
Microsoft®	Visual	Basic®	Scripting	Edition	

Feature
Information

	VBScript	Language	Reference	
	Version	Information	

	
VBScript	Features
VBA	Features	not	in	VBScript
VBScript	Features	not	in	VBA
Microsoft	Scripting	Run-Time	Features

Microsoft®	Visual	Basic®	Scripting	Edition	

Alphabetic
Keyword	List

	VBScript	Language	Reference	
	Version	Information	

	
Abs	Function
Addition	Operator	(+)
And	Operator
Array	Function
Asc	Function
Assignment	Operator	(=)
Atn	Function
Call	Statement
CBool	Function
CByte	Function
CCur	Function
CDate	Function
CDbl	Function
Chr	Function
CInt	Function
Class	Object
Class	Statement
Clear	Method
CLng	Function
Color	Constants
Comparison	Constants
Concatenation	Operator	(&)
Const	Statement
Cos	Function
CreateObject	Function
CSng	Function
CStr	Function
Date	and	Time	Constants
Date	Format	Constants

Date	Function
DateAdd	Function
DateDiff	Function
DatePart	Function
DateSerial	Function
DateValue	Function
Day	Function
Description	Property
Dictionary	Object
Dim	Statement
Division	Operator	(/)
Do...Loop	Statement
Empty
Eqv	Operator
Erase	Statement
Err	Object
Eval	Function
Execute	Method
Execute	Statement
Exit	Statement
Exp	Function
Exponentiation	Operator	(^)
False
FileSystemObject	Object
Filter	Function
FirstIndex	Property
Fix	Function
For...Next	Statement
For	Each...Next	Statement
FormatCurrency	Function
FormatDateTime	Function
FormatNumber	Function
FormatPercent	Function
Function	Statement
GetObject	Function
GetRef	Function
Global	Property

Hex	Function
HelpContext	Property
HelpFile	Property
Hour	Function
If...Then...Else	Statement
IgnoreCase	Property
Imp	Operator
Initialize	Event
InputBox	Function
InStr	Function
InStrRev	Function
Int	Function
Integer	Division	Operator	(\)
Is	Operator
IsArray	Function
IsDate	Function
IsEmpty	Function
IsNull	Function
IsNumeric	Function
IsObject	Function
Join	Function
LBound	Function
LCase	Function
Left	Function
Len	Function
Length	Property
LoadPicture	Function
Log	Function
LTrim	Function
Match	Object
Matches	Collection
Mid	Function
Minute	Function
Miscellaneous	Constants
Mod	Operator
Month	Function
MonthName	Function

MsgBox	Constants
MsgBox	Function
Multiplication	Operator	(*)
Negation	Operator	(-)
Not	Operator
Now	Function
Nothing
Null
Number	Property
Oct	Function
On	Error	Statement
Operator	Precedence
Option	Explicit	Statement
Or	Operator
Pattern	Property
Private	Statement
PropertyGet	Statement
PropertyLet	Statement
PropertySet	Statement
Public	Statement
Raise	Method
Randomize	Statement
ReDim	Statement
RegExp	Object
Rem	Statement
Replace	Function
Replace	Method
RGB	Function
Right	Function
Rnd	Function
Round	Function
RTrim	Function
ScriptEngine	Function
ScriptEngineBuildVersion	Function
ScriptEngineMajorVersion	Function
ScriptEngineMinorVersion	Function
Second	Function

Select	Case	Statement
Set	Statement
Sgn	Function
Sin	Function
Source	Property
Space	Function
Split	Function
Sqr	Function
StrComp	Function
String	Constants
String	Function
StrReverse	Function
Sub	Statement
Subtraction	Operator	(-)
Tan	Function
Terminate	Event
Test	Method
Time	Function
Timer	Function
TimeSerial	Function
TimeValue	Function
Trim	Function
Tristate	Constants
True
TypeName	Function
UBound	Function
UCase	Function
Value	Property
VarType	Constants
VarType	Function
VBScript	Constants
Weekday	Function
WeekdayName	Function
While...Wend	Statement
With	Statement
Xor	Operator
Year	Function

Microsoft®	Visual	Basic®	Scripting	Edition	

Constants
	VBScript	Language	Reference	

	Version	Information	

	
Color	Constants
Comparison	Constants
Date	and	Time	Constants
Date	Format	Constants
Miscellaneous	Constants
MsgBox	Constants
String	Constants
Tristate	Constants
VarType	Constants
VBScript	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	

VBScript	Errors
	VBScript	Language	Reference	

	Version	Information	

	
Run-time	Errors
Syntax	Errors

Microsoft®	Visual	Basic®	Scripting	Edition	

Events
	VBScript	Language	Reference	

	Version	Information	

	
Initialize	Event
Terminate	Event

Microsoft®	Visual	Basic®	Scripting

EditionFunctions
	VBScript	Language	Reference	

	Version	Information	

	
Abs	Function
Array	Function
Asc	Function
Atn	Function
CBool	Function
CByte	Function
CCur	Function
CDate	Function
CDbl	Function
Chr	Function
CInt	Function
CLng	Function
Cos	Function
CreateObject	Function
CSng	Function
CStr	Function
Date	Function
DateAdd	Function
DateDiff	Function
DatePart	Function
DateSerial	Function
DateValue	Function
Day	Function
Eval	Function
Exp	Function
Filter	Function
Fix	Function
FormatCurrency	Function
FormatDateTime	Function
FormatNumber	Function
FormatPercent	Function
GetObject	Function

GetRef	Function
Hex	Function
Hour	Function
InputBox	Function
InStr	Function
InStrRev	Function
Int	Function
IsArray	Function
IsDate	Function
IsEmpty	Function
IsNull	Function
IsNumeric	Function
IsObject	Function
Join	Function
LBound	Function
LCase	Function
Left	Function
Len	Function
LoadPicture	Function
Log	Function
LTrim	Function
Mid	Function
Minute	Function
Month	Function
MonthName	Function
MsgBox	Function
Now	Function
Oct	Function
Replace	Function
RGB	Function
Right	Function
Rnd	Function
Round	Function
RTrim	Function
ScriptEngine	Function
ScriptEngineBuildVersion	Function
ScriptEngineMajorVersion	Function

ScriptEngineMinorVersion	Function
Second	Function
Sgn	Function
Sin	Function
Space	Function
Split	Function
Sqr	Function
StrComp	Function
String	Function
StrReverse	Function
Tan	Function
Time	Function
Timer	Function
TimeSerial	Function
TimeValue	Function
Trim	Function
TypeName	Function
UBound	Function
UCase	Function
VarType	Function
Weekday	Function
WeekdayName	Function
Year	Function

Microsoft®	Visual	Basic®	Scripting	Edition	

Methods
	VBScript	Language	Reference	

	Version	Information	

	
Clear	Method
Execute	Method
Raise	Method
Replace	Method
Test	Method

Microsoft®	Visual	Basic®	Scripting	Edition	

Objects
	VBScript	Language	Reference	

	Version	Information	

	
Class	Object
Dictionary	Object
Err	Object
FileSystemObject	Object
Match	Object
Matches	Collection
RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	

Operators
	VBScript	Language	Reference	

	Version	Information	

	
Addition	Operator	(+)
And	Operator
Assignment	Operator	(=)
Concatenation	Operator	(&)
Division	Operator	(/)
Eqv	Operator
Exponentiation	Operator	(^)
Imp	Operator
Integer	Division	Operator	(\)
Is	Operator
Mod	Operator
Multiplication	Operator	(*)
Negation	Operator	(-)
Not	Operator
Operator	Precedence
Or	Operator
Subtraction	Operator	(-)
Xor	Operator

Microsoft®	Visual	Basic®	Scripting	Edition	

Properties
	VBScript	Language	Reference	

	Version	Information	

	
Description	Property
FirstIndex	Property
Global	Property
HelpContext	Property
HelpFile	Property
IgnoreCase	Property
Length	Property
Number	Property
Pattern	Property
Source	Property
Value	Property

Microsoft®	Visual	Basic®	Scripting

EditionStatements
	VBScript	Language	Reference	

	Version	Information	

	
Call	Statement
Class	Statement
Const	Statement
Dim	Statement
Do...Loop	Statement
Erase	Statement
Execute	Statement
Exit	Statement
For...Next	Statement
For	Each...Next	Statement
Function	Statement
If...Then...Else	Statement
On	Error	Statement
Option	Explicit	Statement
Private	Statement
Property	Get	Statement
Property	Let	Statement
Property	Set	Statement
Public	Statement
Randomize	Statement
ReDim	Statement
Rem	Statement
Select	Case	Statement
Set	Statement
Sub	Statement
While...Wend	Statement
With	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Using
Conditional
Statements

	VBScript	Tutorial
Previous

Next

Controlling	Program	Execution

You	can	control	the	flow	of	your	script	with	conditional	statements	and
looping	statements.	Using	conditional	statements,	you	can	write	VBScript
code	that	makes	decisions	and	repeats	actions.	The	following	conditional
statements	are	available	in	VBScript:

If...Then...Else	statement

Select	Case	statement

Making	Decisions	Using	If...Then...Else

The	If...Then...Else	statement	is	used	to	evaluate	whether	a	condition	is
True	or	False	and,	depending	on	the	result,	to	specify	one	or	more
statements	to	run.	Usually	the	condition	is	an	expression	that	uses	a
comparison	operator	to	compare	one	value	or	variable	with	another.	For
information	about	comparison	operators,	see	Comparison	Operators.
If...Then...Else	statements	can	be	nested	to	as	many	levels	as	you	need.

Running	Statements	if	a	Condition	is	True

To	run	only	one	statement	when	a	condition	is	True,	use	the	single-line
syntax	for	the	If...Then...Else	statement.	The	following	example	shows	the
single-line	syntax.	Notice	that	this	example	omits	the	Else	keyword.

	Sub	FixDate()

					Dim	myDate
					myDate	=	#2/13/95#
					If	myDate	<	Now	Then	myDate	=	Now
	End	Sub

To	run	more	than	one	line	of	code,	you	must	use	the	multiple-line	(or	block)
syntax.	This	syntax	includes	the	End	If	statement,	as	shown	in	the
following	example:

	Sub	AlertUser(value)
					If	value	=	0	Then
									AlertLabel.ForeColor	=	vbRed
									AlertLabel.Font.Bold	=	True
									AlertLabel.Font.Italic	=	True
					End	If
	End	Sub

Running	Certain	Statements	if	a	Condition	is	True	and	Running	Others	if	a	Condition	is
False

You	can	use	an	If...Then...Else	statement	to	define	two	blocks	of
executable	statements:	one	block	to	run	if	the	condition	is	True,	the	other
block	to	run	if	the	condition	is	False.

	Sub	AlertUser(value)
					If	value	=	0	Then
									AlertLabel.ForeColor	=	vbRed
									AlertLabel.Font.Bold	=	True
									AlertLabel.Font.Italic	=	True

					Else
									AlertLabel.Forecolor	=	vbBlack
									AlertLabel.Font.Bold	=	False
									AlertLabel.Font.Italic	=	False
					End	If
	End	Sub

Deciding	Between	Several	Alternatives

A	variation	on	the	If...Then...Else	statement	allows	you	to	choose	from
several	alternatives.	Adding	ElseIf	clauses	expands	the	functionality	of	the
If...Then...Else	statement	so	you	can	control	program	flow	based	on
different	possibilities.	For	example:

	Sub	ReportValue(value)
					If	value	=	0	Then
									MsgBox	value
					ElseIf	value	=	1	Then
									MsgBox	value
					ElseIf	value	=	2	then
									Msgbox	value
					Else
									Msgbox	"Value	out	of	range!"
					End	If

You	can	add	as	many	ElseIf	clauses	as	you	need	to	provide	alternative
choices.	Extensive	use	of	the	ElseIf	clauses	often	becomes	cumbersome.	A
better	way	to	choose	between	several	alternatives	is	the	Select	Case
statement.

Making	Decisions	with	Select	Case

The	Select	Case	structure	provides	an	alternative	to	If...Then...ElseIf	for
selectively	executing	one	block	of	statements	from	among	multiple	blocks
of	statements.	A	Select	Case	statement	provides	capability	similar	to	the
If...Then...Else	statement,	but	it	makes	code	more	efficient	and	readable.

A	Select	Case	structure	works	with	a	single	test	expression	that	is	evaluated
once,	at	the	top	of	the	structure.	The	result	of	the	expression	is	then
compared	with	the	values	for	each	Case	in	the	structure.	If	there	is	a	match,
the	block	of	statements	associated	with	that	Case	is	executed:

	Select	Case	Document.Form1.CardType.Options(SelectedIndex).Text
				Case	"MasterCard"
								DisplayMCLogo
								ValidateMCAccount
				Case	"Visa"
								DisplayVisaLogo
								ValidateVisaAccount
				Case	"American	Express"
								DisplayAMEXCOLogo
								ValidateAMEXCOAccount
				Case	Else
								DisplayUnknownImage
								PromptAgain
End	Select

Notice	that	the	Select	Case	structure	evaluates	an	expression	once	at	the	top
of	the	structure.	In	contrast,	the	If...Then...ElseIf	structure	can	evaluate	a
different	expression	for	each	ElseIf	statement.	You	can	replace	an

If...Then...ElseIf	structure	with	a	Select	Case	structure	only	if	each	ElseIf
statement	evaluates	the	same	expression.

Microsoft®	Visual	Basic®	Scripting	Edition	Looping
Through	Code

	VBScript	Tutorial
Previous

Next

Using	Loops	to	Repeat	Code

Looping	allows	you	to	run	a	group	of	statements	repeatedly.	Some	loops
repeat	statements	until	a	condition	is	False;	others	repeat	statements	until	a
condition	is	True.	There	are	also	loops	that	repeat	statements	a	specific
number	of	times.

The	following	looping	statements	are	available	in	VBScript:

Do...Loop:	Loops	while	or	until	a	condition	is	True.

While...Wend:	Loops	while	a	condition	is	True.

For...Next:	Uses	a	counter	to	run	statements	a	specified	number	of
times.

For	Each...Next:	Repeats	a	group	of	statements	for	each	item	in	a
collection	or	each	element	of	an	array.

Using	Do	Loops

You	can	use	Do...Loop	statements	to	run	a	block	of	statements	an	indefinite
number	of	times.	The	statements	are	repeated	either	while	a	condition	is
True	or	until	a	condition	becomes	True.

Repeating	Statements	While	a	Condition	is	True

Use	the	While	keyword	to	check	a	condition	in	a	Do...Loop	statement.	You
can	check	the	condition	before	you	enter	the	loop	(as	shown	in	the
following	ChkFirstWhile	example),	or	you	can	check	it	after	the	loop	has
run	at	least	once	(as	shown	in	the	ChkLastWhile	example).	In	the
ChkFirstWhile	procedure,	if	myNum	is	set	to	9	instead	of	20,	the	statements
inside	the	loop	will	never	run.	In	the	ChkLastWhile	procedure,	the

statements	inside	the	loop	run	only	once	because	the	condition	is	already
False.

	Sub	ChkFirstWhile()
					Dim	counter,	myNum
					counter	=	0
					myNum	=	20
					Do	While	myNum	>	10
									myNum	=	myNum	-	1
									counter	=	counter	+	1
					Loop
					MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."
	End	Sub

	Sub	ChkLastWhile()
					Dim	counter,	myNum
					counter	=	0
					myNum	=	9
					Do
									myNum	=	myNum	-	1
									counter	=	counter	+	1
					Loop	While	myNum	>	10
					MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."
	End	Sub

Repeating	a	Statement	Until	a	Condition	Becomes	True

You	can	use	the	Until	keyword	in	two	ways	to	check	a	condition	in	a
Do...Loop	statement.	You	can	check	the	condition	before	you	enter	the	loop
(as	shown	in	the	following	ChkFirstUntil	example),	or	you	can	check	it
after	the	loop	has	run	at	least	once	(as	shown	in	the	ChkLastUntil	example).
As	long	as	the	condition	is	False,	the	looping	occurs.

	Sub	ChkFirstUntil()
					Dim	counter,	myNum

					counter	=	0
					myNum	=	20
					Do	Until	myNum	=	10
									myNum	=	myNum	-	1
									counter	=	counter	+	1
					Loop
					MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."
	End	Sub

	Sub	ChkLastUntil()
					Dim	counter,	myNum
					counter	=	0
					myNum	=	1
					Do
									myNum	=	myNum	+	1
									counter	=	counter	+	1
					Loop	Until	myNum	=	10
					MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."
	End	Sub

Exiting	a	Do...Loop	Statement	from	Inside	the	Loop

You	can	exit	a	Do...Loop	by	using	the	Exit	Do	statement.	Because	you
usually	want	to	exit	only	in	certain	situations,	such	as	to	avoid	an	endless
loop,	you	should	use	the	Exit	Do	statement	in	the	True	statement	block	of
an	If...Then...Else	statement.	If	the	condition	is	False,	the	loop	runs	as
usual.

In	the	following	example,	myNum	is	assigned	a	value	that	creates	an	endless	loop.	The
If...Then...Else	statement	checks	for	this	condition,	preventing	the	endless	repetition.

	Sub	ExitExample()
					Dim	counter,	myNum
					counter	=	0
					myNum	=	9

					Do	Until	myNum	=	10
									myNum	=	myNum	-	1
									counter	=	counter	+	1
									If	myNum	<	10	Then	Exit	Do
					Loop
					MsgBox	"The	loop	made	"	&	counter	&	"	repetitions."
	End	Sub

Using	While...Wend

The	While...Wend	statement	is	provided	in	VBScript	for	those	who	are
familiar	with	its	usage.	However,	because	of	the	lack	of	flexibility	in
While...Wend,	it	is	recommended	that	you	use	Do...Loop	instead.

Using	For...Next

You	can	use	For...Next	statements	to	run	a	block	of	statements	a	specific
number	of	times.	For	loops,	use	a	counter	variable	whose	value	is	increased
or	decreased	with	each	repetition	of	the	loop.

For	example,	the	following	procedure	causes	a	procedure	called	MyProc	to	execute	50	times.	The
For	statement	specifies	the	counter	variable	x	and	its	start	and	end	values.	The	Next	statement
increments	the	counter	variable	by	1.

	Sub	DoMyProc50Times()
					Dim	x
					For	x	=	1	To	50
									MyProc
					Next
	End	Sub

Using	the	Step	keyword,	you	can	increase	or	decrease	the	counter	variable
by	the	value	you	specify.	In	the	following	example,	the	counter	variable	j	is
incremented	by	2	each	time	the	loop	repeats.	When	the	loop	is	finished,
total	is	the	sum	of	2,	4,	6,	8,	and	10.

	Sub	TwosTotal()

					Dim	j,	total
					For	j	=	2	To	10	Step	2
									total	=	total	+	j
					Next
					MsgBox	"The	total	is	"	&	total
	End	Sub

To	decrease	the	counter	variable,	you	use	a	negative	Step	value.	You	must
specify	an	end	value	that	is	less	than	the	start	value.	In	the	following
example,	the	counter	variable	myNum	is	decreased	by	2	each	time	the	loop
repeats.	When	the	loop	is	finished,	total	is	the	sum	of	16,	14,	12,	10,	8,	6,	4,
and	2.

	Sub	NewTotal()
					Dim	myNum,	total
					For	myNum	=	16	To	2	Step	-2
									total	=	total	+	myNum
					Next
					MsgBox	"The	total	is	"	&	total
	End	Sub

You	can	exit	any	For...Next	statement	before	the	counter	reaches	its	end
value	by	using	the	Exit	For	statement.	Because	you	usually	want	to	exit
only	in	certain	situations,	such	as	when	an	error	occurs,	you	should	use	the
Exit	For	statement	in	the	True	statement	block	of	an	If...Then...Else
statement.	If	the	condition	is	False,	the	loop	runs	as	usual.

Using	For	Each...Next

A	For	Each...Next	loop	is	similar	to	a	For...Next	loop.	Instead	of	repeating
the	statements	a	specified	number	of	times,	a	For	Each...Next	loop	repeats
a	group	of	statements	for	each	item	in	a	collection	of	objects	or	for	each
element	of	an	array.	This	is	especially	helpful	if	you	don't	know	how	many
elements	are	in	a	collection.

In	the	following	HTML	code	example,	the	contents	of	a	Dictionary	object	is	used	to	place	text	in
several	text	boxes:

	<HTML>
	<HEAD><TITLE>Forms	and	Elements</TITLE></HEAD>
	<SCRIPT	LANGUAGE="VBScript">
	<!--
	Sub	cmdChange_OnClick
				Dim	d																			'Create	a	variable	
				Set	d	=	CreateObject("Scripting.Dictionary")
				d.Add	"0",	"Athens"					'Add	some	keys	and	items
				d.Add	"1",	"Belgrade"
				d.Add	"2",	"Cairo"

				For	Each	I	in	d
								Document.frmForm.Elements(I).Value	=	D.Item(I)
				Next
	End	Sub
	-->
	</SCRIPT>
	<BODY>
	<CENTER>
	<FORM	NAME="frmForm"

	<Input	Type	=	"Text"><p>
	<Input	Type	=	"Text"><p>
	<Input	Type	=	"Text"><p>
	<Input	Type	=	"Text"><p>
	<Input	Type	=	"Button"	NAME="cmdChange"	VALUE="Click	Here"><p>
	</FORM>
	</CENTER>
	</BODY>
	</HTML>

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript	and
Forms

	VBScript	Tutorial
Previous

Next

	

Simple	Validation

You	can	use	Visual	Basic	Scripting	Edition	to	do	much	of	the	form
processing	that	you'd	usually	have	to	do	on	a	server.	You	can	also	do	things
that	just	can't	be	done	on	the	server.

Here's	an	example	of	simple	client-side	validation.	The	HTML	code	is	for	a	text	box	and	a	button.	If
you	use	Microsoft®	Internet	Explorer	to	view	the	page	produced	by	the	following	code,	you'll	see	a
small	text	box	with	a	button	next	to	it.

<HTML>
<HEAD><TITLE>Simple	Validation</TITLE>
<SCRIPT	LANGUAGE="VBScript">	
<!--
Sub	Button1_OnClick
		Dim	TheForm
		Set	TheForm	=	Document.ValidForm
		If	IsNumeric(TheForm.Text1.Value)	Then
				If	TheForm.Text1.Value	<	1	Or	TheForm.Text1.Value	>	10	Then
						MsgBox	"Please	enter	a	number	between	1	and	10."
				Else
						MsgBox	"Thank	you."
				End	If
		Else

				MsgBox	"Please	enter	a	numeric	value."
		End	If
End	Sub
-->
</SCRIPT>
</HEAD>
<BODY>
<H3>Simple	Validation</H3><HR>
<FORM	NAME="ValidForm">
Enter	a	value	between	1	and	10:	
<INPUT	NAME="Text1"	TYPE="TEXT"	SIZE="2">
<INPUT	NAME="Button1"	TYPE="BUTTON"	VALUE="Submit">
</FORM>
</BODY>
</HTML>

The	difference	between	this	text	box	and	the	examples	on	A	Simple
VBScript	Page	is	that	the	Value	property	of	the	text	box	is	used	to	check
the	entered	value.	To	get	the	Value	property,	the	code	has	to	qualify	the
reference	to	the	name	of	the	text	box.

You	can	always	write	out	the	full	reference	Document.ValidForm.Text1.	However,	where	you	have
multiple	references	to	form	controls,	you'll	want	to	do	what	was	done	here.	First	declare	a	variable.
Then	use	the	Set	statement	to	assign	the	form	to	the	variable	TheForm.	A	regular	assignment
statement,	such	as	Dim,	doesn't	work	here;	you	must	use	Set	to	preserve	the	reference	to	an	object.

Using	Numeric	Values

Notice	that	the	example	directly	tests	the	value	against	a	number:	it	uses	the
IsNumeric	function	to	make	sure	the	string	in	the	text	box	is	a	number.
Although	VBScript	automatically	converts	strings	and	numbers,	it's	always

a	good	practice	to	test	a	user-entered	value	for	its	data	subtype	and	to	use
conversion	functions	as	necessary.	When	doing	addition	with	text	box
values,	convert	the	values	explicitly	to	numbers	because	the	plus	sign	(+)
operator	represents	both	addition	and	string	concatenation.	For	example,	if
Text1	contains	"1"	and	Text2	contains	"2",	you	see	the	following	results:

A	=	Text1.Value	+	Text2.Value	 	 '	A	is	"12"
A	=	CDbl(Text1.Value)	+	Text2.Value	 '	A	is	3

Validating	and	Passing	Data	Back	to	the	Server

The	simple	validation	example	uses	a	plain	button	control.	If	a	Submit
control	was	used,	the	example	would	never	see	the	data	to	check	it—
everything	would	go	immediately	to	the	server.	Avoiding	the	Submit
control	lets	you	check	the	data,	but	it	doesn't	submit	the	data	to	the	server.
That	requires	an	additional	line	of	code:

<SCRIPT	LANGUAGE="VBScript">	
<!--
Sub	Button1_OnClick
		Dim	TheForm
		Set	TheForm	=	Document.ValidForm
		If	IsNumeric(TheForm.Text1.Value)	Then
				If	TheForm.Text1.Value	<	1	Or	TheForm.Text1.Value	>	10	Then
						MsgBox	"Please	enter	a	number	between	1	and	10."
				Else
						MsgBox	"Thank	you."
						TheForm.Submit	 '	Data	correct;	send	to	server.
				End	If
		Else
				MsgBox	"Please	enter	a	numeric	value."
		End	If
End	Sub
-->

</SCRIPT>

To	send	the	data	to	the	server,	the	code	invokes	the	Submit	method	on	the
form	object	when	the	data	is	correct.	From	there,	the	server	handles	the	data
just	as	it	otherwise	would—except	that	the	data	is	correct	before	it	gets
there.	Find	complete	information	about	the	Submit	method	and	other
methods	in	the	Internet	Explorer	Scripting	Object	Model	documentation,
which	can	be	found	on	the	Microsoft®	Web	site
(http://www.microsoft.com).

So	far,	you've	seen	only	the	standard	HTML	<FORM>	objects.	Internet	Explorer	also	lets	you	exploit
the	full	power	of	ActiveX®	controls	(formerly	called	OLE	controls)	and	Java™	objects.

tags">	tags">

Microsoft®	Visual	Basic®	Scripting	Edition	Using
VBScript	with
Objects

	VBScript	Tutorial	
	Previous	

	

Using	Objects

Whether	you	use	an	ActiveX®	control	(formerly	called	an	OLE	control)	or
a	Java™	object,	Microsoft	Visual	Basic	Scripting	Edition	and	Microsoft®
Internet	Explorer	handle	it	the	same	way.	If	you're	using	Internet	Explorer
and	have	installed	the	Label	control,	you	can	see	the	page	produced	by	the
following	code.

You	include	an	object	using	the	<OBJECT>	tags	and	set	its	initial	property	values	using	<PARAM>
tags.	If	you're	a	Visual	Basic	programmer,	you'll	recognize	that	using	the	<PARAM>	tags	is	just	like
setting	initial	properties	for	a	control	on	a	form.	For	example,	the	following	set	of	<OBJECT>	and
<PARAM>	tags	adds	the	ActiveX	Label	control	to	a	page:

<OBJECT
	 classid="clsid:99B42120-6EC7-11CF-A6C7-00AA00A47DD2"
	 id=lblActiveLbl
	 width=250
	 height=250
	 align=left
	 hspace=20
	 vspace=0
>
<PARAM	NAME="Angle"	VALUE="90">

<PARAM	NAME="Alignment"	VALUE="4">
<PARAM	NAME="BackStyle"	VALUE="0">
<PARAM	NAME="Caption"	VALUE="A	Simple	Desultory	Label">
<PARAM	NAME="FontName"	VALUE="Verdana,	Arial,	Helvetica">
<PARAM	NAME="FontSize"	VALUE="20">
<PARAM	NAME="FontBold"	VALUE="1">
<PARAM	NAME="FrColor"	VALUE="0">
</OBJECT>

You	can	get	properties,	set	properties,	and	invoke	methods	just	as	with	any
of	the	form	controls.	The	following	code,	for	example,	includes	<FORM>
controls	you	can	use	to	manipulate	two	properties	of	the	Label	control:

<FORM	NAME="LabelControls">
<INPUT	TYPE="TEXT"	NAME="txtNewText"	SIZE=25>
<INPUT	TYPE="BUTTON"	NAME="cmdChangeIt"	VALUE="Change	Text">
<INPUT	TYPE="BUTTON"	NAME="cmdRotate"	VALUE="Rotate	Label">
</FORM>

With	the	form	defined,	an	event	procedure	for	the	cmdChangeIt	button
changes	the	label	text:

<SCRIPT	LANGUAGE="VBScript">
<!--
Sub	cmdChangeIt_onClick
	 Dim	TheForm
	 Set	TheForm	=	Document.LabelControls
	 lblActiveLbl.Caption	=	TheForm.txtNewText.Value

End	Sub
-->
</SCRIPT>

The	code	qualifies	references	to	controls	and	values	inside	the	forms	just	as
in	the	Simple	Validation	example.

Several	ActiveX	controls	are	available	for	use	with	Internet	Explorer.	You	can	find	complete
information	about	the	properties,	methods,	and	events	there,	as	well	as	the	class	identifiers	(CLSID)
for	the	controls	on	the	Microsoft®	Web	site	(http://www.microsoft.com).	You	can	find	more
information	about	the	<OBJECT>	tag	on	the	Internet	Explorer	4.0	Author's	Guide	and	HTML
Reference	page.

Note		Earlier	releases	of	Internet	Explorer	required	braces	({})
around	the	classid	attribute	and	did	not	conform	to	the	W3C
specification.	Using	braces	with	the	current	release	generates	a
"This	page	uses	an	outdated	version	of	the	<OBJECT>	tag"
message.

Microsoft®	Visual	Basic®	Scripting	Edition

Scripting	Run-
Time	Library
Reference

	Language	Reference	
Version	Information	

	Feature	Information

	Alphabetic	Keyword
List

	Constants

	Methods

	Objects

	Properties

	

Welcome	to	the	Scripting	Run-Time	Library
Reference

These	handy	blocks	of	information	will	help
you	explore	the	many	different	parts	of	the
Scripting	Run-Time	Library.

You'll	find	all	the	parts	of	the	Scripting	Run-
Time	Library	listed	alphabetically	under	the
Alphabetic	Keyword	List.	But	if	you	want	to
examine	just	one	category,	say,	objects,	each
language	category	has	its	own,	more	compact
section.

How's	it	work?	Click	on	one	of	the	headings	to
the	left	to	display	a	list	of	items	contained	in
that	category.	From	this	list,	select	the	topic	that
you	want	to	view.	Once	you've	opened	that
topic,	you	can	easily	link	to	other	related
sections.

So,	go	ahead	and	take	a	look!	Study	some
statements,	mull	over	the	methods,	or	figure	out
a	few	functions.	You'll	see	just	how	versatile	the
Scripting	Run-Time	Library	can	be!

©	1999	Microsoft	Corporation.	All	rights	reserved.

Microsoft®	Visual	Basic®	Scripting	Edition	

Feature
Information

	Scripting	Run-Time	Library
Reference	

	Version	Information	

	
Microsoft	Scripting	Run-Time	Features

Microsoft®	Visual	Basic®	Scripting	Edition	

Alphabetic
Keyword	List

	Scripting	Run-Time	Library
Reference	

	Version	Information	

	
Add	Method	(Dictionary)	
Add	Method	(Folders)	
AtEndOfLine	Property	
AtEndOfStream	Property	
Attributes	Property	
AvailableSpace	Property	
BuildPath	Method	
Close	Method	
Column	Property	
CompareMode	Property	
Copy	Method	
CopyFile	Method	
CopyFolder	Method	
Count	Property	
CreateFolder	Method	
CreateTextFile	Method	
DateCreated	Property	
DateLastAccessed	Property	
DateLastModified	Property	
Delete	Method	
DeleteFile	Method	
DeleteFolder	Method	
Dictionary	Object	
Drive	Object	
Drive	Property	
Drive	Type	Constants	
DriveExists	Method	
DriveLetter	Property	
Drives	Collection	

Drives	Property	
DriveType	Property	
Exists	Method	
FileExists	Method	
File	Attribute	Constants	
File	Input/Output	Constants	
File	Object	
Files	Collection	
Files	Property	
FileSystemObject	Constants	
FileSystemObject	Object	
FileSystem	Property	
Folder	Object	
Folders	Collection	
FolderExists	Method	
FreeSpace	Property	
GetAbsolutePathName	Method	
GetBaseName	Method	
GetDrive	Method	
GetDriveName	Method	
GetExtensionName	Method	
GetFile	Method	
GetFileName	Method	
GetFileVersion	Method	
GetFolder	Method	
GetParentFolderName	Method	
GetSpecialFolder	Method	
GetTempName	Method	
IsReady	Property	
IsRootFolder	Property	
Item	Property	
Items	Method	
Key	Property	
Keys	Method	
Line	Property	
Move	Method	
MoveFile	Method	

MoveFolder	Method	
Name	Property	
OpenAsTextStream	Method	
OpenTextFile	Method	
ParentFolder	Property	
Path	Property	
Read	Method	
ReadAll	Method	
ReadLine	Method	
Remove	Method	
RemoveAll	Method	
RootFolder	Property	
SerialNumber	Property	
ShareName	Property	
ShortName	Property	
ShortPath	Property	
Size	Property	
Skip	Method	
SkipLine	Method	
SpecialFolder	Constants	
Subfolders	Property	
TextStream	Object	
TotalSize	Property	
Type	Property	
VolumeName	Property	
Write	Method	
WriteBlankLines	Method	
WriteLine	Method	

Microsoft®	Visual	Basic®	Scripting	Edition	

Constants
	Scripting	Run-Time	Library

Reference	
	Version	Information	

	

DriveType	Constants	
File	Attribute	Constants	
File	Input/Output	Constants	
FileSystemObject	Constants	
SpecialFolder	Constants	

Microsoft®	Visual	Basic®	Scripting	Edition	

Methods
	Scripting	Run-Time	Library

Reference	
	Version	Information	

	

Add	Method	(Dictionary)	
Add	Method	(Folders)	
BuildPath	Method	
Close	Method	
Copy	Method	
CopyFile	Method	
CopyFolder	Method	
CreateFolder	Method	
CreateTextFile	Method	
Delete	Method	
DeleteFile	Method	
DeleteFolder	Method	
DriveExists	Method	
Exists	Method	
FileExists	Method	
FolderExists	Method	
GetAbsolutePathName	Method	
GetBaseName	Method	
GetDrive	Method	
GetDriveName	Method	
GetExtensionName	Method	
GetFile	Method	
GetFileName	Method	
GetFileVersion	Method	
GetFolder	Method	
GetParentFolderName	Method	
GetSpecialFolder	Method	
GetTempName	Method	
Items	Method	
Keys	Method	

Move	Method	
MoveFile	Method	
MoveFolder	Method	
OpenAsTextStream	Method	
OpenTextFile	Method	
Read	Method	
ReadAll	Method	
ReadLine	Method	
Remove	Method	
RemoveAll	Method	
Skip	Method	
SkipLine	Method	
Write	Method	
WriteBlankLines	Method	
WriteLine	Method	

Microsoft®	Visual	Basic®	Scripting	Edition	

Objects
	Scripting	Run-Time	Library

Reference	
	Version	Information	

	

Dictionary	Object	
Drive	Object	
Drives	Collection	
File	Object	
Files	Collection	
FileSystemObject	Object	
Folder	Object	
Folders	Collection	
TextStream	Object	

Microsoft®	Visual	Basic®	Scripting	Edition	

Properties
	Scripting	Run-Time	Library

Reference	
	Version	Information	

	

AtEndOfLine	Property	
AtEndOfStream	Property	
Attributes	Property	
AvailableSpace	Property	
Column	Property	
CompareMode	Property	
Count	Property	
DateCreated	Property	
DateLastAccessed	Property	
DateLastModified	Property	
Drive	Property	
DriveLetter	Property	
Drives	Property	
DriveType	Property	
Files	Property	
FileSystem	Property	
FreeSpace	Property	
IsReady	Property	
IsRootFolder	Property	
Item	Property	
Key	Property	
Line	Property	
Name	Property	
ParentFolder	Property	
Path	Property	
RootFolder	Property	
SerialNumber	Property	
ShareName	Property	
ShortName	Property	
ShortPath	Property	

Size	Property	
SubFolders	Property	
TotalSize	Property	
Type	Property	
VolumeName	Property	

Microsoft®	Scripting	Library	-	FileSystemObject	The
FileSystemObject
Object	Model

		Next

When	writing	scripts	for	Active	Server	Pages,	the	Windows	Scripting	Host,
or	other	applications	where	scripting	can	be	used,	it's	often	important	to
add,	move,	change,	create,	or	delete	folders	(directories)	and	files	on	the
Web	server.	It	may	also	be	necessary	to	get	information	about	and
manipulate	drives	attached	to	the	Web	server.

Scripting	allows	you	to	process	drives,	folders,	and	files	using	the
FileSystemObject	(FSO)	object	model,	which	is	explained	in	the	following
sections:

Introduction	to	the	FileSystemObject
and	the	Scripting	Run-Time	Library	Reference

FileSystemObject	Objects

Programming	the	FileSystemObject

Working	with	Drives	and	Folders

Working	with	Files

FileSystemObject	Sample	Code

Microsoft®	Scripting	Library	-	FileSystemObject

Introduction	to	the
FileSystemObject
and	the
Scripting	Run-
Time	Library
Reference

		Previous
Next

The	FileSystemObject	(FSO)	object	model	allows	you	to	use	the	familiar
object.method	syntax	with	a	rich	set	of	properties,	methods,	and	events	to
process	folders	and	files.

Use	this	object-based	tool	with:

HTML	to	create	Web	pages

Windows	Scripting	Host	to	create	batch	files	for	Microsoft	Windows

Script	Control	to	provide	a	scripting	capability	to	applications	developed	in
other	languages

Because	use	of	the	FSO	on	the	client	side	raises	serious	security	issues	about
providing	potentially	unwelcome	access	to	a	client's	local	file	system,	this
documentation	assumes	use	of	the	FSO	object	model	to	create	scripts	executed
by	Internet	Web	pages	on	the	server	side.	Since	the	server	side	is	used,	the
Internet	Explorer	default	security	settings	do	not	allow	client-side	use	of	the
FileSystemObject	object.	Overriding	those	defaults	could	subject	a	local
computer	to	unwelcome	access	to	the	file	system,	which	could	result	in	total
destruction	of	the	file	system's	integrity,	causing	loss	of	data,	or	worse.

The	FSO	object	model	gives	your	server-side	applications	the	ability	to	create,	alter,	move,	and	delete
folders,	or	to	detect	if	particular	folders	exist,	and	if	so,	where.	You	can	also	find	out	information	about

folders,	such	as	their	names,	the	date	they	were	created	or	last	modified,	and	so	forth.

The	FSO	object	model	also	makes	it	easy	to	process	files.	When	processing	files,	the	primary	goal	is	to
store	data	in	a	space-	and	resource-efficient,	easy-to-access	format.	You	need	to	be	able	to	create	files,	insert
and	change	the	data,	and	output	(read)	the	data.	Since	storing	data	in	a	database,	such	as	Access	or	SQL
Server,	adds	a	significant	amount	of	overhead	to	your	application,	storing	your	data	in	a	binary	or	text	file
may	be	the	most	efficient	solution.	You	may	prefer	not	to	have	this	overhead,	or	your	data	access
requirements	may	not	require	all	the	extra	features	associated	with	a	full-featured	database.

The	FSO	object	model,	which	is	contained	in	the	Scripting	type	library	(Scrrun.dll),	supports	text	file
creation	and	manipulation	through	the	TextStream	object.	Although	it	does	not	yet	support	the	creation	or
manipulation	of	binary	files,	future	support	of	binary	files	is	planned.

Microsoft®	Scripting	Library	-	FileSystemObject

FileSystemObject
Objects

	Previous
Next

The	FileSystemObject	(FSO)	object	model	contains	the	following	objects
and	collections.

Object/Collection Description

FileSystemObject

Main	object.	Contains	methods	and
properties	that	allow	you	to	create,	delete,
gain	information	about,	and	generally
manipulate	drives,	folders,	and	files.	Many
of	the	methods	associated	with	this	object
duplicate	those	in	other	FSO	objects;	they
are	provided	for	convenience.

Drive

Object.	Contains	methods	and	properties	that
allow	you	to	gather	information	about	a
drive	attached	to	the	system,	such	as	its	share
name	and	how	much	room	is	available.	Note
that	a	"drive"	isn't	necessarily	a	hard	disk,
but	can	be	a	CD-ROM	drive,	a	RAM	disk,
and	so	forth.	A	drive	doesn't	need	to	be
physically	attached	to	the	system;	it	can	be
also	be	logically	connected	through	a
network.

Drives

Collection.	Provides	a	list	of	the	drives
attached	to	the	system,	either	physically	or
logically.	The	Drives	collection	includes	all
drives,	regardless	of	type.	Removable-media
drives	need	not	have	media	inserted	for	them
to	appear	in	this	collection.

File

Object.	Contains	methods	and	properties	that
allow	you	to	create,	delete,	or	move	a	file.

Also	allows	you	to	query	the	system	for	a
file	name,	path,	and	various	other	properties.

Files Collection.	Provides	a	list	of	all	files
contained	within	a	folder.

Folder

Object.	Contains	methods	and	properties	that
allow	you	to	create,	delete,	or	move	folders.
Also	allows	you	to	query	the	system	for
folder	names,	paths,	and	various	other
properties.

Folders Collection.	Provides	a	list	of	all	the	folders
within	a	Folder.

TextStream Object.	Allows	you	to	read	and	write	text
files.

Microsoft®	Scripting	Library	-	FileSystemObject

Programming	the
FileSystemObject

	Previous
Next

To	program	with	the	FileSystemObject	(FSO)	object	model:

Use	the	CreateObject	method	to	create	a	FileSystemObject	object.

Use	the	appropriate	method	on	the	newly	created	object.

Access	the	object's	properties.

The	FSO	object	model	is	contained	in	the	Scripting	type	library,	which	is
located	in	the	Scrrun.dll	file.	Therefore,	you	must	have	Scrrun.dll	in	the
appropriate	system	directory	on	your	Web	server	to	use	the	FSO	object
model.

Creating	a	FileSystemObject	Object

First,	create	a	FileSystemObject	object	by	using	the	CreateObject
method.	In	VBScript,	use	the	following	code	to	create	an	instance	of	the
FileSystemObject:

Dim	fso
Set	fso	=	CreateObject("Scripting.FileSystemObject")

This	sample	code	demonstrates	how	to	create	an	instance	of	the
FileSystemObject.

In	JScript,	use	this	code	to	do	the	same	thing:

var	fso;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");

In	both	of	these	examples,	Scripting	is	the	name	of	the	type	library	and
FileSystemObject	is	the	name	of	the	object	that	you	want	to	create.	You

can	create	only	one	instance	of	the	FileSystemObject	object,	regardless	of
how	many	times	you	try	to	create	another.

Using	the	Appropriate	Method

Second,	use	the	appropriate	method	of	the	FileSystemObject	object.	For
example,	to	create	a	new	object,	use	either	CreateTextFile	or
CreateFolder	(the	FSO	object	model	doesn't	support	the	creation	or
deletion	of	drives).

To	delete	objects,	use	the	DeleteFile	and	DeleteFolder	methods	of	the	FileSystemObject	object,	or
the	Delete	method	of	the	File	and	Folder	objects.	You	can	also	copy	and	move	files	and	folders,	by
using	the	appropriate	methods.

Note		Some	functionality	in	the	FileSystemObject	object	model
is	redundant.	For	example,	you	can	copy	a	file	using	either	the
CopyFile	method	of	the	FileSystemObject	object,	or	you	can
use	the	Copy	method	of	the	File	object.	The	methods	work	the
same;	both	exist	to	offer	programming	flexibility.

Accessing	Existing	Drives,	Files,	and	Folders

To	gain	access	to	an	existing	drive,	file,	or	folder,	use	the	appropriate	"get"
method	of	the	FileSystemObject	object:

GetDrive

GetFolder

GetFile

To	gain	access	to	an	existing	file	in	VBScript:

Dim	fso,	f1
Set	fso	=	CreateObject("Scripting.FileSystemObject")
Set	f1	=	fso.GetFile("c:\test.txt")

To	do	the	same	thing	in	JScript,	use	the	following	code:

var	fso,	f1;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
f1	=	fso.GetFile("c:\\test.txt");

Do	not	use	the	"get"	methods	for	newly	created	objects,	since	the	"create"
functions	already	return	a	handle	to	that	object.	For	example,	if	you	create	a
new	folder	using	the	CreateFolder	method,	don't	use	the	GetFolder
method	to	access	its	properties,	such	as	Name,	Path,	Size,	and	so	forth.	Just
set	a	variable	to	the	CreateFolder	function	to	gain	a	handle	to	the	newly
created	folder,	then	access	its	properties,	methods,	and	events.	To	do	this	in
VBScript,	use	the	following	code:

Sub	CreateFolder
		Dim	fso,	fldr
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	fldr	=	fso.CreateFolder("C:\MyTest")
		Response.Write	"Created	folder:	"	&	fldr.Name
End	Sub

To	set	a	variable	to	the	CreateFolder	function	in	JScript,	use	this	syntax:

function	CreateFolder()
{
		var	fso,	fldr;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		fldr	=	fso.CreateFolder("C:\\MyTest");
		Response.Write("Created	folder:	"	+	fldr.Name);
}

Accessing	the	Object's	Properties

Once	you	have	a	handle	to	an	object,	you	can	access	its	properties.	For
example,	to	get	the	name	of	a	particular	folder,	first	create	an	instance	of	the
object,	then	get	a	handle	to	it	with	the	appropriate	method	(in	this	case,	the

GetFolder	method,	since	the	folder	already	exists).

Use	this	code	to	get	a	handle	to	the	GetFolder	method	in	VBScript:

Set	fldr	=	fso.GetFolder("c:\")

To	do	the	same	thing	in	JScript,	use	the	following	code:

var	fldr	=	fso.GetFolder("c:\\");

Now	that	you	have	a	handle	to	a	Folder	object,	you	can	check	its	Name
property.	Use	the	following	code	to	check	this	in	VBScript:

Response.Write	"Folder	name	is:	"	&	fldr.Name

To	check	a	Name	property	in	JScript,	use	this	syntax:

Response.Write("Folder	name	is:	"	+	fldr.Name);

To	find	out	the	last	time	a	file	was	modified,	use	the	following	VBScript
syntax:

Dim	fso,	f1
Set	fso	=	CreateObject("Scripting.FileSystemObject")
'	Get	a	File	object	to	query.
Set	f1	=	fso.GetFile("c:\detlog.txt")		
'	Print	information.
Response.Write	"File	last	modified:	"	&	f1.DateLastModified	

To	find	out	the	same	thing	in	JScript,	use	this	code:

var	fso,	f1;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
//	Get	a	File	object	to	query.
f1	=	fso.GetFile("c:\\detlog.txt");		
//	Print	information.
Response.Write("File	last	modified:	"	+	f1.DateLastModified);	

Microsoft®	Scripting	Library	-	FileSystemObject

Working	with
Drives	and	Folders

	Previous
Next

With	the	FileSystemObject	(FSO)	object	model,	you	can	work	with	drives
and	folders	programmatically	just	as	you	can	in	the	Windows	Explorer
interactively.	You	can	copy	and	move	folders,	get	information	about	drives
and	folders,	and	so	forth.

Getting	Information	About	Drives

The	Drive	object	allows	you	to	gain	information	about	the	various	drives
attached	to	a	system,	either	physically	or	over	a	network.	Its	properties
allow	you	to	obtain	information	about:

The	total	size	of	the	drive	in	bytes	(TotalSize	property)

How	much	space	is	available	on	the	drive	in	bytes	(AvailableSpace	or
FreeSpace	properties)

What	letter	is	assigned	to	the	drive	(DriveLetter	property)

What	type	of	drive	it	is,	such	as	removable,	fixed,	network,	CD-ROM,
or	RAM	disk	(DriveType	property)

The	drive's	serial	number	(SerialNumber	property)

The	type	of	file	system	the	drive	uses,	such	as	FAT,	FAT32,	NTFS,	and
so	forth	(FileSystem	property)

Whether	a	drive	is	available	for	use	(IsReady	property)

The	name	of	the	share	and/or	volume	(ShareName	and	VolumeName
properties)

The	path	or	root	folder	of	the	drive	(Path	and	RootFolder	properties)

View	the	sample	code	to	see	how	these	properties	are	used	in

FileSystemObject.

Example	Usage	of	the	Drive	Object

Use	the	Drive	object	to	gather	information	about	a	drive.	You	won't	see	a
reference	to	an	actual	Drive	object	in	the	following	code;	instead,	use	the
GetDrive	method	to	get	a	reference	to	an	existing	Drive	object	(in	this
case,	drv).

The	following	example	demonstrates	how	to	use	the	Drive	object	in	VBScript:

Sub	ShowDriveInfo(drvPath)
		Dim	fso,	drv,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	drv	=	fso.GetDrive(fso.GetDriveName(drvPath))
		s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"
		s	=	s	&	drv.VolumeName	&	"
"
		s	=	s	&	"Total	Space:	"	&	FormatNumber(drv.TotalSize	/	1024,	0)
		s	=	s	&	"	Kb"	&	"
"
		s	=	s	&	"Free	Space:	"	&	FormatNumber(drv.FreeSpace	/	1024,	0)
		s	=	s	&	"	Kb"	&	"
"
		Response.Write	s
End	Sub

The	following	code	illustrates	the	same	functionality	in	JScript:

function	ShowDriveInfo1(drvPath)
{
		var	fso,	drv,	s	="";
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		drv	=	fso.GetDrive(fso.GetDriveName(drvPath));
		s	+=	"Drive	"	+	drvPath.toUpperCase()+	"	-	";
		s	+=	drv.VolumeName	+	"
";
		s	+=	"Total	Space:	"	+	drv.TotalSize	/	1024;
		s	+=	"	Kb"	+	"
";	
		s	+=	"Free	Space:	"	+	drv.FreeSpace	/	1024;

		s	+=	"	Kb"	+	"
";
		Response.Write(s);
}

Working	with	Folders

Common	folder	tasks	and	the	methods	for	performing	them	are	described	in
the	following	table.

Task Method
Create	a	folder. FileSystemObject.CreateFolder

Delete	a	folder. Folder.Delete	or
FileSystemObject.DeleteFolder

Move	a	folder. Folder.Move	or
FileSystemObject.MoveFolder

Copy	a	folder. Folder.Copy	or
FileSystemObject.CopyFolder

Retrieve	the	name
of	a	folder. Folder.Name

Find	out	if	a	folder
exists	on	a	drive. FileSystemObject.FolderExists

Get	an	instance	of
an	existing	Folder
object.

FileSystemObject.GetFolder

Find	out	the	name
of	a	folder's	parent
folder.

FileSystemObject.GetParentFolderName

Find	out	the	path	of
system	folders. FileSystemObject.GetSpecialFolder

View	the	sample	code	to	see	how	many	of	these	methods	and	properties	are	used	in
FileSystemObject.

The	following	example	demonstrates	how	to	use	the	Folder	and	FileSystemObject	objects	to
manipulate	folders	and	gain	information	about	them	in	VBScript:

Sub	ShowFolderInfo()
		Dim	fso,	fldr,	s
		'	Get	instance	of	FileSystemObject.
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		'	Get	Drive	object.
		Set	fldr	=	fso.GetFolder("c:")
		'	Print	parent	folder	name.
		Response.Write	"Parent	folder	name	is:	"	&	fldr	&	"
"
		'	Print	drive	name.
		Response.Write	"Contained	on	drive	"	&	fldr.Drive	&	"
"
		'	Print	root	file	name.
		If	fldr.IsRootFolder	=	True	Then
				Response.Write	"This	is	the	root	folder."	&	""
"
"
		Else
				Response.Write	"This	folder	isn't	a	root	folder."	&	"

"	
		End	If
		'	Create	a	new	folder	with	the	FileSystemObject	object.
		fso.CreateFolder	("C:\Bogus")
		Response.Write	"Created	folder	C:\Bogus"	&	"
"
		'	Print	the	base	name	of	the	folder.
		Response.Write	"Basename	=	"	&	fso.GetBaseName("c:\bogus")	&	"
"
		'	Delete	the	newly	created	folder.
		fso.DeleteFolder	("C:\Bogus")
		Response.Write	"Deleted	folder	C:\Bogus"	&	"
"
End	Sub

This	example	shows	how	to	use	the	Folder	and	FileSystemObject	objects
in	JScript:

function	ShowFolderInfo()
{
		var	fso,	fldr,	s	=	"";
		//	Get	instance	of	FileSystemObject.
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");

		//	Get	Drive	object.
		fldr	=	fso.GetFolder("c:");
		//	Print	parent	folder	name.
		Response.Write("Parent	folder	name	is:	"	+	fldr	+	"
");
		//	Print	drive	name.
		Response.Write("Contained	on	drive	"	+	fldr.Drive	+	"
");
		//	Print	root	file	name.
		if	(fldr.IsRootFolder)
				Response.Write("This	is	the	root	folder.");
		else
				Response.Write("This	folder	isn't	a	root	folder.");
		Response.Write("

");
		//	Create	a	new	folder	with	the	FileSystemObject	object.
		fso.CreateFolder	("C:\\Bogus");
		Response.Write("Created	folder	C:\\Bogus"	+	"
");
		//	Print	the	base	name	of	the	folder.
		Response.Write("Basename	=	"	+	fso.GetBaseName("c:\\bogus")	+	"
");
		//	Delete	the	newly	created	folder.
		fso.DeleteFolder	("C:\\Bogus");
		Response.Write("Deleted	folder	C:\\Bogus"	+	"
");
}

Microsoft®	Scripting	Library	-	FileSystemObject

FileSystemObject
Sample	Code

		Previous

The	sample	code	described	in	this	section	provides	a	real-world	example
that	demonstrates	many	of	the	features	available	in	the	FileSystemObject
object	model.	This	code	shows	how	all	the	features	of	the	object	model
work	together,	and	how	to	use	those	features	effectively	in	your	own	code.

Note	that	since	this	code	is	fairly	generic,	some	additional	code	and	a	little	tweaking	are	needed	to
make	this	code	actually	run	on	your	machine.	These	changes	are	necessary	because	of	the	different
ways	input	and	output	to	the	user	is	handled	between	Active	Server	Pages	and	the	Windows	Scripting
Host.

To	run	this	code	on	an	Active	Server	Page,	use	the	following	steps:

1.	 Create	a	standard	Web	page	with	an	.asp	extension.

2.	 Copy	the	following	sample	code	into	that	file	between	the	<BODY;>...
</BODY>	tags.

3.	 Enclose	all	the	code	within	<%...%>	tags.

4.	 Move	the	Option	Explicit	statement	from	its	current	position	in	the
code	to	the	very	top	of	your	HTML	page,	positioning	it	even	before
the	opening	<HTML>	tag.

