
VMMap
Copyright	©	2009-2010	Mark	Russinovich	and	Bryce	Cogswell
Sysinternals	-	www.sysinternals.com
Portions	based	on	code	by	Jeffrey	Richter

http://www.sysinternals.com


	
VMMap	is	a	process	virtual	and	physical	memory	analysis	utility.	It	shows
a	breakdown	of	a	process's	committed	virtual	memory	types	as	well	as
the	amount	of	physical	memory	(working	set)	assigned	by	the	operating
system	to	those	types.	Besides	graphical	representations	of	memory
usage,	VMMap	also	shows	summary	information	and	a	detailed	process
memory	map.	Powerful	filtering,	refresh	and	snapshot	comparison
capabilities	allow	you	to	identify	the	sources	of	process	memory	usage
and	the	memory	cost	of	application	features.
	
Before	reporting	a	bug,	please	make	sure	that	you	can	reproduce	the	bug
on	the	latest	version	of	VMMap	posted	at	Sysinternals.	To	report	a	bug,
email	markruss@microsoft.com.
	
VMMap	works	on	Windows	XP	and	higher,	including	x64	64-bit	versions
of	Windows.

mailto://markruss@microsoft.com


Memory	Types

VMMap	categorizes	memory	into	one	of	several	types:
	
Image
The	memory	represents	an	executable	file	such	as	a	.exe	or	.dll	and	has
been	loaded	into	a	process	by	the	image	loader.	It	does	not	include
images	mapped	as	data	files,	which	would	be	included	in	the	Mapped
File	memory	type.	Image	mappings	can	include	shareable	memory	like
code.	When	data	regions,	like	initialized	data,	is	modified,	additional
private	memory	is	created	in	the	process.	The	Details	column	shows	the
file's	path.
	
Private
Private	memory	is	memory	allocated	by	VirtualAlloc	and	not	suballocated
either	by	the	Heap	Manager	or	the	.NET	run	time.	It	cannot	be	shared
with	other	processes,	is	charged	against	the	system	commit	limit,	and
typically	contains	application	data.
	
Shareable
Shareable	memory	is	memory	that	can	be	shared	with	other	processes,
is	backed	by	the	paging	file	(if	present),	is	charged	against	the	system
commit	limit	and	typically	contains	data	shared	between	DLLs	in	different
processes	or	inter-process	communication	messages.	The	Windows
APIs	refer	to	this	type	of	memory	as	pagefile-backed	sections.
	
Mapped	File
The	memory	is	shareable	and	represents	a	file	on	disk.	The	Details
column	shows	the	file's	path.	Mapped	files	typically	contain	application
data.
	
Heap
Heaps	represent	private	memory	managed	by	the	user-mode	heap
manager	and,	like	the	Private	memory	type,	is	charged	against	the
system	commit	limit	and	contains	application	data.	Application	memory
allocations	using	the	C	runtime	malloc	library,	HeapAlloc	and	LocalAlloc,



use	Heap	memory.
	
Managed	Heap
Managed	heap	represents	private	memory	that's	allocated	and	used	by
the	.NET	garbage	collector	and,	like	the	Private	memory	type,	is	charged
against	the	system	commit	limit	and	contains	application	data.
	
Stack
Stacks	are	private	memory	used	to	store	function	parameters,	local
function	variables	and	function	invocation	records	for	individual	threads.
Stacks	are	charged	agains	the	commit	limit	and	typically	grow	on
demand.
	
System
System	memory	is	private	kernel-mode	physical	memory	associated	with
the	process.	The	vast	majority	of	System	memory	consists	of	the	process
page	tables.
	
Free
Free	memory	regions	are	spaces	in	the	process	address	space	that	are
not	allocated.
	
Note:	The	VirtualProtect	API	can	change	the	protections	of	any	page	to
something	different	than	that	implied	by	the	original	allocation's	memory
type.	That	means	that	there	can	potentially	be	pages	of	memory	private
to	the	process	in	a	shareable	memory	region,	for	instance,	because	the
region	was	created	as	a	pagefile-backed	section,	but	then	the	application
changed	the	protection	on	some	pages	to	copy-on-write	and	modified
them.	The	protection	shown	for	a	region	isn't	necessarily	the	protection	it
had	since	it's	creation.
	



