine	and	is	described	in	detail	in	Section	4.3,	“Shared	folders”.

3.13.	User	Interface

The	"User	Interface"	section	allows	you	to	change	certain	aspects	of	the	user
interface	of	this	VM.

Menu	Bar

This	widget	allows	you	to	disable	certain	menus	(click	at	the	menu	to
release	it),	certain	menu	entries	(uncheck	the	checkbox	of	the	entry	to
disable	it)	and	the	complete	menu	bar	(uncheck	the	rightmost	checkbox).

Mini	ToolBar

In	full	screen	or	seamless	mode,	VirtualBox	can	display	a	small	toolbar	that
contains	some	of	the	items	that	are	normally	available	from	the	virtual
machine's	menu	bar.	This	toolbar	reduces	itself	to	a	small	gray	line	unless
you	move	the	mouse	over	it.	With	the	toolbar,	you	can	return	from	full
screen	or	seamless	mode,	control	machine	execution	or	enable	certain
devices.	If	you	don't	want	to	see	the	toolbar,	disable	this	setting.

The	second	setting	allows	to	show	the	toolbar	at	the	top	of	the	screen
instead	of	showing	it	at	the	bottom.

Status	Bar

This	widget	allows	you	to	disable	certain	icons	of	the	status	bar	(uncheck
the	checkbox	of	an	icon	to	disable	it),	to	re-arrange	icons	(drag	and	drop	the
icon)	and	to	disable	the	complete	status	bar	(uncheck	the	leftmost
checkbox).

3.14.	Alternative	firmware	(EFI)

Starting	with	release	3.1,	VirtualBox	includes	experimental	support	for	the
Extensible	Firmware	Interface	(EFI),	which	is	a	new	industry	standard	intended
to	eventually	replace	the	legacy	BIOS	as	the	primary	interface	for	bootstrapping
computers	and	certain	system	services	later.

By	default,	VirtualBox	uses	the	BIOS	firmware	for	virtual	machines.	To	use	EFI
for	a	given	virtual	machine,	you	can	enable	EFI	in	the	machine's	"Settings"
dialog	(see	Section	3.5.1,	“"Motherboard"	tab”).	Alternatively,	use	the
VBoxManage	command	line	interface	like	this:

VBoxManage	modifyvm	"VM	name"	--firmware	efi

To	switch	back	to	using	the	BIOS,	use:

VBoxManage	modifyvm	"VM	name"	--firmware	bios

One	notable	user	of	EFI	is	Apple's	Mac	OS	X,	but	more	recent	Linuxes	and
Windows	(starting	with	Vista)	offer	special	versions	that	can	be	booted	using
EFI	as	well.

Another	possible	use	of	EFI	in	VirtualBox	is	development	and	testing	of	EFI
applications,	without	booting	any	OS.

Note	that	the	VirtualBox	EFI	support	is	experimental	and	will	be	enhanced	as
EFI	matures	and	becomes	more	widespread.	Mac	OS	X,	Linux	and	newer
Windows	guests	are	known	to	work	fine.	Windows	7	guests	are	unable	to	boot
with	the	VirtualBox	EFI	implementation.

3.14.1.	Video	modes	in	EFI

EFI	provides	two	distinct	video	interfaces:	GOP	(Graphics	Output	Protocol)	and
UGA	(Universal	Graphics	Adapter).	Modern	operating	systems	(such	as	Mac	OS
X)	generally	use	GOP,	while	some	older	ones	still	use	UGA.	VirtualBox
provides	a	configuration	option	to	control	the	graphics	resolution	for	both
interfaces,	making	the	difference	mostly	irrelevant	for	users.

The	default	resolution	is	1024x768.	To	select	a	graphics	resolution	for	EFI,	use
the	following	VBoxManage	command:

VBoxManage	setextradata	"VM	name"	VBoxInternal2/EfiGraphicsResolution	HxV

Determine	the	horizontal	resolution	H	and	the	vertical	resolution	V	from	the
following	list	of	default	resolutions:

VGA

640x480,	32bpp,	4:3

SVGA

800x600,	32bpp,	4:3

XGA

1024x768,	32bpp,	4:3

XGA+

1152x864,	32bpp,	4:3

HD

1280x720,	32bpp,	16:9

WXGA

1280x800,	32bpp,	16:10

SXGA

1280x1024,	32bpp,	5:4

SXGA+

1400x1050,	32bpp,	4:3

WXGA+

1440x900,	32bpp,	16:10

HD+

1600x900,	32bpp,	16:9

UXGA

1600x1200,	32bpp,	4:3

WSXGA+

1680x1050,	32bpp,	16:10

Full	HD

1920x1080,	32bpp,	16:9

WUXGA

1920x1200,	32bpp,	16:10

DCI	2K

2048x1080,	32bpp,	19:10

Full	HD+

2160x1440,	32bpp,	3:2

Unnamed

2304x1440,	32bpp,	16:10

QHD

2560x1440,	32bpp,	16:9

WQXGA

2560x1600,	32bpp,	16:10

QWXGA+

2880x1800,	32bpp,	16:10

QHD+

3200x1800,	32bpp,	16:9

WQSXGA

3200x2048,	32bpp,	16:10

4K	UHD

3840x2160,	32bpp,	16:9

WQUXGA

3840x2400,	32bpp,	16:10

DCI	4K

4096x2160,	32bpp,	19:10

HXGA

4096x3072,	32bpp,	4:3

UHD+

5120x2880,	32bpp,	16:9

WHXGA

5120x3200,	32bpp,	16:10

WHSXGA

6400x4096,	32bpp,	16:10

HUXGA

6400x4800,	32bpp,	4:3

8K	UHD2

7680x4320,	32bpp,	16:9

If	this	list	of	default	resolution	does	not	cover	your	needs,	see	Section	9.8.1,
“Custom	VESA	resolutions”.	Note	that	the	color	depth	value	specified	in	a
custom	video	mode	must	be	specified	(8,	16,	24	and	32	are	accepted),	but	it	is
silently	assumed	to	be	32	by	EFI.

The	EFI	default	video	resolution	settings	can	only	be	changed	when	the	VM	is
powered	off.

3.14.2.	Specifying	boot	arguments

It	is	currently	not	possible	to	manipulate	EFI	variables	from	within	a	running
guest	(e.g.,	setting	the	"boot-args"	variable	by	running	the	nvram	tool	in	a	Mac
OS	X	guest	will	not	work).	As	an	alternative	way,	"VBoxInternal2/EfiBootArgs"
extradata	can	be	passed	to	a	VM	in	order	to	set	the	"boot-args"	variable.	To
change	the	"boot-args"	EFI	variable:

VBoxManage	setextradata	"VM	name"	VBoxInternal2/EfiBootArgs	<value>

Chapter	4.	Guest	Additions

Table	of	Contents

4.1.	Introduction
4.2.	Installing	and	Maintaining	Guest	Additions

4.2.1.	Guest	Additions	for	Windows
4.2.2.	Guest	Additions	for	Linux
4.2.3.	Guest	Additions	for	Solaris
4.2.4.	Guest	Additions	for	OS/2

4.3.	Shared	folders
4.3.1.	Manual	mounting
4.3.2.	Automatic	mounting

4.4.	Drag	and	Drop
4.4.1.	Supported	formats
4.4.2.	Known	limitations

4.5.	Hardware-accelerated	graphics
4.5.1.	Hardware	3D	acceleration	(OpenGL	and	Direct3D	8/9)
4.5.2.	Hardware	2D	video	acceleration	for	Windows	guests

4.6.	Seamless	windows
4.7.	Guest	properties
4.8.	Guest	control
4.9.	Memory	overcommitment

4.9.1.	Memory	ballooning
4.9.2.	Page	Fusion

The	previous	chapter	covered	getting	started	with	VirtualBox	and	installing
operating	systems	in	a	virtual	machine.	For	any	serious	and	interactive	use,	the
VirtualBox	Guest	Additions	will	make	your	life	much	easier	by	providing	closer
integration	between	host	and	guest	and	improving	the	interactive	performance	of
guest	systems.	This	chapter	describes	the	Guest	Additions	in	detail.

4.1.	Introduction

As	mentioned	in	Section	1.2,	“Some	terminology”,	the	Guest	Additions	are
designed	to	be	installed	inside	a	virtual	machine	after	the	guest	operating	system
has	been	installed.	They	consist	of	device	drivers	and	system	applications	that
optimize	the	guest	operating	system	for	better	performance	and	usability.	Please
see	Section	3.1,	“Supported	guest	operating	systems”	for	details	on	what	guest
operating	systems	are	fully	supported	with	Guest	Additions	by	VirtualBox.

The	VirtualBox	Guest	Additions	for	all	supported	guest	operating	systems	are
provided	as	a	single	CD-ROM	image	file	which	is	called
VBoxGuestAdditions.iso.	This	image	file	is	located	in	the	installation	directory
of	VirtualBox.	To	install	the	Guest	Additions	for	a	particular	VM,	you	mount
this	ISO	file	in	your	VM	as	a	virtual	CD-ROM	and	install	from	there.

The	Guest	Additions	offer	the	following	features:

Mouse	pointer	integration

To	overcome	the	limitations	for	mouse	support	that	were	described	in
Section	1.8.2,	“Capturing	and	releasing	keyboard	and	mouse”,	this	provides
you	with	seamless	mouse	support.	You	will	only	have	one	mouse	pointer
and	pressing	the	Host	key	is	no	longer	required	to	"free"	the	mouse	from
being	captured	by	the	guest	OS.	To	make	this	work,	a	special	mouse	driver
is	installed	in	the	guest	that	communicates	with	the	"real"	mouse	driver	on
your	host	and	moves	the	guest	mouse	pointer	accordingly.

Shared	folders

These	provide	an	easy	way	to	exchange	files	between	the	host	and	the
guest.	Much	like	ordinary	Windows	network	shares,	you	can	tell	VirtualBox
to	treat	a	certain	host	directory	as	a	shared	folder,	and	VirtualBox	will	make
it	available	to	the	guest	operating	system	as	a	network	share,	irrespective	of
whether	guest	actually	has	a	network.	For	details,	please	refer	to
Section	4.3,	“Shared	folders”.

Better	video	support

While	the	virtual	graphics	card	which	VirtualBox	emulates	for	any	guest
operating	system	provides	all	the	basic	features,	the	custom	video	drivers
that	are	installed	with	the	Guest	Additions	provide	you	with	extra	high	and
non-standard	video	modes	as	well	as	accelerated	video	performance.

In	addition,	with	Windows,	Linux	and	Solaris	guests,	you	can	resize	the
virtual	machine's	window	if	the	Guest	Additions	are	installed.	The	video
resolution	in	the	guest	will	be	automatically	adjusted	(as	if	you	had
manually	entered	an	arbitrary	resolution	in	the	guest's	display	settings).
Please	see	Section	1.8.5,	“Resizing	the	machine's	window”	also.

Finally,	if	the	Guest	Additions	are	installed,	3D	graphics	and	2D	video	for
guest	applications	can	be	accelerated;	see	Section	4.5,	“Hardware-
accelerated	graphics”.

Seamless	windows

With	this	feature,	the	individual	windows	that	are	displayed	on	the	desktop
of	the	virtual	machine	can	be	mapped	on	the	host's	desktop,	as	if	the
underlying	application	was	actually	running	on	the	host.	See	Section	4.6,
“Seamless	windows”	for	details.

Generic	host/guest	communication	channels

The	Guest	Additions	enable	you	to	control	and	monitor	guest	execution	in
ways	other	than	those	mentioned	above.	The	so-called	"guest	properties"
provide	a	generic	string-based	mechanism	to	exchange	data	bits	between	a
guest	and	a	host,	some	of	which	have	special	meanings	for	controlling	and
monitoring	the	guest;	see	Section	4.7,	“Guest	properties”	for	details.

Additionally,	applications	can	be	started	in	a	guest	from	the	host;	see
Section	4.8,	“Guest	control”.

Time	synchronization

With	the	Guest	Additions	installed,	VirtualBox	can	ensure	that	the	guest's
system	time	is	better	synchronized	with	that	of	the	host.

For	various	reasons,	the	time	in	the	guest	might	run	at	a	slightly	different
rate	than	the	time	on	the	host.	The	host	could	be	receiving	updates	via	NTP

and	its	own	time	might	not	run	linearly.	A	VM	could	also	be	paused,	which
stops	the	flow	of	time	in	the	guest	for	a	shorter	or	longer	period	of	time.
When	the	wall	clock	time	between	the	guest	and	host	only	differs	slightly,
the	time	synchronization	service	attempts	to	gradually	and	smoothly	adjust
the	guest	time	in	small	increments	to	either	"catch	up"	or	"lose"	time.	When
the	difference	is	too	great	(e.g.,	a	VM	paused	for	hours	or	restored	from
saved	state),	the	guest	time	is	changed	immediately,	without	a	gradual
adjustment.

The	Guest	Additions	will	re-synchronize	the	time	regularly.	See
Section	9.14.3,	“Tuning	the	Guest	Additions	time	synchronization
parameters”	for	how	to	configure	the	parameters	of	the	time
synchronization	mechanism.

Shared	clipboard

With	the	Guest	Additions	installed,	the	clipboard	of	the	guest	operating
system	can	optionally	be	shared	with	your	host	operating	system;	see
Section	3.4,	“General	settings”.

Automated	logons	(credentials	passing)

For	details,	please	see	Section	9.2,	“Automated	guest	logons”.

Each	version	of	VirtualBox,	even	minor	releases,	ship	with	their	own	version	of
the	Guest	Additions.	While	the	interfaces	through	which	the	VirtualBox	core
communicates	with	the	Guest	Additions	are	kept	stable	so	that	Guest	Additions
already	installed	in	a	VM	should	continue	to	work	when	VirtualBox	is	upgraded
on	the	host,	for	best	results,	it	is	recommended	to	keep	the	Guest	Additions	at
the	same	version.

Starting	with	VirtualBox	3.1,	the	Windows	and	Linux	Guest	Additions	therefore
check	automatically	whether	they	have	to	be	updated.	If	the	host	is	running	a
newer	VirtualBox	version	than	the	Guest	Additions,	a	notification	with	further
instructions	is	displayed	in	the	guest.

To	disable	this	update	check	for	the	Guest	Additions	of	a	given	virtual	machine,
set	the	value	of	its	/VirtualBox/GuestAdd/CheckHostVersion	guest	property	to
0;	see	Section	4.7,	“Guest	properties”	for	details.

4.2.	Installing	and	Maintaining	Guest	Additions

Guest	Additions	are	available	for	virtual	machines	running	Windows,	Linux,
Solaris	or	OS/2.	The	following	sections	describe	the	specifics	of	each	variant	in
detail.

4.2.1.	Guest	Additions	for	Windows

The	VirtualBox	Windows	Guest	Additions	are	designed	to	be	installed	in	a
virtual	machine	running	a	Windows	operating	system.	The	following	versions	of
Windows	guests	are	supported:

Microsoft	Windows	NT	4.0	(any	service	pack)

Microsoft	Windows	2000	(any	service	pack)

Microsoft	Windows	XP	(any	service	pack)

Microsoft	Windows	Server	2003	(any	service	pack)

Microsoft	Windows	Server	2008

Microsoft	Windows	Vista	(all	editions)

Microsoft	Windows	7	(all	editions)

Microsoft	Windows	8	(all	editions)

Microsoft	Windows	10	RTM	build	10240

Microsoft	Windows	Server	2012

4.2.1.1.	Installation

In	the	"Devices"	menu	in	the	virtual	machine's	menu	bar,	VirtualBox	has	a	handy
menu	item	named	"Insert	Guest	Additions	CD	image",	which	mounts	the	Guest
Additions	ISO	file	inside	your	virtual	machine.	A	Windows	guest	should	then
automatically	start	the	Guest	Additions	installer,	which	installs	the	Guest

Additions	into	your	Windows	guest.	Other	guest	operating	systems	(or	if
automatic	start	of	software	on	CD	is	disabled)	need	manual	start	of	the	installer.

Note

For	the	basic	Direct3D	acceleration	to	work	in	a	Windows	guest,	you
have	to	install	the	WDDM	video	driver	available	for	Windows	Vista
or	higher.[18]	For	Windows	8	and	higher	only	the	WDDM	Direct3D
video	driver	is	available.	For	basic	Direct3D	acceleration	to	work	in
Windows	XP	guests,	you	have	to	install	the	Guest	Additions	in	"Safe
Mode",	see	Chapter	14,	Known	limitations	for	details.

If	you	prefer	to	mount	the	additions	manually,	you	can	perform	the	following
steps:

1.	 Start	the	virtual	machine	in	which	you	have	installed	Windows.

2.	 Select	"Mount	CD/DVD-ROM"	from	the	"Devices"	menu	in	the	virtual
machine's	menu	bar	and	then	"CD/DVD-ROM	image".	This	brings	up	the
Virtual	Media	Manager	described	in	Section	5.3,	“The	Virtual	Media
Manager”.

3.	 In	the	Virtual	Media	Manager,	press	the	"Add"	button	and	browse	your	host
file	system	for	the	VBoxGuestAdditions.iso	file:

On	a	Windows	host,	you	can	find	this	file	in	the	VirtualBox
installation	directory	(usually	under	C:\Program
files\Oracle\VirtualBox).

On	Mac	OS	X	hosts,	you	can	find	this	file	in	the	application	bundle	of
VirtualBox.	(Right	click	on	the	VirtualBox	icon	in	Finder	and	choose
Show	Package	Contents.	There	it	is	located	in	the	Contents/MacOS
folder.)

On	a	Linux	host,	you	can	find	this	file	in	the	additions	folder	under
where	you	installed	VirtualBox	(normally	/opt/VirtualBox/).

On	Solaris	hosts,	you	can	find	this	file	in	the	additions	folder	under
where	you	installed	VirtualBox	(normally	/opt/VirtualBox).

4.	 Back	in	the	Virtual	Media	Manager,	select	that	ISO	file	and	press	the
"Select"	button.	This	will	mount	the	ISO	file	and	present	it	to	your
Windows	guest	as	a	CD-ROM.

Unless	you	have	the	Autostart	feature	disabled	in	your	Windows	guest,	Windows
will	now	autostart	the	VirtualBox	Guest	Additions	installation	program	from	the
Additions	ISO.	If	the	Autostart	feature	has	been	turned	off,	choose
VBoxWindowsAdditions.exe	from	the	CD/DVD	drive	inside	the	guest	to	start	the
installer.

The	installer	will	add	several	device	drivers	to	the	Windows	driver	database	and
then	invoke	the	hardware	detection	wizard.

Depending	on	your	configuration,	it	might	display	warnings	that	the	drivers	are
not	digitally	signed.	You	must	confirm	these	in	order	to	continue	the	installation
and	properly	install	the	Additions.

After	installation,	reboot	your	guest	operating	system	to	activate	the	Additions.

4.2.1.2.	Updating	the	Windows	Guest	Additions

Windows	Guest	Additions	can	be	updated	by	running	the	installation	program
again,	as	previously	described.	This	will	then	replace	the	previous	Additions
drivers	with	updated	versions.

Alternatively,	you	may	also	open	the	Windows	Device	Manager	and	select
"Update	driver..."	for	two	devices:

1.	 the	VirtualBox	Graphics	Adapter	and

2.	 the	VirtualBox	System	Device.

For	each,	choose	to	provide	your	own	driver	and	use	"Have	Disk"	to	point	the
wizard	to	the	CD-ROM	drive	with	the	Guest	Additions.

4.2.1.3.	Unattended	Installation

As	a	prerequisite	for	avoid	popups	while	performing	an	unattended	installation
of	the	VirtualBox	Guest	Additions,	the	code	signing	certificates	used	to	sign	the

drivers	needs	to	be	installed	in	the	right	certificates	stores	in	the	guest	system.
Failing	to	do	this	will	cause	a	typical	windows	installation	to	pop	up	a	dialog
asking	whether	its	allowable	to	install	each	driver.

Note

On	some	Windows	versions	like	Windows	2000	and	Windows	XP
the	user	intervention	popups	mentioned	above	always	will	be
displayed,	even	after	importing	the	Oracle	certificates.

Since	VirtualBox	4.2	installing	those	code	signing	certificates	on	a	Windows
guest	can	be	done	in	an	automated	fashion	using	the	VBoxCertUtil.exe	utility
found	on	the	Guest	Additions	installation	CD	in	the	cert	folder:

Log	in	as	Administrator	on	the	guest.

Mount	the	VirtualBox	Guest	Additions	.ISO.

Open	a	command	line	window	on	the	guest	and	change	to	the	cert	folder
on	the	VirtualBox	Guest	Additions	CD.

Do

VBoxCertUtil.exe	add-trusted-publisher	vbox*.cer	--root	vbox*.cer

This	will	install	the	certificates	to	the	certificate	store.	When	installing	the
same	certificate	more	than	once,	an	appropriate	error	will	be	displayed.

Prior	to	VirtualBox	4.2	the	code	signing	certificates	need	to	be	imported	in	more
manual	style	using	the	certutil.exe	utility,	which	is	shipped	since	Windows
Vista.	For	Windows	versions	before	Vista	you	need	to	download	and	install
certutil.exe	manually.	Since	the	certificates	are	not	accompanied	on	the
VirtualBox	Guest	Additions	CD-ROM	prior	to	4.2,	these	need	to	get	extracted
from	a	signed	VirtualBox	executable	first.

In	the	following	example	the	needed	certificates	will	be	extracted	from	the
VirtualBox	Windows	Guest	Additions	installer	on	the	CD-ROM:

VeriSign	Code	Signing	CA

Open	the	Windows	Explorer.

Right	click	on	VBoxWindowsAdditions-<Architecture>.exe,	click	on
"Properties"

Go	to	tab	"Digital	Signatures",	choose	"Oracle	Corporation"	and	click
on	"Details"

In	tab	"General"	click	on	"View	Certificate"

In	tab	"Certification	Path"	select	"VeriSign	Class	3	Public	Primary
CA"

Click	on	"View	Certificate"

In	tab	"Details"	click	on	"Copy	to	File	..."

In	the	upcoming	wizard	choose	"DER	encoded	binary	X.509	(.CER)"
and	save	the	certificate	file	to	a	local	path,	finish	the	wizard

Close	certificate	dialog	for	"Verisign	Class	3	Code	Signing	2010	CA"

Oracle	Corporation

Open	the	Windows	Explorer.

Right	click	on	VBoxWindowsAdditions-<Architecture>.exe,	click	on
"Properties"

Go	to	tab	"Digital	Signatures",	choose	"Oracle	Corporation"	and	click
on	"Details"

In	tab	"General"	click	on	"View	Certificate"

In	tab	"Details"	click	on	"Copy	to	File	..."

In	the	upcoming	wizard	choose	"DER	encoded	binary	X.509	(.CER)"
and	save	the	certificate	file	to	a	local	path,	finish	the	wizard

Close	certificate	dialog	for	"Oracle	Corporation"

After	exporting	the	two	certificates	above	they	can	be	imported	into	the
certificate	store	using	the	certutil.exe	utility:

certutil	-addstore	-f	Root	"<Path	to	exported	certificate	file>"

In	order	to	allow	for	completely	unattended	guest	installations,	you	can	specify	a
command	line	parameter	to	the	install	launcher:

VBoxWindowsAdditions.exe	/S

This	automatically	installs	the	right	files	and	drivers	for	the	corresponding
platform	(32-	or	64-bit).

Note

By	default	on	an	unattended	installation	on	a	Vista	or	Windows	7
guest,	there	will	be	the	XPDM	graphics	driver	installed.	This
graphics	driver	does	not	support	Windows	Aero	/	Direct3D	on	the
guest	–	instead	the	WDDM	graphics	driver	needs	to	be	installed.	To
select	this	driver	by	default,	add	the	command	line	parameter
/with_wddm	when	invoking	the	Windows	Guest	Additions	installer
(only	required	for	Vista	and	Windows	7).

Note

For	Windows	Aero	to	run	correctly	on	a	guest,	the	guest's	VRAM
size	needs	to	be	configured	to	at	least	128	MB.

For	more	options	regarding	unattended	guest	installations,	consult	the	command
line	help	by	using	the	command:

VBoxWindowsAdditions.exe	/?

4.2.1.4.	Manual	file	extraction

If	you	would	like	to	install	the	files	and	drivers	manually,	you	can	extract	the
files	from	the	Windows	Guest	Additions	setup	by	typing:

VBoxWindowsAdditions.exe	/extract

To	explicitly	extract	the	Windows	Guest	Additions	for	another	platform	than	the
current	running	one	(e.g.	64-bit	files	on	a	32-bit	system),	you	have	to	execute	the
appropriate	platform	installer	(VBoxWindowsAdditions-x86.exe	or
VBoxWindowsAdditions-amd64.exe)	with	the	/extract	parameter.

4.2.2.	Guest	Additions	for	Linux

Like	the	Windows	Guest	Additions,	the	VirtualBox	Guest	Additions	for	Linux
are	a	set	of	device	drivers	and	system	applications	which	may	be	installed	in	the
guest	operating	system.

The	following	Linux	distributions	are	officially	supported:

Oracle	Linux	as	of	version	5	including	UEK	kernels;

Fedora	as	of	Fedora	Core	4;

Redhat	Enterprise	Linux	as	of	version	3;

SUSE	and	openSUSE	Linux	as	of	version	9;

Ubuntu	as	of	version	5.10.

Many	other	distributions	are	known	to	work	with	the	Guest	Additions.

The	version	of	the	Linux	kernel	supplied	by	default	in	SUSE	and	openSUSE
10.2,	Ubuntu	6.10	(all	versions)	and	Ubuntu	6.06	(server	edition)	contains	a	bug
which	can	cause	it	to	crash	during	startup	when	it	is	run	in	a	virtual	machine.
The	Guest	Additions	work	in	those	distributions.

Note	that	some	Linux	distributions	already	come	with	all	or	part	of	the
VirtualBox	Guest	Additions.	You	may	choose	to	keep	the	distribution's	version
of	the	Guest	Additions	but	these	are	often	not	up	to	date	and	limited	in
functionality,	so	we	recommend	replacing	them	with	the	Guest	Additions	that
come	with	VirtualBox.	The	VirtualBox	Linux	Guest	Additions	installer	tries	to
detect	existing	installation	and	replace	them	but	depending	on	how	the
distribution	integrates	the	Guest	Additions,	this	may	require	some	manual
interaction.	It	is	highly	recommended	to	take	a	snapshot	of	the	virtual	machine
before	replacing	pre-installed	Guest	Additions.

4.2.2.1.	Installing	the	Linux	Guest	Additions

The	VirtualBox	Guest	Additions	for	Linux	are	provided	on	the	same	virtual	CD-
ROM	file	as	the	Guest	Additions	for	Windows	described	above.	They	also	come
with	an	installation	program	guiding	you	through	the	setup	process,	although,
due	to	the	significant	differences	between	Linux	distributions,	installation	may
be	slightly	more	complex.

Installation	generally	involves	the	following	steps:

1.	 Before	installing	the	Guest	Additions,	you	will	have	to	prepare	your	guest
system	for	building	external	kernel	modules.	This	works	similarly	as
described	in	Section	2.3.2,	“The	VirtualBox	driver	modules”,	except	that
this	step	must	now	be	performed	in	your	Linux	guest	instead	of	on	a	Linux
host	system,	as	described	there.

If	you	suspect	that	something	has	gone	wrong,	check	that	your	guest	is	set
up	correctly	and	try	executing	the	command

rcvboxadd	setup

as	root.

2.	 Insert	the	VBoxGuestAdditions.iso	CD	file	into	your	Linux	guest's	virtual
CD-ROM	drive,	exactly	the	same	way	as	described	for	a	Windows	guest	in
Section	4.2.1.1,	“Installation”.

3.	 Change	to	the	directory	where	your	CD-ROM	drive	is	mounted	and	execute
as	root:

sh	./VBoxLinuxAdditions.run

4.2.2.2.	Graphics	and	mouse	integration

In	Linux	and	Solaris	guests,	VirtualBox	graphics	and	mouse	integration	goes
through	the	X	Window	System.	VirtualBox	can	use	the	X.Org	variant	of	the
system	(or	XFree86	version	4.3	which	is	identical	to	the	first	X.Org	release).
During	the	installation	process,	the	X.Org	display	server	will	be	set	up	to	use	the
graphics	and	mouse	drivers	which	come	with	the	Guest	Additions.

After	installing	the	Guest	Additions	into	a	fresh	installation	of	a	supported	Linux
distribution	or	Solaris	system	(many	unsupported	systems	will	work	correctly
too),	the	guest's	graphics	mode	will	change	to	fit	the	size	of	the	VirtualBox
window	on	the	host	when	it	is	resized.	You	can	also	ask	the	guest	system	to
switch	to	a	particular	resolution	by	sending	a	"video	mode	hint"	using	the
VBoxManage	tool.

Multiple	guest	monitors	are	supported	in	guests	using	the	X.Org	server	version
1.3	(which	is	part	of	release	7.3	of	the	X	Window	System	version	11)	or	a	later
version.	The	layout	of	the	guest	screens	can	be	adjusted	as	needed	using	the
tools	which	come	with	the	guest	operating	system.

If	you	want	to	understand	more	about	the	details	of	how	the	X.Org	drivers	are
set	up	(in	particular	if	you	wish	to	use	them	in	a	setting	which	our	installer
doesn't	handle	correctly),	you	should	read	Section	9.4.2,	“Guest	graphics	and
mouse	driver	setup	in	depth”.

4.2.2.3.	Updating	the	Linux	Guest	Additions

The	Guest	Additions	can	simply	be	updated	by	going	through	the	installation
procedure	again	with	an	updated	CD-ROM	image.	This	will	replace	the	drivers
with	updated	versions.	You	should	reboot	after	updating	the	Guest	Additions.

4.2.2.4.	Uninstalling	the	Linux	Guest	Additions

If	you	have	a	version	of	the	Guest	Additions	installed	on	your	virtual	machine
and	wish	to	remove	it	without	installing	new	ones,	you	can	do	so	by	inserting	the
Guest	Additions	CD	image	into	the	virtual	CD-ROM	drive	as	described	above
and	running	the	installer	for	the	current	Guest	Additions	with	the	"uninstall"
parameter	from	the	path	that	the	CD	image	is	mounted	on	in	the	guest:

sh	./VBoxLinuxAdditions.run	uninstall

While	this	will	normally	work	without	issues,	you	may	need	to	do	some	manual
cleanup	of	the	guest	(particularly	of	the	XFree86Config	or	xorg.conf	file)	in
some	cases,	particularly	if	the	Additions	version	installed	or	the	guest	operating
system	were	very	old,	or	if	you	made	your	own	changes	to	the	Guest	Additions
setup	after	you	installed	them.

Starting	with	version	3.1.0,	you	can	uninstall	the	Additions	by	invoking

/opt/VBoxGuestAdditions-5.2.4/uninstall.sh

Please	replace	/opt/VBoxGuestAdditions-5.2.4	with	the	correct	Guest
Additions	installation	directory.

4.2.3.	Guest	Additions	for	Solaris

Like	the	Windows	Guest	Additions,	the	VirtualBox	Guest	Additions	for	Solaris
take	the	form	of	a	set	of	device	drivers	and	system	applications	which	may	be
installed	in	the	guest	operating	system.

The	following	Solaris	distributions	are	officially	supported:

Solaris	11	including	Solaris	11	Express;

Solaris	10	(u5	and	higher);

Other	distributions	may	work	if	they	are	based	on	comparable	software	releases.

4.2.3.1.	Installing	the	Solaris	Guest	Additions

The	VirtualBox	Guest	Additions	for	Solaris	are	provided	on	the	same	ISO	CD-
ROM	as	the	Additions	for	Windows	and	Linux	described	above.	They	also	come
with	an	installation	program	guiding	you	through	the	setup	process.

Installation	involves	the	following	steps:

1.	 Mount	the	VBoxGuestAdditions.iso	file	as	your	Solaris	guest's	virtual	CD-
ROM	drive,	exactly	the	same	way	as	described	for	a	Windows	guest	in
Section	4.2.1.1,	“Installation”.

If	in	case	the	CD-ROM	drive	on	the	guest	doesn't	get	mounted	(observed	on
some	versions	of	Solaris	10),	execute	as	root:

svcadm	restart	volfs

2.	 Change	to	the	directory	where	your	CD-ROM	drive	is	mounted	and	execute
as	root:

pkgadd	-G	-d	./VBoxSolarisAdditions.pkg

3.	 Choose	"1"	and	confirm	installation	of	the	Guest	Additions	package.	After
the	installation	is	complete,	re-login	to	X	server	on	your	guest	to	activate
the	X11	Guest	Additions.

4.2.3.2.	Uninstalling	the	Solaris	Guest	Additions

The	Solaris	Guest	Additions	can	be	safely	removed	by	removing	the	package
from	the	guest.	Open	a	root	terminal	session	and	execute:

pkgrm	SUNWvboxguest

4.2.3.3.	Updating	the	Solaris	Guest	Additions

The	Guest	Additions	should	be	updated	by	first	uninstalling	the	existing	Guest
Additions	and	then	installing	the	new	ones.	Attempting	to	install	new	Guest
Additions	without	removing	the	existing	ones	is	not	possible.

4.2.4.	Guest	Additions	for	OS/2

VirtualBox	also	ships	with	a	set	of	drivers	that	improve	running	OS/2	in	a	virtual
machine.	Due	to	restrictions	of	OS/2	itself,	this	variant	of	the	Guest	Additions
has	a	limited	feature	set;	see	Chapter	14,	Known	limitations	for	details.

The	OS/2	Guest	Additions	are	provided	on	the	same	ISO	CD-ROM	as	those	for
the	other	platforms.	As	a	result,	mount	the	ISO	in	OS/2	as	described	previously.
The	OS/2	Guest	Additions	are	located	in	the	directory	\32bit\OS2.

As	we	do	not	provide	an	automatic	installer	at	this	time,	please	refer	to	the
readme.txt	file	in	that	directory,	which	describes	how	to	install	the	OS/2	Guest
Additions	manually.

[18]	An	experimental	WDDM	driver	was	added	with	VirtualBox	4.1.

4.3.	Shared	folders

With	the	"shared	folders"	feature	of	VirtualBox,	you	can	access	files	of	your	host
system	from	within	the	guest	system.	This	is	similar	how	you	would	use	network
shares	in	Windows	networks	--	except	that	shared	folders	do	not	need	require
networking,	only	the	Guest	Additions.	Shared	Folders	are	supported	with
Windows	(2000	or	newer),	Linux	and	Solaris	guests.

Shared	folders	must	physically	reside	on	the	host	and	are	then	shared	with	the
guest,	which	uses	a	special	file	system	driver	in	the	Guest	Addition	to	talk	to	the
host.	For	Windows	guests,	shared	folders	are	implemented	as	a	pseudo-network
redirector;	for	Linux	and	Solaris	guests,	the	Guest	Additions	provide	a	virtual
file	system.

To	share	a	host	folder	with	a	virtual	machine	in	VirtualBox,	you	must	specify	the
path	of	that	folder	and	choose	for	it	a	"share	name"	that	the	guest	can	use	to
access	it.	Hence,	first	create	the	shared	folder	on	the	host;	then,	within	the	guest,
connect	to	it.

There	are	several	ways	in	which	shared	folders	can	be	set	up	for	a	particular
virtual	machine:

In	the	window	of	a	running	VM,	you	can	select	"Shared	folders"	from	the
"Devices"	menu,	or	click	on	the	folder	icon	on	the	status	bar	in	the	bottom
right	corner.

If	a	VM	is	not	currently	running,	you	can	configure	shared	folders	in	each
virtual	machine's	"Settings"	dialog.

From	the	command	line,	you	can	create	shared	folders	using	VBoxManage,
as	follows:

VBoxManage	sharedfolder	add	"VM	name"	--name	"sharename"	--hostpath	"C:\test"

See	Section	8.32,	“VBoxManage	sharedfolder	add/remove”	for	details.

There	are	two	types	of	shares:

1.	 VM	shares	which	are	only	available	to	the	VM	for	which	they	have	been

defined;

2.	 transient	VM	shares,	which	can	be	added	and	removed	at	runtime	and	do
not	persist	after	a	VM	has	stopped;	for	these,	add	the	--transient	option	to
the	above	command	line.

Shared	folders	have	read/write	access	to	the	files	at	the	host	path	by	default.	To
restrict	the	guest	to	have	read-only	access,	create	a	read-only	shared	folder.	This
can	either	be	achieved	using	the	GUI	or	by	appending	the	parameter	--readonly
when	creating	the	shared	folder	with	VBoxManage.

Starting	with	version	4.0,	VirtualBox	shared	folders	also	support	symbolic	links
(symlinks),	under	the	following	conditions:

1.	 The	host	operating	system	must	support	symlinks	(i.e.	a	Mac,	Linux	or
Solaris	host	is	required).

2.	 Currently	only	Linux	and	Solaris	Guest	Additions	support	symlinks.

3.	 For	security	reasons	the	guest	OS	is	not	allowed	to	create	symlinks	by
default.	If	you	trust	the	guest	OS	to	not	abuse	the	functionality,	you	can
enable	creation	of	symlinks	for	"sharename"	with:

VBoxManage	setextradata	"VM	name"	VBoxInternal2/SharedFoldersEnableSymlinksCreate/sharename	1

4.3.1.	Manual	mounting

You	can	mount	the	shared	folder	from	inside	a	VM	the	same	way	as	you	would
mount	an	ordinary	network	share:

In	a	Windows	guest,	shared	folders	are	browseable	and	therefore	visible	in
Windows	Explorer.	So,	to	attach	the	host's	shared	folder	to	your	Windows
guest,	open	Windows	Explorer	and	look	for	it	under	"My	Networking
Places"	→	"Entire	Network"	→	"VirtualBox	Shared	Folders".	By	right-
clicking	on	a	shared	folder	and	selecting	"Map	network	drive"	from	the
menu	that	pops	up,	you	can	assign	a	drive	letter	to	that	shared	folder.

Alternatively,	on	the	Windows	command	line,	use	the	following:

net	use	x:	\\vboxsvr\sharename

While	vboxsvr	is	a	fixed	name	(note	that	vboxsrv	would	also	work),
replace	"x:"	with	the	drive	letter	that	you	want	to	use	for	the	share,	and
sharename	with	the	share	name	specified	with	VBoxManage.

In	a	Linux	guest,	use	the	following	command:

mount	-t	vboxsf	[-o	OPTIONS]	sharename	mountpoint

To	mount	a	shared	folder	during	boot,	add	the	following	entry	to	/etc/fstab:

sharename			mountpoint			vboxsf			defaults		0			0

In	a	Solaris	guest,	use	the	following	command:

mount	-F	vboxfs	[-o	OPTIONS]	sharename	mountpoint

Replace	sharename	(use	lowercase)	with	the	share	name	specified	with
VBoxManage	or	the	GUI,	and	mountpoint	with	the	path	where	you	want	the
share	to	be	mounted	on	the	guest	(e.g.	/mnt/share).	The	usual	mount	rules
apply,	that	is,	create	this	directory	first	if	it	does	not	exist	yet.

Here	is	an	example	of	mounting	the	shared	folder	for	the	user	"jack"	on
Solaris:

$	id

uid=5000(jack)	gid=1(other)

$	mkdir	/export/home/jack/mount

$	pfexec	mount	-F	vboxfs	-o	uid=5000,gid=1	jackshare	/export/home/jack/mount

$	cd	~/mount

$	ls

sharedfile1.mp3	sharedfile2.txt

$

Beyond	the	standard	options	supplied	by	the	mount	command,	the	following
are	available:

iocharset	CHARSET

to	set	the	character	set	used	for	I/O	operations.	Note	that	on	Linux	guests,	if
the	"iocharset"	option	is	not	specified	then	the	Guest	Additions	driver	will
attempt	to	use	the	character	set	specified	by	the	CONFIG_NLS_DEFAULT
kernel	option.	If	this	option	is	not	set	either	then	UTF-8	will	be	used.	Also,

convertcp	CHARSET

is	available	in	order	to	specify	the	character	set	used	for	the	shared	folder
name	(utf8	by	default).

The	generic	mount	options	(documented	in	the	mount	manual	page)	apply
also.	Especially	useful	are	the	options	uid,	gid	and	mode,	as	they	allow
access	by	normal	users	(in	read/write	mode,	depending	on	the	settings)	even
if	root	has	mounted	the	filesystem.

4.3.2.	Automatic	mounting

Starting	with	version	4.0,	VirtualBox	can	mount	shared	folders	automatically,	at
your	option.	If	automatic	mounting	is	enabled	for	a	specific	shared	folder,	the
Guest	Additions	will	automatically	mount	that	folder	as	soon	as	a	user	logs	into
the	guest	OS.	The	details	depend	on	the	guest	OS	type:

With	Windows	guests,	any	auto-mounted	shared	folder	will	receive	its	own
drive	letter	(e.g.	E:)	depending	on	the	free	drive	letters	remaining	in	the
guest.

If	there	no	free	drive	letters	left,	auto-mounting	will	fail;	as	a	result,	the
number	of	auto-mounted	shared	folders	is	typically	limited	to	22	or	less
with	Windows	guests.

With	Linux	guests,	auto-mounted	shared	folders	are	mounted	into	the
/media	directory,	along	with	the	prefix	sf_.	For	example,	the	shared	folder
myfiles	would	be	mounted	to	/media/sf_myfiles	on	Linux	and
/mnt/sf_myfiles	on	Solaris.

The	guest	property	/VirtualBox/GuestAdd/SharedFolders/MountPrefix
determines	the	prefix	that	is	used.	Change	that	guest	property	to	a	value
other	than	"sf"	to	change	that	prefix;	see	Section	4.7,	“Guest	properties”	for
details.

Note

Access	to	auto-mounted	shared	folders	is	only	granted	to	the
user	group	vboxsf,	which	is	created	by	the	VirtualBox	Guest

Additions	installer.	Hence	guest	users	have	to	be	member	of
that	group	to	have	read/write	access	or	to	have	read-only	access
in	case	the	folder	is	not	mapped	writable.

To	change	the	mount	directory	to	something	other	than	/media,	you	can	set
the	guest	property	/VirtualBox/GuestAdd/SharedFolders/MountDir.

Solaris	guests	behave	like	Linux	guests	except	that	/mnt	is	used	as	the
default	mount	directory	instead	of	/media.

To	have	any	changes	to	auto-mounted	shared	folders	applied	while	a	VM	is
running,	the	guest	OS	needs	to	be	rebooted.	(This	applies	only	to	auto-mounted
shared	folders,	not	the	ones	which	are	mounted	manually.)

4.4.	Drag	and	Drop

Starting	with	version	5.0,	VirtualBox	supports	to	drag	and	drop	content	from	the
host	to	the	guest	and	vice	versa.	For	this	to	work	the	latest	Guest	Additions	must
be	installed	on	the	guest.

Drag	and	drop	transparently	allows	copying	or	opening	files,	directories	and
even	certain	clipboard	formats	from	one	end	to	the	other,	e.g.	from	the	host	to
the	guest	or	from	the	guest	to	the	host.	One	then	can	perform	drag	and	drop
operations	between	the	host	and	a	VM	as	it	would	be	a	native	drag	and	drop
operation	on	the	host	OS.

At	the	moment	drag	and	drop	is	implemented	for	Windows-	and	X-Windows-
based	systems,	both,	on	host	and	guest	side.	As	X-Windows	sports	different	drag
and	drop	protocols	only	the	most	used	one,	XDND,	is	supported	for	now.
Applications	using	other	protocols	(such	as	Motif	or	OffiX)	will	not	be
recognized	by	VirtualBox.

In	context	of	using	drag	and	drop	the	origin	of	the	data	is	called	source,	that	is,
where	the	actual	data	comes	from	and	is	specified.	On	the	other	hand	there	is	the
target,	which	specifies	where	the	data	from	the	source	should	go	to.	Transferring
data	from	the	source	to	the	target	can	be	done	in	various	ways,	e.g.	copying,
moving	or	linking.[19]

When	transferring	data	from	the	host	to	the	guest	OS,	the	host	in	this	case	is	the
source,	whereas	the	guest	OS	is	the	target.	However,	when	doing	it	the	other	way
around,	that	is,	transferring	data	from	the	guest	OS	to	the	host,	the	guest	OS	this
time	became	the	source	and	the	host	is	the	target.

For	security	reasons	drag	and	drop	can	be	configured	at	runtime	on	a	per-VM
basis	either	using	the	"Drag	and	Drop"	menu	item	in	the	"Devices"	menu	of	the
virtual	machine	or	VBoxManage.	The	following	four	modes	are	available:

Disabled	disables	the	drag	and	drop	entirely.	This	is	the	default	when
creating	new	VMs.

Host	To	Guest	enables	performing	drag	and	drop	operations	from	the	host
to	the	guest	only.

Guest	To	Host	enables	performing	drag	and	drop	operations	from	the	guest
to	the	host	only.

Bidirectional	enables	performing	drag	and	drop	operations	to	both
directions,	e.g.	from	the	host	to	the	guest	and	vice	versa.

Note

Drag	and	drop	support	depends	on	the	frontend	being	used;	at	the
moment	only	the	VirtualBox	Manager	frontend	provides	this
functionality.

To	use	VBoxManage	for	controlling	the	current	drag	and	drop	mode,	see
Chapter	8,	VBoxManage.	The	commands	modifyvm	and	controlvm	allow	setting
the	VM's	current	drag	and	drop	mode	via	command	line.

4.4.1.	Supported	formats

As	VirtualBox	can	run	on	a	variety	of	host	OSes	and	also	supports	a	wide	range
of	guests,	certain	data	formats	must	be	translated	after	those	got	transferred	over
so	that	the	target	OS	(that	is,	the	side	which	receiving	the	data)	is	able	to	handle
them	in	an	appropriate	manner.

Note

When	dragging	files	however,	no	data	conversion	is	done	in	any
way,	e.g.	when	transferring	a	file	from	a	Linux	guest	to	a	Windows
host	the	Linux-specific	line	endings	won't	be	converted	to	Windows
ones.

The	following	formats	are	handled	by	the	VirtualBox	drag	and	drop	service:

Plain	text,	from	applications	such	as	text	editors,	internet	browsers	and
terminal	windows

Files,	from	file	managers	such	as	Windows	explorer,	Nautilus	and	Finder

Directories,	where	the	same	applies	as	for	files

4.4.2.	Known	limitations

The	following	limitations	are	known:

On	Windows	hosts,	dragging	and	dropping	content	from	UAC-elevated
(User	Account	Control)	programs	to	non-UAC-elevated	programs	and
vice	versa	is	now	allowed.	So	when	starting	VirtualBox	with	Administrator
privileges	then	drag	and	drop	will	not	work	with	the	Windows	Explorer
which	runs	with	regular	user	privileges	by	default.

[19]	At	the	moment	only	copying	of	data	is	supported.	Moving	or	linking	is	not
yet	implemented.

4.5.	Hardware-accelerated	graphics

4.5.1.	Hardware	3D	acceleration	(OpenGL	and	Direct3D	8/9)

The	VirtualBox	Guest	Additions	contain	experimental	hardware	3D	support	for
Windows,	Linux	and	Solaris	guests.[20]

With	this	feature,	if	an	application	inside	your	virtual	machine	uses	3D	features
through	the	OpenGL	or	Direct3D	8/9	programming	interfaces,	instead	of
emulating	them	in	software	(which	would	be	slow),	VirtualBox	will	attempt	to
use	your	host's	3D	hardware.	This	works	for	all	supported	host	platforms
(Windows,	Mac,	Linux,	Solaris),	provided	that	your	host	operating	system	can
make	use	of	your	accelerated	3D	hardware	in	the	first	place.

The	3D	acceleration	currently	has	the	following	preconditions:

1.	 It	is	only	available	for	certain	Windows,	Linux	and	Solaris	guests.	In
particular:

3D	acceleration	with	Windows	guests	requires	Windows	2000,
Windows	XP,	Vista	or	Windows	7.	Both	OpenGL	and	Direct3D	8/9
(not	with	Windows	2000)	are	supported	(experimental).

OpenGL	on	Linux	requires	kernel	2.6.27	and	higher	as	well	as	X.org
server	version	1.5	and	higher.	Ubuntu	10.10	and	Fedora	14	have	been
tested	and	confirmed	as	working.

OpenGL	on	Solaris	guests	requires	X.org	server	version	1.5	and
higher.

2.	 The	Guest	Additions	must	be	installed.

Note

For	the	basic	Direct3D	acceleration	to	work	in	a	Windows
Guest,	VirtualBox	needs	to	replace	Windows	system	files	in	the
virtual	machine.	As	a	result,	the	Guest	Additions	installation
program	offers	Direct3D	acceleration	as	an	option	that	must	be

explicitly	enabled.	Also,	you	must	install	the	Guest	Additions	in
"Safe	Mode".	This	does	not	apply	to	the	WDDM	Direct3D
video	driver	available	for	Vista	and	higher,	see	Chapter	14,
Known	limitations	for	details.

3.	 Because	3D	support	is	still	experimental	at	this	time,	it	is	disabled	by
default	and	must	be	manually	enabled	in	the	VM	settings	(see	Section	3.4,
“General	settings”).

Note

Untrusted	guest	systems	should	not	be	allowed	to	use
VirtualBox's	3D	acceleration	features,	just	as	untrusted	host
software	should	not	be	allowed	to	use	3D	acceleration.	Drivers
for	3D	hardware	are	generally	too	complex	to	be	made	properly
secure	and	any	software	which	is	allowed	to	access	them	may
be	able	to	compromise	the	operating	system	running	them.	In
addition,	enabling	3D	acceleration	gives	the	guest	direct	access
to	a	large	body	of	additional	program	code	in	the	VirtualBox
host	process	which	it	might	conceivably	be	able	to	use	to	crash
the	virtual	machine.

To	enable	Aero	theme	support,	the	VirtualBox	WDDM	video	driver	must	be
installed,	which	is	available	with	the	Guest	Additions	installation.	The	WDDM
driver	is	not	installed	by	default	for	Vista	and	Windows	7	guest	and	must	be
manually	selected	in	the	Guest	Additions	installer	by	answering	"No"	in	the
"Would	you	like	to	install	basic	Direct3D	support"	dialog	displayed	when	the
Direct3D	feature	is	selected.

The	Aero	theme	is	not	enabled	by	default.	To	enable	it

In	Windows	Vista	guest:	right-click	on	the	desktop,	in	the	context	menu
select	"Personalize",	then	select	"Windows	Color	and	Appearance"	in	the
"Personalization"	window,	in	the	"Appearance	Settings"	dialog	select
"Windows	Aero"	and	press	"OK"

In	Windows	7	guest:	right-click	on	the	desktop,	in	the	context	menu	select
"Personalize"	and	select	any	Aero	theme	in	the	"Personalization"	window

Technically,	VirtualBox	implements	this	by	installing	an	additional	hardware	3D
driver	inside	your	guest	when	the	Guest	Additions	are	installed.	This	driver	acts
as	a	hardware	3D	driver	and	reports	to	the	guest	operating	system	that	the
(virtual)	hardware	is	capable	of	3D	hardware	acceleration.	When	an	application
in	the	guest	then	requests	hardware	acceleration	through	the	OpenGL	or
Direct3D	programming	interfaces,	these	are	sent	to	the	host	through	a	special
communication	tunnel	implemented	by	VirtualBox,	and	then	the	host	performs
the	requested	3D	operation	via	the	host's	programming	interfaces.

4.5.2.	Hardware	2D	video	acceleration	for	Windows	guests

Starting	with	version	3.1,	the	VirtualBox	Guest	Additions	contain	experimental
hardware	2D	video	acceleration	support	for	Windows	guests.

With	this	feature,	if	an	application	(e.g.	a	video	player)	inside	your	Windows
VM	uses	2D	video	overlays	to	play	a	movie	clip,	then	VirtualBox	will	attempt	to
use	your	host's	video	acceleration	hardware	instead	of	performing	overlay
stretching	and	color	conversion	in	software	(which	would	be	slow).	This
currently	works	for	Windows,	Linux	and	Mac	host	platforms,	provided	that	your
host	operating	system	can	make	use	of	2D	video	acceleration	in	the	first	place.

The	2D	video	acceleration	currently	has	the	following	preconditions:

1.	 It	is	only	available	for	Windows	guests	(XP	or	later).

2.	 The	Guest	Additions	must	be	installed.

3.	 Because	2D	support	is	still	experimental	at	this	time,	it	is	disabled	by
default	and	must	be	manually	enabled	in	the	VM	settings	(see	Section	3.4,
“General	settings”).

Technically,	VirtualBox	implements	this	by	exposing	video	overlay	DirectDraw
capabilities	in	the	Guest	Additions	video	driver.	The	driver	sends	all	overlay
commands	to	the	host	through	a	special	communication	tunnel	implemented	by
VirtualBox.	On	the	host	side,	OpenGL	is	then	used	to	implement	color	space
transformation	and	scaling

[20]	OpenGL	support	for	Windows	guests	was	added	with	VirtualBox	2.1;

support	for	Linux	and	Solaris	followed	with	VirtualBox	2.2.	With	VirtualBox
3.0,	Direct3D	8/9	support	was	added	for	Windows	guests.	OpenGL	2.0	is	now
supported	as	well.	With	VirtualBox	4.1	Windows	Aero	theme	support	is	added
for	Windows	Vista	and	Windows	7	guests	(experimental)

4.6.	Seamless	windows

With	the	"seamless	windows"	feature	of	VirtualBox,	you	can	have	the	windows
that	are	displayed	within	a	virtual	machine	appear	side	by	side	next	to	the
windows	of	your	host.	This	feature	is	supported	for	the	following	guest
operating	systems	(provided	that	the	Guest	Additions	are	installed):

Windows	guests	(support	added	with	VirtualBox	1.5);

Supported	Linux	or	Solaris	guests	running	the	X	Window	System	(added
with	VirtualBox	1.6).

After	seamless	windows	are	enabled	(see	below),	VirtualBox	suppresses	the
display	of	the	Desktop	background	of	your	guest,	allowing	you	to	run	the
windows	of	your	guest	operating	system	seamlessly	next	to	the	windows	of	your
host:

To	enable	seamless	mode,	after	starting	the	virtual	machine,	press	the	Host	key
(normally	the	right	control	key)	together	with	"L".	This	will	enlarge	the	size	of
the	VM's	display	to	the	size	of	your	host	screen	and	mask	out	the	guest	operating
system's	background.	To	go	back	to	the	"normal"	VM	display	(i.e.	to	disable
seamless	windows),	press	the	Host	key	and	"L"	again.

4.7.	Guest	properties

Starting	with	version	2.1,	VirtualBox	allows	for	requesting	certain	properties
from	a	running	guest,	provided	that	the	VirtualBox	Guest	Additions	are	installed
and	the	VM	is	running.	This	is	good	for	two	things:

1.	 A	number	of	predefined	VM	characteristics	are	automatically	maintained
by	VirtualBox	and	can	be	retrieved	on	the	host,	e.g.	to	monitor	VM
performance	and	statistics.

2.	 In	addition,	arbitrary	string	data	can	be	exchanged	between	guest	and	host.
This	works	in	both	directions.

To	accomplish	this,	VirtualBox	establishes	a	private	communication	channel
between	the	VirtualBox	Guest	Additions	and	the	host,	and	software	on	both
sides	can	use	this	channel	to	exchange	string	data	for	arbitrary	purposes.	Guest
properties	are	simply	string	keys	to	which	a	value	is	attached.	They	can	be	set
(written	to)	by	either	the	host	and	the	guest,	and	they	can	also	be	read	from	both
sides.

In	addition	to	establishing	the	general	mechanism	of	reading	and	writing	values,
a	set	of	predefined	guest	properties	is	automatically	maintained	by	the
VirtualBox	Guest	Additions	to	allow	for	retrieving	interesting	guest	data	such	as
the	guest's	exact	operating	system	and	service	pack	level,	the	installed	version	of
the	Guest	Additions,	users	that	are	currently	logged	into	the	guest	OS,	network
statistics	and	more.	These	predefined	properties	are	all	prefixed	with
/VirtualBox/	and	organized	into	a	hierarchical	tree	of	keys.

Some	of	this	runtime	information	is	shown	when	you	select	"Session
Information	Dialog"	from	a	virtual	machine's	"Machine"	menu.

A	more	flexible	way	to	use	this	channel	is	via	the	VBoxManage	guestproperty
command	set;	see	Section	8.33,	“VBoxManage	guestproperty”	for	details.	For
example,	to	have	all	the	available	guest	properties	for	a	given	running	VM	listed
with	their	respective	values,	use	this:

$	VBoxManage	guestproperty	enumerate	"Windows	Vista	III"

VirtualBox	Command	Line	Management	Interface	Version	5.2.4

(C)	2005-2017	Oracle	Corporation

All	rights	reserved.

Name:	/VirtualBox/GuestInfo/OS/Product,	value:	Windows	Vista	Business	Edition,

				timestamp:	1229098278843087000,	flags:

Name:	/VirtualBox/GuestInfo/OS/Release,	value:	6.0.6001,

				timestamp:	1229098278950553000,	flags:

Name:	/VirtualBox/GuestInfo/OS/ServicePack,	value:	1,

				timestamp:	1229098279122627000,	flags:

Name:	/VirtualBox/GuestAdd/InstallDir,

				value:	C:/Program	Files/Oracle/VirtualBox

				Guest	Additions,	timestamp:	1229098279269739000,	flags:

Name:	/VirtualBox/GuestAdd/Revision,	value:	40720,

				timestamp:	1229098279345664000,	flags:

Name:	/VirtualBox/GuestAdd/Version,	value:	5.2.4,

				timestamp:	1229098279479515000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxControl.exe,	value:	5.2.4r40720,

				timestamp:	1229098279651731000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxHook.dll,	value:	5.2.4r40720,

				timestamp:	1229098279804835000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxDisp.dll,	value:	5.2.4r40720,

				timestamp:	1229098279880611000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxMRXNP.dll,	value:	5.2.4r40720,

				timestamp:	1229098279882618000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxService.exe,	value:	5.2.4r40720,

				timestamp:	1229098279883195000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxTray.exe,	value:	5.2.4r40720,

				timestamp:	1229098279885027000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxGuest.sys,	value:	5.2.4r40720,

				timestamp:	1229098279886838000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxMouse.sys,	value:	5.2.4r40720,

				timestamp:	1229098279890600000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxSF.sys,	value:	5.2.4r40720,

				timestamp:	1229098279893056000,	flags:

Name:	/VirtualBox/GuestAdd/Components/VBoxVideo.sys,	value:	5.2.4r40720,

				timestamp:	1229098279895767000,	flags:

Name:	/VirtualBox/GuestInfo/OS/LoggedInUsers,	value:	1,

				timestamp:	1229099826317660000,	flags:

Name:	/VirtualBox/GuestInfo/OS/NoLoggedInUsers,	value:	false,

				timestamp:	1229098455580553000,	flags:

Name:	/VirtualBox/GuestInfo/Net/Count,	value:	1,

				timestamp:	1229099826299785000,	flags:

Name:	/VirtualBox/HostInfo/GUI/LanguageID,	value:	C,

				timestamp:	1229098151272771000,	flags:

Name:	/VirtualBox/GuestInfo/Net/0/V4/IP,	value:	192.168.2.102,

				timestamp:	1229099826300088000,	flags:

Name:	/VirtualBox/GuestInfo/Net/0/V4/Broadcast,	value:	255.255.255.255,

				timestamp:	1229099826300220000,	flags:

Name:	/VirtualBox/GuestInfo/Net/0/V4/Netmask,	value:	255.255.255.0,

				timestamp:	1229099826300350000,	flags:

Name:	/VirtualBox/GuestInfo/Net/0/Status,	value:	Up,

				timestamp:	1229099826300524000,	flags:

Name:	/VirtualBox/GuestInfo/OS/LoggedInUsersList,	value:	username,

				timestamp:	1229099826317386000,	flags:

To	query	the	value	of	a	single	property,	use	the	"get"	subcommand	like	this:

$	VBoxManage	guestproperty	get	"Windows	Vista	III"	"/VirtualBox/GuestInfo/OS/Product"

VirtualBox	Command	Line	Management	Interface	Version	5.2.4

(C)	2005-2017	Oracle	Corporation

All	rights	reserved.

Value:	Windows	Vista	Business	Edition

To	add	or	change	guest	properties	from	the	guest,	use	the	tool	VBoxControl.	This
tool	is	included	in	the	Guest	Additions	of	VirtualBox	2.2	or	later.	When	started
from	a	Linux	guest,	this	tool	requires	root	privileges	for	security	reasons:

$	sudo	VBoxControl	guestproperty	enumerate

VirtualBox	Guest	Additions	Command	Line	Management	Interface	Version	5.2.4

(C)	2009-2017	Oracle	Corporation

All	rights	reserved.

Name:	/VirtualBox/GuestInfo/OS/Release,	value:	2.6.28-18-generic,

				timestamp:	1265813265835667000,	flags:	<NULL>

Name:	/VirtualBox/GuestInfo/OS/Version,	value:	#59-Ubuntu	SMP	Thu	Jan	28	01:23:03	UTC	2010,

				timestamp:	1265813265836305000,	flags:	<NULL>

						...

For	more	complex	needs,	you	can	use	the	VirtualBox	programming	interfaces;
see	Chapter	11,	VirtualBox	programming	interfaces.

4.8.	Guest	control

Starting	with	version	3.2,	the	Guest	Additions	of	VirtualBox	allow	starting
applications	inside	a	VM	from	the	host	system.

For	this	to	work,	the	application	needs	to	be	installed	inside	the	guest;	no
additional	software	needs	to	be	installed	on	the	host.	Additionally,	text	mode
output	(to	stdout	and	stderr)	can	be	shown	on	the	host	for	further	processing
along	with	options	to	specify	user	credentials	and	a	timeout	value	(in
milliseconds)	to	limit	time	the	application	is	able	to	run.

This	feature	can	be	used	to	automate	deployment	of	software	within	the	guest.

Starting	with	version	4.0,	the	Guest	Additions	for	Windows	allow	for	automatic
updating	(only	already	installed	Guest	Additions	4.0	or	later).	Also,	copying	files
from	host	to	the	guest	as	well	as	remotely	creating	guest	directories	is	available.

To	use	these	features,	use	the	VirtualBox	command	line,	see	Section	8.34,
“VBoxManage	guestcontrol”.

4.9.	Memory	overcommitment

In	server	environments	with	many	VMs;	the	Guest	Additions	can	be	used	to
share	physical	host	memory	between	several	VMs,	reducing	the	total	amount	of
memory	in	use	by	the	VMs.	If	memory	usage	is	the	limiting	factor	and	CPU
resources	are	still	available,	this	can	help	with	packing	more	VMs	on	each	host.

4.9.1.	Memory	ballooning

Starting	with	version	3.2,	the	Guest	Additions	of	VirtualBox	can	change	the
amount	of	host	memory	that	a	VM	uses	while	the	machine	is	running.	Because
of	how	this	is	implemented,	this	feature	is	called	"memory	ballooning".

Note

VirtualBox	supports	memory	ballooning	only	on	64-bit	hosts,	and	it
is	not	supported	on	Mac	OS	X	hosts.

Note

Memory	ballooning	does	not	work	with	large	pages	enabled.	To	turn
off	large	pages	support	for	a	VM,	run	VBoxManage	modifyvm	<VM
name>	--largepages	off

Normally,	to	change	the	amount	of	memory	allocated	to	a	virtual	machine,	one
has	to	shut	down	the	virtual	machine	entirely	and	modify	its	settings.	With
memory	ballooning,	memory	that	was	allocated	for	a	virtual	machine	can	be
given	to	another	virtual	machine	without	having	to	shut	the	machine	down.

When	memory	ballooning	is	requested,	the	VirtualBox	Guest	Additions	(which
run	inside	the	guest)	allocate	physical	memory	from	the	guest	operating	system
on	the	kernel	level	and	lock	this	memory	down	in	the	guest.	This	ensures	that	the
guest	will	not	use	that	memory	any	longer:	no	guest	applications	can	allocate	it,
and	the	guest	kernel	will	not	use	it	either.	VirtualBox	can	then	re-use	this
memory	and	give	it	to	another	virtual	machine.

The	memory	made	available	through	the	ballooning	mechanism	is	only	available

for	re-use	by	VirtualBox.	It	is	not	returned	as	free	memory	to	the	host.
Requesting	balloon	memory	from	a	running	guest	will	therefore	not	increase	the
amount	of	free,	unallocated	memory	on	the	host.	Effectively,	memory	ballooning
is	therefore	a	memory	overcommitment	mechanism	for	multiple	virtual
machines	while	they	are	running.	This	can	be	useful	to	temporarily	start	another
machine,	or	in	more	complicated	environments,	for	sophisticated	memory
management	of	many	virtual	machines	that	may	be	running	in	parallel
depending	on	how	memory	is	used	by	the	guests.

At	this	time,	memory	ballooning	is	only	supported	through	VBoxManage.	Use
the	following	command	to	increase	or	decrease	the	size	of	the	memory	balloon
within	a	running	virtual	machine	that	has	Guest	Additions	installed:

VBoxManage	controlvm	"VM	name"	guestmemoryballoon	<n>

where	"VM	name"	is	the	name	or	UUID	of	the	virtual	machine	in	question	and
<n>	is	the	amount	of	memory	to	allocate	from	the	guest	in	megabytes.	See
Section	8.13,	“VBoxManage	controlvm”	for	more	information.

You	can	also	set	a	default	balloon	that	will	automatically	be	requested	from	the
VM	every	time	after	it	has	started	up	with	the	following	command:

VBoxManage	modifyvm	"VM	name"	--guestmemoryballoon	<n>

By	default,	no	balloon	memory	is	allocated.	This	is	a	VM	setting,	like	other
modifyvm	settings,	and	therefore	can	only	be	set	while	the	machine	is	shut	down;
see	Section	8.8,	“VBoxManage	modifyvm”.

4.9.2.	Page	Fusion

Whereas	memory	ballooning	simply	reduces	the	amount	of	RAM	that	is
available	to	a	VM,	Page	Fusion	works	differently:	it	avoids	memory	duplication
between	several	similar	running	VMs.

In	a	server	environment	running	several	similar	VMs	(e.g.	with	identical
operating	systems)	on	the	same	host,	lots	of	memory	pages	are	identical.
VirtualBox's	Page	Fusion	technology,	introduced	with	VirtualBox	3.2,	is	a	novel
technique	to	efficiently	identify	these	identical	memory	pages	and	share	them
between	multiple	VMs.

Note

VirtualBox	supports	Page	Fusion	only	on	64-bit	hosts,	and	it	is	not
supported	on	Mac	OS	X	hosts.	Page	Fusion	currently	works	only
with	Windows	guests	(2000	and	later).

The	more	similar	the	VMs	on	a	given	host	are,	the	more	efficiently	Page	Fusion
can	reduce	the	amount	of	host	memory	that	is	in	use.	It	therefore	works	best	if
all	VMs	on	a	host	run	identical	operating	systems	(e.g.	Windows	XP	Service
Pack	2).	Instead	of	having	a	complete	copy	of	each	operating	system	in	each
VM,	Page	Fusion	identifies	the	identical	memory	pages	in	use	by	these	operating
systems	and	eliminates	the	duplicates,	sharing	host	memory	between	several
machines	("deduplication").	If	a	VM	tries	to	modify	a	page	that	has	been	shared
with	other	VMs,	a	new	page	is	allocated	again	for	that	VM	with	a	copy	of	the
shared	page	("copy	on	write").	All	this	is	fully	transparent	to	the	virtual	machine.

You	may	be	familiar	with	this	kind	of	memory	overcommitment	from	other
hypervisor	products,	which	call	this	feature	"page	sharing"	or	"same	page
merging".	However,	Page	Fusion	differs	significantly	from	those	other	solutions,
whose	approaches	have	several	drawbacks:

1.	 Traditional	hypervisors	scan	all	guest	memory	and	compute	checksums
(hashes)	for	every	single	memory	page.	Then,	they	look	for	pages	with
identical	hashes	and	compare	the	entire	content	of	those	pages;	if	two	pages
produce	the	same	hash,	it	is	very	likely	that	the	pages	are	identical	in
content.	This,	of	course,	can	take	rather	long,	especially	if	the	system	is	not
idling.	As	a	result,	the	additional	memory	only	becomes	available	after	a
significant	amount	of	time	(this	can	be	hours	or	even	days!).	Even	worse,
this	kind	of	page	sharing	algorithm	generally	consumes	significant	CPU
resources	and	increases	the	virtualization	overhead	by	10-20%.

Page	Fusion	in	VirtualBox	uses	logic	in	the	VirtualBox	Guest	Additions	to
quickly	identify	memory	cells	that	are	most	likely	identical	across	VMs.	It
can	therefore	achieve	most	of	the	possible	savings	of	page	sharing	almost
immediately	and	with	almost	no	overhead.

2.	 Page	Fusion	is	also	much	less	likely	to	be	confused	by	identical	memory
that	it	will	eliminate	just	to	learn	seconds	later	that	the	memory	will	now
change	and	having	to	perform	a	highly	expensive	and	often	service-

disrupting	reallocation.

At	this	time,	Page	Fusion	can	only	be	controlled	with	VBoxManage,	and	only
while	a	VM	is	shut	down.	To	enable	Page	Fusion	for	a	VM,	use	the	following
command:

VBoxManage	modifyvm	"VM	name"	--pagefusion	on

You	can	observe	Page	Fusion	operation	using	some	metrics.	RAM/VMM/Shared
shows	the	total	amount	of	fused	pages,	whereas	the	per-VM	metric
Guest/RAM/Usage/Shared	will	return	the	amount	of	fused	memory	for	a	given
VM.	Please	refer	to	Section	8.35,	“VBoxManage	metrics”	for	information	on
how	to	query	metrics.

Note

Enabling	Page	Fusion	might	indirectly	increase	the	chances	for
malicious	guests	to	successfully	attack	other	VMs	running	on	the
same	host,	see	Section	13.3.4,	“Potentially	insecure	operations”.

Chapter	5.	Virtual	storage

Table	of	Contents

5.1.	Hard	disk	controllers:	IDE,	SATA	(AHCI),	SCSI,	SAS,	USB	MSD,	NVMe
5.2.	Disk	image	files	(VDI,	VMDK,	VHD,	HDD)
5.3.	The	Virtual	Media	Manager
5.4.	Special	image	write	modes
5.5.	Differencing	images
5.6.	Cloning	disk	images
5.7.	Host	I/O	caching
5.8.	Limiting	bandwidth	for	disk	images
5.9.	CD/DVD	support
5.10.	iSCSI	servers

As	the	virtual	machine	will	most	probably	expect	to	see	a	hard	disk	built	into	its
virtual	computer,	VirtualBox	must	be	able	to	present	"real"	storage	to	the	guest
as	a	virtual	hard	disk.	There	are	presently	three	methods	in	which	to	achieve	this:

1.	 Most	commonly,	VirtualBox	will	use	large	image	files	on	a	real	hard	disk
and	present	them	to	a	guest	as	a	virtual	hard	disk.	This	is	described	in
Section	5.2,	“Disk	image	files	(VDI,	VMDK,	VHD,	HDD)”.

2.	 Alternatively,	if	you	have	iSCSI	storage	servers,	you	can	attach	such	a
server	to	VirtualBox	as	well;	this	is	described	in	Section	5.10,	“iSCSI
servers”.

3.	 Finally,	as	an	advanced	feature,	you	can	allow	a	virtual	machine	to	access
one	of	your	host	disks	directly;	this	advanced	feature	is	described	in
Section	9.9.1,	“Using	a	raw	host	hard	disk	from	a	guest”.

Each	such	virtual	storage	device	(image	file,	iSCSI	target	or	physical	hard	disk)
will	need	to	be	connected	to	the	virtual	hard	disk	controller	that	VirtualBox
presents	to	a	virtual	machine.	This	is	explained	in	the	next	section.

5.1.	Hard	disk	controllers:	IDE,	SATA	(AHCI),	SCSI,
SAS,	USB	MSD,	NVMe

In	a	real	PC,	hard	disks	and	CD/DVD	drives	are	connected	to	a	device	called
hard	disk	controller	which	drives	hard	disk	operation	and	data	transfers.
VirtualBox	can	emulate	the	five	most	common	types	of	hard	disk	controllers
typically	found	in	today's	PCs:	IDE,	SATA	(AHCI),	SCSI,	SAS,	USB-based	and
NVMe	mass	storage	devices.[21]

IDE	(ATA)	controllers	are	a	backwards	compatible	yet	very	advanced
extension	of	the	disk	controller	in	the	IBM	PC/AT	(1984).	Initially,	this
interface	worked	only	with	hard	disks,	but	was	later	extended	to	also
support	CD-ROM	drives	and	other	types	of	removable	media.	In	physical
PCs,	this	standard	uses	flat	ribbon	parallel	cables	with	40	or	80	wires.	Each
such	cable	can	connect	two	devices	to	a	controller,	which	have	traditionally
been	called	"master"	and	"slave".	Typical	PCs	had	two	connectors	for	such
cables;	as	a	result,	support	for	up	to	four	IDE	devices	was	most	common.

In	VirtualBox,	each	virtual	machine	may	have	one	IDE	controller	enabled,
which	gives	you	up	to	four	virtual	storage	devices	that	you	can	attach	to	the
machine.	(By	default,	one	of	these	four	--	the	secondary	master	--	is
preconfigured	to	be	the	machine's	virtual	CD/DVD	drive,	but	this	can	be
changed.[22])

So	even	if	your	guest	operating	system	has	no	support	for	SCSI	or	SATA
devices,	it	should	always	be	able	to	see	an	IDE	controller.

You	can	also	select	which	exact	type	of	IDE	controller	hardware	VirtualBox
should	present	to	the	virtual	machine	(PIIX3,	PIIX4	or	ICH6).	This	makes
no	difference	in	terms	of	performance,	but	if	you	import	a	virtual	machine
from	another	virtualization	product,	the	operating	system	in	that	machine
may	expect	a	particular	controller	type	and	crash	if	it	isn't	found.

After	you	have	created	a	new	virtual	machine	with	the	"New	Virtual
Machine"	wizard	of	the	graphical	user	interface,	you	will	typically	see	one
IDE	controller	in	the	machine's	"Storage"	settings	where	the	virtual
CD/DVD	drive	will	be	attached	to	one	of	the	four	ports	of	this	controller.

Serial	ATA	(SATA)	is	a	newer	standard	introduced	in	2003.	Compared	to
IDE,	it	supports	both	much	higher	speeds	and	more	devices	per	controller.
Also,	with	physical	hardware,	devices	can	be	added	and	removed	while	the
system	is	running.	The	standard	interface	for	SATA	controllers	is	called
Advanced	Host	Controller	Interface	(AHCI).

Like	a	real	SATA	controller,	VirtualBox's	virtual	SATA	controller	operates
faster	and	also	consumes	fewer	CPU	resources	than	the	virtual	IDE
controller.	Also,	this	allows	you	to	connect	up	to	30	virtual	hard	disks	to
one	machine	instead	of	just	three,	as	with	the	VirtualBox	IDE	controller
(with	the	DVD	drive	already	attached).

For	this	reason,	starting	with	version	3.2	and	depending	on	the	selected
guest	operating	system,	VirtualBox	uses	SATA	as	the	default	for	newly
created	virtual	machines.	One	virtual	SATA	controller	is	created	by	default,
and	the	default	disk	that	is	created	with	a	new	VM	is	attached	to	this
controller.

Warning

The	entire	SATA	controller	and	the	virtual	disks	attached	to	it
(including	those	in	IDE	compatibility	mode)	will	not	be	seen	by
operating	systems	that	do	not	have	device	support	for	AHCI.	In
particular,	there	is	no	support	for	AHCI	in	Windows	before
Windows	Vista,	so	Windows	XP	(even	SP3)	will	not	see	such
disks	unless	you	install	additional	drivers.	It	is	possible	to
switch	from	IDE	to	SATA	after	installation	by	installing	the
SATA	drivers	and	changing	the	controller	type	in	the	VM
settings	dialog.[23]

To	add	a	SATA	controller	to	a	machine	for	which	it	has	not	been	enabled	by
default	(either	because	it	was	created	by	an	earlier	version	of	VirtualBox,	or
because	SATA	is	not	supported	by	default	by	the	selected	guest	operating
system),	go	to	the	"Storage"	page	of	the	machine's	settings	dialog,	click	on
the	"Add	Controller"	button	under	the	"Storage	Tree"	box	and	then	select
"Add	SATA	Controller".	After	this,	the	additional	controller	will	appear	as	a
separate	PCI	device	in	the	virtual	machine,	and	you	can	add	virtual	disks	to
it.

To	change	the	IDE	compatibility	mode	settings	for	the	SATA	controller,
please	see	Section	8.19,	“VBoxManage	storagectl”.

SCSI	is	another	established	industry	standard,	standing	for	"Small
Computer	System	Interface".	SCSI	was	standardized	as	early	as	1986	as	a
generic	interface	for	data	transfer	between	all	kinds	of	devices,	including
storage	devices.	Today	SCSI	is	still	used	for	connecting	hard	disks	and	tape
devices,	but	it	has	mostly	been	displaced	in	commodity	hardware.	It	is	still
in	common	use	in	high-performance	workstations	and	servers.

Primarily	for	compatibility	with	other	virtualization	software,	VirtualBox
optionally	supports	LSI	Logic	and	BusLogic	SCSI	controllers,	to	each	of
which	up	to	15	virtual	hard	disks	can	be	attached.

To	enable	a	SCSI	controller,	on	the	"Storage"	page	of	a	virtual	machine's
settings	dialog,	click	on	the	"Add	Controller"	button	under	the	"Storage
Tree"	box	and	then	select	"Add	SCSI	Controller".	After	this,	the	additional
controller	will	appear	as	a	separate	PCI	device	in	the	virtual	machine.

Warning

As	with	the	other	controller	types,	a	SCSI	controller	will	only
be	seen	by	operating	systems	with	device	support	for	it.
Windows	2003	and	later	ships	with	drivers	for	the	LSI	Logic
controller,	while	Windows	NT	4.0	and	Windows	2000	ships
with	drivers	for	the	BusLogic	controller.	Windows	XP	ships
with	drivers	for	neither.

Serial	Attached	SCSI	(SAS)	is	another	bus	standard	which	uses	the	SCSI
command	set.	As	opposed	to	SCSI,	however,	with	physical	devices,	serial
cables	are	used	instead	of	parallel	ones,	which	simplifies	physical	device
connections.	In	some	ways,	therefore,	SAS	is	to	SCSI	what	SATA	is	to	IDE:
it	allows	for	more	reliable	and	faster	connections.

To	support	high-end	guests	which	require	SAS	controllers,	VirtualBox
emulates	a	LSI	Logic	SAS	controller,	which	can	be	enabled	much	the	same
way	as	a	SCSI	controller.	At	this	time,	up	to	eight	devices	can	be	connected
to	the	SAS	controller.

Warning

As	with	SATA,	the	SAS	controller	will	only	be	seen	by
operating	systems	with	device	support	for	it.	In	particular,	there
is	no	support	for	SAS	in	Windows	before	Windows	Vista,	so
Windows	XP	(even	SP3)	will	not	see	such	disks	unless	you
install	additional	drivers.

The	USB	mass	storage	device	class	is	a	standard	to	connect	external
storage	devices	like	hard	disks	or	flash	drives	to	a	host	through	USB.	All
major	operating	systems	support	these	devices	for	a	long	time	and	ship
generic	drivers	making	third-party	drivers	superfluous.	In	particular	legacy
operating	systems	without	support	for	SATA	controllers	may	benefit	from
USB	mass	storage	devices.

The	virtual	USB	storage	controller	offered	by	VirtualBox	works	different
than	the	other	storage	controller	types:	When	storage	controllers	appear	as	a
single	PCI	device	to	the	guest	with	multiple	disks	attached	to	it,	the	USB-
based	storage	controller	does	not	appear	as	virtual	storage	controller.	Each
disk	attached	to	the	controller	appears	as	a	dedicated	USB	device	to	the
guest.

Warning

Booting	from	drives	attached	via	USB	is	when	EFI	is	used	as
the	BIOS	lacks	USB	support.

Non	volatile	memory	express	(NVMe)	is	a	very	recent	standard	which
emerged	in	2011	connecting	non	volatile	memory	(NVM)	directly	over	PCI
express	to	lift	the	bandwidth	limitation	of	the	previously	used	SATA
protocol	for	SSDs.	Unlike	other	standards	the	command	set	is	very	simple
to	achieve	maximum	throughput	and	is	not	compatible	with	ATA	or	SCSI.
Operating	systems	need	to	support	NVMe	devices	to	make	use	of	them.	For
example	Windows	8.1	added	native	NVMe	support,	for	Windows	7	native
support	was	added	with	an	update.	[24]

Warning

Booting	from	drives	attached	via	NVMe	is	only	supported
when	EFI	is	used	as	the	BIOS	lacks	the	appropriate	driver.

In	summary,	VirtualBox	gives	you	the	following	categories	of	virtual	storage
slots:

1.	 four	slots	attached	to	the	traditional	IDE	controller,	which	are	always
present	(one	of	which	typically	is	a	virtual	CD/DVD	drive);

2.	 30	slots	attached	to	the	SATA	controller,	if	enabled	and	supported	by	the
guest	operating	system;

3.	 15	slots	attached	to	the	SCSI	controller,	if	enabled	and	supported	by	the
guest	operating	system;

4.	 eight	slots	attached	to	the	SAS	controller,	if	enabled	and	supported	by	the
guest	operating	system.

5.	 eight	slots	attached	to	the	virtual	USB	controller,	if	enabled	and	supported
by	the	guest	operating	system.

6.	 up	to	255	slots	attached	to	the	NVMe	controller,	if	enabled	and	supported
by	the	guest	operating	system.

Given	this	large	choice	of	storage	controllers,	you	may	ask	yourself	which	one	to
choose.	In	general,	you	should	avoid	IDE	unless	it	is	the	only	controller
supported	by	your	guest.	Whether	you	use	SATA,	SCSI	or	SAS	does	not	make
any	real	difference.	The	variety	of	controllers	is	only	supplied	for	VirtualBox	for
compatibility	with	existing	hardware	and	other	hypervisors.

[21]	SATA	support	was	added	with	VirtualBox	1.6;	experimental	SCSI	support
was	added	with	2.1	and	fully	implemented	with	2.2.	Generally,	storage
attachments	were	made	much	more	flexible	with	VirtualBox	3.1;	see	below.
Support	for	the	LSI	Logic	SAS	controller	was	added	with	VirtualBox	3.2;	USB
mass	storage	devices	are	supported	since	VirtualBox	5.0;	NVMe	controller
support	was	added	with	VirtualBox	5.1.

[22]	The	assignment	of	the	machine's	CD/DVD	drive	to	the	secondary	master	was
fixed	before	VirtualBox	3.1;	it	is	now	changeable,	and	the	drive	can	be	at	other

slots	of	the	IDE	controller,	and	there	can	be	more	than	one	such	drive.

[23]	VirtualBox	recommends	the	Intel	Matrix	Storage	drivers	which	can	be
downloaded	from	http://downloadcenter.intel.com/Product_Filter.aspx?
ProductID=2101.

[24]	The	NVMe	controller	is	part	of	the	extension	pack.

http://downloadcenter.intel.com/Product_Filter.aspx?ProductID=2101

5.2.	Disk	image	files	(VDI,	VMDK,	VHD,	HDD)

Disk	image	files	reside	on	the	host	system	and	are	seen	by	the	guest	systems	as
hard	disks	of	a	certain	geometry.	When	a	guest	operating	system	reads	from	or
writes	to	a	hard	disk,	VirtualBox	redirects	the	request	to	the	image	file.

Like	a	physical	disk,	a	virtual	disk	has	a	size	(capacity),	which	must	be	specified
when	the	image	file	is	created.	As	opposed	to	a	physical	disk	however,
VirtualBox	allows	you	to	expand	an	image	file	after	creation,	even	if	it	has	data
already;	see	Section	8.23,	“VBoxManage	modifymedium”	for	details.[25]

VirtualBox	supports	four	variants	of	disk	image	files:

Normally,	VirtualBox	uses	its	own	container	format	for	guest	hard	disks	--
Virtual	Disk	Image	(VDI)	files.	In	particular,	this	format	will	be	used	when
you	create	a	new	virtual	machine	with	a	new	disk.

VirtualBox	also	fully	supports	the	popular	and	open	VMDK	container
format	that	is	used	by	many	other	virtualization	products,	in	particular,	by
VMware.[26]

VirtualBox	also	fully	supports	the	VHD	format	used	by	Microsoft.

Image	files	of	Parallels	version	2	(HDD	format)	are	also	supported.[27]	For
lack	of	documentation	of	the	format,	newer	formats	(3	and	4)	are	not
supported.	You	can	however	convert	such	image	files	to	version	2	format
using	tools	provided	by	Parallels.

Irrespective	of	the	disk	capacity	and	format,	as	briefly	mentioned	in	Section	1.7,
“Creating	your	first	virtual	machine”,	there	are	two	options	of	how	to	create	a
disk	image:	fixed-size	or	dynamically	allocated.

If	you	create	a	fixed-size	image,	an	image	file	will	be	created	on	your	host
system	which	has	roughly	the	same	size	as	the	virtual	disk's	capacity.	So,
for	a	10G	disk,	you	will	have	a	10G	file.	Note	that	the	creation	of	a	fixed-
size	image	can	take	a	long	time	depending	on	the	size	of	the	image	and	the
write	performance	of	your	hard	disk.

For	more	flexible	storage	management,	use	a	dynamically	allocated
image.	This	will	initially	be	very	small	and	not	occupy	any	space	for
unused	virtual	disk	sectors,	but	will	grow	every	time	a	disk	sector	is	written
to	for	the	first	time,	until	the	drive	reaches	the	maximum	capacity	chosen
when	the	drive	was	created.	While	this	format	takes	less	space	initially,	the
fact	that	VirtualBox	needs	to	expand	the	image	file	consumes	additional
computing	resources,	so	until	the	disk	file	size	has	stabilized,	write
operations	may	be	slower	than	with	fixed	size	disks.	However,	after	a	time
the	rate	of	growth	will	slow	and	the	average	penalty	for	write	operations
will	be	negligible.

[25]	Image	resizing	was	added	with	VirtualBox	4.0.

[26]	Initial	support	for	VMDK	was	added	with	VirtualBox	1.4;	since	version	2.1,
VirtualBox	supports	VMDK	fully,	meaning	that	you	can	create	snapshots	and
use	all	the	other	advanced	features	described	above	for	VDI	images	with	VMDK
also.

[27]	Support	was	added	with	VirtualBox	3.1.

5.3.	The	Virtual	Media	Manager

VirtualBox	keeps	track	of	all	the	hard	disk,	CD/DVD-ROM	and	floppy	disk
images	which	are	in	use	by	virtual	machines.	These	are	often	referred	to	as
"known	media"	and	come	from	two	sources:

all	media	currently	attached	to	virtual	machines;

"registered"	media	for	compatibility	with	VirtualBox	versions	older	than
version	4.0.	For	details	about	how	media	registration	has	changed	with
version	4.0,	please	refer	to	Section	10.1,	“Where	VirtualBox	stores	its
files”.

The	known	media	can	be	viewed	and	changed	in	the	Virtual	Media	Manager,
which	you	can	access	from	the	"File"	menu	in	the	VirtualBox	main	window:

The	known	media	are	conveniently	grouped	in	three	tabs	for	the	three	possible
formats.	These	formats	are:

Hard	disk	images,	either	in	VirtualBox's	own	Virtual	Disk	Image	(VDI)
format	or	in	the	third-party	formats	listed	in	the	previous	chapter;

CD/DVD	images	in	standard	ISO	format;

floppy	images	in	standard	RAW	format.

As	you	can	see	in	the	screenshot	above,	for	each	image,	the	Virtual	Media
Manager	shows	you	the	full	path	of	the	image	file	and	other	information,	such	as
the	virtual	machine	the	image	is	currently	attached	to,	if	any.

The	Virtual	Media	Manager	allows	you	to

remove	an	image	from	the	registry	(and	optionally	delete	the	image	file
when	doing	so);

"release"	an	image,	that	is,	detach	it	from	a	virtual	machine	if	it	is
currently	attached	to	one	as	a	virtual	hard	disk.

copy	a	virtual	hard	disk,	to	another	one	-	target	type	can	be	different,
options	are	-	VDI,	VHD	or	VMDK.

modify	the	attributes	of	the	disk	image	file	-	available	options	are	:	Normal,
Immutable,	Writethrough,	Shareable,	Multi-attach.

refresh	the	values	for	the	displayed	attributes	of	the	disk	image	currently
selected	in	the	window.

These	commands	are	accessible	once	a	medium	has	been	selected	either	by
selecting	from	the	options	shown	at	the	top	of	the	window,	or	by	right-clicking
the	medium	and	selecting	from	the	options	shown	on	the	drop-down	menu.

Starting	with	version	4.0,	to	create	new	disk	images,	please	use	the	"Storage"
page	in	a	virtual	machine's	settings	dialog	because	disk	images	are	now	by
default	stored	in	each	machine's	own	folder.

Hard	disk	image	files	can	be	copied	onto	other	host	systems	and	imported	into
virtual	machines	there,	although	certain	guest	systems	(notably	Windows	2000
and	XP)	will	require	that	the	new	virtual	machine	be	set	up	in	a	similar	way	to
the	old	one.

Note

Do	not	simply	make	copies	of	virtual	disk	images.	If	you	import
such	a	second	copy	into	a	virtual	machine,	VirtualBox	will	complain
with	an	error,	since	VirtualBox	assigns	a	unique	identifier	(UUID)	to
each	disk	image	to	make	sure	it	is	only	used	once.	See	Section	5.6,
“Cloning	disk	images”	for	instructions	on	this	matter.	Also,	if	you
want	to	copy	a	virtual	machine	to	another	system,	VirtualBox	has	an
import/export	facility	that	might	be	better	suited	for	your	needs;	see
Section	1.14,	“Importing	and	exporting	virtual	machines”.

5.4.	Special	image	write	modes

For	each	virtual	disk	image	supported	by	VirtualBox,	you	can	determine
separately	how	it	should	be	affected	by	write	operations	from	a	virtual	machine
and	snapshot	operations.	This	applies	to	all	of	the	aforementioned	image	formats
(VDI,	VMDK,	VHD	or	HDD)	and	irrespective	of	whether	an	image	is	fixed-size
or	dynamically	allocated.

By	default,	images	are	in	"normal"	mode.	To	mark	an	existing	image	with	one	of
the	non-standard	modes	listed	below,	use	VBoxManage	modifyhd;	see
Section	8.23,	“VBoxManage	modifymedium”.	Alternatively,	use	VBoxManage
to	attach	the	image	to	a	VM	and	use	the	--mtype	argument;	see	Section	8.18,
“VBoxManage	storageattach”.

1.	 With	normal	images	(the	default	setting),	there	are	no	restrictions	on	how
guests	can	read	from	and	write	to	the	disk.

When	you	take	a	snapshot	of	your	virtual	machine	as	described	in
Section	1.10,	“Snapshots”,	the	state	of	such	a	"normal	hard	disk"	will	be
recorded	together	with	the	snapshot,	and	when	reverting	to	the	snapshot,	its
state	will	be	fully	reset.

(Technically,	strictly	speaking,	the	image	file	itself	is	not	"reset".	Instead,
when	a	snapshot	is	taken,	VirtualBox	"freezes"	the	image	file	and	no	longer
writes	to	it.	For	the	write	operations	from	the	VM,	a	second,	"differencing"
image	file	is	created	which	receives	only	the	changes	to	the	original	image;
see	the	next	section	for	details.)

While	you	can	attach	the	same	"normal"	image	to	more	than	one	virtual
machine,	only	one	of	these	virtual	machines	attached	to	the	same	image	file
can	be	executed	simultaneously,	as	otherwise	there	would	be	conflicts	if
several	machines	write	to	the	same	image	file.[28]

2.	 By	contrast,	write-through	hard	disks	are	completely	unaffected	by
snapshots:	their	state	is	not	saved	when	a	snapshot	is	taken,	and	not	restored
when	a	snapshot	is	restored.

3.	 Shareable	hard	disks	are	a	variant	of	write-through	hard	disks.	In	principle

they	behave	exactly	the	same,	i.e.	their	state	is	not	saved	when	a	snapshot	is
taken,	and	not	restored	when	a	snapshot	is	restored.	The	difference	only
shows	if	you	attach	such	disks	to	several	VMs.	Shareable	disks	may	be
attached	to	several	VMs	which	may	run	concurrently.	This	makes	them
suitable	for	use	by	cluster	filesystems	between	VMs	and	similar
applications	which	are	explicitly	prepared	to	access	a	disk	concurrently.
Only	fixed	size	images	can	be	used	in	this	way,	and	dynamically	allocated
images	are	rejected.

Warning

This	is	an	expert	feature,	and	misuse	can	lead	to	data	loss	--
regular	filesystems	are	not	prepared	to	handle	simultaneous
changes	by	several	parties.

4.	 Next,	immutable	images	only	remember	write	accesses	temporarily	while
the	virtual	machine	is	running;	all	changes	are	lost	when	the	virtual
machine	is	powered	on	the	next	time.	As	a	result,	as	opposed	to	"normal"
images,	the	same	immutable	image	can	be	used	with	several	virtual
machines	without	restrictions.

Creating	an	immutable	image	makes	little	sense	since	it	would	be	initially
empty	and	lose	its	contents	with	every	machine	restart	(unless	you	really
want	to	have	a	disk	that	is	always	unformatted	when	the	machine	starts	up).
As	a	result,	normally,	you	would	first	create	a	"normal"	image	and	then,
when	you	deem	its	contents	useful,	later	mark	it	immutable.

If	you	take	a	snapshot	of	a	machine	with	immutable	images,	then	on	every
machine	power-up,	those	images	are	reset	to	the	state	of	the	last	(current)
snapshot	(instead	of	the	state	of	the	original	immutable	image).

Note

As	a	special	exception,	immutable	images	are	not	reset	if	they
are	attached	to	a	machine	in	saved	state	or	whose	last	snapshot
was	taken	while	the	machine	was	running	(a	so-called	"online"
snapshot).	As	a	result,	if	the	machine's	current	snapshot	is	such
an	"online"	snapshot,	its	immutable	images	behave	exactly	like
the	"normal"	images	described	previously.	To	re-enable	the

automatic	resetting	of	such	images,	delete	the	current	snapshot
of	the	machine.

Again,	technically,	VirtualBox	never	writes	to	an	immutable	image	directly
at	all.	All	write	operations	from	the	machine	will	be	directed	to	a
differencing	image;	the	next	time	the	VM	is	powered	on,	the	differencing
image	is	reset	so	that	every	time	the	VM	starts,	its	immutable	images	have
exactly	the	same	content.[29]	The	differencing	image	is	only	reset	when	the
machine	is	powered	on	from	within	VirtualBox,	not	when	you	reboot	by
requesting	a	reboot	from	within	the	machine.	This	is	also	why	immutable
images	behave	as	described	above	when	snapshots	are	also	present,	which
use	differencing	images	as	well.

If	the	automatic	discarding	of	the	differencing	image	on	VM	startup	does
not	fit	your	needs,	you	can	turn	it	off	using	the	autoreset	parameter	of
VBoxManage	modifyhd;	see	Section	8.23,	“VBoxManage	modifymedium”
for	details.

5.	 An	image	in	multiattach	mode	can	be	attached	to	more	than	one	virtual
machine	at	the	same	time,	even	if	these	machines	are	running
simultaneously.	For	each	virtual	machine	to	which	such	an	image	is
attached,	a	differencing	image	is	created.	As	a	result,	data	that	is	written	to
such	a	virtual	disk	by	one	machine	is	not	seen	by	the	other	machines	to
which	the	image	is	attached;	each	machine	creates	its	own	write	history	of
the	multiattach	image.

Technically,	a	"multiattach"	image	behaves	identically	to	an	"immutable"
image	except	the	differencing	image	is	not	reset	every	time	the	machine
starts.

This	mode	is	useful	for	sharing	files	which	are	almost	never	written,	for
instance	picture	galleries,	where	every	guest	changes	only	a	small	amount
of	data	and	the	majority	of	the	disk	content	remains	unchanged.	The
modified	blocks	are	stored	in	differencing	images	which	remain	relatively
small	and	the	shared	content	is	stored	only	once	at	the	host.

6.	 Finally,	the	read-only	image	is	used	automatically	for	CD/DVD	images,
since	CDs/DVDs	can	never	be	written	to.

To	illustrate	the	differences	between	the	various	types	with	respect	to	snapshots:
Assume	you	have	installed	your	guest	operating	system	in	your	VM,	and	you
have	taken	a	snapshot.	Imagine	you	have	accidentally	infected	your	VM	with	a
virus	and	would	like	to	go	back	to	the	snapshot.	With	a	normal	hard	disk	image,
you	simply	restore	the	snapshot,	and	the	earlier	state	of	your	hard	disk	image
will	be	restored	as	well	(and	your	virus	infection	will	be	undone).	With	an
immutable	hard	disk,	all	it	takes	is	to	shut	down	and	power	on	your	VM,	and	the
virus	infection	will	be	discarded.	With	a	write-through	image	however,	you
cannot	easily	undo	the	virus	infection	by	means	of	virtualization,	but	will	have	to
disinfect	your	virtual	machine	like	a	real	computer.

Still,	you	might	find	write-through	images	useful	if	you	want	to	preserve	critical
data	irrespective	of	snapshots,	and	since	you	can	attach	more	than	one	image	to	a
VM,	you	may	want	to	have	one	immutable	for	the	operating	system	and	one
write-through	for	your	data	files.

[28]	This	restriction	is	more	lenient	now	than	it	was	before	VirtualBox	2.2.
Previously,	each	"normal"	disk	image	could	only	be	attached	to	one	single
machine.	Now	it	can	be	attached	to	more	than	one	machine	so	long	as	only	one
of	these	machines	is	running.

[29]	This	behavior	also	changed	with	VirtualBox	2.2.	Previously,	the	differencing
images	were	discarded	when	the	machine	session	ended;	now	they	are	discarded
every	time	the	machine	is	powered	on.

5.5.	Differencing	images

The	previous	section	hinted	at	differencing	images	and	how	they	are	used	with
snapshots,	immutable	images	and	multiple	disk	attachments.	For	the	inquisitive
VirtualBox	user,	this	section	describes	in	more	detail	how	they	work.

A	differencing	image	is	a	special	disk	image	that	only	holds	the	differences	to
another	image.	A	differencing	image	by	itself	is	useless,	it	must	always	refer	to
another	image.	The	differencing	image	is	then	typically	referred	to	as	a	"child",
which	holds	the	differences	to	its	"parent".

When	a	differencing	image	is	active,	it	receives	all	write	operations	from	the
virtual	machine	instead	of	its	parent.	The	differencing	image	only	contains	the
sectors	of	the	virtual	hard	disk	that	have	changed	since	the	differencing	image
was	created.	When	the	machine	reads	a	sector	from	such	a	virtual	hard	disk,	it
looks	into	the	differencing	image	first.	If	the	sector	is	present,	it	is	returned	from
there;	if	not,	VirtualBox	looks	into	the	parent.	In	other	words,	the	parent
becomes	"read-only";	it	is	never	written	to	again,	but	it	is	read	from	if	a	sector
has	not	changed.

Differencing	images	can	be	chained.	If	another	differencing	image	is	created	for
a	virtual	disk	that	already	has	a	differencing	image,	then	it	becomes	a
"grandchild"	of	the	original	parent.	The	first	differencing	image	then	becomes
read-only	as	well,	and	write	operations	only	go	to	the	second-level	differencing
image.	When	reading	from	the	virtual	disk,	VirtualBox	needs	to	look	into	the
second	differencing	image	first,	then	into	the	first	if	the	sector	was	not	found,
and	then	into	the	original	image.

There	can	be	an	unlimited	number	of	differencing	images,	and	each	image	can
have	more	than	one	child.	As	a	result,	the	differencing	images	can	form	a
complex	tree	with	parents,	"siblings"	and	children,	depending	on	how	complex
your	machine	configuration	is.	Write	operations	always	go	to	the	one	"active"
differencing	image	that	is	attached	to	the	machine,	and	for	read	operations,
VirtualBox	may	need	to	look	up	all	the	parents	in	the	chain	until	the	sector	in
question	is	found.	You	can	look	at	such	a	tree	in	the	Virtual	Media	Manager:

In	all	of	these	situations,	from	the	point	of	view	of	the	virtual	machine,	the
virtual	hard	disk	behaves	like	any	other	disk.	While	the	virtual	machine	is
running,	there	is	a	slight	run-time	I/O	overhead	because	VirtualBox	might	need
to	look	up	sectors	several	times.	This	is	not	noticeable	however	since	the	tables
with	sector	information	are	always	kept	in	memory	and	can	be	looked	up
quickly.

Differencing	images	are	used	in	the	following	situations:

1.	 Snapshots.	When	you	create	a	snapshot,	as	explained	in	the	previous
section,	VirtualBox	"freezes"	the	images	attached	to	the	virtual	machine	and
creates	differencing	images	for	each	of	them	(to	be	precise:	one	for	each
image	that	is	not	in	"write-through"	mode).	From	the	point	of	view	of	the
virtual	machine,	the	virtual	disks	continue	to	operate	before,	but	all	write
operations	go	into	the	differencing	images.	Each	time	you	create	another
snapshot,	for	each	hard	disk	attachment,	another	differencing	image	is
created	and	attached,	forming	a	chain	or	tree.

In	the	above	screenshot,	you	see	that	the	original	disk	image	is	now
attached	to	a	snapshot,	representing	the	state	of	the	disk	when	the	snapshot
was	taken.

If	you	now	restore	a	snapshot	--	that	is,	if	you	want	to	go	back	to	the	exact
machine	state	that	was	stored	in	the	snapshot	--,	the	following	happens:

a.	 VirtualBox	copies	the	virtual	machine	settings	that	were	copied	into
the	snapshot	back	to	the	virtual	machine.	As	a	result,	if	you	have	made
changes	to	the	machine	configuration	since	taking	the	snapshot,	they
are	undone.

b.	 If	the	snapshot	was	taken	while	the	machine	was	running,	it	contains	a
saved	machine	state,	and	that	state	is	restored	as	well;	after	restoring
the	snapshot,	the	machine	will	then	be	in	"Saved"	state	and	resume
execution	from	there	when	it	is	next	started.	Otherwise	the	machine
will	be	in	"Powered	Off"	state	and	do	a	full	boot.

c.	 For	each	disk	image	attached	to	the	machine,	the	differencing	image
holding	all	the	write	operations	since	the	current	snapshot	was	taken	is
thrown	away,	and	the	original	parent	image	is	made	active	again.	(If
you	restored	the	"root"	snapshot,	then	this	will	be	the	root	disk	image
for	each	attachment;	otherwise,	some	other	differencing	image
descended	from	it.)	This	effectively	restores	the	old	machine	state.

If	you	later	delete	a	snapshot	in	order	to	free	disk	space,	for	each	disk
attachment,	one	of	the	differencing	images	becomes	obsolete.	In	this	case,
the	differencing	image	of	the	disk	attachment	cannot	simply	be	deleted.
Instead,	VirtualBox	needs	to	look	at	each	sector	of	the	differencing	image
and	needs	to	copy	it	back	into	its	parent;	this	is	called	"merging"	images
and	can	be	a	potentially	lengthy	process,	depending	on	how	large	the
differencing	image	is.	It	can	also	temporarily	need	a	considerable	amount	of
extra	disk	space,	before	the	differencing	image	obsoleted	by	the	merge
operation	is	deleted.

2.	 Immutable	images.	When	an	image	is	switched	to	"immutable"	mode,	a
differencing	image	is	created	as	well.	As	with	snapshots,	the	parent	image
then	becomes	read-only,	and	the	differencing	image	receives	all	the	write
operations.	Every	time	the	virtual	machine	is	started,	all	the	immutable
images	which	are	attached	to	it	have	their	respective	differencing	image
thrown	away,	effectively	resetting	the	virtual	machine's	virtual	disk	with
every	restart.

5.6.	Cloning	disk	images

You	can	duplicate	hard	disk	image	files	on	the	same	host	to	quickly	produce	a
second	virtual	machine	with	the	same	operating	system	setup.	However,	you
should	only	make	copies	of	virtual	disk	images	using	the	utility	supplied	with
VirtualBox;	see	Section	8.24,	“VBoxManage	clonemedium”.	This	is	because
VirtualBox	assigns	a	unique	identity	number	(UUID)	to	each	disk	image,	which
is	also	stored	inside	the	image,	and	VirtualBox	will	refuse	to	work	with	two
images	that	use	the	same	number.	If	you	do	accidentally	try	to	re-import	a	disk
image	which	you	copied	normally,	you	can	make	a	second	copy	using
VirtualBox's	utility	and	import	that	instead.

Note	that	newer	Linux	distributions	identify	the	boot	hard	disk	from	the	ID	of
the	drive.	The	ID	VirtualBox	reports	for	a	drive	is	determined	from	the	UUID	of
the	virtual	disk	image.	So	if	you	clone	a	disk	image	and	try	to	boot	the	copied
image	the	guest	might	not	be	able	to	determine	its	own	boot	disk	as	the	UUID
changed.	In	this	case	you	have	to	adapt	the	disk	ID	in	your	boot	loader	script	(for
example	/boot/grub/menu.lst).	The	disk	ID	looks	like	this:

scsi-SATA_VBOX_HARDDISK_VB5cfdb1e2-c251e503

The	ID	for	the	copied	image	can	be	determined	with

hdparm	-i	/dev/sda

5.7.	Host	I/O	caching

Starting	with	version	3.2,	VirtualBox	can	optionally	disable	the	I/O	caching	that
the	host	operating	system	would	otherwise	perform	on	disk	image	files.

Traditionally,	VirtualBox	has	opened	disk	image	files	as	normal	files,	which
results	in	them	being	cached	by	the	host	operating	system	like	any	other	file.	The
main	advantage	of	this	is	speed:	when	the	guest	OS	writes	to	disk	and	the	host
OS	cache	uses	delayed	writing,	the	write	operation	can	be	reported	as	completed
to	the	guest	OS	quickly	while	the	host	OS	can	perform	the	operation
asynchronously.	Also,	when	you	start	a	VM	a	second	time	and	have	enough
memory	available	for	the	OS	to	use	for	caching,	large	parts	of	the	virtual	disk
may	be	in	system	memory,	and	the	VM	can	access	the	data	much	faster.

Note	that	this	applies	only	to	image	files;	buffering	never	occurred	for	virtual
disks	residing	on	remote	iSCSI	storage,	which	is	the	more	common	scenario	in
enterprise-class	setups	(see	Section	5.10,	“iSCSI	servers”).

While	buffering	is	a	useful	default	setting	for	virtualizing	a	few	machines	on	a
desktop	computer,	there	are	some	disadvantages	to	this	approach:

1.	 Delayed	writing	through	the	host	OS	cache	is	less	secure.	When	the	guest
OS	writes	data,	it	considers	the	data	written	even	though	it	has	not	yet
arrived	on	a	physical	disk.	If	for	some	reason	the	write	does	not	happen
(power	failure,	host	crash),	the	likelihood	of	data	loss	increases.

2.	 Disk	image	files	tend	to	be	very	large.	Caching	them	can	therefore	quickly
use	up	the	entire	host	OS	cache.	Depending	on	the	efficiency	of	the	host	OS
caching,	this	may	slow	down	the	host	immensely,	especially	if	several	VMs
run	at	the	same	time.	For	example,	on	Linux	hosts,	host	caching	may	result
in	Linux	delaying	all	writes	until	the	host	cache	is	nearly	full	and	then
writing	out	all	these	changes	at	once,	possibly	stalling	VM	execution	for
minutes.	This	can	result	in	I/O	errors	in	the	guest	as	I/O	requests	time	out
there.

3.	 Physical	memory	is	often	wasted	as	guest	operating	systems	typically	have
their	own	I/O	caches,	which	may	result	in	the	data	being	cached	twice	(in
both	the	guest	and	the	host	caches)	for	little	effect.

If	you	decide	to	disable	host	I/O	caching	for	the	above	reasons,	VirtualBox	uses
its	own	small	cache	to	buffer	writes,	but	no	read	caching	since	this	is	typically
already	performed	by	the	guest	OS.	In	addition,	VirtualBox	fully	supports
asynchronous	I/O	for	its	virtual	SATA,	SCSI	and	SAS	controllers	through
multiple	I/O	threads.

Since	asynchronous	I/O	is	not	supported	by	IDE	controllers,	for	performance
reasons,	you	may	want	to	leave	host	caching	enabled	for	your	VM's	virtual	IDE
controllers.

For	this	reason,	VirtualBox	allows	you	to	configure	whether	the	host	I/O	cache	is
used	for	each	I/O	controller	separately.	Either	uncheck	the	"Use	host	I/O	cache"
box	in	the	"Storage"	settings	for	a	given	virtual	storage	controller,	or	use	the
following	VBoxManage	command	to	disable	the	host	I/O	cache	for	a	virtual
storage	controller:

VBoxManage	storagectl	"VM	name"	--name	<controllername>	--hostiocache	off

See	Section	8.19,	“VBoxManage	storagectl”	for	details.

For	the	above	reasons	also,	VirtualBox	now	uses	SATA	controllers	by	default	for
new	virtual	machines.

5.8.	Limiting	bandwidth	for	disk	images

Starting	with	version	4.0,	VirtualBox	allows	for	limiting	the	maximum
bandwidth	used	for	asynchronous	I/O.	Additionally	it	supports	sharing	limits
through	bandwidth	groups	for	several	images.	It	is	possible	to	have	more	than
one	such	limit.

Limits	are	configured	through	VBoxManage.	The	example	below	creates	a
bandwidth	group	named	"Limit",	sets	the	limit	to	20	MB/s	and	assigns	the	group
to	the	attached	disks	of	the	VM:

VBoxManage	bandwidthctl	"VM	name"	add	Limit	--type	disk	--limit	20M

VBoxManage	storageattach	"VM	name"	--storagectl	"SATA"	--port	0	--device	0	--type	hdd

																																			--medium	disk1.vdi	--bandwidthgroup	Limit

VBoxManage	storageattach	"VM	name"	--storagectl	"SATA"	--port	1	--device	0	--type	hdd

																																			--medium	disk2.vdi	--bandwidthgroup	Limit

All	disks	in	a	group	share	the	bandwidth	limit,	meaning	that	in	the	example
above	the	bandwidth	of	both	images	combined	can	never	exceed	20	MB/s.
However,	if	one	disk	doesn't	require	bandwidth	the	other	can	use	the	remaining
bandwidth	of	its	group.

The	limits	for	each	group	can	be	changed	while	the	VM	is	running,	with	changes
being	picked	up	immediately.	The	example	below	changes	the	limit	for	the	group
created	in	the	example	above	to	10	MB/s:

VBoxManage	bandwidthctl	"VM	name"	set	Limit	--limit	10M

5.9.	CD/DVD	support

The	virtual	CD/DVD	drive(s)	by	default	support	only	reading.	The	medium
configuration	is	changeable	at	runtime.	You	can	select	between	three	options	to
provide	the	medium	data:

Host	Drive	defines	that	the	guest	can	read	from	the	medium	in	the	host
drive.

Image	file	(typically	an	ISO	file)	gives	the	guest	read-only	access	to	the
data	in	the	image.

Empty	stands	for	a	drive	without	an	inserted	medium.

Changing	between	the	above,	or	changing	a	medium	in	the	host	drive	that	is
accessed	by	a	machine,	or	changing	an	image	file	will	signal	a	medium	change
to	the	guest	operating	system,	which	can	then	react	to	the	change	(e.g.	by
starting	an	installation	program).

Medium	changes	can	be	prevented	by	the	guest,	and	VirtualBox	reflects	that	by
locking	the	host	drive	if	appropriate.	You	can	force	a	medium	removal	in	such
situations	via	the	VirtualBox	GUI	or	the	VBoxManage	command	line	tool.
Effectively	this	is	the	equivalent	of	the	emergency	eject	which	many	CD/DVD
drives	provide,	with	all	associated	side	effects:	the	guest	OS	can	issue	error
messages,	just	like	on	real	hardware,	and	guest	applications	may	misbehave.	Use
this	with	caution.

Note

The	identification	string	of	the	drive	provided	to	the	guest	(which,	in
the	guest,	would	be	displayed	by	configuration	tools	such	as	the
Windows	Device	Manager)	is	always	"VBOX	CD-ROM",
irrespective	of	the	current	configuration	of	the	virtual	drive.	This	is
to	prevent	hardware	detection	from	being	triggered	in	the	guest
operating	system	every	time	the	configuration	is	changed.

The	standard	CD/DVD	emulation	allows	for	reading	standard	data	CD	and	DVD
formats	only.	As	an	experimental	feature,	for	additional	capabilities,	it	is

possible	to	give	the	guest	direct	access	to	the	CD/DVD	host	drive	by	enabling
"passthrough"	mode.	Depending	on	the	host	hardware,	this	may	enable	three
things	to	work,	potentially:

CD/DVD	writing	from	within	the	guest,	if	the	host	DVD	drive	is	a
CD/DVD	writer;

playing	audio	CDs;

playing	encrypted	DVDs.

There	is	a	"Passthrough"	checkbox	in	the	GUI	dialog	for	configuring	the	media
attached	to	a	storage	controller,	or	you	can	use	the	--passthrough	option	with
VBoxManage	storageattach;	see	Section	8.18,	“VBoxManage	storageattach”	for
details.

Even	if	pass-through	is	enabled,	unsafe	commands,	such	as	updating	the	drive
firmware,	will	be	blocked.	Video	CD	formats	are	never	supported,	not	even	in
passthrough	mode,	and	cannot	be	played	from	a	virtual	machine.

On	Solaris	hosts,	pass-through	requires	running	VirtualBox	with	real	root
permissions	due	to	security	measures	enforced	by	the	host.

5.10.	iSCSI	servers

iSCSI	stands	for	"Internet	SCSI"	and	is	a	standard	that	allows	for	using	the	SCSI
protocol	over	Internet	(TCP/IP)	connections.	Especially	with	the	advent	of
Gigabit	Ethernet,	it	has	become	affordable	to	attach	iSCSI	storage	servers	simply
as	remote	hard	disks	to	a	computer	network.	In	iSCSI	terminology,	the	server
providing	storage	resources	is	called	an	"iSCSI	target",	while	the	client
connecting	to	the	server	and	accessing	its	resources	is	called	"iSCSI	initiator".

VirtualBox	can	transparently	present	iSCSI	remote	storage	to	a	virtual	machine
as	a	virtual	hard	disk.	The	guest	operating	system	will	not	see	any	difference
between	a	virtual	disk	image	(VDI	file)	and	an	iSCSI	target.	To	achieve	this,
VirtualBox	has	an	integrated	iSCSI	initiator.

VirtualBox's	iSCSI	support	has	been	developed	according	to	the	iSCSI	standard
and	should	work	with	all	standard-conforming	iSCSI	targets.	To	use	an	iSCSI
target	with	VirtualBox,	you	must	use	the	command	line;	see	Section	8.18,
“VBoxManage	storageattach”.

Chapter	6.	Virtual	networking

Table	of	Contents

6.1.	Virtual	networking	hardware
6.2.	Introduction	to	networking	modes
6.3.	Network	Address	Translation	(NAT)

6.3.1.	Configuring	port	forwarding	with	NAT
6.3.2.	PXE	booting	with	NAT
6.3.3.	NAT	limitations

6.4.	Network	Address	Translation	Service
6.5.	Bridged	networking
6.6.	Internal	networking
6.7.	Host-only	networking
6.8.	UDP	Tunnel	networking
6.9.	VDE	networking
6.10.	Limiting	bandwidth	for	network	I/O
6.11.	Improving	network	performance

As	briefly	mentioned	in	Section	3.9,	“Network	settings”,	VirtualBox	provides	up
to	eight	virtual	PCI	Ethernet	cards	for	each	virtual	machine.	For	each	such	card,
you	can	individually	select

1.	 the	hardware	that	will	be	virtualized	as	well	as

2.	 the	virtualization	mode	that	the	virtual	card	will	be	operating	in	with	respect
to	your	physical	networking	hardware	on	the	host.

Four	of	the	network	cards	can	be	configured	in	the	"Network"	section	of	the
settings	dialog	in	the	graphical	user	interface	of	VirtualBox.	You	can	configure
all	eight	network	cards	on	the	command	line	via	VBoxManage	modifyvm;	see
Section	8.8,	“VBoxManage	modifyvm”.

This	chapter	explains	the	various	networking	settings	in	more	detail.

6.1.	Virtual	networking	hardware

For	each	card,	you	can	individually	select	what	kind	of	hardware	will	be
presented	to	the	virtual	machine.	VirtualBox	can	virtualize	the	following	six
types	of	networking	hardware:

AMD	PCNet	PCI	II	(Am79C970A);

AMD	PCNet	FAST	III	(Am79C973,	the	default);

Intel	PRO/1000	MT	Desktop	(82540EM);

Intel	PRO/1000	T	Server	(82543GC);

Intel	PRO/1000	MT	Server	(82545EM);

Paravirtualized	network	adapter	(virtio-net).

The	PCNet	FAST	III	is	the	default	because	it	is	supported	by	nearly	all	operating
systems	out	of	the	box,	as	well	as	the	GNU	GRUB	boot	manager.	As	an
exception,	the	Intel	PRO/1000	family	adapters	are	chosen	for	some	guest
operating	system	types	that	no	longer	ship	with	drivers	for	the	PCNet	card,	such
as	Windows	Vista.

The	Intel	PRO/1000	MT	Desktop	type	works	with	Windows	Vista	and	later
versions.	The	T	Server	variant	of	the	Intel	PRO/1000	card	is	recognized	by
Windows	XP	guests	without	additional	driver	installation.	The	MT	Server
variant	facilitates	OVF	imports	from	other	platforms.

The	"Paravirtualized	network	adapter	(virtio-net)"	is	special.	If	you	select
this,	then	VirtualBox	does	not	virtualize	common	networking	hardware	(that	is
supported	by	common	guest	operating	systems	out	of	the	box).	Instead,
VirtualBox	then	expects	a	special	software	interface	for	virtualized	environments
to	be	provided	by	the	guest,	thus	avoiding	the	complexity	of	emulating
networking	hardware	and	improving	network	performance.	Starting	with	version
3.1,	VirtualBox	provides	support	for	the	industry-standard	"virtio"	networking
drivers,	which	are	part	of	the	open-source	KVM	project.

The	"virtio"	networking	drivers	are	available	for	the	following	guest	operating
systems:

Linux	kernels	version	2.6.25	or	later	can	be	configured	to	provide	virtio
support;	some	distributions	also	back-ported	virtio	to	older	kernels.

For	Windows	2000,	XP	and	Vista,	virtio	drivers	can	be	downloaded	and
installed	from	the	KVM	project	web	page.[30]

VirtualBox	also	has	limited	support	for	so-called	jumbo	frames,	i.e.	networking
packets	with	more	than	1500	bytes	of	data,	provided	that	you	use	the	Intel	card
virtualization	and	bridged	networking.	In	other	words,	jumbo	frames	are	not
supported	with	the	AMD	networking	devices;	in	those	cases,	jumbo	packets	will
silently	be	dropped	for	both	the	transmit	and	the	receive	direction.	Guest
operating	systems	trying	to	use	this	feature	will	observe	this	as	a	packet	loss,
which	may	lead	to	unexpected	application	behavior	in	the	guest.	This	does	not
cause	problems	with	guest	operating	systems	in	their	default	configuration,	as
jumbo	frames	need	to	be	explicitly	enabled.

[30]	http://www.linux-kvm.org/page/WindowsGuestDrivers.

http://www.linux-kvm.org/page/WindowsGuestDrivers

6.2.	Introduction	to	networking	modes

Each	of	the	eight	networking	adapters	can	be	separately	configured	to	operate	in
one	of	the	following	modes:

Not	attached

In	this	mode,	VirtualBox	reports	to	the	guest	that	a	network	card	is	present,
but	that	there	is	no	connection	--	as	if	no	Ethernet	cable	was	plugged	into
the	card.	This	way	it	is	possible	to	"pull"	the	virtual	Ethernet	cable	and
disrupt	the	connection,	which	can	be	useful	to	inform	a	guest	operating
system	that	no	network	connection	is	available	and	enforce	a
reconfiguration.

Network	Address	Translation	(NAT)

If	all	you	want	is	to	browse	the	Web,	download	files	and	view	e-mail	inside
the	guest,	then	this	default	mode	should	be	sufficient	for	you,	and	you	can
safely	skip	the	rest	of	this	section.	Please	note	that	there	are	certain
limitations	when	using	Windows	file	sharing	(see	Section	6.3.3,	“NAT
limitations”	for	details).

NAT	Network

The	NAT	network	is	a	new	NAT	flavour	introduced	in	VirtualBox	4.3.	See
6.4	for	details.

Bridged	networking

This	is	for	more	advanced	networking	needs	such	as	network	simulations
and	running	servers	in	a	guest.	When	enabled,	VirtualBox	connects	to	one
of	your	installed	network	cards	and	exchanges	network	packets	directly,
circumventing	your	host	operating	system's	network	stack.

Internal	networking

This	can	be	used	to	create	a	different	kind	of	software-based	network	which
is	visible	to	selected	virtual	machines,	but	not	to	applications	running	on	the

host	or	to	the	outside	world.

Host-only	networking

This	can	be	used	to	create	a	network	containing	the	host	and	a	set	of	virtual
machines,	without	the	need	for	the	host's	physical	network	interface.
Instead,	a	virtual	network	interface	(similar	to	a	loopback	interface)	is
created	on	the	host,	providing	connectivity	among	virtual	machines	and	the
host.

Generic	networking

Rarely	used	modes	share	the	same	generic	network	interface,	by	allowing
the	user	to	select	a	driver	which	can	be	included	with	VirtualBox	or	be
distributed	in	an	extension	pack.

At	the	moment	there	are	potentially	two	available	sub-modes:

UDP	Tunnel

This	can	be	used	to	interconnect	virtual	machines	running	on	different
hosts	directly,	easily	and	transparently,	over	existing	network
infrastructure.

VDE	(Virtual	Distributed	Ethernet)	networking

This	option	can	be	used	to	connect	to	a	Virtual	Distributed	Ethernet
switch	on	a	Linux	or	a	FreeBSD	host.	At	the	moment	this	needs
compiling	VirtualBox	from	sources,	as	the	Oracle	packages	do	not
include	it.

The	following	table	provides	a	quick	overview	of	the	most	important	networking
modes:

Table	6.1.	Overview

	 VM	↔	Host VM1	↔	VM2 VM	→	Internet VM	←	Internet
Host-only + + – –
Internal – + – –

Bridged + + + +
NAT – – + Port	forwarding
NAT	Network – + + Port	forwarding

The	following	sections	describe	the	available	network	modes	in	more	detail.

6.3.	Network	Address	Translation	(NAT)

Network	Address	Translation	(NAT)	is	the	simplest	way	of	accessing	an	external
network	from	a	virtual	machine.	Usually,	it	does	not	require	any	configuration
on	the	host	network	and	guest	system.	For	this	reason,	it	is	the	default
networking	mode	in	VirtualBox.

A	virtual	machine	with	NAT	enabled	acts	much	like	a	real	computer	that
connects	to	the	Internet	through	a	router.	The	"router",	in	this	case,	is	the
VirtualBox	networking	engine,	which	maps	traffic	from	and	to	the	virtual
machine	transparently.	In	VirtualBox	this	router	is	placed	between	each	virtual
machine	and	the	host.	This	separation	maximizes	security	since	by	default
virtual	machines	cannot	talk	to	each	other.

The	disadvantage	of	NAT	mode	is	that,	much	like	a	private	network	behind	a
router,	the	virtual	machine	is	invisible	and	unreachable	from	the	outside	internet;
you	cannot	run	a	server	this	way	unless	you	set	up	port	forwarding	(described
below).

The	network	frames	sent	out	by	the	guest	operating	system	are	received	by
VirtualBox's	NAT	engine,	which	extracts	the	TCP/IP	data	and	resends	it	using
the	host	operating	system.	To	an	application	on	the	host,	or	to	another	computer
on	the	same	network	as	the	host,	it	looks	like	the	data	was	sent	by	the	VirtualBox
application	on	the	host,	using	an	IP	address	belonging	to	the	host.	VirtualBox
listens	for	replies	to	the	packages	sent,	and	repacks	and	resends	them	to	the	guest
machine	on	its	private	network.

The	virtual	machine	receives	its	network	address	and	configuration	on	the
private	network	from	a	DHCP	server	integrated	into	VirtualBox.	The	IP	address
thus	assigned	to	the	virtual	machine	is	usually	on	a	completely	different	network
than	the	host.	As	more	than	one	card	of	a	virtual	machine	can	be	set	up	to	use
NAT,	the	first	card	is	connected	to	the	private	network	10.0.2.0,	the	second	card
to	the	network	10.0.3.0	and	so	on.	If	you	need	to	change	the	guest-assigned	IP
range	for	some	reason,	please	refer	to	Section	9.11,	“Fine-tuning	the	VirtualBox
NAT	engine”.

6.3.1.	Configuring	port	forwarding	with	NAT

As	the	virtual	machine	is	connected	to	a	private	network	internal	to	VirtualBox
and	invisible	to	the	host,	network	services	on	the	guest	are	not	accessible	to	the
host	machine	or	to	other	computers	on	the	same	network.	However,	like	a
physical	router,	VirtualBox	can	make	selected	services	available	to	the	world
outside	the	guest	through	port	forwarding.	This	means	that	VirtualBox	listens
to	certain	ports	on	the	host	and	resends	all	packets	which	arrive	there	to	the
guest,	on	the	same	or	a	different	port.

To	an	application	on	the	host	or	other	physical	(or	virtual)	machines	on	the
network,	it	looks	as	though	the	service	being	proxied	is	actually	running	on	the
host.	This	also	means	that	you	cannot	run	the	same	service	on	the	same	ports	on
the	host.	However,	you	still	gain	the	advantages	of	running	the	service	in	a
virtual	machine	--	for	example,	services	on	the	host	machine	or	on	other	virtual
machines	cannot	be	compromised	or	crashed	by	a	vulnerability	or	a	bug	in	the
service,	and	the	service	can	run	in	a	different	operating	system	than	the	host
system.

To	configure	Port	Forwarding	you	can	use	the	graphical	Port	Forwarding	editor
which	can	be	found	in	the	Network	Settings	dialog	for	Network	Adaptors
configured	to	use	NAT.	Here	you	can	map	host	ports	to	guest	ports	to	allow
network	traffic	to	be	routed	to	a	specific	port	in	the	guest.

Alternatively	command	line	tool	VBoxManage	could	be	used;	for	details,	please
refer	to	Section	8.8,	“VBoxManage	modifyvm”.