5.	 Place	<%...%>	tags	around	the	Option	Explicit	statement	to	ensure
that	it's	run	on	the	server	side.

6.	 Add	the	following	code	to	the	end	of	the	sample	code:

Sub	Print(x)
		Response.Write	"<PRE><FONT;	FACE=""Courier	New""	SIZE=""1"">"
		Response.Write	x
		Response.Write	"</PRE>"
End	Sub
Main

The	previous	code	adds	a	print	procedure	that	will	run	on	the	server	side,

but	display	results	on	the	client	side.	To	run	this	code	on	the	Windows
Scripting	Host,	add	the	following	code	to	the	end	of	the	sample	code:

Sub	Print(x)
	 WScript.Echo	x
End	Sub
Main

The	code	is	contained	in	the	following	section:

''
'
'	FileSystemObject	Sample	Code
'	
'	Copyright	1998	Microsoft	Corporation.		All	Rights	Reserved.	
'	
''

Option	Explicit

''
'
'	Regarding	code	quality:
'
'	1)	The	following	code	does	a	lot	of	string	manipulation	by	concatenating	short
'				strings	together	with	the	"&"	operator.	Since	string	concatenation
'				is	expensive,	this	is	a	very	inefficient	way	to	write	code.	However,	it	is	a	very									
'				maintainable	way	to	write	code,	and	is	used	here	because	this	program	performs	extensive		
'				disk	operations,	and	because	the	disk	is	much	slower	than	the	memory	operations	required	to	
'				concatenate	the	strings.	Keep	in	mind	that	this	is	demonstration	code,	not	production	code.
'
'	2)	"Option	Explicit"	is	used,	because	declared	variable	access	is	slightly	faster	than					
'				undeclared	variable	access.	It	also	prevents	bugs	from	creeping	into	your	code,	such	as
'				when	you	misspell	DriveTypeCDROM	as	DriveTypeCDORM.
'
'	3)	Error	handling	is	absent	from	this	code,	to	make	the	code	more	readable.	Although	
'				precautions	have	been	taken	to	ensure	that	the	code	will	not	error	in	common	cases,	file	
'				systems	can	be	unpredictable.	In	production	code,	use	On	Error	Resume	Next	and	the	
'				Err	object	to	trap	possible	errors.
'	
''

''
'
'	Some	handy	global	variables
'
''

Dim	TabStop
Dim	NewLine

Const	TestDrive	=	"C"
Const	TestFilePath	=	"C:\Test"

''
'
'	Constants	returned	by	Drive.DriveType
'
''

Const	DriveTypeRemovable	=	1
Const	DriveTypeFixed	=	2
Const	DriveTypeNetwork	=	3
Const	DriveTypeCDROM	=	4
Const	DriveTypeRAMDisk	=	5

''
'
'	Constants	returned	by	File.Attributes
'
''

Const	FileAttrNormal		=	0
Const	FileAttrReadOnly	=	1
Const	FileAttrHidden	=	2
Const	FileAttrSystem	=	4
Const	FileAttrVolume	=	8
Const	FileAttrDirectory	=	16
Const	FileAttrArchive	=	32	
Const	FileAttrAlias	=	64
Const	FileAttrCompressed	=	128

''
'
'	Constants	for	opening	files
'
''

Const	OpenFileForReading	=	1	
Const	OpenFileForWriting	=	2	
Const	OpenFileForAppending	=	8	

''
'
'	ShowDriveType
'

'	Purpose:	
'
'	Generates	a	string	describing	the	drive	type	of	a	given	Drive	object.
'
'	Demonstrates	the	following	
'
'	-	Drive.DriveType
'
''

Function	ShowDriveType(Drive)

	 Dim	S
		
	 Select	Case	Drive.DriveType
	 Case	DriveTypeRemovable
	 	 S	=	"Removable"
	 Case	DriveTypeFixed
	 	 S	=	"Fixed"
	 Case	DriveTypeNetwork
	 	 S	=	"Network"
	 Case	DriveTypeCDROM
	 	 S	=	"CD-ROM"
	 Case	DriveTypeRAMDisk
	 	 S	=	"RAM	Disk"
	 Case	Else
	 	 S	=	"Unknown"
	 End	Select

	 ShowDriveType	=	S

End	Function

''
'
'	ShowFileAttr
'
'	Purpose:	
'
'	Generates	a	string	describing	the	attributes	of	a	file	or	folder.
'
'	Demonstrates	the	following	
'
'	-	File.Attributes
'	-	Folder.Attributes
'
''

Function	ShowFileAttr(File)	'	File	can	be	a	file	or	folder

	 Dim	S
			 Dim	Attr
	
	 Attr	=	File.Attributes

	 If	Attr	=	0	Then
	 	 ShowFileAttr	=	"Normal"
	 	 Exit	Function
	 End	If

	 If	Attr	And	FileAttrDirectory		Then	S	=	S	&	"Directory	"
	 If	Attr	And	FileAttrReadOnly			Then	S	=	S	&	"Read-Only	"
	 If	Attr	And	FileAttrHidden					Then	S	=	S	&	"Hidden	"
	 If	Attr	And	FileAttrSystem					Then	S	=	S	&	"System	"
	 If	Attr	And	FileAttrVolume					Then	S	=	S	&	"Volume	"
	 If	Attr	And	FileAttrArchive				Then	S	=	S	&	"Archive	"
	 If	Attr	And	FileAttrAlias						Then	S	=	S	&	"Alias	"
	 If	Attr	And	FileAttrCompressed	Then	S	=	S	&	"Compressed	"

	 ShowFileAttr	=	S

End	Function

''
'
'	GenerateDriveInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	the	available	drives.
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.Drives	
'	-	Iterating	the	Drives	collection
'	-	Drives.Count
'	-	Drive.AvailableSpace
'	-	Drive.DriveLetter
'	-	Drive.DriveType
'	-	Drive.FileSystem
'	-	Drive.FreeSpace
'	-	Drive.IsReady
'	-	Drive.Path
'	-	Drive.SerialNumber
'	-	Drive.ShareName
'	-	Drive.TotalSize
'	-	Drive.VolumeName
'
''

Function	GenerateDriveInformation(FSO)

	 Dim	Drives
	 Dim	Drive
	 Dim	S

	 Set	Drives	=	FSO.Drives

	 S	=	"Number	of	drives:"	&	TabStop	&	Drives.Count	&	NewLine	&	NewLine

	 '	Construct	1st	line	of	report.
	 S	=	S	&	String(2,	TabStop)	&	"Drive"	
	 S	=	S	&	String(3,	TabStop)	&	"File"	
	 S	=	S	&	TabStop	&	"Total"
	 S	=	S	&	TabStop	&	"Free"
	 S	=	S	&	TabStop	&	"Available"	
	 S	=	S	&	TabStop	&	"Serial"	&	NewLine

	 '	Construct	2nd	line	of	report.
	 S	=	S	&	"Letter"
	 S	=	S	&	TabStop	&	"Path"
	 S	=	S	&	TabStop	&	"Type"
	 S	=	S	&	TabStop	&	"Ready?"
	 S	=	S	&	TabStop	&	"Name"
	 S	=	S	&	TabStop	&	"System"
	 S	=	S	&	TabStop	&	"Space"
	 S	=	S	&	TabStop	&	"Space"
	 S	=	S	&	TabStop	&	"Space"
	 S	=	S	&	TabStop	&	"Number"	&	NewLine	

	 '	Separator	line.
	 S	=	S	&	String(105,	"-")	&	NewLine

	 For	Each	Drive	In	Drives

	 	 S	=	S	&	Drive.DriveLetter
	 	 S	=	S	&	TabStop	&	Drive.Path
	 	 S	=	S	&	TabStop	&	ShowDriveType(Drive)
	 	 S	=	S	&	TabStop	&	Drive.IsReady

	 	 If	Drive.IsReady	Then
					 	 If	DriveTypeNetwork	=	Drive.DriveType	Then
	 	 	 	 S	=	S	&	TabStop	&	Drive.ShareName	
	 	 	 Else
	 	 	 	 S	=	S	&	TabStop	&	Drive.VolumeName	
	 	 	 End	If				

	 	 	 S	=	S	&	TabStop	&	Drive.FileSystem
	 	 	 S	=	S	&	TabStop	&	Drive.TotalSize

	 	 	 S	=	S	&	TabStop	&	Drive.FreeSpace
	 	 	 S	=	S	&	TabStop	&	Drive.AvailableSpace
	 	 	 S	=	S	&	TabStop	&	Hex(Drive.SerialNumber)

	 	 End	If

	 	 S	=	S	&	NewLine

	 Next		
	
	 GenerateDriveInformation	=	S

End	Function

''
'
'	GenerateFileInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	a	file.
'
'	Demonstrates	the	following	
'
'	-	File.Path
'	-	File.Name
'	-	File.Type
'	-	File.DateCreated
'	-	File.DateLastAccessed
'	-	File.DateLastModified
'	-	File.Size
'	
''

Function	GenerateFileInformation(File)

	 Dim	S

	 S	=	NewLine	&	"Path:"	&	TabStop	&	File.Path
	 S	=	S	&	NewLine	&	"Name:"	&	TabStop	&	File.Name
	 S	=	S	&	NewLine	&	"Type:"	&	TabStop	&	File.Type
	 S	=	S	&	NewLine	&	"Attribs:"	&	TabStop	&	ShowFileAttr(File)
	 S	=	S	&	NewLine	&	"Created:"	&	TabStop	&	File.DateCreated
	 S	=	S	&	NewLine	&	"Accessed:"	&	TabStop	&	File.DateLastAccessed
	 S	=	S	&	NewLine	&	"Modified:"	&	TabStop	&	File.DateLastModified
	 S	=	S	&	NewLine	&	"Size"	&	TabStop	&	File.Size	&	NewLine

	 GenerateFileInformation	=	S

End	Function

''
'
'	GenerateFolderInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	a	folder.
'
'	Demonstrates	the	following	
'
'	-	Folder.Path
'	-	Folder.Name
'	-	Folder.DateCreated
'	-	Folder.DateLastAccessed
'	-	Folder.DateLastModified
'	-	Folder.Size
'	
''

Function	GenerateFolderInformation(Folder)

	 Dim	S

	 S	=	"Path:"	&	TabStop	&	Folder.Path
	 S	=	S	&	NewLine	&	"Name:"	&	TabStop	&	Folder.Name
	 S	=	S	&	NewLine	&	"Attribs:"	&	TabStop	&	ShowFileAttr(Folder)
	 S	=	S	&	NewLine	&	"Created:"	&	TabStop	&	Folder.DateCreated
	 S	=	S	&	NewLine	&	"Accessed:"	&	TabStop	&	Folder.DateLastAccessed
	 S	=	S	&	NewLine	&	"Modified:"	&	TabStop	&	Folder.DateLastModified
	 S	=	S	&	NewLine	&	"Size:"	&	TabStop	&	Folder.Size	&	NewLine

	 GenerateFolderInformation	=	S

End	Function

''
'
'	GenerateAllFolderInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	a
'	folder	and	all	files	and	subfolders.
'
'	Demonstrates	the	following	
'
'	-	Folder.Path
'	-	Folder.SubFolders

'	-	Folders.Count
'	
''

Function	GenerateAllFolderInformation(Folder)

	 Dim	S
	 Dim	SubFolders
	 Dim	SubFolder
	 Dim	Files
	 Dim	File

	 S	=	"Folder:"	&	TabStop	&	Folder.Path	&	NewLine	&	NewLine

	 Set	Files	=	Folder.Files

	 If	1	=	Files.Count	Then
	 	 S	=	S	&	"There	is	1	file"	&	NewLine
	 Else
	 	 S	=	S	&	"There	are	"	&	Files.Count	&	"	files"	&	NewLine
	 End	If

	 If	Files.Count	<>	0	Then

	 	 For	Each	File	In	Files
	 	 	 S	=	S	&	GenerateFileInformation(File)
	 	 Next

	 End	If

	 Set	SubFolders	=	Folder.SubFolders

	 If	1	=	SubFolders.Count	Then
	 	 S	=	S	&	NewLine	&	"There	is	1	sub	folder"	&	NewLine	&	NewLine
	 Else
	 	 S	=	S	&	NewLine	&	"There	are	"	&	SubFolders.Count	&	"	sub	folders"	&	NewLine	&	NewLine
	 End	If

	 If	SubFolders.Count	<>	0	Then

	 	 For	Each	SubFolder	In	SubFolders
	 	 	 S	=	S	&	GenerateFolderInformation(SubFolder)
	 	 Next

	 	 S	=	S	&	NewLine

	 	 For	Each	SubFolder	In	SubFolders
	 	 	 S	=	S	&	GenerateAllFolderInformation(SubFolder)
	 	 Next

	 End	If

	 GenerateAllFolderInformation	=	S

End	Function

''
'
'	GenerateTestInformation
'
'	Purpose:	
'
'	Generates	a	string	describing	the	current	state	of	the	C:\Test
'	folder	and	all	files	and	subfolders.
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.DriveExists
'	-	FileSystemObject.FolderExists
'	-	FileSystemObject.GetFolder
'
''

Function	GenerateTestInformation(FSO)

	 Dim	TestFolder
	 Dim	S

	 If	Not	FSO.DriveExists(TestDrive)	Then	Exit	Function
	 If	Not	FSO.FolderExists(TestFilePath)	Then	Exit	Function

	 Set	TestFolder	=	FSO.GetFolder(TestFilePath)

	 GenerateTestInformation	=	GenerateAllFolderInformation(TestFolder)	

End	Function

''
'
'	DeleteTestDirectory
'
'	Purpose:	
'
'	Cleans	up	the	test	directory.
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.GetFolder
'	-	FileSystemObject.DeleteFile

'	-	FileSystemObject.DeleteFolder
'	-	Folder.Delete
'	-	File.Delete
'
''

Sub	DeleteTestDirectory(FSO)

	 Dim	TestFolder
	 Dim	SubFolder
	 Dim	File
	
	 '	Two	ways	to	delete	a	file:

	 FSO.DeleteFile(TestFilePath	&	"\Beatles\OctopusGarden.txt")

	 Set	File	=	FSO.GetFile(TestFilePath	&	"\Beatles\BathroomWindow.txt")
	 File.Delete	

	 '	Two	ways	to	delete	a	folder:

	 FSO.DeleteFolder(TestFilePath	&	"\Beatles")

	 FSO.DeleteFile(TestFilePath	&	"\ReadMe.txt")

	 Set	TestFolder	=	FSO.GetFolder(TestFilePath)
	 TestFolder.Delete

End	Sub

''
'
'	CreateLyrics
'
'	Purpose:	
'
'	Builds	a	couple	of	text	files	in	a	folder.
'
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.CreateTextFile
'	-	TextStream.WriteLine
'	-	TextStream.Write
'	-	TextStream.WriteBlankLines
'	-	TextStream.Close
'
''

Sub	CreateLyrics(Folder)

	 Dim	TextStream
	
	 Set	TextStream	=	Folder.CreateTextFile("OctopusGarden.txt")
	
	 TextStream.Write("Octopus'	Garden	")	'	Note	that	this	does	not	add	a	line	feed	to	the	file.
	 TextStream.WriteLine("(by	Ringo	Starr)")
	 TextStream.WriteBlankLines(1)
	 TextStream.WriteLine("I'd	like	to	be	under	the	sea	in	an	octopus'	garden	in	the	shade,")
	 TextStream.WriteLine("He'd	let	us	in,	knows	where	we've	been	--	in	his	octopus'	garden	in	the	shade.")
	 TextStream.WriteBlankLines(2)
	
	 TextStream.Close

	 Set	TextStream	=	Folder.CreateTextFile("BathroomWindow.txt")
	 TextStream.WriteLine("She	Came	In	Through	The	Bathroom	Window	(by	Lennon/McCartney)")
	 TextStream.WriteLine("")
	 TextStream.WriteLine("She	came	in	through	the	bathroom	window	protected	by	a	silver	spoon")
	 TextStream.WriteLine("But	now	she	sucks	her	thumb	and	wanders	by	the	banks	of	her	own	lagoon")
	 TextStream.WriteBlankLines(2)
	 TextStream.Close

End	Sub

''
'
'	GetLyrics
'
'	Purpose:	
'
'	Displays	the	contents	of	the	lyrics	files.
'
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.OpenTextFile
'	-	FileSystemObject.GetFile
'	-	TextStream.ReadAll
'	-	TextStream.Close
'	-	File.OpenAsTextStream
'	-	TextStream.AtEndOfStream
'	-	TextStream.ReadLine
'
''

Function	GetLyrics(FSO)

	 Dim	TextStream

	 Dim	S
	 Dim	File

	 '	There	are	several	ways	to	open	a	text	file,	and	several	ways	to	read	the	
	 '	data	out	of	a	file.		Here's	two	ways	to	do	each:

	 Set	TextStream	=	FSO.OpenTextFile(TestFilePath	&	"\Beatles\OctopusGarden.txt",	OpenFileForReading)
	
	 S	=	TextStream.ReadAll	&	NewLine	&	NewLine
	 TextStream.Close

	 Set	File	=	FSO.GetFile(TestFilePath	&	"\Beatles\BathroomWindow.txt")
	 Set	TextStream	=	File.OpenAsTextStream(OpenFileForReading)
	 Do		 While	Not	TextStream.AtEndOfStream
	 	 S	=	S	&	TextStream.ReadLine	&	NewLine
	 Loop
	 TextStream.Close

	 GetLyrics	=	S
	
End	Function

''
'
'	BuildTestDirectory
'
'	Purpose:	
'
'	Builds	a	directory	hierarchy	to	demonstrate	the	FileSystemObject.
'
'	We'll	build	a	hierarchy	in	this	order:
'
'	C:\Test
'	C:\Test\ReadMe.txt
'	C:\Test\Beatles
'	C:\Test\Beatles\OctopusGarden.txt
'	C:\Test\Beatles\BathroomWindow.txt
'
'
'	Demonstrates	the	following	
'
'	-	FileSystemObject.DriveExists
'	-	FileSystemObject.FolderExists
'	-	FileSystemObject.CreateFolder
'	-	FileSystemObject.CreateTextFile
'	-	Folders.Add
'	-	Folder.CreateTextFile
'	-	TextStream.WriteLine
'	-	TextStream.Close

'
''

Function	BuildTestDirectory(FSO)
	
	 Dim	TestFolder
	 Dim	SubFolders
	 Dim	SubFolder
	 Dim	TextStream

	 '	Bail	out	if	(a)	the	drive	does	not	exist,	or	if	(b)	the	directory	being	built	
	 '	already	exists.

	 If	Not	FSO.DriveExists(TestDrive)	Then
	 	 BuildTestDirectory	=	False
	 	 Exit	Function
	 End	If

	 If	FSO.FolderExists(TestFilePath)	Then
	 	 BuildTestDirectory	=	False
	 	 Exit	Function
	 End	If

	 Set	TestFolder	=	FSO.CreateFolder(TestFilePath)

	 Set	TextStream	=	FSO.CreateTextFile(TestFilePath	&	"\ReadMe.txt")
	 TextStream.WriteLine("My	song	lyrics	collection")
	 TextStream.Close

	 Set	SubFolders	=	TestFolder.SubFolders

	 Set	SubFolder	=	SubFolders.Add("Beatles")

	 CreateLyrics	SubFolder	

	 BuildTestDirectory	=	True

End	Function

''
'
'	The	main	routine
'
'	First,	it	creates	a	test	directory,	along	with	some	subfolders	and	files.		
'	Then,	it	dumps	some	information	about	the	available	disk	drives	and	
'	about	the	test	directory,	and	then	cleans	everything	up	again.
'
''

Sub	Main

	 Dim	FSO

	 '	Set	up	global	data.
	 TabStop	=	Chr(9)
	 NewLine	=	Chr(10)
	
	 Set	FSO	=	CreateObject("Scripting.FileSystemObject")

	 If	Not	BuildTestDirectory(FSO)	Then	
	 	 Print	"Test	directory	already	exists	or	cannot	be	created.		Cannot	continue."
	 	 Exit	Sub
	 End	If
	
	 Print	GenerateDriveInformation(FSO)	&	NewLine	&	NewLine

	 Print	GenerateTestInformation(FSO)	&	NewLine	&	NewLine

	 Print	GetLyrics(FSO)	&	NewLine	&	NewLine

	 DeleteTestDirectory(FSO)
	
End	Sub

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript	Features 	Language	Reference	

Category Keywords

Array	handling

Array
Dim,	Private,	Public,	ReDim
IsArray
Erase
LBound,	UBound

Assignments Set
Comments Comments	using	'	or	Rem

Constants/Literals

Empty
Nothing
Null
True,	False

Control	flow

Do...Loop
For...Next
For	Each...Next
If...Then...Else
Select	Case
While...Wend
With

Conversions

Abs
Asc,	AscB,	AscW
Chr,	ChrB,	ChrW
CBool,	CByte
CCur,	CDate
CDbl,	CInt
CLng,	CSng,	CStr	
DateSerial,	DateValue
Hex,	Oct	
Fix,	Int
Sgn
TimeSerial,	TimeValue

Dates/Times

Date,	Time
DateAdd,	DateDiff,	DatePart
DateSerial,	DateValue
Day,	Month,	MonthName
Weekday,	WeekdayName,	Year
Hour,	Minute,	Second
Now
TimeSerial,	TimeValue

Declarations

Class
Const
Dim,	Private,	Public,	ReDim
Function,	Sub
Property	Get,	Property	Let,	Property	Set

Error	Handling On	Error
Err

Expressions

Eval
Execute
RegExp
Replace
Test

Formatting	Strings

FormatCurrency
FormatDateTime
FormatNumber
FormatPercent

Input/Output
InputBox
LoadPicture
MsgBox

Literals

Empty
False
Nothing
Null
True

Math
Atn,	Cos,	Sin,	Tan
Exp,	Log,	Sqr
Randomize,	Rnd

Miscellaneous
Eval	Function
Execute	Statement
RGB	Function

Objects

CreateObject
Err	Object
GetObject
RegExp

Operators

Addition	(+),	Subtraction	(-)
Exponentiation	(^)
Modulus	arithmetic	(Mod)
Multiplication	(*),	Division	(/)
Integer	Division	(\)
Negation	(-)
String	concatenation	(&)
Equality	(=),	Inequality	(<>)
Less	Than	(<),	Less	Than	or	Equal	To	(<=)
Greater	Than	(>)
Greater	Than	or	Equal	To	(>=)
Is
And,	Or,	Xor

Eqv,	Imp
Options Option	Explicit

Procedures
Call
Function,	Sub
Property	Get,	Property	Let,	Property	Set

Rounding
Abs
Int,	Fix,	Round
Sgn

Script	Engine	ID

ScriptEngine
ScriptEngineBuildVersion
ScriptEngineMajorVersion
ScriptEngineMinorVersion

Strings

Asc,	AscB,	AscW
Chr,	ChrB,	ChrW
Filter,	InStr,	InStrB
InStrRev
Join
Len,	LenB
LCase,	UCase
Left,	LeftB
Mid,	MidB
Right,	RightB
Replace
Space
Split
StrComp
String
StrReverse
LTrim,	RTrim,	Trim

Variants

IsArray
IsDate
IsEmpty
IsNull
IsNumeric
IsObject
TypeName
VarType

Microsoft®	Visual	Basic®	Scripting	Edition	Visual
Basic	for
Applications
Features	not	in
VBScript

	Language	Reference	

Category Omitted	Feature/Keyword

Array	Handling Option	Base
Declaring	arrays	with	lower	bound	<>	0

Collection
Add,	Count,	Item,	Remove
Access	to	collections	using	!	character	(e.g.,
MyCollection!Foo)

Conditional
Compilation

#Const
#If...Then...#Else

Control	Flow

DoEvents
GoSub...Return,	GoTo
On	Error	GoTo
On...GoSub,	On...GoTo
Line	numbers,	Line	labels

Conversion CVar,	CVDate
Str,	Val

Data	Types All	intrinsic	data	types	except	Variant
Type...End	Type

Date/Time Date	statement,	Time	statement

DDE LinkExecute,	LinkPoke,	LinkRequest,
LinkSend
Debug.Print

Debugging End,	Stop

Declaration

Declare	(for	declaring	DLLs)
Optional
ParamArray
Static

Error	Handling
Erl
Error
Resume,	Resume	Next

File	Input/Output All	traditional	Basic	file	I/O
Financial All	financial	functions
Object
Manipulation TypeOf

Objects Clipboard
Collection

Operators Like

Options

Deftype
Option	Base
Option	Compare
Option	Private	Module

Select	Case

Expressions	containing	Is	keyword	or	any
comparison	operators
Expressions	containing	a	range	of	values	using
the	To	keyword.

Strings

Fixed-length	strings
LSet,	RSet
Mid	Statement
StrConv

Using	Objects Collection	access	using	!

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript	Features
not	in	Visual	Basic
for	Applications

	Language	Reference	

Category Feature/Keyword
Declarations Class

Miscellaneous Eval
Execute

Objects RegExp

Script	Engine
Identification

ScriptEngine
ScriptEngineBuildVersion
ScriptEngineMajorVersion
ScriptEngineMinorVersion

Microsoft®	Visual	Basic®	Scripting	Edition

Microsoft
Scripting
Run-Time	Library
Reference
Features

	Language	Reference	

Category Feature/Keyword

Collections
Drives
Files
Folders

Data	Storage Dictionary

Dictionary

Add
Exists
Items,	Keys
Remove,	RemoveAll
Count
Item,	Key

File	System

Drive
File
FileSystemObject
Folder
TextStream
BuildPath
CopyFile,	CopyFolder
CreateFolder,CreateTextFile
DeleteFile,DeleteFolder	
DriveExists,	FileExists,	FolderExists
GetAbsolutePathName,	GetBaseName

FileSystemObject GetDrive,	GetDriveName
GetFile,	GetExtensionName	GetFileName
GetFolder,	GetParentFolderName
GetSpecialFolder
GetTempName
MoveFile,	MoveFolder
OpenTextFile
Drives

Drive,	Drives

AvailableSpace
Count
DriveLetter
DriveType
FileSystem
FreeSpace
IsReady
Item
RootFolder
SerialNumber
ShareName
TotalSize
VolumeName

File,	Files
Folder,	Folders

Add
Attributes
Copy,	Delete,	Move
Count
OpenAsTextStream
DateCreated,	DateLastAccessed,
DateLastModified
Drive
Item
ParentFolder
Name,	Path
ShortName,	ShortPath
Size
Close
Read,	ReadAll,	ReadLine

TextStream Skip,	SkipLine
Write,	WriteBlankLines,	WriteLine
AtEndOfLine,	AtEndOfStream
Column,	Line

Microsoft®	Visual	Basic®	Scripting	Edition	Abs
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	absolute	value	of	a	number.

Syntax

Abs(number)

The	number	argument	can	be	any	valid	numeric	expression.	If	number
contains	Null,	Null	is	returned;	if	it	is	an	uninitialized	variable,	zero	is
returned.

Remarks

The	absolute	value	of	a	number	is	its	unsigned	magnitude.	For	example,
Abs(-1)	and	Abs(1)	both	return	1.

The	following	example	uses	the	Abs	function	to	compute	the	absolute	value
of	a	number:

Dim	MyNumber
MyNumber	=	Abs(50.3)		'	Returns	50.3.
MyNumber	=	Abs(-50.3)	'	Returns	50.3.

Microsoft®	Visual	Basic®	Scripting	Edition	+
Operator

	Scripting	Run-Time	Reference	
Version	1	

See	Also

Description

Sums	two	numbers.

Syntax

result	=	expression1	+	expression2

The	+	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

Although	you	can	also	use	the	+	operator	to	concatenate	two	character
strings,	you	should	use	the	&	operator	for	concatenation	to	eliminate
ambiguity	and	provide	self-documenting	code.

When	you	use	the	+	operator,	you	may	not	be	able	to	determine	whether	addition	or	string
concatenation	will	occur.

The	underlying	subtype	of	the	expressions	determines	the	behavior	of	the	+	operator	in	the	following
way:

If Then
Both	expressions	are	numeric Add.
Both	expressions	are	strings Concatenate.

Add.

One	expression	is	numeric	and	the	other	is	a	string

If	one	or	both	expressions	are	Null	expressions,	result	is	Null.	If	both	expressions	are	Empty,	result
is	an	Integer	subtype.	However,	if	only	one	expression	is	Empty,	the	other	expression	is	returned
unchanged	as	result.

Microsoft®	Visual	Basic®	Scripting	Edition	And
Operator

	Language	Reference	
Version	1	

See	Also

Description

Performs	a	logical	conjunction	on	two	expressions.

Syntax

result	=	expression1	And	expression2

The	And	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

If,	and	only	if,	both	expressions	evaluate	to	True,	result	is	True.	If	either
expression	evaluates	to	False,	result	is	False.	The	following	table	illustrates
how	result	is	determined:

If	expression1	is And	expression2	is The	result	is
True True True
True False False
True Null Null
False True False
False False False
False Null False

Null True Null
Null False False
Null Null Null

The	And	operator	also	performs	a	bitwise	comparison	of	identically	positioned	bits	in	two	numeric
expressions	and	sets	the	corresponding	bit	in	result	according	to	the	following	table:

If	bit	in	expression1	is And	bit	in	expression2	is The	result	is
0 0 0
0 1 0
1 0 0
1 1 1

Microsoft®	Visual	Basic®	Scripting	Edition	Array
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	Variant	containing	an	array.

Syntax

Array(arglist)

The	required	arglist	argument	is	a	comma-delimited	list	of	values	that	are
assigned	to	the	elements	of	an	array	contained	with	the	Variant.	If	no
arguments	are	specified,	an	array	of	zero	length	is	created.

Remarks

The	notation	used	to	refer	to	an	element	of	an	array	consists	of	the	variable
name	followed	by	parentheses	containing	an	index	number	indicating	the
desired	element.	In	the	following	example,	the	first	statement	creates	a
variable	named	A.	The	second	statement	assigns	an	array	to	variable	A.	The
last	statement	assigns	the	value	contained	in	the	second	array	element	to
another	variable.

Dim	A
A	=	Array(10,20,30)
B	=	A(2)		'	B	is	now	30.

NoteVersion	Version	A	variable	that	is	not	declared	as	an	array
can	still	contain	an	array.	Although	a	Variant	variable
containing	an	array	is	conceptually	different	from	an	array
variable	containing	Variant	elements,	the	array	elements	are
accessed	in	the	same	way.

Microsoft®	Visual	Basic®	Scripting	Edition	Asc
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	ANSI	character	code	corresponding	to	the	first	letter	in	a	string.

Syntax

Asc(string)

The	string	argument	is	any	valid	string	expression.	If	the	string	contains	no
characters,	a	run-time	error	occurs.

Remarks

In	the	following	example,	Asc	returns	the	ANSI	character	code	of	the	first
letter	of	each	string:

Dim	MyNumber
MyNumber	=	Asc("A")						'	Returns	65.
MyNumber	=	Asc("a")						'	Returns	97.
MyNumber	=	Asc("Apple")		'	Returns	65.

Note		The	AscB	function	is	used	with	byte	data	contained	in	a
string.	Instead	of	returning	the	character	code	for	the	first
character,	AscB	returns	the	first	byte.	AscW	is	provided	for	32-

bit	platforms	that	use	Unicode	characters.	It	returns	the	Unicode
(wide)	character	code,	thereby	avoiding	the	conversion	from
Unicode	to	ANSI.

Microsoft®	Visual	Basic®	Scripting	Edition	=
Operator

	Language	Reference	
	Version	1	

See	Also

Description

Assigns	a	value	to	a	variable	or	property.

Syntax

variable	=	value

The	=	operator	syntax	has	these	parts:

Part Description
variable Any	variable	or	any	writable	property.
value Any	numeric	or	string	literal,	constant,	or	expression.

Remarks

The	name	on	the	left	side	of	the	equal	sign	can	be	a	simple	scalar	variable
or	an	element	of	an	array.	Properties	on	the	left	side	of	the	equal	sign	can
only	be	those	properties	that	are	writable	at	run	time.

Microsoft®	Visual	Basic®	Scripting	Edition	Atn
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	arctangent	of	a	number.

Syntax

Atn(number)

The	number	argument	can	be	any	valid	numeric	expression.

Remarks

The	Atn	function	takes	the	ratio	of	two	sides	of	a	right	triangle	(number)
and	returns	the	corresponding	angle	in	radians.	The	ratio	is	the	length	of	the
side	opposite	the	angle	divided	by	the	length	of	the	side	adjacent	to	the
angle.	The	range	of	the	result	is	-pi/2	to	pi/2	radians.

To	convert	degrees	to	radians,	multiply	degrees	by	pi/180.	To	convert
radians	to	degrees,	multiply	radians	by	180/pi.

The	following	example	uses	Atn	to	calculate	the	value	of	pi:

Dim	pi
pi	=	4	*	Atn(1)			'	Calculate	the	value	of	pi.

Note		Atn	is	the	inverse	trigonometric	function	of	Tan,	which

takes	an	angle	as	its	argument	and	returns	the	ratio	of	two	sides
of	a	right	triangle.	Do	not	confuse	Atn	with	the	cotangent,	which
is	the	simple	inverse	of	a	tangent	(1/tangent).

Microsoft®	Visual	Basic®	Scripting	Edition	Call
Statement

	Language	Reference	
Version	1	

Description

Transfers	control	to	a	Sub	or	Function	procedure.

Syntax

[Call]	name	[argumentlist]

The	Call	statement	syntax	has	these	parts:

Part Description

Call

Optional	keyword.	If	specified,	you	must	enclose
argumentlist	in	parentheses.	For	example:

Call	MyProc(0)

name	Required.	Name	of	the	procedure	to	call.	argumentlist	Optional.	Comma-
delimited	list	of	variables,	arrays,	or	expressions	to	pass	to	the	procedure.

Remarks

You	are	not	required	to	use	the	Call	keyword	when	calling	a	procedure.
However,	if	you	use	the	Call	keyword	to	call	a	procedure	that	requires
arguments,	argumentlist	must	be	enclosed	in	parentheses.	If	you	omit	the
Call	keyword,	you	also	must	omit	the	parentheses	around	argumentlist.	If
you	use	either	Call	syntax	to	call	any	intrinsic	or	user-defined	function,	the
function's	return	value	is	discarded.

Call	MyFunction("Hello	World")

Function	MyFunction(text)
	 MsgBox	text
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CBool
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
Boolean.

Syntax

CBool(expression)

The	expression	argument	is	any	valid	expression.

Remarks

If	expression	is	zero,	False	is	returned;	otherwise,	True	is	returned.	If
expression	can't	be	interpreted	as	a	numeric	value,	a	run-time	error	occurs.

The	following	example	uses	the	CBool	function	to	convert	an	expression	to	a	Boolean.	If	the
expression	evaluates	to	a	nonzero	value,	CBool	returns	True;	otherwise,	it	returns	False.

Dim	A,	B,	Check
A	=	5:	B	=	5												'	Initialize	variables.
Check	=	CBool(A	=	B)				'	Check	contains	True.
A	=	0																			'	Define	variable.
Check	=	CBool(A)								'	Check	contains	False.

Microsoft®	Visual	Basic®	Scripting	Edition	CByte
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
Byte.

Syntax

CByte(expression)

The	expression	argument	is	any	valid	expression.

Remarks

In	general,	you	can	document	your	code	using	the	subtype	conversion
functions	to	show	that	the	result	of	some	operation	should	be	expressed	as	a
particular	data	type	rather	than	the	default	data	type.	For	example,	use
CByte	to	force	byte	arithmetic	in	cases	where	currency,	single-precision,
double-precision,	or	integer	arithmetic	normally	would	occur.

Use	the	CByte	function	to	provide	internationally	aware	conversions	from	any	other	data	type	to	a
Byte	subtype.	For	example,	different	decimal	separators	are	properly	recognized	depending	on	the
locale	setting	of	your	system,	as	are	different	thousand	separators.

If	expression	lies	outside	the	acceptable	range	for	the	Byte	subtype,	an	error	occurs.	The	following
example	uses	the	CByte	function	to	convert	an	expression	to	a	byte:

Dim	MyDouble,	MyByte
MyDouble	=	125.5678									'	MyDouble	is	a	Double.
MyByte	=	CByte(MyDouble)				'	MyByte	contains	126.

Microsoft®	Visual	Basic®	Scripting	Edition	CCur
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
Currency.

Syntax

CCur(expression)

The	expression	argument	is	any	valid	expression.

Remarks

In	general,	you	can	document	your	code	using	the	subtype	conversion
functions	to	show	that	the	result	of	some	operation	should	be	expressed	as	a
particular	data	type	rather	than	the	default	data	type.	For	example,	use
CCur	to	force	currency	arithmetic	in	cases	where	integer	arithmetic
normally	would	occur.

You	should	use	the	CCur	function	to	provide	internationally	aware	conversions	from	any	other	data
type	to	a	Currency	subtype.	For	example,	different	decimal	separators	and	thousands	separators	are
properly	recognized	depending	on	the	locale	setting	of	your	system.

The	following	example	uses	the	CCur	function	to	convert	an	expression	to	a	Currency:

Dim	MyDouble,	MyCurr
MyDouble	=	543.214588										'	MyDouble	is	a	Double.
MyCurr	=	CCur(MyDouble	*	2)				'	Convert	result	of	MyDouble	*	2	(1086.429176)	
																															'	to	a	Currency	(1086.4292).

Microsoft®	Visual	Basic®	Scripting	Edition	CDate
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
Date.

Syntax

CDate(date)

The	date	argument	is	any	valid	date	expression.

Remarks

Use	the	IsDate	function	to	determine	if	date	can	be	converted	to	a	date	or
time.	CDate	recognizes	date	literals	and	time	literals	as	well	as	some
numbers	that	fall	within	the	range	of	acceptable	dates.	When	converting	a
number	to	a	date,	the	whole	number	portion	is	converted	to	a	date.	Any
fractional	part	of	the	number	is	converted	to	a	time	of	day,	starting	at
midnight.

CDate	recognizes	date	formats	according	to	the	locale	setting	of	your
system.	The	correct	order	of	day,	month,	and	year	may	not	be	determined	if
it	is	provided	in	a	format	other	than	one	of	the	recognized	date	settings.	In
addition,	a	long	date	format	is	not	recognized	if	it	also	contains	the	day-of-
the-week	string.

The	following	example	uses	the	CDate	function	to	convert	a	string	to	a

date.	In	general,	hard	coding	dates	and	times	as	strings	(as	shown	in	this
example)	is	not	recommended.	Use	date	and	time	literals	(such	as
#10/19/1962#,	#4:45:23	PM#)	instead.

MyDate	=	"October	19,	1962"	 '	Define	date.
MyShortDate	=	CDate(MyDate)	 '	Convert	to	Date	data	type.
MyTime	=	"4:35:47	PM"	 	 '	Define	time.
MyShortTime	=	CDate(MyTime)	 '	Convert	to	Date	data	type.

Microsoft®	Visual	Basic®	Scripting	Edition	CDbl
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
Double.

Syntax

CDbl(expression)

The	expression	argument	is	any	valid	expression.

Remarks

In	general,	you	can	document	your	code	using	the	subtype	conversion
functions	to	show	that	the	result	of	some	operation	should	be	expressed	as	a
particular	data	type	rather	than	the	default	data	type.	For	example,	use
CDbl	or	CSng	to	force	double-precision	or	single-precision	arithmetic	in
cases	where	currency	or	integer	arithmetic	normally	would	occur.

Use	the	CDbl	function	to	provide	internationally	aware	conversions	from
any	other	data	type	to	a	Double	subtype.	For	example,	different	decimal
separators	and	thousands	separators	are	properly	recognized	depending	on
the	locale	setting	of	your	system.

This	example	uses	the	CDbl	function	to	convert	an	expression	to	a	Double.

Dim	MyCurr,	MyDouble

MyCurr	=	CCur(234.456784)															'	MyCurr	is	a	Currency	(234.4567).
MyDouble	=	CDbl(MyCurr	*	8.2	*	0.01)				'	Convert	result	to	a	Double	(19.2254576).

Microsoft®	Visual	Basic®	Scripting	Edition	Chr
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	character	associated	with	the	specified	ANSI	character	code.

Syntax

Chr(charcode)

The	charcode	argument	is	a	number	that	identifies	a	character.

Remarks

Numbers	from	0	to	31	are	the	same	as	standard,	nonprintable	ASCII	codes.
For	example,	Chr(10)	returns	a	linefeed	character.

The	following	example	uses	the	Chr	function	to	return	the	character
associated	with	the	specified	character	code:

Dim	MyChar
MyChar	=	Chr(65)				'	Returns	A.
MyChar	=	Chr(97)				'	Returns	a.
MyChar	=	Chr(62)				'	Returns	>.
MyChar	=	Chr(37)				'	Returns	%.

Note		The	ChrB	function	is	used	with	byte	data	contained	in	a
string.	Instead	of	returning	a	character,	which	may	be	one	or	two
bytes,	ChrB	always	returns	a	single	byte.	ChrW	is	provided	for
32-bit	platforms	that	use	Unicode	characters.	Its	argument	is	a
Unicode	(wide)	character	code,	thereby	avoiding	the	conversion
from	ANSI	to	Unicode.

Microsoft®	Visual	Basic®	Scripting	Edition	CInt
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
Integer.

Syntax

CInt(expression)

The	expression	argument	is	any	valid	expression.

Remarks

In	general,	you	can	document	your	code	using	the	subtype	conversion
functions	to	show	that	the	result	of	some	operation	should	be	expressed	as	a
particular	data	type	rather	than	the	default	data	type.	For	example,	use	CInt
or	CLng	to	force	integer	arithmetic	in	cases	where	currency,	single-
precision,	or	double-precision	arithmetic	normally	would	occur.

Use	the	CInt	function	to	provide	internationally	aware	conversions	from
any	other	data	type	to	an	Integer	subtype.	For	example,	different	decimal
separators	are	properly	recognized	depending	on	the	locale	setting	of	your
system,	as	are	different	thousand	separators.

If	expression	lies	outside	the	acceptable	range	for	the	Integer	subtype,	an
error	occurs.

The	following	example	uses	the	CInt	function	to	convert	a	value	to	an

Integer:

Dim	MyDouble,	MyInt
MyDouble	=	2345.5678						'	MyDouble	is	a	Double.
MyInt	=	CInt(MyDouble)				'	MyInt	contains	2346.

Note		CInt	differs	from	the	Fix	and	Int	functions,	which
truncate,	rather	than	round,	the	fractional	part	of	a	number.
When	the	fractional	part	is	exactly	0.5,	the	CInt	function	always
rounds	it	to	the	nearest	even	number.	For	example,	0.5	rounds	to
0,	and	1.5	rounds	to	2.

Microsoft®	Visual	Basic®	Scripting	Edition	Class
Object

	Language	Reference	
Version	5	

See	Also																			Events																			

Description

The	object	created	using	the	Class	statement.	Provides	access	to
the	events	of	the	class.

Remarks

You	cannot	explicitly	declare	a	variable	to	be	of	type	Class.	In
the	VBScript	context,	the	term	"class	object"	refers	to	any	object
defined	using	the	VBScript	Class	statement.

Once	you	have	created	a	class	definition	using	the	Class
statement,	you	can	create	an	instance	of	the	class	using	the
following	form:

Dim	X
Set	X	=	New	classname

Because	VBScript	is	a	late-bound	language,	you	cannot	do	any	of
the	following:

Dim	X	as	New	classname

or

Dim	X

X	=	New	classname

or

Set	X	=	New	Scripting.FileSystemObject

Microsoft®	Visual	Basic®	Scripting	Edition	Class
Statement

	Language	Reference	
Version	5	

See	Also

Description

Declares	the	name	of	a	class,	as	well	as	a	definition	of	the
variables,	properties,	and	methods	that	comprise	the	class.

Syntax

Class	name
				statements
End	Class

The	Class	statement	syntax	has	these	parts:

Part Description
name Required.	Name	of	the	Class;	follows	standard	variable	naming	conventions.

statements Required.	One	or	more	statements	that	define	the	variables,	properties,	and	methods	ofthe	Class.

Remarks

Within	a	Class	block,	members	are	declared	as	either	Private	or
Public	using	the	appropriate	declaration	statements.	Anything
declared	as	Private	is	visible	only	within	the	Class	block.
Anything	declared	as	Public	is	visible	within	the	Class	block,	as
well	as	by	code	outside	the	Class	block.	Anything	not	explicitly
declared	as	either	Private	or	Public	is	Public	by	default.

Procedures	(either	Sub	or	Function)	declared	Public	within	the
class	block	become	methods	of	the	class.	Public	variables	serve
as	properties	of	the	class,	as	do	properties	explicitly	declared
using	Property	Get,	Property	Let,	and	Property	Set.	Default
properties	and	methods	for	the	class	are	specified	in	their
declarations	using	the	Default	keyword.	See	the	individual
declaration	statement	topics	for	information	on	how	this	keyword
is	used.

Microsoft®	Visual	Basic®	Scripting	Edition	Clear
Method

	Language	Reference	
Version	1	

See	Also																					Applies	to

Description

Clears	all	property	settings	of	the	Err	object.

Syntax

object.Clear

The	object	is	always	the	Err	object.

Remarks

Use	Clear	to	explicitly	clear	the	Err	object	after	an	error	has	been	handled.
This	is	necessary,	for	example,	when	you	use	deferred	error	handling	with
On	Error	Resume	Next.	VBScript	calls	the	Clear	method	automatically
whenever	any	of	the	following	statements	is	executed:

On	Error	Resume	Next

Exit	Sub

Exit	Function

The	following	example	illustrates	use	of	the	Clear	method:

On	Error	Resume	Next
Err.Raise	6		'	Raise	an	overflow	error.
MsgBox	("Error	#	"	&	CStr(Err.Number)	&	"	"	&	Err.Description)
Err.Clear				'	Clear	the	error.

Microsoft®	Visual	Basic®	Scripting	Edition	CLng
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
Long.

Syntax

CLng(expression)

The	expression	argument	is	any	valid	expression.

Remarks

In	general,	you	can	document	your	code	using	the	subtype	conversion
functions	to	show	that	the	result	of	some	operation	should	be	expressed	as	a
particular	data	type	rather	than	the	default	data	type.	For	example,	use	CInt
or	CLng	to	force	integer	arithmetic	in	cases	where	currency,	single-
precision,	or	double-precision	arithmetic	normally	would	occur.

Use	the	CLng	function	to	provide	internationally	aware	conversions	from
any	other	data	type	to	a	Long	subtype.	For	example,	different	decimal
separators	are	properly	recognized	depending	on	the	locale	setting	of	your
system,	as	are	different	thousand	separators.

If	expression	lies	outside	the	acceptable	range	for	the	Long	subtype,	an
error	occurs.

The	following	example	uses	the	CLng	function	to	convert	a	value	to	a

Long:

Dim	MyVal1,	MyVal2,	MyLong1,	MyLong2
MyVal1	=	25427.45:	MyVal2	=	25427.55	 '	MyVal1,	MyVal2	are	Doubles.
MyLong1	=	CLng(MyVal1)	 	 	 '	MyLong1	contains	25427.
MyLong2	=	CLng(MyVal2)	 	 	 '	MyLong2	contains	25428.

Note		CLng	differs	from	the	Fix	and	Int	functions,	which
truncate,	rather	than	round,	the	fractional	part	of	a	number.
When	the	fractional	part	is	exactly	0.5,	the	CLng	function
always	rounds	it	to	the	nearest	even	number.	For	example,	0.5
rounds	to	0,	and	1.5	rounds	to	2.

Microsoft®	Visual	Basic®	Scripting	Edition

Comparison
Constants

	Language	Reference	
Version	2	

See	Also

Since	these	constants	are	built	into	VBScript,	you	don't	have	to	define	them
before	using	them.	Use	them	anywhere	in	your	code	to	represent	the	values
shown	for	each.

Constant Value Description
vbBinaryCompare 0 Perform	a	binary	comparison.
vbTextCompare 1 Perform	a	textual	comparison.

Microsoft®	Visual	Basic®	Scripting	Edition	&
Operator

	Language	Reference	
Version	1	

See	Also

Description

Forces	string	concatenation	of	two	expressions.

Syntax

result	=	expression1	&	expression2

The	&	operator	syntax	has	these	parts:

Part Description
result Any	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

Whenever	an	expression	is	not	a	string,	it	is	converted	to	a	String	subtype.
If	both	expressions	are	Null,	result	is	also	Null.	However,	if	only	one
expression	is	Null,	that	expression	is	treated	as	a	zero-length	string	("")
when	concatenated	with	the	other	expression.	Any	expression	that	is
Empty	is	also	treated	as	a	zero-length	string.

Microsoft®	Visual	Basic®	Scripting	Edition	Const
Statement

	Language	Reference	
Version	2	

See	Also

Description

Declares	constants	for	use	in	place	of	literal	values.

Syntax

[Public	|	Private]	Const	constname	=	expression

The	Const	statement	syntax	has	these	parts:

Part Description

Public
Optional.	Keyword	used	at	script	level	to	declare
constants	that	are	available	to	all	procedures	in	all
scripts.	Not	allowed	in	procedures.

Private

Optional.	Keyword	used	at	script	level	to	declare
constants	that	are	available	only	within	the	script
where	the	declaration	is	made.	Not	allowed	in
procedures.

constname Required.	Name	of	the	constant;	follows	standardvariable	naming	conventions.

expression
Required.	Literal	or	other	constant,	or	any
combination	that	includes	all	arithmetic	or	logical
operators	except	Is.

Remarks

Constants	are	public	by	default.	Within	procedures,	constants	are	always
private;	their	visibility	can't	be	changed.	Within	a	script,	the	default
visibility	of	a	script-level	constant	can	be	changed	using	the	Private

keyword.

To	combine	several	constant	declarations	on	the	same	line,	separate	each	constant	assignment	with	a
comma.	When	constant	declarations	are	combined	in	this	way,	the	Public	or	Private	keyword,	if
used,	applies	to	all	of	them.

You	can't	use	variables,	user-defined	functions,	or	intrinsic	VBScript	functions	(such	as	Chr)	in
constant	declarations.	By	definition,	they	can't	be	constants.	You	also	can't	create	a	constant	from	any
expression	that	involves	an	operator,	that	is,	only	simple	constants	are	allowed.	Constants	declared	in
a	Sub	or	Function	procedure	are	local	to	that	procedure.	A	constant	declared	outside	a	procedure	is
defined	throughout	the	script	in	which	it	is	declared.	You	can	use	constants	anywhere	you	can	use	an
expression.	The	following	code	illustrates	the	use	of	the	Const	statement:

Const	MyVar	=	459	 	 	 	 	 '	Constants	are	Public	by	default.
Private	Const	MyString	=	"HELP"		 	 '	Declare	Private	constant.
Const	MyStr	=	"Hello",	MyNumber		=	3.4567	 '	Declare	multiple	constants	on	same	line.		

Note		Constants	can	make	your	scripts	self-documenting	and
easy	to	modify.	Unlike	variables,	constants	can't	be	inadvertently
changed	while	your	script	is	running.

Microsoft®	Visual	Basic®	Scripting	Edition	Cos
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	cosine	of	an	angle.

Syntax

Cos(number)

The	number	argument	can	be	any	valid	numeric	expression	that	expresses	an	angle	in	radians.

Remarks

The	Cos	function	takes	an	angle	and	returns	the	ratio	of	two	sides	of	a	right
triangle.	The	ratio	is	the	length	of	the	side	adjacent	to	the	angle	divided	by
the	length	of	the	hypotenuse.	The	result	lies	in	the	range	-1	to	1.

To	convert	degrees	to	radians,	multiply	degrees	by	pi/180.	To	convert	radians	to	degrees,	multiply
radians	by	180/pi.

The	following	example	uses	the	Cos	function	to	return	the	cosine	of	an	angle:

Dim	MyAngle,	MySecant
MyAngle	=	1.3																'	Define	angle	in	radians.
MySecant	=	1	/	Cos(MyAngle)		'	Calculate	secant.

Microsoft®	Visual	Basic®	Scripting	Edition

CreateObject
Function

	Language	Reference	
Version	2	

See	Also

Description

Creates	and	returns	a	reference	to	an	Automation	object.

Syntax

CreateObject(servername.typename	[,	location])

The	CreateObject	function	syntax	has	these	parts:

Part Description

servername Required.	The	name	of	the	application	providing	theobject.
typename Required.The	type	or	class	of	the	object	to	create.

location
Optional.	The	name	of	the	network	server	where	the
object	is	to	be	created.	This	feature	is	available	in
version	5.1	or	later.

Remarks

Automation	servers	provide	at	least	one	type	of	object.	For	example,	a
word-processing	application	may	provide	an	application	object,	a	document
object,	and	a	toolbar	object.

To	create	an	Automation	object,	assign	the	object	returned	by	CreateObject	to	an	object	variable:

Dim	ExcelSheet
Set	ExcelSheet	=	CreateObject("Excel.Sheet")

This	code	starts	the	application	that	creates	the	object	(in	this	case,	a
Microsoft	Excel	spreadsheet).	Once	an	object	is	created,	refer	to	it	in	code
using	the	object	variable	you	defined.	As	shown	in	the	following	example,
you	can	access	properties	and	methods	of	the	new	object	using	the	object
variable,	ExcelSheet,	and	other	Excel	objects,	including	the	Application
object	and	the	ActiveSheet.Cells	collection:

'	Make	Excel	visible	through	the	Application	object.
ExcelSheet.Application.Visible	=	True
'	Place	some	text	in	the	first	cell	of	the	sheet.
ExcelSheet.ActiveSheet.Cells(1,1).Value	=	"This	is	column	A,	row	1"
'	Save	the	sheet.
ExcelSheet.SaveAs	"C:\DOCS\TEST.XLS"
'	Close	Excel	with	the	Quit	method	on	the	Application	object.
ExcelSheet.Application.Quit
'	Release	the	object	variable.
Set	ExcelSheet	=	Nothing

Creating	an	object	on	a	remote	server	can	only	be	accomplished	when
Internet	security	is	turned	off.	You	can	create	an	object	on	a	remote
networked	computer	by	passing	the	name	of	the	computer	to	the
servername	argument	of	CreateObject.	That	name	is	the	same	as	the
machine	name	portion	of	a	sharename.	For	a	network	share	named
"\\myserver\public",	the	servername	is	"myserver".	In	addition,	you	can
specify	servername	using	DNS	format	or	an	IP	address.

The	following	code	returns	the	version	number	of	an	instance	of	Excel	running	on	a	remote	network
computer	named	"myserver":

Function	GetVersion
		Dim	XLApp
		Set	XLApp	=	CreateObject("Excel.Application",	"MyServer")

		GetVersion	=	XLApp.Version
End	Function

An	error	occurs	if	the	specified	remote	server	does	not	exist	or	cannot	be
found.

Microsoft®	Visual	Basic®	Scripting	Edition	CSng
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
Single.

Syntax

CSng(expression)

The	expression	argument	is	any	valid	expression.

Remarks

In	general,	you	can	document	your	code	using	the	data	type	conversion
functions	to	show	that	the	result	of	some	operation	should	be	expressed	as	a
particular	data	type	rather	than	the	default	data	type.	For	example,	use
CDbl	or	CSng	to	force	double-precision	or	single-precision	arithmetic	in
cases	where	currency	or	integer	arithmetic	normally	would	occur.

Use	the	CSng	function	to	provide	internationally	aware	conversions	from
any	other	data	type	to	a	Single	subtype.	For	example,	different	decimal
separators	are	properly	recognized	depending	on	the	locale	setting	of	your
system,	as	are	different	thousand	separators.

If	expression	lies	outside	the	acceptable	range	for	the	Single	subtype,	an
error	occurs.

The	following	example	uses	the	CSng	function	to	convert	a	value	to	a

Single:

Dim	MyDouble1,	MyDouble2,	MySingle1,	MySingle2	 '	MyDouble1,	MyDouble2	are	Doubles.
MyDouble1	=	75.3421115:	MyDouble2	=	75.3421555
MySingle1	=	CSng(MyDouble1)	 	 	 	 '	MySingle1	contains	75.34211.
MySingle2	=	CSng(MyDouble2)	 	 	 	 '	MySingle2	contains	75.34216.

Microsoft®	Visual	Basic®	Scripting	Edition	CStr
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	expression	that	has	been	converted	to	a	Variant	of	subtype
String.

Syntax

CStr(expression)

The	expression	argument	is	any	valid	expression.

Remarks

In	general,	you	can	document	your	code	using	the	data	type	conversion
functions	to	show	that	the	result	of	some	operation	should	be	expressed	as	a
particular	data	type	rather	than	the	default	data	type.	For	example,	use	CStr
to	force	the	result	to	be	expressed	as	a	String.

You	should	use	the	CStr	function	instead	of	Str	to	provide	internationally
aware	conversions	from	any	other	data	type	to	a	String	subtype.	For
example,	different	decimal	separators	are	properly	recognized	depending	on
the	locale	setting	of	your	system.

The	data	in	expression	determines	what	is	returned	according	to	the
following	table:

If

expression
is

CStr	returns

Boolean A	String	containing	True	or	False.

Date A	String	containing	a	date	in	the	short-date	format
of	your	system.

Null A	run-time	error.
Empty A	zero-length	String	("").

Error A	String	containing	the	word	Error	followed	by	the
error	number.

Other
numeric A	String	containing	the	number.

The	following	example	uses	the	CStr	function	to	convert	a	numeric	value
to	a	String:

Dim	MyDouble,	MyString
MyDouble	=	437.324									'	MyDouble	is	a	Double.
MyString	=	CStr(MyDouble)		'	MyString	contains	"437.324".

Microsoft®	Visual	Basic®	Scripting	Edition	Date
and	Time
Constants

	Language	Reference	
Version	2	

See	Also

Since	these	constants	are	built	into	VBScript,	you	don't	have	to	define	them
before	using	them.	Use	them	anywhere	in	your	code	to	represent	the	values
shown	for	each.

Constant Value Description
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

vbUseSystem 0
Use	the	date	format	contained
in	the	regional	settings	for
your	computer.

vbUseSystemDayOfWeek 0

Use	the	day	of	the	week
specified	in	your	system
settings	for	the	first	day	of	the
week.

vbFirstJan1 1 Use	the	week	in	which
January	1	occurs	(default).

vbFirstFourDays 2
Use	the	first	week	that	has	at
least	four	days	in	the	new
year.

vbFirstFullWeek 3 Use	the	first	full	week	of	the
year.

Microsoft®	Visual	Basic®	Scripting	Edition	Date
Format	Constants

	Language	Reference	
Version	2	

See	Also

Since	these	constants	are	built	into	VBScript,	you	don't	have	to	define	them
before	using	them.	Use	them	anywhere	in	your	code	to	represent	the	values
shown	for	each.

Constant Value Description

vbGeneralDate 0

Display	a	date	and/or	time.	For	real
numbers,	display	a	date	and	time.	If
there	is	no	fractional	part,	display	only	a
date.	If	there	is	no	integer	part,	display
time	only.	Date	and	time	display	is
determined	by	your	system	settings.

vbLongDate 1
Display	a	date	using	the	long	date
format	specified	in	your	computer's
regional	settings.

vbShortDate 2
Display	a	date	using	the	short	date
format	specified	in	your	computer's
regional	settings.

vbLongTime 3
Display	a	time	using	the	long	time
format	specified	in	your	computer's
regional	settings.

vbShortTime 4
Display	a	time	using	the	short	time
format	specified	in	your	computer's
regional	settings.

Microsoft®	Visual	Basic®	Scripting	Edition	Date
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	current	system	date.

Syntax

Date

Remarks

The	following	example	uses	the	Date	function	to	return	the	current	system
date:

Dim	MyDate
MyDate	=	Date				'	MyDate	contains	the	current	system	date.

Microsoft®	Visual	Basic®	Scripting	Edition

DateAdd	Function
	Language	Reference	

Version	2	

See	Also

Description

Returns	a	date	to	which	a	specified	time	interval	has	been	added.

Syntax

DateAdd(interval,	number,	date)

The	DateAdd	function	syntax	has	these	parts:

Part Description

interval Required.	String	expression	that	is	the	interval	you	wantto	add.	See	Settings	section	for	values.

number

Required.	Numeric	expression	that	is	the	number	of
interval	you	want	to	add.	The	numeric	expression	can
either	be	positive,	for	dates	in	the	future,	or	negative,
for	dates	in	the	past.

date Required.	Variant	or	literal	representing	the	date	to
which	interval	is	added.

Settings

The	interval	argument	can	have	the	following	values:

Setting Description
yyyy Year
q Quarter
m Month
y Day	of	year
d Day

w Weekday
ww Week	of	year
h Hour
n Minute
s Second

Remarks

You	can	use	the	DateAdd	function	to	add	or	subtract	a	specified	time
interval	from	a	date.	For	example,	you	can	use	DateAdd	to	calculate	a	date
30	days	from	today	or	a	time	45	minutes	from	now.	To	add	days	to	date,
you	can	use	Day	of	Year	("y"),	Day	("d"),	or	Weekday	("w").

The	DateAdd	function	won't	return	an	invalid	date.	The	following	example	adds	one	month	to
January	31:

NewDate	=	DateAdd("m",	1,	"31-Jan-95")
In	this	case,	DateAdd	returns	28-Feb-95,	not	31-Feb-95.	If	date	is	31-Jan-
96,	it	returns	29-Feb-96	because	1996	is	a	leap	year.

If	the	calculated	date	would	precede	the	year	100,	an	error	occurs.

If	number	isn't	a	Long	value,	it	is	rounded	to	the	nearest	whole	number	before	being	evaluated.

Microsoft®	Visual	Basic®	Scripting	Edition

DateDiff	Function
	Language	Reference	

Version	2	

See	Also

Description

Returns	the	number	of	intervals	between	two	dates.

Syntax

DateDiff(interval,	date1,	date2	[,firstdayofweek[,	firstweekofyear]])

The	DateDiff	function	syntax	has	these	parts:

Part Description

interval

Required.	String	expression	that	is	the	interval
you	want	to	use	to	calculate	the	differences
between	date1	and	date2.	See	Settings	section
for	values.

date1,	date2 Required.	Date	expressions.	Two	dates	you	want
to	use	in	the	calculation.

firstdayofweek
Optional.	Constant	that	specifies	the	day	of	the
week.	If	not	specified,	Sunday	is	assumed.	See
Settings	section	for	values.

firstweekofyear

Optional.	Constant	that	specifies	the	first	week
of	the	year.	If	not	specified,	the	first	week	is
assumed	to	be	the	week	in	which	January	1
occurs.	See	Settings	section	for	values.

Settings

The	interval	argument	can	have	the	following	values:

Setting Description
yyyy Year

q Quarter
m Month
y Day	of	year
d Day
w Weekday
ww Week	of	year
h Hour
n Minute
s Second

The	firstdayofweek	argument	can	have	the	following	values:

Constant Value Description

vbUseSystem 0 Use	National	Language	Support	(NLS)
API	setting.

vbSunday 1 Sunday	(default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The	firstweekofyear	argument	can	have	the	following	values:

Constant Value Description

vbUseSystem 0 Use	National	Language	Support
(NLS)	API	setting.

vbFirstJan1 1 Start	with	the	week	in	which	January	1
occurs	(default).

vbFirstFourDays 2 Start	with	the	week	that	has	at	least
four	days	in	the	new	year.
Start	with	the	first	full	weekof	the	new

vbFirstFullWeek 3 year.

Remarks

You	can	use	the	DateDiff	function	to	determine	how	many	specified	time
intervals	exist	between	two	dates.	For	example,	you	might	use	DateDiff	to
calculate	the	number	of	days	between	two	dates,	or	the	number	of	weeks
between	today	and	the	end	of	the	year.

To	calculate	the	number	of	days	between	date1	and	date2,	you	can	use	either	Day	of	year	("y")	or
Day	("d").	When	interval	is	Weekday	("w"),	DateDiff	returns	the	number	of	weeks	between	the	two
dates.	If	date1	falls	on	a	Monday,	DateDiff	counts	the	number	of	Mondays	until	date2.	It	counts
date2	but	not	date1.	If	interval	is	Week	("ww"),	however,	the	DateDiff	function	returns	the	number
of	calendar	weeks	between	the	two	dates.	It	counts	the	number	of	Sundays	between	date1	and	date2.
DateDiff	counts	date2	if	it	falls	on	a	Sunday;	but	it	doesn't	count	date1,	even	if	it	does	fall	on	a
Sunday.

If	date1	refers	to	a	later	point	in	time	than	date2,	the	DateDiff	function	returns	a	negative	number.

The	firstdayofweek	argument	affects	calculations	that	use	the	"w"	and	"ww"	interval	symbols.

If	date1	or	date2	is	a	date	literal,	the	specified	year	becomes	a	permanent	part	of	that	date.	However,
if	date1	or	date2	is	enclosed	in	quotation	marks	("	")	and	you	omit	the	year,	the	current	year	is
inserted	in	your	code	each	time	the	date1	or	date2	expression	is	evaluated.	This	makes	it	possible	to
write	code	that	can	be	used	in	different	years.

When	comparing	December	31	to	January	1	of	the	immediately	succeeding	year,	DateDiff	for	Year
("yyyy")	returns	1	even	though	only	a	day	has	elapsed.

The	following	example	uses	the	DateDiff	function	to	display	the	number	of	days	between	a	given
date	and	today:

Function	DiffADate(theDate)
		DiffADate	=	"Days	from	today:	"	&	DateDiff("d",	Now,	theDate)
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DatePart	Function
	Language	Reference	

Version	2	

See	Also

Description

Returns	the	specified	part	of	a	given	date.

Syntax

DatePart(interval,	date[,	firstdayofweek[,	firstweekofyear]])

The	DatePart	function	syntax	has	these	parts:

Part Description

interval
Required.	String	expression	that	is	the	interval
of	time	you	want	to	return.	See	Settings	section
for	values.

date Required.	Date	expression	you	want	to	evaluate.

firstdayof	week
Optional.	Constant	that	specifies	the	day	of	the
week.	If	not	specified,	Sunday	is	assumed.	See
Settings	section	for	values.

firstweekofyear

Optional.	Constant	that	specifies	the	first	week
of	the	year.	If	not	specified,	the	first	week	is
assumed	to	be	the	week	in	which	January	1
occurs.	See	Settings	section	for	values.

Settings

The	interval	argument	can	have	the	following	values:

Setting Description
yyyy Year
q Quarter

m Month
y Day	of	year
d Day
w Weekday
ww Week	of	year
h Hour
n Minute
s Second

The	firstdayofweek	argument	can	have	the	following	values:

Constant Value Description

vbUseSystem 0 Use	National	Language	Support	(NLS)
API	setting.

vbSunday 1 Sunday	(default)
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

The	firstweekofyear	argument	can	have	the	following	values:

Constant Value Description

vbUseSystem 0 Use	National	Language	Support
(NLS)	API	setting.

vbFirstJan1 1 Start	with	the	week	in	which	January	1
occurs	(default).

vbFirstFourDays 2 Start	with	the	week	that	has	at	least
four	days	in	the	new	year.

vbFirstFullWeek 3 Start	with	the	first	full	weekof	the	new
year.

Remarks

You	can	use	the	DatePart	function	to	evaluate	a	date	and	return	a	specific
interval	of	time.	For	example,	you	might	use	DatePart	to	calculate	the	day
of	the	week	or	the	current	hour.

The	firstdayofweek	argument	affects	calculations	that	use	the	"w"	and	"ww"
interval	symbols.

If	date	is	a	date	literal,	the	specified	year	becomes	a	permanent	part	of	that
date.	However,	if	date	is	enclosed	in	quotation	marks	("	"),	and	you	omit
the	year,	the	current	year	is	inserted	in	your	code	each	time	the	date
expression	is	evaluated.	This	makes	it	possible	to	write	code	that	can	be
used	in	different	years.

This	example	takes	a	date	and,	using	the	DatePart	function,	displays	the
quarter	of	the	year	in	which	it	occurs.

Function	GetQuarter(TheDate)
		GetQuarter	=	DatePart("q",	TheDate)
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DateSerial
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Variant	of	subtype	Date	for	a	specified	year,	month,	and	day.

Syntax

DateSerial(year,	month,	day)

The	DateSerial	function	syntax	has	these	arguments:

Part Description

year Number	between	100	and	9999,	inclusive,	or	a	numeric
expression.

month Any	numeric	expression.
day Any	numeric	expression.

Remarks

To	specify	a	date,	such	as	December	31,	1991,	the	range	of	numbers	for
each	DateSerial	argument	should	be	in	the	accepted	range	for	the	unit;	that
is,	1–31	for	days	and	1–12	for	months.	However,	you	can	also	specify
relative	dates	for	each	argument	using	any	numeric	expression	that
represents	some	number	of	days,	months,	or	years	before	or	after	a	certain
date.

The	following	example	uses	numeric	expressions	instead	of	absolute	date

numbers.	Here	the	DateSerial	function	returns	a	date	that	is	the	day	before
the	first	day	(1	–	1)	of	two	months	before	August	(8	–	2)	of	10	years	before
1990	(1990	–	10);	in	other	words,	May	31,	1980.

Dim	MyDate1,	MyDate2
MyDate1	=	DateSerial(1970,	1,	1)		 	 '	Returns	January	1,	1970.
MyDate2	=	DateSerial(1990	-	10,	8	-	2,	1	-	1)	 '	Returns	May	31,	1980.

For	the	year	argument,	values	between	0	and	99,	inclusive,	are	interpreted
as	the	years	1900–1999.	For	all	other	year	arguments,	use	a	complete	four-
digit	year	(for	example,	1800).

When	any	argument	exceeds	the	accepted	range	for	that	argument,	it
increments	to	the	next	larger	unit	as	appropriate.	For	example,	if	you
specify	35	days,	it	is	evaluated	as	one	month	and	some	number	of	days,
depending	on	where	in	the	year	it	is	applied.	However,	if	any	single
argument	is	outside	the	range	-32,768	to	32,767,	or	if	the	date	specified	by
the	three	arguments,	either	directly	or	by	expression,	falls	outside	the
acceptable	range	of	dates,	an	error	occurs.

Microsoft®	Visual	Basic®	Scripting	Edition

DateValue
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Variant	of	subtype	Date.