The	VMMap	Window

When	you	run	VMMap,	it	will	present	a	process	selection	dialog.	After
you	select	a	process	it	analyzes	the	process	and	presents	the	graphs:

Commit	Summary	Graph	This	graph	shows	the	committed
(memory	that	represents	data	or	code)	memory	usage	of	the	process
by	type.	The	graph's	scale	is	the	total	committed	virtual	memory
usage	of	the	process.
Private	Summary	Graph	This	graph	shows	the	committed	private
virtual	memory.	This	memory	is	backed	by	the	paging	file	and
charged	against	the	system	commit	limit.	It	corresponds	to	the
PrivateBytes	performance	counter.
Working	Set	Summary	Graph	This	graph	shows	the	working	set
usage	of	the	process	by	memory	type.	Working	set	represents	the
amount	of	commited	virtual	memory	that's	in	physical	memory	and
owned	by	the	process.	The	graph's	scale	is	the	total	committed
virtual	memory.

The	color	key	for	the	regions	in	the	graphs	is	presented	in	the	Summary
View.	Below	the	graphs	VMMap	shows	two	windows:

Summary	View	This	shows	a	summary	of	the	virtual	and	physical
usage	of	the	process	by	type.
Details	View	This	shows	the	memory	regions	of	the	process
address	space.

For	each	region,	VMMap	displays	the	memory	type,	memory	protection,
and	virtual	and	physical	memory	usage.	Selecting	a	type	in	the	Summary
View	filters	the	Details	View	to	just	show	regions	of	the	selected	type.
Select	Total	to	show	all	memory	types	in	the	Details	View.	In	order	to
reduce	noise	in	the	output,	VMMap	does	not	show	entries	that	have	a
value	of	0.
	
Both	windows	include	the	following	columns	of	information:



	
Size
Total	size	of	the	allocated	type	or	region.	For	the	Summary	View	and
regions	in	the	Details	View	that	do	not	have	reserved	areas,	this	is
equal	to	the	maximum	amount	of	physical	memory	required	to	store
the	region's	data.
	
Committed
The	amount	of	the	allocation	backed	by	system	virtual	memory
(RAM	and	paging	files)	and	charged	against	the	system	commit	limit.
	
Private
The	amount	of	the	allocation	that,	if	modified,	is	private	to	the
process	(copy-on-write	pages	that	have	not	been	modified	are
included).	This	represents	the	charge	to	the	system	commit	limit
(sum	of	RAM	plus	the	paging	files)	of	the	region.
	
Total	WS
The	amount	of	physical	memory	assigned	to	the	type	or	region.
	
Private	WS
The	amount	of	physical	memory	assigned	to	the	type	or	region	that
cannot	be	shared	with	other	processes.
	
Shareable	WS
The	amount	of	physical	memory	assigned	to	the	type	or	region	that
can	be	shared	with	other	processes.
	
Shared	WS
The	amount	of	Shareable	WS	that	is	currently	shared	with	other
processes.
	
Locked	WS
The	amount	of	the	working	set	that	is	locked	into	physical	memory.
This	corresponds	to	memory	locked	via	the	VirtualAlloc	API	as	well
as	Address	Windowing	Extensions	(AWE)	memory	views.	Note	that
working	set	figures	returned	by	some	other	diagnostic	tools	does	not



include	AWE	memory.
	
Largest	The	largest	block	of	the	particular	size.
	

Note:	Because	of	limitations	in	the	APIs	provided	by	the	operating
system,	on	64-bit	Windows	XP	or	64-bit	Windows	Server	2003,	Vmmap
does	not	show	the	regions	corresponding	to	32-bit	thread	stacks	when
analyzing	32-bit	processes.



Strings

In	some	cases,	the	purpose	of	a	memory	region	can	be	revealed	by	the
string	data	stored	within	it.	To	view	printable	strings	(ASCII	or	UNICODE
strings	of	three	or	more	characters	in	length),	select	a	region	and	then
the	Strings	menu	item	from	the	Edit	menu.



Refreshing	a	Scan

You	can	refresh	a	scan	by	hitting	F5	or	selecting	Refresh	from	the
Refresh	Menu.	The	Empty	Working	Set	menu	item	in	the	Refresh	menu
releases	all	physical	memory	assigned	to	the	process	and	then	refreshes
the	scan.	This	feature	is	useful	for	measuring	the	memory	cost	of	an
application	feature	where	you	would	empty	the	working	set,	exercise	the
feature	and	then	refresh	the	display	to	look	at	how	much	physical
memory	the	application	referenced.
	
VMMap	saves	every	snapshot	and	you	can	view	the	history	in	the
Timeline	dialog.	Select	a	particular	snapshot	by	left-clicking	in	the	graph
area	and	moving	the	mouse	to	the	desired	snapshot	point.