You	will	need	to	know	which	ports	on	the	guest	the	service	uses	and	to	decide
which	ports	to	use	on	the	host	(often	but	not	always	you	will	want	to	use	the
same	ports	on	the	guest	and	on	the	host).	You	can	use	any	ports	on	the	host
which	are	not	already	in	use	by	a	service.	For	example,	to	set	up	incoming	NAT
connections	to	an	ssh	server	in	the	guest,	use	the	following	command:

VBoxManage	modifyvm	"VM	name"	--natpf1	"guestssh,tcp,,2222,,22"

With	the	above	example,	all	TCP	traffic	arriving	on	port	2222	on	any	host
interface	will	be	forwarded	to	port	22	in	the	guest.	The	protocol	name	tcp	is	a
mandatory	attribute	defining	which	protocol	should	be	used	for	forwarding	(udp
could	also	be	used).	The	name	guestssh	is	purely	descriptive	and	will	be	auto-
generated	if	omitted.	The	number	after	--natpf	denotes	the	network	card,	like	in
other	parts	of	VBoxManage.

To	remove	this	forwarding	rule	again,	use	the	following	command:

VBoxManage	modifyvm	"VM	name"	--natpf1	delete	"guestssh"

If	for	some	reason	the	guest	uses	a	static	assigned	IP	address	not	leased	from	the
built-in	DHCP	server,	it	is	required	to	specify	the	guest	IP	when	registering	the
forwarding	rule:

VBoxManage	modifyvm	"VM	name"	--natpf1	"guestssh,tcp,,2222,10.0.2.19,22"

This	example	is	identical	to	the	previous	one,	except	that	the	NAT	engine	is
being	told	that	the	guest	can	be	found	at	the	10.0.2.19	address.

To	forward	all	incoming	traffic	from	a	specific	host	interface	to	the	guest,
specify	the	IP	of	that	host	interface	like	this:

VBoxManage	modifyvm	"VM	name"	--natpf1	"guestssh,tcp,127.0.0.1,2222,,22"

This	forwards	all	TCP	traffic	arriving	on	the	localhost	interface	(127.0.0.1)	via
port	2222	to	port	22	in	the	guest.

It	is	possible	to	configure	incoming	NAT	connections	while	the	VM	is	running,
see	Section	8.13,	“VBoxManage	controlvm”.

6.3.2.	PXE	booting	with	NAT

PXE	booting	is	now	supported	in	NAT	mode.	The	NAT	DHCP	server	provides	a
boot	file	name	of	the	form	vmname.pxe	if	the	directory	TFTP	exists	in	the
directory	where	the	user's	VirtualBox.xml	file	is	kept.	It	is	the	responsibility	of
the	user	to	provide	vmname.pxe.

6.3.3.	NAT	limitations

There	are	four	limitations	of	NAT	mode	which	users	should	be	aware	of:

ICMP	protocol	limitations:

Some	frequently	used	network	debugging	tools	(e.g.	ping	or	tracerouting)
rely	on	the	ICMP	protocol	for	sending/receiving	messages.	While	ICMP
support	has	been	improved	with	VirtualBox	2.1	(ping	should	now	work),

some	other	tools	may	not	work	reliably.

Receiving	of	UDP	broadcasts	is	not	reliable:

The	guest	does	not	reliably	receive	broadcasts,	since,	in	order	to	save
resources,	it	only	listens	for	a	certain	amount	of	time	after	the	guest	has	sent
UDP	data	on	a	particular	port.	As	a	consequence,	NetBios	name	resolution
based	on	broadcasts	does	not	always	work	(but	WINS	always	works).	As	a
workaround,	you	can	use	the	numeric	IP	of	the	desired	server	in	the
\\server\share	notation.

Protocols	such	as	GRE	are	unsupported:

Protocols	other	than	TCP	and	UDP	are	not	supported.	This	means	some
VPN	products	(e.g.	PPTP	from	Microsoft)	cannot	be	used.	There	are	other
VPN	products	which	use	simply	TCP	and	UDP.

Forwarding	host	ports	<	1024	impossible:

On	Unix-based	hosts	(e.g.	Linux,	Solaris,	Mac	OS	X)	it	is	not	possible	to
bind	to	ports	below	1024	from	applications	that	are	not	run	by	root.	As	a
result,	if	you	try	to	configure	such	a	port	forwarding,	the	VM	will	refuse	to
start.

These	limitations	normally	don't	affect	standard	network	use.	But	the	presence	of
NAT	has	also	subtle	effects	that	may	interfere	with	protocols	that	are	normally
working.	One	example	is	NFS,	where	the	server	is	often	configured	to	refuse
connections	from	non-privileged	ports	(i.e.	ports	not	below	1024).

6.4.	Network	Address	Translation	Service

The	Network	Address	Translation	(NAT)	service	works	in	a	similar	way	to	a
home	router,	grouping	the	systems	using	it	into	a	network	and	preventing
systems	outside	of	this	network	from	directly	accessing	systems	inside	it,	but
letting	systems	inside	communicate	with	each	other	and	with	systems	outside
using	TCP	and	UDP	over	IPv4	and	IPv6.

A	NAT	service	is	attached	to	an	internal	network.	Virtual	machines	which	are	to
make	use	of	it	should	be	attached	to	that	internal	network.	The	name	of	internal
network	is	chosen	when	the	NAT	service	is	created	and	the	internal	network	will
be	created	if	it	does	not	already	exist.	An	example	command	to	create	a	NAT
network	is:

VBoxManage	natnetwork	add	--netname	natnet1	--network	"192.168.15.0/24"	--enable

Here,	"natnet1"	is	the	name	of	the	internal	network	to	be	used	and
"192.168.15.0/24"	is	the	network	address	and	mask	of	the	NAT	service	interface.
By	default	in	this	static	configuration	the	gateway	will	be	assigned	the	address
192.168.15.1	(the	address	following	the	interface	address),	though	this	is	subject
to	change.	To	attach	a	DHCP	server	to	the	internal	network,	we	modify	the
example	as	follows:

VBoxManage	natnetwork	add	--netname	natnet1	--network	"192.168.15.0/24"	--enable	--dhcp	on

or	to	add	a	DHCP	server	to	the	network	after	creation:

VBoxManage	natnetwork	modify	--netname	natnet1	--dhcp	on

To	disable	it	again,	use:

VBoxManage	natnetwork	modify	--netname	natnet1	--dhcp	off

DHCP	server	provides	list	of	registered	nameservers,	but	doesn't	map	servers
from	127/8	network.

To	start	the	NAT	service,	use	the	following	command:

VBoxManage	natnetwork	start	--netname	natnet1

If	the	network	has	a	DHCP	server	attached	then	it	will	start	together	with	the
NAT	network	service.

VBoxManage	natnetwork	stop	--netname	natnet1

stops	the	NAT	network	service,	together	with	DHCP	server	if	any.

To	delete	the	NAT	network	service	use:

VBoxManage	natnetwork	remove	--netname	natnet1

This	command	does	not	remove	the	DHCP	server	if	one	is	enabled	on	the
internal	network.

Port-forwarding	is	supported	(using	the	--port-forward-4	switch	for	IPv4	and
--port-forward-6	for	IPv6):

VBoxManage	natnetwork	modify	--netname	natnet1	--port-forward-4	"ssh:tcp:[]:1022:[192.168.15.5]:22"

This	adds	a	port-forwarding	rule	from	the	host's	TCP	1022	port	to	the	port	22	on
the	guest	with	IP	address	192.168.15.5.	Host	port,	guest	port	and	guest	IP	are
mandatory.	To	delete	the	rule,	use:

VBoxManage	natnetwork	modify	--netname	natnet1	--port-forward-4	delete	ssh

It's	possible	to	bind	NAT	service	to	specified	interface:

VBoxManage	setextradata	global	"NAT/win-nat-test-0/SourceIp4"	192.168.1.185

To	see	the	list	of	registered	NAT	networks,	use:

VBoxManage	list	natnetworks

6.5.	Bridged	networking

With	bridged	networking,	VirtualBox	uses	a	device	driver	on	your	host	system
that	filters	data	from	your	physical	network	adapter.	This	driver	is	therefore
called	a	"net	filter"	driver.	This	allows	VirtualBox	to	intercept	data	from	the
physical	network	and	inject	data	into	it,	effectively	creating	a	new	network
interface	in	software.	When	a	guest	is	using	such	a	new	software	interface,	it
looks	to	the	host	system	as	though	the	guest	were	physically	connected	to	the
interface	using	a	network	cable:	the	host	can	send	data	to	the	guest	through	that
interface	and	receive	data	from	it.	This	means	that	you	can	set	up	routing	or
bridging	between	the	guest	and	the	rest	of	your	network.

For	this	to	work,	VirtualBox	needs	a	device	driver	on	your	host	system.	The	way
bridged	networking	works	has	been	completely	rewritten	with	VirtualBox	2.0
and	2.1,	depending	on	the	host	operating	system.	From	the	user	perspective,	the
main	difference	is	that	complex	configuration	is	no	longer	necessary	on	any	of
the	supported	host	operating	systems.[31]

Note

Even	though	TAP	is	no	longer	necessary	on	Linux	with	bridged
networking,	you	can	still	use	TAP	interfaces	for	certain	advanced
setups,	since	you	can	connect	a	VM	to	any	host	interface	--	which
could	also	be	a	TAP	interface.

To	enable	bridged	networking,	all	you	need	to	do	is	to	open	the	Settings	dialog
of	a	virtual	machine,	go	to	the	"Network"	page	and	select	"Bridged	network"	in
the	drop	down	list	for	the	"Attached	to"	field.	Finally,	select	desired	host
interface	from	the	list	at	the	bottom	of	the	page,	which	contains	the	physical
network	interfaces	of	your	systems.	On	a	typical	MacBook,	for	example,	this
will	allow	you	to	select	between	"en1:	AirPort"	(which	is	the	wireless	interface)
and	"en0:	Ethernet",	which	represents	the	interface	with	a	network	cable.

Note

Bridging	to	a	wireless	interface	is	done	differently	from	bridging	to	a
wired	interface,	because	most	wireless	adapters	do	not	support

promiscuous	mode.	All	traffic	has	to	use	the	MAC	address	of	the
host's	wireless	adapter,	and	therefore	VirtualBox	needs	to	replace	the
source	MAC	address	in	the	Ethernet	header	of	an	outgoing	packet	to
make	sure	the	reply	will	be	sent	to	the	host	interface.	When
VirtualBox	sees	an	incoming	packet	with	a	destination	IP	address
that	belongs	to	one	of	the	virtual	machine	adapters	it	replaces	the
destination	MAC	address	in	the	Ethernet	header	with	the	VM
adapter's	MAC	address	and	passes	it	on.	VirtualBox	examines	ARP
and	DHCP	packets	in	order	to	learn	the	IP	addresses	of	virtual
machines.

Depending	on	your	host	operating	system,	the	following	limitations	should	be
kept	in	mind:

On	Macintosh	hosts,	functionality	is	limited	when	using	AirPort	(the	Mac's
wireless	networking)	for	bridged	networking.	Currently,	VirtualBox
supports	only	IPv4	and	IPv6	over	AirPort.	For	other	protocols	(such	as
IPX),	you	must	choose	a	wired	interface.

On	Linux	hosts,	functionality	is	limited	when	using	wireless	interfaces	for
bridged	networking.	Currently,	VirtualBox	supports	only	IPv4	and	IPv6
over	wireless.	For	other	protocols	(such	as	IPX),	you	must	choose	a	wired
interface.

Also,	setting	the	MTU	to	less	than	1500	bytes	on	wired	interfaces	provided
by	the	sky2	driver	on	the	Marvell	Yukon	II	EC	Ultra	Ethernet	NIC	is	known
to	cause	packet	losses	under	certain	conditions.

Some	adapters	strip	VLAN	tags	in	hardware.	This	does	not	allow	to	use
VLAN	trunking	between	VM	and	the	external	network	with	pre-2.6.27
Linux	kernels	nor	with	host	operating	systems	other	than	Linux.

On	Solaris	hosts,	there	is	no	support	for	using	wireless	interfaces.	Filtering
guest	traffic	using	IPFilter	is	also	not	completely	supported	due	to	technical
restrictions	of	the	Solaris	networking	subsystem.	These	issues	would	be
addressed	in	a	future	release	of	Solaris	11.

Starting	with	VirtualBox	4.1,	on	Solaris	11	hosts	(build	159	and	above),	it	is
possible	to	use	Solaris'	Crossbow	Virtual	Network	Interfaces	(VNICs)
directly	with	VirtualBox	without	any	additional	configuration	other	than

each	VNIC	must	be	exclusive	for	every	guest	network	interface.

Starting	with	VirtualBox	2.0.4	and	up	to	VirtualBox	4.0,	VNICs	can	be
used	but	with	the	following	caveats:

A	VNIC	cannot	be	shared	between	multiple	guest	network	interfaces,
i.e.	each	guest	network	interface	must	have	its	own,	exclusive	VNIC.

The	VNIC	and	the	guest	network	interface	that	uses	the	VNIC	must	be
assigned	identical	MAC	addresses.

When	using	VLAN	interfaces	with	VirtualBox,	they	must	be	named
according	to	the	PPA-hack	naming	scheme	(e.g.	"e1000g513001"),	as
otherwise	the	guest	may	receive	packets	in	an	unexpected	format.

[31]	For	Mac	OS	X	and	Solaris	hosts,	net	filter	drivers	were	already	added	in
VirtualBox	2.0	(as	initial	support	for	Host	Interface	Networking	on	these
platforms).	With	VirtualBox	2.1,	net	filter	drivers	were	also	added	for	the
Windows	and	Linux	hosts,	replacing	the	mechanisms	previously	present	in
VirtualBox	for	those	platforms;	especially	on	Linux,	the	earlier	method	required
creating	TAP	interfaces	and	bridges,	which	was	complex	and	varied	from	one
distribution	to	the	next.	None	of	this	is	necessary	anymore.	Bridged	network	was
formerly	called	"Host	Interface	Networking"	and	has	been	renamed	with	version
2.2	without	any	change	in	functionality.

6.6.	Internal	networking

Internal	Networking	is	similar	to	bridged	networking	in	that	the	VM	can	directly
communicate	with	the	outside	world.	However,	the	"outside	world"	is	limited	to
other	VMs	on	the	same	host	which	connect	to	the	same	internal	network.

Even	though	technically,	everything	that	can	be	done	using	internal	networking
can	also	be	done	using	bridged	networking,	there	are	security	advantages	with
internal	networking.	In	bridged	networking	mode,	all	traffic	goes	through	a
physical	interface	of	the	host	system.	It	is	therefore	possible	to	attach	a	packet
sniffer	(such	as	Wireshark)	to	the	host	interface	and	log	all	traffic	that	goes	over
it.	If,	for	any	reason,	you	prefer	two	or	more	VMs	on	the	same	machine	to
communicate	privately,	hiding	their	data	from	both	the	host	system	and	the	user,
bridged	networking	therefore	is	not	an	option.

Internal	networks	are	created	automatically	as	needed,	i.e.	there	is	no	central
configuration.	Every	internal	network	is	identified	simply	by	its	name.	Once
there	is	more	than	one	active	virtual	network	card	with	the	same	internal
network	ID,	the	VirtualBox	support	driver	will	automatically	"wire"	the	cards
and	act	as	a	network	switch.	The	VirtualBox	support	driver	implements	a
complete	Ethernet	switch	and	supports	both	broadcast/multicast	frames	and
promiscuous	mode.

In	order	to	attach	a	VM's	network	card	to	an	internal	network,	set	its	networking
mode	to	"internal	networking".	There	are	two	ways	to	accomplish	this:

You	can	use	a	VM's	"Settings"	dialog	in	the	VirtualBox	graphical	user
interface.	In	the	"Networking"	category	of	the	settings	dialog,	select
"Internal	Networking"	from	the	drop-down	list	of	networking	modes.	Now
select	the	name	of	an	existing	internal	network	from	the	drop-down	below
or	enter	a	new	name	into	the	entry	field.

You	can	use

VBoxManage	modifyvm	"VM	name"	--nic<x>	intnet

Optionally,	you	can	specify	a	network	name	with	the	command

VBoxManage	modifyvm	"VM	name"	--intnet<x>	"network	name"

If	you	do	not	specify	a	network	name,	the	network	card	will	be	attached	to
the	network	intnet	by	default.

Unless	you	configure	the	(virtual)	network	cards	in	the	guest	operating	systems
that	are	participating	in	the	internal	network	to	use	static	IP	addresses,	you	may
want	to	use	the	DHCP	server	that	is	built	into	VirtualBox	to	manage	IP	addresses
for	the	internal	network.	Please	see	Section	8.38,	“VBoxManage	dhcpserver”	for
details.

As	a	security	measure,	by	default,	the	Linux	implementation	of	internal
networking	only	allows	VMs	running	under	the	same	user	ID	to	establish	an
internal	network.	However,	it	is	possible	to	create	a	shared	internal	networking
interface,	accessible	by	users	with	different	UUIds.

6.7.	Host-only	networking

Host-only	networking	is	another	networking	mode	that	was	added	with	version
2.2	of	VirtualBox.	It	can	be	thought	of	as	a	hybrid	between	the	bridged	and
internal	networking	modes:	as	with	bridged	networking,	the	virtual	machines	can
talk	to	each	other	and	the	host	as	if	they	were	connected	through	a	physical
Ethernet	switch.	Similarly,	as	with	internal	networking	however,	a	physical
networking	interface	need	not	be	present,	and	the	virtual	machines	cannot	talk	to
the	world	outside	the	host	since	they	are	not	connected	to	a	physical	networking
interface.

Instead,	when	host-only	networking	is	used,	VirtualBox	creates	a	new	software
interface	on	the	host	which	then	appears	next	to	your	existing	network
interfaces.	In	other	words,	whereas	with	bridged	networking	an	existing	physical
interface	is	used	to	attach	virtual	machines	to,	with	host-only	networking	a	new
"loopback"	interface	is	created	on	the	host.	And	whereas	with	internal
networking,	the	traffic	between	the	virtual	machines	cannot	be	seen,	the	traffic
on	the	"loopback"	interface	on	the	host	can	be	intercepted.

Host-only	networking	is	particularly	useful	for	preconfigured	virtual	appliances,
where	multiple	virtual	machines	are	shipped	together	and	designed	to	cooperate.
For	example,	one	virtual	machine	may	contain	a	web	server	and	a	second	one	a
database,	and	since	they	are	intended	to	talk	to	each	other,	the	appliance	can
instruct	VirtualBox	to	set	up	a	host-only	network	for	the	two.	A	second	(bridged)
network	would	then	connect	the	web	server	to	the	outside	world	to	serve	data	to,
but	the	outside	world	cannot	connect	to	the	database.

To	change	a	virtual	machine's	virtual	network	interface	to	"host	only"	mode:

either	go	to	the	"Network"	page	in	the	virtual	machine's	settings	notebook
in	the	graphical	user	interface	and	select	"Host-only	networking",	or

on	the	command	line,	type	VBoxManage	modifyvm	"VM	name"	--nic<x>
hostonly;	see	Section	8.8,	“VBoxManage	modifyvm”	for	details.

Before	you	can	attach	a	VM	to	a	host-only	network	you	have	to	create	at	least
one	host-only	interface,	either	from	the	GUI:	"File"	→	"Preferences"	→
"Network"	→	"Host-only	network"	→	"(+)Add	host-only	network",	or	via

command	line	with

VBoxManage	hostonlyif	create

see	Section	8.37,	“VBoxManage	hostonlyif”	for	details.

For	host-only	networking,	like	with	internal	networking,	you	may	find	the
DHCP	server	useful	that	is	built	into	VirtualBox.	This	can	be	enabled	to	then
manage	the	IP	addresses	in	the	host-only	network	since	otherwise	you	would
need	to	configure	all	IP	addresses	statically.

In	the	VirtualBox	graphical	user	interface,	you	can	configure	all	these	items
in	the	global	settings	via	"File"	→	"Preferences"	→	"Network",	which	lists
all	host-only	networks	which	are	presently	in	use.	Click	on	the	network
name	and	then	on	the	"Edit"	button	to	the	right,	and	you	can	modify	the
adapter	and	DHCP	settings.

Alternatively,	you	can	use	VBoxManage	dhcpserver	on	the	command	line;
please	see	Section	8.38,	“VBoxManage	dhcpserver”	for	details.

Note

On	Linux	and	Mac	OS	X	hosts	the	number	of	host-only	interfaces	is
limited	to	128.	There	is	no	such	limit	for	Solaris	and	Windows	hosts.

6.8.	UDP	Tunnel	networking

This	networking	mode	allows	to	interconnect	virtual	machines	running	on
different	hosts.

Technically	this	is	done	by	encapsulating	Ethernet	frames	sent	or	received	by	the
guest	network	card	into	UDP/IP	datagrams,	and	sending	them	over	any	network
available	to	the	host.

UDP	Tunnel	mode	has	three	parameters:

Source	UDP	port

The	port	on	which	the	host	listens.	Datagrams	arriving	on	this	port	from	any
source	address	will	be	forwarded	to	the	receiving	part	of	the	guest	network
card.

Destination	address

IP	address	of	the	target	host	of	the	transmitted	data.

Destination	UDP	port

Port	number	to	which	the	transmitted	data	is	sent.

When	interconnecting	two	virtual	machines	on	two	different	hosts,	their	IP
addresses	must	be	swapped.	On	single	host,	source	and	destination	UDP	ports
must	be	swapped.

In	the	following	example	host	1	uses	the	IP	address	10.0.0.1	and	host	2	uses	IP
address	10.0.0.2.	Configuration	via	command-line:

								VBoxManage	modifyvm	"VM	01	on	host	1"	--nic<x>	generic

								VBoxManage	modifyvm	"VM	01	on	host	1"	--nicgenericdrv<x>	UDPTunnel

								VBoxManage	modifyvm	"VM	01	on	host	1"	--nicproperty<x>	dest=10.0.0.2

								VBoxManage	modifyvm	"VM	01	on	host	1"	--nicproperty<x>	sport=10001

								VBoxManage	modifyvm	"VM	01	on	host	1"	--nicproperty<x>	dport=10002

and

								VBoxManage	modifyvm	"VM	02	on	host	2"	--nic<y>	generic

								VBoxManage	modifyvm	"VM	02	on	host	2"	--nicgenericdrv<y>	UDPTunnel

								VBoxManage	modifyvm	"VM	02	on	host	2"	--nicproperty<y>	dest=10.0.0.1

								VBoxManage	modifyvm	"VM	02	on	host	2"	--nicproperty<y>	sport=10002

								VBoxManage	modifyvm	"VM	02	on	host	2"	--nicproperty<y>	dport=10001

Of	course,	you	can	always	interconnect	two	virtual	machines	on	the	same	host,
by	setting	the	destination	address	parameter	to	127.0.0.1	on	both.	It	will	act
similarly	to	"Internal	network"	in	this	case,	however	the	host	can	see	the	network
traffic	which	it	could	not	in	the	normal	Internal	network	case.

Note

On	Unix-based	hosts	(e.g.	Linux,	Solaris,	Mac	OS	X)	it	is	not
possible	to	bind	to	ports	below	1024	from	applications	that	are	not
run	by	root.	As	a	result,	if	you	try	to	configure	such	a	source	UDP
port,	the	VM	will	refuse	to	start.

6.9.	VDE	networking

Virtual	Distributed	Ethernet	(VDE[32])	is	a	flexible,	virtual	network
infrastructure	system,	spanning	across	multiple	hosts	in	a	secure	way.	It	allows
for	L2/L3	switching,	including	spanning-tree	protocol,	VLANs,	and	WAN
emulation.	It	is	an	optional	part	of	VirtualBox	which	is	only	included	in	the
source	code.

The	basic	building	blocks	of	the	infrastructure	are	VDE	switches,	VDE	plugs
and	VDE	wires	which	inter-connect	the	switches.

The	VirtualBox	VDE	driver	has	one	parameter:

VDE	network

The	name	of	the	VDE	network	switch	socket	to	which	the	VM	will	be
connected.

The	following	basic	example	shows	how	to	connect	a	virtual	machine	to	a	VDE
switch:

1.	 Create	a	VDE	switch:

vde_switch	-s	/tmp/switch1

2.	 Configuration	via	command-line:

VBoxManage	modifyvm	"VM	name"	--nic<x>	generic

VBoxManage	modifyvm	"VM	name"	--nicgenericdrv<x>	VDE

To	connect	to	automatically	allocated	switch	port,	use:

VBoxManage	modifyvm	"VM	name"	--nicproperty<x>	network=/tmp/switch1

To	connect	to	specific	switch	port	<n>,	use:

VBoxManage	modifyvm	"VM	name"	--nicproperty<x>	network=/tmp/switch1[<n>]

The	latter	option	can	be	useful	for	VLANs.

3.	 Optionally	map	between	VDE	switch	port	and	VLAN:	(from	switch	CLI)

vde$	vlan/create	<VLAN>

vde$	port/setvlan	<port>	<VLAN>

VDE	is	available	on	Linux	and	FreeBSD	hosts	only.	It	is	only	available	if	the
VDE	software	and	the	VDE	plugin	library	from	the	VirtualSquare	project	are
installed	on	the	host	system[33].	For	more	information	on	setting	up	VDE
networks,	please	see	the	documentation	accompanying	the	software.[34]

[32]	VDE	is	a	project	developed	by	Renzo	Davoli,	Associate	Professor	at	the
University	of	Bologna,	Italy.

[33]	For	Linux	hosts,	the	shared	library	libvdeplug.so	must	be	available	in	the
search	path	for	shared	libraries

[34]	http://wiki.virtualsquare.org/wiki/index.php/VDE_Basic_Networking.

http://wiki.virtualsquare.org/wiki/index.php/VDE_Basic_Networking

6.10.	Limiting	bandwidth	for	network	I/O

Starting	with	version	4.2,	VirtualBox	allows	for	limiting	the	maximum
bandwidth	used	for	network	transmission.	Several	network	adapters	of	one	VM
may	share	limits	through	bandwidth	groups.	It	is	possible	to	have	more	than	one
such	limit.

Note

VirtualBox	shapes	VM	traffic	only	in	the	transmit	direction,	delaying
the	packets	being	sent	by	virtual	machines.	It	does	not	limit	the
traffic	being	received	by	virtual	machines.

Limits	are	configured	through	VBoxManage.	The	example	below	creates	a
bandwidth	group	named	"Limit",	sets	the	limit	to	20	Mbit/s	and	assigns	the
group	to	the	first	and	second	adapters	of	the	VM:

VBoxManage	bandwidthctl	"VM	name"	add	Limit	--type	network	--limit	20m

VBoxManage	modifyvm	"VM	name"	--nicbandwidthgroup1	Limit

VBoxManage	modifyvm	"VM	name"	--nicbandwidthgroup2	Limit

All	adapters	in	a	group	share	the	bandwidth	limit,	meaning	that	in	the	example
above	the	bandwidth	of	both	adapters	combined	can	never	exceed	20	Mbit/s.
However,	if	one	adapter	doesn't	require	bandwidth	the	other	can	use	the
remaining	bandwidth	of	its	group.

The	limits	for	each	group	can	be	changed	while	the	VM	is	running,	with	changes
being	picked	up	immediately.	The	example	below	changes	the	limit	for	the	group
created	in	the	example	above	to	100	Kbit/s:

VBoxManage	bandwidthctl	"VM	name"	set	Limit	--limit	100k

To	completely	disable	shaping	for	the	first	adapter	of	VM	use	the	following
command:

VBoxManage	modifyvm	"VM	name"	--nicbandwidthgroup1	none

It	is	also	possible	to	disable	shaping	for	all	adapters	assigned	to	a	bandwidth
group	while	VM	is	running,	by	specifying	the	zero	limit	for	the	group.	For

example,	for	the	bandwidth	group	named	"Limit"	use:

VBoxManage	bandwidthctl	"VM	name"	set	Limit	--limit	0

6.11.	Improving	network	performance

VirtualBox	provides	a	variety	of	virtual	network	adapters	that	can	be	"attached"
to	the	host's	network	in	a	number	of	ways.	Depending	on	which	types	of
adapters	and	attachments	are	used	the	network	performance	will	be	different.
Performance-wise	the	virtio	network	adapter	is	preferable	over	Intel	PRO/1000
emulated	adapters,	which	are	preferred	over	PCNet	family	of	adapters.	Both
virtio	and	Intel	PRO/1000	adapters	enjoy	the	benefit	of	segmentation	and
checksum	offloading.	Segmentation	offloading	is	essential	for	high	performance
as	it	allows	for	less	context	switches,	dramatically	increasing	the	sizes	of	packets
that	cross	VM/host	boundary.

Note

Neither	virtio	nor	Intel	PRO/1000	drivers	for	Windows	XP	support
segmentation	offloading.	Therefore	Windows	XP	guests	never	reach
the	same	transmission	rates	as	other	guest	types.	Refer	to	MS
Knowledge	base	article	842264	for	additional	information.

Three	attachment	types:	internal,	bridged	and	host-only,	have	nearly	identical
performance,	the	internal	type	being	a	little	bit	faster	and	using	less	CPU	cycles
as	the	packets	never	reach	the	host's	network	stack.	The	NAT	attachment	is	the
slowest	(and	safest)	of	all	attachment	types	as	it	provides	network	address
translation.	The	generic	driver	attachment	is	special	and	cannot	be	considered	as
an	alternative	to	other	attachment	types.

The	number	of	CPUs	assigned	to	VM	does	not	improve	network	performance
and	in	some	cases	may	hurt	it	due	to	increased	concurrency	in	the	guest.

Here	is	the	short	summary	of	things	to	check	in	order	to	improve	network
performance:

1.	 Whenever	possible	use	virtio	network	adapter,	otherwise	use	one	of	Intel
PRO/1000	adapters;

2.	 Use	bridged	attachment	instead	of	NAT;

3.	 Make	sure	segmentation	offloading	is	enabled	in	the	guest	OS.	Usually	it

will	be	enabled	by	default.	You	can	check	and	modify	offloading	settings
using	ethtool	command	in	Linux	guests.

4.	 Perform	a	full,	detailed	analysis	of	network	traffic	on	the	VM's	network
adaptor	using	a	3rd	party	tool	such	as	Wireshark.	To	do	this,	a	promiscuous
mode	policy	needs	to	be	used	on	the	VM's	network	adaptor.	Use	of	this
mode	is	only	possible	on	networks:	NAT	Network,	Bridged	Adapter,
Internal	Network	and	Host-only	Adapter.

To	setup	a	promiscuous	mode	policy,	either	select	from	the	drop	down	list
located	in	the	Network	Settings	dialog	for	the	network	adaptor	or	use	the
command	line	tool	VBoxManage;	for	details,	refer	to	Section	8.8,
“VBoxManage	modifyvm”.

Promiscuous	mode	policies	are:

a.	 deny	(default	setting)	which	hides	any	traffic	not	intended	for	this
VM's	network	adaptor.

b.	 allow-vms	which	hides	all	host	traffic	from	this	VM's	network
adaptor,	but	allows	it	to	see	traffic	from/to	other	VMs.

c.	 allow-all	which	removes	all	restrictions	-	this	VM's	network	adaptor
sees	all	traffic.

Chapter	7.	Remote	virtual	machines

Table	of	Contents

7.1.	Remote	display	(VRDP	support)
7.1.1.	Common	third-party	RDP	viewers
7.1.2.	VBoxHeadless,	the	remote	desktop	server
7.1.3.	Step	by	step:	creating	a	virtual	machine	on	a	headless	server
7.1.4.	Remote	USB
7.1.5.	RDP	authentication
7.1.6.	RDP	encryption
7.1.7.	Multiple	connections	to	the	VRDP	server
7.1.8.	Multiple	remote	monitors
7.1.9.	VRDP	video	redirection
7.1.10.	VRDP	customization

7.2.	Teleporting

7.1.	Remote	display	(VRDP	support)

VirtualBox	can	display	virtual	machines	remotely,	meaning	that	a	virtual
machine	can	execute	on	one	computer	even	though	the	machine	will	be
displayed	on	a	second	computer,	and	the	machine	will	be	controlled	from	there
as	well,	as	if	the	virtual	machine	was	running	on	that	second	computer.

For	maximum	flexibility,	starting	with	VirtualBox	4.0,	VirtualBox	implements
remote	machine	display	through	a	generic	extension	interface,	the	VirtualBox
Remote	Desktop	Extension	(VRDE).	The	base	open-source	VirtualBox	package
only	provides	this	interface,	while	implementations	can	be	supplied	by	third
parties	with	VirtualBox	extension	packages,	which	must	be	installed	separately
from	the	base	package.	See	Section	1.5,	“Installing	VirtualBox	and	extension
packs”	for	more	information.

Oracle	provides	support	for	the	VirtualBox	Remote	Display	Protocol	(VRDP)
in	such	a	VirtualBox	extension	package.	When	this	package	is	installed,
VirtualBox	versions	4.0	and	later	support	VRDP	the	same	way	as	binary	(non-
open-source)	versions	of	VirtualBox	before	4.0	did.

VRDP	is	a	backwards-compatible	extension	to	Microsoft's	Remote	Desktop
Protocol	(RDP).	As	a	result,	you	can	use	any	standard	RDP	client	to	control	the
remote	VM.

Even	when	the	extension	is	installed,	the	VRDP	server	is	disabled	by	default.	It
can	easily	be	enabled	on	a	per-VM	basis	either	in	the	VirtualBox	Manager	in	the
"Display"	settings	(see	Section	3.6,	“Display	settings”)	or	with	VBoxManage:

VBoxManage	modifyvm	"VM	name"	--vrde	on

By	default,	the	VRDP	server	uses	TCP	port	3389.	You	will	need	to	change	the
default	port	if	you	run	more	than	one	VRDP	server,	since	the	port	can	only	be
used	by	one	server	at	a	time;	you	might	also	need	to	change	it	on	Windows	hosts
since	the	default	port	might	already	be	used	by	the	RDP	server	that	is	built	into
Windows	itself.	Ports	5000	through	5050	are	typically	not	used	and	might	be	a
good	choice.

The	port	can	be	changed	either	in	the	"Display"	settings	of	the	graphical	user

interface	or	with	--vrdeport	option	of	the	VBoxManage	modifyvm	command.
You	can	specify	a	comma-separated	list	of	ports	or	ranges	of	ports.	Use	a	dash
between	two	port	numbers	to	specify	a	range.	The	VRDP	server	will	bind	to	one
of	available	ports	from	the	specified	list.	For	example,	VBoxManage	modifyvm
"VM	name"	--vrdeport	5000,5010-5012	will	configure	the	server	to	bind	to
one	of	the	ports	5000,	5010,	5011	or	5012.	See	Section	8.8.5,	“Remote	machine
settings”	for	details.

The	actual	port	used	by	a	running	VM	can	be	either	queried	with	VBoxManage
showvminfo	command	or	seen	in	the	GUI	on	the	"Runtime"	tab	of	the	"Session
Information	Dialog",	which	is	accessible	via	the	"Machine"	menu	of	the	VM
window.

Support	for	IPv6	has	been	implemented	in	VirtualBox	4.3.	If	the	host	OS
supports	IPv6	the	VRDP	server	will	automatically	listen	for	IPv6	connections	in
addition	to	IPv4.

7.1.1.	Common	third-party	RDP	viewers

Since	VRDP	is	backwards-compatible	to	RDP,	you	can	use	any	standard	RDP
viewer	to	connect	to	such	a	remote	virtual	machine	(examples	follow	below).
For	this	to	work,	you	must	specify	the	IP	address	of	your	host	system	(not	of	the
virtual	machine!)	as	the	server	address	to	connect	to,	as	well	as	the	port	number
that	the	VRDP	server	is	using.

Here	follow	examples	for	the	most	common	RDP	viewers:

On	Windows,	you	can	use	the	Microsoft	Terminal	Services	Connector
(mstsc.exe)	that	ships	with	Windows.	You	can	start	it	by	bringing	up	the
"Run"	dialog	(press	the	Windows	key	and	"R")	and	typing	"mstsc".	You	can
also	find	it	under	"Start"	→	"All	Programs"	→	"Accessories"	→	"Remote
Desktop	Connection".	If	you	use	the	"Run"	dialog,	you	can	type	in	options
directly:

mstsc	1.2.3.4:3389

Replace	1.2.3.4	with	the	host	IP	address,	and	3389	with	a	different	port	if
necessary.

Note

IPv6	address	must	be	enclosed	in	square	brackets	to	specify	a
port.	For	example:	mstsc	[fe80::1:2:3:4]:3389

Note

When	connecting	to	localhost	in	order	to	test	the	connection,
the	addresses	localhost	and	127.0.0.1	might	not	work	using
mstsc.exe.	Instead,	the	address	127.0.0.2[:3389]	has	to	be
used.

On	other	systems,	you	can	use	the	standard	open-source	rdesktop	program.
This	ships	with	most	Linux	distributions,	but	VirtualBox	also	comes	with	a
modified	variant	of	rdesktop	for	remote	USB	support	(see	Section	7.1.4,
“Remote	USB”	below).

With	rdesktop,	use	a	command	line	such	as	the	following:

rdesktop	-a	16	-N	1.2.3.4:3389

As	said	for	the	Microsoft	viewer	above,	replace	1.2.3.4	with	the	host	IP
address,	and	3389	with	a	different	port	if	necessary.	The	-a	16	option
requests	a	color	depth	of	16	bits	per	pixel,	which	we	recommend.	(For	best
performance,	after	installation	of	the	guest	operating	system,	you	should	set
its	display	color	depth	to	the	same	value).	The	-N	option	enables	use	of	the
NumPad	keys.

If	you	run	the	KDE	desktop,	you	might	prefer	krdc,	the	KDE	RDP	viewer.
The	command	line	would	look	like	this:

krdc	rdp://1.2.3.4:3389

Again,	replace	1.2.3.4	with	the	host	IP	address,	and	3389	with	a	different
port	if	necessary.	The	"rdp://"	bit	is	required	with	krdc	to	switch	it	into	RDP
mode.

With	Sun	Ray	thin	clients	you	can	use	uttsc,	which	is	part	of	the	Sun	Ray
Windows	Connector	package.	See	the	corresponding	documentation	for
details.

7.1.2.	VBoxHeadless,	the	remote	desktop	server

While	any	VM	started	from	the	VirtualBox	Manager	is	capable	of	running
virtual	machines	remotely,	it	is	not	convenient	to	have	to	run	the	full-fledged
GUI	if	you	never	want	to	have	VMs	displayed	locally	in	the	first	place.	In
particular,	if	you	are	running	server	hardware	whose	only	purpose	is	to	host
VMs,	and	all	your	VMs	are	supposed	to	run	remotely	over	VRDP,	then	it	is
pointless	to	have	a	graphical	user	interface	on	the	server	at	all	--	especially	since,
on	a	Linux	or	Solaris	host,	the	VirtualBox	manager	comes	with	dependencies	on
the	Qt	and	SDL	libraries.	This	is	inconvenient	if	you	would	rather	not	have	the	X
Window	system	on	your	server	at	all.

VirtualBox	therefore	comes	with	yet	another	front-end	called	VBoxHeadless,
which	produces	no	visible	output	on	the	host	at	all,	but	still	can	deliver	VRDP
data.	This	front-end	has	no	dependencies	on	the	X	Window	system	on	Linux	and
Solaris	hosts.[35]

To	start	a	virtual	machine	with	VBoxHeadless,	you	have	three	options:

You	can	use

VBoxManage	startvm	"VM	name"	--type	headless

The	extra	--type	option	causes	VirtualBox	to	use	VBoxHeadless	as	the
front-end	to	the	internal	virtualization	engine	instead	of	the	Qt	front-end.

One	alternative	is	to	use	VBoxHeadless	directly,	as	follows:

VBoxHeadless	--startvm	<uuid|name>

This	way	of	starting	the	VM	helps	troubleshooting	problems	reported	by
VBoxManage	startvm	...	because	you	can	see	sometimes	more	detailed
error	messages,	especially	for	early	failures	before	the	VM	execution	is
started.	In	normal	situations	VBoxManage	startvm	is	preferred	since	it	runs
the	VM	directly	as	a	background	process	which	has	to	be	done	explicitly
when	directly	starting	VBoxHeadless.

The	other	alternative	is	to	start	VBoxHeadless	from	the	VirtualBox	Manager
GUI,	by	holding	the	Shift	key	when	starting	a	virtual	machine	or	selecting
Headless	Start	from	the	Machine	menu.

Since	VirtualBox	version	5.0,	when	you	use	VBoxHeadless	to	start	a	VM,	the
VRDP	server	will	be	enabled	according	to	the	VM	configuration.	You	can
override	the	VM's	setting	using	--vrde	command	line	parameter.	To	enable	the
VRDP	server	start	the	VM	like	this:

VBoxHeadless	--startvm	<uuid|name>	--vrde	on

and	to	disable	it:

VBoxHeadless	--startvm	<uuid|name>	--vrde	off

To	have	the	VRDP	server	enabled	depending	on	the	VM	configuration,	as	the
other	front-ends	would,	you	can	still	use:

VBoxHeadless	--startvm	<uuid|name>	--vrde	config

but	this	is	the	same	as

VBoxHeadless	--startvm	<uuid|name>

If	you	start	the	VM	with	VBoxManage	startvm	...	then	the	configuration
settings	of	the	VM	are	always	used.

7.1.3.	Step	by	step:	creating	a	virtual	machine	on	a	headless	server

The	following	instructions	may	give	you	an	idea	how	to	create	a	virtual	machine
on	a	headless	server	over	a	network	connection.	We	will	create	a	virtual
machine,	establish	an	RDP	connection	and	install	a	guest	operating	system	--	all
without	having	to	touch	the	headless	server.	All	you	need	is	the	following:

1.	 VirtualBox	on	a	server	machine	with	a	supported	host	operating	system.
The	VirtualBox	extension	pack	for	the	VRDP	server	must	be	installed	(see
the	previous	section).	For	the	following	example,	we	will	assume	a	Linux
server.

2.	 An	ISO	file	accessible	from	the	server,	containing	the	installation	data	for
the	guest	operating	system	to	install	(we	will	assume	Windows	XP	in	the
following	example).

3.	 A	terminal	connection	to	that	host	through	which	you	can	access	a
command	line	(e.g.	via	ssh).

4.	 An	RDP	viewer	on	the	remote	client;	see	Section	7.1.1,	“Common	third-
party	RDP	viewers”	above	for	examples.

Note	again	that	on	the	server	machine,	since	we	will	only	use	the	headless
server,	neither	Qt	nor	SDL	nor	the	X	Window	system	will	be	needed.

1.	 On	the	headless	server,	create	a	new	virtual	machine:

VBoxManage	createvm	--name	"Windows	XP"	--ostype	WindowsXP	--register

Note	that	if	you	do	not	specify	--register,	you	will	have	to	manually	use
the	registervm	command	later.

Note	further	that	you	do	not	need	to	specify	--ostype,	but	doing	so	selects
some	sane	default	values	for	certain	VM	parameters,	for	example	the	RAM
size	and	the	type	of	the	virtual	network	device.	To	get	a	complete	list	of
supported	operating	systems	you	can	use

VBoxManage	list	ostypes

2.	 Make	sure	the	settings	for	this	VM	are	appropriate	for	the	guest	operating
system	that	we	will	install.	For	example:

VBoxManage	modifyvm	"Windows	XP"	--memory	256	--acpi	on	--boot1	dvd	--nic1	nat

3.	 Create	a	virtual	hard	disk	for	the	VM	(in	this	case,	10	GB	in	size):

VBoxManage	createhd	--filename	"WinXP.vdi"	--size	10000

4.	 Add	an	IDE	Controller	to	the	new	VM:

VBoxManage	storagectl	"Windows	XP"	--name	"IDE	Controller"

						--add	ide	--controller	PIIX4

5.	 Set	the	VDI	file	created	above	as	the	first	virtual	hard	disk	of	the	new	VM:

VBoxManage	storageattach	"Windows	XP"	--storagectl	"IDE	Controller"

						--port	0	--device	0	--type	hdd	--medium	"WinXP.vdi"

6.	 Attach	the	ISO	file	that	contains	the	operating	system	installation	that	you
want	to	install	later	to	the	virtual	machine,	so	the	machine	can	boot	from	it:

VBoxManage	storageattach	"Windows	XP"	--storagectl	"IDE	Controller"

						--port	0	--device	1	--type	dvddrive	--medium	/full/path/to/iso.iso

7.	 Enable	VirtualBox	remote	desktop	extension	(the	VRDP	server):

VBoxManage	modifyvm	"Windows	XP"	--vrde	on

8.	 Start	the	virtual	machine	using	VBoxHeadless:

VBoxHeadless	--startvm	"Windows	XP"

If	everything	worked,	you	should	see	a	copyright	notice.	If,	instead,	you	are
returned	to	the	command	line,	then	something	went	wrong.

9.	 On	the	client	machine,	fire	up	the	RDP	viewer	and	try	to	connect	to	the
server	(see	Section	7.1.1,	“Common	third-party	RDP	viewers”	above	for
how	to	use	various	common	RDP	viewers).

You	should	now	be	seeing	the	installation	routine	of	your	guest	operating
system	remotely	in	the	RDP	viewer.

7.1.4.	Remote	USB

As	a	special	feature	on	top	of	the	VRDP	support,	VirtualBox	supports	remote
USB	devices	over	the	wire	as	well.	That	is,	the	VirtualBox	guest	that	runs	on	one
computer	can	access	the	USB	devices	of	the	remote	computer	on	which	the
VRDP	data	is	being	displayed	the	same	way	as	USB	devices	that	are	connected
to	the	actual	host.	This	allows	for	running	virtual	machines	on	a	VirtualBox	host
that	acts	as	a	server,	where	a	client	can	connect	from	elsewhere	that	needs	only	a
network	adapter	and	a	display	capable	of	running	an	RDP	viewer.	When	USB
devices	are	plugged	into	the	client,	the	remote	VirtualBox	server	can	access
them.

For	these	remote	USB	devices,	the	same	filter	rules	apply	as	for	other	USB
devices,	as	described	with	Section	3.11.1,	“USB	settings”.	All	you	have	to	do	is
specify	"Remote"	(or	"Any")	when	setting	up	these	rules.

Accessing	remote	USB	devices	is	only	possible	if	the	RDP	client	supports	this
extension.	On	Linux	and	Solaris	hosts,	the	VirtualBox	installation	provides	a
suitable	VRDP	client	called	rdesktop-vrdp.	Recent	versions	of	uttsc,	a	client

tailored	for	the	use	with	Sun	Ray	thin	clients,	also	support	accessing	remote
USB	devices.	RDP	clients	for	other	platforms	will	be	provided	in	future
VirtualBox	versions.

To	make	a	remote	USB	device	available	to	a	VM,	rdesktop-vrdp	should	be
started	as	follows:

rdesktop-vrdp	-r	usb	-a	16	-N	my.host.address

Please	refer	to	Section	12.8.7,	“USB	not	working”	for	further	details	on	how	to
properly	set	up	the	permissions	for	USB	devices.	Furthermore	it	is	advisable	to
disable	automatic	loading	of	any	host	driver	on	the	remote	host	which	might
work	on	USB	devices	to	ensure	that	the	devices	are	accessible	by	the	RDP	client.
If	the	setup	was	properly	done	on	the	remote	host,	plug/unplug	events	are	visible
on	the	VBox.log	file	of	the	VM.

7.1.5.	RDP	authentication

For	each	virtual	machine	that	is	remotely	accessible	via	RDP,	you	can
individually	determine	if	and	how	client	connections	are	authenticated.	For	this,
use	VBoxManage	modifyvm	command	with	the	--vrdeauthtype	option;	see
Section	8.8,	“VBoxManage	modifyvm”	for	a	general	introduction.	Three
methods	of	authentication	are	available:

The	"null"	method	means	that	there	is	no	authentication	at	all;	any	client
can	connect	to	the	VRDP	server	and	thus	the	virtual	machine.	This	is,	of
course,	very	insecure	and	only	to	be	recommended	for	private	networks.

The	"external"	method	provides	external	authentication	through	a	special
authentication	library.	VirtualBox	ships	with	two	such	authentication
libraries:

1.	 The	default	authentication	library,	VBoxAuth,	authenticates	against	user
credentials	of	the	hosts.	Depending	on	the	host	platform,	this	means:

On	Linux	hosts,	VBoxAuth.so	authenticates	users	against	the
host's	PAM	system.

On	Windows	hosts,	VBoxAuth.dll	authenticates	users	against	the
host's	WinLogon	system.

On	Mac	OS	X	hosts,	VBoxAuth.dylib	authenticates	users	against
the	host's	directory	service.[36]

In	other	words,	the	"external"	method	per	default	performs
authentication	with	the	user	accounts	that	exist	on	the	host	system.
Any	user	with	valid	authentication	credentials	is	accepted,	i.e.	the
username	does	not	have	to	correspond	to	the	user	running	the	VM.

2.	 An	additional	library	called	VBoxAuthSimple	performs	authentication
against	credentials	configured	in	the	"extradata"	section	of	a	virtual
machine's	XML	settings	file.	This	is	probably	the	simplest	way	to	get
authentication	that	does	not	depend	on	a	running	and	supported	guest
(see	below).	The	following	steps	are	required:

a.	 Enable	VBoxAuthSimple	with	the	following	command:

VBoxManage	setproperty	vrdeauthlibrary	"VBoxAuthSimple"

b.	 To	enable	the	library	for	a	particular	VM,	you	must	then	switch
authentication	to	external:

VBoxManage	modifyvm	"VM	name"	--vrdeauthtype	external

Replace	<vm>	with	the	VM	name	or	UUID.

c.	 You	will	then	need	to	configure	users	and	passwords	by	writing
items	into	the	machine's	extradata.	Since	the	XML	machine
settings	file,	into	whose	"extradata"	section	the	password	needs	to
be	written,	is	a	plain	text	file,	VirtualBox	uses	hashes	to	encrypt
passwords.	The	following	command	must	be	used:

VBoxManage	setextradata	"VM	name"	"VBoxAuthSimple/users/<user>"	<hash>

Replace	<vm>	with	the	VM	name	or	UUID,	<user>	with	the	user
name	who	should	be	allowed	to	log	in	and	<hash>	with	the
encrypted	password.	As	an	example,	to	obtain	the	hash	value	for
the	password	"secret",	you	can	use	the	following	command:

VBoxManage	internalcommands	passwordhash	"secret"

This	will	print

2bb80d537b1da3e38bd30361aa855686bde0eacd7162fef6a25fe97bf527a25b

You	can	then	use	VBoxManage	setextradata	to	store	this	value	in
the	machine's	"extradata"	section.

As	example,	combined	together,	to	set	the	password	for	the	user
"john"	and	the	machine	"My	VM"	to	"secret",	use	this	command:

VBoxManage	setextradata	"My	VM"	"VBoxAuthSimple/users/john"

				2bb80d537b1da3e38bd30361aa855686bde0eacd7162fef6a25fe97bf527a25b

Finally,	the	"guest"	authentication	method	performs	authentication	with	a
special	component	that	comes	with	the	Guest	Additions;	as	a	result,
authentication	is	not	performed	on	the	host,	but	with	the	guest	user
accounts.

This	method	is	currently	still	in	testing	and	not	yet	supported.

In	addition	to	the	methods	described	above,	you	can	replace	the	default
"external"	authentication	module	with	any	other	module.	For	this,	VirtualBox
provides	a	well-defined	interface	that	allows	you	to	write	your	own
authentication	module.	This	is	described	in	detail	in	the	VirtualBox	Software
Development	Kit	(SDK)	reference;	please	see	Chapter	11,	VirtualBox
programming	interfaces	for	details.

7.1.6.	RDP	encryption

RDP	features	data	stream	encryption,	which	is	based	on	the	RC4	symmetric
cipher	(with	keys	up	to	128bit).	The	RC4	keys	are	being	replaced	in	regular
intervals	(every	4096	packets).

RDP	provides	different	authentication	methods:

1.	 Historically,	RDP4	authentication	was	used,	with	which	the	RDP	client
does	not	perform	any	checks	in	order	to	verify	the	identity	of	the	server	it
connects	to.	Since	user	credentials	can	be	obtained	using	a	"man	in	the
middle"	(MITM)	attack,	RDP4	authentication	is	insecure	and	should
generally	not	be	used.

2.	 RDP5.1	authentication	employs	a	server	certificate	for	which	the	client

possesses	the	public	key.	This	way	it	is	guaranteed	that	the	server	possess
the	corresponding	private	key.	However,	as	this	hard-coded	private	key
became	public	some	years	ago,	RDP5.1	authentication	is	also	insecure.

3.	 RDP5.2	authentication	uses	the	Enhanced	RDP	Security,	which	means	that
an	external	security	protocol	is	used	to	secure	the	connection.	RDP4	and
RDP5.1	use	Standard	RDP	Security.	The	VRDP	server	supports	Enhanced
RDP	Security	with	TLS	protocol	and,	as	a	part	of	TLS	handshake,	sends	the
server	certificate	to	the	client.

The	Security/Method	VRDE	property	sets	the	desired	security	method,
which	is	used	for	a	connection.	Valid	values	are:

Negotiate	-	both	Enhanced	(TLS)	and	Standard	RDP	Security
connections	are	allowed.	The	security	method	is	negotiated	with	the
client.	This	is	the	default	setting.

RDP	-	only	Standard	RDP	Security	is	accepted.

TLS	-	only	Enhanced	RDP	Security	is	accepted.	The	client	must
support	TLS.

For	example	the	following	command	allows	a	client	to	use	either	Standard
or	Enhanced	RDP	Security	connection:

vboxmanage	modifyvm	"VM	name"	--vrdeproperty	"Security/Method=negotiate"

If	the	Security/Method	property	is	set	to	either	Negotiate	or	TLS,	the	TLS
protocol	will	be	automatically	used	by	the	server,	if	the	client	supports	TLS.
However,	in	order	to	use	TLS	the	server	must	possess	the	Server
Certificate,	the	Server	Private	Key	and	the	Certificate	Authority	(CA)
Certificate.	The	following	example	shows	how	to	generate	a	server
certificate.

a.	 Create	a	CA	self	signed	certificate:

openssl	req	-new	-x509	-days	365	-extensions	v3_ca	\

		-keyout	ca_key_private.pem	-out	ca_cert.pem

b.	 Generate	a	server	private	key	and	a	request	for	signing:

openssl	genrsa	-out	server_key_private.pem

openssl	req	-new	-key	server_key_private.pem	-out	server_req.pem

c.	 Generate	the	server	certificate:

openssl	x509	-req	-days	365	-in	server_req.pem	\

		-CA	ca_cert.pem	-CAkey	ca_key_private.pem	-set_serial	01	-out	server_cert.pem

The	server	must	be	configured	to	access	the	required	files:

vboxmanage	modifyvm	"VM	name"	\

		--vrdeproperty	"Security/CACertificate=path/ca_cert.pem"

vboxmanage	modifyvm	"VM	name"	\

		--vrdeproperty	"Security/ServerCertificate=path/server_cert.pem"

vboxmanage	modifyvm	"VM	name"	\

		--vrdeproperty	"Security/ServerPrivateKey=path/server_key_private.pem"

As	the	client	that	connects	to	the	server	determines	what	type	of	encryption	will
be	used,	with	rdesktop,	the	Linux	RDP	viewer,	use	the	-4	or	-5	options.

7.1.7.	Multiple	connections	to	the	VRDP	server

The	VRDP	server	of	VirtualBox	supports	multiple	simultaneous	connections	to
the	same	running	VM	from	different	clients.	All	connected	clients	see	the	same
screen	output	and	share	a	mouse	pointer	and	keyboard	focus.	This	is	similar	to
several	people	using	the	same	computer	at	the	same	time,	taking	turns	at	the
keyboard.

The	following	command	enables	multiple	connection	mode:

VBoxManage	modifyvm	"VM	name"	--vrdemulticon	on

7.1.8.	Multiple	remote	monitors

To	access	two	or	more	remote	VM	displays	you	have	to	enable	the	VRDP
multiconnection	mode	(see	Section	7.1.7,	“Multiple	connections	to	the	VRDP
server”).

The	RDP	client	can	select	the	virtual	monitor	number	to	connect	to	using	the
domain	logon	parameter	(-d).	If	the	parameter	ends	with	@	followed	by	a

number,	VirtualBox	interprets	this	number	as	the	screen	index.	The	primary
guest	screen	is	selected	with	@1,	the	first	secondary	screen	is	@2,	etc.

The	Microsoft	RDP6	client	does	not	let	you	specify	a	separate	domain	name.
Instead,	use	domain\username	in	the	Username:	field	--	for	example,	@2\name.
name	must	be	supplied,	and	must	be	the	name	used	to	log	in	if	the	VRDP	server
is	set	up	to	require	credentials.	If	it	is	not,	you	may	use	any	text	as	the	username.

7.1.9.	VRDP	video	redirection

Starting	with	VirtualBox	3.2,	the	VRDP	server	can	redirect	video	streams	from
the	guest	to	the	RDP	client.	Video	frames	are	compressed	using	the	JPEG
algorithm	allowing	a	higher	compression	ratio	than	standard	RDP	bitmap
compression	methods.	It	is	possible	to	increase	the	compression	ratio	by
lowering	the	video	quality.

The	VRDP	server	automatically	detects	video	streams	in	a	guest	as	frequently
updated	rectangular	areas.	As	a	result,	this	method	works	with	any	guest
operating	system	without	having	to	install	additional	software	in	the	guest;	in
particular,	the	Guest	Additions	are	not	required.

On	the	client	side,	however,	currently	only	the	Windows	7	Remote	Desktop
Connection	client	supports	this	feature.	If	a	client	does	not	support	video
redirection,	the	VRDP	server	falls	back	to	regular	bitmap	updates.

The	following	command	enables	video	redirection:

VBoxManage	modifyvm	"VM	name"	--vrdevideochannel	on

The	quality	of	the	video	is	defined	as	a	value	from	10	to	100	percent,
representing	a	JPEG	compression	level	(where	lower	numbers	mean	lower
quality	but	higher	compression).	The	quality	can	be	changed	using	the	following
command:

VBoxManage	modifyvm	"VM	name"	--vrdevideochannelquality	75

7.1.10.	VRDP	customization

With	VirtualBox	4.0	it	is	possible	to	disable	display	output,	mouse	and	keyboard
input,	audio,	remote	USB	or	clipboard	individually	in	the	VRDP	server.

The	following	commands	change	corresponding	server	settings:

VBoxManage	modifyvm	"VM	name"	--vrdeproperty	Client/DisableDisplay=1

VBoxManage	modifyvm	"VM	name"	--vrdeproperty	Client/DisableInput=1

VBoxManage	modifyvm	"VM	name"	--vrdeproperty	Client/DisableUSB=1

VBoxManage	modifyvm	"VM	name"	--vrdeproperty	Client/DisableAudio=1

VBoxManage	modifyvm	"VM	name"	--vrdeproperty	Client/DisableClipboard=1

VBoxManage	modifyvm	"VM	name"	--vrdeproperty	Client/DisableUpstreamAudio=1

To	reenable	a	feature	use	a	similar	command	without	the	trailing	1.	For	example:

VBoxManage	modifyvm	"VM	name"	--vrdeproperty	Client/DisableDisplay=

These	properties	were	introduced	with	VirtualBox	3.2.10.	However,	in	the	3.2.x
series,	it	was	necessary	to	use	the	following	commands	to	alter	these	settings
instead:

VBoxManage	setextradata	"VM	name"	"VRDP/Feature/Client/DisableDisplay"	1

VBoxManage	setextradata	"VM	name"	"VRDP/Feature/Client/DisableInput"	1

VBoxManage	setextradata	"VM	name"	"VRDP/Feature/Client/DisableUSB"	1

VBoxManage	setextradata	"VM	name"	"VRDP/Feature/Client/DisableAudio"	1

VBoxManage	setextradata	"VM	name"	"VRDP/Feature/Client/DisableClipboard"	1

To	reenable	a	feature	use	a	similar	command	without	the	trailing	1.	For	example:

VBoxManage	setextradata	"VM	name"	"VRDP/Feature/Client/DisableDisplay"

[35]	Before	VirtualBox	1.6,	the	headless	server	was	called	VBoxVRDP.	For	the	sake
of	backwards	compatibility,	the	VirtualBox	installation	still	installs	an
executable	with	that	name	as	well.

[36]	Support	for	Mac	OS	X	was	added	in	version	3.2.

7.2.	Teleporting

Starting	with	version	3.1,	VirtualBox	supports	"teleporting"	--	that	is,	moving	a
virtual	machine	over	a	network	from	one	VirtualBox	host	to	another,	while	the
virtual	machine	is	running.	This	works	regardless	of	the	host	operating	system
that	is	running	on	the	hosts:	you	can	teleport	virtual	machines	between	Solaris
and	Mac	hosts,	for	example.

Teleporting	requires	that	a	machine	be	currently	running	on	one	host,	which	is
then	called	the	"source".	The	host	to	which	the	virtual	machine	will	be
teleported	will	then	be	called	the	"target";	the	machine	on	the	target	is	then
configured	to	wait	for	the	source	to	contact	the	target.	The	machine's	running
state	will	then	be	transferred	from	the	source	to	the	target	with	minimal
downtime.

Teleporting	happens	over	any	TCP/IP	network;	the	source	and	the	target	only
need	to	agree	on	a	TCP/IP	port	which	is	specified	in	the	teleporting	settings.

At	this	time,	there	are	a	few	prerequisites	for	this	to	work,	however:

1.	 On	the	target	host,	you	must	configure	a	virtual	machine	in	VirtualBox	with
exactly	the	same	hardware	settings	as	the	machine	on	the	source	that	you
want	to	teleport.	This	does	not	apply	to	settings	which	are	merely
descriptive,	such	as	the	VM	name,	but	obviously	for	teleporting	to	work,
the	target	machine	must	have	the	same	amount	of	memory	and	other
hardware	settings.	Otherwise	teleporting	will	fail	with	an	error	message.

2.	 The	two	virtual	machines	on	the	source	and	the	target	must	share	the	same
storage	(hard	disks	as	well	as	floppy	and	CD/DVD	images).	This	means
that	they	either	use	the	same	iSCSI	targets	or	that	the	storage	resides
somewhere	on	the	network	and	both	hosts	have	access	to	it	via	NFS	or
SMB/CIFS.

This	also	means	that	neither	the	source	nor	the	target	machine	can	have	any
snapshots.

Then	perform	the	following	steps:

1.	 On	the	target	host,	configure	the	virtual	machine	to	wait	for	a	teleport
request	to	arrive	when	it	is	started,	instead	of	actually	attempting	to	start	the
machine.	This	is	done	with	the	following	VBoxManage	command:

VBoxManage	modifyvm	<targetvmname>	--teleporter	on	--teleporterport	<port>

where	<targetvmname>	is	the	name	of	the	virtual	machine	on	the	target	host
and	<port>	is	a	TCP/IP	port	number	to	be	used	on	both	the	source	and	the
target	hosts.	For	example,	use	6000.	For	details,	see	Section	8.8.6,
“Teleporting	settings”.

2.	 Start	the	VM	on	the	target	host.	You	will	see	that	instead	of	actually
running,	it	will	show	a	progress	dialog.	indicating	that	it	is	waiting	for	a
teleport	request	to	arrive.

3.	 Start	the	machine	on	the	source	host	as	usual.	When	it	is	running	and	you
want	it	to	be	teleported,	issue	the	following	command	on	the	source	host:

VBoxManage	controlvm	<sourcevmname>	teleport	--host	<targethost>	--port	<port>

where	<sourcevmname>	is	the	name	of	the	virtual	machine	on	the	source
host	(the	machine	that	is	currently	running),	<targethost>	is	the	host	or	IP
name	of	the	target	host	on	which	the	machine	is	waiting	for	the	teleport
request,	and	<port>	must	be	the	same	number	as	specified	in	the	command
on	the	target	host.	For	details,	see	Section	8.13,	“VBoxManage	controlvm”.

For	testing,	you	can	also	teleport	machines	on	the	same	host;	in	that	case,	use
"localhost"	as	the	hostname	on	both	the	source	and	the	target	host.

Note

In	rare	cases,	if	the	CPUs	of	the	source	and	the	target	are	very
different,	teleporting	can	fail	with	an	error	message,	or	the	target
may	hang.	This	may	happen	especially	if	the	VM	is	running
application	software	that	is	highly	optimized	to	run	on	a	particular
CPU	without	correctly	checking	that	certain	CPU	features	are
actually	present.	VirtualBox	filters	what	CPU	capabilities	are
presented	to	the	guest	operating	system.	Advanced	users	can	attempt
to	restrict	these	virtual	CPU	capabilities	with	the	VBoxManage	--
modifyvm	--cpuid	command;	see	Section	8.8.6,	“Teleporting

settings”.

Chapter	8.	VBoxManage

Table	of	Contents

8.1.	Introduction
8.2.	Commands	overview
8.3.	General	options
8.4.	VBoxManage	list
8.5.	VBoxManage	showvminfo
8.6.	VBoxManage	registervm	/	unregistervm
8.7.	VBoxManage	createvm
8.8.	VBoxManage	modifyvm

8.8.1.	General	settings
8.8.2.	Networking	settings
8.8.3.	Miscellaneous	settings
8.8.4.	Video	Capture	settings
8.8.5.	Remote	machine	settings
8.8.6.	Teleporting	settings
8.8.7.	Debugging	settings
8.8.8.	USB	card	reader	settings
8.8.9.	Auto	starting	VMs	during	host	system	boot

8.9.	VBoxManage	clonevm
8.10.	VBoxManage	import
8.11.	VBoxManage	export
8.12.	VBoxManage	startvm
8.13.	VBoxManage	controlvm
8.14.	VBoxManage	discardstate
8.15.	VBoxManage	adoptstate
8.16.	VBoxManage	snapshot
8.17.	VBoxManage	closemedium
8.18.	VBoxManage	storageattach
8.19.	VBoxManage	storagectl
8.20.	VBoxManage	bandwidthctl
8.21.	VBoxManage	showmediuminfo
8.22.	VBoxManage	createmedium
8.23.	VBoxManage	modifymedium
8.24.	VBoxManage	clonemedium

8.25.	VBoxManage	mediumproperty
8.26.	VBoxManage	encryptmedium
8.27.	VBoxManage	checkmediumpwd
8.28.	VBoxManage	convertfromraw
8.29.	VBoxManage	getextradata/setextradata
8.30.	VBoxManage	setproperty
8.31.	VBoxManage	usbfilter	add/modify/remove
8.32.	VBoxManage	sharedfolder	add/remove
8.33.	VBoxManage	guestproperty
8.34.	VBoxManage	guestcontrol
8.35.	VBoxManage	metrics
8.36.	VBoxManage	natnetwork
8.37.	VBoxManage	hostonlyif
8.38.	VBoxManage	dhcpserver
8.39.	VBoxManage	usbdevsource
8.40.	VBoxManage	debugvm
8.41.	VBoxManage	extpack
8.42.	VBoxManage	unattended

8.1.	Introduction

As	briefly	mentioned	in	Section	1.16,	“Alternative	front-ends”,	VBoxManage	is
the	command-line	interface	to	VirtualBox.	With	it,	you	can	completely	control
VirtualBox	from	the	command	line	of	your	host	operating	system.	VBoxManage
supports	all	the	features	that	the	graphical	user	interface	gives	you	access	to,	but
it	supports	a	lot	more	than	that.	It	exposes	really	all	the	features	of	the
virtualization	engine,	even	those	that	cannot	(yet)	be	accessed	from	the	GUI.

You	will	need	to	use	the	command	line	if	you	want	to

use	a	different	user	interface	than	the	main	GUI	(for	example,	VBoxSDL	or
the	VBoxHeadless	server);

control	some	of	the	more	advanced	and	experimental	configuration	settings
for	a	VM.

There	are	two	main	things	to	keep	in	mind	when	using	VBoxManage:	First,
VBoxManage	must	always	be	used	with	a	specific	"subcommand",	such	as	"list"
or	"createvm"	or	"startvm".	All	the	subcommands	that	VBoxManage	supports	are
described	in	detail	in	Chapter	8,	VBoxManage.

Second,	most	of	these	subcommands	require	that	you	specify	a	particular	virtual
machine	after	the	subcommand.	There	are	two	ways	you	can	do	this:

You	can	specify	the	VM	name,	as	it	is	shown	in	the	VirtualBox	GUI.	Note
that	if	that	name	contains	spaces,	then	you	must	enclose	the	entire	name	in
double	quotes	(as	it	is	always	required	with	command	line	arguments	that
contain	spaces).

For	example:

VBoxManage	startvm	"Windows	XP"

You	can	specify	the	UUID,	which	is	the	internal	unique	identifier	that
VirtualBox	uses	to	refer	to	the	virtual	machine.	Assuming	that	the
aforementioned	VM	called	"Windows	XP"	has	the	UUID	shown	below,	the
following	command	has	the	same	effect	as	the	previous:

VBoxManage	startvm	670e746d-abea-4ba6-ad02-2a3b043810a5

You	can	type	VBoxManage	list	vms	to	have	all	currently	registered	VMs	listed
with	all	their	settings,	including	their	respective	names	and	UUIDs.

Some	typical	examples	of	how	to	control	VirtualBox	from	the	command	line	are
listed	below:

To	create	a	new	virtual	machine	from	the	command	line	and	immediately
register	it	with	VirtualBox,	use	VBoxManage	createvm	with	the	--register
option,[37]	like	this:

$	VBoxManage	createvm	--name	"SUSE	10.2"	--register

VirtualBox	Command	Line	Management	Interface	Version	5.2.4

(C)	2005-2017	Oracle	Corporation

All	rights	reserved.

Virtual	machine	'SUSE	10.2'	is	created.

UUID:	c89fc351-8ec6-4f02-a048-57f4d25288e5

Settings	file:	'/home/username/.config/VirtualBox/Machines/SUSE	10.2/SUSE	10.2.xml'

As	can	be	seen	from	the	above	output,	a	new	virtual	machine	has	been
created	with	a	new	UUID	and	a	new	XML	settings	file.

To	show	the	configuration	of	a	particular	VM,	use	VBoxManage
showvminfo;	see	Section	8.5,	“VBoxManage	showvminfo”	for	details	and
an	example.

To	change	settings	while	a	VM	is	powered	off,	use	VBoxManage	modifyvm,
e.g.	as	follows:

VBoxManage	modifyvm	"Windows	XP"	--memory	512

For	details,	see	Section	8.8,	“VBoxManage	modifyvm”.

To	change	the	storage	configuration	(e.g.	to	add	a	storage	controller	and
then	a	virtual	disk),	use	VBoxManage	storagectl	and	VBoxManage
storageattach;	see	Section	8.19,	“VBoxManage	storagectl”	and
Section	8.18,	“VBoxManage	storageattach”	for	details.

To	control	VM	operation,	use	one	of	the	following:

To	start	a	VM	that	is	currently	powered	off,	use	VBoxManage	startvm;
see	Section	8.12,	“VBoxManage	startvm”	for	details.

To	pause	or	save	a	VM	that	is	currently	running	or	change	some	of	its
settings,	use	VBoxManage	controlvm;	see	Section	8.13,	“VBoxManage
controlvm”	for	details.

[37]	For	details,	see	Section	8.7,	“VBoxManage	createvm”.

8.2.	Commands	overview

When	running	VBoxManage	without	parameters	or	when	supplying	an	invalid
command	line,	the	below	syntax	diagram	will	be	shown.	Note	that	the	output
will	be	slightly	different	depending	on	the	host	platform;	when	in	doubt,	check
the	output	of	VBoxManage	for	the	commands	available	on	your	particular	host.

Usage:

		VBoxManage	[<general	option>]	<command>

	

	

General	Options:

	

		[-v|--version]												print	version	number	and	exit

		[-q|--nologo]													suppress	the	logo

		[--settingspw	<pw>]							provide	the	settings	password

		[--settingspwfile	<file>]	provide	a	file	containing	the	settings	password

		[@<response-file>]								load	arguments	from	the	given	response	file	(bourne	style)

	

	

Commands:

	

		list	[--long|-l]	[--sorted|-s]										vms|runningvms|ostypes|hostdvds|hostfloppies|

																												intnets|bridgedifs|hostonlyifs|natnets|dhcpservers|

																												hostinfo|hostcpuids|hddbackends|hdds|dvds|floppies|

																												usbhost|usbfilters|systemproperties|extpacks|

																												groups|webcams|screenshotformats

		showvminfo																<uuid|vmname>	[--details]

																												[--machinereadable]

		showvminfo																<uuid|vmname>	--log	<idx>

		registervm																<filename>

		unregistervm														<uuid|vmname>	[--delete]

		createvm																		--name	<name>

																												[--groups	<group>,	...]

																												[--ostype	<ostype>]

																												[--register]

																												[--basefolder	<path>]

																												[--uuid	<uuid>]

		modifyvm																		<uuid|vmname>

																												[--name	<name>]

																												[--groups	<group>,	...]

																												[--description	<desc>]

																												[--ostype	<ostype>]

																												[--iconfile	<filename>]

																												[--memory	<memorysize	in	MB>]

																												[--pagefusion	on|off]

																												[--vram	<vramsize	in	MB>]

																												[--acpi	on|off]

																												[--pciattach	03:04.0]

																												[--pciattach	03:04.0@02:01.0]

																												[--pcidetach	03:04.0]

																												[--ioapic	on|off]

																												[--hpet	on|off]

																												[--triplefaultreset	on|off]

																												[--apic	on|off]

																												[--x2apic	on|off]

																												[--paravirtprovider	none|default|legacy|minimal|

																																																hyperv|kvm]

																												[--paravirtdebug	<key=value>	[,<key=value>	...]]

																												[--hwvirtex	on|off]

																												[--nestedpaging	on|off]

																												[--largepages	on|off]

																												[--vtxvpid	on|off]

																												[--vtxux	on|off]

																												[--pae	on|off]

																												[--longmode	on|off]

																												[--cpu-profile	"host|Intel	80[86|286|386]"]

																												[--cpuid-portability-level	<0..3>

																												[--cpuid-set	<leaf[:subleaf]>	<eax>	<ebx>	<ecx>	<edx>]

																												[--cpuid-remove	<leaf[:subleaf]>]

																												[--cpuidremoveall]

																												[--hardwareuuid	<uuid>]

																												[--cpus	<number>]

																												[--cpuhotplug	on|off]

																												[--plugcpu	<id>]

																												[--unplugcpu	<id>]

																												[--cpuexecutioncap	<1-100>]

																												[--rtcuseutc	on|off]

																												[--graphicscontroller	none|vboxvga|vmsvga]

																												[--monitorcount	<number>]

																												[--accelerate3d	on|off]

																												[--accelerate2dvideo	on|off]

																												[--firmware	bios|efi|efi32|efi64]

																												[--chipset	ich9|piix3]

																												[--bioslogofadein	on|off]

																												[--bioslogofadeout	on|off]

																												[--bioslogodisplaytime	<msec>]

																												[--bioslogoimagepath	<imagepath>]

																												[--biosbootmenu	disabled|menuonly|messageandmenu]

																												[--biosapic	disabled|apic|x2apic]

																												[--biossystemtimeoffset	<msec>]

																												[--biospxedebug	on|off]

																												[--boot<1-4>	none|floppy|dvd|disk|net>]

																												[--nic<1-N>	none|null|nat|bridged|intnet|hostonly|

																																								generic|natnetwork]

																												[--nictype<1-N>	Am79C970A|Am79C973|

																																												82540EM|82543GC|82545EM|

																																												virtio]

																												[--cableconnected<1-N>	on|off]

																												[--nictrace<1-N>	on|off]

																												[--nictracefile<1-N>	<filename>]

																												[--nicproperty<1-N>	name=[value]]

																												[--nicspeed<1-N>	<kbps>]

																												[--nicbootprio<1-N>	<priority>]

																												[--nicpromisc<1-N>	deny|allow-vms|allow-all]

																												[--nicbandwidthgroup<1-N>	none|<name>]

																												[--bridgeadapter<1-N>	none|<devicename>]

																												[--hostonlyadapter<1-N>	none|<devicename>]

																												[--intnet<1-N>	<network	name>]

																												[--nat-network<1-N>	<network	name>]

																												[--nicgenericdrv<1-N>	<driver>

																												[--natnet<1-N>	<network>|default]

																												[--natsettings<1-N>	[<mtu>],[<socksnd>],

																																																[<sockrcv>],[<tcpsnd>],

																																																[<tcprcv>]]

																												[--natpf<1-N>	[<rulename>],tcp|udp,[<hostip>],

																																										<hostport>,[<guestip>],<guestport>]

																												[--natpf<1-N>	delete	<rulename>]

																												[--nattftpprefix<1-N>	<prefix>]

																												[--nattftpfile<1-N>	<file>]

																												[--nattftpserver<1-N>	<ip>]

																												[--natbindip<1-N>	<ip>

																												[--natdnspassdomain<1-N>	on|off]

																												[--natdnsproxy<1-N>	on|off]

																												[--natdnshostresolver<1-N>	on|off]

																												[--nataliasmode<1-N>	default|[log],[proxyonly],

																																																									[sameports]]

																												[--macaddress<1-N>	auto|<mac>]

																												[--mouse	ps2|usb|usbtablet|usbmultitouch]

																												[--keyboard	ps2|usb

																												[--uart<1-N>	off|<I/O	base>	<IRQ>]

																												[--uartmode<1-N>	disconnected|

																																													server	<pipe>|

																																													client	<pipe>|

																																													tcpserver	<port>|

																																													tcpclient	<hostname:port>|

																																													file	<file>|

																																													<devicename>]

																												[--lpt<1-N>	off|<I/O	base>	<IRQ>]

																												[--lptmode<1-N>	<devicename>]

																												[--guestmemoryballoon	<balloonsize	in	MB>]

																												[--audio	none|null|dsound|oss|alsa|pulse|

																																					oss|pulse|coreaudio]

																												[--audioin	on|off]

																												[--audioout	on|off]

																												[--audiocontroller	ac97|hda|sb16]

																												[--audiocodec	stac9700|ad1980|stac9221|sb16]

																												[--clipboard	disabled|hosttoguest|guesttohost|

																																									bidirectional]

																												[--draganddrop	disabled|hosttoguest]

																												[--vrde	on|off]

																												[--vrdeextpack	default|<name>

																												[--vrdeproperty	<name=[value]>]

																												[--vrdeport	<hostport>]

																												[--vrdeaddress	<hostip>]

																												[--vrdeauthtype	null|external|guest]

																												[--vrdeauthlibrary	default|<name>

																												[--vrdemulticon	on|off]

																												[--vrdereusecon	on|off]

																												[--vrdevideochannel	on|off]

																												[--vrdevideochannelquality	<percent>]

																												[--usb	on|off]

																												[--usbehci	on|off]

																												[--usbxhci	on|off]

																												[--usbrename	<oldname>	<newname>]

																												[--snapshotfolder	default|<path>]

																												[--teleporter	on|off]

																												[--teleporterport	<port>]

																												[--teleporteraddress	<address|empty>

																												[--teleporterpassword	<password>]

																												[--teleporterpasswordfile	<file>|stdin]

																												[--tracing-enabled	on|off]

																												[--tracing-config	<config-string>]

																												[--tracing-allow-vm-access	on|off]

																												[--usbcardreader	on|off]

																												[--autostart-enabled	on|off]

																												[--autostart-delay	<seconds>]

																												[--videocap	on|off]

																												[--videocapscreens	all|<screen	ID>	[<screen	ID>	...]]

																												[--videocapfile	<filename>]

																												[--videocapres	<width>	<height>]

																												[--videocaprate	<rate>]

																												[--videocapfps	<fps>]

																												[--videocapmaxtime	<ms>]

																												[--videocapmaxsize	<MB>]

																												[--videocapopts	<key=value>	[,<key=value>	...]]

																												[--defaultfrontend	default|<name>]

		clonevm																			<uuid|vmname>

																												[--snapshot	<uuid>|<name>]

																												[--mode	machine|machineandchildren|all]

																												[--options	link|keepallmacs|keepnatmacs|

																																							keepdisknames]

																												[--name	<name>]

																												[--groups	<group>,	...]

																												[--basefolder	<basefolder>]

																												[--uuid	<uuid>]

																												[--register]

		import																				<ovfname/ovaname>

																												[--dry-run|-n]

																												[--options	keepallmacs|keepnatmacs|importtovdi]

																												[more	options]

																												(run	with	-n	to	have	options	displayed

																													for	a	particular	OVF)

		export																				<machines>	--output|-o	<name>.<ovf/ova/tar.gz>

																												[--legacy09|--ovf09|--ovf10|--ovf20|--opc10]

																												[--manifest]

																												[--iso]

																												[--options	manifest|iso|nomacs|nomacsbutnat]

																												[--vsys	<number	of	virtual	system>]

																																				[--product	<product	name>]

																																				[--producturl	<product	url>]

																																				[--vendor	<vendor	name>]

																																				[--vendorurl	<vendor	url>]

																																				[--version	<version	info>]

																																				[--description	<description	info>]

																																				[--eula	<license	text>]

																																				[--eulafile	<filename>]

		startvm																			<uuid|vmname>...

																												[--type	gui|sdl|headless|separate]

																												[-E|--putenv	<NAME>[=<VALUE>]]

		controlvm																	<uuid|vmname>

																												pause|resume|reset|poweroff|savestate|

																												acpipowerbutton|acpisleepbutton|

																												keyboardputscancode	<hex>	[<hex>	...]|

																												keyboardputstring	<string1>	[<string2>	...]|

																												keyboardputfile	<filename>|

																												setlinkstate<1-N>	on|off	|

																												nic<1-N>	null|nat|bridged|intnet|hostonly|generic|

																																					natnetwork	[<devicename>]	|

																												nictrace<1-N>	on|off	|

																												nictracefile<1-N>	<filename>	|

																												nicproperty<1-N>	name=[value]	|

																												nicpromisc<1-N>	deny|allow-vms|allow-all	|

																												natpf<1-N>	[<rulename>],tcp|udp,[<hostip>],

																																								<hostport>,[<guestip>],<guestport>	|

																												natpf<1-N>	delete	<rulename>	|

																												guestmemoryballoon	<balloonsize	in	MB>	|

																												usbattach	<uuid>|<address>

																																						[--capturefile	<filename>]	|

																												usbdetach	<uuid>|<address>	|

																												audioin	on|off	|

																												audioout	on|off	|

																												clipboard	disabled|hosttoguest|guesttohost|

																																						bidirectional	|

																												draganddrop	disabled|hosttoguest	|

																												vrde	on|off	|

																												vrdeport	<port>	|

																												vrdeproperty	<name=[value]>	|

																												vrdevideochannelquality	<percent>	|

																												setvideomodehint	<xres>	<yres>	<bpp>

																																												[[<display>]	[<enabled:yes|no>	|

																																														[<xorigin>	<yorigin>]]]	|

																												screenshotpng	<file>	[display]	|

																												videocap	on|off	|

																												videocapscreens	all|none|<screen>,[<screen>...]	|

																												videocapfile	<file>

																												videocapres	<width>x<height>

																												videocaprate	<rate>

																												videocapfps	<fps>

																												videocapmaxtime	<ms>

																												videocapmaxsize	<MB>

																												setcredentials	<username>

																																											--passwordfile	<file>	|	<password>

																																											<domain>

																																											[--allowlocallogon	<yes|no>]	|

																												teleport	--host	<name>	--port	<port>

																																					[--maxdowntime	<msec>]

																																					[--passwordfile	<file>	|

																																						--password	<password>]	|

																												plugcpu	<id>	|

																												unplugcpu	<id>	|

																												cpuexecutioncap	<1-100>

																												webcam	<attach	[path	[settings]]>	|	<detach	[path]>	|	<list>

																												addencpassword	<id>

																																											<password	file>|-

																																											[--removeonsuspend	<yes|no>]

																												removeencpassword	<id>

																												removeallencpasswords

		discardstate														<uuid|vmname>

		adoptstate																<uuid|vmname>	<state_file>

		snapshot																		<uuid|vmname>

																												take	<name>	[--description	<desc>]	[--live]

																																	[--uniquename	Number,Timestamp,Space,Force]	|

																												delete	<uuid|snapname>	|

																												restore	<uuid|snapname>	|

																												restorecurrent	|

																												edit	<uuid|snapname>|--current

																																	[--name	<name>]

																																	[--description	<desc>]	|

																												list	[--details|--machinereadable]

																												showvminfo	<uuid|snapname>

		closemedium															[disk|dvd|floppy]	<uuid|filename>

																												[--delete]

		storageattach													<uuid|vmname>

																												--storagectl	<name>

																												[--port	<number>]

																												[--device	<number>]

																												[--type	dvddrive|hdd|fdd]

																												[--medium	none|emptydrive|additions|

																																						<uuid|filename>|host:<drive>|iscsi]

																												[--mtype	normal|writethrough|immutable|shareable|

																																					readonly|multiattach]

																												[--comment	<text>]

																												[--setuuid	<uuid>]

																												[--setparentuuid	<uuid>]

																												[--passthrough	on|off]

																												[--tempeject	on|off]

																												[--nonrotational	on|off]

																												[--discard	on|off]

																												[--hotpluggable	on|off]

																												[--bandwidthgroup	<name>]

																												[--forceunmount]

																												[--server	<name>|<ip>]

																												[--target	<target>]

																												[--tport	<port>]

																												[--lun	<lun>]

																												[--encodedlun	<lun>]

																												[--username	<username>]

																												[--password	<password>]

																												[--passwordfile	<file>]

																												[--initiator	<initiator>]

																												[--intnet]

		storagectl																<uuid|vmname>

																												--name	<name>

																												[--add	ide|sata|scsi|floppy|sas|usb|pcie]

																												[--controller	LSILogic|LSILogicSAS|BusLogic|

																																										IntelAHCI|PIIX3|PIIX4|ICH6|I82078|

																												[USB|NVMe]

																												[--portcount	<1-n>]

																												[--hostiocache	on|off]

																												[--bootable	on|off]

																												[--rename	<name>]

																												[--remove]

		bandwidthctl														<uuid|vmname>

																												add	<name>	--type	disk|network

																																--limit	<megabytes	per	second>[k|m|g|K|M|G]	|

																												set	<name>

																																--limit	<megabytes	per	second>[k|m|g|K|M|G]	|

																												remove	<name>	|

																												list	[--machinereadable]

																												(limit	units:	k=kilobit,	m=megabit,	g=gigabit,

																																										K=kilobyte,	M=megabyte,	G=gigabyte)

		showmediuminfo												[disk|dvd|floppy]	<uuid|filename>

		createmedium														[disk|dvd|floppy]	--filename	<filename>

																												[--size	<megabytes>|--sizebyte	<bytes>]

																												[--diffparent	<uuid>|<filename>

																												[--format	VDI|VMDK|VHD]	(default:	VDI)

																												[--variant	Standard,Fixed,Split2G,Stream,ESX]

		modifymedium														[disk|dvd|floppy]	<uuid|filename>

																												[--type	normal|writethrough|immutable|shareable|

																																				readonly|multiattach]

																												[--autoreset	on|off]

																												[--property	<name=[value]>]

																												[--compact]

																												[--resize	<megabytes>|--resizebyte	<bytes>]

																												[--move	<path]

																												[--description	<description	string>]

		clonemedium															[disk|dvd|floppy]	<uuid|inputfile>	<uuid|outputfile>

																												[--format	VDI|VMDK|VHD|RAW|<other>]

																												[--variant	Standard,Fixed,Split2G,Stream,ESX]

																												[--existing]

		mediumproperty												[disk|dvd|floppy]	set	<uuid|filename>

																												<property>	<value>

																												[disk|dvd|floppy]	get	<uuid|filename>

																												<property>

																												[disk|dvd|floppy]	delete	<uuid|filename>

																												<property>

		encryptmedium													<uuid|filename>

																												[--newpassword	<file>|-]

																												[--oldpassword	<file>|-]

																												[--cipher	<cipher	identifier>]

																												[--newpasswordid	<password	identifier>]

		checkmediumpwd												<uuid|filename>

																												<pwd	file>|-

		convertfromraw												<filename>	<outputfile>

																												[--format	VDI|VMDK|VHD]

																												[--variant	Standard,Fixed,Split2G,Stream,ESX]

																												[--uuid	<uuid>]

		convertfromraw												stdin	<outputfile>	<bytes>

																												[--format	VDI|VMDK|VHD]

																												[--variant	Standard,Fixed,Split2G,Stream,ESX]

																												[--uuid	<uuid>]

		getextradata														global|<uuid|vmname>

																												<key>|enumerate

		setextradata														global|<uuid|vmname>

																												<key>

																												[<value>]	(no	value	deletes	key)

		setproperty															machinefolder	default|<folder>	|

																												hwvirtexclusive	on|off	|

																												vrdeauthlibrary	default|<library>	|

																												websrvauthlibrary	default|null|<library>	|

																												vrdeextpack	null|<library>	|

																												autostartdbpath	null|<folder>	|

																												loghistorycount	<value>

																												defaultfrontend	default|<name>

																												logginglevel	<log	setting>

		usbfilter																	add	<index,0-N>

																												--target	<uuid|vmname>|global

																												--name	<string>

																												--action	ignore|hold	(global	filters	only)

																												[--active	yes|no]	(yes)

																												[--vendorid	<XXXX>]	(null)

																												[--productid	<XXXX>]	(null)

																												[--revision	<IIFF>]	(null)

																												[--manufacturer	<string>]	(null)

																												[--product	<string>]	(null)

																												[--remote	yes|no]	(null,	VM	filters	only)

																												[--serialnumber	<string>]	(null)

																												[--maskedinterfaces	<XXXXXXXX>]

		usbfilter																	modify	<index,0-N>

																												--target	<uuid|vmname>|global

																												[--name	<string>]

																												[--action	ignore|hold]	(global	filters	only)

																												[--active	yes|no]

																												[--vendorid	<XXXX>|""]

																												[--productid	<XXXX>|""]

																												[--revision	<IIFF>|""]

																												[--manufacturer	<string>|""]

																												[--product	<string>|""]

																												[--remote	yes|no]	(null,	VM	filters	only)

																												[--serialnumber	<string>|""]

																												[--maskedinterfaces	<XXXXXXXX>]

		usbfilter																	remove	<index,0-N>

																												--target	<uuid|vmname>|global

		sharedfolder														add	<uuid|vmname>

																												--name	<name>	--hostpath	<hostpath>

																												[--transient]	[--readonly]	[--automount]

		sharedfolder														remove	<uuid|vmname>

																												--name	<name>	[--transient]

		guestproperty													get	<uuid|vmname>

																												<property>	[--verbose]

		guestproperty													set	<uuid|vmname>

																												<property>	[<value>	[--flags	<flags>]]

		guestproperty													delete|unset	<uuid|vmname>

																												<property>

		guestproperty													enumerate	<uuid|vmname>

																												[--patterns	<patterns>]

		guestproperty													wait	<uuid|vmname>	<patterns>

																												[--timeout	<msec>]	[--fail-on-timeout]

		guestcontrol														<uuid|vmname>	[--verbose|-v]	[--quiet|-q]

																														[--username	<name>]	[--domain	<domain>]

																														[--passwordfile	<file>	|	--password	<password>]

																														run	[common-options]

																														[--exe	<path	to	executable>]	[--timeout	<msec>]

																														[-E|--putenv	<NAME>[=<VALUE>]]	[--unquoted-args]

																														[--ignore-operhaned-processes]	[--profile]

																														[--no-wait-stdout|--wait-stdout]

																														[--no-wait-stderr|--wait-stderr]

																														[--dos2unix]	[--unix2dos]

																														--	<program/arg0>	[argument1]	...	[argumentN]]

																														start	[common-options]

																														[--exe	<path	to	executable>]	[--timeout	<msec>]

																														[-E|--putenv	<NAME>[=<VALUE>]]	[--unquoted-args]

																														[--ignore-operhaned-processes]	[--profile]

																														--	<program/arg0>	[argument1]	...	[argumentN]]

																														copyfrom	[common-options]

																														[--dryrun]	[--follow]	[-R|--recursive]

																														<guest-src0>	[guest-src1	[...]]	<host-dst>

																														copyfrom	[common-options]

																														[--dryrun]	[--follow]	[-R|--recursive]

																														[--target-directory	<host-dst-dir>]

																														<guest-src0>	[guest-src1	[...]]

																														copyto	[common-options]

																														[--dryrun]	[--follow]	[-R|--recursive]

																														<host-src0>	[host-src1	[...]]	<guest-dst>

																														copyto	[common-options]

																														[--dryrun]	[--follow]	[-R|--recursive]

																														[--target-directory	<guest-dst>]

																														<host-src0>	[host-src1	[...]]

																														mkdir|createdir[ectory]	[common-options]

																														[--parents]	[--mode	<mode>]

																														<guest	directory>	[...]

																														rmdir|removedir[ectory]	[common-options]

																														[-R|--recursive]

																														<guest	directory>	[...]

																														removefile|rm	[common-options]	[-f|--force]

																														<guest	file>	[...]

																														mv|move|ren[ame]	[common-options]

																														<source>	[source1	[...]]	<dest>

																														mktemp|createtemp[orary]	[common-options]

																														[--secure]	[--mode	<mode>]	[--tmpdir	<directory>]

																														<template>

																														stat	[common-options]

																														<file>	[...]

		guestcontrol														<uuid|vmname>	[--verbose|-v]	[--quiet|-q]

																														list	<all|sessions|processes|files>	[common-opts]

																														closeprocess	[common-options]

																														<			--session-id	<ID>

																																|	--session-name	<name	or	pattern>

																														<PID1>	[PID1	[...]]

																														closesession	[common-options]

																														<		--all	|	--session-id	<ID>

																																|	--session-name	<name	or	pattern>	>

																														updatega|updateguestadditions|updateadditions

																														[--source	<guest	additions	.ISO>]

																														[--wait-start]	[common-options]

																														[--	[<argument1>]	...	[<argumentN>]]

																														watch	[common-options]

		metrics																			list	[*|host|<vmname>	[<metric_list>]]

																																																	(comma-separated)

		metrics																			setup

																												[--period	<seconds>]	(default:	1)

																												[--samples	<count>]	(default:	1)

																												[--list]

																												[*|host|<vmname>	[<metric_list>]]

		metrics																			query	[*|host|<vmname>	[<metric_list>]]

		metrics																			enable

																												[--list]

																												[*|host|<vmname>	[<metric_list>]]

		metrics																			disable

																												[--list]

																												[*|host|<vmname>	[<metric_list>]]

		metrics																			collect

																												[--period	<seconds>]	(default:	1)

																												[--samples	<count>]	(default:	1)

																												[--list]

																												[--detach]

																												[*|host|<vmname>	[<metric_list>]]

		natnetwork																add	--netname	<name>

																												--network	<network>

																												[--enable|--disable]

																												[--dhcp	on|off]

																												[--port-forward-4	<rule>]

																												[--loopback-4	<rule>]

																												[--ipv6	on|off]

																												[--port-forward-6	<rule>]

																												[--loopback-6	<rule>]

		natnetwork																remove	--netname	<name>

		natnetwork																modify	--netname	<name>

																												[--network	<network>]

																												[--enable|--disable]

																												[--dhcp	on|off]

																												[--port-forward-4	<rule>]

																												[--loopback-4	<rule>]

																												[--ipv6	on|off]

																												[--port-forward-6	<rule>]

																												[--loopback-6	<rule>]

		natnetwork																start	--netname	<name>

		natnetwork																stop	--netname	<name>

		natnetwork																list	[<pattern>]

		hostonlyif																ipconfig	<name>

																												[--dhcp	|

																												--ip<ipv4>	[--netmask<ipv4>	(def:	255.255.255.0)]	|

																												--ipv6<ipv6>	[--netmasklengthv6<length>	(def:	64)]]

																												create	|

																												remove	<name>

		dhcpserver																add|modify	--netname	<network_name>	|

																																							--ifname	<hostonly_if_name>

																												[--ip	<ip_address>

																												--netmask	<network_mask>

																												--lowerip	<lower_ip>

																												--upperip	<upper_ip>]

																												[--enable	|	--disable]

		dhcpserver																remove	--netname	<network_name>	|

																																			--ifname	<hostonly_if_name>

		usbdevsource														add	<source	name>

																												--backend	<backend>

																												--address	<address>

		usbdevsource														remove	<source	name>

VBoxManage	debugvm	<uuid|vmname>	dumpvmcore	[--filename=name]
VBoxManage	debugvm	<uuid|vmname>	info	<item>	[args...]
VBoxManage	debugvm	<uuid|vmname>	injectnmi
VBoxManage	debugvm	<uuid|vmname>	log	[[--release]	|	[--debug]]

[group-settings...]
VBoxManage	debugvm	<uuid|vmname>	logdest	[[--release]	|	[--

debug]]	[destinations...]
VBoxManage	debugvm	<uuid|vmname>	logflags	[[--release]	|	[--

debug]]	[flags...]
VBoxManage	debugvm	<uuid|vmname>	osdetect
VBoxManage	debugvm	<uuid|vmname>	osinfo
VBoxManage	debugvm	<uuid|vmname>	osdmesg	[--lines=lines]
VBoxManage	debugvm	<uuid|vmname>	getregisters	[--cpu=id]	[reg-

set.reg-name...]
VBoxManage	debugvm	<uuid|vmname>	setregisters	[--cpu=id]	[reg-

set.reg-name=value...]

VBoxManage	debugvm	<uuid|vmname>	show	[[--human-readable]	|	[--
sh-export]	|	[--sh-eval]	|	[--cmd-set]]	[settings-item...]

VBoxManage	debugvm	<uuid|vmname>	stack	[--cpu=id]
VBoxManage	debugvm	<uuid|vmname>	statistics	[--reset]	[--

descriptions]	[--pattern=pattern]

VBoxManage	extpack	install	[--replace]	<tarball>
VBoxManage	extpack	uninstall	[--force]	<name>
VBoxManage	extpack	cleanup

VBoxManage	unattended	detect	<--iso=install-iso>	[--machine-
readable]

VBoxManage	unattended	install	<uuid|vmname>	<--iso=install-iso>
[--user=login]	[--password=password]	[--password-file=file]
[--full-user-name=name]	[--key=product-key]	[--install-
additions]	[--no-install-additions]	[--additions-iso=add-

iso]	[--install-txs]	[--no-install-txs]	[--validation-kit-
iso=testing-iso]	[--locale=ll_CC]	[--country=CC]	[--time-
zone=tz]	[--hostname=fqdn]	[--package-selection-
adjustment=keyword]	[--dry-run]	[--auxiliary-base-path=path]
[--image-index=number]	[--script-template=file]	[--post-
install-template=file]	[--post-install-command=command]	[--
extra-install-kernel-parameters=params]	[--language=lang]	[--
start-vm=session-type]

Each	time	VBoxManage	is	invoked,	only	one	command	can	be	executed.
However,	a	command	might	support	several	subcommands	which	then	can	be
invoked	in	one	single	call.	The	following	sections	provide	detailed	reference
information	on	the	different	commands.

8.3.	General	options

-v|--version:	show	the	version	of	this	tool	and	exit.

--nologo:	suppress	the	output	of	the	logo	information	(useful	for	scripts)

--settingspw:	specifiy	a	settings	password

--settingspwfile:	specify	a	file	containing	the	settings	password.

The	settings	password	is	used	for	certain	settings	which	need	to	be	stored
encrypted	for	security	reasons.	At	the	moment,	the	only	encrypted	setting	is	the
iSCSI	initiator	secret	(see	Section	8.18,	“VBoxManage	storageattach”	for
details).	As	long	as	no	settings	password	is	specified,	this	information	is	stored
in	plain	text.	After	using	the	--settingspw|--settingspwfile	option	once,	it
must	be	always	used,	otherwise	the	encrypted	setting	cannot	be	unencrypted.

8.4.	VBoxManage	list

The	list	command	gives	relevant	information	about	your	system	and
information	about	VirtualBox's	current	settings.

The	following	subcommands	are	available	with	VBoxManage	list:

vms	lists	all	virtual	machines	currently	registered	with	VirtualBox.	By
default	this	displays	a	compact	list	with	each	VM's	name	and	UUID;	if	you
also	specify	--long	or	-l,	this	will	be	a	detailed	list	as	with	the	showvminfo
command	(see	below).

runningvms	lists	all	currently	running	virtual	machines	by	their	unique
identifiers	(UUIDs)	in	the	same	format	as	with	vms.

ostypes	lists	all	guest	operating	systems	presently	known	to	VirtualBox,
along	with	the	identifiers	used	to	refer	to	them	with	the	modifyvm
command.

hostdvds,	hostfloppies,	respectively,	list	DVD,	floppy,	bridged
networking	and	host-only	networking	interfaces	on	the	host,	along	with	the
name	used	to	access	them	from	within	VirtualBox.

intnets	displays	information	about	the	internal	networks.

bridgedifs,	hostonlyifs,	natnets	and	dhcpservers,	respectively,	list
bridged	network	interfaces,	host-only	network	interfaces,	NAT	network
interfaces	and	DHCP	servers	currently	available	on	the	host.	Please	see
Chapter	6,	Virtual	networking	for	details	on	these.

hostinfo	displays	information	about	the	host	system,	such	as	CPUs,
memory	size	and	operating	system	version.

hostcpuids	dumps	the	CPUID	parameters	for	the	host	CPUs.	This	can	be
used	for	a	more	fine	grained	analyis	of	the	host's	virtualization	capabilities.

hddbackends	lists	all	known	virtual	disk	back-ends	of	VirtualBox.	For	each
such	format	(such	as	VDI,	VMDK	or	RAW),	this	lists	the	back-end's

capabilities	and	configuration.

hdds,	dvds	and	floppies	all	give	you	information	about	virtual	disk	images
currently	in	use	by	VirtualBox,	including	all	their	settings,	the	unique
identifiers	(UUIDs)	associated	with	them	by	VirtualBox	and	all	files
associated	with	them.	This	is	the	command-line	equivalent	of	the	Virtual
Media	Manager;	see	Section	5.3,	“The	Virtual	Media	Manager”.

usbhost	supplies	information	about	USB	devices	attached	to	the	host,
notably	information	useful	for	constructing	USB	filters	and	whether	they
are	currently	in	use	by	the	host.

usbfilters	lists	all	global	USB	filters	registered	with	VirtualBox	--	that	is,
filters	for	devices	which	are	accessible	to	all	virtual	machines	--	and
displays	the	filter	parameters.

systemproperties	displays	some	global	VirtualBox	settings,	such	as
minimum	and	maximum	guest	RAM	and	virtual	hard	disk	size,	folder
settings	and	the	current	authentication	library	in	use.

extpacks	displays	all	VirtualBox	extension	packs	currently	installed;	see
Section	1.5,	“Installing	VirtualBox	and	extension	packs”	and	Section	8.41,
“VBoxManage	extpack”	for	more	information.

groups	displays	details	of	the	VM	Groups;	see	Section	1.9,	“Using	VM
groups”	for	more	information.

webcams	displays	a	list	of	webcams	attached	to	the	running	VM.	The	output
format	is	a	list	of	absolute	paths	or	aliases	that	were	used	for	attaching	the
webcams	to	the	VM	using	the	'webcam	attach'	command.

screenshotformats	displays	a	list	of	available	screenshot	formats.

8.5.	VBoxManage	showvminfo

The	showvminfo	command	shows	information	about	a	particular	virtual	machine.
This	is	the	same	information	as	VBoxManage	list	vms	--long	would	show	for
all	virtual	machines.

You	will	get	information	that	resembles	the	following	example.

$	VBoxManage	showvminfo	"Windows	XP"

VirtualBox	Command	Line	Management	Interface	Version	5.2.4

(C)	2005-2017	Oracle	Corporation

All	rights	reserved.

Name:												Windows	XP

Guest	OS:								Other/Unknown

UUID:												1bf3464d-57c6-4d49-92a9-a5cc3816b7e7

Config	file:					/home/username/.config/VirtualBox/Machines/Windows	XP/Windows	XP.xml

Memory	size:					512MB

VRAM	size:							12MB

Number	of	CPUs:		2

Boot	menu	mode:		message	and	menu

Boot	Device	(1):	DVD

Boot	Device	(2):	HardDisk

Boot	Device	(3):	Not	Assigned

Boot	Device	(4):	Not	Assigned

ACPI:												on

IOAPIC:										on

...

				

Use	the	--machinereadable	option	to	produce	the	same	output,	but	in	machine
readable	format:	property="value"	on	a	line	by	line	basis,	e.g.:

name="VBoxSDL	--startvm	OL7.2"

groups="/"

ostype="Oracle	(64-bit)"

UUID="457af700-bc0a-4258-aa3c-13b03da171f2"

...

				

8.6.	VBoxManage	registervm	/	unregistervm

The	registervm	command	allows	you	to	import	a	virtual	machine	definition	in
an	XML	file	into	VirtualBox.	The	machine	must	not	conflict	with	one	already
registered	in	VirtualBox	and	it	may	not	have	any	hard	or	removable	disks
attached.	It	is	advisable	to	place	the	definition	file	in	the	machines	folder	before
registering	it.

Note

When	creating	a	new	virtual	machine	with	VBoxManage	createvm
(see	below),	you	can	directly	specify	the	--register	option	to	avoid
having	to	register	it	separately.

The	unregistervm	command	unregisters	a	virtual	machine.	If	--delete	is	also
specified,	the	following	files	will	automatically	be	deleted	as	well:

1.	 all	hard	disk	image	files,	including	differencing	files,	which	are	used	by	the
machine	and	not	shared	with	other	machines;

2.	 saved	state	files	that	the	machine	created,	if	any	(one	if	the	machine	was	in
"saved"	state	and	one	for	each	online	snapshot);

3.	 the	machine	XML	file	and	its	backups;

4.	 the	machine	log	files,	if	any;

5.	 the	machine	directory,	if	it	is	empty	after	having	deleted	all	the	above.

8.7.	VBoxManage	createvm

This	command	creates	a	new	XML	virtual	machine	definition	file.

The	--name	<name>	parameter	is	required	and	must	specify	the	name	of	the
machine.	Since	this	name	is	used	by	default	as	the	file	name	of	the	settings	file
(with	the	extension	.xml)	and	the	machine	folder	(a	subfolder	of	the
.config/VirtualBox/Machines	folder	-	this	folder	name	may	vary	depending
on	the	operating	system	and	the	version	of	VirtualBox	which	you	are	using),	it
must	conform	to	your	host	operating	system's	requirements	for	file	name
specifications.	If	the	VM	is	later	renamed,	the	file	and	folder	names	will	change
automatically.

However,	if	the	--basefolder	<path>	option	is	used,	the	machine	folder	will	be
named	<path>.	In	this	case,	the	names	of	the	file	and	the	folder	will	not	change
if	the	virtual	machine	is	renamed.

If	the	--group	<group>,	...	option	is	used,	the	machine	will	be	assigned
membership	of	the	specified	VM	groups	in	the	list.	Note	that	group	ids	always
start	with	a	/	and	can	be	nested.	By	default,	VMs	are	always	assigned
membership	of	the	group	/.

If	the	--ostype	<ostype>:	option	is	used,	<ostype>	specifies	the	guest	operating
system	to	run	in	the	VM.	To	learn	about	the	available	OS	options,	run
VBoxManage	list	ostypes	.

If	the	--uuid	<uuid>:	option	is	used,	<uuid>	specifies	the	VM	uuid.	This	must
be	unique	within	the	namespace	of	the	host,	or	that	of	the	VM	Group	if	it	is
assigned	to	a	VM	group	membership.	By	default,	a	unique	uuid	within	the
appropriate	namespace	is	automatically	generated.

By	default,	this	command	only	creates	the	XML	file	without	automatically
registering	the	VM	with	your	VirtualBox	installation.	To	register	the	VM
instantly,	use	the	optional	--register	option,	or	run	VBoxManage	registervm
separately	afterwards.

8.8.	VBoxManage	modifyvm

This	command	changes	the	properties	of	a	registered	virtual	machine	which	is
not	running.	Most	of	the	properties	that	this	command	makes	available
correspond	to	the	VM	settings	that	VirtualBox	graphical	user	interface	displays
in	each	VM's	"Settings"	dialog;	these	were	described	in	Chapter	3,	Configuring
virtual	machines.	Some	of	the	more	advanced	settings,	however,	are	only
available	through	the	VBoxManage	interface.

These	commands	require	that	the	machine	is	powered	off	(neither	running	nor	in
"saved"	state).	Some	machine	settings	can	also	be	changed	while	a	machine	is
running;	those	settings	will	then	have	a	corresponding	subcommand	with	the
VBoxManage	controlvm	subcommand	(see	Section	8.13,	“VBoxManage
controlvm”).

8.8.1.	General	settings

The	following	general	settings	are	available	through	VBoxManage	modifyvm:

--name	<name>:	This	changes	the	VM's	name	and	possibly	renames	the
internal	virtual	machine	files,	as	described	with	VBoxManage	createvm
above.

--groups	<group>,	...:	This	changes	the	group	membership	of	a	VM.
Groups	always	start	with	a	/	and	can	be	nested.	By	default	VMs	are	in
group	/.

--description	<desc>:	This	changes	the	VM's	description,	which	is	a	way
to	record	details	about	the	VM	in	a	way	which	is	meaningful	for	the	user.
The	GUI	interprets	HTML	formatting,	the	command	line	allows	arbitrary
strings	potentially	containing	multiple	lines.

--ostype	<ostype>:	This	specifies	what	guest	operating	system	is
supposed	to	run	in	the	VM.	To	learn	about	the	various	identifiers	that	can	be
used	here,	use	VBoxManage	list	ostypes.

--iconfile	<filename>:	This	specifies	the	absolute	path	on	the	host	file
system	for	the	VirtualBox	icon	to	be	displayed	in	the	VM.

--memory	<memorysize>:	This	sets	the	amount	of	RAM,	in	MB,	that	the
virtual	machine	should	allocate	for	itself	from	the	host.	See	the	remarks	in
Section	1.7,	“Creating	your	first	virtual	machine”	for	more	information.

--pagefusion	on|off:	Enables/disables	(default)	the	Page	Fusion	feature.
The	Page	Fusion	feature	minimises	memory	duplication	between	VMs	with
similar	configurations	running	on	the	same	host.	See	Section	4.9.2,	“Page
Fusion”	for	details.

--vram	<vramsize>:	This	sets	the	amount	of	RAM	that	the	virtual	graphics
card	should	have.	See	Section	3.6,	“Display	settings”	for	details.

--acpi	on|off;	--ioapic	on|off:	These	two	determine	whether	the	VM
should	have	ACPI	and	I/O	APIC	support,	respectively;	see	Section	3.5.1,
“"Motherboard"	tab”	for	details.

--pciattach	<host	PCI	address	[@	guest	PCI	bus	address]>:
Attaches	a	specified	PCI	network	controller	on	the	host	to	a	PCI	bus	(can
specify)	on	the	guest.	See	Section	9.6,	“PCI	passthrough”	for	details.

--pcidetach	<host	PCI	address>:	Detaches	a	specified	PCI	network
controller	on	the	host	from	the	attached	PCI	bus	on	the	guest.	See
Section	9.6,	“PCI	passthrough”	for	details.

--hardwareuuid	<uuid>:	The	UUID	presented	to	the	guest	via	memory
tables	(DMI/SMBIOS),	hardware	and	guest	properties.	By	default	this	is	the
same	as	the	VM	uuid.	Useful	when	cloning	a	VM.	Teleporting	takes	care	of
this	automatically.

--cpus	<cpucount>:	This	sets	the	number	of	virtual	CPUs	for	the	virtual
machine	(see	Section	3.5.2,	“"Processor"	tab”).	If	CPU	hot-plugging	is
enabled	(see	below),	this	then	sets	the	maximum	number	of	virtual	CPUs
that	can	be	plugged	into	the	virtual	machines.

--cpuhotplug	on|off:	This	enables	CPU	hot-plugging.	When	enabled,
virtual	CPUs	can	be	added	to	and	removed	from	a	virtual	machine	while	it
is	running.	See	Section	9.5,	“CPU	hot-plugging”	for	more	information.

--plugcpu|unplugcpu	<id>:	If	CPU	hot-plugging	is	enabled	(see	above),
this	adds	a	virtual	CPU	to	the	virtual	machines	(or	removes	one).	<id>

specifies	the	index	of	the	virtual	CPU	to	be	added	or	removed	and	must	be
a	number	from	0	to	the	maximum	no.	of	CPUs	configured	with	the	--cpus
option.	CPU	0	can	never	be	removed.

--cpuexecutioncap	<1-100>:	This	setting	controls	how	much	cpu	time	a
virtual	CPU	can	use.	A	value	of	50	implies	a	single	virtual	CPU	can	use	up
to	50%	of	a	single	host	CPU.

--pae	on|off:	This	enables/disables	PAE.	See	Section	3.5.2,	“"Processor"
tab”.

--longmode	on|off:	This	enables/disables	long	mode.	See	Section	3.5.2,
“"Processor"	tab”.

--cpu-profile	<host|intel	80[86|286|386]>:	This	enables
specification	of	a	profile	for	guest	cpu	emulation.	Specify	either	one	based
on	the	host	system	CPU	(host),	or	one	from	a	number	of	older	Intel	Micro-
architectures	-	8086,	80286,	80386.

--hpet	on|off:	This	enables/disables	a	High	Precision	Event	Timer
(HPET)	which	can	replace	the	legacy	system	timers.	This	is	turned	off	by
default.	Note	that	Windows	supports	a	HPET	only	from	Vista	onwards.

--hwvirtex	on|off:	This	enables	or	disables	the	use	of	hardware
virtualization	extensions	(Intel	VT-x	or	AMD-V)	in	the	processor	of	your
host	system;	see	Section	10.3,	“Hardware	vs.	software	virtualization”.

--triplefaultreset	on|off:	This	setting	enables	resetting	of	the	guest
instead	of	triggering	a	Guru	Meditation.	Some	guests	raise	a	triple	fault	to
reset	the	CPU	so	sometimes	this	is	desired	behavior.	Works	only	for	non-
SMP	guests.

--apic	on|off:	This	setting	enables(default)/disables	IO	APIC.	With	I/O
APIC,	operating	systems	can	use	more	than	16	interrupt	requests	(IRQs)
thus	avoiding	IRQ	sharing	for	improved	reliability.	See	Section	3.5.1,
“"Motherboard"	tab”.

--x2apic	on|off:	This	setting	enables(default)/disables	CPU	x2APIC
support.	CPU	x2APIC	support	helps	operating	systems	run	more	efficiently
on	high	core	count	configurations,	and	optimizes	interrupt	distribution	in

virtualized	environments.	Disable	when	using	host/guest	operating	systems
incompatible	with	x2APIC	support.

--paravirtprovider	none|default|legacy|minimal|hyperv|kvm:	This
setting	specifies	which	paravirtualization	interface	to	provide	to	the	guest
operating	system.	Specifying	none	explicitly	turns	off	exposing	any
paravirtualization	interface.	The	option	default,	will	pick	an	appropriate
interface	depending	on	the	guest	OS	type	while	starting	the	VM.	This	is	the
default	option	chosen	while	creating	new	VMs.	The	legacy	option	is
chosen	for	VMs	which	were	created	with	older	VirtualBox	versions	and
will	pick	a	paravirtualization	interface	while	starting	the	VM	with
VirtualBox	5.0	and	newer.	The	minimal	provider	is	mandatory	for	Mac	OS
X	guests,	while	kvm	and	hyperv	are	recommended	for	Linux	and	Windows
guests	respectively.	These	options	are	explained	in	detail	under
Section	10.4,	“Paravirtualization	providers”.

--paravirtdebug	<key=value>	[,<key=value>	...]:	This	setting
specifies	debugging	options	specific	to	the	paravirtualization	provider
configured	for	this	VM.	Please	refer	to	the	provider	specific	options	under
Section	9.32,	“Paravirtualized	debugging”	for	a	list	of	supported	key-value
pairs	for	each	provider.

--nestedpaging	on|off:	If	hardware	virtualization	is	enabled,	this
additional	setting	enables	or	disables	the	use	of	the	nested	paging	feature	in
the	processor	of	your	host	system;	see	Section	10.3,	“Hardware	vs.	software
virtualization”.

--largepages	on|off:	If	hardware	virtualization	and	nested	paging	are
enabled,	for	Intel	VT-x	only,	an	additional	performance	improvement	of	up
to	5%	can	be	obtained	by	enabling	this	setting.	This	causes	the	hypervisor
to	use	large	pages	to	reduce	TLB	use	and	overhead.

--vtxvpid	on|off:	If	hardware	virtualization	is	enabled,	for	Intel	VT-x
only,	this	additional	setting	enables	or	disables	the	use	of	the	tagged	TLB
(VPID)	feature	in	the	processor	of	your	host	system;	see	Section	10.3,
“Hardware	vs.	software	virtualization”.

--vtxux	on|off:	If	hardware	virtualization	is	enabled,	for	Intel	VT-x	only,
this	setting	enables	or	disables	the	use	of	the	unrestricted	guest	mode

feature	for	executing	your	guest.

--accelerate3d	on|off:	If	the	Guest	Additions	are	installed,	this	setting
enables	or	disables	hardware	3D	acceleration;	see	Section	4.5.1,	“Hardware
3D	acceleration	(OpenGL	and	Direct3D	8/9)”.

--accelerate2dvideo	on|off:	If	the	Guest	Additions	are	installed,	this
setting	enables	or	disables	2D	video	acceleration;	see	Section	4.5.2,
“Hardware	2D	video	acceleration	for	Windows	guests”.

--chipset	piix3|ich9:	By	default	VirtualBox	emulates	an	Intel	PIIX3
chipset.	Usually	there	is	no	reason	to	change	the	default	setting	unless	this
is	required	to	relax	some	of	its	constraints;	see	Section	3.5.1,
“"Motherboard"	tab”.

You	can	influence	the	BIOS	logo	that	is	displayed	when	a	virtual	machine
starts	up	with	a	number	of	settings.	By	default,	a	VirtualBox	logo	is
displayed.

With	--bioslogofadein	on|off	and	--bioslogofadeout	on|off,	you	can
determine	whether	the	logo	should	fade	in	and	out,	respectively.

With	--bioslogodisplaytime	<msec>	you	can	set	how	long	the	logo
should	be	visible,	in	milliseconds.

With	--bioslogoimagepath	<imagepath>	you	can,	if	you	are	so	inclined,
replace	the	image	that	is	shown,	with	your	own	logo.	The	image	must	be	an
uncompressed	256	color	BMP	file	without	color	space	information
(Windows	3.0	format).	The	image	must	not	be	bigger	than	640	x	480.

--biosbootmenu	disabled|menuonly|messageandmenu:	This	specifies
whether	the	BIOS	allows	the	user	to	select	a	temporary	boot	device.
menuonly	suppresses	the	message,	but	the	user	can	still	press	F12	to	select	a
temporary	boot	device.

--biosapic	x2apic|apic|disabled:	This	specifies	the	firmware	APIC
level	to	be	used.	Options	are:	x2apic,	apic	or	disabled	(no	apic	or	x2apic)
respectively.

Note	that	if	x2apic	is	specified	and	x2apic	is	unsupported	by	the	VCPU,

biosapic	downgrades	to	apic,	if	supported	-	otherwise	down	to	'disabled'.
Similarly,	if	apic	is	specified,	and	apic	is	unsupported	a	downgrade	to
'disabled'	results.

--biossystemtimeoffset	<ms>:	This	specifies	a	fixed	time	offset
(milliseconds)	of	the	guest	relative	to	the	host	time.	If	the	offset	is	positive,
the	guest	time	runs	ahead	of	the	host	time.

--biospxedebug	on|off:	This	option	enables	additional	debugging	output
when	using	the	Intel	PXE	boot	ROM.	The	output	will	be	written	to	the
release	log	file	(Section	12.1.2,	“Collecting	debugging	information”.

--boot<1-4>	none|floppy|dvd|disk|net:	This	specifies	the	boot	order
for	the	virtual	machine.	There	are	four	"slots",	which	the	VM	will	try	to
access	from	1	to	4,	and	for	each	of	which	you	can	set	a	device	that	the	VM
should	attempt	to	boot	from.

--rtcuseutc	on|off:	This	option	lets	the	real-time	clock	(RTC)	operate	in
UTC	time.	See	Section	3.5.1,	“"Motherboard"	tab”.

--graphicscontroller	none|vboxvga|vmsvga:	This	option	specifies	use
of	a	graphics	controller,	and	type	chosen	from	vboxvga	or	vmsvga.
Section	3.5.1,	“"Motherboard"	tab”).

--snapshotfolder	default|<path>:	This	option	specifies	the	folder	in
which	snapshots	will	be	kept	for	a	virtual	machine.

--firmware	bios|efi|efi32|efi64:	This	option	specifies	which	firmware
to	be	used	to	boot	the	VM:	Available	options	are:	BIOS,	or	one	of	the	EFI
options:	efi,	efi32	or	efi64.	Use	EFI	options	with	care.

--guestmemoryballoon	<size>	This	option	sets	the	default	size	of	the
guest	memory	balloon,	that	is,	memory	allocated	by	the	VirtualBox	Guest
Additions	from	the	guest	operating	system	and	returned	to	the	hypervisor
for	re-use	by	other	virtual	machines.	<size>	must	be	specified	in
megabytes.	The	default	size	is	0	megabytes.	For	details,	see	Section	4.9.1,
“Memory	ballooning”.

--defaultfrontend	default|<name>:	This	option	specifies	the	default
frontend	to	be	used	when	starting	this	VM;	see	Section	8.12,

“VBoxManage	startvm”	for	details.

8.8.2.	Networking	settings

The	following	networking	settings	are	available	through	VBoxManage	modifyvm.
With	all	these	settings,	the	decimal	number	directly	following	the	option	name
("1-N"	in	the	list	below)	specifies	the	virtual	network	adapter	whose	settings
should	be	changed.

--nic<1-N>

none|null|nat|natnetwork|bridged|intnet|hostonly|generic:	With
this,	you	can	set,	for	each	of	the	VM's	virtual	network	cards,	what	type	of
networking	should	be	available.	They	can	be	not	present	(none),	not
connected	to	the	host	(null),	use	network	address	translation	(nat),	use	the
new	network	address	translation	engine	(natnetwork),	bridged	networking
(bridged)	or	communicate	with	other	virtual	machines	using	internal
networking	(intnet),	host-only	networking	(hostonly),	or	access	rarely
used	sub-modes	(generic).	These	options	correspond	to	the	modes	which
are	described	in	detail	in	Section	6.2,	“Introduction	to	networking	modes”.

--nictype<1-N>

Am79C970A|Am79C973|82540EM|82543GC|82545EM|virtio:	This	enables
you	to	specify	which	networking	hardware	VirtualBox	presents	to	the	guest
for	a	specified	VM	virtual	network	card;	see	Section	6.1,	“Virtual
networking	hardware”.

--cableconnected<1-N>	on|off:	This	enables	you	to	temporarily
disconnect	a	virtual	network	interface,	as	if	a	network	cable	had	been	pulled
from	a	real	network	card.	This	might	be	useful	e.g.	for	resetting	certain
software	components	in	the	VM.

With	the	"nictrace"	options,	you	can	optionally	trace	network	traffic	by
dumping	it	to	a	file,	for	debugging	purposes.

With	--nictrace<1-N>	on|off,	you	can	enable	network	tracing	for	a
particular	virtual	network	card.

If	enabled,	you	must	specify	with	--nictracefile<1-N>	<filename>	the
absolute	path	of	the	file	the	trace	should	be	logged	to.

--nicproperty<1-N>	<paramname>="paramvalue":	This	option,	in
combination	with	"nicgenericdrv"	allows	you	to	pass	parameters	to	rarely-
used	network	backends.

These	parameters	are	backend	engine-specific,	and	are	different	between
UDP	Tunnel	and	the	VDE	backend	drivers.	For	examples,	please	see
Section	6.8,	“UDP	Tunnel	networking”.

--nicspeed<1-N>	<kbps>:	If	generic	networking	has	been	enabled	for	a
particular	virtual	network	card	(see	the	--nic	option	above	-	otherwise	this
setting	has	no	effect),	this	mode	enables	access	to	rarely	used	networking
sub-modes,	such	as	VDE	network	or	UDP	Tunnel.	This	option	specifies	the
throughput	rate	in	KBytes/sec.

--nicbootprio<1-N>	<priority>:	This	specifies	the	order	in	which	NICs
are	tried	for	booting	over	the	network	(using	PXE).	The	priority	is	an
integer	in	the	0	to	4	range.	Priority	1	is	the	highest,	priority	4	is	low.
Priority	0,	which	is	the	default	unless	otherwise	specified,	is	the	lowest.

Note	that	this	option	only	has	effect	when	the	Intel	PXE	boot	ROM	is	used.

--nicpromisc<1-N>	deny|allow-vms|allow-all:	This	ernables	you	to
specify	how	the	promiscuous	mode	is	handled	for	the	specified	VM	virtual
network	card.	This	setting	is	only	relevant	for	bridged	networking.	deny
(default	setting)	hides	any	traffic	not	intended	for	this	VM.	allow-vms	hides
all	host	traffic	from	this	VM	but	allows	the	VM	to	see	traffic	from/to	other
VMs.	allow-all	removes	this	restriction	completely.

--nicbandwidthgroup<1-N>	none|<name>:	This	removes/adds	an
assignment	of	a	bandwidth	group	from/to	the	specified	virtual	network
interface.	Specifying	none	removes	any	current	bandwidth	group
assignment	from	the	specified	virtual	network	interface.	Specifying	<name>
adds	an	assignment	of	a	bandwidth	group	to	the	specified	virtual	network
interface.

For	details,	please	see	Section	6.10,	“Limiting	bandwidth	for	network	I/O”.

--bridgeadapter<1-N>	none|<devicename>:	If	bridged	networking	has
been	enabled	for	a	virtual	network	card	(see	the	--nic	option	above;
otherwise	this	setting	has	no	effect),	use	this	option	to	specify	which	host

interface	the	given	virtual	network	interface	will	use.	For	details,	please	see
Section	6.5,	“Bridged	networking”.

--hostonlyadapter<1-N>	none|<devicename>:	If	host-only	networking
has	been	enabled	for	a	virtual	network	card	(see	the	--nic	option	above;
otherwise	this	setting	has	no	effect),	use	this	option	to	specify	which	host-
only	networking	interface	the	given	virtual	network	interface	will	use.	For
details,	please	see	Section	6.7,	“Host-only	networking”.

--intnet<1-N>	network:	If	internal	networking	has	been	enabled	for	a
virtual	network	card	(see	the	--nic	option	above;	otherwise	this	setting	has
no	effect),	use	this	option	to	specify	the	name	of	the	internal	network	(see
Section	6.6,	“Internal	networking”).

--nat-network<1-N>	<network	name>:	If	the	networking	type	is	set	to
natnetwork	(not	nat)	then	this	setting	specifies	the	name	of	the	NAT
network	this	adapter	is	connected	to.	Optional.

--nicgenericdrv<1-N>	<backend	driver>:	If	generic	networking	has
been	enabled	for	a	virtual	network	card	(see	the	--nic	option	above;
otherwise	this	setting	has	no	effect),	this	mode	allows	you	to	access	rarely
used	networking	sub-modes,	such	as	VDE	network	or	UDP	Tunnel.

--macaddress<1-N>	auto|<mac>:	With	this	option	you	can	set	the	MAC
address	of	a	particular	network	adapter	on	the	VM.	Normally,	each	network
adapter	is	assigned	a	random	address	by	VirtualBox	at	VM	creation.