Syntax

DateValue(date)

The	date	argument	is	normally	a	string	expression	representing	a	date	from	January	1,	100	through
December	31,	9999.	However,	date	can	also	be	any	expression	that	can	represent	a	date,	a	time,	or
both	a	date	and	time,	in	that	range.

Remarks

If	the	date	argument	includes	time	information,	DateValue	doesn't	return	it.
However,	if	date	includes	invalid	time	information	(such	as	"89:98"),	an
error	occurs.

If	date	is	a	string	that	includes	only	numbers	separated	by	valid	date	separators,	DateValue
recognizes	the	order	for	month,	day,	and	year	according	to	the	short	date	format	you	specified	for
your	system.	DateValue	also	recognizes	unambiguous	dates	that	contain	month	names,	either	in	long
or	abbreviated	form.	For	example,	in	addition	to	recognizing	12/30/1991	and	12/30/91,	DateValue
also	recognizes	December	30,	1991	and	Dec	30,	1991.

If	the	year	part	of	date	is	omitted,	DateValue	uses	the	current	year	from	your	computer's	system	date.

The	following	example	uses	the	DateValue	function	to	convert	a	string	to	a	date.	You	can	also	use
date	literals	to	directly	assign	a	date	to	a	Variant	variable,	for	example,	MyDate	=	#9/11/63#.

Dim	MyDate
MyDate	=	DateValue("September	11,	1963")				'	Return	a	date.

Microsoft®	Visual	Basic®	Scripting	Edition	Day
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	whole	number	between	1	and	31,	inclusive,	representing	the	day
of	the	month.

Syntax

Day(date)

The	date	argument	is	any	expression	that	can	represent	a	date.	If	date	contains	Null,	Null	is	returned.

The	following	example	uses	the	Day	function	to	obtain	the	day	of	the	month	from	a	specified	date:

Dim	MyDay
MyDay	=	Day("October	19,	1962")		'	MyDay	contains	19.

Microsoft®	Visual	Basic®	Scripting	Edition

Description
Property

	Language	Reference	
Version	1	

See	Also																		Applies	to

Description

Returns	or	sets	a	descriptive	string	associated	with	an	error.

Syntax

object.Description	[=	stringexpression]

The	Description	property	syntax	has	these	parts:

Part Description
object Always	the	Err	object.

stringexpression A	string	expression	containing	a	description	ofthe	error.

Remarks

The	Description	property	consists	of	a	short	description	of	the	error.	Use
this	property	to	alert	the	user	to	an	error	that	you	can't	or	don't	want	to
handle.	When	generating	a	user-defined	error,	assign	a	short	description	of
your	error	to	this	property.	If	Description	isn't	filled	in,	and	the	value	of
Number	corresponds	to	a	VBScript	run-time	error,	the	descriptive	string
associated	with	the	error	is	returned.

On	Error	Resume	Next
Err.Raise	6		'	Raise	an	overflow	error.
MsgBox	("Error	#	"	&	CStr(Err.Number)	&	"	"	&	Err.Description)
Err.Clear				'	Clear	the	error.

Microsoft®	Visual	Basic®	Scripting	Edition	Dim
Statement

	Language	Reference	
Version	1	

See	Also

Description

Declares	variables	and	allocates	storage	space.

Syntax

Dim	varname[([subscripts])][,	varname[([subscripts])]]	.	.	.

The	Dim	statement	syntax	has	these	parts:

Part Description
varname Name	of	the	variable;	follows	standard	variable	naming	conventions.

subscripts

Dimensions	of	an	array	variable;	up	to	60	multiple	dimensions	may	be	declared.	The
subscripts	argument	uses	the	following	syntax:

upperbound	[,upperbound]	.	.	.

The	lower	bound	of	an	array	is	always	zero.

Remarks

Variables	declared	with	Dim	at	the	script	level	are	available	to	all
procedures	within	the	script.	At	the	procedure	level,	variables	are
available	only	within	the	procedure.

You	can	also	use	the	Dim	statement	with	empty	parentheses	to

declare	a	dynamic	array.	After	declaring	a	dynamic	array,	use	the
ReDim	statement	within	a	procedure	to	define	the	number	of
dimensions	and	elements	in	the	array.	If	you	try	to	redeclare	a
dimension	for	an	array	variable	whose	size	was	explicitly
specified	in	a	Dim	statement,	an	error	occurs.

Tip		When	you	use	the	Dim	statement	in	a	procedure,	you	generally	put	the	Dim	statement	at	the
beginning	of	the	procedure.

The	following	examples	illustrate	the	use	of	the	Dim	statement:

Dim	Names(9)					'	Declare	an	array	with	10	elements.
Dim	Names()						'	Declare	a	dynamic	array.
Dim	MyVar,	MyNum	'	Declare	two	variables.

Microsoft®	Visual	Basic®	Scripting	Edition	/
Operator

	Language	Reference	
Version	1	

See	Also

Description

Divides	two	numbers	and	returns	a	floating-point	result.

Syntax

result	=	number1/number2

The	/	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
number1 Any	numeric	expression.
number2 Any	numeric	expression.

Remarks

If	one	or	both	expressions	are	Null	expressions,	result	is	Null.	Any
expression	that	is	Empty	is	treated	as	0.

Microsoft®	Visual	Basic®	Scripting	Edition

Do...Loop
Statement

	Language	Reference	
Version	1	

See	Also

Description

Repeats	a	block	of	statements	while	a	condition	is	True	or	until	a	condition
becomes	True.

Syntax

Do	[{While	|	Until}	condition]
				[statements]
				[Exit	Do]
				[statements]
Loop

Or,	you	can	use	this	syntax:

Do
				[statements]
				[Exit	Do]
				[statements]
Loop	[{While	|	Until}	condition]

The	Do...Loop	statement	syntax	has	these	parts:

Part Description

condition Numeric	or	string	expression	that	is	True	or	False.	If
condition	is	Null,	condition	is	treated	as	False.

statements One	or	more	statements	that	are	repeated	while	oruntil	condition	is	True.

Remarks

The	Exit	Do	can	only	be	used	within	a	Do...Loop	control	structure	to

provide	an	alternate	way	to	exit	a	Do...Loop.	Any	number	of	Exit	Do
statements	may	be	placed	anywhere	in	the	Do...Loop.	Often	used	with	the
evaluation	of	some	condition	(for	example,	If...Then),	Exit	Do	transfers
control	to	the	statement	immediately	following	the	Loop.

When	used	within	nested	Do...Loop	statements,	Exit	Do	transfers	control	to	the	loop	that	is	nested
one	level	above	the	loop	where	it	occurs.

The	following	examples	illustrate	use	of	the	Do...Loop	statement:

Do	Until	DefResp	=	vbNo
		MyNum	=	Int	(6	*	Rnd	+	1)	'	Generate	a	random	integer	between	1	and	6.
		DefResp	=	MsgBox	(MyNum	&	"	Do	you	want	another	number?",	vbYesNo)
Loop

Dim	Check,	Counter
Check	=	True:	Counter	=	0	 	 '	Initialize	variables.
Do	 	 	 	 	 '	Outer	loop.
		Do	While	Counter	<	20		 '	Inner	loop.
				Counter	=	Counter	+	1	 	 '	Increment	Counter.
				If	Counter	=	10	Then	 	 '	If	condition	is	True...
						Check	=	False	 	 	 '	set	value	of	flag	to	False.
						Exit	Do	 	 	 '	Exit	inner	loop.
				End	If
		Loop
Loop	Until	Check	=	False	 	 '	Exit	outer	loop	immediately.

Microsoft®	Visual	Basic®	Scripting	Edition	Empty
	Language	Reference	

Version	1	

See	Also

Description

The	Empty	keyword	is	used	to	indicate	an	uninitialized	variable	value.	This
is	not	the	same	thing	as	Null.

Microsoft®	Visual	Basic®	Scripting	Edition	Eqv
Operator

	Language	Reference	
Version	1	

See	Also

Description

Performs	a	logical	equivalence	on	two	expressions.

Syntax

result	=	expression1	Eqv	expression2

The	Eqv	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

If	either	expression	is	Null,	result	is	also	Null.	When	neither	expression	is
Null,	result	is	determined	according	to	the	following	table:

If	expression1	is And	expression2	is The	result	is
True True True
True False False
False True False
False False True

The	Eqv	operator	performs	a	bitwise	comparison	of	identically	positioned	bits	in	two	numeric
expressions	and	sets	the	corresponding	bit	in	result	according	to	the	following	table:

And	bit	in	expression2	is The	result	is

If	bit	in	expression1	is

0 0 1
0 1 0
1 0 0
1 1 1

Microsoft®	Visual	Basic®	Scripting	Edition	Erase
Statement

	Language	Reference	
Version	1	

See	Also

Description

Reinitializes	the	elements	of	fixed-size	arrays	and	deallocates	dynamic-
array	storage	space.

Syntax

Erase	array

The	array	argument	is	the	name	of	the	array	variable	to	be	erased.

Remarks

It	is	important	to	know	whether	an	array	is	fixed-size	(ordinary)	or	dynamic
because	Erase	behaves	differently	depending	on	the	type	of	array.	Erase
recovers	no	memory	for	fixed-size	arrays.	Erase	sets	the	elements	of	a
fixed	array	as	follows:

Type	of	array Effect	of	Erase	on	fixed-array	elements
Fixed	numeric
array Sets	each	element	to	zero.

Fixed	string	array Sets	each	element	to	zero-length	("").

Array	of	objects Sets	each	element	to	the	special	value
Nothing.

Erase	frees	the	memory	used	by	dynamic	arrays.	Before	your	program	can	refer	to	the	dynamic	array
again,	it	must	redeclare	the	array	variable's	dimensions	using	a	ReDim	statement.

The	following	example	illustrates	the	use	of	the	Erase	statement:

Dim	NumArray(9)					

Dim	DynamicArray()
ReDim	DynamicArray(9)		'	Allocate	storage	space.
Erase	NumArray									'	Each	element	is	reinitialized.
Erase	DynamicArray					'	Free	memory	used	by	array.

Microsoft®	Visual	Basic®	Scripting	Edition	Err
Object

	Language	Reference	
Version	1	

See	Also																				Properties																				Methods

Description

Contains	information	about	run-time	errors.	Accepts	the	Raise	and	Clear
methods	for	generating	and	clearing	run-time	errors.

Remarks

The	Err	object	is	an	intrinsic	object	with	global	scope	—	there	is	no	need	to
create	an	instance	of	it	in	your	code.	The	properties	of	the	Err	object	are	set
by	the	generator	of	an	error	—	Visual	Basic,	an	Automation	object,	or	the
VBScript	programmer.

The	default	property	of	the	Err	object	is	Number.	Err.Number	contains	an	integer	and	can	be	used
by	an	Automation	object	to	return	an	SCODE.

When	a	run-time	error	occurs,	the	properties	of	the	Err	object	are	filled	with	information	that
uniquely	identifies	the	error	and	information	that	can	be	used	to	handle	it.	To	generate	a	run-time
error	in	your	code,	use	the	Raise	method.

The	Err	object's	properties	are	reset	to	zero	or	zero-length	strings	("")	after	an	On	Error	Resume
Next	statement.	The	Clear	method	can	be	used	to	explicitly	reset	Err.

The	following	example	illustrates	use	of	the	Err	object:

On	Error	Resume	Next
Err.Raise	6		'	Raise	an	overflow	error.
MsgBox	("Error	#	"	&	CStr(Err.Number)	&	"	"	&	Err.Description)
Err.Clear				'	Clear	the	error.

Microsoft®	Visual	Basic®	Scripting	Edition	Eval
Function

	Language	Reference	
Version	5	

See	Also

Description

Evaluates	an	expression	and	returns	the	result.

Syntax

[result	=]Eval(expression)

The	Eval	function	syntax	has	these	parts:

Part Description

result
Optional.	Variable	to	which	return	value	assignment
is	made.	If	result	is	not	specified,	consider	using	the
Execute	statement	instead.

expression Required.	String	containing	any	legal	VBScriptexpression.

Remarks

In	VBScript,	x	=	y	can	be	interpreted	two	ways.	The	first	is	as	an
assignment	statement,	where	the	value	of	y	is	assigned	to	x.	The	second
interpretation	is	as	an	expression	that	tests	if	x	and	y	have	the	same	value.	If
they	do,	result	is	True;	if	they	are	not,	result	is	False.	The	Eval	method
always	uses	the	second	interpretation,	whereas	the	Execute	statement
always	uses	the	first.

Note		In	Microsoft®	JScript,	no	confusion	exists	between	assignment	and	comparison,	because	the
assignment	operator	(=)	is	different	from	the	comparison	operator	(==).

The	following	example	illustrates	the	use	of	the	Eval	function:

Sub	GuessANumber
		Dim	Guess,	RndNum
		RndNum	=	Int((100)	*	Rnd(1)	+	1)
		Guess	=	CInt(InputBox("Enter	your	guess:",,0))
		Do
				If	Eval("Guess	=	RndNum")	Then
						MsgBox	"Congratulations!	You	guessed	it!"
						Exit	Sub
				Else
						Guess	=	CInt(InputBox("Sorry!	Try	again.",,0))
				End	If
		Loop	Until	Guess	=	0
End	Sub

.
Microsoft®	Visual	Basic®	Scripting	Edition	

Execute	Method
	Language	Reference	

Version	5	

See	Also																				Applies	to

Description

Executes	a	regular	expression	search	against	a	specified	string.

Syntax

object.Execute(string)

The	Execute	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	RegExp	object.
string Required.	The	text	string	upon	which	the	regular	expression	is	executed.

Remarks

The	actual	pattern	for	the	regular	expression	search	is	set	using
the	Pattern	property	of	the	RegExp	object.

The	Execute	method	returns	a	Matches	collection	containing	a
Match	object	for	each	match	found	in	string.	Execute	returns	an
empty	Matches	collection	if	no	match	is	found.

The	following	code	illustrates	the	use	of	the	Execute	method:

Function	RegExpTest(patrn,	strng)

		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	a	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	'"
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF
		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Execute
Statement

	Language	Reference	
Version	5	

See	Also

Description

Executes	one	or	more	specified	statements.

Syntax

Execute	statement

The	required	statement	argument	is	a	string	expression	containing	one	or	more	statements	for
execution.		Include	multiple	statements	in	the	statement	argument,	using	colons	or	embedded	line
breaks	to	separate	them.

Remarks

In	VBScript,	x	=	y	can	be	interpreted	two	ways.	The	first	is	as	an
assignment	statement,	where	the	value	of	y	is	assigned	to	x.	The	second
interpretation	is	as	an	expression	that	tests	if	x	and	y	have	the	same	value.	If
they	do,	result	is	True;	if	they	are	not,	result	is	False.	The	Execute
statement	always	uses	the	first	interpretation,	whereas	the	Eval	method
always	uses	the	second.

Note		In	Microsoft®	JScript�,	no	confusion	exists	between	assignment	and	comparison,	because	the
assignment	operator	(=)	is	different	from	the	comparison	operator(==).

The	context	in	which	the	Execute	statement	is	invoked	determines	what	objects	and	variables	are
available	to	the	code	being	run.	In-scope	objects	and	variables	are	available	to	code	running	in	an
Execute	statement.	However,	it	is	important	to	understand	that	if	you	execute	code	that	creates	a
procedure,	that	procedure	does	not	inherit	the	scope	of	the	procedure	in	which	it	occurred.

Like	any	procedure,	the	new	procedure's	scope	is	global,	and	it	inherits	everything	in	the	global
scope.	Unlike	any	other	procedure,	its	context	is	not	global	scope,	so	it	can	only	be	executed	in	the
context	of	the	procedure	where	the	Execute	statement	occurred.	However,	if	the	same	Execute
statement	is	invoked	outside	of	a	procedure	(i.e.,	in	global	scope),	not	only	does	it	inherit	everything
in	global	scope,	but	it	can	also	be	called	from	anywhere,	since	its	context	is	global.	The	following
example	illustrates	this	behavior:

Dim	X	 	 	 '	Declare	X	in	global	scope.
X	=	"Global"	 	 '	Assign	global	X	a	value.
Sub	Proc1	 '	Declare	procedure.
		Dim	X	 	 '	Declare	X	in	local	scope.
		X	=	"Local"	 '	Assign	local	X	a	value.
	 	 	 '	The	Execute	statement	here	creates	a
	 	 	 '	procedure	that,	when	invoked,	prints	X.
	 	 	 '	It	print	the	global	X	because	Proc2
	 	 	 '	inherits	everything	in	global	scope.
		Execute	"Sub	Proc2:	Print	X:	End	Sub"
		Print	Eval("X")	 '	Print	local	X.
		Proc2	 	 '	Invoke	Proc2	in	Proc1's	scope.
End	Sub
Proc2	 	 	 '	This	line	causes	an	error	since	
	 	 	 '	Proc2	is	unavailable	outside	Proc1.
Proc1	 	 	 '	Invoke	Proc1.
		Execute	"Sub	Proc2:	Print	X:	End	Sub"
Proc2	 	 	 '	This	invocation	succeeds	because	Proc2
	 	 	 '	is	now	available	globally.

The	following	example	shows	how	the	Execute	statement	can	be	rewritten
so	you	don't	have	to	enclose	the	entire	procedure	in	the	quotation	marks:

S	=	"Sub	Proc2"	&	vbCrLf
S	=	S	&	"		Print	X"	&	vbCrLf	
S	=	S	&	"End	Sub"
Execute	S

Microsoft®	Visual	Basic®	Scripting	Edition	Exit
Statement

	Language	Reference	
Version	1	

See	Also

Description

Exits	a	block	of	Do...Loop,	For...Next,	Function,	or	Sub	code.

Syntax

Exit	Do

Exit	For

Exit	Function

Exit	Property

Exit	Sub

The	Exit	statement	syntax	has	these	forms:

Statement Description

Exit	Do

Provides	a	way	to	exit	a	Do...Loop	statement.	It	can
be	used	only	inside	a	Do...Loop	statement.	Exit	Do
transfers	control	to	the	statement	following	the	Loop
statement.	When	used	within	nested	Do...Loop
statements,	Exit	Do	transfers	control	to	the	loop	that
is	one	nested	level	above	the	loop	where	it	occurs.

Exit	For

Provides	a	way	to	exit	a	For	loop.	It	can	be	used
only	in	a	For...Next	or	For	Each...Next	loop.	Exit
For	transfers	control	to	the	statement	following	the
Next	statement.	When	used	within	nested	For	loops,
Exit	For	transfers	control	to	the	loop	that	is	one
nested	level	above	the	loop	where	it	occurs.
Immediately	exits	the	Function	procedure	in	which

Exit
Function

it	appears.	Execution	continues	with	the	statement
following	the	statement	that	called	the	Function.

Exit
Property

Immediately	exits	the	Property	procedure	in	which
it	appears.	Execution	continues	with	the	statement
following	the	statement	that	called	the	Property
procedure.

Exit	Sub
Immediately	exits	the	Sub	procedure	in	which	it
appears.	Execution	continues	with	the	statement
following	the	statement	that	called	the	Sub.

The	following	example	illustrates	the	use	of	the	Exit	statement:

Sub	RandomLoop
		Dim	I,	MyNum
		Do																											'	Set	up	infinite	loop.
				For	I	=	1	To	1000										'	Loop	1000	times.
						MyNum	=	Int(Rnd	*	100)			'	Generate	random	numbers.
						Select	Case	MyNum								'	Evaluate	random	number.
								Case	17:	MsgBox	"Case	17"
										Exit	For													'	If	17,	exit	For...Next.
								Case	29:	MsgBox	"Case	29"
										Exit	Do														'	If	29,	exit	Do...Loop.
								Case	54:	MsgBox	"Case	54"
										Exit	Sub													'	If	54,	exit	Sub	procedure.
								End	Select
				Next
		Loop
End	Sub

Microsoft®	Visual	Basic®	Scripting	Edition	Exp
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	e	(the	base	of	natural	logarithms)	raised	to	a	power.

Syntax

Exp(number)

The	number	argument	can	be	any	valid	numeric	expression.

Remarks

If	the	value	of	number	exceeds	709.782712893,	an	error	occurs.	The
constant	e	is	approximately	2.718282.

Note		The	Exp	function	complements	the	action	of	the	Log	function	and	is	sometimes
referred	to	as	the	antilogarithm.

The	following	example	uses	the	Exp	function	to	return	e	raised	to	a	power:

Dim	MyAngle,	MyHSin		'	Define	angle	in	radians.
MyAngle	=	1.3								'	Calculate	hyperbolic	sine.
MyHSin	=	(Exp(MyAngle)	-	Exp(-1	*	MyAngle))	/	2	

Microsoft®	Visual	Basic®	Scripting	Edition	^
Operator

	Language	Reference	
Version	1	

See	Also

Description

Raises	a	number	to	the	power	of	an	exponent.

Syntax

result	=	number^exponent

The	^	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
number Any	numeric	expression.
exponent Any	numeric	expression.

Remarks

Number	can	be	negative	only	if	exponent	is	an	integer	value.	When	more
than	one	exponentiation	is	performed	in	a	single	expression,	the	^	operator
is	evaluated	as	it	is	encountered	from	left	to	right.

If	either	number	or	exponent	is	a	Null	expression,	result	is	also	Null.

Microsoft®	Visual	Basic®	Scripting	Edition	False
	Language	Reference	

Version	1	

See	Also

Description

The	False	keyword	has	a	value	equal	to	0.

Microsoft®	Visual	Basic®	Scripting	Edition	Filter
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	zero-based	array	containing	a	subset	of	a	string	array	based	on	a
specified	filter	criteria.

Syntax

Filter(InputStrings,	Value[,	Include[,	Compare]])

The	Filter	function	syntax	has	these	parts:

Part Description

InputStrings Required.	One-dimensional	array	of	strings	to	besearched.
Value Required.	String	to	search	for.

Include

Optional.	Boolean	value	indicating	whether	to
return	substrings	that	include	or	exclude	Value.	If
Include	is	True,	Filter	returns	the	subset	of	the
array	that	contains	Value	as	a	substring.	If	Include
is	False,	Filter	returns	the	subset	of	the	array	that
does	not	contain	Value	as	a	substring.

Compare
Optional.	Numeric	value	indicating	the	kind	of
string	comparison	to	use.	See	Settings	section	for
values.

Settings

The	Compare	argument	can	have	the	following	values:

Constant Value Description

vbBinaryCompare 0 Perform	a	binary	comparison.
vbTextCompare 1 Perform	a	textual	comparison.

Remarks

If	no	matches	of	Value	are	found	within	InputStrings,	Filter	returns	an
empty	array.	An	error	occurs	if	InputStrings	is	Null	or	is	not	a	one-
dimensional	array.

The	array	returned	by	the	Filter	function	contains	only	enough	elements	to
contain	the	number	of	matched	items.

The	following	example	uses	the	Filter	function	to	return	the	array
containing	the	search	criteria	"Mon":

Dim	MyIndex
Dim	MyArray	(3)
MyArray(0)	=	"Sunday"
MyArray(1)	=	"Monday"
MyArray(2)	=	"Tuesday"
MyIndex	=	Filter(MyArray,	"Mon")	'	MyIndex(0)	contains	"Monday".

Microsoft®	Visual	Basic®	Scripting	Edition	

FirstIndex
Property

	Language	Reference	
Version	5	

See	Also																		Applies	To

Description

Returns	the	position	in	a	search	string	where	a	match	occurs.

Syntax

object.FirstIndex

The	object	argument	is	always	a	Match	object.

Remarks

The	FirstIndex	property	uses	a	zero-based	offset	from	the	beginning	of	the
search	string.	In	other	words,	the	first	character	in	the	string	is	identified	as
character	zero	(0).	The	following	code	illustrates	the	use	of	the	FirstIndex
property:

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	"	&	I	&	"	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	"'
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF

		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Int,	Fix
Functions

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	integer	portion	of	a	number.

Syntax

Int(number)

Fix(number)

The	number	argument	can	be	any	valid	numeric	expression.	If	number	contains	Null,	Null	is
returned.

Remarks

Both	Int	and	Fix	remove	the	fractional	part	of	number	and	return	the
resulting	integer	value.

The	difference	between	Int	and	Fix	is	that	if	number	is	negative,	Int	returns	the	first	negative	integer
less	than	or	equal	to	number,	whereas	Fix	returns	the	first	negative	integer	greater	than	or	equal	to
number.	For	example,	Int	converts	-8.4	to	-9,	and	Fix	converts	-8.4	to	-8.

Fix(number)	is	equivalent	to:

Sgn(number)	*	Int(Abs(number))
The	following	examples	illustrate	how	the	Int	and	Fix	functions	return
integer	portions	of	numbers:

MyNumber	=	Int(99.8)				'	Returns	99.
MyNumber	=	Fix(99.2)				'	Returns	99.
MyNumber	=	Int(-99.8)			'	Returns	-100.

MyNumber	=	Fix(-99.8)			'	Returns	-99.
MyNumber	=	Int(-99.2)			'	Returns	-100.
MyNumber	=	Fix(-99.2)			'	Returns	-99.

Microsoft®	Visual	Basic®	Scripting	Edition

For...Next
Statement

	Language	Reference	
Version	1	

See	Also

Description

Repeats	a	group	of	statements	a	specified	number	of	times.

Syntax

For	counter	=	start	To	end	[Step	step]
				[statements]
				[Exit	For]
				[statements]
Next

The	For...Next	statement	syntax	has	these	parts:

Part Description

counter
Numeric	variable	used	as	a	loop	counter.	The
variable	can't	be	an	array	element	or	an	element	of	a
user-defined	type.

start Initial	value	of	counter.
end Final	value	of	counter.

step Amount	counter	is	changed	each	time	through	the
loop.	If	not	specified,	step	defaults	to	one.

statements One	or	more	statements	between	For	and	Next	thatare	executed	the	specified	number	of	times.

Remarks

The	step	argument	can	be	either	positive	or	negative.	The	value	of	the	step
argument	determines	loop	processing	as	follows:

Value Loop	executes	if
Positive	or	0 counter	<=	end
Negative counter	>=	end

Once	the	loop	starts	and	all	statements	in	the	loop	have	executed,	step	is	added	to	counter.	At	this
point,	either	the	statements	in	the	loop	execute	again	(based	on	the	same	test	that	caused	the	loop	to
execute	initially),	or	the	loop	is	exited	and	execution	continues	with	the	statement	following	the	Next
statement.

Tip		Changing	the	value	of	counter	while	inside	a	loop	can	make
it	more	difficult	to	read	and	debug	your	code.

Exit	For	can	only	be	used	within	a	For	Each...Next	or	For...Next	control	structure	to	provide	an
alternate	way	to	exit.	Any	number	of	Exit	For	statements	may	be	placed	anywhere	in	the	loop.	Exit
For	is	often	used	with	the	evaluation	of	some	condition	(for	example,	If...Then),	and	transfers
control	to	the	statement	immediately	following	Next.

You	can	nest	For...Next	loops	by	placing	one	For...Next	loop	within	another.	Give	each	loop	a
unique	variable	name	as	its	counter.	The	following	construction	is	correct:

For	I	=	1	To	10
				For	J	=	1	To	10
								For	K	=	1	To	10
								.	.	.
								Next
				Next
Next

Microsoft®	Visual	Basic®	Scripting	Edition	For
Each...Next
Statement

	Language	Reference	
Version	2	

See	Also

Description

Repeats	a	group	of	statements	for	each	element	in	an	array	or	collection.

Syntax

For	Each	element	In	group
				[statements]
				[Exit	For]
				[statements]
Next	[element]

The	For	Each...Next	statement	syntax	has	these	parts:

Part Description

element

Variable	used	to	iterate	through	the	elements	of	the
collection	or	array.	For	collections,	element	can	only
be	a	Variant	variable,	a	generic	Object	variable,	or
any	specific	Automation	object	variable.	For	arrays,
element	can	only	be	a	Variant	variable.

group Name	of	an	object	collection	or	array.

statements One	or	more	statements	that	are	executed	on	eachitem	in	group.

Remarks

The	For	Each	block	is	entered	if	there	is	at	least	one	element	in	group.

Once	the	loop	has	been	entered,	all	the	statements	in	the	loop	are	executed
for	the	first	element	in	group.	As	long	as	there	are	more	elements	in	group,
the	statements	in	the	loop	continue	to	execute	for	each	element.	When	there
are	no	more	elements	in	group,	the	loop	is	exited	and	execution	continues
with	the	statement	following	the	Next	statement.

The	Exit	For	can	only	be	used	within	a	For	Each...Next	or	For...Next	control	structure	to	provide	an
alternate	way	to	exit.	Any	number	of	Exit	For	statements	may	be	placed	anywhere	in	the	loop.	The
Exit	For	is	often	used	with	the	evaluation	of	some	condition	(for	example,	If...Then),	and	transfers
control	to	the	statement	immediately	following	Next.

You	can	nest	For	Each...Next	loops	by	placing	one	For	Each...Next	loop	within	another.	However,
each	loop	element	must	be	unique.

Note		If	you	omit	element	in	a	Next	statement,	execution
continues	as	if	you	had	included	it.	If	a	Next	statement	is
encountered	before	its	corresponding	For	statement,	an	error
occurs.

The	following	example	illustrates	use	of	the	For	Each...Next	statement:

Function	ShowFolderList(folderspec)
		Dim	fso,	f,	f1,	fc,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(folderspec)
		Set	fc	=	f.Files
		For	Each	f1	in	fc
				s	=	s	&	f1.name	
				s	=	s	&	"
"
		Next
		ShowFolderList	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FormatCurrency
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	an	expression	formatted	as	a	currency	value	using	the	currency
symbol	defined	in	the	system	control	panel.

Syntax

FormatCurrency(Expression[,NumDigitsAfterDecimal
[,IncludeLeadingDigit	[,UseParensForNegativeNumbers	[,GroupDigits]]]])

The	FormatCurrency	function	syntax	has	these	parts:

Part Description

Expression Required.	Expression	to	be
formatted.

NumDigitsAfterDecimal

Optional.	Numeric	value
indicating	how	many	places	to
the	right	of	the	decimal	are
displayed.	Default	value	is	-1,
which	indicates	that	the
computer's	regional	settings	are
used.

IncludeLeadingDigit

Optional.	Tristate	constant	that
indicates	whether	or	not	a
leading	zero	is	displayed	for
fractional	values.	See	Settings
section	for	values.
Optional.	Tristate	constant	that
indicates	whether	or	not	to

UseParensForNegativeNumbers place	negative	values	within
parentheses.	See	Settings
section	for	values.

GroupDigits

Optional.	Tristate	constant	that
indicates	whether	or	not
numbers	are	grouped	using	the
group	delimiter	specified	in	the
computer's	regional	settings.
See	Settings	section	for	values.

Settings

The	IncludeLeadingDigit,	UseParensForNegativeNumbers,	and
GroupDigits	arguments	have	the	following	settings:

Constant Value Description
TristateTrue -1 True
TristateFalse 	0 False

TristateUseDefault -2 Use	the	setting	from	the	computer's
regional	settings.

Remarks

When	one	or	more	optional	arguments	are	omitted,	values	for	omitted
arguments	are	provided	by	the	computer's	regional	settings.	The	position	of
the	currency	symbol	relative	to	the	currency	value	is	determined	by	the
system's	regional	settings.

Note		All	settings	information	comes	from	the	Regional	Settings
Currency	tab,	except	leading	zero	which	comes	from	the
Number	tab.

The	following	example	uses	the	FormatCurrency	function	to	format	the
expression	as	a	currency	and	assign	it	to	MyCurrency:

Dim	MyCurrency
MyCurrency	=	FormatCurrency(1000)		'	MyCurrency	contains	$1000.00.

Microsoft®	Visual	Basic®	Scripting	Edition

FormatDateTime
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	an	expression	formatted	as	a	date	or	time.

Syntax

FormatDateTime(Date[,	NamedFormat])

The	FormatDateTime	function	syntax	has	these	parts:

Part Description
Date Required.	Date	expression	to	be	formatted.

NamedFormat
Optional.	Numeric	value	that	indicates	the
date/time	format	used.	If	omitted,
vbGeneralDate	is	used.

Settings

The	NamedFormat	argument	has	the	following	settings:

Constant Value Description

vbGeneralDate 0

Display	a	date	and/or	time.	If	there	is	a
date	part,	display	it	as	a	short	date.	If
there	is	a	time	part,	display	it	as	a	long
time.	If	present,	both	parts	are	displayed.

vbLongDate 1
Display	a	date	using	the	long	date
format	specified	in	your	computer's
regional	settings.
Display	a	date	using	the	short	date

vbShortDate 2 format	specified	in	your	computer's
regional	settings.

vbLongTime 3
Display	a	time	using	the	time	format
specified	in	your	computer's	regional
settings.

vbShortTime 4 Display	a	time	using	the	24-hour	format
(hh:mm).

Remarks

The	following	example	uses	the	FormatDateTime	function	to	format	the
expression	as	a	long	date	and	assign	it	to	MyDateTime:

Function	GetCurrentDate
		'	FormatDateTime	formats	Date	in	long	date.	
		GetCurrentDate	=	FormatDateTime(Date,	1)	
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FormatNumber
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	an	expression	formatted	as	a	number.

Syntax

FormatNumber(Expression	[,NumDigitsAfterDecimal
[,IncludeLeadingDigit	[,UseParensForNegativeNumbers	[,GroupDigits]]]])

The	FormatNumber	function	syntax	has	these	parts:

Part Description

Expression Required.	Expression	to	be
formatted.

NumDigitsAfterDecimal

Optional.	Numeric	value
indicating	how	many	places	to
the	right	of	the	decimal	are
displayed.	Default	value	is	-1,
which	indicates	that	the
computer's	regional	settings	are
used.

IncludeLeadingDigit

Optional.	Tristate	constant	that
indicates	whether	or	not	a
leading	zero	is	displayed	for
fractional	values.	See	Settings
section	for	values.

UseParensForNegativeNumbers

Optional.	Tristate	constant	that
indicates	whether	or	not	to
place	negative	values	within

parentheses.	See	Settings
section	for	values.

GroupDigits

Optional.	Tristate	constant	that
indicates	whether	or	not
numbers	are	grouped	using	the
group	delimiter	specified	in	the
control	panel.	See	Settings
section	for	values.

Settings

The	IncludeLeadingDigit,	UseParensForNegativeNumbers,	and
GroupDigits	arguments	have	the	following	settings:

Constant Value Description
TristateTrue -1 True
TristateFalse 	0 False

TristateUseDefault -2 Use	the	setting	from	the	computer's
regional	settings.

Remarks

When	one	or	more	of	the	optional	arguments	are	omitted,	the	values	for
omitted	arguments	are	provided	by	the	computer's	regional	settings.

Note		All	settings	information	comes	from	the	Regional	Settings
Number	tab.

The	following	example	uses	the	FormatNumber	function	to	format	a
number	to	have	four	decimal	places:

Function	FormatNumberDemo

		Dim	MyAngle,	MySecant,	MyNumber
		MyAngle	=	1.3																'	Define	angle	in	radians.
		MySecant	=	1	/	Cos(MyAngle)		'	Calculate	secant.
		FormatNumberDemo	=	FormatNumber(MySecant
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FormatPercent
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	an	expression	formatted	as	a	percentage	(multiplied	by	100)	with	a
trailing	%	character.

Syntax

FormatPercent(Expression[,NumDigitsAfterDecimal
[,IncludeLeadingDigit	[,UseParensForNegativeNumbers	[,GroupDigits]]]])

The	FormatPercent	function	syntax	has	these	parts:

Part Description

Expression Required.	Expression	to	be
formatted.

NumDigitsAfterDecimal

Optional.	Numeric	value
indicating	how	many	places	to
the	right	of	the	decimal	are
displayed.	Default	value	is	-1,
which	indicates	that	the
computer's	regional	settings	are
used.

IncludeLeadingDigit

Optional.	Tristate	constant	that
indicates	whether	or	not	a
leading	zero	is	displayed	for
fractional	values.	See	Settings
section	for	values.
Optional.	Tristate	constant	that
indicates	whether	or	not	to

UseParensForNegativeNumbers place	negative	values	within
parentheses.	See	Settings
section	for	values.

GroupDigits

Optional.	Tristate	constant	that
indicates	whether	or	not
numbers	are	grouped	using	the
group	delimiter	specified	in	the
control	panel.	See	Settings
section	for	values.

Settings

The	IncludeLeadingDigit,	UseParensForNegativeNumbers,	and
GroupDigits	arguments	have	the	following	settings:

Constant Value Description
TristateTrue -1 True
TristateFalse 	0 False

TristateUseDefault -2 Use	the	setting	from	the	computer's
regional	settings.

Remarks

When	one	or	more	optional	arguments	are	omitted,	the	values	for	the
omitted	arguments	are	provided	by	the	computer's	regional	settings.

Note		All	settings	information	comes	from	the	Regional	Settings
Number	tab.

The	following	example	uses	the	FormatPercent	function	to	format	an
expression	as	a	percent:

Dim	MyPercent
MyPercent	=	FormatPercent(2/32)	'	MyPercent	contains	6.25%.

Microsoft®	Visual	Basic®	Scripting	Edition

Function
Statement

	Language	Reference	
Version	1	

See	Also

Description

Declares	the	name,	arguments,	and	code	that	form	the	body	of	a
Function	procedure.

Syntax

[Public	[Default]	|	Private]	Function	name	[(arglist)]
				[statements]
				[name	=	expression]
				[Exit	Function]	
				[statements]
				[name	=	expression]
End	Function

The	Function	statement	syntax	has	these	parts:

Part Description

Public Indicates	that	the	Function	procedure	is	accessible	to	all	other	procedures	in	all
scripts.

Default
Used	only	with	the	Public	keyword	in	a	Class	block	to	indicate	that	the	Function
procedure	is	the	default	method	for	the	class.	An	error	occurs	if	more	than	one	Default
procedure	is	specified	in	a	class.

Private
Indicates	that	the	Function	procedure	is	accessible	only	to	other	procedures	in	the
script	where	it	is	declared	or	if	the	function	is	a	member	of	a	class,	and	that	the
Function	procedure	is	accessible	only	to	other	procedures	in	that	class.

name Name	of	the	Function;	follows	standard	variable	naming	conventions.

arglist List	of	variables	representing	arguments	that	are	passed	to	the	Function	procedure
when	it	is	called.	Multiple	variables	are	separated	by	commas.

statements Any	group	of	statements	to	be	executed	within	the	body	of	the	Function	procedure.
expression Return	value	of	the	Function.

The	arglist	argument	has	the	following	syntax	and	parts:

[ByVal	|	ByRef]	varname[()]

Part Description
ByVal Indicates	that	the	argument	is	passed	by	value.

ByRef Indicates	that	the	argument	is	passed	by	reference.

varname Name	of	the	variable	representing	the	argument;	follows	standard	variable	naming
conventions.

Remarks

If	not	explicitly	specified	using	either	Public	or	Private,
Function	procedures	are	public	by	default,	that	is,	they	are
visible	to	all	other	procedures	in	your	script.	The	value	of	local
variables	in	a	Function	is	not	preserved	between	calls	to	the
procedure.

You	can't	define	a	Function	procedure	inside	any	other
procedure	(e.g.	Sub	or	Property	Get).

The	Exit	Function	statement	causes	an	immediate	exit	from	a
Function	procedure.	Program	execution	continues	with	the
statement	that	follows	the	statement	that	called	the	Function
procedure.	Any	number	of	Exit	Function	statements	can	appear
anywhere	in	a	Function	procedure.

Like	a	Sub	procedure,	a	Function	procedure	is	a	separate
procedure	that	can	take	arguments,	perform	a	series	of
statements,	and	change	the	values	of	its	arguments.	However,
unlike	a	Sub	procedure,	you	can	use	a	Function	procedure	on
the	right	side	of	an	expression	in	the	same	way	you	use	any

intrinsic	function,	such	as	Sqr,	Cos,	or	Chr,	when	you	want	to
use	the	value	returned	by	the	function.

You	call	a	Function	procedure	using	the	function	name,	followed
by	the	argument	list	in	parentheses,	in	an	expression.	See	the
Call	statement	for	specific	information	on	how	to	call	Function
procedures.

Caution		Function	procedures	can	be	recursive,	that	is,	they	can	call	themselves	to	perform	a
given	task.	However,	recursion	can	lead	to	stack	overflow.

To	return	a	value	from	a	function,	assign	the	value	to	the	function
name.	Any	number	of	such	assignments	can	appear	anywhere
within	the	procedure.	If	no	value	is	assigned	to	name,	the
procedure	returns	a	default	value:	a	numeric	function	returns	0
and	a	string	function	returns	a	zero-length	string	("").	A	function
that	returns	an	object	reference	returns	Nothing	if	no	object
reference	is	assigned	to	name	(using	Set)	within	the	Function.

The	following	example	shows	how	to	assign	a	return	value	to	a
function	named	BinarySearch.	In	this	case,	False	is	assigned	to
the	name	to	indicate	that	some	value	was	not	found.

Function	BinarySearch(.	.	.)
				.	.	.
				'	Value	not	found.	Return	a	value	of	False.
				If	lower	>	upper	Then
								BinarySearch	=	False		
								Exit	Function	
				End	If
				.	.	.
End	Function

Variables	used	in	Function	procedures	fall	into	two	categories:
those	that	are	explicitly	declared	within	the	procedure	and	those
that	are	not.	Variables	that	are	explicitly	declared	in	a	procedure
(using	Dim	or	the	equivalent)	are	always	local	to	the	procedure.
Variables	that	are	used	but	not	explicitly	declared	in	a	procedure
are	also	local	unless	they	are	explicitly	declared	at	some	higher
level	outside	the	procedure.

Caution		A	procedure	can	use	a	variable	that	is	not	explicitly	declared	in	the	procedure,	but	a
naming	conflict	can	occur	if	anything	you	have	defined	at	the	script	level	has	the	same	name.	If
your	procedure	refers	to	an	undeclared	variable	that	has	the	same	name	as	another	procedure,
constant,	or	variable,	it	is	assumed	that	your	procedure	is	referring	to	that	script-level	name.	To
avoid	this	kind	of	conflict,	use	an	Option	Explicit	statement	to	force	explicit	declaration	of
variables.

Caution		VBScript	may	rearrange	arithmetic	expressions	to	increase	internal	efficiency.	Avoid
using	a	Function	procedure	in	an	arithmetic	expression	when	the	function	changes	the	value	of
variables	in	the	same	expression.

Microsoft®	Visual	Basic®	Scripting	Edition

GetObject
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	reference	to	an	Automation	object	from	a	file.

Syntax

GetObject([pathname]	[,	class])

The	GetObject	function	syntax	has	these	parts:

Part Description

pathname
Optional;	String.	Full	path	and	name	of	the	file
containing	the	object	to	retrieve.	If	pathname	is
omitted,	class	is	required.

class Optional;	String.	Class	of	the	object.

The	class	argument	uses	the	syntax	appname.objectype	and	has	these	parts:

Part Description

appname Required;	String.	Name	of	the	application	providing
the	object.

objectype Required;	String.	Type	or	class	of	object	to	create.

Remarks

Use	the	GetObject	function	to	access	an	Automation	object	from	a	file	and
assign	the	object	to	an	object	variable.	Use	the	Set	statement	to	assign	the
object	returned	by	GetObject	to	the	object	variable.	For	example:

Dim	CADObject
Set	CADObject	=	GetObject("C:\CAD\SCHEMA.CAD"

When	this	code	is	executed,	the	application	associated	with	the	specified
pathname	is	started	and	the	object	in	the	specified	file	is	activated.	If
pathname	is	a	zero-length	string	(""),	GetObject	returns	a	new	object
instance	of	the	specified	type.	If	the	pathname	argument	is	omitted,
GetObject	returns	a	currently	active	object	of	the	specified	type.	If	no
object	of	the	specified	type	exists,	an	error	occurs.

Some	applications	allow	you	to	activate	part	of	a	file.	Add	an	exclamation
point	(!)	to	the	end	of	the	file	name	and	follow	it	with	a	string	that	identifies
the	part	of	the	file	you	want	to	activate.	For	information	on	how	to	create
this	string,	see	the	documentation	for	the	application	that	created	the	object.

For	example,	in	a	drawing	application	you	might	have	multiple	layers	to	a
drawing	stored	in	a	file.	You	could	use	the	following	code	to	activate	a
layer	within	a	drawing	called	SCHEMA.CAD:

Set	LayerObject	=	GetObject("C:\CAD\SCHEMA.
If	you	don't	specify	the	object's	class,	Automation	determines	the
application	to	start	and	the	object	to	activate,	based	on	the	file	name	you
provide.	Some	files,	however,	may	support	more	than	one	class	of	object.
For	example,	a	drawing	might	support	three	different	types	of	objects:	an
Application	object,	a	Drawing	object,	and	a	Toolbar	object,	all	of	which	are
part	of	the	same	file.	To	specify	which	object	in	a	file	you	want	to	activate,
use	the	optional	class	argument.	For	example:

Dim	MyObject
Set	MyObject	=	GetObject("C:\DRAWINGS\SAMPLE.DRW",	"FIGMENT.DRAWING"

In	the	preceding	example,	FIGMENT	is	the	name	of	a	drawing	application
and	DRAWING	is	one	of	the	object	types	it	supports.	Once	an	object	is
activated,	you	reference	it	in	code	using	the	object	variable	you	defined.	In
the	preceding	example,	you	access	properties	and	methods	of	the	new

object	using	the	object	variable	MyObject.	For	example:

MyObject.Line	9,	90
MyObject.InsertText	9,	100,	"Hello,	world."
MyObject.SaveAs	"C:\DRAWINGS\SAMPLE.DRW"

Note		Use	the	GetObject	function	when	there	is	a	current
instance	of	the	object	or	if	you	want	to	create	the	object	with	a
file	already	loaded.	If	there	is	no	current	instance,	and	you	don't
want	the	object	started	with	a	file	loaded,	use	the	CreateObject
function.

If	an	object	has	registered	itself	as	a	single-instance	object,	only	one
instance	of	the	object	is	created,	no	matter	how	many	times	CreateObject
is	executed.	With	a	single-instance	object,	GetObject	always	returns	the
same	instance	when	called	with	the	zero-length	string	("")	syntax,	and	it
causes	an	error	if	the	pathname	argument	is	omitted.

Microsoft®	Visual	Basic®	Scripting	Edition	GetRef
Function

	Language	Reference	
Version	5	

See	Also

Description

Returns	a	reference	to	a	procedure	that	can	be	bound	to	an	event.

Syntax

Set	object.eventname	=	GetRef(procname)

The	GetRef	function	syntax	has	these	parts:

Part Description

object Required.	Name	of	the	object	with	which	event	is
associated.

event Required.	Name	of	the	event	to	which	the	function	is
to	be	bound.

procname Required.	String	containing	the	name	of	the	Sub	orFunction	procedure	being	associated	with	the	event.

Remarks

The	GetRef	function	allows	you	to	connect	a	VBScript	procedure
(Function	or	Sub)	to	any	available	event	on	your	DHTML	(Dynamic
HTML)	pages.	The	DHTML	object	model	provides	information	about	what
events	are	available	for	its	various	objects.

In	other	scripting	and	programming	languages,	the	functionality	provided	by	GetRef	is	referred	to	as
a	function	pointer,	that	is,	it	points	to	the	address	of	a	procedure	to	be	executed	when	the	specified
event	occurs.

The	following	example	illustrates	the	use	of	the	GetRef	function:

<SCRIPT	LANGUAGE="VBScript">

Function	GetRefTest()
		Dim	Splash
		Splash	=	"GetRefTest	Version	1.0"		&	vbCrLf
		Splash	=	Splash	&	Chr(169)	&	"	YourCompany	1999	"
		MsgBox	Splash
End	Function

Set	Window.Onload	=	GetRef("GetRefTest")

</SCRIPT>

Microsoft®	Visual	Basic®	Scripting	Edition	

Global	Property
	Language	Reference	

Version	5	

See	Also																		Applies	To

Description

Sets	or	returns	a	Boolean	value	that	indicates	if	a	pattern	should
match	all	occurrences	in	an	entire	search	string	or	just	the	first
one.

Syntax

object.Global	[=	True	|	False]

The	object	argument	is	always	a	RegExp	object.	The	value	of	the
Global	property	is	True	if	the	search	applies	to	the	entire	string,
False	if	it	does	not.	Default	is	False.

Remarks

The	following	code	illustrates	the	use	of	the	Global	property
(change	the	value	assigned	to	Global	property	to	see	its	effect):

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	a	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.

		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	'"
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF
		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Hex
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	string	representing	the	hexadecimal	value	of	a	number.

Syntax

Hex(number)

The	number	argument	is	any	valid	expression.

Remarks

If	number	is	not	already	a	whole	number,	it	is	rounded	to	the	nearest	whole
number	before	being	evaluated.

If	number	is Hex	returns
Null Null.
Empty Zero	(0).
Any	other	number Up	to	eight	hexadecimal	characters.

You	can	represent	hexadecimal	numbers	directly	by	preceding	numbers	in	the	proper	range	with	&H.
For	example,	&H10	represents	decimal	16	in	hexadecimal	notation.

The	following	example	uses	the	Hex	function	to	return	the	hexadecimal	value	of	a	number:

Dim	MyHex
MyHex	=	Hex(5)				'	Returns	5.
MyHex	=	Hex(10)			'	Returns	A.
MyHex	=	Hex(459)		'	Returns	1CB.

Microsoft®	Visual	Basic®	Scripting	Edition

HelpContext
Property

	Language	Reference	
Version	2	

See	Also																				Applies	to

Description

Sets	or	returns	a	context	ID	for	a	topic	in	a	Help	File.

Syntax

object.HelpContext	[=	contextID]

The	HelpContext	property	syntax	has	these	parts:

Part Description
object Required.	Always	the	Err	object.

contextID Optional.	A	valid	identifier	for	a	Help	topic	within	the
Help	file.

Remarks

If	a	Help	file	is	specified	in	HelpFile,	the	HelpContext	property	is	used	to
automatically	display	the	Help	topic	identified.	If	both	HelpFile	and
HelpContext	are	empty,	the	value	of	the	Number	property	is	checked.	If	it
corresponds	to	a	VBScript	run-time	error	value,	then	the	VBScript	Help
context	ID	for	the	error	is	used.	If	the	Number	property	doesn't	correspond
to	a	VBScript	error,	the	contents	screen	for	the	VBScript	Help	file	is
displayed.

The	following	example	illustrates	use	of	the	HelpContext	property:

On	Error	Resume	Next
Dim	Msg
Err.Clear

Err.Raise	6				'	Generate	"Overflow"	error.
Err.Helpfile	=	"yourHelp.hlp"
Err.HelpContext	=	yourContextID
If	Err.Number	<>	0	Then
			Msg	=	"Press	F1	or	Help	to	see	"	&	Err.Helpfile	&	"	topic	for"	&	_
			"	the	following	HelpContext:	"	&	Err.HelpContext
			MsgBox	Msg,	,	"error:	"	&	Err.Description,	Err.Helpfile,	Err.HelpContext
End	If

Microsoft®	Visual	Basic®	Scripting	Edition

HelpFile	Property
	Language	Reference	

Version	2	

See	Also																				Applies	to

Description

Sets	or	returns	a	fully	qualified	path	to	a	Help	File.

Syntax

object.HelpFile	[=	contextID]

The	HelpFile	property	syntax	has	these	parts:

Part Description
object Required.	Always	the	Err	object.
contextID Optional.	Fully	qualified	path	to	the	Help	file.

Remarks

If	a	Help	file	is	specified	in	HelpFile,	it	is	automatically	called	when	the
user	clicks	the	Help	button	(or	presses	the	F1	key)	in	the	error	message
dialog	box.	If	the	HelpContext	property	contains	a	valid	context	ID	for	the
specified	file,	that	topic	is	automatically	displayed.	If	no	HelpFile	is
specified,	the	VBScript	Help	file	is	displayed.

On	Error	Resume	Next
Dim	Msg
Err.Clear
Err.Raise	6				'	Generate	"Overflow"	error.
Err.Helpfile	=	"yourHelp.hlp"
Err.HelpContext	=	yourContextID
If	Err.Number	<>	0	Then
			Msg	=	"Press	F1	or	Help	to	see	"	&	Err.Helpfile	&	"	topic	for"	&	_

			"	the	following	HelpContext:	"	&	Err.HelpContext
			MsgBox	Msg,	,	"error:	"	&	Err.Description,	Err.Helpfile,	Err.HelpContext
End	If

Microsoft®	Visual	Basic®	Scripting	Edition	Hour
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	whole	number	between	0	and	23,	inclusive,	representing	the	hour
of	the	day.

Syntax

Hour(time)

The	time	argument	is	any	expression	that	can	represent	a	time.	If	time	contains	Null,	Null	is	returned.

The	following	example	uses	the	Hour	function	to	obtain	the	hour	from	the	current	time:

Dim	MyTime,	MyHour
MyTime	=	Now
MyHour	=	Hour(MyTime)	'	MyHour	contains	the	number	representing	
																						'	the	current	hour.

Microsoft®	Visual	Basic®	Scripting	Edition

If...Then...Else
Statement

	Language	Reference	
Version	1	

Description

Conditionally	executes	a	group	of	statements,	depending	on	the	value	of	an	expression.

Syntax

If	condition	Then	statements	[Else	elsestatements]

Or,	you	can	use	the	block	form	syntax:

If	condition	Then
				[statements]
[ElseIf	condition-n	Then
				[elseifstatements]]	.	.	.
[Else
				[elsestatements]]
End	If

The	If...Then...Else	statement	syntax	has	these	parts:

Part Description

condition

One	or	more	of	the	following	two	types	of	expressions:

A	numeric	or	string	expression	that	evaluates	to	True	or	False.	If
condition	is	Null,	condition	is	treated	as	False.

An	expression	of	the	form	TypeOf	objectname	Is	objecttype.	The
objectname	is	any	object	reference	and	objecttype	is	any	valid	object
type.	The	expression	is	True	if	objectname	is	of	the	object	type
specified	by	objecttype;	otherwise	it	is	False.

statements	One	or	more	statements	separated	by	colons;	executed	if	condition	is
True.	condition-n	Same	as	condition.	elseifstatements	One	or	more	statements
executed	if	the	associated	condition-n	is	True.	elsestatements	One	or	more
statements	executed	if	no	previous	condition	or	condition-n	expression	is	True.

Remarks

You	can	use	the	single-line	form	(first	syntax)	for	short,	simple	tests.
However,	the	block	form	(second	syntax)	provides	more	structure	and
flexibility	than	the	single-line	form	and	is	usually	easier	to	read,	maintain,
and	debug.

Note		With	the	single-line	syntax,	it	is	possible	to	have	multiple
statements	executed	as	the	result	of	an	If...Then	decision,	but
they	must	all	be	on	the	same	line	and	separated	by	colons,	as	in
the	following	statement:

If	A	>	10	Then	A	=	A	+	1	:	B	=	B	+	A	:	C	=	C	+	B

When	executing	a	block	If	(second	syntax),	condition	is	tested.	If	condition	is	True,	the	statements
following	Then	are	executed.	If	condition	is	False,	each	ElseIf	(if	any)	is	evaluated	in	turn.	When	a
True	condition	is	found,	the	statements	following	the	associated	Then	are	executed.	If	none	of	the
ElseIf	statements	are	True	(or	there	are	no	ElseIf	clauses),	the	statements	following	Else	are
executed.	After	executing	the	statements	following	Then	or	Else,	execution	continues	with	the
statement	following	End	If.

The	Else	and	ElseIf	clauses	are	both	optional.	You	can	have	as	many	ElseIf	statements	as	you	want
in	a	block	If,	but	none	can	appear	after	the	Else	clause.	Block	If	statements	can	be	nested;	that	is,
contained	within	one	another.

What	follows	the	Then	keyword	is	examined	to	determine	whether	or	not	a	statement	is	a	block	If.	If
anything	other	than	a	comment	appears	after	Then	on	the	same	line,	the	statement	is	treated	as	a
single-line	If	statement.

A	block	If	statement	must	be	the	first	statement	on	a	line.	The	block	If	must	end	with	an	End	If
statement.

Microsoft®	Visual	Basic®	Scripting	Edition	

IgnoreCase
Property

	Language	Reference	
Version	5	

See	Also																		Applies	To

Description

Sets	or	returns	a	Boolean	value	that	indicates	if	a	pattern	search
is	case-sensitive	or	not.

Syntax

object.IgnoreCase	[=	True	|	False]

The	object	argument	is	always	a	RegExp	object.	The	value	of	the
IgnoreCase	property	is	False	if	the	search	is	case-sensitive,	True
if	it	is	not.	Default	is	False.

Remarks

The	following	code	illustrates	the	use	of	the	IgnoreCase
property	(change	the	value	assigned	to	IgnoreCase	property	to
see	its	effect):

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	a	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.

		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	'"
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF
		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Imp
Operator

	Language	Reference	
Version	1	

See	Also

Description

Performs	a	logical	implication	on	two	expressions.

Syntax

result	=	expression1	Imp	expression2

The	Imp	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

The	following	table	illustrates	how	result	is	determined:

If	expression1	is And	expression2	is Then	result	is
True True True
True False False
True Null Null
False True True
False False True
False Null True
Null True True
Null False Null

Null Null Null

The	Imp	operator	performs	a	bitwise	comparison	of	identically	positioned	bits	in	two	numeric
expressions	and	sets	the	corresponding	bit	in	result	according	to	the	following	table:

If	bit	in	expression1
is And	bit	in	expression2	is Then	result	is

0 0 1
0 1 1
1 0 0
1 1 1

Microsoft®	Visual	Basic®	Scripting	Edition

Initialize	Event
	Language	Reference	

Version	5	

See	Also																			Applies	To

Description

Occurs	when	an	instance	of	the	associated	class	is	created.

Syntax

Private	Sub	Class_Initialize()
				statements
End	Sub

The	statements	part	consists	of	zero	or	more	code	statements	to
be	run	when	the	class	is	initlized.

Remarks

The	following	example	illustrates	the	use	of	the	Initialize	event:

Class	TestClass
		Private	Sub	Class_Initialize	 '	Setup	Initialize	event.
				MsgBox("TestClass	started")
		End	Sub
		Private	Sub	Class_Terminate	 '	Setup	Terminate	event.
				MsgBox("TestClass	terminated")
		End	Sub
End	Class

Set	X	=	New	TestClass	 '	Create	an	instance	of	TestClass.

Set	X	=	Nothing	 	 '	Destroy	the	instance.

Microsoft®	Visual	Basic®	Scripting	Edition

InputBox	Function
	Language	Reference	

Version	1	

See	Also

Description

Displays	a	prompt	in	a	dialog	box,	waits	for	the	user	to	input	text	or	click	a
button,	and	returns	the	contents	of	the	text	box.

Syntax

InputBox(prompt[,	title][,	default][,	xpos][,	ypos][,	helpfile,	context])

The	InputBox	function	syntax	has	these	arguments:

Part Description

prompt

String	expression	displayed	as	the	message	in	the	dialog
box.	The	maximum	length	of	prompt	is	approximately
1024	characters,	depending	on	the	width	of	the
characters	used.	If	prompt	consists	of	more	than	one
line,	you	can	separate	the	lines	using	a	carriage	return
character	(Chr(13)),	a	linefeed	character	(Chr(10)),	or
carriage	return–linefeed	character	combination
(Chr(13)	&	Chr(10))	between	each	line.

title
String	expression	displayed	in	the	title	bar	of	the	dialog
box.	If	you	omit	title,	the	application	name	is	placed	in
the	title	bar.

default
String	expression	displayed	in	the	text	box	as	the	default
response	if	no	other	input	is	provided.	If	you	omit
default,	the	text	box	is	displayed	empty.

xpos

Numeric	expression	that	specifies,	in	twips,	the
horizontal	distance	of	the	left	edge	of	the	dialog	box
from	the	left	edge	of	the	screen.	If	xpos	is	omitted,	the
dialog	box	is	horizontally	centered.
Numeric	expression	that	specifies,	in	twips,	the	vertical

ypos
distance	of	the	upper	edge	of	the	dialog	box	from	the
top	of	the	screen.	If	ypos	is	omitted,	the	dialog	box	is
vertically	positioned	approximately	one-third	of	the	way
down	the	screen.

helpfile
String	expression	that	identifies	the	Help	file	to	use	to
provide	context-sensitive	Help	for	the	dialog	box.	If
helpfile	is	provided,	context	must	also	be	provided.

context

Numeric	expression	that	identifies	the	Help	context
number	assigned	by	the	Help	author	to	the	appropriate
Help	topic.	If	context	is	provided,	helpfile	must	also	be
provided.

Remarks

When	both	helpfile	and	context	are	supplied,	a	Help	button	is	automatically
added	to	the	dialog	box.

If	the	user	clicks	OK	or	presses	ENTER,	the	InputBox	function	returns	whatever	is	in	the	text	box.
If	the	user	clicks	Cancel,	the	function	returns	a	zero-length	string	("").

The	following	example	uses	the	InputBox	function	to	display	an	input	box	and	assign	the	string	to
the	variable	Input:

Dim	Input
Input	=	InputBox("Enter	your	name")	
MsgBox	("You	entered:	"	&	Input)

Microsoft®	Visual	Basic®	Scripting	Edition	InStr
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	position	of	the	first	occurrence	of	one	string	within	another.

Syntax

InStr([start,]string1,	string2[,	compare])

The	InStr	function	syntax	has	these	arguments:

Part Description

start

Optional.	Numeric	expression	that	sets	the	starting
position	for	each	search.	If	omitted,	search	begins	at
the	first	character	position.	If	start	contains	Null,	an
error	occurs.	The	start	argument	is	required	if	compare
is	specified.

string1 Required.	String	expression	being	searched.
string2 Required.	String	expression	searched	for.

compare

Optional.	Numeric	value	indicating	the	kind	of
comparison	to	use	when	evaluating	substrings.	See
Settings	section	for	values.	If	omitted,	a	binary
comparison	is	performed.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbBinaryCompare 0 Perform	a	binary	comparison.
vbTextCompare 1 Perform	a	textual	comparison.

Return	Values

The	InStr	function	returns	the	following	values:

If InStr	returns
string1	is	zero-length 0
string1	is	Null Null
string2	is	zero-length start
string2	is	Null Null
string2	is	not	found 0
string2	is	found	within	string1 Position	at	which	match	is	found
start	>	Len(string2) 0

Remarks

The	following	examples	use	InStr	to	search	a	string:

Dim	SearchString,	SearchChar,	MyPos
SearchString	="XXpXXpXXPXXP"	 	 	 	 '	String	to	search	in.
SearchChar	=	"P"	 	 	 	 	 	 '	Search	for	"P".
MyPos	=	Instr(4,	SearchString,	SearchChar,	1)	 '	A	textual	comparison	starting	at
	 	 	 	 	 	 	 	 '	position	4.	Returns	6.	
MyPos	=	Instr(1,	SearchString,	SearchChar,	0)	 '	A	binary	comparison	starting	at	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 '	position	1.	Returns	9.	
MyPos	=	Instr(SearchString,	SearchChar)	 	 '	Comparison	is	binary	by	default	

	 	 	 	 	 	 	 	 '	(last	argument	is	omitted).
	 	 	 	 	 	 	 	 '	Returns	9.
MyPos	=	Instr(1,	SearchString,	"W")	 	 	 '	A	binary	comparison	starting	at	position	1.	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 '	Returns	0	("W"	is	not	found).								

