
	

Welcome	to	the	Agilent	VISA	Help

VISA	(Virtual	Instrument	Software	Architecture)	is	an	industry-
standard	I/O	API.	It	can	be	used	to	develop	I/O	applications	and

instrument	drivers	that	are	interoperable	with	many	other	VISA	applications
from	many	vendors,	and	that	comply	with	www.ivifoundation.org	standards.
VXIplug&play	drivers	are	implemented	using	VISA.

The	reference	information	for	Agilent	VISA	is	organized	into	the	following
major	sections.

VISA	User’s	Guide

Describes	the	Agilent	VISA	library	and	shows	how	to	use	it	to	develop	I/O
applications	and	instrument	drivers	on	Windows	®	PCs.

VISA	Function	Reference

									Lists	the	Agilent	VISA	functions	and	provides	brief	descriptions	of	their
usage.

VISA	Attributes

										Describes	attributes	for	the	VISA	template	and	supported	Agilent	VISA
Resource	Classes,	including	INSTR,	MEMACC,	INTFC,	BACKPLANE,	and
SOCKET.

VISA	Library	Information

										Describes	VISA	type	definitions,	VISA	error	codes,	and	VISA	directories,
with	additional	information	on	using	VISA	in	Visual	Basic	and	in	Microsoft
.NET	languages.

For	general	VISA	specifications,	see	the	VXIplug&play	Systems	Alliance	VISA
Library	specifications.

http://www.ivifoundation.org/

Agilent	VISA	provides	support	for	version	5.0	of	the	VISA	specification	which
is	available	from	the	www.ivifoundation.org.

	

http://www.ivifoundation.org/

What’s	in	This	Guide?

This	user's	guide	shows	VISA	programming	techniques	using	C/C++	and	Visual
Basic.	For	information	on	.NET	programming	languages,	refer	to	VISA	.NET
Tutorial.

This	guide	contains	these	sections:

VISA	Overview	-	Provides	a	short	description	of	the	Agilent	Virtual
Instrument	Software	Architecture	(VISA).
Programming	with	VISA	-	Describes	the	basics	of	VISA	and	lists
some	sample	programs.	The	section	also	includes	information	on
how	to	create	sessions,	how	to	use	formatted	I/O,	and	how	to	use
events.
Programming	via	GPIB	and	VXI	-	Describes	how	to	use	VISA	to
communicate	over	the	GPIB,	GPIB-VXI,	and	VXI	interfaces	to
instruments.
Programming	PXI	Devices	-	Describes	how	to	use	VISA	to	program
PXI,	PXIe,	and	PCIe	devices	installed	in	a	PC	or	PXI	chassis.
Programming	via	LAN	-	Describes	how	to	use	VISA	to	communicate
over	a	LAN	(Local	Area	Network)	to	instruments.
Programming	via	USB	-	Describes	how	to	use	VISA	to	communicate
over	a	USB	(Universal	Serial	Bus)	to	instruments.

See	Also

VISA	Documentation	lists	other	sources	of	information	on	VISA	programming.

VISA	Overview

VISA	is	an	application	programming	interface	(API)	for	instrument	control.	It
allows	you	to	programmatically	send	commands	and	receive	data	from
instruments	and	other	test	and	measurement	devices	(such	as	sources	and
switches).

VISA	is	a	part	of	the	Agilent	IO	Libraries	Suite	product.	The	Agilent	IO
Libraries	Suite	includes	three	VISA-related	APIs:

Agilent	Virtual	Instrument	Software	Architecture	(VISA)
VISA	for	the	Common	Object	Model	(VISA	COM)
Agilent	Standard	Instrument	Control	Library	(SICL)

For	information	on	any	API,	click	the	Agilent	IO	Control	 	in	your	Windows
taskbar,	then	click	Documentation	>	API	Documentation	and	select	a
document	from	the	displayed	list.

Using	VISA,	VISA	COM,	and	SICL

Agilent	Virtual	Instrument	Software	Architecture	(VISA)	is	an	I/O	library	that
allows	software	developed	from	different	vendors	to	run	on	the	same	system.

If	you	are	using	new	instruments	or	are	developing	new	I/O	applications	or
instrument	drivers,	and	you	have	chosen	to	use	direct	I/O	rather	than	instrument
drivers,	we	recommend	you	use	Agilent	VISA	or	VISA	COM.	See	the	Agilent
IO	Libraries	Suite	Help	for	an	in-depth	discussion	of	your	programming	options.

Agilent	Standard	Instrument	Control	Library	(SICL)	is	an	I/O	library	developed
by	Agilent	that	is	portable	across	many	I/O	interfaces	and	systems.	You	can	use
Agilent	SICL	if	you	have	been	using	SICL	and	want	to	remain	compatible	with
software	currently	implemented	in	SICL.

VISA	Support

Agilent	VISA	is	supported	on	the	GPIB,	VXI,	GPIB-VXI,	Serial	(RS-232),
LAN,	PXI,	and	USB	interfaces.	LAN	support	from	within	VISA	occurs	via	an
address	translation	such	that	a	GPIB	interface	can	be	accessed	remotely	over	a
computer	network.

Agilent	VISA	provides	support	for	version	5.0	of	the	VISA	specification	which
is	available	from	www.ivifoundation.org.

http://www.ivifoundation.org/

VISA	Documentation

The	following	table	shows	associated	documentation	you	can	use	when
programming	with	Agilent	VISA.

Document Description

Agilent	IO	Libraries	Suite
Connectivity	Guide

	

	

	

	

	

This	guide	brings	together	all	of	the	Agilent	IO	Libraries	Suite	documents	and
related	Web	sites	into	one	help	document.	This	guide	provides	easy	access	to:

Agilent	interface	manuals
The	Agilent	IO	Libraries	Quick	Start	Guide
Connection	Expert,	VISA,	VISA	COM,	LXI,	and	Agilent	488	help
An	introductory	video
Related	Web	sites

VISA	Help (This	help	file.)	Contains	a	VISA	user's	guide,	a	function	reference,	and	other
programming	information.

VISA	Sample	Programs Sample	programs	are	provided	online	to	help	you	develop	VISA	applications.	See
Example	Programs	and	Installation	Folders	for	locations.

VISA	Specification Specifications	for	VISA:	www.ivifoundation.org.

PXI	Specification Specifications	for	PXI:	www.pxisa.org.

IEEE	Standard	Codes,	Formats,
Protocols,	and	Common	Commands ANSI/IEEE	Standard	488.2-1992:	www.standards.ieee.org.

VXI	Bus	Consortium	Specifications
(when	using	VISA	over	LAN)

TCP/IP	Instrument	Protocol	Specification	-	VXI-11,	Rev.	1.0

TCP/IP-VXIbus	Interface	Specification	-	VXI-11.1,	Rev.	1.0

TCP/IP-IEEE	488.1	Interface	Specification	-	VXI-11.2,	Rev.	1.0

TCP/IP-IEEE	488.2	Instrument	Interface	Specification	-	VXI-11.3,	Rev.	1.0

These	specifications	are	available	from	the	VXI	Bus	Consortium	at:	www.vxi.org

	

http://www.ivifoundation.org/
http://www.pxisa.org/
http://www.standards.ieee.org/
http://www.vxi.org/

Programming	with	VISA

This	section	describes	how	to	program	with	VISA.	The	basics	of	VISA	are
described,	including	formatted	I/O,	events	and	handlers,	attributes,	and	locking.
Topics	are:

Example	Programs	and	Installation	Folders
VISA	Resources	and	Attributes
Using	Sessions
Sending	I/O	Commands
Using	Events	and	Handlers
Trapping	Errors
Logging	Error	Messages
Using	Locks

Example	Programs	and	Installation	Folders

Most	example	programs	listed	in	this	help	are	installed	by	default	in:

C:\Documents	and	Settings\All	Users\Agilent\IO	Libraries	Suite	Programming
Samples	(on	Windows	XP)

C:\ProgramData\Agilent\Agilent	IO	Libraries	Programming	Samples	(on
Windows	Vista,	Windows	7,	Windows	8,	Windows	Server	2008	R2,	or	Windows
Server	2012)

Click	the	Agilent	IO	Control	 	and	select	About	Agilent	IO	Control	to	see	the
specific	installation	directories	used	on	your	PC,	as	shown	below.

VISA	Resources	and	Attributes

This	section	introduces	VISA	resources	and	VISA	attributes.

VISA	Resources

In	VISA,	a	resource	is	defined	as	any	device	(such	as	a	voltmeter)	with	which
VISA	can	provide	communication.	VISA	defines	six	resource	classes	that	a
complete	VISA	system	can	implement.	Each	resource	class	includes:

Attributes	to	determine	the	state	of	a	resource	or	session,	or	to	set	a
resource	or	session	to	a	specified	state.
Events	for	communication	with	applications.
Operations	(functions)	that	can	be	used	for	the	resource	class.

Note:	Although	the	Servant	Device-Side	(SERVANT)	resource	is	defined	by	the
VISA	specification,	the	SERVANT	resource	is	not	supported	by	Agilent	VISA.
The	SERVANT	resource	is	intended	for	advanced	users	who	need	to	write	code
that	causes	a	computer	to	function	as	an	instrument	rather	than	as	a	controller.

The	table	below	describes	each	resource	class	supported	by	Agilent	VISA.

Resource	Class Interface	Types Resource	Class	Description

Instrument	Control	(INSTR)
Resource

Generic,	GPIB,	GPIB-VXI,	PXI,	Serial,
TCPIP,	USB,	VXI

Device	operations	(reading,	writing,	triggering,
etc.).

GPIB	Bus	Interface	(INTFC)
Resource Generic,	GPIB Raw	GPIB	interface	operations	(reading,

writing,	triggering,	etc.).

Memory	Access	(MEMACC)
Resource Generic,	GPIB-VXI,	PXI,	VXI Address	space	of	a	memory-mapped	bus,	such

as	the	VXIbus.

VXI	Mainframe	Backplane
(BACKPLANE)	Resource

Generic,	GPIB-VXI,	VXI	(GPIB-VXI
BACKPLANE	not	supported)

VXI-defined	operations	and	properties	of	each
backplane	in	a	VXIbus	system.

TCPIP	Socket	(SOCKET)
Resource Generic,	TCPIP Operations	and	properties	of	a	raw	network

socket	connection	using	TCPIP.

VISA	Attributes

Attributes	are	associated	with	resources	or	sessions.	You	can	use	attributes	to
determine	the	state	of	a	resource	or	session,	or	to	set	a	resource	or	session	to	a
specified	state.

For	example,	you	can	use	the	viGetAttribute	function	to	read	the	state	of	an
attribute	for	a	specified	session,	event	context,	or	find	list.	There	are	read	only
(RO)	and	read/write	(RW)	attributes.	Use	the	viSetAttribute	function	to	modify
the	state	of	a	read/write	attribute	for	a	specified	session,	event	context,	or	find
list.

The	pointer	passed	to	viGetAttribute	must	point	to	the	exact	type	required	for
that	attribute	(ViUInt16,	ViInt32,	etc.).	For	example,	when	reading	an	attribute
state	that	returns	a	ViUInt16,	declare	a	variable	of	that	type	and	use	it	for	the
returned	data.	If	ViString	is	returned,	allocate	an	array	and	pass	a	pointer	to	that
array	for	returned	data.

Example:	Reading	a	VISA	Attribute

This	example	reads	the	state	of	the	VI_ATTR_TERMCHAR_EN	attribute	and,	if
it	is	false,	changes	the	state	to	true.

ViBoolean	state,	newstate;
newstate=VI_TRUE;
viGetAttribute(vi,	VI_ATTR_TERMCHAR_EN,	&state);
if	(state	err	!=VI_TRUE)	viSetAttribute(vi,
			VI_ATTR_TERMCHAR_EN,	newstate);

Using	Sessions

This	section	shows	how	to	use	VISA	sessions,	including:

Opening	a	Session
Addressing	a	Session
Closing	a	Session
Searching	for	Resources

Including	the	VISA	Declarations	File	(C/C++)

For	C	and	C++	programs,	you	must	include	the	visa.h	header	file	at	the
beginning	of	every	file	that	contains	VISA	function	calls:

#include	"visa.h"

This	header	file	contains	the	VISA	function	prototypes	and	the	definitions	for	all
VISA	constants	and	error	codes.	The	visa.h	header	file	also	includes	the
visatype.h	header	file.

The	visatype.h	header	file	defines	most	of	the	VISA	types.	The	VISA	types	are
used	throughout	VISA	to	specify	data	types	used	in	the	functions.	For	example,
the	viOpenDefaultRM	function	requires	a	pointer	to	a	parameter	of	type
ViSession.	If	you	find	ViSession	in	the	visatype.h	header	file,	you	will	find	that
ViSession	is	eventually	typed	as	an	unsigned	long.

Adding	the	visa32.bas	File	(Visual	Basic)

You	must	add	the	visa32.bas	Basic	module	file	to	your	Visual	Basic	project.	The
visa32.bas	file	contains	the	VISA	function	prototypes	and	definitions	for	all
VISA	constants	and	error	codes.

Opening	a	Session

A	session	is	a	channel	of	communication.	Sessions	must	first	be	opened	on	the
default	resource	manager,	and	then	for	each	resource	you	will	be	using.

A	resource	manager	session	is	used	to	initialize	the	VISA	system.	It
is	a	parent	session	that	knows	about	all	the	opened	sessions.	A
resource	manager	session	must	be	opened	before	any	other	session
can	be	opened.
A	resource	session	is	used	to	communicate	with	a	resource	on	an
interface.	A	session	must	be	opened	for	each	resource	you	will	be
using.	When	you	use	a	session	you	can	communicate	without
worrying	about	the	type	of	interface	to	which	it	is	connected.	This
insulation	makes	applications	more	robust	and	portable	across
interfaces.

Resource	Manager	Sessions

There	are	two	parts	to	opening	a	communications	session	with	a	specific
resource.	First,	you	must	open	a	session	to	the	default	resource	manager	with	the
viOpenDefaultRM	function.	The	first	call	to	this	function	initializes	the	default
resource	manager	and	returns	a	session	to	that	resource	manager	session.	You
only	need	to	open	the	default	manager	session	once.	However,	subsequent	calls
to	viOpenDefaultRM	return	a	unique	session	to	the	same	default	resource
manager	resource.

Resource	Sessions

Next,	open	a	session	with	a	specific	resource	using	the	viOpen	function.	This
function	uses	the	session	returned	from	viOpenDefaultRM	and	returns	its	own
session	to	identify	the	resource	session.	The	following	shows	the	function
syntax.

viOpenDefaultRM(sesn);
viOpen(sesn,	rsrcName,	accessMode,	timeout,			vi);

The	session	returned	from	viOpenDefaultRM	must	be	used	in	the	sesn	parameter
of	the	viOpen	function.	The	viOpen	function	then	uses	that	session	and	the
resource	address	specified	in	the	rsrcName	parameter	to	open	a	resource	session.
The	vi	parameter	in	viOpen	returns	a	session	identifier	that	can	be	used	with
other	VISA	functions.

Your	program	may	have	several	sessions	open	at	the	same	time	after	creating
multiple	session	identifiers	by	calling	the	viOpen	function	multiple	times.	The
following	table	summarizes	the	parameters	in	the	previous	function	calls.

Parameter Descriptions

sesn A	session	returned	from	the	viOpenDefaultRM	function	that	identifies	the	resource	manager	session.

rsrcName A	unique	symbolic	name	of	the	resource	(resource	address).

accessMode

	

	

	

	

Specifies	the	modes	by	which	the	resource	is	to	be	accessed.	The	value	VI_EXCLUSIVE_LOCK	is	used
to	acquire	an	exclusive	lock	immediately	upon	opening	a	session.	If	a	lock	cannot	be	acquired,	the	session
is	closed	and	an	error	is	returned.	The	VI_LOAD_CONFIG	value	is	used	to	configure	attributes	specified
by	some	external	configuration	utility.	If	this	value	is	not	used,	the	session	uses	the	default	values	provided
by	this	specification.

	

Multiple	access	modes	can	be	used	simultaneously	by	specifying	a	“bit-wise	OR”	of	the	values.

timeout

	

If	the	accessMode	parameter	requires	a	lock,	this	parameter	specifies	the	absolute	time	period	(in
milliseconds)	that	the	resource	waits	to	get	unlocked	before	this	operation	returns	an	error.	Otherwise,	this
parameter	is	ignored.

vi

	
This	is	a	pointer	to	the	session	identifier	for	this	particular	resource	session.	This	pointer	will	be	used	to
identify	this	resource	session	when	using	other	VISA	functions.

Example:	Opening	a	Resource	Session

This	code	sample	shows	one	way	of	opening	resource	sessions	with	a	GPIB
multimeter	and	a	GPIB-VXI	scanner.	The	sample	first	opens	a	session	with	the
default	resource	manager.	The	example	then	uses	the	session	returned	from	the
resource	manager,	and	a	VISA	address,	to	open	a	session	with	the	GPIB	device
at	address	22.	You	can	now	identify	that	session	as	dmm	when	you	call	other
VISA	functions.

The	example	uses	the	session	returned	from	the	resource	manager,	with	another
VISA	address,	to	open	a	session	with	the	GPIB-VXI	device	at	primary	address	9
and	VXI	logical	address	(secondary	address)	24.	You	can	then	identify	this
session	as	scanner	when	calling	other	VISA	functions.	See	Addressing	a	Session
,	for	information	on	addressing	particular	devices.

ViSession	defaultRM,	dmm,	scanner;
.

viOpenDefaultRM(&defaultRM);
viOpen(defaultRM,	"GPIB0::22::INSTR",VI_NULL,			VI_NULL,&dmm);
viOpen(defaultRM,	"GPIB-VXI0::24::INSTR",			VI_NULL,
VI_NULL,&scanner);
.

viClose(scanner);
viClose(dmm);
viClose(defaultRM);

Addressing	a	Session

As	shown	in	the	previous	section,	the	rsrcName	parameter	in	the	viOpen
function	is	used	to	identify	a	specific	resource.	This	parameter	consists	of	the
VISA	interface	ID	and	the	resource	address.	The		interface	ID	is	determined
when	you	run	the	Agilent	Connection	Expert	utility.	The	interface	ID	is	usually
the	VISA	interface	type	followed	by	a	number.

The	following	table	illustrates	the	format	of	the	rsrcName	for	different	VISA
interface	types.	INSTR	is	an	optional	parameter	that	indicates	that	you	are
communicating	with	a	resource	that	is	of	type	INSTR,	meaning	instrument.	The
keywords	are:

ASRL	-	used	for	asynchronous	serial	devices.
GPIB	-	used	for	GPIB	devices	and	interfaces.
GPIB-VXI	-	used	for	GPIB-VXI	controllers.
PXI	-	used	for		modular	instruments.
TCPIP	-	used	for	LAN	and	HiSLIP	instruments.
VXI	-	used	for	VXI	instruments.
USB	-	used	for	USB	instruments.

Interface Typical	Syntax

ASRL ASRL[board][::INSTR]

GPIB GPIB[board]::primary	address[::secondary	address][::INSTR]

GPIB GPIB[board]::INTFC

GPIB-VXI GPIB-VXI[board]::VXI	logical	address[::INSTR]

GPIB-VXI GPIB-VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board][::VXI	logical	address]::BACKPLANE

PXI PXI[bus]::device[::function][::INSTR]

PXI PXI[interface]::bus-device[.function][::INSTR]

PXI PXI[interface]::CHASSISchassis::SLOTslot[::FUNCfunction][::INSTR]

PXI PXI[interface]::MEMACC

TCPIP TCPIP[board]::host	address[::LAN	device	name]::INSTR

TCPIP TCPIP[board]::host	address[::HiSLIP	device	name[,HiSLIP	port]][::INSTR]

TCPIP TCPIP[board]::host	address::port::SOCKET

USB USB[board]::manufacturer	ID::model	code::serial	number[::USB	interface	number][::INSTR]

VXI VXI[board]::VXI	logical	address[::INSTR]

VXI VXI[board]::MEMACC

VXI VXI[board][::VXI	logical	address]::BACKPLANE

The	following	table	describes	the	parameters	shown	in	the	table	above.

Parameter Description

board This	optional	parameter	is	used	if	you	have	more	than	one	interface	of	the	same
type.	The	default	value	for	board	is	0.

host	address

A	hostname	or	a	dot-delimited	IPv4	IP	address	for	TCPIP.	The	IP	address	(in	dot-
delimited	decimal	notation)	or	the	name	of	the	host	computer/gateway.	For	the
HiSLIP	and	Raw	Sockets	protocols	only,	the	host	address	can	be	an	IPv6	address
in	square	brackets,	[fe80::218:e77f]	for	example.

HiSLIP	device	name
The	assigned	name	for	the	HiSLIP	device	(the	name	must	begin	with	hislip).	Only
address	strings	specifically	requesting	a	HiSLIP	connection	via	the	HiSLIP	device
name	will	get	a	HiSLIP	connection.The	default	HiSLIP	device	name	is	hislip0.

HiSLIP	port The	port	number	to	use	for	a	HiSLIP	connection.	The	default	is	4880.

LAN	device	name
The	assigned	name	for	a	LAN	device.		Device	name	depends	on	LAN	Host
Device	(see	documentation	that	came	with	your	LAN	Host	device,	such	as
E5810A).	The	default	is	inst0.

manufacturer	ID Manufacturer’s	ID	for	a	USB	Test	&	Measurement-class	device

model	code Model	code	of	a	USB	device.

port The	port	number	to	use	for	a	TCP/IP	socket	connection.

primary	address The	primary	address	of	the	GPIB	device.

secondary	address This	optional	parameter	is	the	secondary	address	of	the	GPIB	device.	If	no
secondary	address	is	specified,	none	is	assumed.

serial	number Serial	number	of	a	USB	device.

USB	interface	number Interface	number	of	a	USB	device.

VXI	logical	address Logical	address	of	a	VXI	instrument	within	a	mainframe.

Some	examples	of	valid	VISA	addresses	follow.

Address	String Description

VXI0::1::INSTR A	VXI	device	at	logical	address	1	in	VXI	interface	VXI0.

GPIB-VXI::9::INSTR
A	VXI	device	at	logical	address	9	in	a	GPIB-VXI
controlled	VXI	system.

GPIB::1::0::INSTR A	GPIB	device	at	primary	address	1	and	secondary	address
0	in	GPIB	interface	0.

ASRL1::INSTR A	serial	device	located	on	port	1.

VXI::MEMACC Board-level	register	access	to	the	VXI	interface.

GPIB-VXI1::MEMACC Board-level	register	access	to	GPIB-VXI	interface	number
1.

GPIB2::INTFC Interface	or	raw	resource	for	GPIB	interface	2.

VXI::1::BACKPLANE Mainframe	resource	for	chassis	1	on	the	default	VXI
system,	which	is	interface	0.

GPIB-VXI2::	BACKPLANE Mainframe	resource	for	default	chassis	on	GPIB-VXI
interface	2.

PXI0::3-18::INSTR PXI	device	18	on	bus	3.

PXI0::3-18.2::INSTR Function	2	on	PXI	device	18	on	bus	3.

PXI0::21::INSTR PXI	device	21	on	bus	0.

PXI0::CHASSIS1::SLOT4::INSTR PXI	device	in	slot	4	of	chassis	1.

PXI0::MEMACC Access	to	system	controller	memory	available	to	PXI
devices.

TCPIP0::1.2.3.4::999::SOCKET Raw	TCPIP	access	to	port	999	at	the	specified	address.
TCPIP0::[fe80::1]::999::SOCKET Raw	TCPIP	using	IPv6	address

TCPIP::devicename@company.com::INSTR TCPIP	device	using	VXI-11	located	at	the	specified
address.	This	uses	the	default	LAN	Device	Name	of	inst0.

TCPIP0::[fe80::1]::hislip0::INSTR A	TCP/IP	device	using	HiSLIP	located	at	IPv6	IP	address
fe80::1.

USB::0x1234::0x5678::A22-5::INSTR

A	USB	device	with	manufacturer	ID	0x1234,	model	code
0x5678,	and	serial	number	A22-5.		This	uses	the	device's
first	available	USBTMC	interface.		This	is	usually	number
0.

Example:	Opening	a	Session

This	sample	shows	one	way	to	open	a	VISA	session	with	the	GPIB	device	at
primary	address	23.

ViSession	defaultRM,	vi;
.
.
viOpenDefaultRM(&defaultRM);
viOpen(defaultRM,	"GPIB0::23::INSTR",	VI_NULL,	VI_NULL,&vi);

.

.
viClose(vi);
viClose(defaultRM);

Closing	a	Session

You	must	use	the	viClose	function	to	close	each	session.	Closing	the	specific
resource	session	frees	all	data	structures	that	have	been	allocated	for	the	session.
If	you	close	the	default	resource	manager	session,	all	sessions	opened	using	that
resource	manager	session	will	close.

Since	system	resources	are	also	used	when	searching	for	resources	(viFindRsrc),
the	viClose	function	needs	to	be	called	to	free	up	find	lists.	See	Searching	for
Resources	for	more	information	on	closing	find	lists.

Searching	for	Resources

When	you	open	the	default	resource	manager,	you	are	opening	a	parent	session
that	knows	about	all	the	other	resources	in	the	system.	Since	the	resource
manager	session	knows	about	all	resources,	it	has	the	ability	to	search	for
specific	resources	and	open	sessions	to	these	resources.	You	can,	for	example,
search	an	interface	for	devices	and	open	a	session	with	one	of	the	devices	found.

Use	the	viFindRsrc	function	to	search	an	interface	for	device	resources.	This
function	finds	matches	and	returns	the	number	of	matches	found	and	a	handle	to
the	resources	found.	If	there	are	more	matches,	use	the	viFindNext	function	with
the	handle	returned	from	viFindRsrc	to	get	the	next	match:

viFindRsrc(sesn,	expr,	findList,	retcnt,instrDesc);
.
.
viFindNext(findList,	instrDesc);
.
.
viClose	(findList);

The	parameters	are	defined	as	follows.

Parameter Description

sesn The	resource	manager	session.

expr The	expression	that	identifies	what	to	search	(see	table	below).

findList A	handle	that	identifies	this	search.	This	handle	will	then	be	used	as	an	input	to	the	viFindNext	function
when	finding	the	next	match.

retcnt A	pointer	to	the	number	of	matches	found.

instrDesc A	pointer	to	a	string	identifying	the	location	of	the	match.	Note	that	you	must	allocate	storage	for	this
string.

The	handle	returned	from	viFindRsrc	should	be	closed	to	free	up	all	the	system
resources	associated	with	the	search.	To	close	the	find	object,	pass	the	findList	to
the	viClose	function.

Use	the	expr	parameter	of		viFindRsrc	to	specify	the	interface	to	search.	You	can
search	for	devices	on	the	specified	interface.	Use	the	following	table	to
determine	what	to	use	for	your	expr	parameter.

Interface expr	Parameter 	

GPIB GPIB[0-9]*::?*INSTR 	
VXI VXI?*INSTR 	
GPIB-VXI GPIB-VXI?*INSTR 	
GPIB	and	GPIB-VXI GPIB?*INSTR 	
All	VXI ?*VXI[0-9]*::?*INSTR 	
ASRL ASRL[0-9]*::?*INSTR 	
All ?*INSTR 	

Note:	Because	VISA	interprets	strings	as	regular	expressions,	the	string	GPIB?
*INSTR	applies	to	both	GPIB	and	GPIB-VXI	devices.

Example:	Searching	the	VXI	Interface	for	Resources

This	code	sample	searches	the	VXI	interface	for	resources.	The	number	of
matches	found	is	returned	in	nmatches,	and	matches	points	to	the	string	that
contains	the	matches	found.	The	first	call	returns	the	first	match	found,	the
second	call	returns	the	second	match	found,	etc.	VI_FIND_BUFLEN	is	defined
in	the	visa.h	declarations	file.

ViChar	buffer	[VI_FIND_BUFLEN];
ViRsrc	matches=buffer;
ViUInt32	nmatches;
ViFindList	list;
.
.
viFindRsrc(defaultRM,	"VXI?*INSTR",	&list,	&nmatches,	matches);
..
.
viFindNext(list,	matches);
.

.
viClose(list);

Sending	I/O	Commands

This	topic	contains	guidelines	for	sending	I/O	commands,	including:

Types	of	I/O
Using	Formatted	I/O
Using	Non-Formatted	I/O

Types	of	I/O

Once	you	have	established	a	communications	session	with	a	device,	you	can
start	communicating	with	that	device	using	VISA's	I/O	routines.	VISA	provides
both	formatted	and	non-formatted	I/O	routines.

Formatted	I/O	converts	mixed	types	of	data	under	the	control	of	a
format	string.	The	data	is	buffered,	thus	optimizing	interface	traffic.
Non-formatted	I/O	sends	or	receives	raw	data	to	or	from	a	device.
With	non-formatted	I/O,	no	format	or	conversion	of	the	data	is
performed.	Thus,	if	formatted	data	is	required,	it	must	be	done	by	the
user.

You	can	choose	between	VISA's	formatted	and	non-formatted	I/O	routines.
However,	you	should	not	mix	formatted	I/O	and	non-formatted	I/O	in	the	same
session.	See	the	following	sections	for	descriptions	and	code	examples	using
formatted	I/O	and	non-formatted	I/O	in	VISA.

The	VISA	formatted	I/O	mechanism	is	similar	to	the	C	stdio	mechanism.	The
VISA	formatted	I/O	functions	are	viPrintf,	viQueryf,	and	viScanf.	Two	non-
buffered	and	non-formatted	I/O	functions,	viRead	and	viWrite,	synchronously
transfer	data.	Two	additional	functions,	viReadAsync	and	viWriteAsync,
asynchronously	transfer	data.	These	are	raw	I/O	functions	and	do	not	intermix
with	the	formatted	I/O	functions.	See	Using	Non-Formatted	I/O	for	details.

Using	Formatted	I/O

As	noted,	the	VISA	formatted	I/O	functions	are	viPrintf,	viQueryf,	and	viScanf.

viPrintf	formats	data	according	to	the	format	string	(writeFmt)	and	sends	the
data	to	a	device.		viPrintf	sends	separate	arg	parameters,	while	the	viVPrintf
function	sends	a	list	of	parameters	in	params:

viPrintf(vi,	writeFmt[,	arg1][,	arg2][,	...]);
viVPrintf(vi,	writeFmt,	params);

viScanf	receives	and	converts	data	from	a	device	according	to	the	format	string
(readFmt).	The	viScanf	function	receives	separate	arg	parameters,	while	the
viVScanf	function	receives	a	list	of	parameters	in	params:

viScanf(vi,	readFmt[,	arg1][,	arg2][,	...]);
viVScanf(vi,	readFmt,	params);

viQueryf	formats	and	sends	data	to	a	device	and	then	immediately	receives	and
converts	the	response	data.	Hence,	viQueryf		is	a	combination	of	both	viPrintf
and	viScanf	functions.	Similarly,		viVQueryf		is	a	combination	of		viVPrintf	and
viVScanf.		viQueryf	sends	and	receives	separate	arg	parameters,	while	the
viVQueryf	function	sends	and	receives	a	list	of	parameters	in	params:

viQueryf(vi,	writeFmt,	readFmt[,	arg1]	[,	arg2][,	...]);
viVQueryf(vi,	writeFmt,	readFmt,	params);

Formatted	I/O	Conversion

Formatted	I/O	functions	convert	data	under	the	control	of	the	format	specifier.
The	format	specifier	consists	of	a	%	(percent)	symbol,	optional	modifier,	and	a
format	code.	Both	readFmt	and	writeFmt	have	the	form:

%[modifier]formatCode

Example:	Receiving	Data	From	a	Session

The	following	example	uses	viScanf	to	receive	data	from	the	session	specified

by	the	vi	parameter	and	converts	the	data	to	a	string.

char	data[180];
viScanf(vi,	"%t",	data);

Formatted	I/O	Buffers

The	VISA	software	maintains	both	a	read	and	write	buffer	for	formatted	I/O
operations.	Occasionally,	you	may	want	to	control	the	actions	of	these	buffers.
You	can	modify	the	size	of	the	buffer	using	the	viSetBuf	function.	See	viSetBuf
for	more	information	on	this	function.

The	write	buffer	is	maintained	by	the	viPrintf	or	viQueryf	(writeFmt)	functions.
The	buffer	queues	characters	to	send	to	the	device	so	that	they	are	sent	in	large
blocks,	thus	increasing	performance.	The	write	buffer	automatically	flushes
when	it	sends	a	new	line	character	from	the	format	string.	It	may	occasionally	be
flushed	at	other	non-deterministic	times,	such	as	when	the	buffer	fills.

When	the	write	buffer	flushes,	it	sends	its	contents	to	the	device.	If	you	set	the
VI_ATTR_WR_BUF_OPER_MODE	attribute	to	VI_FLUSH_ON_ACCESS,
the	write	buffer	will	also	be	flushed	every	time	a	viPrintf	or	viQueryf	operation
completes.	See	VISA	Attributes	for	information	on	setting	VISA	attributes.

The	read	buffer	is	maintained	by	the	viScanf	and	viQueryf	(readFmt)	functions.
It	queues	the	data	received	from	a	device	until	it	is	needed	by	the	format	string.
Flushing	the	read	buffer	destroys	the	data	in	the	buffer	and	guarantees	that	the
next	call	to	viScanf	or	viQueryf	reads	data	directly	from	the	device	rather	than
data	that	was	previously	queued.

If	you	set	the	VI_ATTR_RD_BUF_OPER_MODE	attribute	to
VI_FLUSH_ON_ACCESS,	the	read	buffer	will	be	flushed	every	time	a	viScanf
or	viQueryf	operation	completes.	See	VISA	Attributes	for	information	on	setting
VISA	attributes.

You	can	manually	flush	the	read	and	write	buffers	using	the	viFlush	function.
Flushing	the	read	buffer	also	includes	reading	all	pending	response	data	from	a
device.	If	the	device	is	still	sending	data,	the	flush	process	will	continue	to	read
data	from	the	device	until	it	receives	an	END	indicator	from	the	device.

Example:	Sending	and	Receiving	Formatted	I/O

The	following	C	sample	program	demonstrates	sending	and	receiving	formatted
I/O.	The	program	opens	a	session	with	a	GPIB	device	and	sends	a	comma
operator	to	send	a	comma-separated	list.	This	program	shows	specific	VISA
functionality	and	does	not	include	error	trapping.

The	formatio.c	sample	program	is	installed	on	your	system	in	the
ProgrammingSamples	subdirectory.

javascript:void(0);

Using	Non-Formatted	I/O

There	are	two	non-buffered,	non-formatted	I/O	functions	that	synchronously
transfer	data,	called	viRead	and	viWrite.	Also,	there	are	two	non-formatted	I/O
functions	that	asynchronously	transfer	data,	called	viReadAsync	and
viWriteAsync.	These	are	raw	I/O	functions	and	do	not	intermix	with	the
formatted	I/O	functions.

Non-Formatted	I/O	Functions

The	non-formatted	I/O	functions	follow.	For	more	information,	see	viRead,
viWrite,	viReadAsync,	viWriteAsync,	or	viTerminate.

viRead.	The	viRead	function	synchronously	reads	raw	data	from	the	session
specified	by	the	vi	parameter	and	stores	the	results	in	the	location	where	buf	is
pointing.	Only	one	synchronous	read	operation	can	occur	at	any	one	time.

viRead(vi,	buf,	count,	retCount);

viWrite.	The	viWrite	function	synchronously	sends	the	data	pointed	to	by	buf	to
the	device	specified	by	vi.	Only	one	synchronous	write	operation	can	occur	at
any	one	time.

viWrite(vi,	buf,	count,	retCount);

Example:	Using	Non-Formatted	I/O	Functions

The	nonfmtio.c	sample	program	illustrates	using	non-formatted	I/O	functions	to
communicate	with	a	GPIB	device.	It	is	intended	to	show	specific	VISA
functionality	and	does	not	include	error	trapping.	Error	trapping,	however,	is
good	programming	practice	and	is	recommended	in	your	VISA	applications.	See
Trapping	Errors	for	more	information.

javascript:void(0);

/*formatio.c
		This	example	program	makes	a	multimeter	measurement	with	a	comma
		separated	list	passed	with	formatted	I/O	and	prints	the	results.
		Note	that	you	must	change	the	device	address.	*/
	
#include	<visa.h>
#include	<stdio.h>
	
void	main	()	{
	
		ViSession	defaultRM,	vi;
		double	res;
		double	list	[2]	=	{1,0.001};
	
		/*	Open	session	to	GPIB	device	at	address	22	*/
		viOpenDefaultRM	(&defaultRM);
		viOpen	(defaultRM,	"GPIB0::22::INSTR",	VI_NULL,VI_NULL,	&vi);
	
		/*	Initialize	device	*/
		viPrintf	(vi,	"*RST\n");
	
		/*	Set	up	device	and	send	comma	separated	list	*/
		viPrintf	(vi,	"CALC:DBM:REF	50\n");
		viPrintf	(vi,	"MEAS:VOLT:AC?	%,2f\n",	list);
	
		/*	Read	results	*/
		viScanf	(vi,	"%lf",	&res);
	
		/*	Print	results	*/
		printf	("Mesurement	Results:	%lf\n",	res);
	
		/*	Close	session	*/
		viClose	(vi);
		viClose	(defaultRM);
}
	

/*nonfmtio.c
		This	example	program	measures	the	AC	voltage	on	a	multimeter	and
		prints	the	results.	Note	that	you	must	change	the	device	address.	*/
	
#include	<visa.h>
#include	<stdio.h>
	
void	main	()	{
	
		ViSession	defaultRM,	vi;
		char	strres	[20];
		unsigned	long	actual;
	
		/*	Open	session	to	GPIB	device	at	address	22	*/
		viOpenDefaultRM	(&defaultRM);
		viOpen	(defaultRM,	"GPIB0::22::INSTR",	VI_NULL,VI_NULL,	&vi);
	
		/*	Initialize	device	*/
		viWrite	(vi,	(ViBuf)"*RST\n",	5,	&actual);
	
		/*	Set	up	device	and	take	measurement	*/
		viWrite	(vi,	(ViBuf)"CALC:DBM:REF	50\n",	16,	&actual);
		viWrite	(vi,	(ViBuf)"MEAS:VOLT:AC?	1,	0.001\n",	23,	&actual);
	
		/*	Read	results	*/
		viRead	(vi,	(ViBuf)strres,	20,	&actual);
	
		/*	NULL	terminate	the	string	*/
		strres	[actual]=0;
	
		/*	Print	results	*/
		printf	("Mesurement	Results:	%s\n",	strres);
	
		/*	Close	session	*/
		viClose	(vi);
		viClose	(defaultRM);

}
	

Using	Events	and	Handlers

This	section	describes	how	to	uses	events	and	handlers,	including:

Events	and	Attributes
Using	the	Callback	Method
Using	the	Queuing	Method

Events	and	Attributes

Events	are	special	occurrences	that	require	attention	from	your	application.
Event	types	include	Service	Requests	(SRQs),	interrupts,	and	hardware	triggers.
Events	will	not	be	delivered	unless	the	appropriate	events	are	enabled.

Note:	VISA	cannot	call	back	to	a	Visual	Basic	function.	Thus,	you	can	only	use
the	queuing	mechanism	in	viEnableEvent.	There	is	no	way	to	install	a	VISA
event	handler	in	Visual	Basic.

Event	Notification

There	are	two	ways	you	can	receive	notification	that	an	event	has	occurred:

Install	an	event	handler	with	viInstallHandler,	and	enable	one	or
several	events	with	viEnableEvent.	If	the	event	was	enabled	with	a
handler,	the	specified	event	handler	will	be	called	when	the	specified
event	occurs.	This	is	called	a	callback.

Note:	VISA	cannot	call	back	to	a	Visual	Basic	function.	This	means	that
you	can	only	use	the	VI_QUEUE	mechanism	in	viEnableEvent.	There	is	no
way	to	install	a	VISA	event	handler	in	Visual	Basic.

Enable	one	or	several	events	with	viEnableEvent	and	call	the
viWaitOnEvent	function.	The	viWaitOnEvent	function	will	suspend
the	program	execution	until	the	specified	event	occurs	or	the
specified	timeout	period	is	reached.	This	is	called	queuing.

The	queuing	and	callback	mechanisms	are	suitable	for	different	programming
styles.	The	queuing	mechanism	is	generally	useful	for	non-critical	events	that	do
not	need	immediate	servicing.	The	callback	mechanism	is	useful	when
immediate	responses	are	needed.	These	mechanisms	work	independently	of	each
other,	so	both	can	be	enabled	at	the	same	time.	By	default,	a	session	is	not
enabled	to	receive	any	events	by	either	mechanism.

The	viEnableEvent	operation	can	be	used	to	enable	a	session	to	respond	to	a
specified	event	type	using	either	the	queuing	mechanism,	the	callback
mechanism,	or	both.	Similarly,	the	viDisableEvent	operation	can	be	used	to
disable	one	or	both	mechanisms.	Because	the	two	methods	work	independently
of	each	other,	one	can	be	enabled	or	disabled	regardless	of	the	current	state	of
the	other.

Events	that	can	be	Enabled

Once	the	application	has	received	an	event,	information	about	that	event	can	be
obtained	by	using	the	viGetAttribute	function	on	that	particular	event	context.
Use	the	VISA	viReadSTB	function	to	read	the	status	byte	of	the	service	request.

The	events	that	are	implemented	for	Agilent	VISA	for	each	resource	class	are:

Instrument	Control	(INSTR)	Resource	Events
Memory	Access	(MEMACC)	Resource	Event
GPIB	Bus	Interface	(INTFC)	Resource	Events
TCPIP	Socket	(SOCKET)	Resource	Event

Note:	Some	resource	classes/events,	such	as	the	SERVANT	class,	are	not
implemented	by	Agilent	VISA	and	are	not	described	in	this	help.

Example:	Reading	Event	Attributes

Once	you	have	decided	which	attribute	to	check,	you	can	read	the	attribute	using
the	viGetAttribute	function.	The	following	example	shows	one	way	you	could
check	which	trigger	line	fired	when	the	VI_EVENT_TRIG	event	was	delivered.

Note	that	the	context	parameter	is	either	the	event	context	passed	to	your	event
handler,	or	the	outcontext	specified	when	doing	a	wait	on	event.	See	VISA
Attributes	for	more	information	on	reading	attribute	states.

ViInt16	state;
.
.
viGetAttribute(context,	VI_ATTR_RECV_TRIG_ID,	&state)

See	Also

Using	the	Callback	Method
Using	the	Queuing	Method

Instrument	Control	(INSTR)	Resource	Events

In	the	following	table,	AP	=	Access	Privilege,	RO	-	Read	Only,	and	RW	=
Read/Write.

VI_EVENT_SERVICE_REQUEST

Notification	that	a	service	request	was	received	from	the	device.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO ViEventType VI_EVENT_SERVICE_REQ

	 	 	 	 	

VI_EVENT_VXI_SIGP

Notification	that	a	VXIbus	signal	or	VXIbus	interrupt	was	received	from	the	device.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO ViEventType VI_EVENT_VXI_SIGP

VI_ATTR_SIGP_STATUS_ID
The	16-bit	Status/ID	value	retrieved
during	the	IACK	cycle	or	from	the
Signal	register.

RO ViUInt16

0	to	FFFFh

	

	 	 	 	 	

VI_EVENT_TRIG

Notification	that	a	trigger	interrupt	was	received	from	the	device.	For	VISA,	the	only	triggers	that	can	be	sensed	are	VXI	hardware
triggers	on	the	assertion	edge	(SYNC	and	ON	trigger	protocols	only).

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID
The	identifier	of	the	triggering
mechanism	on	which	the	specified RO ViInt16

VI_TRIG_TTL0	to
VI_TRIG_TTL7;
VI_TRIG_ECL0	to

trigger	event	was	received. VI_TRIG_ECL1*

*	Agilent	VISA	can	also	return	VI_TRIG_PANEL_IN	(exception	to	the	VISA	Specification).

	

VI_EVENT_IO_COMPLETION

Notification	that	an	asynchronous	operation	has	completed.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS Return	code	of	the	asynchronous	I/O
operation	that	has	completed. RO ViStatus N/A

VI_ATTR_JOB_ID Job	ID	of	the	asynchronous	operation
that	has	completed. RO ViJobId N/A

VI_ATTR_BUFFER Address	of	a	buffer	that	was	used	in
an	asynchronous	operation. RO ViBuf N/A

VI_ATTR_RET_COUNT Actual	number	of	elements	that	were
asynchronously	transferred. RO ViUInt32 0	to	FFFFFFFFh

VI_ATTR_OPER_NAME Name	of	the	operation	generating	the
event. RO ViString N/A

VI_ATTR_RET_COUNT_32 Actual	number	of	elements	that	were
asynchronously	transferred. RO ViUInt32 0	to	FFFFFFFFh

VI_ATTR_RET_COUNT_64* Actual	number	of	elements	that	were
asynchronously	transferred. RO ViUInt64 0	to	FFFFFFFFFFFFFFFF

*Defined	only	for	frameworks	that	are	64-bit	native. 	 	 	

VI_EVENT_USB_INTR

Notification	that	a	vendor-specific	USB	interrupt	was	received	from	the	device.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO
ViEventType

	
VI_EVENT_USB_INTR

VI_ATTR_USB_RECV_INTR_SIZE

	

Specifies	the	size	of	the	data	that	was
received	from	the	USB	interrupt-IN
pipe.	This	value	will	never	be	larger
than	the	sessions	value	of	VI_ATTR_
USB_MAX_INTR_SIZE.

RO ViUInt16 0	to	FFFFh

VI_ATTR_USB_RECV_INTR_DATA

Specifies	the	actual	data	that	was
received	from	the	USB	interrupt-IN
pipe.	Querying	this	attribute	copies
the	contents	of	the	data	to	the	users
buffer.	The	users	buffer	must	be
sufficiently	large	enough	to	hold	all
of	the	data.

RO ViBuf N/A

VI_ATTR_STATUS

Specifies	the	status	of	the	read
operation	from	the	USB	interrupt-IN
pipe.	If	the	device	sent	more	data
than	the	user	specified	in
VI_ATTR_USB_MAX_INTR_SIZE,
then	this	attribute	value	will	contain
an	error	code.

RO ViStatus N/A

VI_EVENT_PXI_INTR

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE Notification	that	a	PCI	Interrupt	was
received	from	the	device. RO ViEventType VI_EVENT_PXI_INTR

is	text	and	replace	it	with	your	own	content.

Memory	Access	(MEMACC)	Resource	Event

In	the	following	table,	AP	=	Access	Privilege,	RO	-	Read	Only,	and	RW	=
Read/Write.

VI_EVENT_IO_COMPLETION

Notification	that	an	asynchronous	operation	has	completed.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event. RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS Return	code	of	the	asynchronous
I/O	operation	that	has	completed. RO ViStatus N/A

VI_ATTR_JOB_ID Job	ID	of	the	asynchronous
operation	that	has	completed. RO ViJobId N/A

VI_ATTR_BUFFER Address	of	a	buffer	that	was	used
in	an	asynchronous	operation. RO ViBuf N/A

VI_ATTR_RET_COUNT Actual	number	of	elements	that
were	asynchronously	transferred. RO ViUInt32 0	to	FFFFFFFFh

VI_ATTR_OPER_NAME Name	of	the	operation	generating
the	event. RO ViString N/A

GPIB	Bus	Interface	(INTFC)	Resource	Events

In	the	following	table,	AP	=	Access	Privilege,	RO	-	Read	Only,	and	RW	=
Read/Write.

VI_EVENT_GPIB_CIC

Notification	that	the	GPIB	controller	has	gained	or	lost	CIC	(controller	in	charge)	status.

Event	Attribute Description AP Data	Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_GPIB_CIC

VI_ATTR_GPIB_RECV_
CIC_STATE

Controller	has
become
controller-in-
charge.

RO ViBoolean
VI_TRUE

VI_FALSE

	

VI_EVENT_GPIB_TALK

Notification	that	the	GPIB	controller	has	been	addressed	to	talk.

Event	Attribute Description AP Data	Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_GPIB_TALK

	 	 	 	 	

VI_EVENT_GPIB_LISTEN

Notification	that	the	GPIB	controller	has	been	addressed	to	listen.

Event	Attribute Description AP Data	Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_GPIB_LISTEN

	

VI_EVENT_CLEAR

Notification	that	the	GPIB	controller	has	been	sent	a	device	clear	message.

Event	Attribute Description AP Data	Type Range

VI_ATTR_EVENT_TYPE Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_CLEAR

	

VI_EVENT_TRIGGER

Notification	that	a	trigger	interrupt	was	received	from	the	interface.

Event	Attribute Description AP Data	Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID

The	identifier	of
the	triggering
mechanism	on
which	the
specified	trigger
event	was
received.

RO ViInt16 VI_TRIG_SW

	 	 	 	 	

VI_EVENT_IO_COMPLETION

Notification	that	an	asynchronous	operation	has	completed.

Event	Attribute Description AP Data	Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS

Return	code	of
the
asynchronous
I/O	operation
that	has
completed.

RO ViStatus N/A

VI_ATTR_JOB_ID

Job	ID	of	the
asynchronous
operation	that
has	completed.

RO ViJobId N/A

VI_ATTR_BUFFER

Address	of
buffer	used	in	an RO ViBuf N/A

asynchronous
operation.

VI_ATTR_RET_COUNT

Actual	number
of	elements	that
were
asynchronously
transferred.

RO ViUInt32 0	to	FFFFFFFFh

VI_ATTR_OPER_NAME

The	name	of	the
operation
generating	the
event.

RO ViString N/A

VXI	Mainframe	Backplane	(BACKPLANE)	Resource	Events	

VI_EVENT_TRIG

Notification	that	a	trigger	interrupt	was	received	from	the	backplane.	For	VISA,	the	only	triggers	that	can	
be	sensed	are	VXI	hardware	triggers	on	the	assertion	edge	(SYNC	and	ON	trigger	protocols	only).

Event	Attribute Description AP Data	Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID

The	identifier	of	the
triggering
mechanism	on
which	the	specified
trigger	event	was
received.

RO ViInt16

VI_TRIG_TTL0	to
VI_TRIG_TTL7;
VI_TRIG_ECL0	to
VI_TRIG_ECL1

	 	 	 	 	

VI_EVENT_VXI_VME_SYSFAIL

Notification	that	the	VXI/VME	SYSFAIL*	line	has	been	asserted.

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_VXI_VME_
SYSFAIL

	 	 	 	 	

VI_EVENT_VXI_VME_SYSRESET

Notification	that	the	VXI/VME	SYSRESET*	line	has	been	reset.

Event	Attributes Description AP Data	Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_VXI_VME_
SYSRESET

TCPIP	Socket	(SOCKET)	Resource	Event

In	the	following	table,	AP	=	Access	Privilege,	RO	-	Read	Only,	and	RW	=
Read/Write.

VI_EVENT_IO_COMPLETION

Notification	that	an	asynchronous	operation	has	completed.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of
the	event. RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS
Return	code	of	the
asynchronous	I/O	operation
that	has	completed.

RO ViStatus N/A

VI_ATTR_JOB_ID
Job	ID	of	the	asynchronous
operation	that	has
completed.

RO ViJobId N/A

VI_ATTR_BUFFER
Address	of	a	buffer	that
was	used	in	an
asynchronous	operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT
Actual	number	of	elements
that	were	asynchronously
transferred.

RO ViUInt32 0	to	FFFFFFFFh

VI_ATTR_OPER_NAME Name	of	the	operation
generating	the	event. RO ViString N/A

Using	the	Callback	Method

The	callback	method	of	event	notification	is	used	when	an	immediate	response
to	an	event	is	required.	To	use	the	callback	method	for	receiving	notification	that
an	event	has	occurred,	you	must	do	the	following.

Install	an	event	handler	with	the	viInstallHandler	function
Enable	one	or	several	events	with	the	viEnableEvent	function

When	the	enabled	event	occurs,	the	installed	event	handler	is	called.

Example:	Using	the	Callback	Method

This	example	shows	one	way	you	can	use	the	callback	method.

ViStatus	_VI_FUNCH	my_handler	(ViSession	vi,
		ViEventType	eventType,	ViEvent	context,	ViAddr	usrHandle)	{

/*	your	event	handling	code	here	*/

return	VI_SUCCESS;

}
main(){
ViSession	vi;
ViAddr	addr=0;
.
.
viInstallHandler(vi,	VI_EVENT_SERVICE_REQ,	my_handler,	addr);
viEnableEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_HNDLR,	VI_NULL);
.
/*	your	code	here	*/
.
viDisableEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_HNDLR);
viUninstallHandler(vi,	VI_EVENT_SERVICE_REQ,	my_handler,	addr);
.
}

Installing	Handlers

VISA	allows	applications	to	install	multiple	handlers	for	an	event	type	on	the
same	session.	Multiple	handlers	can	be	installed	through	multiple	invocations	of
the	viInstallHandler	operation,	where	each	invocation	adds	to	the	previous	list	of
handlers.

If	more	than	one	handler	is	installed	for	an	event	type,	each	of	the	handlers	is
invoked	on	every	occurrence	of	the	specified	event(s).	VISA	specifies	that	the
handlers	are	invoked	in	Last	In	First	Out	(LIFO)	order.	Use	the	following
function	when	installing	an	event	handler:

viInstallHandler(vi,	eventType,	handler,	userHandle);

These	parameters	are	defined	as	follows.

Parameter Description

vi The	session	on	which	the	handler	will	be	installed.

eventType The	event	type	that	will	activate	the	handler.

handler The	name	of	the	handler	to	be	called.

userHandle A	user	value	that	uniquely	identifies	the	handler	for	the	specified	event	type.

The	userHandle	parameter	allows	you	to	assign	a	value	to	be	used	with	the
handler	on	the	specified	session.	Thus,	you	can	install	the	same	handler	for	the
same	event	type	on	several	sessions	with	different	userHandle	values.	The	same
handler	is	called	for	the	specified	event	type.

However,	the	value	passed	to	userHandle	is	different.	Therefore	the	handlers	are
uniquely	identified	by	the	combination	of	the	handler	and	the	userHandle.	This
may	be	useful	when	you	need	a	different	handling	method	depending	on	the
userHandle.

Example:	Installing	an	Event	Handler

This	example	shows	how	to	install	an	event	handler	to	call	my_handler	when	a
Service	Request	occurs.	Note	that	VI_EVENT_SERVICE_REQ	must	also	be	an

enabled	event	with	the	viEnableEvent	function	for	the	service	request	event	to	be
delivered.

viInstallHandler(vi,	VI_EVENT_SERVICE_REQ,	my_handler,	addr);

Use	the	viUninstallHandler	function	to	uninstall	a	specific	handler,	or	you	can
use	wildcards	(VI_ANY_HNDLR	in	the	handler	parameter)	to	uninstall	groups
of	handlers.	See	viUninstallHandler	for	more	details	on	this	function.

Writing	the	Handler

The	handler	installed	needs	to	be	written	by	the	programmer.	The	event	handler
typically	reads	an	associated	attribute	and	performs	some	sort	of	action.	See	the
event	handler	in	the	example	program	later	in	this	topic.

Enabling	Events

Before	an	event	can	be	delivered,	it	must	be	enabled	using	the	viEnableEvent
function.	This	function	causes	the	application	to	be	notified	when	the	enabled
event	has	occurred,	where	the	parameters	are:

viEnableEvent(vi,	eventType,	mechanism,	context);

Using	VI_QUEUE	in	the	mechanism	parameter	specifies	a	queuing	method	for
the	events	to	be	handled.	If	you	use	both	VI_QUEUE	and	one	of	the
mechanisms	listed	above,	notification	of	events	will	be	sent	to	both	locations.
See	Using	the	Queuing	Method	for	more	information.

Parameter Description

vi The	session	on	which	the	handler	will	be	installed.

eventType The	type	of	event	to	enable.

mechanism

The	mechanism	by	which	the	event	will	be	enabled.	It	can	be	enabled	in	several	different	ways.	You	can
use	VI_HNDLR	in	this	parameter	to	specify	that	the	installed	handler	will	be	called	when	the	event	occurs.
Use	VI_SUSPEND_HNDLR	in	this	parameter,	which	puts	the	events	in	a	queue	and	waits	to	call	the
installed	handlers	until	viEnableEvent	is	called	with	VI_HNDLR	specified	in	the	mechanism	parameter.
When	viEnableEvent	is	called	with	VI_HNDLR	specified,	the	handler	for	each	queued	event	will	be
called.

context Not	used	in	VISA	1.0.	Use	VI_NULL.

Example:	Enabling	a	Hardware	Trigger	Event

This	example	illustrates	enabling	a	hardware	trigger	event.

viInstallHandler(vi,	VI_EVENT_TRIG,	my_handler,&addr);
viEnableEvent(vi,	VI_EVENT_TRIG,	VI_HNDLR,	VI_NULL);

The	VI_HNDLR	mechanism	specifies	that	the	handler	installed	for
VI_EVENT_TRIG	will	be	called	when	a	hardware	trigger	occurs.

If	you	specify	VI_ALL_ENABLE_EVENTS	in	the	eventType	parameter,	all
events	that	have	previously	been	enabled	on	the	specified	session	will	be	enabled
for	the	mechanism	specified	in	this	function	call.

Use	the	viDisableEvent	function	to	stop	servicing	the	event	specified.

Example:	Trigger	Callback

This	sample	program	installs	an	event	handler	and	enables	the	trigger	event.
When	the	event	occurs,	the	installed	event	handler	is	called.	This	program	is
intended	to	show	specific	VISA	functionality	and	does	not	include	error
trapping.	Error	trapping,	however,	is	good	programming	practice	and	is
recommended	in	your	VISA	applications.	See	Trapping	Errors	for	more
information.

The	evnthdlr.c	sample	program	illustrates	installing	an	event	handler	to	be	called
when	a	trigger	interrupt	occurs	and	is	installed	on	your	system	in	the
ProgrammingSamples	subdirectory.

Example:	SRQ	Callback

This	program	installs	an	event	handler	and	enables	an	SRQ	event.	When	the
event	occurs,	the	installed	event	handler	is	called.	This	sample	program	is
intended	to	show	specific	VISA	functionality	and	does	not	include	error
trapping.	Error	trapping,	however,	is	good	programming	practice	and	is
recommended	in	your	VISA	applications.	See	Trapping	Errors	for	more
information.

The	srqhdlr.c	sample	program	illustrates	installing	an	event	handler	to	be	called
when	an	SRQ	interrupt	occurs	and	is	installed	on	your	system	in	the
ProgrammingSamples	subdirectory.	.

javascript:void(0);
javascript:void(0);

See	Also

Events	and	Attributes
Using	the	Queuing	Method

/*	evnthdlr.c
			This	example	program	illustrates	installing	an	event	handler	to
			be	called	when	a	trigger	interrupt	occurs.	Note	that	you	must
			change	the	address.	*/
	
#include	<visa.h>
#include	<stdio.h>
	
	
/*	trigger	event	handler	*/
ViStatus	_VI_FUNCH	myHdlr(ViSession	vi,	ViEventType	eventType,
																										ViEvent	ctx,	ViAddr	userHdlr){
			ViInt16	trigId;
	
			/*	make	sure	it	is	a	trigger	event	*/
			if(eventType!=VI_EVENT_TRIG){
						/*	Stray	event,	so	ignore	*/
						return	VI_SUCCESS;
			}
	
			/*	print	the	event	information	*/
			printf("Trigger	Event	Occurred!\n");
			printf("...Original	Device	Session	=	%ld\n",	vi);
	
			/*	get	the	trigger	that	fired	*/
			viGetAttribute(ctx,	VI_ATTR_RECV_TRIG_ID,	&trigId);
			printf("Trigger	that	fired:	");
			switch(trigId){
						case	VI_TRIG_TTL0:
									printf("TTL0");
									break;
						default:
									printf("<other	0x%x>",	trigId);
									break;
			}
			printf("\n");

	
			return	VI_SUCCESS;
}
	
void	main(){
			ViSession	defaultRM,vi;
	
			/*	open	session	to	VXI	device	*/
			viOpenDefaultRM(&defaultRM);
			viOpen(defaultRM,	"VXI0::24::INSTR",	VI_NULL,	VI_NULL,	&vi);
	
			/*	select	trigger	line	TTL0	*/
			viSetAttribute(vi,	VI_ATTR_TRIG_ID,	VI_TRIG_TTL0);
		
			/*	install	the	handler	and	enable	it	*/
			viInstallHandler(vi,	VI_EVENT_TRIG,	myHdlr,	(ViAddr)10);
			viEnableEvent(vi,	VI_EVENT_TRIG,	VI_HNDLR,	VI_NULL);
		
			/*	fire	trigger	line,	twice	*/
			viAssertTrigger(vi,	VI_TRIG_PROT_SYNC);
			viAssertTrigger(vi,	VI_TRIG_PROT_SYNC);
	
			/*	unenable	and	uninstall	the	handler	*/
			viDisableEvent(vi,	VI_EVENT_TRIG,	VI_HNDLR);
			viUninstallHandler(vi,	VI_EVENT_TRIG,	myHdlr,	(ViAddr)10);
	
			/*	close	the	sessions	*/
			viClose(vi);
			viClose(defaultRM);
}
	

/*	srqhdlr.c
			This	example	program	illustrates	installing	an	event	handler	to
			be	called	when	an	SRQ	interrupt	occurs.	Note	that	you	must
			change	the	address.	*/
	
#include	<visa.h>
#include	<stdio.h>
#if	defined	(_WIN32)
			#include	<windows.h>	/*	for	Sleep()	*/
			#define	YIELD			Sleep(10)
#elif	defined	(__BORLANDC__)
			#include	<windows.h>		/*	for	Yield()	*/
			#define	YIELD	Yield()
#elif	defined	(_WINDOWS)
			#include	<io.h>						/*	for	_wyield	*/
			#define	YIELD			_wyield()
#else
			#include	<unistd.h>
			#define	YIELD	sleep	(1)
#endif
	
int	srqOccurred;
	
/*	trigger	event	handler	*/
ViStatus	_VI_FUNCH	mySrqHdlr(ViSession	vi,	ViEventType	eventType,
																										ViEvent	ctx,	ViAddr	userHdlr){
	
			ViUInt16	statusByte;
		
			/*	make	sure	it	is	an	SRQ	event	*/
			if(eventType!=VI_EVENT_SERVICE_REQ){
						/*	Stray	event,	so	ignore	*/
						printf("\nStray	event	of	type	0x%lx\n",	eventType);
						return	VI_SUCCESS;
			}
	

			/*	print	the	event	information	*/
			printf("\nSRQ	Event	Occurred!\n");
			printf("...Original	Device	Session	=	%ld\n",	vi);
	
			/*	get	the	status	byte	*/
			viReadSTB(vi,	&statusByte);
			printf("...Status	byte	is	0x%x\n",	statusByte);
	
			srqOccurred	=	1;
			return	VI_SUCCESS;
}
	
void	main(){
			ViSession	defaultRM,vi;
			long						count;
	
			/*	open	session	to	message	based	VXI	device	*/
			viOpenDefaultRM(&defaultRM);
			viOpen(defaultRM,	"GPIB-VXI0::24::INSTR",	VI_NULL,	VI_NULL,	&vi);
	
			/*	Enable	command	error	events	*/
			viPrintf(vi,	"*ESE	32\n");
	
			/*	Enable	event	register	interrupts	*/
			viPrintf(vi,	"*SRE	32\n");
	
			/*	install	the	handler	and	enable	it	*/
			viInstallHandler(vi,	VI_EVENT_SERVICE_REQ,	mySrqHdlr,	(ViAddr)10);
			viEnableEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_HNDLR,	VI_NULL);
		
			srqOccurred	=	0;
		
			/*	Send	a	bogus	command	to	the	message	based	device	to	cause	an	SRQ	*/
			/*	Note:	'IDN'	causes	the	error	--	'*IDN?'	is	the	correct	syntax	*/
			viPrintf(vi,	"IDN\n");
		

			/*	Wait	a	while	for	the	SRQ	to	be	generated	and	for	the	handler	*/
			/*	to	be	called.	Print	something	while	we	wait	*/
			printf("Waiting	for	an	SRQ	to	be	generated	.");
			for	(count	=	0	;	(count	<	10)	&&	(srqOccurred	==	0)	;	count++)	{
						long	count2	=	0;
						printf(".");
						while	((count2++	<	100)	&&	(srqOccurred	==0)){
									YIELD;
						}
			}
			printf("\n");
			
			/*	disable	and	uninstall	the	handler	*/
			viDisableEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_HNDLR);
			viUninstallHandler(vi,	VI_EVENT_SERVICE_REQ,	mySrqHdlr,
(ViAddr)10);
		
			/*	Clean	up	after	ourselves	-	don't	leave	device	in	error	state	*/
			viPrintf(vi,	"*CLS\n");
		
			/*	close	the	sessions	*/
			viClose(vi);
			viClose(defaultRM);
		
			printf("End	of	program\n");
}
	

Using	the	Queuing	Method

The	queuing	method	is	generally	used	when	an	immediate	response	from	your
application	is	not	needed.	To	use	the	queuing	method	for	receiving	notification
that	an	event	has	occurred,	you	must	do	the	following:

Enable	one	or	several	events	with	the	viEnableEvent	function.
When	ready	to	query,	use	the	viWaitOnEvent	function	to	check	for
queued	events.

If	the	specified	event	has	occurred,	the	event	information	is	retrieved	and	the
program	returns	immediately.	If	the	specified	event	has	not	occurred,	the
program	suspends	execution	until	a	specified	event	occurs	or	until	the	specified
timeout	period	is	reached.

Example:	Using	the	Queuing	Method

This	example	program	shows	one	way	you	can	use	the	queuing	method.

main();
ViSession	vi;
ViEventType	eventType;
ViEvent	event;
.
.
viEnableEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_QUEUE,	VI_NULL);
.
.
viWaitOnEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_TMO_INFINITE,
&eventType,	&event);
.
.
viClose(event);
viDisableEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_QUEUE);
}

Enabling	Events

Before	an	event	can	be	delivered,	it	must	be	enabled	using	the	viEnableEvent
function:

viEnableEvent(vi,	eventType,	mechanism,	context);

These	parameters	are	defined	as	follows:

Parameter Description

vi The	session	the	handler	will	be	installed	on.

eventType The	type	of	event	to	enable.

mechanism The	mechanism	by	which	the	event	will	be	enabled.	Specify	VI_QUEUE	to	use	the	queuing	method.

context Not	used	in	VISA	1.0.	Use	VI_NULL.

When	you	use	VI_QUEUE	in	the	mechanism	parameter,	you	are	specifying	that
the	events	will	be	put	into	a	queue.	Then,	when	a	viWaitOnEvent	function	is
invoked,	the	program	execution	will	suspend	until	the	enabled	event	occurs	or
the	timeout	period	specified	is	reached.	If	the	event	has	already	occurred,	the
viWaitOnEvent	function	will	return	immediately.

Example:	Enabling	a	Hardware	Trigger	Event

This	example	illustrates	enabling	a	hardware	trigger	event.

viEnableEvent(vi,	VI_EVENT_TRIG,	VI_QUEUE,	VI_NULL);

The	VI_QUEUE	mechanism	specifies	that	when	an	event	occurs,	it	will	go	into
a	queue.	If	you	specify	VI_ALL_ENABLE_EVENTS	in	the	eventType
parameter,	all	events	that	have	previously	been	enabled	on	the	specified	session
will	be	enabled	for	the	mechanism	specified	in	this	function	call.	Use	the
viDisableEvent	function	to	stop	servicing	the	event	specified.

Wait	on	the	Event

When	using	the	viWaitOnEvent	function,	specify	the	session,	the	event	type	to
wait	for,	and	the	timeout	period	to	wait:

viWaitOnEvent(vi,	inEventType,	timeout,	outEventType,	outContext);

The	event	must	have	previously	been	enabled	with	VI_QUEUE	specified	as	the
mechanism	parameter.

Example:	Wait	on	Event	for	SRQ

This	example	shows	how	to	install	a	wait	on	event	for	service	requests.

viEnableEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_QUEUE,	VI_NULL);
viWaitOnEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_TMO_INFINITE,
&eventType,	&event);
.
.
viDisableEvent(vi,	VI_EVENT_SERVICE_REQ,	VI_QUEUE);

Every	time	a	wait	on	event	is	invoked,	an	event	context	object	is	created.
Specifying	VI_TMO_INFINITE	in	the	timeout	parameter	indicates	that	the
program	execution	will	suspend	indefinitely	until	the	event	occurs.	To	clear	the
event	queue	for	a	specified	event	type,	use	the	viDiscardEvents	function.

Example:	Trigger	Event	Queuing

The	evntqueu.c	sample	program	illustrates	enabling	an	event	queue	using
viWaitOnEvent	and	is	installed	on	your	system	in	the	ProgrammingSamples
subdirectory.	See	Example	Programs	and	Installation	Folders	for	locations	of
example	programs.	This	program	enables	the	trigger	event	in	a	queuing	mode.
When	the	viWaitOnEvent	function	is	called,	the	program	will	suspend	operation
until	the	trigger	line	is	fired	or	the	timeout	period	is	reached.	Since	the	trigger
lines	were	already	fired	and	the	events	were	put	into	a	queue,	the	function	will
return	and	print	the	trigger	line	that	fired.

This	program	is	intended	to	show	specific	VISA	functionality	and	does	not

javascript:void(0);

include	error	trapping.	Error	trapping,	however,	is	good	programming	practice
and	is	recommended	in	your	VISA	applications.	See	Trapping	Errors	for	more
information.

See	Also

Events	and	Attributes
Using	the	Callback	Method

/*	evntqueu.c
			This	example	program	illustrates	enabling	an	event	queue
			using	viWaitOnEvent.	Note	that	you	must	change	the	address.	*/
	
#include	<visa.h>
#include	<stdio.h>
	
	
void	main(){
			ViSession	defaultRM,vi;
			ViEventType	eventType;
			ViEvent	eventVi;
			ViStatus	err;
			ViInt16	trigId;
	
			/*	open	session	to	VXI	device	*/
			viOpenDefaultRM(&defaultRM);
			viOpen(defaultRM,	"VXI0::24::INSTR",	VI_NULL,	VI_NULL,	&vi);
	
			/*	select	trigger	line	TTL0	*/
			viSetAttribute(vi,	VI_ATTR_TRIG_ID,	VI_TRIG_TTL0);
		
			/*	enable	the	event	*/
			viEnableEvent(vi,	VI_EVENT_TRIG,	VI_QUEUE,	VI_NULL);
		
			/*	fire	trigger	line,	twice	*/
			viAssertTrigger(vi,	VI_TRIG_PROT_SYNC);
			viAssertTrigger(vi,	VI_TRIG_PROT_SYNC);
	
			/*	Wait	for	the	event	to	occur	*/
			err=viWaitOnEvent(vi,	VI_EVENT_TRIG,	10000,	&eventType,	&eventVi);
			if(err==VI_ERROR_TMO){
						printf("Timeout	Occurred!	Event	not	received.\n");
						return;
			}
		

			/*	print	the	event	information	*/
			printf("Trigger	Event	Occurred!\n");
			printf("...Original	Device	Session	=	%ld\n",	vi);
	
			/*	get	trigger	that	fired	*/
			viGetAttribute(eventVi,	VI_ATTR_RECV_TRIG_ID,	&trigId);
			printf("Trigger	that	fired:	");
			switch(trigId){
						case	VI_TRIG_TTL0:
									printf("TTL0");
									break;
						default:
									printf("<other	0x%x>",trigId);
									break;
			}
			printf("\n");
	
			/*	close	the	context	before	continuing	*/
			viClose(eventVi);
	
			/*	get	second	event	*/
			err=viWaitOnEvent(vi,	VI_EVENT_TRIG,	10000,	&eventType,	&eventVi);
			if(err==VI_ERROR_TMO){
						printf("Timeout	Occurred!	Event	not	received.\n");
						return;
			}
			printf("Got	second	event\n");
	
			/*	close	the	context	before	continuing	*/
			viClose(eventVi);
		
	
			/*	unenable	event	*/
			viDisableEvent(vi,	VI_EVENT_TRIG,	VI_QUEUE);
	
			/*	close	the	sessions	*/

			viClose(vi);
			viClose(defaultRM);
}
	

Trapping	Errors

This	topic	describes	how	to	trap	errors	and	handle	exception	events.

Trapping	Errors

The	example	programs	in	this	guide	show	specific	VISA	functionality	and	do	not
include	error	trapping.	Error	trapping,	however,	is	good	programming	practice
and	is	recommended	in	all	your	VISA	application	programs.	To	trap	VISA	errors
you	must	check	for	VI_SUCCESS	after	each	VISA	function	call.

If	you	want	to	ignore	WARNINGS,	you	can	test	to	see	if	err	is	less	than	(<)
VI_SUCCESS.	Since	WARNINGS	are	greater	than	VI_SUCCESS	and
ERRORS	are	less	than	VI_SUCCESS,	err_handler	would	only	be	called	when
the	function	returns	an	ERROR.	For	example:

if(err	<	VI_SUCCESS)	err_handler	(vi,	err);

Example:	Checking	for	VI_SUCCESS

This	example	illustrates	checking	for	VI_SUCCESS.	If	VI_SUCCESS	is	not
returned,	an	error	handler	(written	by	the	programmer)	is	called.	This	must	be
done	with	each	VISA	function	call.

ViStatus	err;
.
.
err=viPrintf(vi,	"*RST\n");
if	(err	<	VI_SUCCESS)	err_handler(vi,	err);
.

Example:	Printing	Error	Code

The	following	error	handler	prints	a	user-readable	string	describing	the	error
code	passed	to	the	function:

void	err_handler(ViSession	vi,	ViStatus	err){

		char	err_msg[1024]={0};
		viStatusDesc	(vi,	err,	err_msg);
		printf	("ERROR	=	%s\n",	err_msg);
		return;

}

Example:	Checking	Instrument	Errors

When	programming	instruments,	it	is	good	practice	to	check	the	instrument	to
ensure	there	are	no	instrument	errors	after	each	instrument	function.	This
example	uses	a	SCPI	command	to	check	a	specific	instrument	for	errors.

void	system_err(){

		ViStatus	err;
		char	buf[1024]={0};
		int	err_no;

		err=viPrintf(vi,	"SYSTEM:ERR?\n");
		if	(err	<	VI_SUCCESS)	err_handler	(vi,	err);

		err=viScanf	(vi,	"%d%t",	&err_no,	&buf);
		if	(err	<	VI_SUCCESS)	err_handler	(vi,	err);

		while	(err_no	>0){
				printf	("Error	Found:	%d,%s\n",	err_no,	buf);
				err=viScanf	(vi,	"%d%t",	&err_no,	&buf);
		}
		err=viFlush(vi,	VI_READ_BUF);
		if	(err	<	VI_SUCCESS)	err_handler	(vi,	err);

		err=viFlush(vi,	VI_WRITE_BUF);
		if	(err	<	VI_SUCCESS)	err_handler	(vi,	err);
}

Exception	Events

An	alternative	to	trapping	VISA	errors	by	checking	the	return	status	after	each
VISA	call	is	to	use	the	VISA	exception	event.	On	sessions	where	an	exception
event	handler	is	installed	and	VI_EVENT_EXCEPTION	is	enabled,	the
exception	event	handler	is	called	whenever	an	error	occurs	while	executing	an
operation.

Exception	Handling	Model

The	exception-handling	model	follows	the	event-handling	model	for	callbacks,
and	it	uses	the	same	operations	as	those	used	for	general	event	handling.	For
example,	an	application	calls	viInstallHandler	and	viEnableEvent	to	enable
exception	events.	The	exception	event	is	like	any	other	event	in	VISA,	except
that	the	queueing	and	suspended	handler	mechanisms	are	not	allowed.

When	an	error	occurs	for	a	session	operation,	the	exception	handler	is	executed
synchronously.	That	is,	the	operation	that	caused	the	exception	blocks	until	the
exception	handler	completes	its	execution.	The	exception	handler	is	executed	in
the	context	of	the	same	thread	that	caused	the	exception	event.

When	invoked,	the	exception	handler	can	check	the	error	condition	and	instruct
the	exception	operation	to	take	a	specific	action.	It	can	instruct	the	exception
operation	to	continue	normally	(by	returning	VI_SUCCESS)	or	to	not	invoke
any	additional	handlers	in	the	case	of	handler	nesting	(by	returning
VI_SUCCESS_NCHAIN).

As	noted,	an	exception	operation	blocks	until	the	exception	handler	execution	is
completed.	However,	an	exception	handler	sometimes	may	prefer	to	terminate
the	program	prematurely	without	returning	the	control	to	the	operation
generating	the	exception.	VISA	does	not	preclude	an	application	from	using	a
platform-specific	or	language-specific	exception	handling	mechanism	from
within	the	VISA	exception	handler.

For	example,	the	C++	try/catch	block	can	be	used	in	an	application	in
conjunction	with	the	C++	throw	mechanism	from	within	the	VISA	exception
handler.	When	using	the	C++	try/catch/throw	or	other	exception-handling

mechanisms,	the	control	will	not	return	to	the	VISA	system.	This	has	several
important	repercussions:

1.	 If	multiple	handlers	were	installed	on	the	exception	event,	the
handlers	that	were	not	invoked	prior	to	the	current	handler	will	not	be
invoked	for	the	current	exception.

2.	 The	exception	context	will	not	be	deleted	by	the	VISA	system	when	a
C++	exception	is	used.	In	this	case,	the	application	should	delete	the
exception	context	as	soon	as	the	application	has	no	more	use	for	the
context,	before	terminating	the	session.	An	application	should	use
the	viClose	operation	to	delete	the	exception	context.

3.	 Code	in	any	operation	(after	calling	an	exception	handler)	may	not
be	called	if	the	handler	does	not	return.	For	example,	local
allocations	must	be	freed	before	invoking	the	exception	handler,
rather	than	after	it.

One	situation	in	which	an	exception	event	will	not	be	generated	is	in	the	case	of
asynchronous	operations.	If	the	error	is	detected	after	the	operation	is	posted
(i.e.,	once	the	asynchronous	portion	has	begun),	the	status	is	returned	normally
via	the	I/O	completion	event.

However,	if	an	error	occurs	before	the	asynchronous	portion	begins	(i.e.,	the
error	is	returned	from	the	asynchronous	operation	itself),	then	the	exception
event	will	still	be	raised.	This	deviation	is	due	to	the	fact	that	asynchronous
operations	already	raise	an	event	when	they	complete,	and	this	I/O	completion
event	may	occur	in	the	context	of	a	separate	thread	previously	unknown	to	the
application.	In	summary,	a	single	application	event	handler	can	easily	handle
error	conditions	arising	from	both	exception	events	and	failed	asynchronous
operations.

Using	the	VI_EVENT_EXCEPTION	Event

You	can	use	the	VI_EVENT_EXCEPTION	event	as	notification	that	an	error
condition	has	occurred	during	an	operation	invocation.	The	following	table
describes	the	VI_EVENT_EXCEPTION	event	attributes.

Access Data

Attribute	Name Privilege Type Range Default

VI_ATTR_EVENT_TYPE RO Global ViEventType VI_EVENT_EXCEPTION N/A

VI_ATTR_STATUS RO Global ViStatus N/A N/A

VI_ATTR_OPER_NAME RO Global ViString N/A N/A

	

Example:	Exception	Events

/*	This	is	an	example	of	how	to	use	exception	events	to	trap	VISA	errors.	An
exception	event	handler	must	be	installed	and	exception	events	enabled	on	all
sessions	where	the	exception	handler	is	used.*/

#include	<stdio.h>
#include	<visa.h>
ViStatus	__stdcall	myExceptionHandler	(
		ViSession	vi,
		ViEventType	eventType,
		ViEvent	context,
		ViAddr	usrHandle
)	{
		ViStatus	exceptionErrNbr;	char					nameBuffer[256];
		ViString	functionName	=	nameBuffer;	char					errStrBuffer[256];
		/*	Get	the	error	value	from	the	exception	context	*/
		viGetAttribute(context,	VI_ATTR_STATUS,	&exceptionErrNbr);
/*	Get	the	function	name	from	the	exception	context	*/
			viGetAttribute(context,	VI_ATTR_OPER_NAME,	functionName);
errStrBuffer[0]	=	0;
		viStatusDesc(vi,	exceptionErrNbr,	errStrBuffer);

		printf("ERROR:	Exception	Handler	reports\n"
				"(%s)\n","VISA	function	'%s'	failed	with
				error	0x%lx\n",	"functionName,
				exceptionErrNbr,	errStrBuffer);
		return	VI_SUCCESS;
}

void	main(){
		ViStatus		status;
		ViSession	drm;
		ViSession	vi;
		ViAddr					myUserHandle	=	0;

		status	=	viOpenDefaultRM(&drm);
		if	(status	<	VI_SUCCESS)	{
				printf("ERROR:	viOpenDefaultRM	failed	with
					error	=	0x%lx\n",	status);
				return;
		}

/*	Install	the	exception	handler	and	enable	events	for	it	*/
			status	=	viInstallHandler(drm,
					VI_EVENT_EXCEPTION,	myExceptionHandler,
					myUserHandle);
			if	(status	<	VI_SUCCESS)	
{
						printf("ERROR:	viInstallHandler	failed
								with	error	0x%lx\n",	status);
			}

status	=	viEnableEvent(drm,	VI_EVENT_EXCEPTION,
		VI_HNDLR,	VI_NULL);
if	(status	<	VI_SUCCESS)	{
		printf("ERROR:	viEnableEvent	failed	with
				error	0x%lx\n",	status);
			}

/*	Generate	an	error	to	demonstrate	that	the
			handler	will	be	called	*/
			status	=	viOpen(drm,	"badVisaName",	NULL,
			NULL,	&vi);
			if	(status	<	VI_SUCCESS)	{

				printf("ERROR:	viOpen	failed	with	error
						0x%lx\n"

						"Exception	Handler	should	have	been
						called\n"
						"before	this	message	was	printed.\n",status
);
			}
}

Logging	Error	Messages

When	developing	or	debugging	your	VISA	application,	you	may	want	to	view
internal	VISA	messages	while	your	application	is	running.	You	can	do	this	by
using	the	Event	Viewer	utility	or	the	Debug	Window.	There	are	three	choices	for
VISA	logging:

Off	(default)	for	best	performance
Event	Viewer
Debug	Window

Using	the	Event	Viewer

The	Event	Viewer	utility	provides	a	way	to	view	internal	VISA	error	messages
during	application	execution.	Some	of	these	internal	messages	do	not	represent
programming	errors;	they	indicate	events	which	are	being	handled	internally	by
VISA.	The	process	for	using	the	Event	Viewer	is:

Enable	VISA	logging	by	clicking	the	Agilent	IO	Control	 	in	the
taskbar	and	then	clicking	
Agilent	VISA	Options	>	VISA	Logging	>	Event	Viewer.
Run	your	VISA	program.
View	VISA	error	messages	by	running	the	Event	Viewer.	From	the
Agilent	IO	Control	 ,	click	Event	Viewer.	VISA	error	messages	will
appear	in	the	application	log	of	the	Event	Viewer	utility.

Using	the	Debug	Window

When	VISA	logging	is	directed	to	the	Debug	Window,	VISA	writes	logging
messages	using	the	Win32	API	call	OutputDebugString().	The	most	common
use	for	this	feature	is	when	debugging	your	VISA	program	using	an	application
such	as	Microsoft	Visual	Studio.	In	this	case,	VISA	messages	will	appear	in	the
Visual	Studio	output	window.	The	process	for	using	the	Debug	Window	is:

1.	 Enable	VISA	logging	by	clicking	the	Agilent	IO	Control	 	in	the
taskbar	and	then	clicking	
Agilent	VISA	Options	>	VISA	Logging	>	Debug	Window.

2.	 Run	your	VISA	program	from	Microsoft	Visual	Studio	(or	equivalent
application).

3.	 View	error	messages	in	the	Visual	Studio	(or	equivalent)	output
window.

Using	Locks

In	VISA,	applications	can	open	multiple	sessions	to	a	VISA	resource
simultaneously.	Applications	can,	therefore,	access	a	VISA	resource
concurrently	through	different	sessions.	However,	in	certain	cases,	applications
accessing	a	VISA	resource	may	want	to	restrict	other	applications	from
accessing	that	resource.

Lock	Functions

For	example,	when	an	application	needs	to	perform	successive	write	operations
on	a	resource,	the	application	may	require	that,	during	the	sequence	of	writes,	no
other	operation	can	be	invoked	through	any	other	session	to	that	resource.	For
such	circumstances,	VISA	defines	a	locking	mechanism	that	restricts	access	to
resources.

The	VISA	locking	mechanism	enforces	arbitration	of	accesses	to	VISA	resources
on	a	per-session	basis.	If	a	session	locks	a	resource,	operations	invoked	on	the
resource	through	other	sessions	either	are	serviced	or	are	returned	with	an	error,
depending	on	the	operation	and	the	type	of	lock.

If	a	VISA	resource	is	not	locked	by	any	of	its	sessions,	all	sessions	have	full
privilege	to	invoke	any	operation	and	update	any	global	attributes.	Sessions	are
not	required	to	have	locks	to	invoke	operations	or	update	global	attributes.
However,	if	some	other	session	has	already	locked	the	resource,	attempts	to
update	global	attributes	or	invoke	certain	operations	will	fail.

viLock/viUnlock	Functions

The	VISA	viLock	function	is	used	to	acquire	a	lock	on	a	resource.

viLock(vi,	lockType,	timeout,	requestedKey,	accessKey);

The	VI_ATTR_RSRC_LOCK_STATE	attribute	specifies	the	current	locking
state	of	the	resource	on	the	given	session,	which	can	be	either	VI_NO_LOCK,
VI_EXCLUSIVE_LOCK,	or	VI_SHARED_LOCK.

The	VISA	viUnlock	function	is	then	used	to	release	the	lock	on	a	resource.	If	a
resource	is	locked	and	the	current	session	does	not	have	the	lock,	the	error
VI_ERROR_RSRC_LOCKED	is	returned.

VISA	Lock	Types

VISA	defines	two	different	types	of	locks:	Exclusive	Lock	and	Shared	Lock.

Exclusive	Lock	-	A	session	can	lock	a	VISA	resource	using	the	lock	type
VI_EXCLUSIVE_LOCK	to	get	exclusive	access	privileges	to	the	resource.
This	exclusive	lock	type	excludes	access	to	the	resource	from	all	other
sessions.

If	a	session	has	an	exclusive	lock,	other	sessions	cannot	modify	global
attributes	or	invoke	operations	on	the	resource.	However,	the	other	sessions
can	still	get	attributes.

Shared	Lock	-	A	session	can	share	a	lock	on	a	VISA	resource	with	other
sessions	by	using	the	lock	type	VI_SHARED_LOCK.	Shared	locks	in
VISA	are	similar	to	exclusive	locks	in	terms	of	access	privileges,	but	can
still	be	shared	between	multiple	sessions.