8.8.2.1.	NAT	Networking	settings.

The	following	NAT	networking	settings	are	available	through	VBoxManage
modifyvm.	With	all	these	settings,	the	decimal	number	directly	following	the
option	name	("1-N"	in	the	list	below)	specifies	the	virtual	network	adapter
whose	settings	should	be	changed.

--natnet<1-N>	<network>|default:	If	the	networking	type	is	set	to	nat
(not	natnetwork)	then	this	setting	specifies	the	IP	address	range	to	be	used
for	this	network.	See	Section	9.11,	“Fine-tuning	the	VirtualBox	NAT
engine”	for	an	example.

--natpf<1-N>	[<name>],tcp|udp,[<hostip>],<hostport>,

[<guestip>],	<guestport>:	This	setting	defines	a	NAT	port-forwarding
rule.	See	Section	6.3.1,	“Configuring	port	forwarding	with	NAT”	for
details.

--natpf<1-N>	delete	<name>:	This	setting	deletes	a	NAT	port-forwarding
rule.	See	Section	6.3.1,	“Configuring	port	forwarding	with	NAT”	for
details.

--nattftpprefix<1-N>	<prefix>:	This	setting	defines	a	prefix	for	the
built-in	TFTP	server,	i.e.	where	the	boot	file	is	located.	See	Section	6.3.2,
“PXE	booting	with	NAT”	and	Section	9.11.2,	“Configuring	the	boot	server
(next	server)	of	a	NAT	network	interface”	for	details.

--nattftpfile<1-N>	<bootfile>:	This	setting	defines	the	TFT	boot	file.
See	Section	9.11.2,	“Configuring	the	boot	server	(next	server)	of	a	NAT
network	interface”	for	details.

--nattftpserver<1-N>	<tftpserver>:	This	setting	defines	the	TFTP
server	address	to	boot	from.	Please	see	Section	9.11.2,	“Configuring	the
boot	server	(next	server)	of	a	NAT	network	interface”	for	details.

--nattbindip<1-N>	<ip;>:	VirtualBox's	NAT	engine	normally	routes
TCP/IP	packets	through	the	default	interface	assigned	by	the	host's	TCP/IP
stack.	Use	this	setting	to	instruct	the	NAT	engine	to	bind	to	a	specified	IP
address	instead.	Please	see	Section	9.11.3,	“Tuning	TCP/IP	buffers	for
NAT”	for	details.

--natdnspassdomain<1-N>	on|off:	This	setting	specifies	whether	the
built-in	DHCP	server	passes	the	domain	name	for	network	name	resolution.

--natdnsproxy<1-N>	on|off:	This	setting	makes	the	NAT	engine	proxy	all
guest	DNS	requests	to	the	host's	DNS	servers.	Please	see	Section	9.11.5,
“Enabling	DNS	proxy	in	NAT	mode”	for	details.

--natdnshostresolver<1-N>	on|off:	This	setting	makes	the	NAT	engine
use	the	host's	resolver	mechanisms	to	handle	DNS	requests.	Please	see
Section	9.11.5,	“Enabling	DNS	proxy	in	NAT	mode”	for	detailsx).

--natsettings<1-N>	[<mtu>],[<socksnd>],[<sockrcv>],[<tcpsnd>],

[<tcprcv>]:	This	setting	controls	several	NAT	settings.	Please	see
Section	9.11.3,	“Tuning	TCP/IP	buffers	for	NAT”	for	details.

--nataliasmode<1-N>	default|[log],[proxyonly],[sameports]:	This
setting	defines	behaviour	of	NAT	engine	core:	log	-	enables	logging,
proxyonly	-	switches	of	aliasing	mode	makes	NAT	transparent,	sameports
enforces	NAT	engine	to	send	packets	via	the	same	port	as	they	originated
on,	default	-	disable	all	mentioned	modes	above.	Please	see	Section	9.11.7,
“Configuring	aliasing	of	the	NAT	engine”	for	details.

8.8.3.	Miscellaneous	settings

The	following	other	hardware	settings,	such	as	serial	port,	audio,	clipboard,	drag
and	drop,	monitor	and	USB	settings	are	available	through	VBoxManage
modifyvm:

--mouse	<ps2|usb|usbtablet|usbmultitouch>:	Specifies	the	mode	of	the
mouse	to	be	used	in	the	VM.	Available	options	are:	ps2,	usb,	usbtablet,
usbmultitouch.

--keyboard	<ps2|usb>:	Specifies	the	mode	of	the	keyboard	to	be	used	in
the	VM.	Available	options	are:	ps2,	usb.

--uart<1-N>	off|<I/O	base>	<IRQ>:	With	this	setting	you	can	configure
virtual	serial	ports	for	the	VM.	See	Section	3.10,	“Serial	ports”	for	an
introduction.

--uartmode<1-N>	<arg>:	This	setting	controls	how	VirtualBox	connects	a
given	virtual	serial	port	(previously	configured	with	the	--uartX	setting,
see	above)	to	the	host	on	which	the	virtual	machine	is	running.	As
described	in	detail	in	Section	3.10,	“Serial	ports”,	for	each	such	port,	you
can	specify	<arg>	as	one	of	the	following	options:

disconnected:	Even	though	the	serial	port	is	shown	to	the	guest,	it	has
no	"other	end"	--	like	a	real	COM	port	without	a	cable.

server	<pipename>:	On	a	Windows	host,	this	tells	VirtualBox	to
create	a	named	pipe	on	the	host	named	<pipename>	and	connect	the
virtual	serial	device	to	it.	Note	that	Windows	requires	that	the	name	of

a	named	pipe	begin	with	\\.\pipe\.

On	a	Linux	host,	instead	of	a	named	pipe,	a	local	domain	socket	is
used.

client	<pipename>:	This	operates	just	like	server	...,	except	that
the	pipe	(or	local	domain	socket)	is	not	created	by	VirtualBox,	but
assumed	to	exist	already.

tcpserver	<port>:	This	tells	VirtualBox	to	create	a	TCP	socket	on
the	host	with	TCP	<port>	and	connect	the	virtual	serial	device	to	it.
Note	that	UNIX-like	systems	require	ports	over	1024	for	normal	users.

tcpclient	<hostname:port>:	This	operates	just	like	tcpserver	...,
except	that	the	TCP	socket	is	not	created	by	VirtualBox,	but	assumed
to	exist	already.

file	<file>:	This	redirects	the	serial	port	output	to	a	raw	file	<file>
specified	by	its	absolute	path	on	the	host	file	system.

<devicename>:	If,	instead	of	the	above,	the	device	name	of	a	physical
hardware	serial	port	of	the	host	is	specified,	the	virtual	serial	port	is
connected	to	that	hardware	port.	On	a	Windows	host,	the	device	name
will	be	a	COM	port	such	as	COM1;	on	a	Linux	host,	the	device	name
will	look	like	/dev/ttyS0.	This	allows	you	to	"wire"	a	real	serial	port
to	a	virtual	machine.

--lptmode<1-N>	<Device>:	Specifies	the	Device	Name	of	the	parallel	port
that	the	Parallel	Port	feature	will	be	using.	Use	this	before	--lpt.	This
feature	is	host	operating	system	specific.	For	Windows	hosts,	use	a	device
name	like	lpt1	while	on	Linux	hosts	you	have	to	use	a	device	name	like
/dev/lp0

--lpt<1-N>	<I/O	base>	<IRQ>:	Specifies	the	I/O	address	of	the	parallel
port	and	the	IRQ	number	that	the	Parallel	Port	feature	will	be	using.
Optional.	Use	this	after	--lptmod.	I/O	base	address	and	IRQ	are	the	values
that	guest	sees	i.e.	the	values	avalable	under	guest	Device	Manager.

--audio	none|null|dsound|oss|alsa|pulse|coreaudio:	With	this
setting,	you	can	specify	whether	the	VM	should	have	audio	support,	and	–

if	so	–	which	type.	The	list	of	supported	audio	types	depends	on	the	host
and	can	be	determined	with	VBoxManage	modifyvm.

--audiocontroller	ac97|hda|sb16:	With	this	setting,	you	can	specify	the
audio	controller	to	be	used	with	this	VM.

--audiocodec	stac9700|ad1980|stac9221|sb16:	With	this	setting,	you
can	specify	the	audio	codec	to	be	used	with	this	VM.

--audioin	on:	With	this	setting,	you	can	specify	whether	capturing	audio
from	the	host	is	enabled	or	disabled.

--audioout	on:	With	this	setting,	you	can	specify	whether	audio	playback
from	the	guest	is	enabled	or	disabled.

--clipboard	disabled|hosttoguest|guesttohost|bidirectional:	With
this	setting,	you	can	select	if	and	how	the	guest	or	host	operating	system's
clipboard	should	be	shared	with	the	host	or	guest.	See	Section	3.4,	“General
settings”.	This	requires	that	the	Guest	Additions	be	installed	in	the	virtual
machine.

--draganddrop	disabled|hosttoguest|guesttohost|bidirectional:
With	this	setting,	you	can	specify	the	current	drag	and	drop	mode	being
used	between	the	host	and	the	virtual	machine.	See	Section	4.4,	“Drag	and
Drop”.	This	requires	that	the	Guest	Additions	be	installed	in	the	virtual
machine.

--monitorcount	<count>:	This	enables	multi-monitor	support.	See
Section	3.6,	“Display	settings”.

--usb	on|off:	This	setting	enables	or	disables	the	VM's	virtual	USB
controller.	See	Section	3.11.1,	“USB	settings”	for	details.

--usbehci	on|off:	This	setting	enables	or	disables	the	VM's	virtual	USB
2.0	controller.	See	Section	3.11.1,	“USB	settings”	for	details.

--usbxhci	on|off:	This	setting	enables	or	disables	the	VM's	virtual	USB
3.0	controller.	See	Section	3.11.1,	“USB	settings”	for	details.

--usbrename	<oldname>	<newname>:	This	setting	enables	renaming	of	the

VM's	virtual	USB	controller	from	<oldname>	to	<newname>.

8.8.4.	Video	Capture	settings

The	following	settings	for	changing	video	recording	parameters	are	available
through	VBoxManage	modifyvm.

--videocap	on|off:	This	option	enables	or	disables	recording	a	VM
session	into	a	WebM/VP8	file.	If	this	option	is	enabled,	recording	will	start
when	the	VM	session	is	started.

--videocapscreens	all|<screen	ID>	[<screen	ID>	...]:	This	option
allows	to	specify	which	screens	of	the	VM	are	being	recorded.	Each	screen
is	recorded	into	a	separate	file.

--videocapfile	<filename>:	This	option	sets	the	filename	VirtualBox
uses	to	save	the	recorded	content.

--videocapres	<width>x<height>:	This	option	sets	the	resolution	(in
pixels)	of	the	recorded	video.

--videocaprate	<rate>:	This	option	sets	the	bitrate	in	kilobits	(kb)	per
second.	Increasing	this	value	makes	the	video	look	better	for	the	cost	of	an
increased	file	size.

--videocapfps	<fps>:	This	option	sets	the	maximum	number	of	frames
per	second	(FPS)	to	be	recorded.	Frames	with	a	higher	frequency	will	be
skipped.	Reducing	this	value	increases	the	number	of	skipped	frames	and
reduces	the	file	size.

--videocapmaxtime	<ms>:	This	option	sets	the	maximum	time	in
milliseconds	the	video	capturing	will	be	enabled	since	activation.	The
capturing	stops	when	the	defined	time	interval	has	elapsed.	If	this	value	is
zero	the	capturing	is	not	limited	by	time.

--videocapmaxsize	<MB>:	This	option	limits	the	maximum	size	of	the
captured	video	file	(in	MB).	The	capturing	stops	when	the	file	size	has
reached	the	specified	size.	If	this	value	is	zero	the	capturing	will	not	be
limited	by	file	size.

--videocapopts	<key=value>	[,<key=value>	...]:	This	format	can	be
used	to	specify	additional	video	capturing	options.	These	options	only	are
for	advanced	users	and	must	be	specified	in	a	comma-separated	key=value
format,	e.g.	foo=bar,a=b.

The	following	keys	and	their	corresponding	values	are	available:

ac_enabled:	Enables	audio	recording	when	set	to	true,	otherwise	set
to	false	to	disable.	This	feature	is	considered	being	experimental.

8.8.5.	Remote	machine	settings

The	following	settings	that	affect	remote	machine	behavior	are	available	through
VBoxManage	modifyvm:

--vrde	on|off:	This	enables	or	disables	the	VirtualBox	remote	desktop
extension	(VRDE)	server.

--vrdeproperty	"TCP/Ports|Address=<value>"	sets	the	port	number(s)
and	IP	address	on	the	VM	that	the	VRDE	server	can	bind	to.

For	TCP/Ports,	<value>	should	be	a	port	or	a	range	of	ports	that	the
VRDE	server	can	bind	to;	"default"	or	"0"	means	port	3389,	the
standard	port	for	RDP.	For	details,	see	the	description	for	the	--
vrdeport	option	in	Section	8.8.5,	“Remote	machine	settings”.

For	TCP/Address,	<value>	should	be	the	IP	address	of	the	host
network	interface	that	the	VRDE	server	will	bind	to.	If	specified,	the
server	will	accept	connections	only	on	the	specified	host	network
interface.	For	details,	see	the	description	for	the	--vrdeaddress	option
in	Section	8.8.5,	“Remote	machine	settings”.

--vrdeproperty

"VideoChannel/Enabled|Quality|DownscaleProtection=<value>"	sets
the	VRDP	video	redirection	properties.

For	VideoChannel/Enabled,	<value>	can	be	set	to	"1"	switching	the
VRDP	video	channel	on.	For	details,	see	Section	7.1.9,	“VRDP	video
redirection”.

For	VideoChannel/Quality,	<value>	should	be	set	between	10	and
100%	inclusive,	representing	a	JPEG	compression	level	on	the	VRDE
server	video	channel.	Lower	values	mean	lower	quality	but	higher
compression.	For	details,	see	Section	7.1.9,	“VRDP	video	redirection”.

For	VideoChannel/DownscaleProtection,	<value>	can	be	set	to	"1"	to
enable	the	videochannel	downscale	protection	feature.	When	enabled,
if	a	video's	size	equals	the	shadow	buffer	size,	then	it	is	regarded	as	a
full	screen	video,	and	is	displayed;	but	if	its	size	is	between	fullscreen
and	the	downscale	threshold	-	it	is	NOT	displayed,	as	it	could	be	an
application	window,	which	would	be	unreadable	when	downscaled.
When	the	downscale	protection	feature	is	disabled,	an	attempt	is
always	made	to	display	videos.

--vrdeproperty

"Client/DisableDisplay|DisableInput|DisableAudio|DisableUSB=1"

disables	one	of	the	VRDE	server	features:	Display,	Input,	Audio	or	USB
respectively.	To	re-enable	a	feature,	use	e.g.	"Client/DisableDisplay=".	For
details,	see	Section	7.1.10,	“VRDP	customization”.

--vrdeproperty	"Client/DisableClipboard|DisableUpstreamAudio=1"

disables	one	of	the	VRDE	server	features:	Clipboard	or	UpstreamAudio
respectively.	To	re-enable	a	feature,	use	e.g.	"Client/DisableClipboard=".
For	details,	see	Section	7.1.10,	“VRDP	customization”.

--vrdeproperty	"Client/DisableRDPDR=1"

disables	the	VRDE	server	feature:	RDP	device	redirection	for	smart	cards.
To	re-enable	this	feature,	use	"Client/DisableRDPR=".

--vrdeproperty	"H3DRedirect/Enabled=1"

enables	the	VRDE	server	feature:	3D	redirection.	To	re-disable	this	feature,
use	"H3DRedirect/Enabled=".

--vrdeproperty

"Security/Method|ServerCertificate|ServerPrivateKey|CACertificate=

<value>"	sets	the	desired	security	method/Path	of	server	certificate,	path	of

server	private	key,	path	of	CA	certificate,	used	for	a	connection.

--vrdeproperty	"Security/Method=<value>"	sets	the	desired
security	method,	which	is	used	for	a	connection.	Valid	values	are:

Negotiate	-	both	Enhanced	(TLS)	and	Standard	RDP	Security
connections	are	allowed.	The	security	method	is	negotiated	with
the	client.	This	is	the	default	setting.

RDP	-	only	Standard	RDP	Security	is	accepted.

TLS	-	only	Enhanced	RDP	Security	is	accepted.	The	client	must
support	TLS.

For	details,	see	Section	7.1.6,	“RDP	encryption”.

--vrdeproperty	"Security/ServerCertificate=<value>"	where
<value>	is	the	absolute	path	of	the	server	certificate.	For	details,	see
Section	7.1.6,	“RDP	encryption”.

--vrdeproperty	"Security/ServerPrivateKey=<value>"	where
<value>	is	the	absolute	path	of	the	server	private	key.	For	details,	see
Section	7.1.6,	“RDP	encryption”.

--vrdeproperty	"Security/CACertificate=<value>"	where
<value>	is	the	absolute	path	of	the	CA	self	signed	certificate.	For
details,	see	Section	7.1.6,	“RDP	encryption”.

--vrdeproperty	"Audio/RateCorrectionMode|LogPath=<value>"	sets
the	Audio	connection	mode,	or	Path	of	the	audio	logfile.

--vrdeproperty	"Audio/RateCorrectionMode=<value>"	where
<value>	is	the	desired	rate	correction	mode,	allowed	values	are:

VRDP_AUDIO_MODE_VOID	-	no	mode	specified,	use	to	unset	any
Audio	mode	already	set.

VRDP_AUDIO_MODE_RC	-	rate	correction	mode.

VRDP_AUDIO_MODE_LPF	-	low	pass	filter	mode.

VRDP_AUDIO_MODE_CS	-	client	sync	mode	to	prevent
under/overflow	of	the	client	queue.

--vrdeproperty	"Audio/LogPath=<value>"	where	<value>	is	the
absolute	path	of	the	Audio	log	file.

--vrdeextpack	default|<name>:	Enables	specification	of	the	library	for
accessing	the	VM	remotely.	The	default	is	to	use	the	RDP	code	which	is
part	of	the	Oracle	VM	VirtualBox	Extension	Pack.

--vrdeport	default|<ports>:	A	port	or	a	range	of	ports	the	VRDE	server
can	bind	to;	"default"	or	"0"	means	port	3389,	the	standard	port	for	RDP.
You	can	specify	a	comma-separated	list	of	ports	or	ranges	of	ports.	Use	a
dash	between	two	port	numbers	to	specify	a	range.	The	VRDE	server	will
bind	to	one	of	the	available	ports	from	the	specified	list.	Only	one	machine
can	use	a	given	port	at	a	time.	For	example,	the	option	--vrdeport
5000,5010-5012	will	tell	the	server	to	bind	to	one	of	following	ports:	5000,
5010,	5011	or	5012.

--vrdeaddress	<IP	address>:	The	IP	address	of	the	host	network
interface	the	VRDE	server	will	bind	to.	If	specified,	the	server	will	accept
connections	only	on	the	specified	host	network	interface.

The	setting	can	be	used	to	specify	whether	the	VRDP	server	should	accept
either	IPv4,	IPv6	or	both	connections:

only	IPv4:	--vrdeaddress	"0.0.0.0"

only	IPv6:	--vrdeaddress	"::"

both	IPv6	and	IPv4	(default):	--vrdeaddress	""

--vrdeauthtype	null|external|guest:	This	enables	you	to	indicate	use
of	authorization,	and	specify	how	authorization	will	be	performed;	see
Section	7.1.5,	“RDP	authentication”	for	details.

--vrdeauthlibrary	default|<name>:	This	specifies	the	library	used	for
RDP	authentication,	see	Section	7.1.5,	“RDP	authentication”	for	details.

--vrdemulticon	on|off:	This	enables	multiple	connections	to	be	made	to

the	same	VRDE	server,	if	the	server	supports	this	feature;	see	Section	7.1.7,
“Multiple	connections	to	the	VRDP	server”.

--vrdereusecon	on|off:	This	specifies	the	VRDE	server	behavior	when
multiple	connections	are	disabled.	When	this	option	is	enabled,	the	server
will	allow	a	new	client	to	connect	and	will	drop	the	existing	connection.
When	this	option	is	disabled	(this	is	the	default	setting),	a	new	connection
will	not	be	accepted	if	there	is	already	a	client	connected	to	the	server.

--vrdevideochannel	on|off:	This	enables	video	redirection,	if	it	is
supported	by	the	VRDE	server;	see	Section	7.1.9,	“VRDP	video
redirection”.

--vrdevideochannelquality	<percent>:	Specifies	the	image	quality	for
video	redirection;	see	Section	7.1.9,	“VRDP	video	redirection”.

8.8.6.	Teleporting	settings

With	the	following	commands	for	VBoxManage	modifyvm	you	can	configure	a
machine	to	be	a	target	for	teleporting.	See	Section	7.2,	“Teleporting”	for	an
introduction.

--teleporter	on|off:	This	setting	enables/disables	the	teleporter	feature
whereby	when	the	machine	is	started,	it	waits	to	receieve	a	teleporting
request	from	the	network	instead	of	booting	normally;	teleporting	requests
are	received	on	the	port	and	address	specified	using	the	following	two
parameters.

--teleporterport	<port>,	--teleporteraddress	<address>:	these
settings	must	be	used	with	--teleporter	and	they	specify	the	port	and	address
the	virtual	machine	should	listen	to	to	receive	a	teleporting	request	sent
from	another	virtual	machine.	<port>	can	be	any	free	TCP/IP	port	number
(e.g.	6000);	<address>	can	be	any	IP	address	or	hostname	and	specifies	the
TCP/IP	socket	to	bind	to.	The	default	is	"0.0.0.0",	which	means	any
address.

--teleporterpassword	<password>:	if	this	optional	setting	is	given,	then
the	teleporting	request	will	only	succeed	if	the	source	machine	specifies	the
same	password	as	the	one	given	with	this	command.

--teleporterpasswordfile	<password>:	if	this	optional	setting	is	given,
then	the	teleporting	request	will	only	succeed	if	the	source	machine
specifies	the	same	password	as	the	one	specified	in	the	file	give	with	this
command.	Use	stdin	to	read	the	password	from	stdin.

--cpuid	<leaf>	<eax>	<ebx>	<ecx>	<edx>:	Advanced	users	can	use	this
setting	before	a	teleporting	operation	to	restrict	the	virtual	CPU	capabilities
that	VirtualBox	presents	to	the	guest	operating	system.	This	must	be	run	on
both	the	source	and	the	target	machines	involved	in	the	teleporting	and	will
then	modify	what	the	guest	sees	when	it	executes	the	CPUID	machine
instruction.	This	might	help	with	misbehaving	applications	that	wrongly
assume	that	certain	CPU	capabilities	are	present.	The	meaning	of	the
parameters	is	hardware	dependent;	please	refer	to	the	AMD	or	Intel
processor	manuals.

8.8.7.	Debugging	settings

The	following	settings	are	only	relevant	for	low-level	VM	debugging.	Regular
users	will	never	need	these	settings.

--tracing-enabled	on|off:	Enable	the	tracebuffer.	This	consumes	some
memory	for	the	tracebuffer	and	adds	extra	overhead.

--tracing-config	<config-string>:	Enables	tracing	configuration.	In
particular,	this	defines	which	group	of	tracepoints	are	enabled.

--tracing-allow-vm-access	on|off:	Enables/disables(default)	VM
access	to	the	tracebuffer.

8.8.8.	USB	card	reader	settings

The	following	setting	defines	access	to	a	USB	Card	Reader	by	the	guest
environment.	USB	card	readers	are	typically	used	for	accessing	data	on	memory
cards	such	as	CompactFlash	(CF),	Secure	Digital	(SD)	or	MultiMediaCard
(MMC).

--usbcardreader	on|off:	Enables/disables	the	USB	card	reader	interface.

8.8.9.	Auto	starting	VMs	during	host	system	boot

These	settings	configure	the	VM	autostart	feature,	which	automatically	starts	the
VM	at	host	system	boot-up.	Note	that	there	are	pre-requisites	that	need	to	be
addressed	before	using	this	feature.	See	Section	9.24,	“Starting	virtual	machines
during	system	boot”	for	more	details.

--autostart	on|off:	Enables/disables	VM	autostart	at	host	system	boot-
up,	using	specified	user	name.

--autostart-delay	<seconds>:	Specifies	a	delay	(seconds)	following	host
system	boot-up,	before	VM	autostarts.

8.9.	VBoxManage	clonevm

This	command	creates	a	full	or	linked	copy	of	an	existing	virtual	machine.

The	clonevm	subcommand	takes	at	least	the	name	of	the	virtual	machine	which
should	be	cloned.	The	following	additional	settings	can	be	used	to	further
configure	the	clone	VM	operation:

--snapshot	<uuid>|<name>:	Select	a	specific	snapshot	where	the	clone
operation	should	refer	to.	Default	is	referring	to	the	current	state.

--mode	machine|machineandchildren|all:	Selects	the	cloning	mode	of
the	operation.	If	machine	is	selected	(the	default),	the	current	state	of	the
VM	without	any	snapshots	is	cloned.	In	the	machineandchildren	mode	the
snapshot	provided	by	--snapshot	and	all	child	snapshots	are	cloned.	If	all
is	the	selected	mode	all	snapshots	and	the	current	state	are	cloned.

--options	link|keepallmacs|keepnatmacs|keepdisknames:	Allows
additional	fine	tuning	of	the	clone	operation.	The	first	option	defines	that	a
linked	clone	should	be	created,	which	is	only	possible	for	a	machine	cloned
from	a	snapshot.	The	next	two	options	enable	specification	of	the	handling
of	MAC	addresses	of	every	virtual	network	card.	They	can	either	be
reinitialized	(the	default),	left	unchanged	(keepallmacs)	or	left	unchanged
when	the	network	type	is	NAT	(keepnatmacs).	If	you	add	keepdisknames
all	new	disk	images	are	called	like	the	original	ones,	otherwise	they	are
renamed.

--name	<name>:	Select	a	new	name	for	the	new	virtual	machine.	Default	is
"Original	Name	Clone".

--groups	<group>,	...	Enables	the	clone	to	be	assigned	membership	of
the	specified	VM	groups	in	the	list.	Note	that	group	ids	always	start	with	a
/	and	can	be	nested.	By	default,	clones	are	always	assigned	membership	of
the	group	/.

--basefolder	<basefolder>:	Select	the	folder	where	the	new	virtual
machine	configuration	should	be	saved	in.

--uuid	<uuid>:	Select	the	UUID	the	new	VM	should	have.	This	id	has	to
be	unique	in	the	VirtualBox	instance	this	clone	should	be	registered.
Default	is	creating	a	new	UUID.

--register:	Automatically	register	the	new	clone	in	this	VirtualBox
installation.	If	you	manually	want	to	register	the	new	VM	later,	see
Section	8.6,	“VBoxManage	registervm	/	unregistervm”	for	instructions	how
to	do	so.

8.10.	VBoxManage	import

This	command	imports	a	virtual	appliance	in	OVF	format	by	copying	the	virtual
disk	images	and	creating	virtual	machines	in	VirtualBox.	See	Section	1.14,
“Importing	and	exporting	virtual	machines”	for	an	introduction	to	appliances.

The	import	subcommand	takes	at	least	the	path	name	of	an	OVF	file	as	input
and	expects	the	disk	images,	if	needed,	in	the	same	directory	as	the	OVF	file.	A
lot	of	additional	command-line	options	are	supported	to	control	in	detail	what	is
being	imported	and	modify	the	import	parameters,	but	the	details	depend	on	the
content	of	the	OVF	file.

It	is	therefore	recommended	to	first	run	the	import	subcommand	with	the	--dry-
run	or	-n	option.	This	will	then	print	a	description	of	the	appliance's	contents	to
the	screen	how	it	would	be	imported	into	VirtualBox,	together	with	the	optional
command-line	options	to	influence	the	import	behavior.

Use	of	the	--options	link|keepallmacs|keepnatmacs|keepdisknames:	option
enables	additional	fine	tuning	of	the	clone	operation.	The	first	option	defines	that
a	linked	clone	should	be	created,	which	is	only	possible	for	a	machine	clone
from	a	snapshot.	The	next	two	options	enable	specification	of	how	the	MAC
addresses	of	every	virtual	network	card	should	be	handled.	They	can	either	be
reinitialized	(the	default),	left	unchanged	(keepallmacs)	or	left	unchanged	when
the	network	type	is	NAT	(keepnatmacs).	If	you	add	keepdisknames	all	new	disk
images	are	assigned	the	same	names	as	the	originals,	otherwise	they	are
renamed.

As	an	example,	here	is	the	screen	output	with	a	sample	appliance	containing	a
Windows	XP	guest:

VBoxManage	import	WindowsXp.ovf	--dry-run

Interpreting	WindowsXp.ovf...

OK.

Virtual	system	0:

	0:	Suggested	OS	type:	"WindowsXP"

				(change	with	"--vsys	0	--ostype	<type>";	use	"list	ostypes"	to	list	all)

	1:	Suggested	VM	name	"Windows	XP	Professional_1"

				(change	with	"--vsys	0	--vmname	<name>")

	3:	Number	of	CPUs:	1

				(change	with	"--vsys	0	--cpus	<n>")

	4:	Guest	memory:	956	MB	(change	with	"--vsys	0	--memory	<MB>")

	5:	Sound	card	(appliance	expects	"ensoniq1371",	can	change	on	import)

				(disable	with	"--vsys	0	--unit	5	--ignore")

	6:	USB	controller

				(disable	with	"--vsys	0	--unit	6	--ignore")

	7:	Network	adapter:	orig	bridged,	config	2,	extra	type=bridged

	8:	Floppy

				(disable	with	"--vsys	0	--unit	8	--ignore")

	9:	SCSI	controller,	type	BusLogic

				(change	with	"--vsys	0	--unit	9	--scsitype	{BusLogic|LsiLogic}";

				disable	with	"--vsys	0	--unit	9	--ignore")

10:	IDE	controller,	type	PIIX4

				(disable	with	"--vsys	0	--unit	10	--ignore")

11:	Hard	disk	image:	source	image=WindowsXp.vmdk,

						target	path=/home/user/disks/WindowsXp.vmdk,	controller=9;channel=0

				(change	controller	with	"--vsys	0	--unit	11	--controller	<id>";

				disable	with	"--vsys	0	--unit	11	--ignore")

As	you	can	see,	the	individual	configuration	items	are	numbered,	and	depending
on	their	type	support	different	command-line	options.	The	import	subcommand
can	be	directed	to	ignore	many	such	items	with	a	--vsys	X	--unit	Y	--ignore
option,	where	X	is	the	number	of	the	virtual	system	(zero	unless	there	are	several
virtual	system	descriptions	in	the	appliance)	and	Y	the	item	number,	as	printed
on	the	screen.

In	the	above	example,	Item	#1	specifies	the	name	of	the	target	machine	in
VirtualBox.	Items	#9	and	#10	specify	hard	disk	controllers,	respectively.	Item
#11	describes	a	hard	disk	image;	in	this	case,	the	additional	--controller
option	indicates	which	item	the	disk	image	should	be	connected	to,	with	the
default	coming	from	the	OVF	file.

You	can	combine	several	items	for	the	same	virtual	system	behind	the	same	--
vsys	option.	For	example,	to	import	a	machine	as	described	in	the	OVF,	but
without	the	sound	card	and	without	the	USB	controller,	and	with	the	disk	image
connected	to	the	IDE	controller	instead	of	the	SCSI	controller,	use	this:

VBoxManage	import	WindowsXp.ovf

						--vsys	0	--unit	5	--ignore	--unit	6	--ignore	--unit	11	--controller	10

8.11.	VBoxManage	export

This	command	exports	one	or	more	virtual	machines	from	VirtualBox	into	a
virtual	appliance	in	OVF	format,	including	copying	their	virtual	disk	images	to
compressed	VMDK.	See	Section	1.14,	“Importing	and	exporting	virtual
machines”	for	an	introduction	to	appliances.

The	export	command	is	simple	to	use:	list	the	machine	(or	the	machines)	that
you	would	like	to	export	to	the	same	OVF	file	and	specify	the	target	OVF	file
after	an	additional	--output	or	-o	option.	Note	that	the	directory	of	the	target
OVF	file	will	also	receive	the	exported	disk	images	in	the	compressed	VMDK
format	(regardless	of	the	original	format)	and	should	have	enough	disk	space	left
for	them.

Beside	a	simple	export	of	a	given	virtual	machine,	you	can	append	several
product	information	to	the	appliance	file.	Use	--product,	--producturl,	--
vendor,	--vendorurl,	--version	and	--description	to	specify	this	additional
information.	For	legal	reasons	you	may	add	a	license	text	or	the	content	of	a
license	file	by	using	the	--eula	and	--eulafile	option	respectively.	As	with
OVF	import,	you	must	use	the	--vsys	X	option	to	direct	the	previously
mentioned	options	to	the	correct	virtual	machine.

For	virtualization	products	which	aren't	fully	compatible	with	the	OVF	standard
1.0	you	can	enable	a	OVF	0.9	legacy	mode	with	the	--legacy09	option.	Other
options	are	--ovf09,	--ovf10,	--ovf20.

To	specify	options	controlling	the	exact	content	of	the	appliance	file,	you	can	use
--options	to	request	the	creation	of	a	manifest	file	(encouraged,	allows
detection	of	corrupted	appliances	on	import),	the	additional	export	of	DVD
images,	and	the	exclusion	of	MAC	addresses.	You	can	specify	a	list	of	options,
e.g.	--options	manifest,nomacs.	For	details,	check	the	help	output	of
VBoxManage	export.

8.12.	VBoxManage	startvm

This	command	starts	a	virtual	machine	that	is	currently	in	the	"Powered	off"	or
"Saved"	states.

The	optional	--type	specifier	determines	whether	the	machine	will	be	started	in
a	window	or	whether	the	output	should	go	through	VBoxHeadless,	with	VRDE
enabled	or	not;	see	Section	7.1.2,	“VBoxHeadless,	the	remote	desktop	server”
for	more	information.	The	list	of	types	is	subject	to	change,	and	it's	not
guaranteed	that	all	types	are	accepted	by	any	product	variant.

The	global	or	per-VM	default	value	for	the	VM	frontend	type	will	be	taken	if	the
type	is	not	explicitly	specified.	If	none	of	these	are	set,	the	GUI	variant	will	be
started.

The	following	values	are	allowed:

gui

Starts	a	VM	showing	a	GUI	window.	This	is	the	default.

headless

Starts	a	VM	without	a	window	for	remote	display	only.

sdl

Starts	a	VM	with	a	minimal	GUI	and	limited	features.

separate

Starts	a	VM	with	detachable	UI	(technically	it	is	a	headless	VM	with	user
interface	in	a	separate	process).	This	is	an	experimental	feature	as	it	lacks
certain	functionality	at	the	moment	(e.g.	3D	acceleration	will	not	work).

Note

If	you	experience	problems	with	starting	virtual	machines	with
particular	frontends	and	there	is	no	conclusive	error	information,

consider	starting	virtual	machines	directly	by	running	the	respective
front-end,	as	this	can	give	additional	error	information.

8.13.	VBoxManage	controlvm

The	controlvm	subcommand	allows	you	to	change	the	state	of	a	virtual	machine
that	is	currently	running.	The	following	can	be	specified:

VBoxManage	controlvm	<vm>	pause	temporarily	puts	a	virtual	machine	on
hold,	without	changing	its	state	for	good.	The	VM	window	will	be	painted
in	gray	to	indicate	that	the	VM	is	currently	paused.	(This	is	equivalent	to
selecting	the	"Pause"	item	in	the	"Machine"	menu	of	the	GUI).

Use	VBoxManage	controlvm	<vm>	resume	to	undo	a	previous	pause
command.	(This	is	equivalent	to	selecting	the	"Resume"	item	in	the
"Machine"	menu	of	the	GUI.)

VBoxManage	controlvm	<vm>	reset	has	the	same	effect	on	a	virtual
machine	as	pressing	the	"Reset"	button	on	a	real	computer:	a	cold	reboot	of
the	virtual	machine,	which	will	restart	and	boot	the	guest	operating	system
again	immediately.	The	state	of	the	VM	is	not	saved	beforehand,	and	data
may	be	lost.	(This	is	equivalent	to	selecting	the	"Reset"	item	in	the
"Machine"	menu	of	the	GUI).

VBoxManage	controlvm	<vm>	poweroff	has	the	same	effect	on	a	virtual
machine	as	pulling	the	power	cable	on	a	real	computer.	Again,	the	state	of
the	VM	is	not	saved	beforehand,	and	data	may	be	lost.	(This	is	equivalent	to
selecting	the	"Close"	item	in	the	"Machine"	menu	of	the	GUI	or	pressing
the	window's	close	button,	and	then	selecting	"Power	off	the	machine"	in
the	dialog).

After	this,	the	VM's	state	will	be	"Powered	off".	From	there,	it	can	be
started	again;	see	Section	8.12,	“VBoxManage	startvm”.

VBoxManage	controlvm	<vm>	savestate	will	save	the	current	state	of	the
VM	to	disk	and	then	stop	the	VM.	(This	is	equivalent	to	selecting	the
"Close"	item	in	the	"Machine"	menu	of	the	GUI	or	pressing	the	window's
close	button,	and	then	selecting	"Save	the	machine	state"	in	the	dialog.)

After	this,	the	VM's	state	will	be	"Saved".	From	there,	it	can	be	started
again;	see	Section	8.12,	“VBoxManage	startvm”.

VBoxManage	controlvm	<vm>	acpipowerbutton	will	send	an	ACPI
shutdown	signal	to	the	VM,	as	if	the	power	button	on	a	real	computer	had
been	pressed.	So	long	as	the	VM	is	running	a	fairly	modern	guest	operating
system	providing	ACPI	support,	this	should	trigger	a	proper	shutdown
mechanism	from	within	the	VM.

VBoxManage	controlvm	<vm>	keyboardputscancode	<hex>	[<hex>...]

Sends	commands	using	keycodes	to	the	VM.	Keycodes	are	documented	in
the	public	domain,	e.g.	http://www.win.tue.nl/~aeb/linux/kbd/scancodes-
1.html.

VBoxManage	controlvm	"VM	name"	teleport	--hostname	<name>	--

port	<port>	[--passwordfile	<file>	|	--password	<password>]

makes	the	machine	the	source	of	a	teleporting	operation	and	initiates	a
teleport	to	the	given	target.	See	Section	7.2,	“Teleporting”	for	an
introduction.	If	the	optional	password	is	specified,	it	must	match	the
password	that	was	given	to	the	modifyvm	command	for	the	target	machine;
see	Section	8.8.6,	“Teleporting	settings”	for	details.

A	few	extra	options	are	available	with	controlvm	that	do	not	directly	affect	the
VM's	running	state:

The	setlinkstate<1-N>	operation	connects	or	disconnects	virtual	network
cables	from	their	network	interfaces.

nic<1-N>

null|nat|bridged|intnet|hostonly|generic|natnetwork[<devicename>]

specifies	the	type	of	networking	that	should	be	made	available	on	the
specified	VM	virtual	network	card.	They	can	be:	not	connected	to	the	host
(null),	use	network	address	translation	(nat),	bridged	networking
(bridged)	or	communicate	with	other	virtual	machines	using	internal
networking	(intnet)	or	host-only	networking	(hostonly)	or	natnetwork
networking	(natnetwork)	or	access	to	rarely	used	sub-modes	(generic).
These	options	correspond	to	the	modes	which	are	described	in	detail	in
Section	6.2,	“Introduction	to	networking	modes”.

With	the	"nictrace"	options,	you	can	optionally	trace	network	traffic	by
dumping	it	to	a	file,	for	debugging	purposes.

With	nictrace<1-N>	on|off,	you	can	enable	network	tracing	for	a

particular	virtual	network	card.

If	enabled,	you	must	specify	with	--nictracefile<1-N>	<filename>	the
pathname	of	the	file	to	which	the	trace	should	be	logged.

nicpromisc<1-N>	deny|allow-vms|allow-all:	This	specifies	how	the
promiscious	mode	is	handled	for	the	specified	VM	virtual	network	card.
This	setting	is	only	relevant	for	bridged	networking.	deny	(default	setting)
hides	any	traffic	not	intended	for	this	VM.	allow-vms	hides	all	host	traffic
from	this	VM	but	allows	the	VM	to	see	traffic	from/to	other	VMs.	allow-
all	removes	this	restriction	completely.

nicproperty<1-N>	<paramname>="paramvalue":	This	option,	in
combination	with	"nicgenericdrv"	enables	you	to	pass	parameters	to	rarely-
used	network	backends.

Those	parameters	are	backend	engine-specific,	and	are	different	between
UDP	Tunnel	and	the	VDE	backend	drivers.	For	example,	please	see
Section	6.8,	“UDP	Tunnel	networking”.

natpf<1-N>	[<name>],tcp|udp,[<hostip>],<hostport>,[<guestip>],

<guestport>:	This	option	specifies	a	NAT	port-forwarding	rule	(please	see
Section	6.3.1,	“Configuring	port	forwarding	with	NAT”	for	details).

natpf<1-N>	delete	<name>:	This	option	deletes	a	NAT	port-forwarding
rule	(please	see	Section	6.3.1,	“Configuring	port	forwarding	with	NAT”	for
details).

The	guestmemoryballoon<balloon	size	in	MB>	operation	changes	the
size	of	the	guest	memory	balloon,	that	is,	memory	allocated	by	the
VirtualBox	Guest	Additions	from	the	guest	operating	system	and	returned
to	the	hypervisor	for	re-use	by	other	virtual	machines.	This	must	be
specified	in	megabytes.	For	details,	see	Section	4.9.1,	“Memory
ballooning”.

usbattach<uuid|address>	[--capturefile	<filename>]

and	usbdetach	<uuid|address>	[--capturefile	<filename>]	make	host
USB	devices	visible/invisible	to	the	virtual	machine	on	the	fly,	without	the
need	for	creating	filters	first.	The	USB	devices	can	be	specified	by	UUID

(unique	identifier)	or	by	address	on	the	host	system.	Use	the	--capturefile
option	to	specify	the	absolute	path	of	a	file	for	writing	activity	logging	data.

You	can	use	VBoxManage	list	usbhost	to	locate	this	information.

audioin	on:	With	this	setting,	you	can	select	whether	capturing	audio	from
the	host	is	enabled	or	disabled.

audioout	on:	With	this	setting,	you	can	select	whether	audio	playback
from	the	guest	is	enabled	or	disabled.

clipboard	disabled|hosttoguest|guesttohost|bidirectional:	With
this	setting,	you	can	select	if	and	how	the	guest	or	host	operating	system's
clipboard	should	be	shared	with	the	host	or	guest;	see	Section	3.4,	“General
settings”.	This	requires	that	the	Guest	Additions	be	installed	in	the	virtual
machine.

draganddrop	disabled|hosttoguest|guesttohost|bidirectional:	With
this	setting,	you	can	select	the	current	drag	and	drop	mode	being	used
between	the	host	and	the	virtual	machine;	see	Section	4.4,	“Drag	and
Drop”.	This	requires	that	the	Guest	Additions	be	installed	in	the	virtual
machine.

vrde	on|off	lets	you	enable	or	disable	the	VRDE	server,	if	it	is	installed.

vrdeport	default|<ports>	changes	the	port	or	a	range	of	ports	that	the
VRDE	server	can	bind	to;	"default"	or	"0"	means	port	3389,	the	standard
port	for	RDP.	For	details,	see	the	description	for	the	--vrdeport	option	in
Section	8.8.5,	“Remote	machine	settings”.

vrdeproperty	"TCP/Ports|Address=<value>"	sets	the	port	number(s)	and
IP	address	on	the	VM	to	which	the	VRDE	server	can	bind.

For	TCP/Ports,	<value>	should	be	a	port	or	a	range	of	ports	to	which
the	VRDE	server	can	bind;	"default"	or	"0"	means	port	3389,	the
standard	port	for	RDP.	For	details,	see	the	description	for	the	--
vrdeport	option	in	Section	8.8.5,	“Remote	machine	settings”.

For	TCP/Address,	<value>	should	be	the	IP	address	of	the	host
network	interface	that	the	VRDE	server	will	bind	to.	If	specified,	the

server	will	accept	connections	only	on	the	specified	host	network
interface.	For	details,	see	the	description	for	the	--vrdeaddress	option
in	Section	8.8.5,	“Remote	machine	settings”.

vrdeproperty	"VideoChannel/Enabled|Quality|DownscaleProtection=

<value>"	sets	the	VRDP	video	redirection	properties.

For	VideoChannel/Enabled,	<value>	can	be	set	to	"1"	switching	the
VRDP	video	channel	on.	For	details,	see	Section	7.1.9,	“VRDP	video
redirection”.

For	VideoChannel/Quality,	<value>	should	be	set	between	10	and
100%	inclusive,	representing	a	JPEG	compression	level	on	the	VRDE
server	video	channel.	Lower	values	mean	lower	quality	but	higher
compression.	For	details,	see	Section	7.1.9,	“VRDP	video	redirection”.

For	VideoChannel/DownscaleProtection,	<value>	can	be	set	to	"1"	to
enable	the	videochannel	downscale	protection	feature.	When	enabled,
if	a	video's	size	equals	the	shadow	buffer	size,	then	it	is	regarded	as	a
full	screen	video,	and	is	displayed;	but	if	its	size	is	between	fullscreen
and	the	downscale	threshold	-	it	is	NOT	displayed,	as	it	could	be	an
application	window,	which	would	be	unreadable	when	downscaled.
When	the	downscale	protection	feature	is	disabled,	an	attempt	is
always	made	to	display	videos.

vrdeproperty

"Client/DisableDisplay|DisableInput|DisableAudio|DisableUSB=1"

disables	one	of	the	VRDE	server	features:	Display,	Input,	Audio	or	USB
respectively.	To	re-enable	a	feature,	use	e.g.	"Client/DisableDisplay=".	For
details,	see	Section	7.1.10,	“VRDP	customization”.

vrdeproperty	"Client/DisableClipboard|DisableUpstreamAudio=1"

disables	one	of	the	VRDE	server	features:	Clipboard	or	UpstreamAudio
respectively.	To	re-enable	a	feature,	use	e.g.	"Client/DisableClipboard=".
For	details,	see	Section	7.1.10,	“VRDP	customization”.

vrdeproperty	"Client/DisableRDPDR=1"

disables	the	VRDE	server	feature:	RDP	device	redirection	for	smart	cards.
To	re-enable	this	feature,	use	"Client/DisableRDPR=".

vrdeproperty	"H3DRedirect/Enabled=1"

enables	the	VRDE	server	feature:	3D	redirection.	To	re-disable	this	feature,
use	"H3DRedirect/Enabled=".

vrdeproperty

"Security/Method|ServerCertificate|ServerPrivateKey|CACertificate=

<value>"	sets	the	desired	security	method/Path	of	server	certificate,	path	of
server	private	key,	path	of	CA	certificate,	used	for	a	connection.

vrdeproperty	"Security/Method=<value>"	sets	the	desired	security
method,	which	is	used	for	a	connection.	Valid	values	are:

Negotiate	-	both	Enhanced	(TLS)	and	Standard	RDP	Security
connections	are	allowed.	The	security	method	is	negotiated	with
the	client.	This	is	the	default	setting.

RDP	-	only	Standard	RDP	Security	is	accepted.

TLS	-	only	Enhanced	RDP	Security	is	accepted.	The	client	must
support	TLS.

For	details,	see	Section	7.1.6,	“RDP	encryption”.

vrdeproperty	"Security/ServerCertificate=<value>"	where
<value>	is	the	absolute	path	of	the	server	certificate.	For	details,	see
Section	7.1.6,	“RDP	encryption”.

vrdeproperty	"Security/ServerPrivateKey=<value>"	where
<value>	is	the	absolute	path	of	the	server	private	key.	For	details,	see
Section	7.1.6,	“RDP	encryption”.

vrdeproperty	"Security/CACertificate=<value>"	where	<value>
is	the	absolute	path	of	the	CA	self	signed	certificate.	For	details,	see
Section	7.1.6,	“RDP	encryption”.

vrdeproperty	"Audio/RateCorrectionMode|LogPath=<value>"	sets	the

Audio	connection	mode,	or	Path	of	the	audio	logfile.

vrdeproperty	"Audio/RateCorrectionMode=<value>"	where
<value>	is	the	desired	rate	correction	mode,	allowed	values	are:

VRDP_AUDIO_MODE_VOID	-	no	mode	specified,	use	to	unset	any
Audio	mode	already	set.

VRDP_AUDIO_MODE_RC	-	rate	correction	mode.

VRDP_AUDIO_MODE_LPF	-	low	pass	filter	mode.

VRDP_AUDIO_MODE_CS	-	client	sync	mode	to	prevent
under/overflow	of	the	client	queue.

vrdeproperty	"Audio/LogPath=<value>"	where	<value>	is	the
absolute	path	of	the	Audio	log	file.

vrdevideochannelquality	<percent>:	Sets	the	image	quality	for	video
redirection;	see	Section	7.1.9,	“VRDP	video	redirection”.

setvideomodehint	requests	that	the	guest	system	change	to	a	particular
video	mode.	This	requires	that	the	Guest	Additions	be	installed,	and	will
not	work	for	all	guest	systems.

screenshotpng	takes	a	screenshot	of	the	guest	display	and	saves	it	in	PNG
format.

videocap	on|off	enables	or	disables	recording	a	VM	session	into	a
WebM/VP8	file.

videocapscreens	all|<screen	ID>	[<screen	ID>	...]]	allows	to
specify	which	screens	of	the	VM	are	being	recorded.	This	setting	cannot	be
changed	while	video	capturing	is	enabled.	Each	screen	is	recorded	into	a
separate	file.

videocapfile	<file>	sets	the	filename	VirtualBox	uses	to	save	the
recorded	content.	This	setting	cannot	be	changed	while	video	capturing	is
enabled.

videocapres	<width>	<height>	sets	the	resolution	(in	pixels)	of	the
recorded	video.	This	setting	cannot	be	changed	while	video	capturing	is
enabled.

videocaprate	<rate>	sets	the	bitrate	in	kilobits	(kb)	per	second.
Increasing	this	value	makes	the	video	look	better	for	the	cost	of	an
increased	file	size.	This	setting	cannot	be	changed	while	video	capturing	is
enabled.

videocapfps	<fps>	sets	the	maximum	number	of	frames	per	second	(FPS)
to	be	recorded.	Frames	with	a	higher	frequency	will	be	skipped.	Reducing
this	value	increases	the	number	of	skipped	frames	and	reduces	the	file	size.
This	setting	cannot	be	changed	while	video	capturing	is	enabled.

videocapmaxtime	<ms>	sets	the	maximum	time	in	milliseconds	the	video
capturing	will	be	enabled	since	activation.	The	capturing	stops	when	the
defined	time	interval	has	elapsed.	If	this	value	is	zero	the	capturing	is	not
limited	by	time.	This	setting	cannot	be	changed	while	video	capturing	is
enabled.

videocapmaxsize	<MB>	limits	the	maximum	size	of	the	captured	video	file
(in	MB).	The	capturing	stops	when	the	file	size	has	reached	the	specified
size.	If	this	value	is	zero	the	capturing	will	not	be	limited	by	file	size.	This
setting	cannot	be	changed	while	video	capturing	is	enabled.

videocapopts	<key=value>[,<key=value>	...]	can	be	used	to	specify
additional	video	capturing	options.	These	options	only	are	for	advanced
users	and	must	be	specified	in	a	comma-separated	key=value	format,	e.g.
foo=bar,a=b.	This	setting	cannot	be	changed	while	video	capturing	is
enabled.

The	setcredentials	operation	is	used	for	remote	logons	in	Windows
guests.	For	details,	please	refer	to	Section	9.2,	“Automated	guest	logons”.

teleport	--host	<name>	--port	<port>	can	be	used	to	configure	a	VM
as	a	target	for	teleporting.	<name>	specifies	the	virtual	machine	name.
<port>	specifies	the	port	on	the	virtual	machine	which	should	listen	for
teleporting	requests	from	other	virtual	machines.	It	can	be	any	free	TCP/IP
port	number	(e.g.	6000);	See	Section	7.2,	“Teleporting”	for	an	introduction.

--maxdowntime	<msec>:	specifies	the	maximum	downtime
(milliseconds)	for	the	teleporting	target	VM.	Optional.

--password	<password>:	indicates	that	the	teleporting	request	will
only	succeed	if	the	source	machine	specifies	the	same	password	as	the
one	given	with	this	command.	Optional.

--passwordfile	<password	file>:	indicates	that	the	teleporting
request	will	only	succeed	if	the	source	machine	specifies	the	same
password	as	the	one	specified	in	the	password	file	with	the	path
specified	with	this	command.	Use	stdin	to	read	the	password	from
stdin.	Optional.

plugcpu|unplugcpu	<id>:	If	CPU	hot-plugging	is	enabled,	this	adds	a
virtual	CPU	to	the	virtual	machines	(or	removes	one).	<id>	specifies	the
index	of	the	virtual	CPU	to	be	added	or	removed	and	must	be	a	number
from	0	to	the	maximum	no.	of	CPUs	configured.	CPU	0	can	never	be
removed.

The	cpuexecutioncap	<1-100>:	This	operation	controls	how	much	cpu
time	a	virtual	CPU	can	use.	A	value	of	50	implies	a	single	virtual	CPU	can
use	up	to	50%	of	a	single	host	CPU.

webcam	attach	<path|alias>	[<key=value>[;<key=value>...]]:	This
operation	attaches	a	webcam	to	a	running	VM.	Specify	the	absolute	path	of
the	webcam	on	the	host	operating	system,	or	use	its	alias	(obtained	by	using
the	command:	VBoxManage	list	webcams).

Note	that	alias	'.0'	means	default	video	input	device	on	the	host	operating
system,	'.1',	'.2',	etc.	mean	first,	second,	etc.	video	input	device.	The	device
order	is	host-specific.

The	optional	settings	parameter	is	a	';'	delimited	list	of	name/value	pairs,
enabling	configuration	of	the	emulated	webcam	device.

The	following	settings	are	supported:

MaxFramerate	(default	no	maximum	limit)	-	this	specifies	the	highest	rate
(frames/sec)	at	which	video	frames	are	sent	to	the	guest.	Higher	frame	rates
increase	CPU	load,	so	this	setting	can	be	useful	when	there	is	a	need	to

reduce	CPU	load.	Its	default	'value'	is	'no	maximum	limit',	thus	enabling	the
guest	to	use	all	frame	rates	supported	by	the	host	webcam.

MaxPayloadTransferSize	(default	3060	bytes)	-	this	specifies	the	maximum
number	of	bytes	the	emulated	webcam	can	send	to	the	guest	in	one	buffer.
The	default	is	used	by	some	webcams.	Higher	values	can	slightly	reduce
CPU	load,	if	the	guest	is	able	to	use	larger	buffers.	Note	that	higher
MaxPayloadTransferSize	values	may	be	not	supported	by	some	guest
operating	systems.

webcam	detach	<path|alias>:	This	operation	detaches	a	webcam	from	a
running	VM.	Specify	the	absolute	path	of	the	webcam	on	the	host,	or	use	its
alias	(obtained	from	webcam	list	below).

Note	the	points	below	relating	to	specific	Host	Operating	Systems:

Windows	hosts

When	the	webcam	device	is	detached	from	the	host,	the	emulated	webcam
device	is	automatically	detached	from	the	guest.

Mac	OS	X	hosts

OS	X	version	10.7	or	newer	is	required.

When	the	webcam	device	is	detached	from	the	host,	the	emulated	webcam
device	remains	attached	to	the	guest	and	must	be	manually	detached	using
the	VBoxManage	controlvm	"VM	name"	webcam	detach	command.

Linux	hosts

When	the	webcam	is	detached	from	the	host,	the	emulated	webcam	device
is	automatically	detached	from	the	guest	only	if	the	webcam	is	streaming
video.	If	the	emulated	webcam	is	inactive,	it	should	be	manually	detached
using	the	VBoxManage	controlvm	"VM	name"	webcam	detach	command.

webcam	list:	This	operation	lists	webcams	attached	to	the	running	VM.
The	output	is	a	list	of	absolute	paths	or	aliases	that	were	used	for	attaching
the	webcams	to	the	VM	using	the	'webcam	attach'	command	above.

addencpassword	<id>	<password	file>|-	[--removeonsuspend

<yes|no>]:	This	operation	supplies	an	encrypted	VM	specified	by	<id>
with	the	encryption	password	to	enable	a	headless	start.	Either	specify	the
absolute	path	of	a	password	file	on	the	host	file	system:	<password	file>,	or
use	a	'-'	to	instruct	VBoxManage	to	prompt	the	user	for	the	encryption
password.

--removeonsuspend	<yes|no>	specifies	whether	to	remove/keep	the
password	from/in	VM	memory	when	the	VM	is	suspended.	If	the	VM	has
been	suspended	and	the	password	has	been	removed,	the	user	needs	to
resupply	the	password	before	the	VM	can	be	resumed.	This	feature	is	useful
in	cases	where	the	user	doesn't	want	the	password	to	be	stored	in	VM
memory,	and	the	VM	is	suspended	by	a	host	suspend	event.

Note:	On	VirtualBox	versions	5.0	and	later,	data	stored	on	hard	disk	images
can	be	transparently	encrypted	for	the	guest.	VirtualBox	uses	the	AES
algorithm	in	XTS	mode	and	supports	128	or	256	bit	data	encryption	keys
(DEK).	The	DEK	is	stored	encrypted	in	the	medium	properties,	and	is
decrypted	during	VM	startup	by	supplying	the	encryption	password.

The	"VBoxManage	encryptmedium"	operation	is	used	to	create	a	DEK
encrypted	medium.	See	Section	9.31.2,	“Encrypting	disk	images”"	for
details.	When	starting	an	encrypted	VM	from	a	VirtualBox	GUI	app,	the
user	will	be	prompted	for	the	encryption	password.

For	a	headless	encrypted	VM	start,	use:

VBoxManage	startvm	"vmname"	--type	headless

followed	by:

VBoxManage	"vmname"	controlvm	"vmname"	addencpassword	...

to	supply	the	encryption	password	required.

removeencpassword	<id>:	This	operation	removes	encryption	password
authorization	for	password	<id>	for	all	encrypted	media	attached	to	the
VM.

removeallencpasswords:	This	operation	removes	encryption	password

authorization	for	all	passwords	for	all	encrypted	media	attached	to	the	VM.

8.14.	VBoxManage	discardstate

This	command	discards	the	saved	state	of	a	virtual	machine	which	is	not
currently	running,	which	will	cause	its	operating	system	to	restart	next	time	you
start	it.	This	is	the	equivalent	of	pulling	out	the	power	cable	on	a	physical
machine,	and	should	be	avoided	if	possible.

8.15.	VBoxManage	adoptstate

If	you	have	a	saved	state	file	(.sav)	that	is	separate	from	the	VM	configuration,
you	can	use	this	command	to	"adopt"	the	file.	This	will	change	the	VM	to	saved
state	and	when	you	start	it,	VirtualBox	will	attempt	to	restore	it	from	the	saved
state	file	you	indicated.	This	command	should	only	be	used	in	special	setups.

8.16.	VBoxManage	snapshot

This	command	is	used	to	control	snapshots	from	the	command	line.	A	snapshot
consists	of	a	complete	copy	of	the	virtual	machine	settings,	copied	at	the	time
when	the	snapshot	was	taken,	and	optionally	a	virtual	machine	saved	state	file	if
the	snapshot	was	taken	while	the	machine	was	running.	After	a	snapshot	has
been	taken,	VirtualBox	creates	differencing	hard	disk	for	each	normal	hard	disk
associated	with	the	machine	so	that	when	a	snapshot	is	restored,	the	contents	of
the	virtual	machine's	virtual	hard	disks	can	be	quickly	reset	by	simply	dropping
the	pre-existing	differencing	files.

VBoxManage	snapshot									<uuid|vmname>

																												take	<name>	[--description	<desc>]	[--live]

																																	[--uniquename	Number,Timestamp,Space,Force]	|

																												delete	<uuid|snapname>	|

																												restore	<uuid|snapname>	|

																												restorecurrent	|

																												edit	<uuid|snapname>|--current

																																	[--name	<name>]

																																	[--description	<desc>]	|

																												list	[--details|--machinereadable]

																												showvminfo	<uuid|snapname>

The	take	operation	takes	a	snapshot	of	the	current	state	of	the	virtual	machine.
You	must	supply	a	name	for	the	snapshot	and	can	optionally	supply	a
description.	The	new	snapshot	is	inserted	into	the	snapshots	tree	as	a	child	of	the
current	snapshot	and	then	becomes	the	new	current	snapshot.	The	--
description	parameter	allows	to	describe	the	snapshot.	If	--live	is	specified,
the	VM	will	not	be	stopped	during	the	snapshot	creation	(live	snapshotting).

The	delete	operation	deletes	a	snapshot	(specified	by	name	or	by	UUID).	This
can	take	a	while	to	finish	since	the	differencing	images	associated	with	the
snapshot	might	need	to	be	merged	with	their	child	differencing	images.

The	restore	operation	will	restore	the	given	snapshot	(specified	by	name	or	by
UUID)	by	resetting	the	virtual	machine's	settings	and	current	state	to	that	of	the
snapshot.	The	previous	current	state	of	the	machine	will	be	lost.	After	this,	the
given	snapshot	becomes	the	new	"current"	snapshot	so	that	subsequent	snapshots
are	inserted	under	the	snapshot	from	which	was	restored.

The	restorecurrent	operation	is	a	shortcut	to	restore	the	current	snapshot	(i.e.
the	snapshot	from	which	the	current	state	is	derived).	This	subcommand	is
equivalent	to	using	the	"restore"	subcommand	with	the	name	or	UUID	of	the
current	snapshot,	except	that	it	avoids	the	extra	step	of	determining	that	name	or
UUID.

With	the	edit	operation,	you	can	change	the	name	or	description	of	an	existing
snapshot.

The	list	operation	shows	all	snapshots	of	a	virtual	machine.

With	the	showvminfo	operation,	you	can	view	the	virtual	machine	settings	that
were	stored	with	an	existing	snapshot.

8.17.	VBoxManage	closemedium

This	commands	removes	a	hard	disk,	DVD	or	floppy	image	from	a	VirtualBox
media	registry.[38]

VBoxManage	closemedium						[disk|dvd|floppy]	<uuid|filename>

																												[--delete]

Optionally,	you	can	request	that	the	image	be	deleted.	You	will	get	appropriate
diagnostics	that	the	deletion	failed,	however	the	image	will	become	unregistered
in	any	case.

[38]	Before	VirtualBox	4.0,	it	was	necessary	to	call	VBoxManage	openmedium
before	a	medium	could	be	attached	to	a	virtual	machine;	that	call	"registered"	the
medium	with	the	global	VirtualBox	media	registry.	With	VirtualBox	4.0	this	is
no	longer	necessary;	media	are	added	to	media	registries	automatically.	The
"closemedium"	call	has	been	retained,	however,	to	allow	for	explicitly	removing
a	medium	from	a	registry.

8.18.	VBoxManage	storageattach

This	command	attaches/modifies/removes	a	storage	medium	connected	to	a
storage	controller	that	was	previously	added	with	the	storagectl	command	(see
the	previous	section).	The	syntax	is	as	follows:

VBoxManage	storageattach				<uuid|vmname>

																												--storagectl	<name>

																												[--port	<number>]

																												[--device	<number>]

																												[--type	dvddrive|hdd|fdd]

																												[--medium	none|emptydrive|additions|

																																						<uuid>|<filename>|host:<drive>|iscsi]

																												[--mtype	normal|writethrough|immutable|shareable

																																					readonly|multiattach]

																												[--comment	<text>]

																												[--setuuid	<uuid>]

																												[--setparentuuid	<uuid>]

																												[--passthrough	on|off]

																												[--tempeject	on|off]

																												[--nonrotational	on|off]

																												[--discard	on|off]

																												[--hotpluggable	on|off]

																												[--bandwidthgroup	name|none]

																												[--forceunmount]

																												[--server	<name>|<ip>]

																												[--target	<target>]

																												[--tport	<port>]

																												[--lun	<lun>]

																												[--encodedlun	<lun>]

																												[--username	<username>]

																												[--password	<password>]

																												[--passwordfile	<file>]

																												[--initiator	<initiator>]

																												[--intnet]

A	number	of	parameters	are	commonly	required;	the	ones	at	the	end	of	the	list
are	required	only	for	iSCSI	targets	(see	below).

The	common	parameters	are:

uuid|vmname

The	VM	UUID	or	VM	Name.	Mandatory.

--storagectl

Name	of	the	storage	controller.	Mandatory.	The	list	of	the	storage
controllers	currently	attached	to	a	VM	can	be	obtained	with	VBoxManage
showvminfo;	see	Section	8.5,	“VBoxManage	showvminfo”.

--port

The	number	of	the	storage	controller's	port	which	is	to	be	modified.
Mandatory,	unless	the	storage	controller	has	only	a	single	port.

--device

The	number	of	the	port's	device	which	is	to	be	modified.	Mandatory,	unless
the	storage	controller	has	only	a	single	device	per	port.

--type

Define	the	type	of	the	drive	to	which	the	medium	is	being
attached/detached/modified.	This	argument	can	only	be	omitted	if	the	type
of	medium	can	be	determined	from	either	the	medium	given	with	the	--
medium	argument	or	from	a	previous	medium	attachment.

--medium

Specifies	what	is	to	be	attached.	The	following	values	are	supported:

"none":	Any	existing	device	should	be	removed	from	the	given	slot.

"emptydrive":	For	a	virtual	DVD	or	floppy	drive	only,	this	makes	the
device	slot	behaves	like	a	removeable	drive	into	which	no	media	has
been	inserted.

"additions":	For	a	virtual	DVD	drive	only,	this	attaches	the	VirtualBox
Guest	Additions	image	to	the	given	device	slot.

If	a	UUID	is	specified,	it	must	be	the	UUID	of	a	storage	medium	that
is	already	known	to	VirtualBox	(e.g.	because	it	has	been	attached	to
another	virtual	machine).	See	Section	8.4,	“VBoxManage	list”	for	how

to	list	known	media.	This	medium	is	then	attached	to	the	given	device
slot.

If	a	filename	is	specified,	it	must	be	the	full	path	of	an	existing	disk
image	(ISO,	RAW,	VDI,	VMDK	or	other),	which	is	then	attached	to
the	given	device	slot.

"host:<drive>":	For	a	virtual	DVD	or	floppy	drive	only,	this	connects
the	given	device	slot	to	the	specified	DVD	or	floppy	drive	on	the	host
computer.

"iscsi":	For	virtual	hard	disks	only,	this	allows	for	specifying	an	iSCSI
target.	In	this	case,	more	parameters	must	be	given;	see	below.

Some	of	the	above	changes,	in	particular	for	removeable	media	(floppies
and	CDs/DVDs),	can	be	effected	while	a	VM	is	running.	Others	(device
changes	or	changes	in	hard	disk	device	slots)	require	the	VM	to	be	powered
off.

--mtype

Defines	how	this	medium	behaves	with	respect	to	snapshots	and	write
operations.	See	Section	5.4,	“Special	image	write	modes”	for	details.

--comment

Any	description	that	you	want	to	have	stored	with	this	medium	(optional;
for	example,	for	an	iSCSI	target,	"Big	storage	server	downstairs").	This	is
purely	descriptive	and	not	needed	for	the	medium	to	function	correctly.

--setuuid,	--setparentuuid

Modifies	the	UUID	or	parent	UUID	of	a	medium	before	attaching	it	to	a
VM.	This	is	an	expert	option.	Inappropriate	use	can	make	the	medium
unusable	or	lead	to	broken	VM	configurations	if	any	other	VM	is	referring
to	the	same	media	already.	The	most	frequently	used	variant	is	--setuuid
"",	which	assigns	a	new	(random)	UUID	to	an	image.	This	is	useful	to
resolve	the	duplicate	UUID	errors	if	one	duplicated	an	image	using	file
copy	utilities.

--passthrough

For	a	virtual	DVD	drive	only,	you	can	enable	DVD	writing	support
(currently	experimental;	see	Section	5.9,	“CD/DVD	support”).

--tempeject

For	a	virtual	DVD	drive	only,	you	can	configure	the	behavior	for	guest-
triggered	medium	eject.	If	this	is	set	to	"on",	the	eject	has	only	temporary
effects.	If	the	VM	is	powered	off	and	restarted	the	originally	configured
medium	will	be	still	in	the	drive.

--nonrotational

This	switch	allows	to	enable	the	non-rotational	flag	for	virtual	hard	disks.
Some	guests	(i.e.	Windows	7+)	treat	such	disks	like	SSDs	and	don't
perform	disk	fragmentation	on	such	media.

--discard

This	switch	enables	the	auto-discard	feature	for	the	virtual	hard	disks.	This
specifies	that	a	VDI	image	will	be	shrunk	in	response	to	the	trim	command
from	the	guest	OS.	The	following	requirements	must	be	met:

The	disk	format	must	be	VDI.

The	size	of	the	cleared	area	must	be	at	least	1MB.

VirtualBox	will	only	trim	whole	1MB	blocks.	The	VDIs	themselves
are	organized	into	1MB	blocks,	so	this	will	only	work	if	the	space
being	TRIM-ed	is	at	least	a	1MB	contiguous	block	at	a	1MB
boundary.	On	Windows,	occasional	defrag	(with	"defrag.exe	/D"),	or
under	Linux	running	"btrfs	filesystem	defrag"	as	a	background	cron
job	may	be	beneficial.

Notes:	the	Guest	OS	must	be	configured	to	issue	trim	command,	and
typically	this	means	that	the	guest	OS	is	made	to	'see'	the	disk	as	an	SSD.
Ext4	supports	-o	discard	mount	flag;	OSX	probably	requires	additional
settings.	Windows	ought	to	automatically	detect	and	support	SSDs	-	at	least
in	versions	7,	8	and	10.	Linux	exFAT	driver	(courtesy	of	Samsung)	supports
the	trim	command.

It	is	unclear	whether	Microsoft's	implementation	of	exFAT	supports	this

feature,	even	though	that	file	system	was	originally	designed	for	flash.

Alternatively,	there	are	ad	hoc	methods	to	issue	trim,	e.g.	Linux	fstrim
command,	part	of	util-linux	package.	Earlier	solutions	required	a	user	to
zero	out	unused	areas,	e.g.	using	zerofree,	and	explicitly	compact	the	disk	-
only	possible	when	the	VM	is	offline.

--bandwidthgroup

Sets	the	bandwidth	group	to	use	for	the	given	device;	see	Section	5.8,
“Limiting	bandwidth	for	disk	images”.

--forceunmount

For	a	virtual	DVD	or	floppy	drive	only,	this	forcibly	unmounts	the
DVD/CD/Floppy	or	mounts	a	new	DVD/CD/Floppy	even	if	the	previous
one	is	locked	down	by	the	guest	for	reading.	Again,	see	Section	5.9,
“CD/DVD	support”	for	details.

When	"iscsi"	is	used	with	the	--medium	parameter	for	iSCSI	support	--	see
Section	5.10,	“iSCSI	servers”	--,	additional	parameters	must	or	can	be	used:

--server

The	host	name	or	IP	address	of	the	iSCSI	target;	required.

--target

Target	name	string.	This	is	determined	by	the	iSCSI	target	and	used	to
identify	the	storage	resource;	required.

--tport

TCP/IP	port	number	of	the	iSCSI	service	on	the	target.	Optional.

--lun

Logical	Unit	Number	of	the	target	resource.	Optional.	Often,	this	value	is
zero.

--encodedlun

Hex	encoded	Logical	Unit	Number	of	the	target	resource.	Optional.	Often,
this	value	is	zero.

--username,	--password,	--passwordfile

Username	and	password	(initiator	secret)	for	target	authentication,	if
required.	Optional.

Note

Username	and	password	are	stored	without	encryption	(i.e.	in
clear	text)	in	the	XML	machine	configuration	file	if	no	settings
password	is	provided.	When	a	settings	password	was	specified
the	first	time,	the	password	is	stored	encrypted.	Alternatively	to
providing	the	password	on	the	command	line,	a	reference	to	a
file	containing	the	text	can	be	provided	instead	via	the
passwordfile	option.

--initiator

iSCSI	Initiator	(optional).	Note:

Microsoft	iSCSI	Initiator	is	a	system,	such	as	a	server	that	attaches	to	an	IP
network	and	initiates	requests	and	receives	responses	from	an	iSCSI	target.
The	SAN	components	in	Microsoft	iSCSI	Initiator	are	largely	analogous	to
Fibre	Channel	SAN	components,	and	they	include	the	following:/

To	transport	blocks	of	iSCSI	commands	over	the	IP	network,	an	iSCSI
driver	must	be	installed	on	the	iSCSI	host.	An	iSCSI	driver	is	included	with
Microsoft	iSCSI	Initiator.

A	gigabit	Ethernet	adapter	that	transmits	1000	megabits	per	second	(Mbps)
is	recommended	for	the	connection	to	an	iSCSI	target.	Like	standard	10/100
adapters,	most	gigabit	adapters	use	a	pre-existing	Category	5	or	Category
6E	cable.	Each	port	on	the	adapter	is	identified	by	a	unique	IP	address.

An	iSCSI	target	is	any	device	that	receives	iSCSI	commands.	The	device
can	be	an	end	node,	such	as	a	storage	device,	or	it	can	be	an	intermediate
device,	such	as	a	network	bridge	between	IP	and	Fibre	Channel	devices.
Each	port	on	the	storage	array	controller	or	network	bridge	is	identified	by

one	or	more	IP	addresses

--intnet

If	specified,	connect	to	the	iSCSI	target	via	Internal	Networking.	This	needs
further	configuration	which	is	described	in	Section	9.9.3,	“Access	iSCSI
targets	via	Internal	Networking”.

8.19.	VBoxManage	storagectl

This	command	attaches/modifies/removes	a	storage	controller.	After	this,	virtual
media	can	be	attached	to	the	controller	with	the	storageattach	command	(see
the	next	section).

The	syntax	is	as	follows:

VBoxManage	storagectl							<uuid|vmname>

																												--name	<name>

																												[--add	ide|sata|scsi|floppy|sas|usb|pcie]

																												[--controller	LSILogic|LSILogicSAS|BusLogic|

																																										IntelAhci|PIIX3|PIIX4|ICH6|I82078|

																																										USB|NVMe]

																												[--portcount	<1-30>]

																												[--hostiocache	on|off]

																												[--bootable	on|off]

																												[--rename	<name>]

																												[--remove]

where	the	parameters	mean:

uuid|vmname

The	VM	UUID	or	VM	Name.	Mandatory.

--name

Specifies	the	name	of	the	storage	controller.	Mandatory.

--add

Specifies	the	type	of	the	system	bus	to	which	the	storage	controller	must	be
connected.

--controller

Enables	a	choice	of	chipset	type	being	emulated	for	the	given	storage
controller.

--portcount

This	specifies	the	number	of	ports	the	storage	controller	should	support.

--hostiocache

Configures	the	use	of	the	host	I/O	cache	for	all	disk	images	attached	to	this
storage	controller.	For	details,	please	see	Section	5.7,	“Host	I/O	caching”.

--bootable

Specifies	whether	this	controller	is	bootable.

--rename

Specifies	a	new	name	for	the	storage	controller.

--remove

Removes	the	storage	controller	from	the	VM	config.

8.20.	VBoxManage	bandwidthctl

This	command	creates/deletes/modifies/shows	bandwidth	groups	of	the	given
virtual	machine:

VBoxManage	bandwidthctl				<uuid|vmname>

																											add	<name>	--type	disk|network	--limit	<megabytes	per	second>[k|m|g|K|M|G]	|

																											set	<name>	--limit	<megabytes	per	second>[k|m|g|K|M|G]	|

																											remove	<name>	|

																											list	[--machinereadable]

The	following	subcommands	are	available:

add,	creates	a	new	bandwidth	group	of	a	given	type.

set,	modifies	the	limit	for	an	existing	bandwidth	group.

remove,	destroys	a	bandwidth	group.

list,	shows	all	bandwidth	groups	defined	for	the	given	VM.	Use	the	--
machinereadable	option	to	produce	the	same	output,	but	in	machine
readable	format.	This	is	of	the	form:	name="value"	on	a	line	by	line	basis.

The	parameters	mean:

uuid|vmname

The	VM	UUID	or	VM	Name.	Mandatory.

--name

Name	of	the	bandwidth	group.	Mandatory.

--type

Type	of	the	bandwidth	group.	Mandatory.	Two	types	are	supported:	disk
and	network.	See	Section	5.8,	“Limiting	bandwidth	for	disk	images”	or
Section	6.10,	“Limiting	bandwidth	for	network	I/O”	for	the	description	of	a
particular	type.

--limit

Specifies	the	limit	for	the	given	bandwidth	group.	This	can	be	changed
while	the	VM	is	running.	The	default	unit	is	megabytes	per	second.	The
unit	can	be	changed	by	specifying	one	of	the	following	suffixes:	k	for
kilobits/s,	m	for	megabits/s,	g	for	gigabits/s,	K	for	kilobytes/s,	M	for
megabytes/s,	G	for	gigabytes/s.

Note

The	network	bandwidth	limits	apply	only	to	the	traffic	being	sent	by
virtual	machines.	The	traffic	being	received	by	VMs	is	unlimited.

Note

To	remove	a	bandwidth	group	it	must	not	be	referenced	by	any	disks
or	adapters	in	the	running	VM.

8.21.	VBoxManage	showmediuminfo

This	command	shows	information	about	a	medium,	notably	its	size,	its	size	on
disk,	its	type	and	the	virtual	machines	which	use	it.

Note

For	compatibility	with	earlier	versions	of	VirtualBox,	the
"showvdiinfo"	command	is	also	supported	and	mapped	internally	to
the	"showmediuminfo"	command.

VBoxManage	showmediuminfo					[disk|dvd|floppy]	<uuid|filename>

The	medium	must	be	specified	either	by	its	UUID	(if	the	medium	is	registered)
or	by	its	filename.	Registered	images	can	be	listed	by	VBoxManage	list	hdds,
VBoxManage	list	dvds,	or	VBoxManage	list	floppies,	as	appropriate.	(see
Section	8.4,	“VBoxManage	list”	for	more	information).

8.22.	VBoxManage	createmedium

This	command	creates	a	new	medium.	The	syntax	is	as	follows:

VBoxManage	createmedium					[disk|dvd|floppy]				--filename	<filename>

																												[--size	<megabytes>|--sizebyte	<bytes>]

																												[--diffparent	<uuid>|<filename>

																												[--format	VDI|VMDK|VHD]	(default:	VDI)

																												[--variant	Standard,Fixed,Split2G,Stream,ESX]

where	the	parameters	mean:

--filename	<filename>

Specifies	a	file	name	<filename>	as	an	absolute	path	on	the	host	file
system.	Mandatory.

--size	<megabytes>

<megabytes>	Specifies	the	image	capacity,	in	1	MB	units.	Optional.

--diffparent	<uuid>|<filename>

Specifies	the	differencing	image	parent,	either	as	a	UUID	or	by	the	absolute
pathname	of	the	file	on	the	host	file	system.	Useful	for	sharing	a	base	box
disk	image	among	several	VMs.

--format	VDI|VMDK|VHD

Specifies	the	file	format	for	the	output	file.	Available	options	are	VDI,
VMDK,	VHD.	Default	is	VDI.	Optional.

--variant	Standard,Fixed,Split2G,Stream,ESX

Specifies	any	required	file	format	variant(s)	for	the	output	file.	It	is	a
comma-separated	list	of	variant	flags.	Not	all	combinations	are	supported,
and	specifying	mutually	incompatible	flags	results	in	an	error	message.
Optional.

Note

For	compatibility	with	earlier	versions	of	VirtualBox,	the	"createvdi"
and	"createhd"	commands	are	also	supported	and	mapped	internally
to	the	"createmedium"	command.

8.23.	VBoxManage	modifymedium

With	the	modifymedium	command,	you	can	change	the	characteristics	of	a	disk
image	after	it	has	been	created:

VBoxManage	modifymedium		[disk|dvd|floppy]				<uuid|filename>

																									[--type	normal|writethrough|immutable|shareable|

																																	readonly|multiattach]

																									[--autoreset	on|off]

																									[--property	<name=[value]>]

																									[--compact]

																									[--resize	<megabytes>|--resizebyte	<bytes>]

																									[--move	<path>

Note

For	compatibility	with	earlier	versions	of	VirtualBox,	the
"modifyvdi"	and	"modifyhd"	commands	are	also	supported	and
mapped	internally	to	the	"modifymedium"	command.

The	disk	image	to	modify	must	be	specified	either	by	its	UUID	(if	the	medium	is
registered)	or	by	its	filename.	Registered	images	can	be	listed	by	VBoxManage
list	hdds	(see	Section	8.4,	“VBoxManage	list”	for	more	information).	A
filename	must	be	specified	as	valid	path,	either	as	an	absolute	path	or	as	a
relative	path	starting	from	the	current	directory.

The	following	options	are	available:

With	the	--type	argument,	you	can	change	the	type	of	an	existing	image
between	the	normal,	immutable,	write-through	and	other	modes;	see
Section	5.4,	“Special	image	write	modes”	for	details.

For	immutable	(differencing)	hard	disks	only,	the	--autoreset	on|off
option	determines	whether	the	disk	is	automatically	reset	on	every	VM
startup	(again,	see	Section	5.4,	“Special	image	write	modes”).	The	default
is	"on".

The	--compact	option	can	be	used	to	compact	disk	images,	i.e.	remove
blocks	that	only	contains	zeroes.	This	will	shrink	a	dynamically	allocated

image	again;	it	will	reduce	the	physical	size	of	the	image	without	affecting
the	logical	size	of	the	virtual	disk.	Compaction	works	both	for	base	images
and	for	diff	images	created	as	part	of	a	snapshot.

For	this	operation	to	be	effective,	it	is	required	that	free	space	in	the	guest
system	first	be	zeroed	out	using	a	suitable	software	tool.	For	Windows
guests,	you	can	use	the	sdelete	tool	provided	by	Microsoft.	Execute
sdelete	-z	in	the	guest	to	zero	the	free	disk	space	before	compressing	the
virtual	disk	image.	For	Linux,	use	the	zerofree	utility	which	supports
ext2/ext3	filesystems.	For	Mac	OS	X	guests,	use	the	diskutil
secureErase	freespace	0	/	command	line	from	an	elevated	Terminal.

Please	note	that	compacting	is	currently	only	available	for	VDI	images.	A
similar	effect	can	be	achieved	by	zeroing	out	free	blocks	and	then	cloning
the	disk	to	any	other	dynamically	allocated	format.	You	can	use	this
workaround	until	compacting	is	also	supported	for	disk	formats	other	than
VDI.

The	--resize	x	option	(where	x	is	the	desired	new	total	space	in
megabytes)	allows	you	to	change	the	capacity	of	an	existing	image;	this
adjusts	the	logical	size	of	a	virtual	disk	without	affecting	the	physical	size
much.[39]	This	currently	works	only	for	VDI	and	VHD	formats,	and	only
for	the	dynamically	allocated	variants,	and	can	only	be	used	to	expand	(not
shrink)	the	capacity.	For	example,	if	you	originally	created	a	10G	disk
which	is	now	full,	you	can	use	the	--resize	15360	command	to	change	the
capacity	to	15G	(15,360MB)	without	having	to	create	a	new	image	and
copy	all	data	from	within	a	virtual	machine.	Note	however	that	this	only
changes	the	drive	capacity;	you	will	typically	next	need	to	use	a	partition
management	tool	inside	the	guest	to	adjust	the	main	partition	to	fill	the
drive.

The	--resizebyte	x	option	does	almost	the	same	thing,	except	that	x	is
expressed	in	bytes	instead	of	megabytes.

The	--move	<path>	option	can	be	used	to	relocate	a	medium	to	a	different
location	<path>	on	the	host	file	system.	The	path	can	be	either	relative	to
the	current	directory	or	absolute.

[39]	Image	resizing	was	added	with	VirtualBox	4.0.

8.24.	VBoxManage	clonemedium

This	command	duplicates	a	virtual	disk/DVD/floppy	medium	to	a	new	medium
(usually	an	image	file)	with	a	new	unique	identifier	(UUID).	The	new	image	can
be	transferred	to	another	host	system	or	imported	into	VirtualBox	again	using	the
Virtual	Media	Manager;	see	Section	5.3,	“The	Virtual	Media	Manager”	and
Section	5.6,	“Cloning	disk	images”.	The	syntax	is	as	follows:

VBoxManage	clonemedium						[disk|dvd|floppy]	<uuid|inputfile>	<uuid|outputfile>

																												[--format	VDI|VMDK|VHD|RAW|<other>]

																												[--variant	Standard,Fixed,Split2G,Stream,ESX]

																												[--existing]

The	medium	to	clone	as	well	as	the	target	image	must	be	described	either	by	its
UUIDs	(if	the	mediums	are	registered)	or	by	its	filename.	Registered	images	can
be	listed	by	VBoxManage	list	hdds	(see	Section	8.4,	“VBoxManage	list”	for
more	information).	A	filename	must	be	specified	as	valid	path,	either	as	an
absolute	path	or	as	a	relative	path	starting	from	the	current	directory.

The	following	options	are	available:

--format

Allow	to	choose	a	file	format	for	the	output	file	different	from	the	file
format	of	the	input	file.

--variant

Allow	to	choose	a	file	format	variant	for	the	output	file.	It	is	a	comma-
separated	list	of	variant	flags.	Not	all	combinations	are	supported,	and
specifying	inconsistent	flags	will	result	in	an	error	message.

--existing

Perform	the	clone	operation	to	an	already	existing	destination	medium.
Only	the	portion	of	the	source	medium	which	fits	into	the	destination
medium	is	copied.	This	means	if	the	destination	medium	is	smaller	than	the
source	only	a	part	of	it	is	copied,	and	if	the	destination	medium	is	larger
than	the	source	the	remaining	part	of	the	destination	medium	is	unchanged.

Note

For	compatibility	with	earlier	versions	of	VirtualBox,	the	"clonevdi"
and	"clonehd"	commands	are	still	supported	and	mapped	internally
to	the	"clonehd	disk"	command.

8.25.	VBoxManage	mediumproperty

This	command	sets	up,	gets	or	deletes	a	medium	property.	The	syntax	is	as
follows:

VBoxManage	mediumproperty	[disk|dvd|floppy]	set	<uuid|filename>

																																																<property>	<value>

Use	<disk|dvd|floppy>	to	optionally	specify	the	type	of	medium:	disk
(hard	drive),	dvd	or	floppy.

Use	<uuid|filename>	to	supply	either	the	uuid	or	absolute	path	of	the
medium/image	to	be	encrypted.

Use	<property>	to	supply	the	name	of	the	property.

Use	<value>	to	supply	the	property	value.

VBoxManage	mediumproperty	[disk|dvd|floppy]	get	<uuid|filename>

																																																<property>

Use	<disk|dvd|floppy>	to	optionally	specify	the	type	of	medium:	disk
(hard	drive),	dvd	or	floppy.

Use	<uuid|filename>	to	supply	either	the	uuid	or	absolute	path	of	the
medium/image	to	be	encrypted.

Use	<property>	to	supply	the	name	of	the	property.

VBoxManage	mediumproperty	[disk|dvd|floppy]	delete	<uuid|filename>

																																																			<property>

Use	<disk|dvd|floppy>	to	optionally	specify	the	type	of	medium:	disk
(hard	drive),	dvd	or	floppy.

Use	<uuid|filename>	to	supply	either	the	uuid	or	absolute	path	of	the
medium/image.

Use	<property>	to	supply	the	name	of	the	property.

8.26.	VBoxManage	encryptmedium

This	command	is	used	to	create	a	DEK	encrypted	medium/image.	See
Section	9.31.2,	“Encrypting	disk	images”"	for	details.

The	syntax	is	as	follows:

VBoxManage	encryptmedium	<uuid|filename>

																									[--newpassword	<file|->]

																									[--oldpassword	<file|->]

																									[--cipher	<cipher	id>]

																									[--newpasswordid	<password	id>]

use	<uuid|filename>	to	supply	the	uuid	or	absolute	path	of	the
medium/image	to	be	encrypted.

Use	--newpassword	<file|->	to	supply	a	new	encryption	password;	either
specify	the	absolute	pathname	of	a	password	file	on	the	host	operating
system,	or	-	to	prompt	you	for	the	password	on	the	command	line.	Always
use	the	--newpasswordid	option	with	this	option.

use	--oldpassword	<file|->	to	supply	any	old	encryption	password;
either	specify	the	absolute	pathname	of	a	password	file	on	the	host
operating	system,	or	-	to	prompt	you	for	the	old	password	on	the	command
line.

Use	this	option	to	gain	access	to	an	encrypted	medium/image	to	change	its
password	using	--newpassword	and/or	change	its	encryption	using	--
cipher.

Use	--cipher	<cipher>	to	specify	the	cipher	to	use	for	encryption;	this
can	be	either	AES-XTS128-PLAIN64	or	AES-AXTS256-PLAIN64.

Use	this	option	to	change	any	existing	encryption	on	the	medium/image,	or
setup	new	encryption	on	it	for	the	1st	time.

Use	--newpasswordid	<password	id>	to	supply	the	new	password
identifier.	This	can	be	freely	chosen	by	the	user,	and	is	used	for	correct
identification	when	supplying	multiple	passwords	during	VM	startup.

If	the	user	uses	the	same	password	when	encrypting	multiple	images	and
also	the	same	password	identifier,	the	user	needs	to	supply	the	password
only	once	during	VM	startup.

8.27.	VBoxManage	checkmediumpwd

This	command	is	used	to	check	the	current	encryption	password	on	a	DEK
encrypted	medium/image.	See	Section	9.31.2,	“Encrypting	disk	images”"	for
details.

The	syntax	is	as	follows:

VBoxManage	checkmediumpwd	<uuid|filename>

																																						<pwd	file|->

Use	<uuid|filename>	to	supply	the	uuid	or	absolute	path	of	the
medium/image	to	be	checked.

Use	<pwd	file|->	to	supply	the	password	identifier	to	be	checked.	Either
specify	the	absolute	pathname	of	a	password	file	on	the	host	operating
system,	or	-	to	prompt	you	for	the	password	on	the	command	line.

8.28.	VBoxManage	convertfromraw

This	command	converts	a	raw	disk	image	to	a	VirtualBox	Disk	Image	(VDI)	file.
The	syntax	is	as	follows:

VBoxManage	convertfromraw			<filename>	<outputfile>

																												[--format	VDI|VMDK|VHD]

																												[--variant	Standard,Fixed,Split2G,Stream,ESX]

																												[--uuid	<uuid>]

VBoxManage	convertfromraw			stdin	<outputfile>	<bytes>

																												[--format	VDI|VMDK|VHD]

																												[--variant	Standard,Fixed,Split2G,Stream,ESX]

																												[--uuid	<uuid>]

where	the	parameters	mean:

--bytes

The	size	of	the	image	file,	in	bytes,	provided	through	stdin.

--format

Select	the	disk	image	format	to	create.	Default	is	VDI.	Other	options	are
VMDK	and	VHD.

--variant

Allow	to	choose	a	file	format	variant	for	the	output	file.	It	is	a	comma-
separated	list	of	variant	flags.	Not	all	combinations	are	supported,	and
specifying	inconsistent	flags	will	result	in	an	error	message.

--uuid

Allow	to	specifiy	the	UUID	of	the	output	file.

The	second	form	forces	VBoxManage	to	read	the	content	for	the	disk	image
from	standard	input	(useful	for	using	that	command	in	a	pipe).

Note

For	compatibility	with	earlier	versions	of	VirtualBox,	the

"convertdd"	command	is	also	supported	and	mapped	internally	to	the
"convertfromraw"	command.

8.29.	VBoxManage	getextradata/setextradata

These	commands	let	you	attach	and	retrieve	string	data	to	a	virtual	machine	or	to
a	VirtualBox	configuration	(by	specifying	global	instead	of	a	virtual	machine
name).	You	must	specify	a	key	(as	a	text	string)	to	associate	the	data	with,	which
you	can	later	use	to	retrieve	it.	For	example:

VBoxManage	setextradata	Fedora5	installdate	2006.01.01

VBoxManage	setextradata	SUSE10	installdate	2006.02.02

would	associate	the	string	"2006.01.01"	with	the	key	installdate	for	the	virtual
machine	Fedora5,	and	"2006.02.02"	on	the	machine	SUSE10.	You	could	retrieve
the	information	as	follows:

VBoxManage	getextradata	Fedora5	installdate

which	would	return

VirtualBox	Command	Line	Management	Interface	Version	5.2.4

(C)	2005-2017	Oracle	Corporation

All	rights	reserved.

Value:	2006.01.01

You	could	retrieve	the	information	for	all	keys	as	follows:

VBoxManage	getextradata	Fedora5	enumerate

To	remove	a	key,	the	setextradata	command	must	be	run	without	specifying
data	(only	the	key),	for	example:

VBoxManage	setextradata	Fedora5	installdate

8.30.	VBoxManage	setproperty

This	command	is	used	to	change	global	settings	which	affect	the	entire
VirtualBox	installation.	Some	of	these	correspond	to	the	settings	in	the	"Global
settings"	dialog	in	the	graphical	user	interface.	The	following	properties	are
available:

machinefolder

This	specifies	the	default	folder	in	which	virtual	machine	definitions	are
kept;	see	Section	10.1,	“Where	VirtualBox	stores	its	files”	for	details.

hwvirtexclusive

This	specifies	whether	VirtualBox	will	make	exclusive	use	of	the	hardware
virtualization	extensions	(Intel	VT-x	or	AMD-V)	of	the	host	system's
processor;	see	Section	10.3,	“Hardware	vs.	software	virtualization”.	If	you
wish	to	share	these	extensions	with	other	hypervisors	running	at	the	same
time,	you	must	disable	this	setting.	Doing	so	has	negative	performance
implications.

vrdeauthlibrary

This	specifies	which	library	to	use	when	"external"	authentication	has	been
selected	for	a	particular	virtual	machine;	see	Section	7.1.5,	“RDP
authentication”	for	details.

websrvauthlibrary

This	specifies	which	library	the	web	service	uses	to	authenticate	users.	For
details	about	the	VirtualBox	web	service,	please	refer	to	the	separate
VirtualBox	SDK	reference	(see	Chapter	11,	VirtualBox	programming
interfaces).

vrdeextpack

This	specifies	which	library	implements	the	VirtualBox	Remote	Desktop
Extension.

loghistorycount

This	selects	how	many	rotated	(old)	VM	logs	are	kept.

autostartdbpath

This	selects	the	path	to	the	autostart	database.	See	Section	9.24,	“Starting
virtual	machines	during	system	boot”.

defaultfrontend

This	selects	the	global	default	VM	frontend	setting.	See	Section	8.12,
“VBoxManage	startvm”.

logginglevel

This	configures	the	VBoxSVC	release	logging	details.[40]

[40]	http://www.virtualbox.org/wiki/VBoxLogging.

http://www.virtualbox.org/wiki/VBoxLogging

8.31.	VBoxManage	usbfilter	add/modify/remove
VBoxManage	usbfilter								add	<index,0-N>

																										--target	<uuid|vmname>global

																										--name	<string>

																										--action	ignore|hold	(global	filters	only)

																									[--active	yes|no	(yes)]

																									[--vendorid	<XXXX>	(null)]

																									[--productid	<XXXX>	(null)]

																									[--revision	<IIFF>	(null)]

																									[--manufacturer	<string>	(null)]

																									[--product	<string>	(null)]

																									[--remote	yes|no	(null,	VM	filters	only)]

																									[--serialnumber	<string>	(null)]

																									[--maskedinterfaces	<XXXXXXXX>]

				

VBoxManage	usbfilter								modify	<index,0-N>

																										--target	<uuid|vmname>global

																									[--name	<string>]

																									[--action	ignore|hold	(global	filters	only)]

																									[--active	yes|no]

																									[--vendorid	<XXXX>]

																									[--productid	<XXXX>]

																									[--revision	<IIFF>]

																									[--manufacturer	<string>]

																									[--product	<string>]

																									[--remote	yes|no	(null,	VM	filters	only)]

																									[--serialnumber	<string>]

																									[--maskedinterfaces	<XXXXXXXX>]

				

VBoxManage	usbfilter								remove	<index,0-N>

																										--target	<uuid|vmname>global

				

The	usbfilter	commands	are	used	for	working	with	USB	filters	in	virtual
machines,	or	global	filters	which	affect	the	whole	VirtualBox	setup.	Global
filters	are	applied	before	machine-specific	filters,	and	may	be	used	to	prevent
devices	from	being	captured	by	any	virtual	machine.	Global	filters	are	always
applied	in	a	particular	order,	and	only	the	first	filter	which	fits	a	device	is
applied.	So	for	example,	if	the	first	global	filter	says	to	hold	(make	available)	a
particular	Kingston	memory	stick	device	and	the	second	to	ignore	all	Kingston

devices,	that	memory	stick	will	be	available	to	any	machine	with	an	appropriate
filter,	but	no	other	Kingston	device	will.

When	creating	a	USB	filter	using	usbfilter	add,	you	must	supply	three	or	four
mandatory	parameters.	The	index	specifies	the	position	in	the	list	at	which	the
filter	should	be	placed.	If	there	is	already	a	filter	at	that	position,	then	it	and	the
following	ones	will	be	shifted	back	one	place.	Otherwise	the	new	filter	will	be
added	onto	the	end	of	the	list.	The	target	parameter	selects	the	virtual	machine
that	the	filter	should	be	attached	to	or	use	"global"	to	apply	it	to	all	virtual
machines.	name	is	a	name	for	the	new	filter	and	for	global	filters,	action	says
whether	to	allow	VMs	access	to	devices	that	fit	the	filter	description	("hold")	or
not	to	give	them	access	("ignore").	In	addition,	you	should	specify	parameters	to
filter	by.	You	can	find	the	parameters	for	devices	attached	to	your	system	using
VBoxManage	list	usbhost.	Finally,	you	can	specify	whether	the	filter	should	be
active,	and	for	local	filters,	whether	they	are	for	local	devices,	remote	(over	an
RDP	connection)	or	either.

When	you	modify	a	USB	filter	using	usbfilter	modify,	you	must	specify	the
filter	by	index	(see	the	output	of	VBoxManage	list	usbfilters	to	find	global
filter	indexes	and	that	of	VBoxManage	showvminfo	to	find	indexes	for	individual
machines)	and	by	target,	which	is	either	a	virtual	machine	or	"global".	The
properties	which	can	be	changed	are	the	same	as	for	usbfilter	add.	To	remove
a	filter,	use	usbfilter	remove	and	specify	the	index	and	the	target.

The	following	is	a	list	of	the	additional	usbfilter	add	and	usbfilter	modify
options,	with	detailed	explanations	on	how	to	use	them.

--action	ignore|holdSpecifies	whether	devices	that	fit	the	filter
description	are	allowed	access	by	machines	("hold"),	or	have	access	denied
("ignore").	Applies	to	global	filters	only.

--active	yes|noSpecifies	whether	the	USB	Filter	is	active	or	temporarily
disabled.	For	usbfilter	create	the	default	is	active.

--vendorid	<XXXX>|""Specifies	a	vendor	ID	filter	-	the	string
representation	for	the	exact	matching	has	the	form	XXXX,	where	X	is	the
hex	digit	(including	leading	zeroes).

--productid	<XXXX>|""Specifies	a	product	ID	filter	-	The	string
representation	for	the	exact	matching	has	the	form	XXXX,	where	X	is	the

hex	digit	(including	leading	zeroes).

--revision	<IIFF>|""Specifies	a	revision	ID	filter	-	the	string
representation	for	the	exact	matching	has	the	form	IIFF,	where	I	is	the
decimal	digit	of	the	integer	part	of	the	revision,	and	F	is	the	decimal	digit	of
its	fractional	part	(including	leading	and	trailing	zeros).	Note	that	for
interval	filters,	it's	best	to	use	the	hex	form,	because	the	revision	is	stored	as
a	16	bit	packed	BCD	value;	so	the	expression	int:0x0100-0x0199	will
match	any	revision	from	1.0	to	1.99	inclusive.

--manufacturer	<string>|""Specifies	a	manufacturer	ID	filter,	as	a
string.

--product	<string>|""Specifies	a	product	ID	filter,	as	a	string.

--remote	yes|no""Specifies	a	remote	filter	-	indicating	whether	the	device
is	physically	connected	to	a	remote	VRDE	client	or	to	a	local	host	machine.
Applies	to	VM	filters	only.

--serialnumber	<string>|""Specifies	a	serial	number	filter,	as	a	string.

--maskedinterfaces	<XXXXXXXX>Specifies	a	masked	interface	filter,	for
hiding	one	or	more	USB	interfaces	from	the	guest.	The	value	is	a	bit	mask
where	the	set	bits	correspond	to	the	USB	interfaces	that	should	be	hidden,
or	masked	off.	This	feature	only	works	on	Linux	hosts.

8.32.	VBoxManage	sharedfolder	add/remove
VBoxManage	sharedfolder					add	<uuid|vmname>

																																--name	<name>	--hostpath	<hostpath>

																																[--transient]	[--readonly]	[--automount]

This	command	allows	you	to	share	folders	on	the	host	computer	with	guest
operating	systems.	For	this,	the	guest	systems	must	have	a	version	of	the
VirtualBox	Guest	Additions	installed	which	supports	this	functionality.

Parameters	are:

<uuid|vmname>	Specifies	the	UUID	or	name	of	the	VM	whose	guest
operating	system	will	be	sharing	folders	with	the	host	computer.	Mandatory.

--name	<name>	Specifies	the	name	of	the	share.	Each	share	has	a	unique
name	within	the	namespace	of	the	host	operating	system.	Mandatory.

-hostpath	<hostpath>	Specifies	the	absolute	path	on	the	host	operating
system	of	the	folder/directory	to	be	shared	with	the	guest	operating	system.
Mandatory.

-transient	Specifies	that	the	share	is	'transient',	meaning	that	it	can	be
added	and	removed	at	runtime	and	does	not	persist	after	the	VM	has
stopped.	Optional.

-readonly	Specifies	that	the	share	has	only	read-only	access	to	files	at	the
host	path.

By	default,	shared	folders	have	read/write	access	to	the	files	at	the	host
path.	More	specifically,	on	Linux	distros	-	shared	folders	are	mounted	with
770	io	permissions	with	root	user	and	vboxsf	as	the	group,	and	using	this
option	the	io	permissions	change	to	700.	Optional.

-automount	Specifies	that	the	share	will	be	automatically	mounted.	On
Linux	distros,	this	will	be	to	either	/media/USER/sf_<name>	or
/media/sf_<name>	-	depending	on	your	guest	OS.	Where	<name>	is	the
share	name.	Optional.

VBoxManage	sharedfolder					remove	<uuid|vmname>

																												--name	<name>	[--transient]

This	command	allows	you	to	delete	shared	folders	on	the	host	computer	shares
with	the	guest	operating	systems.	For	this,	the	guest	systems	must	have	a	version
of	the	VirtualBox	Guest	Additions	installed	which	supports	this	functionality.

Parameters	are:

<uuid|vmname>	Specifies	the	UUID	or	name	of	the	VM	whose	guest
operating	system	is	sharing	folders	with	the	host	computer.	Mandatory.

--name	<name>	Specifies	the	name	of	the	share	to	be	removed.	Each	share
has	a	unique	name	within	the	namespace	of	the	host	operating	system.
Mandatory.

-transient	Specifies	that	the	share	is	'transient',	meaning	that	it	can	be
added	and	removed	at	runtime	and	does	not	persist	after	the	VM	has
stopped.	Optional.

Shared	folders	are	described	in	detail	in	Section	4.3,	“Shared	folders”.

8.33.	VBoxManage	guestproperty

The	"guestproperty"	commands	allow	you	to	get	or	set	properties	of	a	running
virtual	machine.	Please	see	Section	4.7,	“Guest	properties”	for	an	introduction.
As	explained	there,	guest	properties	are	arbitrary	key/value	string	pairs	which
can	be	written	to	and	read	from	by	either	the	guest	or	the	host,	so	they	can	be
used	as	a	low-volume	communication	channel	for	strings,	provided	that	a	guest
is	running	and	has	the	Guest	Additions	installed.	In	addition,	a	number	of	values
whose	keys	begin	with	"/VirtualBox/"	are	automatically	set	and	maintained	by
the	Guest	Additions.

The	following	subcommands	are	available	(where	<vm>,	in	each	case,	can	either
be	a	VM	name	or	a	VM	UUID,	as	with	the	other	VBoxManage	commands):

enumerate	<vm>	[--patterns	<pattern>]:	This	lists	all	the	guest
properties	that	are	available	for	the	given	VM,	including	the	value.	This	list
will	be	very	limited	if	the	guest's	service	process	cannot	be	contacted,	e.g.
because	the	VM	is	not	running	or	the	Guest	Additions	are	not	installed.

If	--patterns	<pattern>	is	specified,	it	acts	as	a	filter	to	only	list
properties	that	match	the	given	pattern.	The	pattern	can	contain	the
following	wildcard	characters:

*	(asterisk):	represents	any	number	of	characters;	for	example,
"/VirtualBox*"	would	match	all	properties	beginning	with
"/VirtualBox".

?	(question	mark):	represents	a	single	arbitrary	character;	for	example,
"fo?"	would	match	both	"foo"	and	"for".

|	(pipe	symbol):	can	be	used	to	specify	multiple	alternative	patterns;
for	example,	"s*|t*"	would	match	anything	starting	with	either	"s"	or
"t".

get	<vm>	<property>	:	This	retrieves	the	value	of	a	single	property	only.
If	the	property	cannot	be	found	(e.g.	because	the	guest	is	not	running),	this
will	print

No	value	set!

set	<vm>	<property>	[<value>	[--flags	<flags>]]:	This	allows	you	to
set	a	guest	property	by	specifying	the	key	and	value.	If	<value>	is	omitted,
the	property	is	deleted.	With	--flags	you	can	optionally	specify	additional
behavior	(you	can	combine	several	by	separating	them	with	commas):

TRANSIENT:	the	value	will	not	be	stored	with	the	VM	data	when	the
VM	exits;

TRANSRESET:	the	value	will	be	deleted	as	soon	as	the	VM	restarts
and/or	exits;

RDONLYGUEST:	the	value	can	only	be	changed	by	the	host,	but	the	guest
can	only	read	it;

RDONLYHOST:	reversely,	the	value	can	only	be	changed	by	the	guest,	but
the	host	can	only	read	it;

READONLY:	a	combination	of	the	two,	the	value	cannot	be	changed	at
all.

wait	<vm>	<pattern>	--timeout	<timeout>:	This	waits	for	a	particular
value	described	by	"pattern"	to	change	or	to	be	deleted	or	created.	The
pattern	rules	are	the	same	as	for	the	"enumerate"	subcommand	above.

delete	<vm>	<property>	:	Deletes	a	formerly	set	guest	property.

8.34.	VBoxManage	guestcontrol

The	guestcontrol	commands	enable	control	of	the	guest	from	the	host.	Please
see	Section	4.8,	“Guest	control”	for	an	introduction.

guestcontrol	has	two	sets	of	subcommands.	The	first	set	requires	guest
credentials	to	be	specified,	the	second	does	not.

The	first	set	of	subcommands	is	of	the	form:

VBoxManage	guestcontrol	<uuid|vmname>	<sub-command>

												[--username	<name>]

												[--passwordfile	<file>	|	--password	<password>]

												[--domain	<domain>]

												[-v|--verbose]	[-q|quiet]	...

				

The	"common-options"	are:

											[--username	<name>]

											[--passwordfile	<file>	|	--password	<password>]

											[--domain	<domain>]

											[-v|--verbose]	[-q|quiet]

				

Where	details	of	the	common	options	for	the	first	set	of	subcommands	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--username	<name>

Specifies	the	user	name	on	guest	OS	under	which	the	process	should	run.
This	user	name	must	already	exist	on	the	guest	OS.	If	unspecified,	the	host
user	name	is	used.	Optional

--passwordfile	<file>|--password

Specifies	the	absolute	path	on	guest	file	system	of	password	file	containing
the	password	for	the	specified	user	account	or	password	for	the	specified

user	account.	Optional.	If	both	are	omitted,	empty	password	is	assumed.

--domain	<domain>

User	domain	for	Windows	guests.	Optional.

-v|--verbose

Makes	the	subcommand	execution	more	verbose.	Optional

-q|--quiet

Makes	the	subcommand	execution	quieter.	Optional.

The	first	set	of	subcommands:

run	Executes	a	guest	program	-	forwarding	stdout,	stderr	and	stdin	to/from
the	host	until	it	completes.

VBoxManage	guestcontrol	<uuid|vmname>	run	[common-options]

												--exe	<path	to	executable>	[--timeout	<msec>]

											[-E|--putenv	<NAME>[=<VALUE>]]	[--unquoted-args]

											[--ignore-operhaned-processes]	[--profile]

											[--no-wait-stdout|--wait-stdout]

											[--no-wait-stderr|--wait-stderr]

											[--dos2unix]	[--unix2dos]

												--	<program/arg0>	[argument1]	...	[argumentN]]

										

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--exe	<path	to	executable>

Specifies	the	absolute	path	of	the	executable	on	the	guest	OS	file
system.	Mandatory.	e.g.:	C:\Windows\System32\calc.exe.

--timeout	<msec>

Specifies	the	maximum	time	(microseconds)	that	the	executable	can
run,	during	which	VBoxManage	receives	its	output.	Optional.	If
unspecified,	VBoxManage	waits	indefinitely	for	the	process	to	end,	or

an	error	occurs.

-E|--putenv	<NAME>=<VALUE>

Sets/modifies/unsets	environment	variable(s)	in	the	environment	in
which	the	program	will	run.	Optional.

The	guest	process	is	created	with	the	standard	default	guest	OS
environment.	Use	this	option	to	modify	that	default	environment.	To
set/modify	a	variable	use:	<NAME>=<VALUE>.	To	unset	a	variable	use:
<NAME>=

Any	spaces	in	names/values	should	be	enclosed	by	quotes.

To	set/modify/unset	multiple	variables,	use	multiple	instances	of	the	--
E|--putenv	option.

--unquoted-args

Disables	escaped	double	quoting	(e.g.	\"fred\")	on	arguments	passed	to
the	executed	program.	Optional.

--ignore-operhaned-processes

Ignore	orphaned	processes.	Not	yet	implemented.	Optional.

--profile

Use	Profile.	Not	yet	implemented.	Optional.

--no-wait-stdout|--wait-stdout

Does	not	wait/waits	until	the	guest	process	ends	and	receives	its	exit
code	and	reason/flags.	In	the	case	of	--wait-stdout	-	while	the	process
runs,	VBoxManage	receives	its	stdout.	Optional.

--no-wait-stderr|--wait-stderr

Does	not	wait/waits	until	the	guest	process	ends	and	receives	its	exit
code	and	reason/flags.	In	case	of	--wait-stderr	-	while	the	process	runs,
VBoxManage	receives	its	stderr.	Optional.

--dos2unix

Converts	output	from	DOS/Windows	guests	to	UNIX/Linux-
compatible	line	endings	(CR	+	LF	→	LF).	Not	yet	implemented.
Optional.

--unix2dos

Converts	output	from	a	UNIX/Linux	guests	to	DOS/Windows-
compatible	line	endings	(LF	→	CR	+	LF).	Not	yet	implemented.
Optional.

[--	<program/arg0>	[<argument1>]	...	[<argumentN>]]

Specifies	program	name,	followed	by	one	or	more	arguments	to	pass
to	the	program.	Optional.

Note:	Any	spaces	in	arguments	should	be	enclosed	by	quotes.

Note

On	Windows	there	are	certain	limitations	for	graphical
applications;	please	see	Chapter	14,	Known	limitations	for	more
information.

Examples:

VBoxManage	--nologo	guestcontrol	"My	VM"	run	--exe	"/bin/ls"

										--username	foo	--passwordfile	bar.txt	--wait-exit	--wait-stdout	--	-l	/usr

VBoxManage	--nologo	guestcontrol	"My	VM"	run	--exe	"c:\\windows\\system32\\ipconfig.exe"

										--username	foo	--passwordfile	bar.txt	--wait-exit	--wait-stdout

Note	that	the	double	backslashes	in	the	second	example	are	only	required
on	Unix	hosts.

Note

For	certain	commands	a	user	name	of	an	existing	user	account
on	the	guest	must	be	specified;	anonymous	executions	are	not
supported	for	security	reasons.	A	user	account	password,

however,	is	optional	and	depends	on	the	guest's	OS	security
policy	or	rules.	If	no	password	is	specified	for	a	given	user
name,	an	empty	password	will	be	used.	On	certain	OSes	like
Windows	the	security	policy	may	needs	to	be	adjusted	in	order
to	allow	user	accounts	with	an	empty	password	set.	Also,	global
domain	rules	might	apply	and	therefore	cannot	be	changed.

Starting	at	VirtualBox	4.1.2	guest	process	execution	by	default	is	limited	to
serve	up	to	5	guest	processes	at	a	time.	If	a	new	guest	process	gets	started
which	would	exceed	this	limit,	the	oldest	not	running	guest	process	will	be
discarded	in	order	to	be	able	to	run	that	new	process.	Also,	retrieving	output
from	this	old	guest	process	will	not	be	possible	anymore	then.	If	all	5	guest
processes	are	still	active	and	running,	starting	a	new	guest	process	will
result	in	an	appropriate	error	message.

To	raise	or	lower	the	guest	process	execution	limit,	either	the	guest	property
/VirtualBox/GuestAdd/VBoxService/--control-procs-max-kept	or
VBoxService'	command	line	by	specifying	--control-procs-max-kept
needs	to	be	modified.	A	restart	of	the	guest	OS	is	required	afterwards.	To
serve	unlimited	guest	processes,	a	value	of	0	needs	to	be	set	(not
recommended).

start	Executes	a	guest	program	until	it	completes.

VBoxManage	guestcontrol	<uuid|vmname>	start	[common-options]

											[--exe	<path	to	executable>]	[--timeout	<msec>]

											[-E|--putenv	<NAME>[=<VALUE>]]	[--unquoted-args]

											[--ignore-operhaned-processes]	[--profile]

												--	<program/arg0>	[argument1]	...	[argumentN]]

										

Where	the	options	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--exe	<path	to	executable>

Specifies	the	absolute	path	of	the	executable	on	the	guest	OS	file
system.	Mandatory.	e.g.:	C:\Windows\System32\calc.exe

--timeout	<msec>

Specifies	the	maximum	time	(microseconds)	that	the	executable	can
run.	Optional.	If	unspecified,	VBoxManage	waits	indefinitely	for	the
process	to	end,	or	an	error	occurs.

-E|--putenv	<NAME>=<VALUE>

Sets/modifies/unsets	environment	variable(s)	in	the	environment	in
which	the	program	will	run.	Optional.

The	guest	process	is	created	with	the	standard	default	guest	OS
environment.	Use	this	option	to	modify	that	default	environment.	To
set/modify	a	variable	use:	<NAME>=<VALUE>.	To	unset	a	variable	use:
<NAME>=

Any	spaces	in	names/values	should	be	enclosed	by	quotes.

To	set/modify/unset	multiple	variables,	use	multiple	instances	of	the	--
E|--putenv	option.

--unquoted-args

Disables	escaped	double	quoting	(e.g.	\"fred\")	on	arguments	passed	to
the	executed	program.	Optional.

--ignore-operhaned-processes

Ignores	orphaned	processes.	Not	yet	implemented.	Optional.

--profile

Use	a	profile.	Not	yet	implemented.	Optional.

[--	<program/arg0>	[<argument1>]	...	[<argumentN>]]

Specifies	program	name,	followed	by	one	or	more	arguments	to	pass
to	the	program.	Optional.

Note:	Any	spaces	in	arguments	should	be	enclosed	by	quotes.

Note

On	Windows	there	are	certain	limitations	for	graphical
applications;	please	see	Chapter	14,	Known	limitations	for	more
information.

Examples:

VBoxManage	--nologo	guestcontrol	"My	VM"	start	--exe	"/bin/ls"

										--username	foo	--passwordfile	bar.txt	--wait-exit	--wait-stdout	--	-l	/usr

VBoxManage	--nologo	guestcontrol	"My	VM"	start	--exe	"c:\\windows\\system32\\ipconfig.exe"

										--username	foo	--passwordfile	bar.txt	--wait-exit	--wait-stdout

Note	that	the	double	backslashes	in	the	second	example	are	only	required
on	Unix	hosts.

Note

For	certain	commands	a	user	name	of	an	existing	user	account
on	the	guest	must	be	specified;	anonymous	executions	are	not
supported	for	security	reasons.	A	user	account	password,
however,	is	optional	and	depends	on	the	guest's	OS	security
policy	or	rules.	If	no	password	is	specified	for	a	given	user
name,	an	empty	password	will	be	used.	On	certain	OSes	like
Windows	the	security	policy	may	needs	to	be	adjusted	in	order
to	allow	user	accounts	with	an	empty	password	set.	Also,	global
domain	rules	might	apply	and	therefore	cannot	be	changed.

Starting	at	VirtualBox	4.1.2	guest	process	execution	by	default	is	limited	to
serve	up	to	5	guest	processes	at	a	time.	If	a	new	guest	process	gets	started
which	would	exceed	this	limit,	the	oldest	not	running	guest	process	will	be
discarded	in	order	to	be	able	to	run	that	new	process.	Also,	retrieving	output
from	this	old	guest	process	will	not	be	possible	anymore	then.	If	all	5	guest
processes	are	still	active	and	running,	starting	a	new	guest	process	will
result	in	an	appropriate	error	message.

To	raise	or	lower	the	guest	process	execution	limit,	either	the	guest	property
/VirtualBox/GuestAdd/VBoxService/--control-procs-max-kept	or
VBoxService'	command	line	by	specifying	--control-procs-max-kept
needs	to	be	modified.	A	restart	of	the	guest	OS	is	required	afterwards.	To
serve	unlimited	guest	processes,	a	value	of	0	needs	to	be	set	(not

recommended).

copyfrom	Copies	files	from	the	guest	to	the	host	file	system.	(Note	-	only
with	Guest	Additions	4.0	or	later	installed).

VBoxManage	guestcontrol	<uuid|vmname>	copyfrom	[common-options]

											[--dryrun]	[--follow]	[--R|recursive]

												--target-directory	<host-dst-dir>

												<guest-src0>	[<guest-src1>	[...]]	

Where	the	parameters	are:

<uid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--dryrun

Instructs	VBoxManage	to	perform	a	dry	run	instead	of	an	actual	file
copying	operation.	Optional.

--follow

Enables	symlink	following	on	the	guest	file	system.	Optional.

-R|--recursive

Enables	recursive	copying	of	files/directories	from	the	specified	guest
file	system	directory.	Optional.

--target-directory	<host-dst-dir>

Specifies	the	absolute	path	of	the	host	file	system	destination	directory.
Mandatory.	e.g.	C:\Temp.

<guest-src0>	[<guest-src1>	[...]]

Specifies	the	absolute	path(s)	of	guest	file	system	file(s)	to	be	copied.
Mandatory.	e.g.	C:\Windows\System32\calc.exe.	Wildcards	can	be
used	in	the	expression(s),	e.g.	C:\Windows\System**.dll.

copyto	Copies	files	from	the	host	to	the	guest	file	system.	(Note	-	only	with

Guest	Additions	4.0	or	later	installed).

VBoxManage	guestcontrol	<uuid|vmname>	copyto	[common-options]

											[--dryrun]	[--follow]	[--R|recursive]

												--target-directory	<guest-dst>

												<host-src0>	[<host-src1>	[...]]	

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--dryrun

Instructs	VBoxManage	to	perform	a	dry	run	instead	of	an	actual	file
copying	operation.	Optional.

--follow

Enables	symlink	following	on	the	host	file	system.	Optional.

-R|--recursive

Enables	recursive	copying	of	files/directories	from	the	specified	host
file	system	directory(ies).	Optional.

--target-directory	<guest-dst>

Specifies	the	absolute	path	of	the	guest	file	system	destination
directory.	Mandatory.	e.g.	C:\Temp.

<host-src0>	[<host-src1>	[...]]

Specifies	the	absolute	path(s)	of	host	file	system	file(s)	to	be	copied.
Mandatory.	e.g.	C:\Windows\System32\calc.exe.	Wildcards	can	be
used	in	the	expression(s),	e.g.	C:\Windows\System**.dll.

md|mkdir|createdir|createdirectory	Creates	one	or	more	directory(ies)
on	the	guest	file	system.	(Note	-	only	with	Guest	Additions	4.0	or	later
installed).

VBoxManage	guestcontrol	<uuid|vmname>		md|mkdir|createdir|createdirectory	[common-options]

												[--parents]	[--mode	<mode>]

												<guest-dir0>	[<guest-dir1>	[...]]	

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--parents

Creates	any	absent	parent	directory(ies)	of	the	specified	directory.
Optional.

e.g.	If	specified	directory	is	D:\Foo\Bar	and	D:\Foo	is	absent,	it	will
be	created.	In	such	a	case,	had	the	--parents	option	not	been	used,
this	command	would	have	failed.

--mode	<mode>

Specifies	the	permission	mode	on	the	specified	directory(ies)	(and	any
parents,	where	--parents	option	used).	Currently	octal	modes	(e.g.
0755)	only	are	supported.

<guest-dir0>	[<guest-dir1>	[...]]

Specifies	list	of	absolute	path(s)	of	directory(ies)	to	be	created	on
guest	file	system.	Mandatory.	e.g.	D:\Foo\Bar.

All	parent	directories	must	already	exist	unless	switch	--parents
used.	(e.g.	in	the	above	example	D:\Foo).	The	specified	user	must
have	sufficient	rights	to	create	the	specified	directory(ies),	and	any
parents	that	need	to	be	created.

rmdir|removedir|removedirectory	Deletes	specified	guest	file	system
directories.	(Only	with	installed	Guest	Additions	4.3.2	and	later).

VBoxManage	guestcontrol	<uuid|vmname>	rmdir|removedir|removedirectory	[common-options]

											[--recursive|-R]

												<guest-dir0>	[<guest-dir1>	[...]]

										

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--recursive

Recursively	removes	directories	and	contents.	Optional.

<guest-dir0>	[<guest-dir1>	[...]]

Specifies	list	of	the	absolute	path(s)	of	directory(ies)	to	be	deleted	on
guest	file	system.	Mandatory.	Wildcards	are	allowed.	e.g.
D:\Foo*Bar.	The	specified	user	must	have	sufficient	rights	to	delete
the	specified	directory(ies).

rm|removefile	Deletes	specified	files	on	the	guest	file	system.	(Only	with
installed	Guest	Additions	4.3.2	and	later).

VBoxManage	guestcontrol	<uuid|vmname>	rm|removefile	[common-options]

											[-f|--force]

												<guest-file0>	[<guest-file1>	[...]]	

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

-f|--force

Enforce	operation	(override	any	requests	for	confirmations).	Optional.

<guest-file0>	[<guest-file1>	[...]]

Specifies	list	of	absolute	path(s)	of	file(s)	to	be	deleted	on	guest	file
system.	Mandatory.	Wildcards	are	allowed.	e.g.
D:\Foo\Bar\text*.txt.	The	specified	user	should	have	sufficient
rights	to	delete	the	specified	file(s).

mv|move|ren|rename	This	subcommand	renames	file(s)	and/or

directory(ies)	on	the	guest	file	system.	(Only	with	installed	Guest	Additions
4.3.2	and	later).

VBoxManage	guestcontrol	<uuid|vmname>	mv|move|ren|rename	[common-options]

											<guest-source0>	[<guest-source1>	[...]]	<guest-dest>

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

<guest-source0>	[<guest-source1>	[...]]

Specifies	absolute	path(s)	of	file(s)	and/or	single	directory	to	be
moved/renamed	on	guest	file	system.	Mandatory.	Wildcards	are
allowed	in	file	names(s).	The	specified	user	should	have	sufficient
rights	to	access	the	specified	file(s).

<dest>

Specifies	the	absolute	path	of	the	destination	file/directory	to	which
the	file(s)	are	to	be	moved.	Mandatory.	If	only	one	file	to	be	moved,
<dest>	can	be	file	or	directory,	else	it	must	be	a	directory.	The
specified	user	must	have	sufficient	rights	to	access	the	destination
file/directory.

mktemp|createtemp|createtemporary	Creates	a	temporary	file/directory
on	the	guest	file	system,	to	assist	subsequent	copying	of	files	from	the	host
to	the	guest	file	systems.	By	default,	the	file/directory	is	created	in	the
guest's	platform	specific	temp	directory.	Not	currently	supported.	(Only
with	installed	Guest	Additions	4.2	and	later).

VBoxManage	guestcontrol	<uuid|vmname>	mktemp|createtemp|createtemporary	[common-options]

											[--directory]	[--secure]	[--mode	<mode>]	[--tmpdir	<directory>]

												<template>

												

The	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--directory

Creates	a	temporary	directory	instead	of	a	file,	specified	by	the
<template>	parameter.	Optional.

--secure

Enforces	secure	file/directory	creation.	Optional.	The	permission	mode
is	set	to	0755.	Operation	fails	if	it	cannot	be	performed	securely.

--mode	<mode>

Specifies	the	permission	mode	of	the	specified	directory.	Optional.
Currently	only	octal	modes	(e.g.	0755)	are	supported.

--tmpdir	<directory>

Specifies	the	absolute	path	of	the	directory	on	the	guest	file	system
into	which	the	file/directory	specified	in	will	be	created.	Optional.	If
unspecified,	the	platform-specific	temp	directory	is	used.

<template>

Specifies	a	file	name	without	a	directory	path,	containing	at	least	one
sequence	comprising	three	consecutive	'X'	characters,	or	ending	in	'X'.
Mandatory.

stat	Displays	file	or	file	system	status(es)	on	the	guest.

VBoxManage	guestcontrol	<uuid|vmname>	stat	[common-options]

											<file0>	[<file1>	[...]]

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

<file0>	[<file1>	[...]]

Specifies	absolute	path(s)	of	file(s)	and/or	file	system(s)	on	guest	file
system.	Mandatory.	e.g.	/home/foo/a.out.	The	specified	user	should
have	sufficient	rights	to	access	the	specified	file(s)/file	system(s).

The	second	set	of	subcommands	is	of	the	form:

VBoxManage	guestcontrol	<uuid|vmname>	<sub-command>

											[-v|--verbose]	[-q|quiet]	...

				

The	"common-options"	are:

												[-v|--verbose]	[-q|--quiet]

				

Where	details	of	the	common	options	for	the	second	set	of	subcommands	are:

-v|--verbose

Makes	the	sub-command	execution	more	verbose.	Optional.

-q|--quiet

Makes	the	sub-command	execution	quieter.	Optional.

The	second	set	of	subcommands:

list	Lists	guest	control	configuration	and	status	data,	e.g.	open	guest
sessions,	guest	processes	and	files.

VBoxManage	guestcontrol	<uuid|vmname>	list	[common-opts]

											<all|sessions|processes|files>	

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

all|sessions|processes|files

Indicates	whether	to	list	all	available	data	or	guest	sessions,	processes
or	files.	Mandatory.

closeprocess	Terminates	guest	processes	specified	by	PID(s))running	in
guest	session(s),	specified	by	the	session	ID	or	name(s).