Note		The	InStrB	function	is	used	with	byte	data	contained	in	a
string.	Instead	of	returning	the	character	position	of	the	first
occurrence	of	one	string	within	another,	InStrB	returns	the	byte
position.

Microsoft®	Visual	Basic®	Scripting	Edition	\
Operator

	Language	Reference	
Version	1	

See	Also

Description

Divides	two	numbers	and	returns	an	integer	result.

Syntax

result	=	number1\number2

The	\	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
number1 Any	numeric	expression.
number2 Any	numeric	expression.

Remarks

Before	division	is	performed,	numeric	expressions	are	rounded	to	Byte,
Integer,	or	Long	subtype	expressions.

If	any	expression	is	Null,	result	is	also	Null.	Any	expression	that	is	Empty
is	treated	as	0.

Microsoft®	Visual	Basic®	Scripting	Edition	Is
Operator

	Language	Reference	
Version	1	

See	Also

Description

Compares	two	object	reference	variables.

Syntax

result	=	object1	Is	object2

The	Is	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
object1 Any	object	name.
object2 Any	object	name.

Remarks

If	object1	and	object2	both	refer	to	the	same	object,	result	is	True;	if	they
do	not,	result	is	False.	Two	variables	can	be	made	to	refer	to	the	same
object	in	several	ways.

In	the	following	example,	A	has	been	set	to	refer	to	the	same	object	as	B:

Set	A	=	B
The	following	example	makes	A	and	B	refer	to	the	same	object	as	C:

Set	A	=	C

Set	B	=	C

Microsoft®	Visual	Basic®	Scripting	Edition	IsArray
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Boolean	value	indicating	whether	a	variable	is	an	array.

Syntax

IsArray(varname)

The	varname	argument	can	be	any	variable.

Remarks

IsArray	returns	True	if	the	variable	is	an	array;	otherwise,	it	returns	False.
IsArray	is	especially	useful	with	variants	containing	arrays.

The	following	example	uses	the	IsArray	function	to	test	whether
MyVariable	is	an	array:

Dim	MyVariable
Dim	MyArray(3)
MyArray(0)	=	"Sunday"
MyArray(1)	=	"Monday"
MyArray(2)	=	"Tuesday"
MyVariable	=	IsArray(MyArray)	'	MyVariable	contains	"True".

Microsoft®	Visual	Basic®	Scripting	Edition	IsDate
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Boolean	value	indicating	whether	an	expression	can	be	converted
to	a	date.

Syntax

IsDate(expression)

The	expression	argument	can	be	any	date	expression	or	string	expression	recognizable	as	a	date	or
time.

Remarks

IsDate	returns	True	if	the	expression	is	a	date	or	can	be	converted	to	a
valid	date;	otherwise,	it	returns	False.	In	Microsoft	Windows,	the	range	of
valid	dates	is	January	1,	100	A.D.	through	December	31,	9999	A.D.;	the
ranges	vary	among	operating	systems.

The	following	example	uses	the	IsDate	function	to	determine	whether	an	expression	can	be
converted	to	a	date:

Dim	MyDate,	YourDate,	NoDate,	MyCheck
MyDate	=	"October	19,	1962":	YourDate	=	#10/19/62#:	NoDate	=	"Hello"
MyCheck	=	IsDate(MyDate)												'	Returns	True.
MyCheck	=	IsDate(YourDate)										'	Returns	True.
MyCheck	=	IsDate(NoDate)												'	Returns	False.

Microsoft®	Visual	Basic®	Scripting	Edition

IsEmpty	Function
	Language	Reference	

Version	1	

See	Also

Description

Returns	a	Boolean	value	indicating	whether	a	variable	has	been	initialized.

Syntax

IsEmpty(expression)

The	expression	argument	can	be	any	expression.	However,	because
IsEmpty	is	used	to	determine	if	individual	variables	are	initialized,	the
expression	argument	is	most	often	a	single	variable	name.

Remarks

IsEmpty	returns	True	if	the	variable	is	uninitialized,	or	is	explicitly	set	to
Empty;	otherwise,	it	returns	False.	False	is	always	returned	if	expression
contains	more	than	one	variable.

The	following	example	uses	the	IsEmpty	function	to	determine	whether	a
variable	has	been	initialized:

Dim	MyVar,	MyCheck
MyCheck	=	IsEmpty(MyVar)						'	Returns	True.
MyVar	=	Null																		'	Assign	Null.
MyCheck	=	IsEmpty(MyVar)						'	Returns	False.
MyVar	=	Empty																	'	Assign	Empty.

MyCheck	=	IsEmpty(MyVar)						'	Returns	True.

Microsoft®	Visual	Basic®	Scripting	Edition	IsNull
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Boolean	value	that	indicates	whether	an	expression	contains	no
valid	data	(Null).

Syntax

IsNull(expression)

The	expression	argument	can	be	any	expression.

Remarks

IsNull	returns	True	if	expression	is	Null,	that	is,	it	contains	no	valid	data;
otherwise,	IsNull	returns	False.	If	expression	consists	of	more	than	one
variable,	Null	in	any	constituent	variable	causes	True	to	be	returned	for	the
entire	expression.

The	Null	value	indicates	that	the	variable	contains	no	valid	data.	Null	is	not	the	same	as	Empty,
which	indicates	that	a	variable	has	not	yet	been	initialized.	It	is	also	not	the	same	as	a	zero-length
string	(""),	which	is	sometimes	referred	to	as	a	null	string.

Important		Use	the	IsNull	function	to	determine	whether	an
expression	contains	a	Null	value.	Expressions	that	you	might
expect	to	evaluate	to	True	under	some	circumstances,	such	as
If	Var	=	Null	and	If	Var	<>	Null,	are	always	False.	This	is
because	any	expression	containing	a	Null	is	itself	Null,	and
therefore,	False.

The	following	example	uses	the	IsNull	function	to	determine	whether	a	variable	contains	a	Null:

Dim	MyVar,	MyCheck
MyCheck	=	IsNull(MyVar)						'	Returns	False.
MyVar	=	Null																	'	Assign	Null.
MyCheck	=	IsNull(MyVar)						'	Returns	True.
MyVar	=	Empty																'	Assign	Empty.
MyCheck	=	IsNull(MyVar)						'	Returns	False.

Microsoft®	Visual	Basic®	Scripting	Edition

IsNumeric
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Boolean	value	indicating	whether	an	expression	can	be	evaluated
as	a	number.

Syntax

IsNumeric(expression)

The	expression	argument	can	be	any	expression.

Remarks

IsNumeric	returns	True	if	the	entire	expression	is	recognized	as	a	number;
otherwise,	it	returns	False.	IsNumeric	returns	False	if	expression	is	a	date
expression.

The	following	example	uses	the	IsNumeric	function	to	determine	whether	a	variable	can	be
evaluated	as	a	number:

Dim	MyVar,	MyCheck
MyVar	=	53																				'	Assign	a	value.
MyCheck	=	IsNumeric(MyVar)				'	Returns	True.
MyVar	=	"459.95"														'	Assign	a	value.
MyCheck	=	IsNumeric(MyVar)				'	Returns	True.
MyVar	=	"45	Help"													'	Assign	a	value.
MyCheck	=	IsNumeric(MyVar)				'	Returns	False.

Microsoft®	Visual	Basic®	Scripting	Edition

IsObject	Function
	Language	Reference	

Version	1	

See	Also

Description

Returns	a	Boolean	value	indicating	whether	an	expression	references	a
valid	Automation	object.

Syntax

IsObject(expression)

The	expression	argument	can	be	any	expression.

Remarks

IsObject	returns	True	if	expression	is	a	variable	of	Object	subtype	or	a
user-defined	object;	otherwise,	it	returns	False.

The	following	example	uses	the	IsObject	function	to	determine	if	an	identifier	represents	an	object
variable:

Dim	MyInt,	MyCheck,	MyObject
Set	MyObject	=	Me											
MyCheck	=	IsObject(MyObject)		'	Returns	True.
MyCheck	=	IsObject(MyInt)					'	Returns	False.

Microsoft®	Visual	Basic®	Scripting	Edition	Join
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	string	created	by	joining	a	number	of	substrings	contained	in	an
array.

Syntax

Join(list[,	delimiter])

The	Join	function	syntax	has	these	parts:

Part Description

list Required.	One-dimensional	array	containing
substrings	to	be	joined.

delimiter

Optional.	String	character	used	to	separate	the
substrings	in	the	returned	string.	If	omitted,	the	space
character	("	")	is	used.	If	delimiter	is	a	zero-length
string,	all	items	in	the	list	are	concatenated	with	no
delimiters.

Remarks

The	following	example	uses	the	Join	function	to	join	the	substrings	of
MyArray:

Dim	MyString
Dim	MyArray(4)
MyArray(0)	=	"Mr."

MyArray(1)	=	"John	"
MyArray(2)	=	"Doe	"
MyArray(3)	=	"III"
MyString	=	Join(MyArray)	'	MyString	contains	"Mr.	John	Doe	III".

Microsoft®	Visual	Basic®	Scripting	Edition	LBound
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	smallest	available	subscript	for	the	indicated	dimension	of	an
array.

Syntax

LBound(arrayname[,	dimension])

The	LBound	function	syntax	has	these	parts:

Part Description

arrayname Name	of	the	array	variable;	follows	standardvariable	naming	conventions.

dimension

Whole	number	indicating	which	dimension's	lower
bound	is	returned.	Use	1	for	the	first	dimension,	2
for	the	second,	and	so	on.	If	dimension	is	omitted,	1
is	assumed.

Remarks

The	LBound	function	is	used	with	the	UBound	function	to	determine	the
size	of	an	array.	Use	the	UBound	function	to	find	the	upper	limit	of	an
array	dimension.

The	lower	bound	for	any	dimension	is	always	0.

Microsoft®	Visual	Basic®	Scripting	Edition	LCase
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	string	that	has	been	converted	to	lowercase.

Syntax

LCase(string)

The	string	argument	is	any	valid	string	expression.	If	string	contains	Null,	Null	is	returned.

Remarks

Only	uppercase	letters	are	converted	to	lowercase;	all	lowercase	letters	and
nonletter	characters	remain	unchanged.

The	following	example	uses	the	LCase	function	to	convert	uppercase
letters	to	lowercase:

Dim	MyString
Dim	LCaseString
MyString	=	"VBSCript"
LCaseString	=	LCase(MyString)	'	LCaseString	contains	"vbscript".

Microsoft®	Visual	Basic®	Scripting	Edition	Left
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	specified	number	of	characters	from	the	left	side	of	a	string.

Syntax

Left(string,	length)

The	Left	function	syntax	has	these	arguments:

Part Description

string String	expression	from	which	the	leftmost	characters	are
returned.	If	string	contains	Null,	Null	is	returned.

length

Numeric	expression	indicating	how	many	characters	to
return.	If	0,	a	zero-length	string("")	is	returned.	If	greater
than	or	equal	to	the	number	of	characters	in	string,	the
entire	string	is	returned.

Remarks

To	determine	the	number	of	characters	in	string,	use	the	Len	function.

The	following	example	uses	the	Left	function	to	return	the	first	three	characters	of	MyString:

Dim	MyString,	LeftString
MyString	=	"VBSCript"
LeftString	=	Left(MyString,	3)	'	LeftString	contains	"VBS".

Note		The	LeftB	function	is	used	with	byte	data	contained	in	a
string.	Instead	of	specifying	the	number	of	characters	to	return,
length	specifies	the	number	of	bytes.

Microsoft®	Visual	Basic®	Scripting	Edition	Len
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	number	of	characters	in	a	string	or	the	number	of	bytes	required
to	store	a	variable.

Syntax

Len(string	|	varname)

The	Len	function	syntax	has	these	parts:

Part Description

string Any	valid	string	expression.	If	string	contains	Null,
Null	is	returned.

varname Any	valid	variable	name.	If	varname	contains	Null,Null	is	returned.

Remarks

The	following	example	uses	the	Len	function	to	return	the	number	of
characters	in	a	string:

Dim	MyString
MyString	=	Len("VBSCRIPT")	'	MyString	contains	8.

Note		The	LenB	function	is	used	with	byte	data	contained	in	a	string.	Instead	of
returning	the	number	of	characters	in	a	string,	LenB	returns	the	number	of	bytes	used
to	represent	that	string.

Microsoft®	Visual	Basic®	Scripting	Edition	

Length	Property
	Language	Reference	

Version	5	

See	Also																		Applies	To

Description

Returns	the	length	of	a	match	found	in	a	search	string.

Syntax

object.Length

The	object	argument	is	always	a	Match	object.

Remarks

The	following	code	illustrates	the	use	of	the	Length	property:

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	"	&	I	&	"	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Length	is	"
				RetStr	=	RetStr	&	Match.Length	
				RetStr	=	RetStr	&	"	characters."	&	vbCRLF

		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition

LoadPicture
Function

	Language	Reference	
Version	2	

Description

Returns	a	picture	object.	Available	only	on	32-bit	platforms.

Syntax

LoadPicture(picturename)

The	picturename	argument	is	a	string	expression	that	indicates	the	name	of
the	picture	file	to	be	loaded.

Remarks

Graphics	formats	recognized	by	LoadPicture	include	bitmap	(.bmp)	files,
icon	(.ico)	files,	run-length	encoded	(.rle)	files,	metafile	(.wmf)	files,
enhanced	metafiles	(.emf),	GIF	(.gif)	files,	and	JPEG	(.jpg)	files.

Microsoft®	Visual	Basic®	Scripting	Edition	Log
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	natural	logarithm	of	a	number.

Syntax

Log(number)

The	number	argument	can	be	any	valid	numeric	expression	greater	than	0.

Remarks

The	natural	logarithm	is	the	logarithm	to	the	base	e.	The	constant	e	is
approximately	2.718282.

You	can	calculate	base-n	logarithms	for	any	number	x	by	dividing	the	natural	logarithm	of	x	by	the
natural	logarithm	of	n	as	follows:

Logn(x)	=	Log(x)	/	Log(n)
The	following	example	illustrates	a	custom	Function	that	calculates	base-
10	logarithms:

Function	Log10(X)
				Log10	=	Log(X)	/	Log(10)
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	LTrim,
RTrim,	and	Trim
Functions

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	copy	of	a	string	without	leading	spaces	(LTrim),	trailing	spaces
(RTrim),	or	both	leading	and	trailing	spaces	(Trim).

Syntax

LTrim(string)

RTrim(string)

Trim(string)

The	string	argument	is	any	valid	string	expression.	If	string	contains	Null,
Null	is	returned.

Remarks

The	following	example	uses	the	LTrim,	RTrim,	and	Trim	functions	to	trim
leading	spaces,	trailing	spaces,	and	both	leading	and	trailing	spaces,
respectively:

Dim	MyVar
MyVar	=	LTrim("		vbscript	")		'	MyVar	contains	"vbscript	".

MyVar	=	RTrim("		vbscript	")		'	MyVar	contains	"		vbscript".
MyVar	=	Trim("		vbscript	")			'	MyVar	contains	"vbscript".

Microsoft®	Visual	Basic®	Scripting	Edition	Match
Object

	Language	Reference	
Version	5	

See	Also																			Properties

Description

Provides	access	to	the	read-only	properties	of	a	regular
expression	match.

Remarks

A	Match	object	can	be	only	created	using	the	Execute	method	of
the	RegExp	object,	which	actually	returns	a	collection	of	Match
objects.	All	Match	object	properties	are	read-only.

When	a	regular	expression	is	executed,	zero	or	more	Match
objects	can	result.	Each	Match	object	provides	access	to	the
string	found	by	the	regular	expression,	the	length	of	the	string,
and	an	index	to	where	the	match	was	found.

The	following	code	illustrates	the	use	of	the	Match	object:

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.

				RetStr	=	RetStr	&	"Match	"	&	I	&	"	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	"'
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF
		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Matches
Collection

	Language	Reference	
Version	5	

See	Also																			Properties

Description

Collection	of	regular	expression	Match	objects.

Remarks

A	Matches	collection	contains	individual	Match	objects,	and	can
be	only	created	using	the	Execute	method	of	the	RegExp	object.
The	Matches	collection's	one	property	is	read-only,	as	are	the
individual	Match	object	properties.

When	a	regular	expression	is	executed,	zero	or	more	Match
objects	can	result.	Each	Match	object	provides	access	to	the
string	found	by	the	regular	expression,	the	length	of	the	string,
and	an	index	to	where	the	match	was	found.

The	following	code	illustrates	how	to	obtain	a	Matches
collection	from	a	regular	expression	search	and	how	to	iterate	the
collection:

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.

		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	'"
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF
		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Mid
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	specified	number	of	characters	from	a	string.

Syntax

Mid(string,	start[,	length])

The	Mid	function	syntax	has	these	arguments:

Part Description

string String	expression	from	which	characters	are	returned.	If
string	contains	Null,	Null	is	returned.

start
Character	position	in	string	at	which	the	part	to	be	taken
begins.	If	start	is	greater	than	the	number	of	characters	in
string,	Mid	returns	a	zero-length	string	("").

length

Number	of	characters	to	return.	If	omitted	or	if	there	are
fewer	than	length	characters	in	the	text	(including	the
character	at	start),	all	characters	from	the	start	position	to
the	end	of	the	string	are	returned.

Remarks

To	determine	the	number	of	characters	in	string,	use	the	Len	function.

The	following	example	uses	the	Mid	function	to	return	six	characters,
beginning	with	the	fourth	character,	in	a	string:

Dim	MyVar

MyVar	=	Mid("VB	Script	is	fun!",	4,	6)	'	MyVar	contains	"Script".

Note		The	MidB	function	is	used	with	byte	data	contained	in	a
string.	Instead	of	specifying	the	number	of	characters,	the
arguments	specify	numbers	of	bytes.

Microsoft®	Visual	Basic®	Scripting	Edition	Minute
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	whole	number	between	0	and	59,	inclusive,	representing	the
minute	of	the	hour.

Syntax

Minute(time)

The	time	argument	is	any	expression	that	can	represent	a	time.	If	time	contains	Null,	Null	is	returned.

Remarks

The	following	example	uses	the	Minute	function	to	return	the	minute	of	the
hour:

Dim	MyVar
MyVar	=	Minute(Now)	

Microsoft®	Visual	Basic®	Scripting	Edition

Miscellaneous
Constants

	Language	Reference	
Version	2	

See	Also

Since	this	constant	is	built	into	VBScript,	you	don't	have	to	define	it	before	using
it.	Use	it	anywhere	in	your	code	to	represent	the	values	shown.

Constant Value Description

vbObjectError -2147221504

User-defined	error	numbers	should	be	greater	than	this	value,
for	example,

Err.Raise	Number	=	vbObjectError	+	1000

Microsoft®	Visual	Basic®	Scripting	Edition	Mod
Operator

	Language	Reference	
Version	1	

See	Also

Description

Divides	two	numbers	and	returns	only	the	remainder.

Syntax

result	=	number1	Mod	number2

The	Mod	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
number1 Any	numeric	expression.
number2 Any	numeric	expression.

Remarks

The	modulus,	or	remainder,	operator	divides	number1	by	number2
(rounding	floating-point	numbers	to	integers)	and	returns	only	the
remainder	as	result.	For	example,	in	the	following	expression,	A	(which	is
result)	equals	5.

A	=	19	Mod	6.7
If	any	expression	is	Null,	result	is	also	Null.	Any	expression	that	is	Empty
is	treated	as	0.

Microsoft®	Visual	Basic®	Scripting	Edition	Month
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	whole	number	between	1	and	12,	inclusive,	representing	the
month	of	the	year.

Syntax

Month(date)

The	date	argument	is	any	expression	that	can	represent	a	date.	If	date	contains	Null,	Null	is	returned.

Remarks

The	following	example	uses	the	Month	function	to	return	the	current
month:

Dim	MyVar
MyVar	=	Month(Now)	'	MyVar	contains	the	number	corresponding	to
																			'	the	current	month.

Microsoft®	Visual	Basic®	Scripting	Edition

MonthName
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	string	indicating	the	specified	month.

Syntax

MonthName(month[,	abbreviate])

The	MonthName	function	syntax	has	these	parts:

Part Description

month Required.	The	numeric	designation	of	the	month.	For
example,	January	is	1,	February	is	2,	and	so	on.

abbreviate

Optional.	Boolean	value	that	indicates	if	the	month
name	is	to	be	abbreviated.	If	omitted,	the	default	is
False,	which	means	that	the	month	name	is	not
abbreviated.

Remarks

The	following	example	uses	the	MonthName	function	to	return	an
abbreviated	month	name	for	a	date	expression:

Dim	MyVar
MyVar	=	MonthName(10,	True)	'	MyVar	contains	"Oct".	

Microsoft®	Visual	Basic®	Scripting	Edition	MsgBox
Constants

	Language	Reference	
Version	2	

See	Also

The	following	constants	are	used	with	the	MsgBox	function	to	identify	what
buttons	and	icons	appear	on	a	message	box	and	which	button	is	the	default.	In
addition,	the	modality	of	the	MsgBox	can	be	specified.	Since	these	constants	are
built	into	VBScript,	you	don't	have	to	define	them	before	using	them.	Use	them
anywhere	in	your	code	to	represent	the	values	shown	for	each.

Constant Value Description
vbOKOnly 			0 Display	OK	button	only.
vbOKCancel 			1 Display	OK	and	Cancel	buttons.

vbAbortRetryIgnore 			2 Display	Abort,	Retry,	and	Ignore
buttons.

vbYesNoCancel 			3 Display	Yes,	No,	and	Cancel
buttons.

vbYesNo 			4 Display	Yes	and	No	buttons.

vbRetryCancel 			5 Display	Retry	and	Cancel
buttons.

vbCritical 		16 Display	Critical	Message	icon.
vbQuestion 		32 Display	Warning	Query	icon.
vbExclamation 		48 Display	Warning	Message	icon.

vbInformation 		64 Display	Information	Message
icon.

vbDefaultButton1 			0 First	button	is	the	default.
vbDefaultButton2 	256 Second	button	is	the	default.
vbDefaultButton3 	512 Third	button	is	the	default.
vbDefaultButton4 	768 Fourth	button	is	the	default.

vbApplicationModal 			0
Application	modal.	The	user	must
respond	to	the	message	box	before
continuing	work	in	the	current
application.

vbSystemModal 4096

System	modal.	On	Win16	systems,
all	applications	are	suspended	until
the	user	responds	to	the	message
box.	On	Win32	systems,	this
constant	provides	an	application
modal	message	box	that	always
remains	on	top	of	any	other
programs	you	may	have	running.

The	following	constants	are	used	with	the	MsgBox	function	to	identify
which	button	a	user	has	selected.	These	constants	are	only	available	when
your	project	has	an	explicit	reference	to	the	appropriate	type	library
containing	these	constant	definitions.	For	VBScript,	you	must	explicitly
declare	these	constants	in	your	code.

Constant Value Description
vbOK 1 OK	button	was	clicked.
vbCancel 2 Cancel	button	was	clicked.
vbAbort 3 Abort	button	was	clicked.
vbRetry 4 Retry	button	was	clicked.
vbIgnore 5 Ignore	button	was	clicked.
vbYes 6 Yes	button	was	clicked.
vbNo 7 No	button	was	clicked.

Microsoft®	Visual	Basic®	Scripting	Edition	MsgBox
Function

	Language	Reference	
Version	1	

See	Also

Description

Displays	a	message	in	a	dialog	box,	waits	for	the	user	to	click	a	button,	and
returns	a	value	indicating	which	button	the	user	clicked.

Syntax

MsgBox(prompt[,	buttons][,	title][,	helpfile,	context])

The	MsgBox	function	syntax	has	these	arguments:

Part Description

prompt

String	expression	displayed	as	the	message	in	the	dialog
box.	The	maximum	length	of	prompt	is	approximately
1024	characters,	depending	on	the	width	of	the
characters	used.	If	prompt	consists	of	more	than	one
line,	you	can	separate	the	lines	using	a	carriage	return
character	(Chr(13)),	a	linefeed	character	(Chr(10)),	or
carriage	return–linefeed	character	combination
(Chr(13)	&	Chr(10))	between	each	line.

buttons

Numeric	expression	that	is	the	sum	of	values	specifying
the	number	and	type	of	buttons	to	display,	the	icon	style
to	use,	the	identity	of	the	default	button,	and	the
modality	of	the	message	box.	See	Settings	section	for
values.	If	omitted,	the	default	value	for	buttons	is	0.

title
String	expression	displayed	in	the	title	bar	of	the	dialog
box.	If	you	omit	title,	the	application	name	is	placed	in
the	title	bar.
String	expression	that	identifies	the	Help	file	to	use	to

helpfile provide	context-sensitive	Help	for	the	dialog	box.	If
helpfile	is	provided,	context	must	also	be	provided.	Not
available	on	16-bit	platforms.

context

Numeric	expression	that	identifies	the	Help	context
number	assigned	by	the	Help	author	to	the	appropriate
Help	topic.	If	context	is	provided,	helpfile	must	also	be
provided.	Not	available	on	16-bit	platforms.

Settings

The	buttons	argument	settings	are:

Constant Value Description
vbOKOnly 			0 Display	OK	button	only.
vbOKCancel 			1 Display	OK	and	Cancel	buttons.

vbAbortRetryIgnore 			2 Display	Abort,	Retry,	and	Ignore
buttons.

vbYesNoCancel 			3 Display	Yes,	No,	and	Cancel
buttons.

vbYesNo 			4 Display	Yes	and	No	buttons.

vbRetryCancel 			5 Display	Retry	and	Cancel
buttons.

vbCritical 		16 Display	Critical	Message	icon.
vbQuestion 		32 Display	Warning	Query	icon.
vbExclamation 		48 Display	Warning	Message	icon.

vbInformation 		64 Display	Information	Message
icon.

vbDefaultButton1 			0 First	button	is	default.
vbDefaultButton2 	256 Second	button	is	default.
vbDefaultButton3 	512 Third	button	is	default.
vbDefaultButton4 	768 Fourth	button	is	default.

Application	modal;	the	user	must
respond	to	the	message	box	before

vbApplicationModal 			0 continuing	work	in	the	current
application.

vbSystemModal 4096
System	modal;	all	applications	are
suspended	until	the	user	responds
to	the	message	box.

The	first	group	of	values	(0–5)	describes	the	number	and	type	of	buttons	displayed	in	the	dialog	box;
the	second	group	(16,	32,	48,	64)	describes	the	icon	style;	the	third	group	(0,	256,	512,	768)
determines	which	button	is	the	default;	and	the	fourth	group	(0,	4096)	determines	the	modality	of	the
message	box.	When	adding	numbers	to	create	a	final	value	for	the	argument	buttons,	use	only	one
number	from	each	group.

Return	Values

The	MsgBox	function	has	the	following	return	values:

Constant Value Button
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbIgnore 5 Ignore
vbYes 6 Yes
vbNo 7 No

Remarks

When	both	helpfile	and	context	are	provided,	the	user	can	press	F1	to	view
the	Help	topic	corresponding	to	the	context.

If	the	dialog	box	displays	a	Cancel	button,	pressing	the	ESC	key	has	the	same	effect	as	clicking
Cancel.	If	the	dialog	box	contains	a	Help	button,	context-sensitive	Help	is	provided	for	the	dialog
box.	However,	no	value	is	returned	until	one	of	the	other	buttons	is	clicked.

When	the	MsgBox	function	is	used	with	Microsoft	Internet	Explorer,	the	title	of	any	dialog	presented
always	contains	"VBScript:"	to	differentiate	it	from	standard	system	dialogs.

The	following	example	uses	the	MsgBox	function	to	display	a	message	box	and	return	a	value
describing	which	button	was	clicked:

Dim	MyVar
MyVar	=	MsgBox	("Hello	World!",	65,	"MsgBox	Example")	'	MyVar	contains	either	1	or	2,		
																																																						'	depending	on	which	button	is	
																																																						'	clicked.

Microsoft®	Visual	Basic®	Scripting	Edition	*
Operator

	Language	Reference	
Version	1	

See	Also

Description

Multiplies	two	numbers.

Syntax

result	=	number1*number2

The	*	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
number1 Any	numeric	expression.
number2 Any	numeric	expression.

Remarks

If	one	or	both	expressions	are	Null	expressions,	result	is	Null.	If	an
expression	is	Empty,	it	is	treated	as	if	it	were	0.

Microsoft®	Visual	Basic®	Scripting	Edition	-
Operator

	Language	Reference	
Version	1	

See	Also

Description

Finds	the	difference	between	two	numbers	or	indicates	the	negative	value	of
a	numeric	expression.

Syntax	1

result	=	number1-number2

Syntax	2

-number

The	-	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
number Any	numeric	expression.
number1 Any	numeric	expression.
number2 Any	numeric	expression.

Remarks

In	Syntax	1,	the	-	operator	is	the	arithmetic	subtraction	operator	used	to	find
the	difference	between	two	numbers.	In	Syntax	2,	the	-	operator	is	used	as
the	unary	negation	operator	to	indicate	the	negative	value	of	an	expression.

If	one	or	both	expressions	are	Null	expressions,	result	is	Null.	If	an	expression	is	Empty,	it	is	treated
as	if	it	were	0.

Microsoft®	Visual	Basic®	Scripting	Edition	Not
Operator

	Language	Reference	
Version	1	

See	Also

Description

Performs	logical	negation	on	an	expression.

Syntax

result	=	Not	expression

The	Not	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression Any	expression.

Remarks

The	following	table	illustrates	how	result	is	determined:

If	expression	is Then	result	is
True False
False True
Null Null

In	addition,	the	Not	operator	inverts	the	bit	values	of	any	variable	and	sets	the	corresponding	bit	in
result	according	to	the	following	table:

Bit	in	expression Bit	in	result
0 1
1 0

Microsoft®	Visual	Basic®	Scripting	Edition	Now
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	current	date	and	time	according	to	the	setting	of	your
computer's	system	date	and	time.

Syntax

Now

Remarks

The	following	example	uses	the	Now	function	to	return	the	current	date	and
time:

Dim	MyVar
MyVar	=	Now	'	MyVar	contains	the	current	date	and	time.	

Microsoft®	Visual	Basic®	Scripting	Edition	Nothing
	Language	Reference	

Version	1	

See	Also

Description

The	Nothing	keyword	in	VBScript	is	used	to	disassociate	an	object	variable
from	any	actual	object.	Use	the	Set	statement	to	assign	Nothing	to	an
object	variable.	For	example:

Set	MyObject	=	Nothing
Several	object	variables	can	refer	to	the	same	actual	object.	When	Nothing
is	assigned	to	an	object	variable,	that	variable	no	longer	refers	to	any	actual
object.	When	several	object	variables	refer	to	the	same	object,	memory	and
system	resources	associated	with	the	object	to	which	the	variables	refer	are
released	only	after	all	of	them	have	been	set	to	Nothing,	either	explicitly
using	Set,	or	implicitly	after	the	last	object	variable	set	to	Nothing	goes	out
of	scope.

Microsoft®	Visual	Basic®	Scripting	Edition	Null
	Language	Reference	

Version	1	

See	Also

Description

The	Null	keyword	is	used	to	indicate	that	a	variable	contains	no	valid	data.
This	is	not	the	same	thing	as	Empty.

Microsoft®	Visual	Basic®	Scripting	Edition	Number
Property

	Language	Reference	
Version	1	

See	Also																					Applies	to

Description

Returns	or	sets	a	numeric	value	specifying	an	error.	Number	is	the	Err
object's	default	property.

Syntax

object.Number	[=	errornumber]

The	Number	property	syntax	has	these	parts:

Part Description
object Always	the	Err	object.

errornumber An	integer	representing	a	VBScript	error	numberor	an	SCODE	error	value.

Remarks

When	returning	a	user-defined	error	from	an	Automation	object,	set
Err.Number	by	adding	the	number	you	selected	as	an	error	code	to	the
constant	vbObjectError.

The	following	code	illustrates	the	use	of	the	Number	property

On	Error	Resume	Next
Err.Raise	vbObjectError	+	1,	"SomeObject"	 '	Raise	Object	Error	#1.
MsgBox	("Error	#	"	&	CStr(Err.Number)	&	"	"	&	Err.Description)
Err.Clear		 	 	 	 '	Clear	the	error.

Microsoft®	Visual	Basic®	Scripting	Edition	Oct
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	string	representing	the	octal	value	of	a	number.

Syntax

Oct(number)

The	number	argument	is	any	valid	expression.

Remarks

If	number	is	not	already	a	whole	number,	it	is	rounded	to	the	nearest	whole
number	before	being	evaluated.

If	number	is Oct	returns
Null Null.
Empty Zero	(0).
Any	other	number Up	to	11	octal	characters,

You	can	represent	octal	numbers	directly	by	preceding	numbers	in	the	proper	range	with	&O.	For
example,	&O10	is	the	octal	notation	for	decimal	8.

The	following	example	uses	the	Oct	function	to	return	the	octal	value	of	a	number:

Dim	MyOct
MyOct	=	Oct(4)					'	Returns	4.
MyOct	=	Oct(8)					'	Returns	10.
MyOct	=	Oct(459)			'	Returns	713.

Microsoft®	Visual	Basic®	Scripting	Edition	On
Error	Statement

	Language	Reference	
Version	1	

See	Also

Description

Enables	or	disables	error-handling.

Syntax

On	Error	Resume	Next
On	Error	GoTo	0

Remarks

If	you	don't	use	an	On	Error	Resume	Next	statement	anywhere	in	your
code,	any	run-time	error	that	occurs	can	cause	an	error	message	to	be
displayed	and	code	execution	stopped.	However,	the	exact	behavior	is
determined	by	the	host	running	the	code.	The	host	can	sometimes	opt	to
handle	such	errors	differently.	In	some	cases,	the	script	debugger	may	be
invoked	at	the	point	of	the	error.	In	still	other	cases,	there	may	be	no
apparent	indication	that	any	error	occurred	because	the	host	does	not	to
notify	the	user.	Again,	this	is	purely	a	function	of	how	the	host	handles	any
errors	that	occur.

Within	any	particular	procedure,	an	error	is	not	necessarily	fatal	as	long	as	error-handling	is	enabled
somewhere	along	the	call	stack.	If	local	error-handling	is	not	enabled	in	a	procedure	and	an	error
occurs,	control	is	passed	back	through	the	call	stack	until	a	procedure	with	error-handling	enabled	is
found	and	the	error	is	handled	at	that	point.	If	no	procedure	in	the	call	stack	is	found	to	have	error-
handling	enabled,	an	error	message	is	displayed	at	that	point	and	execution	stops	or	the	host	handles
the	error	as	appropriate.

On	Error	Resume	Next	causes	execution	to	continue	with	the	statement	immediately	following	the
statement	that	caused	the	run-time	error,	or	with	the	statement	immediately	following	the	most	recent
call	out	of	the	procedure	containing	the	On	Error	Resume	Next	statement.	This	allows	execution	to
continue	despite	a	run-time	error.	You	can	then	build	the	error-handling	routine	inline	within	the
procedure.

An	On	Error	Resume	Next	statement	becomes	inactive	when	another	procedure	is	called,	so	you
should	execute	an	On	Error	Resume	Next	statement	in	each	called	routine	if	you	want	inline	error
handling	within	that	routine.	When	a	procedure	is	exited,	the	error-handling	capability	reverts	to
whatever	error-handling	was	in	place	before	entering	the	exited	procedure.

Use	On	Error	GoTo	0	to	disable	error	handling	if	you	have	previously	enabled	it	using	On	Error
Resume	Next.

The	following	example	illustrates	use	of	the	On	Error	Resume	Next	statement:

On	Error	Resume	Next
Err.Raise	6		'	Raise	an	overflow	error.
MsgBox	"Error	#	"	&	CStr(Err.Number)	&	"	"	&	Err.Description
Err.Clear				'	Clear	the	error.

Microsoft®	Visual	Basic®	Scripting	Edition

Operator
Precedence

	Language	Reference	
Version	1	

See	Also

Description

When	several	operations	occur	in	an	expression,	each	part	is	evaluated	and
resolved	in	a	predetermined	order	called	operator	precedence.	Parentheses
can	be	used	to	override	the	order	of	precedence	and	force	some	parts	of	an
expression	to	be	evaluated	before	other	parts.	Operations	within	parentheses
are	always	performed	before	those	outside.	Within	parentheses,	however,
normal	operator	precedence	is	maintained.

When	expressions	contain	operators	from	more	than	one	category,	arithmetic	operators	are	evaluated
first,	comparison	operators	are	evaluated	next,	and	logical	operators	are	evaluated	last.	Comparison
operators	all	have	equal	precedence;	that	is,	they	are	evaluated	in	the	left-to-right	order	in	which	they
appear.	Arithmetic	and	logical	operators	are	evaluated	in	the	following	order	of	precedence:

Arithmetic Comparison Logical
Exponentiation	(^) Equality	(=) Not
Negation	(-) Inequality	(<>) And
Multiplication	and	division
(*,	/) Less	than	(<) Or

Integer	division	(\) Greater	than	(>) Xor
Modulus	arithmetic	(Mod) Less	than	or	equal	to	(<=) Eqv
Addition	and	subtraction	(+,
-)

Greater	than	or	equal	to
(>=) Imp

String	concatenation	(&) Is &

When	multiplication	and	division	occur	together	in	an	expression,	each	operation	is	evaluated	as	it
occurs	from	left	to	right.	Likewise,	when	addition	and	subtraction	occur	together	in	an	expression,
each	operation	is	evaluated	in	order	of	appearance	from	left	to	right.

The	string	concatenation	operator	(&)	is	not	an	arithmetic	operator,	but	in	precedence	it	does	fall

after	all	arithmetic	operators	and	before	all	comparison	operators.	The	Is	operator	is	an	object
reference	comparison	operator.	It	does	not	compare	objects	or	their	values;	it	checks	only	to
determine	if	two	object	references	refer	to	the	same	object.

Microsoft®	Visual	Basic®	Scripting	Edition	Option
Explicit	Statement

	Language	Reference	
Version	1	

Description

Forces	explicit	declaration	of	all	variables	in	a	script.

Syntax

Option	Explicit

Remarks

If	used,	the	Option	Explicit	statement	must	appear	in	a	script	before	any
other	statements.

When	you	use	the	Option	Explicit	statement,	you	must	explicitly	declare
all	variables	using	the	Dim,	Private,	Public,	or	ReDim	statements.	If	you
attempt	to	use	an	undeclared	variable	name,	an	error	occurs.

Tip		Use	Option	Explicit	to	avoid	incorrectly	typing	the	name
of	an	existing	variable	or	to	avoid	confusion	in	code	where	the
scope	of	the	variable	is	not	clear.

The	following	example	illustrates	use	of	the	Option	Explicit	statement:

Option	Explicit				'	Force	explicit	variable	declaration.
Dim	MyVar										'	Declare	variable.

MyInt	=	10									'	Undeclared	variable	generates	error.
MyVar	=	10									'	Declared	variable	does	not	generate	error.

Microsoft®	Visual	Basic®	Scripting	Edition	Or
Operator

	Language	Reference	
Version	1	

See	Also

Description

Performs	a	logical	disjunction	on	two	expressions.

Syntax

result	=	expression1	Or	expression2

The	Or	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

If	either	or	both	expressions	evaluate	to	True,	result	is	True.	The	following
table	illustrates	how	result	is	determined:

If	expression1	is And	expression2	is Then	result	is
True True True
True False True
True Null True
False True True
False False False
False Null Null
Null True True

Null False Null
Null Null Null

The	Or	operator	also	performs	a	bitwise	comparison	of	identically	positioned	bits	in	two	numeric
expressions	and	sets	the	corresponding	bit	in	result	according	to	the	following	table:

If	bit	in	expression1
is And	bit	in	expression2	is Then	result	is

0 0 0
0 1 1
1 0 1
1 1 1

Microsoft®	Visual	Basic®	Scripting	Edition	Pattern
Property

	Language	Reference	
Version	5	

See	Also																				Applies	to

Description

Sets	or	returns	the	regular	expression	pattern	being	searched	for.

Syntax

object.Pattern	[=	"searchstring"]

The	Pattern	property	syntax	has	these	parts:

Part Description
object Required.	Always	a	RegExp	object	variable.

searchstring Optional.	Regular	string	expression	being	searched	for.	May	include	any	of	the
regular	expression	characters	defined	in	the	table	in	the	Settings	section.

Settings

Special	characters	and	sequences	are	used	in	writing	patterns	for
regular	expressions.	The	following	table	describes	and	gives	an
example	of	the	characters	and	sequences	that	can	be	used.

Character Description

\
Marks	the	next	character	as	either	a	special	character	or	a	literal.	For	example,	"n"
matches	the	character	"n".	"\n"	matches	a	newline	character.	The	sequence	"\\"
matches	"\"	and	"\("	matches	"(".

^ Matches	the	beginning	of	input.

$ Matches	the	end	of	input.

* Matches	the	preceding	character	zero	or	more	times.	For	example,	"zo*"	matches
either	"z"	or	"zoo".

+ Matches	the	preceding	character	one	or	more	times.	For	example,	"zo+"	matches	"zoo"
but	not	"z".

? Matches	the	preceding	character	zero	or	one	time.	For	example,	"a?ve?"	matches	the
"ve"	in	"never".

. Matches	any	single	character	except	a	newline	character.

(pattern)
Matches	pattern	and	remembers	the	match.	The	matched	substring	can	be	retrieved
from	the	resulting	Matches	collection,	using	Item	[0]...[n].	To	match	parentheses
characters	(),	use	"\("	or	"\)".

x|y Matches	either	x	or	y.	For	example,	"z|food"	matches	"z"	or	"food".	"(z|f)oo"	matches
"zoo"	or	"food".

{n} n	is	a	nonnegative	integer.	Matches	exactly	n	times.	For	example,	"o{2}"	does	not
match	the	"o"	in	"Bob,"	but	matches	the	first	two	o's	in	"foooood".

{n,}
n	is	a	nonnegative	integer.	Matches	at	least	n	times.	For	example,	"o{2,}"	does	not
match	the	"o"	in	"Bob"	and	matches	all	the	o's	in	"foooood."	"o{1,}"	is	equivalent	to
"o+".	"o{0,}"	is	equivalent	to	"o*".

{n,m}
m	and	n	are	nonnegative	integers.	Matches	at	least	n	and	at	most	m	times.	For
example,	"o{1,3}"	matches	the	first	three	o's	in	"fooooood."	"o{0,1}"	is	equivalent	to
"o?".

[xyz] A	character	set.	Matches	any	one	of	the	enclosed	characters.	For	example,	"[abc]"
matches	the	"a"	in	"plain".

[^xyz] A	negative	character	set.	Matches	any	character	not	enclosed.	For	example,	"[^abc]"
matches	the	"p"	in	"plain".

[a-z] A	range	of	characters.	Matches	any	character	in	the	specified	range.	For	example,	"[a-
z]"	matches	any	lowercase	alphabetic	character	in	the	range	"a"	through	"z".

[^m-z] A	negative	range	characters.	Matches	any	character	not	in	the	specified	range.	For
example,	"[m-z]"	matches	any	character	not	in	the	range	"m"	through	"z".

\b Matches	a	word	boundary,	that	is,	the	position	between	a	word	and	a	space.	For
example,	"er\b"	matches	the	"er"	in	"never"	but	not	the	"er"	in	"verb".

\B Matches	a	nonword	boundary.	"ea*r\B"	matches	the	"ear"	in	"never	early".

\d Matches	a	digit	character.	Equivalent	to	[0-9].

\D Matches	a	nondigit	character.	Equivalent	to	[^0-9].

\f Matches	a	form-feed	character.

\n Matches	a	newline	character.

\r Matches	a	carriage	return	character.

\s Matches	any	white	space	including	space,	tab,	form-feed,	etc.	Equivalent	to	"
[\f\n\r\t\v]".

\S Matches	any	nonwhite	space	character.	Equivalent	to	"[^	\f\n\r\t\v]".

\t Matches	a	tab	character.

\v Matches	a	vertical	tab	character.

\w Matches	any	word	character	including	underscore.	Equivalent	to	"[A-Za-z0-9_]".

\W Matches	any	nonword	character.	Equivalent	to	"[^A-Za-z0-9_]".

\num Matches	num,	where	num	is	a	positive	integer.	A	reference	back	to	remembered
matches.	For	example,	"(.)\1"	matches	two	consecutive	identical	characters.

\n

Matches	n,	where	n	is	an	octal	escape	value.	Octal	escape	values	must	be	1,	2,	or	3
digits	long.	For	example,	"\11"	and	"\011"	both	match	a	tab	character.	"\0011"	is	the
equivalent	of	"\001"	&	"1".	Octal	escape	values	must	not	exceed	256.	If	they	do,	only
the	first	two	digits	comprise	the	expression.	Allows	ASCII	codes	to	be	used	in	regular
expressions.

Matches	n,	where	n	is	a	hexadecimal	escape	value.	Hexadecimal	escape	values	must

\xn be	exactly	two	digits	long.	For	example,	"\x41"	matches	"A".	"\x041"	is	equivalent	to
"\x04"	&	"1".	Allows	ASCII	codes	to	be	used	in	regular	expressions.

Remarks

The	following	code	illustrates	the	use	of	the	Pattern	property:

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	a	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	'"
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF
		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Private
Statement

	Language	Reference	
Version	2	

See	Also

Description

Declares	private	variables	and	allocates	storage	space.	Declares,
in	a	Class	block,	a	private	variable.

Syntax

Private	varname[([subscripts])][,	varname[([subscripts])]]	.	.	.

The	Private	statement	syntax	has	these	parts:

Part Description
varname Name	of	the	variable;	follows	standard	variable	naming	conventions.

subscripts

Dimensions	of	an	array	variable;	up	to	60	multiple	dimensions	may	be	declared.	The
subscripts	argument	uses	the	following	syntax:

upper	[,	upper]	.	.	.

The	lower	bound	of	an	array	is	always	zero.

Remarks

Private	statement	variables	are	available	only	to	the	script	in
which	they	are	declared.

A	variable	that	refers	to	an	object	must	be	assigned	an	existing

object	using	the	Set	statement	before	it	can	be	used.	Until	it	is
assigned	an	object,	the	declared	object	variable	is	initialized	as
Empty.

You	can	also	use	the	Private	statement	with	empty	parentheses
to	declare	a	dynamic	array.	After	declaring	a	dynamic	array,	use
the	ReDim	statement	within	a	procedure	to	define	the	number	of
dimensions	and	elements	in	the	array.	If	you	try	to	redeclare	a
dimension	for	an	array	variable	whose	size	was	explicitly
specified	in	a	Private,	Public,	or	Dim	statement,	an	error	occurs.

Tip		When	you	use	the	Private	statement	in	a	procedure,	you	generally	put	the	Private	statement
at	the	beginning	of	the	procedure.

The	following	example	illustrates	use	of	the	Private	statement:

Private	MyNumber				 '	Private	Variant	variable.
Private	MyArray(9)	'	Private	array	variable.
	 	 	 '	Multiple	Private	declarations	of	Variant	variables.
Private	MyNumber,	MyVar,	YourNumber			

Microsoft®	Visual	Basic®	Scripting	Edition

Property	Get
Statement

	Language	Reference	
Version	5	

See	Also

Description

Declares,	in	a	Class	block,	the	name,	arguments,	and	code	that
form	the	body	of	a	Property	procedure	that	gets	(returns)	the
value	of	a	property.

Syntax

[Public	[Default]|	Private]	Property	Get	name	[(arglist)]
				[statements]
				[[Set]	name	=	expression]
				[Exit	Property]	
				[statements]
				[[Set]	name	=	expression]
End	Property

The	Property	Get	statement	syntax	has	these	parts:

Part Description

Public Indicates	that	the	Property	Get	procedure	is	accessible	to	all	other	procedures	in	all
scripts.

Default Used	only	with	the	Public	keyword	to	indicate	that	the	property	defined	in	the
Property	Get	procedure	is	the	default	property	for	the	class.

Private Indicates	that	the	Property	Get	procedure	is	accessible	only	to	other	procedures	in	the
Class	block	where	it's	declared.

name
Name	of	the	Property	Get	procedure;	follows	standard	variable	naming	conventions,
except	that	the	name	can	be	the	same	as	a	Property	Let	or	Property	Set	procedure	in
the	same	Class	block.
List	of	variables	representing	arguments	that	are	passed	to	the	Property	Get	procedure

arglist when	it	is	called.	Multiple	arguments	are	separated	by	commas.	The	name	of	each
argument	in	a	Property	Get	procedure	must	be	the	same	as	the	corresponding
argument	in	a	Property	Let	procedure	(if	one	exists).

statements Any	group	of	statements	to	be	executed	within	the	body	of	the	Property	Get
procedure.

Set Keyword	used	when	assigning	an	object	as	the	return	value	of	a	Property	Get
procedure.

expression Return	value	of	the	Property	Get	procedure.

Remarks

If	not	explicitly	specified	using	either	Public	or	Private,
Property	Get	procedures	are	public	by	default,	that	is,	they	are
visible	to	all	other	procedures	in	your	script.	The	value	of	local
variables	in	a	Property	Get	procedure	is	not	preserved	between
calls	to	the	procedure.

You	can't	define	a	Property	Get	procedure	inside	any	other
procedure	(e.g.	Function	or	Property	Let).

The	Exit	Property	statement	causes	an	immediate	exit	from	a
Property	Get	procedure.	Program	execution	continues	with	the
statement	that	follows	the	statement	that	called	the	Property	Get
procedure.	Any	number	of	Exit	Property	statements	can	appear
anywhere	in	a	Property	Get	procedure.

Like	a	Sub	and	Property	Let	procedure,	a	Property	Get
procedure	is	a	separate	procedure	that	can	take	arguments,
perform	a	series	of	statements,	and	change	the	value	of	its
arguments.	However,	unlike	a	Sub	and	Property	Let,	you	can
use	a	Property	Get	procedure	on	the	right	side	of	an	expression
in	the	same	way	you	use	a	Function	or	property	name	when	you
want	to	return	the	value	of	a	property.

Microsoft®	Visual	Basic®	Scripting	Edition

Property	Let
Statement

	Language	Reference	
Version	5	

See	Also

Description

Declares,	in	a	Class	block,	the	name,	arguments,	and	code	that
form	the	body	of	a	Property	procedure	that	assigns	(sets)	the
value	of	a	property.

Syntax

[Public	|	Private]	Property	Let	name	([arglist,]	value)
				[statements]
				[Exit	Property]	
				[statements]
End	Property

The	Property	Let	statement	syntax	has	these	parts:

Part Description

Public Indicates	that	the	Property	Let	procedure	is	accessible	to	all	other	procedures	in	all
scripts.

Private Indicates	that	the	Property	Let	procedure	is	accessible	only	to	other	procedures	in	the
Class	block	where	it's	declared.

name
Name	of	the	Property	Let	procedure;	follows	standard	variable	naming	conventions,
except	that	the	name	can	be	the	same	as	a	Property	Get	or	Property	Set	procedure	in
the	same	Class	block.

arglist

List	of	variables	representing	arguments	that	are	passed	to	the	Property	Let	procedure
when	it	is	called.	Multiple	arguments	are	separated	by	commas.	The	name	of	each
argument	in	a	Property	Let	procedure	must	be	the	same	as	the	corresponding
argument	in	a	Property	Get	procedure.	In	addition,	the	Property	Let	procedure	will
always	have	one	more	argument	than	its	corresponding	Property	Get	procedure.	That
argument	is	the	value	being	assigned	to	the	property.

value Variable	to	contain	the	value	to	be	assigned	to	the	property.	When	the	procedure	is
called,	this	argument	appears	on	the	right	side	of	the	calling	expression.

statements Any	group	of	statements	to	be	executed	within	the	body	of	the	Property	Letprocedure.

NoteVersion	Version	Every	Property	Let	statement	must	define	at	least	one	argument	for	the
procedure	it	defines.	That	argument	(or	the	last	argument	if	there	is	more	than	one)	contains	the
actual	value	to	be	assigned	to	the	property	when	the	procedure	defined	by	the	Property	Let
statement	is	invoked.	That	argument	is	referred	to	as	value	in	the	preceding	syntax.

Remarks

If	not	explicitly	specified	using	either	Public	or	Private,
Property	Let	procedures	are	public	by	default,	that	is,	they	are
visible	to	all	other	procedures	in	your	script.	The	value	of	local
variables	in	a	Property	Let	procedure	is	not	preserved	between
calls	to	the	procedure.

You	can't	define	a	Property	Let	procedure	inside	any	other
procedure	(e.g.	Function	or	Property	Get).

The	Exit	Property	statement	causes	an	immediate	exit	from	a
Property	Let	procedure.	Program	execution	continues	with	the
statement	that	follows	the	statement	that	called	the	Property	Let
procedure.	Any	number	of	Exit	Property	statements	can	appear
anywhere	in	a	Property	Let	procedure.

Like	a	Function	and	Property	Get	procedure,	a	Property	Let
procedure	is	a	separate	procedure	that	can	take	arguments,
perform	a	series	of	statements,	and	change	the	value	of	its
arguments.	However,	unlike	a	Function	and	Property	Get
procedure,	both	of	which	return	a	value,	you	can	only	use	a
Property	Let	procedure	on	the	left	side	of	a	property	assignment
expression.

Microsoft®	Visual	Basic®	Scripting	Edition

Property	Set
Statement

	Language	Reference	
Version	5	

See	Also

Description

Declares,	in	a	Class	block,	the	name,	arguments,	and	code	that
form	the	body	of	a	Property	procedure	that	sets	a	reference	to	an
object.

Syntax

[Public	|	Private]	Property	Set	name([arglist,]	reference)
				[statements]
				[Exit	Property]	
				[statements]
End	Property

The	Property	Set	statement	syntax	has	these	parts:

Part Description

Public Indicates	that	the	Property	Set	procedure	is	accessible	to	all	other	procedures	in	all
scripts.

Private Indicates	that	the	Property	Set	procedure	is	accessible	only	to	other	procedures	in	the
Class	block	where	it's	declared.

name
Name	of	the	Property	Set	procedure;	follows	standard	variable	naming	conventions,
except	that	the	name	can	be	the	same	as	a	Property	Get	or	Property	Let	procedure	in
the	same	Class	block.

arglist

List	of	variables	representing	arguments	that	are	passed	to	the	Property	Set	procedure
when	it	is	called.	Multiple	arguments	are	separated	by	commas.	In	addition,	the
Property	Set	procedure	will	always	have	one	more	argument	than	its	corresponding
Property	Get	procedure.	That	argument	is	the	object	being	assigned	to	the	property.

reference
Variable	containing	the	object	reference	used	on	the	right	side	of	the	object	reference
assignment.

statements Any	group	of	statements	to	be	executed	within	the	body	of	the	Property	Setprocedure.

NoteVersion	Version	Every	Property	Set	statement	must	define	at	least	one	argument	for	the
procedure	it	defines.	That	argument	(or	the	last	argument	if	there	is	more	than	one)	contains	the
actual	object	reference	for	the	property	when	the	procedure	defined	by	the	Property	Set	statement
is	invoked.	That	argument	is	referred	to	as	reference	in	the	preceding	syntax.

Remarks

If	not	explicitly	specified	using	either	Public	or	Private,
Property	Set	procedures	are	public	by	default,	that	is,	they	are
visible	to	all	other	procedures	in	your	script.	The	value	of	local
variables	in	a	Property	Set	procedure	is	not	preserved	between
calls	to	the	procedure.

You	can't	define	a	Property	Set	procedure	inside	any	other
procedure	(e.g.	Function	or	Property	Let).

The	Exit	Property	statement	causes	an	immediate	exit	from	a
Property	Set	procedure.	Program	execution	continues	with	the
statement	that	follows	the	statement	that	called	the	Property	Set
procedure.	Any	number	of	Exit	Property	statements	can	appear
anywhere	in	a	Property	Set	procedure.

Like	a	Function	and	Property	Get	procedure,	a	Property	Set
procedure	is	a	separate	procedure	that	can	take	arguments,
perform	a	series	of	statements,	and	change	the	value	of	its
arguments.	However,	unlike	a	Function	and	Property	Get
procedure,	both	of	which	return	a	value,	you	can	only	use	a
Property	Set	procedure	on	the	left	side	of	an	object	reference
assignment	(Set	statement).

Microsoft®	Visual	Basic®	Scripting	Edition	Public
Statement

	Language	Reference	
Version	2	

See	Also

Description

Declares	public	variables	and	allocates	storage	space.	Declares,
in	a	Class	block,	a	private	variable.

Syntax

Public	varname[([subscripts])][,	varname[([subscripts])]]	.	.	.

The	Public	statement	syntax	has	these	parts:

Part Description
varname Name	of	the	variable;	follows	standard	variable	naming	conventions.

subscripts

Dimensions	of	an	array	variable;	up	to	60	multiple	dimensions	may	be	declared.	The
subscripts	argument	uses	the	following	syntax:

upper	[,	upper]	.	.	.

The	lower	bound	of	an	array	is	always	zero.

Remarks

Public	statement	variables	are	available	to	all	procedures	in	all
scripts.

A	variable	that	refers	to	an	object	must	be	assigned	an	existing

object	using	the	Set	statement	before	it	can	be	used.	Until	it	is
assigned	an	object,	the	declared	object	variable	is	initialized	as
Empty.

You	can	also	use	the	Public	statement	with	empty	parentheses	to
declare	a	dynamic	array.	After	declaring	a	dynamic	array,	use	the
ReDim	statement	within	a	procedure	to	define	the	number	of
dimensions	and	elements	in	the	array.	If	you	try	to	redeclare	a
dimension	for	an	array	variable	whose	size	was	explicitly
specified	in	a	Private,	Public,	or	Dim	statement,	an	error	occurs.

The	following	example	illustrates	the	use	of	the	Public
statement:

Public	MyNumber					 '	Public	Variant	variable.
Public	MyArray(9)	'	Public	array	variable.
	 	 	 '	Multiple	Public	declarations	of	Variant	variables.
Public	MyNumber,	MyVar,	YourNumber	

Microsoft®	Visual	Basic®	Scripting	Edition	Raise
Method

	Language	Reference	
Version	1	

See	Also																		Applies	to

Description

Generates	a	run-time	error.

Syntax

object.Raise(number,	source,	description,	helpfile,	helpcontext)

The	Raise	method	has	these	parts:

Part Description
object Always	the	Err	object.

number
A	Long	integer	subtype	that	identifies	the	nature	of
the	error.	VBScript	errors	(both	VBScript-defined
and	user-defined	errors)	are	in	the	range	0–65535.

source

A	string	expression	naming	the	object	or	application
that	originally	generated	the	error.	When	setting	this
property	for	an	Automation	object,	use	the	form
project.class.	If	nothing	is	specified,	the
programmatic	ID	of	the	current	VBScript	project	is
used.

description

A	string	expression	describing	the	error.	If
unspecified,	the	value	in	number	is	examined.	If	it
can	be	mapped	to	a	VBScript	run-time	error	code,	a
string	provided	by	VBScript	is	used	as	description.
If	there	is	no	VBScript	error	corresponding	to
number,	a	generic	error	message	is	used.
The	fully	qualified	path	to	the	Help	file	in	which
help	on	this	error	can	be	found.	If	unspecified,

helpfile VBScript	uses	the	fully	qualified	drive,	path,	and
file	name	of	the	VBScript	Help	file.

helpcontext

The	context	ID	identifying	a	topic	within	helpfile
that	provides	help	for	the	error.	If	omitted,	the
VBScript	Help	file	context	ID	for	the	error
corresponding	to	the	number	property	is	used,	if	it
exists.

Remarks

All	the	arguments	are	optional	except	number.	If	you	use	Raise,	however,
without	specifying	some	arguments,	and	the	property	settings	of	the	Err
object	contain	values	that	have	not	been	cleared,	those	values	become	the
values	for	your	error.

When	setting	the	number	property	to	your	own	error	code	in	an	Automation	object,	you	add	your
error	code	number	to	the	constant	vbObjectError.	For	example,	to	generate	the	error	number	1050,
assign	vbObjectError	+	1050	to	the	number	property.

The	following	example	illustrates	use	of	the	Raise	method:

On	Error	Resume	Next
Err.Raise	6		'	Raise	an	overflow	error.
MsgBox	("Error	#	"	&	CStr(Err.Number)	&	"	"	&	Err.Description)
Err.Clear				'	Clear	the	error.

Microsoft®	Visual	Basic®	Scripting	Edition

Randomize
Statement

	Language	Reference	
Version	1	

See	Also

Description

Initializes	the	random-number	generator.

Syntax

Randomize	[number]

The	number	argument	can	be	any	valid	numeric	expression.

Remarks

Randomize	uses	number	to	initialize	the	Rnd	function's	random-number
generator,	giving	it	a	new	seed	value.	If	you	omit	number,	the	value
returned	by	the	system	timer	is	used	as	the	new	seed	value.

If	Randomize	is	not	used,	the	Rnd	function	(with	no	arguments)	uses	the	same	number	as	a	seed	the
first	time	it	is	called,	and	thereafter	uses	the	last	generated	number	as	a	seed	value.

Note		To	repeat	sequences	of	random	numbers,	call	Rnd	with	a
negative	argument	immediately	before	using	Randomize	with	a
numeric	argument.	Using	Randomize	with	the	same	value	for
number	does	not	repeat	the	previous	sequence.

The	following	example	illustrates	use	of	the	Randomize	statement:

Dim	MyValue,	Response
Randomize	 	 	 '	Initialize	random-number	generator.

Do	Until	Response	=	vbNo
			MyValue	=	Int((6	*	Rnd)	+	1)	 '	Generate	random	value	between	1	and	6.
			MsgBox	MyValue
			Response	=	MsgBox	("Roll	again?	",	vbYesNo)
Loop

Microsoft®	Visual	Basic®	Scripting	Edition	ReDim
Statement

	Language	Reference	
Version	1	

See	Also

Description

Declares	dynamic-array	variables,	and	allocates	or	reallocates	storage	space
at	procedure	level.

Syntax

ReDim	[Preserve]	varname(subscripts)	[,	varname(subscripts)]	.	.	.