If	a	session	has	a	shared	lock,	other	sessions	that	share	the	lock	can	also
modify	global	attributes	and	invoke	operations	on	the	resource	(of	course,
unless	some	other	session	has	a	previous	exclusive	lock	on	that	resource).
A	session	that	does	not	share	the	lock	will	lack	these	capabilities.

Locking	a	resource	restricts	access	from	other	sessions,	and	in	the	case	where	an
exclusive	lock	is	acquired,	ensures	that	operations	do	not	fail	because	other
sessions	have	acquired	a	lock	on	that	resource.	Thus,	locking	a	resource	prevents
other,	subsequent	sessions	from	acquiring	an	exclusive	lock	on	that	resource.
Yet,	when	multiple	sessions	have	acquired	a	shared	lock,	VISA	allows	one	of	the
sessions	to	acquire	an	exclusive	lock	along	with	the	shared	lock	it	is	holding.

Also,	VISA	supports	nested	locking.	That	is,	a	session	can	lock	the	same	VISA
resource	multiple	times	(for	the	same	lock	type)	via	multiple	invocations	of	the
viLock	function.	In	such	a	case,	unlocking	the	resource	requires	an	equal	number
of	invocations	of	the	viUnlock	function.	Nested	locking	is	explained	in	detail
later	in	this	topic.

Some	VISA	operations	may	be	permitted	even	when	there	is	an	exclusive	lock

on	a	resource,	or	some	global	attributes	may	not	be	read	when	there	is	any	kind
of	lock	on	the	resource.	These	exceptions,	when	applicable,	are	mentioned	in	the
descriptions	of	the	individual	VISA	functions	and	attributes.

Example:	Exclusive	Lock

The	lockexcl.c	sample	program	shows	a	session	gaining	an	exclusive	lock	to
perform	the	viPrintf	and	viScanf	VISA	operations	on	a	GPIB	device.	It	then
releases	the	lock	via	the	viUnlock	function.

Example:	Shared	Lock

The	lockshr.c	sample	program	shows	a	session	gaining	a	shared	lock	with	the
accessKey	called	lockkey.	Other	sessions	can	now	use	this	accessKey	in	the
requestedKey	parameter	of	the	viLock	function	to	share	access	on	the	locked
resource.	This	example	then	shows	the	original	session	acquiring	an	exclusive
lock	while	maintaining	its	shared	lock.

When	the	session	holding	the	exclusive	lock	unlocks	the	resource	via	the
viUnlock	function,	all	the	sessions	sharing	the	lock	again	have	all	the	access
privileges	associated	with	the	shared	lock.

javascript:void(0);
javascript:void(0);

/*	lockexcl.c
		This	example	program	queries	a	GPIB	device	for	an	identification	string
		and	prints	the	results.	Note	that	you	must	change	the	address.	*/
	
#include	<visa.h>
#include	<stdio.h>
	
void	main	()	{
	
		ViSession	defaultRM,	vi;
		char	buf	[256]	=	{0};
	
	
		/*	Open	session	to	GPIB	device	at	address	22	*/
		viOpenDefaultRM	(&defaultRM);
		viOpen	(defaultRM,	"GPIB0::22::INSTR",	VI_NULL,VI_NULL,	&vi);
	
		/*	Initialize	device	*/
		viPrintf	(vi,	"*RST\n");
	
		/*	Make	sure	no	other	process	or	thread	does	anything	to	this	resource
					between	the	viPrintf()	and	the	viScanf()	calls	*/
		viLock	(vi,	VI_EXCLUSIVE_LOCK,	2000,	VI_NULL,	VI_NULL);
	
		/*	Send	an	*IDN?	string	to	the	device	*/
		viPrintf	(vi,	"*IDN?\n");
	
		/*	Read	results	*/
		viScanf	(vi,	"%t",	&buf);
	
		/*	unlock	this	session	so	other	processes	and	threads	can	use	it	*/
		viUnlock	(vi);
	
		/*	Print	results	*/
		printf	("Instrument	identification	string:	%s\n",	buf);
	

		/*	Close	session	*/
		viClose	(vi);
		viClose	(defaultRM);
}
	

/*	lockshr.c
		This	example	program	queries	a	GPIB	device	for	an	identification	string
		and	prints	the	results.	Note	that	you	must	change	the	address.	*/
	
#include	<visa.h>
#include	<stdio.h>
	
void	main	()	{
	
		ViSession	defaultRM,	vi;
		char	buf	[256]	=	{0};
		char	lockkey	[256]	=	{0};
	
	
		/*	Open	session	to	GPIB	device	at	address	22	*/
		viOpenDefaultRM	(&defaultRM);
		viOpen	(defaultRM,	"GPIB0::22::INSTR",	VI_NULL,VI_NULL,	&vi);
	
		/*	acquire	a	shared	lock	so	only	this	process	and	processes	that
					we	know	about	can	access	this	resource	*/
		viLock	(vi,	VI_SHARED_LOCK,	2000,	VI_NULL,	lockkey);
	
		/*	at	this	time,	we	can	make	'lockkey'	available	to	other	processes
					that	we	know	about.		This	can	be	done	with	shared	memory	or	other
					inter-process	communication	methods.		These	other	processes	can
					then	call	"viLock(vi,	VI_SHARED_LOCK,	2000,	lockkey,	lockkey)"
					and	they	will	also	have	access	to	this	resource.
		*/
	
		/*	Initialize	device	*/
		viPrintf	(vi,	"*RST\n");
	
		/*	Make	sure	no	other	process	or	thread	does	anything	to	this	resource
					between	the	viPrintf()	and	the	viScanf()	calls
					NOTE:		this	also	locks	out	the	processes	with	which	we	shared	our
					'shared	lock'	key.

		*/
		viLock	(vi,	VI_EXCLUSIVE_LOCK,	2000,	VI_NULL,	VI_NULL);
	
		/*	Send	an	*IDN?	string	to	the	device	*/
		viPrintf	(vi,	"*IDN?\n");
	
		/*	Read	results	*/
		viScanf	(vi,	"%t",	&buf);
	
		/*	unlock	this	session	so	other	processes	and	threads	can	use	it	*/
		viUnlock	(vi);
	
		/*	Print	results	*/
		printf	("Instrument	identification	string:	%s\n",	buf);
	
		/*	release	the	shared	lock	too	*/
		viUnlock	(vi);
	
		/*	Close	session	*/
		viClose	(vi);
		viClose	(defaultRM);
}
	

Programming	via	GPIB	and	VXI

VISA	supports	three	interfaces	you	can	use	to	access	GPIB	(General	Purpose
Interface	Bus)	and	VXI	(VME	eXtension	for	Instrumentation)	instruments:
GPIB,	VXI,	and	GPIB-VXI.	This	section	describes	how	to	program	GPIB	and
VXI	devices	via	the	GPIB,	VXI	or	GPIB-VXI	interfaces,	including:

GPIB	and	VXI	Interfaces	Overview
Using	High-Level	Memory	Functions
Using	Low-Level	Memory	Functions
Using	Low/High-Level	Memory	I/O	Methods
Using	the	Memory	Access	Resource
Using	VXI-Specific	Attributes

See	Programming	with	VISA	for	general	information	on	VISA	programming	for
the	GPIB,	VXI,	and	GPIB-VXI	interfaces.

GPIB	and	VXI	Interfaces	Overview

This	topic	is	an	overview	of	the	GPIB,	GPIB-VXI,	and	VXI	interfaces,
including:

General	Interface	Information
GPIB	Interfaces	Overview
VXI	Interfaces	Overview

General	Interface	Information

VISA	supports	three	interfaces	you	can	use	to	access	instruments	or	devices:
GPIB,	VXI,	and	GPIB-VXI.	The	GPIB	interface	can	be	used	to	access	VXI
instruments	via	a	Command	Module.	In	addition,	the	VXI	backplane	can	be
directly	accessed	with	the	VXI	or	GPIB-VXI	interfaces.

What	is	an	I/O	Interface?

An	I/O	interface	can	be	defined	as	both	a	hardware	interface	and	a	software
interface.	Connection	Expert	is	used	to	associate	a	unique	interface	name	with	a
hardware	interface.	Agilent	IO	Libraries	Suite	uses	a	VISA	interface	name	to
identify	an	interface.	This	information	is	passed	in	the	parameter	string	of	the
viOpen	function	call	in	a	VISA	program.

Connection	Expert	assigns	a	VISA	interface	name	to	the	interface	hardware,	and
other	necessary	configuration	values	for	an	interface	when	the	interface	is
configured.	See	the	Agilent	IO	Libraries	Suite	Help	for	details.

VXI	Device	Types

When	using	GPIB-VXI	or	VXI	interfaces	to	directly	access	the	VXI	backplane
(in	the	VXI	mainframe),	you	must	know	whether	you	are	programming	a
message-based	or	a	register-based	VXI	device	(instrument).

A	message-based	VXI	device	has	its	own	processor	that	allows	it	to	interpret
high-level	commands,	such	as	Standard	Commands	for	Programmable
Instruments	(SCPI).	When	using	VISA,	you	can	place	the	SCPI	command	within
your	VISA	output	function	call.	Then,	the	message-based	device	interprets	the
SCPI	command.	In	this	case,	you	can	use	the	VISA	formatted	I/O	or	non-
formatted	I/O	functions	and	program	the	message-based	device	as	you	would	a
GPIB	device.

However,	if	the	message-based	device	has	shared	memory,	you	can	access	the
device's	shared	memory	by	doing	register	peeks	and	pokes.	VISA	provides	two
different	methods	you	can	use	to	program	directly	to	the	registers:	high-level
memory	functions	or	low-level	memory	functions.

A	register-based	VXI	device	typically	does	not	have	a	processor	to	interpret
high-level	commands.	Therefore,	the	device	must	be	programmed	with	register
peeks	and	pokes	directly	to	the	device's	registers.	VISA	provides	two	different
methods	you	can	use	to	program	register-based	devices:	high-level	memory
functions	or	low-level	memory	functions.

GPIB	Interfaces	Overview

As	shown	in	the	following	figure,	a	typical	GPIB	interface	consists	of	a
Windows	PC	with	one	or	more	GPIB	cards	(PCI	and/or	ISA)	installed	in	the	PC,
and	one	or	more	GPIB	instruments	connected	to	the	GPIB	cards	via	GPIB	cable.
I/O	communication	between	the	PC	and	the	instruments	is	via	the	GPIB	cards
and	the	GPIB	cable.	The	following	figure	shows	GPIB	instruments	at	addresses
3	and	5.

Example:	GPIB	(82350)	Interface

The	GPIB	interface	system	in	the	following	figure	consists	of	a	Windows	PC
with	two	82350	GPIB	cards	connected	to	three	GPIB	instruments	via	GPIB
cables.	For	this	system,	Agilent	Connection	Expert	has	been	used	to	assign	GPIB
card	#1	a	VISA	name	of	GPIB0	and	to	assign	GPIB	card	#2	a	VISA	name	of
GPIB1.	VISA	addressing	is	as	shown	in	the	figure	below.

VXI	Interfaces	Overview

As	shown	in	the	following	figure,	a	typical	VXI	(E8491)	interface	consists	of	an
E8491	PC	Card	in	a	Windows	PC	that	is	connected	to	an	E8491B	IEEE-1394
Module	in	a	VXI	mainframe	via	an	IEEE-1394	to	VXI	cable.	The	VXI
mainframe	also	includes	one	or	more	VXI	instruments.

	

Example:	VXI	(E8491B)	Interfaces

The	VXI	interface	system	in	the	following	figure	consists	of	a	Windows	PC	with
an	E8491	PC	card	that	connects	to	an	E8491B	IEEE-1394	to	VXI	Module	in	a
VXI	Mainframe.	For	this	system,	the	three	VXI	instruments	shown	have	logical
addresses	8,	16,	and	24.	The	Connection	Expert	utility	has	been	used	to	assign
the	E8491	PC	card	a	VISA	name	of	VXI0.	VISA	addressing	is	as	shown	in	the
figure.

For	information	on	the	E8491B	module,	see	the	Agilent	E8491B	User’s	Guide.
For	information	on	VXI	instruments,	see	the	applicable	VXI	instrument	user’s
guide.

GPIB-VXI	Interfaces	Overview

As	shown	in	the	following	figure,	a	typical	GPIB-VXI	interface	consists	of	a
GPIB	card	(82350	or	equivalent)	in	a	Windows	PC	that	is	connected	via	a	GPIB
cable	to	an	E1406A	Command	Module.	The	E1406A	sends	commands	to	the
VXI	instruments	in	a	VXI	mainframe.	There	is	no	direct	access	to	the	VXI
backplane	from	the	PC.

Note:	For	a	GPIB-VXI	interface,	VISA	uses	a	DLL	supplied	by	the	Command
Module	vendor	to	translate	the	VISA	VXI	calls	to	Command	Module	commands
that	are	vendor	specific.	The	DLL	required	for	Agilent	Command	Modules	is
installed	by	the	Agilent	IO	Libraries	Suite	installer.	This	DLL	is	installed	by
default	when	Agilent	VISA	is	installed.

	

	

Example:	GPIB-VXI	(E1406A)	Interface

The	GPIB-VXI	interface	system	in	the	following	figure	consists	of	a	Windows
PC	with	an	Agilent	82350	GPIB	card	that	connects	to	an	E1406A	command
module	in	a	VXI	mainframe.	The	VXI	mainframe	includes	one	or	more	VXI
instruments.

When	Agilent	IO	Libraries	Suite	was	installed,	a	GPIB-VXI	driver	with	GPIB

address	9	was	also	installed,	and	the	E1406A	was	configured	for	primary	address
9	and	logical	address	(LA)	0.	The	three	VXI	instruments	shown	have	logical
addresses	8,	16,	and	24.

The	Connection	Expert	utility	has	been	used	to	assign	the	GPIB-VXI	driver	a
VISA	name	of	GPIB-VXI0	and	to	assign	the	82350	GPIB	card	a	VISA	name	of
GPIB0.	VISA	addressing	is	as	shown	in	the	figure.

For	information	on	the	E1406A	Command	Module,	see	the	Agilent	E1406A
Command	Module	User’s	Guide.	For	information	on	VXI	instruments,	see	the
applicable	instrument’s	user’s	guide.

	

Using	High-Level	Memory	Functions

High-level	memory	functions	allow	you	to	access	memory	on	the	interface
through	simple	function	calls.	There	is	no	need	to	map	memory	to	a	window.
Instead,	when	high-level	memory	functions	are	used,	memory	mapping	and
direct	register	access	are	automatically	done.

The	trade-off,	however,	is	speed.	High-level	memory	functions	are	easier	to	use.
However,	since	these	functions	encompass	mapping	of	memory	space	and	direct
register	access,	the	associated	overhead	slows	program	execution	time.	If	speed
is	required,	use	the	low-level	memory	functions	discussed	in	Using	Low-Level
Memory	Functions	.

Programming	the	Registers

High-level	memory	functions	include	the	viIn	and	viOut	functions	for
transferring	8-,	16-,	32-,	or	64-bit	values,	as	well	as	the	viMoveIn	and
viMoveOut	functions	for	transferring	8-,	16-,32-,	or	64-bit	blocks	of	data	into	or
out	of	local	memory.	You	can	therefore	program	using	8-,	16-,	32-,	or	64-bit
transfers.

High-Level	Memory	Functions

The	followoing	table	summarizes	the	high-level	memory	functions.

Function Description

viIn8(vi,	space,	offset,	val8); Reads	8	bits	of	data	from	the	specified	offset.

viIn16(vi,	space,	offset,	val16); Reads	16	bits	of	data	from	the	specified	offset.

viIn32(vi,	space,	offset,	val32); Reads	32	bits	of	data	from	the	specified	offset.

viIn64(vi,	space,	offset,	val64); Reads	64	bits	of	data	from	the	specified	offset.

viOut8(vi,	space,	offset,	val8); Writes	8	bits	of	data	to	the	specified	offset.

viOut16(vi,	space,	offset,	val16); Writes	16	bits	of	data	to	the	specified	offset.

viOut32(vi,	space,	offset,	val32); Writes	32	bits	of	data	to	the	specified	offset.

viOut64(vi,	space,	offset,	val64); Writes	64	bits	of	data	to	the	specified	offset.

viMoveIn8(vi,	space,	offset,	length,	buf8); Moves	an	8-bit	block	of	data	from	the	specified	offset	to	local	memory.

viMoveIn16(vi,	space,	offset,	length,	buf16); Moves	a	16-bit	block	of	data	from	the	specified	offset	to	local	memory.

viMoveIn32(vi,	space,	offset,	length,	buf32); Moves	a	32-bit	block	of	data	from	the	specified	offset	to	local	memory.

viMoveIn64(vi,	space,	offset,	length,	buf64); Moves	a	64-bit	block	of	data	from	the	specified	offset	to	local	memory.

viMoveOut8(vi,	space,	offset,	length,	buf8); Moves	an	8-bit	block	of	data	from	local	memory	to	the	specified	offset.

viMoveOut16(vi,	space,	offset,	length,	buf16); Moves	a	16-bit	block	of	data	from	local	memory	to	the	specified	offset.

viMoveOut32(vi,	space,	offset,	length,	buf32); Moves	a	32-bit	block	of	data	from	local	memory	to	the	specified	offset.

viMoveOut64(vi,	space,	offset,	length,	buf64); Moves	a	64-bit	block	of	data	from	local	memory	to	the	specified
offset.

Using	viIn	and	viOut

When	using	the	viIn	and	viOut	high-level	memory	functions	to	program	to	the

device	registers,	all	you	need	to	specify	is	the	session	identifier,	address	space,
and	the	offset	of	the	register.	Memory	mapping	is	done	for	you.	For	example,	in
this	function:

viIn32	(vi,	space,	offset,	val32);

vi	is	the	session	identifier	and	offset	is	used	to	indicate	the	offset	of	the	memory
to	be	mapped.	offset	is	relative	to	the	location	of	this	device's	memory	in	the
given	address	space.	The	space	parameter	determines	which	memory	location	to
map	the	space.	Valid	space	values	are:

VI_A16_SPACE	-	Maps	in	VXI/MXI	A16	address	space

VI_A24_SPACE	-	Maps	in	VXI/MXI	A24	address	space

VI_A32_SPACE	-	Maps	in	VXI/MXI	A32	address	space

VI_A64_SPACE	-	Maps	in	VXI/MXI	A64	address	space

The	val32	parameter	is	a	pointer	to	where	the	data	read	will	be	stored.	If	instead
you	write	to	the	registers	via	the	viOut32	function,	the	val32	parameter	is	a
pointer	to	the	data	to	write	to	the	specified	registers.	If	the	device	specified	by	vi
does	not	have	memory	in	the	specified	address	space,	an	error	is	returned.	The
following	code	sample	uses	viIn16.

ViSession	defaultRM,	vi;
ViUInt16	value;
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM,	"VXI::24",	VI_NULL,	VI_NULL,	&vi);
viIn16(vi,	VI_A16_SPACE,	0x100,	&value);

Using	viMoveIn	and	viMoveOut

You	can	also	use	the	viMoveIn	and	viMoveOut	high-level	memory	functions	to
move	blocks	of	data	to	or	from	local	memory.	Specifically,	the	viMoveIn
function	moves	an	8-,	16-,	32-,	or	64-bit	block	of	data	from	the	specified	offset
to	local	memory,	and	the	viMoveOut	functions	moves	an	8-,	16-,	32-,	or	64-bit
block	of	data	from	local	memory	to	the	specified	offset.	Again,	the	memory

mapping	is	done	for	you.

For	example,	in	this	function:

viMoveIn32(vi,	space,	offset,	length,	buf32);

vi	is	the	session	identifier	and	offset	is	used	to	indicate	the	offset	of	the	memory
to	be	mapped.	offset	is	relative	to	the	location	of	this	device's	memory	in	the
given	address	space.	The	space	parameter	determines	which	memory	location	to
map	the	space	and	the	length	parameter	specifies	the	number	of	elements	to
transfer	(8-,	16-,	32-,	or	64-bits).

The	buf32	parameter	is	a	pointer	to	where	the	data	read	will	be	stored.	If	instead
you	write	to	the	registers	via	the	viMoveOut32	function,	the	buf32	parameter	is	a
pointer	to	the	data	to	write	to	the	specified	registers.

High-Level	Memory	Functions:	Sample	Programs

Two	sample	programs	follow	that	use	the	high-level	memory	functions	to	read
the	ID	and	Device	Type	registers	of	a	device	at	the	VXI	logical	address	24.	The
contents	of	the	registers	are	then	printed	out.

The	first	program	uses	the	VXI	interface;	the	second	program	accesses	the
backplane	with	the	GPIB-VXI	interface.	These	two	programs	are	identical
except	for	the	string	passed	to	viOpen.

Sample:	Using	VXI	Interface	(High-Level)	Memory	Functions

The	vxih1.c	sample	program	uses	high-level	memory	functions	and	the	VXI
interface	to	read	the	ID	and	Device	Type	registers	of	a	device	at	VXI0::24.

Sample:	Using	GPIB-VXI	Interface	(High-Level)	Memory	Functions

The	gpibvxih.c	sample	program	uses	high-level	memory	functions	and	the
GPIB-VXI	interface	to	read	the	ID	and	Device	Type	registers	of	a	device	at
GPIB-VXI0::24.

	

javascript:void(0);
javascript:void(0);

/*vxihl.c
		This	example	program	uses	the	high	level	functions	to
		read	the	id	and	device	type	registers	of	the	device	at
		VXI0::24.		Change	this	address	if	necessary.		The
		register	contents	are	then	displayed.*/
	
#include	<visa.h>
#include	<stdlib.h>
#include	<stdio.h>
	
void	main	()	{
	
		ViSession	defaultRM,	dmm;
		unsigned	short	id_reg,	devtype_reg;
	
		/*	Open	session	to	VXI	device	at	address	24	*/
		viOpenDefaultRM	(&defaultRM);
		viOpen	(defaultRM,	"VXI0::24::INSTR",	VI_NULL,VI_NULL,	&dmm);
	
		/*	Read	instrument	id	register	contents	*/
		viIn16	(dmm,	VI_A16_SPACE,	0x00,	&id_reg);
	
		/*	Read	device	type	register	contents	*/
		viIn16	(dmm,	VI_A16_SPACE,	0x02,	&devtype_reg);
	
		/*	Print	results	*/
		printf	("ID	Register	=	0x%4X\n",	id_reg);
		printf	("Device	Type	Register	=	0x%4X\n",	devtype_reg);
	
		/*	Close	sessions	*/
		viClose	(dmm);
		viClose	(defaultRM);
}
	

/*gpibvxih.c
		This	example	program	uses	the	high	level	functions	to
		read	the	id	and	device	type	registers	of	the	device	at
		GPIB-VXI0::24.		Change	this	address	if	necessary.	
		The	register	contents	are	then	displayed.*/
	
#include	<visa.h>
#include	<stdlib.h>
#include	<stdio.h>
	
void	main	()	{
	
		ViSession	defaultRM,	dmm;
		unsigned	short	id_reg,	devtype_reg;
	
		/*	Open	session	to	VXI	device	at	address	24	*/
		viOpenDefaultRM	(&defaultRM);
		viOpen	(defaultRM,	"GPIB-VXI0::24::INSTR",	VI_NULL,VI_NULL,
&dmm);
	
		/*	Read	instrument	id	register	contents	*/
		viIn16	(dmm,	VI_A16_SPACE,	0x00,	&id_reg);
	
		/*	Read	device	type	register	contents	*/
		viIn16	(dmm,	VI_A16_SPACE,	0x02,	&devtype_reg);
	
		/*	Print	results	*/
		printf	("ID	Register	=	0x%4X\n",	id_reg);
		printf	("Device	Type	Register	=	0x%4X\n",	devtype_reg);
	
		/*	Close	sessions	*/
		viClose	(dmm);
		viClose	(defaultRM);
}
	

Using	Low-Level	Memory	Functions

Low-level	memory	functions	allow	direct	access	to	memory	on	the	interface	just
as	do	high-level	memory	functions.	However,	with	low-level	memory	function
calls,	you	must	map	a	range	of	addresses	and	directly	access	the	registers	with
low-level	memory	functions,	such	as	viPeek32	and	viPoke32.

There	is	more	programming	effort	required	when	using	low-level	memory
functions.	However,	the	program	execution	speed	can	increase.	Additionally,	to
increase	program	execution	speed,	the	low-level	memory	functions	do	not	return
error	codes.

Programming	the	Registers

When	using	the	low-level	memory	functions	for	direct	register	access,	you	must
first	map	a	range	of	addresses	using	the	viMapAddress	function.	Next,	you	can
send	a	series	of	peeks	and	pokes	using	the	viPeek	and	viPoke	low-level	memory
functions.	Then,	you	must	free	the	address	window	using	the	viUnmapAddress
function.	A	process	you	could	use	is:

Map	memory	space	using	viMapAddress.

Read	and	write	to	the	register's	contents	using	viPeek32	and	viPoke32.

Unmap	the	memory	space	using	viUnmapAddress.

Low-Level	Memory	Functions

You	can	program	the	registers	using	low-level	functions	for	8-,	16-,	32-,	or	64-
bit	transfers.	The	following	table	summarizes	the	low-level	memory	functions.

Function Description

viMapAddress(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,
address); Maps	the	specified	memory	space.

viPeek8(vi,	addr,	val8); Reads	8	bits	of	data	from	address	specified.

viPeek16(vi,	addr,	val16); Reads	16	bits	of	data	from	address	specified.

viPeek32(vi,	addr,	val32); Reads	32	bits	of	data	from	address	specified.

viPeek64(vi,	addr,	val64); Reads	64	bits	of	data	from	address	specified.

viPoke8(vi,	addr,	val8); Writes	8	bits	of	data	to	address	specified.

viPoke16(vi,	addr,	val16); Writes	16	bits	of	data	to	address	specified.

viPoke32(vi,	addr,	val32); Writes	32	bits	of	data	to	address	specified.

viPoke64(vi,	addr,	val64); Writes	64	bits	of	data	to	address	specified.

viUnmapAddress(vi); Unmaps	memory	space	previously	mapped.

Mapping	Memory	Space

When	using	VISA	to	access	the	device's	registers,	you	must	map	memory	space

into	your	process	space.	For	a	given	session,	you	can	have	only	one	map	at	a
time.	To	map	space	into	your	process,	use	the	VISA	viMapAddress	function:

viMapAddress(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,	address);

This	function	maps	space	for	the	device	specified	by	the	vi	session.	mapBase,
mapSize,	and	suggested	are	used	to	indicate	the	offset	of	the	memory	to	be
mapped,	amount	of	memory	to	map,	and	a	suggested	starting	location,
respectively.	mapSpace	determines	which	memory	location	to	map	the	space.
The	following	are	valid	mapSpace	choices:

VI_A16_SPACE	-	Maps	in	VXI/MXI	A16	address	space

VI_A24_SPACE	-	Maps	in	VXI/MXI	A24	address	space

VI_A32_SPACE	-	Maps	in	VXI/MXI	A32	address	space

VI_A64_SPACE	-	Maps	in	VXI/MXI	A64	address	space

A	pointer	to	the	address	space	where	the	memory	was	mapped	is	returned	in	the
address	parameter.	If	the	device	specified	by	vi	does	not	have	memory	in	the
specified	address	space,	an	error	is	returned.	Some	sample	viMapAddress
function	calls	follow.

/*	Maps	to	A32	address	space	*/
viMapAddress(vi,	VI_A32_SPACE,	0x000,	0x100,
VI_FALSE,VI_NULL,&address);

/*	Maps	to	A24	address	space	*/
viMapAddress(vi,	VI_A24_SPACE,	0x00,	0x80,
VI_FALSE,VI_NULL,&address);

Reading	and	Writing	to	Device	Registers

When	you	have	mapped	the	memory	space,	use	the	VISA	low-level	memory
functions	to	access	the	device's	registers.	First,	determine	which	device	register
you	need	to	access.	Then,	you	need	to	know	the	register's	offset.	See	the
applicable	instrument’s	user	manual	for	a	description	of	the	registers	and	register
locations.	You	can	then	use	this	information	and	the	VISA	low-level	functions	to

access	the	device	registers.

Sample:	Using	viPeek16

A	code	sample	using	viPeek16	follows.

ViSession	defaultRM,	vi;
ViUInt16	value;
ViAddr	address;
ViUInt16	value;
.
.
viOpenDefaultRM(&&defaultRM);
viOpen(defaultRM,	"VXI::24::INSTR",	VI_NULL,	VI_NULL,&vi);
viMapAddress(vi,	VI_A16_SPACE,	0x00,	0x04,	VI_FALSE,VI_NULL,
&address);
viPeek16(vi,	addr,	&value)

Unmapping	Memory	Space

Make	sure	you	use	the	viUnmapAddress	function	to	unmap	the	memory	space
when	it	is	no	longer	needed.	Unmapping	memory	space	makes	the	window
available	for	the	system	to	reallocate.

Low-Level	Memory	Functions:	Code	Samples

Two	sample	programs	follow	that	use	the	low-level	memory	functions	to	read
the	ID	and	Device	Type	registers	of	the	device	at	VXI	logical	address	24.	The
contents	of	the	registers	are	then	printed	out.	The	first	program	uses	the	VXI
interface	and	the	second	program	uses	the	GPIB-VXI	interface	to	access	the	VXI
backplane.	These	two	programs	are	identical	except	for	the	string	passed	to
viOpen.

Sample:	Using	the	VXI	Interface	(Low-Level)	Memory	Functions

The	vxill.c	sample	program	uses	low-level	memory	functions	and	the	VXI
interface	to	read	the	ID	and	Device	Type	registers	of	a	device	at	VXI0::24.

Sample:	Using	the	GPIB-VXI	Interface	(Low-Level)	Memory	Functions

The	gpibvxil.c	sample	program	uses	low-level	memory	functions	and	the	GPIB-
VXI	interface	to	read	the	ID	and	Device	Type	registers	of	a	device	at	GPIB-
VXI0::24.

javascript:void(0);
javascript:void(0);

/*vxill.c
		This	example	program	uses	the	low	level	functions	to
		read	the	id	and	device	type	registers	of	the	device
		at	VXI0::24.		Change	this	address	if	necessary.		The
		register	contents	are	then	displayed.*/
	
#include	<visa.h>
#include	<stdlib.h>
#include	<stdio.h>
	
void	main	()	{
	
		ViSession	defaultRM,	dmm;
		ViAddr	address;
		unsigned	short	id_reg,	devtype_reg;
	
		/*	Open	session	to	VXI	device	at	address	24	*/
		viOpenDefaultRM	(&defaultRM);
		viOpen	(defaultRM,	"VXI0::24::INSTR",	VI_NULL,VI_NULL,	&dmm);
	
		/*	Map	into	memory	space	*/
		viMapAddress	(dmm,	VI_A16_SPACE,	0x00,	0x10,	VI_FALSE,	VI_NULL,
&address);
	
		/*	Read	instrument	id	register	contents	*/
		viPeek16	(dmm,	address,	&id_reg);
	
		/*	Read	device	type	register	contents	*/
		/*	ViAddr	is	defined	as	a	void	*	so	we	must	cast	it	to	something	else	*/
		/*	in	order	to	do	pointer	arithmetic	*/
		viPeek16	(dmm,	(ViAddr)((ViUInt16	*)address	+	0x01),	&devtype_reg);
	
		/*	Unmap	memory	space	*/
		viUnmapAddress	(dmm);
	
		/*	Print	results	*/

		printf	("ID	Register	=	0x%4X\n",	id_reg);
		printf	("Device	Type	Register	=	0x%4X\n",	devtype_reg);
	
		/*	Close	sessions	*/
		viClose	(dmm);
		viClose	(defaultRM);
}
	

/*gpibvxil.c
		This	example	program	uses	the	low	level	functions	to
		read	the	id	and	device	type	registers	of	the	device
		at	GPIB-VXI0::24.		Change	this	address	if	necessary.
		The	register	contents	are	then	displayed.*/
	
#include	<visa.h>
#include	<stdlib.h>
#include	<stdio.h>
	
void	main	()	{
	
		ViSession	defaultRM,	dmm;
		ViAddr	address;
		unsigned	short	id_reg,	devtype_reg;
	
		/*	Open	session	to	VXI	device	at	address	24	*/
		viOpenDefaultRM	(&defaultRM);
		viOpen	(defaultRM,	"GPIB-VXI0::24::INSTR",	VI_NULL,VI_NULL,
&dmm);
	
		/*	Map	into	memory	space	*/
		viMapAddress	(dmm,	VI_A16_SPACE,	0x00,	0x10,	VI_FALSE,	VI_NULL,
&address);
	
		/*	Read	instrument	id	register	contents	*/
		viPeek16	(dmm,	address,	&id_reg);
	
		/*	Read	device	type	register	contents	*/
		/*	ViAddr	is	defined	as	a	void	*	so	we	must	cast	it	to	something	else	*/
		/*	in	order	to	do	pointer	arithmetic	*/
		viPeek16	(dmm,	(ViAddr)((ViUInt16	*)address	+	0x01),	&devtype_reg);
	
		/*	Unmap	memory	space	*/
		viUnmapAddress	(dmm);
	

		/*	Print	results	*/
		printf	("ID	Register	=	0x%4X\n",	id_reg);
		printf	("Device	Type	Register	=	0x%4X\n",	devtype_reg);
	
		/*	Close	sessions	*/
		viClose	(dmm);
		viClose	(defaultRM);
}
	

Using	Low/High-Level	Memory	I/O	Methods

VISA	supports	three	different	memory	I/O	methods	for	accessing	memory	on	the
VXI	backplane,	as	shown.	All	three	of	these	access	methods	can	be	used	to	read
and	write	VXI	memory	in	the	A16,	A24,	A32,	and	A64	address	spaces.	The	best
method	to	use	depends	on	the	VISA	program	characteristics.

Low-level	viPeek/viPoke
viMapAddress
viUnmapAddress
viPeek8,	viPeek16,	viPeek32,	viPeek64
viPoke8,	viPoke16,	viPoke32,	viPoke64

High-level	viIn/viOut
viIn8,	viIn16,	viIn32,	viIn64
viOut8,	viOut16,	viOut32,	viOut64

High-level	viMoveIn/viMoveOut
viMoveIn8,	viMoveIn16,	viMoveIn32,	viMoveIn64
viMoveOut8,	viMoveOut16,	viMoveOut32,	viMoveOut64

Using	Low-Level	viPeek/viPoke

Low-level	viPeek/viPoke	is	the	most	efficient	in	programs	that	require	repeated
access	to	different	addresses	in	the	same	memory	space.

The	advantages	of	low-level	viPeek/viPoke	are:

Individual	viPeek/viPoke	calls	are	faster	than	viIn/viOut	or
viMoveIn/viMoveOut	calls.
Memory	pointers	may	be	directly	de-referenced	in	some	cases	for
the	lowest	possible	overhead.

The	disadvantages	of	low-level	viPeek/viPoke	are:

A	viMapAddress	call	is	required	to	set	up	mapping	before
viPeek/viPoke	can	be	used.
viPeek/viPoke	calls	do	not	return	status	codes.
Only	one	active	viMapAddress	is	allowed	per	vi	session.
There	may	be	a	limit	to	the	number	of	simultaneous	active
viMapAddress	calls	per	process	or	system.

Using	High-Level	viIn/viOut

High-level	viIn/viOut	calls	are	best	in	situations	where	a	few	widely	scattered
memory	accesses	are	required	and	speed	is	not	a	major	consideration.

The	advantages	of	high-level	viIn/viOut	are:

It	is	the	simplest	method	to	implement.
There	is	no	limit	on	the	number	of	active	maps.
A16,	A24,	A32,	and	A64	memory	access	can	be	mixed	in	a	single	vi
session.

The	disadvantage	of	high-level	viIn/viOut	calls	is	that	they	are	slower	than
viPeek/viPoke.

Using	High-Level	viMoveIn/viMoveOut

High-level	viMoveIn/viMoveOut	calls	provide	the	highest	possible	performance
for	transferring	blocks	of	data	to	or	from	the	VXI	backplane.	Although	these
calls	have	higher	initial	overhead	than	the	viPeek/viPoke	calls,	they	are
optimized	on	each	platform	to	provide	the	fastest	possible	transfer	rate	for	large
blocks	of	data.

For	small	blocks,	the	overhead	associated	with	viMoveIn/viMoveOut	may
actually	make	these	calls	longer	than	an	equivalent	loop	of	viIn/viOut	calls.	The
block	size	at	which	viMoveIn/viMoveOut	becomes	faster	depends	on	the
particular	platform	and	processor	speed.

The	advantages	of	high-level	viMoveIn/viMoveOut	are:

They	are	simple	to	use.
There	is	no	limit	on	number	of	active	maps.
A16,	A24,	A32,	and	A64	memory	access	can	be	mixed	in	a	single	vi
session.
They	provide	the	best	performance	when	transferring	large	blocks	of
data.
They	support	both	block	and	FIFO	mode.

The	disadvantage	of	viMoveIn/viMoveOut	calls	is	that	they	have	higher	initial
overhead	than	viPeek/viPoke.

Sample:	Using	VXI	Memory	I/O

The	memio.c	sample	program	demonstrates	how	to	use	the	various	types	of	VXI
memory	I/O.

javascript:void(0);

/*
			memio.c
			This	example	program	demonstrates	the	use	of	various	memory	I/O
			methods	in	VISA.
*/
	
#include	<visa.h>
#include	<stdlib.h>
#include	<stdio.h>
	
#define	VXI_INST	"VXI0::24::INSTR"
	
void	main	()	{
			ViSession	defaultRM,	vi;
			ViAddr									address;
			ViUInt16							accessMode;
			unsigned	short	*memPtr16;
			unsigned	short	id_reg;
			unsigned	short	devtype_reg;
			unsigned	short	memArray[2];
	
			/*	Open	the	default	resource	manager	and	a	session	to	our	instrument	*/
			viOpenDefaultRM	(&defaultRM);
			viOpen	(defaultRM,	VXI_INST,	VI_NULL,VI_NULL,	&vi);
	
/*
==
			======================	Low	level	memory	I/O
======================
						=	viPeek16
						=	direct	memory	dereference	(when	allowed)
		
==
*/
		
			/*	Map	into	memory	space	*/

			viMapAddress	(vi,	VI_A16_SPACE,	0x00,	0x10,	VI_FALSE,	VI_NULL,
&address);
	
			/*	==================	using	viPeek
================================
			/*	Read	instrument	id	register	contents	*/
			viPeek16	(vi,	address,	&id_reg);
	
			/*
						Read	device	type	register	contents
						ViAddr	is	defined	as	a	(void	*)	so	we	must	cast	it	to	something
						else	in	order	to	do	pointer	arithmetic.
			*/
			viPeek16	(vi,	(ViAddr)((ViUInt16	*)address	+	0x01),	&devtype_reg);
	
			/*	Print	results	*/
			printf	("			viPeek16:	ID	Register	=	0x%4X\n",	id_reg);
			printf	("			viPeek16:	Device	Type	Register	=	0x%4X\n",	devtype_reg);
	
			/*	Use	direct	memory	dereferencing	if	it	is	supported	*/
			viGetAttribute(vi,	VI_ATTR_WIN_ACCESS,	&accessMode);
			if	(accessMode	==	VI_DEREF_ADDR)	{
	
						/*	assign	the	pointer	to	a	variable	of	the	correct	type	*/
						memPtr16	=	(unsigned	short	*)address;
	
						/*	do	the	actual	memory	reads	*/
						id_reg	=						*memPtr16;
						devtype_reg	=	*(memPtr16+1);
	
						/*	Print	results	*/
						printf	("dereference:	ID	Register	=	0x%4X\n",	id_reg);
						printf	("dereference:	Device	Type	Register	=	0x%4X\n",	devtype_reg);
			}
	
			/*	Unmap	memory	space	*/

			viUnmapAddress	(vi);
	
/*
==
			======================	High	Level	memory	I/O
=====================
						=	viIn16
		
==
*/
	
		/*	Read	instrument	id	register	contents	*/
		viIn16	(vi,	VI_A16_SPACE,	0x00,	&id_reg);
	
		/*	Read	device	type	register	contents	*/
		viIn16	(vi,	VI_A16_SPACE,	0x02,	&devtype_reg);
	
		/*	Print	results	*/
		printf	("					viIn16:	ID	Register	=	0x%4X\n",	id_reg);
		printf	("					viIn16:	Device	Type	Register	=	0x%4X\n",	devtype_reg);
	
/*
==
			==================	High	Level	block	memory	I/O
===================
						=	viMoveIn16
			The	viMoveIn/viMoveOut	commands	do	both	block	read/write	and	FIFO
			read	write.
	
			These	commands	offer	the	best	performance	for	reading	and	writing
			large	data	blocks	on	the	VXI	backplane.		Note	that	for	this
			example	we	are	only	moving	2	words	at	a	time.		Normally	these
			functions	would	be	used	to	move	much	larger	blocks	of	data.
		
==
	

			If	the	value	of	VI_ATTR_SRC_INCREMENT	is	1	(the	default),	then
			viMoveIn	does	a	block	read.
			If	the	value	of	VI_ATTR_SRC_INCREMENT	is	0	then	viMoveIn	does	a
			FIFO	read.
	
			If	the	value	of	VI_ATTR_DEST_INCREMENT	is	1	(the	default),	then
			viMoveOut	does	a	block	write.
			If	the	value	of	VI_ATTR_DEST_INCREMENT	is	0	then	viMoveOut	does	a
			FIFO	write.
	
		
==
*/
		
		/*
					================	Demonstrate	block	read
========================
					Read	the	instrument	id	register	and	device	type	register	into
					an	array.
		*/
		viMoveIn16	(vi,	VI_A16_SPACE,	0x00,	2,	memArray);
	
		/*	Print	results	*/
		printf	("	viMoveIn16:	ID	Register	=	0x%4X\n",	memArray[0]);
		printf	("	viMoveIn16:	Device	Type	Register	=	0x%4X\n",	memArray[1]);
	
		/*
					==================	Demonstrate	FIFO	read
========================
					First	set	the	source	increment	to	0	so	we	will	repetatively	read
					from	the	same	memory	location.
		*/
		viSetAttribute(vi,	VI_ATTR_SRC_INCREMENT,	0);
	
		/*	Do	a	FIFO	read	of	the	Id	Register	*/
		viMoveIn16	(vi,	VI_A16_SPACE,	0x00,	2,	memArray);
		

		/*	Print	results	*/
		printf	("	viMoveIn16:	1	ID	Register	=	0x%4X\n",	memArray[0]);
		printf	("	viMoveIn16:	2	ID	Register	=	0x%4X\n",	memArray[1]);
	
		/*	Close	sessions	*/
		viClose	(vi);
		viClose	(defaultRM);
	
}

Using	the	Memory	Access	Resource

For	VISA	1.1	and	later,	the	Memory	Access	(MEMACC)	resource	type	has	been
added	to	VXI	and	GPIB-VXI.	VXI::MEMACC	and	GPIB-VXI::MEMACC
allow	access	to	all	of	the	A16,	A24,	A32,	and	A64	memory	by	providing	the
controller	with	access	to	arbitrary	registers	or	memory	addresses	on	memory-
mapped	buses.

The	MEMACC	resource,	like	any	other	resource,	starts	with	the	basic	operations
and	attributes	of	other	VISA	resources.	For	example,	modifying	the	state	of	an
attribute	is	done	via	the	operation	viSetAttribute.

Memory	I/O	Services

Memory	I/O	services	include	high-level	memory	I/O	services	and	low-level
memory	I/O	services.

High-Level	Memory	I/O	Services

High-level	memory	I/O	services	allow	register-level	access	to	the	interfaces	that
support	direct	memory	access,	such	as	the	VXIbus,	VMEbus,	MXIbus,	or	even
VME	or	VXI	memory	through	a	system	controlled	by	a	GPIB-VXI	controller.	A
resource	exists	for	each	interface	to	which	the	controller	has	access.

You	can	access	memory	on	the	interface	bus	through	operations	such	as	viIn16
and	viOut16.	These	operations	encapsulate	the	map/unmap	and	peek/poke
operations	found	in	the	low-level	service.	There	is	no	need	to	explicitly	map	the
memory	to	a	window.

Low-Level	Memory	I/O	Services

Low-level	memory	I/O	services	also	allow	register-level	access	to	the	interfaces
that	support	direct	memory	access.	Before	an	application	can	use	the	low-level
service	on	the	interface	bus,	it	must	map	a	range	of	addresses	using	the	operation
viMapAddress.

Although	the	resource	handles	the	allocation	and	operation	of	the	window,	the
programmer	must	free	the	window	via	viUnMapAddress	when	finished.	This
makes	the	window	available	for	the	system	to	reallocate.

Sample:	MEMACC	Resource	Program

The	peek16.c	sample	program	demonstrates	one	way	to	use	the	MEMACC
resource	to	open	the	entire	VXI	A16	memory	and	then	calculate	an	offset	to
address	a	specific	device.

javascript:void(0);

MEMACC	Attribute	Descriptions

Generic	MEMACC	Attributes

The	following	read-only	attributes	(VI_ATTR_TMO_VALUE	is	read/write)
provide	general	interface	information.

Attribute Description

VI_ATTR_INTF_TYPE Interface	type	of	the	given	session.

VI_ATTR_INTF_NUM Board	number	for	the	given	interface.

VI_ATTR_TMO_VALUE
Minimum	timeout	value	to	use,	in	milliseconds.	A	timeout	value	of
VI_TMO_IMMEDIATE	means	operation	should	never	wait	for	the	device	to	respond.	A
timeout	value	of	VI_TMO_INFINITE	disables	the	timeout	mechanism.

VI_ATTR_INTF_INST_NAME Human-readable	text	describing	the	given	interface.

VI_ATTR_DMA_ALLOW_EN Specifies	whether	I/O	accesses	should	use	DMA	(VI_TRUE)	or	Programmed	I/O
(VI_FALSE).

VXI,	GPIB-VXI,	and	PXI-Specific	MEMACC	Attributes

The	following	attributes,	most	of	which	are	read/write,	provide	memory	window
control	information.

Attribute Description

VI_ATTR_SRC_INCREMENT

Used	in	viMoveInxx	operation	to	specify	how	much	the	source	offset	is	to	be
incremented	after	every	transfer.	The	default	value	is	1	and	the	viMoveInxx
operation	moves	from	consecutive	elements.

	

If	this	attribute	is	set	to	0,	the	viMoveInxx	operation	will	always	read	from	the
same	element,	essentially	treating	the	source	as	a	FIFO	register.

VI_ATTR_DEST_INCREMENT

Used	in	viMoveOutxx	operation	to	specify	how	much	the	destination	offset	is
to	be	incremented	after	every	transfer.	The	default	value	is	1	and	the
viMoveOutxx	operation	moves	into	consecutive	elements.

	

If	this	attribute	is	set	to	0,	the	viMoveOutxx	operation	will	always	write	to	the
same	element,	essentially	treating	the	destination	as	a	FIFO	register.

VI_ATTR_WIN_ACCESS

Specifies	modes	in	which	the	current	window	may	be	addressed:	not	currently
mapped,	through	the	viPeekxx	or	viPokexx	operations	only,	or	through

operations	and/or	by	directly	de-referencing	the	address	parameter	as	a	pointer.

VI_ATTR_WIN_BASE_ADDR_32 Base	address	of	the	interface	bus	to	which	this	window	is	mapped.

VI_ATTR_WIN_BASE_ADDR_64 Base	address	of	the	interface	bus	to	which	this	window	is	mapped.

VI_ATTR_WIN_SIZE_32 Size	of	the	region	mapped	to	this	window.

VI_ATTR_WIN_SIZE_64 Size	of	the	region	mapped	to	this	window.

VXI	and	GPIB-VXI-Specific	MEMACC	Attributes

The	following	attributes,	most	of	which	are	read/write,	provide	memory	window
control	information

Attribute Description

VI_ATTR_VXI_LA Logical	address	of	the	local	controller.

VI_ATTR_SRC_BYTE_ORDER Specifies	the	byte	order	used	in	high-level	access	operations,	such	as	viInxx
and	viMoveInxx,	when	reading	from	the	source.

VI_ATTR_DEST_BYTE_ORDER Specifies	the	byte	order	used	in	high-level	access	operations,	such	as	viOutxx
and	viMoveOutxx,	when	writing	to	the	destination.

VI_ATTR_WIN_BYTE_ORDER Specifies	the	byte	order	used	in	low-level	access	operations,	such	as
viMapAddress,	viPeekxx,	and	viPokexx,	when	accessing	the	mapped	window.

VI_ATTR_SRC_ACCESS_PRIV Specifies	the	address	modifier	used	in	high-level	access	operations,	such	as
viInxx	and	viMoveInxx,	when	reading	from	the	source.

VI_ATTR_DEST_ACCESS_PRIV Specifies	the	address	modifier	used	in	high-level	access	operations,	such	as
viOutxx	and	viMoveOutxx,	when	writing	to	the	destination.

VI_ATTR_WIN_ACCESS_PRIV Specifies	the	address	modifier	used	in	low-level	access	operations,	such	as
viMapAddress,	viPeekxx,	and	viPokexx,	when	accessing	the	mapped	window.

GPIB-VXI-Specific	MEMACC	Attributes

The	following	read-only	attributes	provide	specific	address	information	about
GPIB	hardware.

Attribute Description

VI_ATTR_INTF_PARENT_NUM Board	number	of	the	GPIB	board	to	which	the	GPIB-VXI	is	attached.

VI_ATTR_GPIB_PRIMARY_ADDR Primary	address	of	the	GPIB-VXI	controller	used	by	the	session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary	address	of	the	GPIB-VXI	controller	used	by	the	session.

MEMACC	Resource	Event	Attribute

The	following	read-only	events	provide	notification	that	an	asynchronous
operation	has	completed.

Attribute Description

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event.

VI_ATTR_STATUS Return	code	of	the	asynchronous	I/O	operation	that	has	completed.

VI_ATTR_JOB_ID Job	ID	of	the	asynchronous	I/O	operation	that	has	completed.

VI_ATTR_BUFFER Address	of	a	buffer	used	in	an	asynchronous	operation.

VI_ATTR_RET_COUNT Actual	number	of	elements	that	were	asynchronously	transferred.

	

#include	<stdio.h>		//	for	printf()
#include	<stdlib.h>	//	for	exit()
#include	"visa.h"
	
#define	EXIT				1
#define	NO_EXIT	0
//
//	This	function	simplifies	checking	for	VISA	errors.
//
void	checkError(ViSession	vi,	ViStatus	status,	char	*errStr,	int	doexit)	{
			char	buf[256];
			if	(status	>=	VI_SUCCESS)
						return;
			buf[0]	=	0;
			viStatusDesc(vi,	status,	buf);
			printf("ERROR	0x%lx	(%s)\n		'%s'\n",	status,	errStr,	buf);
			if	(doexit	==	EXIT)
						exit(1);
}
	
void	main()	{
			ViSession	drm;
			ViSession	vi;
			ViUInt16		inData16		=	0;
			ViUInt16		peekData16=	0;
			ViUInt8			*addr;
			ViUInt16		*addr16;
			ViStatus		status;
			ViUInt16		offset;
	
			status	=	viOpenDefaultRM(&drm);
			checkError(0,	status,	"viOpenDefaultRM",	EXIT);
			//
			//	Open	a	session	to	the	vxi	memacc	resource
			//
			status	=	viOpen(drm,	"vxi0::memacc",	VI_NULL,	VI_NULL,	&vi);
			checkError(drm,	status,	"viOpen",	EXIT);

			//
			//	Calculate	the	A16	offset	of	the	VXI	registers	for	the	device
			//	at	VXI	logical	address	8
			//
			offset	=	0xc000	+	64	*	8;
			//
			//	Open	a	map	to	all	of	A16	space
			//
			status	=	viMapAddress(vi,	VI_A16_SPACE,	0,	0x10000,	VI_FALSE,	0,
(ViPAddr)(&addr));
			checkError(vi,	status,	"viMapAddress",	EXIT);
			//
			//	Offset	the	address	pointer	returned	from	viMapAddress	for	use	with
viPeek16
			//
			addr16	=	(ViUInt16	*)(addr	+	offset);
			//
			//	Peek	the	contents	of	the	card's	ID	register	(Offset	0	from	card's	base	address)
			//	Note	that	viPeek	does	not	return	a	status	code.
			//
			viPeek16(vi,	addr16,	&peekData16);
			//
			//	Now	use	viIn16	and	read	the	contents	of	the	same	register
			//
			status	=	viIn16(vi,	VI_A16_SPACE,	(ViBusAddress)offset,	&inData16);
			checkError(vi,	status,	"viIn16",	NO_EXIT);
			//
			//	Print	the	results
			//
			printf("inData16		:	0x%04hx\n",	inData16);
			printf("peekData16:	0x%04hx\n",	peekData16);
	
			viClose(vi);
			viClose(drm);
}
	

Using	VXI-Specific	Attributes

VXI-specific	attributes	can	be	useful	to	determine	the	state	of	your	VXI	system.
Attributes	are	read-only	and	read/write.	Read-only	attributes	specify	things	such
as	the	logical	address	of	the	VXI	device	and	information	about	where	your	VXI
device	is	mapped.	This	section	shows	how	you	might	use	some	of	the	VXI-
specific	attributes.

Using	the	Map	Address	as	a	Pointer

The	VI_ATTR_WIN_ACCESS	read-only	attribute	specifies	how	a	window	can
be	accessed.	You	can	access	a	mapped	window	with	the	VISA	low-level	memory
functions	or	with	a	C	pointer	if	the	address	is	de-referenced.	To	determine	how
to	access	the	window,	read	the	VI_ATTR_WIN_ACCESS	attribute.

VI_ATTR_WIN_ACCESS	Settings

The	VI_ATTR_WIN_ACCESS	read-only	attribute	can	be	set	to	one	of	the
following:

Settings	for	the	VI_ATTR_WIN_ACCESS	Attribute

Setting Description

VI_NMAPPED Specifies	that	the	window	is	not	mapped.

VI_USE_OPERS Specifies	that	the	window	is	mapped	and	you	can	only	use	the	low-level	memory	functions	to	access
the	data.

VI_DEREF_ADDR
Specifies	that	the	window	is	mapped	and	has	a	de-referenced	address.	In	this	case	you	can	use	the
low-level	memory	functions	to	access	the	data,	or	you	can	use	a	C	pointer.	Using	a	de-referenced	C
pointer	will	allow	faster	access	to	data.

Sample:	Determining	Window	Mapping

ViAddr	address;
Vi	UInt16	access;
ViUInt16	value;
.
.
.

viMapAddress(vi,	VI_A16_SPACE,	0x00,	0x04,	VI_FALSE,VI_NULL,
&address);
viGetAttribute(vi,	VI_ATTR_WIN_ACCESS,	&access);
.
.

If(access==VI_USE_OPERS)	{
			viPeek16(vi,	(ViAddr)(((ViUInt16	*)address)	+	4/sizeof(ViUInt16)),	&value)
}else	if	(access==VI_DEREF_ADDR){
			value=*((ViUInt16	*)address+4/sizeof(ViUInt16));
}else	if	(access==VI_NMAPPED){
			return	error;
}
.
.

Setting	the	VXI	Trigger	Line

The	VI_ATTR_TRIG_ID	attribute	is	used	to	set	the	VXI	trigger	line.	This
attribute	is	listed	under	generic	attributes	and	defaults	to	VI_TRIG_SW
(software	trigger).	To	set	one	of	the	VXI	trigger	lines,	
set	the	VI_ATTR_TRIG_ID	attribute	as	follows:

viSetAttribute(vi,	VI_ATTR_TRIG_ID,	VI_TRIG_TTL0);

The	above	function	sets	the	VXI	trigger	line	to	TTL	trigger	line	0
(VI_TRIG_TTL0).	The	following	table	shows	valid	VXI	trigger	lines.

VXI	Trigger	Line VI_ATTR_TRIG_ID	Value

TTL	0 VI_TRIG_TTL0

TTL	1 VI_TRIG_TTL1

TTL	2 VI_TRIG_TTL2

TTL	3 VI_TRIG_TTL3

TTL	4 VI_TRIG_TTL4

TTL	5 VI_TRIG_TTL5

TTL	6 VI_TRIG_TTL6

TTL	7 VI_TRIG_TTL7

ECL	0 VI_TRIG_ECL0

ECL	1 VI_TRIG_ECL1

Panel	In* VI_TRIG_PANEL_IN

*Panel	In	is	an	Agilent	extension	of	the	VISA	specification.

Once	you	set	a	VXI	trigger	line,	you	can	set	up	an	event	handler	to	be	called
when	the	trigger	line	fires.	See	Using	Events	and	Handlers	for	more	information
on	setting	up	an	event	handler.	Once	the	VI_EVENT_TRIG	event	is	enabled,	the
VI_ATTR_TRIG_ID	becomes	a	read	only	attribute	and	cannot	be	changed.	You
must	set	this	attribute	prior	to	enabling	event	triggers.

The	VI_ATTR_TRIG_ID	attribute	can	also	be	used	by	viAssertTrigger	function

to	assert	software	or	hardware	triggers.	If	VI_ATTR_TRIG_ID	is	VI_TRIG_SW,
the	device	is	sent	a	Word	Serial	Trigger	command.	If	the	attribute	is	any	other
value,	a	hardware	trigger	is	sent	on	the	line	corresponding	to	the	value	of	that
attribute.

Programming	PXI	Devices

Agilent	VISA	supports	programming	PXI	(PCI	eXtensions	for	Instrumentation),
PXIe	(PCI	eXpress	eXtensions	for	Instrumentation),	and	PCIe	(PCI	EXPRESS)
devices	installed	in	a	PC	or	PXI	chassis.	These	topics	describe	how	to	program
these	devices:

PXI	Overview
Using	High-Level	Memory	Functions
Using	Low-Level	Memory	Functions
Using	PXI-Specific	Attributes
Using	PXI	MEMACC

See	Programming	with	VISA,	for	general	information	on	VISA	programming.

Note:	Programming	is	identical	for	PXI,	PXIe	and	PCIe	device	types.		The	term
PXI	is	used	in	this	document	to	represent	all	three	device	types

The	Agilent	Modular	Driver	Wizard

The	Agilent	Modular	Driver	Wizard	generates	device-specific	.ini,	.inf,	and	.sys
files	for	a	PXIe	or	AXIe	device.These	files	enable	the	Agilent	IO	Libraries	Suite
to	communicate	with	the	device.	You	can	launch	the	wizard	from
<drive>:\Program	Files\Agilent\IO	Libraries
Suite\bin\Modular\ModularDriverWizard.exe.

Important	This	wizard	is	intended	for	use	by	modular	hardware
development	engineers.	It	requires	knowledge	of	hardware	interrupts	and	the
hardware	memory	map.	If	you	are	an	end	user	(not	a	module	designer)	and	need
a	driver	for	a	module,	you	should	refer	to	the	installation	software	that	came
with	your	modular	device	instead	of	using	the	wizard.If,	however,	you	need	to
regenerate	installation	files	for	the	device,	you	can	import	the	device's	vendor-
supplied	.ini	file	in	the	first	step	of	the	wizard.	After	importing,	the	wizard	can
generate	and	install	the	files	for	that	device.

javascript:void(0);

See	Also

PXI	Overview

PXI	is	a	rugged,	high-performance	modular	instrumentation	platform	designed
for	industrial	measurement	and	automation	applications.	PXI	allows	you	to	use
modules	from	multiple	vendors	and	easily	integrate	them	into	a	PXI	system.

A	PXI	device	is	identified	by	the	PCI	bus	number	where	it	is	located,	the
assigned	PCI	device	number,	and	the	device's	function	number.	For	single-
function	devices,	the	function	number	is	0	and	is	optional.	For	multi-function
devices,	the	function	number	is	device	specific	and	ranges	from	1	to	7.

The	address	string	for	a	PXI	device	is	defined	as	shown	below	(optional
parameters	are	shown	in	square	brackets	[]):

"PXI[bus]::device[::function][::INSTR]"

Some	examples	of	PXI	device	addresses	are:

PXI0::3-18::INSTR															PXI	device	18	on	bus	3

PXI0::3-18.2::INSTR												Function	2	on	PXI	device	18	on	bus	3

PXI0::21::INSTR																			PXI	device	21	on	bus	0

PXI0::CHASSIS1::SLOT4::INSTR				PXI	device	in	slot	4	of	chassis	1

PXI0::MEMACC																	Access	to	system	controller	memory	available	to
devices	in	the	PXI	system.

Finding	PXI	Devices

You	can	use	viFindRsrc()	to	search	for	specific	resources,	such	as	PXI	resources.
The	VisaFindRsrc()	function	in	the	PXIVisaSample	program	demonstrates	how
to	find	all	VISA	PXI	resources.

Each	PXI	device	has	a	vendor	code	and	model	code.	You	can	create	a	more
refined	search	by	adding	a	vendor	and/or	model	code	to	the	search	using	the
VI_ATTR_MANF_ID	attribute	.	For	example,	search	for	an	Agilent	E2929A
PCI/PCI-X	Bus	Analyzer	using	Agilent's	PCI	vendor	code	(0x15BC)	and	the
model	code	(0x2929)	as	follows:

"PXI?*INSTR{VI_ATTR_MANF_ID==0x15BC	&&
VI_ATTR_MODEL_CODE==0x2929}"

PXI	Device	Types

PXI	devices	are	register	based.		Programming	a	PXI	device	directly	from	VISA
requires	a	knowledge	of	the	register	map	of	the	device	and	must	be	done	using
the	VISA	memory	functions.	A	PXI	device	typically	does	not	have	a	processor	to
interpret	high-level	commands.	Therefore,	the	device	must	be	programmed	with
register	peeks	and	pokes	directly	to	the	device's	registers.	VISA	provides	two
different	methods	you	can	use	to	program	register-based	devices:	high-level
memory	functions	and	low-level	memory	functions.

The	Agilent	Modular	Driver	Wizard

The	Agilent	Modular	Driver	Wizard	generates	device-specific	.ini,	.inf,	and	.sys
files	for	a	PXIe	or	AXIe	device.These	files	enable	the	Agilent	IO	Libraries	Suite
to	communicate	with	the	device.	You	can	launch	the	wizard	from
<drive>:\Program	Files\Agilent\IO	Libraries
Suite\bin\Modular\ModularDriverWizard.exe.

Important	This	wizard	is	intended	for	use	by	modular	hardware
development	engineers.	It	requires	knowledge	of	hardware	interrupts	and	the
hardware	memory	map.	If	you	are	an	end	user	(not	a	module	designer)	and	need
a	driver	for	a	module,	you	should	refer	to	the	installation	software	that	came
with	your	modular	device	instead	of	using	the	wizard.If,	however,	you	need	to
regenerate	installation	files	for	the	device,	you	can	import	the	device's	vendor-
supplied	.ini	file	in	the	first	step	of	the	wizard.	After	importing,	the	wizard	can
generate	and	install	the	files	for	that	device.

javascript:void(0);

See	Also

Using	High-Level	Memory	Functions

High-level	memory	functions	allow	you	to	access	memory	through	simple
function	calls.	There	is	no	need	to	map	memory	to	a	window.	Instead,	when
high-level	memory	functions	are	used,	memory	mapping	and	direct	register
access	are	automatically	done.

High-level	memory	functions	are	easier	to	use;	however,	the	trade-off	is	speed.
Since	these	functions	encompass	mapping	of	memory	space	and	direct	register
access,	the	associated	overhead	slows	program	execution	time.	If	speed	is
required,	use	the	low-level	memory	functions	discussed	in	Using	Low-Level
Memory	Functions	.

Programming	the	Registers

High-level	memory	functions	include	the	viIn	and	viOut	functions	for
transferring	8-,	16-,	32-,	or	64-bit	values,	as	well	as	the	viMoveIn	and
viMoveOut	functions	for	transferring	8-,	16-,	32-,	or	64-bit	blocks	of	data	into	or
out	of	local	memory.

High-Level	Memory	Functions

The	table	below	summarizes	the	high-level	memory	functions.

Function Description

viIn8(vi,	space,	offset,	val8); Reads	8	bits	of	data	from	the	specified	offset.

viIn16(vi,	space,	offset,	val16); Reads	16	bits	of	data	from	the	specified	offset.

viIn32(vi,	space,	offset,	val32); Reads	32	bits	of	data	from	the	specified	offset.

viIn64(vi,	space,	offset,	val64); Reads	64	bits	of	data	from	the	specified	offset.

viOut8(vi,	space,	offset,	val8); Writes	8	bits	of	data	to	the	specified	offset.

viOut16(vi,	space,	offset,	val16); Writes	16	bits	of	data	to	the	specified	offset.

viOut32(vi,	space,	offset,	val32); Writes	32	bits	of	data	to	the	specified	offset.

viOut64(vi,	space,	offset,	val64); Writes	64	bits	of	data	to	the	specified	offset.

viMoveIn8(vi,	space,	offset,	length,	buf8); Moves	an	8-bit	block	of	data	from	the	specified	offset	to	local	memory.

viMoveIn16(vi,	space,	offset,	length,	buf16); Moves	a	16-bit	block	of	data	from	the	specified	offset	to	local	memory.

viMoveIn32(vi,	space,	offset,	length,	buf32); Moves	a	32-bit	block	of	data	from	the	specified	offset	to	local	memory.

viMoveIn64(vi,	space,	offset,	length,	buf32); Moves	a	64-bit	block	of	data	from	the	specified	offset	to	local	memory.

viMoveOut8(vi,	space,	offset,	length,	buf8); Moves	an	8-bit	block	of	data	from	local	memory	to	the	specified	offset.

viMoveOut16(vi,	space,	offset,	length,	buf16); Moves	a	16-bit	block	of	data	from	local	memory	to	the	specified	offset.

viMoveOut32(vi,	space,	offset,	length,	buf32); Moves	a	32-bit	block	of	data	from	local	memory	to	the	specified	offset.

viMoveOut64(vi,	space,	offset,	length,	buf32); Moves	a	64-bit	block	of	data	from	local	memory	to	the	specified	offset.

Using	viIn	and	viOut

When	using	the	viIn	and	viOut	high-level	memory	functions	to	program	to	the
device	registers,	all	you	need	to	specify	is	the	session	identifier,	address	space,
and	the	offset	of	the	register.	Memory	mapping	is	done	for	you.	For	example,	in

this	function:

viIn32(vi,	space,	offset,	val32);

vi	is	the	session	identifier	and	offset	is	used	to	indicate	the	offset	of	the	memory
to	be	mapped.	Offset	is	relative	to	the	location	of	this	device's	memory	in	the
given	address	space.	The	space	parameter	determines	which	memory	location	to
map.	Valid	space	values	for	PXI	devices	are:

VI_PXI_CFG_SPACE		-		Address	the	PCI	configuration	space.
VI_PXI_BAR0_SPACE	-	VI_PXI_BAR5_SPACE		-		Address	the
specified	Base	Address	Register	PCI	memory	or	I/O	space.
VI_PXI_ALLOC_SPACE	-		Access	physical	locally	allocated
memory.

The	val32	parameter	is	a	pointer	to	where	the	data	read	will	be	stored.	
If	instead	you	write	to	the	registers	via	the	viOut32	function,	the	val32	parameter
is	a	pointer	to	the	data	to	write	to	the	specified	registers.	If	the	device	specified
by	vi	does	not	have	memory	in	the	specified	address	space,	an	error	is	returned.

Using	viMoveIn	and	viMoveOut

You	can	use	the	viMoveIn	and	viMoveOut	high-level	memory	functions	to	move
blocks	of	data	to	or	from	local	memory.	Specifically,	the	viMoveIn	function
moves	an	8-,	16-,	32-,	or	64-bit	block	of	data	from	the	specified	offset	to	local
memory,	and	the	viMoveOut	functions	moves	an	8-,	16-,	32-,	or	64-bit	block	of
data	from	local	memory	to	the	specified	offset.	Again,	the	memory	mapping	is
done	for	you.	For	example,	in	this	function:

viMoveIn32(vi,	space,	offset,	length,	buf32);

vi	is	the	session	identifier	and	offset	is	used	to	indicate	the	offset	of	the	memory
to	be	mapped.	offset	is	relative	to	the	location	of	this	device's	memory	in	the
given	address	space.	The	space	parameter	determines	which	memory	location	to
map	the	space,	and	the	length	parameter	specifies	the	number	of	elements	to
transfer	(8-,	16-,	32-,	or	64-bits).

The	buf32	parameter	is	a	pointer	to	where	the	data	read	will	be	stored.	
If	instead	you	write	to	the	registers	via	the	viMoveOut32	function,	the	buf32

parameter	is	a	pointer	to	the	data	to	write	to	the	specified	registers.

High-Level	Memory	Access	Example

The	VisaHighLevelMemoryAccess	function	in	the	PXIVisaSample	program
demonstrates	how	to	use	viIn32	and	viMoveIn32	high-level	memory	functions.

//	PXIVisaSample
//			An	example	of	how	to	use	Agilent	VISA	to	get/set	attributes
//			and	access	memory	on	a	PXI	device.
//
//	Error	checking	should	always	be	done	when	making	VISA	calls.
//	To	simplify	this	example	and	make	it	easier	to	read,
//	most	error	checking	has	been	eliminated.
	
#define	WIN32_LEAN_AND_MEAN	//	Exclude	rarely-used	stuff	from
Windows	headers
#include	<stdio.h>
#include	<windows.h>
#include	"visa.h"
	
///
//	Finding	all	VISA	PXI	resources
///
void	VisaFindRsrc()
{
			ViStatus	status;
			ViSession	drm;
			printf("VISA	viFindRsrc	/	viFindNext\n");
			printf("============================\n");
	
			//	Open	a	session	to	the	VISA	default	resource	manager
			status	=	viOpenDefaultRM(&drm);
	
			//	Find	all	PXI	resources
			char	*searchExpression	=	"PXI?*";
			ViSession	viFindSession;
			ViUInt32	findCount	=	0;
			ViChar	findName[1024];
			status	=	viFindRsrc(drm,	searchExpression,	&viFindSession,	&findCount,
findName);
			if	(status	>=	VI_SUCCESS)
			{
						printf("viFindRsrc	of	'%s'	found	%d	device(s)\n",	searchExpression,

findCount);
						for	(ViUInt32	index	=	1;	index	<=	findCount;	index++)
						{
									printf("		%2d:	%s\n",	index,	findName);
									if	(index	<	findCount)
									{
												status	=	viFindNext(viFindSession,	findName);
									}
						}
						status	=	viClose(viFindSession);
			}
			status	=	viClose(drm);
			printf("\n");
}
	
void	VisaLowLevelMemoryAccess(char	*visaName)
{
			ViStatus	status;
			ViSession	drm;
			printf("VISA	Low	Level	Memory	Access	Example\n");
			printf("====================================\n");
			//	Open	a	session	to	the	VISA	default	resource	manager
			status	=	viOpenDefaultRM(&drm);
	
			//	Open	a	session	to	the	PXI	device
			ViSession	vi;
			status	=	viOpen(drm,	visaName,	VI_NULL,	VI_NULL,	&vi);
			printf("Opening	'%s'	returned	status=0x%x\n",	visaName,	status);
	
			//	Get	the	manufacturer	and	model	name
			ViChar	manfName[1024];
			ViChar	modelName[1024];
			status	=	viGetAttribute(vi,	VI_ATTR_MANF_NAME,	manfName);
			status	=	viGetAttribute(vi,	VI_ATTR_MODEL_NAME,	modelName);
			printf("			Manufacturer	Name:	'%s'\n",	manfName);
			printf("			Model	Name:								'%s'\n",	modelName);
	

			//	Get	the	size	of	the	BAR0	memory
			ViAttr				mapAttr		=	VI_ATTR_PXI_MEM_SIZE_BAR0;
			ViUInt16		mapSpace	=	VI_PXI_BAR0_SPACE;
			ViBusSize	mapSize		=	0;
			status	=	viGetAttribute(vi,	mapAttr,	&mapSize);
	
			//	Map	BAR0	memory	-	Note:	only	one	map	at	a	time	is	allowed	per	VISA
session
			ViBusAddress	mapOffset		=	0;
			ViAddr							mapAddress	=	0;
			status	=	viMapAddress(vi,	mapSpace,	mapOffset,	mapSize,	VI_NULL,
VI_NULL,	&mapAddress);
			if	(sizeof(void*)==8)
			{
						//	ViBusSize	and	viBusAddress	are	64-bit	values	in	64-bit	applications
						printf("			Size	of	BAR0	memory	=	%I64d	bytes\n",	mapSize);
						printf("			BAR0	Map	Address				=	0x%016I64x\n",	mapAddress);
			}
			else
			{
						//	ViBusSize	and	viBusAddress	are	32-bit	values	in	32-bit	applications
						printf("			Size	of	BAR0	memory	=	%d	bytes\n",	mapSize);
						printf("			BAR0	Map	Address				=	0x%08x\n",	mapAddress);
			}
	
			//	Find	out	if	BAR0	memory	can	be	dereferenced	directly
			ViUInt16	winAccess;
			status	=	viGetAttribute(vi,	VI_ATTR_WIN_ACCESS,	&winAccess);
			if	(winAccess	==	VI_DEREF_ADDR)
			{
						printf("			BAR0	memory	can	be	directly	dereferenced\n");
			}
			else	if	(winAccess	==	VI_USE_OPERS)
			{
						printf("			BAR0	memory	cannot	be	directly	dereferenced.\n");
			}
			else	if	(winAccess	==	VI_NMAPPED)

			{
						printf("			BAR0	memory	is	not	currently	mapped.\n");
			}
	
			if	(winAccess	==	VI_DEREF_ADDR)
			{
						printf("			Dereferencing	BAR0	memory\n");
						//	Here	are	some	examples	of	direct	memory	dereferencing:
						ViUInt32	memValue0	=	*((ViUInt32	*)mapAddress);
						ViUInt32	memValue1	=	*((ViUInt32	*)mapAddress+1);
						printf("						memValue0	=	0x%08x,	memValue1	=	0x%08x\n",	memValue0,
memValue1);
						ViChar	memValueArray[16];
						memcpy(memValueArray,	mapAddress,	sizeof(memValueArray));
						printf("						memValueArray	=	");
						for	(int	index	=	0;	index	<	sizeof(memValueArray);	index++)
						{
									printf("%02x",	memValueArray[index]);
						}
						printf("\n");
			}
	
			if	((winAccess	==	VI_USE_OPERS)	||	(winAccess	==	VI_DEREF_ADDR))
			{
						printf("			Using	viPeek	on	BAR0	memory\n");
						//	Some	examples	of	using	viPeek	for	memory	access:
						ViUInt32	memValue0;
						ViUInt32	memValue1;
						viPeek32(vi,	mapAddress,	&memValue0);
						viPeek32(vi,	((ViUInt32	*)mapAddress)+1,	&memValue1);
						printf("						memValue0	=	0x%08x,	memValue1	=	0x%08x\n",	memValue0,
memValue1);
			}
	
			status	=	viUnmapAddress(vi);
	
			status	=	viClose(vi);

			status	=	viClose(drm);
			printf("\n");
}
	
void	VisaHighLevelMemoryAccess(char	*visaName)
{
			ViStatus	status;
			ViSession	drm;
			printf("VISA	High	Level	Memory	Access	Example\n");
			printf("=====================================\n");
			//	Open	a	session	to	the	VISA	default	resource	manager
			status	=	viOpenDefaultRM(&drm);
	
			//	Open	a	session	to	the	PXI	device
			ViSession	vi;
			status	=	viOpen(drm,	visaName,	VI_NULL,	VI_NULL,	&vi);
			printf("Opening	'%s'	returned	status=0x%x\n",	visaName,	status);
	
			//	Get	the	manufacturer	and	model	name
			ViChar	manfName[1024];
			ViChar	modelName[1024];
			status	=	viGetAttribute(vi,	VI_ATTR_MANF_NAME,	manfName);
			status	=	viGetAttribute(vi,	VI_ATTR_MODEL_NAME,	modelName);
			printf("			Manufacturer	Name:	'%s'\n",	manfName);
			printf("			Model	Name:								'%s'\n",	modelName);
	
			ViUInt16		mapSpace	=	VI_PXI_BAR0_SPACE;
			ViUInt32	memValue0;
			ViUInt32	memValue1;
			ViUInt32	memValueArray[4];
	
			//	viIn	example
			status	=	viIn32(vi,	mapSpace,	0,	&memValue0);
			status	=	viIn32(vi,	mapSpace,	sizeof(ViUInt32)	*	1,	&memValue1);
			printf("			viIn32	from	BAR0	memory\n");
			printf("						memValue0	=	0x%08x,	memValue1	=	0x%08x\n",	memValue0,

memValue1);
	
			//	Show	the	default	DMA	value	and	set	it	to	VI_TRUE	so	viMoveIn32	will	use
DMA	if
			//	the	device	supports	it.
			ViBoolean	allowDma;
			status	=	viGetAttribute(vi,	VI_ATTR_DMA_ALLOW_EN,	&allowDma);
			printf("			Current	value	of	VI_ATTR_DMA_ALLOW_EN	is	%s\n",
										(allowDma	==	VI_TRUE)?	"VI_TRUE"	:	"VI_FALSE");
			status	=	viSetAttribute(vi,	VI_ATTR_DMA_ALLOW_EN,	VI_TRUE);
			status	=	viGetAttribute(vi,	VI_ATTR_DMA_ALLOW_EN,	&allowDma);
			printf("			After	setting	it	VI_ATTR_DMA_ALLOW_EN	is	%s\n",
										(allowDma	==	VI_TRUE)?	"VI_TRUE"	:	"VI_FALSE");
	
			//	viMoveIn	example
			status	=	viMoveIn32(vi,	mapSpace,	0,
																							sizeof(memValueArray)/sizeof(memValueArray[0]),
																							memValueArray);
			printf("			viMoveIn32	from	BAR0	memory\n");
			printf("						memValueArray	=	");
			for	(int	index	=	0;	index	<	sizeof(memValueArray)/sizeof(memValueArray[0]);
index++)
			{
						printf("0x%08x	",	memValueArray[index]);
			}
			printf("\n");
	
			status	=	viClose(vi);
			status	=	viClose(drm);
			printf("\n");
}
	
void	main()
{
			VisaFindRsrc();
	

			char	*visaName	=	"pxi0::1-1.0::instr";
	
			VisaLowLevelMemoryAccess(visaName);
			VisaHighLevelMemoryAccess(visaName);
	
}
	

Using	Low-Level	Memory	Functions

Low-level	memory	functions	allow	direct	access	to	memory,	as	do	high-level
memory	functions.	However,	with	low-level	memory	function	calls,	you	must
map	a	range	of	addresses	and	directly	access	the	registers	with	low-level
memory	functions,	such	as	viPeek32	and	viPoke32.

There	is	more	programming	effort	required	when	using	low-level	memory
functions.	However,	the	program	execution	speed	can	improve.	To	increase
program	execution	speed,	the	low-level	memory	functions	do	not	return	error
codes.

Programming	the	Registers

When	using	the	low-level	memory	functions	for	direct	register	access,	you	must
first	map	a	range	of	addresses	using	the	viMapAddress	function.	Next,	you	can
send	a	series	of	peeks	and	pokes	using	the	viPeek	and	viPoke	low-level	memory
functions.	Then,	you	must	free	the	address	window	using	the	viUnmapAddress
function.

Low-Level	Memory	Functions

You	can	program	the	registers	using	low-level	functions	for	8-,	16-,	32-,	or	64-
bit	transfers.	The	table	below	summarizes	the	low-level	memory	functions.

Function Description

viMapAddress(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,
address); Maps	the	specified	memory	space.

viPeek8(vi,	addr,	val8); Reads	8	bits	of	data	from	address	specified.

viPeek16(vi,	addr,	val16); Reads	16	bits	of	data	from	address	specified.

viPeek32(vi,	addr,	val32); Reads	32	bits	of	data	from	address	specified.

viPeek64(vi,	addr,	val64); Reads	64	bits	of	data	from	address	specified.

viPoke8(vi,	addr,	val8); Writes	8	bits	of	data	to	address	specified.

viPoke16(vi,	addr,	val16); Writes	16	bits	of	data	to	address	specified.

viPoke32(vi,	addr,	val32); Writes	32	bits	of	data	to	address	specified.

viPoke64(vi,	addr,	val64); Writes	64	bits	of	data	to	address	specified.

viUnmapAddress(vi); Unmaps	memory	space	previously	mapped.

	

Mapping	Memory	Space

When	using	VISA	to	access	the	device's	registers,	you	must	map	memory	space
into	your	process	space.	For	a	given	session,	you	can	have	only	one	map	at	a
time.	To	map	space	into	your	process,	use	the	VISA	viMapAddress	function:

viMapAddress(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,	address);

This	function	maps	space	for	the	device	specified	by	the	vi	session.	mapBase,
mapSize,	and	suggested	are	used	to	indicate	the	offset	of	the	memory	to	be
mapped,	amount	of	memory	to	map,	and	a	suggested	starting	location,
respectively.	mapSpace	specifies	the	memory	location	to	map;	the	following	are
valid	mapSpace	choices:

VI_PXI_CFG_SPACE			-		Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	-	VI_PXI_BAR5_SPACE				-		Address	the	specified
Base	Address	Register	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE			-		Access	physical	locally	allocated	memory.

A	pointer	to	the	address	space	where	the	memory	was	mapped	is	returned	in	the
address	parameter.	If	the	device	specified	does	not	have	memory	in	the	specified
address	space,	an	error	is	returned.	A	sample	viMapAddress	function	call
follows.

/*	Maps	to	VI_PXI_BAR0_SPACE	address	space	*/
viMapAddress(vi,	VI_PXI_BAR0_SPACE	0x000,	0x100,	VI_FALSE,
VI_NULL,&address);

Note:	When	calling	the	viMapAddress	function	on	a	PXI	session,	the	maximum
value	for	the	mapSize	parameter	is	1048576	(0x100000),	even	if	the	map	space
being	referenced	is	larger	than	this	value.		If	you	need	access	to	a	larger	memory
block	than	this,	there	are	two	ways	to	work	around	this	limit:

1.Use	viMoveIn,	viMoveOut,	or	viMove.		These	functions	are	not	limited	to	the
0x100000	byte	limit.

2.Use	viMapAddress	/	viUnmapAddress	multiple	times	to	map	individual	blocks
of	memory	that	are	less	than	0x100000	bytes	and	access	each	block	in	sequence.

Determining	Window	Mapping

The	VI_ATTR_WIN_ACCESS	read-only	attribute	specifies	how	a	window	can
be	accessed.	You	can	access	a	mapped	window	with	the	VISA	low-level	memory
functions,	or	with	a	pointer	if	the	address	is	dereferenced.	To	determine	how	to
access	the	window,	read	the	VI_ATTR_WIN_ACCESS	attribute.

VI_ATTR_WIN_ACCESS	Settings

The	VI_ATTR_WIN_ACCESS	read-only	attribute	can	be	set	to	one	of	the
following:

Setting Description

VI_NMAPPED Specifies	that	the	window	is	not	mapped.

VI_USE_OPERS Specifies	that	the	window	is	mapped	and	you	can	only	use	the	low-level	memory	functions	to	access
the	data.

VI_DEREF_ADDR
Specifies	that	the	window	is	mapped	and	has	a	de-referenced	address.	In	this	case	you	can	use	the
low-level	memory	functions	to	access	the	data,	or	you	can	use	a	C	pointer.	Using	a	de-referenced	C
pointer	will	allow	faster	access	to	data.

Reading	and	Writing	to	Device	Registers

When	you	have	mapped	the	memory	space,	use	the	VISA	low-level	memory
functions	to	access	the	device's	registers.	First,	determine	which	device	register
you	need	to	access.	Then,	you	need	to	know	the	register's	offset.	See	the
instrument’s	user	manual	for	a	description	of	the	registers	and	register	locations.
You	can	then	use	this	information	and	the	VISA	low-level	functions	to	access	the
device	registers.

Low-Level	Memory	Access	Example

The	VisaLowLevelMemoryAccess	function	in	the	PXIVisaSample	program
shows	some	direct	memory	dereferencing	examples,	and	some	viPeek	examples.

Unmapping	Memory	Space

Make	sure	you	use	the	viUnmapAddress	function	to	unmap	the	memory	space

when	it	is	no	longer	needed.	Unmapping	memory	space	makes	the	window
available	for	the	system	to	reallocate.

Using	PXI-Specific	Attributes

PXI-specific	attributes	are	useful	to	determine	device	settings	such	as	the	PCI
bus,	device,	and	function	numbers,	the	size	of	BARn	memory,	and	so	on.	For
example,	to	determine	the	size	of	BAR0	memory:

//	Get	the	size	of	the	BAR0	memory

			ViAttr				mapAttr		=	VI_ATTR_PXI_MEM_SIZE_BAR0;

			ViUInt16		mapSpace	=	VI_PXI_BAR0_SPACE;

			ViBusSize	mapSize		=	0;

			status	=	viGetAttribute(vi,	mapAttr,	&mapSize);

PXI-Specific	Attributes

VI_ATTR_PXI_BUS_NUM		-		PCI	bus	number	of	this	device.

VI_ATTR_PXI_DEV_NUM		-		PCI	device	number	of	this	device.

VI_ATTR_PXI_FUNC_NUM		-		PCI	function	number	of	the	device.	All	devices
have	a	function	0.	Multifunction	devices	also	support	other	function	numbers.

VI_ATTR_PXI_SLOTPATH		-		Slot	path	of	this	device.	A	PXI	slot	path	is	a
sequence	of	values	representing	the	PCI	device	number	and	function	number	of
a	PCI	module	and	each	parent	PCI	bridge	that	routes	the	module	to	the	host	PCI
bridge.	The	string	format	of	the	attribute	value	is	device1[.function1]
[,device2[.function2]][,...].

VI_ATTR_PXI_SLOT_LBUS_LEFT		-		Slot	number	or	special	feature
connected	to	the	local	bus	left	lines	of	this	device.

VI_ATTR_PXI_SLOT_LBUS_RIGHT		-		Slot	number	or	special	feature
connected	to	the	local	bus	right	lines	of	this	device.

VI_ATTR_PXI_TRIG_BUS		-		Number	of	the	trigger	bus	connected	to	this
device	in	the	chassis.

VI_ATTR_PXI_STAR_TRIG_BUS		-		Number	of	the	star	trigger	bus	connected
to	this	device	in	the	chassis.

VI_ATTR_PXI_STAR_TRIG_LINE		-		PXI_STAR	line	connected	to	this
device.

VI_ATTR_PXI_MEM_TYPE_BARn		-		Memory	type	(memory	mapped	or	I/O
mapped)	used	by	the	device	in	the	specified	BAR.

VI_ATTR_PXI_MEM_BASE_BARn		-		Memory	base	address	assigned	to	the
specified	BAR	for	this	device.

VI_ATTR_PXI_MEM_SIZE_BARn		-		Size	of	the	memory	assigned	to	the
specified	BAR	for	this	device.

VI_ATTR_PXI_CHASSIS		-		Chassis	number	in	which	this	device	is	located.

VI_ATTR_PXI_IS_EXPRESS		-		Specifies	whether	this	device	is	PXI	Express.

VI_ATTR_PXI_SLOT_LWIDTH		-		Specifies	the	link	width	used	by	the	slot	in
which	this	device	is	located.