VBoxManage	guestcontrol	<uuid|vmname>	closeprocess	[common-options]

											--session-id	<ID>	|	--session-name	<name	or	pattern>

											<PID0>	[<PID1>	[...]]	

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--session-id	<ID>

Specifies	the	guest	session	by	its	ID.	Optional.

--session-name	<name	or	pattern>

Specifies	the	guest	session	by	its	name,	or	multiple	sessions	using	a
pattern	containing	wildcards.	Optional.

<PID0>	[<PID1>	[...]]

Specifies	a	list	of	process	identifiers	(PIDs)	of	guest	processes	to	be
terminated.	Mandatory.

closesession	Closes	specified	guest	sessions,	specified	either	by	session
ID	or	name.

VBoxManage	guestcontrol	<uuid|vmname>	closesession	[common-options]

											--session-id	<ID>	|	--session-name	<name	or	pattern>	|	--all	

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--session-id	<ID>

Specifies	the	guest	session	to	be	closed	by	ID.	Optional.

--session-name	<name	or	pattern>

Specifies	the	guest	session	to	be	closed	by	name.	Optional.	Multiple
sessions	can	be	specified	by	using	a	pattern	containing	wildcards.

--all

Close	all	guest	sessions.	Optional.

updatega|updateadditions|updateguestadditions	Ugrades	Guest
Additions	already	installed	on	the	guest.	(Only	already	installed	Guest
Additions	4.0	and	later).

VBoxManage	guestcontrol	<uuid|vmname>	updatega|updateadditions|updateguestadditions	[common-options]

											[--source	<New	.ISO	path>]

											[--wait-start]

											[--	<argument0>	[<argument1>	[...]]]

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

--source	<New	.ISO	path>

Specifies	the	absolute	path	on	guest	file	system	of	the	.ISO	file	for
Guest	Additions	update.	Mandatory.

--wait-start

Indicates	that	VBoxManage	starts	the	usual	updating	process	on	the
guest	and	then	waits	until	the	actual	Guest	Additions	updating	begins,
at	which	point	VBoxManage	self-terminates.	Optional.

Default	behavior	is	that	VBoxManage	waits	for	completion	of	the
Guest	Additions	update	before	terminating.	Use	of	this	option	is
sometimes	necessary,	as	a	running	VBoxManage	can	affect	the
interaction	between	the	installer	and	the	guest	OS.

[--	<argument0>	[<argument1>	[...]]]

Specifies	optional	command	line	arguments	to	be	supplied	to	the	Guest
Additions	updater.	Useful	for	retrofitting	features	which	are	not
currently	installed.

Arguments	containing	spaces	should	be	enclosed	by	quotes.

watch	This	subcommand	prints	current	guest	control	activity.

VBoxManage	guestcontrol	<uuid|vmname>	watch	[common-options]

										

Where	the	parameters	are:

<uuid|vmname>

Specifies	the	VM	UUID	or	VM	name.	Mandatory.

8.35.	VBoxManage	metrics

This	command	supports	monitoring	the	usage	of	system	resources.	Resources
are	represented	by	various	metrics	associated	with	the	host	system	or	a	particular
VM.	For	example,	the	host	system	has	a	CPU/Load/User	metric	that	shows	the
percentage	of	time	CPUs	spend	executing	in	user	mode	over	a	specific	sampling
period.

Metric	data	is	collected	and	retained	internally;	it	may	be	retrieved	at	any	time
with	the	VBoxManage	metrics	query	subcommand.	The	data	is	available	as	long
as	the	background	VBoxSVC	process	is	alive.	That	process	terminates	shortly	after
all	VMs	and	frontends	have	been	closed.

By	default	no	metrics	are	collected	at	all.	Metrics	collection	does	not	start	until
VBoxManage	metrics	setup	is	invoked	with	a	proper	sampling	interval	and	the
number	of	metrics	to	be	retained.	The	interval	is	measured	in	seconds.	For
example,	to	enable	collecting	the	host	processor	and	memory	usage	metrics
every	second	and	keeping	the	5	most	current	samples,	the	following	command
can	be	used:

VBoxManage	metrics	setup	--period	1	--samples	5	host	CPU/Load,RAM/Usage

Metric	collection	can	only	be	enabled	for	started	VMs.	Collected	data	and
collection	settings	for	a	particular	VM	will	disappear	as	soon	as	it	shuts	down.
Use	VBoxManage	metrics	list	subcommand	to	see	which	metrics	are	currently
available.	You	can	also	use	--list	option	with	any	subcommand	that	modifies
metric	settings	to	find	out	which	metrics	were	affected.

Note	that	the	VBoxManage	metrics	setup	subcommand	discards	all	samples	that
may	have	been	previously	collected	for	the	specified	set	of	objects	and	metrics.

To	enable	or	disable	metrics	collection	without	discarding	the	data	VBoxManage
metrics	enable	and	VBoxManage	metrics	disable	subcommands	can	be	used.
Note	that	these	subcommands	expect	metrics,	not	submetrics,	like	CPU/Load	or
RAM/Usage	as	parameters.	In	other	words	enabling	CPU/Load/User	while
disabling	CPU/Load/Kernel	is	not	supported.

The	host	and	VMs	have	different	sets	of	associated	metrics.	Available	metrics

can	be	listed	with	VBoxManage	metrics	list	subcommand.

A	complete	metric	name	may	include	an	aggregate	function.	The	name	has	the
following	form:	Category/Metric[/SubMetric][:aggregate].	For	example,
RAM/Usage/Free:min	stands	for	the	minimum	amount	of	available	memory	over
all	retained	data	if	applied	to	the	host	object.

Subcommands	may	apply	to	all	objects	and	metrics	or	can	be	limited	to	one
object	or/and	a	list	of	metrics.	If	no	objects	or	metrics	are	given	in	the
parameters,	the	subcommands	will	apply	to	all	available	metrics	of	all	objects.
You	may	use	an	asterisk	("*")	to	explicitly	specify	that	the	command	should	be
applied	to	all	objects	or	metrics.	Use	"host"	as	the	object	name	to	limit	the	scope
of	the	command	to	host-related	metrics.	To	limit	the	scope	to	a	subset	of	metrics,
use	a	metric	list	with	names	separated	by	commas.

For	example,	to	query	metric	data	on	the	CPU	time	spent	in	user	and	kernel
modes	by	the	virtual	machine	named	"test",	you	can	use	the	following	command:

VBoxManage	metrics	query	test	CPU/Load/User,CPU/Load/Kernel

The	following	list	summarizes	the	available	subcommands:

list

This	subcommand	shows	the	parameters	of	the	currently	existing	metrics.
Note	that	VM-specific	metrics	are	only	available	when	a	particular	VM	is
running.

setup

This	subcommand	sets	the	interval	between	taking	two	samples	of	metric
data	and	the	number	of	samples	retained	internally.	The	retained	data	is
available	for	displaying	with	the	query	subcommand.	The	--list	option
shows	which	metrics	have	been	modified	as	the	result	of	the	command
execution.

enable

This	subcommand	"resumes"	data	collection	after	it	has	been	stopped	with
disable	subcommand.	Note	that	specifying	submetrics	as	parameters	will
not	enable	underlying	metrics.	Use	--list	to	find	out	if	the	command	did

what	was	expected.

disable

This	subcommand	"suspends"	data	collection	without	affecting	collection
parameters	or	collected	data.	Note	that	specifying	submetrics	as	parameters
will	not	disable	underlying	metrics.	Use	--list	to	find	out	if	the	command
did	what	was	expected.

query

This	subcommand	retrieves	and	displays	the	currently	retained	metric	data.

Note

The	query	subcommand	does	not	remove	or	"flush"	retained
data.	If	you	query	often	enough	you	will	see	how	old	samples
are	gradually	being	"phased	out"	by	new	samples.

collect

This	subcommand	sets	the	interval	between	taking	two	samples	of	metric
data	and	the	number	of	samples	retained	internally.	The	collected	data	is
displayed	periodically	until	Ctrl-C	is	pressed	unless	the	--detach	option	is
specified.	With	the	--detach	option,	this	subcommand	operates	the	same
way	as	setup	does.	The	--list	option	shows	which	metrics	match	the
specified	filter.

8.36.	VBoxManage	natnetwork

NAT	networks	use	the	Network	Address	Translation	(NAT)	service	-	which
works	in	a	similar	way	to	a	home	router.	It	groups	systems	using	it	into	a
network	and	prevents	outside	systems	from	directly	accessing	those	inside,	while
letting	systems	inside	communicate	with	each	other	and	outside	systems	using
TCP	and	UDP	over	IPv4	and	IPv6.

A	NAT	service	is	attached	to	an	internal	network.	Virtual	machines	to	make	use
of	one	should	be	attached	to	it.	The	name	of	an	internal	network	is	chosen	when
the	NAT	service	is	created,	and	the	internal	network	will	be	created	if	it	does	not
already	exist.	An	example	command	to	create	a	NAT	network:

VBoxManage	natnetwork	add	--netname	natnet1	--network	"192.168.15.0/24"	--enable

Here,	"natnet1"	is	the	name	of	the	internal	network	to	be	used	and
"192.168.15.0/24"	is	the	network	address	and	mask	of	the	NAT	service	interface.
By	default,	in	this	static	configuration	-	the	gateway	will	be	assigned	the	address
192.168.15.1	(the	address	after	the	interface	address),	though	this	is	subject	to
change.

To	add	a	DHCP	server	to	the	NAT	network	after	creation:

VBoxManage	natnetwork	modify	--netname	natnet1	--dhcp	on

Below	are	the	subcommands	for	VBoxManage	natnetwork

VBoxManage	natnetwork	add	--netname	<name>

																									[--network	<network>]

																									[--enable|--disable]

																									[--dhcp	on|off]

																									[--port-forward-4	<rule>]

																									[--loopback-4	<rule>]

																									[--ipv6	on|off]

																									[--port-forward-6	<rule>]

																									[--loopback-6	<rule>]

				

VBoxManage	natnetwork	add	Creates	a	new	internal	network	interface,	and	adds
a	NAT	network	service.	This	command	is	a	prerequisite	for	enabling	attachment

of	VMs	to	the	NAT	network.	Parameters:

--netname	<name>

Where	<name>	is	the	name	of	the	new	internal	network	interface	on	the
host	OS.

--network	<network>

Where	<network>	specifies	the	static(default)/DHCP	network	address	and
mask	of	the	NAT	service	interface.

--enable|--disable

Enables/disables	the	NAT	network	service.

--dhcp	on|off

Enables/disables	DHCP	server	specified	by	--netname;	its	use	also	indicates
that	it	is	a	DHCP	server.

--port-forward-4	<rule>

Enables	IPv4	port	forwarding,	rule	specified	by	<rule>.

--loopback-4	<rule>

Enables	IPv4	loopback	interface,	rule	specified	by	<rule>.

--ipv6	on|off

Enables/disables	IPv6	(default	is	IPv4,	disables	gives	IPv4).

--port-forward-6	<rule>

Enables	IPv6	port	forwarding,	rule	specified	by	<rule>.

--loopback-6	<rule>

Enables	IPv6	loopback	interface,	rule	specified	by	<rule>.

VBoxManage	natnetwork	remove	--netname	<name>	

VBoxManage	natnetwork	remove	Removes	a	NAT	network	service,	parameters:

--netname	<name>

Where	<name>	specifies	an	existing	NAT	network	service.	Does	not
remove	any	DHCP	server	enabled	on	the	network.

VBoxManage	natnetwork	modify	--netname	<name>

																												[--network	<network>]

																												[--enable|--disable]

																												[--dhcp	on|off]

																												[--port-forward-4	<rule>]

																												[--loopback-4	<rule>]

																												[--ipv6	on|off]

																												[--port-forward-6	<rule>]

																												[--loopback-6	<rule>]

				

VBoxManage	natnetwork	modify	Modifies	an	existing	NAT	network	service,
parameters:

--netname	<name>

Where	<name>	specifies	an	existing	NAT	network	service.

--network	<network>

Where	<network>	specifies	the	new	static(default)/DHCP	network	address
and	mask	of	the	NAT	service	interface.

--enable|--disable

Enables/disables	the	NAT	network	service.

--dhcp	on|off

Enables	(and	if	absent,	adds)/disables	(if	any)	DHCP	server.

--port-forward-4	<rule>

Enables	IPv4	port	forwarding,	rule	specified	by	<rule>.

--loopback-4	<rule>

Enables	IPv4	loopback	interface,	rule	specified	by	<rule>.

--ipv6	on|off

Enables/disables	IPv6	(default	is	IPv4,	disables	gives	IPv4).

--port-forward-6	<rule>

Enables	IPv6	port	forwarding,	rule	specified	by	<rule>.

--loopback-6	<rule>

Enables	IPv6	loopback	interface,	rule	specified	by	<rule>.

VBoxManage	natnetwork	start	--netname	<name>

				

VBoxManage	natnetwork	start	Starts	specified	NAT	network	service	and	any
associated	DHCP	server,	parameters:

--netname	<name>

Where	<name>	specifies	an	existing	NAT	network	service.

VBoxManage	natnetwork	stop	--netname	<name>

				

VBoxManage	natnetwork	stop	Stops	specified	NAT	network	service	and	any
DHCP	server,	parameters:

--netname	<name>

Where	<name>	specifies	an	existing	NAT	network	service.

VBoxManage	natnetwork	list	[<pattern>]	

VBoxManage	natnetwork	list	Lists	all	NAT	network	services	with	optional
filtering,	parameters:

[<pattern>]

Where	<pattern>	is	optional	filtering	pattern.

8.37.	VBoxManage	hostonlyif

With	"hostonlyif"	you	can	change	the	IP	configuration	of	a	host-only	network
interface.	For	a	description	of	host-only	networking,	please	refer	to	Section	6.7,
“Host-only	networking”.	Each	host-only	interface	is	identified	by	a	name	and
can	either	use	the	internal	DHCP	server	or	a	manual	IP	configuration	(both	IP4
and	IP6).

The	following	list	summarizes	the	available	subcommands:

ipconfig	"<name>"

Configure	a	hostonly	interface

create

Creates	a	new	vboxnet<N>	interface	on	the	host	OS.	This	command	is
essential	before	you	can	attach	VMs	to	host-only	network.

remove	vboxnet<N>

Removes	a	vboxnet<N>	interface	from	the	host	OS.

8.38.	VBoxManage	dhcpserver

The	"dhcpserver"	commands	allow	you	to	control	the	DHCP	server	that	is	built
into	VirtualBox.	You	may	find	this	useful	when	using	internal	or	host-only
networking.	(Theoretically,	you	can	enable	it	for	a	bridged	network	as	well,	but
that	will	likely	cause	conflicts	with	other	DHCP	servers	in	your	physical
network.)

Use	the	following	command	line	options:

If	you	use	internal	networking	for	a	virtual	network	adapter	of	a	virtual
machine,	use	VBoxManage	dhcpserver	add	--netname	<network_name>,
where	<network_name>	is	the	same	network	name	you	used	with
VBoxManage	modifyvm	<vmname>	--intnet<X>	<network_name>.

If	you	use	host-only	networking	for	a	virtual	network	adapter	of	a	virtual
machine,	use	VBoxManage	dhcpserver	add	--ifname
<hostonly_if_name>	instead,	where	<hostonly_if_name>	is	the	same	host-
only	interface	name	you	used	with	VBoxManage	modifyvm	<vmname>	--
hostonlyadapter<X>	<hostonly_if_name>.

Alternatively,	you	can	also	use	the	--netname	option	as	with	internal
networks	if	you	know	the	host-only	network's	name;	you	can	see	the	names
with	VBoxManage	list	hostonlyifs	(see	Section	8.4,	“VBoxManage	list”
above).

The	following	additional	parameters	are	required	when	first	adding	a	DHCP
server:

With	--ip,	specify	the	IP	address	of	the	DHCP	server	itself.

With	--netmask,	specify	the	netmask	of	the	network.

With	--lowerip	and	--upperip,	you	can	specify	the	lowest	and	highest	IP
address,	respectively,	that	the	DHCP	server	will	hand	out	to	clients.

Finally,	you	must	specify	--enable	or	the	DHCP	server	will	be	created	in	the
disabled	state,	doing	nothing.

After	this,	VirtualBox	will	automatically	start	the	DHCP	server	for	given	internal
or	host-only	network	as	soon	as	the	first	virtual	machine	which	uses	that	network
is	started.

Reversely,	use	VBoxManage	dhcpserver	remove	with	the	given	--netname
<network_name>	or	--ifname	<hostonly_if_name>	to	remove	the	DHCP	server
again	for	the	given	internal	or	host-only	network.

To	modify	the	settings	of	a	DHCP	server	created	earlier	with	VBoxManage
dhcpserver	add,	you	can	use	VBoxManage	dhcpserver	modify	for	a	given
network	or	host-only	interface	name.	This	has	the	same	parameters	as
VBoxManage	dhcpserver	add.

8.39.	VBoxManage	usbdevsource

The	"usbdevsource"	commands	enables	you	to	add	and	remove	USB	devices
globally.

The	following	command	adds	a	USB	device.

VBoxManage	usbdevsource	add	<source	name>

																												--backend	<backend>

																												--address	<address>

				

Where	the	command	line	options	are:

<source	name>	specifies	the	ID	of	the	'source'	USB	device	to	be	added.
Mandatory.

--backend	<backend>	specifies	the	USB	proxy	service	backend	to	use.
Mandatory.

--address	<address>	specifies	the	backend	specific	address.	Mandatory.

The	following	command	removes	a	USB	device.

VBoxManage	usbdevsource	remove	<source	name>

				

Where	the	command	line	options	are:

<source	name>	specifies	the	ID	of	the	'source'	USB	device	to	be	removed.
Mandatory.

8.40.	VBoxManage	debugvm

Introspection	and	guest	debugging.

Synopsis

VBoxManage	debugvm	<uuid|vmname>	dumpvmcore	[--filename=name]

VBoxManage	debugvm	<uuid|vmname>	info	<item>	[args...]

VBoxManage	debugvm	<uuid|vmname>	injectnmi

VBoxManage	debugvm	<uuid|vmname>	log	[[--release]	|	[--debug]]
[group-settings...]

VBoxManage	debugvm	<uuid|vmname>	logdest	[[--release]	|	[--
debug]]	[destinations...]

VBoxManage	debugvm	<uuid|vmname>	logflags	[[--release]	|	[--
debug]]	[flags...]

VBoxManage	debugvm	<uuid|vmname>	osdetect

VBoxManage	debugvm	<uuid|vmname>	osinfo

VBoxManage	debugvm	<uuid|vmname>	osdmesg	[--lines=lines]

VBoxManage	debugvm	<uuid|vmname>	getregisters	[--cpu=id]	[reg-
set.reg-name...]

VBoxManage	debugvm	<uuid|vmname>	setregisters	[--cpu=id]	[reg-
set.reg-name=value...]

VBoxManage	debugvm	<uuid|vmname>	show	[[--human-readable]	|	[--
sh-export]	|	[--sh-eval]	|	[--cmd-set]]	[settings-item...]

VBoxManage	debugvm	<uuid|vmname>	stack	[--cpu=id]

VBoxManage	debugvm	<uuid|vmname>	statistics	[--reset]	[--

descriptions]	[--pattern=pattern]

Description

The	"debugvm"	commands	are	for	experts	who	want	to	tinker	with	the	exact
details	of	virtual	machine	execution.	Like	the	VM	debugger	described	in
Section	12.1.3,	“The	built-in	VM	debugger”,	these	commands	are	only	useful	if
you	are	very	familiar	with	the	details	of	the	PC	architecture	and	how	to	debug
software.

Common	options

The	subcommands	of	debugvm	all	operate	on	a	running	virtual	machine:

uuid|vmname

Either	the	UUID	or	the	name	(case	sensitive)	of	a	VM.

debugvm	dumpvmcore

VBoxManage	debugvm	<uuid|vmname>	dumpvmcore	[--filename=name]

Creates	a	system	dump	file	of	the	specified	VM.	This	file	will	have	the	standard
ELF	core	format	(with	custom	sections);	see	Section	12.1.4,	“VM	core	format”.

This	corresponds	to	the	writecore	command	in	the	debugger.

--filename=filename

The	name	of	the	output	file.

debugvm	info

VBoxManage	debugvm	<uuid|vmname>	info	<item>	[args...]

Displays	info	items	relating	to	the	VMM,	device	emulations	and	associated
drivers.

This	corresponds	to	the	info	command	in	the	debugger.

info

Name	of	the	info	item	to	display.	The	special	name	help	will	list	all	the
available	info	items	and	hints	about	optional	arguments.

args

Optional	argument	string	for	the	info	item	handler.	Most	info	items	does	not
take	any	extra	arguments.	Arguments	not	recognized	are	generally	ignored.

debugvm	injectnmi

VBoxManage	debugvm	<uuid|vmname>	injectnmi

Causes	a	non-maskable	interrupt	(NMI)	to	be	injected	into	the	guest.	This	might
be	useful	for	certain	debugging	scenarios.	What	happens	exactly	is	dependent	on
the	guest	operating	system,	but	an	NMI	can	crash	the	whole	guest	operating
system.	Do	not	use	unless	you	know	what	you're	doing.

debugvm	log

VBoxManage	debugvm	<uuid|vmname>	log	[[--release]	|	[--debug]]
[group-settings...]

Changes	the	group	settings	for	either	debug	(--debug)	or	release	(--release)
logger	of	the	VM	process.

The	group-settings	are	typically	strings	on	the	form	em.e.f.l,	hm=~0	and	-
em.f.	Basic	wildcards	are	supported	for	group	matching.	The	all	group	is	an
alias	for	all	the	groups.

Please	do	keep	in	mind	that	the	group	settings	are	applied	as	modifications	to	the
current	ones.

This	corresponds	to	the	log	command	in	the	debugger.

debugvm	logdest

VBoxManage	debugvm	<uuid|vmname>	logdest	[[--release]	|	[--

debug]]	[destinations...]

Changes	the	destination	settings	for	either	debug	(--debug)	or	release	(--
release)	logger	of	the	VM	process.	For	details	on	the	destination	format,	the
best	source	is	src/VBox/Runtime/common/log/log.cpp.

The	destinations	is	one	or	more	mnemonics,	optionally	prefixed	by	"no"	to
disable	them.	Some	of	them	take	values	after	a	":"	or	"="	separator.	Multiple
mnemonics	can	be	separated	by	space	or	given	as	separate	arguments	on	the
command	line.

List	of	available	destination:

file[=file],	nofile

Specifies	a	log	file.	It	no	filname	is	given,	one	will	be	generated	based	on
the	current	UTC	time	and	VM	process	name	and	placed	in	the	current
directory	of	the	VM	process.	Note	that	this	will	currently	not	have	any
effect	if	the	log	file	has	already	been	opened.

dir=directory,	nodir

Specifies	the	output	directory	for	log	files.	Note	that	this	will	currently	not
have	any	effect	if	the	log	file	has	already	been	opened.

history=count,	nohistory

A	non-zero	value	enables	log	historization,	with	the	value	specifying	how
many	old	log	files	to	keep.

histsize=bytes

The	max	size	of	a	log	file	before	it	is	historized.	Default	is	infinite.

histtime=seconds

The	max	age	(in	seconds)	of	a	log	file	before	it	is	historized.	Default	is
infinite.

ringbuffer,	noringbuffer

Only	log	to	the	log	buffer	until	an	explicit	flush	(e.g.	via	an	assertion)
occurs.	This	is	fast	and	saves	diskspace.

stdout,	nostdout

Write	the	log	content	to	standard	output.

stdout,	nostdout

Write	the	log	content	to	standard	error.

debugger,	nodebugger

Write	the	log	content	to	the	debugger,	if	supported	by	the	host	OS.

com,	nocom

Writes	logging	to	the	COM	port.	This	is	only	applicable	for	raw-mode	and
ring-0	logging.

user,	nouser

Custom	destination	which	has	no	meaning	to	VM	processes..

This	corresponds	to	the	logdest	command	in	the	debugger.

debugvm	logflags

VBoxManage	debugvm	<uuid|vmname>	logflags	[[--release]	|	[--
debug]]	[flags...]

Changes	the	flags	on	either	debug	(--debug)	or	release	(--release)	logger	of
the	VM	process.	Please	note	that	the	modifications	are	applied	onto	the	existing
changes,	they	are	not	replacing	them.

The	flags	are	a	list	of	flag	mnemonics,	optionally	prefixed	by	a	"no",	"!",	"~"	or
"-"	to	negate	their	meaning.	The	"+"	prefix	can	be	used	to	undo	previous
negation	or	use	as	a	separator,	though	better	use	whitespace	or	separate
arguments	for	that.

List	of	log	flag	mnemonics,	with	their	counter	form	where	applicable	(asterisk

indicates	defaults):

enabled*,	disabled

Enables	or	disables	logging.

buffered,	unbuffered*

Enabling	buffering	of	log	output	before	it	hits	the	destinations.

writethrough(/writethru)

Whether	to	open	the	destination	file	with	writethru	buffering	settings	or	not.

flush

Enables	flushing	of	the	output	file	(to	disk)	after	each	log	statement.

lockcnts

Prefix	each	log	line	with	lock	counts	for	the	current	thread.

cpuid

Prefix	each	log	line	with	the	ID	of	the	current	CPU.

pid

Prefix	each	log	line	with	the	current	process	ID.

flagno

Prefix	each	log	line	with	the	numberic	flags	corresponding	to	the	log
statement.

flag

Prefix	each	log	line	with	the	flag	mnemonics	corresponding	to	the	log
statement.

groupno

Prefix	each	log	line	with	the	log	group	number	for	the	log	statement

producing	it.

group

Prefix	each	log	line	with	the	log	group	name	for	the	log	statement
producing	it.

tid

Prefix	each	log	line	with	the	current	thread	identifier.

thread

Prefix	each	log	line	with	the	current	thread	name.

time

Prefix	each	log	line	with	the	current	UTC	wall	time.

timeprog

Prefix	each	log	line	with	the	current	monotonic	time	since	the	start	of	the
program.

msprog

Prefix	each	log	line	with	the	current	monotonic	timestamp	value	in
milliseconds	since	the	start	of	the	program.

ts

Prefix	each	log	line	with	the	current	monotonic	timestamp	value	in
nanoseconds.

tsc

Prefix	each	log	line	with	the	current	CPU	timestamp	counter	(TSC)	value.

rel,	abs*

Selects	the	whether	ts	and	tsc	prefixes	should	be	displayed	as	relative	to
the	previous	log	line	or	as	absolute	time.

hex*,	dec

Selects	the	whether	the	ts	and	tsc	prefixes	should	be	formatted	as
hexadecimal	or	decimal.

custom

Custom	log	prefix,	has	by	default	no	meaning	for	VM	processes.

usecrlf,	uself*

Output	with	DOS	style	(CRLF)	or	just	UNIX	style	(LF)	line	endings.

overwrite*,	append

Overwrite	the	destination	file	or	append	to	it.

This	corresponds	to	the	logflags	command	in	the	debugger.

debugvm	osdetect

VBoxManage	debugvm	<uuid|vmname>	osdetect

Make	the	VMM's	debugger	facility	(re)-detect	the	guest	operating	system	(OS).
This	will	first	load	all	debugger	plug-ins.

This	corresponds	to	the	detect	command	in	the	debugger.

debugvm	osinfo

VBoxManage	debugvm	<uuid|vmname>	osinfo

Displays	information	about	the	guest	operating	system	(OS)	previously	detected
by	the	VMM's	debugger	facility.

debugvm	osdmesg

VBoxManage	debugvm	<uuid|vmname>	osdmesg	[--lines=lines]

Displays	the	guest	OS	kernel	log,	if	detected	and	supported.

--lines=lines

Number	of	lines	of	the	log	to	display,	counting	from	the	end.	The	default	is
infinite.

debugvm	getregisters

VBoxManage	debugvm	<uuid|vmname>	getregisters	[--cpu=id]	[reg-
set.reg-name...]

Retrieves	register	values	for	guest	CPUs	and	emulated	devices.

reg-set.reg-name

One	of	more	registers,	each	having	one	of	the	following	forms:

1.	 register-set.register-name.sub-field

2.	 register-set.register-name

3.	 cpu-register-name.sub-field

4.	 cpu-register-name

5.	 all

The	all	form	will	cause	all	registers	to	be	shown	(no	sub-fields).	The
registers	names	are	case-insensitive.

--cpu=id

Selects	the	CPU	register	set	when	specifying	just	a	CPU	register	(3rd	and
4th	form).	The	default	is	0.

debugvm	setregisters

VBoxManage	debugvm	<uuid|vmname>	setregisters	[--cpu=id]	[reg-
set.reg-name=value...]

Changes	register	values	for	guest	CPUs	and	emulated	devices.

reg-set.reg-name=value

One	of	more	register	assignment,	each	having	one	of	the	following	forms:

1.	 register-set.register-name.sub-field=value

2.	 register-set.register-name=value

3.	 cpu-register-name.sub-field=value

4.	 cpu-register-name=value

The	value	format	should	be	in	the	same	style	as	what	getregisters	displays,
with	the	exception	that	both	octal	and	decimal	can	be	used	instead	of
hexadecimal.

--cpu=id

Selects	the	CPU	register	set	when	specifying	just	a	CPU	register	(3rd	and
4th	form).	The	default	is	0.

debugvm	show

VBoxManage	debugvm	<uuid|vmname>	show	[[--human-readable]	|	[--
sh-export]	|	[--sh-eval]	|	[--cmd-set]]	[settings-item...]

Shows	logging	settings	for	the	VM.

--human-readable

Selects	human	readable	output.

--sh-export

Selects	output	format	as	bourne	shell	style	export	commands.

--sh-eval

Selects	output	format	as	bourne	shell	style	eval	command	input.

--cmd-set

Selects	output	format	as	DOS	style	SET	commands.

settings-item

What	to	display.	One	or	more	of	the	following:

logdbg-settings	-	debug	log	settings.

logrel-settings	-	release	log	settings.

log-settings	-	alias	for	both	debug	and	release	log	settings.

debugvm	stack

VBoxManage	debugvm	<uuid|vmname>	stack	[--cpu=id]

Unwinds	the	guest	CPU	stacks	to	the	best	of	our	ability.	It	is	recommended	to
first	run	the	osdetect	command,	as	this	gives	both	symbols	and	perhaps	unwind
information.

--cpu=id

Selects	a	single	guest	CPU	to	display	the	stack	for.	The	default	is	all	CPUs.

debugvm	statistics

VBoxManage	debugvm	<uuid|vmname>	statistics	[--reset]	[--
descriptions]	[--pattern=pattern]

Displays	or	resets	VMM	statistics.

Retrieves	register	values	for	guest	CPUs	and	emulated	devices.

--pattern=pattern

DOS/NT-style	wildcards	patterns	for	selecting	statistics.	Multiple	patterns
can	be	specified	by	using	the	'|'	(pipe)	character	as	separator.

--reset

Select	reset	instead	of	display	mode.

8.41.	VBoxManage	extpack

Extension	package	management.

Synopsis

VBoxManage	extpack	install	[--replace]	<tarball>

VBoxManage	extpack	uninstall	[--force]	<name>

VBoxManage	extpack	cleanup

Description

extpack	install

VBoxManage	extpack	install	[--replace]	<tarball>

Installs	a	new	extension	pack	on	the	system.	This	command	will	fail	if	an	older
version	of	the	same	extension	pack	is	already	installed.	The	--replace	option
can	be	used	to	uninstall	any	old	package	before	the	new	one	is	installed.

--replace

Uninstall	existing	extension	pack	version.

tarball

The	file	containing	the	extension	pack	to	be	installed.

extpack	uninstall

VBoxManage	extpack	uninstall	[--force]	<name>

Uninstalls	an	extension	pack	from	the	system.	The	subcommand	will	also
succeed	in	the	case	where	the	specified	extension	pack	is	not	present	on	the
system.	You	can	use	VBoxManage	list	extpacks	to	show	the	names	of	the
extension	packs	which	are	currently	installed.

--force

Overrides	most	refusals	to	uninstall	an	extension	pack

name

The	name	of	the	extension	pack	to	be	uninstalled.

extpack	cleanup

VBoxManage	extpack	cleanup

Used	to	remove	temporary	files	and	directories	that	may	have	been	left	behind	if
a	previous	install	or	uninstall	command	failed.

Examples

How	to	list	extension	packs:

$	VBoxManage	list	extpacks

Extension	Packs:	1

Pack	no.	0:			Oracle	VM	VirtualBox	Extension	Pack

Version:						4.1.12

Revision:					77218

Edition:

Description:		USB	2.0	Host	Controller,	VirtualBox	RDP,	PXE	ROM	with	E1000	support.

VRDE	Module:		VBoxVRDP

Usable:							true

Why	unusable:

How	to	remove	an	extension	pack:

$	VBoxManage	extpack	uninstall	"Oracle	VM	VirtualBox	Extension	Pack"

0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

Successfully	uninstalled	"Oracle	VM	VirtualBox	Extension	Pack".

8.42.	VBoxManage	unattended

Unattended	guest	OS	installation.

Synopsis

VBoxManage	unattended	detect	<--iso=install-iso>	[--machine-
readable]

VBoxManage	unattended	install	<uuid|vmname>	<--iso=install-iso>
[--user=login]	[--password=password]	[--password-file=file]
[--full-user-name=name]	[--key=product-key]	[--install-
additions]	[--no-install-additions]	[--additions-iso=add-

iso]	[--install-txs]	[--no-install-txs]	[--validation-kit-
iso=testing-iso]	[--locale=ll_CC]	[--country=CC]	[--time-
zone=tz]	[--hostname=fqdn]	[--package-selection-
adjustment=keyword]	[--dry-run]	[--auxiliary-base-path=path]
[--image-index=number]	[--script-template=file]	[--post-
install-template=file]	[--post-install-command=command]	[--
extra-install-kernel-parameters=params]	[--language=lang]	[--
start-vm=session-type]

Description

unattended	detect

VBoxManage	unattended	detect	<--iso=install-iso>	[--machine-
readable]

Detects	the	guest	operating	system	(OS)	on	the	specified	installation	ISO	and
displays	the	result.	This	can	be	used	as	input	when	creating	a	VM	for	the	ISO	to
be	installed	in.

--iso=install-iso

The	installation	ISO	to	run	the	detection	on.

--machine-readable

Produce	output	that	is	simpler	to	parse	from	a	script.

unattended	install

VBoxManage	unattended	install	<uuid|vmname>	<--iso=install-iso>
[--user=login]	[--password=password]	[--password-file=file]
[--full-user-name=name]	[--key=product-key]	[--install-
additions]	[--no-install-additions]	[--additions-iso=add-

iso]	[--install-txs]	[--no-install-txs]	[--validation-kit-
iso=testing-iso]	[--locale=ll_CC]	[--country=CC]	[--time-
zone=tz]	[--hostname=fqdn]	[--package-selection-
adjustment=keyword]	[--dry-run]	[--auxiliary-base-path=path]
[--image-index=number]	[--script-template=file]	[--post-
install-template=file]	[--post-install-command=command]	[--
extra-install-kernel-parameters=params]	[--language=lang]	[--
start-vm=session-type]

Reconfigures	the	specified	VM	for	installation	and	optionally	starts	it	up.

uuid|vmname

Either	the	UUID	or	the	name	(case	sensitive)	of	a	VM.

--iso=install-iso

The	installation	ISO	to	run	the	detection	on.

--user=login

The	login	name.	(default:	vboxuser)

--password=password

The	login	password.	This	is	used	for	the	user	given	by	--user	as	well	as	the
root/administrator	user.	(default:	changeme)

--password-file=file

Alternative	to	--password	for	providing	the	password.	Special	filename
stdin	can	be	used	to	read	the	password	from	standard	input.

--full-user-name=name

The	full	user	name.	(default:	--user)

--key=product-key

The	guest	OS	product	key.	Not	all	guest	OSes	requires	this.

--install-additions,	--no-install-additions

Whether	to	install	the	VirtualBox	guest	additions.	(default:	--no-install-
addations)

--additions-iso=add-iso

Path	to	the	VirtualBox	guest	additions	ISO.	(default:	installed/downloaded
GAs)

--install-txs,	--no-install-txs

Whether	to	install	the	test	execution	service	(TXS)	from	the	VirtualBox
ValidationKit.	This	is	useful	when	preparing	VMs	for	testing	or	similar.
(default:	--no-install-txs)

--validation-kit-iso=testing-iso

Path	to	the	VirtualBox	ValidationKit	ISO.	This	is	required	if	--install-
txs	is	specified.

--locale=ll_CC

The	base	locale	specification	for	the	guest,	like	en_US,	de_CH,	or	nn_NO.
(default:	host	or	en_US)

--country=CC

The	two	letter	country	code	if	it	differs	from	the	specified	by	--location.

--time-zone=tz

The	time	zone	to	set	up	the	guest	OS	with.	(default:	host	time	zone	or	UTC)

--hostname=fqdn

The	fully	qualified	domain	name	of	the	guest	machine.	(default:
vmname.myguest.virtualbox.org)

--package-selection-adjustment=keyword

Adjustments	to	the	guest	OS	packages/components	selection.	This	can	be
specfied	more	than	once.	Currently	the	only	recognized	keyword	is	minimal
which	triggers	a	minimal	installation	for	some	of	the	guest	OSes.

--dry-run

Do	not	create	any	files	or	make	any	changes	to	the	VM	configuration.

--start-vm=session-type

Start	the	VM	using	the	front	end	given	by	session-type.	This	is	the	same
as	the	--type	option	for	the	startvm	command,	but	we	have	add	none	for
indicating	that	the	VM	should	not	be	started.	(default:	none)

Advanced	options:

--auxiliary-base-path=path

The	path	prefix	to	the	media	related	files	generated	for	the	installation.
(default:	vm-config-dir/Unattended-vm-uuid-)

--image-index=number

Windows	installation	image	index.	(default:	1)

--script-template=file

The	unattended	installation	script	template.	(default:	IMachine::OSTypeId
dependent)

--post-install-template=file

The	post	installation	script	template.	(default:	IMachine::OSTypeId
dependent)

--post-install-command=command

A	single	command	to	run	after	the	installation	is	completed.	The	exact
format	and	exactly	when	this	is	run	is	guest	OS	installer	dependent.

--extra-install-kernel-parameters=params

List	of	extra	linux	kernel	parameters	to	use	during	the	installation.	(default:
IMachine::OSTypeId	dependent)

--language=lang

Specifies	the	UI	language	for	a	Windows	installation.	The	lang	is	generally
on	the	form	{ll}-{CC}.	See	detectedOSLanguages	results	from
VBoxManage	unattended	detect.	(default:	detectedOSLanguages[0])

Chapter	9.	Advanced	topics

Table	of	Contents

9.1.	VBoxSDL,	the	simplified	VM	displayer
9.1.1.	Introduction
9.1.2.	Secure	labeling	with	VBoxSDL
9.1.3.	Releasing	modifiers	with	VBoxSDL	on	Linux

9.2.	Automated	guest	logons
9.2.1.	Automated	Windows	guest	logons
9.2.2.	Automated	Linux/Unix	guest	logons

9.3.	Advanced	configuration	for	Windows	guests
9.3.1.	Automated	Windows	system	preparation

9.4.	Advanced	configuration	for	Linux	and	Solaris	guests
9.4.1.	Manual	setup	of	selected	guest	services	on	Linux
9.4.2.	Guest	graphics	and	mouse	driver	setup	in	depth

9.5.	CPU	hot-plugging
9.6.	PCI	passthrough
9.7.	Webcam	passthrough

9.7.1.	Using	a	host	webcam	in	the	guest
9.7.2.	Windows	hosts
9.7.3.	Mac	OS	X	hosts
9.7.4.	Linux	and	Solaris	hosts

9.8.	Advanced	display	configuration
9.8.1.	Custom	VESA	resolutions
9.8.2.	Configuring	the	maximum	resolution	of	guests	when	using	the
graphical	frontend

9.9.	Advanced	storage	configuration
9.9.1.	Using	a	raw	host	hard	disk	from	a	guest
9.9.2.	Configuring	the	hard	disk	vendor	product	data	(VPD)
9.9.3.	Access	iSCSI	targets	via	Internal	Networking

9.10.	Legacy	commands	for	using	serial	ports
9.11.	Fine-tuning	the	VirtualBox	NAT	engine

9.11.1.	Configuring	the	address	of	a	NAT	network	interface
9.11.2.	Configuring	the	boot	server	(next	server)	of	a	NAT	network
interface
9.11.3.	Tuning	TCP/IP	buffers	for	NAT

9.11.4.	Binding	NAT	sockets	to	a	specific	interface
9.11.5.	Enabling	DNS	proxy	in	NAT	mode
9.11.6.	Using	the	host's	resolver	as	a	DNS	proxy	in	NAT	mode
9.11.7.	Configuring	aliasing	of	the	NAT	engine

9.12.	Configuring	the	BIOS	DMI	information
9.13.	Configuring	the	custom	ACPI	table
9.14.	Fine-tuning	timers	and	time	synchronization

9.14.1.	Configuring	the	guest	time	stamp	counter	(TSC)	to	reflect	guest
execution
9.14.2.	Accelerate	or	slow	down	the	guest	clock
9.14.3.	Tuning	the	Guest	Additions	time	synchronization	parameters
9.14.4.	Disabling	the	Guest	Additions	time	synchronization

9.15.	Installing	the	alternate	bridged	networking	driver	on	Solaris	11	hosts
9.16.	VirtualBox	VNIC	templates	for	VLANs	on	Solaris	11	hosts
9.17.	Configuring	multiple	host-only	network	interfaces	on	Solaris	hosts
9.18.	Configuring	the	VirtualBox	CoreDumper	on	Solaris	hosts
9.19.	VirtualBox	and	Solaris	kernel	zones
9.20.	Locking	down	the	VirtualBox	GUI

9.20.1.	Customizing	the	VM	manager
9.20.2.	VM	selector	customization
9.20.3.	Configure	VM	selector	menu	entries
9.20.4.	Configure	VM	window	menu	entries
9.20.5.	Configure	VM	window	status	bar	entries
9.20.6.	Configure	VM	window	visual	modes
9.20.7.	Host	Key	customization
9.20.8.	Action	when	terminating	the	VM
9.20.9.	Default	action	when	terminating	the	VM
9.20.10.	Action	for	handling	a	Guru	Meditation
9.20.11.	Configuring	automatic	mouse	capturing
9.20.12.	Configuring	automatic	mouse	capturing
9.20.13.	Requesting	legacy	full-screen	mode

9.21.	Starting	the	VirtualBox	web	service	automatically
9.21.1.	Linux:	starting	the	webservice	via	init
9.21.2.	Solaris:	starting	the	web	service	via	SMF
9.21.3.	Mac	OS	X:	starting	the	webservice	via	launchd

9.22.	VirtualBox	Watchdog
9.22.1.	Memory	ballooning	control
9.22.2.	Host	isolation	detection
9.22.3.	More	information

9.22.4.	Linux:	starting	the	watchdog	service	via	init
9.22.5.	Solaris:	starting	the	watchdog	service	via	SMF

9.23.	Other	extension	packs
9.24.	Starting	virtual	machines	during	system	boot

9.24.1.	Linux:	starting	the	autostart	service	via	init
9.24.2.	Solaris:	starting	the	autostart	service	via	SMF
9.24.3.	Mac	OS	X:	starting	the	autostart	service	via	launchd

9.25.	VirtualBox	expert	storage	management
9.26.	Handling	of	host	power	management	events
9.27.	Experimental	support	for	passing	through	SSE4.1	/	SSE4.2	instructions
9.28.	Support	for	keyboard	indicators	synchronization
9.29.	Capturing	USB	traffic	for	selected	devices
9.30.	Configuring	the	heartbeat	service
9.31.	Encryption	of	disk	images

9.31.1.	Limitations
9.31.2.	Encrypting	disk	images
9.31.3.	Starting	a	VM	with	encrypted	images
9.31.4.	Decrypting	encrypted	images

9.32.	Paravirtualized	debugging
9.32.1.	Hyper-V	debug	options

9.33.	PC	speaker	passthrough
9.34.	Accessing	USB	devices	exposed	over	the	network	with	USB/IP

9.34.1.	Setting	up	USB/IP	support	on	a	Linux	system
9.34.2.	Security	considerations

9.35.	VISO	file	format	/	RTIsoMaker

9.1.	VBoxSDL,	the	simplified	VM	displayer

9.1.1.	Introduction

VBoxSDL	is	a	simple	graphical	user	interface	(GUI)	that	lacks	the	nice	point-
and-click	support	which	VirtualBox,	our	main	GUI,	provides.	VBoxSDL	is
currently	primarily	used	internally	for	debugging	VirtualBox	and	therefore	not
officially	supported.	Still,	you	may	find	it	useful	for	environments	where	the
virtual	machines	are	not	necessarily	controlled	by	the	same	person	that	uses	the
virtual	machine.

Note

VBoxSDL	is	not	available	on	the	Mac	OS	X	host	platform.

As	you	can	see	in	the	following	screenshot,	VBoxSDL	does	indeed	only	provide
a	simple	window	that	contains	only	the	"pure"	virtual	machine,	without	menus	or
other	controls	to	click	upon	and	no	additional	indicators	of	virtual	machine
activity:

To	start	a	virtual	machine	with	VBoxSDL	instead	of	the	VirtualBox	GUI,	enter
the	following	on	a	command	line:

VBoxSDL	--startvm	<vm>

where	<vm>	is,	as	usual	with	VirtualBox	command	line	parameters,	the	name	or
UUID	of	an	existing	virtual	machine.

9.1.2.	Secure	labeling	with	VBoxSDL

When	running	guest	operating	systems	in	full	screen	mode,	the	guest	operating
system	usually	has	control	over	the	whole	screen.	This	could	present	a	security
risk	as	the	guest	operating	system	might	fool	the	user	into	thinking	that	it	is
either	a	different	system	(which	might	have	a	higher	security	level)	or	it	might
present	messages	on	the	screen	that	appear	to	stem	from	the	host	operating
system.

In	order	to	protect	the	user	against	the	above	mentioned	security	risks,	the	secure
labeling	feature	has	been	developed.	Secure	labeling	is	currently	available	only
for	VBoxSDL.	When	enabled,	a	portion	of	the	display	area	is	reserved	for	a	label
in	which	a	user	defined	message	is	displayed.	The	label	height	in	set	to	20	pixels
in	VBoxSDL.	The	label	font	color	and	background	color	can	be	optionally	set	as
hexadecimal	RGB	color	values.	The	following	syntax	is	used	to	enable	secure
labeling:

VBoxSDL	--startvm	"VM	name"

						--securelabel	--seclabelfnt	~/fonts/arial.ttf

						--seclabelsiz	14	--seclabelfgcol	00FF00	--seclabelbgcol	00FFFF

In	addition	to	enabling	secure	labeling,	a	TrueType	font	has	to	be	supplied.	To
use	another	font	size	than	12	point	use	the	parameter	--seclabelsiz.

The	label	text	can	be	set	with

VBoxManage	setextradata	"VM	name"	"VBoxSDL/SecureLabel"	"The	Label"

Changing	this	label	will	take	effect	immediately.

Typically,	full	screen	resolutions	are	limited	to	certain	"standard"	geometries
such	as	1024	x	768.	Increasing	this	by	twenty	lines	is	not	usually	feasible,	so	in
most	cases,	VBoxSDL	will	chose	the	next	higher	resolution,	e.g.	1280	x	1024
and	the	guest's	screen	will	not	cover	the	whole	display	surface.	If	VBoxSDL	is
unable	to	choose	a	higher	resolution,	the	secure	label	will	be	painted	on	top	of
the	guest's	screen	surface.	In	order	to	address	the	problem	of	the	bottom	part	of
the	guest	screen	being	hidden,	VBoxSDL	can	provide	custom	video	modes	to	the

guest	that	are	reduced	by	the	height	of	the	label.	For	Windows	guests	and	recent
Solaris	and	Linux	guests,	the	VirtualBox	Guest	Additions	automatically	provide
the	reduced	video	modes.	Additionally,	the	VESA	BIOS	has	been	adjusted	to
duplicate	its	standard	mode	table	with	adjusted	resolutions.	The	adjusted	mode
IDs	can	be	calculated	using	the	following	formula:

reduced_modeid	=	modeid	+	0x30

For	example,	in	order	to	start	Linux	with	1024	x	748	x	16,	the	standard	mode
0x117	(1024	x	768	x	16)	is	used	as	a	base.	The	Linux	video	mode	kernel
parameter	can	then	be	calculated	using:

vga	=	0x200	|	0x117	+	0x30

vga	=	839

The	reason	for	duplicating	the	standard	modes	instead	of	only	supplying	the
adjusted	modes	is	that	most	guest	operating	systems	require	the	standard	VESA
modes	to	be	fixed	and	refuse	to	start	with	different	modes.

When	using	the	X.org	VESA	driver,	custom	modelines	have	to	be	calculated	and
added	to	the	configuration	(usually	in	/etc/X11/xorg.conf.	A	handy	tool	to
determine	modeline	entries	can	be	found	at
http://www.tkk.fi/Misc/Electronics/faq/vga2rgb/calc.html.)

9.1.3.	Releasing	modifiers	with	VBoxSDL	on	Linux

When	switching	from	a	X	virtual	terminal	(VT)	to	another	VT	using	Ctrl-Alt-Fx
while	the	VBoxSDL	window	has	the	input	focus,	the	guest	will	receive	Ctrl	and
Alt	keypress	events	without	receiving	the	corresponding	key	release	events.	This
is	an	architectural	limitation	of	Linux.	In	order	to	reset	the	modifier	keys,	it	is
possible	to	send	SIGUSR1	to	the	VBoxSDL	main	thread	(first	entry	in	the	ps	list).
For	example,	when	switching	away	to	another	VT	and	saving	the	virtual
machine	from	this	terminal,	the	following	sequence	can	be	used	to	make	sure	the
VM	is	not	saved	with	stuck	modifiers:

kill	-usr1	<pid>

VBoxManage	controlvm	"Windows	2000"	savestate

http://www.tkk.fi/Misc/Electronics/faq/vga2rgb/calc.html

9.2.	Automated	guest	logons

VirtualBox	provides	Guest	Addition	modules	for	Windows,	Linux	and	Solaris	to
enable	automated	logons	on	the	guest.

When	a	guest	operating	system	is	running	in	a	virtual	machine,	it	might	be
desirable	to	perform	coordinated	and	automated	logons	using	credentials	from	a
master	logon	system.	(With	"credentials",	we	are	referring	to	logon	information
consisting	of	user	name,	password	and	domain	name,	where	each	value	might	be
empty.)

9.2.1.	Automated	Windows	guest	logons

Since	Windows	NT,	Windows	has	provided	a	modular	system	logon	subsystem
("Winlogon")	which	can	be	customized	and	extended	by	means	of	so-called
GINA	modules	(Graphical	Identification	and	Authentication).	With	Windows
Vista	and	Windows	7,	the	GINA	modules	were	replaced	with	a	new	mechanism
called	"credential	providers".	The	VirtualBox	Guest	Additions	for	Windows
come	with	both,	a	GINA	and	a	credential	provider	module,	and	therefore	enable
any	Windows	guest	to	perform	automated	logons.

To	activate	the	VirtualBox	GINA	or	credential	provider	module,	install	the	Guest
Additions	with	using	the	command	line	switch	/with_autologon.	All	the
following	manual	steps	required	for	installing	these	modules	will	be	then	done
by	the	installer.

To	manually	install	the	VirtualBox	GINA	module,	extract	the	Guest	Additions
(see	Section	4.2.1.4,	“Manual	file	extraction”)	and	copy	the	file	VBoxGINA.dll	to
the	Windows	SYSTEM32	directory.	Then,	in	the	registry,	create	the	following	key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows	NT\CurrentVersion\Winlogon\GinaDLL

with	a	value	of	VBoxGINA.dll.

Note

The	VirtualBox	GINA	module	is	implemented	as	a	wrapper	around
the	standard	Windows	GINA	module	(MSGINA.DLL).	As	a	result,	it

will	most	likely	not	work	correctly	with	3rd	party	GINA	modules.

To	manually	install	the	VirtualBox	credential	provider	module,	extract	the	Guest
Additions	(see	Section	4.2.1.4,	“Manual	file	extraction”)	and	copy	the	file
VBoxCredProv.dll	to	the	Windows	SYSTEM32	directory.	Then,	in	the	registry,
create	the	following	keys:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\

											Authentication\Credential	Providers\{275D3BCC-22BB-4948-A7F6-3A3054EBA92B}

HKEY_CLASSES_ROOT\CLSID\{275D3BCC-22BB-4948-A7F6-3A3054EBA92B}

HKEY_CLASSES_ROOT\CLSID\{275D3BCC-22BB-4948-A7F6-3A3054EBA92B}\InprocServer32

with	all	default	values	(the	key	named	(Default)	in	each	key)	set	to
VBoxCredProv.	After	that	a	new	string	named

HKEY_CLASSES_ROOT\CLSID\{275D3BCC-22BB-4948-A7F6-3A3054EBA92B}\InprocServer32\ThreadingModel

with	a	value	of	Apartment	has	to	be	created.

To	set	credentials,	use	the	following	command	on	a	running	VM:

VBoxManage	controlvm	"Windows	XP"	setcredentials	"John	Doe"	"secretpassword"	"DOMTEST"

While	the	VM	is	running,	the	credentials	can	be	queried	by	the	VirtualBox	logon
modules	(GINA	or	credential	provider)	using	the	VirtualBox	Guest	Additions
device	driver.	When	Windows	is	in	"logged	out"	mode,	the	logon	modules	will
constantly	poll	for	credentials	and	if	they	are	present,	a	logon	will	be	attempted.
After	retrieving	the	credentials,	the	logon	modules	will	erase	them	so	that	the
above	command	will	have	to	be	repeated	for	subsequent	logons.

For	security	reasons,	credentials	are	not	stored	in	any	persistent	manner	and	will
be	lost	when	the	VM	is	reset.	Also,	the	credentials	are	"write-only",	i.e.	there	is
no	way	to	retrieve	the	credentials	from	the	host	side.	Credentials	can	be	reset
from	the	host	side	by	setting	empty	values.

Depending	on	the	particular	variant	of	the	Windows	guest,	the	following
restrictions	apply:

1.	 For	Windows	XP	guests,	the	logon	subsystem	needs	to	be	configured	to

use	the	classic	logon	dialog	as	the	VirtualBox	GINA	module	does	not
support	the	XP-style	welcome	dialog.

2.	 For	Windows	Vista,	Windows	7	and	Windows	8	guests,	the	logon
subsystem	does	not	support	the	so-called	Secure	Attention	Sequence
(CTRL+ALT+DEL).	As	a	result,	the	guest's	group	policy	settings	need	to	be
changed	to	not	use	the	Secure	Attention	Sequence.	Also,	the	user	name
given	is	only	compared	to	the	true	user	name,	not	the	user	friendly	name.
This	means	that	when	you	rename	a	user,	you	still	have	to	supply	the
original	user	name	(internally,	Windows	never	renames	user	accounts).

3.	 Auto-logon	handling	of	the	built-in	Windows	Remote	Desktop	Service
(formerly	known	as	Terminal	Services)	is	disabled	by	default.	To	enable	it,
create	the	registry	key

HKEY_LOCAL_MACHINE\SOFTWARE\Oracle\VirtualBox	Guest	Additions\AutoLogon

with	a	DWORD	value	of	1.

The	following	command	forces	VirtualBox	to	keep	the	credentials	after	they
were	read	by	the	guest	and	on	VM	reset:

VBoxManage	setextradata	"Windows	XP"	VBoxInternal/Devices/VMMDev/0/Config/KeepCredentials	1

Note	that	this	is	a	potential	security	risk	as	a	malicious	application	running	on
the	guest	could	request	this	information	using	the	proper	interface.

9.2.2.	Automated	Linux/Unix	guest	logons

Starting	with	version	3.2,	VirtualBox	provides	a	custom	PAM	module	(Pluggable
Authentication	Module)	which	can	be	used	to	perform	automated	guest	logons
on	platforms	which	support	this	framework.	Virtually	all	modern	Linux/Unix
distributions	rely	on	PAM.

For	automated	logons	on	Ubuntu	(or	Ubuntu-derived)	distributions	using
LightDM	as	the	display	manager,	please	see	Section	9.2.2.1,	“VirtualBox
Greeter	for	Ubuntu	/	LightDM”.

The	pam_vbox.so	module	itself	does	not	do	an	actual	verification	of	the
credentials	passed	to	the	guest	OS;	instead	it	relies	on	other	modules	such	as

pam_unix.so	or	pam_unix2.so	down	in	the	PAM	stack	to	do	the	actual
validation	using	the	credentials	retrieved	by	pam_vbox.so.	Therefore
pam_vbox.so	has	to	be	on	top	of	the	authentication	PAM	service	list.

Note

The	pam_vbox.so	only	supports	the	auth	primitive.	Other	primitives
such	as	account,	session	or	password	are	not	supported.

The	pam_vbox.so	module	is	shipped	as	part	of	the	Guest	Additions	but	it	is	not
installed	and/or	activated	on	the	guest	OS	by	default.	In	order	to	install	it,	it	has
to	be	copied	from	/opt/VBoxGuestAdditions-<version>/other/	to	the	security
modules	directory,	usually	/lib/security/	on	32-bit	guest	Linuxes	or
/lib64/security/	on	64-bit	ones.	Please	refer	to	your	guest	OS	documentation
for	the	correct	PAM	module	directory.

For	example,	to	use	pam_vbox.so	with	a	Ubuntu	Linux	guest	OS	and	GDM	(the
GNOME	Desktop	Manager)	to	logon	users	automatically	with	the	credentials
passed	by	the	host,	the	guest	OS	has	to	be	configured	like	the	following:

1.	 The	pam_vbox.so	module	has	to	be	copied	to	the	security	modules
directory,	in	this	case	it	is	/lib/security.

2.	 Edit	the	PAM	configuration	file	for	GDM	found	at	/etc/pam.d/gdm,	adding
the	line	auth	requisite	pam_vbox.so	at	the	top.	Additionally,	in	most
Linux	distributions	there	is	a	file	called	/etc/pam.d/common-auth.	This	file
is	included	in	many	other	services	(like	the	GDM	file	mentioned	above).
There	you	also	have	to	add	the	line	auth	requisite	pam_vbox.so.

3.	 If	authentication	against	the	shadow	database	using	pam_unix.so	or
pam_unix2.so	is	desired,	the	argument	try_first_pass	for	pam_unix.so
or	use_first_pass	for	pam_unix2.so	is	needed	in	order	to	pass	the
credentials	from	the	VirtualBox	module	to	the	shadow	database
authentication	module.	For	Ubuntu,	this	needs	to	be	added	to
/etc/pam.d/common-auth,	to	the	end	of	the	line	referencing	pam_unix.so.
This	argument	tells	the	PAM	module	to	use	credentials	already	present	in
the	stack,	i.e.	the	ones	provided	by	the	VirtualBox	PAM	module.

Warning

An	incorrectly	configured	PAM	stack	can	effectively	prevent	you
from	logging	into	your	guest	system!

To	make	deployment	easier,	you	can	pass	the	argument	debug	right	after	the
pam_vbox.so	statement.	Debug	log	output	will	then	be	recorded	using	syslog.

Note

By	default,	pam_vbox	will	not	wait	for	credentials	to	arrive	from	the
host,	in	other	words:	When	a	login	prompt	is	shown	(for	example	by
GDM/KDM	or	the	text	console)	and	pam_vbox	does	not	yet	have
credentials	it	does	not	wait	until	they	arrive.	Instead	the	next	module
in	the	PAM	stack	(depending	on	the	PAM	configuration)	will	have
the	chance	for	authentication.

Starting	with	VirtualBox	4.1.4	pam_vbox	supports	various	guest	property
parameters	which	all	reside	in	/VirtualBox/GuestAdd/PAM/.	These	parameters
allow	pam_vbox	to	wait	for	credentials	to	be	provided	by	the	host	and	optionally
can	show	a	message	while	waiting	for	those.	The	following	guest	properties	can
be	set:

1.	 CredsWait:	Set	to	"1"	if	pam_vbox	should	start	waiting	until	credentials
arrive	from	the	host.	Until	then	no	other	authentication	methods	such	as
manually	logging	in	will	be	available.	If	this	property	is	empty	or	get
deleted	no	waiting	for	credentials	will	be	performed	and	pam_vbox	will	act
like	before	(see	paragraph	above).	This	property	must	be	set	read-only	for
the	guest	(RDONLYGUEST).

2.	 CredsWaitAbort:	Aborts	waiting	for	credentials	when	set	to	any	value.	Can
be	set	from	host	and	the	guest.

3.	 CredsWaitTimeout:	Timeout	(in	seconds)	to	let	pam_vbox	wait	for
credentials	to	arrive.	When	no	credentials	arrive	within	this	timeout,
authentication	of	pam_vbox	will	be	set	to	failed	and	the	next	PAM	module
in	chain	will	be	asked.	If	this	property	is	not	specified,	set	to	"0"	or	an
invalid	value,	an	infinite	timeout	will	be	used.	This	property	must	be	set
read-only	for	the	guest	(RDONLYGUEST).

To	customize	pam_vbox	further	there	are	the	following	guest	properties:

1.	 CredsMsgWaiting:	Custom	message	showed	while	pam_vbox	is	waiting	for
credentials	from	the	host.	This	property	must	be	set	read-only	for	the	guest
(RDONLYGUEST).

2.	 CredsMsgWaitTimeout:	Custom	message	showed	when	waiting	for
credentials	by	pam_vbox	timed	out,	e.g.	did	not	arrive	within	time.	This
property	must	be	set	read-only	for	the	guest	(RDONLYGUEST).

Note

If	a	pam_vbox	guest	property	does	not	have	set	the	right	flags
(RDONLYGUEST)	this	property	will	be	ignored	then	and	-	depending	on
the	property	-	a	default	value	will	be	set.	This	can	result	in
pam_vbox	not	waiting	for	credentials.	Consult	the	appropriate	syslog
file	for	more	information	and	use	the	debug	option.

9.2.2.1.	VirtualBox	Greeter	for	Ubuntu	/	LightDM

Starting	with	version	4.2.12,	VirtualBox	comes	with	an	own	greeter	module
named	vbox-greeter	which	can	be	used	with	LightDM	1.0.1	or	later.	LightDM	is
the	default	display	manager	since	Ubuntu	10.11	and	therefore	also	can	be	used
for	automated	guest	logons.

vbox-greeter	does	not	need	the	pam_vbox	module	described	above	in	order	to
function	--	it	comes	with	its	own	authentication	mechanism	provided	by
LightDM.	However,	to	provide	maximum	of	flexibility	both	modules	can	be
used	together	on	the	same	guest.

As	for	the	pam_vbox	module,	vbox-greeter	is	shipped	as	part	of	the	Guest
Additions	but	it	is	not	installed	and/or	activated	on	the	guest	OS	by	default	For
installing	vbox-greeter	automatically	upon	Guest	Additions	installation,	use	the
--with-autologon	switch	when	starting	the	VBoxLinuxAdditions.run	file:

#	./VBoxLinuxAdditions.run	--	--with-autologon

For	manual	or	postponed	installation,	the	vbox-greeter.desktop	file	has	to	be
copied	from	/opt/VBoxGuestAdditions-<version>/other/	to	the	xgreeters
directory,	usually	/usr/share/xgreeters/.	Please	refer	to	your	guest	OS
documentation	for	the	correct	LightDM	greeter	directory.

The	vbox-greeter	module	itself	already	was	installed	by	the	VirtualBox	Guest
Additions	installer	and	resides	in	/usr/sbin/.	To	enable	vbox-greeter	as	the
standard	greeter	module,	the	file	/etc/lightdm/lightdm.conf	needs	to	be
edited:

[SeatDefaults]

greeter-session=vbox-greeter

Note

The	LightDM	server	needs	to	be	fully	restarted	in	order	to	get	vbox-
greeter	used	as	the	default	greeter.	As	root,	do	a	service	lightdm	-
-full-restart	on	Ubuntu,	or	simply	restart	the	guest.

Note

vbox-greeter	is	independent	of	the	graphical	session	chosen	by	the
user	(like	Gnome,	KDE,	Unity	etc).	However,	it	requires	FLTK	1.3
for	representing	its	own	user	interface.

There	are	numerous	guest	properties	which	can	be	used	to	further	customize	the
login	experience.	For	automatically	logging	in	users,	the	same	guest	properties
apply	as	for	pam_vbox,	see	Section	9.2.2,	“Automated	Linux/Unix	guest
logons”.

In	addition	to	the	above	mentioned	guest	properties,	vbox-greeter	allows	further
customization	of	its	user	interface.	These	special	guest	properties	all	reside	in
/VirtualBox/GuestAdd/Greeter/:

1.	 HideRestart:	Set	to	"1"	if	vbox-greeter	should	hide	the	button	to	restart	the
guest.	This	property	must	be	set	read-only	for	the	guest	(RDONLYGUEST).

2.	 HideShutdown:	Set	to	"1"	if	vbox-greeter	should	hide	the	button	to
shutdown	the	guest.	This	property	must	be	set	read-only	for	the	guest
(RDONLYGUEST).

3.	 BannerPath:	Path	to	a	.PNG	file	for	using	it	as	a	banner	on	the	top.	The
image	size	must	be	460	x	90	pixels,	any	bit	depth.	This	property	must	be	set
read-only	for	the	guest	(RDONLYGUEST).

4.	 UseTheming:	Set	to	"1"	for	turning	on	the	following	theming	options.	This
property	must	be	set	read-only	for	the	guest	(RDONLYGUEST).

5.	 Theme/BackgroundColor:	Hexadecimal	RRGGBB	color	for	the
background.	This	property	must	be	set	read-only	for	the	guest
(RDONLYGUEST).

6.	 Theme/LogonDialog/HeaderColor:	Hexadecimal	RRGGBB	foreground
color	for	the	header	text.	This	property	must	be	set	read-only	for	the	guest
(RDONLYGUEST).

7.	 Theme/LogonDialog/BackgroundColor:	Hexadecimal	RRGGBB	color	for
the	logon	dialog	background.	This	property	must	be	set	read-only	for	the
guest	(RDONLYGUEST).

8.	 Theme/LogonDialog/ButtonColor:	Hexadecimal	RRGGBB	background
color	for	the	logon	dialog	button.	This	property	must	be	set	read-only	for
the	guest	(RDONLYGUEST).

Note

The	same	restrictions	for	the	guest	properties	above	apply	as	for	the
ones	specified	in	the	pam_vbox	section.

9.3.	Advanced	configuration	for	Windows	guests

9.3.1.	Automated	Windows	system	preparation

Beginning	with	Windows	NT	4.0,	Microsoft	offers	a	"system	preparation"	tool
(in	short:	Sysprep)	to	prepare	a	Windows	system	for	deployment	or
redistribution.	Whereas	Windows	2000	and	XP	ship	with	Sysprep	on	the
installation	medium,	the	tool	also	is	available	for	download	on	the	Microsoft
web	site.	In	a	standard	installation	of	Windows	Vista	and	7,	Sysprep	is	already
included.	Sysprep	mainly	consists	of	an	executable	called	sysprep.exe	which	is
invoked	by	the	user	to	put	the	Windows	installation	into	preparation	mode.

Starting	with	VirtualBox	3.2.2,	the	Guest	Additions	offer	a	way	to	launch	a
system	preparation	on	the	guest	operating	system	in	an	automated	way,
controlled	from	the	host	system.	To	achieve	that,	see	Section	4.8,	“Guest
control”	for	using	the	feature	with	the	special	identifier	sysprep	as	the	program
to	execute,	along	with	the	user	name	sysprep	and	password	sysprep	for	the
credentials.	Sysprep	then	gets	launched	with	the	required	system	rights.

Note

Specifying	the	location	of	"sysprep.exe"	is	not	possible	--	instead
the	following	paths	are	used	(based	on	the	operating	system):

C:\sysprep\sysprep.exe	for	Windows	NT	4.0,	2000	and	XP

%WINDIR%\System32\Sysprep\sysprep.exe	for	Windows
Vista,	2008	Server	and	7

The	Guest	Additions	will	automatically	use	the	appropriate	path	to
execute	the	system	preparation	tool.

9.4.	Advanced	configuration	for	Linux	and	Solaris
guests

9.4.1.	Manual	setup	of	selected	guest	services	on	Linux

The	VirtualBox	Guest	Additions	contain	several	different	drivers.	If	for	any
reason	you	do	not	wish	to	set	them	all	up,	you	can	install	the	Guest	Additions
using	the	following	command:

		sh	./VBoxLinuxAdditions.run	no_setup

After	this,	you	will	need	to	at	least	compile	the	kernel	modules	by	running	the
command

		rcvboxadd	setup

as	root	(you	will	need	to	replace	lib	by	lib64	on	some	64bit	guests),	and	on	older
guests	without	the	udev	service	you	will	need	to	add	the	vboxadd	service	to	the
default	runlevel	to	ensure	that	the	modules	get	loaded.

To	setup	the	time	synchronization	service,	add	the	service	vboxadd-service	to	the
default	runlevel.	To	set	up	the	X11	and	OpenGL	part	of	the	Guest	Additions,	run
the	command

		rcvboxadd-x11	setup

(you	do	not	need	to	enable	any	services	for	this).

To	recompile	the	guest	kernel	modules,	use	this	command:

		rcvboxadd	setup

After	compilation	you	should	reboot	your	guest	to	ensure	that	the	new	modules
are	actually	used.

9.4.2.	Guest	graphics	and	mouse	driver	setup	in	depth

This	section	assumes	that	you	are	familiar	with	configuring	the	X.Org	server

using	xorg.conf	and	optionally	the	newer	mechanisms	using	hal	or	udev	and
xorg.conf.d.	If	not	you	can	learn	about	them	by	studying	the	documentation
which	comes	with	X.Org.

The	VirtualBox	Guest	Additions	come	with	drivers	for	X.Org	versions

X11R6.8/X11R6.9	and	XFree86	version	4.3	(vboxvideo_drv_68.o	and
vboxmouse_drv_68.o)

X11R7.0	(vboxvideo_drv_70.so	and	vboxmouse_drv_70.so)

X11R7.1	(vboxvideo_drv_71.so	and	vboxmouse_drv_71.so)

X.Org	Server	versions	1.3	and	later	(vboxvideo_drv_13.so	and
vboxmouse_drv_13.so	and	so	on).

By	default	these	drivers	can	be	found	in	the	directory

/opt/VBoxGuestAdditions-<version>/other/

and	the	correct	versions	for	the	X	server	are	symbolically	linked	into	the	X.Org
driver	directories.

For	graphics	integration	to	work	correctly,	the	X	server	must	load	the	vboxvideo
driver	(many	recent	X	server	versions	look	for	it	automatically	if	they	see	that
they	are	running	in	VirtualBox)	and	for	an	optimal	user	experience	the	guest
kernel	drivers	must	be	loaded	and	the	Guest	Additions	tool	VBoxClient	must	be
running	as	a	client	in	the	X	session.	For	mouse	integration	to	work	correctly,	the
guest	kernel	drivers	must	be	loaded	and	in	addition,	in	X	servers	from	X.Org
X11R6.8	to	X11R7.1	and	in	XFree86	version	4.3	the	right	vboxmouse	driver
must	be	loaded	and	associated	with	/dev/mouse	or	/dev/psaux;	in	X.Org	server
1.3	or	later	a	driver	for	a	PS/2	mouse	must	be	loaded	and	the	right	vboxmouse
driver	must	be	associated	with	/dev/vboxguest.

The	VirtualBox	guest	graphics	driver	can	use	any	graphics	configuration	for
which	the	virtual	resolution	fits	into	the	virtual	video	memory	allocated	to	the
virtual	machine	(minus	a	small	amount	used	by	the	guest	driver)	as	described	in
Section	3.6,	“Display	settings”.	The	driver	will	offer	a	range	of	standard	modes
at	least	up	to	the	default	guest	resolution	for	all	active	guest	monitors.	In	X.Org
Server	1.3	and	later	the	default	mode	can	be	changed	by	setting	the	output

property	VBOX_MODE	to	"<width>x<height>"	for	any	guest	monitor.	When
VBoxClient	and	the	kernel	drivers	are	active	this	is	done	automatically	when	the
host	requests	a	mode	change.	The	driver	for	older	versions	can	only	receive	new
modes	by	querying	the	host	for	requests	at	regular	intervals.

With	pre-1.3	X	Servers	you	can	also	add	your	own	modes	to	the	X	server
configuration	file.	You	simply	need	to	add	them	to	the	"Modes"	list	in	the
"Display"	subsection	of	the	"Screen"	section.	For	example,	the	section	shown
here	has	a	custom	2048x800	resolution	mode	added:

Section	"Screen"

								Identifier				"Default	Screen"

								Device								"VirtualBox	graphics	card"

								Monitor							"Generic	Monitor"

								DefaultDepth		24

								SubSection	"Display"

																Depth									24

																Modes									"2048x800"	"800x600"	"640x480"

								EndSubSection

EndSection

9.5.	CPU	hot-plugging

With	virtual	machines	running	modern	server	operating	systems,	VirtualBox
supports	CPU	hot-plugging.[41]	Whereas	on	a	physical	computer	this	would
mean	that	a	CPU	can	be	added	or	removed	while	the	machine	is	running,
VirtualBox	supports	adding	and	removing	virtual	CPUs	while	a	virtual	machine
is	running.

CPU	hot-plugging	works	only	with	guest	operating	systems	that	support	it.	So
far	this	applies	only	to	Linux	and	Windows	Server	2008	x64	Data	Center
Edition.	Windows	supports	only	hot-add	while	Linux	supports	hot-add	and	hot-
remove	but	to	use	this	feature	with	more	than	8	CPUs	a	64bit	Linux	guest	is
required.

At	this	time,	CPU	hot-plugging	requires	using	the	VBoxManage	command-line
interface.	First,	hot-plugging	needs	to	be	enabled	for	a	virtual	machine:

VBoxManage	modifyvm	"VM	name"	--cpuhotplug	on

After	that,	the	--cpus	option	specifies	the	maximum	number	of	CPUs	that	the
virtual	machine	can	have:

VBoxManage	modifyvm	"VM	name"	--cpus	8

When	the	VM	is	off,	you	can	then	add	and	remove	virtual	CPUs	with	the
modifyvm	--plugcpu	and	--unplugcpu	subcommands,	which	take	the	number
of	the	virtual	CPU	as	a	parameter,	like	this:

VBoxManage	modifyvm	"VM	name"	--plugcpu	3

VBoxManage	modifyvm	"VM	name"	--unplugcpu	3

Note	that	CPU	0	can	never	be	removed.

While	the	VM	is	running,	CPUs	can	be	added	and	removed	with	the	controlvm
plugcpu	and	unplugcpu	commands	instead:

VBoxManage	controlvm	"VM	name"	plugcpu	3

VBoxManage	controlvm	"VM	name"	unplugcpu	3

See	Section	8.8,	“VBoxManage	modifyvm”	and	Section	8.13,	“VBoxManage
controlvm”	for	details.

With	Linux	guests,	the	following	applies:	To	prevent	ejection	while	the	CPU	is
still	used	it	has	to	be	ejected	from	within	the	guest	before.	The	Linux	Guest
Additions	contain	a	service	which	receives	hot-remove	events	and	ejects	the
CPU.	Also,	after	a	CPU	is	added	to	the	VM	it	is	not	automatically	used	by
Linux.	The	Linux	Guest	Additions	service	will	take	care	of	that	if	installed.	If
not	a	CPU	can	be	started	with	the	following	command:

echo	1	>	/sys/devices/system/cpu/cpu<id>/online

[41]	Support	for	CPU	hot-plugging	was	introduced	with	VirtualBox	3.2.

9.6.	PCI	passthrough

When	running	on	Linux	hosts,	with	a	recent	enough	kernel	(at	least	version
2.6.31)	experimental	host	PCI	devices	passthrough	is	available.[42]

Note

The	PCI	passthrough	module	is	shipped	as	a	VirtualBox	extension
package,	which	must	be	installed	separately.	See	Section	1.5,
“Installing	VirtualBox	and	extension	packs”	for	more	information.

Essentially	this	feature	allows	to	directly	use	physical	PCI	devices	on	the	host	by
the	guest	even	if	host	doesn't	have	drivers	for	this	particular	device.	Both,
regular	PCI	and	some	PCI	Express	cards,	are	supported.	AGP	and	certain	PCI
Express	cards	are	not	supported	at	the	moment	if	they	rely	on	GART	(Graphics
Address	Remapping	Table)	unit	programming	for	texture	management	as	it	does
rather	non-trivial	operations	with	pages	remapping	interfering	with	IOMMU.
This	limitation	may	be	lifted	in	future	releases.

To	be	fully	functional,	PCI	passthrough	support	in	VirtualBox	depends	upon	an
IOMMU	hardware	unit	which	is	not	yet	too	widely	available.	If	the	device	uses
bus	mastering	(i.e.	it	performs	DMA	to	the	OS	memory	on	its	own),	then	an
IOMMU	is	required,	otherwise	such	DMA	transactions	may	write	to	the	wrong
physical	memory	address	as	the	device	DMA	engine	is	programmed	using	a
device-specific	protocol	to	perform	memory	transactions.	The	IOMMU
functions	as	translation	unit	mapping	physical	memory	access	requests	from	the
device	using	knowledge	of	the	guest	physical	address	to	host	physical	addresses
translation	rules.

Intel's	solution	for	IOMMU	is	marketed	as	"Intel	Virtualization	Technology	for
Directed	I/O"	(VT-d),	and	AMD's	one	is	called	AMD-Vi.	So	please	check	if	your
motherboard	datasheet	has	appropriate	technology.	Even	if	your	hardware
doesn't	have	a	IOMMU,	certain	PCI	cards	may	work	(such	as	serial	PCI
adapters),	but	the	guest	will	show	a	warning	on	boot	and	the	VM	execution	will
terminate	if	the	guest	driver	will	attempt	to	enable	card	bus	mastering.

It	is	very	common	that	the	BIOS	or	the	host	OS	disables	the	IOMMU	by	default.

So	before	any	attempt	to	use	it	please	make	sure	that

1.	 Your	motherboard	has	an	IOMMU	unit.

2.	 Your	CPU	supports	the	IOMMU.

3.	 The	IOMMU	is	enabled	in	the	BIOS.

4.	 The	VM	must	run	with	VT-x/AMD-V	and	nested	paging	enabled.

5.	 Your	Linux	kernel	was	compiled	with	IOMMU	support	(including	DMA
remapping,	see	CONFIG_DMAR	kernel	compilation	option).	The	PCI	stub
driver	(CONFIG_PCI_STUB)	is	required	as	well.

6.	 Your	Linux	kernel	recognizes	and	uses	the	IOMMU	unit	(intel_iommu=on
boot	option	could	be	needed).	Search	for	DMAR	and	PCI-DMA	in	kernel
boot	log.

Once	you	made	sure	that	the	host	kernel	supports	the	IOMMU,	the	next	step	is	to
select	the	PCI	card	and	attach	it	to	the	guest.	To	figure	out	the	list	of	available
PCI	devices,	use	the	lspci	command.	The	output	will	look	like	this:

01:00.0	VGA	compatible	controller:	ATI	Technologies	Inc	Cedar	PRO	[Radeon	HD	5450]

01:00.1	Audio	device:	ATI	Technologies	Inc	Manhattan	HDMI	Audio	[Mobility	Radeon	HD	5000	Series]

02:00.0	Ethernet	controller:	Realtek	Semiconductor	Co.,	Ltd.	RTL8111/8168B	PCI	Express	Gigabit

								Ethernet	controller	(rev	03)

03:00.0	SATA	controller:	JMicron	Technology	Corp.	JMB362/JMB363	Serial	ATA	Controller	(rev	03)

03:00.1	IDE	interface:	JMicron	Technology	Corp.	JMB362/JMB363	Serial	ATA	Controller	(rev	03)

06:00.0	VGA	compatible	controller:	nVidia	Corporation	G86	[GeForce	8500	GT]	(rev	a1)

The	first	column	is	a	PCI	address	(in	format	bus:device.function).	This
address	could	be	used	to	identify	the	device	for	further	operations.	For	example,
to	attach	a	PCI	network	controller	on	the	system	listed	above	to	the	second	PCI
bus	in	the	guest,	as	device	5,	function	0,	use	the	following	command:

VBoxManage	modifyvm	"VM	name"	--pciattach	02:00.0@01:05.0

To	detach	same	device,	use

VBoxManage	modifyvm	"VM	name"	--pcidetach	02:00.0

Please	note	that	both	host	and	guest	could	freely	assign	a	different	PCI	address

to	the	card	attached	during	runtime,	so	those	addresses	only	apply	to	the	address
of	the	card	at	the	moment	of	attachment	(host),	and	during	BIOS	PCI	init
(guest).

If	the	virtual	machine	has	a	PCI	device	attached,	certain	limitations	apply:

1.	 Only	PCI	cards	with	non-shared	interrupts	(such	as	using	MSI	on	host)	are
supported	at	the	moment.

2.	 No	guest	state	can	be	reliably	saved/restored	(as	the	internal	state	of	the	PCI
card	could	not	be	retrieved).

3.	 Teleportation	(live	migration)	doesn't	work	(for	the	same	reason).

4.	 No	lazy	physical	memory	allocation.	The	host	will	preallocate	the	whole
RAM	required	for	the	VM	on	startup	(as	we	cannot	catch	physical	hardware
accesses	to	the	physical	memory).

[42]	Experimental	support	for	PCI	passthrough	was	introduced	with	VirtualBox
4.1.

9.7.	Webcam	passthrough

9.7.1.	Using	a	host	webcam	in	the	guest

VirtualBox	4.3	includes	an	experimental	feature	which	allows	a	guest	to	use	a
host	webcam.	This	complements	the	general	USB	passthrough	support	which
was	the	typical	way	of	using	host	webcams	in	earlier	versions.	The	webcam
passthrough	support	can	handle	non-USB	video	sources	in	theory,	but	this	is
completely	untested.

Note

The	webcam	passthrough	module	is	shipped	as	part	of	the	Oracle
VM	VirtualBox	extension	pack,	which	must	be	installed	separately.
See	Section	1.5,	“Installing	VirtualBox	and	extension	packs”	for
more	information.

The	host	webcam	can	be	attached	to	the	VM	using	"Devices"	menu	in	the	VM
menu	bar.	The	"Webcams"	menu	contains	a	list	of	available	video	input	devices
on	the	host.	Clicking	on	a	webcam	name	attaches	or	detaches	the	corresponding
host	device.

The	VBoxManage	command	line	tool	can	be	used	to	enable	webcam
passthrough.	Please	see	the	host-specific	sections	below	for	additional	details.
The	following	commands	are	available:

Get	a	list	of	host	webcams	(or	other	video	input	devices):

VBoxManage	list	webcams

The	output	format:

alias	"user	friendly	name"

host	path	or	identifier

The	alias	can	be	used	as	a	shortcut	in	other	commands.	Alias	'.0'	means
default	video	input	device	on	the	host,	'.1',	'.2',	etc	mean	first,	second,	etc
video	input	device.	The	device	order	is	host-specific.

Attach	a	webcam	to	a	running	VM:

VBoxManage	controlvm	"VM	name"	webcam	attach	[host_path|alias	[settings]]

This	will	attach	a	USB	webcam	device	to	the	guest.

The	settings	parameter	is	a	string	Setting1=Value1;Setting2=Value2,
which	allows	to	configure	the	emulated	webcam	device.	The	following
settings	are	supported:

MaxFramerate	The	highest	rate	at	which	video	frames	are	sent	to	the
guest.	A	higher	frame	rate	requires	more	CPU	power.	Therefore
sometimes	it	is	useful	to	set	a	lower	limit.	Default	is	no	limit	and	allow
the	guest	to	use	all	frame	rates	supported	by	the	host	webcam.

MaxPayloadTransferSize	How	many	bytes	the	emulated	webcam	can
send	to	the	guest	at	a	time.	Default	value	is	3060	bytes,	which	is	used
by	some	webcams.	Higher	values	can	slightly	reduce	CPU	load,	if	the
guest	is	able	to	use	larger	buffers.	However,	a	high
MaxPayloadTransferSize	might	be	not	supported	by	some	guests.

Detach	a	webcam	from	a	running	VM:

VBoxManage	controlvm	"VM	name"	webcam	detach	[host_path|alias]

List	webcams	attached	to	a	running	VM:

VBoxManage	controlvm	"VM	name"	webcam	list

The	output	contains	path	or	alias	which	was	used	in	'webcam	attach'
command	for	each	attached	webcam.

9.7.2.	Windows	hosts

When	the	webcam	device	is	detached	from	the	host,	the	emulated	webcam
device	is	automatically	detached	from	the	guest.

9.7.3.	Mac	OS	X	hosts

OS	X	version	10.9	or	newer	is	required.

When	the	webcam	device	is	detached	from	the	host,	the	emulated	webcam
device	remains	attached	to	the	guest	and	must	be	manually	detached	using	the
VBoxManage	controlvm	"VM	name"	webcam	detach	...	command.

9.7.4.	Linux	and	Solaris	hosts

When	the	webcam	is	detached	from	the	host	the	emulated	webcam	device	is
automatically	detached	from	the	guest	only	if	the	webcam	is	streaming	video.	If
the	emulated	webcam	is	inactive	it	should	be	manually	detached	using	the
VBoxManage	controlvm	"VM	name"	webcam	detach	...	command.

Aliases	.0	and	.1	are	mapped	to	/dev/video0,	alias	.2	is	mapped	to
/dev/video1	and	so	forth.

9.8.	Advanced	display	configuration

9.8.1.	Custom	VESA	resolutions

Apart	from	the	standard	VESA	resolutions,	the	VirtualBox	VESA	BIOS	allows
you	to	add	up	to	16	custom	video	modes	which	will	be	reported	to	the	guest
operating	system.	When	using	Windows	guests	with	the	VirtualBox	Guest
Additions,	a	custom	graphics	driver	will	be	used	instead	of	the	fallback	VESA
solution	so	this	information	does	not	apply.

Additional	video	modes	can	be	configured	for	each	VM	using	the	extra	data
facility.	The	extra	data	key	is	called	CustomVideoMode<x>	with	x	being	a	number
from	1	to	16.	Please	note	that	modes	will	be	read	from	1	until	either	the
following	number	is	not	defined	or	16	is	reached.	The	following	example	adds	a
video	mode	that	corresponds	to	the	native	display	resolution	of	many	notebook
computers:

VBoxManage	setextradata	"VM	name"	"CustomVideoMode1"	"1400x1050x16"

The	VESA	mode	IDs	for	custom	video	modes	start	at	0x160.	In	order	to	use	the
above	defined	custom	video	mode,	the	following	command	line	has	be	supplied
to	Linux:

vga	=	0x200	|	0x160

vga	=	864

For	guest	operating	systems	with	VirtualBox	Guest	Additions,	a	custom	video
mode	can	be	set	using	the	video	mode	hint	feature.

9.8.2.	Configuring	the	maximum	resolution	of	guests	when	using
the	graphical	frontend

When	guest	systems	with	the	Guest	Additions	installed	are	started	using	the
graphical	frontend	(the	normal	VirtualBox	application),	they	will	not	be	allowed
to	use	screen	resolutions	greater	than	the	host's	screen	size	unless	the	user
manually	resizes	them	by	dragging	the	window,	switching	to	full	screen	or
seamless	mode	or	sending	a	video	mode	hint	using	VBoxManage.	This	behavior
is	what	most	users	will	want,	but	if	you	have	different	needs,	it	is	possible	to

change	it	by	issuing	one	of	the	following	commands	from	the	command	line:

VBoxManage	setextradata	global	GUI/MaxGuestResolution	any

will	remove	all	limits	on	guest	resolutions.

VBoxManage	setextradata	global	GUI/MaxGuestResolution	>width,height<

manually	specifies	a	maximum	resolution.

VBoxManage	setextradata	global	GUI/MaxGuestResolution	auto

restores	the	default	settings.	Note	that	these	settings	apply	globally	to	all	guest
systems,	not	just	to	a	single	machine.

9.9.	Advanced	storage	configuration

9.9.1.	Using	a	raw	host	hard	disk	from	a	guest

Starting	with	version	1.4,	as	an	alternative	to	using	virtual	disk	images	(as
described	in	detail	in	Chapter	5,	Virtual	storage),	VirtualBox	can	also	present
either	entire	physical	hard	disks	or	selected	partitions	thereof	as	virtual	disks	to
virtual	machines.

With	VirtualBox,	this	type	of	access	is	called	"raw	hard	disk	access";	it	allows	a
guest	operating	system	to	access	its	virtual	hard	disk	without	going	through	the
host	OS	file	system.	The	actual	performance	difference	for	image	files	vs.	raw
disk	varies	greatly	depending	on	the	overhead	of	the	host	file	system,	whether
dynamically	growing	images	are	used,	and	on	host	OS	caching	strategies.	The
caching	indirectly	also	affects	other	aspects	such	as	failure	behavior,	i.e.	whether
the	virtual	disk	contains	all	data	written	before	a	host	OS	crash.	Consult	your
host	OS	documentation	for	details	on	this.

Warning

Raw	hard	disk	access	is	for	expert	users	only.	Incorrect	use	or	use	of
an	outdated	configuration	can	lead	to	total	loss	of	data	on	the
physical	disk.	Most	importantly,	do	not	attempt	to	boot	the	partition
with	the	currently	running	host	operating	system	in	a	guest.	This	will
lead	to	severe	data	corruption.

Raw	hard	disk	access	--	both	for	entire	disks	and	individual	partitions	--	is
implemented	as	part	of	the	VMDK	image	format	support.	As	a	result,	you	will
need	to	create	a	special	VMDK	image	file	which	defines	where	the	data	will	be
stored.	After	creating	such	a	special	VMDK	image,	you	can	use	it	like	a	regular
virtual	disk	image.	For	example,	you	can	use	the	VirtualBox	Manager
(Section	5.3,	“The	Virtual	Media	Manager”)	or	VBoxManage	to	assign	the	image
to	a	virtual	machine.

9.9.1.1.	Access	to	entire	physical	hard	disk

While	this	variant	is	the	simplest	to	set	up,	you	must	be	aware	that	this	will	give

a	guest	operating	system	direct	and	full	access	to	an	entire	physical	disk.	If	your
host	operating	system	is	also	booted	from	this	disk,	please	take	special	care	to
not	access	the	partition	from	the	guest	at	all.	On	the	positive	side,	the	physical
disk	can	be	repartitioned	in	arbitrary	ways	without	having	to	recreate	the	image
file	that	gives	access	to	the	raw	disk.

To	create	an	image	that	represents	an	entire	physical	hard	disk	(which	will	not
contain	any	actual	data,	as	this	will	all	be	stored	on	the	physical	disk),	on	a
Linux	host,	use	the	command

VBoxManage	internalcommands	createrawvmdk	-filename	/path/to/file.vmdk

						-rawdisk	/dev/sda

This	creates	the	image	/path/to/file.vmdk	(must	be	absolute),	and	all	data	will
be	read	and	written	from	/dev/sda.

On	a	Windows	host,	instead	of	the	above	device	specification,	use	e.g.
\\.\PhysicalDrive0.	On	a	Mac	OS	X	host,	instead	of	the	above	device
specification	use	e.g.	/dev/disk1.	Note	that	on	OS	X	you	can	only	get	access	to
an	entire	disk	if	no	volume	is	mounted	from	it.

Creating	the	image	requires	read/write	access	for	the	given	device.	Read/write
access	is	also	later	needed	when	using	the	image	from	a	virtual	machine.	On
some	host	platforms	(e.g.	Windows	Vista	and	later),	raw	disk	access	may	be
restricted	and	not	permitted	by	the	host	OS	in	some	situations.

Just	like	with	regular	disk	images,	this	does	not	automatically	attach	the	newly
created	image	to	a	virtual	machine.	This	can	be	done	with	e.g.

VBoxManage	storageattach	WindowsXP	--storagectl	"IDE	Controller"

						--port	0	--device	0	--type	hdd	--medium	/path/to/file.vmdk

When	this	is	done	the	selected	virtual	machine	will	boot	from	the	specified
physical	disk.

9.9.1.2.	Access	to	individual	physical	hard	disk	partitions

This	"raw	partition	support"	is	quite	similar	to	the	"full	hard	disk"	access
described	above.	However,	in	this	case,	any	partitioning	information	will	be
stored	inside	the	VMDK	image,	so	you	can	e.g.	install	a	different	boot	loader	in

the	virtual	hard	disk	without	affecting	the	host's	partitioning	information.	While
the	guest	will	be	able	to	see	all	partitions	that	exist	on	the	physical	disk,	access
will	be	filtered	in	that	reading	from	partitions	for	which	no	access	is	allowed	the
partitions	will	only	yield	zeroes,	and	all	writes	to	them	are	ignored.

To	create	a	special	image	for	raw	partition	support	(which	will	contain	a	small
amount	of	data,	as	already	mentioned),	on	a	Linux	host,	use	the	command

VBoxManage	internalcommands	createrawvmdk	-filename	/path/to/file.vmdk

						-rawdisk	/dev/sda	-partitions	1,5

As	you	can	see,	the	command	is	identical	to	the	one	for	"full	hard	disk"	access,
except	for	the	additional	-partitions	parameter.	This	example	would	create	the
image	/path/to/file.vmdk	(which,	again,	must	be	absolute),	and	partitions	1
and	5	of	/dev/sda	would	be	made	accessible	to	the	guest.

VirtualBox	uses	the	same	partition	numbering	as	your	Linux	host.	As	a	result,
the	numbers	given	in	the	above	example	would	refer	to	the	first	primary	partition
and	the	first	logical	drive	in	the	extended	partition,	respectively.

On	a	Windows	host,	instead	of	the	above	device	specification,	use	e.g.
\\.\PhysicalDrive0.	On	a	Mac	OS	X	host,	instead	of	the	above	device
specification	use	e.g.	/dev/disk1.	Note	that	on	OS	X	you	can	only	use	partitions
which	are	not	mounted	(eject	the	respective	volume	first).	Partition	numbers	are
the	same	on	Linux,	Windows	and	Mac	OS	X	hosts.

The	numbers	for	the	list	of	partitions	can	be	taken	from	the	output	of

VBoxManage	internalcommands	listpartitions	-rawdisk	/dev/sda

The	output	lists	the	partition	types	and	sizes	to	give	the	user	enough	information
to	identify	the	partitions	necessary	for	the	guest.

Images	which	give	access	to	individual	partitions	are	specific	to	a	particular	host
disk	setup.	You	cannot	transfer	these	images	to	another	host;	also,	whenever	the
host	partitioning	changes,	the	image	must	be	recreated.

Creating	the	image	requires	read/write	access	for	the	given	device.	Read/write
access	is	also	later	needed	when	using	the	image	from	a	virtual	machine.	If	this
is	not	feasible,	there	is	a	special	variant	for	raw	partition	access	(currently	only

available	on	Linux	hosts)	that	avoids	having	to	give	the	current	user	access	to	the
entire	disk.	To	set	up	such	an	image,	use

VBoxManage	internalcommands	createrawvmdk	-filename	/path/to/file.vmdk

						-rawdisk	/dev/sda	-partitions	1,5	-relative

When	used	from	a	virtual	machine,	the	image	will	then	refer	not	to	the	entire
disk,	but	only	to	the	individual	partitions	(in	the	example	/dev/sda1	and
/dev/sda5).	As	a	consequence,	read/write	access	is	only	required	for	the
affected	partitions,	not	for	the	entire	disk.	During	creation	however,	read-only
access	to	the	entire	disk	is	required	to	obtain	the	partitioning	information.

In	some	configurations	it	may	be	necessary	to	change	the	MBR	code	of	the
created	image,	e.g.	to	replace	the	Linux	boot	loader	that	is	used	on	the	host	by
another	boot	loader.	This	allows	e.g.	the	guest	to	boot	directly	to	Windows,
while	the	host	boots	Linux	from	the	"same"	disk.	For	this	purpose	the	-mbr
parameter	is	provided.	It	specifies	a	file	name	from	which	to	take	the	MBR	code.
The	partition	table	is	not	modified	at	all,	so	a	MBR	file	from	a	system	with
totally	different	partitioning	can	be	used.	An	example	of	this	is

VBoxManage	internalcommands	createrawvmdk	-filename	/path/to/file.vmdk

						-rawdisk	/dev/sda	-partitions	1,5	-mbr	winxp.mbr

The	modified	MBR	will	be	stored	inside	the	image,	not	on	the	host	disk.

The	created	image	can	be	attached	to	a	storage	controller	in	a	VM	configuration
as	usual.

9.9.2.	Configuring	the	hard	disk	vendor	product	data	(VPD)

VirtualBox	reports	vendor	product	data	for	its	virtual	hard	disks	which	consist	of
hard	disk	serial	number,	firmware	revision	and	model	number.	These	can	be
changed	using	the	following	commands:

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/ahci/0/Config/Port0/SerialNumber"	"serial"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/ahci/0/Config/Port0/FirmwareRevision"	"firmware"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/ahci/0/Config/Port0/ModelNumber"	"model"

The	serial	number	is	a	20	byte	alphanumeric	string,	the	firmware	revision	an	8
byte	alphanumeric	string	and	the	model	number	a	40	byte	alphanumeric	string.
Instead	of	"Port0"	(referring	to	the	first	port),	specify	the	desired	SATA	hard	disk
port.

The	above	commands	apply	to	virtual	machines	with	an	AHCI	(SATA)
controller.	The	commands	for	virtual	machines	with	an	IDE	controller	are:

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/SerialNumber"	"serial"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/FirmwareRevision"	"firmware"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/piix3ide/0/Config/PrimaryMaster/ModelNumber"	"model"

For	hard	disks	it's	also	possible	to	mark	the	drive	as	having	a	non-rotational
medium	with:

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/ahci/0/Config/Port0/NonRotational"	"1"

Additional	three	parameters	are	needed	for	CD/DVD	drives	to	report	the	vendor
product	data:

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/ahci/0/Config/Port0/ATAPIVendorId"	"vendor"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/ahci/0/Config/Port0/ATAPIProductId"	"product"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/ahci/0/Config/Port0/ATAPIRevision"	"revision"

The	vendor	id	is	an	8	byte	alphanumeric	string,	the	product	id	an	16	byte
alphanumeric	string	and	the	revision	a	4	byte	alphanumeric	string.	Instead	of
"Port0"	(referring	to	the	first	port),	specify	the	desired	SATA	hard	disk	port.

9.9.3.	Access	iSCSI	targets	via	Internal	Networking

As	an	experimental	feature,	VirtualBox	allows	for	accessing	an	iSCSI	target
running	in	a	virtual	machine	which	is	configured	for	using	Internal	Networking
mode.	Please	see	Section	5.10,	“iSCSI	servers”;	Section	6.6,	“Internal
networking”;	and	Section	8.18,	“VBoxManage	storageattach”	for	additional
information.

The	IP	stack	accessing	Internal	Networking	must	be	configured	in	the	virtual
machine	which	accesses	the	iSCSI	target.	A	free	static	IP	and	a	MAC	address	not
used	by	other	virtual	machines	must	be	chosen.	In	the	example	below,	adapt	the
name	of	the	virtual	machine,	the	MAC	address,	the	IP	configuration	and	the
Internal	Networking	name	("MyIntNet")	according	to	your	needs.	The	following
eight	commands	must	first	be	issued:

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/IntNetIP/0/Trusted	1

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/IntNetIP/0/Config/MAC	08:00:27:01:02:0f

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/IntNetIP/0/Config/IP	10.0.9.1

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/IntNetIP/0/Config/Netmask	255.255.255.0

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/IntNetIP/0/LUN#0/Driver	IntNet

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/IntNetIP/0/LUN#0/Config/Network	MyIntNet

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/IntNetIP/0/LUN#0/Config/TrunkType	2

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/IntNetIP/0/LUN#0/Config/IsService	1

Finally	the	iSCSI	disk	must	be	attached	with	the	--intnet	option	to	tell	the
iSCSI	initiator	to	use	internal	networking:

VBoxManage	storageattach	...	--medium	iscsi

									--server	10.0.9.30	--target	iqn.2008-12.com.sun:sampletarget	--intnet

Compared	to	a	"regular"	iSCSI	setup,	IP	address	of	the	target	must	be	specified
as	a	numeric	IP	address,	as	there	is	no	DNS	resolver	for	internal	networking.

The	virtual	machine	with	the	iSCSI	target	should	be	started	before	the	VM	using
it	is	powered	on.	If	a	virtual	machine	using	an	iSCSI	disk	is	started	without
having	the	iSCSI	target	powered	up,	it	can	take	up	to	200	seconds	to	detect	this
situation.	The	VM	will	fail	to	power	up.

9.10.	Legacy	commands	for	using	serial	ports

Starting	with	version	1.4,	VirtualBox	provided	support	for	virtual	serial	ports,
which,	at	the	time,	was	rather	complicated	to	set	up	with	a	sequence	of
VBoxManage	setextradata	statements.	Since	version	1.5,	that	way	of	setting	up
serial	ports	is	no	longer	necessary	and	deprecated.	To	set	up	virtual	serial	ports,
use	the	methods	now	described	in	Section	3.10,	“Serial	ports”.

Note

For	backwards	compatibility,	the	old	setextradata	statements,
whose	description	is	retained	below	from	the	old	version	of	the
manual,	take	precedence	over	the	new	way	of	configuring	serial
ports.	As	a	result,	if	configuring	serial	ports	the	new	way	doesn't
work,	make	sure	the	VM	in	question	does	not	have	old	configuration
data	such	as	below	still	active.

The	old	sequence	of	configuring	a	serial	port	used	the	following	6	commands:

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/serial/0/Config/IRQ"	4

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/serial/0/Config/IOBase"	0x3f8

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/serial/0/LUN#0/Driver"	Char

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/serial/0/LUN#0/AttachedDriver/Driver"	NamedPipe

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/serial/0/LUN#0/AttachedDriver/Config/Location"	"\\.\pipe\vboxCOM1"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/serial/0/LUN#0/AttachedDriver/Config/IsServer"	1

This	sets	up	a	serial	port	in	the	guest	with	the	default	settings	for	COM1	(IRQ	4,
I/O	address	0x3f8)	and	the	Location	setting	assumes	that	this	configuration	is
used	on	a	Windows	host,	because	the	Windows	named	pipe	syntax	is	used.	Keep
in	mind	that	on	Windows	hosts	a	named	pipe	must	always	start	with	\\.\pipe\.
On	Linux	the	same	configuration	settings	apply,	except	that	the	path	name	for
the	Location	can	be	chosen	more	freely.	Local	domain	sockets	can	be	placed
anywhere,	provided	the	user	running	VirtualBox	has	the	permission	to	create	a

new	file	in	the	directory.	The	final	command	above	defines	that	VirtualBox	acts
as	a	server,	i.e.	it	creates	the	named	pipe	itself	instead	of	connecting	to	an
already	existing	one.

9.11.	Fine-tuning	the	VirtualBox	NAT	engine

9.11.1.	Configuring	the	address	of	a	NAT	network	interface

In	NAT	mode,	the	guest	network	interface	is	assigned	to	the	IPv4	range
10.0.x.0/24	by	default	where	x	corresponds	to	the	instance	of	the	NAT
interface	+2.	So	x	is	2	when	there	is	only	one	NAT	instance	active.	In	that	case
the	guest	is	assigned	to	the	address	10.0.2.15,	the	gateway	is	set	to	10.0.2.2
and	the	name	server	can	be	found	at	10.0.2.3.

If,	for	any	reason,	the	NAT	network	needs	to	be	changed,	this	can	be	achieved
with	the	following	command:

VBoxManage	modifyvm	"VM	name"	--natnet1	"192.168/16"

This	command	would	reserve	the	network	addresses	from	192.168.0.0	to
192.168.254.254	for	the	first	NAT	network	instance	of	"VM	name".	The	guest
IP	would	be	assigned	to	192.168.0.15	and	the	default	gateway	could	be	found
at	192.168.0.2.

9.11.2.	Configuring	the	boot	server	(next	server)	of	a	NAT
network	interface

For	network	booting	in	NAT	mode,	by	default	VirtualBox	uses	a	built-in	TFTP
server	at	the	IP	address	10.0.2.4.	This	default	behavior	should	work	fine	for
typical	remote-booting	scenarios.	However,	it	is	possible	to	change	the	boot
server	IP	and	the	location	of	the	boot	image	with	the	following	commands:

VBoxManage	modifyvm	"VM	name"	--nattftpserver1	10.0.2.2

VBoxManage	modifyvm	"VM	name"	--nattftpfile1	/srv/tftp/boot/MyPXEBoot.pxe

9.11.3.	Tuning	TCP/IP	buffers	for	NAT

The	VirtualBox	NAT	stack	performance	is	often	determined	by	its	interaction
with	the	host's	TCP/IP	stack	and	the	size	of	several	buffers	(SO_RCVBUF	and
SO_SNDBUF).	For	certain	setups	users	might	want	to	adjust	the	buffer	size	for	a
better	performance.	This	can	by	achieved	using	the	following	commands	(values
are	in	kilobytes	and	can	range	from	8	to	1024):

VBoxManage	modifyvm	"VM	name"	--natsettings1	16000,128,128,0,0

This	example	illustrates	tuning	the	NAT	settings.	The	first	parameter	is	the
MTU,	then	the	size	of	the	socket's	send	buffer	and	the	size	of	the	socket's	receive
buffer,	the	initial	size	of	the	TCP	send	window,	and	lastly	the	initial	size	of	the
TCP	receive	window.	Note	that	specifying	zero	means	fallback	to	the	default
value.

Each	of	these	buffers	has	a	default	size	of	64KB	and	default	MTU	is	1500.

9.11.4.	Binding	NAT	sockets	to	a	specific	interface

By	default,	VirtualBox's	NAT	engine	will	route	TCP/IP	packets	through	the
default	interface	assigned	by	the	host's	TCP/IP	stack.	(The	technical	reason	for
this	is	that	the	NAT	engine	uses	sockets	for	communication.)	If,	for	some	reason,
you	want	to	change	this	behavior,	you	can	tell	the	NAT	engine	to	bind	to	a
particular	IP	address	instead.	Use	the	following	command:

VBoxManage	modifyvm	"VM	name"	--natbindip1	"10.45.0.2"

After	this,	all	outgoing	traffic	will	be	sent	through	the	interface	with	the	IP
address	10.45.0.2.	Please	make	sure	that	this	interface	is	up	and	running	prior	to
this	assignment.

9.11.5.	Enabling	DNS	proxy	in	NAT	mode

The	NAT	engine	by	default	offers	the	same	DNS	servers	to	the	guest	that	are
configured	on	the	host.	In	some	scenarios,	it	can	be	desirable	to	hide	the	DNS
server	IPs	from	the	guest,	for	example	when	this	information	can	change	on	the
host	due	to	expiring	DHCP	leases.	In	this	case,	you	can	tell	the	NAT	engine	to
act	as	DNS	proxy	using	the	following	command:

VBoxManage	modifyvm	"VM	name"	--natdnsproxy1	on

9.11.6.	Using	the	host's	resolver	as	a	DNS	proxy	in	NAT	mode

For	resolving	network	names,	the	DHCP	server	of	the	NAT	engine	offers	a	list	of
registered	DNS	servers	of	the	host.	If	for	some	reason	you	need	to	hide	this	DNS
server	list	and	use	the	host's	resolver	settings,	thereby	forcing	the	VirtualBox

NAT	engine	to	intercept	DNS	requests	and	forward	them	to	host's	resolver,	use
the	following	command:

VBoxManage	modifyvm	"VM	name"	--natdnshostresolver1	on

Note	that	this	setting	is	similar	to	the	DNS	proxy	mode,	however	whereas	the
proxy	mode	just	forwards	DNS	requests	to	the	appropriate	servers,	the	resolver
mode	will	interpret	the	DNS	requests	and	use	the	host's	DNS	API	to	query	the
information	and	return	it	to	the	guest.

9.11.6.1.	User-defined	host	name	resolving

In	some	cases	it	might	be	useful	to	intercept	the	name	resolving	mechanism,
providing	a	user-defined	IP	address	on	a	particular	DNS	request.	The
intercepting	mechanism	allows	the	user	to	map	not	only	a	single	host	but
domains	and	even	more	complex	naming	conventions	if	required.

The	following	command	sets	a	rule	for	mapping	a	name	to	a	specified	IP:

VBoxManage	setextradata	"VM	name"	\

						"VBoxInternal/Devices/{pcnet,e1000}/0/LUN#0/AttachedDriver/Config/HostResolverMappings/	\

						<unique	rule	name	of	interception	rule>/HostIP"	<IPv4>

VBoxManage	setextradata	"VM	name"	\

						"VBoxInternal/Devices/{pcnet,e1000}/0/LUN#0/AttachedDriver/Config/HostResolverMappings/	\

						<unique	rule	name>/HostName"	<name	of	host>

The	following	command	sets	a	rule	for	mapping	a	pattern	name	to	a	specified	IP:

VBoxManage	setextradata	"VM	name"	\

						"VBoxInternal/Devices/{pcnet,e1000}/0/LUN#0/AttachedDriver/Config/HostResolverMappings/	\

						<unique	rule	name>/HostIP"	<IPv4>

VBoxManage	setextradata	"VM	name"	\

						"VBoxInternal/Devices/{pcnet,e1000}/0/LUN#0/AttachedDriver/Config/HostResolverMappings/	\

						<unique	rule	name>/HostNamePattern"	<hostpattern>

The	host	pattern	may	include	"|",	"?"	and	"*".

This	example	demonstrates	how	to	instruct	the	host-resolver	mechanism	to
resolve	all	domain	and	probably	some	mirrors	of	www.blocked-site.info	site
with	IP	127.0.0.1:

VBoxManage	setextradata	"VM	name"	\

						"VBoxInternal/Devices/e1000/0/LUN#0/AttachedDriver/Config/HostResolverMappings/	\

						all_blocked_site/HostIP"	127.0.0.1

VBoxManage	setextradata	"VM	name"	\

						"VBoxInternal/Devices/e1000/0/LUN#0/AttachedDriver/Config/HostResolverMappings/	\

						all_blocked_site/HostNamePattern"	"*.blocked-site.*|*.fb.org"

The	host	resolver	mechanism	should	be	enabled	to	use	user-defined	mapping
rules,	otherwise	they	don't	have	any	effect.

9.11.7.	Configuring	aliasing	of	the	NAT	engine

By	default,	the	NAT	core	uses	aliasing	and	uses	random	ports	when	generating
an	alias	for	a	connection.	This	works	well	for	the	most	protocols	like	SSH,	FTP
and	so	on.	Though	some	protocols	might	need	a	more	transparent	behavior	or
may	depend	on	the	real	port	number	the	packet	was	sent	from.	It	is	possible	to
change	the	NAT	mode	via	the	VBoxManage	frontend	with	the	following
commands:

VBoxManage	modifyvm	"VM	name"	--nataliasmode1	proxyonly

and

VBoxManage	modifyvm	"Linux	Guest"	--nataliasmode1	sameports

The	first	example	disables	aliasing	and	switches	NAT	into	transparent	mode,	the
second	example	enforces	preserving	of	port	values.	These	modes	can	be
combined	if	necessary.

9.12.	Configuring	the	BIOS	DMI	information

The	DMI	data	VirtualBox	provides	to	guests	can	be	changed	for	a	specific	VM.
Use	the	following	commands	to	configure	the	DMI	BIOS	information.	In	case
your	VM	is	configured	to	use	EFI	firmware	you	need	to	replace	pcbios	by	efi
in	the	keys.

DMI	BIOS	information

(type	0)

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBIOSVendor"								"BIOS	Vendor"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBIOSVersion"							"BIOS	Version"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBIOSReleaseDate"			"BIOS	Release	Date"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBIOSReleaseMajor"		1

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBIOSReleaseMinor"		2

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBIOSFirmwareMajor"	3

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBIOSFirmwareMinor"	4

DMI	system	information

(type	1)

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiSystemVendor"						"System	Vendor"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiSystemProduct"					"System	Product"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiSystemVersion"					"System	Version"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiSystemSerial"						"System	Serial"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiSystemSKU"									"System	SKU"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiSystemFamily"						"System	Family"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiSystemUuid"

																																															"9852bf98-b83c-49db-a8de-182c42c7226b"

DMI	board	information

(type	2)

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBoardVendor"							"Board	Vendor"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBoardProduct"						"Board	Product"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBoardVersion"						"Board	Version"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBoardSerial"							"Board	Serial"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBoardAssetTag"					"Board	Tag"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBoardLocInChass"			"Board	Location"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiBoardBoardType"				10

DMI	system	enclosure	or	chassis

(type	3)

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiChassisVendor"					"Chassis	Vendor"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiChassisType"							3

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiChassisVersion"				"Chassis	Version"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiChassisSerial"					"Chassis	Serial"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiChassisAssetTag"			"Chassis	Tag"

DMI	processor	information

(type	4)

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiProcManufacturer"		"GenuineIntel"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiProcVersion"							"Pentium(R)	III"

DMI	OEM	strings

(type	11)

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiOEMVBoxVer"								"vboxVer_1.2.3"

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiOEMVBoxRev"								"vboxRev_12345"

If	a	DMI	string	is	not	set,	the	default	value	of	VirtualBox	is	used.	To	set	an
empty	string	use	"<EMPTY>".

Note	that	in	the	above	list,	all	quoted	parameters	(DmiBIOSVendor,
DmiBIOSVersion	but	not	DmiBIOSReleaseMajor)	are	expected	to	be	strings.	If
such	a	string	is	a	valid	number,	the	parameter	is	treated	as	number	and	the	VM
will	most	probably	refuse	to	start	with	an	VERR_CFGM_NOT_STRING	error.	In	that
case,	use	"string:<value>",	for	instance

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/pcbios/0/Config/DmiSystemSerial"						"string:1234"

Changing	this	information	can	be	necessary	to	provide	the	DMI	information	of
the	host	to	the	guest	to	prevent	Windows	from	asking	for	a	new	product	key.	On
Linux	hosts	the	DMI	BIOS	information	can	be	obtained	with

dmidecode	-t0

and	the	DMI	system	information	can	be	obtained	with

dmidecode	-t1

9.13.	Configuring	the	custom	ACPI	table

VirtualBox	can	be	configured	to	present	an	custom	ACPI	table	to	the	guest.	Use
the	following	command	to	configure	this:

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/acpi/0/Config/CustomTable"	"/path/to/table.bin"

Configuring	a	custom	ACPI	table	can	prevent	Windows	Vista	and	Windows	7
from	asking	for	a	new	product	key.	On	Linux	hosts,	one	of	the	host	tables	can	be
read	from	/sys/firmware/acpi/tables/.

9.14.	Fine-tuning	timers	and	time	synchronization

9.14.1.	Configuring	the	guest	time	stamp	counter	(TSC)	to	reflect
guest	execution

By	default,	VirtualBox	keeps	all	sources	of	time	visible	to	the	guest
synchronized	to	a	single	time	source,	the	monotonic	host	time.	This	reflects	the
assumptions	of	many	guest	operating	systems,	which	expect	all	time	sources	to
reflect	"wall	clock"	time.	In	special	circumstances	it	may	be	useful	however	to
make	the	TSC	(time	stamp	counter)	in	the	guest	reflect	the	time	actually	spent
executing	the	guest.

This	special	TSC	handling	mode	can	be	enabled	on	a	per-VM	basis,	and	for	best
results	must	be	used	only	in	combination	with	hardware	virtualization.	To	enable
this	mode	use	the	following	command:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/TM/TSCTiedToExecution"	1

To	revert	to	the	default	TSC	handling	mode	use:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/TM/TSCTiedToExecution"

Note	that	if	you	use	the	special	TSC	handling	mode	with	a	guest	operating
system	which	is	very	strict	about	the	consistency	of	time	sources	you	may	get	a
warning	or	error	message	about	the	timing	inconsistency.	It	may	also	cause
clocks	to	become	unreliable	with	some	guest	operating	systems	depending	on
how	they	use	the	TSC.

9.14.2.	Accelerate	or	slow	down	the	guest	clock

For	certain	purposes	it	can	be	useful	to	accelerate	or	to	slow	down	the	(virtual)
guest	clock.	This	can	be	achieved	as	follows:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/TM/WarpDrivePercentage"	200

The	above	example	will	double	the	speed	of	the	guest	clock	while

VBoxManage	setextradata	"VM	name"	"VBoxInternal/TM/WarpDrivePercentage"	50

will	halve	the	speed	of	the	guest	clock.	Note	that	changing	the	rate	of	the	virtual
clock	can	confuse	the	guest	and	can	even	lead	to	abnormal	guest	behavior.	For
instance,	a	higher	clock	rate	means	shorter	timeouts	for	virtual	devices	with	the
result	that	a	slightly	increased	response	time	of	a	virtual	device	due	to	an
increased	host	load	can	cause	guest	failures.	Note	further	that	any	time
synchronization	mechanism	will	frequently	try	to	resynchronize	the	guest	clock
with	the	reference	clock	(which	is	the	host	clock	if	the	VirtualBox	Guest
Additions	are	active).	Therefore	any	time	synchronization	should	be	disabled	if
the	rate	of	the	guest	clock	is	changed	as	described	above	(see	Section	9.14.3,
“Tuning	the	Guest	Additions	time	synchronization	parameters”).

9.14.3.	Tuning	the	Guest	Additions	time	synchronization
parameters

The	VirtualBox	Guest	Additions	ensure	that	the	guest's	system	time	is
synchronized	with	the	host	time.	There	are	several	parameters	which	can	be
tuned.	The	parameters	can	be	set	for	a	specific	VM	using	the	following
command:

VBoxManage	guestproperty	set	"VM	name"	"/VirtualBox/GuestAdd/VBoxService/PARAMETER"	VALUE

where	PARAMETER	is	one	of	the	following:

--timesync-interval

Specifies	the	interval	at	which	to	synchronize	the	time	with	the	host.	The
default	is	10000	ms	(10	seconds).

--timesync-min-adjust

The	minimum	absolute	drift	value	measured	in	milliseconds	to	make
adjustments	for.	The	default	is	1000	ms	on	OS/2	and	100	ms	elsewhere.

--timesync-latency-factor

The	factor	to	multiply	the	time	query	latency	with	to	calculate	the	dynamic
minimum	adjust	time.	The	default	is	8	times,	that	means	in	detail:	Measure
the	time	it	takes	to	determine	the	host	time	(the	guest	has	to	contact	the	VM
host	service	which	may	take	some	time),	multiply	this	value	by	8	and	do	an
adjustment	only	if	the	time	difference	between	host	and	guest	is	bigger	than

this	value.	Don't	do	any	time	adjustment	otherwise.

--timesync-max-latency

The	max	host	timer	query	latency	to	accept.	The	default	is	250	ms.

--timesync-set-threshold

The	absolute	drift	threshold,	given	as	milliseconds	where	to	start	setting	the
time	instead	of	trying	to	smoothly	adjust	it.	The	default	is	20	minutes.

--timesync-set-start

Set	the	time	when	starting	the	time	sync	service.

--timesync-set-on-restore	0|1

Set	the	time	after	the	VM	was	restored	from	a	saved	state	when	passing	1	as
parameter	(default).	Disable	by	passing	0.	In	the	latter	case,	the	time	will	be
adjusted	smoothly	which	can	take	a	long	time.

All	these	parameters	can	be	specified	as	command	line	parameters	to
VBoxService	as	well.

9.14.4.	Disabling	the	Guest	Additions	time	synchronization

Once	installed	and	started,	the	VirtualBox	Guest	Additions	will	try	to
synchronize	the	guest	time	with	the	host	time.	This	can	be	prevented	by
forbidding	the	guest	service	from	reading	the	host	clock:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/Devices/VMMDev/0/Config/GetHostTimeDisabled"	1

9.15.	Installing	the	alternate	bridged	networking
driver	on	Solaris	11	hosts

Starting	with	VirtualBox	4.1,	VirtualBox	ships	a	new	network	filter	driver	that
utilizes	Solaris	11's	Crossbow	functionality.	By	default,	this	new	driver	is
installed	for	Solaris	11	hosts	(builds	159	and	above)	that	has	support	for	it.

To	force	installation	of	the	older	STREAMS	based	network	filter	driver,	execute
as	root	the	following	command	before	installing	the	VirtualBox	package:

touch	/etc/vboxinst_vboxflt

To	force	installation	of	the	Crossbow	based	network	filter	driver,	execute	as	root
the	following	command	before	installing	the	VirtualBox	package:

touch	/etc/vboxinst_vboxbow

To	check	which	driver	is	currently	being	used	by	VirtualBox,	execute:

modinfo	|	grep	vbox

If	the	output	contains	"vboxbow",	it	indicates	VirtualBox	is	using	the	Crossbow
network	filter	driver,	while	the	name	"vboxflt"	indicates	usage	of	the	older
STREAMS	network	filter.

9.16.	VirtualBox	VNIC	templates	for	VLANs	on
Solaris	11	hosts

VirtualBox	supports	VNIC	(Virtual	Network	Interface)	templates	for	configuring
VMs	over	VLANs.[43]	A	VirtualBox	VNIC	template	is	a	VNIC	whose	name
starts	with	"vboxvnic_template"	(case-sensitive).

On	Solaris	11	hosts[44],	a	VNIC	template	may	be	used	to	specify	the	VLAN	ID
to	use	while	bridging	over	a	network	link.

Here	is	an	example	of	how	to	use	a	VNIC	template	to	configure	a	VM	over	a
VLAN.	Create	a	VirtualBox	VNIC	template,	by	executing	as	root:

dladm	create-vnic	-t	-l	nge0	-v	23	vboxvnic_template0

This	will	create	a	temporary	VNIC	template	over	interface	"nge0"	with	the
VLAN	ID	23.	To	create	VNIC	templates	that	are	persistent	across	host	reboots,
skip	the	-t	parameter	in	the	above	command.	You	may	check	the	current	state	of
links	using:

$	dladm	show-link

LINK								CLASS					MTU				STATE				BRIDGE					OVER

nge0								phys						1500			up							--									--

nge1								phys						1500			down					--									--

vboxvnic_template0	vnic	1500	up							--									nge0

$	dladm	show-vnic

LINK									OVER									SPEED		MACADDRESS								MACADDRTYPE									VID

vboxvnic_template0	nge0			1000			2:8:20:25:12:75			random														23

Once	the	VNIC	template	is	created,	any	VMs	that	need	to	be	on	VLAN	23	over
the	interface	"nge0"	can	be	configured	to	bridge	using	this	VNIC	template.

VNIC	templates	makes	managing	VMs	on	VLANs	simpler	and	efficient.	The
VLAN	details	are	not	stored	as	part	of	every	VM's	configuration	but	rather
inherited	from	the	VNIC	template	while	starting	the	VM.	The	VNIC	template
itself	can	be	modified	anytime	using	dladm.

VNIC	templates	can	be	created	with	additional	properties	such	as	bandwidth

limits,	CPU	fanout	etc.	Refer	to	your	Solaris	network	documentation	on	how	to
accomplish	this.	These	additional	properties,	if	any,	are	also	applied	to	VMs
which	bridge	using	the	VNIC	template.

[43]	Support	for	Crossbow	based	bridged	networking	was	introduced	with
VirtualBox	4.1	and	requires	Solaris	11	build	159	or	above.

[44]	When	Crossbow	based	bridged	networking	is	used.

9.17.	Configuring	multiple	host-only	network
interfaces	on	Solaris	hosts

By	default	VirtualBox	provides	you	with	one	host-only	network	interface.
Adding	more	host-only	network	interfaces	on	Solaris	hosts	requires	manual
configuration.	Here's	how	to	add	another	host-only	network	interface.

Begin	by	stopping	all	running	VMs.	Then,	unplumb	the	existing	"vboxnet0"
interface	by	execute	the	following	command	as	root:

ifconfig	vboxnet0	unplumb

If	you	have	several	vboxnet	interfaces,	you	will	need	to	unplumb	all	of	them.
Once	all	vboxnet	interfaces	are	unplumbed,	remove	the	driver	by	executing	the
following	command	as	root:

rem_drv	vboxnet

Edit	the	file	/platform/i86pc/kernel/drv/vboxnet.conf	and	add	a	line	for	the
new	interface	we	want	to	add	as	shown	below:

name="vboxnet"	parent="pseudo"	instance=1;

name="vboxnet"	parent="pseudo"	instance=2;

Add	as	many	of	these	lines	as	required	with	each	line	having	a	unique	instance
number.

Next,	reload	the	vboxnet	driver	by	executing	the	following	command	as	root:

add_drv	vboxnet

On	Solaris	11.1	and	newer	hosts	you	may	want	to	rename	the	default	vanity
interface	name.	To	check	what	name	has	been	assigned,	execute:

dladm	show-phys

LINK														MEDIA																STATE						SPEED		DUPLEX				DEVICE

net0														Ethernet													up									100				full						e1000g0

net2														Ethernet													up									1000			full						vboxnet1

net1														Ethernet													up									1000			full						vboxnet0

In	the	above	example,	we	can	rename	"net2"	to	"vboxnet1"	before	proceeding	to
plumb	the	interface.	This	can	be	done	by	executing	as	root:

dladm	rename-link	net2	vboxnet1

Now	plumb	all	the	interfaces	using	ifconfig	vboxnetX	plumb	(where	'X'	would
be	1	in	this	case).	Once	the	interface	is	plumbed,	it	may	be	configured	like	any
other	network	interface.	Refer	to	the	ifconfig	documentation	for	further	details.

To	make	the	newly	added	interfaces'	settings	persistent	across	reboots,	you	will
need	to	edit	the	files	/etc/inet/netmasks,	and	if	you	are	using	NWAM
/etc/nwam/llp	and	add	the	appropriate	entries	to	set	the	netmask	and	static	IP
for	each	of	those	interfaces.	The	VirtualBox	installer	only	updates	these
configuration	files	for	the	one	"vboxnet0"	interface	it	creates	by	default.

9.18.	Configuring	the	VirtualBox	CoreDumper	on
Solaris	hosts

VirtualBox	is	capable	of	producing	its	own	core	files	for	extensive	debugging
when	things	go	wrong.	Currently	this	is	only	available	on	Solaris	hosts.

The	VirtualBox	CoreDumper	can	be	enabled	using	the	following	command:

VBoxManage	setextradata	"VM	name"	VBoxInternal2/CoreDumpEnabled	1

You	can	specify	which	directory	to	use	for	core	dumps	with	this	command:

VBoxManage	setextradata	"VM	name"	VBoxInternal2/CoreDumpDir	<path-to-directory>

Make	sure	the	directory	you	specify	is	on	a	volume	with	sufficient	free	space
and	that	the	VirtualBox	process	has	sufficient	permissions	to	write	files	to	this
directory.	If	you	skip	this	command	and	don't	specify	any	core	dump	directory,
the	current	directory	of	the	VirtualBox	executable	will	be	used	(which	would
most	likely	fail	when	writing	cores	as	they	are	protected	with	root	permissions).
It	is	recommended	you	explicitly	set	a	core	dump	directory.