The	ReDim	statement	syntax	has	these	parts:

Part Description

Preserve Preserves	the	data	in	an	existing	array	when	you
change	the	size	of	the	last	dimension.

varname Name	of	the	variable;	follows	standard	variable
naming	conventions.

subscripts

Dimensions	of	an	array	variable;	up	to	60	multiple
dimensions	may	be	declared.	The	subscripts
argument	uses	the	following	syntax:

upper	[,upper]	.	.	.

The	lower	bound	of	an	array	is	always	zero.

Remarks

The	ReDim	statement	is	used	to	size	or	resize	a	dynamic	array	that	has
already	been	formally	declared	using	a	Private,	Public,	or	Dim	statement
with	empty	parentheses	(without	dimension	subscripts).	You	can	use	the
ReDim	statement	repeatedly	to	change	the	number	of	elements	and

dimensions	in	an	array.

If	you	use	the	Preserve	keyword,	you	can	resize	only	the	last	array	dimension,	and	you	can't	change
the	number	of	dimensions	at	all.	For	example,	if	your	array	has	only	one	dimension,	you	can	resize
that	dimension	because	it	is	the	last	and	only	dimension.	However,	if	your	array	has	two	or	more
dimensions,	you	can	change	the	size	of	only	the	last	dimension	and	still	preserve	the	contents	of	the
array.

The	following	example	shows	how	you	can	increase	the	size	of	the	last	dimension	of	a	dynamic	array
without	erasing	any	existing	data	contained	in	the	array.

ReDim	X(10,	10,	10)
.	.	.
ReDim	Preserve	X(10,	10,	15)

Caution		If	you	make	an	array	smaller	than	it	was	originally,
data	in	the	eliminated	elements	is	lost.

When	variables	are	initialized,	a	numeric	variable	is	initialized	to	0	and	a	string	variable	is	initialized
to	a	zero-length	string	("").	A	variable	that	refers	to	an	object	must	be	assigned	an	existing	object
using	the	Set	statement	before	it	can	be	used.	Until	it	is	assigned	an	object,	the	declared	object
variable	has	the	special	value	Nothing.

Microsoft®	Visual	Basic®	Scripting	Edition	RegExp
Object

	Language	Reference	
Version	5	

See	Also																			Methods																				Properties

Description

Provides	simple	regular	expression	support.

Remarks

The	following	code	illustrates	the	use	of	the	RegExp	object:

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	a	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	'"
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF
		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Rem
Statement

	Language	Reference	
Version	1	

Description

Includes	explanatory	remarks	in	a	program.

Syntax

Rem	comment

or

'	comment

The	comment	argument	is	the	text	of	any	comment	you	want	to	include.	After	the	Rem	keyword,	a
space	is	required	before	comment.

Remarks

As	shown	in	the	syntax	section,	you	can	use	an	apostrophe	(')	instead	of	the	Rem	keyword.	If	the	Rem
keyword	follows	other	statements	on	a	line,	it	must	be	separated	from	the	statements	by	a	colon.
However,	when	you	use	an	apostrophe,	the	colon	is	not	required	after	other	statements.

The	following	example	illustrates	the	use	of	the	Rem	statement:

Dim	MyStr1,	MyStr2
MyStr1	=	"Hello"	:	Rem	Comment	after	a	statement	separated	by	a	colon.
MyStr2	=	"Goodbye"					'	This	is	also	a	comment;	no	colon	is	needed.
Rem	Comment	on	a	line	with	no	code;	no	colon	is	needed.

Microsoft®	Visual	Basic®	Scripting	Edition	Replace
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	string	in	which	a	specified	substring	has	been	replaced	with
another	substring	a	specified	number	of	times.

Syntax

Replace(expression,	find,	replacewith[,	start[,	count[,	compare]]])

The	Replace	function	syntax	has	these	parts:

Part Description

expression Required.	String	expression	containing	substring	to
replace.

find Required.	Substring	being	searched	for.
replacewith Required.	Replacement	substring.

start
Optional.	Position	within	expression	where
substring	search	is	to	begin.	If	omitted,	1	is
assumed.	Must	be	used	in	conjunction	with	count.

count

Optional.	Number	of	substring	substitutions	to
perform.	If	omitted,	the	default	value	is	-1,	which
means	make	all	possible	substitutions.	Must	be	used
in	conjunction	with	start.

compare

Optional.	Numeric	value	indicating	the	kind	of
comparison	to	use	when	evaluating	substrings.	See
Settings	section	for	values.	If	omitted,	the	default
value	is	0,	which	means	perform	a	binary
comparison.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbBinaryCompare 0 Perform	a	binary	comparison.
vbTextCompare 1 Perform	a	textual	comparison.

Return	Values

Replace	returns	the	following	values:

If Replace	returns
expression	is	zero-
length Zero-length	string	("").

expression	is	Null An	error.
find	is	zero-length Copy	of	expression.
replacewith	is	zero-
length

Copy	of	expression	with	all	occurences	of
find	removed.

start	>
Len(expression) Zero-length	string.

count	is	0 Copy	of	expression.

Remarks

The	return	value	of	the	Replace	function	is	a	string,	with	substitutions
made,	that	begins	at	the	position	specified	by	start	and	and	concludes	at	the
end	of	the	expression	string.	It	is	not	a	copy	of	the	original	string	from	start
to	finish.

The	following	example	uses	the	Replace	function	to	return	a	string:

Dim	MyString
MyString	=	Replace("XXpXXPXXp",	"p",	"Y")	 '	A	binary	comparison	starting	at	the	beginning
	 	 	 	 	 	 	 '	of	the	string.	Returns	"XXYXXPXXY".	

MyString	=	Replace("XXpXXPXXp",	"p",	"Y",	 '	A	textual	comparison	starting	at	position	3.	
	 	 	 	 	 	 	 '	Returns	"YXXYXXY".	3

Microsoft®	Visual	Basic®	Scripting	Edition	

Replace	Method
	Language	Reference	

Version	5	

See	Also																				Applies	to

Description

Replaces	text	found	in	a	regular	expression	search.

Syntax

object.Replace(string1,	string2)

The	Replace	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	RegExp	object.
string1 Required.	String1	is	the	text	string	in	which	the	text	replacement	is	to	occur.

string2 Required.	String2	is	the	replacement	text	string.

Remarks

The	actual	pattern	for	the	text	being	replaced	is	set	using	the
Pattern	property	of	the	RegExp	object.

The	Replace	method	returns	a	copy	of	string1	with	the	text	of
RegExp.Pattern	replaced	with	string2.	If	no	match	is	found,	a
copy	of	string1	is	returned	unchanged.

The	following	code	illustrates	use	of	the	Replace	method:

Function	ReplaceTest(patrn,	replStr)

		Dim	regEx,	str1	 	 	 	 	 '	Create	variables.
		str1	=	"The	quick	brown	fox	jumped	over	the	lazy	dog."
		Set	regEx	=	New	RegExp	 	 	 	 '	Create	regular	expression.
		regEx.Pattern	=	patrn	 	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 	 '	Make	case	insensitive.
		ReplaceTest	=	regEx.Replace(str1,	replStr)	 '	Make	replacement.
End	Function

MsgBox(ReplaceTest("fox",	"cat"))	 	 '	Replace	'fox'	with	'cat'.

In	addition,	the	Replace	method	can	replace	subexpressions	in
the	pattern.	The	following	call	to	the	function	shown	in	the
previous	example	swaps	each	pair	of	words	in	the	original	string:

MsgBox(ReplaceText("(\S+)(\s+)(\S+)",	"$3$2$1"))	 '	Swap	pairs	of	words.

Microsoft®	Visual	Basic®	Scripting	Edition	RGB
Function

	Language	Reference	
Version	2	

Description

Returns	a	whole	number	representing	an	RGB	color	value.

Syntax

RGB(red,	green,	blue)

The	RGB	function	has	these	parts:

Part Description

red Required.	Number	in	the	range	0-255	representing	the	red
component	of	the	color.

green Required.	Number	in	the	range	0-255	representing	thegreen	component	of	the	color.

blue Required.	Number	in	the	range	0-255	representing	the
blue	component	of	the	color.

Remarks

Application	methods	and	properties	that	accept	a	color	specification	expect
that	specification	to	be	a	number	representing	an	RGB	color	value.	An
RGB	color	value	specifies	the	relative	intensity	of	red,	green,	and	blue	to
cause	a	specific	color	to	be	displayed.

The	low-order	byte	contains	the	value	for	red,	the	middle	byte	contains	the
value	for	green,	and	the	high-order	byte	contains	the	value	for	blue.

For	applications	that	require	the	byte	order	to	be	reversed,	the	following
function	will	provide	the	same	information	with	the	bytes	reversed:

Function	RevRGB(red,	green,	blue)
				RevRGB=	CLng(blue	+	(green	*	256)	+	(red	*	65536))
End	Function

The	value	for	any	argument	to	RGB	that	exceeds	255	is	assumed	to	be	255.

Microsoft®	Visual	Basic®	Scripting	Edition	Right
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	specified	number	of	characters	from	the	right	side	of	a	string.

Syntax

Right(string,	length)

The	Right	function	syntax	has	these	arguments:

Part Description

string String	expression	from	which	the	rightmost	characters	are
returned.	If	string	contains	Null,	Null	is	returned.

length

Numeric	expression	indicating	how	many	characters	to
return.	If	0,	a	zero-length	string	is	returned.	If	greater
than	or	equal	to	the	number	of	characters	in	string,	the
entire	string	is	returned.

Remarks

To	determine	the	number	of	characters	in	string,	use	the	Len	function.

The	following	example	uses	the	Right	function	to	return	a	specified	number	of	characters	from	the
right	side	of	a	string:

Dim	AnyString,	MyStr
AnyString	=	"Hello	World"						'	Define	string.
MyStr	=	Right(AnyString,	1)				'	Returns	"d".
MyStr	=	Right(AnyString,	6)				'	Returns	"	World".

MyStr	=	Right(AnyString,	20)			'	Returns	"Hello	World".

Note		The	RightB	function	is	used	with	byte	data	contained	in	a
string.	Instead	of	specifying	the	number	of	characters	to	return,
length	specifies	the	number	of	bytes.

Microsoft®	Visual	Basic®	Scripting	Edition	Rnd
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	random	number.

Syntax

Rnd[(number)]

The	number	argument	can	be	any	valid	numeric	expression.

Remarks

The	Rnd	function	returns	a	value	less	than	1	but	greater	than	or	equal	to	0.
The	value	of	number	determines	how	Rnd	generates	a	random	number:

If	number	is Rnd	generates

Less	than	zero The	same	number	every	time,	using	number	as
the	seed.

Greater	than
zero The	next	random	number	in	the	sequence.

Equal	to	zero The	most	recently	generated	number.
Not	supplied The	next	random	number	in	the	sequence.

For	any	given	initial	seed,	the	same	number	sequence	is	generated	because	each	successive	call	to	the
Rnd	function	uses	the	previous	number	as	a	seed	for	the	next	number	in	the	sequence.

Before	calling	Rnd,	use	the	Randomize	statement	without	an	argument	to	initialize	the	random-
number	generator	with	a	seed	based	on	the	system	timer.

To	produce	random	integers	in	a	given	range,	use	this	formula:

Int((upperbound	-	lowerbound	+	1)	*	Rnd	+	lowerbound
Here,	upperbound	is	the	highest	number	in	the	range,	and	lowerbound	is	the
lowest	number	in	the	range.

Note		To	repeat	sequences	of	random	numbers,	call	Rnd	with	a
negative	argument	immediately	before	using	Randomize	with	a
numeric	argument.	Using	Randomize	with	the	same	value	for
number	does	not	repeat	the	previous	sequence.

Microsoft®	Visual	Basic®	Scripting	Edition	Round
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	number	rounded	to	a	specified	number	of	decimal	places.

Syntax

Round(expression[,	numdecimalplaces])

The	Round	function	syntax	has	these	parts:

Part Description

expression Required.	Numeric	expression	being
rounded.

numdecimalplaces

Optional.	Number	indicating	how	many
places	to	the	right	of	the	decimal	are
included	in	the	rounding.	If	omitted,	integers
are	returned	by	the	Round	function.

Remarks

The	following	example	uses	the	Round	function	to	round	a	number	to	two
decimal	places:

Dim	MyVar,	pi
pi	=	3.14159
MyVar	=	Round(pi,	2)	'	MyVar	contains	3.14.

Microsoft®	Visual	Basic®	Scripting	Edition

ScriptEngine
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	string	representing	the	scripting	language	in	use.

Syntax

ScriptEngine

Return	Values

The	ScriptEngine	function	can	return	any	of	the	following	strings:

String Description

VBScript Indicates	that	Microsoft®	Visual	Basic®	Scripting
Edition	is	the	current	scripting	engine.

JScript Indicates	that	Microsoft	JScript®	is	the	current
scripting	engine.

VBA Indicates	that	Microsoft	Visual	Basic	for	Applications
is	the	current	scripting	engine.

Remarks

The	following	example	uses	the	ScriptEngine	function	to	return	a	string
describing	the	scripting	language	in	use:

Function	GetScriptEngineInfo
		Dim	s
		s	=	""	 	 	 	 '	Build	string	with	necessary	info.

		s	=	ScriptEngine	&	"	Version	"
		s	=	s	&	ScriptEngineMajorVersion	&	"."
		s	=	s	&	ScriptEngineMinorVersion	&	"."
		s	=	s	&	ScriptEngineBuildVersion	
		GetScriptEngineInfo	=		s	 '	Return	the	results.
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ScriptEngineBuildVersion
Function

	Language	Reference
Version	2

See	Also

Description

Returns	the	build	version	number	of	the	scripting	engine	in	use.

Syntax

ScriptEngineBuildVersion

Remarks

The	return	value	corresponds	directly	to	the	version	information	contained
in	the	DLL	for	the	scripting	language	in	use.

The	following	example	uses	the	ScriptEngineBuildVersion	function	to	return	the	build	version
number	of	the	scripting	engine:

Function	GetScriptEngineInfo
	Dim	s
	s	=	""	 	 	 	 '	Build	string	with	necessary	info.
	s	=	ScriptEngine	&	"	Version	"
	s	=	s	&	ScriptEngineMajorVersion	&	"."
	s	=	s	&	ScriptEngineMinorVersion	&	"."
	s	=	s	&	ScriptEngineBuildVersion
	GetScriptEngineInfo	=	s	 	 '	Return	the	results.
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ScriptEngineMajorVersion
Function

	Language	Reference
Version	2

See	Also

Description

Returns	the	major	version	number	of	the	scripting	engine	in	use.

Syntax

ScriptEngineMajorVersion

Remarks

The	return	value	corresponds	directly	to	the	version	information	contained
in	the	DLL	for	the	scripting	language	in	use.

The	following	example	uses	the	ScriptEngineMajorVersion	function	to	return	the	version	number
of	the	scripting	engine:

Function	GetScriptEngineInfo
		Dim	s
		s	=	""	 	 	 	 '	Build	string	with	necessary	info.
		s	=	ScriptEngine	&	"	Version	"
		s	=	s	&	ScriptEngineMajorVersion	&	"."
		s	=	s	&	ScriptEngineMinorVersion	&	"."
		s	=	s	&	ScriptEngineBuildVersion	
		GetScriptEngineInfo	=	s	 	 '	Return	the	results.
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ScriptEngineMinorVersion
Function

	Language	Reference
Version	2

See	Also

Description

Returns	the	minor	version	number	of	the	scripting	engine	in	use.

Syntax

ScriptEngineMinorVersion

Remarks

The	return	value	corresponds	directly	to	the	version	information	contained
in	the	DLL	for	the	scripting	language	in	use.

The	following	example	uses	the	ScriptEngineMinorVersion	function	to	return	the	minor	version
number	of	the	scripting	engine:

Function	GetScriptEngineInfo
		Dim	s
		s	=	""	 	 	 	 '	Build	string	with	necessary	info.
		s	=	ScriptEngine	&	"	Version	"
		s	=	s	&	ScriptEngineMajorVersion	&	"."
		s	=	s	&	ScriptEngineMinorVersion	&	"."
		s	=	s	&	ScriptEngineBuildVersion	
		GetScriptEngineInfo	=	s	 	 '	Return	the	results.
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Second
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	whole	number	between	0	and	59,	inclusive,	representing	the
second	of	the	minute.

Syntax

Second(time)

The	time	argument	is	any	expression	that	can	represent	a	time.	If	time	contains	Null,	Null	is	returned.

Remarks

The	following	example	uses	the	Second	function	to	return	the	current
second:

Dim	MySec
MySec	=	Second(Now)	 '	MySec	contains	the	number	representing
	 	 	 '	the	current	second.

Microsoft®	Visual	Basic®	Scripting	Edition	Select
Case	Statement

	Language	Reference	
Version	1	

See	Also

Description

Executes	one	of	several	groups	of	statements,	depending	on	the	value	of	an
expression.

Syntax

Select	Case	testexpression
				[Case	expressionlist-n
								[statements-n]]	.	.	.
				[Case	Else	expressionlist-n
								[elsestatements-n]]
End	Select

The	Select	Case	statement	syntax	has	these	parts:

Part Description
testexpression Any	numeric	or	string	expression.
expressionlist-
n

Required	if	Case	appears.	Delimited	list	of	one
or	more	expressions.

statements-n
One	or	more	statements	executed	if
testexpression	matches	any	part	of
expressionlist-n.

elsestatements-
n

One	or	more	statements	executed	if
testexpression	doesn't	match	any	of	the	Case
clauses.

Remarks

If	testexpression	matches	any	Case	expressionlist	expression,	the	statements
following	that	Case	clause	are	executed	up	to	the	next	Case	clause,	or	for
the	last	clause,	up	to	End	Select.	Control	then	passes	to	the	statement
following	End	Select.	If	testexpression	matches	an	expressionlist
expression	in	more	than	one	Case	clause,	only	the	statements	following	the
first	match	are	executed.

The	Case	Else	clause	is	used	to	indicate	the	elsestatements	to	be	executed	if	no	match	is	found
between	the	testexpression	and	an	expressionlist	in	any	of	the	other	Case	selections.	Although	not
required,	it	is	a	good	idea	to	have	a	Case	Else	statement	in	your	Select	Case	block	to	handle
unforeseen	testexpression	values.	If	no	Case	expressionlist	matches	testexpression	and	there	is	no
Case	Else	statement,	execution	continues	at	the	statement	following	End	Select.

Select	Case	statements	can	be	nested.	Each	nested	Select	Case	statement	must	have	a	matching	End
Select	statement.

The	following	example	illustrates	the	use	of	the	Select	Case	statement:

Dim	Color,	MyVar
Sub	ChangeBackground	(Color)
	 MyVar	=	lcase	(Color)
				 Select	Case	MyVar
											Case	"red"				document.bgColor	=	"red"
											Case	"green"		document.bgColor	=	"green"
											Case	"blue"			document.bgColor	=	"blue"
											Case	Else					MsgBox	"pick	another	color"
						End	Select
End	Sub

Microsoft®	Visual	Basic®	Scripting	Edition	Set
Statement

	Language	Reference	
Version	1	

See	Also

Description

Assigns	an	object	reference	to	a	variable	or	property,	or
associates	a	procedure	reference	with	an	event.

Syntax	1

Set	objectvar	=	{objectexpression	|	New	classname	|	Nothing}

Syntax	2

Set	object.eventname	=	GetRef(procname)

The	Set	statement	syntax	has	these	parts:

Part Description

objectvar Required.	Name	of	the	variable	or	property;	follows	standard	variable	naming
conventions.

objectexpression
Optional.	Expression	consisting	of	the	name	of	an	object,	another	declared
variable	of	the	same	object	type,	or	a	function	or	method	that	returns	an	object	of
the	same	object	type.

New
Keyword	used	to	create	a	new	instance	of	a	class.	If	objectvar	contained	a
reference	to	an	object,	that	reference	is	released	when	the	new	one	is	assigned.
The	New	keyword	can	only	be	used	to	create	an	instance	of	a	class.

classname Optional.	Name	of	the	class	being	created.	A	class	and	its	members	are	defined
using	the	Class	statement.

Nothing

Optional.	Discontinues	association	of	objectvar	with	any	specific	object	or	class.
Assigning	objectvar	to	Nothing	releases	all	the	system	and	memory	resources
associated	with	the	previously	referenced	object	when	no	other	variable	refers	to
it.

object Required.	Name	of	the	object	with	which	event	is	associated.

event Required.	Name	of	the	event	to	which	the	function	is	to	be	bound.

procname Required.	String	containing	the	name	of	the	Sub	or	Function	being	associated
with	the	event.

Remarks

To	be	valid,	objectvar	must	be	an	object	type	consistent	with	the
object	being	assigned	to	it.

The	Dim,	Private,	Public,	or	ReDim	statements	only	declare	a
variable	that	refers	to	an	object.	No	actual	object	is	referred	to
until	you	use	the	Set	statement	to	assign	a	specific	object.

Generally,	when	you	use	Set	to	assign	an	object	reference	to	a
variable,	no	copy	of	the	object	is	created	for	that	variable.
Instead,	a	reference	to	the	object	is	created.	More	than	one	object
variable	can	refer	to	the	same	object.	Because	these	variables	are
references	to	(rather	than	copies	of)	the	object,	any	change	in	the
object	is	reflected	in	all	variables	that	refer	to	it.

Function	ShowFreeSpace(drvPath)
		Dim	fso,	d,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(drvPath))
		s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"	
		s	=	s	&	d.VolumeName		&	"
"
		s	=	s	&	"Free	Space:	"	&	FormatNumber(d.FreeSpace/1024,	0)	
		s	=	s	&	"	Kbytes"
		ShowFreeSpace	=	s
End	Function

Using	the	New	keyword	allows	you	to	concurrently	create	an
instance	of	a	class	and	assign	it	to	an	object	reference	variable.
The	variable	to	which	the	instance	of	the	class	is	being	assigned

must	already	have	been	declared	with	the	Dim	(or	equivalent)
statement.

Refer	to	the	documentation	for	the	GetRef	function	for
information	on	using	Set	to	associate	a	procedure	with	an	event.

Microsoft®	Visual	Basic®	Scripting	Edition	Sgn
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	an	integer	indicating	the	sign	of	a	number.

Syntax

Sgn(number)

The	number	argument	can	be	any	valid	numeric	expression.

Return	Values

The	Sgn	function	has	the	following	return	values:

If	number	is Sgn	returns
Greater	than	zero 	1
Equal	to	zero 	0
Less	than	zero -1

Remarks

The	sign	of	the	number	argument	determines	the	return	value	of	the	Sgn
function.

The	following	example	uses	the	Sgn	function	to	determine	the	sign	of	a	number:

Dim	MyVar1,	MyVar2,	MyVar3,	MySign
MyVar1	=	12:	MyVar2	=	-2.4:	MyVar3	=	0
MySign	=	Sgn(MyVar1)				'	Returns	1.

MySign	=	Sgn(MyVar2)				'	Returns	-1.
MySign	=	Sgn(MyVar3)				'	Returns	0.

Microsoft®	Visual	Basic®	Scripting	Edition	Sin
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	sine	of	an	angle.

Syntax

Sin(number)

The	number	argument	can	be	any	valid	numeric	expression	that	expresses	an	angle	in	radians.

Remarks

The	Sin	function	takes	an	angle	and	returns	the	ratio	of	two	sides	of	a	right
triangle.	The	ratio	is	the	length	of	the	side	opposite	the	angle	divided	by	the
length	of	the	hypotenuse.	The	result	lies	in	the	range	-1	to	1.

To	convert	degrees	to	radians,	multiply	degrees	by	pi/180.	To	convert	radians	to	degrees,	multiply
radians	by	180/pi.

The	following	example	uses	the	Sin	function	to	return	the	sine	of	an	angle:

Dim	MyAngle,	MyCosecant
MyAngle	=	1.3																			'	Define	angle	in	radians.
MyCosecant	=	1	/	Sin(MyAngle)			'	Calculate	cosecant.

Microsoft®	Visual	Basic®	Scripting	Edition	Source
Property

	Language	Reference	
Version	1	

See	Also																		Applies	to

Description

Returns	or	sets	the	name	of	the	object	or	application	that	originally
generated	the	error.

Syntax

object.Source	[=	stringexpression]

The	Source	property	syntax	has	these	parts:

Part Description
object Always	the	Err	object.

stringexpression A	string	expression	representing	the	applicationthat	generated	the	error.

Remarks

The	Source	property	specifies	a	string	expression	that	is	usually	the	class
name	or	programmatic	ID	of	the	object	that	caused	the	error.	Use	Source	to
provide	your	users	with	information	when	your	code	is	unable	to	handle	an
error	generated	in	an	accessed	object.	For	example,	if	you	access	Microsoft
Excel	and	it	generates	a	Division	by	zero	error,	Microsoft	Excel	sets
Err.Number	to	its	error	code	for	that	error	and	sets	Source	to
Excel.Application.	Note	that	if	the	error	is	generated	in	another	object
called	by	Microsoft	Excel,	Excel	intercepts	the	error	and	sets	Err.Number
to	its	own	code	for	Division	by	zero.	However,	it	leaves	the	other	Err	object
(including	Source)	as	set	by	the	object	that	generated	the	error.

Source	always	contains	the	name	of	the	object	that	originally	generated	the	error	—	your	code	can
try	to	handle	the	error	according	to	the	error	documentation	of	the	object	you	accessed.	If	your	error

handler	fails,	you	can	use	the	Err	object	information	to	describe	the	error	to	your	user,	using	Source
and	the	other	Err	to	inform	the	user	which	object	originally	caused	the	error,	its	description	of	the
error,	and	so	forth.

When	generating	an	error	from	code,	Source	is	your	application's	programmatic	ID.

The	following	code	illustrates	use	of	the	Source	property:

On	Error	Resume	Next
Err.Raise	6		'	Raise	an	overflow	error.
MsgBox	("Error	#	"	&	CStr(Err.Number)	&	"	"	&	Err.Description	&	
Err.Clear				'	Clear	the	error.

Microsoft®	Visual	Basic®	Scripting	Edition	Space
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	string	consisting	of	the	specified	number	of	spaces.

Syntax

Space(number)

The	number	argument	is	the	number	of	spaces	you	want	in	the	string.

Remarks

The	following	example	uses	the	Space	function	to	return	a	string	consisting
of	a	specified	number	of	spaces:

Dim	MyString
MyString	=	Space(10)																					'	Returns	a	string	with	10	spaces.
MyString	=	"Hello"	&	Space(10)	&	"World"	'	Insert	10	spaces	between	two	strings.

Microsoft®	Visual	Basic®	Scripting	Edition	Split
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	zero-based,	one-dimensional	array	containing	a	specified	number
of	substrings.

Syntax

Split(expression[,	delimiter[,	count[,	compare]]])

The	Split	function	syntax	has	these	parts:

Part Description

expression

Required.	String	expression	containing	substrings
and	delimiters.	If	expression	is	a	zero-length	string,
Split	returns	an	empty	array,	that	is,	an	array	with	no
elements	and	no	data.

delimiter

Optional.	String	character	used	to	identify	substring
limits.	If	omitted,	the	space	character	("	")	is	assumed
to	be	the	delimiter.	If	delimiter	is	a	zero-length
string,	a	single-element	array	containing	the	entire
expression	string	is	returned.

count Optional.	Number	of	substrings	to	be	returned;	-1
indicates	that	all	substrings	are	returned.

compare
Optional.	Numeric	value	indicating	the	kind	of
comparison	to	use	when	evaluating	substrings.	See
Settings	section	for	values.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbBinaryCompare 0 Perform	a	binary	comparison.
vbTextCompare 1 Perform	a	textual	comparison.

Remarks

The	following	example	uses	the	Split	function	to	return	an	array	from	a
string.	The	function	performs	a	textual	comparison	of	the	delimiter,	and
returns	all	of	the	substrings.

Dim	MyString,	MyArray,	Msg
MyString	=	"VBScriptXisXfun!"
MyArray	=	Split(MyString,	"x",	-1,	1)
'	MyArray(0)	contains	"VBScript".
'	MyArray(1)	contains	"is".
'	MyArray(2)	contains	"fun!".
Msg	=	MyArray(0)	&	"	"	&	MyArray(1)
Msg	=	Msg		&	"	"	&	MyArray(2)
MsgBox	Msg

Description

Returns	the	square	root	of	a	number.

Syntax

Sqr(number)

The	number	argument	can	be	any	valid	numeric	expression	greater	than	or
equal	to	0.

Remarks

The	following	example	uses	the	Sqr	function	to	calculate	the	square	root	of	a
number:

Dim	MySqr
MySqr	=	Sqr(4)					'	Returns	2.
MySqr	=	Sqr(23)				'	Returns	4.79583152331272.
MySqr	=	Sqr(0)					'	Returns	0.
MySqr	=	Sqr(-4)				'	Generates	a	run-time	error.

Microsoft®	Visual	Basic®	Scripting	Edition	Sqr
Function

	Language	Reference	
Version	1	

Microsoft®	Visual	Basic®	Scripting	Edition

StrComp	Function
	Language	Reference	

Version	1	

Description

Returns	a	value	indicating	the	result	of	a	string	comparison.

Syntax

StrComp(string1,	string2[,	compare])

The	StrComp	function	syntax	has	these	arguments:

Part Description
string1 Required.	Any	valid	string	expression.
string2 Required.	Any	valid	string	expression.

compare

Optional.	Numeric	value	indicating	the	kind	of
comparison	to	use	when	evaluating	strings.	If	omitted,
a	binary	comparison	is	performed.	See	Settings	section
for	values.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbBinaryCompare 0 Perform	a	binary	comparison.
vbTextCompare 1 Perform	a	textual	comparison.

Return	Values

The	StrComp	function	has	the	following	return	values:

If StrComp	returns
string1	is	less	than	string2 -1
string1	is	equal	to	string2 	0
string1	is	greater	than	string2 	1
string1	or	string2	is	Null Null

Remarks

The	following	example	uses	the	StrComp	function	to	return	the	results	of	a
string	comparison.	If	the	third	argument	is	1,	a	textual	comparison	is
performed;	if	the	third	argument	is	0	or	omitted,	a	binary	comparison	is
performed.

Dim	MyStr1,	MyStr2,	MyComp
MyStr1	=	"ABCD":	MyStr2	=	"abcd"							'	Define	variables.
MyComp	=	StrComp(MyStr1,	MyStr2,	1)				'	Returns	0.
MyComp	=	StrComp(MyStr1,	MyStr2,	0)				'	Returns	-1.
MyComp	=	StrComp(MyStr2,	MyStr1)							'	Returns	1.

Microsoft®	Visual	Basic®	Scripting	Edition	String
Constants

	Language	Reference	
Version	2	

See	Also

Since	these	constants	are	built	into	VBScript,	you	don't	have	to	define	them
before	using	them.	Use	them	anywhere	in	your	code	to	represent	the	values
shown	for	each.

Constant Value Description
vbCr Chr(13) Carriage	return.

vbCrLf Chr(13)	&
Chr(10) Carriage	return–linefeed	combination.

vbFormFeed Chr(12) Form	feed;	not	useful	in	Microsoft	Windows.
vbLf Chr(10) Line	feed.

vbNewLine
Chr(13)	&
Chr(10)	or
Chr(10)

Platform-specific	newline	character;	whatever	is
appropriate	for	the	platform.

vbNullChar Chr(0) Character	having	the	value	0.

vbNullString String	having
value	0

Not	the	same	as	a	zero-length	string	("");	used	for
calling	external	procedures.

vbTab Chr(9) Horizontal	tab.
vbVerticalTab Chr(11) Vertical	tab;	not	useful	in	Microsoft	Windows.

Microsoft®	Visual	Basic®	Scripting	Edition	String
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	repeating	character	string	of	the	length	specified.

Syntax

String(number,	character)

The	String	function	syntax	has	these	arguments:

Part Description

number Length	of	the	returned	string.	If	number	contains
Null,	Null	is	returned.

character

Character	code	specifying	the	character	or	string
expression	whose	first	character	is	used	to	build	the
return	string.	If	character	contains	Null,	Null	is
returned.

Remarks

If	you	specify	a	number	for	character	greater	than	255,	String	converts	the
number	to	a	valid	character	code	using	the	formula:

character	Mod	256
The	following	example	uses	the	String	function	to	return	repeating
character	strings	of	the	length	specified:

Dim	MyString
MyString	=	String(5,	"*")							'	Returns	"*****".
MyString	=	String(5,	42)								'	Returns	"*****".
MyString	=	String(10,	"ABC")				'	Returns	"AAAAAAAAAA".

Microsoft®	Visual	Basic®	Scripting	Edition

StrReverse
Function

	Language	Reference	
Version	2	

Description

Returns	a	string	in	which	the	character	order	of	a	specified	string	is
reversed.

Syntax

StrReverse(string1)

The	string1	argument	is	the	string	whose	characters	are	to	be	reversed.	If	string1	is	a	zero-length
string	(""),	a	zero-length	string	is	returned.	If	string1	is	Null,	an	error	occurs.

Remarks

The	following	example	uses	the	StrReverse	function	to	return	a	string	in
reverse	order:

Dim	MyStr
MyStr	=	StrReverse("VBScript")	'	MyStr	contains	"tpircSBV".

Microsoft®	Visual	Basic®	Scripting	Edition	Sub
Statement

	Language	Reference	
Version	1	

See	Also

Description

Declares	the	name,	arguments,	and	code	that	form	the	body	of	a
Sub	procedure.

Syntax

[Public	[Default]|	Private]	Sub	name	[(arglist)]	
				[statements]
				[Exit	Sub]
				[statements]
End	Sub

The	Sub	statement	syntax	has	these	parts:

Part Description
Public Indicates	that	the	Sub	procedure	is	accessible	to	all	other	procedures	in	all	scripts.

Default
Used	only	with	the	Public	keyword	in	a	Class	block	to	indicate	that	the	Sub	procedure
is	the	default	method	for	the	class.	An	error	occurs	if	more	than	one	Default	procedure
is	specified	in	a	class.

Private Indicates	that	the	Sub	procedure	is	accessible	only	to	other	procedures	in	the	script
where	it	is	declared.

name Name	of	the	Sub;	follows	standard	variable	naming	conventions.

arglist List	of	variables	representing	arguments	that	are	passed	to	the	Sub	procedure	when	it
is	called.	Multiple	variables	are	separated	by	commas.

statements Any	group	of	statements	to	be	executed	within	the	body	of	the	Sub	procedure.

The	arglist	argument	has	the	following	syntax	and	parts:

[ByVal	|	ByRef]	varname[()]

Part Description
ByVal Indicates	that	the	argument	is	passed	by	value.

ByRef Indicates	that	the	argument	is	passed	by	reference.

varname Name	of	the	variable	representing	the	argument;	follows	standard	variable	naming
conventions.

Remarks

If	not	explicitly	specified	using	either	Public	or	Private,	Sub
procedures	are	public	by	default,	that	is,	they	are	visible	to	all
other	procedures	in	your	script.	The	value	of	local	variables	in	a
Sub	procedure	is	not	preserved	between	calls	to	the	procedure.

You	can't	define	a	Sub	procedure	inside	any	other	procedure	(e.g.
Function	or	Property	Get).

The	Exit	Sub	statement	causes	an	immediate	exit	from	a	Sub
procedure.	Program	execution	continues	with	the	statement	that
follows	the	statement	that	called	the	Sub	procedure.	Any	number
of	Exit	Sub	statements	can	appear	anywhere	in	a	Sub	procedure.

Like	a	Function	procedure,	a	Sub	procedure	is	a	separate
procedure	that	can	take	arguments,	perform	a	series	of
statements,	and	change	the	value	of	its	arguments.	However,
unlike	a	Function	procedure,	which	returns	a	value,	a	Sub
procedure	can't	be	used	in	an	expression.

You	call	a	Sub	procedure	using	the	procedure	name	followed	by
the	argument	list.	See	the	Call	statement	for	specific	information
on	how	to	call	Sub	procedures.

Caution		Sub	procedures	can	be	recursive,	that	is,	they	can	call	themselves	to	perform	a	given

task.	However,	recursion	can	lead	to	stack	overflow.

Variables	used	in	Sub	procedures	fall	into	two	categories:	those
that	are	explicitly	declared	within	the	procedure	and	those	that
are	not.	Variables	that	are	explicitly	declared	in	a	procedure
(using	Dim	or	the	equivalent)	are	always	local	to	the	procedure.
Variables	that	are	used	but	not	explicitly	declared	in	a	procedure
are	also	local,	unless	they	are	explicitly	declared	at	some	higher
level	outside	the	procedure.

Caution		A	procedure	can	use	a	variable	that	is	not	explicitly	declared	in	the	procedure,	but	a
naming	conflict	can	occur	if	anything	you	have	defined	at	the	script	level	has	the	same	name.	If
your	procedure	refers	to	an	undeclared	variable	that	has	the	same	name	as	another	procedure,
constant	or	variable,	it	is	assumed	that	your	procedure	is	referring	to	that	script-level	name.	To
avoid	this	kind	of	conflict,	use	an	Option	Explicit	statement	to	force	explicit	declaration	of
variables.

Microsoft®	Visual	Basic®	Scripting	Edition	Tan
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	tangent	of	an	angle.

Syntax

Tan(number)

The	number	argument	can	be	any	valid	numeric	expression	that	expresses	an	angle	in	radians.

Remarks

Tan	takes	an	angle	and	returns	the	ratio	of	two	sides	of	a	right	triangle.	The
ratio	is	the	length	of	the	side	opposite	the	angle	divided	by	the	length	of	the
side	adjacent	to	the	angle.

To	convert	degrees	to	radians,	multiply	degrees	by	pi/180.	To	convert	radians	to	degrees,	multiply
radians	by	180/pi.

The	following	example	uses	the	Tan	function	to	return	the	tangent	of	an	angle:

Dim	MyAngle,	MyCotangent
MyAngle	=	1.3																					'	Define	angle	in	radians.
MyCotangent	=	1	/	Tan(MyAngle)				'	Calculate	cotangent.

Microsoft®	Visual	Basic®	Scripting	Edition

Terminate	Event
	Language	Reference	

Version	5	

See	Also																			Applies	To

Description

Occurs	when	an	instance	of	the	associated	class	is	terminated.

Syntax

Private	Sub	Class_Terminate()
				statements
End	Sub

The	statements	part	consists	of	zero	or	more	code	statements	to
be	run	when	the	class	is	initialized.

Remarks

The	following	example	illustrates	the	use	of	the	Terminate
event:

Class	TestClass
		Private	Sub	Class_Initialize	 '	Setup	Initialize	event.
				MsgBox("TestClass	started")
		End	Sub
		Private	Sub	Class_Terminate	 '	Setup	Terminate	event.
				MsgBox("TestClass	terminated")
		End	Sub
End	Class

Set	X	=	New	TestClass	 '	Create	an	instance	of	TestClass.
Set	X	=	Nothing	 	 '	Destroy	the	instance.

Microsoft®	Visual	Basic®	Scripting	Edition	

Test	Method
	Language	Reference	

Version	5	

See	Also																				Applies	to

Description

Executes	a	regular	expression	search	against	a	specified	string
and	returns	a	Boolean	value	that	indicates	if	a	pattern	match	was
found.

Syntax

object.Test(string)

The	Execute	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	RegExp	object.
string Required.	The	text	string	upon	which	the	regular	expression	is	executed.

Remarks

The	actual	pattern	for	the	regular	expression	search	is	set	using
the	Pattern	property	of	the	RegExp	object.	The	RegExp.Global
property	has	no	effect	on	the	Test	method.

The	Test	method	returns	True	if	a	pattern	match	is	found;	False
if	no	match	is	found.

The	following	code	illustrates	the	use	of	the	Test	method:

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	retVal		 	 	 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	False	 	 '	Set	case	sensitivity.
		retVal	=	regEx.Test(strng)	 	 '	Execute	the	search	test.
		If	retVal	Then
				RegExpTest	=	"One	or	more	matches	were	found."
		Else
				RegExpTest	=	"No	match	was	found."
		End	If
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition	Time
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Variant	of	subtype	Date	indicating	the	current	system	time.

Syntax

Time

Remarks

The	following	example	uses	the	Time	function	to	return	the	current	system
time:

Dim	MyTime
MyTime	=	Time				'	Return	current	system	time.

Microsoft®	Visual	Basic®	Scripting	Edition	Timer
Function

	Language	Reference	
Version	5	

See	Also

Description

Returns	the	number	of	seconds	that	have	elapsed	since	12:00	AM
(midnight).

Syntax

Timer

Remarks

The	following	example	uses	the	Timer	function	to	determine	the
time	it	takes	to	iterate	a	For...Next	loop	N	times:

Function	TimeIt(N)
		Dim	StartTime,	EndTime
		StartTime	=	Timer
		For	I	=	1	To	N
		Next
		EndTime	=	Timer
		TimeIt	=	EndTime	-	StartTime
End	Function	

Microsoft®	Visual	Basic®	Scripting	Edition

TimeSerial
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Variant	of	subtype	Date	containing	the	time	for	a	specific	hour,
minute,	and	second.

Syntax

TimeSerial(hour,	minute,	second)

The	TimeSerial	function	syntax	has	these	arguments:

Part Description

hour Number	between	0	(12:00	A.M.)	and	23	(11:00	P.M.),
inclusive,	or	a	numeric	expression.

minute Any	numeric	expression.
second Any	numeric	expression.

Remarks

To	specify	a	time,	such	as	11:59:59,	the	range	of	numbers	for	each
TimeSerial	argument	should	be	in	the	accepted	range	for	the	unit;	that	is,
0–23	for	hours	and	0–59	for	minutes	and	seconds.	However,	you	can	also
specify	relative	times	for	each	argument	using	any	numeric	expression	that
represents	some	number	of	hours,	minutes,	or	seconds	before	or	after	a
certain	time.

The	following	example	uses	expressions	instead	of	absolute	time	numbers.	The	TimeSerial	function
returns	a	time	for	15	minutes	before	(-15)	six	hours	before	noon	(12	-	6),	or	5:45:00	A.M.

Dim	MyTime1

MyTime1	=	TimeSerial(12	-	6,	-15,	0)	'	Returns	5:45:00	AM.
When	any	argument	exceeds	the	accepted	range	for	that	argument,	it
increments	to	the	next	larger	unit	as	appropriate.	For	example,	if	you
specify	75	minutes,	it	is	evaluated	as	one	hour	and	15	minutes.	However,	if
any	single	argument	is	outside	the	range	-32,768	to	32,767,	or	if	the	time
specified	by	the	three	arguments,	either	directly	or	by	expression,	causes	the
date	to	fall	outside	the	acceptable	range	of	dates,	an	error	occurs.

Microsoft®	Visual	Basic®	Scripting	Edition

TimeValue
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	Variant	of	subtype	Date	containing	the	time.

Syntax

TimeValue(time)

The	time	argument	is	usually	a	string	expression	representing	a	time	from	0:00:00	(12:00:00	A.M.)	to
23:59:59	(11:59:59	P.M.),	inclusive.	However,	time	can	also	be	any	expression	that	represents	a	time
in	that	range.	If	time	contains	Null,	Null	is	returned.

Remarks

You	can	enter	valid	times	using	a	12-hour	or	24-hour	clock.	For	example,
"2:24PM"	and	"14:24"	are	both	valid	time	arguments.	If	the	time	argument
contains	date	information,	TimeValue	doesn't	return	the	date	information.
However,	if	time	includes	invalid	date	information,	an	error	occurs.

The	following	example	uses	the	TimeValue	function	to	convert	a	string	to	a	time.	You	can	also	use
date	literals	to	directly	assign	a	time	to	a	Variant	(for	example,	MyTime	=	#4:35:17	PM#).

Dim	MyTime
MyTime	=	TimeValue("4:35:17	PM")				'	MyTime	contains	4:35:17	PM.

Microsoft®	Visual	Basic®	Scripting	Edition	True
	Language	Reference	

Version	1	

See	Also

Description

The	True	keyword	has	a	value	equal	to	-1.

Microsoft®	Visual	Basic®	Scripting	Edition

TypeName
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	string	that	provides	Variant	subtype	information	about	a	variable.

Syntax

TypeName(varname)

The	required	varname	argument	can	be	any	variable.

Return	Values

The	TypeName	function	has	the	following	return	values:

Value Description
Byte Byte	value
Integer Integer	value
Long Long	integer	value
Single Single-precision	floating-point	value
Double Double-precision	floating-point	value
Currency Currency	value
Decimal Decimal	value
Date Date	or	time	value
String Character	string	value
Boolean Boolean	value;	True	or	False
Empty Unitialized
Null No	valid	data

<object;
type>

Actual	type	name	of	an	object

Object Generic	object
Unknown Unknown	object	type

Nothing Object	variable	that	doesn't	yet	refer	to	an	object
instance

Error Error

Remarks

The	following	example	uses	the	TypeName	function	to	return	information
about	a	variable:

Dim	ArrayVar(4),	MyType
NullVar	=	Null	 	 	 '	Assign	Null	value.

MyType	=	TypeName("VBScript")			'	Returns	"String".
MyType	=	TypeName(4)												'	Returns	"Integer".
MyType	=	TypeName(37.50)								'	Returns	"Double".
MyType	=	TypeName(NullVar)						'	Returns	"Null".
MyType	=	TypeName(ArrayVar)					'	Returns	"Variant()".

Microsoft®	Visual	Basic®	Scripting	Edition	UBound
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	the	largest	available	subscript	for	the	indicated	dimension	of	an
array.

Syntax

UBound(arrayname[,	dimension])

The	UBound	function	syntax	has	these	parts:

Part Description

arrayname Required.	Name	of	the	array	variable;	followsstandard	variable	naming	conventions.

dimension

Optional.	Whole	number	indicating	which
dimension's	upper	bound	is	returned.	Use	1	for	the
first	dimension,	2	for	the	second,	and	so	on.	If
dimension	is	omitted,	1	is	assumed.

Remarks

The	UBound	function	is	used	with	the	LBound	function	to	determine	the
size	of	an	array.	Use	the	LBound	function	to	find	the	lower	limit	of	an
array	dimension.

The	lower	bound	for	any	dimension	is	always	0.	As	a	result,	UBound	returns	the	following	values
for	an	array	with	these	dimensions:

Dim	A(100,3,4)

Statement Return	Value
UBound(A,	1) 100
UBound(A,	2) 3
UBound(A,	3) 4

Microsoft®	Visual	Basic®	Scripting	Edition	UCase
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	string	that	has	been	converted	to	uppercase.

Syntax

UCase(string)

The	string	argument	is	any	valid	string	expression.	If	string	contains	Null,	Null	is	returned.

Remarks

Only	lowercase	letters	are	converted	to	uppercase;	all	uppercase	letters	and
nonletter	characters	remain	unchanged.

The	following	example	uses	the	UCase	function	to	return	an	uppercase	version	of	a	string:

Dim	MyWord
MyWord	=	UCase("Hello	World")				'	Returns	"HELLO	WORLD".

Microsoft®	Visual	Basic®	Scripting	Edition	Value
Property

	Language	Reference	
Version	5	

See	Also																		Applies	To

Description

Returns	the	value	or	text	of	a	match	found	in	a	search	string.

Syntax

object.Value

The	object	argument	is	always	a	Match	object.

Remarks

The	following	code	illustrates	the	use	of	the	Value	property:

Function	RegExpTest(patrn,	strng)
		Dim	regEx,	Match,	Matches		 '	Create	variable.
		Set	regEx	=	New	RegExp	 	 	 '	Create	regular	expression.
		regEx.Pattern	=	patrn	 	 	 '	Set	pattern.
		regEx.IgnoreCase	=	True	 	 	 '	Set	case	insensitivity.
		regEx.Global	=	True	 	 	 '	Set	global	applicability.
		Set	Matches	=	regEx.Execute(strng)	 '	Execute	search.
		For	Each	Match	in	Matches	 	 '	Iterate	Matches	collection.
				RetStr	=	RetStr	&	"Match	"	&	I	&	"	found	at	position	"
				RetStr	=	RetStr	&	Match.FirstIndex	&	".	Match	Value	is	"'
				RetStr	=	RetStr	&	Match.Value	&	"'."	&	vbCRLF

		Next
		RegExpTest	=	RetStr
End	Function

MsgBox(RegExpTest("is.",	"IS1	is2	IS3	is4"))

Microsoft®	Visual	Basic®	Scripting	Edition

VarType
Constants

	Language	Reference	
Version	2	

See	Also

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.	For	VBScript,
you	must	explicitly	declare	these	constants	in	your	code.

Constant Value Description
vbEmpty 			0 Uninitialized	(default)
vbNull 			1 Contains	no	valid	data
vbInteger 			2 Integer	subtype
vbLong 			3 Long	subtype
vbSingle 			4 Single	subtype
vbSingle 			5 Double	subtype
vbCurrency 			6 Currency	subtype
vbDate 			7 Date	subtype
vbString 			8 String	subtype
vbObject 			9 Object
vbError 		10 Error	subtype
vbBoolean 		11 Boolean	subtype
vbVariant 		12 Variant	(used	only	for	arrays	of	variants)
vbDataObject 		13 Data	access	object
vbDecimal 		14 Decimal	subtype
vbByte 		17 Byte	subtype
vbArray 8192 Array

Microsoft®	Visual	Basic®	Scripting	Edition

VarType	Function
	Language	Reference	

Version	1	

See	Also

Description

Returns	a	value	indicating	the	subtype	of	a	variable.

Syntax

VarType(varname)

The	varname	argument	can	be	any	variable.

Return	Values

The	VarType	function	returns	the	following	values:

Constant Value Description
vbEmpty 			0 Empty	(uninitialized)
vbNull 			1 Null	(no	valid	data)
vbInteger 			2 Integer
vbLong 			3 Long	integer
vbSingle 			4 Single-precision	floating-point	number
vbDouble 			5 Double-precision	floating-point	number
vbCurrency 			6 Currency
vbDate 			7 Date
vbString 			8 String
vbObject 			9 Automation	object
vbError 		10 Error
vbBoolean 		11 Boolean

vbVariant 		12 Variant	(used	only	with	arrays	of
Variants)

vbDataObject 		13 A	data-access	object
vbByte 		17 Byte
vbArray 8192 Array

Note		These	constants	are	specified	by	VBScript.	As	a	result,	the
names	can	be	used	anywhere	in	your	code	in	place	of	the	actual
values.

Remarks

The	VarType	function	never	returns	the	value	for	Array	by	itself.	It	is
always	added	to	some	other	value	to	indicate	an	array	of	a	particular	type.
The	value	for	Variant	is	only	returned	when	it	has	been	added	to	the	value
for	Array	to	indicate	that	the	argument	to	the	VarType	function	is	an	array.
For	example,	the	value	returned	for	an	array	of	integers	is	calculated	as	2	+
8192,	or	8194.	If	an	object	has	a	default	property,	VarType	(object)	returns
the	type	of	its	default	property.

The	following	example	uses	the	VarType	function	to	determine	the	subtype	of	a	variable.

Dim	MyCheck
MyCheck	=	VarType(300)											'	Returns	2.
MyCheck	=	VarType(#10/19/62#)				'	Returns	7.
MyCheck	=	VarType("VBScript")				'	Returns	8.

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript
Constants

	Language	Reference	
Version	2	

See	Also

A	number	of	useful	constants	you	can	use	in	your	code	are	built	into	VBScript.
Constants	provide	a	convenient	way	to	use	specific	values	without	actually
having	to	remember	the	value	itself.	Using	constants	also	makes	your	code	more
maintainable	should	the	value	of	any	constant	ever	change.	Because	these
constants	are	already	defined	in	VBScript,	you	don't	need	to	explicitly	declare
them	in	your	code.	Simply	use	them	in	place	of	the	values	they	represent.

Here	are	the	various	categories	of	constants	provided	in	VBScript	and	a	brief	description	of	each:

Color	Constants
Defines	eight	basic	colors	that	can	be	used	in	scripting.

Date	and	Time	Constants
Defines	date	and	time	constants	used	by	various	date	and	time	functions.

Date	Format	Constants
Defines	constants	used	to	format	dates	and	times.

Miscellaneous	Constants
Defines	constants	that	don't	conveniently	fit	into	any	other	category.

MsgBox	Constants
Defines	constants	used	in	the	MsgBox	function	to	describe	button	visibility,	labeling,	behavior,	and	return
values.

String	Constants
Defines	a	variety	of	non-printable	characters	used	in	string	manipulation.

Tristate	Constants
Defines	constants	used	with	functions	that	format	numbers.

VarType	Constants
Defines	the	various	Variant	subtypes.

Microsoft®	Visual	Basic®	Scripting	Edition

Weekday	Function
	Language	Reference	

Version	1	

See	Also

Description

Returns	a	whole	number	representing	the	day	of	the	week.

Syntax

Weekday(date,	[firstdayofweek])

The	Weekday	function	syntax	has	these	arguments:

Part Description

date Any	expression	that	can	represent	a	date.	If	date
contains	Null,	Null	is	returned.

firstdayofweek A	constant	that	specifies	the	first	day	of	theweek.	If	omitted,	vbSunday	is	assumed.

Settings

The	firstdayofweek	argument	has	these	settings:

Constant Value Description

vbUseSystem 0 Use	National	Language	Support	(NLS)
API	setting.

vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Return	Values

The	Weekday	function	can	return	any	of	these	values:

Constant Value Description
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Remarks

The	following	example	uses	the	Weekday	function	to	obtain	the	day	of	the
week	from	a	specified	date:

Dim	MyDate,	MyWeekDay
MyDate	=	#October	19,	1962#				'	Assign	a	date.
MyWeekDay	=	Weekday(MyDate)				'	MyWeekDay	contains	6	because	
																															'	MyDate	represents	a	Friday.

Microsoft®	Visual	Basic®	Scripting	Edition

While...Wend
Statement

	Language	Reference	
Version	1	

See	Also

Description

Executes	a	series	of	statements	as	long	as	a	given	condition	is	True.

Syntax

While	condition
			Version	[statements]
Wend

The	While...Wend	statement	syntax	has	these	parts:

Part Description

condition
Numeric	or	string	expression	that	evaluates	to	True
or	False.	If	condition	is	Null,	condition	is	treated	as
False.

statements One	or	more	statements	executed	while	condition	isTrue.

Remarks

If	condition	is	True,	all	statements	in	statements	are	executed	until	the
Wend	statement	is	encountered.	Control	then	returns	to	the	While
statement	and	condition	is	again	checked.	If	condition	is	still	True,	the
process	is	repeated.	If	it	is	not	True,	execution	resumes	with	the	statement
following	the	Wend	statement.

While...Wend	loops	can	be	nested	to	any	level.	Each	Wend	matches	the	most	recent	While.

Tip		The	Do...Loop	statement	provides	a	more	structured	and
flexible	way	to	perform	looping.

The	following	example	illustrates	use	of	the	While...Wend	statement:

Dim	Counter
Counter	=	0																'	Initialize	variable.
While	Counter	<	20									'	Test	value	of	Counter.
			Counter	=	Counter	+	1			'	Increment	Counter.
			Alert	Counter
Wend																							'	End	While	loop	when	Counter	>	19.

Microsoft®	Visual	Basic®	Scripting	Edition	With
Statement

	Language	Reference	
Version	5	

See	Also

Description

Executes	a	series	of	statements	on	a	single	object.

Syntax

With	object
				statements
End	With

The	With	statement	syntax	has	these	parts:

Part Description
object Required.	Name	of	an	object	or	a	function	that	returns	an	object.

statements Required.	One	or	more	statements	to	be	executed	on	object.

Remarks

The	With	statement	allows	you	to	perform	a	series	of	statements
on	a	specified	object	without	requalifying	the	name	of	the	object.
For	example,	to	change	a	number	of	different	properties	on	a
single	object,	place	the	property	assignment	statements	within	the
With	control	structure,	referring	to	the	object	once	instead	of
referring	to	it	with	each	property	assignment.	The	following
example	illustrates	use	of	the	With	statement	to	assign	values	to
several	properties	of	the	same	object.

With	MyLabel
		.Height	=	2000
		.Width	=	2000
		.Caption	=	"This	is	MyLabel"
End	With

While	property	manipulation	is	an	important	aspect	of	With
functionality,	it	is	not	the	only	use.	Any	legal	code	can	be	used
within	a	With	block.

Note		Once	a	With	block	is	entered,	object	can't	be	changed.	As	a	result,	you	can't	use	a	single
With	statement	to	affect	a	number	of	different	objects.

You	can	nest	With	statements	by	placing	one	With	block	within
another.	However,	because	members	of	outer	With	blocks	are
masked	within	the	inner	With	blocks,	you	must	provide	a	fully
qualified	object	reference	in	an	inner	With	block	to	any	member
of	an	object	in	an	outer	With	block.

Important		Do	not	jump	into	or	out	of	With	blocks.	If	statements	in	a	With	block	are	executed,
but	either	the	With	or	End	With	statement	is	not	executed,	you	may	get	errors	or	unpredictable
behavior.

Microsoft®	Visual	Basic®	Scripting	Edition	Xor
Operator

	Language	Reference	
Version	1	

See	Also

Description

Performs	a	logical	exclusion	on	two	expressions.

Syntax

result	=	expression1	Xor	expression2

The	Xor	operator	syntax	has	these	parts:

Part Description
result Any	numeric	variable.
expression1 Any	expression.
expression2 Any	expression.

Remarks

If	one,	and	only	one,	of	the	expressions	evaluates	to	True,	result	is	True.
However,	if	either	expression	is	Null,	result	is	also	Null.	When	neither
expression	is	Null,	result	is	determined	according	to	the	following	table:

If	expression1	is And	expression2	is Then	result	is
True True False
True False True
False True True
False False False

The	Xor	operator	also	performs	a	bitwise	comparison	of	identically

positioned	bits	in	two	numeric	expressions	and	sets	the	corresponding	bit	in
result	according	to	the	following	table:

If	bit	in	expression1
is And	bit	in	expression2	is Then	result	is

0 0 0
0 1 1
1 0 1
1 1 0

Microsoft®	Visual	Basic®	Scripting	Edition	Year
Function

	Language	Reference	
Version	1	

See	Also

Description

Returns	a	whole	number	representing	the	year.

Syntax

Year(date)

The	date	argument	is	any	expression	that	can	represent	a	date.	If	date	contains	Null,	Null	is	returned.

Remarks

The	following	example	uses	the	Year	function	to	obtain	the	year	from	a
specified	date:

Dim	MyDate,	MyYear
MyDate	=	#October	19,	1962#			'	Assign	a	date.
MyYear	=	Year(MyDate)									'	MyYear	contains	1962.

Microsoft®	Visual	Basic®	Scripting	Edition	Color
Constants

	Language	Reference	
Version	2	

See	Also

Since	these	constants	are	built	into	VBScript,	you	don't	have	to	define	them
before	using	them.	Use	them	anywhere	in	your	code	to	represent	the	values
shown	for	each.

Constant Value Description
vbBlack &h00; Black
vbRed &hFF; Red
vbGreen &hFF00; Green
vbYellow &hFFFF; Yellow
vbBlue &hFF0000; Blue
vbMagenta &hFF00FF; Magenta
vbCyan &hFFFF00; Cyan
vbWhite &hFFFFFF; White

Microsoft®	Visual	Basic®	Scripting	Edition	Tristate
Constants

	Language	Reference	
Version	2	

See	Also

Since	these	constants	are	built	into	VBScript,	you	don't	have	to	define	them
before	using	them.	Use	them	anywhere	in	your	code	to	represent	the	values
shown	for	each.

Constant Value Description

vbUseDefault -2 Use	default	from	computer's	regional
settings.

vbTrue -1 True
vbFalse 		0 False

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript	Run-
time	Errors

	Language	Reference	
Version	1	

VBScript	Syntax	Errors

Error	Number Description
5 Invalid	procedure	call	or	argument
6 Overflow
7 Out	of	memory
9 Subscript	out	of	range
10 This	array	is	fixed	or	temporarily	locked
11 Division	by	zero
13 Type	mismatch
14 Out	of	string	space
17 Can't	perform	requested	operation
28 Out	of	stack	space
35 Sub	or	Function	not	defined
48 Error	in	loading	DLL
51 Internal	error
52 Bad	file	name	or	number
53 File	not	found
54 Bad	file	mode
55 File	already	open
57 Device	I/O	error
58 File	already	exists
61 Disk	full
62 Input	past	end	of	file
67 Too	many	files
68 Device	unavailable
70 Permission	denied
71 Disk	not	ready
74 Can't	rename	with	different	drive
75 Path/File	access	error
76 Path	not	found

91 Object	variable	not	set
92 For	loop	not	initialized
94 Invalid	use	of	Null
322 Can't	create	necessary	temporary	file
424 Object	required
429 ActiveX	component	can't	create	object
430 Class	doesn't	support	Automation
432 File	name	or	class	name	not	found	during	Automation	operation
438 Object	doesn't	support	this	property	or	method
440 Automation	error
445 Object	doesn't	support	this	action
446 Object	doesn't	support	named	arguments
447 Object	doesn't	support	current	locale	setting
448 Named	argument	not	found
449 Argument	not	optional
450 Wrong	number	of	arguments	or	invalid	property	assignment
451 Object	not	a	collection
453 Specified	DLL	function	not	found
455 Code	resource	lock	error
458 Variable	uses	an	Automation	type	not	supported	in	VBScript
462 The	remote	server	machine	does	not	exist	or	is	unavailable
481 Invalid	picture
500 Variable	is	undefined
501 Illegal	assignment
502 Object	not	safe	for	scripting
503 Object	not	safe	for	initializing
504 Object	not	safe	for	creating
505 Invalid	or	unqualified	reference
506 Class	not	defined
507 An	exception	occurred
5016 Regular	Expression	object	expected
5017 Syntax	error	in	regular	expression
5018 Unexpected	quantifier
5019 Expected	']'	in	regular	expression
5020 Expected	')'	in	regular	expression
5021 Invalid	range	in	character	set
32811 Element	not	found

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript	Syntax
Errors

	Language	Reference	
Version	1	

VBScript	Run-time	Errors

Error	Number Description
1001 Out	of	memory
1002 Syntax	error
1003 Expected	':'
1005 Expected	'('
1006 Expected	')'
1007 Expected	']'
1010 Expected	identifier
1011 Expected	'='
1012 Expected	'If'
1013 Expected	'To'
1014 Expected	'End'
1015 Expected	'Function'
1016 Expected	'Sub'
1017 Expected	'Then'
1018 Expected	'Wend'
1019 Expected	'Loop'
1020 Expected	'Next'
1021 Expected	'Case'
1022 Expected	'Select'
1023 Expected	expression
1024 Expected	statement
1025 Expected	end	of	statement
1026 Expected	integer	constant
1027 Expected	'While'	or	'Until'
1028 Expected	'While',	'Until'	or	end	of	statement
1029 Expected	'With'
1030 Identifier	too	long
1031 Invalid	number

1032 Invalid	character
1033 Unterminated	string	constant
1034 Unterminated	comment
1037 Invalid	use	of	'Me'	keyword
1038 'loop'	without	'do'
1039 Invalid	'exit'	statement
1040 Invalid	'for'	loop	control	variable
1041 Name	redefined
1042 Must	be	first	statement	on	the	line
1043 Cannot	assign	to	non-ByVal	argument
1044 Cannot	use	parentheses	when	calling	a	Sub
1045 Expected	literal	constant
1046 Expected	'In'
1047 Expected	'Class'
1048 Must	be	defined	inside	a	Class
1049 Expected	Let	or	Set	or	Get	in	property	declaration
1050 Expected	'Property'

1051 Number	of	arguments	must	be	consistent	across	properties
specification

1052 Cannot	have	multiple	default	property/method	in	a	Class
1053 Class	initialize	or	terminate	do	not	have	arguments
1054 Property	set	or	let	must	have	at	least	one	argument
1055 Unexpected	'Next'
1056 'Default'	can	be	specified	only	on	'Property'	or	'Function'	or	'Sub'
1057 'Default'	specification	must	also	specify	'Public'")
1058 'Default'	specification	can	only	be	on	Property	Get

<	operator">	operator">	<=	operator">	=	operator">	operator">	<	operator;	less
than	operator;	>	operator;	greater	than	operator;	<=	operator;	less	than	or	equal
to	operator;	>=	operator;	greater	than	or	equal	to	operator;	=	operator;	equal
operator;	operator;	not	equal	operator;	string	comparison;	Empty">
Microsoft®	Visual	Basic®	Scripting	Edition

Comparison
Operators

	Language	Reference	
Version	1	

See	Also

Description

Used	to	compare	expressions.