VI_ATTR_PXI_MAX_LWIDTH		-		Specifies	the	maximum	link	width	that	this
device	can	use.

VI_ATTR_PXI_ACTUAL_LWIDTH		-		Specifies	the	negotiated	link	width	that
this	device	is	using.

VI_ATTR_PXI_DSTAR_BUS		-		Number	of	the	DSTAR	bus	connected	to	this
device	in	the	chassis.

VI_ATTR_PXI_DSTAR_SET		-		Specifies	the	set	of	PXI_DSTAR	lines
connected	to	this	device.

	

Using	PXI	MEMACC

The	PXI	MEMACC	resource	provides	the	attributes,	events,	and	operations
necessary	to	allow	controller	software	and	PXI	devices	to	access	PXI	system
controller	memory.	The	address	string	for	PXI	MEMACC	is:

PXI0::MEMACC												Access	to	system	controller	memory	available	to
devices	in	the	PXI	system.

For	more	information,	refer	to	Using	the	Memory	Access	Resource.

	

Programming	via	LAN

This	section	describes	how	to	program	instruments	via	a	LAN	(Local	Area
Network).	Topics	are:

LAN	and	Remote	Interfaces	Overview
Using	the	TCPIP	Interface	Type	for	LAN	Access
Using	a	Remote	Interface	for	LAN	Access

LAN	and	Remote	Interfaces	Overview

This	topic	contains	an	overview	of	LAN	(Local	Area	Network)	interfaces.	A
LAN	is	a	way	to	extend	the	control	of	instrumentation	beyond	the	limits	of
typical	instrument	interfaces.	To	communicate	with	instruments	over	the	LAN,
you	must	first	configure	a	LAN	interface	or	a	remote	GPIB,	USB,	or	serial
interface,	using	the	Agilent	Connection	Expert.

Direct	LAN	Connection	versus	Remote	IO	Server/Client	Connection

Some	instruments	support	direct	connection	to	the	LAN.	These	instruments
include	an	RJ-45	or	other	standard	LAN	connector	and	software	support	for
operating	as	an	independent	device	on	the	network.	Some	of	these	instruments
are	Web-enabled,	meaning	that	they	host	a	Web	page	which	you	can	access	over
the	LAN.

With	the	Agilent	IO	Libraries	Suite,	you	can	connect	to	instruments	across	the
LAN	even	if	they	do	not	have	direct	LAN	capability,	if	they	are	connected	to
gateways	(such	as	the	Agilent	E5810A)	or	to	another	PC	running	the	Remote	IO
Server	software.

Refer	to	the	IO	Libraries	Suite	and	the	Connectivity	Guide	for	information	on
connecting	and	configuring	different	types	of	LAN	instrument	connections.

Remote	IO	Server/Client	Architecture

The	Remote	IO	Server	and	Client	software	provided	with	Agilent	IO	Libraries
Suite	allows	instrumentation	to	be	controlled	over	a	LAN.	Using	standard	LAN
connections,	instruments	can	be	controlled	from	computers	that	do	not	have
special	interfaces	for	instrument	control.

Client/Server	Model

The	IO	Libraries	Suite	software	uses	the	client/server	model	of	computing.
Client/server	computing	refers	to	a	model	in	which	an	application	(the	client)
does	not	perform	all	necessary	tasks	of	the	application	itself.	Instead,	the	client
makes	requests	of	another	computing	device	(the	remote	I/O	server)	for	certain
services.

As	shown	in	the	following	figure,	a	remote	I/O	client	(a	Windows	PC)	makes
VISA	requests	over	the	network	to	a	remote	I/O	server	(such	as	a	Windows	PC,
an	E5810A	LAN/GPIB	Gateway,	or	a	Series	700	HP-UX	workstation).

Gateway	Operation

The	remote	I/O	server	is	connected	to	the	instrumentation	or	devices	to	be
controlled.	Once	the	remote	I/O	server	has	completed	the	requested	operation	on
the	instrument	or	device,	the	remote	I/O	server	sends	a	reply	to	the	client.	This
reply	contains	the	requested	data	and	status	information	that	indicates	whether	or
not	the	operation	was	successful.	The	remote	I/O	server	acts	as	a	gateway
between	the	LAN	software	that	the	client	system	supports	and	the	instrument-
specific	interface	that	the	device	supports.

	

Using	the	TCPIP	Interface	Type	for	LAN	Access

VISA	provides	the	TCPIP	interface	type	to	communicate	with	LAN-connected
devices.	These	can	be	devices	connected	directly	to	the	LAN,	or	they	can	be
connected	to	the	LAN	through	a	LAN	gateway,	such	as	the	Agilent	E5810A
LAN/GPIB	gateway,	or	through	Remote	IO	Server	software	running	on	a	remote
computer	with	instruments	connected	to	it.

The	TCPIP	interface	type	supports	these	protocols:

VXI-11	(TCP/IP	Instrument	Protocol)	is	a	networking	protocol,
developed	by	the	VXIbus	Consortium,	which	permits	interoperability
of	LAN	software	from	different	vendors.	This	protocol	supports	SICL
and	VISA	operations	to	a	LAN-based	VXI-11	instrument,	SICL
operations	over	the	LAN	to	GPIB	or	VXI	interfaces	(message-based
devices	only),	and	VISA	operations	over	the	LAN	to	GPIB	interfaces.
The	VXI-11	protocol	does	not	support	serial	or	USB	interfaces.
High-Speed	LAN	Instrument	Protocol	(HiSLIP)	is	a	protocol	for	TCP-
based	instrument	control	that	provides	high-speed	performance
while	maintaining	the	instrument-like	capabilities	of	conventional	test
and	measurement	protocols.
SICL-LAN	is	an	older	networking	protocol	developed	by	Agilent
Technologies.	The	SICL-LAN	protocol	supports	SICL	operations	over
the	LAN	to	GPIB,	VXI	(message-based	devices	only),	USB,	and	RS-
232	interfaces.
Raw	socket	connection	is	a	protocol	for	instruments	that	do	not
support	a	higher-level	protocol.	The	SOCKET	resource	exposes	the
capability	of	a	raw	network	socket	connection	over	TCP/IP.	This
usually	means	Ethernet	but	the	protocol	is	not	restricted	to	that
physical	interface.	Services	are	provided	to	send	and	receive	blocks
of	data.		

Like	HiSLIP,	sockets	is	a	"fire	and	forget"	sender	protocol.	This
means	that	when	a	command	is	sent	over	sockets	(or	HiSLIP),	the
protocol	writes	it	to	the	connection,	but	does	not	verify	that	the
command	has	been	received	or	processed	by	the	instrument	before
returning	from	the	send.	This	can	sometimes	cause	command

execution	problems	when	making	multiple	connections	to	an
instrument,	see	Multiple	Connections	for	ways	to	ensure	proper
command	execution.

The	protocol(s)	you	will	use	depends	upon	the	devices	you	are	using	and	the
protocol(s)	that	they	support.	Many	instruments	support	multiple	protocols.

Using	the	SICL-LAN	or	VXI-11	Protocol

For	VXI-11	or	SICL-LAN,	the	format	of	a	TCPIP	VISA	resource	string	is:

TCPIP[board]::hostname[::LAN	device	name][::INSTR]

where:

board	=	board	number	(default	is	0)
hostname	=	the	hostname	or	IPv4	IP	address	of	the	LAN	device	or
server.	Note:	IPv6	addressing	cannot	be	used	with	the	VXI-11	or
SICL-LAN	protocols.	IPv6	is	supported	for	HiSLIP	and	Raw	Sockets.
LAN	device	name	=	the	remote	device	name	(case	sensitive	with
default	name	of	inst0)

The	VXI-11	protocol	constrains	the	LAN	device	name	to	be	of	the	form	inst0,
inst1,	…	for	VXI-11.3	devices	and	gpib0,n,	gpib1,n,	…	for	VXI-11.2	(GPIB
Emulation)	devices.

The	SICL-LAN	protocol	allows	any	valid	SICL	name	for	the	LAN	device	name.
A	valid	SICL	name	must	be	a	unique	string	of	alphanumeric	characters,	starting
with	a	letter.

The	following	table	shows	some	examples	of	TCPIP	resource	strings.

String Description

TCPIP0::123.456.0.21::gpib0,2::INSTR A	VXI-11.2	GPIB	device	at	a	machine	whose	IP	address	is
123.456.0.21.

TCPIP0::myMachine::inst0::INSTR A	VXI-11.3	LAN	instrument	at	hostname	myMachine.

TCPIP::myMachine
A	VXI-11.3	LAN	instrument	at	hostname	myMachine.
Note	that	default	values	for	board	=	0,	LAN	device	name
=	inst0,	and	the	::INSTR	resource	class	are	used.

TCPIP0::testMachine1::COM1,488::INSTR

An	RS-232	device	connected	to	a	LAN	server	or	gateway
at	hostname	testMachine1.	This	device	must	use	SICL-
LAN	protocol	since	RS-232	devices	are	not	supported	by
the	VXI-11	protocol.

TCPIP0::myMachine::gpib0,2::INSTR
A	GPIB	device	at	hostname	myMachine.	This	device	must
use	SICL-LAN	protocol	since	gpib0,2	is	not	a	valid
remote	name	with	the	VXI-11	protocol.

TCPIP0::myMachine::UsbDevice1::INSTR

A	USB	device	with	a	SICL	alias	of	UsbDevice1	connected
to	a	LAN	server	at	hostname	myMachine.	Note	that	the
SICL	alias	is	defined	on	the	remote	machine,	not	on	the
local	machine.

	

		Although	the	SICL	and	VISA	alias	names	are	normally
the	same,	if	they	are	not,	you	must	be	sure	to	use	the	SICL
alias	and	not	the	VISA	alias.

	

This	device	must	use	the	SICL-LAN	protocol	since	USB
devices	are	not	supported	by	the	VXI-11	protocol.

TCPIP0::myMachine::usb0[2391::1031::SN_00123::0]::INSTR

A	USB	device	with:

	

				Manufacture	ID	=	2391

				Model	Code	=	1031

				Serial	Number	=	'SN_00123'

				USBTMC	Intfc	#	=	0

	

connected	to	a	LAN	server	at	hostname	myMachine.

	

This	device	must	use	SICL-LAN	protocol	since	USB
devices	are	not	supported	by	the	VXI-11	protocol.

Note:	A	LAN	session	to	a	remote	interface	provides	the	same	VISA	function
support	as	if	the	interface	were	local,	except	that	VXI-specific	functions	are	not
supported	over	LAN.

Addressing	a	Session	Using	the	TCPIP	Interface	Type

This	sample	shows	one	way	to	open	a	device	session	with	a	GPIB	device	at
primary	address	23	on	a	remote	PC	that	is	running	a	LAN	server.	The	hostname
of	the	remote	PC	is	myMachine.	See	Programming	with	VISA,	for	more
information	on	addressing	device	sessions.

ViSession	defaultRM,	vi;.

.

viOpenDefaultRM(&defaultRM);

viOpen(defaultRM,	"TCPIP0::myMachine::gpib0,23::INSTR",	VI_NULL,
VI_NULL,	&vi);

.

.

viClose(vi);

viClose(defaultRM);

Using	the	HiSLIP	Protocol

HiSLIP	works	at	nearly	the	speed	of	raw	sockets,	allowing	fast	query/response
transactions	and	fast	bulk	data	transfers	while	still	supporting	the	instrument-like
capabilities	of	conventional	test	and	measurement	protocols.	The	HiSLIP
protocol	is	similar	to	VXI-11;	however,	there	are	differences,	see	Comparing
HiSLIP	and	VXI-11	Systems		for	details.

HiSLIP	Features

In	addition	to	high-performance	with	instrument-like	capabilities,
HiSLIP	has	the	following	features.
Reliable	end	of	message	(EOM)	signaling,	regardless	of	data	sent.
Asynchronous	service	request	(SRQ)	signaling	(viInstallHandler,
viEnableEvent	support	VI_EVENT_SERVICE_REQ).
Status	byte	(viReadStb)	readable	regardless	of	the	data/command
state	of	the	instrument,	including	when	the	instrument	is	hanging	on
a	command).
Device	Clear	(viClear)	clears	the	connection	of	data	and	commands,
including	when	the	instrument	is	hanging	on	a	command.
Supports	remote/local	status	and	control	(viGpibControlREN,
VI_ATTR_GPIB_ADDR_STATE,	and	VI_ATTR_GPIB_REN_STATE).
Enhanced	locking:

Shared	and	exclusive	locks	are	maintained	in	the	instrument,
allowing	locks	to	be	honored	by	all	hosts	attempting	HiSLIP
connections	to	the	instrument.	
Delayed	lock	error	reporting	allows	more	natural	lock
enforcement.	See	HiSLIP	Locking	Behavior	for	details.
Stale	responses	are	detected	and	suppressed	via	interrupted
error	handling.

Supports	both	IPv4	(Internet	Protocol	version	4)	and	IPv6	(Internet
Protocol	version	6)	connections.	IPv4	uses	a	32-bit	address	space;
IPv6	uses	a	128-bit	address	space.
For	more	information	on	the	HiSLIP	protocol,	see	the	HiSLIP
specification	and	the	latest	VISA	specification.	Both	specifications
are		available	at	www.ivifoundation.org.

http://www.ivifoundation.org/

Identifying	HiSLIP	Devices

An	instrument	that	supports	HiSLIP	is	identified	in	the	system	by	its	VISA
address.	The	address	syntax	is

TCPIP[board]::host	address[::HiSLIP	device	name[,HiSLIP	port]][::INSTR]

Note:	The	HiSLIP	device	name	must	begin	with	hislip	to	establish	a	HiSLIP
session.

For	example,	a	typical	HiSLIP	VISA	address	for	a	TCP/IP	device		located	at
IPv6	IP	address	fe80::1	is:

TCPIP0::[fe80::1]::hislip0::INSTR					

HiSLIP	VISA	Attributes

The	HiSLIP	protocol	introduces	three	new	VISA	attributes	for	HiSLIP	devices:

VI_ATTR_TCPIP_HISLIP_OVERLAP_EN		-		If	VI_TRUE,	enables
overlap	mode	for	HiSLIP.	If	VI_FALSE,	the	synchronous	mode	is
used.	Refer	to	Synchronous	and	Overlap	Modes	for	a	description	of
these	modes.
VI_ATTR_TCPIP_HISLIP_VERSION		-		Returns	the	ViVersion	in	use
by	the	current	HiSLIP	session.	For	example,	HiSLIP	version	1.0
returns		a	ViVersion	value	of	0x00100000.
VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB		-		Specifies	the
largest	size	HiSLIP	message	VISA	will	accept	in	units	of	kilobytes;	
defaults	to	1024	(a	1	MB	maximum	message	size).

HiSLIP	Locking	Behavior

The	HiSLIP	protocol	introduces	these	new	locking	behaviors:

Lock	enforcement	for	HiSLIP	devices	is	done	by	the	HiSLIP	device.
viLock()	pushes	shared	and	exclusive	locks	requested	on
HiSLIP	connections	to	the	HiSLIP	device,	with	the	exception	of
nested	locks.
Lock-respecting	VISA	operations	are	sent	to	the	device.

If	the	HiSLIP	device	is	locked	and	the	current	session	does	not
have	the	lock,	the	operation	is	delayed	until	the	lock	is	released.
If	VISA	times	out	on	an	operation	on	a	HiSLIP	connection,	VISA
checks	whether	the	HiSLIP	device	is	locked.	If	a	lock	delayed
the	operation	too	long,	it	returns	a	(delayed)
VI_ERROR_RSRC_LOCKED	return	value.

Device	Clear	on	a	HiSLIP	connection	clears	any	queued	operations
delayed	by	a	lock.
viUnlock()	sends	an	unlock	request	to	the	HiSLIP	device	as	the	last
of	any	nested	locks	is	unlocked.
VI_RSRC_LOCK_STATE	[VI_ATTR_RSRC_LOCK_STATE]	now
returns	the	lock	state	across	all	open	connections	of	the	same
interface	and	protocol.		For	HiSLIP,	this	requires	querying	the	HiSLIP
device	for	the	lock	state.

Comparing	HiSLIP	and	VXI-11	Systems

HiSLIP	and	VXI-11	systems	are	similar	in	many	ways.	For	example,	both
systems	support	sub-instrument	addressing.	HiSLIP	can	be	used	as	a	functional
replacement	for	VXI-11,	but	there	are	some	differences:

Performance:	HiSLIP	is	significantly	faster	than	VXI-11.	If	your
program	has	timing	dependencies	based	on	VXI-11	performance,
you	may	need	to	change	it	to	accommodate	the	faster	HiSLIP.
Multiple	connections:	HiSLIP	permits	many	simultaneous	active
connections,	whereas	VXI-11	only	allows	one	connection	at	a	time.	It
is	your	responsibility	to	coordinate	instrument	operations	on	multiple
connections,	for	example	by	using	locks	(see	below).	Locks
guarantee	that	the	operations	done	while	the	lock	is	active	are
complete	before	the	lock	is	released.	That	ensures	that	all
instrument	changes	made	by	a	HiSLIP	connection	holding	the	lock
are	complete	before	any	other	HiSLIP	connection	can	have	its
commands	executed.	Even	if	your	application	ensures	HiSLIP
connections	do	not	overlap,	you	should	make	sure	that	all	operations
requested	by	a	particular	HiSLIP	connection	are	complete	before
closing	that	connection	(for	example	by	using	*OPC?	at	the	end	of
the	command	sequence	on	the	connection).	Otherwise,	the	next
HiSLIP	connection	might	interfere	with	the	completion	of	the	last

HiSLIP	connection’s	instrument	operations.
Fire	and	forget:	Like	sockets,	HiSLIP	is	a	"fire	and	forget"	sender
protocol.	This	means	that	when	a	command	is	sent	over	HiSLIP	(or
sockets),	the	protocol	writes	it	to	the	connection,	but	does	not	verify
that	the	command	has	been	received	or	processed	by	the	instrument
before	returning	from	the	send.	By	contrast,	VXI-11	handshakes
each	command,	so	that	the	send	does	not	return	until	the	command
has	been	received	at	the	VXI-11	driver	layer	in	the	instrument.
Locking:

Shared	locks:	HiSLIP	holds	both	shared	and	exclusive	locks	in
the	instrument.	VXI-11	holds	exclusive	locks	in	the	instrument,
but	shared	locks	in	the	VISA	layer.	Because	of	this,	HiSLIP	can
coordinate	shared	locks	across	multiple	test	controllers,
whereas	VXI-11	cannot.
Lock	errors:	HiSLIP	utilizes	"lazy"	lock	errors:	If	an	instrument
is	locked	when	a	command	is	sent	via	HiSLIP,	the	sent
command	is	buffered	in	the	instrument	and	the	protocol	waits
briefly,	to	allow	the	lock	to	be	released.	If	the	lock	is	released	in
a	timely	manner,	there	will	be	no	error.	If	not,	a	subsequent
viRead	may	time	out	and	return	a	lock	error.	In	VXI-11,	lock
errors	are	returned	immediately.
HiSLIP	and	VXI-11	locks	are	independent:	A	HiSLIP	lock	will
not	lock	out	operations	on	a	VXI-11	connection,	nor	will	a	VXI-11
lock	affect	operations	on	a	HiSLIP	connection.
IPv6	support:	HiSLIP	supports	both	IPv4	(Internet	Protocol
version	4)	and	IPv6	(Internet	Protocol	version	6)	connections.
IPv4	uses	a	32-bit	address	space;	IPv6	uses	a	128-bit	address
space.	VXI-11	does	not	support	IPv6.

Interrupted	errors:	HiSLIP	detects	and	corrects	interrupted	errors
by	default,	but	can	also	be	operated	in	an	overlapped	mode	where
interrupted	errors	are	ignored	but	responses	are	sent	as	quickly	as
possible	from	the	HiSLIP	system.
Modes:	The	HiSLIP	synchronous	mode	is	similar	to	VXI-11,	GPIB,
and	USBTMC	behavior.	Overlap	mode	is	unique	to	HiSLIP.	Both
synchronous	and	overlapped	modes	are	discussed	in	the	next
section.

	

Synchronous	and	Overlap	Modes

In	synchronous	mode,	HiSLIP	detects	and	corrects	for	interrupted	errors.	In
overlap	mode,	HiSLIP	ignores	interrupted	errors	and	sends	responses	as	quickly
as	possible.	The	mode	is	controlled	by	the
VI_ATTR_TCPIP_HISLIP_OVERLAP_EN	attribute.

Synchronous	Mode

In	synchronous	mode,	VISA	and	the	instrument	work	together	to	discard	stale
responses.	For	example,	if	your	program	sends	two	queries,	but	does	just	one
read,	the	first	response	is	discarded	and	the	second	response	is	read.	In	some
cases,	when	an	interrupted	error	is	detected	by	the	instrument,	an	error	is	sent	to
the	instrument’s	error	log.

Overlap	Mode

Overlap	mode	allows	multiple	operations	to	be	initiated	and	conducted
independently	of	the	rate	the	device	processes	messages	and	sends	responses.	In
overlap	mode,	stale	responses	(interrupted	errors)	are	ignored	and	the	instrument
is	free	to	send	responses	as	soon	as	they	occur.		The	responses	are	returned	in	the
same	order	the	messages	were	sent.		Your	test	application	is	responsible	for
associating	the	responses	with	the	queries	that	generated	them	(by	reading	the
responses	in	the	order	that	the	queries	were	sent).

Creating	a	HiSLIP	Program

Since	HiSLIP	programming	is	similar	to	VXI-ll	programming,	you	can	start	with
any	sample	program	for	an	instrument	that	uses	an	IO	interface	and	change	the
address	string.	For	example,	change	the	address	string	in	the	viOpen()	call	to:

	

err	=	viOpen(rmSession,	"TCPIP0::myInstHostname::hislip0::INSTR",
VI_NO_LOCK,	4000,	&viSession);

	

Using	a	Remote	Interface	for	LAN	Access

Agilent	VISA	provides	three	types	of	VISA	LAN	Client	interfaces,	implemented
in	Agilent	IO	Libraries	Suite	as	remote	interfaces:

Remote	serial	interface	(ASRL	VISA	LAN	Client)
Remote	GPIB	interface	(GPIB	VISA	LAN	Client)
Remote	USB	interface	(USB	VISA	LAN	Client)

Remote	interfaces	are	configured	using	Connection	Expert;	they	provide	virtual
GPIB,	serial,	or	USB	interfaces.	They	make	it	possible	to	remotely	access	a
LAN-connected	device	as	if	it	were	connected	to	a	local	interface.	If,	for
example,	the	GPIB2		interface	is	configured	as	a	remote	GPIB	interface,	a
program	controlling	the	devices	GPIB2::5::INSTR	and	GPIB2::7::INSTR	would
not	be	aware	of	the	fact	that	these	devices	are	actually	connected	via	LAN	and
not	to	a	GPIB	interface	connected	to	the	local	machine.

Note:	See	the	Agilent	IO	Libraries	Suite	Help	for	specific	information	on
configuring	remote	interfaces.

Remote	Serial	Interface	(ASRL	VISA	LAN	Client)

A	remote	serial	interface	can	use	only	the	SICL-LAN	protocol.	A	remote	serial
interface	can	be	configured	to	use	the	serial	port	on	the	Agilent	E5810A
LAN/GPIB	gateway	or	the	serial	ports	on	a	PC	running	the	Remote	IO	Server
software.

Remote	GPIB	Interface	(GPIB	VISA	LAN	Client)

A	remote	GPIB	interface	can	use	both	the	VXI-11	and	SICL-LAN	protocols.
Typical	uses	for	remote	GPIB	interfaces	are	with	LAN/GPIB	gateways	(for
example,	Agilent	E5810A),	PCs	with	GPIB	interfaces	that	are	running	a	LAN
server,	and	VXI-11.2	LAN-based	instruments.

A	remote	GPIB	interface	can	only	be	used	to	communicate	with	VXI-11.2
(GPIB	Emulation)	devices.	This	is	because	the	VISA	GPIB	interface	type
requires	a	primary	and	(optionally)	a	secondary	address	when	communicating
with	a	device.	VXI-11.3	devices	do	not	support	the	concept	of	a	primary	address,

so	they	cannot	be	accessed	with	a	remote	GPIB	interface.

Remote	USB	Interface	(USB	VISA	LAN	Client)

A	remote	USB	interface	can	use	only	the	SICL-LAN	protocol.	It	can
communicate	with	USB	devices	attached	to	a	remote	PC	running	the	Remote	IO
Server	software.

Note	that	if	you	have	defined	a	VISA	alias	for	a	USB	device	on	the	remote	I/O
server,	you	must	either	define	the	same	(or	another)	alias	for	the	remote	USB
device	on	the	client	PC,	or	use	the	full	USB	resource	string.	Alias	definitions	are
not	shared	between	the	remote	I/O	server	and	the	client.

Addressing	a	Session	Using	a	Remote	Interface

In	general,	the	rules	to	address	a	remote	session	are	the	same	as	to	address	a
local	session.	The	only	difference	for	a	remote	session	is	that	you	use	the	VISA
interface	ID	(provided	during	I/O	configuration	via	Connection	Expert)	that
relates	to	the	remote	interface.

The	following	sample	shows	one	way	to	open	a	device	session	with	a	GPIB
device	at	primary	address	23	on	a	remote	PC	that	is	running	Remote	IO	Server
software.	A	remote	GPIB	interface	has	been	configured	at	GPIB2	to
communicate	with	that	machine.	See	Programming	with	VISA,	for	more
information	on	addressing	device	sessions.

ViSession	defaultRM,	vi;.

.

viOpenDefaultRM(&defaultRM);

viOpen(defaultRM,	"GPIB2::23::INSTR",	VI_NULL,	VI_NULL,	&vi);

.

.

viClose(vi);

viClose(defaultRM);

	

Programming	via	USB

This	section	provides	describes	how	to	program	USB	instruments	that	conform
to	USBTMC	(Universal	Serial	Bus	Test	and	Measurement	Class)	and/or
USBTMC-USB488	(Universal	Serial	Bus	Test	and	Measurement	Class,	Subclass
USB488	Specification).	Topics	are:

USB	Interfaces	Overview
Communicating	with	a	USB	Instrument	Using	VISA

USB	Interfaces	Overview

USBTMC/USBTMC-USB488	instruments	are	detected	and	automatically
configured	by	Agilent	VISA	when	they	are	plugged	into	the	computer.	The
Agilent	IO	Libraries	Suite	Help	describes	the	USB	instrument	configuration
process	in	more	detail.

Note:	Do	not	confuse	the	Agilent	82357	USB/GPIB	Interface	with	a	USBTMC
device.	The	82357	is	automatically	configured	as	a	GPIB	interface,	not	as	a
USBTMC	device,	when	it	is	plugged	into	the	computer.	Only
USBTMC/USBTMC-USB488	devices	are	configured	as	USB	devices	by
Agilent	VISA.

Due	to	the	complexity	of	the	VISA	USB	resource	string,	a	VISA	alias	(simple
name)	is	assigned	to	each	USB	instrument	when	it	is	plugged	into	the	computer.
You	can	use	either	the	alias	or	the	full	VISA	resource	string	when	opening	a
VISA	resource,	but	using	the	alias	is	recommended	because	it	is	simpler	and
because	it	allows	substitution	of	USB	instruments	without	the	need	to	change	the
VISA	program.

You	can	also	create	VISA	aliases	for	other	(non-USB)	instruments,	using	the
Agilent	Connection	Expert.

Communicating	with	a	USB	Instrument	Using	VISA

To	establish	communications	with	a	USB	device	using	VISA,	you	can	either	use
the	full	VISA	resource	string	for	the	device	or	use	the	alias	provided	by	VISA.
Using	the	alias	is	recommended,	for	reasons	described	below.

Using	the	full	VISA	resource	string,	a	viOpen	call	would	look	something	like
this:

viOpen(.	.	.,	"USB0::2391::1031::0000000123::0::INSTR",	.	.	.);

Following	is	a	summary	of	the	components	of	this	call.

Value Description Data	Type

2391 Manufacturer	ID 16-bit	unsigned	integer

1031 Model	Code 16-bit	unsigned	integer

0000000123 Serial	Number string	value

0 USBTMC	Interface	Number 8-bit	unsigned	integer

This	string	uniquely	identifies	the	USB	device.	The	values	needed	for	the
resource	string	are	displayed	in	a	dialog	box	when	the	device	is	plugged	into	the
computer.

To	simplify	the	way	a	USB	device	is	identified,	Agilent	VISA	also	provides	an
alias	which	can	be	used	in	place	of	this	resource	string.	The	first	USB	device	that
is	plugged	in	is	assigned	a	default	alias	of	UsbDevice1.	Additional	devices	are
assigned	aliases	of	UsbDevice2,	UsbDevice3,	etc.	You	can	modify	the	default
alias	name	at	the	time	a	device	is	plugged	in,	or	by	running	Agilent	Connection
Expert	and	changing	the	properties	of	the	VISA	alias.

Although	the	case	of	a	VISA	alias	is	preserved,	case	is	ignored	when	the	alias	is
used	in	place	of	the	full	resource	string	in	a	viOpen	call.	For	example,
UsbDevice1,	usbdevice1	and	USBDEVICE1	all	refer	to	the	same	device.

Using	the	alias,	a	viOpen	call	would	look	something	like	this:

viOpen(.	.	.,	"UsbDevice1",	.	.	.);

This	is	much	simpler	than	having	to	use	the	full	resource	string	for	a	USB
device.

Using	the	alias	in	a	program	also	makes	it	more	portable.	For	example,	two
identical	USB	function	generators	have	different	resource	strings	because	they
have	different	serial	numbers.	If	these	function	generators	are	used	in	two
different	test	systems	and	you	use	the	full	resource	string	to	access	the	function
generator	in	the	test	program,	you	cannot	use	that	same	program	for	both	test
systems,	since	the	function	generators’	full	resource	strings	are	different.	By
using	the	alias	in	the	program,	however,	you	can	use	the	same	program	in	both
test	systems.	All	you	need	to	do	is	make	sure	the	same	alias	is	used	for	the
function	generator	in	both	systems.

	

List	of	VISA	Functions

This	lists	show	VISA	functions	implemented	by	Agilent	VISA	grouped	by	type.
The	data	types	for	the	VISA	function	parameters	(for	example,	ViSession,	etc.)
are	defined	in	the	VISA	declarations	file.

Function Usage

Opening/Closing	Sessions

viOpenDefaultRM Open	default	RM	session

viOpen Open	session

viClose Close	session

Control

viAssertTrigger Assert	software	or	hardware	trigger

viAssertUtilSignal Asserts	the	specified	utility	bus	signal

viGetAttribute Get	attribute

viMemAlloc Allocate	memory	from	a	device’s	memory	region

viMemAllocEx Allocate	memory	from	a	device’s	memory	region

viMemFree Free	memory	previously	allocated	using	viMemAlloc()	or	viMemAllocEx().

viMemFreeEx Free	memory	previously	allocated	using	viMemAlloc()	or	viMemAllocEx().

viSetAttribute Set	attribute

viStatusDesc Get	status	code	description

viTerminate Terminate	asynchronous	operation

viLock Lock	resource

viUnlock Unlock	resource

viMapTrigger Map	trigger	source	line	to	destination	line

viUnmapTrigger Map	trigger	line	to	another	trigger	line

Event	Handling/Interrupts

viAssertIntrSignal Asserts	the	specified	device	interrupt	or	signal

viEnableEvent Enable	event

viDisableEvent Disable	event

viDiscardEvents Discard	events

viWaitOnEvent Wait	on	event

viInstallHandler Install	handler

viUninstallHandler Uninstall	handler

viEventHandler Event	handler	prototype

VXI	Specific	Series

viVxiCommandQuery Send	device	a	command/query	and/o	retrieve	a	response

Searching

viFindRsrc Find	device

viFindNext Find	next	device

viParseRsrc Parse	resource	string	to	get	interface	information

viParseRsrcEx Parse	resource	string	to	get	extended	interface	information

Basic	I/O

viRead Read	data	from	device

viWrite Write	data	to	device

viReadAsync Read	data	asynchronously	from	device

viWriteAsync Write	data	asynchronously	to	device

viClear Clear	a	device

viReadToFile Read	data	synchronously	and	store	data	in	file

viWriteFromFile Write	data	from	file	synchronously

viAssertTrigger Assert	software/hardware	trigger

viReadSTB Read	status	byte

Formatted	I/O

viSetBuf Set	size	of	buffer

viBufRead Unformatted	read	to	formatted	I/O	buffers

viBufWrite Unformatted	write	to	formatted	I/O	buffers

viFlush Flush	read	and	write	buffers

viPrintf Convert,	format,	and	send	parameters	to	a	device

viSPrintf Write	data	to	a	buffer

viVSPrintf Convert,	format,	and	send	parameters	to	a	buffer

viScanf Receive	data	from	device,	format	and	store	data

viVScanf Receive	data	from	device,	format	and	store	data

viSScanf Receive	data	from	buffer,	format	and	store	data

viVSScanf Receive	data	from	buffer,	format	and	store	data

viQueryf Formatted	write	and	read	operation

viVQueryf Formatted	write	and	read	operation

Memory
I/O

viIn8 Read	8-bit	value	from	memory	space

viIn16 Read	16-bit	value	from	memory	space

viIn32 Read	32-bit	value	from	memory	space

viIn64 Read	64-bit	value	from	memory	space

viOut8 Write	8-bit	value	to	memory	space

viOut16 Write	16-bit	value	to	memory	space

viOut32 Write	32-bit	value	to	memory	space

viOut64 Write	64-bit	value	to	memory	space

viMove Move	data	from	source	to	destination

viMoveEx Move	a	block	of	data

viMoveAsync Move	data	from	source	to	destination	asynchronously

viMoveAsyncEx Move	a	block	of	data	asynchronously.

viMoveIn8 Move	8-bit	value	from	device	memory	to	local	memory

viMoveIn16 Move	16-bit	value	from	device	memory	to	local	memory

viMoveIn32 Move	32-bit	value	from	device	memory	to	local	memory

viMoveIn64 Move	64-bit	value	from	device	memory	to	local	memory

viMoveOut8 Move	8-bit	value	from	local	memory	to	device	memory

viMoveIn8Ex Move	a	block	of	data	from	the	specified	address	space	and	offset	to	local	memory	in	increments	of
8	bits.

viMoveIn16Ex Move	a	block	of	data	from	the	specified	address	space	and	offset	to	local	memory	in	increments	of
16	bits.

viMoveIn32Ex Move	a	block	of	data	from	the	specified	address	space	and	offset	to	local	memory	in	increments	of
32	bits.

viMoveIn64Ex Move	a	block	of	data	from	the	specified	address	space	and	offset	to	local	memory	in	increments	of
64	bits.

viMoveOut16 Move	16-bit	value	from	local	memory	to	device	memory

viMoveOut32 Move	32-bit	value	from	local	memory	to	device	memory

viMoveOut64 Move	64-bit	value	from	local	memory	to	device	memory

viMoveOut8EX Move	a	block	of	data	from	local	memory	to	the	specified	address	space	and	offset	in	increments	of
8	bits.

viMoveOut16EX Move	a	block	of	data	from	local	memory	to	the	specified	address	space	and	offset	in	increments	of
16	bits.

viMoveOut32EX Move	a	block	of	data	from	local	memory	to	the	specified	address	space	and	offset	in	increments	of
32	bits.

viMoveOut64EX Move	a	block	of	data	from	local	memory	to	the	specified	address	space	and	offset	in	increments	of
64	bits.

viMapAddress Map	memory	space

viMapAddressEx Map	memory	space

viUnmapAddress Unmap	memory	space

viPeek8 Read	8-bit	value	from	address

viPeek16 Read	16-bit	value	from	address

viPeek32 Read	32-bit	value	from	address

viPeek64 Read	64-bit	value	from	address

viPoke8 Write	8-bit	value	to	address

viPoke16 Write	16-bit	value	to	address

viPoke32 Write	32-bit	value	to	address

viPoke64 Write	64-bit	value	to	address

Interface	Specific	Services

viGpibControlREN Control	GPIB	REN	interface	line

viGpibControlATN Control	GPIB	ATN	interface	line

viGpibCommand Write	GPIB	command	bytes	on	the	bus

viGpibPassControl Tell	GPIB	device	to	become	Controller	in	Charge	(CIC)

viGpibSendIFC Pulse	Interface	Clear	(IFC)	line

USB	Specific	Services

viUsbControlIn Request	arbitrary	data	from	the	USB	device	on	the	control	port

viUsbControlOut Send	arbitrary	data	to	the	USB	device	on	the	control	port

	

viAssertIntrSignal

Syntax

viAssertIntrSignal(ViSession	vi,	ViInt16	mode,	ViUInt32
statusID);

Description

Asserts	the	specified	device	interrupt	or	signal.	This	operation	can	be	used	to
assert	a	device	interrupt	condition.	In	VXI,	for	example,	this	can	be	done	with
either	a	VXI	signal	or	a	VXI	interrupt.	On	certain	bus	types,	the	statusID
parameter	may	be	ignored.

Note:	This	function	is	not	implemented	in	Agilent	VISA.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

mode IN ViInt16 This	specifies	how	to	assert	the	interrupt.	See	the	Description	section	for	actual	values.

statusID IN ViUInt32 This	is	the	status	value	to	be	presented	during	an	interrupt	acknowledge	cycle.

Special	Values	for	mode	Parameter

mode Action	Description

VI_ASSERT_IRQ1	-	VI_ASSERT_IRQ7 VXI/VME	IRQ	line.	This	uses	the	standard	VXI/VME	ROAK	(release	on	acknowledge)	interrupt
mechanism	rather	than	the	older	VME	RORA	(release	on	register	access)	mechanism.

VI_ASSERT_SIGNAL Send	the	notification	via	a	VXI	signal.

VI_ASSERT_USE_ASSIGNED Use	whatever	notification	method	that	has	been	assigned	to	the	local	device.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or	an	error	code	as
follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INTR_PENDING An	interrupt	is	still	pending	from	a	previous	call.

VI_ERROR_INV_MODE The	value	specified	by	the	mode	parameter	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT The	given	session	or	object	reference	is	invalid	(both	are	the	same	value).

VI_ERROR_NSUP_INTR The	interface	cannot	generate	an	interrupt	on	the	requested	level	or	with	the	requested
statusID	value.

VI_ERROR_NSUP_MODE The	specified	mode	is	not	supported	by	this	VISA	implementation.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource	identified	by	
been	locked	for	this	kind	of	access.

See	Also

	BACKPLANE	resource	description

	

viAssertTrigger

Syntax

viAssertTrigger(ViSession	vi,	ViUInt16	protocol);

Description

Assert	software	or	hardware	trigger.	This	operation	will	source	a	software	or
hardware	trigger	dependent	on	the	interface	type.	For	a	GPIB	device,	the	device
is	addressed	to	listen	and	then	the	GPIB	GET	command	is	sent.

For	a	VXI	device,	if	VI_ATTR_TRIG_ID	is	VI_TRIG_SW,	the	device	is	sent
the	Word	Serial	Trigger	command.	For	any	other	values	of	the	attribute,	a
hardware	trigger	is	sent	on	the	line	corresponding	to	the	value	of	that	attribute.
For	a	GPIB	device,	if	VI_ATTR_TRIG_ID	is	VI_TRIG_SW,	the	device	is
addressed	to	Listen	and	a	Group	Execute	Trigger	(GET)	is	sent.

For	a	serial	session	to	a	serial	device	or	TCPIP	socket,	if	VI_ATTR_IO_PROT	is
VI_PROT_4882_STRS,	the	device	is	sent	the	string	"*TRG\n".	Otherwise,	this
operation	is	not	valid.	For	a	session	to	a	USB	instrument,	this	function	sends	the
TRIGGER	message	ID	on	the	Bulk-OUT	pipe.

For	GPIB,	ASRL,	USB,	and	VXI	software	triggers,
VI_TRIG_PROT_DEFAULT	is	the	only	valid	protocol.	For	VXI	hardware
triggers,	VI_TRIG_PROT_DEFAULT	is	equivalent	to	VI_TRIG_PROT_SYNC.

For	a	PXI	resource,	viAssertTrigger	is	not	currently	supported.	Support	is
planned	for	a	later	release	of	Agilent	VISA.

Note:	This	function	is	not	supported	with	the	GPIB-VXI	interface.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

protocol IN ViUInt16

Trigger	protocol	to	use	during	assertion.	Valid	values	are:

VI_TRIG_PROT_DEFAULT

VI_TRIG_PROT_ON	-	asserts	the	trigger

VI_TRIG_PROT_OFF	-	deasserts	the	trigger

VI_TRIG_PROT_SYNC	-	pulses	the	trigger	(assert	followed	by	deassert)

For	GPIB,	ASRL,	USB,	and	VXI	software	triggers,	VI_TRIG_PROT_DEFAULT	is	the	only	valid
protocol.	For	VXI	hardware	triggers,	VI_TRIG_PROT_DEFAULT	is	equivalent	to
VI_TRIG_PROT_SYNC.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or
an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS The	specified	trigger	was	successfully	asserted	to	the	device.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

VI_ERROR_INP_PROT_VIOL Device	reported	an	input	protocol	error	occurred	during	transfer.

VI_ERROR_INV_PROT The	protocol	specified	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to	attributes
being	set	to	an	inconsistent	state).

VI_ERROR_LINE_IN_USE The	specified	trigger	line	is	currently	in	use.

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently	the	controller
in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and	NDAC	are
deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

See	Also

VI_ATTR_TRIG_ID	attribute.	Set	this	attribute	to	the	trigger	mechanism/	trigger
line	to	use.
VI_EVENT_TRIGGER	description	for	details	on	trigger	specifiers.

	

viAssertUtilSignal

Syntax

viAssertUtilSignal(ViSession	vi,	ViUInt16	line);

Description

Asserts	the	specified	utility	bus	signal.	This	operation	can	be	used	to	assert	either
the	SYSFAIL	or	SYSRESET	utility	bus	interrupts	on	the	VXIbus	backplane.
This	operation	is	valid	only	on	VXI	Mainframe	Backplane	(BACKPLANE)	and
on	Servant	Device-Side	(SERVANT)	resource	sessions.

Note:	This	function	is	not	supported	in	Agilent	VISA.	You	should	assert
SYSRESET	(also	known	as	HARD	RESET	in	the	VXI	specification)	only	when
it	is	necessary	to	promptly	terminate	operation	of	all	devices	in	a	VXIbus
system.	This	is	a	serious	action	that	always	affects	the	entire	VXIbus	system.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

line IN ViUInt16
Specifies	the	utility	bus	signal	to	assert.	This	can	be:
VI_UTIL_ASSERT_SYSRESET,	VI_UTIL_ASSERT_SYSFAIL,
or	VI_UTIL_DEASSERT_SYSFAIL

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS The	specified	utility	bus	signal	was	successfully	asserted	to	the
device.

Error	Codes Description

VI_ERROR_INV_LINE The	value	specified	by	the	line	parameter	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

VI_SUCCESS Operation	completed	successfully.

See	Also

BACKPLANE	resource	description

	

viBufRead

Syntax

	viBufRead(ViSession	vi,	ViPBuf	buf,	ViUInt32	count,

ViPUInt32	retCount);

Description

Similar	to	viRead,	except	that	the	operation	uses	the	formatted	I/O	read	buffer
for	holding	data	read	from	the	device.	This	operation	is	similar	to	viRead	and
does	not	perform	any	kind	of	data	formatting.	It	differs	from	viRead	in	that	the
data	is	read	from	the	formatted	I/O	read	buffer	(the	same	buffer	as	used	by
viScanf	and	related	operations)	rather	than	directly	from	the	device.	This
operation	can	intermix	with	the	viScanf	operation,	but	use	with	the	viRead
operation	is	discouraged.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf OUT ViPBuf Represents	the	location	of	a	buffer	to	receive	data	from	the
device.

count IN ViUInt32 Number	of	bytes	to	be	read.

retCount OUT ViPUInt32 Represents	the	location	of	an	integer	that	will	be	set	to	the
number	of	bytes	actually	transferred.

Special	Value	for	retCount	Parameter

Value 	 	 Action	Description

VI_NULL 	 	 Do	not	return	the	number	of	bytes	transferred.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or
an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS The	operation	completed	successfully	and	the	END	indicator	was
received	(for	interfaces	that	have	END	indicators).

VI_SUCCESS_MAX_CNT The	number	of	bytes	read	is	equal	to	count

VI_SUCCESS_TERM_CHAR The	specified	termination	character	was	read.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO An	unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

See	Also

viWrite,	viScanf

	

viBufWrite

Syntax

viBufWrite(ViSession	vi,	ViBuf	buf,	ViUInt32	count,

ViPUInt32	retCount);

Description

Similar	to	viWrite,	except	the	data	is	written	to	the	formatted	I/O	write	buffer
rather	than	directly	to	the	device.	This	operation	is	similar	to	viWrite	and	does
not	perform	any	kind	of	data	formatting.	It	differs	from	viWrite	in	that	the	data
is	written	to	the	formatted	I/O	write	buffer	(the	same	buffer	as	used	by	viPrintf
and	related	operations)	rather	than	directly	to	the	device.	This	operation	can
intermix	with	the	viPrintf	operation,	but	mixing	it	with	the	viWrite	operation	is
	discouraged.

If	you	pass	VI_NULL	as	the	retCount	parameter	to	the	viBufWrite	operation,
the	number	of	bytes	transferred	will	not	be	returned.	This	may	be	useful	if	it	is
important	to	know	only	whether	the	operation	succeeded	or	failed.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf IN ViBuf Represents	the	location	of	a	data	block	to	be	sent	to	the
device.

count IN ViUInt32 Number	of	bytes	to	be	written.

retCount OUT ViPUInt32 Represents	the	location	of	an	integer	that	will	be	set	to	the
number	of	bytes	actually	transferred.

Special	Values	for	retCount	Parameter

Value 	 	 Action	Description

VI_NULL 	 	 Do	not	return	the	number	of	bytes	transferred.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	write	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_IO An	unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	 has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

See	Also

viWrite,	viBufRead

	

viClear

Syntax

viClear(ViSession	vi);

Description

Clear	a	device.	This	operation	performs	an	IEEE	488.1-style	clear	of	the	device.
For	VXI,	the	Word	Serial	Clear	command	should	be	used.	For	GPIB	systems,
the	Selected	Device	Clear	command	should	be	used.	For	a	session	to	a	serial
device	or	TCPIP	socket,	if	VI_ATTR_IO_PROT	is	VI_PROT_4882_STRS,	the
device	is	sent	the	string	"*CLS\n".	Otherwise,	this	operation	is	not	valid.	For	a
session	to	a	USB	instrument,	this	function	sends	the	INITIATE_CLEAR	and
CHECK_CLEAR_STATUS	commands	on	the	control	pipe.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

Return	Values

Type	ViStatus
This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

	

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are
the	same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently
the	controller	in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and
NDAC	are	deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

	

	

viClose

Syntax

viClose(ViSession/ViEvent/ViFindList	vi);

Description

This	function	closes	the	specified	resource	manager	session,	device	session,	find
list	(returned	from	the	viFindRsrc	function),	or	event	context	(returned	from	the
viWaitOnEvent	function,	or	passed	to	an	event	handler).	In	this	process,	all	the
data	structures	that	had	been	allocated	for	the	specified	vi	are	freed.

Note:	The	viClose	function	should	not	be	called	from	within	an	event	handler.	In
VISA	1.1	and	greater,	viClose	(VI_NULL)	returns	VI_WARN_NULL_OBJECT
rather	than	an	error.

Parameters

Name Dir Type Description

vi IN
ViSession
ViEvent
ViFindlist

Unique	logical	identifier	to	a	session,	event,	or	find	list.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

VI_WARN_NULL_OBJECT The	specified	object	reference	is	uninitialized.

Error	Codes Description

VI_ERROR_CLOSING_FAILED Unable	to	deallocate	the	previously	allocated	data	structures
corresponding	to	this	session	or	object	reference.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

See	Also

viOpen,	viFindRsrc,	viWaitOnEvent,	viEventHandler

	

viDisableEvent

Syntax

viDisableEvent(ViSession	vi,	ViEventType	eventType,

ViUInt16	mechanism);

Description

This	function	disables	servicing	of	an	event	identified	by	the	eventType
parameter	for	the	mechanisms	specified	in	the	mechanism	parameter.	Specifying
VI_ALL_ENABLED_EVENTS	for	the	eventType	parameter	allows	a	session	to
stop	receiving	all	events.	The	session	can	stop	receiving	queued	events	by
specifying	VI_QUEUE.	Applications	can	stop	receiving	callback	events	by
specifying	either	VI_HNDLR	or	VI_SUSPEND_HNDLR.	Specifying
VI_ALL_MECH	disables	both	the	queuing	and	callback	mechanisms.
viDisableEvent	prevents	new	event	occurrences	from	being	added	to	the
queue(s).	However,	event	occurrences	already	existing	in	the	queue(s)	are	not
discarded.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a
session.

eventType IN ViEventType Logical	event	identifier.	(See
the	following	tables.)

mechanism IN ViUInt16

Specifies	event	handling
mechanisms	to	be	disabled.	The
queuing	mechanism	is	disabled
by	specifying	VI_QUEUE.
	The	callback	mechanism	is
disabled	by	specifying
VI_HNDLR	or
VI_SUSPEND_HNDLR.	It	is
possible	to	disable	both
mechanisms	simultaneously		by
specifying	VI_ALL_MECH.

Special	Values	for	eventType	Parameter

Value 	 	 Action	Description

VI_ALL_ENABLED_EVENTS 	 	 Disable	all	events	that	were
previously	enabled.

The	following	events	can	be	disabled:

Event	Name 	 	 Description

VI_EVENT_IO_COMPLETION 	 	
Notification	that	an
asynchronous	operation	has
completed.

VI_EVENT_TRIG 	 	
Notification	that	a	hardware
trigger	was	received	from	a
device.

VI_EVENT_SERVICE_REQ 	 	 Notification	that	a	device	is
requesting	service.

VI_EVENT_CLEAR 	 	
Notification	that	the	local
controller	has	been	sent	a
device	clear	message

VI_EVENT_EXCEPTION 	 	

Notification	that	an	error
condition	has	occurred	during
an	operation	invocation.	(Note:
the	VI_QUEUE	and
VI_SUSPEND_HNDLR
mechanisms	cannot	be	used

with	this	event.)

VI_EVENT_GPIB_CIC 	 	

Notification	that	the	GPIB
controller	has	gained	or	lost
CIC	(controller	in	charge)
status.

VI_EVENT_GPIB_TALK 	 	
Notification	that	the	GPIB
controller	has	been	addressed	to
talk.

VI_EVENT_GPIB_LISTEN 	 	
Notification	that	the	GPIB
controller	has	been	addressed	to
listen.

VI_EVENT_PXI_INTR 	 	
Notification	that	a	vendor-
specific	PXI	interrupt	was
received	from	the	device.

VI_EVENT_VXI_VME_SYSFAIL 	 	
Notification	that	the	VXI/VME
SYSFAIL*	line	has	been
asserted.

VI_EVENT_VXI_VME_SYSRESET 	 	
Notification	that	the	VXI/VME
SYSRESET*	line	has	been
asserted

VI_EVENT_VXI_SIGP 	 	
Notification	that	a	VXI	signal
or	VXI	interrupt	has	been
received	from	a	device.

VI_EVENT_VXI_VME_INTR 	 	
Notification	that	a	VXIbus
interrupt	was	received	from	the
device.

Not	supported	by	Agilent	VISA: 	 	 	

VI_EVENT_TCPIP_CONNECT 	 	 Notification	that	a	TCP/IP
connection	has	been	made.

VI_EVENT_USB_INTR

	
	 	

Notification	that	a	vendor-
specific	USB	interrupt	was
received	from	the	device.

Note:	Refer	to	the	viEventHandler	topic	and	the	VISA	Attributes	topics
for	information	on	the	event	types	that	are	available	for	various	VISA
resource	classes	(e.g.	INSTR,	INTFC	…).

Special	Values	for	mechanism	Parameter

Value 	 	 Action	Description

VI_ALL_MECH 	 	
Disable	this	session	from
receiving	the	specified	event(s)
via	any	mechanism.

VI_HNDLR	or
VI_SUSPEND_HNDLR 	 	

Disable	this	session	from
receiving	the	specified	event(s)
via	a	callback	handler	or	a

callback	queue.

VI_QUEUE 	 	
Disable	this	session	from
receiving	the	specified	event(s)
via	the	waiting	queue.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Event	disabled	successfully.

VI_SUCCESS_EVENT_DIS Specified	event	is	already	disabled	for	at	least	one	of	the	specified
mechanisms.

Error	Codes Description

VI_ERROR_INV_EVENT Specified	event	type	is	not	supported	by	the	resource.

VI_ERROR_INV_MECH Invalid	mechanism	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

See	Also

See	the	handler	prototype	viEventHandler	for	its	parameter	description,	and
viEnableEvent.	Also,	see	viInstallHandler	and	viUninstallHandler	descriptions
for	information	about	installing	and	uninstalling	event	handlers.	See	event
descriptions	for	context	structure	definitions.

	

viDiscardEvents

Syntax

viDiscardEvents(ViSession	vi,	ViEventType	eventType,

ViUInt16	mechanism);

Description

This	function	discards	all	pending	occurrences	of	the	specified	event	types	for
the	mechanisms	specified	in	a	given	session.	The	information	about	all	the	event
occurrences	that	have	not	yet	been	handled	is	discarded.	This	function	is	useful
to	remove	event	occurrences	that	an	application	no	longer	needs.

The	event	occurrences	discarded	by	applications	are	not	available	to	a	session	at
a	later	time.	This	operation	causes	loss	of	event	occurrences.	The
viDiscardEvents	operation	does	not	apply	to	event	contexts	that	have	already
been	delivered	to	the	application.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a
session.

eventType IN ViEventType Logical	event	identifier.	(See	the
following	tables.)

mechanism IN ViUInt16

Specifies	the	mechanisms	for
which	the	events	are	to	be
discarded.	VI_QUEUE	is
specified	for	the	queuing
mechanism	and
VI_SUSPEND_HNDLR	is
specified	for	the	pending	events
in	the	callback	mechanism.	It	is
possible	to	specify	both
mechanisms	simultaneously	by
specifying	VI_ALL_MECH.

Special	Values	for	eventType	Parameter

Value 	 	 Action	Description

VI_ALL_ENABLED_EVENTS 	 	 Discard	events	of	every
type	that	is	enabled.

The	following	events	can	be	discarded:

Event	Name 	 	 Description

VI_EVENT_IO_COMPLETION 	 	
Notification	that	an
asynchronous	operation	has
completed.

VI_EVENT_TRIG 	 	
Notification	that	a	hardware
trigger	was	received	from	a
device.

VI_EVENT_SERVICE_REQ 	 	 Notification	that	a	device	is
requesting	service.

VI_EVENT_CLEAR 	 	
Notification	that	the	local
controller	has	been	sent	a	device
clear	message

Notification	that	an	error
condition	has	occurred	during	an
operation	invocation.	(Note:	the

VI_EVENT_EXCEPTION 	 	 VI_QUEUE	and
VI_SUSPEND_HNDLR
mechanisms	cannot	be	used	with
this	event.)

VI_EVENT_GPIB_CIC 	 	
Notification	that	the	GPIB
controller	has	gained	or	lost	CIC
(controller	in	charge)	status.

VI_EVENT_GPIB_TALK 	 	
Notification	that	the	GPIB
controller	has	been	addressed	to
talk.

VI_EVENT_GPIB_LISTEN 	 	
Notification	that	the	GPIB
controller	has	been	addressed	to
listen.

VI_EVENT_PXI_INTR 	 	
Notification	that	a	vendor-
specific	PXI	interrupt	was
received	from	the	device.

VI_EVENT_VXI_VME_SYSFAIL 	 	
Notification	that	the	VXI/VME
SYSFAIL*	line	has	been
asserted.

VI_EVENT_VXI_VME_SYSRESET 	 	
Notification	that	the	VXI/VME
SYSRESET*	line	has	been
asserted

VI_EVENT_VXI_SIGP 	 	
Notification	that	a	VXI	signal	or
VXI	interrupt	has	been	received
from	a	device.

VI_EVENT_VXI_VME_INTR 	 	
Notification	that	a	VXIbus
interrupt	was	received	from	the
device.

Not	supported	by	Agilent	VISA: 	 	 	

VI_EVENT_TCPIP_CONNECT 	 	 Notification	that	a	TCP/IP
connection	has	been	made.

VI_EVENT_USB_INTR

	
	 	

Notification	that	a	vendor-
specific	USB	interrupt	was
received	from	the	device.

Note:	Refer	to	the	viEventHandler	topic	and	the	VISA	Attributes	topics
for	information	on	the	event	types	that	are	available	for	various	VISA
resource	classes	(e.g.	INSTR,	INTFC	…).

Special	Values	for	mechanism	Parameter

Value 	 	 Action	Description

VI_ALL_MECH 	 	 Discard	the	specified	event(s)
from	all	mechanisms.

VI_QUEUE 	 	 Discard	the	specified	event(s)
from	the	waiting	queue.

VI_SUSPEND_HNDLR 	 	
Discard	the	specified	event(s)
from	the	callback	queue.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Event	queue	flushed	successfully.

VI_SUCCESS_QUEUE_EMPTY Operation	completed	successfully,	but	queue	was	empty.

Error	Codes Description

VI_ERROR_INV_EVENT Specified	event	type	is	not	supported	by	the	resource.

VI_ERROR_INV_MECH Invalid	mechanism	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

See	Also

viEnableEvent,	viWaitOnEvent,	viInstallHandler

	

viEnableEvent

Syntax

viEnableEvent(ViSession	vi,	ViEventType	eventType,

ViUInt16	mechanism,	ViEventFilter	context);

Description

This	function	enables	notification	of	an	event	identified	by	the	eventType
parameter	for	mechanisms	specified	in	the	mechanism	parameter.	The	specified
session	can	be	enabled		to	queue	events	by	specifying	VI_QUEUE.

Note:	VISA	cannot	callback	to	a	Visual	Basic	function.	Thus,	you	can	only	use
the	VI_QUEUE	mechanism	in	viEnableEvent.	There	is	no	way	to	install	a	VISA
event	handler	in	Visual	Basic.

Applications	can	enable	the	session	to	invoke	a	callback	function	to	execute	the
handler	by	specifying	VI_HNDLR.	The	applications	are	required	to	install	at
least	one	handler	to	be	enabled	for	this	mode.

Specifying	VI_SUSPEND_HNDLR	enables	the	session	to	receive	callbacks,	but
the	invocation	of	the	handler	is	deferred	to	a	later	time.	Successive	calls	to	this
function	replace	the	old	callback	mechanism	with	the	new	callback	mechanism.

Specifying	VI_ALL_ENABLED_EVENTS	for	the	eventType	parameter	refers
to	all	events	which	have	previously	been	enabled	on	this	session,	making	it
easier	to	switch	between	the	two	callback	mechanisms	for	multiple	events.

Event	queuing	and	callback	mechanisms	operate	completely	independently.	As
such,	enabling	and	disabling	of	the	two	modes	in	done	independently	(enabling
one	of	the	modes	does	not	enable	or	disable	the	other	mode).	For	example,	if
viEnableEvent	is	called	once	with	VI_HNDLR	and	called	a	second	time	with
VI_QUEUE,	both	modes	would	be	enabled.

If	viEnableEvent	is	called	with	the	mechanism	parameter	equal	to	the	"bit-wise
OR"	of	VI_SUSPEND_HNDLR	and	VI_HNDLR,	viEnableEvent	returns
VI_ERROR_INV_MECH.

If	the	event	handling	mode	is	switched	from	VI_SUSPEND_HNDLR	to
VI_HNDLR	for	an	event	type,	handlers	that	are	installed	for	the	event	are	called
once	for	each	occurrence	of	the	corresponding	event	pending	in	the	session	(and
dequeued	from	the	suspend	handler	queue)	before	switching	the	modes.

A	session	enabled	to	receive	events	can	start	receiving	events	before	the

viEnableEvent	operation	returns.	In	this	case,	the	handlers	set	for	an	event	type
are	executed	before	the	completion	of	the	enable	operation.

If	the	event	handling	mode	is	switched	from	VI_HNDLR	to
VI_SUSPEND_HNDLR	for	an	event	type,	handler	invocation	for	occurrences	of
the	event	type	is	deferred	to	a	later	time.	If	no	handler	is	installed	for	an	event
type,	the	request	to	enable	the	callback	mechanism	for	the	event	type	returns
	VI_ERROR_HNDLR_NINSTALLED.

If	a	session	has	events	pending	in	its	queue(s)	and	viClose	is	invoked	on	that
session,	all	pending	event	occurrences	and	the	associated	event	contexts	that
have	not	yet	been	delivered	to	the	application	for	that	session	are	freed	by	the
system.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a
session.

eventType IN ViEventType Logical	event	identifier.	(See	the
following	tables.)

mechanism IN ViUInt16

Specifies	event	handling
mechanisms	to	be	enabled.	The
queuing	mechanism	is	enabled	by
VI_QUEUE,	and	the	callback
mechanism	is	enabled	by
VI_HNDLR	or
VI_SUSPEND_HNDLR.	It	is
possible	to	enable	both
mechanisms	simultaneously	by
specifying	"bit-wise	OR"	of
VI_QUEUE	and	one	of	the	two
mode	values	for	the	callback
mechanism.

context IN ViEventFilter VI_NULL	(Not	used	for	VISA
1.0.)

Special	Values	for	eventType	Parameter

Value 	 	 Action	Description

VI_ALL_ENABLED_EVENTS 	 	

Switch	all	events	that	were
previously	enabled	to	the	callback
mechanism	specified	in	the
mechanism	parameter.

The	following	events	can	be	enabled:

Event	Name 	 	 Description

VI_EVENT_IO_COMPLETION 	 	 Notification	that	an	asynchronous
operation	has	completed.

VI_EVENT_TRIG 	 	
Notification	that	a	hardware
trigger	was	received	from	a
device.

VI_EVENT_SERVICE_REQ 	 	 Notification	that	a	device	is
requesting	service.

VI_EVENT_CLEAR 	 	
Notification	that	the	local
controller	has	been	sent	a	device

clear	message

VI_EVENT_EXCEPTION 	 	

Notification	that	an	error
condition	has	occurred	during	an
operation	invocation.	(Note:	the
VI_QUEUE	and
VI_SUSPEND_HNDLR
mechanisms	cannot	be	used	with
this	event.)

VI_EVENT_GPIB_CIC 	 	
Notification	that	the	GPIB
controller	has	gained	or	lost	CIC
(controller	in	charge)	status.

VI_EVENT_GPIB_TALK 	 	
Notification	that	the	GPIB
controller	has	been	addressed	to
talk.

VI_EVENT_GPIB_LISTEN 	 	
Notification	that	the	GPIB
controller	has	been	addressed	to
listen.

VI_EVENT_PXI_INTR 	 	
Notification	that	a	vendor-specific
PXI	interrupt	was	received	from
the	device.

VI_EVENT_VXI_VME_SYSFAIL 	 	 Notification	that	the	VXI/VME
SYSFAIL*	line	has	been	asserted.

VI_EVENT_VXI_VME_SYSRESET 	 	
Notification	that	the	VXI/VME
SYSRESET*	line	has	been
asserted

VI_EVENT_VXI_SIGP 	 	
Notification	that	a	VXI	signal	or
VXI	interrupt	has	been	received
from	a	device.

VI_EVENT_VXI_VME_INTR 	 	
Notification	that	a	VXIbus
interrupt	was	received	from	the
device.

Not	supported	by	Agilent	VISA: 	 	 	

VI_EVENT_TCPIP_CONNECT 	 	 Notification	that	a	TCP/IP
connection	has	been	made.

VI_EVENT_USB_INTR 	 	

Notification	that	a	vendor-specific
USB	interrupt	was	received	from
the	device.

	

Note:	Refer	to	the	viEventHandler	topic	and	the	VISA	Attributes	topics
for	information	on	the	event	types	that	are	available	for	various	VISA
resource	classes	(e.g.	INSTR,	INTFC	…).

Special	Values	for	mechanism	Parameter

Note:	Any	combination	of	VISA-defined	values	for	different	parameters
of	this	function	is	also	supported	(except	for	VI_HNDLR	and

VI_SUSPEND_HNDLR,	which	apply	to	different	modes	of	the	same
mechanism).

Value 	 	 Action	Description

VI_HNDLR 	 	

Enable	this	session	to	receive	the
specified	event	via	a	callback
handler,	which	must	have	already
been	installed	via
viInstallHandler.

VI_QUEUE 	 	

Enable	this	session	to	receive	the
specified	event	via	the	waiting
queue.	Events	must	be	retrieved
manually	via	the	viWaitOnEvent
function.

VI_SUSPEND_HNDLR 	 	

Enable	this	session	to	receive	the
specified	event	via	a	callback
queue.	Events	will	not	be
delivered	to	the	session	until
viEnableEvent	is	invoked	again
with	the	VI_HNDLR	mechanism.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or	an
error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Event	enabled	successfully.

VI_SUCCESS_EVENT_EN Specified	event	is	already	enabled	for	at	least	one	of	the	specified
mechanisms.

Error	Codes Description

VI_ERROR_HNDLR_NINSTALLED A	handler	is	not	currently	installed	for	the	specified	event.	The	session	cannot
be	enabled	for	the	VI_HNDLR	mode	of	the	callback	mechanism.

VI_ERROR_INV_CONTEXT Specified	event	context	is	invalid.

VI_ERROR_INV_EVENT Specified	event	type	is	not	supported	by	the	resource.

VI_ERROR_INV_MECH Invalid	mechanism	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT The	given	session	or	object	reference	is	invalid	(both	are	the	same	value).

VI_ERROR_NSUP_MECH The	specified	mechanism	is	not	supported	for	the	given	event	type.

See	Also

See	the	handler	prototype	viEventHandler	for	its	parameter	description	and
viDisableEvent.	Also,	see	the	viInstallHandler	and	viUninstallHandler
descriptions	for	information	about	installing	and	uninstalling	event	handlers.

	

viEventHandler

Syntax

viEventHandler(ViSession	vi,	ViEventType	eventType,

ViEvent	context,	ViAddr	userHandle);

Description

This	is	a	prototype	for	a	function,	which	you	define.	The	function	you	define	is
called	whenever	a	session	receives	an	event	and	is	enabled	for	handling	events	in
the	VI_HNDLR	mode.	The	handler	services	the	event	and	returns	VI_SUCCESS
on	completion.	VISA	event	handlers	must	be	declared	as	follows.

ViStatus	_VI_FUNCH	MyEventHandler(ViSession

vi,	ViEventType	eventType,	ViEvent	context,	ViAddr

userHandle);

The	_VI_FUNCH	declaration	is	required	to	make	sure	the	handler	is	of	the
proper	type.	If	_VI_FUNCH	is	not	included,	stack	corruption	may	occur	on	the
function	call	or	return.	The	_VI_FUNCH	declaration	is	very	important	since	it
declares	the	function	of	type	stdcall	that	VISA	requires.	Visual	Studio	C++
defaults	to	cdecl	that	will	not	work.	When	the	handler	returns,	it	will	generate	an
access	violation	because	the	stack	gets	corrupted.

Because	each	eventType	defines	its	own	context	in	terms	of	attributes,	refer	to
the	appropriate	event	definition	to	determine	which	attributes	can	be	retrieved
using	the	context	parameter.

Because	the	event	context	must	still	be	valid	after	the	user	handler	returns	(so
that	VISA	can	free	it	up),	an	application	should	not	invoke	the	viClose	operation
on	an	event	context	passed	to	a	user	handler.

If	the	user	handler	will	not	return	to	VISA,	the	application	should	call	viClose
on	the	event	context	to	manually	delete	the	event	object.	This	may	occur	when	a
handler	throws	a	C++	exception	in	response	to	a	VISA	exception	event.

Normally,	an	application	should	return	VI_SUCCESS	from	all	callback	handlers.
If	a	specific	handler	does	not	want	other	handlers	to	be	invoked	for	the	given
event	for	the	given	session,	it	should	return	VI_SUCCESS_NCHAIN.	No	return
value	from	a	handler	on	one	session	will	affect	callbacks	on	other	sessions.

This	table	lists	events	and	associated	read-only	attributes	implemented	by
Agilent	VISA	that	can	be	read	to	get	event	information	on	a	specific	event.	Use
the	viReadSTB	function	to	read	the	status	byte	of	the	service	request.

Instrument	Control	(INSTR)	Resource	Events

Event	Name Attributes Data
Type Range

VI_EVENT_PXI_INTR VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_PXI_INTR

VI_EVENT_SERVICE_REQ VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE
VI_ATTR_SIGP_STATUS_ID

ViEventType
ViUInt16

VI_EVENT_VXI_STOP
0	to	FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIG
VI_TRIG_TTL0	to	VI_TRIG_TTL7;
VI_TRIG_ECL0	to	VI_TRIG_ECL1

VI_EVENT_IO_COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT
VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT_64
VI_ATTR_OPER_NAME

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32
ViString

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0	to	FFFFFFFFh
N/A

VI_EVENT_VXI_VME_INTR
VI_ATTR_EVENT_TYPE
VI_ATTR_INTR_STATUS_ID
VI_ATTR_RECV_INTR_LEVEL

ViEventType
ViUInt32
ViInt16

VI_EVENT_VXI_VME_INTR
0	to	FFFFFFFFh
1	to	7,		VI_UNKNOWN_LEVEL

Not	supported	by	Agilent	VISA: 	 	 	

VI_EVENT_USB_INTR

VI_ATTR_EVENT_TYPE
VI_ATTR_USB_RECV_INTR_SIZE
VI_ATTR_USB_RECV_INTR_DATA
VI_ATTR_STATUS

ViEventType
ViUInt16
ViBuf
ViStatus

VI_EVENT_USB_INTR
0	to	FFFFh
N/A
N/A

Memory	Access	(MEMACC)	Resource	Events

Event	Name Attributes Data
Type Range

VI_EVENT_IO_COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT
VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT_64
VI_ATTR_OPER_NAME

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32
ViString

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0	to	FFFFFFFFh
N/A

GPIB	Bus	Interface	(INTFC)	Resource	Events

Event	Name Attributes Data Range

Type

VI_EVENT_GPIB_CIC VI_ATTR_EVENT_TYPE
VI_ATTR_GPIB_RECV_CIC_STATE

ViEventType
ViBoolean

VI_EVENT_GPIB_CIC
VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_TALK

VI_EVENT_GPIB_LISTEN VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_LISTEN

VI_EVENT_CLEAR VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_CLEAR

VI_EVENT_TRIGGER VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIGGER
VI_TRIG_SW

VI_EVENT_IO_COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT
VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT_64
VI_ATTR_OPER_NAME

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32
ViString

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0	to	FFFFFFFFh
N/A

VXI	Mainframe	Backplane	(BACKPLANE)	Resource	Events

Event	Name Attributes Data
Type Range

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIG
VI_TRIG_TTL0	to	VI_TRIG_TTL7;
VI_TRIG_ECL0	to	VI_TRIG_ECL1

VI_EVENT_VXI_VME_SYSFAIL VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_VME_SYSFAIL

VI_EVENT_VXI_VME_SYSRESET VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_VME_SYSRESET

TCPIP	Socket	(SOCKET)	Resource	Events

Event	Name Attributes Data
Type Range

VI_EVENT_IO_COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT
VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT_64
VI_ATTR_OPER_NAME

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32
ViString

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0	to	FFFFFFFFh
N/A

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

eventType IN ViEventType Logical	event	identifier.

context IN ViEvent A	handle	specifying	the	unique	occurrence	of	an	event.

userHandle IN ViAddr A	value	specified	by	an	application	that	can	be	used	for
identifying	handlers	uniquely	in	a	session	for	an	event.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or
an	error	code	as	follows.

Completion
Codes Description

VI_SUCCESS Event	queue	flushed	successfully.

VI_SUCCESS_NCHAIN Event	handled	successfully.	Do	not	invoke	any	other	handlers	on	this
session	for	this	event.

See	Also

See	Programming	with	VISA	in	the	Agilent	VISA	User’s	Guide	for	more
information	on	event	handling	and	exception	handling.

	

viFindNext

Syntax

viFindNext(ViFindList	findList,	ViPRsrc	instrDesc);

Description

This	function	returns	the	next	resource	found	in	the	list	created	by	viFindRsrc.
The	list	is	referenced	by	the	handle	that	was	returned	by	viFindRsrc.

Note:	If	you	use	the	Agilent	Connection	Expert	to	put	a	resource	into	the	ignored
state,	viFindRsrc	and	viFindNext	will	not	find	that	resource.	If	an	interface	is	in
the	ignored	state,	viFindRsrc	and	viFindNext	will	find	neither	the	interface	nor
instruments	on	that	interface.

Connection	Expert's	Address	check	property	on	an	instrument	also	affects	the
operation	of	viFindRsrc	and	viFindNext	for	that	instrument.	Click	here	for	more
information	on	this	interaction.

Parameters

Name Dir Type Description

findList IN ViFindList Describes	a	find	list.	This	parameter	must	be	created	by
viFindRsrc.

instrDesc OUT ViPRsrc Returns	a	string	identifying	location	of	a	device.	Strings	can
be	passed	to	viOpen	to	establish	a	session	to	the	device.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Resource(s)	found.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_OPER The	given	findList	does	not	support	this	function.

VI_ERROR_RSRC_NFOUND There	are	no	more	matches.

See	Also

viFindRsrc	
Address	Check,	viFindRsrc,	and	viOpen

	

viFindRsrc

Syntax

viFindRsrc(ViSession	sesn,	ViString	expr,	ViPFindList

findList,	ViPUInt32	retcnt,	ViPRsrc	instrDesc);

Description

This	function	queries	a	VISA	system	to	locate	the	resources	associated	with	a
specified	interface.	This	function	matches	the	value	specified	in	the	expr
parameter	with	the	resources	available	for	a	particular	interface.	On	successful
completion,	it	returns	the	first	resource	found	in	the	list	and	returns	a	count	to
indicate	if	there	were	more	resources	found	that	match	the	value	specified	in	the
expr	parameter.

Note:	If	you	use	the	Agilent	Connection	Expert	to	put	a	resource	into	the	ignored
state,	viFindRsrc	and	viFindNext	will	not	find	that	resource.	If	an	interface	is	in
the	ignored	state,	viFindRsrc	and	viFindNext	will	find	neither	the	interface	nor
instruments	on	that	interface.

Connection	Expert's	Address	check	property	on	an	instrument	also	affects	the
operation	of	viFindRsrc	and	viFindNext	for	that	instrument.	Click	here	for	more
information	on	this	interaction.

This	function	also	returns	a	handle	to	a	find	list.	This	handle	points	to	the	list	of
resources,	and	it	must	be	used	as	an	input	to	viFindNext.	When	this	handle	is	no
longer	needed,	it	should	be	passed	to	viClose.

The	search	criteria	specified	in	the	expr	parameter	have	two	parts:	a	regular
expression	over	a	resource	string	and	an	optional	logical	expression	over
attribute	values.	The	regular	expression	is	matched	against	the	resource	strings
of	resources	known	to	the	VISA	Resource	Manager.

If	the	resource	string	matches	the	regular	expression,	the	attribute	values	of	the
resource	are	then	matched	against	the	expression	over	attribute	values.	If	the
match	is	successful,	the	resource	has	met	the	search	criteria	and	gets	added	to	the
list	of	resources	found.

The	optional	attribute	expression	allows	construction	of	expressions	with	the	use
of	logical	ANDs,	ORs	and	NOTs.	Equal	(==)	and	unequal	(!=)	comparators	can
be	used	compare	attributes	of	any	type.	In	addition,	other	inequality	comparators
(>,	<,	>=,	<=)	can	be	used	to	compare	attributes	of	numeric	type.	Only	global
attributes	can	be	used	in	the	attribute	expression.

The	syntax	of	expr	is	defined	as	follows.	The	grouping	operator	()	in	a	logical
expression	has	the	highest	precedence,	The	not	operator	!	in	a	logical	expression
has	the	next	highest	precedence	after	the	grouping	operator,	and	the	or	operator	||
in	a	logical	expression	has	the	lowest	precedence.

Special
Character Meaning

&& Logical	AND

|| Logical	OR

! Logical	negation	(NOT)

() Parentheses

	

expr	:= regularExpr	['{'	attrExpr	'}']

attrExpr	:= attrTerm	|	attrExpr	'||'	attrTerm

attrTerm	:= attrFactor	|	attrTerm	'&&'	attrFactor

attrFactor	:= '('	attrExpr	')'	|	'!'	attrFactor	|	relationExpr

relationExpr	:= attributeId	compareOp	numValue	|
attributeId	equalityOp	stringValue

compareOp	:= '=='	|	'!='	|	'>'	|	'<'	|	'>='	|	'<='

equalityOp	:= '=='	|	'!='

attributeId	:= character	(character|digit|underscore)*

numValue	:= digit+	|'-'	digit+	|'0x'	hex_digit+	|
'0X'	hex_digit+

stringValue	:= '"'	character*	'"'

Some	examples	are:

Expr Meaning

GPIB[0-9]*::?*::?*::INSTR
{VI_ATTR_GPIB_SECONDARY_ADDR	>	0}

Find	all	GPIB	devices	that	have	secondary	addresses
greater	than	0.

ASRL?*INSTR{VI_ATTR_ASRL_BAUD	==
9600} Find	all	serial	ports	configured	at	9600	baud.

?*VXI?*INSTR{VI_ATTR_MANF_ID	==
0xFF6	&&	!(VI_ATTR_VXI_LA	==	0	||
VI_ATTR_SLOT	<=0)}

Find	all	VXI	instrument	resources	whose	manufacturer
ID	is	FF6	and	who	are	not	logical	address	0,	slot	0,	or
external	controllers.

Local	attributes	are	not	allowed	in	the	logical	expression	part	of	the	expr
parameter	to	the	viFindRsrc	operation.	viFindRsrc	uses	a	case-insensitive
compare	function	when	matching	resource	names	against	the	regular	expression
specified	in	expr.

If	the	value	VI_NULL	is	specified	in	the	findList	parameter	of	viFindRsrc	and
the	return	value	is	successful,	VISA	automatically	invokes	viClose	on	the	find
list	handle	rather	than	returning	it	to	the	application.

The	findList	and	retCnt	parameters	to	the	viFindRsrc	operation	are	optional.
They	can	be	used	if	only	the	first	match	is	important	and	the	number	of	matches
is	not	needed.	Calling	viFindRsrc	with	"VXI?*INSTR"	will	return	the	same
resources	as	invoking	it	with	"vxi?*instr".

All	resource	strings	returned	by	viFindRsrc	must	be	recognized	by	viParseRsrc,
viParseRsrcEx,	and	viOpen.	However,	not	all	resource	strings	that	can	be	parsed
or	opened	have	to	be	findable.

Parameters

Name Dir Type Description

sesn IN ViSession
Resource	Manager	session	(should	always	be	the
Default	Resource	Manager	for	VISA	returned	from
viOpenDefaultRM).

expr IN ViString
This	expression	sets	the	criteria	to	search	an	interface
or	all	interfaces	for	existing	devices.	(See	the
following	table	for	description	string	format.)

findList OUT ViPFindList Returns	a	handle	identifying	this	search	session.	This
handle	will	be	used	as	an	input	in	viFindNext.

retcnt OUT ViPUInt32 Number	of	matches.

instrDesc OUT ViPRsrc
Returns	a	string	identifying	the	location	of	a	device.
Strings	can	then	be	passed	to	viOpen	to	establish	a
session	to	the	given	device.

Description	String	for	expr	Parameter

Interface 	 	 Expression

GPIB 	 	 GPIB[0-9]*::?*INSTR

PXI 	 	 PXI?*INSTR

VXI 	 	 VXI?*INSTR

GPIB-VXI 	 	 GPIB-VXI?*INSTR

GPIB	and	GPIB-
VXI 	 	 GPIB?*INSTR

All	VXI 	 	 ?*VXI[0-9]*::?*INSTR

ASRL 	 	 ASRL[0-9]*::?*INSTR

All 	 	 ?*INSTR

Special	Values	for	findList	Parameter	

Value 	 	 Action	Description

VI_NULL 	 	 Do	not	return	a	find	list	handle.

Special	Values	for	retcnt	Parameter	

Value 	 	 Action	Description

VI_NULL 	 	 Do	not	return	the	number	of	matches.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or
an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Resource(s)	found.

Error	Codes Description

VI_ERROR_INV_EXPR Invalid	expression	specified	for	search.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NSUP_OPER The	given	sesn	does	not	support	this	function.

VI_ERROR_RSRC_NFOUND Specified	expression	does	not	match	any	devices.

See	Also

viFindNext,	viClose	
Address	Check,	viFindRsrc,	and	viOpen

	

viFlush

Syntax

viFlush(ViSession	vi,	ViUInt16	mask);

Description

Manually	flush	the	specified	buffers	associated	with	formatted	I/O	operations
and/or	serial	communication.	The	values	for	the	mask	parameter	are:

Mask	Values Interpretation

VI_IO_IN_BUF Discard	receive	buffer	contents	(same	as
VI_IO_IN_BUF_DISCARD).

VI_IO_IN_BUF_DISCARD Discard	receive	buffer	contents	(does	not	perform	an	I/O	to	the
device).

VI_IO_OUT_BUF Flush	the	transmit	buffer	by	writing	all	buffered	data	to	the
device.

VI_IO_OUT_BUF_DISCARD Discard	transmit	buffer	contents	(does	not	perform	any	I/O	to	the
device).

VI_READ_BUF

Discard	the	read	buffer	contents	and,	if	data	was	present	in	the
read	buffer	and	no	END-indicator	was	present,	read	from	the
device	until	encountering	an	END	indicator	(which	causes	the
loss	of	data).	This	action	resynchronizes	the	next	viScanf	call	to
read	a	<TERMINATED	RESPONSE	MESSAGE>.	(See	the
IEEE	488.2	standard.)

VI_READ_BUF_DISCARD Discard	read	buffer	contents	(does	not	perform	any	I/O	to	the
device).

VI_WRITE_BUF Flush	the	write	buffer	by	writing	all	buffered	data	to	the	device.

VI_WRITE_BUF_DISCARD Discard	write	buffer	contents	(does	not	perform	any	I/O	to	the
device).

It	is	possible	to	combine	any	of	these	read	flags	and	write	flags	for	different
buffers	by	ORing	the	flags.	However,	combining	two	flags	for	the	same	buffer	in
the	same	call	to	viFlush	is	illegal.

When	using	formatted	I/O	operations	with	a	serial	device,	a	flush	of	the
formatted	I/O	buffers	also	causes	the	corresponding	serial	communication
buffers	to	be	flushed.

For	example,	calling	viFlush	with	VI_WRITE_BUF	also	flushes	the
VI_IO_OUT_BUF.	For	backward	compatibility,	VI_IO_IN_BUF	is	the	same	as
VI_ASRL_IN_BUF,	VI_IO_IN_BUF_DISCARD	is	the	same	as
VI_ASRL_IN_BUF_DISCARD,	VI_IO_OUT_BUF	is	the	same	as
VI_ASRL_OUT_BUF,	and	VI_IO_OUT_BUF_DISCARD	is	the	same	as

VI_ASRL_OUT_BUF_DISCARD.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

mask IN ViUInt16 Specifies	the	action	to	be	taken	with	flushing	the	buffer.	(See	the
"Description"	section	for	details.)

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Buffers	flushed	successfully.

Error	Codes Description

VI_ERROR_INV_MASK The	specified	mask	does	not	specify	a	valid	flush	function	on
read/write	resource.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_IO Could	not	perform	read/write	function	because	of	I/O	error.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO The	read/write	function	was	aborted	because	timeout	expired
while	function	was	in	progress.

See	Also

viSetBuf

	

viGetAttribute

Syntax

viGetAttribute(ViSession/ViEvent/ViFindList	vi,	ViAttr

attribute,	ViAttrState	attrState);

Description

This	function	retrieves	the	state	of	an	attribute	for	the	specified	session.

Parameters

Name Dir Type Description

vi IN
ViSession
ViEvent
ViFindList

Unique	logical	identifier	to	a	session,	event,	or	find	list.

attribute IN ViAttr
Resource	attribute	for	which	the	state
query	is	made.

attrState OUT See	Note	below.

The	state	of	the	queried	attribute	for	a	specified	resource.
The	interpretation	of	the	returned	value	is	defined	by	the
individual	resource.	Note	that	you	must	allocate	space	for
character	strings	returned.

Note:	The	pointer	passed	to	viGetAttribute	must	point	to	the	exact	type	required
for	that	attribute,	ViUInt16,	ViInt32,	etc.	For	example,	when	reading	an	attribute
state	that	returns	a	ViChar,	you	must	pass	a	pointer	to	a	ViChar	variable.	You
must	allocate	space	for	the	returned	data.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Resource	attribute	retrieved	successfully.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NSUP_ATTR The	specified	attribute	is	not	defined	by	the	referenced	resource.

See	Also

viSetAttribute

	

viGpibCommand

Syntax

viGpibCommand(ViSession	vi,	ViBuf	buf,	ViUInt32	count,

ViPUInt32	retCount);

Description

Write	GPIB	command	bytes	on	the	bus.	This	operation	attempts	to	write	count
number	of	bytes	of	GPIB	commands	to	the	interface	bus	specified	by	vi.	This
operation	is	valid	only	on	GPIB	INTFC	(interface)	sessions.	This	operation
returns	only	when	the	transfer	terminates.

If	you	pass	VI_NULL	as	the	retCount	parameter	to	the	viGpibCommand
operation,	the	number	of	bytes	transferred	will	not	be	returned.	This	may	be
useful	if	it	is	important	to	know	only	whether	the	operation	succeeded	or	failed.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf IN ViBuf Buffer	containing	valid	GPIB	commands.

count IN ViUInt32 Number	of	bytes	to	be	written.

retCount OUT ViPUInt32 Number	of	bytes	actually	transferred.

Special	Value	for	retcnt	Parameter

Value 	 	 Action	Description

VI_NULL 	 	 Do	not	return	the	number	of	bytes	transferred.

	Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Resource	attribute	retrieved	successfully.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	write	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_IO An	unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NCIC The	interface	associated	with	this	session	is	not	currently	the
controller	in	charge.

VI_ERROR_NLISTENERS No	listeners	condition	is	detected	(both	NRFD	and	NDAC	are
deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	operation	completed.

See	Also

INTFC	resource	description

	

viGpibControlATN

Syntax

viGpibControlATN(ViSession	vi,	ViUInt16	mode);

Description

Controls	the	state	of	the	GPIB	ATN	interface	line,	and	optionally	the	active
controller	state	of	the	local	interface	board.	This	operation	asserts	or	deasserts
the	GPIB	ATN	interface	line	according	to	the	specified	mode.	The	mode	can	also
specify	whether	the	local	interface	board	should	acquire	or	release	Controller
Active	status.

This	operation	is	valid	only	on	GPIB	INTFC	(interface)	sessions.