You	must	specify	when	the	VirtualBox	CoreDumper	should	be	triggered.	This	is
done	using	the	following	commands:

VBoxManage	setextradata	"VM	name"	VBoxInternal2/CoreDumpReplaceSystemDump	1

VBoxManage	setextradata	"VM	name"	VBoxInternal2/CoreDumpLive	1

At	least	one	of	the	above	two	commands	will	have	to	be	provided	if	you	have
enabled	the	VirtualBox	CoreDumper.

Setting	CoreDumpReplaceSystemDump	sets	up	the	VM	to	override	the	host's	core
dumping	mechanism	and	in	the	event	of	any	crash	only	the	VirtualBox
CoreDumper	would	produce	the	core	file.

Setting	CoreDumpLive	sets	up	the	VM	to	produce	cores	whenever	the	VM
process	receives	a	SIGUSR2	signal.	After	producing	the	core	file,	the	VM	will	not
be	terminated	and	will	continue	to	run.	You	can	thus	take	cores	of	the	VM
process	using:

kill	-s	SIGUSR2	<VM-process-id>

Core	files	produced	by	the	VirtualBox	CoreDumper	are	of	the	form	core.vb.
<ProcessName>.<ProcessID>,	for	example	core.vb.VBoxHeadless.11321.

9.19.	VirtualBox	and	Solaris	kernel	zones

Solaris	kernel	zones	on	x86-based	systems	make	use	of	hardware-assisted
virtualization	features	like	VirtualBox	does.	However,	for	kernel	zones	and
VirtualBox	to	share	this	hardware	resource,	they	need	to	co-operate.

By	default,	due	to	performance	reasons,	VirtualBox	acquires	the	hardware-
assisted	virtualization	resource	(VT-x/AMD-V)	globally	on	the	host	machine	and
uses	it	until	the	last	VirtualBox	VM	that	requires	it	is	powered	off.	This	prevents
other	software	from	using	VT-x/AMD-V	during	the	time	VirtualBox	has	taken
control	of	it.

VirtualBox	can	be	instructed	to	relinquish	use	of	hardware-assisted	virtualization
features	when	not	executing	guest	code,	thereby	allowing	kernel	zones	to	make
use	of	them.	To	do	this,	shutdown	all	VirtualBox	VMs	and	execute	the	following
command:

VBoxManage	setproperty	hwvirtexclusive	off

This	command	needs	to	be	executed	only	once	as	the	setting	is	stored	as	part	of
the	global	VirtualBox	settings	which	will	continue	to	persist	across	host-reboots
and	VirtualBox	upgrades.

9.20.	Locking	down	the	VirtualBox	GUI

9.20.1.	Customizing	the	VM	manager

There	are	several	advanced	customization	settings	for	locking	down	the
VirtualBox	manager,	that	is,	removing	some	features	that	the	user	should	not	see.

VBoxManage	setextradata	global	GUI/Customizations	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

noSelector

Don't	allow	to	start	the	VirtualBox	manager.	Trying	to	do	so	will	show	a
window	containing	a	proper	error	message.

noMenuBar

VM	windows	will	not	contain	a	menu	bar.

noStatusBar

VM	windows	will	not	contain	a	status	bar.

To	disable	any	of	these	VM	manager	customizations	do

VBoxManage	setextradata	global	GUI/Customizations

9.20.2.	VM	selector	customization

The	following	per-machine	VM	extradata	settings	can	be	used	to	change	the
behavior	of	the	VM	selector	window	in	respect	of	certain	VMs:

VBoxManage	setextradata	"VM	name"	SETTING	true

where	SETTING	can	be:

GUI/HideDetails

Don't	show	the	VM	configuration	of	a	certain	VM.	The	details	window	will

remain	just	empty	if	this	VM	is	selected.

GUI/PreventReconfiguration

Don't	allow	the	user	to	open	the	settings	dialog	for	a	certain	VM.

GUI/PreventSnapshotOperations

Prevent	snapshot	operations	for	a	VM	from	the	GUI,	either	at	runtime	or
when	the	VM	is	powered	off.

GUI/HideFromManager

Hide	a	certain	VM	in	the	VM	selector	window.

GUI/PreventApplicationUpdate

Disable	the	automatic	update	check	and	hide	the	corresponding	menu	item.

Please	note	that	these	settings	wouldn't	prevent	the	user	from	reconfiguring	the
VM	by	VBoxManage	modifyvm.

9.20.3.	Configure	VM	selector	menu	entries

You	can	disable	(i.e.	black-list)	certain	entries	in	the	global	settings	page	of	the
VM	selector:

VBoxManage	setextradata	global	GUI/RestrictedGlobalSettingsPages	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

General

Don't	show	the	General	settings	pane.

Input

Don't	show	the	Input	settings	pane.

Update

Don't	show	the	Update	settings	pane.

Language

Don't	show	the	Language	settings	pane.

Display

Don't	show	the	Display	settings	pane.

Network

Don't	show	the	Network	settings	pane.

Extensions

Don't	show	the	Extensions	settings	pane.

Proxy

Don't	show	the	Proxy	settings	pane.

This	is	a	global	setting.	Any	combination	of	the	above	is	allowed.	To	restore	the
default	behavior,	use

VBoxManage	setextradata	global	GUI/RestrictedGlobalSettingsPages

9.20.4.	Configure	VM	window	menu	entries

You	can	disable	(i.e.	black-list)	certain	menu	actions	in	the	VM	window:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeMenus	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

All

Don't	show	any	menu	in	the	VM	window.

Machine

Don't	show	the	Machine	menu	in	the	VM	window.

View

Don't	show	the	View	menu	in	the	VM	window.

Devices

Don't	show	the	Devices	menu	in	the	VM	window.

Help

Don't	show	the	Help	menu	in	the	VM	window.

Debug

Don't	show	the	Debug	menu	in	the	VM	window.	The	debug	menu	is	only
visible	if	the	GUI	was	started	with	special	command	line	parameters	or
environment	variable	settings.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	To	restore
the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeMenus

You	can	also	disable	(i.e.	blacklist)	certain	menu	actions	of	certain	menus.	Use
the	following	command	to	disable	certain	actions	of	the	Application	menu	(only
available	on	Mac	OS	X	hosts):

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeApplicationMenuActions	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

All

Don't	show	any	menu	item	in	this	menu.

About

Don't	show	the	About	menu	item	in	this	menu.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	To	restore
the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeMenus

Use	the	following	command	to	disable	certain	actions	of	the	Machine	menu:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeApplicationMenuActions	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

All

Don't	show	any	menu	item	in	this	menu.

SettingsDialog

Don't	show	the	Settings	menu	item	in	this	menu.

TakeSnapshot

Don't	show	the	Take	Snapshot	menu	item	in	this	menu.

TakeScreenshot

Don't	show	the	Take	Screenshot	menu	item	in	this	menu.

InformationDialog

Don't	show	the	Session	Information	menu	item	in	this	menu.

MouseIntegration

Don't	show	the	Disable	Mouse	Integration	menu	item	in	this	menu.

TypeCAD

Don't	show	the	Insert	Ctrl+Alt+Del	menu	item	in	this	menu.

TypeCABS

Don't	show	the	Insert	Ctrl+Alt+Backspace	menu	item	in	this	menu
(available	on	X11	hosts	only).

Pause

Don't	show	the	Pause	menu	item	in	this	menu.

Reset

Don't	show	the	Reset	menu	item	in	this	menu.

SaveState

Don't	show	the	Save	the	machine	state	menu	item	in	this	menu.

Shutdown

Don't	show	the	ACPI	Shutdown	menu	item	in	this	menu.

PowerOff

Don't	show	the	Power	Off	the	machine	menu	item	in	this	menu.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	To	restore
the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeApplicationMenuActions

Use	the	following	command	to	disable	certain	actions	of	the	View	menu:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeViewMenuActions	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

All

Don't	show	any	menu	item	in	this	menu.

Fullscreen

Don't	show	the	Switch	to	Fullscreen	menu	item	in	this	menu.

Seamless

Don't	show	the	Switch	to	Seamless	Mode	menu	item	in	this	menu.

Scale

Don't	show	the	Switch	to	Scaled	Mode	menu	item	in	this	menu.

GuestAutoresize

Don't	show	the	Auto-resize	Guest	Display	menu	item	in	this	menu.

AdjustWindow

Don't	show	the	Adjust	Window	Size	menu	item	in	this	menu.

Multiscreen

Don't	show	the	Multiscreen	menu	item	in	this	menu	(only	visible	in	full
screen	/	seamless	mode).

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	To	restore
the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeViewMenuActions

Use	the	following	command	to	disable	certain	actions	of	the	View	menu:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeDevicesMenuActions	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords	to	disable	actions	in	the	Devices
menu:

All

Don't	show	any	menu	item	in	this	menu.

OpticalDevices

Don't	show	the	CD/DVD	Devices	menu	item	in	this	menu.

FloppyDevices

Don't	show	the	FLoppy	Devices	menu	item	in	this	menu.

USBDevices

Don't	show	the	USB	Devices	menu	item	in	this	menu.

SharedClipboard

Don't	show	the	Shared	Clipboard	menu	item	in	this	menu.

DragAndDrop

Don't	show	the	Drag	and	Drop	menu	item	in	this	menu.

NetworkSettings

Don't	show	the	Network	Settings...	menu	item	in	this	menu.

SharedFoldersSettings

Don't	show	the	Shared	Folders	Settings...	menu	item	in	this	menu.

VRDEServer

Don't	show	the	Remove	Display	menu	item	in	this	menu.

InstallGuestTools

Don't	show	the	Insert	Guest	Additions	CD	imnage...	menu	item	in	this
menu.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	To	restore
the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeDevicesMenuActions

Use	the	following	command	to	disable	certain	actions	of	the	View	menu:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeDebuggerMenuActions	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords	to	disable	actions	in	the	Debug
menu	(normally	completely	disabled):

All

Don't	show	any	menu	item	in	this	menu.

Statistics

Don't	show	the	Statistics...	menu	item	in	this	menu.

CommandLine

Don't	show	the	Command	Line...	menu	item	in	this	menu.

Logging

Don't	show	the	Logging...	menu	item	in	this	menu.

LogDialog

Don't	show	the	Show	Log...	menu	item	in	this	menu.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	To	restore
the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeDebuggerMenuActions

Use	the	following	command	to	disable	certain	actions	of	the	View	menu:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeHelpMenuActions	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords	to	disable	actions	in	the	Help
menu	(normally	completely	disabled):

All

Don't	show	any	menu	item	in	this	menu.

Contents

Don't	show	the	Contents...	menu	item	in	this	menu.

WebSite

Don't	show	the	VirtualBox	Web	Site...	menu	item	in	this	menu.

ResetWarnings

Don't	show	the	Reset	All	Warnings	menu	item	in	this	menu.

NetworkAccessManager

Don't	show	the	Network	Operations	Manager	menu	item	in	this	menu.

About

Don't	show	the	About	menu	item	in	this	menu	(only	on	non	Mac	OS	X
hosts).

Contents

Don't	show	the	Contents...	menu	item	in	this	menu.

Contents

Don't	show	the	Contents...	menu	item	in	this	menu.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	To	restore
the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedRuntimeHelpMenuActions

9.20.5.	Configure	VM	window	status	bar	entries

You	can	disable	(i.e.	black-list)	certain	status	bar	items:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedStatusBarIndicators	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

HardDisks

Don't	show	the	hard	disk	icon	in	the	VM	window	status	bar.	By	default	the
hard	disk	icon	is	only	shown	if	the	VM	configuration	contains	one	or	more
hard	disks.

OpticalDisks

Don't	show	the	CD	icon	in	the	VM	window	status	bar.	By	default	the	CD
icon	is	only	shown	if	the	VM	configuration	contains	one	or	more	CD
drives.

FloppyDisks

Don't	show	the	floppy	icon	in	the	VM	window	status	bar.	By	default	the
floppy	icon	is	only	shown	if	the	VM	configuration	contains	one	or	more

floppy	drives.

Network

Don't	show	the	network	icon	in	the	VM	window	status	bar.	By	default	the
network	icon	is	only	shown	if	the	VM	configuration	contains	one	or	more
active	network	adapters.

USB

Don't	show	the	USB	icon	in	the	status	bar.

SharedFolders

Don't	show	the	shared	folders	icon	in	the	status	bar.

VideoCapture

Don't	show	the	video	capture	icon	in	the	status	bar.

Features

Don't	show	the	CPU	features	icon	in	the	status	bar.

Mouse

Don't	show	the	mouse	icon	in	the	status	bar.

Keyboard

Don't	show	the	keyboard	icon	in	the	status	bar.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	If	all	options
are	specified,	no	icons	are	displayed	in	the	status	bar	of	the	VM	window.	To
restore	the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedStatusBarIndicators

9.20.6.	Configure	VM	window	visual	modes

You	can	disable	(i.e.	black-list)	certain	VM	visual	modes:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedVisualStates	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

Fullscreen

Don't	allow	to	switch	the	VM	into	full	screen	mode.

Seamless

Don't	allow	to	switch	the	VM	into	seamless	mode.

Scale

Don't	allow	to	switch	the	VM	into	scale	mode.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	To	restore
the	default	behavior,	use

VBoxManage	setextradata	"VM	name"	GUI/RestrictedVisualStates

9.20.7.	Host	Key	customization

To	disable	all	host	key	combinations,	open	the	preferences	and	change	the	host
key	to	None.	This	might	be	useful	when	using	VirtualBox	in	a	kiosk	mode.

To	redefine	or	disable	certain	host	key	actions,	use	the	following	command:

VBoxManage	setextradata	global	GUI/Input/MachineShortcuts	"FullscreenMode=F,...."

The	following	list	shows	the	possible	host	key	actions	together	with	their	default
host	key	shortcut.	Setting	an	action	to	None	will	disable	that	host	key	action.

Table	9.1.	Host	Key	customization

Action Default
Key Action

TakeSnapshot T take	a	snapshot
TakeScreenshot E take	a	screenshot
MouseIntegration I toggle	mouse	integration

TypeCAD Del inject	Ctrl+Alt+Del
TypeCABS Backspace inject	Ctrl+Alt+Backspace
Pause P Pause	the	VM
Reset R (hard)	reset	the	guest

SaveState 	 save	the	VM	state	and	terminate	the	VM
Shutdown H press	the	(virtual)	ACPI	power	button

PowerOff 	 power	the	VM	off	(without	saving	the
state!)

Close Q show	the	VM	close	dialog
FullscreenMode F switch	the	VM	into	full	screen
SeamlessMode L switch	the	VM	into	seamless	mode
ScaleMode C switch	the	VM	into	scale	mode
GuestAutoResize G automatically	resize	the	guest	window
WindowAdjust A immediately	resize	the	guest	window

PopupMenu Home show	popup	menu	in	full	screen	/	seaml.
mode

SettingsDialog S open	the	VM	settings	dialog
InformationDialog N show	the	VM	information	window
NetworkAdaptersDialog 	 show	the	VM	network	adapters	dialog
SharedFoldersDialog 	 show	the	VM	shared	folders	dialog

InstallGuestAdditions D mount	the	ISO	containing	the	Guest
Additions

To	disable	the	full	screen	mode	as	well	as	the	seamless	mode,	use	the	following
command:

VBoxManage	setextradata	global	GUI/Input/MachineShortcuts	"FullscreenMode=None,SeamlessMode=None"

9.20.8.	Action	when	terminating	the	VM

You	can	disallow	(i.e.	black-list)	certain	actions	when	terminating	a	VM.	To
disallow	specific	actions,	type:

VBoxManage	setextradata	"VM	name"	GUI/RestrictedCloseActions	OPTION[,OPTION...]

where	OPTION	is	one	of	the	following	keywords:

SaveState

Don't	allow	the	user	to	save	the	VM	state	when	terminating	the	VM.

Shutdown

Don't	allow	the	user	to	shutdown	the	VM	by	sending	the	ACPI	power-off
event	to	the	guest.

PowerOff

Don't	allow	the	user	to	power	off	the	VM.

PowerOffRestoringSnapshot

Don't	allow	the	user	to	return	to	the	last	snapshot	when	powering	off	the
VM.

Detach

Don't	allow	the	user	to	detach	from	the	VM	process	if	the	VM	was	started
in	separate	mode.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	If	all	options
are	specified,	the	VM	cannot	be	shut	down	at	all.

9.20.9.	Default	action	when	terminating	the	VM

You	can	define	a	specific	action	for	terminating	a	VM.	In	contrast	to	the	setting
decribed	in	the	previous	section,	this	setting	allows	only	one	action	when	the
user	terminates	the	VM.	No	exit	menu	is	shown.

VBoxManage	setextradata	"VM	name"	GUI/DefaultCloseAction	ACTION

where	ACTION	is	one	of	the	following	keywords:

SaveState

Save	the	VM	state	before	terminating	the	VM	process.

Shutdown

The	VM	is	shut	down	by	sending	the	ACPI	power-off	event	to	the	guest.

PowerOff

The	VM	is	powered	off.

PowerOffRestoringSnapshot

The	VM	is	powered	off	and	the	saved	state	returns	to	the	last	snapshot.

Detach

Terminate	the	frontend	but	leave	the	VM	process	running.

This	is	a	per-VM	setting.	Any	combination	of	the	above	is	allowed.	If	all	options
are	specified,	the	VM	cannot	be	shut	down	at	all.

9.20.10.	Action	for	handling	a	Guru	Meditation

A	VM	runs	into	a	Guru	Meditation	if	there	is	a	problem	which	cannot	be	fixed
by	other	means	than	terminating	the	process.	The	default	is	to	show	a	message
window	which	instructs	the	user	to	open	a	bug	report.

This	behavior	can	be	configured:

VBoxManage	setextradata	"VM	name"	GUI/GuruMeditationHandler	MODE

where	MODE	is	one	of	the	following	keywords:

Default

A	message	window	is	shown.	After	the	user	confirmed,	the	VM	is
terminated.

PowerOff

The	VM	is	immediately	powered-off	without	showing	any	message
window.	The	VM	logfile	will	show	information	about	what	happened.

Ignore

The	VM	is	left	in	stuck	mode.	Execution	is	stopped	but	no	message	window
is	shown.	The	VM	has	to	be	powered	off	manually.

This	is	a	per-VM	setting.

9.20.11.	Configuring	automatic	mouse	capturing

By	default,	the	mouse	is	captured	if	the	user	clicks	on	the	guest	window	and	the
guest	expects	relative	mouse	coordinates	at	this	time.	This	happens	if	the
pointing	device	is	configured	as	PS/2	mouse	and	the	guest	did	not	(yet)	start	the
VirtualBox	Guest	Additions	(for	instance,	the	guest	is	booting	or	no	Guest
Additions	installed	at	all)	or	if	the	pointing	device	is	configured	as	USB	tablet
but	the	guest	has	no	USB	driver	loaded	yet.	Once	the	Guest	Additions	become
active	or	the	USB	guest	driver	is	started,	the	mouse	capture	is	automatically
released.

The	default	behavior	is	sometimes	not	desired.	Therefore	it	can	be	configured:

VBoxManage	setextradata	"VM	name"	GUI/MouseCapturePolicy	MODE

where	MODE	is	one	of	the	following	keywords:

Default

The	default	behavior	as	described	above.

HostComboOnly

The	mouse	is	only	captured	if	the	Host	Key	is	toggled.

Disabled

The	mouse	is	never	captured,	also	not	by	toggling	the	Host	Key

This	is	a	per-VM	setting.

9.20.12.	Configuring	automatic	mouse	capturing

By	default,	the	mouse	is	captured	if	the	user	clicks	on	the	guest	window	and	the
guest	expects	relative	mouse	coordinates	at	this	time.	This	happens	if	the
pointing	device	is	configured	as	PS/2	mouse	and	the	guest	did	not	(yet)	start	the

VirtualBox	Guest	Additions	(for	instance,	the	guest	is	booting	or	no	Guest
Additions	installed	at	all)	or	if	the	pointing	device	is	configured	as	USB	tablet
but	the	guest	has	no	USB	driver	loaded	yet.	Once	the	Guest	Additions	become
active	or	the	USB	guest	driver	is	started,	the	mouse	capture	is	automatically
released.

The	default	behavior	is	sometimes	not	desired.	Therefore	it	can	be	configured:

VBoxManage	setextradata	"VM	name"	GUI/MouseCapturePolicy	MODE

where	MODE	is	one	of	the	following	keywords:

Default

The	default	behavior	as	described	above.

HostComboOnly

The	mouse	is	only	captured	if	the	Host	Key	is	toggled.

Disabled

The	mouse	is	never	captured,	also	not	by	toggling	the	Host	Key

This	is	a	per-VM	setting.

9.20.13.	Requesting	legacy	full-screen	mode

As	of	version	4.3.16,	VirtualBox	uses	special	window	manager	facilities	to
switch	a	multi-screen	machine	to	full-screen	on	a	multi-monitor	host	system.
However,	not	all	window	managers	provide	these	facilities	correctly,	so
VirtualBox	can	be	told	to	use	the	old	method	of	switching	to	full-screen	mode
instead	using	the	command:

VBoxManage	setextradata	global	GUI/Fullscreen/LegacyMode	true

You	can	go	back	to	the	new	method	using	the	command:

VBoxManage	setextradata	global	GUI/Fullscreen/LegacyMode

This	is	a	global	setting.

9.21.	Starting	the	VirtualBox	web	service
automatically

The	VirtualBox	web	service	(vboxwebsrv)	is	used	for	controlling	VirtualBox
remotely.	It	is	documented	in	detail	in	the	VirtualBox	Software	Development	Kit
(SDK);	please	see	Chapter	11,	VirtualBox	programming	interfaces.	As	the	client
base	using	this	interface	is	growing,	we	added	start	scripts	for	the	various
operation	systems	we	support.	The	following	sections	describe	how	to	use	them.
The	VirtualBox	web	service	is	never	started	automatically	as	a	result	of	a
standard	installation.

9.21.1.	Linux:	starting	the	webservice	via	init

On	Linux,	the	web	service	can	be	automatically	started	during	host	boot	by
adding	appropriate	parameters	to	the	file	/etc/default/virtualbox.	There	is
one	mandatory	parameter,	VBOXWEB_USER,	which	must	be	set	to	the	user	which
will	later	start	the	VMs.	The	parameters	in	the	table	below	all	start	with
VBOXWEB_	(VBOXWEB_HOST,	VBOXWEB_PORT	etc.):

Table	9.2.	Web	service	configuration	parameters

Parameter Description Default
USER The	user	as	which	the	web	service	runs 	
HOST The	host	to	bind	the	web	service	to localhost
PORT The	port	to	bind	the	web	service	to 18083
SSL_KEYFILE Server	key	and	certificate	file,	PEM	format 	
SSL_PASSWORDFILE File	name	for	password	to	server	key 	
SSL_CACERT CA	certificate	file,	PEM	format 	
SSL_CAPATH CA	certificate	path 	
SSL_DHFILE DH	file	name	or	DH	key	length	in	bits 	

SSL_RANDFILE
File	containing	seed	for	random	number
generator 	

TIMEOUT Session	timeout	in	seconds;	0	disables	timeouts 300
CHECK_INTERVAL Frequency	of	timeout	checks	in	seconds 5

THREADS
Maximum	number	of	worker	threads	to	run	in
parallel 100

KEEPALIVE
Maximum	number	of	requests	before	a	socket
will	be	closed 100

ROTATE Number	of	log	files;	0	disables	log	rotation 10

LOGSIZE
Maximum	size	of	a	log	file	in	bytes	to	trigger
rotation 1MB

LOGINTERVAL
Maximum	time	interval	in	seconds	to	trigger	log
rotation 1	day

Setting	the	parameter	SSL_KEYFILE	enables	the	SSL/TLS	support.	Using
encryption	is	strongly	encouraged,	as	otherwise	everything	(including
passwords)	is	transferred	in	clear	text.

9.21.2.	Solaris:	starting	the	web	service	via	SMF

On	Solaris	hosts,	the	VirtualBox	web	service	daemon	is	integrated	into	the	SMF
framework.	You	can	change	the	parameters,	but	don't	have	to	if	the	defaults
below	already	match	your	needs:

svccfg	-s	svc:/application/virtualbox/webservice:default	setprop	config/host=localhost

svccfg	-s	svc:/application/virtualbox/webservice:default	setprop	config/port=18083

svccfg	-s	svc:/application/virtualbox/webservice:default	setprop	config/user=root

The	table	in	the	previous	section	showing	the	parameter	names	and	defaults	also
applies	to	Solaris.	The	parameter	names	must	be	changed	to	lowercase	and	a
prefix	of	config/	has	to	be	added,	e.g.	config/user	or	config/ssl_keyfile.	If
you	made	any	change,	don't	forget	to	run	the	following	command	to	put	the
changes	into	effect	immediately:

svcadm	refresh	svc:/application/virtualbox/webservice:default

If	you	forget	the	above	command	then	the	previous	settings	will	be	used	when
enabling	the	service.	Check	the	current	property	settings	with:

svcprop	-p	config	svc:/application/virtualbox/webservice:default

When	everything	is	configured	correctly	you	can	start	the	VirtualBox	web

service	with	the	following	command:

svcadm	enable	svc:/application/virtualbox/webservice:default

For	more	information	about	SMF,	please	refer	to	the	Solaris	documentation.

9.21.3.	Mac	OS	X:	starting	the	webservice	via	launchd

On	Mac	OS	X,	launchd	is	used	to	start	the	VirtualBox	webservice.	An	example
configuration	file	can	be	found	in
$HOME/Library/LaunchAgents/org.virtualbox.vboxwebsrv.plist.	It	can	be
enabled	by	changing	the	Disabled	key	from	true	to	false.	To	manually	start
the	service	use	the	following	command:

launchctl	load	~/Library/LaunchAgents/org.virtualbox.vboxwebsrv.plist

For	additional	information	on	how	launchd	services	could	be	configured	see
https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html

https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLaunchdJobs.html

9.22.	VirtualBox	Watchdog

Starting	with	VirtualBox	4.2	the	memory	ballooning	service	formerly	known	as
VBoxBalloonCtrl	was	renamed	to	VBoxWatchdog,	which	now	incorporates
several	host	services	that	are	meant	to	be	run	in	a	server	environment.

These	services	are:

Memory	ballooning	control,	which	automatically	takes	care	of	a	VM's
configured	memory	balloon	(see	Section	4.9.1,	“Memory	ballooning”	for	an
introduction	to	memory	ballooning).	This	especially	is	useful	for	server
environments	where	VMs	may	dynamically	require	more	or	less	memory
during	runtime.

The	service	periodically	checks	a	VM's	current	memory	balloon	and	its	free
guest	RAM	and	automatically	adjusts	the	current	memory	balloon	by
inflating	or	deflating	it	accordingly.	This	handling	only	applies	to	running
VMs	having	recent	Guest	Additions	installed.

Host	isolation	detection,	which	provides	a	way	to	detect	whether	the	host
cannot	reach	the	specific	VirtualBox	server	instance	anymore	and	take
appropriate	actions,	such	as	shutting	down,	saving	the	current	state	or	even
powering	down	certain	VMs.

All	configuration	values	can	be	either	specified	via	command	line	or	global
extradata,	whereas	command	line	values	always	have	a	higher	priority	when	set.
Some	of	the	configuration	values	also	be	specified	on	a	per-VM	basis.	So	the
overall	lookup	order	is:	command	line,	per-VM	basis	extradata	(if	available),
global	extradata.

9.22.1.	Memory	ballooning	control

The	memory	ballooning	control	inflates	and	deflates	the	memory	balloon	of
VMs	based	on	the	VMs	free	memory	and	the	desired	maximum	balloon	size.

To	set	up	the	memory	ballooning	control	the	maximum	ballooning	size	a	VM
can	reach	needs	to	be	set.	This	can	be	specified	via	command	line	with

--balloon-max	<Size	in	MB>

,	on	a	per-VM	basis	extradata	value	with

VBoxManage	setextradata	<VM-Name>	VBoxInternal2/Watchdog/BalloonCtrl/BalloonSizeMax	<Size	in	MB>

or	using	a	global	extradata	value	with

VBoxManage	setextradata	global	VBoxInternal2/Watchdog/BalloonCtrl/BalloonSizeMax	<Size	in	MB>

Note

If	no	maximum	ballooning	size	is	specified	by	at	least	one	of	the
parameters	above,	no	ballooning	will	be	performed	at	all.

Setting	the	ballooning	increment	in	MB	can	be	either	done	via	command	line
with

--balloon-inc	<Size	in	MB>

or	using	a	global	extradata	value	with

VBoxManage	setextradata	global	VBoxInternal2/Watchdog/BalloonCtrl/BalloonIncrementMB	<Size	in	MB>

Default	ballooning	increment	is	256	MB	if	not	specified.

Same	goes	with	the	ballooning	decrement:	Via	command	line	with

--balloon-dec	<Size	in	MB>

or	using	a	global	extradata	value	with

VBoxManage	setextradata	global	VBoxInternal2/Watchdog/BalloonCtrl/BalloonDecrementMB	<Size	in	MB>

Default	ballooning	decrement	is	128	MB	if	not	specified.

To	define	the	lower	limit	in	MB	a	balloon	can	be	the	command	line	with

--balloon-lower-limit	<Size	in	MB>

can	be	used	or	using	a	global	extradata	value	with

VBoxManage	setextradata	global	VBoxInternal2/Watchdog/BalloonCtrl/BalloonLowerLimitMB	<Size	in	MB>

is	available.	Default	lower	limit	is	128	if	not	specified.

9.22.2.	Host	isolation	detection

To	detect	whether	a	host	is	being	isolated,	that	is,	the	host	cannot	reach	the
VirtualBox	server	instance	anymore,	the	host	needs	to	set	an	alternating	value	to
a	global	extradata	value	within	a	time	period.	If	this	value	is	not	set	within	that
time	period	a	timeout	occurred	and	the	so-called	host	isolation	response	will	be
performed	to	the	VMs	handled.	Which	VMs	are	handled	can	be	controlled	by
defining	VM	groups	and	assigning	VMs	to	those	groups.	By	default	no	groups
are	set,	meaning	that	all	VMs	on	the	server	will	be	handled	when	no	host
response	is	received	within	30	seconds.

To	set	the	groups	handled	by	the	host	isolation	detection	via	command	line:

--apimon-groups=<string[,stringN]>

or	using	a	global	extradata	value	with

VBoxManage	setextradata	global	VBoxInternal2/Watchdog/APIMonitor/Groups	<string[,stringN]>

To	set	the	host	isolation	timeout	via	command	line:

--apimon-isln-timeout=<ms>

or	using	a	global	extradata	value	with

VBoxManage	setextradata	global	VBoxInternal2/Watchdog/APIMonitor/IsolationTimeoutMS	<ms>

To	set	the	actual	host	isolation	response	via	command	line:

--apimon-isln-response=<cmd>

or	using	a	global	extradata	value	with

VBoxManage	setextradata	global	VBoxInternal2/Watchdog/APIMonitor/IsolationResponse	<cmd>

The	following	response	commands	are	available:

none,	which	does	nothing.

pause,	which	pauses	the	execution	of	a	VM.

poweroff,	which	shuts	down	the	VM	by	pressing	the	virtual	power	button.
The	VM	will	not	have	the	chance	of	saving	any	data	or	veto	the	shutdown
process.

save,	which	saves	the	current	machine	state	and	powers	off	the	VM
afterwards.	If	saving	the	machine	state	fails	the	VM	will	be	paused.

shutdown,	which	shuts	down	the	VM	in	a	gentle	way	by	sending	an	ACPI
shutdown	event	to	the	VM's	operating	system.	The	OS	then	has	the	chance
of	doing	a	clean	shutdown.

9.22.3.	More	information

For	more	advanced	options	and	parameters	like	verbose	logging	check	the	built-
in	command	line	help	accessible	with	--help.

9.22.4.	Linux:	starting	the	watchdog	service	via	init

On	Linux,	the	watchdog	service	can	be	automatically	started	during	host	boot	by
adding	appropriate	parameters	to	the	file	/etc/default/virtualbox.	There	is
one	mandatory	parameter,	VBOXWATCHDOG_USER,	which	must	be	set	to	the	user
which	will	later	start	the	VMs.	For	backward	compatibility	you	can	also	specify
VBOXBALLOONCTRL_USERThe	parameters	in	the	table	below	all	start	with
VBOXWATCHDOG_	(VBOXWATCHDOG_BALLOON_INTERVAL,	VBOXWATCHDOG_LOGSIZE
etc.,	and	for	previously	existing	parameters	the	VBOXBALLOONCTRL_INTERVAL	etc.
parameters	can	still	be	used):

Table	9.3.	VirtualBox	watchdog	configuration	parameters

Parameter Description Default
USER The	user	as	which	the	watchdog	service	runs 	
ROTATE Number	of	log	files;	0	disables	log	rotation 10

LOGSIZE
Maximum	size	of	a	log	file	in	bytes	to	trigger
rotation 1MB

LOGINTERVAL
Maximum	time	interval	in	seconds	to	trigger
log	rotation 1	day

BALLOON_INTERVAL Interval	for	checking	the	balloon	size	(msec) 30000

BALLOON_INCREMENT Balloon	size	increment	(MByte) 256
BALLOON_DECREMENT Balloon	size	decrement	(MByte) 128
BALLOON_LOWERLIMIT Balloon	size	lower	limit	(MByte) 64

BALLOON_SAFETYMARGIN
Free	memory	required	for	decreasing	the
balloon	size	(MByte) 1024

9.22.5.	Solaris:	starting	the	watchdog	service	via	SMF

On	Solaris	hosts,	the	VirtualBox	watchdog	service	daemon	is	integrated	into	the
SMF	framework.	You	can	change	the	parameters,	but	don't	have	to	if	the	defaults
already	match	your	needs:

svccfg	-s	svc:/application/virtualbox/balloonctrl:default	setprop	config/balloon_interval=10000

svccfg	-s	svc:/application/virtualbox/balloonctrl:default	setprop	config/balloon_safetymargin=134217728

The	table	in	the	previous	section	showing	the	parameter	names	and	defaults	also
applies	to	Solaris.	The	parameter	names	must	be	changed	to	lowercase	and	a
prefix	of	config/	has	to	be	added,	e.g.	config/user	or
config/balloon_safetymargin.	If	you	made	any	change,	don't	forget	to	run	the
following	command	to	put	the	changes	into	effect	immediately:

svcadm	refresh	svc:/application/virtualbox/balloonctrl:default

If	you	forget	the	above	command	then	the	previous	settings	will	be	used	when
enabling	the	service.	Check	the	current	property	settings	with:

svcprop	-p	config	svc:/application/virtualbox/balloonctrl:default

When	everything	is	configured	correctly	you	can	start	the	VirtualBox	watchdog
service	with	the	following	command:

svcadm	enable	svc:/application/virtualbox/balloonctrl:default

For	more	information	about	SMF,	please	refer	to	the	Solaris	documentation.

9.23.	Other	extension	packs

Starting	with	VirtualBox	4.2.0	there	is	another	extension	pack,	VNC,	which	is
open	source	and	replaces	the	previous	integration	of	the	VNC	remote	access
protocol.	This	is	experimental	code,	and	will	be	initially	available	in	the
VirtualBox	source	code	package	only.	It	is	to	a	large	portion	code	contributed	by
users,	and	is	not	supported	in	any	way	by	Oracle.

The	keyboard	handling	is	severely	limited,	and	only	the	US	keyboard	layout
works.	Other	keyboard	layouts	will	have	at	least	some	keys	which	produce	the
wrong	results	(often	quite	surprising	effects),	and	for	layouts	which	have
significant	differences	to	the	US	keyboard	layout	it	is	most	likely	unusable.

It	is	possible	to	install	both	the	Oracle	VM	VirtualBox	Extension	Pack	and	VNC,
but	only	one	VRDE	module	can	be	active	at	any	time.	The	following	command
switches	to	the	VNC	VRDE	module	in	VNC:

VBoxManage	setproperty	vrdeextpack	VNC

Configuring	the	remote	access	works	very	similarly	to	VRDP	(see	Section	7.1,
“Remote	display	(VRDP	support)”),	with	some	limitations:	VNC	does	not
support	specifying	several	port	numbers,	and	the	authentication	is	done
differently.	VNC	can	only	deal	with	password	authentication,	and	there	is	no
option	to	use	password	hashes.	This	leaves	no	other	choice	than	having	a	clear-
text	password	in	the	VM	configuration,	which	can	be	set	with	the	following
command:

VBoxManage	modifyvm	"VM	name"	--vrdeproperty	VNCPassword=secret

The	user	is	responsible	for	keeping	this	password	secret,	and	it	should	be
removed	when	a	VM	configuration	is	passed	to	another	person,	for	whatever
purpose.	Some	VNC	servers	claim	to	have	"encrypted"	passwords	in	the
configuration.	This	is	not	true	encryption,	it	is	only	concealing	the	passwords,
which	is	exactly	as	secure	as	clear-text	passwords.

The	following	command	switches	back	to	VRDP	(if	installed):

VBoxManage	setproperty	vrdeextpack	"Oracle	VM	VirtualBox	Extension	Pack"

9.24.	Starting	virtual	machines	during	system	boot

Starting	with	VirtualBox	4.2.0	it	is	possible	to	start	VMs	automatically	during
system	boot	on	Linux,	Solaris	and	Mac	OS	X	for	all	users.

9.24.1.	Linux:	starting	the	autostart	service	via	init

On	Linux,	the	autostart	service	is	activated	by	setting	two	variables	in
/etc/default/virtualbox.	The	first	one	is	VBOXAUTOSTART_DB	which	contains
an	absolute	path	to	the	autostart	database	directory.	The	directory	should	have
write	access	for	every	user	who	should	be	able	to	start	virtual	machines
automatically.	Furthermore	the	directory	should	have	the	sticky	bit	set.	The
second	variable	is	VBOXAUTOSTART_CONFIG	which	points	the	service	to	the
autostart	configuration	file	which	is	used	during	boot	to	determine	whether	to
allow	individual	users	to	start	a	VM	automatically	and	configure	startup	delays.
The	configuration	file	can	be	placed	in	/etc/vbox	and	contains	several	options.
One	is	default_policy	which	controls	whether	the	autostart	service	allows	or
denies	to	start	a	VM	for	users	which	are	not	in	the	exception	list.	The	exception
list	starts	with	exception_list	and	contains	a	comma	separated	list	with
usernames.	Furthermore	a	separate	startup	delay	can	be	configured	for	every
user	to	avoid	overloading	the	host.	A	sample	configuration	is	given	below:

#	Default	policy	is	to	deny	starting	a	VM,	the	other	option	is	"allow".

default_policy	=	deny

#	Bob	is	allowed	to	start	virtual	machines	but	starting	them

#	will	be	delayed	for	10	seconds

bob	=	{

				allow	=	true

				startup_delay	=	10

}

#	Alice	is	not	allowed	to	start	virtual	machines,	useful	to	exclude	certain	users

#	if	the	default	policy	is	set	to	allow.

alice	=	{

				allow	=	false

}

						

Every	user	who	wants	to	enable	autostart	for	individual	machines	has	to	set	the

path	to	the	autostart	database	directory	with

VBoxManage	setproperty	autostartdbpath	<Autostart	directory>

9.24.2.	Solaris:	starting	the	autostart	service	via	SMF

On	Solaris	hosts,	the	VirtualBox	autostart	daemon	is	integrated	into	the	SMF
framework.	To	enable	it	you	have	to	point	the	service	to	an	existing
configuration	file	which	has	the	same	format	as	on	Linux	(see	Section	9.24.1,
“Linux:	starting	the	autostart	service	via	init”):

svccfg	-s	svc:/application/virtualbox/autostart:default	setprop	config/config=/etc/vbox/autostart.cfg

When	everything	is	configured	correctly	you	can	start	the	VirtualBox	autostart
service	with	the	following	command:

svcadm	enable	svc:/application/virtualbox/autostart:default

For	more	information	about	SMF,	please	refer	to	the	Solaris	documentation.

9.24.3.	Mac	OS	X:	starting	the	autostart	service	via	launchd

On	Mac	OS	X,	launchd	is	used	to	start	the	VirtualBox	autostart	service.	An
example	configuration	file	can	be	found	in
/Applications/VirtualBox.app/Contents/MacOS/org.virtualbox.vboxautostart.plist

To	enable	the	service	copy	the	file	to	/Library/LaunchDaemons	and	change	the
Disabled	key	from	true	to	false.	Furthermore	replace	the	second	parameter	to
an	existing	configuration	file	which	has	the	same	format	as	on	Linux	(see
Section	9.24.1,	“Linux:	starting	the	autostart	service	via	init”).	To	manually
start	the	service	use	the	following	command:

launchctl	load	/Library/LaunchDaemons/org.virtualbox.vboxautostart.plist

For	additional	information	on	how	launchd	services	could	be	configured	see
http://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPSystemStartup/BPSystemStartup.html

http://developer.apple.com/mac/library/documentation/MacOSX/Conceptual/BPSystemStartup/BPSystemStartup.html

9.25.	VirtualBox	expert	storage	management

In	case	the	snapshot	model	of	VirtualBox	is	not	sufficient	it	is	possible	to	enable
a	special	mode	which	makes	it	possible	to	reconfigure	storage	attachments	while
the	VM	is	paused.	The	user	has	to	make	sure	that	the	disk	data	stays	consistent
to	the	guest	because	unlike	with	hotplugging	the	guest	is	not	informed	about
detached	or	newly	attached	media.

The	expert	storage	management	mode	can	be	enabled	per	VM	executing:

VBoxManage	setextradata	"VM	name"	"VBoxInternal2/SilentReconfigureWhilePaused"	1

Storage	attachments	can	be	reconfigured	while	the	VM	is	paused	afterwards
using:

VBoxManage	storageattach	...

9.26.	Handling	of	host	power	management	events

Some	host	power	management	events	are	handled	by	VirtualBox.	The	actual
behavior	depends	on	the	platform:

Host	Suspends

This	event	is	generated	when	the	host	is	about	to	suspend,	that	is,	the	host
saves	the	state	to	some	non-volatile	storage	and	powers	off.

This	event	is	currently	only	handled	on	Windows	hosts	and	Mac	OS	X
hosts.	When	this	event	is	generated,	VirtualBox	will	pause	all	running	VMs.

Host	Resumes

This	event	is	generated	when	the	host	woke	up	from	the	suspended	state.

This	event	is	currently	only	handled	on	Windows	hosts	and	Mac	OS	X
hosts.	When	this	event	is	generated,	VirtualBox	will	resume	all	VMs	which
are	where	paused	before.

Battery	Low

The	battery	level	reached	a	critical	level	(usually	less	than	5	percent
charged).

This	event	is	currently	only	handled	on	Windows	hosts	and	Mac	OS	X
hosts.	When	this	event	is	generated,	VirtualBox	will	save	the	state	and
terminate	all	VMs	in	preparation	of	a	potential	host	powerdown.

The	behavior	can	be	configured.	By	executing	the	following	command,	no
VM	is	saved:

VBoxManage	setextradata	global	"VBoxInternal2/SavestateOnBatteryLow"	0

This	is	a	global	setting	as	well	as	a	per-VM	setting.	The	per-VM	value	has
higher	precedence	than	the	global	value.	The	following	command	will	save
the	state	of	all	VMs	but	will	not	save	the	state	of	VM	"foo":

VBoxManage	setextradata	global	"VBoxInternal2/SavestateOnBatteryLow"	1

VBoxManage	setextradata	"foo"	"VBoxInternal2/SavestateOnBatteryLow"	0

The	first	line	is	actually	not	required	as	by	default	the	savestate	action	is
performed.

9.27.	Experimental	support	for	passing	through
SSE4.1	/	SSE4.2	instructions

To	provide	SSE	4.1	/	SSE	4.2	support	to	guests,	the	host	CPU	has	to	implement
these	instruction	sets.	Starting	with	VirtualBox	4.3.8	it	is	possible	to	enable	these
instructions	for	certain	guests	using	the	following	commands:

VBoxManage	setextradata	"VM	name"	VBoxInternal/CPUM/SSE4.1	1

VBoxManage	setextradata	"VM	name"	VBoxInternal/CPUM/SSE4.2	1

These	are	a	per-VM	settings	and	they	are	turned	off	by	default.

9.28.	Support	for	keyboard	indicators	synchronization

This	feature	makes	the	host	keyboard	lights	match	those	of	the	virtual	machine's
virtual	keyboard	when	the	machine	window	is	selected.	It	is	currently
implemented	for	Mac	OS	X	and	Windows	hosts	and	available	as	of	releases
4.2.24	and	4.3.8.	The	feature	can	be	enabled	using	the	following	command:

VBoxManage	setextradata	"VM	name"	GUI/HidLedsSync	"1"

In	order	to	disable	it,	use	the	same	command	but	change	"1"	to	"0",	or	use	the
VBoxManage	command	to	remove	the	extra	data.	This	is	a	per-VM	setting	and	it
is	disabled	by	default.

9.29.	Capturing	USB	traffic	for	selected	devices

Starting	with	VirtualBox	5.0	it	is	possible	to	capture	USB	traffic	for	single	USB
devices	or	on	the	root	hub	level	which	captures	the	traffic	of	all	USB	devices
attached	to	the	root	hub.	VirtualBox	stores	the	traffic	in	a	format	which	is
compatible	with	Wireshark.	To	capture	the	traffic	of	a	specific	USB	device	it
must	be	attached	to	the	VM	with	VBoxManage	using	the	following	command:

VBoxManage	controlvm	"VM	name"	usbattach	"device	uuid|address"	--capturefile	"filename"

In	order	to	enable	capturing	on	the	root	hub	use	the	following	command	while
the	VM	is	not	running:

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/usb-ehci/0/LUN#0/Config/CaptureFilename	"filename"

The	command	above	enables	capturing	on	the	root	hub	attached	to	the	EHCI
controller.	To	enable	it	for	the	OHCI	or	XHCI	controller	replace	usb-ehci	with
usb-ohci	or	usb-xhci	respectively.

9.30.	Configuring	the	heartbeat	service

VirtualBox	ships	a	simple	heartbeat	service.	Once	the	Guest	Additions	are
active,	the	guest	sends	frequent	heartbeat	pings	to	the	host.	If	the	guest	stops
sending	the	heartbeat	pings	without	properly	terminating	the	service,	the	VM
process	will	log	this	event	in	the	VBox.log	file.	In	the	future	it	might	be	possible
to	configure	dedicated	actions	but	for	now	there	is	only	a	warning	in	the	log	file.

There	are	two	parameters	to	configure.	The	heartbeat	interval	defines	the	time
between	two	heartbeat	pings.	The	default	value	is	2	seconds,	that	is,	the
heartbeat	service	of	the	VirtualBox	Guest	Additions	will	send	a	heartbeat	ping
every	two	seconds.	The	value	in	nanoseconds	can	be	configured	like	this:

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/VMMDev/0/Config/HeartbeatInterval	2000000000

The	heartbeat	timeout	defines	the	time	the	host	waits	starting	from	the	last
heartbeat	ping	before	it	defines	the	guest	as	unresponsive.	The	default	value	is	2
times	the	heartbeat	interval	(4	seconds)	and	can	be	configured	as	following	(in
nanoseconds):

VBoxManage	setextradata	"VM	name"	VBoxInternal/Devices/VMMDev/0/Config/HeartbeatTimeout	4000000000

If	the	heartbeat	timeout	expires,	there	will	be	a	log	message	like	VMMDev:
HeartBeatCheckTimer:	Guest	seems	to	be	unresponsive.	Last	heartbeat	received
5	seconds	ago.	If	another	heartbeat	ping	arrives	after	this	warning,	there	will	be	a
log	message	like	VMMDev:	GuestHeartBeat:	Guest	is	alive.

9.31.	Encryption	of	disk	images

Starting	with	VirtualBox	5.0,	it	is	possible	to	encrypt	the	data	stored	in	hard	disk
images	transparently	for	the	guest.	It	does	not	depend	on	a	specific	image	format
to	be	used.	Images	which	have	the	data	encrypted	are	not	portable	between
VirtualBox	and	other	virtualization	software.

VirtualBox	uses	the	AES	algorithm	in	XTS	mode	and	supports	128	or	256	bit
data	encryption	keys	(DEK).	The	DEK	is	stored	encrypted	in	the	medium
properties	and	is	decrypted	during	VM	startup	by	entering	a	password	which	was
chosen	when	the	image	was	encrypted.

Since	the	DEK	is	stored	as	part	of	the	VM	configuration	file,	it	is	important	that
it	is	kept	safe.	Losing	the	DEK	means	that	the	data	stored	in	the	disk	images	is
lost	irrecoverably.	Having	complete	and	up	to	date	backups	of	all	data	related	to
the	VM	is	the	responsibility	of	the	user.

9.31.1.	Limitations

There	are	some	limitations	the	user	needs	to	be	aware	of	when	using	this	feature:

This	feature	is	part	of	the	Oracle	VM	VirtualBox	Extension	Pack,	which
needs	to	be	installed.	Otherwise	disk	encryption	is	unavailable.

Since	encryption	works	only	on	the	stored	user	data,	it	is	currently	not
possible	to	check	for	metadata	integrity	of	the	disk	image.	Attackers	might
destroy	data	by	removing	or	changing	blocks	of	data	in	the	image	or	change
metadata	items	such	as	the	disk	size.

Exporting	appliances	which	contain	encrypted	disk	images	is	not	possible
because	the	OVF	specification	doesn't	support	this.	All	images	are	therefore
decrypted	during	export.

The	DEK	is	kept	in	memory	while	the	VM	is	running	to	be	able	to	decrypt
data	read	and	encrypt	data	written	by	the	guest.	While	this	should	be
obvious	the	user	needs	to	be	aware	of	this	because	an	attacker	might	be	able
to	extract	the	key	on	a	compromised	host	and	decrypt	the	data.

When	encrypting	or	decrypting	the	images,	the	password	is	passed	in	clear
text	via	the	VirtualBox	API.	This	needs	to	be	kept	in	mind,	especially	when
using	third	party	API	clients	which	make	use	of	the	webservice	where	the
password	might	be	transmitted	over	the	network.	The	use	of	HTTPS	is
mandatory	in	such	a	case.

Encrypting	images	with	differencing	images	is	only	possible	if	there	are	no
snapshots	or	a	linear	chain	of	snapshots.	This	limitation	may	be	addressed
in	a	future	VirtualBox	version.

9.31.2.	Encrypting	disk	images

Encrypting	disk	images	can	be	done	either	using	the	GUI	or	VBoxManage.
While	the	GUI	is	easier	to	use,	it	works	on	a	per	VM	basis	and	encrypts	all	disk
images	attached	to	the	specific	VM.	With	VBoxManage	one	can	encrypt
individual	images	(including	all	differencing	images).	To	encrypt	an	unencrypted
medium	with	VBoxManage,	use:

VBoxManage	encryptmedium	"uuid|filename"	--newpassword	"file|-"	--cipher	"cipher	id"	--newpasswordid	"id"

To	supply	the	encryption	password	point	VBoxManage	to	the	file	where	the
password	is	stored	or	specify	-	to	let	VBoxManage	ask	you	for	the	password	on
the	command	line.

The	cipher	parameter	specifies	the	cipher	to	use	for	encryption	and	can	be	either
AES-XTS128-PLAIN64	or	AES-XTS256-PLAIN64.	The	specified	password	identifier
can	be	freely	chosen	by	the	user	and	is	used	for	correct	identification	when
supplying	multiple	passwords	during	VM	startup.

If	the	user	uses	the	same	password	when	encrypting	multiple	images	and	also	the
same	password	identifier,	the	user	needs	to	supply	the	password	only	once
during	VM	startup.

9.31.3.	Starting	a	VM	with	encrypted	images

When	a	VM	is	started	using	the	GUI,	a	dialog	will	open	where	the	user	needs	to
enter	all	passwords	for	all	encrypted	images	attached	to	the	VM.	If	another
frontend	like	VBoxHeadless	is	used,	the	VM	will	be	paused	as	soon	as	the	guest
tries	to	access	an	encrypted	disk.	The	user	needs	to	provide	the	passwords

through	VBoxManage	using	the	following	command:

VBoxManage	controlvm	"uuid|vmname"	addencpassword	"id"	"password"	[--removeonsuspend	"yes|no"]

The	id	parameter	must	be	the	same	as	the	password	identifier	supplied	when
encrypting	the	images.	password	is	the	password	used	when	encrypting	the
images.	The	user	can	optionally	specify	--removeonsuspend	"yes|no"	to
specify	whether	to	remove	the	password	from	VM	memory	when	the	VM	is
suspended.	Before	the	VM	can	be	resumed,	the	user	needs	to	supply	the
passwords	again.	This	is	useful	when	a	VM	is	suspended	by	a	host	suspend
event	and	the	user	doesn't	want	the	password	to	remain	in	memory.

9.31.4.	Decrypting	encrypted	images

In	some	circumstances	it	might	be	required	to	decrypt	previously	encrypted
images.	This	can	be	done	in	the	GUI	for	a	complete	VM	or	using	VBoxManage
with	the	following	command:

VBoxManage	encryptmedium	"uuid|filename"	--oldpassword	"file|-"

The	only	required	parameter	is	the	password	the	image	was	encrypted	with.	The
options	are	the	same	as	for	encrypting	images.

9.32.	Paravirtualized	debugging

In	this	section	we	cover	debugging	of	guest	operating	systems	using	interfaces
supported	by	paravirtualization	providers.

Note

Paravirtualized	debugging	significantly	alter	guest	operating	system
behaviour	and	should	only	be	used	by	expert	users	for	debugging
and	diagnostics.

These	debug	options	are	specified	as	a	string	of	key-value	pairs	separated	by
commas.	An	empty	string	disables	paravirtualized	debugging.

9.32.1.	Hyper-V	debug	options

All	of	the	options	listed	below	are	optional,	and	thus	the	default	value	specified
will	be	used	when	the	corresponding	key-value	pair	is	not	specified.

Key:	enabled

Value:	0	or	1

Default:	0

Specify	1	to	enable	the	Hyper-V	debug	interface.	If	this	key-value	pair	is
not	specified	or	the	value	is	not	1,	the	Hyper-V	debug	interface	is	disabled
regardless	of	other	key-value	pairs	being	present.

Key:	address

Value:	IPv4	address

Default:	127.0.0.1

Specify	the	IPv4	address	where	the	remote	debugger	is	connected.

Key:	port

Value:	UDP	port	number

Default:	50000

Specify	the	UDP	port	number	where	the	remote	debugger	is	connected.

Key:	vendor

Value:	Hyper-V	vendor	signature	reported	via	CPUID	to	the	guest

Default:	When	debugging	is	enabled:	Microsoft	Hv,	otherwise:
VBoxVBoxVBox

Specify	the	Hyper-V	vendor	signature	which	is	exposed	to	the	guest	via
CPUID.	For	debugging	Microsoft	Windows	guests,	it	is	required	the
hypervisor	reports	the	Microsoft	vendor.

Key:	hypercallinterface

Value:	0	or	1

Default:	0

Specify	whether	hypercalls	should	be	suggested	for	initiating	debug	data
transfers	between	host	and	guest	rather	than	MSRs	when	requested	by	the
guest.

Key:	vsinterface

Value:	0	or	1

Default:	When	debugging	is	enabled,	1,	otherwise	0

Specify	whether	to	expose	the	"VS#1"	(virtualization	service)	interface	to
the	guest.	This	interface	is	required	for	debugging	Microsoft	Windows	10
32-bit	guests,	but	is	optional	for	other	Windows	versions.

9.32.1.1.	Setting	up	Windows	guests	for	debugging	with	the	Hyper-V
paravirtualization	provider

Windows	supports	debugging	over	a	serial	cable,	USB,	IEEE	1394	Firewire,	and
Ethernet	(only	Windows	8	and	later).	USB	and	IEEE	1394	are	not	applicable	for
virtual	machines,	and	Ethernet	requires	Windows	8	or	later.	While	serial
connection	is	universally	usable,	it	is	slow.

Debugging	using	the	Hyper-V	debug	transport,	supported	on	Windows	Vista	and
later,	offers	significant	benefits.	It	provides	excellent	performance	due	to	direct
host-to-guest	transfers,	it	is	easy	to	set	up	and	requires	minimal	support	from	the
hypervisor.	It	can	be	used	with	the	debugger	running	on	the	same	host	as	the	VM
or	with	the	debugger	and	VM	on	separate	machines	connected	over	a	network.

9.32.1.1.1.	Prerequisites

A	VM	configured	for	Hyper-V	paravirtualization	running	a	Windows	Vista
or	newer	Windows	guest.	You	may	check	the	effective	paravirtualization
provider	for	your	VM	from	the	output	of	the	following	VBoxManage
command:

VBoxManage	showvminfo	"VM	name"

A	sufficiently	up-to-date	version	of	the	Microsoft	WinDbg	debugger
required	to	debug	the	version	of	Windows	in	your	VM.

While	Windows	8	and	newer	Windows	guests	ship	with	Hyper-V	debug
support,	Windows	7	and	Vista	do	not.	To	use	Hyper-V	debugging	with	a
Windows	7	or	Vista	guest,	copy	the	file	kdvm.dll	from	a	Windows	8.0
installation[45].	This	file	is	typically	located	in	C:\Windows\System32.	Copy
it	to	the	same	location	in	your	Windows	7/Vista	guest.	Make	sure	you	copy
the	32-bit	or	64-bit	version	of	the	DLL	which	matches	your	guest	OS.

9.32.1.1.2.	VM	and	guest	configuration

1.	 Power	off	the	VM.

2.	 Enable	the	debug	options	by	executing	the	following	VBoxManage
command:

VBoxManage	modifyvm	"VM	name"	--paravirtdebug	"enabled=1"

The	above	command	assumes	your	debugger	will	connect	to	your	host

machine	on	UDP	port	50000.	However,	if	you	need	to	run	the	debugger	on
a	remote	machine	you	may	specify	the	remote	address	and	port	here,	e.g.
using:

VBoxManage	modifyvm	"VM	name"	--paravirtdebug	"enabled=1,address=192.168.32.1,port=55000"

Refer	Section	9.32.1,	“Hyper-V	debug	options”	for	the	complete	set	of
options.

3.	 Start	the	VM.

4.	 In	the	guest,	start	an	elevated	command	prompt	and	execute	the	following
commands:

For	a	Windows	8	or	newer	Windows	guest:

bcdedit	/dbgsettings	net	hostip:5.5.5.5	port:50000	key:1.2.3.4

For	a	Windows	7	or	Vista	guest:

bcdedit	/set	loadoptions	host_ip=5.5.5.5,host_port=50000,encryption_key=1.2.3.4

bcdedit	/set	dbgtransport	kdvm.dll

The	IP	address	and	port	in	the	bcdedit	command	are	ignored	when
using	the	Hyper-V	debug	transport.	Any	valid	IP	and	a	port	number
greater	than	49151	and	lower	than	65536	can	be	entered.

The	encryption	key	in	the	bcdedit	command	is	relevant	and	must	be
valid.	The	key	"1.2.3.4"	used	in	the	above	example	is	valid	and	may	be
used	if	security	is	not	a	concern.	If	you	do	not	specify	any	encryption
key,	bcdedit	will	generate	one	for	you	and	you	will	need	to	copy	this
key	to	later	enter	in	Microsoft	WinDbg	on	the	remote	end.	This
encryption	key	is	used	to	encrypt	the	debug	data	exchanged	between
Windows	and	the	debugger.

Execute	one	or	more	of	the	following	commands	to	enable	debugging
for	the	appropriate	phase	or	component	of	your	Windows	guest:

bcdedit	/set	debug	on

bcdedit	/set	bootdebug	on

bcdedit	/set	{bootmgr}	bootdebug	on

Please	note	that	the	bootdebug	options	are	only	effective	on	Windows
8	or	newer	when	using	the	Hyper-V	debug	transport.	Refer	to
Microsoft	Windows	documentation	for	detailed	explanation	of
bcdedit	options.

5.	 Start	Microsoft	WinDbg	on	your	host	machine	or	remote	host.

From	the	"File"	menu,	select	"Kernel	debug".	Under	the	"NET"	tab,	specify
the	UDP	port	number	you	used	in	the	paravirtdebug	options.	If	you	didn't
specify	any,	leave	it	as	50000.	Ensure	that	the	UDP	port	is	not	blocked	by	a
firewall	or	other	security	software.

In	the	"Key"	field,	enter	1.2.3.4	or	the	encryption	key	from	the	bcdedit
command	in	your	Windows	guest.

Now	press	"OK"	to	start	listening	for	connections.	Microsoft	WinDbg
typically	shows	a	"Waiting	to	reconnect"	message	during	this	phase.

Alternatively,	launch	WinDbg	from	the	command	line	to	directly	start	a
debug	session:

windbg.exe	-k	net:port=50000,key=1.2.3.4

Please	refer	to	the	WinDbg	documentation	for	complete	command	line
syntax.

6.	 Reboot	your	Windows	guest	and	it	should	then	connect	as	a	debuggee	with
Microsoft	WinDbg.

[45]	Only	Windows	8.0	ships	kdvm.dll.	Windows	8.1	and	newer	Windows
versions	do	not.

9.33.	PC	speaker	passthrough

As	an	experimental	feature	(primarily	due	to	being	limited	to	Linux	host	only
and	unknown	Linux	distribution	coverage)	VirtualBox	supports	passing	through
the	PC	speaker	to	the	host.	The	PC	speaker	(sometimes	called	system	speaker)	is
a	way	to	produce	audible	feedback	such	as	beeps	without	the	need	for	regular
audio/sound	card	support.

The	PC	speaker	passthrough	feature	in	VirtualBox	handles	beeps	only.	Advanced
PC	speaker	use	by	the	VM	(such	as	PCM	audio)	will	not	work,	resulting	in
undefined	host	behavior.

Producing	beeps	on	Linux	is	unfortunately	a	very	complex	topic.	VirtualBox
offers	a	collection	of	options,	in	an	attempt	to	make	this	work	deterministically
and	reliably	on	as	many	Linux	distributions	and	system	configurations	as
possible:

Table	9.4.	PC	speaker	configuration	options

Code Device Notes

1
/dev/input/	by-

path/platform-	pcspkr-

event-spkr

Direct	host	PC	speaker	use.

2 /dev/tty

Uses	the	terminal	association	of	the	VM
process.	VM	needs	to	be	started	on	a	virtual
console.

3 /dev/tty0	or	/dev/vc/0 Can	only	be	used	by	user	root	or	users	with
capability	cap_sys_tty_config

9 user	specified	console	or
evdev	device	path Like	1-3,	just	with	a	custom	device	path.

70 /dev/tty
Standard	beep	only.	Loses	frequency	and
length.	See	code	2.

79 user	specified	terminal
device	path Like	70,	just	with	a	custom	device	path.

100 all	of	the	above Tries	all	above	codes.

To	enable	PC	speaker	passthrough	use	the	following	command:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/Devices/i8254/0/Config/PassthroughSpeaker"	N

Replace	N	with	the	code	representing	the	case	you	want	to	use.	Changing	this
setting	will	take	effect	when	the	VM	is	started	next.	It	is	safe	to	enable	PC
speaker	passthrough	on	all	host	OSes.	It	will	only	have	an	effect	on	Linux.

The	VM	log	file,	VBox.log,	will	contain	lines	with	the	prefix	PIT:	speaker:
showing	the	PC	speaker	passthrough	setup	activities.	It	gives	hints	which	device
it	picked	or	why	it	failed.

Enabling	PC	speaker	passthrough	for	the	VM	is	usually	the	simple	part.	The	real
difficulty	is	making	sure	that	VirtualBox	can	access	the	necessary	device,
because	in	a	typical	Linux	install	most	of	them	can	only	be	accessed	by	user
root.	You	should	follow	the	preferred	way	to	persistently	change	this,	e.g.	by
referring	to	your	distribution's	documentation.	Since	there	are	countless	Linux
distribution	variants,	we	can	only	give	the	general	hints	that	there	is	often	a	way
to	give	the	X11	session	user	access	to	additional	devices,	or	you	need	to	find	a
working	solution	using	a	udev	configuration	file.	If	everything	fails	you	might
try	setting	the	permissions	using	a	script	which	is	run	late	enough	in	the	host
system	startup.

Sometimes	additional	rules	are	applied	by	the	kernel	to	limit	access	(e.g.	that	the
VM	process	must	have	the	same	controlling	terminal	as	the	device	configured	to
be	used	for	beeping,	something	which	is	often	very	difficult	to	achieve	for	GUI
applications	such	as	VirtualBox).	The	table	above	contains	some	hints,	but
generally	refer	to	the	Linux	documentation.

If	you	have	trouble	getting	any	beeps	even	if	the	device	permissions	are	set	up
and	VBox.log	confirms	that	it	uses	evdev	or	console	for	the	PC	speaker	control,
check	if	your	system	has	a	PC	speaker.	Some	systems	do	not	have	one.	Other
complications	can	arise	from	Linux	rerouting	the	PC	speaker	output	to	a	sound
card.	Check	if	the	beeps	are	audible	if	you	connect	speakers	to	your	sound	card.
Today	almost	all	systems	have	one.	Finally,	check	if	the	audio	mixer	control	has
a	channel	named	"beep"	(could	be	hidden	in	the	mixer	settings)	and	that	it	isn't
muted.

9.34.	Accessing	USB	devices	exposed	over	the	network
with	USB/IP

Starting	with	5.1.0,	VirtualBox	supports	passing	through	USB	devices	which	are
exposed	over	the	network	using	the	USB	over	IP	protocol	without	the	need	to
configure	the	client	side	provided	by	the	kernel	and	usbip	tools.	Furthermore,
this	feature	works	with	VirtualBox	running	on	any	supported	host,	rather	than
just	Linux	alone	-	as	is	the	case	with	the	official	client.

To	enable	support	for	passing	through	USB/IP	devices,	the	device	server
exporting	the	devices	must	be	added	with	the	following	command:

VBoxManage	usbdevsource	add	"Unique	name"	--backend	"USBIP"	--address	"Device	server[:port]"

USB	devices	exported	on	the	device	server	are	then	accessible	through	the	GUI
or	VBoxManage,	like	any	USB	devices	attached	locally.	This	can	be	used
multiple	times	to	access	different	device	servers.

To	remove	a	device	server,	the	following	command	can	be	used:

VBoxManage	usbdevsource	remove	"Unique	name"

9.34.1.	Setting	up	USB/IP	support	on	a	Linux	system

This	section	gives	a	brief	overview	on	how	to	set	up	a	Linux	based	system	to	act
as	a	USB	device	server.	The	system	on	the	server	requires	that	the	usbip-
core.ko	and	usbip-host.ko	kernel	drivers	are	available,	and	that	the	USB/IP
tools	package	is	installed.	The	particular	installation	method	for	the	necessary
tools	depends	on	which	distribution	is	used.	For	example,	for	Debian	based
systems	-	the	following	command	should	be	used	to	install	the	required	tools:

apt-get	install	usbip-utils

To	check	whether	the	necessary	tools	are	already	installed	use	the	following
command:

$	usbip	list	-l

						

which	should	produce	output	similar	to	that	shown	in	the	example	below:

	-	busid	4-2	(0bda:0301)

			Realtek	Semiconductor	Corp.	:	multicard	reader	(0bda:0301)

	-	busid	5-1	(046d:c52b)

			Logitech,	Inc.	:	Unifying	Receiver	(046d:c52b)

						

If	everything	is	installed,	the	USB/IP	server	needs	to	be	started	as	root	using	the
following	command:

usbipd	-D

Refer	to	the	documentation	for	the	installed	distribution	to	determine	how	to
start	the	service	when	the	system	boots.

By	default,	no	device	on	the	server	is	exported	-	and	this	must	be	done	manually
for	each	device.	To	export	a	device	use:

usbip	bind	-b	"bus	identifier"

To	export	the	multicard	reader	from	above,	for	example	-	use:

usbip	bind	-b	4-2

9.34.2.	Security	considerations

The	communication	between	the	server	and	client	is	unencrypted	and	there	is	no
authorization	required	to	access	exported	devices.	An	attacker	might	sniff
sensitive	data	or	gain	control	over	a	device.	To	mitigate	this	risk,	the	device
should	be	exposed	over	a	local	network	to	which	only	trusted	clients	have
access.	To	access	the	device	remotely	over	a	public	network,	a	VPN	solution
should	be	used	to	provide	the	required	level	of	security	protection.

9.35.	VISO	file	format	/	RTIsoMaker

ISO	image	maker.

Synopsis

RTIsoMaker	[options]	[@commands.rsp]	<filespec...>

Description

Construct	a	virtual	ISO	9660	/	Joliet	/	UDF	/	HFS	hybrid	image	and	either	write
it	to	a	file	(RTIsoMaker)	or	serve	it	as	a	virtual	image	(VISO).

VISO	file	format

A	VISO	file	is	a	virtual	ISO	image,	i.e.	constructed	in	memory	from	a	bunch	of
files	on	the	host.	A	VISO	is	just	the	recipe	describing	how	to	go	about	this	using
a	syntax	vaguely	similar	to	mkisofs	and	genisoimage.

One	requirement	is	that	the	VISO	file	must	start	with	one	of	the	--iprt-iso-
maker-file-marker	options.	Which	of	the	options	you	use	will	dictate	the
quoting	and	escaping	rules	used	when	reading	the	file.	The	option	takes	the
image	UUID	as	an	argument.

The	VISO	files	are	treated	as	UTF-8	and	must	not	contain	any	byte	order	marker
(BOM).	There	is	currently	no	way	to	comment	out	lines	in	a	VISO	file.

File	specifications	and	--name-setup

All	non-options	that	does	not	start	with	'@'	are	taken	to	indicate	a	file,	directory,
or	similar	that	is	should	be	added	to	the	ISO	image.	Directories	are	added
recursively	and	content	is	subject	to	filtering	options.

Since	there	can	be	up	to	six	different	namespaces	on	an	ISO,	it	is	handy	to	be
able	to	control	the	names	used	in	each	and	be	able	to	exclude	an	object	from	one
or	more	namespaces.	The	--name-setup	option	specifies	the	file	specification
format	to	use	forthwith.

The	default	setup	is:

--name-setup	iso+joliet+udf+hfs

Which	means	you	specify	one	on-ISO	name	for	all	namespaces	followed	by	'='
and	the	source	file	system	name.	Only	specifying	the	source	file	system	will	add
the	file/dir/whatever	to	the	root	of	the	ISO	image.

Lets	look	at	the	following	two	examples:

/docs/readme.txt=/home/user/Documents/product-x-readme.txt

/home/user/Documents/product-x-readme.txt

In	the	first	case	the	file	'/home/user/Documents/product-x-readme.txt'	is
added	to	the	ISO	image	as	'/docs/readme.txt'	in	all	enabled	namespaces.	In
the	primary	ISO	9660	namespace,	the	filename	will	by	default	be	converted	to
upper	case	because	it's	required	by	the	spec.

In	the	second	case	the	file	is	added	to	the	root	under	the	name	'product-x-
readme.txt'	in	all	namespaces.	Though,	in	the	primary	ISO	9660	namespace
the	name	will	be	transformed	to	apply	with	the	current	ISO	level,	probably
uppercased,	possibly	truncated	too.

Given	--name-setup	iso,joliet,udf	you	can	specify	the	name	individually
for	each	of	the	three	namespace,	if	you	like.	If	you	omit	any,	they	will	use	last
name	given.	Any	names	left	blank	(==)	will	be	considered	omitted.

A	different	name	in	each	namespace:

/ISO.TXT=/Joliet.TxT=/UDF.txt=/tmp/iso/real.txt

Specific	name	in	the	ISO	9660	namespace,	same	in	the	rest:

/ISO.TXT=/OtherNamespaces.TxT=/tmp/iso/real.txt

Omit	the	file	from	the	ISO	9660	namespace:

=/OtherNamespaces.TxT=/tmp/iso/real.txt

Omit	the	file	from	the	joliet	namespace:

/ISO.TXT==/UDF.TxT=/tmp/iso/real.txt

Use	the	same	filename	as	the	source	everywhere:

/tmp/iso/real.txt

Using	for	instance	--name-setup	udf	you	can	add	a	files/dirs/whatever	to	select
namespace(s)	without	the	more	complicated	empty	name	syntax	above.

When	adding	directories,	you	can	only	control	the	naming	and	omitting	of	the
directory	itself,	not	any	recursively	added	files	and	directories	below	it.

Options

General

-o	output-file	,	--output=output-file

The	output	filename.	This	option	is	not	supported	in	VISO	mode.

--name-setup	spec

Configures	active	namespaces	and	how	file	specifications	are	to	be
interpreted.	The	specification	is	a	comma	separated	list.	Each	element	in	the
list	is	a	sub-list	separated	by	space,	'+'	or	'|'	giving	the	namespaces	that
elements	controls.	Namespaces	are	divied	into	two	major	and	minor	ones,
you	cannot	specifying	a	minor	before	the	major	it	belongs	to.

Major	namespaces	and	aliases	in	parentheses:

iso	(primary,	iso9660,	iso-9660,	primary-iso,	iso-primary)

joliet

udf

hfs	(hfs-plus)

Minor	namespaces:

rock:	rock	ridge	on	previous	major	namespace	(iso	/	joliet)

iso-rock:	rock	ridge	extensions	on	primary	ISO	9660	namespace

joliet-rock:	rock	ridge	on	joliet	namespace	(just	for	fun)

trans-tbl:	translation	table	file	on	previous	major	namespace

iso-trans-tbl

joliet-trans-tbl

udf-trans-tbl

hfs-trans-tbl

--push-iso=iso-file	,	--push-iso-no-joliet=iso-file	,	--push-iso-no-
rock-iso-file	,	--push-iso-no-rock-no-joliet=iso-file

Open	the	specified	ISO	file	and	use	it	as	source	file	system	until	the
corresponding	--pop	options	is	encountered.	The	variations	are	for
selecting	which	namespace	on	the	ISO	to	(not)	access.	These	options	are
handy	for	copying	files/directories/stuff	from	an	ISO	without	having	to
extract	them	first	or	using	the	:iprtvfs:	syntax.

--pop

Pops	a	--push-iso	of	the	source	file	system	stack.

--import-iso=iso-file

Imports	everything	on	the	given	ISO	file,	including	boot	configuration	and
system	area	(first	16	sectors)	content.	You	can	use	--name-setup	to	omit
namespaces.

Namespaces

--iso-level=0|1|2|3

Sets	the	ISO	level:

0:	Disable	primary	ISO	namespace.

1:	ISO	level	1:	Filenames	8.3	format	and	limited	to	4GB	-	1.

2:	ISO	level	2:	31	char	long	names	and	limited	to	4GB	-	1.

3:	ISO	level	3:	31	char	long	names	and	support	for	>=4GB	files.
(default)

4:	Fictive	level	used	by	other	tools.	Not	yet	implemented.

--rock-ridge	,	--limited-rock-ridge	,	--no-rock-ridge

Enables	or	disables	rock	ridge	support	for	the	primary	ISO	9660
namespace.	The	--limited-rock-ridge	option	omits	a	couple	of	bits	in	the
root	directory	that	would	make	Linux	pick	rock	ridge	over	joliet.

Default:	--limited-rock-ridge

-J	,	--joliet	,	--no-joliet

Enables	or	disable	the	joliet	namespace.	This	option	must	precede	any	file
specifications.

Default:	--joliet

--joliet-ucs-level=1|2|3	,	--ucs-level=1|2|3

Set	the	Joliet	UCS	support	level.	This	is	currently	only	flagged	in	the	image
but	not	enforced	on	the	actual	path	names.

Default	level:	3

File	Attributes

--rational-attribs

Enables	rational	file	attribute	handling	(default):

Owner	ID	is	set	to	zero

Group	ID	is	set	to	zero

Mode	is	set	to	0444	for	non-executable	files.

Mode	is	set	to	0555	for	executable	files.

Mode	is	set	to	0555	for	directories,	preserving	stick	bits.

--strict-attribs

Counters	--rational-attribs	and	causes	attributes	to	be	recorded	exactly
as	they	appear	in	the	source.

--file-mode=mode	,	--no-file-mode

Controls	the	forced	file	mode	mask	for	rock	ridge,	UDF	and	HFS.

--dir-mode=mode	,	--no-dir-mode

Controls	the	forced	directory	mode	mask	for	rock	ridge,	UDF	and	HFS.

--new-dir-mode=mode

Controls	the	default	mode	mask	(rock	ridge,	UDF,	HFS)	for	directories	that
are	created	implicitly.	The	--dir-mode	option	overrides	this.

--chmod=mode:on-iso-file

Explictily	sets	the	rock	ridge,	UDF	and	HFS	file	mode	for	a
file/dir/whatever	that	has	already	been	added	to	the	ISO.	The	mode	can	be
octal,	ra+x,	a+r,	or	a+rx.	(Support	for	more	complicated	mode
specifications	may	be	implemented	at	a	later	point.)

Note	that	only	namespaces	in	the	current	--name-setup	are	affected.

--chown=owner-id:on-iso-file

Explictily	sets	the	rock	ridge,	UDF	and	HFS	file	owner	ID	(numeric)	for	a
file/dir/whatever	that	has	already	been	added	to	the	ISO.

Note	that	only	namespaces	in	the	current	--name-setup	are	affected.

--chgrp=group-id:on-iso-file

Explictily	sets	the	rock	ridge,	UDF	and	HFS	file	group	ID	(numeric)	for	a
file/dir/whatever	that	has	already	been	added	to	the	ISO.

Note	that	only	namespaces	in	the	current	--name-setup	are	affected.

Booting

--eltorito-new-entry	,	--eltorito-alt-boot

Starts	a	new	El	Torito	boot	entry.

--eltorito-add-image=filespec

File	specification	of	a	file	that	should	be	added	to	the	image	and	used	as	the
El	Torito	boot	image	of	the	current	boot	entry.

-b	on-iso-file	,	--eltorito-boot=on-iso-file

Specifies	a	file	on	the	ISO	as	the	El	Torito	boot	image	for	the	current	boot
entry.

--eltorito-floppy-12	,	--eltorito-floppy-144	,	--eltorito-floppy-288	,	-
-no-emulation-boot	,	--hard-disk-boot

Sets	the	boot	image	emulation	type	of	the	current	El	Torito	boot	entry.

--boot-load-seg=seg

Specify	the	image	load	segment	for	the	current	El	Torito	boot	entry.

Default:	0x7c0

--boot-load-size=sectors

Specify	the	image	load	size	in	emulated	sectors	for	the	current	El	Torito
boot	entry.

Default:	4	(sectors	of	512	bytes)

--no-boot

Indicates	that	the	current	El	Torito	boot	entry	isn't	bootable.	(The	BIOS	will
allegedly	configure	the	emulation,	but	not	attempt	booting.)

--boot-info-table

Write	a	isolinux/syslinux	boot	info	table	into	the	boot	image	for	the	current
El	Torito	boot	entry.

--eltorito-platform-id=id

Set	the	El	Torito	platform	ID	of	the	current	entry,	a	new	entry	of	the
verification	entry	depending	on	when	it's	used.	The	ID	must	be	one	of:	x86,
PPC,	Mac,	efi

-c	namespec	,	--boot-catalog=namespec

Enters	the	El	Torito	boot	catalog	into	the	namespaces	as	a	file.	The
namespec	uses	the	same	format	as	a	'filespec',	but	omits	the	final	source	file
system	name	component.

-G	file	,	--generic-boot=file

Specifies	a	file	that	should	be	loaded	at	offset	0	in	the	ISO	image.	The	file
must	not	be	larger	than	32KB.	When	creating	a	hybrid	image,	parts	of	this
may	be	regenerated	by	partition	tables	and	such.

String	properties	(applied	to	active	namespaces	only)

--abstract=file-id

The	name	of	the	abstract	file	in	the	root	dir.

-A	text|_file-id	,	--application-id=text|_file-id

Application	ID	string	or	root	file	name.	The	latter	must	be	prefixed	with	an
underscore.

--biblio=file-id

The	name	of	the	bibliographic	file	in	the	root	dir.

--copyright=file-id

The	name	of	the	copyright	file	in	the	root	dir.

-P	text|_file-id	,	--publisher=text|_file-id

Publisher	ID	string	or	root	file	name.	The	latter	must	be	prefixed	with	an
underscore.

-p	text|_file-id	,	--preparer=text|_file-id

Data	preparer	ID	string	or	root	file	name.	The	latter	must	be	prefixed	with
an	underscore.

--sysid=text

System	ID	string.

--volid=text	,	--volume-id=text

Volume	ID	string	(label).	(It	is	possible	to	set	different	labels	for	primary
ISO	9660,	joliet,	UDF	and	HFS	by	changing	the	active	namespaces	using
the	--name-setup	option	between	--volume-id	occurences.)

--volset=text

Volume	set	ID	string.

Compatibility:

--graft-points

Alias	for	--name-setup	iso+joliet+udf+hfs.

-l	,	--long-names

Allow	31	charater	filenames.	Just	ensure	ISO	level	>=	2	here.

-R	,	--rock

Same	as	--rock-ridge	and	--strict-attribs.

-r	,	--rational-rock

Same	as	--rock-ridge	and	--rational-attribs.

VISO	Specific:

--iprt-iso-maker-file-marker=UUID	,	--iprt-iso-maker-file-marker-
bourne=UUID	,	--iprt-iso-maker-file-marker-bourne-sh=UUID

Used	as	first	option	in	a	VISO	file	to	specify	the	file	UUID	and	that	it	is
formatted	using	bourne-shell	argument	quoting	&	escaping	style.

--iprt-iso-maker-file-marker-ms=UUID	,	--iprt-iso-maker-file-marker-
ms-sh=UUID

Used	as	first	option	in	a	VISO	file	to	specify	the	file	UUID	and	that	it	is
formatted	using	microsoft	CRT	argument	quoting	&	escaping	style.

Testing	(not	applicable	to	VISO):

--output-buffer-size=bytes

Selects	a	specific	output	buffer	size	for	testing	virtual	image	reads.

--random-output-buffer-size

Enables	randomized	buffer	size	for	each	virtual	image	read,	using	the
current	output	buffer	size	(--output-buffer-size)	as	maximum.

--random-order-verification=size

Enables	verification	pass	of	the	image	that	compares	blocks	of	the	given
size	in	random	order	from	the	virtual	and	output	images.

Chapter	10.	Technical	background

Table	of	Contents

10.1.	Where	VirtualBox	stores	its	files
10.1.1.	Machines	created	by	VirtualBox	version	4.0	or	later
10.1.2.	Machines	created	by	VirtualBox	versions	before	4.0
10.1.3.	Global	configuration	data
10.1.4.	Summary	of	4.0	configuration	changes
10.1.5.	VirtualBox	XML	files

10.2.	VirtualBox	executables	and	components
10.3.	Hardware	vs.	software	virtualization
10.4.	Paravirtualization	providers
10.5.	Details	about	software	virtualization
10.6.	Details	about	hardware	virtualization
10.7.	Nested	paging	and	VPIDs

The	contents	of	this	chapter	are	not	required	to	use	VirtualBox	successfully.	The
following	is	provided	as	additional	information	for	readers	who	are	more
familiar	with	computer	architecture	and	technology	and	wish	to	find	out	more
about	how	VirtualBox	works	"under	the	hood".

10.1.	Where	VirtualBox	stores	its	files

In	VirtualBox,	a	virtual	machine	and	its	settings	are	described	in	a	virtual
machine	settings	file	in	XML	format.	In	addition,	most	virtual	machine	have	one
or	more	virtual	hard	disks,	which	are	typically	represented	by	disk	images	(e.g.
in	VDI	format).	Where	all	these	files	are	stored	depends	on	which	version	of
VirtualBox	created	the	machine.

10.1.1.	Machines	created	by	VirtualBox	version	4.0	or	later

Starting	with	version	4.0,	by	default,	each	virtual	machine	has	one	directory	on
your	host	computer	where	all	the	files	of	that	machine	are	stored	--	the	XML
settings	file	(with	a	.vbox	file	extension)	and	its	disk	images.

By	default,	this	"machine	folder"	is	placed	in	a	common	folder	called
"VirtualBox	VMs",	which	VirtualBox	creates	in	the	current	system	user's	home
directory.	The	location	of	this	home	directory	depends	on	the	conventions	of	the
host	operating	system:

On	Windows,	this	is	the	location	returned	by	the	SHGetFolderPath	function
of	the	Windows	system	library	Shell32.dll,	asking	for	the	user	profile.	Only
on	very	old	Windows	versions	which	don't	have	this	function	or	where	it
unexpectedly	returns	an	error,	there	is	a	fallback	based	on	environment
variables:	first	%USERPROFILE%	is	checked,	if	it	doesn't	exist	then	an	attempt
with	%HOMEDRIVE%%HOMEPATH%	is	made.	Typical	value	is
C:\Users\username.

On	Linux,	Mac	OS	X	and	Solaris,	this	is	generally	taken	from	the
environment	variable	$HOME,	except	for	the	user	root	for	which	it's	taken
from	the	account	database	(as	a	workaround	for	the	frequent	trouble	caused
by	users	using	VirtualBox	in	combination	with	the	tool	sudo	which	by
default	doesn't	reset	the	environment	variable	$HOME).	Typical	value	on
Linux	and	Solaris	is	/home/username	and	on	Mac	OS	X	/Users/username.

For	simplicity,	we	will	abbreviate	this	as	$HOME	below.	Using	that	convention,
the	common	folder	for	all	virtual	machines	is	$HOME/VirtualBox	VMs.

As	an	example,	when	you	create	a	virtual	machine	called	"Example	VM",	you

will	find	that	VirtualBox	creates

1.	 the	folder	$HOME/VirtualBox	VMs/Example	VM/	and,	in	that	folder,

2.	 the	settings	file	Example	VM.vbox	and

3.	 the	virtual	disk	image	Example	VM.vdi.

This	is	the	default	layout	if	you	use	the	"Create	new	virtual	machine"	wizard	as
described	in	Section	1.7,	“Creating	your	first	virtual	machine”.	Once	you	start
working	with	the	VM,	additional	files	will	show	up:	you	will	find	log	files	in	a
subfolder	called	Logs,	and	once	you	have	taken	snapshots,	they	will	appear	in	a
Snapshots	subfolder.	For	each	VM,	you	can	change	the	location	of	its	snapshots
folder	in	the	VM	settings.

You	can	change	the	default	machine	folder	by	selecting	"Preferences"	from	the
"File"	menu	in	the	VirtualBox	main	window.	Then,	in	the	window	that	pops	up,
click	on	the	"General"	tab.	Alternatively,	use	VBoxManage	setproperty
machinefolder;	see	Section	8.30,	“VBoxManage	setproperty”.

10.1.2.	Machines	created	by	VirtualBox	versions	before	4.0

If	you	have	upgraded	to	VirtualBox	4.0	from	an	earlier	version	of	VirtualBox,
you	probably	have	settings	files	and	disks	in	the	earlier	file	system	layout.

Before	version	4.0,	VirtualBox	separated	the	machine	settings	files	from	virtual
disk	images.	The	machine	settings	files	had	an	.xml	file	extension	and	resided	in
a	folder	called	"Machines"	under	the	global	VirtualBox	configuration	directory
(see	the	next	section).	So,	for	example,	on	Linux,	this	was	the	hidden
$HOME/.VirtualBox/Machines	directory.	The	default	hard	disks	folder	was
called	"HardDisks"	and	resided	in	the	.VirtualBox	folder	as	well.	Both
locations	could	be	changed	by	the	user	in	the	global	preferences.	(The	concept	of
a	"default	hard	disk	folder"	has	been	abandoned	with	VirtualBox	4.0,	since	disk
images	now	reside	in	each	machine's	folder	by	default.)

The	old	layout	had	several	severe	disadvantages.

1.	 It	was	very	difficult	to	move	a	virtual	machine	from	one	host	to	another
because	the	files	involved	did	not	reside	in	the	same	folder.	In	addition,	the
virtual	media	of	all	machines	were	registered	with	a	global	registry	in	the

central	VirtualBox	settings	file	($HOME/.VirtualBox/VirtualBox.xml).

To	move	a	machine	to	another	host,	it	was	therefore	not	enough	to	move	the
XML	settings	file	and	the	disk	images	(which	were	in	different	locations),
but	the	hard	disk	entries	from	the	global	media	registry	XML	had	to	be
meticulously	copied	as	well,	which	was	close	to	impossible	if	the	machine
had	snapshots	and	therefore	differencing	images.

2.	 Storing	virtual	disk	images,	which	can	grow	very	large,	under	the	hidden
.VirtualBox	directory	(at	least	on	Linux	and	Solaris	hosts)	made	many
users	wonder	where	their	disk	space	had	gone.

Whereas	new	VMs	created	with	VirtualBox	4.0	or	later	will	conform	to	the	new
layout,	for	maximum	compatibility,	old	VMs	are	not	converted	to	the	new
layout.	Otherwise	machine	settings	would	be	irrevocably	broken	if	a	user
downgraded	from	4.0	back	to	an	older	version	of	VirtualBox.

10.1.3.	Global	configuration	data

In	addition	to	the	files	of	the	virtual	machines,	VirtualBox	maintains	global
configuration	data.	On	Linux	and	Solaris	as	of	VirtualBox	4.3,	this	is	in	the
hidden	directory	$HOME/.config/VirtualBox,	although	$HOME/.VirtualBox
will	be	used	if	it	exists	for	compatibility	with	earlier	versions;	on	Windows	(and
on	Linux	and	Solaris	with	VirtualBox	4.2	and	earlier)	this	is	in
$HOME/.VirtualBox;	on	a	Mac	it	resides	in	$HOME/Library/VirtualBox.

VirtualBox	creates	this	configuration	directory	automatically	if	necessary.
Optionally,	you	can	supply	an	alternate	configuration	directory	by	setting	the
VBOX_USER_HOME	environment	variable,	or	additionally	on	Linux	or	Solaris	by
using	the	standard	XDG_CONFIG_HOME	variable.	(Since	the	global	VirtualBox.xml
settings	file	points	to	all	other	configuration	files,	this	allows	for	switching
between	several	VirtualBox	configurations	entirely.)

Most	importantly,	in	this	directory,	VirtualBox	stores	its	global	settings	file,
another	XML	file	called	VirtualBox.xml.	This	includes	global	configuration
options	and	the	list	of	registered	virtual	machines	with	pointers	to	their	XML
settings	files.	(Neither	the	location	of	this	file	nor	its	directory	has	changed	with
VirtualBox	4.0.)

Before	VirtualBox	4.0,	all	virtual	media	(disk	image	files)	were	also	contained	in
a	global	registry	in	this	settings	file.	For	compatibility,	this	media	registry	still
exists	if	you	upgrade	VirtualBox	and	there	are	media	from	machines	which	were
created	with	a	version	before	4.0.	If	you	have	no	such	machines,	then	there	will
be	no	global	media	registry;	with	VirtualBox	4.0,	each	machine	XML	file	has	its
own	media	registry.

Also	before	VirtualBox	4.0,	the	default	"Machines"	folder	and	the	default
"HardDisks"	folder	resided	under	the	VirtualBox	configuration	directory	(e.g.
$HOME/.VirtualBox/Machines	on	Linux).	If	you	are	upgrading	from	a
VirtualBox	version	before	4.0,	files	in	these	directories	are	not	automatically
moved	in	order	not	to	break	backwards	compatibility.

10.1.4.	Summary	of	4.0	configuration	changes

The	following	table	gives	a	brief	overview	of	the	configuration	changes	between
older	versions	and	version	4.0	or	above:

Table	10.1.	Configuration	changes	in	version	4.0	or	above

Setting Before	4.0 4.0	or	above

Default	machines	folder $HOME/.VirtualBox/Machines
$HOME/VirtualBox

VMs

Default	disk	image
location

$HOME/.VirtualBox/HardDisks
In	each	machine's
folder

Machine	settings	file
extension

.xml .vbox

Media	registry Global	VirtualBox.xml	file Each	machine
settings	file

Media	registration Explicit	open/close	required Automatic	on
attach

10.1.5.	VirtualBox	XML	files

VirtualBox	uses	XML	for	both	the	machine	settings	files	and	the	global
configuration	file,	VirtualBox.xml.

All	VirtualBox	XML	files	are	versioned.	When	a	new	settings	file	is	created	(e.g.
because	a	new	virtual	machine	is	created),	VirtualBox	automatically	uses	the
settings	format	of	the	current	VirtualBox	version.	These	files	may	not	be
readable	if	you	downgrade	to	an	earlier	version	of	VirtualBox.	However,	when
VirtualBox	encounters	a	settings	file	from	an	earlier	version	(e.g.	after	upgrading
VirtualBox),	it	attempts	to	preserve	the	settings	format	as	much	as	possible.	It
will	only	silently	upgrade	the	settings	format	if	the	current	settings	cannot	be
expressed	in	the	old	format,	for	example	because	you	enabled	a	feature	that	was
not	present	in	an	earlier	version	of	VirtualBox.[46]	In	such	cases,	VirtualBox
backs	up	the	old	settings	file	in	the	virtual	machine's	configuration	directory.	If
you	need	to	go	back	to	the	earlier	version	of	VirtualBox,	then	you	will	need	to
manually	copy	these	backup	files	back.

We	intentionally	do	not	document	the	specifications	of	the	VirtualBox	XML
files,	as	we	must	reserve	the	right	to	modify	them	in	the	future.	We	therefore
strongly	suggest	that	you	do	not	edit	these	files	manually.	VirtualBox	provides
complete	access	to	its	configuration	data	through	its	the	VBoxManage	command
line	tool	(see	Chapter	8,	VBoxManage)	and	its	API	(see	Chapter	11,	VirtualBox
programming	interfaces).

[46]	As	an	example,	before	VirtualBox	3.1,	it	was	only	possible	to	enable	or
disable	a	single	DVD	drive	in	a	virtual	machine.	If	it	was	enabled,	then	it	would
always	be	visible	as	the	secondary	master	of	the	IDE	controller.	With	VirtualBox
3.1,	DVD	drives	can	be	attached	to	arbitrary	slots	of	arbitrary	controllers,	so	they
could	be	the	secondary	slave	of	an	IDE	controller	or	in	a	SATA	slot.	If	you	have
a	machine	settings	file	from	an	earlier	version	and	upgrade	VirtualBox	to	3.1	and
then	move	the	DVD	drive	from	its	default	position,	this	cannot	be	expressed	in
the	old	settings	format;	the	XML	machine	file	would	get	written	in	the	new
format,	and	a	backup	file	of	the	old	format	would	be	kept.

10.2.	VirtualBox	executables	and	components

VirtualBox	was	designed	to	be	modular	and	flexible.	When	the	VirtualBox
graphical	user	interface	(GUI)	is	opened	and	a	VM	is	started,	at	least	three
processes	are	running:

1.	 VBoxSVC,	the	VirtualBox	service	process	which	always	runs	in	the
background.	This	process	is	started	automatically	by	the	first	VirtualBox
client	process	(the	GUI,	VBoxManage,	VBoxHeadless,	the	web	service	or
others)	and	exits	a	short	time	after	the	last	client	exits.	The	service	is
responsible	for	bookkeeping,	maintaining	the	state	of	all	VMs,	and	for
providing	communication	between	VirtualBox	components.	This
communication	is	implemented	via	COM/XPCOM.

Note

When	we	refer	to	"clients"	here,	we	mean	the	local	clients	of	a
particular	VBoxSVC	server	process,	not	clients	in	a	network.
VirtualBox	employs	its	own	client/server	design	to	allow	its
processes	to	cooperate,	but	all	these	processes	run	under	the
same	user	account	on	the	host	operating	system,	and	this	is
totally	transparent	to	the	user.

2.	 The	GUI	process,	VirtualBox,	a	client	application	based	on	the	cross-
platform	Qt	library.	When	started	without	the	--startvm	option,	this
application	acts	as	the	VirtualBox	manager,	displaying	the	VMs	and	their
settings.	It	then	communicates	settings	and	state	changes	to	VBoxSVC	and
also	reflects	changes	effected	through	other	means,	e.g.,	VBoxManage.

3.	 If	the	VirtualBox	client	application	is	started	with	the	--startvm	argument,
it	loads	the	VMM	library	which	includes	the	actual	hypervisor	and	then
runs	a	virtual	machine	and	provides	the	input	and	output	for	the	guest.

Any	VirtualBox	front-end	(client)	will	communicate	with	the	service	process	and
can	both	control	and	reflect	the	current	state.	For	example,	either	the	VM
selector	or	the	VM	window	or	VBoxManage	can	be	used	to	pause	the	running
VM,	and	other	components	will	always	reflect	the	changed	state.

The	VirtualBox	GUI	application	is	only	one	of	several	available	front	ends
(clients).	The	complete	list	shipped	with	VirtualBox	is:

1.	 VirtualBox,	the	Qt	front	end	implementing	the	manager	and	running	VMs;

2.	 VBoxManage,	a	less	user-friendly	but	more	powerful	alternative,	described	in
Chapter	8,	VBoxManage.

3.	 VBoxSDL,	a	simple	graphical	front	end	based	on	the	SDL	library;	see
Section	9.1,	“VBoxSDL,	the	simplified	VM	displayer”.

4.	 VBoxHeadless,	a	VM	front	end	which	does	not	directly	provide	any	video
output	and	keyboard/mouse	input,	but	allows	redirection	via	VirtualBox
Remote	Desktop	Extension;	see	Section	7.1.2,	“VBoxHeadless,	the	remote
desktop	server”.

5.	 vboxwebsrv,	the	VirtualBox	web	service	process	which	allows	for
controlling	a	VirtualBox	host	remotely.	This	is	described	in	detail	in	the
VirtualBox	Software	Development	Kit	(SDK)	reference;	please	see
Chapter	11,	VirtualBox	programming	interfaces	for	details.

6.	 The	VirtualBox	Python	shell,	a	Python	alternative	to	VBoxManage.	This	is
also	described	in	the	SDK	reference.

Internally,	VirtualBox	consists	of	many	more	or	less	separate	components.	You
may	encounter	these	when	analyzing	VirtualBox	internal	error	messages	or	log
files.	These	include:

IPRT,	a	portable	runtime	library	which	abstracts	file	access,	threading,
string	manipulation,	etc.	Whenever	VirtualBox	accesses	host	operating
features,	it	does	so	through	this	library	for	cross-platform	portability.

VMM	(Virtual	Machine	Monitor),	the	heart	of	the	hypervisor.

EM	(Execution	Manager),	controls	execution	of	guest	code.

REM	(Recompiled	Execution	Monitor),	provides	software	emulation	of
CPU	instructions.

TRPM	(Trap	Manager),	intercepts	and	processes	guest	traps	and	exceptions.

HM	(Hardware	Acceleration	Manager),	provides	support	for	VT-x	and
AMD-V.

GIM	(Guest	Interface	Manager),	provides	support	for	various
paravirtualization	interfaces	to	the	guest.

PDM	(Pluggable	Device	Manager),	an	abstract	interface	between	the	VMM
and	emulated	devices	which	separates	device	implementations	from	VMM
internals	and	makes	it	easy	to	add	new	emulated	devices.	Through	PDM,
third-party	developers	can	add	new	virtual	devices	to	VirtualBox	without
having	to	change	VirtualBox	itself.

PGM	(Page	Manager),	a	component	controlling	guest	paging.

PATM	(Patch	Manager),	patches	guest	code	to	improve	and	speed	up
software	virtualization.

TM	(Time	Manager),	handles	timers	and	all	aspects	of	time	inside	guests.

CFGM	(Configuration	Manager),	provides	a	tree	structure	which	holds
configuration	settings	for	the	VM	and	all	emulated	devices.

SSM	(Saved	State	Manager),	saves	and	loads	VM	state.

VUSB	(Virtual	USB),	a	USB	layer	which	separates	emulated	USB
controllers	from	the	controllers	on	the	host	and	from	USB	devices;	this	also
enables	remote	USB.

DBGF	(Debug	Facility),	a	built-in	VM	debugger.

VirtualBox	emulates	a	number	of	devices	to	provide	the	hardware
environment	that	various	guests	need.	Most	of	these	are	standard	devices
found	in	many	PC	compatible	machines	and	widely	supported	by	guest
operating	systems.	For	network	and	storage	devices	in	particular,	there	are
several	options	for	the	emulated	devices	to	access	the	underlying	hardware.
These	devices	are	managed	by	PDM.

Guest	Additions	for	various	guest	operating	systems.	This	is	code	that	is
installed	from	within	a	virtual	machine;	see	Chapter	4,	Guest	Additions.

The	"Main"	component	is	special:	it	ties	all	the	above	bits	together	and	is
the	only	public	API	that	VirtualBox	provides.	All	the	client	processes	listed
above	use	only	this	API	and	never	access	the	hypervisor	components
directly.	As	a	result,	third-party	applications	that	use	the	VirtualBox	Main
API	can	rely	on	the	fact	that	it	is	always	well-tested	and	that	all	capabilities
of	VirtualBox	are	fully	exposed.	It	is	this	API	that	is	described	in	the
VirtualBox	SDK	mentioned	above	(again,	see	Chapter	11,	VirtualBox
programming	interfaces).

10.3.	Hardware	vs.	software	virtualization

VirtualBox	allows	software	in	the	virtual	machine	to	run	directly	on	the
processor	of	the	host,	but	an	array	of	complex	techniques	is	employed	to
intercept	operations	that	would	interfere	with	your	host.	Whenever	the	guest
attempts	to	do	something	that	could	be	harmful	to	your	computer	and	its	data,
VirtualBox	steps	in	and	takes	action.	In	particular,	for	lots	of	hardware	that	the
guest	believes	to	be	accessing,	VirtualBox	simulates	a	certain	"virtual"
environment	according	to	how	you	have	configured	a	virtual	machine.	For
example,	when	the	guest	attempts	to	access	a	hard	disk,	VirtualBox	redirects
these	requests	to	whatever	you	have	configured	to	be	the	virtual	machine's
virtual	hard	disk	--	normally,	an	image	file	on	your	host.

Unfortunately,	the	x86	platform	was	never	designed	to	be	virtualized.	Detecting
situations	in	which	VirtualBox	needs	to	take	control	over	the	guest	code	that	is
executing,	as	described	above,	is	difficult.	There	are	two	ways	in	which	to
achieve	this:

Since	2006,	Intel	and	AMD	processors	have	had	support	for	so-called
"hardware	virtualization".	This	means	that	these	processors	can	help
VirtualBox	to	intercept	potentially	dangerous	operations	that	a	guest
operating	system	may	be	attempting	and	also	makes	it	easier	to	present
virtual	hardware	to	a	virtual	machine.

These	hardware	features	differ	between	Intel	and	AMD	processors.	Intel
named	its	technology	VT-x;	AMD	calls	theirs	AMD-V.	The	Intel	and	AMD
support	for	virtualization	is	very	different	in	detail,	but	not	very	different	in
principle.

Note

On	many	systems,	the	hardware	virtualization	features	first
need	to	be	enabled	in	the	BIOS	before	VirtualBox	can	use
them.

As	opposed	to	other	virtualization	software,	for	many	usage	scenarios,
VirtualBox	does	not	require	hardware	virtualization	features	to	be	present.
Through	sophisticated	techniques,	VirtualBox	virtualizes	many	guest

operating	systems	entirely	in	software.	This	means	that	you	can	run	virtual
machines	even	on	older	processors	which	do	not	support	hardware
virtualization.

Even	though	VirtualBox	does	not	always	require	hardware	virtualization,
enabling	it	is	required	in	the	following	scenarios:

Certain	rare	guest	operating	systems	like	OS/2	make	use	of	very	esoteric
processor	instructions	that	are	not	supported	with	our	software
virtualization.	For	virtual	machines	that	are	configured	to	contain	such	an
operating	system,	hardware	virtualization	is	enabled	automatically.

VirtualBox's	64-bit	guest	support	(added	with	version	2.0)	and
multiprocessing	(SMP,	added	with	version	3.0)	both	require	hardware
virtualization	to	be	enabled.	(This	is	not	much	of	a	limitation	since	the	vast
majority	of	today's	64-bit	and	multicore	CPUs	ship	with	hardware
virtualization	anyway;	the	exceptions	to	this	rule	are	e.g.	older	Intel	Celeron
and	AMD	Opteron	CPUs.)

Warning

Do	not	run	other	hypervisors	(open-source	or	commercial
virtualization	products)	together	with	VirtualBox!	While	several
hypervisors	can	normally	be	installed	in	parallel,	do	not	attempt	to
run	several	virtual	machines	from	competing	hypervisors	at	the	same
time.	VirtualBox	cannot	track	what	another	hypervisor	is	currently
attempting	to	do	on	the	same	host,	and	especially	if	several	products
attempt	to	use	hardware	virtualization	features	such	as	VT-x,	this	can
crash	the	entire	host.	Also,	within	VirtualBox,	you	can	mix	software
and	hardware	virtualization	when	running	multiple	VMs.	In	certain
cases	a	small	performance	penalty	will	be	unavoidable	when	mixing
VT-x	and	software	virtualization	VMs.	We	recommend	not	mixing
virtualization	modes	if	maximum	performance	and	low	overhead	are
essential.	This	does	not	apply	to	AMD-V.

10.4.	Paravirtualization	providers

VirtualBox	allows	exposing	a	paravirtualization	interface	to	facilitate	accurate
and	efficient	execution	of	software	within	a	virtual	machine.	These	interfaces
require	the	guest	operating	system	to	recognize	their	presence	and	make	use	of
them	in	order	to	leverage	the	benefits	of	communicating	with	the	VirtualBox
hypervisor.

Most	modern	mainstream	guest	operating	systems,	including	Windows	and
Linux,	ship	with	support	for	one	or	more	paravirtualization	interfaces.	Hence,
there	is	typically	no	need	to	install	additional	software	in	the	guest	to	take
advantage	of	this	feature.

Exposing	a	paravirtualization	provider	to	the	guest	operating	system	does	not
rely	on	the	choice	of	host	platforms.	For	example,	the	Hyper-V	paravirtualization
provider	can	be	used	for	VMs	to	run	on	any	host	platform	(supported	by
VirtualBox)	and	not	just	Windows.

VirtualBox	provides	the	following	interfaces:

Minimal:	Announces	the	presence	of	a	virtualized	environment.
Additionally,	reports	the	TSC	and	APIC	frequency	to	the	guest	operating
system.	This	provider	is	mandatory	for	running	any	Mac	OS	X	guests.

KVM:	Presents	a	Linux	KVM	hypervisor	interface	which	is	recognized	by
Linux	kernels	starting	with	version	2.6.25.	VirtualBox's	implementation
currently	supports	paravirtualized	clocks	and	SMP	spinlocks.	This	provider
is	recommended	for	Linux	guests.

Hyper-V:	Presents	a	Microsoft	Hyper-V	hypervisor	interface	which	is
recognized	by	Windows	7	and	newer	operating	systems.	VirtualBox's
implementation	currently	supports	paravirtualized	clocks,	APIC	frequency
reporting,	guest	debugging,	guest	crash	reporting	and	relaxed	timer	checks.
This	provider	is	recommended	for	Windows	guests.

10.5.	Details	about	software	virtualization

Implementing	virtualization	on	x86	CPUs	with	no	hardware	virtualization
support	is	an	extraordinarily	complex	task	because	the	CPU	architecture	was	not
designed	to	be	virtualized.	The	problems	can	usually	be	solved,	but	at	the	cost	of
reduced	performance.	Thus,	there	is	a	constant	clash	between	virtualization
performance	and	accuracy.

The	x86	instruction	set	was	originally	designed	in	the	1970s	and	underwent
significant	changes	with	the	addition	of	protected	mode	in	the	1980s	with	the
286	CPU	architecture	and	then	again	with	the	Intel	386	and	its	32-bit
architecture.	Whereas	the	386	did	have	limited	virtualization	support	for	real
mode	operation	(V86	mode,	as	used	by	the	"DOS	Box"	of	Windows	3.x	and
OS/2	2.x),	no	support	was	provided	for	virtualizing	the	entire	architecture.

In	theory,	software	virtualization	is	not	overly	complex.	In	addition	to	the	four
privilege	levels	("rings")	provided	by	the	hardware	(of	which	typically	only	two
are	used:	ring	0	for	kernel	mode	and	ring	3	for	user	mode),	one	needs	to
differentiate	between	"host	context"	and	"guest	context".

In	"host	context",	everything	is	as	if	no	hypervisor	was	active.	This	might	be	the
active	mode	if	another	application	on	your	host	has	been	scheduled	CPU	time;	in
that	case,	there	is	a	host	ring	3	mode	and	a	host	ring	0	mode.	The	hypervisor	is
not	involved.

In	"guest	context",	however,	a	virtual	machine	is	active.	So	long	as	the	guest
code	is	running	in	ring	3,	this	is	not	much	of	a	problem	since	a	hypervisor	can
set	up	the	page	tables	properly	and	run	that	code	natively	on	the	processor.	The
problems	mostly	lie	in	how	to	intercept	what	the	guest's	kernel	does.

There	are	several	possible	solutions	to	these	problems.	One	approach	is	full
software	emulation,	usually	involving	recompilation.	That	is,	all	code	to	be	run
by	the	guest	is	analyzed,	transformed	into	a	form	which	will	not	allow	the	guest
to	either	modify	or	see	the	true	state	of	the	CPU,	and	only	then	executed.	This
process	is	obviously	highly	complex	and	costly	in	terms	of	performance.
(VirtualBox	contains	a	recompiler	based	on	QEMU	which	can	be	used	for	pure
software	emulation,	but	the	recompiler	is	only	activated	in	special	situations,
described	below.)

Another	possible	solution	is	paravirtualization,	in	which	only	specially	modified
guest	OSes	are	allowed	to	run.	This	way,	most	of	the	hardware	access	is
abstracted	and	any	functions	which	would	normally	access	the	hardware	or
privileged	CPU	state	are	passed	on	to	the	hypervisor	instead.	Paravirtualization
can	achieve	good	functionality	and	performance	on	standard	x86	CPUs,	but	it
can	only	work	if	the	guest	OS	can	actually	be	modified,	which	is	obviously	not
always	the	case.

VirtualBox	chooses	a	different	approach.	When	starting	a	virtual	machine,
through	its	ring-0	support	kernel	driver,	VirtualBox	has	set	up	the	host	system	so
that	it	can	run	most	of	the	guest	code	natively,	but	it	has	inserted	itself	at	the
"bottom"	of	the	picture.	It	can	then	assume	control	when	needed	--	if	a	privileged
instruction	is	executed,	the	guest	traps	(in	particular	because	an	I/O	register	was
accessed	and	a	device	needs	to	be	virtualized)	or	external	interrupts	occur.
VirtualBox	may	then	handle	this	and	either	route	a	request	to	a	virtual	device	or
possibly	delegate	handling	such	things	to	the	guest	or	host	OS.	In	guest	context,
VirtualBox	can	therefore	be	in	one	of	three	states:

Guest	ring	3	code	is	run	unmodified,	at	full	speed,	as	much	as	possible.	The
number	of	faults	will	generally	be	low	(unless	the	guest	allows	port	I/O
from	ring	3,	something	we	cannot	do	as	we	don't	want	the	guest	to	be	able
to	access	real	ports).	This	is	also	referred	to	as	"raw	mode",	as	the	guest
ring-3	code	runs	unmodified.

For	guest	code	in	ring	0,	VirtualBox	employs	a	nasty	trick:	it	actually
reconfigures	the	guest	so	that	its	ring-0	code	is	run	in	ring	1	instead	(which
is	normally	not	used	in	x86	operating	systems).	As	a	result,	when	guest
ring-0	code	(actually	running	in	ring	1)	such	as	a	guest	device	driver
attempts	to	write	to	an	I/O	register	or	execute	a	privileged	instruction,	the
VirtualBox	hypervisor	in	"real"	ring	0	can	take	over.

The	hypervisor	(VMM)	can	be	active.	Every	time	a	fault	occurs,	VirtualBox
looks	at	the	offending	instruction	and	can	relegate	it	to	a	virtual	device	or
the	host	OS	or	the	guest	OS	or	run	it	in	the	recompiler.

In	particular,	the	recompiler	is	used	when	guest	code	disables	interrupts	and
VirtualBox	cannot	figure	out	when	they	will	be	switched	back	on	(in	these
situations,	VirtualBox	actually	analyzes	the	guest	code	using	its	own
disassembler).	Also,	certain	privileged	instructions	such	as	LIDT	need	to	be

handled	specially.	Finally,	any	real-mode	or	protected-mode	code	(e.g.
BIOS	code,	a	DOS	guest,	or	any	operating	system	startup)	is	run	in	the
recompiler	entirely.

Unfortunately	this	only	works	to	a	degree.	Among	others,	the	following
situations	require	special	handling:

1.	 Running	ring	0	code	in	ring	1	causes	a	lot	of	additional	instruction	faults,	as
ring	1	is	not	allowed	to	execute	any	privileged	instructions	(of	which	guest's
ring-0	contains	plenty).	With	each	of	these	faults,	the	VMM	must	step	in
and	emulate	the	code	to	achieve	the	desired	behavior.	While	this	works,
emulating	thousands	of	these	faults	is	very	expensive	and	severely	hurts	the
performance	of	the	virtualized	guest.

2.	 There	are	certain	flaws	in	the	implementation	of	ring	1	in	the	x86
architecture	that	were	never	fixed.	Certain	instructions	that	should	trap	in
ring	1	don't.	This	affects,	for	example,	the	LGDT/SGDT,	LIDT/SIDT,	or
POPF/PUSHF	instruction	pairs.	Whereas	the	"load"	operation	is	privileged
and	can	therefore	be	trapped,	the	"store"	instruction	always	succeed.	If	the
guest	is	allowed	to	execute	these,	it	will	see	the	true	state	of	the	CPU,	not
the	virtualized	state.	The	CPUID	instruction	also	has	the	same	problem.

3.	 A	hypervisor	typically	needs	to	reserve	some	portion	of	the	guest's	address
space	(both	linear	address	space	and	selectors)	for	its	own	use.	This	is	not
entirely	transparent	to	the	guest	OS	and	may	cause	clashes.

4.	 The	SYSENTER	instruction	(used	for	system	calls)	executed	by	an
application	running	in	a	guest	OS	always	transitions	to	ring	0.	But	that	is
where	the	hypervisor	runs,	not	the	guest	OS.	In	this	case,	the	hypervisor
must	trap	and	emulate	the	instruction	even	when	it	is	not	desirable.

5.	 The	CPU	segment	registers	contain	a	"hidden"	descriptor	cache	which	is
not	software-accessible.	The	hypervisor	cannot	read,	save,	or	restore	this
state,	but	the	guest	OS	may	use	it.

6.	 Some	resources	must	(and	can)	be	trapped	by	the	hypervisor,	but	the	access
is	so	frequent	that	this	creates	a	significant	performance	overhead.	An
example	is	the	TPR	(Task	Priority)	register	in	32-bit	mode.	Accesses	to	this
register	must	be	trapped	by	the	hypervisor,	but	certain	guest	operating
systems	(notably	Windows	and	Solaris)	write	this	register	very	often,	which

adversely	affects	virtualization	performance.

To	fix	these	performance	and	security	issues,	VirtualBox	contains	a	Code
Scanning	and	Analysis	Manager	(CSAM),	which	disassembles	guest	code,	and
the	Patch	Manager	(PATM),	which	can	replace	it	at	runtime.

Before	executing	ring	0	code,	CSAM	scans	it	recursively	to	discover
problematic	instructions.	PATM	then	performs	in-situ	patching,	i.e.	it	replaces
the	instruction	with	a	jump	to	hypervisor	memory	where	an	integrated	code
generator	has	placed	a	more	suitable	implementation.	In	reality,	this	is	a	very
complex	task	as	there	are	lots	of	odd	situations	to	be	discovered	and	handled
correctly.	So,	with	its	current	complexity,	one	could	argue	that	PATM	is	an
advanced	in-situ	recompiler.

In	addition,	every	time	a	fault	occurs,	VirtualBox	analyzes	the	offending	code	to
determine	if	it	is	possible	to	patch	it	in	order	to	prevent	it	from	causing	more
faults	in	the	future.	This	approach	works	well	in	practice	and	dramatically
improves	software	virtualization	performance.

10.6.	Details	about	hardware	virtualization

With	Intel	VT-x,	there	are	two	distinct	modes	of	CPU	operation:	VMX	root
mode	and	non-root	mode.

In	root	mode,	the	CPU	operates	much	like	older	generations	of	processors
without	VT-x	support.	There	are	four	privilege	levels	("rings"),	and	the
same	instruction	set	is	supported,	with	the	addition	of	several	virtualization
specific	instruction.	Root	mode	is	what	a	host	operating	system	without
virtualization	uses,	and	it	is	also	used	by	a	hypervisor	when	virtualization	is
active.

In	non-root	mode,	CPU	operation	is	significantly	different.	There	are	still
four	privilege	rings	and	the	same	instruction	set,	but	a	new	structure	called
VMCS	(Virtual	Machine	Control	Structure)	now	controls	the	CPU
operation	and	determines	how	certain	instructions	behave.	Non-root	mode
is	where	guest	systems	run.

Switching	from	root	mode	to	non-root	mode	is	called	"VM	entry",	the	switch
back	is	"VM	exit".	The	VMCS	includes	a	guest	and	host	state	area	which	is
saved/restored	at	VM	entry	and	exit.	Most	importantly,	the	VMCS	controls
which	guest	operations	will	cause	VM	exits.

The	VMCS	provides	fairly	fine-grained	control	over	what	the	guests	can	and
can't	do.	For	example,	a	hypervisor	can	allow	a	guest	to	write	certain	bits	in
shadowed	control	registers,	but	not	others.	This	enables	efficient	virtualization	in
cases	where	guests	can	be	allowed	to	write	control	bits	without	disrupting	the
hypervisor,	while	preventing	them	from	altering	control	bits	over	which	the
hypervisor	needs	to	retain	full	control.	The	VMCS	also	provides	control	over
interrupt	delivery	and	exceptions.

Whenever	an	instruction	or	event	causes	a	VM	exit,	the	VMCS	contains
information	about	the	exit	reason,	often	with	accompanying	detail.	For	example,
if	a	write	to	the	CR0	register	causes	an	exit,	the	offending	instruction	is
recorded,	along	with	the	fact	that	a	write	access	to	a	control	register	caused	the
exit,	and	information	about	source	and	destination	register.	Thus	the	hypervisor
can	efficiently	handle	the	condition	without	needing	advanced	techniques	such
as	CSAM	and	PATM	described	above.

VT-x	inherently	avoids	several	of	the	problems	which	software	virtualization
faces.	The	guest	has	its	own	completely	separate	address	space	not	shared	with
the	hypervisor,	which	eliminates	potential	clashes.	Additionally,	guest	OS	kernel
code	runs	at	privilege	ring	0	in	VMX	non-root	mode,	obviating	the	problems	by
running	ring	0	code	at	less	privileged	levels.	For	example	the	SYSENTER
instruction	can	transition	to	ring	0	without	causing	problems.	Naturally,	even	at
ring	0	in	VMX	non-root	mode,	any	I/O	access	by	guest	code	still	causes	a	VM
exit,	allowing	for	device	emulation.

The	biggest	difference	between	VT-x	and	AMD-V	is	that	AMD-V	provides	a
more	complete	virtualization	environment.	VT-x	requires	the	VMX	non-root
code	to	run	with	paging	enabled,	which	precludes	hardware	virtualization	of
real-mode	code	and	non-paged	protected-mode	software.	This	typically	only
includes	firmware	and	OS	loaders,	but	nevertheless	complicates	VT-x	hypervisor
implementation.	AMD-V	does	not	have	this	restriction.

Of	course	hardware	virtualization	is	not	perfect.	Compared	to	software
virtualization,	the	overhead	of	VM	exits	is	relatively	high.	This	causes	problems
for	devices	whose	emulation	requires	high	number	of	traps.	One	example	is	the
VGA	device	in	16-color	modes,	where	not	only	every	I/O	port	access	but	also
every	access	to	the	framebuffer	memory	must	be	trapped.

10.7.	Nested	paging	and	VPIDs

In	addition	to	"plain"	hardware	virtualization,	your	processor	may	also	support
additional	sophisticated	techniques:[47]

A	newer	feature	called	"nested	paging"	implements	some	memory
management	in	hardware,	which	can	greatly	accelerate	hardware
virtualization	since	these	tasks	no	longer	need	to	be	performed	by	the
virtualization	software.

With	nested	paging,	the	hardware	provides	another	level	of	indirection
when	translating	linear	to	physical	addresses.	Page	tables	function	as
before,	but	linear	addresses	are	now	translated	to	"guest	physical"	addresses
first	and	not	physical	addresses	directly.	A	new	set	of	paging	registers	now
exists	under	the	traditional	paging	mechanism	and	translates	from	guest
physical	addresses	to	host	physical	addresses,	which	are	used	to	access
memory.

Nested	paging	eliminates	the	overhead	caused	by	VM	exits	and	page	table
accesses.	In	essence,	with	nested	page	tables	the	guest	can	handle	paging
without	intervention	from	the	hypervisor.	Nested	paging	thus	significantly
improves	virtualization	performance.

On	AMD	processors,	nested	paging	has	been	available	starting	with	the
Barcelona	(K10)	architecture	--	they	call	it	now	"rapid	virtualization
indexing"	(RVI).	Intel	added	support	for	nested	paging,	which	they	call
"extended	page	tables"	(EPT),	with	their	Core	i7	(Nehalem)	processors.

If	nested	paging	is	enabled,	the	VirtualBox	hypervisor	can	also	use	large
pages	to	reduce	TLB	usage	and	overhead.	This	can	yield	a	performance
improvement	of	up	to	5%.	To	enable	this	feature	for	a	VM,	you	need	to	use
the	VBoxManage	modifyvm	--largepages	command;	see	Section	8.8,
“VBoxManage	modifyvm”.

On	Intel	CPUs,	another	hardware	feature	called	"Virtual	Processor
Identifiers"	(VPIDs)	can	greatly	accelerate	context	switching	by	reducing
the	need	for	expensive	flushing	of	the	processor's	Translation	Lookaside
Buffers	(TLBs).

To	enable	these	features	for	a	VM,	you	need	to	use	the	VBoxManage
modifyvm	--vtxvpid	and	--largepages	commands;	see	Section	8.8,
“VBoxManage	modifyvm”.

[47]	VirtualBox	2.0	added	support	for	AMD's	nested	paging;	support	for	Intel's
EPT	and	VPIDs	was	added	with	version	2.1.

Chapter	11.	VirtualBox	programming	interfaces

VirtualBox	comes	with	comprehensive	support	for	third-party	developers.	The
so-called	"Main	API"	of	VirtualBox	exposes	the	entire	feature	set	of	the
virtualization	engine.	It	is	completely	documented	and	available	to	anyone	who
wishes	to	control	VirtualBox	programmatically.

The	Main	API	is	made	available	to	C++	clients	through	COM	(on	Windows
hosts)	or	XPCOM	(on	other	hosts).	Bridges	also	exist	for	SOAP,	Java	and
Python.

All	programming	information	(documentation,	reference	information,	header
and	other	interface	files	as	well	as	samples)	have	been	split	out	to	a	separate
Software	Development	Kit	(SDK),	which	is	available	for	download	from
http://www.virtualbox.org.	In	particular,	the	SDK	comes	with	a	"Programming
Guide	and	Reference"	in	PDF	format,	which	contains,	among	other	things,	the
information	that	was	previously	in	this	chapter	of	the	User	Manual.

http://www.virtualbox.org

Chapter	12.	Troubleshooting

Table	of	Contents

12.1.	Procedures	and	tools
12.1.1.	Categorizing	and	isolating	problems
12.1.2.	Collecting	debugging	information
12.1.3.	The	built-in	VM	debugger
12.1.4.	VM	core	format

12.2.	General
12.2.1.	Guest	shows	IDE/SATA	errors	for	file-based	images	on	slow	host
file	system
12.2.2.	Responding	to	guest	IDE/SATA	flush	requests
12.2.3.	Performance	variation	with	frequency	boosting
12.2.4.	Frequency	scaling	effect	on	CPU	usage
12.2.5.	Inaccurate	Windows	CPU	usage	reporting
12.2.6.	Poor	performance	caused	by	host	power	management
12.2.7.	GUI:	2D	Video	Acceleration	option	is	grayed	out

12.3.	Windows	guests
12.3.1.	No	USB	3.0	support	in	Windows	7	guests
12.3.2.	Windows	bluescreens	after	changing	VM	configuration
12.3.3.	Windows	0x101	bluescreens	with	SMP	enabled	(IPI	timeout)
12.3.4.	Windows	2000	installation	failures
12.3.5.	How	to	record	bluescreen	information	from	Windows	guests
12.3.6.	PCnet	driver	failure	in	32-bit	Windows	Server	2003	guests
12.3.7.	No	networking	in	Windows	Vista	guests
12.3.8.	Windows	guests	may	cause	a	high	CPU	load
12.3.9.	Long	delays	when	accessing	shared	folders
12.3.10.	USB	tablet	coordinates	wrong	in	Windows	98	guests
12.3.11.	Windows	guests	are	removed	from	an	Active	Directory	domain
after	restoring	a	snapshot
12.3.12.	Restoring	d3d8.dll	and	d3d9.dll
12.3.13.	Windows	3.x	limited	to	64	MB	RAM

12.4.	Linux	and	X11	guests
12.4.1.	Linux	guests	may	cause	a	high	CPU	load
12.4.2.	AMD	Barcelona	CPUs
12.4.3.	Buggy	Linux	2.6	kernel	versions

12.4.4.	Shared	clipboard,	auto-resizing	and	seamless	desktop	in	X11	guests
12.5.	Solaris	guests

12.5.1.	Older	Solaris	10	releases	crash	in	64-bit	mode
12.5.2.	Certain	Solaris	10	releases	may	take	long	to	boot	with	SMP
12.5.3.	Solaris	8	5/01	and	earlier	may	crash	on	startup

12.6.	FreeBSD	guests
12.6.1.	FreeBSD	10.0	may	hang	with	xHCI

12.7.	Windows	hosts
12.7.1.	VBoxSVC	out-of-process	COM	server	issues
12.7.2.	CD/DVD	changes	not	recognized
12.7.3.	Sluggish	response	when	using	Microsoft	RDP	client
12.7.4.	Running	an	iSCSI	initiator	and	target	on	a	single	system
12.7.5.	Bridged	networking	adapters	missing
12.7.6.	Host-only	networking	adapters	cannot	be	created

12.8.	Linux	hosts
12.8.1.	Linux	kernel	module	refuses	to	load
12.8.2.	Linux	host	CD/DVD	drive	not	found
12.8.3.	Linux	host	CD/DVD	drive	not	found	(older	distributions)
12.8.4.	Linux	host	floppy	not	found
12.8.5.	Strange	guest	IDE	error	messages	when	writing	to	CD/DVD
12.8.6.	VBoxSVC	IPC	issues
12.8.7.	USB	not	working
12.8.8.	PAX/grsec	kernels
12.8.9.	Linux	kernel	vmalloc	pool	exhausted

12.9.	Solaris	hosts
12.9.1.	Cannot	start	VM,	not	enough	contiguous	memory
12.9.2.	VM	aborts	with	out	of	memory	errors	on	Solaris	10	hosts

This	chapter	provides	answers	to	commonly	asked	questions.	In	order	to
improve	your	user	experience	with	VirtualBox,	it	is	recommended	to	read	this
section	to	learn	more	about	common	pitfalls	and	get	recommendations	on	how	to
use	the	product.