Syntax

result	=	expression1	comparisonoperator	expression2

result	=	object1	Is	object2

Comparison	operators	have	these	parts:

Part Description
result Any	numeric	variable.
expression Any	expression.
comparisonoperator Any	comparison	operator.
object Any	object	name.

Remarks

The	Is	operator	has	specific	comparison	functionality	that	differs	from	the
operators	in	the	following	table.	The	following	table	contains	a	list	of	the
comparison	operators	and	the	conditions	that	determine	whether	result	is
True,	False,	or	Null:

Operator Description True	if False	if Null	if

< Less	than
expression1
<
expression2

expression1
>=
expression2

expression1	or
expression2	=
Null

<= Less	than	or
equal	to

expression1
<=
expression2

expression1
>
expression2

expression1	or
expression2	=
Null

> Greater
than

expression1
>
expression2

expression1
<=
expression2

expression1	or
expression2	=
Null

>=
Greater
than	or
equal	to

expression1
>=
expression2

expression1
<
expression2

expression1	or
expression2	=
Null

= Equal	to
expression1
=
expression2

expression1
<>
expression2

expression1	or
expression2	=
Null

<> Not	equal	to
expression1
<>
expression2

expression1
=
expression2

expression1	or
expression2	=
Null

When	comparing	two	expressions,	you	may	not	be	able	to	easily	determine	whether	the	expressions
are	being	compared	as	numbers	or	as	strings.

The	following	table	shows	how	expressions	are	compared	or	what	results	from	the	comparison,
depending	on	the	underlying	subtype:

If Then
Both	expressions	are
numeric Perform	a	numeric	comparison.

Both	expressions	are
strings Perform	a	string	comparison.

One	expression	is
numeric	and	the	other
is	a	string

The	numeric	expression	is	less	than	the
string	expression.

One	expression	is
Empty	and	the	other	is
numeric

Perform	a	numeric	comparison,	using	0
as	the	Empty	expression.

One	expression	is
Empty	and	the	other	is
a	string

Perform	a	string	comparison,	using	a
zero-length	string	("")	as	the	Empty
expression.

Both	expressions	are
Empty The	expressions	are	equal.

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript
Language
Reference

	VBScript	Tutorial	
	Version	Information	

	Feature	Information

	Alphabetic	Keyword
List

	Constants

	Errors

	Events

	Functions

	Methods

	Objects

	Operators

	Properties

	Statements

	

Welcome	to	the	VBScript	Language	Reference

These	handy	blocks	of	information	will	help
you	explore	the	many	different	parts	of	the
Visual	Basic	Scripting	language.

You'll	find	all	the	parts	of	the	VBScript
language	listed	alphabetically	under	the
Alphabetic	Keyword	List.	But	if	you	want	to
examine	just	one	category,	say,	objects,	each
language	category	has	its	own,	more	compact
section.

How's	it	work?	Click	on	one	of	the	headings	to
the	left	to	display	a	list	of	items	contained	in
that	category.	From	this	list,	select	the	topic	that
you	want	to	view.	Once	you've	opened	that
topic,	you	can	easily	link	to	other	related
sections.

So,	go	ahead	and	take	a	look!	Study	some
statements,	mull	over	the	methods,	or	figure	out
a	few	functions.	You'll	see	just	how	versatile	the
VBScript	language	can	be!

©	1999	Microsoft	Corporation.	All	rights	reserved.

Microsoft®	Visual	Basic®	Scripting	Edition	Add
Method
(Dictionary)

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Adds	a	key	and	item	pair	to	a	Dictionary	object.

Syntax

object.Add	key,	item

The	Add	method	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.
key Required.	The	key	associated	with	the	item	being	added.
item Required.	The	item	associated	with	the	key	being	added.

Remarks

An	error	occurs	if	the	key	already	exists.

The	following	example	illustrates	the	use	of	the	Add	method:

Dim	d																			'	Create	a	variable.
Set	d	=	CreateObject("Scripting.Dictionary")
d.Add	"a",	"Athens"					'	Add	some	keys	and	items.
d.Add	"b",	"Belgrade"
d.Add	"c",	"Cairo"

Microsoft®	Visual	Basic®	Scripting	Edition	Add
Method	(Folders)

	Scripting	Run-Time	Reference	
Version	3	

See	Also																				Applies	To

Description

Adds	a	new	Folder	to	a	Folders	collection.

Syntax

object.Add(folderName)

The	Add	method	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Folders	collection.

folderName Required.	The	name	of	the	new	Folder	beingadded.

Remarks

The	following	example	illustrates	the	use	of	the	Add	method	to	add	a	new
folder:

Sub	AddNewFolder(path,	folderName)
		Dim	fso,	f,	fc,	nf
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(path)
		Set	fc	=	f.SubFolders
		If	folderName	<>	""	Then
				Set	nf	=	fc.Add(folderName)
		Else
				Set	nf	=	fc.Add("New	Folder")

		End	If
End	Sub

An	error	occurs	if	folderName	already	exists.

Microsoft®	Visual	Basic®	Scripting	Edition

AtEndOfLine
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Returns	True	if	the	file	pointer	immediately	precedes	the	end-of-line
marker	in	a	TextStream	file;	False	if	it	is	not.	Read-only.

Syntax

object.AtEndOfLine

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

The	AtEndOfLine	property	applies	only	to	TextStream	files	that	are	open
for	reading;	otherwise,	an	error	occurs.

The	following	code	illustrates	the	use	of	the	AtEndOfLine	property:

Function	ReadEntireFile(filespec)
		Const	ForReading	=	1
		Dim	fso,	theFile,	retstring
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	theFile	=	fso.OpenTextFile(filespec,	ForReading,	False)
		Do	While	theFile.AtEndOfLine	<>	True
				retstring	=	theFile.Read(1)
		Loop

		theFile.Close
		ReadEntireFile	=	retstring
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

AtEndOfStream
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Returns	True	if	the	file	pointer	is	at	the	end	of	a	TextStream	file;	False	if	it
is	not.	Read-only.

Syntax

object.AtEndOfStream

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

The	AtEndOfStream	property	applies	only	to	TextStream	files	that	are
open	for	reading,	otherwise,	an	error	occurs.

The	following	code	illustrates	the	use	of	the	AtEndOfStream	property:

Function	ReadEntireFile(filespec)
		Const	ForReading	=	1
		Dim	fso,	theFile,	retstring
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	theFile	=	fso.OpenTextFile(filespec,	ForReading,	False)
		Do	While	theFile.AtEndOfStream	<>	True
				retstring	=	theFile.ReadLine
		Loop

		theFile.Close
		ReadEntireFile	=	retstring
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

Attributes
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	or	returns	the	attributes	of	files	or	folders.	Read/write	or	read-only,
depending	on	the	attribute.

Syntax

object.Attributes	[=	newattributes]

The	Attributes	property	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	File	or	Folder
object.

newattributes Optional.	If	provided,	newattributes	is	the	newvalue	for	the	attributes	of	the	specified	object.

Settings

The	newattributes	argument	can	have	any	of	the	following	values	or	any
logical	combination	of	the	following	values:

Constant Value Description
Normal 0 Normal	file.	No	attributes	are	set.
ReadOnly 1 Read-only	file.	Attribute	is	read/write.
Hidden 2 Hidden	file.	Attribute	is	read/write.
System 4 System	file.	Attribute	is	read/write.
Directory 16 Folder	or	directory.	Attribute	is	read-only.

Archive 32 File	has	changed	since	last	backup.
Attribute	is	read/write.

Alias 1024 Link	or	shortcut.	Attribute	is	read-only.
Compressed 2048 Compressed	file.	Attribute	is	read-only.

Remarks

Attempts	to	change	any	of	the	read-only	attributes	(Alias,	Compressed,	or
Directory)	are	ignored.

When	setting	attributes,	it	is	generally	a	good	idea	to	first	read	the	current	attributes,	then	change	the
individual	attributes	as	desired,	and	finally	write	the	attributes	back.

The	following	code	illustrates	the	use	of	the	Attributes	property	with	a	file:

Function	ToggleArchiveBit(filespec)
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		If	f.attributes	and	32	Then
				f.attributes	=	f.attributes	-	32
				ToggleArchiveBit	=	"Archive	bit	is	cleared."
		Else
				f.attributes	=	f.attributes	+	32
				ToggleArchiveBit	=	"Archive	bit	is	set."
		End	If
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

AvailableSpace
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	amount	of	space	available	to	a	user	on	the	specified	drive	or
network	share.

Syntax

object.AvailableSpace

The	object	is	always	a	Drive	object.

Remarks

The	value	returned	by	the	AvailableSpace	property	is	typically	the	same	as
that	returned	by	the	FreeSpace	property.	Differences	may	occur	between
the	two	for	computer	systems	that	support	quotas.

The	following	code	illustrates	the	use	of	the	AvailableSpace	property:

Function	ShowAvailableSpace(drvPath)
		Dim	fso,	d,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(drvPath))
		s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"	
		s	=	s	&	d.VolumeName		&	"
"
		s	=	s	&	"Available	Space:	"	&	FormatNumber(d.AvailableSpace/1024,	0)	
		s	=	s	&	"	Kbytes"
		ShowAvailableSpace	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

BuildPath	Method
	Scripting	Run-Time	Reference	

	Version	3	

See	Also																		Applies	To

Description

Appends	a	name	to	an	existing	path.

Syntax

object.BuildPath(path,	name)

The	BuildPath	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path
Required.	Existing	path	to	which	name	is	appended.	Path
can	be	absolute	or	relative	and	need	not	specify	an
existing	folder.

name Required.	Name	being	appended	to	the	existing	path.

Remarks

The	BuildPath	method	inserts	an	additional	path	separator	between	the
existing	path	and	the	name,	only	if	necessary.

The	following	example	illustrates	use	of	the	BuildPath	method:

Function	GetBuildPath(path)
		Dim	fso,	newpath
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		newpath	=	fso.BuildPath(path,	"Sub	Folder")	
		GetBuildPath	=	newpath

End	Function		

Microsoft®	Visual	Basic®	Scripting	Edition	Close
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Closes	an	open	TextStream	file.

Syntax

object.Close

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

The	following	example	illustrates	use	of	the	Close	method	to	close	an	open
TextStream	file:

Sub	CreateAFile
		Dim	fso,	MyFile
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	MyFile	=	fso.CreateTextFile("c:\testfile.txt",	True)
		MyFile.WriteLine("This	is	a	test.")
		MyFile.Close
End	Sub

Microsoft®	Visual	Basic®	Scripting	Edition	Column
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																		Applies	to

Description

Read-only	property	that	returns	the	column	number	of	the	current	character
position	in	a	TextStream	file.

Syntax

object.Column

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

After	a	newline	character	has	been	written,	but	before	any	other	character	is
written,	Column	is	equal	to	1.

The	following	example	illustrates	use	of	the	Column	property:

Function	GetColumn
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	f,	m
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.Write	"Hello	world!"	
		f.Close
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		m	=		f.ReadLine

		GetColumn	=	f.Column
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

CompareMode
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	to

Description

Sets	and	returns	the	comparison	mode	for	comparing	string	keys	in	a
Dictionary	object.

Syntax

object.CompareMode[=	compare]

The	CompareMode	property	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.

compare
Optional.	If	provided,	compare	is	a	value	representing
the	comparison	mode	used	by	functions	such	as
StrComp.

Settings

The	compare	argument	has	the	following	settings:

Constant Value Description

vbBinaryCompare 0
Perform	a
binary
comparison.

vbTextCompare 1
Perform	a
textual
comparison.

Remarks

Values	greater	than	2	can	be	used	to	refer	to	comparisons	using	specific

Locale	IDs	(LCID).	An	error	occurs	if	you	try	to	change	the	comparison
mode	of	a	Dictionary	object	that	already	contains	data.

The	CompareMode	property	uses	the	same	values	as	the	compare	argument	for	the	StrComp
function.

The	following	example	illustrates	use	of	the	CompareMode	property:

Dim	d											
Set	d	=	CreateObject("Scripting.Dictionary")
d.CompareMode	=	vbTextCompare
d.Add	"a",	"Athens"						'	Add	some	keys	and	items.
d.Add	"b",	"Belgrade"
d.Add	"c",	"Cairo"
d.Add	"B",	"Baltimore"			'	Add	method	fails	on	this	line	because	the	
																									'	letter	b	already	exists	in	the	Dictionary.

Microsoft®	Visual	Basic®	Scripting	Edition	Copy
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Copies	a	specified	file	or	folder	from	one	location	to	another.

Syntax

object.Copy	destination[,	overwrite]

The	Copy	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	File	or	Folder
object.

destination Required.	Destination	where	the	file	or	folder	is	tobe	copied.	Wildcard	characters	are	not	allowed.

overwrite
Optional.	Boolean	value	that	is	True	(default)	if
existing	files	or	folders	are	to	be	overwritten;	False
if	they	are	not.

Remarks

The	results	of	the	Copy	method	on	a	File	or	Folder	are	identical	to
operations	performed	using	FileSystemObject.CopyFile	or
FileSystemObject.CopyFolder	where	the	file	or	folder	referred	to	by
object	is	passed	as	an	argument.	You	should	note,	however,	that	the
alternative	methods	are	capable	of	copying	multiple	files	or	folders.

The	following	example	illustrates	use	of	the	Copy	method:

Dim	fso,	MyFile

Set	fso	=	CreateObject("Scripting.FileSystemObject")
Set	MyFile	=	fso.CreateTextFile("c:\testfile.txt",	True)
MyFile.WriteLine("This	is	a	test.")
MyFile.Close
Set	MyFile	=	fso.GetFile("c:\testfile.txt")
MyFile.Copy	("c:\windows\desktop\test2.txt")

Microsoft®	Visual	Basic®	Scripting	Edition

CopyFile	Method
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Copies	one	or	more	files	from	one	location	to	another.

Syntax

object.CopyFile	source,	destination[,	overwrite]

The	CopyFile	method	syntax	has	these	parts:

Part Description

object Required.	The	object	is	always	the	name	of	a
FileSystemObject.

source
Required.	Character	string	file	specification,	which
can	include	wildcard	characters,	for	one	or	more
files	to	be	copied.

destination
Required.	Character	string	destination	where	the	file
or	files	from	source	are	to	be	copied.	Wildcard
characters	are	not	allowed.

overwrite

Optional.	Boolean	value	that	indicates	if	existing
files	are	to	be	overwritten.	If	True,	files	are
overwritten;	if	False,	they	are	not.	The	default	is
True.	Note	that	CopyFile	will	fail	if	destination	has
the	read-only	attribute	set,	regardless	of	the	value	of
overwrite.

Remarks

Wildcard	characters	can	only	be	used	in	the	last	path	component	of	the
source	argument.	For	example,	you	can	use:

FileSystemObject.CopyFile	"c:\mydocuments\letters*.doc",	"c:\tempfolder\"

But	you	can't	use:

FileSystemObject.CopyFile	"c:\mydocuments*\R1???97.xls",	"c:\tempfolder"

If	source	contains	wildcard	characters	or	destination	ends	with	a	path
separator	(\),	it	is	assumed	that	destination	is	an	existing	folder	in	which	to
copy	matching	files.	Otherwise,	destination	is	assumed	to	be	the	name	of	a
file	to	create.	In	either	case,	three	things	can	happen	when	an	individual	file
is	copied.

If	destination	does	not	exist,	source	gets	copied.	This	is	the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs	if	overwrite	is	False.
Otherwise,	an	attempt	is	made	to	copy	source	over	the	existing	file.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	source	using	wildcard	characters	doesn't	match	any
files.	The	CopyFile	method	stops	on	the	first	error	it	encounters.	No
attempt	is	made	to	roll	back	or	undo	any	changes	made	before	an	error
occurs.

Microsoft®	Visual	Basic®	Scripting	Edition

CopyFolder
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Recursively	copies	a	folder	from	one	location	to	another.

Syntax

object.CopyFolder	source,	destination[,	overwrite]

The	CopyFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

source
Required.	Character	string	folder	specification,
which	can	include	wildcard	characters,	for	one	or
more	folders	to	be	copied.

destination
Required.	Character	string	destination	where	the
folder	and	subfolders	from	source	are	to	be	copied.
Wildcard	characters	are	not	allowed.

overwrite

Optional.	Boolean	value	that	indicates	if	existing
folders	are	to	be	overwritten.	If	True,	files	are
overwritten;	if	False,	they	are	not.	The	default	is
True.

Remarks

Wildcard	characters	can	only	be	used	in	the	last	path	component	of	the
source	argument.	For	example,	you	can	use:

FileSystemObject.CopyFolder	"c:\mydocuments\letters*",	"c:\tempfolder\"

But	you	can't	use:

FileSystemObject.CopyFolder	"c:\mydocuments**",	"c:\tempfolder\"

If	source	contains	wildcard	characters	or	destination	ends	with	a	path
separator	(\),	it	is	assumed	that	destination	is	an	existing	folder	in	which	to
copy	matching	folders	and	subfolders.	Otherwise,	destination	is	assumed	to
be	the	name	of	a	folder	to	create.	In	either	case,	four	things	can	happen
when	an	individual	folder	is	copied.

If	destination	does	not	exist,	the	source	folder	and	all	its	contents	gets
copied.	This	is	the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs.

If	destination	is	a	directory,	an	attempt	is	made	to	copy	the	folder	and
all	its	contents.	If	a	file	contained	in	source	already	exists	in
destination,	an	error	occurs	if	overwrite	is	False.	Otherwise,	it	will
attempt	to	copy	the	file	over	the	existing	file.

If	destination	is	a	read-only	directory,	an	error	occurs	if	an	attempt	is
made	to	copy	an	existing	read-only	file	into	that	directory	and
overwrite	is	False.

An	error	also	occurs	if	a	source	using	wildcard	characters	doesn't	match	any
folders.

The	CopyFolder	method	stops	on	the	first	error	it	encounters.	No	attempt	is	made	to	roll	back	any
changes	made	before	an	error	occurs.

Microsoft®	Visual	Basic®	Scripting	Edition	Count
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	To

Description

Returns	the	number	of	items	in	a	collection	or	Dictionary	object.	Read-
only.

Syntax

object.Count

The	object	is	always	the	name	of	one	of	the	items	in	the	Applies	To	list.

Remarks

The	following	code	illustrates	use	of	the	Count	property:

Function	ShowKeys
		Dim	a,	d,	i,	s										'	Create	some	variables.
		Set	d	=	CreateObject("Scripting.Dictionary")
		d.Add	"a",	"Athens"					'	Add	some	keys	and	items.
		d.Add	"b",	"Belgrade"
		d.Add	"c",	"Cairo"
		a	=	d.Keys														'	Get	the	keys.
		For	i	=	0	To	d.Count	-1	'	Iterate	the	array.
				s	=	s	&	a(i)	&	"
"	'	Create	return	string.								
		Next
		ShowKeys	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

CreateFolder
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																			Applies	To

Description

Creates	a	folder.

Syntax

object.CreateFolder(foldername)

The	CreateFolder	method	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

foldername Required.	String	expression	that	identifies	the	folderto	create.

Remarks

An	error	occurs	if	the	specified	folder	already	exists.

The	following	example	illustrates	use	of	the	CreateFolder	method:

Function	CreateFolderDemo
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.CreateFolder("c:\New	Folder")
		CreateFolderDemo	=	f.Path
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

CreateTextFile
Method

	Scripting	Run-Time	Reference	
	Version	2	

See	Also																			Applies	to

Description

Creates	a	specified	file	name	and	returns	a	TextStream	object	that	can	be
used	to	read	from	or	write	to	the	file.

Syntax

object.CreateTextFile(filename[,	overwrite[,	unicode]])

The	CreateTextFile	method	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	FileSystemObject	or
Folder	object.

filename Required.	String	expression	that	identifies	the	file	to
create.

overwrite

Optional.	Boolean	value	that	indicates	if	an	existing
file	can	be	overwritten.	The	value	is	True	if	the	file
can	be	overwritten;	False	if	it	can't	be	overwritten.	If
omitted,	existing	files	are	not	overwritten.

unicode

Optional.	Boolean	value	that	indicates	whether	the	file
is	created	as	a	Unicode	or	ASCII	file.	The	value	is
True	if	the	file	is	created	as	a	Unicode	file;	False	if
it's	created	as	an	ASCII	file.	If	omitted,	an	ASCII	file
is	assumed.

Remarks

The	following	code	illustrates	how	to	use	the	CreateTextFile	method	to

create	and	open	a	text	file:

Sub	CreateAfile
		Dim	fso,	MyFile
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	MyFile	=	fso.CreateTextFile("c:\testfile.txt",	True)
		MyFile.WriteLine("This	is	a	test.")
		MyFile.Close
End	Sub

If	the	overwrite	argument	is	False,	or	is	not	provided,	for	a	filename	that
already	exists,	an	error	occurs.

Microsoft®	Visual	Basic®	Scripting	Edition

DateCreated
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was	created.	Read-
only.

Syntax

object.DateCreated

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateCreated	property	with	a
file:

Function	ShowFileInfo(filespec)
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		ShowFileInfo	=	"Created:	"	&	f.DateCreated
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DateLastAccessed
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was	last	accessed.
Read-only.

Syntax

object.DateLastAccessed

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateLastAccessed	property
with	a	file:

Function	ShowFileAccessInfo(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	UCase(filespec)	&	"
"
		s	=	s	&	"Created:	"	&	f.DateCreated	&	"
"
		s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	"
"
		s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		
		ShowFileAccessInfo	=	s
End	Function

Important		This	method	depends	on	the	underlying	operating	system	for	its	behavior.

If	the	operating	system	does	not	support	providing	time	information,	none	will	be
returned.

Microsoft®	Visual	Basic®	Scripting	Edition

DateLastModified
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	date	and	time	that	the	specified	file	or	folder	was	last	modified.
Read-only.

Syntax

object.DateLastModified

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	DateLastModified	property
with	a	file:

Function	ShowFileAccessInfo(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	UCase(filespec)	&	"
"
		s	=	s	&	"Created:	"	&	f.DateCreated	&	"
"
		s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	"
"
		s	=	s	&	"Last	Modified:	"	&	f.DateLastModified
		ShowFileAccessInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Delete
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Deletes	a	specified	file	or	folder.

Syntax

object.Delete	force

The	Delete	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	or	Folder	object.

force
Optional.	Boolean	value	that	is	True	if	files	or	folders
with	the	read-only	attribute	set	are	to	be	deleted;	False
(default)	if	they	are	not.

Remarks

An	error	occurs	if	the	specified	file	or	folder	does	not	exist.	The	Delete
method	does	not	distinguish	between	folders	that	have	contents	and	those
that	do	not.	The	specified	folder	is	deleted	regardless	of	whether	or	not	it
has	contents.

The	results	of	the	Delete	method	on	a	File	or	Folder	are	identical	to	operations	performed	using
FileSystemObject.DeleteFile	or	FileSystemObject.DeleteFolder.

The	following	example	illustrates	use	of	the	Delete	method:

Dim	fso,	MyFile
Set	fso	=	CreateObject("Scripting.FileSystemObject")

Set	MyFile	=	fso.CreateTextFile("c:\testfile.txt",	True)
MyFile.WriteLine("This	is	a	test.")
MyFile.Close
Set	MyFile	=	fso.GetFile("c:\testfile.txt")
MyFile.Delete	

Microsoft®	Visual	Basic®	Scripting	Edition

DeleteFile	Method
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Deletes	a	specified	file.

Syntax

object.DeleteFile	filespec[,	force]

The	DeleteFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

filespec
Required.	The	name	of	the	file	to	delete.	The	filespec
can	contain	wildcard	characters	in	the	last	path
component.

force
Optional.	Boolean	value	that	is	True	if	files	with	the
read-only	attribute	set	are	to	be	deleted;	False	(default)
if	they	are	not.

Remarks

An	error	occurs	if	no	matching	files	are	found.	The	DeleteFile	method
stops	on	the	first	error	it	encounters.	No	attempt	is	made	to	roll	back	or
undo	any	changes	that	were	made	before	an	error	occurred.

The	following	example	illustrates	use	of	the	DeleteFile	method:

Sub	DeleteAFile(filespec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")

		fso.DeleteFile(filespec)
End	Sub

Microsoft®	Visual	Basic®	Scripting	Edition

DeleteFolder
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Deletes	a	specified	folder	and	its	contents.

Syntax

object.DeleteFolder	folderspec[,	force]

The	DeleteFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

folderspec
Required.	The	name	of	the	folder	to	delete.	The
folderspec	can	contain	wildcard	characters	in	the	last
path	component.

force
Optional.	Boolean	value	that	is	True	if	folders	with
the	read-only	attribute	set	are	to	be	deleted;	False
(default)	if	they	are	not.

Remarks

The	DeleteFolder	method	does	not	distinguish	between	folders	that	have
contents	and	those	that	do	not.	The	specified	folder	is	deleted	regardless	of
whether	or	not	it	has	contents.

An	error	occurs	if	no	matching	folders	are	found.	The	DeleteFolder	method	stops	on	the	first	error	it
encounters.	No	attempt	is	made	to	roll	back	or	undo	any	changes	that	were	made	before	an	error
occurred.

The	following	example	illustrates	use	of	the	DeleteFolder	method:

Sub	DeleteAFolder(filespec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		fso.DeleteFolder(filespec)
End	Sub

Microsoft®	Visual	Basic®	Scripting	Edition

Dictionary	Object
	Scripting	Run-Time	Reference	

Version	2	

See	Also																			Properties																				Methods

Description

Object	that	stores	data	key,	item	pairs.

Remarks

A	Dictionary	object	is	the	equivalent	of	a	PERL	associative	array.	Items,
which	can	be	any	form	of	data,	are	stored	in	the	array.	Each	item	is
associated	with	a	unique	key.	The	key	is	used	to	retrieve	an	individual	item
and	is	usually	a	integer	or	a	string,	but	can	be	anything	except	an	array.

The	following	code	illustrates	how	to	create	a	Dictionary	object:

Dim	d																			'	Create	a	variable.
Set	d	=	CreateObject("Scripting.Dictionary")
d.Add	"a",	"Athens"					'	Add	some	keys	and	items.
d.Add	"b",	"Belgrade"
d.Add	"c",	"Cairo"
...

Microsoft®	Visual	Basic®	Scripting	Edition	Drive
Object

	Scripting	Run-Time	Reference	
Version	3	

See	Also																			Properties																			Methods

Description

Provides	access	to	the	properties	of	a	particular	disk	drive	or	network	share.

Remarks

The	following	code	illustrates	the	use	of	the	Drive	object	to	access	drive
properties:

Function	ShowFreeSpace(drvPath)
		Dim	fso,	d,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(drvPath))
		s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"	
		s	=	s	&	d.VolumeName		&	"
"
		s	=	s	&	"Free	Space:	"	&	FormatNumber(d.FreeSpace/1024,	0)	
		s	=	s	&	"	Kbytes"
		ShowFreeSpace	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Drive
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	drive	letter	of	the	drive	on	which	the	specified	file	or	folder
resides.	Read-only.

Syntax

object.Drive

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Drive	property:

Function	ShowFileAccessInfo(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	f.Name	&	"	on	Drive	"	&	UCase(f.Drive)	&	"
"
		s	=	s	&	"Created:	"	&	f.DateCreated	&	"
"
		s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	"
"
		s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		
		ShowFileAccessInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DriveExists
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	True	if	the	specified	drive	exists;	False	if	it	does	not.

Syntax

object.DriveExists(drivespec)

The	DriveExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

drivespec Required.	A	drive	letter	or	a	complete	pathspecification.

Remarks

For	drives	with	removable	media,	the	DriveExists	method	returns	True
even	if	there	are	no	media	present.	Use	the	IsReady	property	of	the	Drive
object	to	determine	if	a	drive	is	ready.

The	following	example	illustrates	use	of	the	DriveExists	method:

Function	ReportDriveStatus(drv)
		Dim	fso,	msg
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		If	fso.DriveExists(drv)	Then
				msg	=	("Drive	"	&	UCase(drv)	&	"	exists.")
		Else

				msg	=	("Drive	"	&	UCase(drv)	&	"	doesn't	exist.")
		End	If
		ReportDriveStatus	=	msg
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DriveLetter
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	drive	letter	of	a	physical	local	drive	or	a	network	share.	Read-
only.

Syntax

object.DriveLetter

The	object	is	always	a	Drive	object.

Remarks

The	DriveLetter	property	returns	a	zero-length	string	("")	if	the	specified
drive	is	not	associated	with	a	drive	letter,	for	example,	a	network	share	that
has	not	been	mapped	to	a	drive	letter.

The	following	code	illustrates	the	use	of	the	DriveLetter	property:

Function	ShowDriveLetter(drvPath)
		Dim	fso,	d,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(drvPath))
		s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	
		s	=	s	&	d.VolumeName	&	"
"
		s	=	s	&	"Free	Space:	"	&	FormatNumber(d.FreeSpace/1024,	0)	
		s	=	s	&	"	Kbytes"
		ShowDriveLetter	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	

Drives	Collection
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Properties																		Methods

Description

Read-only	collection	of	all	available	drives.

Remarks

Removable-media	drives	need	not	have	media	inserted	for	them	to	appear
in	the	Drives	collection.

The	following	code	illustrates	how	to	get	the	Drives	collection	and	iterate	the	collection	using	the
For	Each...Next	statement:

Function	ShowDriveList
		Dim	fso,	d,	dc,	s,	n
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	dc	=	fso.Drives
		For	Each	d	in	dc
				n	=	""
				s	=	s	&	d.DriveLetter	&	"	-	"	
				If	d.DriveType	=	Remote	Then
						n	=	d.ShareName
				ElseIf	d.IsReady	Then
						n	=	d.VolumeName
				End	If
				s	=	s	&	n	&	"
"
		Next
		ShowDriveList	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Drives
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	Drives	collection	consisting	of	all	Drive	objects	available	on	the
local	machine.

Syntax

object.Drives

The	object	is	always	a	FileSystemObject.

Remarks

Removable-media	drives	need	not	have	media	inserted	for	them	to	appear
in	the	Drives	collection.

You	can	iterate	the	members	of	the	Drives	collection	using	a	For	Each...Next	construct	as	illustrated
in	the	following	code:

Function	ShowDriveList
		Dim	fso,	d,	dc,	s,	n
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	dc	=	fso.Drives
		For	Each	d	in	dc
				n	=	""
				s	=	s	&	d.DriveLetter	&	"	-	"	
				If	d.DriveType	=	3	Then
						n	=	d.ShareName
				ElseIf	d.IsReady	Then
						n	=	d.VolumeName

				End	If
				s	=	s	&	n	&	"
"
		Next
		ShowDriveList	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DriveType
Constants

	Scripting	Run-Time	Reference	
Version	3	

See	Also

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.	For	VBScript,
you	must	explicitly	declare	these	constants	in	your	code.

Constant Value Description
Unknown 0 Drive	type	can't	be	determined.

Removable 1
Drive	has	removable	media.	This	includes	all
floppy	drives	and	many	other	varieties	of
storage	devices.

Fixed 2
Drive	has	fixed	(nonremovable)	media.	This
includes	all	hard	drives,	including	hard
drives	that	are	removable.

Remote 3 Network	drives.	This	includes	drives	shared
anywhere	on	a	network.

CDROM 4
Drive	is	a	CD-ROM.	No	distinction	is	made
between	read-only	and	read/write	CD-ROM
drives.

RAMDisk 5
Drive	is	a	block	of	Random	Access	Memory
(RAM)	on	the	local	computer	that	behaves
like	a	disk	drive.

Microsoft®	Visual	Basic®	Scripting	Edition

DriveType
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	value	indicating	the	type	of	a	specified	drive.

Syntax

object.DriveType

The	object	is	always	a	Drive	object.

Remarks

The	following	code	illustrates	the	use	of	the	DriveType	property:

Function	ShowDriveType(drvpath)
		Dim	fso,	d,	t
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(drvpath)
		Select	Case	d.DriveType
				Case	0:	t	=	"Unknown"
				Case	1:	t	=	"Removable"
				Case	2:	t	=	"Fixed"
				Case	3:	t	=	"Network"
				Case	4:	t	=	"CD-ROM"
				Case	5:	t	=	"RAM	Disk"
		End	Select
		ShowDriveType	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	t
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Exists
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Returns	True	if	a	specified	key	exists	in	the	Dictionary	object,	False	if	it
does	not.

Syntax

object.Exists(key)

The	Exists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.

key Required.	Key	value	being	searched	for	in	the	Dictionary
object.

Remarks

The	following	example	illustrates	use	of	the	Exists	method:

Function	KeyExistsDemo
		Dim	d,	msg														'	Create	some	variables.
		Set	d	=	CreateObject("Scripting.Dictionary")
		d.Add	"a",	"Athens"					'	Add	some		keys	and	items.
		d.Add	"b",	"Belgrade"
		d.Add	"c",	"Cairo"
		If	d.Exists("c")	Then
				msg	=	"Specified	key	exists."
		Else

				msg	=	"Specified	key	doesn't	exist."
		End	If
		KeyExistsDemo	=	msg
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	File
Attribute
Constants

	Scripting	Run-Time	Reference	
Version	3	

See	Also

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.	For	VBScript,
you	must	explicitly	declare	these	constants	in	your	code.

Constant Value Description
Normal 0 Normal	file.	No	attributes	are	set.
ReadOnly 1 Read-only	file.
Hidden 2 Hidden	file.
System 4 System	file.
Directory 16 Folder	or	directory.
Archive 32 File	has	changed	since	last	backup.
Alias 1024 Link	or	shortcut.
Compressed 2048 Compressed	file.

Microsoft®	Visual	Basic®	Scripting	Edition	File
Input/Output
Constants

	Scripting	Run-Time	Reference	
Version	2	

See	Also

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.	For	VBScript,
you	must	explicitly	declare	these	constants	in	your	code.

Constant Value Description

ForReading 1 Open	a	file	for	reading	only.	You	can't
write	to	this	file.

ForWriting 2
Open	a	file	for	writing.	If	a	file	with	the
same	name	exists,	its	previous	contents
are	overwritten.

ForAppending 8 Open	a	file	and	write	to	the	end	of	the
file.

Microsoft®	Visual	Basic®	Scripting	Edition

FileExists	Method
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	True	if	a	specified	file	exists;	False	if	it	does	not.

Syntax

object.FileExists(filespec)

The	FileExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

filespec

Required.	The	name	of	the	file	whose	existence	is	to	be
determined.	A	complete	path	specification	(either
absolute	or	relative)	must	be	provided	if	the	file	isn't
expected	to	exist	in	the	current	folder.

Remarks

The	following	example	illustrates	use	of	the	FileExists	method:

Function	ReportFileStatus(filespec)
		Dim	fso,	msg
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		If	(fso.FileExists(filespec))	Then
				msg	=	filespec	&	"	exists."
		Else
				msg	=	filespec	&	"	doesn't	exist."
		End	If
		ReportFileStatus	=	msg

End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	File
Object

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Properties																		Methods

Description

Provides	access	to	all	the	properties	of	a	file.

Remarks

The	following	code	illustrates	how	to	obtain	a	File	object	and	how	to	view
one	of	its	properties.

Function	ShowDateCreated(filespec)
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		ShowDateCreated	=	f.DateCreated
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Files
Collection

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Properties																		Methods

Description

Collection	of	all	File	objects	within	a	folder.

Remarks

The	following	code	illustrates	how	to	get	a	Files	collection	and	iterate	the
collection	using	the	For	Each...Next	statement:

Function	ShowFolderList(folderspec)
		Dim	fso,	f,	f1,	fc,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(folderspec)
		Set	fc	=	f.Files
		For	Each	f1	in	fc
				s	=	s	&	f1.name	
				s	=	s	&	"
"
		Next
		ShowFolderList	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Files
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	Files	collection	consisting	of	all	File	objects	contained	in	the
specified	folder,	including	those	with	hidden	and	system	file	attributes	set.

Syntax

object.Files

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Files	property:

Function	ShowFileList(folderspec)
		Dim	fso,	f,	f1,	fc,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(folderspec)
		Set	fc	=	f.Files
		For	Each	f1	in	fc
				s	=	s	&	f1.name	
				s	=	s	&		"
"
		Next
		ShowFileList	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystemObject
Object

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Properties																				Methods

Description

Provides	access	to	a	computer's	file	system.

Remarks

The	following	code	illustrates	how	the	FileSystemObject	is	used	to	return
a	TextStream	object	that	can	be	read	from	or	written	to:

Dim	fso,	MyFile
Set	fso	=	CreateObject("Scripting.FileSystemObject")
Set	MyFile	=	fso.CreateTextFile("c:\testfile.txt",	True)
MyFile.WriteLine("This	is	a	test.")
MyFile.Close

In	the	preceding	code,	the	CreateObject	function	returns	the
FileSystemObject	(fso).	The	CreateTextFile	method	then	creates	the	file	as
a	TextStream	object	(a)	and	the	WriteLine	method	writes	a	line	of	text	to
the	created	text	file.	The	Close	method	flushes	the	buffer	and	closes	the	file.

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystemObject
Constants

	Scripting	Run-Time	Reference	
Version	2	

See	Also

FileSystemObject	has	a	number	of	useful	constants	that	you	can	use	in	your
code.	Constants	provide	a	convenient	way	to	use	specific	values	without	actually
having	to	remember	the	value	itself.	They	also	makes	your	code	more
maintainable,	should	the	value	of	any	constant	ever	change.

Depending	on	your	scripting	host,	these	constants	may	be	already	defined.	If	so,	simply	use	the	constants
anywhere	in	your	code	in	place	of	the	values	they	represent.	In	cases	where	SCRRUN.DLL	is	not	explicitly
referenced	by	your	scripting	host,	you'll	have	to	define	these	constants	in	your	code	before	you	can	use
them.	Examples	of	this	case	include	Microsoft	Internet	Explorer	and	Microsoft	Internet	Information
Services	(IIS).

The	following	list	describes	the	various	categories	of	constants	provided	for	the	FileSystemObject,	along
with	a	brief	description:

DriveType	Constants
Defines	the	various	drive	types	available	on	the	host	computer,	such	as	Fixed,	Removable,	CD-ROM,	etc.

File	Attribute	Constants
Defines	various	file	attributes	such	as	Hidden,	Read-Only,	etc.

File	Input/Output	Constants
Defines	constants	used	with	file	input	and	output.

SpecialFolder	Constants
Defines	special	folders	available	in	your	operating	system.

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystem
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	type	of	file	system	in	use	for	the	specified	drive.

Syntax

object.FileSystem

The	object	is	always	a	Drive	object.

Remarks

Available	return	types	include	FAT,	NTFS,	and	CDFS.

The	following	code	illustrates	the	use	of	the	FileSystem	property:

Function	ShowFileSystemType(drvspec)
		Dim	fso,d
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(drvspec)
		ShowFileSystemType	=	d.FileSystem
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Folder
Object

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Properties																		Methods

Description

Provides	access	to	all	the	properties	of	a	folder.

Remarks

The	following	code	illustrates	how	to	obtain	a	Folder	object	and	how	to
return	one	of	its	properties:

Function	ShowDateCreated(folderspec)
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(folderspec)
		ShowDateCreated	=	f.DateCreated
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Folders
Collection

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Properties																		Methods

Description

Collection	of	all	Folder	objects	contained	within	a	Folder	object.

Remarks

The	following	code	illustrates	how	to	get	a	Folders	collection	and	how	to
iterate	the	collection	using	the	For	Each...Next	statement:

Function	ShowFolderList(folderspec)
		Dim	fso,	f,	f1,	fc,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(folderspec)
		Set	fc	=	f.SubFolders
		For	Each	f1	in	fc
				s	=	s	&	f1.name	
				s	=	s	&		"
"
		Next
		ShowFolderList	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FolderExists
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	True	if	a	specified	folder	exists;	False	if	it	does	not.

Syntax

object.FolderExists(folderspec)

The	FolderExists	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

folderspec

Required.	The	name	of	the	folder	whose	existence	is
to	be	determined.	A	complete	path	specification
(either	absolute	or	relative)	must	be	provided	if	the
folder	isn't	expected	to	exist	in	the	current	folder.

Remarks

The	following	example	illustrates	use	of	the	FolderExists	method:

Function	ReportFolderStatus(fldr)
		Dim	fso,	msg
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		If	(fso.FolderExists(fldr))	Then
				msg	=	fldr	&	"	exists."
		Else
				msg	=	fldr	&	"	doesn't	exist."

		End	If
		ReportFolderStatus	=	msg
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FreeSpace
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	amount	of	free	space	available	to	a	user	on	the	specified	drive
or	network	share.	Read-only.

Syntax

object.FreeSpace

The	object	is	always	a	Drive	object.

Remarks

The	value	returned	by	the	FreeSpace	property	is	typically	the	same	as	that
returned	by	the	AvailableSpace	property.	Differences	may	occur	between
the	two	for	computer	systems	that	support	quotas.

The	following	code	illustrates	the	use	of	the	FreeSpace	property:

Function	ShowFreeSpace(drvPath)
		Dim	fso,	d,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(drvPath))
		s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"	
		s	=	s	&	d.VolumeName		&	"
"
		s	=	s	&	"Free	Space:	"	&	FormatNumber(d.FreeSpace/1024,	0)	
		s	=	s	&	"	Kbytes"
		ShowFreeSpace	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

GetAbsolutePathName
Method

	Scripting	Run-
Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	complete	and	unambiguous	path	from	a	provided	path
specification.

Syntax

object.GetAbsolutePathName(pathspec)

The	GetAbsolutePathName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

pathspec Required.	Path	specification	to	change	to	a	completeand	unambiguous	path.

Remarks

A	path	is	complete	and	unambiguous	if	it	provides	a	complete	reference
from	the	root	of	the	specified	drive.	A	complete	path	can	only	end	with	a
path	separator	character	(\)	if	it	specifies	the	root	folder	of	a	mapped	drive.

Assuming	the	current	directory	is	c:\mydocuments\reports,	the	following	table	illustrates	the
behavior	of	the	GetAbsolutePathName	method.

pathspec Returned	path
"c:" "c:\mydocuments\reports"
"c:.." "c:\mydocuments"
"c:\\\" "c:\"

"c:*.*\may97" "c:\mydocuments\reports*.*\may97"
"region1" "c:\mydocuments\reports\region1"
"c:\..\..\mydocuments" "c:\mydocuments"

Microsoft®	Visual	Basic®	Scripting	Edition

GetBaseName
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	string	containing	the	base	name	of	the	file	(less	any	file
extension),	or	folder	in	a	provided	path	specification.

Syntax

object.GetBaseName(path)

The	GetBaseName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path Required.	The	path	specification	for	the	file	or	folder
whose	base	name	is	to	be	returned.

Remarks

The	GetBaseName	method	returns	a	zero-length	string	("")	if	no	file	or
folder	matches	the	path	argument.

The	following	example	illustrates	use	of	the	GetBaseName	method:

Function	GetTheBase(filespec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		GetTheBase	=	fso.GetBaseName(filespec)
End	Function

Note		The	GetBaseName	method	works	only	on	the	provided
path	string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it
check	for	the	existence	of	the	specified	path.

Microsoft®	Visual	Basic®	Scripting	Edition

GetDrive	Method
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	Drive	object	corresponding	to	the	drive	in	a	specified	path.

Syntax

object.GetDrive	drivespec

The	GetDrive	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

drivespec

Required.	The	drivespec	argument	can	be	a	drive
letter	(c),	a	drive	letter	with	a	colon	appended	(c:),	a
drive	letter	with	a	colon	and	path	separator	appended
(c:\),	or	any	network	share	specification
(\\computer2\share1).

Remarks

For	network	shares,	a	check	is	made	to	ensure	that	the	share	exists.

An	error	occurs	if	drivespec	does	not	conform	to	one	of	the	accepted	forms	or	does	not	exist.	To	call
the	GetDrive	method	on	a	normal	path	string,	use	the	following	sequence	to	get	a	string	that	is
suitable	for	use	as	drivespec:

DriveSpec	=	GetDriveName(GetAbsolutePathName(Path))

The	following	example	illustrates	use	of	the	GetDrive	method:

Function	ShowFreeSpace(drvPath)
		Dim	fso,	d,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")

		Set	d	=	fso.GetDrive(fso.GetDriveName(drvPath))
		s	=	"Drive	"	&	UCase(drvPath)	&	"	-	"	
		s	=	s	&	d.VolumeName		&	"
"
		s	=	s	&	"Free	Space:	"	&	FormatNumber(d.FreeSpace/1024,	0)	
		s	=	s	&	"	Kbytes"
		ShowFreeSpace	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

GetDriveName
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	string	containing	the	name	of	the	drive	for	a	specified	path.

Syntax

object.GetDriveName(path)

The	GetDriveName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path Required.	The	path	specification	for	the	component
whose	drive	name	is	to	be	returned.

Remarks

The	GetDriveName	method	returns	a	zero-length	string	("")	if	the	drive
can't	be	determined.

The	following	example	illustrates	use	of	the	GetDriveName	method:

Function	GetAName(DriveSpec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		GetAName	=	fso.GetDriveName(Drivespec)
End	Function

Note		The	GetDriveName	method	works	only	on	the	provided
path	string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it
check	for	the	existence	of	the	specified	path.

Microsoft®	Visual	Basic®	Scripting	Edition

GetExtensionName
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	string	containing	the	extension	name	for	the	last	component	in	a
path.

Syntax

object.GetExtensionName(path)

The	GetExtensionName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path Required.	The	path	specification	for	the	component
whose	extension	name	is	to	be	returned.

Remarks

For	network	drives,	the	root	directory	(\)	is	considered	to	be	a	component.

The	GetExtensionName	method	returns	a	zero-length	string	("")	if	no	component	matches	the	path
argument.

The	following	example	illustrates	use	of	the	GetExtensionName	method:

Function	GetAnExtension(DriveSpec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		GetAnExtension	=	fso.GetExtensionName(Drivespec

End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	GetFile
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	File	object	corresponding	to	the	file	in	a	specified	path.

Syntax

object.GetFile(filespec)

The	GetFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

filespec Required.	The	filespec	is	the	path	(absolute	or	relative)to	a	specific	file.

Remarks

An	error	occurs	if	the	specified	file	does	not	exist.

The	following	example	illustrates	use	of	the	GetFile	method:

Function	ShowFileAccessInfo(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	f.Path	&	"
"
		s	=	s	&	"Created:	"	&	f.DateCreated	&	"
"
		s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	"
"
		s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		
		ShowFileAccessInfo	=	s

End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

GetFileName
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	last	file	name	or	folder	of	a	specified	path	that	is	not	part	of	the
drive	specification.

Syntax

object.GetFileName(pathspec)

The	GetFileName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

pathspec Required.	The	path	(absolute	or	relative)	to	a	specificfile.

Remarks

The	GetFileName	method	returns	a	zero-length	string	("")	if	pathspec	does
not	end	with	the	named	file	or	folder.

The	following	example	illustrates	use	of	the	GetFileName	method:

Function	GetAName(DriveSpec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		GetAName	=	fso.GetFileName(DriveSpec)
End	Function

Note		The	GetFileName	method	works	only	on	the	provided
path	string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it
check	for	the	existence	of	the	specified	path.

Microsoft®	Visual	Basic®	Scripting	Edition

GetFileVersion
Method

	Scripting	Run-Time	Reference	
Version	5	

See	Also																		Applies	To

Description

Returns	the	version	number	of	a	specified	file.

Syntax

object.GetFileVersion(pathspec)

The	GetVersion	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

pathspec Required.	The	path	(absolute	or	relative)	to	a	specificfile.

Remarks

The	GetFileVersion	method	returns	a	zero-length	string	("")	if	pathspec
does	not	end	with	the	named	file	or	if	the	file	does	not	contain	version
information.

The	following	example	illustrates	use	of	the	GetFileVersion	method:

Function	GetVersion(PathSpec)
		Dim	fso,	temp
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		temp	=	fso.GetFileVersion(PathSpec)
		If	Len(temp)	Then	

				GetVersion	=	temp
		Else
				GetVersion	=	"No	version	information	available."
		End	If
End	Function

Note		The	GetFileVersion	method	works	only	on	the	provided
path	string.	It	does	not	attempt	to	resolve	the	path,	nor	does	it
check	for	the	existence	of	the	specified	path.

Microsoft®	Visual	Basic®	Scripting	Edition

GetFolder	Method
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	Folder	object	corresponding	to	the	folder	in	a	specified	path.

Syntax

object.GetFolder(folderspec)

The	GetFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

folderspec Required.	The	folderspec	is	the	path	(absolute	orrelative)	to	a	specific	folder.

Remarks

An	error	occurs	if	the	specified	folder	does	not	exist.

The	following	example	illustrates	the	use	of	the	GetFolder	method	to	return	a	folder	object:

Sub	AddNewFolder(path,	folderName)
		Dim	fso,	f,	fc,	nf
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(path)
		Set	fc	=	f.SubFolders
		If	folderName	<>	""	Then
				Set	nf	=	fc.Add(folderName)

		Else
				Set	nf	=	fc.Add("New	Folder")
		End	If
End	Sub

Microsoft®	Visual	Basic®	Scripting	Edition

GetParentFolderName
Method

	Scripting	Run-
Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	a	string	containing	the	name	of	the	parent	folder	of	the	last	file	or
folder	in	a	specified	path.

Syntax

object.GetParentFolderName(path)

The	GetParentFolderName	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

path Required.	The	path	specification	for	the	file	or	folder
whose	parent	folder	name	is	to	be	returned.

Remarks

The	GetParentFolderName	method	returns	a	zero-length	string	("")	if
there	is	no	parent	folder	for	the	file	or	folder	specified	in	the	path	argument.

The	following	example	illustrates	use	of	the	GetParentFolderName	method:

Function	GetTheParent(DriveSpec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		GetTheParent	=	fso.GetParentFolderName(Drivespec
End	Function

Note		The	GetParentFolderName	method	works	only	on	the
provided	path	string.	It	does	not	attempt	to	resolve	the	path,	nor
does	it	check	for	the	existence	of	the	specified	path.

Microsoft®	Visual	Basic®	Scripting	Edition

GetSpecialFolder
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	special	folder	specified.

Syntax

object.GetSpecialFolder(folderspec)

The	GetSpecialFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

folderspec
Required.	The	name	of	the	special	folder	to	be
returned.	Can	be	any	of	the	constants	shown	in	the
Settings	section.

Settings

The	folderspec	argument	can	have	any	of	the	following	values:

Constant Value Description

WindowsFolder 0
The	Windows	folder	contains	files
installed	by	the	Windows	operating
system.

SystemFolder 1 The	System	folder	contains	libraries,
fonts,	and	device	drivers.

TemporaryFolder 2
The	Temp	folder	is	used	to	store
temporary	files.	Its	path	is	found	in
the	TMP	environment	variable.

Remarks

The	following	example	illustrates	use	of	the	GetSpecialFolder	method:

Dim	fso,	tempfile
Set	fso	=	CreateObject("Scripting.FileSystemObject")

Function	CreateTempFile	
			Dim	tfolder,	tname,	tfile
			Const	TemporaryFolder	=	2
			Set	tfolder	=	fso.GetSpecialFolder(TemporaryFolder)
			tname	=	fso.GetTempName		
			Set	tfile	=	tfolder.CreateTextFile(tname)
			Set	CreateTempFile	=	tfile
End	Function

Set	tempfile	=	CreateTempFile
tempfile.WriteLine	"Hello	World"
tempfile.Close

Microsoft®	Visual	Basic®	Scripting	Edition

GetTempName
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	randomly	generated	temporary	file	or	folder	name	that	is	useful
for	performing	operations	that	require	a	temporary	file	or	folder.

Syntax

object.GetTempName

The	optional	object	is	always	the	name	of	a	FileSystemObject.

Remarks

The	GetTempName	method	does	not	create	a	file.	It	provides	only	a
temporary	file	name	that	can	be	used	with	CreateTextFile	to	create	a	file.

The	following	example	illustrates	use	of	the	GetTempName	method:

Dim	fso,	tempfile
Set	fso	=	CreateObject("Scripting.FileSystemObject")

Function	CreateTempFile	
			Dim	tfolder,	tname,	tfile
			Const	TemporaryFolder	=	2
			Set	tfolder	=	fso.GetSpecialFolder(TemporaryFolder)
			tname	=	fso.GetTempName			

			Set	tfile	=	tfolder.CreateTextFile(tname)
			Set	CreateTempFile	=	tfile
End	Function

Set	tempfile	=	CreateTempFile
tempfile.WriteLine	"Hello	World"
tempfile.Close

Microsoft®	Visual	Basic®	Scripting	Edition	IsReady
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	True	if	the	specified	drive	is	ready;	False	if	it	is	not.

Syntax

object.IsReady

The	object	is	always	a	Drive	object.

Remarks

For	removable-media	drives	and	CD-ROM	drives,	IsReady	returns	True
only	when	the	appropriate	media	is	inserted	and	ready	for	access.

The	following	code	illustrates	the	use	of	the	IsReady	property:

Function	ShowDriveInfo(drvpath)
		Dim	fso,	d,	s,	t
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(drvpath)
		Select	Case	d.DriveType
				Case	0:	t	=	"Unknown"
				Case	1:	t	=	"Removable"
				Case	2:	t	=	"Fixed"
				Case	3:	t	=	"Network"
				Case	4:	t	=	"CD-ROM"
				Case	5:	t	=	"RAM	Disk"
		End	Select
		s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	t

		If	d.IsReady	Then	
				s	=	s	&	"
"	&	"Drive	is	Ready."
		Else
				s	=	s	&	"
"	&	"Drive	is	not	Ready."
		End	If
		ShowDriveInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

IsRootFolder
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	True	if	the	specified	folder	is	the	root	folder;	False	if	it	is	not.

Syntax

object.IsRootFolder

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	IsRootFolder	property:

Function	DisplayLevelDepth(pathspec)
		Dim	fso,	f,	n
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(pathspec)
		If	f.IsRootFolder	Then
				DisplayLevelDepth	=	"The	specified	folder	is	the	root	folder."
		Else
				Do	Until	f.IsRootFolder
						Set	f	=	f.ParentFolder
						n	=	n	+	1
				Loop
				DisplayLevelDepth	=	"The	specified	folder	is	nested	"	&	n	&	"	levels	deep."
		End	If
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Item
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	To

Description

Sets	or	returns	an	item	for	a	specified	key	in	a	Dictionary	object.	For
collections,	returns	an	item	based	on	the	specified	key.	Read/write.

Syntax

object.Item(key)	[=	newitem]

The	Item	property	has	the	following	parts:

Part Description

object Required.	Always	the	name	of	a	collection	or
Dictionary	object.

key Required.	Key	associated	with	the	item	being	retrieved
or	added.

newitem
Optional.	Used	for	Dictionary	object	only;	no
application	for	collections.	If	provided,	newitem	is	the
new	value	associated	with	the	specified	key.

Remarks

If	key	is	not	found	when	changing	an	item,	a	new	key	is	created	with	the
specified	newitem.	If	key	is	not	found	when	attempting	to	return	an	existing
item,	a	new	key	is	created	and	its	corresponding	item	is	left	empty.

The	following	example	illustrates	the	use	of	the	Item	property:

Function	ItemDemo

		Dim	d																			'	Create	some	variables.
		Set	d	=	CreateObject("Scripting.Dictionary")
		d.Add	"a",	"Athens"					'	Add	some	keys	and	items.
		d.Add	"b",	"Belgrade"
		d.Add	"c",	"Cairo"
		ItemDemo	=	d.Item("c")		'	Get	the	item.									
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Items
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	to

Description

Returns	an	array	containing	all	the	items	in	a	Dictionary	object.

Syntax

object.Items

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	Items	method:

Function	DicDemo
		Dim	a,	d,	i,	s										'	Create	some	variables.
		Set	d	=	CreateObject("Scripting.Dictionary")
		d.Add	"a",	"Athens"					'	Add	some	keys	and	items.
		d.Add	"b",	"Belgrade"
		d.Add	"c",	"Cairo"
		a	=	d.Items													'	Get	the	items.
		For	i	=	0	To	d.Count	-1	'	Iterate	the	array.
				s	=	s	&	a(i)	&	"
"	'	Create	return	string.
		Next
		DicDemo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Key
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Sets	a	key	in	a	Dictionary	object.

Syntax

object.Key(key)	=	newkey

The	Key	property	has	the	following	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.
key Required.	Key	value	being	changed.
newkey Required.	New	value	that	replaces	the	specified	key.

Remarks

If	key	is	not	found	when	changing	a	key,	a	run-time	error	will	occur.

The	following	example	illustrates	the	use	of	the	Key	property:

Function	DicDemo
		Dim	d																			'	Create	some	variables.
		Set	d	=	CreateObject("Scripting.Dictionary")
		d.Add	"a",	"Athens"					'	Add	some	keys	and	items.
		d.Add	"b",	"Belgrade"
		d.Add	"c",	"Cairo"

		d.Key("c")	=	"d"								'	Set	key	for	"c"	to	"d".
		DicDemo	=	d.Item("d")			'	Return	associate	item.
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Keys
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	to

Description

Returns	an	array	containing	all	existing	keys	in	a	Dictionary	object.

Syntax

object.Keys

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	Keys	method:

Function	DicDemo
		Dim	a,	d,	i													'	Create	some	variables.
		Set	d	=	CreateObject("Scripting.Dictionary")
		d.Add	"a",	"Athens"					'	Add	some	keys	and	items.
		d.Add	"b",	"Belgrade"
		d.Add	"c",	"Cairo"
		a	=	d.Keys														'	Get	the	keys.
		For	i	=	0	To	d.Count	-1	'	Iterate	the	array.
				s	=	s	&	a(i)	&	"
"	'	Return	results.
		Next
		DicDemo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Line
Property

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Read-only	property	that	returns	the	current	line	number	in	a	TextStream
file.

Syntax

object.Line

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

After	a	file	is	initially	opened	and	before	anything	is	written,	Line	is	equal
to	1.

The	following	example	illustrates	use	of	the	Line	property:

Function	GetLine
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	f,	ra
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.Write	"Hello	world!"	&	vbCrLf	&	"VB	Script	is	fun!"	&	vbCrLf
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		ra	=		f.ReadAll
		GetLine	=	f.Line			
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Move
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Moves	a	specified	file	or	folder	from	one	location	to	another.

Syntax

object.Move	destination

The	Move	method	syntax	has	these	parts:

Part Description

object Required.	Always	the	name	of	a	File	or	Folder
object.

destination Required.	Destination	where	the	file	or	folder	is	tobe	moved.	Wildcard	characters	are	not	allowed.

Remarks

The	results	of	the	Move	method	on	a	File	or	Folder	are	identical	to
operations	performed	using	FileSystemObject.MoveFile	or
FileSystemObject.MoveFolder.	You	should	note,	however,	that	the
alternative	methods	are	capable	of	moving	multiple	files	or	folders.

The	following	example	illustrates	use	of	the	Move	method:

Dim	fso,	MyFile
Set	fso	=	CreateObject("Scripting.FileSystemObject")
Set	MyFile	=	fso.CreateTextFile("c:\testfile.txt",	True)
MyFile.WriteLine("This	is	a	test.")

MyFile.Close
Set	MyFile	=	fso.GetFile("c:\testfile.txt")
MyFile.Move	"c:\windows\desktop\"

Microsoft®	Visual	Basic®	Scripting	Edition

MoveFile	Method
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Moves	one	or	more	files	from	one	location	to	another.

Syntax

object.MoveFile	source,	destination

The	MoveFile	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

source
Required.	The	path	to	the	file	or	files	to	be	moved.
The	source	argument	string	can	contain	wildcard
characters	in	the	last	path	component	only.

destination
Required.	The	path	where	the	file	or	files	are	to	be
moved.	The	destination	argument	can't	contain
wildcard	characters.

Remarks

If	source	contains	wildcards	or	destination	ends	with	a	path	separator	(\),	it
is	assumed	that	destination	specifies	an	existing	folder	in	which	to	move	the
matching	files.	Otherwise,	destination	is	assumed	to	be	the	name	of	a
destination	file	to	create.	In	either	case,	three	things	can	happen	when	an
individual	file	is	moved:

If	destination	does	not	exist,	the	file	gets	moved.	This	is	the	usual	case.

If	destination	is	an	existing	file,	an	error	occurs.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	wildcard	character	that	is	used	in	source	doesn't
match	any	files.	The	MoveFile	method	stops	on	the	first	error	it	encounters.
No	attempt	is	made	to	roll	back	any	changes	made	before	the	error	occurs.

The	following	example	illustrates	use	of	the	MoveFile	method:

Sub	MoveAFile(Drivespec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		fso.MoveFile	Drivespec,	"c:\windows\desktop\"
End	Sub

Important		This	method	allows	moving	files	between	volumes
only	if	supported	by	the	operating	system.

Microsoft®	Visual	Basic®	Scripting	Edition

MoveFolder
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Moves	one	or	more	folders	from	one	location	to	another.