Note:	It	is	generally	not	necessary	to	use	the	viGpibControlATN	operation	in
most	applications.	Other	operations	such	as	viGpibCommand	and
viGpibPassControl	modify	the	ATN	and/or	CIC	state	automatically.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier
to	a	session.

mode IN ViUInt16

Specifies	the	state	of	the
ATN	line	and,	optionally,
the	local	active	controller
state.

Special	Values	for	mode	Parameter

Value 	 	
Action
Description

VI_GPIB_ATN_ASSERT 	 	

Assert	ATN	line
synchronously	(in	488
terminology).	If	a	data
handshake	is	in	progress,
ATN	will	not	be	asserted
until	the	handshake	is
complete.

VI_GPIB_ATN_DEASSERT 	 	 Deassert	ATN	line.

VI_GPIB_ATN_DEASSERT_HANDSHAKE* 	 	

Deassert	ATN	line,	and
enter	shadow	handshake
mode.	The	local	board
will	participate	in	data
handshakes	as	an
Acceptor	without	actually
reading	the	data.

VI_GPIB_REN_ASSERT_IMMEDIATE* 	 	

Assert	ATN	line
asynchronously	(in	488
terminology).	This	should
generally	be	used	only
under	error	conditions.

*	Not	supported	in	Agilent	VISA

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_MODE The	value	specified	by	the	mode	parameter	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NCIC The	interface	associated	with	this	session	is	not	currently	the
controller	in	charge.

VI_ERROR_NSUP_MODE The	specified	mode	is	not	supported	by	this	VISA
implementation.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

INTFC	resource	description

	

viGpibControlREN

Syntax

viGpibControlREN(ViSession	vi,	ViUInt16	mode);

Description

Controls	the	state	of	the	GPIB	REN	interface	line	and,	optionally,	the
remote/local	state	of	the	device.	This	operation	asserts	or	deasserts	the	GPIB
REN	interface	line	according	to	the	specified	mode.	The	mode	can	also	specify
whether	the	device	associated	with	this	session	should	be	placed	in	local	state
(before	deasserting	REN)	or	remote	state	(after	asserting	REN).	This	operation	is
valid	only	if	the	GPIB	interface	associated	with	the	session	specified	by	vi	is
currently	the	system	controller.

An	INSTR	resource	implementation	of	viGpibControlREN	for	a	GPIB	System
supports	all	documented	modes.	An	INTFC	resource	implementation	of
viGpibControlREN	for	a	GPIB	System	supports	the	modes
VI_GPIB_REN_DEASSERT,	VI_GPIB_REN_ASSERT,	and
VI_GPIB_REN_ASSERT_LLO.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a
session.

mode IN ViUInt16
Specifies	the	state	of	the	REN
line	and,	optionally,	the	device
remote/local	state.

Special	Values	for	mode	Parameter	

mode 	 	 Action	Description

VI_GPIB_REN_ADDRESS_GTL 	 	 Send	the	Go	To	Local
command	(GTL)	to	this	device.

VI_GPIB_REN_ASSERT 	 	 Assert	REN	line.

VI_GPIB_REN_ASSERT_ADDRESS_LLO 	 	 Address	this	device	and	send	it
LLO,	putting	it	in	RWLS.

VI_GPIB_REN_ASSERT_ADDRESS 	 	 Assert	REN	line	and	address
this	device.

VI_GPIB_REN_ASSERT_LLO 	 	 Send	LLO	to	any	devices	that
are	addressed	to	listen.

VI_GPIB_REN_DEASSERT 	 	 Deassert	REN	line.

VI_GPIB_REN_DEASSERT_GTL 	 	
Send	the	Go	To	Local
command	(GTL)	to	this	device
and	deassert	REN	line.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Resource	attribute	retrieved	successfully.

Error	Codes Description

VI_ERROR_INV_MODE The	value	specified	by	the	mode	parameter	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NCIC The	interface	associated	with	this	session	is	not	currently	the
controller	in	charge.

VI_ERROR_NLISTENERS No	listeners	condition	is	detected	(both	NRFD	and	NDAC	are
deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_NSYS_CNTLR The	interface	associated	with	this	session	is	not	the	system
controller.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

	

viGpibPassControl

Syntax

viGpibPassControl(ViSession	vi,	ViUInt16	primAddr,

ViUInt16	secAddr);

Description

Tells	the	GPIB	device	at	the	specified	address	to	become	controller	in	charge
(CIC).	This	operation	passes	controller	in	charge	status	to	the	device	indicated
by	primAddr	and	secAddr	and	then	deasserts	the	ATN	line.	This	operation
assumes	that	the	targeted	device	has	controller	capability.	This	operation	is	valid
only	on	GPIB	INTFC	(interface)	sessions.	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

primAddr IN ViUInt16 Primary	address	of	the	GPIB	device	to	which	you	want	to
pass	control.

secAddr IN ViUInt16
Secondary	address	of	the	targeted	GPIB	device.	If	the
targeted	device	does	not	have	a	secondary	address,	this
parameter	should	contain	the	value	VI_NO_SEC_ADDR.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECTON

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_IO An	unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NCIC The	interface	associated	with	this	session	is	not	currently	the
controller	in	charge.

VI_ERROR_NLISTENERS No	listeners	condition	is	detected	(both	NRFD	and	NDAC
are	deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	operation	completed.

See	Also

INTFC	resource	description

	

viGpibSendIFC

Syntax

viGpibSendIFC(ViSession	vi);

Description

Pulse	the	interface	clear	line	(IFC)	for	at	least	100	mseconds.	This	operation
asserts	the	IFC	line	and	becomes	controller	in	charge	(CIC).	The	local	board
must	be	the	system	controller.	This	operation	is	valid	only	on	GPIB	INTFC
(interface)	sessions.	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_NSYS_CNTLR The	interface	associated	with	this	session	is	not	the	system
controller.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

INTFC	resource	description

	

viIn8Ex,	viIn16Ex,	viIn32Ex,	and	viIn64Ex

Syntax

viIn8Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64

offset64,	ViPUInt8	val8);

viIn16Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64

offset64,	ViPUInt16	val16);

viIn32Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64

offset64,	ViPUInt32	val32);

viIn64Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64

offset64,	ViPUInt64	val64);	

Description

These	VISA	4.0	operations,	by	using	the	specified	address	space,	read	in	8,	16,
32	or	64	bits	of	data	from	the	specified	offset.	This	operation	does	not	require
viMapAddress	to	be	called	prior	to	its	invocation.	This	function	reads	in	an	8-bit,
16-bit,	32-bit	or	64-bit	value	from	the	specified	memory	space	(assigned
memory	base	+	offset).	This	function	takes	the	8-bit,	16-bit,	32-bit,	or	64-bit
value	from	the	address	space	pointed	to	by	space.	The	offset	must	be	a	valid
memory	address	in	the	space.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameter
specifies	a	relative	offset	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameter	is	an
absolute	offset	from	the	start	of	memory	in	that	VXI	address	space.	The	valid
entries	for	specifying	address	space	are:

Value Description

VI_A16_SPACE Address	the	A16	address	space	of	VXI/MXI	bus.

VI_A24_SPACE Address	the	A24	address	space	of	VXI/MXI	bus.

VI_A32_SPACE Address	the	A32	address	space	of	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

The	high-level	operations	viIn8Ex,	viIn16Ex,	viIn32Ex	and	viIn64Ex	operate
successfully	independently	from	the	low-level	operations	(viMapAddressEx,
viPeek8,	viPeek16,	viPeek32,	viPeek64,	viPoke8,	viPoke16,	viPoke32	and
viPoke64).	The	high-level	and	low-level	operations	are	independent	regardless
of	the	configured	state	of	the	hardware	that	is	used	to	perform	memory	accesses.

The	offset	specified	in	the	viIn8Ex,	viIn16Ex,	viIn32Ex	,	and	viIn64Ex
operations	for	an	INSTR	resource	is	the	offset	address	relative	to	the	device's
allocated	address	base	for	the	corresponding	address	space	specified.	For	a
MEMACC	resource,	the	offset	parameter	specifies	an	absolute	address.

For	example,	if	space	specifies	VI_A16_SPACE,	offset	specifies	the	offset	from
the	logical	address	base	address	of	the	VXI	device	specified.	If	space	specifies
VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A64_SPACE	offset	specifies	the
offset	from	the	base	address	of	the	VXI	device's	memory	space	allocated	by	the
VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.

	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

space IN ViUInt16 Specifies	the	address	space.	(See	the
following	table.)

offset64 IN ViBusAddress64
Offset	(in	bytes)	of	the
memory	to	read	from.

val8,	val16,	val32,
or	val64 OUT

ViPUInt8,
ViPUInt16,
ViPUInt32,	or
ViPUInt64

Data	read	from	bus	(8	bits	for	viIn8,	16
bits	for	viIn16,	32	bits	for	viIn32,	or	64
bits	for	viIn64).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are
the	same	value).

VI_ERROR_INV_SPACE Invalid	address	space	specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	offset	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported	by	this	hardware.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viOut8Ex,	viOut16Ex,	viOut32Ex,	viOut64Ex,	viPeek8,	viPeek16,
viPeek32,	viPeek64,	viMoveIn8Ex,	viMoveIn16Ex,	viMoveIn32Ex,
viMoveIn64Ex

	

viIn8,	viIn16,	viIn32,	and	viIn64

Syntax

viIn8(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset

ViPUInt8	val8);

viIn16(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset

ViPUInt16	val16);

viIn32(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset

ViPUInt32	val32);

viIn64(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset

ViPUInt64	val64);			[VISA	4.0	and	later]

Description

This	operation,	by	using	the	specified	address	space,	reads	in	8,	16,	32	or	64	bits
of	data	from	the	specified	offset.	This	operation	does	not	require	viMapAddress
to	be	called	prior	to	its	invocation.	This	function	reads	in	an	8-bit,	16-bit,	32-bit
or	64-bit	value	from	the	specified	memory	space	(assigned	memory	base	+
offset).	This	function	takes	the	8-bit,	16-bit,	32-bit,	or	64-bit	value	from	the
address	space	pointed	to	by	space.	The	offset	must	be	a	valid	memory	address	in
the	space.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameter
specifies	a	relative	offset	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameter	is	an
absolute	offset	from	the	start	of	memory	in	that	VXI	address	space.	The	valid
entries	for	specifying	address	space	are:

Value Description

VI_A16_SPACE Address	the	A16	address	space	of	VXI/MXI	bus.

VI_A24_SPACE Address	the	A24	address	space	of	VXI/MXI	bus.

VI_A32_SPACE Address	the	A32	address	space	of	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

The	high-level	operations	viIn8,	viIn16,	viIn32	and	viIn64	operate
independently	from	the	low-level	operations	(viMapAddress,	viPeek8,	viPeek16,
viPeek32,	viPeek64,	viPoke8,	viPoke16,	viPoke32	and	viPoke64).	The	high-
level	and	low-level	operations	are	independent	regardless	of	the	configured	state
of	the	hardware	that	is	used	to	perform	memory	accesses.

For	an	INSTR	resource,	the	offset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.	For	a	MEMACC	resource,	the	offset	parameter
specifies	an	absolute	address.	The	offset	specified	in	the	viIn8,	viIn16,	viIn32	,
and	viIn64	operations	for	an	INSTR	resource	is	the	offset	address	relative	to	the

device's	allocated	address	base	for	the	corresponding	address	space	specified.

For	example,	if	space	specifies	VI_A16_SPACE,	offset	specifies	the	offset	from
the	logical	address	base	address	of	the	VXI	device	specified.	If	space	specifies
VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A64_SPACE	offset	specifies	the
offset	from	the	base	address	of	the	VXI	device's	memory	space	allocated	by	the
VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.

	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

space IN ViUInt16 Specifies	the	address	space.	(See	the	following
table.)

offset IN ViBusAddress
Offset	(in	bytes)	of	the	memory	to
read	from.

val8,	val16,
val32,	or
val64

OUT

ViPUInt8,
ViPUInt16,
ViPUInt32,	or
ViPUInt64

Data	read	from	bus	(8	bits	for	viIn8,	16	bits	for
viIn16,	32	bits	for	viIn32,	or	64	bits	for	viIn64).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are
the	same	value).

VI_ERROR_INV_SPACE Invalid	address	space	specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	offset	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported	by	this	hardware.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viOut8,	viOut16,	viOut32,	viOut64,	viPeek8,	viPeek16,	viPeek32,	viPeek64,
viMoveIn8,	viMoveIn16,	viMoveIn32,	viMoveIn64

	

viInstallHandler

Syntax

viInstallHandler(ViSession	vi,	ViEventType	eventType,

ViHndlr	handler,	ViAddr	UserHandle);

Description

This	function	allows	applications	to	install	handlers	on	sessions	for	event
callbacks.	The	handler	specified	in	the	handler	parameter	is	installed	along	with
previously	installed	handlers	for	the	specified	event.	Applications	can	specify	a
value	in	the	userHandle	parameter	that	is	passed	to	the	handler	on	its	invocation.

VISA	identifies	handlers	uniquely	using	the	handler	reference	and	the
userHandle	value.

Note:	Versions	of	VISA	prior	to	Version	2.0	allow	only	a	single	handler	per
event	type	per	session.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

eventType IN ViEventType Logical	event	identifier.

handler IN ViHndlr Interpreted	as	a	valid	reference	to	a	handler	to	be
installed	by	an	application.

userHandle IN ViAddr A	value	specified	by	an	application	that	can	be	used
for	identifying	handlers	uniquely	for	an	event	type.

The	following	events	are	valid: 	 	 	

Event	Name 	 	 Description

VI_EVENT_IO_COMPLETION 	 	 Notification	that	an	asynchronous	operation	has
completed.

VI_EVENT_TRIG 	 	 Notification	that	a	hardware	trigger	was	received
from	a	device.

VI_EVENT_SERVICE_REQ 	 	 Notification	that	a	device	is	requesting	service.

VI_EVENT_CLEAR 	 	 Notification	that	the	local	controller	has	been	sent	a
device	clear	message

VI_EVENT_EXCEPTION 	 	

Notification	that	an	error	condition	has	occurred
during	an	operation	invocation.	(Note:	the
VI_QUEUE	and	VI_SUSPEND_HNDLR
mechanisms	cannot	be	used	with	this	event.)

VI_EVENT_GPIB_CIC 	 	 Notification	that	the	GPIB	controller	has	gained	or
lost	CIC	(controller	in	charge)	status.

VI_EVENT_GPIB_TALK 	 	 Notification	that	the	GPIB	controller	has	been
addressed	to	talk.

VI_EVENT_GPIB_LISTEN 	 	 Notification	that	the	GPIB	controller	has	been
addressed	to	listen.

VI_EVENT_PXI_INTR 	 	 Notification	that	a	vendor-specific	PXI	interrupt	was
received	from	the	device.

VI_EVENT_VXI_VME_SYSFAIL 	 	 Notification	that	the	VXI/VME	SYSFAIL*	line	has
been	asserted.

VI_EVENT_VXI_VME_SYSRESET 	 	 Notification	that	the	VXI/VME	SYSRESET*	line
has	been	asserted

VI_EVENT_VXI_SIGP 	 	 Notification	that	a	VXI	signal	or	VXI	interrupt	has
been	received	from	a	device.

VI_EVENT_VXI_VME_INTR
	 	

Notification	that	a	VXIbus	interrupt	was	received

from	the	device.

Not	supported	by	Agilent	VISA: 	 	 	

VI_EVENT_TCPIP_CONNECT 	 	 Notification	that	a	TCP/IP	connection	has	been
made.

VI_EVENT_USB_INTR 	 	 Notification	that	a	vendor-specific	USB	interrupt
was	received	from	the	device.

Note:	Refer	to	the	viEventHandler	topic	and	the	VISA	Attributes	topics	for
information	on	the	event	types	that	are	available	for	various	VISA	resource
classes	(e.g.	INSTR,	INTFC	…).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Event	handler	installed	successfully.

Error	Codes Description

VI_ERROR_HNDLR_NINSTALLED
The	handler	was	not	installed.	This	may	be	returned	if	an
application	attempts	to	install	multiple	handlers	for	the	same
event	on	the	same	session.

VI_ERROR_INV_EVENT Specified	event	type	is	not	supported	by	the	resource.

VI_ERROR_INV_HNDLR_REF The	given	handler	reference	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

See	Also

viEventHandler

	

viLock

Syntax

viLock(ViSession	vi,	ViAccessMode	lockType,	ViUInt32

timeout,	ViKeyId	requestedKey,	ViKeyId	accessKey);

Note:	Shared	locks	ARE	supported	by	HiSLIP	devices	but	are	NOT	supported
on	other	types	of	network	devices.

Description

This	function	is	used	to	obtain	a	lock	on	the	specified	resource.	The	caller	can
specify	the	type	of	lock	requested	(exclusive	or	shared	lock)	and	the	length	of
time	the	operation	will	suspend	while	waiting	to	acquire	the	lock	before	timing
out.	This	function	can	also	be	used	for	sharing	and	nesting	locks.

The	requestedKey	and	accessKey	parameters	apply	only	to	shared	locks.	These
parameters	are	not	applicable	when	using	the	lock	type
VI_EXCLUSIVE_LOCK.	In	this	case,	requestedKey	and	accessKey	should	be
set	to	VI_NULL.	VISA	allows	user	applications	to	specify	a	key	to	be	used	for
lock	sharing	through	the	use	of	the	requestedKey	parameter.

Alternatively,	a	user	application	can	pass	VI_NULL	for	the	requestedKey
parameter	when	obtaining	a	shared	lock,	in	which	case	VISA	will	generate	a
unique	access	key	and	return	it	through	the	accessKey	parameter.	If	a	user
application	does	specify	a	requestedKey	value,	VISA	will	try	to	use	this	value	for
the	accessKey.

As	long	as	the	resource	is	not	locked,	VISA	will	use	the	requestedKey	as	the
access	key	and	grant	the	lock.	When	the	operation	succeeds,	the	requestedKey
will	be	copied	into	the	user	buffer	referred	to	by	the	accessKey	parameter.

The	session	that	gained	a	shared	lock	can	pass	the	accessKey	to	other	sessions
for	the	purpose	of	sharing	the	lock.	The	session	wanting	to	join	the	group	of
sessions	sharing	the	lock	can	use	the	key	as	an	input	value	to	the	requestedKey
parameter.

VISA	will	add	the	session	to	the	list	of	sessions	sharing	the	lock,	as	long	as	the
requestedKey	value	matches	the	accessKey	value	for	the	particular	resource.	The
session	obtaining	a	shared	lock	in	this	manner	will	then	have	the	same	access
privileges	as	the	original	session	that	obtained	the	lock.

It	is	also	possible	to	obtain	nested	locks	through	this	function.	To	acquire	nested
locks,	invoke	the	viLock	function	with	the	same	lock	type	as	the	previous
invocation	of	this	function.	For	each	session,	viLock	and	viUnlock	share	a	lock
count,	which	is	initialized	to	0.	Each	invocation	of	viLock	for	the	same	session

(and	for	the	same	lockType)	increases	the	lock	count.

A	shared	lock	returns	with	the	same	accessKey	every	time.	When	a	session	locks
the	resource	a	multiple	number	of	times,	it	is	necessary	to	invoke	the	viUnlock
function	an	equal	number	of	times	in	order	to	unlock	the	resource.	That	is,	the
lock	count	increments	for	each	invocation	of	viLock,	and	decrements	for	each
invocation	of	viUnlock.	A	resource	is	actually	unlocked	only	when	the	lock
count	is	0.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

lockType IN ViAccessMode Specifies	the	type	of	lock	requested,	which	can	be
VI_EXCLUSIVE_LOCK	or	VI_SHARED_LOCK.

timeout IN ViUInt32

Absolute	time	period	(in	milliseconds)
that	a	resource	waits	to	get	unlocked	by
the	locking	session	before	returning
this	operation	with	an	error.
VI_TMO_IMMEDIATE	and
VI_TMO_INFINITE	are	also	valid
values.

requestedKey IN ViKeyId

This	parameter	is	not	used	and	should
be	set	to	VI_NULL	when	lockType	is
VI_EXCLUSIVE_LOCK	(exclusive
lock).	When	trying	to	lock	the	resource
as	VI_SHARED_LOCK	(shared	lock),
a	session	can	either	set	it	to	VI_NULL
so	that	VISA	generates	an	accessKey
for	the	session,	or	the	session	can
suggest	an	accessKey	to	use	for	the
shared	lock.	See	"Description"	for
more	details.

accessKey OUT ViKeyId

This	parameter	should	be	set	to	VI_NULL	when
lockType	is	VI_EXCLUSIVE_LOCK	(exclusive	lock).
When	trying	to	lock	the	resource	as
VI_SHARED_LOCK	(shared	lock),	the	resource
returns	a	unique	access	key	for	the	lock	if	the
operation	succeeds.	This	accessKey	can	then	be	passed
to	other	sessions	to	share	the	lock.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS The	specified	access	mode	was	successfully	acquired.

VI_SUCCESS_NESTED_EXCLUSIVE The	specified	access	mode	was	successfully	acquired,
and	this	session	has	nested	exclusive	locks.

VI_SUCCESS_NESTED_SHARED

The	specified	access	mode	was
successfully	acquired,	and	this	session
has	nested	shared	locks.

Error	Codes Description

VI_ERROR_INV_ACCESS_KEY The	requestedKey	value	passed	is	not	a	valid	access	key
to	the	specified	resource.

VI_ERROR_INV_LOCK_TYPE The	specified	type	of	lock	is	not	supported	by	this
resource.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT The	given	vi	does	not	identify	a	valid	session	or	object.

VI_ERROR_RSRC_LOCKED
The	specified	type	of	lock	cannot	be	obtained	because
the	resource	is	already	locked	with	a	lock	type
incompatible	with	the	lock	requested.

VI_ERROR_TMO The	specified	type	of	lock	could	not	be	obtained	within
the	specified	timeout	period.

See	Also

viUnlock.	For	more	information	on	locking,	see	Programming	with	VISA	in	the
Agilent	VISA	User’s	Guide.

	

viMapAddress

Syntax

viMapAddress(ViSession	vi,	ViUInt16mapSpace,

ViBusAddress	mapBase	,	ViBusSizemapSize,

ViBooleanaccess,	ViAddrsuggested,	ViPAddraddress);

Description

This	function	maps	in	a	specified	memory	space.	The	memory	space	that	is
mapped	is	dependent	on	the	type	of	interface	specified	by	the	vi	parameter	and
the	mapSpace	parameter	(see	the	following	table).	The	address	parameter	returns
the	address	in	your	process	space	where	memory	is	mapped.	The	values	for	the
mapSpace	parameter	are:

Value Description

VI_A16_SPACE Map	the	A16	address	space	of	VXI/MXI	bus.

VI_A24_SPACE Map	the	A24	address	space	of	VXI/MXI	bus.

VI_A32_SPACE Map	the	A32	address	space	of	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

If	the	viSession	parameter	(vi)	refers	to	an	INSTR	session,	the
mapBase	parameter	specifies	a	relative	offset	in	the	instrument’s
mapSpace.	If	the	ViSession	parameter	(vi)	refers	to	a	MEMACC
session,	the	mapBase	parameter	is	an	absolute	offset	from	the	start
of	the	VXI	mapSpace.

Note:	For	a	given	session,	you	can	only	have	one	map	at	one	time.	If	you	need	to
have	multiple	maps	to	a	device,	you	must	open	one	session	for	each	map	needed.

The	mapBase	parameter	specified	in	the	viMapAddress	operation	for
an	INSTR	resource	is	the	offset	address	relative	to	the	device's
allocated	address	base	for	the	corresponding	address	space
specified.	For	example,	if	mapSpace	specifies	VI_A16_SPACE,
mapBase	specifies	the	offset	from	the	logical	address	base	address
of	the	VXI	device	specified.	If	mapSpace	specifies	VI_A24_SPACE,
VI_A32_SPACE,	or	VI_A64_SPACE,	mapBase	specifies	the	offset
from	the	base	address	of	the	VXI	device's	memory	space	allocated
by	the	VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.		

When	calling	the	viMapAddress	function	on	a	PXI	session,	the
maximum	value	for	the	mapSize	parameter	is	1048576	(0x100000)
even	if	the	map	space	being	referenced	is	larger	than	this	value.	If
you	need	access	to	a	larger	memory	block	than	this,	there	are	two
ways	to	work	around	this	limit:

1.	Use	viMoveIn,	viMoveOut,	or	viMove.	These	functions	are	not	limited
to	the	0x100000	byte	limit.

2.	Use	viMapAddress	/	viUnmapAddress	multiple	times	to	map	individual
blocks	of	memory	that	are	less	than	0x100000	bytes	and	access	each	block
in	sequence.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

mapSpace IN ViUInt16 Specifies	the	address	space	to	map.

mapBase IN ViBusAddress Offset	(in	bytes)	of	the	memory	to	be	mapped.

mapSize IN ViBusSize Amount	of	memory	to	map	(in	bytes).

access IN ViBoolean VI_FALSE.

suggested IN ViAddr

If	suggested	parameter	is	not	VI_NULL,	the	operating
system	attempts	to	map	the	memory	to	the	address
specified	in	suggested.	There	is	no	guarantee,	however,
that	the	memory	will	be	mapped	to	that	address.	This
function	may	map	the	memory	into	an	address	region
different	from	suggested.

address OUT ViPAddr Address	in	your	process	space	where	the	memory	was
mapped.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Map	successful.

Error	Codes Description

VI_ERROR_ALLOC Unable	to	allocate	window	of	at	least	the	requested	size.

VI_ERROR_INV_ACC_MODE Invalid	access	mode.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	the	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SIZE Invalid	size	of	window	specified.

VI_ERROR_INV_SPACE Invalid	mapSpace	specified.

VI_ERROR_NSUP_OFFSET Specified	region	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO viMapAddress	could	not	acquire	resource	or	perform
mapping	before	the	timer	expired.

VI_ERROR_WINDOW_MAPPED The	specified	session	already	contains	a	mapped	window.

See	Also

viUnmapAddress

	

viMapAddressEx

Note:	This	function	is	not	currently	supported	in	Agilent	VISA.

Syntax

viMapAddressEx(ViSession	vi,	ViUInt16	mapSpace,

ViBusAddress64	mapBase64,	ViBusSize	mapSize,	ViBoolean

access,	ViAddr	suggested,	ViPAddr	address);

Description

This	VISA	4.0	(and	later)	function	maps	in	a	specified	memory	space.	The
memory	space	that	is	mapped	is	dependent	on	the	type	of	interface	specified	by
the	vi	parameter	and	the	mapSpace	parameter	(see	the	following	table).	The
address	parameter	returns	the	address	in	your	process	space	where	memory	is
mapped.	The	values	for	the	mapSpace	parameter	are:

Value Description

VI_A16_SPACE Map	the	A16	address	space	of	VXI/MXI	bus.

VI_A24_SPACE Map	the	A24	address	space	of	VXI/MXI	bus.

VI_A32_SPACE Map	the	A32	address	space	of	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

If	the	viSession	parameter	(vi)	refers	to	an	INSTR	session,	the	mapBase
parameter	specifies	a	relative	offset	in	the	instrument’s	mapSpace.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	mapBase	parameter
is	an	absolute	offset	from	the	start	of	the	VXI	mapSpace.

Note:	For	a	given	session,	you	can	only	have	one	map	at	one	time.	If	you	need	to
have	multiple	maps	to	a	device,	you	must	open	one	session	for	each	map	needed.

The	mapBase	parameter	specified	in	the	viMapAddressEx	operation	for	an
INSTR	resource	is	the	offset	address	relative	to	the	device's	allocated	address
base	for	the	corresponding	address	space	specified.

For	example,	if	mapSpace	specifies	VI_A16_SPACE,	mapBase64	specifies	the
64-bit	offset	from	the	logical	address	base	address	of	the	VXI	device	specified.
If	mapSpace	specifies	VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A32_SPACE,
mapBase	specifies	the	offset	from	the	base	address	of	the	VXI	device's	memory
space	allocated	by	the	VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64
space.		

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

mapSpace IN ViUInt16 Specifies	the	address	space	to	map.

mapBase64 IN ViBusAddress64 64-bit	offset	(in	bytes)	of	the	memory	to	be	mapped.

mapSize IN ViBusSize Amount	of	memory	to	map	(in	bytes).

access IN ViBoolean VI_FALSE.

suggested IN ViAddr

If	suggested	parameter	is	not	VI_NULL,	the	operating
system	attempts	to	map	the	memory	to	the	address
specified	in	suggested.	There	is	no	guarantee,
however,	that	the	memory	will	be	mapped	to	that
address.	This	function	may	map	the	memory	into	an
address	region	different	from	suggested.

address OUT ViPAddr Address	in	your	process	space	where	the	memory	was
mapped.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Map	successful.

Error	Codes Description

VI_ERROR_ALLOC Unable	to	allocate	window	of	at	least	the	requested	size.

VI_ERROR_INV_ACC_MODE Invalid	access	mode.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	the	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SIZE Invalid	size	of	window	specified.

VI_ERROR_INV_SPACE Invalid	mapSpace	specified.

VI_ERROR_NSUP_OFFSET Specified	region	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO viMapAddress	could	not	acquire	resource	or	perform
mapping	before	the	timer	expired.

VI_ERROR_WINDOW_MAPPED The	specified	session	already	contains	a	mapped	window.

See	Also

viUnmapAddress

	

viMapTrigger

Syntax

viMapTrigger(ViSession	vi,	ViInt16	trigSrc,	ViInt16

trigDest,	ViUInt16	mode);

Description

Map	the	specified	trigger	source	line	to	the	specified	destination	line.	This
operation	can	be	used	to	map	one	trigger	line	to	another.	This	operation	is	valid
only	on	VXI	Backplane	(BACKPLANE)	sessions.

If	this	operation	is	called	multiple	times	on	the	same	BACKPLANE	resource
with	the	same	source	trigger	line	and	different	destination	trigger	lines,	the	result
should	be	that	when	the	source	trigger	line	is	asserted	all	specified	destination
trigger	lines	should	also	be	asserted.

If	this	operation	is	called	multiple	times	on	the	same	BACKPLANE	resource
with	different	source	trigger	lines	and	the	same	destination	trigger	line	the	result
should	be	that	when	any	of	the	specified	source	trigger	lines	is	asserted,	the
destination	trigger	line	should	also	be	asserted.

However,	mapping	a	trigger	line	(as	either	source	or	destination)	multiple	times
requires	special	hardware	capabilities	and	is	not	guaranteed	to	be	implemented.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

trigSrc IN ViInt16 Source	line	from	which	to	map.

trigDest IN ViInt16 Destination	line	to	which	to	map.

	 IN 	 	

mode IN ViUInt16 Specifies	the	trigger	mapping	mode.	This	should
always	be	VI_NULL	for	VISA	3.0	and	later.

Special	Values	for	trgSrc	and	trigDest	Parameters

Value 	 	 Action	Description

VI_TRIG_ECL0	-
VI_TRIG_ECL1 	 	 Map	the	specified	VXI	ECL	trigger	line.

VI_TRIG_PANEL_IN 	 	 Map	the	controller's	front	panel	trigger	input
line.

VI_TRIG_PANEL_OUT 	 	 Map	the	controller's	front	panel	trigger	output
line.

VI_TRIG_TTL0	-
VI_TRIG_TTL7 	 	 Map	the	specified	VXI	TTL	trigger	line.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

VI_SUCCESS_TRIG_MAPPED The	path	from	trigSrc	to	trigDest	is	already	mapped.

Error	Codes Description

VI_ERROR_INV_LINE One	of	the	specified	lines	(trigSrc	or	trigDest)	is	invalid.

VI_ERROR_INV_MODE The	value	specified	by	the	mode	parameter	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_LINE_IN_USE One	of	the	specified	lines	(trigSrc	or	trigDest)	is	currently	in	use.

VI_ERROR_NSUP_LINE One	of	the	specified	lines	(trigSrc	or	trigDest)	is	not	supported	by
this	VISA	implementation.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO viMapAddress	could	not	acquire	resource	or	perform	mapping
before	the	timer	expired.

See	Also

BACKPLANE	Resource	Description

	

viMemAlloc

Syntax

viMemAlloc(ViSession	vi,	ViBusSize	size,	ViPBusAddress

offset);

Description

Note:	viMemAlloc	is	implemented	for	PXI	MEMACC	resources	only.	It	is	not
implemented	for	VXI	and	VXI-GPIB	MEMACC	resources.

The	offset	returned	for	a	PXI	MEMACC	resource	is	an	absolute	physical	address
of	a	contiguous	block	of	memory	which	has	been	allocated	by	the	operating
system.	The	memory	block	is	also	locked,	meaning	it	will	not	be	swapped	out.	A
common	use	for	this	memory	is	to	do	user-mode	DMA	to	or	from	a	PXI	device..

Both	the	high-level	memory	access	functions	(viInXX,	viOutXX,	viMoveXX)
and	the	low-level	memory	access	functions	(viMapAddress,	viPeekXX,
viPokeXX,	viUnmapAddress)	can	be	used	on	MEMACC	sessions	to	access	the
allocated	memory.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

size IN ViBusSize Specifies	the	size	of	the	allocation.

offset OUT ViPBusAddress Returns	the	offset	of	the	allocated	device	memory.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_ALLOC Unable	to	allocate	shared	memory	block	of	the	requested	size.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SIZE Invalid	size	specified.

VI_ERROR_MEM_NSHARED The	device	does	not	export	any	memory.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

viMemFree

	

viMemAllocEx

Syntax

viMemAllocEx(ViSession	vi,	ViBusSize

size,	ViBusAddress64	offset64);			[VISA	4.0	and	later]

Description

Note:	viMemAllocEx	is	implemented	for	PXI	MEMACC	resources	only.	It	is	not
implemented	for	VXI	and	VXI-GPIB	MEMACC	resources.

The	offset	returned	for	a	PXI	MEMACC	resource	is	an	absolute	physical	address
of	a	contiguous	block	of	memory	which	has	been	allocated	by	the	operating
system.	The	memory	block	is	also	locked,	meaning	it	will	not	be	swapped	out.	A
common	use	for	this	memory	is	to	do	user-mode	DMA	to	or	from	a	PXI	device..

Both	the	high-level	memory	access	functions	(viInXX,	viOutXX,	viMoveXX)
and	the	low-level	memory	access	functions	(viMapAddress,	viPeekXX,
viPokeXX,	viUnmapAddress)	can	be	used	on	MEMACC	sessions	to	access	the
allocated	memory.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

size IN ViBusSize Specifies	the	size	of	the	allocation.

offset64 OUT ViBusAddress64 Returns	the	64-bit	offset	of	the	allocated	device	memory.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_ALLOC Unable	to	allocate	shared	memory	block	of	the	requested	size.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SIZE Invalid	size	specified.

VI_ERROR_MEM_NSHARED The	device	does	not	export	any	memory.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

viMemFreeEx

	

viMemFree

Syntax

viMemFree(ViSession	vi,	ViBusAddress	offset);

Description

Note:	viMemFree	is	implemented	for	PXI	MEMACC	resources	only.	It	is	not
implemented	for	VXI	and	VXI-GPIB	MEMACC	resources.

This	function	frees	the	memory	previously	allocated	using	viMemAlloc.	

Both	the	high-level	memory	access	functions	(viInXX,	viOutXX,	viMoveXX)
and	the	low-level	memory	access	functions	(viMapAddress,	viPeekXX,
viPokeXX,	viUnmapAddress)	can	be	used	on	MEMACC	sessions	to	access	the
allocated	memory.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

offset IN ViBusAddress Specifies	the	memory	previously	allocated	with	viMemAlloc.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_WINDOW_MAPPED The	specified	offset	is	currently	in	use	by	viMapAddress.

See	Also

viMemAlloc

	

viMemFreeEx

Syntax

viMemFreeEx(ViSession	vi,	ViBusAddress64	offset64);

		[VISA	4.0	and	later]

Description

Note:	viMemFreeEx	is	implemented	for	PXI	MEMACC	resources	only.	It	is	not
implemented	for	VXI	and	VXI-GPIB	MEMACC	resources.

This	VISA	4.0	(and	later)	function	frees	the	memory	previously	allocated	using
viMemAllocEx.	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

offset64 IN ViBusAddress64 Specifies	the	memory	previously	allocated	with
viMemAllocEx.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

	 	

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

	 	

Error	Codes Description

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_WINDOW_NMAPPED The	specified	offset	is	currently	in	use	by	viMapAddress.

See	Also

viMemAllocEx

	

viMove

Syntax

viMove(ViSession	vi,	ViUInt16	srcSpace,	ViBusAddress

srcOffset,	viUInt16	srcWidth,	ViUInt16	destSpace,

ViBusAddress	destOffset,	ViUInt16	destWidth,	ViBusSize

length);

Description

This	operation	moves	data	from	the	specified	source	to	the	specified	destination.
The	source	and	the	destination	can	either	be	local	memory	or	the	offset	of	the
interface	with	which	this	INSTR	or	MEMACC	resource	is	associated.	This
operation	uses	the	specified	data	width	and	address	space.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameters
specify	relative	offsets	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameters	are
absolute	offsets	from	the	start	of	memory	in	the	specified	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE
Address	A32	memory	address	space	of	the
VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_LOCAL_SPACE Address	the	process-local	memory	(using	virtual	address).

VI_OPAQUE_SPACE Addresses	potentially	volatile	data	(using	a	virtual	address).

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

Valid	entries	for	specifying	widths:

Value Description

VI_WIDTH_8 Performs	an	8-bit	(D08)	transfer.

VI_WIDTH_16 Performs	a	16-bit	(D16)	transfer.

VI_WIDTH_32 Performs	a	32-bit	(D32)	transfer.

VI_WIDTH_64 Performs	a	64-bit	(D64)	transfer.

The	high-level	operation	viMove	operates	successfully	independently	from	the
low-level	operations	(viMapAddress,	viPeek8,	viPeek16,	viPeek32,	viPeek64,
viPoke8,	viPoke16,	viPoke32,	and	viPoke64).	The	high-level	and	low-level
operations	are	independent	regardless	of	the	configured	state	of	the	hardware
that	is	used	to	perform	memory	accesses.		

The	length	specified	in	the	viMove	operation	is	the	number	of	elements	(of	the
size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified	offset.
Therefore,	offset	+	length*size	cannot	exceed	the	amount	of	memory	exported	by
the	device	in	the	given	space.

If	srcSpace	is	not	VI_LOCAL_SPACE,	srcOffset	is	a	relative	address	of	the
device	associated	with	the	given	INSTR	resource.	Similarly,	if	destspace	is	not
VI_LOCAL_SPACE,	destOffset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.	srcOffset	and	destOffset	specified	in	the	viMove
operation	for	a	MEMACC	resource	are	absolute	addresses.	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

srcSpace IN ViUInt16 Specifies	the	address	space	of	the	source.

srcOffset IN ViBusAddress Offset	of	the	starting	address	or	register	from	which	to	read.

srcWidth IN ViUInt16 Specifies	the	data	width	of	the	source.

destSpace IN ViUInt16 Specifies	the	address	space	of	the	destination.

destOffset IN ViBusAddress Offset	of	the	starting	address	or	register	to	which	to	write..

destWidth IN ViUInt16 Specifies	the	data	width	of	the	destination.

length IN ViBusSize Number	of	data	elements	to	transfer,	where	the	data	width	of
the	elements	to	transfer	is	identical	to	the	source	data	width.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	Error	occurred	during	transfer.

VI_ERROR_INV_LENGTH Invalid	length	specified.

VI_ERROR_INV_OFFSET Invalid	source	or	destination	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SPACE Invalid	source	or	destination	address	specified.

VI_ERROR_INV_WIDTH Invalid	source	or	destination	width	specified.

VI_ERROR_NSUP_ALIGH_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	source	or	destination	offset	is	not	accessible	from
this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_NSUP_VAR_WIDTH Cannot	support	source	and	destination	widths	that	are
different.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viMoveAsync.	Also,	see	the	MEMACC	Resource	description.

	

viMoveEx

Syntax

viMoveEx(ViSession	vi,	ViUInt16	srcSpace,	ViBusAddress64

srcOffset64,	viUInt16	srcWidth,	ViUInt16	destSpace,

ViBusAddress64	destOffset64,	ViUInt16	destWidth,

ViBusSize	length);

Description

This	VISA	4.0	(and	later)	operation	moves	data	from	the	specified	source	to	the
specified	destination.	The	source	and	the	destination	can	either	be	local	memory
or	the	offset	of	the	interface	with	which	this	INSTR	or	MEMACC	resource	is
associated.	This	operation	uses	the	specified	data	width	and	address	space.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameters
specify	relative	offsets	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameters	are
absolute	offsets	from	the	start	of	memory	in	the	specified	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE
Address	A32	memory	address	space	of	the
VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_LOCAL_SPACE Address	the	process-local	memory	(using	virtual	address).

VI_OPAQUE_SPACE Addresses	potentially	volatile	data	(using	a	virtual	address).

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

Valid	entries	for	specifying	widths:

Value Description

VI_WIDTH_8 Performs	an	8-bit	(D08)	transfer.

VI_WIDTH_16 Performs	a	16-bit	(D16)	transfer.

VI_WIDTH_32 Performs	a	32-bit	(D32)	transfer.

			VI_WIDTH_64 			Performs	a	64-bit	(D64)	transfer.

The	high-level	operation	viMoveEx	operates	successfully	independently	from
the	low-level	operations	(viMapAddress,	viMapAddressEx,		viPeek8,	viPeek16,
viPeek32,	viPeek64,		viPoke8,	viPoke16,	viPoke32	and	viPoke64).	The	high-
level	and	low-level	operations	are	independent	regardless	of	the	configured	state
of	the	hardware	that	is	used	to	perform	memory	accesses.		

The	length	specified	in	the	viMoveEx	operation	is	the	number	of	elements	(of
the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	amount	of	memory
exported	by	the	device	in	the	given	space.

If	srcSpace	is	not	VI_LOCAL_SPACE,	srcOffset	is	a	relative	address	of	the
device	associated	with	the	given	INSTR	resource.	Similarly,	if	destspace	is	not
VI_LOCAL_SPACE,	destOffset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.	srcOffset	and	destOffset	specified	in	the
viMoveEx	operation	for	a	MEMACC	resource	are	absolute	addresses.	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

srcSpace IN ViUInt16 Specifies	the	address	space	of	the	source.

srcOffset64 IN ViBusAddress64 Offset	of	the	starting	address	or	register	from	which	to
read.

srcWidth IN ViUInt16 Specifies	the	data	width	of	the	source.

destSpace IN ViUInt16 Specifies	the	address	space	of	the	destination.

destOffset64 IN ViBusAddress64 Offset	of	the	starting	address	or	register	to	which	to
write.

destWidth IN ViUInt16 Specifies	the	data	width	of	the	destination.

length IN ViBusSize
Number	of	data	elements	to	transfer,	where	the	data
width	of	the	elements	to	transfer	is	identical	to	the	source
data	width.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	Error	occurred	during	transfer.

VI_ERROR_INV_LENGTH Invalid	length	specified.

VI_ERROR_INV_OFFSET Invalid	source	or	destination	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SPACE Invalid	source	or	destination	address	specified.

VI_ERROR_INV_WIDTH Invalid	source	or	destination	width	specified.

VI_ERROR_NSUP_ALIGH_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	source	or	destination	offset	is	not	accessible	from
this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_NSUP_VAR_WIDTH Cannot	support	source	and	destination	widths	that	are
different.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viMoveAsyncEx.	Also,	see	the	MEMACC	Resource	description.

	

viMoveAsync

Syntax

viMoveAsync(ViSession	vi,	ViUInt16	srcSpace,

ViBusAddress	srcOffset,	ViUInt16	srcWidth,	ViUInt16

destSpace,	ViBusAddress	destOffset,	ViUInt16

destWidth,	ViBusSize	length,	ViPJobId	jobId);

Description

This	operation	asynchronously	moves	data	from	the	specified	source	to	the
specified	destination.	This	operation	queues	up	the	transfer	in	the	system,	then	it
returns	immediately	without	waiting	for	the	transfer	to	complete.	When	the
transfer	terminates,	a	VI_EVENT_IO_COMPLETE	event	indicates	the	status	of
the	transfer.

The	operation	returns	jobId	which	you	can	use	either	with	viTerminate	to	abort
the	operation	or	with	VI_EVENT_IO_COMPLETION	events	to	identify	which
asynchronous	move	operations	completed.	The	source	and	destination	can	be
either	local	memory	or	the	offset	of	the	device/interface	with	which	this	INSTR
or	MEMACC	Resource	is	associated.	This	operation	uses	the	specified	data
width	and	address	space.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameters
specify	relative	offsets	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameters	are
absolute	offsets	from	the	start	of	memory	in	the	specified	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE Address	A32	memory	address	space	of	the	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_LOCAL_SPACE Address	the	process-local	memory	(using	virtual	address).

VI_OPAQUE_SPACE Addresses	potentially	volatile	data	(using	a	virtual	address).

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

Valid	entries	for	specifying	widths:

Value Description

VI_WIDTH_8 Performs	an	8-bit	(D08)	transfer.

VI_WIDTH_16 Performs	a	16-bit	(D16)	transfer.

VI_WIDTH_32 Performs	a	32-bit	(D32)	transfer.

VI_WIDTH_64 Performs	a	64-bit	(D64)	transfer.

Programming	Tip:	Performing	multiple	asynchronous	operations
simultaneously:	The	VISA	asynchronous	functions	viMoveAsync,
viReadAsync	and	viWriteAsync	initiate	I/O	operations	to	a	device	on	a	separate
thread	which	allows	the	main	thread	to	continue	without	blocking	when	doing
I/O.	VISA	allows	you	to	initiate	multiple	simultaneous	asynchronous	operations
on	a	single	VISA	session,	but	the	Agilent	IO	Libraries	Suite	allows	only	a	single
thread	at	a	time	from	a	given	session	to	access	the	device.	To	perform	multiple
asynchronous	operations	simultaneously,	you	can	work	around	this	limitation	by
opening	multiple	sessions	to	the	device	and	doing	one	VISA	asynchronous	call
on	each	session.

If	you	pass	VI_NULL	as	the	jobId	parameter	to	the	viMoveAsync	operation,	no
jobId	will	be	returned.	This	option	may	be	useful	if	only	one	asynchronous
operation	will	be	pending	at	a	given	time.	If	multiple	jobs	are	queued	at	the	same
time	on	the	same	session,	an	application	can	use	the	jobId	to	distinguish	the	jobs,
as	they	are	unique	within	a	session.	The	value	VI_NULL	is	a	reserved	jobId	and
has	a	special	meaning	in	viTerminate.

If	srcSpace	is	not	VI_LOCAL_SPACE,	srcOffset	is	a	relative	address	of	the
device	associated	with	the	given	INSTR	resource.	Similarly,	if	destspace	is	not
VI_LOCAL_SPACE,	destOffset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

srcSpace IN ViUInt16 Specifies	the	address	space	of	the	source.

srcOffset IN ViBusAddress Offset	of	the	starting	address	or	register	from	which	to
read.

srcWidth IN ViUInt16 Specifies	the	data	width	of	the	source.

destSpace IN ViUInt16 Specifies	the	address	space	of	the	destination.

destOffset IN ViBusAddress Offset	of	the	starting	address	or	register	to	write	to.

destWidth IN ViUInt16 Specifies	the	data	width	of	the	destination.

length IN ViBusSize
Number	of	data	elements	to	transfer,	where	the	data
width	of	the	elements	to	transfer	is	identical	to	the
source	data	width.

jobId OUT ViPJobId

Represents	the	location	of	an	integer	that	will	be	set	to
the	job	identifier	of	this	asynchronous	move	operation.
Each	time	an	asynchronous	move	operation	is	called,	it
is	assigned	a	unique	job	identifier.

Special	Value	for	jobId	Parameter

Value 	 	 Action	Description

VI_NULL 	 	 Operation	does	not	return	a	job	identifier.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

VI_SUCCESS_SYNC Operation	performed	synchronously.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_QUEUE Unable	to	queue	move	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_IN_PROGRESS Unable	to	start	a	new	asynchronous	operation	while	another
asynchronous	operation	is	in	progress.

See	Also

viMove.	Also,	see	INSTR	and	MEMACC	Resource	descriptions.

	

viMoveAsyncEx

Note:	This	function	is	not	currently	supported	in	Agilent	VISA.

Syntax

viMoveAsyncEx(ViSession	vi,	ViUInt16	srcSpace,

ViBusAddress64	srcOffset64,	ViUInt16	srcWidth,

ViUInt16	destSpace,	ViBusAddress64	destOffset64,

ViUInt16	destWidth,	ViBusSize	length,	ViPJobId	jobId);

Description

This	VISA	4.0	(and	later)	operation	asynchronously	moves	data	from	the
specified	source	to	the	specified	destination.	This	operation	queues	up	the
transfer	in	the	system,	then	it	returns	immediately	without	waiting	for	the
transfer	to	complete.	When	the	transfer	terminates,	a
VI_EVENT_IO_COMPLETE	event	indicates	the	status	of	the	transfer.

The	operation	returns	jobId	which	you	can	use	either	with	viTerminate	to	abort
the	operation	or	with	VI_EVENT_IO_COMPLETION	events	to	identify	which
asynchronous	move	operations	completed.	The	source	and	destination	can	be
either	local	memory	or	the	offset	of	the	device/interface	with	which	this	INSTR
or	MEMACC	Resource	is	associated.	This	operation	uses	the	specified	data
width	and	address	space.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameters
specify	relative	offsets	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameters	are
absolute	offsets	from	the	start	of	memory	in	the	specified	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE Address	A32	memory	address	space	of	the	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_LOCAL_SPACE Address	the	process-local	memory	(using	virtual	address).

VI_OPAQUE_SPACE Addresses	potentially	volatile	data	(using	a	virtual	address).

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

Valid	entries	for	specifying	widths:

Value Description

VI_WIDTH_8 Performs	an	8-bit	(D08)	transfer.

VI_WIDTH_16 Performs	a	16-bit	(D16)	transfer.

VI_WIDTH_32 Performs	a	32-bit	(D32)	transfer.
			VI_WIDTH_64 			Performs	a	64-bit	(D64)	transfer.

Since	an	asynchronous	I/O	request	could	complete	before	the	viMoveAsyncEx
operation	returns,	and	the	I/O	completion	event	can	be	distinguished	based	on
the	job	identifier,	an	application	must	be	made	aware	of	the	job	identifier	before
the	first	moment	that	the	I/O	completion	event	could	possibly	occur.	Setting	the
output	parameter	jobId	before	the	data	transfer	even	begins	ensures	that	an
application	can	always	match	the	jobId	parameter	with	the	VI_ATTR_JOB_ID
attribute	of	the	I/O	completion	event.

If	you	pass	VI_NULL	as	the	jobId	parameter	to	the	viMoveAsyncEx	operation,
no	jobId	will	be	returned.	This	option	may	be	useful	if	only	one	asynchronous
operation	will	be	pending	at	a	given	time.	If	multiple	jobs	are	queued	at	the	same
time	on	the	same	session,	an	application	can	use	the	jobId	to	distinguish	the	jobs,
as	they	are	unique	within	a	session.	The	value	VI_NULL	is	a	reserved	jobId	and
has	a	special	meaning	in	viTerminate.

The	status	code	VI_ERROR_RSRC_LOCKED	can	be	returned	either
immediately	or	from	the	VI_EVENT_IO_COMPLETION	event.

If	srcSpace	is	not	VI_LOCAL_SPACE,	srcOffset	is	a	relative	address	of	the
device	associated	with	the	given	INSTR	resource.	Similarly,	if	destspace	is	not
VI_LOCAL_SPACE,	destOffset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

srcSpace IN ViUInt16 Specifies	the	address	space	of	the	source.

srcOffset64 IN ViBusAddress64 64-bit	offset	of	the	starting	address	or	register	from
which	to	read.

srcWidth IN ViUInt16 Specifies	the	data	width	of	the	source.

destSpace IN ViUInt16 Specifies	the	address	space	of	the	destination.

destOffset64 IN ViBusAddress64 64-bit	offset	of	the	starting	address	or	register	to
write	to.

destWidth IN ViUInt16 Specifies	the	data	width	of	the	destination.

length IN ViBusSize
Number	of	data	elements	to	transfer,	where	the	data
width	of	the	elements	to	transfer	is	identical	to	the
source	data	width.

jobId OUT ViPJobId

Represents	the	location	of	an	integer	that	will	be	set
to	the	job	identifier	of	this	asynchronous	move
operation.	Each	time	an	asynchronous	move
operation	is	called,	it	is	assigned	a	unique	job
identifier.

Special	Value	for	jobId	Parameter

Value 	 	 Action	Description

VI_NULL 	 	 Operation	does	not	return	a	job	identifier.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

VI_SUCCESS_SYNC Operation	performed	synchronously.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_QUEUE Unable	to	queue	move	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_IN_PROGRESS Unable	to	start	a	new	asynchronous	operation	while	another
asynchronous	operation	is	in	progress.

See	Also

viMoveEx.	Also,	see	INSTR	and	MEMACC	Resource	descriptions.

	

viMoveIn8,	viMoveIn16,	viMoveIn32,	and	viMoveIn64

Syntax

viMoveIn8(ViSession	vi,	ViUInt16	space,	ViBusAddress

offset,	ViBusSize	length,	ViAUInt8	buf8);	

viMoveIn16(ViSession	vi,	ViUInt16	space,

ViBusAddress	offset,	ViBusSize	length,	ViAUInt16

buf16);

viMoveIn32(ViSession	vi,	ViUInt16	space,	ViBusAddress

offset,	ViBusSize	length,	ViAUInt32	buf32);

viMoveIn64(ViSession	vi,	ViUInt16	space,	ViBusAddress

offset,	ViBusSize	length,	ViAUInt64	buf64);		[VISA	4.0

and	later]

Description

This	function	moves	an	8-bit,	16-bit,	32-bit,	or	64-bit	block	of	data	from	the
specified	memory	space	(assigned	memory	base	+	offset)	to	local	memory.	This
function	reads	the	8-bit,	16-bit,	32-bit,	or	64-bit	value	from	the	address	space
pointed	to	by	space.	The	offset	must	be	a	valid	memory	address	in	the	space.
These	functions	do	not	require	viMapAddress	to	be	called	prior	to	their
invocation.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameters
specify	relative	offsets	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameters	are
absolute	offsets	from	the	start	of	memory	in	the	specified	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE Address	A32	memory	address	space	of	the	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

These	functions	do	a	block	move	of	memory	from	a	VXI	device	if
VI_ATTR_SRC_INCREMENT	is	1.	However,	they	do	a	FIFO	read	of	a	VXI
memory	location	if	VI_ATTR_SRC_INCREMENT	is	0	(zero).

The	high-level	operations	viIn8,	viIn16,	viIn32,	and	viIn64	operate
independently	from	the	low-level	operations	(viMapAddress,	viPeek8,	viPeek16,
viPeek32,	viPeek64,	viPoke8,	viPoke16,	viPoke32,	and	viPoke64).

The	high-level	and	low-level	operations	are	independent	regardless	of	the
configured	state	of	the	hardware	that	is	used	to	perform	memory	accesses.

For	an	INSTR	resource,	the	offset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.	For	a	MEMACC	resource,	the	offset	parameter
specifies	an	absolute	address.

All	operations	on	a	PXI	MEMACC	resource	that	accept	a	space	parameter	to
indicate	the	address	space	for	bus	access	SHALL	accept	the	following	value	for
the	space	parameter:	VI_PXI_ALLOC_SPACE.

The	offset	specified	in	the	viMoveIn8,	viMoveIn16,	and	viMoveIn32
operations	for	an	INSTR	resource	is	the	offset	address	relative	to	the	device's
allocated	address	base	for	the	corresponding	address	space	specified.

For	example,	if	space	specifies	VI_A16_SPACE,	offset	specifies	the	offset	from
the	logical	address	base	address	of	the	VXI	device	specified.	If	space	specifies
VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A64_SPACE	offset	specifies	the
offset	from	the	base	address	of	the	VXI	device's	memory	space	allocated	by	the
VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.

The	length	specified	in	the	viMoveInXX	operations	is	the	number	of	elements
(of	the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	amount	of	memory
exported	by	the	device	in	the	given	space.

The	length	specified	in	the	viMoveInXX	operations	is	the	number	of	elements
(of	the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	total	amount	of	memory
available	in	the	given	space.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

space IN ViUInt16 Specifies	the	address	space.	(See	the
following	table.)

offset IN ViBusAddress Offset	(in	bytes)	of	the	starting	address	or
register	to	read	from.

length IN ViBusSize

Number	of	elements	to	transfer,	where	the
data	width	of	the	elements	to	transfer	is	8
bits	for	viMoveIn8,	16	bits	for
viMoveIn16,	32	bits	for	viMoveIn32,	and
64	bits	for	viMoveIn64	.

buf8,	buf16,
buf32,	or	buf64 OUT

ViAUInt8,	ViAUInt16,
ViAUInt32,	or
ViAUInt64

Data	read	from	bus	(8	bits	for	viMoveIn8,
16	bits	for	viMoveIn16,	32	bits	for
viMoveIn32,	and	64	bits	for	viMoveIn64).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INV_LENGTH Invalid	length	specified.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SPACE Invalid	address	space	specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	offset	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported	by	this	hardware.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viMoveOut8,	viMoveOut16,	viMoveOut32,	viMoveOut64,		viIn8,	viIn16,
viIn32,	viIn64

	

viMoveIn8Ex,	viMoveIn16Ex,	viMoveIn32Ex,	and	viMoveIn64Ex

Syntax

viMoveIn8Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64

offset64,	ViBusSize	length,	ViAUInt8	buf8);	

viMoveIn16Ex(ViSession	vi,	ViUInt16	space,

ViBusAddress64	offset64,	ViBusSize	length,	ViAUInt16

buf16);

viMoveIn32Ex(ViSession	vi,	ViUInt16	space,

ViBusAddress64	offset64,	ViBusSize	length,	ViAUInt32

buf32);

viMoveIn64Ex(ViSession	vi,	ViUInt16	space,

ViBusAddress64	offset64,	ViBusSize	length,	ViAUInt64

buf64);

Description

This	VISA	4.0	(and	later)	function	moves	an	8-bit,	16-bit,	32-bit,	or	64-bit	block
of	data	from	the	specified	memory	space	(assigned	memory	base	+	offset)	to
local	memory.	This	function	reads	the	8-bit,	16-bit,	32-bit,	or	64-bit	value	from
the	address	space	pointed	to	by	space.	The	offset	must	be	a	valid	memory
address	in	the	space.	These	functions	do	not	require	viMapAddress	to	be	called
prior	to	their	invocation.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameters
specify	relative	offsets	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameters	are
absolute	offsets	from	the	start	of	memory	in	the	specified	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE Address	A32	memory	address	space	of	the	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

The	viMoveInxEx	functions	do	a	block	move	of	memory	from	a	VXI	device	if
VI_ATTR_SRC_INCREMENT	is	1.	However,	they	do	a	FIFO	read	of	a	VXI
memory	location	if	VI_ATTR_SRC_INCREMENT	is	0	(zero).

The	high-level	operations	viIn8Ex,	viIn16Ex,	viIn32Ex,	and	viIn64Ex	operate
independently	from	the	low-level	operations	(viMapAddressEx,	viPeek8,
viPeek16,	viPeek32,	viPeek64,	viPoke8,	viPoke16,	viPoke32,	and	viPoke64).

The	high-level	and	low-level	operations	are	independent	regardless	of	the
configured	state	of	the	hardware	that	is	used	to	perform	memory	accesses.

For	an	INSTR	resource,	the	offset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.	For	a	MEMACC	resource,	the	offset	parameter
specifies	an	absolute	address.

All	operations	on	a	PXI	MEMACC	resource	that	accept	a	space	parameter	to
indicate	the	address	space	for	bus	access	SHALL	accept	the	following	value	for
the	space	parameter:	VI_PXI_ALLOC_SPACE.

The	64-bit	offset	specified	in	the	viMoveIn8Ex,	viMoveIn16Ex,
viMoveIn32Ex,	and	viMoveIn64Ex	operations	for	an	INSTR	resource	is	the
offset	address	relative	to	the	device's	allocated	address	base	for	the
corresponding	address	space	specified.

For	example,	if	space	specifies	VI_A16_SPACE,	offset	specifies	the	offset	from
the	logical	address	base	address	of	the	VXI	device	specified.	If	space	specifies
VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A64_SPACE	offset	specifies	the
offset	from	the	base	address	of	the	VXI	device's	memory	space	allocated	by	the
VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.

The	length	specified	in	the	viMoveInXX	operations	is	the	number	of	elements
(of	the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	amount	of	memory
exported	by	the	device	in	the	given	space.

The	length	specified	in	the	viMoveInXX	operations	is	the	number	of	elements
(of	the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	total	amount	of	memory
available	in	the	given	space.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

space IN ViUInt16 Specifies	the	address	space.	(See	the
following	table.)

offset64 IN ViBusAddress64 64-bit	offset	(in	bytes)	of	the	starting
address	or	register	to	read	from.

length IN ViBusSize

Number	of	elements	to	transfer,	where	the
data	width	of	the	elements	to	transfer	is	8
bits	for	viMoveIn8,	16	bits	for
viMoveIn16,	32	bits	for	viMoveIn32,	and
64	bits	for	viMoveIn64	.

buf8,	buf16,
buf32,	or	buf64 OUT

ViAUInt8,	ViAUInt16,
ViAUInt32,	or
ViAUInt64

Data	read	from	bus	(8	bits	for	viMoveIn8,
16	bits	for	viMoveIn16,	32	bits	for
viMoveIn32,	and	64	bits	for	viMoveIn64).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INV_LENGTH Invalid	length	specified.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SPACE Invalid	address	space	specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	offset	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported	by	this	hardware.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viMoveOut8Ex,	viMoveOut16Ex,	viMoveOut32Ex,	viMoveOut64Ex,	viIn8Ex,
viIn16Ex,	viIn32Ex,	viIn64Ex

	

viMoveOut8,	viMoveOut16,	viMoveOut32,	and	viMoveOut64

Syntax

viMoveOut8(ViSession	vi,	ViUInt16	space,	ViBusAddress

offset,	ViBusSize	length,	ViAUInt8	buf8);	

viMoveOut16(ViSession	vi,	ViUInt16	space,

ViBusAddress	offset,	ViBusSize	length,	ViAUInt16

buf16);

viMoveOut32(ViSession	vi,	ViUInt16	space,	ViBusAddress

offset,	ViBusSize	length,	ViAUInt32	buf32);

viMoveOut64(ViSession	vi,	ViUInt16	space,	ViBusAddress

offset,	ViBusSize	length,	ViAUInt64	buf64);	[VISA	4.0	and
later]

Description

This	function	moves	an	8-bit,	16-bit,	32-bit,	or	64-bit	block	of	data	from	local
memory	to	the	specified	memory	space	(assigned	memory	base	+	offset).	This
function	writes	the	8-bit,	16-bit,	32-bit,	or	64-bit	value	to	the	address	space
pointed	to	by	space.	The	offset	must	be	a	valid	memory	address	in	the	space.
This	function	does	not	require	viMapAddress	to	be	called	prior	to	its	invocation.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameters
specify	relative	offsets	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameters	are
absolute	offsets	from	the	start	of	memory	in	the	specified	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE Address	A32	memory	address	space	of	the	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

The	viMoveOut	functions	do	a	block	move	of	memory	from	a	VXI	device	if
VI_ATTR_DEST_INCREMENT	is	1.	However,	they	do	a	FIFO	read	of	a	VXI
memory	location	if	VI_ATTR_DEST_INCREMENT	is	0	(zero).

For	an	INSTR	resource,	the	offset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.	For	a	MEMACC	resource,	the	offset	parameter
specifies	an	absolute	address.

All	operations	on	a	PXI	MEMACC	resource	that	accept	a	space	parameter	to
indicate	the	address	space	for	bus	access	SHALL	accept	the	following	value	for
the	space	parameter:	VI_PXI_ALLOC_SPACE.

The	offset	specified	in	the	viMoveOut8,	viMoveOut16,	viMoveOut32,	and
viMoveOut64	operations	for	an	INSTR	resource	is	the	offset	address	relative	to
the	device's	allocated	address	base	for	the	corresponding	address	space	specified.

For	example,	if	space	specifies	VI_A16_SPACE,	offset	specifies	the	offset	from
the	logical	address	base	address	of	the	VXI	device	specified.	If	space	specifies
VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A64_SPACE	offset	specifies	the
offset	from	the	base	address	of	the	VXI	device's	memory	space	allocated	by	the
VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.

The	length	specified	in	the	viMoveOutXX	operations	is	the	number	of	elements
(of	the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	amount	of	memory
exported	by	the	device	in	the	given	space.

The	length	specified	in	the	viMoveOutXX	operations	is	the	number	of	elements
(of	the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	total	amount	of	memory
available	in	the	given	space.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

space IN ViUInt16 Specifies	the	address	space.	(See	the	following
table.)

offset64 IN ViBusAddress64 Offset	(in	bytes)	of	the	starting	address	or	register
to	write	to.

length IN ViBusSize

Number	of	elements	to	transfer,	where	the	data
width	of	the	elements	to	transfer	is	8	bits	for
viMoveOut8,	16	bits	for	viMoveOut16,	32	bits	for
viMoveOut32	or	64	bits	for	viMoveOut64.

buf8,	buf16,
buf32,	or	buf64 IN

ViAUInt8,
ViAUInt16,
ViAUInt32,
ViAUInt64

Data	written	to	bus	(8	bits	for	viMoveOut8,	16	bits
for	viMoveOut16,	32	bits	for	viMoveOut32,	and
64	bits	for	viMoveOut64).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INV_LENGTH Invalid	length	specified.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are
the	same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SPACE Invalid	address	space	specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	offset	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported	by	this	hardware.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viMoveIn8,	viMoveIn16,	viMoveIn32,	viMoveIn64,	viOut8,	viOut16,	viOut32,
viOut64

	

viMoveOut8Ex,	viMoveOut16Ex,	viMoveOut32Ex,	and
viMoveOut64Ex

Syntax

viMoveOut8Ex(ViSession	vi,	ViUInt16	space,

ViBusAddress64	offset64,	ViBusSize	length,	ViAUInt8

buf8);	

viMoveOut16Ex(ViSession	vi,	ViUInt16	space,

ViBusAddress64	offset64,	ViBusSize	length,	ViAUInt16

buf16);

viMoveOut32Ex(ViSession	vi,	ViUInt16	space,

ViBusAddress64	offset64,	ViBusSize	length,	ViAUInt32

buf32);

viMoveOut64Ex(ViSession	vi,	ViUInt16	space,

ViBusAddress64	offset64,	ViBusSize	length,	ViAUInt64

buf64);	

Description

This	VISA	4.0	(and	later)	function	moves	an	8-bit,	16-bit,	32-bit,	or	64-bit	block
of	data	from	local	memory	to	the	specified	memory	space	(assigned	memory
base	+	offset).	This	function	writes	the	8-bit,	16-bit,	32-bit,	or	64-bit	value	to	the
address	space	pointed	to	by	space.	The	offset	must	be	a	valid	memory	address	in
the	space.	This	function	does	not	require	viMapAddressEx	to	be	called	prior	to
its	invocation.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameters
specify	relative	offsets	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameters	are
absolute	offsets	from	the	start	of	memory	in	the	specified	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE Address	A32	memory	address	space	of	the	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

The	viMoveOutnEx	functions	do	a	block	move	of	memory	from	a	VXI	device
if	VI_ATTR_DEST_INCREMENT	is	1.	However,	they	do	a	FIFO	read	of	a	VXI
memory	location	if	VI_ATTR_DEST_INCREMENT	is	0	(zero).

For	an	INSTR	resource,	the	offset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.	For	a	MEMACC	resource,	the	offset	parameter
specifies	an	absolute	address.

All	operations	on	a	PXI	MEMACC	resource	that	accept	a	space	parameter	to
indicate	the	address	space	for	bus	access	SHALL	accept	the	following	value	for

the	space	parameter:	VI_PXI_ALLOC_SPACE.

The	offset	specified	in	the	viMoveOut8Ex,	viMoveOut16Ex,	viMoveOut32Ex,
and	viMoveOut64Ex	operations	for	an	INSTR	resource	is	the	offset	address
relative	to	the	device's	allocated	address	base	for	the	corresponding	address
space	specified.

For	example,	if	space	specifies	VI_A16_SPACE,	offset	specifies	the	offset	from
the	logical	address	base	address	of	the	VXI	device	specified.	If	space	specifies
VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A64_SPACE	offset	specifies	the
offset	from	the	base	address	of	the	VXI	device's	memory	space	allocated	by	the
VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.

The	length	specified	in	the	viMoveOutnEx	operations	is	the	number	of	elements
(of	the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	amount	of	memory
exported	by	the	device	in	the	given	space.

The	length	specified	in	the	viMoveOutnEx	operations	is	the	number	of	elements
(of	the	size	corresponding	to	the	operation)	to	transfer,	beginning	at	the	specified
offset.	Therefore,	offset	+	length*size	cannot	exceed	the	total	amount	of	memory
available	in	the	given	space.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

space IN ViUInt16 Specifies	the	address	space.	(See	the	following
table.)

offset64 IN ViBusAddress64 64-bit	offset	(in	bytes)	of	the	starting	address	or
register	to	write	to.

length IN ViBusSize

Number	of	elements	to	transfer,	where	the	data
width	of	the	elements	to	transfer	is	8	bits	for
viMoveOut8Ex,	16	bits	for	viMoveOut16Ex,	32
bits	for	viMoveOut32Ex,	or	64-bit	for
viMoveOut64Ex.

buf8,	buf16,
buf32,	or	buf64 IN

ViAUInt8,
ViAUInt16,
ViAUInt32,
ViAUInt64

Data	written	to	the	bus	(8	bits	for	viMoveOut8Ex,
16	bits	for	viMoveOut16Ex,	32	bits	for
viMoveOut32Ex,	and	64	bits	for
viMOveOut64Ex).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INV_LENGTH Invalid	length	specified.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are
the	same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SPACE Invalid	address	space	specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	offset	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported	by	this	hardware.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viMoveIn8Ex,	viMoveIn16Ex,	viMoveIn32Ex,	viMoveIn64Ex,		viOut8Ex,
viOut16Ex,	viOut32Ex,	viOut64Ex

	

viOpen

Syntax

viOpen(ViSession	sesn,	ViRsrc	rsrcName,	ViAccessMode

accessMode,	ViUInt32	timeout,	ViPSession	vi);

Description

This	function	opens	a	session	to	the	specified	device.	It	returns	a	session
identifier	that	can	be	used	to	call	any	other	functions	to	that	device.

Whether	viOpen	actually	determines	the	presence	of	the	device	opened	depends
on	the	Address	check	property	set	in	Connection	Expert	for	the	device.	Click
here	for	more	information	on	this	interaction.

Parameters

Name Dir Type Description

sesn IN ViSession
Resource	Manager	session	(should	always	be	the
Default	Resource	Manager	for	VISA	returned
from	viOpenDefaultRM).

rsrcName IN ViRsrc

Unique	symbolic	name	(VISA	address)	of	a
resource.	(See	the	following	tables.)	Can	also	be	a
VISA	alias	(defined	in	the	Agilent	Connection
Expert	utility).

accessMode IN ViAccessMode

Specifies	the	modes	by	which	the	resource	is	to	be
accessed.	The	value	VI_EXCLUSIVE_LOCK	is
used	to	acquire	an	exclusive	lock	immediately
upon	opening	a	session.	If	a	lock	cannot	be
acquired,	the	session	is	closed	and	an	error	is
returned.		The	VI_LOAD_CONFIG	value	is	used
to	configure	attributes	specified	by	some	external
configuration	utility.	If	this	value	is	not	used,	the
session	uses	the	default	values	provided	by	this
specification.	Multiple	access	modes	can	be	used
simultaneously	by	specifying	a	"bit-wise	OR"	of
the	values.	(Must	use	VI_NULL	in	VISA	1.0.)

timeout IN ViUInt32

If	the	accessMode	parameter	requires	a	lock,	this
parameter	specifies	the	absolute	time	period	(in
milliseconds)	that	the	resource	waits	to	get
unlocked	before	this	operation	returns	an	error.
Otherwise,	this	parameter	is	ignored.	(Must	use
VI_NULL	in	VISA	1.0.)Note:	The	timeout
parameter	affects	ONLY	the	LOCK,	it	does	not
impact	the	overall	viOpen	command	timing.

vi OUT ViPSession Unique	logical	identifier	reference
to	a	session.

Address	String	Grammar	for	rsrcName	Parameter

Interface Syntax

ASRL ASRL[board][::INSTR]

GPIB GPIB[board]::INTFC

GPIB-VXI GPIB-VXI[board]::MEMACC

GPIB GPIB[board]::primary	address[::secondary	address][::INSTR]

GPIB-VXI GPIB-VXI[board]::VXI	logical	address[::INSTR]

GPIB-VXI GPIB-VXI[board][::VXI	logical	address]::BACKPLANE

PXI PXI[bus]::device[::function][::INSTR]

PXI PXI[interface]::bus-device[.function][::INSTR]

PXI PXI[interface]::CHASSISchassis::SLOTslot[::FUNCfunction][::INSTR]

PXI PXI[interface]::MEMACC

TCPIP TCPIP[board]::host	address::port::SOCKET

TCPIP TCPIP[board]::host	address[::HiSLIP	device	name[,HiSLIP	port]][::INSTR]

TCPIP TCPIP[board]::host	address[::LAN	device	name]::INSTR

USB USB[board]::manufacturer	ID::model	code::serial	number[::USB	interface
number][::INSTR]

VXI VXI[board]::MEMACC

VXI VXI[board]::VXI	logical	address[::INSTR]

VXI VXI[board][::VXI	logical	address]::BACKPLANE

Examples	of	Address	Strings	for	rsrcName	Parameter

Address	String Description

ASRL1::INSTR A	serial	device	located	on	port	1.

GPIB::1::0::INSTR A	GPIB	device	at	primary	address	1	and	secondary	address	0	in	GPIB	interface
0.

GPIB2::INTFC Interface	or	raw	resource	for	GPIB	interface	2.

GPIB-VXI::9::INSTR A	VXI	device	at	logical	address	9	in	a	GPIB-VXI	controlled	VXI	system.

GPIB-VXI1::MEMACC Board-level	register	access	to	GPIB-VXI	interface	number	1.

"MyDMM" A	device	for	which	the	VISA	Alias	myDMM	has	been	created	in	the	Agilent
Connection	Expert	utility

PXI0::21::INSTR PXI	device	21	on	bus	0

PXI0::3-18.2::INSTR Function	2	on	PXI	device	18	on	bus	3

PXI0::3-18::INSTR PXI	device	18	on	bus	3.

PXI0::CHASSIS1::SLOT4::INSTR PXI	device	in	slot	4	of	chassis	1.

PXI0::MEMACC Access	to	system	controller	memory	available	to	devices	in	the	PXI	system.

TCPIP0::[fe80::1]::hislip0::INSTR
A	TCP/IP	device	using	HiSLIP	located	at	IPv6	IP	address
fe80::1.

TCPIP::devicename
@company.com::INSTR

TCPIP	device	using	VXI-11	located	at	the	specified	address.	This	uses	the
default	LAN	Device	Name	of	inst0.

TCPIP0::1.2.3.4::999::SOCKET Raw	TCPIP	access	to	port	999	at	the	specified	address.
TCPIP0::
[fe80::218:e77f]::999::SOCKET Raw	TCPIP	access	to	port	999	at	the	specified	IPv6	address.

USB::0x1234::0x5678::A22-
5::INSTR

A	USB	device	with	manufacturer	ID	0x1234,	model	code	0x5678,	and	serial
number	A22-5.	This	uses	the	device’s	first	available	USBTMC	interface.	This	is
usually	number	0.

VXI::1::BACKPLANE Mainframe	resource	for	chassis	1	on	the	default	VXI	system,	which	is	interface
0.

VXI::MEMACC Board-level	register	access	to	the	VXI	interface.

VXI0::1::INSTR A	VXI	device	at	logical	address	1	in	VXI	interface	VXI0.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

VI_WARN_CONFIG_NLOADED The	specified	configuration	either	does	not	exist	or	could	not	be
loaded	using	VISA-specified	defaults.

Error	Codes Description

VI_ERROR_ALLOC Insufficient	system	resources	to	open	a	session.

VI_ERROR_INTF_NUM_NCONFIG The	interface	type	is	valid	but	the	specified	interface	number	is
not	configured.

VI_ERROR_INV_ACC_MODE Invalid	access	mode.

VI_ERROR_INV_RSRC_NAME Invalid	resource	reference	specified.	Parsing	error.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_LIBRARY_NFOUND A	code	library	required	by	VISA	could	not	be	located	or	loaded.

VI_ERROR_NSUP_OPER
The	given	sesn	does	not	support	this	function.	For	VISA,	this
function	is	supported	only	by	the	Default	Resource	Manager
session.

VI_ERROR_RSRC_BUSY The	resource	is	valid	but	VISA	cannot	currently	access	it.

VI_ERROR_RSRC_LOCKED
Specified	type	of	lock	cannot	be	obtained	because	the	resource
is	already	locked	with	a	lock	type	incompatible	with	the	lock
requested.

VI_ERROR_RSRC_NFOUND Insufficient	location	information	or	resource	not	present	in	the
system.

VI_ERROR_TMO A	session	to	the	resource	could	not	be	obtained	within	the
specified	timeout	period.

See	Also

viClose
Address	Check,	viFindRsrc,	and	viOpen

	

viOpenDefaultRM

Syntax

viOpenDefaultRM(ViPSession	sesn);

Description

This	function	returns	a	session	to	the	Default	Resource	Manager	resource.	This
function	must	be	called	before	any	VISA	functions	can	be	invoked.	The	first	call
to	this	function	initializes	the	VISA	system,	including	the	Default	Resource
Manager	resource,	and	also	returns	a	session	to	that	resource.	Subsequent	calls	to
this	function	return	unique	sessions	to	the	same	Default	Resource	Manager
resource.

Note:	All	devices	to	be	used	must	be	connected	and	operational	prior	to	the	first
VISA	function	call	(viOpenDefaultRM).	The	system	is	configured	only	on	the
first	viOpenDefaultRM	per	process.		If	viOpenDefaultRM	is	first	called
without	devices	connected	and	then	called	again	when	devices	are	connected,	the
devices	will	not	be	recognized.	You	must	close	ALL	Resource	Manager	sessions
and	reopen	with	all	devices	connected	and	operational.

Parameters

Name Dir Type Description

sesn OUT ViPSession Unique	logical	identifier	to	a	Default	Resource	Manager	session.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Session	to	the	Default	Resource	Manager	resource	created
successfully.

Error	Codes Description

VI_ERROR_ALLOC Insufficient	system	resources	to	create	a	session	to	the	Default
Resource	Manager	resource.

VI_ERROR_INV_SETUP Some	implementation-specific	configuration	file	is	corrupt	or
does	not	exist.

VI_ERROR_SYSTEM_ERROR The	VISA	system	failed	to	initialize.

See	Also

viOpen,	viFindRsrc,	viClose

	

viOut8Ex,	viOut16Ex,	viOut32Ex,	and	viOut64Ex

Syntax

viOut8Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64

offset64,	ViUInt8	buf8);	

viOut16Ex(ViSession	vi,	ViUInt16	space,

ViBusAddress64	offset64,	ViUInt16	buf16);

viOut32Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64

offset64,	ViUInt32	buf32);

viOut64Ex(ViSession	vi,	ViUInt16	space,	ViBusAddress64

offset64,	ViUInt64	buf64);		

Description

This	VISA	4.0	(and	later)	function	writes	an	8-bit,	16-bit,	32-bit,	or	64-bit	word
to	the	specified	memory	space	(assigned	memory	base	+	offset).	This	function
takes	the	8-bit,	16-bit,	32-bit,	or	64-bit	value	and	stores	its	contents	to	the
address	space	pointed	to	by	space.	The	offset	must	be	a	valid	memory	address	in
the	space.	This	function	does	not	require	viMapAddress	to	be	called	prior	to	its
invocation.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameter
specifies	a	relative	offset	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameter	is	an
absolute	offset	from	the	start	of	memory	in	that	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE Address	A32	memory	address	space	of	the	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

The	high-level	operations	viOut8Ex,	viOut16Ex,	viOut32Ex,	and	viOut64Ex
operate	independently	from	the	low-level	operations	(viMapAddressEx,
viPeek8,	viPeek16,	viPeek32,	viPeek64	viPoke8,	viPoke16,	viPoke32,	and
viPoke64).	The	high-level	and	low-level	operations	are	independent	regardless
of	the	configured	state	of	the	hardware	that	is	used	to	perform	memory	accesses.

The	offset	specified	in	the	viOut8Ex,	viOut16Ex,	viOut32Ex,	and	viOut64
operations	for	an	INSTR	resource	is	the	offset	address	relative	to	the	device's
allocated	address	base	for	the	corresponding	address	space	specified.	For	a
MEMACC	resource,	the	offset	parameter	specifies	an	absolute	address.

For	example,	if	space	specifies	VI_A16_SPACE,	offset	specifies	the	offset	from
the	logical	address	base	address	of	the	VXI	device	specified.	If	space	specifies
VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A64_SPACE	offset	specifies	the
offset	from	the	base	address	of	the	VXI	device's	memory	space	allocated	by	the
VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

space IN ViUInt16 Specifies	the	address	space.	(See	the	following
table.)

offset64 IN ViBusAddress64 Offset	(in	bytes)	of	the	starting	address	or	register
to	write	to.

buf8,	buf16,
buf32,	or
buf64

IN ViUInt8,	ViUInt16,
ViUInt32,	ViUInt64

Data	written	to	bus	(8	bits	for	viOut8,	16	bits	for
viOut16,	32	bits	for	viOut32,	and	64	bits	for
viOut64).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SPACE Invalid	address	space	specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	offset	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported	by	this	hardware.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viIn8Ex,	viIn16Ex,	viIn32Ex,	viIn64Ex,	viPoke8,	viPoke16,	viPoke32,
viPoke64,	viMoveOut8Ex,	viMoveOut16Ex,	viMoveOut32Ex,	viMoveOut64Ex

	

viOut8,	viOut16,	viOut32,	and	viOut64

Syntax

viOut8(ViSession	vi,	ViUInt16	space,	ViBusAddress	offset

ViUInt8	buf8);	

viOut16(ViSession	vi,	ViUInt16	space,

ViBusAddress	offset,	ViUInt16	buf16);

viOut32(ViSession	vi,	ViUInt16	space,	ViBusAddress

offset,	ViUInt32	buf32);

viOut64(ViSession	vi,	ViUInt16	space,	ViBusAddress

offset,	ViUInt64	buf64);			[VISA	4.0	and	later]

Description

This	function	writes	an	8-bit,	16-bit,	32-bit,	or	64-bit	word	to	the	specified
memory	space	(assigned	memory	base	+	offset).	This	function	takes	the	8-bit,
16-bit,	32-bit,	or	64-bit	value	and	stores	its	contents	to	the	address	space	pointed
to	by	space.	The	offset	must	be	a	valid	memory	address	in	the	space.	This
function	does	not	require	viMapAddress	to	be	called	prior	to	its	invocation.

If	the	ViSession	parameter	(vi)	refers	to	an	INSTR	session,	the	offset	parameter
specifies	a	relative	offset	from	the	start	of	the	instrument’s	address	space.	If	the
ViSession	parameter	(vi)	refers	to	a	MEMACC	session,	the	offset	parameter	is	an
absolute	offset	from	the	start	of	memory	in	that	VXI	address	space.

Valid	entries	for	specifying	address	space:

Value Description

VI_A16_SPACE Address	A16	memory	address	space	of	the	VXI/MXI	bus.

VI_A24_SPACE Address	A24	memory	address	space	of	the	VXI/MXI	bus.

VI_A32_SPACE Address	A32	memory	address	space	of	the	VXI/MXI	bus.

VI_A64_SPACE Address	the	A64	address	space	of	VXI/MXI	bus.

VI_PXI_CFG_SPACE Address	the	PCI	configuration	space.

VI_PXI_BAR0_SPACE	–
VI_PXI_BAR5_SPACE Address	the	specified	PCI	memory	or	I/O	space.

VI_PXI_ALLOC_SPACE Access	physical	locally	allocated	memory.

The	high-level	operations	viOut8,	viOut16,	viOut32,	and	viOut64	operate
independently	from	the	low-level	operations	(viMapAddress,	viPeek8,
viPeek16,	viPeek32,	viPeek64	viPoke8,	viPoke16,	viPoke32,	and	viPoke64).
The	high-level	and	low-level	operations	are	independent	regardless	of	the
configured	state	of	the	hardware	that	is	used	to	perform	memory	accesses.

For	an	INSTR	resource,	the	offset	is	a	relative	address	of	the	device	associated
with	the	given	INSTR	resource.	For	a	MEMACC	resource,	the	offset	parameter
specifies	an	absolute	address.

The	offset	specified	in	the	viOut8,	viOut16,	viOut32,	and	viOut64	operations

for	an	INSTR	resource	is	the	offset	address	relative	to	the	device's	allocated
address	base	for	the	corresponding	address	space	specified.

For	example,	if	space	specifies	VI_A16_SPACE,	offset	specifies	the	offset	from
the	logical	address	base	address	of	the	VXI	device	specified.	If	space	specifies
VI_A24_SPACE,	VI_A32_SPACE,	or	VI_A64_SPACE	offset	specifies	the
offset	from	the	base	address	of	the	VXI	device's	memory	space	allocated	by	the
VXI	Resource	Manager	within	VXI	A24,	A32,	or	A64	space.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

space IN ViUInt16 Specifies	the	address	space.	(See	the	following
table.)

offset IN ViBusAddress Offset	(in	bytes)	of	the	starting	address	or	register
to	write	to.

buf8,	buf16,
buf32,	or
buf64

IN ViUInt8,	ViUInt16,
ViUInt32,	ViUInt64

Data	written	to	bus	(8	bits	for	viOut8,	16	bits	for
viOut16,	32	bits	for	viOut32,	and	64	bits	for
viOut64).

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INV_OFFSET Invalid	offset	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_INV_SPACE Invalid	address	space	specified.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access
width	of	the	operation.

VI_ERROR_NSUP_OFFSET Specified	offset	is	not	accessible	from	this	hardware.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_NSUP_WIDTH Specified	width	is	not	supported	by	this	hardware.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

See	Also

viIn8,	viIn16,	viIn32,	viIn64,	viPoke8,	viPoke16,	viPoke32,	viPoke64,
viMoveOut8,	viMoveOut16,	viMoveOut32,	viMoveOut64

	

viParseRsrc

Syntax

viParseRsrc(ViSession	sesn,	ViRsrc	rsrcName,	VIPUInt16

intfType,	VIPUInt16	intfNum);

Description

Parse	a	resource	string	to	get	the	interface	information.	This	operation	parses	a
resource	string	to	verify	its	validity.	It	should	succeed	for	all	strings	returned	by
viFindRsrc	and	recognized	by	viOpen.	This	operation	is	useful	if	you	want	to
know	what	interface	a	given	resource	descriptor	would	use	without	actually
opening	a	session	to	it.