12.1.	Procedures	and	tools

12.1.1.	Categorizing	and	isolating	problems

More	often	than	not,	a	virtualized	guest	behaves	like	a	physical	system.	Any
problems	that	a	physical	machine	would	encounter,	a	virtual	machine	will
encounter	as	well.	If,	for	example,	Internet	connectivity	is	lost	due	to	external
issues,	virtual	machines	will	be	affected	just	as	much	as	physical	ones.

If	a	true	VirtualBox	problem	is	encountered,	it	helps	to	categorize	and	isolate	the
problem	first.	Here	are	some	of	the	questions	that	should	be	answered	before
reporting	a	problem:

1.	 Is	the	problem	specific	to	a	certain	guest	OS?	Specific	release	of	a	guest
OS?	Especially	with	Linux	guest	related	problems,	the	issue	may	be
specific	to	a	certain	distribution	and	version	of	Linux.

2.	 Is	the	problem	specific	to	a	certain	host	OS?	Problems	are	usually	not	host
OS	specific	(because	most	of	the	VirtualBox	code	base	is	shared	across	all
supported	platforms),	but	especially	in	the	areas	of	networking	and	USB
support,	there	are	significant	differences	between	host	platforms.	Some	GUI
related	issues	are	also	host	specific.

3.	 Is	the	problem	specific	to	certain	host	hardware?	This	category	of	issues	is
typically	related	to	the	host	CPU.	Because	of	significant	differences
between	VT-x	and	AMD-V,	problems	may	be	specific	to	one	or	the	other
technology.	The	exact	CPU	model	may	also	make	a	difference	(even	for
software	virtualization)	because	different	CPUs	support	different	features,
which	may	affect	certain	aspects	of	guest	CPU	operation.

4.	 Is	the	problem	specific	to	a	certain	virtualization	mode?	Some	problems
may	only	occur	in	software	virtualization	mode,	others	may	be	specific	to
hardware	virtualization.

5.	 Is	the	problem	specific	to	guest	SMP?	That	is,	is	it	related	to	the	number	of
virtual	CPUs	(VCPUs)	in	the	guest?	Using	more	than	one	CPU	usually
significantly	affects	the	internal	operation	of	a	guest	OS.

6.	 Is	the	problem	specific	to	the	Guest	Additions?	In	some	cases,	this	is	a
given	(e.g.,	a	shared	folders	problem),	in	other	cases	it	may	be	less	obvious
(for	example,	display	problems).	And	if	the	problem	is	Guest	Additions
specific,	is	it	also	specific	to	a	certain	version	of	the	Additions?

7.	 Is	the	problem	specific	to	a	certain	environment?	Some	problems	are
related	to	a	particular	environment	external	to	the	VM;	this	usually	involves
network	setup.	Certain	configurations	of	external	servers	such	as	DHCP	or
PXE	may	expose	problems	which	do	not	occur	with	other,	similar	servers.

8.	 Is	the	problem	a	regression?	Knowing	that	an	issue	is	a	regression	usually
makes	it	significantly	easier	to	find	the	solution.	In	this	case,	it	is	crucial	to
know	which	version	is	affected	and	which	is	not.

12.1.2.	Collecting	debugging	information

For	problem	determination,	it	is	often	important	to	collect	debugging
information	which	can	be	analyzed	by	VirtualBox	support.	This	section	contains
information	about	what	kind	of	information	can	be	obtained.

Every	time	VirtualBox	starts	up	a	VM,	a	so-called	"release	log	file"	is	created
containing	lots	of	information	about	the	VM	configuration	and	runtime	events.
The	log	file	is	called	VBox.log	and	resides	in	the	VM	log	file	folder.	Typically
this	will	be	a	directory	like	this:

$HOME/VirtualBox	VMs/{machinename}/Logs

When	starting	a	VM,	the	configuration	file	of	the	last	run	will	be	renamed	to	.1,
up	to	.3.	Sometimes	when	there	is	a	problem,	it	is	useful	to	have	a	look	at	the
logs.	Also	when	requesting	support	for	VirtualBox,	supplying	the	corresponding
log	file	is	mandatory.

For	convenience,	for	each	virtual	machine,	the	VirtualBox	main	window	can
show	these	logs	in	a	window.	To	access	it,	select	a	virtual	machine	from	the	list
on	the	left	and	select	"Show	logs..."	from	the	"Machine"	window.

The	release	log	file	(VBox.log)	contains	a	wealth	of	diagnostic	information,	such
as	Host	OS	type	and	version,	VirtualBox	version	and	build	(32-bit	or	64-bit),	a
complete	dump	of	the	guest's	configuration	(CFGM),	detailed	information	about
the	host	CPU	type	and	supported	features,	whether	hardware	virtualization	is

enabled,	information	about	VT-x/AMD-V	setup,	state	transitions	(creating,
running,	paused,	stopping,	etc.),	guest	BIOS	messages,	Guest	Additions
messages,	device-specific	log	entries	and,	at	the	end	of	execution,	final	guest
state	and	condensed	statistics.

In	case	of	crashes,	it	is	very	important	to	collect	crash	dumps.	This	is	true	for
both	host	and	guest	crashes.	For	information	about	enabling	core	dumps	on
Linux,	Solaris,	and	OS	X	systems,	refer	to	the	core	dump	article	on	the
VirtualBox	website.[48]

You	can	also	use	VBoxManage	debugvm	to	create	a	dump	of	a	complete	virtual
machine;	see	Section	8.40,	“VBoxManage	debugvm”.

For	network	related	problems,	it	is	often	helpful	to	capture	a	trace	of	network
traffic.	If	the	traffic	is	routed	through	an	adapter	on	the	host,	it	is	possible	to	use
Wireshark	or	a	similar	tool	to	capture	the	traffic	there.	However,	this	often	also
includes	a	lot	of	traffic	unrelated	to	the	VM.

VirtualBox	provides	an	ability	to	capture	network	traffic	only	on	a	specific	VM's
network	adapter.	Refer	to	the	network	tracing	article	on	the	VirtualBox
website[49]	for	information	on	enabling	this	capture.	The	trace	files	created	by
VirtualBox	are	in	.pcap	format	and	can	be	easily	analyzed	with	Wireshark.

12.1.3.	The	built-in	VM	debugger

VirtualBox	includes	a	built-in	VM	debugger,	which	advanced	users	may	find
useful.	This	debugger	allows	for	examining	and,	to	some	extent,	controlling	the
VM	state.

Warning

Use	the	VM	debugger	at	your	own	risk.	There	is	no	support	for	it,
and	the	following	documentation	is	only	made	available	for
advanced	users	with	a	very	high	level	of	familiarity	with	the
x86/AMD64	machine	instruction	set,	as	well	as	detailed	knowledge
of	the	PC	architecture.	A	degree	of	familiarity	with	the	internals	of
the	guest	OS	in	question	may	also	be	very	helpful.

The	VM	debugger	is	available	in	all	regular	production	versions	of	VirtualBox,

but	it	is	disabled	by	default	because	the	average	user	will	have	little	use	for	it.
There	are	two	ways	to	access	the	debugger:

A	debugger	console	window	displayed	alongside	the	VM

Via	the	telnet	protocol	at	port	5000

The	debugger	can	be	enabled	in	three	ways:

Start	the	VM	directly	using	VirtualBox	--startvm,	with	an	additional	--
dbg,	--debug,	or	--debug-command-line	argument.	See	the	VirtualBox
usage	help	for	details.

Set	the	VBOX_GUI_DBG_ENABLED	or	VBOX_GUI_DBG_AUTO_SHOW	environment
variable	to	true	before	launching	the	VirtualBox	process.	Setting	these
variables	(only	their	presence	is	checked)	is	effective	even	when	the	first
VirtualBox	process	is	the	VM	selector	window.	VMs	subsequently
launched	from	the	selector	will	have	the	debugger	enabled.

Set	the	GUI/Dbg/Enabled	extra	data	item	to	true	before	launching	the	VM.
This	can	be	set	globally	or	on	a	per	VM	basis.

A	new	'Debug'	menu	entry	will	be	added	to	the	VirtualBox	application.	This
menu	allows	the	user	to	open	the	debugger	console.

The	VM	debugger	command	syntax	is	loosely	modeled	on	Microsoft	and	IBM
debuggers	used	on	DOS,	OS/2	and	Windows.	Users	familiar	with	symdeb,
CodeView,	or	the	OS/2	kernel	debugger	will	find	the	VirtualBox	VM	debugger
familiar.

The	most	important	command	is	help.	This	will	print	brief	usage	help	for	all
debugger	commands.	The	set	of	commands	supported	by	the	VM	debugger
changes	frequently	and	the	help	command	is	always	up-to-date.

A	brief	summary	of	frequently	used	commands	follows:

stop	--	stops	the	VM	execution	and	enables	single	stepping

g	--	continue	VM	execution

t	--	single	step	an	instruction

rg/rh/r	--	print	the	guest/hypervisor/current	registers

kg/kh/k	--	print	the	guest/hypervisor/current	call	stack

da/db/dw/dd/dq	--	print	memory	contents	as
ASCII/bytes/words/dwords/qwords

u	--	unassemble	memory

dg	--	print	the	guest's	GDT

di	--	print	the	guest's	IDT

dl	--	print	the	guest's	LDT

dt	--	print	the	guest's	TSS

dp*	--	print	the	guest's	page	table	structures

bp/br	--	set	a	normal/recompiler	breakpoint

bl	--	list	breakpoints

bc	--	clear	a	breakpoint

writecore	--	writes	a	VM	core	file	to	disk,	refer	Section	12.1.4,	“VM	core
format”

See	the	built-in	help	for	other	available	commands.

The	VM	debugger	supports	symbolic	debugging,	although	symbols	for	guest
code	are	often	not	available.	For	Solaris	guests,	the	detect	command
automatically	determines	the	guest	OS	version	and	locates	kernel	symbols	in
guest's	memory.	Symbolic	debugging	is	then	available.	For	Linux	guests,	the
detect	commands	also	determines	the	guest	OS	version,	but	there	are	no
symbols	in	the	guest's	memory.	Kernel	symbols	are	available	in	the	file
/proc/kallsyms	on	Linux	guests.	This	file	must	be	copied	to	the	host,	for
example	using	scp.	The	loadmap	debugger	command	can	be	used	to	make	the
symbol	information	available	to	the	VM	debugger.	Note	that	the	kallsyms	file

contains	the	symbols	for	the	currently	loaded	modules;	if	the	guest's
configuration	changes,	the	symbols	will	change	as	well	and	must	be	updated.

For	all	guests,	a	simple	way	to	verify	that	the	correct	symbols	are	loaded	is	the	k
command.	The	guest	is	normally	idling	and	it	should	be	clear	from	the	symbolic
information	that	the	guest	operating	system's	idle	loop	is	being	executed.

Another	group	of	debugger	commands	is	the	set	of	info	commands.	Running
info	help	provides	complete	usage	information.	The	information	commands
provide	ad-hoc	data	pertinent	to	various	emulated	devices	and	aspects	of	the
VMM.	There	is	no	general	guideline	for	using	the	info	commands,	the	right
command	to	use	depends	entirely	on	the	problem	being	investigated.	Some	of
the	info	commands	are:

cfgm	--	print	a	branch	of	the	configuration	tree

cpuid	--	display	the	guest	CPUID	leaves

ioport	--	print	registered	I/O	port	ranges

mmio	--	print	registered	MMIO	ranges

mode	--	print	the	current	paging	mode

pit	--	print	the	i8254	PIT	state

pic	--	print	the	i8259A	PIC	state

ohci/ehci/xhci	--	print	a	subset	of	the	OHCI/EHCI/xHCI	USB	controller
state

pcnet0	--	print	the	PCnet	state

vgatext	--	print	the	contents	of	the	VGA	framebuffer	formatted	as	standard
text	mode

timers	--	print	all	VM	timers

The	output	of	the	info	commands	generally	requires	in-depth	knowledge	of	the
emulated	device	and/or	VirtualBox	VMM	internals.	However,	when	used

properly,	the	information	provided	can	be	invaluable.

12.1.4.	VM	core	format

VirtualBox	uses	the	64-bit	ELF	format	for	its	VM	core	files	created	by
VBoxManage	debugvm;	see	Section	8.40,	“VBoxManage	debugvm”.	The	VM
core	file	contain	the	memory	and	CPU	dumps	of	the	VM	and	can	be	useful	for
debugging	your	guest	OS.	The	64-bit	ELF	object	format	specification	can	be
obtained	here:	http://downloads.openwatcom.org/ftp/devel/docs/elf-64-
gen.pdf.

The	overall	layout	of	the	VM	core	format	is	as	follows:

[ELF	64	Header]

[Program	Header,	type	PT_NOTE]

		→	offset	to	COREDESCRIPTOR

[Program	Header,	type	PT_LOAD]	-	one	for	each	contiguous	physical	memory	range

		→	Memory	offset	of	range

		→	File	offset

[Note	Header,	type	NT_VBOXCORE]

[COREDESCRIPTOR]

		→	Magic

		→	VM	core	file	version

		→	VBox	version

		→	Number	of	vCPUs	etc.

[Note	Header,	type	NT_VBOXCPU]	-	one	for	each	vCPU

[vCPU	1	Note	Header]

		[DBGFCORECPU	-	vCPU	1	dump]

[Additional	Notes	+	Data]	-	currently	unused

[Memory	dump]

The	memory	descriptors	contain	physical	addresses	relative	to	the	guest	and	not
virtual	addresses.	Regions	of	memory	such	as	MMIO	regions	are	not	included	in
the	core	file.

The	relevant	data	structures	and	definitions	can	be	found	in	the	VirtualBox
sources	under	the	following	header	files:	include/VBox/dbgfcorefmt.h,
include/iprt/x86.h	and
src/VBox/Runtime/include/internal/ldrELFCommon.h.

The	VM	core	file	can	be	inspected	using	elfdump	and	GNU	readelf	or	other
similar	utilities.

http://downloads.openwatcom.org/ftp/devel/docs/elf-64-gen.pdf

[48]	http://www.virtualbox.org/wiki/Core_dump.

[49]	http://www.virtualbox.org/wiki/Network_tips.

http://www.virtualbox.org/wiki/Core_dump
http://www.virtualbox.org/wiki/Network_tips

12.2.	General

12.2.1.	Guest	shows	IDE/SATA	errors	for	file-based	images	on
slow	host	file	system

Occasionally,	some	host	file	systems	provide	very	poor	writing	performance	and
as	a	consequence	cause	the	guest	to	time	out	IDE/SATA	commands.	This	is
normal	behavior	and	should	normally	cause	no	real	problems,	as	the	guest
should	repeat	commands	that	have	timed	out.	However,	some	guests	(e.g.	some
Linux	versions)	have	severe	problems	if	a	write	to	an	image	file	takes	longer
than	about	15	seconds.	Some	file	systems	however	require	more	than	a	minute	to
complete	a	single	write,	if	the	host	cache	contains	a	large	amount	of	data	that
needs	to	be	written.

The	symptom	for	this	problem	is	that	the	guest	can	no	longer	access	its	files
during	large	write	or	copying	operations,	usually	leading	to	an	immediate	hang
of	the	guest.

In	order	to	work	around	this	problem	(the	true	fix	is	to	use	a	faster	file	system
that	doesn't	exhibit	such	unacceptable	write	performance),	it	is	possible	to	flush
the	image	file	after	a	certain	amount	of	data	has	been	written.	This	interval	is
normally	infinite,	but	can	be	configured	individually	for	each	disk	of	a	VM.

For	IDE	disks	use	the	following	command:

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/piix3ide/0/LUN#[x]/Config/FlushInterval"	[b]

For	SATA	disks	use	the	following	command:

VBoxManage	setextradata	"VM	name"

						"VBoxInternal/Devices/ahci/0/LUN#[x]/Config/FlushInterval"	[b]

The	value	[x]	that	selects	the	disk	for	IDE	is	0	for	the	master	device	on	the	first
channel,	1	for	the	slave	device	on	the	first	channel,	2	for	the	master	device	on	the
second	channel	or	3	for	the	slave	device	on	the	second	channel.	For	SATA	use
values	between	0	and	29.	Only	disks	support	this	configuration	option;	it	must
not	be	set	for	CD/DVD	drives.

The	unit	of	the	interval	[b]	is	the	number	of	bytes	written	since	the	last	flush.
The	value	for	it	must	be	selected	so	that	the	occasional	long	write	delays	do	not
occur.	Since	the	proper	flush	interval	depends	on	the	performance	of	the	host	and
the	host	filesystem,	finding	the	optimal	value	that	makes	the	problem	disappear
requires	some	experimentation.	Values	between	1000000	and	10000000	(1	to	10
megabytes)	are	a	good	starting	point.	Decreasing	the	interval	both	decreases	the
probability	of	the	problem	and	the	write	performance	of	the	guest.	Setting	the
value	unnecessarily	low	will	cost	performance	without	providing	any	benefits.
An	interval	of	1	will	cause	a	flush	for	each	write	operation	and	should	solve	the
problem	in	any	case,	but	has	a	severe	write	performance	penalty.

Providing	a	value	of	0	for	[b]	is	treated	as	an	infinite	flush	interval,	effectively
disabling	this	workaround.	Removing	the	extra	data	key	by	specifying	no	value
for	[b]	has	the	same	effect.

12.2.2.	Responding	to	guest	IDE/SATA	flush	requests

If	desired,	the	virtual	disk	images	can	be	flushed	when	the	guest	issues	the	IDE
FLUSH	CACHE	command.	Normally	these	requests	are	ignored	for	improved
performance.	The	parameters	below	are	only	accepted	for	disk	drives.	They	must
not	be	set	for	DVD	drives.

To	enable	flushing	for	IDE	disks,	issue	the	following	command:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/Devices/piix3ide/0/LUN#[x]/Config/IgnoreFlush"	0

The	value	[x]	that	selects	the	disk	is	0	for	the	master	device	on	the	first	channel,
1	for	the	slave	device	on	the	first	channel,	2	for	the	master	device	on	the	second
channel	or	3	for	the	master	device	on	the	second	channel.

To	enable	flushing	for	SATA	disks,	issue	the	following	command:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/Devices/ahci/0/LUN#[x]/Config/IgnoreFlush"	0

The	value	[x]	that	selects	the	disk	can	be	a	value	between	0	and	29.

Note	that	this	doesn't	affect	the	flushes	performed	according	to	the	configuration
described	in	12.2.1.	Restoring	the	default	of	ignoring	flush	commands	is	possible
by	setting	the	value	to	1	or	by	removing	the	key.

12.2.3.	Performance	variation	with	frequency	boosting

Many	newer	multi-core	processors	support	some	form	of	frequency	boosting,
which	means	that	if	only	one	core	is	utilized,	it	can	run	faster	(possibly	50%
faster	or	even	more)	than	the	rated	CPU	frequency.	This	causes	measured
performance	to	vary	somewhat	as	a	function	of	the	momentary	overall	system
load.	The	exact	behavior	depends	strongly	on	the	specific	processor	model.

As	a	consequence,	benchmarking	on	systems	which	utilize	frequency	boosting
may	produce	unstable	and	non-repeatable	results,	especially	if	benchmark	runs
are	short	(on	the	order	of	seconds).	To	obtain	stable	results,	benchmarks	must	be
run	over	longer	periods	of	time	and	with	a	constant	system	load	apart	from	the
VM	being	tested.

12.2.4.	Frequency	scaling	effect	on	CPU	usage

On	some	hardware	platforms	and	operating	systems,	CPU	frequency	scaling
may	cause	CPU	usage	reporting	to	be	highly	misleading.	This	happens	in
situations	when	the	host	CPU	load	is	significant	but	not	heavy,	such	as	15-30%
of	the	maximum.

Most	operating	systems	determine	CPU	usage	in	terms	of	time	spent,	measuring
for	example	how	many	nanoseconds	the	systems	or	a	process	was	active	within
one	second.	However,	in	order	to	save	energy,	modern	systems	can	significantly
scale	down	CPU	speed	when	the	system	is	not	fully	loaded.	Naturally,	when	the
CPU	is	running	at	(for	example)	one	half	of	its	maximum	speed,	the	same
number	of	instructions	will	take	roughly	twice	as	long	to	execute	compared	to
running	at	full	speed.

Depending	on	the	specific	hardware	and	host	OS,	this	effect	can	very
significantly	skew	the	CPU	usage	reported	by	the	OS;	the	reported	CPU	usage
can	be	several	times	higher	than	what	it	would	have	been	had	the	CPU	been
running	at	full	speed.	The	effect	can	be	observed	both	on	the	host	OS	and	in	a
guest	OS.

12.2.5.	Inaccurate	Windows	CPU	usage	reporting

CPU	usage	reporting	tools	which	come	with	Windows	(Task	Manager,	Resource
Monitor)	do	not	take	the	time	spent	processing	hardware	interrupts	into	account.

If	the	interrupt	load	is	heavy	(thousands	of	interrupts	per	second),	CPU	usage
may	be	significantly	underreported.

This	problem	affects	Windows	as	both	host	and	guest	OS.	Sysinternals	tools
(e.g.	Process	Explorer)	do	not	suffer	from	this	problem.

12.2.6.	Poor	performance	caused	by	host	power	management

On	some	hardware	platforms	and	operating	systems,	virtualization	performance
is	negatively	affected	by	host	CPU	power	management.	The	symptoms	may	be
choppy	audio	in	the	guest	or	erratic	guest	clock	behavior.

Some	of	the	problems	may	be	caused	by	firmware	and/or	host	operating	system
bugs.	Therefore,	updating	the	firmware	and	applying	operating	systems	fixes	is
recommended.

For	optimal	virtualization	performance,	the	C1E	power	state	support	in	the
system's	BIOS	should	be	disabled,	if	such	a	setting	is	available	(not	all	systems
support	the	C1E	power	state).	On	Intel	systems	the	Intel	C	State	setting
should	be	disabled.	Disabling	other	power	management	settings	may	also
improve	performance.	However,	a	balance	between	performance	and	power
consumption	must	always	be	considered.

12.2.7.	GUI:	2D	Video	Acceleration	option	is	grayed	out

To	use	2D	Video	Acceleration	within	VirtualBox,	your	host's	video	card	should
support	certain	OpenGL	extensions.	On	startup,	VirtualBox	checks	for	those
extensions,	and,	if	the	test	fails,	this	option	is	silently	grayed	out.

To	find	out	why	it	has	failed,	you	can	manually	execute	the	following	command:

VBoxTestOGL	--log	"log_file_name"	--test	2D

It	will	list	the	required	OpenGL	extensions	one	by	one	and	will	show	you	which
one	failed	the	test.	This	usually	means	that	you	are	running	an	outdated	or
misconfigured	OpenGL	driver	on	your	host.	It	can	also	mean	that	your	video
chip	is	lacking	required	functionality.

12.3.	Windows	guests

12.3.1.	No	USB	3.0	support	in	Windows	7	guests

If	a	Windows	7	or	Windows	Server	2008	R2	guest	is	configured	for	USB	3.0
(xHCI)	support,	the	guest	OS	will	not	have	any	USB	support	at	all.	This	happens
because	Windows	7	predates	USB	3.0	and	therefore	does	not	ship	with	any	xHCI
drivers;	Microsoft	also	does	not	offer	any	vendor-provided	xHCI	drivers	via
Windows	Update.

To	solve	this	problem,	it	is	necessary	to	download	and	install	the	Intel	xHCI
driver	in	the	guest.	Intel	offers	the	driver	as	the	USB	3.0	eXtensible	Host
Controller	(xHCI)	driver	for	Intel	7	Series/C216	chipsets.

Note	that	the	driver	only	supports	Windows	7	and	Windows	Server	2008	R2.
The	driver	package	includes	support	for	both	32-bit	and	64-bit	OS	variants.

12.3.2.	Windows	bluescreens	after	changing	VM	configuration

Changing	certain	virtual	machine	settings	can	cause	Windows	guests	to	fail
during	start	up	with	a	bluescreen.	This	may	happen	if	you	change	VM	settings
after	installing	Windows,	or	if	you	copy	a	disk	image	with	an	already	installed
Windows	to	a	newly	created	VM	which	has	settings	that	differ	from	the	original
machine.

This	applies	in	particular	to	the	following	settings:

The	ACPI	and	I/O	APIC	settings	should	never	be	changed	after	installing
Windows.	Depending	on	the	presence	of	these	hardware	features,	the
Windows	installation	program	chooses	special	kernel	and	device	driver
versions	and	will	fail	to	startup	should	these	hardware	features	be	removed.
(Enabling	them	for	a	Windows	VM	which	was	installed	without	them	does
not	cause	any	harm.	However,	Windows	will	not	use	these	features	in	this
case.)

Changing	the	storage	controller	hardware	will	cause	bootup	failures	as	well.
This	might	also	apply	to	you	if	you	copy	a	disk	image	from	an	older	version
of	VirtualBox	to	a	virtual	machine	created	with	a	newer	VirtualBox	version;

the	default	subtype	of	IDE	controller	hardware	was	changed	from	PIIX3	to
PIIX4	with	VirtualBox	2.2.	Make	sure	these	settings	are	identical.

12.3.3.	Windows	0x101	bluescreens	with	SMP	enabled	(IPI
timeout)

If	a	VM	is	configured	to	have	more	than	one	processor	(symmetrical
multiprocessing,	SMP),	some	configurations	of	Windows	guests	crash	with	an
0x101	error	message,	indicating	a	timeout	for	inter-processor	interrupts	(IPIs).
These	interrupts	synchronize	memory	management	between	processors.

According	to	Microsoft,	this	is	due	to	a	race	condition	in	Windows.	A	hotfix	is
available.[50]	If	this	does	not	help,	please	reduce	the	number	of	virtual	processors
to	1.

12.3.4.	Windows	2000	installation	failures

When	installing	Windows	2000	guests,	you	might	run	into	one	of	the	following
issues:

Installation	reboots,	usually	during	component	registration.

Installation	fills	the	whole	hard	disk	with	empty	log	files.

Installation	complains	about	a	failure	installing	msgina.dll.

These	problems	are	all	caused	by	a	bug	in	the	hard	disk	driver	of	Windows	2000.
After	issuing	a	hard	disk	request,	there	is	a	race	condition	in	the	Windows	driver
code	which	leads	to	corruption	if	the	operation	completes	too	fast,	i.e.	the
hardware	interrupt	from	the	IDE	controller	arrives	too	soon.	With	physical
hardware,	there	is	a	guaranteed	delay	in	most	systems	so	the	problem	is	usually
hidden	there	(however	it	should	be	possible	to	reproduce	it	on	physical	hardware
as	well).	In	a	virtual	environment,	it	is	possible	for	the	operation	to	be	done
immediately	(especially	on	very	fast	systems	with	multiple	CPUs)	and	the
interrupt	is	signaled	sooner	than	on	a	physical	system.	The	solution	is	to
introduce	an	artificial	delay	before	delivering	such	interrupts.	This	delay	can	be
configured	for	a	VM	using	the	following	command:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/Devices/piix3ide/0/Config/IRQDelay"	1

This	sets	the	delay	to	one	millisecond.	In	case	this	doesn't	help,	increase	it	to	a
value	between	1	and	5	milliseconds.	Please	note	that	this	slows	down	disk
performance.	After	installation,	you	should	be	able	to	remove	the	key	(or	set	it	to
0).

12.3.5.	How	to	record	bluescreen	information	from	Windows
guests

When	Windows	guests	run	into	a	kernel	crash,	they	display	the	infamous
bluescreen.	Depending	on	how	Windows	is	configured,	the	information	will
remain	on	the	screen	until	the	machine	is	restarted	or	it	will	reboot	automatically.
During	installation,	Windows	is	usually	configured	to	reboot	automatically.	With
automatic	reboots,	there	is	no	chance	to	record	the	bluescreen	information	which
might	be	important	for	problem	determination.

VirtualBox	provides	a	method	of	halting	a	guest	when	it	wants	to	perform	a
reset.	In	order	to	enable	this	feature,	issue	the	following	command:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/PDM/HaltOnReset"	1

12.3.6.	PCnet	driver	failure	in	32-bit	Windows	Server	2003	guests

Certain	editions	of	Windows	2000	and	2003	servers	support	more	than	4	GB
RAM	on	32-bit	systems.	The	AMD	PCnet	network	driver	shipped	with
Windows	Server	2003	fails	to	load	if	the	32-bit	guest	OS	uses	paging	extensions
(which	will	occur	with	more	than	approximately	3.5	GB	RAM	assigned	to	the
VM).

This	problem	is	known	to	occur	with	version	4.38.0.0	of	the	PCnet	driver.	The
issue	was	fixed	in	version	4.51.0.0	of	the	driver,	which	is	available	as	a	separate
download.	An	alternative	solution	may	be	changing	the	emulated	NIC	type	to
Intel	PRO/1000	MT	Desktop	(82540EM),	or	reducing	the	RAM	assigned	to	the
VM	to	approximately	3.5	GB	or	less.

12.3.7.	No	networking	in	Windows	Vista	guests

With	Windows	Vista,	Microsoft	dropped	support	for	the	AMD	PCNet	card	that
VirtualBox	used	to	provide	as	the	default	virtual	network	card	before	version
1.6.0.	For	Windows	Vista	guests,	VirtualBox	now	uses	an	Intel	E1000	card	by

default.

If,	for	some	reason,	you	still	want	to	use	the	AMD	card,	you	need	to	download
the	PCNet	driver	from	the	AMD	website	(available	for	32-bit	Windows	only).
You	can	transfer	it	into	the	virtual	machine	using	a	shared	folder,	see	(see
Section	4.3,	“Shared	folders”).

12.3.8.	Windows	guests	may	cause	a	high	CPU	load

Several	background	applications	of	Windows	guests,	especially	virus	scanners,
are	known	to	increases	the	CPU	load	notably	even	if	the	guest	appears	to	be	idle.
We	recommend	to	deactivate	virus	scanners	within	virtualized	guests	if	possible.

12.3.9.	Long	delays	when	accessing	shared	folders

The	performance	for	accesses	to	shared	folders	from	a	Windows	guest	might	be
decreased	due	to	delays	during	the	resolution	of	the	VirtualBox	shared	folders
name	service.	To	fix	these	delays,	add	the	following	entries	to	the	file
\windows\system32\drivers\etc\lmhosts	of	the	Windows	guest:

255.255.255.255								VBOXSVR	#PRE

255.255.255.255								VBOXSRV	#PRE

After	doing	this	change,	a	reboot	of	the	guest	is	required.

12.3.10.	USB	tablet	coordinates	wrong	in	Windows	98	guests

If	a	Windows	98	VM	is	configured	to	use	the	emulated	USB	tablet	(absolute
pointing	device),	the	coordinate	translation	may	be	incorrect	and	the	pointer	is
restricted	to	the	upper	left	quarter	of	the	guest's	screen.

The	USB	HID	(Human	Interface	Device)	drivers	in	Windows	98	are	very	old
and	do	not	handle	tablets	the	same	way	all	more	recent	operating	systems	do
(Windows	2000	and	later,	Mac	OS	X,	Solaris).	To	work	around	the	problem,
issue	the	following	command:

VBoxManage	setextradata	"VM	name"	"VBoxInternal/USB/HidMouse/0/Config/CoordShift"	0

To	restore	the	default	behavior,	remove	the	key	or	set	its	value	to	1.

12.3.11.	Windows	guests	are	removed	from	an	Active	Directory
domain	after	restoring	a	snapshot

If	a	Windows	guest	is	a	member	of	an	Active	Directory	domain	and	the	snapshot
feature	of	VirtualBox	is	used,	it	could	happen	it	loses	this	status	after	you	restore
an	older	snapshot.

The	reason	is	the	automatic	machine	password	changing	performed	by	Windows
in	regular	intervals	for	security	purposes.	You	can	disable	this	feature	by
following	the	instruction	of	this	http://support.microsoft.com/kb/154501	article
from	Microsoft.

12.3.12.	Restoring	d3d8.dll	and	d3d9.dll

VirtualBox	Guest	Additions	for	Windows	prior	to	4.1.8	did	not	properly	back	up
the	original	d3d8.dll	and	d3d9.dll	system	files	when	selecting	and	installing	the
experimental	Direct3D	support.	This	process	replaces	both	system	files	with
files	from	the	VirtualBox	Guest	Additions	so	that	Direct3D	calls	can	be	handled
correctly.	Although	this	issue	was	fixed	with	VirtualBox	4.1.8,	there	is	no	way
the	Windows	Guest	Additions	installer	can	repair	these	files.

Corruption	of	these	files	has	no	implications	in	case	3D	acceleration	is	enabled
and	basic	Direct3D	support	is	installed,	that	is,	without	WDDM	(on	Windows
Vista	or	higher)	or	on	older	Windows	systems	like	Windows	XP.	With	the	basic
Direct3D	support	all	Direct3D	8.0	and	Direct3D	9.0	applications	will	utilize
VirtualBox	Direct3D	files	directly	and	thus	will	run	as	expected.

For	WDDM	Direct3D	support	however,	the	originally	shipped	d3d8.dll	and
d3d9.dll	files	are	required	in	order	to	run	Direct3D	8.0	and	Direct3D	9.0
applications.	As	a	result	of	the	above	mentioned	system	files	corruption	these
applications	will	not	work	anymore.	See	below	for	a	step-by-step	guide	for
restoring	the	original	d3d8.dll	and	d3d9.dll	system	files	in	case	the	VirtualBox
Guest	Additions	installer	warned	about	those	incorrect	files	or	when	having
trouble	running	Direct3D	applications.

Note

Starting	at	Windows	7	the	3D	desktop	(aka	Aero)	uses	DirectX	10

http://support.microsoft.com/kb/154501

for	rendering	so	that	corrupted	d3d8.dll	and	d3d9.dll	system	files
will	have	no	effect	on	the	actual	rendering.

This	is	why	such	a	detected	file	corruption	is	not	considered	as	fatal	for	the	basic
Direct3D	installation	on	all	supported	Windows	guests,	and	for	WDDM
Direct3D	installation	on	Windows	7	and	later	guests.

Extracting	d3d8	and	d3d9.dll	from	a	Windows	XP	installation	CD:

1.	 Download	and	install	the	latest	version	of	7-Zip	File	Manager	http//www.7-
zip.org

2.	 Browse	into	the	installation	CD	for	example	E:\i386	(or	amd64	for	the	64-
bit	version)

3.	 Locate	file	d3d8.dl_	and	d3d9.dl_,	double	click	on	it	and	Extract	d3d8.dll
and	d3d9.dll

4.	 Reboot	Windows	in	Safe	mode

5.	 Copy	extracted	d3d8.dll	and	d3d9.dll	to	C:\Windows\system32	and
C:\Windows\system32\dllcache

6.	 Reboot

Extracting	d3d8	and	d3d9.dll	from	Windows	XP	Service	pack

1.	 1,	3-6	Same	as	installation	CD

2.	 Use	'Open	inside'	to	open	WindowsXP-KB936929-SP3-x86.exe	as	archive
and	browse	i386	directory.

Extracting	d3d8	and	d3d9.dll	from	Vista/Windows7	installation	CD	or	Service
Pack	iso

1.	 Download	and	install	the	latest	version	of	7-Zip	File	Manager	http//www.7-
zip.org

2.	 Browse	into	installation	CD	for	example	E:\sources

3.	 Locate	file	install.wim	and	double	click	it.	After	7-Zip	utility	opens	the	file,

you'll	get	a	few	numbered	folders.	Each	numeric	subfolder	represents	a
different	version	of	Windows	(Starter,	Home	Basic,	and	so	on)

4.	 After	entering	into	the	one	of	the	numeric	folders,	browse	into
Windows\System32	(or	C:\Windows\SysWOW64	for	the	64-bit	version)
directory	locate	d3d8.dll	and	d3d9.dll	and	extract

5.	 Copy	extracted	d3d8.dll	and	d3d9.dll	to	C:\Windows\system32	or
C:\Windows\SysWOW64	(files	from	system32	should	go	to	system32,
from	SysWOW64	to	SysWOW64)

6.	 Reboot

12.3.13.	Windows	3.x	limited	to	64	MB	RAM

Windows	3.x	guests	are	typically	limited	to	64	MB	RAM,	even	if	a	VM	is
assigned	much	more	memory.	While	Windows	3.1	is	theoretically	capable	of
using	up	to	512	MB	RAM,	it	only	uses	memory	available	through	the	XMS
interface.	Versions	of	HIMEM.SYS	(the	Microsoft	XMS	manager)	shipped	with
MS-DOS	and	Microsoft	Windows	3.x	can	only	use	up	to	64	MB	on	standard
PCs.

This	is	a	HIMEM.SYS	limitation	documented	by	Microsoft	in	Knowledge	base
article	KB	116256.	Windows	3.1	memory	limits	are	described	in	detail	in
Microsoft	Knowledge	base	article	KB	84388.

It	is	possible	for	Windows	3.x	guests	to	utilize	more	than	64	MB	RAM	if	a
different	XMS	provider	is	used.	That	could	be	a	newer	HIMEM.SYS	version
(such	as	that	shipped	with	Windows	98),	or	a	more	capable	third-party	memory
manager	(such	as	QEMM).

[50]	See	http://support.microsoft.com/kb/955076.

http://support.microsoft.com/kb/955076

12.4.	Linux	and	X11	guests

12.4.1.	Linux	guests	may	cause	a	high	CPU	load

Some	Linux	guests	may	cause	a	high	CPU	load	even	if	the	guest	system	appears
to	be	idle.	This	can	be	caused	by	a	high	timer	frequency	of	the	guest	kernel.
Some	Linux	distributions,	for	example	Fedora,	ship	a	Linux	kernel	configured
for	a	timer	frequency	of	1000Hz.	We	recommend	to	recompile	the	guest	kernel
and	to	select	a	timer	frequency	of	100Hz.

Linux	kernels	shipped	with	Red	Hat	Enterprise	Linux	(RHEL)	as	of	release	4.7
and	5.1	as	well	as	kernels	of	related	Linux	distributions	(for	instance	CentOS
and	Oracle	Linux)	support	a	kernel	parameter	divider=N.	Hence,	such	kernels
support	a	lower	timer	frequency	without	recompilation.	We	suggest	to	add	the
kernel	parameter	divider=10	to	select	a	guest	kernel	timer	frequency	of	100Hz.

12.4.2.	AMD	Barcelona	CPUs

Most	Linux-based	guests	will	fail	with	AMD	Phenoms	or	Barcelona-level
Opterons	due	to	a	bug	in	the	Linux	kernel.	Enable	the	I/O-APIC	to	work	around
the	problem	(see	Section	3.5,	“System	settings”).

12.4.3.	Buggy	Linux	2.6	kernel	versions

The	following	bugs	in	Linux	kernels	prevent	them	from	executing	correctly	in
VirtualBox,	causing	VM	boot	crashes:

The	Linux	kernel	version	2.6.18	(and	some	2.6.17	versions)	introduced	a
race	condition	that	can	cause	boot	crashes	in	VirtualBox.	Please	use	a
kernel	version	2.6.19	or	later.

With	hardware	virtualization	and	the	I/O	APIC	enabled,	kernels	before
2.6.24-rc6	may	panic	on	boot	with	the	following	message:

Kernel	panic	-	not	syncing:	IO-APIC	+	timer	doesn't	work!		Boot	with

apic=debug	and	send	a	report.		Then	try	booting	with	the	'noapic'	option

If	you	see	this	message,	either	disable	hardware	virtualization	or	the	I/O

APIC	(see	Section	3.5,	“System	settings”),	or	upgrade	the	guest	to	a	newer
kernel.[51]

12.4.4.	Shared	clipboard,	auto-resizing	and	seamless	desktop	in
X11	guests

Guest	desktop	services	in	guests	running	the	X11	window	system	(Solaris,	Linux
and	others)	are	provided	by	a	guest	service	called	VBoxClient,	which	runs	under
the	ID	of	the	user	who	started	the	desktop	session	and	is	automatically	started
using	the	following	command	lines

VBoxClient	--clipboard

VBoxClient	--display

VBoxClient	--seamless

when	your	X11	user	session	is	started	if	you	are	using	a	common	desktop
environment	(Gnome,	KDE	and	others).	If	a	particular	desktop	service	is	not
working	correctly,	it	is	worth	checking	whether	the	process	which	should
provide	it	is	running.

The	VBoxClient	processes	create	files	in	the	user's	home	directory	with	names
of	the	form	.vboxclient-*.pid	when	they	are	running	in	order	to	prevent	a
given	service	from	being	started	twice.	It	can	happen	due	to	misconfiguration
that	these	files	are	created	owned	by	root	and	not	deleted	when	the	services	are
stopped,	which	will	prevent	them	from	being	started	in	future	sessions.	If	the
services	cannot	be	started,	you	may	wish	to	check	whether	these	files	still	exist.

[51]	See	http://www.mail-archive.com/git-commits-
head@vger.kernel.org/msg30813.html	for	details	about	the	kernel	fix.

http://www.mail-archive.com/git-commits-head@vger.kernel.org/msg30813.html

12.5.	Solaris	guests

12.5.1.	Older	Solaris	10	releases	crash	in	64-bit	mode

Solaris	10	releases	up	to	and	including	Solaris	10	8/07	("S10U4")	incorrectly
detect	newer	Intel	processors	produced	since	2007.	This	problem	leads	to	the	64-
bit	Solaris	kernel	crashing	(and	usually	causing	a	triple	fault)	almost
immediately	during	startup,	in	both	virtualized	and	physical	environments.

The	recommended	solution	is	upgrading	to	at	least	Solaris	10	5/08	("S10U5").
Alternative	solutions	include	forcing	Solaris	to	always	boot	the	32-bit	kernel	or
applying	a	patch	for	bug	6574102	(while	Solaris	is	using	the	32-bit	kernel).

12.5.2.	Certain	Solaris	10	releases	may	take	long	to	boot	with	SMP

When	using	more	than	one	CPU,	Solaris	10	releases	5/08	("S10U5"),	10/08
("S10U6"),	and	5/09	("S10U7")	may	take	a	long	time	to	boot	and	may	print
warnings	on	the	system	console	regarding	failures	to	read	from	disk.	This	is	a
bug	in	Solaris	10	which	affects	specific	physical	and	virtual	configurations.	It	is
caused	by	trying	to	read	microcode	updates	from	the	boot	disk	when	the	disk
interrupt	is	reassigned	to	a	not	yet	fully	initialized	secondary	CPU.	Disk	reads
will	time	out	and	fail,	triggering	delays	(approx.	45	seconds)	and	warnings.

The	recommended	solution	is	upgrading	to	at	least	Solaris	10	10/09	("S10U8")
which	includes	a	fix	for	this	problem.	Alternative	solutions	include	restricting
the	number	of	virtual	CPUs	to	one	or	possibly	using	a	different	storage
controller.

12.5.3.	Solaris	8	5/01	and	earlier	may	crash	on	startup

Solaris	2.6,	7	and	8	releases	up	to	and	including	Solaris	8	4/01	("S8U4")
incorrectly	set	up	Machine	Check	Exception	(MCE)	MSRs	on	Pentium	4	and
some	later	Intel	CPUs.	The	problem	leads	to	the	Solaris	kernel	crashing	(and
usually	causing	a	triple	fault)	almost	immediately	during	startup,	in	both
virtualized	and	physical	environments.	Solaris	9	and	later	releases	are	not
affected	by	this	problem,	and	neither	is	Solaris	2.5.1	and	earlier.

The	recommended	solution	is	upgrading	to	at	least	Solaris	8	7/01	("S8U5").
Alternative	solutions	include	applying	a	patch	for	bugs	4408508	and	4414557
(on	an	unaffected	system).

12.6.	FreeBSD	guests

12.6.1.	FreeBSD	10.0	may	hang	with	xHCI

If	xHCI	(USB	3.0)	emulation	is	enabled	for	FreeBSD	10.0	guests,	the	guest	OS
will	hang.	This	is	caused	by	the	guest	OS	incorrectly	handling	systems	where
MSIs	(Message	Signaled	Interrupts)	are	not	used	with	the	xHCI	device.

The	problem	does	not	exist	in	earlier	FreeBSD	releases	and	was	fixed	in
FreeBSD	10.1.

12.7.	Windows	hosts

12.7.1.	VBoxSVC	out-of-process	COM	server	issues

VirtualBox	makes	use	of	the	Microsoft	Component	Object	Model	(COM)	for
inter-	and	intra-process	communication.	This	allows	VirtualBox	to	share	a
common	configuration	among	different	virtual	machine	processes	and	provide
several	user	interface	options	based	on	a	common	architecture.	All	global	status
information	and	configuration	is	maintained	by	the	process	VBoxSVC.exe,	which
is	an	out-of-process	COM	server.	Whenever	a	VirtualBox	process	is	started,	it
requests	access	to	the	COM	server	and	Windows	automatically	starts	the
process.	Note	that	it	should	never	be	started	by	the	end	user.

When	the	last	process	disconnects	from	the	COM	server,	it	will	terminate	itself
after	some	seconds.	The	VirtualBox	configuration	(XML	files)	is	maintained	and
owned	by	the	COM	server	and	the	files	are	locked	whenever	the	server	runs.

In	some	cases	-	such	as	when	a	virtual	machine	is	terminated	unexpectedly	-	the
COM	server	will	not	notice	that	the	client	is	disconnected	and	stay	active	for	a
longer	period	(10	minutes	or	so)	keeping	the	configuration	files	locked.	In	other
rare	cases	the	COM	server	might	experience	an	internal	error	and	subsequently
other	processes	fail	to	initialize	it.	In	these	situations,	it	is	recommended	to	use
the	Windows	task	manager	to	kill	the	process	VBoxSVC.exe.

12.7.2.	CD/DVD	changes	not	recognized

In	case	you	have	assigned	a	physical	CD/DVD	drive	to	a	guest	and	the	guest
does	not	notice	when	the	medium	changes,	make	sure	that	the	Windows	media
change	notification	(MCN)	feature	is	not	turned	off.	This	is	represented	by	the
following	key	in	the	Windows	registry:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Cdrom\Autorun

Certain	applications	may	disable	this	key	against	Microsoft's	advice.	If	it	is	set	to
0,	change	it	to	1	and	reboot	your	system.	VirtualBox	relies	on	Windows
notifying	it	of	media	changes.

12.7.3.	Sluggish	response	when	using	Microsoft	RDP	client

If	connecting	to	a	Virtual	Machine	via	the	Microsoft	RDP	client	(called	Remote
Desktop	Connection),	there	can	be	large	delays	between	input	(moving	the
mouse	over	a	menu	is	the	most	obvious	situation)	and	output.	This	is	because
this	RDP	client	collects	input	for	a	certain	time	before	sending	it	to	the	RDP
server.

The	interval	can	be	decreased	by	setting	a	Windows	registry	key	to	smaller
values	than	the	default	of	100.	The	key	does	not	exist	initially	and	must	be	of
type	DWORD.	The	unit	for	its	values	is	milliseconds.	Values	around	20	are
suitable	for	low-bandwidth	connections	between	the	RDP	client	and	server.
Values	around	4	can	be	used	for	a	gigabit	Ethernet	connection.	Generally	values
below	10	achieve	a	performance	that	is	very	close	to	that	of	the	local	input
devices	and	screen	of	the	host	on	which	the	Virtual	Machine	is	running.

Depending	whether	the	setting	should	be	changed	for	an	individual	user	or	for
the	system,	either

HKEY_CURRENT_USER\Software\Microsoft\Terminal	Server	Client\Min	Send	Interval

or

HKEY_LOCAL_MACHINE\Software\Microsoft\Terminal	Server	Client\Min	Send	Interval

can	be	set	appropriately.

12.7.4.	Running	an	iSCSI	initiator	and	target	on	a	single	system

Deadlocks	can	occur	on	a	Windows	host	when	attempting	to	access	an	iSCSI
target	running	in	a	guest	virtual	machine	with	an	iSCSI	initiator	(e.g.	Microsoft
iSCSI	Initiator)	that	is	running	on	the	host.	This	is	caused	by	a	flaw	in	the
Windows	cache	manager	component,	and	causes	sluggish	host	system	response
for	several	minutes,	followed	by	a	"Delayed	Write	Failed"	error	message	in	the
system	tray	or	in	a	separate	message	window.	The	guest	is	blocked	during	that
period	and	may	show	error	messages	or	become	unstable.

Setting	the	environment	variable	VBOX_DISABLE_HOST_DISK_CACHE	to	1	will
enable	a	workaround	for	this	problem	until	Microsoft	addresses	the	issue.	For
example,	open	a	command	prompt	window	and	start	VirtualBox	like	this:

set	VBOX_DISABLE_HOST_DISK_CACHE=1

VirtualBox

While	this	will	decrease	guest	disk	performance	(especially	writes),	it	does	not
affect	the	performance	of	other	applications	running	on	the	host.

12.7.5.	Bridged	networking	adapters	missing

If	no	bridged	adapters	show	up	in	the	"Networking"	section	of	the	VM	settings,
this	typically	means	that	the	bridged	networking	driver	was	not	installed
properly	on	your	host.	This	could	be	due	to	the	following	reasons:

The	maximum	allowed	filter	count	was	reached	on	the	host.	In	this	case,	the
MSI	log	would	mention	the	0x8004a029	error	code	returned	on	NetFlt
network	component	install:

VBoxNetCfgWinInstallComponent:	Install	failed,	hr	(0x8004a029)

You	can	try	to	increase	the	maximum	filter	count	in	the	Windows	registry	at
the	following	key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Network\MaxNumFilters

The	maximum	number	allowed	is	14.	After	a	reboot,	try	to	re-install
VirtualBox.

The	INF	cache	is	corrupt.	In	this	case,	the	install	log
(%windir%\inf\setupapi.log	on	XP	or	%windir%\inf\setupapi.dev.log
on	Vista	or	later)	would	typically	mention	the	failure	to	find	a	suitable
driver	package	for	either	the	sun_VBoxNetFlt	or	sun_VBoxNetFltmp
components.	The	solution	then	is	to	uninstall	VirtualBox,	remove	the	INF
cache	(%windir%\inf\INFCACHE.1),	reboot	and	try	to	re-install	VirtualBox

12.7.6.	Host-only	networking	adapters	cannot	be	created

If	host-only	adapter	cannot	be	created	(either	via	the	Manager	or	VBoxManage),
then	the	INF	cache	is	probably	corrupt.	In	this	case,	the	install	log
(%windir%\inf\setupapi.log	on	XP	or	%windir%\inf\setupapi.dev.log	on
Vista	or	later)	would	typically	mention	the	failure	to	find	a	suitable	driver
package	for	the	sun_VBoxNetAdp	component.	Again,	as	with	the	bridged

networking	problem	described	above,	the	solution	is	to	uninstall	VirtualBox,
remove	the	INF	cache	(%windir%\inf\INFCACHE.1),	reboot	and	try	to	re-install
VirtualBox.

12.8.	Linux	hosts

12.8.1.	Linux	kernel	module	refuses	to	load

If	the	VirtualBox	kernel	module	(vboxdrv)	refuses	to	load,	i.e.	you	get	an	"Error
inserting	vboxdrv:	Invalid	argument",	check	(as	root)	the	output	of	the	dmesg
command	to	find	out	why	the	load	failed.	Most	probably	the	kernel	disagrees
with	the	version	of	the	gcc	used	to	compile	the	module.	Make	sure	that	you	use
the	same	compiler	as	used	to	build	the	kernel.

12.8.2.	Linux	host	CD/DVD	drive	not	found

If	you	have	configured	a	virtual	machine	to	use	the	host's	CD/DVD	drive,	but
this	does	not	appear	to	work,	make	sure	that	the	current	user	has	permission	to
access	the	corresponding	Linux	device	file	(/dev/hdc	or	/dev/scd0	or
/dev/cdrom	or	similar).	On	most	distributions,	the	user	must	be	added	to	a
corresponding	group	(usually	called	cdrom	or	cdrw).

12.8.3.	Linux	host	CD/DVD	drive	not	found	(older	distributions)

On	older	Linux	distributions,	if	your	CD/DVD	device	has	a	different	name,
VirtualBox	may	be	unable	to	find	it.	On	older	Linux	hosts,	VirtualBox	performs
the	following	steps	to	locate	your	CD/DVD	drives:

1.	 VirtualBox	examines	if	the	environment	variable	VBOX_CDROM	is	defined
(see	below).	If	so,	VirtualBox	omits	all	the	following	checks.

2.	 VirtualBox	tests	if	/dev/cdrom	works.

3.	 In	addition,	VirtualBox	checks	if	any	CD/DVD	drives	are	currently
mounted	by	checking	/etc/mtab.

4.	 In	addition,	VirtualBox	checks	if	any	of	the	entries	in	/etc/fstab	point	to
CD/DVD	devices.

In	other	words,	you	can	try	to	set	VBOX_CDROM	to	contain	a	list	of	your
CD/DVD	devices,	separated	by	colons,	for	example	as	follows:

export	VBOX_CDROM='/dev/cdrom0:/dev/cdrom1'

On	modern	Linux	distributions,	VirtualBox	uses	the	hardware	abstraction	layer
(hal)	to	locate	CD	and	DVD	hardware.

12.8.4.	Linux	host	floppy	not	found

The	previous	instructions	(for	CD	and	DVD	drives)	apply	accordingly	to	floppy
disks,	except	that	on	older	distributions	VirtualBox	tests	for	/dev/fd*	devices	by
default,	and	this	can	be	overridden	with	the	VBOX_FLOPPY	environment	variable.

12.8.5.	Strange	guest	IDE	error	messages	when	writing	to
CD/DVD

If	the	experimental	CD/DVD	writer	support	is	enabled	with	an	incorrect
VirtualBox,	host	or	guest	configuration,	it	is	possible	that	any	attempt	to	access
the	CD/DVD	writer	fails	and	simply	results	in	guest	kernel	error	messages	(for
Linux	guests)	or	application	error	messages	(for	Windows	guests).	VirtualBox
performs	the	usual	consistency	checks	when	a	VM	is	powered	up	(in	particular	it
aborts	with	an	error	message	if	the	device	for	the	CD/DVD	writer	is	not	writable
by	the	user	starting	the	VM),	but	it	cannot	detect	all	misconfigurations.	The
necessary	host	and	guest	OS	configuration	is	not	specific	for	VirtualBox,	but	a
few	frequent	problems	are	listed	here	which	occurred	in	connection	with
VirtualBox.

Special	care	must	be	taken	to	use	the	correct	device.	The	configured	host
CD/DVD	device	file	name	(in	most	cases	/dev/cdrom)	must	point	to	the	device
that	allows	writing	to	the	CD/DVD	unit.	For	CD/DVD	writer	units	connected	to
a	SCSI	controller	or	to	a	IDE	controller	that	interfaces	to	the	Linux	SCSI
subsystem	(common	for	some	SATA	controllers),	this	must	refer	to	the	SCSI
device	node	(e.g.	/dev/scd0).	Even	for	IDE	CD/DVD	writer	units	this	must
refer	to	the	appropriate	SCSI	CD-ROM	device	node	(e.g.	/dev/scd0)	if	the	ide-
scsi	kernel	module	is	loaded.	This	module	is	required	for	CD/DVD	writer
support	with	all	Linux	2.4	kernels	and	some	early	2.6	kernels.	Many	Linux
distributions	load	this	module	whenever	a	CD/DVD	writer	is	detected	in	the
system,	even	if	the	kernel	would	support	CD/DVD	writers	without	the	module.
VirtualBox	supports	the	use	of	IDE	device	files	(e.g.	/dev/hdc),	provided	the
kernel	supports	this	and	the	ide-scsi	module	is	not	loaded.

Similar	rules	(except	that	within	the	guest	the	CD/DVD	writer	is	always	an	IDE
device)	apply	to	the	guest	configuration.	Since	this	setup	is	very	common,	it	is
likely	that	the	default	configuration	of	the	guest	works	as	expected.

12.8.6.	VBoxSVC	IPC	issues

On	Linux,	VirtualBox	makes	use	of	a	custom	version	of	Mozilla	XPCOM	(cross
platform	component	object	model)	for	inter-	and	intra-process	communication
(IPC).	The	process	VBoxSVC	serves	as	a	communication	hub	between	different
VirtualBox	processes	and	maintains	the	global	configuration,	i.e.	the	XML
database.	When	starting	a	VirtualBox	component,	the	processes	VBoxSVC	and
VBoxXPCOMIPCD	are	started	automatically.	They	are	only	accessible	from	the	user
account	they	are	running	under.	VBoxSVC	owns	the	VirtualBox	configuration
database	which	normally	resides	in	~/.config/VirtualBox,	or	the	appropriate
configuration	directory	for	your	operating	system.	While	it	is	running,	the
configuration	files	are	locked.	Communication	between	the	various	VirtualBox
components	and	VBoxSVC	is	performed	through	a	local	domain	socket	residing	in
/tmp/.vbox-<username>-ipc.	In	case	there	are	communication	problems	(i.e.	a
VirtualBox	application	cannot	communicate	with	VBoxSVC),	terminate	the
daemons	and	remove	the	local	domain	socket	directory.

12.8.7.	USB	not	working

If	USB	is	not	working	on	your	Linux	host,	make	sure	that	the	current	user	is	a
member	of	the	vboxusers	group.	Please	keep	in	mind	that	group	membership
does	not	take	effect	immediately	but	rather	at	the	next	login.	If	available,	the
newgrp	command	may	avoid	the	need	for	logout/login.

12.8.8.	PAX/grsec	kernels

Linux	kernels	including	the	grsec	patch	(see	http://www.grsecurity.net/)	and
derivates	have	to	disable	PAX_MPROTECT	for	the	VBox	binaries	to	be	able	to
start	a	VM.	The	reason	is	that	VBox	has	to	create	executable	code	on
anonymous	memory.

12.8.9.	Linux	kernel	vmalloc	pool	exhausted

When	running	a	large	number	of	VMs	with	a	lot	of	RAM	on	a	Linux	system	(say

http://www.grsecurity.net/

20	VMs	with	1	GB	of	RAM	each),	additional	VMs	might	fail	to	start	with	a
kernel	error	saying	that	the	vmalloc	pool	is	exhausted	and	should	be	extended.
The	error	message	also	tells	you	to	specify	vmalloc=256MB	in	your	kernel
parameter	list.	If	adding	this	parameter	to	your	GRUB	or	LILO	configuration
makes	the	kernel	fail	to	boot	(with	a	weird	error	message	such	as	"failed	to
mount	the	root	partition"),	then	you	have	probably	run	into	a	memory	conflict	of
your	kernel	and	initial	RAM	disk.	This	can	be	solved	by	adding	the	following
parameter	to	your	GRUB	configuration:

uppermem	524288

12.9.	Solaris	hosts

12.9.1.	Cannot	start	VM,	not	enough	contiguous	memory

The	ZFS	file	system	is	known	to	use	nearly	all	available	RAM	as	cache	if	the
default	system	settings	are	not	changed.	This	may	lead	to	a	heavy	fragmentation
of	the	host	memory	preventing	VirtualBox	VMs	from	being	started.	We
recommend	to	limit	the	ZFS	cache	by	adding	a	line

set	zfs:zfs_arc_max	=	xxxx

to	/etc/system	where	xxxx	bytes	is	the	amount	of	memory	usable	for	the	ZFS
cache.

12.9.2.	VM	aborts	with	out	of	memory	errors	on	Solaris	10	hosts

32-bit	Solaris	10	hosts	(bug	1225025)	require	swap	space	equal	to,	or	greater
than	the	host's	physical	memory	size.	For	example,	8	GB	physical	memory
would	require	at	least	8	GB	swap.	This	can	be	configured	during	a	Solaris	10
install	by	choosing	a	'custom	install'	and	changing	the	default	partitions.

Note

This	restriction	applies	only	to	32-bit	Solaris	hosts,	64-bit	hosts	are
not	affected!

For	existing	Solaris	10	installs,	an	additional	swap	image	needs	to	be	mounted
and	used	as	swap.	Hence	if	you	have	1	GB	swap	and	8	GB	of	physical	memory,
you	require	to	add	7	GB	more	swap.	This	can	be	done	as	follows:

For	ZFS	(as	root	user):

zfs	create	-V	8gb	/_<ZFS	volume>_/swap

swap	-a	/dev/zvol/dsk/_<ZFS	volume>_/swap

To	mount	if	after	reboot,	add	the	following	line	to	/etc/vfstab:

/dev/zvol/dsk/_<ZFS	volume>_/swap	-	-	swap	-	no	-

Alternatively,	you	could	grow	the	existing	swap	using:

zfs	set	volsize=8G	rpool/swap

And	reboot	the	system	for	the	changes	to	take	effect.

For	UFS	(as	root	user):

mkfile	7g	/path/to/swapfile.img

swap	-a	/path/to/swapfile.img

To	mount	it	after	reboot,	add	the	following	line	to	/etc/vfstab:

/path/to/swap.img	-	-	swap	-	no	-

Chapter	13.	Security	guide

Table	of	Contents

13.1.	General	Security	Principles
13.2.	Secure	Installation	and	Configuration

13.2.1.	Installation	Overview
13.2.2.	Post	Installation	Configuration

13.3.	Security	Features
13.3.1.	The	Security	Model
13.3.2.	Secure	Configuration	of	Virtual	Machines
13.3.3.	Configuring	and	Using	Authentication
13.3.4.	Potentially	insecure	operations
13.3.5.	Encryption

13.1.	General	Security	Principles

The	following	principles	are	fundamental	to	using	any	application	securely.

Keep	Software	Up	To	Date

One	of	the	principles	of	good	security	practise	is	to	keep	all	software
versions	and	patches	up	to	date.	Activate	the	VirtualBox	update	notification
to	get	notified	when	a	new	VirtualBox	release	is	available.	When	updating
VirtualBox,	do	not	forget	to	update	the	Guest	Additions.	Keep	the	host
operating	system	as	well	as	the	guest	operating	system	up	to	date.

Restrict	Network	Access	to	Critical	Services

Use	proper	means,	for	instance	a	firewall,	to	protect	your	computer	and
your	guest(s)	from	accesses	from	the	outside.	Choosing	the	proper
networking	mode	for	VMs	helps	to	separate	host	networking	from	the	guest
and	vice	versa.

Follow	the	Principle	of	Least	Privilege

The	principle	of	least	privilege	states	that	users	should	be	given	the	least
amount	of	privilege	necessary	to	perform	their	jobs.	Always	execute
VirtualBox	as	a	regular	user.	We	strongly	discourage	anyone	from
executing	VirtualBox	with	system	privileges.

Choose	restrictive	permissions	when	creating	configuration	files,	for
instance	when	creating	/etc/default/virtualbox,	see	Section	2.3.3.7,
“Automatic	installation	options”.	Mode	0600	would	be	preferred.

Monitor	System	Activity

System	security	builds	on	three	pillars:	good	security	protocols,	proper
system	configuration	and	system	monitoring.	Auditing	and	reviewing	audit
records	address	the	third	requirement.	Each	component	within	a	system	has
some	degree	of	monitoring	capability.	Follow	audit	advice	in	this	document
and	regularly	monitor	audit	records.

Keep	Up	To	Date	on	Latest	Security	Information

Oracle	continually	improves	its	software	and	documentation.	Check	this
note	yearly	for	revisions.

13.2.	Secure	Installation	and	Configuration

13.2.1.	Installation	Overview

The	VirtualBox	base	package	should	be	downloaded	only	from	a	trusted	source,
for	instance	the	official	website	http://www.virtualbox.org.	The	integrity	of	the
package	should	be	verified	with	the	provided	SHA256	checksum	which	can	be
found	on	the	official	website.

General	VirtualBox	installation	instructions	for	the	supported	hosts	can	be	found
in	Chapter	2,	Installation	details.

On	Windows	hosts,	the	installer	allows	for	disabling	USB	support,	support	for
bridged	networking,	support	for	host-only	networking	and	the	Python	language
bindings,	see	Section	2.1,	“Installing	on	Windows	hosts”.	All	these	features	are
enabled	by	default	but	disabling	some	of	them	could	be	appropriate	if	the
corresponding	functionality	is	not	required	by	any	virtual	machine.	The	Python
language	bindings	are	only	required	if	the	VirtualBox	API	is	to	be	used	by
external	Python	applications.	In	particular	USB	support	and	support	for	the	two
networking	modes	require	the	installation	of	Windows	kernel	drivers	on	the	host.
Therefore	disabling	those	selected	features	can	not	only	be	used	to	restrict	the
user	to	certain	functionality	but	also	to	minimize	the	surface	provided	to	a
potential	attacker.

The	general	case	is	to	install	the	complete	VirtualBox	package.	The	installation
must	be	done	with	system	privileges.	All	VirtualBox	binaries	should	be	executed
as	a	regular	user	and	never	as	a	privileged	user.

The	Oracle	VM	VirtualBox	extension	pack	provides	additional	features	and	must
be	downloaded	and	installed	separately,	see	Section	1.5,	“Installing	VirtualBox
and	extension	packs”.	As	for	the	base	package,	the	SHA256	checksum	of	the
extension	pack	should	be	verified.	As	the	installation	requires	system	privileges,
VirtualBox	will	ask	for	the	system	password	during	the	installation	of	the
extension	pack.

13.2.2.	Post	Installation	Configuration

http://www.virtualbox.org

Normally	there	is	no	post	installation	configuration	of	VirtualBox	components
required.	However,	on	Solaris	and	Linux	hosts	it	is	necessary	to	configure	the
proper	permissions	for	users	executing	VMs	and	who	should	be	able	to	access
certain	host	resources.	For	instance,	Linux	users	must	be	member	of	the
vboxusers	group	to	be	able	to	pass	USB	devices	to	a	guest.	If	a	serial	host
interface	should	be	accessed	from	a	VM,	the	proper	permissions	must	be	granted
to	the	user	to	be	able	to	access	that	device.	The	same	applies	to	other	resources
like	raw	partitions,	DVD/CD	drives	and	sound	devices.

13.3.	Security	Features

This	section	outlines	the	specific	security	mechanisms	offered	by	VirtualBox.

13.3.1.	The	Security	Model

One	property	of	virtual	machine	monitors	(VMMs)	like	VirtualBox	is	to
encapsulate	a	guest	by	executing	it	in	a	protected	environment,	a	virtual
machine,	running	as	a	user	process	on	the	host	operating	system.	The	guest
cannot	communicate	directly	with	the	hardware	or	other	computers	but	only
through	the	VMM.	The	VMM	provides	emulated	physical	resources	and	devices
to	the	guest	which	are	accessed	by	the	guest	operating	system	to	perform	the
required	tasks.	The	VM	settings	control	the	resources	provided	to	the	guest,	for
example	the	amount	of	guest	memory	or	the	number	of	guest	processors,	(see
Section	3.4,	“General	settings”)	and	the	enabled	features	for	that	guest	(for
example	remote	control,	certain	screen	settings	and	others).

13.3.2.	Secure	Configuration	of	Virtual	Machines

Several	aspects	of	a	virtual	machine	configuration	are	subject	to	security
considerations.

13.3.2.1.	Networking

The	default	networking	mode	for	VMs	is	NAT	which	means	that	the	VM	acts
like	a	computer	behind	a	router,	see	Section	6.3,	“Network	Address	Translation
(NAT)”.	The	guest	is	part	of	a	private	subnet	belonging	to	this	VM	and	the	guest
IP	is	not	visible	from	the	outside.	This	networking	mode	works	without	any
additional	setup	and	is	sufficient	for	many	purposes.

If	bridged	networking	is	used,	the	VM	acts	like	a	computer	inside	the	same
network	as	the	host,	see	Section	6.5,	“Bridged	networking”.	In	this	case,	the
guest	has	the	same	network	access	as	the	host	and	a	firewall	might	be	necessary
to	protect	other	computers	on	the	subnet	from	a	potential	malicious	guest	as	well
as	to	protect	the	guest	from	a	direct	access	from	other	computers.	In	some	cases
it	is	worth	considering	using	a	forwarding	rule	for	a	specific	port	in	NAT	mode
instead	of	using	bridged	networking.

Some	setups	do	not	require	a	VM	to	be	connected	to	the	public	network	at	all.
Internal	networking	(see	Section	6.6,	“Internal	networking”)	or	host-only
networking	(see	Section	6.7,	“Host-only	networking”)	are	often	sufficient	to
connect	VMs	among	each	other	or	to	connect	VMs	only	with	the	host	but	not
with	the	public	network.

13.3.2.2.	VRDP	remote	desktop	authentication

When	using	the	VirtualBox	extension	pack	provided	by	Oracle	for	VRDP	remote
desktop	support,	you	can	optionally	use	various	methods	to	configure	RDP
authentication.	The	"null"	method	is	very	insecure	and	should	be	avoided	in	a
public	network.	See	Section	7.1.5,	“RDP	authentication”	for	details.

13.3.2.3.	Clipboard

The	shared	clipboard	allows	users	to	share	data	between	the	host	and	the	guest.
Enabling	the	clipboard	in	"Bidirectional"	mode	allows	the	guest	to	read	and
write	the	host	clipboard.	The	"Host	to	guest"	mode	and	the	"Guest	to	host"	mode
limit	the	access	to	one	direction.	If	the	guest	is	able	to	access	the	host	clipboard
it	can	also	potentially	access	sensitive	data	from	the	host	which	is	shared	over
the	clipboard.

If	the	guest	is	able	to	read	from	and/or	write	to	the	host	clipboard	then	a	remote
user	connecting	to	the	guest	over	the	network	will	also	gain	this	ability,	which
may	not	be	desirable.	As	a	consequence,	the	shared	clipboard	is	disabled	for	new
machines.

13.3.2.4.	Shared	folders

If	any	host	folder	is	shared	with	the	guest	then	a	remote	user	connected	to	the
guest	over	the	network	can	access	these	files	too	as	the	folder	sharing
mechanism	cannot	be	selectively	disabled	for	remote	users.

13.3.2.5.	3D	graphics	acceleration

Enabling	3D	graphics	via	the	Guest	Additions	exposes	the	host	to	additional
security	risks;	see	Section	4.5.1,	“Hardware	3D	acceleration	(OpenGL	and
Direct3D	8/9)”.

13.3.2.6.	CD/DVD	passthrough

Enabling	CD/DVD	passthrough	allows	the	guest	to	perform	advanced	operations
on	the	CD/DVD	drive,	see	Section	5.9,	“CD/DVD	support”.	This	could	induce	a
security	risk	as	a	guest	could	overwrite	data	on	a	CD/DVD	medium.

13.3.2.7.	USB	passthrough

Passing	USB	devices	to	the	guest	provides	the	guest	full	access	to	these	devices,
see	Section	3.11.1,	“USB	settings”.	For	instance,	in	addition	to	reading	and
writing	the	content	of	the	partitions	of	an	external	USB	disk	the	guest	will	be
also	able	to	read	and	write	the	partition	table	and	hardware	data	of	that	disk.

13.3.3.	Configuring	and	Using	Authentication

The	following	components	of	VirtualBox	can	use	passwords	for	authentication:

When	using	remote	iSCSI	storage	and	the	storage	server	requires
authentication,	an	initiator	secret	can	optionally	be	supplied	with	the
VBoxManage	storageattach	command.	As	long	as	no	settings	password	is
provided	(command	line	option

--settingspwfile

,	this	secret	is	stored	unencrypted	in	the	machine	configuration	and	is
therefore	potentially	readable	on	the	host.	See	Section	5.10,	“iSCSI	servers”
and	Section	8.18,	“VBoxManage	storageattach”.

When	using	the	VirtualBox	web	service	to	control	a	VirtualBox	host
remotely,	connections	to	the	web	service	are	authenticated	in	various	ways.
This	is	described	in	detail	in	the	VirtualBox	Software	Development	Kit
(SDK)	reference;	please	see	Chapter	11,	VirtualBox	programming
interfaces.

13.3.4.	Potentially	insecure	operations

The	following	features	of	VirtualBox	can	present	security	problems:

Enabling	3D	graphics	via	the	Guest	Additions	exposes	the	host	to

additional	security	risks;	see	Section	4.5.1,	“Hardware	3D	acceleration
(OpenGL	and	Direct3D	8/9)”.

When	teleporting	a	machine,	the	data	stream	through	which	the	machine's
memory	contents	are	transferred	from	one	host	to	another	is	not	encrypted.
A	third	party	with	access	to	the	network	through	which	the	data	is
transferred	could	therefore	intercept	that	data.	An	SSH	tunnel	could	be	used
to	secure	the	connection	between	the	two	hosts.	But	when	considering
teleporting	a	VM	over	an	untrusted	network	the	first	question	to	answer	is
how	both	VMs	can	securely	access	the	same	virtual	disk	image(s)	with	a
reasonable	performance.

When	Page	Fusion	(see	Section	4.9.2,	“Page	Fusion”)	is	enabled,	it	is
possible	that	a	side-channel	opens	up	that	allows	a	malicious	guest	to
determine	the	address	space	layout	(i.e.	where	DLLs	are	typically	loaded)
of	one	other	VM	running	on	the	same	host.	This	information	leak	in	it	self
is	harmless,	however	the	malicious	guest	may	use	it	to	optimize	attack
against	that	VM	via	unrelated	attack	vectors.	It	is	recommended	to	only
enable	Page	Fusion	if	you	do	not	think	this	is	a	concern	in	your	setup.

When	using	the	VirtualBox	web	service	to	control	a	VirtualBox	host
remotely,	connections	to	the	web	service	(through	which	the	API	calls	are
transferred	via	SOAP	XML)	are	not	encrypted,	but	use	plain	HTTP	by
default.	This	is	a	potential	security	risk!	For	details	about	the	web	service,
please	see	Chapter	11,	VirtualBox	programming	interfaces.

The	web	services	are	not	started	by	default.	Please	refer	to	Section	9.21,
“Starting	the	VirtualBox	web	service	automatically”	to	find	out	how	to	start
this	service	and	how	to	enable	SSL/TLS	support.	It	has	to	be	started	as	a
regular	user	and	only	the	VMs	of	that	user	can	be	controlled.	By	default,	the
service	binds	to	localhost	preventing	any	remote	connection.

Traffic	sent	over	a	UDP	Tunnel	network	attachment	is	not	encrypted.	You
can	either	encrypt	it	on	the	host	network	level	(with	IPsec),	or	use
encrypted	protocols	in	the	guest	network	(such	as	SSH).	The	security
properties	are	similar	to	bridged	Ethernet.

Because	of	shortcomings	in	older	Windows	versions,	using	VirtualBox	on
Windows	versions	older	than	Vista	with	Service	Pack	1	is	not

recommended.

13.3.5.	Encryption

The	following	components	of	VirtualBox	use	encryption	to	protect	sensitive
data:

When	using	the	VirtualBox	extension	pack	provided	by	Oracle	for	VRDP
remote	desktop	support,	RDP	data	can	optionally	be	encrypted.	See
Section	7.1.6,	“RDP	encryption”	for	details.	Only	the	Enhanced	RDP
Security	method	(RDP5.2)	with	TLS	protocol	provides	a	secure	connection.
Standard	RDP	Security	(RDP4	and	RDP5.1)	is	vulnerable	to	a	man-in-the-
middle	attack.

Chapter	14.	Known	limitations

Table	of	Contents

14.1.	Experimental	Features
14.2.	Known	Issues

14.1.	Experimental	Features

Some	VirtualBox	features	are	labeled	as	experimental.	Such	features	are
provided	on	an	"as-is"	basis	and	are	not	formally	supported.	However,	feedback
and	suggestions	about	such	features	are	welcome.	A	comprehensive	list	of
experimental	features	follows:

Hardware	3D	acceleration	support	for	Windows,	Linux,	and	Solaris	guests

Hardware	2D	video	playback	acceleration	support	for	Windows	guests

PCI	pass-through	(Linux	hosts	only)

Mac	OS	X	guests	(Mac	hosts	only)

ICH9	chipset	emulation

EFI	firmware

Host	CD/DVD	drive	pass-through

Support	of	iSCSI	via	internal	networking

14.2.	Known	Issues

The	following	section	describes	known	problems	with	VirtualBox	5.2.4.	Unless
marked	otherwise,	these	issues	are	planned	to	be	fixed	in	later	releases.

The	following	Guest	SMP	(multiprocessor)	limitations	exist:

Poor	performance	with	32-bit	guests	on	AMD	CPUs.	This	affects
mainly	Windows	and	Solaris	guests,	but	possibly	also	some	Linux
kernel	revisions.	Partially	solved	in	3.0.6	for	32	bits	Windows	NT,
2000,	XP	and	2003	guests.	Requires	3.0.6	or	higher	Guest	Additions	to
be	installed.

Poor	performance	with	32-bit	guests	on	certain	Intel	CPU	models
that	do	not	include	virtual	APIC	hardware	optimization	support.	This
affects	mainly	Windows	and	Solaris	guests,	but	possibly	also	some
Linux	kernel	revisions.	Partially	solved	in	3.0.12	for	32	bits	Windows
NT,	2000,	XP	and	2003	guests.	Requires	3.0.12	or	higher	Guest
Additions	to	be	installed.

NX	(no	execute,	data	execution	prevention)	only	works	for	guests
running	on	64-bit	hosts	or	guests	running	on	32-bit	hosts	with	PAE	enabled
and	requires	that	hardware	virtualization	be	enabled.

For	basic	Direct3D	support	in	Windows	guests	to	work,	the	Guest
Additions	must	be	installed	in	Windows	"safe	mode".	Press	F8	when	the
Windows	guest	is	booting	and	select	"Safe	mode",	then	install	the	Guest
Additions.	Otherwise	Windows'	file	protection	mechanism	will	interfere
with	the	replacement	DLLs	installed	by	VirtualBox	and	keep	restoring	the
original	Windows	system	DLLs.

Note

This	does	not	apply	to	the	WDDM	Direct3D	video	driver
available	for	Vista	and	Windows	7	guests	shipped	with
VirtualBox	4.1.

Guest	control.	On	Windows	guests,	a	process	lauched	via	the	guest	control

execute	support	will	not	be	able	to	display	a	graphical	user	interface	unless
the	user	account	under	which	it	is	running	is	currently	logged	in	and	has	a
desktop	session.

Also,	to	use	accounts	without	or	with	an	empty	password,	the	guest's	group
policy	must	be	changed.	To	do	so,	open	the	group	policy	editor	on	the
command	line	by	typing	gpedit.msc,	open	the	key	Computer
Configuration\Windows	Settings\Security	Settings\Local	Policies\Security
Options	and	change	the	value	of	Accounts:	Limit	local	account	use	of	blank
passwords	to	console	logon	only	to	Disabled.

Compacting	virtual	disk	images	is	limited	to	VDI	files.	The	VBoxManage
modifyhd	--compact	command	is	currently	only	implemented	for	VDI
files.	At	the	moment	the	only	way	to	optimize	the	size	of	a	virtual	disk
images	in	other	formats	(VMDK,	VHD)	is	to	clone	the	image	and	then	use
the	cloned	image	in	the	VM	configuration.

OVF	import/export:

OVF	localization	(multiple	languages	in	one	OVF	file)	is	not	yet
supported.

Some	OVF	sections	like	StartupSection,	DeploymentOptionSection
and	InstallSection	are	ignored.

OVF	environment	documents,	including	their	property	sections	and
appliance	configuration	with	ISO	images,	are	not	yet	supported.

Remote	files	via	HTTP	or	other	mechanisms	are	not	yet	supported.

Neither	scale	mode	nor	seamless	mode	work	correctly	with	guests	using
OpenGL	3D	features	(such	as	with	compiz-enabled	window	managers).

The	RDP	server	in	the	VirtualBox	extension	pack	supports	only	audio
streams	in	format	22.05kHz	stereo	16	bit.	If	the	RDP	client	requests	any
other	audio	format	there	will	be	no	audio.

Preserving	the	aspect	ratio	in	scale	mode	works	only	on	Windows	hosts	and
on	Mac	OS	X	hosts.

On	Mac	OS	X	hosts,	the	following	features	are	not	yet	implemented:

Numlock	emulation

CPU	frequency	metric

Memory	ballooning

Mac	OS	X	guests:

Mac	OS	X	guests	can	only	run	on	a	certain	host	hardware.	For	details
about	license	and	host	hardware	limitations,	please	see	Section	3.1.1,
“Mac	OS	X	guests”	and	check	the	Apple	software	license	conditions.

VirtualBox	does	not	provide	Guest	Additions	for	Mac	OS	X	at	this
time.

The	graphics	resolution	currently	defaults	to	1024x768	as	Mac	OS	X
falls	back	to	the	built-in	EFI	display	support.	See	Section	3.14.1,
“Video	modes	in	EFI”	for	more	information	on	how	to	change	EFI
video	modes.

Mac	OS	X	guests	only	work	with	one	CPU	assigned	to	the	VM.
Support	for	SMP	will	be	provided	in	a	future	release.

Depending	on	your	system	and	version	of	Mac	OS	X,	you	might
experience	guest	hangs	after	some	time.	This	can	be	fixed	by	turning
off	energy	saving	(set	timeout	to	"Never")	in	the	system	preferences.

By	default,	the	VirtualBox	EFI	enables	debug	output	of	the	Mac	OS	X
kernel	to	help	you	diagnose	boot	problems.	Note	that	there	is	a	lot	of
output	and	not	all	errors	are	fatal	(they	would	also	show	on	your
physical	Mac).	You	can	turn	off	these	messages	by	issuing	this
command:

VBoxManage	setextradata	"VM	name"	"VBoxInternal2/EfiBootArgs"	"		"

To	revert	to	the	previous	behavior,	use:

VBoxManage	setextradata	"VM	name"	"VBoxInternal2/EfiBootArgs"	""

It	is	currently	not	possible	to	start	a	Mac	OS	X	guest	in	safe	mode	by
specifying	"-x"	option	in	"VBoxInternal2/EfiBootArgs"	extradata.

Solaris	hosts:

There	is	no	support	for	USB	devices	connected	to	Solaris	10	hosts.

USB	support	on	Solaris	hosts	requires	Solaris	11	version	snv_124	or
higher.	Webcams	and	other	isochronous	devices	are	known	to	have
poor	performance.

Host	Webcam	passthrough	is	restricted	to	640x480	frames	at	20
frames	per	second	due	to	limitations	in	the	Solaris	V4L2	API.	This
may	be	addressed	in	a	future	Solaris	release.

No	ACPI	information	(battery	status,	power	source)	is	reported	to	the
guest.

No	support	for	using	wireless	adapters	with	bridged	networking.

Crossbow-based	bridged	networking	on	Solaris	11	hosts	does	not	work
directly	with	aggregate	links.	However,	you	can	manually	create	a
VNIC	(using	dladm)	over	the	aggregate	link	and	use	that	with	a	VM.
This	limitation	does	not	exist	in	Solaris	11u1	build	17	and	newer.

Guest	Additions	of	version	4.1,	4.1.2	and	4.1.4	for	Windows	Thus
VirtualBox	WDDM	Video	driver	may	be	installed	and	kept	in	guest	system
if	Guest	additions	uninstallation	is	performed.	This	is	caused	by	a	bug	in
Guest	Additions	uninstaller.

Note

This	does	not	apply	to	Guest	Additions	update,	i.e.	installing	a
one	version	of	Guest	Additions	on	top	of	another	works
correctly.

To	solve	this	problem,	one	should	uninstall	the	VirtualBox	WDDM	Video
driver	manually.	To	do	that	open	Device	Manager,	and	check	whether	the
Display	Adapter	is	named	"VirtualBox	Graphics	Adapter	..".	If	no	-	there	is
nothing	to	be	done.	If	yes	-	right-click	the	VirtualBox	Graphics	Adapter	in

Device	Manager,	select	"Uninstall",	check	"Delete	the	driver	software	for
this	device"	and	click	"OK".	Once	uninstallation	is	done	-	in	Device
Manager	go	to	menu	"Action"	and	select	"Scan	for	hardware	changes"	to
make	the	propper	(Windows	default)	driver	be	picked	up	for	the	Graphics
adapter.

Neither	virtio	nor	Intel	PRO/1000	drivers	for	Windows	XP	guests	support
segmentation	offloading.	Therefore	Windows	XP	guests	have	slower
transmission	rates	comparing	to	other	guest	types.	Refer	to	MS	Knowledge
base	article	842264	for	additional	information.

Guest	Additions	for	OS/2.	Shared	folders	are	not	yet	supported	with	OS/2
guests.	In	addition,	seamless	windows	and	automatic	guest	resizing	will
probably	never	be	implemented	due	to	inherent	limitations	of	the	OS/2
graphics	system.

Chapter	15.	Change	log

Table	of	Contents

15.1.	Version	5.2.4	(2017-12-19)
15.2.	Version	5.2.2	(2017-11-22)
15.3.	Version	5.2.0	(2017-10-17)
15.4.	Version	5.1.30	(2017-10-16)
15.5.	Version	5.1.28	(2017-09-13)
15.6.	Version	5.1.30	(2017-10-16)
15.7.	Version	5.1.28	(2017-09-13)
15.8.	Version	5.1.26	(2017-07-27)
15.9.	Version	5.1.24	(2017-07-18)
15.10.	Version	5.1.22	(2017-04-28)
15.11.	Version	5.1.20	(2017-04-18)
15.12.	Version	5.1.18	(2017-03-15)
15.13.	Version	5.1.16	(2017-03-08)
15.14.	Version	5.1.14	(2017-01-16)
15.15.	Version	5.1.12	(2016-12-20)
15.16.	Version	5.1.10	(2016-11-21)
15.17.	Version	5.1.8	(2016-10-18)
15.18.	Version	5.1.6	(2016-09-12)
15.19.	Version	5.1.4	(2016-08-16)
15.20.	Version	5.1.2	(2016-07-21)
15.21.	Version	5.1.0	(2016-07-12)
15.22.	Version	5.0.24	(2016-06-28)
15.23.	Version	5.0.22	(2016-06-16)
15.24.	Version	5.0.20	(2016-04-28)
15.25.	Version	5.0.18	(2016-04-18)
15.26.	Version	5.0.16	(2016-03-04)
15.27.	Version	5.0.14	(2016-01-19)
15.28.	Version	5.0.12	(2015-12-18)
15.29.	Version	5.0.10	(2015-11-10)
15.30.	Version	5.0.8	(2015-10-20)
15.31.	Version	5.0.6	(2015-10-02)
15.32.	Version	5.0.4	(2015-09-08)
15.33.	Version	5.0.2	(2015-08-13)

15.34.	Version	5.0.0	(2015-07-09)
15.35.	Version	4.3.28	(2015-05-13)
15.36.	Version	4.3.26	(2015-03-16)
15.37.	Version	4.3.24	(2015-03-02)
15.38.	Version	4.3.22	(2015-02-12)
15.39.	Version	4.3.20	(2014-11-21)
15.40.	Version	4.3.18	(2014-10-10)
15.41.	Version	4.3.16	(2014-09-09)
15.42.	Version	4.3.14	(2014-07-15)
15.43.	Version	4.3.12	(2014-05-16)
15.44.	Version	4.3.10	(2014-03-26)
15.45.	Version	4.3.8	(2014-02-25)
15.46.	Version	4.3.6	(2013-12-18)
15.47.	Version	4.3.4	(2013-11-29)
15.48.	Version	4.3.2	(2013-11-01)
15.49.	Version	4.3.0	(2013-10-15)
15.50.	Older	Change	log	details

This	section	summarizes	the	changes	between	VirtualBox	versions.	Note	that
this	change	log	is	not	exhaustive;	not	all	changes	are	listed.

VirtualBox	version	numbers	consist	of	three	numbers	separated	by	dots	where
the	first	and	second	number	represent	the	major	version	and	the	3rd	number	the
minor	version.	Minor	version	numbers	of	official	releases	are	always	even.	An
odd	minor	version	number	represents	an	internal	development	or	test	build.	In
addition,	each	build	contains	a	revision	number.

15.1.	Version	5.2.4	(2017-12-19)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

User	interface:	various	high	resolution	display	adjustments

Audio:	fixed	SB16	volume	handling	(5.2	regression)

Audio:	various	fixes

USB/OHCI:	fixed	a	problem	where	OHCI	emulation	might	sporadically
drop	data	transfers

Linux	hosts:	fixed	screen	corruption	when	the	host	screen	changes	and	a
virtual	machine	window	is	maximized

X11	Guest	Additions:	fixed	a	hang	at	the	GNOME	Shell	login	screen	with
3D	enabled	(5.2	regression,	bugs	#17189	and	#17190)

15.2.	Version	5.2.2	(2017-11-22)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

User	interface:	various	improvements	for	high	resolution	screens

User	interface:	added	functionality	to	duplicate	optical	and	floppy	images

User	interface:	various	improvements	for	the	virtual	media	manager

VMM:	fixed	emulation	so	that	Plan	9	guests	can	start	once	more	(5.1.0
regression)

Storage:	fixed	regression	breaking	iSCSI	(bug	#17196)

Audio:	added	HDA	support	for	more	exotic	guests	(e.g.	Haiku)

Serial:	fixed	hanging	I/O	when	using	named	pipes	on	Windows	(5.2.0
regression;	bug	#17227)

Serial:	fixed	broken	communication	with	certain	devices	on	Linux	hosts

USB/OHCI:	improved	behavior	so	that	the	controller	state	after	a	VM	reset
is	closer	to	the	initial	state	after	VM	start

EFI:	fixed	HFS+	driver	which	in	rare	cases	failed	to	access	most	files	on	a
volume

Shared	clipboard:	fixed	hang	with	OS	X	host	and	Linux	guest	(bug	#15782)

Linux	hosts:	fixed	kernel	module	compilation	and	start	failures	with	Linux
kernel	4.14	(bug	#17267)

X11	hosts:	better	handle	WM_CLASS	setting	(bug	#12534)

Linux	guests:	fixed	kernel	module	compilation	and	other	problems	with
Linux	kernel	4.14	(bug	#12534)

Linux	guests:	fixed	kernel	module	compilation	and	other	problems	with

Linux	kernel	4.14

Linux	guests:	fixed	various	5.2.0	regressions	(bug	#17163)

Bridged	networking:	fixed	duplicate	EtherType	in	VLAN/priority	tags	on
Linux	(5.2.0	regression;	bug	#17277)

15.3.	Version	5.2.0	(2017-10-17)

This	is	a	major	update.	The	following	major	new	features	were	added:

VM	export	to	Oracle	Cloud	(OPC)

Unattended	guest	installation	(bug	#5810;	see	Section	3.2,	“Unattended
guest	installation”)

Overhauled	VM	selector	GUI	(improved	tools	VM	/	global	tools	handling,
new	icons)

Added	experimental	audio	support	for	video	recording

In	addition,	the	following	items	were	fixed	and/or	added:

VMM:	fixed	reason	for	recent	Linux	kernels	on	also	recent	CPU	models
warning	about	"XSAVE	consistency	problem"

GUI:	Virtual	Media	Manager	rework	allowing	to	manage	media	attributes,
like	size,	location,	type	and	description

GUI:	Host-only	Network	Manager	implemented	to	simplify	managing
corresponding	networks	and	their	attributes

GUI:	Snapshot	Pane	rework	allowing	to	manage	snapshot	attributes,	like
name	and	description;	reworked	snapshot	details	which	looks	more	clear,
corresponds	to	VM	Details	pane	and	reflects	current	VM	state	difference
according	to	last	snapshot	taken

GUI:	Audio	settings	extended	with	possibility	to	enable/disable	audio
input/output;	corresponding	changed	were	done	to	Audio	and	Video
Capture	settings	pages;	VM	Devices	menu	and	status-bar	extended	with
corresponding	actions	and	indicator	as	well

GUI:	improvements	with	accessibility	support

GUI:	Fixed	double	mouse	cursor	when	using	mouse	integration	without
Guest	Additions,	actually	a	Qt	5.6	bug	fixed	with	QT	5.6.3	(Mac	OS	X

hosts	only;	bug	#15610)

Audio:	implemented	(optional)	device	enumeration	support	for	audio
backends

Audio:	implemented	support	for	host	device	callbacks	(e.g.	when	adding	or
removing	an	audio	device)

Audio:	HDA	emulation	now	uses	asynchronous	data	processing	in	separate
threads

Audio:	implemented	ability	to	enable	or	disable	audio	input	/	output	on-the-
fly

Storage:	implemented	support	for	CUE/BIN	images	as	CD/DVD	media
including	multiple	tracks

Storage:	implemented	support	for	the	controller	memory	buffer	feature	for
NVMe

Storage:	first	milestone	of	the	I/O	stack	redesign	landed

E1000:	Fix	for	Windows	XP	freeze	when	booting	with	unplugged	cable

NAT	network:	do	not	skip	some	port	forwarding	setup	when	multiple	VMs
are	active	(Windows	hosts	only;	bug	#17041)

Serial:	fixed	extremely	rare	misbehavior	on	VM	poweroff

EFI:	better	video	mode	handling,	supporting	custom	video	modes	and
easier	configuration	(bug	#6783)

BIOS:	properly	report	floppy	logical	sectors	per	track	for	unusual	formats

BIOS:	update	ATA	disk	parameter	table	vectors	only	if	there	is	actually	a
corresponding	ATA	disk	attached

PXE:	speed	up	booting	by	better	handling	pending	packets	when	the	link	is
not	up	yet

VBoxManage:	handle	CPUID	sub-leaf	overrides	better

Windows	Additions:	fix	several	3D	related	crashes

Solaris	hosts:	allow	increasing	MTU	size	for	host-only	adapter	to	9706
bytes	to	support	jumbo	frames

Linux	Additions:	on	systems	using	systemd,	make	sure	that	only	the	Guest
Additions	timesync	service	is	active

many	unlisted	fixes	and	improvements

15.4.	Version	5.1.30	(2017-10-16)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	translation	updates

GUI:	Fixed	double	mouse	cursor	when	using	mouse	integration	without
Guest	Additions,	actually	a	Qt	5.6	bug	fixed	with	QT	5.6.3	(Mac	OS	X
hosts	only;	bug	#15610)

Solaris	hosts:	allow	increasing	MTU	size	for	host-only	adapter	to	9706
bytes	to	support	jumbo	frames

Linux	hosts:	glibc	2.26	compile	fix

Windows	Additions:	3D	related	crash	fix	(bugs	#17082,	#17092)

15.5.	Version	5.1.28	(2017-09-13)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	mouse	events	did	not	reach	host	windows	behind	the	transparent	VM
window	(Mac	OS	X	hosts	only;	bug	#16246)

Audio:	fixed	accidental	crashes	when	using	the	AC'97	sound	emulation
(bug	#16959)

Audio:	fixed	crash	when	default	input	or	output	devices	have	changed
(bugs	#16968,	#16969,	#17004)

Audio:	fixed	recording	when	using	the	ALSA	backend

Audio:	fixed	handle	leak	when	using	the	OSS	backend

E1000:	fixed	a	crash	related	to	VLAN	traffic	over	internal	network	(5.1.26
regression;	bug	#16960)

NAT:	apply	--natbindip1	to	TCP	connections	(bug	#16478)

OVF:	when	importing	an	appliance	with	XHCI	controller,	don't	add	an
OHCI	controller

Mac	OS	X	hosts:	fixed	a	GUI	crash	if	Spotlight	is	used	from	file	dialogs
(5.1.20	regression;	bugs	#16935,	#16953)

Linux	hosts:	fixed	creating	fixed	sized	VDI	images	(bug	#17010)

Linux	hosts	/	guests:	fixes	for	Linux	4.4	of	openSUSE	Leap	42.3	(bug
#16966)

Bridged	networking:	align	outgoing	packet	at	word	boundary,	preventing
Windows	host	crash	in	MsLbfoProvider

Linux	Additions:	kernel	drm	driver	support	for	custom	EL7	Linux	3.10
kernel

Solaris	Additions:	hide	an	informational	message	on	the	bootup	console

15.6.	Version	5.1.30	(2017-10-16)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	translation	updates

GUI:	Fixed	double	mouse	cursor	when	using	mouse	integration	without
Guest	Additions,	actually	a	Qt	5.6	bug	fixed	with	QT	5.6.3	(Mac	OS	X
hosts	only;	bug	#15610)

Solaris	hosts:	allow	increasing	MTU	size	for	host-only	adapter	to	9706
bytes	to	support	jumbo	frames

Linux	hosts:	glibc	2.26	compile	fix

Windows	Additions:	3D	related	crash	fix	(bugs	#17082,	#17092)

15.7.	Version	5.1.28	(2017-09-13)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	mouse	events	did	not	reach	host	windows	behind	the	transparent	VM
window	(Mac	OS	X	hosts	only;	bug	#16246)

Audio:	fixed	accidental	crashes	when	using	the	AC'97	sound	emulation
(bug	#16959)

Audio:	fixed	crash	when	default	input	or	output	devices	have	changed
(bugs	#16968,	#16969,	#17004)

Audio:	fixed	recording	when	using	the	ALSA	backend

Audio:	fixed	handle	leak	when	using	the	OSS	backend

E1000:	fixed	a	crash	related	to	VLAN	traffic	over	internal	network	(5.1.26
regression;	bug	#16960)

NAT:	apply	--natbindip1	to	TCP	connections	(bug	#16478)

OVF:	when	importing	an	appliance	with	XHCI	controller,	don't	add	an
OHCI	controller

Mac	OS	X	hosts:	fixed	a	GUI	crash	if	Spotlight	is	used	from	file	dialogs
(5.1.20	regression;	bugs	#16935,	#16953)

Linux	hosts:	fixed	creating	fixed	sized	VDI	images	(bug	#17010)

Linux	hosts	/	guests:	fixes	for	Linux	4.4	of	openSUSE	Leap	42.3	(bug
#16966)

Bridged	networking:	align	outgoing	packet	at	word	boundary,	preventing
Windows	host	crash	in	MsLbfoProvider

Linux	Additions:	kernel	drm	driver	support	for	custom	EL7	Linux	3.10
kernel

Solaris	Additions:	hide	an	informational	message	on	the	bootup	console

15.8.	Version	5.1.26	(2017-07-27)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	reset	the	TSC	on	VM	reset	to	work	around	a	Windows	bug	(bug
#16643)

Audio:	fixed	memory	leak	when	enabled	with	VRDP	connections	(5.1.24
regression;	bug	#16928)

Audio:	fixed	creation	of	too	many	sound	sinks	on	Linux	hosts	when	using
the	PulseAudio	backend	(bug	#16938)

Audio:	implemented	record	gain	registers	for	AC'97	emulation;	those	are
needed	for	newer	Ubuntu	guests	which	rely	on	those	when	controlling	gain
and	muting	the	recording	(capturing)	levels

Storage:	fixed	hang	when	using	the	emulated	NVMe	controller	with	the
SPDK	(bug	#16945)

Mouse:	double	click	was	not	working	with	a	precision	touchpad	(bug
#14632)

Linux	hosts:	properly	bring	up	host-only	network	interfaces	with	iproute
(5.1.24	regression;	bug	#16911)

Linux	hosts:	provide	Python	3	libraries	for	deb/rpm	packages

Windows	hosts:	make	it	possible	to	use	host-only	networking	without
having	bridged	networking	installed

Windows	guests:	fixed	automatic	logons	for	Vista	and	newer	Windows
guests	(5.1.24	regression;	bug	#16921)

15.9.	Version	5.1.24	(2017-07-18)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	mask	the	VME	CPUID	capability	on	AMD	Ryzen	processors	for
now	to	make	certain	guests	works,	for	example	Windows	XP

VMM:	emulate	more	SSE2	instructions

VMM:	properly	clear	the	TF	and	AC	flags	when	dispatching	real-mode
interrupts

GUI:	fixes	to	make	the	mini-toolbar	work	with	recent	versions	of	KDE	/
Plasma	(bug	#16325)

GUI:	fixed	a	potential	crash	when	a	VM	with	multiple	screens	is	running	in
full	screen	/	seamless	mode	and	a	host	screen	is	removed,	for	example	when
connecting	to	the	host	via	RDP

GUI:	fixed	initial	size	hints	for	guests	which	set	intermediate	sizes	before
responding	(bug	#16593)

GUI:	prevent	stopped	screen	updates	or	black	screen	on	reboot	in	a	multi-
screen	setup	under	certain	conditions

Audio:	many	improvements	for	Windows	10	guests	(bugs	#15189,	#15925,
#16170,	#16682,	#16794	and	others)

Storage:	fixed	possible	crash	when	using	Intels	SPDK

API:	use	the	correct	file	name	of	the	VM	machine	state	if	the	VM	settings
directory	is	renamed,	for	example	during	grouping	/	ungrouping	a	VM
(bugs	#16074	and	#16745)

API:	return	the	correct	error	code	if	powering	up	a	VM	fails

API:	video	recording	did	not	automatically	start	at	VM	start	when	enabled
in	the	VM	settings	(bug	#16803)

API:	when	relocating	a	medium,	check	that	the	target	path	is	fully	qualified

EFI:	fix	for	VMs	with	more	than	3504MB	RAM	(bug	#11103)

Host-only	adapter:	correctly	determine	IPv4	netmasks	on	Windows	hosts
(bug	#16826)

NAT	network:	properly	do	the	refcounting	for	starting	/	stopping	the	NAT	/
DHCP	services	if	the	NAT	network	is	changed	while	the	adapter	network
connection	type	is	anything	else	but	NAT	network

VBoxManage:	fixed	controlvm	videocapfile	(bug	#16779)

Windows	hosts:	another	fix	for	Windows	insider	builds	(bug	#16892)

Windows	hosts:	fixed	crashes	if	driver	verifier	is	enabled	(bug	#15741)

Linux	/	Mac	OS	X	hosts:	more	fixes	for	loading	shared	libraries	(5.1.20
regression;	bugs	#16778,	#16693)

Linux	hosts	/	guests:	Linux	4.12	fixes	(bugs	#16725,	#16800)

Linux	hosts	/	guests:	reduce	the	kernel	stack	consumption	for	Linux	kernels
with	CONFIG_CPUMASK_OFFSTACK	defined

Linux	hosts	/	guests:	fixes	for	kernel	modules	built	with	gcc-7	(bug	#16772)

Linux	hosts	/	guests:	Linux	4.13	fix	(bug	#16887)

Linux	hosts:	don't	depend	on	net-tools	on	newer	distributions	as	this
package	is	deprecated	in	favour	of	iproute	(bug	#16764)

Linux	hosts:	make	2D	video	acceleration	available	for	older	Linux
distributions	(5.1	regression;	bug	#16858)

Linux	Additions:	fix	for	dynamic	resizing	with	Oracle	Linux	6	with	UEK4

Linux	Additions:	make	Fedora	25	and	26	Alpha	work	when	3D	pass-
through	is	enabled

Linux	Additions:	no	longer	recommend	removing	distribution-	installed

Additions	if	they	are	updated	to	our	guidelines

15.10.	Version	5.1.22	(2017-04-28)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	VERR_IEM_INSTR_NOT_IMPLEMENTED	Guru	Meditation
under	certain	conditions	(5.1	regression;	mostly	Mac	OS	X	hosts;	bugs
#15693,	#15801,	#16274,	#16569,	#16663)

VMM:	fixed	software	virtualization	on	Solaris	hosts	(5.1.20	regression)

Storage:	fixed	a	potential	hang	under	rare	circumstances	(bug	#16677)

Storage:	fixed	a	potential	crash	under	rare	circumstances	(asynchronous	I/O
disabled	or	during	maintenance	file	operations	like	merging	snapshots)

Linux	hosts:	make	the	ALSA	backend	work	again	as	well	as	loading	the	GL
libraries	on	certain	hosts	(5.1.20	regression;	bugs	#16667,	#16693)

Linux	Additions:	fixed	mount.vboxsf	symlink	problem	(5.1.20	regression;
bug	#16670)

15.11.	Version	5.1.20	(2017-04-18)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	don't	check	if	the	Extension	Pack	is	up-to-date	if	the	user	is	about	to
install	a	new	Extension	Pack	(bug	#16317)

GUI:	fixed	a	possible	crash	when	switching	a	multi-monitor	VM	into	full-
screen	or	seamless	mode

GUI:	fixed	non-literal	shortcuts	if	the	keyboard	is	not	captured	(5.1.10
regression;	Windows	hosts	only)

GUI:	several	mini-toolbar	fixes	in	full-screen	/	seamless	mode	(X11	hosts
only)

GUI:	don't	crash	on	restoring	defaults	in	the	appliance	import	dialog

Windows	Additions:	another	fix	for	automatic	logins	for	Windows	Vista
and	newer	(bug	#15904)

ICH9:	fix	for	Windows	guests	with	a	huge	amount	(>64G)	of	guest	memory

BIOS:	fixed	El	Torito	hard	disk	emulation	geometry	calculation	(thanks
Dwight	Engen)

15.12.	Version	5.1.18	(2017-03-15)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

Shared	Folders:	fixed	case	insensitive	filename	access	(5.1.16	regression;
Windows	guests	only;	bug	#16549)

Shared	Folders:	fixed	access	to	long	pathes	(5.1.16	regression;	Windows
guests	only;	bugs	#14651,	#16564)

API:	fixed	snapshot	handling	of	medium	attachments	and	PCI	device
attachments	(bug	#16545)

API:	make	32-bit	Windows	guests	boot	again	with	software	virtualization	if
the	ICH9	chipset	is	used	(5.1.16	regression)

VBoxBugReport:	fixed	VM	log	collection	issue

Linux	hosts:	fixed	autostart	service	script	(bug	#14955)

Windows	Additions:	fixed	automatic	logins	for	Windows	Vista	and	newer
(5.1.4	regression;	bug	#15904)

15.13.	Version	5.1.16	(2017-03-08)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	don't	access	the	MSR_IA32_SMM_MONITOR_CTL	MSR	if	dual-
monitor	treatment	is	not	available	(KVM	workaround,	bug	#14965)

VMM:	another	fix	for	handling	certain	MSRs	on	ancient	CPUs	without	VT-
x	support	for	MSR	bitmaps

VMM:	fixed	VERR_SSM_LOAD_CPUID_MISMATCH	errors	when
restoring	a	saved	state	with	SMP	guests	on	hosts	without	the	CPUID/HTT
bit	set	(bug	#16428)

VMM:	fixed	a	bug	in	call	gate	emulation

VMM:	FWAIT	instruction	fix

VMM:	fixed	a	sporadic	guest	hang	under	certain	conditions

GUI:	hide	the	mini-toolbar	from	the	taskbar	and	the	pager	on	certain	X11
hosts

GUI:	better	error	handling	on	the	global	settings	/	network	/	host-only	/
DHCP	server	settings

GUI:	fixes	for	full-screen	with	multiple	screens

Host-only	Network:	fixed	host-only	adapter	creation	issue	preventing
VirtualBox	installation	on	Windows	10	hosts	(bug	#16379)

NAT	network:	fixed	two	potential	crashes	in	the	DHCP	server

ICH9:	fixed	incorrect	initialization	of	the	primary	bus	for	PCI	bridges
(5.1.14	regression)

Storage:	LsiLogic	fix	for	Windows	10

USB:	fixed	not	being	able	to	attach	certain	USB	devices	having	invalid

characters	in	the	device	strings	(5.0.18	regression;	bug	#15956)

USB:	several	fixes	for	the	USB/IP	support	(bug	#16462)

VBoxSVC:	fixed	another	crash	during	shutdown	under	rare	circumstances

VBoxSVC:	fixed	a	stack	overflow	on	(Windows	debug	builds	only;	bug
#16409)

OVF:	when	importing	an	appliance	handle	more	than	10	network	adapters
if	the	OVA	was	created	by	VirtualBox	(bug	#16401)

OVF:	fixes	for	exporting	and	importing	appliances	with	many	disks	(bug
#16402)

VBoxManage:	fixed	regression	with	modifyhd	--resize	(bug	#16311)

rdesktop-vrdp:	source	code	tarball	fixes

Linux	Installers:	do	not	rebuild	kernel	modules	unnecessarily	(bug	#16408)

Linux	hosts:	added	an	action	for	opening	the	VM	manager	window	to	the
.desktop	file

Linux	hosts	/	guests:	Linux	4.11	compile	fixes	(bug	#16506)

Linux	Additions:	added	vboxsf	FS	modules	alias	(bug	#16404)

Linux	Additions:	fix	for	the	shared	folders	kernel	module	to	compile	on
Linux	4.10

Linux	Additions:	properly	install	the	Linux	kernel	module	override	rule	on
distributions	without	/etc/depmod.d

Windows	Additions:	fixed	a	crash	with	recent	Windows	10	builds	if	3D	is
disabled	(bug	#15973)

15.14.	Version	5.1.14	(2017-01-16)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	emulation	of	certain	instructions	for	64-bit	guests	on	32-bit
hosts

VMM:	properly	handle	certain	MSRs	for	64-bit	guests	on	ancient	CPUs
without	VT-x	support	for	MSR	bitmaps	(bug	#13886)

GUI:	fixed	a	crash	with	multimonitor	setups	under	certain	conditions

GUI:	allow	cloning	of	snapshots	when	the	VM	is	running

NVMe:	fixed	compatibility	with	the	Storage	Performance	Development	Kit
(SPDK,	bug	#16368)

VBoxSVC:	fixed	a	crash	under	rare	circumstances

VBoxManage:	added	a	sanity	check	to	modifymedium	--resize	to	prevent
users	from	resizing	their	hard	disk	from	1GB	to	1PB	(bug	#16311)

Windows	hosts:	another	fix	for	recent	Windows	10	hosts

Linux	hosts:	Linux	4.10	fixes

Linux	Additions:	fixed	protocol	error	during	certain	operations	on	shared
folders	(bug	#8463)

15.15.	Version	5.1.12	(2016-12-20)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	VERR_IEM_ASPECT_NOT_IMPLEMENTED	Guru
Meditations	with	certain	Linux	guests	if	KVM	paravirtualization	is	enabled
(5.1	regression;	bugs	#15613	and	#16251)

VMM:	fixed	VERR_VMX_UNABLE_TO_START_VM	Guru	Meditations
under	rare	conditions

GUI:	prevent	a	crash	under	certain	conditions	if	the	VM	is	terminated	very
early

GUI:	fixed	certain	keyboard	capture	issues	(5.1.10	regression;	Mac	OS	X
hosts	only;	bug	#16150)

GUI:	fixed	dragging	guest	windows	in	seamless	mode	with	the	keyboard
captured	(X11	hosts	only;	bug	#15837)

GUI:	fixed	a	problem	where	the	new	version	detected	dialog	was	covered
by	the	appliance	import	dialog	(Mac	OS	X	hosts	only;	bug	#16238)

Storage:	fixed	NVMe	reset	processing	when	doing	rmmod	nvme;	modprobe
nvme	in	a	Linux	guest	(bug	#16080)

Storage:	fixed	creating	a	snapshot	when	the	VM	is	running	and	an	NVMe
controller	is	present

Storage:	fixed	a	problem	with	the	LsiLogic	SCSI	controller	where	requests
could	be	lost	with	SMP	guests

E1000:	fixed	"cable	disconnected"	issue	(Mac	OS	X	guests	only;	5.1.10
regression;	bug	#16260)

E1000:	fixed	"TX	unit	hang"	issue	(Linux	guests	only;	5.1.10	regression;
bug	#16221)

Parallel	ports:	fixed	port	enumeration	on	Windows	host	(bugs	#15872	and

#16127)

API:	don't	crash	when	sanitizing	certain	VM	names	(bug	#16299)

Linux	hosts:	automatically	disable	asynchronous	I/O	on	Linux	2.6.18
kernels	as	high	I/O	load	may	trigger	kernel	oopses	on	these	kernels	if	this
feature	is	enabled

Linux	hosts	/	guests:	Linux	2.6.28	compile	fix	(bug	#16267)

Linux	hosts:	compile	Linux	4.9	compile	fix	(bug	#16286)

Linux	Additions:	warn	the	user	about	a	known	bug	with	older	Linux	guests
(e.g.	Debian	7)	requiring	manual	work	to	get	3D	working	(bug	#15319)

Linux	Additions:	fix	the	graphics	driver	build	with	Linux	4.10	and	later
(bug	#16298)

Windows	Additions:	fixed	a	crash	in	the	WDDM	driver	under	certain
conditions

15.16.	Version	5.1.10	(2016-11-21)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	the	USB	filter	settings	dialog	should	allow	to	specify	the	USB
revision	in	hexadecimal	format	(bug	#15400)

GUI:	fixed	crash	on	certain	hosts	when	pressing	certain	key	combinations
(Windows	hosts	only;	bug	#15719)

GUI:	fixed	issue	with	updating	the	available-geometry	on	host-screen
work-area	resize

GUI:	don't	crash	/	hang	on	certain	environments	if	accessibility	support	is
enabled

GUI:	fixed	various	issues	in	Unscaled	HiDPI	Output	mode	(bug	#15707)

GUI:	extend	the	VM	Input	menu	with	Print	Screen-related	actions

GUI:	improved	handling	of	inserting	the	Guest	Additions	ISO	image	by
trying	all	available	optical	drives	rather	than	only	the	first	one	and	by	not
asking	the	user	if	he	wants	to	force	unmounting	(which	doesn't	work	in
most	cases	anyway)

API:	default	to	RTC	using	UTC	for	Solaris	11	guests

Settings:	be	less	restrictive	when	reading	a	VM	configuration	containing	a
host-only	adapter	without	an	interface	name

Storage:	fixed	resizing	VDI	images	resulting	in	an	unbootable	image	under
certain	circumstances	(bug	#15983)

NAT:	fixed	several	5.1.8	regressions	on	Mac	OS	X	and	Windows	hosts	(bug
#16084)

Audio:	fixed	a	few	5.1.x	regressions	by	using	the	audio	code	from	5.0.x
until	the	audio	overhaul	is	completed

VBoxManage:	fixed	documentation	of	the	storagectl	command	(bug
#15971)

Build	system:	another	fix	for	building	VirtualBox	on	systems	which	default
to	Python	3

Windows	hosts:	hardening	fix	for	Windows	10	build	14971	(bug	#16202)

Windows	Additions:	properly	start	the	VirtualBox	guest	services	even	if	the
guest	user	name	contains	special	characters	(bug	#15982)

Solaris	Additions:	fixed	preemptible	mouse	notification	callback	being
executed	under	a	spinlock	for	Solaris	guests

Linux	hosts	/	guests:	Linux	4.9	fixes	(bugs	#16155	and	#16064)

Linux	Additions:	fixed	Linux	kernel	module	override	rule	(thanks	Mark
Furneaux)

15.17.	Version	5.1.8	(2016-10-18)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	fixed	keyboard	shortcut	handling	regressions	(Mac	OS	X	hosts	only;
bugs	#15937	and	#15938)

GUI:	fixed	keyboard	handling	regression	for	separate	UI	(Windows	hosts
only;	bugs	#15928)

NAT:	don't	exceed	the	maximum	number	of	"search"	suffixes.	Patch	from
bug	#15948

NAT:	fixed	parsing	of	port-forwarding	rules	with	a	name	which	contains	a
slash	(bug	#16002)

NAT	Network:	when	the	host	has	only	loopback	nameserver	that	cannot	be
mapped	to	the	guests	(e.g.	dnsmasq	running	on	127.0.1.1),	make	DHCP
supply	NAT	Network	DNS	proxy	as	nameserver

Bridged	Network:	prevent	flooding	syslog	with	packet	allocation	error
messages	(bug	#15569)

Audio:	now	using	Audio	Queues	on	Mac	OS	X	hosts

Audio:	fixed	recording	with	the	PulseAudio	backend	(5.1	regression)

Audio:	various	bugfixes

Snapshots:	fixed	regression	in	5.1.4	for	deleting	snapshots	with	several
disks	(bug	#15831)

Snapshots:	crash	fix	and	better	error	reporting	when	snapshot	deletion
failed

Storage:	some	fixes	for	the	NVMe	emulation	with	Windows	guests

API:	fixed	initialization	of	SAS	controllers	(bug	#15972)

Build	system:	make	it	possible	to	build	VBox	on	systems	which	default	to
Python	3

Windows	hosts:	detect	certain	cases	of	REGDB_E_CLASSNOTREG	errors
and	print	a	helpful	error	message

Windows	hosts:	adapted	to	changes	in	Windows	10	build	14901	(bug
#15944)

Windows	hosts:	better	support	for	processor	groups	on	Windows	7	and	later
which	is	required	on	certain	hosts	with	many	CPUs

Windows	installer	/	Additions:	added	option	to	prevent	creating	of	start
menu	items	(bug	#15922)

Windows	Additions	/	VGA:	if	the	guest's	power	management	turns	a	virtual
screen	off,	blank	the	corresponding	VM	window	rather	than	hide	the
window

Windows	Additions:	fixed	a	generic	bug	which	could	lead	to	freezing
shared	folders	(bug	#15662)

Linux	hosts	/	guests:	fix	for	kernels	with
CONFIG_CPUMASK_OFFSTACK	set	(bug	#16020)

Linux	Additions:	don't	require	all	virtual	consoles	be	in	text	mode.	This
should	fix	cases	when	the	guest	is	booted	with	a	graphical	boot	screen	(bug
#15683)

Linux	Additions:	added	depmod	overrides	for	the	vboxguest	and	vboxsf
kernel	modules	to	fix	conflicts	with	modules	shipped	by	certain	Linux
distributions

X11	Additions:	disable	3D	on	the	guest	if	the	host	does	not	provide	enough
capabilities	(bug	#15860)

15.18.	Version	5.1.6	(2016-09-12)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	fixed	issue	with	opening	'.vbox'	files	and	it's	aliases

GUI:	keyboard	grabbing	fixes	(bugs	#15771	and	#15745)

GUI:	fix	for	passing	through	Ctrl	+	mouse-click	(Mac	OS	X	hosts	only;	bug
#15714)

GUI:	fixed	automatic	deletion	of	extension	pack	files	(bugs	#11352	and
#14742)

USB:	fixed	showing	unknown	device	instead	of	the	manufacturer	or
product	description	under	certain	circumstances	(5.1.0	regression;	bug
#15764)

XHCI:	another	fix	for	a	hanging	guest	under	certain	conditions	as	result	of
the	fix	for	bug	#15747,	this	time	for	Windows	7	guests

Serial:	fixed	high	CPU	usage	with	certain	USB	to	serial	converters	on
Linux	hosts	(bug	#7796)

Storage:	fixed	attaching	stream	optimized	VMDK	images	(bug	#14764)

Storage:	reject	image	variants	which	are	unsupported	by	the	backend	(bug
#7227)

Storage:	fixed	loading	saved	states	created	with	VirtualBox	5.0.10	and	older
when	using	a	SCSI	controller	(bug	#15865)

Storage:	fixed	broken	NVMe	emulation	if	the	host	I/O	cache	setting	is
enabled

Storage:	fixed	using	multiple	NVMe	controllers	if	ICH9	is	used

NVMe:	fixed	a	crash	during	reset	which	could	happen	under	certain
circumstances

Audio:	fixed	microphone	input	(5.1.2	regression;	bugs	#14386	and	#15802)

Audio:	fixed	crashes	under	certain	conditions	(5.1.0	regression;	bug	#15887
and	others)

Audio:	fixed	recording	with	the	ALSA	backend	(5.1	regression)

Audio:	fixed	stream	access	mode	with	OSS	backend	(5.1	regression,	thanks
to	Jung-uk	Kim)

E1000:	do	also	return	masked	bits	when	reading	the	ICR	register,	this	fixes
booting	from	iPXE	(5.1.2	regression;	bug	#15846)

BIOS:	fixed	4bpp	scanline	calculation	(bug	#15787)

API:	relax	the	check	for	the	version	attribute	in	OVF/OVA	appliances	(bug
#15856)

Windows	hosts:	fixed	crashes	when	terminating	the	VM	selector	or	other
VBox	COM	clients	(bug	#15726	and	others)

Linux	Installer:	fixed	path	to	the	documentation	in	.rpm	packages	(5.1.0
regression)

Linux	Installer:	fixed	the	vboxdrv.sh	script	to	prevent	an	SELinux
complaint	(bug	#15816)

Linux	hosts:	don't	use	32-bit	legacy	capabilities

Linux	Additions:	Linux	4.8	fix	for	the	kernel	display	driver	(bugs	#15890
and	#15896)

Linux	Additions:	don't	load	the	kernel	modules	provided	by	the	Linux
distribution	but	load	the	kernel	modules	from	the	official	Guest	Additions
package	instead	(bug	#15324)

Linux	Additions:	fix	dynamic	resizing	problems	in	recent	Linux	guests	(bug
#15875)

User	Manual:	fixed	error	in	the	VBoxManage	chapter	for	the	getextradata

enumerate	example	(bug	#15862)

15.19.	Version	5.1.4	(2016-08-16)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	show	actual	VM	uptime	in	the	session	information	window

Audio:	re-enabled	speakers	for	Mac	OS	X	guests	(5.1.0	regression;	bug
#15611)

Audio:	fixed	crashes	under	certain	conditions

USB:	fixed	a	hang	under	certain	conditions

USB:	fixed	a	hanging	guest	under	certain	conditions	(bug	#15747)

PIIX4:	implemented	dummy	SMBus	controller	to	prevent	annoying	Linux
kernel	warnings	about	uninitialized	SMBus	base	address	(bug	#9517)

NVMe:	several	fixes	to	improve	stability,	fixed	a	crash	while	saving	a	VM
state

VMDK:	fixed	an	issue	creating	fixed	size	images	with	certain	sizes	and	the
Split2G	option	enabled	(bug	#15748)

VHDX:	fixed	cloning	images	with	VBoxManage	clonehd	(bug	#14288)

Storage:	fixed	broken	bandwidth	limitation	when	the	limit	is	very	low	(bug
#14982)

EFI:	fixed	sending	debug	messages	in	the	EFI	firmware	if	a	serial	port	is
enabled	(bug	#12161)

OVF:	when	importing	appliances,	make	sure	that	the	version	of	the
embedded	VirtualBox	specific	settings	is	processed,	to	get	the	default
settings	handling	right

VBoxManage:	Don't	try	to	set	the	medium	type	if	there	is	no	change	(bug
#13850)

Linux	installer:	fixed	some	scripting	issues	(bugs	#15701	and	#15702)

Linux	installer:	fixed	a	path	issue	on	certain	Linux	distributions	(bug
#15717)

Windows	hosts:	fixed	corrupted	mouse	pointers	with	some	Linux	and
Solaris	guests	(bug	#15665)

Linux	Additions:	made	the	video	driver	work	on	32-bit	guests	with	large
video	memory	sizes	(bug	#15621)

Linux	Additions:	made	the	video	driver	work	on	kernel	4.7	and	later	(bug
#15769)

Linux	Additions:	converted	a	failure	message	to	an	informational	one	when
drivers	could	not	be	stopped	during	upgrade	(bug	#15692)

Linux	Additions:	made	the	video	driver	work	around	an	X	server	bug	which
cause	screen	refresh	to	stop	(bug	#15511)

Windows	Additions:	auto-resizing	fixes	for	Windows	10	guests	(bug
#15257)

Windows	Additions:	fixed	VBoxTray	problems	with	Windows	2000	(bug
#15661)

15.20.	Version	5.1.2	(2016-07-21)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	several	fixes

GUI:	fixed	screenshot	if	the	VM	is	started	in	separate	mode

GUI:	fixed	issue	with	double-click/opening	registered	file	types	(.vbox	and
.vbox-extpack)	on	Mac	OS	X	(bug	#15648)

GUI:	fixed	a	bug	which	made	it	impossible	close	some	error/warning
messages	using	the	close	button

GUI:	weakened	the	control	over	the	VM	window	behavior	allowing	to
resize	it	across	multiple	screens	and	to	use	in	Snap	Assist	techniques

GUI:	jump	to	the	second	tab	of	the	session	information	window	(5.1.0
regression)

GUI:	fix	for	Alt-Tab

Storage:	fixed	creating	fixed	size	VHD	images	(bug	#15601)

Storage:	fixed	a	hang	during	power	off	if	the	VM	was	suspended	before	and
a	NVMe	controller	is	configured

USB:	fixed	a	crash	under	certain	conditions

Audio:	make	AC'97	volume	control	work	again	(5.1.0	regression;	bug
#15598)

Audio:	fixed	rare	VM	hangs	when	using	AC'97	emulation

Audio:	SB16	fixes

EFI:	fixed	access	to	devices	attached	to	SATA	port	2	and	higher	(bug
#15607)

OVA:	fix	for	checking	certain	signatures

OVA:	fixed	MAC	address	generation	for	appliances	created	by	VirtualBox
(5.1.0	regression;	bug	#15623)

API:	fixed	audio	settings	handling	for	older	config	files	(bug	#15626)

API:	fixed	truncation	of	USB	product/vendor	IDs	on	Linux	hosts	(5.1.0
regression;	bug	#15644)

API:	fixed	VRDP	with	authentication	(bug	#15653)

API:	don't	crash	if	there	is	no	graphics	controller	configured	(bug	#15628)

Linux	hosts:	fixed	EL5	builds	(bug	#15634)

non-Windows	hosts:	fixed	a	crash	during	shutdown	under	rare
circumstances	(bug	#15568)

Linux	Additions:	fixed	SELinux	issue	which	prevented	certain	Linux	guests
to	work	in	3D	mode	(bug	#15574)

User	Manual:	updates

15.21.	Version	5.1.0	(2016-07-12)

This	is	a	major	update.	The	following	major	new	features	were	added:

VMM:	new	APIC	and	I/O	APIC	implementations	that	result	in	significantly
improved	performance	in	certain	situations	(for	example	with	networking,
bug	#15295)

VMM:	added	support	for	Hyper-V	paravirtualized	debugging	of	Windows
guests

VMM:	emulate	even	more	MMIO	and	shadow	pagetable	exits	without
going	back	to	user	mode

GUI:	overall	migration	to	Qt5	(bug	#11775)

GUI:	passive	API	event	listener	improving	the	VM	GUI	performance	and
response	time

Audio:	added	HDA	(High	Definition	Audio)	support	for	newer	Linux
guests

Audio:	added	on-demand	timers	which	should	improve	the	overall
performance	and	reduce	the	CPU	consumption

Audio:	more	fine-grained	volume	control	for	the	AC'97	emulation,	which
now	also	takes	the	master	volume	control	into	account

better	support	for	Python	3

In	addition,	the	following	items	were	fixed	and/or	added:

VMM:	activate	the	x2APIC	by	default	for	Linux	guests

VMM:	many	more	fixes

GUI:	the	Detach	UI	action	is	now	a	part	of	the	VM	Machine	menu

GUI:	reworked	session	information	window

GUI:	the	new	VM	wizard	now	allows	to	choose	the	VM	location	for	the
VM	which	is	being	created

GUI:	fixed	location	of	touch	events	in	unscaled	HiDPI	mode	(bugs	#14366,
#14367)

GUI:	various	bugfixes	and	internal	cleanup

Storage:	use	fallocate()	or	similar	if	present	to	speed	up	creating	fixed-sized
disk	images	(bug	#5967)

Storage:	implemented	NVMHCI-compatible	storage	controller

Audio:	various	bugfixes	and	infrastructure	improvements

E1000:	implemented	interrupt	throttling	for	performance	improvements

EFI:	many	improvements,	for	example	allow	to	boot	from	USB

OVF:	improved	handling	of	signed	manifests

API:	Windows	XP	guests	and	Windows	2003	server	guests	now	default	to
the	E1000	T	Server	network	card

VBoxSVC:	fixed	several	memory	leaks	when	handling	.dmg	images

Installers:	ship	VBoxBugReport

Windows	hosts:	reworked	COM	proxy	(e.g.	bug	#8298)