Syntax

object.MoveFolder	source,	destination

The	MoveFolder	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

source
Required.	The	path	to	the	folder	or	folders	to	be
moved.	The	source	argument	string	can	contain
wildcard	characters	in	the	last	path	component	only.

destination
Required.	The	path	where	the	folder	or	folders	are	to
be	moved.	The	destination	argument	can't	contain
wildcard	characters.

Remarks

If	source	contains	wildcards	or	destination	ends	with	a	path	separator	(\),	it
is	assumed	that	destination	specifies	an	existing	folder	in	which	to	move	the
matching	files.	Otherwise,	destination	is	assumed	to	be	the	name	of	a
destination	folder	to	create.	In	either	case,	three	things	can	happen	when	an
individual	folder	is	moved:

If	destination	does	not	exist,	the	folder	gets	moved.	This	is	the	usual
case.

If	destination	is	an	existing	file,	an	error	occurs.

If	destination	is	a	directory,	an	error	occurs.

An	error	also	occurs	if	a	wildcard	character	that	is	used	in	source	doesn't
match	any	folders.	The	MoveFolder	method	stops	on	the	first	error	it
encounters.	No	attempt	is	made	to	roll	back	any	changes	made	before	the
error	occurs.

The	following	example	illustrates	use	of	the	MoveFolder	method:

Sub	MoveAFolder(Drivespec)
		Dim	fso
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		fso.MoveFolder	Drivespec,	"c:\windows\desktop\"
End	Sub

Important		This	method	allows	moving	folders	between
volumes	only	if	supported	by	the	operating	system.

Microsoft®	Visual	Basic®	Scripting	Edition	Name
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	or	returns	the	name	of	a	specified	file	or	folder.	Read/write.

Syntax

object.Name	[=	newname]

The	Name	property	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	or	Folder	object.

newname Optional.	If	provided,	newname	is	the	new	name	ofthe	specified	object.

Remarks

The	following	code	illustrates	the	use	of	the	Name	property:

Function	ShowFileAccessInfo(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	f.Name	&	"	on	Drive	"	&	UCase(f.Drive)	&	"
"
		s	=	s	&	"Created:	"	&	f.DateCreated	&	"
"
		s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	"
"
		s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		
		ShowFileAccessInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

OpenAsTextStream
Method

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Opens	a	specified	file	and	returns	a	TextStream	object	that	can	be	used	to
read	from,	write	to,	or	append	to	the	file.

Syntax

object.OpenAsTextStream([iomode,	[format]])

The	OpenAsTextStream	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	File	object.

iomode
Optional.	Indicates	input/output	mode.	Can	be	one	of
three	constants:	ForReading,	ForWriting,	or
ForAppending.

format
Optional.	One	of	three	Tristate	values	used	to	indicate
the	format	of	the	opened	file.	If	omitted,	the	file	is
opened	as	ASCII.

Settings

The	iomode	argument	can	have	any	of	the	following	settings:

Constant Value Description

ForReading 1 Open	a	file	for	reading	only.	You	can't
write	to	this	file.

ForWriting 2
Open	a	file	for	writing.	If	a	file	with	the
same	name	exists,	its	previous	contents

are	overwritten.

ForAppending 8 Open	a	file	and	write	to	the	end	of	the
file.

The	format	argument	can	have	any	of	the	following	settings:

Constant Value Description

TristateUseDefault -2 Opens	the	file	using	the	system
default.

TristateTrue -1 Opens	the	file	as	Unicode.
TristateFalse 	0 Opens	the	file	as	ASCII.

Remarks

The	OpenAsTextStream	method	provides	the	same	functionality	as	the
OpenTextFile	method	of	the	FileSystemObject.	In	addition,	the
OpenAsTextStream	method	can	be	used	to	write	to	a	file.

The	following	code	illustrates	the	use	of	the	OpenAsTextStream	method:

Function	TextStreamTest
		Const	ForReading	=	1,	ForWriting	=	2,	ForAppending	=	8
		Const	TristateUseDefault	=	-2,	TristateTrue	=	-1,	TristateFalse	=	0
		Dim	fso,	f,	ts
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		fso.CreateTextFile	"test1.txt"												'	Create	a	file.
		Set	f	=	fso.GetFile("test1.txt")
		Set	ts	=	f.OpenAsTextStream(ForWriting,	TristateUseDefault
		ts.Write	"Hello	World"
		ts.Close
		Set	ts	=	f.OpenAsTextStream(ForReading,	TristateUseDefault

		TextStreamTest	=	ts.ReadLine
		ts.Close
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

OpenTextFile
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	To

Description

Opens	a	specified	file	and	returns	a	TextStream	object	that	can	be	used	to
read	from,	write	to,	or	append	to	the	file.

Syntax

object.OpenTextFile(filename[,	iomode[,	create[,	format]]])

The	OpenTextFile	method	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	FileSystemObject.

filename Required.	String	expression	that	identifies	the	file	toopen.

iomode
Optional.	Indicates	input/output	mode.	Can	be	one	of
three	constants:	ForReading,	ForWriting,	or
ForAppending.

create

Optional.	Boolean	value	that	indicates	whether	a	new
file	can	be	created	if	the	specified	filename	doesn't
exist.	The	value	is	True	if	a	new	file	is	created;	False
if	it	isn't	created.	The	default	is	False.

format
Optional.	One	of	three	Tristate	values	used	to	indicate
the	format	of	the	opened	file.	If	omitted,	the	file	is
opened	as	ASCII.

Settings

The	iomode	argument	can	have	either	of	the	following	settings:

Constant Value Description

ForReading 1 Open	a	file	for	reading	only.	You	can't
write	to	this	file.

ForWriting 2 Open	a	file	for	writing	only.	You	can't
read	from	this	file.

ForAppending 8 Open	a	file	and	write	to	the	end	of	the
file.

The	format	argument	can	have	any	of	the	following	settings:

Constant Value Description

TristateUseDefault -2 Opens	the	file	using	the	system
default.

TristateTrue -1 Opens	the	file	as	Unicode.
TristateFalse 	0 Opens	the	file	as	ASCII.

Remarks

The	following	code	illustrates	the	use	of	the	OpenTextFile	method	to	open
a	file	for	writing	text:

Sub	OpenTextFileTest
		Const	ForReading	=	1,	ForWriting	=	2,	ForAppending	=	8
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.Write	"Hello	world!"
		f.Close
End	Sub

Microsoft®	Visual	Basic®	Scripting	Edition

ParentFolder
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	folder	object	for	the	parent	of	the	specified	file	or	folder.	Read-
only.

Syntax

object.ParentFolder

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ParentFolder	property	with	a
file:

Function	ShowFileAccessInfo(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	UCase(f.Name)	&	"	in	"	&	UCase(f.ParentFolder)	&	"
"
		s	=	s	&	"Created:	"	&	f.DateCreated	&	"
"
		s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	"
"
		s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		
		ShowFileAccessInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Path
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	path	for	a	specified	file,	folder,	or	drive.

Syntax

object.Path

The	object	is	always	a	File,	Folder,	or	Drive	object.

Remarks

For	drive	letters,	the	root	drive	is	not	included.	For	example,	the	path	for
the	C	drive	is	C:,	not	C:\.

The	following	code	illustrates	the	use	of	the	Path	property	with	a	File	object:

Function	ShowFileAccessInfo(filespec)
		Dim	fso,	d,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	UCase(f.Path)	&	"
"
		s	=	s	&	"Created:	"	&	f.DateCreated	&	"
"
		s	=	s	&	"Last	Accessed:	"	&	f.DateLastAccessed	&	"
"
		s	=	s	&	"Last	Modified:	"	&	f.DateLastModified		
		ShowFileAccessInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Read
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	to

Description

Reads	a	specified	number	of	characters	from	a	TextStream	file	and	returns
the	resulting	string.

Syntax

object.Read(characters)

The	Read	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream	object.

characters Required.	Number	of	characters	you	want	to	readfrom	the	file.

Remarks

The	following	example	illustrates	how	to	use	the	Read	method	to	read	five
characters	from	a	file	and	return	the	resulting	string:

Function	ReadTextFileTest
		Const	ForReading	=	1,	ForWriting	=	2,	ForAppending	=	8
		Dim	fso,	f,	Msg
		Set	fso	=	CreateObject("Scripting.FileSystemObject")			
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)

		f.Write	"Hello	world!"
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		ReadTextFileTest	=		f.Read(5)
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	ReadAll
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Reads	an	entire	TextStream	file	and	returns	the	resulting	string.

Syntax

object.ReadAll

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

For	large	files,	using	the	ReadAll	method	wastes	memory	resources.	Other
techniques	should	be	used	to	input	a	file,	such	as	reading	a	file	line	by	line.

Function	ReadAllTextFile
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.Write	"Hello	world!"
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		ReadAllTextFile	=		f.ReadAll
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ReadLine	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																				Applies	to

Description

Reads	an	entire	line	(up	to,	but	not	including,	the	newline	character)	from	a
TextStream	file	and	returns	the	resulting	string.

Syntax

object.ReadLine

The	object	argument	is	always	the	name	of	a	TextStream	object.

Remarks

The	following	example	shows	how	to	use	the	ReadLine	method	to	read	a
line	from	a	TextStream	file	and	return	the	string:

Function	ReadLineTextFile
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	MyFile
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	MyFile	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		MyFile.WriteLine	"Hello	world!"
		MyFile.WriteLine	"The	quick	brown	fox"
		MyFile.Close
		Set	MyFile	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		ReadLineTextFile	=	MyFile.ReadLine	'	Returns	"Hello	world!"
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Remove
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Removes	a	key,	item	pair	from	a	Dictionary	object.

Syntax

object.Remove(key)

The	Remove	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Dictionary	object.

key Required.	Key	associated	with	the	key,	item	pair	you	want
to	remove	from	the	Dictionary	object.

Remarks

An	error	occurs	if	the	specified	key,	item	pair	does	not	exist.

The	following	code	illustrates	use	of	the	Remove	method:

Dim	a,	d													'	Create	some	variables.
Set	d	=	CreateObject("Scripting.Dictionary")
d.Add	"a",	"Athens"		'	Add	some	keys	and	items.
d.Add	"b",	"Belgrade"
d.Add	"c",	"Cairo"
...

d.Remove("b")								'	Remove	second	pair.

Microsoft®	Visual	Basic®	Scripting	Edition

RemoveAll
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

The	RemoveAll	method	removes	all	key,	item	pairs	from	a	Dictionary
object.

Syntax

object.RemoveAll

The	object	is	always	the	name	of	a	Dictionary	object.

Remarks

The	following	code	illustrates	use	of	the	RemoveAll	method:

Dim	a,	d,	i													'	Create	some	variables.
Set	d	=	CreateObject("Scripting.Dictionary")
d.Add	"a",	"Athens"					'	Add	some	keys	and	items.
d.Add	"b",	"Belgrade"
d.Add	"c",	"Cairo"
...
a	=	d.RemoveAll									'	Clear	the	dictionary.

Microsoft®	Visual	Basic®	Scripting	Edition

RootFolder
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	Folder	object	representing	the	root	folder	of	a	specified	drive.
Read-only.

Syntax

object.RootFolder

The	object	is	always	a	Drive	object.

Remarks

All	the	files	and	folders	contained	on	the	drive	can	be	accessed	using	the
returned	Folder	object.

The	following	example	illustrates	the	use	of	the	RootFolder	property:

Function	ShowRootFolder(drvspec)
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetDrive(drvspec)
		ShowRootFolder	=	f.RootFolder
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

SerialNumber
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	decimal	serial	number	used	to	uniquely	identify	a	disk	volume.

Syntax

object.SerialNumber

The	object	is	always	a	Drive	object.

Remarks

You	can	use	the	SerialNumber	property	to	ensure	that	the	correct	disk	is
inserted	in	a	drive	with	removable	media.

The	following	code	illustrates	the	use	of	the	SerialNumber	property:

Function	ShowDriveInfo(drvpath)
		Dim	fso,	d,	s,	t
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(fso.GetAbsolutePathName(drvpath)))
		Select	Case	d.DriveType
				Case	0:	t	=	"Unknown"
				Case	1:	t	=	"Removable"
				Case	2:	t	=	"Fixed"
				Case	3:	t	=	"Network"
				Case	4:	t	=	"CD-ROM"
				Case	5:	t	=	"RAM	Disk"
		End	Select

		s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	t
		s	=	s	&	"
"	&	"SN:	"	&	d.SerialNumber
		ShowDriveInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ShareName
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	network	share	name	for	a	specified	drive.

Syntax

object.ShareName

The	object	is	always	a	Drive	object.

Remarks

If	object	is	not	a	network	drive,	the	ShareName	property	returns	a	zero-
length	string	("").

The	following	code	illustrates	the	use	of	the	ShareName	property:

Function	ShowDriveInfo(drvpath)
		Dim	fso,	d
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(fso.GetAbsolutePathName(drvpath)))
		ShowDriveInfo	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	d.ShareName
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ShortName
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	short	name	used	by	programs	that	require	the	earlier	8.3	naming
convention.

Syntax

object.ShortName

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ShortName	property	with	a
File	object:

Function	ShowShortName(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	"The	short	name	for	"		&	UCase(f.Name)	&	"
"
		s	=	s	&	"is:	"	&	f.ShortName	
		ShowShortName	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ShortPath
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	the	short	path	used	by	programs	that	require	the	earlier	8.3	file
naming	convention.

Syntax

object.ShortPath

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	ShortName	property	with	a
File	object:

Function	ShowShortPath(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFile(filespec)
		s	=	"The	short	path	for	"	&	UCase(f.Name)	&	"
"
		s	=	s	&	"is:	"	&	f.ShortPath	
		ShowShortPath	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Size
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

For	files,	returns	the	size,	in	bytes,	of	the	specified	file.	For	folders,	returns
the	size,	in	bytes,	of	all	files	and	subfolders	contained	in	the	folder.

Syntax

object.Size

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Size	property	with	a	Folder
object:

Function	ShowFolderSize(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(filespec)
		s	=	UCase(f.Name)	&	"	uses	"	&	f.size	&	"	bytes."
		ShowFolderSize	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Skip
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																			Applies	To

Description

Skips	a	specified	number	of	characters	when	reading	a	TextStream	file.

Syntax

object.Skip(characters)

The	Skip	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream	object.

characters Required.	Number	of	characters	to	skip	whenreading	a	file.

Remarks

Skipped	characters	are	discarded.

The	following	example	uses	the	Skip	method	to	skip	the	first	six	characters	before	reading	from	a
text	file:

Function	SkipTextFile
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.Write	"Hello	world!"

		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		f.Skip(6)
		SkipTextFile	=		f.ReadLine
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

SkipLine	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																			Applies	to

Description

Skips	the	next	line	when	reading	a	TextStream	file.

Syntax

object.SkipLine

The	object	is	always	the	name	of	a	TextStream	object.

Remarks

Skipping	a	line	means	reading	and	discarding	all	characters	in	a	line	up	to
and	including	the	next	newline	character.	An	error	occurs	if	the	file	is	not
open	for	reading.

The	following	example	illustrates	use	of	the	SkipLine	method:

Function	SkipLineInFile
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.Write	"Hello	world!"	&	vbCrLf	&	"VB	Script	is	fun!"
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		f.SkipLine
		SkipLineInFile	=	f.ReadLine
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

SpecialFolder
Constants

	Scripting	Run-Time	Reference	
Version	3	

See	Also

These	constants	are	only	available	when	your	project	has	an	explicit	reference	to
the	appropriate	type	library	containing	these	constant	definitions.	For	VBScript,
you	must	explicitly	declare	these	constants	in	your	code.

Constant Value Description

WindowsFolder 0
The	Windows	folder	contains	files
installed	by	the	Windows	operating
system.

SystemFolder 1 The	System	folder	contains	libraries,
fonts,	and	device	drivers.

TemporaryFolder 2
The	Temp	folder	is	used	to	store
temporary	files.	Its	path	is	found	in
the	TMP	environment	variable.

Microsoft®	Visual	Basic®	Scripting	Edition

SubFolders
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	a	Folders	collection	consisting	of	all	folders	contained	in	a
specified	folder,	including	those	with	Hidden	and	System	file	attributes	set.

Syntax

object.SubFolders

The	object	is	always	a	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	SubFolders	property:

Function	ShowFolderList(folderspec)
		Dim	fso,	f,	f1,	s,	sf
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(folderspec)
		Set	sf	=	f.SubFolders
		For	Each	f1	in	sf
				s	=	s	&	f1.name	
				s	=	s	&	"
"
		Next
		ShowFolderList	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

TextStream	Object
	Scripting	Run-Time	Reference	

Version	2	

See	Also																				Properties																				Methods

Description

Facilitates	sequential	access	to	a	file.

Remarks

In	the	following	code,	a	is	the	TextStream	object	returned	by	the	CreateTextFile	method	on	the
FileSystemObject:

Dim	fso,	MyFile
Set	fso	=	CreateObject("Scripting.FileSystemObject")
Set	MyFile=	fso.CreateTextFile("c:\testfile.txt",	True)
MyFile.WriteLine("This	is	a	test.")
MyFile.Close

WriteLine	and	Close	are	two	methods	of	the	TextStream	Object.

Microsoft®	Visual	Basic®	Scripting	Edition

TotalSize	Property
	Scripting	Run-Time	Reference	

Version	3	

See	Also																		Applies	To

Description

Returns	the	total	space,	in	bytes,	of	a	drive	or	network	share.

Syntax

object.TotalSize

The	object	is	always	a	Drive	object.

Remarks

The	following	code	illustrates	the	use	of	the	TotalSize	property:

Function	ShowSpaceInfo(drvpath)
		Dim	fso,	d,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(fso.GetAbsolutePathName(drvpath)))
		s	=	"Drive	"	&	d.DriveLetter	&	":"
		s	=	s	&	vbCrLf
		s	=	s	&	"Total	Size:	"	&	FormatNumber(d.TotalSize/1024,	0)	&	"	Kbytes"
		s	=	s	&	vbCrLf
		s	=	s	&	"Available:	"	&	FormatNumber(d.AvailableSpace/1024,	0)	&	"	Kbytes"
		ShowSpaceInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Type
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Returns	information	about	the	type	of	a	file	or	folder.	For	example,	for	files
ending	in	.TXT,	"Text	Document"	is	returned.

Syntax

object.Type

The	object	is	always	a	File	or	Folder	object.

Remarks

The	following	code	illustrates	the	use	of	the	Type	property	to	return	a
folder	type.	In	this	example,	try	providing	the	path	of	the	Recycle	Bin	or
other	unique	folder	to	the	procedure.

Function	ShowFolderType(filespec)
		Dim	fso,	f,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.GetFolder(filespec)
		s	=	UCase(f.Name)	&	"	is	a	"	&	f.Type
		ShowFolderType	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

VolumeName
Property

	Scripting	Run-Time	Reference	
Version	3	

See	Also																		Applies	To

Description

Sets	or	returns	the	volume	name	of	the	specified	drive.	Read/write.

Syntax

object.VolumeName	[=	newname]

The	VolumeName	property	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	Drive	object.

newname Optional.	If	provided,	newname	is	the	new	name	ofthe	specified	object.

Remarks

The	following	code	illustrates	the	use	of	the	VolumeName	property:

Function	ShowVolumeInfo(drvpath)
		Dim	fso,	d,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	d	=	fso.GetDrive(fso.GetDriveName(fso.GetAbsolutePathName(drvpath)))
		s	=	"Drive	"	&	d.DriveLetter	&	":	-	"	&	d.VolumeName
		ShowVolumeInfo	=	s
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Write
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Writes	a	specified	string	to	a	TextStream	file.

Syntax

object.Write(string)

The	Write	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream	object.
string Required.	The	text	you	want	to	write	to	the	file.

Remarks

Specified	strings	are	written	to	the	file	with	no	intervening	spaces	or
characters	between	each	string.	Use	the	WriteLine	method	to	write	a
newline	character	or	a	string	that	ends	with	a	newline	character.

The	following	example	illustrates	use	of	the	Write	method:

Function	WriteToFile
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.Write	"Hello	world!"	

		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		WriteToFile	=		f.ReadLine
End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

WriteBlankLines
Method

	Scripting	Run-Time	Reference	
Version	2	

See	Also																				Applies	to

Description

Writes	a	specified	number	of	newline	characters	to	a	TextStream	file.

Syntax

object.WriteBlankLines(lines)

The	WriteBlankLines	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream	object.

lines Required.	Number	of	newline	characters	you	want	to
write	to	the	file.

Remarks

The	following	example	illustrates	use	of	the	WriteBlankLines	method:

Function	WriteBlankLinesToFile
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.WriteBlankLines	2	
		f.WriteLine	"Hello	World!"
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		WriteBlankLinesToFile	=	f.ReadAll

End	Function

Microsoft®	Visual	Basic®	Scripting	Edition

WriteLine	Method
	Scripting	Run-Time	Reference	

Version	2	

See	Also																				Applies	to

Description

Writes	a	specified	string	and	newline	character	to	a	TextStream	file.

Syntax

object.WriteLine([string])

The	WriteLine	method	syntax	has	these	parts:

Part Description
object Required.	Always	the	name	of	a	TextStream	object.

string Optional.	The	text	you	want	to	write	to	the	file.	If
omitted,	a	newline	character	is	written	to	the	file.

Remarks

The	following	example	illustrates	use	of	the	WriteLine	method:

Function	WriteLineToFile
		Const	ForReading	=	1,	ForWriting	=	2
		Dim	fso,	f
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForWriting,	True)
		f.WriteLine	"Hello	world!"	
		f.WriteLine	"VBScript	is	fun!"
		Set	f	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		WriteLineToFile	=	f.ReadAll
End	Function

Copyright

Microsoft®	Visual	Basic®	Scripting	Edition

Information	in	this	document	is	subject	to	change	without	notice.	The	names	of	companies,	products,
people,	characters,	and/or	data	mentioned	herein	are	fictitious	and	are	in	no	way	intended	to	represent	any
real	individual,	company,	product,	or	event,	unless	otherwise	noted.	Complying	with	all	applicable
copyright	laws	is	the	responsibility	of	the	user.	No	part	of	this	document	may	be	reproduced	or	transmitted
in	any	form	or	by	any	means,	electronic	or	mechanical,	for	any	purpose,	without	the	express	written
permission	of	Microsoft	Corporation.

Microsoft	may	have	patents,	patent	applications,	trademarks,	copyrights,	or	other	intellectual	property	rights
covering	subject	matter	in	this	document.	Except	as	expressly	provided	in	any	written	license	agreement
from	Microsoft,	the	furnishing	of	this	document	does	not	give	you	any	license	to	these	patents,	trademarks,
copyrights,	or	other	intellectual	property.

©	1991-1999	Microsoft	Corporation.	All	rights	reserved.

Microsoft,	MS,	MS-DOS,	ActiveX,	JScript,	Microsoft	Press,	Visual	Basic,	Windows,	Windows	NT,	Win32,
and	Win32s	are	either	registered	trademarks	or	trademarks	of	Microsoft	Corporation	in	the	U.S.A.	and/or
other	countries.

Other	product	and	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective	owners.

Microsoft®	Scripting	Library	-	FileSystemObject

Working	with	Files
	Previous

Next

There	are	two	major	categories	of	file	manipulation:

Creating,	adding,	or	removing	data,	and	reading	files

Moving,	copying,	and	deleting	files

Creating	Files

There	are	three	ways	to	create	an	empty	text	file	(sometimes	referred	to	as	a
"text	stream").

The	first	way	is	to	use	the	CreateTextFile	method.	The	following	example	demonstrates	how	to
create	a	text	file	using	this	method	in	VBScript:

Dim	fso,	f1
Set	fso	=	CreateObject("Scripting.FileSystemObject")
Set	f1	=	fso.CreateTextFile("c:\testfile.txt",	True)

To	use	this	method	in	JScript,	use	this	code:

var	fso,	f1;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
f1	=	fso.CreateTextFile("c:\\testfile.txt",	true);

View	this	sample	code	to	see	how	the	CreateTextFile	method	is	used	in
FileSystemObject.

The	second	way	to	create	a	text	file	is	to	use	the	OpenTextFile	method	of	the	FileSystemObject
object	with	the	ForWriting	flag	set.	In	VBScript,	the	code	looks	like	this	example:

Dim	fso,	ts
Const	ForWriting	=	2
Set	fso	=	CreateObject("Scripting.	FileSystemObject")
Set	ts	=	fso.OpenTextFile("c:\test.txt",	ForWriting,	True)

To	create	a	text	file	using	this	method	in	JScript,	use	this	code:

var	fso,	ts;
var	ForWriting=	2;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
ts	=	fso.OpenTextFile("c:\\test.txt",	ForWriting,	true);

A	third	way	to	create	a	text	file	is	to	use	the	OpenAsTextStream	method
with	the	ForWriting	flag	set.	For	this	method,	use	the	following	code	in
VBScript:

Dim	fso,	f1,	ts
Const	ForWriting	=	2
Set	fso	=	CreateObject("Scripting.FileSystemObject")
fso.CreateTextFile	("c:\test1.txt")
Set	f1	=	fso.GetFile("c:\test1.txt")
Set	ts	=	f1.OpenAsTextStream(ForWriting,	True)

In	JScript,	use	the	code	in	the	following	example:

var	fso,	f1,	ts;
var	ForWriting	=	2;
fso	=	new	ActiveXObject("Scripting.FileSystemObject");
fso.CreateTextFile	("c:\\test1.txt");
f1	=	fso.GetFile("c:\\test1.txt");
ts	=	f1.OpenAsTextStream(ForWriting,	true);

Adding	Data	to	the	File

Once	the	text	file	is	created,	add	data	to	the	file	using	the	following	three
steps:

1.	 Open	the	text	file.

2.	 Write	the	data.

3.	 Close	the	file.

To	open	an	existing	file,	use	either	the	OpenTextFile	method	of	the
FileSystemObject	object	or	the	OpenAsTextStream	method	of	the	File
object.

To	write	data	to	the	open	text	file,	use	the	Write,	WriteLine,	or	WriteBlankLines	methods	of	the
TextStream	object,	according	to	the	tasks	outlined	in	the	following	table.

Task Method
Write	data	to	an	open	text	file	without	a
trailing	newline	character. Write

Write	data	to	an	open	text	file	with	a	trailing
newline	character. WriteLine

Write	one	or	more	blank	lines	to	an	open	text
file. WriteBlankLines

View	this	sample	code	to	see	how	the	Write,	WriteLine,	and	WriteBlankLines	methods	are	used	in
FileSystemObject.

To	close	an	open	file,	use	the	Close	method	of	the	TextStream	object.

View	this	sample	code	to	see	how	the	Close	method	is	used	in	FileSystemObject.

Note		The	newline	character	contains	a	character	or	characters
(depending	on	the	operating	system)	to	advance	the	cursor	to	the
beginning	of	the	next	line	(carriage	return/line	feed).	Be	aware
that	the	end	of	some	strings	may	already	have	such	nonprinting
characters.

The	following	VBScript	example	demonstrates	how	to	open	a	file,	use	all	three	write	methods	to	add
data	to	the	file,	and	then	close	the	file:

Sub	CreateFile()
		Dim	fso,	tf
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	tf	=	fso.CreateTextFile("c:\testfile.txt",	True)
		'	Write	a	line	with	a	newline	character.
		tf.WriteLine("Testing	1,	2,	3.")	

		'	Write	three	newline	characters	to	the	file.						
		tf.WriteBlankLines(3)	
		'	Write	a	line.
		tf.Write	("This	is	a	test.")	
		tf.Close
End	Sub

This	example	demonstrates	how	to	use	the	three	methods	in	JScript:

function	CreateFile()
{
		var	fso,	tf;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		tf	=	fso.CreateTextFile("c:\\testfile.txt",	true);
		//	Write	a	line	with	a	newline	character.
		tf.WriteLine("Testing	1,	2,	3.")	;
		//	Write	three	newline	characters	to	the	file.						
		tf.WriteBlankLines(3)	;
		//	Write	a	line.
		tf.Write	("This	is	a	test.");
		tf.Close();
}

Reading	Files

To	read	data	from	a	text	file,	use	the	Read,	ReadLine,	or	ReadAll	method
of	the	TextStream	object.	The	following	table	describes	which	method	to
use	for	various	tasks.

Task Method
Read	a	specified	number	of	characters	from	a	file. Read
Read	an	entire	line	(up	to,	but	not	including,	the
newline	character). ReadLine

Read	the	entire	contents	of	a	text	file. ReadAll

View	this	sample	code	to	see	how	the	ReadAll	and	ReadLine	methods	are	used	in
FileSystemObject.

If	you	use	the	Read	or	ReadLine	method	and	want	to	skip	to	a	particular	portion	of	data,	use	the
Skip	or	SkipLine	method.	The	resulting	text	of	the	read	methods	is	stored	in	a	string	which	can	be
displayed	in	a	control,	parsed	by	string	functions	(such	as	Left,	Right,	and	Mid),	concatenated,	and
so	forth.

The	following	VBScript	example	demonstrates	how	to	open	a	file,	write	to	it,	and	then	read	from	it:

Sub	ReadFiles
		Dim	fso,	f1,	ts,	s
		Const	ForReading	=	1
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f1	=	fso.CreateTextFile("c:\testfile.txt",	True)
		'	Write	a	line.
		Response.Write	"Writing	file	
"
		f1.WriteLine	"Hello	World"
		f1.WriteBlankLines(1)
		f1.Close
		'	Read	the	contents	of	the	file.
		Response.Write	"Reading	file	
"
		Set	ts	=	fso.OpenTextFile("c:\testfile.txt",	ForReading)
		s	=	ts.ReadLine
		Response.Write	"File	contents	=	'"	&	s	&	"'"
		ts.Close
End	Sub

This	code	demonstrates	the	same	thing	in	JScript:

function	ReadFiles()
{
		var	fso,	f1,	ts,	s;
		var	ForReading	=	1;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f1	=	fso.CreateTextFile("c:\\testfile.txt",	true);
		//	Write	a	line.

		Response.Write("Writing	file	
");
		f1.WriteLine("Hello	World");
		f1.WriteBlankLines(1);
		f1.Close();
		//	Read	the	contents	of	the	file.
		Response.Write("Reading	file	
");
		ts	=	fso.OpenTextFile("c:\\testfile.txt",	ForReading);
		s	=	ts.ReadLine();
		Response.Write("File	contents	=	'"	+	s	+	"'");
		ts.Close();
}

Moving,	Copying,	and	Deleting	Files

The	FSO	object	model	has	two	methods	each	for	moving,	copying,	and
deleting	files,	as	described	in	the	following	table.

Task Method
Move	a	file File.Move	or	FileSystemObject.MoveFile
Copy	a	file File.Copy	or	FileSystemObject.CopyFile
Delete	a	file File.Delete	or	FileSystemObject.DeleteFile

View	this	sample	code	to	see	two	ways	to	delete	a	file	in	FileSystemObject.

The	following	VBScript	example	creates	a	text	file	in	the	root	directory	of	drive	C,	writes	some
information	to	it,	moves	it	to	a	directory	called	\tmp,	makes	a	copy	of	it	in	a	directory	called	\temp,
then	deletes	the	copies	from	both	directories.

To	run	the	following	example,	create	directories	named	\tmp	and	\temp	in	the	root	directory	of	drive
C:

Sub	ManipFiles
		Dim	fso,	f1,	f2,	s
		Set	fso	=	CreateObject("Scripting.FileSystemObject")
		Set	f1	=	fso.CreateTextFile("c:\testfile.txt",	True)
		Response.Write	"Writing	file	
"
		'	Write	a	line.

		f1.Write	("This	is	a	test.")
		'	Close	the	file	to	writing.
		f1.Close
		Response.Write	"Moving	file	to	c:\tmp	
"
		'	Get	a	handle	to	the	file	in	root	of	C:\.
		Set	f2	=	fso.GetFile("c:\testfile.txt")
		'	Move	the	file	to	\tmp	directory.
		f2.Move	("c:\tmp\testfile.txt")
		Response.Write	"Copying	file	to	c:\temp	
"
		'	Copy	the	file	to	\temp.
		f2.Copy	("c:\temp\testfile.txt")
		Response.Write	"Deleting	files	
"
		'	Get	handles	to	files'	current	location.
		Set	f2	=	fso.GetFile("c:\tmp\testfile.txt")
		Set	f3	=	fso.GetFile("c:\temp\testfile.txt")
		'	Delete	the	files.
		f2.Delete
		f3.Delete
		Response.Write	"All	done!"
End	Sub

This	code	shows	the	same	thing	in	JScript:

function	ManipFiles()
{
		var	fso,	f1,	f2,	s;
		fso	=	new	ActiveXObject("Scripting.FileSystemObject");
		f1	=	fso.CreateTextFile("c:\\testfile.txt",	true);
		Response.Write("Writing	file	
");
		//	Write	a	line.
		f1.Write("This	is	a	test.");
		//	Close	the	file	to	writing.
		f1.Close();

		Response.Write("Moving	file	to	c:\\tmp	
");
		//	Get	a	handle	to	the	file	in	root	of	C:\.
		f2	=	fso.GetFile("c:\\testfile.txt");
		//	Move	the	file	to	\tmp	directory.
		f2.Move	("c:\\tmp\\testfile.txt");
		Response.Write("Copying	file	to	c:\\temp	
");
		//	Copy	the	file	to	\temp.
		f2.Copy	("c:\\temp\\testfile.txt");
		Response.Write("Deleting	files	
");
		//	Get	handles	to	files'	current	location.
		f2	=	fso.GetFile("c:\\tmp\\testfile.txt");
		f3	=	fso.GetFile("c:\\temp\\testfile.txt");
		//	Delete	the	files.
		f2.Delete();
		f3.Delete();
		Response.Write("All	done!");
}

Microsoft®	Visual	Basic®	Scripting	Edition

InStrRev	Function
	Language	Reference	

Version	2	

See	Also

Description

Returns	the	position	of	an	occurrence	of	one	string	within	another,	from	the
end	of	string.

Syntax

InStrRev(string1,	string2[,	start[,	compare]])

The	InStrRev	function	syntax	has	these	parts:

Part Description
string1 Required.	String	expression	being	searched.
string2 Required.	String	expression	being	searched	for.

start

Optional.	Numeric	expression	that	sets	the	starting
position	for	each	search.	If	omitted,	-1	is	used,	which
means	that	the	search	begins	at	the	last	character
position.	If	start	contains	Null,	an	error	occurs.

compare

Optional.	Numeric	value	indicating	the	kind	of
comparison	to	use	when	evaluating	substrings.	If
omitted,	a	binary	comparison	is	performed.	See
Settings	section	for	values.

Settings

The	compare	argument	can	have	the	following	values:

Constant Value Description
vbBinaryCompare 0 Perform	a	binary	comparison.
vbTextCompare 1 Perform	a	textual	comparison.

Return	Values

InStrRev	returns	the	following	values:

If InStrRev	returns
string1	is	zero-length 0
string1	is	Null Null
string2	is	zero-length start
string2	is	Null Null
string2	is	not	found 0
string2	is	found	within	string1 Position	at	which	match	is	found
start	>	Len(string2) 0

Remarks

The	following	examples	use	the	InStrRev	function	to	search	a	string:

Dim	SearchString,	SearchChar,	MyPos
SearchString	="XXpXXpXXPXXP"	 	 	 	 '	String	to	search	in.
SearchChar	=	"P"	 	 	 	 	 	 '	Search	for	"P".
MyPos	=	InstrRev(SearchString,	SearchChar,	10,	0)	 '	A	binary	comparison	starting	at
	 	 	 	 	 	 	 	 '	position	10.	Returns	9.
MyPos	=	InstrRev(SearchString,	SearchChar,	-1,	1)	 '	A	textual	comparison	starting	at
	 	 	 	 	 	 	 	 '	the	last	position.	Returns	12.	
MyPos	=	InstrRev(SearchString,	SearchChar,	8)	 '	Comparison	is	binary	by	default	(last
	 	 	 	 	 	 	 	 '	argument	is	omitted).	Returns	0.

Note		The	syntax	for	the	InStrRev	function	is	not	the	same	as	the	syntax	for	the	InStr
function.

Microsoft®	Visual	Basic®	Scripting	Edition	Abs
Function
See	Also

	Language	Reference	

Sgn	Function

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript	Glossary 	Language	Reference	

	
ActiveX	control

An	object	that	you	place	on	a	form	to	enable	or	enhance	a	user's	interaction	with	an	application.
ActiveX	controls	have	events	and	can	be	incorporated	into	other	controls.	The	controls	have	an	.ocx
file	name	extension.

	

ActiveX	object
An	object	that	is	exposed	to	other	applications	or	programming	tools	through	Automation	interfaces.

	

argument
A	constant,	variable,	or	expression	passed	to	a	procedure.

	

array
A	set	of	sequentially	indexed	elements	having	the	same	type	of	data.	Each	element	of	an	array	has	a
unique	identifying	index	number.	Changes	made	to	one	element	of	an	array	do	not	affect	the	other
elements.

	

ASCII	Character	Set
American	Standard	Code	for	Information	Interchange	(ASCII)	7-bit	character	set	widely	used	to
represent	letters	and	symbols	found	on	a	standard	U.S.	keyboard.	The	ASCII	character	set	is	the	same
as	the	first	128	characters	(0–127)	in	the	ANSI	character	set.

	

Automation	object
An	object	that	is	exposed	to	other	applications	or	programming	tools	through	Automation	interfaces.

	

bitwise	comparison
A	bit-by-bit	comparison	of	identically	positioned	bits	in	two	numeric	expressions.

	

Boolean	expression
An	expression	that	evaluates	to	either	True	or	False.

	

by	reference
A	way	of	passing	the	address,	rather	than	the	value,	of	an	argument	to	a	procedure.	This	allows	the
procedure	to	access	the	actual	variable.	As	a	result,	the	variable's	actual	value	can	be	changed	by	the
procedure	to	which	it	is	passed.

	

by	value
A	way	of	passing	the	value,	rather	than	the	address,	of	an	argument	to	a	procedure.	This	allows	the
procedure	to	access	a	copy	of	the	variable.	As	a	result,	the	variable's	actual	value	can't	be	changed	by
the	procedure	to	which	it	is	passed.

	

character	code
A	number	that	represents	a	particular	character	in	a	set,	such	as	the	ASCII	character	set.

	

class
The	formal	definition	of	an	object.	The	class	acts	as	the	template	from	which	an	instance	of	an	object
is	created	at	run	time.	The	class	defines	the	properties	of	the	object	and	the	methods	used	to	control
the	object's	behavior.

	

class	module
A	module	containing	the	definition	of	a	class	(its	property	and	method	definitions).

	

collection
An	object	that	contains	a	set	of	related	objects.	An	object's	position	in	the	collection	can	change
whenever	a	change	occurs	in	the	collection;	therefore,	the	position	of	any	specific	object	in	the
collection	may	vary.

	

comment
Text	added	to	code	by	a	programmer	that	explains	how	the	code	works.	In	Visual	Basic	Scripting
Edition,	a	comment	line	generally	starts	with	an	apostrophe	('),	or	you	can	use	the	keyword	Rem
followed	by	a	space.

	

comparison	operator
A	character	or	symbol	indicating	a	relationship	between	two	or	more	values	or	expressions.	These
operators	include	less	than	(<),	less	than	or	equal	to	(<=),	greater	than	(>),	greater	than	or	equal	to
(>=),	not	equal	(<>),	and	equal	(=).

Is	is	also	a	comparison	operator,	but	it	is	used	exclusively	for	determining	if	one	object	reference	is
the	same	as	another.

	

constant
A	named	item	that	retains	a	constant	value	throughout	the	execution	of	a	program.	Constants	can	be
used	anywhere	in	your	code	in	place	of	actual	values.	A	constant	can	be	a	string	or	numeric	literal,
another	constant,	or	any	combination	that	includes	arithmetic	or	logical	operators	except	Is	and
exponentiation.	For	example:

Const	A	=	"MyString"

	

data	ranges
Each	Variant	subtype	has	a	specific	range	of	allowed	values:

Subtype Range
Byte 0	to	255.
Boolean True	or	False.
Integer -32,768	to	32,767.
Long -2,147,483,648	to	2,147,483,647.

Single -3.402823E38	to	-1.401298E-45	for	negative	values;
1.401298E-45	to	3.402823E38	for	positive	values.

Double
-1.79769313486232E308	to	-4.94065645841247E-
324	for	negative	values;	4.94065645841247E-324	to
1.79769313486232E308	for	positive	values.

Currency -922,337,203,685,477.5808	to922,337,203,685,477.5807.
Date January	1,	100	to	December	31,	9999,	inclusive.
Object Any	Object	reference.

String Variable-length	strings	may	range	in	length	from	0	to
approximately	2	billion	characters.

	

date	expression
Any	expression	that	can	be	interpreted	as	a	date.	This	includes	any	combination	of	date	literals,
numbers	that	look	like	dates,	strings	that	look	like	dates,	and	dates	returned	from	functions.	A	date
expression	is	limited	to	numbers	or	strings,	in	any	combination,	that	can	represent	a	date	from
January	1,	100	through	December	31,	9999.

Dates	are	stored	as	part	of	a	real	number.	Values	to	the	left	of	the	decimal	represent	the	date;	values
to	the	right	of	the	decimal	represent	the	time.	Negative	numbers	represent	dates	prior	to	December
30,	1899.

	

date	literal
Any	sequence	of	characters	with	a	valid	format	that	is	surrounded	by	number	signs	(#).	Valid	formats
include	the	date	format	specified	by	the	locale	settings	for	your	code	or	the	universal	date	format.	For
example,	#12/31/99#	is	the	date	literal	that	represents	December	31,	1999,	where	English-U.S.	is	the
locale	setting	for	your	application.

VBScript	always	interprets	a	date	literal	as	US-ENGLISH	if	it	is	possible	to	do	so.	If	a	date	literal
cannot	be	interpreted	as	a	date,	an	error	occurs.

	

date	separators
Characters	used	to	separate	the	day,	month,	and	year	when	date	values	are	formatted.

	

Empty
A	value	that	indicates	that	no	beginning	value	has	been	assigned	to	a	variable.	Empty	variables	are	0
in	a	numeric	context,	or	zero-length	in	a	string	context.

	

error	number
A	whole	number	in	the	range	0	to	65,535,	inclusive,	that	corresponds	to	the	Number	property	of	the
Err	object.	When	combined	with	the	Name	property	of	the	Err	object,	this	number	represents	a
particular	error	message.

	

expression

A	combination	of	keywords,	operators,	variables,	and	constants	that	yield	a	string,	number,	or	object.
An	expression	can	perform	a	calculation,	manipulate	characters,	or	test	data.

	

intrinsic	constant
A	constant	provided	by	an	application.	Because	you	can't	disable	intrinsic	constants,	you	can't	create
a	user-defined	constant	with	the	same	name.

	

keyword
A	word	or	symbol	recognized	as	part	of	the	VBScript	language;	for	example,	a	statement,	function
name,	or	operator.

	

locale
The	set	of	information	that	corresponds	to	a	given	language	and	country/region.	A	locale	affects	the
language	of	predefined	programming	terms	and	locale-specific	settings.	There	are	two	contexts
where	locale	information	is	important:

The	code	locale	affects	the	language	of	terms	such	as	keywords	and	defines	locale-specific
settings	such	as	the	decimal	and	list	separators,	date	formats,	and	character	sorting	order.

The	system	locale	affects	the	way	locale-aware	functionality	behaves,	for	example,	when	you
display	numbers	or	convert	strings	to	dates.	You	set	the	system	locale	using	the	Control	Panel
utilities	provided	by	the	operating	system.

	

Nothing
The	special	value	that	indicates	that	an	object	variable	is	no	longer	associated	with	any	actual	object.

	

Null
A	value	indicating	that	a	variable	contains	no	valid	data.	Null	is	the	result	of:

An	explicit	assignment	of	Null	to	a	variable.

Any	operation	between	expressions	that	contain	Null.

	

numeric	expression
Any	expression	that	can	be	evaluated	as	a	number.	Elements	of	the	expression	can	include	any
combination	of	keywords,	variables,	constants,	and	operators	that	result	in	a	number.

	

object	type
A	type	of	object	exposed	by	an	application,	for	example,	Application,	File,	Range,	and	Sheet.	Refer
to	the	application's	documentation	(Microsoft	Excel,	Microsoft	Project,	Microsoft	Word,	and	so	on)
for	a	complete	listing	of	available	objects.

	

pi
Pi	is	a	mathematical	constant	equal	to	approximately	3.1415926535897932.

	

Private
Variables	that	are	visible	only	to	the	script	in	which	they	are	declared.

	

procedure
A	named	sequence	of	statements	executed	as	a	unit.	For	example,	Function	and	Sub	are	types	of
procedures.

	

procedure	level
Describes	statements	located	within	a	Function	or	Sub	procedure.	Declarations	are	usually	listed
first,	followed	by	assignments	and	other	executable	code.	For	example:

Sub	MySub()	'	This	statement	declares	a	sub	procedure	block.
				Dim	A	'	This	statement	starts	the	procedure	block.
				A	=	"My	variable"	'	Procedure-level	code.
				Debug.Print	A	'	Procedure-level	code.
End	Sub	'	This	statement	ends	a	sub	procedure	block.

Note	that	script-level	code	resides	outside	any	procedure	blocks.

	

property
A	named	attribute	of	an	object.	Properties	define	object	characteristics	such	as	size,	color,	and	screen
location,	or	the	state	of	an	object,	such	as	enabled	or	disabled.

	

Public
Variables	declared	using	the	Public	Statement	are	visible	to	all	procedures	in	all	modules	in	all
applications.

	

run	time
The	time	when	code	is	running.	During	run	time,	you	can't	edit	the	code.

	

run-time	error
An	error	that	occurs	when	code	is	running.	A	run-time	error	results	when	a	statement	attempts	an
invalid	operation.

	

scope
Defines	the	visibility	of	a	variable,	procedure,	or	object.	For	example,	a	variable	declared	as	Public
is	visible	to	all	procedures	in	all	modules.	Variables	declared	in	procedures	are	visible	only	within	the
procedure	and	lose	their	value	between	calls.

	

SCODE
A	long	integer	value	that	is	used	to	pass	detailed	information	to	the	caller	of	an	interface	member	or
API	function.	The	status	codes	for	OLE	interfaces	and	APIs	are	defined	in	FACILITY_ITF.

	

script	level
Any	code	outside	a	procedure	is	referred	to	as	script-level	code.

	

seed
An	initial	value	used	to	generate	pseudorandom	numbers.	For	example,	the	Randomize	statement
creates	a	seed	number	used	by	the	Rnd	function	to	create	unique	pseudorandom	number	sequences.

	

string	comparison
A	comparison	of	two	sequences	of	characters.	Unless	specified	in	the	function	making	the
comparison,	all	string	comparisons	are	binary.	In	English,	binary	comparisons	are	case-sensitive;	text
comparisons	are	not.

	

string	expression
Any	expression	that	evaluates	to	a	sequence	of	contiguous	characters.	Elements	of	a	string	expression
can	include	a	function	that	returns	a	string,	a	string	literal,	a	string	constant,	or	a	string	variable.

	

type	library
A	file	or	component	within	another	file	that	contains	standard	descriptions	of	exposed	objects,
properties,	and	methods.

	

variable
A	named	storage	location	that	can	contain	data	that	can	be	modified	during	program	execution.	Each
variable	has	a	name	that	uniquely	identifies	it	within	its	level	of	scope.

Variable	names:

Must	begin	with	an	alphabetic	character.

Can't	contain	an	embedded	period	or	type-declaration	character.

Must	be	unique	within	the	same	scope.

Must	be	no	longer	than	255	characters.

Microsoft®	Visual	Basic®	Scripting	Edition	+
Operator	
See	Also

	Scripting	Run-Time	Reference	

&	Operator
-	Operator
Arithmetic	Operators
Concatenation	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	And
Operator	
See	Also

	Language	Reference	

Logical	Operators
Not	Operator
Operator	Precedence
Operator	Summary
Or	Operator
Xor	Operator

Microsoft®	Visual	Basic®	Scripting	Edition	Array
Function	
See	Also

	Language	Reference	

Dim	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Asc
Function	
See	Also

	Language	Reference	

Chr	Function

Microsoft®	Visual	Basic®	Scripting	Edition	=
Operator	
See	Also

	Language	Reference	

Comparison	Operators
Operator	Precedence
Operator	Summary
Set	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Atn
Function	
See	Also

	Language	Reference	

Cos	Function
Derived	Math	Functions
Sin	Function
Tan	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CBool
Function	
See	Also

	Language	Reference	

CByte	Function
CCur	Function
CDate	Function
CDbl	Function
CInt	Function
CLng	Function
CSng	Function
CStr	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CByte
Function	
See	Also

	Language	Reference	

CBool	Function
CCur	Function
CDate	Function
CDbl	Function
CInt	Function
CLng	Function
CSng	Function
CStr	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CCur
Function	
See	Also

	Language	Reference	

CBool	Function
CByte	Function
CDate	Function
CDbl	Function
CInt	Function
CLng	Function
CSng	Function
CStr	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CDate
Function	
See	Also

	Language	Reference	

IsDate	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CDbl
Function	
See	Also

	Language	Reference	

CBool	Function
CByte	Function
CCur	Function
CDate	Function
CInt	Function
CLng	Function
CSng	Function
CStr	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Chr
Function	
See	Also

	Language	Reference	

Asc	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CInt
Function	
See	Also

	Language	Reference	

CBool	Function
CByte	Function
CCur	Function
CDate	Function
CDbl	Function
CLng	Function
CSng	Function
CStr	Function
Int,	Fix	Functions

Microsoft®	Visual	Basic®	Scripting	Edition	Version
Information

	Language	Reference	

The	following	table	lists	the	version	of	Microsoft	Visual	Basic	Scripting
Edition	implemented	by	host	applications.

Host	Application
VBScript	Version
1.0 2.0 3.0 4.0 5.0

Microsoft	Internet	Explorer	3.0 x 	 	 	 	
Microsoft	Internet	Information	Server	3.0 	 x 	 	 	
Microsoft	Internet	Explorer	4.0 	 	 x 	 	
Microsoft	Internet	Information	Server	4.0 	 	 x 	 	
Microsoft	Windows	Scripting	Host	1.0 	 	 x 	 	
Microsoft	Outlook	98 	 	 x 	 	
Microsoft	Visual	Studio	6.0 	 	 	 x 	
Microsoft	Internet	Explorer	5.0 	 	 	 	 x
Microsoft	Internet	Information	Services	5.0 	 	 	 	 x

The	following	table	lists	VBScript	language	features	and	the	version	when
first	introduced.

Language	Element
Version	First	Introduced

1.0 2.0 3.0 4.0 5.0
Abs	Function x 	 	 	 	
Addition	Operator	(+) x 	 	 	 	
And	Operator x 	 	 	 	
Array	Function 	 x 	 	 	
Asc	Function x 	 	 	 	

Assignment	Operator	(=) x 	 	 	 	
Atn	Function x 	 	 	 	
Call	Statement x 	 	 	 	
CBool	Function x 	 	 	 	
CByte	Function x 	 	 	 	
CCur	Function x 	 	 	 	
CDate	Function x 	 	 	 	
CDbl	Function x 	 	 	 	
Chr	Function x 	 	 	 	
CInt	Function x 	 	 	 	
Class	Object 	 	 	 	 x
Class	Statement 	 	 	 	 x
Clear	Method x 	 	 	 	
CLng	Function x 	 	 	 	
Color	Constants 	 x 	 	 	
Comparison	Constants 	 x 	 	 	
Concatenation	Operator	(&) x 	 	 	 	
Const	Statement 	 x 	 	 	
Cos	Function x 	 	 	 	
CreateObject	Function 	 x 	 	 	
CSng	Function x 	 	 	 	
CStr	Function x 	 	 	 	
Date	and	Time	Constants 	 x 	 	 	
Date	Format	Constants 	 x 	 	 	
Date	Function x 	 	 	 	
DateAdd	Function 	 x 	 	 	
DateDiff	Function 	 x 	 	 	
DatePart	Function 	 x 	 	 	
DateSerial	Function x 	 	 	 	
DateValue	Function x 	 	 	 	

Day	Function x 	 	 	 	

Description	Property x 	 	 	 	
Dim	Statement x 	 	 	 	
Division	Operator	(/) x 	 	 	 	
Do...Loop	Statement x 	 	 	 	
Empty x 	 	 	 	
Eqv	Operator x 	 	 	 	
Erase	Statement x 	 	 	 	
Err	Object x 	 	 	 	
Eval	Function 	 	 	 	 x
Execute	Method 	 	 	 	 x
Execute	Statement 	 	 	 	 x
ExecuteGlobal	Statement 	 	 	 	 x
Exit	Statement x 	 	 	 	
Exp	Function x 	 	 	 	
Exponentiation	Operator	(^) x 	 	 	 	
False x 	 	 	 	
Filter	Function 	 x 	 	 	
FirstIndex	Property 	 	 	 	 x
Fix	Function x 	 	 	 	
For...Next	Statement x 	 	 	 	
For	Each...Next	Statement 	 x 	 	 	
FormatCurrency	Function 	 x 	 	 	
FormatDateTime	Function 	 x 	 	 	
FormatNumber	Function 	 x 	 	 	
FormatPercent	Function 	 x 	 	 	
Function	Statement x 	 	 	 	
GetLocale	Function 	 	 	 	 x
GetObject	Function 	 x 	 	 	

GetRef	Function 	 	 	 	 x
Global	Property 	 	 	 	 x

Hex	Function x 	 	 	 	
HelpContext	Property 	 x 	 	 	
HelpFile	Property 	 x 	 	 	
Hour	Function x 	 	 	 	
If...Then...Else	Statement x 	 	 	 	
IgnoreCase	Property 	 	 	 	 x
Imp	Operator x 	 	 	 	
Initialize	Event 	 	 	 	 x
InputBox	Function x 	 	 	 	
InStr	Function x 	 	 	 	
InStrRev	Function 	 x 	 	 	
Int	Function x 	 	 	 	
Integer	Division	Operator	(\) x 	 	 	 	
Is	Operator x 	 	 	 	
IsArray	Function x 	 	 	 	
IsDate	Function x 	 	 	 	
IsEmpty	Function x 	 	 	 	
IsNull	Function x 	 	 	 	
IsNumeric	Function x 	 	 	 	
IsObject	Function x 	 	 	 	
Join	Function 	 x 	 	 	
LBound	Function x 	 	 	 	
LCase	Function x 	 	 	 	
Left	Function x 	 	 	 	
Len	Function x 	 	 	 	
Length	Property 	 	 	 	 x
LoadPicture	Function 	 x 	 	 	

Log	Function x 	 	 	 	
LTrim	Function x 	 	 	 	
Match	Object 	 	 	 	 x

Matches	Collection 	 	 	 	 x
Mid	Function x 	 	 	 	
Minute	Function x 	 	 	 	
Miscellaneous	Constants 	 x 	 	 	
Mod	Operator x 	 	 	 	
Month	Function x 	 	 	 	
MonthName	Function 	 x 	 	 	
MsgBox	Constants 	 x 	 	 	
MsgBox	Function x 	 	 	 	
Multiplication	Operator	(*) x 	 	 	 	
Negation	Operator	(-) x 	 	 	 	
Not	Operator x 	 	 	 	
Now	Function x 	 	 	 	
Nothing x 	 	 	 	
Null x 	 	 	 	
Number	Property x 	 	 	 	
Oct	Function x 	 	 	 	
On	Error	Statement x 	 	 	 	
Option	Explicit	Statement x 	 	 	 	
Or	Operator x 	 	 	 	
Pattern	Property 	 	 	 	 x
Private	Statement 	 x 	 	 	
PropertyGet	Statement 	 	 	 	 x
PropertyLet	Statement 	 	 	 	 x
PropertySet	Statement 	 	 	 	 x
Public	Statement 	 x 	 	 	

Raise	Method x 	 	 	 	
Randomize	Statement x 	 	 	 	
ReDim	Statement x 	 	 	 	
RegExp	Object 	 	 	 	 x

Rem	Statement x 	 	 	 	
Replace	Function 	 x 	 	 	
Replace	Method 	 	 	 	 x
RGB	Function 	 x 	 	 	
Right	Function x 	 	 	 	
Rnd	Function x 	 	 	 	
Round	Function 	 x 	 	 	
RTrim	Function x 	 	 	 	
ScriptEngine	Function 	 x 	 	 	
ScriptEngineBuildVersion
Function 	 x 	 	 	

ScriptEngineMajorVersion
Function 	 x 	 	 	

ScriptEngineMinorVersion
Function 	 x 	 	 	

Second	Function x 	 	 	 	
Select	Case	Statement x 	 	 	 	
Set	Statement x 	 	 	 	
SetLocale	Function 	 	 	 	 x
Sgn	Function x 	 	 	 	
Sin	Function x 	 	 	 	
Source	Property x 	 	 	 	
Space	Function x 	 	 	 	
Split	Function 	 x 	 	 	
Sqr	Function x 	 	 	 	
StrComp	Function x 	 	 	 	

String	Constants 	 x 	 	 	
String	Function x 	 	 	 	
StrReverse	Function 	 x 	 	 	
Sub	Statement x 	 	 	 	
Subtraction	Operator	(-) x 	 	 	 	
Tan	Function x 	 	 	 	
Terminate	Event 	 	 	 	 x
Test	Method 	 	 	 	 x
Time	Function x 	 	 	 	
Timer	Function 	 	 	 	 x
TimeSerial	Function x 	 	 	 	
TimeValue	Function x 	 	 	 	
Trim	Function x 	 	 	 	
Tristate	Constants 	 x 	 	 	
True x 	 	 	 	
TypeName	Function 	 x 	 	 	
UBound	Function x 	 	 	 	
UCase	Function x 	 	 	 	
Value	Property 	 	 	 	 x
VarType	Constants 	 x 	 	 	
VarType	Function x 	 	 	 	
VBScript	Constants 	 x 	 	 	
Weekday	Function x 	 	 	 	
WeekdayName	Function 	 x 	 	 	
While...Wend	Statement x 	 	 	 	
With	Statement 	 	 	 	 x
Xor	Operator x 	 	 	 	
Year	Function x 	 	 	 	

Microsoft®	Visual	Basic®	Scripting	Edition	Class
Object
See	Also

	Language	Reference	
	

Class	Statement
Dim	Statement
Set	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Class
Object
Events

	Language	Reference	
	

Initialize	Event
Terminate	Event

Microsoft®	Visual	Basic®	Scripting	Edition	Class
Statement	
See	Also

	Language	Reference	

Dim	Statement
Function	Statement
Private	Statement
Property	Get	Statement
Property	Let	Statement
Property	Set	Statement
Public	Statement
Set	Statement
Sub	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Clear
Method	
See	Also

	Language	Reference	

Description	Property
Err	Object
Number	Property
On	Error	Statement
Raise	Method
Source	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Clear
Method	
Applies	To

	Language	Reference	

Err	Object

Microsoft®	Visual	Basic®	Scripting	Edition	CLng
Function	
See	Also

	Language	Reference	

CBool	Function
CByte	Function
CCur	Function
CDate	Function
CDbl	Function
CInt	Function
CSng	Function
CStr	Function
Int,	Fix	Functions

Microsoft®	Visual	Basic®	Scripting	Edition

Comparison
Constants
See	Also

	Language	Reference	

Color	Constants
Date	and	Time	Constants
Date	Format	Constants
Miscellaneous	Constants
MsgBox	Constants
String	Constants
Tristate	Constants
VarType	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	&
Operator	
See	Also

	Language	Reference	

Concatenation	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	Const
Statement	
See	Also

	Language	Reference	

Dim	Statement
Function	Statement
Private	Statement
Public	Statement
Sub	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Cos
Function	
See	Also

	Language	Reference	

Atn	Function
Derived	Math	Functions
Sin	Function
Tan	Function

Microsoft®	Visual	Basic®	Scripting	Edition

CreateObject
Function	
See	Also

	Language	Reference	

GetObject	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CSng
Function	
See	Also

	Language	Reference	

CBool	Function
CByte	Function
CCur	Function
CDate	Function
CDbl	Function
CInt	Function
CLng	Function
CStr	Function

Microsoft®	Visual	Basic®	Scripting	Edition	CStr
Function	
See	Also

	Language	Reference	

CBool	Function
CByte	Function
CCur	Function
CDate	Function
CDbl	Function
CInt	Function
CLng	Function
CSng	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Date
and	Time
Constants
See	Also

	Language	Reference	

Color	Constants
Comparison	Constants
Date	Format	Constants
Miscellaneous	Constants
MsgBox	Constants
String	Constants
Tristate	Constants
VarType	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	Date
Format	Constants
See	Also

	Language	Reference	

Color	Constants
Comparison	Constants
Date	and	Time	Constants
Miscellaneous	Constants
MsgBox	Constants
String	Constants
Tristate	Constants
VarType	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	Date
Function	
See	Also

	Language	Reference	

CDate	Function
Now	Function
Time	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DateAdd	Function	
See	Also

	Language	Reference	

DateDiff	Function
DatePart	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DateDiff	Function	
See	Also

	Language	Reference	

DateAdd	Function
DatePart	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DatePart	Function
See	Also

	Language	Reference	

DateAdd	Function
DateDiff	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DateSerial
Function	
See	Also

	Language	Reference	

Date	Function
DateValue	Function
Day	Function
Month	Function
Now	Function
TimeSerial	Function
TimeValue	Function
Weekday	Function
Year	Function

Microsoft®	Visual	Basic®	Scripting	Edition

DateValue
Function	
See	Also

	Language	Reference	

CDate	Function
DateSerial	Function
Day	Function
Month	Function
Now	Function
TimeSerial	Function
TimeValue	Function
Weekday	Function
Year	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Day
Function	
See	Also

	Language	Reference	

Date	Function
Hour	Function
Minute	Function
Month	Function
Now	Function
Second	Function
Weekday	Function
Year	Function

Microsoft®	Visual	Basic®	Scripting	Edition

Description
Property	
Applies	To

	Language	Reference	

Err	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Dim
Statement	
See	Also

	Language	Reference	

Private	Statement
Public	Statement
ReDim	Statement
Set	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	/
Operator	
See	Also

	Language	Reference	

*	Operator
\	Operator
Arithmetic	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition

Do...Loop
Statement	
See	Also

	Language	Reference	

Exit	Statement
For...Next	Statement
While...Wend	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Eqv
Operator	
See	Also

	Language	Reference	

Imp	Operator
Logical	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	Erase
Statement	
See	Also

	Language	Reference	

Dim	Statement
Nothing
ReDim	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Err
Object
See	Also