Viewing	Changes

VMMap	saves	each	snapshot	and	allows	you	to	view	the	differences	by
selecting	the	Show	Changes	entry	in	the	Options	menu.	When	you	toggle
to	that	mode,	the	status	bar	shows	the	times	of	the	refreshes	being
compared	and	the	summary	and	details	lists	shows	the	differences
between	them.	VMMap	shows	address	ranges	that	are	in	the	most	recent
snaphot	but	not	the	previous	one	with	a	green	highlight	color	and	those
that	were	deleted	in	red.	You	can	toggle	back	to	viewing	the	statistics	of
the	most	recent	snapshot	by	deselecting	the	option.
	
You	can	view	differences	between	any	two	snapshots	by	opening	the
Timeline	dialog,	clicking	the	mouse	and	dragging	the	selection	region
between	the	two	points	of	interest.
	
	



Tracing

You	can	have	VMMap	automatically	take	snapshots	and	capture	a	trace
of	several	memory-related	operations	by	opening	the	process	selection
dialog,	switching	to	the	Launch	and	Trace	a	New	Program	page,	and
entering	the	executable's	path	and	command-line	options.	VMMap	will
generate	snapshots	at	the	interval	configured	in	the	Trace	Snapshot
Interval	menu	of	the	Options	menu.
	
In	addition,	it	will	use	Detours	DLL	injection	library	to	instrument	the	heap
and	virtual	allocation	functions	executed	by	the	process.	You	can	view
the	history	of	all	recorded	operations	by	opening	the	Trace	history	dialog
using	the	Trace	button	on	the	main	window.	To	view	operations	related	to
a	particular	heap	region,	select	the	heap	block	in	the	details	pane	and
then	click	the	Heap	Allocations	button.	The	Calltree	button	will	show	the
call	stacks	of	all	places	in	the	process	from	which	the	recorded	memory
allocations	were	made.	Just	like	for	manual	snapshots,	you	can	open	the
Timeline	window	to	see	the	history	of	the	process's	execution,	select
particular	snapshots	for	viewing,	or	select	two	snapshots	to	see	the
differences.



Options

The	options	menu	contains	the	following	items:

Expand	All	This	expands	all	memory	regions	in	the	Details	View
Collapse	All	This	collapses	all	memory	regions	in	the	Details	View
Show	Free	Regions	Selecting	this	causes	Details	View	to	include
free	memory	regions
Font	Use	this	to	change	the	font	of	the	Summary	and	Details	Views.



Saving,	Loading	and	Copying

Saving	and	Loading	Scan	Results
The	Save	menu	item	in	the	File	menu	includes	several	ways	to	save
output	from	a	VMMap	scan.	The	Save	dialog	has	options	for	the	following
output	format:

.MMP	This	is	the	native	VMMap	file	format.	Use	this	format	if	you
want	to	load	the	output	back	into	the	VMMap	display.
.CSV	This	is	comma-seperated	value	output,	which	is	ideal	for
generating	output	that	you	can	easily	import	into	Excel.
.TXT	This	format	is	ideal	for	sharing	the	text	form	of	scan	results	in	a
readable	form.

Note	that	a	saved	.MMP	file	includes	the	two	most	recent	snapshots,
enabling	you	to	view	differences	with	the	Refresh	Shows	Changes	option
when	you	load	the	file	back	into	VMMap.
	
Copying
The	Edit	menu	includes	two	selections	for	copying	output	to	the	clipboard

Copy	Address	This	menu	item	copies	just	the	address	of	the
currently	selected	line	in	the	Details	View.
Copy	All	This	copies	the	text	from	the	display,	including	the	process
name	and	ID,	Summary	View	and	Details	View.



Command	Line	Options

VMMap	supports	the	following	command-line	options:
	
usage:	vmmap	[-64]	[-p	<pid	or	process	name>	[outputfile]]	[-o
inputfile]
	 -64 Use	the	64-bit	version	to	analyze	a	32-bit	process	instead	of	the	32-bit	version.

	 -p Process	ID	or	process	name.	If	you	specify	a	name,	VMMap	will	match	it	against	the
first	process	that	has	a	name	that	begins	with	the	specified	text.

	 output
file

If	you	specify	an	output	file,	VMMap	will	scan	the	target	process	and	then	terminate.	If
you	don't	include	an	extension,	VMMap	will	add	.mmp	and	save	in	its	native	format.
Add	a	.csv	extension	to	save	as	CSV	format;	any	other	extension	will	save	as	.txt.

	 inputfile Has	VMMap	open	the	specified	.mmp	file	on	startup.