The	values	returned	in	intfType	and	intfNum	correspond	to	the	attributes
VI_ATTR_INTF_TYPE	and	VI_ATTR_INTF_NUM.	These	values	would	be	the
same	if	a	user	opened	that	resource	with	viOpen	and	queried	the	attributes	with
viGetAttribute.

If	a	VISA	implementation	recognizes	aliases	in	viOpen,	it	also	recognizes	those
same	aliases	in	viParseRsrc.	Agilent	VISA	recognizes	aliases	created	with	the
Agilent	Connection	Expert	utility.

Calling	viParseRsrc	with	"VXI::1::INSTR"	will	produce	the	same	results	as
invoking	it	with	"vxi::1::instr".

Note:	A	VISA	implementation	should	not	perform	any	I/O	to	the	specified
resource	during	this	operation.	The	recommended	implementation	of
viParseRsrc	will	return	information	determined	solely	from	the	resource	string
and	any	static	configuration	information	(e.g.,	.INI	files	or	the	Registry).

Parameters

Name Dir Type Description

sesn IN ViSession Resource	Manager	session	(should	always	be	the	Default
Resource	Manager	for	VISA	returned	from	viOpenDefaultRM).

rsrcName IN ViRsrc Unique	symbolic	name		(VISA	address	or	VISA	alias)	of	a
resource.

intfType OUT VIPUInt16 Interface	type	of	the	given	resource	string.

intfNum OUT VIPUInt16 Board	number	of	the	interface	of	the	given	resource	string.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Resource	string	is	valid.

Error	Codes Description

VI_ERROR_ALLOC Insufficient	system	resources	to	parse	the	string.

VI_ERROR_INTF_NUM_NCONFIG The	interface	type	is	valid	but	the	specified	interface
number	is	not	configured.

VI_ERROR_INV_RSRC_NAME Invalid	resource	reference	specified.	Parsing	error.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are
the	same	value).

VI_ERROR_LIBRARY_NFOUND A	code	library	required	by	VISA	could	not	be	located	or
loaded.

VI_ERROR_NSUP_OPER
The	given	sesn	does	not	support	this	operation.	For	VISA,
this	operation	is	supported	only	by	the	Default	Resource
Manager	session.

VI_ERROR_RSRC_NFOUND Insufficient	location	information	or	resource	not	present	in
the	system.

See	Also

viFindRsrc,	viOpen,	viParseRsrcEx

	

viParseRsrcEx

Syntax

viParseRsrcEx(ViSession	sesn,	ViRsrc	rsrcName,	VIPUInt16

intfType,	VIPUInt16	intfNum,	ViString	rsrcClass,

ViString	unaliasedExpandedRsrcName,	ViString

aliasIfExists)

Description

This	function	parses	a	resource	string	to	get	extended	interface	information.	It
should	succeed	for	all	strings	returned	by	viFindRsrc	and	recognized	by
viOpen.	This	operation	is	useful	if	you	want	to	know	what	interface	a	given
VISA	address	(resource	descriptor)	would	use	without	actually	opening	a	session
to	it.

The	values	returned	in	intfType,	intfNum,	and	rsrcClass	correspond	to	the
attributes	VI_ATTR_INTF_TYPE,	VI_ATTR_INTF_NUM,	and
VI_ATTR_RSRC_CLASS.	These	values	would	be	the	same	if	a	user	opened	that
resource	with	viOpen	and	queried	the	attributes	with	viGetAttribute.

The	value	returned	in	unaliasedExpandedRsrcName	are,	in	most	cases,	identical
to	the	VISA-defined	canonical	resource	name.	However,	there	may	be	cases
where	the	canonical	name	includes	information	that	the	driver	may	not	know
until	the	resource	has	actually	been	opened.	In	these	cases,	the	value	returned	in
this	parameter	must	be	semantically	similar.

The	value	returned	in	aliasIfExists	allows	programmatic	access	to	user-defined
aliases.	If	a	VISA	implementation	does	not	implement	aliases,	the	return	value
must	be	an	empty	string.	If	a	VISA	implementation	allows	multiple	aliases	for	a
single	resource,	then	the	implementation	must	pick	one	alias	(in	an
implementation-defined	manner)	and	return	it	in	this	parameter.	Agilent	VISA
recognizes	aliases	defined	in	the	Agilent	Connection	Expert	utility;	if	you	define
multiple	aliases	for	a	single	resource,	aliasIfExists	will	return	the	first	alias
found	in	the	Windows	registry.	(This	ordering	is	not	deterministic;	you	should
write	your	code	to	expect	aliasIfExists	to	return	any	alias	in	this	situation.)

Parameters

Name Dir Type Description

sesn IN ViSession
Resource	Manager	session	(should	always
be	the	Default	Resource	Manager	for	VISA
returned	from	viOpenDefaultRM).

rsrcName IN ViRsrc Unique	symbolic	name	of	a	resource.

intfType OUT VIPUInt16 Interface	type	of	the	given	resource	string.

intfNum OUT VIPUInt16 Board	number	of	the	interface	of	the	given
resource	string.

rsrcClass OUT ViString
Specifies	the	resource	class	(for	example,
“INSTR”)	of	the	given	resource	string,	as
defined	in	VISA	Resource	Classes.

unaliasedExpandedRsrcName OUT ViString

This	is	the	expanded	version	of	the	given
resource	string.		The	format	should	be
similar	to	the	VISA-defined	canonical
resource	name.

aliasIfExists OUT ViString

Specifies	the	user-defined	alias	for	the
given	resource	string,	if	a	VISA
implementation	allows	aliases	and	an	alias
exists	for	the	given	resource	string.

Special	Value	for	aliasIfExists	Parameter

Value 	 	 Action	Description

VI_NULL 	 	 Do	not	return	the	alias.

Special	Value	for	unaliasedExpandedRsrcName	Parameter

VI_NULL 	 	 Do	not	return	the	full	resource	name.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Resource	string	is	valid.

VI_WARN_EXT_FUNC_NIMPL The	operation	succeeded,	but	a	lower	level	driver	did	not
implement	the	extended	functionality.

Error	Codes Description

VI_ERROR_ALLOC Insufficient	system	resources	to	parse	the	string.

VI_ERROR_INTF_NUM_NCONFIG The	interface	type	is	valid	but	the	specified	interface
number	is	not	configured.

VI_ERROR_INV_RSRC_NAME Invalid	resource	reference	specified.	Parsing	error.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are
the	same	value).

VI_ERROR_LIBRARY_NFOUND A	code	library	required	by	VISA	could	not	be	located	or
loaded.

VI_ERROR_NSUP_OPER
The	given	sesn	does	not	support	this	operation.	For	VISA,
this	operation	is	supported	only	by	the	Default	Resource
Manager	session.

VI_ERROR_RSRC_NFOUND Insufficient	location	information	or	resource	not	present	in
the	system.

See	Also

viFindRsrc,	viOpen,	viParseRsrc

	

viPeek8,	viPeek16,	viPeek32,	and	viPeek64

Syntax

viPeek8(ViSession	vi,	ViAddr	addr,	ViPUInt8	val8);

viPeek16(ViSession	vi,	ViAddr	addr,	ViPUInt16	val16);

viPeek32(ViSession	vi,	ViAddr	addr,	ViPUInt32	val32);

viPeek64(ViSession	vi,	ViAddr	addr,	ViPUInt64	val64);

	[VISA	4.0	and	later]

Description

This	function	reads	an	8-bit,	16-bit,	32-bit,	or	64-bit	value	from	the	address
location	specified	in	addr.	The	address	must	be	a	valid	memory	address	in	the
current	process	mapped	by	a	previous	viMapAddress	call.

Note:	ViAddr	is	defined	as	a	void	*.	To	do	pointer	arithmetic,	you	must	cast	this
to	an	appropriate	type	(ViUInt8,	ViUInt16,	ViUInt32,	or	ViUInt64).	Then,	be
sure	the	offset	is	correct	for	the	type	of	pointer	you	are	using.	For	example,
(ViUInt8	*)addr	+	4	points	to	the	same	location	as	(ViUInt16	*)addr	+	2.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

addr IN ViAddr Specifies	the	source	address	to	read	the	value.

val8,
val16,
val32,	or
val64

OUT

ViPUInt8,
ViPUInt16,
ViPUInt32,
ViPUInt64

Data	read	from	bus	(8	bits	for	viPeek8,	16	bits	for	viPeek16,
32	bits	for	viPeek32,	and	64	bits	for	viPeek64).

Return	Values

None

See	Also

viPoke8,	viPoke16,	viPoke32,	viPoke64,	viMapAddress,	viIn8,	viIn16,	viIn32
and	viIn64

	

viPoke8,	viPoke16,	viPoke32,	and	viPoke64

Syntax

viPoke8(ViSession	vi,	ViAddr	addr,	ViUInt8	val8);

viPoke16(ViSession	vi,	ViAddr	addr,	ViUInt16	val16);

viPoke32(ViSession	vi,	ViAddr	addr,	ViUInt32	val32);

viPoke64(ViSession	vi,	ViAddr	addr,	ViUInt64	val64);

	[VISA	4.0	and	later]

Description

This	function	takes	an	8-bit,	16-bit,	32-bit,	or	64-bit	value	and	stores	its	content
to	the	address	pointed	to	by	addr.	The	address	must	be	a	valid	memory	address
in	the	current	process	mapped	by	a	previous	viMapAddress	call.

Note:	ViAddr	is	defined	as	a	void	*.	To	do	pointer	arithmetic,	you	must	cast	this
to	an	appropriate	type	(ViUInt8,	ViUInt16,	ViUInt32,	or	ViUInt64).	Then,	be
sure	the	offset	is	correct	for	the	type	of	pointer	you	are	using.	For	example,
(ViUInt8	*)addr	+	4	points	to	the	same	location	as	(ViUInt16	*)addr	+	2.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

addr IN ViAddr Specifies	the	destination	address	to	store	the	value.

val8,
val16,
val32,	or
val64

IN

ViUInt8,	
ViUInt16,
ViUInt32,	or	
ViUInt64

Data	read	from	bus	(8	bits	for	viPoke8,	16	bits	for
viPoke16,	32	bits	for	viPoke32,	and	64	bits	for	viPoke64).

Return	Values

None

See	Also

viPeek8,	viPeek16,	viPeek32,	viPeek64,	viMapAddress,	viOut8,	viOut16,
viOut32,	viOut64

	

viPrintf

Syntax

viPrintf(ViSession	vi,	ViString	writeFmt,	arg1,

arg2,...);

Description

This	formatted	IO	function	converts,	formats,	and	sends	the	parameters	arg1,
arg2,	...	to	the	device	as	specified	by	the	format	string.	Before	sending	the	data,
the	function	formats	the	arg	characters	in	the	parameter	list	as	specified	in	the
writeFmt	string.

Note:	The	viWrite	operation	performs	the	actual	low-level	I/O	to	the	device.
Therefore,	you	should	not	use	the	viWrite	and	viPrintf	operations	in	the	same
session.

Note:	VISA	functions	that	take	a	variable	number	of	parameters	(e.g.,	viPrintf,
viScanf,	and	viQueryf)	are	not	callable	from	Visual	Basic.	Use	the
corresponding	viVPrintf,	viVScanf,	and	viVQueryf	functions	instead.

Parameters	

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

writeFmt IN ViString String	describing	the	format	for	arguments.

arg1,
arg2 IN N/A Parameters	format	string	is	applied	to.

	

The	writeFmt	string	can	include	regular	character	sequences,	special	formatting
characters,	and	format	specifiers.	The	regular	characters	(including	spaces)	are
written	to	the	device	unchanged.	Special	characters	consist	of	a	‘\’	(backslash)
followed	by	a	character.	The	format	specifier	sequence	consists	of	‘%’	(percent)
followed	by	an	optional	modifier,	followed	by	a	format	code.	

For	example,	writefmt	could	be	the	string:	"The	value	is	'%h5d'".	In	this	example
the	characters	"The	value	is	"	are	sent	to	the	device	unchanged.	Then	there	is	the
modifier	"%h"	and	the	format	code"	5d"	meaning	the	argument	must	be	a	short
or	unsigned	short	(%h)	and	a	five	digit	integer	(5d)	.

writefmt	Special	Formatting	Characters

The	following	table	lists	the	possible	writefmt	special	characters	and	what	they
send	to	the	device.

	 \n Sends	the	ASCII	LF	character.	The	END	identifier	will	also	be	automatically
sent.

	 \r Sends	an	ASCII	CR	character.

	 \t Sends	an	ASCII	TAB	character.

	 \### Sends	the	ASCII	character	specified	by	the	octal	value.

	 \" Sends	the	ASCII	double-quote	(")	character.

	 \\ Sends	a	backslash	(\)	character.

	

writeFmt	Format	Specifiers

Format	specifiers	consist	of	a	%	(percent)	followed	by	an	optional	modifier,
followed	by	a	format	code.	It	is	in	the	form:		

%[modifier]format	code

where	format	code	specifies	which	data	type	in	which	the	argument	is
represented.	The	modifiers	are	optional	codes	that	describe	the	target	data.

writefmt	Modifiers

Every	format	specifier	starts	with	the	%	character	and	ends	with	a	conversion
character	(format	code).	In	the	following	tables,	a	d	format	code	refers	to	all
conversion	codes	of	type	integer	(d,	i,	o,	u,	x,	X),	unless	specified	as	%d	only.
Similarly,	an	f	format	code	refers	to	all	conversion	codes	of	type	float	(f,	e,	E,	g,
G),	unless	specified	as	%f	only.

	 Modifier

For	use
with
Format
Codes

Description

	
An	integer

specifying	field
width.

d,	f,	s

This	specifies	the	minimum	field	width	of	the	converted
argument.	If	an	argument	is	shorter	than	the	field	width,	it	will
be	padded	on	the	left	(or	on	the	right	if	a	negative	modifier	is
used,	e.g.,	–5d).

An	asterisk	(*)	may	be	present	in	lieu	of	a
field	width	modifier,	in	which	case	an	extra
arg	is	used.	This	arg	must	be	an	integer
representing	the	field	width.	Special	case:
For	the	@H,	@Q,	and	@B	flags,	the	field
width	includes	the	#H,	#!,	and	#B	strings,
respectively.

The	precision	string	consists	of	a	string	of	decimal	digits.	A	.
(decimal	point)	must	prefix	the	precision	string.	An	asterisk
(*)	may	be	present	in	lieu	of	a	precision	modifier,	in	which
case	an	extra	arg	is	used.	This	arg	must	be	an	integer
representing	the	precision	of	a	numeric	field.	The	precision
string	specifies	the	following:

The	minimum	number	of	digits	to
appear	for	the	@1,	@H,	@Q,	and	@B

	 An	integer
specifying
precision.

d,	f,	s
flags	and	the	i,	o,	u,	x,	and	X	format
codes.
The	maximum	number	of	digits	after
the	decimal	point	in	case	of	f	format
codes.
Maximum	numbers	of	characters	for
the	string	(s)	specifier.
Maximum	significant	digits	for	g
format	code.

	 h

	
d,	b,	B The	h	modifier	promotes	the	argument	to	a	short	or	unsigned

short,	depending	on	the	format	code	type.

	 l d,	f,	b,	B	 The	l	modifier	(lower	case	letter	"L")	promotes	the	argument
to	a	long	or	unsigned	long.

	 L f The	L	modifier	promotes	the	argument	to	a	long	double
parameter.

	 z b,	B The	z	modifier	promotes	the	argument	to	an	array	of	floats.

	 Z b,	B The	Z	modifier	promotes	the	argument	to	an	array	of	doubles.

	

A	comma	(,)
followed	by	an
integer	n,
where	n

represents	the
array	size.

%d,	%f

The	corresponding	argument	is	interpreted	as	a	reference	to
the	first	element	of	an	array	of	size	n.	The	first	n	elements	of
this	list	are	printed	in	the	format	specified	by	the	format	code.

An	asterisk	(*)	may	be	present	after	the	","
modifier,	in	which	case	an	extra	arg	is	used.
This	arg	must	be	an	integer	representing	the
array	size	of	the	given	type.

	 @1 %d,	%f Converts	to	an	IEEE	488.2	defined	NR1	compatible	number,
which	is	an	integer	without	any	decimal	point	(e.g.,	123).

	 @2 %d,	%f	
Converts	to	an	IEEE	488.2	defined	NR2	compatible	number.
The	NR2	number	has	at	least	one	digit	after	the	decimal	point
(e.g.,	123.45).

	 @3 %d,	%f	
Converts	to	an	IEEE	488.2	defined	NR3	compatible	number.
An	NR3	number	is	a	floating	point	number	represented	in	an
exponential	form	(e.g.,	1.2345E-67).

	 @H %d,	%f	

Converts	to	an	IEEE	488.2	defined	<HEXADECIMAL
NUMERIC	RESPONSE	DATA>.	The	number	is	represented
in	a	base	of	sixteen	form.	Only	capital	letters	should	represent
numbers.	The	number	is	of	the	form	#HXXX..,	where	XXX..	is
a	hexadecimal	number	(e.g.,	#HAF35B).

	 @Q %d,	%f	

Converts	to	an	IEEE	488.2	defined	<OCTAL	NUMERIC
RESPONSE	DATA>.	The	number	is	represented	in	a	base	of
eight	form.	The	number	is	of	the	form	#QYYY..,	where	YYY..
is	an	octal	number	(e.g.,	#Q71234).

Converts	to	an	IEEE	488.2	defined	<BINARY	NUMERIC

	 @B %d,	%f	 RESPONSE	DATA>.	The	number	is	represented	in	a	base
	two	form.	The	number	is	of	the	form	#BZZZ..,	where	ZZZ..	is
a	binary	number	(e.g.,	#B011101001).

	

writeFmt	Format	Codes

	 Format
Code

For	use
with
Modifier Description

	 % 	 Send	the	ASCII	percent	(%)	character.

	 c 	 Argument	type:	A	character	to	be	sent.

	 d 	 Argument	type:	An	integer.

	 	 Default
functionality Print	integer	in	NR1	format	(integer	without	a	decimal	point).

	 	 @2	or	@3 The	integer	is	converted	into	a	floating	point	number	and	output
in	the	correct	format.

	 	 field	width Minimum	field	width	of	the	output	number.	Any	of	the	six	IEEE
488.2	modifiers	can	also	be	specified	with	field	width.

	 	 Length
modifier	l arg	is	a	long	integer.

	 	 Length
modifier	h arg	is	a	short	integer.

	 	 ,	array	size

arg	points	to	an	array	of	integers	(or	long	or	short	integers,
depending	on	the	length	modifier)	of	size	array	size.	The
elements	of	this	array	are	separated	by	array	size	–	1	commas
and	output	in	the	specified	format.

	 f 	 Argument	type:	A	floating	point	number

	 	 Default
functionality

Print	a	floating	point	number	in	NR2	format	(a	number	with	at
least	one	digit	after	the	decimal	point).

	 	 @1 Print	an	integer	in	NR1	format.	The	number	is	truncated.

	 	 @3 Print	a	floating	point	number	in	NR3	format	(scientific
notation).	Precision	can	also	be	specified.

	 	 field	width Minimum	field	width	of	the	output	number.	Any	of	the	six	IEEE
488.2	modifiers	can	also	be	specified	with	field	width.

	 	 Length
modifier	l arg	is	a	double	float.

	 	 Length
modifier	L arg	is	a	long	double.

arg	points	to	an	array	of	floats	(or	doubles	or	long	doubles),
depending	on	the	length	modifier)	of	size	array	size.	The

	 	 ,	array	size elements	of	this	array	are	separated	by	array	size	–	1	commas
and	output	in	the	specified	format.

	 s 	 Argument	type:	A	reference	to	a	NULL-terminated	string	that	is
sent	to	the	device	without	change.

	 b 	 Argument	type:	A	location	of	a	block	of	data.

	 	 Default
functionality

The	data	block	is	sent	as	an	IEEE	488.2	<DEFINITE	LENGTH
ARBITRARY	BLOCK	RESPONSE	DATA>.	A	count	(long
integer)	must	appear	as	a	flag	that	specifies	the	number	of
elements	(by	default,	bytes)	in	the	block.	A	field	width	or
precision	modifier	is	not	allowed	with	this	format	code.

	 	 *	(asterisk)

An	asterisk	may	be	present	instead	of	the	count.	In	such	a	case,
two	args	are	used,	the	first	of	which	is	a	long	integer	specifying
the	count	of	the	number	of	elements	in	the	data	block.	The
second	arg	is	a	reference	to	the	data	block.	The	size	of	an
element	is	determined	by	the	optional	length	modifier	(see
below),	the	default	being	byte	width.

	 	 Length
modifier	h

The	data	block	is	assumed	to	be	an	array	of	unsigned	short
integers	(16	bits).	The	count	corresponds	to	the	number	of
words	rather	than	bytes.	The	data	is	swapped	and	padded	into
standard	IEEE	488.2	(big	endian)	format	if	native	computer
representation	is	different.

	 	 Length
modifier	l

The	data	block	is	assumed	to	be	an	array	of	unsigned	long
integers.	The	count	corresponds	to	the	number	of	longwords	(32
bits).	Each	longword	data	is	swapped	and	padded	into	standard
IEEE	488.2	(big	endian)	format	if	native	computer
representation	is	different.

	 	 Length
modifier	z

The	data	block	is	assumed	to	be	an	array	of	floats.	The	count
corresponds	to	the	number	of	floating	point	numbers	(32	bits).
The	numbers	are	represented	in	IEEE	754	(big	endian)	format	if
native	computer	representation	is	different.

	 	 Length
modifier	Z

The	data	block	is	assumed	to	be	an	array	of	doubles.	The	count
corresponds	to	the	number	of	double	floats	(64	bits).	The
numbers	are	represented	in	IEEE	754	(big	endian)	format	if
native	computer	representation	is	different.

	 B 	
Argument	type:	A	location	of	a	block	of	data.	The	functionality
is	similar	to	b,	except	the	data	block	is	sent	as	an	IEEE	488.2
<INDEFINITE	LENGTH	ARBITRARY	BLOCK	RESPONSE
DATA>.	This	format	involves	sending	an	ASCII	LF	character
with	the	END	indicator	set	after	the	last	byte	of	the	block.

	 y 	 Argument	type:	A	location	of	block	binary	data.

	 	 Default
functionality

The	data	block	is	sent	as	raw	binary	data.	A	count	(long	integer)
must	appear	as	a	flag	that	specifies	the	number	of	elements	(by
default,	bytes)	in	the	block.	A	field	width	or	precision	modifier
is	not	allowed	with	this	format	code.

	 	 *

A*	(asterisk)	may	be	present	instead	of	the	count.	In	such	a
case,	two	args	are	used,	the	first	of	which	is	a	long	integer
specifying	the	count	of	the	number	of	elements	in	the	data
block.	The	second	arg	is	a	reference	to	the	data	block.	The	size
of	an	element	is	determined	by	the	optional	length	modifier	(see
below),	the	default	being	byte	width.

	 	 Length
modifier	h

The	data	block	is	an	array	of	unsigned	short	integers	(16	bits).
The	count	corresponds	to	the	number	of	words	rather	than	bytes.
If	the	optional	!ol	byte	order	modifier	is	present,	the	data	is	sent
in	little	endian	format.	Otherwise,	the	data	is	sent	in	standard
IEEE	488.2	format.	Data	will	be	byte	swapped	and	padded	as
appropriate	if	native	computer	representation	is	different.

	 	 Length
Modifier	l

The	data	block	is	an	array	of	unsigned	long	integers	(32	bits)	.
The	count	corresponds	to	the	number	of	longwords	rather	than
bytes.	If	the	optional	!ol	byte	order	modifier	is	present,	the	data
is	sent	in	little	endian	format;	otherwise,	the	data	is	sent	in
standard	IEE	488.2	format.	Data	will	be	byte	swapped	and
padded	as	appropriate	if	native	computer	representation	is
different.

	 	 Byte	order
modifier	!ob

Data	is	sent	in	standard	IEE	488.2	(big	endian)	format.	This	is
the	default	behavior	if	neither	!ob	nor	!ol	is	present.

	 	 Byte	order
modifier	!ol Data	is	sent	in	little	endian	format.

	

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or
an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Parameters	were	successfully	formatted.

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	writeFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	write	function	because	of	I/O	error.

VI_ERROR_NSUP_FMT A	format	specifier	in	the	writeFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	write	function	completed.

	

Additional	Notes

Up	to	four	arg	parameters	may	be	required	to	satisfy	a	%	format
conversion	request.	In	the	case	where	multiple	args	are	required,
they	must	appear	in	the	following	order:

-	field	width	(*	with	%d,	%f,	or	%s)	if	used

-	precision	(*	with	%d,	%f,	or	%s)	if	used

-	array_size	(*	with	%b,	%B,	%y,	%d,	or	%f)	if	used

-	value	to	convert

This	assumes	that	a	*	is	provided	for	both	the	field	width	and	the	precision
modifiers	in	a	%s,	%d,	or	%f.	The	third	arg	parameter	is	used	to	satisfy	a	",*"
comma	operator.	The	fourth	arg	parameter	is	the	value	to	be	converted	itself.	

See	Also

viVPrintf

	

viQueryf

Syntax

viQueryf(ViSession	vi,	ViString	writeFmt,	ViString

readFmt,	arg1,	arg2,...);

Description

This	function	performs	a	formatted	write	and	read	through	a	single	operation
invocation.	This	function	provides	a	mechanism	of	"Send,	then	receive"	typical
to	a	command	sequence	from	a	commander	device.	In	this	manner,	the	response
generated	from	the	command	can	be	read	immediately.

This	function	is	a	combination	of	the	viPrintf	and	viScanf	functions.	The	first	n
arguments	corresponding	to	the	first	format	string	are	formatted	by	using	the
writeFmt	string	and	then	sent	to	the	device.	The	write	buffer	is	flushed
immediately	after	the	write	portion	of	the	operation	completes.	After	these
actions,	the	response	data	is	read	from	the	device	into	the	remaining	parameters
(starting	from	parameter	n	+	1)	using	the	readFmt	string.	This	function	returns
the	same	VISA	status	codes	as	viPrintf,	viScanf,	and	viFlush.

Note:	VISA	functions	that	take	a	variable	number	of	parameters	(e.g.,	viPrintf,
viScanf,	and	viQueryf)	are	not	callable	from	Visual	Basic.	Use	the
corresponding	viVPrintf,	viVScanf	and	viQueryf	functions	instead.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

writeFmt
IN

ViString
ViString	describing	the	format	of	the	write	arguments.

readFmt IN ViString ViString	describing	the	format	of	the	read	arguments.

arg1,	arg2 IN
OUT N/A Parameters	on	which	write	and	read	format	strings	are

applied.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Successfully	completed	the	query	operation.

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	writeFmt	or	readFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	read/write	operation	because	of	I/O	error.

VI_ERROR_NSUP_FMT The	format	specifier	is	not	supported	for	current	argument	type.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	occurred	before	read/write	operation	completed.

See	Also

viPrintf,	viScanf,	viVQueryf

	

viRead

Syntax

viRead(ViSession	vi,	ViPBuf	buf,	ViUInt32	count,

ViPUInt32	retCount);

Description

This	function	synchronously	transfers	data	from	a	device.	The	data	that	is	read	is
stored	in	the	buffer	represented	by	buf.	This	function	returns	only	when	the
transfer	terminates.	Only	one	synchronous	read	function	can	occur	at	any	one
time.	A	viRead	operation	can	complete	successfully	if	one	or	more	of	the
following	conditions	were	met.	It	is	possible	to	have	one,	two,	or	all	three	of
these	conditions	satisfied	at	the	same	time.

END	indicator	received
Termination	character	read
Number	of	bytes	read	is	equal	to	count

Note:	You	must	set	specific	attributes	to	make	the	read	terminate	under	specific
conditions.	See	VISA	Resource	Classes	for	details.

Note:	If	you	are	using	viRead	in	Visual	Basic	6,	see	Notes	on	Using
viRead/viWrite	in	Visual	Basic	6	for	information	on	modifying	its	declaration	to
allow	efficient	reading	and	writing	of	numeric	arrays.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf OUT ViPBuf Represents	the	location	of	a	buffer	to	receive	data	from
device.

count IN ViUInt32 Number	of	bytes	to	be	read.

retCount OUT ViPUInt32 Represents	the	location	of	an	integer	that	will	be	set	to	the
number	of	bytes	actually	transferred.

Special	Value	for	retcount	Parameter

Value Description VI_NULL Do	not	return	the	number	of	bytes	transferred.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS The	function	completed	successfully	and	the	END	indicator
was	received	(for	interfaces	that	have	END	indicators).

VI_SUCCESS_TERM_CHAR The	specified	termination	character	was	read.

VI_SUCCESS_MAX_CNT The	number	of	bytes	read	is	equal	to	count.

Error	Codes Description

VI_ERROR_ASRL_FRAMING A	framing	error	occurred	during	transfer.

VI_ERROR_ASRL_OVERRUN An	overrun	error	occurred	during	transfer.	A	character	was
not	read	from	the	hardware	before	the	next	character	arrived.

VI_ERROR_ASRL_PARITY A	parity	error	occurred	during	transfer.

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	read	function	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_IO An	unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently	the
controller	in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and	NDAC
are	deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_OUTP_PROT_VIOL Device	reported	an	output	protocol	error	occurred	during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

See	Also

viWrite	
Notes	on	Using	viRead/viWrite	in	Visual	Basic	6

	

Notes	on	Using	viRead/viWrite	in	Visual	Basic	6

The	visa32.bas	file	supplied	with	VISA	declares	the	buffer	parameter	in	viRead
and	viWrite	as	a	String	data	type.		If	you	need	to	read	or	write	data	to	a	numeric
array,	it	can	be	very	cumbersome	and	inefficient	to	convert	string	data	to
numeric	array	data.		It	is	much	more	efficient	to	add	new	declarations	for	viRead
and	viWrite	to	the	visa32.bas	file	and	call	through	these	modified	declarations.
	This	allows	you	to	read	and	write	directly	to	a	numeric	array	without	having	to
convert	to	or	from	a	string.

Note:	Do	not	modify	the	original	visa32.bas	file	that	was	installed	with	the	IO
Libraries	Suite.		Instead,	copy	visa32.bas	to	your	local	project	directory	and
modify	the	copy.		When	using	the	Project	>	Add	Module	command	in	VB6,	be
sure	you	add	the	local	copy	of	the	visa32.bas	file	to	your	project	and	not	the
visa32.bas	file	from	the	original	installation	directory!

VB6	does	not	allow	overloaded	function	declarations;	this	means	that	if	you
need	to	declare	additional	functions,	their	names	must	be	unique.

Using	viRead	as	an	example,	the	original	declaration	in	visa32.bas	for	viRead	is
as	follows:

Declare	Function	viRead	Lib	"VISA32.DLL"	Alias	"#256"

_

ByVal	vi	As	Long,	ByVal	Buffer	As	String,	ByVal

count	As	Long,	retCount	As	Long)	As	Long

To	create	versions	of	viRead	that	can	handle	a	byte	and	an	integer	array,	you	can
copy	the	viRead	declaration	in	visa32.bas	and	insert	two	copies	of	it	back	into
the	file,	but	rename	these	copies	and	change	the	buffer	data	type	as	shown:

Declare	Function	viRead	Lib	"VISA32.DLL"	Alias	"#256"

_

(ByVal	vi	As	Long,	ByVal	Buffer	As	String,	ByVal

count	As	Long,	retCount	As	Long)	As	Long

Declare	Function	viReadByte	Lib	"VISA32.DLL"	Alias

"#256"	_

(ByVal	vi	As	Long,	ByRef	Buffer	As	Byte,	ByVal	count

As	Long,	retCount	As	Long)	As	Long

Declare	Function	viReadInteger	Lib	"VISA32.DLL"	Alias

"#256"

(ByVal	vi	As	Long,	ByRef	Buffer	As	Integer,	ByVal

count	As	Long,	retCount	As	Long)	As	Long	

The	modified	portions	of	the	new	declarations	are	shown	in	bold.		If	you	need	to
read	additional	data	types,	you	can	create	your	own	modified	function
declarations	for	the	data	types	you	need.

Note	that	in	the	original	declaration,	the	string	was	declared	as	ByVal.		This	is
needed	because	VB6	will	properly	marshal	a	unicode	VB6	string	to	an	ASCII
string	and	pass	the	pointer	to	the	start	of	the	ASCII	buffer	when	the	string	is
passed	'ByVal'.		For	numeric	arrays,	however,	no	marshalling	is	performed;	you
need	to	pass	the	address	of	the	beginning	of	the	numeric	array	to	VISA.		That
requires	the	ByRef	keyword.

Once	these	new	declarations	have	been	added,	you	can	call	the	newly	declared
functions	from	your	VB6	program	as	follows:

Dim	retCount	As	Long
Dim	arraySize	As	Long
Dim	intArray(20)	As	Integer
'
'	Set	arraySize	and	retCount	to	the	maximum	number
'	of	elements	that	the	array	can	hold.
'
arraySize	=	(UBound(intArray)	-	LBound(intArray)	+	1)	*	2
'
'	Read	the	array	from	the	test	instrument	and	set
'	the	retCount	variable	number	of	bytes	read.
'	Remember	that	retCount	needs	to	be	divided
'	by	the	size	each	element	to	get	the	number	of
'	elements	read.
'
err	=	viReadInteger(vi,	intArray(0),	arraySize,	retCount)

You	can	add	declarations	for	viWrite	variations	if	you	want	to	use	viWrite	to
handle	numeric	arrays	directly.

Remember,	though,	that	the	count	variables	indicate	the	size	in	bytes,	not	in
elements.		You	must	adjust	the	count	value	based	on	the	size	of	the	numeric
element	you	are	reading	and	writing.

See	Also

viRead,	viWrite
Using	the	VISA	C	API	in	Microsoft	Visual	Basic	6

	

viReadAsync

Syntax

viReadAsync(ViSession	vi,	ViPBuf	buf,	ViUInt32	count,

ViPJobId	jobId);

Description

This	function	asynchronously	transfers	data	from	a	device.	The	data	that	is	read
is	stored	in	the	buffer	represented	by	buf.	This	function	normally	returns	before
the	transfer	terminates.	An	I/O	Completion	event	is	posted	when	the	transfer	is
actually	completed.

This	function	returns	jobId,	which	you	can	use	either	with	viTerminate	to	abort
the	operation	or	with	an	I/O	Completion	event	to	identify	which	asynchronous
read	operation	completed.

If	you	pass	VI_NULL	as	the	jobId	parameter	to	the	viReadAsync	operation,	no
jobId	will	be	returned.	This	option	may	be	useful	if	only	one	asynchronous
operation	will	be	pending	at	a	given	time.	The	value	VI_NULL	is	a	reserved
jobId	and	has	a	special	meaning	in	viTerminate.

If	multiple	jobs	are	queued	at	the	same	time	on	the	same	session,	an	application
can	use	the	jobId	to	distinguish	the	jobs,	as	they	are	unique	within	a	session.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf OUT ViPBuf Represents	the	location	of	a	buffer	to	receive	data	from	the
device.

count IN ViUInt32 Number	of	bytes	to	be	read.

jobId OUT ViPJobId Represents	the	location	of	a	variable	that	will	be	set	to	the	job
identifier	of	this	asynchronous	read	operation.

Special	Value	for	jobId	Parameter

Value 	 	 Description

VI_NULL 	 	 Do	not	return	a	job	identifier.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Asynchronous	read	operation	successfully	queued.

VI_SUCCESS_SYNC Read	operation	performed	synchronously.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_QUEUE_ERROR Unable	to	queue	read	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_IN_PROGRESS Unable	to	start	a	new	asynchronous	operation	while	another
asynchronous	operation	is	in	progress.

Using	viReadAsync

Programming	Tip:	Performing	multiple	asynchronous	operations
simultaneously:	The	VISA	asynchronous	functions	viMoveAsync,
viReadAsync	and	viWriteAsync	initiate	I/O	operations	to	a	device	on	a	separate
thread	which	allows	the	main	thread	to	continue	without	blocking	when	doing
I/O.	VISA	allows	you	to	initiate	multiple	simultaneous	asynchronous	operations
on	a	single	VISA	session,	but	the	Agilent	IO	Libraries	Suite	allows	only	a	single
thread	at	a	time	from	a	given	session	to	access	the	device.	To	perform	multiple
asynchronous	operations	simultaneously,	you	can	work	around	this	limitation	by
opening	multiple	sessions	to	the	device	and	doing	one	VISA	asynchronous	call
on	each	session.

The	queuing	method	is	commonly	used	when	an	immediate	response	from	your
application	is	not	needed	(refer	to	the	Agilent	VISA	User	Guide).	To	use	the
queuing	method	for	receiving	notification	that	an	event	has	occurred,	you	must
do	the	following:

Enable	one	or	several	events	with	the	viEnableEvent	function.
Use	viReadAsync	to	obtain	the	specific	jobId	from	the	session	you
are	monitoring.
When	ready	to	query,	use	the	viWaitOnEvent	function	with
VI_EVENT_IO_COMPLETION	to	check	for	queued	events.

After	the	specified	event	has	occurred,	the	event	information	is	retrieved	and	the
program	returns	immediately.	If	the	specified	event	has	not	occurred,	the
program	suspends	execution	until	a	specified	event	occurs	or	until	the	specified
timeout	period	is	reached.

The	following	example	demonstrates	this	by	reading	*IDN?	as	the	event.

See	Also

viRead,	viTerminate,	viWrite,	viWriteAsync

	

viReadSTB

Syntax

viReadSTB(ViSession	vi,	ViPUInt16	status);

Description

Read	a	status	byte	of	the	service	request.	This	operation	reads	a	service	request
status	from	a	service	requester	(the	message-based	device).	For	example,	on	the
IEEE	488.2	interface,	the	message	is	read	by	polling	devices.	For	other	types	of
interfaces,	a	message	is	sent	in	response	to	a	service	request	to	retrieve	status
information.

For	a	session	to	a	Serial	device	or	TCPIP	socket,	if	VI_ATTR_IO_PROT	is
VI_PROT_4882_STRS,	the	device	is	sent	the	string	"*STB?\n"	and	then	the
device's	status	byte	is	read.	Otherwise,	this	operation	is	not	valid.	If	the	status
information	is	only	one	byte	long,	the	most	significant	byte	is	returned	with	the
zero	value.	If	the	service	requester	does	not	respond	in	the	actual	timeout	period,
VI_ERROR_TMO	is	returned.	For	a	session	to	a	USB	instrument,	this	function
sends	the	READ_STATUS_BYTE	command	on	the	control	pipe.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	the	session.

status OUT ViPUInt16 Service	request	status	byte.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are
the	same	value).

VI_ERROR_INV_SETUP Unable	to	start	operation	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently
the	controller	in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and	NDAC
are	deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_SRQ_NOCCURRED Service	request	has	not	been	received	for	the	session.

VI_ERROR_TMO Timeout	expired	before	function	completed.

	

viReadToFile

Syntax

viReadToFile	(ViSession	vi,	ViConstString	fileName,

ViUInt32	count,	ViPUInt32	retCount);

Description

Read	data	synchronously	and	store	the	transferred	data	in	a	file.	This	read
operation	synchronously	transfers	data.	The	file	specified	in	fileName	is	opened
in	binary	write-only	mode.

If	the	value	of	VI_ATTR_FILE_APPEND_EN	is	VI_FALSE,	any	existing
contents	are	destroyed.	Otherwise,	the	file	contents	are	preserved.	The	data	read
is	written	to	the	file.	This	operation	returns	only	when	the	transfer	terminates.
This	operation	is	useful	for	storing	raw	data	to	be	processed	later.	VISA	uses
ANSI	C	file	operations.	The	mode	used	by	viReadToFile	is	"wb"	or	"ab"
depending	on	the	value	of	VI_ATTR_FILE_APPEND_EN.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

fileName IN ViConstString Name	of	file	to	which	data	will	be	written.

count IN ViUInt32 Number	of	bytes	to	be	read.

retCount OUT ViPUInt32 Number	of	bytes	actually	transferred.

Special	Value	for	retCount	Parameter

Value 	 	 Description

VI_NULL 	 	 Do	not	return	the	number	of	bytes	transferred.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS The	function	completed	successfully	and	the	END	indicator
was	received	(for	interfaces	that	have	END	indicators).

VI_SUCCESS_MAX_CNT The	number	of	bytes	read	is	equal	to	count.

VI_SUCCESS_TERM_CHAR The	specified	termination	character	was	read.

Error	Codes Description

VI_ERROR_ASRL_FRAMING A	framing	error	occurred	during	transfer.

VI_ERROR_ASRL_OVERRUN An	overrun	error	occurred	during	transfer.	A	character	was	not
read	from	the	hardware	before	the	next	character	arrived.

VI_ERROR_ASRL_PARITY A	parity	error	occurred	during	transfer.

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

VI_ERROR_FILE_ACCESS
An	error	occurred	while	trying	to	open	the	specified	file.
Possible	reasons	include	an	invalid	path	or	lack	of	access
rights.

VI_ERROR_FILE_IO An	error	occurred	while	accessing	the	specified	file.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	read	function	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_IO An	unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently	the
controller	in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and	NDAC	are
deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_OUTP_PROT_VIOL Device	reported	an	output	protocol	error	occurred	during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

See	Also

viRead,	viWriteFromFile

	

viScanf

Syntax

viScanf(ViSession	vi,	ViString	readFmt,	arg1,	arg2,...);

Description

This	formatted	IO	function	receives	data	from	a	device,	formats	it	according	to	a
format	specifier	(readFmt)	,	and	stores	the	data	in	the	arg	parameter	list.	The
format	specifier	can	have	white-space	characters	and	ordinary	characters.	The
whit-space	characters	—	blank,	vertical	tabs,	horizontal	tabs,	form	feeds,	new
line/linefeed,	and	carriage	return	—	are	ignored	except	in	the	case	of	%c	and	%[
].	All	other	ordinary	characters	except	%	should	match	the	next	character	read
from	the	device.

Note:	VISA	functions	that	take	a	variable	number	of	parameters	(e.g.,	viPrintf,
viScanf,	and	viQueryf)	are	not	callable	from	Visual	Basic.	Use	the
corresponding	viVPrintf,	viVScanf,	and	viVQueryf	functions	instead.

	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

readFmt IN ViString String	describing	the	format	for	arguments.	Refer	to	the	tables
below	for	readFmt	modifiers	and	format	codes.

arg1,	arg2 OUT N/A A	list	with	the	variable	number	of	parameters	into	which	the	data	is
read	and	the	format	string	is	applied.

	

readFmt	Format	Specifiers

The	readFmt	string	consists	of	a	%,	optional	modifier	flags,and	a	format	code,	in
that	sequence.	It	is	of	the	form:	

%[modifier]format	code

where	the	optional	modifier	describes	the	data	format,	and	format	code	indicates
the	data	type.	One	and	only	one	format	code	should	be	performed	at	the	specifier
sequence.	A	format	specifier	directs	the	conversion	to	the	next	input	arg.

The	results	of	the	conversion	are	placed	in	the	variable	that	the	corresponding
argument	points	to,	unless	the	asterisk	(*)	assignment-suppressing	character	is
given.	In	such	a	case,	no	arg	is	used	and	the	results	are	ignored.

readFmt	Modifiers

		 Modifier

For	use
with
Format
Codes

Description

		
An	integer
(representing
the	field	width)

%s,%	c,	%	[]

It	specifies	the	maximum	field	width	that	the	argument	will
take.	A	#	may	also	appear	instead	of	the	integer	field	width,	in
which	case	the	next	arg	is	a	reference	to	the	field	width.	This
arg	is	a	reference	to	an	integer	for	%	c	and	%s.	The	field	width
is	not	allowed	for	%d	or	%f	format	codes.

		 h d,	b
The	h	modifier	promotes	the	argument	to	be	a	reference	to	a
short	integer	or	unsigned	short	integer,	depending	on	the
format	code.

	 l d,	f,	b The	l	(lower	case	"L")	modifier	promotes	the	argument	to
point	to	a	long	integer	or	unsigned	long	integer.

		 L f The	L	modifier	promotes	the	argument	to	point	to	a	long
double	floating	point	parameter.

		 z b The	z	modifier	promotes	the	argument	to
point	to	an	array	of	floats.

		 Z b The	Z	modifier	promotes	the	argument	to
point	to	an	array	of	double	floats.

		 *	(asterisk) All	format
codes

An	asterisk	acts	as	the	assignment	suppression	character.	The
input	is	not	assigned	to	any	parameters	and	is	discarded.

		

A	comma	(",")
followed	by	an
integer	n,
where	n

represents	the
array	size.

%d,	%f

The	corresponding	argument	is	interpreted	as
a	reference	to	the	first	element	of	an	array	of
size	n.	The	first	n	elements	of	this	list	are
printed	in	the	format	specified	by	the
conversion	character.

A	number	sign	(#)	may	be	present	after	the"
,"	modifier,	in	which	case	an	extra	arg	is
used.	This	arg	must	be	an	integer
representing	the	array	size	of	the	given	type.	

		 @1 %d,%f Converts	to	an	IEEE	488.2	defined	NR1	compatible	number,
which	is	an	integer	without	any	decimal	point	(e.g.,	123).	

		 @2 %d,%	f
Converts	to	an	IEEE	488.2	defined	NR2	compatible	number.
The	NR2	number	has	at	least	one	digit	after	the	decimal	point
(e.g.,	123.45).	

		 @H %d,	%f

Converts	to	an	IEEE	488.2	defined	<HEXADECIMAL
NUMERIC	RESPONSE	DATA>.	The	number	is	represented
in	a	base	of	sixteen	form.	Only	capital	letters	should	represent
numbers.	The	number	is	of	the	form	#HXXX..,	where	XXX..	is
a	hexadecimal	number	(e.g.,	#HAF35B).	

		 @Q %d,%	f
Converts	to	an	IEEE	488.2	defined	<OCTAL	NUMERIC
RESPONSE	DATA>.	The	number	is	represented	in	a	base	of
eight	form.	The	number	is	of	the	form	#QYYY..,	where	YYY..	is
an	octal	number	(e.g.,	#Q71234).	

		 @B %d,	%f
Converts	to	an	IEEE	488.2	defined	<BINARY	NUMERIC
RESPONSE	DATA>.	The	number	is	represented	in	a	base		two
form.	The	number	is	of	the	form	#BZZZ..,	where	ZZZ..	is		a
binary	number	(e.g.,	#B011101001).	

	

readFmt	Format	Codes

															 Format
Code			

For	use
with
Modifiers Description

		 c 	
Argument	type:	A	reference	to	a	character.	White
space	in	the	device	input	stream	is	not	ignored	when
using	c.

	 	 Default
functionality

A	character	is	read	from	the	device	and	stored	in	the
parameter.

	 	 field	width

field	width	number	of	characters	are	read	and	stored
at	the	reference	location	(the	default	field	width	is	1).
No	NULL	character	is	added	at	the	end	of	the	data
block.

		 d 	 Argument	type:	A	reference	to	an	integer.

		 	 Default
Functionality

Characters	are	read	from	the	device	until	an	entire
number	is	read.	The	number	read	must	be	in	one	of
the	following	IEEE	488.2	formats:	<DECIMAL
NUMERIC	PROGRAM	DATA>,	also	known	as	NRf.
Flexible	numeric	representation	(NR1,	NR2,	NR3,
...).	<NON-DECIMAL	NUMERIC	PROGRAM
DATA>	(#H,	#Q,	and	#B).

		 	 field	width The	input	number	will	be	stored	in	a	field	at	least	this
wide.

		 	 Length	Modifier	l arg	is	a	reference	to	a	long	integer.

		 		 Length	Modifier	h
arg	is	a	reference	to	a	short	integer.	Rounding	is
performed	according	to	IEEE	488.2	rules	(0.5	and
up).

		 	 ,	array	size

arg	points	to	an	array	of	integers	(or	long	or	short
integers,	depending	on	the	length	modifier)	of	size
array	size.	The	elements	of	this	array	should	be
separated	by	commas.	Elements	will	be	read	until
either	array	size	number	of	elements	are	consumed	or
they	are	no	longer	separated	by	commas.

		 f
	 Argument	type:	A	reference	to	a	floating	point

number.

		 	 Default
functionality

Characters	are	read	from	the	device	until	an	entire
number	is	read.	The	number	read	must	be	in	either
	IEEE	488.2	formats:	<DECIMAL	NUMERIC
PROGRAM	DATA>	(NRf),	or	<NON-DECIMAL
NUMERIC	PROGRAM	DATA>	(#H,	#Q,	and	#B).

		 	 field	width The	input	number	will	be	stored	in	a	field	at	least	this
wide.

		 		 Length	modifier	l	 arg	is	a	reference	to	a	double	floating	point	number.

		 		 Length	modifier	L arg	is	a	reference	to	a	long	double	number.

		 	 ,	array	size

arg	points	to	an	array	of	floats	(or	doubles	or	long
doubles,	depending	on	the	length	modifier)	of	size
array	size.	The	elements	of	this	array	should	be
separated	by	commas.	Elements	will	be	read	until
either	array	size	number	of	elements	are	consumed	or
they	are	no	longer	separated	by	commas.

		 s
	

Argument	type:	A	reference	to	a	string.

		 	 Default
functionality

All	leading	white	space	characters	are	ignored.
Characters	are	read	from	the	device	into	the	string
until	a	white	space	character	is	read.

		 		 field	width

This	flag	gives	the	maximum	string	size.	If	the	field
width	contains	a	#	sign,	two	arguments	are	used.	The
first	argument	read	gives	the	maximum	string	size.
The	second	should	be	a	reference	to	a	string.

In	the	case	of	field	width	characters
already	read	before	encountering	a
white	space,	additional	characters	are
read	and	discarded	until	a	white	space
character	is	found.

In	the	case	of	#field	width,	the	actual
number	of	characters	that	were	copied
into	the	user	array,	not	counting	the
trailing	NULL	character,	read	are
stored	back	in	the	integer	pointed	to	by
the	first	argument.

		 b 	 Argument	type:	A	reference	to	a	data	array.

		 		 Default
functionality

The	data	must	be	in	IEEE	488.2	<ARBITRARY
BLOCK	PROGRAM	DATA>	format.	The	format
specifier	sequence	should	have	a	flag	describing	the
array	size,	which	will	give	a	maximum	count	of	the
number	of	bytes	(or	words	or	longwords,	depending
on	length	modifiers)	to	be	read	from	the	device.

If	the	array	size	contains	a	#	sign,	two	arguments	are
used.	The	first	argument	read	is	a	pointer	to	a	long
integer	specifying	the	maximum	number	of	elements
that	the	array	can	hold.	The	second	one	should	be	a
reference	to	an	array.	Also	in	this	case,	the	actual
number	of	elements	read	is	stored	back	in	the	first
argument.	In	absence	of	length	modifiers,	the	data	is
assumed	to	be	of	byte-size	elements.	In	some	cases,
data	might	be	read	until	an	END	indicator	is	read.

		 	 Length	modifier	h		

The	array	is	assumed	to	be	an	array	of	16-bit	words,
and	count	refers	to	the	number	of	words.	The	data
read	from	the	interface	is	assumed	to	be	in	IEEE
488.2	(big	endian)	byte	ordering.	It	will	be	byte
swapped	and	padded	as	appropriate	to	the	native

computer	format.

		 	 Length	modifier	l		

The	array	is	assumed	to	be	a	block	of	32-bit
longwords	rather	than	bytes,	and	count	refers	to	the
number	of	longwords.	The	data	read	from	the
interface	is	assumed	to	be	in	IEEE	488.2	(big	endian)
byte	ordering.	It	will	be	byte	swapped	and	padded	as
appropriate	to	the	native	computer	format.

		 	 Length	modifier	z		

The	data	block	is	assumed	to	be	a	reference	to	an
array	of	floats,	and	count	refers	to	the	number	of
floating	point	numbers.	The	data	block	received	from
the	device	is	an	array	of	32-bit	IEEE	754	format
floating	point	numbers.

		 	 Length	modifier	Z

The	data	block	is	assumed	to	be	a	reference	to	an
array	of	doubles,	and	the	count	refers	to	the	number
of	floating	point	numbers.	The	data	block	received
from	the	device	is	an	array	of	64-bit	IEEE	754	format
floating	point	numbers

		 t 	 Argument	type:	A	reference	to	a	string

		 		 Default
functionality

Characters	are	read	from	the	device	until	the	first
END	indicator	is	received.	The	character	on	which
the	END	indicator	was	received	is	included	in	the
buffer.

		 	 field	width

This	flag	gives	the	maximum	string	size.	If	an	END
indicator	is	not	received	before	field	width	number	of
characters,	additional	characters	are	read	and
discarded	until	an	END	indicator	arrives.	#field	width
has	the	same	meaning	as	in	%s.

		 T 	 Argument	type:	A	reference	to	a	string.

		 	 Default
functionality

Characters	are	read	from	the	device	until	the	first
linefeed	character	(\n)	is	received.	The	linefeed
character	is	included	in	the	buffer.

		 		 field	width

This	flag	gives	the	maximum	string	size.	If	a	linefeed
character	is	not	received	before	field	width	number	of
characters,	additional	characters	are	read	and
discarded	until	a	linefeed	character	arrives.	#field
width	has	the	same	meaning	as	in	%s.

		 y 	 Argument	type:	A	location	of	block	binary	data.

		 		
Default
functionality

The	data	block	is	read	as	raw	binary	data.	The	format
specifier	sequence	should	have	a	flag	describing	the
array	size,	which	will	give	a	maximum	count	of	the
number	of	bytes	(or	words	or	longwords,	depending
on	length	modifiers)	to	be	read	from	the	device.	If	the
array	size	contains	a	#	sign,	two	arguments	are	used.

The	first	argument	read	is	a	pointer	to
a	long	integer	specifying	the
maximum	number	of	elements	that	the
array	can	hold.	The	second	argument
should	be	a	reference	to	an	array.	Also,
in	this	case,	the	actual	number	of

elements	read	is	stored	back	in	the	first
argument.	In	the	absence	of	length
modifiers,	the	data	is	assumed	to	be	of
byte-size	elements.	In	some	cases,	data
might	be	read	until	an	END	indicator
is	read.

		 		 Length	modifier	h		

The	data	block	is	assumed	to	be	a	reference	to	an
array	of	unsigned	short	integers	(16	bits).	The	count
corresponds	to	the	number	of	words	rather	than	bytes.
If	the	optional	!ol	byte	order	modifier	is	present,	the
data	being	read	is	assumed	to	be	in	little	endian
format;	otherwise,	the	data	being	read	is	assumed	to
be	in	standard	IEE	488.2	format.	Data	will	be	byte
swapped	and	padded	as	appropriate	to	native
computer	format.

		 		 Length	modifier	l		

The	data	block	is	assumed	to	be	a	reference	to	an
array	of	unsigned	long	integers	(32	bits)	.	The	count
corresponds	to	the	number	of	longwords	rather	than
bytes.	If	the	optional	!ol	byte	order	modifier	is
present,	the	data	being	read	is	assumed	to	be	in	little
endian	format.	Otherwise,	the	data	being	read	is
assumed	to	be	in	standard	IEE	488.2	format.	Data
will	be	byte	swapped	and	padded	as	appropriate	if
native	computer	representation	is	different.

		 	 Byte	order	modifier
!ob

Data	being	read	is	assumed	to	be	in	standard	IEE
488.2	(big	endian)	format.	This	is	the	default
behavior	if	neither	!ob	nor	!ol	is	present.

		 	 Byte	order	modifier
!ol

Data	being	read	is	assumed	to	be	in	little	endian
format.

	

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or
an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Data	were	successfully	read	and	formatted	into	arg	parameter(s).

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	readFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	read	function	because	of	I/O	error.

VI_ERROR_NSUP_FMT A	format	specifier	in	the	readFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	read	function	completed.

	

	Additional	Notes

White-space	characters	(blank,	vertical	tabs,	horizontal	tabs,	form
feeds,	new	line/linefeed,	and	carriage	return)	are	ignored	except	in
the	case	of	%c	and	%[].	All	other	ordinary	characters	except	%
should	match	the	next	character	read	from	the	device.

The	viScanf	function	accepts	input	until	an	END	indicator	is	read	or
all	the	format	specifiers	in	the	readFmt	string	are	satisfied.	It	also
terminates	if	the	format	string	character	does	not	match	the	incoming
character.	Thus,	detecting	an	END	indicator	before	the	readFmt
string	is	fully	consumed	results	in	ignoring	the	rest	of	the	format
string.	

If	some	data	remains	in	the	buffer	after	all	format	specifiers	in	the
readFmt	string	are	satisfied,	the	data	will	be	kept	in	the	buffer	and
will	be	used	by	the	next	viScanf	function.

There	is	a	one-to-one	correspondence	between	%	format
conversions	and	arg	parameters	in	formatted	I/O	read	operations
except:
If	a	*	is	present,	no	arg	parameters	are	used.
If	a	#	is	present	instead	of	field	width,	two	arg	parameters	are
used.	The	first	arg	is	a	reference	to	an	integer	(%c,	%s,	%t,	%T).
This	arg	defines	the	maximum	size	of	the	string	being	read.	The
second	arg	points	to	the	buffer	that	will	store	the	read	data.
If	a	#	is	present	instead	of	array_size,	two	arg	parameters	are
used.	The	first	arg	is	a	reference	to	an	integer	(%d,	%f)	or	a
reference	to	a	long	integer	(%b,	%y).	This	arg	defines	the	number
of	elements	in	the	array.	The	second	arg	points	to	the	array	that
will	store	the	read	data.

If	a	size	is	present	in	field	width	for	the	%s,	%t,	and	%T	format
conversions	in	formatted	I/O	read	operations	either	as	an	integer	or
a	#	with	a	corresponding	arg,	the	size	defines	the	maximum	number
of	characters	to	be	stored	in	the	resulting	string.

For	ANSI	C	compatibility	the	following	conversion	codes	are	also
supported	for	input	codes.	These	codes	are	'i,'	'o,'	'u,'	'n,'	'x,'	'X,'	'e,'
'E,'	'g,'	'G,'	'p,'	'[...],'	and	'[^...].'	For	further	explanation	of	these
conversion	codes,	see	the	ANSI	C	Standard.

If	viScanf	times	out,	the	read	buffer	is	cleared	before	viScanf
returns.	When	viScanf	times	out,	the	next	call	to	viScanf	will	read
from	an	empty	buffer	and	force	a	read	from	the	device.	The	following
tables	describe	optional	modifiers	that	can	be	used	in	a	format
specifier	sequence.

	

See	Also

viVScanf

	

viSetAttribute

Syntax

viSetAttribute(ViSession/ViEvent/ViFindList	vi,	ViAttr

attribute,	ViAttrState	attrState);

Description

This	function	sets	the	state	of	an	attribute	for	the	specified	session.	The
viSetAttribute	operation	is	used	to	modify	the	state	of	an	attribute	for	the
specified	session,	event,	or	find	list.

If	a	resource	cannot	set	an	optional	attribute	state	and	the	specified	attribute	state
is	valid	and	the	attribute	description	does	not	specify	otherwise,	viSetAttribute
returns	error	code	VI_ERROR_NSUP_ATTR_STATE.

Both	VI_WARN_NSUP_ATTR_STATE	and	VI_ERROR_NSUP_ATTR_STATE
indicate	that	the	specified	attribute	state	is	not	supported.	Unless	a	specific	rule
states	otherwise,	a	resource	normally	returns	the	error	code
VI_ERROR_NSUP_ATTR_STATE	when	it	cannot	set	a	specified	attribute	state.
The	completion	code	VI_WARN_NSUP_ATTR_STATE	is	intended	to	alert	the
application	that	although	the	specified	optional	attribute	state	is	not	supported,
the	application	should	not	fail.

One	example	is	attempting	to	set	an	attribute	value	that	would	increase
performance	speeds.	This	is	different	than	attempting	to	set	an	attribute	value
that	specifies	required	but	nonexistent	hardware	(such	as	specifying	a	VXI	ECL
trigger	line	when	no	hardware	support	exists)	or	a	value	that	would	change
assumptions	a	resource	might	make	about	the	way	data	is	stored	or	formatted
(such	as	byte	order).	See	specific	attribute	descriptions	for	text	that	allows	the
completion	code	VI_WARN_NSUP_ATTR_STATE.

The	error	code	VI_ERROR_RSRC_LOCKED	is	returned	only	if	the	specified
attribute	is	read/write	and	global,	and	the	resource	is	locked	by	another	session.

Parameters

Name Dir Type Description

vi IN
ViSession
ViEvent
ViFindList

Unique	logical	identifier	to	a	session,	event,	or	find	list.

attribute IN ViAttr Resource	attribute	for	which	the	state	is	modified.

attrState IN ViAttrState
The	state	of	the	attribute	to	be	set	for	the	specified	resource.	The
interpretation	of	the	individual	attribute	value	is	defined	by	the
resource.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Attribute	value	set	successfully.

VI_WARN_NSUP_ATTR_STATE
Although	the	specified	attribute	state	is	valid,	it	is	not
supported	by	this	resource	implementation.	(The	application
will	still	work,	but	this	may	have	a	performance	impact.)

Error	Codes Description

VI_ERROR_ATTR_READONLY The	specified	attribute	is	read-only.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_ATTR The	specified	attribute	is	not	defined	by	the	referenced
resource.

VI_ERROR_NSUP_ATTR_STATE
The	specified	state	of	the	attribute	is	not	valid,	or	is	not
supported	as	defined	by	the	resource.	(The	application	probably
will	not	work	if	this	error	is	returned.)

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

viGetAttribute.	See	VISA	Resource	Classes	for	a	list	of	attributes	and	attribute
values.

	

viSetBuf

Syntax

viSetBuf(ViSession	vi,	ViUInt16	mask,	ViUInt32	size);

Description

Set	the	size	for	the	formatted	I/O	and/or	serial	communication	buffer(s).	This
operation	changes	the	buffer	size	of	the	read	and/or	write	buffer	for	formatted
I/O	and/or	serial	communication.	The	mask	parameter	specifies	which	buffer	to
set	the	size	of.	The	mask	parameter	can	specify	multiple	buffers	by	bit-ORing
any	of	the	following	values	together.

Flag Interpretation

VI_READ_BUF Formatted	I/O	read	buffer.

VI_WRITE_BUF Formatted	I/O	write	buffer.

VI_IO_IN_BUF I/O	communication	receive
buffer.

VI_IO_OUT_BUF I/O	communication	transmit
buffer.

For	backward	compatibility,	VI_IO_IN_BUF	is	the	same	as	VI_ASRL_IN_BUF
and	VI_IO_OUT_BUF	is	the	same	as	VI_ASRL_OUT_BUF.	Since	not	all	serial
drivers	support	user-defined	buffer	sizes,	it	is	possible	that	a	specific
implementation	of	VISA	may	not	be	able	to	control	this	feature.	If	an	application
requires	a	specific	buffer	size	for	performance	reasons,	but	a	specific
implementation	of	VISA	cannot	guarantee	that	size,	it	is	recommended	to	use
some	form	of	handshaking	to	prevent	overflow	conditions.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

mask IN ViUInt16 Specifies	the	type	of	buffer.

size IN ViUInt32 The	size	to	be	set	for	the	specified	buffer(s).

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Buffer	size	set	successfully.

VI_WARN_NSUP_BUF The	specified	buffer	is	not	supported.

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	the	buffer(s)	of	the	specified	size
because	of	insufficient	system	resources.

VI_ERROR_INV_MASK The	system	cannot	set	the	buffer	for	the	given	mask.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

viFlush

	

viSPrintf

Syntax

viSPrintf(ViSession	vi,	ViPBuf	buf,	ViString	writeFmt,

arg1,	arg2,	...);

Description

Same	as	viPrintf,	except	the	data	are	written	to	a	user-specified	buffer	rather	than
the	device.	This	operation	is	similar	to	viPrintf,	except	that	the	output	is	not
written	to	the	device,	but	is	written	to	the	user-specified	buffer.	This	output
buffer	will	be	NULL	terminated.

If	the	viSPrintf	operations	outputs	an	END	indicator	before	all	the	arguments
are	satisfied,	the	rest	of	the	writeFmt	string	will	be	ignored	and	the	buffer	string
will	still	be	terminated	by	a	NULL.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf OUT ViPBuf Buffer	where	data	are	to	be	written.

writeFmt IN ViString String	describing	the	format	for	arguments.

arg1,	arg2 IN N/A
A	list	containing	the	variable	number	of	parameters	on	which
the	format	string	is	applied.	The	formatted	data	are	written	to
the	specified	device.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Parameters	were	successfully	formatted.

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	system	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	writeFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NSUP_FMT A	format	specifier	in	the	writeFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

viPrintf

	

viSScanf

Syntax

viSScanf(ViSession	vi,	ViBuf	buf,	ViString	readFmt,	arg1

arg2,	...);

Description

This	operation	receives	data	from	a	user-specified	buffer,	formats	it	by	using	the
format	string,	and	stores	the	data	in	the	arg	parameter	list.	The	format	string	can
have	format	specifier	sequences,	white	space	characters,	and	ordinary	characters.
This	function	is	the	same	as	viScanf,	except	data	are	read	from	a	user-specified
buffer	instead	of	a	device.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf IN ViBuf Buffer	from	which	data	are	read	and	formatted.

readFmt IN ViString The	format	string	to	apply	to	parameters	in	ViVAList.

arg1,	arg2 OUT
N/A

	
A	list	with	the	variable	number	of	parameters	into	which	the
data	are	read	and	the	format	string	is	applied.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Data	were	successfully	read	and	formatted	into	arg	parameter(s).

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	system	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	readFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NSUP_FMT A	format	specifier	in	the	readFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

viScanf

	

viStatusDesc

Syntax

viStatusDesc(ViSession/ViEvent/ViFindList	vi,	ViStatus

status,	ViString	desc);

Description

This	function	returns	a	user-readable	string	that	describes	the	status	code	passed
to	the	function.	If	a	status	code	cannot	be	interpreted	by	the	session,
viStatusDesc	returns	the	warning	VI_WARN_UNKNOWN_STATUS.

Parameters

Name Dir Type Description

vi IN
ViSession
ViEvent
ViFindList

Unique	logical	identifier	to	a	session,	event,	or	find	list.

status IN ViStatus Status	code	to	interpret.

desc OUT ViString
The	user-readable	string	interpretation	of	the	status	code	passed
to	the	function.	Must	be	at	least	256	characters	to	receive
output.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Description	successfully	returned.

VI_WARN_UNKNOWN_STATUS The	status	code	passed	to	the	function	could	not	be	interpreted.

	

	

viTerminate

Syntax

viTerminate(ViSession	vi,	ViUInt16	degree,	ViJobId

jobId);

Description

This	function	requests	a	VISA	session	to	terminate	normal	execution	of	an
operation,	as	specified	by	the	jobId	parameter.	The	jobId	parameter	is	a	unique
value	generated	from	each	call	to	an	asynchronous	operation.

If	a	user	passes	VI_NULL	as	the	jobId	value	to	viTerminate,	a	VISA
implementation	should	abort	any	calls	in	the	current	process	executing	on	the
specified	vi.	Any	call	that	is	terminated	this	way	should	return
VI_ERROR_ABORT.	Due	to	the	nature	of	multi-threaded	systems,	for	example
where	operations	in	other	threads	may	complete	normally	before	the	operation
viTerminate	has	any	effect,	the	specified	return	value	is	not	guaranteed.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	an	object.

degree IN ViUInt16 VI_NULL

jobId IN ViJobId Specifies	an	operation	identifier.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code	or
an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Request	serviced	successfully.

Error	Codes Description

VI_ERROR_INV_DEGREE Invalid	degree	specified.

VI_ERROR_INV_JOB_ID Invalid	job	identifier	specified.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

See	Also

viReadAsync,	viWriteAsync,	viMoveAsync

	

viUninstallHandler

Syntax

viUninstallHandler(ViSession	vi,	ViEventType	eventType,

ViHndlr	handler,	ViAddr	userHandle);

Description

This	function	allows	applications	to	uninstall	handlers	for	events	on	sessions.
Applications	should	also	specify	the	value	in	the	userHandle	parameter	that	was
passed	to	viInstallHandler	while	installing	the	handler.	VISA	identifies	handlers
uniquely	using	the	handler	reference	and	the	userHandle.	All	the	handlers	or
which	the	handler	reference	and	the	userHandle	matches	are	uninstalled.		

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

eventType IN ViEventType Logical	event	identifier.

handler IN ViHndlr
Interpreted	as	a	valid	reference	to	a
handler	to	be	uninstalled	by	an
application.	(See	the	following	table.)

userHandle IN ViAddr
A	value	specified	by	an	application	that
can	be	used	for	identifying	handlers
uniquely	in	a	session	for	an	event.

The	following	events	are	valid:

Event	Name 	 	 Description

VI_EVENT_IO_COMPLETION 	 	 Notification	that	an	asynchronous
operation	has	completed.

VI_EVENT_PXI_INTR 	 	 Notification	that	a	vendor-specific	PXI
interrupt	was	received	from	the	device.

VI_EVENT_SERVICE_REQ 	 	 Notification	that	a	device	is	requesting
service.

VI_EVENT_TRIG 	 	 Notification	that	a	hardware	trigger	was
received	from	a	device.

VI_EVENT_VXI_SIGP 	 	 Notification	that	a	VXI	signal	or	VXI
interrupt	has	been	received	from	a	device.

Special	Value	for	handler	Parameter

Value 	 	 Action	Description

VI_ANY_HNDLR 	 	
Uninstall	all	the	handlers	with	the
matching	value	in	the	UserHandle
parameter.

Return	Values	

Type	ViStatus
This	is	the	function	return	status.	It	returns
either	a	completion	code	or	an	error	code	as
follows.

Completion	Codes Description

VI_SUCCESS Event	handler	successfully	uninstalled.

Error	Codes Description

VI_ERROR_HNDLR_NINSTALLED A	handler	is	not	currently
installed	for	the	specified	event.

VI_ERROR_INV_EVENT Specified	event	type	is	not
supported	by	the	resource.

VI_ERROR_INV_HNDLR_REF

Either	the	specified	handler
reference	or	the	user	context
value	(or	both)	does	not	match
any	installed	handler.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object
reference	is	invalid	(both	are	the
same	value).

See	Also

See	the	handler	prototype	viEventHandler	for	its	parameter	description.

See	the	viEnableEvent	description	for	information	about	enabling	different	event
handling	mechanisms.	See	individual	event	descriptions	for	context	definitions.

	

viUnlock

Syntax

viUnlock(ViSession	vi);

Description

This	function	is	used	to	relinquish	a	lock	previously	obtained	using	the	viLock
function.	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Session	was	successfully	unlocked.

VI_SUCCESS_NESTED_EXCLUSIVE The	call	succeeded,	but	this	session	still	has	nested
exclusive	locks.

VI_SUCCESS_NESTED_SHARED The	call	succeeded,	but	this	session	still	has	nested	shared
locks.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT The	given	vi	does	not	identify	a	valid	session	or	object.

VI_ERROR_SESN_NLOCKED The	current	session	did	not	have	any	lock	on	the	resource.

See	Also

viLock.	For	more	information	on	locking,	see	Programming	with	VISA	in	the
Agilent	VISA	User’s	Guide.

	

viUnmapAddress

Syntax

viUnmapAddress(ViSession	vi);

Description

This	function	unmaps	memory	space	previously	mapped	by	the	viMapAddress
function.	

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_WINDOW_NMAPPED The	specified	session	is	not	currently	mapped.

See	Also

viMapAddress

	

viUnmapTrigger

Syntax

viUnmapTrigger(ViSession	vi,	ViInt16	trigSrc,	ViInt16

trigDest);

Description

This	operation	can	be	used	to	map	one	trigger	line	to	another.	This	operation	is
valid	only	on	VXI	Backplane	(BACKPLANE)	sessions.

This	operation	unmaps	only	one	trigger	mapping	per	call.	If	viMapTrigger	was
called	multiple	times	on	the	same	BACKPLANE	resource	and	created	multiple
mappings	for	either	trigSrc	or	trigDest,	trigger	mappings	other	than	the	one
specified	by	trigSrc	and	trigDest	remain	in	effect	after	this	call	completes.		

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

trigSrc IN ViInt16 Source	line	used	in	previous	map.

trigDest IN ViInt16 Destination	line	used	in	previous	map.

Special	Values	for	trgSrc	Parameter

Value 	 	 Action	Description

VI_TRIG_ECL0	-
VI_TRIG_ECL1 	 	 Unmap	the	specified	VXI	ECL	trigger	line.

VI_TRIG_PANEL_IN 	 	 Unmap	the	controller's	front	panel	trigger
input	line.

VI_TRIG_PANEL_OUT 	 	 Unmap	the	controller's	front	panel	trigger
output	line.

VI_TRIG_TTL0	-
VI_TRIG_TTL7 	 	 Unmap	the	specified	VXI	TTL	trigger	line.

Special	Values	for	trgDest	Parameter

Value 	 	 Action	Description

VI_TRIG_ALL 	 	 Unmap	all	trigger	lines	to	which	trigSrc	is
currently	connected.

VI_TRIG_ECL0	-
VI_TRIG_ECL1 	 	 Unmap	the	specified	VXI	ECL	trigger	line.

VI_TRIG_PANEL_IN 	 	 Unmap	the	controller's	front	panel	trigger
input	line.

VI_TRIG_PANEL_OUT 	 	 Unmap	the	controller's	front	panel	trigger
output	line.

VI_TRIG_TTL0	-
VI_TRIG_TTL7 	 	 Unmap	the	specified	VXI	TTL	trigger	line.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_LINE One	of	the	specified	lines	(trigSrc	or
trigDest)	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is
invalid	(both	are	the	same	value).

VI_ERROR_NSUP_LINE
One	of	the	specified	lines	(trigSrc	or
trigDest)	is	not	supported	by	this	VISA
implementation.

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this
function.

VI_ERROR_RSRC_LOCKED

Specified	operation	could	not	be
performed	because	the	resource
identified	by	vi	has	been	locked	for	this
kind	of	access.

VI_ERROR_TRIG_MAPPED The	path	from	trigSrc	to	trigDest	is	not
currently	mapped.

See	Also

BACKPLANE	resource	description

	

viUsbControlIn

Syntax

viUsbControlIn(ViSession	vi,	ViInt16	bmRequestType,

ViInt16	bRequest,	ViUInt16	wValue,	ViUInt16	wIndex,

ViUInt16	wLength,	ViPBuf	buf,	ViPUInt16	retCnt)

Description

This	function	can	be	used	to	request	arbitrary	data	from	a	USB	device	on	the
default	control	port.	The	user	must	be	aware	of	how	to	use	each	parameter	based
on	the	relevant	USB	base	or	class	specification,	or	based	on	a	vendor-specific
request	definition.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

bmRequestType IN ViInt16
	Bitmap	field	for	defining	the	USB	control	port	request.
	The	bitmap	fields	are	as	defined	by	the	USB
specification.		The	direction	bit	must	be	device-to-host.

bRequest IN ViInt16 Request	ID	for	this	transfer.		The	meaning	of	this	value
depends	on	bmRequestType.

wValue IN ViUInt16 Request	value	for	this	transfer.

wIndex IN ViUInt16 Specifies	the	interface	or	endpoint	index	number,
depending	on	bmRequestType.

wLength IN ViUInt16
Length	of	the	data	in	bytes	to	request	from	the	device
during	the	Data	stage.		If	this	value	is	0,	then	buf	is
ignored.

buf OUT ViPBuf Actual	data	received	from	the	device	during	the	Data
stage.		If	wLength	is	0,	then	this	parameter	is	ignored.

retCnt OUT ViPUInt16 Actual	number	of	bytes	received	from	the	device	during
the	Data	stage.

Special	Value	for	retCnt	Parameter

Value 	 	 Action	Description

VI_NULL 	 	 Do	not	return	the	actual	number	of	bytes	read	from	the
control	pipe.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_MASK The	value	in	bmRequestType	does	not	have	the	direction	bit	set
to	the	correct	value.

VI_ERROR_IO Could	not	perform	operation	because	of	I/O	error.

VI_ERROR_INV_PARAMETER The	upper	8	bits	of	bmRequestType	or	bRequest	are	not	zero.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

See	Also

See	the	USB	INSTR	resource	description.

	

viUsbControlOut

Syntax

viUsbControlOut(ViSession	vi,	ViInt16	bmRequestType,

ViInt16	bRequest,	ViUInt16	wValue,	ViUInt16	wIndex,

ViUInt16	wLength,	ViBuf	buf)

Description

This	function	can	be	used	to	send	arbitrary	data	to	a	USB	device	on	the	default
control	port.	The	user	must	be	aware	of	how	to	use	each	parameter	based	on	the
relevant	USB	base	or	class	specification,	or	based	on	a	vendor-specific	request
definition.

Since	the	USBTMC	specification	does	not	currently	define	any	standard	control
port	requests	in	the	direction	of	host-to-device,	this	function	is	intended	for	use
with	only	vendor-defined	requests.	However,	this	function	implementation
should	not	check	the	bmRequestType	parameter	for	this	aspect.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

bmRequestType IN ViInt16
	Bitmap	field	for	defining	the	USB	control	port	request.
	The	bitmap	fields	are	as	defined	by	the	USB
specification.		The	direction	bit	must	be	host-to-device.

bRequest IN ViInt16 Request	ID	for	this	transfer.		The	meaning	of	this	value
depends	on	bmRequestType.

wValue IN ViUInt16 Request	value	for	this	transfer.

wIndex IN ViUInt16 Specifies	the	interface	or	endpoint	index	number,
depending	on	bmRequestType.

wLength IN ViUInt16 Length	of	the	data	in	bytes	to	send	to	the	device	during	the
Data	stage.		If	this	value	is	0,	then	buf	is	ignored.

buf IN ViBuf Actual	data	to	send	to	the	device	during	the	Data	stage.		If
wLength	is	0,	then	this	parameter	is	ignored.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion
code	or	an	error	code	as	follows.

Completion	Code Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_INV_MASK The	value	in	bmRequestType	does	not	have	the	direction	bit	set
to	the	correct	value.

VI_ERROR_IO Could	not	perform	operation	because	of	I/O	error.

VI_ERROR_INV_PARAMETER The	upper	8	bits	of	bmRequestType	or	bRequest	are	not	zero.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

See	Also

USB	INSTR	resource	description

	

viVPrintf

Syntax

viVPrintf(ViSession	vi,	ViString	writeFmt,	ViVAList

params);

Description

This	function	converts,	formats,	and	sends	params	to	the	device	as	specified	by
the	format	string.	This	function	is	similar	to	viPrintf,	except	that	the	ViVAList
parameters	list	provides	the	parameters	rather	than	separate	arg	parameters.	

Using	viVPrintf	in	Visual	Basic	6

Some	of	viPrintf's	variable	arguments	are	references	to	primitive	(byte,	integer,
long,	float,	etc.)	types,	meaning	that	the	values	themselves	can	be	changed	by
the	function.		There	is	no	equivalent	in	VB6	for	variable	argument	lists	with
reference	arguments,	so	no	direct	translation	is	available.		Instead,	use	viVPrintf
in	conjunction	with	the	undocumented	VB6	VarPtr	function	to	create	an	array
of	pointers	to	arguments	than	can	be	passed	to	the	VISA	functions.	See
viVPrintf/viVScanf	Example	using	Stringfor	sample	VB6	code.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

writeFmt IN ViString The	format	string	to	apply	to	parameters	in
ViVAList.	See	viPrintf	for	description.

params IN ViVAList

A	list	containing	the	variable	number	of
parameters	on	which	the	format	string	is
applied.	The	formatted	data	is	written	to	the
specified	device.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Parameters	were	successfully	formatted.

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	writeFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	write	function	because	of	I/O	error.

VI_ERROR_NSUP_FMT A	format	specifier	in	the	writeFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	write	function	completed.

See	Also

viPrintf
viVPrintf/viVScanf	Example	using	String

	

viVQueryf

Syntax

viVQueryf(ViSession	vi,	ViString	writeFmt,	ViString

readFmt,	ViVAList	params);

Description

This	function	performs	a	formatted	write	and	read	through	a	single	operation
invocation.	This	function	is	similar	to	viQueryf,	except	that	the	ViVAList
parameters	list	provides	the	parameters	rather	than	the	separate	arg	parameter
list	in	viQueryf.

Using	viVQueryf	in	Visual	Basic	6

The	viPrintf,	viScanf,	and	viQueryf	VISA	functions	take	variable	argument
lists	in	C.		Some	of	viScanf's	and	viQueryf's	variable	arguments	are	references
to	primitive	(byte,	integer,	long,	float,	etc.)	types,	meaning	that	the	values
themselves	can	be	changed	by	the	function.		There	is	no	equivalent	in	VB6	for
variable	argument	lists	with	reference	arguments,	so	no	direct	translation	is
available.		Instead,	use	the	'V'	form	of	these	functions	(viVPrintf,	viVScanf,	and
viVQueryf),		in	conjunction	with	the	undocumented	VB6	VarPtr	function	to
create	an	array	of	pointers	to	arguments	than	can	be	passed	to	the	VISA
functions.	See	viVQueryf	Example	with	String	and	Indefinite	Length	Block	for
sample	code	in	VB6.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

writeFmt IN ViString The	format	string	is	applied	to	write	parameters	in	ViVAList.

readFmt IN ViString The	format	string	to	apply	to	read	parameters	in	ViVAList.

params IN
OUT ViVAList

A	list	containing	the	variable	number	of	write	and	read
parameters.	The	write	parameters	are	formatted	and	written	to
the	specified	device.	The	read	parameters	store	the	data	read
from	the	device	after	the	format	string	is	applied	to	the	data.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Successfully	completed	the	query	operation.

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	writeFmt	string	or	readFmt	string	is
invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	read/write	function	because	of	I/O	error.

VI_ERROR_NSUP_FMT The	format	specifier	is	not	supported	for	current	argument	type.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	read/write	operation	completed.

See	Also

viVPrintf,	viVScanf,	viQueryf	
viVQueryf	Example	with	String	and	Indefinite	Length	Block

	

viVScanf

Syntax

viVScanf(ViSession	vi,	ViString	readFmt,	ViVAList

params);

Description

This	function	reads,	converts,	and	formats	data	using	the	format	specifier	and
then	stores	the	formatted	data	in	params.	This	function	is	similar	to	viScanf,
except	that	the	ViVAList	parameters	list	provides	the	parameters	rather	than
separate	arg	parameters.

Using	viVScanf	in	Visual	Basic	6

The	viPrintf,	viScanf,	and	viQueryf	VISA	functions	take	variable	argument
lists	in	C.		Some	of	viScanf's	and	viQueryf's	variable	arguments	are	references
to	primitive	(byte,	integer,	long,	float,	etc.)	types,	meaning	that	the	values
themselves	can	be	changed	by	the	function.		There	is	no	equivalent	in	VB6	for
variable	argument	lists	with	reference	arguments,	so	no	direct	translation	is
available.		Instead,	use	the	'V'	form	of	these	functions	(viVPrintf,	viVScanf,	and
viVQueryf),		in	conjunction	with	the	undocumented	VB6	VarPtr	function	to
create	an	array	of	pointers	to	arguments	than	can	be	passed	to	the	VISA
functions.

The	examples	below	are	presented	as	self-contained	VB6	Sub's	with	comments
explaining	the	various	features.		You	can	modify	and	adapt	the	code	in	the
examples	to	your	specific	situation.

viVPrintf/viVScanf	Example	using	String
viVScanf	Example	Returning	a	Double	Array
viVScanf	Example	Reading	an	IEEE	488	Definite	Length	Block
and	Returning	a	Byte	Array
viVScanf	Example	Reading	an	IEEE	488	Indefinite	Length	Block
and	Returning	a	Byte	Array

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

readFmt IN ViString The	format	string	to	apply	to	parameters	in	ViVAList.	See
viScanf	for	description.

params OUT ViVAList A	list	with	the	variable	number	of	parameters	into	which	the
data	is	read	and	the	format	string	is	applied.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Data	were	successfully	read	and	formatted	into	arg	parameter(s).

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	readFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	read	function	because	of	I/O	error.

VI_ERROR_NSUP_FMT A	format	specifier	in	the	readFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	read	function	completed.

See	Also

viScanf	
viVPrintf/viVScanf	Example	using	String
viVScanf	Example	Returning	a	Double	Array
viVScanf	Example	Reading	an	IEEE	488	Definite	Length	Block	and	Returning	a
Byte	Array
viVScanf	Example	Reading	an	IEEE	488	Indefinite	Length	Block	and	Returning
a	Byte	Array

	

viVSPrintf

Syntax

viVSPrintf(ViSession	vi,	ViPBuf	buf,	ViString	writeFmt,

ViVAList	params);

Description

Same	as	viVPrintf,	except	data	are	written	to	a	user-specified	buffer	rather	than	a
device.	This	operation	is	similar	to	viVPrintf,	except	the	output	is	not	written	to
the	device	but	is	written	to	the	user-specified	buffer.	This	output	buffer	will	be
NULL	terminated.

If	the	viVSPrintf	operation	outputs	an	END	indicator	before	all	the	arguments
are	satisfied,	the	rest	of	the	writeFmt	string	will	be	ignored	and	the	buffer	string
will	still	be	terminated	by	a	NULL.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf OUT ViPBuf Buffer	where	data	are	to	be	written.

writeFmt IN ViString The	format	string	to	apply	to	parameters	in	ViVAList.

params IN ViVAList
A	list	containing	the	variable	number	of	parameters	on	which	the
format	string	is	applied.	The	formatted	data	are	written	to	the
specified	device.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Parameters	were	successfully	formatted.

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	writeFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	read	function	because	of	I/O	error.

VI_ERROR_NSUP_FMT A	format	specifier	in	the	writeFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

viSPrintf,	viVPrintf

	

viVSScanf

Syntax

viVSScanf(ViSession	vi,	ViBuf	buf,	ViString	readFmt,

ViVAList	params);

Description

This	function	reads,	converts,	and	formats	data	using	the	format	specifier	and
then	stores	the	formatted	data	in	params.	This	operation	is	similar	to	viVScanf,
except	data	are	read	from	a	user-specified	buffer	rather	than	a	device.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf IN ViBuf Buffer	from	which	data	are	read	and	formatted.

readFmt IN ViString The	format	string	to	apply	to	parameters	in	ViVAList.

params OUT ViVAList A	list	with	the	variable	number	of	parameters	into	which	data
are	read	and	the	format	string	is	applied.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Data	were	successfully	read	and	formatted	into	arg	parameter(s).