	Language	Reference	

Error	Messages
On	Error	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Err
Object	
Properties

	Language	Reference	

Description	Property
HelpContext	Property
HelpFile	Property
Number	Property
Source	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Err
Object
Methods

	Language	Reference	

Clear	Method
Raise	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Eval
Function	
See	Also

	Language	Reference	

Execute	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Execute
Method
See	Also

	Language	Reference	
	

Replace	Method
Test	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Execute
Method
Applies	To

	Language	Reference	
	

RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Execute
Statement	
See	Also

	Language	Reference	

Eval	Function
ExecuteGlobal	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Exit
Statement	
See	Also

	Language	Reference	

Do...Loop	Statement
For	Each...Next	Statement
For...Next	Statement
Function	Statement
Sub	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Exp
Function	
See	Also

	Language	Reference	

Derived	Math	Functions
Log	Function

Microsoft®	Visual	Basic®	Scripting	Edition	^
Operator	
See	Also

	Language	Reference	

Arithmetic	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	Filter
Function	
See	Also

	Language	Reference	

Replace	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FirstIndex
Property
See	Also

	Language	Reference	
	

Length	Property
Value	Property

Microsoft®	Visual	Basic®	Scripting	Edition

FirstIndex
Property
Applies	To

	Language	Reference	
	

Match	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Int,	Fix
Functions	
See	Also

	Language	Reference	

CInt	Function
Round	Function

Microsoft®	Visual	Basic®	Scripting	Edition

For...Next
Statement	
See	Also

	Language	Reference	

Do...Loop	Statement
Exit	Statement
For	Each...Next	Statement
While...Wend	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	For
Each...Next
Statement
See	Also

	Language	Reference	

Do...Loop	Statement
Exit	Statement
For...Next	Statement
While...Wend	Statement

Microsoft®	Visual	Basic®	Scripting	Edition

FormatCurrency
Function	
See	Also

	Language	Reference	

FormatDateTime	Function
FormatNumber	Function
FormatPercent	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FormatDateTime
Function	
See	Also

	Language	Reference	

FormatCurrency	Function
FormatNumber	Function
FormatPercent	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FormatNumber
Function	
See	Also

	Language	Reference	

FormatCurrency	Function
FormatDateTime	Function
FormatPercent	Function

Microsoft®	Visual	Basic®	Scripting	Edition

FormatPercent
Function	
See	Also

	Language	Reference	

FormatCurrency	Function
FormatDateTime	Function
FormatNumber	Function

Microsoft®	Visual	Basic®	Scripting	Edition

Function
Statement	
See	Also

	Language	Reference	

Call	Statement
Dim	Statement
Exit	Statement
Nothing
Set	Statement
Sub	Statement

Microsoft®	Visual	Basic®	Scripting	Edition

GetObject
Function	
See	Also

	Language	Reference	

CreateObject	Function

Microsoft®	Visual	Basic®	Scripting	Edition	GetRef
Function
See	Also

	Language	Reference	

Function	Statement
Set	Statement
Sub	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Global
Property
See	Also

	Language	Reference	
	

IgnoreCase	Property
Pattern	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Global
Property
Applies	To

	Language	Reference	
	

RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Hex
Function	
See	Also

	Language	Reference	

Oct	Function

Microsoft®	Visual	Basic®	Scripting	Edition

HelpContext
Property
See	Also

	Language	Reference	

Description	Property
HelpFile	Property
Number	Property
Source	Property

Microsoft®	Visual	Basic®	Scripting	Edition

HelpContext
Property
Applies	To

	Language	Reference	

Err	Object

Microsoft®	Visual	Basic®	Scripting	Edition

HelpFile	Property
See	Also

	Language	Reference	

Description	Property
HelpContext	Property
Number	Property
Source	Property

Microsoft®	Visual	Basic®	Scripting	Edition

HelpFile	Property
Applies	To

	Language	Reference	

Err	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Hour
Function	
See	Also

	Language	Reference	

Day	Function
Minute	Function
Now	Function
Second	Function
Time	Function

Microsoft®	Visual	Basic®	Scripting	Edition

IgnoreCase
Property
See	Also

	Language	Reference	
	

Global	Property
Pattern	Property

Microsoft®	Visual	Basic®	Scripting	Edition

IgnoreCase
Property
Applies	To

	Language	Reference	
	

RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Imp
Operator	
See	Also

	Language	Reference	

Eqv	Operator
Logical	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition

Initialize	Event
See	Also

	Language	Reference	

Class	Object
Class	Statement
Terminate	Event

Microsoft®	Visual	Basic®	Scripting	Edition

Initialize	Event
Applies	To

	Language	Reference	

Class	Object

Microsoft®	Visual	Basic®	Scripting	Edition

InputBox	Function
See	Also

	Language	Reference	

MsgBox	Function

Microsoft®	Visual	Basic®	Scripting	Edition	InStr
Function	
See	Also

	Language	Reference	

InStrRev	Function

Microsoft®	Visual	Basic®	Scripting	Edition	\
Operator	
See	Also

	Language	Reference	

*	Operator
/	Operator
Arithmetic	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	Is
Operator	
See	Also

	Language	Reference	

Comparison	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	IsArray
Function	
See	Also

	Language	Reference	

IsDate	Function
IsEmpty	Function
IsNull	Function
IsNumeric	Function
IsObject	Function
VarType	Function

Microsoft®	Visual	Basic®	Scripting	Edition	IsDate
Function	
See	Also

	Language	Reference	

CDate	Function
IsArray	Function
IsEmpty	Function
IsNull	Function
IsNumeric	Function
IsObject	Function
VarType	Function

Microsoft®	Visual	Basic®	Scripting	Edition

IsEmpty	Function	
See	Also

	Language	Reference	

IsArray	Function
IsDate	Function
IsNull	Function
IsNumeric	Function
IsObject	Function
VarType	Function

Microsoft®	Visual	Basic®	Scripting	Edition	IsNull
Function	
See	Also

	Language	Reference	

IsArray	Function
IsDate	Function
IsEmpty	Function
IsNumeric	Function
IsObject	Function
VarType	Function

Microsoft®	Visual	Basic®	Scripting	Edition

IsNumeric
Function	
See	Also

	Language	Reference	

IsArray	Function
IsDate	Function
IsEmpty	Function
IsNull	Function
IsObject	Function
VarType	Function

Microsoft®	Visual	Basic®	Scripting	Edition

IsObject	Function	
See	Also

	Language	Reference	

IsArray	Function
IsDate	Function
IsEmpty	Function
IsNull	Function
IsNumeric	Function
Set	Statement
VarType	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Join
Function	
See	Also

	Language	Reference	

Split	Function

Microsoft®	Visual	Basic®	Scripting	Edition	LBound
Function	
See	Also

	Language	Reference	

Dim	Statement
ReDim	Statement
UBound	Function

Microsoft®	Visual	Basic®	Scripting	Edition	LCase
Function	
See	Also

	Language	Reference	

UCase	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Left
Function	
See	Also

	Language	Reference	

Len	Function
Mid	Function
Right	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Len
Function	
See	Also

	Language	Reference	

InStr	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Length
Property
See	Also

	Language	Reference	
	

FirstIndex	Property
Value	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Length
Property
Applies	To

	Language	Reference	
	

Match	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Log
Function	
See	Also

	Language	Reference	

Derived	Math	Functions
Exp	Function

Microsoft®	Visual	Basic®	Scripting	Edition	LTrim,
RTrim,	and	Trim
Functions	
See	Also

	Language	Reference	

Left	Function
Right	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Match
Object
See	Also

	Language	Reference	

Matches	Collection
RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Match
Object
Properties

	Language	Reference	

FirstIndex	Property
Length	Property
Value	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Matches
Collection
See	Also

	Language	Reference	

For	Each...Next	Statement
Match	Object
RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Matches
Collection
Properties

	Language	Reference

Count	Property
Item	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Mid
Function	
See	Also

	Language	Reference	

Left	Function
Len	Function
LTrim,	RTrim,	and	Trim	Functions
Right	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Minute
Function	
See	Also

	Language	Reference	

Day	Function
Hour	Function
Now	Function
Second	Function
Time	Function

Microsoft®	Visual	Basic®	Scripting	Edition

Miscellaneous
Constants
See	Also

	Language	Reference	

Color	Constants
Comparison	Constants
Date	and	Time	Constants
Date	Format	Constants
MsgBox	Constants
String	Constants
Tristate	Constants
VarType	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	Mod
Operator	
See	Also

	Language	Reference	

Arithmetic	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	Month
Function	
See	Also

	Language	Reference	

Date	Function
Day	Function
Now	Function
Weekday	Function
Year	Function

Microsoft®	Visual	Basic®	Scripting	Edition

MonthName
Function	
See	Also

	Language	Reference	

WeekdayName	Function

Microsoft®	Visual	Basic®	Scripting	Edition	MsgBox
Constants
See	Also

	Language	Reference	

Color	Constants
Comparison	Constants
Date	and	Time	Constants
Date	Format	Constants
Miscellaneous	Constants
String	Constants
Tristate	Constants
VarType	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	MsgBox
Function	
See	Also

	Language	Reference	

InputBox	Function

Microsoft®	Visual	Basic®	Scripting	Edition	*
Operator	
See	Also

	Language	Reference	

\	Operator
Arithmetic	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	-
Operator	
See	Also

	Language	Reference	

+	Operator
Arithmetic	Operators
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	Not
Operator	
See	Also

	Language	Reference	

And	Operator
Logical	Operators
Operator	Precedence
Operator	Summary
Or	Operator
Xor	Operator

Microsoft®	Visual	Basic®	Scripting	Edition	Now
Function	
See	Also

	Language	Reference	

Date	Function
Day	Function
Hour	Function
Minute	Function
Month	Function
Second	Function
Time	Function
Weekday	Function
Year	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Nothing
See	Also

	Language	Reference	

Dim	Statement
Set	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Number
Property	
See	Also

	Language	Reference	

Description	Property
HelpContext	Property
HelpFile	Property
Err	Object
Source	Property
Error	Messages

Microsoft®	Visual	Basic®	Scripting	Edition	Number
Property	
Applies	To

	Language	Reference	

Err	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Oct
Function	
See	Also

	Language	Reference	

Hex	Function

Microsoft®	Visual	Basic®	Scripting	Edition	On
Error	Statement	
See	Also

	Language	Reference	

Err	Object
Exit	Statement

Microsoft®	Visual	Basic®	Scripting	Edition

Operator
Precedence	
See	Also

	Language	Reference	

Is	Operator
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition	Or
Operator	
See	Also

	Language	Reference	

And	Operator
Logical	Operators
Not	Operator
Operator	Precedence
Operator	Summary
Xor	Operator

Microsoft®	Visual	Basic®	Scripting	Edition	Pattern
Property
See	Also

	Language	Reference	
	

Global	Property
IgnoreCase	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Pattern
Property
Applies	To

	Language	Reference	
	

RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Private
Statement	
See	Also

	Language	Reference	

Dim	Statement
Public	Statement
ReDim	Statement
Set	Statement

Microsoft®	Visual	Basic®	Scripting	Edition

Property	Get
Statement	
See	Also

	Language	Reference	

Class	Statement
Dim	Statement
Exit	Statement
Function	Statement
Private	Statement
Property	Let	Statement
Property	Set	Statement
Public	Statement
Set	Statement
Sub	Statement

Microsoft®	Visual	Basic®	Scripting	Edition

Property	Let
Statement	
See	Also

	Language	Reference	

Class	Statement
Dim	Statement
Exit	Statement
Function	Statement
Private	Statement
Property	Get	Statement
Property	Set	Statement
Public	Statement
Set	Statement
Sub	Statement

Microsoft®	Visual	Basic®	Scripting	Edition

Property	Set
Statement	
See	Also

	Language	Reference	

Class	Statement
Dim	Statement
Exit	Statement
Function	Statement
Private	Statement
Property	Get	Statement
Property	Let	Statement
Public	Statement
Set	Statement
Sub	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Public
Statement	
See	Also

	Language	Reference	

Dim	Statement
Private	Statement
ReDim	Statement
Set	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Raise
Method	
See	Also

	Language	Reference	

Clear	Method
Description	Property
Err	Object
Number	Property
Source	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Raise
Method	
Applies	To

	Language	Reference	

Err	Object

Microsoft®	Visual	Basic®	Scripting	Edition	

Randomize
Statement	
See	Also

	Language	Reference	

Rnd	Function
Timer	Function

Microsoft®	Visual	Basic®	Scripting	Edition	ReDim
Statement	
See	Also

	Language	Reference	

Dim	Statement
Set	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	RegExp
Object
See	Also

	Language	Reference	
	

Match	Object
Matches	Collection

Microsoft®	Visual	Basic®	Scripting	Edition	RegExp
Object
Methods

	Language	Reference	
	

Execute	Method
Replace	Method
Test	Method

Microsoft®	Visual	Basic®	Scripting	Edition	RegExp
Object
Properties

	Language	Reference	
	

Global	Property
IgnoreCase	Property
Pattern	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Replace
Function	
See	Also

	Language	Reference	

Filter	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Replace
Method
See	Also

	Language	Reference	
	

Execute	Method
Test	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Replace
Method
Applies	To

	Language	Reference	
	

RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Right
Function	
See	Also

	Language	Reference	

Left	Function
Len	Function
Mid	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Rnd
Function	
See	Also

	Language	Reference	

Randomize	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Round
Function	
See	Also

	Language	Reference	

Int,	Fix	Functions

Microsoft®	Visual	Basic®	Scripting	Edition

ScriptEngine
Function	
See	Also

	Language	Reference	

ScriptEngineBuildVersion	Function
ScriptEngineMajorVersion	Function
ScriptEngineMinorVersion	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ScriptEngineBuildVersion
Function	
See	Also

	Language	Reference

ScriptEngine	Function
ScriptEngineMajorVersion	Function
ScriptEngineMinorVersion	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ScriptEngineMajorVersion
Function	
See	Also

	Language	Reference

ScriptEngine	Function
ScriptEngineBuildVersion	Function
ScriptEngineMinorVersion	Function

Microsoft®	Visual	Basic®	Scripting	Edition

ScriptEngineMinorVersion
Function	
See	Also

	Language	Reference

ScriptEngine	Function
ScriptEngineBuildVersion	Function
ScriptEngineMajorVersion	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Second
Function	
See	Also

	Language	Reference	

Day	Function
Hour	Function
Minute	Function
Now	Function
Time	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Select
Case	Statement	
See	Also

	Language	Reference	

If...Then...Else	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Set
Statement	
See	Also

	Language	Reference	

=	Operator
Dim	Statement
GetRef	Function
ReDim	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Sgn
Function	
See	Also

	Language	Reference	

Abs	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Sin
Function	
See	Also

	Language	Reference	

Atn	Function
Cos	Function
Derived	Math	Functions
Tan	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Source
Property
See	Also

	Language	Reference	

Description	Property
Err	Object
HelpContext	Property
HelpFile	Property
Number	Property
On	Error	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Source
Property	
Applies	To

	Language	Reference	

Err	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Space
Function	
See	Also

	Language	Reference	

String	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Split
Function	
See	Also

	Language	Reference	

Join	Function

Microsoft®	Visual	Basic®	Scripting	Edition	String
Constants
See	Also

	Language	Reference	

Color	Constants
Comparison	Constants
Date	and	Time	Constants
Date	Format	Constants
Miscellaneous	Constants
MsgBox	Constants
Tristate	Constants
VarType	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	String
Function	
See	Also

	Language	Reference	

Space	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Sub
Statement	
See	Also

	Language	Reference	

Call	Statement
Dim	Statement
Exit	Statement
Function	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Tan
Function	
See	Also

	Language	Reference	

Atn	Function
Cos	Function
Derived	Math	Functions
Sin	Function

Microsoft®	Visual	Basic®	Scripting	Edition

Terminate	Event
See	Also

	Language	Reference	

Class	Object
Class	Statement
Initialize	Event

Microsoft®	Visual	Basic®	Scripting	Edition

Terminate	Event
Applies	To

	Language	Reference	

Class	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Test
Method
See	Also

	Language	Reference	
	

Execute	Method
Replace	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Test
Method
Applies	To

	Language	Reference	
	

RegExp	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Time
Function	
See	Also

	Language	Reference	

Date	Function

Microsoft®	Visual	Basic®	Scripting	Edition	

Timer	Function
See	Also

	Language	Reference	

Randomize	Statement

Microsoft®	Visual	Basic®	Scripting	Edition

TimeSerial
Function	
See	Also

	Language	Reference	

DateSerial	Function
DateValue	Function
Hour	Function
Minute	Function
Now	Function
Second	Function
TimeValue	Function

Microsoft®	Visual	Basic®	Scripting	Edition

TimeValue
Function	
See	Also

	Language	Reference	

DateSerial	Function
DateValue	Function
Hour	Function
Minute	Function
Now	Function
Second	Function
TimeSerial	Function

Microsoft®	Visual	Basic®	Scripting	Edition

TypeName
Function	
See	Also

	Language	Reference	

IsArray	Function
IsDate	Function
IsEmpty	Function
IsNull	Function
IsNumeric	Function
IsObject	Function
VarType	Function

Microsoft®	Visual	Basic®	Scripting	Edition	UBound
Function	
See	Also

	Language	Reference	

Dim	Statement
LBound	Function
ReDim	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	UCase
Function	
See	Also

	Language	Reference	

LCase	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Value
Property
See	Also

	Language	Reference	
	

FirstIndex	Property
Length	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Value
Property
Applies	To

	Language	Reference	
	

Match	Object

Microsoft®	Visual	Basic®	Scripting	Edition

VarType
Constants
See	Also

	Language	Reference	

Color	Constants
Comparison	Constants
Date	and	Time	Constants
Date	Format	Constants
Miscellaneous	Constants
MsgBox	Constants
String	Constants
Tristate	Constants

Microsoft®	Visual	Basic®	Scripting	Edition

VarType	Function	
See	Also

	Language	Reference	

IsArray	Function
IsDate	Function
IsEmpty	Function
IsNull	Function
IsNumeric	Function
IsObject	Function
TypeName	Function

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript
Constants
See	Also

	Language	Reference	

FileSystemObject	Constants

Microsoft®	Visual	Basic®	Scripting	Edition

Weekday	Function
See	Also

	Language	Reference	

Date	Function
Day	Function
Month	Function
Now	Function
Year	Function

Microsoft®	Visual	Basic®	Scripting	Edition

While...Wend
Statement	
See	Also

	Language	Reference	

Do...Loop	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	With
Statement	
See	Also

	Language	Reference	

Set	Statement

Microsoft®	Visual	Basic®	Scripting	Edition	Xor
Operator	
See	Also

	Language	Reference	

And	Operator
Logical	Operators
Not	Operator
Operator	Precedence
Operator	Summary
Or	Operator

Microsoft®	Visual	Basic®	Scripting	Edition	Year
Function	
See	Also

	Language	Reference	

Date	Function
Day	Function
Month	Function
Now	Function
Weekday	Function

Microsoft®	Visual	Basic®	Scripting	Edition	Color
Constants
See	Also

	Language	Reference	

Comparison	Constants
Date	and	Time	Constants
Date	Format	Constants
Miscellaneous	Constants
MsgBox	Constants
String	Constants
Tristate	Constants
VarType	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	Tristate
Constants
See	Also

	Language	Reference	

Color	Constants
Comparison	Constants
Date	and	Time	Constants
Date	Format	Constants
Miscellaneous	Constants
MsgBox	Constants
String	Constants
VarType	Constants

Microsoft®	Visual	Basic®	Scripting	Edition

Comparison
Operators
See	Also

	Language	Reference	

=	Operator
Is	Operator
Operator	Precedence
Operator	Summary

Microsoft®	Visual	Basic®	Scripting	Edition

ExecuteGlobal
Statement

	Language	Reference	
Version	5	

See	Also

Description

Executes	one	or	more	specified	statements	in	the	global	namespace	of	a
script.

Syntax

ExecuteGlobal	statement

The	required	statement	argument	is	a	string	expression	containing	one	or	more	statements	for
execution.		Include	multiple	statements	in	the	statement	argument,	using	colons	or	embedded	line
breaks	to	separate	them.

Remarks

In	VBScript,	x	=	y	can	be	interpreted	two	ways.	The	first	is	as	an
assignment	statement,	where	the	value	of	y	is	assigned	to	x.	The	second
interpretation	is	as	an	expression	that	tests	if	x	and	y	have	the	same	value.	If
they	do,	result	is	True;	if	they	are	not,	result	is	False.	The	ExecuteGlobal
statement	always	uses	the	first	interpretation,	whereas	the	Eval	method
always	uses	the	second.

Note		In	Microsoft®	JScript�,	no	confusion	exists	between	assignment	and	comparison,	because	the
assignment	operator	(=)	is	different	from	the	comparison	operator(==).

All	statements	used	with	ExecuteGlobal	are	executed	in	the	script's	global	namespace.	This	allows
code	to	be	added	to	the	program	so	that	any	procedure	can	access	it.	For	example,	a	VBScript	Class
statement	can	be	executed	at	run	time	and	functions	can	subsequently	create	new	instances	of	the
class.

Adding	procedures	and	classes	at	runtime	can	be	useful,	but	also	introduces	the	possibility	of
overwriting	existing	global	variables	and	functions	at	runtime.	Because	this	can	cause	significant
programming	problems,	care	should	be	exercised	when	using	the	ExecuteGlobal	statement.	If	you
don�t	need	access	to	a	variable	or	function	outside	of	a	procedure,	use	the	Execute	statement	which

will	only	affect	the	namespace	of	the	calling	function.

The	following	example	illustrates	the	use	of	the	ExecuteGlobal	statement:

Dim	X	 	 	 '	Declare	X	in	global	scope.
X	=	"Global"	 	 '	Assign	global	X	a	value.
Sub	Proc1	 '	Declare	procedure.
		Dim	X	 	 '	Declare	X	in	local	scope.
		X	=	"Local"	 '	Assign	local	X	a	value.
	 	 	 '	The	Execute	statement	here	creates	a
	 	 	 '	procedure	that,	when	invoked,	prints	X.
	 	 	 '	It	print	the	global	X	because	Proc2
	 	 	 '	inherits	everything	in	global	scope.
		ExecuteGlobal	"Sub	Proc2:	Print	X:	End	Sub"
		Print	Eval("X")	 '	Print	local	X.
		Proc2	 	 '	Invoke	Proc2	in	Global	scope	resulting
	 	 	 '	in	"Global"	being	printed.
End	Sub
Proc2	 	 	 '	This	line	causes	an	error	since	
	 	 	 '	Proc2	is	unavailable	outside	Proc1.
Proc1	 	 	 '	Invoke	Proc1.
		Execute	"Sub	Proc2:	Print	X:	End	Sub"
Proc2	 	 	 '	This	invocation	succeeds	because	Proc2
	 	 	 '	is	now	available	globally.

The	following	example	shows	how	the	ExecuteGlobal	statement	can	be
rewritten	so	you	don't	have	to	enclose	the	entire	procedure	in	the	quotation
marks:

S	=	"Sub	Proc2"	&	vbCrLf
S	=	S	&	"		Print	X"	&	vbCrLf	
S	=	S	&	"End	Sub"
ExecuteGlobal	S

Microsoft®	Visual	Basic®	Scripting	Edition

GetLocale
Function

	Language	Reference	
Version	5	

See	Also

Description

Returns	the	current	locale	ID	value.

Syntax

GetLocale()

Remarks

A	locale	is	a	set	of	user	preference	information	related	to	the	user's
language,	country/region,	and	cultural	conventions.	The	locale	determines
such	things	as	keyboard	layout,	alphabetic	sort	order,	as	well	as	date,	time,
number,	and	currency	formats.

The	return	value	can	be	any	of	the	32-bit	values	shown	in	the	Locale	ID	chart:

The	following	example	illustrates	the	use	of	the	GetLocale	function.	To	use	this	code,	paste	the
entire	example	between	the	<BODY>l;	tags	of	a	standard	HTML	page.

Enter	Date	in	UK	format:	<input	type="text"	id="UKDate"	size="20"><p>
Here's	the	US	equivalent:	<input	type="text"	id="USdate"	size="20"><p>
<input	type="button"	value="Convert"	id="button1"><p>
Enter	a	price	in	German:	 	<input	type="text"	id="GermanNumber"	size="20">
<p>
Here's	the	UK	equivalent:	<input	type="text"	id="USNumber"	size="20"><p>
<input	type="button"	value="Convert"	id="button2"><p>

<script	language="vbscript">

Dim	currentLocale
'	Get	the	current	locale
currentLocale	=	GetLocale

Sub	Button1_onclick
		Dim	original
		original	=	SetLocale("en-gb")
		mydate	=	CDate(UKDate.value)
		'	IE	always	sets	the	locale	to	US	English	so	use	the
		'	currentLocale	variable	to	set	the	locale	to	US	English
		original	=	SetLocale(currentLocale)
		USDate.value	=	FormatDateTime(mydate,vbShortDate)
End	Sub

Sub	button2_onclick
		Dim	original
		original	=	SetLocale("de")
		myvalue	=	CCur(GermanNumber.value)
		original	=	SetLocale("en-gb")
		USNumber.value	=	FormatCurrency(myvalue)
End	Sub

</script>	

Microsoft®	Visual	Basic®	Scripting

Edition	Locale
ID
(LCID)
Chart

	Language	Reference	
Version	5	

See	Also

Locale	Description
Short
String Hex	Value

Decimal
Value Locale	Description

Short
String Hex	Value

Decimal
Value

Afrikaans af 0x0436 1078 Hebrew he 0x040D 1037

Albanian sq 0x041C 1052 Hindi hi 0x0439 1081

Arabic	-	U.A.E.
ar-
ae 0x3801 14337 Hungarian hu 0x040E 1038

Arabic	-	Bahrain
ar-
bh 0x3C01 15361 Icelandic is 0x040F 1039

Arabic	-	Algeria
ar-
dz 0x1401 5121 Indonesian in 0x0421 1057

Arabic	-	Egypt
ar-
eg 0x0C01 3073 Italian	-	Italy it 0x0410 1040

Arabic	-	Iraq
ar-
iq 0x0801 2049

Italian	-
Switzerland

it-
ch 0x0810 2064

Arabic	-	Jordan
ar-
jo 0x2C01 11265 Japanese ja 0x0411 1041

Arabic	-	Kuwait
ar-
kw 0x3401 13313 Korean ko 0x0412 1042

Arabic	-	Lebanon
ar-
lb 0x3001 12289 Latvian lv 0x0426 1062

Arabic	-	Libya
ar-
ly 0x1001 4097 Lithuanian lt 0x0427 1063

Arabic	-	Morocco
ar-
ma 0x1801 6145

FYRO
Macedonian mk 0x042F 1071

Arabic	-	Oman
ar-
om 0x2001 8193 Malay	-	Malaysia ms 0x043E 1086

Arabic	-	Qatar
ar-
qa 0x4001 16385 Maltese mt 0x043A 1082

Arabic	-	Saudia
Arabia

ar-
sa 0x0401 1025

Norwegian	-
Bokmål no 0x0414 1044

Arabic	-	Syria
ar-
sy 0x2801 10241 Polish pl 0x0415 1045

Arabic	-	Tunisia
ar-
tn 0x1C01 7169

Portuguese	-
Portugal pt 0x0816 2070

Arabic	-	Yemen
ar-
ye 0x2401 9217

Portuguese	-
Brazil

pt-
br 0x0416 1046

Basque eu 0x042D 1069 Raeto-Romance rm 0x0417 1047

Belarusian be 0x0423 1059 Romanian ro 0x0418 1048

Bulgarian bg 0x0402 1026
Romanian	-
Moldova

ro-
mo 0x0818 2072

Catalan ca 0x0403 1027 Russian ru 0x0419 1049

Chinese zh 0x0004 4
Russian	-
Moldova

ru-
mo 0x0819 2073

Chinese	-	PRC
zh-
cn 0x0804 2052 Serbian	-	Cyrillic sr 0x0C1A 3098

Chinese	-	Hong
Kong	SAR

zh-
hk

0x0C04 3076 Setsuana tn 0x0432 1074

Chinese	-
Singapore

zh-
sg 0x1004 4100 Slovenian sl 0x0424 1060

Chinese	-	Taiwan
zh-
tw 0x0404 1028 Slovak sk 0x041B 1051

Croatian hr 0x041A 1050 Sorbian sb 0x042E 1070

Czech cs 0x0405 1029 Spanish	-	Spain es 0x040A 1034

Danish da 0x0406 1030
Spanish	-
Argentina

es-
ar 0x2C0A 11274

Dutch nl 0x0413 1043 Spanish	-	Bolivia
es-
bo 0x400A 16394

Dutch	-	Belgium
nl-
be 0x0813 2067 Spanish	-	Chile

es-
cl 0x340A 13322

English en 0x0009 9
Spanish	-
Columbia

es-
co 0x240A 9226

English	-
Australia

en-
au 0x0C09 3081

Spanish	-	Costa
Rica

es-
cr 0x140A 5130

Spanish	-

English	-	Belize
en-
bz 0x2809 10249

Dominican
Republic

es-
do 0x1C0A 7178

English	-	Canada
en-
ca 0x1009 4105

Spanish	-
Ecuador

es-
ec 0x300A 12298

English	-	Ireland
en-
ie 0x1809 6153

Spanish	-
Guatemala

es-
gt 0x100A 4106

English	-	Jamaica
en-
jm 0x2009 8201

Spanish	-
Honduras

es-
hn 0x480A 18442

English	-	New
Zealand

en-
nz 0x1409 5129 Spanish	-	Mexico

es-
mx 0x080A 2058

English	-	South
Africa

en-
za 0x1C09 7177

Spanish	-
Nicaragua

es-
ni 0x4C0A 19466

English	-	Trinidad
en-
tt 0x2C09 11273 Spanish	-	Panama

es-
pa 0x180A 6154

English	-	United
Kingdom

en-
gb 0x0809 2057 Spanish	-	Peru

es-
pe 0x280A 10250

English	-	United
States

en-
us 0x0409 1033

Spanish	-	Puerto
Rico

es-
pr 0x500A 20490

Estonian et 0x0425 1061
Spanish	-
Paraguay

es-
py 0x3C0A 15370

Farsi fa 0x0429 1065
Spanish	-	El
Salvador

es-
sv 0x440A 17418

Finnish fi 0x040B 1035
Spanish	-
Uruguay

es-
uy 0x380A 14346

Faeroese fo 0x0438 1080
Spanish	-
Venezuela

es-
ve 0x200A 8202

French	-	France fr 0x040C 1036 Sutu sx 0x0430 1072

French	-	Belgium
fr-
be 0x080C 2060 Swedish sv 0x041D 1053

French	-	Canada
fr-
ca 0x0C0C 3084 Swedish	-	Finland

sv-
fi 0x081D 2077

French	-
Luxembourg

fr-
lu 0x140C 5132 Thai th 0x041E 1054

French	-
Switzerland

fr-
ch 0x100C 4108 Turkish tr 0x041F 1055

Gaelic	-	Scotland gd 0x043C 1084 Tsonga ts 0x0431 1073

German	-
Germany de 0x0407 1031 Ukranian uk 0x0422 1058

German	-
Austrian

de-
at

0x0C07 3079 Urdu	-	Pakistan ur 0x0420 1056

German	-
Lichtenstein

de-
li 0x1407 5127 Vietnamese vi 0x042A 1066

German	-
Luxembourg

de-
lu 0x1007 4103 Xhosa xh 0x0434 1076

German	-
Switzerland

de-
ch 0x0807 2055 Yiddish ji 0x043D 1085

Greek el 0x0408 1032 Zulu zu 0x0435 1077

Microsoft®	Visual	Basic®	Scripting	Edition

SetLocale
Function

	Language	Reference	
Version	5	

See	Also

Description

Sets	the	global	locale	and	returns	the	previous	locale.

Syntax

SetLocale(lcid)

The	lcid	argument	can	be	any	valid	32-bit	value	or	short	string	that	uniquely
identifies	a	geographical	locale.	Recognized	values	can	be	found	in	the
Locale	ID	chart.

Remarks

If	lcid	is	zero,	the	locale	is	set	to	match	the	current	system	setting.

A	locale	is	a	set	of	user	preference	information	related	to	the	user's
language,	country/region,	and	cultural	conventions.	The	locale	determines
such	things	as	keyboard	layout,	alphabetic	sort	order,	as	well	as	date,	time,
number,	and	currency	formats.

The	following	example	illustrates	the	use	of	the	SetLocale	function.	To	use
this	code,	paste	the	entire	example	between	the	<BODY>	tags	of	a	standard
HTML	page.

Enter	Date	in	UK	format:	<input	type="text"	id="UKDate"	size="20"><p>
Here's	the	US	equivalent:	<input	type="text"	id="USdate"	size="20"><p>
<input	type="button"	value="Convert"	id="button1"><p>
Enter	a	price	in	German:	 	<input	type="text"	id="GermanNumber"	size="20">
<p>
Here's	the	UK	equivalent:	<input	type="text"	id="USNumber"	size="20"><p>
<input	type="button"	value="Convert"	id="button2"><p>

<script	language="vbscript">
Dim	currentLocale
'	Get	the	current	locale
currentLocale	=	GetLocale

Sub	Button1_onclick
		Dim	original
		original	=	SetLocale("en-gb")
		mydate	=	CDate(UKDate.value)
		'	IE	always	sets	the	locale	to	US	English	so	use	the
		'	currentLocale	variable	to	set	the	locale	to	US	English
		original	=	SetLocale(currentLocale)
		USDate.value	=	FormatDateTime(mydate,vbShortDate)
End	Sub

Sub	button2_onclick
		Dim	original

		original	=	SetLocale("de")
		myvalue	=	CCur(GermanNumber.value)
		original	=	SetLocale("en-gb")
		USNumber.value	=	FormatCurrency(myvalue)
End	Sub

</script>	

Microsoft®	Visual	Basic®	Scripting	Edition	Add
Method
(Dictionary)
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Folders)
Exists	Method
Items	Method
Keys	Method
Remove	Method
RemoveAll	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Add
Method
(Dictionary)
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Add
Method	(Folders)
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)

Microsoft®	Visual	Basic®	Scripting	Edition	Add
Method	(Folders)
Applies	To

	Scripting	Run-Time	Reference	

Folders	Collection

Microsoft®	Visual	Basic®	Scripting	Edition

AtEndOfLine
Property
See	Also

	Scripting	Run-Time	Reference	

AtEndOfStream	Property
Column	Property
Line	Property

Microsoft®	Visual	Basic®	Scripting	Edition

AtEndOfLine
Property
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

AtEndOfStream
Property
See	Also

	Scripting	Run-Time	Reference	

AtEndOfLine	Property
Column	Property
Line	Property

Microsoft®	Visual	Basic®	Scripting	Edition

AtEndOfStream
Property
Applies	To

	Scripting	Run-Time	Reference	
	Version	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

Attributes
Property
See	Also

	Scripting	Run-Time	Reference	
	

DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

Attributes
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

AvailableSpace
Property
See	Also

	Scripting	Run-Time	Reference	
	

DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

AvailableSpace
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition

BuildPath	Method
See	Also

	Scripting	Run-Time	Reference	

GetAbsolutePathName	Method
GetBaseName	Method
GetDriveName	Method
GetExtensionName	Method
GetFileName	Method
GetParentFolderName	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

BuildPath	Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Close
Method	
See	Also

	Scripting	Run-Time	Reference	

Read	Method
ReadAll	Method
ReadLine	Method
Skip	Method
SkipLine	Method
Write	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Close
Method	
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Column
Property	
See	Also

	Scripting	Run-Time	Reference	

AtEndOfLine	Property
AtEndOfStream	Property
Line	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Column
Property
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

CompareMode
Property
See	Also

	Scripting	Run-Time	Reference	

Count	Property
Item	Property
Key	Property

Microsoft®	Visual	Basic®	Scripting	Edition

CompareMode
Property
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Copy
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFile	Method
CopyFolder	Method
Delete	Method
Move	Method
OpenAsTextStream	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Copy
Method
Applies	To

	Scripting	Run-Time	Reference	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

CopyFile	Method
See	Also

	Scripting	Run-Time	Reference	

Copy	Method
CopyFolder	Method
CreateTextFile	Method
DeleteFile	Method
MoveFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition

CopyFile	Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

CopyFolder
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFile	Method
Copy	Method
CreateFolder	Method
DeleteFolder	Method
MoveFolder	Method

Microsoft®	Visual	Basic®	Scripting	Edition

CopyFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Count
Property
See	Also

	Scripting	Run-Time	Reference	
	

CompareMode	Property
Item	Property
Key	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Count
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Dictionary	Object
Drives	Collection
Files	Collection
Folders	Collection
Matches	Collection

Microsoft®	Visual	Basic®	Scripting	Edition

CreateFolder
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFolder	Method
DeleteFolder	Method
MoveFolder	Method

Microsoft®	Visual	Basic®	Scripting	Edition

CreateFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

CreateTextFile
Method
See	Also

	Scripting	Run-Time	Reference	

CreateFolder	Method
OpenAsTextStream	Method
OpenTextFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition

CreateTextFile
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

DateCreated
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

DateCreated
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

DateLastAccessed
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

DateLastAccessed
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

DateLastModified
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

DateLastModified
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Delete
Method
See	Also

	Scripting	Run-Time	Reference	

Copy	Method
DeleteFile	Method
DeleteFolder	Method
Move	Method
OpenAsTextStream	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Delete
Method
Applies	To

	Scripting	Run-Time	Reference	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

DeleteFile	Method
See	Also

	Scripting	Run-Time	Reference	

CopyFile	Method
CreateTextFile	Method
Delete	Method
DeleteFolder	Method
MoveFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition

DeleteFile	Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

DeleteFolder
Method
See	Also

	Scripting	Run-Time	Reference	

CopyFolder	Method
CreateFolder	Method
Delete	Method
DeleteFile	Method
MoveFolder	Method

Microsoft®	Visual	Basic®	Scripting	Edition

DeleteFolder
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

Dictionary	Object
See	Also

	Scripting	Run-Time	Reference	

FileSystemObject	Object
TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

Dictionary	Object
Properties

	Scripting	Run-Time	Reference	

CompareMode	Property
Count	Property
Item	Property
Key	Property

Microsoft®	Visual	Basic®	Scripting	Edition

Dictionary	Object
Methods

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Items	Method
Keys	Method
Remove	Method
RemoveAll	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Drive
Object
See	Also

	Scripting	Run-Time	Reference	
	

Drives	Collection
File	Object
Files	Collection
Folder	Object
Folders	Collection
GetDrive	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Drive
Object
Properties

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Drive
Object
Methods

	Scripting	Run-Time	Reference	
	

The	Drive	object	has	no	methods.

Microsoft®	Visual	Basic®	Scripting	Edition	Drive
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Drive
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

DriveExists
Method
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Collection
FileExists	Method
FolderExists	Method
GetDrive	Method
GetDriveName	Method
IsReady	Property

Microsoft®	Visual	Basic®	Scripting	Edition

DriveExists
Method
Applies	To

	Scripting	Run-Time	Reference	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

DriveLetter
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

DriveLetter
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Drives
Collection
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Property
File	Object
Files	Collection
Folder	Object
Folders	Collection

Microsoft®	Visual	Basic®	Scripting	Edition	Drives
Collection
Properties

	Scripting	Run-Time	Reference	

Count	Property
Item	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Drives
Collection
Methods

	Scripting	Run-Time	Reference	

The	Drives	collection	has	no	methods.

Microsoft®	Visual	Basic®	Scripting	Edition	Drives
Property
See	Also

	Scripting	Run-Time	Reference	
	

Drives	Collection
Files	Property
SubFolders	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Drives
Property
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

DriveType
Constants
See	Also

	Scripting	Run-Time	Reference	

Comparison	Constants
File	Attribute	Constants
File	Input/Output	Constants
SpecialFolder	Constants
Tristate	Constants

Microsoft®	Visual	Basic®	Scripting	Edition

DriveType
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

DriveType
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Exists
Method
See	Also

	Language	Reference	

Add	Method	(Dictionary)
Items	Method
Keys	Method
Remove	Method
RemoveAll	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Exists
Method
Applies	To

	Language	Reference	

Dictionary	Object

Microsoft®	Visual	Basic®	Scripting	Edition

FileAttribute
Constants
See	Also

	Scripting	Run-Time	Reference	

Comparison	Constants
DriveType	Constants
File	Input/Output	Constants
SpecialFolder	Constants
Tristate	Constants

Microsoft®	Visual	Basic®	Scripting	Edition	File
Input/Output
Constants
See	Also

	Scripting	Run-Time	Reference	

Comparison	Constants
DriveType	Constants
File	Attribute	Constants
SpecialFolder	Constants
Tristate	Constants

Microsoft®	Visual	Basic®	Scripting	Edition

FileExists	Method
See	Also

	Scripting	Run-Time	Reference	

DriveExists	Method
FolderExists	Method
GetFile	Method
GetFileName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

FileExists	Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition	File
Object
See	Also

	Scripting	Run-Time	Reference	
	

Drive	Object
Drives	Collection
Files	Collection
Folder	Object
Folders	Collection

Microsoft®	Visual	Basic®	Scripting	Edition	File
Object
Properties

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition	File
Object
Methods

	Scripting	Run-Time	Reference	
	

Copy	Method
Delete	Method
Move	Method
OpenAsTextStream	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Files
Collection
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Collection
File	Object
Folder	Object
Folders	Collection

Microsoft®	Visual	Basic®	Scripting	Edition	Files
Collection
Properties

	Scripting	Run-Time	Reference	

Count	Property
Item	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Files
Collection
Methods

	Scripting	Run-Time	Reference	

The	Files	collection	has	no	methods.

Microsoft®	Visual	Basic®	Scripting	Edition	Files
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drives	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Files
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystemObject
Object
See	Also

	Scripting	Run-Time	Reference	
	

CreateObject	Function
Dictionary	Object
Drive	Object
Drives	Collection
File	Object
FileSystem	Property
Files	Collection
Folder	Object
Folders	Collection
TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystemObject
Object	
Properties

	Scripting	Run-Time	Reference	
	

Drives	Property

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystemObject
Object
Methods

	Scripting	Run-Time	Reference	
	

BuildPath	Method
CopyFile	Method
CopyFolder	Method
CreateFolder	Method
CreateTextFile	Method
DeleteFile	Method
DeleteFolder	Method
DriveExists	Method
FileExists	Method
FolderExists	Method
GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method
MoveFile	Method
MoveFolder	Method
OpenTextFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystemObject
Constants
See	Also

	Scripting	Run-Time	Reference	

VBScript	Constants

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystem
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystemObject	Object
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

FileSystem
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Folder
Object
See	Also

	Scripting	Run-Time	Reference	
	

Drive	Object
Drives	Collection
File	Object
Files	Collection
Folders	Collection

Microsoft®	Visual	Basic®	Scripting	Edition	Folder
Object
Properties

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Folder
Object
Methods

	Scripting	Run-Time	Reference	

Copy	Method
Delete	Method
Move	Method
CreateTextFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Folders
Collection
See	Also

	Scripting	Run-Time	Reference	

Drive	Object
Drives	Collection
File	Object
Files	Collection
Folder	Object
SubFolders	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Folders
Collection
Properties

	Scripting	Run-Time	Reference	

Count	Property
Item	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Folders
Collection
Methods

	Scripting	Run-Time	Reference	

Add	Method

Microsoft®	Visual	Basic®	Scripting	Edition

FolderExists
Method
See	Also

	Scripting	Run-Time	Reference	

DriveExists	Method
FileExists	Method
GetFolder	Method
GetParentFolderName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

FolderExists
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

FreeSpace
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

FreeSpace
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetAbsolutePathName
Method
See	Also

	Scripting	Run-
Time	Reference	

	

GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetAbsolutePathName
Method
Applies	To

	Scripting	Run-
Time	Reference	

	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetBaseName
Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetBaseName
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetDrive	Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetDrive	Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetDriveName
Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetDriveName
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetExtensionName
Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetExtensionName
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition	GetFile
Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition	GetFile
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetFileName
Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetFileName
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetFileVersion
Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetFileVersion
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetFolder	Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetParentFolderName	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetFolder	Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetParentFolderName
Method
See	Also

	Scripting	Run-
Time	Reference	

	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetSpecialFolder	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetParentFolderName
Method
Applies	To

	Scripting	Run-
Time	Reference	

	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetSpecialFolder
Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetTempName	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetSpecialFolder
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

GetTempName
Method
See	Also

	Scripting	Run-Time	Reference	
	

GetAbsolutePathName	Method
GetBaseName	Method
GetDrive	Method
GetDriveName	Method
GetExtensionName	Method
GetFile	Method
GetFileName	Method
GetFileVersion	Method
GetFolder	Method
GetParentFolderName	Method
GetSpecialFolder	Method

Microsoft®	Visual	Basic®	Scripting	Edition

GetTempName
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition	IsReady
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition	IsReady
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition

IsRootFolder
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

IsRootFolder
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Item
Property
See	Also

	Scripting	Run-Time	Reference	
	

CompareMode	Property
Count	Property
Key	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Item
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Dictionary	Object
Drives	Collection
Files	Collection
Folders	Collection
Matches	Collection

Microsoft®	Visual	Basic®	Scripting	Edition	Items
Method
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Keys	Method
Remove	Method
RemoveAll	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Items
Method
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Key
Property
See	Also

	Scripting	Run-Time	Reference	

CompareMode	Property
Count	Property
Item	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Key
Property
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	Scripting	Library	-	FileSystemObject

FileSystemObject
Glossary

	Scripting	Run-Time	Reference	

	
array

A	set	of	sequentially	indexed	elements	having	the	same	type	of	data.	Each	element	of	an	array	has	a
unique	identifying	index	number.	Changes	made	to	one	element	of	an	array	do	not	affect	the	other
elements.

	

collection
An	object	that	contains	a	set	of	related	objects.	An	object's	position	in	the	collection	can	change
whenever	a	change	occurs	in	the	collection;	therefore,	the	position	of	any	specific	object	in	the
collection	may	vary.

	

run-time	error
An	error	that	occurs	when	code	is	running.	A	run-time	error	results	when	a	statement	attempts	an
invalid	operation.

	

string	expression
Any	expression	that	evaluates	to	a	sequence	of	contiguous	characters.	Elements	of	a	string	expression
can	include	a	function	that	returns	a	string,	a	string	literal,	a	string	constant,	or	a	string	variable.

	

type	library
A	file	or	component	within	another	file	that	contains	standard	descriptions	of	exposed	objects,
properties,	and	methods.

Microsoft®	Visual	Basic®	Scripting	Edition	Keys
Method
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Items	Method
Remove	Method
RemoveAll	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Keys
Method
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Line
Property	
See	Also

	Scripting	Run-Time	Reference	

AtEndOfStream	Property
AtEndOfLine	Property
Column	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Line
Property
Applies	To

	Scripting	Run-Time	Reference	
	Version	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Move
Method
See	Also

	Scripting	Run-Time	Reference	
	

Copy	Method
Delete	Method
MoveFile	Method
MoveFolder	Method
OpenAsTextStream	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Move
Method
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

MoveFile	Method
See	Also

	Scripting	Run-Time	Reference	
	

CopyFile	Method
DeleteFile	Method
GetFile	Method
GetFileName	Method
Move	Method
MoveFolder	Method
OpenTextFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition

MoveFile	Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

MoveFolder
Method
See	Also

	Scripting	Run-Time	Reference	
	

CopyFolder	Method
CreateFolder	Method
DeleteFolder	Method
GetFolder	Method
GetParentFolderName	Method
Move	Method
MoveFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition

MoveFolder
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Name
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Name
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

OpenAsTextStream
Method
See	Also

	Scripting	Run-Time	Reference	
	

Copy	Method
CreateTextFile	Method
Delete	Method
Move	Method
OpenTextFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition

OpenAsTextStream
Method
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object

Microsoft®	Visual	Basic®	Scripting	Edition

OpenTextFile
Method
See	Also

	Scripting	Run-Time	Reference	
	

OpenAsTextStream	Method
CreateTextFile	Method

Microsoft®	Visual	Basic®	Scripting	Edition

OpenTextFile
Method
Applies	To

	Scripting	Run-Time	Reference	
	

FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

ParentFolder
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

ParentFolder
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Path
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
AvailableSpace	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
DriveLetter	Property
DriveType	Property
Files	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property
TotalSize	Property
Type	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Path
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object
File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Read
Method	
See	Also

	Scripting	Run-Time	Reference	

Close	Method
ReadAll	Method
ReadLine	Method
Skip	Method
SkipLine	Method
Write	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Read
Method	
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition	ReadAll
Method	
See	Also

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadLine	Method
Skip	Method
SkipLine	Method
Write	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition	ReadAll
Method	
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

ReadLine	Method	
See	Also

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadAll	Method
Skip	Method
SkipLine	Method
Write	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition

ReadLine	Method	
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Remove
Method	
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Items	Method
Keys	Method
RemoveAll	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Remove
Method
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	Visual	Basic®	Scripting	Edition

RemoveAll
Method
See	Also

	Scripting	Run-Time	Reference	

Add	Method	(Dictionary)
Exists	Method
Items	Method
Keys	Method
Remove	Method

Microsoft®	Visual	Basic®	Scripting	Edition

RemoveAll
Method
Applies	To

	Scripting	Run-Time	Reference	

Dictionary	Object

Microsoft®	Visual	Basic®	Scripting	Edition

RootFolder
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

RootFolder
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition

SerialNumber
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
ShareName	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

SerialNumber
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition

ShareName
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
TotalSize	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

ShareName
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition

ShortName
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortPath	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

ShortName
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

ShortPath
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
Size	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

ShortPath
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Size
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
SubFolders	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Size
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Skip
Method
See	Also

	Scripting	Run-Time	Reference	
	

Close	Method
Read	Method
ReadAll	Method
ReadLine	Method
SkipLine	Method
Write	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Skip
Method
Applies	To

	Scripting	Run-Time	Reference	
	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

SkipLine	Method	
See	Also

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadAll	Method
ReadLine	Method
Skip	Method
Write	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition

SkipLine	Method	
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

SpecialFolder
Constants
See	Also

	Scripting	Run-Time	Reference	

Comparison	Constants
DriveType	Constants
FileAttribute	Constants
File	Input/Output	Constants
Tristate	Constants

Microsoft®	Visual	Basic®	Scripting	Edition

SubFolders
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
Type	Property

Microsoft®	Visual	Basic®	Scripting	Edition

SubFolders
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

TextStream	Object
See	Also

	Scripting	Run-Time	Reference	

Dictionary	Object
FileSystemObject	Object

Microsoft®	Visual	Basic®	Scripting	Edition

TextStream	Object
Properties

	Scripting	Run-Time	Reference	

AtEndOfLine	Property
AtEndOfStream	Property
Column	Property
Line	Property

Microsoft®	Visual	Basic®	Scripting	Edition

TextStream	Object
Methods

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadAll	Method
ReadLine	Method
Skip	Method
SkipLine	Method
Write	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition

TotalSize	Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
VolumeName	Property

Microsoft®	Visual	Basic®	Scripting	Edition

TotalSize	Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Type
Property
See	Also

	Scripting	Run-Time	Reference	
	

Attributes	Property
DateCreated	Property
DateLastAccessed	Property
DateLastModified	Property
Drive	Property
Files	Property
IsRootFolder	Property
Name	Property
ParentFolder	Property
Path	Property
ShortName	Property
ShortPath	Property
Size	Property
SubFolders	Property

Microsoft®	Visual	Basic®	Scripting	Edition	Type
Property
Applies	To

	Scripting	Run-Time	Reference	
	

File	Object
Folder	Object

Microsoft®	Visual	Basic®	Scripting	Edition

VolumeName
Property
See	Also

	Scripting	Run-Time	Reference	
	

AvailableSpace	Property
DriveLetter	Property
DriveType	Property
FileSystem	Property
FreeSpace	Property
IsReady	Property
Path	Property
RootFolder	Property
SerialNumber	Property
ShareName	Property
TotalSize	Property

Microsoft®	Visual	Basic®	Scripting	Edition

VolumeName
Property
Applies	To

	Scripting	Run-Time	Reference	
	

Drive	Object

Microsoft®	Visual	Basic®	Scripting	Edition	Write
Method	
See	Also

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadAll	Method
ReadLine	Method
Skip	Method
SkipLine	Method
WriteLine	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition	Write
Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

WriteBlankLines
Method	
See	Also

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadAll	Method
ReadLine	Method
Skip	Method
SkipLine	Method
Write	Method
WriteLine	Method

Microsoft®	Visual	Basic®	Scripting	Edition

WriteBlankLines
Method	
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

WriteLine	Method
See	Also

	Scripting	Run-Time	Reference	

Close	Method
Read	Method
ReadAll	Method
ReadLine	Method
Skip	Method
SkipLine	Method
Write	Method
WriteBlankLines	Method

Microsoft®	Visual	Basic®	Scripting	Edition

WriteLine	Method
Applies	To

	Scripting	Run-Time	Reference	

TextStream	Object

Microsoft®	Visual	Basic®	Scripting	Edition

InStrRev	Function
See	Also

	Language	Reference	

InStr	Function

Microsoft®	Visual	Basic®	Scripting	Edition

Arithmetic
Operators

	Language	Reference	
Version	1	

^	Operator
*	Operator
/	Operator
\	Operator
Mod	Operator
+	Operator
-	Operator
Concatenation	Operators

Microsoft®	Visual	Basic®	Scripting	Edition

Concatenation
Operators

	Language	Reference	
Version	1	

&	Operator
+	Operator

Microsoft®	Visual	Basic®	Scripting	Edition

Operator
Summary

	Language	Reference	
Version	1	

See	Also

	
Arithmetic	Operators

Operators	used	to	perform	mathematical	calculations.

Assignment	Operator

Operator	used	to	assign	a	value	to	a	property	or	variable.

Comparison	Operators

Operators	used	to	perform	comparisons.

Concatenation	Operators

Operators	used	to	combine	strings.

Logical	Operators

Operators	used	to	perform	logical	operations.

Microsoft®	Visual	Basic®	Scripting	Edition	Logical
Operators

	Language	Reference	
Version	1	

And	Operator
Not	Operator
Or	Operator
Xor	Operator

Microsoft®	Visual	Basic®	Scripting	Edition	Derived
Math	Functions

	Language	Reference	
Version	1	

See	Also

Description

The	following	nonintrinsic	math	functions	can	be	derived	from	the	intrinsic
math	functions:

Function Derived	equivalents
Secant Sec(X)	=	1	/	Cos(X)
Cosecant Cosec(X)	=	1	/	Sin(X)
Cotangent Cotan(X)	=	1	/	Tan(X)
Inverse	Sine Arcsin(X)	=	Atn(X	/	Sqr(-X	*	X	+	1))

Inverse	Cosine Arccos(X)	=	Atn(-X	/	Sqr(-X	*	X	+	1))	+	2
*	Atn(1)

Inverse	Secant Arcsec(X)	=	Atn(X	/	Sqr(X	*	X	-	1))	+
Sgn((X)	-1)	*	(2	*	Atn(1))

Inverse	Cosecant Arccosec(X)	=	Atn(X	/	Sqr(X	*	X	-	1))	+
(Sgn(X)	-	1)	*	(2	*	Atn(1))

Inverse	Cotangent Arccotan(X)	=	Atn(X)	+	2	*	Atn(1)
Hyperbolic	Sine HSin(X)	=	(Exp(X)	-	Exp(-X))	/	2
Hyperbolic	Cosine HCos(X)	=	(Exp(X)	+	Exp(-X))	/	2
Hyperbolic
Tangent

HTan(X)	=	(Exp(X)	-	Exp(-X))	/	(Exp(X)	+
Exp(-X))

Hyperbolic	Secant HSec(X)	=	2	/	(Exp(X)	+	Exp(-X))
Hyperbolic
Cosecant HCosec(X)	=	2	/	(Exp(X)	-	Exp(-X))

Hyperbolic HCotan(X)	=	(Exp(X)	+	Exp(-X))	/	(Exp(X)

Cotangent -	Exp(-X))
Inverse	Hyperbolic
Sine HArcsin(X)	=	Log(X	+	Sqr(X	*	X	+	1))

Inverse	Hyperbolic
Cosine HArccos(X)	=	Log(X	+	Sqr(X	*	X	-	1))

Inverse	Hyperbolic
Tangent HArctan(X)	=	Log((1	+	X)	/	(1	-	X))	/	2

Inverse	Hyperbolic
Secant

HArcsec(X)	=	Log((Sqr(-X	*	X	+	1)	+	1)	/
X)

Inverse	Hyperbolic
Cosecant

HArccosec(X)	=	Log((Sgn(X)	*	Sqr(X	*	X
+	1)	+1)	/	X)

Inverse	Hyperbolic
Cotangent HArccotan(X)	=	Log((X	+	1)	/	(X	-	1))	/	2

Logarithm	to	base
N LogN(X)	=	Log(X)	/	Log(N)

Microsoft®	Visual	Basic®	Scripting	Edition

VBScript	Error
Messages

	Language	Reference	

Error
Code Message

5 Invalid	procedure	call	or	argument
6 Overflow
7 Out	of	memory
9 Subscript	out	of	range
10 Array	fixed	or	temporarily	locked
11 Division	by	zero
13 Type	mismatch
14 Out	of	string	space
28 Out	of	stack	space
35 Sub	or	Function	not	defined
48 Error	in	loading	DLL
51 Internal	error
53 File	not	found
57 Device	I/O	error
58 File	already	exists
61 Disk	full
67 Too	many	files
70 Permission	denied
75 Path/File	access	error
76 Path	not	found
91 Object	variable	or	With	block	variable	not	set

92 For	loop	not	initialized
94 Invalid	use	of	Null
322 Can't	create	necessary	temporary	file
424 Object	required
429 ActiveX	component	can't	create	object
430 Class	doesn't	support	Automation

432 File	name	or	class	name	not	found	during	Automation
operation

438 Object	doesn't	support	this	property	or	method
440 Automation	error
445 Object	doesn't	support	this	action
446 Object	doesn't	support	named	arguments
447 Object	doesn't	support	current	locale	setting
448 Named	argument	not	found
449 Argument	not	optional

450 Wrong	number	of	arguments	or	invalid	property
assignment

451 Object	not	a	collection
453 Specified	DLL	function	not	found
455 Code	resource	lock	error

457 This	key	already	associated	with	an	element	of	this
collection

458 Variable	uses	an	Automation	type	not	supported	in
VBScript

500 Variable	is	undefined
501 Illegal	assignment
502 Object	not	safe	for	scripting
503 Object	not	safe	for	initializing
1001 Out	of	memory
1002 Syntax	error
1003 Expected	':'

1004 Expected	';'

1005 Expected	'('
1006 Expected	')'
1007 Expected	']'
1008 Expected	'{'
1009 Expected	'}'
1010 Expected	identifier
1011 Expected	'='
1012 Expected	'If'
1013 Expected	'To'
1014 Expected	'End'
1015 Expected	'Function'
1016 Expected	'Sub'
1017 Expected	'Then'
1018 Expected	'Wend'
1019 Expected	'Loop'
1020 Expected	'Next'
1021 Expected	'Case'
1022 Expected	'Select'
1023 Expected	expression
1024 Expected	statement
1025 Expected	end	of	statement
1026 Expected	integer	constant
1027 Expected	'While'	or	'Until'
1028 Expected	'While',	'Until',	or	end	of	statement
1029 Too	many	locals	or	arguments
1030 Identifier	too	long
1031 Invalid	number
1032 Invalid	character

1033 Unterminated	string	constant
1034 Unterminated	comment

1035 Nested	comment
1037 Invalid	use	of	'Me'	keyword
1038 'Loop'	without	'Do'
1039 Invalid	'Exit'	statement
1040 Invalid	'For'	loop	control	variable
1041 Name	redefined
1042 Must	be	first	statement	on	the	line
1043 Can't	assign	to	non-ByVal	argument
1044 Can't	use	parens	when	calling	a	Sub
1045 Expected	literal	constant
1046 Expected	'In'
32766 True
32767 False
32811 Element	not	found

Microsoft®	Visual	Basic®	Scripting	Edition

WeekdayName
Function

	Language	Reference	
Version	2	

See	Also

Description

Returns	a	string	indicating	the	specified	day	of	the	week.

Syntax

WeekdayName(weekday,	abbreviate,	firstdayofweek)

The	WeekdayName	function	syntax	has	these	parts:

Part Description

weekday
Required.	The	numeric	designation	for	the	day	of
the	week.	Numeric	value	of	each	day	depends	on
setting	of	the	firstdayofweek	setting.

abbreviate

Optional.	Boolean	value	that	indicates	if	the
weekday	name	is	to	be	abbreviated.	If	omitted,
the	default	is	False,	which	means	that	the
weekday	name	is	not	abbreviated.

firstdayofweek Optional.	Numeric	value	indicating	the	first	dayof	the	week.	See	Settings	section	for	values.

Settings

The	firstdayofweek	argument	can	have	the	following	values:

Constant Value Description

vbUseSystem 0 Use	National	Language	Support	(NLS)
API	setting.

vbSunday 1 Sunday	(default)

vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Remarks

The	following	example	uses	the	WeekDayName	function	to	return	the
specified	day:

Dim	MyDate
MyDate	=	WeekDayName(6,	True)		'	MyDate	contains	Fri.

Microsoft®	Visual	Basic®	Scripting	Edition

ExecuteGlobal
Statement	
See	Also

	Language	Reference	

Eval	Function
Execute	Statement

Microsoft®	Visual	Basic®	Scripting	Edition

GetLocale
Function	
See	Also

	Language	Reference	

SetLocale	Function
Locale	ID	(LCID)	Chart

Microsoft®	Visual	Basic®	Scripting	Edition	Locale
ID	(LCID)	Chart	
See	Also

	Language	Reference	

GetLocale	Function
SetLocale	Function

Microsoft®	Visual	Basic®	Scripting	Edition

SetLocale
Function	
See	Also

	Language	Reference	

GetLocale	Function
Locale	ID	(LCID)	Chart

Microsoft®	Visual	Basic®	Scripting	Edition

Operator
Summary	
See	Also

	Language	Reference	

Operator	Precedence

Microsoft®	Visual	Basic®	Scripting	Edition

Assignment
Operator

	Language	Reference	
	Version	1	

=	Operator

Microsoft®	Visual	Basic®	Scripting	Edition	Derived
Math	Functions
See	Also

	Language	Reference	

Atn	Function
Cos	Function
Exp	Function
Log	Function
Sin	Function
Sqr	Function
Tan	Function

Microsoft®	Visual	Basic®	Scripting	Edition

WeekdayName
Function	
See	Also

	Language	Reference	

MonthName	Function