Linux	installers:	no	longer	rely	on	DKMS	for	module	rebuilding

Linux	Additions:	fix	a	problem	when	updating	the	initramfs	after	the	guest
modules	are	compiled	(bug	#15579)

Linux	Additions:	try	to	fix	a	problem	where	the	OpenGL	libraries	where
loaded	by	the	X	server	when	we	only	support	X	clients	(bug	#15574)

15.22.	Version	5.0.24	(2016-06-28)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	reverted	to	the	old	I/O-APIC	code	for	now	to	fix	certain	regressions
with	5.0.22	(bug	#15529).	This	means	that	the	networking	performance
with	certain	guests	will	drop	to	the	5.0.20	level	(bug	#15295).	One
workaround	is	to	disable	GRO	for	Linux	guests

Main:	when	taking	a	screenshot,	don't	save	garbage	for	blanked	screens

NAT:	correctly	parse	resolv.conf	file	with	multiple	separators	(5.0.22
regression)

Storage:	fixed	a	possible	corruption	of	stream	optimized	VMDK	images
from	VMware	when	opened	in	read/write	mode	for	the	first	time

ACPI:	notify	the	guest	when	the	battery	/	AC	state	changes	instead	of
relying	on	guest	polling

Linux	hosts:	fixed	VERR_VMM_SET_JMP_ABORTED_RESUME	Guru
Meditations	on	hosts	with	Linux	4.6	or	later	(bug	#15439)

Solaris	hosts:	make	the	GUI	work	on	Solaris	10	again	(bug	#15549)

15.23.	Version	5.0.22	(2016-06-16)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixes	for	certain	Intel	Atom	hosts	(bug	#14915)

VMM:	properly	restore	the	complete	FPU	state	for	32-bit	guests	on	64-bit
hosts	on	Intel	Sandy	Bridge	and	Ivy	Bridge	CPUs

VMM:	new	I/O-APIC	implementation	fixing	several	bugs	and	improving
the	performance	under	certain	conditions	(bug	#15295	and	others)

VMM:	fixed	a	potential	Linux	guest	panic	on	AMD	hosts

VMM:	fixed	a	potential	hang	with	32-bit	EFI	guests	on	Intel	CPUs	(VT-x
without	unrestricted	guest	execution)

GUI:	don't	allow	to	start	subsequent	separate	VM	instances

GUI:	raised	upper	limit	for	video	capture	screen	resolution	(bug	#15432)

GUI:	warn	if	the	VM	has	less	than	128MB	VRAM	configured	and	3D
enabled

Main:	when	monitoring	DNS	configuration	changes	on	Windows	hosts
avoid	false	positives	from	competing	DHCP	renewals.	This	should	fix	NAT
link	flaps	when	host	has	multiple	DHCP	configured	interfaces,	in	particular
when	the	host	uses	OpnVPN

Main:	properly	display	an	error	message	if	the	VRDE	server	cannot	be
enabled	at	runtime,	for	example	because	another	service	is	using	the	same
port

NAT:	Initialize	guest	address	guess	for	wildcard	port-forwarding	rules	with
default	guest	address	(bug	#15412)

VGA:	fix	for	a	problem	which	made	certain	legacy	guests	crash	under
certain	conditions	(bug	#14811)

OVF:	fixed	import	problems	for	some	appliances	using	an	AHCI	controller
created	by	3rd	party	applications

SDK:	reduced	memory	usage	in	the	webservice	Java	bindings

Windows	hosts:	fixed	performance	regresson	with	SMP	guests	(5.0
regression)

Windows	hosts:	fixes	for	the	shared	clipboard

Windows	hosts:	Windows	hardening	fix

Windows	Additions:	fixes	to	retain	the	guest	display	layout	when	resizing
or	disabling	the	guest	monitors

Linux	hosts:	EL	6.8	fix	(bug	#15411)

Linux	hosts:	Linux	4.7	fix	(bug	#15459)

Linux	Additions:	Linux	4.7	fixes	(bug	#15444)

Linux	Additions:	fix	for	certain	32-bit	guests	(5.0.18	regression;	bug
#15320)

Linux	Additions:	fixed	mouse	pointer	offset	(5.0.18	regression;	bug
#15324)

Linux	Additions:	made	old	X.Org	releases	work	again	with	kernels	3.11
and	later	(5.0.18	regression;	bug	#15319)

Linux	Additions:	fixed	X.Org	crash	after	hard	guest	reset	(5.0.18
regression;	bug	#15354)

Linux	Additions:	don't	stop	the	X11	setup	if	loading	the	shared	folders
module	fails	(5.0.18	regression)

Linux	Additions:	don't	complain	if	the	Drag	and	Drop	service	is	not
available	on	the	host

Solaris	Additions:	added	support	for	X.org	1.18

15.24.	Version	5.0.20	(2016-04-28)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

Storage:	fixed	a	regression	causing	write	requests	from	the	BIOS	to	cause	a
Guru	Meditation	with	the	LsiLogic	SCSI	controller	(5.0.18	regression;	bug
#15317)

Storage:	several	emulation	fixes	in	the	BusLogic	SCSI	controller	emulation

NAT	Network:	support	TCP	in	DNS	proxy	(same	problem	as	in	bug	#14736
for	NAT)

NAT:	rework	handling	of	port-forwarding	rules	(bug	#13570)

NAT:	rewrite	host	resolver	to	handle	more	query	types	and	make	it
asynchronous	so	that	a	stalled	lookup	doesn't	block	all	NAT	traffic

Snapshots:	don't	crash	when	restoring	a	snapshot	which	has	more	network
adapters	than	the	current	state	(ie	when	the	snapshot	uses	ICH9	and	the
current	state	uses	PIIX3)

Guest	Control:	various	bugfixes	for	the	copyfrom	and	copyto	commands	/
API	(bug	#14336)

VBoxManage:	list	processor	features	on	list	hostinfo	(bug	#15334)

Linux	hosts:	fix	for	Linux	4.5	if	CONFIG_NET_CLS_ACT	is	enabled	(bug
#15327)

Windows	hosts:	another	fix	for	recent	Windows	10	insider	builds	(bug
#15337)

Windows	hosts:	make	it	work	on	Windows	XP	again	(5.0.18	regression)

Windows	Additions:	fixed	performance	issues	with	PowerPoint	2010	and
the	WDDM	graphics	drivers	if	Aero	is	disabled

15.25.	Version	5.0.18	(2016-04-18)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	position	off-screen	windows	to	be	fully	visible	again	on	relaunch	in
consistence	with	default-behavior	(bug	#15226)

GUI:	fixed	the	View	menu	/	Full-screen	Mode	behavior	on	Mac	OS	X	El
Capitan

GUI:	fixed	a	test	which	allowed	to	encrypt	a	hard	disk	with	an	empty
password

GUI:	fixed	a	crash	under	certain	conditions	during	VM	shutdown

GUI:	fixed	the	size	of	the	VM	list	scrollbar	in	the	VM	selector	when
entering	a	group

PC	speaker	passthrough:	fixes	(Linux	hosts	only;	bug	#627)

Drag	and	drop:	several	fixes

SATA:	fixed	hotplug	flag	handling	when	EFI	is	used

Storage:	fixed	handling	of	encrypted	disk	images	with	SCSI	controllers
(bug	#14812)

Storage:	fixed	possible	crash	with	Solaris	7	if	the	BusLogic	SCSI	controller
is	used

USB:	properly	purge	non-ASCII	characters	from	USB	strings	(bugs	#8801,
#15222)

NAT	Network:	fixed	100%	CPU	load	in	VBoxNetNAT	on	Mac	OS	X	under
certain	circumstances	(bug	#15223)

ACPI:	fixed	ACPI	tables	to	make	the	display	color	management	settings
available	again	for	older	Windows	versions	(4.3.22	regression)

Guest	Control:	fixed	VBoxManage	copyfrom	command	(bug	#14336)

Snapshots:	fixed	several	problems	when	removing	older	snapshots	(bug
#15206)

VBoxManage:	fixed	--verbose	output	of	the	guestcontrol	command

Windows	hosts:	hardening	fixes	required	for	recent	Windows	10	insider
builds	(bugs	#15245,	#15296)

Windows	hosts:	fixed	support	of	jumbo	frames	in	with	bridged	networking
(5.0.16	regression;	bug	#15209)

Windows	hosts:	don't	prevent	receiving	multicast	traffic	if	host-only
adapters	are	installed	(bug	#8698)

Linux	hosts:	added	support	for	the	new	naming	scheme	of	NVME	disks
when	creating	raw	disks

Solaris	hosts	/	guests:	properly	sign	the	kernel	modules	(bug	#12608)

Linux	hosts	/	guests:	Linux	4.5	fixes	(bug	#15251)

Linux	hosts	/	guests:	Linux	4.6	fixes	(bug	#15298)

Linux	Additions:	added	a	kernel	graphics	driver	to	support	graphics	when
X.Org	does	not	have	root	rights	(bug	#14732)

Linux/Solaris	Additions:	fixed	several	issues	causing	Linux/Solatis	guests
using	software	rendering	when	3D	acceleration	is	available

Windows	Additions:	fixed	a	hang	with	PowerPoint	2010	and	the	WDDM
drivers	if	Aero	is	disabled

15.26.	Version	5.0.16	(2016-03-04)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	a	problem	which	could	lead	to	a	wrong	guest	behavior	on
AMD	CPUs	(bugs	#14831	and	#15186)

GUI:	don't	try	to	synchronize	the	HID	LEDs	if	the	VM	window	is	not
active	or	if	it's	minimized	(Windows	/	Mac	OS	X	hosts	only;	bug	#14302)

GUI:	prevent	a	crash	during	startup	under	rare	conditions

GUI:	sub-menu	option	to	disable	the	guest-OS	type	overlay	in	the
application	dock	icon	on	Mac	OS	X

GUI:	position	off-screen	windows	to	be	fully	visible	again	on	relaunch

GUI:	hide	the	VT-x/AMD-V	checkbox	if	raw-mode	is	not	supported
(usually	Mac	OS	X	hosts;	bug	#15178)

PC	speaker	passthrough:	new	experimental	feature,	available	on	Linux	host
only

Audio:	several	fixes	for	Mac	OS	X	hosts	+	guests

Audio:	properly	handle	default	audio	device	changes	(Windows	hosts)

USB:	serveral	fixes	for	the	xHCI	controller	(e.g.	for	webcam	passthrough)

BIOS:	fixed	int15/AH=83/AL=00	function	(4.2.0	regression)

iPXE:	enable	the	HTTP	download	protocol	on	non-Linux	hosts	(bug
#13628)

Shared	folders:	fixed	a	failure	to	load	the	saved	state	under	certain
circumstances	(bug	#6314)

Guest	Control:	added	support	for	(cached)	Active	Directory	authentication
in	case	the	domain	controller	is	not	reachable	(anymore)

Serial	ports:	raised	the	number	of	serial	ports	per	VM	from	2	to	4	(bug
#9109)

Serial	ports:	fix	for	the	TCP/IP	backend	(Windows	hosts	only;	bug	#15188)

SDK:	make	the	Python	webservice	API	binding	work	again	(5.0	regression)

Seamless	mode:	fixed	a	crash	under	certain	circumstances	(bug	#15106)

Linux	hosts:	fixed	the	/sbin/rcvboxdrv	script	as	well	as	the	missing	shebang
in	two	scripts	(bugs	#15055	and	#15057)

Linux	hosts:	properly	uninstall	Python	files	installed	by	the	.run	installer

Windows	hosts:	hardening	fix	required	for	recent	Windows	insider	builds
(bug	#14052)

Windows	hosts:	fixed	Python	installation	path	(bug	#13131)

Windows	hosts:	support	MTU	larger	than	2	KB	with	bridged	networking
(bug	#15140)

Windows	hosts	/	guests:	properly	sign	binaries	using	a	sha-256	certificate
(bug	#15054)

Windows	Additions:	fixed	guest	property	enumeration	of	logged-in	users

Windows	Additions:	fixed	sporadical	failure	of	the	graphics	driver	in
Windows	10	guests	(bug	#14409)

Windows	Additions:	under	rare	circumstances	no	mouse	movement	events
were	delivered	to	the	guest

15.27.	Version	5.0.14	(2016-01-19)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	properly	limit	the	number	of	VCPUs	to	the	number	of	physical	cores
on	Mac	OS	X	(bug	#15018)

Audio:	fixed	a	bug	which	prevented	loading	a	saved	state	of	a	saved	guests
with	HDA	emulation	(5.0.12	regression;	bug	#14981)

Audio:	don't	crash	if	the	backend	is	unable	to	initialize	(bug	#14960)

Audio:	fixed	audio	capture	on	Mac	OS	X	(bug	#14386)

Storage:	fixed	a	possible	crash	when	attaching	the	same	ISO	image	multiple
times	to	the	same	VM	(bug	#14951)

BIOS:	properly	report	if	two	floppy	drives	are	attached

USB:	fixed	a	problem	with	filters	which	would	not	capture	the	device	under
certain	circumstances	(5.0.10	regression;	bug	#15042)

ExtPack:	black-list	Extension	Packs	older	than	4.3.30	due	to	incompatible
changes	not	being	properly	handled	in	the	past

Windows	hosts:	fixed	a	regression	which	caused	robocopy	to	fail	(bug
#14958)

Linux	hosts:	properly	create	the	/sbin/rcvboxdrv	symbolic	link	(5.0.12
regression;	bug	#14989)

Mac	OS	X	hosts:	several	fixes	for	USB	on	El	Capitan	(bug	#14677)

Linux	Additions:	fixes	for	Linux	4.5	(bug	#15032)

15.28.	Version	5.0.12	(2015-12-18)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	fixed	wrong	scrolling	behaviour	in	the	VM	selector	window	when	a
VM	item	is	dragged	out	of	the	chooser-pane	area

GUI:	fixed	the	validation	of	IPv6	port-forwarding	rules

GUI:	suppress	the	first-run	wizard	if	a	CD/DVD	medium	is	inserted	using
the	selector	UI

GUI:	fixed	the	Ctrl+Break	key	sequence	scan	codes	(bug	#14927)

GUI:	improved	handling	of	text	selection	mouse	pointer	(bug	#750)

Host	services:	fixed	a	crash	during	VM	shutdown	under	rare	conditions
(5.0.6	regression;	bug	#14841)

Shared	folders:	fixed	a	sharing	violation	if	a	file	is	opened	to	check	the
attributes	(Windows	hosts	only;	bug	#14450)

Webcam:	passthrough	fix	for	certain	devices	(Mac	OS	X	hosts	only)

XHCI:	fixed	broken	emulation	if	software	virtualization	is	used

XHCI:	several	fixes

3D:	fixed	state	handling	under	certain	conditions	(bug	#13487)

Audio:	several	fixes

BIOS:	added	LBA64	support	for	being	able	to	boot	from	huge	hard
disks(bug	#7415)

EFI:	fix	for	Windows	10	guests

ExtPack:	before	installing	an	Extension	Pack	check	if	there	are	VMs
running	to	prevent	file	system	locking	issues

rdesktop-vrdp:	source	code	tarball	fixes

Windows	hosts:	fixed	hang	when	using	VBoxAuthSimple	library	for	VRDP
external	authentication	(bug	#14931)

Windows	hosts:	fixed	a	regression	which	prevented	it	to	attach	to	a	physical
network	adapter	having	TCP/IP	disabled	(bug	#14578)

Windows	hosts:	fixed	a	regression	which	caused	multi-port	adapters	to	be
shown	as	a	single	adapter	(bugs	#14558,	#14622)

Windows	hosts:	fixed	a	regression	which	caused	created	host-only	adapters
to	not	appear	in	the	list	(bug	#14437)

Windows	hosts:	fixed	host-only	adapter	creation	issues	related	to	Windows
10	(bugs	#14040,	#14545)

Linux	hosts:	.desktop	file	compatibility	issue	(bug	#14808)

Linux	hosts	/	guests:	fixes	for	RHEL	7.2	(bug	#14866)

Linux	hosts:	the	command	for	recompiling	the	host	kernel	modules	was
changed	again,	to	/sbin/rcvboxdrv	setup	(bug	#14723)

Linux	hosts:	some	fixes	for	PCI	passthrough	(still	highly	experimental)

Linux/Mac	OS	X	hosts:	fixed	a	VM	hang	during	startup	under	certain
circumstances	(bug	#14933)

Solaris	hosts:	added	Python	2.7	bindings

Mac	OS	X	hosts:	fixed	a	possible	crash	when	the	default	input	or	output
audio	device	changes

Mac	OS	X	hosts:	fixed	a	panic	under	certain	conditions

Linux	Additions:	prevent	the	compiler	from	doing	dead-code	elemination
on	vital	code	in	guest	/	host	communication	(bug	#14497)

Linux	Additions:	when	mounting	a	shared	folder,	explicitly	pass	the	share
name	so	that	/proc/mounts	contains	this	name	instead	of	'none'

Linux	Additions:	workaround	for	a	systemd	problem	in	conjunction	with
SELinux	which	prevented	to	properly	enable	the	'vboxadd'	service	during
while	upgrading	the	Additions

15.29.	Version	5.0.10	(2015-11-10)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	improved	support	for	certain	Intel	Atom	CPUs	(bug	#14773)

VMM:	system	register	emulation	fix	(5.0	regression;	bug	#14515)

GUI:	fixed	immediate	screenshot	issue	(bug	#14108)

GUI:	fixed	another	3D	overlay	window	reparenting	issue	when	the	VM	is
switched	to	full-screen	mode	on	X11	hosts

GUI:	fixed	help	index	(bug	#14722)

GUI:	fixed	state	synchronization	issue	in	the	VM	manager	window	when
VM	was	paused	from	its	runtime	window

Audio:	fixed	suspending/resuming	audio	streams	on	VM	pause/unpause
(bug	#14784)

Audio:	properly	reset	AC'97	audio	streams,	otherwise	there	is	silence	until	a
non-48	kHz	stream	is	played

Audio:	fixed	a	small	emulation	quirk	of	the	AD1980	codec	of	the	HDA
device	to	make	recent	linux	guests	work	(bug	#14653)

USB:	serveral	fixes	for	the	xHCI	controller

USB:	fixed	a	crash	under	certain	conditions	on	hosts	with	Linux	kernels
older	than	version	3.3

USB:	better	identification	of	certain	USB	devices

NAT:	support	TCP	in	DNS	proxy	(bug	#14736)

NAT	Network:	fixed	sporadic	crashes	on	Windows	hosts	(bug	#13899)

API:	when	creating	differencing	images	(e.g.	as	part	of	a	snapshot	or

cloning	a	VM)	use	the	same	disk	image	variant	as	the	parent	image	if
possible,	which	means	that	e.g.	a	diff	image	for	a	VMDK	image	split	into	2
GB	files	will	also	be	split	(bug	#14764)

API:	event	queue	handling	fixes	preventing	loss	of	certain	events	at	runtime
(e.g.	new	webcam	attached),	particularly	important	on	Mac	OS	X	hosts

Webcam:	passthrough	fix	for	certain	devices	(Windows	hosts	only)

VBoxManage:	don't	crash	on	snapshot	restorecurrent	/	edit	if	the	VM	has
no	snapshots

VBoxManage:	don't	crash	on	controlvm	addencpassword	(bug	#14729)

Mac	OS	X	hosts:	use	the	correct	kernel	on	certain	hosts

Windows	hosts:	fixed	VRDP	external	authentication

Windows	hosts:	allow	to	use	a	shared	folder	path	with	extended-length	path
prefix	(5.0	regression;	bug	#14651)

Windows	hosts:	fix	a	crash	in	the	netfilter	host	driver	under	certain
conditions	(bug	#14799)

Windows	host	installer:	documented	and	fixed	public	properties	which	can
be	used	to	control	the	installation	to	some	extent

Windows	host	installer:	fixed	not	starting	the	actual	installation	when
showing	the	version	information	or	help	dialogs

X11	Additions:	added	basic	support	for	X.Org	Server	1.18	(3D	requires
additional	fixes)

15.30.	Version	5.0.8	(2015-10-20)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	Mac	OS	X:	Restore	green	zoom	button	for	VM	windows	(it	was
hidden	in	previous	release	to	avoid	native	full-screen	issues).	For	Yosemite
and	El	Capitan	this	button	should	work	accordingly	to	the	Apple	HIG:	Full-
screen	by	default,	maximize	if	the	user	holds	the	Option	key

Serial	ports:	fixed	wrong	IRQ	number	for	the	first	serial	port	in	the	ACPI
tables	(5.0.6	regression;	bug	#14659)

API:	fixed	a	5.0	regression	in	VBoxManage	setproperty	defaultfrontend
(bug	#14696)

VBoxManage/vbox-img:	conversion	to	RAW	images	could	result	in	a	disk
image	containing	all	zeroes

Linux	hosts:	several	fixes	for	systemd	integration	in	.deb	/	.rpm	packages
(e.g.	bug	#14665).	The	command	for	recompiling	the	host	kernel	modules
was	changed	to	/sbin/vboxconfig

Linux	hosts:	make	host-only	interfaces	report	operstate	UP	only	when	they
have	VMs	attached	(bug	#14526)

Mac	OS	X	hosts:	fix	bpf	capture	and	accounting	of	traffic	on	bridged	and
host-only	interfaces	(bug	#14553)

Windows	guests:	fixed	3D	rendering	issues	on	high	resolution	displays

Windows	Additions:	fixed	problems	with	3D	acceleration	on	Windows
hosts	with	Intel	HD	graphics	(bug	#14670)

Linux	Additions:	fix	service	starting	on	Debian	systems	with	systemd
installed	but	not	in	use	(bug	#14683)

15.31.	Version	5.0.6	(2015-10-02)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	the	update	check	now	uses	the	HTTP	system	proxy	settings	by	default

GUI:	About	dialog	improvements.	Copyable	version	text,	do	not	close
dialog	on	mouse-clicks	and	focus	losing,	explicit	close	button	at	the	bottom
of	dialog	and	disabled	close	button	fix	on	OS	X.	(bugs	#9912,	#12749)

GUI:	fixed	bug	when	re-assigning	shortcuts	(bug	#14565)

GUI:	fixed	default	focus	button	in	message-box	dialogs	(bug	#14486)

GUI:	fixed	settings	dialog	which	is	opened	if	the	network	settings	need	to
be	changed	at	VM	startup	(5.0	regression;	bug	#14601)

GUI:	fixed	crash	during	VM	start	if	an	early	error	message	needs	to	be
shown,	for	example	Linux	kernel	modules	not	present	(bug	#14646)

Bridged	Networking:	fixed	handling	of	guest	DHCP	requests	without	UDP
checksum	when	bridging	to	a	wireless	interface	(bug	#14615)

Audio:	latency	fixes	(Windows	hosts	only;	bug	#4088)

Guest	Control:	correctly	set	USERNAME	and	USERPROFILE	environment
variables	(Windows	guests	only)

Guest	Control:	several	fixes

API:	properly	restore	NAT	port	forwarding	rules	when	reverting	to	a
snapshot

Parallel	ports:	Several	fixes	allowing	to	enable	two	parallel	ports	for	a	VM

VBoxManage:	fixed	wrong	output	of	debugvm	show	command

VBoxManage:	fixed	hang	when	specifying	logging	groups	with	debugvm
log	starting	with	h,	for	example	hex

Windows	hosts:	renamed	VBoxStartup.log	to	VBoxHardening.log	and
provide	this	log	file	in	the	GUI	log	viewer

Windows	hosts:	fixed	a	small	memory	leak	in	the	Windows	host	interface
driver	(VBoxNetAdp)	which	caused	a	BSOD	if	the	driver	verifier	is
enabled	(bug	#14562)

Windows	hosts:	fixed	a	failure	to	start	VMs	on	hosts	where	dsound.dll	is
not	available	(bug	#14574)

Windows	hosts:	another	fix	for	VERR_LDR_MISMATCH_NATIVE	errors
(bug	#14579)

Windows	hosts:	fixed	host-to-guest	communication	with	bridged
networking	(bugs	#14326,	#14457)

Windows	hosts:	fixed	broken	data	receiving	from	the	serial	device	with	the
named	pipe	backend	if	Kaspersky	AV	is	installed

Linux	hosts:	Linux	4.3	compile	fixes

Linux	hosts:	installer	fix	for	certain	systems	(bug	#14627)

Linux	hosts	/	guests:	native	systemd	support	for	the	host/guest	installer
scripts.	The	scripts	for	re-compiling	the	kernel	modules	are	now	located	at
/sbin/rcvboxdrv	(host)	and	/sbin/rcvboxadd	(Guest	Additions)

Mac	OS	X	hosts:	GUI-related	fixes	for	El	Capitan

Mac	OS	X	hosts:	fixed	a	problem	with	capturing	USB	devices	under	El
Capitan

Mac	OS	X	hosts:	allow	colon	character	on	shared	folders	(bug	#14554)

Linux	Additions:	properly	set	the	VBoxService	process	ID	in	the	PID	file
(bug	#14571)

Linux	Additions:	Guest	Control	fixes	(bug	#14573)

Windows	Additions:	fixed	shutting	down	VBoxTray	when	running	with

older	VirtualBox	host	versions

Windows	Additions:	fixed	video	playback	with	VLC	and	Windows	Media
Player	when	the	WDDM	driver	is	used	and	3D	is	not	used

Windows	Additions:	prevent	a	possible	VLC	crash	when	the	WDDM	driver
is	used	and	3D	is	enabled	by	implementing	YV12	surfaces

15.32.	Version	5.0.4	(2015-09-08)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	an	issue	with	Windows	10	guest	kernel	debugging	over	the
network	for	Hyper-V	paravirtualized	VMs

VMM:	fixed	a	bug	which	prevented	reading	the	saved	state	of	the	'PATM'
unit	from	VirtualBox	4.3.x	(bug	#14512)

GUI:	changed	default	OS	type	for	Windows	from	Windows	XP	to	Windows
7

GUI:	added	another	pre-defined	guest	screen	resolution	(bug	#14384)

GUI:	fixed	update	check	which	was	broken	due	to	changing	the	location	of
the	root	certificates	(bug	#13096)

GUI:	fixed	issues	with	synchronization	of	Caps	lock	/	Num	lock	/	Scroll
lock	on	Windows	hosts	(bug	#14302)

GUI:	don't	crash	during	VM	shutdown	if	2D	video	acceleration	and	3D
support	are	enabled	(Mac	OS	X	hosts	only)

GUI:	several	seamless	fixes	for	certain	X11	window	managers,	also	when
used	in	multi-screen	setups

GUI:	Log	window	size,	position	and	cursor-position	fixes

Audio:	fixed	playing	leftover/deprecated	audio	samples

Audio:	fixed	playing	audio	after	suspending	the	host	(5.0	regression;	Linux
hosts	using	the	ALSA	backend)

Audio:	fixed	playing	short	audio	samples	which	were	chopped	off	formerly

Audio:	fixed	distortions	on	OS	X	when	the	sample	rate	of	the	guest	stream
and	host	device	don't	match

Storage:	fixed	raw	disk	access	and	flat	VMDK	image	access	which	would
be	always	opened	readonly	(5.0.2	regression;	bugs	#14425,	#14461)

Storage:	fixed	initial	encryption	of	VDI	images	after	they	were	compacted
(bug	#14496)

VGA:	fix	for	certain	graphics	modes	(bug	#14516)

NAT:	don't	freeze	while	the	VM	is	paused	if	the	network	attachment	mode
is	changed	from/to	NAT	with	activated	port	forwarding

OVF:	fixed	duplicate	USB	controller	entries	in	exported	OVA/OVF	(bug
#14462)

Shared	Folders:	fixed	a	path	separator	issue	(bug	#14434)

Drag	and	drop:	fixed	crashes	on	OS	X	hosts	when	doing	host-to-guest
transfers

VBoxManage:	another	attempt	to	not	deny	changing	the	network	adapter
type	at	VM	runtime	(5.0	regression;	bug	#14308)

VBoxManage:	fixed	broken	guestcontrol	<VM-Name>	list	command	(5.0
regression)

VBoxManage:	fixed	broken	Guest	Control	stdout/stderr	output	(5.0
regression)

Mac	OS	X	hosts:	fixed	remaining	problems	with	activated	SMAP
(Broadwell	and	later;	bug	#14412)

Mac	OS	X	hosts:	fixed	broken	3D	support	(5.0.2	regression;	bug	#14476)

Linux	hosts:	Linux	4.2	fix

Linux	hosts:	don't	crash	on	older	Linux	distributions	if	the	DBus	service
isn't	running	(bug	#14543)

Windows	hosts:	fixed	the	VERR_LDR_MISMATCH_NATIVE	error	message
(bug	#14420)

Windows	hosts:	fix	for	Windows	10	build	10525	and	later	(bug	#14502)

Windows	hosts:	fixed	network	adapter	enumeration	on	Windows	10	(bug
#14437)

Windows	hosts:	prevent	intermittent	host	network	disconnects	during	VM
start/shutdown	with	bridged	networking	(bug	#14500)

Windows	Additions:	fixed	the	call	to	the	memory	allocation	function	(bug
#14415)

Linux	Additions:	be	more	forgiving	if	the	compilation	of	the	vboxvideo
module	fails	(bug	#14547)

X11	Additions:	fixed	a	number	of	small	issues	with	dynamic	resizing	and
full-screen	and	seamless	modes

15.33.	Version	5.0.2	(2015-08-13)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	added	support	for	guest	crash	report	MSRs	with	Hyper-V
paravirtualization

VMM:	fixed	an	issue	causing	artificially	high	load	averages	on	Linux	hosts

VMM:	fixed	a	kernel	panic	with	thread-context	hooks	caused	by
incompatible	changes	made	to	Linux	4.2	kernels

VMM:	fixed	a	saved	state	issue	with	VT-x/AMD-V	disabled	(5.0
regression;	bug	#14304)

VMM:	fixed	VERR_SUPDRV_TSC_DELTA_MEASUREMENT_FAILED
Guru	Meditations	on	certain	AMD	CPUs	(5.0	regression;	bug	#14370)

VMM:	fixed	a	crash	while	creating	a	guest	core	dumps	via	the	VM	debug
facility	(5.0	regression)

VMM:	This	release	has	AVX2	passthrough	disabled	on	every	host	and	AVX
passthrough	disabled	for	64-bit	VMs	on	32-bit	hosts.	This	will	be	properly
fixed	in	a	future	5.0.x	maintenance	release	(see	e.g.	bug	#14262)

GUI:	fixed	rare	hang	and	crash	on	VM	shutdown/poweroff

GUI:	X11:	fixed	few	crashes	caused	by	the	Qt	alien	widgets	feature

GUI:	X11:	fixed	various	mini-toolbar	geometry	quirks	like	positioning,	z-
order,	transparency	issues	on	certain	window	managers	(bug	#14257)

GUI:	X11:	fixed	mini-toolbar	minimize	button	issue	under	certain	window
managers	(bug	#14284)

GUI:	VM	menu	actions	availability	should	now	be	properly	updated	on
full-screen/seamless/scaled	mode	switches

GUI:	disk	encryption	password	validation	should	be	performed	when	user

confirmed	the	password,	not	after	each	entered	symbol

GUI:	do	not	change	the	VM/group	selection	in	the	VM	Manager	to	the
newly	created	VM	if	it	was	created	by	another	client	(e.g.	VBoxManage)

GUI:	Mac	OS	X:	do	not	treat	'almost	maximized'	VM	windows	as
'maximized',	watch	for	the	strict	window	geometry	instead

GUI:	improve	the	quality	in	scaled	mode	under	some	circumstances	(5.0
regression;	bug	#14303)

VBoxManage:	do	not	deny	changing	the	network	adapter	type	at	VM
runtime	(5.0	regression;	bug	#14308)

VRDP:	allow	Windows	10	RDP	clients	(bug	#14216)

Audio:	fix	a	possible	crash	on	VM	process	termination	(5.0	regression)

Storage:	improved	raw	disk	access	on	OS	X	by	unmounting	any	accessed
volume	before	first	use	and	prevent	any	mount	attempt	by	the	host	(bug
#14219)

3D:	basic	support	for	saving/restoring	display	lists

Drag	and	drop:	fixed	guest	to	host	transfers	on	OS	X	hosts

Drag	and	drop:	fixed	memory	leak	on	Windows	guests

Shared	Folders:	fixed	a	problem	with	accessing	CIFS	shares	(bug	#14252)

Shared	Folders:	improved	path	conversion	between	hosts	and	guests	with
different	path	separators	(bug	#14153)

API:	skip	resetting	of	immutable	media	when	the	VM	in	saved	state	is
started	(bug	#13957)

API:	fixed	method	for	setting	medium	IDs	which	used	zero	(invalid)
UUIDs	instead	random	(valid)	UUIDs	if	no	UUIDs	were	passed	(bug
#14350)

API:	for	Windows	host	fix	detection	of	API	client	crashes	which	have	a

session	open

OVF:	properly	export	all	VBox	features	including	the	setting	for
paravirtualization	(bug	#14390)

Mac	OS	X	hosts:	El	Capitan	USB	fixes

Windows	hosts:	fixed	crash	when	opening	Windows	dialogs	from	the	VM
process	on	Windows	10	(bug	#14351)

Windows	hosts:	fixed	host-only	adapter	creation	issues	on	Windows	10
(bug	#14040)

Windows	hosts:	fixed	audio	on	Windows	10	(bug	#14432)

Linux	hosts:	more	fixes	for	activated	SMAP	on	Linux	3.19	and	newer
(Broadwell	and	later;	bug	#13961)

Linux	hosts:	check	then	name	space	before	attaching	to	a	host	network
interface	(bug	#13795)

Linux	Additions:	Linux	4.2	fixes	(bug	#14227)

Linux	Additions:	improved	the	performance	of	stat()	to	speed	up	certain
file	operations	on	shared	folders

Windows	Additions:	fixed	a	potential	crash	in	the	WDDM	driver	with
Windows	10	(bug	#14190)

Solaris	Additions:	added	support	for	X.Org	Server	1.17

X11	Additions:	various	seamless	mode	fixes,	including	invisible	windows
under	LXDE

15.34.	Version	5.0.0	(2015-07-09)

This	is	a	major	update.	The	following	major	new	features	were	added:

Paravirtualization	support	for	Windows	and	Linux	guests	to	improve	time-
keeping	accuracy	and	performance	(see	Section	10.4,	“Paravirtualization
providers”)

Make	more	instruction	set	extensions	available	to	the	guest	when	running
with	hardware-assisted	virtualization	and	nested	paging.	Among	others	this
includes:	SSE	4.1,	SSE4.2,	AVX,	AVX-2,	AES-NI,	POPCNT,	RDRAND
and	RDSEED

xHCI	Controller	to	support	USB	3	devices	(see	Section	3.11.1,	“USB
settings”)

Drag	and	drop	support	(bidirectional)	for	Windows,	Linux	and	Solaris
guests

Disk	image	encryption	(see	Section	9.31,	“Encryption	of	disk	images”)

VMs	can	now	be	started	in	separate	mode.	The	VM	process	is	started
headless	while	the	frontend	runs	as	a	separate	process	which	can	be
terminated	without	stopping	the	VM

GUI:	VM	guest-content	scaling	support	(including	3D	acceleration)

GUI:	New	User	Interface	settings	page	for	customizing	status-bar,	menu-
bar	and	guest-content	scaling

GUI:	New	Encryption	settings	tab	for	customizing	encryption	options	for
disk	images

GUI:	HiDPI	support	including	application	icons	and	optional	unscaled
HiDPI	output	on	Mac	OS	X	(including	3D	acceleration)

GUI:	Hotplugging	support	for	SATA	disks

New,	modular	audio	architecture	for	providing	a	better	abstraction	of	the

host	audio	backends

Support	for	the	NDIS6	networking	framework	on	Windows	(default	on
Vista	and	later)

In	addition,	the	following	items	were	fixed	and/or	added:

VMM:	improved	timing	on	Solaris	hosts	with	older	VT-x	hosts	without
preemption	timers

VMM:	further	improvements	for	TSC	frequency	measurements	and	guest
timekeeping

VMM:	debug	facility	now	includes	the	guest	CPU's	FPU/SSE/extended
state	in	the	core	dump

VMM:	fixed	a	hang	under	rare	conditions	on	32-bit	hosts

VMM:	several	fixes

GUI:	improved	HID	LEDs	synchronization	for	Mac	and	Windows	hosts.
The	physical	LEDs	state	now	restored	together	with	the	VM	state

GUI:	take	the	guest	screen	aspect	ratio	into	account	for	the	preview	window

GUI:	provide	direct	access	to	storage	media	in	the	VM	selector

GUI:	allow	to	save	the	VM	state	from	the	selector	even	if	the	VM	is	already
paused

VBoxManage:	when	exporting	an	appliance,	support	the	suppression	of
MAC	addresses,	which	means	they	will	be	always	recreated	on	import,
avoiding	duplicate	MAC	addresses	for	VMs	which	are	imported	several
times

VBoxManage:	now	supports	renaming	storage	controllers	and	USB
controllers

Guest	Control:	major	overhaul,	for	example	fixing	wrong	parameter
quoting	(bug	#13157)

USB:	added	USB	traffic	capturing	(see	Section	9.29,	“Capturing	USB
traffic	for	selected	devices”)

Made	resizing	X11	guests	work	more	reliably

API:	block	the	removal	of	the	current	snapshot	if	it	has	child	snapshots
(only	relevant	for	VMs	without	snapshottable	hard	disks,	their	presence
always	prevented	removal),	which	resulted	in	VM	config	corruption

API:	mark	VM	configs	with	snapshots	but	without	current	snapshot	as
inaccessible,	as	this	combination	is	nonsense

API:	fix	information	for	some	automatically	generated	events	(only	with
XPCOM,	Windows	host	was	not	affected),	which	caused	errors	when
getting	some	of	the	attributes	over	the	webservice	(bug	#12379)

API:	fix	crashes	in	Java	API	clients	using	the	XPCOM	binding,	happened
with	output	parameters	only	(bug	#11232)

API:	a	number	of	settings	(e.g.	network	settings)	can	now	also	be	changed
when	the	VM	is	in	saved	state

API:	fixed	incorrect	resuming	of	VMs	on	host-resume	unless	they	were
previously	paused	due	to	a	host-suspend

API:	don't	lose	the	saved	state	and	"current	state	changed"	flag	during
cloning	of	a	VM

API:	OS	type	description	consistency	fix	(bug	#14162)

VBoxSVC:	don't	keep	the	support	driver	permanently	open

Main/Properties:	properly	drop	transient	guest	properties	when	the	VM	is
powered	off

VRDP:	fixed	a	couple	of	races	which	may	cause	a	crash	during	VM
poweroff

ExtPack:	don't	fail	if	the	TMP	directory	contains	non-latin1	characters	(bug
#14159)

3D:	fix	potential	race	in	which	might	cause	a	crash	on	VM	termination

3D:	fixed	a	possible	memory	leak	in	the	host	service

Serial:	new	TCP/IP	backend	(see	Section	3.10,	“Serial	ports”)

Storage:	added	USB	mass	storage	device	class	(see	Section	5.1,	“Hard	disk
controllers:	IDE,	SATA	(AHCI),	SCSI,	SAS,	USB	MSD,	NVMe”)

Storage:	added	vbox-img	standalone	tool	for	direct	manipulation	of	virtual
hard	disk	images	without	VBoxManage

Storage:	fixed	crash	as	a	result	of	I/O	errors	in	certain	conditions	(bug
#13105)

NAT:	fixed	several	potential	crashes

NAT:	don't	forcibly	reset/drop	all	connections	when	the	link	goes	down

Netsniffer:	properly	handle	changing	of	the	trace	file	name	at	VM	runtime

Audio:	fixed	audio	output	and	input	when	changing	the	default	audio
device	more	than	once	on	OS	X

Audio:	fixed	audio	input	on	OS	X	under	certain	circumstances

ICH9:	fixed	the	interrupt	disable	logic	for	MSI	interrupts;	should	fix	old
Linux	guests	with	AHCI

USB:	improve	playback	with	USB	sound	devices	attached	to	the	emulated
OHCI	controller

Audio:	provide	Linux	guests	a	different	AC'97	audio	codec	type	so	Linux
ALSA	does	not	mis-detect	the	link	speed	(default	for	new	VMs)

BIOS:	fix	for	booting	from	SCSI	CD/DVD	media

BIOS:	fix	for	reads	partially	beyond	end	of	disk	(bug	#14021)

VRDP:	fixed	listening	for	IPv6	on	some	systems	(bug	#14038)

rdesktop-vrdp:	upgraded	to	version	1.8.3

Linux	hosts:	fixed	a	bug	which	made	the	netfilter	driver	ignore	certain
events	(bug	#12264)

Mac	OS	X	hosts:	El	Capitan	fixes

Mac	OS	X	hosts:	fixed	a	bug	which	might	trigger	a	host	kernel	panic	if	a
VM	is	started	and	another	hypervisor	is	active

Solaris	hosts:	Solaris	12	installer	fix

Guest	Additions:	added	a	heartbeat	service	(see	Section	9.30,	“Configuring
the	heartbeat	service”)

Linux	hosts	/	guests:	support	for	Linux	distributions	using	systemd	without
sysv	emulation	(e.g.	ArchLinux)

Windows	Additions/WDDM:	improved	video	memory	utilization	and	allow
more/bigger	guest	screens	with	large	resolutions	(including	HiDPI)

Linux	Additions:	added	-s	parameter	to	mount.vboxsf	to	be	sloppy	with
invalid	parameters

X11	Additions:	fixed	wrong	DPI	value	(bug	#14151)

Mac	OS	X	guests:	limit	the	CPU	family	for	legacy	guests

Solaris	Additions:	added	quiesce	support	to	co-operate	with	Solaris'	fast-
reboot	feature

15.35.	Version	4.3.28	(2015-05-13)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	a	Guru	Meditation	when	rebooting	certain	guests	(for	example
Solaris	doing	fast	reboot)	by	fixing	the	implementation	for	INIT	IPI

VMM:	added	some	information	for	diagnosing	rare
VERR_VMX_INVALID_VMXON_PTR	Guru	Meditations	(VT-x	only)

GUI:	HID	LEDs	sync:	prevent	synchronization	if	VM	window	has	no	focus
(Windows	and	Mac	OS	X	hosts	only)

GUI:	fixed	drag	and	drop	moving	the	cursor	between	guest	screens	on
certain	hosts

3D:	fixed	a	crash	on	restoring	the	VM	state	on	X11	hosts	(bug	#12737)

3D:	fixed	a	crash	on	restoring	the	VM	state

3D:	fixed	a	crash	on	Linux	guest	shutdown	(bug	#12772)

VRDP:	fixed	incompatibility	with	rdesktop	1.8.3

VRDP:	fixed	listening	for	IPv6	on	some	systems	(bug	#14038)

Storage:	don't	crash	if	creating	an	asynchronous	I/O	context	fails	(e.g.	when
starting	many	VMs)	and	show	a	proper	error	message

Floppy:	several	fixes

Audio:	improved	the	behavior	of	the	volume	control	for	the	HD	audio
device	emulation

USB:	increase	the	number	of	supported	drivers	from	3	to	5	(Windows	hosts
only)

PS/2	keyboard:	synchronize	the	LED	state	on	VM	restore	(Windows	and
Mac	OS	X	hosts	only)

NAT	Network:	when	running	multiple	NAT	networks	with	multiple	VMs,
only	stop	the	respective	services	when	stopping	VMs	(bug	#14090)

NAT:	don't	kill	UDP	bindings	on	ICMP	errors	(bug	#13475)

NAT:	bandwidth	limit	now	works	properly	with	NAT	(bug	#11485)

BIOS:	fixed	the	returned	size	value	of	the	VBE	2.0	PMI	function	0Ah
(4.2.0	regression;	bug	#14096)

Guest	Control:	fixed	parameter	quoting	in	Windows	guests	(bug	#13157)

Webcam	passthrough	improvements	for	Linux	(V4L2)	hosts	to	support
more	webcam	models

API:	don't	fail	starting	a	VM	with	VBOX_E_INVALID_OBJECT_STATE
under	certain	conditions	(bug	#13617)

API:	be	more	verbose	on	VBOX_E_INVALID_OBJECT_STATE	if	a
medium	is	attached	to	a	running	VM	(bug	#13560)

API:	fixed	a	bug	which	could	result	in	losing	certain	screen	resize	events
with	multi-monitor	guests

rdesktop-vrdp:	fixed	path	to	the	keymaps	(bug	#12066)

rdesktop-vrdp:	switch	to	version	1.8.3

Windows	hosts:	more	hardening	fixes	(e.g.	bugs	#14051,	#14052)

Linux	hosts:	another	fix	for	activated	SMAP	on	Linux	3.19	and	newer
(Broadwell	and	later;	bug	#13961)

Linux	hosts:	Linux	4.1	compile	fix	(bug	#14081)

Solaris	hosts:	fixed	using	of	VNIC	templates	with	Crossbow	based	bridged
networking	to	be	compatible	with	vanity	interface	names

Mac	OS	X	hosts:	fixed	crash	during	VM	termination	under	rare
circumstances

Windows	Additions/WDDM:	improved	video	memory	utilization	and	allow
more/bigger	guest	screens	with	large	resolutions	(including	HiDPI)

X11	Additions:	prevent	flickering	when	updating	mouse	cursor

Solaris	Additions:	fixed	incorrect	usage	of	'prtconf'	while	installing	Guest
Additions	(Solaris	10	only)

15.36.	Version	4.3.26	(2015-03-16)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

GUI:	in	the	snapshots	pane,	protect	the	age	of	snapshots	against	wrong	host
time	(bug	#13955)

NAT	Network:	fixed	a	bug	which	prevented	to	propagate	any	DNS	name
server	/	domain	/	search	string	information	to	the	NAT	network	(4.3.24
regression;	bugs	#13915,	#13918)

NAT	Network:	don't	delay	the	shutdown	of	VBoxSVC	on	Windows	hosts

Mouse	support:	the	mouse	could	not	be	moved	under	rare	conditions	if	no
Guest	Additions	are	installed	(4.3.24	regression;	bug	#13935)

Storage:	if	the	guest	ejects	a	virtual	CD/DVD	medium,	make	the	change
permanent	(bugs	#9858,	#12885)

VGA:	made	saving	secondary	screen	sizes	possible	in	X11	guests

SDK:	fixed	the	VirtualBox.tlb	file	(4.3.20	regression;	bug	#13943)

rdesktop-vrdp:	make	it	work	with	USB	devices	again	(4.3.14	regression;
bug	#13901)

USB:	fixed	a	possible	BSOD	on	Windows	hosts	under	rare	conditions

iPXE:	enable	the	HTTP	download	protocol	on	non-Linux	hosts	(bug
#13628)

Mac	OS	X	hosts:	don't	panic	on	hosts	with	activated	SMAP	(Broadwell	and
later;	bug	#13951)

Linux	hosts:	don't	crash	Linux	4.0	hosts	(bug	#13835)

15.37.	Version	4.3.24	(2015-03-02)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	emulation	fix	for	the	ENTER	instruction	under	certain	conditions;
fixes	Solaris	10	guests	(VT-x	without	unrestricted	guest	execution)

VMM:	fix	for	handling	NMIs	on	Linux	hosts	with	X2APIC	enabled

NAT/NAT	Network:	fix	connection	drops	when	the	host's	DHCP	lease	was
renewed	(4.3.22	regression;	Windows	hosts	only;	bug	#13839)

NAT:	don't	crash	on	an	empty	domain	list	when	switching	the	DNS	host
configuration	(4.3.22	regression;	Mac	OS	X	hosts	only;	bug	#13874)

PXE:	re-enable	it	on	Windows	hosts	(4.3.22	regression;	Windows	hosts
only;	bug	#13842)

Shared	Folders:	fixed	a	problem	with	Windows	guests	(4.3.22	regression;
bug	#13786)

Audio:	improved	record	quality	when	using	the	DirectSound	audio	backend

VBoxManage:	when	executing	the	controlvm	command	take	care	that	the
corresponding	VM	runtime	changes	are	saved	permanently	(bug	#13892)

Windows	Installer:	properly	install	the	32-bit	version	of	VBoxRes.dll	on
32-bit	hosts	(bug	#13876)

Linux	hosts	/	guests:	Linux	4.0	fixes	(bug	#13835)

OS/2	Additions:	fixed	mouse	integration	(4.3.22	regression;	bug	#13825)

15.38.	Version	4.3.22	(2015-02-12)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	refined	measurement	of	TSC	frequency	on	the	host,	improves
timekeeping	for	guests

VMM:	decreased	CPU	load	resulting	from	guest	MMIO	writes	to	the
virtual	APIC

VMM:	fixed	interception	of	debug	exceptions,	observed	while	using	the
dbx	debugger	on	Solaris	guests	(VT-x	only)

GUI:	3D	overlay	window	positioning	code	improved,	fixed	potential
misplacement	of	3D	accelerated	guest	graphics	content

GUI:	fixed	accident	SSL	authentication	failures	during	update	check	on
Windows	hosts	(bug	#12969)

GUI:	never	send	the	"ACPI	power"	keyboard	scancode	to	the	guest,	we
have	the	ACPI	power	button	for	that

GUI:	was	unable	to	properly	restore	seamless	mode	VM	from
snapshot/saved-state	under	some	circumstances

VBoxHeadless:	don't	crash	if	3D	is	enabled	in	the	VM	settings	(bug
#10250)

ATA:	fixed	several	passthrough	issues	(bugs	#12310,	#1360)

Audio:	fixed	DirectSound	failure	when	the	the	host	has	no	audio	input
device	(Windows	hosts	only;	bug	#9205)

SB16:	fixed	compatibility	issue	(bug	#13769)

Storage:	fixed	broken	CD/DVD	passthrough	when	using	the	IDE	controller
(bug	#12310)

NAT:	new	ping	proxy	for	Windows	hosts	(bug	#11871)

NAT:	Properly	report	outbound	connect(2)	failures	to	guest	with	TCP	RST
or	ICMP	(bug	#10525)

NAT	Network:	no	need	for	frequent	wakeups	in	VBoxNetDHCP	and
VBoxNetNAT	(bug	#11681)

Host-only	adapter:	prevent	Windows	from	creating	an	"Unidentified
network"	(bug	#9688)

Bridged	Networking:	don't	leak	host-to-guest	traffic	to	the	wireless	network
when	bridging	to	a	wireless	interface	(bug	#13714)

Main:	fixed	a	possible	race	when	changing	the	medium	leading	to	a
deadlock	under	rare	conditions	(bug	#13722)

VBoxManage:	fixed	return	code	if	starting	a	VM	failed	(bug	#13773)

Settings:	on	Windows	host,	do	not	use	environment	variable	HOME	at	all,
the	settings	location	is	derived	from	the	user	profile	directory	(bug	#7689)

API:	fixed	2	deadlock	opportunities	related	to	medium	handling	(bugs
#13789,	#13801,	thank	you	Alexander	Urakov)

API:	fixed	bug	in	XPCOM	which	created	too	few	worker	threads,
sporadically	resulting	in	a	deadlock	(bug	#13802,	thank	you	Alexander
Urakov)

SDK:	fixed	a	garbage	collection	leak	in	the	Python	VirtualBox	webservice
API	binding	(bug	#13817)

Linux	hosts:	fixes	for	activated	SMAP	(Broadwell	and	later,	bug	#13820)

X11	guests:	prevent	unwanted	hiding	of	guest	screens	on	multi-monitor
guests	(bug	#13287)

X11	guests:	added	support	for	X.Org	Server	1.17

X11	Additions:	fixed	a	memory	leak	in	VBoxService	if	libdbus	is	available
but	dbus-daemon	isn't	running	(bug	#13770)

Windows	Additions:	prevent	VBox	WDDM	driver	from	loading	if	host
reports	weak	OpenGL	capabilities.	3D	content	now	can	be	shown	over
Remote	Desktop	connection

Winodws	Additions:	some	fixes	for	recent	Windows	10	Previews

Linux	Additions:	fixed	a	compatibility	issue	with	64-bit	Linux	2.4	kernels

Linux	Additions:	fixed	a	potential	use-after-free	when	unloading	the
VBoxGuest	module

Linux	Additions:	Linux	3.19	fixes	(bug	#13741)

15.39.	Version	4.3.20	(2014-11-21)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	reboot	hang	of	32-bit	Windows	SMP	guests	(bugs	#13319,
#13462)

VMM:	proper	Math	Fault	handling	with	certain	legacy	guests	(bug	#9042,
AMD	hosts)

VMM:	fixed	a	Guru	Meditation	VINF_EM_TRIPLE_FAULT	on	older	CPUs
that	don't	support	MSR	bitmaps	(VT-x	only;	bugs	#13034,	#13125,	#13311,
#13425,	#13426,	#13463,	#13585)

GUI:	fix	3D	overlay	window	reparenting	issue	when	VM	goes	to	full-
screen	mode	on	X11	hosts

GUI:	fix	occasional	loss	of	focus	in	full-screen	mode	on	X11	host	systems
(4.3.16	regression)

GUI:	Mac	OS	X:	wizards	should	have	Cancel	button	(bug	#12541)

GUI:	added	a	global	option	to	prevent	automatic	raising	of	the	new	window
by	mouse	move	with	multi-screen	guests	(bug	#8878)

API:	accept	remote	display	port	0	as	the	default	RDP	port	(bug	#8534)

VBoxManage:	fixed	crash	when	executing	showvminfo	command	under
certain	circumstances	(bug	#13190)

ACPI:	fixed	occassional	Guru	Meditations	in	ACPI	timer	code	(4.3.18
regression;	bug	#13521)

EFI:	improved	performance	of	IDE	disk	access

EFI:	fixed	a	bug	in	the	EFI	video	driver	which	prevented	Windows	to	boot
in	UEFI	mode	(bug	#12022)

EFI:	properly	announce	the	amount	of	RAM	for	big	VMs	(bugs	#11103	and

#13211)

Storage:	fixed	a	crash	under	certain	cicrumstances	when	a	medium	was
ejected	from	a	drive	attached	to	the	SATA	controller	without	inserting	a
new	medium	before	pausing	or	closing	the	VM	(4.3.16	regression)

Storage:	fixed	an	interrupt	acknowledge	issue	causing	hanging	guests	or
slower	I/O	(4.3.18	regression)

Storage:	fixed	broken	resume	after	the	VM	was	suspended	due	to	a	full	disk
if	host	I/O	caching	is	used

Storage:	fixed	a	Guru	Meditation	under	certain	conditions	when	using	the
DevLsiLogic	controller	with	VMs	running	in	software	virtualization	mode
(4.3	regression;	bugs	#12254,	#12655,	#12709,	#12774,	#12886)

Guest	Control:	fixed	a	bug	which	might	lead	to	a	crash	during	recursive
copy

SDK:	Java	COM	bindings	fixes

iPXE:	enable	the	HTTP	download	protocol	(bug	#13628)

Runtime:	do	not	use	a	fixed	stack	size	creating	temporary	threads	during
initialization	(bug	#13038)

Windows	hosts:	fixed	more	startup	problems	on	certain	Windows	hosts	due
to	conflicts	with	anti-virus	software;	better	error	reporting	(4.3.14
regression;	bug	#13187)

Windows	hosts:	fixed	DirectSound	host	audio	failure	under	certain
conditions	(bug	#13418)

Windows	hosts:	fixed	additional	cases	of	4.3.14	regression	whereby	AltGr
stopped	working	for	some	people	(bug	#13216)

Windows	Additions:	preserve	guest	monitor	layout	when	resizing	Windows
7	or	newer	guests

Linux	Additions:	Linux	3.18	compile	fixes	(bug	#13515)

15.40.	Version	4.3.18	(2014-10-10)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	a	potential	misbehavior	after	restoring	the	A20	state	from	a
saved	state

GUI:	fixed	full-screen	mode	mini-toolbar	related	regressions	for	different
platforms	and	window	managers	(bug	#13369)

GUI:	X11:	fixed	full-screen	mode	Unity	panels	quirk	caused	by	mini-
toolbar	code	changes	in	last	release	(bug	#13365)

GUI:	X11:	added	possibility	to	use	legacy	full-screen	mode	as	the	new	one
can	cause	multi-screen	issues	under	Unity,	see	Section	9.20.13,	“Requesting
legacy	full-screen	mode”	(bug	#13365)

GUI:	Mac	OS	X:	fixed	full-screen	mode	artifact	causing	black	screen	when
3D	acceleration	was	enabled	on	10.10	Yosemite	hosts	(bug	#13448)

GUI:	Mac	OS	X:	fixed	regression	in	user-space	swiping	from/to	VBox	in
full-screen	mode

GUI:	Mac	OS	X:	fixed	issue	with	switching	to	VBox	in	full-screen	mode
through	Alt+Tab	and	Mission	Control

Storage:	fixed	data	corruption	when	resizing	huge	VHD	images	under
certain	circumstances	(bug	#11960)

Storage:	fixed	a	rare	hang	during	startup	when	the	BIOS	enumerates	the
storage	devices	attached	to	the	SATA	controller

Storage:	follow	the	spec	with	AHCI	interrupt	acknowledge	(bug	#13474)

Storage:	fixed	broken	iSCSI	authentication	(4.3.14	regression;	bugs
#13386,	#13435)

NAT	Network:	properly	parse	port	forwarding	rules	to	allow	UDP	rules

USB:	fixed	a	crash	on	Linux	hosts	with	older	Linux	kernels	(bug	#13400)
and	several	other	fixes

ACPI:	fixed	ACPI	timer	anomalies	(bug	#12076)

Guest	Control:	fixed	a	memory	leak	(bug	#13434)

Main:	when	removing	a	VM,	do	also	remove	the	VBoxStartup.log	file
which	might	exist	on	Windows	hosts	(bug	#13478)

Windows	hosts:	fixed	more	startup	problems	on	certain	Windows	hosts	due
to	conflicts	with	anti-virus	software;	better	error	reporting	(4.3.14
regression;	bug	#13187)

Windows	hosts:	propagate	the	process	startup	information	to	the	child
process	(4.3.14	regression;	bug	#13243)

Mac	OS	X	hosts:	don't	force	using	the	discrete	GPU	(bug	#11111)

Windows	Additions:	some	Windows	10	tweaks

X11	guests:	fix	a	bug	handling	video	driver	display	properties	which
prevented	GNOME	Shell	on	Fedora	21	from	starting

Linux	hosts	/	guests:	fixed	a	few	remaining	warnings	in	the	kernel	log	if
memory	allocation	fails	(bug	#11171)

15.41.	Version	4.3.16	(2014-09-09)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	restoring	32-bit	FPU	state	on	64-bit	capable	VMs	and
restoring	guest	FPU	in	raw-mode	VMs	(bug	#12646;	4.3	regression)

GUI:	properly	restore	normal/scale	mode	guest-screen	size	after	exiting
full-screen/seamless	mode

GUI:	mini-toolbar	should	provoke	less	artifacts/conflicts	with	3D	guest
rendering

GUI:	Mac	OS	X:	Native	full-screen	multi-screen	transition	was	able	to
blackout	host-screens	for	nearly	minute

GUI:	X11:	Modern	window	managers	should	now	use	native	full-screen
multi-screen	mapping	API

GUI:	added	extradata	item	for	configuring	the	mouse	capture	behavior,	see
Section	9.20.12,	“Configuring	automatic	mouse	capturing”	(bug	#3506)

Storage:	fixed	a	VBoxSVC	crash	when	querying	an	iSCSI	target	with
authentication	configured	(4.3.14	regression)

Storage:	fixed	a	rare	data	corruption	during	reads	if	another	allocating	write
is	running	concurrently	and	accesses	the	same	range

Storage:	fixed	a	rare	crash	for	certain	VHD	images	from	other	products

Storage:	fixed	a	rare	release	assertion	when	using	the	AHCI	controller

Floppy:	fixed	read	errors	and	guest	memory	corruption	when	running	under
control	of	QEMM

3D:	added	experimental	support	for	rendering	on	offline	GPUs	for	Mac	OS
X	host

3D:	fixed	white	window	appearing	on	entering	FullScreen	mode	on	Mac

OS	X	host

3D:	fixed	video	recording	support	for	3D	data	regression	(bug	#13073)

3D:	fixes	for	MS	Office	2013	support

3D:	several	fixes

Bridged	Networking:	improved	IPv6	support	when	bridging	to	a	wireless
interface

NAT:	prevent	internal	DNS	service	from	stuck	in	host-resolver	mode	when
host	was	switched	from	one	network	to	another	one	while	host	was	sleeping
(Mac	OS	X	hosts)

NAT:	preserve	DF	(if	possible)	and	TOS	when	proxying	outbound	UDP
datagrams	(bugs	#9440,	#12309)

NAT:	don't	let	multicast	datagrams	out	(bug	#7338)

NAT:	fixed	handling	of	large	incoming	UDP	datagrams	on	Windows	hosts
(bug	#12136)

NAT:	fixed	handling	of	the	RFC	1533	DHCP	PAD	option

NAT	Network:	fixed	inbound	half-close	on	Windows	hosts

NAT	Network:	preserve	IPv4	DF	(if	possible),	TTL,	TOS	and	IPv6	Hop
Limit	when	proxying	outbound	UDP	datagrams

VRDP:	fixed	a	rare	crash	when	using	remote	audio	input

USB:	fixed	several	regressions	from	4.3.14	(bug	#13320)

Audio:	made	the	HDA	sound	emulation	work	with	certain	Mac	OS	X	guests
(e.g.	Mountain	Lion)

Windows	hosts:	fixed	startup	problems	on	certain	Windows	hosts	due	to
conflicts	with	anti-virus	software	(4.3.14	regression;	bug	#13187)

Windows	hosts:	fixed	4.3.14	regression	whereby	AltGr	stopped	working	for

some	people	(bug	#13216)

X11	hosts:	made	the	extra	key	on	Brazilian	Thinkpads	work	(bug	#8745)

X11	hosts:	fixed	a	problem	of	input	focus	cycles	and	immediately	released
key	presses	in	full	screen	mode	(bug	#13238)

Linux	hosts:	fixed	flooding	the	kernel	log	with	USB	related	messages	when
passing	through	certain	USB	devices	to	a	VM	(bug	#13085)

Linux	guests:	stop	applications	crashing	when	drm_wait_vblank	is	called
(bug	#13265)

Linux	guests:	fix	a	crash	in	gnome-session	(bug	#13335)

X11	guests:	do	not	start	VBoxClient	over	an	SSH	connection	(bug	#13107)

X11	guests:	added	support	for	X.Org	Server	1.16	(bug	#13207)

X11	guests:	fixed	a	wrong	parameter	in	the	video	driver	which	caused
problems	with	full-screen	X11	clients	(bug	#2748)

VirtualKD:	introduced	stub/loader	device	for	speeding	up	Windows	kernel
debugging,	details	see	http://virtualkd.sysprogs.org/

http://virtualkd.sysprogs.org/

15.42.	Version	4.3.14	(2014-07-15)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	more	fixes	for	MSR	emulation	on	certain	hardware	(bugs	#12784,
#12949,	#13034)

VMM:	improve	MSI	handling	under	rare	circumstances	(only	relevant	for
the	ICH9	chipset)

VMM:	fixed	#UD	exception	for	64-bit	guests	with	the	EFER.SCE	bit	and
the	SYSCALL	instruction	(VT-x	only;	4.3	regression;	bug	#13008)

VMM:	fixed	timekeeping	after	resuming	SMP	guests

VMM:	properly	wake	up	a	halted	VCPU	on	NMI/SMI

GUI:	fixed	a	potential	crash

GUI:	fixed	stuck	AltGr	key	on	Windows	hosts	(bug	#2537)

GUI:	fixed	a	potential	error	during	the	version	check

GUI:	shortcut	change	should	not	require	Enter/Return	(or	other	trigger)	to
confirm	(bugs	#12828,	#12847,	#12937,	#13087)

GUI:	fixed	update	check	which	was	broken	due	to	changing	the	location	of
the	root	certificates	(bug	#13096)

VBoxManage:	fixed	typo	in	showvminfo	--machinereadable	(bug	#13176)

NAT:	fixed	inbound	half-close	(bug	#13116)

NAT:	fixed	slow	upload	speed	under	certain	conditions	(bug	#10034)

NAT	Network:	fixed	potential	loss	of	inbound	TCP	data

NAT	Network:	fixed	potential	infinite	stalls	of	TCP	connections	over	IPv6

NAT	Network:	fixed	resets	of	TCP	connections	on	Windows	hosts

NAT	Network:	fixed	inbound	half-close	on	Mac	OS	X	hosts

NAT	Network:	fixed	socket	leak	on	Solaris	hosts

NAT	Network:	fixed	ping	of	mapped	host	loopback	on	Mac	OS	X	and
Solaris	hosts,	fixed	proxying	of	IMCP	errors	on	Mac	OS	X

Host-Only	Network:	fixed	SNMP	ifConnectorPresent	value	on	Windows
(bug	#13143)

Storage:	fixed	a	possible	crash	with	CD/DVD	passthrough	under	certain
circumstances

Storage:	fixed	a	crash	when	trying	to	open	an	inaccessible	QED	or	QCOW
image	(bug	#12613)

Storage:	fixed	data	corruption	or	read	errors	under	rare	circumstances

AHCI:	fixed	a	crash	under	rare	circumstances

USB:	performance	fixes

ICH9:	properly	reset	MSI	capability	on	reset

Keyboard:	active	modifier	keys	during	suspend	were	stuck	after	resuming
the	host

3D:	fixed	misbehavior	with	huge	guests	(i.e.	guest	more	than	4GB	guest
memory

3D:	several	fixes

API:	properly	detect	the	Windows	8.1	guest	OS	type	(bug	#13090)

ExtPack:	cleanup	of	dangling	uninstallation	directories

Linux	hosts	/	guests:	compile	fix	for	EL7	(bug	#12638)

Linux	Additions:	made	3D	pass-through	work	with	recent	versions	of	Mesa

in	the	guest	(bug	#12941)

Linux	Additions:	Linux	3.16	fixes	(bug	#13123)

Mac	OS	X	hosts:	when	scanning	for	host	CD/DVD	devices	also	consider
BlueRay	devices

Mac	OS	X	hosts:	fixed	host	shutdown	and	reboot	delay	caused	by	running
VBoxSVC	process	in	some	cases

OS/2	Additions:	fixed	gengradd.dll	library	name	(bug	#12785)

Solaris	Additions:	fixed	permissions	of	files	and	directories	located	on
shared	folders

Windows	host	installer:	fixed	the	need	for	rebooting	Windows	after
installation	or	upgrade,	extended	logging	for	NetFlt/NetAdp	(un)installation

15.43.	Version	4.3.12	(2014-05-16)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	an	occasional	Guru	Meditation	(Mac	OS	X	hosts	only;	bugs
#12727,	#12954)

VMM:	fixed	a	rare	condition	that	would	fail	to	invalidate	guest	TLB	entries
or	would	invalidate	them	when	not	required	(Windows	hosts	only)

VMM:	fixed	a	VERR_NOT_SUPPORTED	Guru	Meditation	seen	with
certain	guests,	e.g.	OpenServer	5.0.7

VMM:	more	fixes	for	MSR	emulation	on	certain	hardware	(bugs	#12240,
#12875)

GUI:	fixed	mouse	positioning	with	mouse	integration	disabled	and	multiple
guest	screens	(Windows	hosts	only;	bug	#9059)

GUI:	fixed	crash	in	VM	manager	(bug	#12878)

GUI:	fixed	crash	under	rare	conditions	on	entering/exiting	full-
screen/seamless	mode

Shared	Clipboard:	don't	stop	working	after	taking	a	snapshot	(bug	#12700)

AHCI:	fixed	a	crash	under	rare	circumstances

API:	fixed	a	hang	during	VM	shutdown	under	rare	conditions

NAT:	fixed	generation	of	malformed	ICMP	error	datagrams	(4.3.10
regression)

NAT:	fixed	potential	crash	in	DNS	proxy

NAT	Network:	don't	drop	port	forwarding	rules	after	some	time

NAT:	fixed	ARP	cache	corruption	and	network	loss	in	Windows	guest
caused	by	iSCSI	service	activity

USB:	improved	check	if	a	storage	device	is	currently	mounted	to	the	host
when	the	device	is	about	to	be	attached	to	the	VM	(Mac	OS	X	hosts	only;
#11038)

3D	support:	several	fixes,	including	better	support	for	Ubuntu	14.04

VRDP:	fixed	a	potential	crash	on	client	disconnect	(bug	#12858)

VBoxSVC:	fixed	a	race	when	a	new	client	is	started	a	few	seconds	after	the
last	client	terminated	(Windows	hosts	only;	bugs	#11309,	#12509)

VBoxSVC:	fixed	VirtualBox.xml	registry	corruption	after	VM	renaming

VBoxSVC:	fixed	a	potential	crash	caused	by	incorrect	USB	device	filter
(Mac	OS	X	hosts	only;	#11038)

Windows	hosts:	partly	support	32-bit	COM	on	64-bit	systems

Windows	host	installer:	implemented	merge	module	(msm)	support

Linux	hosts:	fixed	dependency	of	boot	script	on	older	Debian	systems	(bug
#12262)

Linux	guests:	fix	symbolic	link	to	shared	folder	helper	(bug	#12879)

Linux	Additions:	don't	crash	VBoxService	during	guest	execute	for	users
without	a	password	(bug	#12994)

Linux	Additions:	fixed	a	bug	in	guest	execution	where	the	guest	process
terminated	with	VERR_INTERRUPTED	to	the	host

15.44.	Version	4.3.10	(2014-03-26)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	more	work	on	improving	the	emulation	of	certain	MSR	registers	on
certain	host	CPUs	(e.g.	bugs	#12734,	#12736,	#12744,	#12748,	#12686,
#12770)

VMM:	fixed	single-stepping	for	real-mode	guests	(VT-x	without
unrestricted	guest	execution)	and	some	I/O	instructions	(bug	#12636)

VMM:	fixed	a	potential	problem	with	COW	pages	if	nested	paging	is	not
available

GUI:	Mac	OS	X:	experimental	native	full	screen	support	for	Mountain	Lion
and	Mavericks	(bug	#12292)

GUI:	Mac	OS	X:	removed	the	mini-toolbar	minimize	button	which	doesn't
work	under	Mac	OS	X	full	screen	mode	anyway

GUI:	experimental	HID	LEDs	synchronization	for	Windows	and	Mac	OS	X
hosts:	fixed	keyboard	re-synchronization	if	the	feature	is	disabled	(as	done
by	default;	bug	#12758)

GUI:	fixed	a	potential	crash	when	opening	the	preferences	menu	(bug
#12862)

OVF:	fixed	a	crash	of	the	VirtualBox	Manager	when	re-starting	guest
export	(bug	#12586)

3D	support:	several	fixes

HGCM:	fixed	a	problem	with	saved	states	which	could	cause	several	guest
misbehavior	after	a	VM	was	started	from	a	saved	state

Storage:	fixed	a	bug	preventing	to	compact	differential	snapshots	under
certain	conditions

VBoxSVC:	fixed	a	segmentation	fault	on	Linux	hosts	if	a	very	long	path

exists	under	/dev	(bug	#12760)

API:	fixed	guest	misbehavior	under	certain	conditions	if	a	storage	medium
was	attached	or	removed	at	VM	runtime

Windows	installer:	make	the	--silent	parameter	work	again	(bug	#12764)

Mac	OS	X	Networking:	prevent	local	traffic	(VM-to/from-host)	from
leaking	to	wire	(bug	#12750)

Windows	Additions:	fixed	the	environment	for	guest	processes	(4.3.8
regression;	bug	#12782)

Windows	Additions/WDDM:	fixed	divide	by	zero	exception	with	multiple
guest	screens	under	certain	conditions

Windows	Additions/WDDM:	fixed	crashes	with	2D	video	acceleration
enabled	(4.3.8	regression;	bug	#12745)

Linux	Additions:	install	correctly	on	Ubuntu	guest	systems	with	a	/usr/lib64
directory	(bug	#12513)

X11	Additions:	fix	for	the	VBoxClient	process	not	exiting	correctly	(bug
#12348)	and	consuming	too	much	processor	time

15.45.	Version	4.3.8	(2014-02-25)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	more	work	on	improving	the	emulation	of	certain	MSR	registers
(e.g.	bugs	#12224,	#12544)

VMM:	fixed	a	VERR_INVALID_RPL	Guru	Meditation	when	booting
certain	guests	(bug	#11350)

VMM:	experimental	support	for	SSE	4.1	/	SSE	4.2	passthrough,	see	the
user	manual	how	to	enable	it	(bug	#8651)

VMM:	fix	for	recent	Linux	kernels	with	software	virtualization

GUI:	experimental	HID	LEDs	synchronization	for	Windows	hosts,	see
Section	9.28,	“Support	for	keyboard	indicators	synchronization”

GUI:	warn	the	user	if	the	Oracle	Extension	Pack	is	not	installed	and	the
user	tries	to	activate	the	remote	display	feature	(bug	#9104)

GUI:	make	sure	that	a	minimized	guest	(using	mini	toolbar	in	full	screen	/
seamless	mode)	keeps	the	minimized	state	(bug	#12199)

GUI:	popup	banner's	"do	not	show	this	message	again"	check-box	replaced
with	corresponding	button

GUI:	network	adapter	cables	can	now	be	connected/disconnected	directly
through	the	running	virtual	machine	Devices	/	Network	menu	a	Network
status-bar	indicator

GUI:	the	new	VM	wizard	now	proposes	64-bit	guests	on	64-bit	hosts	by
default;	better	distinction	between	32-bit	OS	types	64-bit	OS	types	(bug
#12533)

GUI:	better	error	message	if	appliance	import	fails	(bug	#12657)

GUI:	allow	to	set	host-combination	to	'None'	using	the	Global	settings	/
Input	page	(bug	#12730)

GUI:	don't	switch	the	guest	to	a	black	screen	during	online	snapshot	merge
(4.3	regression)

VBoxManage:	when	exporting	an	appliance,	support	the	suppression	of
MAC	addresses,	which	means	they	will	be	always	recreated	on	import,
avoiding	duplicate	MAC	addresses	for	VMs	which	are	imported	several
times

AHCI:	fixed	a	VM	hang	during	suspend	under	certain	circumstances

AHCI:	fixed	a	VM	hang	during	online	snapshot	merge	under	certain
circumstances

AHCI:	fixed	a	bug	which	resulted	in	Windows	XP	guest	hangs	if	a	SATA
CDROM	is	attached	(bug	#12417)

AHCI:	fixed	a	Guru	Meditation	under	certain	conditions

AHCI:	ejecting	a	CD/DVD	medium	failed	under	certain	conditions

AHCI:	disk	hotplugging	fixes

NAT:	transparent	handling	of	host	sleep/resume	and	network	configuration
changes	if	the	dnsproxy	is	enabled	or	if	the	hostresolver	is	used	(bug
#12441)

NAT:	fixed	crash	and	misbehaviour	under	some	circumstances	with	ICMP
packets	having	TTL=1

NAT	Network:	fixed	IPv6	reassembly

NAT	Network:	ping	proxy	implemented

OVF:	fixed	reading	of	the	OVF	0.9	section	element	(4.3	regression;	bug
#12345)

OVF:	several	fixes

3D	support:	several	fixes,	multiscreen	fixes	(e.g.	bug	#9124)

3D	support:	include	3D	content	in	captured	videos	(bug	#12666)

3D	support:	include	3D	content	in	captured	screenshot	(bug	#11758)

VGA:	proper	handling	of	legacy	graphics	modes	if	the	Guest	Additions	are
active	(bug	#6649)

USB:	fixed	crash	during	isochronous	transfer	under	rare	circumstances

BIOS:	better	disk	geometry	handling	of	SCSI	drives

API:	fix	crashes	in	Java	API	clients	using	the	XPCOM	binding,	happened
with	output	parameters	only	(bug	#11232)

VBoxSVC:	documented	the	handling	of	host	power	management	events
(see	Section	9.26,	“Handling	of	host	power	management	events”)	and
added	an	extradata	item	for	configuring	the	handling	of	the	battery-low
event	(bug	#9925)

VBoxSVC:	fixed	a	bug	which	could	trigger	a	crash	if	a	VM	snapshot	was
restored	the	second	time	and	the	VM	has	associated	bandwidth	groups	(bug
#12569)

VBoxSVC:	properly	detect	ifconfig	if	located	in	/bin	(bug	#12713)

Shared	Folders:	fixed	a	failure	to	restore	transient	shared	folders	when
starting	a	VM	from	a	saved	state	(bug	#12578)

Mac	OS	X	hosts:	fixed	issue	when	the	application	icon	was	frozen	in	the
dock	if	the	bridging	interface	was	not	connected	to	a	network	(bug	#12241)

Linux	hosts:	also	consider	the	physical	package	ID	when	determining	the
number	of	physical	CPU	cores

Linux	hosts	/	guests:	don't	warn	in	kernel	log	if	memory	allocation	fails
(bug	#11171)

Solaris	hosts:	fixed	the	autostart	SMF	script	(bug	#11720)

Windows	hosts:	fixes	for	non-ANSI	code	page	user	names	and	similar
environment	contents	(bug	#12596)

Windows	hosts	/	guests:	fixed	setting	and	using	a	guest	user's	process
environment	variables	(relevant	for	Guest	Control)

Windows	Additions:	fixed	handle	leaks	in	VBoxTray	(bug	#12563)

Windows	Additions:	fixed	a	crash	while	detecting	active	guest	users

Windows	Additions:	fixed	restoring	backed	up	D3D	files	on	XPDM	->
WDDM	upgrade

Guest	Control:	fixed	setting	and	using	a	guest	user's	process	environment
variables

Linux	Additions:	support	Enterprise	Linux	6.5	kernels	(bug	#12505)

Linux	Additions:	fixed	CPU	hot-remove	on	newer	Linux	kernels

Linux	/	Solaris	Additions:	don't	automount	a	shared	folder	which	is	already
mounted

X11	Additions:	support	X.Org	Server	1.15	(bug	#12623)

15.46.	Version	4.3.6	(2013-12-18)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	a	Guru	Meditation	VINF_EM_TRIPLE_FAULT	caused	by
VMCB	caching	with	nested	paging	on	certain	AMD	CPUs	(bug	#12451)

VMM:	fixed	a	Guru	Meditation
VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_TYPE	while
intercepting	debug	exceptions	(VT-x	only;	bug	#12410)

VMM:	fixed	a	Guru	Meditation	VERR_SVM_UNEXPECTED_EXIT	while
intercepting	debug	register	accesses	(AMD-V	only;	bug	#12481)

VMM:	fixed	a	VERR_SSM_STRUCTURE_MAGIC	error	when	trying	to
load	a	saved	state	made	with	VBox	4.3.4	when	VT-x/AMD-V	is	disabled.
Unfortunately,	VBox	4.3.4	produced	broken	saved	states	for	this
configuration	so	you	have	to	discard	these	states	(bug	#12414)

VMM:	added	a	few	more	MSRs	to	the	whitelist	required	by	certain	guests
(bug	#12245)

GUI:	fixed	deleting	of	inaccessible	VMs	(4.3	regression;	bug	#12205)

GUI:	fixed	warnings	in	VM	settings	/	number	of	guest	processors	(bug
#12480)

Main:	don't	automatically	enable	64-bit	guests	on	64-bit	hosts	if	VT-
x/AMD-V	is	not	available	(bug	#12424)

Main:	always	expose	the	DMI	memory	information	to	Windows	2012
guests	(bug	#12017)

Main:	fixed	occasional	crashes	on	guest	display	resolution	change	(bug
#7063)

Main:	fixed	reporting	back	temporary	name	when	calling
IGuestSession::DirectoryCreateTemp()	(bug	#12498)

API:	fix	for	a	hang	when	launching	a	GUI	VM	through	the	API,	which
crashes	due	to	GUI	unavailability

Storage:	fix	for	BLKCACHE_IOERR	runtime	errors	under	rare
circumstances	(bug	#11030)

Network:	allow	to	start	more	than	5	PCNet	instances	(bug	#12426)

E1000:	if	the	cable	was	disconnected	before	the	guest	initialized	the	device,
the	link	status	was	not	properly	set	to	'down'	after	the	initialization
completed	despite	the	fact	that	there	was	no	connection

3D	support:	fixed	offset	of	guest	3D	image	elements	(Mac	OS	X	Retina
hosts	only;	bug	#11021)

Solaris	hosts:	fixed	accessing	the	host	driver	from	non-global	zones	(4.3
regression;	bug	#12271)

15.47.	Version	4.3.4	(2013-11-29)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fix	for	a	bug	in	the	Local	APIC	emulation	causing	a	BSOD	when
booting	certain	guests	(4.3.0	regression;	bug	#12240)

VMM:	fixed	loading	of	saved	states	if	VT-x/AMD-V	was	disabled	(4.3.2
regression;	bug	#12291)

VMM:	fixed	single-stepping	inside	the	guest	for	certain	instructions	(VT-x
only;	bug	#10947)

VMM:	fixed	a	performance	issue	involving	APIC	accesses	after	rebooting	a
VM	(4.3.0	regression;	VT-x	only;	bug	#12296)

VMM:	fixed	TPR	patching	to	be	enabled	for	32-bit	guests	even	when	the
chosen	guest	type	is	64-bit	(4.3.0	regression;	AMD-V	only)

VMM:	fixed	occasional	VINF_EM_TRIPLE_FAULT	errors	on	hosts
without	the	unrestricted	guest	execution	feature	(bug	#12198)

GUI:	don't	bother	the	user	with	the	BPP	warning	if	no	Guest	Additions	are
installed

GUI:	fixed	machine-window	paint	artifacts	on	VM	reboot	/	guest-screen
resize

GUI:	make	sure	the	assigned	license	and	description	are	attached	to	the
exported	appliance

GUI:	fixed	bugs	in	close	VM	action	restrictions	handling	(bug	#12333)

GUI:	fixed	incorrect	wizards	text	colors	for	some	unusual	look	and	feel
styles	(bug	#11743)

GUI:	should	restore	seamless	mode	as	soon	as	possible	after	VM	reboot	or
shutdown

GUI:	fixes	for	medium	enumeration

GUI:	the	OS	X	hot	corners	were	not	accessible	while	a	VirtualBox	VM	is
running	(Mac	OS	X	hosts	only;	bug	#4139)

GUI:	fixed	an	old	bug	which	bared	the	host	from	cleanly	shutdown	/	reboot
if	the	VM	selector	window	is	open	(Mac	OS	X	hosts	only;	bug	#8254)

Host-only	Network:	fixed	creating	of	host-only	network	interfaces	(4.3.0
regression;	bug	#12182)

NAT:	don't	run	into	an	infinite	loop	in	case	the	host	cannot	access	any	DNS
server	(4.3.0	regression;	bug	#12300)

NAT:	don't	re-connect	the	cable	if	the	DNS	information	changes	and	the
cable	was	disconnected	before	(4.3.0	regression;	bug	#12225)

NAT:	fixed	several	issues	with	automatically	starting	/	terminating	of	NAT
networks	on	VM	start	/	stop	and	configuration	changes

VBoxNetDHCP:	don't	block	prevent	VBoxSVC	from	terminating	(bug
#12264)

2D	Video	acceleration:	fix	crashes	on	presentation	mode	switches	(bug
#9194)

BusLogic:	allow	to	run	VMs	with	more	than	one	BusLogic	SCSI	controller
enabled

Keyboard:	fixed	a	VM	crash	if	a	VM	was	resumed	from	a	saved	state	where
at	least	one	key	was	pressed	(bug	#11289)

VBoxSVC:	fixed	a	heap	corruption	under	certain	conditions	(4.3.0
regression)

VBoxSVC:	fixed	a	race	leading	to	a	hang	during	initialization	(bug	#12349)

OVF:	fixed	import	logic	for	OVF	appliances	containing	multiple	VMs

OVF:	improved	logic	for	finding	an	appropriate	image	format	during	OVF

import

API:	block	the	removal	of	the	current	snapshot	if	it	has	child	snapshots
(only	relevant	for	VMs	without	snapshottable	hard	disks,	their	presence
always	prevented	removal),	which	resulted	in	VM	config	corruption

API:	mark	VM	configs	with	snapshots	but	without	current	snapshot	as
inaccessible,	as	this	combination	is	nonsense

API:	fixed	information	for	some	automatically	generated	events	(only	with
XPCOM,	Windows	host	was	not	affected),	which	caused	errors	when
getting	some	of	the	attributes	over	the	webservice	(bug	#12379)

SDK:	extended	the	functionality	coverage	for	the	C	bindings

Guest	Control:	various	bugfixes	and	improved	VBoxManage	help	(bugs
#8072,	#11044,	#12336,	#12338,	#12346,	#12371)

Windows	hosts:	another	attempt	to	fix	the	massive	DPC	latency	(bug
#6242)

Windows	host	installer:	make	registering	file	extensions	optional,
contributed	by	Tal	Aloni	(bug	#8009)

Mac	OS	X	hosts:	properly	sign	the	kernel	extensions	for	Mavericks	hosts
(bug	#12256)

Mac	OS	X	hosts:	fixed	a	bug	where	the	VirtualBox	dock	icon	was	not
properly	removed	from	the	dock	after	a	VM	terminated	preventing
Mavericks	hosts	from	shutting	down	(bug	#12241)

Mac	OS	X	hosts:	fixed	minor	installer	issue	(bug	#12275)

Linux	hosts	/	guests:	Linux	3.13	compile	fixes	(bug	#12358)

Linux	guests:	build	the	vboxvideo	kernel	module	correctly	on	OL/RHEL
6.1	guests	(bug	#11996)

Linux	guests:	make	3D	work	on	Slackware	14.1	(bug	#12320	comments	3
and	4)

Guest	Additions/3D:	fixed	an	occasional	dead-lock	(bug	#12319)

Windows	Additions/3D:	fixed	possible	memory	leaking	(bug	#12228)

Windows	Additions/XPDM:	use	separate	tables	containing	valid	video
modes	for	each	virtual	monitor

Windows	Additions:	fixed	automatic	logins	for	Vista	and	newer	Windows
guests	(bug	#12332)

15.48.	Version	4.3.2	(2013-11-01)

This	is	a	maintenance	release.	The	following	items	were	fixed	and/or	added:

VMM:	fixed	restoring	of	the	auxiliary	TSC	MSR	in	VT-x	that	caused	host
BSODs	on	Windows	8.1	hosts	and	unpredictable	behavior	on	other	hosts
(bug	#12237)

VMM:	provide	fake	values	for	a	couple	of	MSRs	to	make	more	guests
happy	on	certain	hosts

VMM:	fixed	detection	of	VT-x	on	certain	machines	where	the	BIOS	would
not	set	the	VMX	LOCK	feature	bit,	which	affected	the	VM	settings	in	the
GUI

VMM:	fixed	TPR	threshold	which	caused	BSODs	on	Windows	XP	guests
that	use	the	I/O	APIC	(VT-x	only;	bug	#12227)

VMM:	fixed	PATM	saved	state	incompatibility	for	software	virtualized
VMs	(bug	#12222)

VMM:	don't	fail	if	AMD-V	isn't	available	if	the	VM	is	configured	to	use
software	virtualization

GUI:	fixed	guest	resize	breakage	on	visual	representation	mode	change
(when	switching	from	normal	to	full	screen	etc)

GUI:	make	sure	the	guest	screen	is	resized	after	restoring	a	VM	from	a
saved	state	if	the	host	screen	size	changed

GUI:	disabled	SCROLL	LED	sync	from	HID	LEDs	synchronization	(Mac
OS	X	hosts	only)

Webcam	passthrough	improvements	including	GUI	support	(see
Section	9.7.1,	“Using	a	host	webcam	in	the	guest”)

Guest	Control:	implemented	more	IGuestSession	methods

Guest	Control:	added	support	for	deleting	and	renaming	guest	files	+

directories	in	VBoxManage

Guest	Control:	various	bugfixes

API:	incorrect	handling	of	hardware	UUID	default	value,	resulting	in	an	all
zero	DMI/SMBIOS	UUID,	which	leads	to	Windows	requesting	re-
activation	(4.3	regression;	bug	#12244)

3D	support:	fixed	crash	on	shutdown	if	2D	video	acceleration	is	enabled
(Mac	OS	X	hosts	only)

3D	support:	miscellaneous	fixes

Storage:	fixed	detection	of	CD/DVD	media	when	switching	from	an	empty
to	a	host	drive	with	passthrough	enabled

Storage:	fixed	hang	of	the	VM	process	when	the	disk	is	full	under	certain
circumstances

NAT:	listen	for	changes	of	NAT	Network	setting	at	runtime

NAT:	NAT	Network	DHCP	server	now	saves	leases	to	a	persistent	storage

Main:	monitor	changes	in	host	DNS	configuration

Mac	OS	X	host:	reworked	a	mechanism	of	adding	a	VM	desktop	alias	from
the	VM	selector

Mac	OS	X	installer:	remove	old	kernel	extensions	during	upgrade	(bug
#12258)

Linux	Additions:	correctly	set	umask	before	installing	(bug	#12166)

X11	Additions/3D:	fix	freezes	starting	3D	desktop	(bug	#11503,	thank	you
Sam	Spilsbury)

X11	Additions/3D:	fix	depth	buffer	support	(bug	#11905)

X11	Additions/3D:	fix	Age	Of	Empires	3	rendering	(bug	#11331)

Windows	Additions/3D:	fix	Google	Earth	plugin	rendering

Windows	Additions/WDDM:	autoresize	fixes

15.49.	Version	4.3.0	(2013-10-15)

This	is	a	major	update.	The	following	major	new	features	were	added:

VMM:	major	rewrite	of	the	VT-x	code	and	the	AMD-V	code	including
many	bug	fixes	and	performance	improvements	(for	example	bug	#9659)

VMM:	introduced	a	lightweight	instruction	interpreter	for	situations	not
handled	by	hardware	virtualization

GUI:	extended	messaging	mechanism	(new	non-modal	popup	overlays	used
to	show	non-critical	warnings	and	provide	user	with	additional	information)

GUI:	keyboard	shortcuts	management	(input	page	of	global	preferences
extended	with	possibility	to	edit	general	keyboard	shortcuts	for	VirtualBox
Manager	and	Virtual	Machine)

GUI:	video	capturing	support	(bug	#4766)

Added	USB	touch	device	emulation

Added	experimental	support	for	webcam	passthrough	complementing	USB
passthrough	(see	Section	9.7.1,	“Using	a	host	webcam	in	the	guest”)

Added	SCSI	CD-ROM	emulation,	including	boot	support

VRDP:	support	for	IPv6

Guest	Control:	guest	sessions	now	are	running	in	dedicated,	impersonated
session	processes	(needs	at	least	Guest	Additions	4.3	installed)

Guest	Control:	implemented	IGuestFile	support

NAT:	experimental	virtual	router	mode:	several	VMs	are	attached	to	the
same	internal	network	and	share	one	NAT	service	(see	Section	6.4,
“Network	Address	Translation	Service”)

In	addition,	the	following	items	were	fixed	and/or	added:

VMM:	significantly	improved	performance	of	NetWare	5.x/6.x	guests	on
host	systems	without	nested	paging	support

VMM:	fixed	losing	host	NMIs	while	in	VT-x	guest-context

VMM:	changed	order	of	actions	in	emulated	task	switch	(bug	#10532)

VMM:	allow	to	activate	VT-x	while	in	SMX	mode	and	provide	more
information	if	that	is	not	possible

GUI:	update	check	uses	https

GUI:	numerous	minor	internal	cleanups	and	bug	fixes

GUI:	HID	LEDs	synchronization	when	switching	between	guest	window(s)
and	host	(Mac	OS	X	hosts	only)

GUI,	VBoxManage:	when	unregistering	a	VM,	also	unregister	the	hard	disk
images	which	are	used	exclusively	(bug	#10311)

GUI:	use	the	number	of	physical	presented	processor	cores	instead	of	the
number	of	logical	processor	cores	to	check	if	the	users	assigned	too	many
virtual	CPUs	to	the	guest

Snapshots:	made	live	snapshots	work	again	(bug	#9255)

Teleportation:	made	it	work	again	(bug	#9455)

Storage:	implemented	AHA-154x	compatibility	mode	in	the	emulated
BusLogic	SCSI	HBA

Storage:	significantly	improved	performance	of	large	ATAPI	PIO	transfers
(BeOS,	Minix	3	guests	affected)

Storage:	added	floppy	formatting	emulation	(NB:	cannot	be	used	to	change
existing	media	geometry)

Settings:	global	and	per-VM	default	frontend	configuration,	useful	to	select
the	use	of	alternative	VM	frontends

Settings:	limit	depth	of	snapshot	tree	to	250	levels,	as	more	will	lead	to

decreased	performance	and	may	trigger	crashes

Settings:	the	per-VM	hwvirtextexcl	setting	has	been	replaced	by	a	global
hwvirtexclusive	property

Main:	new	event	queue	implementation	which	does	not	use	the	host's	native
event	queue	for	processing	VirtualBox	events	anymore

Main:	eliminate	the	use	of	SysV	semaphores	on	all	host	OSes	other	than
Windows,	namely	Linux,	Solaris	and	Mac	OS	X,	with	the	consequence	that
no	system	reconfiguration	is	needed	to	run	more	than	approximately	100
VMs

Main:	use	the	XDG	standard	configuration	folder	instead	of	.VirtualBox	on
systems	where	it	is	appropriate	(bug	#5099)

Main:	extension	pack	framework	can	now	support	loading	HGCM	modules,
contributed	by	Jeff	Westphal

VBoxManage:	list	more	information	about	hard	disk/DVD/floppy	media,
and	support	the	--long	option	to	show	really	all	available	details

VBoxManage:	added	support	for	optional	command	line	parameters	for	the
automatic	Guest	Additions	update

VBoxManage:	added	support	for	listing	active	guest	sessions,	guest
processes	and/or	guest	files	via	guestcontrol	list
<all|sessions|processes|files>

VBoxManage:	added	support	for	closing	active	guest	sessions	via
guestcontrol	session	close	--session-id	<ID>|	--session-name

<name	or	pattern>|--all

VBoxManage:	added	support	for	terminating	active	guest	processes	via
guestcontrol	process	kill|close|terminate	--session-id	<ID>|	--

session-name	<name	or	pattern>	<PID>	...	<PID	n>	or	guestcontrol
[p[s]]kill	--session-id	<ID>|	--session-name	<name	or	pattern>

<PID>	...	<PID	n>

VBoxManage:	added	support	for	watching	guest	sessions	via	guestcontrol
watch

VBoxManage:	added	modifyvm	--triplefaultreset	to	make	the	VM
reset	on	triple	fault	instead	of	triggering	a	Guru	Meditation	(see	Section	8.8,
“VBoxManage	modifyvm”)

3D	support:	several	fixes

3D	support:	several	fixes	for	Mac	OS	X	hosts

OVF:	several	fixes

Extpack	Installer:	make	it	work	if	the	file	is	located	in	a	folder	with	special
characters

Keyboard:	fix	for	reporting	key	sequences	like	Ctrl+Alt+Del	for	the	USB
keyboard	emulation

Shared	Clipboard/X11:	support	for	BMP-format	images,	contributed	by
François	Revol

Mac	OS	X	hosts:	limited	support	for	Mac	OS	X	10.9	(Mavericks)

Mac	OS	X	hosts:	use	a	launchd	script	instead	of	the	deprecated	StartupItem
mechanism	(bug	#8940)

Windows	hosts:	don't	cause	massive	DPC	latency	(only	on	certain	hosts;
still	needs	improving;	bug	#6242)

Windows	hosts:	consider	symlinks	when	retrieving	volume	information
(bug	#11962)

Windows	hosts:	fixed	an	issue	with	USB2	devices	being	inaccessible	when
plugged	into	USB	3.0	ports

Windows	Additions:	fixed	misbehavior	with	guest	display	power
management	(WDDM	driver	only;	bug	#11170)

Windows	Additions:	fixed	memory	leak	caused	by
WTSQuerySessionInformation()	on	Windows	2000	guests	(bug	#12072)

Windows	Additions:	ability	to	track	guest	user	idle	times	through	the	newly

introduced	event	IGuestUserStateChangedEvent

Linux	Additions:	fixed	udev	detection	in	the	init	script	with	Linux	3.x
kernels

15.50.	Older	Change	log	details

With	VirtualBox	5.0,	changelog	information	for	versions	before	4.3	was
removed	in	order	to	save	space.	To	access	this	information,	please	consult	the
User	Manual	of	VirtualBox	version	4.3	or	earlier.

Appendix	A.	Third-party	materials	and	licenses

Table	of	Contents

A.1.	Materials
A.2.	Licenses

A.2.1.	GNU	General	Public	License	(GPL)
A.2.2.	GNU	Lesser	General	Public	License	(LGPL)
A.2.3.	Mozilla	Public	License	(MPL)
A.2.4.	MIT	License
A.2.5.	X	Consortium	License	(X11)
A.2.6.	zlib	license
A.2.7.	OpenSSL	license
A.2.8.	Slirp	license
A.2.9.	liblzf	license
A.2.10.	libpng	license
A.2.11.	lwIP	license
A.2.12.	libxml	license
A.2.13.	libxslt	licenses
A.2.14.	gSOAP	Public	License	Version	1.3a
A.2.15.	Chromium	licenses
A.2.16.	curl	license
A.2.17.	libgd	license
A.2.18.	BSD	license	from	Intel
A.2.19.	libjpeg	License
A.2.20.	x86	SIMD	extension	for	IJG	JPEG	library	license
A.2.21.	FreeBSD	license
A.2.22.	NetBSD	license
A.2.23.	PCRE	license
A.2.24.	libffi	license
A.2.25.	FLTK	license
A.2.26.	Expat	license
A.2.27.	Fontconfig	license
A.2.28.	Freetype	license
A.2.29.	VPX	License
A.2.30.	Opus	License

VirtualBox	incorporates	materials	from	several	Open	Source	software	projects.
Therefore	the	use	of	these	materials	by	VirtualBox	is	governed	by	different	Open
Source	licenses.	This	document	reproduces	these	licenses	and	provides	a	list	of
the	materials	used	and	their	respective	licensing	conditions.	Section	1	contains	a
list	of	the	materials	used.	Section	2	reproduces	the	applicable	Open	Source
licenses.	For	each	material,	a	reference	to	its	license	is	provided.

The	source	code	for	the	materials	listed	below	as	well	as	the	rest	of	the
VirtualBox	code	which	is	released	as	open	source	are	available	at
http://www.virtualbox.org,	both	as	tarballs	for	particular	releases	and	as	a	live
SVN	repository.

http://www.virtualbox.org

A.1.	Materials

VirtualBox	contains	portions	of	QEMU	which	is	governed	by	the	licenses
in	A.2.5	and	A.2.2	and

(C)	2003-2005	Fabrice	Bellard;	Copyright	(C)	2004-2005	Vassili	Karpov
(malc);	Copyright	(c)	2004	Antony	T	Curtis;	Copyright	(C)	2003	Jocelyn
Mayer

VirtualBox	contains	code	which	is	governed	by	the	license	in	A.2.5	and

Copyright	2004	by	the	Massachusetts	Institute	of	Technology.

VirtualBox	contains	code	of	the	BOCHS	VGA	BIOS	which	is	governed	by
the	license	in	A.2.2	and

Copyright	(C)	2001,	2002	the	LGPL	VGABios	developers	Team.

VirtualBox	contains	code	of	the	BOCHS	ROM	BIOS	which	is	governed	by
the	license	in	A.2.2	and

Copyright	(C)	2002	MandrakeSoft	S.A.;	Copyright	(C)	2004	Fabrice
Bellard;	Copyright	(C)	2005	Struan	Bartlett.

VirtualBox	contains	the	zlib	library	which	is	governed	by	the	license	in
A.2.6	and

Copyright	(C)	1995-2003	Jean-loup	Gailly	and	Mark	Adler.

VirtualBox	may	contain	OpenSSL	which	is	governed	by	the	license	in
A.2.7	and

Copyright	(C)	1995-1998	Eric	Young	(eay@cryptsoft.com).	This	product
includes	software	written	by	Tim	Hudson	(tjh@cryptsoft.com).

VirtualBox	may	contain	NSPR	and	XPCOM	which	is	governed	by	the
license	in	A.2.3	and

Copyright	(C)	The	Authors.

VirtualBox	contains	Slirp	which	is	governed	by	the	license	in	A.2.8	and
was	written	by	Danny	Gasparovski.

Copyright	(C)	1995,	1996	All	Rights	Reserved.

VirtualBox	contains	liblzf	which	is	governed	by	the	license	in	A.2.9	and

Copyright	(C)	2000-2005	Marc	Alexander	Lehmann
<schmorp@schmorp.de>

VirtualBox	may	ship	with	a	modified	copy	of	rdesktop	which	is	governed
by	the	license	in	A.2.1	and

Copyright	(C)	Matthew	Chapman	and	others.

VirtualBox	may	ship	with	a	copy	of	kchmviewer	which	is	governed	by	the
license	in	A.2.1	and

Copyright	(C)	George	Yunaev	and	others.

VirtualBox	may	contain	Etherboot	which	is	governed	by	the	license	in
A.2.1	with	the	exception	that	aggregating	Etherboot	with	another	work	does
not	require	the	other	work	to	be	released	under	the	same	license	(see
http://etherboot.sourceforge.net/clinks.html).	Etherboot	is

Copyright	(C)	Etherboot	team.

VirtualBox	may	contain	iPXE	which	is	governed	by	the	license	in	A.2.1
and

Copyright	(C)	Michael	Brown	<mbrown@fensystems.co.uk>	and	others.

VirtualBox	contains	code	from	Wine	which	is	governed	by	the	license	in
A.2.2	and

Copyright	1993	Bob	Amstadt,	Copyright	1996	Albrecht	Kleine,	Copyright
1997	David	Faure,	Copyright	1998	Morten	Welinder,	Copyright	1998
Ulrich	Weigand,	Copyright	1999	Ove	Koven

VirtualBox	contains	code	from	lwIP	which	is	governed	by	the	license	in

http://etherboot.sourceforge.net/clinks.html

A.2.11	and

Copyright	(C)	2001,	2002	Swedish	Institute	of	Computer	Science.

VirtualBox	contains	libxml	which	is	governed	by	the	license	in	A.2.12	and

Copyright	(C)	1998-2003	Daniel	Veillard.

VirtualBox	contains	libxslt	which	is	governed	by	the	license	in	A.2.13	and

Copyright	(C)	2001-2002	Daniel	Veillard	and	Copyright	(C)	2001-2002
Thomas	Broyer,	Charlie	Bozeman	and	Daniel	Veillard.

VirtualBox	contains	code	from	the	gSOAP	XML	web	services	tools,	which
are	licensed	under	the	license	in	A.2.14	and

Copyright	(C)	2000-2007,	Robert	van	Engelen,	Genivia	Inc.,	and	others.

VirtualBox	ships	with	the	application	tunctl	(shipped	as	VBoxTunctl)	from
the	User-mode	Linux	suite	which	is	governed	by	the	license	in	A.2.1	and

Copyright	(C)	2002	Jeff	Dike.

VirtualBox	contains	code	from	Chromium,	an	OpenGL	implementation,
which	is	goverened	by	the	licenses	in	A.2.15	and

Copyright	(C)	Stanford	University,	The	Regents	of	the	University	of
California,	Red	Hat,	and	others.

VirtualBox	contains	libcurl	which	is	governed	by	the	license	in	A.2.16	and

Copyright	(C)	1996-2009,	Daniel	Stenberg.

VirtualBox	contains	dnsproxy	which	is	governed	by	the	license	in	A.2.4
and

Copyright	(c)	2003,	2004,	2005	Armin	Wolfermann.

VirtualBox	may	contain	iniparser	which	is	governed	by	the	license	in	A.2.4
and

Copyright	(c)	2000-2008	by	Nicolas	Devillard.

VirtualBox	contains	some	code	from	libgd	which	is	governed	by	the	license
in	A.2.17	and

Copyright	2000,	2001,	2002,	2003,	2004,	2005,	2006,	2007	Pierre-Alain
Joye	(pierre@libgd.org).

VirtualBox	contains	code	from	the	EFI	Development	Kit	II	which	is
governed	by	the	license	in	A.2.18	and

Copyright	(c)	2004-2008,	Intel	Corporation.

VirtualBox	contains	libjpeg	which	is	governed	by	the	license	in	A.2.19	and

Copyright	(C)	1991-2010,	Thomas	G.	Lane,	Guido	Vollbeding.

VirtualBox	may	contain	x86	SIMD	extension	for	IJG	JPEG	library	which	is
governed	by	the	license	in	A.2.20	and

Copyright	2009	Pierre	Ossman	<ossman@cendio.se>	for	Cendio	AB;
Copyright	2010	D.	R.	Commander;	Copyright	(C)	1999-2006,	MIYASAKA
Masaru.

VirtualBox	may	ship	a	copy	of	Qt	which	is	governed	by	the	license	in	A.2.2
and

Copyright	(C)	2010,	2011	Nokia	Corporation	and/or	its	subsidiary(-ies).

VirtualBox	contains	parts	of	the	FreeBSD	kernel	which	is	governed	by	the
license	in	A.2.21.

VirtualBox	contains	parts	of	the	NetBSD	kernel	which	is	governed	by	the
license	in	A.2.22.

VirtualBox	contains	portions	of	liblightdm-gobject	which	is	governed	by
the	license	in	A.2.2	and

Copyright	(C)	2010-2013	Canonical	Ltd.;	Copyright	(C)	2010-2011	Robert
Ancell.

VirtualBox	contains	portions	of	glib	which	is	governed	by	the	license	in
A.2.2	and

Copyright	(C)	1995-2011	The	Glib	team

VirtualBox	contains	portions	of	PCRE	which	is	governed	by	the	license	in
A.2.23	and

Copyright	(c)	1997-2012	University	of	Cambridge;	Copyright(c)	2009-
2012	Zoltan	Herczeg;	Copyright	(c)	2007-2012,	Google	Inc.

VirtualBox	contains	portions	of	libffi	which	is	governed	by	the	license	in
A.2.24	and

Copyright	(c)	1996-2012	Anthony	Green,	Red	Hat,	Inc	and	others.	See
source	files	for	details.

VirtualBox	contains	portions	of	FLTK	which	is	governed	by	the	licenses	in
A.2.25	and	A.2.2	and

Copyright	(C)	1991-2012	The	FLTK	team

VirtualBox	contains	portions	of	Expat	which	is	governed	by	the	license	in
A.2.26	and

Copyright	(c)	1998,	1999,	2000	Thai	Open	Source	Software	Center	Ltd	and
Clark	Cooper;	Copyright	(c)	2001,	2002,	2003,	2004,	2005,	2006	Expat
maintainers.

VirtualBox	contains	portions	of	Fontconfig	which	is	governed	by	the
license	in	A.2.27	and

Copyright	(C)	2001,	2003	Keith	Packard

VirtualBox	contains	portions	of	Freetype	which	is	governed	by	the	license
in	A.2.28	and

Copyright	2012	The	FreeType	Project	(www.freetype.org).	All	rights
reserved.

VirtualBox	may	contain	code	from	the	WebM	VP8	Codec	SDK	which	is
governed	by	the	license	in	A.2.29	and

Copyright	(c)	2010,	The	WebM	Project	authors.	All	rights	reserved.

VirtualBox	may	contain	code	from	libopus	("Opus")	which	is	governed	by
the	license	in	A.2.30	and

Copyright	2001-2011	Xiph.Org,	Skype	Limited,	Octasic,	Jean-Marc	Valin,
Timothy	B.	Terriberry,	CSIRO,	Gregory	Maxwell,	Mark	Borgerding,	Erik
de	Castro	Lopo

A.2.	Licenses

A.2.1.	GNU	General	Public	License	(GPL)

GNU	GENERAL	PUBLIC	LICENSE	Version	2,	June	1991

Copyright	(C)	1989,	1991	Free	Software	Foundation,	Inc.

51	Franklin	St,	Fifth	Floor,	Boston,	MA	02110-1301	USA

Everyone	is	permitted	to	copy	and	distribute	verbatim	copies	of	this	license
document,	but	changing	it	is	not	allowed.

Preamble

The	licenses	for	most	software	are	designed	to	take	away	your	freedom	to	share
and	change	it.	By	contrast,	the	GNU	General	Public	License	is	intended	to
guarantee	your	freedom	to	share	and	change	free	software--to	make	sure	the
software	is	free	for	all	its	users.	This	General	Public	License	applies	to	most	of
the	Free	Software	Foundation's	software	and	to	any	other	program	whose
authors	commit	to	using	it.	(Some	other	Free	Software	Foundation	software	is
covered	by	the	GNU	Library	General	Public	License	instead.)	You	can	apply	it
to	your	programs,	too.

When	we	speak	of	free	software,	we	are	referring	to	freedom,	not	price.	Our
General	Public	Licenses	are	designed	to	make	sure	that	you	have	the	freedom	to
distribute	copies	of	free	software	(and	charge	for	this	service	if	you	wish),	that
you	receive	source	code	or	can	get	it	if	you	want	it,	that	you	can	change	the
software	or	use	pieces	of	it	in	new	free	programs;	and	that	you	know	you	can	do
these	things.

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	anyone	to	deny
you	these	rights	or	to	ask	you	to	surrender	the	rights.	These	restrictions	translate
to	certain	responsibilities	for	you	if	you	distribute	copies	of	the	software,	or	if
you	modify	it.

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or	for	a
fee,	you	must	give	the	recipients	all	the	rights	that	you	have.	You	must	make

sure	that	they,	too,	receive	or	can	get	the	source	code.	And	you	must	show	them
these	terms	so	they	know	their	rights.

We	protect	your	rights	with	two	steps:	(1)	copyright	the	software,	and	(2)	offer
you	this	license	which	gives	you	legal	permission	to	copy,	distribute	and/or
modify	the	software.

Also,	for	each	author's	protection	and	ours,	we	want	to	make	certain	that
everyone	understands	that	there	is	no	warranty	for	this	free	software.	If	the
software	is	modified	by	someone	else	and	passed	on,	we	want	its	recipients	to
know	that	what	they	have	is	not	the	original,	so	that	any	problems	introduced	by
others	will	not	reflect	on	the	original	authors'	reputations.

Finally,	any	free	program	is	threatened	constantly	by	software	patents.	We	wish
to	avoid	the	danger	that	redistributors	of	a	free	program	will	individually	obtain
patent	licenses,	in	effect	making	the	program	proprietary.	To	prevent	this,	we
have	made	it	clear	that	any	patent	must	be	licensed	for	everyone's	free	use	or	not
licensed	at	all.

The	precise	terms	and	conditions	for	copying,	distribution	and	modification
follow.

GNU	GENERAL	PUBLIC	LICENSE	TERMS	AND	CONDITIONS	FOR
COPYING,	DISTRIBUTION	AND	MODIFICATION

0.	This	License	applies	to	any	program	or	other	work	which	contains	a	notice
placed	by	the	copyright	holder	saying	it	may	be	distributed	under	the	terms	of
this	General	Public	License.	The	"Program",	below,	refers	to	any	such	program
or	work,	and	a	"work	based	on	the	Program"	means	either	the	Program	or	any
derivative	work	under	copyright	law:	that	is	to	say,	a	work	containing	the
Program	or	a	portion	of	it,	either	verbatim	or	with	modifications	and/or
translated	into	another	language.	(Hereinafter,	translation	is	included	without
limitation	in	the	term	"modification".)	Each	licensee	is	addressed	as	"you".

Activities	other	than	copying,	distribution	and	modification	are	not	covered	by
this	License;	they	are	outside	its	scope.	The	act	of	running	the	Program	is	not
restricted,	and	the	output	from	the	Program	is	covered	only	if	its	contents
constitute	a	work	based	on	the	Program	(independent	of	having	been	made	by
running	the	Program).	Whether	that	is	true	depends	on	what	the	Program	does.

1.	You	may	copy	and	distribute	verbatim	copies	of	the	Program's	source	code	as
you	receive	it,	in	any	medium,	provided	that	you	conspicuously	and
appropriately	publish	on	each	copy	an	appropriate	copyright	notice	and
disclaimer	of	warranty;	keep	intact	all	the	notices	that	refer	to	this	License	and	to
the	absence	of	any	warranty;	and	give	any	other	recipients	of	the	Program	a	copy
of	this	License	along	with	the	Program.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and	you	may	at
your	option	offer	warranty	protection	in	exchange	for	a	fee.

2.	You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion	of	it,	thus
forming	a	work	based	on	the	Program,	and	copy	and	distribute	such
modifications	or	work	under	the	terms	of	Section	1	above,	provided	that	you	also
meet	all	of	these	conditions:

a)	You	must	cause	the	modified	files	to	carry	prominent	notices	stating	that	you
changed	the	files	and	the	date	of	any	change.

b)	You	must	cause	any	work	that	you	distribute	or	publish,	that	in	whole	or	in
part	contains	or	is	derived	from	the	Program	or	any	part	thereof,	to	be	licensed	as
a	whole	at	no	charge	to	all	third	parties	under	the	terms	of	this	License.

c)	If	the	modified	program	normally	reads	commands	interactively	when	run,
you	must	cause	it,	when	started	running	for	such	interactive	use	in	the	most
ordinary	way,	to	print	or	display	an	announcement	including	an	appropriate
copyright	notice	and	a	notice	that	there	is	no	warranty	(or	else,	saying	that	you
provide	a	warranty)	and	that	users	may	redistribute	the	program	under	these
conditions,	and	telling	the	user	how	to	view	a	copy	of	this	License.	(Exception:
if	the	Program	itself	is	interactive	but	does	not	normally	print	such	an
announcement,	your	work	based	on	the	Program	is	not	required	to	print	an
announcement.)

These	requirements	apply	to	the	modified	work	as	a	whole.	If	identifiable
sections	of	that	work	are	not	derived	from	the	Program,	and	can	be	reasonably
considered	independent	and	separate	works	in	themselves,	then	this	License,	and
its	terms,	do	not	apply	to	those	sections	when	you	distribute	them	as	separate
works.	But	when	you	distribute	the	same	sections	as	part	of	a	whole	which	is	a
work	based	on	the	Program,	the	distribution	of	the	whole	must	be	on	the	terms	of
this	License,	whose	permissions	for	other	licensees	extend	to	the	entire	whole,

and	thus	to	each	and	every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your	rights	to
work	written	entirely	by	you;	rather,	the	intent	is	to	exercise	the	right	to	control
the	distribution	of	derivative	or	collective	works	based	on	the	Program.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Program	with	the
Program	(or	with	a	work	based	on	the	Program)	on	a	volume	of	a	storage	or
distribution	medium	does	not	bring	the	other	work	under	the	scope	of	this
License.

3.	You	may	copy	and	distribute	the	Program	(or	a	work	based	on	it,	under
Section	2)	in	object	code	or	executable	form	under	the	terms	of	Sections	1	and	2
above	provided	that	you	also	do	one	of	the	following:

a)	Accompany	it	with	the	complete	corresponding	machine-readable	source
code,	which	must	be	distributed	under	the	terms	of	Sections	1	and	2	above	on	a
medium	customarily	used	for	software	interchange;	or,

b)	Accompany	it	with	a	written	offer,	valid	for	at	least	three	years,	to	give	any
third	party,	for	a	charge	no	more	than	your	cost	of	physically	performing	source
distribution,	a	complete	machine-readable	copy	of	the	corresponding	source
code,	to	be	distributed	under	the	terms	of	Sections	1	and	2	above	on	a	medium
customarily	used	for	software	interchange;	or,

c)	Accompany	it	with	the	information	you	received	as	to	the	offer	to	distribute
corresponding	source	code.	(This	alternative	is	allowed	only	for	noncommercial
distribution	and	only	if	you	received	the	program	in	object	code	or	executable
form	with	such	an	offer,	in	accord	with	Subsection	b	above.)

The	source	code	for	a	work	means	the	preferred	form	of	the	work	for	making
modifications	to	it.	For	an	executable	work,	complete	source	code	means	all	the
source	code	for	all	modules	it	contains,	plus	any	associated	interface	definition
files,	plus	the	scripts	used	to	control	compilation	and	installation	of	the
executable.	However,	as	a	special	exception,	the	source	code	distributed	need	not
include	anything	that	is	normally	distributed	(in	either	source	or	binary	form)
with	the	major	components	(compiler,	kernel,	and	so	on)	of	the	operating	system
on	which	the	executable	runs,	unless	that	component	itself	accompanies	the
executable.

If	distribution	of	executable	or	object	code	is	made	by	offering	access	to	copy
from	a	designated	place,	then	offering	equivalent	access	to	copy	the	source	code
from	the	same	place	counts	as	distribution	of	the	source	code,	even	though	third
parties	are	not	compelled	to	copy	the	source	along	with	the	object	code.

4.	You	may	not	copy,	modify,	sublicense,	or	distribute	the	Program	except	as
expressly	provided	under	this	License.	Any	attempt	otherwise	to	copy,	modify,
sublicense	or	distribute	the	Program	is	void,	and	will	automatically	terminate
your	rights	under	this	License.	However,	parties	who	have	received	copies,	or
rights,	from	you	under	this	License	will	not	have	their	licenses	terminated	so
long	as	such	parties	remain	in	full	compliance.

5.	You	are	not	required	to	accept	this	License,	since	you	have	not	signed	it.
However,	nothing	else	grants	you	permission	to	modify	or	distribute	the	Program
or	its	derivative	works.	These	actions	are	prohibited	by	law	if	you	do	not	accept
this	License.	Therefore,	by	modifying	or	distributing	the	Program	(or	any	work
based	on	the	Program),	you	indicate	your	acceptance	of	this	License	to	do	so,
and	all	its	terms	and	conditions	for	copying,	distributing	or	modifying	the
Program	or	works	based	on	it.

6.	Each	time	you	redistribute	the	Program	(or	any	work	based	on	the	Program),
the	recipient	automatically	receives	a	license	from	the	original	licensor	to	copy,
distribute	or	modify	the	Program	subject	to	these	terms	and	conditions.	You	may
not	impose	any	further	restrictions	on	the	recipients'	exercise	of	the	rights
granted	herein.	You	are	not	responsible	for	enforcing	compliance	by	third	parties
to	this	License.

7.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent	infringement
or	for	any	other	reason	(not	limited	to	patent	issues),	conditions	are	imposed	on
you	(whether	by	court	order,	agreement	or	otherwise)	that	contradict	the
conditions	of	this	License,	they	do	not	excuse	you	from	the	conditions	of	this
License.	If	you	cannot	distribute	so	as	to	satisfy	simultaneously	your	obligations
under	this	License	and	any	other	pertinent	obligations,	then	as	a	consequence
you	may	not	distribute	the	Program	at	all.	For	example,	if	a	patent	license	would
not	permit	royalty-free	redistribution	of	the	Program	by	all	those	who	receive
copies	directly	or	indirectly	through	you,	then	the	only	way	you	could	satisfy
both	it	and	this	License	would	be	to	refrain	entirely	from	distribution	of	the
Program.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under	any
particular	circumstance,	the	balance	of	the	section	is	intended	to	apply	and	the
section	as	a	whole	is	intended	to	apply	in	other	circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any	patents	or	other
property	right	claims	or	to	contest	validity	of	any	such	claims;	this	section	has
the	sole	purpose	of	protecting	the	integrity	of	the	free	software	distribution
system,	which	is	implemented	by	public	license	practices.	Many	people	have
made	generous	contributions	to	the	wide	range	of	software	distributed	through
that	system	in	reliance	on	consistent	application	of	that	system;	it	is	up	to	the
author/donor	to	decide	if	he	or	she	is	willing	to	distribute	software	through	any
other	system	and	a	licensee	cannot	impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to	be	a
consequence	of	the	rest	of	this	License.

8.	If	the	distribution	and/or	use	of	the	Program	is	restricted	in	certain	countries
either	by	patents	or	by	copyrighted	interfaces,	the	original	copyright	holder	who
places	the	Program	under	this	License	may	add	an	explicit	geographical
distribution	limitation	excluding	those	countries,	so	that	distribution	is	permitted
only	in	or	among	countries	not	thus	excluded.	In	such	case,	this	License
incorporates	the	limitation	as	if	written	in	the	body	of	this	License.

9.	The	Free	Software	Foundation	may	publish	revised	and/or	new	versions	of	the
General	Public	License	from	time	to	time.	Such	new	versions	will	be	similar	in
spirit	to	the	present	version,	but	may	differ	in	detail	to	address	new	problems	or
concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Program	specifies	a
version	number	of	this	License	which	applies	to	it	and	"any	later	version",	you
have	the	option	of	following	the	terms	and	conditions	either	of	that	version	or	of
any	later	version	published	by	the	Free	Software	Foundation.	If	the	Program
does	not	specify	a	version	number	of	this	License,	you	may	choose	any	version
ever	published	by	the	Free	Software	Foundation.

10.	If	you	wish	to	incorporate	parts	of	the	Program	into	other	free	programs
whose	distribution	conditions	are	different,	write	to	the	author	to	ask	for
permission.	For	software	which	is	copyrighted	by	the	Free	Software	Foundation,
write	to	the	Free	Software	Foundation;	we	sometimes	make	exceptions	for	this.

Our	decision	will	be	guided	by	the	two	goals	of	preserving	the	free	status	of	all
derivatives	of	our	free	software	and	of	promoting	the	sharing	and	reuse	of
software	generally.

NO	WARRANTY

11.	BECAUSE	THE	PROGRAM	IS	LICENSED	FREE	OF	CHARGE,	THERE
IS	NO	WARRANTY	FOR	THE	PROGRAM,	TO	THE	EXTENT	PERMITTED
BY	APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE	STATED	IN
WRITING	THE	COPYRIGHT	HOLDERS	AND/OR	OTHER	PARTIES
PROVIDE	THE	PROGRAM	"AS	IS"	WITHOUT	WARRANTY	OF	ANY
KIND,	EITHER	EXPRESSED	OR	IMPLIED,	INCLUDING,	BUT	NOT
LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY
AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.	THE	ENTIRE	RISK	AS	TO
THE	QUALITY	AND	PERFORMANCE	OF	THE	PROGRAM	IS	WITH	YOU.
SHOULD	THE	PROGRAM	PROVE	DEFECTIVE,	YOU	ASSUME	THE
COST	OF	ALL	NECESSARY	SERVICING,	REPAIR	OR	CORRECTION.

12.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY
OTHER	PARTY	WHO	MAY	MODIFY	AND/OR	REDISTRIBUTE	THE
PROGRAM	AS	PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR
DAMAGES,	INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR
CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OR
INABILITY	TO	USE	THE	PROGRAM	(INCLUDING	BUT	NOT	LIMITED
TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE	OR
LOSSES	SUSTAINED	BY	YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF
THE	PROGRAM	TO	OPERATE	WITH	ANY	OTHER	PROGRAMS),	EVEN
IF	SUCH	HOLDER	OR	OTHER	PARTY	HAS	BEEN	ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGES.

END	OF	TERMS	AND	CONDITIONS

A.2.2.	GNU	Lesser	General	Public	License	(LGPL)

GNU	LESSER	GENERAL	PUBLIC	LICENSE	Version	2.1,	February	1999

Copyright	(C)	1991,	1999	Free	Software	Foundation,	Inc.	59	Temple	Place,
Suite	330,	Boston,	MA	02111-1307	USA	Everyone	is	permitted	to	copy	and

distribute	verbatim	copies	of	this	license	document,	but	changing	it	is	not
allowed.

[This	is	the	first	released	version	of	the	Lesser	GPL.	It	also	counts	as	the
successor	of	the	GNU	Library	Public	License,	version	2,	hence	the	version
number	2.1.]

Preamble

The	licenses	for	most	software	are	designed	to	take	away	your	freedom	to	share
and	change	it.	By	contrast,	the	GNU	General	Public	Licenses	are	intended	to
guarantee	your	freedom	to	share	and	change	free	software--to	make	sure	the
software	is	free	for	all	its	users.

This	license,	the	Lesser	General	Public	License,	applies	to	some	specially
designated	software	packages--typically	libraries--of	the	Free	Software
Foundation	and	other	authors	who	decide	to	use	it.	You	can	use	it	too,	but	we
suggest	you	first	think	carefully	about	whether	this	license	or	the	ordinary
General	Public	License	is	the	better	strategy	to	use	in	any	particular	case,	based
on	the	explanations	below.

When	we	speak	of	free	software,	we	are	referring	to	freedom	of	use,	not	price.
Our	General	Public	Licenses	are	designed	to	make	sure	that	you	have	the
freedom	to	distribute	copies	of	free	software	(and	charge	for	this	service	if	you
wish);	that	you	receive	source	code	or	can	get	it	if	you	want	it;	that	you	can
change	the	software	and	use	pieces	of	it	in	new	free	programs;	and	that	you	are
informed	that	you	can	do	these	things.

To	protect	your	rights,	we	need	to	make	restrictions	that	forbid	distributors	to
deny	you	these	rights	or	to	ask	you	to	surrender	these	rights.	These	restrictions
translate	to	certain	responsibilities	for	you	if	you	distribute	copies	of	the	library
or	if	you	modify	it.

For	example,	if	you	distribute	copies	of	the	library,	whether	gratis	or	for	a	fee,
you	must	give	the	recipients	all	the	rights	that	we	gave	you.	You	must	make	sure
that	they,	too,	receive	or	can	get	the	source	code.	If	you	link	other	code	with	the
library,	you	must	provide	complete	object	files	to	the	recipients,	so	that	they	can
relink	them	with	the	library	after	making	changes	to	the	library	and	recompiling
it.	And	you	must	show	them	these	terms	so	they	know	their	rights.

We	protect	your	rights	with	a	two-step	method:	(1)	we	copyright	the	library,	and
(2)	we	offer	you	this	license,	which	gives	you	legal	permission	to	copy,
distribute	and/or	modify	the	library.

To	protect	each	distributor,	we	want	to	make	it	very	clear	that	there	is	no
warranty	for	the	free	library.	Also,	if	the	library	is	modified	by	someone	else	and
passed	on,	the	recipients	should	know	that	what	they	have	is	not	the	original
version,	so	that	the	original	author's	reputation	will	not	be	affected	by	problems
that	might	be	introduced	by	others.

Finally,	software	patents	pose	a	constant	threat	to	the	existence	of	any	free
program.	We	wish	to	make	sure	that	a	company	cannot	effectively	restrict	the
users	of	a	free	program	by	obtaining	a	restrictive	license	from	a	patent	holder.
Therefore,	we	insist	that	any	patent	license	obtained	for	a	version	of	the	library
must	be	consistent	with	the	full	freedom	of	use	specified	in	this	license.

Most	GNU	software,	including	some	libraries,	is	covered	by	the	ordinary	GNU
General	Public	License.	This	license,	the	GNU	Lesser	General	Public	License,
applies	to	certain	designated	libraries,	and	is	quite	different	from	the	ordinary
General	Public	License.	We	use	this	license	for	certain	libraries	in	order	to
permit	linking	those	libraries	into	non-free	programs.

When	a	program	is	linked	with	a	library,	whether	statically	or	using	a	shared
library,	the	combination	of	the	two	is	legally	speaking	a	combined	work,	a
derivative	of	the	original	library.	The	ordinary	General	Public	License	therefore
permits	such	linking	only	if	the	entire	combination	fits	its	criteria	of	freedom.
The	Lesser	General	Public	License	permits	more	lax	criteria	for	linking	other
code	with	the	library.