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	readFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_NSUP_FMT A	format	specifier	in	the	readFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

See	Also

viSScanf,	viVScanf

	

viVxiCommandQuery

Syntax

viVxiCommandQuery(ViSession	vi,	ViUInt16	mode,	ViUInt32

cmd,	ViPUInt32	response);

Description

Send	the	device	a	miscellaneous	command	or	query	and/or	retrieve	the	response
to	a	previous	query.	This	operation	can	send	a	command	or	query	or	receive	a
response	to	a	query	previously	sent	to	the	device.	The	mode	parameter	specifies
whether	to	issue	a	command	and/or	retrieve	a	response,	and	what	type	or	size	of
command	and/or	response	to	use.

If	the	mode	parameter	specifies	sending	a	16-bit	command,	the	upper	half	of	the
cmd	parameter	is	ignored.	If	the	mode	parameter	specifies	just	retrieving	a
response,	the	cmd	parameter	is	ignored.	If	the	mode	parameter	specifies	sending
a	command	only,	the	response	parameter	is	ignored	and	may	be	VI_NULL.	If	a
response	is	retrieved	but	is	only	a	16-bit	value,	the	upper	half	of	the	response
parameter	will	be	set	to	0.

Refer	to	the	VXI	Specification	for	defined	word	serial	commands.	The	command
values	Byte	Available,	Byte	Request,	Clear,	and	Trigger	are	not	valid	for	this
operation.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

mode IN ViUInt16
Specifies	whether	to	issue	a	command	and/or
retrieve	a	response.	See	the	Description	section
for	actual	values.

cmd IN ViUInt32 The	miscellaneous	command	to	send.

response OUT ViPUInt32
The	response	retrieved	from	the	device.	If	the
mode	specifies	sending	a	command,	this
parameter	may	be	VI_NULL.

Special	Values	for	mode	Parameter

mode 	 	 Action	Description

VI_VXI_CMD16 	 	 Send	16-bit	Word	Serial	command.

VI_VXI_CMD16_RESP16 	 	 Send	16-bit	Word	Serial	query,	get	16-bit
response.

VI_VXI_CMD32* 	 	 Send	32-bit	Word	Serial	command.

VI_VXI_CMD32_RESP16* 	 	 Send	32-bit	Word	Serial	query,	get	16-bit
response.

VI_VXI_CMD32_RESP32* 	 	 Send	32-bit	Word	Serial	query,	get	32-bit
response.

VI_VXI_RESP16* 	 	 Get	16-bit	response	from	previous	query.

VI_VXI_RESP32* 	 	 Get	32-bit	response	from	previous	query.

*	Not	supported	in	Agilent	VISA

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_INP_PROT_VIOL Device	reported	an	input	protocol	error	occurred	during
transfer.

VI_ERROR_INV_MODE The	value	specified	by	the	mode	parameter	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_OUTP_PROT_VIOL Device	reported	an	output	protocol	error	occurred	during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RESP_PENDING A	previous	response	is	still	pending,	causing	a	multiple
query	error.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

See	Also

INSTR	Resource	Description

	

viWaitOnEvent

Syntax

viWaitOnEvent(ViSession	vi,	ViEventType	inEventType,

ViUInt32	timeout,	ViPEventType	outEventType,	ViPEvent

outContext);

Description

This	function	waits	for	an	occurrence	of	the	specified	event	for	a	given	session.
In	particular,	this	function	suspends	execution	of	an	application	thread	and	waits
for	an	event	inEventType	for	at	least	the	time	period	specified	by	timeout.	See	the
individual	event	descriptions	for	context	definitions.

If	the	specified	inEventType	is	VI_ALL_ENABLED_EVENTS,	the	function
waits	for	any	event	that	is	enabled	for	the	given	session.	If	the	specified	timeout
value	is	VI_TMO_INFINITE,	the	function	is	suspended	indefinitely	to	wait	for
an	occurrence	of	an	event.

If	the	value	VI_TMO_IMMEDIATE	is	specified	in	the	timeout	parameter	of
viWaitOnEvent,	application	execution	is	not	suspended.	This	operation	can	be
used	to	dequeue	events	from	an	event	queue	by	setting	the	timeout	value	to
VI_TMO_IMMEDIATE.

viWaitOnEvent	removes	the	specified	event	from	the	event	queue	if	one	that
matches	the	type	is	available.	The	process	of	dequeuing	makes	an	additional
space	available	in	the	queue	for	events	of	the	same	type.

You	must	call	viEnableEvent	to	enable	the	reception	of	events	of	the	specified
type	before	calling	viWaitOnEvent.	viWaitOnEvent	does	not	perform	any
enabling	or	disabling	of	event	reception.

If	the	value	VI_NULL	is	specified	in	the	outContext	parameter	of
viWaitOnEvent	and	the	return	value	is	successful,	viClose	is	automatically
invoked	on	the	event	context	rather	than	returning	it	to	the	application.
Important:	C/C++	programs	do	this,	see	Note	on	Context	Return	in	visa32.cs
and	visa32.vb	below.

The	outEventType	and	outContext	parameters	to	the	viWaitOnEvent	operation
are	optional.	They	can	be	used	if	the	event	type	is	known	from	the	inEventType
parameter	or	if	the	eventContext	is	not	needed	to	retrieve	additional	information.

Note:	Since	system	resources	are	used	when	waiting	for	events
(viWaitOnEvent),	the	viClose	function	must	be	called	to	free	up	event	contexts
(outContext).

This	table	lists	events	and	associated	read-only	attributes	implemented	by
Agilent	VISA	that	can	be	read	to	get	event	information	on	a	specific	event.	Use
the	viReadSTB	function	to	read	the	status	byte	of	the	service	request.

Instrument	Control	(INSTR)	Resource	Events

Event	Name Attributes Data
Type Range

VI_EVENT_SERVICE_REQ VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP VI_ATTR_EVENT_TYPE
VI_ATTR_SIGP_STATUS_ID

ViEventType
ViUInt16

VI_EVENT_VXI_STOP
0	to	FFFFh

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIG
VI_TRIG_TTL0	to
VI_TRIG_TTL7;
VI_TRIG_ECL0	to
VI_TRIG_ECL1

VI_EVENT_IO_COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT
VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT_64
VI_ATTR_OPER_NAME

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32
ViString

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0	to	FFFFFFFFh
N/A

VI_EVENT_VXI_VME_INTR
Not	supported	by	Agilent
VISA

VI_ATTR_EVENT_TYPE
VI_ATTR_INTR_STATUS_ID
VI_ATTR_RECV_INTR_LEVEL

ViEventType
ViUInt32
ViInt16

VI_EVENT_VXI_VME_INTR
0	to	FFFFFFFFh
1	to	7,
	VI_UNKNOWN_LEVEL

VI_EVENT_PXI_INTR VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_PXI_INTR

VI_EVENT_USB_INTR

VI_ATTR_EVENT_TYPE
VI_ATTR_USB_RECV_INTR_SIZE
VI_ATTR_USB_RECV_INTR_DATA
VI_ATTR_STATUS

ViEventType
ViUInt16
ViBuf
ViStatus

VI_EVENT_USB_INTR
0	to	FFFFh
N/A
N/A

Memory	Access	(MEMACC)	Resource	Events

Event	Name Attributes Data
Type Range

VI_EVENT_IO_COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
ATTR_RET_COUNT

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0	to	FFFFFFFFh

VI_ATTR_OPER_NAME ViString N/A

GPIB	Bus	Interface	(INTFC)	Resource	Events

Event	Name Attributes Data
Type Range

VI_EVENT_GPIB_CIC VI_ATTR_EVENT_TYPE
VI_ATTR_GPIB_RECV_CIC_STATE

ViEventType
ViBoolean

VI_EVENT_GPIB_CIC
VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_TALK

VI_EVENT_GPIB_LISTEN VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_GPIB_LISTEN

VI_EVENT_CLEAR VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_CLEAR

VI_EVENT_TRIGGER VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIGGER
VI_TRIG_SW

VI_EVENT_IO_COMPLETION

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS
VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT
VI_ATTR_RET_COUNT_32
VI_ATTR_RET_COUNT_64
VI_ATTR_OPER_NAME

ViEventType
ViStatus
ViJobId
ViBuf
ViUInt32
ViString

VI_EVENT_IO_COMPLETION
N/A
N/A
N/A
0	to	FFFFFFFFh
N/A

VXI	Mainframe	Backplane	(BACKPLANE)	Resource	Events

Event	Name Attributes Data
Type Range

VI_EVENT_TRIG VI_ATTR_EVENT_TYPE
VI_ATTR_RECV_TRIG_ID

ViEventType
ViInt16

VI_EVENT_TRIG
VI_TRIG_TTL0	to	VI_TRIG_TTL7;
VI_TRIG_ECL0	to	VI_TRIG_ECL1

VI_EVENT_VXI_VME_SYSFAIL VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_VME_SYSFAIL

VI_EVENT_VXI_VME_SYSRESET VI_ATTR_EVENT_TYPE ViEventType VI_EVENT_VXI_VME_SYSRESET

TCPIP	Socket	(SOCKET)	Resource

Event	Name Attributes Data
Type Range

VI_ATTR_EVENT_TYPE
VI_ATTR_STATUS

ViEventType
ViStatus

VI_EVENT_IO_COMPLETION
N/A

VI_EVENT_IO_COMPLETION VI_ATTR_JOB_ID
VI_ATTR_BUFFER
VI_ATTR_RET_COUNT
VI_ATTR_OPER_NAME

ViJobId
ViBuf
ViUInt32
ViString

N/A
N/A
0	to	FFFFFFFFh
N/A

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

inEventType IN ViEventType Logical	identifier	of	the	event(s)	to	wait	for.

timeout IN ViUInt32
Absolute	time	period	in	time	units	that	the	resource	shall
wait	for	a	specified	event	to	occur	before	returning	the
time	elapsed	error.	The	time	unit	is	in	milliseconds.

outEventType OUT ViPEventType Logical	identifier	of	the	event	actually	received.

outContext OUT ViPEvent A	handle	specifying	the	unique	occurrence	of	an	event.

Special	Values	for	outEventType	Parameter

Value 	 	 Description

VI_NULL 	 	 Do	not	return	the	type	of	event.

Special	Value	for	outContext	Parameter

Value 	 	 Description

VI_NULL 	 	 Do	not	return	an	event	context.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Wait	terminated	successfully	on	receipt	of	an	event
occurrence.	The	queue	is	empty.

VI_SUCCESS_QUEUE_NEMPTY
Wait	terminated	successfully	on	receipt	of	an	event
notification.	There	is	still	at	least	one	more	event	occurrence
of	the	specified	inEventType	type	available	for	this	session.

Error	Codes Description

VI_ERROR_INV_EVENT Specified	event	type	is	not	supported	by	the	resource.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_TMO Specified	event	did	not	occur	within	the	specified	time
period.

Note	on	Context	Return	in	visa32.cs	and	visa32.vb

It	is	not	possible	to	pass	a	'null'	pointer	for	the	'ref	context'	parameter	in
viWaitOnEvent	as	it	is	defined	in	visa32.cs	and	visa32.vb.	This	means	that	VISA
will	not	close	the	context	and	when	viWaitOnEvent	is	called	in	a	loop,	the
system	will	eventually	run	out	of	resources.

The	solution	is	to	close	the	returned	context	after	a	successful	return	from
viWaitOnEvent.	Here	is	some	C#	sample	code	that	works:

										...	
										int	context	=	0;	
										err	=	visa32.viWaitOnEvent(vi,	visa32.VI_EVENT_SERVICE_REQ,	500,
ref	eventType,	ref	context);	
										if	(err	>=	visa32.VI_SUCCESS)	
											{	
																visa32.viClose(context);	
										}	
										...

See	Also

See	Programming	with	VISA	in	the	Agilent	VISA	User’s	Guide	for	more
information	on	event	handling.

	

viWrite

Syntax

viWrite(ViSession	vi,	ViBuf	buf,	ViUInt32	count,

ViPUInt32	retCount);

Description

This	function	synchronously	transfers	data	to	a	device.	The	data	to	be	written	is
in	the	buffer	represented	by	buf.	This	function	returns	only	when	the	transfer
terminates.	Only	one	synchronous	write	function	can	occur	at	any	one	time.	If
you	pass	VI_NULL	as	the	retCount	parameter	to	the	viWrite	operation,	the
number	of	bytes	transferred	will	not	be	returned.	This	may	be	useful	if	it	is
important	to	know	only	whether	the	operation	succeeded	or	failed.

Note:	If	you	are	using	viWrite	in	Visual	Basic	6,	see	Notes	on	Using
viRead/viWrite	in	Visual	Basic	6	for	information	on	modifying	its	declaration	to
allow	efficient	reading	and	writing	of	numeric	arrays.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf IN ViBuf Represents	the	location	of	a	data	block	to	be	sent	to	device.

count IN ViUInt32 Specifies	number	of	bytes	to	be	written.

retCount OUT ViPUInt32 Represents	the	location	of	an	integer	that	will	be	set	to	the
number	of	bytes	actually	transferred.

Special	Value	for	retCount	Parameter

Value 	 	 Description

VI_NULL 	 	 Do	not	return	the	number	of	bytes	transferred.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Transfer	completed.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

VI_ERROR_INP_PROT_VIOL Device	reported	an	input	protocol	error	occurred	during
transfer.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	write	function	because	setup	is	invalid	(due
to	attributes	being	set	to	an	inconsistent	state).

VI_ERROR_IO Unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently
the	controller	in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and	NDAC
are	de-asserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

See	Also

viRead	
Notes	on	Using	viRead/viWrite	in	Visual	Basic	6

	

viWriteAsync

Syntax

viWriteAsync(ViSession	vi,	ViBuf	buf,	ViUInt32	count,

ViPJobId	jobId);

Description

Write	data	to	device	asynchronously.	This	function	asynchronously	transfers	data
to	a	device.	The	data	to	be	written	is	in	the	buffer	represented	by	buf.	This
function	normally	returns	before	the	transfer	terminates.	An	I/O	Completion
event	is	posted	when	the	transfer	is	actually	completed.

This	function	returns	jobId,	which	you	can	use	either	with	viTerminate	to	abort
the	operation,	or	with	an	I/O	Completion	event	to	identify	which	asynchronous
write	operation	completed.

If	you	pass	VI_NULL	as	the	jobId	parameter	to	the	viWriteAsync	operation,	no
jobId	will	be	returned.	The	value	VI_NULL	is	a	reserved	jobId	and	has	a	special
meaning	in	viTerminate.	This	option	may	be	useful	if	only	one	asynchronous
operation	will	be	pending	at	a	given	time.	If	multiple	jobs	are	queued	at	the	same
time	on	the	same	session,	an	application	can	use	the	jobId	to	distinguish	the	jobs,
as	they	are	unique	within	a	session.

Programming	Tip:	Performing	multiple	asynchronous	operations
simultaneously:	The	VISA	asynchronous	functions	viMoveAsync,
viReadAsync	and	viWriteAsync	initiate	I/O	operations	to	a	device	on	a	separate
thread	which	allows	the	main	thread	to	continue	without	blocking	when	doing
I/O.	VISA	allows	you	to	initiate	multiple	simultaneous	asynchronous	operations
on	a	single	VISA	session,	but	the	Agilent	IO	Libraries	Suite	allows	only	a	single
thread	at	a	time	from	a	given	session	to	access	the	device.	To	perform	multiple
asynchronous	operations	simultaneously,	you	can	work	around	this	limitation	by
opening	multiple	sessions	to	the	device	and	doing	one	VISA	asynchronous	call
on	each	session.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

buf IN ViBuf Represents	the	location	of	a	data	block	to	be	sent	to	device.

count IN ViUInt32 Specifies	number	of	bytes	to	be	written.

jobId OUT ViPJobId Represents	the	location	of	a	variable	that	will	be	set	to	the	job
identifier	of	this	asynchronous	write	operation.

Special	Value	for	jobid	Parameter

Value 	 	 Description

VI_NULL 	 	 Do	not	return	a	job	identifier.

Return	Values	

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a	completion	code
or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Asynchronous	write	operation	successfully	queued.

VI_SUCCESS_SYNC Write	operation	performed	synchronously.

Error	Codes Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_QUEUE_ERROR Unable	to	queue	write	operation.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_IN_PROGRESS Unable	to	start	a	new	asynchronous	operation	while	another
asynchronous	operation	is	in	progress.

See	Also

viRead,	viTerminate,	viWrite,	viReadAsync

	

viWriteFromFile

Syntax

viWriteFromFile	(ViSession	vi,	ViConstString		fileName,

ViUInt32	count,	ViPUInt32	retCount);

Description

Take	data	from	a	file	and	write	it	out	synchronously.	This	write	operation
synchronously	transfers	data.	The	file	specified	in	fileName	is	opened	in	binary
read-only	mode	and	the	data	(up	to	end-of-file	or	the	number	of	bytes	specified
in	count)	are	read.	The	data	is	then	written	to	the	device.	This	operation	returns
only	when	the	transfer	terminates.

This	operation	is	useful	for	sending	data	that	was	already	processed	and/or
formatted.	VISA	uses	ANSI	C	file	operations,	so	the	mode	used	by
viWriteFromFile	is	"rb".	If	you	pass	VI_NULL	as	the	retCount	parameter	to	the
viWriteFromFile	operation,	the	number	of	bytes	transferred	will	not	be
returned.	This	may	be	useful	if	it	is	important	to	know	only	whether	the
operation	succeeded	or	failed.

Parameters

Name Dir Type Description

vi IN ViSession Unique	logical	identifier	to	a	session.

fileName IN ViConstString Name	of	file	to	which	data	will	be	read.

count IN ViUInt32 Specifies	number	of	bytes	to	be	written.

retCount OUT ViPUInt32 Number	of	bytes	actually	transferred.

Special	Value	for	retCount	Parameter

Value 	 	 Description

VI_NULL 	 	 Do	not	return	the	number	of	bytes	transferred.

Return	Values

Type	ViStatus This	is	the	function	return	status.	It	returns	either	a
completion	code	or	an	error	code	as	follows.

Completion	Codes Description

VI_SUCCESS Transfer	completed.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST I/O	connection	for	a	session	has	been	lost.

VI_ERROR_FILE_ACCESS
An	error	occurred	while	trying	to	open	the	specified	file.
Possible	reasons	include	an	invalid	path	or	lack	of	access
rights.

VI_ERROR_FILE_IO An	error	occurred	while	accessing	the	specified	file.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_IO An	unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently
the	controller	in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and	NDAC
are	deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_OUTP_PROT_VIOL Device	reported	input	protocol	error	during	transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_RW_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

See	Also

viWrite,	viReadToFile

	

VISA	Attributes

This	topic	summarizes	the	attributes	of	the	VISA	Template,	VISA	resource
classes,	and	shows	applicable	interface	types	for	each	resource	class	supported
by	Agilent	VISA.

Note:	Although	the	Servant	Device-Side	(SERVANT)	Resource	is	defined	by	the
VXIplug&play	Systems	Alliance	VISA	Library	specification,	the	SERVANT
Resource	is	not	supported	in	Agilent	VISA	and	is	not	described	in	this	help.	The
SERVANT	Resource	is	intended	for	advanced	users	who	need	to	write	firmware
that	exports	device	functionality	across	multiple	resources.

VISA	Template	Attributes

See	the	topic	below	for	a	list	of	attributes	for	the	VISA	Template.

VISA	Template	Attributes

Resource	Class	Descriptions

See	these	topics	for	five	resource	classes	supported	by	Agilent	VISA.	(the
SERVANT	resource	cClass	is	not	supported	by	Agilent	VISA).	The	description
for	each	resource	class	includes	a	resource	overview,	resource	attributes,
resource	events,	and	resource	operations	(functions).

Instrument	Control	(INSTR)	Resource

Memory	Access	(MEMACC)	Resource

GPIB	Bus	Interface	(INTFC)	Resource

VXI	Mainframe	Backplane	(BACKPLANE)	Resource

TCPIP	Socket	(SOCKET)	Resource

Note:	Attributes	are	local	or	global.	A	local	attribute	only	affects	the	session
specified.	A	global	attribute	affects	the	specified	device	from	any	session.
Attributes	can	also	be	read	only	(RO)	and	read/write	(RW).	The	Generic
Attributes	listed	apply	to	all	listed	interface	types.	For	example,
VI_ATTR_INTF_NUM	is	listed	as	a	Generic	INSTR	Resource	Attribute,	so
VI_ATTR_INTF_NUM	applies	to	the	GPIB,	GPIB-VXI,	VXI,	ASRL,	and
TCPIP	interfaces	as	well.

Resource	Classes	vs.	Interface	Types

The	following	table	shows	the	six	resource	classes	that	a	complete	VISA	system,
fully	compliant	with	the	VXIplug&play	Systems	Alliance	specification,	can
implement.	Since	not	all	VISA	implementations	may	implement	all	resource
classes	for	all	interfaces,	the	following	table	also	shows	the	interfaces	applicable
to	various	resource	classes.

Resource	Class Interface	Types Resource	Class	Description

Instrument	Control	(INSTR) Generic,	GPIB,	GPIB-VXI,	Serial,
TCPIP,	USB,	VXI Device	operations	(reading,	writing,	triggering,	etc.).

GPIB	Bus	Interface	(INTFC) Generic,	GPIB Raw	GPIB	interface	operations	(reading,	writing,
triggering,	etc.).

Memory	Access	(MEMACC) Generic,	GPIB-VXI,	VXI Address	space	of	a	memory-mapped	bus	such	as	the
VXIbus.

VXI	Mainframe	Backplane
(BACKPLANE)

Generic,	GPIB-VXI,	VXI	(GPIB-VXI
Backplane	not	supported)

VXI-defined	operations	and	properties	of	each	backplane
(or	chassis)	in	a	VXIbus	system.

Servant	Device-Side	Resource
(SERVANT) Not	Supported	(GPIB,	VXI,	TCPIP)

Operations	and	properties	of	the	capabilities	of	a	device
and	a	device's	
view	of	the	system	in	which	it	exists.

TCPIP	Socket	(SOCKET) Generic,	TCPIP Operations	and	properties	of	a	raw	network	socket
connection	using	TCPIP.

Interface	Types	vs.	Resource	Classes

This	table	shows	the	five	interface	types	supported	by	Agilent	VISA	and	the
associated	resource	classes	for	each	interface	type.

Interface	Type Supported	Resource	Classes

ASRL Instrument	Control	(INSTR)

GPIB Instrument	Control	(INSTR)	
GPIB	Bus	Interface	(INTFC)

GPIB-VXI Instrument	Control	(INSTR)
Memory	Access	(MEMACC)

TCPIP Instrument	Control	(INSTR)
TCPIP	Socket	(SOCKET)

USB Instrument	Control	(INSTR)

VXI
Instrument	Control	(INSTR)
Memory	Access	(MEMACC)
VXI	Mainframe	Backplane	(BACKPLANE)

See	Also:

VISA	Attribute	Values

	

Agilent-Defined	VISA	Attributes

This	topic	summarizes	the	attributes	specific	to	Agilent's	VISA	implementation.
They	are	defined	in	the	visa.h	file	distributed	with	Agilent	VISA.

Note:		The	#define	AGVISA_ATTRIBUTES	statement	must	appear
before	the	#include	<visa.h>	statement	if	you	are	using	any
Agilent-defined	attributes.

Note:	Attributes	are	local	or	global.	A	local	attribute	only	affects	the	session
specified.	A	global	attribute	affects	the	specified	device	from	any	session.
Attributes	can	also	be	read	only	(RO)	and	read/write	(RW).

SCPI/TULIP	Information

Attribute Access
Privileges

Data
Type Range Used

by Description

VI_AGATTR_LOCKWAIT RW Local ViBoolean VI_TRUE	/
VI_FALSE

all	VISA
sessions

Indicates	whether	a	lock-abiding	VISA
function	that	has	been	exclusively	locked	by
another	session	will:

wait	the	timeout	value	to	acquire
the	lock	and	then	return
VI_ERROR_TMO	if	it	can't
(VI_TRUE	case)	or
return	a
VI_ERROR_RSRC_LOCKED
error	immediately	(VI_FALSE
case).

	

TCPIP	Attributes

Attribute Access
Privileges

Data
Type Range Used

by

VI_AGATTR_INTERFACE_PROTOCOL
RO

	
Local ViUInt32

VI_AGPROT_VXI11

VI_AGPROT_SICLLAN

VI_AGPROT_HISLIP

VI_AGPROT_UNKNOWN
(on	non-LAN	sessions)

INSTR,
INTFC

VI_AGATTR_REMOTE_INTF_TYPE
RO

	
Local

ViUInt16

	

VI_INTF_GPIB

VI_INTF_ASRL

VI_INTF_VXI

VI_AGINTF_USRDEF

VI_AGINTF_LANINST

VI_AGINTF_RSIB

VI_AGINTF_SOCKET

VI_AGINTF_HISLIP

VI_INTF_USB

INSTR,
INTFC

	

Export	Attributes

Attribute Access
Privileges

Data
Type Range Used

by Description

VI_AGATTR_EXPORT_ENABLED RW Global ViBoolean
VI_TRUE
/
VI_FALSE

All	VISA
sessions

Determines	whether	the	resource
should	be	exported	
visible	to	another	vendor’s	VISA
implementation.		

The	default	value	for	this	attribute
depends	

VI_AGATTR_FIND_ONLY_EXPORTED_RSRCS
RW

	
Local ViBoolean

VI_TRUE
/
VI_FALSE

DefaultRM
sessions
only

When	this	attribute	is	VI_TRUE,
only	those	
VI_AGATTR_EXPORT_ENABLED
attribute	is	VI_TRUE	will	be
returned	from	viFindRsrc()	and
viParseRsrc().

The	default	value	is	VI_FALSE,
which	means	
be	returned	regardless	of	the	value	of
their
VI_AGATTR_EXPORT_ENABLED
attribute.

	

GPIB	Attributes

Attribute Access
Privileges

Data
Type Range Used

by Description

VI_AGATTR_GPIB_T1_DELAY RW Global ViiNT32

VI_AG_GPIB_T1DELAY_MIN
to
VI_AG_GPIB_T1DELAY_MAX
(value	is	in	nanoseconds)

GPIB
INTFC
resources

The	value	is	the
time	of	t1	delay
in	nanoseconds.
	

Note:		
GPIB	
support	only	a
small	number	of
t1	delays,	so	the
actual	t1	
value	used	by
the	interface
could	be
different	than
that	specified.
	The	actual
delay	value	used
may	be	retrieved
by	calling
viGetAttribute().

Miscellaneous	Attributes

Attribute Access
Privileges

Data
Type Range Used

by Description

VI_AGATTR_ALLOW_LOCAL_SPACE_FIFO RW Local ViBoolean

VI_TRUE
/
VI_FALSE
(default)

All
VISA
sessions

This	attribute	was	added	in	VISA
3.0.	The	VISA	3.0	spec	required
that	in	viMove,	the
srcIncrement/destIncrement
from/to	local	memory	is	ignored.
This	means	FIFO	moves	from/to
local	memory	are	disallowed.
Agilent's	VISA	implementation
allowed	FIFO	moves	from/to	local
memory	in	VISA	implementations
prior	to	VISA	3.0	so	this
represents	a	change	in	behavior	in
VISA	3.0

Setting	this	attribute	to	VI_TRUE
will	revert	to	the	pre-VISA	3.0
behavior	and	allow	FIFO	moves
from/to	local	memory.	Note:	
default	behavior	can	be	changed
by	modifying	the	registry
DWORD	value:
DefaultAllowLocalSpaceFifo	to	1
in:
HKLM\SOFTWARE\Agilent\IO
Libraries\CurrentVersioin\VisaInfo

VI_AGATTR_INTFC_SERIALNUMBER
RO

	
Global ViString N/A

INTFC
sessions
only

This	attribute	was	added	in	Suite
15.1.	It	returns	the	serial	number
of	an	interface.	If	the	interface
does	not	have	a	serial	number	it
returns	an	empty	string.	Interfaces
that	don’t	support	this	attribute
will	return	the
VI_ERROR_NSUP_ATTR	status
code.

VI_AGATTR_VISA_FRAMEWORK_DIR
RO

	
Global ViString N/A

INTFC
sessions
only

	

VI_AGATTR_IOLIBRARIES_DIR
RO

	
Global ViString N/A

INTFC
sessions
only

	

VI_AGATTR_IOLIBRARIES_REG_PATH
RO

	
Global ViString N/A

INTFC
sessions
only

	

	

	

VISA	Template	Attributes

This	topic	summarizes	the	interface	that	each	VISA	implementation	must
incorporate.

VISA	Template	Attributes

Symbolic	Name Access
Privilege Data	Type Range Description

VI_ATTR_RSRC_IMPL_VERSION RO Global ViVersion 0h	to	FFFFFFFFh

Resource
version	that
uniquely
identifies	each
of	the	different
revisions	or
implementations
of	a	resource.

VI_ATTR_RSRC_LOCK_STATE RO Global ViAccessMode
VI_NO_LOCK
VI_EXCLUSIVE_LOCK
VI_SHARED_LOCK

The	current
locking	state	of
the	resource.
The	resource	
be	unlocked,
locked	with	an
exclusive	lock,
or	locked	with	a
shared	lock.

VI_ATTR_RSRC_MANF_ID RO Global ViUInt16 0h	to	3FFFh

A	value	that
corresponds	to
the	VXI
manufacturer	ID
of	the
manufacturer
that	created	the
implementation.

VI_ATTR_RSRC_MANF_NAME RO Global ViString N/A

A	string	that
corresponds	to
the	VXI
manufacturer
name	of	the
manufacturer
that	created	the
implementation.

VI_ATTR_RSRC_NAME RO Global ViRsrc N/A
The	unique
identifier	for	a
resource.

VI_ATTR_RSRC_SPEC_VERSION*** RO Global ViVersion 00500000h

Resource
version	that
uniquely
identifies	the
version	of	the
VISA
specification	to
which	the
implementation
is	compliant.

VI_ATTR_RM_SESSION RO Local ViSession N/A

Specifies	the
session	of	the
Resource
Manager	that
was	used	to
open	this
session.

VI_ATTR_MAX_QUEUE_LENGTH R/W* Local ViUInt32 1h	to	FFFFFFFFh

Specifies	the
maximum
number	of
events	that	can
be	queued	
time	on	the
given	session.

VI_ATTR_RSRC_CLASS RO Global ViString N/A

Specifies	the
resource	class
(for	example,
“INSTR”).

VI_ATTR_USER_DATA R/W Local ViAddr **

Data	used
privately	by	the
application	for	a
particular
session.	This
data	is	not	used
by	VISA	for	any
purposes	and	is
provided	
application	for
its	own	use.

VI_ATTR_USER_DATA_32 R/W Local ViUInt32

0h	to	FFFFFFFFh

	

Data	used
privately	by	the
application	for	a
particular
session.	This
data	is	not	used
by	VISA	for	any
purposes	and	is
provided	
application	for
its	own	use.

VI_ATTR_USER_DATA_64**** R/W Local ViUInt64

0h	to
FFFFFFFFFFFFFFFFh

	

Data	used
privately	by	the
application	for	a
particular
session.	This
data	is	not	used
by	VISA	for	any
purposes	and	is
provided	
application	for
its	own	use.

	*	This	attribute	becomes	RO	once	viEnableEvent	has	been	called	for	the	first	time.

**	Specified	in	the	relevant	VPP-4.3.x	framework	document.

***	The	value	of	this	attribute	is	a	fixed	value	that	reflects	the	version	of	the	VISA	specification	to	which
the	implementation	is	compliant.	This	value	will	change	with	subsequent	versions	of	the	specification.

****	Defined	only	for	frameworks	that	are	64-bit	native.

VISA	Template	Operations

viClose(vi)
viGetAttribute(vi,	attribute,	attrState)
viSetAttribute(vi,	attribute,	attrState)
viStatusDesc(vi,	status,	desc)
viTerminate(vi,	degree,	jobId)
viLock(vi,	lockType,	timeout,	requestedKey,	accessKey)
viUnlock(vi)
viEnableEvent(vi,	eventType,	mechanism,	context)
viDisableEvent(vi,	eventType,	mechanism)
viDiscardEvents(vi,	eventType,	mechanism)
viWaitOnEvent(vi,	inEventType,	timeout,	outEventType,	outContext)
viInstallHandler(vi,	eventType,	handler,	userHandle)
viUninstallHandler(vi,	eventType,	handler,	userHandle)

	

GPIB	Bus	Interface	(INTFC)	Resource

This	topic	describes	the	GPIB	Bus	Interface	(INTFC)	Resource	that	is	provided
to	encapsulate	the	operations	and	properties	of	a	raw	GPIB	interface	(reading,
writing,	triggering,	etc.).

INTFC	Resource	Overview

A	VISA	GPIB	Bus	Interface	(INTFC)	Resource,	like	any	other	resource,	defines
the	basic	operations	and	attributes	of	the	VISA	Resource	Template.

For	example,	modifying	the	state	of	an	attribute	is	done	via	the	operation
viSetAttribute.	Although	the	INTFC	resource	does	not	have	viSetAttribute	listed
in	its	operations,	it	provides	the	operation	because	it	is	defined	in	the	VISA
Resource	Template.	From	this	basic	set,	each	resource	adds	its	specific
operations	and	attributes	that	allow	it	to	perform	its	dedicated	task.

The	INTFC	Resource	lets	a	controller	interact	with	any	devices	connected	to	the
board	associated	with	this	resource.	Services	are	provided	to	send	blocks	of	data
onto	the	bus,	request	blocks	of	data	from	the	bus,	trigger	devices	on	the	bus,	and
send	miscellaneous	commands	to	any	or	all	devices.	In	addition,	the	controller
can	directly	query	and	manipulate	specific	lines	on	the	bus	and	also	pass	control
to	other	devices	with	controller	capability.

INTFC	Resource	Attributes

Attribute	Name Access	Privileges Data	Type Range

Generic	INTFC	Resource	Attributes

VI_ATTR_DEV_STATUS_BYTE RW Global ViUInt8 0	to	FFh

VI_ATTR_DMA_ALLOW_EN RW Local ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_FILE_APPEND_EN RW Local ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_INTF_INST_NAME RO Global ViString N/A

VI_ATTR_INTF_NUM RO Global ViUInt16 0	to	FFFFh

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_GPIB

VI_ATTR_RD_BUF_OPER_MODE RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE

VI_ATTR_SEND_END_EN RW Local ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_TERMCHAR RW Local ViUInt8 0	to	FFh

VI_ATTR_TERMCHAR_EN RW Local ViBoolean VI_TRUE
VI_FALSE

VI_ATTR_TMO_VALUE RW Local ViUInt32
VI_TMO_IMMEDIATE
1	to	FFFFFFFEh

VI_ATTR_WR_BUF_OPER_MODE RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL

VI_ATTR_RD_BUF_SIZE RO Local ViUInt32 N/A

VI_ATTR_WR_BUF_SIZE RO Local ViUInt32 N/A

	
GPIB-Specific	INTFC	Resource	Attributes

VI_ATTR_GPIB_ADDR_STATE RO Global ViInt16
VI_GPIB_UNADDRESSED
VI_GPIB_TALKER
VI_GPIB_LISTENER

VI_ATTR_GPIB_HS488_CBL_LEN RW Global ViInt16
1	to	15	
VI_GPIB_HS488_DISABLED
VI_GPIB_HS488_NIMPL

VI_ATTR_GPIB_SECONDARY_ADDR RW Global ViUInt16 0	to	30	
VI_NO_SEC_ADDR

VI_STATE_ASSERTED

VI_ATTR_GPIB_ATN_STATE RO Global ViInt16 VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_GPIB_CIC_
STATE RO Global ViBoolean VI_TRUE

VI_FALSE

VI_ATTR_GPIB_NDAC_
STATE RO Global ViInt16

VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_GPIB_PRIMARY_ADDR RW Global ViUInt16 0	to	30

VI_ATTR_GPIB_REN_STATE RO Global ViInt16
VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_GPIB_SRQ_STATE RO Global ViInt16
VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

VI_ATTR_GPIB_SYS_CNTRL_STATE RW Global ViBoolean VI_TRUE
VI_FALSE

INTFC	Resource	Attribute	Descriptions

Attribute	Name Description

Generic	INTFC	Resource	Attributes

VI_ATTR_INTF_NUM Board	number	for	the	given	interface.

VI_ATTR_INTF_TYPE Interface	type	of	the	given	session.

VI_ATTR_INTF_INST_NAME Human-readable	text	describing	the	given	interface.

VI_ATTR_SEND_END_EN Whether	to	assert	END	during	the	transfer	of	the	last	byte	of	the	buffer.

VI_ATTR_TERMCHAR
Termination	character.	When	the	termination	character	is	read	and
VI_ATTR_TERMCHAR_EN	is	enabled	during	a	read	operation,	the	read	operation
terminates.

VI_ATTR_TERMCHAR_EN Flag	that	determines	whether	the	read	operation	should	terminate	when	a	termination
character	is	received.

VI_ATTR_TMO_VALUE
Minimum	timeout	value	to	use,	in	milliseconds.	A	timeout	value	of
VI_TMO_IMMEDIATE	means	that	operations	should	never	wait	for	the	device	to
respond.	A	timeout	value	of	VI_TMO_INFINITE	disables	the	timeout	mechanism.

VI_ATTR_DEV_STATUS_BYTE
This	attribute	specifies	the	488-style	status	byte	of	the	local	controller	associated	with
this	session.	If	this	attribute	is	written	and	bit	6	(0x40)	is	set,	this	device	or	controller	will
assert	a	service	request	(SRQ)	if	it	is	defined	for	this	interface.

VI_ATTR_WR_BUF_OPER_MODE

Determines	the	operational	mode	of	the	write	buffer.	When	the	operational	mode	is	set	to
VI_FLUSH_WHEN_FULL	(default),	the	buffer	is	flushed	when	an	END	indicator	is
written	to	the	buffer,	or	when	the	buffer	fills	up.	If	the	operational	mode	is	set	to
VI_FLUSH_ON_ACCESS,	the	write	buffer	is	flushed	under	the	same	conditions,	and
also	every	time	a	viPrintf	operation	completes.

VI_ATTR_DMA_ALLOW_EN

This	attribute	specifies	whether	I/O	accesses	should	use	DMA	(VI_TRUE)	or
Programmed	I/O	(VI_FALSE).	In	some	implementations,	this	attribute	may	have	global
effects	even	though	it	is	documented	to	be	a	local	attribute.	Since	this	affects
performance	and	not	functionality,	that	behavior	is	acceptable.

VI_ATTR_RD_BUF_OPER_MODE

Determines	the	operational	mode	of	the	read	buffer.	When	the	operational	mode	is	set	to
VI_FLUSH_DISABLE	(default),	the	buffer	is	flushed	only	on	explicit	calls	to	
the	operational	mode	is	set	to	VI_FLUSH_ON_ACCESS,	the	buffer	is	flushed	
time	a	viScanf	operation	completes.

VI_ATTR_FILE_APPEND_EN This	attribute	specifies	whether	viReadToFile	will	overwrite	(truncate)	or	append	when
opening	a	file.

VI_ATTR_RD_BUF_SIZE This	attribute	specifies	the	size	of	the	formatted	I/O	read	buffer.	The	user	can	modify	this
value	by	calling	viSetBuf().

VI_ATTR_WR_BUF_SIZE This	attribute	specifies	the	size	of	the	formatted	I/O	write	buffer.	The	user	can	modify
this	value	by	calling	viSetBuf().

GPIB-Specific	INTFC	Resource	Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary	address	of	the	local	GPIB	controller	used	by	the	given	session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary	address	of	the	local	GPIB	controller	used	by	the	given	session.

VI_ATTR_GPIB_REN_STATE This	attribute	returns	the	current	state	of	the	GPIB	REN	(Remote	ENable)	interface	line.

VI_ATTR_GPIB_ATN_STATE This	attribute	shows	the	current	state	of	the	GPIB	ATN	(ATtentioN)	interface	line.

VI_ATTR_GPIB_NDAC_STATE This	attribute	shows	the	current	state	of	the	GPIB	NDAC	
(Not	Data	ACcepted)	interface	line.

VI_ATTR_GPIB_SRQ_STATE This	attribute	shows	the	current	state	of	the	GPIB	SRQ	(Service	ReQuest)	interface	line.

VI_ATTR_GPIB_CIC_STATE This	attribute	shows	whether	the	specified	GPIB	interface	is	currently	CIC	(controller	in
charge).

VI_ATTR_GPIB_SYS_CNTRL_STATE
This	attribute	shows	whether	the	specified	GPIB	interface	is	currently	the	system
controller.	In	some	implementations,	this	attribute	may	be	modified	only	through	a
configuration	utility.	On	these	systems,	this	attribute	is	read	only	(RO).

VI_ATTR_GPIB_HS488_CBL_LEN

This	attribute	specifies	the	total	number	of	meters	of	GPIB	cable	used	in	the	specified
GPIB	interface.	If	HS488	is	not	implemented,	querying	this	attribute	should	return	the
value	VI_GPIB_HS488_NIMPL.	On	these	systems,	trying	to	set	this	attribute	
return	error	VI_ERROR_NSUP_ATTR_STATE.

VI_ATTR_GPIB_ADDR_STATE This	attribute	shows	whether	the	specified	GPIB	interface	is	currently	addressed	to	talk
or	listen,	or	is	not	addressed.

INTFC	Resource	Events

This	resource	defines	the	following	events	for	communication	with	applications,
where	AP	=	Access	Privilege.

VI_EVENT_GPIB_CIC	-	Notification	that	the	GPIB	controller	has	gained	or	lost	CIC	(controller	in
charge)	status.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_GPIB_CIC

VI_ATTR_GPIB_RECV_CIC_STATE

Controller	has
become
controller	in
charge.

RO ViBoolean VI_TRUE
VI_FALSE

VI_EVENT_GPIB_TALK	-	Notification	that	the	GPIB	controller	has	been	addressed	to	talk.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_GPIB_TALK

VI_EVENT_GPIB_LISTEN	-	Notification	that	the	GPIB	controller	has	been	addressed	to	listen.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_GPIB_LISTEN

VI_EVENT_CLEAR	-	Notification	that	the	GPIB	controller	has	been	sent	a	device	clear	message.

Event	Attribute Description AP Data
Type Range

Unique	logical

VI_ATTR_EVENT_TYPE identifier	of	the
event.

RO ViEventType VI_EVENT_CLEAR

VI_EVENT_TRIGGER	-	Notification	that	a	trigger	interrupt	was	received	from	the	interface.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID

The	identifier	of
the	triggering
mechanism	on
which	the
specified	trigger
event	was
received.

RO ViInt16 VI_TRIG_SW

VI_EVENT_IO_COMPLETION	-	Notification	that	an	asynchronous	operation	has	completed.

Event	Attribute Description AP Data
Type Range

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_STATUS

Return	code	of
the
asynchronous
I/O	operation
that	has
completed.

RO ViStatus N/A

VI_ATTR_JOB_ID

Job	ID	of	the
asynchronous
operation	that
has	completed.

RO ViJobId N/A

VI_ATTR_BUFFER

Address	of
buffer	used	in	an
asynchronous
operation.

RO ViBuf N/A

VI_ATTR_RET_COUNT

Actual	number
of	elements	that
were
asynchronously
transferred.

RO ViBus	Size *

VI_ATTR_RET_COUNT_32

Actual	number
of	elements	that
were RO ViUInt32 0	to	FFFFFFFFh

asynchronously
transferred.

VI_ATTR_RET_COUNT_64**

Actual	number
of	elements	that
were
asynchronously
transferred.

RO ViUInt64 0	to	FFFFFFFF	FFFFFFFFh

VI_ATTR_OPER_NAME

The	name	of	the
operation
generating	the
event.

RO ViString N/A

*The	data	type	is	defined	in	the	appropriate	VPP	4.3.x	framework	specification.

**Defined	only	for	operating	systems	that	are	64-bit	native.

INTFC	Resource	Operations

viAssertTrigger	(vi,	protocol)

viBufRead	(vi,	buf,	count,	retCount)

viBufWrite	(vi,	buf,	count,	retCount)

viFlush	(vi,	mask)

viGpibCommand	(vi,	buf,	count,	retCount)

viGpibControlATN		(vi,	mode)

viGpibControlREN	(vi,	mode)

viGpibPassControl	(vi,	primAddr,	secAddr)

viGpibSendIFC	(vi)

viPrintf	(vi,	writeFmt,	arg1,	arg2,	...)

viRead	(vi,	buf,	count,	retCount)

viReadAsync	(vi,	buf,	count,	jobId)

viReadToFile	(vi,	fileName,	count,	retCount)

viScanf	(vi,	readFmt,	arg1,	arg2,	...)

viSetBuf	(vi,	mask,	size)

viSPrintf	(vi,	buf,	writeFmt,	arg1,	arg2,	...)

viSScanf	(vi,	buf,	readFmt,	arg1,	arg2,	...)

viVPrintf	(vi,	writeFmt,	params)

viVScanf	(vi,	readFmt,	params)

viVSPrintf	(vi,	buf,	writeFmt,	params)

viVSScanf	(vi,	buf,	readFmt,	params)

viWrite	(vi,	buf,	count,	retCount)

viWriteAsync	(vi,	buf,	count,	jobId)

viWriteFromFile	(vi,	fileName,	count,	retCount)

	

	

Instrument	Control	(INSTR)
Resource
This	topic	describes	the	Instrument	Control	(INSTR)	Resource	that	is
provided	to	encapsulate	the	various	operations	of	a	device	(reading,
writing,	triggering,	etc.).

INSTR	Resource	Overview

The	Instrument	Control	(INSTR)	Resource,	like	any	other	resource,
defines	the	basic	operations	and	attributes	of	the	VISA	Resource
Template.	For	example,	modifying	the	state	of	an	attribute	is	done	via
the	operation	viSetAttribute,	which	is	defined	in	the	VISA	Resource
Template.

Although	the	INSTR	resource	does	not	have	viSetAttribute	listed	in	its
operations,	it	provides	the	operation	because	it	is	defined	in	the	VISA
Resource	Template.	From	this	basic	set,	each	resource	adds	its
specific	operations	and	attributes	that	allow	it	to	perform	its	dedicated
task,	such	as	sending	a	string	to	a	message-based	device.

The	INSTR	Resource	lets	a	controller	interact	with	the	device
associated	with	this	resource,	by	providing	the	controller	with	services
to	send	blocks	of	data	to	the	device,	request	blocks	of	data	from	the
device,	send	the	device	clear	command	to	the	device,	trigger	the
device,	and	find	information	about	the	device's	status.	In	addition,	it
allows	the	controller	to	access	registers	on	devices	that	reside	on
memory-mapped	buses.

INSTR	Resource	Attributes

ASRL	Specific	INSTR	Resource	Attributes

Attribute	Name
Access
Privilege Type Range Default

VI_ATTR_ASRL_AVAIL_NUM RO Global ViUInt32 0	to	FFFFFFFFh 0

VI_ATTR_ASRL_BAUD RW Global ViUInt32 0	to	FFFFFFFFh 9600

VI_ATTR_ASRL_CTS_STATE	 RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_DATA_BITS RW Global ViUInt16 5	to	8 8

VI_ATTR_ASRL_DCD_STATE	 RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_DSR_STATE RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_DTR_STATE RW Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_END_IN RW Local ViUInt16 VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR

VI_ASRL_END_TERMCHAR

VI_ATTR_ASRL_END_OUT RW Local ViUInt16 VI_ASRL_END_NONE
VI_ASRL_END_LAST_BIT
VI_ASRL_END_TERMCHAR
VI_ASRL_END_BREAK

VI_ASRL_END_NONE

VI_ATTR_ASRL_FLOW_CNTRL RW Global ViUInt16 VI_ASRL_FLOW_NONE	
VI_ASRL_FLOW_XON_XOFF
VI_ASRL_FLOW_RTS_CTS
VI_ASRL_FLOW_DTR_DSR

VI_ASRL_FLOW_NONE

VI_ATTR_ASRL_PARITY RW Global ViUInt16 VI_ASRL_PAR_NONE	
VI_ASRL_PAR_ODD
VI_ASRL_PAR_EVEN
VI_ASRL_PAR_MARK
VI_ASRL_PAR_SPACE

VI_ASRL_PAR_NONE

VI_ATTR_ASRL_REPLACE_CHAR RW Local ViUInt8 0	to	FFh 0

VI_ATTR_ASRL_RI_STATE RO Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_RTS_STATE RW Global ViUInt16 VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_ASRL_STOP_BITS RW Global ViUInt16 VI_ASRL_STOP_ONEVI_ASRL_STOP_TWO VI_ASRL_STOP_ONE

VI_ATTR_ASRL_XOFF_CHAR RW Local ViUInt8 0	to	FFh <Ctrl+S>(13h

VI_ATTR_ASRL_XON_CHAR RW Local ViUInt8 0	to	FFh <Ctrl+Q>(11

Generic	INSTR	Resource	Attributes

Attribute	Name Access
Privilege

Data
Type

Range Default

VI_ATTR_DMA_ALLOW_EN RW Local ViBoolean VI_TRUE	
VI_FALSE

VI_TRUE

VI_ATTR_INTF_INST_NAME RO Global ViString N/A N/A

VI_ATTR_INTF_NUM RO Global ViUInt16 0	to	FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI	
VI_INTF_GPIB	
VI_INTF_GPIB_VXI	
VI_INTF_ASRL	
VI_INTF_PXI	
VI_INTF_TCPIP	
VI_INTF_USB

N/A

	

VI_ATTR_TMO_VALUE R/W Local ViUInt32 VI_TMO_IMMEDIATE	
1	to	FFFFFFFEh	
VI_TMO_INFINITE

2000	msec

VI_ATTR_TRIG_ID R/W* Local ViInt16 VI_TRIG_SW
VI_TRIG_TTL0	to
VI_TRIG_TTL7
VI_TRIG_ECL0	to
VI_TRIG_ECL1

VI_TRIG_SW

*The	attribute	VI_ATTR_TRIG_ID	is	RW	(readable	and	writeable)
when	the	corresponding	session	is	not	enabled	to	receive	trigger
events.	When	the	session	is	enabled	to	receive	trigger	events,	the
attribute	VI_ATTR_TRIG_ID	is	RO	(read	only).

GPIB	and	GPIB-VXI	Specific	INSTR	Resource	Attributes

Symbolic	Name Access
Privilege

Data
Type

Range Default

VI_ATTR_GPIB_PRIMARY_ADDR RO Global ViUInt16 0	to	30 N/A

VI_ATTR_GPIB_READDR_EN R/W Local ViBoolean VI_TRUE	
VI_FALSE

VI_TRUE

VI_ATTR_GPIB_REN_STATE RO Global ViInt16 VI_STATE_ASSERTED	
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

VI_ATTR_GPIB_SECONDARY_ADDR RO Global ViUInt16 0	to	31	
VI_NO_SEC_ADDR

N/A

VI_ATTR_GPIB_UNADDR_EN R/W Local ViBoolean VI_TRUE	
VI_FALSE

VI_FALSE

GPIB-VXI	Specific	INSTR	Resource	Attribute

Attribute	Name Access
Privilege

Data
Type

Range Default

VI_ATTR_INTF_PARENT_NUM RO Global ViUInt16 0	to	FFFFh VI_ATTR_INTF_PARENT_NUM

HiSLIP	Specific	INSTR	Resource	Attributes

Attribute	Name
Access
Privilege

Data
Type Range Default

VI_ATTR_TCPIP_HISLIP_OVERLAP_EN R/W Local ViBoolean VI_TRUE,
VI_FALSE

Preference
returned	by
device

VI_ATTR_TCPIP_HISLIP_VERSION RO Local ViVersion N/A N/A

VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB R/W Local ViUInt32 0h	-0
FFFFFFFFh 1024

Message-Based	INSTR	Resource	Attributes

Attribute	Name Access
Privilege

Data
Type Range Default

VI_ATTR_FILE_APPEND_EN RW Local ViBoolean VI_TRUE	
VI_FALSE

VI_False

VI_ATTR_IO_PROT R/W Local ViUInt16 VI_PROT_NORMAL	
VI_PROT_FDC	
VI_PROT_HS488	
VI_PROT_4882_STRS	
VI_PROT_USBTMC_VENDOR

VI_ATTR_IO_PROT

	

VI_ATTR_RD_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS	
VI_FLUSH_DISABLE

VI_FLUSH_DISABLE

VI_ATTR_RD_BUF_SIZE RO Local ViUInt32 N/A N/A

VI_ATTR_SEND_END_EN R/W Local ViBoolean VI_TRUE	
VI_FALSE

VI_TRUE

VI_ATTR_SUPPRESS_END_EN R/W Local ViBoolean VI_TRUE	
VI_FALSE

VI_TRUE

	
VI_ATTR_TERMCHAR R/W Local ViUInt8 0	to	FFh 0ah	(newline)

VI_ATTR_TERMCHAR_EN R/W Local ViBoolean VI_TRUE	
VI_FALSE

VI_FALSE

VI_ATTR_WR_BUF_OPER_MODE R/W Local ViUInt16 VI_FLUSH_ON_ACCESS	
VI_FLUSH_WHEN_FULL

VI_FLUSH_WHEN_FULL

VI_ATTR_WR_BUF_SIZE RO Local ViUInt32 N/A N/A

PXI	Specific	INSTR	Resource	Attributes

Attribute	Name
Access
Privilege

Data
Type Range

VI_ATTR_PXI_ACTUAL_LWIDTH RO Global ViInt16 1,	4,	8

VI_ATTR_PXI_BUS_NUM RO Global ViUInt16 0	to	255

VI_ATTR_PXI_CHASSIS RO Global ViInt16 0	to	255	
VI_UNKNOWN_CHASSIS

VI_ATTR_PXI_DEV_NUM RO Global ViUInt16 0	to	31

VI_ATTR_PXI_DSTAR_BUS RO Global ViInt16 0	to	32767	
VI_UNKNOWN_TRIG

VI_ATTR_PXI_DSTAR_SET RO Global ViInt16 0	to	32767	
VI_UNKNOWN_TRIG

VI_ATTR_PXI_FUNC_NUM RO Global ViUInt16 0	to	7

VI_ATTR_PXI_IS_EXPRESS RO Global ViBoolean VI_TRUE,	VI_FALSE

VI_ATTR_PXI_MAX_LWIDTH RO Global ViInt16 1,	4,	8

VI_ATTR_PXI_MEM_BASE_BARn	(where	n	is
0,1,2,3,4,5) RO Global ViBusAddress N/A

VI_ATTR_PXI_MEM_SIZE_BARn	(where	n	is
0,1,2,3,4,5) RO Global ViBusSize N/A

VI_ATTR_PXI_MEM_TYPE_BARn	(where	n	is
0,1,2,3,4,5) RO Global ViUInt16

VI_PXI_ADDR_MEM,	
VI_PXI_ADDR_IO,	
VI_PXI_ADDR_NONE

VI_ATTR_PXI_SLOT_LBUS_LEFT RO Global ViInt16 0	to	32767	
VI_UNKNOWN_SLOT

VI_ATTR_PXI_SLOT_LBUS_RIGHT RO Global ViInt16 0	to	32767	
VI_UNKNOWN_SLOT

VI_ATTR_PXI_SLOT_LWIDTH RO Global ViInt16 1,	4,	8

VI_ATTR_PXI_SLOTPATH RO Global ViString N/A

VI_ATTR_PXI_STAR_TRIG_BUS RO Global ViInt16 0	to	32767	
VI_UNKNOWN_TRIG

VI_ATTR_PXI_STAR_TRIG_LINE RO Global ViInt16 0	to	32767
VI_UNKNOWN_TRIG

VI_ATTR_PXI_TRIG_BUS RO Global ViInt16 0	to	32767	
VI_UNKNOWN_TRIG

TCPIP	Specific	INSTR	Resource	Attributes

Attribute	Name Access
Privilege

Data	Type Range Default

VI_ATTR_TCPIP_ADDR RW Global ViString N/A N/A

VI_ATTR_TCPIP_DEVICE_NAMERW Global ViString N/A N/A

VI_ATTR_TCPIP_HOSTNAME RW Global ViString N/A N/A

VI_ATTR_TCPIP_IS_HISLIP RO Global ViBoolean VI_TRUE,
VI_FALSE

N/A

USB	Specific	INSTR	Resource	Attributes

Attribute	Name Access
Privilege

Data	Type Range Default

VI_ATTR_USB_INTFC_NUM RO Global ViInt16 0	to	254 0

VI_ATTR_USB_MAX_INTR_SIZE RW Local ViUInt16 0	to	FFFFh N/A

VI_ATTR_USB_PROTOCOL RO Global ViInt16 0	to	255 N/A

VI_ATTR_USB_SERIAL_NUM RO Global ViString N/A N/A

VXI	and	GPIB-VXI	Specific	INSTR	Resource	Attributes	

Attribute	Name Access
Privilege

Data	Type Range Default

VI_ATTR_CMDR_LA RO Global ViInt16 0	to	255;
VI_UNKNOWN_LA

N/A

VI_ATTR_DEST_ACCESS_PRIV RW Local ViUInt16 VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_PRIV

VI_ATTR_DEST_BYTE_ORDER RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

VI_ATTR_FDC_CHNL RW Local ViUInt16 0	to	7 N/A

VI_ATTR_FDC_GEN_SIGNAL_ENRW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_FDC_MODE RW Local ViUInt16 VI_FDC_NORMAL
VI_FDC_STREAM

VI_FDC_NORMAL

VI_ATTR_FDC_USE_PAIR RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

VI_ATTR_IMMEDIATE_SERV RO Global ViBoolean VI_TRUE
VI_FALSE

N/A

VI_ATTR_MAINFRAME_LA RO Global ViInt16 0	to	255;
VI_UNKNOWN_LA

N/A

VI_ATTR_MEM_BASE_32 RO Global ViBusAddress N/A N/A

VI_ATTR_MEM_BASE_64 RO Global ViBusAddress64N/A N/A

VI_ATTR_MEM_SIZE_32 RO Global ViBusSize N/A N/A

VI_ATTR_MEM_SIZE_64 RO Global ViBusSize64 N/A N/A

VI_ATTR_MEM_SPACE RO Global ViUInt16 VI_A16_SPACE	
VI_A24_SPACE
VI_A32_SPACE
VI_A64_SPACE

VI_A16_SPACE

VI_ATTR_SRC_ACCESS_PRIV RW Local ViUInt16 VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_PRIV

VI_ATTR_SRC_BYTE_ORDER RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

VI_ATTR_VXI_DEV_CLASS RO Global ViUInt16 VI_VXI_CLASS_MEMORY
VI_VXI_CLASS_EXTENDED
VI_VXI_CLASS_MESSAGE
VI_VXI_CLASS_REGISTER
VI_VXI_CLASS_OTHER

N/A

VI_ATTR_VXI_LA RO Global ViInt16 0	to	511 N/A

VI_ATTR_VXI_TRIG_SUPPORT RO Global ViUInt32 N/A N/A

VI_ATTR_WIN_ACCESS_PRIV RW* Local ViUInt16 VI_DATA_NPRIV
VI_DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

VI_DATA_PRIV

VI_ATTR_WIN_BYTE_ORDER RW* Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN

VI_BIG_ENDIAN

*For	VISA	2.2,	the	attributes	VI_ATTR_WIN_BYTE_ORDER	and	VI_ATTR_WIN_ACCESS_PRIV	are
R/W	(readable	and	writeable)	when	the	corresponding	session	is	not	mapped	(VI_ATTR_WIN_ACCESS
==	VI_NMAPPED).	When	the	session	is	mapped,	these	attributes	are	RO	(read	only).
VXI	and	GPIB-VXI	and	PXI	Specific	INSTR	Resource	Attributes

Attribute	Name Access
Privilege

Data	Type Range Default

VI_ATTR_DEST_INCREMENT RW Local ViInt32 0	to	1 1

VI_ATTR_SLOT RO Global ViInt16 0	to	10;
VI_UNKNOWN_SLOT

N/A

VI_ATTR_SRC_INCREMENT RW Local ViInt32 0	to	1 1

VI_ATTR_WIN_ACCESS RO Local ViUInt16 VI_NMAPPED
VI_USE_OPERS

VI_NMAPPED

VI_DEREF_ADDR

VI_ATTR_WIN_BASE_ADDR_32 RO Local ViBusAddress N/A N/A

VI_ATTR_WIN_BASE_ADDR_64 RO Local ViBusAddress64N/A N/A

VI_ATTR_WIN_SIZE_32 RO Local ViBusSize N/A N/A

VI_ATTR_WIN_SIZE_64 RO Local ViBusSize64 N/A N/A

VXI	and	GPIB-VXI	and	USB	Specific	INSTR	Resource	Attributes

Attribute	Name Access
Privilege

Data	Type Range Default

VI_ATTR_4882_COMPLIANT RO Global ViBoolean VI_TRUE,	VI_FALSE N/A

VXI	and	GPIB-VXI	and	USB	and	PXI	Specific	INSTR	Resource	Attributes

Attribute	Name Access
Privilege

Data	Type Range Default

VI_ATTR_MANF_ID RO Global ViUInt16 0	to	FFFFh N/A

VI_ATTR_MANF_NAME RO Global ViString N/A N/A

VI_ATTR_MODEL_CODE RO Global ViUInt16 0	to	FFFFh 0

VI_ATTR_MODEL_NAME RO Global ViString N/A N/A

INSTR	Resource	Attribute	Descriptions

Attribute	Name Description

ASRL	Specific	INSTR	Resource	Attributes

	 	
VI_ATTR_ASRL_AVAIL_NUM This	attribute	shows	the	number	of	bytes	available	in	

VI_ATTR_ASRL_BAUD This	is	the	baud	rate	of	the	interface.	It	is	represented	
integer	so	that	any	baud	rate	can	be	used,	but	it	
used	rate	such	as	300,	1200,	2400,	or	9600	

VI_ATTR_ASRL_CTS_STATE This	attribute	shows	the	current	state	of	the	Clear	

VI_ATTR_ASRL_DATA_BITS This	is	the	number	of	data	bits	contained	in	each	frame	
bits	for	each	frame	are	located	in	the	low-order	
memory.

VI_ATTR_ASRL_DCD_STATE This	attribute	shows	the	current	state	of	the	Data	Carrier	
signal.	The	DCD	signal	is	often	used	by	modems	to	indicate	
carrier	(remote	modem)	on	the	telephone	line.	The	DCD	
"Receive	Line	Signal	Detect	(RLSD)."

VI_ATTR_ASRL_DSR_STATE This	attribute	shows	the	current	state	of	the	Data	Set	

VI_ATTR_ASRL_DTR_STATE This	attribute	is	used	to	manually	assert	or	unassert	
(DTR)	output	signal.

VI_ATTR_ASRL_END_IN This	attribute	indicates	the	method	used	to	terminate	
to	VI_ASRL_END_NONE,	the	read	will	not	terminate	until	all	of	the	requested
data	is	received	(or	an	error	occurs).

If	it	is	set	to	VI_ASRL_END_TERMCHAR
the	character	in	VI_ATTR_TERMCHAR	is	received.	If	it	is	set	to
VI_ASRL_END_LAST_BIT,	the	read	will	terminate	as	soon	as	a	character
arrives	with	its	last	bit	set.	For	example,	if	VI_ATTR_ASRL_DATA_BITS	is	set
to	8,	then	the	read	will	terminate	when	a	character	arrives	

VI_ATTR_ASRL_END_OUT This	attribute	indicates	the	method	used	to	terminate	
to	VI_ASRL_END_NONE,	the	write	will	not	append	anything	to	the	data	being
written.	If	it	is	set	to	VI_ASRL_END_BREAK,	the	write	will	transmit	a	break
after	all	the	characters	for	the	write	have	been	sent.

If	it	is	set	to	VI_ASRL_END_LAST_BIT,	the	write	will	send	all	but	the	last
character	with	the	last	bit	clear,	then	transmit	the	last	character	with	the	last	bit
set.	For	example,	if		VI_ATTR_ASRL_DATA_BITS	is	set	to	8,	the	write	will
clear	the	8th	bit	for	all	but	the	last	
the	8th	bit	set.	If	it	is	set	to	VI_ASRL_END_TERMCHAR
the	character	in	VI_ATTR_TERMCHAR	after	the	data	being	transmitted.

VI_ATTR_ASRL_FLOW_CNTRL If	this	attribute	is	set	to	VI_ATTR_ASRL_FLOW_NONE
mechanism	does	not	use	flow	control,	and	buffers	on	both	
connection	are	assumed	to	be	large	enough	to	hold	all	data	

If	this	attribute	is	set	to	VI_ATTR_ASRL_FLOW_XON_XOFF
mechanism	uses	the	XON	and	XOFF	characters	to	perform	flow	
transfer	mechanism	controls	input	flow	by	sending	XOFF	when	
buffer	is	nearly	full,	and	it	controls	the	output	flow	by	
when	XOFF	is	received.

If	this	attribute	is	set	to	VI_ATTR_ASRL_FLOW_RTS_CTS
mechanism	uses	the	RTS	output	signal	and	the	CTS	input	signal	
control.	The	transfer	mechanism	controls	input	flow	by	
signal	when	the	receive	buffer	is	nearly	full,	and	
suspending	the	transmission	when	the	CTS	signal	

If	this	attribute	is	set	to	VI_ASRL_FLOW_DTR_DSR
uses	the	DTR	output	signal	and	the	DSR	input	signal	
The	transfer	mechanism	controls	input	flow	by	
the	receive	buffer	is	nearly	full,	and	
transmission	when	the	DSR	signal	

This	attribute	can	specify	multiple	flow	control	mechanisms	
multiple	values	together.	However,	certain	combinations	may	
by	all	serial	ports	and/or	operating	systems.	See	
Combinations	for	details.

VI_ATTR_ASRL_PARITY This	is	the	parity	used	with	every	frame	transmitted	
VI_ASRL_PAR_MARK	means	that	the	parity	bit	exists	and	is	always	1.
VI_ASRL_PAR_SPACE	means	that	the	parity	bit	exists	and	is	always	0.

VI_ATTR_ASRL_REPLACE_CHAR This	attribute	specifies	the	character	to	be	used	to	
that	arrive	with	errors	(such	as	parity	error.)

VI_ATTR_ASRL_RI_STATE This	attribute	shows	the	current	state	of	the	Ring	Indicator	
RI	signal	is	often	used	by	modems	to	indicate	that	

javascript:void(0);

VI_ATTR_ASRL_RTS_STATE This	attribute	is	used	to	manually	assert	or	unassert	
output	signal.	When	the	VI_ATTR_ASRL_FLOW_CNTRL
VI_ASRL_FLOW_RTS_CTS,	this	
read	to	determine	whether	the	background	flow	control	is	asserting	or
unasserting	the	signal.

VI_ATTR_ASRL_STOP_BITS This	is	the	number	of	stop	bits	used	to	indicate	the	
VI_ASRL_STOP_ONE5	indicates	one-and-one-half	(1.5)	stop	bits.

VI_ATTR_ASRL_XOFF_CHAR This	attribute	specifies	the	value	of	the	XOFF	character	
flow	control	(both	directions).	If	XON/XOFF	flow	control	
handshaking)	is	not	being	used,	the	value	of	this	attribute	

VI_ATTR_ASRL_XON_CHAR This	attribute	specifies	the	value	of	the	XON	character	
flow	control	(both	directions).	If	XON/XOFF	flow	control	
handshaking)	is	not	being	used,	the	value	of	this	attribute	

Generic	INSTR	Resource	Attributes

VI_ATTR_DMA_ALLOW_EN This	attribute	specifies	whether	I/O	accesses	should	
or	Programmed	I/O	(VI_FALSE).	In	some	implementations,	
have	global	effects	even	though	it	is	documented	to	
this	affects	performance	and	not	functionality,	

VI_ATTR_INTF_INST_NAME Human-readable	text	describing	the	given	interface.

VI_ATTR_INTF_NUM Board	number	for	the	given	interface.

VI_ATTR_INTF_TYPE Interface	type	of	the	given	session.

VI_ATTR_TMO_VALUE Minimum	timeout	value	to	use,	in	milliseconds.	A	timeout	
VI_TMO_IMMEDIATE	means	that	operations	should	never	wait	for	the	device	
to	respond.	A	timeout	value	of	VI_TMO_INFINITE	disables	the	timeout
mechanism.

VI_ATTR_TRIG_ID Identifier	for	the	current	triggering	mechanism.

GPIB	and	GPIB-VXI	Specific	INSTR	Resource	Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary	address	of	the	GPIB	device	used	by	the	given	

VI_ATTR_GPIB_READDR_EN This	attribute	specifies	whether	to	use	repeat	addressing	
write	operation.

VI_ATTR_GPIB_REN_STATE This	attribute	returns	the	current	state	of	the	GPIB	

VI_ATTR_GPIB_SECONDARY_ADDR Secondary	address	of	the	GPIB	device	used	by	the	given	

VI_ATTR_GPIB_UNADDR_EN	 This	attribute	specifies	whether	to	unaddress	the	device	
each	read	or	write	operation.

GPIB-VXI	Specific	INSTR	Resource	Attribute
VI_ATTR_INTF_PARENT_NUM Board	number	of	the	GPIB	board	to	which	the	GPIB-VXI	

HiSLIP	Specific	INSTR	Resource	Attributes
VI_ATTR_TCPIP_HISLIP_OVERLAP_EN This	enables	HiSLIP	overlap	mode	and	its	value	defaults	to	the	mode	suggested

by	the	instrument	on	HiSLIP	connection.	
mode	to	allow	overlapped	responses.	If	disabled,	the	connection	uses
synchronous	mode	to	detect	and	recover	from	interrupted	errors.	
VISA	will	do	a	Device	Clear	operation	to	change	the	mode.

VI_ATTR_TCPIP_HISLIP_VERSION This	is	the	HiSLIP	protocol	version	used	for	a	particular	HiSLIP	connection.	
example,	HiSLIP	version	1.0	returns	

VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB This	is	the	maximum	HiSLIP	message	size	VISA	will	accept	from	a	HiSLIP
system	in	units	of	kilobytes	(1024	bytes).	
message	size).

Message-Based	INSTR	Resource	Attributes 	
VI_ATTR_FILE_APPEND_EN This	attribute	specifies	whether	viReadToFile

when	opening	a	file.

VI_ATTR_IO_PROT Specifies	which	protocol	to	use.	In	VXI	systems,	for	
between	normal	word	serial	or	fast	data	channel	

In	GPIB,	you	can	choose	between	normal	and	high-speed	(HS488)	data
transfers.	In	ASRL	systems,	you	can	choose	between	normal	and	488-style
transfers,	in	which	case	the	viAssertTrigger
	488.2-defined	strings.

VI_ATTR_RD_BUF_OPER_MODE Determines	the	operational	mode	of	the	read	buffer.	
is	set	to	VI_FLUSH_DISABLE	(default),	the	buffer	is	flushed	only	on	explicit
calls	to	viFlush.	If	the	operational	mode	is	set	to	
buffer	is	flushed	every	time	a	viScanf

VI_ATTR_RD_BUF_SIZE This	attribute	specifies	the	size	of	the	formatted	I/O	
modify	this	value	by	calling	viSetBuf

VI_ATTR_SEND_END_EN Whether	to	assert	END	during	the	transfer	of	the	last	

VI_ATTR_SUPPRESS_END_EN Whether	to	suppress	the	END	indicator	termination.	If	
VI_TRUE,	the	END	indicator	does	not	terminate	read	operations.	If	this	
is	set	to	VI_FALSE,	the	END	indicator	terminates	read	operations.

VI_ATTR_TERMCHAR Termination	character.	When	the	termination	character	
VI_ATTR_TERMCHAR_EN	is	enabled	during	a	read	operation,	the	read
operation	terminates.

VI_ATTR_TERMCHAR_EN Flag	that	determines	whether	the	read	operation	should	
termination	character	is	received.

VI_ATTR_WR_BUF_OPER_MODE Determines	the	operational	mode	of	the	write	buffer.	
is	set	to	VI_FLUSH_WHEN_FULL	
END	indicator	is	written	to	the	buffer	or	when	the	buffer	fills	up.

If	the	operational	mode	is	set	to	VI_FLUSH_ON_ACCESS
flushed	under	the	same	conditions,	and	also	every	
completes.

VI_ATTR_WR_BUF_SIZE This	attribute	specifies	the	size	of	the	formatted	I/O	
modify	this	value	by	calling	viSetBuf

PXI	Specific	INSTR	Resource	Attributes
VI_ATTR_PXI_ACTUAL_LWIDTH Specifies	the	negotiated	link	width	that	this	device	is	using.

VI_ATTR_PXI_BUS_NUM PCI	bus	number	of	this	device.
VI_ATTR_PXI_CHASSIS Chassis	number	in	which	this	device	is	located.

VI_ATTR_PXI_DEV_NUM PCI	device	number	of	this	device.

VI_ATTR_PXI_DSTAR_BUS Number	of	the	DSTAR	bus	connected	to	this	device	in	the	chassis.

VI_ATTR_PXI_DSTAR_SET Specifies	the	set	of	PXI_DSTAR	lines	connected	to	this	device.

VI_ATTR_PXI_FUNC_NUM PCI	function	number	of	the	device.	All	devices	have	a	function	0.	Multifunction
devices	will	also	support	other	function	numbers.

VI_ATTR_PXI_IS_EXPRESS Specifies	whether	this	device	is	PXI	Express.

VI_ATTR_PXI_MAX_LWIDTH Specifies	the	maximum	link	width	that	this	device	can	use.

VI_ATTR_PXI_MEM_BASE_BARn Memory	base	address	assigned	to	the	specified	BAR	for	this	device.

VI_ATTR_PXI_MEM_SIZE_BARn Size	of	the	memory	assigned	to	the	specified	BAR	for	this	device.

VI_ATTR_PXI_MEM_TYPE_BARn Memory	type	(memory	mapped	or	I/O	mapped)	used	by	the	device	in	the
specified	BAR.

VI_ATTR_PXI_SLOT_LBUS_LEFT Slot	number	or	special	feature	connected	to	the	local	bus	left	lines	of	this	device.

VI_ATTR_PXI_SLOT_LBUS_RIGHT Slot	number	or	special	feature	connected	to	the	local	bus	right	lines	of	this
device.

VI_ATTR_PXI_SLOT_LWIDTH Specifies	the	link	width	used	by	the	slot	in	which	this	device	is	located.

VI_ATTR_PXI_SLOTPATH Slot	path	of	this	device.	PXI	slot	paths	are	a	sequence	of	values	representing	the
PCI	device	number	and	function	number	of	a	PCI	module	and	each	parent	PCI
bridge	that	routes	the	module	to	the	host	PCI	bridge.	The	string	format	of	the
attribute	value	is	device1[.function1][,device2[.function2]][,...].

VI_ATTR_PXI_STAR_TRIG_BUS Number	of	the	star	trigger	bus	connected	to	this	device	in	the	chassis.

VI_ATTR_PXI_STAR_TRIG_LINE PXI_STAR	line	connected	to	this	device.

VI_ATTR_PXI_TRIG_BUS Number	of	the	trigger	bus	connected	to	this	device	in	the	chassis.

TCPIP-Specific	INSTR	Resource	Attributes

VI_ATTR_TCPIP_ADDR This	is	the	TCPIP	address	of	the	device	to	which	the	
string	is	formatted	in	dot-notation.

VI_ATTR_TCPIP_DEVICE_NAME This	specifies	the	LAN	device	name	used	by	the	VXI-11	
connection.

VI_ATTR_TCPIP_HOSTNAME This	specifies	the	host	name	of	the	device.	If	no	host	
attribute	returns	an	empty	string.

VI_ATTR_TCPIP_IS_HISLIP This	specifies	whether	this	resource	uses	the	HiSLIP	protocol.

USB	Specific	INSTR	Resource	Attributes

VI_ATTR_USB_INTFC_NUM Specifies	the	USB	interface	number	of	this	device	to	
connected.

VI_ATTR_USB_MAX_INTR_SIZE Specifies	the	maximum	number	of	bytes	that	this	USB	
interrupt	IN	pipe.		The	default	value	is	the	same	as	the	maximum	packet	size	of
the	interrupt	IN	pipe.

VI_ATTR_USB_PROTOCOL Specifies	the	USB	protocol	number.

VI_ATTR_USB_SERIAL_NUM This	string	attribute	is	the	serial	number	of	the	USB	
this	attribute	should	be	used	for	display	purposes	only	and	not	
decisions.

VXI	and	GPIB-VXI	Specific	INSTR	Resource	Attributes

VI_ATTR_CMDR_LA Logical	address	of	the	commander	of	the	VXI	device	used	

VI_ATTR_DEST_ACCESS_
PRIV

This	attribute	specifies	the	address	modifier	to	be	
operations,	such	as	viOutXX	and	viMoveOutXX

VI_ATTR_DEST_BYTE_ORDER This	attribute	specifies	the	byte	order	to	be	used	in	
such	as	viOutXX	and	viMoveOutXX

VI_ATTR_FDC_CHNL This	attribute	determines	which	FDC	channel	will	be	

VI_ATTR_FDC_GEN_SIGNAL_EN Setting	this	attribute	to	VI_TRUE
the	FDC	channel	is	passed	back	to	the	commander.	This	action	frees	the
commander	from	having	to	poll	the	FDC	header	while	engaging	in	an	FDC
transfer.

VI_ATTR_FDC_MODE This	attribute	determines	which	FDC	mode	to	use	(Normal	
mode).

VI_ATTR_FDC_USE_PAIR If	set	to	VI_TRUE,	a	channel	pair	will	be	used	for	transferring	data.	Otherwise,
only	one	channel	will	be	used.

VI_ATTR_IMMEDIATE_SERV Specifies	whether	the	given	device	is	an	immediate	servant	
running	VISA.

VI_ATTR_MAINFRAME_LA This	is	the	logical	address	of	a	given	device	in	the	
with	the	lowest	logical	address.	Other	possible	
of	the	Slot	0	controller	or	of	the	parent-side	extender.	Often,	these	are	all	the
same	value.	The	purpose	of	this	attribute	is	to	provide	a	unique	ID	for	each
mainframe.	A	VISA	manufacturer	can	choose	any	of	these	values,	but	must	be
consistent	across	mainframes.	If	this	value	is	not	known,	the	attribute	value
returned	is	VI_UNKNOWN_LA.

VI_ATTR_MEM_BASE_32
VI_ATTR_MEM_BASE_64

Base	address	of	the	device	in	VXIbus	memory	address	
is	applicable	to	A24	or	A32	address	space.

VI_ATTR_MEM_SIZE_32
VI_ATTR_MEM_SIZE_64

Size	of	memory	requested	by	the	device	in	VXIbus	address	

VI_ATTR_MEM_SPACE VXIbus	address	space	used	by	the	device.	The	four	types	
A16/A24,	A16/A32,	or	or	A16/A64	memory	address	space.

VI_ATTR_SRC_ACCESS_PRIV This	attribute	specifies	the	address	modifier	to	be	
operations,	such	as	viInXX	and	viMoveInXX

VI_ATTR_SRC_BYTE_ORDER This	attribute	specifies	the	byte	order	to	be	used	in	
such	as	viInXX	and	viMoveInXX,	when	reading	from	the	source.

VI_ATTR_VXI_DEV_CLASS This	attribute	represents	the	VXI-defined	device	class	
the	resource	belongs:

message	based	(VI_VXI_CLASS_MESSAGE

register	based	(VI_VXI_CLASS_REGISTER

extended	(VI_VXI_CLASS_EXTENDED

memory	(VI_VXI_CLASS_MEMORY

VME	devices	are	usually	either	register	based	or	belong	
(VI_VXI_CLASS_OTHER)

VI_ATTR_VXI_LA Logical	address	of	the	VXI	or	VME	device	used	by	the	
VME	device,	the	logical	address	is	actually	a	pseudo-address	
511.

VI_ATTR_VXI_TRIG_SUPPORT This	attribute	shows	which	VXI	trigger	lines	this	implementation	
is	a	bit	vector	with	bits	0-9	corresponding	to	
VI_TRIG_ECL1.

VI_ATTR_WIN_ACCESS_PRIV This	attribute	specifies	the	address	modifier	to	be	
operations,	such	as	viMapAddress
mapped	window.

VI_ATTR_WIN_BYTE_ORDER This	attribute	specifies	the	byte	order	to	be	used	in	
such	as	viMapAddress,	viPeekXX	

window.

VXI	and	GPIB-VXI	and	PXI	Specific	INSTR	Resource	Attributes
VI_ATTR_DEST_INCREMENT This	is	used	in	the	viMoveOutXX	

offset	is	to	be	incremented	after	every	transfer.	The	default	value	of	this	attribute
is	1	(that	is,	the	destination	address	will	be	incremented	by	1	after	each	transfer,
and	the	viMoveOutXX	operation	

If	this	attribute	is	set	to	0,	the	viMoveOutXX	
same	element,	essentially	treating	

VI_ATTR_SLOT Physical	slot	location	of	the	VXIbus	device.	If	the	
VI_UNKNOWN_SLOT	is	returned.

VI_ATTR_SRC_INCREMENT This	is	used	in	the	viMoveInXX	operation	to	specify	how	much	the	source	offset
is	to	be	incremented	after	every	transfer.	The	default	value	of	this	attribute	is	1
(that	is,	the	source	address	will	be	incremented	by	1	after	each	transfer),	and	the
viMoveInXX	operation	moves	from	
to	0,	the	viMoveInXX	operation	will	always	read	from	the	same	element,
essentially	treating	the	source	as	a	FIFO	register.

VI_ATTR_WIN_ACCESS Modes	in	which	the	current	window	may	be	accessed:	not	
through	operations	viPeekXX	and
by	directly	dereferencing	the	address	

VI_ATTR_WIN_BASE_ADDR_32
VI_ATTR_WIN_BASE_ADDR_64

Base	address	of	the	interface	bus	to	which	this	window	

VI_ATTR_WIN_SIZE_32
VI_ATTR_WIN_SIZE_64

Size	of	the	region	mapped	to	this	window.

VXI,	GPIB-VXI,	and	USB	Specific	INSTR	Resource	Attributes
VI_ATTR_4882_COMPLIANT Specifies	whether	the	device	is	488.2	compliant.

VXI	and	GPIB-VXI	and	USB	and	PXI	Specific	INSTR	Resource	Attributes
VI_ATTR_MANF_ID Manufacturer	identification	number	of	the	device.	For	PXI,	if	Subsystem	ID	and

Subsystem	Vendor	ID	are	defined	for	the	device,	this	attribute	value	is	the
Subsystem	Vendor	ID.	If	Subsystem	ID	and	Subsystem	Vendor	ID	are	not
defined	for	the	device,	this	attribute	value	is	the	PCI	Vendor	ID.

VI_ATTR_MANF_NAME This	string	attribute	is	the	manufacturer’s	name.	The	
should	be	used	for	display	purposes	only	and	not	
the	value	can	be	different	between	VISA	

VI_ATTR_MODEL_CODE Model	code	for	the	device.	For	PXI,	If	Subsystem	ID	and	Subsystem	Vendor	ID
are	defined	for	the	device,	then	this	attribute	value	is	the	Subsystem	ID.	If
Subsystem	ID	and	Subsystem	Vendor	ID	are	not	defined	for	the	device,	this
attribute	value	is	the	PCI	Device	ID.

VI_ATTR_MODEL_NAME This	string	attribute	is	the	model	name	of	the	device.	
should	be	used	for	display	purposes	only	and	
the	value	can	be	different	between	

INSTR	Resource	Events

This	resource	defines	the	following	events	for	communication	with
applications,	where	AP	=	Access	Privilege.

VI_EVENT_SERVICE_REQ	-	Notification	that	a	service	request	was	received	from	the	device.

Event	Attribute Description AP
Data
Type

Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the
event.

RO ViEventType VI_EVENT_SERVICE_REQ

VI_EVENT_VXI_SIGP	-	Notification	that	a	VXIbus	signal	or	VXIbus	interrupt	was	received	from	the
device.

Event	Attribute Description AP Data
Type

Range

VI_ATTR_EVENT_TYPE Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_SERVICE_REQ

VI_ATTR_EVENT_TYPE Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_VXI_STOP

VI_ATTR_SIGP_STATUS_ID The	16-bit
Status/ID	value
retrieved	during
the	IACK	cycle
or	from	the
Signal	register.

RO ViUInt16 0	to	FFFFh

VI_EVENT_TRIG	-	Notification	that	a	trigger	interrupt	was	received	from	the	device.	For	VISA,	the	only
triggers	that	can	be	sensed	are	VXI	hardware	triggers	on	the	assertion	edge	(SYNC	and	ON	trigger
protocols	only).

Event	Attribute Description AP Data
Type

Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier
of	the	event.

RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID The	identifier	of	the
triggering	mechanism	on
which	the	specified	trigger
event	was	received.

RO ViInt16 VI_TRIG_TTL0	to
VI_TRIG_TTL7;
VI_TRIG_ECL0	to
VI_TRIG_ECL1

VI_EVENT_IO_COMPLETION	-	Notification	that	an	asynchronous	operation	has	completed.

Event	Attribute Description AP Data
Type

Range

VI_ATTR_BUFFER Address	of	a	buffer
that	was	used	in	an
asynchronous

RO ViBuf N/A

operation.

VI_ATTR_EVENT_TYPE Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_JOB_ID Job	ID	of	the
asynchronous
operation	that	has
completed.

RO ViJobId N/A

VI_ATTR_OPER_NAME Name	of	the
operation
generating	the
event.

RO ViString N/A

VI_ATTR_STATUS Return	code	of	the
asynchronous	I/O
operation	that	has
completed

RO ViStatus N/A

VI_ATTR_RET_COUNT Actual	number	of
elements	that	were
asynchronously
transferred.

RO ViBus	Size *

VI_ATTR_RET_COUNT_32 Actual	number	of
elements	that	were
asynchronously
transferred.

RO ViUInt32 0	to	FFFFFFFFh

VI_ATTR_RET_COUNT_64** Actual	number	of
elements	that	were
asynchronously
transferred.

RO ViUInt64 0	to	FFFFFFFF	FFFFFFFFh

*The	data	type	is	defined	in	the	appropriate	VPP	4.3.x	framework
specification.

**Defined	only	for	operating	systems	that	are	64-bit	native.

VI_EVENT_PXI_INTR	-	Notification	that	a	vendor-specific	PXI	interrupt	was	received	from	the	device.

Event	Attribute Description AP Data
Type

Range

VI_ATTR_EVENT_TYPE Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_PXI_INTR

VI_EVENT_VXI_VME_INTR	-	Notification	that	a	VXIbus	interrupt	was	received	from	the	device.	NOT
IMPLEMENTED	IN	AGILENT	VISA.

Event	Attribute Description AP Data
Type

Range

VI_ATTR_EVENT_TYPE Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_VXI_VME_INTR

VI_ATTR_RECV_INTR_LEVEL

	

VXI	interrupt	level
on	which	the
interrupt	was
received.

RO VIInt16 1	to	7,
VI_UNKNOWN_LEVEL

VI_ATTR_INTR_STATUS_ID 32-bit	status/ID
retrieved	during	the
IACK	cycle.

RO ViUInt32 0	to	FFFFFFFFh

VI_EVENT_USB_INTR	-	Notification	that	a	vendor-specific	USB	interrupt	was	received	from	the	device.

Event	Attribute Description AP
Data
Type Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO ViEventType VI_EVENT_USB_INTR

VI_ATTR_USB_RECV_INTR_SIZE Specifies	the	size	of	the	data	that	was
received	from	the	USB	interrupt-IN	pipe.
	This	value	will	never	be	larger	than	the
sessions	value	of
VI_ATTR_USB_MAX_INTR_SIZE.

RO ViUInt16 0	to	FFFF

VI_ATTR_USB_RECV_INTR_DATA Specifies	the	actual	data	that	was	received
from	the	USB	interrupt-IN	pipe.
	Querying	this	attribute	copies	the
contents	of	the	data	to	the	users	buffer.
	The	users	buffer	must	be	sufficiently
large	enough	to	hold	all	of	the	data.

RO ViBuf N/A

VI_ATTR_STATUS Specifies	the	status	of	the	read	operation
from	the	USB	interrupt-IN	pipe.		If	the
device	sent	more	data	than	the	user
specified	in
VI_ATTR_USB_MAX_INTR_SIZE,
then	this	attribute	value	will	contain	an
error	code.

RO ViStatus N/A

INSTR	Resource	Operations
viAssertTrigger	(vi,	protocol)
viBufRead	(vi,	buf,	count,	retCount)
viBufWrite	(vi,	buf,	count,	retCount)
viClear	(vi)
viFlush	(vi,	mask)
viGpibControlREN	(vi,	mode)
	

	
viIn8	(vi,	space,	offset,	val8)
viIn16	(vi,	space,	offset,	val16)
viIn32	(vi,	space,	offset,	val32)
viIn64	(vi,	space,	offset,	val64)	
	
viMapAddress	(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,	address)
viMapAddressEx	(vi,	mapSpace,	mapBase64,	mapSize,	access,	suggested,	address)
viMemAlloc	(vi,	size,	offset)
viMemAllocEx	(vi,	size,	offset64)
viMemFree	(vi,	offset)
viMemFreeEx	(vi,	offset64)	
	
viMove	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,	destWidth,	length)
viMoveEx	(vi,	srcSpace,	srcOffset64,	srcWidth,	destSpace,	destOffset64,	destWidth,
length)	
viMoveAsync	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,	destWidth,
length,	jobId)
viMoveAsyncEx	(vi,	srcSpace,	srcOffset64,	srcWidth,	destSpace,	destOffset64,
destWidth,	length,	jobId)	
	
viMoveIn8	(vi,	space,	offset,	length,	buf8)
viMoveIn16	(vi,	space,	offset,	length,	buf16)
viMoveIn32	(vi,	space,	offset,	length,	buf32)
viMoveIn64	(vi,	space,	offset,	length,	buf64)
	
viMoveIn8Ex(vi,	space,	offset64,	length,	buf8)
viMoveIn16Ex(vi,	space,	offset64,	length,	buf16)
viMoveIn32Ex(vi,	space,	offset64,	length,	buf32)
viMoveIn64Ex(vi,	space,	offset64,	length,	buf64)
	
viMoveOut8	(vi,	space,	offset,	length,	buf8)
viMoveOut16	(vi,	space,	offset,	length,	buf16)
viMoveOut32	(vi,	space,	offset,	length,	buf32)
viMoveOut64	(vi,	space,	offset,	length,	buf64)
	
viMoveOut8Ex(vi,	space,	offset64,	length,	buf8)

viMoveOut16Ex(vi,	space,	offset64,	length,	buf16)
viMoveOut32Ex(vi,	space,	offset64,	length,	buf32)
viMoveOut64Ex(vi,	space,	offset64,	length,	buf64)
	
viOut8	(vi,	space,	offset,	val8)
viOut16	(vi,	space,	offset,	val16)
viOut32	(vi,	space,	offset,	val32)
viOut64	(vi,	space,	offset,	val64)
	
viPeek8	(vi,	addr,	val8)
viPeek16	(vi,	addr,	val16)
viPeek32	(vi,	addr,	val32)
viPeek64	(vi,	addr,	val64)
viPoke8	(vi,	addr,	val8)
viPoke16	(vi,	addr,	val16)
viPoke32	(vi,	addr,	val32)
viPoke64	(vi,	addr,	val64)	
	
viPrintf	(vi,	writeFmt,	arg1,	arg2,	...)
viQueryf	(vi,	writeFmt,	readFmt,	arg1,	arg2,	...)
viRead	(vi,	buf,	count,	retCount)
viReadAsync	(vi,	buf,	count,	jobId)
viReadSTB	(vi,	status)
viReadToFile	(vi,	fileName,	count,	retCount)
viScanf	(vi,	readFmt,	arg1,	arg2,	...)
viSetBuf	(vi,	mask,	size)
viSPrintf	(vi,	buf,	writeFmt,	arg1,	arg2,	...)
viSScanf	(vi,	buf,	readFmt,	arg1,	arg2,	...)
	
viUnmapAddress	(vi)
viUsbControlIn(vi,	bmRequestType,	bRequest,	wValue,	wIndex,	wLength,	buf,
retCnt)
viUsbControlOut(vi,	bmRequestType,	bRequest,	wValue,	wIndex,	wLength,	buf)
	
viVPrintf	(vi,	writeFmt,	params)
viVQueryf	(vi,	writeFmt,	readFmt,	params)
viVScanf	(vi,	readFmt,	params)

viVSPrintf	(vi,	buf,	writeFmt,	params)
viVSScanf	(vi,	buf,	readFmt,	params)
viVxiCommandQuery	(vi,	mode,	cmd,	response)
viWrite	(vi,	buf,	count,	retCount)
viWriteAsync	(vi,	buf,	count,	jobId)
viWriteFromFile	(vi,	fileName,	count,	retCount)
	
	

TCPIP	Socket	(SOCKET)	Resource

This	topic	describes	the	TCPIP	Socket	(SOCKET)	Resource	that	encapsulates
the	operations	and	properties	of	the	capabilities	of	a	raw	network	socket
connection	using	TCPIP.

SOCKET	Resource	Overview

A	VISA	SOCKET	Resource,	like	any	other	resource,	starts	with	the	basic
operations	and	attributes	of	the	VISA	Resource	Template.	For	example,
modifying	the	state	of	an	attribute	is	done	via	the	operation	viSetAttribute,
which	is	defined	in	the	VISA	Resource	Template.

Although	the	TCPIP	resource	does	not	have	viSetAttribute	listed	in	its
operations,	it	provides	the	operation	because	it	is	defined	in	the	VISA	Resource
Template.	From	this	basic	set,	each	resource	adds	its	specific	operations	and
attributes	that	allow	it	to	perform	its	dedicated	task.

The	SOCKET	Resource	exposes	the	capability	of	a	raw	network	socket
connection	over	TCPIP.	This	usually	means	Ethernet,	but	the	protocol	is	not
restricted	to	that	physical	interface.	Services	are	provided	to	send	and	receive
blocks	of	data.	If	the	device	is	capable	of	communicating	with	IEEE-488.2-style
strings,	an	attribute	setting	also	allows	sending	software	triggers,	querying	an
IEEE-488-style	status	byte,	and	sending	a	device	clear	message.

SOCKET	Resource	Attributes

Note:	AP	=	Access	Privileges

Attribute	Name AP Data
Type Range Default

	Generic	SOCKET	Resource	Attributes 	 	 	 	

VI_ATTR_DMA_ALLOW_EN RW Local ViBoolean VI_TRUE
VI_FALSE VI_FALSE

VI_ATTR_FILE_APPEND_EN RW Local ViBoolean VI_TRUE
VI_FALSE VI_FALSE

VI_ATTR_INTF_INST_NAME RO Global ViString N/A N/A

VI_ATTR_INTF_NUM RO Global ViUInt16 0	to	FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_TCPIP VI_INTF_TCPIP

VI_ATTR_IO_PROT RW Local ViUInt16 VI_NORMAL
VI_PROT_4882_STRS VI_NORMAL

VI_ATTR_RD_BUF_OPER_MODE RW Local ViUInt16 VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE VI_FLUSH_DISABLE

VI_ATTR_SEND_END_EN RW Local ViBoolean VI_TRUE
VI_FALSE VI_TRUE

VI_ATTR_TERMCHAR RW Local ViUInt8 0	to	FFh 0Ah(linefeed)

VI_ATTR_TERMCHAR_EN RW Local ViBoolean VI_TRUE
VI_FALSE VI_FALSE

VI_ATTR_TMO_VALUE RW Local ViUInt32
VI_TMO_IMMEDIATE
1	to	FFFFFFFEh
VI_TMO_INFINITE

2000	msec.

VI_ATTR_WR_BUF_OPER_MODE RW Local ViUInt16
VI_FLUSH_ON_ACCESS
VI_FLUSH_WHEN_FULL
>

VI_FLUSH_WHEN_FULL

VI_ATTR_RD_BUF_SIZE RO Local ViUInt32 N/A N/A

VI_ATTR_WR_BUF_SIZE RO Local ViUInt32 N/A N/A

	TCPIP	Specific	SOCKET	Resource
Attributes

	 	 	 	

VI_ATTR_TCPIP_ADDR RO Global ViString N/A N/A

VI_ATTR_TCPIP_HOSTNAME RO Global ViString N/A N/A

VI_ATTR_TCPIP_PORT RO Global ViUInt16 0	to	FFFFh N/A

VI_ATTR_TCPIP_NODELAY RW Local ViBoolean VI_TRUE
VI_FALSE VI_TRUE

VI_ATTR_TCPIP_KEEPALIVE RW Local ViBoolean VI_TRUE
VI_FALSE

VI_FALSE

SOCKET	Resource	Attribute	Descriptions

Attribute	Name Description

	Generic	SOCKET	Resource	Attributes

VI_ATTR_DMA_ALLOW_EN

This	attribute	specifies	whether	I/O	accesses	should	use	DMA	(VI_TRUE)	or	Programmed
I/O	(VI_FALSE).	In	some	implementations,	this	attribute	may	have	global	effects	
though	it	is	documented	to	be	a	local	attribute.	Since	this	affects	performance	and	not
functionality,	that	behavior	is	acceptable.

VI_ATTR_FILE_APPEND_EN This	attribute	specifies	whether	viReadToFile	will	overwrite	(truncate)	or	append	when
opening	a	file.

VI_ATTR_INTF_INST_NAME Human-readable	text	describing	the	given	interface.

VI_ATTR_INTF_NUM Board	number	for	the	given	interface.

VI_ATTR_INTF_TYPE Interface	type	of	the	given	session.

VI_ATTR_IO_PROT Specifies	which	protocol	to	use.

VI_ATTR_RD_BUF_OPER_MODE	 Determines	the	operational	mode	of	the	read	buffer.	When	the	operational	mode	is	set	to
VI_FLUSH_DISABLE	(default),	the	buffer	is	flushed	only	on	explicit	calls	to	viFlush

VI_ATTR_SEND_END_EN Whether	to	assert	END	during	the	transfer	of	the	last	byte	of	the	buffer.

VI_ATTR_TERMCHAR

Termination	character.	When	the	termination	character	is	read	and	
VI_ATTR_TERMCHAR_EN	is	enabled	during	a	read	operation,	the	read	operation
terminates.	Note:	the	termination	character	must	be	enabled	in	the	program	when	reading	from
a	SOCKET	device	that	does	not	support	EOI;	otherwise	the	SOCKET	read	will	timeout.

VI_ATTR_TERMCHAR_EN Flag	that	determines	whether	the	read	operation	should	terminate	when	a	termination	character
is	received.

VI_ATTR_TMO_VALUE
Minimum	timeout	value	to	use,	in	milliseconds.	A	timeout	value	of		VI_TMO_IMMEDIATE
means	that	operations	should	never	wait	for	the	device	to	respond.	A	timeout	value	
VI_TMO_INFINITE	disables	the	timeout	mechanism.

VI_ATTR_WR_BUF_OPER_MODE	

Determines	the	operational	mode	of	the	write	buffer.	When	the	operational	mode	is	set	to
VI_FLUSH_WHEN_FULL	(default),	the	buffer	is	flushed	when	an	END	indicator	is	written
to	the	buffer	or	when	the	buffer	fills	up.	If	the	operational	mode	is	set	to
VI_FLUSH_ON_ACCESS,	the	write	buffer	is	flushed	under	the	same	conditions,	and	also
every	time	a	viPrintf	operation	completes.

VI_ATTR_RD_BUF_SIZE This	attribute	specifies	the	size	of	the	formatted	I/O	read	buffer.	The	user	can	modify	this
value	by	calling	viSetBuf().

VI_ATTR_WR_BUF_SIZE This	attribute	specifies	the	size	of	the	formatted	I/O	write	buffer.	The	user	can	modify	this
value	by	calling	viSetBuf().

	TCPIP	Specific	SOCKET	Resource	Attributes

VI_ATTR_TCPIP_ADDR This	is	the	TCPIP	address	of	the	device	to	which	the	session	is	connected.	This	string	is
formatted	in	dot	notation.

VI_ATTR_TCPIP_HOSTNAME Specifies	the	host	name	of	the	device.	If	no	host	name	is	available,	this	attribute	returns	an
empty	string.

VI_ATTR_TCPIP_PORT Specifies	the	port	number	for	a	given	TCPIP	address.	For	a	TCPIP	SOCKET	resource,	this	is	a
required	part	of	the	address	string.

VI_ATTR_TCPIP_NODELAY

The	Nagle	algorithm	is	disabled	when	this	attribute	is	enabled	(and	vice	versa).	
The	Nagle	algorithm	improves	network	performance	by	buffering	"send"	data	until	
a	full-size	packet	can	be	sent.	This	attribute	is	enabled	by	default	in	VISA	to	verify	that
synchronous	writes	get	flushed	immediately.

VI_ATTR_TCPIP_KEEPALIVE

An	application	can	request	that	a	TCPIP	provider	enable	the	use	of	"keep-alive"	packets	on
TCP	connections	by	turning	on	this	attribute.	If	a	connection	is	dropped	as	a	result	of	"keep-
alives,"	the	error	code	VI_ERROR_CONN_LOST	is	returned	to	current	and	subsequent	
calls	on	the	session.

SOCKET	Resource	Event

This	resource	defines	the	following	events	for	communication	with	applications,
where	AP	=	Access	Privilege.

VI_EVENT_IO_COMPLETION	-	Notification	that	an	asynchronous	operation	has	completed.

	Event	Attribute 	Description 	AP 	Data
Type 	Range

VI_ATTR_BUFFER

Address	of	a
buffer	that	was
used	in	an
asynchronous
operation.

RO ViBuf N/A

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_JOB_ID

Job	ID	of	the
asynchronous
operation	that	has
completed.

RO ViJobId N/A

VI_ATTR_OPER_NAME

Name	of	the
operation
generating	the
event.

RO ViString N/A

VI_ATTR_STATUS

Return	code	of
the	asynchronous
I/O	operation	that
has	completed.

RO ViStatus N/A

VI_ATTR_RET_COUNT

Actual	number	of
elements	that
were
asynchronously
transferred.

RO ViBus	Size *

VI_ATTR_RET_COUNT_32

Actual	number	of
elements	that
were
asynchronously
transferred.

RO ViUInt32 0	to	FFFFFFFFh

VI_ATTR_RET_COUNT_64**

Actual	number	of
elements	that
were
asynchronously
transferred.

RO ViUInt64 0	to	FFFFFFFF	FFFFFFFFh

*The	data	type	is	defined	in	the	appropriate	VPP	4.3.x	framework	specification.

**Defined	only	for	operating	systems	that	are	64-bit	native.

SOCKET	Resource	Operations

viAssertTrigger	(vi,	protocol)
viBufRead	(vi,	buf,	count,	retCount)
viBufWrite	(vi,	buf,	count,	retCount)
viClear	(vi)
viFlush	(vi,	mask)
	
viPrintf	(vi,	writeFmt,	arg1,	arg2,	...)
viRead	(vi,	buf,	count,	retCount)
viReadAsync	(vi,	buf,	count,	jobId)
viReadSTB	(vi,	status)
viReadToFile	(vi,	filename,	count,	retCount)
	
viScanf	(vi,	readFmt,	arg1,	arg2,	...)
viSetBuf	(vi,	mask,	size)
viSPrintf	(vi,	buf,	writeFmt,	arg1,	arg2,	...)
viSScanf	(vi,	buf,	readFmt,	arg1,	arg2,	...)
viVPrintf	(vi,	writeFmt,	params)
	
viVScanf	(vi,	readFmt,	params)
viVSPrintf	(vi,	buf,	writeFmt,	params)
viVSScanf	(vi,	buf,	readFmt,	params)
viWrite	(vi,	buf,	count,	retCount)
viWriteAsync	(vi,	buf,	count,	jobId)
viWriteFromFile	(vi,	filename,	count,	retCount)

	

VXI	Mainframe	Backplane	(BACKPLANE)	Resource

This	topic	describes	the	VXI	Mainframe	Backplane	(BACKPLANE)	Resource
that	encapsulates	the	VXI-defined	operations	and	properties	of	the	backplane	in
a	VXIbus	system.

BACKPLANE	Resource	Overview

A	VISA	VXI	Mainframe	Backplane	Resource,	like	any	other	resource,	starts
with	the	basic	operations	and	attributes	of	the	VISA	Resource	Template.	For
example,	modifying	the	state	of	an	attribute	is	done	via	the	operation
viSetAttribute,	which	is	defined	in	the	VISA	Resource	Template.

Although	the	BACKPLANE	resource	does	not	have	viSetAttribute	listed	in	its
operations,	it	provides	the	operation	because	it	is	defined	in	the	VISA	Resource
Template.	From	this	basic	set,	each	resource	adds	its	specific	operations	and
attributes	that	allow	it	to	perform	its	dedicated	task.

The	BACKPLANE	Resource	lets	a	controller	query	and	manipulate	specific
lines	on	a	specific	mainframe	in	a	given	VXI	system.	Services	are	provided	to
map,	unmap,	assert,	and	receive	hardware	triggers,	and	also	to	assert	various
utility	and	interrupt	signals.	This	includes	advanced	functionality	that	may	not	be
available	in	all	implementations	or	all	vendors'	controllers.

A	VXI	system	with	an	embedded	CPU	with	one	mainframe	will	always	have
exactly	one	BACKPLANE	resource.	Valid	examples	of	resource	strings	for	this
are	VXI0::0::BACKPLANE	and	VXI::BACKPLANE.	A	multi-chassis	VXI
system	may	provide	only	one	BACKPLANE	resource	total,	but	the
recommended	way	is	to	provide	one	BACKPLANE	resource	per	chassis,	with
the	resource	string	address	corresponding	to	the	attribute
VI_ATTR_MAINFRAME_LA.	If	a	multi-chassis	VXI	system	provides	only	one
BACKPLANE	resource,	it	is	assumed	to	control	the	backplane	resources	in	all
chasses.

Note:	Some	VXI	or	GPIB-VXI	implementations	view	all	mainframes	in	a	VXI
system	as	one	entity.	In	these	configurations,	separate	BACKPLANE	resources
are	not	possible.

BACKPLANE	Resource	Attributes

Note:	AP	=	Access	Privileges

Attribute	Name AP Type Range Default

Generic	BACKPLANE	Resource	Attributes

VI_ATTR_INTF_INST_NAME RO Global ViString N/A N/A

VI_ATTR_INTF_NUM RO Global ViUInt16 0	to	FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16 VI_INTF_VXI
VI_INTF_GPIB_VXI N/A

VI_ATTR_TMO_VALUE RW Local ViUInt32
VI_TMO_IMMEDIATE
1	to	FFFFFFFEh
VI_TMO_INFINITE

2000	msec.

VXI	and	GPIB-VXI	Specific	BACKPLANE	Resource	Attributes

VI_ATTR_MAINFRAME_LA RO Global ViInt16 0	to	255	
VI_UNKNOWN_LA N/A

VI_ATTR_TRIG_ID RW Local ViInt16 VI_TRIG_TTL0	to	VI_TRIG_TTL7;	
VI_TRIG_ECL0	to	VI_TRIG_ECL1 N/A

VI_ATTR_VXI_TRIG_STATUS RO Global ViUInt32 N/A N/A

VI_ATTR_VXI_TRIG_SUPPORT RO Global ViUInt32 N/A N/A

VI_ATTR_VXI_VME_INTR_STATUS RO Global ViUInt16 N/A N/A

VI_ATTR_VXI_VME_SYSFAIL_STATE RO Global ViInt16
VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

BACKPLANE	Resource	Attribute	Descriptions

Attribute	Name Description

Generic	BACKPLANE	Resource	Attributes

VI_ATTR_INTF_INST_NAME Human-readable	text	describing	the	given	interface.

VI_ATTR_INTF_NUM Board	number	for	the	given	interface.

VI_ATTR_INTF_TYPE Interface	type	of	the	given	session.

VI_ATTR_TMO_VALUE
Minimum	timeout	value	to	use,	in	milliseconds.	A	timeout	value	of			VI_TMO_IMMEDIATE
means	that	operations	should	never	wait	for	the	device	to	respond.	A	timeout	value	of		
VI_TMO_INFINITE	disables	the	timeout	mechanism.

VXI	and	GPIB-VXI	Specific	BACKPLANE	Resource	Attributes

VI_ATTR_MAINFRAME_LA

This	is	the	logical	address	of	a	given	device	in	the	mainframe,	usually	the	device	with	the	lowest
logical	address.	Other	possible	values	include	the	logical	address	of	the	
Slot	0	controller	or	of	the	parent-side	extender.	Often,	these	are	all	the	same	value.

The	purpose	of	this	attribute	is	to	provide	a	unique	ID	for	each	mainframe.	A	VISA	manufacturer
can	choose	any	of	these	values,	but	must	be	consistent	across	mainframes.	If	this	value	is	not
known,	the	attribute	value	returned	is	VI_UNKNOWN_LA.

VI_ATTR_TRIG_ID Identifier	for	the	current	triggering	mechanism.

VI_ATTR_VXI_TRIG_STATUS This	attribute	shows	the	current	state	of	the	VXI	trigger	lines.	This	is	a	bit	vector	with	bits	0-9
corresponding	to	VI_TRIG_TTL0	through	VI_TRIG_ECL1.

VI_ATTR_VXI_TRIG_SUPPORT

This	attribute	shows	which	VXI	trigger	lines	this	implementation	supports.	This	is	a	bit	vector
with	bits	0-9	corresponding	to	VI_TRIG_TTL0	through	VI_TRIG_ECL1.	Agilent	VISA	also
returns	12	to	indicate	VI_TRIG_PANEL_IN	for	received	triggers	and	VI_TRIG_PANEL_OUT
for	asserted	triggers	on	Agilent	VXI	controllers.

VI_ATTR_VXI_VME_INTR_STATUS This	attribute	shows	the	current	state	of	the	VXI/VME	interrupt	lines.	This	is	a	bit	vector	with
bits	0-6	corresponding	to	interrupt	lines	1-7.

VI_ATTR_VXI_VME_SYSFAIL_STATE This	attribute	shows	the	current	state	of	the	VXI/VME	SYSFAIL	(SYStem	FAILure)	backplane
line.

BACKPLANE	Resource	Events

This	resource	defines	the	following	events	for	communication	with	applications,
where	AP	=	Access	Privilege.

VI_EVENT_TRIG	-	Notification	that	a	trigger	interrupt	was	received	from	the	backplane.	For	VISA,	the	only	triggers	that	can	be	sensed
are	VXI	hardware	triggers	on	the	assertion	edge	(SYNC	and	ON	trigger	protocols	only).

Event	Attribute 	Description 	AP 	Type 	Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO ViEventType VI_EVENT_TRIG

VI_ATTR_RECV_TRIG_ID
The	identifier	of	the	triggering
mechanism	on	which	the	specified
trigger	event	was	received.

RO ViInt16 VI_TRIG_TTL0	to	VI_TRIG_TTL7;	
VI_TRIG_ECL0	to	VI_TRIG_ECL1

	

VI_EVENT_VXI_VME_SYSFAIL	-	Notification	that	the	VXI/VME	SYSFAIL*	line	has	been	asserted.

	Event	Attribute 	Description 	AP 	Data	Type 	Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO ViEventType VI_EVENT_VXI_VME_SYSFAIL

	

VI_EVENT_VXI_VME_SYSRESET	-	Notification	that	the	VXI/VME	SYSRESET*	line	has	been	reset.

	Event	Attribute 	Description 	AP 	Type 	Range

VI_ATTR_EVENT_TYPE Unique	logical	identifier	of	the	event. RO ViEventType VI_EVENT_VXI_VME_SYSRESET

BACKPLANE	Resource	Operations

viAssertTrigger	(vi,	protocol)

viAssertUtilSignal(vi,	line)

viAssertIntrSignal(vi,	mode,	statusID)
viMapTrigger	(vi,	trigSrc,	trigDest,	mode)
viUnmapTrigger	(vi,	trigSrc,	trigDest)

	

	

Memory	Access	(MEMACC)	Resource

This	topic	describes	the	Memory	Access	(MEMACC)	Resource	that	is	provided
to	encapsulate	the	address	space	of	a	memory-mapped	bus,	such	as	the	VXIbus.

MEMACC	Resource	Overview

The	Memory	Access	(MEMACC)	Resource	encapsulates	the	address	space	of	a
memory-mapped	bus	such	as	the	VXIbus.	A	VISA	Memory	Access	Resource,
like	any	other	resource,	starts	with	the	basic	operations	and	attributes	of	the
VISA	Resource	Template.	For	example,	modifying	the	state	of	an	attribute	is
done	via	the	operation	viSetAttribute.

Although	the	MEMACC	resource	does	not	have	viSetAttribute	listed	in	its
operations,	it	provides	the	operation	because	it	is	defined	in	the	VISA	Resource
Template.	From	this	basic	set,	each	resource	adds	its	specific	operations	and
attributes	that	allow	it	to	perform	its	dedicated	task,	such	as	reading	a	register	or
writing	to	a	memory	location.

The	MEMACC	Resource	lets	a	controller	interact	with	the	interface	associated
with	this	resource.	It	does	this	by	providing	the	controller	with	services	to	access
arbitrary	registers	or	memory	addresses	on	memory-mapped	buses.

MEMACC	Resource	Attributes

Note:	AP	=	Access	Privileges

Attribute	Name AP Data	Type Range Default

Generic	MEMACC	Resource	Attributes

VI_ATTR_DMA_ALLOW_EN RW Local ViBoolean VI_TRUE
VI_FALSE N/A

VI_ATTR_INTF_INST_NAME RO Global ViString N/A N/A

VI_ATTR_INTF_NUM RO Global ViUInt16 0	to	FFFFh 0

VI_ATTR_INTF_TYPE RO Global ViUInt16
VI_INTF_VXI
VI_INTF_GPIB_VXI
VI_INTF_PXI

N/A

VI_ATTR_TMO_VALUE RW Local ViUInt32
VI_TMO_IMMEDIATE
1	to	FFFFFFFEh
VI_TMO_INFINITE

2000	msec.

VXI	and	GPIB-VXI	and	PXI	Specific	MEMACC	Resource	Attributes

VI_ATTR_DEST_INCREMENT RW Local ViInt32 0	to	1 1

VI_ATTR_SRC_INCREMENT RW Local ViInt32 0	to	1 1

VI_ATTR_WIN_ACCESS RO Local ViUInt16
VI_NMAPPED
VI_USE_OPERS
VI_DEREF_ADDR

VI_NMAPPED

VI_ATTR_WIN_BASE_ADDR_32 RO Local ViBusAddress N/A N/A

VI_ATTR_WIN_BASE_ADDR_64 RO Local ViBusAddress64 N/A N/A

VI_ATTR_WIN_SIZE_32 RO Local ViBusSize N/A N/A

VI_ATTR_WIN_SIZE_64 RO Local ViBusSize64 N/A N/A

VXI	and	GPIB-VXI	Specific	MEMACC	Resource	Attributes

VI_ATTR_DEST_ACCESS_PRIV RW Local ViUInt16

VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_PRIV

VI_ATTR_DEST_BYTE_ORDER RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN VI_BIG_ENDIAN

VI_DATA_NPRIV
VI_DATA_PRIV

VI_ATTR_SRC_ACCESS_PRIV RW Local ViUInt16 VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV
VI_D64_NPRIV
VI_D64_PRIV

VI_DATA_PRIV

VI_ATTR_SRC_BYTE_ORDER RW Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN VI_BIG_ENDIAN

VI_ATTR_VXI_LA RO Global ViInt16 0	to	255 N/A

VI_ATTR_WIN_ACCESS_PRIV RW* Local ViUInt16

VI_DATA_NPRIV
VI-DATA_PRIV
VI_PROG_NPRIV
VI_PROG_PRIV
VI_BLCK_NPRIV
VI_BLCK_PRIV

VI_DATA_PRIV

VI_ATTR_WIN_BYTE_ORDER RW* Local ViUInt16 VI_BIG_ENDIAN
VI_LITTLE_ENDIAN VI_BIG_ENDIAN

*	For	VISA	2.2,	the	attributes	VI_ATTR_WIN_BYTE_ORDER	and	VI_ATTR_WIN_ACCESS_PRIV	are	RW	(readable	and	writeable)
when	the	corresponding	session	is	not	mapped	(VI_ATTR_WIN_ACCESS	=	=	VI_NMAPPED).	When	the	session	is	mapped,	these
attributes	are	RO	(read	only).

VXI	and	GPIB-VXI	Specific	MEMACC	Resource	Attributes

VI_ATTR_GPIB_SECONDARY_ADDR RO Global ViUInt16 0	to	30,	VI_NO_SEC_ADDR N/A

VI_ATTR_GPIB_PRIMARY_ADDR RO Global ViUInt16 0	to	30 N/A

VI_ATTR_INTF_PARENT_NUM RO Global ViUInt16 0	to	FFFFh N/A

MEMACC	Resource	Attribute	Descriptions

Attribute	Name Description

Generic	MEMACC	Resource	Attributes

VI_ATTR_DMA_ALLOW_EN This	attribute	specifies	whether	I/O	accesses	should	use	DMA	(VI_TRUE	VI_FALSE).	In	some
implementations,	this	attribute	may	have	global	effects	even	though	it	is	documented	to	
attribute.	Since	this	affects	performance	and	not	functionality,	that	behavior	is	acceptable.

VI_ATTR_INTF_INST_NAME Human-readable	text	describing	the	given	interface.

VI_ATTR_INTF_NUM Board	number	for	the	given	interface.

VI_ATTR_INTF_TYPE Interface	type	of	the	given	session.

VI_ATTR_TMO_VALUE Minimum	timeout	value	to	use,	in	milliseconds.	A	timeout	value	of	VI_TMO_IMMEDIATE
means	that	operations	should	never	wait	for	the	device	to	respond.	A	timeout	value	of
VI_TMO_INFINITE	disables	the	timeout	mechanism.

VXI	and	GPIB-VXI	and	PXI	Specific	MEMACC	Resource	Attributes

VI_ATTR_DEST_INCREMENT This	is	used	in	the	viMoveOutXX	operation	to	specify	how	much	the	destination	offset	is	to	be
incremented	after	every	transfer.	The	default	value	of	this	attribute	is	1	(that	is,	
address	will	be	incremented	by	1	after	each	transfer),	and	the	viMoveOutXX	operation	
consecutive	elements.	If	this	attribute	is	set	to	0,	the	viMoveOutXX	operation	will	always	write	
the	same	element,	essentially	treating	the	destination	as	a	FIFO	register.

VI_ATTR_SRC_INCREMENT This	is	used	in	the	viMoveInXX	operation	to	specify	how	much	the	source	offset	is	to	be
incremented	after	every	transfer.	The	default	value	of	this	attribute	is	1	(that	is,	the	
will	be	incremented	by	1	after	each	transfer),	and	the	viMoveInXX	operation	moves	from
consecutive	elements.	If	this	attribute	is	set	to	0,	the	viMoveInXX	operation	will	always	read	from
the	same	element,	essentially	treating	the	source	as	a	FIFO	register.

VI_ATTR_WIN_ACCESS Modes	in	which	the	current	window	may	be	accessed:	not	currently	mapped,	through	operations
viPeekXX	and	viPokeXX	only,	or	through	operations	and/or	by	directly	dereferencing	the	address
parameter	as	a	pointer.

VI_ATTR_WIN_BASE_ADDR_32
VI_ATTR_WIN_BASE_ADDR_64

Base	address	of	the	interface	bus	to	which	this	window	is	mapped.

VI_ATTR_WIN_SIZE_32
VI_ATTR_WIN_SIZE_64

Size	of	the	region	mapped	to	this	window.

VXI	and	GPIB-VXI	Specific	MEMACC	Resource	Attributes

VI_ATTR_DEST_ACCESS_PRIV This	attribute	specifies	the	address	modifier	to	be	used	in	high-level	access	operations,
such	as	viOutXX	and	viMoveOutXX,	when	writing	to	the	destination.

VI_ATTR_DEST_BYTE_ORDER This	attribute	specifies	the	byte	order	to	be	used	in	high-level	access	operations,	such
as	viOutXX	and	viMoveOutXX,	when	writing	to	the	destination.

VI_ATTR_SRC_ACCESS_PRIV This	attribute	specifies	the	address	modifier	to	be	used	in	high-level	access	operations,
such	as	viInXX	and	viMoveInXX,	when	reading	from	the	source.

VI_ATTR_SRC_BYTE_ORDER This	attribute	specifies	the	byte	order	to	be	used	in	high-level	access	operations,	such
as	viInXX	and	viMoveInXX,	when	reading	from	the	source.

VI_ATTR_VXI_LA Logical	address	of	the	local	controller.

VI_ATTR_WIN_ACCESS_PRIV
This	attribute	specifies	the	address	modifier	to	be	used	in	low-level	access	operations,
such	as	viMapAddress,	viPeekXX	and	viPokeXX,	when	accessing	
the	mapped	window.

VI_ATTR_WIN_BYTE_ORDER This	attribute	specifies	the	byte	order	to	be	used	in	low-level	access	operations,	such
as		viMapAddress,	viPeekXX	and	viPokeXX,	when	accessing	the	mapped	window.

GPIB-VXI	Specific	MEMACC	Resource	Attributes

VI_ATTR_GPIB_PRIMARY_ADDR Primary	address	of	the	GPIB-VXI	controller	used	by	the	given	session.

VI_ATTR_GPIB_SECONDARY_ADDR Secondary	address	of	the	GPIB-VXI	controller	used	by	the	given	session.

VI_ATTR_INTF_PARENT_NUM Board	number	of	the	GPIB	board	to	which	the	GPIB-VXI	is	attached.

MEMACC	Resource	Events

This	resource	defines	the	following	event	for	communication	with	applications,
where	AP	=	Access	Privilege.

VI_EVENT_IO_COMPLETION	-	Notification	that	an	asynchronous	operation	has	completed.

Event	Attribute Description AP Data
Type Range

VI_ATTR_BUFFER

Address	of	a
buffer	that	was
used	in	an
asynchronous
operation.

RO ViBuf N/A

VI_ATTR_EVENT_TYPE
Unique	logical
identifier	of	the
event.

RO ViEventType VI_EVENT_IO_COMPLETION

VI_ATTR_JOB_ID

	

Job	ID	of	the
asynchronous
operation	that
has	completed.

RO iJobId N/A

VI_ATTR_OPER_NAME

Name	of	the
operation
generating	the
event.

RO iString N/A

VI_ATTR_STATUS

Return	code	of
the
asynchronous
I/O	operation
that	has
completed.

RO iStatus N/A

VI_ATTR_RET_COUNT

Actual	number
of	elements	that
were
asynchronously
transferred.

RO ViBus	Size *

VI_ATTR_RET_COUNT_32

Actual	number
of	elements	that
were
asynchronously
transferred.

RO ViUInt32 0	to	FFFFFFFFh

VI_ATTR_RET_COUNT_64**

Actual	number
of	elements	that
were
asynchronously
transferred.

RO ViUInt64 0	to	FFFFFFFF	FFFFFFFFh

*The	data	type	is	defined	in	the	appropriate	VPP	4.3.x	framework	specification.

**Defined	only	for	operating	systems	that	are	64-bit	native.

MEMACC	Resource	Operations

viIn8	(vi,	space,	offset,	val8)
viIn16	(vi,	space,	offset,	val16)
viIn32	(vi,	space,	offset,	val32)
viIn64	(vi,	space,	offset,	val64)
	
viMapAddress	(vi,	mapSpace,	mapBase,	mapSize,	access,	suggested,	address)
viMapAddressEx	(vi,	mapSpace,	mapBase64,	mapSize,	access,	suggested,
address)	
viMemAlloc(vi,	size,	offset)	
viMemFree(vi,	offset)	
viMemAllocEx(vi,	size,	offset64)	
viMemFreeEx(vi,	offset64)
viMove	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,	destWidth,
length)
viMovEx	(vi,	srcSpace,	srcOffset64,	srcWidth,	destSpace,	destOffset64,
destWidth,	length)	
viMoveAsync	(vi,	srcSpace,	srcOffset,	srcWidth,	destSpace,	destOffset,
destWidth,	length,	jobId)
viMoveAsyncEx	(vi,	srcSpace,	srcOffset64,	srcWidth,	destSpace,	destOffset64,
destWidth,	length,	jobId)	
	
viMoveIn8	(vi,	space,	offset,	length,	buf8)
viMoveIn16	(vi,	space,	offset,	length,	buf16)
viMoveIn32	(vi,	space,	offset,	length,	buf32)
viMoveIn64	(vi,	space,	offset,	length,	buf64)
viMoveIn8Ex	(vi,	space,	offset64,	length,	buf8)
viMoveIn16Ex	(vi,	space,	offset64,	length,	buf16)
viMoveIn32Ex	(vi,	space,	offset64,	length,	buf32)
viMoveIn64Ex	(vi,	space,	offset64,	length,	buf64)	
viMoveOut8	(vi,	space,	offset,	length,	buf8)
viMoveOut16	(vi,	space,	offset,	length,	buf16)
viMoveOut32	(vi,	space,	offset,	length,	buf32)
viMoveOut64	(vi,	space,	offset,	length,	buf64)
viMoveOut8Ex	(vi,	space,	offset64,	length,	buf8)

viMoveOut16Ex	(vi,	space,	offset64,	length,	buf16)
viMoveOut32Ex	(vi,	space,	offset64,	length,	buf32)
viMoveOut64Ex	(vi,	space,	offse64,	length,	buf64)	
	
viOut8	(vi,	space,	offset,	val8)
viOut16	(vi,	space,	offset,	val16)
viOut32	(vi,	space,	offset,	val32)
viOut64	(vi,	space,	offset,	val64)
	
viPeek8	(vi,	addr,	val8)
viPeek16	(vi,	addr,	val16)
viPeek32	(vi,	addr,	val32)
viPeek64	(vi,	addr,	val64)
viPoke8	(vi,	addr,	val8)
viPoke16	(vi,	addr,	val16)
viPoke32	(vi,	addr,	val32)
viPoke64	(vi,	addr,	val64)
	
viUnmapAddress	(vi)
	

	

VISA	Attribute	Codes

The	following	table	lists	all	of	the	VISA	Attributes	along	with	their	Hex	and
Decimal	codes.

Attribute	Name
Hex
Value

Decimal
Value 			 Attribute	Name

VI_ATTR_4882_COMPLIANT 3FFF019Fh 1073676703 	 VI_ATTR_PXI_MEM_SIZE_BAR1

VI_ATTR_ASRL_AVAIL_NUM 3FFF00ACh 1073676460 	 VI_ATTR_PXI_MEM_SIZE_BAR2

VI_ATTR_ASRL_BAUD 3FFF0021h 1073676321 	 VI_ATTR_PXI_MEM_SIZE_BAR3

VI_ATTR_ASRL_CTS_STATE 3FFF00AEh 1073676462 	 VI_ATTR_PXI_MEM_SIZE_BAR4

VI_ATTR_ASRL_DATA_BITS 3FFF0022h 1073676322 	 VI_ATTR_PXI_MEM_SIZE_BAR5

VI_ATTR_ASRL_DCD_STATE 3FFF00AFh 1073676463 	 VI_ATTR_PXI_MEM_TYPE_BAR0

VI_ATTR_ASRL_DSR_STATE 3FFF00B1h 1073676465 	 VI_ATTR_PXI_MEM_TYPE_BAR1

VI_ATTR_ASRL_DTR_STATE 3FFF00B2h 1073676466 	 VI_ATTR_PXI_MEM_TYPE_BAR2

VI_ATTR_ASRL_END_IN 3FFF00B3h 1073676467 	 VI_ATTR_PXI_MEM_TYPE_BAR3

VI_ATTR_ASRL_END_OUT 3FFF00B4h 1073676468 	 VI_ATTR_PXI_MEM_TYPE_BAR4

VI_ATTR_ASRL_FLOW_CNTRL 3FFF0025h 1073676325 	 VI_ATTR_PXI_MEM_TYPE_BAR5

VI_ATTR_ASRL_PARITY 3FFF0023h 1073676323 	 VI_ATTR_PXI_SLOT_LBUS_LEFT

VI_ATTR_ASRL_REPLACE_CHAR 3FFF00BEh 1073676478 	 VI_ATTR_PXI_SLOT_LBUS_RIGHT

VI_ATTR_ASRL_RI_STATE 3FFF00BFh 1073676479 	 VI_ATTR_PXI_SLOT_LWIDTH

VI_ATTR_ASRL_RTS_STATE 3FFF00C0h 1073676480 	 VI_ATTR_PXI_SLOTPATH

VI_ATTR_ASRL_STOP_BITS 3FFF0024h 1073676324 	 VI_ATTR_PXI_STAR_TRIG_BUS

VI_ATTR_ASRL_XON_CHAR 3FFF00C1h 1073676481 	 VI_ATTR_PXI_STAR_TRIG_LINE

VI_ATTR_ASRL_XOFF_CHAR 3FFF00C2h 1073676482 	 VI_ATTR_PXI_TRIG_BUS

VI_ATTR_BUFFER 3FFF4027h 1073692711 	 VI_ATTR_RD_BUF_OPER_MODE

VI_ATTR_CMDR_LA 3FFF006Bh 1073676395 	 VI_ATTR_RD_BUF_SIZE

VI_ATTR_DEST_ACCESS_PRIV 3FFF0039h 1073676345 	 VI_ATTR_RECV_INTR_LEVEL

VI_ATTR_DEST_BYTE_ORDER 3FFF003Ah 1073676346 	 VI_ATTR_RECV_TCPIP_ADDR

VI_ATTR_DEST_INCREMENT 3FFF0041h 1073676353 	 VI_ATTR_RECV_TRIG_ID

VI_ATTR_DEV_STATUS_BYTE 3FFF0189h 1073676681 	 VI_ATTR_RET_COUNT

VI_ATTR_DMA_ALLOW_EN 3FFF001Eh 1073676318 	 VI_ATTR_RET_COUNT_32

VI_ATTR_EVENT_TYPE 3FFF4010h 1073692688 	 VI_ATTR_RET_COUNT_64

VI_ATTR_FDC_CHNL 3FFF000Dh 1073676301 	 VI_ATTR_RM_SESSION

VI_ATTR_FDC_GEN_SIGNAL_EN 3FFF0011h 1073676305 	 VI_ATTR_RSRC_CLASS

VI_ATTR_FDC_MODE 3FFF000Fh 1073676303 	 VI_ATTR_RSRC_IMPL_VERSION

VI_ATTR_FDC_USE_PAIR 3FFF0013h 1073676307 	 VI_ATTR_RSRC_LOCK_STATE

VI_ATTR_FILE_APPEND_EN 3FFF0192h 1073676690 	 VI_ATTR_RSRC_MANF_ID

VI_ATTR_GPIB_ADDR_STATE 3FFF005Ch 1073676380 	 VI_ATTR_RSRC_MANF_NAME

VI_ATTR_GPIB_ATN_STATE 3FFF0057h 1073676375 	 VI_ATTR_RSRC_NAME

VI_ATTR_GPIB_CIC_STATE 3FFF005Eh 1073676382 	 VI_ATTR_RSRC_SPEC_VERSION

VI_ATTR_GPIB_HS488_CBL_LEN 3FFF0069h 1073676393 	 VI_ATTR_SEC_ACCESS_PRIV

VI_ATTR_GPIB_NDAC_STATE 3FFF0062h 1073676386 	 VI_ATTR_SEC_INCREMENT

VI_ATTR_GPIB_PRIMARY_ADDR 3FFF0172h 1073725810 	 VI_ATTR_SEND_END_EN

VI_ATTR_GPIB_READDR_EN 3FFF001Bh 1073676315 	 VI_ATTR_SIGP_STATUS_ID

VI_ATTR_GPIB_REN_STATE 3FFF0181h 1073676673 	 VI_ATTR_SLOT

VI_ATTR_GPIB_SECONDARY_ADDR 3FFF0173h 1073676659 	 VI_ATTR_SRC_BYTE_ORDER

VI_ATTR_GPIB_SRQ_STATE 3FFF0067h 1073676391 	 VI_ATTR_STATUS

VI_ATTR_GPIB_SYS_CNTRL_STATE 3FFF0068h 1073676392 	 VI_ATTR_SUPPRESS_END_EN

VI_ATTR_GPIB_UNADDR_EN 3FFF0184h 1073676676 	 VI_ATTR_TCPIP_ADDR

VI_ATTR_GRIB_RECV_CIC_STATE 3FFF4193h 1073693075 	 VI_ATTR_TCPIP_DEVICE_NAME

VI_ATTR_IMMEDIATE_SERV 3FFF0100h 1073676544 	 VI_ATTR_TCPIP_HISLIP_OVERLAP_EN

VI_ATTR_INTF_INST_NAME BFFF00E9h -1073807127 	 VI_ATTR_TCPIP_HISLIP_VERSION

VI_ATTR_INTF_NUM 3FFF0176h 1073676662 	 VI_ATTR_TCPIP_HISLIP_MAX_MESSAGE_KB

VI_ATTR_INTF_PARENT_NUM 3FFF0101h 1073676545 	 VI_ATTR_TCPIP_HOSTNAME

VI_ATTR_INTF_TYPE 3FFF0171h 1073676657 	 VI_ATTR_TCPIP_IS_HISLIP

VI_ATTR_INTR_STATUS_ID 3FFF4023h 1073692707 	 VI_ATTR_TCPIP_KEEPALIVE

VI_ATTR_IO_PROT 3FFF001Ch 1073676316 	 VI_ATTR_TCPIP_NODELAY

VI_ATTR_JOB_ID 3FFF4006h 1073692678 	 VI_ATTR_TCPIP_PORT

VI_ATTR_MAINFRAME_LA 3FFF0070h 1073676400 	 VI_ATTR_TERMCHAR

VI_ATTR_MANF_ID 3FFF00D9h 1073676505 	 VI_ATTR_TERMCHAR_EN

VI_ATTR_MANF_NAME BFFF0072h -1073807246 	 VI_ATTR_TMO_VALUE

VI_ATTR_MAX_QUEUE_LENGTH 3FFF0005h 1073676293 	 VI_ATTR_TRIG_ID

VI_ATTR_MEM_BASE_32 3FFF00ADh 1073676461 	 VI_ATTR_USB_INTFC_NUM

VI_ATTR_MEM_BASE_64 3FFF00D0h 1073676496 	 VI_ATTR_USB_MAX_INTR_SIZE

VI_ATTR_MEM_SIZE_32 3FFF00DDh 1073676509 	 VI_ATTR_USB_PROTOCOL

VI_ATTR_MEM_SIZE_64 3FFF00D1h 1073676497 	 VI_ATTR_USB_RECV_INTR_DATA

VI_ATTR_MEM_SPACE 3FFF00DEh 1073676510 	 VI_ATTR_USB_RECV_INTR_SIZE

VI_ATTR_MODEL_CODE 3FFF00DFh 1073676511 	 VI_ATTR_USB_SERIAL_NUM

VI_ATTR_MODEL_NAME BFFF0077h -1073807241 	 VI_ATTR_USER_DATA

VI_ATTR_OPER_NAME BFFF4042h -1073790910 	 VI_ATTR_USER_DATA_32

VI_ATTR_PXI_ACTUAL_LWIDTH 3FFF0243h 1073676867 	 VI_ATTR_USER_DATA_64***

VI_ATTR_PXI_BUS_NUM 3FFF0205h 1073676805 	 VI_ATTR_VXI_DEV_CLASS

VI_ATTR_PXI_CHASSIS 3FFF0206h 1073676806 	 VI_ATTR_VXI_LA

VI_ATTR_PXI_DEV_NUM 3FFF0201h 1073676801 	 VI_ATTR_VXI_TRIG_STATUS

VI_ATTR_PXI_DSTAR_BUS 3FFF0244h 1073676868 	 VI_ATTR_VXI_TRIG_SUPPORT

VI_ATTR_PXI_DSTAR_SET 3FFF0245h 1073676869 	 VI_ATTR_VXI_VME_INTR_STATUS

VI_ATTR_PXI_FUNC_NUM 3FFF0202h 1073676802 	 VI_ATTR_VXI_VME_SYSFAIL_STATE

VI_ATTR_PXI_IS_EXPRESS 3FFF0240h 1073676864 	 VI_ATTR_WIN_ACCESS

VI_ATTR_PXI_MAX_LWIDTH 3FFF0242h 1073676866 	 VI_ATTR_WIN_ACCESS_PRIV

VI_ATTR_PXI_MEM_BASE_BAR0 3FFF0221h 1073676833 	 VI_ATTR_WIN_BASE_ADDR_32

VI_ATTR_PXI_MEM_BASE_BAR1 3FFF0222h 1073676834 	 VI_ATTR_WIN_BASE_ADDR_64

VI_ATTR_PXI_MEM_BASE_BAR2 3FFF0223h 1073676835 	 VI_ATTR_WIN_BYTE_ORDER

VI_ATTR_PXI_MEM_BASE_BAR3 3FFF0224h 1073676836 	 VI_ATTR_WIN_SIZE_32

VI_ATTR_PXI_MEM_BASE_BAR4 3FFF0225h 1073676837 	 VI_ATTR_WIN_SIZE_64

VI_ATTR_PXI_MEM_BASE_BAR5 3FFF0226h 1073676838 	 VI_ATTR_WR_BUF_OPER_MODE

VI_ATTR_PXI_MEM_SIZE_BAR0 3FFF0231h 1073676849 	 VI_ATTR_WR_BUF_SIZE

*	For	32-bit	systems,	these	values	are	equivalent	to	those	for
VI_ATTR_RET_COUNT_32.	For	64-bit	systems,	these	values	are	equivalent	to
those	for	VI_ATTR_RET_COUNT_64.

**	For	32-bit	systems,	these	values	are	equivalent	to	those	for
VI_ATTR_USER_DATA_32.	For	64-bit	systems,	these	values	are	equivalent	to
those	for	VI_ATTR_USER_DATA_64.

***	Defined	only	for	frameworks	that	are	64-bit	native.

VISA	Type	Definitions

This	topic	lists	and	describes	the	VISA	data	types.

VISA	Data	Type

Definition

Description

ViUInt32 unsigned	long A	32-bit	unsigned	integer.

ViPUInt32 ViUInt32	* The	location	of	a	32-bit	unsigned	integer.

ViAUInt32 ViUInt32	* The	location	of	a	32-bit	unsigned	integer.

ViInt32 signed	long A	32-bit	signed	integer.

ViPInt32 ViInt32	* The	location	of	a	32-bit	signed	integer.

ViAInt32 ViInt32	* The	location	of	32-bit	signed	integer.

ViUInt16 unsigned	short A	16-bit	unsigned	integer.

ViPUInt16 ViUInt16	* The	location	of	a	16-bit	unsigned	integer.

ViAUInt16 ViUInt16	* The	location	of	a	16-bit	unsigned	integer.

ViInt16 signed	short A	16-bit	signed	integer.

ViPInt16 ViInt16	* The	location	of	a	16-bit	signed	integer.

ViAInt16 ViInt16	* The	location	of	16-bit	signed	integer.

ViUInt8 unsigned	char An	8-bit	unsigned	integer.

ViPUInt8 ViUInt8	* The	location	of	an	8-bit	unsigned	integer.

ViAUInt8 ViUInt8	* The	location	of	an	8-bit	unsigned	integer.

ViInt8 signed	char An	8-bit	signed	integer.

ViPInt8 ViInt8	* The	location	of	an	8-bit	signed	integer.

ViAInt8 ViInt8	* The	location	of	an	8-bit	signed	integer.

ViAddr void	* A	type	that	references	another	data	type.

ViPAddr ViAddr	* The	location	of	a	ViAddr.

ViChar char An	8-bit	integer	representing	an	ASCII	character.

ViPChar ViChar	* The	location	of	a	ViChar.

ViByte unsigned	char An	8-bit	unsigned	integer	representing	an
extended	ASCII	character.

ViPByte ViByte	* The	location	of	a	ViByte.

ViBoolean ViUInt16 A	type	that	is	either	VI_TRUE	or	VI_FALSE.

ViPBoolean ViBoolean	* The	location	of	a	ViBoolean.

ViBuf ViPByte The	location	of	a	block	of	data.

ViPBuf ViPByte The	location	of	a	block	of	data.

ViString ViPChar The	location	of	a	NULL-terminated	ASCII	string.

ViPString ViPChar The	location	of	a	NULL-terminated	ASCII	string.

ViStatus ViInt32
Values	that	correspond	to	VISA-defined
completion	and	error	codes.

ViPStatus ViStatus	* The	location	of	the	completion	and	error	codes.

ViRsrc ViString A	ViString	type.

ViPRsrc ViString A	ViString	type.

ViAccessMode ViUInt32 Specifies	the	different	mechanisms	that	control
access	to	a	resource.

ViBusAddress ViUInt32 Represents	the	system	dependent	physical
address.

ViBusSize ViUInt32 Represents	the	system	dependent	physical	address
size.

ViAttr ViUInt32 Identifies	an	attribute.

ViVersion ViUInt32 Specifies	the	current	version	of	the	resource.

ViPVersion ViVersion	* The	location	of	ViVersion.

ViAttrState ViUInt32 Specifies	the	type	of	attribute.

ViPAttrState void	* The	location	of	ViAttrState.

ViVAList va_list The	location	of	a	list	of	variable	number	of
parameters	of	differing	types.

ViEventType ViUInt32 Specifies	the	type	of	event.

ViPEventType ViEventType	* The	location	of	a	ViEventType.

ViEventFilter ViUInt32 Specifies	filtering	masks	or	other	information
unique	to	an	event.

ViObject ViUInt32 Contains	attributes	and	can	be	closed	when	no
longer	needed.

ViPObject ViObject	* The	location	of	a	ViObject.

ViSession ViObject Specifies	the	information	necessary	to	manage	a
communication	channel	with	a	resource.

ViPSession ViSession	* The	location	of	a	ViSession.

ViFindList ViObject Contains	a	reference	to	all	resources	found	during
a	search	operation.

ViPFindList ViFindList	* The	location	of	a	ViFindList.

ViEvent ViObject Contains	information	necessary	to	process	an
event.

ViPEvent ViEvent	* The	location	of	a	ViEvent.

ViHndlr

ViStatus(*)
(ViSession#
ViEventType#
ViEvent#
ViAddr)

A	value	representing	an	entry	point	to	an
operation	for	use	as	a	callback.

ViReal32 float A	32-bit	single-precision	value.

ViPReal32 ViReal32	* The	location	of	a	32-bit	single-precision	value.

ViReal64 double A	64-bit	double-precision	value.

ViPReal64 ViReal64	* The	location	of	a	64-bit	double-precision	value.

ViJobId ViUInt32 The	location	of	a	variable	that	will	be	set	to	the

job	identifier.

ViKeyId ViString The	location	of	a	string.

	

VISA	Error	Codes

This	topic	lists	VISA	error	codes	in	numerical	order	and	alphabetically	by
description.

Error	Codes	Listed	in	Numerical	Order

Hex	Value Decimal	Value VISA	Status	Code

Success	Codes

3FFF0002 1073676290 VI_SUCCESS_EVENT_EN

3FFF0003 1073676291 VI_SUCCESS_EVENT_DIS

3FFF0004 1073676292 VI_SUCCESS_QUEUE_EMPTY

3FFF0005 1073676293 VI_SUCCESS_TERM_CHAR

3FFF0006 1073676294 VI_SUCCESS_MAX_CNT

3FFF007D 1073676413 VI_SUCCESS_DEV_NPRESENT

3FFF007E 1073676414 VI_SUCCESS_TRIG_MAPPED

3FFF0080 1073676416 VI_SUCCESS_QUEUE_NEMPTY

3FFF0098 1073676440 VI_SUCCESS_NCHAIN

3FFF0099 1073676441 VI_SUCCESS_NESTED_SHARED

3FFF009A 1073676442 VI_SUCCESS_NESTED_EXCLUSIVE

3FFF009B 1073676443 VI_SUCCESS_SYNC

Warning	Codes

3FFF000C 1073676300 VI_WARN_QUEUE_OVERFLOW

3FFF0077 1073676407 VI_WARN_CONFIG_NLOADED

3FFF0082 1073676418 VI_WARN_NULL_OBJECT

3FFF0084 1073676420 VI_WARN_NSUP_ATTR_STATE

3FFF0085 1073676421 VI_WARN_UNKNOWN_STATUS

3FFF0088 1073676424 VI_WARN_NSUP_BUF

3FFF00A9 1073676457 VI_WARN_EXT_FUNC_NIMPL

Error	Codes

BFFF0000 -1073807360 VI_ERROR_SYSTEM_ERROR

BFFF000E -1073807346 VI_ERROR_INV_OBJECT

BFFF000F -1073807345 VI_ERROR_RSRC_LOCKED

BFFF0010 -1073807344 VI_ERROR_INV_EXPR

BFFF0011 -1073807343 VI_ERROR_RSRC_NFOUND

BFFF0012 -1073807342 VI_ERROR_INV_RSRC_NAME

BFFF0013 -1073807341 VI_ERROR_INV_ACC_MODE

BFFF0015 -1073807339 VI_ERROR_TMO

BFFF0016 -1073807338 VI_ERROR_CLOSING_FAILED

BFFF001B -1073807333 VI_ERROR_INV_DEGREE

BFFF001C -1073807332 VI_ERROR_INV_JOB_ID

BFFF001D -1073807331 VI_ERROR_NSUP_ATTR

BFFF001E -1073807330 VI_ERROR_NSUP_ATTR_STATE

BFFF001F -1073807329 VI_ERROR_ATTR_READONLY

BFFF0020 -1073807328 VI_ERROR_INV_LOCK_TYPE

BFFF0021 -1073807327 VI_ERROR_INV_ACCESS_KEY

BFFF0026 -1073807322 VI_ERROR_INV_EVENT

BFFF0027 -1073807321 VI_ERROR_INV_MECH

BFFF0028 -1073807320 VI_ERROR_HNDLR_NINSTALLED

BFFF0029 -1073807319 VI_ERROR_INV_HNDLR_REF

BFFF002A -1073807318 VI_ERROR_INV_CONTEXT

BFFF002F -1073807313 VI_ERROR_NENABLED

BFFF0030 -1073807312 VI_ERROR_ABORT

BFFF0034 -1073807308 VI_ERROR_RAW_WR_PROT_VIOL

BFFF0035 -1073807307 VI_ERROR_RAW_RD_PROT_VIOL

BFFF0036 -1073807306 VI_ERROR_OUTP_PROT_VIOL

BFFF0037 -1073807305 VI_ERROR_INP_PROT_VIOL

BFFF0038 -1073807304 VI_ERROR_BERR

BFFF0039 -1073807303 VI_ERROR_IN_PROGRESS

BFFF003A -1073807302 VI_ERROR_INV_SETUP

BFFF003B -1073807301 VI_ERROR_QUEUE_ERROR

BFFF003C -1073807300 VI_ERROR_ALLOC

BFFF003D -1073807299 VI_ERROR_INV_MASK

BFFF003E -1073807298 VI_ERROR_IO

BFFF003F -1073807297 VI_ERROR_INV_FMT

BFFF0041 -1073807295 VI_ERROR_NSUP_FMT

BFFF0042 -1073807294 VI_ERROR_LINE_IN_USE

BFFF0046 -1073807290 VI_ERROR_NSUP_MODE

BFFF004A -1073807286 VI_ERROR_SRQ_NOCCURRED

BFFF004E -1073807282 VI_ERROR_INV_SPACE

BFFF0051 -1073807279 VI_ERROR_INV_OFFSET

BFFF0052 -1073807278 VI_ERROR_INV_WIDTH

BFFF0054 -1073807276 VI_ERROR_NSUP_OFFSET

BFFF0055 -1073807275 VI_ERROR_NSUP_VAR_WIDTH

BFFF0057 -1073807273 VI_ERROR_WINDOW_NMAPPED

BFFF0059 -1073807271 VI_ERROR_RESP_PENDING

BFFF005F -1073807265 VI_ERROR_NLISTENERS

BFFF0060 -1073807264 VI_ERROR_NCIC

BFFF0061 -1073807263 VI_ERROR_NSYS_CNTLR

BFFF0067 -1073807257 VI_ERROR_NSUP_OPER

BFFF0068 -1073807256 VI_ERROR_INTR_PENDING

BFFF006A -1073807254 VI_ERROR_ASRL_PARITY

BFFF006B -1073807253 VI_ERROR_ASRL_FRAMING

BFFF006C -1073807252 VI_ERROR_ASRL_OVERRUN

BFFF006E -1073807250 VI_ERROR_TRIG_NMAPPED

BFFF0070 -1073807248 VI_ERROR_NSUP_ALIGN_OFFSET

BFFF0071 -1073807247 VI_ERROR_USER_BUF

BFFF0072 -1073807246 VI_ERROR_RSRC_BUSY

BFFF0076 -1073807242 VI_ERROR_NSUP_WIDTH

BFFF0078 -1073807240 VI_ERROR_INV_PARAMETER

BFFF0079 -1073807239 VI_ERROR_INV_PROT

BFFF007B -1073807237 VI_ERROR_INV_SIZE

BFFF0080 -1073807232 VI_ERROR_WINDOW_MAPPED

BFFF0081 -1073807231 VI_ERROR_NIMPL_OPER

BFFF0083 -1073807229 VI_ERROR_INV_LENGTH

BFFF0091 -1073807215 VI_ERROR_INV_MODE

BFFF009C -1073807204 VI_ERROR_SESN_NLOCKED

BFFF009D -1073807203 VI_ERROR_MEM_NSHARED

BFFF009E -1073807202 VI_ERROR_LIBRARY_NFOUND

BFFF009F -1073807201 VI_ERROR_NSUP_INTR

BFFF00A0 -1073807200 VI_ERROR_INV_LINE

BFFF00A1 -1073807199 VI_ERROR_FILE_ACCESS

BFFF00A2 -1073807198 VI_ERROR_FILE_IO

BFFF00A3 -1073807197 VI_ERROR_NSUP_LINE

BFFF00A4 -1073807196 VI_ERROR_NSUP_MECH

BFFF00A5 -1073807195 VI_ERROR_INTF_NUM_NCONFIG

BFFF00A6 -1073807194 VI_ERROR_CONN_LOST

BFFF00A7 -1073807193 VI_ERROR_MACHINE_NAVAIL

BFFF00A8 -1073807192 VI_ERROR_NPERMISSION

	
Alphabetical	Description	of	Error	Codes

	

VISA	Status	Codes Description

Success	Codes

VI_SUCCESS Operation	completed	successfully.

VI_SUCCESS_DEV_NPRESENT Session	opened	successfully,	but	the	device	at	the	specified	address	is	not
responding.

VI_SUCCESS_EVENT_DIS The	specified	event	is	already	disabled.

VI_SUCCESS_EVENT_EN The	specified	event	is	already	enabled	for	at	least	one	of	the	specified
mechanisms.

VI_SUCCESS_MAX_CNT The	number	of	bytes	specified	were	read.

VI_SUCCESS_NCHAIN Event	handled	successfully.	Do	not	invoke	any	other	handlers	on	this	session	for
this	event.

VI_SUCCESS_NESTED_EXCLUSIVE The	specified	access	mode	was	successfully	acquired	and	this	session	has	nested
exclusive	locks.

VI_SUCCESS_NESTED_SHARED The	specified	access	mode	was	successfully	acquired	and	this	session	has	nested
shared	locks.

VI_SUCCESS_QUEUE_EMPTY The	event	queue	was	empty	while	trying	to	discard	queued	events.

VI_SUCCESS_QUEUE_NEMPTY The	event	queue	is	not	empty.

VI_SUCCESS_SYNC The	read	or	write	operation	performed	synchronously.

VI_SUCCESS_TERM_CHAR The	specified	termination	character	was	read.

VI_SUCCESS_TRIG_MAPPED The	path	from	trigSrc	to	trigDest	is	already	mapped.

Warning	Codes

VI_WARN_CONFIG_NLOADED The	specified	configuration	either	does	not	exist	or	could	not	be	loaded	using
VISA-specified	defaults.

VI_WARN_NSUP_ATTR_STATE The	attribute	state	is	not	supported	by	this	resource.

VI_WARN_NSUP_BUF The	specified	buffer	is	not	supported.

VI_WARN_NULL_OBJECT The	specified	object	reference	is	uninitialized.

VI_WARN_QUEUE_OVERFLOW The	device	sent	more	data	than	the	user	specified	in
VI_ATTR_USB_MAX_INTR_SIZE

VI_WARN_UNKNOWN_STATUS The	status	code	passed	to	the	function	was	unable	to	be	interpreted.

VI_WARN_EXT_FUNC_NIMPL The	operation	succeeded,	but	a	lower	level	driver	did	not	implement	the	extended
functionality

Error	Codes

VI_ERROR_ABORT Calls	in	the	current	process	executing	on	the	specified	vi	are	aborted.

VI_ERROR_ALLOC Insufficient	system	resources	to	open	a	session	or	to	allocate	the	buffer(s)	or
memory	block	of	the	specified	size.

VI_ERROR_ASRL_FRAMING A	framing	error	occurred	during	transfer.

VI_ERROR_ASRL_OVERRUN An	overrun	error	occurred	during	transfer.	A	character	was	not	read	from	the
hardware	before	the	next	character	arrived.

VI_ERROR_ASRL_PARITY A	parity	error	occurred	during	transfer.

VI_ERROR_ATTR_READONLY The	specified	attribute	is	read-only.

VI_ERROR_BERR A	bus	error	occurred	during	transfer.

VI_ERROR_CLOSING_FAILED Unable	to	deallocate	the	previously	allocated	data	structures	
for	this	session.

VI_ERROR_CONN_LOST A	TCP	connection	is	dropped	as	a	result	of	keep-alives	packets.

VI_ERROR_FILE_ACCESS An	error	occurred	while	trying	to	open	the	specified	file.	Possible	reasons	include
an	invalid	path	or	lack	of	access	rights.

VI_ERROR_FILE_IO An	error	occurred	while	accessing	the	specified	file.

VI_ERROR_HNDLR_NINSTALLED A	handler	is	not	currently	installed	for	the	specified	event.	The	session	cannot	be
enabled	for	the	VI_HNDLR	mode	of	the	callback	mechanism.

VI_ERROR_INP_PROT_VIOL Input	protocol	error	occurred	during	transfer.

VI_ERROR_INTF_NUM_NCONFIG The	interface	type	is	valid	but	the	specified	interface	number	is	not	configured.

VI_ERROR_INTR_PENDING An	interrupt	is	still	pending	from	a	previous	call.

VI_ERROR_INV_ACC_MODE Invalid	access	mode.

VI_ERROR_INV_ACCESS_KEY The	requestedKey	value	passed	in	is	not	a	valid	access	key	to	the	specified
resource.

VI_ERROR_INV_CONTEXT The	event	context	specified	is	invalid.

VI_ERROR_INV_DEGREE The	specified	degree	is	invalid.

VI_ERROR_INV_EVENT The	event	type	specified	is	invalid	for	the	specified	resource.

VI_ERROR_INV_EXPR The	expression	specified	is	invalid.

VI_ERROR_INV_FMT The	format	specifier	is	invalid	for	the	current	argument.

VI_ERROR_INV_HNDLR_REF The	specified	handler	reference	and/or	the	user	context	value	does	not	match	the
installed	handler.

VI_ERROR_INV_JOB_ID The	specified	job	identifier	is	invalid.

VI_ERROR_INV_LENGTH The	length	specified	is	invalid.

VI_ERROR_INV_LINE The	value	specified	by	the	line	parameter	is	invalid.

VI_ERROR_INV_LOCK_TYPE The	specified	type	of	lock	is	not	supported	by	this	resource.

VI_ERROR_INV_MASK The	system	cannot	set	the	buffer	for	the	given	mask	or	the	specified	mask	does
not	specify	a	valid	flush	operation	on	the	read/write	resource.

VI_ERROR_INV_MECH The	mechanism	specified	for	the	event	is	invalid.

VI_ERROR_INV_MODE The	value	specified	by	the	mode	parameter	is	invalid.

VI_ERROR_INV_OBJECT The	object	reference	is	invalid.

VI_ERROR_INV_OFFSET The	offset	specified	is	invalid.

VI_ERROR_INV_PARAMETER The	value	of	some	parameter	is	invalid.

VI_ERROR_INV_PROT The	protocol	specified	is	invalid.

VI_ERROR_INV_RSRC_NAME The	resources	specified	are	invalid.

VI_ERROR_INV_SESSION The	session	specified	is	invalid.

VI_ERROR_INV_SETUP
The	setup	specified	is	invalid,	possibly	due	to	attributes	being	set	to	an
inconsistent	state,	or	some	implementation-specific	configuration	file	is	corrupt	or
does	not	exist.

VI_ERROR_INV_SIZE The	specified	size	is	invalid.

VI_ERROR_INV_SPACE The	address	space	specified	is	invalid.

VI_ERROR_INV_WIDTH Invalid	source	or	destination	width	specified.

VI_ERROR_IO Could	not	perform	read/write	function	because	of	an	I/O	error,	or	an	unknown	I/O
error	occurred	during	transfer.

VI_ERROR_LIBRARY_NFOUND A	code	library	required	by	VISA	could	not	be	located	or	loaded.

VI_ERROR_LINE_IN_USE The	specified	trigger	line	is	in	use.

VI_ERROR_MACHINE_NAVAIL The	specified	machine	is	not	available.

VI_ERROR_MEM_NSHARED The	device	does	not	export	any	memory.

VI_ERROR_NCIC The	session	is	referring	to	something	other	than	the	controller	in	charge.

VI_ERROR_NENABLED The	session	must	be	enabled	for	events	of	the	specified	type	to	receive	them.

VI_ERROR_NIMPL_OPER The	given	operation	is	not	implemented.

VI_ERROR_NLISTENERS No	listeners	are	detected.	(Both	NRFD	and	NDAC	are	deasserted.)

VI_ERROR_NPERMISSION You	do	not	have	permission	to	perform	this	operation.

VI_ERROR_NSUP_ALIGN_OFFSET The	specified	offset	is	not	properly	aligned	for	the	access	width	of	the	operation.

VI_ERROR_NSUP_ATTR The	attribute	specified	is	not	supported	by	the	specified	resource.

VI_ERROR_NSUP_ATTR_STATE The	state	specified	for	the	attribute	is	not	supported.

VI_ERROR_NSUP_FMT The	format	specifier	is	not	supported	for	the	current	argument	type.

VI_ERROR_NSUP_INTR The	interface	cannot	generate	an	interrupt	on	the	requested	level	or	with	the
requested	statusID	value.

VI_ERROR_NSUP_LINE One	of	the	specified	lines	(trigSrc	or	trigDest)	is	not	supported	by	this	VISA
implementation.

VI_ERROR_NSUP_MECH The	specified	mechanism	is	not	supported	for	the	given	event	type.

VI_ERROR_NSUP_MODE The	specified	mode	is	not	supported	by	this	VISA	implementation.

VI_ERROR_NSUP_OFFSET The	offset	specified	is	not	accessible.

VI_ERROR_NSUP_OPER The	operation	specified	is	not	supported	in	the	given	session.

VI_ERROR_NSUP_VAR_WIDTH Cannot	support	source	and	destination	widths	that	are	different.

VI_ERROR_NSUP_WIDTH The	specified	width	is	not	supported	by	this	hardware.

VI_ERROR_NSYS_CNTLR The	interface	associated	with	this	session	is	not	the	system	controller.

VI_ERROR_OUTP_PROT_VIOL Output	protocol	error	occurred	during	transfer.

VI_ERROR_QUEUE_ERROR Unable	to	queue	read	or	write	operation.

VI_ERROR_RAW_RD_PROT_VIOL A	violation	of	raw	read	protocol	occurred	during	a	transfer.

VI_ERROR_RAW_WR_PROT_VIOL A	violation	of	raw	write	protocol	occurred	during	a	transfer.

VI_ERROR_RESP_PENDING A	previous	response	is	still	pending,	causing	a	multiple	query	error.

VI_ERROR_RSRC_BUSY The	resource	is	valid,	but	VISA	cannot	currently	access	it.

VI_ERROR_RSRC_LOCKED The	specified	operation	could	not	be	performed	because	the	resource	identified	by
vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_RSRC_NFOUND The	expression	specified	does	not	match	any	device,	or	resource	was	not	found.

VI_ERROR_SESN_NLOCKED The	current	session	did	not	have	any	lock	on	the	resource.

VI_ERROR_SRQ_NOCCURED A	service	request	has	not	been	received	for	the	session.

VI_ERROR_SYSTEM_ERROR Unknown	system	error.

VI_ERROR_TMO The	operation	failed	to	complete	within	the	specified	timeout	period.

VI_ERROR_TRIG_NMAPPED The	path	from	trigSrc	to	trigDest	is	not	currently	mapped.

VI_ERROR_USER_BUF A	specified	user	buffer	is	not	valid	or	cannot	be	accessed	for	the	required	size.

VI_ERROR_WINDOW_MAPPED The	specified	session	already	contains	a	mapped	window.

VI_ERROR_WINDOW_NMAPPED The	specified	session	is	not	currently	mapped.

VI_ERROR_IN_PROGRESS Unable	to	start	a	new	asynchronous	operation	while	another	asynchronous
operation	is	in	progress

	

VISA	Directories

This	topic	provides	information	about	the	location	of	VISA	software	files.

Note:	Always	use	“Add/Remove	Programs”	from	the	Windows	Control	Panel	to
remove	the	Agilent	IO	Libraries	Suite;	never	delete	installed	files	manually.

Windows	Directory	Structure

Agilent	IO	Libraries	Suite	16	uses	the	new	IVI	VISA	COM	Standard
Components.	They	install	both	the	IVI	VISA	COM	files,	and	create	the
VXIplug&play	directory	structure	if	it	doesn't	already	exist.	The	default	base
directory	for	the	VXIplug&play	components	in	this	installer	is:

						C:\Program	Files\IVI	Foundation\VISA

Note	that	if	you	already	have	a	set	of	VXIpnp	directories	on	your	PC,	the	new
installer	will	continue	to	use	your	current	set	of	directories	--	probably	either

		C:\Program	Files\VISA						

or

					C:\VXIPNP

and	not	create	a	new	set	in

						C:\Program	Files\IVI	Foundation\VISA.

The	visa32.dllfile	(for	32-	and	64-bit	operating	systems)	and	visa64.dll	file	(for
64-bit	operating	systems),	are	stored	in	the	C:\Windows\System32	folder.	The
VISA	path	can	be	displayed	by	clicking	the	IO	icon	 	in	the	Windows
notification	area.	Then	click	Installation	Information	to	view	a	dialog	box	that
contains	the	VISA	path	information.	A	typical	display	follows.

	

Note:	Your	Agilent	IO	Libraries	Suite	Version	number	may	be	different	and	your
paths	may	be	different	if	you	did	a	custom	installation.

	

Using	the	VISA	C	API	in	Microsoft	Visual	Basic	6

Using	VISA	to	communicate	with	instruments	using	the	VISA	C	API	in
Microsoft	Visual	Basic	6	(VB6)	is	relatively	straightforward	for	most	of	the
VISA	functions.		However,	there	are	several	areas	of	I/O	which	can	cause
difficulty.	This	topic	provides	details	on	those	areas.

Include	visa32.bas

To	use	the	VISA	C	API	in	VB6,	include	the	visa32.bas	file	in	your	projects.		If
you	installed	the	Agilent	IO	Libraries	Suite	using	the	default	VISA	path.	Refer	to
VISA	Directories	topic	for	specific	information)..

We	strongly	recommend	copying	visa32.bas	to	your	local	project	directory,	so
that	any	modifications	you	may	make	to	it	will	be	local	to	your	project	and	won't
change	the	master	installed	copy	of	that	file.		Once	you	have	placed	visa32.bas
in	your	project	directory,	you	will	need	to	use	the	Project	>	Add	Module	menu
choice	to	add	visa32.bas	to	your	project.		Once	this	module	is	added,	you	will	be
able	to	call	VISA	functions	from	your	VB6	project.

viRead	and	viWrite

The	viRead	and	viWrite	function	declarations	use	the	String	data	type	for	their
buffer	pointers,	but	users	often	want	to	read	and	write	numeric	array	data.	See
Notes	on	Using	viRead/viWrite	in	Visual	Basic	6	for	more	details	and	examples.

Formatted	I/O

The	viPrintf,	viScanf,	and	viQueryf	VISA	functions	take	variable	argument
lists	in	C.		Some	of	viScanf's	and	viQueryf's	variable	arguments	are	references
to	primitive	(byte,	integer,	long,	float,	etc.)	types,	meaning	that	the	values
themselves	can	be	changed	by	the	function.		There	is	no	equivalent	in	VB6	for
variable	argument	lists	with	reference	arguments,	so	no	direct	translation	is
available.		Instead	we	use	the	'V'	form	of	these	functions	(viVPrintf,	viVScanf,
and	viVQueryf),		in	conjunction	with	the	undocumented	VB6	VarPtr	function
to	create	an	array	of	pointers	to	arguments	than	can	be	passed	to	the	VISA
functions.

The	examples	below	are	presented	as	self-contained	VB6	Sub's	with	comments
explaining	the	various	features.		You	can	modify	and	adapt	the	code	in	the
examples	to	your	specific	situation.

viVPrintf/viVScanf	Example	using	String
viVScanf	Example	Returning	a	Double	Array
viVScanf	Example	Reading	an	IEEE	488	Definite	Length	Block
and	Returning	a	Byte	Array
viVScanf	Example	Reading	an	IEEE	488	Indefinite	Length	Block
and	Returning	a	Byte	Array
viVQueryf	Example	with	String	and	Indefinite	Length	Block

See	Also

viRead,	viWrite,	viVPrintf,	viVScanf,	viVQueryfVB6	Types	and	VISA	C	Types
Reference
Notes	on	Using	viRead/viWrite	in	Visual	Basic	6
viVPrintf/viVScanf	Example	using	String
viVScanf	Example	Returning	a	Double	Array
viVScanf	Example	Reading	an	IEEE	488	Definite	Length	Block	and	Returning	a
Byte	Array
viVScanf	Example	Reading	an	IEEE	488	Indefinite	Length	Block	and	Returning
a	Byte	Array
viVQueryf	Example	with	String	and	Indefinite	Length	Block

	

VB6	Types	and	VISA	C	Types	Reference

VISA	Type VB6
Type Description

ViInt8,
ViUInt8,
ViChar,
ViByte

Byte 	

ViInt16,
ViUInt16 Integer Since	VB6	does	not	support	signed	bytes,	the	byte	type	is

used	for	both.

ViInt16,
ViUInt16 Long Since	unsigned	shorts	are	not	supported	in	VB6,	the	signed

type	is	used	for	both.

ViInt32,
ViUInt32 Long Since	unsigned	integers	are	not	supported	in	VB6,	the

signed	type	is	used	for	both.

ViSession,
ViPFindList,
ViPEvent

Long Sessions	and	other	VISA	object	handles	are	just	32-bit
integers.

ViStatus Long Status	codes	(error	codes)	have	always	been	32-bit	integers.

ViAddr Long This	is	a	reference	to	a	remote	32-bit	memory	space,	and
will	therefore	fit	in	a	32-bit	integer

ViBuf String

This	type	represents	byte	buffers	or	ASCII	strings	that	are
not	to	be	modified	by	VISA.		The	String	type	was	chosen
for	methods	that	typically	write	ANSI	strings.		When	a
string	is	passed	'byVal'	to	an	external	DLL	(such	as
visa32.dll)	VB6	automatically	marshals	the	String	type	into
a	pointer	to	an	ASCII	string	that	VISA	can	accept.	

ViPBuf String

This	type	represents	byte	buffers	or	ASCII	string	buffers
that	are	to	be	written	to	by	VISA.		The	String	type	was
chosen	for	functions	that	typically	write	ASCII	strings,
because	the	default	marshaling	behavior	of	that	class	is	to
give	the	C	function	a	pointer	to	the	beginning	of	the
preallocated	buffer,	and	to	use	the	0	ASCII	value	to
determine	the	end	of	the	string	written	in	the	buffer.		Don't
forget	to	allocate	enough	storage	space	in	your	String	or	to
declare	the	String	as	fixed	length	(.e.g.	Dim	myString	as
String	*	256)	before	calling	the	VISA	function.

ViChar[] String

Arrays	of	ViChar	are	used	when	VISA	plans	to	write	short-
length	strings	into	the	passed-in	buffer.		Again,	the	String
type	is	well-suited	to	acting	as	a	character	buffer.		Don't
forget	to	allocate	enough	storage	space	in	your	String	or	to
declare	the	String	as	fixed	length	(e.g.	Dim	myString	as
String	*	256)	before	calling	the	VISA	function.

ViAttrState
Byte,
Integer
Long

The	value	passed	to	viSetAttribute	is	an	8-,	16-,	or	32-bit
integer.

void	*

Byte,
Integer
Long
String

viSetAttribute	can	return	8-,	16-,	or	32-bit	integers,	or
strings.		Don't	forget	to	allocate	enough	storage	space	in
your	String	or	to	declare	the	string	as	fixed	length	(e.g.	Dim
myString	as	String	*	256)	before	calling	the	VISA	function.

ViPUInt8,
ViPInt8,	etc.

Byte,
Integer,
etc.

The	ViPXXXX	types	where	'XXXXX'	is	an	integral	type	are
return	values	for	integer	types.		Functions	that	return
pointers	to	integer	types	have	these	parameters	declared
using	the	'ByRef'	keyword	so	the	address	of	the	variable	is
passed	rather	than	its	value.

See	Also

Using	the	VISA	C	API	in	Microsoft	Visual	Basic	6

	

Using	the	VISA	C	API	in	Microsoft	.NET

Test	and	measurement	programmers	accustomed	to	using	the	VISA	C	API
(implemented	by	the	visa32.dll	C	DLL)	for	communicating	with	instruments	are
familiar	with	the	visa32.h	C	standard	header	file	for	use	in	C	and	C++.	This
header	file	is	defined	by	the	VXIplug&play	Systems	Alliance	and	distributed	by
Agilent	Technologies,	among	others.	The	alliance	also	defines	a	header	file
VISA32.bas	for	Microsoft		Visual	Basic	6.	However,	there	are	at	present	no
officially	defined	header	files	for	programming	in	the	VISA	C	API	in	the
Microsoft	.NET	technology	languages,	such	as	C#	and	Visual	Basic	.NET.

This	document	describes	Agilent's	.NET	header	files	for	VISA,	VISA32.cs	for
C#	and	VISA32.vb	for	VB	.NET;	provides	examples	for	some	of	the	methods;
and	provides	a	tutorial	for	using	these	files.	Agilent	defines	and	provides	these
files	to	allow	programmatic	access	to	the	VISA	C	API	from	the	two	most
popular	.NET	languages.		

Programmers	wishing	to	use	the	VISA	C	API	in	.NET	should	include	the
appropriate	file	in	their	project.		The	compiled	.NET	assembly	will	then	have	all
the	information	it	needs	to	use	the	VISA	C	Library	(visa32.dll.)		The	Tutorial
shows	how	to	include	and	compile	a	program	using	these	header	files.

This	help	is	broken	into	several	topics	following	the	introduction.	The	first,
VISA	API	Essentials,	provides	examples	and	brief	descriptions	of	the	core	set	of
methods	you	need	to	communicate	with	instruments	through	Agilent's	.NET
header	files	for	VISA.	The	second	section,	Tutorial,	provides	a	brief	tutorial	in
both	C#	and	VB	.NET	describing	a	complete	use	of	these	files	from	start	to
finish.	The	third	section,	Advanced	Use	of	viPrintf/viScanf,	describes	how	to
add	parameters	and	make	your	own	versions	of	these	functions.	The	last	section,
.NET	Types	and	VISA	C	Types	Reference,	describes	the	translation	of	the	C
VISA	data	types	to	.NET	and	provides	a	conversion	table.		

	

VISA_API_Essentials

This	section	reviews	the	most	essential	VISA	functions	and	provides	examples
of	how	to	use	them	in	.NET.		Consult	the	VISA	Functions	volume	of	this	help
for	a	complete	VISA	reference.

viOpenDefaultRM
	
viOpen
	
viClose
	
viRead
	
viWrite
	
viPrintf
	
viScanf

	

()()

Syntax

viOpen(int	sesn,	string	viDesc,	int	mode,	int	timeout,

out	int	vi);

Description

Opens	a	VISA	resource	session	given	a	VISA	Resource	Manager	session,	a
resource	address,	and	resource	locking	information.		If	successful,	it	returns	a
session	identifier	(integer)	that	can	be	used	to	execute	any	other	legal	operations
on	that	resource.

Parameters

Name Dir Type Description

sesn IN int Resource	Manager	session	(should	always	be	the	Default
Resource	Manager	for	VISA	returned	from	viOpenDefaultRM).

viDesc IN string Unique	symbolic	name	of	a	resource.	(See	the	viOpen	topic	in
the	VISA	Help	for	details..)

mode IN int

Specifies	the	modes	by	which	the	resource	is	to	be	accessed.	The
value	VI_EXCLUSIVE_LOCK	is	used	to	acquire	an	exclusive
lock	immediately	upon	opening	a	session.	If	a	lock	cannot	be
acquired,	the	session	is	closed	and	an	error	is	returned.		The
VI_LOAD_CONFIG	value	is	used	to	configure	attributes
specified	by	some	external	configuration	utility.	If	this	value	is
not	used,	the	session	uses	the	default	values	provided	by	this
specification.	Multiple	access	modes	can	be	used	simultaneously
by	specifying	a	"bit-wise	OR"	of	the	values.	(Must	use	VI_NULL
in	VISA	1.0.)

timeout IN int

If	the	accessMode	parameter	requires	a	lock,	this	parameter
specifies	the	absolute	time	period	(in	milliseconds)	that	the
resource	waits	to	get	unlocked	before	this	operation	returns	an
error.	Otherwise,	this	parameter	is	ignored.	(Must	use	VI_NULL
in	VISA	1.0.)

vi OUT out	int Unique	logical	identifier	reference	to	a	session.

Return	Values

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

VI_SUCCESS_DEV_NPRESENT Session	opened	successfully,	but	the	device	at	the	specified
address	is	not	responding.

VI_WARN_CONFIG_NLOADED The	specified	configuration	either	does	not	exist	or	could	not	be
loaded	using	VISA-specified	defaults.