We	call	this	license	the	"Lesser"	General	Public	License	because	it	does	Less	to
protect	the	user's	freedom	than	the	ordinary	General	Public	License.	It	also
provides	other	free	software	developers	Less	of	an	advantage	over	competing
non-free	programs.	These	disadvantages	are	the	reason	we	use	the	ordinary
General	Public	License	for	many	libraries.	However,	the	Lesser	license	provides
advantages	in	certain	special	circumstances.

For	example,	on	rare	occasions,	there	may	be	a	special	need	to	encourage	the
widest	possible	use	of	a	certain	library,	so	that	it	becomes	a	de-facto	standard.	To
achieve	this,	non-free	programs	must	be	allowed	to	use	the	library.	A	more

frequent	case	is	that	a	free	library	does	the	same	job	as	widely	used	non-free
libraries.	In	this	case,	there	is	little	to	gain	by	limiting	the	free	library	to	free
software	only,	so	we	use	the	Lesser	General	Public	License.

In	other	cases,	permission	to	use	a	particular	library	in	non-free	programs
enables	a	greater	number	of	people	to	use	a	large	body	of	free	software.	For
example,	permission	to	use	the	GNU	C	Library	in	non-free	programs	enables
many	more	people	to	use	the	whole	GNU	operating	system,	as	well	as	its
variant,	the	GNU/Linux	operating	system.

Although	the	Lesser	General	Public	License	is	Less	protective	of	the	users'
freedom,	it	does	ensure	that	the	user	of	a	program	that	is	linked	with	the	Library
has	the	freedom	and	the	wherewithal	to	run	that	program	using	a	modified
version	of	the	Library.

The	precise	terms	and	conditions	for	copying,	distribution	and	modification
follow.	Pay	close	attention	to	the	difference	between	a	"work	based	on	the
library"	and	a	"work	that	uses	the	library".	The	former	contains	code	derived
from	the	library,	whereas	the	latter	must	be	combined	with	the	library	in	order	to
run.

GNU	LESSER	GENERAL	PUBLIC	LICENSE	TERMS	AND	CONDITIONS
FOR	COPYING,	DISTRIBUTION	AND	MODIFICATION

0.	This	License	Agreement	applies	to	any	software	library	or	other	program
which	contains	a	notice	placed	by	the	copyright	holder	or	other	authorized	party
saying	it	may	be	distributed	under	the	terms	of	this	Lesser	General	Public
License	(also	called	"this	License").	Each	licensee	is	addressed	as	"you".

A	"library"	means	a	collection	of	software	functions	and/or	data	prepared	so	as
to	be	conveniently	linked	with	application	programs	(which	use	some	of	those
functions	and	data)	to	form	executables.

The	"Library",	below,	refers	to	any	such	software	library	or	work	which	has	been
distributed	under	these	terms.	A	"work	based	on	the	Library"	means	either	the
Library	or	any	derivative	work	under	copyright	law:	that	is	to	say,	a	work
containing	the	Library	or	a	portion	of	it,	either	verbatim	or	with	modifications
and/or	translated	straightforwardly	into	another	language.	(Hereinafter,
translation	is	included	without	limitation	in	the	term	"modification".)

"Source	code"	for	a	work	means	the	preferred	form	of	the	work	for	making
modifications	to	it.	For	a	library,	complete	source	code	means	all	the	source	code
for	all	modules	it	contains,	plus	any	associated	interface	definition	files,	plus	the
scripts	used	to	control	compilation	and	installation	of	the	library.

Activities	other	than	copying,	distribution	and	modification	are	not	covered	by
this	License;	they	are	outside	its	scope.	The	act	of	running	a	program	using	the
Library	is	not	restricted,	and	output	from	such	a	program	is	covered	only	if	its
contents	constitute	a	work	based	on	the	Library	(independent	of	the	use	of	the
Library	in	a	tool	for	writing	it).	Whether	that	is	true	depends	on	what	the	Library
does	and	what	the	program	that	uses	the	Library	does.

1.	You	may	copy	and	distribute	verbatim	copies	of	the	Library's	complete	source
code	as	you	receive	it,	in	any	medium,	provided	that	you	conspicuously	and
appropriately	publish	on	each	copy	an	appropriate	copyright	notice	and
disclaimer	of	warranty;	keep	intact	all	the	notices	that	refer	to	this	License	and	to
the	absence	of	any	warranty;	and	distribute	a	copy	of	this	License	along	with	the
Library.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and	you	may	at
your	option	offer	warranty	protection	in	exchange	for	a	fee.

2.	You	may	modify	your	copy	or	copies	of	the	Library	or	any	portion	of	it,	thus
forming	a	work	based	on	the	Library,	and	copy	and	distribute	such	modifications
or	work	under	the	terms	of	Section	1	above,	provided	that	you	also	meet	all	of
these	conditions:

a)	The	modified	work	must	itself	be	a	software	library.

b)	You	must	cause	the	files	modified	to	carry	prominent	notices	stating	that	you
changed	the	files	and	the	date	of	any	change.

c)	You	must	cause	the	whole	of	the	work	to	be	licensed	at	no	charge	to	all	third
parties	under	the	terms	of	this	License.

d)	If	a	facility	in	the	modified	Library	refers	to	a	function	or	a	table	of	data	to	be
supplied	by	an	application	program	that	uses	the	facility,	other	than	as	an
argument	passed	when	the	facility	is	invoked,	then	you	must	make	a	good	faith
effort	to	ensure	that,	in	the	event	an	application	does	not	supply	such	function	or
table,	the	facility	still	operates,	and	performs	whatever	part	of	its	purpose

remains	meaningful.

(For	example,	a	function	in	a	library	to	compute	square	roots	has	a	purpose	that
is	entirely	well-defined	independent	of	the	application.	Therefore,	Subsection	2d
requires	that	any	application-supplied	function	or	table	used	by	this	function
must	be	optional:	if	the	application	does	not	supply	it,	the	square	root	function
must	still	compute	square	roots.)

These	requirements	apply	to	the	modified	work	as	a	whole.	If	identifiable
sections	of	that	work	are	not	derived	from	the	Library,	and	can	be	reasonably
considered	independent	and	separate	works	in	themselves,	then	this	License,	and
its	terms,	do	not	apply	to	those	sections	when	you	distribute	them	as	separate
works.	But	when	you	distribute	the	same	sections	as	part	of	a	whole	which	is	a
work	based	on	the	Library,	the	distribution	of	the	whole	must	be	on	the	terms	of
this	License,	whose	permissions	for	other	licensees	extend	to	the	entire	whole,
and	thus	to	each	and	every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest	your	rights	to
work	written	entirely	by	you;	rather,	the	intent	is	to	exercise	the	right	to	control
the	distribution	of	derivative	or	collective	works	based	on	the	Library.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Library	with	the
Library	(or	with	a	work	based	on	the	Library)	on	a	volume	of	a	storage	or
distribution	medium	does	not	bring	the	other	work	under	the	scope	of	this
License.

3.	You	may	opt	to	apply	the	terms	of	the	ordinary	GNU	General	Public	License
instead	of	this	License	to	a	given	copy	of	the	Library.	To	do	this,	you	must	alter
all	the	notices	that	refer	to	this	License,	so	that	they	refer	to	the	ordinary	GNU
General	Public	License,	version	2,	instead	of	to	this	License.	(If	a	newer	version
than	version	2	of	the	ordinary	GNU	General	Public	License	has	appeared,	then
you	can	specify	that	version	instead	if	you	wish.)	Do	not	make	any	other	change
in	these	notices.

Once	this	change	is	made	in	a	given	copy,	it	is	irreversible	for	that	copy,	so	the
ordinary	GNU	General	Public	License	applies	to	all	subsequent	copies	and
derivative	works	made	from	that	copy.

This	option	is	useful	when	you	wish	to	copy	part	of	the	code	of	the	Library	into
a	program	that	is	not	a	library.

4.	You	may	copy	and	distribute	the	Library	(or	a	portion	or	derivative	of	it,	under
Section	2)	in	object	code	or	executable	form	under	the	terms	of	Sections	1	and	2
above	provided	that	you	accompany	it	with	the	complete	corresponding
machine-readable	source	code,	which	must	be	distributed	under	the	terms	of
Sections	1	and	2	above	on	a	medium	customarily	used	for	software	interchange.

If	distribution	of	object	code	is	made	by	offering	access	to	copy	from	a
designated	place,	then	offering	equivalent	access	to	copy	the	source	code	from
the	same	place	satisfies	the	requirement	to	distribute	the	source	code,	even
though	third	parties	are	not	compelled	to	copy	the	source	along	with	the	object
code.

5.	A	program	that	contains	no	derivative	of	any	portion	of	the	Library,	but	is
designed	to	work	with	the	Library	by	being	compiled	or	linked	with	it,	is	called	a
"work	that	uses	the	Library".	Such	a	work,	in	isolation,	is	not	a	derivative	work
of	the	Library,	and	therefore	falls	outside	the	scope	of	this	License.

However,	linking	a	"work	that	uses	the	Library"	with	the	Library	creates	an
executable	that	is	a	derivative	of	the	Library	(because	it	contains	portions	of	the
Library),	rather	than	a	"work	that	uses	the	library".	The	executable	is	therefore
covered	by	this	License.	Section	6	states	terms	for	distribution	of	such
executables.

When	a	"work	that	uses	the	Library"	uses	material	from	a	header	file	that	is	part
of	the	Library,	the	object	code	for	the	work	may	be	a	derivative	work	of	the
Library	even	though	the	source	code	is	not.	Whether	this	is	true	is	especially
significant	if	the	work	can	be	linked	without	the	Library,	or	if	the	work	is	itself	a
library.	The	threshold	for	this	to	be	true	is	not	precisely	defined	by	law.

If	such	an	object	file	uses	only	numerical	parameters,	data	structure	layouts	and
accessors,	and	small	macros	and	small	inline	functions	(ten	lines	or	less	in
length),	then	the	use	of	the	object	file	is	unrestricted,	regardless	of	whether	it	is
legally	a	derivative	work.	(Executables	containing	this	object	code	plus	portions
of	the	Library	will	still	fall	under	Section	6.)	Otherwise,	if	the	work	is	a
derivative	of	the	Library,	you	may	distribute	the	object	code	for	the	work	under
the	terms	of	Section	6.	Any	executables	containing	that	work	also	fall	under
Section	6,	whether	or	not	they	are	linked	directly	with	the	Library	itself.

6.	As	an	exception	to	the	Sections	above,	you	may	also	combine	or	link	a	"work

that	uses	the	Library"	with	the	Library	to	produce	a	work	containing	portions	of
the	Library,	and	distribute	that	work	under	terms	of	your	choice,	provided	that
the	terms	permit	modification	of	the	work	for	the	customer's	own	use	and
reverse	engineering	for	debugging	such	modifications.

You	must	give	prominent	notice	with	each	copy	of	the	work	that	the	Library	is
used	in	it	and	that	the	Library	and	its	use	are	covered	by	this	License.	You	must
supply	a	copy	of	this	License.	If	the	work	during	execution	displays	copyright
notices,	you	must	include	the	copyright	notice	for	the	Library	among	them,	as
well	as	a	reference	directing	the	user	to	the	copy	of	this	License.	Also,	you	must
do	one	of	these	things:

a)	Accompany	the	work	with	the	complete	corresponding	machine-readable
source	code	for	the	Library	including	whatever	changes	were	used	in	the	work
(which	must	be	distributed	under	Sections	1	and	2	above);	and,	if	the	work	is	an
executable	linked	with	the	Library,	with	the	complete	machine-readable	"work
that	uses	the	Library",	as	object	code	and/or	source	code,	so	that	the	user	can
modify	the	Library	and	then	relink	to	produce	a	modified	executable	containing
the	modified	Library.	(It	is	understood	that	the	user	who	changes	the	contents	of
definitions	files	in	the	Library	will	not	necessarily	be	able	to	recompile	the
application	to	use	the	modified	definitions.)

b)	Use	a	suitable	shared	library	mechanism	for	linking	with	the	Library.	A
suitable	mechanism	is	one	that	(1)	uses	at	run	time	a	copy	of	the	library	already
present	on	the	user's	computer	system,	rather	than	copying	library	functions	into
the	executable,	and	(2)	will	operate	properly	with	a	modified	version	of	the
library,	if	the	user	installs	one,	as	long	as	the	modified	version	is	interface-
compatible	with	the	version	that	the	work	was	made	with.

c)	Accompany	the	work	with	a	written	offer,	valid	for	at	least	three	years,	to	give
the	same	user	the	materials	specified	in	Subsection	6a,	above,	for	a	charge	no
more	than	the	cost	of	performing	this	distribution.

d)	If	distribution	of	the	work	is	made	by	offering	access	to	copy	from	a
designated	place,	offer	equivalent	access	to	copy	the	above	specified	materials
from	the	same	place.

e)	Verify	that	the	user	has	already	received	a	copy	of	these	materials	or	that	you
have	already	sent	this	user	a	copy.

For	an	executable,	the	required	form	of	the	"work	that	uses	the	Library"	must
include	any	data	and	utility	programs	needed	for	reproducing	the	executable
from	it.	However,	as	a	special	exception,	the	materials	to	be	distributed	need	not
include	anything	that	is	normally	distributed	(in	either	source	or	binary	form)
with	the	major	components	(compiler,	kernel,	and	so	on)	of	the	operating	system
on	which	the	executable	runs,	unless	that	component	itself	accompanies	the
executable.

It	may	happen	that	this	requirement	contradicts	the	license	restrictions	of	other
proprietary	libraries	that	do	not	normally	accompany	the	operating	system.	Such
a	contradiction	means	you	cannot	use	both	them	and	the	Library	together	in	an
executable	that	you	distribute.

7.	You	may	place	library	facilities	that	are	a	work	based	on	the	Library	side-by-
side	in	a	single	library	together	with	other	library	facilities	not	covered	by	this
License,	and	distribute	such	a	combined	library,	provided	that	the	separate
distribution	of	the	work	based	on	the	Library	and	of	the	other	library	facilities	is
otherwise	permitted,	and	provided	that	you	do	these	two	things:

a)	Accompany	the	combined	library	with	a	copy	of	the	same	work	based	on	the
Library,	uncombined	with	any	other	library	facilities.	This	must	be	distributed
under	the	terms	of	the	Sections	above.

b)	Give	prominent	notice	with	the	combined	library	of	the	fact	that	part	of	it	is	a
work	based	on	the	Library,	and	explaining	where	to	find	the	accompanying
uncombined	form	of	the	same	work.

8.	You	may	not	copy,	modify,	sublicense,	link	with,	or	distribute	the	Library
except	as	expressly	provided	under	this	License.	Any	attempt	otherwise	to	copy,
modify,	sublicense,	link	with,	or	distribute	the	Library	is	void,	and	will
automatically	terminate	your	rights	under	this	License.	However,	parties	who
have	received	copies,	or	rights,	from	you	under	this	License	will	not	have	their
licenses	terminated	so	long	as	such	parties	remain	in	full	compliance.

9.	You	are	not	required	to	accept	this	License,	since	you	have	not	signed	it.
However,	nothing	else	grants	you	permission	to	modify	or	distribute	the	Library
or	its	derivative	works.	These	actions	are	prohibited	by	law	if	you	do	not	accept
this	License.	Therefore,	by	modifying	or	distributing	the	Library	(or	any	work
based	on	the	Library),	you	indicate	your	acceptance	of	this	License	to	do	so,	and

all	its	terms	and	conditions	for	copying,	distributing	or	modifying	the	Library	or
works	based	on	it.

10.	Each	time	you	redistribute	the	Library	(or	any	work	based	on	the	Library),
the	recipient	automatically	receives	a	license	from	the	original	licensor	to	copy,
distribute,	link	with	or	modify	the	Library	subject	to	these	terms	and	conditions.
You	may	not	impose	any	further	restrictions	on	the	recipients'	exercise	of	the
rights	granted	herein.	You	are	not	responsible	for	enforcing	compliance	by	third
parties	with	this	License.

11.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent	infringement
or	for	any	other	reason	(not	limited	to	patent	issues),	conditions	are	imposed	on
you	(whether	by	court	order,	agreement	or	otherwise)	that	contradict	the
conditions	of	this	License,	they	do	not	excuse	you	from	the	conditions	of	this
License.	If	you	cannot	distribute	so	as	to	satisfy	simultaneously	your	obligations
under	this	License	and	any	other	pertinent	obligations,	then	as	a	consequence
you	may	not	distribute	the	Library	at	all.	For	example,	if	a	patent	license	would
not	permit	royalty-free	redistribution	of	the	Library	by	all	those	who	receive
copies	directly	or	indirectly	through	you,	then	the	only	way	you	could	satisfy
both	it	and	this	License	would	be	to	refrain	entirely	from	distribution	of	the
Library.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under	any
particular	circumstance,	the	balance	of	the	section	is	intended	to	apply,	and	the
section	as	a	whole	is	intended	to	apply	in	other	circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any	patents	or	other
property	right	claims	or	to	contest	validity	of	any	such	claims;	this	section	has
the	sole	purpose	of	protecting	the	integrity	of	the	free	software	distribution
system	which	is	implemented	by	public	license	practices.	Many	people	have
made	generous	contributions	to	the	wide	range	of	software	distributed	through
that	system	in	reliance	on	consistent	application	of	that	system;	it	is	up	to	the
author/donor	to	decide	if	he	or	she	is	willing	to	distribute	software	through	any
other	system	and	a	licensee	cannot	impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to	be	a
consequence	of	the	rest	of	this	License.

12.	If	the	distribution	and/or	use	of	the	Library	is	restricted	in	certain	countries

either	by	patents	or	by	copyrighted	interfaces,	the	original	copyright	holder	who
places	the	Library	under	this	License	may	add	an	explicit	geographical
distribution	limitation	excluding	those	countries,	so	that	distribution	is	permitted
only	in	or	among	countries	not	thus	excluded.	In	such	case,	this	License
incorporates	the	limitation	as	if	written	in	the	body	of	this	License.

13.	The	Free	Software	Foundation	may	publish	revised	and/or	new	versions	of
the	Lesser	General	Public	License	from	time	to	time.	Such	new	versions	will	be
similar	in	spirit	to	the	present	version,	but	may	differ	in	detail	to	address	new
problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.	If	the	Library	specifies	a
version	number	of	this	License	which	applies	to	it	and	"any	later	version",	you
have	the	option	of	following	the	terms	and	conditions	either	of	that	version	or	of
any	later	version	published	by	the	Free	Software	Foundation.	If	the	Library	does
not	specify	a	license	version	number,	you	may	choose	any	version	ever
published	by	the	Free	Software	Foundation.

14.	If	you	wish	to	incorporate	parts	of	the	Library	into	other	free	programs
whose	distribution	conditions	are	incompatible	with	these,	write	to	the	author	to
ask	for	permission.	For	software	which	is	copyrighted	by	the	Free	Software
Foundation,	write	to	the	Free	Software	Foundation;	we	sometimes	make
exceptions	for	this.	Our	decision	will	be	guided	by	the	two	goals	of	preserving
the	free	status	of	all	derivatives	of	our	free	software	and	of	promoting	the
sharing	and	reuse	of	software	generally.

NO	WARRANTY

15.	BECAUSE	THE	LIBRARY	IS	LICENSED	FREE	OF	CHARGE,	THERE	IS
NO	WARRANTY	FOR	THE	LIBRARY,	TO	THE	EXTENT	PERMITTED	BY
APPLICABLE	LAW.	EXCEPT	WHEN	OTHERWISE	STATED	IN	WRITING
THE	COPYRIGHT	HOLDERS	AND/OR	OTHER	PARTIES	PROVIDE	THE
LIBRARY	"AS	IS"	WITHOUT	WARRANTY	OF	ANY	KIND,	EITHER
EXPRESSED	OR	IMPLIED,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE.	THE	ENTIRE	RISK	AS	TO	THE	QUALITY	AND
PERFORMANCE	OF	THE	LIBRARY	IS	WITH	YOU.	SHOULD	THE
LIBRARY	PROVE	DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL
NECESSARY	SERVICING,	REPAIR	OR	CORRECTION.

16.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR
AGREED	TO	IN	WRITING	WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY
OTHER	PARTY	WHO	MAY	MODIFY	AND/OR	REDISTRIBUTE	THE
LIBRARY	AS	PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR
DAMAGES,	INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR
CONSEQUENTIAL	DAMAGES	ARISING	OUT	OF	THE	USE	OR
INABILITY	TO	USE	THE	LIBRARY	(INCLUDING	BUT	NOT	LIMITED	TO
LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE	OR	LOSSES
SUSTAINED	BY	YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF	THE
LIBRARY	TO	OPERATE	WITH	ANY	OTHER	SOFTWARE),	EVEN	IF	SUCH
HOLDER	OR	OTHER	PARTY	HAS	BEEN	ADVISED	OF	THE	POSSIBILITY
OF	SUCH	DAMAGES.

END	OF	TERMS	AND	CONDITIONS

A.2.3.	Mozilla	Public	License	(MPL)

MOZILLA	PUBLIC	LICENSE	Version	1.1

1.	Definitions.

1.0.1.	"Commercial	Use"	means	distribution	or	otherwise	making	the	Covered
Code	available	to	a	third	party.

1.1.	"Contributor"	means	each	entity	that	creates	or	contributes	to	the	creation	of
Modifications.

1.2.	"Contributor	Version"	means	the	combination	of	the	Original	Code,	prior
Modifications	used	by	a	Contributor,	and	the	Modifications	made	by	that
particular	Contributor.

1.3.	"Covered	Code"	means	the	Original	Code	or	Modifications	or	the
combination	of	the	Original	Code	and	Modifications,	in	each	case	including
portions	thereof.

1.4.	"Electronic	Distribution	Mechanism"	means	a	mechanism	generally
accepted	in	the	software	development	community	for	the	electronic	transfer	of
data.

1.5.	"Executable"	means	Covered	Code	in	any	form	other	than	Source	Code.

1.6.	"Initial	Developer"	means	the	individual	or	entity	identified	as	the	Initial
Developer	in	the	Source	Code	notice	required	by	Exhibit	A.

1.7.	"Larger	Work"	means	a	work	which	combines	Covered	Code	or	portions
thereof	with	code	not	governed	by	the	terms	of	this	License.

1.8.	"License"	means	this	document.

1.8.1.	"Licensable"	means	having	the	right	to	grant,	to	the	maximum	extent
possible,	whether	at	the	time	of	the	initial	grant	or	subsequently	acquired,	any
and	all	of	the	rights	conveyed	herein.

1.9.	"Modifications"	means	any	addition	to	or	deletion	from	the	substance	or
structure	of	either	the	Original	Code	or	any	previous	Modifications.	When
Covered	Code	is	released	as	a	series	of	files,	a	Modification	is:

A.	Any	addition	to	or	deletion	from	the	contents	of	a	file	containing	Original
Code	or	previous	Modifications.

B.	Any	new	file	that	contains	any	part	of	the	Original	Code	or	previous
Modifications.

1.10.	"Original	Code"	means	Source	Code	of	computer	software	code	which	is
described	in	the	Source	Code	notice	required	by	Exhibit	A	as	Original	Code,	and
which,	at	the	time	of	its	release	under	this	License	is	not	already	Covered	Code
governed	by	this	License.

1.10.1.	"Patent	Claims"	means	any	patent	claim(s),	now	owned	or	hereafter
acquired,	including	without	limitation,	method,	process,	and	apparatus	claims,	in
any	patent	Licensable	by	grantor.

1.11.	"Source	Code"	means	the	preferred	form	of	the	Covered	Code	for	making
modifications	to	it,	including	all	modules	it	contains,	plus	any	associated
interface	definition	files,	scripts	used	to	control	compilation	and	installation	of
an	Executable,	or	source	code	differential	comparisons	against	either	the
Original	Code	or	another	well	known,	available	Covered	Code	of	the
Contributor's	choice.	The	Source	Code	can	be	in	a	compressed	or	archival	form,
provided	the	appropriate	decompression	or	de-archiving	software	is	widely
available	for	no	charge.

1.12.	"You"	(or	"Your")	means	an	individual	or	a	legal	entity	exercising	rights
under,	and	complying	with	all	of	the	terms	of,	this	License	or	a	future	version	of
this	License	issued	under	Section	6.1.	For	legal	entities,	"You"	includes	any
entity	which	controls,	is	controlled	by,	or	is	under	common	control	with	You.	For
purposes	of	this	definition,	"control"	means	(a)	the	power,	direct	or	indirect,	to
cause	the	direction	or	management	of	such	entity,	whether	by	contract	or
otherwise,	or	(b)	ownership	of	more	than	fifty	percent	(50%)	of	the	outstanding
shares	or	beneficial	ownership	of	such	entity.

2.	Source	Code	License.

2.1.	The	Initial	Developer	Grant.	The	Initial	Developer	hereby	grants	You	a
world-wide,	royalty-free,	non-exclusive	license,	subject	to	third	party	intellectual
property	claims:

(a)	under	intellectual	property	rights	(other	than	patent	or	trademark)	Licensable
by	Initial	Developer	to	use,	reproduce,	modify,	display,	perform,	sublicense	and
distribute	the	Original	Code	(or	portions	thereof)	with	or	without	Modifications,
and/or	as	part	of	a	Larger	Work;	and

(b)	under	Patents	Claims	infringed	by	the	making,	using	or	selling	of	Original
Code,	to	make,	have	made,	use,	practice,	sell,	and	offer	for	sale,	and/or
otherwise	dispose	of	the	Original	Code	(or	portions	thereof).

(c)	the	licenses	granted	in	this	Section	2.1(a)	and	(b)	are	effective	on	the	date
Initial	Developer	first	distributes	Original	Code	under	the	terms	of	this	License.

(d)	Notwithstanding	Section	2.1(b)	above,	no	patent	license	is	granted:	1)	for
code	that	You	delete	from	the	Original	Code;	2)	separate	from	the	Original
Code;	or	3)	for	infringements	caused	by:	i)	the	modification	of	the	Original	Code
or	ii)	the	combination	of	the	Original	Code	with	other	software	or	devices.

2.2.	Contributor	Grant.	Subject	to	third	party	intellectual	property	claims,	each
Contributor	hereby	grants	You	a	world-wide,	royalty-free,	non-exclusive	license

(a)	under	intellectual	property	rights	(other	than	patent	or	trademark)	Licensable
by	Contributor,	to	use,	reproduce,	modify,	display,	perform,	sublicense	and
distribute	the	Modifications	created	by	such	Contributor	(or	portions	thereof)
either	on	an	unmodified	basis,	with	other	Modifications,	as	Covered	Code	and/or
as	part	of	a	Larger	Work;	and

(b)	under	Patent	Claims	infringed	by	the	making,	using,	or	selling	of
Modifications	made	by	that	Contributor	either	alone	and/or	in	combination	with
its	Contributor	Version	(or	portions	of	such	combination),	to	make,	use,	sell,
offer	for	sale,	have	made,	and/or	otherwise	dispose	of:	1)	Modifications	made	by
that	Contributor	(or	portions	thereof);	and	2)	the	combination	of	Modifications
made	by	that	Contributor	with	its	Contributor	Version	(or	portions	of	such
combination).

(c)	the	licenses	granted	in	Sections	2.2(a)	and	2.2(b)	are	effective	on	the	date
Contributor	first	makes	Commercial	Use	of	the	Covered	Code.

(d)	Notwithstanding	Section	2.2(b)	above,	no	patent	license	is	granted:	1)	for	any
code	that	Contributor	has	deleted	from	the	Contributor	Version;	2)	separate	from
the	Contributor	Version;	3)	for	infringements	caused	by:	i)	third	party
modifications	of	Contributor	Version	or	ii)	the	combination	of	Modifications
made	by	that	Contributor	with	other	software	(except	as	part	of	the	Contributor
Version)	or	other	devices;	or	4)	under	Patent	Claims	infringed	by	Covered	Code
in	the	absence	of	Modifications	made	by	that	Contributor.

3.	Distribution	Obligations.

3.1.	Application	of	License.	The	Modifications	which	You	create	or	to	which
You	contribute	are	governed	by	the	terms	of	this	License,	including	without
limitation	Section	2.2.	The	Source	Code	version	of	Covered	Code	may	be
distributed	only	under	the	terms	of	this	License	or	a	future	version	of	this
License	released	under	Section	6.1,	and	You	must	include	a	copy	of	this	License
with	every	copy	of	the	Source	Code	You	distribute.	You	may	not	offer	or	impose
any	terms	on	any	Source	Code	version	that	alters	or	restricts	the	applicable
version	of	this	License	or	the	recipients'	rights	hereunder.	However,	You	may
include	an	additional	document	offering	the	additional	rights	described	in
Section	3.5.

3.2.	Availability	of	Source	Code.	Any	Modification	which	You	create	or	to
which	You	contribute	must	be	made	available	in	Source	Code	form	under	the
terms	of	this	License	either	on	the	same	media	as	an	Executable	version	or	via
an	accepted	Electronic	Distribution	Mechanism	to	anyone	to	whom	you	made	an
Executable	version	available;	and	if	made	available	via	Electronic	Distribution
Mechanism,	must	remain	available	for	at	least	twelve	(12)	months	after	the	date
it	initially	became	available,	or	at	least	six	(6)	months	after	a	subsequent	version

of	that	particular	Modification	has	been	made	available	to	such	recipients.	You
are	responsible	for	ensuring	that	the	Source	Code	version	remains	available	even
if	the	Electronic	Distribution	Mechanism	is	maintained	by	a	third	party.

3.3.	Description	of	Modifications.	You	must	cause	all	Covered	Code	to	which
You	contribute	to	contain	a	file	documenting	the	changes	You	made	to	create
that	Covered	Code	and	the	date	of	any	change.	You	must	include	a	prominent
statement	that	the	Modification	is	derived,	directly	or	indirectly,	from	Original
Code	provided	by	the	Initial	Developer	and	including	the	name	of	the	Initial
Developer	in	(a)	the	Source	Code,	and	(b)	in	any	notice	in	an	Executable	version
or	related	documentation	in	which	You	describe	the	origin	or	ownership	of	the
Covered	Code.

3.4.	Intellectual	Property	Matters

(a)	Third	Party	Claims.	If	Contributor	has	knowledge	that	a	license	under	a	third
party's	intellectual	property	rights	is	required	to	exercise	the	rights	granted	by
such	Contributor	under	Sections	2.1	or	2.2,	Contributor	must	include	a	text	file
with	the	Source	Code	distribution	titled	"LEGAL"	which	describes	the	claim	and
the	party	making	the	claim	in	sufficient	detail	that	a	recipient	will	know	whom	to
contact.	If	Contributor	obtains	such	knowledge	after	the	Modification	is	made
available	as	described	in	Section	3.2,	Contributor	shall	promptly	modify	the
LEGAL	file	in	all	copies	Contributor	makes	available	thereafter	and	shall	take
other	steps	(such	as	notifying	appropriate	mailing	lists	or	newsgroups)
reasonably	calculated	to	inform	those	who	received	the	Covered	Code	that	new
knowledge	has	been	obtained.

(b)	Contributor	APIs.	If	Contributor's	Modifications	include	an	application
programming	interface	and	Contributor	has	knowledge	of	patent	licenses	which
are	reasonably	necessary	to	implement	that	API,	Contributor	must	also	include
this	information	in	the	LEGAL	file.

3.5.	Required	Notices.	You	must	duplicate	the	notice	in	Exhibit	A	in	each	file	of
the	Source	Code.	If	it	is	not	possible	to	put	such	notice	in	a	particular	Source
Code	file	due	to	its	structure,	then	You	must	include	such	notice	in	a	location
(such	as	a	relevant	directory)	where	a	user	would	be	likely	to	look	for	such	a
notice.	If	You	created	one	or	more	Modification(s)	You	may	add	your	name	as	a
Contributor	to	the	notice	described	in	Exhibit	A.	You	must	also	duplicate	this
License	in	any	documentation	for	the	Source	Code	where	You	describe

recipients'	rights	or	ownership	rights	relating	to	Covered	Code.	You	may	choose
to	offer,	and	to	charge	a	fee	for,	warranty,	support,	indemnity	or	liability
obligations	to	one	or	more	recipients	of	Covered	Code.	However,	You	may	do	so
only	on	Your	own	behalf,	and	not	on	behalf	of	the	Initial	Developer	or	any
Contributor.	You	must	make	it	absolutely	clear	than	any	such	warranty,	support,
indemnity	or	liability	obligation	is	offered	by	You	alone,	and	You	hereby	agree
to	indemnify	the	Initial	Developer	and	every	Contributor	for	any	liability
incurred	by	the	Initial	Developer	or	such	Contributor	as	a	result	of	warranty,
support,	indemnity	or	liability	terms	You	offer.

3.6.	Distribution	of	Executable	Versions.	You	may	distribute	Covered	Code	in
Executable	form	only	if	the	requirements	of	Section	3.1-3.5	have	been	met	for
that	Covered	Code,	and	if	You	include	a	notice	stating	that	the	Source	Code
version	of	the	Covered	Code	is	available	under	the	terms	of	this	License,
including	a	description	of	how	and	where	You	have	fulfilled	the	obligations	of
Section	3.2.	The	notice	must	be	conspicuously	included	in	any	notice	in	an
Executable	version,	related	documentation	or	collateral	in	which	You	describe
recipients'	rights	relating	to	the	Covered	Code.	You	may	distribute	the
Executable	version	of	Covered	Code	or	ownership	rights	under	a	license	of	Your
choice,	which	may	contain	terms	different	from	this	License,	provided	that	You
are	in	compliance	with	the	terms	of	this	License	and	that	the	license	for	the
Executable	version	does	not	attempt	to	limit	or	alter	the	recipient's	rights	in	the
Source	Code	version	from	the	rights	set	forth	in	this	License.	If	You	distribute
the	Executable	version	under	a	different	license	You	must	make	it	absolutely
clear	that	any	terms	which	differ	from	this	License	are	offered	by	You	alone,	not
by	the	Initial	Developer	or	any	Contributor.	You	hereby	agree	to	indemnify	the
Initial	Developer	and	every	Contributor	for	any	liability	incurred	by	the	Initial
Developer	or	such	Contributor	as	a	result	of	any	such	terms	You	offer.

3.7.	Larger	Works.	You	may	create	a	Larger	Work	by	combining	Covered	Code
with	other	code	not	governed	by	the	terms	of	this	License	and	distribute	the
Larger	Work	as	a	single	product.	In	such	a	case,	You	must	make	sure	the
requirements	of	this	License	are	fulfilled	for	the	Covered	Code.

4.	Inability	to	Comply	Due	to	Statute	or	Regulation.If	it	is	impossible	for	You	to
comply	with	any	of	the	terms	of	this	License	with	respect	to	some	or	all	of	the
Covered	Code	due	to	statute,	judicial	order,	or	regulation	then	You	must:	(a)
comply	with	the	terms	of	this	License	to	the	maximum	extent	possible;	and	(b)
describe	the	limitations	and	the	code	they	affect.	Such	description	must	be

included	in	the	LEGAL	file	described	in	Section	3.4	and	must	be	included	with
all	distributions	of	the	Source	Code.	Except	to	the	extent	prohibited	by	statute	or
regulation,	such	description	must	be	sufficiently	detailed	for	a	recipient	of
ordinary	skill	to	be	able	to	understand	it.

5.	Application	of	this	License.	This	License	applies	to	code	to	which	the	Initial
Developer	has	attached	the	notice	in	Exhibit	A	and	to	related	Covered	Code.

6.	Versions	of	the	License.

6.1.	New	Versions.	Netscape	Communications	Corporation	("Netscape")	may
publish	revised	and/or	new	versions	of	the	License	from	time	to	time.	Each
version	will	be	given	a	distinguishing	version	number.

6.2.	Effect	of	New	Versions.	Once	Covered	Code	has	been	published	under	a
particular	version	of	the	License,	You	may	always	continue	to	use	it	under	the
terms	of	that	version.	You	may	also	choose	to	use	such	Covered	Code	under	the
terms	of	any	subsequent	version	of	the	License	published	by	Netscape.	No	one
other	than	Netscape	has	the	right	to	modify	the	terms	applicable	to	Covered
Code	created	under	this	License.

6.3.	Derivative	Works.	If	You	create	or	use	a	modified	version	of	this	License
(which	you	may	only	do	in	order	to	apply	it	to	code	which	is	not	already
Covered	Code	governed	by	this	License),	You	must	(a)	rename	Your	license	so
that	the	phrases	"Mozilla",	"MOZILLAPL",	"MOZPL",	"Netscape",	"MPL",
"NPL"	or	any	confusingly	similar	phrase	do	not	appear	in	your	license	(except	to
note	that	your	license	differs	from	this	License)	and	(b)	otherwise	make	it	clear
that	Your	version	of	the	license	contains	terms	which	differ	from	the	Mozilla
Public	License	and	Netscape	Public	License.	(Filling	in	the	name	of	the	Initial
Developer,	Original	Code	or	Contributor	in	the	notice	described	in	Exhibit	A
shall	not	of	themselves	be	deemed	to	be	modifications	of	this	License.)

7.	DISCLAIMER	OF	WARRANTY.

COVERED	CODE	IS	PROVIDED	UNDER	THIS	LICENSE	ON	AN	"AS	IS"
BASIS,	WITHOUT	WARRANTY	OF	ANY	KIND,	EITHER	EXPRESSED	OR
IMPLIED,	INCLUDING,	WITHOUT	LIMITATION,	WARRANTIES	THAT
THE	COVERED	CODE	IS	FREE	OF	DEFECTS,	MERCHANTABLE,	FIT
FOR	A	PARTICULAR	PURPOSE	OR	NON-INFRINGING.	THE	ENTIRE
RISK	AS	TO	THE	QUALITY	AND	PERFORMANCE	OF	THE	COVERED

CODE	IS	WITH	YOU.	SHOULD	ANY	COVERED	CODE	PROVE
DEFECTIVE	IN	ANY	RESPECT,	YOU	(NOT	THE	INITIAL	DEVELOPER
OR	ANY	OTHER	CONTRIBUTOR)	ASSUME	THE	COST	OF	ANY
NECESSARY	SERVICING,	REPAIR	OR	CORRECTION.	THIS
DISCLAIMER	OF	WARRANTY	CONSTITUTES	AN	ESSENTIAL	PART	OF
THIS	LICENSE.	NO	USE	OF	ANY	COVERED	CODE	IS	AUTHORIZED
HEREUNDER	EXCEPT	UNDER	THIS	DISCLAIMER.

8.	TERMINATION.

8.1.	This	License	and	the	rights	granted	hereunder	will	terminate	automatically	if
You	fail	to	comply	with	terms	herein	and	fail	to	cure	such	breach	within	30	days
of	becoming	aware	of	the	breach.	All	sublicenses	to	the	Covered	Code	which	are
properly	granted	shall	survive	any	termination	of	this	License.	Provisions	which,
by	their	nature,	must	remain	in	effect	beyond	the	termination	of	this	License
shall	survive.

8.2.	If	You	initiate	litigation	by	asserting	a	patent	infringement	claim	(excluding
declaratory	judgment	actions)	against	Initial	Developer	or	a	Contributor	(the
Initial	Developer	or	Contributor	against	whom	You	file	such	action	is	referred	to
as	"Participant")	alleging	that:

(a)	such	Participant's	Contributor	Version	directly	or	indirectly	infringes	any
patent,	then	any	and	all	rights	granted	by	such	Participant	to	You	under	Sections
2.1	and/or	2.2	of	this	License	shall,	upon	60	days	notice	from	Participant
terminate	prospectively,	unless	if	within	60	days	after	receipt	of	notice	You
either:	(i)	agree	in	writing	to	pay	Participant	a	mutually	agreeable	reasonable
royalty	for	Your	past	and	future	use	of	Modifications	made	by	such	Participant,
or	(ii)	withdraw	Your	litigation	claim	with	respect	to	the	Contributor	Version
against	such	Participant.	If	within	60	days	of	notice,	a	reasonable	royalty	and
payment	arrangement	are	not	mutually	agreed	upon	in	writing	by	the	parties	or
the	litigation	claim	is	not	withdrawn,	the	rights	granted	by	Participant	to	You
under	Sections	2.1	and/or	2.2	automatically	terminate	at	the	expiration	of	the	60
day	notice	period	specified	above.

(b)	any	software,	hardware,	or	device,	other	than	such	Participant's	Contributor
Version,	directly	or	indirectly	infringes	any	patent,	then	any	rights	granted	to
You	by	such	Participant	under	Sections	2.1(b)	and	2.2(b)	are	revoked	effective	as
of	the	date	You	first	made,	used,	sold,	distributed,	or	had	made,	Modifications

made	by	that	Participant.

8.3.	If	You	assert	a	patent	infringement	claim	against	Participant	alleging	that
such	Participant's	Contributor	Version	directly	or	indirectly	infringes	any	patent
where	such	claim	is	resolved	(such	as	by	license	or	settlement)	prior	to	the
initiation	of	patent	infringement	litigation,	then	the	reasonable	value	of	the
licenses	granted	by	such	Participant	under	Sections	2.1	or	2.2	shall	be	taken	into
account	in	determining	the	amount	or	value	of	any	payment	or	license.

8.4.	In	the	event	of	termination	under	Sections	8.1	or	8.2	above,	all	end	user
license	agreements	(excluding	distributors	and	resellers)	which	have	been
validly	granted	by	You	or	any	distributor	hereunder	prior	to	termination	shall
survive	termination.

9.	LIMITATION	OF	LIABILITY.	UNDER	NO	CIRCUMSTANCES	AND
UNDER	NO	LEGAL	THEORY,	WHETHER	TORT	(INCLUDING
NEGLIGENCE),	CONTRACT,	OR	OTHERWISE,	SHALL	YOU,	THE
INITIAL	DEVELOPER,	ANY	OTHER	CONTRIBUTOR,	OR	ANY
DISTRIBUTOR	OF	COVERED	CODE,	OR	ANY	SUPPLIER	OF	ANY	OF
SUCH	PARTIES,	BE	LIABLE	TO	ANY	PERSON	FOR	ANY	INDIRECT,
SPECIAL,	INCIDENTAL,	OR	CONSEQUENTIAL	DAMAGES	OF	ANY
CHARACTER	INCLUDING,	WITHOUT	LIMITATION,	DAMAGES	FOR
LOSS	OF	GOODWILL,	WORK	STOPPAGE,	COMPUTER	FAILURE	OR
MALFUNCTION,	OR	ANY	AND	ALL	OTHER	COMMERCIAL	DAMAGES
OR	LOSSES,	EVEN	IF	SUCH	PARTY	SHALL	HAVE	BEEN	INFORMED	OF
THE	POSSIBILITY	OF	SUCH	DAMAGES.	THIS	LIMITATION	OF
LIABILITY	SHALL	NOT	APPLY	TO	LIABILITY	FOR	DEATH	OR
PERSONAL	INJURY	RESULTING	FROM	SUCH	PARTY'S	NEGLIGENCE
TO	THE	EXTENT	APPLICABLE	LAW	PROHIBITS	SUCH	LIMITATION.
SOME	JURISDICTIONS	DO	NOT	ALLOW	THE	EXCLUSION	OR
LIMITATION	OF	INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	SO
THIS	EXCLUSION	AND	LIMITATION	MAY	NOT	APPLY	TO	YOU.

10.	U.S.	GOVERNMENT	END	USERS.	The	Covered	Code	is	a	"commercial
item,"	as	that	term	is	defined	in	48	C.F.R.	2.101	(Oct.	1995),	consisting	of
"commercial	computer	software"	and	"commercial	computer	software
documentation,"	as	such	terms	are	used	in	48	C.F.R.	12.212	(Sept.	1995).
Consistent	with	48	C.F.R.	12.212	and	48	C.F.R.	227.7202-1	through	227.7202-4
(June	1995),	all	U.S.	Government	End	Users	acquire	Covered	Code	with	only

those	rights	set	forth	herein.

11.	MISCELLANEOUS.	This	License	represents	the	complete	agreement
concerning	subject	matter	hereof.	If	any	provision	of	this	License	is	held	to	be
unenforceable,	such	provision	shall	be	reformed	only	to	the	extent	necessary	to
make	it	enforceable.	This	License	shall	be	governed	by	California	law	provisions
(except	to	the	extent	applicable	law,	if	any,	provides	otherwise),	excluding	its
conflict-of-law	provisions.	With	respect	to	disputes	in	which	at	least	one	party	is
a	citizen	of,	or	an	entity	chartered	or	registered	to	do	business	in	the	United
States	of	America,	any	litigation	relating	to	this	License	shall	be	subject	to	the
jurisdiction	of	the	Federal	Courts	of	the	Northern	District	of	California,	with
venue	lying	in	Santa	Clara	County,	California,	with	the	losing	party	responsible
for	costs,	including	without	limitation,	court	costs	and	reasonable	attorneys'	fees
and	expenses.	The	application	of	the	United	Nations	Convention	on	Contracts
for	the	International	Sale	of	Goods	is	expressly	excluded.	Any	law	or	regulation
which	provides	that	the	language	of	a	contract	shall	be	construed	against	the
drafter	shall	not	apply	to	this	License.

12.	RESPONSIBILITY	FOR	CLAIMS.	As	between	Initial	Developer	and	the
Contributors,	each	party	is	responsible	for	claims	and	damages	arising,	directly
or	indirectly,	out	of	its	utilization	of	rights	under	this	License	and	You	agree	to
work	with	Initial	Developer	and	Contributors	to	distribute	such	responsibility	on
an	equitable	basis.	Nothing	herein	is	intended	or	shall	be	deemed	to	constitute
any	admission	of	liability.

13.	MULTIPLE-LICENSED	CODE.	Initial	Developer	may	designate	portions	of
the	Covered	Code	as	"Multiple-Licensed".	"Multiple-Licensed"	means	that	the
Initial	Developer	permits	you	to	utilize	portions	of	the	Covered	Code	under	Your
choice	of	the	NPL	or	the	alternative	licenses,	if	any,	specified	by	the	Initial
Developer	in	the	file	described	in	Exhibit	A.

EXHIBIT	A	-Mozilla	Public	License.

``The	contents	of	this	file	are	subject	to	the	Mozilla	Public	License	Version	1.1
(the	"License");	you	may	not	use	this	file	except	in	compliance	with	the	License.
You	may	obtain	a	copy	of	the	License	at	http://www.mozilla.org/MPL/

Software	distributed	under	the	License	is	distributed	on	an	"AS	IS"	basis,
WITHOUT	WARRANTY	OF	ANY	KIND,	either	express	or	implied.	See	the

License	for	the	specific	language	governing	rights	and	limitations	under	the
License.

The	Original	Code	is	______________________________________.

The	Initial	Developer	of	the	Original	Code	is	________________________.
Portions	created	by	______________________	are	Copyright	(C)	______
_______________________.	All	Rights	Reserved.

Contributor(s):	______________________________________.

Alternatively,	the	contents	of	this	file	may	be	used	under	the	terms	of	the	_____
license	(the	"[___]	License"),	in	which	case	the	provisions	of	[______]	License
are	applicable	instead	of	those	above.	If	you	wish	to	allow	use	of	your	version	of
this	file	only	under	the	terms	of	the	[____]	License	and	not	to	allow	others	to	use
your	version	of	this	file	under	the	MPL,	indicate	your	decision	by	deleting	the
provisions	above	and	replace	them	with	the	notice	and	other	provisions	required
by	the	[___]	License.	If	you	do	not	delete	the	provisions	above,	a	recipient	may
use	your	version	of	this	file	under	either	the	MPL	or	the	[___]	License."

[NOTE:	The	text	of	this	Exhibit	A	may	differ	slightly	from	the	text	of	the	notices
in	the	Source	Code	files	of	the	Original	Code.	You	should	use	the	text	of	this
Exhibit	A	rather	than	the	text	found	in	the	Original	Code	Source	Code	for	Your
Modifications.]

A.2.4.	MIT	License

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE

WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE
AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,
DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF
CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN
CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

A.2.5.	X	Consortium	License	(X11)

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE
AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,
DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF
CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN
CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

A.2.6.	zlib	license

This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.	In	no
event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this
software.

Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,	including
commercial	applications,	and	to	alter	it	and	redistribute	it	freely,	subject	to	the
following	restrictions:

1.	The	origin	of	this	software	must	not	be	misrepresented;	you	must	not	claim
that	you	wrote	the	original	software.	If	you	use	this	software	in	a	product,	an
acknowledgment	in	the	product	documentation	would	be	appreciated	but	is	not
required.

2.	Altered	source	versions	must	be	plainly	marked	as	such,	and	must	not	be
misrepresented	as	being	the	original	software.

3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

Jean-loup	Gailly								Mark	Adler

jloup@gzip.org										madler@alumni.caltech.edu

A.2.7.	OpenSSL	license

This	package	is	an	SSL	implementation	written	by	Eric	Young
(eay@cryptsoft.com).	The	implementation	was	written	so	as	to	conform	with
Netscape's	SSL.

This	library	is	free	for	commercial	and	non-commercial	use	as	long	as	the
following	conditions	are	adhered	to.	The	following	conditions	apply	to	all	code
found	in	this	distribution,	be	it	the	RC4,	RSA,	lhash,	DES,	etc.,	code;	not	just	the
SSL	code.	The	SSL	documentation	included	with	this	distribution	is	covered	by
the	same	copyright	terms	except	that	the	holder	is	Tim	Hudson
(tjh@cryptsoft.com).

Copyright	remains	Eric	Young's,	and	as	such	any	Copyright	notices	in	the	code
are	not	to	be	removed.	If	this	package	is	used	in	a	product,	Eric	Young	should	be
given	attribution	as	the	author	of	the	parts	of	the	library	used.	This	can	be	in	the
form	of	a	textual	message	at	program	startup	or	in	documentation	(online	or
textual)	provided	with	the	package.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	Redistributions	of	source	code	must	retain	the	copyright	notice,	this	list	of
conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	in	the	documentation	and/or	other

materials	provided	with	the	distribution.

3.	All	advertising	materials	mentioning	features	or	use	of	this	software	must
display	the	following	acknowledgement:	"This	product	includes	cryptographic
software	written	by	Eric	Young	(eay@cryptsoft.com)"	The	word	'cryptographic'
can	be	left	out	if	the	routines	from	the	library	being	used	are	not	cryptographic
related	:-).

4.	If	you	include	any	Windows	specific	code	(or	a	derivative	thereof)	from	the
apps	directory	(application	code)	you	must	include	an	acknowledgement:	"This
product	includes	software	written	by	Tim	Hudson	(tjh@cryptsoft.com)"

THIS	SOFTWARE	IS	PROVIDED	BY	ERIC	YOUNG	``AS	IS''	AND	ANY
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED
TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO
EVENT	SHALL	THE	AUTHOR	OR	CONTRIBUTORS	BE	LIABLE	FOR
ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

The	licence	and	distribution	terms	for	any	publicly	available	version	or
derivative	of	this	code	cannot	be	changed.	i.e.	this	code	cannot	simply	be	copied
and	put	under	another	distribution	licence	[including	the	GNU	Public	Licence.]

A.2.8.	Slirp	license

Copyright	(c)	1995,1996	Danny	Gasparovski.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list

of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	in	the	documentation	and/or	other
materials	provided	with	the	distribution.

3.	All	advertising	materials	mentioning	features	or	use	of	this	software	must
display	the	following	acknowledgment:	This	product	includes	software
developed	by	Danny	Gasparovski.

THIS	SOFTWARE	IS	PROVIDED	``AS	IS''	AND	ANY	EXPRESS	OR
IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE
IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL
DANNY	GASPAROVSKI	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

A.2.9.	liblzf	license

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list
of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	in	the	documentation	and/or	other
materials	provided	with	the	distribution.

3.	The	name	of	the	author	may	not	be	used	to	endorse	or	promote	products
derived	from	this	software	without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	``AS	IS''	AND	ANY
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED
TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO
EVENT	SHALL	THE	AUTHOR	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

A.2.10.	libpng	license

The	PNG	Reference	Library	is	supplied	"AS	IS".	The	Contributing	Authors	and
Group	42,	Inc.	disclaim	all	warranties,	expressed	or	implied,	including,	without
limitation,	the	warranties	of	merchantability	and	of	fitness	for	any	purpose.	The
Contributing	Authors	and	Group	42,	Inc.	assume	no	liability	for	direct,	indirect,
incidental,	special,	exemplary,	or	consequential	damages,	which	may	result	from
the	use	of	the	PNG	Reference	Library,	even	if	advised	of	the	possibility	of	such
damage.

Permission	is	hereby	granted	to	use,	copy,	modify,	and	distribute	this	source
code,	or	portions	hereof,	for	any	purpose,	without	fee,	subject	to	the	following
restrictions:

1.	The	origin	of	this	source	code	must	not	be	misrepresented.

2.	Altered	versions	must	be	plainly	marked	as	such	and	must	not	be
misrepresented	as	being	the	original	source.

3.	This	Copyright	notice	may	not	be	removed	or	altered	from	any	source	or
altered	source	distribution.

The	Contributing	Authors	and	Group	42,	Inc.	specifically	permit,	without	fee,
and	encourage	the	use	of	this	source	code	as	a	component	to	supporting	the	PNG
file	format	in	commercial	products.	If	you	use	this	source	code	in	a	product,

acknowledgment	is	not	required	but	would	be	appreciated.

A.2.11.	lwIP	license

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list
of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer	in	the	documentation	and/or	other
materials	provided	with	the	distribution.

3.	The	name	of	the	author	may	not	be	used	to	endorse	or	promote	products
derived	from	this	software	without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	``AS	IS''	AND	ANY
EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED
TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND
FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO
EVENT	SHALL	THE	AUTHOR	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

A.2.12.	libxml	license

Except	where	otherwise	noted	in	the	source	code	(e.g.	the	files	hash.c,	list.c	and
the	trio	files,	which	are	covered	by	a	similar	licence	but	with	different	Copyright
notices)	all	the	files	are:

Copyright	(C)	1998-2003	Daniel	Veillard.	All	Rights	Reserved.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE
DANIEL	VEILLARD	BE	LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR
OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT
OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH
THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE
SOFTWARE.

Except	as	contained	in	this	notice,	the	name	of	Daniel	Veillard	shall	not	be	used
in	advertising	or	otherwise	to	promote	the	sale,	use	or	other	dealings	in	this
Software	without	prior	written	authorization	from	him.

A.2.13.	libxslt	licenses

Licence	for	libxslt	except	libexslt:

Copyright	(C)	2001-2002	Daniel	Veillard.	All	Rights	Reserved.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE
DANIEL	VEILLARD	BE	LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR
OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT
OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH
THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE
SOFTWARE.

Except	as	contained	in	this	notice,	the	name	of	Daniel	Veillard	shall	not	be	used
in	advertising	or	otherwise	to	promote	the	sale,	use	or	other	dealings	in	this
Software	without	prior	written	authorization	from	him.

Licence	for	libexslt:

Copyright	(C)	2001-2002	Thomas	Broyer,	Charlie	Bozeman	and	Daniel	Veillard.
All	Rights	Reserved.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE
AUTHORS	BE	LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER
LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR
OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE
SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

Except	as	contained	in	this	notice,	the	name	of	the	authors	shall	not	be	used	in
advertising	or	otherwise	to	promote	the	sale,	use	or	other	dealings	in	this

Software	without	prior	written	authorization	from	him.

A.2.14.	gSOAP	Public	License	Version	1.3a

The	gSOAP	public	license	is	derived	from	the	Mozilla	Public	License	(MPL1.1).
The	sections	that	were	deleted	from	the	original	MPL1.1	text	are	1.0.1,	2.1.(c),
(d),	2.2.(c),(d),	8.2.(b),	10,	and	11.	Section	3.8	was	added.	The	modified	sections
are	2.1.(b),	2.2.(b),	3.2	(simplified),	3.5	(deleted	the	last	sentence),	and	3.6
(simplified).

1	DEFINITIONS

1.1.	"Contributor"	means	each	entity	that	creates	or	contributes	to	the	creation	of
Modifications.

1.2.	"Contributor	Version"	means	the	combination	of	the	Original	Code,	prior
Modifications	used	by	a	Contributor,	and	the	Modifications	made	by	that
particular	Contributor.

1.3.	"Covered	Code"	means	the	Original	Code,	or	Modifications	or	the
combination	of	the	Original	Code,	and	Modifications,	in	each	case	including
portions	thereof.

1.4.	"Electronic	Distribution	Mechanism"	means	a	mechanism	generally
accepted	in	the	software	development	community	for	the	electronic	transfer	of
data.

1.5.	"Executable"	means	Covered	Code	in	any	form	other	than	Source	Code.

1.6.	"Initial	Developer"	means	the	individual	or	entity	identified	as	the	Initial
Developer	in	the	Source	Code	notice	required	by	Exhibit	A.

1.7.	"Larger	Work"	means	a	work	which	combines	Covered	Code	or	portions
thereof	with	code	not	governed	by	the	terms	of	this	License.

1.8.	"License"	means	this	document.

1.8.1.	"Licensable"	means	having	the	right	to	grant,	to	the	maximum	extent
possible,	whether	at	the	time	of	the	initial	grant	or	subsequently	acquired,	any
and	all	of	the	rights	conveyed	herein.

1.9.	"Modifications"	means	any	addition	to	or	deletion	from	the	substance	or
structure	of	either	the	Original	Code	or	any	previous	Modifications.	When
Covered	Code	is	released	as	a	series	of	files,	a	Modification	is:

A.	Any	addition	to	or	deletion	from	the	contents	of	a	file	containing	Original
Code	or	previous	Modifications.

B.	Any	new	file	that	contains	any	part	of	the	Original	Code,	or	previous
Modifications.

1.10.	"Original	Code"	means	Source	Code	of	computer	software	code	which	is
described	in	the	Source	Code	notice	required	by	Exhibit	A	as	Original	Code,	and
which,	at	the	time	of	its	release	under	this	License	is	not	already	Covered	Code
governed	by	this	License.

1.10.1.	"Patent	Claims"	means	any	patent	claim(s),	now	owned	or	hereafter
acquired,	including	without	limitation,	method,	process,	and	apparatus	claims,	in
any	patent	Licensable	by	grantor.

1.11.	"Source	Code"	means	the	preferred	form	of	the	Covered	Code	for	making
modifications	to	it,	including	all	modules	it	contains,	plus	any	associated
interface	definition	files,	scripts	used	to	control	compilation	and	installation	of
an	Executable,	or	source	code	differential	comparisons	against	either	the
Original	Code	or	another	well	known,	available	Covered	Code	of	the
Contributor's	choice.	The	Source	Code	can	be	in	a	compressed	or	archival	form,
provided	the	appropriate	decompression	or	de-archiving	software	is	widely
available	for	no	charge.

1.12.	"You"	(or	"Your")	means	an	individual	or	a	legal	entity	exercising	rights
under,	and	complying	with	all	of	the	terms	of,	this	License	or	a	future	version	of
this	License	issued	under	Section	6.1.	For	legal	entities,	"You"	includes	any
entity	which	controls,	is	controlled	by,	or	is	under	common	control	with	You.	For
purposes	of	this	definition,	"control"	means	(a)	the	power,	direct	or	indirect,	to
cause	the	direction	or	management	of	such	entity,	whether	by	contract	or
otherwise,	or	(b)	ownership	of	more	than	fifty	percent	(50%)	of	the	outstanding
shares	or	beneficial	ownership	of	such	entity.

2	SOURCE	CODE	LICENSE.

2.1.	The	Initial	Developer	Grant.

The	Initial	Developer	hereby	grants	You	a	world-wide,	royalty-free,	non-
exclusive	license,	subject	to	third	party	intellectual	property	claims:

(a)	under	intellectual	property	rights	(other	than	patent	or	trademark)	Licensable
by	Initial	Developer	to	use,	reproduce,	modify,	display,	perform,	sublicense	and
distribute	the	Original	Code	(or	portions	thereof)	with	or	without	Modifications,
and/or	as	part	of	a	Larger	Work;	and

(b)	under	patents	now	or	hereafter	owned	or	controlled	by	Initial	Developer,	to
make,	have	made,	use	and	sell	("offer	to	sell	and	import")	the	Original	Code,
Modifications,	or	portions	thereof,	but	solely	to	the	extent	that	any	such	patent	is
reasonably	necessary	to	enable	You	to	utilize,	alone	or	in	combination	with	other
software,	the	Original	Code,	Modifications,	or	any	combination	or	portions
thereof.

(c)

(d)

2.2.	Contributor	Grant.

Subject	to	third	party	intellectual	property	claims,	each	Contributor	hereby
grants	You	a	world-wide,	royalty-free,	non-exclusive	license

(a)	under	intellectual	property	rights	(other	than	patent	or	trademark)	Licensable
by	Contributor,	to	use,	reproduce,	modify,	display,	perform,	sublicense	and
distribute	the	Modifications	created	by	such	Contributor	(or	portions	thereof)
either	on	an	unmodified	basis,	with	other	Modifications,	as	Covered	Code	and/or
as	part	of	a	Larger	Work;	and

(b)	under	patents	now	or	hereafter	owned	or	controlled	by	Contributor,	to	make,
have	made,	use	and	sell	("offer	to	sell	and	import")	the	Contributor	Version	(or
portions	thereof),	but	solely	to	the	extent	that	any	such	patent	is	reasonably
necessary	to	enable	You	to	utilize,	alone	or	in	combination	with	other	software,
the	Contributor	Version	(or	portions	thereof).

(c)

(d)

3	DISTRIBUTION	OBLIGATIONS.

3.1.	Application	of	License.

The	Modifications	which	You	create	or	to	which	You	contribute	are	governed	by
the	terms	of	this	License,	including	without	limitation	Section	2.2.	The	Source
Code	version	of	Covered	Code	may	be	distributed	only	under	the	terms	of	this
License	or	a	future	version	of	this	License	released	under	Section	6.1,	and	You
must	include	a	copy	of	this	License	with	every	copy	of	the	Source	Code	You
distribute.	You	may	not	offer	or	impose	any	terms	on	any	Source	Code	version
that	alters	or	restricts	the	applicable	version	of	this	License	or	the	recipients'
rights	hereunder.	However,	You	may	include	an	additional	document	offering	the
additional	rights	described	in	Section	3.5.

3.2.	Availability	of	Source	Code.

Any	Modification	created	by	You	will	be	provided	to	the	Initial	Developer	in
Source	Code	form	and	are	subject	to	the	terms	of	the	License.	3.3.	Description	of
Modifications.

You	must	cause	all	Covered	Code	to	which	You	contribute	to	contain	a	file
documenting	the	changes	You	made	to	create	that	Covered	Code	and	the	date	of
any	change.	You	must	include	a	prominent	statement	that	the	Modification	is
derived,	directly	or	indirectly,	from	Original	Code	provided	by	the	Initial
Developer	and	including	the	name	of	the	Initial	Developer	in	(a)	the	Source
Code,	and	(b)	in	any	notice	in	an	Executable	version	or	related	documentation	in
which	You	describe	the	origin	or	ownership	of	the	Covered	Code.

3.4.	Intellectual	Property	Matters.

(a)	Third	Party	Claims.	If	Contributor	has	knowledge	that	a	license	under	a	third
party's	intellectual	property	rights	is	required	to	exercise	the	rights	granted	by
such	Contributor	under	Sections	2.1	or	2.2,	Contributor	must	include	a	text	file
with	the	Source	Code	distribution	titled	"LEGAL"	which	describes	the	claim	and
the	party	making	the	claim	in	sufficient	detail	that	a	recipient	will	know	whom	to
contact.	If	Contributor	obtains	such	knowledge	after	the	Modification	is	made
available	as	described	in	Section	3.2,	Contributor	shall	promptly	modify	the
LEGAL	file	in	all	copies	Contributor	makes	available	thereafter	and	shall	take
other	steps	(such	as	notifying	appropriate	mailing	lists	or	newsgroups)
reasonably	calculated	to	inform	those	who	received	the	Covered	Code	that	new

knowledge	has	been	obtained.

(b)	Contributor	APIs.	If	Contributor's	Modifications	include	an	application
programming	interface	and	Contributor	has	knowledge	of	patent	licenses	which
are	reasonably	necessary	to	implement	that	API,	Contributor	must	also	include
this	information	in	the	LEGAL	file.

(c)	Representations.	Contributor	represents	that,	except	as	disclosed	pursuant	to
Section	3.4(a)	above,	Contributor	believes	that	Contributor's	Modifications	are
Contributor's	original	creation(s)	and/or	Contributor	has	sufficient	rights	to	grant
the	rights	conveyed	by	this	License.

3.5.	Required	Notices.	You	must	duplicate	the	notice	in	Exhibit	A	in	each	file	of
the	Source	Code.	If	it	is	not	possible	to	put	such	notice	in	a	particular	Source
Code	file	due	to	its	structure,	then	You	must	include	such	notice	in	a	location
(such	as	a	relevant	directory)	where	a	user	would	be	likely	to	look	for	such	a
notice.	If	You	created	one	or	more	Modification(s)	You	may	add	your	name	as	a
Contributor	to	the	notice	described	in	Exhibit	A.	You	must	also	duplicate	this
License	in	any	documentation	for	the	Source	Code	where	You	describe
recipients'	rights	or	ownership	rights	relating	to	Covered	Code.	You	may	choose
to	offer,	and	to	charge	a	fee	for,	warranty,	support,	indemnity	or	liability
obligations	to	one	or	more	recipients	of	Covered	Code.	However,	You	may	do	so
only	on	Your	own	behalf,	and	not	on	behalf	of	the	Initial	Developer	or	any
Contributor.

3.6.	Distribution	of	Executable	Versions.	You	may	distribute	Covered	Code	in
Executable	form	only	if	the	requirements	of	Section	3.1-3.5	have	been	met	for
that	Covered	Code.	You	may	distribute	the	Executable	version	of	Covered	Code
or	ownership	rights	under	a	license	of	Your	choice,	which	may	contain	terms
different	from	this	License,	provided	that	You	are	in	compliance	with	the	terms
of	this	License	and	that	the	license	for	the	Executable	version	does	not	attempt	to
limit	or	alter	the	recipient's	rights	in	the	Source	Code	version	from	the	rights	set
forth	in	this	License.	If	You	distribute	the	Executable	version	under	a	different
license	You	must	make	it	absolutely	clear	that	any	terms	which	differ	from	this
License	are	offered	by	You	alone,	not	by	the	Initial	Developer	or	any
Contributor.	If	you	distribute	executable	versions	containing	Covered	Code	as
part	of	a	product,	you	must	reproduce	the	notice	in	Exhibit	B	in	the
documentation	and/or	other	materials	provided	with	the	product.

3.7.	Larger	Works.	You	may	create	a	Larger	Work	by	combining	Covered	Code
with	other	code	not	governed	by	the	terms	of	this	License	and	distribute	the
Larger	Work	as	a	single	product.	In	such	a	case,	You	must	make	sure	the
requirements	of	this	License	are	fulfilled	for	the	Covered	Code.

3.8.	Restrictions.	You	may	not	remove	any	product	identification,	copyright,
proprietary	notices	or	labels	from	gSOAP.

4	INABILITY	TO	COMPLY	DUE	TO	STATUTE	OR	REGULATION.

If	it	is	impossible	for	You	to	comply	with	any	of	the	terms	of	this	License	with
respect	to	some	or	all	of	the	Covered	Code	due	to	statute,	judicial	order,	or
regulation	then	You	must:	(a)	comply	with	the	terms	of	this	License	to	the
maximum	extent	possible;	and	(b)	describe	the	limitations	and	the	code	they
affect.	Such	description	must	be	included	in	the	LEGAL	file	described	in	Section
3.4	and	must	be	included	with	all	distributions	of	the	Source	Code.	Except	to	the
extent	prohibited	by	statute	or	regulation,	such	description	must	be	sufficiently
detailed	for	a	recipient	of	ordinary	skill	to	be	able	to	understand	it.

5	APPLICATION	OF	THIS	LICENSE.

This	License	applies	to	code	to	which	the	Initial	Developer	has	attached	the
notice	in	Exhibit	A	and	to	related	Covered	Code.

6	VERSIONS	OF	THE	LICENSE.

6.1.	New	Versions.

Grantor	may	publish	revised	and/or	new	versions	of	the	License	from	time	to
time.	Each	version	will	be	given	a	distinguishing	version	number.

6.2.	Effect	of	New	Versions.

Once	Covered	Code	has	been	published	under	a	particular	version	of	the
License,	You	may	always	continue	to	use	it	under	the	terms	of	that	version.	You
may	also	choose	to	use	such	Covered	Code	under	the	terms	of	any	subsequent
version	of	the	License.

6.3.	Derivative	Works.

If	You	create	or	use	a	modified	version	of	this	License	(which	you	may	only	do
in	order	to	apply	it	to	code	which	is	not	already	Covered	Code	governed	by	this
License),	You	must	(a)	rename	Your	license	so	that	the	phrase	"gSOAP"	or	any
confusingly	similar	phrase	do	not	appear	in	your	license	(except	to	note	that	your
license	differs	from	this	License)	and	(b)	otherwise	make	it	clear	that	Your
version	of	the	license	contains	terms	which	differ	from	the	gSOAP	Public
License.	(Filling	in	the	name	of	the	Initial	Developer,	Original	Code	or
Contributor	in	the	notice	described	in	Exhibit	A	shall	not	of	themselves	be
deemed	to	be	modifications	of	this	License.)

7	DISCLAIMER	OF	WARRANTY.

COVERED	CODE	IS	PROVIDED	UNDER	THIS	LICENSE	ON	AN	"AS	IS"
BASIS,	WITHOUT	WARRANTY	OF	ANY	KIND,	WHETHER	EXPRESS,
IMPLIED	OR	STATUTORY,	INCLUDING,	WITHOUT	LIMITATION,	THE
IMPLIED	WARRANTIES	OF	MERCHANTABILITY,	OF	FITNESS	FOR	A
PARTICULAR	PURPOSE,	NONINFRINGEMENT	OF	THIRD	PARTY
INTELLECTUAL	PROPERTY	RIGHTS,	AND	ANY	WARRANTY	THAT
MAY	ARISE	BY	REASON	OF	TRADE	USAGE,	CUSTOM,	OR	COURSE	OF
DEALING.	WITHOUT	LIMITING	THE	FOREGOING,	YOU
ACKNOWLEDGE	THAT	THE	SOFTWARE	IS	PROVIDED	"AS	IS"	AND
THAT	THE	AUTHORS	DO	NOT	WARRANT	THE	SOFTWARE	WILL	RUN
UNINTERRUPTED	OR	ERROR	FREE.	LIMITED	LIABILITY	THE	ENTIRE
RISK	AS	TO	RESULTS	AND	PERFORMANCE	OF	THE	SOFTWARE	IS
ASSUMED	BY	YOU.	UNDER	NO	CIRCUMSTANCES	WILL	THE
AUTHORS	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT,	INCIDENTAL,
EXEMPLARY	OR	CONSEQUENTIAL	DAMAGES	OF	ANY	KIND	OR
NATURE	WHATSOEVER,	WHETHER	BASED	ON	CONTRACT,
WARRANTY,	TORT	(INCLUDING	NEGLIGENCE),	STRICT	LIABILITY	OR
OTHERWISE,	ARISING	OUT	OF	OR	IN	ANY	WAY	RELATED	TO	THE
SOFTWARE,	EVEN	IF	THE	AUTHORS	HAVE	BEEN	ADVISED	ON	THE
POSSIBILITY	OF	SUCH	DAMAGE	OR	IF	SUCH	DAMAGE	COULD	HAVE
BEEN	REASONABLY	FORESEEN,	AND	NOTWITHSTANDING	ANY
FAILURE	OF	ESSENTIAL	PURPOSE	OF	ANY	EXCLUSIVE	REMEDY
PROVIDED.	SUCH	LIMITATION	ON	DAMAGES	INCLUDES,	BUT	IS	NOT
LIMITED	TO,	DAMAGES	FOR	LOSS	OF	GOODWILL,	LOST	PROFITS,
LOSS	OF	DATA	OR	SOFTWARE,	WORK	STOPPAGE,	COMPUTER
FAILURE	OR	MALFUNCTION	OR	IMPAIRMENT	OF	OTHER	GOODS.	IN
NO	EVENT	WILL	THE	AUTHORS	BE	LIABLE	FOR	THE	COSTS	OF

PROCUREMENT	OF	SUBSTITUTE	SOFTWARE	OR	SERVICES.	YOU
ACKNOWLEDGE	THAT	THIS	SOFTWARE	IS	NOT	DESIGNED	FOR	USE
IN	ON-LINE	EQUIPMENT	IN	HAZARDOUS	ENVIRONMENTS	SUCH	AS
OPERATION	OF	NUCLEAR	FACILITIES,	AIRCRAFT	NAVIGATION	OR
CONTROL,	OR	LIFE-CRITICAL	APPLICATIONS.	THE	AUTHORS
EXPRESSLY	DISCLAIM	ANY	LIABILITY	RESULTING	FROM	USE	OF
THE	SOFTWARE	IN	ANY	SUCH	ON-LINE	EQUIPMENT	IN	HAZARDOUS
ENVIRONMENTS	AND	ACCEPTS	NO	LIABILITY	IN	RESPECT	OF	ANY
ACTIONS	OR	CLAIMS	BASED	ON	THE	USE	OF	THE	SOFTWARE	IN	ANY
SUCH	ON-LINE	EQUIPMENT	IN	HAZARDOUS	ENVIRONMENTS	BY
YOU.	FOR	PURPOSES	OF	THIS	PARAGRAPH,	THE	TERM	"LIFE-
CRITICAL	APPLICATION"	MEANS	AN	APPLICATION	IN	WHICH	THE
FUNCTIONING	OR	MALFUNCTIONING	OF	THE	SOFTWARE	MAY
RESULT	DIRECTLY	OR	INDIRECTLY	IN	PHYSICAL	INJURY	OR	LOSS	OF
HUMAN	LIFE.	THIS	DISCLAIMER	OF	WARRANTY	CONSTITUTES	AN
ESSENTIAL	PART	OF	THIS	LICENSE.	NO	USE	OF	ANY	COVERED	CODE
IS	AUTHORIZED	HEREUNDER	EXCEPT	UNDER	THIS	DISCLAIMER.

8	TERMINATION.

8.1.

This	License	and	the	rights	granted	hereunder	will	terminate	automatically	if
You	fail	to	comply	with	terms	herein	and	fail	to	cure	such	breach	within	30	days
of	becoming	aware	of	the	breach.	All	sublicenses	to	the	Covered	Code	which	are
properly	granted	shall	survive	any	termination	of	this	License.	Provisions	which,
by	their	nature,	must	remain	in	effect	beyond	the	termination	of	this	License
shall	survive.

8.2.

8.3.

If	You	assert	a	patent	infringement	claim	against	Participant	alleging	that	such
Participant's	Contributor	Version	directly	or	indirectly	infringes	any	patent	where
such	claim	is	resolved	(such	as	by	license	or	settlement)	prior	to	the	initiation	of
patent	infringement	litigation,	then	the	reasonable	value	of	the	licenses	granted
by	such	Participant	under	Sections	2.1	or	2.2	shall	be	taken	into	account	in
determining	the	amount	or	value	of	any	payment	or	license.

8.4.	In	the	event	of	termination	under	Sections	8.1	or	8.2	above,	all	end	user
license	agreements	(excluding	distributors	and	resellers)	which	have	been
validly	granted	by	You	or	any	distributor	hereunder	prior	to	termination	shall
survive	termination.

9	LIMITATION	OF	LIABILITY.

UNDER	NO	CIRCUMSTANCES	AND	UNDER	NO	LEGAL	THEORY,
WHETHER	TORT	(INCLUDING	NEGLIGENCE),	CONTRACT,	OR
OTHERWISE,	SHALL	YOU,	THE	INITIAL	DEVELOPER,	ANY	OTHER
CONTRIBUTOR,	OR	ANY	DISTRIBUTOR	OF	COVERED	CODE,	OR	ANY
SUPPLIER	OF	ANY	OF	SUCH	PARTIES,	BE	LIABLE	TO	ANY	PERSON
FOR	ANY	INDIRECT,	SPECIAL,	INCIDENTAL,	OR	CONSEQUENTIAL
DAMAGES	OF	ANY	CHARACTER	INCLUDING,	WITHOUT	LIMITATION,
DAMAGES	FOR	LOSS	OF	GOODWILL,	WORK	STOPPAGE,	COMPUTER
FAILURE	OR	MALFUNCTION,	OR	ANY	AND	ALL	OTHER
COMMERCIAL	DAMAGES	OR	LOSSES,	EVEN	IF	SUCH	PARTY	SHALL
HAVE	BEEN	INFORMED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGES.
THIS	LIMITATION	OF	LIABILITY	SHALL	NOT	APPLY	TO	LIABILITY
FOR	DEATH	OR	PERSONAL	INJURY	RESULTING	FROM	SUCH	PARTY'S
NEGLIGENCE	TO	THE	EXTENT	APPLICABLE	LAW	PROHIBITS	SUCH
LIMITATION.	SOME	JURISDICTIONS	DO	NOT	ALLOW	THE	EXCLUSION
OR	LIMITATION	OF	INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES,	SO
THIS	EXCLUSION	AND	LIMITATION	MAY	NOT	APPLY	TO	YOU.

10	U.S.	GOVERNMENT	END	USERS.

11	MISCELLANEOUS.

12	RESPONSIBILITY	FOR	CLAIMS.

As	between	Initial	Developer	and	the	Contributors,	each	party	is	responsible	for
claims	and	damages	arising,	directly	or	indirectly,	out	of	its	utilization	of	rights
under	this	License	and	You	agree	to	work	with	Initial	Developer	and
Contributors	to	distribute	such	responsibility	on	an	equitable	basis.	Nothing
herein	is	intended	or	shall	be	deemed	to	constitute	any	admission	of	liability.

EXHIBIT	A.

"The	contents	of	this	file	are	subject	to	the	gSOAP	Public	License	Version	1.3

(the	"License");	you	may	not	use	this	file	except	in	compliance	with	the	License.
You	may	obtain	a	copy	of	the	License	at
http://www.cs.fsu.edu/~engelen/soaplicense.html.	Software	distributed	under	the
License	is	distributed	on	an	"AS	IS"	basis,	WITHOUT	WARRANTY	OF	ANY
KIND,	either	express	or	implied.	See	the	License	for	the	specific	language
governing	rights	and	limitations	under	the	License.

The	Original	Code	of	the	gSOAP	Software	is:	stdsoap.h,	stdsoap2.h,	stdsoap.c,
stdsoap2.c,	stdsoap.cpp,	stdsoap2.cpp,	soapcpp2.h,	soapcpp2.c,	soapcpp2_lex.l,
soapcpp2_yacc.y,	error2.h,	error2.c,	symbol2.c,	init2.c,	soapdoc2.html,	and
soapdoc2.pdf,	httpget.h,	httpget.c,	stl.h,	stldeque.h,	stllist.h,	stlvector.h,	stlset.h.

The	Initial	Developer	of	the	Original	Code	is	Robert	A.	van	Engelen.	Portions
created	by	Robert	A.	van	Engelen	are	Copyright	(C)	2001-2004	Robert	A.	van
Engelen,	Genivia	inc.	All	Rights	Reserved.

Contributor(s):	"________________________."	[Note:	The	text	of	this	Exhibit
A	may	differ	slightly	form	the	text	of	the	notices	in	the	Source	Code	files	of	the
Original	code.	You	should	use	the	text	of	this	Exhibit	A	rather	than	the	text
found	in	the	Original	Code	Source	Code	for	Your	Modifications.]

EXHIBIT	B.

"Part	of	the	software	embedded	in	this	product	is	gSOAP	software.	Portions
created	by	gSOAP	are	Copyright	(C)	2001-2004	Robert	A.	van	Engelen,	Genivia
inc.	All	Rights	Reserved.	THE	SOFTWARE	IN	THIS	PRODUCT	WAS	IN
PART	PROVIDED	BY	GENIVIA	INC	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
AUTHOR	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,
SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,
BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR
SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS
INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF
LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT
(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY
OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE
POSSIBILITY	OF	SUCH	DAMAGE."

http://www.cs.fsu.edu/~engelen/soaplicense.html

A.2.15.	Chromium	licenses

A.2.15.1.	Main	license

Copyright	(c)	2002,	Stanford	University	All	rights	reserved.

Some	portions	of	Chromium	are	copyrighted	by	individiual	organizations.	Please
see	the	files	COPYRIGHT.LLNL	and	COPYRIGHT.REDHAT	for	more
information.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

Neither	the	name	of	Stanford	University	nor	the	names	of	its	contributors
may	be	used	to	endorse	or	promote	products	derived	from	this	software
without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

A.2.15.2.	COPYRIGHT.LLNL	file

This	Chromium	distribution	contains	information	and	code	which	is	covered
under	the	following	notice:

Copyright	(c)	2002,	The	Regents	of	the	University	of	California.	Produced	at	the
Lawrence	Livermore	National	Laboratory	For	details,	contact:	Randall	Frank
(rjfrank@llnl.gov).	UCRL-CODE-2002-058	All	rights	reserved.

This	file	is	part	of	Chromium.	For	details,	see	accompanying	documentation.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this	list	of
conditions	and	the	disclaimer	below.

Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,	this
list	of	conditions	and	the	disclaimer	(as	noted	below)	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

Neither	the	name	of	the	UC/LLNL	nor	the	names	of	its	contributors	may	be	used
to	endorse	or	promote	products	derived	from	this	software	without	specific	prior
written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
REGENTS	OF	THE	UNIVERSITY	OF	CALIFORNIA,	THE	U.S.
DEPARTMENT	OF	ENERGY	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS

SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

Additional	BSD	Notice

1.	This	notice	is	required	to	be	provided	under	our	contract	with	the	U.S.
Department	of	Energy	(DOE).	This	work	was	produced	at	the	University	of
California,	Lawrence	Livermore	National	Laboratory	under	Contract	No.	W-
7405-ENG-48	with	the	DOE.

2.	Neither	the	United	States	Government	nor	the	University	of	California	nor
any	of	their	employees,	makes	any	warranty,	express	or	implied,	or	assumes	any
liability	or	responsibility	for	the	accuracy,	completeness,	or	usefulness	of	any
information,	apparatus,	product,	or	process	disclosed,	or	represents	that	its	use
would	not	infringe	privately-owned	rights.

3.	Also,	reference	herein	to	any	specific	commercial	products,	process,	or
services	by	trade	name,	trademark,	manufacturer	or	otherwise	does	not
necessarily	constitute	or	imply	its	endorsement,	recommendation,	or	favoring	by
the	United	States	Government	or	the	University	of	California.	The	views	and
opinions	of	authors	expressed	herein	do	not	necessarily	state	or	reflect	those	of
the	United	States	Government	or	the	University	of	California,	and	shall	not	be
used	for	advertising	or	product	endorsement	purposes.

A.2.15.3.	COPYRIGHT.REDHAT	file

This	Chromium	distribution	contains	information	and	code	which	is	covered
under	the	following	notice:

Copyright	2001,2002	Red	Hat	Inc.,	Durham,	North	Carolina.

All	Rights	Reserved.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	on	the	rights	to	use,
copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the
Software,	and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,
subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	(including	the	next
paragraph)	shall	be	included	in	all	copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NON-INFRINGEMENT.	IN	NO	EVENT	SHALL	RED	HAT
AND/OR	THEIR	SUPPLIERS	BE	LIABLE	FOR	ANY	CLAIM,	DAMAGES
OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,
TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION
WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE
SOFTWARE.

A.2.16.	curl	license

COPYRIGHT	AND	PERMISSION	NOTICE

Copyright	(c)	1996	-	2009,	Daniel	Stenberg,	daniel@haxx.se.

All	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	software	for	any	purpose
with	or	without	fee	is	hereby	granted,	provided	that	the	above	copyright	notice
and	this	permission	notice	appear	in	all	copies.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR
PURPOSE	AND	NONINFRINGEMENT	OF	THIRD	PARTY	RIGHTS.	IN	NO
EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE
FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN
ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT
OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR
OTHER	DEALINGS	IN	THE	SOFTWARE.

Except	as	contained	in	this	notice,	the	name	of	a	copyright	holder	shall	not	be
used	in	advertising	or	otherwise	to	promote	the	sale,	use	or	other	dealings	in	this
Software	without	prior	written	authorization	of	the	copyright	holder.

A.2.17.	libgd	license

Portions	copyright	1994,	1995,	1996,	1997,	1998,	1999,	2000,	2001,	2002	by
Cold	Spring	Harbor	Laboratory.	Funded	under	Grant	P41-RR02188	by	the
National	Institutes	of	Health.

Portions	copyright	1996,	1997,	1998,	1999,	2000,	2001,	2002	by	Boutell.Com,
Inc.

Portions	relating	to	GD2	format	copyright	1999,	2000,	2001,	2002	Philip
Warner.

Portions	relating	to	PNG	copyright	1999,	2000,	2001,	2002	Greg	Roelofs.

Portions	relating	to	gdttf.c	copyright	1999,	2000,	2001,	2002	John	Ellson
(ellson@lucent.com).

Portions	relating	to	gdft.c	copyright	2001,	2002	John	Ellson
(ellson@lucent.com).

Portions	copyright	2000,	2001,	2002,	2003,	2004,	2005,	2006,	2007	Pierre-Alain
Joye	(pierre@libgd.org).

Portions	relating	to	JPEG	and	to	color	quantization	copyright	2000,	2001,	2002,
Doug	Becker	and	copyright	(C)	1994,	1995,	1996,	1997,	1998,	1999,	2000,
2001,	2002,	Thomas	G.	Lane.	This	software	is	based	in	part	on	the	work	of	the
Independent	JPEG	Group.	See	the	file	README-JPEG.TXT	for	more
information.

Portions	relating	to	WBMP	copyright	2000,	2001,	2002	Maurice	Szmurlo	and
Johan	Van	den	Brande.

Permission	has	been	granted	to	copy,	distribute	and	modify	gd	in	any	context
without	fee,	including	a	commercial	application,	provided	that	this	notice	is
present	in	user-accessible	supporting	documentation.

This	does	not	affect	your	ownership	of	the	derived	work	itself,	and	the	intent	is
to	assure	proper	credit	for	the	authors	of	gd,	not	to	interfere	with	your	productive
use	of	gd.	If	you	have	questions,	ask.	"Derived	works"	includes	all	programs	that
utilize	the	library.	Credit	must	be	given	in	user-accessible	documentation.

This	software	is	provided	"AS	IS."	The	copyright	holders	disclaim	all
warranties,	either	express	or	implied,	including	but	not	limited	to	implied
warranties	of	merchantability	and	fitness	for	a	particular	purpose,	with	respect	to
this	code	and	accompanying	documentation.

Although	their	code	does	not	appear	in	gd,	the	authors	wish	to	thank	David
Koblas,	David	Rowley,	and	Hutchison	Avenue	Software	Corporation	for	their
prior	contributions.

A.2.18.	BSD	license	from	Intel

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

Neither	the	name	of	the	Intel	Corporation	nor	the	names	of	its	contributors
may	be	used	to	endorse	or	promote	products	derived	from	this	software
without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE

OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

A.2.19.	libjpeg	License

The	authors	make	NO	WARRANTY	or	representation,	either	express	or	implied,
with	respect	to	this	software,	its	quality,	accuracy,	merchantability,	or	fitness	for
a	particular	purpose.	This	software	is	provided	"AS	IS",	and	you,	its	user,
assume	the	entire	risk	as	to	its	quality	and	accuracy.

This	software	is	copyright	(C)	1991-2010,	Thomas	G.	Lane,	Guido	Vollbeding.
All	Rights	Reserved	except	as	specified	below.

Permission	is	hereby	granted	to	use,	copy,	modify,	and	distribute	this	software
(or	portions	thereof)	for	any	purpose,	without	fee,	subject	to	these	conditions:

(1)	If	any	part	of	the	source	code	for	this	software	is	distributed,	then	this
README	file	must	be	included,	with	this	copyright	and	no-warranty	notice
unaltered;	and	any	additions,	deletions,	or	changes	to	the	original	files	must	be
clearly	indicated	in	accompanying	documentation.

(2)	If	only	executable	code	is	distributed,	then	the	accompanying	documentation
must	state	that	"this	software	is	based	in	part	on	the	work	of	the	Independent
JPEG	Group".

(3)	Permission	for	use	of	this	software	is	granted	only	if	the	user	accepts	full
responsibility	for	any	undesirable	consequences;	the	authors	accept	NO
LIABILITY	for	damages	of	any	kind.

These	conditions	apply	to	any	software	derived	from	or	based	on	the	IJG	code,
not	just	to	the	unmodified	library.	If	you	use	our	work,	you	ought	to
acknowledge	us.

Permission	is	NOT	granted	for	the	use	of	any	IJG	author's	name	or	company
name	in	advertising	or	publicity	relating	to	this	software	or	products	derived
from	it.	This	software	may	be	referred	to	only	as	"the	Independent	JPEG	Group's
software".

We	specifically	permit	and	encourage	the	use	of	this	software	as	the	basis	of

commercial	products,	provided	that	all	warranty	or	liability	claims	are	assumed
by	the	product	vendor.

ansi2knr.c	is	included	in	this	distribution	by	permission	of	L.	Peter	Deutsch,	sole
proprietor	of	its	copyright	holder,	Aladdin	Enterprises	of	Menlo	Park,	CA.
ansi2knr.c	is	NOT	covered	by	the	above	copyright	and	conditions,	but	instead	by
the	usual	distribution	terms	of	the	Free	Software	Foundation;	principally,	that
you	must	include	source	code	if	you	redistribute	it.	(See	the	file	ansi2knr.c	for
full	details.)	However,	since	ansi2knr.c	is	not	needed	as	part	of	any	program
generated	from	the	IJG	code,	this	does	not	limit	you	more	than	the	foregoing
paragraphs	do.

The	Unix	configuration	script	"configure"	was	produced	with	GNU	Autoconf.	It
is	copyright	by	the	Free	Software	Foundation	but	is	freely	distributable.	The
same	holds	for	its	supporting	scripts	(config.guess,	config.sub,	ltmain.sh).
Another	support	script,	install-sh,	is	copyright	by	X	Consortium	but	is	also	freely
distributable.

The	IJG	distribution	formerly	included	code	to	read	and	write	GIF	files.	To
avoid	entanglement	with	the	Unisys	LZW	patent,	GIF	reading	support	has	been
removed	altogether,	and	the	GIF	writer	has	been	simplified	to	produce
"uncompressed	GIFs".	This	technique	does	not	use	the	LZW	algorithm;	the
resulting	GIF	files	are	larger	than	usual,	but	are	readable	by	all	standard	GIF
decoders.

We	are	required	to	state	that

"The	Graphics	Interchange	Format(c)	is	the	Copyright	property	of	CompuServe
Incorporated.	GIF(sm)	is	a	Service	Mark	property	of	CompuServe
Incorporated."

A.2.20.	x86	SIMD	extension	for	IJG	JPEG	library	license

Copyright	2009	Pierre	Ossman	<ossman@cendio.se>	for	Cendio	AB

Copyright	2010	D.	R.	Commander

Based	on

x86	SIMD	extension	for	IJG	JPEG	library	-	version	1.02

Copyright	(C)	1999-2006,	MIYASAKA	Masaru.

This	software	is	provided	'as-is',	without	any	express	or	implied	warranty.	In	no
event	will	the	authors	be	held	liable	for	any	damages	arising	from	the	use	of	this
software.

Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,	including
commercial	applications,	and	to	alter	it	and	redistribute	it	freely,	subject	to	the
following	restrictions:

1.	The	origin	of	this	software	must	not	be	misrepresented;	you	must	not	claim
that	you	wrote	the	original	software.	If	you	use	this	software	in	a	product,	an
acknowledgment	in	the	product	documentation	would	be	appreciated	but	is	not
required.

2.	Altered	source	versions	must	be	plainly	marked	as	such,	and	must	not	be
misrepresented	as	being	the	original	software.

3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

A.2.21.	FreeBSD	license

The	compilation	of	software	known	as	FreeBSD	is	distributed	under	the
following	terms:

Copyright	(c)	1992-2009	The	FreeBSD	Project.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED

WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
AUTHOR	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

A.2.22.	NetBSD	license

Copyright	(c)	1992,	1993	The	Regents	of	the	University	of	California.	All	rights
reserved.

This	software	was	developed	by	the	Computer	Systems	Engineering	group	at
Lawrence	Berkeley	Laboratory	under	DARPA	contract	BG	91-66	and
contributed	to	Berkeley.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

3.	 Neither	the	name	of	the	University	nor	the	names	of	its	contributors	may	be
used	to	endorse	or	promote	products	derived	from	this	software	without
specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	REGENTS	AND
CONTRIBUTORS	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A

PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
REGENTS	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

A.2.23.	PCRE	license

PCRE	is	a	library	of	functions	to	support	regular	expressions	whose	syntax	and
semantics	are	as	close	as	possible	to	those	of	the	Perl	5	language.

Release	8	of	PCRE	is	distributed	under	the	terms	of	the	"BSD"	licence,	as
specified	below.	The	documentation	for	PCRE,	supplied	in	the	"doc"	directory,	is
distributed	under	the	same	terms	as	the	software	itself.

The	basic	library	functions	are	written	in	C	and	are	freestanding.	Also	included
in	the	distribution	is	a	set	of	C++	wrapper	functions,	and	a	just-in-time	compiler
that	can	be	used	to	optimize	pattern	matching.	These	are	both	optional	features
that	can	be	omitted	when	the	library	is	built.

THE	BASIC	LIBRARY	FUNCTIONS.	Written	by:	Philip	Hazel;	Email	local
part:	ph10;	Email	domain:	cam.ac.uk	University	of	Cambridge	Computing
Service,	Cambridge,	England.	Copyright	(c)	1997-2012	University	of
Cambridge	All	rights	reserved.

PCRE	JUST-IN-TIME	COMPILATION	SUPPORT.	Written	by:	Zoltan	Herczeg;
Email	local	part:	hzmester;	Emain	domain:	freemail.hu	Copyright(c)	2010-2012
Zoltan	Herczeg	All	rights	reserved.

STACK-LESS	JUST-IN-TIME	COMPILER.	Written	by:	Zoltan	Herczeg;	Email
local	part:	hzmester;	Emain	domain:	freemail.hu	Copyright(c)	2009-2012	Zoltan
Herczeg	All	rights	reserved.

THE	C++	WRAPPER	FUNCTIONS.	Contributed	by:	Google	Inc.	Copyright	(c)

2007-2012,	Google	Inc.	All	rights	reserved.

THE	"BSD"	LICENCE.	Redistribution	and	use	in	source	and	binary	forms,	with
or	without	modification,	are	permitted	provided	that	the	following	conditions	are
met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

Neither	the	name	of	the	University	of	Cambridge	nor	the	name	of	Google
Inc.	nor	the	names	of	their	contributors	may	be	used	to	endorse	or	promote
products	derived	from	this	software	without	specific	prior	written
permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

A.2.24.	libffi	license

Copyright	(c)	1996-2012	Anthony	Green,	Red	Hat,	Inc	and	others.	See	source
files	for	details.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	``Software''),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	``AS	IS'',	WITHOUT	WARRANTY	OF
ANY	KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO
THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A
PARTICULAR	PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT
SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR
ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN
ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT
OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR
OTHER	DEALINGS	IN	THE	SOFTWARE.

A.2.25.	FLTK	license

December	11,	2001

The	FLTK	library	and	included	programs	are	provided	under	the	terms	of	the
GNU	Library	General	Public	License	(LGPL)	with	the	following	exceptions:

1.	 Modifications	to	the	FLTK	configure	script,	config	header	file,	and
makefiles	by	themselves	to	support	a	specific	platform	do	not	constitute	a
modified	or	derivative	work.

The	authors	do	request	that	such	modifications	be	contributed	to	the	FLTK
project	-	send	all	contributions	through	the	"Software	Trouble	Report"	on
the	following	page:

http://www.fltk.org/str.php

2.	 Widgets	that	are	subclassed	from	FLTK	widgets	do	not	constitute	a
derivative	work.

3.	 Static	linking	of	applications	and	widgets	to	the	FLTK	library	does	not
constitute	a	derivative	work	and	does	not	require	the	author	to	provide
source	code	for	the	application	or	widget,	use	the	shared	FLTK	libraries,	or
link	their	applications	or	widgets	against	a	user-supplied	version	of	FLTK.

If	you	link	the	application	or	widget	to	a	modified	version	of	FLTK,	then
the	changes	to	FLTK	must	be	provided	under	the	terms	of	the	LGPL	in
sections	1,	2,	and	4.

4.	 You	do	not	have	to	provide	a	copy	of	the	FLTK	license	with	programs	that
are	linked	to	the	FLTK	library,	nor	do	you	have	to	identify	the	FLTK	license
in	your	program	or	documentation	as	required	by	section	6	of	the	LGPL.

However,	programs	must	still	identify	their	use	of	FLTK.	The	following
example	statement	can	be	included	in	user	documentation	to	satisfy	this
requirement:

[program/widget]	is	based	in	part	on	the	work	of	the	FLTK	project
(http://www.fltk.org).

A.2.26.	Expat	license

Copyright	(c)	1998,	1999,	2000	Thai	Open	Source	Software	Center	Ltd	and
Clark	Cooper

Copyright	(c)	2001,	2002,	2003,	2004,	2005,	2006	Expat	maintainers.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in	all
copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY
KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE
WARRANTIES	OF	MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR

PURPOSE	AND	NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE
AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,
DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF
CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN
CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER
DEALINGS	IN	THE	SOFTWARE.

A.2.27.	Fontconfig	license

Copyright	(C)	2001,	2003	Keith	Packard

Permission	to	use,	copy,	modify,	distribute,	and	sell	this	software	and	its
documentation	for	any	purpose	is	hereby	granted	without	fee,	provided	that	the
above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright	notice
and	this	permission	notice	appear	in	supporting	documentation,	and	that	the
name	of	the	author(s)	not	be	used	in	advertising	or	publicity	pertaining	to
distribution	of	the	software	without	specific,	written	prior	permission.	The
authors	make	no	representations	about	the	suitability	of	this	software	for	any
purpose.	It	is	provided	"as	is"	without	express	or	implied	warranty.

THE	AUTHOR(S)	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO
THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS,	IN	NO	EVENT	SHALL	THE
AUTHOR(S)	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR
CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER
RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN
ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,
ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR
PERFORMANCE	OF	THIS	SOFTWARE.

A.2.28.	Freetype	license

2006-Jan-27

Copyright	1996-2002,	2006	by	David	Turner,	Robert	Wilhelm,	and	Werner
Lemberg

A.2.28.1.	Introduction

The	FreeType	Project	is	distributed	in	several	archive	packages;	some	of	them
may	contain,	in	addition	to	the	FreeType	font	engine,	various	tools	and
contributions	which	rely	on,	or	relate	to,	the	FreeType	Project.

This	license	applies	to	all	files	found	in	such	packages,	and	which	do	not	fall
under	their	own	explicit	license.	The	license	affects	thus	the	FreeType	font
engine,	the	test	programs,	documentation	and	makefiles,	at	the	very	least.

This	license	was	inspired	by	the	BSD,	Artistic,	and	IJG	(Independent	JPEG
Group)	licenses,	which	all	encourage	inclusion	and	use	of	free	software	in
commercial	and	freeware	products	alike.	As	a	consequence,	its	main	points	are
that:

We	don't	promise	that	this	software	works.	However,	we	will	be	interested
in	any	kind	of	bug	reports.	(`as	is'	distribution)

You	can	use	this	software	for	whatever	you	want,	in	parts	or	full	form,
without	having	to	pay	us.	(`royalty-free'	usage)

You	may	not	pretend	that	you	wrote	this	software.	If	you	use	it,	or	only
parts	of	it,	in	a	program,	you	must	acknowledge	somewhere	in	your
documentation	that	you	have	used	the	FreeType	code.	(`credits')

We	specifically	permit	and	encourage	the	inclusion	of	this	software,	with	or
without	modifications,	in	commercial	products.	We	disclaim	all	warranties
covering	The	FreeType	Project	and	assume	no	liability	related	to	The	FreeType
Project.

Finally,	many	people	asked	us	for	a	preferred	form	for	a	credit/disclaimer	to	use
in	compliance	with	this	license.	We	thus	encourage	you	to	use	the	following	text:

Portions	of	this	software	are	copyright	(C)	<year>	The	FreeType	Project
(www.freetype.org).	All	rights	reserved.

Please	replace	<year>	with	the	value	from	the	FreeType	version	you	actually
use.

A.2.28.2.	Legal	Terms

A.2.28.2.1.	0.	Definitions

Throughout	this	license,	the	terms	`package',	`FreeType	Project',	and	`FreeType
archive'	refer	to	the	set	of	files	originally	distributed	by	the	authors	(David
Turner,	Robert	Wilhelm,	and	Werner	Lemberg)	as	the	`FreeType	Project',	be	they
named	as	alpha,	beta	or	final	release.

`You'	refers	to	the	licensee,	or	person	using	the	project,	where	`using'	is	a	generic
term	including	compiling	the	project's	source	code	as	well	as	linking	it	to	form	a
`program'	or	`executable'.	This	program	is	referred	to	as	`a	program	using	the
FreeType	engine'.

This	license	applies	to	all	files	distributed	in	the	original	FreeType	Project,
including	all	source	code,	binaries	and	documentation,	unless	otherwise	stated	in
the	file	in	its	original,	unmodified	form	as	distributed	in	the	original	archive.	If
you	are	unsure	whether	or	not	a	particular	file	is	covered	by	this	license,	you
must	contact	us	to	verify	this.

The	FreeType	Project	is	copyright	(C)	1996-2000	by	David	Turner,	Robert
Wilhelm,	and	Werner	Lemberg.	All	rights	reserved	except	as	specified	below.

A.2.28.2.2.	1.	No	Warranty

THE	FREETYPE	PROJECT	IS	PROVIDED	`AS	IS'	WITHOUT	WARRANTY
OF	ANY	KIND,	EITHER	EXPRESS	OR	IMPLIED,	INCLUDING,	BUT	NOT
LIMITED	TO,	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS
FOR	A	PARTICULAR	PURPOSE.	IN	NO	EVENT	WILL	ANY	OF	THE
AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY	DAMAGES
CAUSED	BY	THE	USE	OR	THE	INABILITY	TO	USE,	OF	THE	FREETYPE
PROJECT.

A.2.28.2.3.	2.	Redistribution

This	license	grants	a	worldwide,	royalty-free,	perpetual	and	irrevocable	right	and
license	to	use,	execute,	perform,	compile,	display,	copy,	create	derivative	works
of,	distribute	and	sublicense	the	FreeType	Project	(in	both	source	and	object
code	forms)	and	derivative	works	thereof	for	any	purpose;	and	to	authorize
others	to	exercise	some	or	all	of	the	rights	granted	herein,	subject	to	the
following	conditions:

Redistribution	of	source	code	must	retain	this	license	file	(`FTL.TXT')

unaltered;	any	additions,	deletions	or	changes	to	the	original	files	must	be
clearly	indicated	in	accompanying	documentation.	The	copyright	notices	of
the	unaltered,	original	files	must	be	preserved	in	all	copies	of	source	files.

Redistribution	in	binary	form	must	provide	a	disclaimer	that	states	that	the
software	is	based	in	part	of	the	work	of	the	FreeType	Team,	in	the
distribution	documentation.	We	also	encourage	you	to	put	an	URL	to	the
FreeType	web	page	in	your	documentation,	though	this	isn't	mandatory.

These	conditions	apply	to	any	software	derived	from	or	based	on	the	FreeType
Project,	not	just	the	unmodified	files.	If	you	use	our	work,	you	must
acknowledge	us.	However,	no	fee	need	be	paid	to	us.

A.2.28.2.4.	3.	Advertising

Neither	the	FreeType	authors	and	contributors	nor	you	shall	use	the	name	of	the
other	for	commercial,	advertising,	or	promotional	purposes	without	specific
prior	written	permission.

We	suggest,	but	do	not	require,	that	you	use	one	or	more	of	the	following
phrases	to	refer	to	this	software	in	your	documentation	or	advertising	materials:
`FreeType	Project',	`FreeType	Engine',	`FreeType	library',	or	`FreeType
Distribution'.

As	you	have	not	signed	this	license,	you	are	not	required	to	accept	it.	However,
as	the	FreeType	Project	is	copyrighted	material,	only	this	license,	or	another	one
contracted	with	the	authors,	grants	you	the	right	to	use,	distribute,	and	modify	it.
Therefore,	by	using,	distributing,	or	modifying	the	FreeType	Project,	you
indicate	that	you	understand	and	accept	all	the	terms	of	this	license.

A.2.28.2.5.	4.	Contacts

There	are	two	mailing	lists	related	to	FreeType:

freetype@nongnu.org

Discusses	general	use	and	applications	of	FreeType,	as	well	as	future	and
wanted	additions	to	the	library	and	distribution.	If	you	are	looking	for
support,	start	in	this	list	if	you	haven't	found	anything	to	help	you	in	the

documentation.

freetype-devel@nongnu.org

Discusses	bugs,	as	well	as	engine	internals,	design	issues,	specific	licenses,
porting,	etc.

Our	home	page	can	be	found	at

http://www.freetype.org

A.2.29.	VPX	License

Copyright	(c)	2010,	The	WebM	Project	authors.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

Neither	the	name	of	Google,	nor	the	WebM	Project,	nor	the	names	of	its
contributors	may	be	used	to	endorse	or	promote	products	derived	from	this
software	without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
COPYRIGHT	HOLDER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN

CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH
DAMAGE.

A.2.30.	Opus	License

Copyright	2001-2011	Xiph.Org,	Skype	Limited,	Octasic,	Jean-Marc	Valin,
Timothy	B.	Terriberry,	CSIRO,	Gregory	Maxwell,	Mark	Borgerding,	Erik	de
Castro	Lopo

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

Neither	the	name	of	Internet	Society,	IETF	or	IETF	Trust,	nor	the	names	of
specific	contributors,	may	be	used	to	endorse	or	promote	products	derived
from	this	software	without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND
CONTRIBUTORS	''AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY
DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR
CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,
PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,
DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER
CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN
CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE
OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS
SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH

DAMAGE.	Opus	is	subject	to	the	royalty-free	patent	licenses	which	are
specified	at:	Xiph.Org	Foundation:	https://datatracker.ietf.org/ipr/1524/
Microsoft	Corporation:	https://datatracker.ietf.org/ipr/1914/	Broadcom
Corporation:	https://datatracker.ietf.org/ipr/1526/

Appendix	B.	VirtualBox	privacy	information

Version	5,	Dec	13,	2012

The	Oracle	Privacy	Policies	posted	on	http://www.oracle.com/html/privacy.html
apply	to	your	personal	data	collected	and	used	by	Oracle.	The	following	privacy
information	describes	in	more	detail	which	information	is	exchanged	between
the	VirtualBox	application	and	Oracle,	and	which	information	is	collected	by	the
virtualbox.org	website.

§	1	virtualbox.org.	The	"virtualbox.org"	website	logs	anonymous	usage
information	such	as	your	IP	address,	geographical	location,	browser	type,
referral	source,	length	of	visit	and	number	of	page	views	while	you	visit
(collectively,	"anonymous	data").	In	addition,	but	only	if	you	choose	to	register,
the	website's	bug	tracking	and	forum	services	store	the	data	you	choose	to	reveal
upon	registration,	such	as	your	user	name	and	contact	information.

§	2	Cookies.	The	virtualbox.org	website,	the	bug	tracker	and	the	forum	services
use	cookies	to	identify	and	track	the	visiting	web	browser	and,	if	you	have
registered,	to	facilitate	login.	Most	browsers	allow	you	to	refuse	to	accept
cookies.	While	you	can	still	visit	the	website	with	cookies	disabled,	logging	into
the	bug	tracker	and	forum	services	will	most	likely	not	work	without	them.

§	3	VirtualBox	registration	process.	The	VirtualBox	application	may	ask	that
the	user	optionally	register	with	Oracle.	If	you	choose	to	register,	your	name,	e-
mail	address,	country	and	company	will	be	submitted	to	Oracle	and	stored
together	with	the	IP	address	of	the	submitter	as	well	as	product	version	and
platform	being	used.

§	4	Update	notifications.	The	VirtualBox	application	may	contact	Oracle	to	find
out	whether	a	new	version	of	VirtualBox	has	been	released	and	notify	the	user	if
that	is	the	case.	In	the	process,	anonymous	data	such	as	your	IP	address	and	a
non-identifying	counter,	together	with	the	product	version	and	the	platform
being	used,	is	sent	so	that	the	server	can	find	out	whether	an	update	is	available.
By	default,	this	check	is	performed	once	a	day.	You	change	this	interval	or
disable	these	checks	altogether	in	the	VirtualBox	preferences.

§	5	Usage	of	personal	information.	Oracle	may	use	anonymous	and	personal

http://www.oracle.com/html/privacy.html

data	collected	by	the	means	above	for	statistical	purposes	as	well	as	to
automatically	inform	you	about	new	notices	related	to	your	posts	on	the	bug
tracker	and	forum	services,	to	administer	the	website	and	to	contact	you	due	to
technical	issues.	Oracle	may	also	inform	you	about	new	product	releases	related
to	VirtualBox.

In	no	event	will	personal	data	without	your	express	consent	be	provided	to	any
third	parties,	unless	Oracle	may	be	required	to	do	so	by	law	or	in	connection
with	legal	proceedings.

§	6	Updates.	Oracle	may	update	the	privacy	policy	at	any	time	by	posting	a	new
version	at	http://www.oracle.com/html/privacy.html	and	the	privacy	information
will	be	kept	up	to	date	in	the	documentation	which	comes	with	the	VirtualBox
application.	You	should	check	these	places	occasionally	to	ensure	you	are	happy
with	any	changes.

http://www.oracle.com/html/privacy.html

Glossary

A

ACPI

Advanced	Configuration	and	Power	Interface,	an	industry	specification	for
BIOS	and	hardware	extensions	to	configure	PC	hardware	and	perform
power	management.	Windows	2000	and	higher	as	well	as	Linux	2.4	and
higher	support	ACPI.	Windows	can	only	enable	or	disable	ACPI	support	at
installation	time.

AHCI

Advanced	Host	Controller	Interface,	the	interface	that	supports	SATA
devices	such	as	hard	disks.	See	Section	5.1,	“Hard	disk	controllers:	IDE,
SATA	(AHCI),	SCSI,	SAS,	USB	MSD,	NVMe”.

AMD-V

The	hardware	virtualization	features	built	into	modern	AMD	processors.
See	Section	10.3,	“Hardware	vs.	software	virtualization”.

API

Application	Programming	Interface.

APIC

Advanced	Programmable	Interrupt	Controller,	a	newer	version	of	the
original	PC	PIC	(programmable	interrupt	controller).	Most	modern	CPUs
contain	an	on-chip	APIC	("local	APIC").	Many	systems	also	contain	an	I/O
APIC	(input	output	APIC)	as	a	separate	chip	which	provides	more	than	16
IRQs.	Windows	2000	and	higher	use	a	different	kernel	if	they	detect	an	I/O
APIC	during	installation.	Therefore	an	I/O	APIC	must	not	be	removed	after
installation.

ATA

Advanced	Technology	Attachment,	an	industry	standard	for	hard	disk
interfaces	(synonymous	with	IDE).	See	Section	5.1,	“Hard	disk	controllers:
IDE,	SATA	(AHCI),	SCSI,	SAS,	USB	MSD,	NVMe”.

B

BIOS

Basic	Input/Output	System,	the	firmware	built	into	most	personal
computers	which	is	responsible	of	initializing	the	hardware	after	the
computer	has	been	turned	on	and	then	booting	an	operating	system.
VirtualBox	ships	with	its	own	virtual	BIOS	that	runs	when	a	virtual
machine	is	started.

C

COM

Microsoft	Component	Object	Model,	a	programming	infrastructure	for
modular	software.	COM	allows	applications	to	provide	application
programming	interfaces	which	can	be	accessed	from	various	other
programming	languages	and	applications.	VirtualBox	makes	use	of	COM
both	internally	and	externally	to	provide	a	comprehensive	API	to	3rd	party
developers.

D

DHCP

Dynamic	Host	Configuration	Protocol.	This	allows	a	networking	device	in
a	network	to	acquire	its	IP	address	(and	other	networking	details)
automatically,	in	order	to	avoid	having	to	configure	all	devices	in	a	network
with	fixed	IP	addresses.	VirtualBox	has	a	built-in	DHCP	server	that	delivers
an	IP	addresses	to	a	virtual	machine	when	networking	is	configured	to	NAT;
see	Chapter	6,	Virtual	networking.

E

EFI

Extensible	Firmware	Interface,	a	firmware	built	into	computers	which	is
designed	to	replace	the	aging	BIOS.	Originally	designed	by	Intel,	most
modern	operating	systems	can	now	boot	on	computers	which	have	EFI
instead	of	a	BIOS	built	into	them;	see	Section	3.14,	“Alternative	firmware
(EFI)”.

EHCI

Enhanced	Host	Controller	Interface,	the	interface	that	implements	the	USB
2.0	standard.

G

GUI

Graphical	User	Interface.	Commonly	used	as	an	antonym	to	a	"command
line	interface",	in	the	context	of	VirtualBox,	we	sometimes	refer	to	the	main
graphical	VirtualBox	program	as	the	"GUI",	to	differentiate	it	from	the
VBoxManage	interface.

GUID

See	UUID.

I

IDE

Integrated	Drive	Electronics,	an	industry	standard	for	hard	disk	interfaces.
See	Section	5.1,	“Hard	disk	controllers:	IDE,	SATA	(AHCI),	SCSI,	SAS,
USB	MSD,	NVMe”.

I/O	APIC

See	APIC.

iSCSI

Internet	SCSI;	see	Section	5.10,	“iSCSI	servers”.

M

MAC

Media	Access	Control,	a	part	of	an	Ethernet	network	card.	A	MAC	address
is	a	6-byte	number	which	identifies	a	network	card.	It	is	typically	written	in
hexadecimal	notation	where	the	bytes	are	separated	by	colons,	such	as
00:17:3A:5E:CB:08.

MSI

Message	Signaled	Interrupts,	as	supported	by	modern	chipsets	such	as	the
ICH9;	see	Section	3.5.1,	“"Motherboard"	tab”.	As	opposed	to	traditional
pin-based	interrupts,	with	MSI,	a	small	amount	of	data	can	accompany	the
actual	interrupt	message.	This	reduces	the	amount	of	hardware	pins
required,	allows	for	more	interrupts	and	better	performance.

N

NAT

Network	Address	Translation.	A	technique	to	share	networking	interfaces
by	which	an	interface	modifies	the	source	and/or	target	IP	addresses	of
network	packets	according	to	specific	rules.	Commonly	employed	by
routers	and	firewalls	to	shield	an	internal	network	from	the	Internet,
VirtualBox	can	use	NAT	to	easily	share	a	host's	physical	networking
hardware	with	its	virtual	machines.	See	Section	6.3,	“Network	Address
Translation	(NAT)”.

O

OVF

Open	Virtualization	Format,	a	cross-platform	industry	standard	to	exchange
virtual	appliances	between	virtualization	products;	see	Section	1.14,
“Importing	and	exporting	virtual	machines”.

P

PAE

Physical	Address	Extension.	This	allows	accessing	more	than	4	GB	of
RAM	even	in	32-bit	environments;	see	Section	3.4.2,	“"Advanced"	tab”.

PIC

See	APIC.

PXE

Preboot	Execution	Environment,	an	industry	standard	for	booting	PC
systems	from	remote	network	locations.	It	includes	DHCP	for	IP
configuration	and	TFTP	for	file	transfer.	Using	UNDI,	a	hardware
independent	driver	stack	for	accessing	the	network	card	from	bootstrap
code	is	available.

R

RDP

Remote	Desktop	Protocol,	a	protocol	developed	by	Microsoft	as	an
extension	to	the	ITU	T.128	and	T.124	video	conferencing	protocol.	With
RDP,	a	PC	system	can	be	controlled	from	a	remote	location	using	a	network
connection	over	which	data	is	transferred	in	both	directions.	Typically
graphics	updates	and	audio	are	sent	from	the	remote	machine	and	keyboard
and	mouse	input	events	are	sent	from	the	client.	A	VirtualBox	extension
package	by	Oracle	provides	VRDP,	an	enhanced	implementation	of	the
relevant	standards	which	is	largely	compatible	with	Microsoft's	RDP
implementation.	See	Section	7.1,	“Remote	display	(VRDP	support)”	for
details.

S

SAS

Serial	Attached	SCSI,	an	industry	standard	for	hard	disk	interfaces.	See
Section	5.1,	“Hard	disk	controllers:	IDE,	SATA	(AHCI),	SCSI,	SAS,	USB
MSD,	NVMe”.

SATA

Serial	ATA,	an	industry	standard	for	hard	disk	interfaces.	See	Section	5.1,
“Hard	disk	controllers:	IDE,	SATA	(AHCI),	SCSI,	SAS,	USB	MSD,
NVMe”.

SCSI

Small	Computer	System	Interface.	An	industry	standard	for	data	transfer
between	devices,	especially	for	storage.	See	Section	5.1,	“Hard	disk
controllers:	IDE,	SATA	(AHCI),	SCSI,	SAS,	USB	MSD,	NVMe”.

SMP

Symmetrical	Multiprocessing,	meaning	that	the	resources	of	a	computer	are
shared	between	several	processors.	These	can	either	be	several	processor
chips	or,	as	is	more	common	with	modern	hardware,	multiple	CPU	cores	in
one	processor.

SSD

Solid-state	drive,	uses	microchips	for	storing	data	in	a	computer	system.
Compared	to	classical	hard-disks	they	are	having	no	mechanical
components	like	spinning	disks.

T

TAR

A	widely	used	file	format	for	archiving.	Originally,	this	stood	for	"Tape
ARchive"	and	was	already	supported	by	very	early	Unix	versions	for
backing	up	data	on	tape.	The	file	format	is	still	widely	used	today,	for
example,	with	OVF	archives	(with	an	.ova	file	extension);	see
Section	1.14,	“Importing	and	exporting	virtual	machines”.

U

UUID

A	Universally	Unique	Identifier	--	often	also	called	GUID	(Globally	Unique

Identifier)	--	is	a	string	of	numbers	and	letters	which	can	be	computed
dynamically	and	is	guaranteed	to	be	unique.	Generally,	it	is	used	as	a	global
handle	to	identify	entities.	VirtualBox	makes	use	of	UUIDs	to	identify
VMs,	Virtual	Disk	Images	(VDI	files)	and	other	entities.

V

VM

Virtual	Machine	--	a	virtual	computer	that	VirtualBox	allows	you	to	run	on
top	of	your	actual	hardware.	See	Section	1.2,	“Some	terminology”	for
details.

VMM

Virtual	Machine	Manager	--	the	component	of	VirtualBox	that	controls	VM
execution.	See	Section	10.2,	“VirtualBox	executables	and	components”	for
a	list	of	VirtualBox	components.

VRDE

VirtualBox	Remote	Desktop	Extension.	This	interface	is	built	into
VirtualBox	to	allow	VirtualBox	extension	packages	to	supply	remote	access
to	virtual	machines.	A	VirtualBox	extension	package	by	Oracle	provides
VRDP	support;	see	Section	7.1,	“Remote	display	(VRDP	support)”	for
details.

VRDP

See	RDP.

VT-x

The	hardware	virtualization	features	built	into	modern	Intel	processors.	See
Section	10.3,	“Hardware	vs.	software	virtualization”.

X

xHCI

eXtended	Host	Controller	Interface,	the	interface	that	implements	the	USB
3.0	standard.

XML

The	eXtensible	Markup	Language,	a	metastandard	for	all	kinds	of	textual
information.	XML	only	specifies	how	data	in	the	document	is	organized
generally	and	does	not	prescribe	how	to	semantically	organize	content.

XPCOM

Mozilla	Cross	Platform	Component	Object	Model,	a	programming
infrastructure	developed	by	the	Mozilla	browser	project	which	is	similar	to
Microsoft	COM	and	allows	applications	to	provide	a	modular	programming
interface.	VirtualBox	makes	use	of	XPCOM	on	Linux	both	internally	and
externally	to	provide	a	comprehensive	API	to	third-party	developers.

	Oracle VM VirtualBox®
	First steps
	Some terminology
	Features overview
	Supported host operating systems
	Installing VirtualBox and extension packs
	Starting VirtualBox
	Creating your first virtual machine
	Running your virtual machine
	Using VM groups
	Snapshots
	Virtual machine configuration
	Removing virtual machines
	Cloning virtual machines
	Importing and exporting virtual machines
	Global Settings
	Alternative front-ends

	Installation details
	Installing on Mac OS X hosts
	Installing on Linux hosts
	Installing on Solaris hosts

	Configuring virtual machines
	Unattended guest installation
	Emulated hardware
	General settings
	System settings
	Display settings
	Storage settings
	Audio settings
	Network settings
	Serial ports
	USB support
	Shared folders
	User Interface
	Alternative firmware (EFI)

	Guest Additions
	Installing and Maintaining Guest Additions
	Shared folders
	Drag and Drop
	Hardware-accelerated graphics
	Seamless windows
	Guest properties
	Guest control
	Memory overcommitment

	Virtual storage
	Disk image files (VDI, VMDK, VHD, HDD)
	The Virtual Media Manager
	Special image write modes
	Differencing images
	Cloning disk images
	Host I/O caching
	Limiting bandwidth for disk images
	CD/DVD support
	iSCSI servers

	Virtual networking
	Introduction to networking modes
	Network Address Translation (NAT)
	Network Address Translation Service
	Bridged networking
	Internal networking
	Host-only networking
	UDP Tunnel networking
	VDE networking
	Limiting bandwidth for network I/O
	Improving network performance

	Remote virtual machines
	Teleporting

	VBoxManage
	Commands overview
	General options
	VBoxManage list
	VBoxManage showvminfo
	VBoxManage registervm / unregistervm
	VBoxManage createvm
	VBoxManage modifyvm
	VBoxManage clonevm
	VBoxManage import
	VBoxManage export
	VBoxManage startvm
	VBoxManage controlvm
	VBoxManage discardstate
	VBoxManage adoptstate
	VBoxManage snapshot
	VBoxManage closemedium
	VBoxManage storageattach
	VBoxManage storagectl
	VBoxManage bandwidthctl
	VBoxManage showmediuminfo
	VBoxManage createmedium
	VBoxManage modifymedium
	VBoxManage clonemedium
	VBoxManage mediumproperty
	VBoxManage encryptmedium
	VBoxManage checkmediumpwd
	VBoxManage convertfromraw
	VBoxManage getextradata/setextradata
	VBoxManage setproperty
	VBoxManage usbfilter add/modify/remove
	VBoxManage sharedfolder add/remove
	VBoxManage guestproperty
	VBoxManage guestcontrol
	VBoxManage metrics
	VBoxManage natnetwork
	VBoxManage hostonlyif
	VBoxManage dhcpserver
	VBoxManage usbdevsource
	VBoxManage debugvm
	VBoxManage extpack
	VBoxManage unattended

	Advanced topics
	Automated guest logons
	Advanced configuration for Windows guests
	Advanced configuration for Linux and Solaris guests
	CPU hot-plugging
	PCI passthrough
	Webcam passthrough
	Advanced display configuration
	Advanced storage configuration
	Legacy commands for using serial ports
	Fine-tuning the VirtualBox NAT engine
	Configuring the BIOS DMI information
	Configuring the custom ACPI table
	Fine-tuning timers and time synchronization
	Installing the alternate bridged networking driver on Solaris 11 hosts
	VirtualBox VNIC templates for VLANs on Solaris 11 hosts
	Configuring multiple host-only network interfaces on Solaris hosts
	Configuring the VirtualBox CoreDumper on Solaris hosts
	VirtualBox and Solaris kernel zones
	Locking down the VirtualBox GUI
	Starting the VirtualBox web service automatically
	VirtualBox Watchdog
	Other extension packs
	Starting virtual machines during system boot
	VirtualBox expert storage management
	Handling of host power management events
	Experimental support for passing through SSE4.1 / SSE4.2 instructions
	Support for keyboard indicators synchronization
	Capturing USB traffic for selected devices
	Configuring the heartbeat service
	Encryption of disk images
	Paravirtualized debugging
	PC speaker passthrough
	Accessing USB devices exposed over the network with USB/IP
	VISO file format / RTIsoMaker

	Technical background
	VirtualBox executables and components
	Hardware vs. software virtualization
	Paravirtualization providers
	Details about software virtualization
	Details about hardware virtualization
	Nested paging and VPIDs

	VirtualBox programming interfaces
	Troubleshooting
	General
	Windows guests
	Linux and X11 guests
	Solaris guests
	FreeBSD guests
	Windows hosts
	Linux hosts
	Solaris hosts

	Security guide
	Secure Installation and Configuration
	Security Features

	Known limitations
	Known Issues

	Change log
	Version 5.2.2 (2017-11-22)
	Version 5.2.0 (2017-10-17)
	Version 5.1.30 (2017-10-16)
	Version 5.1.28 (2017-09-13)
	Version 5.1.30 (2017-10-16)
	Version 5.1.28 (2017-09-13)
	Version 5.1.26 (2017-07-27)
	Version 5.1.24 (2017-07-18)
	Version 5.1.22 (2017-04-28)
	Version 5.1.20 (2017-04-18)
	Version 5.1.18 (2017-03-15)
	Version 5.1.16 (2017-03-08)
	Version 5.1.14 (2017-01-16)
	Version 5.1.12 (2016-12-20)
	Version 5.1.10 (2016-11-21)
	Version 5.1.8 (2016-10-18)
	Version 5.1.6 (2016-09-12)
	Version 5.1.4 (2016-08-16)
	Version 5.1.2 (2016-07-21)
	Version 5.1.0 (2016-07-12)
	Version 5.0.24 (2016-06-28)
	Version 5.0.22 (2016-06-16)
	Version 5.0.20 (2016-04-28)
	Version 5.0.18 (2016-04-18)
	Version 5.0.16 (2016-03-04)
	Version 5.0.14 (2016-01-19)
	Version 5.0.12 (2015-12-18)
	Version 5.0.10 (2015-11-10)
	Version 5.0.8 (2015-10-20)
	Version 5.0.6 (2015-10-02)
	Version 5.0.4 (2015-09-08)
	Version 5.0.2 (2015-08-13)
	Version 5.0.0 (2015-07-09)
	Version 4.3.28 (2015-05-13)
	Version 4.3.26 (2015-03-16)
	Version 4.3.24 (2015-03-02)
	Version 4.3.22 (2015-02-12)
	Version 4.3.20 (2014-11-21)
	Version 4.3.18 (2014-10-10)
	Version 4.3.16 (2014-09-09)
	Version 4.3.14 (2014-07-15)
	Version 4.3.12 (2014-05-16)
	Version 4.3.10 (2014-03-26)
	Version 4.3.8 (2014-02-25)
	Version 4.3.6 (2013-12-18)
	Version 4.3.4 (2013-11-29)
	Version 4.3.2 (2013-11-01)
	Version 4.3.0 (2013-10-15)
	Older Change log details

	Third-party materials and licenses
	Licenses

	VirtualBox privacy information
	Glossary