Error	Codes Description

VI_ERROR_ALLOC Insufficient	system	resources	to	open	a	session.

VI_ERROR_INTF_NUM_NCONFIG The	interface	type	is	valid	but	the	specified	interface	number	is
not	configured.

VI_ERROR_INV_ACC_MODE Invalid	access	mode.

VI_ERROR_INV_RSRC_NAME Invalid	resource	reference	specified.	Parsing	error.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_LIBRARY_NFOUND A	code	library	required	by	VISA	could	not	be	located	or	loaded.

VI_ERROR_NSUP_OPER
The	given	sesn	does	not	support	this	function.	For	VISA,	this
function	is	supported	only	by	the	Default	Resource	Manager
session.

VI_ERROR_RSRC_BUSY The	resource	is	valid	but	VISA	cannot	currently	access	it.

VI_ERROR_RSRC_LOCKED
Specified	type	of	lock	cannot	be	obtained	because	the	resource
is	already	locked	with	a	lock	type	incompatible	with	the	lock
requested.

VI_ERROR_RSRC_NFOUND Insufficient	location	information	or	resource	not	present	in	the
system.

VI_ERROR_TMO A	session	to	the	resource	could	not	be	obtained	within	the
specified	timeout	period.

		C#	Example

public	int	OpenSession(string	resourceAddress,	int	resourceManager)
{
	 int	session,	viError;
	 viError	=	visa32.viOpen(resourceManager,	resourceAddress,	
	 	 	 	 visa32.VI_NO_LOCK,	
	 	 	 	 visa32.VI_TMO_IMMEDIATE,	out	session);
	 if	(viError	<	visa32.VI_SUCCESS)
	 {
	 	 System.Text.StringBuilder	error	=	
	 	 	 	 	 new	System.Text.StringBuilder(256);
	 	 visa32.viStatusDesc(resourceManager,	viError,	error);
	 	 throw	new	ApplicationException(error.ToString());
	 }
	 return	session;
}

VB	.NET	Example

Public	Function	OpenSession(ByVal	resourceAddress	As	String,	_
	 	 	 				ByVal	resourceManager	As	Integer)	As	Integer
				Dim	session	As	Integer	=	0,	viError	As	Integer
				viError	=	visa32.viOpen(resourceManager,	resourceAddress,	_
	 	 	 				visa32.VI_NO_LOCK,	_
	 	 	 				visa32.VI_TMO_IMMEDIATE,	session)
				If	viError	<	visa32.VI_SUCCESS	Then
								Dim	err	As	System.Text.StringBuilder	=	New	System.Text.StringBuilder(256)
								visa32.viStatusDesc(resourceManager,	viError,	err)
								Throw	New	ApplicationException(err.ToString())
				End	If
				Return	session
End	Function

	

Syntax

Syntax

viClose(int	vi);

Description

Closes	the	specified	resource	manager	session,	device	session,	find	list	(returned
from	the	viFindRsrc	function),	or	event	context	(returned	from	the
viWaitOnEvent	function,	or	passed	to	an	event	handler).	In	this	process,	all	the
data	structures	that	had	been	allocated	for	the	specified	vi	are	freed.		Failure	to
close	VISA	objects	will	result	in	memory	and	resource	leaks.

Parameters

Name Dir Type Description

vi IN int Unique	logical	identifier	of	a	session,	event,	or	find	list.

Return	Values

Completion	Codes Description

VI_SUCCESS Operation	completed	successfully.

VI_WARN_NULL_OBJECT The	specified	object	reference	is	uninitialized.

Error	Codes Description

VI_ERROR_CLOSING_FAILED Unable	to	deallocate	the	previously	allocated	data	structures
corresponding	to	this	session	or	object	reference.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

	

C#	Example

public	void	CloseSession(int	session)
{
	 visa32.viClose(session);
}

VB	.NET	Example

Public	Sub	CloseSession(ByVal	session	As	Integer)
				visa32.viClose(session)
End	Sub

		
	

	

viRead

Syntax

viRead(int	vi,	byte[]	buffer,	int	count,	out	int

retCount);

Description

Synchronously	transfers	data	from	a	device.	The	data	that	is	read	is	stored	in	the
buffer	represented	by	buffer.	This	function	returns	only	when	the	transfer
terminates.	Only	one	synchronous	read	function	can	occur	at	any	one	time.	A
viRead	operation	can	complete	successfully	if	one	or	more	of	the	following
conditions	were	met.	It	is	possible	to	have	one,	two,	or	all	three	of	these
conditions	satisfied	at	the	same	time.

END	indicator	received
	
Termination	character	read
	
Number	of	bytes	read	is	equal	to	count

Parameters

Name Dir Type Description

vi IN int Unique	logical	identifier	to	a	session.

buffer OUT byte[] The	array	of	bytes	to	receive	data	from	device.

count IN int Number	of	bytes	to	be	read.

retCount OUT out	int Represents	the	location	of	an	integer	that	will	be	set	to	the
number	of	bytes	actually	transferred.

Return	Values	

Completion	Codes Description

VI_SUCCESS The	function	completed	successfully	and	the	END	indicator
was	received	(for	interfaces	that	have	END	indicators).

VI_SUCCESS_TERM_CHAR The	specified	termination	character	was	read.

VI_SUCCESS_MAX_CNT The	number	of	bytes	read	is	equal	to	count.

Error	Codes Description

VI_ERROR_ASRL_FRAMING A	framing	error	occurred	during	transfer.

VI_ERROR_ASRL_OVERRUN An	overrun	error	occurred	during	transfer.	A	character	was
not	read	from	the	hardware	before	the	next	character	arrived.

VI_ERROR_ASRL_PARITY A	parity	error	occurred	during	transfer.

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	read	function	because	setup	is	invalid	(due	to
attributes	being	set	to	an	inconsistent	state).

VI_ERROR_IO An	unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently	the
controller	in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and	NDAC
are	deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_OUTP_PROT_VIOL Device	reported	an	output	protocol	error	occurred	during
transfer.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

		C#	Example

public	int	ReadBytes(int	session,	int	maxCount,	out	byte[]	data)
{
	 data	=	new	Byte[maxCount];
	 int	viError,	readCount;
	 viError	=	visa32.viRead(session,	data,	maxCount,	out	readCount);
	 if	(viError	<	visa32.VI_SUCCESS)
	 {
	 	 System.Text.StringBuilder	error	=	
	 	 	 	 new	System.Text.StringBuilder(256);
	 	 visa32.viStatusDesc(session,	viError,	error);
	 	 throw	new	ApplicationException(error.ToString());
	 }
	 return	readCount;
}

VB	.NET	Example

Public	Function	ReadBytes(ByVal	session	As	Integer,	ByVal	maxCount	As	Integer,	_
	 	 	 		ByRef	data()	As	Byte)	As	Integer
				data	=	New	Byte(maxCount)	{}
				Dim	viError	As	Integer,	readCount	As	Integer
				viError	=	visa32.viRead(session,	data,	maxCount,	readCount)
				If	viError	<	visa32.VI_SUCCESS	Then
								Dim	err	As	System.Text.StringBuilder	=	New	System.Text.StringBuilder(256)
								visa32.viStatusDesc(session,	viError,	err)
								Throw	New	ApplicationException(err.ToString())
				End	If
				Return	readCount
End	Function

	

	

Syntax

Syntax

viWrite(int	vi,	byte[]	buffer,	int	count,	out	int

retCount);

Description

Synchronously	transfers	data	to	a	device.	The	data	to	be	written	is	in	the	buffer
represented	by	buffer.	This	function	returns	only	when	the	transfer	terminates.
Only	one	synchronous	write	function	can	occur	at	any	one	time.	Parameters

Name Dir Type Description

vi IN int Unique	logical	identifier	to	a	session.

buffer IN byte[] Represents	the	location	of	a	data	block	to	be	sent	to	device.

count IN int Specifies	number	of	bytes	to	be	written.

retCount OUT out	int Represents	the	location	of	an	integer	that	will	be	set	to	the
number	of	bytes	actually	transferred.

Return	Values	

Completion	Codes Description

VI_SUCCESS Transfer	completed.

Error	Codes Description

VI_ERROR_BERR Bus	error	occurred	during	transfer.

VI_ERROR_CONN_LOST The	I/O	connection	for	the	given	session	has	been	lost.

VI_ERROR_INP_PROT_VIOL Device	reported	an	input	protocol	error	occurred	during
transfer.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the
same	value).

VI_ERROR_INV_SETUP Unable	to	start	write	function	because	setup	is	invalid	(due
to	attributes	being	set	to	an	inconsistent	state).

VI_ERROR_IO Unknown	I/O	error	occurred	during	transfer.

VI_ERROR_NCIC The	interface	associated	with	the	given	vi	is	not	currently
the	controller	in	charge.

VI_ERROR_NLISTENERS No	Listeners	condition	is	detected	(both	NRFD	and	NDAC
are	deasserted).

VI_ERROR_NSUP_OPER The	given	vi	does	not	support	this	function.

VI_ERROR_RAW_RD_PROT_VIOL Violation	of	raw	read	protocol	occurred	during	transfer.

VI_ERROR_RAW_WR_PROT_VIOL Violation	of	raw	write	protocol	occurred	during	transfer.

VI_ERROR_RSRC_LOCKED
Specified	operation	could	not	be	performed	because	the
resource	identified	by	vi	has	been	locked	for	this	kind	of
access.

VI_ERROR_TMO Timeout	expired	before	function	completed.

	

C#	Example

public	int	WriteBytes(int	session,	int	requestCount,	byte[]	data)
{
	 int	viError,	outCount;
	 viError	=	visa32.viWrite(session,	data,	requestCount,	out	outCount);
	 if	(viError	<	visa32.VI_SUCCESS)
	 {
	 	 System.Text.StringBuilder	error	=	
	 	 	 	 	 new	System.Text.StringBuilder(256);
	 	 visa32.viStatusDesc(session,	viError,	error);
	 	 throw	new	ApplicationException(error.ToString());
	 }
	 return	outCount;
}

VB	.NET	Example

Public	Function	WriteBytes(ByVal	session	As	Integer,	_
	 	 	 			ByVal	requestCount	As	Integer,	_
	 	 	 			ByVal	data()	As	Byte)	As	Integer
				Dim	viError	As	Integer,	outCount	As	Integer	=	0
				viError	=	visa32.viWrite(session,	data,	requestCount,	outCount)
				If	viError	<	visa32.VI_SUCCESS	Then
								Dim	err	As	System.Text.StringBuilder	=	New	System.Text.StringBuilder(256)
								visa32.viStatusDesc(session,	viError,	err)
								Throw	New	ApplicationException(err.ToString())
				End	If
				Return	outCount
End	Function

	

	

Syntax

Syntax

viPrintf(int	vi,	string	writeFmt,	<overloaded

arguments>);

Description

This	function	converts,	formats,	and	sends	the	overloaded	parameter	argument	to
the	device	as	specified	by	the	format	string.	Before	sending	the	data,	the	function
formats	the	overloaded	argument	variable	in	the	parameter	list	as	specified	in	the
writeFmt	string.	You	should	not	use	the	viWrite	and	viPrintf	functions	in	the
same	session.

For	information	about	getting	more	options	in	the	parameter	list,	see	Advanced
Use	of	viPrintf/viScanf.

Parameters

Name Dir Type Description

vi IN int Unique	logical	identifier	to	a	session.

writeFmt IN string String	describing	the	format	for	arguments.

overloaded
argument IN N/A A	parameter	the	format	string	is	applied	to.

Return	Values	

Completion	Code Description

VI_SUCCESS Parameters	were	successfully	formatted.

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	writeFmt	string	is	invalid.

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	write	function	because	of	I/O	error.

VI_ERROR_NSUP_FMT A	format	specifier	in	the	writeFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	write	function	completed.

	

		C#	Example

//	Writes	a	comma-separated	list	of	NR1-style	integers	to	the	formatted	I/O
//	buffer	and	flushes	the	buffer	(because	of	the	"\n".)
public	void	WriteCommaSeparatedInt32List(int	session,	int[]	data,	int	count)
{
	 string	format	=	"%dl,"	+	count	+	"\n";
	 int	viError;
	 viError	=	visa32.viPrintf(session,	format,	data);
	 if	(viError	<	visa32.VI_SUCCESS)
	 {
	 	 System.Text.StringBuilder	error	=	
	 	 	 	 	 new	System.Text.StringBuilder(256);
	 	 visa32.viStatusDesc(session,	viError,	error);
	 	 throw	new	ApplicationException(error.ToString());
	 }
}

VB	.NET	Example

'	Writes	a	comma-separated	list	of	NR1-style	integers	to	the	formatted	I/O
'	buffer	and	flushes	the	buffer	(because	of	the	"\n".)
Public	Sub	WriteCommaSeparatedInt32List(ByVal	session	As	Integer,	_
	 	 	 	 	 ByVal	data()	As	Integer,	_
	 	 	 	 	 ByVal	count	As	Integer)
				Dim	format	As	String	=	"%,"	&	count	&	"d"	&	vbLf
				Dim	viError	As	Integer
				viError	=	visa32.viPrintf(session,	format,	data)
				If	viError	<	visa32.VI_SUCCESS	Then
								Dim	err	As	System.Text.StringBuilder	=	New	System.Text.StringBuilder(256)
								visa32.viStatusDesc(session,	viError,	err)
								Throw	New	ApplicationException(err.ToString())
				End	If
End	Sub

		
	

	

Tutorial

This	tutorial	will	show	you	how	to:

Add	Agilent's	VISA	header	file	for	C#	or	VB	.NET	to	your	C#	or	VB
.NET	project
	
Use	the	functions	defined	in	the	header	file	for	communicating	with
an	instrument
	
Deal	with	.NET-specific	issues	that	arise	when	using	the	VISA	C	API

The	topics	in	the	tutorial	are:

Getting	Started
	
Creating	Your	Project
	
Adding	Agilent's	VISA	Header	Files	to	Your	Project
	
Using	the	Header	File	in	Your	Project
	
Adding	Error	Handling	to	Your	Project
	
Reading	and	Writing	Array	Data
	
Putting	it	All	Together
	
Deploying	Your	Project

	

Getting	Started	with	VISA

The	VISA	C	DLL	(visa32.dll)	has	a	number	of	entry	points	that	implement	C-
style	function	calls	for	doing	VISA	operations,	primarily	reading	and	writing
data	from/to	instruments.		While	these	entry	points	were	designed	primarily	for
use	in	the	C/C++	languages,	a	number	of	other	languages	provide	facilities	for
calling	C-style	DLL's.		One	of	the	most	prominent	of	these	languages	is
Microsoft's	Visual	Basic	6.		The	header	file	for	that	language,	visa32.bas,	allows
access	to	most	of	VISA's	functions,	but	with	severe	limitations	to	the	formatted
I/O	functions	such	as	viPrintf	and	viScanf	due	to	limitations	of	the	VB	6
interoperability	features.

The	functions	appear	in	VB	.NET	as	a	number	of	empty	functions	inside	a
Friend	Module.		In	C#	they	appear	as	static	methods	inside	an	internal	sealed
class	that	never	needs	instantiation.		They	are	declared	with	friend/internal
access,	so	that	any	libraries	that	include	them	will	not	accidentally	export	the
VISA	definitions.		The	functions	are	a	set	of	stubs	that	call	out	to	the	VISA	C
DLL	at	runtime.		At	development	time,	the	only	thing	that	the	.NET	environment
knows	about	them	is	what	is	in	the	header	files.		There	is	no	equivalent	of	a	.lib
file	in	.NET.

This	tutorial	demonstrates	new,	Agilent-defined	header	files	for	C#	and	VB
.NET,	two	new	languages	that	have	the	ability	to	call	into	C	DLL's.		These	new
header	files	do	provide	some	access	to	the	formatted	I/O	functions,	and	they	can
be	extended	to	do	anything	that	could	be	done	in	C/C++.

Next:	Creating	Your	Project

	

creating_your_project

Simply	use	your	development	environment,	typically	Microsoft	Visual	Studio®
.NET,	to	create	a	C#	or	VB	.NET	project	of	the	type	you	want	(standalone
application,	library,	etc.).		Once	you	have	a	valid	project,	you	can	add	Agilent's
VISA	header	file	for	.NET.

Next:	Adding	Agilent's	VISA	Header	Files	to	Your	Project

	

To	Link	to	an	Existing	Header	File

You	have	two	choices	for	adding	the	appropriate	header	file	to	your	project.
	Depending	on	how	you	add	the	file	to	your	project,	you	will	either	link	to
(reference)	the	file	from	wherever	it	is	located	on	your	hard	drive,	or	copy	the
visa32.bas	or	visa32.cs	file	to	your	project	directory.		You	may	choose	to	link	to
the	file	if	you	plan	on	modifying	it	with	changes	that	you	want	to	be	used	by
multiple	projects,	or	if	you	just	don't	want	extra	copies	of	the	file	on	your
system.		You	may	choose	to	copy	the	file	for	a	project-specific	version	if	you
plan	on	customizing	it	for	that	particular	project.

To	Link	to	an	Existing	Header	File

1.	 Right-click	the	project	you	wish	to	modify	(not	the	solution)	in	the
Solution	Explorer	window	of	the	Microsoft	Visual	Studio	environment.

2.	 Click	Add	and	then	click	Add	Existing	Item...
3.	 Navigate	to	the	file	you	wish	to	link	to	in	your	project	(visa32.cs	for

C#	or	visa32.vb	for	Visual	Basic	.NET),	select	it,	but	do	not	click	the
Open	button.

4.	 Click	the	down	arrow	to	the	right	of	the	Open	button,	and	choose
Link	File.

5.	 You	should	now	see	the	file	underneath	your	project	in	the	Solution
Explorer.		It	will	have	a	little	arrow	icon	in	its	lower	left	corner,
indicating	that	it	is	a	link.

To	Make	a	Project-Specific	Copy	of	the	Header	File

1.	 Right-click	the	project	you	wish	to	modify	(not	the	solution)	in	the
Solution	Explorer	window	of	the	Microsoft	Visual	Studio	environment.

2.	 Click	Add	and	then	click	Add	Existing	Item...
3.	 Navigate	to	the	file	you	wish	to	copy	to	your	project	(visa32.cs	for	C#

or	visa32.vb	for	Visual	Basic	.NET),	select	it,	and	click	the	Open
button.

4.	 You	should	now	see	the	file	in	the	Solution	Explorer	underneath	your
project.		It	will	have	no	arrow	icon,	and	you	will	see	a	new	copy	of
the	file	in	your	project's	source	file	directory.

Next:	Using	the	Header	File	in	Your	Project

	

VB	.NET

Now	that	you	have	referenced	the	header	file	in	your	project,	you	can	begin
development	with	the	VISA	functions	it	contains.		This	sample	demonstrates	the
simplest	VISA	transaction.

VB	.NET

Private	Sub	RunSimple()
				Dim	resourceManager	As	Integer	=	0,	viError	As	Integer
				Dim	session	As	Integer	=	0
				viError	=	visa32.viOpenDefaultRM(resourceManager)
				viError	=	visa32.viOpen(resourceManager,	"GPIB0::22::INSTR",	_
																				visa32.VI_NO_LOCK,	visa32.VI_TMO_IMMEDIATE,	session)
				viError	=	visa32.viPrintf(session,	"*IDN?"	&	vbLf)
				Dim	idnString	As	System.Text.StringBuilder	=	_
																				New	System.Text.StringBuilder(1000)
				viError	=	visa32.viScanf(session,	"%1000s",	idnString)
				MsgBox(idnString.ToString())
				visa32.viClose(session)
				visa32.viClose(resourceManager)
End	Sub

C#

private	void	RunSimple()
{
	 int	resourceManager	=	0,	viError;
	 int	session	=	0;
	 viError	=	visa32.viOpenDefaultRM(out	resourceManager);
	 viError	=	visa32.viOpen(resourceManager,	"GPIB0::22::INSTR",
	 	 visa32.VI_NO_LOCK,	visa32.VI_TMO_IMMEDIATE,	out	session);
	 viError	=	visa32.viPrintf(session,	"*IDN?\n");
	 System.Text.StringBuilder	idnString	=	
	 	 new	System.Text.StringBuilder(1000);
	 viError	=	visa32.viScanf(session,	"%1000s",	idnString);
	 System.Windows.Forms.MessageBox.Show(idnString.ToString());
	 visa32.viClose(session);
	 visa32.viClose(resourceManager);
}

This	is	the	"IDN?"	query	in	.NET.		You	may	have	noticed	the	use	of	the
StringBuilder	class.		The	System.String	class	in	.NET	is	meant	to	have	an
immutable	payload,	meaning	that	once	you	define	a	string,	it	is	either	used	or
thrown	away	--	never	modified.		Since	the	viScanf	function	modifies	the
contents	of	the	parameter	you	pass	it,	the	System.String	class	is	illegal	for	this
call.		The	designers	of	.NET	were	aware	of	this,	so	they	gave	the	StringBuilder
class	the	ability	to	look	like	a	string	buffer	when	it	is	passed	to	C	DLL
functions.		

You	need	to	allocate	a	sufficiently	large	buffer	for	the	contents	of	the	read
operation,	which	is	why	the	buffer	is	allocated	1000-long	and	why	the	format
string	passed	to	viScanf,	"%1000s",	tells	it	that	there	is	room	in	the	buffer	for
1000	characters.		The	MessageBox	knows	how	much	of	the	buffer	to	write
because	viScanf	appends	an	ASCII	code	(0)	when	it	is	done	reading,	and	the
StringBuilder	class	interprets	this	as	the	end	of	the	valid	data	when	you	call
StringBuilder.ToString().

This	solution	works	perfectly	under	normal	conditions,	but	what	about
unexpected	errors?		What	if	you're	reading	in	arrays	of	data?		There	are	some

more	techniques	to	ease	debugging	and	deployment	issues	with	VISA	in	.NET,
as	well	as	some	advanced	formatted	I/O	techniques	to	review.

Next:	Adding	Error	Handling	to	Your	Project

	

VB	.NET

Error	handling	in	.NET	is	implemented	by	exceptions.		However,	you	are	using
the	VISA	C	DLL	directly,	and	it	returns	error	return	codes	rather	than	throwing
exceptions.		One	way	to	handle	the	errors	is	to	observe	the	return	code	of	each
VISA	call,	then	either	return	from	the	method	or	execute	some	cleanup	code
inside	the	if	statement	that	checks	the	error.		Since	.NET	has	excellent	support
for	exceptions,	you	can	use	a	simple	utility	function	to	turn	the	error	codes	into
exceptions,	and	wrap	your	code	in	a	try-catch	block.

Below	is	a	utility	function	for	turning	VISA	errors	into
System.ApplicationException	exceptions.		You	may	wish	to	create	your	own
VISA	exception	class	that	derives	from	System.ApplicationException	in	order
to	better	handle	VISA	errors.

VB	.NET

Private	Sub	CheckStatus(ByVal	vi	As	Integer,	ByVal	status	As	Integer)
				If	(status	<	visa32.VI_SUCCESS)	Then
								Dim	err	As	System.Text.StringBuilder	=	New	System.Text.StringBuilder(256)
								visa32.viStatusDesc(vi,	status,	err)
								Throw	New	ApplicationException(err.ToString())
				End	If
End	Sub

This	method	takes	a	valid	VISA	session	and	a	VISA	status	code	as	arguments.
	The	session	can	be	either	the	Resource	Manager	session	or	a	VISA	resource
session;	the	error	descriptions	returned	by	viStatusDesc	will	be	the	same	in
either	case.		The	method	will	throw	an	exception	with	the	error	description	if	the
status	code	is	an	error	code,	or	do	nothing	otherwise.

You	must	wrap	any	code	that	calls	this	helper	method	in	an	exception	handler,	or
a	VISA	error	will	cause	your	program	to	terminate.		Here	is	an	example	of	how
to	use	CheckStatus.

VB	.NET

Dim	status	As	Integer						'VISA	function	status	return	code
Dim	defrm	As	Integer							'Session	to	Default	Resource	Manager
Dim	vi	As	Integer										'Session	to	instrument
status	=	visa32.viOpenDefaultRM(defrm)
'	cannot	check	status	on	viOpenDefaultRM,	since	if	this	failed	
'	we	don't	have	a	valid	vi	to	pass	to	CheckStatus
Try
				status	=	visa32.viOpen(defrm,	"instrAddress",	0,	0,	vi)
				CheckStatus(defrm,	status)
				'	...
Catch	err	As	System.ApplicationException
				MsgBox("***	Error	:	"	&	err.Message,	vbExclamation,	_
																								"VISA	Error	Message")
				Exit	Sub
End	Try
'	...

The	Try	block	guarantees	that	any	ApplicationException	generated	by
CheckStatus	will	get	caught	in	the	Catch	block,	where	an	error	dialog	is
displayed.

Next:	Reading	and	Writing	Array	Data

	

	

Fixed-Size	Array	Length

Often	you	will	need	to	write	or	read	images,	waveforms,	or	other	large,
structured	data	to	and	from	instruments.		This	data	may	be	in	framed	binary
blocks,	ASCII,	or	other	forms.		viScanf	and	viPrintf	can	handle	the	most
common	instrument	formats,	and	the	method	overloads	provided	in	the
visa32.cs/vb	header	files	provide	some	of	the	most	common	parameter	lists.

viPrintf	allows	writing	of	array	data	as	comma-separated	lists,	IEEE	488.2
binary	blocks,	or	raw	binary	data.		There	are	two	ways	to	tell	viPrintf	the	size	of
the	array	data:	you	can	hard-code	the	number	into	the	format	string;	or	you	can
use	the	",*"	format	flag,	meaning	that	the	array	size	is	passed	as	a	32-bit	integer
argument	in	front	of	the	array	argument.		A	call	with	a	hard-coded	length	might
look	like	this:

Private	Function	WriteFixedWaveform(ByVal	session	As	Integer,	_
	 	 												ByVal	floatData()	As	Single)	As	Integer
				Debug.Assert(floatData.Length	>=	100)
				WriteFixedWaveform	=	visa32.viPrintf(session,	"%,100f"	&	vbLf,	floatData)
End	Function

The	",100"	means	it	is	an	array	of	100	elements	to	be	written	as	a	ASCII
comma-separated	list.		The	"f"	means	it	contains	single-precision	floating	point
numbers.	(Note	that	if	your	array	contains	doubles,	you	must	use	the	%lf	format
specifier.)	It	is	easy	to	build	the	format	string	if	you	want	to	pass	in	an	array	of
arbitrary	size	and	are	not	concerned	about	the	overhead	of	some	simple	string
manipulation:

Private	Function	WriteVariableWaveform(ByVal	session	As	Integer,	_
	 	 															ByVal	floatData()	As	Single)	As	Integer
				WriteVariableWaveform	=	visa32.viPrintf(session,	"%,"	&	_
	 	 	 	 floatData.Length	&	"f"	_
	 	 	 	 &	vbLf,	floatData)
End	Function

See	Advanced	Use	of	viPrintf/viScanf	for	information	about	declaring	more
variables	to	do	things	like	pass	an	array	length	argument.

viScanf	allows	reading	of	array	data	in	the	same	formats	that	viPrintf	allows	for
writing.		The	.NET	array	is	passed	by	value	(meaning	that	a	pointer	to	the	first
element	is	sent)	to	viScanf,	which	then	fills	in	the	array	data	in	the	space
provided.		Because	viScanf	simply	writes	to	the	memory	location	given	it,	you
must	verify	that	the	array	argument	contains	enough	space	to	receive	all	the	data.
	The	maximum	number	of	elements	to	be	read	can	be	indicated	either	through	a
hard-coded	number	in	the	format	string	or	through	an	extra	argument	when	the
"#"	format	modifier	is	used.		The	number	of	elements	actually	written	is	returned
in	the	extra	length	argument.		

Two	sets	of	viScanf/viSScanf	function	overloads	for	arrays	are	provided	in	the
visa32.vb/cs	files:	one	set	with	only	one	array	argument,	and	another	with	an
integer	maximum	length	argument	followed	by	the	array	argument.		Use	the	one-
argument	versions	when	the	array	size	is	hard-coded	into	the	format	string;	use
the	two-argument	version	when	the	"#"	format	modifier	is	used.		Below	are
examples	of	reading	arrays	using	fixed	sizes	and	dynamic	sizes	respectively.

Fixed-Size	Array	Length

Private	Function	ReadKiloBLOB(ByVal	session	As	Integer)	As	Byte()
				Dim	result()	As	Byte	=	New	Byte(999)	{}
				Dim	statusCode	As	Long
				statusCode	=	visa32.viScanf(session,	"%1000y",	result)
				If	statusCode	<	visa32.VI_SUCCESS	Then
								result	=	Nothing
				End	If
				Return	result
End	Function

Parameterized-Size	Array	Length

Private	Function	ReadFloatList(ByVal	session	As	Integer,	_
	 	 	 							ByVal	maxSize	As	Integer)	As	Single()
				Dim	result()	As	Single	=	New	Single(maxSize)	{}
				Dim	statusCode	As	Long,	elementCount	As	Long
				elementCount	=	maxSize
				statusCode	=	visa32.viScanf(session,	"%,#f",	elementCount,	result)
				If	statusCode	<	visa32.VI_SUCCESS	Then
								result	=	Nothing
				ElseIf	elementCount	<>	maxSize	Then
								Dim	newArr()	As	Single	=	New	Single(elementCount)	{}
								Array.Copy(result,	newArr,	elementCount)
								result	=	newArr
				End	If
				Return	result
End	Function

Next:	Putting	it	All	Together

	

VB	.NET

Here	is	a	complete	program	sample	using	VISA	in	VB	.NET	and	in	C#.		The
sample	program	is	written	for	the	Agilent	PSA	and	ESA	series	spectrum
analyzers.		It	stores	the	current	screen	image	on	the	instrument's	flash	as
C:PICTURE.GIF.		It	then	transfers	the	image	over	GPIB	or	LAN	and	stores	the
image	on	your	PC	in	the	current	directory	as	picture.gif.		The	file
C:PICTURE.GIF	is	then	deleted	from	the	instrument's	flash.		

This	sample	demonstrates	reading	arrays,	error	handling,	and	basic	session	tasks.

VB	.NET

Private	Sub	RunTutorial(ByVal	instrAddress	As	String)
				'	Declare	Variables	used	in	the	program
				Dim	status	As	Integer						'VISA	function	status	return	code
				Dim	defrm	As	Integer	=	0			'Session	to	Default	Resource	Manager
				Dim	vi	As	Integer	=	0						'Session	to	instrument
				Dim	x	As	Integer								'Loop	Variable
				Dim	ResultsArray(50000)	As	Byte	'results	array,	big	enough	to	hold	a	GIF
				Dim	length	As	Integer						'Number	of	bytes	returned	from	instrument
				Dim	headerlength	As	Integer	'length	of	header
				'	the	file	to	write	the	picture
				Dim	fs	As	System.IO.FileStream	=	Nothing
				'Set	the	default	number	of	bytes	that	will	be	contained	in	the
				'ResultsArray	to	50,000	(50kB)
				length	=	50000
				Try
								If	System.IO.File.Exists("picture.gif")	Then
												System.IO.File.Delete("picture.gif")
								End	If
								'	Open	the	default	resource	manager	session
								status	=	visa32.viOpenDefaultRM(defrm)
								'	Open	the	session.		For	GPIB,	the	address	string	looks	like:	
								'							GPIB0::18::INSTR
								'	For	PSA,	to	use	LAN,	change	the	string	to
								'	"TCPIP0::xxx.xxx.xxx.xxx::inst0::INSTR"	where	
								'	xxxxx	is	the	IP	address
								status	=	visa32.viOpen(defrm,	"instrAddress",	0,	0,	vi)
								CheckStatus(defrm,	status)
								'	Set	the	I/O	timeout	to	fifteen	seconds
								status	=	visa32.viSetAttribute(vi,	visa32.VI_ATTR_TMO_VALUE,	15000)
								CheckStatus(vi,	status)
								'Store	the	current	screen	image	on	flash	as	C:PICTURE.GIF
								status	=	visa32.viPrintf(vi,	":MMEM:STOR:SCR	'C:PICTURE.GIF'"	&	vbLf)
								CheckStatus(vi,	status)
								'Grab	the	screen	image	file	from	the	instrument

								status	=	visa32.viPrintf(vi,	":MMEM:DATA?	'C:PICTURE.GIF'"	&	vbLf)
								CheckStatus(vi,	status)
	 '	We're	reading	this	as	raw	binary,	although	it	is	a	IEEE	488.2
	 '	binary	block	containing	byte	data.		We	could've	used
	 '	"%#b"	format	string,	and	the	byte	array	would	not	contain	the
	 '	IEEE	binary	block	header.
								status	=	visa32.viScanf(vi,	"%#y",	length,	ResultsArray)
								CheckStatus(vi,	status)
								'Delete	the	tempory	file	on	the	flash	named	C:PICTURE.GIF
								status	=	visa32.viPrintf(vi,	":MMEM:DEL	'C:PICTURE.GIF'"	&	vbLf)
								CheckStatus(vi,	status)
								'Close	the	vi	session	and	the	resource	manager	session
								Call	visa32.viClose(vi)
								vi	=	0
								Call	visa32.viClose(defrm)
								defrm	=	0
								'Store	the	results	in	a	text	file
								fs	=	_
																				New	System.IO.FileStream("picture.gif",	_
																				IO.FileMode.OpenOrCreate)
								Dim	zeroVal()	As	Char	=	{"0"}
								Dim	zeroValByte()	As	Byte
								zeroValByte	=	System.Text.Encoding.ASCII.GetBytes(zeroVal)
								headerlength	=	ResultsArray(1)	-	zeroValByte(0)	+	2
								fs.Write(ResultsArray,	headerlength,	length	-	2	-	headerlength)
				Catch	err	As	System.ApplicationException
								MsgBox("***	Error	:	"	&	err.Message,	vbExclamation,	_
																																				"VISA	Error	Message")
								Exit	Sub
				Catch	err	As	System.SystemException
								MsgBox("***	Error	:	"	&	err.Message,	vbExclamation,	_
																																				"System	Error	Message")
								Exit	Sub
				Catch	err	As	System.Exception
								Debug.Fail("Unexpected	Error")
								MsgBox("***	Error	:	"	&	err.Message,	vbExclamation,	_
																																				"Unexpected	Error")

								Exit	Sub
				Finally
								If	Not	fs	Is	Nothing	Then	fs.Close()
								If	vi	<>	0	Then
												Call	visa32.viClose(vi)
								End	If
								If	defrm	<>	0	Then
												Call	visa32.viClose(defrm)
								End	If
				End	Try
End	Sub
Private	Sub	CheckStatus(ByVal	vi	As	Integer,	ByVal	status	As	Integer)
				If	(status	<	visa32.VI_SUCCESS)	Then
								Dim	err	As	System.Text.StringBuilder	=	New	System.Text.StringBuilder(256)
								visa32.viStatusDesc(vi,	status,	err)
								Throw	New	ApplicationException(err.ToString())
				End	If
End	Sub

C#

private	void	RunTutorial(string	instrAddress)
{
	 //	Declare	Variables	used	in	the	program
	 int	status;		 //	VISA	function	status	return	code
	 int	defrm	=	0;	 //	Session	to	Default	Resource	Manager
	 int	vi	=	0;		 //	Session	to	instrument
	 //	results	array,	big	enough	to	hold	a	GIF
	 byte[]	ResultsArray	=	new	byte[50000];	
	 int	length;	 	 //	Number	of	bytes	returned	from	instrument
	 int	headerlength;	 //	length	of	header
	 System.IO.FileStream	fs	=	null;		//	the	file	to	write	the	picture
	 //	Set	the	default	number	of	bytes	that	will	be	contained	in	the
	 //	ResultsArray	to	50,000	(50kB)
	 length	=	50000;
	 try
	 {
	 	 if	(System.IO.File.Exists("picture.gif"))
	 	 	 System.IO.File.Delete("picture.gif");
	 	 //	Open	the	default	resource	manager	session
	 	 status	=	visa32.viOpenDefaultRM(out	defrm);
	 	 //	Open	the	session.		For	GPIB,	the	address	string	looks	like:	
	 	 //							GPIB0::18::INSTR
	 	 //	For	PSA,	to	use	LAN,	change	the	string	to
	 	 //	"TCPIP0::xxx.xxx.xxx.xxx::inst0::INSTR"	where	
	 	 //	xxxxx	is	the	IP	address
	 	 status	=	visa32.viOpen(defrm,	"instrAddress",	0,	0,	out	vi);
	 	 CheckStatus(defrm,	status);
	 	 //	Set	the	I/O	timeout	to	fifteen	seconds
	 	 status	=	visa32.viSetAttribute(vi,	
	 	 	 	 	 visa32.VI_ATTR_TMO_VALUE,	15000);
	 	 CheckStatus(vi,	status);
	 	 //Store	the	current	screen	image	on	flash	as	C:PICTURE.GIF
	 	 status	=	visa32.viPrintf(vi,	
	 	 	 	 	 	":MMEM:STOR:SCR	'C:PICTURE.GIF'\n");

	 	 CheckStatus(vi,	status);
	 	 //Grab	the	screen	image	file	from	the	instrument
	 	 status	=	visa32.viPrintf(vi,	":MMEM:DATA?	'C:PICTURE.GIF'\n");
	 	 CheckStatus(vi,	status);
	 	 //	We're	reading	this	as	raw	binary,	although	it	is	a	IEEE	488.2
	 	 //	binary	block	containing	byte	data.		We	could've	used
	 	 //	"%#b"	format	string,	and	the	byte	array	would	not	contain	the
	 	 //	IEEE	binary	block	header.
	 	 status	=	visa32.viScanf(vi,	"%#y",	ref	length,	ResultsArray);
	 	 CheckStatus(vi,	status);
	 	 //Delete	the	tempory	file	on	the	flash	named	C:PICTURE.GIF
	 	 status	=	visa32.viPrintf(vi,	":MMEM:DEL	'C:PICTURE.GIF'\n");
	 	 CheckStatus(vi,	status);
	 	 //Close	the	vi	session	and	the	resource	manager	session
	 	 visa32.viClose(vi);
	 	 vi	=	0;
	 	 visa32.viClose(defrm);
	 	 defrm	=	0;
	 	 //Store	the	results	in	a	text	file
	 	 fs	=	new	System.IO.FileStream("picture.gif",	
	 	 	 System.IO.FileMode.OpenOrCreate);
	 	 char[]	zeroVal	=	{'0'};
	 	 byte[]	zeroValByte;
	 	 zeroValByte	=	System.Text.Encoding.ASCII.GetBytes(zeroVal);
	 	 headerlength	=	ResultsArray[1]	-	zeroValByte[0]	+	2;
	 	 fs.Write(ResultsArray,	headerlength,	length	-	2	-	headerlength);
	 }
	 catch(System.ApplicationException	err)
	 {
	 	 System.Windows.Forms.MessageBox.Show("***	Error	:	"	+	
	 	 	 err.Message,	
	 	 	 "VISA	Error	Message",
	 	 	 System.Windows.Forms.MessageBoxButtons.OK,
	 	 	 System.Windows.Forms.MessageBoxIcon.Exclamation);
	 }
	 catch(System.SystemException	err)
	 {

	 	 System.Windows.Forms.MessageBox.Show("***	Error	:	"	+	
	 	 	 err.Message,	
	 	 	 "System	Error	Message",
	 	 	 System.Windows.Forms.MessageBoxButtons.OK,
	 	 	 System.Windows.Forms.MessageBoxIcon.Exclamation);
	 }
	 catch(System.Exception	err)
	 {
	 	 System.Diagnostics.Debug.Fail("Unexpected	Error");
	 	 System.Windows.Forms.MessageBox.Show("***	Error	:	"	+	
	 	 	 err.Message,	
	 	 	 "Unexpected	Error",	 	 	 	 	
	 	 	 System.Windows.Forms.MessageBoxButtons.OK,
	 	 	 System.Windows.Forms.MessageBoxIcon.Exclamation);
	 }
	 finally
	 {
	 	 if	(fs	!=	null)
	 	 	 fs.Close();
	 	 if	(vi	!=	0)
	 	 	 visa32.viClose(vi);
	 	 if	(defrm	!=	0)
	 	 	 visa32.viClose(defrm);
	 }
}
private	void	CheckStatus(int	vi,	int	status)
{
	 if	(status	<	visa32.VI_SUCCESS)
	 {
	 	 System.Text.StringBuilder	err	=	
	 	 	 	 	 new	System.Text.StringBuilder(256);
	 	 visa32.viStatusDesc(vi,	status,	err);
	 	 throw	new	ApplicationException(err.ToString());
	 }
}	

Next:	Deploying	Your	Project

	

	

deploying_your_project

The	only	system	requirements	(specific	to	VISA)	for	deploying	your	compiled
programs	on	other	machines	are:

A	valid	VISA32.DLL	must	be	in	the	system's	PATH	environment
variable.
	
The	resource	address	you	are	trying	to	open	must	exist	on	the
system	and	be	configured	for	the	VISA32.DLL	that	is	found	first
during	the	Windows	DLL	search.

These	requirements	refer	only	to	what	VISA	requires	to	work.		You	will	still
have	to	satisfy	the	normal	.NET	requirements,	such	as	having	the	.NET
framework	installed	on	the	deployed	systems.		Obviously,	any	other	software
libraries	your	program	uses	at	runtime	must	be	installed	as	well.

Because	each	VISA	vendor	installs	its	version	of	the	VISA	DLL,	you	may	have
a	different	VISA	DLL	being	used	on	your	deployed	system	than	the	one	with
which	you	developed	your	application.		When	multiple	vendors'	VISA
implementations	are	present,	the	DLL	used	is	the	one	that	is	found	first	using
Microsoft	Windows'	DLL	search	rules.		If	you	developed	your	program	using
Agilent	VISA,	and	you	wish	your	program	to	use	Agilent	VISA	no	matter	what
other	VISA	implementations	are	on	your	deployed	systems,	you	can	change	the
DLL	name	in	all	of	the	method	declarations	in	visa32.cs	or	visa32.vb	from
"VISA32.DLL"	to	"AGVISA32.DLL."		This	will	prevent	your	program	from
working	with	any	other	company's	VISA	implementation,	and	will	direct	your
program	to	use	the	Agilent	DLL	if	multiple	VISA	DLL's	are	installed	on	the
system.

	

C#

The	viPrintf	and	viScanf	VISA	functions	take	variable	argument	lists	in	C.
	Some	of	viScanf's	variable	arguments	are	references	to	primitive	types	(int,
float,	etc),	meaning	that	the	values	themselves	can	be	changed	by	the	function.
	There	is	no	equivalent	in	either	C#	or	VB	.NET	for	variable	argument	lists	with
reference	arguments,	so	no	direct	translation	is	available.		There	are
undocumented	C#	keywords	(__arglist	and	__makeref,	primarily)	for	calling
printf-	and	scanf-style	variable	argument	lists,	but	there	is	no	guarantee	of	future
support	and	these	keywords	do	not	work	in	VB	.NET.

Agilent	has	chosen	to	implement	a	set	of	basic	one-argument	method	overloads
for	viScanf,	viPrintf,	viSScanf,	and	viSPrintf.		This	allows	you	to	pass	one
argument	to	the	functions,	and	the	proper	overload	will	be	chosen	based	on	the
type	of	the	argument.		Overloads	for	viScanf/viSScanf	for	reading	arrays	with
the	argument	length	parameter	are	also	provided.		There	are	a	total	of	58
overloads	in	each	header	file	to	support	this.		Adding	a	second	parameter	for	all
the	functions	and	providing	all	the	overloads	would	result	in	484	overloads	in
each	file,	which	is	infeasible.		If	you	find	yourself	needing	more	choices	than	are
in	the	Agilent-provided	header	files,	you	can	make	your	own	declarations	based
on	your	needs.

Let's	look	at	one	of	the	overloads	provided	in	the	C#	header	file:

[DllImportAttribute("VISA32.DLL",	EntryPoint="#269",	
	 	 ExactSpelling=true,	CharSet=CharSet.Ansi,	
	 	 SetLastError=true,	CallingConvention=CallingConvention.Cdecl)]
public	static	extern	int	viPrintf(int	vi,	string	writeFmt,	int[]	arr);

This	declaration	allows	viPrintf	to	write	out	an	array	of	integers.		If,	for
example,	you	wanted	to	upload	a	waveform	to	an	arbitrary	waveform	generator,
you	would	typically	send	a	SCPI	header	followed	by	the	array	data.		viPrintf
doesn't	understand	.NET	arrays,	so	it	isn't	aware	of	the	size	of	the	array;	it	only
has	a	pointer	to	data.		The	format	string	has	two	ways	to	inform	viPrintf	of	the
size	of	the	array:	a	number	can	be	in	the	format	string	itself,	or	the	"*"	symbol
can	be	used	to	indicate	that	a	parameter	indicating	the	array	size	is	passed	as	the
first	argument.		

The	provided	overload	allows	you	to	hard-code	the	format	string	with	that	SCPI
header	and	the	size	of	the	array.		You	could	create	a	format	string	on	the	fly	with
the	proper	array	size,	but	you	might	choose	to	avoid	the	overhead	of	string
manipulation	to	create	the	format	string.		Another	solution	that	reduces	your
complexity	and	amount	of	code	is	to	declare	another	override	of	viPrintf	that
allows	for	that	extra	parameter.		If	this	is	something	you	want	to	do,	you	might
declare	your	own	version	of	viScanf	like	this:

C#

[DllImportAttribute("VISA32.DLL",	EntryPoint="#269",	

	 	 ExactSpelling=true,	CharSet=CharSet.Ansi,	

	 	 SetLastError=true,	CallingConvention=CallingConvention.Cdecl)]

public	static	extern	int	viPrintf(int	vi,	string	writeFmt,	

	 	 	 	 		int	pointCount,	int[]	waveform);

VB	.NET

<DllImportAttribute("VISA32.DLL",	EntryPoint:="#269",	ExactSpelling:=True,	_
	 	 				CharSet:=CharSet.Ansi,	SetLastError:=True,	_
	 	 				CallingConvention:=CallingConvention.Cdecl)>	_
Public	Function	viPrintf(ByVal	vi	As	Integer,	ByVal	writeFmt	As	String,	_
	 	 	 	ByVal	pointCount	As	Integer,	_
	 	 	 	ByVal	waveform()	As	Short)	As	Integer
End	Function

You	might	use	this	version	in	a	function	like	this:

VB	.NET

Private	Sub	SendWaveform(ByVal	session	As	Integer,	ByVal	pointData()	As	Short)
				Dim	statusCode	As	Integer
				statusCode	=	viPrintf(session,	"DATA:DAC	VOLATILE,	%*hb"	&	vbLf,	_
							 	 	 		pointData.Length(),	pointData)
				If	(statusCode	<	visa32.VI_SUCCESS)	Then
								Dim	err	As	System.Text.StringBuilder	=	New	System.Text.StringBuilder(256)
								visa32.viStatusDesc(session,	statusCode,	err)
								Throw	New	ApplicationException(err.ToString())
				End	If
End	Sub

The	"%,*hb"	format	string	means,	in	order,	a	parameter	(%),	that	is	an	array	with
the	length	of	the	array	data	passed	as	another	parameter	(*),	that	is	passed	on	the
stack	as	a	reference	to	an	array	of	16-bit	integers	(h),	to	be	written	to	the
instrument	as	an	IEEE	488.2	binary	block	(b).		You	can	create	these	new
function	declarations	because	.NET	simply	sends	the	declared	parameters	to	the
underlying	VISA	C	functions,	and	C	variable	argument	list	functions	know	how
to	parse	the	format	string	so	that	they	can	use	the	stack	to	get	at	the	right	data.		

Safety

As	in	the	C/C++	world,	you	have	to	be	very	careful	when	using	these	methods.
	Even	though	.NET	protects	its	data	internally,	when	it	calls	out	to	C	DLL's	it	is
up	to	the	DLL	to	behave	properly.		If	the	type	that	you	pass	to	viPrintf/viScanf
is	different	from	the	type	the	format	string	promises,	you	will	have	undefined
behavior	and	possible	program	crashes.		For	example,	if	you	call	viScanf	with
an	10-long	array	of	integers,	but	the	format	string	is	"%dl,100"	(promising	space
to	write	100	integers),	you	can	cause	an	illegal	write	to	the	program	heap.	This
may	result	in	the	overwriting	of	program	data	and/or	an	illegal	memory	access
exception.

	

	

dotnet_types_and_visa_c_types_reference

VISA	Type .NET	Type Description

ViInt8,
ViUInt8,
ViChar,
ViByte

System.Byte Since	signed	bytes	are	not	CLS1-compliant,
we	use	the	byte	type	for	both.

ViInt16,
ViUInt16 System.Int16 Since	unsigned	shorts	are	not	CLS-compliant,

we	use	the	signed	type	for	both.

ViInt32,
ViUInt32 System.Int32 Since	unsigned	integers	are	not	CLS-

compliant,	we	use	the	signed	type	for	both.

ViSession,
ViPFindList,
ViPEvent

System.Int32 Sessions	and	other	VISA	object	handles	are
just	32-bit	integers.

ViStatus System.Int32 Status	codes	(error	codes)	have	always	been
32-bit	integers.

ViAddr System.Int32 This	is	a	reference	to	a	remote	32-bit	memory
space,	and	will	therefore	fit	in	a	32-bit	integer

ViBuf System.String,
System.Byte[]

This	type	represents	byte	buffers	or	ASCII
strings	that	are	not	to	be	modified	by	VISA.
	The	System.String	class	was	chosen	for
methods	that	typically	write	ANSI	strings.
	.NET	automatically	marshals	the
System.String	class	into	ASCII	strings	that
VISA	can	accept.		For	methods	that	are
typically	binary	data,	a	byte	array	was
chosen.		It	is	marshaled	such	that	VISA	gets	a
pointer	to	the	first	element	of	the	array.

ViPBuf System.StringBuilder,
System.Byte[]

This	type	represents	byte	buffers	or	ASCII
string	buffers	that	are	to	be	written	to	by
VISA.		System.StringBuilder	was	chosen	for
functions	that	typically	write	ASCII	strings,
because	the	default	marshalling	behavior	of
that	class	is	to	give	the	C	function	a	pointer	to
the	beginning	of	the	preallocated	buffer,	and
to	use	the	0	ASCII	value	to	determine	the	end
of	the	string	written	in	the	buffer.		Don't
forget	to	allocate	enough	storage	space	in
your	StringBuilder	object.		System.Byte	was
chosen	for	functions	that	often	return	binary
data.		It	is	marshaled	such	that	VISA	gets	a
pointer	to	the	first	element	of	the	array.

ViChar[] System.StringBuilder

Arrays	of	ViChar	are	used	when	VISA	plans
to	write	short-length	strings	into	the	passed-in
buffer.		Again,	System.Stringbuilder	is	well-
suited	to	acting	as	a	character	buffer.

ViAttrState
System.Int32,
System.Int16,
System.Byte

The	value	passed	to	viSetAttribute	is	an	8-,
16-,	or	32-bit	integer.

void	*

C#:	out	byte,	out
short,	out	int,
StringBuilder

VB	.NET:	ByRef
Byte,	ByRef	Short,
ByRef	Integer,
StringBuilder

viSetAttribute	can	return	8-,	16-,	or	32-bit
integers,	or	strings.		

The	ViPXXXX	types,	where	'XXXXX'	is	an
integral	type,	are	return	values	for	integer
types.		In	C#,	the	'out'	keyword	means	that	the
value	going	in	doesn't	matter	and	only	the

ViPUInt8,
ViPInt8,	etc.

C#:	out	byte,	etc

VB	.NET:	ByRef
Byte,	etc

return	value	matters.		VB	.NET	does	not	have
the	'out'	keyword,	so	a	reference	is	indicated
by	using	the	'ByRef'	keyword.		Therefore,
you	must	initialize	values	in	VB	.NET	even
though	they	will	be	overwritten.		The	.NET
marshalling	behavior	of	'out'	and	'ByRef'	is	to
pass	the	argument	as	pointer	to	the	value,
which	is	what	VISA	is	expecting	for	the
ViPXXXX	types.

1Common	Language	Specification.		The	specification	of	the	set	of	types	and
.NET	constructs	that	are	applicable	across	VB	.NET,	C#,	and	all	other	.NET
languages.		API	designers	or	others	concerned	with	compatibility	with	multiple
.NET	languages	typically	limit	the	types	they	use	to	CLS-compliant	types.		See
the	Microsoft	Developer	Network	.NET	documentation	for	more	details.

	

http://msdn.microsoft.com

Documentation	Notes

About	This	Help

Revised:	September	2012

Current	with	Agilent	IO	Libraries	Suite	revision	16.3

Copyright	©	1995-1996,	1998,	2000-2012	Agilent	Technologies,	Inc.

Warranty

The	material	contained	in	this	document	is	provided	“as	is,”	and	is	subject	to
being	changed,	without	notice,	in	future	editions.	Further,	to	the	maximum
extent	permitted	by	applicable	law,	Agilent	disclaims	all	warranties,	either
express	or	implied,	with	regard	to	this	documentation	and	any	information
contained	herein,	including	but	not	limited	to	the	implied	warranties	of
merchantability	and	fitness	for	a	particular	purpose.	Agilent	shall	not	be	liable
for	errors	or	for	incidental	or	consequential	damages	in	connection	with	the
furnishing,	use,	or	performance	of	this	document	or	of	any	information
contained	herein.	Should	Agilent	and	the	user	have	a	separate	written	agreement
with	warranty	terms	covering	the	material	in	this	document	that	conflict	with
these	terms,	the	warranty	terms	in	the	separate	agreement	shall	control.

Technology	Licenses

The	hardware	and/or	software	described	in	this	document	are	furnished	under	a
license	and	may	be	used	or	copied	only	in	accordance	with	the	terms	of	such
license.

Restricted	Rights	Legend

If	software	is	for	use	in	the	performance	of	a	U.S.	Government	prime	contract	or
subcontract,	Software	is	delivered	and	licensed	as	“Commercial	computer
software”	as	defined	in	DFAR	252.227-7014	(June	1995),	or	as	a	“commercial
item”	as	defined	in	FAR	2.101(a)	or	as	“Restricted	computer	software”	as
defined	in	FAR	52.227-19	(June	1987)	or	any	equivalent	agency	regulation	or
contract	clause.	Use,	duplication	or	disclosure	of	Software	is	subject	to	Agilent
Technologies’	standard	commercial	license	terms,	and	non-DOD	Departments
and	Agencies	of	the	U.S.	Government	will	receive	no	greater	than	Restricted
Rights	as	defined	in	FAR	52.227-19(c)(1-2)	(June	1987).	U.S.	Government	users
will	receive	no	greater	than	Limited	Rights	as	defined	in	FAR	52.227-14	(June
1987)	or	DFAR	252.227-7015	(b)(2)	(November	1995),	as	applicable	in	any
technical	data.

Trademark	Information

Microsoft®	is	either	a	registered	trademark	or	a	trademark	of	Microsoft
Corporation	in	the	United	States	and/or	other	countries.

PCIeTM	and	PCI	EXPRESS®	are	registered	trademarks	and/or	service	marks	of
PCI-SIG.

Visual	Studio®	is	a	trademark	or	registered	trademark	of	Microsoft	Corporation
in	the	United	States	and/or	other	countries.

Windows®	and	MS	Windows®	are	trademarks	or	registered	trademarks	of
Microsoft	Corporation	in	the	United	States	and/or	other	countries.

Windows	Vista®	is	a	trademark	or	registered	trademark	of	Microsoft
Corporation	in	the	United	States	and/or	other	countries.

Reproduced	with	Permission

Content	from	the	IVI	specifications	reproduced	with	permission	from	the	IVI
Foundation.

The	IVI	Foundation	and	its	member	companies	make	no	warranty	of	any	kind
with	regard	to	this	material,	including,	but	not	limited	to,	the	implied	warranties
of	merchantability	and	fitness	for	a	particular	purpose.	The	IVI	Foundation	and
its	member	companies	shall	not	be	liable	for	errors	contained	herein	or	for
incidental	or	consequential	damages	in	connection	with	the	furnishing,
performance,	or	use	of	this	material.

	

http://www.ivifoundation.org/

Glossary

address
alias
API
attribute
bus	error
bus	error	handler
commander
communication	channel
Connection	Expert
Controller
device
device	driver
device	session
driver
explorer	view
handler
HiSLIP
instrument
instrument	driver
Interactive	IO
interface
interface	driver
interface	session
interrupt
IO	Control
IO	Libraries
lock
mapping
non-Controller	role
notification	area
operation

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

primary	VISA
process
PXI
refresh
register
resource	(or	resource	instance)
resource	class
resource	descriptor
SCPI
secondary	VISA
session
SICL
side-by-side
SRQ
status	byte
symbolic	name
task	guide
taskbar	notification	area
test	system
thread
ViFind32
virtual	instrument
VISA
VISA	address
VISA	alias
VISA	COM
VISA	Instrument	Control	Resources
VISA	name
VISA	resource	manager
VISA	resource	template
VXI	Resource	Manager
Windows	notification	area

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

	

auto-discovery_address_check_and_vifindrsrc

If	you	are	a	VISA	programmer,	or	you	use	applications	developed	with	the	VISA
I/O	library,	you	use	the	viFindRsrc	and	viFindNext	functions	to	discover	and
list	instruments	in	your	test	system.	This	topic	explains	the	interactions	between
Agilent	Connection	Expert	settings	and	viFindRsrc/viFindNext.

GPIB	and	LAN	instruments	have	an	address-check	property,	which	can	be	set
in	Connection	Expert.	The	scanning	algorithm	employed	by
viFindRsrc/viFindNext	uses	the	address-check	property	to	determine	whether	to
scan	for	the	instrument	or	to	assume	its	presence.	In	addition,	viOpen	uses	this
property	to	decide	whether	to	verify	the	presence	of	the	instrument.	Therefore,

When	address-check	is	on:

viFindRsrc/viFindNext	will	scan	for	an	instrument	at	the	given
address.	If	the	instrument	is	present	and	turned	on,	it	will	be
discovered	and	returned	by	viFindRsrc/viFindNext.	If	the
instrument	is	missing	or	nonfunctional	(e.g.,	turned	off),	it	will	not
be	returned.

viOpen	will	verify	the	presence	of	the	instrument	on	which	you
are	trying	to	open	a	session.
	

When	address-check	is	off:

	viFindRsrc/viFindNext	assume	the	presence	of	an	instrument
at	that	address.	The	instrument	will	be	included	in	the	returned
values	from		viFindRsrc/viFindNext	regardless	of	whether	the
instrument	is	actually	present.
		
viOpen	will	not	verify	the	presence	of	the	instrument.	If	the
device	is	not	present	or	not	turned	on,	you	will	not	discover	this
until	you	attempt	to	communicate	with	the	instrument.	viOpen
will	take	less	time	to	execute	if	address-check	is	off.

	

viVPrintf/viVScanf	Example	using	String

Sub	Test_String()
'	Using	viVScanf	and	viVPrintf	in	Visual	Basic	6	is	tricky	because
'	of	the	way	VB6	passes	arguments	on	the	stack.	The	'vararg'
'	argument	to	the	data	needs	to	be	a	'byRef'	pointer	--	which	means
'	it	needs	to	be	a	pointer	to	a	pointer.
'
'	VB	treats	string	arrays	passed	to	external	DLL's	as	a	special	case
'	so	when	a	string	is	passed,	it	ends	up	being	passed	correctly	as	a
'	pointer	to	a	pointer.
'
'	Numeric	arrays,	on	the	other	hand,	cannot	be	passed	directly.	To
'	pass	a	pointer	to	the	numeric	array	pointer,	we	create	another
'	variable	which	we	set	to	the	address	of	the	start	of	the	array
'	and	pass	that	variable	'byRef'	to	the	function.
'
'	Declare	variables	used	by	VISA
'
Dim	err	As	Long
Dim	drm	As	Long
Dim	vi	As	Long
Dim	buf	As	String
'
'	Open	a	default	resource	manager	session	and	open	the	device
'
err	=	viOpenDefaultRM(drm)
err	=	viOpen(drm,	"GPIB2::2::INSTR",	0,	0,	vi)
'
'	==
'	Read	a	string	array	using	viVScanf
'	==
'
Dim	buf256	As	String	*	256	'	pre-allocated,	string
Dim	posn	As	Long
'

'	Tell	the	instrument	to	send	its	IDN	string
'
err	=	viVPrintf(vi,	"*IDN?"	+	vbLf,	0)
'
'	Read	the	string	from	the	instrument
'
err	=	viVScanf(vi,	"%t",	buf256)
'
'	Truncate	the	returned	string	at	the	first	null
'	(A	null	terminated	string	is	returned)
'
posn	=	InStr(buf256,	String(1,	0))
If	(posn	>	0)	Then
buf	=	Left(buf256,	posn	-	1)
Else
buf	=	buf256
End	If
'
'	display	the	string	that	was	read	from	the	instrument
'
MsgBox	buf,	0,	"viVScanf	of	a	String"
'
'	Close	the	VISA	sessions
'
err	=	viClose(vi)
err	=	viClose(drm)
End	Sub

See	Also

viVPrintf,	viVScanf	Using	the	VISA	C	API	in	Microsoft	Visual	Basic	6

	

	

viVQueryf	Example	with	String	and	Indefinite	Length	Block

Sub	Test_viVQueryf()
'	Using	viVScanf	and	viVPrintf	in	Visual	Basic	6	is	tricky	because
'	of	the	way	VB6	passes	arguments	on	the	stack.	The	'vararg'
'	argument	to	the	data	needs	to	be	a	'byRef'	pointer	--	which	means
'	it	needs	to	be	a	pointer	to	a	pointer.
'
'	VB	treats	string	arrays	passed	to	external	DLL's	as	a	special	case
'	so	when	a	string	is	passed,	it	ends	up	being	passed	correctly	as	a
'	pointer	to	a	pointer.
'
'	Numeric	arrays,	on	the	other	hand,	cannot	be	passed	directly.	To
'	pass	a	pointer	to	the	numeric	array	pointer,	we	create	another
'	variable	which	we	set	to	the	address	of	the	start	of	the	array
'	and	pass	that	variable	'byRef'	to	the	function.
'
'	Declare	variables	used	by	VISA
'
Dim	err	As	Long
Dim	drm	As	Long
Dim	vi	As	Long
Dim	buf	As	String
'
'	Open	a	default	resource	manager	session	and	open	the	device
'
err	=	viOpenDefaultRM(drm)
err	=	viOpen(drm,	"GPIB2::2::INSTR",	0,	0,	vi)
'
'	==
'	Write	a	String	and	read	an	indefinite	length	block
'	==
'
'	Set	up	the	test	instrument	to	send	an	IEEE-488
'	indefinite	length	block	terminated	with	a	line-feed.
'

err	=	viVPrintf(vi,	"RECEIVE"	&	vbLf,	0)
err	=	viVPrintf(vi,	"#0abcdefghij"	&	vbLf,	0)
'	This	now	done	in	viVQueryf:
'					---->	err	=	viVPrintf(vi,	"SEND"	&	vbLf,	0)
'
'	Declare	the	byte	array,	a	count	variable	and	a
'	array	to	hold	the	parameter	addresses	for	viVScanf
'
Dim	retCount	As	Long
Dim	byteArray(20)	As	Byte
Dim	paramsArray(3)	As	Long
'
'	Create	and	initialize	a	string	for	the	'writeFmt'
'	parameter	of	viVQueryf.	Note	that	we	can't	put
'	pointers	to	strings	in	the	paramsArray	because
'	strings	in	VB	are	unicode	and	viVQueryf	needs
'	a	ascii	strings.
'
Dim	writeFmtString	As	String
writeFmtString	=	"SEND"
'
'	Put	the	parameter	addresses	in	the	array
'
paramsArray(0)	=	VarPtr(retCount)
paramsArray(1)	=	VarPtr(byteArray(0))
'
'	Set	'retCount	to	the	maximum	number	of	elements
'	that	the	array	can	hold.
'
retCount	=	UBound(byteArray)	-	LBound(byteArray)	+	1
'
'	Read	the	array	from	the	test	instrument	and	set
'	the	retCount	variable	to	the	actual	count	of
'	elements	read.	Note	that	a	line-feed	is	appended
'	to	the	format	strings.	On	the	writeFmt	string,
'	this	is	causes	a	flush	of	the	formatted	write	buffer
'	to	the	device.	The	line-feed	must	be	in	the	format

'	and	not	simply	in	the	data	since	a	line-feed	in	the
'	data	will	not	cause	a	flush.	On	the	readFmt	string,
'	the	line-feed	ensures	that	we	flush	the	new-line	out
'	of	the	read	buffer	and	don't	leave	it	for	a	future
'	formatted	read	to	trip	over.
'
err	=	viVQueryf(vi,	writeFmtString	&	vbLf,	"%#b"	&	vbLf,	paramsArray(0))
'
'	Display	some	of	the	results
'
buf	=	Format(err,	"Error	=	##########0")	&	vbLf	&	_
Format(retCount,	"Retur\n	\Cou\nt	=	##########0")	&	vbLf	&	_
Chr(byteArray(0))	&	Chr(byteArray(1))	&	Chr(byteArray(2))	&	_
Chr(byteArray(3))	&	Chr(byteArray(4))	&	Chr(byteArray(5))	&	_
Chr(byteArray(6))	&	Chr(byteArray(7))	&	Chr(byteArray(8))	&	_
Chr(byteArray(9))	&	vbLf
MsgBox	buf,	0,	"viVQueryf	of	an	IEEE	488	Indefinite	Length	Byte	Array"
'
'	Close	the	VISA	sessions
'
err	=	viClose(vi)
err	=	viClose(drm)
End	Sub

See	Also

viVQueryf	Using	the	VISA	C	API	in	Microsoft	Visual	Basic	6

	

viVScanf	Example	Returning	a	Double	Array

Sub	Test_Double()
'	Using	viVScanf	and	viVPrintf	in	Visual	Basic	6	is	tricky	because
'	of	the	way	VB6	passes	arguments	on	the	stack.	The	'vararg'
'	argument	to	the	data	needs	to	be	a	'byRef'	pointer	--	which	means
'	it	needs	to	be	a	pointer	to	a	pointer.
'
'	VB	treats	string	arrays	passed	to	external	DLL's	as	a	special	case
'	so	when	a	string	is	passed,	it	ends	up	being	passed	correctly	as	a
'	pointer	to	a	pointer.
'
'	Numeric	arrays,	on	the	other	hand,	cannot	be	passed	directly.	To
'	pass	a	pointer	to	the	numeric	array	pointer,	we	create	another
'	variable	which	we	set	to	the	address	of	the	start	of	the	array
'	and	pass	that	variable	'byRef'	to	the	function.
'
'	Declare	variables	used	by	VISA
'
Dim	err	As	Long
Dim	drm	As	Long
Dim	vi	As	Long
Dim	buf	As	String
'
'	Open	a	default	resource	manager	session	and	open	the	device
'
err	=	viOpenDefaultRM(drm)
err	=	viOpen(drm,	"GPIB2::2::INSTR",	0,	0,	vi)
'
'	==
'	Read	a	double	array
'	==
'
'	Set	up	the	test	instrument	to	send	a	comma
'	separated	array	of	floating	point	values
'	terminated	with	a	line-feed.

'
err	=	viVPrintf(vi,	"RECEIVE"	&	vbLf,	0)
err	=	viVPrintf(vi,	"1.1,2.2,3.3,4.4,5.5"	&	vbLf,	0)
err	=	viVPrintf(vi,	"SEND"	&	vbLf,	0)
'
'	Declare	the	numeric	array,	a	count	variable	and	a
'	array	to	hold	the	parameter	addresses	for	viVScanf
'
Dim	retCount	As	Long
Dim	dblArray(20)	As	Double
Dim	paramsArray(2)	As	Long
'
'	Put	the	parameter	addresses	in	the	array
'
paramsArray(0)	=	VarPtr(retCount)
paramsArray(1)	=	VarPtr(dblArray(0))
'
'	Set	'retCount	to	the	maximum	number	of	elements
'	that	the	array	can	hold.
'
retCount	=	UBound(dblArray)	-	LBound(dblArray)	+	1
'
'	Read	the	array	from	the	test	instrument	and	set
'	the	retCount	variable	to	the	actual	count	of
'	elements	read.	Note	that	the	format	string
'	specifies	the	line-feed	--	this	is	needed	to
'	sure	the	line-feed	is	flushed	from	the	formatted
'	IO	buffer.
'
err	=	viVScanf(vi,	"%,#lf"	&	vbLf,	paramsArray(0))
'
'	Display	some	of	the	results
'
buf	=	Format(err,	"Error	=	##########0")	&	vbLf	&	_
Format(retCount,	"Retur\n	\Cou\nt	=	##########0")	&	vbLf	&	_
Format(dblArray(0),	"##0.0,	")	&	vbLf	&	_
Format(dblArray(1),	"##0.0,	")	&	vbLf	&	_

Format(dblArray(2),	"##0.0,	")	&	vbLf	&	_
Format(dblArray(3),	"##0.0,	")	&	vbLf	&	_
Format(dblArray(4),	"##0.0,	")	&	vbLf
MsgBox	buf,	0,	"viVScanf	of	a	Double	Array"
'
'	Close	the	VISA	sessions
'
err	=	viClose(vi)
err	=	viClose(drm)
End	Sub

See	Also

viVScanf	

Using	the	VISA	C	API	in	Microsoft	Visual	Basic	6

	

viVScanf	Example	Reading	an	IEEE	488	Definite	Length	Block
and	Returning	a	Byte	Array

Sub	Test_DefiniteLengthBlock()
'	Using	viVScanf	and	viVPrintf	in	Visual	Basic	6	is	tricky	because
'	of	the	way	VB6	passes	arguments	on	the	stack.	The	'vararg'
'	argument	to	the	data	needs	to	be	a	'byRef'	pointer	--	which	means
'	it	needs	to	be	a	pointer	to	a	pointer.
'
'	VB	treats	string	arrays	passed	to	external	DLL's	as	a	special	case
'	so	when	a	string	is	passed,	it	ends	up	being	passed	correctly	as	a
'	pointer	to	a	pointer.
'
'	Numeric	arrays,	on	the	other	hand,	cannot	be	passed	directly.	To
'	pass	a	pointer	to	the	numeric	array	pointer,	we	create	another
'	variable	which	we	set	to	the	address	of	the	start	of	the	array
'	and	pass	that	variable	'byRef'	to	the	function.
'
'	Declare	variables	used	by	VISA
'
Dim	err	As	Long
Dim	drm	As	Long
Dim	vi	As	Long
Dim	buf	As	String
'
'	Open	a	default	resource	manager	session	and	open	the	device
'
err	=	viOpenDefaultRM(drm)
err	=	viOpen(drm,	"GPIB2::2::INSTR",	0,	0,	vi)
'
'	==
'	Read	an	IEEE	488	definite	length	block
'	==
'
'	Set	up	the	test	instrument	to	send	an	IEEE-488
'	definite	length	block	terminated	with	a	line-feed.

'
err	=	viVPrintf(vi,	"RECEIVE"	&	vbLf,	0)
err	=	viVPrintf(vi,	"#210abcdefghij"	&	vbLf,	0)
err	=	viVPrintf(vi,	"SEND"	&	vbLf,	0)
'
'	Declare	the	byte	array,	a	count	variable	and	a
'	array	to	hold	the	parameter	addresses	for	viVScanf
'
Dim	retCount	As	Long
Dim	byteArray(20)	As	Byte
Dim	paramsArray(2)	As	Long
'
'	Put	the	parameter	addresses	in	the	array
'
paramsArray(0)	=	VarPtr(retCount)
paramsArray(1)	=	VarPtr(byteArray(0))
'
'	Set	'retCount	to	the	maximum	number	of	elements
'	that	the	array	can	hold.
'
retCount	=	UBound(byteArray)	-	LBound(byteArray)	+	1
'
'	Read	the	array	from	the	test	instrument	and	set
'	the	retCount	variable	to	the	actual	count	of
'	elements	read.	Note	that	the	format	string
'	specifies	the	line-feed	--	this	is	needed	to
'	sure	the	line-feed	is	flushed	from	the	formatted
'	IO	buffer.
'
err	=	viVScanf(vi,	"%#b"	&	vbLf,	paramsArray(0))
'
'	Display	some	of	the	results
'
buf	=	Format(err,	"Error	=	##########0")	&	vbLf	&	_
Format(retCount,	"Retur\n	\Cou\nt	=	##########0")	&	vbLf	&	_
Chr(byteArray(0))	&	Chr(byteArray(1))	&	Chr(byteArray(2))	&	_
Chr(byteArray(3))	&	Chr(byteArray(4))	&	Chr(byteArray(5))	&	_

Chr(byteArray(6))	&	Chr(byteArray(7))	&	Chr(byteArray(8))	&	_
Chr(byteArray(9))	&	vbLf
MsgBox	buf,	0,	"viVScanf	of	an	IEEE	488	Definite	Length	Byte	Array"
'
'	Close	the	VISA	sessions
'
err	=	viClose(vi)
err	=	viClose(drm)
End	Sub

See	Also

viVScanf	Using	the	VISA	C	API	in	Microsoft	Visual	Basic	6

	

viVScanf	Example	Reading	an	IEEE	488	Indefinite	Length	Block
and	Returning	a	Byte	Array

Sub	Test_IndefiniteLengthBlock()
'	Using	viVScanf	and	viVPrintf	in	Visual	Basic	6	is	tricky	because
'	of	the	way	VB6	passes	arguments	on	the	stack.	The	'vararg'
'	argument	to	the	data	needs	to	be	a	'byRef'	pointer	--	which	means
'	it	needs	to	be	a	pointer	to	a	pointer.
'
'	VB	treats	string	arrays	passed	to	external	DLL's	as	a	special	case
'	so	when	a	string	is	passed,	it	ends	up	being	passed	correctly	as	a
'	pointer	to	a	pointer.
'
'	Numeric	arrays,	on	the	other	hand,	cannot	be	passed	directly.	To
'	pass	a	pointer	to	the	numeric	array	pointer,	we	create	another
'	variable	which	we	set	to	the	address	of	the	start	of	the	array
'	and	pass	that	variable	'byRef'	to	the	function.
'
'	Declare	variables	used	by	VISA
'
Dim	err	As	Long
Dim	drm	As	Long
Dim	vi	As	Long
Dim	buf	As	String
'
'	Open	a	default	resource	manager	session	and	open	the	device
'
err	=	viOpenDefaultRM(drm)
err	=	viOpen(drm,	"GPIB2::2::INSTR",	0,	0,	vi)
'
'	==
'	Read	an	IEEE	488	indefinite	length	block
'	==
'
'	Set	up	the	test	instrument	to	send	an	IEEE-488
'	indefinite	length	block	terminated	with	a	line-feed.

'
err	=	viVPrintf(vi,	"RECEIVE"	&	vbLf,	0)
err	=	viVPrintf(vi,	"#0abcdefghij"	&	vbLf,	0)
err	=	viVPrintf(vi,	"SEND"	&	vbLf,	0)
'
'	Declare	the	byte	array,	a	count	variable	and	a
'	array	to	hold	the	parameter	addresses	for	viVScanf
'
Dim	retCount	As	Long
Dim	byteArray(20)	As	Byte
Dim	paramsArray(2)	As	Long
'
'	Put	the	parameter	addresses	in	the	array
'
paramsArray(0)	=	VarPtr(retCount)
paramsArray(1)	=	VarPtr(byteArray(0))
'
'	Set	'retCount	to	the	maximum	number	of	elements
'	that	the	array	can	hold.
'
retCount	=	UBound(byteArray)	-	LBound(byteArray)	+	1
'
'	Read	the	array	from	the	test	instrument	and	set
'	the	retCount	variable	to	the	actual	count	of
'	elements	read.	Note	that	the	format	string
'	specifies	the	line-feed	--	this	is	needed	to
'	sure	the	line-feed	is	flushed	from	the	formatted
'	IO	buffer.
'
err	=	viVScanf(vi,	"%#b"	&	vbLf,	paramsArray(0))
'
'	Display	some	of	the	results
'
buf	=	Format(err,	"Error	=	##########0")	&	vbLf	&	_
Format(retCount,	"Retur\n	\Cou\nt	=	##########0")	&	vbLf	&	_
Chr(byteArray(0))	&	Chr(byteArray(1))	&	Chr(byteArray(2))	&	_
Chr(byteArray(3))	&	Chr(byteArray(4))	&	Chr(byteArray(5))	&	_

Chr(byteArray(6))	&	Chr(byteArray(7))	&	Chr(byteArray(8))	&	_
Chr(byteArray(9))	&	vbLf
MsgBox	buf,	0,	"viVScanf	of	an	IEEE	488	Indefinite	Length	Byte	Array"
'
'	Close	the	VISA	sessions
'
err	=	viClose(vi)
err	=	viClose(drm)
End	Sub

See	Also

viVScanf	Using	the	VISA	C	API	in	Microsoft	Visual	Basic	6

	

()()

Syntax

viOpenDefaultRM(out	int	sesn);

Description

Opens	the	default	VISA	Resource	Manager,	the	Class	Factory1	VISA	Object	that
knows	how	to	find	and	open	VISA	resources.		This	function	must	be	called
before	any	other	VISA	functions	can	be	invoked.	The	first	call	to	this	function
initializes	the	VISA	system,	including	the	Default	Resource	Manager	resource,
and	also	returns	a	session	to	that	resource.	Subsequent	calls	to	this	function
return	unique	sessions	to	the	same	Default	Resource	Manager	resource.

Parameters

Name Dir Type Description

sesn OUT int Unique	logical	identifier	to	a	Default	Resource	Manager	session.

Return	Values

Completion	Code Description

VI_SUCCESS Session	to	the	Default	Resource	Manager	resource	created
successfully.

Error	Codes Description

VI_ERROR_ALLOC Insufficient	system	resources	to	create	a	session	to	the	Default
Resource	Manager	resource.

VI_ERROR_INV_SETUP Some	implementation-specific	configuration	file	is	corrupt	or
does	not	exist.

VI_ERROR_SYSTEM_ERROR The	VISA	system	failed	to	initialize.

C#	Example

public	int	OpenRM()
{
	 int	resourceManager,	viError;
	 viError	=	visa32.viOpenDefaultRM(out	resourceManager);
	 if	(viError	<	visa32.VI_SUCCESS)
	 	 throw	new	ApplicationException(
	 	 	 	 	 "Failed	to	open	Resource	Manager");
	 return	resourceManager;
}

VB	.NET	Example

Public	Function	OpenRM()	As	Integer
				Dim	resourceManager	As	Integer	=	0,	viError	As	Integer
				viError	=	visa32.viOpenDefaultRM(resourceManager)
				If	viError	<	visa32.VI_SUCCESS	Then
								Throw	New	ApplicationException("Failed	to	open	Resource	Manager")
				End	If
				Return	resourceManager
End	Function

1See	the	excellent	book	Design	Patterns,	Gamma	et	al,	for	more	information
about	the	Class	Factory	pattern	and	other	commonly	used	patterns	in	software
systems.

	

	

Syntax

Syntax

viScanf(int	vi,	string	readFmt,	<overloaded

parameter>);

Description

This	operation	receives	data	from	a	device,	formats	it	by	using	the	format	string,
and	stores	the	data	in	the	overloaded	argument	variable.	The	format	string	can
have	format	specifier	sequences,	white	space	characters,	and	ordinary	characters.

For	information	about	getting	more	options	in	the	parameter	list,	see	Advanced
Use	of	viPrintf/viScanf.

Parameters

Name Dir Type Description

vi IN int Unique	logical	identifier	to	a	session.

readFmt IN string String	describing	the	format	for	arguments.

overloaded
argument OUT N/A A	list	with	the	variable	number	of	parameters	into	which	the	data	is

read	and	the	format	string	is	applied.

Return	Values	

Completion	Code Description

VI_SUCCESS Data	were	successfully	read	and	formatted	into	arg	parameter(s).

Error	Codes Description

VI_ERROR_ALLOC The	system	could	not	allocate	a	formatted	I/O	buffer	because	of
insufficient	resources.

VI_ERROR_INV_FMT A	format	specifier	in	the	readFmt	string	is	invalid.

VI_ERROR_INV_SESSION
ERROR_INV_OBJECT

The	given	session	or	object	reference	is	invalid	(both	are	the	same
value).

VI_ERROR_IO Could	not	perform	read	function	because	of	I/O	error.

VI_ERROR_NSUP_FMT A	format	specifier	in	the	readFmt	string	is	not	supported.

VI_ERROR_RSRC_LOCKED Specified	operation	could	not	be	performed	because	the	resource
identified	by	vi	has	been	locked	for	this	kind	of	access.

VI_ERROR_TMO Timeout	expired	before	read	function	completed.

C#	Example

public	int	ReadDefiniteLengthBinaryBlockAsInt32(int	session,	
	 	 	 	 int	maxElementCount,	int[]	data)
{
	 int	viError,	elementCount	=	maxElementCount;
	 viError	=	visa32.viScanf(session,	"%#lb",	ref	elementCount,	data);
	 if	(viError	<	visa32.VI_SUCCESS)
	 {
	 	 System.Text.StringBuilder	error	=	
	 	 	 	 	 new	System.Text.StringBuilder(256);
	 	 visa32.viStatusDesc(session,	viError,	error);
	 	 throw	new	ApplicationException(error.ToString());
	 }
	 return	elementCount;
}

VB	.NET	Example

Public	Function	ReadDefiniteLengthBinaryBlockAsInt32(ByVal	session	As	Integer,	_
	 	 	 	 			ByVal	maxElementCount	As	Integer,	_
	 	 	 	 			ByVal	data()	As	Integer)	As	Integer
				Dim	viError	As	Integer,	elementCount	As	Integer	=	maxElementCount
				viError	=	visa32.viScanf(session,	"%#lb",	elementCount,	data)
				If	viError	<	visa32.VI_SUCCESS	Then
								Dim	err	As	System.Text.StringBuilder	=	New	System.Text.StringBuilder(256)
								visa32.viStatusDesc(session,	viError,	err)
								Throw	New	ApplicationException(err.ToString())
				End	If
				Return	elementCount
End	Function

	

	

	Welcome
	VISA User's Guide
	VISA Overview
	Programming with VISA
	Example Programs and Installation Folders
	VISA Resources and Attributes
	Using Sessions
	Opening a Session
	Addressing a Session
	Closing a Session
	Searching for Resources

	Sending I/O Commands
	formatio.c
	nonfmtio.c

	Using Events and Handlers
	Events and Attributes
	Instrument Control (INSTR) Resource Events
	Memory Access (MEMACC) Resource Event
	GPIB Bus Interface (INTFC) Resource Events
	TCPIP Socket (SOCKET) Resource Event

	Using the Callback Method
	evnthdlr.c
	srqhdlr.c

	Using the Queuing Method
	evntqueu.c

	Trapping Errors
	Logging Error Messages
	Using Locks
	lockexcl.c
	lockshr.c

	Programming via GPIB and VXI
	GPIB and VXI Interfaces Overview
	Using High Level Memory Functions
	vxihl.c
	gpibvxih.c

	Using Low Level Memory Functions
	vxill.c
	gpibvxil.c

	Using Low/High Level Memory I/O Methods
	memio

	Using the Memory Access Resource
	peek16.c

	Using VXI-Specific Attributes

	Programming PXI Devices
	PXI Overview
	Using High-Level Memory Functions
	PXIVisaSample

	Using Low-Level Memory Functions
	PXIVisaSample

	Using PXI-Specific Attributes
	Using PXI MEMACC

	Programming via LAN
	LAN and Remote Interfaces Overview
	Using the TCPIP Interface Type for LAN Access
	Using a Remote Interface for LAN Access

	Programming via USB
	USB Interfaces Overview
	Communicating with a USB Instrument Using VISA

	VISA Functions
	viAssertIntrSignal
	viAssertTrigger
	viAssertUtilSignal
	viBufRead
	viBufWrite
	viClear
	viClose
	viDisableEvent
	viDiscardEvents
	viEnableEvent
	viEventHandler
	viFindNext
	viFindRsrc
	viFlush
	viGetAttribute
	viGpibCommand
	viGpibControlATN
	viGpibControlREN
	viGpibPassControl
	viGpibSendIFC
	viIn8Ex_viIn16Ex_viIn32Ex_and_viIn64Ex
	viIn8_viIn16_viIn32_and_viIn64
	viInstallHandler
	viLock
	viMapAddress
	viMapAddressEx
	viMapTrigger
	viMemAlloc
	viMemAllocEx
	viMemFree
	viMemFreeEx
	viMove
	viMoveEx
	viMoveAsync
	viMoveAsyncEx
	viMoveIn8_viMoveIn16_viMoveIn32_and_viMoveIn64
	viMoveIn8Ex_viMoveIn16Ex_viMoveIn32Ex_and_viMoveIn64Ex
	viMoveOut8_viMoveOut16_viMoveOut32_and_viMoveOut64
	viMoveOut8Ex_viMoveOut16Ex_viMoveOut32Ex_and_viMoveOut64Ex
	viOpen
	viOpenDefaultRM
	viOut8Ex_viOut16Ex_viOut32Ex_and_viOut64Ex
	viOut8_viOut16_viOut32_and_viOut64
	viParseRsrc
	viParseRsrcEx
	viPeek8_viPeek16_viPeek32_and_viPeek64
	viPoke8_viPoke16_viPoke32_and_viPoke64
	viPrintf
	viQueryf
	viRead
	viRead/viWrite Notes

	viReadAsync
	viReadSTB
	viReadToFile
	viScanf
	viSetAttribute
	viSetBuf
	viSPrintf
	viSScanf
	viStatusDesc
	viTerminate
	viUninstallHandler
	viUnlock
	viUnmapAddress
	viUnmapTrigger
	viUsbControlIn
	viUsbControlOut
	viVPrintf
	viVQueryf
	viVScanf
	viVSPrintf
	viVSScanf
	viVxiCommandQuery
	viWaitOnEvent
	viWrite
	viRead/viWrite Notes

	viWriteAsync
	viWriteFromFile

	VISA Attributes
	Agilent-Defined VISA Attributes
	VISA Template Attributes
	GPIB Bus Interface (INTFC) Resource
	Instrument Control (INSTR) Resource
	TCPIP Socket (SOCKET) Resource
	VXI Mainframe Backplane (BACKPLANE) Resource
	Memory Access (MEMACC) Resource
	VISA Attribute Codes

	VISA Library Information
	VISA Type Definitions
	VISA Error Codes
	VISA Directories
	Using VISA in Visual Basic 6
	VB6 Types and VISA C Types Reference

	Using VISA in Microsoft .NET
	VISA API Essentials
	viOpenDefaultRM
	viOpen
	viClose
	viRead
	viWrite
	viPrintf
	viScanf

	Tutorial
	Getting Started
	Creating Your Project
	Adding Agilent's VISA Header Files to Your Project
	Using the Header File in Your Project
	Adding Error Handling to Your Project
	Reading and Writing Array Data
	Putting it All Together
	Deploying Your Project

	Advanced Use of viPrintf/viScanf
	.NET Types and VISA C Types Reference

	Documentation Notes
	Glossary

